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Preface

This book covers the fundamental mechanics of fluids as they are treated at
the senior level or in first graduate courses. Many excellent books exist that
treat special areas of fluid mechanics such as ideal-fluid flow or boundary-
layer theory. However, there are very few books at this level that sacrifice an
in-depth study of one of these special areas of fluid mechanics for a briefer
treatment of a broader area of the fundamentals of fluid mechanics. This
situation exists despite the fact that many institutions of higher learning
offer a broad, fundamental course to a wide spectrum of their students
before offering more advanced specialized courses to those who are spe-
cializing in fluid mechanics. This book is intended to remedy this situation.

The book is divided into four parts. Part I, “Governing Equations,”
deals with the derivation of the basic conservation laws, flow kinematics,
and some basic theorems of fluid mechanics. Part II is entitled “‘Ideal-Fluid
Flow,” and it covers two-dimensional potential flows, three-dimensional
potential flows, and surface waves. Part III, “Viscous Flows of Incom-
pressible Fluids,” contains chapters on exact solutions, low-Reynolds-
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vi Preface

number approximations, boundary-layer theory, and buoyancy-driven
flows. The final part of the book is entitled “Compressible Flow of Inviscid
Fluids,” and this part contains chapters that deal with shock waves, one-
dimensional flows, and multidimensional flows. Appendixes are also inclu-
ded which summarize vectors, tensors, the governing equations in the
common coordinate systems, complex variables, and thermodynamics.

The treatment of the material is such as to emphasize the phenomena
associated with the various properties of fluids while providing techniques
for solving specific classes of fluid-flow problems. The treatment is not
geared to any one discipline, and it may readily be studied by physicists and
chemists as well as by engineers from various branches. Since the book is
intended for teaching purposes, phrases such as ““it can be shown that” and
similar clichés which cause many hours of effort for many students have
been avoided. In order to aid the teaching process, several problems are
included at the end of each of the 13 chapters. These problems serve to
illustrate points brought out in the text and to extend the material covered in
the text.

Most of the material contained in this book can be covered in about 50
lecture hours. For more extensive courses the material contained here may
be completely covered and even augmented. Parts II, III, and IV are
essentially independent so that they may be interchanged or any one or more
of them may be omitted. This permits a high degree of teaching flexibility,
and allows the instructor to include or substitute material which is not
covered in the text. Such additional material may include free convection,
density stratification, hydrodynamic stability, and turbulence with applica-
tions to pollution, meteorology, etc. These topics are not included here, not
because they do not involve fundamentals, but rather because I set up a
priority of what I consider the basic fundamentals.

For the third edition, I redrew all the line drawings, of which there are
over 100. The problems have also been reviewed, and some of them have
been revised in order to clarify and/or extend the questions. Some new
problems have also been included.

Many people are to be thanked for their direct or indirect contribu-
tions to this text. I had the privilege of taking lectures from F. E. Marble,
C. B. Millikan, and P. G. Saffman. Some of the style and methods of these
great scholars are probably evident on some of the following pages. The
National Research Council of Canada are due thanks for supplying the
photographs that appear in this book. My colleagues at the University of
Toronto have been a constant source of encouragement and help. Finally,
sincere appreciation is extended to the many students who have taken my
lectures at the University of Toronto and who have pointed out errors and
deficiencies in the material content of the draft of this text.
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Preface vii

Working with staff at Marcel Dekker, Inc., has been a pleasure. I am
particularly appreciative of the many suggestions given by Mr. John J.
Corrigan, Acquisitions Editor, and for the help he has provided in the
creation of the third edition. Marc Schneider provided valuable information
relating to software for the preparation of the line drawings. Erin Nihill, the
Production Editor, has been helpful in many ways and has converted a
patchy manuscript into a textbook.

1. G. Currie
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|
GOVERNING EQUATIONS

In this first part of the book a sufficient set of equations will be derived, based
on physical laws and postulates, governing the dependent variables of a fluid
that is moving. The dependent variables are the fluid-velocity components,
pressure, density, temperature, and internal energy or some similar set of
variables. The equations governing these variables will be derived from the
principles of mass, momentum, and energy conservation and from equations
of state. Having established a sufficient set of governing equations, some
purely kinematical aspects of fluid flow are discussed, at which time the
concept of vorticity is introduced. The final section of this part of the book
introduces certain relationships that can be derived from the governing
equations under certain simplifying conditions. These relationships may be
used in conjunction with the basic governing equations or as alternatives to
them.

Taken as a whole, this part of the book establishes the mathematical
equationsthatresultfrominvokingcertainphysicallawspostulatedtobevalid
for a moving fluid. These equations may assume different forms, depending
uponwhichvariables are chosen and upon which simplifying assumptions are
made. The remaining parts of the book are devoted to solving these governing
equations for different classes of fluid flows and thereby explaining quantita-
tively some of the phenomenathat are observed in fluid flow.
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1

Basic Conservation Laws

The essential purpose of this chapter is to derive the set of equations that
results from invoking the physical laws of conservation of mass, momentum,
and energy. In order to realize this objective, it is necessary to discuss certain
preliminary topics. The first topic of discussion is the two basic ways in which
the conservation equations may be derived: the statistical method and the
continuum method. Having selected the basic method to be used in deriving
the equations, one is then faced with the choice of reference frame to be
employed, eulerian or lagrangian. Next, a general theorem, called Reynolds’
transport theorem, is derived, since this theorem relates derivatives in the
lagrangian framework to derivatives in the eulerian framework.

Having established the basic method to be employed and the tools to be
used, the basic conservation laws are then derived. The conservation of mass
yields the so-called continuity equation. The conservation of momentum
leads ultimately to the Navier-Stokes equations, while the conservation of
thermal energy leads to the energy equation. The derivation is followed by a
discussion of the set of equations so obtained, and finally a summary of the
basic conservation laws is given.
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1.1 STATISTICAL AND CONTINUUM METHODS

There are basically two ways of deriving the equations that govern the
motion of a fluid. One of these methods approaches the question from the
molecular point of view. That is, this method treats the fluid as consisting of
molecules whose motion is governed by the laws of dynamics. The macro-
scopic phenomena are assumed to arise from the molecular motion of the
molecules, and the theory attempts to predict the macroscopic behavior of
the fluid from the laws of mechanics and probability theory. For a fluid that is
in a state not too far removed from equilibrium, this approach yields the
equations of mass, momentum, and energy conservation. The molecular
approach also yields expressions for the transport coefficients, such as the
coefficient of viscosity and the thermal conductivity, in terms of molecular
quantities such as the forces acting between molecules or molecular dia-
meters. The theory is well developed for light gases, but it is incomplete for
polyatomic gas molecules and for liquids.

The alternative method used to derive the equations governing the
motion of a fluid uses the continuum concept. In the continuum approach,
individual molecules are ignored and it is assumed that the fluid consists of
continuous matter. At each point of this continuous fluid there is supposed to
be a unique value of the velocity, pressure, density, and other so-called field
variables. The continuous matter is then required to obey the conservation
laws of mass, momentum, and energy, which give rise to a set of differential
equations governing the field variables. The solution to these differential
equations then defines the variation of each field variable with space and time
which corresponds to the mean value of the molecular magnitude of that field
variable at each corresponding position and time.

The statistical method is rather elegant, and it may be used to treat gas
flows in situations where the continuum concept is no longer valid. However,
as was mentioned before, the theory is incomplete for dense gases and for
liquids. The continuum approach requires that the mean free path of the
molecules be very small compared with the smallest physical-length scale of
the flow field (such as the diameter of a cylinder or other body about which
the fluid is flowing). Only in this way can meaningful averages over the
molecules at a “point” be made and the molecular structure of the fluid be
ignored. However, if this condition is satisfied, there no distinction among
light gases, dense gases, or even liquids—the results apply equally to all.
Since the vast majority of phenomena encountered in fluid mechanics fall
well within the continuum domain and may involve liquids as well as gases,
the continuum method will be used in this book. With this background, the
meaning and validity of the continuum concept will now be explored in some
detail. The field variables, such as the density p and the velocity vector u, will
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Basic Conservation Laws 5

in general be functions of the spatial coordinates and time. In symbolic form
this is written as p = p(x, f) and u = u(x, ), where x is the position vector
whose certesian coordinates are Xx, y, and z. At any particular point in space
these continuum variables are defined in terms of the properties of the var-
ious molecules that occupy a small volume in the neighborhood of that point.
Consider a small volume of fluid AV containing a large number of
molecules. Let Am and v be the mass and velocity of any individual molecule
contained within the volume AV] as indicated in Fig. 1.1. The density and the
velocity at a point in the continuum are then defined by the following limits:

()

AV—e AV
(> vAm
u= Alll/rgz( ZAm

where ¢is avolume which is sufficiently small that ¢!/3 is small compared with

the smallest significant length scale in the flow field but is sufficiently large
that it contains a large number of molecules. The summations in the above
expressions are taken over all the molecules contained within the volume AV.

AV

Am

FIGURE 1.1 An individual molecule in a small volume AV having a mass Am and
velocity v.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



6 Chapter1

The other field variables may be defined in terms of the molecular properties
in an analogous way.

A sufficient condition, though not a necessary condition, for the con-
tinuum approach to be valid is

1
;<<8<<L3

where n is the number of molecules per unit volume and L is the smallest
significant length scale in the flow field, which is usually called the macro-
scopic length scale. The characteristic microscopic length scale is the mean free
path between collisions of the molecules. Then the above condition states
that the continuum concept will certainly be valid if some volume ¢ can be
found that is much larger than the volume occupied by a single molecule of
the fluid but much smaller than the cube of the smallest macroscopic length
scale (such as cylinder diameter). Since a cube of gas, at normal temperature
and pressure, whose side is 2 micrometers contains about 2 x 10% molecules
and the corresponding figure for a liquid is about 2 x 10'" molecules, the
continuum condition is readily met in the vast majority of flow situations
encountered in physics and engineering. It may be expected to break down in
situations where the smallest macroscopic length scale approaches micro-
scopic dimensions, such as in the structure of a shock wave, and where the
microscopic length scale approaches macroscopic dimensions, such as when
arocket passes through the edge of the atmosphere.

1.2 EULERIAN AND LAGRANGIAN COORDINATES

Having selected the continuum approach as the method that will be used to
derive the basic conservation laws, one is next faced with a choice of refer-
ence frames in which to formulate the conservation laws. There are two basic
coordinate systems that may be employed, these being eulerian and lagran-
gian coordinates.

In the eulerian framework the independent variables are the spatial
coordinates x, y, and z and time ¢. This is the familiar framework in which
most problems are solved. In order to derive the basic conservation equa-
tions in this framework, attention is focused on the fluid which passes
through a control volume that is fixed in space. The fluid inside the control
volume at any instant in time will consist of different fluid particles from that
which was there at some previous instant in time. If the principles of con-
servation of mass, momentum, and energy are applied to the fluid passing
through the control volume, the basic conservation equations are obtained in
eulerian coordinates.
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Basic Conservation Laws 7

In the lagrangian approach, attention is fixed on a particular mass of
fluid as it flows. Suppose we could color a small portion of the fluid without
changing its density. Then in the lagrangian framework we follow this
colored portion as it flows and changes its shape, but we are always con-
sidering the same particles of fluid. The principles of mass, momentum, and
energy conservation are then applied to this particular element of fluid as it
flows, resulting in a set of conservation equations in lagrangian coordinates.
Inthis reference frame x,y, z, and are no longer independent variables, since
ifitis known that our colored portion of fluid passed through the coordinates
Xo, Yo, and zy at some time £, then its position at some later time may be cal-
culated if the velocity components u, v, and w are known. That is, as soon as a
time interval (¢ — £y) is specified, the velocity components uniquely deter-
mine the coordinate changes (x — xg), (¥ — »),and (z — zg) sothat x,y,z,and ¢
are no longer independent. The independent variables in the lagrangian sys-
tem are xy, yo, 29, and ¢, where Xy, yy, and z; are the coordinates which a spe-
cified fluid element passed through at time #,. That is, the coordinates xy, yy,
and z, identify which fluid element is being considered, and the time ¢ iden-
tifies its instantaneous location.

The choice of which coordinate system to employ is largely a matter of
taste. It is probably more convincing to apply the conservation laws to a
control volume that always consists of the same fluid particles rather than
one through which different fluid particles pass. This is particularly true
when invoking the law of conservation of energy, which consists of applying
the first law of thermodynamics, since the same fluid particles are more
readily justified as a thermodynamic system. For this reason, the lagrangian
coordinate system will be used to derive the basic conservation equations.
Although the lagrangian system will be used to derive the basic equations,
the eulerian system is the preferred one for solving the majority of problems.
In the next section the relation between the different derivatives will be
established.

1.3 MATERIAL DERIVATIVE

Let o be any field variable such as the density or temperature of the fluid.
From the eulerian viewpoint, « may be considered to be a function of the
independent variables x, y, z, and 7. But if a specific fluid element is observed
for a short period of time oz as it flows, its position will change by amounts Jx,
0y, and oz while its value of o will change by an amount . That is, if the fluid
element is observed in the lagrangian framework, the independent variables
are Xy, ), 2o, and ¢, where xo, yo, and z( are initial coordinates for the fluid
element. Thus, x, y, and z are no longer independent variables but are
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8 Chapter1

functions of 7 as defined by the trajectory of the element. During the time d¢
the change in o may be calculated from differential calculus to be

oo Ou O oo,
—O0t+——0x+—0y+——0
o T Ty e
Equating the preceding change in « to the observed change d« in the lagran-
gian framework and dividing throughout by ¢ gives

oo Qo oOxOu  OyOdu  0z0u

51 9t " orox o1y otoz
The left-hand side of this expression represents the total change in o as
observed in the lagrangian framework during the time Jz, and in the limit it
represents the time derivative of o in the lagrangian system, which will be
denoted by Do/ Dt. It may be also noted that in the limit as 6¢ — 0 the ratio
ox/otbecomesthe velocity componentin the xdirection, namely, u. Similarly,
dy/ot — v and 0z/0t — was 5t — 0, the expression for the change in
oabecomes

Dy On oOw Ox O
Do Mox Vo Moz

In vector form this equation may be written as follows:

Do Oo

—=—+(u-V)u

Dt ot ( )
Alternatively, using the Einstein summation convention where repeated
subscripts are summed, the tensor form may be written as

Do Ou oo,
E_E—’_uka_xk (1.1)

The term Do/ Dt in Eq. (1.1) is the so-called material derivative. It represents
the total change in the quantity « as seen by an observer who is following the
fluid and is watching a particular mass of the fluid. The entire right-hand side
of Eq. (1.1) represents the total change in « expressed in eulerian coordinates.
The term uy (Oo./ Oxy ) expresses the fact that in a time-independent flow field
in which the fluid properties depend upon the spatial coordinates only, there
is a change in o due to the fact that a given fluid element changes its position
with time and therefore assumes different values of o as it flows. The term
0o/ Ot is the familiar eulerian time derivative and expresses the fact that at
any point in space the fluid properties may change with time. Then Eq. (1.1)
expresses the lagrangian rate of change Do/ Dt of o« for a given fluid element in
terms of the eulerian derivatives do/ 9t and do./ Oxy.
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Basic Conservation Laws 9

14 CONTROLVOLUMES

The concept of a control volume, as required to derive the basic conservation
equations, has been mentioned in connection with both the lagrangian and
the eulerian approaches. Irrespective of which coordinate system is used,
there are two principal control volumes from which to choose. One of these is
a parallelepiped of sides dx, dy, and Jz. Each fluid property, such as the velo-
city or pressure, is expanded in aTaylor series about the center of the control
volume to give expressions for that property at each face of the control
volume. The conservation principle is then invoked, and when dx, dy, and dz
are permitted to become vanishingly small, the differential equation for that
conservation principle is obtained. Frequently, shortcuts are taken and the
control volume is taken to have sides of length dx, dy, and dz with only the first
term of the Taylor series being carried out.

The second type of control volume is arbitrary in shape, and each con-
servation principle is applied to an integral over the control volume. For
example, the mass within the control volume is [, p dV, where p is the fluid
density and the integration is carried out over the entire volume Vof the fluid
contained within the control volume. The result of applying each conserva-
tion principle will be an integro-differential equation of the type

/ LodV =0
v

where L is some differential operator and o is some property of the fluid. But
since the control volume V' was arbitrarily chosen, the only way this equa-
tion can be satisfied is by setting Lo = 0, which gives the differential equation
of the conservation law. If the integrand in the above equation was not equal
to zero, it would be possible to redefine the control volume V'in such a way
that the integral of Lo was not equal to zero, contradicting the integro-
differential equation above.

Each of these two types of control volumes has some merit, and in this
book each will be used at some point, depending upon which gives the better
insight to the physics of the situation under discussion. The arbitrary control
volume will be used in the derivation of the basic conservation laws, since it
seems to detract less from the principles being imposed. Needless to say the
results obtained by the two methods are identical.

1.5 REYNOLDS TRANSPORT THEOREM

The method that has been selected to derive the basic equations from
the conservation laws is to use the continuum concept and to follow an
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10 Chapter1

arbitrarily shaped control volume in a lagrangian frame of reference. The
combination of the arbitrary control volume and the lagrangian coordinate
system means that material derivatives of volume integrals will be encoun-
tered. As was mentioned in the previous section, it is necessary to transform
such terms into equivalent expressions involving volume integrals of
eulerian derivatives. The theorem that permits such a transformation is
called Reynolds’ transport theorem.

Consider a specific mass of fluid and follow it for a short period of time
otasitflows. Let o be any property of the fluid such as its mass, momentum in
some direction, or energy. Since a specific mass of fluid is being considered
and since X, )y, 2z, and ¢ are the independent variables in the lagrangian
framework, the quantity « will be a function of 7 only as the control volume
moves with the fluid. That is, « = «(¢) only and the rate of change of the inte-
gral of o will be defined by the following limit:

D o(t)dV = lim l/ oc(t+5t)dV—/ o(t)dV
Dt [y 01=0 | O | Jy(11s0) v(6)

where V(¢) is the control volume containing the specified mass of fluid and
which may change its size and shape as it flows. The quantity «(¢ 4 Jt) inte-
grated over V' (¢) will now be subtracted, then added again inside the above
limit.

D 1
D[ ywyav =iim{ L / at + 5t) dV — / u(t + ) dV
Dt [y ot=0 | OF | Jy(iqon) 40!

/V(t) oc(t+5t)dV—/V(t)oc(t)dV]}

The first two integrals inside this limit correspond to holding the integrand
fixed and permitting the control volume ¥ to vary while the second two
integrals correspond to holding ¥ fixed and permitting the integrand « to
vary. The latter component of the change is, by definition, the integral of the
familiar eulerian derivative with respect to time. Then the expression for the
lagrangian derivative of the integral of « may be written in the following

form:
D o(t)dV = lim 1 / a(t+o)dV| » + %dV
Dt Jy ot=0 | OF | Sy (r180-v (o) v(r) OF

The remaining limit, corresponding to the volume J changing while «
remains fixed, may be evaluated from geometric considerations.

L]
5t
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Basic Conservation Laws 11

Figure 1.2a shows the control volume V' (¢) thatencloses the mass of fluid
being considered both at time zand attime 7 + 6¢. During this time interval the
control volume has moved downstream and has changed its size and shape.
The surface that encloses V' (¢) is denoted by S(¢), and at any point on this
surface the velocity may be denoted by u and the unit outward normal by n.

Figure 1.2b shows the control volume V(¢ + J¢) superimposed on V' (¢),
and an element of the difference in volumes is detailed. The perpendicular
distance from any point on the inner surface to the outer surface is u-ndz, so
that an element of surface area 6.5 will correspond to an element of volume
change 0Vin which 0V = u-n 7 6S. Then the volume integral inside the limit

—

-
u_-
(a) g n
sty
— —
s
e
/-“"
s
u
n
(b)
ot
ALY
55 >

FIGURE 1.2 (a) Arbitrarily shaped control volume at times ¢ and ¢+ d¢, and
(b) superposition of the control volumes at these times showing an element 6 of
the volume change.
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in the foregoing equation may be transformed into a surface integral in which

dVisreplaced by u-n ot dS.
o
120 ot
oo

:/ a(t)u-ndS + —dV
s() vin Ot

b a(t)dV = lim / o(t + ot)u-ndS
Dt [y =0 | Js(r)

Having completed the limiting process, the lagrangian derivative of a volume
integral has been converted into a surface integral and a volume integral in
which the integrands contain only eulerian derivatives. As was mentioned in
the previous section, it is necessary to obtain each term in the conservation
equations as the volume integral of something. The foregoing form of
Reynolds’ transport theorem may be put in this desired form by converting
the surface integral to a volume integral by use of Gauss’ theorem, which is
formulated in Appendix A. In this way the surface-integral term becomes

/ oc(t)u-ndS:/ V(o) dV
S(r) V(1)

Substituting this result into the foregoing expression and combining the two
volume integrals gives the preferred form of Reynolds’ transport theorem.

D oo
D Voch—/V[E-i-V-(ocu)} dv

Or, in tensor notation,

D ochz/ {%—I—i(auk)] dv (1.2)
Equation (1.2) relates the lagrangian derivative of a volume integral of a given
masstoavolume integralinwhichthe integrand has eulerian derivatives only.

Having established the method to be used to derive the basic con-
servation equations and having established the necessary background
material, it remains to invoke the various conservation principles. The first
such principle to be treated will be the conservation of mass.

1.6 CONSERVATION OF MASS

Consider a specific mass of fluid whose volume Vis arbitrarily chosen. If this
given fluid mass is followed as it flows, its size and shape will be observed to
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Basic Conservation Laws 13

change but its mass will remain unchanged. This is the principle of mass
conservation which applies to fluids in which no nuclear reactions are taking
place. The mathematical equivalence of the statement of mass conservation
is to set the lagrangian derivative D/Dt of the mass of fluid contained in ¥}
which is [}, pdV, equal to zero. That is, the equation that expresses con-
servation of mass is

D
Z | pav =0
Dt/yp

This equation may be converted to a volume integral in which the integrand
contains only eulerian derivatives by use of Reynolds’ transport theorem
[Eq. (1.2)], in which the fluid property « is, in this case, the mass density p.

dp 0 B
/V|:§+a—x]{(puk):| dv =0

Since the volume V'was arbitrarily chosen, the only way in which the above
equation can be satisfied for all possible choices of Vis for the integrand to be
zero. Then the equation expressing conservation of mass becomes

dp 0 B
E-ﬁ-a—x]{(puk) =0 (1.3a)

Equation (1.3a) expresses more than the fact that mass is conserved. Since it
is a partial differential equation, the implication is that the velocity is con-
tinuous. For this reason Eq. (1.3a) is usually called the continuity equation.
The derivation which has been given here is for a single-phase fluid in which
no change of phase is taking place. If two phases were present, such as water
and steam, the starting statement would be that the rate at which the mass of
fluid 1 is increasing is equal to the rate at which the mass of fluid 2 is
decreasing. The generalization to cases of multiphase fluids and to cases of
nuclear reactions is obvious. Since such cases cause no changes in the basic
ideas or principles, they will not be included in this treatment of the
fundamentals.

In many practical cases of fluid flow the variation of density of the fluid
may be ignored, as for most cases of the flow of liquids. In such cases the fluid
is said to be incompressible, which means that as a given mass of fluid is fol-
lowed, not only will its mass be observed to remain constant but its volume,
and hence its density, will be observed to remain constant. Mathematically,
this statement may be written as
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Dp
“F_o

Dt
In order to use this special simplification, the continuity equation is first
expanded by use of a vector identity given in Appendix A.

O, 00 ow_

ik _ ¢
o " oxe P oxg

The first and second terms in this form of the continuity equation will be
recognized as being the eulerian form of the material derivative as given by
Eq. (1.1). That is, an alternative form of Eq. (1.3a) is

Dp Ouy
Dr ank =0 (1.3b)
This mixed form of the continuity equation in which one term is given as a
lagrangian derivative and the other as an eulerian derivative is not useful for
actually solving fluid-flow problems. However, it is frequently used in the
manipulations that reduce the governing equations to alternative forms, and
for this reason it has been identified for future reference. An immediate
example of such a case is the incompressible fluid under discussion. Since
Dp/Dt = 0 for such a fluid, Eq. (1.3b) shows that the continuity equation
assumes the simpler form p(Juy /0x;) = 0.Since p cannot be zero in general,
the continuity equation for an incompressible fluid becomes

Oui =0 (incompressible) (1.3¢)
8xk

It should be noted that Eq. (13¢) is valid not only for the special case of
Dp/Dt = 0 in which p = constant everywhere, but also for stratified-fluid
flows of the type depicted in Fig. 1.3. A fluid particle that follows the lines
p = p, or p = p, will have its density remain fixed at p = p, or p = p, so that
Dp/Dt = 0. However, p is not constant everywhere, so that dp/0x # 0 and
0p/0y # 0. Such density stratifications may occur in the ocean (owing to
salinity variations) or in the atmosphere (owing to temperature variations).
However, in the majority of cases in which the fluid may be considered to be
incompressible, the density is constant everywhere.

Equation (1.3), in either the general form (1.3a) or the incompressible
form (1.3¢), is the first condition that has to be satisfied by the velocity and
the density. No dynamical relations have been used to this point, but the
conservation-of-momentum principle will utilize dynamics.
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FIGURE 1.3 Flow of a density-stratified fluid in which Dp/Dt = 0 but for which
Op/0x # 0 and 0p/dy # 0.

1.7 CONSERVATION OF MOMENTUM

The principle of conservation of momentum is, in effect, an application of
Newton’s second law of motion to an element of the fluid. That is, when con-
sideringagiven mass of fluidin alagrangian frame of reference, itis stated that
the rate at which the momentum ofthe fluid massis changing is equal to the net
external force acting on the mass. Some individuals prefer to think of forces
only and restate this law in the form that the inertia force (due to acceleration
of the element) is equal to the net external force acting on the element.

The external forces that may act on a mass of the fluid may be classed as
either body forces, such as gravitational or electromagnetic forces, or surface
forces, such as pressure forces or viscous stresses. Then, if f is a vector that
represents the resultant of the body forces per unit mass, the net external
body force acting on a mass of volume V'will be fV pof dV. Also, if P is a sur-
face vector that represents the resultant surface force per unit area, the net
external surface force acting on the surface S containing V'will be [, PdS.

According to the statement of the physical law that is being imposed in
this section, the sum of the resultant forces evaluated above is equal to the
rate of change of momentum (or inertia force). The mass per unit volume is p
and its momentum is pu, so that the momentum contained in the volume Vis
Ji, pudV . Then, if the mass of the arbitrarily chosen volume V'is observed in
the lagrangian frame of reference, the rate of change of momentum of the
mass contained with ¥ will be (D/Dt) [, pudV. Thus, the mathematical
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equation that results from imposing the physical law of conservation of

momentum is
D
—/pudV:/PdS—i-/pde
Dt V K} V

Ingeneral, there are nine components of stress at any given point, one normal
component and two shear components on each coordinate plane. These nine
components of stress are most easily illustrated by use of a cubical element in
which the faces of the cube are orthogonal to the cartesian coordinates, as
shown in Fig. 1.4, and in which the stress components will act at a point as the
length of the cube tends to zero. In Fig. 1.4 the cartesian coordinates x, y, and z
have been denoted by xj, x;, and x3, respectively. This permits the compo-
nents of stress to be identified by a double-subscript notation. In this nota-
tion, a particular component of the stress may be represented by the quantity
ojj, in which the first subscript indicates that this stress component acts on

-_GII

Xy

FIGURE1.4 Representation of the nine components of stress that may act at a point
in a fluid.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



Basic Conservation Laws 17

the plane x; = constant and the second subscript indicates that it acts in the x;
direction.

The fact that the stress may be represented by the quantity g, in
which / and j may be 1, 2, or 3, means that the stress at a point may be
represented by a tensor of rank 2. However, on the surface of our control
volume it was observed that there would be a vector force at each point,
and this force was represented by P. The surface force vector P may be
related to the stress tensor o;; as follows: The three stress components act-
ing on the plane x; = constant are o;;, 012, and oy3. Since the unit normal
vector acting on this surface is n;, the resulting force acting in the x;
direction is P; = on;. Likewise, the forces acting in the x, direction and
the x; direction are, respectively, P, = o121, and P; = o13n;. Then, for an
arbitrarily oriented surface whose unit normal has components n;, n;, and
ns, the surface force will be given by P; = oy;n; in which i is summed from 1
to 3. That is, in tensor notation the equation expressing conservation of
momentum becomes

D
— pujdV:/a,-jn,-dS—i-/pﬁdV
Dt 14 s JV

The left-hand side of this equation may be converted to a volume integral in
which the integrand contains only eulerian derivatives by use of Reynolds’
transport theorem, Eq. (1.2), in which the fluid property o here is the
momentum per unit volume pu; in the x; direction. At the same time the sur-
face integral on the right-hand side may be converted into a volume integral
by use of Gauss’ theorem as given in Appendix B. In this way the equation
that evolved from Newton’s second law becomes

8 8 60’,"

All these volume integrals may be collected to express this equation in the
form [},{ }dV = 0,where the integrand is a differential equation in eulerian
coordinates. As before, the arbitrariness of the choice of the control volume V'
is now used to show that the integrand of the above integro-differential
equation must be zero. This gives the following differential equation to be
satisfied by the field variables in order that the basic law of dynamics may be
satisfied:

0

8 6a,~j
By (puj) + o (pujuy) = o + pfi
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The left-hand side of this equation may be further simplified if the two terms
involved are expanded in which the quantity pu;uy is considered to be the
product of pu; and u;.

Ou; op
o T U Bt +u

8”' - 60,-,-
p ot

_J :
aX'k Bxi + pf;

8xkpk PUk

The second and third terms on the left-hand side of this equation are now
seen to sum to zero, since they amount to the continuity Eq. (1.3a) multiplied
by the velocity u;. With this simplification, the equation that expresses con-
servation of momentum becomes

ou; ou; 0o
Pfjﬂ-Puka: J

ot Oxi  Ox;

+ pf; (1.4)

It is useful to recall that this equation came from an application of Newton’s
second law to an element of the fluid. The left-hand side of Eq. (1.4) repre-
sents the rate of change of momentum of a unit volume of the fluid (or the
inertia force per unit volume). The first term is the familiar temporal accel-
eration term, while the second term is a convective acceleration and
accounts for local accelerations (such as around obstacles) even when the
flow is steady. Note also that this second term is nonlinear, since the velocity
appears quadratically. On the right-hand side of Eq. (1.4) are the forces
causing the acceleration. The first of these is due to the gradient of surface
shear stresses while the second is due to body forces, such as gravity, which
act on the mass of the fluid. A clear understanding of the physical significance
of each of the terms in Eq. (1.4) is essential when approximations to the full
governing equations must be made. The surface-stress tensor o;;has notbeen
fully explained up to this point, but it will be investigated in detail in a later
section.

1.8 CONSERVATION OF ENERGY

The principle of conservation of energy amounts to an application of the first
law of thermodynamics to a fluid element as it flows. The first law of thermo-
dynamics applies to a thermodynamic system that is originally at rest and,
after some event, is finally at rest again. Under these conditions it is stated
that the change in internal energy, due to the event, is equal to the sum of the
total work done on the system during the course of the event and any heat that
was added. Although a specified mass of fluid in a lagrangian frame of refer-
ence may be considered to be athermodynamic system, it is, in general, never
at rest and therefore never in equilibrium. However, in the thermodynamic
sense a flowing fluid is seldom far from a state of equilibrium, and the
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apparent difficulty may be overcome by considering the instantaneous
energy of the fluid to consist of two parts: intrinsic or internal energy and
kinetic energy. That is, when applying the first law of thermodynamics, the
energy referred to is considered to be the sum of the internal energy per unit
mass e and the kinetic energy per unit mass %u-u. In this way the modified
form of the first law of thermodynamics that will be applied to an element of
the fluid states that the rate of change of the total energy (intrinsic plus
kinetic) of the fluid as it flows is equal to the sum of the rate at which work is
being done on the fluid by external forces and the rate at which heat is being
added by conduction.

With this basic law in mind, we again consider any arbitrary mass of
fluid of volume Vand follow it in a lagrangian frame of reference as it flows.
The total energy of this mass per unit volume is pe + %pu-u, so that the total
energy contained in V' will be fV(pe + %pu-u) dV. As was established in the
previous section, there are two types of external forces that may act on the
fluid mass under consideration. The work done on the fluid by these forces is
given by the product of the velocity and the component of each force that is
colinear with the velocity. That is, the work done is the scalar product of the
velocity vector and the force vector. One type of force that may act on the
fluid is a surface stress whose magnitude per unit area is represented by
the vector P. Then the total work done owing to such forces will be fs u-Pds,
where S'is the surface area enclosing V. The other type of force that may act
on the fluid is a body force whose magnitude per unit mass is denoted by
the vector f. Then the total work done on the fluid due to such forces will
be || yu-pfdV. Finally, an expression for the heat added to the fluid is
required. Let the vector q denote the conductive heat flux leaving the control
volume. Then the quantity of heat leaving the fluid mass per unit time per unit
surface area will be q-n, where n is the unit outward normal, so that the net
amount of heat leaving the fluid per unit time will be [ q-ndS.

Having evaluated each of the terms appearing in the physical law that is
to be imposed, the statement may now be written down in analytic form. In
doing so, it must be borne in mind that the physical law is being applied to a
specific, though arbitrarily chosen, mass of fluid so that lagrangian deriva-
tives must be employed. In this way, the expression of the statement that the
rate of change of total energy is equal to the rate at which work is being done
plus the rate at which heat is being added becomes

D
E/(pe—l—%pu-u)dV: [uPdS+ [,upfdV — [ q-ndS
v

This equation may be converted to one involving eulerian derivatives only by
use of Reynolds’ transport theorem, Eq. (1.2), in which the fluid property o is
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here the total energy per unit volume (pe + %pu-u). The resulting integro-
differential equation is

/ 0 +] u-u +i —I—luu dv
a\P¢T2* Oy |\ P TP Mk
:/u-PdS—I—/u-pde—/q-ndS
s V K

The next step is to convert the two surface integrals into volume integrals so
that the arbitrariness of /"'may be exploited to obtain a differential equation
only. Using the fact that the force vector P is related to the stress tensor o;; by
the equation P; = o;;n;, as was shown in the previous section, the first surface
integral may be converted to a volume integral as follows:

/U'PdS:/ujUy'nidS:/i(ujgij)dV
P s Vax,-

Here use has been made of Gauss’ theorem as documented in Appendix B.
Gauss’ theorem may be applied directly to the heat-flux term to give

oq,
/qndS /an,dS /8x;dV

Since the stress tensor ¢; has been brought into the energy equation, it is
necessary to use the tensor notation from this point on. Then the expression
for conservation of energy becomes

5, 9]
/ {8t (pe + Lpuju;) + o [(pe+ %pujuj)uk]} dv

0 dq;
= | —(ujo;)dV ofdV — | L dv
/Vaxi (ujaj) M /V ujpfj / 8x/

Having converted each term to volume integrals, the conservation equation
may be considered to be of the form [, { } dV = 0, where the choice of Vis
arbitrary. Then the quantity inside the brackets in the integrand must be zero,
which results in the following differential equation:

8qj

0
[(pe+ %Pujuj)uk] ox; (ujoy) + uipfi —
O

g( e_|_l u.u.)+i
g Ve TP T g

This equation may be made considerably simpler by using the equations
which have already been derived, as will now be demonstrated. The first term
on the left-hand side may be expanded by considered pe and 1 spu;u; to be the
products (p)(e) and (p) (3u;u;), respectively. Then
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d de 5]
gy (pe + puju;) = Potea traG Guju;) + Juju; — 3

Similarly, the second term on the left-hand side of the basic equation may be
expanded by considering peu, to be the product (e)(pu;) and %pujujuk to be
the product (Yu;u;)(puy). Thus,

0 0 Oe
axk [(pe+2pujuj)uk] _ea (puk)+puk8 Xk
1o} 0
+ Uty — O (pug) + Pk 5 . (t4u7)

In this last equation, the quantity (0/0xy ) (puy ), which appears in the first and
third terms on the right-hand side, may be replaced by —9p /0t in view of the
continuity Eq. (1.3a). Hence it follows that

0 , B Bp Oe _ dp J ,
oz [(pe + zpuju;)ui] = e o TPk G v 2%, T puk k( uju;)

Now when the two components constituting the left-hand side of the basic
conservation equation are added, the two terms with minus signs above are
canceled by corresponding terms with plus signs to give

0
7, (pe + 3puju;) +=—[(pe + spu;u;)uy]

( 2
ot Oxy,

= 00 e () - pr (b
=P TP G TP 2 T Pk

(')uj

+ 8u,~+
uj—~+ pujuy —
PU 58 T PR, 5

3+uae
Por P oxe

Then, noting that

00 ou;
a(ujaij) u/aj+ Uaj

1

the equation that expresses the conservation of energy becomes

+ u-%—i— uju %— aa”—i—a 8uj—i—u %
Pl e TP R o~ Yoy T T P T

8+ Oe
Pat pkak

Now it can be seen that the third and fourth terms on the left-hand side are
canceled by the first and third terms on the right-hand side, since these terms
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collectively amount to the product of #; with the momentum Eq. (1.4). Thus
the equation expressing conservation of thermal energy becomes

Oe Oe Ouj  Og;

P5+P“ka—)q{: Utfiaxi _8xj

(1.5)

The terms that were dropped in the last simplification were the mechanical-
energy terms. The equation of conservation of momentum, Eq. (1.4), may be
regarded as an equation of balancing forces with j as the free subscript.
Therefore, the scalar product of each force with the velocity vector, or the
multiplication by u;, gives the rate of doing work by the mechanical forces,
which is the mechanical energy. On the other hand, Eq. (1.5) is a balance of
thermal energy, which is what is left when the mechanical energy is sub-
tracted from the balance of total energy, and is usually referred to as simply
the energy equation.

As with the equation of momentum conservation, it is instructive to
interpret each of the terms appearing in Eq. (1.5) physically. The entire left-
hand side represents the rate of change of internal energy, the first term being
the temporal change while the second is due to local convective changes
caused by the fluid flowing from one area to another. The entire right-hand
side represents the cause of the change in internal energy. The first of these
terms represents the conversion of mechanical energy into thermal energy
due to the action of the surface stresses. As will be seen later, part of this con-
version is reversible and part is irreversible. The final term in the equation
represents the rate at which heat is being added by conduction from outside.

1.9 DISCUSSION OF CONSERVATION EQUATIONS

The basic conservation laws, Egs. (1.3a), (1.4), and (1.5), represent five scalar
equations that the fluid properties must satisfy as the fluid flows. The con-
tinuity and the energy equations are scalar equations, while the momentum
equation is a vector equation which represents three scalar equations. Two
equations of state may be added to bring the number of equations up to seven,
but our basic conservation laws have introduced seventeen unknowns.
These unknowns are the scalars p and e, the density and the internal energy,
respectively; the vectors #; and g;, the velocity and heat flux, respectively,
each vector having three components; and the stress tensor ¢, which has, in
general, nine independent components.

In order to obtain a complete set of equations, the stress tensor o;;and
the heat-flux vector g; must be further specified. This leads to the so-called
constitutive equations in which the stress tensor is related to the deformation
tensor and the heat-flux vector is related to temperature gradients. Although
the latter relation is very simple, the former is quite complicated and requires
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either an intimate knowledge of tensor analysis or a clear understanding of
the physical interpretation of certain tensor quantities. For this reason, prior
to establishing the constitutive relations the tensor equivalents of rotation
and rate of shear will be established.

110 ROTATION AND RATE OF SHEAR

It is the purpose of this section to consider the rotation of a fluid element
about its own axis and the shearing of a fluid element and to identify the
tensor quantities that represent these physical quantities. This is most easily
done by considering an infinitesimal fluid element of rectangular cross sec-
tion and observing its change in shape and orientation as it flows.

Figure 1.5 shows a two-dimensional element of fluid (or the projection
ofathree-dimensional element) whose dimensions at time 7= 0 are dxand dy.
The fluid element is rectangular at time ¢ = 0, and its centroid coincides with
the origin of a fixed-coordinate system. For purposes of identification, the
corners of the fluid element have been labeled 4, B, C, and D.

After a short time interval d¢, the centroid of the fluid element will have
moved downstream to some new location as shown in Fig. 1.5. The distance
the centroid will have moved in the x direction will be given by

dy

C Olx D

Ax

FIGURE1.5 An infinitesimal element of fluid at time ¢ = 0 (indicated by ABCD) and
at time ¢ = ot (indicated by A’'B'C'D’).
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ot
Ax = /0 ulx(£), y(0)] dt

Since the values of x and y must be close to zero for short times such as d¢, the
velocity component # may be expanded in aTaylor series about the point (0,0)
to give

ou Oou

ot
Ax:/o [u(O,O)+x(t)a(0,0)+y(t)6—y(()’())+,,,] dt

where the dots represents terms that are smaller than those presented and
that will eventually vanish as the limit of 67— 0 is taken. Integrating the
leading term explicitly gives

ne= a0, 000+ [ X0 G 0.0) 430 52 (0.0) 4|
0 X

=u(0,0)0t+ - -
similarly
Ay =v(0,0)0t + - -

As well as moving bodily, the fluid element will rotate and will be dis-
torted as indicated by the corners, which are labeled 4’, B', C’, and D' to
represent the element at time #= d¢. The rotation of the side CD to its new
position C' D' is indicated by the angle oo, where o is positive when measured
counterclockwise. Similarly, the rotation of the side BC to its new position
B'C' is indicated by the angle Jf3, where f is positive when measured clock-
wise. Expressions for da and 6 in terms of the velocity components may be
obtained as follows:

From the geometry of the element as it appears at time ¢ = ¢,

5 — tan-1 (¥ component of D'C’
o =
x component of D'C’

~ tan! { [v(3ox, —10y) 1 + - -] — [v(—Lox, —L3y) o1 + -- .]}

Sx+ -

where v is evaluated first at the point D, whose coordinates are (%5x, —%5y),
and secondly at the point C, whose coordinates are (—%5x, —%5y). The
x component of the side D'C’ will be only slightly different from Jx, and
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it turns out that the precise departure from this value need not be evaluated
explicitly.

Expanding the velocity component v in a Taylor series about the point
(0,0) results in the following expression for da:

5 — tant 4 [200:0) +30x(90/0x)(0,0) — 3 5p(90/9y)(0,0) + - - ot
e { ox(1+--+)
~[0(0,0) — 1 x(9v/0x)(0,0) — 1 3y(0v/3y)(0,0) + - - ] 5t
[ [6%(0v/0x)(0,0) + - - -] 5t
= tan 1{ (Sx(1+"') }
_ 1 [[(9v/0x)(0,0) + - - -] o1
_tanl{ 1+ }

= tanl{ {% (0,0) + - } 5t}

Since the argument of the arctangent is small, the entire right-hand side may
be expanded to give

ov
oo = {—6x(0,0)+--}5t+---
oo Ov
o o WO

This expression represents the change in the angle o per unit time so that in
the limit as Jx, Jy, and dz all tend to zero, this expression becomes

. Ov
a—a(0,0)

where o is the time derivative of the angle o. By an identical procedure it fol-
lows that the time derivative of the angle f is given by

. Ou

f=75,0.0
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Recall that « is measured counterclockwise and f is measured clockwise.
Thus the rate of clockwise rotation of the fluid element about its centroid is

given by
. 1/0u Ov
g o) =22 22
2(B—d) 2 (6y 8x>

Likewise the shearing action is measured by the rate at which the sides B'C’
and D' C’ are approaching each other and is therefore given by the quantity

5 1/0u Ov
%(ﬂ —|—OC) = 2(8y+8x)

The foregoing analysis was carried out in two dimensions which may be
considered as the projection of a three-dimensional element on the xy plane.
Ifthe analysis is carried out in the other planes, it may be verified that the rate
of rotation of the element about its own axes and the rate of shearing are
given by

1 (Ou; Ou;
R f ion=—(———2 1.
ate of rotation 3 ( o, 8xi> (1.6a)
1 (Ou; Ou;
R f shearing = - [ — / 1.
ate of shearing 2 ( o, + 3x,-) (1.6b)

That is, both the rate of rotation and the rate of shearing may be represented
by tensors of rank 2. It will be noted that the rate-of-rotation tensor is anti-
symmetric and therefore has only three independent components while the
rate-of-shearing tensor is symmetric and therefore has six independent
components. These two quantities are actually the antisymmetric part and
the symmetric part of another tensor called the deformation-rate tensor, as
may be shown as follows: Define the deformation-rate tensor e;; as

8u,-
e,-j = —
Ox;

. 1 814,' Bu, n 1 (9u,- n 8uj

S 2\0x; Ox;)  2\0x;  Ox;
That is, the antisymmetric part of the deformation-rate tensor represents the
rate of rotation of a fluid element in that flow field about its own axes while the

symmetric part of the deformation-rate tensor represents the rate of shearing
of the fluid element.
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111 CONSTITUTIVE EQUATIONS

In this section the nine elements of the stress tensor o;; will be related to the
nine elements of the deformation-rate tensor e, by a set of parameters. All
these parameters except two will be evaluated analytically, and the remain-
ing two, which are the viscosity coefficients, must be determined empirically.
In order to achieve this end, the postulates for a newtonian fluid will be
introduced directly. Water and air are by far the most abundant fluids on
earth, and they behave like newtonian fluids, as do many other common
fluids. It should be pointed out, however, that some fluids do not behave in a
newtonian manner, and their special characteristics are among the topics of
current research. One example is the class of fluids called viscoelastic fluids,
whose properties may be used to reduce the drag of abody. Since this book is
concerned with the classical fundamentals only, the newtonian fluid will be
treated directly. If the various steps are clearly understood, there should be
no conceptual difficulty in following the details of some of the more complex
fluids such as viscoelastic fluids.

Certain observations and postulates will now be made concerning the
stress tensor. The precise manner in which the postulates are made is largely
a mater of taste, but when the newtonian fluid is being treated, the resulting
equations are always the same. The following are the four conditions the
stress tensor is supposed to satisfy:

1. When the fluid is at rest, the stress is hydrostatic and the pressure
exerted by the fluid is the thermodynamic pressure.

2. The stress tensor o;;is linearly related to the deformation-rate ten-
sor ¢;; and depends only on that tensor.

3. Since there is no shearing action in a solid-body rotation of the
fluid, no shear stresses will act during such a motion.

4. There are not preferred directions in the fluid, so that the fluid
properties are point functions.

Condition 1 requires that the stress tensor ¢;; be of the form
0jj = —poij + Tjj

where 7;; depends upon the motion of the fluid only and is called the shear-
stress tensor. The quantity p is the thermodynamic pressure and J;;is the Kro-
necker delta. The pressure term is negative, since the sign convention being
used here is that normal stresses are positive when they are tensile in nature.

The remaining unknown in the constitutive equation for stress is the
shear-stress tensor 7; Condition 2 postulates that the stress tensor, and
hence the shear-stress tensor, is linearly related to the deformation-rate
tensor. This is the distinguishing feature of newtonian fluids. In general, the
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shear-stress tensor could depend upon some power of the velocity gradients
other than unity, and it could depend upon the velocity itself as well as the
velocity gradient. The condition postulated here can be verified experimen-
tally in simple flow fields in most common fluids, and the results predicted for
more complex flow fields yield results that agree with physical observations.
This is the sole justification for condition 2.

There are nine elements in the shear-stress tensor 7, and each of these
elements may be expressed as a linear combination of the nine elements in
the deformation-rate tensor e;; (just as a vector may be represented as a lin-
ear combination of components of the base vectors). That is, each of the nine
elements of 7;; will in general be a linear combination of the nine elements of
exsothat 81 parameters are needed to relate 7;;to e, This means that a tensor
of rank 4 is required so that the general form of 7; will be, according to
condition 2,

Buk
Tii = Oljjkl ——
y y 8)([

It was shown in the previous section that the tensor duy /0x;, like any other
tensor of rank 2, could be broken down into an antisymmetric part and a
symmetric part. Here the antisymmetric part corresponds to the rate
of rotation of a fluid element and the symmetric part corresponds to the
shearing rate. According to condition 3, if the flow field is executing a simple
solid-body rotation, there should be no shear stresses in the fluid. But for a
solid-body rotation the antisymmetric part of OJuy/0x;, namely,
%(8uk/ Ox; — Ouy/ Oxy ), will not be zero. Hence, in order that condition 3 may
be satisfied, the coefficients of this part of the deformation-rate tensor must
be zero. That is, the constitutive relation for stress must be of the form

8uk 811[
vy = 3Bju (8—x, + 3—xk)

The 81 elements of the fourth-rank tensor f;;; are still undertermined, but
condition 4 has yet to be imposed. This condition is the so-called condition
of isotropy,which guarantees that the results obtained should be independent
of the orientation of the coordinate system chosen. In Appendix B, the sum-
mary of some useful tensor relations, it is pointed out that the most general
isotropic tensor of rank 4 is of the form

Bijt = 2050kt + 1(0idjt + Sudji) + 7(dikSjt — dudjx)

where /, 1, and y are scalars. The proof of this is straightforward but tedious.
The general tensor is subjected to a series of coordinate rotations and
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inflections, and the condition of invariance is applied. In this way the 81
quantities contained in the general tensor are reduced to three independent
quantities in the isotropic case. In the case of the fourth-rank tensor relating
the shear-stress tensor to the deformation-rate tensor, namely, f;;;, not only
must it be isotropic but it must be symmetric in view of condition 3. That is,
the coefficient y must be zero in this case so that the expression for the shear
stress becomes

8uk 8u1
= 3400k + u(dudj + dirdjr)] <8 + axk>
Using the fact that d;; = 0 unless / = k shows that
8uk 81!1 Buk
126, — ) =218;—
200k (a + 8xk) i

in which / has been replaced by k. Likewise, replacing k by i and / by j shows

that
ou,  Ouy ou;  Ou;
520 —1 )
2HO (5 " axk) H <8x_,~ i 8x,->
and replacing / by i and k by j shows that
Our  Ouy Oou; Ou;
Tudio; ] =1 / d
2HOCj (8x + 8xk) <8x, o Ox;
Hence the expression for the shear-stress tensor becomes

vy = 20y (O 0%
T Oxy Ox;  Ox;

Thus the constitutive relation for stress in a newtonian fluid becomes

8 8”, 8uj
i T (8)9 + ax,-> (1.7)

which shows that the stress is represented by a second-order symmetric
tensor.

The nine elements of the stress tensor o;; have now been expressed in
terms of the pressure and the velocity gradients, which have all been pre-
viously introduced, and two coefficients 4 and p.. These coefficients cannot be
determined analytically and must be determined empirically. Up to this
point both 1 and u are just coefficients but their nature and physical sig-
nificance will be discussed in the next section.

ojj = p(S,, + A0
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The second constitutive relation involves the heat-flux vector g;, which
is due to conduction alone. Fourier’s law of heat conduction states that the
heat flux by conduction is proportional to the negative temperature gradient
so that

oT

= _k— 1.8

This is the constitutive equation for the heat flux, where the proportionality
factor k in Fourier’s law is the thermal conductivity of the fluid. In using
Eq. (1.8), it is implicitly assumed that the concept of temperature, as
employed in equilibrium thermodynamics, also applies to a moving fluid.

112 VISCOSITY COEFFICIENTS

It was pointed out in the previous section that the parameters 4 and y, which
appear in the constitutive equations for stress, must be determined experi-
mentally. It is the purpose of this section to establish a physical interpreta-
tion of these two parameters and thus show the manner in which they may be
evaluated.

Consider a simple shear flow of an incompressible fluid in which the
velocity components are defined by

That is, only the x component of velocity is nonzero, and that componentis a
function of y only. From the definition of this flow field the components of the
stress tensor may be evaluated from Eq. (1.7) to give

du
012 =021 = l—~
011 = 022 = 033 = —Pp

013 =031 =023 =03=0

That is, the normal components of the stress are defined by the thermo-
dynamic pressure, and the nonzero shear components of the stress are
proportional to the velocity gradient with the parameter y as the pro-
portionality factor. But, from Newton’s law of viscosity, the proportionality
factor between the shear stress and the velocity gradient in a simple shear
flow is the dynamic viscosity. Hence the quantity p that appears in the con-
stitutive equation for stress is the dynamic viscosity of the fluid. Frequently the
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kinematic viscosity, defined by v = u/p, is used instead of the dynamic
viscosity.

The parameter 4 in Eq. (1.7) is usually referred to as the second viscosity
coefficient. In order to establish its significance, the average normal stress
component p will be calculated.

—13:%(611 + 022 + 033)

This average normal stress is the mechanical pressure in the fluid and it is
equal to one-third of the trace of the stress tensor. Since the mechanical
pressure is either purely hydrostatic or hydrostatic plus a component
induced by the stresses that result from the motion of the fluid, it will, in
general, be different from the thermodynamic pressure p. Using Eq. (1.7), the
mechanical pressure p may be evaluated as follows:

o= (pr a2 0,00y i 9, O
P=3 P o T “Hox P o ﬂ@y

Ouy, ow

auk 8uk
—p+ A 6—Xk + %,u -

I
|

=
+
~
4
Wit
=

That is, the difference between the thermodynamic pressure and the
mechanical pressure is proportional to the divergence of the velocity vector.
The proportionality factor is usually referred to as the bulk viscosity and is
denoted by K. That is,

_po g

where K = 1+ %,u. Of the three viscosity coefficients u, 4, and K, only two
are independent and the third is defined by the above equation. For pur-
poses of physical interpretation of these viscosity coefficients it is preferred
to discuss i (which has already been done) and K, leaving A to be defined by
A=K — % L.

In order to identify the physical significance of the bulk viscosity, some
of the results of the kinetic theory of gases will be used. The mechanical pres-
sure is ameasure of the translational energy of the molecules only,whereas the
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thermodynamic pressure is a measure of the total energy, which includes
vibrational and rotational modes of energy as well as the translational mode.
For liquids, other forms of energy are also included such as intermolecular
attraction. These different modes of molecular energy have different relaxa-
tion times, so that in a flow field it is possible to have energy transferred
from one mode to another. The bulk viscosity is a measure of this transfer of
energy from the translational mode to the other modes, as may be seen
from the relation p — p = K(Ouy/0x;). For example, during the passage
through a shock wave the vibrational modes of energy are excited at the
expense of the translational modes, so that the bulk viscosity will be nonzero
in this case.

The above discussion has been for a polyatomic molecule of a liquid or
agas. [fthe fluid is a monatomic gas, the only mode of molecular energy is the
translational mode. Then, for such a gas the mechanical pressure and the
thermodynamic pressure are the same, so that the bulk viscosity is zero.
That s,

A= -3

which is called Stokes’ relation, so that there is only one independent viscos-
ity coefficient in the case of monatomic gases. For polyatomic gases and for
liquids the departure from K=0 is frequently small, and many authors
incorporate Stokes’ relation in the constitutive relation (1.7) for stress. In any
case, for incompressible fluids Eq. (1.7) shows that it is immaterial whether
4 = —3p or not, for then the term involving / is zero by virtue of the con-
tinuity equation.

113 NAVIER-STOKES EQUATIONS

The equation of momentum conservation (1.4) together with the constitutive
relation for a newtonian fluid [Egs. (1.7)] yield the famous Navier-Stokes
equations, which are the principal conditions to be satisfied by a fluid as it
flows. Having obtained an expression for the stress tensor, the term do;;/Ox;
which appears in Eq. (1.4) may be evaluated explicitly as follows:

60’,‘1‘ -

0 Oouy, Oou;  Ou;
= T poy + 20, 2k P2
Ox; (')xi[ POy jakarﬂ(aijraxi)]

—_@_A'_i A% +ﬁ %+au/
C0x; Ox; \ Ox ox; K ox;  Ox;
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where, in the first two terms, i has been replaced by, since it is only when i =j
that these terms are nonzero. Substituting this result into Eq. (1.4) gives

Ou; Op 0 Ouy, 0 Ou;  Ou;
g 0 = 8}9+%(18Xk)+8x1[ (a)cj+al>}+pf (1.94)

pa

Equations (1.9a) are known as the Navier-Stokes equations, and they repre-
sent three scalar equations corresponding to the three possible values of the
free subscript j. In the most frequently encountered situations the fluid may
be assumed to be incompressible and the dynamic viscosity may be
assumed to be constant. Under these conditions the second term on the
right-hand side of Eqs. (1.9a) is identically zero and the viscous-shear term

becomes
9 Ou;  Ou; Q0 (Ou; 0*u; 82uj
Al A a2 )| = A ta | =
Ox; ox;  Ox; 0x; \ Ox; Ox;0x; 8x, Ox;

That s, the viscous-shear term is proportional to the laplacian of the velocity
vector, and the constant of proportionality is the dynamic viscosity. Then the
Navier-Stokes equations for an incompressible fluid of constant density
become

L L S Py
Por TP o, T o ax,a,

+ pf; (1.9b)

In the special case of negligible viscous effects, Egs. (1.9a) become

8u, j
— = — — i 19
P TP e T o TP (1.9¢)

Equations (1.9¢) are known as Fuler equations and the fluid is called inviscid.

114 ENERGY EQUATION

The term ¢;;(Ou;/Ox;) which appears in the equation of energy conservation
(1.5) may now be evaluated explicitly by use of Eq. (1.7).

8uj (9 814,‘ 8uj 8u,-
O',J8 pé,j-i-)»(sua +M<a—xj+6x1_):|a—)q
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Using the fact that in the first two terms of the stress tensor i =; for the non-
zero elements, this expression becomes

%_ %_‘_“ % 2_|_ 8ui+au] 8u]
%i ox; p@xk & Oxy, K ox;  Ox;) Ox;

It will be recalled that the term o;;(Ou;/Ox;) represents the work done by the
surface forces. The first term in the expression for this work done, namely,
—p(Ouy /Oxy), represents the reversible transfer of energy due to compres-
sion. The remaining two terms are collectively called the dissipation function
and are denoted by ¢. That is,

Ouy, Oui | Ouj\ Ou;
)(an> —hu(8 +8x,> x; (1.10)

The reason @ is called the dissipation function is that it is a measure of the
rate at which mechanical energy is being converted into thermal energy. This
may be readily verified by considering an incompressible fluid in a cartesian-
coordinate system. Then

8u,~+8u, Ou;
H ox;  0x;) Ox;

B %+6uj 1 (Ou;  Ou; +l 8uj+8u,

~ Moy Tox ) 2\ ax) T2 \ox o
ou;  Ou\*

_, (94 0%

o <5xj i 8x,-)

which is a positive definite quantity. This shows that the dissipation function
always works to increase irreversibly the internal energy of an incompres-
sible fluid.

In terms of the dissipation function, the total work done by the surface
stresses is given by

0]

Ou; Oouy
irl= pak iy
%i ox; pé)xk +

Using this result and the constitutive relation for the heat flux [Eq. (1.8)] in
the equation of conservation of energy, Eq. (1.5), yields the energy equation for
anewtonian fluid.
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Oe Oe Oou, O oT
— —=—p—+— | k= () 1.11
p8t+puk8xk p@xk+8xj < 8xj> + ( )

where @ is defined by Eq. (1.10).

115 GOVERNING EQUATIONS FOR NEWTONIAN
FLUIDS

The equations that govern the motion of a newtonian fluid are the continuity
equation (1.3a), the Navier-Stokes equations (1.9a), the energy equation
(1.11), and equations of state. For purposes of summary and discussion these
equations will be repeated here.

dp 0
E‘f‘a—x]{(puk) =0 (13‘1)
Ou; Ou; op 0 [, Ou 0 Ou;  Ou;

7 e/ SN Rt il - e (1
Por TP o g axj( 8xk> " ox {“ (ax,- T )| T (199
_e+ u&——%—ki ka_T +)L%2+ aui+% %
Por ™ P o~ Pox " ox " o oxe) M\ox " ox) ox;

(1.11)

p=p(p,T) (1.12)

e=e(p,T) (1.13)
The last two equations are general representations of the thermal and caloric
equations of state, respectively. The most frequently encountered form of the
thermal equation of state is the ideal-gas law p = pRT, while the most fre-
quently encountered form of the caloric equation of state is e = C, T, where
C, is the specific heat at constant volume.

The preceding set of equations represents seven equations that are to be
satisfied by seven unknowns. Each of the continuity, energy, and state equa-
tions supplies one scalar equation, while the Navier-Stokes equations supply
three scalar equations. The seven unknowns are the pressure, density, inter-
nal energy, temperature, and velocity components, thatis, p, p,e, T, and u;. The
parameters 4, u, and k are assumed to be known from experimental data, and
they may be constants or specified functions of the temperature and pressure.
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Itis not always necessary to solve the complete set of equations in order
to define the flow field analytically. For example, if compressible effects are
thought to be unimportant in the flow field being considered, the incom-
pressible form of the governing equations may be used. The continuity
equation and the Navier-Stokes equations are them simpler, as indicated by
Egs. (1.3¢) and (1.90), respectively, but the greatest simplification comes from
the fact that the energy equation is mathematically uncoupled from these
two equations. The continuity and Navier-Stokes equations offer four scalar
equations involving only p and u;. That is, the pressure and velocity fields may
be established without reference to the energy equation. Having done this,
the temperature field may be established, which may have the trivial solution
T =constant. In cases of forced convection heat transfer in which the flow is
turbulent, the continuity and Navier—Stokes equations are frequently
replaced by an empirical velocity distribution and the energy equation is
solved to yield the temperature distribution. More frequently, however,
thermal effects are unimportant and the continuity and Navier-Stokes
equations alone must be solved.

The most common type of body force acting on a fluid is due to gravity,
so that the body force f; that appears in the Navier-Stokes equations is
defined in magnitude and direction by the acceleration due to gravity.
Sometimes, however, electromagnetic effects are important, and in such
cases f = (p.E+ J x B), which is the Lorentz force. Here p, is the charge
density, E is the electric field vector, J is the electric current density, and B is
the magnetic field vector. The electric and magnetic fields themselves must
obey a set of physical laws which are expressed by Maxwell’s equations. The
solution to such problems requires the simultaneous solution of the equa-
tions of fluid mechanics and of electromagnetism. One special case of this
type of coupling is the field known as magnetohydrodynamics.

It may also be pointed out that the governing equations summarized
here contain the equations of hydrostatics and heat conduction as special
cases. Ifthe fluid is at rest, the velocity components will all be zero, so that the
Navier-Stokes equations (1.9a) become

op

0=-22
Ox;

+ of;

If the body force f;is now set equal to the gravitational force, the equation of
hydrostatics is obtained. For example, if gravity acts in the negative z direc-

tion, f; = —ge., where e; is the unit vector in the z direction. Then
op
it
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which shows that dp/dx = Op/0y = 0 and dp/0z = —pg. In the case of zero
velocity the energy equation becomes

ge _ 0 (0T
Pot ™ ox " o

Introducing the enthalpy & = e + p/p and using the fact that p and p are
constant in the stationary fluid gives

Oh_ 0 (0T
Por ~ ox; " ox;

If the fluid is thermally perfect, 2 will be a function of Tonly, so that

oh_ohoT . oT
ot oT ot P o¢

Where C, is the specific heat at constant pressure, which is the appropriate
process for this case. Then the energy equation becomes

oT 0 oT
pcpﬁ—a—»("a—»)

which is the equation of heat conduction.

116 BOUNDARY CONDITIONS

The Navier-Stokes equations are, mathematically, a set of three elliptic,
second-order partial differential equations. The appropriate type of bound-
ary conditions are therefore Dirichlet or Neumann conditions on a closed
boundary. Physically, this usually amounts to specifying the velocity on all
solid boundaries. Within the continuum approximation the experimentally
determined boundary condition is that there is no slip between the fluid and a
solid boundary at the interface. On the molecular scale, slippage is possible,
butitis confined within alayer whose dimensions are of the same order as the
mean free path between the molecules. Then if U represents the velocity of a
solid boundary, the boundary condition that should be imposed on our con-
tinuum velocity is

u="U on solid boundaries (1.14)

In the case of an infinite expanse of fluid, one common form of Eq. (1.14) is
that u—0 as x—oo0.
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If thermal effects are included, a boundary condition on the tempera-

ture is also required. As in the case of heat-conduction problems, this may
take the form of specifying the temperature or the heat flux on some boundary.

PROBLEMS

1.1 Derive the continuity equation from first principles using an infinitesi-

1.2

1.3

1.4

mal control volume of rectangular shape and having dimensions
(x, 0y, 0z). Identify the net mass flow rate through each surface of this
element as well as the rate at which the mass of the element is increas-
ing. The resulting equation should be expressed in terms of the carte-
sian coordinates (x, y, z, ), the cartesian velocity components (u, v, w),
and the fluid density p.

Derive the continuity equation from first principles using an infini-
tesimal control volume of cylindrical shape and having dimensions
(OR, R3O, 6z).1dentify the net mass flow rate through each surface of this
element as well as the rate at which the mass of the element is increasing.
The resulting equation should be expressed in terms of the cylindrical
coordinates (R, 0, z, 1), the cylindrical velocity components
(ugr, uy, u,), and the fluid density p.

Derive the continuity equation from first principles using an infinitesi-
mal control volume of spherical shape and having dimensions
(or,r 00, rsin 6 dw). Identify the net mass flow rate through each surface
of this element as well as the rate at which the mass of the element is
increasing. The resulting equation should be expressed in terms of the
cylindrical coordinates (r, 0, w, f), the cylindrical velocity components
(uy, up, u,,), and the fluid density p.

Obtain the continuity equation in cylindrical coordinates by expanding
the vector form in cylindrical coordinates. To do this, make use of the
following relationships connecting the coordinates and the velocity
components in cartesian and cylindrical coordinates:

x = Rcos0
y = Rsin0
z=z

u = upcosl — uysinb
v =ugsin0 + uycos 0

w=u,
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1.5

1.6

1.7

1.8

1.9

1.10

Obtain the continuity equation in spherical coordinates by expanding
the vector form in spherical coordinates. Make use of the vector rela-
tionships outlined in Appendix A and follow the procedures used in
Prob. 1.4.

Evaluate the radial component of the inertia term (u -V)uin cylindrical
coordinates using the following identities:

x = Rcos0

y = Rsinf

uey + ve, = uger + upey

and any other vector identities from Appendix A as required. Here R
and 6 are cylindrical coordinates, uz and uy are the corresponding
velocity components, and eg, ey are the unit base vectors.

Evaluate the radial component of the inertia term (u-V)u in spherical
coordinates by use of the vector identities given in Appendix A.

Start with the shear stress tensor t;;. Write out the independent com-
ponents of this tensor in cartesian coordinates (x, y, z) using the carte-
sian representation (u,v,w) for the velocity vector. Specialize these
expressions for the case of a monatomic gas for which the Stokes rela-
tion applies.

Write out the expression for the dissipation function, @, for the same
conditions and using the same notation as defined in Prob. 1.8.

Write out the equations governing the velocity and pressure in steady,
two-dimensional flow of an inviscid, incompressible fluid in which the
effects of gravity may be neglected. If the fluid is stratified, the density p
will depend, in general, on both x and y. Show that the transforma-
tion:

in which p, is a constant reference density, transforms the governing
equations into those of a constant-density fluid whose velocity com-
ponents are u* and v*.
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Flow Kinematics

This chapter explores some of the results that may be deduced about the
nature of a flowing continuum without reference to the dynamics of the
continuum.

The first topic, flow lines, introduces the notions of streamlines, path-
lines, and streaklines. These concepts not only are useful for flow-visualiza-
tion experiments, but they supply the means by which solutions to the
governing equations may be interpreted physically.

The concepts of circulation and vorticity are then introduced.
Although these quantities are treated only in a kinematic sense at this stage,
their full usefulness will become apparent in the later chapters when they are
used in the dynamic equations of motion.

The concept of the streamline leads to the concept of a stream tube
or a stream filament. Likewise, the introduction of the vorticity vector
permits the topic of vortex tubes and vortex filaments to be discussed.
Finally, this chapter ends with a discussion of the kinematics of vortex
filaments or vortex lines. In this treatment, a useful analogy with the flow
of an incompressible fluid is used. The results of this study form part
of the so-called Helmholtz equations, the remaining parts being taken up
in the next chapter, which deals with, among other things, the dynamics
of vorticity.

40
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Flow Kinematics 11

2.1 FLOW LINES

Three types of flow lines are used frequently for flow-visualization purposes.
These flow lines are called streamlines, pathlines, and streaklines, and in a
general flow field they are all different. The definitions and equations of these
various flow lines will be obtained separately below.

Streamlines

Streamlines are lines whose tangents are everywhere parallel to the velocity
vector. Since, in unsteady flow, the velocity vector at a given point will
change both its magnitude and its direction with time, it is meaningful to
consider only the instantaneous streamlines in the case of unsteady flows.

In order to establish the equations of the streamlines in a given flow
field, consider first atwo-dimensional flow field in which the velocity vector u
has components # and vin the x and y directions, respectively. Then, by virtue
of the definition of a streamline, its slope in the xy plane, namely, dy/dx, must
be equal to that of the velocity vector, namely, v/u. That is, the equation of the
streamline in the xy plane is

dy v

dx u

where, in general, both # and v will be functions of x and y. Integration of this
equation with respect to x and y, holding 7 fixed, will then yield the equation
of the streamline in the xy plane at that instant in time.

In the case of a three-dimensional flow field, the foregoing analysis is
valid for the projection of the velocity vector on the xy plane. By similarly
treating the projections on the xz plane and on the yz plane, the slopes of the
streamlines are found to be

dz _w
dx  u
dz _w
dy v

on the xz and yz planes, respectively. These three equations defining the
streamline may be written in the form

dy dx
v u woou w v

dz_ﬁ dz_@
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Written in this form, it is clear that these three equations may be expressed in
the following, more compact form:
dx dy dz

u v w

Integration of these equations for fixed # will yield, for that instant in time, an
equation of the form z = z(x, y),which is the required streamline. The easiest
way of carrying out the required integration is to try to obtain the parametric
equations of the curve z = z(x, y) in the form x = x(s), y = y(s), and z = z(s).
Elimination of the parameter s among these equations will then yield the
equation of the streamline in the form z = z(x, ).

Thus a parameter sis introduced whose value is zero at some reference
point in space and whose value increases along the streamline. In terms
of this parameter the equations of the streamline become

dx _dy_dz_
u v w

These three equations may be combined in tensor notation to give

%: u,-(xi,t) t fixed (21)
in which it is noted that if the velocity components depend upon time, the
instantaneous streamline for any fixed value of ¢ is considered. If the
streamline that passes through the point (xy, y9, zo) is required, Egs. (2.1) are
integrated and the initial conditions that when s = 0, x = xy, y = yy, and
z = zj are applied. This will result in a set of equations of the form

X = xi(x07y07207ta S)

which, as s takes on all real values, traces out the required streamline.
As an illustration of the determination of streamline patterns for a
given flow field, consider the two-dimensional flow field defined by

u=x(1+21)
v=y
w=0

From Egs. (2.1), the equations to be satisfied by the streamlines in the xy
plane are
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dx

— =x(1+2
s x(1+42¢)
dy _

ds_y

Integration of these equations yields
x=C e(1+21)s

y = Geé’

which are the parametric equations of the streamlines in the xy plane. In
particular, suppose the streamlines passing through the point (1,1) are
required. Using the initial conditions that whens = 0,x = 1andy = 1 shows
that C; = G, = 1. Then the parametric equations of the streamlines passing
through the point (1, 1) are

x = e(l+2t)s
s

y=e

The fact that the streamlines change with time is evident from the preceding
equations. Suppose the streamline passing through the point (1, 1) at time
t = Qisrequired; then

Hence the equation of the streamline is
x=y

This streamline is shown in Fig. 2.1 together with other flow lines which are
discussed below.

Pathlines

A pathline is aline traced out in time by a given fluid particle as it flows. Since
the particle under consideration is moving with the fluid at its local velocity,
pathlines must satisfy the equations

dxi
= i, 2.2
) (22)

The equation of the pathline that passes through the point (xo, yo, zo) at time
t = O will then be the solution to Eq. (2.2), which satisfies the initial condition
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FIGURE 2.1 Comparison of the streamline through the point (1, 1) at 7 = 0 with the
pathline of a particle that passed through the point (1, 1) at = 0 and the streakline
through the point (1, 1) at = 0 for the flow field u = x(1 4 27),v = y,w = 0.

that when ¢t = 0, x = x¢, y = yy, and z = z,. The solution will therefore yield a
set of equations of the form

xi = xi(x0, 0,20, 1)

which, as 7 takes on all values greater than zero, will trace out the required
pathline.

As an illustration of the manner in which the equation of a pathline is
obtained, consider again the flow field defined by

u=x(1+21)
v=y
w=0

From Egs. (2.2), the differential equations to be satisfied by the pathlines are

dx _
dr
dy

dt

x(1+212)
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Integration of these equations gives
x = Gty

y= G

These are the parametric equations of all the pathlines in the xy plane for this
particular flow field. In particular, if the pathline of the particle that passed
through the point (1, 1) at r = 0 is required, these parametric equations
become

x = et(l+t)

y=¢

Eliminating 7 from these equations shows that the equation of the required
pathline is

X = yl+logy
This pathline is shown in Fig. 2.1, from which it will be seen that the
streamline that passes through (1, 1) at # =0 does not coincide with
the pathline for the particle that passed through (1, 1) at = 0.

Streaklines

A streakline is a line traced out by a neutrally buoyant marker fluid that is
continuously injected into a flow field at a fixed point in space. The marker
fluid may be smoke (if the main flow involves air or some other gas) or a dye
(if the main flow involves water or some other liquid).

A particle of the marker fluid that is at the location (x,y,z) at time ¢
must have passed through the injection point (x, yy, z9) at some earlier time
t = 7. Then the time history of this particle may be obtained by solving the
equations for the pathline [Egs. (2.2)] subject to the initial conditions that
X =X,y =y, and z = zy when 7 = 7. Then as 7 takes on all possible values in
the range —oco < 7 < ¢, all fluid particles on the streakline will be obtained.
That is, the equation of the streakline through the point (xy, yo, zo) is obtained
by solving Eqgs. (2.2) subject to the initial conditions that when # = 7, x = x,
¥ =y, and z = zy. This will yield an expression of the form

X; = xi(X0, 0,20, 2, 7)

Then as 7 takes on the values 7 < ¢, these equations will define the instanta-
neous location of that streakline.
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As an illustrative example, consider the flow field that was used to
illustrate the streamline and the pathline. Then the equations to be solved for
the streakline are

dx
—=x(1+2t
g = x(1+210)
dy _
dr 7
which integrate to give
x=C et(1+t)
y = Ge

Using the initial conditions that x =y =1 when ¢ = 7, these equations
become

x = et(lth)f‘E(lJr‘L')

y= etfr
These are the parametric equations of the streakline that passes through the
point (1, 1), and they are valid for all times . In particular, at z = 0 these
equations become

x = efr(l+r)

y=er

Eliminating 7 from these parametric equations shows that the equation of the
streakline that passes through the point (1, 1) is, at time # = 0,

x = ylflog ¥y
This streakline is shown in Fig. 2.1 along with the streamline and the pathline

that were obtained for the same flow field. It will be noticed that none of the
three flow lines coincide.

2.2 CIRCULATION AND VORTICITY

The circulation contained within a closed contour in a body of fluid is defined
as the integral around the contour of the component of the velocity vector
that is locally tangent to the contour. That is, the circulation I is defined as

r:?ﬁu.dl (2.3)
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where dl represents an element of the contour. The integration is taken
counterclockwise around the contour, and the circulation is positive if this
integral is positive.

The vorticity of an element of fluid is defined as the curl of its velocity
vector. That is, the vorticity w is defined by

wo=Vxu (2.4)

In tensor notation, Egs. (2.4) may be written in the form

o = —gn O _ (O O
T ”kaxk_ ox;  Oxy

From this definition it is evident, by comparison with Eq. (1.6a), that the
vorticity vector is numerically twice the angular speed of rotation of the fluid
element about its own axes. That is, the vorticity is equal to twice the anti-
symmetric part of the deformation-rate tensor ej. It should be noted that a
fluid element may travel on a circular streamline while having zero vorticity.
Vorticity is proportional to the angular velocity of a fluid element about its
principal axes, not that of the center of gravity of the element about some
reference point. Thus a particle traveling on a circular streamline will have
no vorticity, provided that it does not revolve about its center of gravity as it
moves.

The vorticity contained in a fluid element is related to the circulation
around the element. This relationship may be obtained from an application
of Stokes’ theorem to the definition of circulation, as follows: From Eq. (2.3),

F:j{u-dl

:/A(qu)-ndA

where the contour integral has been converted to a surface integral by use of
Stokes’ theorem, in which A is the area defined by the closed contour around
which the circulation is calculated and n is the unit normal to the surface.
Finally, invoking the definition of the vorticity vector, this relationship
becomes

F:/w-ndA (2.5)
A

Equation (2.5) shows that, for arbitrary choices of contours and enclosing
areas 4,ifow = 0,thenI” = 0 and vice versa. Flows for which ® = 0 are called
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irrotational, and flows for which this is not so are called rotational. The dis-
tinction between rotational and irrotational flow fields is an important one
from the analytic point of view, as will be seen in later chapters.

2.3 STREAM TUBES AND VORTEX TUBES

The concept of a streamline, which was introduced in an earlier section, may
be used to define a stream tube which is a region whose sidewalls are made up
of streamlines. For any closed contour in a flow field, each point on the con-
tour will have a streamline passing through it. Then, by considering all
points on the contour, a series of streamlines are obtained that form a sur-
face, and this surface is called a stream tube. Figure 2.2a shows a length of
stream tube defined by a contour whose area is A;. The corresponding area at
some other section is shown as A4,, and in general A, will be different from 4,
and the shapes of the two cross sections of the stream tube will be different.
Ifthe cross section of a stream tube is infinitesimally small, the stream tube is
usually referred to as a stream filament.

(a) (b

FIGURE 2.2 (a) Stream tube and (b) vortex tube subtended by a contour of area A4,
in a flow field.
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By analogy with streamlines and stream tubes, the useful concepts
of vortex lines and vortex tubes may be introduced. A vortex line is a line
whose tangents are everywhere parallel to the vorticity vector. Then for any
closed contour in a flow field, each point on the contour will have a vortex
line passing through it, and the series of vortex lines defined by the closed
contour form a vortex tube. Figure 2.2b shows a length of vortex tube defined
by a contour whose area is 4;. The cross-sectional area and shape at any
other section of the vortex tube will, in general, be different. A vortex tube
whose area is infinitesimally small is usually referred to as a vortex filament.

2.4 KINEMATICS OF VORTEX LINES

Certain properties of flow lines may be established by studying the kine-
matics of vortex lines. The results so obtained form part of what is sometimes
referred to as the Helmholtz theorems of vorticity. The other parts of the
Helmholtz theorems involve the dynamics of vorticity, which will be taken
up in the next chapter.

Equation (2.4) defines the vorticity vector as the curl of the velocity
vector. Since the divergence of the curl of any vector is identically zero, it
follows that

Vio=0

Since the vorticity vector is divergence-free, it follows that there can be no
sources or sinks of vorticity in the fluid itself. That is, vortex lines must either
form closed loops or terminate on the boundaries of the fluid. The bound-
aries of the fluid may be either a solid surface or a free surface.

The fact that the vorticity vector is divergence-free leads to an analogy
with the flow of an incompressible fluid. In this analogy the counterpart
of the velocity vector is the vorticity vector, and the counterpart of the
volume flow rate is the circulation. To establish this analogy, a sequence of
operations will be performed first on the velocity vector for an incompres-
sible flow field and then on the vorticity vector.

The continuity equation for an incompressible fluid is

Veu=0

Integrating this expression over some volume V gives

/V-udV:O
Jv
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By use of Gauss’ theorem this volume integral may be converted to the
equivalent surface integral
/ u-nds=0
s

where the surface s encloses the volume V. Now consider the surface s to be
the entire outer surface of an element of a stream tube or stream filament, as
shown in Fig. 2.2a, including the ends. Then, since u - n = 0 on the walls
of the stream tube by definition, it follows that

/u-nds+/ u-nds =0
A] A2

Since n is defined as the outward unit normal,

/ u-nds = -0
Ay

and

/ u-nds=Q,
A

where Q; is volume flow rate crossing the area 4; and Q- is the volume flow
rate crossing the area 4,. That is, the fact that the vector u is divergence-free
leads to the result

0 =0

which states that the volume of fluid crossing the area 4; per unit time is
equal to that crossing the area 4, per unit time. Since the fluid was assumed
to be incompressible, this result appears intuitively obvious.

Turning now to the vorticity vector, it was shown that

Vio=0
so that /V-de:O
v
and /w-nds:O
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where the surface s enclosed the volume V. Now consider the surface s to be
the entire outer surface of an element of a vortex tube or a vortex filament as
shown in Fig. 2.2b, including the ends. By definition of the vortex lines that
make up the surface of the vortex tube, w-n = 0 on the walls of the vortex

tube. Then
/w-nds+/ w-nds=0
A| A2

/ w-nds = -}
Ay

and / w-nds =1,
Az

But from Eq. (2.5),

Hence the fact that w is divergence-free results in the condition
I' =I5

That is, the circulation around the limiting contour of the area A4, is equal to
that around A4,. Alternatively, this result may be stated in the form that the
circulation at each cross-section of a vortex tube is the same. This means
that if the cross-sectional area of the vortex tube increases, the average
value of the vorticity across that section must decrease, just as the average
velocity would decrease to satisfy continuity. In fact, the result I'y = I'; may
be put in the form of the simple, one-dimensional continuity equation. If w;
denotes the average vorticity across the area 4; and w; denotes that across
A,, the result

m-nds+/ w-nds=0
Ay A>

becomes w1A] = WA, (2.6)

The fact that the vorticity vector w is divergence-free means that vor-
tex tubes must terminate on themselves, at a solid boundary or at a free sur-
face. Smoke rings terminate on themselves, while a vortex tube in a free
surface flow may have one end at the solid boundary forming the bottom and
the other end at the free surface.
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PROBLEMS
2.1 Consider the two-dimensional flow field defined by the following
velocity components:

v
u =
1+41¢

For this flow field find the equation of:
(a) The streamline through the point (1, 1) atr = 0.
(b) The pathline for a particle released at the point (1, 1) at £ = 0.
(c¢) The streakline at r = 0 that passes through the point (1, 1).
2.2 Atwo-dimensional flow field has the following velocity components:

u=x(1+1) v=1 w=20

Determine the following quantities for this flow field:

(a) The equation of the streamline that passes through the point (1, 1)
asseenats = 0.

(b) The equation of the pathline for a particle released at the point
(I, ) attime r = 0.

(c¢) The equation of the streakline that passes through the point (1, 1)
asseenat? = 0.

(d) The density on a particular streamline in this flow has the value
po, which is a constant, at time ¢ = 0. Find an expression for the
density p at any subsequent time 7 on the same streamline.

2.3 Show that the streamlines and particle paths coincide for the flow
u; = x;/(1+ t). (From Rutherford Aris, Vectors, Tensors, and the Basic
Equations of Fluid Mechanics, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1962).

2.1 The velocity components for a particular flow field are as follows:

u=16x>+y v=10 w = yz?

(a) Determine the circulation, I', for this flow field around the
following contour by integrating the velocity around it counter-

clockwise:
<x<10 =0
x=10
<10 =5
0<y<5 x=0
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(b)

Calculate the vorticity vector w, for the given flow field and hence

evaluate:
/ w-ndA
A

where A is the area of the rectangle defined in (a), and n is the unit
normal to that area. Compare the result obtained in (b) with that
obtained in (a).

2.5 Consider the two-dimensional velocity distribution defined as follows:

2.6

2.7

X v — y
2t y? X212

Determine the circulation for this flow field around the following con-
tour by integrating around it counterclockwise:

—1<x<+1 y=-1
-1<y<+1 x=+1
“1<x<+1 y=+1
-1<y<+1 x=-1

A particular three-dimensional flow field has the following velocity
components:

(@
(b)
(©

u=9x>+2y v=10x w= —2yz?

Using the same contour as defined in Prob. 2.5 on the plane z = 5,
determine the circulation for the given flow field.

Calculate the vorticity vector for the given flow field at any point
(x,y) onthe plane z = 5.

Using the value obtained in (b) for the velocity vector m on the
plane z = 5, evaluate the following integral:

/oo-ndA
A

where A is the area of the rectangle defined in (a) and n is the unit
normal to that area in the positive z direction. Compare the result
obtained in (c) with that obtained in (a).

The velocity components for a particular two-dimensional flow field
are defined as follows:

y X
= - — V= ———
x2+y2 x2+y2
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2.8

Chapter 2

(a) Using the same contour as defined in Prob. 2.5, determine the
circulation for the given flow field.

(b) Calculate the vorticity vector for the given flow field at any point
(x, ).

(c¢) Calculate the divergence of the velocity vector for the given flow
field at any point (x,y).

Calculate the vorticity at any point (R, 0) for each of the following two-

dimensional flow fields:

(a) ugr=0,uy = wR.

(b) ur=0,up =T/27R.

In the above, R and 0 are cylindrical coordinates while w and I" are

constants.
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Special Forms of the Governing
Equations

Some alternative forms of the governing equations, as derived in Chap. 1, will
be discussed here. The results are all obtained from the governing equations
under various degrees of approximation such as negligible viscous effects.
Some of the results are frequently referred to as theorems. They are used
either as alternatives to the general equations derived in Chap. 1, under the
specified restrictions, or as supplementary information to these equations.

The first result established is Kelvin’s theorem. This theorem estab-
lishes the conditions under which irrotational motion remains irrotational
and so justifies the simplifying methods of analysis that are utilized for irr-
otational flows. Then the Bernoulli equations are derived. These equations
are integrals of the Euler equations under certain conditions. They are used
to relate the pressure and velocity fields when the velocity is established
separately from, for example, the condition of irrotationality. Crocco’s
equation is derived next. This equation relates the entropy of the fluid to the
vorticity and shows that under certain conditions isentropic flows are irro-
tational, and vice versa. Finally, the vorticity equation is derived for a fluid of
constant density and viscosity. This equation is useful in the study of rota-
tional flows.

55
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3.1 KELVIN’'S THEOREM

This theorem states that for an inviscid fluid in which the density is constant,
orinwhichthe pressure depends on the density alone, and for which any body
forces that exist are conservative, the vorticity of each fluid particle will be
preserved. Kelvin’s theorem covers the remainder of the Helmholtz theo-
rems of vorticity that were not treated in Sec. 2.4 during the discussion of the
kinematics of vortex lines. Although Kelvin’s theorem appears to be kine-
matic in nature, the dynamic equations of motion are required in the proof.

Suppose that any body force f; per unit mass that may act on the fluid is
conservative, such as gravity. Then f; may be written as the gradient of some
scalar function G, giving

oG
=y

Then, from Egs. (1.9¢), the equations of motion for an inviscid fluid subjected
to only conservative body forces are
auj 8uj @ 8G

P TP T ow P

Or, in terms of the material derivative,

Dy _ _1op 96

Dt pOx; Ox

It is this form of the momentum equation, which is valid for an inviscid fluid
subjected to only conservative body forces, that will be used to prove
Kelvin’s theorem.

In order to determine the rate of change of vorticity associated with a
given fluid element, the material derivative of the circulation I" will be cal-
culated. From Eq. (2.3),

The quantity D(dx;)/Dt is the material derivative of an element dx; of the
contour around which the circulation is to be calculated. Its value may be
established as follows:
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Dldx;) _ (Dx\ _ (0%  0Ox\ _
Dt _d(Dt =d ot T oy = du;

Here the material derivative has been converted into its eulerian equivalent,
using Eq. (1.1), in which 7 and the spatial coordinates are independent. Thus
0x;/0t = 0 and Ox;/Ox; = 0jx, which is zero unless k = j, at which time its
value is unity. This shows that the value of Dx;/ Dt is u; and hence the value of
D(dx;)/Dt is du;. In this way the expression for the rate of change of circula-

tion becomes
DI Du;
B :jﬁ (—Dt’ dx; + uj duj>

The quantity Du;/Dt will now be eliminated from this expression by using
the momentum equations that were derived above for an inviscid fluid in
which any body forces were conservative. Thus the rate of change of circu-

lation becomes
Dr 10p oG

_ % [_%Jr dG+%d("j”j)]

where it has been observed that (Op/0x;)dx; = dp, which is the total spatial
variation of p and likewise (0G/0x;)dx; = dG. It is now observed that, since
the integration is to be carried out around a closed contour, the integral of dG
and that of d(u;u;) are both zero, since the body force and the velocity are
both assumed to be single-valued. Then

Dr dp

Dt 0
Now if p = a constant, the remaining integral is zero for the same reason that
the other integrals were zero. However, this integral is zero under less
restrictive conditions also. Suppose the pressure p may be considered to be a

function of the density p only as, for example, in isentropic flows. Then for
some function g,

so that
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The expression for DI'/ Dt now becomes

Dr g
br__ 50,
t p

That is, this integral falls into the same category as the two previous inte-
grals, and its value around any closed contour is zero. This gives the result
known as Kelvin’s theorem:

Dr
D= 0 (3.1)
Equation (3.1) says that if we follow a given contour as it flows, the total vor-
ticity inside that contour will not change. Recall that the right-hand side of
Eq. (3.1) could be proved to be zero by considering the fluid to be inviscid, the
body forces to be conservative, and either the density to be constant or the
pressure to be a function of the density only. Relaxing any of these conditions
leads to, in general, a nonzero term on the right-hand side of Eq. (3.1). Thus it
may be deduced that the total vorticity may be changed by the action of
viscosity, the application of nonconservative body forces, or density varia-
tions that are not simply related to the pressure variation.

It should be noted that Eq. (3.1) applies to a simply connected region.
That is, for any closed contour in the fluid that contains only fluid, there will
be some definite value of the circulation I'. Equation (3.1) asserts that under
the conditions specified in the derivation, the value of I" will not change
around that contour even though the contour itself may be deformed by the
flow. A closed contour that originally does not include a body cannot at any
subsequent time contain a body such as a two-dimensional airfoil. There is
therefore no conflict in the fact that such an airfoil may have a circulation
around it while immersed in an irrotational flow.

From Kelvin’s theorem and the results established in Sec. 2.4, it is evi-
dent that the total vorticity associated with a vortex filament is fixed and will
not change as the vortex filament flows with the fluid. Distortion of the vortex
filament may take place, but the total vorticity associated with it will remain
the same. The vortex filament will always consist of the same fluid particles
as it flows, and if the vortex filament is elongated, the vorticity at any section
of the filament will increase and the total vorticity associated with the fila-
ment will remain fixed.

The principal use of Kelvin’s theorem is in the study of incompressible,
inviscid fluid flows. If a body is moving through such a fluid, or if a uniform
flow of such a fluid passes around a body, then the vorticity far from the body
will be zero. Then, according to Kelvin’s theorem, the vorticity in the fluid
will everywhere be zero, even adjacent to the body. Then the condition
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V x u = 0 may be used to replace the Euler equations so that the condition of
irrotationality becomes the alternative form of the equations of motion for
the fluid. Again it is emphasized that this kinematic equivalent is valid only
because of Kelvin’s theorem, and in turn, the Euler equations were used to
prove Kelvin’s theorem.

3.2 BERNOULLI EQUATION

For an inviscid fluid in which any body forces are conservative and either the
flow is steady or it is irrotational, the equations of momentum conservation
may be integrated to yield a single scalar equation called the Bernoulli
equation.

In the previous section it was pointed out that the equations of motion
for an inviscid fluid in which any body forces were conservative could be
written in the form

Ow 0% _ _Op  0G
Por TP ox T "o P

Using a vector identity given in Appendix A, the second term on the left-
hand side of these equations may be rewritten as follows:

auj_ _ 1
uka—)Ck—(u Viu=V(Gu-u) —ux (Vxu)

=V(Qlu-u)—uxow

In this way the Euler equations may be written in the following vector form:

%+V(%u-u)—u><oo: —1Vp+VG

Itis now proposed to show that the term (1 /p) Vp,which appears on the right-
hand side of this equation, may be written as V( [ dp/p). To do this, we form

the scalar product of an element of a space curve d¥f, such as an element of a
streamline, with the vector quantity (1/p) Vp.

1 1 1
dl- (—Vp) =—dl-Vp=—dp
p p p

Here the result d¢-V = dx(0/0x) + dy(0/0y) + dz(0/0z) = d has been
used, where the scalar operator d is the total spatial derivative. Then, using d
and its inverse integral operation, it follows that
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(i) o gav(f

where, again, the equivalence of d and df - V has been used. The vectors that
form the scalar product with dZ in this last equation must be equal since d¢
was arbitrarily chosen; hence it follows that

r-s(/

Using this result, the Euler equations become

Ou dp 1
E%—V(/?—i—zu-u—G)—uxw (3.2a)

The vector Eq. (3.2a) may be integrated for steady flow and for unsteady or
steady irrotational flow.
Considering first steady flow, Eq. (3.2a) become

V( dp—klu-u—G> =uxm
p 2

Forming the scalar product of the velocity vector u with this equation gives
dp 1
Y —+-u-u—G|=u-
u </p+2uu ) u-(ux )

But the vector product of u with o will yield a vector that is perpendicular
to u; hence the quantity u- (u x ®) is zero. Furthermore, the operator u-V
is the steady-state form of the material derivative. Thus the preceding equa-
tion states that as we flow along a streamline in steady flow, the quantity
[dp/p + %u -u — G remains constant. That is,

d
/?p +ju-u— G = constant along each streamline (3.2b)

This result is referred to as the Bernoulli integral or the Bernoulli equation. It
should be recalled that it is valid for the steady flow of a fluid in which viscous
effects are negligible and in which any body forces are conservative. In many
cases the flow around some body originates in a uniform flow, and in such
cases, and in some other cases, the constant on the right-hand side of Eq.
(3.2b) is the same for each streamline. Then the quantity [ dp/p + %u ‘u—G
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is constant everywhere. The constant is usually referred to as the Bernoulli
constant.

Equation (3.2a) may also be integrated under slightly different cir-
cumstances from those that led to Eq. (3.25). Rather than considering steady
flows, consider irrotational flows. Then the vorticity w will be zero so that

(3.2a) becomes
Ou dp 1
el v/ _ —
8t+ (/p—i—zuu G) 0

Nowsince w = V x u = 0, it follows that the velocity vector u may be written
as the gradient of some scalar, say ¢, since V x V¢ = 0 for any function ¢.
The quantity ¢ is known as the velocity potential, and it will be used exten-
sively in Chap. 4. Then, replacing u by V¢ in the preceding equation gives

o¢ B
V<8t+/p+ Vo -V — G)O

Forming the scalar product of this vector equation with an element of space

curve df gives
o
VoV G)=0
<3t /p+ Pve- )

where again the fact that d¢ -V = d has been used, where d is the total spatial
derivative. Thus integration yields

?;f + V¢ Vo — G=F(t) (3.2¢)
where F(t) is some function of time that may be added after integrating over
the space coordinates. F(¢) is usually referred to as the unsteady Bernoulli
constant,eventhough it is not strictly a constant. Recall that Eq. (3.2¢) is valid
for irrotational motion of a fluid in which viscous effects are negligible and in
which any body forces are conservative. Kelvin’s theorem usually helps to
establish the condition of irrotationality by relating the flow under con-
sideration to a simpler form of the flow far upstream.

3.3 CROCCO’S EQUATION

This equation relates the vorticity of a flow field to the entropy of the fluid.
Under certain conditions it will be shown that isentropic flows are irrota-
tional, and vice versa. Then, if it is known that a flow field is essentially
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isentropic, the mathematical simplifications associated with irrotational
motion may be employed. This simplification will be employed in the cha-
pters dealing with compressible fluid flow, and it is justified by Crocco’s
equation.

In order to establish Crocco’s equation, consider the flow of an inviscid
fluid in which there are no body forces. Then, from Eq. (1.9¢), the Euler
equations that guarantee dynamic equilibrium become

Ou 1
i @-Viu=--V
5 T Vu o VP

The nonlinear term may be expanded as follows using a vector identity given
in Appendix A:

(u-Viu=V(ju-u) —ux (V xu)

Hence the Euler equation becomes

Itis this form of the Euler equation that is the starting point for the derivation
of Crocco’s equation. In order to relate the dynamics of the flow to its ther-
modynamics, it is proposed to eliminate the pressure p and the density p,
which appear in the term on the right-hand side of the above equation, in
favor of the enthalpy /4 and the entropy s. To do this, we use the first law of
thermodynamics and the definition of the entropy. From Appendix E, a
change in internal energy de is caused by work done on the fluid —pd(1 /p) and
by any heat that is added to the fluid dg. That is,

1
de = —pd (—) + dq
p
1
= —pd (—) + Tds
p

where the last relation follows from the definition of the entropy. Now p and p
have been related to e and s. In order to eliminate e in favor of the enthalpy 4,
we use the equation that defines the enthalpy, namely, e =/h—p/p. Then the
foregoing thermodynamic relation becomes
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dh—d(’i> - —pd(1> + Tds
p p

Since d(p/p) = pd(1/p) + dp/ p, this equation simplifies to

1
—;dp:Tds—dh

Using again the result established in the previous section that d¢-V = d, it
follows that

1

This result will now be used to eliminate the pressure and the density that
appear on the right-hand side of the Euler equations.

%—FV(%u-u)—uxm:TVs—Vh

Rearranging this vector equation slightly yields the result known as Crocco’s
equation:

uxw—&—TVs:V(h—&—%u-u)—&—% (3.3a)

Equation (3.3a) are valid for flows in which viscous effects are negligible and
in which there are no body forces.

Under conditions of steady, adiabatic flow, Eq. (3.34) may be reduced
to a scalar equation. To show this, it will first be shown that for adiabatic flow
of an inviscid fluid in which there are no body forces, the quantity
hy=h+ %u -u is constant along each streamline. The quantity A, is called
the stagnation enthalpy.

From Prob. 3.1, the energy equation for adiabatic flow of an inviscid
fluid is

Dh _ Dp
Pt~ Dr
The Euler equations for a flow without body forces are

Du

- _V
th p
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Forming the scalar product of this equation with the velocity vector u

gives
D /1
P <§u-u> =-u-Vp

Adding this equation to the energy equation derived above yields

D ] Dp
E(h—f—gll‘u) :E—H'Vp
or
Din _0p
Por T o

Then, for steady flow, the right-hand side of this equation will be zero. That
is, for steady, adiabatic flow of an inviscid fluid in which there are no body
forces, the quantity Dhy/Dt will be zero. Hence the stagnation enthalpy g
will be constant along each streamline.

Equation (3.3a) was derived for an inviscid fluid that is not subjected
to any body forces. Then, if, in addition, the flow is steady and adiabatic,
Eq. (3.3a) becomes

uxw-+ TVs=Vh

where the quantity 4 is constant along each streamline. Hence VA will be a
vector perpendicular to the streamlines. But u x  is also perpendicular to
the streamlines, so that the remaining vector, namely, 7'Vs, must also be
perpendicular to the streamlines. Then the above vector equation may be
written in the following scalar form:

ds dhy
UuQ+ Tdn_ in (3.3b)
Here Uand Q are, respectively, the magnitudes of the velocity vector u and
the vorticity vector w. The coordinate » is perpendicular to the streamlines
locally. Equation (3.35) is valid for steady, adiabatic flow of an inviscid fluid
in which there are no body forces.
Usually when the stagnation enthalpy is constant along each stream-
line, itis constant everywhere. That is, the value of & along each streamline is
the same. Under these conditions dhy/dn = 0, so that Eq. (3.35) becomes

ds
Q+T—= )
UQ+ In 0 (3.3¢)
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In this form Crocco’s equation clearly shows that if s is constant, Q must be
zero. Likewise if Q is zero, ds/dn must be zero so that s must be constant.
Thatis, isentropic flows are irrotational and irrotational flows are isentropic.
This result is true, in general, only for steady flows of inviscid fluids in which
there are no body forces and in which the stagnation enthalpy is constant.

3.4 VORTICITY EQUATION

The equation to be satisfied by the vorticity vector w for a fluid of constant
density and constant viscosity will be derived in this section. Such an equa-
tion is useful in the study of viscous flows in incompressible fluids, which is
the topic of Part III of this book. One reason that the vorticity equation is of
interest is that it enables us to learn more about the physics of given flow
fields. Also, in the analysis of some flow fields it is frequently possible to make
some statement about the vorticity distribution that facilitates the analysis if
the problem is posed in terms of the vorticity.

From Eq. (1.9b), the Navier—Stokes equations for a fluid of constant
density and viscosity are

Ou B p 5
EJr(u Viu= V(p) + vV

Replacing the nonlinear term by its equivalent form given by the vector
identities in Appendix A, this vector equation becomes
Ou

1 _ o(P )
(‘)t+v(2u u) —ux (Vxu) = V(p>+vVu

The vorticity equation is obtained by taking the curl of this equation and
noting that the curl of the gradient of any scalar is zero. Hence
Jw

E—Vx(uxm):vvzm

Using a vector identity given in Appendix A, the second term on the left-
hand side may be expanded to give

Vx(uxw) =uV-0w)—o(V-u)— (u-V)o + (o V)u

But V. = 0, since the divergence of the curl of any vector is zero and
V -u = 0 from the continuity equation. Hence the vorticity equation becomes
Oom

E+(u.v)m: (0-V)u+ vV (3.4a)
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For two-dimensional flows the vorticity vector o will be perpendicular to
the plane of the flow, so that (» - V)u will be zero. Then
Jm

B + U-Vio = vV’ (3.4b)

The vorticity equation, in either the general form (3.4a) or the two-
dimensional form (3.4b), has another advantage over and above those
mentioned in the preliminary remarks. It will be noted from these equations
that the pressure p does not appear explicitly. Thus the vorticity and velocity
fields may be obtained without any knowledge of the pressure field.

Inorder to determine the pressure distribution in terms of the vorticity,
the Navier—Stokes equations are again used in the form

Ou B p 2
E+(u Viu= —V<p) +vVau

Taking the divergence of this equation and using the result of Prob. 3.2

together with the continuity equation V- u = 0, it follows that the equation to
be satisfied by the pressure pis

V2<§) :co-o)—&-u-(Vzu)—%Vz(Uou) (3.5)

From the foregoing results we see that the vorticity satisfies a diffusion
equation while the pressure satisfies a Poisson equation.

PROBLEMS
3.1 Invector form,the thermal energy equation is
D
pi = —pV-u+V-(kVT) +®

By using the definition of the enthalpy A, show that an equivalent form
of this equation is
Dh  Dp
—=—+4V-(kVI) + @
P~ TV RV E

3.2 Show that, for an incompressible fluid, the following identity holds
between the velocity vector u and the vorticity vector w:

V-[(u-V)u Z%VZ(IPU) —u- (Vo) ~ 0 -
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3.3 Incylindrical coordinates, the velocity components for a uniform flow
around a circular cylinder are

2

uR:U<1—ﬁ)cosﬁ
a?\ .

uy=-U 1+ﬁ sin 6

Here U is the constant magnitude of the velocity approaching the
cylinder and a is the radius of the cylinder. If compressible and viscous
effects are negligible, determine the pressure p(R, 0) at any point in the
fluid in the absence of any body forces. Take the pressure far from the
cylinder to be constant and equal to py.

Specialize the result obtained above to obtain an expression for the
pressure p(a, 0) on the surface of the cylinder.

FURTHER READING—PART 1

Part I of this book has been concerned with the derivation of the equations
governing the motion of a fluid. The number of books dealing with fluid
mechanics in which these equations are derived is large. The following
represents a sample of some of these books.

Aris, Rutherford: Vectors, Tensors, and the Basic Equations of Fluid Mechanics,
Prentice-Hall, Inc., Englewood, N.J., 1964.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press,
London, 1967.

Chorin, A. J. and J. E. Marsden: 4 Mathematical Introduction to Fluid Mechanics, 3rd
ed., Springer-Verlag, Berlin, 1993.

Lagerstrom, P. A.: Laminar Flow Theory, in F. K. Moore (ed.): Theory of Laminar
Flows, Princeton University Press, Princeton, N.J., 1964.

Panton, Ronald L.: Incompressible Flow, John Wiley & Sons, New York, 1984.

Serrin, James: Mathematical Principles of Classical Fluid Mechanics, in S. Fliigge
(ed.): Handbuch der Physik,vol. VIII /1, Springer-Verlag OHG, Berlin, 1959.

Yih, Chia-Shun: Fluid Mechanics, McGraw-Hill Book Company, New York, 1969.
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11
IDEAL-FLUID FLOW

This part of the book deals with the flow of ideal fluids, that is, fluids that are
inviscid and incompressible. The results are therefore limited to flow fields in
which viscous effects of the fluid are negligible and compressibility of the
fluid is unimportant. Then, any phenomena that are predicted by the
governing equations will be due to the inertia of the fluid. The mathematical
simplification that results from neglecting viscous and compressible effects
is great, and consequently the topic of ideal-fluid flow is, mathematically, the
best understood.

Part II contains Chaps. 4, 5, and 6. Chapter 4 deals with two-dimen-
sional potential flows. Apart from some fundamental flows, the flow around
some two-dimensional bodies such as cylinders, ellipses, and airfoils is cov-
ered. Chapter 5 treats three-dimensional potential flows including the flow
around submerged bodies such as spheres. Finally, Chap. 6 deals with sur-
face waves on liquids. This chapter includes traveling waves, standing waves,
and waves at the interface of two fluids.

Governing Equations and Boundary Conditions

Since the fluid is assumed to be incompressible, the equation of mass con-
servation is Eq. (1.3¢). The equations of momentum conservation for an
inviscid fluid are the Euler equations, which are expressed by Eq. (1.9¢).

69
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That is, the equations governing the velocity and pressure fields for an ideal
fluid are

Vou=0 (I1.1)

%-ﬁ-(u-V)u:—%Vp%-f (I1.2)
Equations (I1.1) and (I1.2) are sufficient to establish the velocity and the
pressure in the flow independent of any temperature distribution that may
exist. It was pointed out in Chap. 1 that compressibility is the fluid property
that couples the equations of thermodynamics to those of dynamics so that in
the study of ideal fluids the equations of thermodynamics need not be solved
concurrently with the equations of motion. The study of ideal-fluid flows is
frequently referred to as hydrodynamics, and Eqs. (I1.1) and (I1.2) are
frequently called the equations of hydrodynamics.

Within macroscopic length scales, the proper boundary condition to
be satisfied by the velocity is the no-slip boundary condition expressed by
Eq. (1.14). It is not possible to satisfy this boundary condition with the Euler
equations. The reason lies in the fact that the Euler equations are one order
lower than the Navier—Stokes equations because the viscous terms are
absent in the former equations. Thus the true boundary condition must be
relaxed somehow under the approximation of negligible viscous effects.
Since it is primarily viscous effects that prohibit a fluid from slipping along a
solid boundary, the condition of no tangential slip at boundaries is relaxed.
That is, the condition of no normal velocity at a solid boundary is retained
but the condition of no tangential velocity is dropped. Thus the boundary
condition that should be used with the Euler equations is

u-n="U-n on solid boundaries (IL.3)

where n is the unit normal to the surface of the body and U is the velocity
vector of the body. Comparison of Eq. (I1.3) with Eq. (1.14) shows that
the former constitutes one component of the true boundary condition
and the two tangential components are unspecified. Physically, this
means that the condition of no slip on a solid boundary has become the
condition that the surface of the body must be a streamline. Any boundary
condition that is to be satisfied far from the body, such as the flow becoming
uniform, is unaffected by the inviscid approximation.

Potential Flows

If the flow of an ideal fluid about a body originates in an irrotational
flow, such as a uniform flow, for example, then Kelvin’s theorem [Eq.(3.1)]
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guarantees that the flow will remain irrotational even near the body. That is,
the vorticity vector o will be zero everywhere in the fluid. Then, since
V x V¢ = 0 for any scalar function ¢, the condition of irrotationality will be
satisfied identically by choosing

u=Ve¢ (11.4)

The function ¢ is called the velocity potential, and flow fields that are irrota-
tional, and so can be represented in the form of Eq. (IL.4), are frequently
referred to as potential flows. In order to find the equation that the velocity
potential ¢ satisfies, the expression for ugiven by Eq. (I1.4) is substituted into
the continuity equation (I1.1) to give

Vi =0 (I1.5)

Thus by solving Eq. (I1.5) and utilizing Eq. (I1.4), the velocity field may be
established without directly using the equations of motion [Eqs. (I1.2)]. This
is so because the condition of irrotationality has been used, and this condi-
tion is justified by Kelvin’s theorem, which uses Eq. (I1.2) in its proof. How-
ever, the equations of motion must be used directly to obtain the pressure
distribution. Solving Eq. (IL.5) for the velocity potential ¢ determines the
velocity distribution only, and in order to determine the pressure, use must
be made of the equations of dynamics. Rather than use Eq. (I1.2), their inte-
grated form, that is the Bernoulli equation, will be used. Using Eq. (3.2¢), the
pressure may be determined from the following relation:
op p

1
it ot VYo —G = (1 (IL6)

Having determined the velocity potential ¢, this becomes a simple algebraic
equation for the pressure.

From the foregoing, it is evident that a simpler form of the governing
equations exists for potential flows. Rather than solving Eqs. (I1.1) and (I1.2)
directly, Eq. (I1.5), together with the appropriate boundary conditions, may
be solved to yield the velocity potential and hence the velocity field. Having
done this, Eq. (I1.6) may be used to establish the pressure field. This for-
mulation has certain simplifying features. First, it will be noticed that the
differential equation to be solved, given by Eq. (IL.5), is linear, whereas
Eq. (I1.2) is nonlinear. Of course, the nonlinearity cannot be completed cir-
cumvented, and indeed it appears in the term V¢ - V¢ in the Bernoulli equa-
tion. However, in this equation it poses no difficulty in the analysis. One of
the most useful properties of linear differential equations is that different
solutions may be superimposed to yield other solutions. This property will
be used extensively in the following chapters.
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Two-Dimensional Potential Flows

It was pointed out in the introduction to Part II that potential flows may be
analyzed in a much simpler way than general fluid flows. Within the category
of potential flows, the two-dimensional subset lends itself to even greater
simplification. It will be shown in this chapter that the simplification is so
great that solutions to Egs. (I1.5) and (I11.6) may be obtained without actually
solving any differential equations. This is achieved through use of the pow-
erful tool of complex variable theory.

The chapter begins by introducing the stream function, which together
with the velocity potential, leads to the definition of a complex potential.
Through this complex potential, some elementary solutions corresponding
to sources, sinks, and vortices are examined. The superposition of such ele-
mentary solutions then leads to the solution for the flow around a circular
cylinder. The method of conformal transformations is then introduced, and
the Joukowski transformation is used to establish the solutions for the flow
around ellipses and airfoils. The Schwarz-Christoffel transformation is then
introduced and used to study the flow in regions involving sharp corners.
Included in this chapter are examples of free-surface configurations.

73
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4.1 STREAM FUNCTION

The velocity potential ¢ was defined in such a way that it automatically
satisfied the condition of irrotationality. The continuity equation then
showed that ¢ had to be a solution of Laplace’s equation. A second function
may be defined by a complementary procedure for two-dimensional incom-
pressible fluid flows. That is, a function may be defined in such a way that it
automatically satisfies the continuity equation, and the equation it must
satisfy will be determined by the condition of irrotationality.

The continuity equation, in cartesian coordinates, for the flow field
under consideration is

Ou Ov

oy ="

Now introduce a function i that is defined as follows:

W
v=—7o (4.16)

With this definition, the continuity equation is satisfied identically for all
functions . The function  is called the stream function, and by virtue of
its definition it is valid for all two-dimensional flows, both rotational and
irrotational.

The equation that the stream function yy must satisfy is obtained from
the condition of irrotationality. Denoting the components of the vorticity
vector @ by (&,7,(), it is first observed that, in two dimensions, the only
nonzero component of the vorticity vector is {,the component perpendicular
to the plane of the flow. Secondly, it is noted that { = 9v/0x — Ou/dy. Thus,
the condition of irrotationality is

ov Ou

ox Oy

Substituting for # and v from Eqgs. (4.1) shows that iy must saisfy the following
equation:

Ay Ry
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That is, the stream function y, like the velocity potential ¢, must satisfy
Laplace’s equation. The stream function y/ has some useful properties that
will now be derived.

The flow lines that correspond to iy = constant are the streamlines of
the flow field. To show this, it is noted that i/ is a function of both x and y in
general so that the total variation in y associated with a change in x and a
change in y may be calculated from the expression

oy o J

dl,b:gdx—l—ay ly

= —vdx+udy

where Eqs. (4.1) have been used. Then the equation of the line iy = constant
will be

0=—vdx+udy

LA
dx w_u

where the subscript denotes that this expression for dy/dx is valid for i held
constant. But it was shown in Chap. 2 that this is precisely the equation of the
streamlines in the xy plane. Hence the lines corresponding to iy = constant
are the streamlines, and each value of the constant defines a different
streamline. It is this property of the function i that justifies the name stream
function.

Another property of the stream function y is that the difference of its
values between two streamlines gives the volume of fluid that is flowing
between these two streamlines. To show this, consider two streamlines cor-
responding to yy = i, and yy = i/, as shown in Fig. 4.1. A control surface AB
of arbitrary shape but positive slope is shown joining these two streamlines,
and an element of this surface shows the positive volumetric flow rates
crossing it in the x and y directions per unit depth perpendicular to the flow
field. Then the total volume of fluid flowing between the streamlines per unit
time per unit depth of flow field will be

B B
Qz/ udy—/ vdx
A A

But it was observed earlier that dyy = —v dx + udy, so that, integrating this
expression between the two points 4 and B, it follows that

or
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FIGURE 4.1 Two streamlines showing the components of the volumetric flow rate
across an element of control surface joining the streamlines.

B B
lﬁz_%:_/ de+/ udy
4 4

Comparing these two expressions confirms thaty, —; = Q.

Finally, it should be noted that the streamlines |y = constant and the
lines ¢ = constant, which are called equipotential lines, are orthogonal to
each other. This may be shown by noting that if ¢ depends upon both x and y,
the total change in ¢ associated with changes in both x and y will be

0 9
dp =5 dx 0 dy

=udx+vdy

where Eq. (I1.4) has been used. Then the lines corresponding to
¢ = constant will be defined by

0=wudx+vdy

N __u
dx qsi v

or

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



Two-Dimensional Potential Flows 77

That is,

In words, the slope of the lines ¢» = constant is the negative reciprocal of the
slope of the lines iy = constant, so that these sets of lines must be orthogonal.
This property of the streamlines and the equipotential lines is the basis of a
numerical procedure for solving two-dimensional potential-flow problems.
The method is referred to as the flow net.

4.2 COMPLEX POTENTIAL AND COMPLEX
VELOCITY

The velocity components # and v may be expressed in terms of either the
velocity potential or the stream function. From Egs. (I1.4) and (4.1), these
expressions are

L0 _
Ox Oy

p 00 _ oW
Oy ox

That is, the functions ¢ and y are related by the expressions

o9 _ o
ox Oy

o9 _ oy
v ox

But these will be recognized as the Cauchy-Riemann equations for the
functions ¢(x, y) and ¥(x, y). Then consider the complex potential F(z),
which is defined as follows:

F(z) = ¢(x, ) + iy (xy) (4.3)

where z = x + iy. Now if F(z) is an analytic function, it follows that ¢ and
will automatically satisfy the Cauchy-Riemann equations. That is, for every
analytic function F(z) the real part is automatically a valid velocity potential
and the imaginary part is a valid stream function.

The foregoing result suggests a very simple way of establishing
solutions to the equations of two-dimensional potential flows. By equating
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the real part of a given analytic function to ¢ and the imaginary part to y,
the theory of complex variables guarantees that V¢ = 0 and V> = 0 as
required. The flow field corresponding to that analytic function may be
determined by studying the streamlines iy = constant. The corresponding
velocity components may be calculated from Egs. (I1.4) or (4.1), and the
pressure may be obtained using Eq. (I1.6). This approach has the dis-
advantage of being inverse in the sense that a problem is first solved and then
examined to see what the physical problem was in the first place. However,
for teaching purposes this is of no consequence. Another disadvantage is
that the method cannot be generalized to three-dimensional potential flows.
On the other hand, this approach avails itself of the powerful results of com-
plex variable theory and avoids the difficulties of solving partial differential
equations. For these reasons the complex-potential approach will be used in
this chapter.

Another quantity of prime interest, apart from the complex potential
F(z), is the derivative of F(z) with respect to z. Since F(z) is supposed to be
analytic, dF /dz will be a point function whose value is independent of the
direction in which it is calculated. Then, denoting this derivative by W, its
value will be given by

dF OF
_0¢p O
o lox
thatis,
dF .
W(z) = P (4.4)

where use has been made of Egs. (4.3), (I1.4), and (4.15). In view of this result
the quantity W (z) is called the complex velocity, although its imaginary part
is —iv. Equation (4.4) offers a convenient alternative to Eqs. (I1.4) and (4.1)
for finding the velocity components corresponding to a given complex
potential.

A useful property of the complex velocity is that, when multiplied by its
own complex conjugate, it gives the scalar product of the velocity vector with
itself. To show this, consider W (z) and its complex conjugate W (z). Then

WW = (u— iv)(u+ iv)
_ (4.5)
WW =u* + v
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The significance of this result is that the quantity uu = V¢-V¢ =
u? + v? appears in the Bernoulli equation.

Frequently it is advantageous to work in cylindrical coordinates rather
than cartesian coordinates. An expression for the complex velocity may be
readily obtained in cylindrical coordinates by converting the cartesian
components of the velocity vector (#, v) to cylindrical components (ug, up).
Figure 4.2 shows a velocity vector OP decomposed into its cartesian com-
ponents (shown solid) and also its cylindrical components (shown dotted).
From this figure each of the cartesian velocity components may be expressed
in terms of the two cylindrical components as follows:

u:uRcos0+ugcos<g—0) =ugrcosl — uysin0
v= uRsinQ—&-ugsin(g—@) = ugsinf + up cos 0

Substituting these expressions into Eq. (4.4) gives the expression for
the complex velocity I in terms of ug and uy.

.1’,

FIGURE 4.2 Decomposition of a velocity vector OP into its cartesian components
(u,v) and its cylindrical components (ug, up).

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



80 Chapter 4

W = (urcos 0 — ugsin ) — i(ug sin 0 + uy cos 0)
= ug(cos — isin0) — iug(cos 0 — isin )
that is,
W = (ug — iug)e ™ (4.6)

The foregoing results [Eqs. (4.3) to (4.6)] are sufficient to establish the
flow fields, which are represented by simple analytic functions.

4.3 UNIFORM FLOWS

The simplest analytic function of z is proportional to z itself, and the corre-
sponding flow fields are uniform flows.

First, consider F(z) to be proportional to z where the constant of pro-
portionality is real. That is,

F(z) =cz
where cisreal. Then, from Eq. (4.4),
WE)=u—iv=c

Then, by equating real and imaginary parts of this equation, the velocity
components corresponding to this complex potential are

But this is just the velocity field for a uniform rectilinear flow as shown
in Fig. 4.3a. Thus the complex potential for such a flow whose velocity mag-
nitude is U in the positive x direction will be

F(z) = Uz (4.7a)

Next consider the complex potential to be proportional to z with an
imaginary constant of proportionality. Then

F(z) = —icz

where c is real. The minus sign has been included to make the velocity com-
ponent positive when c is positive. For this complex potential

W(z) =u—iv=—ic
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) v v
X X X
(a) (b) (€

FIGURE4.3 Uniform flow in (a) the x direction, (b) the y direction, and (c) an angle
o to the x direction.

so that the velocity components are

u=20

v=c
This is a uniform vertical flow as shown in Fig. 4.3b. Then the complex
potential for such a flow whose velocity magnitude is V in the positive y

direction will be
F(z) = —iVz (4.7b)

Finally, consider a complex constant of proportionality so that
F(z) = ce "z
where cand o are real. For this complex potential
W(z) =u—iv=ccoso—icsina

Hence the velocity components of the flow field are
U=ccosua
v=csin o
This corresponds to a uniform flow inclined at an angle « to the x axis as

shown in Fig. 4.3¢c. Hence the complex potential for such a flow whose velo-
city magnitude is V" will be

F(z) = Ve "z (4.7¢)
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This last result, of course, contains the two previous results as special cases
corresponding to o = 0 and o = 7/2.

4.4 SOURCE, SINK, AND VORTEX FLOWS

Complex potentials that correspond to the flow fields generated by sources,
sinks, and vortices are obtained by considering F(z) to be proportional to log
z.When considering log z, we consider the principal part of this multivalued
function corresponding to 0 < 0 < 27.

Consider, first, the constant of proportionality to be real. Then

F(z) = clogz
= clog Re"
=clogR + icl

Hence, from Eq. (4.3),
¢ =clogR
Y =cb

That is, the equipotential lines are the circles R = constant and the stream-
lines are the radial lines & = constant. This gives a flow field as shown in
Fig. 4.4a in which the streamlines are shown solid and the direction of the
flow is shown for ¢ > 0. The direction of the flow is readily confirmed by
evaluating the velocity components. In view of the geometry of the flow,
cylindrical coordinates are preferred, so that

W(z) = 2 - %e—""

Comparison with Eq. (4.6) shows that the velocity components are

c
Ur = E
Uyg = 0
which confirms the directions indicated in Fig. 4.4a for ¢ > 0.

The flow field indicated in Fig. 4.4a is called a source. The velocity is
purely radial and its magnitude decreases as the flow leaves the origin.

In fact, the origin is a singular point corresponding to infinite velocity, and
as the fluid flows radially outwards, its velocity is decreased in such a way
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(a) (b)

FIGURE 4.4 Streamlines (shown solid) and equipotential lines (shown dashed) for
(a) source flow and (b) vortex flow in the positive sense.

that the volume of fluid crossing each circle is constant, as required by the
continuity equation.

Sources are characterized by their strength, denoted by m, which is
defined as the volume of fluid leaving the source per unit time per unit depth
of the flow field. From this definition it follows that

2n
m= / urR do
0

27
= / cdf =2mnc
0

Here, the result ug = ¢/R has been used. Then ¢ may be replaced by m/2x,
giving the following complex potential for a source of strength m:
m
F(z) = —1
(2) = -log=

The source corresponding to this complex potential is located at the
origin, the location of the singularity. Then the complex potential for a source
of strength m located at the point z = z; will be

F(z) = 5-log(z — z) (48)
z) = —log(z — z .
i g 0
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Clearly, the complex potential for a sink, which is a negative source, is
obtained by replacing m by —min Eq. (4.8).

Now consider the constant of proportionality in the logarithmic com-
plex potential to be imaginary. That is, consider

F(z) = —iclogz
where cis real and the minus is included to give a positive vortex. Then, using
cylindrical coordinates,
F(z) = —iclog Re"
=c0 —iclogR

Then, from Eq. (4.3), the velocity potential and the stream function are
¢ =cl
Yy = —clogR

That is, the equipotential lines are the radial lines 6 = constant and the
streamlines are the circles R = constant as shown in Fig. 4.4b. The velocity
components may be evaluated by use of the complex velocity.
c c
W = = —]— —i0
(2) i ipe
Comparison with Eq. (4.6) shows that the velocity components are

MR:()

ugzﬁ

Hence the direction of the flow is positive (counterclockwise) for ¢ > 0, and
the resulting flow field is called a vortex.

Avortex is characterized by its strength, which may be measured by the
circulation I' associated with it. From Eq. (2.3), the circulation I" associated
with the singularity at the origin is

F:jlg u-dl
2n
:/ ungH
0

2n
:/ cdf =2mnc
0
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Here, the result #yg = ¢/R has been used. Then ¢ may be replaced by I'/27,
giving the following complex potential for a positive (counterclockwise)
vortex of strength I'.

r
F(z) = —iﬂlogz

The singularity in this expression is located at z = 0. That is, the line vortex is
located at z = (. Then the complex potential for a positive vortex located at
z = zo will be

F(z) = —i%log(z—zo) (4.9)

The complex potential for a negative vortex would be obtained by replacing
I'by —T"in Eq. (4.9). Note, however, that the negative coefficient is associated
with the positive vortex.

The flow field represented by Eq. (4.9), which is shown in Fig. 4.4b for
z9 = 0, corresponds to a so-called free vortex. That is, for any closed contour
that does not include the singularity, the circulation will be zero and the flow
will be irrotational. All the circulation and vorticity associated with this type
of vortex is concentrated at the singularity. This is in contrast with the solid-
body rotation vortex mentioned in Chap. 2.

The principal application of the source, the sink, and the vortex isin the
superposition with other flows to yield more practical flow fields.

4.5 FLOW INA SECTOR

Theflowsinsharpbendsorsectorsare represented by complex potentials that
are proportional to z”, where n > 1. A special case of such complex potentials
would be » = 1, which represents a uniform rectilinear flow. Then, in order
that this special case willreduce to Eq. (4.7a),consider the complex potentials

F(z) = UZ"

Substituting z = Re”” and separating the real and imaginary parts of this
function gives

F(z) = UR" cosnl) + iUR" sin n0
Then the velocity potential and the stream function are

¢ = UR" cos n0
Y = UR" sinnf
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From this it is evident that when 0 = 0 and when 0 = n/n, the stream func-
tion / is zero. That is, the streamline iy = 0 corresponds to the radial lines
0 = 0 and 6 = n/n. Between these two lines, the streamlines are defined by
R" sin nf = constant. This gives the flow field shown in Fig. 4.5. The direction
of the flow along the streamlines may be determined from the complex velo-
city as follows:

W(z) = nUz"' = nUR" /=10
= (nUR"! cos nf) + inUR" ' sinnf)e™

Thus, by comparison with Eq. (4.6), the velocity components are
ug = nUR"" cos nf
uy = —nUR" " sin nb
Then, for 0 < 0 < (n/2n),ug is positive while uy is negative and for

(n/2n) < 0 < (n/n), ug is negative and uy remains negative. This establishes
the flow directions as indicated in Fig. 4.5.

FIGURE 4.5 Streamlines (shown solid) and equipotential lines (shown dashed) for
flow in a sector.
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From the foregoing, the complex potential for the flow in a corner or sector of
angle n/nis

F(z) = U" (4.10)
For n = 1, Eq. (4.10) gives the complex potential for a uniform rectilinear

flow, and for n = 2, it gives the complex potential for the flow in a right-
angled corner.

4.6 FLOW AROUND A SHARP EDGE

The complex potential for the flow around a sharp edge, such as the edge ofa
flat plate, is obtained from the function z!/2. Then consider the complex
potential

F(z) = cz'?
where cisreal and 0 < 6 < 27. Then, in cylindrical coordinates,
F(z) = cR'?"2
so that the velocity potential and stream function are
o= cR'? cosg

Y = cR'/? sing

Thus the lines 0 = 0 and 0 = 2n correspond to the streamline yy = 0. The
other streamlines are defined by the equation R'/? sin /2 = constant, which
yields the flow pattern shown in Fig. 4.6. The direction of the flow is obtained
from the complex velocity as follows:

_ ¢ ¢ _n
W(Z)_221/2_2R1/2e /

c ( 0 . . 9> —i0
= cos— +isin= |e

2R1/2 2 2

Hence the velocity components are

0

k= 2RI %2
B c .0
T TS
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FIGURE 4.6 Streamlines (shown solid) and equipotential lines (shown dashed) for
flow around a sharp edge.

Then, for 0 < 0 < w,ug > 0 and uy < 0. Also, for 7 < 0 < 27, ug < 0 and
up < 0.This gives the direction of flow as indicated in Fig. 4.6.

The flow field shown in Fig. 4.6 corresponds to the flow around a sharp
edge, and so the complex potential for such a flow is

F(z) = cz'/? (4.11)

An important feature of this result is that the corner itself is a singular point
at which the velocity components become infinite. Since both uz and uy vary
as the inverse of R'/2, it follows that the velocity is singular as the square root
of the distance from the edge. This result will be discussed in Sec. 4.15.

4.7 FLOW DUE TO ADOUBLET

The function 1/z has a singularity at z = 0, and in the context of complex
potentials, this singularity is called a doublet. The quickest way of establish-
ing the flow field which corresponds to the complex potentials that are
proportional to 1/z would be to follow the methods used in the previous
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sections. However, it turns out that the doublet may be considered to be the
coalescing of a source and a sink, and the required complex potential may be
obtained through a limiting procedure that uses this fact. This interpretation
leads to a better physical understanding of the doublet, and for this reason it
will be followed here before studying the flow field.

Referring to the geometry indicated in Fig. 4.7a, consider a source of
strength m and a sink of strength m , each of which is located on the real axis a
small distance ¢ from the origin. The complex potential for such a config-
uration is, from Eq. (4.8),

m m
F(z) = ﬂlog(z +e) — Elog(z —¢)
m z+e
=—1
2n Og(z — s)
"o 1+¢/z
2 08 1—¢/z

If the nondimensional distance ¢/|z| is considered to be small, the argument
of the logarithm may be expanded as follows:

F(z) :%mg{(l +) {1 o o(j—zﬂ}

2
:ﬂlog 1+2§+0 i
27 z z2

where the designation O(¢?/z?) means terms of order &2/z* or smaller. The
logarithm is now in the form log(1 + y), where y < 1, so that the equivalent
expansion y + O(y?) may be used. Then

F(z) :% [2§+ oc—z)]

It is now proposed to let ¢ — 0 and m — oc in such a way that lim,_.¢(me) =
ny, where yis a constant. Then the complex potential becomes

I
F(z) =2

(z) =7
Thus the complex potential i /z may be thought of as being the equivalent of

the superposition of a very strong source and a very strong sink that are very
close together.
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H -1

T

(a) (b)

FIGURE 4.7 (a) Superposition of a source and a sink leading to (b) streamline pat-
tern for the limit ¢ — 0 with me = constant.

In order to establish the flow field that the above complex potential
represents, the stream function will be established as follows:

u
F =
(2) X+ iy
_ox—1y
7'ux2+y2
i

Thus the equation of the streamlines y = constant is
lad
W

oot ()
2 2

Ky +oy=0

or
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But this is the equation of a circle of radius p1/(2y/) whose center is located
at y= —u/(2¢). This gives the streamline pattern shown in Fig. 4.7b.
Although the direction of the flow along the streamlines may be deduced
from the source and sink interpretation, it will be checked by evaluating the
velocity components. The complex velocity for this complex potential is

H Hooi
W(Z):—Z—ZZ—Fe 20
= —%(cos@—ism@)e 0

Hence the velocity components are

o u
up = —ﬁcos 0
_ K
uy = —ﬁsmG
These expressions for ugz and uy confirm the flow directions indicated in

Fig.4.7b.

The flow field illustrated in Fig. 4.7b is called a doublet flow, and the
singularity that is at the heart of the flow field is called a doublet. Then the
complex potential for a doublet of strength p that is located at z = z; is

F(z) =~ sz (4.12)

The principal use of the doublet is in the superposition of fundamental flow
fields to generate more complex and more practical flow fields. An applica-
tion of this will be illustrated in the next section.

4.8 CIRCULARCYLINDER WITHOUT
CIRCULATION

The fundamental solutions to the foregoing flow situations provide the basis
for more general solutions through the principle of superposition. Super-
position is valid here, since the governing equation, for either the velocity
potential or the stream function, is linear. The first example of superposition
of fundamental solutions will be the flow around a circular cylinder.

Consider the superposition of a uniform rectilinear flow and a doublet
at the origin. Then, from Eqs. (4.7a) and (4.12), the complex potential for the
resulting flow field will be

F(z) = Uz—l—g
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It will now be shown that for a certain choice of the doublet strength the cir-
cle R = abecomes a streamline. On the circle R = g, the value of z is ae', so
that the complex potential on this circle is

F(z) = Uae B0
a

= (Ua+§) cos@+i<Ua—§) sin 0

Thus the value of the stream function on the circle R = ais

wz(U—gﬁme

For general values of u,  is clearly variable, but if we choose the strength of
the doublet to be u = Ua?, then y = 0 on R = a. The flow pattern for this
doublet strength is shown in Fig. 4.8a. The flow field due to the doublet
encounters that due to the uniform flow and is bent downstream. For
clarity, the flow due to the doublet is shown dotted in Fig. 4.8a. It may be
seen that the doublet flow is entirely contained within the circle R = a,
while the uniform flow is deflected by the doublet in such a way that it is
entirely outside the circle R = a. The circle R = a itself is common to the
two flow fields.

Under the conditions, a thin metal cylinder of radius @ could be slid
into the flow field perpendicular to the uniform flow so that it coincides
with the streamline on R = a. Clearly the flow due to the doublet and that
due to the free stream would be undisturbed by such a cylindrical shell.
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FIGURE4.8 (a) Flow field represented by the complex potential F(z) = U(z + a?/2)
and (b) flow around a circular cylinder of radius a.
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Having done this, the flow due to the doublet could be removed and the
outer flow would remain unchanged. Finally, the inside of the shell could be
filled to yield a solid cylinder. That is, for R > a, the flow field due to the
doublet of strength Ua? and the uniform rectilinear flow of magnitude U
give the same flow as that for a uniform flow of magnitude U past a circular
cylinder of radius a. The latter flow is shown in Fig. 4.8b. Then the complex
potential for a uniform flow of magnitude U past a circular cylinder of
radius a is

F(z) = U(z+“—2) (4.13)

V4

This result is useful in its own right, but it will also be found useful in later
sections, through the technique of conformal transformations, to obtain
additional solutions.

The solution given by Eq. (4.13) for the flow around a circular cylinder
predicts no hydrodynamic force acting on the cylinder. This statement will
be proved quantitatively in a later section, and in the meantime it will be
proved qualitatively. Referring to Fig. 4.8b, it can be seen that the flow is
symmetric about the x axis. That is, for each point on the upper surface there
is a corresponding point on the lower surface, vertically below it, for which
the magnitude of the velocity is the same. Then, from the Bernoulli equation,
the magnitude of the pressure is the same at these two points. Hence, by
integrating p dx around the surface of the cylinder, the lift force acting on the
cylinder must be zero. Similarly, owing to the symmetry of the flow about the
yaxis, the drag force acting on the cylinder is zero.

Although the foregoing result does not agree with our physical intui-
tion, the potential-flow solution for the circular cylinder, and indeed for
other bodies, is valuable. The absence of any hydrodynamic force on the
cylinder is due to the neglect of viscosity. It will be seen in Part III that vis-
cous effects create a thin boundary layer around the cylinder, and this
boundary layer separates from the surface at some point, creating a low-
pressure wake. The resulting pressure distribution creates a drag force.
However, it will be pointed out that the viscous boundary-layer solution is
valid only in the thin boundary layer around the cylinder, and the solution
obtained from the boundary-layer equations must be matched to that given
by Eq. (4.13) at the edge of the boundary layer. That is, Eq. (4.13) gives a valid
solution outside the thin boundary layer and upstream of the vicinity of the
separation point. It also indicates the idealized flow situation that would be
approached if viscous effects are minimized. For more streamlined bodies,
such as airfoils, the potential-flow solution is approached over the entire
length of the body.
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4.9 CIRCULAR CYLINDER WITH CIRCULATION

The flow field studied in the previous section not only was irrotational but it
produced no circulation around the cylinder itself. It was found that there
was no hydrodynamic force acting on the cylinder under these conditions. It
will be shown in a later section that it is the circulation around a body that
produces any lift force that acts on it. It is therefore of interest to study the
flow around a circular cylinder that has a circulation around it.

It was established in a previous section that the streamlines for a vortex
flow form concentric circles. Therefore, ifa vortex was added at the origin to
the flow around a circular cylinder, as described in the previous section, the
fact that the circle R = a was a streamline would be unchanged. Thus, from
Egs. (4.13) and (4.9), zy being zero in the latter, the complex potential for the
flow around a circular cylinder with a negative bound vortex around it will be

2

T
F(z) = U(z+a) +l—logz+c
z 2n

The negative vortex has been used, since it will turn out that this leads to a
positive lift. A constant ¢ has been added to the complex potential for the
following reason. For no circulation, it was found that not only was {y con-
stant on R = abut the value of the constant was zero. By adding the vortex,
will no longer be zero on R = a, although it will have some other constant
value. Since it is frequently useful to have the streamline on R = abe yy = 0, it
is desirable to adjust things so that this condition is achieved. By adding a
constant c to the complex potential, we have the flexibility to choose cin such
away thaty = constantbecomes iy = 0. This adjustment has no effect on the
velocity and pressure distributions, since the velocity components are
defined by derivatives of i, so that the absolute value of y at any point is of no
significance.

In order to evaluate the constant ¢, the value of the stream function on
the circle R = a will be computed. Then, putting z = ae’’, the complex
potential becomes

. . 18 .
F(z) = U(ae” + ae ™) + 12— logae” + ¢
T
T 108
=2UacosO — —10 +l— loga+ ¢
27 2n

Hence on the circle R = athe value of i is indeed constant, and by choosing
¢ = —(iT'/2n) log a, the value of this constant will be zero. With this value of
¢, the complex potential becomes
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a? i’ z
F(z) = U<z+ Z> +2n loga (4.14)
which describes a uniform rectilinear flow of magnitude U approaching a
circular cylinder of radius a that has a negative vortex of strength I around it.
As required, this result agrees with Eq. (4.13) when I" = 0.

In order to visualize the flow field described by Eq. (4.14), the corre-
sponding velocity components will be evaluated from the complex velocity.

v - uf1- ) Lt

72 2nz
2
a . il
—Ul1=-=2 —i20 —i0
( R¢ > TR

a? , a\ . r »
= {U(l _F) cos@-l—t{U(l—i—F) s1n0+ﬁ} }e

Hence, by comparison with Eq. (4.6), the velocity components are

2
ug = U(l R2> cosf (4.15q)

a*\ | r

On the surface of the cylinder, where R = a, Eqs. (4.15) become

uR:O

up = —2U sin0 —L
2na
The fact that ugx = 0 on R = a is to be expected, since this is the boundary
condition (I1.3). A significant point in the flow field is a point where the
velocity components all vanish—that is, a stagnation point. For this flow
field the stagnation points are defined by

T
4nUa

sinf, = — (4.16)
where 0; is the value of 0 corresponding to the stagnation point. For
I' =0,sin 6, = 0, so that 6; = 0 or ©, which agrees with Fig. 4.8b for the cir-
cular cylinder without circulation. For nonzero circulation, the value of 0,
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clearly depends upon the magnitude of the parameter I'/(4nUa), and it is
convenient to discuss Eq. (4.16) for different ranges of this parameter.

First, consider the range 0 < I'/(4nUa) < 1. Here sin 6, < 0, so that 6;
must lie in the third and fourth quadrants. There are two stagnation points,
and clearly the one that was at 0 = = is now located in the third quadrant
while the one that was located at 0 = 0 is now located in the fourth quadrant.
The two stagnation points will be symmetrically located about the y axis in
order that sin f; = —constant may be satisfied. The resulting flow situation is
shown in Fig. 4.9a.

Physically, the location of the stagnation points may be explained as
follows: The flow due to the vortex and that due to the flow around the cylin-
der without circulation reinforce each other in the first and second quad-
rants. On the other hand, these two flow fields oppose each other in the third
and fourth quadrants, so that at some point in each of these regions the net
velocity is zero. Thus the effect of circulation around the cylinder is to make
the front and rear stagnation points approach each other, and for a negative
vortex they do so along the lower surface of the cylinder.

Consider next the case when the nondimensional circulation is unity,
that is,when I'/(4nUa) = 1. Here sin 6, = —1, so that 6, = 37/2. The corre-
sponding flow configuration is shown in Fig. 4.9b. The two stagnation points
have been brought together by the action of the bound vortex such that they
coincide to form a single stagnation point at the bottom of the cylindrical sur-
face.Itisevident thatifthe circulationisincreased above this value, the single
stagnation point cannot remain on the surface of the cylinder. It will move off
into the fluid as either a single stagnation point or two stagnation points.

Finally, consider the case where I'/(4nUa) > 1. Since it seems likely
that any stagnation points there may be will not lie on the surface of the
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FIGURE 4.9 Flow of approach velocity U around a circular cylinder of radius a
having a negative bound circulation of magnitude T for (a) 0 < I'/(4nUa) < 1, (b)
I'/(4nUa) =1, and (c) I'/(4nUa) > 1.
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cylinder, the velocity components must be evaluated from Egs. (4.15). Then
if R; and 0, are the cylindrical coordinates of the stagnation points, it follows
from Egs. (4.15) that R, and 6, must satisfy the equations

2
U(l _ﬁ) cosfy, =0

S

a\ r
U(l +ﬁ) sin 0y = TR

s

Since it is assumed that the stagnation points are not on the surface of the
cylinder, it follows that R; # a, so that the first of these equations requires
that 0; = /2 or 37/2. For these values of 0, the second of the above equa-
tions becomes

a’ r
Ull+—= | =+—
( + R§> 27R;

where the minus sign corresponds to 6, = 7/2 and the plus sign to 6, = 37/2.
Since U > 0, the left-hand side of the above equation is positive, and since
I' > 0, the minus sign must be rejected on the right-hand side. This might
have been expected, since for I'/(4nUa) =1 the value of 0; was 37/2,
whereas the minus sign corresponds to 0; = n/2,which would require alarge
jump in 0, for a small change in I'. The equation for R, now becomes

a? r
vl1+2 )=
( + Rf) 27R,

or
I
RP——R +d=
S T s+ a 0
hence
r r\?
Rs:— JEE— P
4nU 4nU
or
&_ I 1 4nUa\ >
a 4nUa Iy
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This result shows that as 4nUa/T" — 0, R; — oo for the plus sign, but the
corresponding limit is indeterminate for the minus sign. This difficulty may
be overcome by expanding the square root for 4nUa/T" < 1 as follows:

R, T 1 (4nUa\>
;_4nUa{lill_§< r )+]}

where the dots indicate terms of order (47a/T")* or smaller. In this form it is
evident thatas 4nUa/T" — 0, R; — 0 for the minus sign. Since this stagnation
point would be inside the surface of the cylinder, the minus sign may be
rejected, so that the coordinates of the stagnation point in the fluid outside
the cylinder are

3n
0527
&_ I 1441 4nUa\*
a 4nUa r

This gives a single stagnation point below the surface of the cylinder. The
corresponding flow configuration is shown in Fig. 4.9c, from which it will
be seen that there is a portion of the fluid that perpetually encircles the
cylinder.

The flow fields for the circular cylinder with circulation, as shown in
Fig. 4.9, exhibit symmetry about the y axis. Then, following the arguments
used in the previous section, it may be concluded that there will be no drag
force acting on the cylinder. However, the existence of the circulation
around the cylinder has destroyed the symmetry about the x axis. so there
will be some force acting on the cylinder in the vertical direction. For the
negative circulation shown, the velocity on the top surface of the cylinder
will be higher than that for no circulation, while the velocity on the bottom
surface will be lower. Then, from Bernoulli’s equation, the pressure on the
top surface will be lower than that on the bottom surface, so that the ver-
tical force acting on the cylinder will be upward. That is, a positive lift will
exist. In order to determine the magnitude of this lift, a quantitative ana-
lysis must be performed, and this will be done in the next section.

The principal interest in the flow around a circular cylinder with cir-
culation is in the study of airfoil theory. By use of conformal transformations
the flow around certain airfoil shapes may be transformed into that of the
flow around a circular cylinder with circulation.
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4.10 BLASIUS INTEGRAL LAWS

In the previous section it was argued that a lift force exists on a circular
cylinder that has a circulation around it. However, the magnitude of the force
can be established only by quantitative methods. The obvious way to evalu-
ate the magnitude of this force is to establish the velocity components from
the complex potential. Knowing the velocity components, the pressure dis-
tribution around the surface of the cylinder may be established by use of the
Bernoulli equation. Integration of this pressure distribution will then yield
the required force acting on the cylinder.

The difficulty with the foregoing procedure is that it would have to be
carried out for each pressure distribution and for each body under con-
sideration. The Blasius laws provide a convenient alternative. It will be
shown that if the complex potential for the flow around a body is known, then
it is possible to evaluate the forces and the turning moment acting on the
body by means of simple contour integrals. These contour integrals, in turn,
may be readily evaluated by use of the residue theorem. The Blasius laws are
actually two separate laws, one for forces and one for the hydrodynamic
moment acting on the body.

In order to establish the forces acting on an arbitrarily shaped body in a
flow field, consider such a body as shown in Fig. 4.10. A fixed control contour
Cy of arbitrary shape is drawn around the body whose surface is denoted by
C;. The forces acting through the center of gravity, as indicated by X and Y,
are the hydrodynamic forces acting on the body in the x and y directions,
respectively. Then, for the fluid contained between the surfaces Cy and G, it
may be stated that the net external force acting on the positive x direction
must equal the net rate of increase of the x component of the momentum. In
Fig. 4.10, an element of positive slope of the surface Cj is shown decomposed
in the x and y directions. The components of the volume flow that pass
through this element of surface are also indicated. Then the above statement
of newtonian mechanics for the x direction may be expressed by the follow-
ing equation:

-X- pdy:/ p(udy —vdx)u
G G

In writing this equation, it has been noted that there is no transfer of
momentum across the surface C;, since it is a streamline, and that the integral
of the pressure around C; yields the force X, which acts in the positive direc-
tion on the body and hence in the negative direction on the fluid. Also, the
mass efflux across the element of the surface Cy is p(u dy — v dx), so that the
product of this quantity and the x component of velocity, when integrated
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u dy

FIGURE 4.10 Arbitrarily shaped body enclosed by an arbitrary control surface. X,
Y, and M are the drag, lift, and moment acting on the body.

around the surfaces Cj, gives the net increase in the x component of
momentum.

A similar equation may be obtained by applying the same newtonian
law to the y direction. Thus, the statement that the net external force acting in
the positive y direction must equal the net rate of increase of the y component
of the momentum yields the equation

—Y+/ pdx:/ p(udy — vdx)v
Go Co

Solving these two equations for the unknown forces X and Y yields the fol-
lowing pair of integrals:

X = | (—pdy— pu* dy + puv dx)
Go

Y:/ (pdx — puvdy + pv? dx)
Go

The pressure may be eliminated from these equations by use of the Bernoulli
equation,which for the case under consideration, may be written in the form
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p+ip(? +v*) =B

where B is the Bernoulli constant. Then, by eliminating the pressure p, the
expressions for X and Y become

X = p/ [uvdx — 1(u? — ) dy]
G
Y = fp/ [uvdy + %(u2 — %) dx]|
Co

where the fact that [ Bdx = [ Bdy = 0 for any constant B around any
closed contour Cy has been used.

It will now be shown that the quantity X — iY may be related to a
complex integral. Consider the following complex integral involving the
complex velocity W:

i? Wzdz:ig/ (u — iv)* (dx + i dy)
2 /g 2 /e,

= "gfc { [ = v?) dx + 2uv dy] + i{(s? — v*) dy — 2uv dx]}

=p [ {|uvdx —%(u2 —v?) dy| + i[uvaly—i—%(u2 — %) dx| }
Co
=X—-iY

The last equality follows by comparison of the expanded form of the complex
integral with the expressions derived above for the body forces X and Y. That
is, the complex force X — iY may be evaluated from

X—iY:ig W2 dz (4.17a)

where W (z) is the complex velocity for the flow field and Cj is any closed con-
tour thatencloses the body under consideration. It should be noted that X and
Y were defined as the forces acting on the body through its center of gravity.
Equation (4.17a) constitutes one of the two Blasius laws. Normally, in
applyingEq.(4.17a),the contourintegralisevaluated withtheaid ofthe residue
theorem. An application of this procedure will be covered inthe nextsection.
In order to establish the hydrodynamic moment acting on the body,
consider again Fig. 4.10. The quantity M is the moment acting on the body
about its center of gravity. Then, taking clockwise moments as positive,
moment equilibrium of the fluid enclosed between Cy and C; requires that
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—M+/ [pxdx + pydy + p(udy —vdx)uy — p(udy — vdx)vx] = 0
(&)

The first two terms under the integral are the components of the pressure
force multiplied by their respective perpendicular distances from the center
of gravity of the body, which is at the origin of the coordinate system. The
remaining two terms under the integral represent the inertia forces, which
were evaluated in the discussion of the force equations, multiplied by their
respective perpendicular distances from the origin. These inertia forces are
equal in magnitude and opposite in direction to the rate of increase of the
horizontal and vertical momentum components.

Solving the foregoing equation for the hydrodynamic moment M gives

M= | [pxdx +pydy+p(u2ydy+vzxdx—uvydx—uvxdy)]

Co

Substituting p = B — p(u* + v*)/2 from the Bernoulli equation gives

M = p/ [ + v*)(xdx + ydy) + (y dy + v*x dx) — (uvy dx + uvx dy)
Co

where the fact has been used that fCo Bxdx = fCo By dy = 0 for any constant
B and any closed contour Cy. Rearranging the preceding equation shows that
the integral for the moment M may be put in the following form:

M= —B/ (% — ) (xdx — ydy) + 2uv(x dy + y dx)]
Co

2

It will now be shown that the quantity M may be related to the real part
of a complex integral. Consider the real part, designated by Re( ), of the fol-
lowing complex integral:

Re(g/ szdz> =
2 Jq,

(x + iy) (u — iv)*(dx + idy)]

Nl‘a

(% — ) (xdx — ydy) + 2uv(x dy + y dx)]

/ [(u —v )(xdy+ydx)—2uv(xdx+ydy)]}

(% — V) (xdx — ydy) + 2uv(x dy + y dx)]

“f,
b
e

NI“Q
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The last equality follows from a comparison of the real part of the complex
integral with the expression derived for M. That is, the hydrodynamic
moment acting on a body is given by

M:—pRe(/ szdz) (4.17b)
2 a

where W (z) is the complex velocity for the flow field and Cj is any closed
contour which encloses the body. It should be noted thatM is defined as the
hydrodynamic moment acting on the body, and it is positive when it acts in
the clockwise direction. Equation (4.175) is the second of the Blasius laws,
and the contour integral in this equation is usually evaluated by use of the
residue theorem.

4.11 FORCE AND MOMENT ON A CIRCULAR
CYLINDER

It was observed in an earlier section that a force exists on a circular cylinder
that is immersed in a uniform flow and that has a circulation around it. The
magnitude of this force may now be evaluated using the results of the pre-
vious section.

From Eq. (4.14),the complex potential for a circular cylinder of radius a
in a uniform rectilinear flow of magnitude U and having a bound vortex of
magnitude I" in the negative direction is

2 iT
F(z) = U(z+a) +l—logE
z 2n a

Then the complex velocity for this flow field is

a? i’
W(Z) = U(l —Z—2> +E

202 U%a* iUT iUTd® T?
W(z) = U - -
(=) z2 + z4 + nz nz3 4n222
But from the Blasius integral law [Eq. (4.17a)]
x—iv=i | wa
2 Je,

P . . .
=i3 [2n12(res1dues of W~ inside Cy)

where the last equality follows from the residue theorem. It is therefore
required to evaluate the residue of W?(z) at each of the singular points that lie
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inside an arbitrary contour in the fluid enclosing the cylinder. But
inspection of the expression derived for W?2(z) above shows that the only
singularity is at z = 0, corresponding to the doublet and the vortex that are
located there. Furthermore, W?2(z) is in the form of its Laurent series about
z = 0, from which it is seen that the only term of the form b, /z is the fourth
one. Hence, the residue of W?(z) at z = 0 is iUI'/n. Then the value of the

complex force is
X—W:ﬂ{h(ﬁzﬂ
2 m
= —ipUT

Equating the real and imaginary parts of this equation shows that the drag
force X is zero, as was expected, and that the value of the lift force is

Y = pUT (4.18)

Equation (4.18) is known as the Kurta-Joukowski law, and it asserts that, for
flow around a circular cylinder, there will be no lift force on the cylinder if
there is no circulation around it, and if there is a circulation, the value of the
lift force will be given by the product of the magnitude of this circulation
with the free-stream velocity and the density of the fluid. The right-hand side
of Eq. (4.18) is positive, so the negative circulation that acted on the cylinder
led to a positive, that is, upward, lift force.

In order to evaluate the hydrodynamic moment M acting on the cylin-
der, the quantity z/#? must be evaluated. From the expression for W2 (z) that
was established above,

2Wf+mf+wrimw 2

20N 772, _
ZWi(z) = Uz z z3 n nz2 42z

But from the Blasius integral law [Eq. (4.17b)],

M = —ERe</ szdz)
2 Co

P . . 5. .
=— 2Re [2n12(res1dues of zW* inside CO)}

where again the residue theorem has been used. But the quantity zIW?(z), as
evaluated above, is already in the form of its Laurent series about z = 0.
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From this, it is evident that the only singularity is at z = 0, and the residue
there comes from the second and last terms in the expansion. Hence

2
_ P . 22 I

=0

That is, as might be expected, there is no hydrodynamic moment acting on
the cylinder.

4.12 CONFORMALTRANSFORMATIONS

Many complicated flow boundaries may be transformed into regular flow
boundaries, such as the ones already studied, by the technique of conformal
transformations. Before using this fact, it is necessary to study the effect of
conformal transformations on the complex potential, the complex velocity,
sources, sinks, and vortices. In carrying out this study, it will be considered
that some geometric shape in the z plane whose coordinates are x and y is
mapped into some other shape in the { plane whose coordinates are ¢ and 1 by
means of the transformation

{=f(2)

where f is an analytic function. This situation is depicted in Fig. 4.11.

The basis of the complex potential was that both the velocity potential
and the stream function had to satisfy Laplace’s equation. Hence, in order to
establish the effect of a conformal transformation on complex potentials,
their effect on Laplace’s equation should be studied. This will be done by
transforming the second derivatives with respect to x and y into derivatives
with respect to the new coordinates, namely, £ and 7. Then, considering ¢ to
be a function of £ and 5

09 _ 009 onos
Ox  Ox9¢  OxOn

where 90£/0x and O /0x will be known from the equation of the mapping,
{ = f(2). Now in order to transform 9*>¢/0x?, each of the two terms on the
right-hand side of the expression for d¢/0x must be differentiated with
respect to x. Then, using the product rule and considering ¢ to be a function
of ¢ and 1,
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FIGURE 4.11 Original and mapped planes for the mapping { = f(z) where fis an
analytic function.

0 (0:006\ _Pop 02 (0:0% oy o
Ox \Ox 0E)  Ox29¢  Ox Ox 9&2  Ox OEO

and

0 (009\ _Fnds__on (05 F9 ity
Ox\Ox0n) 0Ox20n  Ox \OxOEdn = Ox On?

Hence the expression for 9>¢/0x?, in terms of derivatives with respect to ¢
and 77, becomes

&

ox

o> T ox0x0EOn | Ox29¢ ' Ox2 n

2 292 202 2 2 2
> (e%) a¢+(8n) 09 ,0EM 00 | 6°¢0b  Ondd

ax2~ \ox

The corresponding expression for 9?¢/9y? is

dy

o “ayoyacon oy oc

82¢_<85>282¢ o\ 0% , 95 0n Pp  0*E0p 0o
o~ \oy) o2 ( ) " 2 o

Now since ¢ must satisfy Laplace’s equation in the original plane, that is, the
xy plane, the sum of the above two quantities must be zero. Then
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OEN?  (9EN?| 8% ¢ o\ [(On\*| 0% OED  OEAM\ ¢
QJ*@)L%*KQ*QJaw*4mwﬂMQ%w

PE P\ 0 0%\ 0¢
2422 ZE —+—]—=0
i (ax2 - ayl) e " (ax2 - ayZ) o

This is the equation that has to be satisfied by ¢ (&, 1) in the { plane due to any
transformation { = f(z) corresponding to 9*¢/0x> + 9*¢/y* = 0 in the z
plane. So far, no restrictions have been imposed on the transformation. But if
the transformation is conformal, the mapping function fwill be analytic and
the real and imaginary parts of the new variable { will be harmonic. That is,
O*E)0x* 4+ 92E/Oy* = 0and 9*n/Ox* + 97/ Oy* = 0, so that the terms invol-
ving these quantities in the equation for ¢ will be zero. Also, &(x,y) and
n(x,y) must satisfy the Cauchy-Riemann equations if the mapping function
is analytic. That is,

o:_on
ox Oy
and
9 _ o
dy  Ox
then

ozon  oton\ _ (0z0n _ono:
Oxox  Oydy) \Oxdx Oxox

Using this result, the equation to be satisfied by ¢ becomes
AEN®  [E\?] & a\* (on\*| &
_é + _6 _(f + _’7 + _17 _(f =0
0x dy ¢ 0x Oy an

Using the Cauchy-Riemann equations to eliminate first &, then #, then shows
that the following pair of equations must be satisfied:

m\* (on\’| (P D¢\
Kw) +(3y) ](852 +5‘n2) -0
9D (9E\| (P DP9\
K@x) +(3y) ](852 8172) -0
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But these equations must be satisfied for all analytic mapping functions;
hence it follows that

2o P _

862 + a’,IZ -

That is, Laplace’s equation in the z plane transforms into Laplace’s equation
in the { plane, provided these two planes are related by a conformal trans-
formation. Then, since both ¢ and iy must satisfy Laplace’s equation, it fol-
lows that a complex potential in the z plane is also a valid complex potential
in the { plane, and vice versa. This means that if the solution for some simple
body is known in one of these planes, say the { plane, then the solution for the
more complex body may be obtained by substituting { = f(z) in the complex
potential F({).

Consider now what happens to the complex velocity under a con-
formal transformation. Starting in the z plane with the definition of complex
velocity,

dz

_ d{dF(()
T dz dl
d¢

W(z) = p w()

(4.19)

That is, complex velocities are not, in general, mapped one to one, but they
are proportional to each other, and the proportionality factor depends on the
mapping function.

Finally, the effect of a conformal transformation on the strength of the
basic singularities will be investigated. That is, the strength of transformed
sources, sinks, and vortices will be established. This is most readily done by
first proving the general relation that the integral of the complex velocity
around any closed contour in the flow field equals I" 4 im, where I is the net
strength of any vortices inside the contour and m is the net strength of any
sources and sinks inside the contour.

To prove this relation, consider any closed contour C such as the one
shown in Fig. 4.12. An element d/ of this contour is shown resolved into its
coordinate components. Then the net strength of all the sources inside C
(sinks being considered negative sources) and the net strength of all the vor-
tices inside C will be given by
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FIGURE4.12 Abritrary closed contour C with an element d/ resolved into its coor-
dinate components.

m:/u-ndl:/(udy—vdx)
c c

F:/u-dl:/(udervdy)
c c

Now consider the integral around C of the complex velocity W(z).

/C W(z)dz:/c(u—iv)(dx—i—idy)
:/C(udx+vdy)+i/(udy—vdx)

c
=T +im

where the last equality follows from a comparison with the expressions
derived for m and I'. This general result will now be applied to a single vortex
I'; and a single source m, located in the z plane. Then

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



110 Chapter 4

I'; +im, :/ W(z)dz
C

- g
—LJWQE 2

- [ woa
C
= F; + l'm§

where C; is some closed contour in the z plane and (; is its counterpart in the
mapped plane. I'; and my are the corresponding vortex and source strengths
inthe { plane, and the above result shows that the vortex and source strengths
are the same in the { plane as in the z plane. That is, sources, sinks, and vor-
tices map into sources, sinks, and vortices of the same strength under a con-
formal transformation.

In summary, if the complex potential for the flow around some body is
known in the { plane, then the complex potential for the body corresponding
to the conformal mapping { = f(z) may be obtained by substituting this
transformation into the complex potential F({). Complex velocities, on the
other hand, do not transform one to one but are related by Eq. (4.19). Sources,
sinks, and vortices maintain the same strength under conformal transfor-
mations.

4.13 JOUKOWSKI TRANSFORMATION

One of the most important transformations in the study of fluid mechanics is
the Joukowski transformation. By means of this transformation and the
basic flow solutions already studied, it is possible to obtain solutions for the
flow around ellipses and a family of airfoils. The Joukowski transformation is
of the form

5]

C

2= (+5 (4.20)

where the constant ¢? is usually taken to be real. A general property of
the Joukowski transformation is that for large values of |{|,z — (. That is,
far from the origin the transformation becomes the identity mapping, so
that the complex velocity in the two planes is the same far from the
origin. This means that if a uniform flow of a certain magnitude is
approaching a body in the z plane at some angle of attack, a uniform flow
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of the same magnitude and angle of attack will approach the corresponding
body in the { plane.

From Eq. (4.20),

e _ . <
dc 2

so that there is a singular point in the Joukowski transformation at { = 0.
Since we are normally dealing with the flow around some body, the point
{ = 0isnormally not in the fluid, and so this singularity is of no consequence.
There are also two critical points of the transformation, that is, points at
which dz/d( vanishes, at { = +c. Since smooth curves passing through cri-
tical points of a mapping may become corners in the transformed plane, it is
of interest to investigate the consequence of a smooth curve passing through
the critical points of the Joukowski transformation. To do this, consider an
arbitrary point z and its counterpart { as shown in Fig. 4.13a. Let the point {
be measured by the radii p, and p, and the angles v; and v; relative to the two
critical points { = ¢ and { = —c¢, respectively. But according to the Jou-
kowski transformation the points { = +c¢ map into the points z = £2¢. Then
let the mapping of the point { be measured by the radii R; and R, and the
angles 6, and 0, relative to the two points z = 2c and z = —2c, respectively.
Form Eq. (4.20),

and

(¢
{

z—2¢ ({-c 2
z+2¢c \l+c
Thus, with reference to Fig 4.13a,

R, e pe 2
R2 ei92 = p2 eil‘z

2
— (ﬂ) e2(n—n2)
%)

z—2c=

or

&ei((‘)l—@z)
Ry
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z{x)

(a)
8- 0,
Vi
= plane L plane
- fa Vi
) }A\L/*f\
~ I
(b)

- plane £ plane

FIGURE 4.13 (a) Coordinate system used to investigate the critical points of the
Joukowski transformation, and (b) the coordinate changes corresponding to a
smooth curve passing through { = c.

Equating the modulus and the argument of each side of this equation shows
that

Ry _ (&)2

R, P2

H] — 92 = 2(v1 — v2)

and

This last result shows that if a smooth curve passes through the point { = ¢,
the corresponding curve in the z plane will form a knife-edge or cusp. This
may be verified by considering a smooth curve to pass through the point
{ = ¢. Two points on this curve are shown in Fig. 4.13b, from which it is seen
that v; changes from 37/2 to 7/2 and v, changes from 27 to 0 as the critical
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point is passed. That is, the value of v; — v, changes from —7n/2 to 7/2, giving
a difference of 7. From the result 6; — 6, = 2(v; — v;), it follows that the
corresponding difference in the value of 6; — 6, will be 2x. This yields a
knife-edge or cusp in the z plane as shown in Fig. 4.13b. That is, if a smooth
curve passes through either of the critical points { = +¢, the corresponding
curve in the z plane will contain a knife-edge at the corresponding critical
point z = +2¢.

An example of a smooth curve that passes through both critical points
is a circle centered at the origin of the { plane and whose radius is ¢, the con-
stant that appears in the Joukowski transformation. Then, on this circle
{ = ce”, and the value of z will be given by

z=ce" +ce™"

= 2ccosv

That is, the circle in the { plane maps into the stripy = 0, x = 2ccosvinthe z
plane. It is readily verified that all points that lie outside the circle |{| = ¢
cover the entire z plane. However, the points inside the circle |{| = ¢ also
cover the entire z plane, so that the transformation is double-valued. This is
readily verified by observing that for any value of {, Eq. (4.20) yields the same
value of z for that value of { and also for ¢?/{. It will be noted that ¢?/{ is
simply the image of the point { inside the circle of radius c.

This double-valued property of the Joukowski transformation is trea-
ted by connecting the two points z = +2¢by a branch cut along the x axis and
creating two Riemann sheets. Then the mapping is single-valued if all the
points outside the circle |{| = c are taken to fall on one of these sheets and all
the points inside the circle to fall on the other sheet. In fluid mechanics, dif-
ficulties due to the double-valued behavior do not usually arise because the
points |{| < c usually lie inside some body about which the flow is being stu-
died, so that these points are not in the flow field in the z plane.

4.14 FLOW AROUND ELLIPSES

Applications of the Joukowski transformation will be made in an inverse
sense. That is, the simple geometry of the circle, the flow around which is
known,will be placed in the { plane, and the corresponding body that results
in the z plane will be investigated by use of Eq. (4.20).

Consider, first, the constant c in Eq. (4.20) to be real and positive, and
consider a circle of radius @ > ctobe centered at the origin of the { plane. The
contour in the z plane corresponding to this circle in the { plane may be
identified by substituting { = ae” into Eq. (4.20).

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



114 Chapter 4

2
iv c -
z=ae +—e
a

(a5)cosrifa-5)s
=(a+—)cosv+ila——|sinv
a a

Equating real and imaginary parts of this equation gives

2
X=\|a+—)cosvy

a

2 .
y=\|a——]smv

a

These are the parametric equations of the required curve in the z plane. The
equation of the curve may be obtained by eliminating v by use of the identity
cos?v + sin? v = 1. This gives

() () =

which is the equation of an ellipse whose major semiaxis is of length a + ¢?/a,
aligned along the x axis, and whose minor semiaxis is of length a — ¢?/a.
Then, in order to obtain the complex potential for a uniform flow of magni-
tude Uapproaching this ellipse at an angle of attack ¢, the same flow should
be considered to approach the circular cylinder in the { plane. But it is shown
in Prob. 4.5, Eq. (4.29), that the complex potential for a uniform flow of
magnitude U approaching a circular cylinder of radius a at an angle « to the
reference axis is

iv

2
F(O)=U (Cei“ + %d’@)

Then, by solving Eq. (4.20) for { in terms of z, the complex potential in the z
plane may be obtained. From Eq. (4.20),

Z—z+ct=0
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Since it is known that { — z for large values of z, the positive root must be
chosen. Then the complex potential in the z plane becomes

_ z AR
F(Z) =U E + (E) —C 2/2 N (2/2)2 .

“of 3O e VO e

where the last term has been rationalized. By writing z/2 as z — z/2 in the
first term, two of the terms may be combined as follows:

ze " 4 <j§ei°‘ - ei“> (; - @2@)1 (4.21a)

Equation (4.21a) is the complex potential for a uniform flow of magnitude U
approaching an ellipse whose major semiaxis is a + ¢?>/a and whose minor
semiaxis is @ — ¢?/a at an angle of attack o to the major axis. In this form it
may be seen that the complex potential consists of that for a uniform flow at
an angle o to the reference axis plus a perturbation which is large near the
body but vanishes for large values of z. The flow field generated by the com-
plex potential (4.21a) is shown in Fig. 4.14a together with that for the circular
cylinder in the { plane.

The stagnation points in the { plane are located at { = ae™* and
{ = ae'™*™ that is, at { = +ae™. Then, from Eq. (4.20), the corresponding
points in the z plane are

a2 e

e*l& +

a?

—io
e+
c2

F(z)=U

, 02 ,
z=tae'* £ —e
a

A2 3
:j:(a+—> cosacii(a——) sino
a a

This gives the coordinates of the stagnation points as

o
xzi(a—&——) cos o
a

2
y:t<ac) sino
a
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FIGURE 4.14 (a) Uniform flow approaching a horizontal ellipse at an angle of
attack, and (b) uniform parallel flow approaching a vertical ellipse.

Equation (4.21a) includes two special cases within its range of validity.
For o = 0 it describes a uniform rectilinear flow approaching a horizontally
oriented ellipse, and for « = /2 it describes a uniform vertical flow
approaching the same horizontally oriented ellipse. However, it is of interest
to note that the solution for a uniform rectilinear flow approaching a verti-
cally oriented ellipse may be obtained directly from the Joukowski transfor-
mation with a slight modification. Substitute ¢ = ib, where b is real and
positive, into Eq. (4.20)

2
ot
<

Then, as with the horizontal ellipse, examining the mapping of the circle
{ = ae" gives the parametric equations of the mapped boundary.
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b2

x = (a——> cosv
a
b2

y= <a+—) sinv
a

Thus the equation of the contour in the z plane is

<a —);;2/a>2+ (a +y172/a>2: !

which is the equation of an ellipse whose major semiaxis is a + b?/a which is
aligned along the y axis. Then to obtain uniform rectilinear flow approaching
such an ellipse the same flow should approach the circle in the { plane. Thus
the required complex potential, from Eq. (4.13), is

F(C>U<C+a;)

But the inverted equation of the mapping for which{ — zasz — oois
z z\2
=3 G

Hence the complex potential in the z plane is

_z N2 )
Fz)=U|Z+/(Z) +p

? o) e e (4215)
F(z)=U|z- <1 —|—Z—2) <§_ (%)2+b2>

in which the same rationalization and simplification has been carried out as
before. Again the complex potential is in the form of that for a uniform flow
plus a perturbation which is large near the body and which vanishes at large
distances from the body. Equation (4.216) describes a uniform rectilinear
flow of magnitude Uapproaching a vertically oriented ellipse. The flow field
for this situation is shown in Fig. 4.14b.

270 Madison Avenue, New York, New York 10016
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4.15 KUTTA CONDITION AND THE FLAT-PLATE
AIRFOIL

It was observed in Sec. 4.6 that the potential flow solution for flow around a
sharp edge contained a singularity at the edge itself. This singularity required
an infinite velocity at the point in question, which, of course, is physically
impossible. The question arises, then, as to what the real flow situation would
be in a physical experiment. Depending upon the actual physical configura-
tion, one of two remedial situations will prevail. One possibility is that the
fluid will separate from the solid surface at the knife-edge. The resulting free
streamline configuration would be such that the radius of curvature at the
edge becomes finite rather than being zero. As a consequence, the velocities
there will remain finite. Examples of this type of solution will be discussed
later in this chapter.

A second possibility is that a stagnation point exists at the sharp edge.
For the flow around finite bodies, stagnation points exist, and it seems pos-
sible that a stagnation point could be induced by the flow field to move to the
location of the sharp edge. This possibility leads to the so-called Kutta con-
dition, and it will be discussed below in the context of the flat-plate airfoil—
that is, a flat plate which is at some angle of attack to the free stream.

In the previous section, the flow around an ellipse was obtained from
the Joukowski transformation [Eq. (4.20)] by considering the flow around a
circular cylinder of radius a > ¢ in the { plane. Now, if the constant c is
allowed to approach the magnitude of the radius a, the resulting ellipse in the
z plane degenerates to a flat plate defined by the strip —2a < x < 2a. The
resulting flow field, as defined by Eq. (4.21a), is shown in Fig. 4.15a. Because
of the angle of attack, the stagnation points do not coincide with the leading
and trailing edges of the flat plate. Rather, the upstream stagnation point is
located on the lower surface and the downstream stagnation point is located
on the upper surface at the points x = +£2acosa. Then, around both the
leading and trailing edges, the flow will be that associated with a sharp edge,
which was discussed in Sec. 4.6. In that section it was observed that infinite
velocity components existed at the edge itself, a situation that is physically
impossible to realize.

The difficulty encountered above with the flat-plate airfoil does not
occur at the leading edge of real airfoils because real airfoils have a finite
thickness and so have a finite radius of curvature at the leading edge. How-
ever, the trailing edge of airfoils is usually quite sharp, so that the difficulty of
infinite velocity components still exists there. However, this remaining diffi-
culty would also be overcome if the stagnation point which is near the trailing
edge was actually at the trailing edge. This would be accomplished if a circu-
lation existed around the flat plate and the magnitude of this circulation was
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FIGURE4.15 Flow around a flat plate at shallow angle of attack (a) without circu-
lation and (b) satisfying the Kutta condition.

just the amount required to rotate the rear stagnation point so thatits location
coincides with the trailing edge. This condition is called the Kutta condition,
and it may be restated as follows: For bodies with sharp trailing edges that are
at small angles of attack to the free stream, the flow will adjust itself in such a
way that the rear stagnation point coincides with the trailing edge.

The amount of circulation required to comply with the Kutta condition
may be determined as follows: In the { plane of Fig. 4.15a, the rear stagnation
point is located at the point { = ae’®. But, according to the Kutta condition,
the rear stagnation point should be located at the point z = 2a, which corre-
sponds to the point { = a. That is, the stagnation point on the downstream
face of the circular cylinder in the { plane should be rotated clockwise
through an angle o.. But from Eq. (4.16), the magnitude of the circulation that
will do this is

I' =4nUasina (4.22a)
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in the clockwise direction (that is, negative circulation). Then the complex
potential for the required flow in the { plane is, from Egs. (4.14) and (4.29),

2
F() = U<C€i“ +acei°‘> +i2Ua sina log%

But the equation of the mapping is

z:C-l-%z

and the inverse, which gives { — zasz — oo, is
z z\2
5
- 2

Then the complex potential in the z plane is
a2 eioc

z z\2
2" (§> - z/2+1/(z/2)* — @

(E)] w220

The flow field corresponding to this complex potential is shown in Fig. 4.15b.
Although the flow at the trailing edge is now regular, the singularity at the
leading edge still exists. In an actual flow configuration the fluid would
separate at the leading edge and reattach again on the top side of the airfoil.
The streamline iy = 0 would then correspond to a finite curvature, and the
velocity components would remain finite at the leading edge.

The lift force generated by the flat-plate airfoil may be calculated from
the Kutta-Joukowski law. Then, denoting the lift force by Yand using the
value of the circulation given by Eq. (4.22a),

F(z)=U e

+i2asinalog

Y = 4npUasina

Itis usual to express lift forces in terms of the dimensionless lift coefficient Cy,
which is defined as follows:

Y
CL=+——
t U2
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where [ is the length or chord of the airfoil, which, for the flat plate under
consideration, equals 4a. Then the value of the lift coefficient for the flat-
plate airfoil is

Cp =2msino (4.22¢)

This result shows that the lift coefficient for the flat-plate airfoil increases
with angle of attack, and for small values of o, for which sina ~ «, the lift
coefficient is proportional to the angle of attack with a constant of pro-
portionality of 27. This result is very close to experimental observations, and
so the Kutta condition appears to be well justified. If the Kutta condition
were not valid, there would be no circulation around the flat plate, and con-
sequently no lift would be generated. This would mean that kites would not
be able to fly.

416 SYMMETRICAL JOUKOWSKI AIRFOIL

A family of airfoils may be obtained in the z plane by considering the Jou-
kowski transformation in conjunction with a series of circles in the { plane
whose centers are slightly displaced from the origin. These airfoils are
known as the Joukowski family of airfoils.

Consider, first, the case where the center of the circle in the { plane is
displaced from the origin along the real axis. It must then be decided in which
direction the center should be moved and what radius should be employed,
relative to the Joukowski constant ¢. From previous sections it is known that
if the circumference of the circle passes through either of the two critical
points of the Joukowski transformation, { = +¢, then a sharp edge or cusp is
obtained in the z plane. Then, if the leading edge of the airfoil is to have a
finite radius of curvature and if there should be no singularities in the flow
field itself; it follows that the point { = —c should be inside the circle in the {
plane. Also, since the trailing edge of the airfoil should be sharp as opposed
to being blunt, the circumference of the circle should pass through the point
{ = c¢. These conditions will be satisfied by taking the center of the circle to be
at { = —m, where m is real, and by choosing the radius of the circle to be
¢ + m. Such a configuration is shown in Fig. 4.16a. The radius a is given by

a=c+m=c(l+¢)

where the parameter ¢ = m/c will be assumed to be small compared with
unity. When ¢ = 0, the flat-plate airfoil is recovered, so that for ¢ < 1 it may
be anticipated that a thin airfoil will be obtained. The significance of the
restriction ¢ < 1 will be that all the equations may be linearized in ¢, which
will permit a closed-form solution for the equation of the airfoil surface in
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(a) - plane £ plane
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FIGURE 4.16 The symmetrical Joukowski airfoil: (a) the mapping planes and (b)
uniform flow past the airfoil.

the z plane. Also shown in Fig. 4.16a is the airfoil that is obtained in the z
plane and its principal parameters, the chord /and the maximum thickness z.
It is now required to relate these parameters to the free parameters a and m
and to establish the equation of the airfoil surface in the z plane.

To establish the chord of the airfoil in terms of the chosen radius a and
offset m, it is only necessary to find the mapping of the points { = ¢ and
{ = —(c+ 2m), since these points correspond to the trailing and leading
edges, respectively. Using the Joukowski transformation, the mapping of the
point { = ¢ is z = 2¢. Also, the mapping of the point { = —(c+2m) =
—c(1 +2¢)is

c
1+ 2¢

z=—c(1+2¢) —
Since it was decided to linearize all quantities in &, the value of z will be
obtained to the first order in ¢ only.
z=—c(1 +2¢) — [l —2¢+ O(e?)]
= —2c+ 0(s%)
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That is, to the first order in ¢ the lending edge of the airfoil is located at
z = —2¢, so that the chord length is

I =4c

This means that, correct to the first order in ¢, the length of the airfoil is
unchanged by the shifting of the center of the circle in the { plane.

In order to determine the maximum thickness ¢, the equation of the
airfoil surface must be obtained. This may be done by inserting the equation
of the surface in the { plane into the Joukowski transformation. But in the {
plane the polar radius R to the circumference of the circle is a function of the
angle v. In order to establish this dependence, the cosine rule will be applied
to the triangle defined by the radius a, the coordinate R, and the real { axis, as
shown in Fig. 4.16a. Thus

@ = R* + m* — 2Rmcos(n — v)
= R?> + m* 4+ 2Rmcosv

But a = ¢ + m, so that the equation above may be written in the form
2
m

(c+m)2R2(1+R2

+2%cosv)

Now since R > ¢, it follows that m/R < m/cso that, to first orderine = m/c,
the term m? / R> may be neglected. The equation for R then becomes

1/2
c+m :R(l +2ﬂcosv)
R
= R{l +%cosv+ 0(32)}

Thus to the first order in ¢, this relation becomes
c(l+¢)=R+mcosv
R=c[1+¢(1—cosv)]

This is the required equation that gives the variation of the radius R with the
angle v for points on the circumference of the circle in the { plane. Then, in
order to determine the equation of the corresponding profile in the z plane,
this result should be substituted into the Joukowski transformation
[Eq. (4.20)]. Thus points on the surface of the airfoil will be defined by

—iv

ce

_ . _ iv
z=c[l +¢(1 —cosv)]e +—1+8(1—cosv)
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This equation may also be linearized in ¢ as follows:
z=¢[l +&(1 —cosv)]e” + ¢[1 —&(1 — cosv) + O(e?)]e™™
= c[2cosv + i2¢(1 — cosv) sinv + O(¢?)]
Then, by equating real and imaginary parts of this equation, the parametric
equations of the airfoil are, to first order in ¢,
x =2ccosv
y=2ce(l —cosv)sinv

Using the first of these equations to eliminate v from the second equation
gives the following equation for the airfoil profile:

=201 )i G

The location of the maximum thickness may now be obtained, and this
is most readily done by using the parametric equation for the coordinate y as
derived above. Thus setting dy/dv = 0 fora maximum in y gives the following
equation for the value of v at the maximum thickness:

sin?v + (1 — cosv) cosv =0

This relation reduces to

cos2v = cosv

which is satisfied by v = 0,v = 27/3, and v = 4x/3. This solution v = 0 cor-
responds to the trailing edge and so is the minimum thickness. The solu-
tions v =2n/3 and v = 47/3 give the maximum thickness, and for these
values of v the coordinates of the airfoil surface are

X = —C

3V3
y= j:—\z/—cs

The maximum thickness 7 will be twice the positive value of y, so that the
thickness ratio #// of the airfoil will be

t_3V3,
[ 4
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That is, the thickness-to-chord ratio of the airfoil is proportional to ¢, which
is the ratio of the offset of the center of the circle in the { plane to the radius ¢
of the critical points of the transformation. Since the thickness ratio of the
airfoil is a parameter that may be thought of as being specified, it is useful to
eliminate ¢ in terms of this parameter. Hence

4 ¢ t
e=—+-=0.77-
3V3l1 [
Then the equation of the airfoil surface may be written in the form
Y _ _x _ (%
> = i0.385(1 2 1) 1 (2 l) (4.23a)

where the maximum value of y/¢ will be 0.5 and the minimum value will be
—0.5, both of which occuratx = —c.

The magnitude of the circulation required to satisfy the Kutta condi-
tion is, from Eq. (4.16), 4nUasina, where a = ¢ + mand m = ce = 0.771¢/l.
Thus the required amount of circulation is

t
r= nUl(l +0.777) sina (4.23)
where chasbeen replaced by //4. In this form the required circulation may be
evaluated for the given free-stream velocity, angle of attack, and the chord
and thickness of the airfoil. Using the Kutta-Joukowski law [Eq. (4.18)], the
lift force acting on the airfoil may be evaluated as

t
Fp = npU21(1 n 0.777) sina

Then the lift coefficient for the symmetrical Joukowski airfoil is
AN
C = 2n(1 +0.77 7) sina (4.23¢)

It will be noticed that this result reduces to Eq. (4.22¢) for the flat-plate air-
foil as + — 0. This indicates that the effect of thickness of an airfoil is to
increase the lift coefficient. However, this fact cannot be used to produce
high lift coefficients through thick airfoils, since the flow tends to separate
from bluff bodies much more readily than it does from streamlined bodies.
This separation of the flow is a viscous effect, and it will be discussed in the
next part of the book. In the meantime, it is sufficient to say that separation of
the flow results in a low-pressure wake that destroys the lift. The same result
may occur for slender bodies, such as airfoils, that are at large angles of
attack. In this context the separation is usually referred to as stall.
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The center of the circle in the { plane is located at { = —m rather than
{ = 0. Thus the complex potential for the flow in the { plane may be obtained
from Eq. (4.29) by replacing { by { + m and adding circulation. The required
complex potential then becomes

2 .
7\ —io a io E C +m
FO)=U|((+m)e +C+me } +2n10g<—a > (4.23d)
where
/ tc
and
tc
m=0.77—

/

The magnitude of the circulation I' is given by Eq. (4.23b), and in the
Joukowski transformation the parameter ¢ equals //4. The flow field corres-
ponding to this complex potential is shown in Fig. 4.16b.

4.17 CIRCULAR-ARC AIRFOIL

It was shown in the two previous sections that, using the Joukowski trans-
formation, a circle of radius ¢ centered at the origin of the { plane produced a
flat-plate airfoil while a slightly larger circle centered a small distance along
the real axis from the origin produced a thin symmetrical airfoil. It will now
be shown that a circle whose radius is slightly larger than ¢ and whose center
is located on the imaginary axis of the { plane produces an airfoil that has no
thickness but has curvature of camber.

Referring to Fig. 4.17a, consider a circle of radius a > c in the { plane
such that the center of the circle is located a distance m along the positive
imaginary axis. Since the trailing edge of the airfoil should be sharp, the
circle should pass through the critical point { = ¢ as before. Then, in this
case, the circle will also pass through the other critical point, { = —c¢.

The equation of the airfoil in the z plane may be obtained by substitut-
ing { = Re" into the Joukowski transformation, where, on the circumference
of the circle in the { plane, Ris a function of v. This substitution gives

. c2 .
7z — Re" + hilpe ]
R

3 A3
= <R+R> cosv+i(RR> sinv
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(b) z plane C planc

FIGURE 4.17 The circular-arc airfoil; (a) the mapping planes and (b) uniform flow
past the airfoil.

Thus the parametric equations of the airfoil profile are

2
X = <R+E) CcosV
2
c
= R—— i
y < R) sin v

The variable R may be eliminated from these equations as follows:

A\ 2 2\ 2
x%sin?v — % cos? v (R + §> sin® vcos? v — (R — §> sin® v cos? v

= 4¢? sin® v cos? v

This is the equation of the airfoil surface in the z plane, but it still contains the
variable v. This variable may be eliminated by applying the cosine rule to the
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triangle defined by the radius a, the coordinate R, and the imaginary { axis.
From this it follows that

@ =R*+m? —2Rmcos(g—v)
A +m? =R+ m* —2Rmsinv

where the fact that a> = ¢? + m? has been used. Solving this equation for

sin v, it follows that
RZ _ 6‘2

2Rm

siny =

But it was shown above that y = [(R* — ¢?) sinv]/R; hence it follows that

siny = y.
2msiny
or
sin?y = R
2m
and so
cos’v=1-— P
2m

Using these results to eliminate v, the equation of the airfoil surface

becomes
R4 2 y )
A 1- 2
o 2m Y ( 2m

Collecting like terms, this equation may be put in the form

2
x?+)? —|—2(c——m>y: 4¢*
m
Completing the square in y shows that the equation of the airfoil surface is

<o ol oo -

which is the equation of a circle. It should be noted that so far no approx-
imations have been made. But to be consistent with the analysis in the
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previous section and to permit superposition in the next section, the para-
meter ¢ = m/c will again be assumed to be small compared with unity. Then,
linearizing in ¢, the equation of the airfoil surface becomes

2\° c?
x4 <y+—) :c2<4+—2>
m m

That is, correct to the first order in ¢, the center of the circle in the z plane is
located aty = —c?/m and the radius of the circle is ¢\/4 + ¢2/m?.

The characteristic parameters of the airfoil are the chord / and
the camber height 4, and these are shown in Fig. 4.17a. Since the equation of
the airfoil has now been established, it is possible to relate these parameters
to those in the { plane, namely, ¢ and m. Since the ends of the circular-
arc airfoil lie on the real axis y = 0, the foregoing equation of the airfoil
shows that the corresponding values of x are +2¢. That is, the chord of the
airfoil is

I =4c

This is the same chord length as for the two previous airfoils.

The simplest way of establishing the camber / of the airfoil is to use the
fact that, in view of the result that the center of the circular arcis atx = 0, the
maximum value of y will occur when x = 0. But the parametric equation
x = (R+ ¢*/R) cos v shows that this corresponds to v = 7/2. Then the other
parametric equation, namely, y = 2m sin® v, shows that the maximum value
of yis 2m. That s,

h=2m

Using the foregoing results, the {-plane parameters ¢ and m may be
replaced by the z-plane parameters //4 and h/2, respectively. Then the
equation of the airfoil surface in the z plane may be written in the form

s P\* P I

In order to satisfy the Kutta condition, the rear stagnation point must
rotate through an angle greater than o, the angle of the free stream. By rotat-
ing through the angle o, the rear stagnation point will be located on the sur-
face of the circle in the { plane at a point which is in the same horizontal plane
as the center of the circle. But the center of the circle is located a distance m
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above the real { axis. Thus, in order to be located at the point { = ¢, the rear
stagnation point must rotate through a further angle given by

1 1

m _
—=tan ¢
c

tan™
= ¢+ 0(s%)

That is, in order to comply with the Kutta condition, the rear stagnation
point must rotate through the angle o« + m/c,to the first order in ¢. Then, from
Eq. (4.16), the required circulation is

I'= 4nUasin(o¢ +%)

but a = V¢ + m? so that, to first order in ¢, a = c. Hence

I = 4nchin(oc +T)
c

Then, from the Kutta-Joukowski law, the lift force is
F; = 4npU?csin (oc + ﬁ)
c

and the corresponding lift coefficient is

C = 8n§sin(o¢ +%)

Using again the fact that ¢ = //4 and m = h/2, the lift coefficient becomes

Cp =2nsin (05 + ZIh) (4.24b)

Comparing this result with Eq. (4.22¢), the corresponding result for the flat
plate, shows that the effect of positive camber in an airfoil is to increase its lift
coefficient. As a consequence of this increased lift coefficient a nonzero lift
exists at zero angle of attack.

Since the center of the circle inthe { plane is at { = imratherthan{ = 0,
the complex potential in the { plane may be obtained by replacing { by { — im
in Eq. (4.29) and adding circulation. Thus the required complex potential is

2 . .
PO = Ul impet s e g () a2
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where
1
7%
and
_h
)

The magnitude of the circulation I'" is given by
I'= nUlsin(oc + ?)

and the parameter c¢ in the Joukowski transformation is //4. The flow field
corresponding to this complex potential is shown in Fig. 4.17b. As was the
case with the flat plate airfoil, this flow field has a singularity at the leading
edge. This singularity would not exist for airfoils of finite nose radius and
would not exist even for sharp leading edges because of separation of the flow
at the nose. In spite of this local inaccuracy, the results derived above are
representative of the flow around thin cambered airfoils.

4.18 JOUKOWSKI AIRFOIL

The results of the two previous sections suggest that a cambered airfoil of
finite thickness may be obtained by considering the Joukowski transforma-
tion in conjunction with a circle in the { plane whose center is in the second
quadrant. Such a configuration is shown in Fig. 4.18a in which the center of
the circle is displaced a distance m from the origin at an angle 6 from the
reference axis. In order that the trailing edge of the corresponding airfoil
may be sharp, the circumference of the circle passes through the critical
point { = ¢. The principal parameters of the airfoil in the z plane are also
shown in Fig. 4.18a. These are the chord /, the maximum thickness 7, and the
maximum camber of the centerline A.

From the previous two sections it follows that, to the first order in ¢, the
centerline of the airfoil will be a circular arc whose center is on the y axis and
the airfoil will be symmetrical about its centerline. Then the equation of the
upper and lower surfaces of the airfoil may be obtained from the equation for
the circular-arc centerline plus or minus, respectively, and thickness effect.
Hence from Egs. (4.23a) and (4.24a) the airfoil profile will be given by

2 2 2 x x\ 2
— _ ) 2 _n= _ -
y \/4 (1 +16h2> - k0385 (1-27) 1= (23) (4250)
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FIGURE 4.18 The Joukowski airfoil: (a) the mapping planes and (b) uniform flow

past

the airfoil.

where the plus defines the upper surface and the minus defines the lower
surface of the so-called Joukowski airfoil.

It was observed that the effect of thickness on an airfoil was to increase

its lift by an amount 0.77¢// and that the effect of camber was to increase the
effective angle of attack to o + 2/1/1. The present airfoil has both these effects,
so that, from Eqs. (4.23¢) and (4.24b), the lift coefficient for the Joukowski
airfoil will be

C = 2n(1 n 0.775) sin (oc + Zlh) (4.25b)

The complex potential in the { plane is

{—med| 2

2 o . io
F) = U{(C — me)e ™ + L} + %log <_Tme) (4.25¢)
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where mcosd = —0.77(tc/l),msind = h/2, a=1/4+0.77(tc/l). These
results follow from the observation that —m cos ¢ replaces m as used in the
symmetrical Joukowski airfoil and m sin 6 replaces m as used in the circular-
arc airfoil. The magnitude of the circulation I" will include both the thickness
and camber effects, and so it follows that

T =2UI(1+0.777) sin <a + ﬁ>
/ /

The flow field corresponding to the foregoing complex potential is
shown in Fig. 4.18b. It should be remembered that there is a limit to the
amount of thickness and camber which may be introduced if the flow field is
to remain as shown. As the thickness and/or camber of the airfoil increases,
the body departs more and more from a streamlined airfoil and approaches a
bluff body. It was pointed out earlier that a consequence of this would be
separation of the flow, which destroys the lift force and creates the so-called
stall condition.

4.19 SCHWARZ-CHRISTOFFEL
TRANSFORMATION

Another conformal transformation of prime interest in the study of potential
flows in the Schwarz-Christoffel transformation. This transformation is
reviewed briefly in Appendix D, from which it will be seen that the mapping
function is the solution to the following differential equation:

e KA (S L (G (L

¢

where a, b, ¢, etc., are the locations in the { plane of the vertices of a polygon in
the z plane that subtend the internal angles o, /3,7, etc. The quantity K is an
arbitrary constant, and normally three of the quantities a, b, ¢, etc., may be
chosen arbitrarily. The manner in which this transformation is used will be
illustrated through its application to a simple problem whose solution may
be deduced from previously established results. This will permit a direct and
independent check on the solution obtained through use of the Schwarz-
Christoffel transformation.

The problem to be considered is that of obtaining the complex poten-
tial for the flow around a flat plate of finite length oriented such that it is per-
pendicular to the oncoming flow; that is, the angle of attack is 90°. The
solution to this problem may be deduced from that of a vertically oriented
ellipse, which was treated in Sec. 4.14, by a limiting procedure. The length of

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



134 Chapter 4

the plate to be so obtained is 4a; such a plate will be considered here. The
stagnation streamline will be a line of symmetry for this problem, so that
only one half of the plate, say the top half, need be considered. The stagnation
streamline y = 0is shown in Fig. 4.19a for the top half of the vertical plate of
length 4a. The plate itself is considered to be made up of the line 4 BC,which
folds back on itself. The location of the vertices 4, B, and C in the z plane are
shown as the points a, b, and ¢, respectively, on the { plane. The points chosen
for a, b, and care —1, 0, and 1, respectively.

The equation of the Schwarz-Christoffel mapping function is the
solution to

ey (S R (SN D

where the fact that o = 7/2, f = 27, and y = n/2, as indicated in Fig. 4.19a,
has been used. That is, the equation of the mapping function is

A C u b I3

{2) = plane £ plune

=

R

5

|

(t

_

W~

FIGURE 4.19 Flow around a vertical flat plate assuming that the flow does not
separate: (a) Schwarz-Christoffel mapping planes and (b) the flow field.

%
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g £
di 2 -1

or
z=K\/*-1+D

where D is a constant of integration that is, in general, complex. The con-
stants K and D will now be evaluated such that the points 4, B, C and a, b, ¢
correspond to each other. The conditions to be satisfied are

1. When({=1,z=0.
2. When({=-1,z=0.
3. When ({ =0,z =1i2a.

The first two conditions are satisfied by taking D = 0, while the third
condition is satisfied by choosing K = 2a. Then the required mapping func-

tion is
z =2a\/ 21

The complex potential in the { plane is that of a uniform rectilinear
flow, since the streamline yy = 0 has been stretched out along the real { axis.
To find the magnitude of the uniform velocity, it is observed from the
mapping function that as { — oo, z— 2al. Then, from Eq. (4.19),
W({) — 2aW (z), so that for a flow of magnitude U in the z plane, the
magnitude in the { plane should be 2aU. Thus the required complex
potential is

F({) =2aU(

But from the mapping function

e

Inorderthat{ — +ooasz — 400, so that the direction of the flow is correct,
the positive root must be chosen. Hence the required inverse of the mapping
function is

C:i\/zz+4a2

2a
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The complex potential in the z plane then becomes
F(z)=Uvz22 +4a?

This result may be checked by using the result for the uniform flow of magni-
tude U past an ellipse of major semiaxis (a + b*/a) and minor semiaxis
(a — b?/a),thelatter being along the x axis. The resulting complex potential is
given by Eq. (4.21), which was obtained through use of the Joukowski trans-
formation. As b — a in this result, the ellipse degenerates to a vertical flat
plate of length 4a. Substituting b = a in the complex potential confirms the
result derived above by use of the Schwarz-Christoffel transformation. The
corresponding flow field is shown in Fig. 4.19b. From this figure, or from
inspection of the complex potential, it will be seen that infinite velocities, of
the type discussed in Sec. 4.6, exist at y = +2a. Clearly the Kutta condition
cannot be applied in such a case, and so the fluid will separate from the two
edges of the plate. That is, the complex potential derived here does not repre-
sent the actual flow field accurately because the fluid does not remain in con-
tact with the plate as was implicitly assumed here. A more representative flow
configuration for this problem will be analyzed at the end of this chapter.

4.20 SOURCE IN A CHANNEL

The Schwarz-Christoffel transformation may be used to solve a sequence of
problems related to that of the flow generated by a line source located in a
two-dimensional channel. Then consider a channel of width 2/ and of infinite
length in which a source is located midway between the channel walls. If the
origin of the coordinate system in the z plane is taken to be at the location of
the source, it is clear that the resulting flow field will be symmetrical about
both the x axis and the y axis. Then the entire x axis and the portion
—I <y < [ofthe y axis will be streamlines, so that only the first quadrant of
the flow field need be considered; the remainder will follow from symmetry.
Figure 4.20a shows the first quadrant of the flow field in the z plane in which
the source is located at z = 0.

Considering the region 0 < x,0 <y </, to be bounded by the polygon
that is to be mapped, the vertices A and B will be chosen to correspond to the
points { = —1 and { = 1, as shown in Fig. 4.20a. The interior angles corre-
sponding to the vertices 4 and Bin the z plane are /2, so that the differential
equation of the mapping is

dz 120 gy-1)2

—dC—K(C-H) (-1
K

IV
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(a)

trs oA

N )

(d)

FIGURE 4.20 (a) Mapping planes for a source in a channel, (b) the flow field for a
full or semi-infinite channel, (c) the flow field for the source at the wall, and (d) an
infinite array of sources.

hence

z=Kcosh™'(+D

where D is a constant of integration. The constants K and D will now be
evaluated such that the point 4 corresponds to the point a and the point B
corresponds to the point b. The required conditions are

1. When{=1,z=0.
2. When({=-1,z=l.

The first condition is satisfied by setting D = 0, while the second con-
dition is satisfied for K = / /7. Then the required mapping function is
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l
z=—cosh!¢
T

which has the inverse

(= cosh%

The flow field in the { plane now corresponds to a source located at the point
{ = 1. Hence the complex potential in the { plane is

F({) = 5-log({ — 1)

so that the corresponding complex potential in the z plane is

F(z) :%log(cosh ?— l)

This result may be simplified slightly by using the identity
cosh (X +Y) —cosh (X —Y) =2sinh XsinhY
for X = Y = nz/(2]). Hence

cosh? — 1 = 2sinh? g—j

Thus the complex potential may be written in the alternative form

F(z) = 2_n71110g (2 sinh? %)

= %log(sinh %) +

m

log?2
2n 8

But the constant term may be neglected, since it does not affect the velocity
components. That is, the complex potential may be taken to be
m

F(z) = - log(sinh Z—;) (4.26)

Equation (4.26) is the complex potential for the flow configurations shown in
Fig. 4.20b, c, and d. Figure 4.20b shows the flow field due to a source that is
located on the centerline of an infinitely long channel or at the center of the
end of a semi-infinite channel. Figure 4.20c shows the flow field due to a
source that is located on one wall of an infinite channel or at a corner of a
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semi-infinite channel. The foregoing flow configurations are clearly related
to the largest flow field, shown in Fig. 4.20b, by symmetry. The total quantity
of fluid leaving the source is 4/U, so that the source strength m in Eq. (4.26)
should be 4/U in order that the channel velocity in the four configurations
shown in Fig. 4.20b and c will be U.

Figure 4.20d depicts an infinite array of line sources spaced a distance
2/apart. The horizontal lines that pass midway between each pair of sources
will obviously be streamlines for such an array of sources. It follows that the
case of a source located in a horizontal channel may be thought of as only
one component of an infinite number of such channels stacked on top of
each other in the vertical direction. Mathematically, the fact that Eq. (4.26)
represents an infinite number of sources spread in the y direction follows
from the fact that the hyperbolic sine function repeats itself for imaginary
values of its argument.

4.21 FLOW THROUGH AN APERTURE

One of the most impressive applications of the Schwarz-Christoffel trans-
formation, in the field of fluid mechanics, is in the study of streaming motions
that involve free streamlines. It is not usually known where these free
streamlines lie, and this information must come out of the solution. The key
to solving such problems is the so-called hodograph plane, which uses the
fact that along such free streamlines the pressure is constant. Two examples
will be covered in this chapter, this first example being an application to the
flow through a two-dimensional slit or aperture.

Figure 4.21a shows, in the z plane, a horizontal plate with an opening in
it. The plate contains a semi-infinite expanse of fluid above it, and this fluid is
draining through the aperture that is defined by the section BB’ of the x axis.
At the corners B and B’ the flow will locally behave like that for the flow
around a sharp edge, which was discussed in Sec. 4.6. It was pointed out in
that section that if the fluid remained in contact with the solid boundary,
infinite velocity components would result at the edge itself. Since this cannot
be so physically, the fluid will not remain in contact with the solid boundary
but will separate at the edge. In the case under discussion the bounding
streamlines along the horizontal plate will curve toward the vertical plane of
symmetry, as shown in Fig. 4.21a. The magnitude of the velocity in the
resulting jet will reach some uniform magnitude U downstream of all edge
effects. The principal streamlines in the flow field have been labeled
for identification purposes. These are the bounding streamlines on the right,
identified by the points 4, B, and C, the bounding streamlines on the left,
identified by the points A’, B', and C’, and the central streamline IT’. The free
streamlines are BCand B'C'.
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FIGURE 4.21 (a) Mapping planes for flow through a slit, and (b) geometry of one

of the free bounding streamlines.
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The first transformation will be to the hodograph plane, which will be
designated the { plane here. The transformation will be taken to be

*UdZ*U* U o0
S dFE W V12

That is, the { plane is defined by the nondimensional reciprocal of the com-
plex velocity and the last equality follows from the fact that W = u — iv =
Vu? + 12e~, The significance of this transformation is that the free stream-
lines, whose positions are unknown, are mapped onto the unit circle in the {
plane, as will now be shown. In so doing, it should be noted that, by the fore-
going definition, 0is the angle subtended by the velocity vector in the z plane.

Along the free streamlines BC and B'C’ the pressure will be constant,
typically atmospheric pressure, so that, from Bernoulli’s equation, the quan-
tity u> + v? will be constant. The value of this constant may be determined by
noting that away from the edge effects, the velocity in the jet is U. Hence the
value of u?> + 1? along the free streamlines is U2. Then, along the free stream-
lines, { = ¢, which is the equation of the unit circle in the { plane. To find the
portion of this unit circle that represents the free streamlines, it is observed
that along the streamline A’ B’ the angle 6 of the velocity vectoris 0 or 27, while
the value of 6 along 4B is n. Also, along the streamline I’ the angle 0 of the
velocity vector is 37/2. From these observations it is evident that the lower
halfof the unit circle in the { plane represents the streamlines BC and B'C’, as
shown in Fig. 4.21a. The other principal streamlines may be identified as fol-
lows: Along A’ B’ the value of 0 is 0 or 27, while #? + v? varies from 0 at 4’ to U?
at B'; hence |(| varies from infinity at 4’ to unity at B'. Likewise, along 4B the
value of |(| varies from infinity at 4 to unity at B, with the value of 0 being 7.
Finally, along the streamline /I’ the value of Ois 37 /2,while u?> + v varies from
zeroat I['to U? at I', making |{| infinity at  and unity at I’. This establishes the
flow configuration shown in the { plane of Fig. 4.21a. Since the flow is toward
the point{ = —i,which isidentified by C, C’,and I', there is a fluid sink there.

Since the principal streamlines in the { plane are cither radial lines or
the unit circle, the flow pattern may be mapped into a plane configuration by
means of the logarithmic transformation. Then a second mapping is pro-
posed to the ¢’ plane, where (' is defined by

¢ (4.27a)

{' =log! (4.27b)

Ifa point in the { plane is represented by its polar coordinates R and 0, where
R=U/(u?+v?)"? then{ = Re®, so that

{' =log{ =logR + i
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Thus the radial lines in the { plane become the horizontal lines defined by
¢’ =logR + i x constant in the {’ plane, while the unit circle R = 1 becomes
the vertical line {’ = i0. Noting that the angle 0 is the angle subtended by the
velocity vector in the z plane, it follows that the value of 6 along 4’ B is 0 or 27.
This gives the flow configuration shown in Fig. 4.21a in the {’ plane, which
corresponds to the flow in a semi-infinite channel due to a sink located at the
center of the end of the channel. But it was seen in the previous section that
such a configuration could be mapped into that of a simple source. Using the
results of the previous section, a simple source flow will result in the { plane
through the mapping

{" = cosh({' — in)

ie.,

{" = —cosh{ (4.27¢)

Here the rectangle ABCC’'B’A’ has been taken as the equivalent of the half
channel of width / that was considered in the previous section. Then the
quantity /that appeared in the transformation is 7w in this case, and in order to
bring the corner B to the origin in the ' plane, the quantity {’ — in rather than
{'is the appropriate variable.

The flow field in the (" plane is shown in Fig. 4.21a. The complex
potential in this plane will be that for a simple sink located at {” = 0, so that

F(") = - %log '+ K (4.27d)

where the constant K has been added to permit the streamline iy = 0 and the
equipotential line ¢ = 0 to correspond to a chosen streamline and equipo-
tential line, respectively. Referring to Fig. 4.21b, it will now be specified that
the streamline y = 0 be the streamline /I’ and that the equipotential line
¢ = 0 passes through the points B’ and B. Then, using the property of the
stream function that the difference of the values of i/ between two stream-
lines equals the volume of fluid flowing between these two streamlines, the
value of i along A'B'C’, which will be denoted by ;5 -+, may be identified.
Considering the flow between the streamlines IT' and A'B'C', it follows that

0 - !//A/B/C/ - CclU

where C, is the contraction coefficient of the jet. Similarly, if\/ , 5 is the value
of Yy along the streamline ABC, it follows by considering the flow between the
streamlines ABC and II’ that
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Thatis,
WABC =ClU
and

wA’B’C/ == _CclU

Then, at the point, B', » = 0andy = —C.[U. Hence the value of the complex
potential there is 0 — iC./U. Applying this result to Eq. (4.27d) and noting
that {"” = —1 at the point B’ gives

m
0—iCIU = ——1log(—1 K
i > og(—1) +
~iCdU = ~i% + K
Likewise at the point B the complex potential is 0 + iC./U and the value of {
is unity; hence

0+iCIU = —Mlogl + K
2n

or
iC.lU =K

These two equations show that K = iC./U and m = 4C.lU, so that the com-

plex potential (4.27d) becomes

F(") = - ZC;IUlogC” +iCIU

The corresponding complex potential in the z plane may be obtained by use
of the transformations (4.27a), (4.27b), and (4.27¢). This gives

F(z) = —ZC;lUlog{cosh {log<UjIZ:> - in} } +iClU (4.27¢)

This result is an implicit expression for F(z) rather than an explicit expres-
sion, since dF /dz appears inside the expression for F(z). However, the flow
problem has, in principle, been solved, and it is possible to obtain useful
information from the result. The quantity that is of prime interest in this
problem is the value of the contraction coefficient C,, so this value will be
determined below.
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In order to evaluate the contraction coefficient C,, the equation of the
free streamline B'C’ will be established. From this result the value of x at the
point C’ should be numerically equal to the half-jet dimension C,./. This will
enable the quantity C, to be evaluated. The equation of the free streamline
B'C'is most readily established in terms of a coordinate s whose value is zero
at the point B’ and whose magnitude increases along B'C’. Then, considering
a small element of a curve, such as the streamline B'C’, whose slope is posi-
tive, it follows that

dx
—_ = 0
ds Cos

x:xo—i—/ cosOds
0

where the constant xy has been added to permit the condition x = —/ when
s = 0 to be applied. The variation of ds with 0 is now required and, owing to
the implicit nature of the mapping function (4.27a), this variation must be
obtained by indirect methods as follows: The preceding expression for the
lateral displacement x of the jet surface may be written

4 11
ds d{
X = X0 +An COS@WwdH

where the quantities ds/d{" and d("/d0 must be expressed in terms of 0
before the integration may be performed. The value of d{" /d0 on B'C' will be
obtained from the equations of the mappings, while ds/d{" will be obtained
from the complex potential F({"). Considering first the value of ds/d{", it
may be stated that, on the streamline B'C’

U dz
1:c|:1W\ - ]Uﬁ
dz dC”

- ’Ud—a'/ﬁ\

But from Eq. (4.27d) withm =4C_IU,

d_F B _2CclUl
- T O
_ ﬂ T ¢
d{"2CIU
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OnB'C',{" < 0,so that
2Gd1

T é///

i@
d(” -

Now on the streamline B'C’ the value of dz may be represented by —ds e,
where dsis an element of the coordinate s, which was previously introduced.
Also, along B'C', {" is increasing so that d{” > 0. Hence

ds 2C.1 1

dCN - T C”

The equations of the various mappings may now be used to evaluate {” in
terms of 0. On the streamline B'C’ the value of { is

C _ ei9
(' =logl =il
and
"= —cosh{' = —cos¥f
124
% =sin6
and
ds 2Cl 1

d”  m coshf

Using these last two equations, the expression for the lateral displacement x
of the free streamline becomes

0
x:xo+/ cos 0 2Cd sin 0 d0
P mcos b
0
= Xp +£€1 sin 0 d0
T 2n

2C.1
=xg + —— (I — cos )
i
But when 6 = 27, that is, at the point B, x = —I. Hence xo = —/, so that

2C,1
T

x=—1+

(1 —cosb)
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Also, the value of x at the point C' is —C_/, while the value of 6 is 37/2. Thus

—Cl = —l+2c"l
Y
T
= 4.27
n+2 (4.27/)

Equation (4.27f) predicts that the free jet that emerges from the aperture will
assume a width that is 0.611 of the width of the slit. This result is well estab-
lished experimentally, and the figure of 0.611 has been confirmed for open-
ings under deep liquids.

4.22 FLOW PASTAVERTICAL FLAT PLATE

In Sec. 4.19 the complex potential for the flow around a flat plate that is
oriented perpendicular to the free stream was obtained. However, it was
pointed out that the result obtained at that time was unrealistic because it
required infinite velocity components at the two edges of the plate. It would
therefore appear that the assumption of attached flow, which was implicitly
made at that time, is not valid. The same problem will be treated here, but this
time it will be assumed that the flow separates from the surface of the plate at
the two edges. The resulting free streamlines will be treated in a manner
similar to that in which the free jet was treated in the previous section.

Figure 4.22 shows, in the z plane, the assumed flow configuration for a
uniform rectilinear flow of magnitude U approaching a vertically oriented
flat plate of height 2/. The stagnation streamline /I’ splits upon reaching the
plate and forms the bounding streamlines 4BC and A'B'C’, where BC and
B'C’ are the free streamlines. The region downstream of the plate between
the two free streamlines is interpreted as being a cavity that has a uniform
pressure throughout. The point I’ is on the surface of the plate.

As in the previous section, the free streamlines may be handled by use
of the hodograph plane. Hence a transformation is made to the { plane, where

7U£7£7 U ei9
CdFE W V2

The boundaries of the flow field in the { plane are shown in Fig. 4.22. The free
streamlines BC and B'C’ again become part of the unit circle in the { plane.
Since the value of 0 along A BClies between 7/2 and 0 and the value of 0 along
A'B'C’ lies between —7/2 and 0, the appropriate portion of the unit circle is
that which lies in the first and fourth quadrants. Since the flow boundary
crosses the positive portion of the real { axis, it is no longer convenient to
consider the range of 6 to be 0 < 0 < 2x. If this range were adopted, the

¢ (4.284a)
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FIGURE4.22 Mapping planes for flow over a flat plate that is oriented perpendicu-
lar to a uniform flow.

multivalued functions, which require branch cuts, would divide the flow
boundary. This difficulty may be simply overcome by considering the branch
cut to lie along the negative real { axis so that the principal value of the mul-
tivalued functions will correspond to —n < 6 < =.

The geometry of radial lines and the circular contour is next converted
to that of a plane figure by means of the logarithmic transformation. That is, a
mapping to the {’ plane is made where

' =log¢ (4.28b)
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This maps the flow boundary into that of a rectangular channel, as shown in
Fig. 4.22. Since the range of 0 is now —n < 0 < &, the lower wall of this
channel corresponds to the imaginary part of {’ being —7/2, and the upper
wall corresponds to +7/2. That is, the centerline of the channel corresponds
to the real {’ axis. Then the flow field may be stretched out using the same
transformation as was used in Sec. 4.20 for a source in a channel. Here the
corner B’ is located at {' = —in/2 rather than {' = 0 and the channel half
width is 7 instead of /. Hence the required transformation is

¢ = cosh(g’ + zg) (4.28¢)

The principal flow lines in the { plane may be made collinear by means of the
mapping
C/// — (C//)2 (4.28d>

This doubles the angles subtended by the principal streamlines, so that the
flow in the {"” plane is unidirectional along the principal streamlines, as
shown in Fig. 4.22. However, the flow is still not that of a uniform flow as the
principal streamlines might suggest. This may be confirmed by observing
that, in the z plane, there is a source of fluid at / which flows toward a sink at
CC'.Butinthe ("’ plane CC’ and Iare at the same location, so that the flow in
the (" plane is probably that of a doublet. Rather than prove this is so, one
final transformation will be made to the " plane where

o= L (4.28¢)

C//l

The effect of this transformation is to map the origin to infinity, and vice
versa, as shown in Fig. 4.22. Fluid emanates from 7 and flows toward CC’, as
was the case in the z plane. That is, the flow in the (""" plane is that of a uniform
rectinlinear flow so that the complex potential is

F(CHH) — KCH”

The value of the constant K, which represents the magnitude of the
uniform flow, would normally be obtained by relating complex velocities
through Eq. (4.19). However, the implicit nature of the hodograph transfor-
mation prohibits this being done directly, so that indirect methods must be
used, as in the previous section. The hodograph transformation involves
dF /dz,but Fis known only as a function of {""’. Hence it is proposed to start
with the hodograph transformation and express the variables in terms of {”.
Also, F({"")isknown, so that F({") may be calculated, and so an identity will
be established in the {” plane. The details now follow.
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From Eq. (4.284) the following identity is established:

dz
Uﬁ ={

dz d{’
Varrar =

Here dF/d{" may be evaluated from the complex potential F({"’) and the
mapping functions, while { may be evaluated from the mapping functions.
Both quantities will be expressed in terms of {”.

F(CHH) — KCHH

1 K
F(™) = o
and
, K
F(C,) - (Cl/)z
dF . 2K
dc// (CH)3
also
(=e
_ e(cosh’] {"—in/2)
_ _l-ecosh’l I

But cosh™' x = log(x + Vx> — 1), so that
Q’: _i(C” + (CH>2 _ 1)

Substituting the preceding expressions for dF/d{" and { into the identity
established from the hodograph transformation gives

dz (§/,)3 _ o on 11\2
_Udé/// ZK__I(C+ (() _1>
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or

CH + v// 2 1
Udz = i2K(;,)3)dC”
In order to establish an algebraic identity that will permit the constant K to

be evaluated, the preceding expression must be integrated. It is proposed to
integrate over the region B’ to A’ so that

OOI/+ / //
/ dz-zZK/ C e

where the upper limits of integration correspond to the point A’ and the lower
limits to the point B'. The integral on the right-hand side may be conveniently
evaluated by use of the substitution (" = 1/sinv. Then

0 0
U/ dz = —iZK/ (1 +cosv)cosv dv
il /2

iUL:QK(1+§)

4
or
ol
n+4
Then the complex potential in the """ plane becomes
2U1
F 1" — 111"
@y =22

The corresponding complex potential in the z plane may be obtained by
using the mapping equations (4.28a), (4.28b), (4.28¢), (4.28d), and (4.28e¢).
Hence, using the fact that cosh ({’ + in/2) = isinh{’, the corresponding
expression for F(z) is

2U1 1
n + 4 sinh*{log[U(dz/dF)]}

F(z) = — (4.28f)

This result is again an implicit expression for F(z) rather than an
explicit expression. However, since the flow problem has been solved, results
may be deduced from the solution. Here the result of interest is the drag force
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acting on the plate. Thus if X is the drag force acting on the plate in the posi-
tive x direction and Pis the pressure in the cavity, it follows that

0
X = 2/ (p—P)dy
-1
where the symmetry of the flow field about the x axis has been invoked. But

from the Bernoulli equation

P 1
(u2—|—02) :E+_U2

N —

* 2

SELS

where the Bernoulli constant has been evaluated on the free streamlines at a
position well downstream of the plate. Thus the expression for the drag force
Xbecomes

0
X = 2/ %p[UZ — (1 +0%)] dy
-1

0 0
:pUz/Idy—p/l(uz—&-vz)dy

The first integral may be evaluated explicity, while the integrand of the sec-
ond integral may be wrtten as v?, since # = 0 on the surface of the plate. Then
W = dF/dz = —iv on the surface of the plate, so that v> = — W2 there.

Thatis,
0 dF 2
X:pUzl—i—p/ <—> dy
—1 dz

Also,x = Oonthe surface of the plate, so that z = iy there. Thatis, dz = idyon

the plate, so that
0 dF 2
X:pUzl—ip/ (—) dz
—il dz

Now since F(z) is an implicit expression, it is proposed to evaluate F({"') and
to perform the indicated integration in the (" plane rather than the z plane.
This may be done as follows:

00 dF 2dCN
X=pU—i ——d{"
pUL—ip /1 (dz”) ="
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where it has been noted that as z varies from —il to 0, {” varies from unity to
infinity. But expressions for dF/d{" and dz/d{" were obtained earlier in
terms of {” and K. Then using these expressions and the fact that
K =2Ul/(n + 4), the expression for the drag force becomes

X =pU?l - ip/ dl’
1

_4ul 112 (n+4) (")
T a7 - )

4pU [ ¢’
= pUzl —
n+4 /1 (C”)S[C” + (CH)Z _ 1}

The integral may now be readily evaluated by means of the substitution
{" =1/ sinv. This gives

4 0
1—&-7/ (1 —cosv)cosv dv
n+ 4 /2

p Ul

X =pU%l

(4.28g)
2n

n+4

From the symmetry of the flow field about the x axis it may be stated that
there will be no lift force acting on the plate. On the other hand, the lack of
symmetry about the y axis implies the existence of a drag force, and
Eq. (4.282) gives the magnitude of this drag force. A photograph of a flow
that is similar to that analyzed here is shown in Plate 1 (d).

PROBLEMS
4.1 Write down the complex potential for a source of strength m located at
z = ih and a source of strength m located at z = —ih. Show that the real

axis is a streamline in the resulting flow field, and so deduce that the
complex potential for the two sources is also the complex potential fora
flat plate located along y = 0 with a source of strength m located a dis-
tance /1 above it.

Obtain the pressure on the upper surface of the plate mentioned
above from Bernoulli’s equation. Integrate the pressure difference over
the entire surface of the plate, and so show that the force acting on the
plate due to the presence of the source is pm?/(4rh). Take the pressure
along the lower surface of the plate to be equal to the stagnation pres-
sure in the fluid.

4.2 Considerasource of strength mlocatedatz = —band a sink of strength
m located at z = b. Write down the complex potential for the resulting
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4.3

4.4

4.5

flow field, adding a constant term —im/2 to make the streamline iy = 0
correspond to a certain position. Expand the result for small values of
z/b and hence show that if » — co and m — oo in such a way that
m/b — nU,the resulting complex potential is that of a uniform flow of
magnitude U.That is, a uniform flow may be thought of as consisting of
asource located at —oco and a sink of equal strength located at +oc.
Write down the complex potential for the following quantities:

(a) A source of strength mlocatedatz = —b

(b) A source of strength m located at z = —a? /b
(c) Asink of strength mlocatedatz = b

(d) Asink of strength m located at z = a? /b

(e) A constant term of magnitude —im/2

Expand the resulting expression for small values of z/h and z? / (ab), and
hence show that if 5 — oo and m — oo in such a way that m/b — U,
the resulting complex potential is that of a uniform flow of magnitude
U flowing past a circular cylinder of radius a.

Consider a system of singularities consisting of the following:

(a) A source of strength m located atz = —b

(b) A source of strength m located at z = —a? /b
(c) Asink of strength m located at z = a?//

(d) A sink of strength m located atz =/

(e) A constant term of magnitude —[m/(2n)]logb

Write down the complex potential for this system and let 5 — co. Show
that the result represents the complex potential for flow around a cir-
cular cylinder of radius a due to a sink of strength m located a distance /
to the right of the center of the cylinder. This may be done by showing
that the circle of radius a is a streamline.

Use the Blasius integral theorem around a contour of integration that
includes the cylinder but excludes the sink, and hence show that the
force acting on the cylinder, due to the presence of the sink, is

Y pm?*a?
2712 — &)

A system of flow singularities consists of the following components:

(@) A source of strength m located at z = be!(*+7)

(b) A source of strength m located at z = (a2 /b)e/**™)
(c) Asink of strength m located at z = (a?/b)e™

(d) A sink of strength m located at z = be™
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4.6

4.7

4.8

Chapter 4

(e) A constant term of magnitude —im/2

Write down the complex potential for this system and expand it for
small values of z/b and a? / (bz). Hence show that the complex potential
for a uniform flow of magnitude U approaching a circular cylinder of
radius a at an angle of attack o to the horizontal is

F(z)=U (zei“ + “?26»"“) (4.29)

Determine the complex potential for a circular cylinder of radius aina
flow field produced by a counterclockwise vortex of strength I" located
adistance / from the center of the cylinder. This may be done by writing
the complex potential for the following system of singularities:

(a) A clockwise vortex of strength I' located atz = —b

(b) A counterclockwise vortex of strength I" located at z = —a? /b
() A clockwise vortex of strength I" located at z = a? /I

(d) A counterclockwise vortex of strength I" locatedatz =/

(e) A constant term of magnitude —[i['/(2x)]log b

Then let 5 — oo and show that the circle of radius a is a streamline.
Obtain the value of the force acting on the cylinder due to the vortex at
z = I by applying the Blasius law to a contour that includes the cylinder
but excludes the vortexatz = /.

The complex potential for a uniform flow of magnitude U approaching
a circular cylinder of radius a that has a bound vortex of strength I'
around it is

2 i
F(z) = U(z+a> +l—10gE
z 2n a

Using this result, together with Bernoulli’s equation, obtain an
expression for the pressure p(a, 0) on the surface of the cylinder. Inte-
grate the quantity —p(a, 0)asin 0 around the surface of the cylinder,
and hence verify the validity of the Kutta-Joukowski law for this par-
ticular flow.

Figure 4.23a shows the assumed configuration for separated flow of
magnitude Uapproaching a circular cylinder of radius a. Figure 4.23b
shows a system of flow elements that are proposed to model this parti-
cular flow. The model consists of the following components:

i0,
i,

(a) A source of strength m; located at z = ae
(b) A source of strength m; located at z = ae™
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M,

- ~._

(a) (h)

Figure 4.23 (a) Assumed flow configuration and (b) the flow model.

i0,
i0,

(c) Asink of strength m; located at z = ae
(d) A sink of strength m; located at z = ae™
() A sink of strength m; located at origin,z = 0
(i) Find the strength of the sink m; that makes the circle R = aa
streamline.
(ii) Determine the magnitude of the velocity on the surface of the
cylinder, g(a, 0).
(iii) Determine the parameters m; and 0, from the following two

conditions:
d
d_‘é (a,0,) =0
dzq 1/2
_d02 (a,05) = cUR,

In the above, 0; is the polar angle to the location of the separation point,
c is an experimentally determined constant, and R, is the Reynolds
number. Express the results in the following form:

my = my(my,0;,01,0,)  f(02,01,05,m,my,c,R,) =0

That s, obtain an explicit expression for m,, but the result for 6, may be
left as an implicit expression.
4.9 A mapping function is defined by the following equation:

cn

SR
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Chapter 4

where
z=x+iy = Re"

and

{=¢+in=pe”

In the above, c is a real constant and # is an integer. Find the
location of the critical points of this mapping function in the { plane,
and sketch their locations forn = 2,n = 3,and n = 4.

Using the Cartesian representation of z and the polar repre-
sentation of {, find the equation of the mapping in the form:

x=x(p,v) and  y=y(p,v)

From these equations obtain expressions for the polar coordi-
nates R and 0 of the form:

R=R(p,v) and 0=0(p,v)

Consider a circle in the { plane whose radius p is large so that

c
—=e¢x1
P

Use the results obtained above for R and 0 to find the equations
for the mapping of this circle in the z plane, working to the first order
only in the small parameter ¢.

Using any of the results obtained above, sketch the resulting
object shape in the z plane fore < 1,n = 3.

The Joukowski transformation is defined as follows:

&2

z=(+ z

Suppose that the figure in the { plane is a circle whose center lies

in the second quadrant. It is required to construct from an accurately
prepared drawing the corresponding figure in the z plane as follows:

Using either (a) or (b) below, depending on the preferred system

of units, draw the circle specified in the { plane. From this drawing,

prepare a table of values of the polar coordinates (p, v) for points on the

circle using 15° increments in the polar angle between adjacent points.

Next, use the Joukowski transformation to calculate the points (x, ) in
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4.11

4.12

4.13

4.14

the z plane corresponding to the points measured in the { plane. Finally,
draw the figure that is produced in the z plane.
(a) SI Units:
Joukowski parameter, c= 60.0 mm
Center of circle in { plane = (—5.0 mm, +7.5 mm)
Circle to pass through point = (+60.0 mm, 0.0 mm)
(b) English Units:
Joukowski parameter, ¢ = 2.4in.
Center of circle in { plane = (—0.2in., +0.3in.)
Circle to pass through point = (+2.4in.,0.0in.)

Using either (a) or (b) below, depending on the preferred system of
units, determine the lift force generated by a short span of aircraft
wing whose cross section is the same as that of Prob. 4.10. Take the air
properties to be defined by the standard atmosphere at sea level.

(a) SI Units:
Length of wing element = 1.0 m
Chord of wing element = 3.0 m
Flight speed =250m/s
(b) English Units:
Length of wing element = 3.0 ft
Chord of wing element = 9.0 ft
Flight speed = 750 feet/sec

Find the transformation that maps the interior of the sector
0 < 0 < n/nin the z plane onto the upper half of the { plane. Thus, by
considering a uniform flow in the { plane, obtain the complex poten-
tial for the flow in the sector 0 < 6 < 7/n in the z plane.

Use the Schwartz-Christoffel transformation to find the mapping that
transforms the interior of the 90° bend shown in the z plane of Fig. 4.24
onto the upper half of the { plane as shown. Hence obtain the complex
potential for the flow around a right-angled bend in terms of the
channel width /and the approach velocity U.

The z plane of Fig. 4.25 shows one-half of a symmetric expansion
device, ordiffuser.Itis assumed that the angle ¢pisnotlarge and that the
flow remains in contact with the wall. In the { plane the points specified
by lower-case letters correspond to the points indicated by the capita-
lized letters in the z plane. The location of the point ¢, indicated by the
value o, is undefined at this time. Using the correspondence indicated,
find the differential equation of the mapping function if the angle ¢ is
takento be the ratio of two integers times 90°; that is:
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A x ¢ b i
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- planc L plane

FIGURE 4.24 Mapping planes for flow in a channel having a 90° bend in it.

\ o ——

ot

C D x a b

FIGURE 4.25 Mapping planes for a diffuser.

rm
)

n

where rand n are integers. Express the result in terms of the parameters
r,n,o, K, where K is the scale parameter in the Schwarz-Christoffel
transformation.

Noting that the strength of the source in the { plane is m = 2UH,
obtain the complex potential for the flow field in the { plane. From this
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FIGURE 4.26 Mapping planes for a channel with a step in it.

result obtain an expression for the complex velocity in the z plane,
expressing the result in terms of the variable { and the parameters
U,a,r,n,and K.
Use the result obtained above to evaluate the parameters K and o,
expressing them in terms of the remaining parameters 4, H, r,and K.
4.15 Figure 4.26 shows a channel with a step in it in the z plane. Show that
the mapping function that maps the interior of this channel onto the
upper half of the { plane is

< () - e )

o L= (H/Y
[

Let the points 4, B, and Cin the z plane correspond to the points 0,
1, and « respectively, in the { plane. The quantity « may not be specified
a priori, but it should be determined from the mapping function after
the points 4 and B have been located as desired. Note that the stream-
line ABCD may be considered to be the streamline dividing two sym-
metrical regions, so that this mapping function also applies to a
channel of width 2 H with an obstacle of width 2(H — k) located along
the centerline of the channel.

where
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PLATE1 Airfoil in uniform flow at angle of attack (a) —2°, (b) 8°, (c) 20°, and (d)
90°.
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Three-Dimensional Potential
Flows

Although there are no significant phenomena associated with three-dimen-
sional flows that do not exist in two-dimensional flows, the method of
analyzing flow problems is completely different. The method of employing
analytic functions of complex variables cannot be used here in view of the
three-dimensionality of the problems. Then we must resort to solving the
partial differential equations that govern the variables of the flow field. These
partial differential equations were reviewed at the beginning of Part II and,
for irrotational motion, the equation governing the velocity potential is given
by Eq. (I1.5). Having solved the flow problem for ¢, the pressure may be
obtained from the Bernoulli equation, which is expressed in Eq. (I1.6).

The chapter begins by reviewing the equation that is to be satisfied by
the velocity potential in spherical coordinates. Then it is shown that for axi-
symmetric flows a stream function exists, called the Stokes stream function.
Although the flow fields may be solved through the velocity potential, the
stream function is useful for interpreting the flow fields. Fundamental solu-
tions are then established by solving the Laplace equation for ¢ by separa-
tion of variables. These fundamental solutions are then superimposed to
establish the flow around a few three-dimensional bodies, including the

161
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reference
axis

FIGURE 5.1 Definition sketch of spherical coordinates.

sphere and a family of solid bodies known as Rankine solids. A study of the
forces that act on three-dimensional bodies is then made, which leads to
d’Alembert’s paradox. This paradox shows that for any body immersed in a
potential flow no forces exist on the body, in spite of the fact that forces are
observed to exist experimentally. The chapter ends by introducing the notion
of an apparent mass for a body in a potential flow. This concept allows the
fluid to be ignored if a certain additional mass is associated with the body
when its dynamics are considered.

Since bodies of interest, such as airship hulls and submarine vehicle
hulls, have an axis of symmetry, this chapter will consider only three-
dimensional bodies that are axisymmetric. In so doing, it will be found con-
venient to work in the spherical coordinates (r, 0, ®). These coordinates are
shown in Fig. 5.1. Since the axis of symmetry of bodies is invariably in the
streamwise direction and since the approaching flow is normally taken to be
horizontal, the reference axis of the coordinate system is also taken to be
horizontal. Then, in terms of the spherical coordinates (7, 0, w), a point P may
be represented by its radius r from the origin, the angle 0 between the refer-
ence axis and the radius vector r, and the angle » subtended by the perpen-
dicular to the reference axis which passes through P. For axisymmetric flows,
there will be no variation in the fluid properties as w varies from 0 to 2z while
rand 0 are held constant.

5.1 VELOCITY POTENTIAL

Although the topic of discussion is three-dimensional flows, these flow
fields are supposed to be potential. That is, the fluid motion is assumed
to be irrotational so that a velocity potential exists, irrespective of the
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dimensionality of the flow field. Then, the equation to be satisfied by the
velocity potential is Laplace’s equation, given by Eq. (I1.5). Hence, expand-
ing the Laplacian in spherical coordinates and using the fact that 9/0w = 0
for axisymmetric flows, the equation to be satisfied by ¢ is

10 (,00 N
r—za (r E) +rzsin9%(sln0%> =0 (51)

The velocity components are related to the velocity potential by Eq. (I11.4),
which in spherical coordinates gives

_9%

U= (5.24)
10
Uy = ;% (521))

and the third velocity component u,, is zero for axisymmetric flows.

5.2 STOKES STREAM FUNCTION

In the previous chapter a stream function was introduced that, by its defini-
tion, satisfied the two-dimensional continuity equation. In three dimensions
it is not possible, in general, to satisfy the continuity equation by a single
scalar function. However, in axisymmetric flows such a function does exist.
The continuity equation for the incompressible case under consideration is,
for axisymmetric flows,

10, 1

r—za(r u,) —‘rm%(li() sSin 0) = 0

Now consider the velocity components to be related to a function  in the
following way:

1 oy

U 2 sin0 90 (5-3)
1oy

M= T sin0 or (5.35)

Direct substitution shows that if the velocity components are defined in this
way, the continuity equation will be identically satisfied for all functions . It
will now be shown that the quantity 2m corresponds to the volume of fluid
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crossing the surface of revolution which is formed by rotating the position
vector OP, in Fig. 5.1, around the reference axis. This statement will be
proved in the following way. First, the statement will be assumed to be true
and to constitute the definition of a quantity 1. Then it will be shown thatas a
result of this definition the velocity components must be related to this
function y by Egs. (5.3a) and (5.3b).

Let a function y be defined such that if the position vector OP is
rotated around the reference axis, that is, if the coordinate w is varied
through 27 while r and 0 are held fixed, the quantity of fluid that crosses the
surface of revolution formed by the vector OP will be 27yy. Now apply this
definition to two points P and P’ that are close together, as shown in
Fig. 5.2. Then if the line element PP’ is rotated about the reference axis, the
resulting surface will have a quantity of fluid 27 diy/ crossing it per unit
time. But reference to Fig. 5.2 shows that a quantity of fluid u,r d0 — uy dr
crosses a unit area of this surface so that

2ndyy = 2nr sin O(u,r d0 — uy dr)
. dy = u? sin0d0 — ugr sin Odr

But ify is a function of both r and 6, it follows from differential calculus that

oy oy
dyy = Z5d0 -+ dr

Comparing these two expressions for diy shows that

relerence

0 axis

FIGURE 5.2 Velocity components and flow areas defined by a reference point P and
neighboring point P
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_ = 2 o3
20 u,r” sin 0
%: —ugrsin 0

This confirms Egs. (5.3a) and (5.3b), so that the definition of y/ agrees with the
requirements for satisfying the continuity equation. Then it may be con-
cluded that for the stream function defined by Eqs. (5.3a) and (5.3b), the
volume of fluid crossing an element of surface generated by revolving a line
element about the reference axis is 27 di.

The stream function defined above is known as the Stokes stream func-
tion. It will be used here in a auxiliary way only, since flow solutions will be
obtained through solutions for the velocity potential ¢. The equation that
must be satisfied by i is therefore covered in Prob. 5.1 at the end of the
chapter. It should be pointed out, however, that for rotational flows the velo-
city potential does not exist, and the stream function then offers the only
mechanism for reducing the vector equations of motion to a single scalar
equation.

5.3 SOLUTION OF THE POTENTIAL EQUATION

The equation to be satisfied by the velocity potential ¢ has been established.
Rather than attempt to solve this equation as part of a boundary-value pro-
blem for various physical situations that may arise, it is proposed to obtain
here a general form of solution by separation of variables. The fundamental
solutions so obtained will subsequently be superimposed to produce more
complex solutions in a manner similar to that which was used in the previous
chapter.

The velocity potential will be a function of r and 6 only for axisym-
metric flows, and so a separable solution will be sought of the form

¢(r,0) = R(r)T(0)

Substituting this assumed form of solution into Eq. (5.1) gives

Td (}ﬂR)+ R d (Singd_T> o

2 dr dr 12 sin 0 dO

This equation may now be reduced to a separated form by multiplying it by
r?/(RT).
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ld(L,dR\ 1 d /. ,dT
Rar\" dr) = " Tsinoao\*™" d0

The usual argument of separation of variables is now invoked. The left-
hand side of this equation is a function of  only and the right-hand side is a
function of 6 only. Hence, if either r or 0 alone is changed, one side of the
equation will change while the other does not. Then the only way the
equation can remain valid is for each side to be equal to a constant, say
[(I+1).Then

1d (,dR\

and

1 d (. dT

The significance of choosing the separation constant as /(/ + 1), rather than
simply f5, is that with this choice the resulting ordinary differential equation
for T(0) appears in standard form, and so a subsequent transformation
becomes unnecessary. For the time being there is no implication that the
quantity / need be an integer. The differential equation to be satisfied by R(r)

is
d [ ,dR

This is an equidimensional equation, and so its solution will be of the form
R(r) = K¥*
Substituting this form of solution into the differential equation gives
o+ DKr* =1+ 1)Kr* =0

which will be satisfied by « = / and o = —(/ + 1). Then the general solution
for R(r) will be a linear combination of these two solutions. That is,

B

— / !

R[(r) = A[r + m

Since this is a valid solution for any choice of /, the arbitrary constants A;
and B, have been assigned subscripts to indicate which value of / is being
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considered. Likewise, the solution R;(r) has been assigned a subscript to
indicate which solution is being considered.
The equation for 7'(0) is

1 d /. dT

Thisis Legendre’s equation, and it may be reduced to its standard form by the
transformation x = cos 6, which yields

4
dx

{(1 —xz)‘;—ﬂ +II+1DT =0

The solutions to this equation are Legendre’s function of the first kind,
denoted by P;(x), and Legendre’s function of the second kind, denoted by
0(x). Thus the general solution for 7'(0) is

T;(0) = CPi(cos 0) + D;Q;(cos 0)

But the Q;(cos 0) diverge for cos 0 = +1 for all values of /. The coefficient D,
must then be specified as being zero, since there should be no singularities in
the flow field. Also, P;(cos 6) diverges for cos § = +1 unless / is an integer.
Then it must be specified that the quantity / be an integer, so that the con-
tinuous spectrum of separation constants /(/ + 1) now becomes a discrete
spectrum.

Combining the solution for R;(r) with that for 7;(0) gives the following
solution for ¢,;(cos 0):

B
¢,(r,0) = (Alrl + rl—+ll> Pi(cos )

where the arbitrary constant C; has been absorbed into the two other arbi-
trary constants 4; and B,. This solution is valid for any integer /. Then, since
the partial differential equation being solved is linear, all such possible solu-
tions may be superimposed to yield a more general type of solution. That is,
¢(r,0) may be considered to be the sum of all possible solutions ¢,(r, 6).
Hence

$(r,0) = f: (A,r’ + %) Py(cos 0) (5.4)
1=0

The Legendre function of the first kind that appears in Eq. (5.4) is defined by
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1 d

l
=g ™ D

Py(x)

Inview of the nature of this function, it is frequently referred to as Legendre’s
polynomial of order I. The first three Legendre polynomials are written out
explicitly below for reference purposes.

Py(x) =
Pi(x)=x

Equation (5.4) contains certain fundamental solutions that are useful
for superimposing to establish additional solutions. These fundamental
solutions will now be studied.

5.4 UNIFORM FLOW

One of the solutions contained in Eq. (5.4) corresponds to a uniform flow. It
may be obtained by setting

B =0 for all /

0 forl#1
A,:{ #
U forl=1

Using the fact that P;(cos ) = cos 6, the solution given by Eq. (5.4) then
becomes

¢(r,0) = Urcos0 (5.5a)

The simplest way of confirming that the velocity potential given by Eq. (5.5a)
corresponds to a uniform flow is to note that the cartesian coordinate x is
related to the spherical coordinates r and 0 by the relation x = r cos 6. Thus
Eq. (5.5a) states that ¢ = Ux, which is the velocity potential for a uniform
flow of magnitude U.

The stream function for a uniform flow may be deduced from Eq. (5.54)
as follows: Using the result (5.5a), it follows from Eq. (5.24) that

u,:%:Ucose

or

Hence from Eq. (5.3a),
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Loy

r2sin 6 00

Sy =10 sin? 0+ f(r)

= Ucos0

where f(r) is any function of r. Likewise, the velocity component u#y; may be
evaluated from ¢ and expressed as a derivative of i/, giving

109 .
Uy =90 Usin0
1 oy .
© rsinf or ~Usin0
or Y =1Ursin® 0 + g(0)

where g(0) is any function of 0. Then, comparing these two expressions for i/,
it follows that f(r) = g(0) = constant at most. Taking this constant to be
zero, without loss of generality, gives

Y (r,0) =1 Ur?sin’ 0 (5.5b)

An alternative way of evaluating y/(r, 8) is simply to invoke its defini-

tion. Then, considering an arbitrary point P in the fluid as shown in Fig. 5.3,
the amount of fluid crossing the surface generated by OP due to the uniform

flow will be 2my. But the flow area perpendicular to the velocity vector is
n(rsin0)*. Hence it follows from the definition of i/ that

2y = Un(rsin0)?
or Y (r,0) =1 Ur?sin’ 0

This agrees with the result obtained by the other method.

refercnee
axis

FIGURE 5.3 Geometry for evaluating the stream function for a uniform flow.
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Both the methods outlined above for evaluating the stream function are
useful, and each will be used in the following sections. The particular method
employed will depend upon the complexity of the problem, and it is evident
that the second method can be conveniently employed only for very simple
flow fields.

5.5 SOURCE AND SINK

The velocity potential corresponding to a three-dimensional source or
sink is obtained from Eq. (5.4) through the term whose coefficient is B,.
Then let

A=0 for all!

0 forl £ 0
B, =
By#A0 forl/=0

Then, from Eq. (5.4), using the fact that Py(cos0) = 1,

Br.0) =2

The velocity components for the resulting flow field are

u():0

Hence the velocity is purely radial, its magnitude increases as the origin is
approached, and there is a singularity at the origin. Clearly there is a
source or sink of fluid at r = 0, and the quantity of fluid leaving or enter-
ing this singularity may be evaluated by enclosing it with a spherical
control surface of radius r. Then if Q is the volume of the fluid leaving the
control surface per unit time, it follows that

Q:/su-nds

But the velocity vector is radial, and so u-n = |u| = +By/r* and
ds = r*sin 0 d0 dw. Hence
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2n T BO
Q:/ dw/ (—z)rzsianH
0 0o \7

= —47'EB()

Then, for a source of strength Q, the constant By should be set equal to
—Q/(4n). That is, the velocity potential for a source of strength Q located
atr =0is

o(r,0) = -2 (5.6a)

4nr

It should be noted that the minus sign is associated with the source, and so a
positive sign would be associated with a sink.

In order to establish the stream function corresponding to Eq. (5.6a),
the definition of iy will be invoked. Referring to Fig. 5.4, a source of strength
Q is shown at the origin. At any arbitrary point P the velocity will be radial
and is indicated by u,. The quantity of fluid that crosses the surface generated
by revolving the line OP about the reference axis will depend upon whether
the source Q is considered to be slightly to the left of the origin or slightly to
the right of it. Here the source Q will be considered to be slightly to the right
of O, so that the quantity of fluid crossing the surface generated by OP will be
2my + Q.Then from Fig. 5.4 it follows that

rdo

-0
2 = , cos 0 27r sin 0
ny+ Q0 /0 uy cos 0 2mrsin 0

where u, cos 0 is the component of the velocity vector that is perpendicular to
O'P and r d0/cos 0 is the element of surface area along O’ P. Performing the
integration yields

0 reference
0 o' axis

FIGURE 5.4 Geometry for evaluating the stream function for flow due to a source.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



172 Chapter 5

g o
i
&

. 0
origin reference

+0  5x 0 axis

FIGURE 5.5 Superposition of a source and a sink that become a doublet as 5x — 0.

(r,0) = —%(1 + cos0) (5.6b)

It now becomes evident that if the source Q had been considered to be
slightly to the left of the origin, the constant term in Eq. (5.65) would have
been different. However, the velocity components would be the same.

5.6 FLOW DUE TO ADOUBLET

As was the case in two dimensions, the flow due to a doublet may be obtained
by superimposing a source and sink of equal strength and letting the distance
separating the source and the sink shrink to zero. Figure 5.5 shows a source
of strength Qlocated at the origin and a sink of strength Qlocated a distance
ox along the positive portion of the reference axis. The distance from the
source to some point Pin the fluid will be r, and the corresponding distance to
the sink will be  — Jr.

From Eq. (5.6a), the velocity potential for the flow due to this source
and sink will be
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_ 9 0
$(r0) = T " 4r(r — or)

_ e, 1
__%( _1—5r/r)

If the source and sink are close together, the quantity or/r will be small, so
that the expression for the velocity potential may be expanded as follows:

2
1+@+o@g]}
r r
::£LFE+O<Q>1
4rr | r r
The quantity or may be eliminated in favor of dx by applying the cosine rule

to the triangle defined by the vectors rand r — or, and the distance Jx separa-
ting the source and the sink. Thus

o(r,0) = —g{l —

4nr

(r—or)* = r* + (6x)* — 2r 6x cos 6

Solving this equation for cos 0 gives

2+ (6x)2 — (r — or)?

0:

cos 2rox
_br_dror by
T ox  2rdx 2r

£
.-.5r=5xcos9{1—o<5_r’>}

Using this result, the expression for ¢(r, 0) becomes

$(r.0) :4—%{5736005"{1 * 0(?)}}

Now let the distance ox — 0 and the source strength Q@ — oo such that the
product Q 6x — u.Then

o(r,0) = #cosﬁ (5.7a)
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Equation (5.7a) is the velocity potential for a positive doublet of strength y,
that is, a doublet that expels fluid along the negative portion of the reference
axis and absorbs fluid along the positive portion.

The stream function corresponding to Eq. (5.74) will be obtained by
using the equivalent expressions for the velocity components given by
Eqgs. (5.2) and (5.3). Thus

S IO

= or T T 2w % T sing 00
N
.%——%ﬁanosH
K2
and Y(r,0) = 1 Sin 0+f(r)

Likewise, the two expressions for uy give

10¢ o ., 1 0y
Y0 T T ans inf = rsinf Or
oy KoL
or = an S0
and W(r,0) = —ﬁ sin” 0 + g(0)

Comparing these two expressions for y/(r, 0) shows that f(r) = g(0) = 0 and

W(r,0) = —%sinz 0 (5.7b)

Equation (5.7b) gives the stream function for a doublet that discharges fluid

along the negative portion of the reference axis and attracts fluid along the
positive part of the reference axis.

5.7 FLOW NEAR A BLUNT NOSE

By superimposing the solutions for a uniform flow and a source, the solution
corresponding to a long cylinder with a blunt nose is obtained. From
Eqgs. (5.5b) and (5.6b), the stream function for a uniform flow of magnitude U
and a source of strength Qlocated at the origin is

¥(r,0) =1 U sin* 0 — 42(1 + cos 0)

T
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In order to interpret the flow field that this solution represents, consider i to
be constant and solve the preceding equation for rin terms of 0:

B 24 0 1+cos0
Usin’0 27U sin%0

_ L2 Y
Usin®0  4nUsin?(0/2)

where the fact that 1+ cos =2cos?’(0/2) and the fact that
sin(0) = 2sin(0/2) cos(0/2) has been used. Then, denoting the value of r
for which iy = 0 by ry, the radius to the surface corresponding to y = 0is

_Je 1
=\ 47U sin(0/2)

Thus the radius ry corresponding to the principal values of § are as follows:
When 0 =0, Fg = 00

n Q
When 0 = — e
en 2’ 0 2n

B _ ] @
When 0 = 7, ry = T

This defines the stream surface yy = 0, as shown in Fig. 5.6.

=

v / Q 2
Tl i
h.\\ o

™

lize

FIGURE 5.6 Flow around an axisymmetric body created by a source in a uniform
flow.
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Although the polar radius 7y is infinite for 0 = 0, the cylindrical radius
Ry is finite. This may be verified by noting that R = rsin 0, so that

Re — Q0 sinf
"~ V4zUsin(0/2)

sinf 0—0°/31+ . .
sin(0/2)  9/2 —1/31(0/2)° + - --

Then,as 0 — 0

Hence the cylindrical radius far from the source becomes

0
Ro = U
The fluid emanating from the source located at the origin does not mix
with the fluid that constitutes the uniform flow. Then a shell could be fitted to
the shape of the surface corresponding to y = 0 and the source could be
removed without disturbing the outer flow. That is, the stream function for
the semi-infinite body shown in Fig. 5.6 is

y(r,0) =1 U sinzg—%(l + cos 0) (5.8a)

The corresponding velocity potential may be obtained from Egs. (5.54) and
(5.6a), giving
0

¢(r,0) = Urcos 0 — - (5.8b)

Equations (5.8) may be used to deduce the velocity and pressure distribution
in the vicinity of the nose of a blunt axisymmetric body such as an aircraft
fuselage or a submarine hull.

5.8 FLOW AROUND A SPHERE

The stream function for a uniform flow past a sphere may be obtained by
superimposing the solution for a uniform flow and that for a doublet. From
Egs. (5.5b) and (5.7b), the stream function for such a superposition is

12 a2 M2
Y(r,0) =5 Ur"sin” 0 4 5in 0
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Then the equation defining the surface that corresponds to yy = 0 is

0=1U2sin?0 — - sin?0
27 4mry
where rj is the value of the polar radius r that defines the surface on which
Y = 0. Solving this equation for ry gives

= (g)

Since ry = constant, the surface that corresponds to iy = 0 is that of a sphere.
If the doublet strength is chosen to be u = 2nUa?, the radius of this spherical
surface will be r) = a. Then, by choosing u = 27Ud?, the stream function for
a uniform flow of magnitude Uapproaching a sphere of radius a is

Y(r,0) =1 U(r2 - "73) sin’ 0 (5.9q)

The corresponding velocity potential may be obtained from Eqs. (5.54) and
(5.7a), in which the doublet strength 1 = 2nUa? is used. This gives

0) = la 0 5.9h
v(r, )-U(r—kzr—z)cos (5.90)

5.9 LINE-DISTRIBUTED SOURCE

The stream function and the velocity potential for a source that is distributed
over a finite strip will be established in this section. The result is useful as one
element in superpositions that lead to additional solutions to flow problems.
Figure 5.7 shows a source that is uniformly distributed over the section
0 < x < Lofthereferenceaxis.The source strength,whichis constant,isgper
unit length, so that gL is the total volume of fluid that emanates from the
source perunittime. Anarbitrary field point Pis shownwhose coordinates are
r,0,and w.One end of the line source,which is at the origin, is a distance rfrom
this point and subtends an angle fto the xaxis. The other end of the line source
is a distance # from the point Pand subtends an angle « to the x axis. Also, an
element of the line source of length d&, which is a distance ¢ from the origin,
subtends an angle v to the x axis. But the strength of this element of the source
is g d¢,so that, from Eq. (5.6), the stream function for the line source will be

L =
tp:—/o ‘%lf(lecosv)
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R =rsinb

referchee
axis

|
— L oag

source strength

5
) q per unit length

&z

FIGURE 5.7 Geometry connecting a field point P to a line source of length L distri-
buted uniformly along the reference axis.

where the angle v is a function of ¢ and so will be a variable in the integra-
tion. Rather than express v as a function of £, the variable of integration
will be changed from ¢ to v. Referring to Fig. 5.7, it will be observed that the
cylindrical radius R = rsin0 = sina remains constant throughout the
integration. Also, it may be observed that

x— &= Rcoty
C.—dé=—Rcsc*vdy

Hence the expression for iy may be written in the form

oL

Y (r,0) = _ 4R csc? v(1 + cosv) dv
47 0

_—qR(COtQ—COtOC+ .1 ! )
4n

sinf sina

But from Fig. 5.7 the following relations may be established:

x = Rcotl
x— L = Rcoto
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R
r=——"
sin 0

R

= sin o
Using these relations, the expression for the stream function for a line source
of strength ¢ per unit length and of length L is

lp:_%(urr—n) (5.10a)
The velocity potential corresponding to Eq. (5.10a) may be obtained in
an analogous way. From Eq. (5.64) it follows that

[ qdé
¢=- ,/0 4r(R/ sinv)

where it has been observed that the distance from the point at £ on the line
source to the field point Pis R/ sinv. As before it is observed that

x— &= Rcotv
and so —dfé = —Rcsc?vdy

Then the expression for ¢ becomes

o

(;5:—i sinvcsc? vdy
TTJo

q % dv

g o (5.10b)

_q tano/2
= ggl08 (tan 9/2)

Although the result for the stream function was more compact when
expressed in terms of lengths, the result for the velocity potential is more
compact in terms of angles, so that Eq. (5.105) will be considered to be the
final result.

5.10 SPHERE IN THE FLOW FIELD OF A SOURCE

In Prob. 4.4 it was established that the solution for a circular cylinder in a
sink flow could be obtained from the solutions for two sources and two sinks,
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all of which have the same strength. It will be shown here that the solution for
a sphere in a source flow may be obtained in an analogous manner, although
the singularities that must be imposed are two sources, of unequal strength,
and a line sink.

Figure 5.8 shows the connection between a field point P and certain
singularities. The singularities are a source of strength Q, which is located at
the point Q, which is a distance /along the reference axis, a source of strength
Q*, which is located at the point Q*, which is at the image point a?// of the
point Q in the sphere of radius @, and a uniformly distributed line sink of
strength ¢ per unit length along the section OQ* of the reference axis. It will
be shown that for an appropriate choice of source and sink strengths the
sphere r = a corresponds to iy = 0.

If the spherical surface r = a is to be a stream surface, the total sink
strength inside this region must equal the total source strength there. That is,
ga’/l = @, which establishes the sink strength ¢ in terms of the source
strength Q*. Then, using Eqs. (5.6b) and (5.104), the stream function for the
singularities shown in Fig. 5.8 will be

g
(T+r=)

where o, 5, and 77 are functions of rand 6. Then for points on the surface of the
sphere r = athe value of y will be

* s« l
V(r,0) = —%(14—005[{) —%(14_00”)4_‘%;

0 o o 1 Iy
Y(a,0) = _E(l +cosfi) _E(l + cosa) +E 1 -s-;_;
- P
7~ D ;
/ o/ \\
f! 9 oy g
'\ 0 Q*) o
\ IR DN
\ { // _ sink strength
~ - - q per unit length
{

FIGURE 5.8 Superposition of a line sink of strength ¢ per unit length, a source of
strength Q*, and a source of strength Q near a sphere of a radius a.
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Now if the point Plies on the spherical surface r = a, a relationship will exist
among the parameters 7, a, f§, o, and 0. To establish this relationship, it will
be noted that

a2/l a

a /

But the numerator and denominator of each side of this equation represent
the lengths of one of the vectors shown in Fig. 5.8. Thus it follows that
0Q* 0P

oP 00

But these lengths represent corresponding sides of the triangles OPQ* and
OOQP. Then, since the angle 6 is common to both these triangles, it follows
that the two triangles are similar. Then the angle OPQ* must equal the
angle OQP, which, in turn, equals 7—f. Hence the length # may be written
as

2

n= TCOS(TE — o) +acos(nm — f)

a2

= —TCosoc—acos,[f

Substituting this result into the expression for y/(a, 0) gives

V(a,0) = —%(14—005[3}—%(14—00”)

+g(l +£+cosoc+£cos[3)
47 a a

~rean (- 2+ 20)

Thus by choosing the source strength Q* to be equal to aQ//, the surface r=a

will correspond to the stream surface iy = 0. Then the stream function for a

sphere of radius a whose center is at the origin and that is exposed to a point

source of strength Qlocated a distance / along the positive reference axis is
0 Qa Qra r 1

Y(r,0) = _E(l +cos f}) _E7(1 + cosa) +E<7+E_E) (5.11a)

The velocity potential corresponding to Eq. (5.11a) may be obtained
from Egs. (5.6a) and (5.105). This gives
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0 o ¢ tano/2

Using the fact that 0* = aQ/I and q = IQ* /a®> = Q/a, the expression for the
velocity potential for a sphere of radius @ in the presence of a source of
strength @ becomes

0 Qa 0 tano/2

The quantity ( is the distance from the field point P to the source Q as shown
in Fig. 5.8.

5.11 RANKINE SOLIDS

The solution for the flow around a family of bodies, which are known as
Rankine solids, is obtained by superimposing a source and a sink of equal
strength in a uniform flow field. Let the magnitude of the uniform flow be U
and the strength of the source and the sink be Q. Consider the source and the
sink to be located equal distances / from the origin as shown in Fig. 5.9a.

From Egs. (5.5b) and (5.6b), the stream function for the configuration
shown in this figure is

Y(r,0) =L Ur?sin* 0 — % (cos0; — cos0,) (5.12q)

= rsin@

1]

ey

0

o 7 0
— origin

{(a) {b)

FIGURE 5.9 (a) Superposition of uniform flow, source and sink, and (b) uniform
flow approaching a Rankine solid.
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Then ifryis the radius to the surface on which iy = 0, the radius ry must satisfy
the equation

0=1Ursin®0 - % (cos0; — cos )

Working with the cylindrical radius R = rsin 6 rather than the polar radius r,
it follows that the cylindrical radius R, which corresponds to the surface
Y =0,will be

R(z) cos ) — cos 0,)

:27'EU<

Then when 0, = 0, =0, and when 0, = 0, = «, the value of R is zero. Also, the
maximum value of Ry occurs when cos 6; = —cos 6, , which corresponds to
0=n/2 or 0=37/2. Thus the stream surface that corresponds to =0
defines a body as shown in Fig. 5.9b. The principal dimensions of this body
are the half width L and the half height /4. Both these parameters depend
upon the free-stream velocity U, the source and sink strength Q, and the dis-
tance /.

The value of L may be obtained from the equation resulting from the
observation that the velocity at the downstream stagnation point is zero. But
the velocity at that point is the superposition of a uniform flow of magnitude
U, a source of strength Q a distance L + / away, and a sink of strength Q a
distance L — /away. Hence

vy 2 2

2 3=0
dn(L+1)" 4n(L-1)

Rearranging this equation gives the following equation to be satisfied by L in
terms of the parameters U, Q, and [:

2 e O
(217 - 2L =0 (5.12b)

An analogous expression for the half height # may be obtained by noting that
the value of the cylindrical radius R, is # when cos 6; = —cos 6,, where
tan 0, = h/l. Hence

W= Q( L ! >
2rU\VR +1 Vi + P
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Rearranging this expression shows that 42 must satisfy the following
equation:

hzx/h2+12—%:0 (5.12¢)

For various values of the parameters U, Q, and /, Eqgs. (5.12b) and (5.12¢)
define a family of bodies of revolution for which the stream function is
given by Eq. (5.12a). The corresponding velocity potential is

0 0

o(r,0) = Urcos07m+m (5.12d)

5.12 DALEMBERT’S PARADOX

It will be shown in this section that if an arbitrary three-dimensional body is
immersed in a uniform flow, the equations of hydrodynamics predict that
there will be no force exerted on the body by the fluid. Experimentally it is
known that a drag force exists on a body that is in a fluid flow, so this theo-
retical result is known as d’Alembert’s paradox.

Figure 5.10 shows a body of arbitrary shape whose center of gravity is
located at the origin of a coordinate system. The surface of the body is
denoted by S, and the unit outward normal to S, locally, is denoted by n. The
hydrodynamic force, which may act on the body, is denoted by the force
vector F. A spherical control surface S is set up around the body under con-
sideration, and n is the unit outward normal to S,. That is, n, = e,,where e, is
the unit radial vector.

The equation of force equilibrium will now be written for the body of
fluid contained between the surfaces .S and S,. The fluid force acting on the
body through the surface Sis F; hence the force acting on the fluid through
that surface is —F. There is no transfer of momentum across the surface S,
since that surface is a stream surface. Around the surface S, there will be a
force due to the pressure distribution. The magnitude of this force will be
—png per unit of surface area, so that the total pressure force will be the
surface integral of this quantity. Across the surface S, there will be
a momentum flux corresponding to the mass flux pu - ny per unit area. Then
the momentum flux will be pu(u - ng) per unit area, so that the inertia force
per unit surface area will be —pu(u - ng). Thus the equation of force equili-
brium for the fluid that is bounded by the surfaces S and Sy is

0=-F— / [png + pu(u-ng)| dS
So
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FIGURE 5.10 Spherical control surface Sy enclosing an arbitrarily shaped body of
surface area S. The force acting on the body is F and the unit normal to the body
surface is n.

The pressure may be climinated from this equation through use of the
Bernoulli equation, which, for the case of steady irrotational motion under
consideration, may be written in the form

p+ipu-u=B

where Bis the Bernoulli constant. Then the force F acting on the body will be
given by the following integral:

F= p/é: [3 (uwu)ng — u(u-no)] dS

Here it has been observed that the surface integral of Bny is zero for any
closed surface.

It is now proposed to write the velocity vector u as the sum of the
free-stream velocity vector U = Ue and a perturbation u’. The perturbation
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velocity u’ will be large near the body, but it will tend to zero far from the
body. Then, writing

u=U+u

the expression for the force F becomes
F=p [ {GU>+U-v+Ju-u)ng — (U+u')[(U+u')-nol} dS
So

Expand the integrand now and note that | s, U 2ng ds = 0 since U? is a con-
stant. f S U-nyds = 0, since U is a constant vector and f S ' -ngds = 0 from
the continuity equation. Hence

F=p [ {(U-u+u-u)ng— [w'(U-ng) +u'(u-ng)]} ds
So

The first and third terms in the integrand may be replaced by —U x (u x ng)
in view of the vector identity

Ux (0 xng) =u'(U-ng) —np(U-)

Hence the expression for the hydrodynamic force F may be written in the
form

F= p/ [—U x (u' xng) +5(u-u')ng —u'(u - mg)] ds
So

It will now be shown that each of these terms is zero.
Let ¢’ be the velocity potential corresponding to the perturbation
velocity u’. Then, from Eq. (5.4), ¢’ must be of the form

=, Pi(cosb)
¢ = ZA/ A1

=0
0 pcosd 1
T 4nr + 47y? +0 r

where the first two terms, which correspond to a source and a doublet, have
been written out explicitly and any remaining terms must vary as 1/ or
some greater power of 1 /r. Then, since w' = V¢', it follows that
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1
wi=o(3)

That is, the perturbation velocity varies, at most, as 1/12. Also

o anV{g—'MCOS0+O(}3>} X €

4nr  4nr?

ol

That s, since ng = e, and since e, x e, =0, it follows that

1
/ - 0=
o’  no| (3)

Finally, since an element of surface area dS equals /* sin0dfduw, it is evident
that

ds = 0(r?)
Using the foregoing results, it is possible to establish the order of magnitude
of each of the integrals that appears in the expression for F. Thus

r

/SO(u’-u/)no ds = 0(%2)
/SO o (- ny) dS — 0(}2)

That is, if the radius of the spherical surface S is taken to be very large, each
of these integrals will be vanishingly small. Thus in the limit,

F=0 (5.13)

1
Ux(u'xno)dS:0< )
So

Since it is known that any body that is immersed in a flow field experi-
ences a drag force, Eq. (5.13) poses a paradox known as d’Alembert’s para-
dox. The resolution of this paradox lies in the fact that viscous effects have
been omitted from the equations that led to Eq. (5.13). It will be seen in Part
I11 that there is a thin fluid layer around such a body in which viscous effects
cannot be neglected. This fluid layer, or boundary layer, exerts a shear stress
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on the body that gives rise to a drag force. In addition, the boundary layer
may separate from the surface of the body, creating a low-pressure wake.
This, inturn,willinduce an additional drag, called the form drag, owing to the
pressure differential around the surface of the body. However, for stream-
lined bodies Eq. (5.13) is approached because of the absence of form drag,
although the viscous-shear drag will still exist.

5.13 FORCES INDUCED BY SINGULARITIES

It was established in the previous section that, according to the equations of
hydrodynamics, no force exists on a body that is in a uniform flow field. This
agrees with the results of the last chapter, since the Kutta-Joukowski law
shows that in the absence of circulation around a body there are no forces
acting on two-dimensional bodies. In view of the fact that V- w = 0, it is very
difficult to establish an appreciable circulation around short bodies—that is,
around three-dimensional bodies. However, it was established in the pro-
blems at the end of Chap. 4 that a force will exist on a cylinder that is exposed
to a singularity in the flow such as a source, a sink, or a vortex. Likewise, it
will be shown here that a force exists on a three-dimensional body if it is
exposed to a point singularity in the fluid.

Figure 5.11a shows an arbitrary body whose center of gravity coincides
with the origin of a coordinate system. The surface of the body is denoted by
S, and n is the outward unit normal to S. A singularity is assumed to exist at
the point x = x;, since the polar axis may be made to pass through the singu-
larity without loss of generality. A small spherical control surface denoted by
S; and of radius ¢ is established around the singularity. The unit outward
normal to the surface S; is denoted by n;. A large spherical surface, denoted
by Sy, is drawn around both the body and the singularity. The unit normal to
this surface is denoted by ny. The hydrodynamic force that acts on the body
and whose magnitude is sought is denoted by F.

For equilibrium of the forces that act on the body of fluid that is inside
S, but outside S'and S;, the sum of the forces must be zero. Hence

0=—-F= [ [png + pu(u-no)] dS + / [pn; + pu(u-n;)] dS
So Si

The first two terms on the right-hand side of this equation are identical with
those that appeared in the previous section, and the third term represents the
pressure and momentum integral for the new surface S;. But it was shown in
the previous section that the integral around S, that appears above is zero.
Then
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reference
axis

FIGURE 5.11 (a) Control surfaces for a body located at the origin and a point sin-
gularity at x = x;, and (b) a source and a sink close together near the body.

F= [ [pn; + pu(u-n;)] dS
Si

Since the integral that appears in this equation represents the force acting on
the surface S;, whose radius is arbitrarily small, it follows that if a force Facts
on the body S, the reaction of this force must act on the singularity. From the
Bernoulli equation, p = B — p(u - u)/2, so that

F:p/s_[—%(u-u)n,'—i—u(u-ni)] ds (5.14q)

In order to further reduce the integral in Eq. (5.144), it is necessary to specify
the nature of the singularity located inside the surface S;. The case of a
source, or sink, and that of a doublet will be examined.
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Consider, first, the singularity at x =x; to be a source of strength Q.
Then, from Eq. (5.64), the velocity on the surface S; will be

0
u:mec"_ui

where e, is the unit vector radial from the point x=x; and u; is the
velocity induced by all means other than the source under consideration.
Then

u-u= Q2 -|——Q €. -u; t+u-u
16m2e%  2me2 © t
and u-n;, =u-e,
:&_’_u..e;
4ue2

Hence from Eq. (5.14a),

1/ @ 0
F= -5 Sz WU e
'D/S’,[ 2(16%284+2ﬂ82e i u)e

0 0
+ (47‘[82 € W 4re? tuice || dS

:p/[ % e _l(u,"uz')eg+£ui+(ui'es)“z} ds
Si

2met T 2 4re?

Of these four integrals, the first is zero, since it involves a constant times e,
integrated around a closed surface. Since the radius ¢ is arbitrarily small,
the quantity u; - u; may be considered to be constant over the surface S;, and
so the second integral will likewise be zero in the limit as ¢ — 0. The last
term in the integrand will likewise involve a quantity u;, which will be
constant, and a quantity e,, which will change direction around S;. Thus the
product u;- e, will have equal positive and negative regions over the surface
S;, so that the integral of (u; - e,)u; over S; will be zero. Then the expression
for F becomes

0
F= ;dS
p/si 47T82u

where, again u; may be considered to be constant throughout the integration
for vanishingly small value of ¢. Hence
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2n T
F:Qui/ dw/ sin 6d0
4n " Jo 0 (5.14b)

F = pQu;

That s, the force on the body, and on the source, is proportional to the source
strength and to the magnitude of the velocity u;induced at the location of the
source by all mechanisms other than the source itself. The direction of the
force coincides with that of the velocity vector u;. For a sink, Q should be
replaced by —Qin Eq. (5.14b).

Consider now the case when the singularity is a doublet. It was shown
in Sec. 5.6 that a doublet may be obtained by superimposing a source and a
sink of equal strength. Hence, consider a source of strength Q to be located at
x=Xx;and asink of strength Qtobelocated at x = x; + §, as shown in Fig. 5.11b,
where ¢ is a vanishingly small distance. Then ifu; is the fluid velocity at x = x;
due to all components of the flow except the source and the sink under con-
sideration, the velocity at x = x;, less that due to the source itself, will be

% €x + u;
47é

where e, is the unit vector in the x direction.
The velocity at x = x; + 0, less that due to the sink, will be

0 Ou;
4n52ex+u, +9 o +

Then, from Eq. (5.14b) the force acting on the body due to the source will be

=
——e +u;
e <47r52
and the force acting on the body due to the sink will be

0 Ou;
pQ(4n52ex+u,+5ax + )

where the minus sign results from the fact that a sink is being considered. The
net force that will act on the body due to the combined source and sink will
then be

61],'

—PQég
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Now if 0 is allowed to shrink to zero and Q1is allowed to become infinite such
that Q6 — p, the force acting on the doublet of strength u that will result at
x=x;will be

_ au,-

Hence the force acting on the body due to a doublet of strength p will be

8“,’
F = —PRA (5.14¢)

As an example of an application of the foregoing results, consider a
sphere in the presence of a source, which was discussed in Sec. 5.10. The flow
field was found to consist of the source of strength Q which was located at
x =1, an image source of strength Qa/llocated at x = a’ /1, and a line sink of
strength Q/a extending over the regionx=0tox = a’ /1. Then the velocity u;
at the point x =/ due to all causes except the source of strength Q will be

Qa1 Mola e
CoAn —a2/)P T Sy A (1—x)
_Qa/l 1 Qlal 1 1
= n mex‘ﬂ[m‘i}ex

__ o
4rl(1? — a?)?

€x

Then, from Eq. (5.14b), the force F acting on the sphere due to the source
will be

_ pQd

That is, the sphere is attracted to the source with a force that is proportional

to 0.

5.14 KINETIC ENERGY OF A MOVING FLUID

It is sometimes of interest to calculate the kinetic energy associated with a
fluid disturbance. An example of the utility of this quantity in the context of
flow around immersed bodies will be given in the next section, and an appli-
cation to free-surface flows will be made in the next chapter.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



Three-Dimensional Potential Flows 193

The kinetic energy associated with the fluid in the uniform flow around
astationary body will be infinite if the flow field is infinite in extent. However,
thekineticenergyinducedinaquiescentfluid by the passage ofabody through
it will be finite, even if the flow field is infinite in extent. For this reason,
discussionsofkinetic-energyconsiderations arebasedonaframe of reference
inwhich the fluid far from the body is at rest and the body is moving.

Referring to Fig. 5.12, we consider an arbitrary body of surface area S
that is moving with velocity U through a stationary fluid. An arbitrarily
shaped control surface S is constructed around the body. The unit outward
normals to the surfaces Sand S, denoted by n and n, are indicated. If Vis the
volume of fluid contained between the surfaces Sand Sy, the kinetic energy of
Tof this volume of fluid will be

T = / Ip(u-u)dV
v

:%p/VV(/)-V(de

FIGURE 5.12 Control surface for an arbitrary body moving through a quiescent
fluid.
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where ¢ is the velocity potential corresponding to the motion induced in the
fluid by the moving body. This volume integral may be converted to a surface
integral by use of Green’s theorem in the form given in Appendix A. Thus,
since V>¢ =0, it follows from Green’s theorem that

0
T:%p/z(;’)a—ﬁdS

where X is the surface that encloses Vand so consists of the surfaces Sand S,,.
But on the surface S the unit normal points away from the surface and into
the volume V. Using the fact, the surface integral above may be expanded to
give

o ol
-1 - 1 -
T=3p SO¢6ndS 2p/S(,i)andS

The first integral that appears in this expression is zero, which will now be
shown.
From the continuity equation, if follows that

/V-udV: 0
4

This volume integral may be converted into two surface integrals by use of
Gauss’ theorem to yield the following:

/u~ndS—/u-ndS:0
So s

But u-n=0¢/0n on the surface S, and u =V whereV is a constant. Hence

%dS—/V-ndSzﬂ
So On s

The second integral in this identity is zero, since V is a constant vector, so
that for any constant Cit follows that

/ C%dS: 0
So 81’[

Subtracting this quantity from the right-hand side of the expression for T
gives
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0 9]
r=ip [ 6-cgras—1p [ o5has
Now since the fluid velocity far from the body is zero, the value of ¢ there can
at most be a constant. Thus by considering the surface .S, to be large and by
choosing C to be the value of ¢ far from the body, the first integral may be
made to vanish. That is, the kinetic energy induced in the fluid by the move-
ment of the body is

- —%p/sd)g—(’]:dS (5.15)

where, it should be recalled, the velocity potential corresponds to the body
moving through a stationary fluid.

5.15 APPARENT MASS

When a body moves through a quiescent fluid, a certain mass of the fluid is
induced to move to some greater or lesser extent. A question that may then be
asked is, what equivalent mass of fluid, if it moved with the same velocity as
the body, would exhibit the same kinetic energy as the actual case? If the fluid
may be considered as being ideal, the mass of fluid referred to above is found
to depend upon the body shape only, and this mass of fluid is called the
apparent mass.

We define the apparent mass of a fluid M’ as that mass of fluid which, if it
were moving with the same velocity as the body, would have the same kinetic
energy as the entire fluid. That is,

IMU? = —%p/q’)g—d)dS
K n
86 (5.16)
P [ 4%
M = U2/5¢8nds

For arbitrarily shaped bodies the velocity potential will depend upon the
direction of the flow. That is, the apparent mass of fluid associated with a
given body will be a property of the shape of that body, and as for inertia,
there will in general be three principal axes of the apparent mass. For axi-
symmetric bodies there will be two principal values of M, while for the
sphere there will be only one.

As an example of an application of Eq. (5.16), the apparent mass for
the sphere will be worked out here. The velocity potential (5.95) corresponds
to a stationary sphere of radius a with a uniform flow of magnitude U
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approaching it. Then the required velocity potential may be obtained from
Eq. (5.9b) by adding the velocity potential for a uniform flow of magnitude U
in the negative x direction. This gives

1d°
o(r,0)=U r+§r—2 cos — Urcos 0

3

:%U:—zcosg
o¢ 09 B a
%(r,é)) _E(r,ﬁ) = —Ur—3c0s6

Hence on the surface Swhere r=a

9 _

o= 2 U?acos? 0
Then, from Eq. (5.16), the apparent mass for the sphere is

2" T
M =_r dw/ (-1 U?acos? 0)a* sin 0d0
Ua Jy 0 (5.17)

M =2na*p
That is, the apparent mass for a sphere is one-half of the mass of the same
volume of fluid. This apparent mass may be added to the actual mass of the
sphere, and the total mass may be used in the dynamic equations of the
sphere. That is, the existence of the fluid may be ignored if the apparent mass
of fluid is added to the actual mass of the body.

PROBLEMS

5.1 Use the definition of the Stokes stream function and the ® component
of the condition of irrotationality to show that the equation to be satis-
fied by the stream function y/(r, 6) for axisymmetric flows is as follows:

o2y o/ 1 oy
27 i [— [ —
"o +Sm680 (sin@ 80) 0 (5.18)

5.2 Show by direct substitution that the stream functions obtained for a
uniform flow, a source, and a doublet, as given by Egs. (5.5b), (5.6b) and
(5.7b), respectively, satisfy Eq. (5.18).
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Y(r,0) =1 Ur?sin’ 0 (5.5b)
W 0) = —2 (1 + cos ) (5.6b)
T 4gn '

W(r,0) = —%sinz 0 (5.7b)

5.3 Look for a separation of variables solution to Eq. (5.18) of the following
form

Y (r,0) = R(r)T(0)
Hence show that the finite solutions for R(r) are of the following form:
R,(r) = A"

and that the equation to be satisfied by 7'(0) is the following:
d*T
2 _
(1—n )d_;72+n(n+ NT=0
where 7 = cos 0. Show that the substitution 7' = (1 — »?)
forms this equation to the following form:
d’*t
dn?

1/21 trans-

1

1—5? =

d
11— —2nd—;+ n(n—1) —
This is the associated Legendry equation. Show that the nonsingular
solutions to this equation are the following:

() = (1 7)1 420

In the above, P,() is Legendre’s polynomial of order ». Thus deduce
that the general solution to Eq. (5.18) is the following:

W(r,0) = ;Ang%[ﬂ,(cosg)] (5.19)

5.4 Show that setting A, = 0 for n = 1 in Eq. (5.19) yields the solution for a
doublet.

5.5 Figure 5.13 shows a doublet of strength y* located at x =/and a doublet

of strength u* located at x = a?/I. Show that the surface r=a corre-

sponds to y = 0if w*= —a’u/. Hence deduce that the stream function
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FIGURE 5.13 Superposition of a doublet of strength u and a doublet of strength p*
leading to a doublet of strength u* outside a sphere of radius a.

for a doublet of strength u located a distance / from the center of a
sphere of radius a is given by the following equation:

3
[ ) ka . 2
Y(r,0) = —Rsm b+ dnln sin” o (5.20a)
Also deduce that the corresponding velocity potential is given by the
following equation:

3

u ua
4nBn?

¢(r,0) = +——cosff —

cos 5.20b
4nC2 * ( )

5.6 Show that the force that acts on a sphere of radius a due to a doublet of
strength u located a distance / from the center of the sphere along the x
axis is given by the expression:

_ 3pitdll .
(2 — a?)*

5.7 A spherical gas bubble of radius R(7) exists in a liquid; that is, the radius
of the bubble is changing with time. The liquid is quiescent, except for
any motion that is caused by the bubble itself. It is assumed that the
fluid motion does not involve any viscous or compressible effects, and it
may therefore be represented by a time-dependent velocity potential
that satisfies the following conditions:
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FIGURE 5.14 Coordinate systems for a sphere moving through a stationary fluid.

Vi = 1o <r2@) =0

T r2or\’ or
0P B
E(r—> 00,1) =0
op, .
E(F—R,t)—R

In the above, R is the derivative of R with respect to time. Obtain an
expression for the radial velocity at the surface of the bubble and for the
velocity potential ¢(r, £), both of these expressions being in terms of R,
R, and r. Also obtain an expression for the pressure at the surface of the
bubble p (R, f), taking the pressure far from the bubble to be p,, which is
a constant.

Suppose that at time r=0 the pressure at the surface of the
bubble is py, the radius of the bubble is R, and its initial velocity
is —R; that is, the radius of the bubble is decreasing as time increa-
ses. Find the time required for the radius of the bubble to shrink
to zero.
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5.8

Chapter 5

A sphere of radius a moves along the x axis with velocity U(7) that varies
with time. A fixed-origin coordinate system is defined by the location
of the sphere at time =0, so that its location at any subsequent time
will be defined by the relation:

xo(?) :/0 U(t)dr

This situation is depicted in Fig. 5.14. If P is any fixed-field point, its
coordinates (r, 7) relative to the sphere will change with time. Obtain the
velocity potential for the sphere in a stationary fluid, first in terms of r
and 0, then in terms of x, R, and xy. If the undisturbed pressure is p.,
find the pressure at the field point Pin terms of rand 0. Hence, by inte-
grating the pressure around the surface of the sphere, find the force
acting on it. Compare the result so obtained with that obtained by using
the apparent mass concept in conjunction with Newton’s second law of
motion.
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SurfaceWaves

The effect of gravity on liquid surfaces is treated in this chapter. The flows
associated with surface waves will be assumed to be potential, which is a
valid approximation for many free-surface phenomena. Most of the flows
treated here will be two-dimensional. However, the treatment of surface
waves has been separated from the other two-dimensional potential flows
because of the different nature of the problems and the different approaches
to their solutions.

The formulation of surface-wave problems is discussed first. The line-
arized version of this formulation is then presented, and this version is used
throughout most of the remainder of the chapter. The propagation speed of
small-amplitude waves is established, and the effect of surface tension on
this result is investigated. Waves on shallow liquids are discussed next, and
the manner in which waves of arbitrary form and amplitude propagate is
established.

The complex potential for traveling waves is calculated, and this result
is used to establish the pathlines for fluid particles in a body of liquid on the
surface of which surface waves are propagating. A superposition of traveling
waves is then used to introduce the topic of standing waves. The particle
paths for this type of wave are also established. The topic of standing waves
leads, quite naturally, to the question of what type of waves may exist on the

201
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free surface of liquids that are contained in vessels of finite dimensions. In
particular, rectangular and cylindrical vessels are discussed. The response
of the free surface to arbitrary motions of such vessels is obtained. Finally,
the behavior of waves at the interface of the two different fluid streams is
investigated. This leads to the topics of Helmholtz or Rayleigh instability and
Taylor instability.

6.1 THE GENERAL SURFACE-WAVE PROBLEM

When a quiescent body of liquid experiences gravity waves on its free sur-
face, the motion induced by the surface waves may be considered to be irro-
tational in most instances. Then the velocity vector may be expressed as the
gradient of a velocity potential, which in turn, must satisfy Laplace’s equa-
tion. That is, the governing equation is the same as that for each of the two
previous chapters, so that surface-wave theory introduces no new difficulties
with respect to the governing equation. The boundary conditions to be
satisfied will now be established.

Figure 6.1 shows a body of liquid on a flat surface in which waves exist
on the free surface of the liquid. The x axis of a coordinate system is located
at the mean level of the free surface, which is defined by the equation
¥ = n(x, z, t) and the mean depth of the liquid is /. Two boundary conditions
must be imposed on the free surface y = 5. The first of these conditions is
called the kinematic condition, and it states that a particle of fluid that is at

y=nxzr)

E— TN o
"% S—— =

h

o S, B R IR S O,

P AR P S I o o D e A R A
P A M K K, K K R K R R D K P K DK e K K X K K R, R K A KK
e I e S S e e S 0 e o e S et

FIGURE 6.1 Coordinate system for surface-wave problems.
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some time on the free surface will always remain on the free surface. Then,
since the equation of the free surface is y — # = 0, it follows that

D
E(J’—ﬂ)zo

In terms of eulerian coordinates this boundary condition becomes

0
— (- -Vy—1n)=0

=) a0 )
But in the eulerian frame of reference the coordinates x, y, z, and ¢ are inde-
pendent. Also, the function 1 depends on x, z, and ¢ only. Hence the equation
above may be expanded to give

on O on
_———y— — —_— = 0

a Mo TV
where it has been noted that 0x;/0x; = ¢;;. Finally, expressing the velocity
components in terms of the velocity potential ¢, the kinematic surface con-
dition becomes

on  0von 0pon_ o
ot OxOx 0z0z Oy

The other boundary condition that must be imposed on the free sur-
face is a dynamic one. Typically, the statement amounts to specifying that
the pressure is constant, but in general it may be stated that p = P(x, z, f)
on y = n. This condition is implemented through the Bernoulli equation.
The appropriate form of the Bernoulli equation is that for unsteady, irro-
tational motion. Since gravitational forces are intrinsically important in
free-surface waves, gravity must be included in the body-force term. Thus,
from Eq. (I1.6) with G = —gy, the boundary condition p =P on y =1
becomes

dp P B
8t+p+zv¢ Vo +gn = F(¢)

Finally, the boundary condition at the bed must be imposed. For the
case of an inviscid fluid which is under consideration, this amounts to spe-
cifying that the velocity component normal to the boundary be zero. For a flat
bed as shown in Fig. 6.1, this simply amounts to specifying that 9¢/Jy = 0 on
y=—h.
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To summarize, in terms of the velocity potential ¢, the conditions to be
satisfied for surface-wave motions are the following:

Vi =0 (6.1a)
On  0¢On (9(/5817_% B
ot Toxox " ozoz oy MY (6.1b)
o P
8_f+5+%v¢'v¢+g’7:F(t) ony=n (6.1¢)
9 B
oy =0 omy=ch (6.1d)

The difficulty in solving surface-wave problems may be seen to be in the
boundary conditions rather than the differential equation. Equation (6.1¢) is
nonlinear, and both it and Eq. (6.15) are to be imposed on the surface y = #.In
many real situations this surface may not be known a priori and may be one of
the quantities that comes out of the solution itself. However, many interest-
ing features of surface-wave flows do not depend upon these complex fea-
tures of the problem. That is, by linearizing the problem, the difficulties
discussed above may be avoided while the basic features of the flow are not
destroyed. Such a linearization will be carried out in the next section.

6.2 SMALL-AMPLITUDE PLANE WAVES

For simplicity we consider plane waves, that is, two-dimensional flow fields
with waves on the surface. Then, without any further approximation, the
differential equation to be satisfied by the velocity potential in the xy plane,
is,

— 4+ —=0 (6.2a)

In order to make the surface boundary conditions more tractable,
small-amplitude waves will be considered. That is, only waves for which the
amplitude is small compared with the other characteristic length scales will
be considered. The other characteristic length scales are the liquid depth A
and the wavelength of the waves. But if 7 is small compared with the wave-
length, the quantity 97, /0x,which is the slope of the free surface, will be small.
Furthermore, the quantity d¢/0x, which is a velocity component, will be
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small, since surface waves do not involve high frequencies and since the
amplitude of the motion has been assumed to be small. Then the product
of ¢/ Ox and 91/ Ox, which appears in Eq. (6.15), will be quadratically small
and hence may be neglected to first order. The kinematic boundary condition
on the free surface then becomes

on

ot (x, 1)

= %()‘3 1, t)

Although this equation is free from quadratic terms, it still contains the dif-
ficulty that it must be imposed on y = 1. However, in our present approx-
imation # is small, so that aTaylor expansion may be written for the quantity
O¢ /0y aty = n about the line y = 0. Thus

o o¢ 9*¢

R [ p— - 2
oy 000 = 50 0.0 £ n G (5, 0.0) 4 0(?)

The second term in this expansion is quadratically small and so, to the first
order, may be neglected. That is, to the first order in small quantities, the
boundary condition (6.15) may be written in the form

¢

Eu@n:%mo (6.2b)

The dynamic boundary condition on the free surface may be treated in
the same way. Since the fluid is essentially quiescent and any fluid motion is
induced by the waves, the nonlinear term u-u = V¢ - V¢ may be neglected
as being quadratically small. Thus Eq. (6.1¢) becomes

130 P(x,1)
p

m@%ﬁ+

+gn(x,t) = F(1)

The quantity O¢ /0t may be expanded in aTaylor series about the line y = 0,
and only the first term in this expansion need be retained. This gives

o
E(x707t) +

PO | enet) = F (1)

The quantity F(¢) may be absorbed into the velocity potential ¢(x, y, t) by
considering ¢(x, y, ) to be replaced by

o(x, p, 1) + /F(t) dt
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Thus the linearized version of Eq. (6.1¢) may be written in the form

o P(x,1) _
E(xv()?t) +T+g17(x7t) =0

If the time derivative of this equation is formed, the term 9n/J¢ may be
eliminated in favor of 9¢/Jy from Eq. (6.2b). Thus the preferred form of the
dynamic boundary condition on the free surface is

0*¢ 10P(x,1) o

W(x,o,t)+p ET +ga—y(x,0,t):0 (6.2¢)

The boundary condition on the bed is unaffected by the linearization and
requires
¢

By (x, —h, 1) =0 (6.2d)

Equations (6.2) represent a much more tractable set than the general
equations presented in the previous section. However, as was mentioned
earlier, they correctly predicted many of the features of surface waves, and so
they will form the basis of most of the remaining sections of this chapter.

6.3 PROPAGATION OF SURFACE WAVES

Consider a quiescent body of water or other liquid of depth 4, as shown in
Fig. 6.2. A small-amplitude plane wave is traveling along the surface of this
liquid with velocity c. The form of the wave is taken to be sinusoidal, with the
amplitude of the wave ¢ and its wavelength /. Thus the equation of the free
surface will be y = n(x, ), where

2
n(x,t) = ssin—?(x —ct)
A

This corresponds to the wave traveling in the positive x direction with velo-
city c.

The question we ask is the following: Given the wave amplitude ¢ and
wavelength 4 and given the depth 4, what will be the propagation speed ¢?
The answer to this question may presumably be obtained by solving the flow
problem for the velocity potential. For the time being, surface-tension effects
will be neglected; so the pressure on the surface of the liquid will be constant
and equal to, say, atmospheric pressure. That is, P(x, ) = constant in this
instance. Then, from Egs. (6.2), the problem to be solved for ¢ (x, y, ¢) is
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h

FIGURE 6.2 Parameters for a pure sinusoidal wave.

%(x, 0,1¢) = —szzc coszf(x— ct)
aaz—t(f(x, 0, 1) +g%(x, 0,)=0
%(x7 —h,t)=0

Here the equation for #(x, #) has been used in the kinematic condition on the
free surface. The appropriate solution to the Laplace equation by separation
of variables will be trigonometric in x, and hence it will be exponential or
hyperbolic in y. This deduction follows from the nature of the value of d¢/ dy,
which is prescribed on y = 0 by the kinematic boundary condition. In fact,
inspection of this boundary condition yields even stronger information.
Since ¢ /Jy must vary as cos 27(x — ct) /1, then so must ¢p. That is, the nature
of the time dependence is brought in through this boundary condition, as is
the nature of the x dependence. Furthermore, since the separation constant
in the x direction must be 27//, the separation constant in the y direction
must also be 27/1. Hence the appropriate form of solution to the Laplace
equation is

o(x,p, 1) = cosz)ﬂ (x —ct) <C1 sinhz% +G coshzjy>
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Here, the hyperbolic form of solution in y has been used in preference to the
exponential form, since the region in y is finite rather than infinite. This
facilitates application of the boundary conditions. Having used the form of
the first boundary condition, the third boundary condition will now be
imposed. Thus the condition that 9¢/Jy must vanishony = —hgives

2rh 2n 2nh> 0

27 2n )
COST (x —ct) (7 C coshT - ) sth

Since this condition is to be satisfied for all values of x and ¢, the quantity
inside the second parentheses must be zero. This gives
27nh

C] = C2 tanhT

Hence the solution for ¢(x, y, ) becomes

2 2 2 2
p(x,p,1) = C cosTn(x —ct) <tanh%hsinh ;Ty + cosh%)

(!

Finally, the second boundary condition, corresponding to the dynamic con-
dition on the free surface, will be imposed. This gives

2 2re\* 2 2mh
Czcos;(x—ct) [_(;w) +g;tanh7;] =0

Again this equation is to be satisfied for all values of x and ¢, so that the
quantity inside the brackets must vanish. But the only unknown quantity
inside the brackets is the wave speed c. That is, imposing this final boundary
condition determines the speed ¢ with which the wave train is traveling. In
nondimensional form the result is

c? A 27h

gh ﬂ anhT (63a)

Equation (6.3a) was obtained using a small-amplitude approximation,which
means that it is valid provided ¢ < Aand ¢ < A.

As a special case, we consider deep liquids, that is, liquids for which
h > A. Then the parameter 2nh// will be large, so that tanh (2nh/1) will be
approximately unity. Then, for deep liquids Eq. (6.3a) may be approximated
by

L (6.3b)
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Equation (6.36) will be valid for ¢ < 1 < h.
The other obvious limit is that of shallow liquids, that is, liquids for
which & < /. In this case the parameter 274/ will be small so that

2nh 2nh
tanh— ~ —
A A

Then Eq. (6.3a) becomes

S (6.3¢)

which will be valid for e < h < A

The foregoing results are presented schematically in Fig. 6.3, in which
the general solution [Eq. (6.3a)] is shown by a solid line and the two asymp-
totic limits are shown dotted.

An arbitrarily shaped wave train may be considered to be a super-
position of sinusoidal waves of the type just treated. That is, waves of
arbitrary form may be Fourier-analyzed and so decomposed into a number
of pure sinusoidal waves. Thus the foregoing results show that such waves
will not, in general, propagate in an undisturbed way. That is because the

I

&" | Fqu.(6.3b) / Equ. (6.3¢)
| \’f f
1.0 - S (S S ————
: /
/
£
/
/

~ Equ.(6.3a)

shallow liguids —=

FIGURE 6.3 Propagation speed ¢ for small-amplitude surface waves of sinusoidal
form.
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propagation speed c, or celerity, as it is sometimes called, depends upon the
wavelength A of its sinusoidal components. Only with shallow liquids [Eq.
(6.3¢)] is the propagation speed independent of the wavelength. That is,
unless the shallow-liquid conditions apply, the different Fourier components
of an arbitrarily shaped wave will all travel at different speeds so that the
waveform will continuously change. This process is usually referred to as
dispersion.

6.4 EFFECT OF SURFACE TENSION

In the previous section it was assumed that the pressure along the topmost
layer of the liquid was constant corresponding to atmospheric pressure.
However, if surface-tension effects are included, the pressure along the edge
of the liquid will be different from the pressure outside the liquid unless the
surface is flat. To establish the effect of this pressure differential, an element
of the surface is isolated in Fig. 6.4 and the forces due to surface tension are
indicated.

At the reference position x the value of the surface tension is o, and
the slope of the surface there is 9n/0x. Then, a short distance Ax farther
from the origin the value of the surface tension will be ¢ + (Jo/0x)Ax, and
the slope of the surface will be 95/0x + (0*n/0x?)Ax. Only the first-order
corrections have been written down here, since the unwritten terms in the
Taylor series will contain terms of order (Ax)* or smaller. Then, if py is the
pressure above the liquid and if P(x, #) is the pressure at the edge of the liquid,

6 D
6 <
r 7

P(x, 1)

— X Av —

FIGURE 6.4 Element of liquid surface showing forces due to surface tension.
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vertical equilibrium of the element of surface shown in Fig. 6.4 requires that
the following equation be satisfied:

oo on 0%y on
(P_pO)AX+ (G—Fan) (g"‘f‘@M) —O'g—o

Expanding the terms in this equation and neglecting terms that are quadratic
in the length Ax gives

Py ooy

P gL 90N _
( Po) +U(’)x2 Ox Ox

The length Ax may now be permitted to shrink to zero, so that the neglected
terms become identically zero and the preceding equation becomes exact.
The last term in this equation will be zero if ¢ is constant and will be quad-
ratically small if ¢ is almost constant. Thus to the first order in small quan-
tities the pressure P(x, ) at the edge of the liquid becomes

0%

P(x,t) =py— 0 —
(x7) pO O-axz

In the dynamic boundary condition on the free surface [Eq. (6.2¢)] the pres-
sure enters through the term 0P/ 0t. But, if the pressure py outside the liquid
is constant, the expression for 9P /0t is

A
o T ox*\ot
¢
= —O'axTay(X,O,t)

where the order of differentiation has been interchanged in the first equation
and On/Othasbeen eliminated in favor of derivatives of ¢ using the kinematic
boundary conditions (6.25). Using the preceding result, the dynamic bound-
ary condition on the free surface [Eq. (6.2¢)] becomes

¢

ol 0 P o¢
y

W(x’o’t) p Ox2dy

(%,0,¢) + g—(x,0,£) =0 (6.4)

This revised form of the dynamic boundary condition will be used to recal-
culate the propagation speed of a sinusoidal wave.

The existence of surface tension does not affect the governing partial
differential equation, the kinematic surface condition, or the bed boundary
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condition. Hence, from the previous section, the velocity potential that
satisfies these unchanged equations is

2 27h 2 2
b (x,,1) = C; cos f (x — er) (tanh%sinh fy + cos %)

Application of the boundary condition (6.4) to this velocity potential results
in the requirement

2n 2ne\? o [27\° 2nh 2n 2nth
G c0s7(x —ct) [— (T) —&—; <7> tanhT +g7tanh71 =0

The general solution to this equation requires that the quantity inside the
brackets vanish, which gives, in nondimensional form,

E o (21’ 2mh
gh 2nh [ + pg ( A ) ] tan A (6.5a)

If o is negligibly small, Eq. (6.3a) is recovered. This result shows that the
effect of surface tension is to increase the propagation speed of the wave.
For deep liquids, the parameter 27h// is large, so that Eq. (6.54a)

becomes
c? A o (2n\°
— = |14+ ——
gh 2nh g \ 4
If, in addition, the parameter inside the brackets is sufficiently large that

c <2n>2
— (=] >1
pg \ 4

then the expression for the propagation speed will reduce to the following:

A2 2no

gh ™ pgih

(6.5b)

Waves that satisfy the foregoing conditions and so travel at the speed defined
by Eq. (6.5b) are called capillary waves. It will be noted that the propagation
speed of capillary waves depends upon the wavelength 4, so that an arbi-
trarily shaped wave will disperse because of the different propagation speeds
of its Fourier components.
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s

ah

capillary waves

1.0 —

shallow-liquid waves

deep-liquid waves

0 A
2nh
FIGURE 6.5 Propagation speed for sinusoidal waves including the effects of surface
tension.

The propagation speed of sinusoidal waves, as predicted by Eq. (6.5a),
is shown in Fig. 6.5 as a function of the parameter 1/(2nh). It is seen that the
effect of surface tension modifies our previous result only in the deep-liquid
end of the spectrum. This is because the condition

o (2n\?

— (=] >1

pg \ 4
is realized only for small values of A, which in turn, corresponds to deep-
liquid waves.

6.5 SHALLOW-LIQUID WAVES OF ARBITRARY
FORM

It was deduced from the results of the previous two sections that waves of
arbitrary form will disperse unless the liquid is shallow. That is, owing to the
different propagation speeds of its Fourier components, an arbitrarily
shaped wave will decompose unless the liquid depth # is small compared
with the shortest wavelength A of the various Fourier components that
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constitute the wave. The deduction that shallow-liquid waves of small
amplitude will not decompose may be verified by carrying out a detailed
study of such waves.

The starting point of such a study is the equations governing the
dependent variables. These equations may be obtained from the continuity
and Euler equations by integrating across the fluid depth and employing a
one-dimensional approximation. However, it is no more difficult and con-
siderably more instructive to derive the equations from first principles using
a one-dimensional approach. The latter procedure will be followed here.

Figure 6.6a shows a portion of a liquid layer in which a surface wave of
arbitrary form exists. The waveform is assumed to be such that the smallest
wavelength of its various Fourier components is large compared with the
mean depth /. Then a one-dimensional approximation may be employed.
That s, the xcomponent of the velocity vector will be assumed to be constant
over the fluid depth, and the y component of the velocity vector will be
neglected as being small.

Figure 6.6b shows an element of length Ax of the fluid that extends from
the bottom to the free surface. The mass-flow rates into the element and out
ofitare alsoindicated in Fig. 6.6b. The mass-flow rate per unit depth entering
the element through the surface at x is pu(h + ). Then the mass flow leaving
the element at x + Ax is indicated by the first two terms of a Taylor series
about the station at x, the remaining terms, not indicated, then being of order
(Ax)* or smaller. A mass flux is shown leaving the control volume at the top.
This is due to the fact that # depends on both x and ¢ and the quantity 9y/0t
represents the vertical velocity of the free surface. Then, multiplying this
velocity by the density and the length Ax gives a mass efflux per unit time per
unit depth. Using the expressions for these various components of mass-flow
rate, the equation of mass conservation becomes

0 0

{pu(h + 1) +—=—[pu(h +n)] Ax} + p—n Ax —pu(h+n)=0
Ox ot

The first and last terms cancel each other, and the remaining terms may be

divided by pAx to give

on 0 B
E+a[u(h+’7)] =0

The limit Ax — 0 may now be taken so that the terms that were not included
in the Taylor expansion now become identically zero. In the resulting equa-
tion, the product un will be of second order and so may be neglected. Hence
the linearized form of the continuity equation is
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(a)
(b) pulh+m) pui{fitmn) 4--‘%[;) uifi+n)]
© P (h 1) — N p:;3(21+n)+§7[p;;3(f;+q)]A_X
¢
Lpgth+n)— ~— Lpgtheny= llpgthrnylax

L]

FIGURE 6.6 (a) Arbitrary waveform on a shallow liquid layer, (b) mass-flow-rate
balance for an element, and (c) momentum and force balance in the x direction.

4 h—=0 (6.6a)

Figure 6.6c shows the same element of fluid considered above but on
which the components of the x momentum and the external forces are indi-
cated. The components of the x momentum are obtained by multiplying the
mass-flow components obtained above by the x component of the velocity
vector u. In so doing it should be noted that the mass-flow component that
leaves the control volume by way of the free surface will, in general, have an
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x component of velocity, so that an efflux of x momentum will be involved
although the mass flow is essentially vertical. The forces that act on the
fluid element in the x direction are due to the pressure in the fluid. This
pressure, in turn,will be hydrostatic in our linear approximation. Then at the
reference station at x the pressure will vary from atmospheric at the free
surface to atmospheric plus pg(h + ) at the bottom. This linear variation in
pressure gives rise to a force in the positive x direction of pg(h + 11)2/2, in
which gauge pressures have been used since absolute values have no con-
sequence here. At the location x + Ax the first two terms in aTaylor series of
this quantity are indicated in Fig. 6.6c. Then, from Newton’s second law, the
rate of increase in the x momentum of the fluid as it passes through the
control volume is equal to the net external force acting in the x direction on
the fluid. Thus

0 9. , on
a[pu(h+n) AXx] +a[pu (h+17)}Ax+puEAx
AR 2
= o [Eﬂg(h'*"?) } Ax

The first term in this equation represents the time rate of increase of the
momentum of the element of fluid, while the second and third terms repre-
sent the net convective increase associated with the various mass-flow com-
ponents. The term on the right-hand side of the equation represents the net
external force that comes from the hydrostatic pressures.

Dividing this equation by p Ax gives the following form of the equation
of momentum conservation:

0 0 on 0

k)] + 5[ (4 )] + s = —g(h+ )5

Here the differentiation on the right-hand side has been carried out, and Ax
may now be permitted to tend to zero, so that the unwritten terms in the
Taylor expansion vanish. This equation will now be linearized in the small
quantities # and . Thus, in the first term the product un is of second order and
hence may be neglected. The entire second term is of second order or smaller
owing to the presence of 2. Likewise, the third term is quadratically small in
u and 7. In the term on the right-hand side the product 5 0n/0x is quad-
ratically small and so may be neglected. Thus the linearized form of the
equation of momentum conservation is

ou an

o T8 =0 (6.6b)
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Equations (6.6a) and (6.6b) are, respectively, the equations of mass and
momentum conservation. They represent two equations in the two
unknowns u and 7. By forming the cross derivatives 0*u/9x0t and 6?1/ 0x0t,
first # and then u may be eliminated between Egs. (6.6a) and (6.65). This
shows that the equations to be satisfied by u and # are

Pu &u
o~ Shga =0
?n n
o gh@ =0

That is, both # and # must satisfy the one-dimensional wave equation. Hence
u and 1 must be of the general form

u(x,t) =fi(x — \/gh t) + g1 (x+ /gh 1) (6.6¢)
(X, 1) = folx = Veh 1) + &(x + /gh 1) (6.6d)

where fi, g1 and f5, g are any differentiable functions. The first solution
in each of these equations represents a wave traveling in the positive x direc-
tion with velocity v/gh. The second solution in both cases represents a wave
traveling in the negative x direction with velocity \/gh. That is, if an arbitrary
wave is traveling along the surface of a shallow-liquid layer, it will continue
to travel with velocity /gh. This confirms the propagation speed derived
earlier for a sinusoidal wave [Eq. (6.3¢)] and shows that the shape of the wave
does not change as it moves along the surface. Thus if the shape of the wave
is known as a function of x at some time, it will be known for all values of
xandt.

6.6 COMPLEX POTENTIAL FOR TRAVELING
WAVES

Consider, again, the case of a small-amplitude surface wave in a fluid of

arbitrary depth. For a sinusoidal wave of the form

nix, 1) =¢ sin2}—7I (x —cr)

it was shown in Sec. 6.3 that the velocity potential was

o(x,p, 1) = Czcoszj—n (x —cr) <tanh#sinh2% + cosh 2;ﬂ>
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The constant C; may be evaluated by completely imposing the kinematic
boundary condition on the free surface. This boundary condition was used
only to establish the functional form of the solution, but it was not strictly
imposed. Then, as required by Eq. (6.2b), the condition d¢/dy(x,0,t) =
on/ot(x, 1) gives

2 2n 27h 2 2
n (x— ct)tanh— = ¢ 0s " (x — )

@7 A A A A A

which is satisfied by setting

ce
G= " tanh(27h/7)

Then the velocity potential for a traveling sinusoidal wave is

¢(x,y,t)cgcoszi(xct)(sinhzﬂ+ th@c hzfy> (6.7a)
A A

where the propagation speed ¢ must satisfy Eq. (6.3a). From Eq. (6.7a) the
stream function for a traveling wave may be deduced, and so the corre-
sponding complex potential may be obtained. This, in turn, will be used to
establish the particle paths for traveling waves.

Since u = 9y /dy = d¢/Ox, it follows from Eq. (6.7a) that

oy 2me . 2n 2y 27 h 27Iy
i ssm7(x—ct)<sm ] i)

Integrating this expression shows that y/(x, y, f) is of the form

Y(x,p,t) = ce sin277r (x —c1) (coshT + coth#smhz?)) + F(x)

where F(x) is any function of x that may be added through the integration. In
principle a function of time could also be added, but it is known that, for a
traveling wave, the time dependence above is correct. Another expression
for Y/(x, y, t) may be obtained from the fact that v = —0y//0x = d¢/Iy. This
gives

27h 2ny

N 2me 2n 2my
uh Al cosj(x—ct) (cosh7+ thTs h7>

ox
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so that

2 2 2 2
Y(x,p,t) = ce sin% (x —ct) (cosh% + coth%hsinh g) + G(y)

where G(y) is any function of y. Comparing this result with the previous
expression for /(x, y, f) shows that F(x) = G(y) = 0, so that

V(x,y,t) = ce sinz)—n (x —ct) <cosh 2?) + coth? sinhz—?> (6.7b)

L

Equations (6.7a) and (6.7b) define, respectively, the velocity potential
¢(x,y,t) and the stream function y(x,y, t) for a traveling sinusoidal wave.
Then the corresponding complex potential F = ¢ + iy may be established as
follows:

ce
F S
(=0 = = Gohea7)
2 27h 2 27h 2
x L cos " (x —ct) sinh " sinhﬂ + cosh” cosh =
A A A A A

2ny

2 27h
—i sin%I (x —ct) [sinh%cosh

L

+ coshz)ih sinh 2;2} }

- %
~ sinh(27h/2)
21y

2nh 2n
h— —(x— h—
X {cos ] {cos 7 (x — ct) cos /1

2 2
—i sin7n (x — ct) sinh ;ty}

2 2 2
+ sinh%h {cosf (x —cr) sinh =2

2 2
—i sin% (x —ct) cosh%} }

The hyperbolic functions that are inside the brackets will now be trans-
formed into trigonometric functions having imaginary arguments using the
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identities sinio = isinha and cosia = cosha. Thus the complex potential
may be written in the form

%
sinh(27h/ %)

27h 27 2my
X {coshT {cos p (x — ct) cos (z T)
. 2m . [ 2ny
—sin—- (x — ct) sin <12>}
271 {icoszf (x — ct) sin (i 22y>
—i sinz)—n(x — ct) cos (zzjﬂﬂ }

S — cosh@cosz—n(z —ct)
= sinh(27h/2) L ST e

F(z,1) =

+ sinh

2nh . 2mn

—isinh——sin— (z — ¢t
A A ( )}

Here the quantities inside the brackets have been observed to be the expan-

sions of single trigonometric functions involving x — ¢t + iy = z — ct. Again

converting the hyperbolic functions inside the brackets to trigonometric

functions gives

ce
Flz,t) = — ——
(0 =~ Sah@mR)
X |cos ,2mh cosz—n( —ct) — sin ,2mh sinz—n( —ct)
i— T(z—c i— T(z—c
ce 2n .
F(Z, t) = — WCOST(Z —ct + lh) (670)

where it has been observed that the brackets contain the expansion of a single
trigonometric function. Equation (6.7¢) gives the complex potential for the
traveling sinusoidal wave #(x, ) = esin2n(x — ct)/A.

6.7 PARTICLE PATHS FOR TRAVELING WAVES

As a wave train travels across the surface of an otherwise quiescent liquid,
the individual particles of the liquid undergo small cyclical motions.
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The precise trajectory followed by the fluid particles may be established with
the aid of the results of the previous section.

Consider a specific particle of fluid such as the one indicated by the
point Pin Fig. 6.7a. The instantaneous position of this particle of fluid will be
indicated by a fixed-position vector zy and an additional vector z; that varies
with time. That is, the length and orientation of zy remain fixed while both the
length and inclination of z; vary with time. Then, considering the complex

2nh
A

2g coth

O

repiol @)

(b) (c)

FIGURE 6.7 (a) Coordinate system for establishing particle paths, (b) particle trajec-
tories due to a sinusoidal wave, and (c) the trajectories in deep liquids.
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conjugate of the variable-position vector, that is, considering z; = x; — iy, it
follows that
dz; _ dx; . dyl

_—

dt  dt dt
=u—1iv
=W

_ar
T dz

Then, using Eq. (6.7¢),

dz;  (2n/l)ce . 2n .
&t~ sinh(2mh/) S (F e+ i)

Integrating this equation with respect to time gives

_ € 27 "
Z = Sh(27h7) 0057(2 — ct +ih)

Here the constant of integration has been taken to be zero without loss of
generality. Such a constant would not affect the time dependence of z;, and so
it would not affect the trajectory of the fluid particle. Rather, it would only
change the length of the z; position vector, which is equivalent to adjusting
the choice of the constant z; position vector.

Comparing the foregoing expression for z; with Eq. (6.7¢) shows that

Then it follows thatx; = —¢(x,y,f)/candy; = Y(x,y,t)/c. Hence, from Egs.
(6.7a) and (6.7bh), the coordinates x; and y; of the trajectory of our reference
fluid particle will be given by

2 2 2nh 2
X =¢ cosT7r (x —ct) (sinh% + cotthosh%)
) A

2 2 27h 2
y=c sinTE (x —ct) (cosh% + coth%sinh%)

That is, the instantaneous coordinates of the trajectory of a fluid particle
depend on both the x and y coordinates of the fluid particle and on the time.
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The time 7 may be eliminated between these two equations to yield the tra-
jectory of the fluid particle in the following way:

2 2
sinZTn(x —ct) + COSZ%(x —ct)=1

Substituting from the preceding equations for x; and y; into this identity
gives
Xt
¢2[sinh(2my/ ) + coth(2mh/ 1) cosh(2my/2))?

(6.8)
+ )i —1
¢2[cosh(2my/ 1) 4 coth(2mh/)) sinh(2my/1)]*

Equation (6.8) shows that the trajectory of a fluid particle depends only
on its depth of submergence. Eliminating the time also eliminated the x
coordinate. This might have been expected, since each particle of fluid
experiences the same waves passing above it, irrespective of its x coordinate.
Thus the motion experienced by two particles that are separated in the x
direction only will be the same, but the phasing will be different. Since
Eq. (6.8) is that of an ellipse, the trajectories of the fluid particles will be
ellipses whose dimensions are determined by the value of y for the various
particles. For particles that lie on the free surface, y = 0, so that Eq. (6.8)
becomes

2 2
Xq Mo

[ecoth(2mh/A)? &

This shows that the trajectory of particles on the free surface is that of an
ellipse whose semiaxes are ¢ in the y direction and ¢ coth(27A/1) in the x
direction. This result is shown in Fig. 6.7b. For particles that are on the bot-
tom, y = —h, the semiaxis in the y direction becomes zero, and the semiaxis
in the x direction becomes ¢/sinh(2nh/1). That is, the ellipse degenerates
to the line —¢/sinh(2nh/A) < x; < ¢/sinh(27h/2). For values of y that are
intermediate to y = 0 and y = —A, the particle trajectories will be ellipses as
described by Eq. (6.8) and as shown in Fig. 6.7b.

For shallow liquids the ellipses shown in Fig. 6.7b merely become
elongated in the x direction. However, for deep liquids the ellipses become
circles. This may be shown by observing that for deep liquids the parameter
2nh/ ). will be very large, so that coth(2nk//) will be unity. Then Eq. (6.8)
becomes
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2
X1

¢2[sinh(2my/2) + cosh(2my/A)]?

N " .
¢2[sinh(27y/2) + cosh(2my/ )]

This is the equation of a circle of radius ¢| sinh(2ny/ 1) + cosh(27y/1)|. That
is, the radiusis ¢ at the free surface and decreases as ybecomes more and more
negative. The particle trajectories for deep liquids are shown in Fig. 6.7c.

6.8 STANDING WAVES

Up to this point we have been dealing with traveling waves, that is, waves
move along the surface of the liquid. We now consider standing waves, which
are waves that remain stationary—the surface moves vertically only. An
interesting way of obtaining the equation of a standing wave is to super-
impose two identical traveling waves which are moving in opposite direc-
tions. Thus consider two traveling waves 1, and 7, as follows:

_1

. 2m
=3¢ sin— (x — c?)

’71()" t) )

2
ny(x,1) =1 sinTR (x + ct)

Let #(x, ¢) represent the free-surface profile that results from superimposing
these two traveling waves. Then

2 2
=1 {sin ;Ln (x —ct) +sin )n (x + ct)}

(]

nix,t)

N . 2nx 2ncet 2nx . 2mcet
= ¢| sin——cos—— — cos sin
2 A A A A

2nx sin 2nct
A

. 2mnx 2nct
+ smTcosf + cos
A

Y

. 2nx 2nct
= ¢sin—cos——
A A

That is, the superposition of two identical traveling waves results in a wave
that, at any time, is a sine function in x and that, for any value of x, oscillates
vertically in time. Such a wave, in which the entire surface oscillates in time,
is called a standing wave.
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The complex potential for a sinusoidal-shaped standing wave may be
obtained by superimposing the complex potentials for two traveling waves
moving in opposition to each other. Thus, Eq. (6.7¢) will be used to obtain the
complex potential for two waves, each of amplitude ¢/2 and wavelength 4,
one of which is traveling in the positive x direction with velocity ¢ and the
other of which is traveling in the opposite direction with the same velocity.
Hence

2 2
—cos—n(z— ct + ih) +cos—n(z+ct+ih)

F(z,1) ce/2 { p 7

~ sinh(27h/ )

The cosine functions will now be expanded, taking z + i/ as one element and
ct as the other. This gives

ce/2
F&0 = o
2 2 2
X {— cosTH (z + ih) cosnTCt - sinT7I (z + ih) sin et
2n . 2nct . 2n . 2met
+eos—- (z + ih) cos—— — sin—- (z+ih) sin—-—
ce . 27 . 2met
F(Z, t) = _WSIHT,(Z+Ih) sin ] (69)

Equation (6.9) gives the complex potential for a standing sinusoidal wave of
wavelength Z which is oscillating in time with frequency 2nc/A.

6.9 PARTICLE PATHS FOR STANDING WAVES

Following the procedure employed in Sec. 6.7 for traveling waves, the parti-
cle paths for standing waves may be established from the complex potential.
Using the same coordinate system as was used in Sec. 6.7, it follows as before
that

dz _dF
dt dz
Then, using Eq. (6.9),

dz; (2m/A)ce 27 o . 2mct
= " sinh(aany 087 ¢+ k) sin=

Integrating with respect to time and neglecting the constant of integration as
before gives the following expression for z; :
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¢ cos 27r( + ih) cosant
= - —_— Z _
sinh(27h/7) <% 7 p

Writing z + ih = x + i(y + h) and expanding the trigonometric function of
this argument gives

€

~ sinh(2nh/J)
2nct 2nx 27 L 2nx ., 2%
X cos—— cosTcosh 7 v+h) - lsstth(y +h)

in which the trigonometric terms having imaginary arguments have been
converted to hyperbolic terms. The quantity z; is complex and so may be
written in the polar form

Z1=n e
where r; and 0, are defined by

&

B sinh(2nh/ 1)
2 2 2 2 2
X COS TCI \/cos2 X cosh2 =" (y + h) + sin’ X inh? 2F y+h)
A A A A
(6.10a)
0; =tan~! [tanz%tanhzjn()ﬂr h)] (6.105)

Equations (6.10@) and (6.105) show that, for given values of x and y, the
polar angle 0; of the particle trajectory is constant whereas the radius r;
oscillates in time. Thus the particle trajectories will be straight lines whose
inclination will depend upon the location of the particle under considera-
tion. In particular, when x = n1/2, Egs. (6.10a) and (6.105) reduce to

2nct cosh(2n/A)(y + h)
A sinh(27h/ 1)

rl = £COS
0h=0o0rm
This describes a family of horizontal lines whose length r; decreases with the

depth of submergence. Thelocationx = ni/2 corresponds to the nodes of the
free surface, that is, the points of the free surface that have no vertical motion.
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The horizontal motion of these points, which is shown in Fig. 6.8, is neces-
sary to satisfy the continuity equation as the maximum amplitude of the
wave shifts from one side of the node to the other as the surface oscillations
take place.

Midway between the nodes, thatis,atx = (2n + 1)1/4, Eqs. (6.10a) and
(6.10b) show that

B 2nct sinh(2n/ 1) (y + h)
1= 8cos—7 sinh(2nh/ /)
01 = g or 377[

This defines a family of vertical lines whose length r; decreases as the depth
of submergence increases and reaches zero on the bottom, y = —h. This
motion is also shown in Fig. 6.8. As the boundary condition requires, the
vertical motion vanishes ony = —h.

£
. A
¥ tanh 2TH

FIGURE 6.8 Particle trajectories induced by a sinusoidal standing wave of ampli-
tude ¢ and wavelength /.
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6.10 WAVES IN RECTANGULAR VESSELS

The fact that standing waves may exist on the surface of an infinite expanse of
liquid raises the question of whether standing waves may exist on the surface
of aliquid that is contained in a vessel of finite extent. In this section rectan-
gular vessels will be considered, and it will be shown, as might be expected,
that only standing waves whose wavelengths coincide with a discrete spec-
trum of values may exist on such liquid surfaces.

Figure 6.9a shows a two-dimensional rectangular container of width 2/
that contains a liquid of average depth 4. For this configuration, we ask the
following question: What type of steady-state or pseudo-steady-state waves,
if any, may exist on the surface of the liquid? Any waves that may exist will
have to satisfy the following partial differential equation and boundary con-
ditions:

’¢ P
W‘Fa—yz: 0 (6.11a)
2
%(x,h,t)+g%(x7h7t) =0 (6.11b)
a. x707t =0 6.11c
5
g—f(ihy,t) =0 (6.11d)

The first boundary condition is the pressure condition at the free surface in
which the kinematic condition has been employed, and the other boundary
conditions prevent normal velocity components on the bottom and side sur-
faces of the container. Since the free-surface profile is not being specified a
priori here, the kinematic condition at the free surface should not be imposed
separately.

Since a steady-state wave solution is being sought, the velocity poten-
tial should have a trigonometric time dependence. It may be observed that
the existence of the sidewalls at x = 4/ eliminates the possibility of traveling
waves, since the particle paths for traveling waves are ellipses, so that the
wall boundary conditions could not be satisfied. The time variation will
therefore be of the standing-wave type and will be chosen to be sin(2nct/ ).
There is no loss in generality with this choice, since any phase change
merely corresponds to a shifting of the time origin, which is of no con-
sequence here. Thus the appropriate separable solution to Eq. (6.11a) will be
of the form
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2 2
d(x,p,1) =<A1 Sin%x + A cos?)

2 2 2
X (Bl sinh%y + B, cosh%) sinnTcz

@) .

——— [ ——-

m=1
m—0

(b)

————————— 2] —————————— -

FIGURE 6.9 (a) Geometry for liquid in a rectangular container and (b) the first four
fundamental modes of surface oscillation.
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The x dependence has been chosen to be trigonometric in view of the homo-
geneous boundary conditions at x = +/. Then, in order to satisfy Laplace’s
equation, the y dependence must be exponential or hyperbolic. In view of the
finite extent of the domain and the homogeneous boundary condition at
y = 0, the hyperbolic form has been employed. The boundary condition
(6.11c) requires that B; = 0, so that the velocity potential becomes of the form

2 2 2 2mct
o(x,p, 1) = <D| sin? + D, cos Zx> cosh Zy sin%

L

The pressure condition on the free surface [Eq. (6.115)] then requires that

27c\ 2 2nh 2n . . 27wh
—(——) cosh—— 4 g——sinh—
A A A A

2 2 2nct
X (Dl sin —?x + D, cos—?x> sin e 0
A A A

Since this equation is to be satisfied for all values of x and all values of ¢, it
follows that the quantity inside the brackets must be zero. This gives

oh 2nh ]

That s, the pressure condition on the free surface establishes the frequencies
of the wave motion. It will be seen that this result agrees with Eq. (6.34) and
that each Fourier component of the waveform has a different frequency of
motion.

The final boundary condition to be satisfied is that of no horizontal
velocity component at the vertical walls of the container. Thus Eq. (6.11d)
requires that

A A A /

2 2nl 2nl 2 2mct
—ﬂ<D1 cosi$D2 sin T ) cosh%sin re =0
L Vs

which will be satisfied for all values of y and #if

27l 27l
D, cosTn: +D, sinTR

This condition may be satisfied by setting D; = D, = 0, but then ¢ = 0,
which is the trivial solution. For a nontrivial solution either D; or D, at least,
must be different from zero.
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Suppose, first, that Dy is different from zero and D, = 0. Then

2
cosil:O
n

B 4]
T 2n+1

I

where the subscript » has been associated with the quantity /4 in anticipation
of the fact that the foregoing transcendental equation may be satisfied in an
infinite number of ways. That is, one way of satisfying the side boundary
conditions is to choose the preceding values of 4, so that the corresponding
velocity potentials will be of the form

(2n+ 1)nx cosh 2n+ 1)my sin (2n+ 1)me,t

21 21 21

d)n(xaya t) = Dy, sin

where ¢, is related to /, through the identity that resulted from imposing the
pressure condition on the free surface.
Next, suppose D; = 0 and D, is different from zero. Then

2nl
sin%:O

, 21

Am = —

Thus another way of satisfying the side boundary conditions is to adopt the
value above for 4,, so that the corresponding velocity potentials will be

mnx mny . mucyt
(X, 9, 1) = Doy, cosTncosh%sm ﬂlm

where ¢, is related to 4,,. The first two surface modes corresponding to ¢,
and ¢,, are shown in Fig. 6.9b.

It will be seen that, out of the continuous spectrum of wavelengths that
may exist, only those waves whose particle paths are vertical at x = +/ are
permissible solutions. This gives rise to an even spectrum of modes (corre-
sponding to D; = 0), and an odd spectrum of modes (corresponding to
D, = 0). That is, there is a discrete spectrum of wavelengths whose particle
paths are vertical at x = +/ and that may therefore satisfy the boundary
conditions at the sidewalls.

The individual solutions given by ¢, and ¢,, may be superimposed to
describe more general waveforms. Thus a more general solution will be
obtained by superimposing all the ¢, solutions and all the ¢,, solutions. This
gives
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1)7rx 2n+Dmy . 2n+ D)mcyt
o(x,p,1) ZD‘” s1n cosh 57 sin 27
+ Zng cosmTcosh m;zy mnTcmt (6.12a)
m=0

where

c 21 (2n+1)mh

ah (2n+1)nhtanh 57 (6.12b)
and

c R mnh

The coefficients of Dy, and D, that appear in Eq. (6.124) are unde-
termined at this point. If the initial shape and velocity of the free surface are
specified, these constants may be evaluated. An example of how this may be
utilized is to establish the response of a body of water to an earthquake. The
body of water may be an artificial reservoir or a lake whose shape may be
approximated by a rectangular container. Seismographic records for the
area would indicate the magnitude and frequency of the expected accelera-
tions. These data may be Fourier-analyzed and used to establish a surface
waveform and oscillation frequency at the end of the earthquake, which
would be the beginning of the standing-wave oscillations. The constants Dy,
and D,,, may be used to fit these data, and then Eq. (6.12a) will describe the
subsequent motion.

6.11 WAVES IN CYLINDRICALVESSELS

An analysis similar to that presented in the previous section may be carried
out for cylindrical containers. Figure 6.10a shows a cylindrical container of
radius a that contains a liquid whose average depth is 4. Then, in terms of the
cylindrical coordinates R, 6, and z and the time ¢, the problem to be solved for

the velocity potential ¢(R, 0, z, 1) is
— 8d) + i@z_qﬁ + 82—(1) 0 (6.13a)
R8 Ror) "' o00*  0z2 '
>’ ¢
g (R, 0, h, ) + E(R’ 0, h,t)= (6.135)
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(a) z h

3.0 J Yoix)

/ jn (.\'} Ym (\) I
b}

- Y, (x)

Y

(b}

FIGURE 6.10 (a) Geometry for liquid in a cylindrical container and (b) Bessel func-
tions of the first and second kind.

aa—(f(R, 0,0,1)=0 (6.13¢)
g—ﬁ(a, 0,z,6)=0 (6.13d)

The solutions to this problem will describe the possible waveforms that may
exist on the surface of the liquid in the container.

The solution to the foregoing problem may be obtained by the method
of separation of variables. Thus a solution is sought in the form

O(R,0,z,1) = R(R)T(0)Z(z) sin ot

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



234 Chapter 6

Here the time dependence has again been taken to be sinusoidal, corre-
sponding to standing waves. Substituting this expression for ¢ into Eq.
(6.13a) and multiplying by R?/¢ gives

R d dR 1d°T R*d*Z
A dR ( dR> T do? Y7z

Following the usual argument of separation of variables, it is observed that
the second term in this equation contains all the 0 dependence and that itis a
function of 6 only. Then this term must equal a constant. This constant will
be chosen to be —m?, where m is an integer. The significance of the minus sign
is that trigonometric rather than exponential 6 dependence will result and
the significance of m’s being an integer is that ¢(0) = ¢(0 + 2n) will be
satisfied, as is required. The solution for 7'(0) is then

T(0) = A, sinm0 + A, cos m0

The remaining differential equation is, after dividing by R?,
1 d dR m* 1d*Z
—— | R—= )| —-——=+=—77+5=0

RZdR \  dR R 7 dz?

The separation-of-variables argument now requires that the last term be
equal to a constant. Since trigonometric z dependence does not fit the phy-
sical circumstances, this constant will be chosen as k2. Then the solution for
Z(z) will be

Z(z) = By sinhkz + B; cosh kz

Here the hyperbolic form has been used in preference to the exponential
form in view of the finite extent of the z domain.

The remaining differential equation, after multiplying by R2%,
becomes

d dz 2 p2 2\ —
RdR(RdR>+(kR m*) R =0

But this is Bessel’s equation of order m whose solution is
R(R) = D1y wm(kR) + D3, Y, (kR)
where J,,, is Bessel’s function of the first kind and Y,, is Bessel’s function of the

second kind. The first two Bessel functions of each kind are shown schema-
tically in Fig. 6.10b.
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Since the Bessel functions of the second kind, Y,,(x), diverge for x = 0
for all values of m, the coefficients D,,, must be zero. Thus the radial depen-
dence of the velocity potential will be proportional to J,,(kR). Then, for any
integer m, the solution by separation of variables is

Ou(R, 0, 2, t) = (A1 sSin mO + Az, cos m0)
X (B sinh kz + By, cosh kz)J,,(kR) sin wt
The boundary condition (6.13¢) requires that By,, be zero, while the pressure

condition at the free surface [Eq. (6.136)] determines the oscillation fre-
quency to be

o = gktanh kh

Thus the velocity potential will be of the form
on(R, 0, z, t) = (Ki, sin mb + K5, cos m) cosh kzJ,,(kR) sin wt
The remaining boundary condition [Eq. (6.13d)] then requires, for a non-
trivial solution,
J), (ka) =0
where the prime denotes differentiation. This transcendental equation may
be satisfied by any of an infinite number of discrete values of k. These values

will be distinguished by employing a double subscript on k. Thus k,,,, will
denote the nth root of the J,, Bessel function in the equation

J) (kyna) =0

Values of k,,,a that satisfy this equation may be found in tables of functions.
For example, the first few roots of Jj (ko,a) = 0 are given below.

n 0 1 2 3
kona 3.832 7.016 10.174 13.324

From the foregoing analysis, one solution to the problem posed for the
velocity potential is

Opn(R, 0, 2, t) = (Kimp sin mb + Ky, cos m) cosh ki zJy, (ki R) sin @t

Here a double subscript has been associated with the oscillation frequency w,
since this quantity is related to the separation constant k. The foregoing
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expression for ¢,,, represents a valid solution to our problem for any integer

m and any integer n. Then a more general solution may be obtained by
superimposing all such solutions to give

¢(R, 0,z 1) = Z Z(Klmn sin mf + Kjp,, cos mb)

m=0 n=0
x cosh ky,zJy, (kipnR) sin @t (6.14a)
where
@2, = gkyn tanh(k,,,h) (6.14b)
and
g, (knna) =0 (6.14c)

As was the case in the previous section, the remaining arbitrary constants
may be defined by specifying the nature of the free surface at some value of
the time.

A simple illustration of the validity of the result above may be obtained
by use of a cup of coffee or some otherliquid. If such a cup is jarred by striking
it squarely on a flat surface, it may be induced to vibrate in a purely radial
mode. That is, the fundamental mode in which the surface R = a vibrates in
and out may be induced. This motion causes surface waves that will also have
no 0 dependence. Then, putting m = 0 in Eq. (6.14a) shows that the velocity
potential will be proportional to Jy(ko,R). Thus the surface will adopt the
shape of the Jy Bessel function, which is shown in Fig. 6.10b. This shape may
be actually observed, and under certain conditions the peak at the axis of the
vessel may become very pronounced. Of course, the analysis is no longer
valid under these conditions, since large amplitudes lead to large slopes,
which violates the assumptions that were made in the linearization.

6.12 PROPAGATION OF WAVES AT AN INTERFACE

As a final example of surface waves, the behavior of propagating waves at the
separation of two dissimilar fluids will be investigated. Figure 6.11 shows a
wavy surface y = 5(x, ¢) below which a fluid of density p, flows with mean
velocity U; in the x direction. Above the interface is a fluid of density p,
whose mean velocity is U, in the x direction.

For the foregoing configuration we specify a sinusoidal waveform at the
interface and ask what is the propagation speed of the wave? That is, we
specify the equation of the interface to be
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density = p,

velocity = {/,

v (,\', !) _ EEITH_G”
£
—— _\--"“-—-—._—-——""—f_f. -

T
= A gl

density = p,

—-.

velocity = U,

FIGURE 6.11 Wave-shaped interface separating two different fluids traveling at dif-
ferent average speeds.

n(x’ I) — Eei(Zn/ﬂ.)(xfat)

This represents a sinusoidal wave of amplitude ¢ and wavelength /. If ¢ is
real, the wave is traveling in the x direction with velocity o, whereas if ¢ is
imaginary, the wave is decaying (if ¢ /i is negative) or is growing (if ¢ /i
is positive). The last situation represents an unstable interface.

Since the two fluids now have nonzero mean velocities, the lineariza-
tion of the boundary conditions must be reexamined here. Letting the
subscript ibe 1 or 2 for the lower and upper fluids, respectively, the velocity u;
may be written as follows:

u; = Uiex + V(f),

where ¢; is the velocity potential for the perturbation to the uniform flow
caused by the waves at the interface. Then the material derivative becomes

D 0
TR TR
0 0
o UtV
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The second term on the right of this identity is new and is of first order in this
case. The third term on the right involves velocity components derived from
the perturbation velocity potential, and hence these velocity components
will be small.

Using this result for the material derivative, the kinematic condition on
the free surface, D(y — ) /Dt = 0, becomes

on on  0;
ot U’8x+ 19)

-V¢;-V, =0

The last term on the left-hand side of this equation is quadratically small, for

small-amplitude waves, and so may be neglected. Thus the revised kinematic

boundary condition on the free surface is
99 on

o (x,0,1) :E(x,t)—i— U;

0
8—Z(x, 1) (6.15a)
Comparison of this result with Eq. (6.2b) shows that the last term in the
preceding equation is new and that this term vanishes for U; = 0.

From Eq. (6.1¢) the Bernoulli equation for a constant-pressure surface
in which F(#) is absorbed into the velocity potential, as before, is

op; 1
0 ey + E,O;Ui’“i + p;gn = constant

Substituting our expansion for u; into this equation and neglecting quadratic
terms in the perturbation velocity gives
o9, 09,

Pi ot (x7 0, t) + ptl]lg (xa 0, t) + pign(xa t) = constant (615b)

Here the term p;U? /2 has been absorbed into the constant on the right-hand
side of this equation

Using Egs. (6.15a) and (6.155), we may now define the problem to be
satisfied by the velocity potentials ¢, and ¢,. Inthe region y < 0, the velocity
potential ¢; must satisfy

P, | P,
oxr  Oy?

=0 (6.16a)

where the velocities derived from ¢, should be finite. That is,

|[V,| = finite (6.16b)
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Similarly, in the region y > 0,we have

P, ¢
o T ay22 =0 (6.16¢)
|[V,| = finite (6.16d)

At the interface, which is linearized to y = 0, the kinematic condition must
be satisfied by ¢, and by ¢, separately. Thus from Eq. (6.154),

) ) )
aiy'(x,o,t) :a—Z(x, 0 + Ula—Z(x, 1) (6.16¢)
0 _ o on

a—y(X,OJ) =5 (x,0) + U2 6x(x’ ) (6.16f)

Finally, the pressure condition at the interface must be satisfied, which in the
present case, amounts to equating the pressure in the two fluids at the inter-
face.Thus, from Eq. (6.15b), since the Bernoulli constant will be the same for
i = 1andi = 2, the pressure condition becomes

o o
pla—tl(xvo>t) + P1 Ul a—xl(xao7t) +p1g77(x7 t)

=122 (0.0) 4 pals W2 (x,0.0) 4 prgnxt)  (6.169)
X
Equations (6.164a) to (6.162) represent the problem to be satisfied by any per-
turbation to the uniform flows. In particular, we decided to study the effect of
a sinusoidal wave at the interface, and so the equation of the interface was
chosen to be

n(x, 1) = ee'r/ A=) (6.16h)

The solution to Egs. (6.16a) and (6.16¢) may be obtained by separation
of variables. In view of the shape of the interface, as defined by Eq. (6.16 /), the
solutions should be trigonometric in x. Then the y dependence will be expo-
nential. In view of the conditions (6.165) and (6.16d), the negative exponen-
tial should be rejected for ¢, and the positive exponential should be rejected
for ¢,. Thus the solutions to (6.164) and (6.16¢) that satisfy (6.165) and (6.16d)
are

¢1 (x,y7 t) _ Ale(Zn/i)yei(Zn/}L)(xfut)
¢2 (X,y, t) — A2ef(2n/).)yei(2n/).)(xfa't)
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Imposing the kinematic surface conditions (6.16e) and (6.16f) on these
solutions shows that

A = iS(—O' + Ul)
Ay = —ie(—o+ U)

Thus the velocity potentials in the lower and upper regions are, respectively,
¢1 (x’y’ t) _ —iS(G - U )e(2n/i)yei(2n//l)(xfat)

¢2 (x7y’ t) _ iS(O' _ U2)e—(Zn//l)yei(Zn//L)(x—rrt)

These solutions satisfy all the required conditions except the pressure con-
dition at the interface. Thus Eq. (6.16g) requires

2n

. 2n . .
pi(o — U1)<170> - Ui(o — Ul)(l i) +p1g

2n

. 2n . )
= pai(o — U2) (—170’> + p, Uai(0 — Uz)(_IT) + 0,8

The quantity #, as defined by Eq. (6.16%), has been canceled throughout this
equation as anonzero common factor. Combining the first and second terms
on each side of this equation reduces it to the form

2n 2n
—/)17((7— U1)2+Plg2027((7— Us)? + prg

Everything in this algebraic equation is known a priori except the quantity o.
Then, the equation above should be looked upon as a quadratic equation for
0. Solving this quadratic equation gives

2 )
o — p2 Uz + p1 Uy n \/(PzUz +P1U1> _<P2U22 +p U12> B <P2 —Pl) g4
P2+ P P2+ Py P2+ P py+p1/) 2n
The first two quantities inside the square root may be combined to give the
following simplified expression for ¢:

U U - A
L _pUtp U <p1 Pz)g__LZZ(Uz_UI)Z (6.17q)
P2+ P P1+p2) 2T (py+py)

Equation (6.17a) shows that ¢ may be real, imaginary, or complex, depending
upon the nature of the free parameters. Several special cases will be investi-
gated.
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Consider, first, the special case where U; = U, = 0 and p, = 0. This
would correspond to two stationary fluids in which the density of the upper
fluid is very small compared with that of the lower fluid. Such a condition
would closely approximate a stationary liquid over which a stationary gas
exists, for example, air over water. Then Eq. (6.17a) shows that ¢ will be real,

having the values
gl
=$1/2= 6.17b
o=H/7- (6.17b)

This agrees with Eq. (6.35), which gives the propagation speed for surface
waves in deep liquids. The minus sign in Eq. (6.17b) corresponds to a wave
traveling in the negative x direction. Since it turned out that ¢ is real, the
waves at the interface will propagate, so that the surface of separation will
remain intact. That is, the interface is stable.

Next, consider the case where p, = 0 and the other parameters are
nonzero. Physically, this would approximate the case of a gas blowing over a
liquid surface. Under these conditions Eq. (6.17a) reduces to

7
o=U + i—n (6.17¢)

But this is just Eq. (6.175), in which a galilean transformation of magni-
tude U; has been applied. That is, the waves move along the surface of the
liquid at the speed of the liquid plus or minus the speed of the waves on a
quiescent body of the liquid. Again the interface will remain intact and so is
stable.

Consider now the case in which p, = p,. Physically, the situation is a
discontinuity in the velocity (i.e., a shear layer) in a homogeneous fluid. Then
Eq. (6.17a) becomes

O__U2—|—U1:|:iU2—U1
B 2 2

(6.17d)

This result shows that unless U, = Uj (in which case there is no shear layer),
the quantity ¢ will have an imaginary part that will result in the interfacial
wave growing exponentially with time. That is, the interface at the shear
layer is unstable. This form of instability is known as Helmholtz instability or
Rayleigh instability.

Finally, consider both fluids to be quiescent so that U; = U, = 0,butlet
their densities differ. Then Eq. (6.17a) reduces to
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o=+ gi(“‘”) (6.17¢)
2n \py + P2

For p;, > p,,thatis, for the heavier fluid on the bottom, ¢ will be real, so that
the interface will be stable. However, for p, > p,, that is, for the heavier fluid
ontop, o will be imaginary, so that the interface will be unstable. This form of
instability is known as Taylor instability.

PROBLEMS

6.1 The complex potential for a traveling wave on a quiescent liquid sur-
faceis
Fz,f) = ———— ¢ sz—n( t + ih)
»l= sinh(2nh/2) ST ET AT

6.2

Use this result to deduce that the complex potential for a stationary
wave on the surface of a moving liquid layer whose mean velocity is ¢
in the negative x direction is

ce 2n
S —_—

F(z) = —ez - sinh(2;rh/)n) cos 7

z + ih)

Show that, in very deep liquids, the result above becomes:
F(z) = —cz — cee” /42 (6.184a)

Use this last result to determine the stream function y(x, y) for a sta-
tionary wave on the surface of a deep-liquid layer whose mean velo-
city is c. Hence show that the streamline y/(x, ) = 0 gives the equation
of the free surface as

2n/7) 2nx

n = ce®/An sinT (6.18b)

The Bernoulli equation for the situation depicted in Prob. 6.1 is

2\
1+ (=
+ & < 7 ) ]
where Pis the pressure at the free surface. Use this equation, together
with the relation W W = u? + v* and Eq. (6.18a) to show that setting
p = P when y = 5 requires that the quantity c, the velocity difference

between the mean velocity and the wave-train velocity, must satisfy
the following equation:

p 1 P 1,
—t+su-ut+gp=—+5c¢
p 2 p 2
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6.3

2 _ 2gn
2(2m/1)7 + (4m/2)n — &2(2m ) 2) eln/n

Linearize this expression for small values of ¢/ and hence confirm
the following relation for deep liquids:

c? A
gh 2nh

Further show that by neglecting only those terms that are of fourth
order or smaller, the general expression for cbecomes:

2o 842
1— (2n/2)%e?

This shows that the effect of finite wave amplitude is to increase the
wave speed on the surface of the liquid.
The complex potential for a traveling wave on an otherwise quiescent
liquid is

ce

F&0 = = o

2n
cos—- (z—ct+ih)
Apply a galilean transformation to the coordinate system that was
used in arriving at this expression and hence show that the stream
function for the stationary wave shown in Fig. 6.12 is

FIGURE 6.12 Stationary sinusoidal wave on the surface of a liquid layer that is
moving with uniform velocity.
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Ug 2nx 2n
= - ————=——~sin——sinh H 1
Vi) = —U+ Gy S s O+ H) (6.19a)
where
U? A 2nH
— =——tanh—— 1
gH 27rHtan A (6.195)

Here, His the mean depth of the liquid while ¢ and / are, respectively,
the amplitude and the wavelength of the stationary wave on the sur-
face of the liquid.

The result of Prob. 6.3 may be used to obtain the solution to the pro-
blem of steady flow over a wave-shaped surface. The configuration for
which the solution is sought is shown in Fig. 6.13. To obtain the
required solution from the results of Prob. 6.3, observe that the solu-
tion obtained in Prob. 6.3 will, at some depth # < H, have a wave-
shaped streamline of amplitude ¢y and wavelength . This streamline
may be considered to be a surface, so that if the liquid surface is taken
to be = 0, the boundary defined by = Uh will correspond to

y = —h+ n, where y, = & sin(2nx/A). In this way, show from linear
theory that the ratio of the wave amplitude to the wall amplitude is
€ 1

¢  cosh(2nh/) — (g4/2nU2) sinh(27h/ )

P
e
"’.’ X

¥
1
. 2mx
¥ — £ 5In
: A
e —
__--_‘-_-____—_-_—._._...--.-_
X
A

- TIo
Lo
C"...

’00

FIGURE 6.13 Steady, uniform flow over a sinusoidal-shaped surface producing a
stationary wave train on the surface.
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6.5

6.6

The various parameters in this result are defined in Fig. 6.13.
Consider two traveling waves that are defined by the following equa-
tions:

1 2
n(x, 1) = ESSinTT(X —qt)

1 2
Ny(x,2) = Eesinf(x — ot)

Show that the equation of the free surface that results from super-
imposing these two waves will be defined by

- 1 1 C1 (&)
ny(x, 1) —Scosn[(ll —)L2>x— (11 —22>t]
X sin l4—i - 24—6—2 t

i AV A

Hence show thatif /; and 4, differ by only a small amount and thatif ¢
and ¢, differ by only a small amount, the resulting surface profile may
be considered to be of the following form:

B . 1 1 (4] (&)
n(x,t) = A(x,t) smn{(/11 +/12>x <;Ll +/12> t}

which represents a traveling wave whose amplitude is changing slowly
with time compared with the frequency of oscillations. This situation
is shown in Fig. 6.14 (y versus ¢ for given x location). The phenomenon
is referred to as beating, and it occurs in situations where two similar
waves or signals are superimposed.

(a) The potential energy per wavelength of a wave train is given by the
expression:

FIGURE 6.14 Beating phenomenon that results from superimposing two waves of
almost equal frequencies.
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Use this expression to show that the potential energy per wavelength
of the wave = ¢sin2n(x — ct)/Lis

1
V= Zpgazl

(b) The kinetic energy per wavelength of a wave train is given by

1 A
T==p / ¢ 99 dx
2% Jo Oy y=0
Use this expression and the velocity potential for a traveling sinusoi-
dal wave:
2 2nh 2nh 2
P(x,y,t) = —ce cos%I (x —ct) x (sinh% + coth j cosh%) (6.7a)

to show that the kinetic energy per wavelength of the same sinusoidal
wave is

1
T = I pgel.

6.7 The work done on a vertical plane due to waves on aliquid of depth / is
given by

0
WD = / p@ dy
—h 0x

Use the linearized form of the Bernoulli equation and Eq. (6.7a),
which is defined in Prob. 6.5(b), to show that the work done on a ver-
tical plane by a traveling wave defined by = ¢ sin2n(x — ct) /1 is

2nh/ )
sinh(27h/2) cosh(2nh/A)

1 2
WD = Epgc.s2 sin? =X (x — ) {1 +

;L

Hence show that for deep liquids the time average of the work done is
one-half of the sum of the kinetic energy per wavelength and the
potential energy per wavelength. That is, show that

(T+7V)

N[ =

(WD), =

ave

6.8 The distribution of vorticity in a lake is assumed to be represented by
the following expression:

Q(x,y,t) = (x,p,t) + Py
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6.9

In this equation Q is the total vorticity, w is the intrinsic vorticity, and
p is a constant. x and y are coordinates that lie on the surface of the
lake and the stream function for the liquid motion is taken to be

lﬁ(x,y, t) — Aei(kx+ly+rrt)

Here, A4 is a constant, k and / represent the wavelengths in the x and y
directions, respectively, and o represents the speed at which the wave
is traveling. Use the definition of vorticity and the definition of the
stream function to show that w is proportional to y, and find the con-
stant of proportionality.

Using linear theory, show that the material derivative of the total
vorticity Q is proportional to the stream function i/, and find the con-
stant of proportionality. Also find the value of the speed o that makes
the material derivative of Q zero.

One very simple wave of representing a boundary layer is to consider
ittobe alayer of zero fluid velocity. Figure 6.15 shows such a model of a
boundary layer for uniform flow over a flat plate. For this configura-
tion, carry out a stability analysis of the interface by imposing a wave

on the depicted flow of the following form at the interface:
n(x7 I) — gei(Zn/).)(xfat)

Determine whether or not the interface is unstable to this wave, and if

o A A AR A AN AAREAAR AN EAANRAA LA ASEAAEEAARAAN I AAARAANEAA PSS EAA
e ORI
ot at et o tat e tatetet et et ate et st teteta toti et u et a et e tutatetatul ot e tu e titetotetete vt talotataSote titat v te et lete!

FIGURE 6.15 Stagnant layer of fluid of thickness J below a uniform stream of
velocity U.
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it is unstable, determine the fastest growing wavelength of the
instability.

6.10 A fluid of density p; occupies the space —h < y < 0, while a different
fluid of density p, occupies the space 0 < y < h.Solid boundaries exist
at both y = —h and y = +h, and both fluids are originally at rest. A
small-amplitude traveling wave of wavelength 1 is introduced along
the interface separating the two fluids. Using linear theory, determine
the speed at which the wave will travel along the interface and discuss
the conditions under which the amplitude of the wave will decay with
time or grow with time.

FURTHER READING—PART II

The topic of ideal-fluid flow is probably the most studied branch of fluid
mechanics, and it is well represented in the literature. Most texts on fluid
mechanics have at least one chapter on the subject, and some books are
entirely devoted to it. The following books, collectively, cover the subject in
some depth. The book by Sir Horace Lamb was first published in 1879, and it
does not utilize vector analysis or tensor analysis. However, this book has
been a standard reference for many years, and it continues to be a valuable
source of information.

Lamb, Sir Horace: Hydrodynamics, 6th ed., Dover Publications, New York, 1932.

Lighthill, James: Waves in Fluids, Cambridge University Press, London, 1978.

Milne-Thompson, L. M.: Theoretical Hydrodynamics, 4th ed., The Macmillan
Company, New York, 1962.

Panton, Ronald L.: Incompressible Flow, John Wiley & Sons, New York, 1984.

Robertson, James M.: Hydrodynamics in Theory and Application, Prentice-Hall,
Englewood Cliffs, N.J., 1965.
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VISCOUS FLOWS OF
INCOMPRESSIBLE FLUIDS

In this section problems will be solved and phenomena will be established in
which the viscosity of the fluid is intrinsically important. The treatment is
divided into four chapters. Chapter 7 covers the exact solutions to the
Navier-Stokes equations. Although these solutions are relatively few in
number, they are cherished. They are used as the basis for perturbation
schemes to solve problems that are close to the exact solution configurations,
they are used to test the accuracy of numerical techniques, and they are used
to calibrate instruments.

Chapter 8 deals with approximate solutions to the Navier-Stokes
equations that are valid for small Reynolds numbers. This is achieved by
reducing the Navier-Stokes equations through the so-called Stokes approx-
imation and by studying the solutions to the resulting equations. Such solu-
tions are valuable in their own right, and they have physical counterparts. In
addition, they form the basis of approximate solutions to other problems.

Chapter 9 deals with large-Reynolds-number flows. Specifically, the
Prandtl boundary-layer approximation to the Navier-Stokes equations is
examined. Some exact solutions to these equations are first obtained through
similarity methods. The Karman-Pohlhausen method is then covered as an
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example of an approximate solution to the boundary-layer equations. The
stability of boundary layers is also introduced.

The final chapter in this part of the book deals with buoyancy-driven
flows. The Boussinesq approximation to the Navier-Stokes and thermal
energy equations is introduced in Chapter 10. Solutions to the resulting
equations are presented for vertical isothermal surfaces, a line source of
heat, and a point source of heat. The stability of horizontal fluid layers is also
discussed with a view to establishing the condition for the onset of thermal
convection.

The governing equations for this part of the book are the continuity
equation and the Navier-Stokes equations. Thus from Egs. (1.3¢) and (1.956)
the vector form of the governing equations is

Vou=0 (I11.1)

@+ (u-Vyu= —1vp+vv2u+f (I11.2)
ot o
As was the case in the previous parts of the book, these equations form a
complete set for the unknown quantities p and u. This is due to the assump-
tion of incompressibility, which has the mathematical consequence of
uncoupling the equations of dynamics from those of thermodynamics.

The boundary condition that is to be imposed on the velocity vectoruis
the no-slip boundary condition, which is given by Eq. (1.14). This boundary
condition is

u=U on solid boundaries (I11.3)

where u is the fluid velocity and U is the velocity of the solid that forms the
boundary with the fluid. This condition states that the fluid adjacent to a
solid boundary adheres to that boundary and does not slip. This boundary
condition is much stronger than that which was used in the study of ideal
fluids. The essential difference is that the inclusion of the viscous terms in
Eq. (IT1.2) has raised the order of the governing partial differential equation
by one. Thus the true physical boundary condition may be accommodated in
this part, whereas it could not be satisfied completely in the previous part of
the book.

It was observed in Chapter 3 that the equations of momentum con-
servation, the Navier-Stokes equations in this instance, may be alternatively
phrased in terms of the vorticity w. Although we will not solve problems here
from the vorticity formulation, it is sometimes of interest to examine solu-
tions from the point of view of the distribution of vorticity. For such cases
Eq. (3.4a) shows that the vorticity equation is
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‘?9_‘;’+ u-Vio=(o-Vu+ wWeo+Vxf (I11.4)

in which the possibility of nonconservative body forces has been included for
generality.

The solutions to the foregoing equations of viscous flow that will be
established in this part of the book will all correspond to laminar flow. Vis-
cous flows may be divided into two principal categories, laminar flows and
turbulent flows. The phenomena and treatment of turbulent flows is some-
what different from the other fundamental aspects of fluid flow, and it is
usually treated separately in specialized books. This procedure will be
adopted here, so that only laminar flows will be considered.
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Exact Solutions

Inthis chapter some exact solutions to the equations governing the motion of
an incompressible, viscous liquid will be established. It is perhaps because so
few exact solutions have been found that they are so important. The basic
difficulty in obtaining exact solutions to viscous-flow problems lies in the
existence of the nonlinear convection terms in Eq. (II1.2). Furthermore,
these nonlinear terms cannot be circumvented in this instance in the manner
used in the study of ideal fluids. This, in turn, is due to the inapplicability of
Kelvin’s theorem due to viscosity, so that viscous flows are not potential. In
additional, the Bernoulli equations do not apply.

The exact solutions may be divided into two broad categories. In one of
these categories, the nonlinear term (u-V)u is identically zero owing to the
simple nature of the flow field. Examples of this situation that are covered in
this chapter are Couette flow, Poiseuille flow, the flow between rotating
cylinders, Stokes’ problems, and pulsating flow between parallel surfaces.

The second broad category of exact solutions is that for which the
nonlinear convective terms are not identically zero. Examples presented
here include stagnation-point flow, the flow in convergent and divergent
channels, and the flow over a porous wall.

253
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7.1 COUETTE FLOW

One of the simplest viscous-flow fields is that for flow between two parallel
sufaces. Figure 7.1a shows two parallel surfaces whose size in the z direction
is supposed to be very large compared with their separation distance 4. The
flow between these plates is taken to be in the x direction, and since there is
no flow in the y direction, the pressure will be a function of x only. That is,
since there are no inertia, viscous, or external forces in the y direction, there
can be no pressure gradient in that direction. Using the fact that u = u(y) only

(a)

(b)

{c)

FIGURE 7.1 (a) Flow between parallel surfaces, (b) plane Couette flow, and (c) gen-
eral Couette flow.
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and v =w= 0 together with the fact that p = p(x) only, Eq. (I11.2) becomes,
for a force-free fluid field

Here, the continuity equation is identically satisfied and the nonlinear con-
vection terms are identically zero by virtue of the simplicity of the flow field.
The Navier-Stokes equations reduce to the preceding ordinary differential
equation, which states that there is a balance between the pressure force in
the fluid and the viscous-shear force at all points in the fluid. Since dp/dxisa
function of x only, this equation may be integrated twice with respect to
ytogive

1dp y2
_ (Y 4+ B
u(y) udx(2+ y )

where 4 and B are constants of integration. The boundary condition #(0) = 0
requires that B = 0, while the condition u(%) = 0 requires that 4 = —h/2.
Thus the velocity profile will be given by the equation

1 dp

u(y) = o dxy(h—y)

Itis usual to introduce a dimensionless pressure parameter, which is defined
as follows:
W dp

2uU dx

Here Uis any characteristic velocity such as the mean-flow velocity. In terms
of this pressure parameter the expression for the velocity profile between the
parallel plates becomes

&J) _ P% (1 _%) (7.1a)

Equation (7.1a) shows that the fluid flows in the direction of the negative
pressure gradient and that the velocity profile across the flow field is para-
bolic. The maximum velocity therefore occurs at the centerline between the
two plates (thatis, at y = /4/2),and the magnitude of the maximum velocity is
PU /4. For this type of flow the pressure gradient is the driving mechanism,
so if there is no external pressure gradient there will be no flow.
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Another way of inducing a flow between two parallel surfaces, apart
from applying a pressure gradient, is to move one of the two surfaces.
Figure 7.1b depicts such a situation, which is referred to as plane Couette flow.
The surface y=0 is held fixed while the surface y=# is moved in the
x direction with constant velocity U. As before, the only nonzero velocity
component will be », and it will be a function of y only. Also, there will be no
pressure gradient in the y direction, as before, and here it is assumed that
there is no external pressure gradient in the x direction. Then the governing
equations reduce to the same equation as before but without the pressure
term. That is, the velocity must satisfy the equation

d’u
O0=u—~
Integrating this equation gives
u(y)=Ay+ B

where 4 and B are constants of integration. The boundary condition #(0) = 0
requires that B = 0, while the condition u(%) = U requires that A = U/h.
Thus the velocity profile for plane Couette flow is

u(y) _y
U =% (7.1b)
This result shows that the velocity profile induced in a fluid by moving one of
the boundaries at constant velocity is linear across the gap between the two
boundaries.

A more general situation is one in which either of the two surfaces is
moving at constant velocity and there is also an external pressure gradient.
Such a situation is referred to as general Couette flow. The velocity profile for
general Couette flow may be obtained by superimposing Egs. (7. 1a) and
(7.1b), since the governing equations that led to these results are linear. Thus
it follows that

uly) y . .y y
o= (3) (7.1¢)

The velocity profiles corresponding to this equation are shown in Fig. 7.1c.
It will be seen from Fig. 7.1 that for P = 0 plane Couette flow is recovered,
while for P # 0 the pressure gradient will either assist or resist the vis-
cous shear motion. For P > 0 (that is, for dp/dx < 0) the pressure gradient
will assist the viscously induced motion to overcome the shear force at
the lower surface. For P < 0 (that is, for dp/dx > 0) the pressure gradient
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will resist the motion induced by the motion of the upper surface. In this
case a region of reverse flow may occur near the lower surface, as shown
in Fig. 7.1c.

7.2 POISEUILLE FLOW

The steady flow of a viscous fluid in a conduit of arbitrary but constant
cross section is referred to as Poiseuille flow. Figure 7.2a shows an arbitrary
cross section in the yz plane with a steady flow in the x direction. Here
again, the transverse velocity components v and w will be zero, while

-2 5
-

(c) 1[— -

P
L]

h

FIGURE 7.2 Viscous flow along conduits of various cross sections: (a) arbitrary,
(b) circular, (c) elliptic.
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u will be function of y and z only. The pressure cannot vary in the transverse
directions, since there is no motion or forces in these directions; hence p will
be a function of x only. With these conditions the governing equations (1I1.1)

and (IT1.2) reduce to
dp Pu  Pu
0=—— —+—
dx ta <8y2 + 0z?

Again, owing to the simple geometry of the flow field, the nonlinear
term (wV)u is identically zero and the continuity equation is identically
satisfied for any velocity distribution u(y, z). The remaining equation that
has to be satisfied is a Poisson type of equation. In standard form this equa-
tion is

Pu  O’u _ldp

6—y2+@—ﬁa (7.2a)

where the nonhomogeneous term must be a constant at most. There is no
general solution to Eq. (7.2a) for arbitrary cross sections, but solutions for a
few specific cross sections do exist.

Consider, first, the special case in which the cross section in the
yz plane is circular with radius a, as shown in Fig. 7.2b. With this geo-
metry the preferred coordinate system is cylindrical coordinates. Then,
let the cross section of the conduit be represented by the cylindrical
coordinates R and 6 rather than the cartesian coordinates y and z, so that
the independent coordinates are now R, 0, and x. In this coordinate sys-
tem the axial velocity u will be independent of 6 and x, so that Eq. (7.24)

will become
1d (pdu) _ldp
RdR\ "dR) pdx

Since the pressure gradient is independent of R, this equation may be inte-
grated twice with respect to Rto give

1dpR?
R)y=———+AlogR+ B
u(R) jidx 4 + AlogR +

where 4 and B are constants of integration. The condition #(0)) = finite
requires that 4 = 0, while the condition u(a) = 0 requires that
B = —(dp/dx)a®/(4u). Thus the velocity profile in the conduit will be of the
form
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u(R) = — %% (@® — R?) (7.2b)

This result is similar to that for the flow between two parallel surfaces. The
flow depends upon the external pressure for its existence, and the resultant
velocity profile is parabolic.

For elliptic cross sections, as shown in Fig. 7.2¢, a proper procedure
would be to express the laplacian that appears in Eq. (7.24) in elliptic coor-
dinates and proceed as above with the circular cross section. However,
a simpler and more direct method of solution exists and will be followed
here. The basis of this method is the observation that, for the ellipse shown in
Fig. 7.2c, the quantity y?/a® 4+ z*>/b* — 1 is zero on the boundary. This
motivates us to look for a solution that is proportional to this quantity, so a
solution to Eq. (7.2a) is sought in the form

2 2
y z
u(y7Z) :OC<aZ+b2— 1)

Direct substitution shows that this is indeed a solution to Eq. (7.2a) provided
the value of o is

cx—l dp a’b?
C2u dx a® + b?

Thus the velocity profile for an elliptic conduit is

1 dp &b (y* 22

7.3 FLOW BETWEEN ROTATING CYLINDERS

An exact solution to the Navier-Stokes equations exists for the case of a
fluid contained between two concentric circular cylinders either or both of
which is rotating at constant speed about its axis. The cylinders are assumed
to be long compared with their diameter, so that the flow field will be two-
dimensional. Figure 7.3 shows the geometry under consideration. The outer
cylinder has a radius Ry and it is rotating in the clockwise direction with
angular, velocity wg, while the radius of the inner cylinder is R; and its angular
velocity is w;.

Cylindrical coordinates are preferred for the geometry shown, and the
only nonzero velocity component in this coordinate system will be the tan-
gential velocity uy. Furthermore, this velocity component will depend upon
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FIGURE 7.3 Geometry for flow between concentric rotating circular cylinders.

R only. For this type of velocity field and in the absence of any external body
forces, the pressure can depend upon R only. Using these observations the
governing equations [Eqs. (I11.1) and (I11.2)] become

_uy__ldp

R pdR
d*uy  d ju
=% " ()

Because of the simple geometry of the flow field the continuity equation is
identically satisfied. The first of the equations above shows that there
is abalance between the centrifugal force that acts on an element of fluid and
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a force that is produced by the induced pressure field. The second equation
above states that there is a balance between the viscous stresses in the fluid.
The foregoing equations may be readily integrated by establishing uy
from the second equation and then determining the pressure p from the first
equation. Integrating the second equation twice with respect to R gives

R B
ug(R) :AE—’_E

where 4 and B are constants of integration. The boundary conditions
ug(Ry) = woRy and uy(R;) = w;R; give

2(woR3 — w;R?)

A:
R} —R?
_ _p2p2®0 @i

Thus the velocity distribution in the fluid between the two cylinders will be

RIRS
R

ug(R) = (woRE — 0;R?)R — (w9 — ;) (7.3a)

R§ — R?

Using Eq. (7.3a) and the remaining equation that is to be satisfied, it follows
that the pressure p must satisfy the equation

dp
dR (R} — R?)®

R’R? R!R}
{(wOR(z) - a),-Rl-z)zR —2(wg — wi)(a)OR(z) - w,-Rf) ’TO + (wg — wi)z }230}

Integrating this equation shows that the pressure distribution will be

(R) R (w R? —a)~R2)2R—2—2(w — ;)
P - (R(Z) _ Rlz)z 04y i1\ P 0 i
RIRY
X (woR2 — w;R¥)R*R2 log R — (w9 — ;)* 2'R2°} +C

(7.3b)

where Cis a constant of integration that may be evaluated in any particular
problem by specifying the value of the pressure on R = Ry oron R = R;.
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As special cases Egs. (7.3) describe the flow field due to a single cylinder
rotating in a fluid of infinite extent and a cylinder filled with fluid that is
rotating. Some aspects of these special cases will be investigated in the
problems at the end of the chapter.

74 STOKES FIRST PROBLEM

The fluid-mechanics problem referred to as Stokes’ first problem has
counterparts in many branches of engineering and physics. In the fluid-
mechanics context the situation that is being considered is shown in
Fig. 7.4a. The x axis coincides with an infinitely long flat plate above which
a fluid exists. Initially, both the plate and the fluid are at rest. Suddenly, the
plate is jerked into motion in its own plane with a constant velocity. Under
these conditions, what will be the response of the fluid to this motion on the
boundary?

To answer this question, we appropriately reduce the equations of
motion and obtain a solution to them. Since the motion of the boundary is

\: IV

- 4
() “i
i
AN 0 for r<0 0 "
w0, ) - i
Eofor (=0
X
N |
(b)
0 - -
0 1.0 M '

U

FIGURE 7.4 (a) Definition sketch for Stokes’ first problem, and (b) the solution
curves in terms of the similarity variable and in terms of the dimensional variables.
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in the x direction, it may be reasonably assumed that the motion of the
fluid will also be in that direction. Thus the only nonzero velocity com-
ponent will be u, and this velocity component will be a function of y and
t only. Then the pressure will be independent of y, and since u is inde-
pendent of x, so will p be independent of x. That is, the pressure will be
constant everywhere in the fluid. Using these properties of the flow field,
the governing equations reduce to the following linear partial differential
equation:

ou_ P
ot 0y?
The boundary conditions are
0 fort <0
u(0,7) =
U forz>0

u(y,t) = finite

This problem lends itself to solution by Laplace transforms and by similarity
methods. Since similarity solutions are the only ones that exist for some
nonlinear problems arising in boundary-layer theory and other situations,
this method of solution will be employed here to establish a base for future
considerations.

Similarity solutions are a special class of solutions that exist for
problems governed by parabolic partial differential equations in two
independent variables where there is no geometric length scale in the
problem. Stokes’ first problem meets these requirements. It may be
observed that had there been a second plate at some plane y = A, the geo-
metric length scale & would exist, and so the conditions for a similarity
solution would no longer exist. In the absence of such a length scale,
however, it may be anticipated that the fluid velocity # will reach some
specified value, say 0.4U, at different values of y, which will depend upon
the value of the time ¢. That is, anticipating the results to be of the form
indicated in Fig. 7.4b, it may be observed that at some time ¢ the velocity
will have a value of 0.4U at some distance y; from the plate. At some later
time #, the same velocity magnitude of 0.4U will exist at some different
distance y,, and so on. This suggests that there will be some combination
of y and ¢, such as y/f", such that when this quantity is constant, the
velocity will be constant. That is, it is expected that a solution will exist in
the form
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uly,1)
AL
where
= ad
tl’l

Here 5(y, t) is called the similarity variable and « is a constant of proportion-
ality that will be defined later to render 7 dimensionless. This assumed form
of solution has the property that when 5 is constant (which corresponds to
y~1t"),u = constant. If indeed a similarity solution exists to our problem,
substitution of our assumed form of solution into the governing partial dif-
ferential equation will result in an ordinary differential equation with f as
the dependent variable and 7 as the independent variable. That is, it will be
possible to eliminate y and ¢ in terms of 7 only.

From the assumed form of solution the following expressions for the
derivatives are obtained:

ou_ oW o N
E = —Unthf = —Un;f
ou o

—— = U=

Oy t"f

0*u 2,

o = Vel

Here the primes denote differentiation of f with respect to #. Substitution of
these expressions into the governing equation yields the identity

2
n., o~y

— Un ;f =V Ut2_n
This is not an ordinary differential equation for arbitrary values of », but for
n= %the explicit time dependence will be eliminated, yielding an ordinary
differential equation. That is, for n = % a similarity solution is obtained. For
this value of » the differential equation for /" and the definition of the simi-

larity variable are as follows:

/! ;1 ]
e
S +2vcc2f

)=t
/2

The quantity o may now be determined in terms of the parameter v (and Uif
necessary) to render # dimensionless. The dimensions of y/¢'/? are a length
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divided by the square root of time. Since the dimensions of v are a length
squared divided by time, it is sufficient to take o equal to 1//v. For con-
venience in the solution of the differential equation a factor of 2 is also
included, so that the similarity variable becomes

N
24/vt
and the differential equation to be solved becomes
s =0

This equation may be integrated successively by rewriting it as follows:

d N
%(IOg.f) =-2n

hence
log f' = —n* +log 4

where the constant of integration has been chosen aslog 4. Then, combining
the two logarithmic quantities and taking exponentials of both sides of the
resulting equation gives

fl=d4e"

() =A/Oﬂefzdé+3

where B is another constant of integration and ¢ is a dummy variable of
integration. The boundary condition u(0,¢) = U for ¢ > 0 requires that
f(0)=1. This, in turn, requires that B = 1. The initial condition
u(y,0) = 0 for y > O requires that f () — 0 when#n — oco.This gives

0= U<A/Ocefzdf+ 1> — U<A\éﬁ+ 1)
0

so that the value of the constant 4 is —2//n. Then, using the definition of the
similarity variable, the expression for the velocity becomes

up.0) 2 PR

_ = -&
U N7
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But the second term on the right-hand side of this equation is the error
function whose argument is the upper limit of integration. Thus the solution
to Stokes’ first problem may be written as

“ U”) —1 —erf(z\)/}w) (7.4)

Values of the error function are presented in many tables of functions. Figure
7.4b shows the functional form of the error function and the dimensional
velocity profiles generated by this single similarity curve.

As one might expect intuitively, the disturbance caused by the
impulsive motion of the boundary diffuses into the fluid as the time from
the initiation of the motion progresses. An estimate of the depth of fluid
affected by the movement of the boundary may be obtained by observing
from detailed plots of the error function that /U is reduced to about 0.04
when 1 = 3/2. That is, for values of n greater than 3/2 the motion of the
fluid is small, and the fluid may be considered to be unaffected by the
moving boundary. Then, denoting the value of y by 6 at which u/U is 0.04
shows that

That s, the thickness of the fluid layer affected by the motion of the boundary
is proportional to the square root of the time and to the square root of the
kinematic viscosity of the fluid. This result shows the role played by the
kinematic viscosity in the diffusion of momentum through fluids.

7.5 STOKES SECOND PROBLEM

Another problem to which an exact solution exists is geometrically iden-
tical to the one treated in the previous section, but the principal boundary
condition is different. Stokes’ second problem differs from Stokes’ first
problem only in the condition that the boundary y = 0 is oscillating in
time rather than impulsively starting into motion. The geometry of the
flow and the nature of the boundary condition are indicated in Fig. 7.5a.
Since the geometry is the same as that of the previous section and since
the motion is again in the plane of the boundary itself, the differential
equation to be satisfied by u(y, ) will be the same. That is, the problem to be
solved becomes
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FIGURE 7.5 (a) Definition sketch for Stokes’ second problem, and (b) typical velo-
city profiles.

Oou &*u

o o2
u(0,¢) = Ucosnt

u(y,t) = finite

Since the boundary y = 0 is oscillating in time, it is to be expected that the
fluid will also oscillate in the x direction in time with the same frequency.
However, it is to be expected that the amplitude of the motion and the phase
shift relative to the motion of the boundary will depend upon y. Thus a
steady-state solution is sought of the form

u(y, 1) = Re [w(y)e™]

where the symbol Re signifies the real part of the quantity that is inside the
brackets. Substituting this assumed form of solution into the partial differ-
ential equation for u(y, r) gives

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



268 Chapter 7

2
Re [inw(y)e™] = vRe [j—y;v eint]

Noting that v/i = +(1 + i)/+/2, the solution to this differential equation is

w(y) = Aexp [_(1 + i)\/%y] + Bexp {_(1 +i)\/2£vy]

The condition that the velocity be finite requires that the constant B should
be zero. Thus the quantity w(y) will be of the form

vt~ aesp([2) oo -y/2)

The expression for the velocity then becomes

50 e [1ow( /) xpi(e - /)]
aesp( 2 eos(m - /)

The constant 4 may be evaluated by imposing the boundary condition
u(0,¢) = U cos nt, which requires 4 = U. Thus the velocity distribution in
Stokes’second problem will be given by

LU’t) — exp (—\/Zy> cos (nt - \/Zy> (7.5)

Equation (7.5) describes a velocity that is oscillating in time with the same
frequency as the boundary y = 0. The amplitude has its maximum value at
y = 0 and decreases exponentially as y increases. Also, Eq. (7.5) shows that
there is a phase shift in the motion of the fluid and that this phase shift is
proportional to y and to the square root of n. The type of velocity profile that
Eq. (7.5) represents is illustrated in Fig. 7.5b.

A measure of the distance away from the moving boundary within
which the fluid is influenced by the motion of the boundary may be
obtained as follows. The amplitude of the motion at any plane y = constant
may be obtained by letting the trignometric term in Eq. (7.5) assume its
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maximum value of unity. Then, if the value of y at which the amplitude of
the motion is 1/¢? of its maximum value U is denoted by 4, it follows from
Eq. (7.5) that

hence

5 =22
n

The quantity 0 is a distance such that for y > ¢ the fluid may be considered to
be essentially unaffected by the motion of the boundary. Again it is seen that
viscous effects extend over a distance that is proportional to /v. It is also
observed that J varies inversely as the square root of the frequency of the
motion. That is, the faster the motion the smaller will be the distance over
which the adjacent fluid will be influenced.

7.6 PULSATING FLOW BETWEEN PARALLEL
SURFACES

Another type of unsteady-flow situation for which an exact solution exists is
that of an oscillating pressure in a fluid layer that is bounded by two parallel
planes. We consider the two parallel surfaces to be located at y = +a and
consider the pressure gradient in the x direction to oscillate in time. Then the
velocity will be in the x direction only and will also oscillate in time. That is,
the only nonzero velocity component will be u(y, ¢). Using these features of
the flow, the governing equations reduce to the following single equation:
Ou 10p 0%u
~-__ 0=
ot pOx  Oy?
where u(a, t) = u(—a, t) = 0.The pressure gradient is assumed to oscillate in
time so that dp/Ox will be taken to be of the form
op
— = P, cosnt
ox F
where P, is a constant that represents the magnitude of the pressure-gra-
dient oscillations.
This problem may be treated in the same manner as that of the previous
section. That is, by virtue of the oscillatory nature of the pressure gradient it
may be expected that the velocity of the fluid will also oscillate in time, and
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with the same frequency, but possibly with a phase lag relative to the oscill-
ations in the pressure. Thus the pressure gradient and the velocity may be
represented as follows:

% = Re (Pe™)
u(y, 1) = Re [w(y)e™]

Substituting these expressions into the governing equation gives

) 1 - d*w .
R . int _ _ R Px int R int
e (inwe'™) ; e (Pe'™)+vRe <_dy2 e )

Thus the quantity w(y) must satisfy the following nonhomogeneous ordinary
differential equation:

d*w in P,

— =W

d? v pv
The general solution to this differential equation consists of a constant par-
ticular integral plus the general solution to the homogeneous equation. This

gl €s
y L C USIl 1 1 y Slllll 1 L y

where the quantity (1 + i)/v/2 has been used for \/i and the hyperbolic form
of solution has been chosen rather than the exponential form due to the finite
extent of the flow field in the y direction. The boundary conditions u(a, ) = 0
and u(—a, t) = 0 give, respectively.

. Py R n . R n
0 IEJrACOSh[(l +l)1/5a} + Bsinh {(1 +z),/5a]
0= it 4 Acosh |(1+44)(/ a| — Bsinh [(1+ i),/
_lP” V2! EATDG

The solution to this pair of algebraic equations for the undetermined con-
stants 4 and Bis

4 iPy
pncosh[(1 4 i)/ (n/2v)d]
B=0
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Thus the solution for w(y) is

W) — i {1 _cosh[(1 +1) (n/2v)y]}

on cosh[(1 +i)y/(n/2v)a]

Then the expression for the velocity in the fluid becomes

o[BS coshl(t+ ) /i)
u(y,t)Re(pn{l cosh[(l+i)\/(n/2v)a]} ) (7.6)

This expression may be decomposed to yield the real part explicitly.
Although the concepts are straightforward, the details are cumbersome;
hence the compact form of Eq. (7.6) will be considered to be the final
expression. It is evident from the result that the velocity oscillates with the
same frequency as the pressure gradient but that a phase lag, which depends
upon y, exists. Thus the motion of the fluid that is adjacent to the boundaries
will have a timewise phase shift relative to the motion near the centerline
of the boundaries. The amplitude of the motion near the boundaries will
also be different from that near the centerline, and in order to satisfy the
boundary conditions, this amplitude will approach zero as the boundaries
are approached.

7.7 STAGNATION-POINT FLOW

In all the foregoing flow situations the geometry of the flow field was such that
the nonlinear inertia terms (u-V)u were identically zero. The flow in the vici-
nity of a plane stagnation point is an example of a flow field in which these
inertia terms are not zero yet one for which an exact solution exists.

Figure 7.6a shows the situation under consideration. A fluid stream
whose velocity vector coincides with the y axis impinges on a plane boundary
that coincides with the x axis. The boundary may be considered to be curved,
such as the surface of a circular cylinder, provided the region under con-
sideration is small in extent compared with the radius of curvature of the
surface. This problem was investigated by Hiemenz, and the flow field is
frequently referred to as Hiemenz flow. The basis of the solution is to
modify the potential-flow solution in such a way that the Navier-Stokes
equations are still satisfied and such that the no-slip boundary condition may
be satisfied.

The potential-flow solution for the situation under consideration was
established in Chap. 4, and the complex potential for the flow in a sector of
angle 7/n is given by Eq. (4.10). Using this result and the value n = 2, the
velocity components for the potential flow are
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5 S Y

(a) (b)

FIGURE 7.6 (a) Flow configuration for a plane stagnation point, and (b) the func-
tional form of the solution.

u=2Ux
v=—-2Up

Then, from the Bernoulli equation, the pressure distribution will be
P=po—2pU (¥ + %)

where pj is the Bernoulli constant that corresponds to the pressure at the
stagnation point. Note that Uis not a velocity here.

The foregoing velocity and pressure distributions satisfy the potential-
flow problem exactly, and like all potential flows, they also satisfy the equa-
tions of motion for a viscous, incompressible fluid exactly. This may be
readily shown by observing that the difference between the potential-flow
equations and the equations governing the flow of a viscous, incompressible
fluid is the presence of the viscous term vV2u in the latter. But for potential
flows u = V¢, so that

Viu=V3(Vg) = V(VZp) =0

That is, the viscous-shear terms in the Navier-Stokes equations are identi-
cally zero for potential-flow fields.

Although potential-flow fields satisfy the equations of motion for a
viscous, incompressible fluid, they do not satisfy the no-slip boundary con-
dition. Thus, for the case of stagnation-point flow, Hiemenz attempted to
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modify the potential-flow field in such a way that meeting this boundary
condition would be possible. Thus the x component of velocity is taken to be

u="2Uxf"(y)

where the prime denotes differentiation with respect to y. Then, the con-
tinuity equation requires that

ov ou

= o= 2U0)

so that the vertical component of the velocity will be of the form
v=-2Uf(y)

Defining the velocity field in this way satisfies the continuity equation for all
functions f(y), and if we stipulate that f (y) — yasy — oo, the potential-flow
solution will be recovered far from the boundary.

The equations of motion have yet to be satisfied, and this will impose
further restrictions on the function f. The equations to be satisfied are

ox 0y  pox oxt  0y?
dv v 10p (8217 8217>

“ox Yoy T ooy T \aw Ty

Substituting the expressions obtained above for # and v into these equations
shows that the following pair of equations must be satisfied:

4U(f")? — 4Uff" = — Lo, 20 vxf"
p Ox
AU = _Lop_ 20vf"
p Oy

The second of these equations will be used to establish the pressure dis-
tribution, and this result will be used to eliminate the pressure from the first
equation. The result will be a nonlinear ordinary differential equation that
the function f( y) must satisfy.

Integrating the last equation with respect to y gives the following
expression for the pressure:

p(x,y) = =2pU%(f)* = 2pUvf’ + g(x)
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where g(x) is some function of x that may be determined by comparison with
the potential-flow pressure distribution that should be recovered for large
values of y. Recalling that f( y) — y for large values of y shows that, for large
values of y,

p(x,y) = =2pU»* — 2pUv + g(x)

which, by comparison with the potential-flow pressure, requires that
g(x) =po — 2pUx* +2pUyv

Then the pressure distribution in the viscous fluid will be
p(x.y) = po — 2pU*(f)* + 2pUv(1 — ') = 2pU°x’

So far we have satisfied the continuity equation and the equation of y
momentum. From the result above it follows that dp/9x = —4pU?x, so that
the equation of x momentum becomes

4Ux(f")? — AUxff" = 4U%x + 2Uvxf"

In standard form, with the highest derivative to the left, this equation
becomes

V_ m 11 1\2 _
ol = (Y +1=0

The boundary condition u(x,0) = 0 requires that f/(0) = 0, while the con-
dition v(x, 0) = 0 requires that f(0) = 0. In addition, the condition that the
potential-flow solution be recovered as y — oo requires that f(y) — y, or
thatf'(y) — 1,asy — oo.Thus the boundary conditions that accompany the
foregoing ordinary differential equation are

f0)=£(0)=0
fly) =1 asy— oo

That is, the potential-flow solution may be modified to satisfy not only the
governing equations but also the viscous boundary conditions provided the
modifying function f( ) satisfies the foregoing conditions. Clearly, it would
be preferable to solve a problem that is free of the parameter v/(2U), for then
the result will be valid for all kinematic viscosities and all flow velocities. It is
possible to render the foregoing problem free from parameters by making the
following change of variables. Let

o0 = 2Zs0
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and

2U

n=A\ -7y
v

Then, in terms of ¢(#), the problem to be solved in order to satisfy all the
requirements is

¢" +¢¢" — (¢') +1=0 (7.7a)
$(0) =¢'(0) =0 (7.7b)
d'(n) —1 asn— oo (7.7¢)

where the primes denote differentiation with respect to #. This nonlinear
problem must be solved numerically, but this is a much easier task than sol-
ving the original system of partial differential equations numerically. For this
reason the solution is usually considered to be exact.

To summarize, the velocity and pressure fields in stagnation-point flow
are given by

u(x,y) = 2Ux¢’ (7.8a)
v(x,y) = —V2Uv¢ (7.8b)
p(x.y) =po— pUvd® + 2pUv(1 — ¢') — 2pU*x* (7.8¢)

where ¢(n) is the solution to Egs. (7.7) and n = v/2Uy/\/v. The nature of
this solution is shown in Fig. 7.6b in the form of a curve of ¢’ as a function of 1.
From quantitative plots of this type it is found that the value of  for which
¢' = 0.99is about 2.4.

From this qualitative figure and the supplementary quantitative data, it
is evident that ¢’ may be considered to be unity (and hence the potential-flow
solution is recovered) when # = 2.4. Then if 6 denotes the value of y at this
edge of the viscous layer, it follows that

hence
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That is, viscous effects are confined to a layer adjacent to the boundary,
whose thickness varies as the square root of the kinematic viscosity of the
fluid and inversely as the square root of the velocity-magnitude parameter.

7.8 FLOW IN CONVERGENTAND DIVERGENT
CHANNELS

Another flow field in which the continuity equation is not identically satisfied
and in which the nonlinear inertia terms are not identically zero is that of
flow in a convergent or divergent channel. For such flow fields an exact
solution to the governing equations exists in the sense of the previous
section—that is, the system of partial differential equations may be reduced
to a simple numerical problem.

Figure 7.7a shows the flow configurations for flow in a converging
channel and flow in a diverging channel. The preferred coordinate system for
such configurations is cylindrical coordinates R, , and z. Then, of the three
velocity components only the radial component uz will be different from
zero, and this velocity component will depend upon R and 0 only. Thus the
continuity equation and the Navier—Stokes equations become

by Hy

i, i,
1.0 1.4
R_\'_: R 1
R.; R
R\l R
N3
(b}
T b T+ 4] - 0 +0x B0

FIGURE 7.7 (a) Flow configuration, and (b) velocity profiles for flow in convergent
and in divergent channels.
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li(RMR) =0

ROR
Oug _ _10p  [f10  (p0ug\ ug 1 0ug
“RoR T T porR " '|ROR 9R) R TR o

__Ltop (2 0uk
PR R? 90

A separable form of solution will be sought to these equations. That is,
a solution for the velocity will be sought in the form

ur(R,0) = f(R)F(0)

Then the continuity equation shows that Ruz must be a constant, so that ug
must be proportional to R~!. Thus the velocity distribution will be of the form

ug(R,0) = %F(G) (7.9a)

where the kinematic viscosity has been used as a proportionality factor in
order to render the function F(0) dimensionless.

Having satisfied the continuity equation, the two components of the
Navier—Stokes equations must next be satisfied. This will impose some
restrictions on the function F(0). Substitution of Eq. (7.9a) into the reduced
form of the Navier—Stokes equations shows that the following pair of equa-
tions must be satisfied:

2 19
7‘}_3( )277__p+v_3 /!
R pOR R
1 Op v?
- 42 F
QR0 TR

where the primes denote differentiation with respect to 6. This pair of
equations may be reduced to a single equation by forming the second cross
derivative of p, namely, 9*p/OR00, and thus eliminating the pressure
between the two equations. The resulting ordinary differential equation
for F(0) is

F" +4F +2FF =0
This equation may be immediately integrated once with respect to 0 to give

F' +4F + (F) =K
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where K is a constant of integration. In order to further reduce this equation,
new dependent and independent variables are introduced. Thus let
G(F) = F' be the new dependent variable and F be the new independent
variable. Then

4G _d o d0d P
dF  dF ~ dFd0 F G
Using this result to eliminate F”, the differential equation to be satisfied
becomes
dG

2_
G +4F + (F) =K

That is, in terms of G(F) the differential equation is reduced to first order.
But this equation may be integrated directly to yield G as follows. Rewriting
the equation above in the form

d (1 _,\ 2
ﬁ<5G>K 4F — F

and integrating with respect to Fgives
1 :A+KF—2F2—1F3
2 3

where A is a constant of integration. Solving this equation for G(F) gives

G(F) = j—g = \/2(4 + KF —2F* -} F?)

Although this equation cannot be solved to give an explicit expres-
sion for F in terms of 6, the result may be put in the form of an integral
expression for 6 as a function of F. The expression is the following elliptic
integral:

F dé
0=
/0 V20 + K28 - 1)

+B (7.95)

where ¢ is a dummy variable of integration and B is a constant of inte-
gration. Equation (7.96) represents a fairly simple numerical problem
whose solution, when coupled with Eq. (7.94), defines the velocity dis-
tribution.
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The physical boundary conditions that have to be satisfied are
ug(o) = up(—a) =0 (divergent)
ugr(n+ o) =ug(n —a) =0 (convergent)

These boundary conditions represent the no-slip condition at the walls of
the channel. In addition, since the velocity profiles will be symmetrical
about the reference axis, it follows that

8uR .
50 (R,0)=0 (divergent)
auR
50 (R,m)=0 (convergent)
Then, from Eq. (7.94), the conditions the function F(60) must satisfy are
F(x) = F(—a) =F(0)=0 (divergent) (7.9¢)

Fin+oa)=F(n—a)=F(r)=0 (convergent) (7.9d)

These boundary conditions are sufficient to determine the constant 4, B, and
K that appear in Eq. (7.95). Equations (7.9) describe velocity profiles that
have the form indicated in Fig. 7.7b.

In Fig. 7.7b the various curves are identified by the Reynolds number
where Ry; > Ryz > Rys. Here the Reynolds number is defined as

R
Ry =%

v

where u, is the velocity of the fluid along the centerline of the channel. It may
be seen that the nature of the velocity profile in a convergent channel may be
quite different from that in a divergent channel, particularly at low Reynolds
numbers. The adverse pressure gradient that exists in a divergent channel
may overcome the inertia of the fluid near the wall (where viscous effects
have reduced the velocity), resulting in a reversed-flow configuration. This
separation of the flow is well established experimentally, particularly at large
values of the angle c.

7.9 FLOW OVER A POROUS WALL

The foregoing exact solutions to the equations of viscous flow of an incom-
pressible fluid either were sufficiently simple that the nonlinear inertia terms
dropped out or these terms were nonzero and a reduction to a nonlinear
ordinary differential equation was possible. The flow field to be studied here
is an example of a case where the nonlinear inertia terms become linearized
and a closed form of solution becomes possible.
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Figure 7.8 shows a flat surface over which a steady uniform flow exists.
Rather than being impervious, the surface is porous and fluid is being drawn
off into the porous surface such that the normal component of velocity at the
surface is V. Porous surfaces of this type with suction beneath them are
sometimes used to prevent boundary layers from separating (a topic that will
be discussed in Chap. 9). However, it may be stated now that boundary-layer
separation on airfoil surfaces can lead to a stalled configuration that destroys
the lift generated by the airfoil. Thus it is natural that one of the applications
of boundary-layer suction has been in aeronautics.

A solution to the foregoing problem will be sought in which p is a
constant and u depends upon y only. That is, a solution to the governing
equations is being sought in which the magnitude of the suction is adjusted in
such a way that the tangential velocity component is independent of x. For
this situation the continuity and Navier—Stokes equations become

ov
6_y_0
e
dy  dy?
Ox Oy \Ox2  Oy?
«]'.‘
i
)
——_

FIGURE 7.8 Uniform flow over a plane boundary with suction.
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with the boundary conditions
u(0)=0
v(x,0)= -V
uly) > U asy— o0

Now the continuity equation may be integrated to show that v(x, y) is actu-
ally a constant, and the boundary condition at y = 0 shows that this constant
must be — V. Thatis,

v=-V

With this information the momentum equations reduce further to the fol-
lowing single equation:

&

It may now be seen that the inertia terms are not retained in a comprehen-
sive form yet they are not zero. Rather, the intermediate case of a linearized
form exists in which the convection velocity is V'rather than a variable, which
vwould be in more general cases.
The foregoing ordinary differential equation may be integrated once

with respect to y to give

du V V

dy v v
where the constant of integration has been chosen as 4V/v. The particular
solution to the remaining equation is then # = A, so that the complete solu-
tion is

u(y) = A+ Be "/

where B is a constant. The boundary condition u#(0) = 0 requires that
B = —A4, and the condition # — U as y — oo then gives 4 = U. Hence the
velocity distribution will be

u(y) = U(1 — e~/ (7.10)

Some idea of the thickness of the layer that is affected by viscosity may
be obtained by considering the value of y at which u = U(1 — 1/¢?) to be 4.
Then, from Eq. (7.10), the value of 6 will be

v
:2—
6=2
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That is, the distance away from the surface at which the uniform flow is
essentially recovered is proportional to the kinematic viscosity of the fluid
and inversely proportional to the suction velocity.

It will be observed that the solution [Eq. (7.10)] diverges for nega-
tive values of V' (that is, for blowing instead of suction). Some insight
into the reason for this may be obtained by studying the vorticity distribu-
tion. The equation governing the vorticity is Eq. (I11.4). Here we are dealing
with steady flow without external body forces. In addition, the flow is
two-dimensional, so that the vorticity vector will be w = (0,0, &). Then,

using the fact that v = —V and u = u(y), the vorticity equation becomes
d¢ d*¢
2=
dy  dy
This equation may be integrated once with respect to y to give
dé
_VE=y—
c=v &

Interpreted physically, the term on the left-hand side of this equation repre-
sents the convection of vorticity, which is toward the boundary (negative y
direction), and the convection velocity is V. The term on the right-hand side
represents the diffusion of vorticity in which the diffusion coefficient is the
kinematic viscosity of the fluid. Thus the equation states that the convection
rate of vorticity toward the wall due to the suction is just balancing the dif-
fusion of vorticity away from the wall. It is this balance that makes possible a
solution of the form assumed. However, if blowing instead of suction exists,
the convection and the diffusion will both take place in the same direction, so
that a solution of the form # = u(y) only on longer exists.

PROBLEMS

7.1 To establish the manner in which Couette flow is established, find the
velocity distribution in a fluid that is bounded by two horizontal par-
allel surfaces in which everything is quiescent for # < 0 and for which
the upper surface is impulsively set into horizontal motion with con-
stant velocity U at time ¢ = 0. (This is readily done by obtaining the
solution in its asymptotic form, corresponding to ¢ — oo, then adding
a separation of variables solution).

7.2 To determine the manner in which Couettte flow decays, find the
velocity distribution in a fluid that is bounded by two horizontal par-
allel surfaces between which steady Couette flow exists for z < 0. The
motion of the upper surface is suddenly stopped at time ¢ = 0. Obtain
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an expression for the subsequent velocity distribution between the
two parallel surfaces.

7.3 A movingbeltisinclined at an angle o to the horizontal. The lower end
of thisbeltisimmersedin a pool of liquid and the belt drags some of the
liquid with it as it moves upward and out of the liquid. The liquid may
be assumed to be viscous, but incompressible.

(a) Using the configuration shown in Fig. 7.9a, solve the Navier—
Stokes equations for the following quantities:

(i) The velocity distribution in the liquid layer
(ii) The volumetric flow rate of liquid in the x direction
(iii) The angle « for which the volumetric flow rate is zero

(b) Repeat part a of this question for the configuration shown in

Fig. 7.9b.

7.4 For Poiseuille flow through an elliptic pipe of semi-axes a and b, find
the ratio b/a that gives the maximum flow rate for a given flow area and
a given pressure gradient.

For a given pressure gradient, find the ratio of the discharge
from an elliptic pipe to that from a circular pipe that has the same flow
area. Evaluate this ratio for the specific ratio b/a = 8/7.

7.5 Figure 7.9 shows a conduit whose cross section is the shape of an
equilateral triangle. For the coordinate system shown in the figure, the

oravity gravity

(a) (b)

FIGURE 7.9 Liquid layer between a moving surface and (a) solid surface, (b) free
surface.
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equations of the three sides are

z—l—L—O
2V3
b
z+\/§y—7§:0
Z\/gy%O

Look for a solution for the velocity distribution in this conduit of
the following form:

u(y,z) Za(ZJr%) (z+\@y—\%) (z_ﬂy_%)

Determine the value of the constant o such that the assumed
form of solution is exact, the value of this constant being expressed in
terms of the applied pressure gradient.

7.6 Figure 7.10 shows two parallel, vertical surfaces and a horizontal sur-
face. The space defined by these surfaces, 0 < y < bfor 0 < z, is filled
with a viscous, incompressible fluid. The horizontal surface, z = 0, is
moving in the positive x direction with constant velocity U. The other
surfaces are stationary, as is the fluid—except for the motion that is
induced by the moving surface.

Derive an expression for the velocity distribution in the yz plane
if the flow is steady and if there are no body forces. Also obtain an
expression for the volumetric flow rate of the fluid that is induced to
flow in the x direction by the moving surface.

7.7 Two concentric circular cylinders enclose a viscous fluid. If the inner
cylinder is at rest and the outer cylinder rotates at a constant angular
velocity, calculate the torque required to rotate the outer cylinder and
that required to hold the inner cylinder at rest.

7.8 Using the solution for flow between concentric rotating circular
cylinders, deduce the velocity distribution created by a circular cylin-

AN

h flow

Ty
T

© )

FIGURE 7.10 Conduit with cross-sectional shape of an equilateral triangle.
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FIGURE 11 Fluid enclosed by vertical stationary and horizontal moving surfaces.

der that is rotating in a fluid of infinite extent that is otherwise at rest.
Compare this result with that for a line vortex of strength I' = 2nR?w;
in an inviscid fluid that is at rest at infinity.

7.9 Obtain the velocity distribution for the modified Stokes second pro-
blem consisting of a fluid that is contained between two infinite
parallel surfaces separated by a distance 4. The upper surface is held
fixed, while the lower surface oscillates in its own plane with velocity
U cosnt.

7.10 The velocity profile in a fluid between two parallel surfaces due to an
oscillating pressure gradient was shown in Eq. (7.6) to be

Pl cosh [(1 4 i)\/(n/2v y]

pn cosh [(14i)\/(n/2v 4]

int

u(y,t) =Re| i
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7.11

7.12

Chapter 7

A Reynolds number for such a flow may be defined by the fol-
lowing quantity:
a’n

T2y

For this situation, consider the two asymptotic limits that are
defined below:

Ry

(a) For Ry <1 it might be expected that viscous effects will dom-
inate. Expand the expression for the velocity in this case and
obtain an explicit expression for the leading term in the expan-
sion. Interpret the result physically.

(b) For Ry > 1it might be expected that viscous effects will be small
everywhere expect in the vicinity of the walls. Expand the
expression for the velocity for this case, and interpret the result
that is obtained.

For potential flow due to a line vortex the vorticity is concentrated

along the axis of the vortex. Thus the problem to be solved for the decay

of aline vortex due to the viscosity of the fluid is as follows:

R 2
Er vwW o
0 for R >0
o(R,0) =
r forR=0

Here o(R,t) is the vorticity, and the maximum circulation
around the vortex for any time # > 0is I'. Look for a similarity solution
to this problem of the following from:

o(R,t) = %f(%)

Thus obtain expressions for the velocity uy(R, ¢) and the pressure
p(R, 1) in the fluid.
The following flow field satisfies the continuity equation everywhere
except at R = 0, where a singularity exists:

ugr = —akR
K

Uy = i

u, = 2az
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Show that this flow field also satisfies the Navier—Stokes equa-
tions everywhere except at R = 0, and find the pressure distribution in
the flow field.

Modify the foregoing expressions to the following:

ugp = —akR
K

Up = }f(R)

u, = 2az

Determine the function f(R) such that the modified expression
satisfies the governing equations for a viscous, incompressible fluid
and such that the original flow field is recovered for R — oc.
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Low-Reynolds-Number Solutions

For flow problems in which an exact solution is not known, it may be possible
to obtain an approximate solution. By an approximate solution we mean an
analytic expression that approximately satisfies the governing equations
rather than a numerical approximation to these equations. In this chapter the
full governing equations will be approximated for flows involving low Rey-
nolds numbers, and some exact solutions to the resulting equations will be
established.

The fundamental low-Reynolds-number approximation is the Stokes
approximation, and this is the first topic in the chapter. Some fundamental
solutions are used to establish more practical solutions. In this way the
flow in the vicinity of a rotating sphere is obtained, as is the solution for
uniform flow past a sphere. The case of uniform flow past a circular
cylinder is examined to illustrate the consequences of the Stokes approxi-
mation. Finally, an alternative low-Reynolds-number approximation, the
Oseen approximation, is briefly discussed. A detailed study of the Oseen
equations is not made, but the nature and utility of the approximation is
discussed.

288
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8.1 THE STOKES APPROXIMATION

The Stokes equations are a special case of the Navier-Stokes equations
corresponding to very slow motion of a viscous fluid. Under these conditions
the inertia of the fluid may be neglected in comparison with the other forces
that will act on it. Since the Reynolds number may be considered to be the
ratio of the inertia forces of the fluid to the viscous forces, the condition of
negligible inertia forces amounts to very small Reynolds numbers. The
essential feature of the Stokes approximation is that all the convective iner-
tia components are assumed to be small compared with the viscous forces.
Then, from Eqs. (III.1) and (II1.2), the equations governing the Stokes
approximation for a flow field without body forces are

Vu=0 (8.1a)

Ou 1 )
E__EVP—H)V“ (8.1b)

Equations (8.16), which represent three scalar equations, are usually referred
to as the Stokes equations. These equations, together with the continuity
equation [Eq. (8.1a)], represent four scalar equations in the four unknowns u
and p. The great simplification in this approximation is that the governing
equations are now linear.

The foregoing equations may be extracted from the Navier-Stokes
equations in a more formal manner. Since this alternative approach must be
used when employing higher-order corrections, it will be outlined here. The
first step is to nondimensionalize the dependent and the independent
variables as follows. Let

u=Uu"
pU
N
x; = Ix}
12
t=—r"

Here Uisacharacteristic velocity ofthe fluid (such as the free-streamvelocity)
and /is a characteristic length scale (such as a body dimension). The starred
quantities are the dimensionless variables where the kinematic viscosity v has
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beenusedtonondimensionalize the pressure and the time. Experience gained
in the previous chapter indicates that the time /2/v corresponds to the time
required for viscous diffusion to traverse the distance /.

The variables that appear above are now substituted into the Navier-
Stokes equations to yield the equations governing the dimensionless vari-
ables. The resulting vector equation is

voouw U? . _. . e, ., VU,
172%—’_7(“ -V )ll =—-——V P +——V*u
where the gradient and the laplacian operators are now expressed in terms of
the dimensionless space coordinates. Multiplying this equation by /?/(vU)
and introducing the Reynolds number Ry = Ul/v gives

ou*

8t* + RN(U*'V*)U* — _V*p* + V*Zu*

In this form it is evident that the Stokes equations [Egs. (8.16)] may be
obtained from the Navier-Stokes equations by taking the limit Ry — 0
while holding the coordinates fixed. This suggests that higher-order
approximations to the Stokes solution for any given problem could be
obtained by expanding the dependent variables in ascending powers of the
Reynolds number. The sequence of differential equations that would have
to be solved could then be obtained from the above form of the Navier-
Stokes equations by a limiting procedure. Thus the Stokes equations may
be considered to be an asymptotic limit of the Navier-Stokes equations
corresponding to zero Reynolds number, while the space coordinates
remain of order unity.

An alternative form of Eqgs. (8.1a) and (8.15) exists that is frequently
useful. In this alternative form the velocity and the pressure equations are
separated so that the velocity and the pressure fields may be established
separately. To obtain the equation governing the velocity field, the curl of the
curl of Eq. (8.10) is taken. Having done this, the identities Vx(Vxu) =
V(V -u) — V?u and VxVp = 0 are employed. The resulting equation is

% [V(V-u) — VZu] = W2 [V(Vou) — VA

Finally, using the continuity equation, the pressure-free form of the
momentum equation becomes

N _ vy (8.2a)

2
Vat_
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To obtain the equation governing the pressure, the divergence of Eq. (8.15) is
taken. This gives

Vip=10 (8.2b)

The advantage in the formulation above is that the pressure field has been
separated, mathematically, from the velocity field. However, the price we pay
is that the highest differentials are now fourth-order instead of second-order.

Solutions to the Stokes equations may be obtained in either of two basic
ways. Using the governing equations and the appropriate boundary condi-
tions, the boundary-value problem for each geometry of interest may be
solved. Alternatively, basic solutions to the governing equations may be
established and superimposed to obtain other solutions. This is the proce-
dure that was used in Chaps. 4 and 5, and it will be used again here. The
principal value of this approach is that it leads to the clear understanding of
which elements of a mathematical solution are responsible for producing
forces and torques.

8.2 UNIFORM FLOW

The simplest solution to the Stokes equations is that for a uniform flow. It
may be simply observed that for a constant velocity vector and a constant
pressure, Egs. (8.1a) and (8.1b) are identically satisfied. That is, for any con-
stant U, the following velocity and pressure fields satisfy the Stokes approx-
imation to the Navier-Stokes equations:

u=Ue, (8.3a)
p = constant (8.3b)

where e, is the unit vector in the x direction, which is the reference direction.
Clearly this velocity and pressure distribution does not create a force or turn-
ing moment on the system. Some of the other fundamental solutions that will
be considered later correspond to point singularities, and some of these sin-
gularities correspond to point forces or turning moments acting on the fluid.

8.3 DOUBLET

It was pointed out in Sec. 7.7 that any potential flow is an exact solution of the
full Navier-Stokes equations, since the viscous term is identically zero for
potential flows. Then, for any steady potential flow, the Stokes equations will
be satisfied provided the pressure term is zero. That is, for steady flow, all the
inertia terms are zero to the Stokes approximation, and for potential flows
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the viscous term will be zero. Hence, ptential flows are also solutions to the
Stokes equations provided Vp = 0 or p = constant.

In the study of the flow of ideal fluids it could be shown, through
Kelvin’s theorem, that an initially irrotational flow would remain irrota-
tional irrespective of the shape of any bodies it may flow around. Here, we
consider the nature of the velocity field assumed by an irrotational motion if
it exists. The solution to any real flow problem may contain such a compo-
nentinits solution in addition to other fundamental solutions, some of which
may correspond to rotational motion. It should be noted that the velocity
field corresponding to viscous irrotational motion is not related to the pres-
sure field in the manner that existed for ideal-fluid flows. The conditions that
were stipulated in deriving the Bernoulli equation are violated for viscous
flows, so that the pressure and the velocity are no longer connected by such a
relationship. Indeed, it was shown above that any irrotational velocity dis-
tribution had to be accompanied by a constant pressure in order to satisfy
the Stokes equations.

If an irrotational flow field exists, the velocity will be derivable from a
velocity potential, and from the continuity equation, the velocity potential
must satisfy Laplace’s equation. Then, for three-dimensional potential flows
the mathematical problemisthe same asthat of Chap. 5. Thatis,if we are inter-
estedin axisymmetric flow fields,we may use the coordinate system defined in
Fig.5.1and the solutionsto Eq. (5.1) thathave already been established.

But the solution that was identified as a doublet [Eq. (5.7a)] was of the
functional form.

cos 6 x

) =A——=A—

(/)(rv ) 72 3
where the fact that x = r cos O hasbeenused. Then, sinceu = V¢, the velocity
vector will have a component along the x axis and a radial component, giving

u=4 (e_x - 3):5’) (8.4a)

73

where e, and e, are unit vectors in the x direction and in the radial direction,
respectively. This formulation of expressing variables in terms of streamwise
and radial components will be found to be useful in the present application.
The velocity field described by Eq. (8.4a) cannot be proved to be valid
from upstream irrotational conditions but is presented here only as a
possible form for a viscous fluid. Then, in order for this flow field to satisfy the
present form of the momentum equations, the pressure distribution must be

p = constant (8.4b)
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Although the solution defined by Eqs. (8.4a) and (8.4b) represents the
flow field generated by a singularity that is located at the origin, this singu-
larity does not exert a force or a moment on the surrounding fluid. This may
be simply argued from the fact that the pressure is constant and the flow
configuration is such that there is no net momentum flux acting on the fluid.

84 ROTLET

In this section a solution to the Stokes equations will be sought in which the
vorticity is different from zero and the pressure is constant. That is, a rota-
tional-flow solution will be sought. The resulting solution will involve a sin-
gularity at the origin that is known as a rotlet.

Consider steady flow fields of the form

u=rx Vy

Wherer is the position vector. In tensor notation, this expression becomes

0y
=
k

Then, the divergence of this velocity vector will be given by

;i

1

Ou; (8xj Iy Py )
O0x; Oy Y Ox;Oxy.

The first term on the right-hand side of this equation is zero, since 9x;/0x; is
zerounless i = jand ¢ is zero when i = j. That s, the product of the pseudo-
scalar ¢, and the symmetric tensor Ox;/0x; is zero. Likewise, the second
term inside the parentheses in the equation above is a symmetric tensor, so
that the product of this quantity with the pseudoscalar ¢;; will be zero. That
is, the continuity equation will be satisfied identically for all forms of the
scalar y.

Since the flow is assumed to be steady and since the pressure has been
taken to be constant, the Stokes equations reduce to

Viu=0

But, for the form of the velocity vector introduced above it follows that

) Pu; O*x; Oy o 0%y
8)(/8)6/ 8xk c’)xk 8x,8x1

= —_—= 8“](
! 8x18x, Y
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The first term on the right-hand side of this equation is zero, since
9?x;/(0x; Ox;) = 0 for alljand /. Also, the second term on the right-hand side
will be zero if V>y = 0. That is, the velocity distribution u = r x Vy will be a
valid solution to the Stokes equations for a constant pressure distribution,
provided V?y = 0.The problem, therefore, again reduces to that of obtaining
axisymmetric solutions to the three-dimensional Laplace’s equation.

From Chap. 5, the first separable solution that was obtained corres-
ponded to a source and was of the form y ~ 1/r. This gives Vy ~ e, so that
u = 0, and hence that particular solution is of no interest in this case. The
next solution, corresponding to a doublet, was of the form

cos 0 X
1=B——=B5
r r

The velocity field corresponding to this solution will be
x e Xe
u:BrxV(ﬁ) = Br x (r—3—3r—4)

Since r = re, and since e, x e, = 0, this velocity distribution may be repre-
sented by the simplified expression

e Xe
u=2~a rrz ad (8.5a)
while the corresponding pressure distribution is
p = constant (8.5b)

The streamlines corresponding to Eq. (8.5a) must be perpendicular to
both e, and e,. That is, the streamlines are circles whose centers lie on the
x axis. A typical streamline is shown in Fig. 8.1a, in which the direction is
shown for B > 0. It is the nature of the streamlines that suggests the name
rotlet for the singularity that exists in the solution (8.5a) at r = 0.

The rotlet does not exert a force on the fluid, but it does exert a turning
moment on it. This may be verfied by constructing a spherical control surface
around the rotlet, as shown in Fig. 8.1b. Then, if F is the force acting on the
fluid contained within the control surface S and if n is the unit outward nor-
mal to S, it follows that

Fiz—/a,-jnde
K

where oy is the stress tensor. But, for an incompressible newtonian fluid,
Eq. (1.7) shows that the stress tensor may be expressed by
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rotlet

(a)

(b}

FIGURE 8.1 (a) Typical streamline due to a rotlet, and (b) spherical control surface
surrounding a rotlet.

o — — 5”+ 5‘u,~+8uj
ij = —Poij T H ox; ' Ox;

Using this result, the order of magnitude of the force F; may be evaluated as
follows. Substituting o;; gives

au; 8uj
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Since p = constant here, the first component of the integral above will be
zero. Also, Eq. (8.5a) shows that u; ~ 2, and it is known that dS ~ #? for an
element of surface of a sphere. Hence

Then by considering the control surface S to be of very large radius, it is
clear that F; = 0. That is, there is no force acting on the fluid due to the
rotlet.

The torque, or turning moment M, exerted on the fluid by the singu-
larity, may be calculated as follows:

M = /rdeS

where P is the surface-force vector resulting from the existence of the stress
tensor ¢;;. In tensor notation, this expression becomes

MZ/S,‘jkxj'Pk ds
K

Using the relation Py = oyyn; and the expression for oy, that was used above,
the value of the turning moment becomes

Ouy  Ou
M; = / EijkXj [_pékl +u (B—)C]; + 6_X/i>] n dS

Noting that, since p = constant, the first component of this integral is zero
and using the fact that n; = x;/r for the spherical control surface of radius
the expression for the turning moment of the fluid becomes

_H (O Om
M_r/sgyk)cjxl(axl+8xk> as

The preceding expression is valid for any velocity distribution what-
soever. In this particular case, the velocity (8.54) is a homogeneous function
of degree 2. A homogeneous function of order m is one that satisfies the
condition

1E2.2) = rtenn
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For such functions, Euler’s theorem states that

o o o
x8x+y8y+zaz_ mf

Then, for the velocity distribution under consideration, which is given by
Eq. (8.54) and which is homogeneous of degree 2, it follows that

This identifies one term that appears in the integrand for the expression for
the moment M;. Another term that appearsin the integrand may be evaluated
as follows:

w9 o

Xi =5 X)) — U5 — = —Ug
Oxy. 8xk( ) Oxye

Here, it is noted that the first term on the right-hand side of this identity is
zero, since O(xjuy) /Ox; = V(r - u) and the velocity vector u is perpendicular to
the position vector r, as may be seen from Eq. (8.5a). Also, 0x;/0xx = Oy, so
that u;0x;/Oxy = w0y = ux. Then the expression for the moment exerted on
the body of fluid by the rotlet at the origin becomes

U
M; = ;/ &ijkX; (—2ux — uy) dS
Or, in vector form, this expression is
M= 3% / r x uds
r )

But, using Eq. (8.54),

e Xe
rxu=rx B2

72
B

B X B
= r—z(r~ex)er — r—z(r~e,)ex = Br_ze’ — 7ex

Thus the expression for the moment M becomes

M = —3B,u/(§e,‘—ex)§

72
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This integral may now be evaluated explicitly using the following relations,
which are obtained from Appendix A:

x=rcos0
e, = cos Oe, + sin 0 cos we, + sin 0 sin we,

dS =r*sin0d0dw
Using these result, the expression for M becomes

2n A
M = —SBM/ da)/ [(cos® 0 — 1)e, + sin 0 cos 0 cos we,
0 0

+ sin 6 cos 0 sin we;| sin 640
M = 8nBe, (8.5¢)

That is, Egs. (8.5a) and (8.5b) represent a valid solution to the Stokes equa-
tions, and they correspond to a singularity at the origin called a rotlet. This
singularity exerts no force on the surrounding fluid, but it does exert a turn-
ing moment on it. The magnitude of this turning moment is proportional to
the velocity-magnitude parameter, and it acts, according to the right-
hand-screw rule, in the x direction in the same algebraic sense as the
velocity-magnitude parameter.

8.5 STOKESLET

So far, all our fundamental solutions to the Stokes equations have corre-
sponded to a constant pressure. In general situations it is to be expected that
the pressure distribution will not be constant, so that another fundamental
solution will be sought, and this time the pressure will be assumed to be dif-
ferentfromaconstant value. Thenthe pressure mustbe anontrivial solutionto
Eq. (8.2b), which is Laplace’s equation. Having so determined the pressure,
the corresponding velocity distribution will be obtained from Eq. (8.15).

Since the pressure p satisfies the three-dimensional Laplace equation,
the possible fundamental solutions may be written down immediately from
Sec. 5.3. The source type of solution, in which p ~ 1/r, turns out to be of no
special interest. The next highest form of separable solution, which is the
doublet type of solution, is p ~ cos0/r?. For reasons that will become
apparent shortly, the constant of proportionality will be taken as 2¢p, so that
the pressure field which is being considered is

X
p=12cu—
r
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where cos 0 = x/rhasbeenused. Then, if the flow is assumed to be steady, the
equation to be satisfied by the velocity is, from Eq. (8.15),

Viu= 1Vp
n

Of the three scalar equations represented by this vector equation, the equa-
tion for the velocity component u is the most complicated, because of the
nature of the pressure distribution; so this equation will be dealt with last.
From the expression for p, the equation to be satisfied by the velocity com-
ponent vis

Vi = 766%
r

The particular integral to this nonhomogeneous partial differential equa-
tion, which is v = cxy/r?, is readily obtained if one is familiar with the pro-
perties of harmonic functions of different degrees. Alternatively, this result
may be deduced from the following identities:

1 -1
V2 (r_n) = n(:ln+2 )
VA(y) = YV + ¢V + 2V - Vs

Here, r? = x* 4+ y* + z? and ¢, y are any two functions. Then if ¢ = 1/ and
Y = xy, itis readily verified that

6
2
3
V¢ = —r—4€r
Vi =0
Vi = ye, + xe,
X
VG VY = —67{

where the first result follows from the first of the identities above. Then, using
the second of these identities,

Vi(ow) = V2 (35) = —6%5
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That s, the particular solution to the equation for the velocity component vis

The equation to be satisfied by the w component of the velocity
vectors is

Xz
Vi = —6c—5
r

The particular solution to this equation is obtained in exactly the same way
as that for v and may be deduced to be
Xz

W=C—x
73

The equation to be satisfied by the u component of the velocity vector is

2 x?
2.,
\% u-c(r—3—6r—5>

In view of the solutions for v and w, it might be expected that the solution to
this equation is u = cx?/r3. This is indeed the case, as may be confirmed by
setting ¢ = 1/r3 and y = x? and employing the identities mentioned above.
Thus

6
20 _
Vd)—r—s
3
V(Z):—r—4er
Vi =2
Vi = 2xe,
2
x
V¢~le:—6r—5
2 2
> 5 (X 2 x
hence V(oY) =V (r_3) =3 6r_5

Thus the particular integral to the equation for u is

x2

U=~c—x
73
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To each of the foregoing particular integrals may be added solutions to
the homogeneous equations V?u = 0, Vv = 0, and V*w = 0. Denoting these
solutionsby #/, v/, and w', respectively, the complete solution for the velocity u
corresponding to the pressure distribution p = 2cux/r? is

x2 xy Xz , X ,
u=c r—36x+r—3ey+r—3ez +u :cﬁeﬁ—u

where v’ = (#/,v/,w'). The quantity w, which must satisfy the equation
V2u' = 0, will now be determined such that the continuity equation is satis-

fied. Taking the divergence of the velocity u shows that

V-u:cV-(%r) +V.u

x X\ X
but V~(r—3r> :r-V(r—3) +r—3(V-r)
1 3x2 3xp  3xz x
= ["(rs‘r—s) ‘yr—s‘zr—s] T35
x
s

where the fact that V-r = 3 has been used. Hence

x
Vu=cZz+Vu
r

Thus by choosing u’ = ¢(e,/r), the continuity equation will be satisfied. It
will be noted that this form of u’ also satisfies the homogeneous equation
V2w = 0. Thus a valid velocity distribution has been found that satisfies the
Stokes equations corresponding to a doublet type of pressure field. This
solution is

x

p:2c,ur—3 (8.6a)

u=c( e +1e (8.6b)
=c| 3o+ e .

The solution represented by the above equations has a singularity at
the origin, and this singularity is known as a stokeslet. Although the stokeslet
does not exert a torque on the surrounding fluid, it does exert a force on it.
The magnitude of this force may be established as follows: In tensor nota-
tion, the force F; acting on the fluid will be
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F,' = —/aijnde

where, for a newtonian fluid,

oy = —poy -+ 2 24
ij = —Poij T 1 ox; " ox;

and for this particular flow field the pressure is given by Eq. (8.6a). Hence the
expression for the force F; becomes

X 8u,~ Guj
== [ |2z en(G+ ) Jmas

Now if the surface S'is considered to be a sphere of radius r, then n; = x;/r,
so that the expression for F; becomes

[ X R (O Oy
Fi= /S[ 2c'ur3r rx](axj—‘_ax,-)}ds

But in this particular case the velocity distribution, which is given by
Eq. (8.6b), is homogenecous of degree 1. Hence, from Euler’s theorem, it fol-

lows that
ou; X + i1
Xi— = —uj = —c| =x; +—
? Ox; ' P

A second quantity that appears in the integrand of the foregoing integral may
be evaluated as follows:

x-%—i(x.u.) _u-%—i(r.u) _u.
I 8x,- - 8x,~ d 4 Gxi o (9x,- !

where the fact that u;0x;/0x; = u;0;; = u; has been used. Hence, using
Eq. (8.6b),
o, 0 x xx; | Ol
T 2 (2eZ) — e 24T
x"(?xi 8x,~<cr> c(r3+ r>

2 i i 51’
(2w 250) o)
r r r r

Using these results, the expression for the force acting on the fluid due to the
stokeslet becomes
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- [ () (25T |as
s r r r r r r r
6c,u/% das

s

Alternatively, in vector notation, this expression becomes

F:6cy/£3e,dS
s r

F;

This integral may be evaluated explicitly using the following relations:
x =cos0
e,

dS = r*sinfdbdow

= cos Oe, + sin 0 cos we, + sin 0 sin we,

Thus the force acting on the fluid due to stokeslet is

2n n
F= 6cu/ dw/ cos 0(cos Oe, + sin 0 cos we, + sin 0 sin we;) sin 0 d0
0 0
F = 8ncue, (8.6¢)

Thatis, the stokeslet exerts a force on the surrounding fluid whose strength is
proportional to the pressure parameter ¢ and whose direction is in the posi-
tive x direction for ¢ > 0.

8.6 ROTATING SPHERE IN A FLUID

The foregoing fundamental solutions are sufficient to establish more prac-
tical solutions for low-Reynolds-number flows. One of these solutions cor-
responds to a solid sphere that is rotating in an otherwise quiescent fluid.
Consider such a sphere to be rotating about the x axis with constant angular
velocity Q. The nature of the resulting flow field may be expected to be similar
to that ofarotlet. Hence let the velocity distribution correspond to Eq. (8.5a)
and see if the boundary conditions may be satisfied. Then

e X €y

u=25

2

This velocity distribution gives a finite velocity as r — oo as required. The

other boundary condition is, on r = a, u = Qae, x e,. This condition is
satisfied for B = Qa?, so that the required velocity distribution is
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p
u:Qr—ze, X €y (8.7a)
Since the rotlet is located at r = 0 and since the surface of the sphereis r = a,
there is no singularity in the fluid.

Since the rotlet was found to exert a moment on the surrounding fluid,
the surrounding fluid will exert a moment on the surface » = a in this case.
The magnitude of this moment is given by Eq. (8.5¢). Hence, using B = Qa?,
the moment acting on the sphere will be

M = —8nuQd’e, (8.7h)

This moment acts in a direction that opposes the motion of the sphere, as
might be expected.

8.7 UNIFORM FLOW PAST A SPHERE

The solution corresponding to uniform flow past a sphere may be obtained
by superimposing the solutions for a uniform flow, a doublet, and a stokeslet.
Hence from Eqgs. (8.3a) (8.3b), (8.4a), (8.4b), and (8.6a), and (8.6b), the
assumed forms of the velocity and pressure fields are

u= Uex+A(e—;—3)i:) +c(£zer+e—x)
r r r r
X
p=2cu—
,

Far from the origin this velocity field reduces to that of a uniform flow as
required. The simplest way of imposing the near boundary condition is to
observe that at the rear stagnation point, u = 0. Hence substitutingx = r = a
and setting u = 0 in the foregoing expression for the velocity gives

0=Uec+d(3-3) +c(24+%)
a a a a

Setting the coefficients of e, and e, equal to zero separately yields the fol-
lowing pair of equations:

A

0=U+5+°
a a
y

0=-354°
a a
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The solution to these algebraic equations is
3

a
A=-U—
4

3
CZ_Z Ua

Thus the velocity and pressure distributions are

la/d? 3ax (a?
u= U|:exz; <r—2+3)ex+2? (r—2 l)er:| (8861)
3 ax

In this form it is readily confirmed that Eq. (8.8a) satisfies the boundary
condition u = 0 over the entire surface r = a.

Neither the uniform flow nor the doublet exerts a force on the fluid.
However, the stokeslet exerts a force on the surrounding fluid, and the mag-
nitude of this force is given by Eq. (8.6¢). Then, since the stokeslet is inside
the spherical surface r = a, the surrounding fluid will exert an equal but
opposite force on the sphere. Thus from Eq. (8.6¢) and using the fact that
¢ = —3Ua/4, the magnitude of the force acting on the sphere will be

F = 6nuUae, (8.8¢)

This is the famous Stokes’ drag law for a sphere in a uniform flow, and it is
valid for low Reynolds numbers. Since the direction of this force is clearly in
the direction of the uniform flow, this result is frequently quoted in terms of
the dimensionless drag coefficients, which involves the scalar magnitude of
the force only. This drag coeflicient is defined as follows:

||/

Cp
%

where A = na? is the frontal area of the sphere. Thus, using Eq. (8.8¢),

24

CD:R7N

(8.84)

where Ry = pU2a/uis the Reynolds number of the flow. This result is shown
in Fig. 8.2, which shows the form of the drag coefficient as a function of the
Reynolds number for a sphere. Out of the entire range of Reynolds numbers,
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\

\ C, =2
\f 1] R.\'

Ry

FIGURE 8.2 Drag coefficient as a function of Reynolds number for a sphere.

Eq. (8.84d) is the only closed-form analytic solution that exists. It is valid for
low Reynolds numbers, for which the viscous forces dominate the inertia
forces, but it is found experimentally that the result is valid for Reynolds
numbers that are less than unity.

8.8 UNIFORM FLOW PAST A CIRCULAR CYLINDER

It will be shown in this section that the solution obtained above for a sphere
in three dimensions has no counterpart in two dimensions. This will be
shown by attempting to solve the Stokes equations for uniform flow past a
circular cylinder. Since the fundamental solutions have not been established
for two dimensions, the alternative approach of solving the boundary-value
problem for the stream function will be adopted.

For steady flow, the Stokes equations are

0= —1Vp+vV2u
P

Taking the curl of this equation gives the following equation for the vorticity
to the Stokes approximation:

Ve =0
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But in two dimensions the only nonzero component of the vorticity vector is
{,which is the vorticity in the z direction. Hence

V=0
o Ou Py Py
but Cﬁ‘a‘f‘(@ a—yz>

where the stream function that satisfies the continuity equation has been
introduced. Thus the equation to be satisfied by the vorticity is

2 Y\
(W ! 5) V=0
This is the biharmonic equation, and in cylindrical coordinates (R, 0) it
becomes
? 1o 18\
<W+Eﬁ+ﬁﬁ> V=0

Noting that the stream function for a uniform flow is y = Uy =
UR sin 0, we look for a solution to the preceding equation of the form

V(R,0) =f(R)sin0

where f(R) — UR as R — oco. Substituting this form of solution into the
biharmonic equation gives

2 2

(i) -

This is an equidimensional equation whose solution is of the form
f(R) = AR® + BRlogR + CR +%

Thus the stream function is of the form

D
W(R,0) = (AR3 + BRlogR + CR + E) sin 0

In order to recover a uniform flow far from the cylinder, (R, §) must tend to
URsin 0 as R — oo. Hence
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A=B=0
and cC=U

Hence the expression for the stream function reduces to
D\ .
V(R,0) = UR+E sin 6

The near boundary condition requires that on the surface of the cylinder both
the tangential and the radial velocity components should vanish. That is,
on R = aboth 9y /90 and 9y /OR should vanish. Since dy /90 should be zero
for all values of 0, the tangential velocity component being zero is equivalent
to requiring that y/(a, 8) = constant, where the constant may be taken to be
zero. That is, the no-slip boundary condition on the surface of the cylinder
requires that

Y(a,0) =0
oy B
a—R((l,Q) =0

Itis now evident that there is no choice of the constant D in our solution that
satisfies these two boundary conditions. If we had satisfied the near bound-
ary conditions first with the solution, it would have been found that it was
impossible to satisfy the far boundary condition. Thus we conclude that there
is no solution to the two-dimensional Stokes equations that can satisfy both
the near and the far boundary conditions. The lack of such a solution is
known as Stokes’ paradox.

The difference between the two-dimensional Stokes equations and the
three-dimensional Stokes equations is best explained by reexamining the
Stokes approximation. In terms of dimensionless variables, the Navier-
Stokes equations were shown to be

o

at* + RN(U* V*)ll* — _V*p* + V*Zu*

so that the Stokes equations correspond to the limit Ry — 0. Thus a more
accurate solution for low Reynolds numbers could be sought in the form

¥ =y, + Rvy, + O(RY)

which represents an asymptotic expansion for the stream function, which is
valid for low Reynolds numbers. Then, by employing a limiting procedure,
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the problem for iy, may be solved, then the problem for i/, and so on. It has
been shown here and in Sec. 8.7 that a solution corresponding to , exists for
a sphere but not for a cylinder. However, it is found that the problem for y/, in
the case of the sphere has no solution, which is known as Whitehead’s
paradox. Thus a basic difficulty has been encountered, and this difficulty
appears inthe first-order problem in two dimensions and in the second-order
problem in three dimensions.

In mathematical terminology, the difficulty encountered above is
referred to as a singular perturbation. That is, the Stokes approximation is
really the first-order problem arising out of a perturbation type of solution to
the Navier-Stokes equations, and the inability of this type of solution to
match the required boundary conditions renders the perturbation singular.
In two dimensions the difficulty associated with this singular perturbation
appears immediately, whereas in three dimensions the difficulty is postponed
to the second-order term in the expansion.

In more physical terms, the difficulty encountered is associated with
the neglect of the convection of momentum of the fluid, an assumption that is
invalid far from the body. The limit Ry — 0 is equivalent to completely
neglecting the convection in the fluid in comparison with the viscous diffu-
sion in the fluid. Because of the nature of the viscous boundary condition
near the body, viscous diffusion will be large near the body, whereas convec-
tion will be small because of the retardation of the velocity by the body.
However, far from the body the velocity gradients will die down, so that vis-
cous diffusion will be reduced. At the same time the fluid velocity will be
close to that of the free-stream velocity. That is, the convection in the fluid
will become more important, while the viscous diffusion will become less
important. This means that the conditions required to satisfy the Stokes
approximation will be violated.

The nature of the failure of the approximation introduced by Stokes is
that of a nonuniform representation in space. The approximation is valid
close to the body but is invalid far from the body. Thus singular perturbations
are sometimes referred to as nonuniform expansions. The mathematical
difficulties encountered in singular perturbations may be overcome by mat-
ched expansions, which will be described in the next section.

8.9 THE OSEEN APPROXIMATION

An alternative low-Reynolds-number approximation is the Oseen approxi-
mation. Oseen recognized the discrepancy that was inherent in the Stokes
approximation far from the body under consideration. He noted that the
Stokes approximation corresponds to convection at zero velocity and
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recognized that far from the body momentum will be convected with a velo-
city that will be close to the free-stream velocity. Thus Oseen proposed line-
arizing the Navier-Stokes equations such that momentum is transported not
with the local velocity (as in the exact case) or with zero velocity (as in the
Stokes approximation), but with the free-stream velocity. Thus, if the free
stream flows in the x direction with velocity U, the equations that represent
the Oseen approximation to the Navier-Stokes equations are

V-u=0 (8.9a)
ou ou 1 )
EJrUaf—;VervVu (8.9b)

Solutions to the equations above may be established in a manner simi-
lar to that used to obtain solutions to the Stokes equations. The results so
obtained will be valid far from the body but will fail close to the body. This is
exactly the opposite of the solutions to the Strokes equations. Thus two
independent solutions are obtained, one being valid near the body and the
other being valid far from the body. By matching these two solutions, a uni-
formly valid expression will result that will be valid for small Reynolds
numbers. The details are considered to be beyond the scope of the funda-
mentals that are being treated in this book, but they may be found in the book
by Van Dyke referenced at the end of Part I11. This method of overcoming the
difficulties encountered owing to the singular perturbation is called the
method of matched asymptotic expansions.

PROBLEMS

8.1 Using the Stokes solution for uniform flow over a sphere, integrate the
pressure around the surface of the sphere to establish the pressure drag
that acts on the sphere. Hence deduce what portion of the total Stokes
drag is due to the pressure distribution and what portion is due to the
viscous shear on the surface of the sphere.

8.2 Aliquid drop whose viscosity is ' moves slowly through another liquid
of viscosity u with velocity U. The shape of the drop may be taken to be
spherical, and the motion to be sufficiently slow that inertia of the fluid
may be neglected. The boundary conditions at the surface of the drop
are that the velocity and the tangential stresses in the two fluids are the
same.

Show that the solution to the problem above exists in which the
pressure inside the drop is proportional to x and that outside the drop is
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8.3

8.4

8.5

proportional to x/r3. From the solution, calculate the drag of the drop
and show that it is smaller than that for a rigid sphere of the same size,
the drag ratio being:

1+2/3(p/1)
L+ pu/w

A flow field is represented by the following equations:
u=re, X e
p=0

Show that this representation satisfies the Stokes equations. Using this
solution, find the velocity and pressure fields for a fluid that is con-
tained between two concentric spheres of radii »; and r, > r; in which
the outer sphere is rotating with angular velocity Q, about the x axis
and the inner sphere is rotating with angular velocity Q; in the same
direction. Calculate the torque that acts on each of the spheres.

From the results obtained above, deduce the velocity and pressure
fields in a fluid that is contained inside a rotating sphere and find the
torque that acts on the sphere.

A flow field is represented by the following equations:

u=Vy x Q
p=0

Here Q is a vector of constant magnitude. Show that this representa-
tion is a solution of the Stokes equations provided that y satisfies the
following equation:

10y

2 L

V2, =0
X v Ot

Solve this equation for y, and hence find the velocity field generated by
a sphere of radius « that is rotating with a periodic angular velocity
|Q|eiu)t.

Obtain a solution to the Stokes equations for the stream function
W(R, t) in the following form:

V(R 1) = Rf(0)

Show that this solution can be used to represent Stokes flow in a right-
angled corner in which the vertical surface x = 0 is stationary and the
horizontal surface y = 0is moving in the negative x direction with con-
stant velocity U. Estimate the range of validity of this solution by evalu-
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ating fromitthe order of magnitude of the inertia terms and the viscous
terms indicated below:

inertia: puR%
OR

viscous: i%
R2 802
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Boundary Layers

Boundary layers are the thin fluid layers adjacent to the surface of a body in
which strong viscous effects exist. Figure 9.1 shows the nature of the flow field
that would exist around an arbitrary body at a Reynolds number that is not
small or of order unity. The nature of such a flow field is known from infor-
mation gathered from large numbers of experiments.

A dotted lines is shown in Fig. 9.1 that originates at the front stagnation
point and moves downstream near the top and bottom surfaces of the body.
Outside of this dotted line, relative to the body, the velocity gradients are not
large, and so viscous effects are negligible. Then, if compressible effects may
beignored, the fluid may be considered to be ideal and the results of Part I1 of
this book may be employed. Thusifthe flow field far upstream is uniform, it is
also irrotational there, so that Kelvin’s theorem guarantees us that the flow
outside the dotted line is everywhere irrotational. This potential-flow field is
frequently referred to as the “outer flow.”

Between the dotted line and the body there are strong viscous effects
due to the large velocity gradients that exist. These large velocity gradients
are necessitated by the no-slip boundary condition on the solid boundary
which reduces the large velocities that exist in the outer flow to zero on the
surface. This is the so-called boundary layer or inner flow. Here the vorticity
is not zero. Vorticity is generated along the surface of the body, and it is

313
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FIGURE 9.1 Nature of the flow around an arbitrarily-shaped bluff body.

diffused across the boundary layer and convected along the boundary layer
by the mean flow.

Towards the rear of the body, the boundary layer will encounter an
adverse pressure gradient, that is, an increasing pressure. This usually causes
the boundary layer to separate from the body, forming a so-called wake
region behind the body. The velocity gradients are not large in the wake, so
viscous effects are not too important. However, all the vorticity that exists in
the boundary layers is convected into the wake, so that the flow in the wake is
not irrotational. If the boundary layer is still laminar at separation, a shear
layer will exist of the type discussed in Sec. 6.12. Such shear layers were found
to be unstable, and over a wide range of Reynolds numbers this instability
manifests itselfin the form of a periodic wake that is the well-known Karman
vortex street.

The coverage of boundary layers begins here with the derivation of the
boundary-layer approximation to the Navier-Stokes equations. Some exact
solutions tothese equations are then discussed, including the Blasius solution
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for the boundary layer on a flat plate and the Falkner-Skan similarity solu-
tions. The Karman-Pohlhausen approximate method is then introduced and
applied to a general boundary-layer problem. Finally, the separation of
boundary layers and their stability are discussed.

9.1 BOUNDARY-LAYER THICKNESSES

Prior to establishing the boundary-layer equations, it is useful to establish
the three types of boundary-layer thicknesses that are in common use. The
most widely used of the boundary-layer thicknesses is simply referred to as
the boundary-layer thickness, and it is denoted by 0. Its usual definition is that
distance y = J from the solid boundary where the local value of the velocity
reaches 0.99 of the free-stream or outer-flow value. That is,

y=90 when u = 0.99U (9.1a)

Figure 9.2a shows the boundary-layer thickness 6 for flow over a flat surface.

Another type of boundary-layer thickness that is useful under certain
circumstances is the displacement thickness, which is denoted by J%*.
This thickness is defined as the distance by which the undisturbed outer flow
is displaced from the boundary by a stagnant layer that removes the same
mass flow from the flow field as the actual boundary layer. That is, 0* is
the thickness of a zero-velocity layer that has the same mass-flow defect
as the actual boundary layer. This thickness is illustrated in Fig. 9.2b.

(a) (b)

FIGURE 9.2 Definition sketch for (a) boundary-layer thickness, and (b) displace-
ment thickness.
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In mathematical terms, the volume of fluid that is absent owing to the pre-
sence of the boundary-layer model is Ud*. Equating this to the volume of
fluid that is absent owing to the actual boundary layer gives the equation that
defines the displacement thickness. Thus

Ué*:/ (U —u)dy
0

hence

5*:/000(1—%) dy (9.1b)

A third type of boundary-layer thickness that is frequently used is the
momentum thickness, denoted by 0. The momentum thickness is defined as
that thickness of layer which, at zero velocity, has the same momentum
defect, relative to the outer flow, as the actual boundary layer. Thus the
momentum thickness is a layer similar to that illustrated in Fig. 9.2b, except
that momentum fluxes rather than mass flows are compared with the actual
boundary layer. The mass flow that would exist through the momentum
thickness at the outer velocity would be pU6. Hence the momentum defect
due to this layer will be p U?0. Equating this to the momentum defect in the
actual boundary layer gives

pUZH:p/ w(U —u)dy
Jo
hence

0= / 1 -—— dy (9.1¢)

The various thicknesses defined above are, to some extent, an indication of
the distance over which viscous effects extend. Each of these thickness will
be used in later sections of this chapter, but in the meantime it may be stated
that the boundary-layer thickness 0 is usually larger than the displacement
thickness 6*,which, in turn, is usually larger than the momentum thickness 6.

9.2 THE BOUNDARY-LAYER EQUATIONS

The boundary-layer equations may be derived from the Navier-Stokes
equations by either a physically based argument or a limiting procedure as
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X —

FIGURE 9.3 Development of a boundary layer on a plane surface.

Ry — o0.The original derivation used by Prandtl was physical in nature and
will be followed here.

Figure 9.3 shows a typical boundary-layer configuration on a plane
surface or on a curved surface for which 0 is small compared with the radius
of curvature of the surface. The only geometric length scale in such problems
is the distance x from the leading edge of the surface. For all points in the
boundary layer except those near the leading edge, the boundary-layer
thickness will be small compared with the distance x. That is, except near the
leading edge, §/x < 1.The x component of velocity u is of order U, the outer
flow velocity, and 9/0x is of order 1/x in the boundary layer. Thus du/0x is
of order U/x and hence, from the continuity equation, dv/dy is also of
order U/x. Since v will be much smaller than # in the boundary layer and
since 0/0y will be much larger than 0/0x, this order of 9v/Jy may be met by
considering v to be of order UJ/x and 9/Jy as being of order 1/0. Thus,within
the boundary layer, the following order of magnitudes will exist:

u~U
vaé
x
g 1
ox  x
o 1
"o
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The Navier-Stokes equations for the steady two-dimensional flow
under consideration are

ou Ou  10p u  u

TPy rox a2
v v 1dp v O

”& vﬁ_y_ p Oy v@ v@

Using the order of magnitudes established above, the various terms in these
two equations will be of the following order of magnitude:

EZJFZZ 1op U U

Y X T T e
oU? SU*  10p véU vU
x2 X2 poy x3 x0

No attempt has yet been made to estimate the order of magnitude of the
pressure terms, so they are carried along as they are.

In the first of these two equations, the two inertia terms are of the same
order, but the second viscous term (v9*u/9dy?) is seen to be much larger than
the first viscous term (v9*u/0x*). Hence the latter viscous term may be
neglected in boundary layers. Since fluid particles may be accelerated in
boundary layers, and since strong viscous effects exist, the dominant viscous
term is assumed to be of the same order of magnitude as the inertia terms.
This gives

U? U
_— v —_—
x 52
or
5 vx
U

That is, from purely order-of-magnitude considerations it may be deduced
that the boundary-layer thickness will increase as /x. Furthermore, the
condition §/x < 1 becomes

x2  Ux
_ZN—>>1
) Y
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or
Ux

Ry=—>1
v
That is, the boundary-layer assumption of 5 /x < 1 is equivalent to the con-

dition Ry > 1,where the length scale used in the Reynolds number is x.
From the foregoing discussion, it is obvious that, provided the
Reynolds number based on x is large, the x component of the Navier-Strokes

equations may be approximated by the following equation:

ou Ou  10p 0Ou

“ox TPy T Tpax a2

Furthermore, from the order-of-magnitude balance for the y component of
the Navier-Stokes equations, it is evident that the inertia in the y direction is
of order J/x smaller than that in the x direction and so may be neglected by
comparison. Also, the viscous terms in the y direction are of order §/x smal-
ler than those that act in the x direction, and so the former may be neglected.
Thus the y component of the Navier-Stokes equations becomes

10p

p Oy
Thatis, pisindependent of the transverse coordinate yin boundary layers, so
that p will be a function of x only. Thus, in boundary layers, the continuity
equation and the Navier-Stokes equations become

Ou Ov

R 2

o + ay 0 (9.2a)
u Ou  ldp Pu

ua'f'l?a—y— —;E"F\)a—yz (92[))

It will be noticed that the loss of the highest derivative in x now makes the
governing equations parabolic, whereas the Navier-Stokes equations are
elliptic. This mathematical change has physical consequences that will be
exposed in later sections.

Since the pressure p is independent of the transverse coordinate y in
boundary layers, the pressure distribution along the boundary layer will be
the same as that of the outer flow. But the outer flow is a potential flow, and so
the Bernoulli equation is valid. Hence

p

1
-+ 2 U? = constant
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where the outer velocity U will be a constant for flow over a plane surface,
but in general it will be a function of x. Thus, from the Bernoulli equation
1op  dU

“oox Udx

Substituting this result into Eq. (9.2b) gives the following alternative form of
the Prandtl boundary-layer equation:

u@+v@— Ud£+v@
ox 9y  dx 0y?

(9.2¢)

The boundary conditions that accompany any boundary-layer equa-
tions are the no-slip conditions on the surface and the condition that the
outer-flow velocity is recovered far from the surface. That is, the following
boundary conditions must be satisfied:

u(x,0)=0 (9.3a)
v(x,0) =0 (9.3b)
u(x,y) — U(x) asy — 0o (9.3¢)

The last condition in effect matches the inner flow to the outer flow, so that
the potential-flow solution must be known before the boundary-layer pro-
blem can be solved.

The alternative way of deriving the boundary-layer equations from the
Navier-Stokes equations involves a limiting procedure similar to that which
was used to extract the Stokes equations from the full Navier-Stokes equa-
tions. The Navier-Stokes equations are first written in terms of dimension-
less variables, which results in a coefficient 1/Ry appearing in front of the
viscous terms. Stretched coordinates X = x and Y = \/Ryy are then intro-
duced, which removes the coefficient 1/Ry from one of the viscous terms. If
the limit Ry — oo while X and Y are held fixed is now taken, the boundary-
layer equations will be obtained. This approach is useful if higher approxim-
ations to the boundary-layer theory are required, that is, ifan expansion type
of solution is sought. However, the nature of the coordinate stretching is not
obvious without appealing to the physical approach.

9.3 BLASIUS SOLUTION

An exact solution to the boundary-layer equations corresponding to a uni-
form flow over a flat surface was obtained by Blasius. The flow configuration
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for a flat boundary is shown in Fig. 9.3, where it is understood that U is a
constant and J is a function of x. Since U is constant, the pressure term in the
boundary-layer equation is identically zero. Thus the continuity equation
and the boundary-layer approximation to the Navier-Stokes equations are

@_’_@—0
ox Oy
ox Oy Oy

In order to reduce this pair of equations to a single equation, a stream func-
tion defined by u = 9y /dy,v = —O¢/0x is introduced. This satisfies the
continuity equation identically for all stream functions y and yields the
following form of the boundary-layer equation:

R A e

Jy Oxdy  Ox Oy? ! oy’

Since this is a parabolic partial differential equation and since there is
no geometric length scale in the problem, a similarity type of solution will be
sought. Similarity solutions were discussed in Sec. 7.4 and, in the context of
the problem in hand, were shown to be of the form

Y (x,p) ~f(n)

where

~
n~

The value of n for the case of a flat surface is %, so that the similarity variable 5
is chosen to be

y

= Vvx/U

Here,the parameters vand U have been used to render the similarity variable
dimensionless. For this choice of , the x component of velocity will have the

following functional form:
_ U
=~ w0
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where the prime denotes differentiation with respect to 7. But when n =
constant, u should be constant, so that the proportionality factor in the
equation ¥/(x,y) ~ f(n) should include a \/x. Then, since the units of | are
a length squared divided by time, the dimensions will be correct if the
proportionality factor also includes v/vU. That is, similarity solution of the

following form is sought:

Y(x,y) = VvUxf(n)

where
y

= Vvx/U

From these expressions, the various derivatives that appear in the

boundary-layer equation may be evaluated as follows:

oy Uy, 1 1
o~ 2y TV Uan/
1 yu , 1 pU

=V L

oy

Uy

19) r

v _ U Uy U

Ox0y 2V v x32 2!

Py U,

o = YV

Py _U

o3 vx

Substituting these results into the equation for the stream function gives

UZ ! ! UZ ! /1 UZ 111
—gnff —E(f—ﬂf)f —7f

or
[ 2 /! [ 2 111

X

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



Boundary Layers 323

Since x may be canceled from this equation, the existence of a similarity type
of solution is confirmed. That is, a solution of the assumed form exists pro-
vided the function f satisfies the following conditions:

f/// +%ff” —0 (940)
f(0)=7'(0)=0 (9.4b)
f'n)—1 asn— o0 (9.4¢)

The boundary conditions (9.4b) and (9.4¢) follow from the no-slip boundary
conditions and the matching condition with the outer flow as described by
Egs. (9.3). From the solution to this problem the stream function may be
obtained using the relationship

x, y) = VvUx ¢> 9.4d
Y(x, y) f(W (9.4d)

The problem represented by Eqs. (9.4a), (9.4b), and (9.4¢) is a well-
posed problem. It is shown in the problems at the end of this chapter that the
differential equation may be reduced in order. However, numerical integra-
tion is eventually required. In spite of this, the Blasius solution to the
boundary-layer equations is considered to be exact, since the partial differ-
ential equation has been reduced to an ordinary differential equation that,
together with the appropriate boundary conditions, may be solved numeri-
cally to a high degree of accuracy.

The results of interest that should be extracted from the solution are the
shear-stress distribution along the surface, the drag acting on the surface,
and the boundary-layer thickness. The shear stress on the surface is given by

0(x) = e (3.0

= w\/—f"(0)

VX

Nondimensionalizing this surface shear stress by means of the kinetic energy
in the free stream gives

w(x) _ 2/"(0)
1pU* Ry
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where the Reynolds number is based on the distance x from the leading edge
of the surface to the location under consideration. But the value of f/(0) is
found numerically to be 0.332, so that the shear-stress distribution along the
surface will be given by the expression

to(x)  0.664
= 9.5
T (9.5a)

This result shows that the shear stress falls off as \/x along the surface.

The drag force acting on the surface may be evaluated by integrating
the shear stress. That is, the drag force acting on the surface up to the station x
will be given by

Fp = /O 9(&) dé

Thus the drag coefficient of the surface will be

_Fp/x l/x 70(¢)
0

_%pUz_; %pU2

Cp dé

Using the result obtained above for the surface shear-stress distribution

gives
C _0.664/x dé
P70 % VRy

1328
vV Ry

Strictly speaking, the shear-stress distribution given by Eq. (9.5a) should not
be used near the leading edge of the surface, since the boundary-layer
assumptions are no longer valid there. However, any difference between the
actual shear-stress and that given by Eq. (9.54) is not likely to create any
significant discrepancy because of the relatively short distance involved. The
shear stress actually has a singularity at x = 0, but this singularity is integr-
able, so that the drag force is not singular. Indeed, Eq. (9.5b) shows that the
drag force varies as y/x,where xis the point up to which the accumulated drag
is being considered.

To obtain the boundary-layer thickness, it is observed from the
numerical solution that # = 0.99U when = 5.0. Then, using the definition
of n and the fact that y = d whenu = 0.99U gives

0
5.0

Vwx/U B

16

(9.5b)
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hence
0 5.0
-—=— 9.5
X" VR. (9.5¢)

where, again, the length used in the Reynolds number is the distance x to
which the boundary-layer thickness applies. In the same way the following
expressions are obtained from the numerical results for the displacement
thickness and the momentum thickness:

5172

= (9.5d)
0 0.664

These results show that the various boundary-layer thicknesses grow as /x
and that 0 < §* < 6.

9.4 FALKNER-SKAN SOLUTIONS

A whole family of similarity solutions to the boundary-layer equations were
found by Falkner and Skan. These solutions are obtained by seeking general
similarity-type solutions and interpreting the flow field for each solution so
obtained.

Look for general similarity solutions of the form

u(x,y) = U(x)f"(n)
where

¢(x)

Here, U(x) is the outer flow and &(x) is an unspecified function of x that will
be determined later. For this form of velocity the stream function must be

Y(x,y) = Ulx)E(x)f(n)
But, from Eq. (9.2¢), the equation to be satisfied by  is
o R ooty du  *y

U dx o

_ )
n=
X

dy OxBy  Ox Oy
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The various terms that appear in this equation may be evaluated as follows:

o d¢ y d¢
W e yuiyo UG
— e u vy
L
o Y
Py _du,, ydi,
8x8y dx 2dx
dU Udé
o T
Py _U.,
e
83110 U Ui
S izf

Substituting these results into the equation to be satisfied by i/ gives

(dU , Udé
ur (E —zaﬂf>
dé "o dUu U 111
<5f U f U— f) 5f —UEJFV?f
du auv ., 21d5 ” au "
Ud—(f) Uaﬁc - ]7 U7+ 7f

where the second term in the first bracket has been canceled with the third
term in the second bracket. Combining the second and third terms of this
equation gives
dUu
U

S

dU U
U_+ v_f///

Ud 0

This equation may be put in standard form by multiplying by &2/ (vU), giving

& dU}

f”’+F (Ui)]ﬁ’” { (1=¢)} =0
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If a similarity solution exists, this should now be an ordinary differential
equation for the function f in terms of 7. Thus the two coefficients inside the
brackets should be constants at most, say « and f3, respectively. That is, for a
similarity solution we must have

cd o
;a(U@—a
&du

TP

where o and f are constants. A convenient alternative to one of the preceding
equations may be obtained as follows:

d 2 d¢  ,dU
E(Uf)—ZUfE‘Ff I
B dé dUu ,dU
45(”5“5)‘ “
. d ,dU
—Zia(Uf)—f I

ie.,
d

S UE) =v(2u—p)

This equation, together with either of the foregoing two equations, is suffi-
cient to relate U and ¢ to the constants « and f. In terms of o and f3, the dif-
ferential equation to be solved for the function f is

Sl 4 B = ()] =0

The boundary conditions that accompany this differential equation are the
same as for the flat surface. If the problem so obtained is a solvable one, then
we have found an exact solution to the boundary-layer equations.

From the foregoing analysis and discussion, it is evident that exact
solutions to the boundary-layer equations may be obtained by pursuing the
following procedure:

1. Select values of the constants o and /3.
2. Find the corresponding values of U(x) and &(x) from the relations
d 2
= = v(20 —
(U = v(22 - )
dUu
24U
© dx

(9.6a)

pv (9.6b)
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3. Determine the function f(7) that is the solution to the following

problem:
S+ aff” + B = (f)] =0 (9.6¢)
J0)=7'(0)=0 (9-6d)
f'(n)—1 asn— o0 (9.6¢)
4. The stream function for the flow field in the boundary layer is then
given by
W) = Uy (55 0.67)

Having chosen the constants ¢ and f3, a particular flow configuration is
being considered. This flow configuration will not be known a priori but will
become evident when step 2 is completed. The function U(x) is the outer-
flow velocity, which is the potential-flow velocity for the geometry under
consideration. Then, when U(x) is established through step 2, comparison
with the results of Chap. 4 will reveal the geometry of the problem. Since o
and f have been chosen, the problem to be satisfied by the function f(1) is
now explicit, so a solution may be sought. This solution, together with the
quantities U(x) and &(x), completely determines the stream function for the
problem from which all properties of the flow field may be derived.

Several exact solutions to the boundary-layer equations may be
obtained by the foregoing method. The solution corresponding to a flat sur-
face, which has already been established, will be obtained from the Falkner-
Skan solutions to illustrate the procedure and to verify the result. Some new
solutions to the boundary-layer equations will then be established in the next
few sections.

It should be noted that for « = 1 numerical solutions to Egs. (9.6) show
that f”(0) — 0 as f is decreased. The value for which f”(0) =0 is
f = —0.1988, and for values of  that are smaller than this value, f(1) > 1 at
some location. This corresponds to # > U,which is physically unreasonable.
Therefore, for o = 1, we must have f > —0.1988.

The solution corresponding to a flat surface is obtained by choosing
o= % and f = 0 in the Falkner-Skan solutions. Then, from Egs. (9.64) and
(9.6b),

d .2
e (UE)=v
,dU

dx_O
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Since &(x) cannot be zero, the second of these equations shows that
U(x) = ¢,where cis a constant. Then the other equation shows that

The fact that U(x) is a constant in this case identifies the geometry as a flat
surface rather than a curvilinear one that may be thought of as being stret-
ched outinto a plane. Using the values of x and f chosen above, the problem to
be solved by the functionf(r) is

f/,/+%ﬁ//:0
f(0)=7'(0)=0
f'(n)—1 asn— oo

The stream function is then given by

= CcVXx Y
¥ (x,y) —Ff(\/F/J

These results are seen to agree identically with the Blasius solution, which is
given by Egs. (9.4).

9.5 FLOW OVER AWEDGE

The solution to the boundary-layer equations corresponding to flow over a
wedge may be obtained from the Falkner-Skan equations by setting o = 1
and keeping f arbitrary. Then, from Egs. (9.6a) and (9.65) with o = 1, U(x)
and &(x) will be defined by the following equations:

d
S(EU) =v2-p)

24U _

idx

vB
Integrating the first of these equations gives

EU=v2-P)x
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Dividing the second of the foregoing equations by this last result gives

1dav_ f 1
Udx 2-fx

This equation may be integrated directly to give

logU = logx +logc

B
2-p
where c is an arbitrary constant. Hence the outer-flow velocity correspond-
ing to our choice of o is

U(x) = exP/?F) (9.7a)
but
dUu
27 =
SRV
Zes f S A g
hence
E(x) = —v(z _ ﬁ)x(l*ﬁ>/(2*ﬁ) (9.7b)

c

Equation (9.7a) shows that the outer flow is that over a wedge of angle
7. This may be shown by using the potential flow for a sector whose angle,
measured in the fluid, is 7/n. The result, as given by Eq. (4.10), is

that s,

n—1

u—iv=nU(x+iy)

Hence on the surface y = 0 the velocity components are
u=nUx""!

v=20
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That is, the velocity given by Eq. (9.74) has the same form as that near the
boundary of the flow in a sector of angle 7/n. To find the angle of the wedge
corresponding to Eq. (9.7a), the exponents of x in these two expressions are
equated. Hence
B
2-p
This gives the angle of the half wedge measured in the fluid. Then, from the
symmetry of the flow field, the angle of the wedge will be 2(n — n/n). From
the equation above, this angle is 73, which is shown in Fig. 9.4.

From Eqgs. (9.6¢), (9.6d), and (9.6¢), the problem to be solved for the
function fis

n—1=

fUA B = ()] =0 (9.7¢)
£(0)=1(0)=0 (9.7d)
f'(n)—1 asn— o0 (9.7¢)

This problem may be solved numerically. Having obtained the solution for
f(n), the stream function will be given by Eq. (9.6f), where U(x) and &(x) are
given by Egs. (9.7a) and (9.7b). This gives

Wx,p) = \/e(@ = Bw!/ @By __ Y a-p/e-p (9.77)
’ 2—B)yv/e

FIGURE 9.4 Boundary-layer flow over a wedge.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



332 Chapter 9

9.6 STAGNATION-POINT FLOW

Another exact solution to the boundary-layer equations that may be
obtained from the Falkner-Skan similarity solution is that corresponding to
a stagnation-point flow. The values of the constants o and /3 that yield this
solution are o = § = 1. But this is equivalent to letting  be unity in the
solution for the flow over a wedge. Then the angle of the wedge becomes 7,
which means the flow impinges on a flat surface yielding a plane stagnation
point.
The solution may be obtained by setting f = 1 in Eqs. (9.7). This gives

U(x) =cx (9.84a)

&) =/ (9.8b)

f/// +ﬁp// +1-— (f/)Z -0 (9.80)

£(0) =1'(0) =0 (9.84)

fin) =1 asn— oo (9.8¢)
X,y) =VevXx J 9.8

Y(x,p) = Vev f(\/v/—c> (9-81)

It will be noticed that this is precisely the exact solution to the full Navier-
Stokes equations that was obtained by Hiemenz for a stagnation point. This
solution is given by Eqs. (7.7a), (7.7b), and (7.7¢). Thus the exact solution to
the boundary-layer equations is also an exact solution to the full Navier-
Stokes equations in this instance.

9.7 FLOW IN A CONVERGENT CHANNEL

The boundary-layer solution for flow in a convergent channel may be
obtained from the Falkner-Skan solution by choosing & = 0 and f§ = 1. For
these values of the constants, Egs. (9.64) and (9.65) become

d o
Z(UE = —
S (UE) = -
24U _ |

édx
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Integrating the first of these equations gives

U&= —vx

and dividing the second equation by this last result gives
1dU 1
Udx

x
Integrating this equation shows that the outer-flow velocity is of the form

(9.9a)

(9.95)

Equation (9.94) is the potential-flow velocity for flow in a convergent chan-
nel. That is, the solution obtained here corresponds to a boundary layer on
the wall of a convergent channel in which the flow is directed inward to the
apex of the channel walls. This flow configuration is shown in Fig. 9.5. It will
be noted that for ¢ < 0, that is, for outward flow from the apex, Eq. (9.95)
shows that no solution exists. This may be interpreted as meaning that for

x

FIGURE 9.5 Boundary-layer flow on the wall of a convergent channel.
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flow in a divergent channel the adverse pressure gradient will cause the
boundary layers to separate, and hence a reverse flow will result. This situa-
tion was encountered in Sec. 7.8 when the exact solution for viscous flow in
convergent and divergent channels was studied.

For o = 0 and § = 1, the problem to be satisfied by the function f () is

1= (=0 (9.9¢)
f(0)=/'(0)=0 (9.9d)
fin) =1 asn— oo (9.9¢)

Then, using Eq. (9.6/) and the results (9.9a) and (9.95), the value of the stream
function will be

Y(x,y) = —ﬁf( /7)) (9.97)

9.8 APPROXIMATE SOLUTION FOR A FLAT
SURFACE

The foregoing solutions have all been exact in the sense that a similarity form
of solution reduced the governing partial differential equations to a non-
linear ordinary differential equation that could be solved numerically to a
high degree of accuracy. For situations where an exact solution does not
exist, an approximate solution must be sought. One of the classical approx-
imate methods which is widely used was introduced by von Karman and
refined by Pohlhausen. The basic procedure will be presented in this section
in the context of boundary-layer flow on a flat surface, and the procedure will
be generalized in the next section.

For flow over a flat surface the outer velocity Uis constant, so that the
boundary-layer equations are

%Jr@—()
ox Oy

ou Ou  Ou
+o—=v

“ox oy ay?

Normally, a functional form of solution to these equations is sought that
satisfies the equations identically at each point in space, that is, at each
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value of x and y, and that tends to the appropriate values on the bound-
aries. If such a solution cannot be found, it may be possible to satisfy the
basic equations on the average rather than at each and every point in the
fluid. That is, if the boundary-layer equation is integrated with respect to
y across the boundary layer, the resulting equation will represent a bal-
ance between the average inertia forces and viscous forces for each x
location. Then a velocity distribution may be obtained that satisfies this
averaged balance of forces but that does not satisfy the balance at each
point across the boundary layer. The results that are extracted from such
approximate solutions are found to be reasonably accurate in most
instances.

Prior to integrating the boundary-layer equations, it is useful to recast
them in a slightly different form. The term u# Ju/Ox may be rewritten as fol-
lows:

u@ = 2(uz) - u@
Ox  Ox ox
0 ov

_ 9.5
76x(u)+u8y

in which Ou/0x has been replaced by —Jv/dy from the continuity equation.
Thus the boundary-layer form of the equation for the x momentum may be
written in the form

g(MZ) +u@+v@— V@
Ox dy Oy  O?
or
9, , 0 ’u
a(” )+a—y(’w) va_yZ

This equation is still exact within the boundary-layer approximation. This
local balance of forces will now be reduced to an average balance across the
boundary layer by integrating with respect toy fromy = 0toy = 4.

) o
0 2 2 l:au:|

— (u)dy + [uv|y = v|—
/0 8x( )y + [uly an

But, u(x,0) =v(x,0) =0 from the no-slip boundary condition and
u(x, 0) = U,which is the outer-flow velocity. Also, i Ou/dy = 19, the surface
shear stress,when y = 0, and since the boundary-layer velocity profile should
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blend smoothly into the outer-flow velocity at y = 6, du/9y = 0 there. Hence
the integrated boundary-layer equation becomes

/53(142)(1 + Un(x, ) = - %°
0 Ox 4 o

The quantity v(x, 0) may be evaluated by integrating the continuity equation
between the limits y = 0 and y = d. This gives

° du

o
A ade‘i‘Mo—O
“Uv(x, 0)=-U (s@d
L ,0) = | Ox ly

Then the integrated boundary-layer equation may be written in the following

form:
5 B
0, 5 Ou 0
— dy-U| —dy=——
/0 3x(u )y /0 ox p

Finally, these two integrals involving derivatives may be expressed as deri-
vatives of integrals through the rule of Leibnitz. For any function f (x, y) this
rule states

do

B(x) 8f - d B(x) dﬂ
/am a(x,y)dy = dx/a(x) Sx,p)dy — f(x, B)E +/(x, O‘)a

Using this rule, the integrals that appear above may be rewritten as follows:
J J S
0, 5 d ) ,do
— (u)dy = — dy —U"—
/0 ox ()dy dx/o e dx

° Ou d [° ds

Thus the integrated boundary layer equation becomes

d (52 d 0 To
E/Ou dy—UE/O udy——;

Since Uis a constant, it may be taken inside the derivative and the integral,
and the two integrals may be combined. This gives
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d 0 To
E/o u(U—u)dy—z

This equation is known as the momentum integral, and it is valid for bound-
ary layer flow over a flat surface. Physically, this equation states that the rate
of change of the momentum in the entire boundary layer at any value of x is
equal to the force produced by the shear stress at the surface at that loca-
tion.

The manner in which the momentum integral is used is as follows:
A form of velocity profile is first assumed, typically a polynomial in y. The
arbitrary constants in this expression are used to match the required
boundary conditions. These boundary conditions are

u(x,0)=0
u(x,0)=U
Ou
a—y(x,é) =0

The first of these conditions is the no-slip boundary condition at the surface,
the second condition matches the boundary-layer velocity to the outer-flow
velocity, and the third condition ensures that the matching is smooth at
y = 0. It should be noted that all the higher derivatives should also be zero at
»y = 0 for a smooth transition from the boundary layer to the outer flow. The
number of conditions that can be satisfied, of course, depends upon the
number of free parameters in the assumed velocity profile. It should further
be noted that a series of boundary conditions should also be imposed at
y = 0.The boundary-layer equation for this case is

Oou  Ou @

Hence the no-slip boundary condition at y = 0 would automatically result in
0*u/dy* = 0 at y = 0 if our velocity profile was the correct one. However,
since we know that our assumed velocity profile is not the correct one, this
boundary condition must be imposed separately. Likewise, by differentiat-
ing the boundary-layer equation, conditions for the third and higher deriva-
tives will be obtained which should be imposed separately in our
approximate solution. The number of boundary conditions out of this infi-
nite array at y = 0 and y = § which can be accommodated depends upon the
number of free parameters that are available. Normally the three conditions
mentioned above are included in the order of priority in which they are
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written down, then the condition 9?u/dy* = 0 at y = 0 is imposed, then
0*u/9y* = 0aty = §,and so on.

Typically, the velocity profile is taken to be a polynomial in y, and the
degree of this polynomial determines the number of boundary conditions
that may be satisfied. For the case under consideration we propose the
following form:

2
ool

Then three boundary conditions may be satisfied, and since these boundary
conditions all involve constants, the quantities ay, a;, and a, will be con-
stants. Thus the velocity profile represented above will be similar at the var-
ious values of x and so represents a similarity type of profile. The boundary
conditions u(x,0) = 0, u(x,0) = U, and du/9y(x, §) = 0 give, respectively,

0:a0

l=ay+a +a

0=a; +2a
The solution to these equations is @y = 0, a; = 2, and a; = —1, so that the
velocity profile becomes
U _ ¥y (N2
" Y (—) 9.10
U5\ (9-104)

Using the assumed velocity profile across the boundary layer will
reduce the momentum integral to an ordinary differential equation for the
boundary-layer thickness 6(x). The terms that appear in the momentum
integral may be evaluated as follows:

/ju(Uu)dy UZ/O(S%(l — =) dv
o[ Bi-G][-25+ )

1
- 502/0 (21— ) (1 — 20+ P)dn
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y =0
:“33_;7(2'7_’7 )|,1,0
U
:2 _—
s

Substituting these results into the momentum integral gives
d (2 2vU
Z sy =22
dx (15 v ) 0
5ds =15 % dx

Integrating this equation and setting 6 = 0 when x = 0 gives

VX
(s:ﬁa\fv

In nondimensional form this result becomes

o 548
= 9.105
X TR (9-106)

where the length scale that has been used in the Reynolds number is the dis-
tance x. Equation (9.105) compares favorably with Eq. (9.5¢), which is the
exact solution for a flat surface. The relation 7y = 2uU/J shows that the shear
stress on the surface is given by

To 0.73
—— = 9.10¢
1pU? /Ry ( )

This result also compares favorably with the exact solution, which is given by
Eq. (9.5q).

It is evident that the momentum-integral approach is capable of pro-
ducing meaningful results, even when it is used in conjunction with a rather
crude approximation to the form of the velocity profile. In the case under
consideration here a second-degree polynomial was used. An even more
crude representation of the velocity profile would be a straight line that
matches only the boundary conditions u(x,0) = 0 and u(x,0) = U. On the
other hand, third-, or higher-degree polynomials could also be employed
that would yield more accurate results. The second-order profile used here
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gives 9?u/dy*(x,0) = —2U/5” instead of zero. By employing a third-degree
polynomial the correct velocity curvature could be imposed, which would
yield more accurate results. This will be confirmed in the problems at the end
of the chapter.

9.9 GENERAL MOMENTUM INTEGRAL

The momentum integral that was developed in the previous section for flat
surfaceswill be generalized here toinclude outer flows whose velocities are,in
general, functions of x. The boundary layer may still be considered to be stret-
ched outin a plane, provided the radius of curvature of the body is large com-
pared with the boundary-layer thickness, and centrifugal effects are
negligible. In such cases the outer-flow velocity U(x) will not be constant but
willbedefinedbythe potential-flowsolutionforthebodyunderconsideration.

Performing the same manipulation on the term u Ju/0x as was carried
out in the previous section, the boundary-layer equations may be written in
the form

@4_@— 0
ox 0y
0 0 UdU ,uazu

R 2 —_
8x(u)+6y(u) dx p()y

Integrating the second equation across the boundary layer and utilizing
the boundary conditions u(x,0) =0, u(x,d) = U, p du/dy(x,0) = 19, and
Ou/dy(x,9) = 0 gives

dUu 0 T0
) d) U 0 Udy ——
/(9 )dy + Uv(x,0) = dx/o ==

The outer-flow velocity U(x) at the edge of the boundary layer depends upon
xonly, and dU /dx has been taken outside the integral while U has been kept
inside the integral in the pressure term. This is purely a matter of con-
venience that will permit two integrals to be combined in the subsequent
analysis. Integrating the continuity equation shows that

v(x, 0) = — gzd

so that the momentum-integral equation becomes

J
/ 2y dy — U/ M ay == Udyff—o
8x 0
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Using Leibnitz’s rule permits the order of the integration and the differ-
entiation to be interchanged, yielding the following result:

d [°, ,dd ,do _dU 7o

The second integral may be rewritten as follows:

d [° d [° du [?°
U— dy=— [ Uudy—— d
dx/ouy dx/o udy dx/ouy

Thus the momentum integral becomes

d/§2d—d Uud+—/ud— /Ud——
dx Y dx Y >

The first and second integrals may now be combined and the third and fourth
integrals may be combined to give

d [? du [? To
— —u)dy +— —u)dy =—
&) w(U —u) erdx/O (U —wu)dy )

But the integrands of these two integrals are essentially zero for y > 9, so that
the upper limits of integration may be taken to be infinity. This gives

wlv [ T pel gy [ (- ge=]

Now the first integral is the momentum thickness 6 and the second integral is
the displacement thickness 6, as may be seen from comparison with
Egs. (9.1¢c) and (9.1b), respectively. Then the momentum integral may be
rewritten in the form

dUu

d,  , 70
= Zust=2
p (U 0)+dx U¢ ,

Expanding the first derivative and dividing the entire equation by U? yields
the following alternative form of the generalized momentum integral:

do 1dU 19

OO G = (9.11)

For any assumed form of velocity profile across the boundary layer, 6,
0", and 7y may be evaluated from their definitions. Then Eq. (9.11) will
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provide an ordinary differential equation that may be solved for the bound-
ary-layer thickness. The manner in which the solution is carried out, for the
case of a fourth-order polynomial for u, will be covered in the next section.

9.10 KARMAN-POHLHAUSEN APPROXIMATION

The general momentum integral, when used in conjunction with a fourth-
order polynomial to represent the velocity profile, is known as the Karman-
Pohlhausen method. The velocity profile is taken to be of the form

%:a+bn+cn2+dn3+en4

where
)
n(xay) - 5()6)
The coefficients a, b, ¢, d, and e will, in general, be functions of x, so that

solutions which are not similar may be obtained. The foregoing velocity
profile can satisfy five boundary conditions, and these are taken to be

u(x,0) = 0

u(x,0) = U(x)
g—;(x, 0)=0
giy?(x, 5)=0

The fourth boundary condition comes from the boundary-layer form of the
momentum equation and the no-slip boundary condition. In terms of the
dimensionless velocity #/ U and the dimensionless coordinate = y/J, these
boundary conditions become

u O*(u/U) *dU
670 and 8—7]2——737—/\(36) OnV]—O
and
u ou/U)  0*(u/U) B
U—l and - on =0 onn =1
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The quantity A(x) that has been introduced here is a dimensionless variable
that is a measure of the pressure gradient in the outer flow.

Imposing the foregoing boundary conditions on the assumed form of
velocity profile gives the following set of algebraic equations for the
unknown coefficients:

0=a

—A=2c
l=a+b+c+d+e
0=>b+2c+3d+4e
0=2c+6d+12e

The solution to this set of equations is

a=10
A
hb=24+2
%
A
=73
A
:—2 —
d +3
A
e=1——
6

Thus the assumed form of velocity profile that satisfies the principal bound-
ary conditions is

u A A A A
—— 12 - 2 o R 3 1 —= 4
o= (g2 (=3)re (-3

It is advantageous to separate the right-hand side of this expression into
terms that are independent of A(x) and terms that depend upon A(x). This
gives

A
=(2n—2n3+n4)+g(n—3n2+3n3 —n*)

SIERRSE

=1 (L)1) + 21— ) (9124)
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Equation (9.12a) is now in the form

%ZFW+AWM

where the functions F(#) and G(r) are shown schematically in Fig. 9.6a. The
function F(#) is seen to be a monotonically increasing function of # that
ranges from zero at 7 = 0 to unity at # = 1. The function G(#) increases from
zero at 1 = 0 to a maximum of 0.0166 at n = 0.25, after which it drops off to
zeroatn = 1.

Figure 9.6b shows the velocity profiles corresponding to various values
of the pressure parameter A. For A = 0 the velocity profile corresponds to a
flat surface in which the representation is a fourth-order polynomial. For
values of A greater than 12, the resulting velocity profiles show thatu/U > 1.
Since the boundary-layer velocity is not expected to exceed that of the outer
flow locally, it is concluded that A < 12. Also, for values of A less than —12,
the velocity profiles show negative regions that correspond to reverse flow.
Although reverse flows do occur physically, under these conditions the basic
assumptions upon which the theory is based cannot be justified. Thus the
parameter A should be greater than —12. Combining these two results it is
concluded that the parameter A should lie in the range

—12<A(x) <12 (9.12b)
- H
Gy Fy - .
0.0166 0 lol——— bt oo i
) . Y >
rR g
Iy / |
/
| \-{/Q. f{ :
/ o i |
! !
j < |
! ~f |
f L/ |
</
/ |
0 0 - l
om —— 1.0 n

(a) (b)

FIGURE9.6 (a) Form of the functions F(i7) and G(#), and (b) the velocity profiles for
various values of the parameter A(x).
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Having established a suitable approximation to the velocity profile, the
boundary-layer thicknesses and the surface shear stress may be evaluated.
Substituting the velocity profile (9.12a) into Eq. (9.16) gives the following

expression for the displacement thickness in terms of the boundary-layer
thickness:

1
5*:5/0 (1-5)an

1
=5/0 [(1+n)(1—f1)3—%11(1—n)3 dn

. 3 A

Similarly, Eq. (9.1¢) yields the following expression for the momentum

thickness:
lu u
efa/o 5(1—E>d11
: 3 A 3
:5/0 L= (@ +m@=n)"+en(l —n)

x {(1 +n)(1—n)° —%n(l - 17)3]6117

37 A A?
9_5(ﬁ_%_9,072> (9-12d)

The shear stress on the surface for this velocity distribution will be

Ud(u/U)
5 Oy

Uo A
S [1 — (=)’ +En(l - ”)3} 1=

U A
To =gy (2 +€) (9.12¢)

n=0

The foregoing expressions relate the displacement and momentum thick-
nesses and the surface shear stress to the boundary-layer thickness, which as
yet,is unknown. These relations follow purely from the velocity profile under
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consideration. The additional relation is required to determine the absolute
value of these various quantities is supplied by the momentum integral.
Multiplying the momentum integral [Eq. (9.11)] by U8/v gives the
following additional relation connecting 0, 5%, and 7y:
Uuodo 0dU 790

+(20+6) T = U

or
1 d [0 0N\ 0?dU 100
5%(7)*(“5)75—@

Expressions for the various quantities that appear in this equation will now
be established as functions of the pressure parameter A(x). Recall

v dx
hence
Fav_¢
v odx  §?
But 0/ may be evaluated in terms of A through Eq. (9.12d). This gives
Cdu_ (31 A NN
vdx \315 945 9,072
or

0? dU
S KW

where
2

37 A A
Kx)=-—~——=——=] A
() (315 945 9,072)
The term 6*/0 that appears in the momentum integral may be similarly
evaluated using Eqgs. (9.12¢) and (9.12d). Thus
o (-1

0 37 A A2
315 945 9,072
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or
5*
7 =f(K)
where
G40
10— 120
S(K) = (ﬂ,A,A_Z)
315 945 9,072

The function fdepends on A and hence upon x. However, K is also a function
of x, so that fmay be considered to be a function of K. The other parameter
that appears in the momentum integral is 790/ (1 U ). Multiplying Egs. (9.12¢)
and (9.12d) gives the following expression for this parameter:

g(K)

0 _
pU

A\ /37 A A2
g(K) = <2 +€> (m “945 —9,072)

These results will now be substituted into the momentum integral. For
the time being the leading term in the momentum integral will be retained in
its existing form. Substituting from the above results for 6* /0, 0*(dU /dx) v,
and 790(uU) then gives

where

2
tvd ("_) +RA+SKIK = g(K)

where

0> dU
K=—"2
v dx

It is now proposed to take Z = 02/\) as anew dependent variable so that

dUu
K=7Z—
dx
and the momentum integral becomes
dz
UE = 2g(K) - 2+ (K)K}
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or

where

H(K) = 2{g(K) - 2 +f(K)|K}

Then, substituting for g(K) and K from their definitions shows that H(K) is
related to A(x) through the following identity:

A\ /37 A A?
H(K) = 2{ (2 +€> (m‘ 945 —9,072>

37 A N
(3_7_A_ A2) 315 945 9,072
315 945 9,072

37 A A? 116 2 1 2
) [ [ Ry NI (T T ————
<315 945 9,072){ 3150 T (945+120> +9,072 ]

where the quantity K is related to A by the expression

2

) 2
(3 A NN
315 945 9,072

From these two expressions, both K and H(K) may be evaluated for any
value of the pressure parameter A(x). Thus a curve of H(K) as a function of K
may be constructed. The form of this curve is shown in Fig. 9.7. The momen-
tum integral has been reduced to the ordinary differential equation
U dZ/dx = H(K) where the functional form of the quantity H is sufficiently
complex that this integral cannot be evaluated explicitly. However, it may be
seen from Fig. 9.7 that the function H is approximately linear in K over the
range of interest.

Thus the function H may be approximated by the equation

H(K) =047 — 6K
Then the momentum integral becomes

Ud—Z: 047 — 6K
dx
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dU
—047 - 622~
047 — 62—

or

1 d
——(ZU%) =047
US dx ( )
In this form the momemtum integral may be expressed in terms of the fol-
lowing quadrature:

047 [T s
Zm_aWAU@ﬁ

Then, since Z = 67 /v, the value of § will be

04Ty [*
QM—aﬁldeé 9.12/)
H(K)ﬁ

0 0.0783 K

FIGURE 9.7 Exact form of the function H(K) (solid line) and straight-line approx-
imation (dashed line).
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For any given boundary shape the approximate solution to the bound-
ary layer equations may be obtained as follows: For the specified boundary
shape the potential-flow problem should be solved to yield the outer velocity
U(x). Then Eq. (9.12f) may be used to evaluate the momentum thickness
0(x). The pressure parameter A(x) may then be evaluated from the relation

37 A AP\ 0*dU
2L A R YA TEY 12
(315 945 97072> v dx (9:12¢)

Having established A, the boundary-layer thickness 6 may be evaluated from
Eq. (9.12d), and the displacement thickness 6 may then be obtained from
Eq. (9.12¢). The velocity distribution across the boundary layer will be given
by Eq. (9.12a), and the shear stress at the surface will be given by Eq. (9.12¢).
In practice it is difficult to evaluate the quantity A(x) from Eq. (9.12¢) unless
A = constant. It is therefore much simplier to choose specific functions A(x)
and use the foregoing equations to determine the outer-flow velocity and
hence the nature of the boundary shape.

As an example, the Karman-Pohlhausen approximation will be
applied to the case of flow over a flat surface. For a flat surface the outer-flow
velocity Uwill be constant, so that Eq. (9.12f) gives

0 =047
U
or
0 0.686

Since U = constant, dU/dx = 0, so that Eq. (9.12g) will have the solution
A = 0.Then, from Eq. (9.124d),

37

0=315

so that, from Eq. (9.134), the boundary-layer thickness will be

84
0_338 (9.13b)
X

VRy

Equations (9.12¢) and (9.12¢) may now be employed to evaluate the dis-
placement thickness and the surface shear stress. This gives

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



Boundary Layers 351

o* 1.75
— = 9.13
X VR (9-13¢)
70 0.686
—_— = 9.13d
%,OU2 Ry ( )

These results compare favorably with the results obtained from the Blasius
solution that are given by Eqgs. (9.5). The principal result of physical interest
is the surface shear stress. The exact solution has a coefficient of 0.664,
whereas the Karman-Pohlhausen approximate solution has a coefficient of
0.686. Thus the shear-stress distribution obtained here is within 3.5 percent
of the exact solution. It should also be noted that there is considerable
improvement in the fourth-order polynomial velocity distribution used here
over the second-order polynomial analysis, which yielded a coefficient of
0.73 as was established in Eq. (9.10¢).

9.1 BOUNDARY-LAYER SEPARATION

It is known from experimental observations that boundary layers have a
tendency to separate from the surface over which they flow to form a wake
behind the body, as shown in Fig. 9.1. The existence of such wakes leads to
large streamwise pressure differentials across the body, which results in a
substantial pressure drag or form drag. Indeed, for bluff bodies such as cir-
cular cylinders, the form drag constitutes almost all the total drag at
Reynolds numbers of 10* or higher. That is, the shear stress along the surface
of a cylinder produces a drag force that is negligible compared with the form
drag for large Reynolds numbers. For lifting bodies such as airfoils,
separation of the boundary layer can destroy the bound vortex on the body,
thus destroying the lift that the airfoil generates. This is the so-called stall
condition.

A simple qualitative explanation for the existence of boundary-layer
separation on a bluff body may be given as follows: The pressure gradient
along a boundary layer is determined by that of the outer flow, as was estab-
lished earlier. Then, ifa region of adverse pressure gradient exists in the outer
flow, this pressure gradient will exert itselfalong the surface of the body near
which the fluid velocity is small. The momentum contained in the fluid layers
that are adjacent to the surface will be insufficient to overcome the force
exerted by the pressure gradient, so aregion of reverse flow will exist. That is,
at some point the adverse pressure gradient will cause the fluid layers adja-
cent to the surface to flow in a direction opposite to that of the outer flow.
Such a flow configuration means that the boundary layer has separated from
the surface and is deflected over the reverse-flow region.
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separation point

FIGURE 9.8 Velocity profiles in a boundary layer in the vicinity of separation.

Figure 9.8 shows the qualitative form of the velocity profile in a
boundary layer in the vicinity of the separation point. Prior to separation the
velocity gradient at the surface is positive, so the shear stress there opposes
the outer-flow field. After separation the velocity gradient at the surface is
negative, so the shear stress has changed its sign and direction. This obser-
vation leads to the classical definition of a separation point as a point at
which the shear stress vanishes. That is, separation is said to occur at the
point where the velocity gradient vanishes.

Z—;’ (x,0)=0 for separation (9.14)

Using this definition of separation, it may be shown that separation can
occur only in a region of adverse pressure gradient. Along the surface y = 0
the boundary-layer equations reduce to

_dp,  Ou
dx 'u8y2

0=
owing to the no-slip boundary condition. Thus the curvature of the velocity
profile is proportional to the pressure gradient along the surface. Then if
dp/dx is negative, the curvature of the velocity profile is negative and will
remain negative at the surface just as it is at the edge of the boundary layer.
That is, separation will not occur in a region of favorable pressure gradient.
On the other hand, if dp/dx is positive, the curvature of the velocity profile
will be positive at the surface. Since 9*u/Jy? must still be negative at the edge
ofthe boundary layer, the velocity profile must go through an inflection point
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somewhere between y = 0 and y = 6. Such a velocity profile may lead to
separation if the curvature at y = 0 is sufficiently positive to yield a reverse-
flow configuration, as shown in Fig. 9.8. Thus it may be concluded that
separation can occur in a region of positive pressure gradient.

Calculating the location of the separation point is not an easy matter.
The obvious way of proceeding is first to solve the potential-flow problem for
the body in question. The pressure so obtained could then be substituted into
the boundary-layer equations, which could then be solved by either an exact
solution or an approximate solution. From the solution to the boundary-
layer equations the location of the point of zero shear stress could then be
located. The obvious difficulty with such a procedure is that as soon as the
boundary layer separates, the pressure distribution will differ from that pre-
dicted by the potential-flow solution, since the latter applies to a different
streamline configuration from that which exists physically.

There are two principal approaches that are used to overcome the dif-
ficulty outlined above. The approach used by Hiemenz involved determining
the pressure distribution around the body in question experimentally. The
resulting pressure curve may then be represented analytically by a poly-
nomial that permits it to be used in the boundary-layer equations. The results
obtained by this method show good agreement with experimental observa-
tions. However, the disadvantage of this approach lies in the fact that the
pressure distribution must be established experimentally for each body
shape and for each Reynolds number of interest. Measuring the pressure
distribution around circular cylinders is not difficult, since a single pressure
tap may be rotated to sense the pressure at different angles from the front
stagnation point. On the other hand, measuring the pressure distribution
around noncircular cylinders is not such a simple matter.

The second approach that is used to determine analytically the loca-
tion of the separation point is to modify the potential-flow model from which
the pressure distribution is obtained. Several flow models exist, each of
which takes into account the separated configuration of the outer flow. The
difficulty with this approach is that empirical constants exist in the poten-
tial-flow model and experimental results must be consulted to establish these
constants.

From the foregoing discussion it is evident that the subject of bound-
ary-layer separation is one that is not well understood analytically. Indeed, it
is still not clear whether or not the boundary-layer equations are regular at
separation. One school of thought claims that the boundary-layer equations
are regular at separation by virtue of the appropriate pressure distribution.
Some recent results even question the validity of the condition (9.14) at
separation. Evidence suggests that the location of the point where dp/dx
vanishes, that where Ou/Jy vanishes, and that where separation occurs are all
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distinct. However, no length scales could be established; thus all these points
could possibly concur within the appropriate macroscopic length scales.
What is known is that boundary layers will separate in adverse pressure
gradients, so the magnitude and extent of such pressure gradients should be
minimized. This means that bodies should be streamlined rather than bluff
and should be oriented at small angles of attack. Also, it is known that sharp
corners that bend away from the fluid become separation points; thus such
corners should be avoided if separation is to be delayed as far as possible.

9.12 STABILITY OF BOUNDARY LAYERS

Like any fluid-flow situation, boundary layers may become unstable. Usually,
instabilities in boundary layers manifest themselves in turbulence. That is, a
laminar boundary layer that becomes unstable usually becomes a turbulent
boundary layer. The properties of laminar and turbulent boundary layers are
quite different. For example, the angle to the location of the separation point
on a circular cylinder, measured from the front stagnation point, is about 82°
for a laminar boundary layer and about 108° for a turbulent boundary layer.
This significant change in location of the separation points results in an
appreciable drop in the drag coefficient, as shown in Fig. 8.2. It is therefore of
some interest to investigate the stability of boundary layers.

The basis of our stability calculation will be to introduce a small dis-
turbance into the boundary-layer variables and determine whether this dis-
turbance grows or decays with time. If the disturbance grows with time, the
boundary layer will be classified as unstable, and if the disturbance decays
with time, the boundary layer will be classified as stable. Intermediate to
these two situations is the case of marginal stability, in which the disturbance
neither grows nor decays.

Figure 9.9a shows the velocity profile in a narrow strip of a boundary
layer. For such a narrow strip the velocity in the horizontal direction may be
considered to be a function of y only, say ¥ (y), and the vertical velocity may
be considered to be zero. The undisturbed boundary-layer velocity V' ( y) acts
in the horizontal direction, although the symbol V" has been used. This sym-
bol has been employed to avoid confusion with the outer-flow velocity U (x)
at the edge of the boundary layer.

A small but arbitrary disturbance is introduced to this boundary-layer
velocity profile so that the velocity components and the pressure become

u(x,y,t) =V(y) +u(x,y,1)
v(x,p,1) = 0+ 0'(x,p, )
P()ﬁyv t) :po(x) +P,(X7}’7 t)
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* : a8 slable
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Im(e) <0 slable
| ;T -

(b) (c)

FIGURE 9.9 (a) Undisturbed boundary-layer velocity profile, (b) stability
calculation results for fixed ¥, and (c) stability diagram.

where |/ /V|,|v'/V], and |p'/po| are all small compared with unity. Sub-
stituting these instantaneous local values of the velocity components and the
pressure into the continuity and the Navier-Stokes equations gives

8_u’+8_v’_0
ox Oy
15,74 ou' dv  ou
E+(V—&—u)a—+v< 8y)
dPO ap 82/ d2 82/
<dx+8x)+ (82+d T
o' o' o 10p o O
a P50 _;a_y+v<ax2+a_y2>
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As a special case, when the perturbation is zero, the foregoing equations
reduce to

a*v

dy?

1 dpo
0=_-P
pdx+v

Hence these terms may be removed from the equation of x momentum.
Furthermore, since the perturbation is assumed to be small, products of all
primed quantities may be neglected as being small. Thus the linearized
equations governing the motion of the disturbance are

o o,
ox Oy

8_’/+ a_u,_i_v’d_V—_lﬁ_pl_A'_v (9%4’4_@

ot Ox dy  pox ox2  Oy?
o ol vof (0 o
Ot ox  pOoy Ox?  Oy?

These three equations may be reduced to two by introducing a perturbation
stream function defined by

) _ O /

Ay

W
ox

In terms of this stream function the governing equations become

Py o opdv oy (0 o
Oyort oxdy oOxdy  pOx ox20y  Oy3
I A L N A A
OxOt ox2  poy Ox3  OxOy?

Finally, by forming the mixed derivative §?p' / Ox Oy, these two equations may
be reduced to one that may be written in the form

9 o\ (Y Y
(W Va) (a?*@)

The stream function for the disturbance must satisfy this linear, fourth-
order, partial differential equation.

dvoy (0

Al
_Wa_v(a_y“

Ox20y?

4
+2%)

Ox*
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Since the disturbance under consideration is arbitrary in form, it may
be Fourier-analyzed in the x direction. That is, the perturbation stream
function may be represented by the following Fourier integral:

W(xop, 1) = / W () iy
0

where o is real and positive. The time variation has been taken to be e/, so
that if the imaginary part of cis positive, the disturbance will grow, and if it is
negative, the disturbance will decay with time. For ¢ = 0, the disturbance
will be neutrally stable. Substituting the preceding expression for the stream
function into the governing equation yields the following integro-differential
equation:

J A e R T e
0
_ > mn_ o~ 2\l 4 io(x—ct)
= (¥ 200" + o*WP)]e do
0

where the primes denote derivatives with respect to y. Since this equation
should be valid for any arbitrary disturbance whatsoever, it should be valid
for each individual value of the inverse wavelength o. Thus the integrand in
the preceding equation should vanish. This gives

v

(V=) (P — 2¥) — V'V = — (V" — 229" + o*P) (9.15a)

{04

Equation (9.154a) is known as the Orr-Sommerfeld equation. The boundary
conditions that accompany this equation may be derived from the condition
that the disturbance should vanish at the surface y = 0 and at the edge of the
boundary layer. Thus

w(x,0,t) =0 (x,0,¢) =0

W (x,p,t) =0 (x,p,t) =0 asy— o
In terms of the stream function W(y) these boundary conditions become

¥(0) = ¥(0) = 0 (9.15)
Yy)=¥'( —0 asy— oo (9.15¢)

Solutions to the Orr-Sommerfeld equation are obtained as follows. For
a given undisturbed velocity profile and disturbance wavelength, both V'( y)
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and o will be known. Then Egs. (9.154), (9.15b), and (9.15¢) represent an
eigenvalue problem for the time coefficient ¢. Then if each possible wave-
length in turn is treated, results of the form indicated in Fig. 9.9b may be
established. That is, regions that are stable (corresponding to the imaginary
part of ¢ being negative) and regions that are unstable (corresponding to the
imaginary part of cbeing positive) may be identified. Then, by considering all
possible values of the undisturbed boundary-layer velocity that are less than
the outer-flow velocity, a stability diagram may be constructed. That is, by
considering all possible values of V() in the range 0 < V(y) < U(x), the
stability boundaries for that particular x location may be established. Figure
9.9c shows the results of carrying out such a procedure for flow over a flat
surface. Here the Reynolds number has been based on the displacement
thickness of the boundary layer, and the inverse wavelength o has been non-
dimensionalized by the same quantity. It may be seen that the lower
Reynolds number for which an instability may occur is 520. Thus

Us:,;
—eit = 520 (9.16)

Hence an arbitrary disturbance having a Fourier component whose wave-
length is such that od* = 0.34 will lie on the stability boundary. Thus it may be

PLATE 2 Flow around a snowmobile. (Photograph courtesy of the National
Research Council of Canada.)
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PLATE3 Vortex street generated by a circular cylinder. (Photograph courtesy of the
National Research Council of Canada.)

expected that for Reynolds numbers in excess of 520, arbitrary disturbances
will be unstable. Such instabilities will manifest themselves in the form
of turbulence at Reynolds numbers slightly larger than this critical value.

PROBLEMS

9.1

9.2

It was stated in the text that the boundary-layer equations are para-
bolic. Show that they may be put in the form of the one-dimensional
diffusion equation or heat conduction equation by taking
h = p+ pu-u/2 as a new dependent variable with ¢ = x and y = as
new independent variables.

The Blasius solution for flow over a flat surface involves solving a
third-order, nonlinear, ordinary differential equation. It will be
noticed that this differential equation is invariant to the following
transformations:

(@) f — f,n — n + constant
(b) f — f/a,n— an

Show that (a) enables the Blasius equation to be reduced to a second-
order equation by taking F = df /dn as anew dependent variable and f
as anew independent variable. Then show that (b) enables the result-
ing second-order equation to be reduced to a first-order equation by
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9.3

9.4

—— flow

Chapter 9

taking G = (dF/df)/f as anew dependent variable and ¢ = F/f? asa
new independent variable. Find the resulting ordinary differential
equation for G(¢).

The solution to the boundary layer equations corresponding to flow in
a convergent channel resulted in the following ordinary differential
equation:

f///+ 1— (f/)z =0

Show that this third-order, nonlinear, ordinary differential equation
may be integrated to give

f'(n) =3 tanh? {i + l.146] 2

V2

where the primes denote differentiation with respect to #.
Figure 9.10 illustrates a two-dimensional jet entering a reservoir that
contains a stationary fluid. A solution is sought to the laminar
boundary layer equations for this situation. Assuming that there is no
pressure gradient along the jet, look for a similarity solution for the
stream function of the following form:

Y (x,y) = 6ovx'f (i)

FIGURE 9.10 Jet entering a reservoir.
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9.5

9.6

9.7

9.8

9.9

where

=927

In the expressions above, o is a dimensional constant and v is the
kinematic viscosity of the fluid. Obtain an expression for the function
f(n) in this solution and the boundary conditions that it has to satisfy.
From the solution for f (1), obtain the solution for the stream function
Y(x,p).

Aboundarylayer develops on a surface over which the outer (inviscid)
flow velocity is represented by the following expression, in which kis a
constant:

U(x) = kx'/

Look for a similarity solution to the boundary layer equations for this
flow of the following form:

N Pk oy
V(x,y) = \/;;x 'f(n)  where 5= \/; S

Verify that such a similarity solution exists by finding the value of the
exponent m and establishing the ordinary differential equation to be
satisfied by the function f' (7).
Use the momentum integral and the velocity profile

u

— Y
U—a+b5

to evaluate the boundary-layer thicknesses d, 6%, and 0 and the surface
shear stress 7 for flow over a flat surface.
Repeat Prob. 9.6 using the following velocity distribution:

R GR)

Repeat Prob. 9.6 using the following velocity distribution:

Use the Karman-Pohlhausen approximation to obtain the solution for
the boundary layer that develops on a surface for which the outer flow
velocity is defined by the following expression:

U(x) = Ax"/®
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free surface

Ux) = 2gx)"”

Figure 9.11 Liquid flowing down a vertical surface.

where A is a constant. From the solution, evaluate the boundary-layer
thicknesses J, 6*, and 0 and the surface shear stress 1.

9.10 Figure 9.11 shows a viscous, incompressible liquid flowing down a
vertical surface. A boundary layer develops on the vertical surface and
grows to approach the free surface. Taking into account the force due
to gravity, write down the boundary-layer equations for this flow con-
figuration. From these equations obtain the corresponding momen-
tum integral. Hence, by employing a second-order polynomial for the
velocity distribution, obtain an expression for the boundary-layer
thickness o (x).
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Buovancy-Driven Flows

There exists a large class of fluid flows in which the motion is caused by
buoyancy in the fluid. Buoyancy is the force experienced in a fluid due to a
variation of density in the presence of a gravitational field. According to the
definition of an incompressible fluid, as was presented in Sec. 1.6, variations
in the density normally mean that the fluid is compressible, rather than
incompressible. That being the case, one might expect that the material
content of this chapter would be presented in Part I'V of the text, rather than
Part II1. The rationale for this apparent contradiction is discussed below.
For many of the fluid flows of the type mentioned above, the density
variation is important only in the body-force term of the Navier—Stokes
equations. In all other places in which the density appears in the governing
equations, the variation of density leads to an insignificant effect. That is,
compressibility of the fluid is not a prime consideration. However, viscous
effects are of first-order importance. Buoyancy results in a force acting on the
fluid, and the fluid would accelerate continuously if it were not for the exis-
tence of the viscous forces. The viscous forces oppose the buoyancy forces
and cause the fluid to move with a velocity distribution that creates a balance
between the opposing buoyancy and viscous forces. Therefore, if buoyancy-
driven flows are to be classified as being viscous flows of incompressible fluids

363
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or compressible flows of inviscid fluids, the former is the more appropriate
classification.

The situation depicted above occurs in natural convection. The other
type of convection is forced convection, in which the fluid moves under the
influence of forces other than the buoyancy force. Since density variations
exist in buoyancy-driven flows, the density is no longer a known quantity.
This means that the continuity and Navier—Stokes equations no longer
constitute a complete set of equations from which the solution to a flow pro-
blem may be obtained. The energy equation is required in order to yield a
complete set of equations, and this adds to the complication of solutions to
this class of problems.

The equations that are most commonly used to solve buoyancy-driven
flow problems employ the Boussinesq approximation. This is the first topic
that is addressed in this chapter. The balance of the chapter is devoted to a
presentation of some of the solutions of the governing equations, as defined
by the Boussinesq approximation.

10.1 THE BOUSSINESQ APPROXIMATION

The equations governing the flow of an incompressible fluid in which gravity
provides the only significant body force are written below.

Vou=0

Ou

p ot

Here, e, is the unit vector acting in the positive z direction, and it is assumed

that gravity acts in the negative z direction. In the absence of any motion,
these equations reduce to the following form:

+p(u-V)u=—Vp+ uVu — pge.

0= —Vpy — poge. (10.1)

where pg and p, are, respectively, the pressure and the density distributions
which exist under static equilibrium. Then we may adopt the following
notation for the pressure, density, and velocity distributions in the fluid dur-
ing convective motion,

p=po+p
p=py+p*
u=0-+u*

where p*is the pressure in the fluid relative to the static value, p* is the density
measured relative to the static value, and u* is the velocity of the fluid during
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the convective motion. Substituting these values into the equations quoted
above yields the following result:

Veur =0

* 8“ * * * * * *
(Po+p7) 5+ (o + p7) (W W)U = —Vp' 4 uV2u" — pge;

In the above, the equation of static equilibrium, Eq. (10.1), has been
subtracted.

The equations presented above are exact for an incompressible fluid
that has a density variation, or stratification, throughout it. The Boussinesq
approximation consists of neglecting any variation of density except in the
gravitational term. The latter term is of prime importance since it represents
the force that causes the motion which is being represented. However, the
variation of density is assumed to have only a minor effect on the inertia
force. This may be considered to be reasonable where relatively small density
differences exist over moderate distances. Then, considering p to be con-
stant, the Boussinesq approximation to the governing equations is

Vou=10 (10.24)

0
pait‘ +p(u-V)u=—Vp+ uV2u— Apge, (10.2)

In Egs. (10.2a) and (10.25b) it is understood that the pressure p is measured
relative to the static pressure distribution. The quantity Ap is the density
difference relative to the static distribution, and it is positive when the den-
sity is greater than the static value.

Strictly speaking, the equations presented above are valid only for a
fluid in which the density varies, but which is incompressible. However, the
idea behind the Boussinesq approximation may be extended to include
compressible fluids too. Provided that the variation in density is small, it may
be assumed that in buoyancy-driven flows the variation in density is negli-
gible in all of the terms in the governing equations except the gravitational
term. This means that the variation in density may be neglected in the con-
tinuity equation as well as in the equations of dynamics.

10.2 THERMAL CONVECTION

In thermal convection the density variation is caused by temperature varia-
tions in the fluid. This is to be contrasted with the case of density variations
caused by such effects as salinity variations in water. In thermal convection

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



366 Chapter 10

the density is usually expressed in terms of the temperature by the following
relationship,

p = poll = B(T = Ty)] (103)

where [ is the coefficient of thermal expansion of the fluid and 7j is the tem-
perature of the fluid which exists at static equilibrium.

The representation of the density given by Eq. (10.3) is valid for mod-
erate departures of the temperature 7 from the static value 7} for an incom-
pressible fluid. In general, the thermal equation of state may be written in the
form p = p(p, T). Hence it follows, without invoking the condition of
incompressibility, that

0 0
PZPO+(P—P0)6—§(PO, Ty) + (T — To)a—;(PoaTo)

In the above, only the linear terms in the pressure difference and the tem-
perature difference have been retained in thisTaylor series expansion. Now if
it is assumed that compressible effects are negligible, the second term on the
right-hand side of this equation will be negligible. This is equivalent to saying
that the density is a function of the temperature only, rather than being a
function of both the pressure and the density. The third term on the right-
hand side of the equation above may be evaluated for the case of an ideal gas,
for which p = p/RT, giving the result

—p
= T— Ty -2
P = Po +( 0) (RT&)
_ ., (I-Ty)
Po — Po To

This is the same form as Eq. (10.3), and it shows that for an ideal gas the
thermal expansion coefficient assumes the value § = 1/7y. In general, the
value of f is determined experimentally, and it is a property of the fluid in
the same sense as the viscosity is a property.

From Eq. (10.3) it follows that Ap = —p (T — Ty) = —pp(T — Tp),
where the density p is assumed to be constant and equal to the value that
exists when there is no motion. Then, substituting this value into Eq. (10.25)
yields the following form of the equations governing the motion that results
when thermal convection occurs:

Vou=0 (10.4)

d
P+ P V)u= —Vp+ uV2u+ pgh(T - Ty)e. (10.5)
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Equations (10.4) and (10.5) constitute four scalar equations for five
unknown quantities. The unknown quantities are the velocity vector u,
the pressure p, and the temperature 7. Then, in order to achieve a closed
mathematical system, the thermal energy equation must be employed. This
means that the dynamics of the system, and its thermodynamics, are no
longer independent of each other. That is, permitting the density of the fluid
to vary with its temperature in the buoyancy term has coupled the system’s
dynamics and thermodynamics.

The appropriate form of the equation of conservation of energy was
derived in Prob. (3.1), and it is given by Eq. (3.6), which is rewritten below.

oh B
p5+mwwh:£+mwp+vuvn+® (10.6)

where
h=hip, T) (10.7)

In the foregoing equations, / is the enthalpy of the fluid and @ is the dissipa-
tion function. In accordance with the Boussinesq approximation, the density
is assumed to be constant.

In general, the enthalpy /4 is a function of the pressure p and the tem-
perature 7. However, if we restrict our discussion to ideal gases, it follows
that 4 may be considered to be a function of Tonly. Then for cases where 4
may be considered to be a function of 7T only, including all fluids that are
ideal gases, Eqs. (10.4)—(10.7) may be rewritten in the following form:

Vou=0 (10.8)
0
pa_‘t‘+p(u-v)u = —Vp+ uViu+ pgh(T — Tp)e, (10.9)
oT 0
PGy + PG V)T =Lt (- V)p+ V- (kVT) 4+ @ (10.10)

In the foregoing equations, the density p is assumed to be constant, the
pressure p is measured relative to the static value. The quantity C, is the spe-
cific heat at constant pressure and @ is the dissipation function.

10.3 BOUNDARY-LAYER APPROXIMATIONS

Buoyancy-driven flows that comply with the general Boussinesq approx-
imation are governed by Egs. (10.4)—(10.7). For the case of thermal con-
vection in which the density may be considered to be a function of
the temperature only, the simplified form of the governing equations
is given by Egs. (10.8)—(10.10). In this section we further simplify the
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governing equations by applying the boundary-layer approximation to the
latter set of equations and by assuming that the fluid properties remain
constant.

In the interests of consistency with Chap. 9, we consider two-dimen-
sional, steady flow in the x-y plane, in which the main flow is in the x direc-
tion. Since the flow is buoyancy driven, this requires that we adopt the
configuration illustrated in Fig. 10.1. This is the same situation as depicted in
Fig. 9.3 except that there is no externally driven flow and the coordinate
system has been rotated through an angle of 90°. In Fig. 10.1, the quantity o
is the thermal boundary-layer thickness, which is assumed to be of the same
order of magnitude as the boundary-layer thickness 0.

For boundary-layer-like flows, the dynamic equations are approxi-
mated in the same way that they were in the previous chapter. That is, the
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FIGURE 10.1 Development of thermal and momentum boundary layers on a verti-
cal heated surface.
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equations of the dynamics are the same as those derived in Chap. 9, and
given by Eqs. (9.2a) and (9.2b), except that the buoyancy term that
appears in Eq. (10.9) acts in the x direction. Then it remains to arrive at a
consistent version of the energy equation [Eq. (10.10)]. Writing this equa-
tion explicitly for steady, two-dimensional flows for which the viscosity
coefficient and the thermal conductivity are constant yields the following

result:
oT 0T\ [ op  Op PT O*T
pCp(uax +U@y> = <u8x+vay) +k(6x2 + 2 + o
where
ou\> [ov\* ou  Ow\?*
‘““[(ax) (&) |+ )

The following observations may be made regarding the various terms that
appear in this equation.

1. The convective terms on the left-hand side of this equation are both
of the same order of magnitude—as was the case for the convection
of momentum in the boundary-layer equations.

2. In the first bracketed term on the right-hand side, the pressure
gradient across the boundary layer is negligibly small. This fact is
verified by the y component of the momentum equation in the
boundary-layer equations.

3. Inthe heat conduction term, the component involving the second
derivative with respect to y is considerably larger than that with
respect to x. This is the same approximation as was made with the
viscous terms in the boundary-layer equations.

4. For moderate velocities induced by thermal convection, the dis-
sipation of energy by the action of viscosity is negligibly small.
That is, ® may be neglected.

Applying these observations and assumptions to the energy equation, as
written above, results in the following reduced form:

or  oT op 0T
w4092 = u P O
P p(u6x+06y> “ox T op*

Combining this result with the continuity and momentum equations results
in the following set of equations for buoyancy-driven thermal convection
according to the boundary layer approximation:
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ou Ov
—+—= 10.11
Bx+8y 0 (10.11qa)
ou  Ou ldp *u
ua—&-va—y— —;E—kva—yz-&-gﬂ(T— Ty) (10.11b)

or or 1 dp *T
- (uEt i 10.11
" ox t dy  pGC, (u dx) r 0y? (10.11c)

In Eq. (10.11¢) the quantity k = k/pC, is the thermal diffusivity of the fluid.

Equations (10.11a) and (10.116) are the same as Eqs. (9.2a) and (9.25),
except that the buoyancy term exists in Eq. (10.116). This additional term
involves the local value of the temperature of the fluid, which, in general, is
unknown. This requires the inclusion of the energy equation in order to yield
a closed set of equations. Equations (10.11¢) is the form of the energy equa-
tion that is consistent with the boundary-layer approximation and that is
valid for moderate temperature differentials from the ambient value. Equa-
tions (10.11a), (10.116), and (10.11c) are to be solved subject to the no-slip
boundary condition on the surface y = 0, and subject to the condition that
the velocity should be zero far from the heated surface. In addition, either the
temperature of the heated surface or the heat flux on its surface must be
specified.

104 VERTICAL ISOTHERMAL SURFACE

In this section we apply the equations derived above to the flow induced by a
vertical surface that is isothermal at a temperature that is elevated relative to
the ambient. The situation is as depicted in Fig. 10.1in which the temperature
of the vertical surface is everywhere T while that far from the surface is 7j,
both of which are constants. For such a configuration there is negligible
pressure gradient in the x direction. Then, from Egs. (10.11), the mathema-
tical problem to be solved becomes

ou Ov
a'f’a—y—o (10.12a)
ou ou  u

oTr  oT 82_T

Ma‘FUa—y—Kayz (10120)
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The boundary conditions that accompany these differential equations are

ux,0)=0 (10.13a)
o(x, 0) =0 (10.13)
ux,y)—0 asy — oo (10.13¢)
T(x,0) =T, (10.13d)
Tx,y)— Ty asy— (10.13¢)

The first two of these conditions are the usual no-slip boundary condition,
while the third condition ensures that the effect of the heated surface does
not extend far from the surface. The last two conditions specify that the
temperature in the fluid is 7 at the vertical surface and 7j far from the
surface.

In order to facilitate the solution to Egs. (10.12), two changes will be
made. First, the stream function y/(x, y) will be introduced as was done in
Chapter 9. This will permit Eqs. (10.12a) and (10.1256) to be replaced by a
single equation involving the stream function. Second, the temperature
T(x, y) will be replaced by a dimensionless temperature difference 0(x, y),
defined as follows:

T(x,y)—To
0 I

(x, ») T _Tp
This dimensionless temperature varies in value between zero, far from the
surface, to unity at the surface. This makes it preferable to the alternate
dimensionless temperature defined by the quantity (7 — Tp). In terms of
these new variables, Eqgs. (10.12) become

o Py WPy Y
yoxdy ox oy gy TEPT—To)0 (10.14a)

oo _opin_ 0
dyox Ox0Oy  Oy?

(10.14b)

Following the methods employed in Chapter 9, we now look for a similarity
solution to this problem of the following form:

Y(x, y) = Cix"f(n)

and O(x, y) = F(n)
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where

Yy
= C —
’1(;‘) y) 2 X"

where m and n are undetermined exponents, although not necessarily
integers, and C; and C, are constants whose values will render the func-
tions f, F, and n dimensionless. From the definitions of these quantities, the
various derivatives that appear in the differential equations are evaluated
as follows:

W g mp)

% = G G
ggy = G COx" " H(m —n)f —mnf"}
?;lzp = GG

‘?;Tf = G, C3x" "

% = —nx"'yF’

g—z = Cx"F'

% = CIxF"

The primes in the expressions above represent derivatives with respect
to the similarity variable 7. Substituting these expressions into Eqs. (10.14a)
and (10.145) produces the following equations:

CLC 2 (m = m)(f) = mf"} = vC1 Cx""f" + g (T, — To)F
—mCix" " F = kCox " F"

If these equations are to be reduced to a pair of ordinary differential equa-
tions, the powers of xin the first equation must be zero, and the powers of xon
each side of the second equation must be equal. That is, the following rela-
tions must exist:
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2m—2n—1=0
m—3n=0
m—n—1=-2n

Although it is generally not possible to satisfy three conditions with only two
quantities, the three equations above are satisfied by the values

Using these values, the ordinary differential equations derived above sim-
plify to the following form:

G 2 8B(Ts — Th)
111 3 //_2 ! F:()
3G
F// = /:0
4KC2

Having selected the values for the exponents m and » in order to produce a
similarity solution, it is now possible to define explicitly the constants C; and
C, in such a way that the functions £, F, and n are dimensionless. The quan-
tities available for this purpose and v, g, and «. Then it is sufficient, from
dimensionality considerations, to define C; and C; as follows:

(5

i~ ()"

However, including dimensionless constants of proportionality in the defi-
nitions of these two quantities permits two of the coefficients that appear in
the differential equations to be normalized to unity. Noting that the quan-
tity (T, — Ty) is dimensionless, we define the constants C; and C, as fol-
lows:

4gB(T, — To)\"*
C = 2 (w)
. 1/4
C, = (4gﬁ(7;sz To))

With this choice of values for the constants C; and C, the differential equa-
tions for the functions fand Fbecome
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f 3 =20 +F=0 (10.15a)
F' +3PfF =0 (10.1550)
In the above, the parameter P, = v/ is the Prandtl number. Numerically, the

Prandtl number is about 0.7 for air and about 7.0 for water. In terms of the
functions fand Fthe boundary conditions defined by Egs. (10.13) become

£(0)=1'(0)=0 (10.15¢)
f’(n)—>0 as i — oo (10.154d)
g(0) = (10.15¢)
g(n) =0 asny— oo (10.151)

Once the solution to the ordinary differential system defined by Egs.
(10.15) has been obtained, the corresponding solution for the stream function
and the dimensionless temperature are given by the following relations:

¥(x, y) :2 (W) 1/4x3/“f(11) (10.16a)

0(x,y) =F(n) (10.16b)
where

n(x, y) = (%72_%))1/4)% (10.16¢)

The problem defined by Eqs. (10.15) was solved by Pohlhausen for
P, = 0.733. The physical result of greatest interest is the rate at which con-
vective heat transfer takes place between the vertical surface and the ambi-
ent fluid. The result so obtained is usually quoted in the following
nondimensional form:

N, = 0.359(G,)"/* (10.17)
where .y
No=
and
B(T, - T,
G -8 (V;To 0)
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The parameters in Eq. (10.17) are the Nusselt number N,,, which is the non-
dimensional heat transfer rate, and the Grashof number G, ,which is the non-
dimensional temperature differential that drives the convection. In these
quantities, / is the rate of heat transfer per unit area per unit time, k is the
thermal conductivity of the ambient fluid, and /is the length of surface over
which the heat transfer takes place.

10.5 LINE SOURCE OF HEAT

Figure 10.2 shows the physical situation that exists when a line source of heat
is immersed in an otherwise stationary fluid. The situation is similar to that
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FIGURE 10.2 Thermal convection from a line source of heat.
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of the vertical surface, except that there is no physical surface involved, and
no characteristic temperature differential.

The equations governing the motion that is induced in this situation
will be the same as those of Sec. 10.4, and they are given by Egs. (10.12).
However, the boundary conditions are different in this case. Since there is no
physical surface in the present case, the conditions (10.134) and (10.13d) are
no longer relevant. The first of these conditions must be replaced by a state-
ment that the x axis is a line of symmetry and the second condition by a
statement ensuring that the total heat rising from the source is the same at all
streamwise locations. These new conditions are expressed by the following
equations:

ou
a_y(xa 0) =0

/:)CpuCp(T— To)dy = Q

where Qis the value of the total amount of heat that leaves the source per unit
time per unit length of source.

With the changes noted above, the problem to be solved consists of the
differential system defined by Eqs. (10.12), subject to the following boundary
conditions:

Ou

a—y(x, 0)=0 (10.184a)

v(x,0)=0 (10.18b)

/ | puC,(T — Tp)dy = Q (10.18¢)
oT

- = 10.1
o (x,0)=0 (10.184)
T(x,y) =0 asy— +oo (10.18¢)

As in the case of the isothermal surface, we recast the differential equations
in terms of the stream function and a dimensionless temperature. The former
is defined to satisfy the continuity equation as before, but the dimensionless
temperature has to be redefined. The surface temperature no longer needs
normalizing to unity, so the appropriate definition of the dimensionless
temperature in this case is

G(Xa y) = ﬁ{T(xa y) - TO}
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In terms of the stream function and the new dimensionless temperature,
Egs. (10.12) reduce to the following form:

oy 0%y oYY 3
womay oxayr o 8 (10.19q)

Yoo oo %0
yox axdy Ny (10.195)

In order to obtain solutions to these equations we seek a similarity solution
which is suggested by that found in the previous section, but in which the
dimensionless temperature also has a coefficient that is a function of x. The
form of the solution that is sought is

Y(x, y) = Cix"f(n)

where
y
n(xa y) = CZ ;
and

0(x, y) = Gx"F(n)

In these expressions, m, n, and r are undetermined exponents and the quan-
tities C;, C;, and C; are constants that render the functions f; F, and  dimen-
sionless. It is not to be assumed that any of these quantities have the same
values as they did in Sec. 10.4. The derivatives of the stream function are the
same in Sec. 10.4, and the derivatives of the dimensionless temperature are

00 .
a = C3x'7l(rF — nnF/)
0
g—y = C2C3xr7nF/
629 2 r—2n ;11
8_J;2 = C2 C3x F

Using these results for the differentials, Egs. (10.19) reduce to the following
form:

C12C22x2m_2n_1{(m - n)(f/)z — mﬁw} =vCy ngm—Snf/// 4 gCxX'F
CLCCx™ ™ (of'F — mfF') = KC22 Cyx™ 2 F"
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For a similarity solution to exist, the x dependence in these equations must
cancel. Thisleadstothe following equationsrelating the exponents m,n,andr,

2m—2n—1=m—3n
2m—2n—1=r

m—n+r—1=r—2n

The first two of these relations come from the momentum equation, while the
last relation comes from the energy equation. It will be seen that the first and
the last equations are the same, so that the requirement of reducing the par-
tial differential equations to ordinary differential equations is met by satis-
fying the first two of the equations presented above. Rewriting these
equations shows that the similarity condition is met provided

1 1
m:1(3+r) n:Z(lfr)

It will be noted that for the special case r = 0, the solution obtained in Sec.
10.4 is recovered. In order to determine the value of r for the case under
consideration, the condition given by Eq. (10.18¢) must be invoked. This
condition specifies the following:

Q:[ puCy(T — To) dy

< 9y 0x"
= /_Ja—ycpﬁa"”

In the above, it has been noted that
x" 1
dy = ——dn +nx""' —ndx
y G, n C2’7
However, the integration indicated above is carried out in a plane

x =constant, so that dy will be proportional to x"d7. Substituting the values
established for the quantities in the integrand produces the result,

0=C q%cpxm*’/ f'F dn (10.20)

Since the quantity Q should be independent of x, it follows that (m + r)
should be zero. This additional requirement, coupled with the results
obtained above, leads to the following values for the exponents m, n, and r.
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For these values of the exponents, the differential equations for the functions
fand Fbecome

gG;

1" G 11 g2 _
f +5Vc2 [3}9‘ (f)}+vCIC23F_0 (10.21a)
3¢ d
" —_— =
F' 4 e g UF) =0 (10.215)

In order to render the functions £, F, and n dimensionless, we choose

1/5
G~+(5)
vV

g 1/5
V2

o (5)

As was the case in the previous section, we may include dimensionless con-
stants of proportionality in the definitions of the preceding quantities.
The purpose of doing this is to simplify the parameters that appear in the
resulting differential equations and boundary conditions. The differential
equations are given above, and the conditon, which may be considerably
simplified through normalization, is given by Eq. (10.20). In the latter con-
text, it is noted that the following quantity is dimensionless,

PGy
pQ

With this observation, the following definitions of the constants C;, C; and
Cj; are adopted in order to simplify the coefficients in the resulting problem,

1/5
C = V( ﬁQ %)
pvCyv

. 1 BO g 1/5
75 pvC,v?

4,404 -1/5
G = <p 'y 4
prot v
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Using these definitions, the differential equations, as given by Eqgs. (10.21),
reduce to the following form:

"+ = () +F=0 (10.224)
7 d o
F' 43P (F) =0 (10.22b)

The boundary conditions that accompany this differential system are given
by Eqgs. (10.18). In terms of the new variables and parameters these equations
become

f(0)=1"(0)=0 (10.234)
/wf’Fdn =1 (10.23b)
F'(0)=0 (10.23¢)
F(n) —0 as n— + (10.234d)

The solutions to Egs. (10.22) are of the form

f(n) = Atanhay
F(n) = Bsech®an

This form of solution satisfies Eqs. (10.23a), (10.23¢), and (10.234d) for all
finite values of the constants 4, B, and o. Then, substitution of the assumed
form of solutions into Egs. (10.22a), (10.225b), and (10.235b) produces restric-
tions on the values of 4, B, and o. These restrictions are, respectively,

5 50 ,
ot—gA and B—ﬁA
o =3PA
3
B=-4
4

These four conditions cannot be satisfied by the constants A4, B, and « alone,
and the solution only exists for a particular value of the Prandtl number P,.
The solution to the preceding equations is

1/5
4 (3L
200
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200\ '/*

=i
(8—0)”5

_ 3
18

AIW

3
6

In summary, a similarity solution has been found for a particular value of the
Prandtl number only, and the solution is as follows:

BQO g
Yixy) == (va 5 3/5tanhom (10.24a)
44 1/5
oo = 8a<ﬁv4QC4 ) xPsecho - (10240)
where
_ 1/ g\ y
n(x,y)—§<pvc vz) TG (10.24c)
and
5/81\'°
=% (m) (10.244d)

The above solution is valid for a Prandtl number of P, = 5/18. It shows that
the centerline temperature (7'(x,0) — Ty) varies as x3/°.

10.6 POINT SOURCE OF HEAT

A solution analogous to that obtained in Sec. 10.5 may be obtained for the
case of a point source of heat. The physical situation that will exist is illu-
strated in Fig. 10.2, it being understood that in the present case there will be
angular symmetry about the x axis. In recognition of this fact, the preferred
coordinate system involves circular cylindrical coordinates in which
the coordinates y and z are replaced by R and 0. Under these circum-
stances, the coordinate system will be (R, 8, x), which is different from the
usual situation in which the axis of symmetry is the z axis.

270 Madison Avenue, New York, New York 10016
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Noting that there will be no 6 dependence due to the symmetry already
noted, the governing equations, which are described by Eqgs. (10.12), may be
rewritten in terms of the preferred coordinate system as follows:

0 0
g (Ru) + R(RuR)—O
8 ou v O Ou
“ox "™ 3R T ROR (RaR) Tep(T ~To)
LOT 9T 10 (0T
“ox T"Ror T "Ror \ " oR

where u is the velocity in the x direction and uy is the velocity in the radial
direction, perpendicular to the x axis. In order to facilitate obtaining a solu-
tion to this set of differential equations, a Stokes stream function and a
dimensionless temperature are introduced as follows:

O oy
Ru = IR and Rup = e

0= B(T — To)

In terms of these new dependent variables, the differential equations quoted
above assume the following form:

10y 0 (10y\ 13y & (18
ROROx (EaTe) ~ Rox R (EaTe)

R Ox OR
v o[, 0 (10
= ROR [Ra_R (EaTz)] +eh(T —To)
NOT _9yorT _ 0 (0T
OR 0x oxOR "oR\"OR

The boundary conditions that accompany these differential equations are
the following:

Ou L d (1ay\
T (.0) = <R8R> L 0 (10.254)
ug(x,0) = @f) =0 (10.25b)
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/ puC,(T — Ty)2nRdR :/ 2 e Yanar =0 (10.25¢)
0 0 OR ﬂ

oT 1 /00
T(x,00—0 and 6(x,0) — 0 as R— + o0 (10.25¢)

Solutions to the differential system are sought of the following form:

¥(x,R) = Cix"f(n)
where

R
’7(x7 R) = C2 n
X

and

O(x,R) = G:x"F(n)

Substitution of these assumed forms of solution into the differential system
shows that a similarity solution exists for the following values of the expo-
nents m, n, and r,

m=1 and dn+r=1

The third equation that is required to define the solution is obtained from the
condition defined by Eq. (10.25¢). In terms of the new variables, this condi-
tion becomes

o0
2npclcg%xm+" / f'Fdy=0 (10.26)
0

Since the quantity Q, the heat leaving the source per unit time, must be
independent of x, the additional requirements is that (m + r) = 0. This
results in the following values of the exponents for a similarity solution to
exist:

For these values of the exponents m, n, and r, the differential equations for the
stream function and the dimensionless temperature become

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



384 Chapter 10

Also, the values of the constants C;, C,, and C; that preserve the correct
dimensions of the stream function and the dimensionless temperature are

C1 ~ 'V
g\ 1/6
¢~ (35)
-1/3
¢~ (33)

For a point source, as we have here, the quantity Q has the dimensions
of quantity of heat per unit time. Then a dimensionless parameter for this

caseis
vap (ﬁ) 1/3
pO \g
Then, in order to simplify the coefficients in the differential equations and in
Eq. (10.26) we choose the following values for the constants:

C1 =V
AT ING
2= <vap (v2)
P2
pvGp

Using these values for the constants of proportionality in the expressions for
the stream function and the dimensionless temperature, the system reduces
to the following ordinary differential system:

d
f///_(l _f)d_n(%f/> +7]F:0 (10.27(1)

F’+P,%jF:0 (10.275)
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In arriving at Eq. (10.27b), the energy equation has been integrated once and
the boundary condition (10.25d) has been employed. The boundary condi-
tions that accompany these two differential equations are

f(0)=f(0)=F(0)=0 (10.284q)
/o}’Fdn = 1 (10.285b)
0 2n

Closed-form solutions to the problem posed above exist, and they will be
explored in the problems at the end of the chapter.

10.7 STABILITY OF HORIZONTAL LAYERS

When a horizontal layer of fluid is heated from below, or cooled from above, a
buoyancy force exists that can result in convective motion. However, if the
buoyancy force is not sufficiently large, no motion occurs. This situation may
be qualitatively explained as follows.

Consider a horizontal layer of fluid as shown in Fig. 10.3. The fluid is at
rest, and heat is passing through the fluid by conduction from the lower sur-
face to the upper surface. For simplicity, the two horizontal surfaces are
considered to be isothermal, although they have different temperatures.
Under these circumstances, the buoyancy force will tend to cause the fluid to
rise from the lower surface, resulting in natural convection.

|

T,
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FIGURE 10.3 Horizontal layer of fluid heated from below.
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Suppose that while the fluid is still at rest, a small-amplitude dis-
turbance is introduced. It may be that the viscous forces that act on the
disturbing motion exceed the buoyancy force, which causes any convection
that may arise. Under these circumstances the disturbance will decay and the
motion will cease. On the other hand, if the buoyancy force exceeds the
viscous forces, the disturbance will grow and convective motion will result.
These observations suggest that a stability analysis of the situation depicted
could identify the existence of a minimum value of the buoyancy force below
which no motion will exist. The situation described above may be analyzed
quantitatively in a manner similar to that used in Sec. 9.12 which dealt with
the stability of boundary layers. However, the governing equations will be
different in the current case, because of the existence of heat addition. The
relevant equations are also different from those used in the previous few
sections since the disturbance mentioned above will not, in general, satisfy
the assumptions of the boundary layer approximation.

The situation depicted in Fig. 10.3 involves heat conduction in a
stationary fluid. A small-amplitude disturbance is assumed to be introduced
into this situation. The equations that govern the motion involved in this
disturbance will be unsteady and three-dimensional. Following the Boussi-
nesq approximation, we consider variations in density to be important only
in the gravitational term. We further consider the fluid properties to be con-
stant, and in the energy equation we neglect the viscous dissipation of energy
and the effects of pressure variations in the transfer of energy. Then, using the
density variation defined by Eq. (10.3), the equations governing the motion
associated with the disturbance will be

V-u=90

1
%+ (weV)u=—Vp+vViu—gll - (T~ To)les

or

—+ (V)T =xV2T

5 T @V)

In the preceding equations, the pressure is measured relative to its absolute
value; that is, it is no longer measured relative to the static value. But, from
Fig. 10.3, the static temperature distribution, 7(x), is represented by

x
h
Before the disturbance is introduced, the velocity vector u in the preceding

equations will be zero. Then, using the temperature distribution specified
above, the equations reduce to the following form:

Ii(x)=T1 — (Th — T)
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ST N PR

The pressure distribution that exists in the stationary state has been labeled
ps and, as before, the density is understood to be evaluated at the reference
temperature 7y.

When the disturbance is introduced, the field variables are assumed to
be perturbed in the following manner:

u(x’y7Z’ t) = 0 + u/(x7y7z7 t)
p(x’y7Z’ t) :p(](x) +p/(x7y7z7 t)
T(x,y,z,t) = Ty(x) + T'(x,y,2,1)
Here, the primed quantities are, by assumption, small perturbations caused

by the disturbance. Then products of primed quantities may be neglected.
Thus the linearized form of these equations is

V-ud=0

o’ 1

a_l;: —;Vp’+vV2u'+g,8T'ex
T T, — T

G e

The pressure may be eliminated from this system of equations by taking the
curl of the momentum equation. Then, it is proposed to take the curl of the
resulting equation and to use the identity

Vx(Vxu)=V(V-u) -V = -V

in which the continuity equation has been utilized. In this way the momen-
tum equation becomes

10 gp 0
V2o 22\ 2y = 8P VZ_v<Z /
< vat) u v <ex 8x>T

The y and z components of velocity may now be eliminated by taking the dot
product of this equation with the unit vector e,. Thus the problem reduces to
the following two equations:

2 10N\ 8B (g2 9 \p
(V v@tvu_ v v ox? T
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19 (T) — T»)
2 _ - Y A\ 0 T2y
(V K@t)T kh "

The disturbance that is represented by the perturbation quantities «' and 7"
is arbitrary in its form. Therefore, it may be represented by Fourier integrals
in the y and z directions. Thus we represent the velocity and temperature
perturbations by the following expressions:

d@mzﬁz/ / U'(x, 1) &2 di, dik,
T/(x7y7 z, t) = / / 0/(3(, t)ei(k}'y+k:z)dky dk,

Substituting these expressions into the equations that govern the dis-
turbance and using the fact that the result must be valid for all wavelengths of
disturbance results in the following two differential equations:

0 2 10 * 2 / gp 20/
(@"‘ ‘3&)(@"‘)‘] =5k

H? , 10\, (Ty - T») .,
<@"‘ 7&)" = Y

where

2 _ 12 2
K=K+ K

We next use the fact that the coefficients in the equations above are constants.
Then we can seek solutions to the differential equations of the following
form:

U'(x,t) = U(x)e”(’c/hzﬁ

0 (x,1) = 0(x)e” /")
In the above, the parameter ¢ has been made dimensionless by dividing the
time by the quantity /#? /x,which is the time required for heat to diffuse across

the fluid layer. Substituting this representation of the disturbance into the
two governing equations gives

g gp
<D2 —o? — —> (D* =AU = Wocze (10.29q)
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(D* = —0)0 = —¥U (10.295)
where
a=hk
and
d
D=h—
hdx

In these equations, « is a dimensionless wave number and D is the dimen-
sionless derivative with respect to x. Eliminating the temperature 0 between
these two equations yields the following stability equation,

r

(D* — ) (D? — o — o) (1)2 —o? - %o) + azRa} U=0 (10.30)

where
_ghB(Ti — Ty)
KV

R,

The parameter R, = P,G, is the Rayleigh number, where P, is the Prandtl
number and G, is the Grashof number. It is a measure of the strength of the
buoyancy force, which tries to initiate convective motion.

For the configuration depicted in Fig. 10.3, the boundary conditions
require that the velocity and the temperature perturbations vanish at the
boundaries, x = 0 and x = h. The first of these conditions requires that
U = 0,while the second condition requires that

2( 2 2 O
D <D 20 Pr) U=0
Thislatter result follows from Eq. (10.29a) and the fact the Uitself vanishes at
the boundaries. In addition, the no-slip condition at the boundaries requires
that not only #’ but also v and w must vanish on the boundaries. With refer-
ence to the continuity equation, this condition will be satisfied if DUvanishes
on the boundaries. Putting these boundary conditions together produces the
following set of conditions that are to be satisfied:

U:DU:DZ(DZ—ZocZ—%)Uzﬂ on >=0,1  (10.31)

r

o
h
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The problem posed by Eqs. (10.30) and (10.31) represents an eigenvalue pro-
blem. For given values of the Rayleigh number R,, the wave number of the
disturbance «, and the Prandtl number P,, the eigenvalue will be the time
coefficient ¢. That is, for given values of R,, o, and P,, there will be a value of
the quantity o that satisfies the conditions specified above. As the value of the
wave number is varied, different values of ¢ will be obtained. The largest real
value of ¢ will define the Fourier component of the disturbance that is the
fastest growing.

It was stated earlier that there was qualitative reason to expect that
there was a minimum value of the buoyancy force for convection to start. If
this is so, there will be a minimum value of the Rayleigh number below which
no convection will take place. In order to identify this minimum value, we
note that the situation that will exist in such a case will correspond to the
wavelength of the fastest-growing component have ¢ = 0. All other compo-
nents will be decaying. Then, at the onset of instability the time coefficient in
the preceding equations will be zero. For this situation Egs. (10.30) and
(10.31) become

(D? — o) + R, | U =0 (10.324)

U=DU=(D*-??*U=0 on -=0,1 (10.325)

x
h
The eigenvalue is now the Rayleigh number R,, which can be determined
from the equations above for any given value of the wave number o.. Then, the
minimum value of R,, with respect to «, will be the critical Rayleigh number.
This corresponds to the magnitude of smallest temperature gradient for
which all disturbances, that is all possible wave numbers, will decay in time
rather than grow in time and produce convective motion.

The problem posed by Eqs. (10.32) has a solution that yields a value of
1707.8 for the critical Rayleigh number. When one of the boundaries is free,
the appropriate boundary condition is that the surface be free of stress. In
this case the value of 1100.7 is obtained for the critical Rayleigh number. For
two free boundaries, the value of the critical Rayleigh number is 657.5.

PROBLEMS

10.1 A similarity solution exists to the problem posed by a point source of
heat. The solution is of the following form:

W (x, R) = Cix"f (n)
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R

R =Co

e, R) = G,
0(x,R) = C3x"F(n)

Carry out the analysis of this solution by substituting the assumed
form of solution into the differential equations for the stream function
and the temperature to verify that a similarity solution to the equa-
tions exists provided that

m=1 dn+r=1

The total amount of heat leaving the point source per unit time at any x
location is given by the following relation:

C e
2npC1Cs fpx"‘*' / f'Fdy
0

Use this result and the fact that the total amount of heat leaving the
point source is a constant to determine the values of the parameters m,
n,andr.

10.2 The problem posed by convection from a point source of heat was
shown, after using similarity methods, to reduce to the following pro-

blem:
f”’—(l—f)i(lf/) +nF =0 (10.27a)
dn \n
1
F’+P,EfF:0 (10.27b)
where
f(0) =£"(0) =F(0)=0 (10.284)
and
OC 1
"Fdn=— 10.2
/0 JFdy =~ (10.28b)
Look for a solution to this problem of the following form for the case
P =1:
n
=4
S =4_— 7
F(n) =B 1
(a+n2)°
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10.3

10.4

10.5

Chapter 10

where the quantities A, B, and a, are unspecified constants.

(a) Show that the assumed form of solution satisfies Eq. (10.27b) pro-
vided 4 = 0.
(b) Show that it also satisfies Eqs. (10.27a) and (10.28b) provided

_6V2n
Y

Show that for a point source of heat in a fluid for which P, =2,
a solution exists in the following form:

a=6V2n and B

2

f(rl) =4 a :]_ '72
F)=8—
(a+n?)
Find the values of the constants 4, B, and a that satisfy Eqgs. (10.27a),
(10.27b) and (10.28b).

The problem of marginal stability of a layer of fluid that is heated from
below is represented by the following equations:

(D* —?)’ + #*R,|U =0 (10.32a)

U=DU=(D*-o*’U=0 on =0,1 (10.325)

x
h
The general solution to these equations is of the following form:

U(x) = Cle "™ + Gre ™ + Cze " + Cqe 7" + Cse 5" + Cge 7"

(a) Find the values of the constants v, that satisfy the differential
equation, Eq. (10.32a).

(b) The existence of a nontrivial solution that satisfies the
boundary conditions (10.32b) leads to a certain determinant
being zero. Find this determinant, but do not attempt to
solve the problem of setting this determinant equal to zero.

Replace the boundary conditions defined by Eqs. (10.32b) for the case
of two free surfaces at x = 0 and x = A. That is, find the equivalent of
Egs. (10.32b) for the case of two free surfaces.
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FURTHER READING—PART III

The topic of laminar viscous flows is fairly well covered in texts, especially
the boundary layer section of the material. The following books cover and
extend the material treated in Part I1I of this book.

Batchelor, G. K.: An Introduction to Fluid Dynamics, Cambridge University Press,
London, 1967.

Gebhart, Benjamin, Yogesh Jaluria, Roop L. Mahajan, and Bahgat Sammakia: Buo-
vancy-Induced Flows and Transport, Hemisphere Publishing Corporation, New
York, 1988.

Rosenhead, L. (ed.): Laminar Boundary Layers, Oxford University Press, London,
1963.

Schlichting, Hermann: Boundary-Layer Theory, 6th ed., McGraw-Hill Book Com-
pany, New York, 1968.

Van Dyke, Milton: Perturbation Methods in Fluid Dyanmics, Academic press, New
York, 1964.

Yih, Chia-Shun: Fluid Mechanics, McGraw-Hill Book Company, New York, 1969.
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IV

COMPRESSIBLE FLOW
OF INVISCID FLUIDS

Inthis part of the book some phenomena associated with the compressibility
of fluids will be uncovered, and some methods of solving the governing
equations will be established. In order to do this, the viscosity of the fluid will
again be neglected, but owing to the high speeds associated with most com-
pressible effects, the inertia of the fluid will be retained. That is, the fluids
under consideration and the flow fields associated with them will be con-
sidered to be such that viscous effects are negligible but such that compres-
sible effects are important.

Part I'Vof the book encompasses Chaps. 11,12, and 13. Chapter 11 deals
with the propagation of disturbances in compressible fluids and shows how
shock waves are formed. This is followed by a treatment of both normal and
oblique shock waves. Chapter 12 deals with one-dimensional flow situations
and shows how pressure signals react upon reaching interfaces between dif-
ferent fluids and also solid boundaries. Nonadiabatic flows, including heat
addition and friction, are also included. The final chapter, Chap. 13, deals
with multidimensional flow fields, both subsonic and supersonic. These
include the Prandtl-Glauert rule for subsonic flow and Ackeret’s theory for
supersonic flow.

395
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396 Part IV

Governing Equations and Boundary Conditions

When the density of the fluid is not constant, the equations of continuity and
momentum conservation are no longer sufficient to permit a solution for the
velocity and pressure fields to be obtained. This is because the density, which
is now a dependent variable, appears in these equations. To close the system
of equations, the conservation of thermal energy must be utilized. Thus, from
Egs. (1.3a), (1.9a), and (1.11), the equations governing the motion of an invis-
cid fluid in which there are no body forces are

ap

o TV (ow) =0 (IV.1)
0
pa—ltl +p(u-Viu=—Vp (IV.2)
Oe
pg—l-p(u-V)e: —pV-u+ V- (kVT) (IV.3a)

In addition, equations of state must be included. These equations will be of
the general form

p=pp,T)

e=e(p,T)

The foregoing set of equations represents seven scalar equations for the
seven unknowns u, p, p, e,and 7.

Two useful alternative forms of the thermal-energy equation exist. One
of these was derived in the problems at the end of Chap. 3 and is given by
Eq. (3.6). This equation, which introduces the enthalpy /4 of the fluid in pre-
ference to the internal energy e, is

Oh 19)
p5+p(u-V)h:a—’t’+(u-V)p+V~(kVT) (IV.3b)
It should be noted that Eq. (IV.35) follows directly from Eq. (IV.3a) without
further approximation. If the form (IV.3b) is employed, the caloric equa-
tion of state for e should be replaced by the following caloric equation of
state for A:

h=h(p,T)
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Compressible Flow of Inviscid Fluids 397

The second alternative form of the thermal-energy equation is
obtained form Eq. (IV.3a) as a special case. For situations in which heat
conduction is negligible, Eq. (IV.3a) may be written in the form

De
RS %
P p; pv-u
If, in addition, the fluid is a perfect gas, it follows from the results of thermo-
dynamics that

e=¢e(T)
de
ar - &
and
p=pRT

Thus, the thermal-energy equation may be written in the following form:

DT
fota
)Y

—pV-u

It should be noted that De/Dt = (de/dT)DT /Dt = C,DT/Dt, so that
the result above is valid even if C,, is not constant.

Using the continuity equation, V-umay be replaced by —(Dp/Dt)/p in
the equation above. Also, T'may be replaced by p/(pR) from the thermal
equation of state. Thus, the energy equation may be rewritten as follows:

MTD(p)pMJ

Dt \pR) p Dt
pC (1Dp _p Doy _pDp
R \pDt p?Dt p Dt
1Dp (R+C\1Dp
pDt \ C, )pDt
_1Dp
p Dt

The last result follows from the thermodynamic relations

C,—C,=R
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and y = C,/C,. The thermal-energy equation is now in the form of logarith-
mic derivatives that may be combined as follows:

D D
~ 1 -~ (log o’
Dt(ogp) Dt(ogp)

D p
“(1log L) =
Dt ( ng’)

" £ = constant along each streamline (IV.3¢)
p/

The foregoing result will be recognized as the isentropic law for ther-
modynamic processes. This is compatible with the assumptions of an invis-
cid fluid in which heat conduction is negligible. The latter assumption means
that the flow is adiabatic, and the absence of viscosity eliminates any irre-
versible losses. Equation (IV.3¢) states that the quantity p/p’ is constant
along each streamline, which means that the entropy is constant along each
streamline. Butifthe flow originates in a region where the entropy is constant
everywhere, then the constantin Eq. (IV.3¢) will be the same from streamline
to streamline. That is, p/p” will be constant everywhere for adiabatic flow ofa
perfect gas that originates in an isentropic-flow field or reservoir.

The boundary conditions that accompany the foregoing equations may
specify the velocity and the temperature or the heat flux. Since inviscid fluids
are again being considered, the no-slip boundary condition cannot be
imposed at rigid boundaries as was the case in Part II1. Rather, the condi-
tions u*n = U, which was used in Part I, must again be employed, for the
same reason as before.
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11
Shock Waves

This chapter establishes the relationships for shock waves that occur in
supersonic flow. First, the propagation of infinitesimal internal waves is
studied, which establishes the speed of sound in a gas. It is then shown how
this acoustical result is modified in the case of finite-amplitude disturbances.
Thatis, it is shown how nonlinear effects grow to cause a shock wave to form.
The remainder of the chapter is devoted to the study of steady flows involving
standing shock waves.

The famous Rankine-Hugoniot relations for a normal shock wave are
first derived. These relations show, among other things, that the flow through
a shock wave is nonisentropic. From the second law of thermodynamics it is
then shown that shock waves can occur only in supersonic flow and that, in
the case of a normal shock wave, the downstream Mach number will be less
than unity. This is followed by derivation of the working equations for both
normal shock waves and oblique shock waves. That is, relationships are
established that permit the conditions downstream of a shock wave to be
calculated if the upstream conditions are known and, in the case of oblique
shock waves, the angle of the boundary that is inducing the shock wave,
relative to the flow direction.

399
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400 Chapter 11

11.1 PROPAGATION OF INFINITESIMAL
DISTURBANCES

By studying the equations of motion for a small-amplitude internal dis-
turbance in a gas, the speed at which such disturbances propagate may be
established. This speed is, of course, the speed of sound, since sound is a
small-amplitude disturbance. Then consider a perfect gas that is originally at
rest and through which a one-dimensional or plane disturbance is traveling.
It will be assumed that this disturbance travels at a sufficiently fast speed that
heat conduction may be neglected. That is, it is assumed that the flow is
adiabatic. Then, from Egs. (IV.1), (IV.2), and (IV.3¢), the fluid variables must
satisfy the following conditions:

dp 0 B
5+a(pu)—

ou ou 10p

o T "ox T pox

EM = constant
p’

The flow field under consideration is isentropic, so that the pressure may be
considered to be a function of one thermodynamic variable only, say the
density. That is, p may be considered to be p(p) only where the particular
function that applies is defined by the energy equation written above. Then
the pressure term in the Euler equation may be rewritten as follows:

op dp@

8x_d_p8x

Using this relation, the continuity and momentum equations may be rewrit-
ten as follows:

Ou Ou 1dp8p_0

o " ox pdpOx

So far, the preceding equations are exact within the assumptions of
one-dimensional motion of an inviscid fluid in which the flow is adiabatic.
In order to utilize the assumption of a small-amplitude disturbance, the
field variables will now be written in terms of their undisturbed values
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ShockWaves 401

plus a perturbation that is caused by the passage of the disturbance. The
undisturbed velocity is zero, and the undisturbed pressure and density will
be denoted by the constants py and p,, respectively. Then the instantaneous
field variables may be written as follows:

p=p+7r
p=po+p
u=0+1d

Substituting these expressions into the two equations derived above gives

op"  ,0p' nou _

U TG =0

/ / !/
c‘)u+ , Ou 1 dp Op _ 0

o " ox T (py + p)dp Ox

The quantities p’/py, p'/po, and ¥’ will be small for a small-amplitude dis-
turbance, and so products of all primed quantities may be neglected as be-
ing quadratically small. The meaning of the statement #' is small will be
clarified later. Thus the linearized form of the foregoing equations is

op’ o'
ow 1 () o
ot dp Oax_

It has been considered that the quantity dp/dp has been expanded in aTaylor
series and the quantity (dp/dp), is the leading term in such an expansion.
The meaning of the subscript zero is that the quantity dp/dp should be eval-
uated in the undisturbed gas.

From these equations it follows that:

aZu/ __azp/__ @ 82,0/
Pooxor~ ar ~ \dp),ox

so that the equation to be satisfied by the density perturbation is

82 p/ B @ 82 p/
or dp) ,0x*
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Likewise, by eliminating p’, the equation governing the velocity perturbation
is found to be

(’)Zu’_ dp v
or? dp),0x*

Thus both the density perturbation and the velocity perturbation will have
the same functional form, so that #' may be considered to be a function of p’
only. That is,whatever the dependence of p’ is on xand ¢, &’ will have the same
form of dependence, so that a simple relationship must exist between #’' and
p’. The foregoing partial differential equations will be recognized as being
one-dimensional wave equations. Thus the solution for p’ will be of the form

o' (x,1) :f<x— (%)(]t) +g<x+ (Z—I;)Ot>

where fand g are any differentiable functions of their arguments. The first
term in this expression represents a wave traveling in the positive x direction
with velocity \/(dp/dp), and the second term represents a wave traveling in
the negative x direction with the same velocity. Thus the speed with which the
density perturbation travels, and also that with which the velocity perturba-
tion travels, is \/(dp/dp),. Then, since the disturbance was assumed to be
small and since sound is a small disturbance, this will be the speed with
which sound travels. That is, if ¢y denotes the speed of sound in a quiescent

gas, it follows that
= (i)
0= -
dp 0

The foregoing result may be put in a different form by evaluating the
indicated derivative through use of the isentropic relationship and the ideal-
gas law. From Eq. (IV.3¢),

P _P
2
dp 7—1 IQ

- =7P 7
dp Po

P
Hence, employing the gas law p = pRT gives

d,
dp
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Thus the speed of sound in a quiescent gas may be written

ay = /yRT, = yi)ﬂ (11.1a)

0

where T) is the temperature in the undisturbed gas. This familiar result
shows that the speed of sound in a gas may be considered to be a function
of the temperature of the gas only and that the speed increases as the square
root of the temperature of the gas.

It is now possible to be more precise concerning the assumption made
earlier that the perturbation velocity #' is small. A quantitative interpreta-
tion of this assumption may be obtained from our original linearized form of
the momentum equation together with the solution just obtained. The line-
arized form of the momentum equation that was used above is

ou  ayop

ot p_(,@x_o

But it was shown that for a wave traveling in the positive x direction, the
solution for &’ was f (x — agt), so that
o' o'

- = _— / — — — -
%% ao f'(x — aot) ap o

where f” is the derivative of f with respect to its argument. Thus the lineari-
zed form of the momentum equation may be written in the form

/ 2 /
o @ _

~ 0o po Ox
ou  aydp’
or =00
Ox  py Ox

Integrating this equation with respect to xand noting that ’ = 0 when p’ = 0
gives the following algebraic relation between the velocity and the density
perturbations:

L_r (11.15)

Equation (11.16) shows that the meaning of the assumption #' is small is
that #'/ay < 1, since it was already assumed that p’/p, < 1. This result
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also exposes the simple relationship between # and p’ that was deduced
to exist.

Another result that may be deduced from Eq. (11.16) concerns a fun-
damental difference between compression waves and expansion waves. For
compression waves, the density perturbation p’ will be positive. Then
Eq. (11.15) shows that the velocity perturbation #' will also be positive. That
is, the fluid velocity behind a compression wave will be such that the fluid
particles tend to follow the wave, as shown in Fig. 11.1a. On the other hand, p’
will be negative for an expansion wave, so Eq. (11.15) shows that #’ will also be
negative. That is, the fluid behind an expansion wave will tend to move away
from the wave front, as shown in Fig. 11.1b. This fundamental difference
between compression waves and expansion waves will be discussed further
in later sections.

11.2 PROPAGATION OF FINITE DISTURBANCES

Consider, again, the passage of a plane wave through an otherwise quiescent
fluid, but this time no assumption will be made about the infinitesimal nature

compression gxpansion
wave wave
front front
' 1"
— F————— oy, ——— ————— (i
p'=0 p=u'=0 p'< p=u=0
(a) (b)

FiGURE 11.1 Fluid velocity induced by (a) a compression wave front, and (b) an
expansion wave front.
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of the wave amplitude. By retaining the effects of finite amplitude, the
phenomena associated with finite-amplitude disturbances may be exposed.
It will be shown that finite-amplitude waves do not propagate undisturbed
but that they form shock waves.

The continuity and momentum equations are the same as those which
were the starting point of the previous section.

@+u@+ au_

ot ox pa_o

Ou ou  10p

o T Mox T pox

In the previous section it was found that, for infinitesimal waves, u was a
function of p only and p was a function of p only. Although the flow will con-
tain finite-amplitude effects here, it will be assumed that # and p will again be
functions of p only. Then, from u = u(p), it follows that

o _dpou
ot du ot
op _dpou
Ox  dudx

Also, from p = p(p) only,

o _ dpdpou
Ox  dpdudx

Thus the continuity and momentum equations may be rewritten in the fol-
lowing form:

@{@ ou 8u70

du aﬁ“&]“&

ou Ou 1dpdpou

EJF”&_ p dp du Ox

The bracketed term in the first equation also appears in the second equation
and so may be readily eliminated between these two equations. The result-
ing relation is

dudu 1dpdpOu

pd_pa_pdpduax
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Canceling Ou/Ox from this equation and solving for du gives

du =+ dp dp
dp p

For convenience, the quantity dp/dp will be denoted by @, although no
physical significance will be attached to the quantity « at this time. However,
it is known that a — ag as the amplitude becomes infinitesimal. In terms of
this quantity a, the preceding equation becomes

du_ dp
a p

The analogous equation that was obtained in the previous section was
du/ay = dp/p, for a forward-running wave. Thus, in order that the result
obtained here may reduce to the linear result for weak waves, the plus
sign must be associated with a forward-running wave and the minus sign
should be associated with a backward-running wave. This gives a fluid-
particle velocity that follows a compression wave and moves away from an
expansion wave as before. The foregoing relation shows that for a forward-
running wave

=227 (11.2a)

This result will be used in the momentum equation as follows:

Ou ou 10p

ot T "ox T pox

That is, the momentum equation for a forward-running wave may be written
in the following form:

u Ou
E+<u+a)§:0

Solutions to this equation are of the form

u(x, 1) =f[x — (u+ a)i (11.2b)
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where f'is any differentiable function. It should be noted that in this instance
both u and a are functions of the two independent variables x and ¢.

The foregoing solution represents a wave traveling in the positive x
direction with velocity

U=u+a

The wave speed Umay be related to the speed of an infinitesimal wave, that
is, to the speed of sound ag, by use of the isentropic law p/p’ = py/p. From
the definition of the quantity a, it follows that

_ 7)IQ<£>(T—1)/2
Po \Po

(-1)/2
— a (ﬁ)
Po

where the definition of the speed of sound has been employed from
Eq. (11.1a). Using this result and Eq. (11.2a), the local value of the fluid velo-
city may be related to the local speed of sound. From Eq. (11.24).

du:a@
0

__ % 7—3)/2
= (y_])/zp( )/ dp
Py

where the relation between a and gy established above has been employed.
This equation may be integrated to give
a p<3’71>/2

U=——
SR 1)/2

+ constant

Using the fact that when u = 0,p = p, shows the value of the constant
of integration is 2ay/(y — 1), so that the expression for u becomes

2 <p>(}’—1)/2
u—= apg| — —a
y—1 Po

2
—v71(a—a0)
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Here the relation that was established between a and ¢ has again been used.
That is, the quantity a is related to the local fluid velocity u in the following
way:

-1

2

a=ay+ ? u
This result shows that a > a, for u > 0 and that the difference between a and
ay is proportional to the local fluid velocity u. Using this result, the speed of
propagation of a finite-amplitude disturbance may be evaluated. It was
shown from Eq. (10.25) that such a disturbance travels with velocity

Ux,t)=a+u

“/+1u
2

L U(x,t) =ap+ (11.2¢)

where the relation between a and u established above has been used. Equa-
tion (11.2¢) shows that the speed of propagation of a finite-amplitude dis-
turbance is greater than the speed of sound for # > 0 and that it is no longer
constant but depends upon the value of the local fluid velocity.

Since the propagation speed defined by Eq. (11.2¢) depends upon both x
and ¢, it is not an equilibrium speed. That is, the speed at which a finite-
amplitude signal travels will change continuously according to Eq. (11.2¢). It
is instructive to deduce the manner in which a given wave front will change
its characteristics as a result of this fact. In time 7, Eq. (11.2¢) shows that a
disturbance will travel a distance L that is given by the expression

1
L= <a0+y; u>r

Then, relative to an observer who is moving at the speed of sound qy, the
distance traveled by the wave will be

y+1
=— U

S
2

T

That is, relative to the observer the wave will travel a distance that is depen-
dent upon the magnitude and the sign of the local fluid velocity in the dis-
turbance. Thus regions of high local velocity will travel faster than regions of
low local velocity. Then a smooth disturbance of arbitrary form will develop
as shown in Fig. 11.2.

At time 7; a smooth velocity profile is considered to be traveling in the
positive x direction. Then, at some later time 7, > 71, the regions of higher
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it it i i

T, T T: T

FIGURE 11.2 Progression of a finite-amplitude disturbance.

velocity will have advanced further, relative to an observer moving at con-
stant velocity a, than the regions of lower velocity. At time 73 > 1, the wave
front is shown to be vertical as higher-velocity regions continue to advance
faster than the slower regions. Finally, at time 74 > 73, the higher-velocity
regions are shown as having overtaken the portion of the signal that is mov-
ing at the sonic velocity ay. It is seen that this is an impossible configuration,
since three values of u exist at a given location. Thus it is concluded that the
wave front will steepen as indicated until the situation depicted at time 73 is
reached. At this stage a sharp discontinuity in the field variables exists that is
called a shock wave. For times greater than 73 this sharp wave front or shock
wave will propagate in an equilibrium configuration.

To summarize, if a smooth, finite-amplitude compression wave is gen-
erated, it will travel in a nonequilibrium configuration. Different parts of the
wave will travel at different speeds in such a way that the wave front will
steepen as it progresses. Eventually, the steepening of the wave front will
reach the point where the changes in velocity, pressure, etc., take place across
avery narrow region. That is, a shock wave has been formed, and this shock
wave will continue to travel at an equilibrium speed.

It should be noted that, in the foregoing argument, the fluid velocity u
was taken to be positive, which corresponds to a compression wave. For an
expansion wave u# will be negative for a forward-running wave so that,
according to Eq. (11.2¢), the wave front will move more slowly than the speed
of sound. Also, the more intense parts of the wave move the most slowly, so
that the wave front will spread out rather than steepen. That is, compression
waves steepen as they propagate but expansion waves spread out.

11.3 RANKINE-HUGONIOT EQUATIONS

In the previous section it was shown how shock waves develop from finite-
amplitude compression waves. In this section the variation of some of the
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fluid properties across a shock wave will be established. In particular, the
Rankine-Hugoniot equations relate the density ratio across a shock wave to
the pressure ratio and the fluid-velocity ratio.

Shock waves are very thin compared with most macroscopic length
scales, so that they are conveniently approximated as line discontinuities
in the fluid properties. For purposes of analysis it is convenient to adopt a
frame of reference in which the shock wave is stationary and in which
fluid approaches the shock wave in one state and leaves in another state.
Figure 11.3 shows such a situation in which the incoming velocity, pressure,
and density of the fluid are, respectively, u;, p1, and p,. The corresponding
outgoing values are u;, p>, and p,. Since the shock wave is oriented normal to
the velocity vector, it is called a normal shock wave.

The quantities uy,py, py, u2, p2, and p, will be related to each other
through the equations of mass, momentum, and energy conservation. Since
the shock wave represents a discontinuity in the fluid properties, differential
equations cannot be used across it. Thus either the differential equations
must be integrated to yield algebraic equations or the governing equations
must be rederived in algebraic form.

Adopting the latter procedure, the equation of mass conservation may
be readily written down by inspection from Fig. 11.3a.

pLUl = Pty (11.3a)
P
log —
*p,
-\c‘
& ;
& o
o
&
”".IDI'p'. ”."P?-p: 10g 5
]
\shock wave
{a) (b}

FIGURE 11.3 (a) Shock-wave configuration, and (b) results from the Rankine-
Hugoniot and isentropic relations.
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Multiplying these mass flow rates by the corresponding velocity magnitudes
gives the change in momentum across the shock wave as p,u3 — p,u3. This
change in momentum must be caused by the pressure force p; — p; per unit
area, so that the equation of momentum conservation becomes

pLut + p1 = paytt + pa (11.35)

Finally, the energy balance may be established as follows: The enthalpy per
unit mass will be

p
C,T=C, R
__rr
y—1p
Here the ideal-gas law has been used together with the identity C, — C, = R.

The total energy per unit mass will be the sum of the kinetic and internal
components, so that the equation of energy conservation is

_u147——————::§u§4—ril—33 (11.3¢)

In deriving Eq. (11.3¢) it has been implicitly assumed that the flow is adia-
batic, although it has not been assumed that it is isentropic. Since shock
waves involve high speeds and since heat conduction is a slow process, the
adiabatic condition is well justified.

Equations (11.3a), (11.3b6), and (11.3¢) represents three equations in
the six quantities u;, p1, p;, 42, p2, and p,. Hence, two of these quantities may
be eliminated, leaving an equation connecting the remaining four quantities.
The quantities u#; and u, will be eliminated as follows: Dividing Eq. (11.35) by
Eq. (11.3a) gives

D R
P Pz
LUy —u P
P

where p, / p,u, has been rewritten p, / p u;, which follows from the continuity
equation. Multiplying the preceding equation by u, + u; gives

d-d =t o (1)
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But, from the continuity equation, u,/u; = p,/p,, so that

11
uj — = (py —pz)(p—+p—>
1 2

The left-hand side of this equation may be replaced by a function of the
pressures and densities only through use of the energy equation (11.3¢). The
resulting equation is

2y (p1 Pz) ( 11 )
——— =W —p)| =+
y—1\p1 P2 v ) P1 P2
This is the required equation which relates the pressures and densities only

across the shock wave. Solving this equation for the density ratio results in
the following alternative form of the equation above:

pr_p+0+1D/—1)p

pr 0+ 1D/ =1p1+p2

From the continuity equation p,/p; = u;/uz, so that, combining this result
with the equation above, the following conditions will apply across a normal
shock wave:
1 1 -1
pr_1+0+ 1)/ =Dp2/p1) _m (11.4)

pr +D/0-1D)+p/p w

Equations (11.4) are called the Rankine-Hugoniot equations, and they relate
the density ratio across a shock wave to the pressure ratio and the velocity
ratio.

In the derivation of the Rankine-Hugoniot equations it was not
assumed that the flow was isentropic, and indeed, it will now be shown that it
is not isentropic. If the flow had been isentropic, the density ratio across the

shock wave would have been
1/y
P1 1

Thus in a plot of log(p,/p;) versus log (p,/p:) the isentropic law will be a
straight line of slope 1/y. The corresponding curve obtained from Egs. (11.4)
is a curved line, as shown in Fig. 11.3b.

From the foregoing results it may be concluded that shock waves
depart from the isentropic law unless p, /p; and p,/p, are close to unity. That
is, unless the shock wave is very weak, it will not be isentropic.
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11.4 CONDITIONS FOR NORMAL SHOCK WAVES

It will be shown in this section that, as a consequence of the second law of
thermodynamics, only that portion of Fig. 11.3b that lies in the first quadrant
has physical significance. This restriction will be shown to result in the
restriction that the upstream Mach number M| must be greater than unity for
shock waves to occur and the resulting downstream Mach number M, will be
less than unity.

Using the results from thermodynamics that are quoted in Appendix E,
the entropy difference across a shock wave s, — 51 will be given by

T
55 —s851=0C, log(ﬁ) — Rlog(f}—?)

Using the ideal-gas law, the temperature ratio in the equation above may be
eliminated in favor of the pressure and density ratios. Thus the entropy
change may be rewritten as follows:

52— 8] = Cplog<f}2pl) Rlog(f)
1P 1
=(C,—R) log(ﬁz) -G, log<£2>
1 1

But C, — R = C,, so that the entropy change across the shock wave, which
will be denoted as As, may be evaluated from the following equation:

A
Cv 1 P1

Using the preceding result, the entropy change and the density ratio
will be compared, for a given pressure ratio, for two processes. The first
process will be a shock wave that must obey the Rankine-Hugoniot equa-
tions and the second process will be a hypothetical isentropic one for the
same pressure ratio as the shock wave. Then, from the equation above, the
entropy changes in each of these processes will be

A
(&) es) -r1e(2)
C)rn 1 P1/) R-H
o))
1 P1/ 1
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where the subscript R-H indicates the entropy change and the density
ratio for a shock wave in which the pressure ratio is p> /p; and the subscript 7
denotes the density ratio for an isentropic process that spans the same pres-
sure ratio. Subtracting these two equations to eliminate the common pres-

sure ratio gives
AL s v
— =v|log|—= ] —log( ==
(Cv R-H Pi/ 1 P1/) R-H

But the second law of the thermodynamics requires that As > 0, so that

f2) ()
P/ 1 P1/) R-H

Figure 11.3b shows that this inequality can be satisfied only in the first
quadrant of the diagram, which corresponds to log(p,/p;) >0 and
log(pa/p1) > 0.Thatis, in order to satisfy the second law of thermodynamics

P2~ (11.5q)
P1

which means that the gas must be compressed as it goes through a shock
wave. The continuity equation then shows that

uj
" >1 (11.5b6)
so that the fluid is slowed down as it passes through a shock wave.

The conditions (11.54) and (11.55) may be put into the more meaningful
condition M; > 1. In order to achieve this alternative formulation, it is first
necessary to derive a relationship that is known as the Prandtl or Meyer
relation. In deriving this region, the subscript * will be used to denote the
value of a variable when M = u/a = 1,where uis the fluid velocity and a is the
local value of the speed of sound. Then it follows that u, = a..

The starting point in the derivation is the equation obtained by dividing
the momentum equation (11.35) by the continuity equation (11.3a).

uy + 4 =+ p2
P pau2

Using the definition of the speed of sound to introduce a? = yp;/p, and
@ = 1p2/ py gives

ai a
u + =u +
Y Vi
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2 2
4L 4

Yu2  Yuq

LU — Uy =

The right-hand side of this equation may be replaced by an equivalent
expression that is obtained from the energy equation in the form
u% a% y+1 ,

PR PRI I i

where the fact that u;, = u. = a;. = a3, = a, has been used. Thus the velo-
city difference #; — u, may be rewritten in the following form:

" —u _ 1 “/Jrlaz_V*luz _ “/Jrlaz_uuz
1 2_'}7”2 2 * 2 2 Vul 2 * 2 1

This equation simplifies considerably to the form

uwuy = a’ (11.6)

which is the Prandtl or Meyer relation.

The preceding result will be used in the conditions that were estab-
lished for a normal shock wave to obtain an alternative form of these condi-
tions. Multiplying both the numerator and the denominator of the inequality
(11.5b) by u; gives

Then, using Eq. (11.6),

The left-hand side of this inequality may be evaluated from the energy equa-
tion as follows:
u a oyt o,

a*

2 y—1 20-1)

Dividing this equation by 3 gives

1 1 1 941 4

pIMSTIE § VER Top P

w o (p+1)M}

a2 2+ (y- )M}
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Substituting this expression into the condition for a shock wave gives

\ 2
24+ (y—1)M;

which reduces to

M; > 1 (11.7a)

That is, a shock wave can occur only if the incoming flow is supersonic.
Furthermore, in view of the Prandtl or Meyer relation [Eq. (11.6)], the
inequality (11.7a) implies that

My <1 (11.7b)

To summarize, in order that the second law of thermodynamics may
not be violated, a normal shock wave can occur only in supersonic flow, and
the resulting downstream flow field will be subsonic. That is, the fluid will be
compressed as it passes through the shock wave.

11.5 NORMAL-SHOCK-WAVE EQUATIONS

The results of the last two sections were intended to establish the funda-
mental phenomena of shock waves and the principal consequences of the
existence of shock waves. However, the relationships established in these
sections are not suitable for evaluating the conditions downstream of a shock
wave in terms of the upstream conditions. It will be recalled that the three
conservation equations connect six quantities, three upstream values and
three downstream values. Then, it should be possible to eliminate any two of
the downstream conditions and so obtain an equation that relates the
remaining downstream condition to the three upstream conditions. In this
way equations may be established for each of the downstream quantities in
terms of the upstream conditions, which are presumably known. Rather than
considering the velocity to be one of the quantities, the Mach number M will
be considered. Thus for supersonic flow in which a shock wave exists, the
known quantities may be considered tobe p;, p;, and M;,while the unknown
downstream quantities will be p,, p,, and M.

To evaluate the downstream Mach number M, the energy equation
involving the upstream conditions and the sonic conditions is employed as
follows:

w a2 P+l

2751 2p-n%
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hence

u%_ y+1

a? y—1 [1 1 ]
x 72
2 (y— 1)M12

Similarly, from the energy equation involving the downstream conditions
and the sonic conditions, it follows that

@ _ -1l 1
us y+1(2 (y—1)M?

These expressions will be used in the Prandtl or Meyer equation [Eq. (11.6)]
as follows:

uyup :aﬁ
@a_

N
uy u;

(o) [t =] -

Solving this equation for M, gives

L[ - /2
ME— (7 1))2

M; (11.8a)

That is, the downstream Mach number is a function only of the upstream
Mach number and the specific-heat ratio of the gas. The variation of M, with
M,, as defined by Eq. (11.84), is shown schematically in Fig. 11.4a. It will be
seen that as the upstream Mach number increases, the downstream Mach
number decreases. As M; — oo, Eq. (11.8a) shows that M7 — (y —1)/2y,
which defines the asymptotic limit.

The density ratio across the shock wave will be obtained by first
evaluating the velocity ratio, then using the continuity equation. From
Eq. (11.6),

al y—l{l 1 }
wouw Ty+1120 (y—1)M?
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FIGURE11.4 Conditions downstream of a normal shock wave: (a) the Mach num-
ber (b) the density, and (c) the pressure.

where the last equality was established earlier in this section. Simplifying the
right-hand side of this equation gives

u (y — 1)M12 +2
u (y+ 1)M}

But, from the continuity equation, u>/u; = p,/p,, so that the expression for

the density ratio across the shock wave is
y 4+ 1)M?
pr_ _( UMP (11.8b)
pr (= 1)MP+2

The form of the density ratio as a function of the upstream Mach number is
shown in Fig. 11.4b. The density ratio is a monotonically increasing function
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of M; and reaches an asymptote that, as shown by Eq. (11.8b4), is
r+1/(—1).

The pressure ratio across a normal shock wave may be readily eval-
uated from the Rankine-Hugoniot equations [Eqgs. (11.4)] and the density
ratio as given by Eq. (11.85). This gives

L+ [+ D)/0=Dipa/p) 0+ DM

v+ 1)/ =1)+p2/m (y —1)M} +2

Solving this equation for the pressure ratio gives

D2 2y 2
—=14+—M; -1 11.8¢

The form of this result is shown in Fig. 11.4c¢. It will be seen from this curve,
and it may be verified from Eq. (11.8¢), that the pressure ratio increases
without limit as the upstream Mach number increases.

The foregoing relations [Eqs. (11.8a), (11.85),and (11.8¢)] give each of the
principal downstream quantities in terms of the upstream Mach number and
the specific-heat ratio of the gas. The functional form of these results is shown
qualitatively in Fig. 11.4, and quantitative data may be obtained from tables
and figures that appear in the references at the end of this part of the book.

11.6 OBLIQUE SHOCK WAVES

Oblique shock waves are shock waves that are inclined to the free stream at
an angle different from /2. Such a shock wave is shown in Fig. 11.5, in which
both the incoming and the outgoing velocity have been decomposed into
components that are perpendicular to the shock wave and those that are
parallel to the shock wave. The shock wave is inclined at an angle f§ to the
incoming flow direction, and the velocity vector is deflected through an angle
0 by the shock wave.

The components of the velocity vectors that are normal to the shock
wave are u; sinfi and wu, sin(f — J) for the incoming and outgoing flow,
respectively. These velocity components must obey the normal-shock-wave
equations, so that

up sin(ff — 0) < wuy sinf

On the other hand, the tangential-velocity components must be equal, since
there is no pressure differential or other force acting in the tangential direc-
tion. This shrinking of the normal-velocity component and preservation of
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FIGURE 11.5 Configuration of an oblique shock wave.

the tangential-velocity component results in the downstream velocity vector
u, being bent toward the shock wave, as shown in Fig. 11.5.

The equations that determine the downstream values of the pressure,
density, and Mach number need not be established from the governing
equations in the same manner as was done in the previous section. Rather,
the observations that have already been made regarding normal- and
tangential-velocity components may be utilized in conjunction with the
normal-shock-wave equations. Since the upstream normal-velocity compo-
nent is now u; sin f rather than u;, the upstream Mach number M; should be
replaced by M, sin  in Egs. (11.8a), (11.85), and (11.8¢). Likewise, the down-
stream Mach number M, should be replaced by M, sin(ff — J). Thus the
equations for the downstream Mach number, density, and pressure become

) 1+ [(y — 1)/2]M? sin?
M2251n2(ﬁ—5) _ g( — )/ } 1 ﬁ
yMi sin” f— (7 — 1)/2
Pa_ (y + 1) M} sin® f§
pr (y—1)M2sin® f+2
P2y, %

1+
4 y+1

(M} sin® f — 1)

The foregoing equations express Ma, p,, and p; interms of My, f,and J.
Although M, is usually known, only one of the angles f and ¢ is typically
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known. Ifthe shock wave is generated by the leading edge of a body, the angle
o will be known, since the downstream velocity vector must be tangent to the
surface of the body. Then the angle f is typically the unknown quantity.
However, one more equation exists to close the system of equations. The
conservation equations have been applied only to the normal components of
the upstream and downstream velocity vectors. Since there are no forces
acting along the shock wave, the conservation of mass and momentum in that
direction are satisfied by equating the components of the velocity vectors in
the tangential direction. This gives

u; cos i =uy cos (f —9)

uy cos(f—9
hence 2o 7([3 )
Uy cos f

Since this equation is supposed to determine the shock-wave angle
f, the velocity ratio should be eliminated in favor of known quantities.
The continuity equation, which involves the normal-velocity components,
gives

u pasin(f —9)
u p; sinf

Equating these two expressions for the velocity ratio results in the identity

py  tanp

pi  tan(f—0)

Now the density ratio may be eliminated from the results that were deduced
above from the normal-shock-wave equations. The result is the relation

(y + 1)M? sin* B tan f3

(y — 1)M?sin® f 42 ~ tan(f — 0)

This equation is sufficient to determine the angle f3, since both M; and J are
known. However, the result is an implicit expression for f§ rather than an
explicit expression. Although the equation is not readily rearranged to
express ffinterms of M; and J, itis possible to solve for M; in terms of fand o.
Solving directly for M; gives

M — 2tanf§
' sin? Bl(y + 1) tan(f — 8) — (v — 1) tan fi
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This result may be simplified by first rearranging the numerator and
denominator to give
ME — 2 cos(ff — 0)
U " sinB[(y + 1) sin(f — &) cos p— (y — 1) sin f cos(f — 0)]

Next, the trigonometric identities for multiple-angled functions may be
employed to reduce the expression to the following form:
M2 2cos(fi — o)
' sin B[sin(2f — 0) — ysinJ]

(11.9q)

Equation (11.9a) connects three quantities, two of which will be known
in any flow configuration. The form of the solution represented by Eq. (11.9a)
is shown in Fig. 11.6a. These results show that, for given values of M; and the
deflection angle 0, two shock-wave angles f§ are possible. The limiting values
of f may be established by recalling the condition for a normal shock wave,
M; > 1,which here becomes M, sin § > 1. Then ff must lie in the range

1 i
in'—)<p<= .
sin (Ml) 7ﬂ72 (11.96)

where the upper limit corresponds to a normal shock wave. The lower limit
will be recognized as the angle of a Mach wave; that is the angle to the leading
edge of a sound wave that is being continuously emitted by a source of sound
inwhich the source is moving with Mach number M;. Mach waves, of course,
represent the sonic end of the shock-wave spectrum, so that the pressure
ratio and the density ratio across Mach waves is unity. On the other hand,
normal shock waves exhibit the maximum pressure and density ratio for a
given approach Mach number. These observations lead to the classification
of oblique shock waves as being either strong (if the value of § is close to /2)
or weak [if the value of f§ is close to sin~' (1/M;)]. It will be shown shortly that
the downstream flow is subsonic for a strong shock wave and supersonic for
weak shock waves. The dotted line in Fig. 11.6a corresponds to M, = 1,which
does not coincide with the minimum value of M, for fixed J, although these
two values do not differ substantially.

The value of the downstream Mach number may be obtained from the
equations that were already deduced from the normal-shock-wave equa-
tions. The expression is

1+[(y — 1)/2]M? sin’

2
M= G opmzsin’ f— (- 1)/2]

(11.9¢)
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FIGURE 11.6 Oblique-shock-wave relations: (a) shock-wave inclination S, (b)
downstream Mach number M>, and (c) pressure ratio across the shock wave.

Since M| and ¢ will be known from the problem definition and since f will be
known from Eq. (11.94a), the value of M, may be established from Eq. (11.9¢).
The results of such a solution are shown schematically in Fig. 11.6b. The figure
clearlyillustratesthe possibilities of havingeither subsonic orsupersonic flow
downstream of the shock wave. Inthe case of normal shock waves it was found
that the downstream flow had to be subsonic, but for oblique shock waves the
unaffected tangential-velocity component, when added to the subsonic nor-
mal component, may again be supersonic, particularly for shallow angles .
The expression for the pressure ratio across an oblique shock wave was
also deduced from the normal-shock-wave equations and was shown to be

P2 2y 2 s 2
—=1+ M7 sin” f — 1 11.9d4
P T sin® ) (11.94)
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The form of the curves which are generated from this equation is shown in
Fig. 11.6¢c. This diagram brings out the significance of the terminology
“strong” and “weak” as applied to shock waves. The strength of a shock wave
is defined by the nondimensional pressure difference (p, — p;)/p1, which is
seen to be larger for the strong shock waves than for the weak shock waves.

The downstream Mach number and pressure ratio are two quantities
of principal interest in shock-wave flows. However, the equation for the
density ratio was also deduced from the normal-shock equations and was
shown to be

pr_ v+ 1)M? sin’ f
P (y—1)M?sin® f 42

(11.9¢)

The foregoing equations are sufficient to completely determine the
conditions downstream of an oblique shock wave, provided that the type of
shock wave is known (that is, strong or weak). There is no mathematical cri-
terion for determining whether the shock wave will belong to the strong
family or the weak family. The configuration that will be adopted by nature
depends on the geometry of the projectile or boundary inducing the shock
wave.

Figure 11.7 shows two different shapes of leading edge that are con-
sidered to be immersed in the same supersonic flow field. The boundary

blunt-nosed
body

My >
———

FIGURE 11.7 Supersonic flow approaching a blunt-nosed body and a sharp-nosed
body.
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PLATE 4 Detached shock wave in front of a flat circular disk in flow at a Mach
number of 10.4. (Photograph courtesy of the National Research Council of Canada.)

PLATES Shock wave attached to a cone of 15° half angle at 6° angle of attack and a
Mach number of 10.4. (Photograph courtesy of the National Research Council of
Canada.)
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condition on the solid surface requires that the velocity vector be close to the
vertical in the vicinity of the front stagnation point. This boundary condition
may be realized only if a detached shock wave exists in front of the body as
shown. Since the angle f is close to 7/2 for this shock wave, it will be of the
strong variety, so that the downstream Mach number will be less than unity.
The corresponding subsonic flow may then satisfy the required boundary
condition in the usual way. Moving away from the front stagnation point
along the surface of the body, the angle 6 of the downstream velocity vector is
continuously changing. Thus some point is eventually reached where the
value of J is such that matching the boundary condition by deflecting the flow
through a weak shock wave is possible. The shock wave will therefore bend
back with the flow far from the body so that the downstream flow becomes
supersonic. Thus a region of subsonic flow will exist in the vicinity of the
nose of the body and the rest of the flow field will be supersonic.

In the case of a sharp-nosed slender body an attached shock wave will
exist, as shown in Fig. 11.7. With this configuration the velocity vector will
be deflected by the shock wave through just the correct angle to satisfy the
boundary condition that the surface be a streamline. Since the shock wave
will belong to the weak family in this case, the flow downstream of the
shock wave will remain supersonic.

PROBLEMS

11.1 In general, the enthalpy /# depends on both the pressure and the tem-
perature; that is, & = h(p, T'). However, if p = pRT, it follows that
h = h(T) only. To show this, obtain the first law of thermodynamics in
the form:

Tds=dh—vdp

where v is the specific volume of the gas. Then, by considering
s =s(p, T)and h = h(p, T), show that:

o5 10k
T  TOT

o1 on
oT T \Op

These are the reciprocity relations quoted in Appendix A. By elim-
inating s from these equations and utilizing the gaslaw p = pRT, show
that 0h/0p = 0sothat h = h(T) only.
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11.2

11.3

114

11.5

In general, the internal energy e depends on both the specific volume
and the temperature, so that e = e(v, T'). Show that if p = pRT, it fol-
lows that e = ¢(T) only.

Show that, for a calorically perfect gas, the entropy change involved in
some event may be related to the temperature ratio and the pressure
ratio, or to the temperature ratio and the density ratio, by the following
expressions:

T
S_SOZCPIOgTO_RIng%

T
= CvlogT—kR log%
0

The equation governing the fluid velocity induced by a finite-ampli-
tude forward-running disturbance was shown to be

Ou ou
E + (u+ a) po 0
in which both u# and a depend on both x and ¢. Show, by direct sub-

stitution, that
u=flx—(u+a

is the general solution to this equation, where fis any differentiable
function.
The equation to be solved for u in Prob. 11.4 is

Du

E—O

D 9 0
where E—&—F(u-i-a)a
and azzj—z

Show that the steepness of the wave Ju/0x satisfies a relationship of

the form:
D (ow)  (0u)*
Dt \ Ox ox
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11.6

11.7

11.8

Chapter 11

and find the constant of proportionality. If the steepness of the wave
front at time # = 0 is denoted by

@
ox

(1}

find the time required for Ju/0x to become infinite, and thus show
that S must be negative for a shock wave to form.

The entropy increase across a shock wave may be calculated from the
following expression:

e oG]

Cv 1 \P2
Using the normal-shock-wave equations, express As/C, as a function
of M, and y only. Denoting (M;? — 1) by ¢, express As/C, as the sum of
three terms each of which has the form (1 + o), where o is a function
of y only. Expand the result for small values of ¢, and hence show that
As/C, ~ &,which shows that weak shock waves are almost isentropic.
A normal shock wave occurs in a fluid that is not a perfect gas and for

which the pressure and the density are related by the following
expression:

d_ .,
Pap=

where cis a constant.

(a) Using the continuity and momentum equations, together with the
foregoing relation and the general expression for the speed of sound,
show that the upstream and downstream Mach numbers are related as

follows:
M;? ) )
log— = M;* — M-
82— 2

(b) The pressure across the shock wave (p» — p;) can, in principle, be
expressed in terms of M) and c. The relation is implicit rather than
explicit, but it can be solved for M} as a function of (p, — p;) and c.
Find this expression.

The equation to be solved in the propagation of sound waves is the
same as that to be solved for shallow-liquid waves. This leads to an
analogy between sound waves in a gaseous medium and waves on the
surface of a liquid. Find the corresponding physical quantities in this
analogy, and find the value of y that makes the analogy complete.
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11.9 The equations governing a wave that is approximately one-dimen-
sional are as follows:

ou v _
ox  dy
Ou Ou Ou  10p

E‘f’ua“rva—y— pax
10p

p Oy

0

Look for a progressive-wave solution to these equations in which the
pressure p(x, ) is dependent on x and 7 only, and the velocity compo-
nents follow the same x and # dependence as indicated below:

9 Op
E‘i‘ C‘a =0
u(x,y,1) = U(p,y)
19)
oy ) = V(py) 5

In the above, the wave speed ¢(p) is considered to be a function of the
pressure p.Without linearizing, determine the equations to be satisfied
by the functions U(p,y) and V' (p,y).

Look for a similarity solution to the equations obtained above in
the following form:

Ulp.y) =p'?U"(»)
Vp,y)=p 'V (»)
c(p) =p'*C*

where C* is a constant. Find the equations to be satisfied by U*(p, y)
and V*(p,y).
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12

One-Dimensional Flows

This chapter deals with flow fields that are essentially one-dimensional and
that are compressible, either subsonic or supersonic. Most of the topics
considered involve sonic flow and so constitute a continuation of the topics
treated in the previous chapter.

The topic of weak shock waves or sonic waves is treated from a general
viewpoint by means of Riemann invariants. In this way the manner in which
acoustic waves react in various situations is established. Particular situa-
tions that are treated include the release of waves in a shock tube, the reflec-
tion of waves at a solid boundary, reflection and refraction of waves at the
interface of two gases, and waves generated by a moving piston. In order to
show the quantitative differences due to finite-strength waves, the unlinear-
ized shock-tube problem is also treated. Nonadiabatic flows are also treated
through the technique of influence coefficients. This allows not only heat
addition but also friction and area changes to be handled. Finally, the flow
through convergent-divergent nozzles is treated.

12.1 WEAK WAVES

The topic of weak shock waves or acoustic waves will be further investigated
in this section. The Riemann invariants for the governing equations will be

430
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established, which permits the treatment of general problems involving
weak waves.

It was shown in Chap. 11 that weak waves are isentropic, so that p may
be considered to be a function of p only. Thus
o _dpdp _ 20

8x_dp8x_a 0x

The continuity and momentum equations for a plane wave may therefore be
written in the following form:

oy Ou op
E-kpa—kua—o
Ou Ou  ,0p
Por T Mox T T ox

For a fluid that is originally at rest before the wave passes through it, the
density, pressure, and velocity may be written as their quiescent values plus a
perturbation. That is,

p=po+p
p=po+p
u=0+1d

where, for a weak wave, p'/py < 1,p//py < 1,and o/ /ay < 1,where aq is the
speed of sound in the undisturbed gas. Thus the linearized form of these
equations, which will describe weak waves, is

op’ o'

o0 TPy =0

ow  ,0p

- 0
Pogr T % ax

Since p, is a constant, it may be added to p’ when it appears inside
a derivative. Thus the equations above may be rewritten in the follow-
ing form:

0 , 0 N
a(po+p)+poa(0+u)—0

8 / 2a N
Poa(‘“‘”)*‘%a(ﬂo*‘ﬂ)—o
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Using, again, the expansions for p and u shows that
dp Ou

ou  ,0p
pog‘i‘(loa—o

The quantities inside the differential operators will now be non-
dimensionalized by dividing the first equation by p, and the second equation

by pyao. This gives
o (p 0 (u
— | — | — = 0
ot <p0> o Ox (ao)

ot \ ay Oax Po o

Finally, the desired form of the governing equations for weak waves is
obtained by first adding, then subtracting, these two equations.

Of(u P\, 9 (r r)_
Ot \ay py *ox \ao po)

0 (u 0 (u
D(u_p\_ 9 (n_r\_,
Ot \ay py Ox\ayp p
Both these equations are of the form of a material derivative of some
quantity being zero. The material derivative is one in which the convection

velocity is the speed of sound, and in the first equation the convection is in the
positive x direction. Then, integrating these two equations gives

u
2+ P _ constant along x — apt = constant (12.1a)
ao Py
% _ P _ constant along x + apt = constant (12.1b)
ao Py

The lines x — agt and x + ayt are called the characteristics, and the quantities
u/ap+ p/py and u/ay — p/p,, which are constant along the characteristic
lines, are called Riemann invariants. Figure 12.1a shows the characteristics
that pass through a typical x location and the Riemann invariants for these
characteristics. It will be noted that one of the characteristics is forward-
running and the other is backward-running.

The Riemann invariants may be expressed in terms of the pressure
and the velocity rather than the density and the velocity. Depending on
the problem being considered, this alternative formulation may be desirable.
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FIGURE 12.1 (a) Characteristics and Riemann invariants in the x¢ plane, and

(b) basis of evaluating the field variables at an arbitrary point P.

To obtain the alternative formulation, the density ratio is replaced by the
pressure ratio through use of the isentropic gas law as follows:

P _Po
P’ Py

r_ (ﬁ) ””
po Po
AN
(2
Po
Since p'/py < 1,this expression may be linearized to give

!
£:1+V£
Do Po
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In order to eliminate the density ratio from the Riemann invariants, this
expression must be rearranged to yield the density ratio in the form p/p,.
This may be done as follows:

()

Po V7 \Po

but

hence

1
LA i—l)
Po 7\ po

1 -1
_lp -1

Y Po Y
That is, the density ratio p/p, may be replaced by the pressure ratio as indi-
cated so that, from Egs. (12.14) and (12.15), the Riemann invariants may be
written in the form

1
2422 _ constant along x — apt = constant (12.1¢)
a0 YPo
u p
— — —— = constantalong x + aot = constant (12.1d)
@ 7V Po

Figure 12.1a shows the two characteristics that pass through a typical point
(x, 0) in the xt plane and the alternative Riemann invariants along these
characteritics.

Equations (12.1) may be used to evaluate the velocity, the density, and
the pressure at any value of x and any value of 7 if the values of u, p, and p
are known as functions of x at some time such as r = (0. The manner in
which this is done may be explained with reference to Fig. 12.1b. A typical
point P(x,t) is shown in the xt plane together with the two characteristics
that originate along the r = 0 axis and that pass through the point P.
Associated with these two characteristics are Riemann invariants whose
constants may be evaluated from the known conditions at # = 0. Then at
the point P the Riemann invariants for # and p provide two algebraic
equations for the two unknowns. Alternatively, the Riemann invariants for
u and p provide two algebraic equations for these two unknowns. The fol-
lowing sections will utilize this approach to obtain solutions for particular
flow situations.
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12.2 WEAKSHOCK TUBES

The first application of the foregoing theory will be made to a shock tube in
which a weak wave is released. A shock tube is a relatively long tube fitted
with a diaphragm, as shown in Fig. 12.2a. The gas on one side of the dia-
phragm is maintained at a pressure different from that on the other side. In
general, the gases on either side of the diaphragm may be different and so
may have different properties and states. In this instance, the gases will be
considered to be the same, and only the states are assumed to differ. The
initial pressure distribution, which is taken to be an equilibrium state, is
shown in Fig. 12.2b. The diaphragm may be designed to burst at some pre-
determined value of the pressure p;. A pressure wave is thus released from
the vicinity of the diaphragm as the two regions tend to equalize their pres-
sures. The problem is to determine the pressure and the velocity in the gas at
any location and at any time.

1
diaphragm cxpansion COMPCSSion
Wiy Wy
(3) revn - (3)
cc‘\‘:i"‘“"t%( @
= m/‘,\\:
u=(0}, PR w il opop, @ \.,l\/\ Z \\SQ{”\;?
= pp n=0, p=p, R
(a) (c)
f P
il £ d) P r=
SRR,
Fa Py
X v
(b) (d

FIGURE 12.2 (a) Shock tube, (b) initial pressure distribution, (c) x¢ diagram, and
(d) typical pressure distribution for ¢ < 0.
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The xt diagram for the shock tube is shown in Fig. 12.2c. The time
at which the diaphragm bursts is taken to be # = 0 for convenience, and the
location of the diaphragm is chosen to be x = 0. Then a compression wave
will emanate from the origin and will travel into the lower-pressure region
while an expansion wave will emanate from the origin and travel into the
region of higher pressure as indicated. Since weak waves are being con-
sidered, the two waves mentioned will travel at the speed of sound ay. Then
the slopes of the waves in the xz plane are ay and —a, for the compression
wave and the expansion wave, respectively. The x¢ diagram in Fig. 12.2¢ is
divided into three regions that are defined by the waves emanating from the
origin of the diagram. Region 1 is that portion of the positive x axis that has
not yet been affected by the oncoming compression wave. In this region the
velocity is zero and the pressure is py. Region 2 is defined as that portion of
the negative x axis that has not been influenced by the expansion wave. Here,
u = 0 and p = p;.The third region, denoted region 3, is that part of the x axis
that has been influenced by the compression wave and the expansion wave.
Since the pressure and the velocity must be continuous across x = 0, both the
positive and the negative portions of the x axis in region 3 will experience the
same pressure and velocity.

In order to determine the pressure and the velocity in region 3, an
arbitrary point P is considered, as shown in Fig. 12.2c. The two character-
istics that originate on the x axis at # = 0 and pass through the point P are
indicated and are denoted by ¢ = constant and n = constant. The values of
the Riemann invariants along these characteristics may be determined from
the known distributions along the x axis at # = 0. Thus, along the character-
istic £ = constant, Eq. (12.1¢) shows that

v 1p_1pm
YPo Y DPo

ap
Here, the fact that u = 0 and p = p; at r = 0 for x < 0 has been used. From
n = constant.

Y Po Y
The fact that u = 0 and p = p, at t = 0 along the positive x axis has been

used here. The solution to these two algebraic equations shows that the
velocity and the pressure behind the compression and expansion waves are

u1<m_Q
a2y \ po

— (12.2a)
ﬁzl(ﬂ+Q
Po 2\ po

(12.2b)
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Equation (12.24) shows that for p;/py > 1, u/ay > 0, so that the fluid
moves along the positive x axis. This agrees with our previous finding that the
fluid particles tend to follow compression waves and move away from
expansion waves. Equation (12.25) shows that the pressure in region 3 is the
arithmetic mean of the pressures in regions 1 and 3. The pressure distribution
along the tube is shown for some time 7 > 0 in Fig. 12.2d. This figure illus-
trates that a compression wave of amplitude (p; — py)/2 moves along the
positive x axis with speed ay while an expansion wave of the same amplitude
moves along the negative x axis at the same speed. The expansion waves may
be considered to be a discontinuity, since only weak waves are being con-
sidered. The analogous problem for finite-strength waves will be considered
in a later section.

12.3 WALL REFLECTION OF WAVES

The behavior of a weak pressure wave when it strikes a solid boundary will be
established in this section. This will be done by considering a shock tube that
has a closed end so that the wave which travels along the tube will impinge
upon it. In this way it will be shown that a compression wave is reflected by a
wall as a compression wave of the same strength, and an expansion wave is
likewise reflected as an identical expansion wave.

Figure 12.3a shows a shock tube similar to that which was considered
in the previous section except that the tube is closed at one end. The xt dia-
gram for the gas conditions that result from bursting the diaphragm at time
t = 0 is shown in Fig. 12.3b. As in the previous section, the outgoing waves
divide this diagram into distinct regions numbered 1, 2, and 3. Upon striking
the closed end of the shock tube, the wave that was traveling in the positive x
direction will be reflected as a wave of some form. It is known that this
reflected wave will travel at the speed of sound a4y, but it is not known a priori
whether it will be an expansion wave or a compression wave and what the
strength of this wave will be in relation to that of the incident wave. Thus the
properties of the gas in region 4, which is that region that has been
influenced by both the incident and the reflected waves, is not known.

Region 1 of Fig. 12.3b has not yet been influenced by the outgoing wave
from the origin and so maintains its initial conditions of u = 0, p = p,. Like-
wise, region 2 maintains its undisturbed condition of u = 0, p = p;. Region 3
has been influenced by the outgoing waves, and so the velocity and the pres-
sure there will be given by Eqs. (12.2a) and (12.25). In order to determine the
state of the gas in region 4, an arbitrary point P(x, ¢) and its two character-
istics are indicated in Fig. 12.3b. The ¢ = constant characteristic comes from
region 3, where the velocity and the pressure are known. Hence this char-
acteristic may be terminated at any point in region 3 where the value of the
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FIGURE12.3 (a) Shock tube, (b) xt diagram; pressure distribution at (c) some time
and (d) a later time.

Riemann invariant may be established. The n = constant characteristic runs
parallel to the line of the reflected wave and eventually reaches the x location
of'the closed tube end. Since the pressure here is unknown, the £; = constant
characteristic from this point is drawn into region 3, where the velocity and
the pressure are known. This permits the Riemann invariant to be estab-
lished for the n = constant characteristics.

Denoting the pressure at the wall or closed end in region 4 by p,, the
Riemann invariant along the 7 = constant characteristic gives

u_lp_ 1py

a  Ypo 7 Po

Here the fact that # = 0 and p = p,, on the wall has been used. To evaluate p,,,
the Riemann invariant for the £, = constant characteristic will be used. This

gives
1 1p, 1 1
l+_£:_l’_:_<&_l)+_<i_l+1>
a  ypo Ypo 2y \ po 2y \po
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where the values of the velocity and the pressure in region 3, as given by
Eqgs. (12.2a) and (12.25), and at the wall in region 4 have been used. The last
equality is satisfied by

Pw = D1

Then the equation along the # = constant characteristic becomes

u_lp_ 1p

a  YPo 7 Po

A second equation is obtained from the ¢ = constant characteristic.

a 7Py 7P
Here the constant for the Riemann invariant has been evaluated in region 3
by again using Eqs. (12.2a) and (12.25). The solution to the last two algebraic
equations is

u lp_1nm

u=20 (12.3a)

p=n (12.3b)

Equation (12.3a) shows that the velocity of the gas in region 4 is zero.
This result is due to the fact that region 4 includes the closed end of the tube
and the boundary condition there requires zero velocity. Equation (12.354)
shows that the pressure in region 4 equals the pressure in region 2. This
means that the pressure at any value of x > 0 varies as follows: Initially, the
pressure is py, and as the first wave passes toward the closed end, the pressure
jumps to (p; + po)/2. Finally, as the reflected wave passes, the pressure
jumpts to p; as shown in Figs. 12.3a and 12.3b. That is, the pressure differ-
ential across the incident wave is ( p; — pg)/2, which is also the pressure dif-
ferential across the reflected wave. Since this result is valid for either p; > py
or p; < py, it follows that compression waves are reflected as compression
waves of the same strength by solid boundaries and expansion waves are
reflected as expansion waves of the same strength.

12.4 REFLECTION AND REFRACTION
AT AN INTERFACE

When a wave encounters an interface between two different gases, part of the
wave is transmitted through the interface and part of it is reflected by the
interface. This conclusion may be reached by considering a shock tube in
which an interface between two different gases exists part way down the
tube. Such a configuration is shown in Fig. 12.4a. Initially, the velocity is zero
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Shock tube with gas interface and xt diagram subsequent to bursting

everywhere while the pressure is p; for x < 0 and p, for x > 0. Partway down
the positive x axis the physical properties of the gas are assumed to change
abruptly because there are two different gases in the tube, or the same gas
may have two regions that are at different temperatures. In either case, the
speed of sound is taken to be ay; to the left of the interface and ay; to the right
ofthe interface. Likewise, the specific-heat ratio is denoted by v, to the left of
the interface and y, to the right.

The xt diagram describing the sequence of events that results from
bursting the diaphragm at time # = 0 is shown in Fig. 12.4b. It is assumed that
the wave that emerges from the burst diaphragm and that travels in the
positive x direction toward the gaseous interface is partially transmitted and
partially reflected at the interface. That is, in general it is assumed that part of
the incident wave passes through the gaseous interface and is refracted while
the other part of the wave is reflected by the interface. Thus Fig. 12.4b is
divided into four distinct regions as indicated. Region 1 represents the initial

270 Madison Avenue, New York, New York 10016
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state of the gas located to the right of the diaphragm, and although the phy-
sical properties of the gas will be discontinuous at the gaseous interface, the
velocity will be everywhere zero and the pressure will be everywhere py in
this region. In region 2 the velocity will be zero and the pressure will be p;. In
the regions marked 3, the gas will be influenced by passage of the waves that
result from bursting the diaphragm, and the velocity and pressure there will
be given by Egs. (12.2a) and (12.25).

In order to determine the velocity and the pressure in the regions
marked 4, an arbitrary point P(x, ) that lies on the interface between the two
gases is considered. From this point the £ = constant and n = constant
characteristics are drawn, and by virtue of the fact that the point Plies on the
interface, each of these characteristics lies entirely in the domain of one gas
only. The ¢ = constant characteristic may be terminated anywhere in region
3 where the velocity and pressure are known, while the 7 = constant char-
acteristic may be terminated anywhere in region 1. Since the velocity and the
pressure must be continuous across the interface at all times, the two regions
labeled 4 must have the same velocity and pressure. Since it is realized that, in
general, the interface may move after being struck by the incident wave, the
line that represents the interface in the regions 4 does not necessarily corre-
spond to x = constant.

Using the Riemann invariant along the & = constant characteri-
stic shows that the velocity and the pressure in region 4 must satisfy the

condition
u 1 1 1
—+—£:—<’1—1>+—(§+1>
an  y1po 291 \ po 271 \po

_1m
Y1 .Po

where the known conditions for region 3 have been employed from
Eqgs. (12.2a) and (12.25). Along the 1 = constant characteristic we get

u ILp 1

ap2 “/zPo_ V2

where the undisturbed conditions for region 1 have been used. The solution
to these two equations is

Mo _p/p -1 (12.4a)
ap1 Y1+ yaa01/a02

P p/po+ (01/72)(@02/a0)
po 1+ (/1) (a02/an) (12.4b)
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Equation (12.4a) shows that for p; /py > 1 the velocity u in region 4 will
be positive, so that the interface will move to the right in the positive x
direction. As in the previous section, this confirms the result that the flow
tends to follow compression waves, since for p;/py > 1 not only will the
incident wave be a compression wave but so will the reflected wave. It was
shown in the previous section that, for a solid interface, the reflected wave
was of the same strength as the incident wave. In the present case it may be
anticipated that the gaseous interface is not as efficient in reflecting waves as
the solid interface. The actual strength of the reflected wave may be calcu-
lated from the solution given by Eq. (12.45). If the pressure differential across
the reflected wave is denoted by Ap,, it follows that

Ap, 1
P = £ —_ — (p_l + 1)
P P02\ po
where the solution for the pressure in region 3 has been used. Then, using the

pressure given by Eq. (12.4b) for the value in region 4, the pressure differ-
ential across the reflected wave becomes

Apr 1= (71/72)(@02/a01)](p1/po — 1) (12.5a)

2 2[1 + (y1/72)(a02/ao1)]

If the speed of sound ay, becomes very small compared with ay;, which cor-
responds to a high-density gas beyond the interface, this result reduces to Eq.
(12.3b) for a solid boundary. That is, as the density difference at the interface
increases, the foregoing result reduces to that for an impermeable boundary
corresponding to perfect reflection.

If the pressure differential across the transmitted or refracted wave is
denoted by Ap,, it follows that

Ap, 4

Po Do
where the fact that p = py in region 1 has been used. Then, from Eq. (12.45),

Ap. — (p1/po—1)
P L+ (/7)) (a02/an) (12.36)

Equations (12.54) and (12.55) show that the strength of the reflected wave and
that of the refracted wave depend on the nature of the interface between the
two gases. For y, =y, = yand ag; = ag; = ay. Eqs. (12.54) and (12.55) show
that there is no reflected wave and that the transmitted wave is identical to
the incident wave. For agz/a¢; — 0 the reflection becomes total, as was dis-
cussed earlier. Intermediate to these two limiting cases both a reflected wave
and a transmitted wave will exist.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



One-Dimensional Flows 443

12.5 PISTON PROBLEM

The so-called piston problem is a classical one and may be stated as
follows: Figure 12.5a shows a cylinder or a tube inside which a piston
slides. Initially the piston and the gas ahead of it are stationary, when the
piston is suddenly jerked into motion at some constant velocity. The problem
is to find the velocity and the pressure ahead of the piston after the motion
has started.

The xt diagram for such a situation is shown in Fig. 12.5b. One of
the two lines on this diagram corresponds to a wave front that is genera-
ted by the impulsive acceleration of the piston and that travels down the
cylinder ahead of the piston with velocity ag. The second line represents
the instantaneous location of the piston, which is moving with constant
velocity Ufor ¢ > 0. Since, according to our linear theory, U/ay < 1 so that
the piston will always be close to x = 0, compared with the location of the
wave front, the boundary condition that # = U on the piston face may be
imposed on x = 0 rather than x = Ut. This yields the modified x¢ diagram
shown in Fig. 12.5c.

The xt diagram shown in Fig. 12.5c is divided into two distinct regions
by the wave that leaves the piston face. Region 1 contains the undisturbed

piston

—r

(a)
f piston position !
-
i
o
<«
=00 LA
x Y
(b} {(c)

FIGURE 12.5 (a) Piston and cylinder, (b) actual xt diagram, and (c) linearized xt
diagram.
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gas, which is stationary and whose pressure is pg. In order to determine the
velocity and pressure in region 2, a typical point P(x,#) is considered.
The 1 =constant characteristic from this point enters region 1, where
the values of u and p are known. The £=constant characteristic runs
parallel to the wave front and eventually encounters the position of the
piston face at x = 0. Although the velocity there is known, the pressure
is not; hence the 1; =constant characteristic is drawn from the point
where the & =constant characteristic terminates. These three character-
istics permit the values of the velocity and the pressure at the point P to
be evaluated.

Denoting the value of the pressure at the piston face by p,, the Riemann
invariant along ¢ = constant gives
u lp U 1p

a  Ypo a  Ypo

The pressure at the piston may be evaluated from the Riemann invariant for
the #; =constant characteristic, which is evaluated first on the piston face,
then in region 1. The resulting equation is

u lp U 1p, 1
ap YpPo ao 7Ypo 7V

Using the last equality to evaluate p,, the equation for the £ = constant char-

acteristic becomes

u 1
+-L2_

Uu 1
2—+-—
ap Y po a 7

Another equation connecting # and p may be obtained from the Riemann
invariant for the 7 = constant characteristic, which yields

The solution to the last two equations is

u=U (12.6a)
I%ZV%H (12.6b)

Equation (12.6a) shows that the gas velocity in region 2 is everywhere
the same as that of the piston. Equation (12.6b) shows that the pressure ahead
of the piston but behind the outgoing wave is greater than the initial value by
an amount that is proportional to the piston speed U.
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12.6 FINITE-STRENGTH SHOCK TUBES

In the previous four sections some properties of internal waves have been
exposed through reference to weak shock tubes. In reality finite-strength
waves exist and their properties may be established through reference to
finite-strength shock tubes. Although the qualitative behavior of strong
waves is the same as that for weak waves, the quantitative results are differ-
ent. The nature of these differences will be established in this section by
carrying out an analysis for the problem that is analogous to that treated in
Sec. 12.2 for a weak shock tube.

Figure 12.6a shows a shock tube in which the initial velocity is every-
where zero and in which the initial pressure distribution is p; to the right of
the diaphragm and p4 to the left of the diaphragm. The initial pressure dis-
tributionisshownin Fig.12.6b,and itis assumed that the pressure differential
P4 — p1 is substantial so that a linear theory is no longer valid. Because of the
substantial pressure differential and/or the fact that the gases may differ, the
specific-heat ratio and the speed of sound will be different on either side of
the diaphragm and are denoted by y,, a; and y,4, a4, as indicated in Fig. 12.6a.

. intertace
diaphragm & /_
S :
& o=
|
OO
o
u=0, pp, \ w0 pp, | comv‘yic
@ o ( )

V=1, ady =Y gy

(a) (c}
P I
B I p‘x P20
2, P
() ' (d) |

FIGURE 12.6 (a) Shock tube configuration, (b) initial pressure distribution, (c) xt
diagram, and (d) typical pressure distribution for z > 0.
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The form of the pressure distribution for some # > 0, corresponding to
the diaphragm bursting at # = 0, is shown in Fig. 12.6c. A compression wave
of finite strength will travel down the tube in the positive x direction. It is
known from Sec. 11.2 that this wave will steepen as it travels and will develop
into a shock wave, as shown in Fig. 12.6¢c. An expansion wave will travel in the
negative x direction, and it is known that such waves tend to smooth out as
they propagate. The xt diagram for this situation is shown in Fig. 12.6d. The
shock wave may be represented by a single-line discontinuity, but the
expansion wave will extend over a substantial portion of the x axis and is thus
represented by an expansion fan. This consists of a series of lines that ema-
nate from the origin of the x7 diagram and may be thought of as a very large
number of weak waves.

The location of the interface between the two bodies of gas is also
shown in Fig. 12.6d so that the possibility of two different gases may be cov-
ered. Thus the xt diagram is seen to be divided into four distinct regions.
Region 2 consists of gas 2 and represents those locations that have been
affected by the passage of the compression wave. Region 3 consists of gas 4 in
those locations that have been affected by the expansion wave. The principal
quantities of interest are the strength of the shock wave that results from
bursting the diaphragm, for given values of p4 and p;, and the speed with
which the shock wave moves along the tube.

The boundary conditions at the interface between regions 3 and 2 are
u3 = uy and p3 = p,. These conditions guarantee continuity of the velocity
and the pressure, and they may be used to determine the strength of the shock
wave as follows. By employing a galilean transformation to a stationary nor-
mal shock wave, the results obtained in Chap. 11 may be used to obtain an
expression for u; in terms of p,/p;. By an analogous procedure, the velocity
u3 may be expressed in terms of the pressure ratio across the expansion wave
p4/p3. The matching conditions at the interface will then give an equation
that relates the pressure ratio p, /p; across the shock wave to the initial pres-
sure ratio p4/p; across the diaphragm.

Considering first the compression wave, let u, and u,, be the gas velo-
cities u, and uq, respectively, expressed in a frame of reference in which the
shock wave is stationary. Then, in order that #; may be zero here, a galilean
transformation of magnitude u,, must be made on the velocities. The rela-
tionships between the normal shock velocities u,, and u;,, which refer to
Fig. 11.3a, and the present velocities #; and u,, which refer to Fig. 12.6d, are

uy =y, — Uz =0

- o Uy
Uy = Uy — Uy = Uy 1 ——
Uin
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This now represents a shock wave that is moving with velocity u,, through a
stationary gas in which the velocity of the gas behind the shock wave is u,. But
uz,/u1, may be evaluated from the Rankine-Hugoniot relation [Eq. (11.4)],
which gives

uz—uln{l— nm+10/0n— 1) +p1/p2 }

L+ + 1)/ = D(p1/p2)

where p; and p; now refer to Fig. 12.6d. But u;, = a; M,,, where M, is the
Mach number of the flow approaching a stationary shock wave. From

Eq. (11.8¢)
] 1
an=/1+ (ﬂ—1>+1
2y p2

where, again, the pressures now refer to Fig. 12.6¢c. The expression for the
velocity in region 2 then becomes

_ o ntl/ipm 12 D/ =) + /P
”””‘[zh (Pz 1) “} {1 1+<m+1>/<v1—1><pl/pz>}

This result may be simplified to give

Y 2(pi/p2— 1)’ .
Tl =D+ (0 + Dipi /)]

Consider next, the expansion wave. It was established in Chap. 11
that expansion waves, contrary to compression waves, tend to smooth out
and spread themselves over substantial distances. Thus the expansion from
P4 to p; takes place in a continuous manner that may be thought of as con-
sisting of a very large number of weak expansion waves, each of which is
isentropic. Thus, from Eq. (11.24), it follows that at any point in the expan-
sion wave

du  dp

a p
where the minus sign denotes that the wave is traveling in the negative x
direction. But

P Vapap™
a = V4 =—

PP ory

74—1
(2
P4
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where the isentropic law has been used to relate p to p. Thus the expression
for dubecomes

du = _7‘14 p(?’4*3)/2 dp
(r4=1)/2
Py
Integrating this expression and noting that = 0 when p = p, yields the

following expression for the local value of the velocity u in the expansion

wave:
) (74=1)/2
74— 1| \ps

Thelocal density p may be replaced by the local pressure p through use of the
isentropic law. This gives

2 (74a=1)/274
74— 1 P4

In particular, at the trailing edge of the expansion wave p = p3 and u = u3,

so that
2ay (p3) (ra—1)/24
uz = 1 — —
74— 1 D4

The expressions obtained above for u,, from the compression wave, and
u3, from the expansion wave, will now be used in conjunction with the inter-
face matching conditions. Thus setting #3 = u; and at the same time replac-
ing p3 by p» yields the following identity:

2a, . <p_2> (ra=1)/274 . 2p1/ps — 1) 1/2
7a — 1 s Nl =D+ (0 + 1)(p1/p2)]

Although this equation cannot be solved to yield an explicit expression for
the shock-wave pressure ratio p,/p; in terms of the initial diaphragm pres-
sure ratio ps/p;, the converse is not true. Thus, solving this equation for p4
gives

—274/(r4=1)
@@{l<w—nwmmMmrw>} o (127a)
PP V20l =1 + (1 + 1)(p1/p2)]

If p1/p> is replaced by 1 — ¢, Eq. (12.7a) shows that ps/p; = 1 + 2¢ to the

first order in ¢. That is, for weak waves the result obtained in Sec. 12.2 is
recovered.
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It was shown earlier in this section that the results for normal shock
waves could be related to those of a shock wave moving with velocity u,, into
a stationary gas in which the gas velocity behind the shock wave is u, — uz;,.
Thus, if M, denotes the Mach number with which the shock wave propagates
through fluid 1, it follows that

Mv = Mln
Then, from Eq. (11.8a),

:$Hm—wmmp2
T\, = (- D)2

But, from Eq. (11.8¢),
7+ 1 (Pl )
M =1+ (2
" 2y \ P

where p; and p, refer to the problem at hand. Thus the expression for the
Mach number of the compression wave becomes

M:F+m—nm+m—nm+nmmmm—np2
* A+ +0/2)(p1/p2 = 1) = (1 = 1)/2

This result may be simplified to yield the following equation:

[ =D+ Oy + D(p2/p0)]
M, = [ 2 ] (12.7b)

As p>/p1 approaches unity, M, also approaches unity. That is, for weak shock
waves the front travels at the speed of sound, which confirms the results of
Chap. 11. Equation (12.75) also shows that the Mach number of the shock
wave can be considerably greater than unity for strong shock waves.

12.7 NONADIABATIC FLOWS

The physical situations to be treated here differ from those of the previous
sections in several ways. As the heading suggests, the most significant
difference is that flows in which heat is being added to the gas, or removed
from it, will be covered. In addition, external body forces such as fric-
tional forces may be included. Another difference from previous treat-
ments is that variations in the flow area may be included, provided that
the flow may be considered to be essentially one-dimensional. In the pre-
vious sections of this chapter the flow configurations have been exactly
one-dimensional. Here, converging and diverging boundaries will be
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permitted, and the velocity that exists at any streamwise location will be
considered to be the average value at that location. Finally, the flow situa-
tions considered here differ from those of the previous sections in the
sense that the flow varies continuously rather than abruptly through
either Mach waves or shock waves. That is, the heat addition, external
forces, and area changes will be assumed to be such that they vary the
flow properties continuously rather than abruptly, so that the use of deri-
vatives will be valid.

Figure 12.7a shows a typical flow configuration of the type to be con-
sidered here. At the location defined by x the flow areais 4 and at the location
X + dx the flow area is 4 4+ dA. The element of length dx is subjected to an
external force 0f (x), and an amount of heat dg(x) is added to it.

The equations of motion for the gas may be readily derived in differ-
ential form as follows: The continuity equation requires that pu4 = constant
where p and u are, respectively, the average density and velocity of the gas at
the location x. Then

d(pud) =0
so that performing the indicated differentiation and dividing by puA gives
dp du dA
dp  du_

- 12.8
> Y (12.8a)
Sglx)
_ Ml i M
3fix) — | i
k) v
{a) (b

FIGURE 12.7 (a) Element of one-dimensional flow field, and (b) flow through a
typical nozzle.
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Equation (12.8a) supplies one equation connecting three of the variables.
The momentum balance for the element shown in Fig. 12.7a is

pudu = —dp + of
Dividing this equation by p and using the fact that a®> = yp/p reduces it to the
form
du dp ¢
g2 dp _of
u p p

where the local Mach number M = u/a has been introduced. The thermal-
energy balance for the case of a perfect gas may be written in the form

C, dT + udu = oq

(12.8b)

where T'is the local temperature of the gas. Dividing this equation by C,T
gives
dl n udu  oq
T CT CT

But T'may be replaced by p/pR for a perfect gas and RC, = (y — 1)/, so the
energy equation may be written in the form
dr du 0q
—+ (- 1)M === 12.8
7o G- = Gt (12:8¢)
Here, again, the expression for the speed of sound and the definition of
the Mach number have been employed. Finally, the equation of state for an

ideal gas gives

P
— =R 12.
oT (12.8d)
hence
dp dp dT _
p p T

Equations (12.8a), (12.8b), (12.8¢), and (12.8d ) represent four algebraic
equations for the differentials du, dp, dp,and dT in terms of the local values
of the variables u, p,p, T, M, f, q, and 4. Then these equations may be solved
to yield expressions for each of the differentials separately. To obtain the
expression for du, for example, use Eq. (12.84) and eliminate dp/p by using
Eq. (12.8b) and dT'/ T by using Eq. (12.8¢). This gives

du of dp ,du dq
— M —+ > | —— —)M*=— | =0
(f u+p) p+{(y M 6T
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Adding Eq. (12.84) to this result to eliminate dp/p results in the following

expression:
du 1 d4 of oq
— = — - 12.

u M21<A+p c,,T> (12.94)

Equation (12.94) gives the change in speed du that is associated with
a change in area dA, application of an external force Jf, and the addition
of an amount of heat dq. The coefficients of the quantities d4/A4,df /p,
and 0q/C,T are called influence coefficients, since they represent the influ-
ence of some external process, such as heat addition, on some flow vari-
able, such as the gas velocity. Thus with respect to the normalized velocity
du/u, the influence coefficient for d4/4 and that for 6f /p is 1/(M? — 1),
while the influence coefficient for 5q/C,T is —1/(M?* —1). As a special
case, consider adiabatic flow without external forces. Then Eq. (12.94q)
becomes

du 1 dA

u M?2—-14
This equation expresses the familiar result that in order to accelerate
(du > 0) subsonic (M < 1) flow, the flow area should be decreased (d4 < 0).
On the other hand, for supersonic flow the area should be increased to
accelerate the flow. This leads to nozzle shapes of the form shown in Fig. 12.7b
where the throat, which corresponds to d4 = 0, has sonic conditions.

An expression similar to Eq. (12.94) may be obtained for dp/p by using

Eq. (12.8a) and by eliminating du/u from it through use of Eq. (12.94). This
gives

dp yM? dA71+(“/*1)M25f yM?  oq
p M*—-14 M2-1 p M?*-1C,T

(12.95)

For adiabatic flow without external forces, Eq. (12.95) becomes

do_ o da
p M2-14

This result shows that in order to expand a gas in a nozzle continuously, the
flow area should decrease when the flow in subsonic and increase when the
flow is supersonic. This agrees with our conclusion regarding accelerating
gases in nozzles. For flow in a constant-area channel in which there are no
external forces acting on the gas, Eq. (12.95) becomes

dp yM?*  Sq

p M?*-1C,T
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This equation shows that in order to expand a gas in a pipe by thermal means,
heat should be added if the flow is subsonic, whereas heat should be removed
if the flow is supersonic.
The variation of the temperature may be obtained by using Eq. (12.84)
to eliminate du/u from Eq. (12.8¢). This gives
dT (y—1)M>dA  (y — 1)M*Sf yM?* —1 Sq

_ 12.
T M1 A4 M1 p M _1GT (12.9¢)

For adiabatic flow without external forces Eq. (12.9¢) reduces to

dTr (y — 1)M?dA
T  M*-1 4
Hence, for y > 1, the temperature will drop in a converging-flow area if the
flow is subsonic or in a diverging-flow area if the flow is supersonic. For flow
in a constant-area channel in which there are no external forces, Eq. (12.9¢)
becomes

dl_yMz—l oq
T M*-1C,T

The influence coefficient here changes sign at M =1/,/y and at M = 1.
Then, fory > 1,the effect of heat addition will be to increase the temperature
for M < 1/,/7and for M > 1, but the temperature will decrease in the range
1/\/7y < M < 1. For adiabatic flow in a constant-area duct, Eq. (12.9¢)
becomes

dT (y — 1)M>? 5f

T  M>—-1 p

Hence for y > 1 the effect of an external force such as wall friction is to
increase the temperature of subsonic flow and to decrease the temperature of
supersonic flow.

Two well-known results that may be established in this way are the
Fanno line and the Rayleigh line. In each case, the variation of temperature or
enthalpy is considered as a function of the entropy. The resulting curve for
the case of adiabatic flow in a constant-area duct is called a Fanno line, while
the curve for the case of a constant-area duct without external forces is called
a Rayleigh line. That is, the Fanno line shows the effect of friction in a con-
stant-area duct, while the Rayleigh line shows the effect of heat addition. One
of the most practical and significant results that may be deduced from these
diagrams, or from the equations established above, is that choking takes
place at M = 1. Thus, adding heat to a constant-area flow will accelerate it
until M = 1, and no more heat can be added beyond this point. For long
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pipelines the effect of friction is similar, so that a point may be reached
beyond which no more gas can be pumped through the pipe without remov-
ing some heat.

12.8 ISENTROPIC-FLOW RELATIONS

For isentropic flows, simple and useful relations exist between the local
value of some variable, such as the temperature or pressure, and the local
Mach number. These relations may be obtained from the thermal-energy
equation as follows.

For steady, isentropic flow the thermal-energy equation (IV.3b)
becomes

pu-V)h=(u-V)p

But, forming the scalar product of u and the Euler equation [Eq. (IV.2)]
shows that

(u-V)p=—u- [p(u-V)ul
=—p(u-V)(ju - u)
Hence, the energy equation may be written in the form
pu-V)(h+tu-u)=0

This means that the quantity 4 + u - u/2 is constant along each streamline, so
that

h—‘r%ll'll:h()

along each streamline. The quantity 4 is called the stagnation enthalpy, and it
corresponds to the enthalpy the fluid would have at zero velocity. Of course,
it may be known that in some part of the flow field the stagnation enthalpy is
constant, which is usually the case, so that 4y will become the constant for
every streamline.

The foregoing result for the enthalpy may be recast in terms of the
temperature, the pressure, or the density. For a perfect gas whose physical
properties are constant, h = C,T, so that

1,
CT + U= G Ty
Here, the fact that we are dealing with one-dimensional flows only has been
used, so that u - u = #?. The quantity T, that has been introduced here is the
stagnation temperature and corresponds to the temperature the fluid would
have if it were brought to rest. Solving this equation for the temperature ratio
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shows that

T() u2
— =1
T~ a1

The quantity #>/ T may be rewritten as yRu?/(yRT) = yRM?, since yRT is
the square of the local value of the speed of sound. Then, since
R/C, = (y — 1)/y, the expression for the temperature may be written in the
following form:

T() y—l )
—=14+"—M 12.1
T + 5 ( 0a)

The following relations are known from thermodynamics to be valid for

isentropic flows:
E: <@>(71)/7: (@)vl
T b4 p

Using these identities and Eq. (12.10a) shows that the following relations
hold:

L1 \6-D
’% - <1 +/TM2) (12.105)

1/(r-1)
Po =15
— =11 M 12.10
p ( "2 ) ( )

Here, po and p, are, respectively, the stagnation pressure and the stagnation
density, and M is the local Mach number.

12.9 FLOW THROUGH NOZZLES

It was shown is Sec. 12.7 that ifa nozzle is required to expand a subsonic flow
to supersonic speeds, its shape should be of the form shown in Fig. 12.7b.
Such a flow configuration will be considered here in which the flow reaches
sonic conditions at the throat and is supersonic downstream of the throat.
Since the flow is adiabatic and frictional losses may be considered to be
negligible, the flow will be isentropic. This means that the results of the pre-
vious section may be employed.

The notation that was introduced in Sec. 11.4 to indicate sonic condi-
tions will again be used here. Thus the temperature, pressure, and density
corresponding to M =1 will be denoted by 7., p., and p,, respectively.
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Then, from Egs. (12.104), (12.105), and (12.10¢),

Ty y+1
2= /er (12.11a)
A 1 y/(r—-1)
?: (’; ) (12.11b)
. 1/(r=1)
% - (%) (12.11¢)

That is, the temperature, pressure, and density at the throat of the nozzle
may de determined if the stagnation values are known. The stagnation con-
ditions will be known directly if the flow originates in a large reservoir where
the fluid speed is zero and its other properties are known. If the fluid prop-
erties and speed are given at the inlet to the nozzle, then the stagnation
properties may be calculated from Egs. (12.10).

The variation of the Mach number of the flow with the flow area of
the nozzle may be established as follows. The continuity equation written
for an arbitrary section and for the throat of the nozzle gives pud = p u.A.;

hence
A  p,M.a,
A, p Ma

But M, = 1bydefinitionand a,/a = /T,/T,so that

T. Ty
ToT

A _p.py 1

A, pop M

Now p,/p, is given by Eq. (12.11¢), while p,/p is given in terms of the local
Mach number by Eq. (12.10¢). Likewise, 7. /Ty is given by Eq. (12.11a) and
To/T is given by Eq. (12.104). Thus the expression for the area ratio may be
written in the form

A 2 1/(y-1) v _1 1/(r—1) 1 ) 1/2
— = — 1+ 4 M? — | ——
A, y+1 2 M\y+1

o 1/2
X <1+/21M2>

This result may be simplified to yield the following expression for the ratio
of the local flow area, for which the Mach number is M, to the area of the

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



One-Dimensional Flows 457

nozzle throat:

A 1 2 y -1 , (r+1)/2(y-1)
—=—|—(1+—M 12.12
ol ()] 12120

Equation (12.12a) relates the local flow area to that of the throat, so it is
of interest to obtain an expression that relates the throat area 4, to the mass
flow rate through the nozzle. Denoting this quantity by s, it follows that

_ P«Po (
Po

Using Eq. (12.11¢) again together with the facts that M, =1 and
a = /yRT, = \/yRTy T,/ Ty, this equation becomes

2 \ VG- 2 \ 12
=) ()

y+1

M.a.)A.

where Eq. (12.11a) has been used for 7./ Ty. Using the ideal-gas law to write
po = Po/(RTp), the final form of the expression for the mass flow through the
nozzle becomes

q G0/ 1)
i — P04 ’( 2 > (12.12b)

_\/TO E 'V+1

As might be expected, the mass flow rate through the nozzle is proportional
to the throat area 4,.. Equation (12.12b) further shows that the mass flow rate
is proportional to the stagnation pressure of the gas and inversely propor-
tional to the stagnation temperature of the gas.

The foregoing expressions are sufficient to design convergent-
divergent nozzles. Typically, the conditions in the gas at the entrance to the
nozzle are given together with the mass flow rate (or inlet area) and the exit
pressure to which the gas must be expanded. From the inlet conditions the
stagnation propertiecs may be evaluated from Egs. (12.10). The required
throat area for the nozzle may then be calculated from Eq. (12.12b). Since the
stagnation properties of the gas are constant through the nozzle, Eq. (12.10b)
permits the exit Mach number to be determined. Equation (12.12a ) then
determines the exit flow area of the nozzle.

PROBLEMS

12.1 Consider a weak shock tube that has a finite length in the positive x
direction downstream of the diaphragm. The end of the shock tube
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12.2

12.3

Chapter 12

that is downstream of the diaphragm is open to the atmosphere. Draw
the xt diagram for the wave that will result from bursting the dia-
phragm. Ifthe pressure at the open end of the shock tube is maintained
at the value p,, obtain expressions for the velocity and the pressure
behind the wave that is reflected from the open end of the tube, back
toward the burst diaphragm.

Figure 12.8 shows a piston located at x=0 in a cylinder of length L.
Two different gases occupy the space between the piston and the
cylinder head, and these two gases meet at a free interface that is
located at x=oL. At the time =0 the piston is impulsively set into
motion with constant velocity U, which may be assumed to be small
compared with the acoustic velocities ay; and ag,. At the interface
between the two gases, part of the resulting wave is reflected and part
of it is refracted. If the reflected wave reaches the piston at time r=1
and the transmitted wave reaches the end of the cylinder at the same
instant, draw the x7 and use linear theory to find the following:

(a) The temperature ratio Ty, /Ty in terms of ..
(b) The velocity and the pressure for 0 < x < L and for 0 < ¢ < 7 in
terms of U, py, 7, ap1, and a.
(c¢) The ratio of the strength of the reflected wave to that of the trans-
mitted wave.
Show that, for a finite-strength shock tube, the Mach number of the
flow behind the shock wave is given by the following expression:

1 1 -1/2
= ({1 ()l
71\ P21 2y \m )4}

where the subscript 1 corresponds to the region ahead of the shock
wave, and the subscript 2 corresponds to the region immediately
behind the shock wave.

/— piston /— interface
/ w=0 p=p, / n=0 p=p,
Yo Ty Yo fu e

x=0 x=0L /,\' =1
closed end

FIGURE 12.8 Piston in a cylinder containing a gas consisting of two isothermal
regions.
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12.4 Heat is being added to a perfect gas that is flowing in a constant-area
channel. Neglecting all external forces, determine the influence coef-
ficient fin the equation:

Use the resulting equation together with the following equation:

dp yM?*  Sq

p M?*-1C,T

to establish a differential relation between p and M. Integrate this
relation to obtain an expression for the pressure ratio p, /p; in terms of
the Mach numbers M, and M| at any two locations.

12.5 Use the results of Prob. 12.4 and the isentropic flow relations to obtain
the temperature ratio 7>/ T} and the density ratio p,/p, in terms of the
Mach numbers M, and M;.

12.6 The entropy change between two flow conditions of a perfect gas may
be determined from the following relation:

o 2(2)]
1

where the subscript 1 denotes inlet conditions for the flow. Apply this
to the case of steady, adiabatic flow in a channel of constant cross-
sectional area to establish the equation of the Fanno line. To do this,
use the following forms of the continuity and energy equations, and the
equations of state:

puAd=m
2
u
h+—=h
+2 0
P =pRT
h=C,T

Here m is the mass flow rate of the gas and 4 is the stagnation
enthalpy. Hence show that the equation of the Fanno line is

prl' R 2A2 (r—1)/2
e (W)

From this last result show that the entropy reaches a maximum when

S —8

=log|h(hy — h)(yfwz} +log

14
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M =1.

12.7 To obtain the equation of the Rayleigh line, use the same equations
that were used in the previous problem except, since heat addition is
involved here, replace the energy equation with the following form of
the momentum equation:

pu* +p = po

Hence obtain the equation of the Rayleigh line. From the result, show
that the entropy recaches a maximum where M =1 and that the
enthalpy reaches a maximum when M = 1/,/7.
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Multidimensional Flows

This chapter deals with some steady two-dimensional and three-
dimensional flow problems, both supersonic and subsonic. The governing
equations are first established for irrotational motion, and then solutions to
these equations are sought. The Janzen-Rayleigh expansion is discussed
first. This expansion is a parameter expansion in powers of the Mach number
squared, and so it is valid only for Mach numbers somewhat less than unity.
Small-perturbation theory is next discussed. This approximation assumes
that the body about which the flow is sought disturbs the free stream in a
minor way only. Since many real flow situations satisfy this condition, small-
perturbation theory is widely used.

Small-perturbation theory is used to study some specific subsonic and
supersonic flows. The Prandtl-Glauert rule for subsonic flows is then cov-
ered. This rule relates subsonic compressible flows to the corresponding
incompressible flows. Ackeret’s theory for supersonic flows, which is also
based on small-perturbation theory, is then discussed.

Leaving the topic of small-perturbation theory, the chapter ends with a
discussion of an exact solution. The flow treated is that of supersonic flow
turning around a corner that bends away from the free stream. This flow is
known as Prandtl-Meyer flow.

461
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13.1 IRROTATIONAL MOTION

As was the case for incompressible flows, many of the flow fields of interest
are irrotational because they originate in a uniform flow. According to
Crocco’s equation, the flow will then also be isentropic. Then the pressure
term in the momentum equation may be rewritten as follows:

Vp = @Vp =a*Vp
dp

where the fact that p is a function of p only, owing to the isentropic nature of
the flow, has been used. Then the momentum equation (I'V.2) becomes
ou 2

a

Forming this scalar product of u with this vector equation gives
10 2
55w +ur[(ue Vyu = —%U'Vp

The term on the right-hand side of this equation may be recast by use of the
continuity equation in the form

The density may be completely eliminated from this equation by taking the
time derivative of the Bernoulli equation. Thus

Pp 10 o ( [dp
=5 (/)
_ O ( [dpdp
ot dp p
0 a2
=5/ 5)
d a? op
— [ 5) %
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Now the two inverse operations, differentiation with respect to p and inte-
gration with respect to p, cancel one another, so that the Bernoulli equation
becomes

P¢ 10 a* dp
YA n

Using this equation to rewrite the nonsteady term on the right-hand side of
the momentum gives

10 0? 10

——(u-u)+u-[(u-Vju = ——(p———(u-u) +a*V-u

20t
Solving this equation for V- u yields the following equation governing the
irrotational motion of a compressible fluid:

V-u:%{u-[(u-V)u] —i—%(%—f—ku-u)}

In terms of the velocity potential ¢ this equation becomes

V2<f>:1{V¢°[(V¢°V)V¢]+§t<a¢+V¢>°V¢>} (13.1)

a? ot

Equation (13.1) is the differential equation to be satisfied by the velocity
potential ¢ for irrotational motion of a compressible fluid. The equation dif-
fers drastically from the Laplace equation, which was shown to be the gov-
erning equation for incompressible flow. In fact, Eq. (13.1) becomes V?¢ = 0
as a> — oo, which corresponds to p = constant. This may be verified by
nothing that

dp
2—_
a_dp

where the derivative is evaluated at constant entropy. But for p = constant,
dp = 0, so that a> — co. Thus it may be concluded that for constant density
the governing equation for irrotational motion is linear but for variable
density the governing equation becomes nonlinear. It should also be noted
that the nonlinearity must be dealt with directly here, since the equations of
kinematics and dynamics are no longer separable.

Cleary, Eq. (13.1) represents a formidable analytic problem for any
specific flow problem that is to be solved. The difficulty of obtaining exact
solutions has led to the development of approximate methods, and two of
these will be discussed in the following sections.
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13.2 JANZEN-RAYLEIGH EXPANSION

The Janzez-Rayleigh expansion is an expansion of the steady-state form of
Eq. (13.1), which is valid for any shape of body but only for Mach numbers
less than about 0.5. For steady flow, Eq. (13.1) becomes

Vi = ¥4+ (V- V)V

In tensor notation this equation is

Py 1040 ¢

Ox; Ox;  a® Ox; Ox; Ox; Ox;

(13.24)

As the speed of sound becomes infinite, that is, as the Mach number tends to
zero, this equation reduces to the Laplace equation. That is, the right-hand
side of the foregoing equation represents compressible effects, so that these
effects vary as a 2. It seems reasonable, then, that an approximate solution
for slightly compressible flows could be sought in which the first correction
due to compressibility varies as the Mach number squared.

The foregoing remarks form the basis of an expansion for ¢ of the fol-
lowing form:

b (6p2) = U MZG,(x,3.2) (13.26)

It is assumed here that a uniform flow of magnitude U approaches the body
under consideration and M, = U/a., is the Mach number far from the body,
where a.. is the speed of sound there. Substituting Eq. (13.25) into Eq. (13.24)
gives

o, 2095 2
UZ iaxax_aZZ Ozcax ZM; axz 8x,5xj

The significance of the coefficient U in Eq. (13.2b) is now apparent; the
coefficient of the series may be made dimensionless, yielding the following
equation:

n 82 n n n
Zn:Mz Ox; 8x a2 M ZMOZC Ox; Zn:Mi Z 8x, 8xj

Although the coefficients are all dimensionless, the quantity a? /a? is not
constant and should also be expressed as a series in M2 . This may be done by
using the energy equation in the form
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1 a? 1 a2
T . :—UZ o
2u u+y_1 ) +—y_1

where the constant has been evaluated far from the body. Solving this equa-
tion for the ratio of the local value of the speed of sound to that far from the
origin gives

2

a y—1 , u-u
PR U

Substituting u = V¢ and inserting the expansion for ¢ yields the following
expansion for a’:

B 2
a 7_1 2 § : 2na¢n

r 2

=15 oy 4
=14+—M-|1- M
M <8x,- +0(M)

Inverting this expression defines the quantity which appears in the govern-
ing equation:

+O0(MY,)

a? y—1 1910) 2
s SR I AL Vot B R
a? 2 <8x,-)

Substituting this result into the expanded form of the governing equation for
¢ yields

¢ y—1 o\
2n n_ _ ars2 . 2 . 0
;M 8x,~8x,- Moo {1 2 MOC |} <8Xj>

n 9Py n 0¢n n Py
X ;Mi 8x,~ ZM; 8x, ZM; axlax,

n n

+ O(M;‘o)}

The expansion (13.256) is assumed to be uniformly valid in Mfc This
means that the coefficients of like powers of this quantity must balance on
each side of the foregoing equation. This gives the following sequence of
equations which represents the coefficients of M? , M2, M? etc.:

>,
8x,-8x,- =0

(13.2¢)
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by 0y 0y Py

ox;0x;  Ox; Ox; Ox;0x; (13.2d)
Py __7=1 |, _ (00| 0byOby Pby 01 by Py
Ox;0x; 2 ox; Ox; Ox; Ox;0x;  Ox; Ox; Ox;0x;
000 01 Pby 0%y Oy PP, (13.20)

8xi 8x, 8)(,'8)9’ 8x,- ax, 8)6,'(9)(_?/

etc.

The equation to be solved for ¢, [Eq. (13.2¢)] represents the incom-
pressible-flow problem corresponding to M., — 0. The problem for ¢,
represented by Eq. (13.24d), is a linear one, although the differential equation
isnonhomogeneous. Having solved the problem for ¢, the right-hand side of
Eq. (13.2d) will become an explicit function of the spatial coordinates. Like-
wise, having obtained expressions for ¢, and ¢, Eq. (13.2¢) represents a
linear, nonhomogeneous equation for ¢,. In this way solutions for ¢, ¢, ¢,
etc., may be obtained sequentially, and each of these solutions represents a
term in the perturbation solution (13.254). It may be seen from the equations
for ¢, and ¢, that the differential equation to be solved becomes complicated
rapidly, and it is not practical to carry out the solution beyond the first two or
three terms. This means that the solution so obtained will be valid only for
Mach numbers that are of the order of 0.5 or smaller. The advantage of the
Janzen-Rayleigh expansion, on the other hand, it that is valid for any shape of
body, not just slender bodies.

13.3 SMALL-PERTURBATION THEORY

An alternative approximate method of solution to the equation for com-
pressible potential flows is small-perturbation theory. This approximation is
valid for supersonic flows as well as subsonic flows, but it is restricted to
relatively slender bodies.

Suppose that a uniform flow approaches a body which is sufficiently
slender that it causes a small perturbation to the free stream. Then the velo-
city potential may be written in the form

¢=Ux+® (13.3a)

where

1
U

oo

— 1
8x,- <
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Then, for steady flows, Eq. (13.1) becomes

1
V2 = ?(Uex + VO)-[(Ue, + V®)-V](Ue, + VD)

This expression is still exact within the inviscid theory, but now that fact that
the perturbation velocity potential ® leads to small-velocity components
will be used to eliminate quadratic and higher terms. Thus the linearized
form of the governing equation is
2 92
V20 = 2287(1)
a? Ox?

This simplified equation retains only one term out of the compressible
correction terms, and the retained term corresponds to the direction of the
free stream. In its present form the compressible correction term contains a
variable coefficient a, which should also be linearized for consistency. This
may be done by appealing to the energy equation in the form

u-u+ i ! 2+ ago
2 y—1 2 y—1
but uwu=(U+u)+ (V) + W)

where #', v/, and w' are the velocity perturbations to the free-stream velocity
U.Thus the linearized form of the kinetic-energy term is

uu=U>+20d

Using this form, the energy equation becomes

a? a?
U/ — 00
u+y71 D1
or Ud
2 2
— 1= (v—1)22
a aoo[ (v )a%o]

Substituting this expression into the simplified equation for the perturbation
velocity potential gives
U aﬂ 90

VZ(D—EI (y=1)>—| —
- a / at, Ox| Ox?
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This equation, in turn, may now be linearized to yield the following linear
equation with constant coefficients:

Vo= 22
a%, ox?

In cartesian coordinates this equation is

2’0 Pd PO
— M?
(=M s5+55+ > 0 (13.3b)

Equation (13.35) shows that for subsonic flow the governing equation is
elliptic, and so will have no real characteristics. On the other hand, for
supersonic flow the governing equation is hyperbolic and so will have real
characteristics. This observation is compatible with our previous result that
shock waves can occur only in supersonic flow. Equation (13.35) is valid for
supersonic flows as well as subsonic flows, but as will be demonstrated later,
it is invalid near M., = 1. Also, by virtue of the linearization, the equation is
valid only for flows that involve relatively slender bodies.

13.4 PRESSURE COEFFICIENT

The principal quantity that will be of interest in the solution to specific pro-
blems is the pressure in the fluid, since the integral of the pressure around the
surface of abody defines the lift and drag forces acting on the body. The usual
way of expressing the pressure is by means of the dimensionless pressure
coefficient. It is therefore of interest to obtain a linear expression for the
pressure coefficient that will be compatible with the linearized equation
derived in the previous section. Such an expression will be derived in this
section.
The pressure coefficient C, is defined in the following way:

:p_poc
T U

Here p.., p,, and Uare, respectively, the pressure, density, and fluid velocity
far from the body around which the flow is being studied. The pressure coef-
ficient may be readily expressed in terms of the pressure ratio as follows:
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Inordertorelate the pressure ratio to the velocity, the energy equation will be
employed.

7 Px
Y= 1 Poo

Since the flow is irrotational, it is also isentropic, so the quantity p/p may be
expressed in terms of p only by use of the isentropic law. Thus

(2)
p_poo —
P

p_p P)’””

_aic<p )l'/"
Y \Poo

Substituting this expression into the energy equation gives

1 a2 p =D/ 4 R a2
Zu- o (£ ——py? 4y S
2" u+v—1<poo) 20 Ty
From this equation the following expression is obtained for the pressure
ratio:
7/(r=1)
2 =1, 5 .
. [l—k 2@ (U*—u u)}

Using this result, our expression for the pressure coefficient becomes

2 v_1 7/ (r—1)
= {[H’ (Uz—u-u)} 1

2a%,

Equation (13.4a), which expresses the local value of the pressure coef-
ficientin terms of the local velocity, is still exact within the inviscid, adiabatic
assumptions. In order to obtain an expression for the pressure coeflicient
that is compatible with small-perturbation theory, Eq. (13.4a) will now be
linearized in the perturbation velocity. The velocity term in the foregoing
equation may thus be rewritten as follows:

G

(13.4a)

U2 —uu= U2 _ |:(U+ u/)2 + (VI)Z + (w/)2:|

=204
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Substituting this linearized expression into Eq. (13.44a) yields the following
simplified expression for the pressure coefficient:

2 U701
cp—M{[l-@-%} -

But, to the first order in the perturbation velocity,

Ud' 7/ (1) U
o] g
Thus the linearized form of Eq. (13.44) is
/
C, =224 (13.4b)

U

This simple result will be used in conjunction with approximate solutions
to the compressible-flow equations that are established through use of
Eq.(13.3b).

13.5 FLOW OVER A WAVE-SHAPED WALL

The first application of small-perturbation theory will be made to flow over a
sinuous wall. This flow is relatively simple, yet it has the property of illus-
trating clearly the distinctions between subsonic and supersonic flows.
Figure 13.1a shows a sinusoidal surface over which a uniform flow of
magnitude Uis assumed to flow such that compressible effects are not negli-
gible. The equation of the wavy surface is taken to be
. 2mx
y=n(x) =¢esin—
A
where ¢/1 is assumed to be small compared with unity, so that the linear
theory will be valid. The differential equation to be solved is the two-
dimensional form of Eq. (13.35). The boundary condition to be satisfied on
y = n(x)is
vV o dy 2m 2nx
Utu ax 2%

In view of our linear theory the quantity /(U + ') may be reduced to v'/ U,
so that this boundary condition becomes
oo 2n 2nx

8—y(x,n) = U78COST
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@  ~ -

(b)

(c)

FIGURE13.1 (a) Wave-shaped wall, (b) flow for M, < 1, and (c) flow for M, > 1.

The left-hand side of this equation may be expanded in a Taylor series and
linearized so that the linear form of this boundary condition is

oD 2 2
8_y(x’0) = U7necos i
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From the foregoing discussion it is evident that, within the small-
perturbation theory, the problem to be solved for the perturbation velocity
potential ®(x, y) is the following:

PO P
(1 _M‘;)WJra—yz:O (13.5q)
@
%y(x,()) = Uzj—nscosz% (13.5b)
@
g—x(x,y) = finite asy — oo (13.5¢)

Since Eq. (13.5a) may be either elliptic or hyperbolic, depending on whether
M is less than unity or greater than unity, it is convenient to discuss the
solution to Eqs. (13.5) for subsonic flow and supersonic flow separately.

Consider, first, the case of subsonic flow. It will be found convenient to
replace x by a new coordinate ¢ that is defined by

Then, in terms of the coordinates ¢ and y, Egs. (13.5) become

2o oo _
862 ayZ -
o) 2n 27
— = U midd — M2
o (£,0)=U 7 scos(i 1 Mooé)
%—qg(f,y) = finite asy — oo

The governing equation is now seen to be Laplace’s equation in this new
coordinate system. Solving this equation by separation of variables, the
solution should be trigonometric is ¢ in view of the first boundary condition.
Then, the y dependence will be either exponential or hyperbolic, and in view
of the semi-infinite domain in the y direction, the exponential form will be
used. However, the second boundary condition rules out the possibility of a
positive exponential, so the required solution will be of the form

®(&,y) = (Acosaé + Bsinal)e ™
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But the first boundary condition has been used only to obtain the function
form of ®. Thus, imposing this boundary condition completely gives

o0 2 2

8_y (£,0) = —a(Acosal + Bsinaé) = UTE.scos (% - Mgof)

Equating coefficients and arguments of the two trigonometric terms
involved in the last equality gives

2n

—O(A=U78
B=0
2n

Thus the complete solution for @ is
Ue 2n 2n
- ___~° nidd — M2 _r _ A2
O,y = — gocos ( /1 1 Moof>exp ( 7 /1 Mooy)

Returning now to the original coordinate system gives the following solution
for the perturbation velocity potential:

Ue 2nx 2n
O(x,p) = ————cos T exp( — =\ /1 - M2 13.6
) == e e (1) (1360

Equation (13.6a) shows that the perturbation to the free stream is in
phase with the wall, and it leads to a flow pattern, as shown in Fig. 13.1b.
It is also evident that the perturbation dies exponentially with distance
from the surface. Since it was assumed that the perturbation velocity
should be small compared with the free-stream velocity, Eq. (13.6a) shows
that

u (2n/A)e
Max| = | =——==<«1
(U) V1-M2

Using the expression (13.45) and the solution (13.6a) yields the follow-
ing expression for the pressure coefficient in the fluid:

4n/l)e . 2mx 2n
Cp(x,y) = _\/(#SIHTCXP(_TMI - M;y) (13.60)
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This result shows that the maximum presure on the wall corresponds to the
bottom of the troughs and the minimum pressure corresponds to the top of
the humps. That is, the pressure is symmetrically distributed about the
humps on the wall, so that there will be no induced drag on the wall. This
result will be further discussed later in this section.

Considering now the case of supersonic flow, the governing partial
differential equation is

>ro 1 &0
oxr (M2 —1) 0y?

This is the so-called one-dimensional wave equation, whose general solu-
tions will be of the form

D(x, ) —f(x —\/M2 — ly) +g<x+ VM3 - 1y>

where fand g are any differentiable functions. The first solution represents a
wave that slopes downstream and away from the wall, so that perturbations
generated by the wall will travel downstream only according to this solution.
On the other hand, the second function in the solution above represents sig-
nals that travel upstream as they move away from the wall. Since such a
solution has no physical meaning in supersonic flow, it must be rejected here,
so that the general solution becomes

O(x,y) =f (x - \/@0

The function f may be evaluated by imposing the surface boundary
condition (13.5b6). This gives

o0 2n 2nx
—_— = — 2 _ / = —_ _
o (x,0) VMZ —1f'(x) =U S ceos—

hence

Ue . 2nx
Mz —1
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Thus the perturbation velocity becomes
U 2
(D(x,y):—ﬁsin[% <x—,/Mgo—1y)} (13.7a)

This solution satisfies the remaining boundary condition [Eq. (13.5¢)]. From
this solution and Eq. (13.4b) the value of the pressure coefficient is found to be

szwcosﬁ <x—\/@y>] (13.76)

The solution represented by Eqs. (13.7a) and (13.7b) shows that the
velocity components and the pressure are constant along the lines

X — /M2 — ly = constant

The slope of these lines is given by

d 1
—yziztanﬁ
dx /M2 —1

where 0 is the inclination of the lines with respect to the x axis. Hence

1
_ ainl
0 = sin ( Oo)

This result shows that the lines along which the flow parameters are constant
are actually the Mach lines. That is, signals are propagated along the Mach
lines undisturbed. The resulting flow field is illustrated in Fig. 13.1c.
Equation (13.75) shows that the pressure on the wall is proportional to
cos(2nx//), which means that the pressure peaks are 90° out of phase with
the geometric peaks of the wall. It follows, then, that a drag force will exist on
the wall for the case of supersonic flow. This is quite different from the result
that was obtained for subsonic flow. Figure 13.2a shows a section of the wall,
while Fig. 13.2b and ¢ show, respectively, the pressure distribution on the wall
for subsonic flow and for supersonic flow. In this figure the value of the pres-
sure coefficient C, evaluated on the wall is denoted by C,. Because of the
symmetrical pressure distribution about each geometric peak, there is no
drag force in subsonic flow. However, the lack of symmetry in supersonic
flow leads to a drag that is called the wave drag. Thus the linearized theore-
tical drag on bodies in compressible flow is as shown in Fig. 13.2d. The theo-
retical drag becomes infinite for Mach numbers close to, but greater than,
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(a)
) Cn |
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| theory
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|
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. 0 10 M
(c) (d)

FIGURE 13.2 (a) Wave-shaped wall, (b) surface pressure coefficient for subsonic
flow and (c) supersonic flow, (d) drag coefficient versus Mach number.

unity because the linearized theory breaks down in sonic flow. A transonic
theory exists that shows, as it should, that retaining some important terms
the linear theory neglected by results in a finite drag coefficient. The actual
drag indicated in Fig. 13.2d illustrates this result and also shows that, owing
to viscous effects, a drag force exists even for subsonic flows. However, this
viscous drag is relatively small for slender bodies when it is compared with
the wave drag.

The foregoing solution for a wave-shaped wall is significant in its own
right, and it illustrates some important features of subsonic and supersonic
flows. Also since the theory being used is linear, superposition is valid. Thus,
by use of Fourier integrals, the solution obtained here may be extended to
obtain solutions for compressible flow over arbitrarily shaped surfaces.

13.6 PRANDTL-GLAUERT RULE FOR SUBSONIC
FLOW

Using small-perturbation theory it is possible, by means of a simple
transformation, to reduce all subsonic-flow problems to equivalent
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incompressible-flow problems. The rule that results from such a transfor-
mation is called the Prandtl-Glauert rule.

For subsonic flow over a body whose surface is defined by y = f(x), the
perturbation velocity potential must satisfy the following problem:

2o, 1 po_
ox2 1 —M2 9y
o0 df
a_y(x70> - UE(X)

oo
—— (x, y) = finite as y—00

ox

Introduce a new velocity potential ® and a new vertical coordinate ; that are
defined as follows:

1 o

J1-MZ
n=/1-My

Then the problem to be solved for @' (x, ) is the following:

0* N >’ 0
ox2 o
o’ df
e 0) = U
(D/
aa—x(x7 n) = finite as 7§ — o0

That is, in the x# plane the problem to be solved is that of irrotational motion
of an incompressible fluid about a body whose surface is defined by = f'(x).
Assuming that the ideal-fluid flow problem can be solved, the corresponding
pressure coefficient may be evaluated from Eq. (13.45). Thus, denoting the
incompressible pressure coefficient by C;,, it follows that

C =— Eai"
L U ox
But the compressible pressure coefficient is given by

2 0D
U ox
B 1 200

- JT-MZU0x

G =
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that is,
C,(x,y)

VT-MZ

That is, the pressure distribution around a body that is in subsonic
compressible flow may be obtained from the corresponding incompres-
sible pressure distribution. The rule that connects these two pressure dis-
tributions [Eq. (13.8)] is known as the Prandtl-Glauert rule. It establishes
the effects of compressibility for subsonic flows and illustrates that,
within the linear theory, any subsonic compressible-flow problem may be
solved provided that the corresponding incompressible-flow problem may
be solved.

Cyx,y) = (13.8)

13.7 ACKERT’S THEORY FOR SUPERSONIC
FLOWS

Small-perturbation theory may also be used to establish a theory for super-
sonic flows. The resulting theory is known as Ackeret’s theory. The situation
to which this theory applies is shown in Fig. 13.3a. Supersonic flow approa-
ches a thin, cambered airfoil that is at an angle of attack « to the free stream
whose Mach number is M. The chord of the airfoil is denoted by ¢, ¢ is the
maximum thickness, and /4 is the maximum camber of the airfoil. The equa-
tion of the upper surface of the airfoil is y = 5,,(x), while that of the lower
surface is 17;(x).

Ll Ry
15

(a) (b)

FIGURE 13.3 (a) Parameters for supersonic airfoil, and (b) definitions of the half-
thickness function 7(x) and the camber function y(x).
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According to the linearized theory, the problem to be solved for the
perturbation velocity potential is the following:

P01 v
ox2 M —10y*

oD dn

ix0 =

oD .

a(x,y)—ﬁmte as y— o0

Since, in general, the surfaces y = #,(x) and y = n;(x) will be different,
the boundary condition on y =0 will be different for the upper and
lower surfaces, so that the corresponding values of @ will be different.
Denoting these solutions by ®, and ®,, it therefore follows that the two

solutions will be
0ux0) =f (x = M2 -1y
O;(x, y) = g(x + /M2 — ly)

Here the left-running solution has been omitted from @, and the right-
running solution has been omitted from ®,. This satisfies the condition that
signals can travel downstream only in supersonic flow, so that the lines along
which signals travel must slope downstream as they move away from the
airfoil.

The functions f and g may be evaluated by imposing the boundary
conditions at the surface of the airfoil. Thus the boundary conditions at
y = 0+ and y = 0—, together with the corresponding solutions, give

U dn,

flix) = —W e (x)
¢x) = ——2 By

T UMZ—1dx

It is not necessary to integrate these expressions in order to evaluate the
pressure coefficient. From Eq. (13.40),

2 00

G = U ox

270 Madison Avenue, New York, New York 10016
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Thus, denoting the pressure coefficient on the upper surface by C,, and that
on the lower surface by C,, it follows that

2 2 dn

C u= — - / e —— u

P Uf (x) /—Mgo 1 dx
—_— 2 2 dn,
CI’[_ Ug(x)_ F‘_“‘Mgc_ldx

These results show that the local value of the pressure coefficient is propor-
tional to the local slope of the airfoil surface.

Using these values of the surface pressure coefficient, the lift coefficient
of the airfoil may be evaluated as follows:

1 Jo(pr—pu)dx

C. =
1 U? c

Here p_, is the density of the fluid far from the airfoil and py, p, are, respec-
tively, the pressure on the lower surface of the airfoil and the pressure on the
upper surface. Then, from the definition of the pressure coefficient it follows
that

2 (e,
/M2 —1Jo \dx  dx *

2

= —m[m + 1o

But #,(¢) =1n,(c) =0 and #,(0) =7,(0) = zc. Hence the value of the lift
coefficient is

CL = (13.9a)

Equation (13.94) shows that the lift force that acts on a supersonic air-
foil depends only on the Mach number of the flow and on the angle of attack
of the airfoil. That is, the lift force is independent of the camber and thickness
of the airfoil. This result is quite different from the corresponding result for
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subsonic flow. Indeed, Eqgs. (4.25b) and (13.8) show that the lift coefficient for
a Joukowski airfoil at subsonic speeds is

2n 1 . h
C, :TM;(I +0.77E)s1n(oc+2z>

Thus the lift of subsonic airfoils is greatly affected by airfoil thickness and
camber, but the lift of supersonic airfoils is not affected by these parameters.

The drag coeflicient for the airfoil may be evaluated in a similar man-
ner as follows:

_ U (=P dy
1. U? c

Cp

This integral may be converted to one in x by noting that dy = (dy/dx)dx,
where dy/dx = dn,/dx on the upper surface and dy/dx = dn,/dx on the
lower surface of the airfoil. Hence

1 [(——dy, ——dn
Cp=- Cyu——C “ ) d
L /c ( " dx gy )
Using the expressions that were derived for the pressure coefficient on the
upper and lower surfaces shows that

2 ¢ d’?/ 2 d’//u ?
= cm/o l(dx) +(dx) ] =
Since the integrand of this integral is positive definite, it is evident that a
nonzero drag will exist for nontrivial airfoil shapes, a result that was
deduced for the wave-shaped wall in Sec. 13.5.
The manner in which airfoil thickness and camber affect the wave drag
may be established by writing the equations of the upper and lower surfaces

of the airfoil in terms of the corresponding parameters. Thus, let the thick-
ness parameter and the camber parameter be defined, respectively, by
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Here, ¢ and & are the maximum thickness and maximum camber, respec-
tively, as shown in Fig. 13.3a. Then a half-thickness function 7(x) is defined
such that the local value of the airfoil half thickness is dct(x), as shown in
Fig. 13.3b. Likewise, a camber function y(x) is defined such that the local
value of the airfoil camber is ecy(x), which is also shown in Fig. 13.3b. Thus,
the upper and lower surfaces of the airfoil may be defined in terms of the
angle of attack, the half-thickness function, and the camber function. From
the definitions of these two functions they must lie in the following range:

OST(X)S%
0<yx) <1

In terms of the functions defined above, the equations of the upper and
lower surfaces of the airfoil are

n,(x) = a(ec — x) + ecy(x) + det(x)
() = afe — %) + sep(x) — dex(x)

Thatis, the upper and lower surfaces are defined by the line through the mean
thickness of the airfoil, plus or minus the half thickness, respectively. Thus,
the integrand of the integral that defines the drag coefficient may be eval-
uated as follows:

d
n”:—oc+ecy’+5cr’
dx
d
| G ecy + dct’
dx
dn 2 dn, ? 2 2 20,.1\2 2 2
. u =il :2 2 o 2 2/ 1 _4 /
'(dx) +<dx o +2e7c"(y")" +20%¢* (7)) oecy

In the foregoing equations the primes denote differentiation with respect to
x. Substituting the last result into the expression for the drag coefficient
yields the following result:

Cp = 205 + 28232 (Y)? + 2022 (1) — 4ueey’)] dx

The first term in the 1ntegrand is a constant and may be integrated directly.
The last term in the integrand integrates to zero, since y(0) = y(¢) = 0. Thus
the drag coefficient becomes

402 4e2¢ ¢
Cp= " / d (13.95
P \/Mgc—1+\/M§O—1/0( \/ y )
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Equation (13.94) showed that the lift coefficient of supersonic wings is
independent of the camber and the thickness of the airfoil. On the other
hand, Eq. (13.9b) shows that both camber and thickness increase the drag
coefficient of such wings. Hence it may be concluded that supersonic wings
should be as straight as possible and as thin as possible. However, it is evident
that for structural reasons there is a limit to the minimum thickness to which
such wings may be made. Apart from the general guidelines of minimizing
the camber and thickness of wing sections, application of the foregoing the-
ory to specific airfoils shows that sharp corners are preferable to rounded
corners in supersonic flight. The investigation of the performance of specific
airfoil sections is deferred to the problems at the end of the chapter.

13.8 PRANDTL-MEYER FLOW

In this section an exact solution to the equations of two-dimensional flow of a
compressible fluid will be derived. The flow situation to which this solution
refers consists of supersonic flow approaching a sharp bend in aboundary in
which the boundary bends in such a direction that an expansion, rather than
a compression, is required to turn the fluid. The resulting flow fields is called
Prandtl-Meyer flow.

Figure 13.4a shows the flow configuration that is under consideration.
Supersonic flow whose Mach number is M; flows parallel to a boundary that

M8)

o8
Augsin (3+8)

(B+6)

Agpous (3481

(a) (b

FIGURE 13.4 (a) Prandtl-Meyer fan, and (b) velocity change through a typical
Mach wave.
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suddenly changes direction as shown. In order to satisfy the boundary con-
dition at the surface, the velocity vector must be deflected in the direction
indicated. Since this deflection is opposite in sense to that which was shown
to be necessary for shock waves, it may be concluded that an expansion,
rather than a compression, is required. Although expansions are continuous
processes as opposed to the discrete processes of shock waves, the expansion
is illustrated as consisting of a large number of very weak expansion waves.
This is known as a Prandtl-Meyer fan.

An arbitrary point in the expansion fan is indicated in Fig. 13.4a. The
Mach number at this point is M, and the deflection of the velocity vector at
this point, relative to its original direction, is denoted by 0. The inclination of
the Mach wave that passes through the point under consideration is denoted
by f. Then it is known that the leading Mach wave will subtend an angle

defined by
. 1
ﬁ] = Sin 1 (E)

Since the pressure gradient will be normal to each of the Mach lines, the
changes in the velocity must also be normal to the Mach lines. Thus if ¢
denotes the magnitude of the velocity vector as it approaches our reference
Mach wave and if Aq denotes the change in the value of ¢ that is caused by the
Mach wave, the velocity diagram will be as shown in Fig. 13.4b.

The velocity vector that emerges from the Mach wave will have a
magnitude g + dg, and it will have been deflected through an angle d6. Since
Agq will be infinitesimally small as the limit of an infinite number of Mach
waves is approached, the deflection of the velocity vector may be approxi-
mated by

~ Ag cos (f+0)

~ q+dq

In the limit all second-order terms will vanish identically, so that this
expression may be further reduced to

do

do = %cos(ﬁ +0)

But, from Fig. 13.4b,
q+dq=¢q+Aqsin(f+0)

Using this result to eliminate Aq yields the following equation for d0:

dHZ%cot(ﬁ—i—H)
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But it is known that the inclination of the Mach wave under consideration is
given by

1

sin(f + 0) = ”w

hence

cot(f+0)=vM? -1
Thus the turning angle of the velocity vector becomes

A= ViE—1Y
q

Inorder to complete the solution, this equation must be integrated to yield an
expression for 0 in terms of either g or M. Choosing the latter as being more
relevant, g must be expressed in terms of the local Mach number M. This may
be done by use of the definition of the Mach number in the form

q=aM

hence

To eliminate a from this equation, the energy equation will be employed in
the form

Or, multiplying this equation by (y — 1)/a? gives

7=l a
o Mral=D
2 + a?

2
2 4

R TN TR VAT

and
—aj(y — )M dM
{1+[(y - /217y

2ada =
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Thus the expression for dg becomes

dg_ y—1  MdM__ dM
g 2 1+[G-D/2AM> M
1 M

T1+[(p-D/2IME M

Using this result to eliminate ¢ from our expression for the element of
turning angle d0 gives

M2 —1 aMm

d9:1+[(v—1)/2}M27

This equation may now be integrated to give
0=v(M)—v(M) (13.10a)

where

v(M)_Hmtanl( :j_:(Mz—l)>—tanl( M2 1) (13.10b)

Equation (13.105) defines the so-called Prandtl-Meyer function, which is
denoted by v(M). The solution (13.10a) gives 6 = 0 for M = M, and repre-
sents a monotonically increasing function of M for values of M > M,. Then
the minimum value of 6 occurs at M, = 1, the value of 0 being zero, and the
maximum value of 0 occurs when M tends to infinity. From Eqgs. (13.10a) and
(13.105), this gives the following maximum:

_rf frtl
emax_2< - 1) (13.10¢)

For y = 1.4 this gives a maximum deflection of about 130°.

PROBLEMS

13.1 Show that the equation to be satisfied by the velocity potential for
steady, two-dimensional, irrotational motion of an inviscid fluid is

2\ 92 2 2\ 92
N w T w\T
a?) Ox? a? OxOy a?) oy?
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13.2

13.3

Introduce a stream function that is defined as follows

0 0
Puzpoa—f Pvzpoa—f

where p, is a constant reference value of the density. Show that this
stream function identically satisfies the continuity equation for steady
two-dimensional motion of a compressible fluid, and that for irrota-
tional motion the equation to be satisfied by y/(x, y) is

(1—ﬁ)i£—ﬂfyw+(l—f>§fzo

a?) Ox? a2 Oxdy az) oy?

The stream function that is defined in Prob. 13.2 may be considered to

be a function of the magnitude of the velocity vector g and its angle 6.

That is, we can consider the stream function to be y/(q,0) where

u = gcosf and v = ¢gsin 6. To obtain the differential equation to be

satisfied y/(q, 0), proceed as follows.

(a) Obtain expressions for d¢ and di in terms of dx and dy in which
the coefficients are functions of ¢, 0 and the density ratio only.
Invert these equations to express dx and dy in terms of d¢ and
dy.

(b) Use the fact that the velocity potential is ¢(g, 0) and that the
stream function is (g, 0) to eliminate d¢ and dy in the expres-
sion obtained above in terms of their derivatives with respect to ¢
and 6.

(c) Considering both x and y to be functions of ¢ and 6, obtain ex-
pressions from differential calculus for dx and dy. By equating
these expressions with those obtained in (b) above, obtain expres-
sions for the partial derivatives of x and y with respect to ¢ and 0.

(d) Eliminate both x and y from the results obtained in (c) by forming
the second mixed derivatives of x and y with respect to gand 6. In
this way obtain expressions for the derivatives

o¢ o¢
% and a—q

in terms of derivatives of the stream function (g, 6). In deriving
this result it should be noted that the density p is a function of the
magnitude of the velocity g, but not of its direction 0.

(e) Use the Bernoulli equation for steady flow and the definition of
the speed of sound to obtain the result

d(ﬂo) _ra
dg\p) pod
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13.4

13.5

13.6

13.7

Chapter 13

From this result, and one of the expression obtaind in (d), show
that

99 _ _@1( _ 2)%
0q pq 00

Finally, eliminate ¢ from this expression, using a result obtained
in (d), to show that the following equation is to be satisfied by the
stream function

Py oy Py
20y 2\ OV Y A
qaqz—i—q(l—i—M)aq—i—(l M)802_0

In the Janzen-Rayleigh expansion, find the differential equation to be
satisfied by the function ¢; in the series.

The linearized form of the pressure coefficient is defined by the
equation

/

u
C,=-2—
v U

Find the next correction term in the expression for C,. That is, find the
approximate expression for the pressure coefficient thatis valid to the
second order in small quantities.

Using the results of the linearized theory for compressible flow over a
wave-shaped wall, integrate the pressure over one wavelength of the
wall and so verify that the dragis zero for subsonic flow. Also calculate
the drag per wavelength per unit width of the wall for supersonic flow
over the wall.

An infinitely long cylinder of radius a + ¢sin(2nx/1) is exposed to a
uniform axial flow of compressible fluid, as shown in Fig. 13.5. If the
flow is subsonic and if the following conditions apply

E<< 1 and E<<1
A a

then the conditions to be satisfied by the perturbation velocity poten-
tial are as follows:

Pp 020 104

— 2 —_— —_— _——

(1 Mm)8x2+8r2 r or 0
9 0
or )= dx
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. _ 2ne
U d “=a+esin =
£ § a Sin A
——
T
C _ o
]

FIGURE 13.5 Axial flow over a wave-shaped circular cylinder.

The flow velocity is also subject to the condition that it should be
everywhere finite. In the foregoing expressions, 7 is the value of r that
corresponds to the surface of the cylinder.

Using a linearized theory, find an expression for the pressure coef-
ficient on the surface of the cylinder. Form the ratio of this pressure
coefficient to that for a wave-shaped wall, and by expanding this ratio
in powers of /[a(1 — M?2)], establish the effect of wall curvature.

13.8 Use Ackeret’s theory to find the drag coefficient of the double-wedge
airfoil shown in Fig. 13.6 for zero angle of attack in supersonic flow.

13.9 The half-thickness function 7(x) for the biconvex circular-arc airfoil
shown in Fig. 13.7 is given by the expression

FIGURE 13.6 Double-wedge airfoil.
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N(x)

FIGURE 13.7 Biconvex circular-arc airfoil.

The equation of the upper surface is defined by the equation

(17+a)2 + (x—g)zz <a+%5c>2

Using Ackeret’s theory, evaluate the drag coefficient of a biconvex
circular-arc airfoil at zero angle of attack in supersonic flow. Compare
this result with that for the double-wedge airfoil discussed in the pre-
vious problem.

FURTHER READING—PART IV

The compressible-flow area of fluid mechanics is not as well endowed with
books as the other areas. However, the following materials adequately cover
and extend the material treated in Part I'V of this book.
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Appendix A

Vector Analysis

The vector relations given in this appendix are particularly useful in the
study of fluid mechanics. The derivation of these relationships may be found
in most books that cover the topic of vector analysis.

VECTOR IDENTITIES
In the following formulas, ¢ is any scalar and a, b, and ¢ are any vectors.
VXVp=0
V- (¢a) = pV-a+a-Vo
V X (pa) =V X a+ H(V X a)
V-(Vxa)=0
(a-V)a=1V(a-a) —a x (V x a)
V X (Vxa)=V(V-a) — V’a
Vx(axb)=a(V-b)—b(V-a)—(a-V)b+ (b-V)a
V:-(axb)=b-(Vxa)—a-(Vxbh)

495
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INTEGRALTHEOREMS

In the following two theorems, which relate surface integrals to volume
integrals, V' is any volume and S is the surface that encloses V, the unit nor-
mal on S being denoted by n. ¢ is any scalar and a is any vector.

Gauss’ theorem: (also known as the divergence theorem):

/a-nds:/V-adV
K} V

Green’s theorem:

¢
/x</>%dS = /V[qu -V + ¢Vl dV

Stokes’ theorem:

j{a-dl:/A(VXa)ndA

This theorem relates a line integral to an equivalent surface integral. The
surface 4 is arbitrary, but it must terminate on the line /.

ORTHOGONAL CURVILINEAR COORDINATES

Let x1, x;, x3 be a set of orthogonal curvilinear coordinates with ey, e;, e3 as
the corresponding unit base vectors.

Position vector:
I = xex + e, + ze;

where ey, e,, and e; are fixed in space.

Base vectors:

o
_8x,-

or
6x i

€;

Metric-scale factors:

or
8x,~
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Line element:

497

(dr - dr) = B (dx))* + K3 (dx;)* + B2 (dx3)?

Cartesian coordinates (rectangular coordinates):

X1 =X

h =1

Cylindrical coordinates:

X1 = R
h =1
x = Rcost
Spherical coordinates:
X1 =7r Xy =
hl =1 hz =r
x =rcosf y=
(f.8.2)
?
/P
0
-
(a)

FIGUREA.1 Relationship between cartesian coordinates and (a) cylindrical coordi-
nates and (b) spherical coordinates.

X2 =Yy X3 =2z

h=1 hy =1

X2:0
hy =R
y = Rsin6

rsinf cosw

X3 =2z
hy =1

zZ=2Z

X3 =W
hs = rsinf

z=rsinfsinw

L]

{£0.w)

(b)
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Vector operations:

In the following let ¢ be any scalar and let a = a; e; + as e; + a3 e3 be
any vector.

1. Gradient:
_19¢ 1 9¢ 1 0¢
V¢ o hy 0x; ‘@ hy Ox; € I3 Ox €3
2. Divergence:
1 ] 9 5
= ok |0x, (hohsay) + o (mhzay) +a—x3(h1h2a3)
3. Curl:
her he; hses
V X a= h]h2h3 Ix1 0x) Ox3
a1 ha, hias

4. Laplacian:
L [0 (hhs 09\ 0 (hshy 0\ 0 (hih 0
h h2h3 8 h] 8)6] 6x2 h2 8x2 8x3 h3 8)63
5 19 1 (0[]0 0
Via= {hl e ) i G Ui [ 100 ~ 5y Ua3)
EERE K Y],
0x> iy |0x, Oz !
10 1 /0 [0 o
" [hzaxz(" N ks <a {hh oy 2%2) ‘axz(’““')} }
o (h [0 o 7
_3)63 {hzh:; |:8XZ <h3 3) —a—(hzaz)_
10 1 /0 [0 0
Lo ™ 4 (o U Lo 59 =5 o)

0 hy |0 0 |
_8_x1 {m |:8—x3 (hlal) — 8_ (h3a3)_

Vi =

(hyas) — 0 (hlal

~—
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5.

499
Lagrangian derivative:
1 oy Ooay Oas a| 0 0
h_1{<a18_x1 aza—x1+a3a—x]> __z[a_)q(hwﬁ_&_xz(hlal)}
as 0 0 1 8a1 aaz 8(13
Z = (h ——(h _ el ) ) et ]
+ ; {8x3( 1a1) 8x1( 3613)} el+h2{<a18x2+028x2+a38x2>

1 0 0 0 0
—l——{(al%—l—azﬂ—i—m a3> a { (hap)—
3

Oxy ' 0x3) I |[0x;
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Tensors

In this appendix some of the basic propertiecs of tensors are reviewed.
Although much of the material is general, the discussion is restricted to car-
tesian tensors, since curvilinear tensors are not used in this book.

NOTATION AND DEFINITION
Notation
The following rules of notation will be followed throughout:

1. Ifagiven index appears only once in each term of a tensor equa-
tion, it is a free index and the equation holds for all possible values
of that index.

2. Ifanindex appears twice in any term, it is understood that a sum-
mation is to be made over all possible values of that index.

3. Noindex may appear more than twice in any term.

Definition

A tensor of rank r is a quantity having " components in r-dimensional
space. The components of a tensor quantity expressed in two different coor-
dinate system are related as follows:
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= Cisc}'t G Cos Tt

/
ijk--m

where the quantities C,,, are the direction cosines between the axes of the
two coordinate systems.

A tensor of rank 2 is sometimes called a dyadic, a tensor of rank 1is a
vector, and a tensor of rank 0 is a scalar.

TENSOR ALGEBRA
Addition

Two tensors of equal rank may be added to yield a third tensor of the same
rank as follow:

Ci/'-»-k = Ajj..k + B;j.”k

Multiplication

If tensor 4 has rank a and tensor B has rank b, the multiplication of these
two tensors yields a third one of rank c.

Cyjotrs.t = Aij. 1By

Contraction

Ifany two indices of atensor of rank r > 2 are set equal, atensor of rank r — 2
is obtained. For example, if Cj; is defined by

Cij = A;B;

then by setting i = j the tensor Cj;, which is of rank 2, becomes a tensor of
rank 0 (i.e., a scalar).

Cii = AiB;
Thus contraction is equivalent to taking the scalar product of two vectors in
vector algebra.
Symmetry
If the tensor A has the property that

A,:.Ajmkml = A,n..k“j.“[

then the tensor A is said to be symmetric in the indices j and k. As a con-
sequence of the relation above, the tensor has only 3 n(n + 1) independent
components.
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If the tensor 4 has the property that

then the tensor A4 is said to be antisymmetric in the indices j and k. Such ten-
sors have only % n(n — 1) independent components.

TENSOR OPERATIONS
Gradient
The gradient of a tensor of rank r is defined by
ORjj..k
Tyt = —2
ij--kl axt

and yields a tensor of rank (r + 1)
Divergence
The divergence of a tensor of rank r results in a tensor of rank (r — 1).

aR,n -jkl---m

Tijiom =
e Ox

Curl

If R is a tensor of rank r, the curl operation will produce an antisymmetric
tensor of rank (r + 1). In general, the operation is defined by
8R,‘..4j.4.k _ 8R,-.4.,.4.k

ox; ox;

Ti---j-wkl =

In three dimensions, the curl of a tensor of rank 1 (i.e., a vector) may be
written in the form

OR;

' Y Ox

where ¢ is a constant pseudoscalar defined by
€123 = €312 = €231 = 1

€13 = 321 = e132 = —1

gk =0 otherwise
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ISOTROPIC TENSORS
Definition

An isotropic tensor is one whose components are invariant with respect to
all possible rotations of the coordinate system. That is, there are no preferred
directions, and the quantity represented by the tensor is a function of posi-
tion only and not of orientation.

IsotropicTensors of Rank 0

All tensors of rank 0 (i.e., scalars) are isotropic.

IsotropicTensors of Rank 1

There are no isotropic tensors of rank 1. That is, vectors are not isotropic,
since there are preferred directions.

IsotropicTensors of Rank 2

The only isotropic tensors of rank 2 are of the form «d;;, where « is a scalar
and 0;; is the Kronecker delta, which has the property that

5. — 0 when i #£
71 when i =
IsotropicTensors of Rank 3

The isotropic tensors of rank 3 are of the form we;j, where o is a scalar and
&;jk is a pseudoscalar defined under Tensor Operations.

IsotropicTensors of Rank 4
The most general isotropic tensor of rank 4 is of the form

20j0pq + P(dipdjq + igdjp) + V(dipdjp — Sig0jp)

Where «, 8, and y are scalars.

INTEGRALTHEOREMS

The following two theorems were given in vector form in Appendix A, and
they are reproduced here in tensor form.
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Gauss’ theorem (divergence theorem):

/a,-n,-dS:/aai dv
K Vaxi

Stokes’ theorem:

Oa;
a;dl~ :/—8,“ —Jn,'dA
j{ A " Oy
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Appendix C

Governing Equations

This appendix gives the continuity, Navier-Stokes, and energy equations
together with the components of stress in the three most commonly used
coordinate systems: cartesian, cylindrical, and spherical coordinates. The
equations are valid for calorically perfect newtonian fluids in which p, u, and
k are all constants.

CARTESIAN COORDINATES

Coordinates r = (x,y,z)
Velocity u = (u,v,w)

ou Ov 8w_0

ax oy oz
Ou Ou  Ou ou\  Op )
p<8t+u8x+vay+waz) aeruV u+ pfy
ov ov  Ov ov\  Op y
p(at+u8x+ o 82) 8y+,uV v+ pfy

505

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



506 Appendix C
ow ow Ow Ow 0
p (E+u$+va—y+w£) = —8—IZ)+uV2w—|—pfz
C a—TJrua—TJrva—Tera—T
PR\ ar T ax ey oz
ou\* [ov\? [ow\*
_ 12 - -~ i
VAT 24 (8x) +(8y) +(az> ]
(e o0\ (ou ow\ o0 ow?
K dy 0x Jz Ox Jz Oy
where
O O &
oxr  Oy*  0z2
0 I T
Txx = /Jax Txy = Tyx = U ay Ox
T 2 @ Tyy = Tzp = @4—@
we “ay T Oy
T, =2 Ow Tox = Taz = @—&—%
zz — M 82 zx — Xz — l’t ax aZ

CYLINDRICAL COORDINATES

19
ROR

ug Q1R
*OR

<V2MR

8uR
P (E +

__op
_—a—R—|—'u

Coordinates r = (R, 0,z)
Velocity u = (ug, up, u;)

19uy , Ou
R OO Oz

BuR
e a_)

(RMR) + =0

ug Oug  u

R 00 R
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— T ur

Ouy Oug  ugOuy uguy Ouy
P(at RTR90 TR +“ZE)

10 20
=———p+,u(V2u()—ﬂ+ uR

R0 R ﬁ%) o

Ou, Oou, upOu, Ou, _ ap 5
P(E*”Ra?*i%*”za)— oz T IVt Pk

Poar T"ROR TR a0 oz

our\> [1 [Ou 2 ou\?
_ 2 JUR (& z
kv T+2y{(8R) +[R<69+uR>] *(&) }

ouyg 10w \?> [(Ou. Oug\® [1dug o run1?
“‘{(E*ﬁ%) +(a—R+E> +[ﬁ%+Ra—R(§)]

where
10 0 1 0 0
2 = —— R — R — -
V' =Ror <R8R> +R2502 oz
o Oug . . 0 (uy 1 Oug
TRR= 2GR TR = TR = M[Rﬁ_R (%) +EW]
B 10uy ug B B % l@uz
199_2“<EW+7) Tez_fze_“{ﬁz’LRae]
L g = |2 Our
Tzz = ,uaz T:R=TRz = U OR Oz
SPHERICAL COORDINATES

Coordinates r = (r, 6, w)
Velocity u = (u;, up, )
1 du,

g sin 6) +rsin(9 oo

725(’ ur) +rsin0%(
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(“)u,Jru Bur+
P\ " or

u, Ou,

up 6u,+ _uﬁ-l—ui,
rsin 6 Ow r

r 00

r2sin0 dw

8”&)
—) + pofr

Uy aug
r 00

<V2 w+—

Uy,

%+u—+
P\"ar ™" or

10p
___%.4_

p( Lo 4y, Qo |
ot r or

Ouy wuy 12 >

- —“2cotl
rsinf dw r

2 cot 0 Ou,,
— == )+pﬁ7

r2sin0 dw

2 8ur Uy
2 dw

 F2sin?0

Ol Uplly Ul
—_ to
r 00  rsinfO Ow + r * r co

2 Ou
) r
<V Mot T 5in6 0w

uy Ou,, u,

1 Bp
o s1n68w

2cos 0 Ouy

2 sin” 0 Ow

u(l)

) + pfo

r2sin 0
U 8T+ U, 81
r 00  rsinfow
8”’ 4 1%+& ’
or r 00 r
(- a”“’+ﬁ+—cot0 i
r sinf Ow

2 2
* r% (?)} +[r silnﬁglal: * r% (%)}

. 2
P02 ) |

(2T 2T
PR ar T or

= kV2T +2pu

I I L)
r sin 0 dw

where

_lg VZQ _&.#2 lnga _;’_#8_2
T2 or or r2 sin 0 90 00 12 sin? 0 Ow?
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509

ou,
rr:2
’ “ar
10uy u,
W =250 Ty
S 1 Ou, Uy uy cot 0
oo = M\ sin0 0w | ¥ ¥
0 Uy 18u,
T’*’“””{’ar&)*rae]
sin0 9 / u, 1 Ou
T(-)(U—Tw(')—,u|: r %(sin0)+rsin0%}
e ,2(@)+ L ou
for = Tro = T r sinf dw
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Appendix D

Complex Variables

This appendix summarizes some of the results of complex-variable theory
that are particularly useful in the study of fluid mechanics.

ANALYTIC FUNCTION

A function F(z) of the complex variable z = x + iy is said to be analytic if the
derivative dF/dz exists at a point zy and in some neighborhood of z, and if
the value of dF/dz is independent of the direction in which it is calculated.

SINGULAR POINTS

A singular point of the function F(z)is any point at which F(z)is not analytic.
If F(z) is analytic in some neighborhood of the point zj, but not at z itself,
then zy is called an isolated singular point of F(z).

DERIVATIVE OF AN ANALYTIC FUNCTION

If F(z)is analytic, then dF/dz will exist and may be calculated in any direc-

tion, so that
dr_or __or
dz  Ox ! dy
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CAUCHY-RIEMANN EQUATIONS

If F(z) = ¢(x,y) + iy(x, ) is an analytic function, the real part and the ima-
ginary part of F(z) must satisfy the Cauchy-Riemann equations.

99 _
ox oy
9 9
dy ox

The Cauchy-Riemann equations are necessary, but not sufficient, conditions
for an analytic function. Eliminating first ¢, then i, from the Cauchy-Rie-
mann equations shows that both ¢ and iy are harmonic functions; that is, they
must satisfy Laplace’s equation.

MULTIPLE-VALUED FUNCTIONS

Many functions are analytic but assume more than one value at any point
z = Re™ onthe complex plane as 0 increases by multiples of 27. This difficulty
is overcome by replacing the single complex plane, which is valid for all 0, by
a series of Riemann sheets which are connected to each other along a
branch cut which runs (usually along the negative real axis) between two
branch points (frequently z = 0 and z = oco) which are singular points of the
function.

CAUCHY-GOURSAT THEOREM

If F(z) is analytic at all points inside and on a closed contour ¢, then

/maﬁzo

c

CAUCHY INTEGRAL FORMULA

If F(z)is analytic at all points inside and on a closed contour ¢ and if z is
any point inside ¢, then

d"F n! F(z)
=— | —— f >1
dz" (20) 27Ii/c (z — zo)"*! ¢ o=
and
1 F(z)
Fz0) = %/c (z —29) dz
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TAYLOR SERIES

If F(z)is analytic at all points within a circle r < ry whose center is at zy, then
F(z) may be represented by the following series:
dF (z — z0)? d*°F
F(z)=F — ) Sl 7l e
(z) = F(z0) + (z — 20) e (z0) + TR (20) +

where the radius of convergence rj is the distance from the point z; to the
nearest singularity. The general form of this series, as given above, is known
astheTaylor series, and the special case zy = 0is known as Maclaurin’s series.

LAURENT SERIES

If F(z) is analytic at all points within the annular region ry < r < r; whose
center is at zy, then F(z) may be represented by the following series:

. b2 b] 2
F(z) = +(27ZO)2 +Z_Zo+a0+a1(z z0) + ax(z —z9)" +
where
a4 = L)ldf n=0,1,2,...
27'[1 ¢ (é—ZO)n+
and
ni/iF(é) ldf n=0,12,...
2mi Jeo (f — ZO)_n+

Here the contour ¢ corresponds to ¥ = ry and the contour ¢y corresponds to
r = r;. The series is convergent for the smallest radius ry and the largest
radius r; such that there is no singularity in the region ) < r < r;.The part of
the series that contains the b, coefficients is known as the principal part. The
general form of the series is known as the Laurent series, and in the special
case in which 7y may be extended to zero (that is, there is no principal part),
the series becomes the Taylor series.

RESIDUES

The residue of a function at a point z, is defined as the coefficient b; in its
Laurent series about the point zy. That is, the residue at zj is the coefficient of
the 1/zterm in the Laurent series of the function written about the point z,.
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RESIDUE THEOREM

If F(z) is analytic within and on a closed curve ¢, except for a finite number of
singular points z;, z3, . . . , z,, then

/F(z)dz:Zm’(Rl +Ry+---+R,)

c

where R, is the residue of F(z) at z;, R, is the residue at z», and R, is the resi-
due at z,,.

TYPES OF SINGULAR POINTS

In order to evaluate the residue of a function at some point, it is useful to
know the type of singularity which exists at that point.

Branch Points

These are the singular points at the end of each branch cut of a multiple-
valued function. The residue theorem does not apply at branch points.

Essential Singular points

If the principal part of the Laurent series of the expansion of a function
about some point contains an infinite number of terms, that point is an
essential singular point.

Pole of Order m

If the principal part of the Laurent series of expansion of a function about
some point contains only terms up to (z — z)", that point is a pole of order m.
Thatis, if F(z9) is a pole of order m, then (z — zy)" F(zy) will be analytic.

Simple Pole

If the principal part of the Laurent series of the expansion of a function
about some point contains only a term proportional to z — z, that point is
a simple pole. That is, if F(zy) is a simple pole, then (z — zy) F(z) will be
analytic.

CALCULATION OF RESIDUES

The following methods may be used to calculate the residue of a function
F(z) at a singular point zy:

1. Expand F(z) in a series about zj, and so obtain the coefficient
of the term 1/(z — zp). This fundamental method uses the defini-
tion of the residue and is valid for all types of singularities.
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2. Ifthe point zj is a pole of order m, the residue may be calculated by
taking the following limit:

3. If the point zj is a simple pole, the residue may be calculated by
taking the follow limit:
R =1lim(z — z)F(z)
z—2z)
4. IfF(z) maybe putinthe form F(z) = p(z)/q(z) where q(zy) = 0 but
dq/dz(zg) # 0,and where p(zy) # 0, the residue may be calculated
by taking the following limit:

. P
R=lim—2—
=% dg dz

CONFORMAL TRANSFORMATIONS

A conformal transformation is a mapping from the z plane to the { plane of
the form z = f({), where f is an analytic function of {. Conformal transfor-
mations preserve angles between small arcs except at points where
df /d{ = 0. Such points are called critical points of the transformation, and
smooth curves through such points in the { plane may give angular corners in
the z plane.

SCHWARZ-CHRISTOFFEL TRANSFORMATION

Apart from the elementary functions, the Schwarz-Christoffel transforma-
tion is one of the most common and useful forms of mapping. It maps the
interior of a closed polygon in the z plane onto the upper half of the { plane,
while the boundary of the polygon maps onto the real axis of the { plane. The
transformation is of the form

& K- B

¢

Here the vertices A, B, C, etc., inthe z plane subtend the interior angles o, f3, y,
etc., asindicated in Fig. D.1, and a, b, ¢, etc., are the points on the real axis of
the { plane corresponding to the vertices 4, B, C, etc. Since the polygon in the
zplane is closed, the angles o, f3, 7, etc., must satisfy the relation

a+pf+y+--=m-2)n
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\

b
z plane { planc

FIGURED.1 Coresponding regions in the original plane (z plane) and the mapping
plane ({ plane) for the Schwarz-Christoffel transformation.

where 7 is the number of vertices in the polygon. The constant K determines
the scale of the polygon and its orientation, while the constant of integration
determines the location of the origin in the z plane. Of the constants a, b, c,
etc., any three may be chosen arbitrarily (typically —1,0,1)and any remaining
ones will be determined by the shape of the polygon.
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Thermodynamics

Thermodynamics is a complete subject in itself. However, in the study of
fluid mechanics only a few fundamental relationships from thermodynamics
are needed, and these arise mainly in the study of compressible flow. The
following summary contains all the results from thermodynamics that are
required in this book.

ZEROTH LAW

The zeroth law of thermodynamics states that there exists a variable of state,
the temperature 7, and that two systems which are in thermal contact are in
equilibrium only if their temperatures are equal.

FIRST LAW

The first law of thermodynamics states that there exists a variable of state, the
internal energy e. If an amount of work dw is done on a thermodynamic sys-
tem and an amount of heat dq is added to it, the equilibrium states before and
after the process are related by

oe = ow + dq

516
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That is, the change in the internal energy equals the work done on the system
plus the heat added to it during the process or event.

EQUATIONS OF STATE

There are two commonly used thermal equations of state, one being for ideal
gases and the other for real gases.

Thermally Perfect Gas

The equation of state for a thermally perfect gas is
p=pRT

where R is the gas constant for that particular gas. Frequently this equation
is used to define a perfect gas. That is, gases that obey the above equation
of state are defined as perfect gases.

Van der Waals Equation

An approximate equation of state for real gases is given by the van der Waals
equation, which is

1

1—Bp RT
where
% — 2RT,
and
% =27p.

Here p. and T, are, respectively, the critical pressure and temperature of
the gas.

ENTHALPY
The enthalpy % of a gas is defined by the following equation:

hze—&-l—’:e—l—pv
p

where vis the volume of the gas per unit mass.
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SPECIFIC HEATS

There are two specific heats in common usage, that at constant volume and
that at constant pressure.

Constant Volume

The specific heat at constant volume C, is defined by
dq Oe  0Oh Oh Jp
CG=l—%) === —— —
<dT>v or T " (ap > <6T>v

From the defining identity, the other relations follow without approxima-
tion.

Constant pressure:

The specific heat at constant pressure C, is defined by

o _(da) _de (9 N(ov\ _oh
r=\ar),”or " \ov "?)\otr) "ot
Perfect gas:

Using the above definitions of the specific heats and considering a per-
fect gas, it follows that

C,—C,=R

Under these circumstances it can be shown that e and / are functions of the
temperature 7Tonly and may be expressed in the form

e(T) :/CvdT+constant

hT) = / C,dT + constant
If C, and C, are constants, independent of 7 the gas is called calorically per-
fect, and it follows that

e = C,T + constant
h = C,T + constant
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ADIABATIC, REVERSIBLE PROCESSES

The following relations are valid for adiabatic, reversible processes:

o [T\
n(5)

P _ (1)*//(71): <£>r
Po Ty Po

where y = C,/C, and py, Tp, po are constants.

ENTROPY

There exists a variable of state, the entropy s. If heat is added to a system, the
change in entropy between the intial and final equilibrium states will be
given by

qu

SBp— S84 =
4 T

where the integral is evaluated for a reversible process.

SECOND LAW

The second law of thermodynamics states that for any spontaneous process
the entropy change is positive or zero. That is,

B

dq
Sp— 84 2> -
4 T
For a calorically perfect gas it follows that

Rlog£

T
s—soszlog?o— P

T
=C, logT—FRlog%
0
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CANONICAL EQUATIONS OF STATE

The heat-addition term in the first law may be eliminated in favor of the
entropy, yielding an equation which involves variables of state only. From
this the following identities may be established:

Oe Oe
(a)f g (%>f -
Oh Oh
(a),: r (a?): v

RECIPROCITY RELATIONS

By considering s to be a function of p and 7, the following reciprocity rela-
tions follow:
Os 1 0h Os 1 (Oh .
or TOT op T \Op
From these reciprocity relations the following equation is obtained which
relates the caloric and thermal equations of state:
Oh
oh_ _ g
Oop oT

Similarly, by considering s to be a function of v and 7, the following recipro-
city relations are obtained:

Os _106e 0s_1(oe
or Tor ov T\ow ' P

From these, the relation between the caloric and thermal equations of state is
found to be
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Ackeret’s theory, 478—483
Airfoil

circular-arc, 126131

flat plate, 118—121

in subsonic flow, 476—478

in supersonic flow, 478—483

Joukowski, 131-133

symmetrical Joukowski, 121-126
Aperture, flow through, 139-146
Apparent mass, 195-196

Beating, 245

Bernoulli constant, 61

Bernoulli equation, 59-61, 71
Bessel’s equation, 234

Bessel’s function, 234-236

Blasius’ integral laws, 99-103
Blasius solution, 320-325

Body, blunt nosed, 174-176
Boundary conditions, 37-38,70, 398

Boundary layer, 247, 313-359
equations, 316-320, 367-370
separation, 351-354
stability, 354-359
thickness, 315-316, 368

Boussinesq approximation, 364-365

Buoyancy, 363, 385

Camber, 126, 131
Capillary waves, 212
Cauchy-Riemann equations, 77, 511
Celerity, 210
Channel

convergent, 276-279, 332-334

divergent, 276279

with 90° bend, 157158

with obstacle, 159

with source, 136-139

with step, 159
Characteristics, 432
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Choking, 453
Chord, 122-123
Circular-arc airfoil, 126-131
Circulation, 46—47
Complex potential, 77-78, 217-220,
225
Complex velocity, 77-80, 108
Conduit
circular, 258-259
elliptic, 259, 283
triangular, 283-284
Constitutive equations, 27-30
Continuity equation, 13
Continuum approximation, 4—6
Contraction coefficient, 142
Control volume, 9
Convection
forced, 364
natural, 364
thermal, 365-367
Converging channel, 276-279, 332-334
Couette flow, 254-257
general, 256
plane, 256
Crocco’s equation, 61-65
Cylinder
circular, 91-98,153-155, 306-309
force acting on, 103—104
moment acting on, 104-105
rotating, 259-262, 284
elliptic, 113-117
Cylindrical vessels, 232-236

D’Alembert’s paradox, 184—188
Deep liquids, 208
Dispersion, 210
Displacement thickness, 315
Dissipation function, 34, 39
Diverging channel, 276-279
Doublet, 88-91, 172-174

force due to, 191-192

in Stokes approximation, 291-293
Drag, form, 188
Drag coefficient for sphere, 306
Dynamic boundary condition, 203,

205,211

Index

Edge, flow around, 87-88
Einstein summation convention, 8
Ellipse, 113-117
Elliptic conduit, 259, 283
Energy
conservation of, 18-22
equation, 22, 33-35, 396-398
internal, 19
kinetic, 19
Enthalpy, 37
stagnation, 454
Entropy, 62, 413,427
Euler equations, 33, 69
Eulerian coordinates, 6—7
Euler’s theorem, 297
Expansion coefficient, 366

Falkner-Skan solutions, 325-329
Fanno line, 453,459
Flat plate
airfoil, 118-121
impulsively moved, 262-266
oscillating, 266—269
vertical, 133-136, 370-375
Flow net, 77
Force
on circular cylinder, 103-104, 153,
154
produced by singularity, 153, 154
on vertical flat plate, 152
Form drag, 188
Fourier integral, 388

Gauss’ theorem, 496, 504
Grashof number, 375
Gravity waves (see Waves)

Heat, line source of, 375-381
Heat, point source of, 381-385,
390-392

Helmholtz

theorems, 49, 56

instability, 241
Hiemenz flow, 271-276
Hodograph plane, 141, 146
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Horizontal layer, 385-390
Hydrodynamics, 70
equations of, 70

Incompressible fluid, 14-15
Influence coefficients, 452
Interface

wave reflection at, 439—442

wave refraction at, 439-442
Inviscid fluid, 33
Irrotational flow, 48,462-463
Irrotationality, 74
Isentropic flow, 65

relations, 454-455
Isothermal surface, 370-375
Isotropy, 28

Janzen-Rayleigh expansion, 464-466
Joukowski airfoil, 131-133
symmetric, 121-126

Karman-Pohlhausen approximation,
342-351

Kelvin’s theorem, 56—61

Kinematic boundary condition, 202,
205, 238

Kinetic energy, 192—-195

Kutta condition, 118-121

Kutta-Joukowski law, 104

Lagrangian coordinates, 6—7
Laplacian, 498
Legendre polynomials, 167-168
Legendre’s equation, 167
Legendre’s function, 167
Length scale
macroscopic, 6
microscopic, 6
Lift coefficient, 121
Liquids
deep, 208, 213
shallow, 209, 213-217

Mach
number, 413,417
wave, 422

523

Macroscopic length scale, 6
Magnetohydrodynamics, 36
Mass

conservation of, 12—15

apparent, 195-196
Matched asymptotic expansions, 310
Material derivative, 7-8
Meyer relation, 415
Microscopic length scale, 6
Momentum

conservation of, 15-18

integral, 337, 339, 340-342

thickness, 316

Natural convection, 364
Navier-Stokes equations, 32—-33
Newtonian fluid, 27, 30
Nonadiabatic flows, 449-454
Nozzles, 455-457

Nusselt number, 375

Orr-Sommerfeld equation, 357
Oseen approximation, 309-310

Particle paths, 220-224, 225-227
Pathlines, 43-45
Perturbation theory, 466—468
Piston problem, 443-444
Pohlhausen, 342
Poiseuille flow, 257-259
Porous wall, 279-282
Potential
complex, 77-78, 217-220, 225
energy, 246
flows, 70-71
Prandtl Glauert rule, 476-478
Prandt-Meyer
fan, 484
flow, 483-486
function, 486
Prandtl relation, 417
Pressure coefficient, 468—470
Propagation speed
of internal wave, 400-404, 404-409
of surface waves, 206-210, 212, 241
Pulsating flow, 269-271
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Rankine-Hugoniot equations,409-412
Rankine solids, 182-184
Rayleigh

instability, 241

line, 453,460

number, 389

critical value, 390

Reciprocity relations, 426
Rectangular vessels, 228-232
Residue theorem, 513
Reynolds’ transport theorem, 9-12
Riemannn invariants, 432
Riemann sheets, 113
Rotating cylinder, 259-262
Rotational flow, 48
Rotlet, 293-298

moment due to, 297-298

Schwarz-Christoffel transformation,
133-136
Sector flow, 85-87
Shallow liquids, 209, 213-217
Shock tube
finite-strength, 445-449
weak, 435-437
Shock wave, 409
attached, 426
detached, 426
normal, 410, 413-416, 416419
oblique, 419-426
strong, 424
weak, 424
Similarity
solutions, 263, 371, 377, 383
variable, 264
Singular perturbation, 309
Singularity, 513
force produced by, 153, 154
Sink, 84
Small-perturbation theory, 466-468
Sound, speed of, 402—-403
Source, 82-83,108-109, 170-172
in channel, 136-139
line-distributed, 177-179
Sources, infinite array of, 137

Index

Sphere, 176-177
apparent mass of, 196
force acting on, 305
moving, 200
near a doublet, 198
rotating, 303-304, 311
uniform flow past, 3-4-306
Stagnation enthalpy, 64
Stagnation point, 95-96, 118-119
Stagnation-point flow, 271-276, 332
Stall, 125,133, 351
Standing waves, 224225, 225-227
Stokes’
approximation, 289-291
draglaw, 305
equations, 291
first problem, 262-266
paradox, 308
relation, 32
second problem, 266-269
stream function, 163-165, 196
theorem, 504
Stokeslet, 298-303
force due to, 303
Streaklines, 45-46
Stream
filament, 48
function, 74-77,163-165
tube, 48
Streamlines, 41-43
Supersonic flow
Ackeret’s theory for, 478—483
around a corner, 483-486
over a wave-shaped wall, 470-476
Surface tension, 210
waves caused by, 212-213
wave propagation due to, 210-213

Taylor instability, 242
Temperature, stagnation, 454
Tensor,
deformation rate, 26
isotropic, 503
rate-of-rotation, 26
rate-of-shearing, 26
shear stress, 506, 507,509
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[Tensor]
stress, 27
Thermodynamics, 516—520
first law of, 18, 516517
second law of, 519
zeroth law of|, 516
Thickness
boundary layer, 315
displacement, 315-316
momentum, 316
Transformation
conformal, 105-110
Joukowski, 110-113
Travelling waves, 206-210, 220-224

Uniform flow, 80-82,168-170, 291
Uniform rectilinear flow, 80

Velocity

complex, 77-80,109-110

potential, 61,71,162-163
Viscoelastic fluids, 27
Viscosity

bulk, 31

dynamic, 30

kinematic, 31

Newton’s law of, 30

second coefficient of, 31

525

Volume, control, 9
Vortex, 82-85,109-110
filament, 49, 51
free, 85
line, 49-51, 286
tube, 49
Vorticity, 46—-48
equation of, 65-66

Wall
reflection of waves from, 437-439
wave-shaped, 470-476
Wave drag, 475,481
Waves
at an interface, 236-242
capillary, 212
general, 202-204
in cylindrical vessels, 232-236
in rectangular vessels, 228-232
reflected from an interface, 439—442
refracted from an interface, 439-442
shallow liquid, 213-217
small-amplitude plane, 204-206
standing, 224-225,225-227
travelling, 217-220, 220-224
weak, in a gas, 430-434
Wedge, flow over, 329-331
Whitehead’s paradox, 309
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