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Preface∗

The subject of this book is Semi-Infinite Algebra, or more specifically, Semi-Infinite
Homological Algebra. The term “semi-infinite” is loosely associated with objects
that can be viewed as extending in both a “positive” and a “negative” direction,
with some natural position in between, perhaps defined up to a “finite” movement.
Geometrically, this would mean an infinite-dimensional variety with a natural
class of “semi-infinite” cycles or subvarieties, having always a finite codimension
in each other, but infinite dimension and codimension in the whole variety [37].
(For further instances of semi-infinite mathematics see, e.g., [38] and [57], and
references below.)

Examples of algebraic objects of the semi-infinite type range from certain
infinite-dimensional Lie algebras to locally compact totally disconnected topologi-
cal groups to ind-schemes of ind-infinite type to discrete valuation fields. From an
abstract point of view, these are ind-pro-objects in various categories, often en-
dowed with additional structures. One contribution we make in this monograph is
the demonstration of another class of algebraic objects that should be thought of
as “semi-infinite”, even though they do not at first glance look quite similar to the
ones in the above list. These are semialgebras over coalgebras, or more generally
over corings – the associative algebraic structures of semi-infinite nature.

The subject lies on the border of Homological Algebra with Representation
Theory, and the introduction of semialgebras into it provides an additional link
with the theory of corings [23], as the semialgebras are the natural objects dual to
corings. The author’s main interests belong to Homological Algebra, and so the
main body of the monograph consists of the formal development of the homological
theory of corings and semialgebras, while the representation-theoretic (and other)
examples and applications are relegated to appendices.

One such application worth mentioning here is related to the duality between
complexes of representations of an infinite-dimensional Lie algebra with the com-
plementary central charges, e.g., c and 26 − c for the Virasoro algebra [39, 77].
We interpret it as a particular case of a very general homological phenomenon
related to coalgebras, which we call the comodule-contramodule correspondence.
The latter is a coalgebra version of the Serre–Grothendieck duality – covariant,
noncommutative, and not depending on any finiteness assumptions (the coalge-
bra C itself plays the role of the dualizing complex; cf. [65, 71]). This allows us
to formulate the duality for infinite-dimensional Lie algebra representations as a
(covariant) equivalence of triangulated categories.

On a less ambitious level, with the formal neighborhood of a closed subgroup
in an algebraic group one can associate a semialgebra of (roughly speaking) dis-

∗What follows is very speculative and should be taken with a grain of salt.
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tributions on it, and the category of Harish-Chandra modules over an algebraic
Harish-Chandra pair is the category of semimodules over this semialgebra. For
further applications to Representation Theory, see [16], [17], and [45].

Another important area that Semi-Infinite Algebra and Geometry are related
to is Mathematical Physics. The author of this monograph stands at the receiving
end of a long chain of interpretative work through which the ideas originating in
the interaction of Mathematics with Quantum Field Theory or String Theory are
transferred to the heart of Algebra. We are not in a position to comment here
on the possibilities of applications of the content of this book to Mathematical
Physics, so we will restrict ourselves to a couple of references and some very
general remarks. The semi-infinite homology of Lie algebras are closely related
to what the physicists call the BRST construction [10, 11]; for a discussion of
the significance of the semi-infinite homology in String Theory, see [41] and the
introduction to [42].

The field of functions on the formal circle, which is the field of Laurent power
series, is a very simple example of a semi-infinite algebraic object; and much more
complicated algebraic or geometric objects built on the basis of the formal circle
often have very visible semi-infinite structures. This includes the Virasoro and
affine Kac-Moody Lie algebras, the varieties [58] and groups of formal loops, the
semi-infinite flag variety [37], etc. The formal circle is obviously important for
Conformal Field Theory [12], hence the significance of such objects of study as the
semi-infinite homology [10, 40], the semi-infinite de Rham complex [58, 8], or the
chiral differential operators [10, 59] in Mathematical Physics.

Things semi-infinite play a role in Class Field Theory [83] and the Langlands
Program [11, 40] for the very same reason. A much more detailed discussion of the
links between the semi-infinite cohomology and various other mathematical and
physical disciplines can be found in the introduction to [84].

Another class of algebraic objects prominently featured in this monograph is
that of contramodules. Their definition, introduced originally in the case of coalge-
bras or corings [33], can be extended to certain topological rings, topological Lie
algebras, certain topological groups . . . These are modules with infinite summa-
tion operations, but of the kind that cannot be interpreted as any sort of limit
with respect to a topology. Here one finds an approach to the infinite summation
entirely different from the one most common to Analysis.

Typically, for an abelian category of “discrete”, “smooth”, or “torsion” mod-
ules there is an accompanying abelian category of contramodules. The latter con-
tains all kinds of objects “dual” to the objects of the former, and some other ob-
jects in addition. For example, the category of “weakly l-complete abelian groups”
appearing in the continuous étale cohomology theory [54] is simply the category
of contramodules over the l-adic integers. While not “semi-infinite” in themselves,
contramodules always come up whenever one wishes to pass from a semi-infinite
homology to a semi-infinite cohomology theory.
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One area where our approach is inspired by, still essentially different from,
the classical one is Relative Homological Algebra. While the classical theory [47,
33, 80, 35] emphasizes relative derived functors of nonexact functors that may
be quite conventional and not necessarily “relative” in themselves, here we are
mainly interested in absolute derived functors, but the nonexact functors that we
derive and the categories where they are defined are essentially relative by their
nature. We always want our derived functors to assign long exact sequences of
cohomology to arbitrary short exact sequences of complexes in the arguments, not
only to short exact sequences that are split over some base. Still the base (or even
two bases, one over the other) are built into the definitions of the categories and
functors we work with.

One thing we cannot pretend to explain, still cannot avoid mentioning here,
are the exotic derived categories. These are variations on the theme of the un-
bounded derived category. Their names are the (conventional unbounded) derived,
the coderived, the contraderived, and the mixed, or semiderived categories. His-
torically, these first occurred in the derived nonhomogeneous Koszul duality the-
ory [61], but from a wider point of view, the coderived and contraderived categories
appear to be intrinsic to the comodules and contramodules (while occasionally use-
ful for modules, too). For a definitive treatment of the exotic derived categories
and their role in Koszul duality, we refer the reader to the long paper [76]. As to
the nonhomogeneous Koszul duality itself, it is developed and used in this book
as a strong technical tool.

An object of the contraderived category can be thought of as a complex
having, in addition to the conventional cohomology at finite degrees, some kind of
“cohomology in the degree +∞”. Analogously, a complex in the coderived cate-
gory can be viewed as having a “cohomology in the degree −∞”. This is essential,
in particular, for the construction of the comodule-contramodule correspondence,
as the latter can well transform irreducible modules into acyclic complexes (i.e.,
those with no cohomology anywhere but “at infinity”) and back. For example, an
acyclic, but nontrivial object in the contraderived category of contramodules can
be represented by an acyclic, unbounded complex of projective contramodules,
and the latter thought of as a “left projective resolution of something living in
the degree +∞”.

We also propose a very simple, bordering on self-evident, still apparently
not widely known, approach to derived functors of two arguments, which al-
lows us to obtain double-sided derived functors for free. It wouldn’t get one too
far without the exotic derived categories, though. The concrete double-sided de-
rived functors we are interested in are the SemiExt and SemiTor over semias-
sociative semialgebras, and the semi-infinite (co)homology of Tate Lie algebras
and locally compact totally disconnected topological groups. The semimodule-
semicontramodule correspondence connects these with the more conventional one-
sided Ext and CtrTor.
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The functors to be derived are the semitensor product and semihomomor-
phisms in the semiassociative case, and the semiinvariants and semicontrainvari-
ants in the Lie algebra or topological group case. These neither left, nor right
exact functors are naturally associated with certain semi-infinite algebraic struc-
tures, and particularly with semialgebras. Still they are nontrivial enough even for
finite-dimensional Lie algebras and finite groups.

To end these preparatory notes, let us say a few words about the state of
the subject after this monograph. It appears that the question of defining the
semi-infinite homology and cohomology generally, and in the case of associative
algebraic structures specifically, has been now worked out and understood to a
very significant extent. Compared to this development, our knowledge of the ways
of computing the semi-infinite cohomology is next to nonexistent outside of the
classical Lie algebra case. The only example where the semi-infinite cohomology
of associative algebras has been computed as of now is that of the small quantum
group with its triangular decomposition [4, 17]. The methods used for this
computation have so far resisted, essentially, all attempts of transfer to other
situations or generalization. Computing the semi-infinite cohomology remains a
challenge for future researchers to take on.

It is our special pleasure to finish these most cursory remarks with a reference
to B. Feigin’s paper [36] that introduced the semi-infinite homology and the very
term semi-infinite.



Introduction

This monograph grew out of the author’s attempts to understand the definitions
of semi-infinite (co)homology of associative algebras that had been proposed in
the literature and particularly in the works of S. Arkhipov [2, 3] (see also [17, 79]).
Roughly speaking, the semi-infinite cohomology is defined for a Lie or associative
algebra-like object which is split in two halves; the semi-infinite cohomology has
the features of a homology theory (left derived functor) along one half of the
variables and a cohomology theory (right derived functor) along the other half.

In the Lie algebra case, the splitting in two halves only has to be chosen up to
a finite-dimensional space; in particular, the homology of a finite-dimensional Lie
algebra only differs from its cohomology by a shift of the homological degree and
a twist of the module of coefficients. So one can define the semi-infinite homology
of a Tate (locally linearly compact) Lie algebra [10] (see also [5]); it depends, to be
precise, on the choice of a compact open vector subspace in the Lie algebra, but
when the subspace changes it undergoes only a dimensional shift and a determinan-
tal twist. For Lie superalgebras already, there is no such shift/twist phenomenon,
and the dependence on the choice of a compact open subspace or subalgebra is
very substantial [10]. Let us emphasize that what is often called the “semi-infinite
cohomology” of Lie algebras should be thought of as their semi-infinite homology,
from our point of view. What we call the semi-infinite cohomology of Tate Lie
algebras is a different and dual functor, defined in this book (see Appendix D).

In the associative case, people usually considered an algebra A with two sub-
algebras N and B such that N⊗B � A and there is a grading on A for which N is
positively graded and locally finite-dimensional, while B is nonpositively graded.
To this data, under certain assumptions, one assigns another graded algebra A#

with the same subalgebras N and B such that B ⊗ N � A. An attempt to un-
derstand this construction was the very starting point of the present research.
We show that both the grading and the second subalgebra B are redundant; all
one needs is an associative algebra R, a subalgebra K in R, and a coalgebra C

dual to K. Certain flatness/projectivity and “integrability” conditions have to be
imposed on this data. If they are satisfied, the tensor product S = C ⊗K R has a
semialgebra structure and all the machinery described below can be applied.

Furthermore, we propose the following general setting for semi-infinite
(co)homology of associative algebraic structures. Let C be a coalgebra over
a field k. Then C-C-bicomodules form a tensor category with respect to the
operation of cotensor product over C; the categories of left and right C-comodules
are module categories over this tensor category. Let S be a ring object in this
tensor category; we call such an object a semialgebra over C (due to it being
“an algebra in half of the variables and a coalgebra in the other half”). One
can consider module objects over S in the module categories of left and right
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C-comodules; these are called left and right S-semimodules. The categories of left
and right semimodules are abelian if S is an injective right and left C-comodule,
respectively; let us suppose that it is. There is a natural operation of semitensor
product of a right semimodule and a left semimodule over S, denoted by

♦S : simod-S × S-simod −−→ k-vect;

it can be thought of as a mixture of the cotensor product �C over C and the tensor
product in the direction of S relative to C. This functor is neither left, nor right
exact. Its double-sided derived functor SemiTor is suggested as the associative
version of semi-infinite homology theory.

Before describing the functor SemiHom (whose derived functor SemiExt pro-
vides the associative version of semi-infinite cohomology), let us discuss a little
bit of abstract nonsense. Let E be an (associative, but noncommutative) tensor
category, M be a left module category over it, N be a right module category, and
K be a category such that there is a pairing between the module categories M and
N over E taking values in K. This means that there are multiplication functors

E× E −→ E, E×M −→ M, N× E −→ N, and N×M −→ K

and associativity constraints for ternary multiplications E×E×E→ E, E×E×M→
M, N × E × E → N, and N × E ×M → K satisfying the appropriate pentagonal
diagram equations. Let A be a ring object in E. Then one can consider the category
AEA of A-A-bimodules in E, the category AM of left A-modules in M, and the
category NA of right A-modules in N. If the categories E, M, N, and K are abelian,
there are functors of tensor product over A, making AEA into a tensor category,
AM and NA into left and right module categories over AEA, and providing a pairing

NA × AM −−→ K.

These new tensor structures are associative whenever the original multiplication
functors were right exact.

Suppose that we want to iterate this construction, considering a coring ob-
ject C in AEA, the categories of C-C-bicomodules in AEA and C-comodules in
AM and NA, etc. Since the functors of tensor product over A are not left exact
in general, the cotensor products over C will be only associative under certain
(co)flatness conditions. If one makes the next step and considers a ring object S
in the category of C-C-bicomodules in AEA, one discovers that the functors of
tensor products over S are only partially defined. Considering partially defined
tensor structures, one can indeed build this tower of module-comodule categories
and tensor-cotensor products in them as high as one wishes. In this book, we re-
strict ourselves to 3-story towers of semialgebras over corings over (ordinary) rings,
mainly because we don’t know how to define unbounded (co)derived categories of
(co)modules for any higher levels (see below).
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Now let us introduce contramodules. The functor (V,W ) �−→ Homk(V,W )
makes the category opposite to the category of vector spaces into a module cate-
gory over the tensor category of vector spaces. A contramodule over an algebra R
or a coalgebra C is an object of the category opposite to the category of modules or
comodules in k-vectop over the ring object R or the coring object C in k-vect. One
can easily see that an R-contramodule is just an R-module, while the vector space
of k-linear maps from a C-comodule to a k-vector space provides a typical example
of C-contramodule. Setting E = M = k-vect and N = K = k-vectop in the above con-
struction, one obtains a right module category C-contraop over the tensor category
C-comod-C together with a pairing Cohomop

C : C-comod× C-contraop −→ k-vectop.
Given a semialgebra S over C, one can apply the construction again and obtain
the category of S-semicontramodules and the functor

SemiHomop
S : S-simod × S-sicntrop −−→ k-vectop

assigning a vector space to an S-semimodule and an S-semicontramodule. Though
comodules and contramodules are quite different, there is a strong duality-analogy
between them on the one hand, and an equivalence of their appropriately defined
(exotic) unbounded derived categories on the other hand (see below).

Let us explain how we define double-sided derived functors. While the author
knows of no natural way to define a derived functor of one argument that would
not be either a left or a right derived functor, such a definition of derived functor
of two arguments does exist in the balanced case. Namely, let Θ: H1×H2 −→ K be
a functor and Si ⊂ Hi be localizing classes of morphisms in categories H1 and H2.
We would like to define a derived functor

DΘ: H1[S−1
1 ]× H2[S−1

2 ] −−→ K.

Let F1 be the full subcategory of “flat objects in H1 relative to Θ” consisting of
all objects F ∈ H1 such that the morphism Θ(F, s) is an isomorphism in K for any
morphism s ∈ S2. Let F2 be the full subcategory in H2 defined in the analogous
way. Suppose that the natural functors

Fi[(Si ∩ Fi)−1] −−→ Hi[S−1
i ]

are equivalences of categories. Then the restriction of the functor Θ to the sub-
category F1 × H2 of the Cartesian product H1 × H2 factorizes through F1[(S1 ∩
F1)−1]×H2[S−1

2 ] and therefore defines a functor on the category H1[S−1
1 ]×H2[S−1

2 ].
The same derived functor can be obtained by restricting the functor Θ to the sub-
category H1 × F2 of H1 ×H2. This construction can be even extended to partially
defined functors of two arguments Θ (see 2.7).

For this definition of the double-sided derived functor to work properly, the
localizing classes in the homotopy categories have to be carefully chosen (see 0.2.3).
That is why our derived functors SemiTor and SemiExt are not defined on the con-
ventional derived categories of semimodules and semicontramodules, but on their
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semiderived categories. The semiderived category of S-semi(contra)modules is a
mixture of the usual derived category in the module direction (relative to C) and
the co/contraderived category in the C-co/contramodule direction. More precisely,
one defines the semiderived category of S-semimodules as the quotient category of
the homotopy category of complexes of S-semimodules by the thick subcategory
formed by those complexes that, considered as complexes of C-comodules, vanish
in the coderived category of C-comodules. The coderived category of C-comodules
is equivalent to the homotopy category of complexes of injective C-comodules, and
analogously, the contraderived category of C-contramodules is equivalent to the
homotopy category of complexes of projective C-contramodules. So the distinc-
tion between the derived and co/contra/semiderived categories is only relevant for
unbounded complexes and only in the case of infinite homological dimension.

A notable attempt to develop a general theory of semi-infinite homological
algebra was undertaken by A. Voronov in [84]. Let us point out the differences
between our approaches. First of all, Voronov only considers the semi-infinite
homology of Lie algebras, while we work with associative algebraic structures.
Secondly, Voronov constructs a double-sided derived functor of a functor of one
argument and the choice of a class of resolutions becomes an additional ingredi-
ent of his construction, while we define double-sided derived functors of functors
of two arguments and the conditions imposed on resolutions are determined by
the functors themselves. Thirdly, Voronov works with graded Lie algebras and his
functor of semivariants is obtained as the image of the invariants with respect to
one half of the Lie algebra in the coinvariants with respect to the other half, while
we consider ungraded Tate Lie algebras with only one subalgebra chosen, and our
functor of semiinvariants is constructed in a much more delicate way (see below).
Finally, no exotic derived categories appear in [84].

Another approach to the semi-infinite cohomology (but not homology)
was developed in [17]. The definition of the semi-infinite cohomology of finite-
dimensional associative algebras proposed in [17] agrees with the one given in this
book when the algebra has a grading satisfying the restrictive conditions under
which the main argument of [17] applies, but is not readily comparable to our
definition in the general case. Indeed, for finite-dimensional algebras and modules
the object SemiExtS(M,P), being dual to the object SemiTorS(P∗,M), is a
complex of profinite-dimensional (compact) vector spaces; while the semi-infinite
cohomology as defined in [17] are discrete vector spaces. However, there is a
natural map from the latter to the former.

The coderived category of C-comodules and the contraderived category of
C-contramodules turn out to be naturally equivalent. This equivalence can be
thought of as a covariant analogue of the contravariant functor R HomR(−, R) :
D(R-mod) −→ D(mod-R) on the derived category of modules over a ring R.
Moreover, there is a natural equivalence between the semiderived categories of
S-semimodules and S-semicontramodules. The functors RΨS : Dsi(S-simod) −→
Dsi(S-sicntr) and LΦS : Dsi(S-sicntr) −→ Dsi(S-simod) providing this equivalence
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are defined in terms of the spaces of homomorphisms in the category of S-semi-
modules and the operation of contratensor product of an S-semimodule and an
S-semicontramodule. The latter is a right exact functor which resembles the func-
tor of tensor product of modules over a ring. This equivalence of triangulated
categories transforms the functor SemiExtS into the functors Ext in either of the
semiderived categories (and the functor SemiTorS into the left derived functor
CtrTorS of the functor of contratensor product). We call this kind of equiva-
lence of triangulated categories the comodule-contramodule correspondence or the
semimodule-semicontramodule correspondence.

The duality-analogy between semimodules and semicontramodules partly
breaks down when one passes from homological algebra to the structure theory.
Comodules over a coalgebra over a field are simplistic creatures; contramodules
are quite a bit more complicated, though still much simpler than modules over a
ring, the structure theory of a coalgebra over a field being much simpler than that
of an algebra or a ring. We construct some relevant counterexamples. There is an
analogue of Nakayama’s Lemma for contramodules, a description of contramod-
ules over an infinite direct sum of coalgebras, etc. These results can be extended to
contramodules over certain topological rings (much more general than the topo-
logical algebras dual to coalgebras). Contramodules over topological Lie algebras
can also be defined; and an isomorphism of the categories of contramodules over a
topological Lie algebra and its topological enveloping algebra can be proven under
certain assumptions.

A coring C over a ring A is a coring object in the tensor category of bimod-
ules over A. (In a different terminology, this is called a coalgebroid .) A semialgebra
S over a coring C is a ring object in the tensor category of bicomodules over C;
for this definition to make sense, certain (co)flatness conditions have to be im-
posed on C and S to make the cotensor product of bicomodules well-defined and
associative. Throughout this monograph (with the exception of Chapter 0 and the
appendices) we work with corings C over noncommutative rings A and semialge-
bras S over C. Mostly we have to assume that the ring A has a finite homological
dimension – for a number of reasons, the most important one being that otherwise
we don’t know how to define appropriately the unbounded (co)derived category of
C-comodules. No assumptions about the homological dimension of the coring and
the semialgebra are made. Besides, we mostly have to suppose that C is a flat left
and right A-module and S is a coflat left and right C-comodule, and even certain
(co)projectivity conditions have to be imposed in order to work with contramod-
ules.

All kinds of relative adjustness (flatness, projectivity, injectivity) properties
are considered in this monograph, but their definitions differ from the ones typical
of the classical relative homological algebra in one important respect. Specifically,
we define relative adjustness in terms of complexes or exact triples adjusted over
the base, rather than those split over the base. Our relative conditions tend to be
weaker than the ones defined in the classical manner, more delicate, and better
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behaved with respect to the exact sequences that do not split over the base. When
we need to consider relative adjustness properties defined in ways more resem-
bling the classical approach, we insert the word “quite” into our terms for such
properties.

Nonhomogeneous quadratic duality [73, 75] establishes a correspondence be-
tween nonhomogeneous Koszul algebras and Koszul CDG-algebras. This duality
has a relative version with a base ring, assigning, e.g., the de Rham DG-algebra to
the filtered algebra of differential operators (the base ring being the ring of func-
tions, in this case). For a number of reasons, it is advisable to avoid passing to the
dual vector space/module in this construction, working with CDG-coalgebras in-
stead of CDG-algebras; in particular, this allows one to include infinitely (co)gen-
erated Koszul algebras and coalgebras [74, 76]. In the relative case, this means
considering the graded coring of polyvector fields, rather than the graded algebra
of differential forms, as the dual object to the differential operators. The rele-
vant additional structure on the polyvector fields (corresponding to the de Rham
differential on the differential forms) is called a quasi-differential structure. An-
other important version of relative nonhomogeneous quadratic duality uses base
coalgebras in place of base rings. This situation is simpler in some respects, since
one still obtains CDG-coalgebras as the dual objects. As a generalization of these
two dualities, one can consider nonhomogeneous Koszul semialgebras over corings
and assign Koszul quasi-differential corings over corings to them. The Poincaré–
Birkhoff–Witt theorem for Koszul semialgebras claims that this correspondence is
an equivalence of categories.

The relative nonhomogeneous Koszul duality theorem provides an equiva-
lence between the semiderived category of semimodules over a nonhomogeneous
Koszul semialgebra and the coderived category of quasi-differential comodules over
the corresponding quasi-differential coring, and an analogous equivalence between
the semiderived category of semicontramodules and the contraderived category of
quasi-differential contramodules. In particular, for a smooth algebraic variety M
and a vector bundle E over M with a global connection ∇, there is an equivalence
between the derived category of modules over the algebra/sheaf of differential op-
erators on M acting in the sections of E and the coderived category (and also the
contraderived category, when M is affine) of CDG-modules over the CDG-algebra
Ω(M,End(E)) of differential forms with coefficients in the vector bundle End(E).
The differential d in Ω(M,End(E)) is the de Rham differential depending on ∇
and the curvature element h ∈ Ω2(M,End(E)) is the curvature of ∇.

Natural examples of semialgebras and semimodules come from Lie theory.
Namely, let (g, H) be an algebraic Harish-Chandra pair, i.e., g is a Lie algebra
over a field k and H is a smooth affine algebraic group over k corresponding to a
finite-dimensional Lie subalgebra h ⊂ g. Let C(H) be the coalgebra of functions
on H . Then the category O(g, H) of Harish-Chandra modules is isomorphic to the
category of left semimodules over the semialgebra S(g, H) = U(g) ⊗U(h) C(H).
If the group H is unimodular, the semialgebra S = S(g, H) has an involutive
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anti-automorphism. In general, the opposite semialgebras S and Sop are Morita-
equivalent in some sense; more precisely, there is a canonical left S⊗kS-semimodule
E = E(g, H) such that the semitensor product with E provides an equivalence be-
tween the categories of right and left S-semimodules. Geometrically, E(g, H) is the
bimodule of distributions on an algebraic groupG supported in its subgroupH and
regular along H . So the semitensor product of S-semimodules can be considered
as a functor on the category O(g, H) × O(g, H). This functor factorizes through
the functor of tensor product in the category O(g, H) and is closely related to the
functor of (g, H)-semiinvariants M �−→Mg,H on the category of (g, H)-modules.
The semiinvariants are a mixture of invariants over H and coinvariants along g/h.

More generally, let (g, H) be a Tate Harish-Chandra pair, that is g is a Tate
Lie algebra and H is an affine proalgebraic group corresponding to a compact
open subalgebra h ⊂ g. Let κ : (g′, H) −→ (g, H) be a morphism of Tate Harish-
Chandra pairs with the same proalgebraic group H such that the Lie algebra map
g′ −→ g is a central extension whose kernel is identified with k; assume also that
H acts trivially in k ⊂ g′. One example of such a central extension of Tate Harish-
Chandra pairs comes from the canonical central extension g∼ of g; we denote the
corresponding morphism by κ0. There is a semialgebra

Sκ(g, H) = Uκ(g)⊗U(h) C(H)

over the coalgebra C(H) such that the category of left semimodules over Sκ =
Sκ(g, H) is isomorphic to the category of discrete (g′, H)-modules where the unit
central element of g′ acts by the identity (Harish-Chandra modules with the cen-
tral charge κ). Left semicontramodules over the opposite semialgebra Sop

κ
can be

described in terms of compatible structures of g′-contramodules and C(H)-contra-
modules. These are called Harish-Chandra contramodules with the central charge
−κ; the dual vector spaces to Harish-Chandra modules with the central charge κ

can be found among them.
The semialgebras Sκ and S

op
−κ0−κ

are naturally isomorphic, at least, when the
pairing U(h)⊗k C(H) −→ k is nondegenerate in C(H). In view of the semimodule-
semicontramodule correspondence theorem, it follows that the semiderived cate-
gories of Harish-Chandra modules with the central charge κ and Harish-Chandra
contramodules with the central charge κ+κ0 over (g, H) are naturally equivalent.
So the well-known phenomenon of correspondence between complexes of modules
with complementary central charges over certain infinite-dimensional Lie algebras
can be formulated as an equivalence of triangulated categories using the notions
of contramodules and semiderived categories. Besides, it follows that the category
of right semimodules over Sκ is isomorphic to the category of Harish-Chandra
modules with the central charge −κ − κ0. When the proalgebraic group H is
prounipotent (and h is exactly the Lie algebra of H), the object

SemiTorS
κ (N•,M•)

of the derived category of k-vector spaces is represented by the complex of semi-
infinite forms over g with coefficients in the g∼-module N• ⊗k M•. This provides
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a comparison of our theory of SemiTor with the semi-infinite homology of Tate
Lie algebras. The semi-infinite cohomology of Lie algebras, whose coefficients are
contramodules over (the canonical central extensions of) Tate Lie algebras, is
related to SemiExt in the analogous way.

To a topological group G with an open profinite subgroup H and a com-
mutative ring k one can assign a semialgebra Sk(G,H) over the coring Ck(H) of
k-valued locally constant functions on H such that the categories of left and right
semimodules over Sk(G,H) are isomorphic to the category of smooth G-modules
over k. So the category of semimodules over Sk(G,H) does not depend on H ,
neither does the category of semicontramodules over Sk(G,H); all the semialge-
bras Sk(G,H) with a fixed G and varying H are naturally Morita equivalent. The
semiderived categories of semimodules and semicontramodules over Sk(G,H) do
depend on H essentially, however, as do the functors SemiTor and SemiExt over
Sk(G,H). These double-sided derived functors may be called the semi-infinite
(co)homology of a group with an open profinite subgroup. The semi-infinite homol-
ogy of topological groups is a mixture of the discrete group homology and the
profinite group cohomology.

Examples of corings C over commutative rings A for which the left and the
right actions of A in C are different come from the algebraic groupoids theory, and
examples of semialgebras over such corings come from Lie theory of groupoids.
Namely, let (M,H) be a smooth affine groupoid, i.e., M and H are smooth affine
algebraic varieties, there are two smooth morphisms sH , tH : H ⇒ M of source
and target, and there are unit, multiplication, and inverse element morphisms
satisfying the usual groupoid axioms. Let A = A(M) be the ring of functions
on M and C = C(H) be the ring of functions on H . Then C is a coring over A.
Moreover, suppose that (M,H) is a closed subgroupoid of a groupoid (M,G). Let
g and h be the Lie algebroids over the ring A corresponding to the groupoids
(M,G) and (M,H), and let UA(g) and UA(h) be their enveloping algebras. Then
there is a semialgebra S = SM (G,H) = UA(g)⊗UA(h)C(H) over the coring C and a
canonical left S⊗kS-semimodule E = EM (G,H) providing an equivalence between
the categories of right and left S-semimodules. The semimodule E consists of all
distributions on G twisted with the line bundle s∗G(Ω−1

M ) ⊗ t∗G(Ω−1
M ), supported

in H and regular along H (where ΩM denotes the bundle of top forms on M).
Examples of corings over noncommutative rings come from Noncommuta-

tive Geometry [62, 63]. Noncommutative stacks are represented as quotients of
noncommutative affine schemes corresponding to rings A by actions of corings C

over A. The cotensor product of C-comodules can be understood as the group of
global sections of the tensor product of a right and a left sheaf over a noncommu-
tative stack, while the tensor product of sheaves itself does not exist.

Notice that the roles of the ring and coring structures in our constructions are
not symmetric; in particular, we have to consider conventional derived categories
along the algebra variables and co/contraderived categories along the coalgebra
variables. The cause of this difference is that the tensor product of modules com-
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mutes with the infinite direct sums, but not with the infinite products. This can
be changed by passing to pro-objects; consequently one can still define versions of
derived functors Cotor and Coext over a coring C without making any homolog-
ical dimension assumptions at all by considering pro- and ind-modules (see Re-
marks 2.7 and 4.7). A problem remains to construct the comodule-contramodule
correspondence without any homological dimension assumptions on the ring A.
Here we only manage to weaken the finite homological dimension assumption to
the Gorensteinness assumption.

Algebras/coalgebras over fields and semialgebras over coalgebras over fields
are briefly discussed in Chapter 0. Semialgebras over corings and the functors
of semitensor product over them are introduced in Chapter 1, and important
constructions of flat comodules and coflat semimodules are presented there. The
derived functor SemiTor is defined in Chapter 2. Contramodules over corings and
semicontramodules over semialgebras are introduced in Chapter 3, and the derived
functor SemiExt is defined in Chapter 4. Equivalence of exotic derived categories
of comodules and contramodules is proven in Chapter 5; and the same for semi-
modules and semicontramodules is done in Chapter 6. Functors of change of ring
and coring for the categories of comodules and contramodules are introduced in
Chapter 7; functors of change of coring and semialgebra for the categories of
semimodules and semicontramodules are constructed in Chapter 8. Closed model
category structures on the categories of complexes of semimodules and semicontra-
modules are defined in Chapter 9. The construction of a semialgebra depending
on three embedded rings and a coring dual to the middle ring is considered in
Chapter 10. The Poincaré–Birkhoff–Witt theorem and the Koszul duality the-
orem for nonhomogeneous Koszul semialgebras are proven in Chapter 11. The
basic structure theory of contramodules over a coalgebra over a field is developed
in Appendix A. We compare our theory of SemiExt and SemiTor with Arkhipov’s
and Sevostyanov’s semi-infinite Ext and Tor in Appendix B. Semialgebras corre-
sponding to Harish-Chandra pairs and their Hopf algebra analogues are discussed
in Appendix C. Tate Harish-Chandra pairs are considered in Appendix D, and
the theorem of comparison with semi-infinite cohomology of Tate Lie algebras is
proven there. Semialgebras corresponding to topological groups are discussed in
Appendix E. Pairs of algebraic groupoids are considered in Appendix F.

Appendix C was written in collaboration with Dmitriy Rumynin. Appendix D
was written in collaboration with Sergey Arkhipov.

One terminological note: we will generally use the words the homotopy cat-
egory of (an additive category A) and the homotopy category of complexes of
(objects from A) as synonymous. Analogously, the homotopy category of com-
plexes (with a particular property) over A is a full subcategory of the homotopy
category of A.
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0 Preliminaries and Summary

This chapter contains some known results and some results deemed to be new,
but no proofs. Its goal is to prepare the reader for the more technically involved
constructions of the main body of the monograph (where the proofs are given).
In particular, we do not have to worry about nonassociativity of the cotensor
product and partial definition of the semitensor product here, distinguish between
the myriad of notions of absolute/relative coflatness/coprojectivity/injectivity of
comodules and analogously for contramodules, etc., because we only consider coal-
gebras over fields.

The material of Sections 0.1–0.3 roughly corresponds to that of Chapters 1–6.

0.1 Unbounded Tor and Ext

Let R be an algebra over a field k.

0.1.1 We would like to extend the familiar definition of the derived functor of
tensor product TorR : D−(mod-R)×D−(R-mod) −→ D−(k-vect) on the Cartesian
product of the derived categories of right and left R-modules bounded from above,
so as to obtain a functor on the Cartesian product of unbounded derived categories.

As always, the tensor product of a complex of right R-modules N• and a
complex of left R-modules M• is defined as the total complex of the bicomplex
N i ⊗R M j , constructed by taking infinite direct sums along the diagonals. This
provides a functor Hot(mod-R) × Hot(R-mod) −→ Hot(k-vect) on the Cartesian
product of unbounded homotopy categories of R-modules.

The most straightforward way to define the object TorR(N•,M•) of D(k-vect)
is to represent it by the total complex of the bicomplex

· · · −−→ N• ⊗k R⊗k R⊗kM• −−→ N• ⊗k R ⊗kM• −−→ N• ⊗kM•,

constructed by taking infinite direct sums along the diagonals. One can check that
this bar construction indeed defines a functor

TorR : D(mod-R)× D(R-mod) −−→ D(k-vect).

The unbounded derived functor TorR can be also defined by restricting the
functor of tensor product to appropriate subcategories of complexes adjusted to
the functor of tensor product in the unbounded homotopy categories of R-mod-
ules. Namely, let us call a complex of left R-modules M• flat if the complex of
k-vector spaces M• ⊗R N• is acyclic whenever a complex of right R-modules N•

1 L. Positselski, Homological Algebra of Semimodules and Semicontramodules, Monografie    
Matematyczne 70, DOI 10.1007/978-3-0346-0436-9_1, © Springer Basel AG 2010
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is acyclic. Not every complex of flat R-modules is a flat complex of R-modules
according to this definition.

In particular, an acyclic complex of left R-modules is flat if and only if it is
pure, i.e., it remains acyclic after taking the tensor product with any right R-mod-
ule. So an acyclic complex of flat R-modules is flat if and only if all of its modules
of cocycles are flat. On the other hand, any complex of flat R-modules bounded
from above is flat. If the ring R has a finite weak homological dimension, then any
complex of flat R-modules is flat.

For example, the acyclic complex M• of free modules over the ring of dual
numbers R = k[ε]/ε2 whose every term is equal to R and every differential is the
operator of multiplication with ε is not flat. Indeed, let N• = (· · · → k[ε/ε2] →
k→ 0→ · · · ) be a free resolution of the R-module k; then the complex N•⊗RM•

is quasi-isomorphic to k ⊗RM• and has a one-dimensional cohomology space in
every degree, even though the complex N• is acyclic.

Any complex of R-modules is quasi-isomorphic to a flat complex, and
moreover, the quotient category of the homotopy category Hotfl(R-mod) of flat
complexes of R-modules by the thick subcategory of acyclic flat complexes
Acycl(R-mod)∩Hotfl(R-mod) is equivalent to the derived category D(R-mod). This
result holds for an arbitrary ring [81], and even for an arbitrary DG-ring [60, 15].
The derived functor TorR can be defined by restricting the functor of tensor
product over R to either of the full subcategories Hot(mod-R)× Hotfl(R-mod) or
Hotfl(mod-R)× Hot(R-mod) of the category Hot(mod-R)× Hot(R-mod).

0.1.2 The functor HomR : Hot(R-mod)op × Hot(R-mod) −→ Hot(k-vect) and its
derived functor ExtR : D(R-mod)op × D(R-mod) −→ D(k-vect) need no special
definition: once the unbounded homotopy and derived categories are defined, so
are the spaces of homomorphisms in them. For any (unbounded) complexes of left
R-modules L• and M•, the total complex of the cobar bicomplex

Homk(L•,M•) −→ Homk(R ⊗k L•, M•) −→ Homk(R⊗k R⊗k L•, M•) −→ · · · ,

constructed by taking infinite direct products along the diagonals, represents the
object ExtR(L•,M•) in D(k-vect).

The unbounded derived functor ExtR can be also computed by restricting the
functor HomR to appropriate subcategories in the Cartesian product of homotopy
categories of R-modules. Let us call a complex of left R-modules L• projective if
the complex HomR(L•,M•) is acyclic for any acyclic complex of left R-modules
M•. Analogously, a complex of left R-modulesM• is called injective if the complex
HomR(L•,M•) is acyclic for any acyclic complex of left R-modules L•.

Any projective complex of R-modules is flat. Any complex of projective
R-modules bounded from above is projective, and any complex of injective R-mod-
ules bounded from below is injective. If the ring R has a finite left homological
dimension, then any complex of projective left R-modules is projective and any
complex of injective left R-modules is injective.
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A complex of R-modules is projective if and only if it belongs to the minimal
triangulated subcategory of the homotopy category of R-modules containing the
complex · · · → 0 → R → 0 → · · · and closed under infinite direct sums. Analo-
gously, a complex of R-modules is injective if and only if up to the homotopy equiv-
alence it can be obtained from the complex · · · → 0 → Homk(R, k) → 0 → · · ·
using the operations of shift, cone, and infinite direct product. The homotopy
category Hotproj(R-mod) of projective complexes of R-modules and the homo-
topy category Hotinj(R-mod) of injective complexes of R-modules are equivalent
to the unbounded derived category D(R-mod). The results mentioned in this
paragraph even hold for an arbitrary DG-ring [60, 15]. The functor ExtR can
be obtained by restricting the functor HomR to either of the full subcategories
Hotproj(R-mod)op ×Hot(R-mod) or Hot(R-mod)op ×Hotinj(R-mod) of the category
Hot(R-mod)op × Hot(R-mod).

0.1.3 The definitions of unbounded Tor and Ext in terms of (co)bar constructions
were known at least since the 1960’s. The notions of flat, projective, and injective
(unbounded) complexes of R-modules were introduced by N. Spaltenstein [81]
(who attributes the idea to J. Bernstein). Such complexes were called “K-flat”,
“K-projective”, and “K-injective” in [81]; they are often called “H-projective” or
“homotopy projective” etc. nowadays.

0.2 Coalgebras over fields; Cotor and Coext

The notion of a coalgebra over a field is obtained from that of an algebra by formal
dualization. Since any coassociative coalgebra is the union of its finite-dimensional
subcoalgebras, the category of coalgebras is anti-equivalent to the category of
profinite-dimensional algebras. There are two ways of dualizing the notion of a
module over an algebra: one can consider comodules and contramodules over a
coalgebra. Comodules can be thought of as discrete modules which are unions
of their finite-dimensional submodules, while contramodules are modules where
certain infinite summation operations are defined. Dualizing the constructions of
the tensor product of modules and the space of homomorphisms between modules,
one obtains the functors of cotensor product and cohomomorphisms. Their derived
functors are called Cotor and Coext.

0.2.1 A coassociative coalgebra with counit over a field k is a k-vector space
C endowed with a comultiplication map µC : C −→ C ⊗k C and a counit map
εC : C −→ k satisfying the equations dual to the associativity and unity equations
on the multiplication and unit maps of an associative algebra with unit. More
precisely, one should have (µC ⊗ idC) ◦ µC = (idC⊗µC) ◦ µC and (εC ⊗ idC) ◦ µC =
idC = (idC⊗εC) ◦ µC.

A left comodule M over a coalgebra C is a k-vector space endowed with a left
coaction map νM : M −→ C⊗kM satisfying the equations dual to the associativity
and unity equations on the action map of a module over an associative algebra
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with unit. More precisely, one should have (µC⊗ idM) ◦ νM = (idC⊗νM) ◦ νM and
(εC⊗ idM) ◦ νM = idM. A right comodule N over a coalgebra C is a k-vector space
endowed with a right coaction map νN : N −→ N⊗kC satisfying the coassociativity
and counity equations (νN⊗ idC)◦νN = (idN⊗µC)◦νN and (idN ⊗εC)◦νN = idN.
For example, the coalgebra C has natural structures of a left and a right comodule
over itself.

The categories of left and right C-comodules are abelian. We will denote
them by C-comod and comod-C, respectively. Both infinite direct sums and infinite
products exist in the category of C-comodules, but only infinite direct sums are
preserved by the forgetful functor C-comod −→ k-vect (while the infinite products
are not even exact in C-comod). A cofree C-comodule is a C-comodule of the form
C ⊗k V , where V is a k-vector space. The space of comodule homomorphisms
into the cofree C-comodule is described by the formula HomC(M, C ⊗k V ) �
Homk(M, V ). The category of C-comodules has enough injectives; besides, a left
C-comodule is injective if and only if it is a direct summand of a cofree C-comodule.

The cotensor product N�C M of a right C-comodule N and a left C-comodule
M is defined as the kernel of the pair of maps

(νN ⊗ idM, idN⊗νM) : N ⊗k M ⇒ N ⊗k C⊗k M.

This is the dual construction to the tensor product of a right module and a left
module over an associative algebra. There are natural isomorphisms N �C C � N

and C �C M �M. The functor of cotensor product over C is left exact.

0.2.2 The cotensor product N• �C M• of a complex of right C-comodules N• and
a complex of left C-comodules M• is defined as the total complex of the bicomplex
Ni �C Mj , constructed by taking infinite direct sums along the diagonals.

We would like to define the derived functor CotorC of the functor of cotensor
product in such a way that it could be obtained by restricting the functor �C

to appropriate subcategories of the Cartesian product of the homotopy cate-
gories Hot(comod-C) and Hot(C-comod). In addition, we would like the object
CotorC(N•,M•) of D(k-vect) to be represented by the total complex of the cobar
bicomplex

N• ⊗k M• −−→ N• ⊗k C⊗k M• −−→ N• ⊗k C⊗k C⊗k M• −−→ · · · , (1)

constructed by taking infinite direct sums along the diagonals. It turns out that
a functor CotorC with these properties does exist, but it is not defined on the
Cartesian product of conventional unbounded derived categories D(comod-C) and
D(C-comod).

For example, let C be the coalgebra dual to the algebra of dual numbers
C∗ = k[ε]/ε2, so that C-comodules are just k[ε]/ε2-modules. Let M• be the acyclic
complex of cofree C-comodules whose every term is equal to C and every differential
is the operator of multiplication with ε, and let N• be the complex of C-comod-
ules whose only nonzero term is the C-comodule k. Then the cobar complex that
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we want to compute CotorC(N•,M•) is quasi-isomorphic to the complex N• �C

M• and has a one-dimensional cohomology space in every degree, even though
M• represents a zero object in D(C-comod). Therefore, a more refined version of
unbounded derived category of C-comodules has to be considered.

A complex of left C-comodules is called coacyclic if it belongs to the minimal
triangulated subcategory of the homotopy category Hot(C-comod) containing the
total complexes of exact triples ′K• → K• → ′′K• of complexes of left C-comodules
and closed under infinite direct sums. (By the total complex of an exact triple of
complexes we mean the total complex of the corresponding bicomplex with three
rows.) Any coacyclic complex is acyclic; any acyclic complex bounded from below
is coacyclic. The complex M• from the above example is acyclic, but not coacyclic.
(Indeed, the total complex of the cobar bicomplex (1) is acyclic whenever M• is
coacyclic.) The coderived category of left C-comodules Dco(C-comod) is defined
as the quotient category of the homotopy category Hot(C-comod) by the thick
subcategory of coacyclic complexes Acyclco(C-comod).

In the same way one can define the coderived category of any abelian category
with exact functors of infinite direct sum. Over a category of finite homological
dimension, every acyclic complex belongs to the minimal triangulated subcate-
gory of the homotopy category containing the total complexes of exact triples of
complexes, even without the infinite direct sum closure.

The cotensor product N• �C M• of a complex of right C-comodules M• and
a complex of left C-comodules N• is acyclic whenever one of the complexes M•

and N• is coacyclic and the other one is a complex of injective C-comodules. Be-
sides, the coderived category Dco(C-comod) is equivalent to the homotopy category
Hot(C-comodinj) of injective C-comodules. Thus one can define the unbounded de-
rived functor

CotorC : Dco(comod-C)× Dco(C-comod) −−→ D(k-vect)

by restricting the functor of cotensor product to either of the full subcategories
Hot(comod-C)×Hot(C-comodinj) or Hot(comodinj-C)×Hot(C-comod) of the category
Hot(comod-C)× Hot(C-comod).

0.2.3 If one attempts to construct a derived functor of cotensor product on the
Cartesian product of conventional unbounded derived categories of comodules in
a way analogous to 0.1.1, the result may not look like what one expects.

Consider the example of a finite-dimensional coalgebra C dual to a Frobenius
algebra C∗ = F . Let us assume the convention that left C-comodules are left
F -modules and right C-comodules are right F -modules. Then the functor �C is
left exact and the functor ⊗F is right exact, but the difference between them is still
rather small: if either a left (co)module M , or a right (co)module N is projective-
injective, then there is a natural isomorphism N �C M � (N �C F ) ⊗F M , and
after one chooses an isomorphism between the left modules F and C, the right
modules N and N �C F will only differ by the Frobenius automorphism of the
Frobenius algebra F .
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So if one defines “coflat” complexes of C-comodules as the complexes whose
cotensor products with acyclic complexes are acyclic, then the quotient category
of the homotopy category of “coflat” complexes by the thick subcategory of acyclic
“coflat” complexes will be indeed equivalent to the derived category of comodules,
and one will be able to define a “derived functor of cotensor product over C” in this
way, but the resulting derived functor will coincide, up to the Frobenius twist, with
the functor TorF . (Indeed, any flat complex of flat modules will be “coflat”.) When
the complexes this derived functor is applied to are concentrated in degree 0, this
functor will produce a complex situated in the negative cohomological degrees,
as is characteristic of TorF , and not in the positive ones, as one would expect of
CotorC.

Likewise, if one attempts to construct a derived functor of tensor product
on the Cartesian product of coderived categories of modules in the way analogous
to 0.2.2, one will find, in the Frobenius algebra case, that the tensor product of a
complex of projective F -modules with a coacyclic complex is acyclic, the homotopy
category of complexes of projective modules is indeed equivalent to the coderived
category of F -modules, and one can define a “derived functor of tensor product
over F” by restricting to this subcategory, but the resulting derived functor will
coincide, up to the Frobenius twist, with the functor CotorC.

Nevertheless, it is well known how to define a derived functor of coten-
sor product on the conventional unbounded derived categories of comodules (see
0.2.10, cf. Remark 2.7).

0.2.4 The category k-vectop opposite to the category of vector spaces has a natural
structure of a module category over the tensor category k-vect with the action func-
tor k-vect× k-vectop −→ k-vectop defined by the rule (V,W op) �−→ Homk(V,W )op.
More precisely, there are two module category structures associated with this func-
tor: the left module category with the associativity constraint Homk(U⊗kV, W ) �
Homk(U,Homk(V,W )) and the right module category with the associativity con-
straint Homk(U ⊗k V, W ) � Homk(V,Homk(U,W )). The category of left contra-
modules over a coalgebra C is the opposite category to the category of comodule
objects in the right module category k-vectop over the coring object C in the
tensor category k-vect. Explicitly, a C-contramodule P is a k-vector space en-
dowed with a contraaction map πP : Homk(C,P) −→ P satisfying the contraas-
sociativity and counity equations πP ◦ Hom(idC, πP) = πP ◦ Hom(µC, idP) and
πP ◦Hom(εC, idP) = idP.

For any right C-comodule N and any k-vector space V the space Homk(N, V )
has a natural structure of left C-contramodule. The category of left C-contra-
modules is abelian. We will denote it by C-contra. Both infinite direct sums and
infinite products exist in the category of contramodules, but only the infinite
products are preserved by the forgetful functor C-contra −→ k-vect (while the
infinite direct sums are not even exact in C-contra). The category of contramodules
has enough projectives. Besides, a C-contramodule is projective if and only if it
is a direct summand of a free C-contramodule of the form Homk(C, V ) for some
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vector space V . The space of contramodule homomorphisms from the free C-con-
tramodule is described by the formula HomC(Homk(C, V ), P) � Homk(V, P).

Let M be a left C-comodule and P be a left C-contramodule. The space of
cohomomorphisms CohomC(M,P) is defined as the cokernel of the pair of maps

(Hom(νM, idP),Hom(idM, πP)) :
Homk(C⊗k M, P) = Homk(M,Homk(C,P)) ⇒ Homk(M,P).

This is the dual construction to that of the space of homomorphisms between
two modules over a ring. There are natural isomorphisms CohomC(C,P) � P and
CohomC(M,Homk(N, V )) � Homk(N�CM, V ). The functor of cohomomorphisms
over C is right exact.

0.2.5 The complex of cohomomorphisms CohomC(M•,P•) from a complex of
left C-comodules M• to a complex of left C-contramodules P• is defined as the
total complex of the bicomplex CohomC(Mi,Pj), constructed by taking infinite
products along the diagonals. Let us define the derived functor CoextC of the
functor of cohomomorphisms.

A complex of C-contramodules is called contraacyclic if it belongs to the min-
imal triangulated subcategory of the homotopy category Hot(C-contra) containing
the total complexes of exact triples ′K• → K• → ′′K• of complexes of C-contramod-
ules and closed under infinite products. Any contraacyclic complex is acyclic; any
acyclic complex bounded from above is contraacyclic. The contraderived category
of C-contramodules Dctr(C-contra) is defined as the quotient category of the homo-
topy category Hot(C-contra) by the thick subcategory of contraacyclic complexes
Acyclctr(C-contra).

The complex of cohomomorphisms CohomC(M•,P•) is acyclic whenever ei-
ther M• is a complex of injective C-comodules and P• is contraacyclic, or M• is
coacyclic and P• is a complex of projective C-contramodules. Besides, the contra-
derived category Dctr(C-contra) is equivalent to the homotopy category of projec-
tive C-contramodules Hot(C-contraproj). Thus one can define the derived functor

CoextC : Dco(C-comod)op × Dctr(C-contra) −−→ D(k-vect)

by restricting the functor CohomC to either of the subcategories

Hot(C-comodinj)op × Hot(C-contra) or Hot(C-comod)op × Hot(C-contraproj)

of the Cartesian product Hot(C-comod)op × Hot(C-contra).
The contramodule version of bar construction provides a functorial complex

computing CoextC. Namely, for any complex of left C-comodules M• and complex
of left C-contramodules P• the total complex of the bicomplex

· · · −→ Homk(C⊗k C⊗k M•, P•) −→ Homk(C⊗k M•, P•) −→ Homk(M•,P•),

constructed by taking infinite products along the diagonals, represents the object
CoextC(M•,P•) in D(k-vect).
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0.2.6 The categories of left C-comodules and left C-contramodules are isomorphic
if the coalgebra C is finite-dimensional, but in general they are quite different.
However, the coderived category of left C-comodules is naturally equivalent to the
contraderived category of left C-contramodules, Dco(C-comod) � Dctr(C-contra).

Indeed, the coderived category Dco(C-comod) is equivalent to the homo-
topy category Hot(C-comodinj) and the contraderived category Dctr(C-contra) is
equivalent to the homotopy category Hot(C-contraproj). Furthermore, the addi-
tive category of injective C-comodules is the idempotent closure of the cate-
gory of cofree C-comodules and the additive category of projective C-contra-
modules is the idempotent closure of the category of free C-contramodules. One
has HomC(C ⊗k U, C ⊗k V ) = Homk(C ⊗k U, V ) = Homk(U, Homk(C, V )) =
HomC(Homk(C, U),Homk(C, V )), so the categories of cofree comodules and free
contramodules are equivalent.

To describe this equivalence of additive categories in a more invariant way, let
us define the operation of contratensor product of a comodule and a contramodule.

Let N be a right C-comodule and P be a left C-contramodule. The contra-
tensor product N �C P is defined as the cokernel of the pair of maps

((idN ⊗ evC) ◦ (νN ⊗ idHomk(C,P)), idN ◦πP) : N⊗k Homk(C,P) ⇒ N ⊗k P,

where evC denotes the evaluation map C ⊗k Homk(C,P) → P. The contratensor
product functor is not a part of any tensor or module category structure; instead,
it is dual to the functors Hom in the categories of C-comodules and C-contra-
modules. The functor of contratensor product over C is right exact. There are
natural isomorphisms N �C Homk(C, V ) � N ⊗k V and Homk(N �C P, V ) �
HomC(P,Homk(N, V )).

The desired equivalence between the additive categories of injective left C-co-
modules and projective left C-contramodules is provided by the pair of adjoint
functors ΨC(M) = HomC(C,M) and ΦC(P) = C �C P between the categories
of left C-comodules and left C-contramodules. Here the space HomC(C,M) is en-
dowed with a C-contramodule structure as the kernel of a pair of contramodule
morphisms Homk(C,M) ⇒ Homk(C, C⊗k M) (where the contramodule structure
on Homk(C,M) and Homk(C, C⊗kM) comes from the right C-comodule structure
on C), while the space C�C P is endowed with a left C-comodule structure as the
cokernel of a pair of comodule morphisms C⊗k Homk(C,P) ⇒ C⊗k P.

0.2.7 The following examples illustrate the necessity of considering the exotic de-
rived categories in the above construction of the derived comodule-contramodule
correspondence. Let W be a vector space and C be the symmetric coalgebra of W .
One can construct C as the subcoalgebra of the tensor coalgebra

⊕∞
n=0W

⊗n

formed by the symmetric tensors. Consider the trivial left C-contramodule k; it
has a left projective C-contramodule resolution of the form

· · · −−→ Homk(C, (
∧2
kW )∗) −−→ Homk(C,W ∗) −−→ Homk(C, k).
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Applying the functor ΦC to the above complex of contramodules, one obtains the
complex of injective left C-comodules

· · · −−→ C⊗k (
∧2
kW )∗ −−→ C⊗k W ∗ −−→ C. (2)

When W is finite-dimensional, the complex (2) has its only nonvanishing coho-
mology in the degree − dimW ; this cohomology is a trivial one-dimensional C-co-
module naturally isomorphic to det(W )∗ = (

∧dimW
k W )∗ as a vector space. When

W is infinite-dimensional, the complex (2) is acyclic; one can think of it as an
“injective resolution of a one-dimensional C-comodule placed in the degree −∞”.
So when dimW =∞ the equivalence of categories Dco(C-comod) � Dctr(C-contra)
transforms the acyclic complex of C-comodules (2) into the trivial C-contramodule
k considered as a complex concentrated in degree 0, and back.

Analogously, consider the trivial left C-comodule k; it has a right injective
C-comodule resolution of the form

C −−→ C⊗k W −−→ C⊗k
∧2
kW −−→ · · ·

Applying the functor ΨC to this complex of comodules, one obtains the complex
of projective left C-contramodules

Homk(C, k) −−→ Homk(C,W ) −−→ Homk(C,
∧2
kW ) −−→ · · ·

When W is finite-dimensional, the latter complex has its only nonvanishing coho-
mology in the degree dimW ; the cohomology is a trivial one-dimensional C-con-
tramodule naturally isomorphic to det(W ) as a vector space. When W is infinite-
dimensional, this complex is acyclic; one can think of it as a “projective resolution
of a one-dimensional C-contramodule placed in the degree +∞”. In this case,
the equivalence of categories Dco(C-comod) � Dctr(C-contra) transforms the trivial
C-comodule k considered as a complex concentrated in degree 0 into this acyclic
complex of C-contramodules, and back.

The above-mentioned cohomology computations are very similar to comput-
ing ExtR(k,R) for the algebra R of polynomials in a finite or infinite number of
variables over a field k.

0.2.8 The functor ExtC : Dco(C-comod)op × Dco(C-comod) −→ D(k-vect) of ho-
momorphisms in the coderived category Dco(C-comod) can be computed by re-
stricting the functor HomC : Hot(C-comod)op × Hot(C-comod) −→ Hot(k-vect) of
homomorphisms in the homotopy category Hot(C-comod) to the full subcategory
Hot(C-comod)op×Hot(C-comodinj) of the category Hot(C-comod)op×Hot(C-comod).
The complex HomC(L•,M•) is acyclic whenever L• is a coacyclic complex of left
C-comodules and M• is a complex of injective left C-comodules.

Analogously, the functor

ExtC : Dctr(C-contra)op × Dctr(C-contra) −→ D(k-vect)
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of homomorphisms in the contraderived category Dctr(C-contra) can be computed
by restricting the functor HomC : Hot(C-contra)op×Hot(C-contra) −→ Hot(k-vect)
to the full subcategory

Hot(C-contraproj)op × Hot(C-contra)

of the category Hot(C-contra)op × Hot(C-contra). The complex HomC(P•,Q•) is
acyclic whenever P• is a complex of projective C-contramodules and Q• is a con-
traacyclic complex of C-contramodules.

The contratensor product N• �C P• of a complex of right C-comodules N•

and a complex of left C-contramodules P• is defined as the total complex of the
bicomplex Ni�CPj , constructed by taking infinite direct sums along the diagonals.
The complex N•�C P• is acyclic whenever N• is a coacyclic complex of right C-co-
modules and P• is a complex of projective left C-contramodules. The left derived
functor CtrtorC of the functor of contratensor product,

CtrtorC : Dco(comod-C)× Dctr(C-contra) −−→ D(k-vect),

is defined by restricting the functor of contratensor product to the full subcategory
Hot(comod-C) × Hot(C-contraproj) of the category Hot(comod-C) × Hot(C-contra).
Notice that the (abelian or homotopy) category of right C-comodules does not
contain enough objects adjusted to contratensor product.

The equivalence of triangulated categories Dco(C-comod) � Dctr(C-contra)
transforms the functor CoextC into either of the functors ExtC or ExtC and the
functor CotorC into the functor CtrtorC.

0.2.9 A left C-comodule M is called coflat if the functor N �−→ N �C M is exact
on the category of right C-comodules. A left C-comodule M is called coprojective
if the functor P �−→ CohomC(M,P) is exact on the category of left C-contramod-
ules. It is easy to see that an injective comodule is coprojective and a coprojective
comodule is coflat. Using the fact that any comodule is a union of its finite-
dimensional subcomodules, one can show that any coflat comodule is injective.
Thus all the three conditions are equivalent.

A left C-contramodule P is called contraflat if the functor N �−→ N �C P
is exact on the category of right C-comodules. A left C-contramodule P is called
coinjective if the functor M �−→ CohomC(M,P) is exact on the category of left
C-comodules. It is easy to see that a projective contramodule is coinjective and
a coinjective contramodule is contraflat. We will show in 5.2 that any coinjec-
tive contramodule is projective and (independently) in A.3 that any contraflat
contramodule is projective. Thus all the three conditions are equivalent.

0.2.10 Our definition of the derived functor of cotensor product for unbounded
complexes differs from the most traditional one, which was introduced (in the
greater generality of DG-coalgebras and DG-comodules) by Eilenberg and Moore
[34]. Husemoller, Moore, and Stasheff [52, I.4–5] call the functor defined by Eilen-
berg–Moore the differential derived functor of cotensor product of the first kind
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and denote it by CotorC,I or simply CotorC, while the functor CotorC defined
in 0.2.2 is (the nondifferential particular case of) what they call the differential
derived functor of cotensor product of the second kind and denote by CotorC,II .

The functor CotorC,I is computed by the total complex of the cobar bi-
complex (1), constructed by taking infinite products along the diagonals (while
the tensor product complexes N• ⊗ C ⊗ · · · ⊗ C ⊗M• constituting the cobar bi-
complex are still defined as infinite direct sums). It is indeed a functor on the
Cartesian product of conventional unbounded derived categories D(comod-C) and
D(C-comod).

The unbounded derived functor TorR defined in 0.1.1 is a derived functor
of the first kind in this terminology. Roughly, derived functors of the first kind
correspond to the conventional derived categories D (which can be therefore called
derived categories of the first kind), while derived functors of the second kind
correspond to the coderived and contraderived categories Dco and Dctr (which
can be called derived categories of the second kind). The distinction, which is
only relevant for unbounded complexes of modules (comodules, or contramodules),
manifests itself also for quite finite-dimensional DG-modules (DG-comodules, or
DG-contramodules).

The coderived categories of comodules were introduced by K. Lefèvre-Hase-
gawa [66, 61] in the context of Koszul duality; our definition is equivalent to
his (the nondifferential case). They first appeared in the author’s own research
in the very same context. An elaborate discussion of the two kinds of derived
categories and their roles in Koszul duality can be found in [76]; a proof of the
equivalence of the two definitions is also given there. Contramodules were defined
by Eilenberg and Moore in [33] and studied by Barr in [6]. A module version
of the comodule-contramodule correspondence was developed in [65], where the
homotopy categories of complexes of injectives and projectives are being used,
following the approaches of [55, 64], in lieu of the coderived and contraderived
categories.

All the most important results of this section can be extended straightfor-
wardly to DG-coalgebras and even CDG-coalgebras (see [76] or 0.4.3 and 11.2.2
for the definition). Generally, the constructions of derived categories and functors
of the first kind can be generalized to A∞-algebras, while the constructions of
derived categories and functors of the second kind can be naturally extended to
CDG-coalgebras.

0.3 Semialgebras over coalgebras over fields

The notion of a semialgebra over a coalgebra is dual to that of a coring over a
noncommutative ring. The similarity between the two theories only goes so far,
however.

0.3.1 Let C and D be two coalgebras over a field k. A C-D-bicomodule K is
k-vector space endowed with a left C-comodule and a right D-comodule structures
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such that the left C-coaction map ν′K : K −→ C ⊗k K is a morphism of right
D-comodules, or, equivalently, the right D-coaction map ν′′K : K −→ K ⊗k D is a
morphism of left C-comodules. A bicomodule can be also defined as a vector space
endowed with a bicoaction map K −→ C⊗k K⊗k D satisfying the coassociativity
and counity equations. The category of C-D-bicomodules is abelian. We will denote
it by C-comod-D.

Let C, D, and E be three coalgebras, N be a C-D-bicomodule, and M be a
D-E-bicomodule. Then the cotensor product N �D M is endowed with a C-E-bi-
comodule structure as the kernel of a pair of bicomodule morphisms N ⊗k M ⇒
N⊗kD⊗kM. The cotensor product of bicomodules is associative: for any coalgebras
C and D, any right C-comodule N, left D-comodule M, and C-D-bicomodule K

there is a natural isomorphism N �C (K �D M) � (N �C K) �D M.

0.3.2 In particular, the category of C-C-bicomodules is an associative tensor
category with the unit object C. A semialgebra S over C is an associative ring
object with unit in this tensor category; in other words, it is a C-C-bicomod-
ule endowed with a semimultiplication map mS : S �C S −→ S and a semi-
unit map eS : C −→ S which have to be C-C-bicomodule morphisms satisfy-
ing the associativity and unity equations mS ◦(mS � idS) = mS ◦(idS � mS) and
mS ◦(eS � idS) = idS = mS ◦(idS � eS).

The category of left C-comodules is a left module category over the tensor
category C-comod-C, and the category of right C-comodules is a right module
category over it. A left semimodule M over S is a module object in this left
module category over the ring object S in this tensor category; in other words,
it is a left C-comodule endowed with a left semiaction map nM : S �C M −→
M, which has to be a morphism of left C-comodules satisfying the associativity
and unity equations nM ◦(mS � idM) = nM ◦(idS � nM) and nM ◦(eS � idM) =
idM. A right semimodule N over S is a right C-comodule endowed with a right
semiaction morphism of right C-comodules nN : N �C S −→ N satisfying the
equations nN ◦(nN � idS) = nN ◦(idN � mS) and nN ◦(idN � eS) = idN.

For any left C-comodule L, the cotensor product S �C L has a natural left
semimodule structure. It is called the left S-semimodule induced from a left C-co-
module L. The space of semimodule homomorphisms from the induced semimodule
is described by the formula HomS(S�C L, M) � HomC(L,M). We will denote the
category of left S-semimodules by S-simod and the category of right S-semimodules
by simod-S. The category of left S-semimodules is abelian provided that S is an
injective right C-comodule. Moreover, S is an injective right C-comodule if and only
if the category S-simod is abelian and the forgetful functor S-simod −→ C-comod
is exact.

The operation of cotensor product over C provides a pairing functor

comod-C× C-comod −→ k-vect

compatible with the right module category structure on comod-C and the left
module category structure on C-comod over the tensor category C-comod-C. The
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semitensor product N ♦S M of a right S-semimodule N and a left S-semimodule
M is defined as the cokernel of the pair of maps

(nN � idM, idN � nM) : N �C S �C M ⇒ N �C M.

There are natural isomorphisms N ♦S (S �C L) � N �C L and (R �C S) ♦S M �
R �C M. The functor of semitensor product is neither left, nor right exact.

0.3.3 The semitensor product N• ♦S M• of a complex of right S-semimodules
N• and a complex of left S-semimodules M• is defined as the total complex of
the bicomplex Ni ♦S Mj , constructed by taking infinite direct sums along the
diagonals. Assume that S is an injective left and right C-comodule. We would like
to define the double-sided derived functor SemiTorS of the functor of semitensor
product.

The semiderived category of left S-semimodules Dsi(S-simod) is defined as the
quotient category of the homotopy category Hot(S-simod) by the thick subcategory
Acyclco-C(S-simod) of complexes of S-semimodules that are coacyclic as complexes
of C-comodules. For example, if the coalgebra C coincides with the ground field k,
and S = R is just a k-algebra, then the semiderived category Dsi(S-simod) coincides
with the derived category D(R-mod), while if the semialgebra S coincides with
the coalgebra C, then the semiderived category Dsi(S-simod) coincides with the
coderived category Dco(C-comod).

A complex of left S-semimodules M• is called semiflat if the semitensor
product N• ♦S M• is acyclic for any C-coacyclic complex of right S-semimodules
N•. For example, the complex of S-semimodules S �C L• induced from a complex
of injective C-comodules L• is semiflat.

The quotient category of the homotopy category Hotsifl(S-simod) of semi-
flat complexes of S-semimodules by the thick subcategory of C-coacyclic semiflat
complexes Acyclco-C(S-simod) ∩ Hotsifl(S-simod) is equivalent to the semiderived
category of S-semimodules. The derived functor

SemiTorS : Dsi(simod-S)× Dsi(S-simod) −−→ D(k-vect)

is defined by restricting the functor of semitensor product over S to either of the
full subcategories Hot(simod-S)×Hotsifl(S-simod) or Hotsifl(simod-S)×Hot(S-simod)
of the category Hot(simod-S)× Hot(S-simod).

0.3.4 Let C and D be two coalgebras, K be a C-D-bicomodule, and P be a left
C-contramodule. Then the space of cohomomorphisms CohomC(K,P) is endowed
with a left D-contramodule structure as the cokernel of a pair of D-contramod-
ule morphisms Homk(C ⊗k K, P) = Homk(K,Homk(C,P)) ⇒ Homk(K,P). For
any left D-comodule M, left C-contramodule P, and C-D-bicomodule K there is a
natural isomorphism CohomC(K �D M, P) � CohomD(M,CohomC(K,P)).
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0.3.5 Therefore, the category opposite to the category of left C-contramodules
is a right module category over the tensor category of C-C-bicomodules with re-
spect to the action functor CohomC. The category of left S-semicontramodules
is the opposite category to the category of module objects in the right module
category C-contraop over the ring object S in the tensor category C-comod-C. In
other words, a left semicontramodule P over S is a left C-contramodule endowed
with a left semicontraaction map pP : P −→ CohomC(S,P), which has to be a
morphism of left C-contramodules satisfying the associativity and unity equations
Cohom(idS,pP) ◦ pP = Cohom(mS, idP) ◦ pP and Cohom(eS, idP) ◦ pP = idP.

For example, if the coalgebra C coincides with the ground field k and S = R
is just a k-algebra, then left S-semicontramodules are simply left R-modules.

For any right S-semimodule N and any k-vector space V the space
Homk(N, V ) has a natural structure of left S-semicontramodule. For any left
C-contramodule Q, the space of cohomomorphisms CohomC(S,Q) has a natural
structure of left semicontramodule. It is called the left S-semicontramodule
coinduced from a left C-contramodule Q. The space of semicontramodule ho-
momorphisms into the coinduced semicontramodule is described by the formula
HomS(P,CohomC(S,Q)) � HomC(P,Q). We will denote the category of left
S-semicontramodules by S-sicntr. The category of left S-semicontramodules is
abelian provided that S is an injective left C-comodule. Moreover, S is an injective
left C-comodule if and only if the category S-sicntr is abelian and the forgetful
functor S-sicntr −→ C-contra is exact.

The functor Cohomop
C : C-comod × C-contraop −→ k-vectop is a pairing com-

patible with the left module category structure on C-comod and the right module
category structure on C-contraop over the tensor category C-comod-C. Thus one can
define the space of semihomomorphisms SemiHomS(M,P) from a left S-semimod-
ule M to a left S-semicontramodule P as the kernel of the pair of maps

(Cohom(nM, idP),Cohom(idM,pP)) :

CohomC(M,P) ⇒ CohomC(S �C M, P) = CohomC(M,CohomC(S,P)).

There are natural isomorphisms SemiHomS(S �C L, P) � CohomC(L,P) and
SemiHomS(M,CohomC(S,Q)) � CohomC(M,Q). The functor of semihomomor-
phisms is neither left, nor right exact.

0.3.6 The complex of semihomomorphisms SemiHomS(M•,P•) from a complex
of left S-semimodules M• to a complex of left S-semicontramodules P• is defined
as the total complex of the bicomplex SemiHomS(Mi,Pj), constructed by tak-
ing infinite products along the diagonals. Assume that S is an injective left and
right C-comodule. Let us define the double-sided derived functor SemiExtS of the
functor of semihomomorphisms.

The semiderived category Dsi(S-sicntr) of left S-semicontramodules is defined
as the quotient category of the homotopy category Hot(S-sicntr) by the thick sub-
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category Acyclctr-C(S-sicntr) of complexes of S-semicontramodules that are contra-
acyclic as complexes of C-contramodules.

A complex of left S-semimodules M• is called semiprojective if the complex
SemiHomS(M•,P•) is acyclic for any C-contraacyclic complex of left S-semicon-
tramodules P•. A complex of left S-semicontramodules P• is called semiinjective
if the complex SemiHomS(M•,P•) is acyclic for any C-coacyclic complex of left
S-semimodules M•. For example, the complex of S-semimodules S �C L• induced
from a complex of injective C-comodules L• is semiprojective. Any semiprojec-
tive complex of semimodules is semiflat. The complex of S-semicontramodules
CohomC(S,Q•) coinduced from a complex of projective C-contramodules Q• is
semiinjective.

The quotient category of the homotopy category Hotsipr(S-simod) of semi-
projective complexes of S-semimodules by the thick subcategory of C-coacyclic
semiprojective complexes Acyclco-C(S-simod) ∩ Hotsipr(S-simod) is equivalent to
the semiderived category of S-semimodules. Analogously, the quotient category of
the homotopy category Hotsiin(S-sicntr) of semiinjective complexes of S-semicon-
tramodules by the thick subcategory of C-contraacyclic semiinjective complexes
Acyclctr-C(S-sicntr) ∩ Hotsiin(S-sicntr) is equivalent to the semiderived category of
S-semicontramodules. The derived functor

SemiExtS : Dsi(S-simod)op × Dsi(S-sicntr) −−→ D(k-vect)

is defined by restricting the functor of semihomomorphisms to either of the full
subcategories Hotsipr(S-simod)op×Hot(S-sicntr) or Hot(S-simod)op×Hotsiin(S-sicntr)
of the category Hot(S-simod)op × Hot(S-sicntr).

0.3.7 Assume that S is an injective left and right C-comodule. Even when C

and S are finite-dimensional k-vector spaces, the categories of left S-semimodules
and left S-semicontramodules are quite different. Nevertheless, their semiderived
categories are equivalent in the very general case.

One can check that the adjoint functors ΨC : C-comod −→ C-contra and
ΦC : C-contra −→ C-comod transform left C-comodules with an S-semimodule
structure into left C-contramodules with an S-semicontramodule structure and
vice versa. Therefore, there is a pair of adjoint functors ΨS : S-simod −→ S-sicntr
and ΦS : S-sicntr −→ S-simod agreeing with the functors ΨC and ΦC and providing
an equivalence between the exact categories of C-injective left S-semimodules and
C-projective left S-semicontramodules. To construct this pair of adjoint functors in
a natural way, let us define the operation of contratensor product of a semimodule
and a semicontramodule.

Let N be a right S-semimodule and P be a left S-semicontramodule. The
contratensor product N �S P is defined as the cokernel of the pair of maps

(nN� idP, ηS ◦ (idN �CS�pP)) : (N �C S)�C P ⇒ N�C P

where the natural “evaluation” map ηK : (N�C K)�D CohomC(K,P) −→ N�C P
exists for any right C-comodule N, left C-contramodule P, and C-D-bicomodule
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K and is dual to the map

Homk(ηK, V ) = CohomC(K,−) :

HomC(P,Homk(N, V )) −−→ HomD(CohomC(K,P),CohomC(K,Homk(N, V )))

for any k-vector space V . There are natural isomorphisms (R�CS)�SP � R�CP
and Homk(N �S P, V ) � HomS(P,Homk(N, V )). The functor of contratensor
product over S is right exact whenever S is an injective left C-comodule.

The adjoint functors ΨS and ΦS can be defined by the formulas ΨS(M) =
HomS(S,M) and ΦS(P) = S �S P. Here the space HomS(S,M) is endowed with
a left S-semicontramodule structure as a subsemicontramodule of the semicontra-
module Homk(S,M), while the space S�S P is endowed with a left S-semimodule
structure as a quotient semimodule of the semimodule S⊗k P.

The quotient category of the homotopy category of C-injective S-semimodules
Hot(S-simodinj-C) by the thick subcategory of C-contractible complexes of C-injec-
tive S-semimodules is equivalent to the semiderived category of S-semimodules.
Analogously, the quotient category of the homotopy category Hot(S-sicntrproj-C)
of C-projective S-semicontramodules by the thick subcategory of C-contractible
complexes of C-projective S-semicontramodules is equivalent to the semiderived
category of S-semicontramodules. Thus the semiderived categories of left S-semi-
modules and left S-semicontramodules are equivalent, Dsi(S-simod) � Dsi(S-sicntr).

When S is not an injective left or right C-comodule, the exact categories of
C-injective S-semimodules and C-projective S-semicontramodules are still equiva-
lent, even though the functors ΨS and ΦS are not defined on the whole categories
of all comodules and contramodules.

0.3.8 The functor ExtS : Dsi(S-simod)op × Dsi(S-simod) −→ D(k-vect) of homo-
morphisms in the semiderived category Dsi(S-simod) can be computed by restrict-
ing the functor HomS : Hot(S-simod)op × Hot(S-simod) −→ Hot(k-vect) of homo-
morphisms in the homotopy category Hot(S-simod) to an appropriate subcategory
of the Cartesian product Hot(S-simod)op×Hot(S-simod). Namely, a complex of left
S-semimodules L• is called projective relative to C (S/C-projective) if the com-
plex HomS(L•,M•) is acyclic for any C-contractible complex of C-injective left
S-semimodules M•. For example, the complex of S-semimodules S �C L• induced
from a complex of C-comodules L• is projective relative to C. The quotient cate-
gory of the homotopy category Hotproj-S/C(S-simod) of S/C-projective complexes of
S-semimodules by the thick subcategory Acyclco-C(S-simod)∩Hotproj-S/C(S-simod)
of C-coacyclic S/C-projective complexes is equivalent to the semiderived category
of S-semimodules. The functor ExtS can be obtained by restricting the functor
HomS to the full subcategory Hotproj-S/C(S-simod)op×Hot(S-simodinj-C) of the cat-
egory Hot(S-simod)op × Hot(S-simod).

Analogously, the functor ExtS : Dsi(S-sicntr)op × Dsi(S-sicntr) −→ D(k-vect)
of homomorphisms in the semiderived category Dsi(S-sicntr) can be computed by
restricting the functor HomS : Hot(S-sicntr)op×Hot(S-sicntr) −→ Hot(k-vect) to an



0.3. Semialgebras over coalgebras over fields 17

appropriate subcategory of the Cartesian product Hot(S-sicntr)op×Hot(S-sicntr). A
complex of S-semicontramodules Q• is called injective relative to C (S/C-injective)
if the complex HomS(P•,Q•) is acyclic for any C-contractible complex of C-projec-
tive S-semicontramodules P•. For example, the complex of S-semicontramodules
CohomC(S,Q•) coinduced from a complex of C-contramodules Q• is S/C-injective.
The quotient category of the homotopy category Hotinj-S/C(S-sicntr) of S/C-injec-
tive complexes of S-semicontramodules by the thick subcategory

Acyclctr-C(S-sicntr) ∩ Hotinj-S/C(S-sicntr)

of C-contraacyclic S/C-injective complexes is equivalent to the semiderived cate-
gory of S-semicontramodules. The functor ExtS can be obtained by restricting the
functor HomS to the full subcategory Hot(S-sicntrproj-C)op × Hotinj-S/C(S-sicntr) of
the category Hot(S-sicntr)op × Hot(S-sicntr).

The contratensor product N• �S P• of a complex of right S-semimodules
N• and a complex of left S-semicontramodules P• is defined as the total com-
plex of the bicomplex Ni �S Pj , constructed by taking infinite direct sums along
the diagonals. Let us define the left derived functor CtrTorS of the functor of
contratensor product over S. A complex of right S-semimodules N• is called con-
traflat relative to C (S/C-contraflat) if the complex N• �S P• is acyclic for any
C-contractible complex of C-projective S-semicontramodules P•. For example,
the complex of S-semimodules R• �C S induced from a complex of right C-co-
modules R• is contraflat relative to C. A complex of right S-semimodules N• is
contraflat relative to C if and only if the complex of left S-semicontramodules
Homk(N•, k) is injective relative to C. The quotient category of the homotopy
category Hotctrfl-S/C(simod-C) of S/C-contraflat complexes of right S-semimodules
by the thick subcategory Acyclco-C(simod-S) ∩ Hotctrfl-S/C(simod-C) of C-coacyclic
S/C-contraflat complexes is equivalent to the semiderived category of right S-semi-
modules. The left derived functor

CtrTorS : Dsi(simod-S)× Dsi(S-sicntr) −−→ D(k-vect)

is defined by restricting the functor of contratensor product to the full subcat-
egory Hotctrfl-S/C(simod-S) × Hot(S-sicntrproj-C) of the category Hot(simod-S) ×
Hot(S-sicntr).

The equivalence of triangulated categories Dsi(S-simod) � Dsi(S-sicntr) trans-
forms the double-sided derived functor SemiExtS into the functor Ext in either
of the semiderived categories and the double-sided derived functor SemiTorS into
the left derived functor CtrTorS.

0.3.9 Any semiprojective complex of S-semimodules is S/C-projective. An S/C-
projective complex of C-injective S-semimodules is semiprojective. The homotopy
category of semiprojective complexes of C-injective S-semimodules is equivalent to
the semiderived category of S-semimodules.
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Analogously, any semiinjective complex of S-semicontramodules is S/C-in-
jective. An S/C-injective complex of C-projective S-semicontramodules is semiin-
jective. The homotopy category of semiinjective complexes of C-injective S-semi-
contramodules is equivalent to the semiderived category of S-semicontramodules.

Notice that our definitions of S/C-projective and S/C-injective complexes
differ from the traditional ones; cf. B.3 and Remark 9.2.1.

0.3.10 Semialgebras and their generalizations have been studied under the name
of “internal categories” in M. Aguiar’s dissertation [1]; see also [27]. In [21, 25, 22],
semialgebras over a coalgebra C were discussed under the name of “C-rings”.

0.4 Nonhomogeneous Koszul duality over a base ring

This section is intended to supply preliminary material for Chapter 11 and Ap-
pendix D.

0.4.1 A graded ring S = S0⊕S1⊕S2⊕· · · is called quadratic if it is generated by
S1 over S0 with relations of degree 2 only. In other words, this means that if one
considers the graded ring freely generated by the S0-S0-bimodule S1 (the “tensor
ring” of the S0-S0-bimodule S1), i.e., the graded ring TS0,S1 with the components
S
⊗S0 n
1 = S1 ⊗S0 S1 ⊗S0 · · · ⊗S0 S1, then the ring S should be isomorphic to the

quotient ring of TS0,S1 by the ideal generated by a certain subbimodule IS in
S1 ⊗S0 S1.

A quadratic ring S is called 2-left finitely projective if both left S0-modules
S1 and S2 are projective and finitely generated. A quadratic ring is called 3-left
finitely projective if the same applies to S1, S2, and S3. Further conditions of this
kind are not very sensible to consider for general quadratic rings. Analogously one
defines 2-right finitely projective and 3-right finitely projective quadratic rings.

There is an anti-equivalence between the category of 2-left finitely projective
quadratic rings and the category of 2-right finitely projective quadratic rings,
called the quadratic duality. The duality functors are defined by the formulas
R0 = S0, R1 = HomS0(S1, S0), R2 = HomS0(IS , S0), IR � HomS0(S2, S0), and
conversely, S1 = HomRop

0
(R1, R0), S2 = HomRop

0
(IR, R0), IS � HomRop

0
(R2, R0).

Here we use the natural isomorphism

HomS0(N,S0)⊗S0 HomS0(M,S0) � HomS0(M ⊗S0 N, S0)

for S0-S0-bimodules M and N that are projective and finitely generated left
S0-modules, and the analogous isomorphism

HomRop
0

(N,R0)⊗R0 HomRop
0

(M,R0) � HomRop
0

(M ⊗R0 N, R0)

for R0-R0-bimodules M and N that are projective and finitely generated right
R0-modules.
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The duality functor sends 3-left finitely projective quadratic rings to 3-right
finitely projective quadratic rings and vice versa. Indeed, set JS = IS ⊗S0 S1 ∩
S1 ⊗S0 IS ⊂ S1 ⊗S0 S1 ⊗S0 S1; then

0 −−→ JS −−→ IS ⊗S0 S1 ⊕ S1 ⊗S0 IS −−→ S1 ⊗S0 S1 ⊗S0 S1 −−→ S3 −−→ 0

is an exact sequence of finitely generated projective left S0-modules, and R3 �
HomS0(JS , S0), since the sequence remains exact after applying HomS0(−, S0).

0.4.2 A graded ring S = S0 ⊕ S1 ⊕ S2 ⊕ · · · is called left flat Koszul if it is flat
as a left S0-module and one has TorSi,j(S0, S0) = 0 for i �= j. Here S0 is endowed
with the right and left S-module structures via the augmentation map S −→ S0

and the second grading j on the Tor is induced by the grading of S. Right flat
Koszul graded rings are defined in the analogous way. A left/right flat Koszul ring
is called left/right (finitely) projective Koszul, if it is a projective (with finitely
generated grading components) left/right S0-module.

Notice that when S is a flat left S0-module, the reduced relative bar con-
struction

· · · −−→ S ⊗S0 S/S0 ⊗ S/S0 −−→ S ⊗ S/S0 −−→ S

is a flat resolution of the left S-module S0, so one can use it to compute
TorS(S0, S0). When S is a projective left S-module, the same resolution can be
used to compute ExtS(S0, S0). Assume that the grading components of S are
finitely generated projective left S0-modules; then it follows that S is left finitely
projective Koszul if and only if Exti,jS (S0, S0) = 0 for i �= j and Exti,iS (S0, S0) are
projective right S0-modules.

Assume that a graded ring S is a flat left S0-module. Then S is left flat Koszul
if and only if it is quadratic and for each degree n the lattice of subbimodules in
S
⊗S0 n
1 generated by the n− 1 subbimodules

S
⊗S0 i−1
1 ⊗S0 IS ⊗S0 S

⊗S0 n−i−1
1 , i = 1, . . . , n− 1

is distributive. This means that for any three subbimodules X , Y , Z that can be
obtained from the generating subbimodules by applying the operations of sum and
intersection one should have (X+Y )∩Z = X∩Z+Y ∩Z. Furthermore, if S is a left
finitely projective Koszul ring, then the ring R quadratic dual to S is right finitely
projective Koszul, and vice versa; besides, in this case the graded ring ExtS(S0, S0)
is isomorphic to Rop and the graded ring ExtRop(R0, R0) is isomorphic to S.

0.4.3 Let S be a 3-left finitely projective quadratic ring. Suppose that we are
given a ring S∼ endowed with an increasing filtration F0S

∼ ⊂ F1S
∼ ⊂ F2S

∼ ⊂ · · ·
such that S =

⋃
n FnS

∼ and the associated graded ring grFS∼ is identified with S.
Such a ring S∼ will be called a 3-left finitely projective nonhomogeneous quadratic
ring. If the graded ring S is left finitely projective Koszul, the filtered ring S∼ is
called a left finitely projective nonhomogeneous Koszul ring.
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Let R be the 3-right finitely projective quadratic ring dual to S. We would
like to describe the additional structure on the ring R corresponding to the data
of a filtered ring S∼ endowed with an isomorphism grFS∼ � S.

A CDG-ring (curved differential graded ring) is a graded ring R =
⊕

nR
n

endowed with an odd derivation d of degree 1 and a “curvature element” h ∈ R2

such that d2(x) = [h, x] for all x ∈ R and d(h) = 0. A morphism of CDG-rings
′R −→ ′′R is a pair (f, a) consisting of a morphisms of graded rings f : ′R −→ ′′R
and a “change-of-connection element” a ∈ ′′R1 such that f(d′(x)) = d′′(f(x)) +
[a, f(x)] (the supercommutator) for all x ∈ ′R and f(h′) = h′′ + d′′(a) + a2.
Composition of morphisms is defined by the rule (g, b)(f, a) = (gf, b + g(a)).
Identity morphisms are the morphisms (id, 0).

So the category of CDG-rings is defined. Notice that the natural functor
from the category of DG-rings to the category of CDG-rings is faithful, but not
fully faithful. In other words, two DG-rings may be isomorphic in the category of
CDG-rings without being isomorphic as DG-rings. Furthermore, two CDG-rings of
the form (R, d+[a, ·], h+d(a)+a2) and (R, d, h) are always naturally isomorphic,
the isomorphism being given by the pair (id, a).

There is a fully faithful contravariant functor from the category of 3-left
finitely projective nonhomogeneous quadratic rings S∼ with a fixed ring F0S

∼ to
the category of CDG-rings (R, d, h) with the same component R0 = F0S

∼ such
that the underlying graded ring R of the CDG-ring (R, d, h) corresponding to S∼

is the 3-right finitely projective quadratic ring dual to the ring S = grFS∼ (in the
grading Ri = Ri).

This functor is constructed as follows. For each 3-left finitely projective non-
homogeneous quadratic ring S∼ choose a complementary left S0 = F0S

∼-sub-
module V to the submodule F0S

∼ in the left S0-module F1S
∼. This can be done,

because the quotient module S1 = F1S
∼/F0S

∼ is projective. Since V maps isomor-
phically to S1, it is endowed with a structure of an S0-S0-bimodule. The embedding
V −→ F0S

∼ is only a morphism of left S0-modules, however; the right actions of
S0 in V and F1S

∼ are compatible modulo F0S
∼. Put q(v, s) = m(v, s) − vs for

v ∈ V , s ∈ S0, where m(v, s) is the product in S∼ and vs denotes the right action
of S0 in V . This defines a map q : V ⊗Z S0 −→ S0.

Let I∼ be the full preimage of the subbimodule IS ⊂ S1 ⊗S0 S1 under the
surjective map S1⊗ZS1 −→ S1⊗S0S1. Using the identification of V with S1, we will
consider I∼ as the full preimage of F1S

∼ under the multiplication map m : V ⊗Z

V −→ S∼. Let us split the map m : I∼ −→ F1S
∼ into two components (g,−h)

according to the direct sum decomposition F1S
∼ � V ⊕ S0, so that g : I∼ −→ V

and h : I∼ −→ S0.

The differentials d0 : R0 −→ R1 and d1 : R1 −→ R2 are defined in terms of
the maps q and g by the formulas

〈v, d0(s)〉 = q(v, s), 〈i, d1(r)〉 = 〈g(̃ı), r〉 − q(̃ı1, 〈̃ı2, r〉),
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where 〈 , 〉 denotes the pairing of V with R1 and of IS with R2, and ı̃ is any
preimage of i ∈ IS in I∼, written also as ı̃ = ı̃1⊗ ı̃2. The map h factorizes through
IS , providing the curvature element in R2 = HomS0(IS , S0).

Finally, to a morphism of nonhomogeneous quadratic rings f : S′′∼ −→ S′∼

with chosen complementary submodules V ′′ ⊂ F ′′1 S
′′∼ and V ′ ⊂ F ′1S

′∼ one as-
signs a morphism of dual CDG-rings (g, a) : (′R, d′, h′) −→ (′′R, d′′, h′′) defined
as follows. The morphism of quadratic rings g : ′R −→ ′′R is the quadratic dual
map to the associated graded morphism gr f : S′′ −→ S′, while the change-of-
connection element a ∈ ′′R1 = HomS0(S′′1 , S0) is equal to minus the compo-
sition V ′′ −→ F ′′1 S

′′∼ −→ F ′1S
′∼ −→ S0 of the embedding V ′′ −→ F ′′1 S

′′∼,
the map f , and the projection F ′1S

′∼ −→ S0 along V ′. In particular, for a
given nonhomogeneous quadratic ring S∼, changing the splitting of F1S

∼ by the
rule V ′′ = {v′ − a(v′) | v′ ∈ V ′} leads to a natural morphism of CDG-rings
(id, a) : (R, d′, h′) −→ (R, d′′, h′′).

One has to make quite some computations in order to check that every-
thing is well defined and compatible in this construction. In particular, the 3-left
projectivity is actually used in the form of the duality between JS (where some
self-consistency equations on the defining relations of S∼ live) and R3 (where the
equations d(e) = 0 for e ∈ IR, d2(r) = [h, r], and d(h) = 0 have to be verified).

The nonhomogeneous quadratic duality functor restricted to the categories
of left finitely projective nonhomogeneous Koszul rings and right finitely projec-
tive Koszul CDG-ring becomes an equivalence of categories. In other words, any
CDG-ring whose underlying graded ring is right finitely projective Koszul cor-
responds to a left finitely projective nonhomogeneous Koszul ring. This is the
statement of the Poincaré–Birkhoff–Witt theorem for finitely projective nonho-
mogeneous Koszul rings.

0.4.4 A quasi-differential ring R∼ is a graded ring R∼ =
⊕

nR
n∼ endowed with

an odd derivation ∂ of degree −1 with zero square such that the cohomology of ∂
vanishes (equivalently, the unit element of R∼ lies in the image of ∂). A quasi-
differential structure on a graded ring R is the data of a quasi-differential ring
(R∼, ∂) together with an isomorphism of graded rings ker ∂ � R.

The category of quasi-differential rings is equivalent to the category of
CDG-rings. This equivalence assigns to a CDG-ring (R, d, h) the quasi-differential
ring R∼ = R[δ] with an added generator δ of degree 1, the relations [δ, x] = d(x)
(the supercommutator) for x ∈ R and δ2 = h, and the derivation ∂ = ∂/∂δ (the
partial derivative in δ, meaning the unique odd derivation ∂ of R∼ for which
∂(R) = 0 and ∂(δ) = 1). Conversely, to construct a CDG-ring structure on the
kernel R of the derivation ∂ of a quasi-differential ring R∼, it suffices to choose
an element δ ∈ R1∼ such that ∂(δ) = 1 and set d(x) = [δ, x], h = δ2. Choosing
two different elements δ leads to two naturally isomorphic CDG-rings.

A left CDG-module M over a CDG-ring (R, d, h) is a graded left R-mod-
ule endowed with a d-derivation dM (that is a homogeneous map M −→ M of
degree 1 for which dM (rx) = d(r)x + (−1)|r|rd(x) for r ∈ R, x ∈ M , where
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|r| denotes the degree of a homogeneous element r) such that d2
M (x) = hx. A

quasi-differential left module over a quasi-differential ring R∼ is just a graded left
R∼-module (without any differential). The category of left CDG-modules over a
CDG-ring (R, d, h) is isomorphic to the category of quasi-differential left modules
over the quasi-differential ring R∼ corresponding to (R, d, h); this isomorphism of
categories assigns to a graded R∼-module structure on a graded left R-module M
the derivation dM (x) = δx on M .

Analogously, a right CDG-module N over (R, d, h) is a graded right R-mod-
ule endowed with a d-derivation dN (that is a homogeneous map N −→ N of
degree 1 for which dN (yr) = dN (y)r + (−1)|y|yd(r) for y ∈ N , r ∈ R) such that
d2
N (y) = −yh. A quasi-differential right module over a quasi-differential ring R∼ is

just a graded right R∼-module. The category of right CDG-modules over (R, d, h)
is isomorphic to the category of quasi-differential R∼-modules when R∼ corre-
sponds to (R, d, h); this isomorphism of categories assigns to a graded R∼-module
structure on a graded right R-module N the derivation dN (y) = (−1)|y|+1yδ on N .

0.4.5 CDG-modules over a CDG-ring form a DG-category, i.e., a category where
for any two given objects there is a complex of morphisms between them. We will
consider the cases of left and right CDG-modules separately.

Let L and M be two left CDG-modules over a CDG-ring (R, d, h). The com-
plex Hom•R(L,M) is defined as follows. The component Homn

R(L,M) consists of
all homogeneous maps L −→M of degree n supercommuting with the R-module
structures in L and M . This means that for f ∈ Homn

R(L,M) and r ∈ R, x ∈ L
one should have f(rx) = (−1)n|r|rf(x). The differential is defined by the formula
(df)(x) = dMf(x)− (−1)|f |fdL(x). One has d2(f) = 0, because f(hx) = hf(x).

Let K and N be two right CDG-modules over (R, d, h). The compo-
nent Homn

R(K,N) of the complex Hom•R(K,N) consists of all homogeneous
maps K −→ N of degree n commuting with the R-module structures in
L and M (without any signs). The differential is defined by the formula
(df)(y) = dNf(y)− (−1)|f |fdK(y).

One can see that shifts and cones exist in the DG-categories of (left or right)
CDG-modules, and moreover, a CDG-module structure can be twisted with any
cochain in the complex of endomorphisms satisfying the Maurer–Cartan equa-
tion [19]. Explicitly, for any left CDG-module (M,dM ) over (R, d, h) and any
q ∈ Hom1

R(M,M) such that d(q) + q2 = 0 the twisted differential dM (q) =
dM + q defines another CDG-module structure on M , and analogously, for any
right CDG-module (N, dN ) over (R, d, h) and any q ∈ Hom1

R(N,N) such that
d(q)+q2 = 0 the twisted differential dN (q) = dN +q defines another CDG-module
structure on N . It follows that the homotopy categories of CDG-modules, defined
as the categories of zero cohomology of the DG-categories of CDG-modules, are
triangulated.

Furthermore, one can speak about the total CDG-modules of complexes
of CDG-modules, constructed by taking infinite direct sums or infinite products
along the diagonals. In particular, there are total CDG-modules of exact triples
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of CDG-modules. This allows one to define the coderived and contraderived cate-
gories of CDG-modules over (R, d, h) as the quotient categories of the homotopy
categories of CDG-modules by the minimal triangulated subcategories containing
the total CDG-modules of exact triples of CDG-modules and closed under infinite
direct sums and infinite products, respectively.

Notice that one cannot define the conventional derived category of CDG-
modules, as CDG-modules have no cohomology groups.

0.4.6 Let S∼ be a left finitely projective nonhomogeneous Koszul ring and
(R, d, h) be the dual CDG-ring. Assume that the ring S0 has a finite right
homological dimension. Then the Koszul duality theorem claims that the derived
category of right S∼-modules is equivalent to the coderived category of right
CDG-modules N over (R, d, h) such that every element of N is annihilated by
Rn for n � 0. Assuming that S0 has a finite left homological dimension, the
derived category of left S∼-modules is also described as being equivalent to the
contraderived category of left CDG-modules over (R, d, h) in which certain infinite
summation operations are defined.

One can drop the homological dimension assumptions, replacing the derived
categories of S∼-modules in the formulations of these results with certain semi-
derived categories relative to S0 (see Theorem 11.8 and Remark 11.7.3). And the
conventional derived category of right S∼-modules, without the homological di-
mension assumption on S0, is equivalent to the quotient category of the coderived
category of locally nilpotent (in the above sense) right CDG-modules over (R, d, h)
by its minimal triangulated subcategory closed under infinite direct sums and con-
taining all the CDG-modules N where Rn act by zero for all n > 0 and which
are acyclic with respect to dN (one has d2

N = 0, since Nh = 0). The latter result
has an obvious analogue in the case of left CDG-modules with infinite summation
operations.

0.4.7 The following example is thematic. Let M be a smooth affine algebraic
variety and E be a vector bundle over M . Let DiffM,E denote the ring of differ-
ential operators acting in the sections of E. The natural filtration of DiffM,E by
the order of differential operators makes it a left (and right) finitely projective
nonhomogeneous Koszul ring. To construct the dual CDG-ring, choose a global
connection ∇E in E. Let Ω(M,End(E)) be the graded algebra of differential forms
with coefficients in the vector bundle End(E) of endomorphisms of E, endowed
with the de Rham differential d∇ depending on the connection ∇End(E) corre-
sponding to ∇E and the element h∇ ∈ Ω2(M,End(E)) equal to the curvature
of ∇E . The Koszul duality theorem provides an equivalence between the derived
category of right DiffM,E-modules and the coderived category of right CDG-mod-
ules over Ω(M,End(E)). The proof of this result given in 11.8 generalizes easily
to nonaffine varieties (the approach with quasi-differential structures allows one
to get rid of the choice of a global connection).
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These results are even valid in prime characteristic, describing the derived
category of modules over the ring/sheaf of “crystalline” differential operators
(those generated by the endomorphisms and vector fields with the commutation
relations analogous to the zero characteristic case). Furthermore, it is not difficult
to see that the quotient category of the homotopy category of finitely generated
right CDG-modules over Ω(M,End(E)) by its minimal thick subcategory contain-
ing the total CDG-modules of exact triples of finitely generated CDG-modules is a
full subcategory of the coderived category of CDG-modules. This full subcategory
is equivalent to the bounded derived category of finitely generated (coherent) right
DiffM,E-modules. All of this is applicable to any smooth varieties, not necessarily
affine [76].

For a smooth affine varietyM , the derived category of left DiffM,E-modules is
equivalent to the contraderived category of left CDG-modules over Ω(M,End(E)).

0.4.8 Koszul algebras were introduced by S. Priddy; the standard contempo-
rary sources are [13, 75]. Nonhomogeneous quadratic duality (the equivalence of
categories of nonhomogeneous Koszul algebras and Koszul CDG-algebras) was
developed in [73, 75]. Homogeneous Koszul duality (the equivalence of derived
categories of graded modules over dual Koszul algebras) was established in [13].
Koszul duality in the context of A∞-algebras and DG-coalgebras was worked out
in [66, Chapitres 1 and 2]. All of these papers only consider duality over the ground
field (or, in the case of [13], a semisimple algebra) rather than over an arbitrary
ring, as above.

Notable attempts to define a version of derived category of DG-modules
over the de Rham complex, so that the derived category of modules over the
differential operators would be equivalent to it, were undertaken in [56] and [11,
Section 7.2]. They were not entirely successful, in the present author’s view, in that
in [56] the analytic topology and analytic functions were used in the definition of
an essentially purely algebraic category, while in [11] the right-hand side of the
purported equivalence of categories is to a certain extent defined in terms of the
left-hand side. The latter problem is also present in Lefèvre-Hasegawa’s Koszul
duality [66, 61].



1 Semialgebras and
Semitensor Product

Throughout Chapters 1–11, k is a commutative ring. All our rings, bimodules,
abelian groups, . . . will be k-modules; all additive categories will be k-linear.

1.1 Corings and comodules

Let A be an associative k-algebra (with unit).

1.1.1 A coring C over A is a coring object in the tensor category of A-A-bimod-
ules; in other words, it is a k-module endowed with an A-A-bimodule structure
and two A-A-bimodule maps of comultiplication C −→ C ⊗A C and counit C −→
A satisfying the coassociativity and counity equations: two compositions of the
comultiplication map C −→ C⊗A C with the maps C⊗A C ⇒ C⊗A C⊗A C induced
by the comultiplication map should coincide with each other, and two compositions
C −→ C⊗AC ⇒ C of the comultiplication map with the maps C⊗AC ⇒ C induced
by the counit map should coincide with the identity map of C.

A left comodule M over a coring C is a comodule object in the left module
category of left A-modules over the coring object C in the tensor category of
A-A-bimodules; in other words, it is a left A-module endowed with a left A-mod-
ule map of left coaction M −→ C⊗A M satisfying the coassociativity and counity
equations: two compositions of the coaction map M −→ C ⊗A M with the maps
C⊗AM ⇒ C⊗AC⊗AM induced by the comultiplication and coaction maps should
coincide with each other and the composition M −→ C⊗AM −→M of the coaction
map with the map C⊗AM −→M induced by the counit map should coincide with
the identity map of M. A right comodule N over C is a comodule object in the
right module category of right A-modules over the coring object C in the tensor
category of A-A-bimodules; in other words, it is a right A-module endowed with a
right A-module map of right coaction N −→ N⊗A C satisfying the coassociativity
and counity equations for the compositions N −→ N ⊗A C ⇒ N ⊗A C ⊗A C and
N −→ N ⊗A C −→ N.

1.1.2 If V is a left A-module, then the left C-comodule C⊗A V is called the left
C-comodule coinduced from an A-module V . The k-module of comodule homomor-
phisms from an arbitrary C-comodule into the coinduced C-comodule is described
by the formula

HomC(M, C⊗A V ) � HomA(M, V ).
This is an instance of the following general fact, which we prefer to formulate in
the tensor (monoidal) category language, though it can be also formulated in the
monad language.
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Lemma. Let E be a (not necessarily additive) associative tensor category with a
unit object, M be a left module category over it, R be a ring object with unit in E,
and RM be the category of R-module objects in M. Then the induction functor
M −→ RM defined by the rule V �−→ R⊗ V is left adjoint to the forgetful functor
RM −→ M.

Proof. For any object V and any R-module M in M, the map

HomM(V,M) −→ HomM(R ⊗ V, M)

is a split equalizer (see [67, VI.6]) of the pair of maps

HomM(R ⊗ V, M) ⇒ HomM(R ⊗R⊗ V, M)

in the category of sets, with the splitting maps

HomM(V,M)←− HomM(R ⊗ V, M)←− HomM(R⊗R ⊗ V, M)

induced by the unit morphism of R (applied at the rightmost factor R). �

We will denote the category of left C-comodules by C-comod and the category
of right C-comodules by comod-C. The category of left C-comodules is abelian
whenever C is a flat right A-module. Moreover, the right A-module C is flat if and
only if the category C-comod is abelian and the forgetful functor C-comod −→
A-mod is exact. This is an instance of a general fact applicable to any monad
over an abelian category. The “only if” assertion is straightforwardly checked,
while the “if” part is deduced from the observations that the coinduction functor
V �−→ C⊗A V is right adjoint to the forgetful functor and a right adjoint functor
is left exact.

At the same time, for any coring C there are four natural exact categories [28]
of left comodules: the exact category of A-projective C-comodules, the exact cat-
egory of A-flat C-comodules, the exact category of arbitrary C-comodules with
A-split exact triples, and the exact category of arbitrary left C-comodules with
A-pure exact triples, i.e., the exact triples which as triples of left A-modules re-
main exact after the tensor product with any right A-module. Besides, any mor-
phism of C-comodules has a cokernel and the forgetful functor C-comod −→ A-mod
preserves cokernels. When a morphism of C-comodules has the property that its
kernel in the category of A-modules is preserved by the functors of tensor product
with C and C⊗A C over A, this kernel has a natural C-comodule structure, which
makes it the kernel of that morphism in the category of C-comodules.

Infinite direct sums always exist in the category of C-comodules and the
forgetful functor C-comod −→ A-mod preserves them. The coinduction functor
A-mod −→ C-comod preserves both infinite direct sums and infinite products. To
construct products of C-comodules, one can present them as kernels of morphisms
of coinduced comodules, so the category of C-comodules has infinite products if it
has kernels.
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If C is a projective right A-module, or C is a flat right A-module and A is a
left Noetherian ring, then any left C-comodule is a union of its subcomodules that
are finitely generated as A-modules [23, 18.16 and 19.12].

1.1.3 Assume that the coring C is a flat left and right A-module and the ring A
has a finite weak homological dimension (Tor-dimension).

Lemma. There exists a (not always additive) functor assigning to any C-comodule
a surjective map onto it from an A-flat C-comodule.

Proof. Let G(M) −→ M be a surjective map onto an A-module M from a flat
A-module G(M) functorially depending on M . For example, one can take G(M)
to be the direct sum of copies of the A-module A over all elements of M . Let M

be a left C-comodule. Consider the coaction map M −→ C⊗AM; it is an injective
morphism of left C-comodules; let K(M) denote its cokernel. Let Q(M) be the
kernel of the composition

C⊗A G(M) −−→ C⊗A M −−→ K(M).

Then the composition of maps Q(M) −→ C ⊗A G(M) −→ C ⊗A M factorizes
through the injection M −→ C⊗A M, so there is a natural surjective morphism of
C-comodules Q(M) −→ M. Let us show that the flat dimension dfA Q(M) of the
A-module Q(M) is smaller than that of M. Indeed, the A-module C ⊗A G(M) is
flat, hence

dfA Q(M) = dfAK(M)− 1 � dfA(C⊗A M)− 1 � dfA M− 1,

because the A-module K(M) is a direct summand of the A-module C ⊗A M

and a flat resolution of the A-module C ⊗A M can be constructed by taking
the tensor product of a flat resolution of the A-module M with the A-A-bimod-
ule C. It remains to iterate the functor M �−→ Q(M) sufficiently many times.
Notice that the comodule Q(M) is an extension of M by a coinduced comodule
C⊗A ker(G(M)→M). �

1.2 Cotensor product

1.2.1 The cotensor product N�CM of a right C-comodule N and a left C-comodule
M is a k-module defined as the kernel of the pair of maps

N ⊗A M ⇒ N ⊗A C⊗A M

one of which is induced by the C-coaction in N and the other by the C-coaction
in M. The functor of cotensor product is neither left, nor right exact in general;
it is left exact if the ring A is absolutely flat. For any right A-module V and any
left C-comodule M there is a natural isomorphism

(V ⊗A C) �C M � V ⊗A M.

This is an instance of the following general fact.
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Lemma. Let E be a tensor category, M be a left module category over it, N be a
right module category, K be an additive category, and ⊗ : N×M −→ K be a pairing
functor compatible with the module category structures on M and N. Let R be a
ring object with unit in E, M be an R-module object in M, and V be an object
of N. Then the morphism V ⊗R⊗M −→ V ⊗M induced by the action of R in M
is a cokernel of the pair of morphisms V ⊗R⊗R⊗M ⇒ V ⊗R⊗M , one of which
is induced by the multiplication in R and the other by the R-action in M .

Proof. The whole bar complex

· · · −−→ V ⊗R⊗R⊗M −−→ V ⊗R⊗M −−→ V ⊗M −−→ 0

is contractible with a contracting homotopy

· · · ←−− V ⊗R⊗R⊗M ←−− V ⊗R⊗M ←−− V ⊗M

induced by the unit morphism of R (applied at the leftmost factor R). �

1.2.2 Assume that C is a flat right A-module. A right comodule N over C is called
coflat if the functor of cotensor product with N is exact on the category of left
C-comodules. It is easy to see that any coflat C-comodule is a flat A-module. The
C-comodule coinduced from a flat A-module is coflat. A left comodule M over C

is called coflat relative to A (C/A-coflat) if its cotensor product with any exact
triple of A-flat right C-comodules is an exact triple. Any coinduced C-comodule is
C/A-coflat.

The definition of a relatively coflat C-comodule does not really depend on the
flatness assumption on C, but appears to be useful when this assumption holds.

Lemma. The classes of coflat right C-comodules and C/A-coflat left C-comodules
are closed under extensions. The quotient comodule of a C/A-coflat left C-comod-
ule by a C/A-coflat subcomodule is C/A-coflat; an A-flat quotient comodule of a
coflat right C-comodule by a coflat subcomodule is coflat. The cotensor product of
an exact triple of coflat right C-comodules with any left C-comodule is an exact
triple and the cotensor product of an A-flat right C-comodule with an exact triple
of C/A-coflat left C-comodules is an exact triple.

Proof. All of these results follow from the standard properties of the right derived
functor of the left exact functor of cotensor product on the Cartesian product of
the exact category of A-flat right C-comodules and the abelian category of left
C-comodules. One can simply define the k-modules CotorC

i (N,M), i = 0, −1, . . .
as the homology of the cobar complex

N ⊗A M −−→ N ⊗A C⊗A M −−→ N⊗A C⊗A C⊗A M −−→ · · ·
for any A-flat right C-comodule N and any left C-comodule M. Then

CotorC
0 (N,M) � N �C M,
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and there are long exact sequences of CotorC
∗ associated with exact triples of C-co-

modules in either argument, since in both cases the cobar complexes form an exact
triple. Now an A-flat right C-comodule N is coflat if and only if CotorC

i (N,M) = 0
for any left C-comodule M and all i < 0. Indeed, the “if” assertion follows from
the homological exact sequence, and “only if” holds since the cobar complex is the
cotensor product of the comodule N with the cobar resolution of the comodule M,
which is exact except in degree 0. Analogously, a left C-comodule M is C/A-coflat
if and only if CotorC

i (N,M) = 0 for any A-flat right C-comodule N and all i < 0,
since the cobar resolution of the comodule N is a complex of A-flat right C-comod-
ules, exact except in degree 0 and split over A. The rest is obvious. �

Remark. A much more general construction of the double-sided derived functor
CotorC∗ (N,M) defined for arbitrary C-comodules M and N will be given, in the
stronger assumptions of 1.1.3 and 2.5, in Chapter 2. Using this construction, one
can prove somewhat stronger results. In particular, CotorC

i (M,N) = 0 for any
C/A-coflat left C-comodule M, any right C-comodule N, and all i < 0, since the
k-modules CotorCi (M,N) can be computed using a left resolution of N consisting
of A-flat right C-comodules (see 2.8). Therefore, any A-flat C/A-coflat C-comodule
is coflat. It follows that the construction of Lemma 1.1.3 assigns to any C/A-coflat
C-comodule a surjective map onto it from a coflat C-comodule with a C/A-coflat
kernel.

1.2.3 Now let C be an arbitrary coring. Let us call a left C-comodule M quasicoflat
if the functor of cotensor product with M is right exact on the category of right
C-comodules, i.e., this functor preserves cokernels. Any coinduced C-comodule is
quasicoflat. Any quasicoflat C-comodule is C/A-coflat.

Proposition. Let N be a right C-comodule, K be a left C-comodule endowed with
a right action of a k-algebra B by comodule endomorphisms, and M be a left
B-module. Then there is a natural k-module map

(N �C K)⊗B M −−→ N �C (K⊗B M),

which is an isomorphism, at least, in the following cases:

(a) M is a flat left B-module;

(b) N is a quasicoflat right C-comodule;

(c) C is a flat right A-module, N is a flat right A-module, K is a C/A-coflat left
C-comodule, K is a flat right B-module, and the ring B has a finite weak
homological dimension;

(d) K as a left C-comodule with a right B-module structure is coinduced from an
A-B-bimodule.

Besides, in the case (c) the cotensor product N �C K is a flat right B-module.
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Proof. The map (N �C K) ⊗B M −→ N ⊗A K ⊗B M obtained by taking the
tensor product of the map N �C K −→ N ⊗A K with the B-module M has equal
compositions with two maps N ⊗A K⊗B M ⇒ N ⊗A C⊗A K⊗B M , hence there
is a natural map (N �C K)⊗BM −→ N �C (K⊗BM). The case (a) is obvious. In
the case (b), it suffices to present M as the cokernel of a map of flat B-modules.
To prove (c) and (d), consider the cobar complex

N�C K −−→ N⊗AK −−→ N⊗AC⊗AK −−→ N⊗AC⊗AC⊗AK −−→ · · · (1.1)

In the case (c) this complex is exact, since it is the cotensor product of a C/A-coflat
C-comodule K with an A-split exact complex of A-flat C-comodules N −→ N ⊗A
C −→ N⊗AC⊗AC −→ · · · Since all the terms of the complex (1.1), except possibly
the leftmost one, are flat right B-modules and the weak homological dimension
of the ring B is finite, the leftmost term K �C M is also a flat B-module and the
tensor product of this complex with the left B-module M is exact. In the case (d),
the complex (1.1) is exact and split as a complex of right B-modules. �

1.2.4 Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.
A C-D-bicomodule K is an A-B-bimodule in the category of k-modules endowed
with a left C-comodule and a right D-comodule structures such that the right
D-coaction map K −→ K ⊗B D is a morphism of left C-comodules and the left
C-coaction map K −→ C⊗A K is a morphism of right B-modules, or equivalently,
the right D-coaction map is a morphism of left A-modules and the left C-coaction
map is a morphism of right D-comodules. Equivalently, a C-D-bicomodule is a
k-module endowed with an A-B-bimodule structure and an A-B-bimodule map of
bicoaction K −→ C⊗AK⊗BD satisfying the coassociativity and counity equations.
We will denote the category of C-D-bicomodules by C-comod-D.

Assume that C is a flat rightA-module and D is a flat left B-module. Then the
category of C-D-bicomodules is abelian and the forgetful functor C-comod-D −→
k-mod is exact. Let E be a coring over a k-algebra F . Let N be a C-E-bicomodule
and M be a E-D-bicomodule. Then the cotensor product N �E M can be endowed
with a C-D-bicomodule structure as the kernel of a pair of bicomodule morphisms
N⊗F M ⇒ N ⊗F E⊗F M.

More generally, let C, D, and E be arbitrary corings. Assume that the functor
of tensor product with C over A and with D over B preserves the kernel of the pair
of maps N⊗F M ⇒ N⊗F E⊗F M, that is the natural map C⊗A (N�EM)⊗BD −→
(C⊗A N) �E (M⊗B D) is an isomorphism. Then one can define a bicoaction map
N �E M −→ C ⊗A (N �E M) ⊗B D by taking the cotensor product over E of
the left C-coaction map N −→ C ⊗A N and the right D-coaction map M −→
M⊗B D. One can easily see that this bicoaction is counital and coassociative, at
least, if the natural maps C ⊗A C ⊗A (N �E M) −→ (C ⊗A C ⊗A N) �E M and
(N �E M)⊗B D⊗B D −→ N �E (M⊗B D⊗B D) are also isomorphisms.

In particular, if C is a flat right A-module and either D is a flat left B-module,
or N is a quasicoflat right E-comodule, or N is a flat right F -module, E is a flat
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right F -module, M is an E/F -coflat left E-comodule, M is a flat right B-module,
and B has a finite weak homological dimension, or M as a left E-comodule with a
right B-module structure is coinduced from an F -B-bimodule, then the cotensor
product N �E M has a natural C-D-bicomodule structure.

1.2.5 Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.

Proposition. Let N be a right C-comodule, K be a C-D-bicomodule, and M be a
left D-comodule. Then the iterated cotensor products

(N �C K) �D M and N �C (K �D M)

are naturally isomorphic, at least, in the following cases:

(a) C is a flat right A-module, N is a flat right A-module, D is a flat left B-mod-
ule, and M is a flat left B-module;

(b) C is a flat right A-module and N is a coflat right C-comodule;
(c) C is a flat right A-module, N is a flat right A-module, K is a C/A-coflat left

C-comodule, K is a flat right B-module, and the ring B has a finite weak
homological dimension;

(d) C is a flat right A-module, N is a flat right A-module, and K as a left C-co-
module with a right B-module structure is coinduced from an A-B-bimodule;

(e) M is a quasicoflat left C-comodule and K as a left C-comodule with a right
B-module structure is coinduced from an A-B-bimodule;

(f) K as a left C-comodule with a right B-module structure is coinduced from an
A-B-bimodule and K as a right D-comodule with a left A-module structure
is coinduced from an A-B-bimodule.

More precisely, in all cases in this list the natural maps from both iterated cotensor
products to the k-module N⊗AK⊗BM are injective, their images coincide and are
equal to the intersection of two submodules (N⊗A K) �D M and N �C (K⊗B M)
in the k-module N ⊗A K⊗B M.

Proof. One can easily see that whenever both maps (N �C K) ⊗B M −→ N �C

(K⊗B M) and (N �C K)⊗B D⊗B M −→ N �C (K⊗B D⊗B M) are isomorphisms,
the natural map (N �C K) �D M −→ N ⊗A K ⊗B M is injective and its image
coincides with the desired intersection of two submodules in N⊗A K⊗B M. Thus
it remains to apply Proposition 1.2.3. �

When associativity of cotensor product of four or more (bi)comodules is an
issue, it becomes important to know that the pentagonal diagrams of associativity
isomorphisms are commutative. Since each of the five iterated cotensor products of
four factors of the form N�C K�E L�D M is endowed with a natural map into the
tensor product N⊗A K⊗F L⊗B M, and the associativity isomorphisms are, pre-
sumably, compatible with these maps, it suffices to check that at least one of these
five maps is injective in order to show that the pentagonal diagram commutes. In
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particular, if the above proposition provides all the five associativity isomorphisms
constituting the pentagonal diagram and either M is a flat left B-module, or N is
a flat right A-module, or both K and L as left (right) comodules with right (left)
module structures are coinduced from bimodules, then the pentagonal diagram is
commutative.

We will say that a multiple cotensor product of several bicomodules N �C

· · ·�D M is associative if for any way of putting parentheses in this product all the
intermediate cotensor products can be endowed with bicomodule structures via the
construction of 1.2.4, all possible associativity isomorphisms between intermediate
cotensor products exist in the sense of the last assertion of Proposition 1.2.5 and
preserve bicomodule structures, and all the pentagonal diagrams commute. This
definition allows us to consider associativity of cotensor products as a property
rather than an additional structure. In particular, associativity isomorphisms and
bicomodule structures on associative multiple cotensor products are preserved by
the morphisms between them induced by any bicomodule morphisms of the factors.

1.3 Semialgebras and semimodules

1.3.1 Assume that the coring C over A is a flat right A-module.
It follows from Proposition 1.2.5(b) that the category of C-C-bicomodules

which are coflat right C-comodules is an associative tensor category with a unit
object C, the category of left C-comodules is a left module category over it, and
the category of coflat right C-comodules is a right module category over this tensor
category. Furthermore, it follows from Proposition 1.2.5(c) that whenever the ring
A has a finite weak homological dimension, the C-C-bicomodules that are flat
right A-modules and C/A-coflat left C-comodules also form a tensor category, left
C-comodules form a left module category over it, and A-flat right C-comodules
form a right module category over this tensor category. Finally, it follows from
Proposition 1.2.5(a) that whenever the ring A is absolutely flat, the categories
of left and right C-comodules are left and right module categories over the tensor
category of C-C-bicomodules. In each case, the cotensor product operation provides
a pairing between these left and right module categories compatible with their
module category structures and taking values in the category of k-modules.

A semialgebra over C is a ring object with unit in one of the tensor cate-
gories of C-C-bicomodules of the kind described above. In other words, a semial-
gebra S over C is a C-C-bicomodule satisfying appropriate (co)flatness conditions
guaranteeing associativity of cotensor products S �C · · · �C S of any number of
copies of S and endowed with two bicomodule morphisms of semimultiplication
S �C S −→ S and semiunit C −→ S satisfying the associativity and unity equa-
tions. Namely, two compositions S �C S �C S ⇒ S �C S −→ S of the morphisms
S�C S�C S ⇒ S�C S induced by the semimultiplication morphism with the semi-
multiplication morphism S �C S −→ S should coincide with each other and two
compositions S ⇒ S �C S −→ S of the morphisms S ⇒ S �C S induced by the
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semiunit morphism with the semimultiplication morphism should coincide with
the identity morphism of S.

A left semimodule over S is a module object in one of the left module cate-
gories of C-comodules of the above kind over the ring object S in the correspond-
ing tensor category of C-C-bicomodules. In other words, a left S-semimodule M

is a left C-comodule endowed with a left C-comodule morphism of left semiaction
S�C M −→M satisfying the associativity and unity equations. Namely, two com-
positions S�C S�C M ⇒ S�C M −→M of the morphisms S�C S�C M ⇒ S�C M

induced by the semimultiplication and the semiaction morphisms with the semi-
action morphism S �C M −→ M should coincide with each other, and the com-
position M −→ S �C M −→ M of the morphism M −→ S �C M induced by
the semiunit morphism with the semiaction morphism should coincide with the
identity morphism of M. For this definition to make sense, (co)flatness conditions
imposed on S and/or M must guarantee associativity of multiple cotensor prod-
ucts of the form S �C · · · �C S �C M. Right semimodules over S are defined in an
analogous way.

If L is a left C-comodule for which the multiple cotensor products S�C · · ·�C

S �C L are associative, then there is a natural left S-semimodule structure on the
cotensor product S �C L. The left semimodule S �C L is called the left S-semi-
module induced from a C-comodule L. According to Lemma 1.1.2, the k-module
of semimodule homomorphisms from the induced S-semimodule to an arbitrary
S-semimodule is described by the formula

HomS(S �C L, M) � HomC(L,M).

We will denote the category of left S-semimodules by S-simod and the cat-
egory of right S-semimodules by simod-S. This notation presumes that one can
speak of (left or right) S-semimodules with no flatness conditions imposed on
them. If S is a coflat right C-comodule, the category of left semimodules over S is
abelian and the forgetful functor S-simod −→ C-comod is exact.

Assume that either S is a coflat right C-comodule, or S is a flat rightA-module
and a C/A-coflat left C-comodule and A has a finite weak homological dimension,
or A is absolutely flat. Then both infinite direct sums and infinite products exist
in the category of left S-semimodules, and both are preserved by the forgetful
functor S-simod −→ C-comod, even though only infinite direct sums are preserved
by the full forgetful functor S-simod −→ A-mod.

If S is a flat right A-module and a C/A-coflat left C-comodule and A has a
finite weak homological dimension, then the category ofA-flat right S-semimodules
is exact. Of course, if S is a coflat right C-comodule, then the category of A-flat left
S-semimodules is exact. In both cases there are exact categories of C-coflat right
S-semimodules and C/A-coflat left S-semimodules. If A is absolutely flat, there
are exact categories of C-coflat left and right S-semimodules. Infinite direct sums
exist in all of these exact categories, and the forgetful functors preserve them.
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1.3.2 Assume that the coring C is a flat left and right A-module, the semialgebra
S is a flat left A-module and a coflat right C-comodule, and the ring A has a finite
weak homological dimension.

Lemma. There exists a (not always additive) functor assigning to any left S-semi-
module a surjective map onto it from an A-flat left S-semimodule.

Proof. Let P(M) −→ M denote the functorial surjective morphism onto a C-co-
module M from an A-flat C-comodule P(M) constructed in Lemma 1.1.3. Then
for any left S-semimodule M the composition of maps

S �C P(M) −−→ S �C M −−→ M

provides the desired surjective morphism of S-semimodules. According to the last
assertion of Proposition 1.2.3 (with the left and right sides switched), the A-mod-
ule P(M) = S �C P(M) is flat. �
Remark. In the above assumptions, the same construction provides also a (not al-
ways additive) functor assigning to any C/A-coflat right S-semimodule a surjective
map onto it from a semiflat right S-semimodule (see 1.4.2) with a C/A-coflat ker-
nel. This follows from Lemma 1.2.2 and Remark 1.2.2, since the cotensor product
with S over C preserves the kernel of the morphism P(N) −→ N and the kernel of
the map N �C S −→ N is isomorphic to a direct summand of N �C S as a right
C-comodule.

1.3.3 Assume that the coring C is a flat right A-module, the semialgebra S is a
C/A-coflat left C-comodule and a coflat right C-comodule, and the ring A has a
finite weak homological dimension.

Lemma. There exists an exact functor assigning to any A-flat right S-semimod-
ule an injective morphism from it into a coflat right S-semimodule with an A-flat
quotient semimodule. Besides, there exists an exact functor assigning to any left
S-semimodule an injective morphism from it into a C/A-coflat left S-semimodule.

Proof. For any A-flat right C-comodule N, set G(N) = N⊗A C. Then the coaction
map N −→ G(N) is an injective morphism of C-comodules, the comodule G(N) is
coflat, and the quotient comodule G(N)/N is A-flat. Now let N be an A-flat right
S-semimodule. The semiaction map N �C S −→ N is a surjective morphism of
A-flat S-semimodules; let K(N) denote its kernel. The map N�CS −→ G(N)�CS is
an injective morphism of A-flat S-semimodules with an A-flat quotient semimodule
(G(N)/N) �C S. Let Q(N) be the cokernel of the composition

K(N) −−→ N �C S −−→ G(N) �C S.

Then the composition of maps N �C S −→ G(N) �C S −→ Q(N) factorizes
through the surjection N �C S −→ N, so there is a natural injective morphism of
S-semimodules N −→ Q(N). The quotient semimodule Q(N)/N is isomorphic to
(G(N)/N) �C S, hence both Q(N)/N and Q(N) are flat A-modules.
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Notice that the semimodule morphism N −→ Q(N) can be lifted to a comod-
ule morphism N −→ G(N) �C S. Indeed, the map N −→ Q(N) can be presented
as the composition N −→ N �C S −→ G(N) �C S −→ Q(N), where the map
N −→ N�C S is induced by the semiunit morphism C −→ S of the semialgebra S.

Iterating this construction, we obtain an inductive system of C-comodule
morphisms

N −−→ G(N) �C S −−→ Q(N) −−→ G(Q(N)) �C S −−→ Q(Q(N)) −−→ · · · ,
where the maps

N −−→ Q(N) −−→ Q(Q(N)) −−→ · · ·
are injective morphisms of S-semimodules with A-flat cokernels, while the
C-comodules G(N) �C S, G(Q(N)) �C S, . . . are coflat. Denote by J(N) the
inductive limit of this system; then N −→ J(N) is an injective morphism of
S-semimodules with an A-flat cokernel and the C-comodule J(N) is coflat (since
the functor of cotensor product preserves filtered inductive limits).

A functorial injection M −→ J(M) of any left S-semimodule M into a
C/A-coflat left S-semimodule J(M) is provided by the same construction (with the
left and right sides switched). The only changes are that A-modules are no longer
flat, for any left C-comodule M the C-comodule G(M) = C ⊗A M is C/A-coflat,
and therefore the S-semimodule S �C G(M) is C/A-coflat.

Both functors J are exact, since the kernels of surjective maps, the cokernels
of injective maps, and the filtered inductive limits preserve exact triples. �

1.4 Semitensor product

1.4.1 Assume that the coring C is a flat right A-module, the semialgebra S is a
flat right A-module and a C/A-coflat left C-comodule, and the ring A has a finite
weak homological dimension. Let M be a left S-semimodule and N be an A-flat
right S-semimodule. The semitensor product N♦S M is a k-module defined as the
cokernel of the pair of maps

N �C S �C M ⇒ N �C M

one of which is induced by the S-semiaction in N and another by the S-semiaction
in M. Even under the strongest of our (co)flatness conditions on C and S, the
flatness of either N or M is still needed to guarantee that the triple cotensor
product N �C S �C M is associative.

For any A-flat right S-semimodule N and any left C-comodule L there is a
natural isomorphism

N ♦S (S �C L) � N �C L.

Analogously, for any A-flat right C-comodule R and any left S-semimodule M

there is a natural isomorphism (R �C S) ♦S M � R �C M. These assertions follow
from Lemma 1.2.1.
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1.4.2 If the coring C is a flat right A-module and the semialgebra S is a coflat
right C-comodule, one can define the semitensor product of a C-coflat right S-semi-
module and an arbitrary left S-semimodule. In these assumptions, a C-coflat right
S-semimodule N is called semiflat if the functor of semitensor product with N is
exact on the abelian category of left S-semimodules. The S-semimodule induced
from a coflat C-comodule is semiflat.

If C is a flat right A-module, S is a coflat right C-comodule and C/A-coflat
left C-comodule, and the ring A has a finite weak homological dimension, one can
define semiflat S-semimodules as A-flat right S-semimodules such that the functors
of semitensor product with them are exact. Then one can prove that any semiflat
S-semimodule is a coflat C-comodule.

When the ring A is absolutely flat, the semitensor product of arbitrary two
S-semimodules is defined without any conditions on the coring C and the semial-
gebra S.

1.4.3 Let S be a semialgebra over a coring C over a k-algebra A and T be a
semialgebra over a coring D over a k-algebra B. Let K denote a C-D-bicomod-
ule. One can speak about S-T-bisemimodule structures on K if the (co)flatness
conditions imposed on S, T, and K guarantee associativity of multiple cotensor
products of the form S �C · · · �C S �C K �D T �D · · · �D T. Assuming that this
is so, K is called an S-T-bisemimodule if it is endowed with a left S-semimod-
ule and a right T-semimodule structures such that the right T-semiaction map
K �D T −→ K is a morphism of left S-semimodules and the left S-semiaction
map S�C K −→K is a morphism of right D-comodules, or equivalently, the right
T-semiaction map is a morphism of left C-comodules and the left S-semiaction
map is a morphism of right T-semimodules. Equivalently, the C-D-bicomodule K

is called an S-T-bisemimodule if it is endowed with a C-D-bicomodule morphism of
bisemiaction S�C K�D T −→K satisfying the associativity and unity equations.

In particular, one can speak about S-T-bisemimodules K without imposing
any (co)flatness conditions on K if C is a flat rightA-module and either S is a coflat
right C-comodule, or S is a flat right A-module and a C/A-coflat left C-comodule
and A has a finite weak homological dimension, while D is a flat left B-module and
either T is a coflat left D-comodule, or T is a flat left B-module and a D/B-coflat
right D-comodule and B has a finite weak homological dimension. We will denote
the category of S-T-bisemimodules by S-simod-T. Besides, one can consider B-flat
S-T-bisemimodules if C is a flat right A-module and S is a coflat right C-comodule,
while D is a flat right B-module, T is a flat right B-module and a D/B-coflat right
D-comodule, and B has a finite weak homological dimension; and one can consider
D-coflat S-T-bisemimodules if C is a flat right A-module and S is a coflat right
C-comodule, while D is a flat right B-module and T is a coflat right D-comodule.

1.4.4 Let R be a semialgebra over a coring E over a k-algebra F . Let N be an
S-R-bisemimodule and M be an R-T-bisemimodule. We would like to define an
S-T-bisemimodule structure on the semitensor product N ♦R M.
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Assume that multiple cotensor products of the form S �C · · · �C S �C N �E

R �E M �D T �D · · · �D T are associative. Then, in particular, the semitensor
products (S�n �C N) ♦R (M �D T �m) can be defined. Assume in addition that
multiple cotensor products of the form S�C · · ·�C S�C N�E M�D T �D · · ·�D T

are associative. Then the semitensor products (S�n �C N) ♦R (M �D T�m) have
natural C-D-bicomodule structures as cokernels of C-D-bicomodule morphisms.
Assume that multiple cotensor products of the form S�C · · ·�C S�C (N♦R M)�D

T�D· · ·�DT are also associative. Finally, assume that the semitensor product with
S�n over C and with T �m over D preserves the cokernel of the pair of morphisms
N �E R �E M ⇒ N �E M for n + m = 2, that is the bicomodule morphisms
(S�n �C N) ♦R (M �D T�m) −→ S�n �C (N ♦R M) �D T �m are isomorphisms.
Then one can define an associative and unital bisemiaction morphism S �C (N♦R

M) �D T −→ N ♦R M by taking the semitensor product over R of the morphism
of S-semiaction in N and the morphism of T-semiaction in M.

For example, if C is a flat right A-module, S is a coflat right C-comodule, D

is a flat left B-module, T is a coflat right D-comodule, E is a flat right F -mod-
ule, R is a flat right F -module and a E/F -coflat left E-comodule, and F has
a finite weak homological dimension, then the semitensor product of any F -flat
S-R-bisemimodule N and any R-T-bisemimodule M has a natural S-T-bisemi-
module structure. Since the category of S-T-bisemimodules is abelian in this case,
the bisemimodule N ♦R M can be simply defined as the cokernel of the pair of
bisemimodule morphisms N �E R �E M ⇒ N �E M.

Proposition. Let N be a right S-semimodule, K be an S-T-bisemimodule, and M

be a left T-semimodule. Then the iterated semitensor products

(N ♦S K) ♦T M and N ♦S (K ♦T M)

are well defined and naturally isomorphic, at least, in the following cases:

(a) C is a flat right A-module, S is a coflat right C-comodule, N is a coflat right
C-comodule, D is a flat left B-module, T is a coflat left D-comodule, and M

is a coflat left D-comodule;
(b) C is a flat right A-module, S is a coflat right C-comodule, N is a semiflat

right S-semimodule, and either
• D is a flat right B-module, T is a coflat right D-comodule, and K is a

coflat right D-comodule, or
• D is a flat right B-module, T is a flat right B-module and a D/B-coflat

left D-comodule, the ring B has a finite weak homological dimension,
and K is a flat right B-module, or
• D is a flat left B-module, T is a flat left B-module and a D/B-coflat

right D-comodule, the ring B has a finite weak homological dimension,
and M is a flat left B-module, or
• the ring B is absolutely flat;
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(c) C is a flat right A-module, S is a coflat right C-comodule, N is a coflat right
C-comodule, and either
• D is a flat right B-module, T is a coflat right D-comodule, and K as a

left S-semimodule with a right D-comodule structure is induced from a
D-coflat C-D-bicomodule, or
• D is a flat right B-module, T is a flat right B-module and a D/B-coflat

left D-comodule, the ring B has a finite weak homological dimension,
and K as a left S-semimodule with a right D-comodule structure is
induced from a B-flat C-D-bicomodule, or

• D is a flat left B-module, T is a flat left B-module and a D/B-coflat
right D-comodule, the ring B has a finite weak homological dimension,
K as a left S-semimodule with a right D-comodule structure is induced
from a C-D-bicomodule, and M is a flat left B-module, or

• the ring B is absolutely flat and K as a left S-semimodule with a right
D-comodule structure is induced from a B-flat C-D-bicomodule.

More precisely, in all cases in this list the natural maps into both iterated semiten-
sor products from the k-module (N�C K)�D M � N�C (K�D M) are surjective,
their kernels coincide and are equal to the sum of the kernels of two maps from
this module onto its quotient modules (N �C K) ♦T M and N ♦S (K �D M).

Proof. It follows from Proposition 1.2.5 that all multiple cotensor products of
the form N �C S �C · · · �C S �C K �D T �D · · · �D T �D M are associative.
Multiple cotensor products N �C S �C · · · �C S �C (K ♦T M) and (N ♦S K) �D

T �D · · · �D T �D M are also associative by the same proposition (here one
has to notice that the semitensor product N ♦S K is a coflat right D-comod-
ule whenever K is a coflat right D-comodule and N is a semiflat right S-semi-
module). The map N �C K �D M −→ (N ♦S K) �D M factorizes through the
surjection N �C K �D M −→ N ♦S (K �D M), hence there is a natural map
N ♦S (K �D M) −→ (N ♦S K) �D M. One can easily see that whenever this
map and the analogous maps for T, T �D T, and T �D M in place of M are
isomorphisms, the iterated semitensor product (N ♦S K) ♦T M is defined, the
natural map N �C K �D M −→ (N ♦S K) ♦T M is surjective, and its kernel is
equal to the desired sum of two kernels of maps from N �C K �D M onto its
quotient modules. Thus it remains to prove that the map N ♦S (K �D M) −→
(N ♦S K) �D M is an isomorphism, i.e., the exact sequence of right D-comodules
N�CS�CK −→ N�CK −→ N♦SK −→ 0 remains exact after taking the cotensor
product with M over D. This is obvious if M is a quasicoflat D-comodule. If N

is a semiflat S-semimodule, it suffices to present M as a kernel of a morphism
of (quasi)coflat D-comodules. Finally, if K as a left S-semimodule with a right
D-comodule structure is induced from a C-D-bicomodule, then our exact sequence
of right D-comodules splits. �
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2.1 Coderived categories

A complex C• over an exact category [28] A is called exact if it is composed
of exact triples Zi → Ci → Zi+1 in A. A complex over A is called acyclic if it is
homotopy equivalent to an exact complex (or equivalently, if it is a direct summand
of an exact complex). Acyclic complexes form a thick subcategory Acycl(A) of the
homotopy category Hot(A) of complexes over A. All acyclic complexes over A are
exact if and only if A contains images of idempotent endomorphisms [69]. The
quotient category D(A) = Hot(A)/Acycl(A) is called the derived category of A.

Let A be an exact category where all infinite direct sums exist and the func-
tors of infinite direct sum are exact. By the total complex of an exact triple
′K• → K• → ′′K• of complexes over A we mean the total complex of the corre-
sponding bicomplex with three rows. A complex C• over A is called coacyclic if
it belongs to the minimal triangulated subcategory Acyclco(A) of the homotopy
category Hot(A) containing all the total complexes of exact triples of complexes
over A and closed under infinite direct sums. Any coacyclic complex is acyclic.
Acyclic complexes are not always coacyclic (see 0.2.2). It follows from the next
lemma that any acyclic complex bounded from below is coacyclic.

Lemma. Let 0→M0,• →M1,• → · · · be an exact sequence, bounded from below,
of arbitrary complexes over A. Then the total complex T • of the bicomplex M•,•

constructed by taking infinite direct sums along the diagonals is coacyclic.

Proof. An exact sequence of complexes 0→M0,• →M1,• → · · · can be presented
as the inductive limit of finite exact sequences of complexes 0 → M0,• → · · · →
Mn,• → Zn+1,• → 0. The total complex T •n of the latter finite exact sequence
is homotopy equivalent to a complex obtained from total complexes of the exact
triples Zn,• → Mn,• → Zn+1,• using the operations of shift and cone. Hence the
complexes T •n are coacyclic. The complex T • is their inductive limit; moreover,
the inductive system of T •n is obtained by applying the functor of total complex to
a locally stabilizing inductive system of bicomplexes. Therefore, the construction
of homotopy inductive limit provides an exact triple of complexes

⊕
n T
•
n −→⊕

n T
•
n −→ T •. Since the total complex of this exact triple is coacyclic and the

direct sum of coacyclic complexes is coacyclic, the complex T • is coacyclic. (In
fact, this exact triple of complexes is split in every degree, so its total complex is
even contractible.) �

The category of coacyclic complexes Acyclco(A) is a thick subcategory of the
homotopy category Hot(A), since it is a triangulated subcategory with infinite
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direct sums [69, 70]. The coderived category Dco(A) of an exact category A is
defined as the quotient category Hot(A)/Acyclco(A).

Remark. If an exact category A has a finite homological dimension, then the
minimal triangulated subcategory of the homotopy category Hot(A) containing the
total complexes of exact triples of complexes over A coincides with the subcategory
of acyclic complexes. Indeed, let C• be an exact complex over A and n be a number
greater than the homological dimension of A. Let Zi be the objects of cycles of
the complex C•. Then for any integer j the Yoneda extension class represented by
the extension Z2jn → C2jn → · · · → C2jn+n−1 → Z2jn+n is trivial, and therefore,
this extension can be connected with the split extension by a pair of extension
morphisms (Z2jn → C2jn → · · · → C2jn+n−1 → Z2jn) −→ (Z2jn → ′C2jn →
· · · → ′C2jn+n−1 → Z2jn+n) ←− (Z2jn → Z2jn → 0 → · · · → 0 → Z2jn+n →
Z2jn+n). Let ′C• be the complex obtained by replacing all the even segments
C2jn → · · · → C2jn+n−1 of the complex C• with the segments ′C2jn → · · · →
′C2jn+n−1 while leaving the odd segments C2jn+n → · · · → C2(j+1)n−1 in place,
and let ′′C• be the complex obtained by replacing the same even segments of the
complex C• with the segments Z2jn → 0 → · · · → 0 → Z2jn+n while leaving the
odd segments in place. Then the complex ′′C• and the cones of both morphisms
C• −→ ′C• and ′′C• −→ ′C• are homotopy equivalent to complexes obtained
from total complexes of exact triples of complexes with zero differentials using the
operation of cone repeatedly.

2.2 Coflat complexes

Let C be a coring over a k-algebra A. The cotensor product N•�C M• of a complex
of right C-comodules N• and a complex of left C-comodules M• is defined as the
total complex of the bicomplex Ni �C Mj , constructed by taking infinite direct
sums along the diagonals.

Assume that C is a flat rightA-module. Then the category of left C-comodules
is an abelian category with exact functors of infinite direct sums, so the coderived
category Dco(C-comod) is defined. When speaking about coacyclic complexes of
C-comodules, we will always mean coacyclic complexes with respect to the abelian
category of C-comodules, unless another exact category of C-comodules is explicitly
mentioned.

A complex of right C-comodules N• is called coflat if the complex N• �C M•

is acyclic whenever a complex of left C-comodules M• is coacyclic.

Lemma. Any complex of coflat C-comodules is coflat.

Proof. Let N• be a complex of coflat C-comodules. Since the functor of cotensor
product with N• preserves shifts, cones, and infinite direct sums, it suffices to show
the complex N• �C M• is acyclic whenever M• is the total complex of an exact
triple of complexes of left C-comodules ′K• → K• → ′′K•. In this case, the triple
of complexes N• �C

′K• −→ N• �C K• −→ N• �C
′′K• is also exact, because N• is
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a complex of coflat C-comodules, and the complex N• �C M• is the total complex
of this exact triple. �

If the ring A has a finite weak homological dimension, then any coflat complex
of C-comodules is a flat complex of A-modules in the sense of 0.1.1. (Indeed, if
V • is a complex of right A-modules such that the tensor product of V • with any
coacyclic complex of left A-modules is acyclic, then the tensor product of V • with
any acyclic complex U• of left A-modules is also acyclic, since one can construct
a morphism into U• from an acyclic complex of flat A-modules with a coacyclic
cone.) The complex of C-comodules V • ⊗A C coinduced from a flat complex of
A-modules V • is coflat.

Remark. The coderived category Dco(C-comod) can be only thought of as the
“right” version of exotic unbounded derived category of C-comodules (e.g., for
the purposes of defining the derived functors CotorC and CoextC, constructing
the equivalence of derived categories of C-comodules and C-contramodules, etc.)
when the ring A has a finite (weak or left) homological dimension. Indeed, what is
needed is a definition of “relative coderived category” of C-comodules such that for
C = A it would coincide with the derived category of A-modules, while when C is
a coalgebra over a field it would be the coderived category of C-comodules defined
above. (The same applies to the semiderived category Dsi(S-simod) of S-semimod-
ules– it only appears to be the “right” definition when the ring A has a finite
homological dimension.)

2.3 Semiderived categories

Let S be a semialgebra over a coring C. Assume that C is a flat right A-module
and S is a coflat right C-comodule, so that the category of left S-semimodules is
abelian. The semiderived category of left S-semimodules Dsi(S-simod) is defined
as the quotient category of the homotopy category Hot(S-simod) by the thick
subcategory Acyclco-C(S-simod) of complexes of S-semimodules that are coacyclic
as complexes of C-comodules.

Remark. There is no claim that the semiderived category exists in the sense that
morphisms between a given pair of objects form a set rather than a class. Rather,
we think of our localizations of categories as of “very large” categories with classes
of morphisms instead of sets. We will explain in 5.5 and 6.5 how to compute the
modules of homomorphisms in semiderived categories in terms of resolutions; then
it will follow that the semiderived category does exist, under certain assumptions.

2.4 Semiflat complexes

Let S be a semialgebra. The semitensor product N• ♦S M• of a complex of right
S-semimodules N• and a complex of left S-semimodules M• is defined as the
total complex of the bicomplex Ni ♦S Mj , constructed by taking infinite direct
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sums along the diagonals. Of course, appropriate (co)flatness conditions must be
imposed on S, N•, and M• for this definition to make sense.

Assume that the coring C is a flat right A-module, the semialgebra S is a
coflat right C-comodule and a C/A-coflat left C-comodule, and the ring A has a
finite weak homological dimension. A complex of A-flat right S-semimodules N•

is called semiflat if the complex N• ♦S M• is acyclic whenever a complex of left
S-semimodules M• is C-coacyclic. Any semiflat complex of S-semimodules is a
coflat complex of C-comodules. The complex of S-semimodules R• �C S induced
from a coflat complex of A-flat C-comodules R• is semiflat.

If it is only known that C is a flat right A-module and S is a coflat right C-co-
module, one can define semiflat complexes of C-coflat right S-semimodules. Then
the complex of S-semimodules induced from a complex of coflat C-comodules is
semiflat; it is also a complex of semiflat semimodules.

Notice that not every complex of semiflat semimodules is semiflat (see 0.1.1).
In particular, it follows from Theorem 2.6 and Lemma 2.7 below that (in the
assumptions of 2.6) a C-coacyclic complex of A-flat right S-semimodules N• is
semiflat if and only if its semitensor product with any complex of left S-semimod-
ules M• (or just with any left S-semimodule M) is acyclic. Thus a C-coacyclic
complex of semiflat S-semimodules is semiflat if and only if all of its semimodules
of cocycles are semiflat.

On the other hand, any complex of semiflat semimodules bounded from above
is semiflat. Moreover, if · · · → N−1,• → N0,• → 0 is a complex, bounded from
above, of semiflat complexes of S-semimodules, then the total complex E• of the
bicomplex N•,• constructed by taking infinite direct sums along the diagonals is
semiflat. Indeed, the category of semiflat complexes is closed under shifts, cones,
and infinite direct sums, so one can apply the following lemma.

Lemma. Let · · · → N−1,• → N0,• → 0 be a complex, bounded from above, of
arbitrary complexes over an additive category A where infinite direct sums exist.
Then the total complex E• of the bicomplex N•,• up to the homotopy equivalence
can be obtained from the complexes N−i,• using the operations of shift, cone, and
infinite direct sum.

Proof. Let E•n be the total complex of the finite complex of complexes 0 →
N−n,• → · · · → N0,• → 0. Then the complex E• is the inductive limit of the
complexes E•n, and in addition, the embeddings of complexes E•n −→ E•n+1 split
in every degree. Thus the triple of complexes

⊕
nE

•
n −→

⊕
nE

•
n −→ E• is split

exact in every degree and the complex E• is homotopy equivalent to the cone
of the morphism

⊕
nE

•
n −→

⊕
nE

•
n (the homotopy inductive limit of the com-

plexes E•n). �
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2.5 Main theorem for comodules

Assume that the coring C is a flat left and right A-module and the ring A has a
finite weak homological dimension.

Theorem. The functor mapping the quotient category of the homotopy category of
complexes of coflat C-comodules (coflat complexes of C-comodules) by its inter-
section with the thick subcategory of coacyclic complexes of C-comodules into the
coderived category of C-comodules is an equivalence of triangulated categories.

Proof. We will show that any complex of C-comodules K• can be connected with
a complex of coflat C-comodules in a functorial way by a chain of two morphisms
K• ←− R2(K•) −→ R2L1(K•) with coacyclic cones. Moreover, if the complex
K• is a complex of coflat C-comodules (coflat complex of C-comodules), then the
intermediate complex R2(K•) in this chain is also a complex of coflat C-comodules
(coflat complex of C-comodules). Then we will apply the following lemma.

Lemma. Let C be a category and F be its full subcategory. Let S be a class of
morphisms in C containing the third morphism of any triple of morphisms s, t,
and st when it contains two of them. Suppose that for any object X in C there is
a chain of morphisms X ← F1(X) → · · · ← Fn−1(X) → Fn(X) belonging to S
and functorially depending on X such that the object Fn(X) belongs to F for any
X ∈ C and all the objects Fi(X) belong to F for any X ∈ F. Then the functor
F[(S ∩ F)−1] −→ C[S−1] induced by the embedding F −→ C is an equivalence of
categories.

Proof. It is obvious that the functor between the localized categories is surjective
on the isomorphism classes of objects; let us show that it is bijective on morphisms.
It follows from the condition on the class S that the functors Fi preserve it. Let
U and V be two objects of F and φ : U −→ V be a morphism between them in
the category C[S−1]. Applying the functor Fn : C −→ F, we obtain a morphism
Fn(φ) : Fn(U) −→ Fn(V ) in the category F[(S ∩ F)−1]. The square diagram of
morphisms in the category C[S−1] formed by the morphism φ, the isomorphism
between U and Fn(U), the morphism Fn(φ), and the isomorphism between V
and Fn(V ) is commutative, since it is composed from commutative squares of
morphisms in the category C. Since the other three morphisms in this commutative
square lift to F[(S ∩ F)−1], the morphism φ belongs to the image of the functor
F[(S ∩ F)−1] −→ C[S−1]. Now suppose that two morphisms φ and ψ : U −→ V
in the category F[(S ∩ F)−1] map to the same morphism in C[S−1]. Applying the
functor Fn, we see that the morphisms Fn(φ) and Fn(ψ) are equal in F[(S∩F)−1].
So we have two commutative squares in the category F[(S ∩ F)−1] with the same
vertices U , V , Fn(U), and Fn(V ), the same morphism Fn(U) −→ Fn(V ), the same
isomorphisms U � F (U) and V � F (V ), and two morphisms φ and ψ : U −→ V .
It follows that the latter two morphisms are equal. �
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Let K• be a complex of C-comodules. Let P(M) −→M denote the functorial
surjective morphism onto an arbitrary C-comodule M from an A-flat C-comodule
P(M) constructed in Lemma 1.1.3.

The functor P is not always additive, but as any functor from an additive
category to an abelian one it is the direct sum of a constant functor M �−→ P(0)
and a functor P+(M) = ker(P(M) → P(0)) = coker(P(0) → P(M)) sending zero
objects to zero objects and zero morphisms to zero morphisms. For any C-co-
module M, the comodule P+(M) is A-flat and the morphism P+(M) −→ M is
surjective.

Set P0(K•) = P+(K•), P1(K•) = P+(ker(P0(K•) → K•)), etc. For d large
enough, the kernel Z(K•) of the morphism Pd−1(K•) −→ Pd−2(K•) will be a
complex of A-flat C-comodules. Let L1(K•) be the total complex of the bicomplex

Z(K•) −−→ Pd−1(K•) −−→ · · · −−→ P1(K•) −−→ P0(K•).

Then L1(K•) is a complex of A-flat C-comodules and the cone of the morphism
L1(K•) −→ K• is the total complex of a finite exact sequence of complexes of
C-comodules, and therefore, a coacyclic complex.

Now let L• be a complex of A-flat left C-comodules. Consider the cobar
construction

C⊗A L• −−→ C⊗A C⊗A L• −−→ C⊗A C⊗A C⊗A L• −−→ · · ·

Let R2(L•) be the total complex of this bicomplex, constructed by taking infinite
direct sums along the diagonals. Then R2(L•) is a complex of coflat C-comodules.
The functor R2 can be extended to arbitrary complexes of C-comodules; for any
complex K•, the cone of the morphism K• −→ R2(K•) is coacyclic by Lemma 2.1.

Finally, if K• is a coflat complex of C-comodules, then R2(K•) is also a coflat
complex of C-comodules, since the cotensor product of R2(K•) with a complex of
right C-comodules N• coincides with the cotensor product of K• with the total
cobar complex R2(N•), and the latter is coacyclic whenever N• is coacyclic.

We have constructed the chain of morphisms K• ←− R2(K•) −→ R2L1(K•)
with the desired properties. The only remaining problem is that the functor L1

is not additive and therefore not defined on the homotopy category of complexes
of C-comodules, but only on the (abelian) category of complexes and their mor-
phisms. So we have to apply Lemma 2.5 to the category C of complexes of C-comod-
ules, the full subcategory F of complexes of coflat C-comodules (coflat complexes
of C-comodules) in it, and the class S of morphisms with coacyclic cones.

The corresponding localizations will coincide with the desired quotient cate-
gories of homotopy categories due to the following general fact [46, III.4.2–3]. For
any DG-category DG where shifts and cones exist, the localization of the category
of closed morphisms in DG with respect to the class of homotopy equivalences
coincides with the homotopy category of DG (i.e., closed morphisms homotopic
in DG become equal after inverting homotopy equivalences). In particular, this is
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true for any category of complexes over an additive category that is closed under
shifts and cones. �

Remark. Another proof of Theorem 2.5 (for complexes of coflat comodules or
coflat complexes of A-flat comodules) can be found in 2.6. After Theorem 2.5 has
been proven, it turns out that the functors L1 and R2 can be also applied in the
reverse order: for any complex of C-comodules L•, the complex R2(L•) is a complex
of C/A-coflat C-comodules, and for any complex of C/A-coflat C-comodules K•,
the complex L1(K•) is a complex of coflat C-comodules (by Remark 1.2.2, which
depends on Theorem 2.5).

2.6 Main theorem for semimodules

Assume that the coring C is a flat left and right A-module, the semialgebra S is
a coflat left and right C-comodule, and the ring A has a finite weak homological
dimension.

Theorem. The functor mapping the quotient category of the homotopy category of
semiflat complexes of A-flat (C-coflat, semiflat) S-semimodules by its intersection
with the thick subcategory of C-coacyclic complexes of S-semimodules into the
semiderived category of S-semimodules is an equivalence of triangulated categories.

Proof. We will show that in the following chain of functors betweeen triangu-
lated categories all the three functors are equivalences of categories. The quotient
category of (the homotopy category of) semiflat complexes of C-coflat (semiflat)
S-semimodules by (the thick subcategory of) C-coacyclic semiflat complexes of
C-coflat (semiflat) S-semimodules is mapped into the quotient category of com-
plexes of C-coflat S-semimodules by C-coacyclic complexes of C-coflat S-semimod-
ules. The latter category is mapped into the quotient category of the homotopy
category of complexes of A-flat S-semimodules by C-coacyclic complexes of A-flat
S-semimodules, and then into the semiderived category of S-semimodules. Analo-
gously, in the chain of functors mapping the quotient category of (the homotopy
category of) semiflat complexes of A-flat S-semimodules by (the thick subcate-
gory of) C-coacyclic semiflat complexes of A-flat S-semimodules into the quotient
category of C-coflat complexes of A-flat S-semimodules by C-coacyclic C-coflat
complexes of A-flat S-semimodules, into the quotient category of complexes of
A-flat S-semimodules by C-coacyclic complexes of A-flat S-semimodules, and into
the semiderived category of S-semimodules, all the three functors are equivalences
of categories.

In order to prove this, we will construct for any complex of S-semimodules
K• a morphism L1(K•) −→ K• into K• from a complex of A-flat S-semimod-
ules L1(K•), for any complex of A-flat S-semimodules L• a morphism L• −→
R2(L•) from L• into a complex of C-coflat S-semimodules R2(L•), and for any
C-coflat complex of A-flat S-semimodules (complex of C-coflat S-semimodules) M•

a morphism L3(M•) −→M• into M• from a semiflat complex of A-flat (semiflat)
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S-semimodules L3(M•) such that in each case the cone of this morphism will be a
C-coacyclic complex of S-semimodules. Then we will apply the following lemma.

Lemma. Let H be a category and F be its full subcategory. Let S be a localizing
(i.e., satisfying the Ore conditions) class of morphisms in H. Assume that for any
object X of H there exists an object U of F together with a morphism U −→ X
belonging to S (or for any object X of H there exists an object V of F together with
a morphism X −→ V belonging to S). Then the functor F[(S ∩ F)−1] −→ H[S−1]
induced by the embedding F −→ H is an equivalence of categories.

Proof. It is obvious that the functor between the localized categories is surjective
on the isomorphism classes of objects; let us show that it is bijective on morphisms.
Any morphism in the category H[S−1] between two objects U and V from F can
be represented by a fraction U ← X → V , where X is an object of H and the
morphism X → U belongs to S. By our assumption, there is an object W from F
together with a morphism W → X from S. Then the fractions U ← X → V
and U ← W → V represent the same morphism in H[S−1], while the second
fraction represents also a certain morphism in F[(S∩ F)−1]. Furthermore, any two
morphisms from an object U to an object V in the category F[(S ∩ F)−1] can be
represented by two fractions of the form U ← U ′ ⇒ V , with the same morphism
U → U ′ from S ∩ F and two different morphisms U ′ ⇒ V (since the class of mor-
phisms S ∩ F in the category F satisfies the right Ore conditions). If the images
of these morphisms in the category H[S−1] are equal, then there is a morphism
X → U ′ from S with an objectX from H such that two compositionsX → U ′ ⇒ V
coincide. Again there is an object W from F together with a morphism W → X
belonging to S. Since the two compositions W → U ′ ⇒ V coincide in F, the mor-
phisms represented by the two fractions U ← U ′ ⇒ V are equal in F[(S∩F)−1]. �

Let K• be a complex of S-semimodules. Let P(M) −→M denote the func-
torial surjective morphism onto an arbitrary S-semimodule M from an A-flat
S-semimodule P(M) constructed in Lemma 1.3.2. As explained in the proof of
Theorem 2.5, the functor P is the direct sum of a constant functor M �−→ P(0)
and a functor P+ sending zero morphisms to zero morphisms. For any S-semi-
module M, the semimodule P+(M) is A-flat and the morphism P+(M) −→ M

is surjective.
Set P0(K•) = P+(K•), P1(K•) = P+(ker(P0(K•) → K•)), etc. For d

large enough, the kernel Z(K•) of the morphism Pd−1(K•) −→ Pd−2(K•) will
be a complex of A-flat S-semimodules. Let L1(K•) be the total complex of the
bicomplex

Z(K•) −−→ Pd−1(K•) −−→ · · · −−→ P1(K•) −−→ P0(K•).

Then L1(K•) is a complex of A-flat S-semimodules and the cone of the morphism
L1(K•) −→ K• is the total complex of a finite exact sequence of complexes of
S-semimodules, and therefore, a C-coacyclic complex (and even an S-coacyclic
complex).
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Now let L• be a complex of A-flat S-semimodules. Let M −→ J(M) denote
the functorial injective morphism from an arbitrary A-flat S-semimodule M into
a C-coflat S-semimodule J(M) with an A-flat cokernel J(M)/M constructed in
Lemma 1.3.3. Set J0(L•) = J(L•), J1(L•) = J(coker(L• → J0(L•))), etc. Let
R2(L•) be the total complex of the bicomplex

J0(L•) −−→ J1(L•) −−→ J2(L•) −−→ · · · ,
constructed by taking infinite direct sums along the diagonals. Then R2(L•) is a
complex of C-coflat S-semimodules and the cone of the morphism L• −→ R2(L•)
is a C-coacyclic (and even S-coacyclic) complex by Lemma 2.1.

Finally, let M• be a C-coflat complex of A-flat left S-semimodules. Then the
complex S �C M• is a semiflat complex of A-flat S-semimodules. Moreover, if M•

is a complex of C-coflat S-semimodules, then S �C M• is a semiflat complex of
semiflat S-semimodules. Consider the bar construction

· · · −−→ S �C S �C S �C M• −−→ S �C S �C M• −−→ S �C M•.

Let L3(M•) be the total complex of this bicomplex, constructed by taking infinite
direct sums along the diagonals. Then the complex L3(M•) is semiflat by 2.4
and the cone of the morphism L3(M•) −→M• is not only C-coacyclic, but even
C-contractible (the contracting homotopy being induced by the semiunit morphism
C −→ S). �
Remark. It is clear that the constructions of complexes R2(L•) and L3(M•) can
be applied to arbitrary complexes of S-semimodules, with no (co)flatness condi-
tions imposed on them. For example, an alternative way of proving Theorem 2.6 is
to show that the functors mapping the quotient category of semiflat complexes of
C-coflat (semiflat) S-semimodules by C-coacyclic semiflat complexes into the quo-
tient category of complexes of C/A-coflat S-semimodules by C-coacyclic complexes
into the semiderived category of S-semimodules are both equivalences of categories.
Indeed, for any complex of S-semimodules L• the complex R2(L•) is a complex
of C/A-coflat S-semimodules by Lemma 1.3.3 and for any complex of C/A-coflat
S-semimodules K• the complex L1(K•) is a complex of C-coflat S-semimodules
by Remark 1.3.2 (hence the complex L3L1(K•) is a semiflat complex of semiflat
S-semimodules). Yet another useful approach to proving Theorem 2.6 was pre-
sented in 2.5: any complex of S-semimodules K• can be connected with a semiflat
complex of semiflat S-semimodules in a functorial way by a chain of three mor-
phisms K• ←− L3(K•) −→ L3R2(K•) ←− L3R2L1(K•) with C-coacyclic cones,
and when K• is a semiflat complex of (A-flat, C-coflat, or semiflat) S-semimodules,
all the complexes in this chain are also semiflat complexes of (A-flat, C-coflat, or
semiflat) S-semimodules.

Question. Is the quotient category of C-coflat complexes of S-semimodules by the
thick subcategory of C-coacyclic C-coflat complexes equivalent to the semiderived
category of S-semimodules?
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2.7 Derived functor SemiTor

The following lemma provides a general approach to double-sided derived functors
of (partially defined) functors of two arguments.

Lemma. Let H1 and H2 be two categories, H be a (not necessarily full) subcategory
in H1 × H2, and S1 and S2 be localizing classes of morphisms in H1 and H2. Let
K be a category and Θ: H −→ K be a functor. Let F1 and F2 be subcategories
in H1 and H2. Assume that both functors Fi[(Si ∩ Fi)−1] −→ Hi[S−1

i ] induced by
the embeddings Fi −→ Hi are equivalences of categories and the subcategory H
contains both subcategories F1 × H2 and H1 × F2. Furthermore, assume that the
morphisms Θ(U, t) and Θ(s, V ) are isomorphisms in the category K for any ob-
jects U ∈ F1, V ∈ F2 and any morphisms s ∈ S1, t ∈ S2. Then the restrictions
of the functor Θ to the subcategories F1 ×H2 and H1 × F2 factorize through their
localizations by their intersections with S1×S2, so one can define derived functors
D1Θ, D2Θ: H1[S−1

1 ]×H2[S−1
2 ] −→ K by restricting the functor Θ to these subcate-

gories. Moreover, the derived functors D1Θ and D2Θ are naturally isomorphic to
each other and therefore do not depend on the choice of subcategories F1 and F2,
provided that both subcategories exist.

Proof. Let us show that for any morphism s ∈ S1 ∩ F1 and any object X ∈ H2

the morphism Θ(s,X) is an isomorphism in K. By assumptions of the lemma, the
image of X in H2[S−1

2 ] is isomorphic to the image of a certain object V ∈ F2.
First suppose that there exists a fraction X ← Y → V of morphisms from S2

connecting X and V . Then both morphisms of morphisms Θ(s, Y ) −→ Θ(s,X)
and Θ(s, Y ) −→ Θ(s, V ) are isomorphisms of morphisms, since the source and the
target of s belong to F1. Now the morphism Θ(s,X) is an isomorphism, because
the morphism Θ(s, V ) is an isomorphism. In the general case, there exist a fraction
X ← Y → V connecting X and V and two morphisms Y ′ → Y and V → V ′ such
that the morphism Y → X and two compositions Y ′ → Y → V and Y → V → V ′

belong to S2. Then the compositions of morphisms of morphisms Θ(s, Y ′) −→
Θ(s, Y ) −→ Θ(s, V ) and Θ(s, Y ) −→ Θ(s, V ) −→ Θ(s, V ′) are isomorphisms
of morphisms, so the morphism of morphisms Θ(s, Y ) −→ Θ(s, V ) is both left
and right invertible, and therefore, is an isomorphism of morphisms. Since the
morphism of morphisms Θ(s, Y ) −→ Θ(s,X) is also an isomorphism of morphisms
and the morphism Θ(s, V ) is an isomorphism, one can conclude that the morphism
Θ(s,X) is also an isomorphism.

Thus the derived functor D1Θ is defined; it remains to construct an isomor-
phism between D1Θ and D2Θ. But the compositions of the functors D1Θ and D2Θ
with the functor F1[(S1 ∩ F1)−1]× F2[(S2 ∩ F2)−1] −→ H1[S−1

1 ]×H2[S−1
2 ] coincide

by definition, and the latter functor is an equivalence of categories. �

Assume that the coring C is a flat left and right A-module, the semialgebra S

is a coflat left and right C-comodule, and the ring A has a finite weak homological
dimension.
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The double-sided derived functor SemiTorS on the Cartesian product of the
semiderived categories of right and left S-semimodules is defined as follows. Con-
sider the partially defined functor of semitensor product of complexes of S-semi-
modules

♦S : Hot(simod-S)× Hot(S-simod) ���� Hot(k-mod).

This functor is defined on the full subcategory of the Cartesian product of ho-
motopy categories that consists of pairs of complexes (N•,M•) such that either
N• or M• is a complex of A-flat S-semimodules. Compose it with the functor of
localization Hot(k-mod) −→ D(k-mod) and restrict to the Cartesian product of
the homotopy category of semiflat complexes of A-flat right S-semimodules and
the homotopy category of complexes of left S-semimodules.

By the definition, the functor so obtained factorizes through the semide-
rived category of left S-semimodules in the second argument, and it follows from
Theorem 2.6 and Lemma 2.7 that it factorizes through the quotient category of
the homotopy category of semiflat complexes of A-flat right S-semimodules by
its intersection with the thick subcategory of C-coacyclic complexes in the first
argument.

Explicitly, let N• be a C-coacyclic semiflat complex of A-flat right S-semi-
modules and M• be a complex of left S-semimodules. Using the constructions
from the proof of Theorem 2.6, connect M• with a semiflat complex of A-flat
left S-semimodules L• by a chain of morphisms with C-coacyclic cones. Then the
complexes N•♦SM• and N•♦SL• are connected by a chain of quasi-isomorphisms,
and since the complex N• ♦S L• is acyclic, the complex N• ♦S M• is acyclic, too.

Thus we have constructed the double-sided derived functor

SemiTorS : Dsi(simod-S)× Dsi(S-simod) −−→ D(k-mod).

According to Lemma 2.7, the same derived functor can be obtained by restrict-
ing the functor of semitensor product to the Cartesian product of the homotopy
category of complexes of left S-semimodules and the homotopy category of semi-
flat complexes of A-flat right S-semimodules, or indeed, to the Cartesian product
of the homotopy categories of semiflat complexes of A-flat right and left S-semi-
modules. One can also use semiflat complexes of C-coflat S-semimodules or semi-
flat complexes of semiflat S-semimodules instead of semiflat complexes of A-flat
S-semimodules.

In particular, when the coring C is a flat left and right A-module and the ring
A has a finite weak homological dimension, one defines the double-sided derived
functor

CotorC : Dco(comod-C)× Dco(C-comod) −−→ D(k-mod)

by composing the functor of cotensor product

�C : Hot(comod-C)× Hot(C-comod) −−→ Hot(k-mod)
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with the functor of localization Hot(k-mod) −→ D(k-mod) and restricting it to the
Cartesian product of the homotopy category of complexes of coflat right C-comod-
ules and the homotopy category of arbitrary complexes of left C-comodules. The
same derived functor is obtained by restricting the functor of cotensor product to
the Cartesian product of the homotopy category of arbitrary complexes of right
C-comodules and the homotopy category of complexes of coflat left C-comodules,
or indeed, to the Cartesian product of the homotopy categories of coflat right
C-comodules and coflat left C-comodules. One can also use coflat complexes of
C-comodules or coflat complexes of A-flat C-comodules instead of complexes of
coflat C-comodules.

Remark. One can define a version of derived functor Cotor without making any
homological dimension assumptions by considering pro-objects in the spirit of [44,
45]. Let k-modω denote the category of pro-objects over the category k-mod that
can be represented by countable filtered projective systems of k-modules; this is
an abelian tensor category with exact functors of countable filtered projective
limits and a right exact functor of tensor product commuting with countable
filtered projective limits. Let A be a ring object in k-modω; then one can consider
right and left A-module objects and A-A-bimodule objects in k-modω, which we
will simply call right and left A-modules and A-A-bimodules. Furthermore, let
C be a coring object in the tensor category of A-A-bimodules; we will consider
C-comodule objects in the categories of right and left A-modules and call them
right and left C-comodules. Define the functor of cotensor product over C taking
values in the category k-modω in the usual way and extend it to the Cartesian
product of the homotopy categories of complexes of right and left C-comodules by
taking infinite products along the diagonals in the bicomplex of cotensor products.
The categories of right and left A-modules are abelian. Assume that C is a flat
left and right A-module; then the categories of right and left C-comodules are
also abelian. Define the semiderived categories of right and left C-comodules as
the quotient categories of the homotopy categories by the thick subcategories of
A-contraacyclic complexes (the contraacyclic complexes being defined in terms
of countable products). Then one can use Lemma 2.7 to define the double-sided
derived functor ProCotorC of cotensor product on the Cartesian product of the
semiderived categories of right and left C-comodules in terms of coflat complexes
of C-comodules.

In order to obtain for any complex of C-comodules M• a coflat complex of
C-comodules connected with M• by a functorial chain of two morphisms with
A-contraacyclic cones, one needs to construct a surjective morphism onto any
C-comodule M from an A-flat C-comodule F(M). This construction is dual to
that of Lemma 1.3.3 and uses the surjective map onto any A-module M from an
A-flat A-module G(M) = A ⊗ωk M ′, where M ′ is a pro-k-module represented by
a countable filtered projective system of flat k-modules mapping onto the pro-k-
module M and ⊗ωk denotes the functor of tensor product in k-modω. The A-flat
C-comodule F(M) is obtained as the projective limit in k-modω of the projective
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system of C-comodules M ←− Q(M) ←− Q(Q(M)) ←− · · · Given a complex of
A-flat C-comodules M•, a coflat complex of C-comodules endowed with a mor-
phism from the complex M• with an A-contractible cone is obtained as the total
complex of the cobar complex of M•, constructed by taking infinite products along
the diagonals. One can also consider the category of arbitrary pro-k-modules in
place of k-modω . Notice that for a conventional coalgebra C over a field A = k
and complexes of C-comodules N• and M• in the category of k-vector spaces that
are both bounded from above or from below the object of the derived category
of k-vector spaces obtained by applying the derived functor of projective limit to
the object ProCotorC(N•,M•) of the derived category D(k-vectω) coincides with
CotorC,I(N•,M•) (see 0.2.10).

2.8 Relatively semiflat complexes

We keep the assumptions and notation of 2.5, 2.6, and 2.7.
One can compute the derived functor CotorC using resolutions of a different

kind. Namely, the cotensor product N• �C M• of a complex of A-flat right C-co-
modules N• and a complex of C/A-coflat C-comodules M• represents an object
naturally isomorphic to CotorC(M•,N•) in the derived category of k-modules.
Indeed, the complex R2(N•) is a complex of coflat C-comodules and the cone
of the morphism N• −→ R2(N•) is coacyclic with respect to the exact category
of A-flat right C-comodules, hence the morphism N• �C M• −→ R2(N•) �C M•

is a quasi-isomorphism. One can prove that the cotensor product of a complex
coacyclic with respect to the exact category of A-flat C-comodules and a complex
of C/A-coflat C-comodules is acyclic in a way completely analogous to the proof
of Lemma 2.2.

One can also compute the derived functor SemiTorS using resolutions of
different kinds. Namely, a complex of left S-semimodules is called semiflat relative
to A if its semitensor product with any complex of A-flat right S-semimodules that
as a complex of C-comodules is coacyclic with respect to exact category of A-flat
right C-comodules is acyclic (cf. Theorem 7.2.2(a)). For example, the complex
of S-semimodules induced from a complex of C/A-coflat C-comodules is semiflat
relative to A, hence the complex L3R2(K•) is semiflat relative to A for any complex
of left S-semimodules K•. The semitensor product N•♦SM• of a complex of A-flat
right S-semimodules N• and a complex of left S-semimodules M• semiflat relative
toA represents an object naturally isomorphic to SemiTorS(N•,M•) in the derived
category of k-modules. Indeed, L3R2(N•) is a semiflat complex of right S-semimod-
ules connected with N• by a chain of morphisms N• −→ R2(N•) ←− L3R2(N•)
whose cones are coacyclic with respect to the exact category of A-flat C-comod-
ules and contractible over C, respectively. Hence there is a chain of two quasi-
isomorphisms connecting N• ♦S M• with L3R2(N•) ♦S M•.

Analogously, a complex of left S-semimodules is called semiflat relative to C

if its semitensor product with any C-contractible complex of C-coflat right S-semi-
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modules is acyclic. For example, the complex of S-semimodules induced from any
complex of C-comodules is semiflat relative to C, hence the complex L3(K•) is
semiflat relative to C for any complex of left S-semimodules K•. The semitensor
product N•♦S M• of a complex of C-coflat right S-semimodules N• and a complex
of left S-semimodules M• semiflat relative to C represents an object naturally
isomorphic to SemiTorS(N•,M•) in the derived category of k-modules. Indeed,
L3(N•) is a semiflat complex of right S-semimodules and the cone of the morphism
L3(N•) −→ N• is a C-contractible complex of C-coflat right S-semimodules. It
follows that the semitensor product of a complex of left S-semimodules semiflat
relative to C with a C-coacyclic complex of C-coflat right S-semimodules is acyclic.

At last, a complex of A-flat right S-semimodules is called semiflat relative to
C relative to A (S/C/A-semiflat) if its semitensor product with any C-contractible
complex of C/A-coflat left S-semimodules is acyclic. For example, the complex of
S-semimodules induced from a complex of A-flat C-comodules is S/C/A-semiflat,
hence the complex L3L1(K•) is S/C/A-semiflat for any complex of right S-semi-
modules K•. The semitensor product N• ♦S M• of an S/C/A-semiflat complex
of A-flat right S-semimodules N• and a complex of C/A-coflat left S-semimodules
M• represents an object naturally isomorphic to SemiTorS(N•,M•) in the derived
category of k-modules. Indeed, L3(M•) is a complex of left S-semimodules semiflat
relative to A and the cone of the morphism L3(M•) −→ M• is a C-contractible
complex of C/A-coflat right S-semimodules. It follows that the semitensor product
of an S/C/A-semiflat complex of A-flat right S-semimodules with a C-coacyclic
complex of C/A-coflat left S-semimodules is acyclic.

The functors mapping the quotient categories of the homotopy categories
of complexes of S-semimodules semiflat relative to A, complexes of S-semimod-
ules semiflat relative to C, and S/C/A-semiflat complexes of A-flat S-semimodules
by their intersections with the thick subcategory of C-coacyclic complexes into the
semiderived category of S-semimodules are equivalences of triangulated categories.
The same applies to complexes of A-flat, C-coflat, or C/A-coflat S-semimodules.
These results follow easily from either of Lemmas 2.5 or 2.6. So one can define
the derived functor SemiTorS by restricting the functor of semitensor product to
these categories of complexes of S-semimodules as explained above.

Remark. Assuming that C is a flat right A-module, S is a coflat right and a
C/A-coflat left C-comodule, and A has a finite weak homological dimension, one
can define the double-sided derived functor SemiTorS on the Cartesian product
of the semiderived category of A-flat right S-semimodules and the semiderived
category of left S-semimodules. The former is defined as the quotient category of
the homotopy category of complexes of A-flat right S-semimodules by the thick
subcategory of complexes that as complexes of C-comodules are coacyclic with
respect to the exact category of A-flat right C-comodules. The derived functor
is constructed by restricting the functor of semitensor product to the Cartesian
product of the homotopy category of complexes of A-flat right S-semimodules and
the homotopy category of complexes of left S-semimodules semiflat relative to A,
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or the Cartesian product of the homotopy category of semiflat complexes of A-flat
right S-semimodules and the homotopy category of complexes of left S-semimod-
ules. Assuming that C is a flat left and right A-module, S is a flat left A-module
and a coflat right C-comodule, and A has a finite weak homological dimension,
one can define the left derived functor SemiTorS on the Cartesian product of
the semiderived category of C/A-coflat right S-semimodules and the semiderived
category of left S-semimodules. The former is defined as the quotient category of
the homotopy category of complexes of C/A-flat right S-semimodules by the thick
subcategory of complexes that as complexes of C-comodules are coacyclic with
respect to the exact category of C/A-coflat right C-comodules (cf. Remark 7.2.2).
The derived functor is constructed by restricting the functor of semitensor product
to the Cartesian product of the homotopy category of complexes of C/A-coflat
right S-semimodules and the homotopy category of S/C/A-semiflat complexes of
A-flat left S-semimodules, or the Cartesian product of the homotopy category of
semiflat complexes of C-coflat right S-semimodules and the homotopy category of
complexes of left S-semimodules. Both of these definitions of derived functors are
particular cases of Lemma 2.7.

2.9 Remarks on derived semitensor product of bisemimodules

We would like to define the double-sided derived functor of semitensor product
of bisemimodules and in such a way that derived semitensor products of several
factors would be associative. It appears that there are two approaches to this
problem, even in the case of modules over rings. First suppose that we only wish
to have associative derived semitensor products of three factors. Let S be a semi-
algebra over a coring C and T be a semialgebra over a coring D, both satisfying
the conditions of 2.6.

The semiderived category of S-T-bisemimodules Dsi(S-simod-T) is defined
as the quotient category of the homotopy category Hot(S-simod-T) by the thick
subcategory of complexes of bisemimodules that as complexes of C-D-bicomodules
are coacyclic with respect to the abelian category of C-D-bicomodules. We would
like to define derived functors of semitensor product

♦D

S : Dsi(simod-S)× Dsi(S-simod-T) −−→ Dsi(simod-T)

♦D

T : Dsi(S-simod-T)× Dsi(T-simod) −−→ Dsi(S-simod)

and prove the associativity isomorphism

SemiTorT(N• ♦D

S K•, M•) � SemiTorS(N•, K• ♦D

T M•).

Let us call a complex of C-coflat right S-semimodules quite semiflat if it
belongs to the minimal triangulated subcategory of the homotopy category of
S-semimodules containing the complexes induced from complexes of coflat right
C-comodules and closed under infinite direct sums. One can show (see Remark 7.2.2
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and the proof of Theorem 8.2.2) that the quotient category of the category of
quite semiflat complexes of C-coflat S-semimodules by its minimal triangulated
subcategory containing the complexes of S-semimodules induced from complexes
of C-comodules coacyclic with respect to the exact category of C-coflat C-comodules
and closed under infinite direct sums is equivalent to the semiderived category of
S-semimodules. In other words, any C-coacyclic quite semiflat complex of C-coflat
S-semimodules can be obtained from the complexes of S-semimodules induced
from the total complexes of exact triples of complexes of coflat C-comodules using
the operations of cone and infinite direct sum.

It follows (by Lemmas 2.2 and 1.2.2) that the restriction of the functor of
semitensor product Hot(simod-S)×Hot(S-simod-T) ��� Dsi(simod-T) to the Carte-
sian product of the homotopy category of quite semiflat complexes of C-coflat
right S-semimodules and the homotopy category of complexes of S-T-bisemimod-
ules factorizes through the Cartesian product of semiderived categories of right
S-semimodules and S-T-bisemimodules. So the desired derived functors are de-
fined; and the associativity isomorphism follows from Proposition 1.4.4. Notice
that this definition of a double-sided derived functor is not a particular case of the
construction of Lemma 2.7.

Question. Can one use arbitrary semiflat complexes of C-coflat S-semimodules or,
at least, semiflat complexes of semiflat S-semimodules instead of quite semiflat
complexes in this construction? In other words, assume that N• is a C-coacyclic
semiflat complex of semiflat right S-semimodules and K is an S-T-bisemimodule.
Is the complex N• ♦S K necessarily D-coacyclic? (Cf. 4.9.)

Now suppose that we want to have derived semitensor products of any num-
ber of factors. Let S be a semialgebra over a coring C over a k-algebra A, T be
a semialgebra over a coring D over a k-algebra B, and R be a semialgebra over a
coring E over a k-algebra F , all three satisfying the conditions of 2.6. We would
like to define the derived functor of semitensor product

♦D

R : Dsi(S-simod-R)× Dsi(R-simod-T) −−→ Dsi(S-simod-T).

This can be done, assuming that the k-algebras A, B, and F are flat k-modules.
Let us call a complex of F -flat S-R-bisemimodules strongly R-semiflat if

its semitensor product over R with any E-D-coacyclic complex of R-T-bisemi-
modules is a C-D-coacyclic complex of S-T-bisemimodules for any semialgebra T.
Using bimodule versions of the constructions of Lemmas 1.3.2 and 1.3.3, one can
prove that the quotient category of the homotopy category of strongly R-semiflat
complexes of F -flat S-R-bisemimodules by its intersection with the thick subcat-
egory of C-E-coacyclic bisemimodules is equivalent to the semiderived category of
S-R-bisemimodules, and the analogous result holds for the homotopy category of
strongly S-semiflat and strongly R-semiflat complexes of A-flat and F -flat S-R-bi-
semimodules. One just uses the functorG(M) =

⊕
m∈M A⊗kF in the construction

of Lemma 1.1.3, considers the bicoaction and bisemiaction morphisms in place of
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the coaction and semiaction morphisms, etc. (As we only want our A-F -bimod-
ules to be A-flat and F -flat, no assumption about the homological dimension of
A⊗kF is needed.) So Lemma 2.7 is applicable to the functor of semitensor product
Hot(S-simod-R) × Hot(R-simod-T) ��� Dsi(S-simod-T) and we obtain the desired
double-sided derived functor. There is an associativity isomorphism

(N• ♦D

S K•) ♦D

T M• � N• ♦D

S (K• ♦D

T M•).

In the case of derived cotensor product of bicomodules, one does not need to
introduce quite coflat or strongly coflat complexes. It suffices to consider complexes
of C-coflat C-comodules or complexes of (C-coflat and) E-coflat C-E-bicomodules.
One can define double-sided derived functors

�D

C : Dco(comod-C)× Dco(C-comod-D) −−→ Dco(comod-D)

�D

D : Dco(C-comod-D)× Dco(D-comod) −−→ Dco(C-comod)

and prove the associativity isomorphism

CotorD(N• �D

C K•, M•) � CotorC(N•, K• �D

D M•)

by replacing the complex of right C-comodules N• with a complex of coflat right
C-comodules and the complex of left D-comodules M• by a complex of coflat left
D-comodules representing the same object in the coderived category of comodules.
The derived functors �D

C and �D

D are well defined, since any coacyclic complex of
coflat comodules is coacyclic with respect to the exact category of coflat comodules
(see 7.2.2). If the k-modules A and F are flat, one can prove that the quotient
category of the homotopy category of E-coflat C-E-bicomodules by its intersection
with the thick subcategory of coacyclic complexes of C-E-bicomodules is equivalent
to the coderived category of bicomodules, and the same applies to the homotopy
category of C-coflat and E-coflat C-E-bicomodules. Then one can apply Lemma 2.7
in order to define the double-sided derived functor

�D

E : Dco(C-comod-E)× Dco(E-comod-D) −−→ Dco(C-comod-D),

and there is an associativity isomorphism

(N• �D

C K•) �D

D M• � N• �D

C (K• �D

D M•).





3 Semicontramodules and
Semihomomorphisms

Throughout Chapters 3–11, k∨ is an injective cogenerator of the category of
k-modules. One can always take k∨ = HomZ(k,Q/Z).

3.1 Contramodules

For two k-algebrasA and B, we will denote by A-mod-B the category of k-modules
with an A-B-bimodule structure.

3.1.1 The identity HomA(K⊗AM, P ) � HomA(M,HomA(K,P )) for left A-mod-
ules M , P and an A-A-bimodule K means that the category opposite to the
category of left A-modules is a right module category over the tensor category
of A-A-bimodules with the functor of right action (P op, N) �−→ Hom(N,P )op.
Therefore, one can consider module objects in this module category over ring
objects in A-mod-A and comodule objects in this module category over coring
objects in A-mod-A.

Clearly, a ring object B in A-mod-A is just a k-algebra endowed with a
k-algebra morphism A −→ B. A B-module in A-modop is an A-module P endowed
with a map P −→ HomA(B,P ); so one can easily see that B-modules in A-modop

are just (objects of the category opposite to the category of) usual left B-modules.
Let C be a coring over A. The category of left contramodules over C is the

opposite category to the category of comodule objects in the right module category
A-modop over the coring object C in the tensor category A-mod-A. In other words,
a left C-contramodule P is a left A-module endowed with a left contraaction map
HomA(C,P) −→ P, which should be a morphism of left A-modules satisfying the
following contraassociativity and counity equations. First, two maps

HomA(C⊗A C, P) = HomA(C,HomA(C,P) ⇒ HomA(C,P),

one of which is induced by the comultiplication map of C and the other by the
contraaction map, should have equal compositions with the contraaction map
HomA(C,P) −→ P, and second, the composition

P = HomA(A,P) −→ HomA(C,P) −→ P

of the map induced by the counit map of C with the contraaction map should be
equal to the identity map of P. A right contramodule R over C is a right A-module
endowed with a right contraaction map HomAop(C,R) −→ R, which should be a
map of right A-modules satisfying the analogous equations.
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3.1.2 The standard example of a C-contramodule: for any right C-comodule N

endowed with a left action of a k-algebraB by C-comodule endomorphisms and any
left B-module V , the left A-module HomB(N, V ) has a natural left C-contramod-
ule structure. The left C-contramodule HomA(C, V ) is called the C-contramodule
induced from a left A-module V . According to Lemma 1.1.2, the k-module of
contramodule homomorphisms from the induced C-contramodule to an arbitrary
C-contramodule is described by the formula

HomC(HomA(C, V ), P) � HomA(V,P).

We will denote the category of left C-contramodules by C-contra and the
category of right C-contramodules by contra-C. The category of left C-contra-
modules is abelian whenever C is a projective left A-module. Moreover, the left
A-module C is projective if and only if the category C-contra is abelian and the
forgetful functor C-contra −→ A-mod is exact. This can be proven by the same
adjoint functor argument as the analogous result for C-comodules.

For any coring C, there are two natural exact categories of left contramod-
ules: the exact category of A-injective C-contramodules and the exact category
of arbitrary C-contramodules with A-split exact triples. Besides, any morphism
of C-contramodules has a kernel and the forgetful functor C-contra −→ A-mod
preserves kernels. When a morphism of C-contramodules has the property that its
cokernel in the category of A-modules is preserved by the functors of homomor-
phisms from C and C ⊗A C over A, this cokernel has a natural C-contramodule
structure, which makes it the cokernel of that morphism in the category of C-con-
tramodules.

Infinite products always exist in the category of C-contramodules and the
forgetful functor C-contra −→ A-mod preserves them. The induction functor
A-mod −→ C-contra preserves both infinite direct sums and infinite products.
To construct direct sums of C-contramodules, one can present them as cokernels
of morphisms of induced contramodules. All cokernels exist in the category of
C-contramodules [6], so the category of C-contramodules has infinite direct sums.

Question. If C is a flat right A-module, then subcomodules of finite direct sums of
copies of C constitute a set of generators of the category of left C-comodules [23,
3.13]. Does the category of C-contramodules have a set of cogenerators?

3.1.3 Assume that the coring C is a projective left and a flat right A-module and
the ring A has a finite left homological dimension (homological dimension of the
category of left A-modules).

Lemma.

(a) There exists a (not always additive) functor assigning to any left C-comod-
ule a surjective map onto it from an A-projective C-comodule. Moreover, the
kernel of this map is an iterated extension of coinduced C-comodules.
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(b) There exists a (not always additive) functor assigning to any left C-contra-
module an injective map from it into an A-injective C-contramodule. More-
over, the cokernel of this map is an iterated extension of induced C-contra-
modules.

Proof. The proof of part (a) is completely analogous to the proof of Lemma 1.1.3
and part (b) is proven in the following way. Let P −→ G(P ) be an injective map
from an A-module P into an injective A-moduleG(P ) functorially depending on P .
For example, one can take G(P ) to be the direct product of copies of the A-module
HomA(A, k∨) numbered by all k-module homomorphisms P −→ k∨. Let P be a
left C-contramodule. Consider the contraaction map HomA(C,P) −→ P; it is a
surjective morphism of C-contramodules; let K(P) denote its kernel. Let Q(P) be
the cokernel of the composition

K(P) −−→ HomA(C,P) −−→ HomA(C, G(P)).

Then the composition of maps HomA(C,P) −→ HomA(C, G(P)) −→ Q(P) fac-
torizes through the surjection HomA(C,P) −→ P, so there is a natural injective
morphism of C-contramodules P −→ Q(P). Let us show that the injective di-
mension diA Q(P) of the A-module Q(P) is smaller than that of P. Indeed, the
A-module HomA(C, G(P)) is injective, hence

diA Q(P) = diA K(P)− 1 � diA HomA(C,P)− 1 � diA(P)− 1,

because the A-module K(P) is a direct summand of the A-module HomA(C,P)
and an injective resolution of the A-module HomA(C,P) can be constructed by ap-
plying the functor HomA(C,−) to an injective resolution of P. Notice that the cok-
ernel of the map P −→ Q(P) is an induced C-contramodule HomA(C, G(P)/P).
It remains to iterate the functor P �−→ Q(P) sufficiently many times. �

3.2 Cohomomorphisms

3.2.1 The k-module of cohomomorphisms CohomC(M,P) from a left C-comodule
M to a left C-contramodule P is defined as the cokernel of the pair of maps

HomA(C⊗A M, P) = HomA(M,HomA(C,P)) ⇒ HomA(M,P)

one of which is induced by the C-coaction in M and the other by the C-contraaction
in P. The functor of cohomomorphisms is neither left nor right exact in general;
it is right exact if the ring A is semisimple. For any left A-module U and any left
C-contramodule P there is a natural isomorphism

CohomC(C⊗A U, P) � HomA(U,P),

and for any left C-comodule M and any left A-module V there is a natural iso-
morphism

CohomC(M,HomA(C, V )) � HomA(M, V ).
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These assertions follow from Lemma 1.2.1. Explicitly, the first isomorphism can
be obtained by applying the functor HomA(U,−) to the split exact sequence of
A-modules HomA(C ⊗A C, P) −→ HomA(C,P) −→ P and the second one can
be obtained by applying the functor HomA(−, V ) to the split exact sequence of
A-modules M −→ C⊗A M −→ C⊗A C⊗A M.

3.2.2 Assuming that C is a projective left A-module, a left comodule M over C

is called coprojective if the functor of cohomomorphisms from M is exact on the
category of left C-contramodules. It is easy to see that any coprojective C-comodule
is a projective A-module. The C-comodule coinduced from a projective A-module
is coprojective. Assuming that C is a flat right A-module, a left contramodule P
over C is called coinjective if the functor of cohomomorphisms into P is exact on
the category of left C-comodules. Any coinjective C-contramodule is an injective
A-module. The C-contramodule induced from an injective A-module is coinjective.

A left comodule M over C is called coprojective relative to A (C/A-copro-
jective) if the functor of cohomomorphisms from M maps exact triples of A-injec-
tive C-contramodules to exact triples. A left contramodule P over C is called coin-
jective relative to A (C/A-coinjective) if the functor of cohomomorphisms into P
maps exact triples of A-projective C-comodules to exact triples. Any coinduced
C-comodule is C/A-coprojective and any induced C-contramodule is C/A-coinjec-
tive.

For any right C-comodule N and any left C-comodule M there is a natural
isomorphism

Homk(N �C M, k∨) � CohomC(M,Homk(N, k∨)).

Therefore, any coprojective C-comodule M is coflat and any C/A-coprojective C-co-
module M is C/A-coflat. Besides, a right C-comodule N is coflat if and only if
the left C-contramodule Homk(N, k∨) is coinjective; if a right C-comodule N is
C/A-coflat, then the left C-contramodule Homk(N, k∨) is C/A-coinjective (and the
converse can be deduced from Lemma 3.1.3(a) and the proof of the lemma below
in the assumptions of 3.1.3).

It appears that the notion of a relatively coprojective left C-comodule is
useful when C is a flat right A-module, and the notion of a relatively coinjective
left C-contramodule is useful when C is a projective left A-module.

Lemma.

(a) Assume that C is a flat right A-module. Then the class of C/A-coprojec-
tive left C-comodules is closed under extensions and cokernels of injective
morphisms. The functor of cohomomorphisms into an A-injective left C-con-
tramodule maps exact triples of C/A-coprojective left C-comodules to exact
triples.

(b) Assume that C is a projective left A-module. Then the class of C/A-coinjec-
tive left C-contramodules is closed under extensions and kernels of surjective
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morphisms. The functor of cohomomorphisms from an A-projective left C-co-
module maps exact triples of C/A-coinjective left C-contramodules to exact
triples.

Proof. Part (a): these results follow from the standard properties of the left derived
functor of the right exact functor of cohomomorphisms on the Cartesian product
of the abelian category of left C-comodules and the exact category of A-injective
left C-contramodules. One can define the k-modules CoextiC(M,P), i = 0, −1, . . .
as the cohomology of the bar complex

· · · −−→ HomA(C⊗A C⊗A M, P) −−→ HomA(C⊗A M, P) −−→ HomA(M,P)

for any left C-comodule M and any A-injective left C-contramodule P. Then
Coext0C(M,P) � CohomC(M,P) and there are long exact sequences of Coext∗C
associated with exact triples of comodules and contramodules. Now a left C-co-
module M is C/A-coprojective if and only if CoextiC(M,P) = 0 for any A-injective
left C-contramodule P and all i < 0. Indeed, the “if” assertion follows from the
homological exact sequence, and “only if” holds since the bar complex is isomor-
phic to the complex of cohomomorphisms from the C-comodule M into the bar
resolution

· · · −−→ HomA(C,HomA(C,P)) −−→ HomA(C,P)

of the C-contramodule P, which is a complex of A-injective C-contramodules,
exact except in degree 0 and split over A. The proof of part (b) is completely
analogous; it uses the left derived functor of the functor of cohomomorphisms on
the Cartesian product of the exact category of A-projective left C-comodules and
the abelian category of left C-contramodules. �

Remark. It follows from Lemma 5.2 that any extension of an A-projective C-co-
module by a coprojective C-comodule splits, and any extension of a coinjective
C-contramodule by an A-injective C-contramodule splits. The analogues of the
results of Remark 1.2.2 also hold for (relatively) coprojective comodules and coin-
jective contramodules in the assumptions of 3.1.3; see the proof of Lemma 5.3.2
for details.

Question. Are all relatively coflat C-comodules relatively coprojective? Are all
A-projective coflat C-comodules coprojective?

3.2.3 Let C be an arbitrary coring. Let us call a left C-comodule M quasicoprojec-
tive if the functor of cohomomorphisms from M is left exact on the category of left
C-contramodules, i.e., this functor preserves kernels. Any coinduced C-comodule
is quasicoprojective. Any quasicoprojective comodule is quasicoflat. Let us call a
left C-contramodule P quasicoinjective if the functor of cohomomorphisms into P
is left exact on the category of left C-comodules, i.e., this functor maps cokernels
to kernels. Any induced C-contramodule is quasicoinjective. (Cf. Lemma 5.2.)
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Proposition 1. Let M be a left C-comodule, K be a right C-comodule endowed
with a left action of a k-algebra B by comodule endomorphisms, and P be a left
B-module. Then there is a natural k-module map

CohomC(M,HomB(K, P )) −−→ HomB(K �C M, P ),

which is an isomorphism, at least, in the following cases:

(a) P is an injective left B-module;
(b) M is a quasicoprojective left C-comodule;
(c) C is a projective left A-module, M is a projective left A-module, K is a

C/A-coflat right C-comodule, K is a projective left B-module, and the ring B
has a finite left homological dimension;

(d) K as a right C-comodule with a left B-module structure is coinduced from a
B-A-bimodule.

Besides, in the case (c) the left B-module K �C M is projective.

Proof. The map HomB(K⊗A M, P ) −→ HomB(K �C M, P ) annihilates the dif-
ference of two maps HomB(K⊗A C⊗AM, P ) ⇒ HomB(K⊗AM, P ) and this pair
of maps can be identified with the pair of maps HomA(C⊗A M, HomB(K, P )) ⇒
HomA(M,HomB(K, P )) whose cokernel is, by the definition, the cohomomorphism
module CohomC(M,HomB(K, P )). Hence there is a natural map CohomC(M,
HomB(K, P )) −→ HomB(K �C M, P ). The case (a) is obvious. In the case (b), it
suffices to present P as the kernel of a map of injective B-modules. The rest of the
proof is completely analogous to the proof of Proposition 1.2.3 (with flat modules
replaced by projective ones and the left and right sides switched). �

Proposition 2. Let P be a left C-contramodule, K be a left C-comodule endowed
with a right action of a k-algebra B by comodule endomorphisms, and M be a left
B-module. Then there is a natural k-module map

CohomC(K⊗B M, P) −−→ HomB(M,CohomC(K,P)),

which is an isomorphism, at least, in the following cases:

(a) M is a projective left B-module;
(b) P is a quasicoinjective left C-contramodule;
(c) C is a flat right A-module, P is an injective left A-module, K is a C/A-co-

projective left C-comodule, K is a flat right B-module, and the ring B has a
finite left homological dimension;

(d) K as a left C-comodule with a right B-module structure is coinduced from an
A-B-bimodule.

Besides, in the case (c) the left B-module CohomC(K,P) is injective.
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Proof. The map HomB(M,HomA(K,P)) −→ HomB(M,CohomC(K,P)) annihi-
lates the difference of two maps

HomB(M, HomA(C⊗A K, P)) ⇒ HomB(M,HomA(K,P))

and this pair of maps can be identified with the pair of maps HomA(C⊗AK⊗BM,
P) ⇒ HomA(K ⊗B M, P) whose cokernel is, by the definition, the cohomomor-
phism module CohomC(K⊗BM, P). Hence there is a natural map CohomC(K⊗B
M, P) −→ HomB(M,CohomC(K,P)). The case (a) is obvious. In the case (b), it
suffices to present M as the cokernel of a map of projective B-modules. To prove
(c) and (d), consider the bar complex

· · · −−→ HomA(C⊗A C⊗A K, P) −−→ HomA(C⊗A K, P)
−−→ HomA(K,P) −−→ CohomC(K,P). (3.1)

In the case (c) this complex is exact, since it is the complex of cohomomorphisms
from a C/A-coprojective C-comodule K into an A-split exact complex of A-injec-
tive C-contramodules · · · −→ HomA(C ⊗A C, P) −→ HomA(C,P) −→ P. Since
all the terms of the complex (3.1), except possibly the rightmost one, are injective
left B-modules and the left homological dimension of the ring B is finite, the
rightmost term CohomC(K,P) is also an injective B-module, the complex of left
B-modules (3.1) is contractible, and the complex of B-module homomorphisms
from the left B-module M into (3.1) is exact. In the case (d), the complex (3.1)
is also a split exact complex of left B-modules. �

3.2.4 Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.
Assume that D is a projective left B-module. Let K be a C-D-bicomodule and P
be a left C-contramodule. Then the module of cohomomorphisms CohomC(K,P)
is endowed with a left D-contramodule structure as the cokernel of a pair of
contramodule morphisms HomA(C⊗A K, P) ⇒ HomA(K,P).

More generally, let C and D be arbitrary corings. Assume that the functor
of homomorphisms from D over B preserves the cokernel of the pair of maps
HomA(C ⊗A K, P) ⇒ HomA(K,P), that is the natural map CohomC(K ⊗B
D, P) −→ HomB(D,CohomC(K,P)) is an isomorphism. Then one can define
a left contraaction map HomB(D,CohomC(K,P)) −→ CohomC(K,P) by taking
the cohomomorphisms over C from the right D-coaction map K −→ K⊗B D into
the contramodule P. This contraaction is counital and contraassociative, at least,
if the natural map CohomC(K⊗BD⊗BD,P) −→ HomB(D⊗BD,CohomC(K,P))
is also an isomorphism.

In particular, if one of the conditions of Proposition 3.2.3.2 is satisfied (for
M = D), then the left B-module CohomC(K,P) has a natural D-contramodule
structure.

3.2.5 Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.
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Proposition. Let M be a left D-comodule, K be a C-D-bicomodule, and P be a
left C-contramodule. Then the iterated cohomomorphism modules

CohomC(K �D M, P) and CohomD(M,CohomC(K,P))

are naturally isomorphic, at least, in the following cases:

(a) D is a projective left B-module, M is a projective left B-module, C is a flat
right, and P is an injective left A-module;

(b) D is a projective left B-module and M is a coprojective left D-comodule;

(c) C is a flat right A-module and P is a coinjective left C-contramodule;

(d) D is a projective left B-module, M is a projective left B-module, K is a
D/B-coflat right D-comodule, K is a projective left A-module, and the ring
A has a finite left homological dimension;

(e) C is a flat right A-module, P is an injective left A-module, K is a C/A-co-
projective left C-comodule, K is a flat right B-module, and the ring B has a
finite left homological dimension;

(f) D is a projective left B-module, M is a projective left B-module, and K

as a right D-comodule with a left A-module structure is coinduced from an
A-B-bimodule;

(g) C is a flat right A-module, P is an injective left A-module, and K as a left
C-comodule with a right B-module structure is coinduced from an A-B-bi-
module;

(h) M is a quasicoprojective left D-comodule and K as a left C-comodule with a
right B-module structure is coinduced from an A-B-bimodule;

(i) P is a quasicoinjective left C-contramodule and K as a right D-comodule
with a left A-module structure is coinduced from an A-B-bimodule;

(j) K as a left C-comodule with a right B-module structure is coinduced from an
A-B-bimodule and K as a right D-comodule with a left A-module structure
is coinduced from an A-B-bimodule.

More precisely, in all cases in this list the natural maps from the k-module
HomA(K ⊗B M, P) = HomB(M,HomA(K,P)) into both iterated cohomomor-
phism modules under consideration are surjective, their kernels coincide and are
equal to the sum of the kernels of two maps from this module onto its quotient
modules CohomC(K⊗B M, P) and CohomD(M,HomA(K,P)).

Proof. One can easily see that whenever both maps

CohomD(M,HomA(K,P)) −→ HomA(K �D M, P)
and

CohomD(M, HomA(K, HomA(C,P))) −→ HomA(K �D M, HomA(C,P))
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are isomorphisms, the natural map HomA(K⊗BM, P) −→ CohomC(K�D M, P)
is surjective and its kernel coincides with the desired sum of two kernels of maps
from HomA(K⊗B M, P) onto its quotient modules. Analogously, whenever both
maps CohomC(K ⊗B M, P) −→ HomB(M,CohomC(K,P)) and CohomC(K ⊗B
D⊗B M, P) −→ HomB(D⊗B M,CohomC(K,P)) are isomorphisms, the natural
map HomB(M,HomA(K,P)) −→ CohomD(M,CohomC(K,P)) is surjective and
it kernel coincides with the desired sum of two kernels in HomB(M,HomA(K,P)).
Thus it remains to apply Propositions 3.2.3.1 and 3.2.3.2. �

Commutativity of pentagonal diagrams of associativity isomorphisms be-
tween iterated cohomomorphism modules can be established in a way analogous
to the case of iterated cotensor products. Namely, each of the five iterated coho-
momorphism modules CohomC((K�E L)�D M, P), CohomC(K�E (L�D M), P),
CohomE(L �D M, CohomC(K,P)), CohomD(M, CohomE(L, CohomC(K,P))),
and CohomD(M, CohomC(K�EL, P)) is endowed with a natural map into it from
the homomorphism module HomA(K⊗F L⊗B M, P), and since the associativity
isomorphisms are, presumably, compatible with these maps, it suffices to check
that at least one of these five maps is surjective in order to show that the pentag-
onal diagram commutes. In particular, if Proposition 3.2.5 together with Proposi-
tion 1.2.5 provide all the five isomorphisms constituting the pentagonal diagram
and either M is a projective left B-module, or P is an injective left A-module,
or both K and L as left (right) comodules with right (left) module structures are
coinduced from bimodules, then the pentagonal diagram is commutative.

We will say that multiple cohomomorphisms between several bicomodules
and a contramodule CohomC(K �E · · · �D M, P) are associative if the multiple
cotensor product K�E · · ·�DM is associative and for any possible way of represent-
ing this multiple cohomomorphism module in terms of iterated cotensor product
and cohomomorphism operations all the intermediate cohomomorphism modules
can be endowed with contramodule structures via the construction of 3.2.4, all
possible associativity isomorphisms between iterated cohomomorphism modules
exist in the sense of the last assertion of Proposition 3.2.5 and preserve con-
tramodule structures, and all the pentagonal diagrams commute. Associativity
isomorphisms and contramodule structures on associative multiple cohomomor-
phisms are preserved by the morphisms between them induced by any bicomodule
and contramodule morphisms of the factors.

3.3 Semicontramodules

3.3.1 Depending on the (co)flatness, (co)projectivity, and/or (co)injectivity con-
ditions imposed, there are several ways to make the category opposite to a cate-
gory of left C-contramodules into a right module category over a tensor category
of C-C-bicomodules with respect to the functor CohomC. Moreover, a category of
left C-comodules typically can be made into a left module category over the same
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tensor category, so that the functor CohomC would provide also a pairing between
these left and right module categories taking values in the category k-modop.

It follows from Proposition 3.2.5(b) that whenever C is a projective left
A-module, the category opposite to the category of left C-contramodules is a right
module category over the tensor category of C-C-bicomodules that are coprojective
left C-comodules; the category of coprojective left C-comodules is a left module cat-
egory over this tensor category. If follows from Proposition 3.2.5(c) that whenever
C is a flat right A-module, the category opposite to the category of coinjective left
C-contramodules is a right module category over the tensor category of C-C-bico-
modules that are coflat right C-comodules; the category of left C-comodules is a left
module category over this tensor category. It follows from Proposition 3.2.5(d) that
whenever C is a projective left A-module and the ring A has a finite left homological
dimension, the category opposite to the category of left C-contramodules is a right
module category over the tensor category of C-C-bicomodules that are projective
left A-modules and C/A-coflat right C-comodules; the category of A-projective left
C-comodules is a left module category over this tensor category. It follows from
Proposition 3.2.5(e) that whenever C is a flat right A-module and the ring A has
a finite left homological dimension, the category opposite to the category of A-in-
jective left C-contramodules is a right module category over the tensor category of
C-C-bicomodules that are flat right A-modules and C/A-coprojective left C-comod-
ules; the category of left C-comodules is a left module category over this tensor
category. Finally, it follows from Proposition 3.2.5(a) that whenever the ring A
is semisimple, the category opposite to the category of left C-contramodules is a
right module category over the tensor category of C-C-bicomodules; the category
of left C-comodules is a left module category over this tensor category. In each
case, there is a pairing between these left and right module categories compatible
with their module category structures and taking values in the category opposite
to the category of k-modules.

A left semicontramodule over a semialgebra S is an object of the category
opposite to the category of module objects in one of the right module categories
of the above kind (opposite to a category of left C-contramodules) over the ring
object S in the corresponding tensor category of C-C-bicomodules. In other words,
a left S-semicontramodule P is a left C-contramodule endowed with a left C-con-
tramodule morphism of left semicontraaction P −→ CohomC(S,P) satisfying the
associativity and unity equations. Namely, two compositions

P −→ CohomC(S,P) ⇒ CohomC(S �C S, P)

of the semicontraaction morphism P −→ CohomC(S,P) with the morphisms

CohomC(S,P) ⇒ CohomC(S �C S, P) = CohomC(S,CohomC(S,P))

induced by the semimultiplication morphism of S and the semicontraaction mor-
phism should coincide with each other, and the composition

P −→ CohomC(S,P) −→ CohomC(C,P) = P
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of the semicontraaction morphism with the morphism induced by the semiunit
morphism of S should coincide with the identity morphism of P. For this defini-
tion to make sense, (co)flatness, (co)projectivity, and/or (co)injectivity conditions
imposed on S and/or P must guarantee associativity of multiple cohomomorphism
modules of the form CohomC(S �C · · ·�C S, P). Right semicontramodules over S

are defined in the analogous way.
If Q is a left C-contramodule for which multiple cohomomorphisms

CohomC(S �C · · · �C S, Q)

are associative, then there is a natural left S-semicontramodule structure on the
cohomomorphism module CohomC(S,Q). The semicontramodule CohomC(S,Q)
is called the S-semicontramodule coinduced from a C-contramodule Q. According
to Lemma 1.1.2, the k-module of semicontramodule homomorphisms from an ar-
bitrary S-semicontramodule into the coinduced S-semicontramodule is described
by the formula

HomS(P,CohomC(S,Q)) � HomC(P,Q).

We will denote the category of left S-semicontramodules by S-sicntr and the
category of right S-semicontramodules by sicntr-S. This notation presumes that
one can speak of (left or right) S-semicontramodules with no (co)injectivity con-
ditions imposed on them. If C is a projective left A-module and S is a coprojective
left C-comodule, then the category of left semicontramodules over S is abelian and
the forgetful functor S-sicntr −→ C-contra is exact.

If C is a projective left A-module and either S is a coprojective left C-comod-
ule, or S is a projective left A-module and a C/A-coflat right C-comodule and A
has a finite left homological dimension, or A is semisimple, then both infinite direct
sums and infinite products exist in the category of left S-semicontramodules and
both are preserved by the forgetful functor S-sicntr −→ C-contra, even though only
infinite products are preserved by the full forgetful functor S-sicntr −→ A-mod.

If C is a flat right A-module, S is a flat right A-module and a C/A-copro-
jective left C-comodule, and A has a finite left homological dimension, then the
category of A-injective left S-semicontramodules is exact. If C is a projective left
A-module, S is a projective left A-module and a C/A-coflat right C-comodule, and
A has a finite left homological dimension, then the category of C/A-coinjective left
S-semicontramodules is exact. If C is a flat right A-module and S is a coflat right
C-comodule, then the category of C-coinjective left S-semicontramodules is exact.
If A is semisimple, the category of C-coinjective S-semicontramodules is exact.
Infinite products exist in all of these exact categories, and the forgetful functors
preserve them.

Question. When C is a flat right A-module and S is a coflat right C-comodule, a
right adjoint functor to the forgetful functor S-simod −→ C-comod exists according
to the abstract adjoint functor existence theorem [67, V.8]. Indeed, the forgetful
functor preserves colimits and the category of left S-semimodules has a set of
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generators (since the category of left C-comodules does; see Question 3.1.2). Does
a left adjoint functor to the forgetful functor S-sicntr −→ C-contra exist? Can one
describe these functors more explicitly?

3.3.2 Assume that the coring C is a projective left and a flat right A-module and
the ring A has a finite left homological dimension.

Lemma.

(a) If the semialgebra S is a coflat right C-comodule and a projective left A-mod-
ule, then there exists a (not always additive) functor assigning to any left
S-semimodule a surjective map onto it from an A-projective S-semimodule.

(b) If the semialgebra S is a coprojective left C-comodule and a flat right A-mod-
ule, then there exists a (not always additive) functor assigning to any left
S-semicontramodule an injective map from it into an A-injective S-semicon-
tramodule.

Proof. The proof of part (a) is completely analogous to the proof of Lemma 1.3.2
(with the last assertion of Proposition 3.2.3.1 used as needed); and part (b) is
proven in the following way. Let P −→ I(P) denote the functorial injective mor-
phism from a C-contramodule P into an A-injective C-contramodule I(P) con-
structed in Lemma 3.1.3. Then for any S-semicontramodule P the composition of
maps

P −−→ CohomC(S,P) −−→ CohomC(S, I(P))

provides the desired injective morphism of S-semicontramodules. According to the
last assertion of Proposition 3.2.3.2, the A-module I(P) = CohomC(S, I(P)) is
injective. �
Remark. The analogues of the result of Remark 1.3.2 hold for C/A-coprojec-
tive/semiprojective S-semimodules and C/A-coinjective/semiinjective S-semicon-
tramodules; see the proof of Lemma 9.2.1 for details.

3.3.3 Let S be a semialgebra over a coring C over a k-algebra A.

Lemma.

(a) Assume that C is a projective left A-module, S is a coprojective left C-co-
module and a C/A-coflat right C-comodule, and the ring A has a finite left
homological dimension. Then there exist
• an exact functor assigning to any A-projective left S-semimodule an
A-split injective morphism from it into a C-coprojective S-semimodule,
and
• an exact functor assigning to any left S-semicontramodule a surjective

morphism onto it from a C/A-coinjective S-semicontramodule.
(b) Assume that C is a flat right A-module, S is a coflat right C-comodule and a

C/A-coprojective left C-comodule, and the ring A has a finite left homological
dimension. Then there exist
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• an exact functor assigning to any A-injective left S-semicontramodule
an A-split surjective morphism onto it from a C-coinjective S-semicon-
tramodule, and
• an exact functor assigning to any left S-semimodule an injective mor-

phism from it into a C/A-coprojective S-semimodule.
(c) When both the assumptions of (a) and (b) are satisfied, the two functors act-

ing in categories of semimodules (can be made to) agree and the two functors
acting in categories of semicontramodules (can be made to) agree.

Proof. The proof of the first assertion of part (a) and the second assertion of
part (b) is based on the construction completely analogous to that of the proof of
Lemma 1.3.3, with (co)flat (co)modules replaced by (co)projective ones, and the
left and right sides switches as needed. The only difference is that the inductive
limit of a sequence of coprojective comodules does not have to be coprojective,
because even the inductive limit of a sequence of projective modules does not have
to be projective. This obstacle is dealt with in the following way.

Sublemma A. Assume that C is a projective left A-module. Let U1 −→ U2 −→
U3 −→ U4 −→ · · · be an inductive system of left C-comodules, where the co-
modules U2i are coprojective, while the morphisms of comodules U2i−1 −→ U2i+1

are injective and split over A. Then the inductive limit lim−→Uj is a coprojective
C-comodule.

Proof. Let us first show that for any C-contramodule P there is an isomorphism
CohomC(lim−→Uj ,P) = lim←−CohomC(Uj ,P). Denote by G•j the bar complex

· · · −−→ HomA(C⊗AC⊗AUj , P) −−→ HomA(C⊗AUj , P) −−→ HomA(Uj ,P);

we will denote the terms of this complex by upper indices, so that Gnj = 0
for n > 0 and H0(G•j) = CohomC(Uj ,P). Clearly, we have H0(lim←−G

•
j) =

CohomC(lim−→Uj ,P). Since the comodules U2i are coprojective, Hn(G•2i) = 0
for n �= 0, as the complex G•2i can be obtained by applying the functor
CohomC(U2i,−) to the complex of C-contramodules · · · −→ HomA(C⊗AC,P) −→
HomA(C,P), which is exact except at degree 0. Since the maps of A-modules
U2i−1 −→ U2i+1 are split injective, the morphisms of complexes G•2i+1 −→ G•2i−1

are surjective. Therefore, lim←−
1G•j = lim←−

1G•2i−1 = 0, hence there is a “universal
coefficients” sequence [86, Theorem 3.5.8]

0 −−→ lim←−
1Hn−1(G•j) −−→ Hn(lim←−G

•
j) −−→ lim←−H

n(G•j) −−→ 0.

In particular, for n = 0 we obtain the desired isomorphism H0(lim←−G
•
j) =

lim←−H
0(G•j), because lim←−

1H−1(G•j) = lim←−
1H−1(G•2i) = 0.

Now for any exact triple of C-contramodules P′ → P → P′′ we have an
exact triple of projective systems CohomC(U2i,P

′) −→ CohomC(U2i,P) −→
CohomC(U2i,P

′′) and lim←−
1 CohomC(U2i,P

′) = lim←−
1 CohomC(U2i−1,P

′) = 0,
hence the triple remains exact after passing to the projective limit. �
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Sublemma B. Assume that C is a flat right A-module. Let U1 −→ U2 −→ U3 −→
U4 −→ · · · be an inductive system of left C-comodules, where the comodules U2i are
C/A-coprojective, while the morphisms of comodules U2i−1 −→ U2i+1 are injective.
Then the inductive limit lim−→Uj is a C/A-coprojective C-comodule.

Proof. Analogous to the proof of Sublemma A, the only changes being that P,
P′, P′′ are now A-injective C-contramodules and the complex · · · −→ HomA(C⊗A
C, P) −→ HomA(C,P) −→ P is an A-split exact sequence of A-injective C-con-
tramodules. �

Proof of the first assertion of part (b): for any A-injective C-contramodule P,
set G(P) = HomA(C,P). Then the contraaction map G(P) −→ P is a surjec-
tive morphism of C-contramodules, the contramodule G(P) is coinjective, and the
kernel of this morphism is A-injective. Now let P be an A-injective left S-semi-
contramodule. The semicontraaction map P −→ CohomC(S,P) is an injective
morphism of A-injective S-semicontramodules; let K(P) denote its cokernel. The
map CohomC(S,G(P)) −→ CohomC(S,P)) is a surjective morphism of S-semi-
contramodules with an A-injective kernel CohomC(S, ker(G(P)→P)). Let Q(P)
be the kernel of the composition

CohomC(S,G(P)) −−→ CohomC(S,P) −−→ K(P).

Then the composition of maps Q(P) −→ CohomC(S,G(P)) −→ CohomC(S,P)
factorizes through the injection P −→ CohomC(S,P), so there is a natural sur-
jective morphism of S-semicontramodules Q(P) −→ P. The kernel of the map
Q(P) −→ P is isomorphic to the kernel of the map CohomC(S,G(P)) −→
CohomC(S,P), hence both ker(Q(P)→P) and Q(P) are injective A-modules.

Notice that the semicontramodule morphism Q(P) −→ P can be ex-
tended to a contramodule morphism CohomC(S,G(P)) −→ P. Indeed, the map
Q(P) −→P can be presented as the composition

Q(P) −→ CohomC(S,G(P)) −→ CohomC(S,P) −→P,

where the map CohomC(S,P) −→P is induced by the semiunit morphism C −→
S of the semialgebra S.

Iterating this construction, we obtain a projective system of C-contramodule
morphisms

P ←−− CohomC(S,G(P)) ←−− Q(P)
←−− CohomC(S,G(Q(P))) ←−− Q(Q(P)) ←−− · · · ,

where the maps

P ←−− Q(P) ←−− Q(Q(P)) ←−− · · ·
are A-split surjective morphisms of A-injective S-semicontramodules, while the
C-contramodules CohomC(S,G(P)), CohomC(S,G(Q(P))), . . . are coinjective.
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Denote by F(P) the projective limit of this system; then F(P) −→P is an A-split
surjective morphism of S-semicontramodules, while coinjectivity of the C-contra-
module F(P) follows from the next sublemma.

Sublemma C. Assume that C is a flat right A-module. Let U1 ←− U2 ←− U3 ←−
U4 ←− · · · be a projective system of left C-contramodules, where the contramodules
U2i are coinjective, while the morphisms of contramodules U2i+1 −→ U2i−1 are
surjective and split over A. Then the projective limit lim←−Uj is a coinjective C-con-
tramodule.

Proof. Completely analogous to the proof of Sublemma A. One considers the pro-
jective system of bar-complexes · · · −→ HomA(C⊗A C⊗AM, Uj) −→ HomA(C⊗A
M, Uj) −→ HomA(M,Uj), etc. �

The proof of the second assertion of part (a) is based on the same construc-
tion; the only changes are that A-modules are no longer injective, for any left
C-contramodule P the C-contramodule G(P) = HomA(C,P) is C/A-coinjective,
and therefore the S-semicontramodule CohomC(S,G(P)) is C/A-coinjective. The
projective limit F(P) is C/A-coinjective according to the following sublemma.

Sublemma D. Assume that C is a projective left A-module. Let U1 ←− U2 ←−
U3 ←− U4 ←− · · · be a projective system of left C-contramodules, where the
contramodules U2i are C/A-coinjective, while the morphisms of contramodules
U2i+1 −→ U2i−1 are surjective. Then the projective limit lim←−Uj is a C/A-coin-
jective C-contramodule. �

Both functors F are exact, since the cokernels of injective maps, the kernels of
surjective maps, and the projective limits of Mittag-Leffler sequences of k-modules
preserve exact triples. Part (c) is clear from the constructions. �

3.4 Semihomomorphisms

3.4.1 Assume that the coring C is a projective left A-module, the semialgebra
S is a projective left A-module and a C/A-coflat right A-module, and the ring A
has a finite left homological dimension. Let M be an A-projective left S-semimod-
ule and P be a left S-semicontramodule. The k-module of semihomomorphisms
SemiHomS(M,P) is defined as the kernel of the pair of maps

CohomC(M,P) ⇒ CohomC(S �C M, P) = CohomC(M,CohomC(S,P))

one of which is induced by the S-semiaction in M and the other by the S-semi-
contraaction in P.

For any A-projective left C-comodule L and any left S-semicontramodule P
there is a natural isomorphism

SemiHomS(S �C L, P) � CohomC(L,P).
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Analogously, for any A-projective left S-semimodule M and any left C-contramod-
ule Q there is a natural isomorphism

SemiHomS(M,CohomC(S,Q)) � CohomC(M,Q).

These assertions follow from Lemma 1.2.1.

3.4.2 Assume that the coring C is a flat right A-module, the semialgebra S is a
flat right A-module and a C/A-coprojective left A-module, and the ring A has a
finite left homological dimension. Let M be a left S-semimodule and P be an A-in-
jective left S-semicontramodule. As above, the k-module of semihomomorphisms
SemiHomS(M,P) is defined as the kernel of the pair of maps CohomC(M,P) ⇒
CohomC(S �C M, P) = CohomC(M,CohomC(S,P)) one of which is induced by
the S-semiaction in M and the other by the S-semicontraaction in P.

For any left C-comodule L and any A-injective left S-semicontramodule P
there is a natural isomorphism SemiHomS(S �C L, P) � CohomC(L,P). Analo-
gously, for any left S-semimodule M and any A-injective left C-contramodule Q
there is a natural isomorphism SemiHomS(M,CohomC(S,Q)) � CohomC(M,Q).

Notice that even under the strongest of our assumptions on A, C and S, the
A-projectivity of M or the A-injectivity of P is still needed to guarantee that the
triple cohomomorphisms CohomC(S �C M, P) are associative.

3.4.3 If the coring C is a projective left A-module and the semialgebra S is a co-
projective left C-comodule, one can define the module of semihomomorphisms from
a C-coprojective left S-semimodule into an arbitrary left S-semicontramodule. In
these assumptions, a C-coprojective left S-semimodule M is called semiprojective if
the functor of semihomomorphisms from M is exact on the abelian category of left
S-semicontramodules. The S-semimodule induced from a coprojective C-comodule
is semiprojective. Any semiprojective S-semimodule is semiflat.

If the coring C is a flat right A-module and the semialgebra S is a coflat
right C-comodule, one can define the module of semihomomorphisms from an
arbitrary left S-semimodule into a C-coinjective left S-semicontramodule. In these
assumptions, a C-coinjective left S-semicontramodule P is called semiinjective if
the functor of semihomomorphisms into P is exact on the abelian category of left
S-semimodules. The S-semicontramodule coinduced from a coinjective C-contra-
module is semiinjective.

When the ring A is semisimple, the module of semihomomorphisms from an
arbitrary S-semimodule into an arbitrary S-semicontramodule is defined without
any conditions on the coring C and the semialgebra S.

3.4.4 Let S be a semialgebra over a coring C over a k-algebra A and T be a
semialgebra over a coring D over a k-algebra B. Let K be an S-T-bisemimodule
and P be a left S-semicontramodule. We would like to define a left T-semicontra-
module structure on the module of semihomomorphisms SemiHomS(K,P).
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Assume that multiple cohomomorphisms of the form CohomC(S�CK�DT�D

· · ·�D T, P) are associative. Then, in particular, the k-modules of semihomomor-
phisms SemiHomS(K�DT�D· · ·�DT,P) can be defined. Assume in addition that
multiple cohomomorphisms of the form CohomC(K�DT�D · · ·�DT,P) are asso-
ciative. Then the semihomomorphism modules SemiHomS(K�DT�D · · ·�DT,P)
have natural left D-contramodule structures as kernels of D-contramodule mor-
phisms. Assume that multiple cohomomorphisms of the form CohomD(T�D · · ·�D

T, SemiHomS(K,P)) are also associative. Finally, assume that the cohomomor-
phisms from T�m preserve the kernel of the pair of morphisms CohomC(K,P) ⇒
CohomC(S �C K,P) for m = 1 and 2, that is the contramodule morphisms
CohomD(T �m, SemiHomS(K,P)) −−→ SemiHomS(K �D T �m, P) are isomor-
phisms. Then one can define an associative and unital semicontraaction morphism
SemiHomS(K,P) −→ CohomD(T, SemiHomS(K,P)) by taking the semihomo-
morphisms over S from the right T-semiaction morphism K �D T −→K into the
semicontramodule P.

For example, if D is a projective left B-module, T is a coprojective left D-co-
module, A has a finite left homological dimension, and either C is a projective
left A-module, S is a projective left A-module and a C/A-coflat right C-comodule,
and K is a projective left A-module, or C is a flat right A-module, S is a flat
right A-module and a C/A-coprojective left C-comodule, and P is an injective
left A-module, then the module of semihomomorphisms SemiHomS(K,P) has
a natural left T-semicontramodule structure. Since the category of left T-semi-
contramodules is abelian in this case, the T-semicontramodule SemiHomS(K,P)
can be simply defined as the kernel of the pair of semicontramodule morphisms
CohomC(K,P) ⇒ CohomC(S �C K,P).

Proposition. Let M be a left T-semimodule, K be an S-T-bisemimodule, and P
be a left S-semicontramodule. Then the iterated semihomomorphism modules

SemiHomS(K ♦T M, P) and SemiHomT(M, SemiHomS(K,P))

are well defined and naturally isomorphic, at least, in the following cases:

(a) D is a projective left B-module, T is a coprojective left D-comodule, M is a
coprojective left D-comodule, C is a flat right A-module, S is a coflat right
C-comodule, and P is a coinjective left C-contramodule;

(b) D is a projective left B-module, T is a coprojective left D-comodule, M is a
semiprojective left T-semimodule, and either

• C is a projective left A-module, S is a coprojective left C-comodule, and
K is a coprojective left C-comodule, or

• C is a projective left A-module, S is a projective left A-module and a
C/A-coflat right C-comodule, the ring A has a finite left homological
dimension, and K is a projective left A-module, or
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• C is a flat right A-module, S is a flat right A-module and a C/A-copro-
jective left C-comodule, and P is an injective left A-module, or

• the ring A is semisimple;

(c) C is a flat right A-module, S is a coflat right C-comodule, P is a semiinjective
left S-semicontramodule, and either
• D is a flat right B-module, T is a coflat right D-comodule, and K is a

coflat right D-comodule, or
• D is a flat right B-module, T is a flat right B-module and a D/B-co-

projective left D-comodule, the ring B has a finite left homological di-
mension, and K is a flat right B-module, or
• D is a projective left B-module, T is a projective left B-module and a

D/B-coflat right D-comodule, the ring B has a finite left homological
dimension, and M is a projective left B-module, or

• the ring B is semisimple;
(d) D is a projective left B-module, T is a coprojective left D-comodule, M is a

coprojective left D-comodule, and either
• C is a projective left A-module, S is a coprojective left C-comodule, and

K as a right T-semimodule with a left C-comodule structure is induced
from a C-coprojective C-D-bicomodule, or

• C is a projective left A-module, S is a projective left A-module and a
C/A-coflat right C-comodule, the ring A has a finite left homological di-
mension, and K as a right T-semimodule with a left C-comodule struc-
ture is induced from an A-projective C-D-bicomodule, or

• C is a flat right A-module, S is a flat right A-module and a C/A-coprojec-
tive left C-comodule, the ring A has a finite left homological dimension,
K as a right T-semimodule with a left C-comodule structure is induced
from a C-D-bicomodule, and P is an injective left A-module, or
• the ring A is semisimple and K as a right T-semimodule with a left

C-comodule structure is induced from a C-D-bicomodule;

(e) C is a flat right A-module, S is a coflat right C-comodule, P is a coinjective
left C-contramodule, and either
• D is a flat right B-module, T is a coflat right D-comodule, and K as a

left S-semimodule with a right D-comodule structure is induced from a
D-coflat C-D-bicomodule, or
• D is a flat right B-module, T is a flat right B-module and a D/B-copro-

jective left D-comodule, the ring B has a finite left homological dimen-
sion, and K as a left S-semimodule with a right D-comodule structure
is induced from a B-flat C-D-bicomodule, or

• D is a projective left B-module, T is a projective left B-module and a
D/B-coflat right D-comodule, the ring B has a finite left homological
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dimension, K as a left S-semimodule with a right D-comodule structure
is induced from a C-D-bicomodule, and M is a projective left B-module,
or
• the ring B is semisimple and K as a left S-semimodule with a right

D-comodule structure is induced from a C-D-bicomodule.

More precisely, in all cases in this list the natural maps from both iterated semiho-
momorphism modules under consideration into the iterated cohomomorphism mod-
ule CohomC(K�DM,P) � CohomD(M,CohomC(K,P)) are injective, their im-
ages coincide and are equal to the intersection of two submodules SemiHomS(K�D

M, P) and SemiHomT(M,CohomC(K,P)) in this k-module.

Proof. Analogous to the proof of Proposition 1.4.4 (see also the proof of Proposi-
tion 3.2.5). �





4 Derived Functor SemiExt

4.1 Contraderived categories

Let A be an exact category in which all infinite products exist and the functors of
infinite product are exact. A complex C• over A is called contraacyclic if it belongs
to the minimal triangulated subcategory Acyclctr(A) of the homotopy category
Hot(A) containing all the total complexes of exact triples ′K• → K• → ′′K• of
complexes over A and closed under infinite products. Any contraacyclic complex
is acyclic. It follows from the next lemma that any acyclic complex bounded from
above is contraacyclic.

Lemma. Let · · · → P−1,• → P 0,• → 0 be an exact sequence, bounded from above,
of arbitrary complexes over A. Then the total complex T • of the bicomplex P •,•

constructed by taking infinite products along the diagonals is contraacyclic.

Proof. See the proof of Lemma 2.1. �

The category of contraacyclic complexes Acyclctr(A) is a thick subcategory of
the homotopy category Hot(A), since it is a triangulated subcategory with infinite
products. The contraderived category Dctr(A) of an exact category A is defined as
the quotient category Hot(A)/Acyclctr(A).

Remark. One can check that for any exact category A and any thick subcategory
T in Hot(A) contained in the thick subcategory of acyclic complexes, contain-
ing all bounded acyclic complexes, and containing with every exact complex its
subcomplexes and quotient complexes of canonical filtration, the groups of homo-
morphisms HomHot(A)/T(X,Y [i]) between complexes with a single nonzero term
coincide with the Yoneda extension groups ExtiA(X,Y ). Moreover, the natural
functors Hot+/−/b(A)/(T ∩ Hot+/−/b(A)) −→ Hot(A)/T between the “T-derived
categories” with various bounding conditions are all fully faithful. Besides, when-
ever A is an abelian category there is a (degenerate) t-structure on Hot(A)/T
formed by the full subcategories of complexes concentrated in nonpositive and
nonnegative degrees. The core of this t-structure coincides with A. In particular,
all these assertions hold if T ⊂ Hot(A) consists of acyclic complexes and contains
either all exact complexes bounded from above or all exact complexes bounded
from below.

4.2 Coprojective and coinjective complexes

Let C be a coring over a k-algebra A. The complex of cohomomorphisms
CohomC(M•,P•) from a complex of left C-comodules M• into a complex of
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left C-contramodules P• is defined as the total complex of the bicomplex
CohomC(Mi,Pj), constructed by taking infinite products along the diagonals.

If C is a projective left A-module, the category of left C-contramodules is
an abelian category with exact functors of infinite products, so the contraderived
category Dctr(C-contra) is defined. When speaking about contraacyclic complexes
of C-contramodules, we will always mean contraacyclic complexes with respect to
the abelian category of C-contramodules, unless another exact category of C-con-
tramodules is explicitly mentioned.

Assuming that C is a projective left A-module, a complex of left C-comodules
M• is called coprojective if the complex CohomC(M•,P•) is acyclic whenever a
complex of left C-contramodules P• is contraacyclic. Assuming that C is a flat
right A-module, a complex of left C-contramodules P• is called coinjective if the
complex CohomC(M•,P•) is acyclic whenever a complex of left C-comodules M•

is coacyclic.

Lemma.

(a) Any complex of coprojective C-comodules is coprojective.
(b) Any complex of coinjective C-contramodules is coinjective.

Proof. Argue as in the proof of Lemma 2.2, using the fact that the functor of
cohomomorphisms of complexes maps infinite direct sums in the first argument
into infinite products and preserves infinite products in the second argument. �

If the ring A has a finite left homological dimension, then any coprojective
complex of left C-comodules is a projective complex of A-modules in the sense
of 0.1.2 and any coinjective complex of left C-contramodules is an injective complex
of A-modules. The complex of C-comodules C⊗A U• coinduced from a projective
complex of A-modules U• is coprojective and the complex of C-contramodules
HomA(C, V •) induced from an injective complex of A-modules is coinjective.

4.3 Semiderived categories

Let S be a semialgebra over a coring C. Assume that C is a projective left A-mod-
ule and the semialgebra S is a coprojective left C-comodule, so that the category
of left S-semicontramodules is abelian. The semiderived category of left S-semi-
contramodules Dsi(S-sicntr) is defined as the quotient category of the homotopy
category Hot(S-sicntr) by the thick subcategory Acyclctr-C(S-sicntr) of complexes
of S-semicontramodules that are contraacyclic as complexes of C-contramodules.

4.4 Semiprojective and semiinjective complexes

Let S be a semialgebra. The complex of semihomomorphisms SemiHomS(M•,P•)
from a complex of left S-semimodules M• to a complex of left S-semicontramod-
ules P• is defined as the total complex of the bicomplex SemiHomS(Mi,Pj),
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constructed by taking infinite products along the diagonals. Of course, appropriate
conditions must be imposed on S, M•, and P• for this definition to make sense.

Assume that the coring C is a projective leftA-module and a flat rightA-mod-
ule, the semialgebra S is a coprojective left S-semimodule and a coflat right S-semi-
module, and the ring A has a finite left homological dimension.

A complex of A-projective left S-semimodules M• is called semiprojective
if the complex SemiHomS(M•,P•) is acyclic whenever a complex of left S-semi-
contramodules P• is C-contraacyclic. Any semiprojective complex of S-semimod-
ules is a coprojective complex of C-comodules. The complex of S-semimodules
S �C L• induced from a coprojective complex of A-flat C-comodules is semipro-
jective. Any semiprojective complex of S-semimodules is semiflat. Analogously,
a complex of A-injective left S-semicontramodules P• is called semiinjective if
the complex SemiHomS(M•,P•) is acyclic whenever a complex of left S-semi-
modules M• is C-coacyclic. Any semiinjective complex of S-semicontramodules is
a coinjective complex of C-contramodules. The complex of S-semicontramodules
CohomC(S,Q•) coinduced from a coinjective complex of A-injective C-contramod-
ules is semiinjective.

Notice that not every complex of semiprojective semimodules is semiprojec-
tive and not every complex of semiinjective semicontramodules is semiinjective. On
the other hand, any complex of semiprojective semimodules bounded from above
is semiprojective. Moreover, if · · · → M−1,• → M0,• → 0 is a complex, bounded
from above, of semiprojective complexes of S-semimodules, then the total complex
E• of the bicomplex M•,• constructed by taking infinite direct sums along the diag-
onals is semiprojective. Indeed, the category of semiprojective complexes is closed
under shifts, cones, and infinite direct sums, so one can apply Lemma 2.4. Anal-
ogously, any complex of semiinjective semicontramodules bounded from below is
semiinjective. Moreover, if 0 → P0,• → P1,• → · · · is a complex, bounded from
below, of semiinjective complexes of S-semicontramodules, then the total complex
E• of the bicomplex P•,• constructed by taking infinite products along the di-
agonals is semiinjective. Indeed, the category of semiinjective complexes is closed
under shifts, cones, and infinite products, so one can apply the following lemma.

Lemma. Let 0 → P 0,• → P 1,• → · · · be a complex, bounded from below, of
arbitrary complexes over an additive category A where infinite products exist. Then
the total complex E• of the bicomplex P •,• up to the homotopy equivalence can be
obtained from the complexes P i,• using the operations of shift, cone, and infinite
product.

Proof. See the proof of Lemma 2.4. �

4.5 Main theorem for comodules and contramodules

Assume that the coring C is a projective left and a flat right A-module and the
ring A has a finite left homological dimension.
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Theorem.

(a) The functor mapping the quotient category of the homotopy category of com-
plexes of coprojective left C-comodules (coprojective complexes of left C-co-
modules) by its intersection with the thick subcategory of coacyclic complexes
of C-comodules into the coderived category of left C-comodules is an equiva-
lence of triangulated categories.

(b) The functor mapping the quotient category of the homotopy category of com-
plexes of coinjective left C-contramodules (coinjective complexes of left C-con-
tramodules) by its intersection with the thick subcategory of contraacyclic
complexes of C-contramodules into the contraderived category of left C-con-
tramodules is an equivalence of triangulated categories.

Proof. The proof of part (a) is completely analogous to the proof of Theorem 2.5.
It is based on the same constructions of resolutions L1 and R2, and uses the result
of Lemma 3.1.3(a) instead of Lemma 1.1.3.

To prove part (b), we will show that any complex of left C-contramodules K•

can be connected with a complex of coinjective C-contramodules in a functorial
way by a chain of two morphisms K• −→ L2(K•)←− L2R1(K•) with contraacyclic
cones. Moreover, if the complex K• is a complex of coinjective C-contramodules
(coinjective complex of C-contramodules), then the intermediate complex L2(K•)
is also a complex of coinjective C-contramodules (coinjective complex of C-contra-
modules). Then we will apply Lemma 2.5 in the way explained in the end of the
proof of Theorem 2.5.

Let K• be a complex of left C-contramodules. Let P −→ I(P) denote the
functorial injective morphism from an arbitrary left C-contramodule P into an
A-injective C-contramodule I(P) constructed in Lemma 3.1.3(b). The functor I
is the direct sum of a constant functor P �−→ I(0) and a functor I+ sending
zero morphisms to zero morphisms. For any C-contramodule P, the contramodule
I+(P) is A-injective and the morphism P −→ I+(P) is injective. Set I0(K•) =
I+(K•), I1(K•) = I+(coker(K• → I0(K•))), etc. For d large enough, the cokernel
Z(K•) of the morphism Id−2(K•) −→ Id−1(K•) will be a complex of A-injective
C-contramodules. Let R1(K•) be the total complex of the bicomplex

I0(K•) −−→ I1(K•) −−→ · · · −−→ Id−1(K•) −−→ Z(K•).

Then R1(K•) is a complex of A-injective C-contramodules and the cone of the mor-
phism K• −→ R1(K•) is the total complex of a finite exact sequence of complexes
of C-contramodules, and therefore, a contraacyclic complex.

Now let R• be a complex of A-injective left C-contramodules. Consider the
bar construction

· · · −−→ HomA(C,HomA(C,R•)) −−→ HomA(C,R•).

Let L2(R•) be the total complex of this bicomplex, constructed by taking infinite
products along the diagonals. Then L2(R•) is a complex of coinjective C-contra-
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modules. The functor L2 can be extended to arbitrary complexes of C-contramod-
ules; for any complex K•, the cone of the morphism L2(K•) −→ K• is contraacyclic
by Lemma 4.1.

Finally, if K• is a coinjective complex of C-contramodules, then L2(K•) is also
a coinjective complex of C-contramodules, since the complex of cohomomorphisms
from a complex of left C-comodules M• into L2(K•) coincides with the complex of
cohomomorphisms into K• from the total cobar complex R2(M•), and the latter
is coacyclic whenever M• is coacyclic. �

Remark. Another proof of the theorem (for complexes of coprojective comodules
and complexes of coinjective contramodules) can be deduced from the results of
Chapter 5. In addition, it will follow that any coacyclic complex of coprojective
left C-comodules is contractible and any contraacyclic complex of coinjective left
C-contramodules is contractible (see Remark 5.5).

4.6 Main theorem for semimodules and semicontramodules

Assume that the coring C is a projective left and a flat right A-module, the semi-
algebra S is a coprojective left and a coflat right C-comodule, and the ring A has
a finite left homological dimension.

Theorem.

(a) The functor mapping the quotient category of the homotopy category of
semiprojective complexes of A-projective (C-coprojective, semiprojective) left
S-semimodules by its intersection with the thick subcategory of C-coacyclic
complexes of S-semimodules into the semiderived category of left S-semi-
modules is an equivalence of triangulated categories.

(b) The functor mapping the quotient category of the homotopy category of semi-
injective complexes of A-injective (C-coinjective, semiinjective) left S-semi-
contramodules by its intersection with the thick subcategory of C-contra-
acyclic complexes of S-semicontramodules into the semiderived category of
left S-semicontramodules is an equivalence of triangulated categories.

Proof. There are two approaches: one can argue as in 2.5 or as in 2.6. Either way,
the proof is based on the constructions of intermediate resolutions Li and Rj .
For part (a), it is the same constructions that were presented in the proof of
Theorem 2.6. One just has to use the results of Lemmas 3.3.2(a) and 3.3.3(a)
instead of Lemmas 1.3.2 and 1.3.3. Let us introduce the analogous constructions
for part (b).

Let K• be a complex of left S-semicontramodules. Let P −→ I(P) denote
the functorial injective morphism from an arbitrary left S-semicontramodule P
into an A-injective S-semicontramodule I(P) constructed in Lemma 3.3.2(b).
The functor I is the direct sum of a constant functor P �−→ I(0) and a functor
I+ sending zero morphisms to zero morphisms. For any S-semicontramodule P,
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the semicontramodule I+(P) is A-injective and the morphism P −→ I+(P) is
injective. Set I0(K•) = I+(K•), I1(K•) = I+(coker(K• → I0(K•))), etc. For d
large enough, the cokernel Z(K•) of the morphism Id−2(K•) −→ Id−1(K•) will be
a complex of A-injective S-semicontramodules. Let R1(K•) be the total complex
of the bicomplex

I0(K•) −−→ I1(K•) −−→ · · · −−→ Id−1(K•) −−→ Z(K•).

Then R1(K•) is a complex of A-injective S-semicontramodules and the cone of
the morphism K• −→ R1(K•) is the total complex of a finite exact sequence of
complexes of S-semicontramodules, and therefore, a C-contraacyclic complex (and
even an S-contraacyclic complex).

Now let R• be a complex of A-injective left S-semicontramodules. Let
F(P) −→ P denote the functorial surjective morphism onto an arbitrary A-in-
jective S-semicontramodule P from a C-coinjective S-semicontramodule F(P)
with an A-injective kernel ker(F(P) → P) constructed in Lemma 3.3.3(b). Set
F0(R

•) = F(R•), F1(R
•) = F(ker(F0(R

•) → R•)), etc. Let L2(R•) be the
total complex of the bicomplex

· · · −−→ F2(R
•) −−→ F1(R

•) −−→ F0(R
•),

constructed by taking infinite products along the diagonals. Then L2(R•) is a
complex of C-coinjective S-semicontramodules. Since the surjection F(P) −→
P can be defined for arbitrary left S-semicontramodules, the functor L2 can be
extended to arbitrary complexes of S-semicontramodules. For any complex K•,
the cone of the morphism L2(K•) −→ K• is a C-contraacyclic complex (and even
an S-contraacyclic complex) by Lemma 4.1.

Finally, let P• be a C-coinjective complex of A-injective left S-semicontra-
modules. Then the complex CohomC(S,P•) is a semiinjective complex of A-in-
jective left S-semicontramodules. Moreover, if P• is a complex of C-coinjective
S-semicontramodules, then CohomC(S,P•) is a semiinjective complex of semiin-
jective S-semicontramodules. Consider the cobar construction

CohomC(S,P•) −−→ CohomC(S,CohomC(S,P•)) −−→ · · ·

Let R3(P•) be the total complex of this bicomplex, constructed by taking in-
finite products along the diagonals. Then complex R3(P•) is semiinjective by
Lemma 4.4. The functor R3 can be extended to arbitrary complexes of S-semi-
contramodules; for any complex K•, the cone of the morphism K• −→ R3(K•) is
not only C-contraacyclic, but even C-contractible (the contracting homotopy being
induced by the semiunit morphism C −→ S.)

It follows that the natural functors between the quotient categories of
the homotopy categories of semiinjective complexes of semiinjective S-semi-
contramodules, semiinjective complexes of C-coinjective S-semicontramodules,
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complexes of C-coinjective S-semicontramodules, semiinjective complexes of A-in-
jective S-semicontramodules, C-coinjective complexes of A-injective S-semicon-
tramodules, complexes of A-injective S-semicontramodules by their intersections
with the thick subcategory of C-contraacycliccomplexes and the semiderived cat-
egory of left S-semicontramodules are all equivalences of triangulated categories.
Moreover, any complex of left S-semicontramodules K• can be connected with a
semiinjective complex of semiinjective S-semicontramodules in a functorial way by
a chain of three morphisms K• −→ R3(K•) ←− R3L2(K•) −→ R3L2R1(K•) with
C-contraacyclic cones, and when K• is a semiinjective complex of (A-injective,
C-coinjective, or semiinjective) S-semicontramodules, all complexes in this chain
are also semiinjective complexes of (A-injective, C-coinjective, or semiinjective)
S-semicontramodules. �
Remark. One can show using the methods developed in Chapter 6 that any
C-coacyclic semiprojective complex of C-coprojective left S-semimodules is con-
tractible, and analogously, any C-contraacyclic semiinjective complex of C-coinjec-
tive left S-semicontramodules is contractible (see Remark 6.4).

4.7 Derived functor SemiExt

Assume that the coring C is a projective left and a flat right A-module, the semi-
algebra S is a coprojective left and a coflat right C-comodule, and the ring A has
a finite left homological dimension.

The double-sided derived functor

SemiExtS : Dsi(S-simod)× Dsi(S-sicntr) −−→ D(k-mod)

is defined as follows. Consider the partially defined functor of semihomomorphisms
of complexes

SemiHomS : Hot(S-simod)op × Hot(S-sicntr) ���� Hot(k-mod).

This functor is defined on the full subcategory of the Cartesian product of ho-
motopy categories that consists of pairs of complexes (M•,P•) such that ei-
ther M• is a complex of A-projective S-semimodules, or P• is a complex of
A-injective S-semicontramodules. Compose it with the functor of localization
Hot(k-mod) −→ D(k-mod) and restrict either to the Cartesian product of the ho-
motopy category of semiprojective complexes of A-projective S-semimodules and
the homotopy category of S-semicontramodules, or to the Cartesian product of the
homotopy category of S-semimodules and the homotopy category of semiinjective
complexes of A-injective S-semicontramodules.

By Theorem 4.6 and Lemma 2.7, both functors so obtained factorize through
the Cartesian product of semiderived categories of left semimodules and left semi-
contramodules and the derived functors so defined are naturally isomorphic. The
same derived functor is obtained by restricting the functor of semihomomorphisms



84 4. Derived Functor SemiExt

to the Cartesian product of the homotopy categories of semiprojective complexes of
A-projective S-semimodules and semiinjective complexes of A-injective S-semicon-
tramodules. One can also use semiprojective complexes of C-coprojective S-semi-
modules or semiinjective complexes of C-coinjective S-semicontramodules, etc.

In particular, when the coring C is a projective left and a flat right A-module
and the ring A has a finite left homological dimension, one defines the double-sided
derived functor

CoextC : Dco(C-comod)op × Dctr(C-contra) −−→ D(k-mod)

by composing the functor of cohomomorphisms

CohomC : Hot(C-comod)op × Hot(C-contra) −−→ Hot(k-mod)

with the functor of localization Hot(k-mod) −→ D(k-mod) and restricting it to ei-
ther the Cartesian product of the homotopy category of complexes of coprojective
C-comodules and the homotopy category of arbitrary complexes of C-contramod-
ules, or the Cartesian product of the homotopy category of arbitrary complexes
of C-comodules and the homotopy category of complexes of coinjective C-contra-
modules. The same derived functor is obtained by restricting the functor of coho-
momorphisms to the Cartesian product of the homotopy categories of coprojective
C-comodules and coinjective C-contramodules. One can also use coprojective com-
plexes of C-comodules or coinjective complexes of C-contramodules.

Question. Assuming only that C is a flat left and right A-module, one can define
the double-sided derived functor CotorC on the Cartesian product of coderived
categories of the exact categories of right and left C-comodules of flat dimension
over A not exceeding d, for any given d, using Lemma 2.7 and the corresponding
version of Lemma 1.1.3. Analogously, assuming that C is a projective left and a
flat right A-module, one can define the double-sided derived functor CoextC on
the Cartesian product of the coderived category of left C-comodules of projective
dimension over A not exceeding d and the contraderived category of C-contra-
modules of injective dimension over A not exceeding d. One can even do with the
homological dimension assumption on only one of the arguments of CotorC and
CoextC, using the corresponding versions of the results of Theorem 7.2.2. Can
one define, at least, a derived functor SemiTorS for complexes of A-flat S-semi-
modules and a derived functor SemiExtS for complexes of A-projective S-semi-
modules and A-injective S-semicontramodules without the homological dimension
assumptions on A? The only problem one encounters attempting to do so comes
from the homological dimension conditions in Propositions 1.2.3(c) and 3.2.3.1-2(c)
and consequently in Lemmas 1.3.3 and 3.3.3; when S satisfies the conditions of
Proposition 1.2.5(f) there is no problem.

Remark. In a way completely analogous to Remark 2.7, without any homological
dimension assumptions one can define the double-sided derived functor IndCoextC
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for complexes of left C-comodules in k-modω and complexes of left C-contramod-
ules in the category k-modω of ind-objects over k-mod representable by countable
filtered inductive systems of k-modules. Here the category opposite to k-modω
is considered as a module category over the tensor category k-modω and C is a
coring over a ring A in k-modω. Appropriate coflatness and “contraprojectivity”
conditions have to be imposed on C. The countability assumption can be dropped.

4.8 Relatively semiprojective and semiinjective complexes

We keep the assumptions and notation of 4.5, 4.6, and 4.7.
One can compute the derived functor CoextC using resolutions of other kinds.

Namely, the complex of cohomomorphisms CohomC(M•,P•) from a complex of
C/A-coprojective left C-comodules M• into a complex of A-injective left C-con-
tramodules P• represents an object naturally isomorphic to CoextC(M•,P•) in
the derived category of k-modules. Indeed, the complex L2(P•) is a complex of
coinjective C-contramodules and the cone of the morphism L2(P•) −→ P• is
contraacyclic with respect to the exact category of A-injective C-contramodules,
hence the morphism CohomC(M•,L2(P•)) −→ CohomC(M•,P•) is an isomor-
phism. Analogously, the complex of cohomomorphisms CohomC(M•,P•) from a
complex of A-projective left C-comodules M• into a complex of C/A-coinjective left
C-contramodules P• represents an object naturally isomorphic to CoextC(M•,P•)
in the derived category of k-modules.

One can also compute the derived functor SemiExtC using resolutions of other
kinds. Namely, a complex of left S-semimodules is called semiprojective relative
to A if the complex of semihomomorphisms from it into any complex of A-in-
jective left S-semicontramodules that as a complex of C-contramodules is contra-
acyclic with respect to the exact category of A-injective C-contramodules is acyclic
(cf. Theorem 7.2.2(c)). The complex of semihomomorphisms SemiHomC(M•,P•)
from a complex of left S-semimodules M• semiprojective relative to A into a com-
plex of A-injective left S-semicontramodules P• represents an object naturally
isomorphic to SemiExtS(M•,P•) in the derived category of k-modules. Indeed,
R3L2(P•) is a semiinjective complex of S-semicontramodules connected with P•

by a chain of morphisms P• ←− L2(P•) −→ R3L2(P•) whose cones are con-
traacyclic with respect to the exact category of A-injective C-contramodules and
contractible over C, respectively. Analogously, a complex of left S-semicontramod-
ules is called semiinjective relative to A if the complex of semihomomorphisms
into it from any complex of A-projective left S-semimodules that as a complex of
C-comodules is coacyclic with respect to the exact category of A-projective C-co-
modules is acyclic (cf. Theorem 7.2.2(b)). The complex of semihomomorphisms
SemiHomC(M•,P•) from a complex of A-projective left S-semimodules to a com-
plex of left S-semicontramodules semiinjective relative to A represents an object
naturally isomorphic to SemiExtS(M•,P•) in the derived category of k-modules.
For example, the complex of S-semimodules induced from a complex of C/A-co-
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projective left C-comodules is semiprojective relative to A and the complex of
S-semicontramodules coinduced from a complex of C/A-coinjective left C-contra-
modules is semiinjective relative to A.

A complex of left S-semimodules is called semiprojective relative to C if the
complex of semihomomorphisms from it into any C-contractible complex of C-coin-
jective left S-semicontramodules is acyclic. The complex of semihomomorphisms
SemiHomC(M•,P•) from a complex of left S-semimodules M• semiprojective rel-
ative to C into a complex of C-coinjective left S-semicontramodules P• represents
an object naturally isomorphic to SemiExtS(M•,P•) in the derived category of
k-modules. Indeed, R3(P•) is a semiinjective complex of S-semicontramodules
and the cone of the morphism P• −→ R3(P•) is a C-contractible complex of
C-coinjective S-semicontramodules. Analogously, a complex of left S-semicontra-
modules is called semiinjective relative to C if the complex of semihomomorphisms
into it from any C-contractible complex of C-coprojective left S-semimodules is
acyclic. The complex of semihomomorphisms SemiHomC(M•,P•) from a complex
of C-coprojective left S-semimodules M• into a complex of left S-semicontramod-
ules P• semiinjective relative to C represents an object naturally isomorphic to
SemiExtS(M•,P•) in the derived category of k-modules. It follows that the com-
plex of semihomomorphisms from a complex of left S-semimodules semiprojective
relative to C into a C-contraacyclic complex of C-coinjective left S-semicontra-
modules is acyclic, and the complex of semihomomorphisms into a complex of
left S-semicontramodules semiinjective relative to C from a C-coacyclic complex of
C-coprojective left S-semimodules is acyclic. For example, the complex of S-semi-
modules induced from a complex of left C-comodules is semiprojective relative
to C and the complex of S-semicontramodules coinduced from a complex of left
C-contramodules is semiinjective relative to C.

At last, a complex of A-projective left S-semimodules is called semipro-
jective relative to C relative to A (S/C/A-semiprojective) if the complex of
semihomomorphisms from it into any C-contractible complex of C/A-coinjec-
tive left S-semicontramodules is acyclic. The complex of semihomomorphisms
SemiHomC(M•,P•) from an S/C/A-semiprojective complex of A-projective left
S-semimodules M• into a complex of C/A-coinjective left S-semicontramodules
P• represents an object naturally isomorphic to SemiExtS(M•,P•) in the derived
category of k-modules. Indeed, R3(P•) is a complex of left S-semicontramodules
semiinjective relative to A and the cone of the morphism P• −→ R3(P•) is a
C-contractible complex of C/A-coinjective S-semicontramodules.

Analogously, a complex of A-injective left S-semicontramodules is called
semiinjective relative to C relative to A (S/C/A-semiinjective) if the complex
of semihomomorphisms into it from any C-contractible complex of C/A-co-
projective left S-semimodules is acyclic. The complex of semihomomorphisms
SemiHomC(M•,P•) from a complex of C/A-coprojective left S-semimodules M•

into an S/C/A-semiinjective complex of A-injective left S-semicontramodules P•

represents an object naturally isomorphic to SemiExtS(M•,P•) in the derived
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category of k-modules. It follows that the complex of semihomomorphisms from
an S/C/A-semiprojective complex of A-projective left S-semimodules into a
C-contraacyclic complex of C/A-coinjective left S-semicontramodules is acyclic,
and the complex of semihomomorphisms into an S/C/A-semiinjective complex of
A-injective left S-semicontramodules from a C-coacyclic complex of C/A-copro-
jective left S-semimodules is acyclic. For example, the complex of S-semimodules
induced from a complex of A-projective left C-comodules is S/C/A-semiprojective
and the complex of S-semicontramodules coinduced from a complex of A-injective
left C-contramodules is S/C/A-semiinjective.

The functors mapping the quotient categories of the homotopy categories of
complexes of S-semimodules semiprojective relative to A, complexes of S-semimod-
ules semiprojective relative to C, and S/C/A-semiprojective complexes of S-semi-
modules by their intersections with the thick subcategory of C-coacyclic complexes
into the semiderived category of left S-semimodules are equivalences of triangu-
lated categories. Analogously, the functors mapping the quotient categories of
the homotopy categories of complexes of S-semicontramodules semiinjective rel-
ative to A, complexes of S-semicontramodules semiinjective relative to C, and
S/C/A-semiinjective complexes of S-semicontramodules by their intersections with
the thick subcategory of C-contraacyclic complexes into the semiderived category
of left S-semicontramodules are equivalences of triangulated categories. The same
applies to complexes of A-projective, C-coprojective, and C/A-coprojective S-semi-
modules and complexes of A-injective, C-coinjective, and C/A-coinjective S-semi-
contramodules. These results follow easily from either of Lemmas 2.5 or 2.6. So
one can define the derived functor SemiExtS by restricting the functor of semiho-
momorphisms to these categories of complexes as explained above.

Remark. One can define the double-sided or right derived functor SemiExtS in
the assumptions analogous to those of Remark 2.8 in completely analogous ways.

4.9 Remarks on derived semihomomorphisms from bisemimodules

Let S be a semialgebra over a coring C and T be a semialgebra over a coring D,
both satisfying the conditions of 4.6. One can define the double-sided derived
functor

D SemiHomS : Dsi(S-simod-T)op × Dsi(S-sicntr) −−→ Dsi(T-sicntr)

by restricting the functor of semihomomorphisms SemiHomS : Hot(S-simod-T)op×
Hot(S-sicntr) ��� Dsi(T-sicntr) to the Cartesian product of the homotopy cate-
gory of complexes of S-T-bisemimodules and the homotopy category of semiin-
jective complexes of C-coinjective left S-semicontramodules (using the result of
Remark 6.4). There is an associativity isomorphism

SemiExtS(K• ♦D

T M•, P•) � SemiExtT(M•,D SemiHomS(K•,P•)).



88 4. Derived Functor SemiExt

Let R be a semialgebra over a coring E satisfying the conditions of 4.6. If
the k-algebra A is a flat k-module and the k-algebras B and F are projective
k-modules, then the derived functor D SemiHom can be defined using Lemma 2.7
in terms of strongly S-semiprojective complexes of A-projective S-T-bisemimod-
ules and semiinjective complexes of C-coinjective left S-semicontramodules (or
strongly semiinjective complexes of A-injective left S-semicontramodules). Here a
complex of A-projective S-T-bisemimodules K• is called strongly S-semiprojective
if for any C-contraacyclic complex of left S-semicontramodules P• the complex of
left T-semicontramodules SemiHomS(K•,P•) is D-contraacyclic; strongly semi-
injective complexes are defined in an analogous way. In this case, there is an
associativity isomorphism

D SemiHomS(K• ♦D

T M•, P•) � D SemiHomT(M•,D SemiHomS(K•,P•))

for any complex of T-R-bisemimodules M•, any complex of S-T-bisemimodules
K•, and any complex of left S-semicontramodules P•.

In particular, even without any conditions on the k-module A, for any com-
plex of right S-semimodules N• and any complex of left S-semimodules M• there
is a natural isomorphism

Homk(SemiTorS(N•,M•), k∨) � SemiExtS(M•,Homk(N•, k∨)).



5 Comodule-Contramodule
Correspondence

5.1 Contratensor product and comodule/contramodule
homomorphisms

Let C be a coring over a k-algebra A.

5.1.1 The contratensor product N�C P of a right C-comodule N and a left C-con-
tramodule P is a k-module defined as the cokernel of the pair of maps

N ⊗A HomA(C,P) ⇒ N ⊗A P

one of which is induced by the C-contraaction in P, while the other is the com-
position of the map induced by the C-coaction in N and the map induced by the
evaluation map C⊗A HomA(C,P) −→ P.

The contratensor product operation is dual to homomorphisms in the cate-
gory of contramodules: for any right C-comodule N with a left action of a k-algebra
B by C-comodule endomorphisms, any left C-contramodule P, and any left B-mod-
ule U there is a natural isomorphism

HomB(N �C P, U) � HomC(P,HomB(N, U)).

Indeed, both k-modules are isomorphic to the kernel of the same pair of maps
HomA(P,HomB(N, U)) ⇒ HomA(HomA(C,P),HomB(N, U)). Taking B = k, one
can conclude that for any right C-comodule N and any left A-module V there is a
natural isomorphism

N�C HomA(C, V ) � N ⊗A V.
When C is a projective left A-module, the functor of contratensor product

over C is right exact in both its arguments.

5.1.2 Let D be a coring over a k-algebra B. For any C-D-bicomodule K and any
left C-comodule M, the k-module HomC(K,M) has a natural left D-contramodule
structure as the kernel of a pair of D-contramodule morphisms HomA(K,M) ⇒
HomA(K, M⊗B D). Analogously, for any D-C-bicomodule K and any left C-con-
tramodule P, the k-module K �C P has a natural left D-comodule structure as
the cokernel of a pair of D-comodule morphisms K⊗A HomA(C,P) ⇒ K⊗A P.

For any left D-comodule M, any D-C-bicomodule K, and any left C-contra-
module P there is a natural isomorphism

HomD(K�C P, M) � HomC(P,HomD(K,M)).

L. Positselski, Homological Algebra of Semimodules and Semicontramodules, Monografie    89
Matematyczne 70, DOI 10.1007/978-3-0346-0436-9_6, © Springer Basel AG 2010



90 5. Comodule-Contramodule Correspondence

Indeed, a B-module map K ⊗A P −→ M factorizes through K �C M if and only
if the corresponding A-module map P −→ HomB(K,M) is a C-contramodule
morphism, and a B-module map K⊗AP −→M is a D-comodule morphism if and
only if the corresponding A-module map P −→ HomB(K,M) factorizes through
HomD(K,M).

In particular, there is a pair of adjoint functors ΨC : C-comod −→ C-contra
and ΦC : C-contra −→ C-comod between the categories of left C-comodules and left
C-contramodules defined by the rules

ΨC(M) = HomC(C,M) and ΦC(P) = C�C P.

5.1.3 A left C-comodule M is called quite injective relative to A (quite C/A-in-
jective) if the functor of C-comodule homomorphisms into M maps A-split exact
triples of left C-comodules to exact triples. It is easy to see that a C-comodule is
quite C/A-injective if and only if it is a direct summand of a coinduced C-comod-
ule. Analogously, a left C-contramodule P is called quite projective relative to A
(quite C/A-projective) if the functor of C-contramodule homomorphisms from P
maps A-split exact triples of left C-contramodules to exact triples. A C-contra-
module is quite C/A-projective if and only if it is a direct summand of an induced
C-contramodule.

The restrictions of the functors ΨC and ΦC on the subcategories of quite
C/A-injective left C-comodules and quite C/A-projective left C-contramodules are
mutually inverse equivalences between these subcategories. Indeed, one has

HomC(C, C⊗A V ) = HomA(C, V ) and C�HomA(C, V ) = C⊗A V,
so the functors ΨC and ΦC transform the coinduced comodule C ⊗A V into the
induced contramodule HomA(C, V ) and back. This equivalence between the cat-
egories of coinduced left C-comodules and induced left C-contramodules is a par-
ticular case of the isomorphism of Kleisli categories [26].

5.1.4 A left C-comodule M is called injective relative to A (C/A-injective) if the
functor of homomorphisms into M maps exact triples of A-projective left C-co-
modules to exact triples. A left C-contramodule P is called projective relative to A
(C/A-projective) if the functor of homomorphisms from P maps exact triples of
A-injective left C-contramodules to exact triples. (Cf. Lemma 5.3.2.)

Remark. What we call quite relatively injective comodules are usually called rela-
tively injective comodules [23] (cf. [47]). We chose this nontraditional terminology
for coherence with our definitions of relative coflatness, relative coprojectivity, etc.,
and also because what we call relatively injective comodules is a more important
notion from our point of view.

Question. One can compute modules Ext in the exact category of left C-comodules
with A-split exact triples in terms of the cobar resolution. When C is a projective
left A-module, this resolution can be also used to compute modules Ext in the
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exact category of A-projective left C-comodules, which therefore turn out to be
the same. How can one compute modules Ext in the exact category of A-projective
C-comodules without making any projectivity assumptions on C?

5.1.5 When C is a flat right A-module, the coinduction functor A-mod −→
C-comod preserves injective objects. It follows easily that any left C-comodule
is a subcomodule of an injective C-comodule; a C-comodule is injective if and only
if it is a direct summand of a C-comodule coinduced from an injective A-mod-
ule. Analogously, when C is a projective left A-module, the induction functor
A-mod −→ C-contra preserves projective objects. Hence any left C-contramodule
is a quotient contramodule of a projective C-contramodule; a C-contramodule is
projective if and only if it is a direct summand of a C-contramodule induced from
a projective A-module.

5.1.6 When C is a flat left A-module, a left C-contramodule P is called contraflat
if the functor of contratensor product with P is exact on the category of right
C-comodules. The C-contramodule induced from a flat A-module is contraflat.
Any projective C-contramodule is contraflat.

A left C-contramodule P is called quite C/A-contraflat if the functor of con-
tratensor product with P maps those exact triples of right C-comodules which
as exact triples of A-modules remain exact after the tensor product with any
left A-module to exact triples. Any quite C/A-projective C-contramodule is quite
C/A-contraflat. A left C-contramodule P is called C/A-contraflat if the functor
of contratensor product with P maps exact triples of A-flat right C-comodules
to exact triples. Using the dualization functor Homk(−, k∨), one can easily check
that any C/A-projective C-comodule is C/A-contraflat.

5.2 Associativity isomorphisms

Let C be a coring over a k-algebra A and D be a coring over a k-algebra B. The
following three propositions will be mostly applied to the case of K = D = C in
the sequel.

Proposition 1. Let N be a right D-comodule, K be a D-C-bicomodule, and P be
a left C-contramodule. Then there is a natural map

(N �D K)�C P −−→ N �D (K�C P)

whenever the cotensor product N �D K is endowed with a right C-comodule struc-
ture such that the map N �D K −→ N ⊗B K is a C-comodule morphism. This
natural map is an isomorphism, at least, in the following cases:

(a) C is a flat left A-module and P is a contraflat left C-contramodule,

(b) P is a quite C/A-contraflat left C-contramodule and K as a left D-comodule
with a right A-module structure is coinduced from a B-A-bimodule;
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(c) P is a C/A-contraflat left C-contramodule, D is a flat right B-module, N is
a flat right B-module, and K as a left D-comodule with a right A-module
structure is coinduced from an A-flat B-A-bimodule;

(d) P is a C/A-contraflat left C-contramodule, D is a flat right B-module, N is
a flat right B-module, K is a flat right A-module, K is a D/B-coflat left
D-comodule, and the ring A has a finite weak homological dimension;

(e) N is a quasicoflat right D-comodule.

Proof. The map (N �D K)�C P −→ N ⊗B K�C P has equal compositions with
two maps N ⊗B K �C P ⇒ N ⊗B D ⊗B K �C P, so there is a natural map
(N �D K)�C P −→ N �D (K�C P). Besides, the composition

(N �D K)⊗A P −−→ N �D (K⊗A P) −−→ N �D (K�C P)

annihilates the difference between two maps (N �D K)⊗A HomA(C,P) ⇒ (N �D

K)⊗AP, which leads to the same natural map (N�D K)�C P −→ N�D (K�C P).
To prove cases (a-d), one shows that the sequence 0 −→ N �D K −→ N⊗B K −→
N⊗BD⊗BK remains exact after taking the contratensor product with P. Indeed,
the case (a) is obvious, in the cases (b-c) this exact sequence of right A-modules
splits, and in the cases (c-d) this sequence of right A-modules is exact with respect
to the exact category of flat A-modules (see the proof of Proposition 1.2.3). To
prove (e), one notices that the sequence K ⊗A HomA(C,P) −→ K ⊗A P −→
K �C P −→ 0 remains exact after taking the cotensor product with N and uses
Proposition 1.2.3(b). �
Proposition 2. Let L be a left D-comodule, K be a C-D-bicomodule, and M be a
left C-comodule. Then there is a natural map

CohomD(L,HomC(K,M)) −−→ HomC(K �D L, M)

whenever the cotensor product K�D L is endowed with a left C-comodule structure
such that the map K �D L −→ K ⊗B L is a C-comodule morphism. This natural
map is an isomorphism, at least, in the following cases:

(a) C is a flat right A-module and M is an injective left C-comodule;
(b) M is a quite C/A-injective left C-comodule and K as a right D-comodule

with a left A-module structure is coinduced from an A-B-bimodule;
(c) M is a C/A-injective left C-comodule, D is a projective left B-module, L is a

projective left B-module, and K as a right D-comodule with a left A-module
structure is coinduced from an A-projective A-B-bimodule;

(d) M is a C/A-injective left C-comodule, D is a projective left B-module, L is a
projective left B-module, K is a projective left A-module, K is a D/B-coflat
right D-comodule, and the ring A has a finite left homological dimension;

(e) L is a quasicoprojective left D-comodule.
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Proof. Analogous to the proof of Proposition 1 and Proposition 3 below (see also
the proof of Proposition 3.2.3.1). In particular, to prove (e) one notices that the
sequence 0 −→ HomC(K,M) −→ HomA(K,M) −→ HomA(K, C ⊗A M) remains
exact after taking the cohomomorphisms from L. �
Proposition 3. Let P be a left C-contramodule, K be a D-C-bicomodule, and Q be
a left D-contramodule. Then there is a natural map

CohomD(K�C P, Q) −−→ HomC(P,CohomD(K,Q))

whenever the cohomomorphism module CohomD(K,Q) is endowed with a left
C-contramodule structure such that the map HomB(K,Q) −→ CohomD(K,Q) is
a C-contramodule morphism. This natural map is an isomorphism, at least, in the
following cases:

(a) C is a projective left A-module and P is a projective left C-contramodule;
(b) P is a quite C/A-projective left C-contramodule and K as a left D-comodule

with a right A-module structure is coinduced from a B-A-bimodule,
(c) P is a C/A-projective left C-contramodule, D is a flat right B-module, Q is

an injective left B-module, and K as a left D-comodule with a right A-module
structure is coinduced from an A-flat B-A-bimodule;

(d) P is a C/A-projective left C-contramodule, D is a flat right B-module, Q is
an injective left B-module, K is a flat right A-module, K is a D/B-projective
left D-comodule, and the ring A has a finite left homological dimension;

(e) Q is a quasicoinjective left D-contramodule.

Proof. The map HomC(P,HomB(K,Q)) −→ HomC(P,CohomD(K,Q)) annihi-
lates the difference of two maps

HomC(P,HomB(D⊗B K,Q)) ⇒ HomC(P,HomB(K,Q))

and this pair of maps can be identified with the pair of maps HomB(D⊗BK�C P,
Q) ⇒ HomB(K �C P, Q) whose cokernel is, by the definition, the cohomomor-
phism module CohomD(K�C P, Q). Hence there is a natural map CohomD(K�C

P, Q) −→ HomC(P,CohomD(K,Q)). Besides, the composition

CohomD(K�C P, Q) −→ CohomD(K⊗A P, Q) −→ HomA(P,CohomD(K,Q))

has equal compositions with the two maps

HomA(P,CohomD(K,Q)) ⇒ HomA(HomA(C,P),CohomD(K,Q)),

which leads to the same natural map

CohomD(K�C P, Q) −→ HomC(P,CohomD(K,Q)).

To prove cases (a–d), one shows that the sequence HomB(D ⊗B K, Q) −→
HomB(K,Q) −→ CohomD(K,Q) −→ 0 remains exact after applying the func-
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tor HomC(P,−). Indeed, the case (a) is obvious, in the cases (b–d) this sequence
of left A-modules splits, and in the cases (c–d) it is also an exact sequence of in-
jective A-modules (see the proof of Proposition 3.2.3.2). To prove (e), one notices
that the sequence K⊗AHomA(C,P) −→ K⊗AP −→ K�C P −→ 0 remains exact
after taking the cohomomorphisms into Q and uses Proposition 3.2.3.2(b). �

In the case of K = D = C, the natural maps defined in Propositions 2–3 have
the following property of compatibility with the adjoint functors ΨC and ΦC: for
any left C-comodule M and any left C-contramodule P the maps

CohomC(ΦC(P),ΨC(M)) −→ HomC(ΦC(P),M)
and

CohomC(ΦC(P),ΨC(M)) −→ HomC(P,ΨC(M))

form a commutative diagram with the isomorphism

HomC(ΦC(P),M) � HomC(P,ΨC(M)).

The following important lemma is deduced as a corollary of Propositions 2–3.

Lemma.

(a) A C-comodule is quasicoprojective if and only if it is quite C/A-injective. If
C is a projective left A-module, then a left C-comodule is coprojective if and
only if it is a direct summand of a comodule coinduced from a projective
A-module.

(b) A C-contramodule is quasicoinjective if and only if it is quite C/A-projective.
If C is a flat right A-module, then a left C-contramodule is coinjective if and
only if it is a direct summand of a contramodule induced from an injective
A-module.

Proof. Part (a): let M be a quasicoprojective left C-comodule. Denote by l the
coaction map M −→ C ⊗A M. It is an A-split injective morphism of quasicopro-
jective C-comodules. According to Proposition 2(e), we have an isomorphism of
morphisms HomC(l,M) � CohomC(l,HomC(C,M)). But the map CohomC(l,P) is
surjective for any left C-contramodule P. Therefore, the map HomC(l,M) is also
surjective, hence the morphism l splits and the comodule M is quite C/A-injective.
Now suppose that M is coprojective; then we already know that M is quite C/A-in-
jective. Set P = ΨC(M). It follows from Proposition 3(b) that there is an isomor-
phism of functors HomC(P,−) � CohomC(M,−) on the category of left C-contra-
modules. Therefore, the C-contramodule P is projective, hence it is a direct sum-
mand of a C-contramodule induced from a projective A-module and M is a direct
summand of the C-comodule coinduced from the same projective A-module. The
proof of part (b) is completely analogous; it uses Propositions 3(e) and 2(b). �
Question. Are there any analogues of the results of the lemma for (quasi)coflat
comodules and (quite relatively) contraflat contramodules?
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5.3 Relatively injective comodules and relatively
projective contramodules

Assume that C is a projective left A-module. For any right C-comodule N and
any left C-contramodule P denote by CtrtorC

i (N,P) the sequence of left derived
functors in the second argument of the right exact functor of contratensor product
N�C P. By the definition, the k-modules CtrtorC

i (N,P) are computed using a left
projective resolution of the C-contramodule P. Since projective contramodules are
contraflat, the functor CtrtorC

∗ (N,P) assigns long exact sequences to exact triples
in either of its arguments.

Question. Can one compute the derived functor Ctrtor using contraflat resolutions
of the second argument? In other words, is it true that CtrtorC

i (N,P) = 0 for
any right C-comodule N, any contraflat left C-contramodule P, and all i > 0?
Also, is it true that CtrtorC

i (N,P) = 0 for any A-flat right C-comodule N, any
(quite) C/A-contraflat left C-contramodule P, and all i > 0? A related question:
is CtrtorC

>0(N,P) an effaceable functor of its first argument?

Now assume that C is a projective left and a flat right A-module and the ring
A has a finite left homological dimension.

Lemma 1.

(a) A left C-comodule M is C/A-injective if and only if for any A-projective left
C-comodule L the k-modules ExtiC(L,M) of Yoneda extensions in the abelian
category of left C-comodules vanish for all i > 0. In particular, the functor of
C-comodule homomorphisms from an A-projective left C-comodule L maps
exact triples of C/A-injective left C-comodules to exact triples. Besides, the
class of C/A-injective left C-comodules is closed under extensions and cok-
ernels of injective morphisms.

(b) A left C-contramodule P is C/A-projective if and only if for any A-injective
left C-contramodule Q the k-modules ExtC,i(P,Q) of Yoneda extensions in
the abelian category of left C-contramodules vanish for all i > 0. In particu-
lar, the functor of C-contramodule homomorphisms into an A-injective left
C-contramodule Q maps exact triples of C/A-projective left C-contramodules
to exact triples. Besides, the class of C/A-projective left C-contramodules is
closed under extensions and kernels of surjective morphisms.

(c) For any C/A-projective left C-contramodule P and any A-flat right C-comod-
ule N the k-modules CtrtorC

i (N,P) vanish for all i > 0. In particular, the
functor of contratensor product with an A-flat right C-comodule maps exact
triples of C/A-projective left C-contramodules to exact triples.

Proof. Part (a): the “if” part of the first assertion is obvious; let us prove the
“only if” part. An arbitrary element of ExtiC(L,M) can be represented by a mor-
phism of degree i from an exact complex · · · → Li → · · · → L0 → L → 0 to the
comodule M. According to Lemma 3.1.3(a), any left C-comodule is a surjective
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image of an A-projective C-comodule. Therefore, one can assume that the comod-
ules Li are A-projective. Now if L is also A-projective, then our exact complex of
C-comodules is composed of exact triples of A-projective C-comodules, so if M is
C/A-injective, then the complex of homomorphisms into M from this complex of
C-comodules is acyclic. The remaining two assertions follow from the first one. The
proof of part (b) is completely analogous. To prove (c), notice the isomorphism
Homk(CtrtorC

i (N,P), k∨) � ExtC,i(P,Homk(N, k∨)). �

Remark. Analogues of the third assertion of Lemma 1(a) and the third assertion
of Lemma 1(b) are not true for quite relatively injective comodules and quite
relatively projective contramodules (see Remark 7.4.3; cf. Remark 9.1).

Theorem. For any C/A-injective left C-comodule M the left C-contramodule
ΨC(M) is C/A-projective and for any C/A-projective left C-contramodule P the
left C-comodule ΦC(M) is C/A-injective. The restrictions of the functors ΨC and
ΦC to the full subcategories of C/A-injective C-comodules and C/A-projective
C-contramodules are mutually inverse equivalences between these subcategories.

Proof. Let us first show that the injective dimension of a C/A-injective left C-co-
module M in the abelian category of C-comodules does not exceed the left ho-
mological dimension d of the ring A. Indeed, it follows from Lemma 3.1.3(a) that
any left C-comodule L has a finite resolution 0 → Ld → · · · → L0 → L → 0
with A-projective C-comodules Lj ; and since Exti(Lj ,M) = 0 for all j and all
i > 0, the complex HomC(L•,M) computes Ext∗C(L,M). So the C-comodule M

has a finite injective resolution, and consequently it has a finite resolution 0 →
M → K0 → · · · → Kd → 0 consisting of quite C/A-injective C-comodules Kj .
According to Lemma 1(a), this exact sequence is composed of exact triples of
C/A-injective C-comodules, which the functor ΨC maps to exact triples; so the
sequence 0 −→ ΨC(M) −→ ΨC(K0) −→ · · · −→ ΨC(Kd) −→ 0 is also exact. Since
the C-contramodules ΨC(Kj) are quite C/A-projective, it follows from Lemma 1(b)
that the C-contramodule ΨC(M) is C/A-projective and the latter exact sequence
is composed of exact triples of C/A-projective C-contramodules. Thus it follows
from Lemma 1(c) that the sequence 0 −→ ΦCΨC(M) −→ ΦCΨC(K0) −→ · · · −→
ΦCΨC(Kd) −→ 0 is also exact. Now since the adjunction maps ΦCΨC(Kj) −→ Kj

are isomorphisms, the adjunction map ΦCΨC(M) −→ M is also an isomorphism.
The remaining assertions are proven in a completely analogous way. �

Lemma 2.

(a) In the above assumptions, a left C-comodule is C/A-coprojective if and only
if it is C/A-injective.

(b) In the above assumptions, a left C-contramodule is C/A-coinjective if and
only if it is C/A-projective.

Proof. Part (a) in the “if” direction: it follows from Proposition 5.2.3(c) that
whenever a left C-contramodule P is C/A-projective, the C-comodule ΦC(P) is
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C/A-coprojective. Now if a left C-comodule M is C/A-injective, then the C-con-
tramodule P = ΨC(M) is C/A-projective and M = ΦC(P) by the above theo-
rem. Part (a) in the “only if” direction: in view of Lemma 1(a), the construction
of Lemmas 1.1.3 and 3.1.3(a) represents any left C-comodule M as the quotient
comodule of an A-projective C-comodule P(M) by a C/A-injective C-comodule.
We will show that whenever M is a C/A-coprojective C-comodule, P(M) is a co-
projective C-comodule; then it will follow that M is a C/A-injective C-comod-
ule by Lemma 5.2(a) and Lemma 1(a). Indeed, an extension of C/A-coprojective
left C-comodules is C/A-coprojective by Lemma 3.2.2(a); let us check that an
A-projective C/A-coprojective C-comodule is coprojective. For any left C-comod-
ule M and any left C-contramodule P denote by CoextiC(M,P) the cohomology of
the object CoextC(M,P) of the derived category D(k-mod) that was constructed
in 4.7. This definition agrees with the definition of Coext∗C(M,P) for an A-pro-
jective C-comodule M or an A-injective C-contramodule P given in the proof
of Lemma 3.2.2. The functor Coext∗C(M,P) assigns long exact sequences to ex-
act triples in either of its arguments. For any A-projective left C-comodule M

and any left C-contramodule P one has CoextiC(M,P) = 0 for all i > 0 and
Coext0C(M,P) � CohomC(M,P). Therefore, an A-projective left C-comodule M is
coprojective if and only if Cohomi

C(M,P) = 0 for any left C-contramodule P and
all i �= 0. For any C/A-coprojective left C-comodule M and any left C-comodule
P one has CoextiC(M,P) = 0 for all i < 0, since one can compute CoextC(M,P)
using a finite A-injective right resolution of P by the result of 4.8. Thus an A-pro-
jective C/A-coprojective left C-comodule is coprojective. The proof of part (b) is
completely analogous; it uses Proposition 5.2.2(c) and Lemma 3.1.3(b). �

Question. It follows from Proposition 1(c) that if C is a flat right A-module, then
whenever a left C-contramodule P is C/A-contraflat the C-comodule ΦC(P) is
C/A-coflat. Does the converse hold?

5.4 Comodule-contramodule correspondence

Assume that the coring C is a projective left and a flat right A-module and the
ring A has a finite left homological dimension.

The categories of C/A-injective left C-comodules and C/A-projective left
C-contramodules have natural exact category structures as full subcategories,
closed under extensions, of the abelian categories of left C-comodules and left
C-contramodules.

Theorem.

(a) The functor mapping the quotient category of the homotopy category of com-
plexes of C/A-injective left C-comodules by its minimal triangulated subcate-
gory containing the total complexes of exact triples of complexes of C/A-injec-
tive C-comodules into the coderived category of left C-comodules is an equiv-
alence of triangulated categories.
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(b) The functor mapping the quotient category of the homotopy category of com-
plexes of C/A-projective left C-contramodules by its minimal triangulated
subcategory containing the total complexes of C/A-projective C-contramod-
ules into the contraderived category of left C-contramodules is an equivalence
of triangulated categories.

Proof. Part (a): let M• be a complex of left C-comodules. Then the total complex
of the cobar bicomplex C ⊗A M• −→ C ⊗A C ⊗A M• −→ · · · is a complex of
(quite) C/A-injective C-comodules, the complex M• maps into this total complex,
and the cone of this map is coacyclic. Hence it follows from Lemma 2.6 that the
coderived category of left C-comodules is equivalent to the quotient category of the
homotopy category of complexes of C/A-injective C-comodules by its intersection
with the thick subcategory of coacyclic complexes of C-comodules. It remains to
show that this intersection of subcategories coincides with the minimal triangu-
lated subcategory containing the total complexes of exact triples of complexes of
C/A-injective C-comodules.

Lemma.

(a) For any exact category A where infinite direct sums exist and preserve exact
triples, the complex of homomorphisms from a coacyclic complex over A into
a complex of injective objects with respect to A is acyclic.

(b) For any exact category A where infinite products exist and preserve exact
triples, the complex of homomorphisms from a complex of projective objects
with respect to A into a contraacyclic complex over A is acyclic.

Proof. Analogous to the proofs of Lemmas 2.2 and 4.2. Part (a): let M • be a
complex of injective objects with respect to A. Since the functor of homomor-
phisms into M• maps distinguished triangles in the homotopy category to dis-
tinguished triangles and infinite direct sums to infinite products, it suffices to
check that the complex HomA(L•,M•) is acyclic whenever L• is the total com-
plex of an exact triple ′K• → K• → ′′K• of complexes over A. But the complex
HomA(L•,M•) is the total complex of an exact triple of complexes of abelian
groups HomA( ′′K•,M•) −→ HomA(K•,M•) −→ HomA( ′K•,M•) in this case.
The proof of part (b) is dual. �

In the remaining part of the proof we will show that the following two trian-
gulated subcategories:

(i) the minimal triangulated subcategory containing the total complexes of exact
triples of complexes of C/A-injective C-comodules, and

(ii) the homotopy category of complexes of injective C-comodules

form a semiorthogonal decomposition [18] of the homotopy category of complexes
of C/A-injective left C-comodules. This means, in addition to the subcategory (i)
being left orthogonal to the subcategory (ii), that for any complex K• of C/A-injec-
tive C-comodules there exists a (unique and functorial) distinguished triangle L• →
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K• → M• → L•[1] in the homotopy category of C-comodules, where L• belongs
to the subcategory (i) and M• belongs to the subcategory (ii). Then it will follow
that the subcategory (i) is the maximal subcategory of the homotopy category of
complexes of C/A-injective C-comodules left orthogonal to the subcategory (ii),
hence the subcategory (i) contains the intersection of the homotopy category of
complexes of C/A-injective C-comodules with the thick subcategory of coacyclic
complexes of C-comodules.

Indeed, let K• be a complex of C/A-injective left C-comodules. Choose for
every n an injection jn of the C-comodule Kn into an injective C-comodule Jn.
Consider the complex E• = E(K•) whose terms are the C-comodules En = Jn⊕Jn+1

and the differential dnE : En −→ En+1 maps Jn+1 into itself by the identity map
and vanishes in the restriction to Jn and in the projection to Jn+2. There is a
natural injective morphism of complexes K• −→ E• formed by the C-comodule
maps Kn −→ En whose components are jn : Kn −→ Jn and jn+1dnK : Kn −→
Jn+1. Set 0E• = E(K•), 1E• = E(0E•/K•), etc. As it was shown in the proof of
Theorem 5.3, the injective dimension of a C/A-injective left C-comodule does not
exceed the left homological dimension d of the ring A. Therefore, the complex
Z• = coker(d−2E• → d−1E•) is a complex of injective C-comodules. Now it is clear
that the total complex M• of the bicomplex 0E• −→ 1E• −→ · · · −→ d−1E• −→ Z•

is a complex of injective C-comodules and the cone L• of the morphism K• −→M•

belongs to the minimal triangulated subcategory containing the total complexes
of exact triples of complexes of C/A-injective C-comodules by Lemma 5.3.1(a).

Part (a) is proven; the proof of part (b) is completely analogous and uses
Lemma 5.3.1(b). �

Remark. Let A be an exact category where infinite direct sums exist and preserve
exact triples, every object admits an admissible monomorphism into an object
injective relative to A, and the class of such injective objects is closed under infi-
nite direct sums. Then the thick subcategory of coacyclic complexes with respect
to A and the triangulated subcategory of complexes of injective objects form a
semiorthogonal decomposition of the homotopy category Hot(A), so the coderived
category Dco(A) is equivalent to the homotopy category of complexes of injec-
tives in A. Indeed, orthogonality is already proven in the lemma, so it remains to
construct a morphism from any complex C• over A into a complex of injectives
M• with a coacyclic cone. To do so, one proceeds as in the proof of the theorem,
constructing a morphism from C• into a complex of injectives 0E• that is an admis-
sible monomorphism in every degree, taking the quotient complex, constructing
an analogous morphism from it into a complex of injectives 1E•, etc. Finally, one
constructs the total complex M• of the bicomplex •E• by taking infinite direct
sums along the diagonals; then M• is a complex of injectives and the cone of the
morphism C• −→M• is coacyclic by Lemma 2.1. Consequently, the homotopy cat-
egory of acyclic complexes of injectives in A is equivalent to the quotient category
Acycl(A)/Acyclco(A) and to the kernel of the localization functor Dco(A) −→ D(A)
(cf. [64]). When A has a finite homological dimension, the condition that the class
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of injectives is closed under infinite direct sums is not needed in this argument.
This is a somewhat trivial situation, though; see Remark 2.1. Moreover, let A be
an exact category where infinite direct sums exist and preserve exact triples and
every object admits an admissible monomorphism into an injective. Let F ⊂ A be
a class of objects closed under cokernels of admissible monomorphisms, containing
the injectives, and consisting of objects of finite injective dimension. Then every
complex over F that is coacyclic as a complex over A belongs to the minimal tri-
angulated subcategory of Hot(A) containing the total complexes of exact triples of
complexes over F. When there is a class F ⊂ A closed under infinite direct sums,
consisting of objects of finite injective dimension, and such that every object of
A admits an admissible monomorphism into an object of F, the coderived cate-
gory Dco(A) is equivalent to the homotopy category of complexes of injectives in A
(cf. [55], where in the dual situation the role of the class F is played by flat mod-
ules). To show this, one has to repeat twice the above construction of a resolution
•E•, taking infinite direct sums along the diagonals for the first time and finite
direct sums along the diagonals of the canonical truncation for the second time.
When A is the abelian category of C-comodules, one can take F to be the class of
C/A-injective C-comodules or quite C/A-injective C-comodules. The related results
for comodules and contramodules are obtained in Theorem 5.5 and Remark 5.5.

Corollary. The restrictions of the functors ΨC and ΦC (applied to complexes term-
wise) to the homotopy category of complexes of C/A-injective C-comodules and the
homotopy category of complexes of C/A-projective C-contramodules define mutu-
ally inverse equivalences RΨC and LΦC between the coderived category of left
C-comodules and the contraderived category of left C-contramodules.

Proof. By Theorem 5.3, the functors ΨC and ΦC induce mutually inverse equiv-
alences between the homotopy categories of C/A-injective left C-comodules and
C/A-projective left C-contramodules. According to Lemma 5.3.1(a) and (c), the
total complexes of exact triples of complexes of C/A-injective C-comodules cor-
respond to the total complexes of exact triples of complexes of C/A-projective
C-contramodules under this equivalence. So it remains to apply the above theo-
rem. �

Question. Can one obtain a version of the derived comodule-contramodule corre-
spondence (an equivalence between appropriately defined exotic derived categories
of left C-comodules and left C-contramodules) not depending on any assumptions
about the homological dimension of the ring A? It is not difficult to see that one
can weaken the assumption that A has a finite left homological dimension to the
assumption that A is left Gorenstein, i.e., the classes of left A-modules of finite
projective and injective dimensions coincide. In this case, the coderived category
of left C-comodules and the contraderived category of left C-contramodules are
naturally equivalent whenever the coring C is a projective left and a flat right
A-module. Indeed, arguing as in Theorem 5.5 below, one can show that the co-
derived category of left C-comodules is equivalent to the quotient category of the
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homotopy category of complexes of C-comodules coinduced from left A-modules
of finite projective (injective) dimension by its minimal triangulated subcategory
containing the total complexes of exact triples of complexes of C-comodules that
at every term are exact triples of C-comodules coinduced from exact triples of
A-modules of finite projective (injective) dimension. Analogously, the contrade-
rived category of left C-contramodules is equivalent to the quotient category of the
homotopy category of complexes of C-contramodules induced from left A-modules
of finite projective (injective) dimension by its minimal triangulated subcategory
containing the total complexes of exact triples of complexes of C-contramodules
that at every term are exact triples of C-contramodules induced from exact triples
of A-modules of finite projective (injective) dimension. The key step is to notice
that the class of left A-modules of finite projective (injective) dimension is closed
under infinite direct sums and products.

5.5 Derived functor Ctrtor

The following analogue of Theorem 5.4 holds under slightly weaker conditions.

Theorem.

(a) Assume that the coring C is a flat right A-module and the ring A has a finite
left homological dimension. Then the functor mapping the homotopy cate-
gory of complexes of injective left C-comodules into the coderived category
of left C-comodules is an equivalence of triangulated categories. In addition,
the functor mapping the quotient category of the homotopy category of com-
plexes of quite C/A-injective left C-comodules by the minimal triangulated
subcategory containing the total complexes of exact triples of complexes of
coinduced C-comodules that at every term are exact triples of C-comodules
coinduced from exact triples of A-modules into the coderived category of left
C-comodules is an equivalence of triangulated categories.

(b) Assume that the coring C is a projective left A-module and the ring A has
a finite left homological dimension. Then the functor mapping the homo-
topy category of complexes of projective left C-contramodules into the con-
traderived category of left C-contramodules is an equivalence of triangulated
categories. In addition, the functor mapping the quotient category of the ho-
motopy category of complexes of quite C/A-projective left C-contramodules by
the minimal triangulated subcategory containing the total complexes of exact
triples of complexes of induced C-contramodules that at every term are exact
triples of C-contramodules induced from exact triples of A-modules into the
contraderived category of left C-contramodules is an equivalence of triangu-
lated categories.

Proof. Part (a): when C is also a projective left A-module, the first assertion follows
from the proof of Theorem 5.4. To prove both assertions in the general case, we
will show that



102 5. Comodule-Contramodule Correspondence

(i) the minimal triangulated subcategory containing the total complexes of exact
triples of complexes of coinduced C-comodules that at every term are exact
triples of C-comodules coinduced from exact triples of A-modules, and

(ii) the homotopy category of complexes of injective C-comodules

form a semiorthogonal decomposition of the homotopy category of complexes of
quite C/A-injective left C-comodules. Then we will argue as in the proof of Theo-
rem 5.4.

Any complex of quite C/A-injective C-comodules is homotopy equivalent to
a complex of coinduced C-comodules. Let K• be a complex of coinduced left C-co-
modules; then Kn � C⊗A V n for certain A-modules V n. Let V i −→ Ii be injec-
tive maps of the A-modules V n into injective A-modules In; set Jn = C ⊗A In.
Then Jn are injective C-comodules endowed with injective C-comodule morphisms
Kn −→ Jn. As in the proof of Theorem 5.4, we construct the complex of injective
C-comodules E• with En = Jn ⊕ Jn+1 and the injective morphism of complexes
K• −→ E•. Let us show that there exists an automorphism of the C-comodule En

such that its composition with the injection Kn −→ En is the injection whose com-
ponents are jn : Kn −→ Jn and the zero map Kn −→ Jn+1. Since the comodule
Jn+1 is injective, the component Kn −→ Jn+1 of the morphism Kn −→ En can be
extended from the comodule Kn to comodule Jn containing it. Denote the mor-
phism so obtained by hn : Jn −→ Jn+1; then the automorphism of the comodule En

whose components are −hn, the identity automorphisms of Jn and Jn+1, and zero
has the desired property. Now it is clear that the triple K• −→ E• −→ E•/K• is an
exact triple of complexes of coinduced C-comodules which at every term is an ex-
act triple of C-comodules coinduced from an exact triple of A-modules. Moreover,
En/Kn � C⊗AWn, where the injective dimension diAWn is equal to diA V n− 1.
So we can iterate this (nonfunctorial) construction, setting 0E• = E(K•) = E•,
1E• = E(0E•/K•), etc., and Z• = coker(d−2E• → d−1E•). Then the total complex
M• of the bicomplex 0E• −→ 1E• −→ · · · −→ d−1E• −→ Z• is a complex of in-
jective C-comodules and the cone L• of the morphism K• −→ M• belongs to the
minimal triangulated subcategory containing the total complexes of exact triples
of complexes of coinduced C-comodules that at every term is an exact triple of
C-comodules coinduced from an exact triple of A-modules. �

Remark. Theorem 5.5 provides an alternative way of proving Corollary 5.4. Be-
sides, it follows from 5.1.3, Lemma 5.2, and Theorem 5.5 that in the assumptions
of 5.4 the functor mapping the homotopy category of complexes of coprojective
left C-comodules into the coderived category of left C-comodules and the functor
mapping the homotopy category of complexes of coinjective left C-contramodules
into the contraderived category of left C-contramodules are equivalences of trian-
gulated categories. This is a stronger result than Theorem 4.5.

The contratensor product N• �C P• of a complex of right C-comodules N•

and a complex of left C-contramodules P• is defined as the total complex of the
bicomplex Ni�CPj , constructed by taking infinite direct sums along the diagonals.
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Assume that the coring C is a projective left A-module and the ring A has a finite
left homological dimension. One can prove in a way completely analogous to the
proof of Lemma 2.2 that the contratensor product of a coacyclic complex of right
C-comodules and a complex of contraflat (and in particular, projective) left C-con-
tramodules is acyclic. The left derived functor of contratensor product

CtrtorC : Dco(comod-C)× Dctr(C-contra) −−→ D(k-mod)

is defined by restricting the functor of contratensor product to the Cartesian prod-
uct of the homotopy category of right C-comodules and the homotopy category of
complexes of projective left C-contramodules.

The same derived functor can be obtained by restricting the functor of contra-
tensor product to the Cartesian product of the homotopy category of complexes
of A-flat right C-comodules and the homotopy category of complexes of quite
C/A-projective left C-contramodules. Indeed, it follows from part (b) of the theo-
rem that the contratensor product of a complex of A-flat right C-comodules and a
contraacyclic complex of quite C/A-projective left C-contramodules is acyclic. Now
if N• is a complex of A-flat right C-comodules, P• is a complex of quite C/A-pro-
jective left C-contramodules, and ′P• −→ P• is a morphism from a complex of
projective C-contramodules ′P• into P• with a contraacyclic cone, then the map
N•�C P• −→ N• �C

′P• is a quasi-isomorphism. In particular, if the complex N•

is coacyclic, then the complex N• �C P• is acyclic, since the complex N• �C
′P•

is. When C is also a flat right A-module, one can use complexes of C/A-projective
C-contramodules instead of complexes of quite C/A-projective C-contramodules,
because the contratensor product of a complex of A-flat right C-comodules and a
contraacyclic complex of C/A-projective left C-contramodules is acyclic by Theo-
rem 5.4(b) and Lemma 5.3.1(c). Notice that this definition of the derived functor
CtrtorC is not a particular case of Lemma 2.7 (instead, it is a particular case of
Lemma 6.5.2 below).

Analogously, assume that the coring C is a flat right A-module and the ring A
has a finite left homological dimension. According to Lemma 5.4, the complex of
homomorphisms from a coacyclic complex of left C-comodules into a complex of
injective left C-comodules is acyclic. Therefore, the natural map

HomHot(C-comod)(L•,M•) −−→ HomDco(C-comod)(L•,M•)

is an isomorphism whenever M• is a complex of injective C-comodules. So the
functor of homomorphisms in the coderived category of left C-comodules can be
lifted to a functor

ExtC : Dco(C-comod)op × Dco(C-comod) −−→ D(k-mod),

which is defined by restricting the functor of homomorphisms of complexes of C-co-
modules to the Cartesian product of the homotopy category of left C-comodules
and the homotopy category of complexes of injective left C-comodules.
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The same functor ExtC can be obtained by restricting the functor of homo-
morphisms to the Cartesian product of the homotopy category of complexes of
A-projective left C-comodules and the homotopy category of complexes of quite
C/A-injective left C-comodules. Indeed, it follows from part (a) of Theorem 5.5
that the complex of homomorphisms from a complex of A-projective left C-comod-
ules into a coacyclic complex of quite C/A-injective left C-comodules is acyclic.
Now if L• is a complex of A-projective left C-comodules, M• is a complex of
quite C/A-injective left C-comodules, and M• −→ ′M• is a morphism from M•

into a complex of injective C-comodules ′M• with a coacyclic cone, then the map
HomC(L•,M•) −→ HomC(L•, ′M•) is a quasi-isomorphism. When C is also a pro-
jective left A-module, one can use complexes of C/A-injective C-comodules instead
of complexes of quite C/A-injective C-comodules.

Finally, assume that the coring C is a projective left A-module and the ring
A has a finite left homological dimension. By Lemma 5.4, the natural map

HomHot(C-contra)(P•,Q•) −−→ HomDctr(C-contra)(P•,Q•)

is an isomorphism whenever P• is a complex of projective C-contramodules. So the
functor of homomorphisms in the contraderived category of left C-contramodules
can be lifted to a functor

ExtC : Dctr(C-contra)op × Dctr(C-contra) −−→ D(k-mod),

which is defined by restricting the functor of homomorphisms of complexes of
C-contramodules to the Cartesian product of the homotopy category of complexes
of projective left C-contramodules and the homotopy category of left C-contra-
modules.

The same functor ExtC can be obtained by restricting the functor of ho-
momorphisms to the Cartesian product of the homotopy category of complexes
of quite C/A-projective left C-contramodules and the homotopy category of com-
plexes of A-injective left C-contramodules. When C is also a flat right A-module,
one can use complexes of C/A-projective C-contramodules instead of complexes of
quite C/A-projective C-contramodules.

5.6 Coext and Ext, Cotor and Ctrtor

Assume that the coring C is a projective left and a flat right A-module and the
ring A has a finite left homological dimension.

Corollary.

(a) There are natural isomorphisms of functors

CoextC(M•,P•) � ExtC(M•,LΦC(P•)) � ExtC(RΨC(M•),P•)

on the Cartesian product of the category opposite to the coderived category of
left C-comodules and the contraderived category of left C-contramodules.
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(b) There is a natural isomorphism of functors

CotorC(N•,M•) � CtrtorC(N•,RΨC(M•))

on the Cartesian product of the coderived category of right C-comodules and
the coderived category of left C-comodules.

Proof. Clearly, it suffices to construct natural isomorphisms

CoextC(L•,RΨC(M•)) � ExtC(L•,M•), CoextC(LΦC(P•),Q•) � ExtC(P•,Q•),

and CotorC(N•,LΦC(P•)) � CtrtorC(N•,P•).

In the first case, represent the image of M• in Dco(C-comod) by a complex
of injective C-comodules, notice that the functor ΨC maps injective comodules to
coinjective contramodules, and use Proposition 5.2.2(a). Alternatively, represent
the image of M• in Dco(C-comod) by a complex of C/A-injective C-comodules and
the image of L• in Dco(C-comod) by a complex of coprojective C-comodules, and
use Proposition 5.2.2(e); or represent the image of M• in Dco(C-comod) by a com-
plex of C/A-injective C-comodules and the image of L• in Dco(C-comod) by a com-
plex of A-projective C-comodules, and use Proposition 5.2.2(c), Lemma 5.3.2(b),
and the result of 4.8.

In the second case, represent the image of P• in Dctr(C-contra) by a com-
plex of projective C-contramodules, notice that the functor ΦC maps projective
contramodules to coprojective comodules, and use Proposition 5.2.3(a). Alterna-
tively, represent the image of P• in Dctr(C-contra) by a complex of C/A-projective
C-contramodules and the image of Q• in Dctr(C-contra) by a complex of coinjec-
tive C-contramodules, and use Proposition 5.2.3(e); or represent the image of P•

in Dctr(C-contra) by a complex of C/A-projective C-contramodules and the im-
age of Q• in Dctr(C-contra) by a complex of A-injective C-contramodules, and use
Proposition 5.2.3(c), Lemma 5.3.2(a), and the result of 4.8.

In the third case, represent the image of P• in Dctr(C-contra) by a complex
of projective C-contramodules, notice that the functor ΦC maps projective contra-
modules to coprojective comodules, and use Proposition 5.2.1(a). Alternatively,
represent the image of P• in Dctr(C-contra) by a complex of C/A-projective C-con-
tramodules and the image of N• in Dco(comod-C) by a complex of coflat C-comod-
ules, and use Proposition 5.2.1(e); or represent the image of P• in Dctr(C-contra) by
a complex of C/A-projective C-contramodules and the image of N• in Dco(comod-C)
by a complex of A-flat C-comodules, and use Proposition 5.2.1(c), Lemma 5.3.2(a),
and the result of 2.8.

Finally, to show that the three pairwise isomorphisms between the functors
CoextC(M•,P•), ExtC(M•,LΦC(P•)), and ExtC(RΨC(M•),P•) form a commu-
tative diagram, one can represent the image of M• in Dco(C-comod) by a complex
of coprojective C-comodules and the image of P• in Dctr(C-contra) by a complex
of coinjective C-contramodules (having in mind Lemma 5.2), and use a result
of 5.2. �





6 Semimodule-Semicontramodule
Correspondence

6.1 Contratensor product and semimodule/semicontramodule
homomorphisms

Let S be a semialgebra over a coring C.

6.1.1 We would like to define the operation of contratensor product of a right
S-semimodule and a left S-semicontramodule. Depending on the (co)flatness
and/or (co)projectivity conditions on C and S, one can speak of S-semimodules
and S-semicontramodules with various (co)flatness and (co)injectivity conditions
imposed on them. In particular, when C is a projective left A-module and either
S is a coprojective left C-comodule, or S is a projective left A-module and a
C/A-coflat right C-comodule and A has a finite left homological dimension, or A is
semisimple, one can consider right S-semimodules and left S-semicontramodules
with no (co)flatness or (co)injectivity conditions imposed. When C is a flat right
A-module, S is a flat right A-module and a C/A-projective left C-comodule,
and A has a finite left homological dimension, one can consider A-flat right
S-semimodules and A-injective left S-semicontramodules. When C is a flat right
A-module and S is a coflat right C-comodule, one can consider C-coflat right
S-semimodules and C-coinjective left S-semicontramodules.

The contratensor product N �S P of a right S-semimodule N and a left
S-semicontramodule P is a k-module defined as the cokernel of the following pair
of maps

(N �C S)�C P ⇒ N�C P.

The first map is induced by the right S-semiaction morphism N �C S −→ N. The
second map is the composition of the map induced by the left S-semicontraaction
morphism P −→ CohomC(S,P) and the natural “evaluation” map

ηS : (N �C S)�C CohomC(S,P) −→ N�C P.

The latter is defined in the following generality. Let C be a coring over a
k-algebra A and D be a coring over a k-algebra B. Let K be a C-D-bicomodule, N

be a right C-comodule, and P be a left C-contramodule. Suppose that the cotensor
product N�CK is endowed with a right D-comodule structure via the construction
of 1.2.4 and the cohomomorphism module CohomC(K,P) is endowed with a left
D-contramodule structure via the construction of 3.2.4. Then the composition of
maps

(N �C K)⊗B HomA(K,P) −→ N⊗A K⊗B HomA(K,P) −→ N⊗A P −→ N�C P
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factorizes through the surjection

(N �C K)⊗B HomA(K,P) −−→ (N �C K)�D CohomC(K,P),

so there is a natural map

ηK : (N �C K)�D CohomC(K,P) −−→ N �C P.

Indeed, the kernel of this surjection is equal to the sum of the images of the
difference of two maps (N�CK)⊗BHomA(K⊗BD,P) ⇒ (N�CK)⊗BHomA(K,P)
and the difference of two maps (N �C K)⊗B HomA(C⊗A K, P) ⇒ (N �C K)⊗B
HomA(K,P). The difference of the first pair of maps vanishes already in the
composition with the map (N �C K) ⊗B HomA(K,P) −→ N ⊗A P, while the
second pair of maps can be presented as the composition of the map (N �C K)⊗B
HomA(C⊗AK,P) −→ N⊗AHomA(C,P) and the pair of maps N⊗AHomA(C,P) ⇒
N ⊗A P whose cokernel is, by the definition, N �C P. The “evaluation” map ηK

is dual to the map

Homk(ηK, k
∨) = CohomC(K,−) :

HomC(P,Homk(N, k∨)) −→ HomD(CohomC(K,P),CohomC(K,Homk(N, k∨))).

6.1.2 The operation of contratensor product over S is dual to homomorphisms in
the category of left S-semicontramodules: for any right S-semimodule N and any
left S-semicontramodule P there is a natural isomorphism

Homk(N �S P, k∨) � HomS(P,Homk(N, k∨)).

Indeed, both k-modules are isomorphic to the kernel of the same pair of maps
HomC(P,Homk(N, k∨)) ⇒ HomC(P,CohomC(S,Homk(N, k∨))). It follows that
for any right C-comodule R for which the induced right S-semimodule R �C S is
defined and any left S-semicontramodule P the composition of the map (R �C

S)�C P −→ (R �C S)�C CohomC(S,P) induced by the S-semicontraaction in P
with the “evaluation” map (R �C S) �C CohomC(S,P) −→ R �C P induces a
natural isomorphism

(R �C S) �S P � R�C P.

When C is a projective left A-module and S is a coprojective left C-comodule,
the functor of contratensor product over S is right exact in both its arguments.

6.1.3 Let S be a semialgebra over a coring C and T be a semialgebra over a
coring D. We would like to define a T-semimodule structure on the contratensor
product of a T-S-bisemimodule and an S-semicontramodule, and an S-semicon-
tramodule structure on semimodule homomorphisms from a T-S-bisemimodule to
a T-semimodule.

Let N be a right D-comodule, K be D-C-bicomodule with a right S-semimod-
ule structure such that the multiple cotensor products N �D K �C S �C · · · �C S
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are associative and the semiaction map K �C S −→ K is a left D-comodule
morphism, and P be a left S-semicontramodule. Then the contratensor product
K �S P has a natural left D-comodule structure as the cokernel of a pair of
D-comodule morphisms (K �C S) �C P ⇒ K �C P. The composition of maps
(N �D K) �C P −→ N �D (K �C P) −→ N �D (K �S P) factorizes through
the surjection (N �D K) �C P −→ (N �D K) �S P, so there is a natural map
(N �D K) �S P −→ N �D (K �S P).

Indeed, the composition of the pair of maps (N �D K �C S)�C P ⇒ (N �D

K) �C P whose cokernel is, by the definition, (N �D K) �S P, with the map
(N �D K) �C P −→ N �D (K �C P) is equal to the composition of the map
(N �D K �C S) �C P −→ N �D ((K �C S) �C P) with the pair of maps N �D

((K �C S)�C P) ⇒ N �D (K�C P).
Now let K be a T-S-bisemimodule and P be a left S-semicontramodule.

Assume that the multiple cotensor products T �D · · ·�D T �D (K�S P) are asso-
ciative and the D-comodule morphisms (T �m�D K)�S P −→ T �m�D (K�SP)
are isomorphisms for m � 2. Then one can define an associative and unital semi-
action morphism T �D (K�S P) −→K�S P by taking the contratensor product
over S of the semiaction morphism T �D K −→K with the semicontramodule P.

Analogously, let L be a left C-comodule, K be a D-C-bicomodule with a left
T-semimodule structure such that the multiple cotensor products T�D · · ·�DT�D

K�CL are associative and the semiaction map T�DK −→ K is a right C-comodule
morphism, and M be a left T-semimodule. Then the module of homomorphisms
HomT(K,M) has a natural left C-contramodule structure as the kernel of a pair
of C-contramodule morphisms HomD(K,M) ⇒ HomD(T �D K, M). The com-
position of maps CohomC(L,HomT(K,M)) −→ CohomC(L,HomD(K,M)) −→
HomD(K �C L, M) factorizes through the injection HomT(K �C L, M) −→
HomD(K �C L, M), so there is a natural map CohomC(L,HomT(K,M)) −→
HomT(K �C L, M).

Now let K be a T-S-bisemimodule and M be a left T-semimodule. Assume
that the multiple cohomomorphisms CohomC(S �C · · · �C S, HomT(K,M)) are
associative and the C-contramodule morphisms CohomC(S�n,HomT(K,M)) −→
HomT(K �C S�n, M) are isomorphisms for n � 2.

Then one can define an associative and unital semicontraaction morphism
HomT(K,M) −→ CohomC(S,HomT(K,M)) by taking the T-semimodule homo-
morphisms from the semiaction morphism K�C S −→K into the semimodule M.

6.1.4 Let M be a left T-semimodule, K be a T-S-bisemimodule, and P be a
left S-semicontramodule. Assume that a left T-semimodule structure on K �S P
and a left S-semicontramodule structure on HomT(K,M) are defined via the
constructions of 6.1.3. Then there is a natural adjunction isomorphism

HomT(K �S P, M) � HomS(P,HomT(K,M)).

Indeed, the module HomT(K �S P, M) is the kernel of the pair of maps
HomD(K �S P, M) ⇒ HomD(T �D K �S P, M) and there is an injection
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HomD(T�DK�SP,M) −→ HomD((T�DK)�CP,M). The module HomD(K�S

P, M) is the kernel of the pair of maps HomD(K �C P, M) ⇒ HomD((K �C

S)�CP,M). There is a pair of natural maps HomD(K�CP,M) ⇒ HomD((T�D

K)�C P, M) (one of which goes through HomD(T �D (K�C P), M)) extending
the pair of maps HomD(K �S P, M) ⇒ HomD(T �D K �S P, M). Therefore,
the module HomT(K �S P, M) is isomorphic to the intersection of the kernels
of two pairs of maps HomD(K �C P, M) ⇒ HomD((K �C S) �C P, M) and
HomD(K �C P, M) ⇒ HomD((T �D K) �C P, M). Analogously, the mod-
ule HomS(P,HomT(K,M)) is embedded into HomC(P,HomD(K,M)) by the
composition of maps HomS(P,HomT(K,M)) −→ HomC(P,HomT(K,M)) −→
HomC(P,HomD(K,M)) and its image coincides with the intersection of the ker-
nels of two pairs of maps HomC(P,HomD(K,M)) ⇒ HomC(P, HomD(T �D

K, M)) and HomC(P,HomD(K,M)) ⇒ HomC(P, HomD(K �C S, M)). These
are the same two pairs of maps.

In order to obtain adjoint functors and equivalences between specific cat-
egories of left semimodules and left semicontramodules, we will have to prove
associativity isomorphisms needed for the constructions of 6.1.3 to work.

6.2 Associativity isomorphisms

Let S be a semialgebra over a coring C over a k-algebra A and T be a semialgebra
over a coring D over a k-algebra B. The following three propositions will be mostly
applied to the cases of K = T = S or T = D = C, K = S in the sequel.

Proposition 1. Let N be a right T-semimodule, K be a T-S-bisemimodule, and P
be a left S-semicontramodule. Then there is a natural map

(N ♦T K) �S P −−→ N ♦S (K �S P)

whenever both modules are defined via the constructions of 1.4.4 and 6.1.3. This
map is an isomorphism, at least, in the following cases:

(a) D is a flat left B-module, C is a projective left A-module, P is a contraflat
left C-contramodule, and either

• T is a coflat left D-comodule, S is a coprojective left C-comodule, and
K as a right S-semimodule with a left D-comodule structure is induced
from a D-coflat D-C-bicomodule, or

• T is a flat left B-module and a D/B-coflat right D-comodule, S is a
projective left A-module and a C/A-coflat right C-comodule, the ring A
(resp., B) has a finite left (resp., weak) homological dimension, K as a
right S-semimodule with a left D-comodule structure is induced from a
B-flat and C/A-coflat D-C-bicomodule, and K as a left T-semimodule
with a right C-comodule structure is induced from a B-flat D-C-bico-
module, or
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• the ring A is semisimple, the ring B is absolutely flat, K as a
right S-semimodule with a left D-comodule structure is induced from a
D-C-bicomodule, and K as a left T-semimodule with a right C-comodule
structure is induced from a D-C-bicomodule;

(b) N is a flat right B-module, D is a flat right B-module, T is a flat right
B-module and a D/B-coflat left D-comodule, C is a flat right A-module, S

is a flat right A-module and a C/A-coprojective left C-comodule, the ring A
(resp., B) has a finite left (resp., weak) homological dimension, K as a right
S-semimodule with a left D-comodule structure is induced from an A-flat and
D/B-coflat D-C-bicomodule, K as a left T-semimodule with a right C-comod-
ule structure is induced from an A-flat and D/B-coflat D-C-bicomodule, and
P is an A-injective and C/A-contraflat left C-contramodule;

(c) N is a flat right B-module, D is a flat right B-module, T is a flat right
B-module and a D/B-coflat left D-comodule, the ring B has a finite weak
homological dimension, K as a right S-semimodule with a left D-comodule
structure is induced from an A-flat D-C-bicomodule, C is a projective left
A-module, P is a C/A-contraflat left C-contramodule, and either
• S is a coprojective left C-comodule and the ring A has a finite weak

homological dimension, or
• S is a projective left A-module and a C/A-coflat right C-comodule, the

ring A has a finite left homological dimension, and K as a left T-semi-
module with a right C-comodule structure is induced from a D-C-bico-
module;

(d) D is a flat right B-module, T is a coflat right D-comodule, N is a coflat right
D-comodule, and either
• C is a projective left A-module and S is a coprojective left C-comodule,

or
• C is a projective left A-module, S is a projective left A-module and a

C/A-coflat right C-comodule, the right A has a finite left homological di-
mension, and K as a left T-semimodule with a right C-comodule struc-
ture is induced from a D-C-bicomodule, or
• C is a flat right A-module, S is a flat right A-module and a C/A-coprojec-

tive left C-comodule, the ring A has a finite left homological dimension,
K as a left T-semimodule with a right C-comodule structure is induced
from an A-flat D-C-bicomodule, and P is an injective left A-module,
or
• C is a flat right A-module, S is a coflat right C-comodule, K as a

left T-semimodule with a right C-comodule structure is induced from
a C-coflat D-C-bicomodule, and P is a coinjective left C-contramodule.

Proof. If N′′′ → N′′ → N′ → 0 is a sequence of right S-semimodule morphisms
which is exact in the category of A-modules and remains exact after taking the
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cotensor product with S over C, then for any left S-semicontramodule P there is
an exact sequence N′′′�S P −→ N′′�S P −→ N′�S P −→ 0. Hence whenever a
right S-semimodule structure on N♦TK is defined via the construction of 1.4.4, the
k-module (N♦TK)�SP is the cokernel of the pair of maps (N�DT�DK)�SP ⇒
(N �D K)�S P. By the definition, the semitensor product N ♦T (K �S P) is the
cokernel of the pair of maps N �D T �D (K �S P) ⇒ N �D (K �S P). There are
natural maps (N�D K)�S P −→ N�D (K�S P) and (N�D T �D K)�S P −→
N �D T �D (K �S P) constructed in 6.1.3. Whenever the left T-semimodule
structure on K �S P is defined via the construction of 6.1.3, the corresponding
(two) square diagrams commute. So there is a natural map (N ♦T K) �S P −→
N♦T(K�SP), which is an isomorphism provided that the map (N�DK)�SP −→
N�D (K�SP) and the analogous map for N�DT in place of N are isomorphisms;
and the left T-semimodule structure on K �S P is defined provided that the
analogous map for T in place of N is an isomorphism. It is straightforward to
check that in each case (a-d) a right S-semimodule structure on N♦T K is defined
via the construction of 1.4.4 (that is where the conditions that K as a left T-semi-
module with a right C-comodule structure is induced from a D-C-bimodule are
used). It is also easy to verify the (co)flatness conditions on K �S P that are
needed to guarantee that the semitensor product N♦T (K�S P) is defined in the
case (a). Thus it remains to show that the map (N�DK)�SP −→ N�D(K�SP)
is an isomorphism.

In the case (d), the map (N �D K) �C P −→ N �D (K �C P) and the
analogous map for K�C S in place of K are isomorphisms by Proposition 5.2.1(e)
and the module N �D (K �S P) is the cokernel of the pair of maps N �D ((K �C

S) �C P) ⇒ N �D (K �C P), so it is clear from the construction of the map
(N�D K)�S P −→ N�D (K�S P) that it is an isomorphism. In the cases (a-c),
one has K � K �C S and the multiple cotensor products N �D K �C S �C · · ·�C S

are associative. So the map (N �D K) �S P −→ N �D (K �S P) is naturally
isomorphic to the map (N �D K) �C P −→ N �D (K �C P). The latter is an
isomorphism by Proposition 5.2.1(a) in the case (a) and by Proposition 5.2.1(d)
in the cases (b-c). �
Proposition 2. Let L be a left C-semimodule, K be a T-S-bisemimodule, and M

be a left T-semimodule. Then there is a natural map

SemiHomS(L,HomT(K,M)) −−→ HomT(K ♦S L, M)

whenever both modules are defined via the constructions of 1.4.4 and 6.1.3. This
map is an isomorphism, at least, in the following cases:

(a) C is a flat right A-module, D is a flat right B-module, M is an injective left
D-comodule, and either
• S is a coflat right C-comodule, T is a coflat right D-comodule, and K as

a left T-semimodule with a right C-comodule structure is induced from
a C-coflat D-C-bicomodule, or
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• S is a flat right A-module and a C/A-coprojective left C-comodule, T

is a flat right B-module and a D/B-coflat left D-comodule, the ring A
(resp., B) has a finite left (resp., weak) homological dimension, K as a
left T-semimodule with a right C-comodule structure is induced from an
A-flat and D/B-coflat D-C-bicomodule, and K as a right S-semimodule
with a left D-comodule structure is induced from an A-flat D-C-bico-
module, or

• the ring A is semisimple, the ring B is absolutely flat, K as a left
T-semimodule with a right C-comodule structure is induced from a
D-C-bicomodule, and K as a right S-semimodule with a left D-comodule
structure is induced from a D-C-bicomodule;

(b) L is a projective left A-module, C is a projective left A-module, S is a pro-
jective left A-module and a C/A-coflat right C-comodule, D is a flat left
B-module, T is a flat left B-module and a D/B-coflat right D-comodule, the
rings A and B have finite left homological dimensions, K as a left T-semi-
module with a right C-comodule structure is induced from a B-projective and
C/A-coflat D-C-bicomodule, K as a right S-semimodule with a left D-comod-
ule structure is induced from a B-flat and C/A-coflat D-C-bicomodule, and
M is a B-flat and D/B-injective left D-comodule;

(c) L is a projective left A-module, C is a projective left A-module, S is a pro-
jective left A-module and a C/A-coflat right C-comodule, the rings A and
B have finite left homological dimensions, K as a left T-semimodule with a
right C-comodule structure is induced from a B-projective D-C-bicomodule,
D is a flat right B-module, M is a D/B-injective left D-comodule, and either

• T is a coflat right D-comodule, or

• T is a flat right B-module and a D/B-coflat left D-comodule, and K as
a right S-semimodule with a left D-comodule structure is induced from
a D-C-bicomodule;

(d) C is a projective left A-module, S is a coprojective left C-comodule, L is a
coprojective left C-comodule, and either

• D is a flat right B-module and T is a coflat right D-comodule, or

• D is a flat right B-module, T is a flat right B-module and a D/B-coflat
left D-comodule, and K as a right S-semimodule with a left D-comodule
structure is induced from a D-C-bicomodule, or

• D is a flat left B-module, T is a flat left B-module and a D/B-coflat
right D-comodule, K as a right S-semimodule with a left D-comodule
structure is induced from a B-flat D-C-bicomodule, and M is a flat left
B-module, or

• D is a flat left B-module, T is a coflat left D-comodule, K as a right
S-semimodule with a left D-comodule structure is induced from a
D-coflat D-C-bicomodule, and M is a coflat left D-comodule.



114 6. Semimodule-Semicontramodule Correspondence

Proof. Any sequence L′′ → L′′ → L′ → 0 of T-semimodule morphisms which is
exact in the category of B-modules and remains exact after taking the cotensor
product with T over D is exact in the category of T-semimodules, i.e., for any
T-semimodule M there is an exact sequence

0 −→ HomT(L′,M) −→ HomT(L′′,M) −→ HomT(L′′′,M).

Hence whenever a left T-semimodule structure is defined on K ♦S L via the con-
struction of 1.4.4, the k-module HomT(K ♦S L, M) is the kernel of the pair of
maps

HomT(K �C L, M) ⇒ HomT(K �C S �C L, M).

By the definition, the k-module SemiHomS(L,HomT(K,M)) is the kernel of the
pair of maps CohomC(L,HomT(K,M)) ⇒ CohomC(S �C L, HomT(K,M)) =
CohomC(L, CohomC(S, HomT(K,M))). There are natural maps

CohomC(L,HomT(K,M)) −→ HomT(K �C L, M)
and

CohomC(S �C L, HomT(K,M)) −→ HomT(K �C S �C L, M)

constructed in 6.1.3.
Whenever the left S-semicontramodule structure on HomT(K,M) is defined

via the construction of 6.1.3, the corresponding (two) square diagrams commute.
So there is a natural map

SemiHomS(L,HomT(K,M)) −→ HomT(K ♦S L, M),

which is an isomorphism provided that the map CohomC(L,HomT(K,M)) −→
HomT(K �C L, M) and the analogous map for S �C L in place of L are isomor-
phisms; and the left S-semicontramodule structure on HomT(K,M) is defined
provided that the analogous map for S in place of L is an isomorphism.

It is straightforward to check that in each case (a-d) a left T-semimod-
ule structure on K ♦S L is defined via the construction of 1.4.4. It is also
easy to verify (using Proposition 5.2.2(a)) the (co)injectivity conditions on
HomT(K,M) that are needed to guarantee that the semihomomorphism module
SemiHomS(L,HomT(K,M)) is defined in the case (a). Thus it remains to
show that the map CohomC(L,HomT(K,M)) −→ HomT(K �C L, M) is an
isomorphism.

In the case (d), the map CohomC(L,HomD(K,M)) −→ HomD(K�C L, M)
and the analogous map for T �D K in place of K are isomorphisms by Proposi-
tion 5.2.2(e) and the module CohomC(L,HomT(K,M)) is the kernel of the pair of
maps CohomC(L,HomT(K,M)) ⇒ CohomC(L, HomT(T�DK,M)), so it is clear
from the construction of the map CohomC(L,HomT(K,M)) −→ HomT(K �C

L, M) that it is an isomorphism. In the cases (a-c), one has K = T �D K and
multiple cotensor products T �D · · · �D T �D K �C L are associative. So the
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map CohomC(L,HomT(K,M)) −→ HomT(K �C L, M) is naturally isomorphic
to the map CohomC(L,HomD(K,M)) −→ HomD(K �C L, M). The latter is
an isomorphism by Proposition 5.2.2(a) in the case (a) and by 5.2.2(d) in the
cases (b-c). �

Proposition 3. Let P be a left S-semicontramodule, K be a T-S-bisemimodule,
and Q be a left T-semicontramodule. Then there is a natural map

SemiHomT(K �S P, Q) −−→ HomS(P, SemiHomT(K,Q))

whenever both modules are defined via the constructions of 3.4.4 and 6.1.3. This
map is an isomorphism, at least, in the following cases:

(a) D is a projective left B-module, C is a projective left A-module, P is a pro-
jective left C-contramodule, and either

• T is a coprojective left D-comodule, S is a coprojective left C-comod-
ule, and K as a right S-semimodule with a left D-comodule structure
is induced from a D-coprojective D-C-bicomodule, or

• T is a projective left B-module and a D/B-coflat right D-comodule, S is
a projective left A-module and a C/A-coflat right C-comodule, the rings
A and B have finite left homological dimensions, K as a right S-semi-
module with a left D-comodule structure is induced from a B-projective
and C/A-coflat D-C-bicomodule, and K as a left T-semimodule with
a right C-comodule structure is induced from a B-projective D-C-bico-
module, or

• the rings A and B are semisimple, K as a right S-semimodule with a
left D-comodule structure is induced from a D-C-bicomodule, and K as
a left T-semimodule with a right C-comodule structure is induced from
a D-C-bicomodule;

(b) D is a flat right B-module, T is a flat right B-module and a D/B-coflat left
D-comodule, Q is an injective left B-module, C is a flat right A-module, S

is a flat right A-module and a C/A-coprojective left C-comodule, the rings A
and B have finite left homological dimensions, K as a right S-semimodule
with a left D-comodule structure is induced from an A-flat and D/B-copro-
jective D-C-bicomodule, K as a left T-semimodule with a right C-comodule
structure is induced from an A-flat and D/B-coprojective D-C-bicomodule,
and P is a coinjective left C-contramodule;

(c) D is a flat right B-module, T is a flat right B-module and a D/B-coflat left
D-comodule, Q is an injective left B-module, the rings A and B have finite
left homological dimensions, K as a right S-semimodule with a left D-co-
module structure is induced from an A-flat D-C-bicomodule, C is a projective
left A-module, P is a C/A-projective left C-contramodule, and either
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• S is a coprojective left C-comodule, or

• S is a projective left A-module and a C/A-coflat right C-comodule, and
K as a left T-semimodule with a right C-comodule structure is induced
from a D-C-bicomodule;

(d) D is a flat right B-module, T is a coflat right D-comodule, Q is a coinjective
left D-comodule, and one of the conditions of the list of Proposition 1(d)
holds.

Proof. Let Q be a left D-contramodule, K be a D-C-bicomodule with a right
S-semimodule structure such that multiple cohomomorphisms CohomD(K�CS�C

· · ·�C S, Q) are associative and the semiaction map K �C S −→K is a left D-co-
module morphism, and P be a left S-semicontramodule.

Then there is a natural left S-semicontramodule structure on the mod-
ule CohomD(K,Q). The composition of maps CohomD(K �S P, Q) −→
CohomD(K �C P, Q) −→ HomC(P,CohomD(K,Q)) factorizes through the
injection HomS(P,CohomD(K,Q)) −→ HomC(P,CohomD(K,Q)), so there is a
natural map CohomD(K �S P, Q) −→ HomS(P,CohomD(K,Q)). The rest of
the proof is analogous to the proofs of Propositions 1 and 2. �

Assume that C is a projective left A-module, S is a coprojective left C-co-
module, D is a flat right B-module, and T is a coflat right D-comodule. Then
it follows from 6.1.4 together with Propositions 1(d) and 2(d) that for any left
T-semimodule P, and T-S-bisemimodule K, and any left S-semicontramodule P
there is a natural isomorphism HomT(K �S P, M) � HomS(P,HomT(K,M)).

In particular, when C is a projective left and a flat right A-module and S is a
coprojective left and a coflat right C-comodule, there is a pair of adjoint functors
ΨS : S-simod −→ S-sicntr and ΦS : S-sicntr −→ S-simod compatible with the func-
tors ΨC : C-comod −→ C-contra and ΦC : C-contra −→ C-comod. In other words,
the S-semimodule ΨS(M) as a C-comodule is naturally isomorphic to ΨC(M) and
the S-semicontramodule ΦS(P) as a C-contramodule is naturally isomorphic to
ΦC(P).

Assume that C is a projective left A-module and either S is a coprojective left
C-comodule, or S is a projective left A-module and a C/A-coflat right C-comod-
ule and A has a finite left homological dimension. Then it follows from Proposi-
tions 1(a) and 2(b,d) that the categories of C-coprojective left S-semimodules and
C-projective left S-semicontramodules are naturally equivalent.

Assume that C is a flat right A-module and either S is a coflat right C-co-
module, or S is a flat right A-module and a C/A-coprojective left C-comodule and
A has a finite left homological dimension. Then if follows from Propositions 1(b,d)
and 2(a) that the categories of C-injective left S-semimodules and C-coinjective
left S-semicontramodules are naturally equivalent.

Assume that C is a projective left A-module and a flat right A-module, A has
a finite left homological dimension, and either S is a coprojective left C-comodule
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and a flat right A-module, or S is a projective left A-module and a coflat right C-co-
module. Then it follows from Propositions 1(c,d) and 2(c,d) that the categories
of C/A-injective left S-semimodules and C/A-projective left S-semicontramodules
are naturally equivalent.

Finally, assume that the ring A is semisimple. Then it follows from Propo-
sitions 1(a) and 2(a) that the categories of C-injective left S-semimodules and
C-projective left S-semicontramodules are naturally equivalent.

In each of these cases, the natural maps defined in Propositions 2–3 in the
case of K = T = S have the following property of compatibility with the adjoint
functors between categories of S-semimodules and S-semicontramodules. For any
left S-semimodule M and any left S-semicontramodule P such that the S-semi-
module ΦS(P) = S �S P, the S-semicontramodule ΨS(M) = HomS(S,M), and
the k-module of semihomomorphisms SemiHomS(ΦS(P),ΨS(M)) are defined via
the constructions of 6.1.3 and 3.4.4, the maps SemiHomS(ΦS(P),ΨS(M)) −→
HomS(ΦS(P),M) and SemiHomS(ΦS(P),ΨS(M)) −→ HomS(P,ΨS(M)) form
a commutative diagram with the adjunction isomorphism HomS(ΦS(P),M) �
HomS(P,ΨS(M)).

6.3 Semimodule-semicontramodule correspondence

Assume that the coring C is a projective left and a flat right A-module, the semi-
algebra S is a coprojective left and a coflat right C-comodule, and the ring A has
a finite left homological dimension.

Theorem.

(a) The functor mapping the quotient category of complexes of C/A-injective left
S-semimodules by the thick subcategory of C-coacyclic complexes of C/A-in-
jective S-semimodules into the semiderived category of left S-semimodules is
an equivalence of triangulated categories.

(b) The functor mapping the quotient category of complexes of C/A-projective left
S-semicontramodules by the thick subcategory of C-contraacyclic complexes
of C/A-projective S-semicontramodules into the semiderived category of left
S-semicontramodules is an equivalence of triangulated categories.

Proof. Part (b) follows from Lemma 5.3.2(b) and Lemma 2.6 applied to the con-
struction of the morphism of complexes L2(P•) −→ P• from the proof of The-
orem 4.6(b). As an alternative to using Lemma 5.3.2, one can show that L2(P•)
is a complex of C/A-projective S-semicontramodules in the following way. Use
Lemma 3.3.2(b) to construct a finite right A-injective resolution of every term of
the complex of left S-semicontramodules P•, then apply the functor L2, which
maps exact triples of complexes to exact triples, and use Lemmas 3.3.3(c), 5.2(b),
and 5.3.1(b). The proof of part (a) is completely analogous. �
Remark. The analogue of the above theorem holds for complexes of quite C/A-in-
jective S-semimodules and quite C/A-projective S-semicontramodules. Moreover,
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for any complex of left S-semimodules M• there exists a morphism from M•

into a complex of C-injective S-semimodules with a C-coacyclic cone, and for any
complex of left S-semicontramodules P• there exists a morphism into P• from a
complex of C-projective S-semicontramodules with a C-contraacyclic cone. Indeed,
consider the complex of C/A-injective S-semimodules ΦSL2(P•) and apply to it
the construction of the morphism of complexes L1(K•) −→K• from the proof of
Theorems 2.6 and 4.6(a). For any complex of C/A-injective S-semimodules K•, the
complex L1(K•) is a complex of C-coprojective S-semimodules by Remark 3.2.2
and Lemma 5.3.2(a) (or simply because the class of C/A-injective left C-comodules
is closed under extensions and any A-projective C/A-injective left C-comodule is
coprojective, which is easy to check). So the complex of C-coprojective S-semi-
modules L1(ΦSL2(P•)) maps into ΦSL2(P•) with a C-coacyclic cone, hence the
complex of C-projective S-semicontramodules ΨSL1(ΦSL2(P•)) maps into L2P

•

and P• with C-contraacyclic cones.

Corollary. The restrictions of the functors ΨS and ΦS (applied to complexes term-
wise) to the homotopy category of complexes of C/A-injective S-semimodules and
C/A-projective S-semicontramodules define mutually inverse equivalences RΨS

and LΦS between the semiderived category of left S-semimodules and the semide-
rived category of left S-semicontramodules.

Proof. By Corollary 5.4, the restrictions of functors ΨS and ΦS induce mutu-
ally inverse equivalences between the quotient category of the homotopy category
of C/A-injective S-semimodules by its intersection with the thick subcategory of
C-coacyclic complexes and the quotient category of the homotopy category of
C/A-projective S-semicontramodules by its intersection with the thick subcategory
of C-contraacyclic complexes. Thus it remains to take in account Theorem 6.3. �

6.4 Birelatively contraflat, projective, and injective complexes

We keep the assumptions of 6.3.
A complex of left S-semimodules M• is called projective relative to C rela-

tive to A (S/C/A-projective) if the complex of homomorphisms over S from M•

into any C-coacyclic complex of C/A-injective S-semimodules is acyclic. A com-
plex of left S-semicontramodules P• is called injective relative to C relative to A
(S/C/A-injective) if the complex of homomorphisms over S into P• from any
C-contraacyclic complex of C/A-projective S-semicontramodules is acyclic.

The contratensor product N•�S P• of a complex N• of right S-semimodules
and a complex P• of left S-semicontramodules is defined as the total complex
of the bicomplex Ni �S Pj , constructed by taking infinite direct sums along the
diagonals. A complex of right S-semimodules N• is called contraflat relative to C

relative to A (S/C/A-contraflat) if the contratensor product over S of the complex
N• and any C-contraacyclic complex of C/A-projective left S-semicontramodules
is acyclic.
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It follows from Theorem 5.4 and Lemma 5.3.1 that the complex of left S-semi-
modules induced from a complex of A-projective C-comodules is S/C/A-projective,
the complex of left S-semicontramodules coinduced from a complex of A-injec-
tive C-contramodules is S/C/A-injective, and the complex of right S-semimodules
induced from a complex of A-flat C-comodules is S/C/A-contraflat.

Lemma.

(a) Any S/C/A-semiflat complex of A-flat right S-semimodules (in the sense
of 2.8) is S/C/A-contraflat.

(b) A complex of A-projective left S-semimodules is S/C/A-projective if and only
if it is S/C/A-semiprojective (in the sense of 4.8).

(c) A complex of A-injective left S-semicontramodules is S/C/A-injective if and
only if it is S/C/A-semiinjective (in the sense of 4.8).

Proof. The functors ΨS and ΦS define an equivalence between the category of
C-coacyclic complexes of C/A-injective left S-semimodules and the category of
C-contraacyclic complexes of C/A-projective left S-semicontramodules. There-
fore, part (a) follows from Proposition 6.2.1(c) (applied to K = T = S) and
Lemma 5.3.2(a), part (b) follows from Proposition 6.2.2(c) and Lemma 5.3.2(b),
and part (c) follows from Proposition 6.2.3(c) and Lemma 5.3.2(a). �

In view of the relevant results of 4.8, it is also clear that a complex of A-pro-
jective left S-semimodules is S/C/A-projective if the complex of S-semimodule
homomorphisms from it into any C-contractible complex of C/A-injective S-semi-
modules is acyclic. Analogously, a complex of A-injective left S-semicontramodules
is S/C/A-injective if the complex of S-semicontramodule homomorphisms into it
from any C-contractible complex of C/A-projective S-semicontramodules is acyclic.

Question. One can show using the construction of the morphism of complexes
of left S-semimodules L• −→ R2(L•) and Lemma 1.2.2 that any S/C/A-con-
traflat complex of (appropriately defined) S/C/A-semiflat right S-semimodules
is S/C/A-semiflat. One can also show using the functor SemiTorS that any A-flat
S/C/A-contraflat right S-semimodule (defined in terms of exact triples of C/A-pro-
jective or C/A-contraflat left S-semicontramodules) is S/C/A-semiflat; the converse
is clear (cf. 9.2). Are all S/C/A-contraflat (in either definition) right S-semimod-
ules A-flat? Are all S/C/A-contraflat complexes of A-flat right S-semimodules
S/C/A-semiflat?

The functor mapping the quotient category of S/C/A-contraflat complexes of
right S-semimodules by its intersection with the thick subcategory of C-coacyclic
complexes into the semiderived category of right S-semimodules is an equivalence
of triangulated categories, since the complex L3L1(K•) is S/C/A-contraflat for any
complex of right S-semimodules K•. The analogous results for S/C/A-projective
complexes of left S-semimodules and S/C/A-injective complexes of left S-semicon-
tramodules follow from the corresponding results of 4.8.
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Remark. It follows from the above lemma and Lemma 5.2 that any C-coacyclic
semiprojective complex of C-coprojective left S-semimodules is contractible.
Indeed, such a complex is simultaneously an S/C/A-projective complex and a
C-coacyclic complex of C/A-injective S-semimodules.

Analogously, any C-contraacyclic semiinjective complex of C-coinjective left
S-semicontramodules is contractible. Hence the homotopy category of semipro-
jective complexes of C-coprojective S-semimodules is equivalent to the semide-
rived category of left S-semimodules and the homotopy category of semiinjective
complexes of C-coinjective S-semicontramodules is equivalent to the semiderived
category of left S-semicontramodules (see Theorem 4.6).

Furthermore, it follows that the homotopy category of semiprojective com-
plexes of C-coprojective S-semimodules is the minimal triangulated subcategory
containing the complexes of left S-semimodules induced from complexes of C-co-
projective C-comodules and closed under infinite direct sums. Analogously, the ho-
motopy category of semiinjective complexes of C-coinjective S-semicontramodules
is the minimal triangulated subcategory containing the complexes of left S-semi-
contramodules coinduced from complexes of C-coinjective C-contramodules and
closed under infinite products. (Cf. 2.9.)

6.5 Derived functor CtrTor

The following lemmas provide a general approach to one-sided derived functors of
any number of arguments. They are essentially due to P. Deligne [29, 1.2.1–2].

Lemma 1. Let H be a category and S be a localizing class of morphisms in H. Let
P and J be full subcategories of H such that either

(a) the map HomH(Q, j) is bijective for any object Q ∈ P and any morphism
j ∈ S ∩ J, and for any object Y ∈ H there is an object J ∈ J together with a
morphism Y −→ J belonging to S, or

(b) the map HomH(q, J) is bijective for any morphism q ∈ S ∩ P and any object
J ∈ J, and for any object X ∈ H there is an object Q ∈ P together with a
morphism Q −→ X belonging to S.

Then for any objects P ∈ P and I ∈ J the natural map HomH(P, I) −→
HomH[S−1](P, I) is bijective.

Proof. Part (b): any element of HomH[S−1](P, I) can be represented by a frac-
tion of morphisms P ←− X −→ I in H, where the morphism X −→ P belongs
to S. Choose an object Q ∈ P together with a morphism Q −→ X belonging
to S. Then the composition Q −→ X −→ P belongs to S ∩ P, hence the map
HomH(P, I) −→ HomH(Q, I) is bijective and there exists a morphism P −→ I
that forms a commutative triangle with the morphisms Q −→ X −→ P and
Q −→ X −→ I. Obviously, this morphism P −→ I represents the same morphism
in H[S−1] that the fraction P ←− X −→ I. Now suppose that there are two
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morphisms P ⇒ I in H whose images in H[S−1] coincide. Then there exists a mor-
phism X −→ P belonging to H which has equal compositions with the morphisms
P ⇒ I. Choose an object Q ∈ P together with a morphism Q −→ X belonging
to H again. The composition Q −→ X −→ P has equal compositions with the
morphisms P ⇒ I, and since the map HomH(P, I) −→ HomH(Q, I) is bijective,
our two morphisms P ⇒ I are equal. Proof of part (a) is dual. �

Lemma 2. Let Hi, i = 1, . . . , n be several categories, Si be localizing classes of
morphisms in Hi, and F1 be full subcategories of Hi. Assume that for any object
X in Hi there is an object U in Fi together with a morphism U −→ X from Si. Let
K be a category and Θ: H1 × · · · ×Hn −→ K be a functor such that the morphism
Θ(U1, . . . , Ui−1, t, Ui+1, . . . , Un) is an isomorphism for any objects Uj ∈ Fj and any
morphism t ∈ Si∩Fi. Then the left derived functor LΘ: H1[S−1

1 ]×· · ·×Hn[S−1
n ] −→

K obtained by restricting Θ to F1×· · ·×Fn is a universal final object in the category
of all functors Ξ: H1×· · ·×Hn −→ K factorizable through H1[S−1

1 ]×· · ·×Hn[S−1
n ]

and endowed with a morphism of functors Ξ −→ Θ.

Proof. It suffices to consider a single category H = H1× · · · ×Hn with the class of
morphisms S = S1×· · ·×Sn, the full subcategory F = F1×· · ·×Fn, and the functor
of one argument Θ: H −→ K. The functor F[(S∩F)−1] −→ H[S−1] is an equivalence
of categories by Lemma 2.6, so the derived functor LΘ can be defined. For any
object X ∈ H, choose an object UX ∈ F together with a morphism UX −→ X
from S; then we have the induced morphism LΘ(X) = Θ(UX) −→ Θ(X). For any
morphism X −→ Y in H there exists an object V in F together with a morphism
V −→ UX belonging to S and a morphism V −→ UY in H forming a commutative
diagram with the morphisms UX −→ X −→ Y and VX −→ Y . So we have
constructed a morphism of functors LΘ −→ Θ. Now if a functor Ξ: H −→ K
factorizable through H[S−1] is endowed with a morphism of functors Ξ −→ Θ,
then the desired morphism of functors Ξ −→ LΘ can be obtained by restricting
the morphism of functors Ξ −→ Θ to the subcategory F ⊂ H. �

Notice the difference between the construction of a double-sided derived func-
tor of two arguments in Lemma 2.7 and the construction of a left derived functor
of any number of arguments in Lemma 2. While in the former construction only
one of the two arguments is resolved, and the conditions imposed on the resolu-
tions guarantee that the two derived functors obtained in this way coincide, in the
latter construction all of the arguments are resolved at once and it would not suf-
fice to resolve only some of them. In other words, the construction of Lemma 2.7
only works to define balanced double-sided derived functors, while construction of
Lemma 2 allows us to define nonbalanced one-sided derived functors.

Assume that the semialgebra S satisfies the conditions of 6.3. According to
Lemma 1(a) and (the proof of) Theorem 6.3(a), the natural map

HomHot(S-simod)(L
•,M•) −−→ HomDsi(S-simod)(L

•,M•)
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is an isomorphism whenever L• is a complex of S/C/A-projective S-semimodules
and M• is a complex of C/A-injective S-semimodules. So the functor of homo-
morphisms in the semiderived category of left S-semimodules can be lifted to a
functor

ExtS : Dsi(S-simod)op × Dsi(S-simod) −−→ D(k-mod),

which is defined by restricting the functor of homomorphisms of complexes of left
S-semimodules to the Cartesian product of the homotopy category of S/C/A-pro-
jective complexes of S-semimodules and the homotopy category of complexes of
C/A-injective S-semimodules. By Lemma 2, this construction of the right derived
functor ExtS does not depend on the choice of subcategories of adjusted complexes.

Analogously, according to Lemma 1(b) and (the proof of) Theorem 6.3(b),
the natural map

HomHot(S-sicntr)(P
•,Q•) −−→ HomDsi(S-sicntr)(P

•,Q•)

is an isomorphism whenever P• is a complex of C/A-injective S-semicontramod-
ules and Q• is a complex of S/C/A-injective S-semicontramodules. So the functor
of homomorphisms in the semiderived category of left S-semicontramodules can
be lifted to a functor

ExtS : Dsi(S-sicntr)op × Dsi(S-sicntr) −−→ D(k-mod),

which is defined by restricting the functor of homomorphisms of complexes of
left S-semicontramodules to the Cartesian product of the homotopy category of
complexes of C/A-projective S-semicontramodules and the homotopy category of
S/C/A-injective complexes of S-semicontramodules.

Finally, the left derived functor of contratensor product

CtrTorS : Dsi(simod-S)× Dsi(S-sicntr) −−→ D(k-mod)

is defined by restricting the functor of contratensor product over S to the Cartesian
product of the homotopy category of S/C/A-contraflat complexes of right S-semi-
modules and the homotopy category of complexes of C/A-projective left S-semicon-
tramodules. By the definition, this restriction factorizes through the semiderived
category of left S-semicontramodules in the second argument; let us show that it
also factorizes through the semiderived category of right S-semimodules in the first
argument. The complex of left S-semicontramodules Homk(N•, k∨) is S/C/A-in-
jective whenever a complex of right S-semimodules N• is S/C/A-contraflat; and the
complex Homk(N•, k∨) is C-contraacyclic whenever the complex N• is C-coacyclic.
Hence if N• is a C-coacyclic S/C/A-contraflat complex of right S-semimodules and
P• is a complex of C/A-projective left S-semicontramodules, then the complex
HomS(P•,Homk(N•, k∨)) is acyclic, so the complex N•�S P• is also acyclic. By
Lemma 2, this construction of the left derived functor CtrTorS does not depend
on the choice of subcategories of adjusted complexes.

Notice that the constructions of derived functors RΨS and LΦS in Corol-
lary 6.3 are also particular cases of Lemma 2.
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Remark. To define/compute the composition multiplication ExtS(L•,M•) ⊗L

k

ExtS(K•,L•) −→ ExtS(K•,M•) it suffices to represent the images of K•, L•,
and M• in the semiderived category of left S-semimodules by semiprojective com-
plexes of C-coprojective S-semimodules. The same applies to the functor ExtS and
semiinjective complexes of C-coinjective S-semicontramodules. Besides, one can
compute the functors ExtS, ExtS, and CtrTorS using resolutions of other kinds.
In particular, one can use complexes of C-injective S-semimodules and complexes of
C-projective S-semicontramodules (see Remark 6.3) together with (appropriately
defined) S/C-projective complexes of left S-semimodules, S/C-injective complexes
of left S-semicontramodules, and S/C-contraflat complexes of right S-semimod-
ules. One can also compute the functor ExtS in terms of injective complexes of
S-semimodules (defined as complexes right orthogonal to C-coacyclic complexes in
Hot(S-simod)) and the functor ExtS in terms of projective complexes of S-semi-
contramodules. These can be obtained by applying the functor ΦS to semiinjective
complexes of C-coinjective S-semicontramodules and the functor ΨS to semiprojec-
tive complexes of C-coprojective S-semimodules, and using Propositions 6.2.2(a)
and 6.2.3(a). Injective complexes of S-semimodules can be also constructed using
the functor right adjoint to the forgetful functor S-simod −→ C-comod (see Ques-
tion 3.3.1) and infinite products of complexes of S-semimodules; this approach
works assuming only that C is a flat right A-module, S is a coflat right C-comod-
ule, and A has a finite left homological dimension.

6.6 SemiExt and Ext, SemiTor and CtrTor

We keep the assumptions of 6.3.

Corollary.

(a) There are natural isomorphisms of functors

SemiExtS(M•,P•) � ExtS(M•,LΦS(P•)) � ExtS(RΨS(M•),P•)

on the Cartesian product of the category opposite to the semiderived category
of left S-semimodules and the semiderived category of left S-semicontramod-
ules.

(b) There is a natural isomorphism of functors

SemiTorS(N•,M•) � CtrTorS(N•,RΨS(M•))

on the Cartesian product of the semiderived category of right S-semimodules
and the semiderived category of left S-semimodules.

Proof. It suffices to construct natural isomorphisms

SemiExtS(L•,RΨS(M•)) � ExtS(L•,M•),

SemiExtS(LΦS(P•),Q•) � ExtS(P•,Q•),

SemiTorS(N•,LΦS(P•)) � CtrTorS(N•,P•).
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In the first case, represent the image of M• in Dsi(S-simod) by a complex
of C/A-injective S-semimodules and the image of L• in Dsi(S-simod) by a semi-
projective complex of C-coprojective S-semimodules, and use Proposition 6.2.2(d)
and Lemma 6.4(b). Alternatively, represent the image of M• in Dsi(S-simod) by
a complex of C/A-injective S-semimodules and the image of L• in Dsi(S-simod)
by an S/C/A-semiprojective complex of A-projective S-semimodules (see 4.8), and
use Proposition 6.2.2(c), Lemma 6.4(b), and Lemma 5.3.2(b).

In the second case, represent the image of P• in Dsi(S-sicntr) by a complex
of C/A-projective S-semicontramodules and the image of Q• in Dsi(S-sicntr)
by a semiinjective complex of C-coinjective S-semimodules, and use Propo-
sition 6.2.3(d) and Lemma 6.4(c). Alternatively, represent the image of P•

in Dsi(S-sicntr) by a complex of C/A-projective S-semicontramodules and the
image of Q• in Dsi(S-sicntr) by an S/C/A-semiinjective complex of A-injective
S-semicontramodules (see 4.8), and use Proposition 6.2.3(c), Lemma 6.4(c), and
Lemma 5.3.2(a).

In the third case, represent the image of P• in Dsi(S-sicntr) by a complex
of C/A-projective S-semicontramodules and the image of N• in Dsi(simod-S) by
a semiflat complex of C-coflat S-semimodules, and use Proposition 6.2.1(d) and
Lemma 6.4(a). Alternatively, represent the image of P• in Dsi(S-sicntr) by a com-
plex of C/A-projective S-semicontramodules and the image of N• in Dsi(simod-S)
by an S/C/A-semiflat complex of A-flat S-semimodules (see 2.8), and use Propo-
sition 6.2.1(c), Lemma 6.4(a), and Lemma 5.3.2(a).

Finally, to show that the three pairwise isomorphisms between the func-
tors SemiExtS(M•,P•), ExtS(M•,LΦS(P•)), and ExtS(RΨS(M•),P•) form a
commutative diagram, one can represent the image of M• in Dsi(S-simod) by
a semiprojective complex of C-coprojective S-semimodules and the image of P•

in Dsi(S-sicntr) by a semiinjective complex of C-coinjective S-semicontramodules
(having in mind Lemmas 6.4 and 5.2), and use a result of 6.2. �



7 Functoriality in the Coring

7.1 Compatible morphisms

Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.

7.1.1 We will say that a map C −→ D is compatible with a k-algebra morphism
A −→ B if the biaction maps A ⊗k C ⊗k A −→ C and B ⊗k D ⊗k B −→ D

form a commutative diagram with the maps C −→ D and A ⊗k C ⊗k A −→
B ⊗k D ⊗k B (in other words, the map C −→ D is an A-A-bimodule morphism)
and the comultiplication maps C −→ C ⊗A C and D −→ D ⊗B D, as well as the
counit maps C −→ A and D −→ B, form commutative diagrams with the maps
A −→ B, C −→ D, and C⊗A C −→ D⊗B D.

Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.
Let M be a left comodule over C and N be a left comodule over B. We will say
that a map M −→ N is compatible with the maps A −→ B and C −→ D if the
action maps A⊗kM −→M and B⊗kN −→ N form a commutative diagram with
the maps M −→ N and A ⊗k M −→ B ⊗k N (that is the map M −→ N is an
A-module morphism) and the coaction maps M −→ C⊗A M and N −→ D ⊗B N

form a commutative diagram with the maps M −→ N and C⊗A M −→ D⊗B M.
Analogously, let P be a left contramodule over C and Q be a left contramodule
over D. We will say that a map Q −→ P is compatible with the maps A −→ B and
C −→ D if the action maps P −→ Homk(A,P) and Q −→ Homk(B,Q) form a
commutative diagram with the maps Q −→ P and Homk(B,Q) −→ Homk(A,P)
(that is the map Q −→ P is an A-module morphism) and the contraaction maps
HomA(C,P) −→ P and HomB(D,Q) −→ Q form a commutative diagram with
the maps Q −→ P and HomB(D,Q) −→ HomA(C,P).

Let M′ −→ N′ be a map from a right C-comodule M′ to a right D-comodule
N′ compatible with the maps A −→ B and C −→ D, and M′′ −→ N′′ be a map
from a left C-comodule M′′ to a left D-comodule N′′ compatible with the maps
A −→ B and C −→ D. Then there is a natural map M′ �C M′′ −→ N′ �D N′′.
Analogously, let M −→ N be a map from a left C-comodule M to a left D-comod-
ule N compatible with the maps A −→ B and C −→ D, and Q −→ P be a map
from a left D-contramodule Q to a left C-contramodule P compatible with the
maps A −→ B and C −→ D. Then there is a natural map CohomD(N,Q) −→
CohomC(M,P).

7.1.2 Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.
Then there is a functor from the category of left C-comodules to the category of
left D-comodules assigning to a C-comodule M the D-comodule

BM = B ⊗A M

L. Positselski, Homological Algebra of Semimodules and Semicontramodules, Monografie    125
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with the D-coaction map defined as the composition B⊗AM −→ B⊗AC⊗AM −→
D⊗AM = D⊗B (B⊗AM) of the map induced by the C-coaction in M and the map
induced by the map C −→ D and the left B-action in D. The functor M �−→MB

from the category of right C-comodules to the category of right D-comodules is
defined in an analogous way. Furthermore, there is a functor from the category
of left C-contramodules to the category of left D-contramodules assigning to a
C-contramodule P the D-contramodule

BP = HomA(B,P)

with the contraaction map defined as the composition HomB(D,HomA(B,P)) =
HomA(D,P) −→ HomA(C⊗A B, P) = HomA(B,HomA(C,P)) −→ HomA(B,P)
of the map induced by the map C −→ D and the right B-action in D with the
map induced by the C-contraaction in P.

If C is a flat right A-module, then the functor M �−→ BM has a right adjoint
functor assigning to a left D-comodule N the left D-comodule

CN = CB �D N,

where CB = C ⊗A B is a C-D-bicomodule with the right D-comodule structure
provided by the above construction. These functors are adjoint since both k-mod-
ules HomD(BM,N) and HomC(M, CN) are isomorphic to the k-module of all maps
of comodules M −→ N compatible with the maps A −→ B and C −→ D, so

HomD(BM,N) � HomC(M, CN).

Without any assumptions on the coring C, the functor N �−→ CN is defined on
the full subcategory of left D-comodules such that the cotensor product CB �D N

can be endowed with a left C-comodule structure via the construction of 1.2.4;
this includes, in particular, quasicoflat D-comodules. Analogously, if C is a flat left
A-module, then the functor M �−→MB has a right adjoint functor assigning to a
right D-comodule N the right C-comodule NC = N �D BC, where BC = B ⊗A C

is a D-C-bicomodule with the left D-comodule structure provided by the above
construction.

Furthermore, if C is a projective left A-module, then the functor P �−→ BP
has a left adjoint functor assigning to a left D-contramodule Q the left C-contra-
module

CQ = CohomD(BC,Q).

These functors are adjoint since both k-modules HomD(Q,BP) and HomC(CQ,P)
are isomorphic to the k-module of all maps of contramodules Q −→ P compatible
with the maps A −→ B and C −→ D, so

HomD(Q,BP) � HomC(CQ,P).

Without any assumptions on the coring C, the functor Q �−→ CQ is defined on the
full subcategory of left D-contramodules such that the cohomomorphism module
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CohomD(BC,Q) can be endowed with a left C-contramodule structure via the
construction of 3.2.4; this includes, in particular, quasicoinjective D-contramod-
ules.

If C is a projective left A-module, then for any right C-comodule M and any
left D-contramodule Q there is a natural isomorphism

MB �D Q �M�C
CQ.

Indeed, both k-modules are isomorphic to the cokernel of the pair of maps M⊗A
HomB(D,Q) ⇒ M ⊗A Q, one of which is induced by the D-contraaction in
Q and the other is the composition of the map induced by the C-coaction in
M and the map induced by the evaluation map CB ⊗B HomB(D,Q) −→ Q.
This is obvious for MB �D Q, and in order to show this for M �C

CQ it suf-
fices to represent CQ as the cokernel of the pair of C-contramodule morphisms
HomB(BC,HomB(D,Q)) ⇒ HomB(BC,Q). Without any assumptions on the cor-
ing C, there is a natural isomorphism MB �D Q � M �C

CQ for any right
C-comodule M and any left D-contramodule Q for which the C-contramodule
CQ = CohomD(BC,Q) is defined via the construction of 3.2.4.

7.1.3 Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.

Proposition.

(a) For any left C-comodule M and any right D-comodule N for which the right
C-comodule NC is defined there is a natural map

NC �C M −−→ N �D BM,

which is an isomorphism, at least, when C and M are flat left A-modules or
N is a quasicoflat right D-comodule.

(b) For any left C-contramodule P and any left D-comodule N for which the left
C-comodule CN is defined there is a natural map

CohomD(N,BP) −−→ CohomC(CN,P),

which is an isomorphism, at least, when either C is a flat right A-module and
P is an injective left A-module, or N is a quasicoprojective left D-comodule.

(c) For any left C-comodule M and any left D-contramodule Q for which the left
C-contramodule CQ is defined there is a natural map

CohomD(BM,Q) −−→ CohomC(M, CQ),

which is an isomorphism, at least, when C and M are projective left A-mod-
ules or Q is a quasicoinjective left D-contramodule.

Proof. Part (a): for any left C-comodule M and any right D-comodule N there
are maps of comodules M −→ BM and NC −→ N compatible with the maps
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A −→ B and C −→ D. So there is the induced map NC �C M −→ N �D BM.
On the other hand, for any left C-comodule M there is a natural isomorphism
of left D-comodules BM � BC �C M, hence NC �C M = (N �D BC) �C M and
N�DBM = N�D (BC�C M). Let us check that the maps NC �C M −→ N�DBM,
NC�CM −→ N⊗BBC⊗AM and N�DBM −→ N⊗BBC⊗AM form a commutative
diagram. Indeed, the map (N �D BC) ⊗A M −→ N ⊗B BC ⊗A M is equal to the
composition of the map (N �D BC)⊗A M −→ (N �D BC)⊗A C⊗A M induced by
the C-coaction in N�DBC with the map (N�DBC)⊗AC⊗AM −→ N⊗BBC⊗AM

induced by the maps N �D BC −→ N and C −→ BC; while the composition of
maps (N �D BC)⊗A M −→ N ⊗B (BC �C M) −→ N ⊗B BC⊗A M is equal to the
composition of the map (N�DBC)⊗AM −→ (N�DBC)⊗AC⊗AM induced by the
C-coaction in M with the same map (N�D BC)⊗A C⊗AM −→ N⊗B BC⊗AM. It
remains to apply Proposition 1.2.5(d) and (e) with the left and right sides switched.
The proofs of parts (b) and (c) are completely analogous; the proof of (b) uses
Proposition 3.2.5(g,h) and the proof of (c) uses Proposition 3.2.5(f,i). �

7.1.4 Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.
Assume that C is a projective left and a flat right A-module.

Then for any left D-contramodule Q there is a natural morphism of C-co-
modules

ΦC(CQ) −−→ C(ΦDQ),
which is an isomorphism, at least, when D is a flat right B-module and Q is a
D/B-contraflat left D-contramodule. Indeed, ΦC(CQ) = C �C

CQ � CB �D Q
as a left C-comodule and C(ΦDQ) = CB �D (D �D Q), so it remains to apply
Proposition 5.2.1(c). Analogously, for any left D-comodule N there is a natural
morphism of C-contramodules

C(ΨDN) −−→ ΨC(CN),

which is an isomorphism, at least, when D is a projective left B-module and N is a
D/B-injective left D-comodule. Indeed, ΨC(CN) = HomC(C, CN) � HomD(BC,N)
as a left C-contramodule and C(ΨDN) = CohomD(BC,HomD(D,N)), so it remains
to apply Proposition 5.2.2(c).

Without any assumptions on the corings C and D, there is a natural isomor-
phism ΦC(CQ) � C(ΦDQ) for any quite D/B-projective D-contramodule Q and
a natural isomorphism C(ΨDN) � ΨC(CN) for any quite D/B-injective D-comod-
ule N.

The natural morphisms ΦC(CQ) −→ C(ΦDQ) and C(ΨDN) −→ ΨC(CN)
have the following compatibility property. For any left D-comodule N and left
D-contramodule Q for which the C-comodule CN and the C-contramodule CQ
are defined via the constructions of 1.2.4 and 3.2.4, for any pair of morphisms
ΦDQ −→ N and Q −→ ΨDN corresponding to each other under the adjunction
of functors ΨD and ΦD, the compositions ΦC(CQ) −→ C(ΦDQ) −→ CN and
CQ −→ C(ΨDN) −→ ΨC(CN) correspond to each other under the adjunction of
functors ΨC and ΦC.
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7.2 Properties of the pull-back and push-forward functors

7.2.1 Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.

Theorem.

(a) Assume that C is a flat right A-module. Then the functor N �−→ CN maps
D/B-coflat (D/B-coprojective) left D-comodules to C/A-coflat (C/A-copro-
jective) left C-comodules. Assume additionally that D is a flat right B-mod-
ule. Then the same functor applied to complexes maps coacyclic complexes of
D/B-coflat D-comodules to coacyclic complexes of C-comodules.

(b) Assume that C is a projective left A-module. Then the functor Q �−→ CQ
maps D/B-coinjective left D-contramodules to C/A-coinjective left C-con-
tramodules. Assume additionally that D is a projective left B-module. Then
the same functor applied to complexes maps contraacyclic complexes of
D/B-coinjective D-contramodules to contraacyclic complexes of C-contra-
modules.

Proof. Part (a): the first assertion follows from parts (a) (with the left and right
sides switched) and (b) of Proposition 7.1.3. To prove the second assertion, denote
by K• the cobar resolution CB ⊗B D −→ CB ⊗B D ⊗B D −→ · · · of the right
D-comodule CB . Then K• is a complex of D-coflat C-D-bicomodules and the cone
of the morphism CB −→ K• is coacyclic with respect to the exact category of
B-flat C-D-bicomodules. Thus if N• is a coacyclic complex of left D-comodules,
then the complex of left C-comodules K•�D N• is coacyclic and if N• is a complex
of D/B-coflat left D-comodules, then the cone of the morphism CB �D N• −→
K• �D N• is coacyclic. The proof of part (b) is completely analogous. �

7.2.2 It is obvious that the functor M �−→ BM maps complexes of A-flat C-co-
modules to complexes of B-flat D-comodules. It will follow from the next theorem
that it maps coacyclic complexes of A-flat C-comodules to coacyclic complexes of
D-comodules.

Theorem.

(a) Assume that the coring C is a flat left and right A-module and the ring A has
a finite weak homological dimension. Then any complex of A-flat C-comod-
ules that is coacyclic as a complex of C-comodules is coacyclic with respect
to the exact category of A-flat C-comodules.

(b) Assume that the coring C is a projective left and a flat right A-module and the
ring A has a finite left homological dimension. Then any complex of A-pro-
jective left C-comodules that is coacyclic as a complex of C-comodules is
coacyclic with respect to the exact category of A-projective left C-comodules.

(c) In the assumptions of part (b), any complex of A-injective left C-contramod-
ules that is contraacyclic as a complex of C-contramodules is contraacyclic
with respect to the exact category of A-injective left C-contramodules.
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Proof. The proof is not difficult when k is a field, as in this case the functors of
Lemmas 1.1.3 and 3.1.3 can be made additive and exact. Then it follows that for
any coacyclic complex of C-comodules M• the complex L1(M•) is coacyclic with
respect to the exact category of A-flat C-comodules, while it is clear that for any
complex of A-flat C-comodules M• the cone of the morphism L1(M•) −→ M•

is coacyclic with respect to the exact category of A-flat C-comodules. Besides,
parts (b) and (c) can be derived from the result of Remark 5.5 using the cobar
and bar constructions for C-comodules and C-contramodules. Finally, part (a)
can be deduced from part (b) using Lemma 3.1.3(a), but this argument requires
stronger assumptions on C and A.

Here is a direct proof of part (a). Let us call a complex of C-comodules
m-flat if its terms considered as A-modules have weak homological dimensions
not exceeding m, and let us call an m-flat complex of C-comodules m-coacyclic
if it is coacyclic with respect to the exact category of C-comodules whose weak
homological dimension over A does not exceed m. We will show that for any
m-coacyclic complex of C-comodules M• there exists an (m−1)-coacyclic complex
of C-comodules L• together with a surjective morphism of complexes L• −→ M•

whose kernel K• is also (m − 1)-coacyclic. It will follow that any (m − 1)-flat
m-coacyclic complex of C-comodules M is (m−1)-coacyclic, since the total complex
of the exact triple K• → L• → M• is (m − 1)-coacyclic, as is the cone of the
morphism K• −→ L•. By induction we will deduce that any 0-flat d-coacyclic
complex of C-comodules is 0-coacyclic, where d denotes the weak homological
dimension of the ring A; that is a reformulation of the assertion (a).

Let M• be the total complex of an exact triple of m-flat complexes of C-co-
modules ′M• → ′′M• → ′′′M•. Let us choose for each degree n projective A-mod-
ules ′Gn and ′′′Gn endowed with surjective A-module maps ′Gn −→ ′Mn and
′′′Gn −→ ′′′Mn. The latter map can be lifted to an A-module map ′′′Gn −→ ′′Mn,
leading to a surjective map from the exact triple ofA-modules ′Gn → ′Gn⊕′′′Gn →
′′′Gn to the exact triple of C-comodules ′Mn → ′′Mn → ′′′Mn. Applying the
construction of Lemma 1.1.3, one can obtain a surjective map from an exact triple
of A-flat C-comodules ′Pn → ′′Pn → ′′′Pn to the exact triple of C-comodules
′Mn → ′′Mn → ′′′Mn. Now consider three complexes of C-comodules ′L•, ′′L•, and
′′′L• whose terms are (i)Ln = (i)Pn−1 ⊕ (i)Pn and the differential dn(i)L : (i)Ln −→
(i)Ln+1 maps (i)Pn into itself by the identity map and vanishes in the restriction to
(i)Pn−1 and in the projection to (i)Pn+1. There are natural surjective morphisms
of complexes (i)L• −→ (i)M• constructed as in the proof of Theorem 5.4. Taken
together, they form a surjective map from the exact triple of complexes ′L• →
′′L• → ′′′L• onto the exact triple of complexes ′M• → ′′M• → ′′′M•. Let ′K• →
′′K• → ′′′K• be the kernel of this map of exact triples of complexes; then the
complexes (i)L• are 0-flat, while the complexes (i)K• are (m− 1)-flat. Therefore,
the total complex L• of the exact triple ′L• → ′′L• → ′′′L• is 0-coacyclic, while
the total complex K• of the exact triple ′K• → ′′K• → ′′′K• is (m− 1)-coacyclic.
There is a surjective morphism of complexes L• −→M• with the kernel K•.
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Now let ′K• → ′L• → ′M• and ′′K• → ′′L• → ′′M• be exact triples
of complexes of C-comodules where the complexes ′K•, ′L•, ′′K•, and ′′L•

are (m − 1)-coacyclic, and suppose that there is a morphism of complexes
′M• −→ ′′M•. Let us construct for the complex M• = cone(′M• → ′′M•) an exact
triple of complexes K• → L• →M• with (m− 1)-coacyclic complexes K• and L•.
Denote by ′′′L• the complex ′L•⊕′′L•; there is the embedding of a direct summand
′L• −→ ′′′L• and the surjective morphism of complexes ′′′L• −→ ′′M• whose com-
ponents are the composition ′L• −→ ′M• −→ ′′M• and the surjective morphism
′′L• −→ ′′M•. These two morphisms form a commutative square with the mor-
phisms ′L• −→ ′M• and ′M• −→ ′′M•. The kernel ′′′K• of the morphism ′′′L• −→
′′M• is the middle term of an exact triple of complexes ′′K• −→ ′′′K• −→ ′L•.
Since the complexes ′′K• and ′L• are (m− 1)-coacyclic, the complex ′′′K• is also
(m−1)-coacyclic. Set L• = cone(′L• −→ ′′′L•) and K• = cone(′K• −→ ′′′K•); then
there is an exact triple of complexes K• → L• →M• with the desired properties.

Obviously, if certain complexes of C-comodules M•α can be presented as quo-
tient complexes of (m−1)-coacyclic complexes by (m−1)-coacyclic subcomplexes,
then their direct sum

⊕
M•α can be also presented in this way.

Finally, let M• −→ ′M• be a homotopy equivalence of m-flat complexes of
C-comodules, and suppose that there is an exact triple ′K• → ′L• → ′M• with
(m− 1)-coacyclic complexes ′K• and ′L•. Let us construct an exact triple of com-
plexes K• → L• →M• with (m−1)-coacyclic complexes K• and L•. Consider the
cone of the morphism M• −→ ′M•; it is contractible, and therefore isomorphic to
the cone of the identity endomorphism of a complex of C-comodules N• with zero
differential. The complex N• is m-flat, so it can be presented as the quotient com-
plex of a complex of A-flat C-comodules P• by its (m−1)-flat subcomplex Q•. Hence
the complex cone(M• → ′M•) is isomorphic to the quotient complex of a 0-flat con-
tractible complex cone(idP•) by an (m−1)-flat contractible subcomplex cone(idQ•).

As we have proven, for the cocone ′′M• of the morphism ′M• −→ cone(M• →
′M•) there exists an exact triple ′′K• → ′′L• → ′′M• with (m − 1)-coacyclic
complexes ′′K• and ′′L•. The complex ′′M• is isomorphic to the direct sum
of the complex M• and the cocone of the identity endomorphism of the
complex ′M•. (Indeed, there is a term-wise split exact triple of complexes
cone(id ′M•)[−1] −→ ′′M• −→ M• and the complex cone(id ′M•)[−1] is con-
tractible.) The latter cocone can be presented as the quotient complex of an
(m− 1)-flat contractible complex ′P• by an (m− 1)-flat contractible subcomplex
′Q•, e.g., by taking ′P• = cone(id ′L•)[−1] and ′Q• = cone(id ′K•)[−1].

Now suppose that there are exact triples ′′K• → ′′L• → ′′M• and ′Q• →
′P• → ′N• with (m−1)-coacyclic complexes ′′K•, ′′L•, ′Q•, and ′P• for certain com-
plexes ′′M• = M•⊕ ′N• and ′N•. Let us construct an exact triple K• → L• →M•

with (m− 1)-coacyclic complexes K• and L• (in fact, we will have K• = ′′K• and
our construction with obvious modifications will work for the kernel M• of a sur-
jective morphism of complexes ′′M• −→ ′N•). Set ′′′M• = M•⊕ ′P•; then there is a
surjective morphism of complexes ′′′M• −→ ′′M• with the kernel ′Q•. Let ′′′L• be
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the fibered product of the complexes ′′′M• and ′′L• over ′′M•; then there are exact
triples of complexes ′′K• −→ ′′′L• −→ ′′′M• and ′Q• −→ ′′′L• −→ ′′L•. It follows
from the latter exact triple that the complex ′′′L• is (m − 1)-coacyclic. Further-
more, there is an injective morphism of complexes M• −→ ′′′M• with the cokernel
′P•. Let L• be the fibered product of the complexes M• and ′′′L• over ′′′M•; then
there are exact triples of complexes ′′K• −→ L• −→M• and L• −→ ′′′L• −→ ′P•.
It follows from the latter exact triple that the complex L• is (m− 1)-coacyclic.

Part (a) is proven; the proofs of parts (b) and (c) are completely analo-
gous. �
Remark. It follows from part (a) of the theorem that (in the same assump-
tions) any coacyclic complex of coflat C-comodules is coacyclic with respect to
the exact category of coflat C-comodules. Indeed, for any complex of C-comod-
ules M• coacyclic with respect to the exact category of A-flat C-comodules the
complex R2(M•) is coacyclic with respect to the exact category of coflat C-comod-
ules, and for any complex of coflat C-comodules M• the cone of the morphism
M• −→ R2(M•) is coacyclic with respect to the exact category of coflat C-comod-
ules (by Lemma 1.2.2). Analogously, if C is a flat rightA-module then any coacyclic
complex of C/A-coflat left C-comodules is coacyclic with respect to the exact cat-
egory of C/A-coflat left C-comodules. For coprojective C-comodules, coinjective
C-contramodules, (quite) C/A-injective C-comodules, and (quite) C/A-projective
C-contramodules even stronger results are provided by Remark 5.5, Theorem 5.4,
and Theorem 5.5.

7.3 Derived functors of pull-back and push-forward

Let C −→ D be a map of corings compatible with a k-algebra map A −→ B.
Assume that C is a flat right A-module and D is a flat right B-module. Then

the functor mapping the quotient category of the homotopy category of complexes
of D/B-coflat left D-comodules by its intersection with the thick subcategory of
coacyclic complexes to the coderived category of left D-comodules is an equiv-
alence of triangulated categories by Lemma 2.6. Indeed, for any complex of left
D-comodules N• there is a morphism from N• into a complex of D/B-coflat D-co-
modules R2(N•) with a coacyclic cone, which was constructed in 2.5. Compose
the functor N• �−→ CN• acting from the homotopy category of left D-comod-
ules to the homotopy category of left C-comodules with the localization functor
Hot(C-comod) −→ Dco(C-comod) and restrict it to the full subcategory of com-
plexes of D/B-coflat D-comodules. By Theorem 7.2.1(a), this restriction factor-
izes through the coderived category of left D-comodules. Let us denote the right
derived functor so obtained by

N• �−→ R

CN• : Dco(D-comod) −−→ Dco(C-comod).

According to Lemma 6.5.2, this definition of a right derived functor does not
depend on the choice of a subcategory of adjusted complexes.
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Assume that C is a flat left and right A-module, A has a finite weak homo-
logical dimension, and D is a flat right B-module. Then the functor mapping the
quotient category of the homotopy category of complexes of A-flat C-comodules
by its intersection with the thick subcategory of coacyclic complexes to the co-
derived category of C-comodules is an equivalence of triangulated categories by
Lemma 2.6. Indeed, for any complex of C-comodules M• there is a morphism into
M• from a complex of A-flat C-comodules L1(M•) with a coacyclic cone, which was
constructed in 2.5. Compose the functor M• �−→ BM• acting from the homotopy
category of left C-comodules to the homotopy category of left D-comodules with
the localization functor Hot(D-comod) −→ Dco(D-comod) and restrict it to the full
subcategory of complexes of A-flat C-comodules. It follows from Theorem 7.2.2(a)
that this restriction factorizes through the coderived category of left C-comodules.
Let us denote the left derived functor so obtained by

M• �−→ L

BM• : Dco(C-comod) −−→ Dco(D-comod).

According to Lemma 6.5.2, this definition of a left derived functor does not depend
on the choice of a subcategory of adjusted complexes.

Analogously, assume that C is a projective left A-module and D is a projective
left B-module. Then the left derived functor

Q• �−→ C
L
Q• : Dctr(D-contra) −−→ Dctr(C-contra)

is defined by restricting the functor Q• �−→ CQ• to the full subcategory of com-
plexes of D/B-coinjective left D-contramodules.

Assume that C is a projective left and a flat right A-module, A has a finite
left homological dimension, and D is a projective left B-module. Then the right
derived functor

P• �−→ B
R

P• : Dctr(C-contra) −−→ Dctr(D-contra)

is defined by restricting the functor P• �−→ BP• to the full subcategory of com-
plexes of A-injective left C-contramodules.

Properties of the above-defined derived functors will be studied (in the greater
generality of semimodules and semicontramodules) in Chapter 8. In particular, the
functor N• �−→ R

CN• is right adjoint to the functor M• �−→ L

BM• when the latter is
defined; the functor Q• �−→ C

L
Q• is left adjoint to the functor P• �−→ B

R
P• when

the latter is defined; the equivalences of categories Dco(C-comod) � Dctr(C-contra)
and Dco(D-comod) � Dctr(D-contra), when they are defined, transform the functor
N• �−→ R

CN• into the functor Q• �−→ C
L
Q•; and there are formulas connecting our

derived functors with the derived functors Ctrtor, Cotor and Coext.
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7.4 Faithfully flat/projective base ring change

7.4.1 The main ideas of the following section are due to Kontsevich and Rosen-
berg [62, 63].

Let C be a coring over a k-algebra A and A −→ B be a k-algebra morphism.
The coring BCB over the k-algebra B is constructed in the following way. As a
B-B-bimodule, BCB is equal to B ⊗A C ⊗A B. The comultiplication in BCB is
defined as the composition B ⊗A C⊗A B −→ B ⊗A C⊗A C⊗A B −→ B ⊗A C⊗A
B ⊗A C ⊗A B = (B ⊗A C ⊗A B) ⊗B (B ⊗A C ⊗A B) of the map induced by the
comultiplication in C and the map induced by the map A −→ B. The counit in
BCB is defined as the composition B ⊗A C ⊗A B −→ B ⊗A B −→ B of the map
induced by the counit in C and the map induced by the multiplication in B.

The coring BCB is a universal initial object in the category of corings D over
B endowed with a map C −→ D compatible with the map A −→ B.

As always, B is called a faithfully flat right A-module if it is a flat right
A-module and for any nonzero left A-module M the tensor product B ⊗A M is
nonzero. Assuming the former condition, the latter one holds if and only if the
map M = A⊗AM −→ B ⊗AM is injective for any left A-module M . Therefore,
B is a faithfully flat right A-module if and only if the map A −→ B is injective
and its cokernel A/B is a flat right A-module. Analogously, the ring B is called
a faithfully projective left A-module if it is a projective generator of the category
of left A-modules, i.e., it is a projective left A-module and for any nonzero left
A-module P the module HomA(B,P ) is nonzero. Assuming the former condition,
the latter one holds if and only if the map HomA(B,P ) −→ HomA(A,P ) = P
is surjective for any left A-module P . Therefore, B is a faithfully projective left
A-module if and only if the map A −→ B is injective and its cokernel A/B is a
projective left A-module.

If the coring C is a flat right A-module and the ring B is a faithfully flat
right A-module, then the functors M �−→ BM and N �−→ CN are mutually inverse
equivalences between the abelian categories of left C-comodules and left BCB-co-
modules,

C-comod � BCB-comod.

Analogously, if C is a projective left A-module and B is a faithfully projective
left A-module, then the functors P �−→ BP and Q �−→ CQ are mutually in-
verse equivalences between the abelian categories of left C-contramodules and left
BCB-contramodules,

C-contra � BCB-contra.

Both assertions follow from the next general theorem, which is the particular case
of Barr–Beck Theorem [67, VI.7] for abelian categories and exact functors.

Theorem. If ∆: B −→ A is an exact functor between abelian categories mapping
nonzero objects to nonzero objects and Γ: A −→ B is a functor left (resp., right)
adjoint to ∆, then the natural functor from the category B to the category of
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modules over the monad ∆Γ (resp., comodules over the comonad ∆Γ) over the
category A is an equivalence of abelian categories. �

To prove the first assertion, it suffices to apply the theorem to the functor
∆: C-comod −→ B-mod mapping a C-comodule M to the B-module B ⊗A M and
the functor Γ: B-mod −→ C-comod right adjoint to ∆ mapping a B-module U to
the C-comodule C⊗A U . To prove the second assertion, apply the theorem to the
functor ∆: C-contra −→ B-mod mapping a C-contramodule P to the B-module
HomA(B,P) and the functor Γ: B-mod −→ C-contra left adjoint to ∆ mapping a
B-module V to the C-contramodule HomA(C, V ).

7.4.2 Let C be a coring over a k-algebra A and A −→ B be a k-algebra morphism.
Assume that C is a flat left and right A-module and B is a faithfully flat

left and right A-module. Then it follows from Proposition 7.1.3(a) that for any
right C-comodule N and any left C-comodule M there is a natural map N �C

M −→ NB �BCB BM, which is an isomorphism, at least, when one of the A-mod-
ules N and M is flat or one of the BCB-comodules NB and BM is quasicoflat.
Analogously, assume that C is a projective left and a flat right A-module and B
is a faithfully projective left and a faithfully flat right A-module. Then it follows
from Proposition 7.1.3(b-c) that for any left C-comodule M and any left C-contra-
module P there is a natural map Cohom

BCB (BM,BP) −→ CohomC(M,P), which
is an isomorphism, at least, when the A-module M is projective, the A-module P
is injective, the BCB-comodule BM is quasicoprojective, or the BCB-contramodule
BP is quasicoinjective.

Remark. In general the map N�CM −→ NB�BCBBM is not an isomorphism, even
under the strongest of our assumptions on A, B, and C. For example, let C = A and
BCB = B⊗A B; then N �C M = N⊗A M, while NB �

BCB BM is the kernel of the
pair of maps N⊗AB⊗AM ⇒ N⊗AB⊗AB⊗AM induced by the map A −→ B. The
sequence 0 −→ N⊗AM −→ N⊗AB⊗AM −→ N⊗AB⊗AB⊗AM is exact if one of
two A-modules M and N is flat or admits a B-module structure, but in general the
map N ⊗AM −→ N ⊗AB⊗AM is not injective. Indeed, let k be a field, A = k[x]
be the algebra of polynomials in one variable, and B = k[x, ∂x] be the algebra
of differential operators in the affine line. Let M = k = N be one-dimensional
A-modules with the trivial action of x. Then the map N ⊗AM −→ N ⊗AB⊗AM
is zero, since m⊗ 1⊗ n = m⊗ (∂xx− x∂x)⊗ n = 0 in N ⊗A B ⊗AM .

Assume that C is a projective left and a flat right A-module and B is a
faithfully projective left and a faithfully flat right A-module. Then the equiva-
lences between the categories C-comod and BCB-comod and between the cate-
gories C-contra and BCB-contra transform the functors ΨC and ΦC into the func-
tors Ψ

BCB and Φ
BCB . Indeed, one has Hom

BCB (BCB,BM) = HomC(CB ,M) =
HomA(B,HomC(C,M)) and BCB �BCB

BP = BC �C P = B ⊗A (C �C P). Al-
ternatively, the same isomorphisms can be constructed as in 7.1.4 using Proposi-
tions 5.2.1(e) and 5.2.2(e).
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7.4.3 Let C be a coring over a k-algebra A and A −→ B be a k-algebra morphism.
Obviously, if C is a flat right A-module and B is a faithfully flat right A-mod-

ule, then a complex of left C-comodules M• is coacyclic if any only if the complex
of left BCB-comodules BM• is coacyclic. So the functor M• �−→ BM• induces an
equivalence of the coderived categories of left C-comodules and left BCB-comod-
ules. If C is a projective left A-module and B is a faithfully projective left A-mod-
ule, then a complex of left C-contramodules P• is contraacyclic if and only if the
complex of BCB-contramodules BP• is contraacyclic. So the functor P• �−→ BP•

induces an equivalence of the contraderived categories of left C-contramodules and
left BCB-contramodules.

If C is a flat left and rightA-module,B is a faithfully flat left and rightA-mod-
ule, and A and B have finite weak homological dimensions, then the equivalences
of categories

Dco(comod-C) � Dco(comod-BCB) and Dco(C-comod) � Dco(BCB-comod)

transform the derived functor CotorC into the derived functor CotorBCB . If C is
a projective left and a flat right A-module, B is a faithfully projective left and a
faithfully flat right A-module, and A and B have finite left homological dimen-
sions, then the equivalences of categories Dco(C-comod) � Dco(BCB-comod) and
Dctr(C-contra) � Dctr(BCB-contra) transform the derived functor CoextC into the
derived functor CoextBCB . In the same assumptions, the same equivalences of
categories transform the mutually inverse functors RΨC and LΦC into the mu-
tually inverse functors RΨ

BCB and LΦ
BCB . If C is a flat right A-module, B is a

faithfully flat right A-module, and A and B have finite left homological dimen-
sions, then the above equivalence of categories transforms the functor ExtC into
the functor Ext

BCB . If C is a projective left A-module, B is a faithfully projec-
tive left A-module, and A and B have finite left homological dimensions, then the
above equivalences of categories transform the functors ExtC and CtrtorC into the
functors ExtBCB and CtrtorBCB .

These isomorphisms of functors can be deduced from the uniqueness/
universality assertions of Lemmas 2.7 and 6.5.2 or derived from the preserva-
tion/reflection results of the next remark. Besides, they are particular cases of
the much more general isomorphisms constructed in Chapter 8.

Remark. In the strongest of the above flatness/projectivity and homological di-
mension assumptions, almost all the properties of comodules and contramodules
over corings considered in this book are preserved by the passages from a coring C

to the coring BCB and back. This applies to the properties of coflatness, coprojec-
tivity, coinjectivity, relative coflatness, relative coprojectivity, relative coinjectiv-
ity, injectivity, projectivity, contraflatness, relative injectivity, relative projectivity,
relative contraflatness. All of this follows from the facts that an A-module M is
flat if and only if the B-module B ⊗AM is flat, an A-module M is projective if
and only if the B-module B ⊗AM is projective, and an A-module P is injective
if and only if the B-module HomA(B,P ) is injective. Indeed, suppose that the
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left B-module B ⊗A M is flat. Any flat left B-module is a flat left A-module,
since the ring B is a flat left A-module. Consider the tensor product of complexes
(A→ B)⊗A · · ·⊗A(A→ B)⊗AM , where the number of factors A −→ B is at least
equal to the weak homological dimension of A. This complex is exact everywhere
except its rightmost term, since the mapA −→ B is injective andB/A is a flat right
A-module. Since all terms of this complex, except possibly the leftmost one, are
flat left A-modules, the leftmost term A is also a flat left A-module. Alternatively,
one can consider the Amitsur complex M −→ B⊗AM −→ B⊗AB⊗AM −→ · · ·
with the alternating sums of the maps induced by the map A −→ B as the differ-
entials; this complex of left A-modules is acyclic, since the induced complex of left
B-modules is contractible. Notice that the assumption of finite weak homological
dimension of the ring A is necessary for this argument, since otherwise the ring B
can be absolutely flat while the ring A is not (see Remark 8.4.3). Assuming only
that C is a flat right A-module and B is a faithfully flat right A-module, the right
BCB-comodule NB is coflat if a right C-comodule N is coflat, etc.

On the other hand, even under the strongest of the above assumptions there
are more quite C/A-injective C-comodules than quite BCB/B-injective BCB-co-
modules and there are more quite C/A-projective C-contramodules than quite
BCB/B-projective BCB-contramodules; i.e., quite relative injectivity and quite
relative projectivity is not preserved by the equivalences of categories M �−→ BM

and P �−→ BP in general. Analogously, there are more quasicoflat C-comodules
than quasicoflat BCB-comodules.

Indeed, consider the case when C = A and BCB = B ⊗A B is a “Galois
coring” [23]. Then all C-comodules are coinduced and all C-contramodules are
induced, while a BCB-comodule is quite BCB/B-injective, or a BCB-contramod-
ule is quite BCB/B-projective, if and only if the corresponding A-module is a
direct summand of an A-module admitting a B-module structure. For example, if
A = k[x] and B = k[x, ∂x] as in Remark 7.4.2, then the one-dimensional A-mod-
ule M with the trivial action of x is not the direct summand of any A-mod-
ule admitting a B-module structure, since the equation xm = 0 would imply
m = −x∂xm. At the same time, any projective left A-module is a direct summand
of a projective left B-module and any injective left A-module is a direct summand
of an injective left B-module. It follows, in particular, that the cokernel of an
injective morphism of quite C/A-injective C-comodules is not always quite C/A-in-
jective and the kernel of a surjective morphism of quite C/A-projective C-contra-
modules is not always quite C/A-projective.

7.5 Remarks on Morita morphisms

7.5.1 A Morita morphism from a k-algebra A to a k-algebra B is an A-B-bimod-
ule E such that E is a finitely generated projective right B-module. For any Morita
morphism E from A to B, set E∨ = HomBop(E,B); then E∨ is a B-A-bimodule
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and a finitely generated projective left B-module. To any k-algebra morphism
A −→ B, one can assign a Morita morphism E = B = E∨ from A to B.

Equivalently, a Morita morphism from A to B can be defined as a pair con-
sisting of an A-B-bimodule E and a B-A-bimodule E∨ endowed with an A-A-bi-
module morphism A −→ E⊗BE∨ and a B-B-bimodule morphism E∨⊗AE −→ B
such that the two compositions

E −−→ E ⊗B E∨ ⊗A E −−→ E and E∨ −−→ E∨ ⊗A E ⊗B E∨ −−→ E∨

are equal to the identity endomorphisms of E and E∨.
For any Morita morphism E from A to B the functor

N �−→ AN = E ⊗B N = HomB(E∨, N)

from the category of left B-modules to the category of left A-modules has a left
adjoint functor

M �−→ BM = E∨ ⊗AM
and a right adjoint functor

P �−→ BP = HomA(E,P ).

Analogously, the functor N �−→ NA = N ⊗B E∨ = HomBop(E,N) from the
category of right B-modules to the category of right A-modules has a left ad-
joint functor M �−→ MB = M ⊗A E and a right adjoint functor P �−→ PB =
HomBop(E∨, P ).

Let C be a coring over a k-algebra A and E be a Morita morphism from A
to B. Then there is a coring structure on the B-B-bimodule

BCB = E∨ ⊗A C⊗A E
defined in the following way [24]. The comultiplication in BCB is the composition
E∨ ⊗A C ⊗A E −→ E∨ ⊗A C ⊗A C ⊗A E −→ E∨ ⊗A C ⊗A E ⊗B E∨ ⊗A C ⊗A E
of the map induced by the comultiplication in C and the map induced by the
map A −→ E ⊗B E∨. The counit in BCB is the composition E∨ ⊗A C⊗A E −→
E∨ ⊗A E −→ B, where the first map is induced by the counit in C.

All the results of 7.1–7.3 can be generalized to the situation of a Morita
morphism E from a k-algebra A to a k-algebra B and a morphism BCB −→ D of
corings over B. In particular, for any left C-comodule M there is a natural D-co-
module structure on the B-module BM = E∨ ⊗A M, and analogously for right
comodules and left contramodules. For any right C-comodule M′ and any left C-co-
module M′′ there is a natural map M′ �C M′′ −→ M′B �D BM′′ compatible with
the map M′⊗AM′′ −→M′B⊗B BM′′, etc. All the results of 7.4 can be generalized
to the case of a Morita morphism E from a k-algebra A to a k-algebra B. In
particular, E∨ is a (faithfully) flat right A-module if and only if E ⊗B E∨ is a
(faithfully) flat right A-module, etc.
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7.5.2 One would like to define a Morita morphism from a coring C to a coring
D as a pair consisting of a C-D-bicomodule E and a D-C-bicomodule E∨ endowed
with maps C −→ E �D E∨ and E∨ �C E −→ D satisfying appropriate conditions.
This works fine for coalgebras over fields, but in the coring situation it is not
clear how to deal with the problems of nonassociativity of the cotensor product.
That is why we restrict ourselves to the special case of coflat/coprojective Morita
morphisms.

Notice that, assuming D to be a flat right B-module, a k-linear functor

Λ: C-comod −−→ D-comod

is isomorphic to a functor of the form M �−→ K�CM for a certain D-C-bicomodule
K if and only if it preserves cokernels of the morphisms coinduced from morphisms
of A-modules, kernels of A-split morphisms, and infinite direct sums. Analogously,
assuming D to be a projective left B-module, a k-linear functor

Λ: C-contra −−→ D-contra

is isomorphic to a functor of the form P �−→ CohomC(K,P) for a certain C-D-bi-
comodule K if and only if it preserves kernels of the morphisms induced from
morphisms of A-modules, cokernels of A-split morphisms, and infinite direct prod-
ucts. Indeed, let us compose our functor Λ with the induction functor A-mod −→
C-contra and with the forgetful functor D-contra −→ B-mod; then the functor
A-mod −→ B-mod so obtained has the form U �−→ HomA(K, U) for an A-B-bi-
module K. This follows from a theorem of Watts [85] about representability of
left exact product-preserving covariant functors on the category of modules over
a ring, which is a particular case of the abstract adjoint functor existence theo-
rem [67, V.8]. The morphism of functors HomA(C,HomA(C, U)) −→ HomA(C, U)
induces a left C-coaction in K, while the functorial D-contramodule structures on
the B-modules HomA(K, U) induce a right D-coaction in K. Since the functor Λ
sends the exact sequences HomA(C,HomA(C,P)) −→ HomA(C,P) −→ P −→ 0
to exact sequences, it is isomorphic to the functor P �−→ CohomC(K,P).

Let C be a coring over a k-algebra A and D be a coring over a k-algebra B.
Assume that C is a flat right A-module and D is a flat right B-module. A right
coflat Morita morphism from C to D is a pair consisting of a D-coflat C-D-bi-
comodule E and a C-coflat D-C-bicomodule E∨ endowed with a C-C-bicomodule
morphism C −→ E �D E∨ and a D-D-bicomodule morphism E∨ �C E −→ D such
that the two compositions

E −−→ E �D E∨ �C E −−→ E and E∨ −−→ E∨ �C E �D E∨ −−→ E∨

are equal to the identity endomorphisms of E and E∨. A right coflat Morita mor-
phism (E,E∨) from C to D induces an exact functor M �−→ DM = E∨ �C M from
the category of left C-comodules to the category of left D-comodules and an exact
functor N �−→ CN = E�DN from the category of left D-comodules to the category
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of left C-comodules; the former functor is left adjoint to the latter one. Conversely,
any pair of adjoint exact k-linear functors preserving infinite direct sums between
the categories of left C-comodules and left D-comodules is induced by a right coflat
Morita morphism.

Analogously, assume that C is a projective left A-module and D is a projec-
tive left B-module. A left coprojective Morita morphism from C to D is defined as a
pair consisting of a C-coprojective C-D-bicomodule E and a D-coprojective D-C-bi-
comodule E∨ endowed with a C-C-bicomodule morphism C −→ E �D E∨ and a
D-D-bicomodule morphism E∨�CE −→ D satisfying the same conditions as above.
A left coprojective Morita morphism (E,E∨) from C to D induces an exact functor
P �−→ DP = CohomC(E,P) from the category of left C-contramodules to the cat-
egory of left D-contramodules and an exact functor Q �−→ CQ = CohomD(E∨,Q)
from the category of left D-contramodules to the category of left C-contramod-
ules; the former functor is right adjoint to the latter one. Conversely, any pair of
adjoint exact k-linear functors preserving infinite products between the categories
of left C-contramodules and left D-contramodules is induced by a left coprojective
Morita morphism.

All the results of 7.1–7.3 can be extended to the situation of a left coprojective
and right coflat Morita morphism from a coring C to a coring D. In particular, for
any right C-comodule M and any left D-contramodule Q the compositions (M �C

E)�DQ −→ (M�CE)�DCohomC(E,CohomD(E∨,Q)) −→M�CCohomD(E∨,Q)
and M �C CohomD(E∨,Q) −→ (M �C E �D E∨) �C CohomD(E∨,Q) −→ (M �C

E)�D Q of the maps induced by the morphisms E∨�C E −→ D and C −→ E�D E∨

and the natural “evaluation” maps are mutually inverse isomorphisms between
the k-modules MD �D Q and M �C

CQ. For any left D-contramodule Q there
are natural isomorphisms of left C-comodules ΦC(CQ) = C �C

CQ � CD �D Q �
E�D Q � E �D (D�D Q) = C(ΦDQ) by Proposition 5.2.1(e), etc. However, one
sometimes has to impose the homological dimension conditions on A and B where
they were not previously needed and strengthen the quasicoflatness (quasicopro-
jectivity, quasicoinjectivity) conditions to coflatness (coprojectivity, coinjectivity)
conditions.

7.5.3 A right coflat Morita equivalence between corings C and D is a right coflat
Morita morphism (E,E∨) from C to D such that the bicomodule morphisms C −→
E �D E∨ and E∨ �C E −→ D are isomorphisms; it can be also considered as a
right coflat Morita morphism (E∨,E) from D to C. Left coflat Morita equivalences
and left coprojective Morita equivalences are defined in the analogous way. A right
coflat Morita equivalence between corings C and D induces an equivalence of the
categories of left C-comodules and left D-comodules, and, assuming that C is a flat
right A-module and D is a flat right B-module, any equivalence between these two
k-linear categories comes from a right coflat Morita equivalence. Analogously, a left
coprojective Morita equivalence between corings C and D induces an equivalence of
the categories of left C-contramodules and left D-contramodules, and, assuming
that C is a projective left A-module and D is a projective left B-module, any
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equivalence between these two k-linear categories comes from a left coprojective
Morita equivalence.

Let C be a coring over a k-algebra A and (E,E∨) be a Morita morphism from
A to B. If C is a flat right A-module and E∨ is a faithfully flat right A-module,
then the pair of bicomodules E = CB = C ⊗A E and E∨ = BC = E∨ ⊗A C is a
right coflat Morita equivalence between the corings C and BCB. Analogously, if C

is a projective left A-module and E is a faithfully projective left A-module, then
the same pair of bicomodules E = CB and E∨ = BC is a left coprojective Morita
equivalence between the corings C and BCB. This is a reformulation of the results
of 7.4.1 in the case of a Morita morphism of k-algebras.

All the results of 7.4.3 can be generalized to the situation of a Morita equiva-
lence, satisfying appropriate coflatness/coprojectivity conditions, between corings
C and D. The same applies to the results of 7.4.2, with homological dimension con-
ditions added when necessary and the quasicoflatness (quasicoprojectivity, quasi-
coinjectivity) conditions strengthened to coflatness (coprojectivity, coinjectivity)
conditions.

Remark. When the rings A and B are semisimple, one can consider Morita mor-
phisms from the coring C to the coring D without any coflatness/coprojectivity
conditions imposed. Moreover, for any Morita morphism (E,E∨) from C to D the
left C-comodule E is coprojective and the right C-comodule E∨ is coprojective. In
particular, any Morita equivalence between C and D is left and right coprojective.
On the other hand, without such conditions on the rings A and B not every right
coflat Morita equivalence between C and D is a left coflat Morita equivalence. For
example, when C is a finite-dimensional coalgebra over a field k, B is the algebra
over k dual to C, and D = B, the right coflat Morita equivalence between C and
D inducing the equivalence of categories C-comod � B-mod is not left coflat, since
this equivalence of categories does not preserve coflatness of comodules.





8 Functoriality in the Semialgebra

8.1 Compatible morphisms

Let C −→ D be a map of corings compatible with a k-algebra map A −→ B. Let
S be a semialgebra over the coring C and T be a semialgebra over the coring D.

8.1.1 A map S −→ T is called compatible with the maps A −→ B and C −→ D if
the biaction maps A⊗k S⊗kA −→ S and B⊗k T⊗kB −→ T form a commutative
diagram with the maps S −→ T and A⊗kS⊗kA −→ B⊗kT⊗kB (that is the map
S −→ T is an A-A-bimodule morphism), the bicoaction maps S −→ C⊗A S⊗A C

and T −→ D ⊗B T ⊗B D form a commutative diagram with the maps S −→ T

and C⊗A S⊗A C −→ D⊗B T ⊗B D (that it the induced map B⊗A S⊗AB −→ T

is a D-D-bicomodule morphism), and furthermore, the semimultiplication maps
S�C S −→ S and T �D T −→ T and the semiunit maps C −→ S and D −→ T form
commutative diagrams with the maps C −→ D, S −→ T, and S�C S −→ T �D T.

Let S −→ T be a map of semialgebras compatible with a map of corings
C −→ D and a k-algebra map A −→ B. Let M be a left S-semimodule and N

be a left T-semimodule. A map M −→ N is called compatible with the maps
A −→ B, C −→ D, and S −→ T if it is compatible with the maps A −→ B and
C −→ D as a map from a C-comodule to a D-comodule and the semiaction maps
S �C M −→M and T �D N −→ N form a commutative diagram with the maps
M −→ N and S�C M −→ T �D N. Analogously, let P be a left S-semicontramod-
ule and Q be a left T-semicontramodule. A map Q −→ P is called compatible
with the maps A −→ B, C −→ D, and S −→ T if it is compatible with the maps
A −→ B and C −→ D as a map from a D-contramodule to a C-contramodule
and the semicontraaction maps P −→ CohomC(S,P) and Q −→ CohomD(T,Q)
form a commutative diagram with the maps Q −→ P and CohomD(T,Q) −→
CohomC(S,P).

Let M′ −→ N′ be a map from a right S-semimodule to a right T-semimodule
compatible with the maps A −→ B, C −→ D, and S −→ T, and let M′′ −→ N′′

be a map from a left S-semimodule to a left T-semimodule compatible with the
maps A −→ B, C −→ D, and S −→ T. Assume that the triple cotensor products
M′ �C S �C M′′ and N′ �D T �D N′′ are associative. Then there is a natural map
of k-modules M′ ♦S M′′ −→ N′ ♦S N′′. Analogously, let M −→ N be a map from
a left S-semimodule to a left T-semimodule compatible with the maps A −→ B,
C −→ D, and S −→ T, and let Q −→P be a map from a left T-semicontramodule
to a left S-semicontramodule compatible with the maps A −→ B, C −→ D, and
S −→ T. Assume that the triple cohomomorphisms CohomC(S �C M, P) and
CohomD(T �D N, Q) are associative. Then there is a natural map of k-modules
SemiHomT(N,Q) −→ SemiHomS(M,P).

L. Positselski, Homological Algebra of Semimodules and Semicontramodules, Monografie    143
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8.1.2 Let S −→ T be a map of semialgebras compatible with a map of corings
C −→ D and a k-algebra map A −→ B.

Assume that C is a flat right A-module and either S is a coflat right C-co-
module, or S is a flat right A-module and a C/A-coflat left C-comodule and A
has a finite weak homological dimension, or A is absolutely flat. Then for any left
T-semimodule N there is a natural S-semimodule structure on the left C-comodule
CN. It is constructed as follows: the composition S�CCN −→ T�DN −→ N of the
map induced by the maps S −→ T and CN −→ N with the T-semiaction in N is a
map from a C-comodule to a D-comodule compatible with the maps A −→ B and
C −→ D, hence there is a C-comodule map S�CCN −−→ CN. Analogously, assume
that C is a projective left A-module and either S is a coprojective left C-comodule,
or S is a projective left A-module and a C/A-coflat right C-comodule and A has a
finite left homological dimension, or A is semisimple. Then for any left T-semicon-
tramodule Q there is a natural S-semicontramodule structure on the left C-contra-
module CQ. Indeed, the composition Q −→ CohomD(T,Q) −→ CohomC(S, CQ)
is a map from a D-contramodule to a C-contramodule compatible with the maps
A −→ B and C −→ D, hence a C-contramodule map CQ −−→ CohomC(S, CQ).
Assuming that D is a flat right B-module, C is a flat right A-module, and S

is a coflat right C-comodule, for any D-coflat right T-semimodule N there is a
natural S-semimodule structure on the coflat right C-comodule NC and for any
D-coinjective left T-semicontramodule Q there is a natural S-semicontramodule
structure on the coinjective left C-contramodule CQ provided that B is a flat right
A-module.

Assume that C is a flat right A-module, S is a coflat right C-comodule, D

is a flat right B-module, and T is a coflat right D-comodule. Then the functor
N �−→ CN from the category of left T-semimodules to the category of left S-semi-
modules has a left adjoint functor M �−→ TM, which is constructed as follows.
For induced left S-semimodules, one has

T(S �C L) = T �D BL;

to compute the T-semimodule TM for an arbitrary left S-semimodule M, one
can represent M as the cokernel of a morphism of induced S-semimodules. Both
k-modules HomS(M, CN) and HomT(TM,N) are isomorphic to the k-module of
all maps of semimodules M −→ N compatible with the maps A −→ B, C −→ D,
and S −→ T, hence

HomS(M, CN) � HomT(TM,N).

There are also a few situations when the functor M �−→ TM is defined on the
full subcategory of induced S-semimodules. Under the analogous assumptions, the
functor M �−→MT left adjoint to the functor N �−→ NC acts from the category
of right S-semimodules to the category of right T-semimodules.

Now assume that C is a flat left and right A-module, S is a flat left A-mod-
ule and a coflat right C-comodule, A has a finite weak homological dimension, D
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is a flat right B-module, and T is a coflat right D-comodule. Then the functor
N �−→ CN can be constructed in a different way: when M is a flat left A-module,
one has

TM = TC ♦S M,

where TC = T�DBC is a T-S-bisemimodule with the right S-semimodule structure
provided by the above construction. To compute the T-semimodule TM for an
arbitrary left S-semimodule M, one can represent M as the cokernel of a morphism
of A-flat S-semimodules. Assuming only that C is a flat right A-module, S is a
coflat right C-comodule, D is a flat right B-module, and T is a coflat right D-co-
module, the functor M �−→ TM can be defined by the formula TM = TC ♦S M for
any M whenever B is a flat right A-module. If C is a flat left and right A-module,
S is a coflat left and right C-comodule, D is a flat right B-module, and T is a coflat
right D-comodule, the functor M �−→ TM is given by the formula TM = TC ♦S M

on the full subcategory of C-coflat S-semimodules M.
Furthermore, assume that C is a projective left A-module, S is a coprojective

left C-comodule, D is a projective left B-module, and T is a coprojective left
D-comodule. Then the functor Q �−→ CQ from the category of left T-semicontra-
modules to the category of left S-semicontramodules has a right adjoint functor
P �−→ TP, which is constructed as follows. For coinduced left S-semicontramod-
ules, one has

TCohomC(S,R) = CohomD(T,BR);

to compute the T-semicontramodule TP for an arbitrary left S-semicontramodule
P, one can represent P as the kernel of a morphism of coinduced S-semicontra-
modules. Both k-modules HomS(CQ,P) and HomT(Q, TP) are isomorphic to
the k-module of all maps of semicontramodules Q −→ P compatible with the
maps A −→ B, C −→ D, and S −→ T, hence

HomS(CQ,P) � HomT(Q, TP).

There are also a few situations when the functor P �−→ TP is defined on the full
subcategory of coinduced S-semicontramodules.

Now assume that C is a projective left and a flat right A-module, S is a
coprojective left C-comodule and a flat right A-module, A has a finite left homo-
logical dimension, D is a projective left B-module, and T is a coprojective left
D-comodule. Then the functor P �−→ TP can be constructed in a different way:
when P is an injective left A-module,

TP = SemiHomS(CT,P);

to compute the T-semicontramodule TP for an arbitrary left S-semicontramodule
P, one can represent P as the kernel of a morphism of A-injective S-semicontra-
modules. Assuming only that C is a projective left A-module, S is a coprojec-
tive left C-comodule, D is a projective left B-module, and T is a coprojective
left D-comodule, the functor P �−→ TP can be defined by the formula TP =
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SemiHomS(CT,P) for any P whenever B is a projective left A-module. If C is a
projective left and a flat right A-module, S is a coprojective left and a coflat right
C-comodule, D is a projective left B-module, and T is a coprojective left D-co-
module, the functor P �−→ TP is given by the formula TP = SemiHomS(CT,P)
on the full subcategory of C-coinjective S-semicontramodules P.

Assume that C is a projective left A-module, S is a coprojective left C-co-
module, D is a projective left B-module, and T is a coprojective left D-comodule.
Then for any right S-semimodule M and any left T-semicontramodule Q there is
a natural isomorphism

MT �T Q �M �S
CQ.

Moreover, both k-modules are isomorphic to the cokernel of the pair of maps
(M �C S)B �D Q ⇒ MB �D Q one of which is induced by the S-semiaction in
M and the other is defined in terms of the morphism (M �C S)B −→MB �D T,
the T-semicontraaction in Q, and the natural “evaluation” map (MB �D T)�D

CohomD(T,Q) −→MB �D Q. This is clear for M �S
CQ, and to construct this

isomorphism for MT �T Q it suffices to represent M as the cokernel of the pair
of morphisms of induced S-semimodules M �C S �C S ⇒ M �C S. In the above
situations when MT = M ♦S CT, this isomorphism can be also constructed by
representing MT as the cokernel of the pair of T-semimodule morphisms M �C

S �C CT ⇒ M �C CT and using the isomorphisms M �C CT �MB �D T.

8.1.3 Let S −→ T be a map of semialgebras compatible with a map of corings
C −→ D and a k-algebra map A −→ B.

Proposition.

(a) Let M be a left S-semimodule and N be a right T-semimodule. Then the
semitensor product TM = TC ♦S M can be endowed with a left T-semimod-
ule structure via the construction of 1.4.4 and the map of semitensor products

NC ♦S M −−→ N ♦T TM

induced by the maps of semimodules NC −→ N and M −→ TM is an
isomorphism, at least, in the following cases:
• D is a flat right B-module, T is a coflat right D-comodule, N is a coflat

right D-comodule, C is a flat left A-module, S is a flat left A-module and
a C/A-coflat right C-comodule, the ring A has a finite weak homological
dimension, and M is a flat left A-module, or

• D is a flat right B-module, T is a coflat right D-comodule, N is a coflat
right D-comodule, C is a flat left A-module, S is a coflat left C-comodule,
and M is a coflat left C-comodule, or
• D is a flat right B-module, T is a coflat right D-comodule, N is a

coflat right D-comodule, C is a flat right A-module, S is a coflat right
C-comodule, and B is a flat right A-module, or
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• D is a flat left B-module, T is a flat left B-module and a D/B-coflat
right D-comodule, the ring B has a finite weak homological dimension,
C is a flat left A-module, S is a coflat left C-comodule, and M is a
semiflat left S-semimodule, or
• D is a flat left B-module, T is a coflat left D-comodule, BC is a coflat

left D-comodule, C is a flat left A-module, S is a coflat left C-comodule,
and M is a semiflat left S-semimodule.

When the ring A (resp., B) is absolutely flat, the C/A-coflatness (resp.,
D/B-coflatness) assumption can be dropped.

(b) Let P be a left S-semicontramodule and N be a left T-semimodule. Then the
module of semihomomorphisms TP = SemiHomS(CT,P) can be endowed
with a left T-semicontramodule structure via the construction of 3.4.4 and
the map of the semihomomorphism modules

SemiHomT(N, TP) −−→ SemiHomS(CN,P)

induced by the maps of semimodules and semicontramodules CN −→ N and
TP −→P is an isomorphism, at least, in the following cases:
• D is a projective left B-module, T is a coprojective left D-comodule, N

is a coprojective left D-comodule, C is a flat right A-module, S is a flat
right A-module and a C/A-coprojective left C-comodule, the ring A has
a finite left homological dimension, and P is an injective left A-module,
or
• D is a projective left B-module, T is a coprojective left D-comodule,

N is a coprojective left D-comodule, C is a flat right A-module, S is a
coflat right C-comodule, and P is a coinjective left C-comodule, or

• D is a projective left B-module, T is a coprojective left D-comodule, N

is a coprojective left D-comodule, C is a projective left A-module, S is
a coprojective left C-comodule, and B is a projective left A-module, or

• D is a flat right B-module, T is a flat right B-module and a D/B-co-
projective left D-comodule, the ring B has a finite left homological di-
mension, C is a flat right A-module, S is a coflat right C-comodule, and
P is a semiinjective left S-semicontramodule, or
• D is a flat right B-module, T is a coflat right D-comodule, CB is a

coflat right D-comodule, C is a flat right A-module, S is a coflat right
C-comodule, and P is a semiinjective left S-semicontramodule.

When the ring A (resp., B) is semisimple, the C/A-coprojectivity (resp.,
D/B-coprojectivity) assumption can be dropped.

(c) Let M be a left S-semimodule and Q be a left T-semicontramodule. Then
the map of semihomomorphism modules

SemiHomT(TM,Q) −−→ SemiHomS(M, CQ)
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induced by the map of semimodules M −→ TM and the map of semicontra-
modules Q −→ CQ is an isomorphism, at least, in the following cases:
• D is a flat right B-module, T is a coflat right D-comodule, Q is a

coinjective left D-contramodule, C is a projective left A-module, S is
a projective left A-module and a C/A-coflat right C-comodule, the ring
A has a finite left homological dimension, and M is a projective left
A-module, or
• D is a flat right B-module, T is a coflat right D-comodule, Q is a

coinjective left D-contramodule, C is a projective left A-module, S is a
coprojective left C-comodule, and M is a coprojective left C-comodule,
or
• D is a flat right B-module, T is a coflat right D-comodule, Q is a

coinjective left D-contramodule, C is a flat right A-module, S is a coflat
right C-comodule, and B is a flat right A-module, or

• D is a projective left B-module, T is a projective left B-module and a
D/B-coflat right D-comodule, the ring B has a finite left homological
dimension, C is a projective left A-module, S is a coprojective left C-co-
module, and M is a semiprojective left S-semimodule, or
• D is a projective left B-module, T is a coprojective left D-comodule, BC

is a coprojective left D-comodule, C is a projective left A-module, S is
a coprojective left C-comodule, and M is a semiprojective left S-semi-
module.

When the ring A (resp., B) is semisimple, the C/A-coflatness (resp., D/B-co-
flatness) assumption can be dropped.

Proof. Part (a): under our assumptions, there is a natural isomorphism of right
S-semimodules NC � N ♦T TC. For any left S-semimodule M and right T-semi-
module N for which the iterated semitensor products (N ♦T TC) ♦S M and N ♦T

(TC♦SM) are defined and the triple cotensor product N�DTC�CM is associative,
the map (N♦T TC)♦S M −→ N♦T (TC ♦S M) induced by the bisemimodule maps
S −→ TC −→ T compatible with the maps A −→ B, C −→ D, and S −→ T

forms a commutative diagram with the maps N�D TC �C M −→ (N♦T TC)♦S M

and N �D TC �C M −→ N ♦T (TC ♦S M). Indeed, the map N �D TC �C M −→
N �D (TC ♦S M) is equal to the composition of the map N �D TC �C M −→
N�DT�D (TC♦SM) induced by the maps TC −→ T and M −→ TC♦SM and the
map N�DT�D(TC♦SM) −→ N�D(TC♦SM) induced by the left T-semiaction in
TC ♦S M. To check this, one can notice that the diagram in question is obtained
by taking the cotensor product with N of the diagram of maps TC �C M −→
T �D (TC ♦S M) −→ TC ♦S M and compose the latter diagram with the surjective
map TC �C S �C M −→ TC �C M induced by the left S-semiaction in M. On the
other hand, the composition of maps N �D TC �C M −→ (N ♦T TC) ♦S M −→
N�D (TC ♦S M) is equal to the composition of the same map N�D TC �C M −→
N �D T �D (TC ♦S M) and the map N �D T �D (TC ♦S M) −→ N �D (TC ♦S M)
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induced by the right T-semiaction in N, since both compositions are equal to the
composition of the map N �D TC �C M −→ N �C M induced by the composition
N�D TC −→ N♦T TC −→ N with the map N�C M −→ N�D (TC ♦S M) induced
by the map M −→ TC ♦S M. It remains to apply Proposition 1.4.4. The proofs of
parts (b) and (c) are completely analogous. �

8.1.4 Let S −→ T be a map of semialgebras compatible with a map of corings
C −→ D and a k-algebra map A −→ B.

Assume that C is a projective left and a flat right A-module, S is a copro-
jective left and a coflat right C-comodule, D is a projective left and a flat right
B-module, and T is a coprojective left and a coflat right C-comodule. Then for any
left T-semicontramodule Q the natural map of C-comodules ΦC(CQ) −→ C(ΦDQ)
is an S-semimodule morphism

ΦS(CQ) −−→ C(ΦTQ).

Indeed, ΦS(CQ) = S �S
CQ � ST �T Q � CT �T Q as a left S-semimodule

and C(ΦTQ) = C(T �T Q), so there is an S-semimodule morphism ΦS(CQ) −→
C(ΦTQ); it coincides with the C-comodule morphism ΦC(CQ) −→ C(ΦDQ) de-
fined in 7.1.4. Analogously, for any left T-semimodule N the natural map of C-con-
tramodules C(ΨDN) −→ ΨC(CN) is an S-semicontramodule morphism

C(ΨTN) −−→ ΨS(CN).

Indeed, ΨS(CN) = HomS(S, CN) � HomT(TS,N) � HomT(TC,N) as a left
S-semicontramodule and C(ΨTN) = CHomT(T,N).

Assume that C is a projective left A-module, S is a coprojective left C-comod-
ule, D is a projective left B-module, T is a coprojective left D-comodule, and B is a
projective left A-module. Then the equivalence of categories of C-coprojective left
S-semimodules and C-projective left S-semicontramodules and the equivalence of
categories of D-coprojective left T-semimodules and D-projective left S-semicon-
tramodules transform the functor N �−→ CN into the functor Q �−→ CQ. Indeed,
the above argument shows that for any D-projective left T-semicontramodule Q
the isomorphism ΦC(CQ) � C(ΦDQ) preserves the S-semimodule structures.

Assume that C is a flat right A-module, S is a coflat right C-comodule, D is a
flat right B-module, T is a coflat right D-comodule, and B is a flat right A-module.
Then the equivalence of categories of C-injective left S-semimodules and C-coinjec-
tive left S-semicontramodules and the equivalence of categories of D-injective left
T-semimodules and D-coinjective left S-semicontramodules transform the functor
N �−→ CN into the functor Q �−→ CQ. Indeed, the above argument shows that
for any D-injective left T-semimodule N the isomorphism C(ΨDN) � ΨC(CN)
preserves the S-semicontramodule structures.

Assume that C is a projective left and a flat right A-module, S is a coprojec-
tive left C-comodule and a flat rightA-module, D is a projective left and a flat right
B-module, T is a coprojective left D-comodule and a flat right B-module, and the
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rings A and B have finite left homological dimensions. Then the equivalence of
categories of C/A-injective left S-semimodules and C/A-projective left S-semicon-
tramodules and the equivalence of categories of D/B-injective left T-semimodules
and D/B-projective left T-semicontramodules transform the functor N �−→ CN

into the functor Q �−→ CQ. Indeed, the above argument shows that for any
D/B-projective left T-semicontramodule Q the isomorphism ΦC(CQ) � C(ΦDQ)
preserves the S-semimodule structures. The analogous result holds when S is a
projective left A-module and a coflat right C-comodule and T is a projective left
B-module and a coflat right D-comodule; it can be proven by applying the above
argument to the isomorphism C(ΨDN) � ΨC(CN) for a D/B-injective left T-semi-
module N.

Finally, assume that the rings A and B are semisimple. Then the equivalence
of categories of C-injective left S-semimodules and C-projective left S-semicontra-
modules and the equivalence of categories of D-injective left T-semimodules and
D-projective left T-semicontramodules transform the functor N �−→ CN into the
functor Q �−→ CQ. One can show this using the semialgebra analogues of the
assertions of 7.1.2 related to quasicoflat comodules and quasicoinjective contra-
modules.

8.2 Complexes, adjusted to pull-backs and push-forwards

Let S −→ T be a map of semialgebras compatible with a map of corings C −→ D

and a k-algebra map A −→ B. The following result generalizes Theorem 6.3.

Theorem 1.

(a) Assume that D is a flat right B-module, T is a coflat right D-comodule and a
D/B-coflat (D/B-coprojective) left D-comodule, and the ring B has a finite
weak (left) homological dimension. Then the functor mapping the quotient
category of the homotopy category of complexes of D/B-coflat (D/B-copro-
jective) left T-semimodules by its intersection with the thick subcategory of
D-coacyclic complexes into the semiderived category of left T-semimodules is
an equivalence of triangulated categories.

(b) Assume that D is a projective left B-module, T is a coprojective left and a
D/B-coflat right D-comodule, and the ring B has a finite left homological
dimension. Then the functor mapping the quotient category of the homotopy
category of complexes of D/B-coinjective left T-semicontramodules by its in-
tersection with the thick subcategory of D-contraacyclic complexes into the
semiderived category of left T-semicontramodules is an equivalence of trian-
gulated categories.

Proof. To prove part (a) for D/B-coflat T-semimodules, use Lemma 1.3.3, the
construction of the morphism of complexes L• −→ R2(L•) from the proof of
Theorem 2.6, and Lemma 2.6. To prove part (a) for D/B-coprojective T-semi-
modules, use Lemma 3.3.3(b). To prove part (b), use Lemma 3.3.3(a) and the
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construction of the morphism of complexes L2(R•) −→ R• from the proof of
Theorem 4.6. �

A complex of S-semimodules is called quite S/C/A-semiflat (quite S/C/A-
semiprojective) if it belongs to the minimal triangulated subcategory of the ho-
motopy category of complexes of S-semimodules containing the complexes in-
duced from complexes of A-flat (A-projective) C-comodules and closed under in-
finite direct sums. Analogously, a complex of S-semicontramodules is called quite
S/C/A-semiinjective if it belongs to the minimal triangulated subcategory of the
homotopy category of complexes of S-semicontramodules containing the complexes
coinduced from complexes ofA-injective C-contramodules and closed under infinite
products. Under appropriate assumptions on S, C, and A, any quite S/C/A-semi-
flat complex of A-flat S-semimodules is S/C/A-semiflat in the sense of 2.8, and
analogously for birelative semiprojectivity and semiinjectivity in the sense of 4.8.
Any quite S/C/A-semiflat complex of right S-semimodules is S/C/A-contraflat,
any quite S/C/A-semiprojective complex of left S-semimodules is S/C/A-projec-
tive, and any quite S/C/A-semiinjective complex of left S-semicontramodules is
S/C/A-injective in the sense of 6.4.

Theorem 2.

(a) Assume that C is a flat (projective) left and a flat right A-module, C is a
flat (projective) left A-module and a coflat right C-comodule, and the ring A
has a finite weak (left) homological dimension. Then the functor mapping the
quotient category of the homotopy category of quite S/C/A-semiflat (quite
S/C/A-semiprojective) complexes of left S-semimodules by its minimal tri-
angulated subcategory containing complexes induced from coacyclic complexes
of A-flat (A-projective) S-semimodules and closed under infinite direct sums
into the semiderived category of left S-semimodules is an equivalence of tri-
angulated categories.

(b) Assume that C is a projective left and a flat right A-module, C is a coprojective
left C-comodule and a flat right A-module, and the ring A has a finite left
homological dimension. Then the functor mapping the quotient category of the
homotopy category of quite S/C/A-semiinjective complexes of left S-semicon-
tramodules by its minimal triangulated subcategory containing complexes of
coinduced from contraacyclic complexes of A-injective C-contramodules and
closed under infinite products into the semiderived category of left S-semi-
contramodules is an equivalence of triangulated categories.

Proof. Proof of part (a): for any complex of S-semimodules K• there is a nat-
ural morphism into K• from a quite S/C/A-semiflat complex of S-semimodules
L3L1(K•) with a C-coacyclic cone. Hence it follows from Lemma 2.6 that the
semiderived category of S-semimodules is equivalent to the quotient category of
the homotopy category of quite S/C/A-semiflat complexes of S-semimodules by
its intersection with the thick subcategory of C-coacyclic complexes. It remains
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to show that any C-coacyclic quite S/C/A-semiflat complex of S-semimodules be-
longs to the minimal triangulated subcategory containing the complexes induced
from coacyclic complexes of A-flat S-semimodules and closed under infinite direct
sums. Indeed, if a complex of A-flat left S-semimodules M• is C-coacyclic, then
the total complex L3(M•) of the bar bicomplex · · · −→ S�C S�C M• −→ S�C M•

up to the homotopy equivalence can be obtained from complexes of S-semimod-
ules induced from coacyclic complexes of A-flat C-comodules using the operations
of cone and infinite direct sum. So the same applies to a C-coacyclic complex of
S-semimodules M• homotopy equivalent to a complex of A-flat S-semimodules.
On the other hand, if a complex of S-semimodules M• is induced from a complex
of C-comodules, then the cone of the morphism of complexes L3(M•) −→M• is
a contractible complex of S-semimodules, since it is isomorphic to the cotensor
product over C of the bar complex · · · −→ S �C S �C S −→ S �C S −→ S, which is
contractible as a complex of left S-semimodules with right C-comodule structures,
and a certain complex of left C-comodules. So the same applies to any complex
of S-semimodules M• that up to the homotopy equivalence can be obtained from
complexes of S-semimodules induced from complexes of C-comodules using the
operations of cone and infinite direct sum. Part (a) for quite S/C/A-semiflat com-
plexes is proven; the proofs of part (a) for quite S/C/A-semiprojective complexes
and part (b) are completely analogous. �

Theorem 3.

(a) Assume that C is a flat right A-module, S is a coflat right C-comodule, D is
a flat right B-module, and T is a coflat right D-comodule. Then the functor
M• �−→ TM• maps quite S/C/A-semiflat (quite S/C/A-semiprojective) com-
plexes of left S-semimodules to quite T/D/B-semiflat (quite T/D/B-semi-
projective) complexes of left T-semimodules. Assume additionally that C and
S are flat left A-modules and the ring A has a finite weak homological dimen-
sion. Then the same functor maps C-coacyclic quite S/C/A-semiflat com-
plexes of left S-semimodules to D-coacyclic complexes of left T-semimodules.

(b) Assume that C is a projective left A-module, S is a coprojective left C-comod-
ule, D is a projective left B-module, and T is a coprojective left D-comod-
ule. Then the functor P• �−→ TP• maps quite S/C/A-semiinjective com-
plexes of left S-semicontramodules to quite T/D/B-semiinjective complexes
of left T-semicontramodules. Assume additionally that C and S are flat right
A-modules and the ring A has a finite left homological dimension. Then the
same functor maps C-contraacyclic quite S/C/A-semiinjective complexes of
left S-semicontramodules to D-contraacyclic complexes of left T-semicontra-
modules.

(c) Assume that C is a projective left and a flat right A-module, S is a coprojective
left and a coflat right C-comodule, A has a finite left homological dimension,
D is a projective left and a flat right B-module, T is a coprojective left and
a coflat right D-comodule, and B has a finite left homological dimension.
Then the functor M• �−→ TM• maps S/C/A-projective complexes of left
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S-semimodules to T/D/B-projective complexes left T-semimodules and the
functor P• �−→ TP• maps S/C/A-injective complexes of left S-semicon-
tramodules to T/D/B-injective complexes of left T-semicontramodules. The
same functors map C-coacyclic S/C/A-projective complexes of left S-semi-
modules to D-coacyclic complexes of left T-semimodules and C-contraacyclic
S/C/A-injective complexes of left S-semicontramodules to D-contraacyclic
complexes of left T-semicontramodules.

Proof. Part (a): the functor M �−→ TM maps the S-semimodule induced from
a C-comodule L to the T-semimodule induced from the D-comodule BL. The
first assertion follows immediately; to prove the second one, use Theorem 7.2.2(a)
and Theorem 2(a). The proof of part (b) is completely analogous. Part (c): the
first assertion follows from the adjointness of functors M• �−→ TM• and N• �−→
CN•, the adjointness of functors P• �−→ TP• and Q• �−→ CQ•, and the second
assertions of Theorem 7.2.1(a) and (b). The second assertion follows from the first
assertions of Theorem 7.2.1(a-b), because a complex of left S-semimodules M•

is S/C/A-projective and C-coacyclic if and only if the complex HomS(M•,L•) is
acyclic for all complexes of C/A-injective left S-semimodules L•, and a complex of
left S-semicontramodules P• is S/C/A-injective and C-contraacyclic if and only
if the complex HomS(R•,P•) is acyclic for all complexes of C/A-projective left
S-semicontramodules R• (and analogously for complexes of T-semimodules and
T-semicontramodules). This follows from Theorem 6.3 and the results of 6.5, since
a complex of S-semimodules is C-coacyclic iff it represents a zero object of the
semiderived category of S-semimodules, and a complex of S-semicontramodules
is C-contraacyclic iff it represents a zero object of the semiderived category of
S-semicontramodules. �

8.3 Derived functors of pull-back and push-forward

Let S −→ T be a map of semialgebras compatible with a map of corings C −→ D

and a k-algebra map A −→ B.
Assume that C is a flat right A-module, S is a coflat right C-comodule, D

is a flat right B-module, T is a coflat right D-comodule and a D/B-coflat left
D-comodule, and B has a finite weak homological dimension. The right derived
functor

N• �−→ R

CN• : Dsi(T-simod) −−→ Dsi(S-simod)

is defined by composing the functor N• �−→ CN• acting from the homotopy cate-
gory of left T-semimodules to the homotopy category of left S-semimodules with
the localization functor Hot(S-simod) −→ Dsi(S-simod) and restricting it to the full
subcategory of complexes of D/B-coflat T-semimodules. By Theorems 8.2.1(a)
and 7.2.1(a), this restriction factorizes through the semiderived category of left
T-semimodules.
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Assume that C is a flat left and right A-module, S is a flat left A-module and
a coflat right C-comodule, A has a finite weak homological dimension, D is a flat
right B-module, and T is a coflat right D-comodule. The left derived functor

M• �−→ L

TM• : Dsi(S-simod) −−→ Dsi(T-simod)

is defined by composing the functor M• �−→ TM• acting from the homotopy
category of left S-semimodules to the homotopy category of left T-semimodules
with the localization functor Hot(T-simod) −→ Dsi(T-simod) and restricting it
to the full subcategory of quite S/C/A-semiflat complexes of S-semimodules. By
Theorems 8.2.2(a) and 8.2.3(a), this restriction factorizes through the semiderived
category of left S-semimodules.

Analogously, assume that C is a projective left A-module, S is a coprojective
left C-comodule, D is a projective left B-module, T is a coprojective left D-co-
module and a D/B-coflat right D-comodule, and B has a finite left homological
dimension. The left derived functor

Q• �−→ C
L
Q• : Dsi(T-sicntr) −−→ Dsi(S-sicntr)

is defined by composing the functor Q• �−→ CQ• with the localization func-
tor Hot(S-sicntr) −→ Dsi(S-sicntr) and restricting it to the full subcategory
of complexes of D/B-coinjective T-semicontramodules. By Theorems 8.2.1(b)
and 7.2.1(b), this restriction factorizes through the semiderived category of left
T-semicontramodules. According to Lemma 6.5.2, this definition of a left derived
functor does not depend on the choice of a subcategory of adjusted complexes.

Assume that C is a projective left and a flat right A-module, S is a copro-
jective left C-comodule and a flat right A-module, A has a finite left homological
dimension, D is a projective left B-module, and T is a coprojective left D-comod-
ule.

P• �−→ R

TP• : Dsi(S-sicntr) −−→ Dsi(T-sicntr)

is defined by composing the functor P• �−→ TP• with the localization func-
tor Hot(T-simod) −→ Dsi(T-simod) and restricting it to the full subcategory of
quite S/C/A-semiflatcomplexes of S-semicontramodules. By Theorems 8.2.2(b)
and 8.2.3(b), this restriction factorizes through the semiderived category of left
S-semicontramodules. According to Lemma 6.5.2, this definition of a right derived
functor does not depend on the choice of a subcategory of adjusted complexes.

Notice that in the assumptions of Theorem 8.2.3(c) above and Corollary 1(c)
below one can also define the left derived functor M• �−→ L

TM• in terms of
S/C/A-projective complexes of left S-semimodules and the right derived functor
P• �−→ R

TP• in terms of S/C/A-injective complexes of left S-semicontramodules.
The derived functors N• �−→ R

CN• and Q• �−→ C
L
Q• in the categories of

semimodules and semicontramodules agree with the derived functors N• �−→ R

CN•

and Q• �−→ C
L
Q• in the categories of comodules and contramodules, so our notation

is not ambiguous.
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Remark 1. Under the assumptions that C is a flat rightA-module, S is a coflat right
C-comodule, D is a flat right B-module, T is a coflat right D-comodule, and B has
a finite left homological dimension, one can define the derived functor N• �−→ R

CN•

in terms of injective complexes of left T-semimodules (see Remark 6.5).

Corollary 1.

(a) The derived functor M• �−→ L

TM• is left adjoint to the derived functor
N• �−→ R

CN• whenever both functors are defined by the above construction.
(b) The derived functor P• �−→ T

R
P• is right adjoint to the derived functor

Q• �−→ C
L
Q• whenever both functors are defined by the above construction.

(c) Assume that C is a projective left and a flat right A-module, S is a coprojective
left and a coflat right C-comodule, A has a finite left homological dimension,
D is a projective left and a flat right B-module, T is a coprojective left and a
coflat right D-comodule, and B has a finite left homological dimension. Then
for any objects M• in Dsi(simod-S) and Q• in Dsi(T-sicntr) there is a natural
isomorphism

CtrTorT(M•L
T ,Q•) � CtrTorS(M•, C

L
Q•)

in the derived category of k-modules.

Proof. In the assumptions of part (c), one can prove somewhat stronger versions
of the assertions (a) and (b): for any M• in Dsi(S-simod) and N• in Dsi(T-simod),
there is a natural isomorphism ExtT(L

TM,N) � ExtS(M, R

CN) and for any
P• in Dsi(S-sicntr) and Q• in Dsi(T-sicntr) there is a natural isomorphism
ExtT(Q•, T

R
P•) � ExtS(C

L
Q•,P•) in the derived category of k-modules. To

obtain the first isomorphism, it suffices to represent the object M• by an
S/C/A-projective complex of left S-semimodules and the object N• by a complex
of D/B-injective left T-semimodules, and use Lemma 5.3.2(a), Theorem 7.2.1(a),
and Theorem 8.2.3(c). In the second case, one can represent the object P• by
an S/C/A-injective complex of left S-semicontramodules and the object Q• by a
complex of D/B-projective left T-semicontramodules, and use Lemma 5.3.2(b),
Theorem 7.2.1(b), and Theorem 8.2.3(c). To verify part (c), it suffices to represent
the object M• by a quite S/C/A-semiflat complex of right S-semimodules and
the object Q• by a complex of D/B-projective left S-semicontramodules, and
use Lemma 5.3.2(b), Theorem 7.2.1(b), and Theorem 8.2.3(a). Finally, parts (a)
and (b) in their weaker assumptions follow from the next lemma. �

Lemma. Let H1 and H2 be categories, S1 and S2 be localizing classes of morphisms
in H1 and H2, and F1 and F2 be full subcategories in H1 and H2. Assume that
for any object X ∈ H1 there exists an object U ∈ F1 together with a morphism
U −→ X from S1 and for any object Y ∈ H2 there exists an object V ∈ F2

together with a morphism Y −→ V from S2. Let Σ: H1 −→ H2 be a functor and
Π: H2 −→ H1 be a functor right adjoint to Σ. Assume that the morphism Σ(t)
belongs to S2 for any morphism t ∈ F1 ∩ S1 and the morphism Π(s) belongs to S1

for any morphism s ∈ F2 ∩ S2. Then the right derived functor RΠ: H2[S−1
2 ] −→
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H1[S−1
1 ] defined by restricting Π to F2 is right adjoint to the left derived functor

LΣ: H1[S−1
1 ] −→ H2[S−1

2 ] defined by restricting Σ to F1.

Proof. The functors Fi[(Fi ∩ Si)−1] −→ Hi[S−1
i ] are equivalences of categories by

Lemma 2.6, so the derived functors LΣ and RΠ can be defined. For any objects U ∈
F1 and V ∈ F2 we have to construct a bijection between the sets HomH1[S

−1
1 ](U,ΠV )

and HomH2[S
−1
2 ](ΣU, V ), functorial in U and V . Any element of the first set can

be represented by a fraction U ← U ′ → ΠV in H1 with the morphism U ′ −→ U
belonging to S1. By assumption, one can choose U ′ to be an object of F1. Assign
to this fraction the element of the second set represented by the fraction ΣU ←
ΣU ′ → V . By assumption, the morphism ΣU ′ −→ ΣU belongs to S2. Analogously,
any element of the second set can be represented by a fraction ΣU → V ′ ← V in
H2 with the morphism V −→ V ′ belonging to S2, and one can choose V ′ to be
an object of F2. Assign to this fraction the element of the first set represented by
the fraction U → ΠV ′ ← ΠV . The compositions of these two maps between sets
of morphisms are identities, since the square formed by the morphisms U ′ −→
U , U −→ ΠV ′, U ′ −→ ΠV , and ΠV −→ ΠV ′ and the square formed by the
morphisms ΣU ′ −→ ΣU , ΣU −→ V ′, ΣU ′ −→ V , and V −→ V ′ are commutative
simultaneously. �

Let R be a semialgebra over a coring E over a k-algebra F , and T −→ R be
a map of semialgebras compatible with a map of corings D −→ E and a k-algebra
map B −→ F . Then the composition provides a map of semialgebras S −→ R

compatible with a map of corings C −→ E and a k-algebra map A −→ B.

Corollary 2.

(a) There is a natural isomorphism R

C(R

DL•) � R

CL• for any object L• in
Dsi(R-simod) whenever both functors L• �−→ R

DL• and N• �−→ R

CN• are
defined by the above construction.

(b) There is a natural isomorphism L

R(L

TM•) � L

RM• for any object M• in
Dsi(S-simod) whenever both functors M• �−→ L

TM• and N• �−→ L

RN• are
defined by the above construction.

(c) There is a natural isomorphism C
L
(D
L

K•) � C
L
K• for any object K• in

Dsi(R-sicntr) whenever both functors K• �−→ D
L

K• and Q• �−→ C
L
Q• are

defined by the above construction.
(d) There is a natural isomorphism R

R
(T
R
P•) � R

R
P• for any object P• in

Dsi(S-sicntr) whenever both functors P• �−→ T
R
P• and Q• �−→ R

R
Q• are

defined by the above construction.

Proof. Part (a) follows from the first assertion of Theorem 7.2.1(a), part (b) follows
from the first assertion of Theorem 8.2.3(a), part (c) follows from the first assertion
of Theorem 7.2.1(b), part (d) follows from the first assertion of Theorem 8.2.3(b).

�



8.3. Derived functors of pull-back and push-forward 157

Recall that a complex of C-coflat right S-semimodules is called quite semi-
flat if it belongs to the minimal triangulated subcategory of the homotopy cate-
gory of right S-semimodules containing the complexes of S-semimodules induced
from complexes of coflat right C-comodules and closed under infinite direct sums
(see 2.9). This definition presumes that C is a flat right A-module and S is a coflat
right C-comodule.

Corollary 3.

(a) Assume that C is a flat left and right A-module, S is a coflat left and right
C-comodule, A has a finite weak homological dimension, D is a flat left and
right B-module, T is a coflat left and right D-comodule, and B has a finite
weak homological dimension. Then for any objects M• in Dsi(S-simod) and
N• in Dsi(simod-T) there is a natural isomorphism

SemiTorT(N•, L

TM•) � SemiTorS(N•RC ,M•)

in the derived category of k-modules.
(b) Under the assumptions of Corollary 1(c), for any objects P• in Dsi(S-sicntr)

and N• in Dsi(T-simod) there is a natural isomorphism

SemiExtT(N•, T
R
P•) � SemiExtS(R

CN•,P•)

in the derived category of k-modules.
(c) Under the assumptions of Corollary 1(c), for any objects M• in Dsi(S-simod)

and Q• in Dsi(T-sicntr) there is a natural isomorphism

SemiExtT(L

TM•,Q•) � SemiExtS(M•, C
L
Q•)

in the derived category of k-modules.

Proof. Part (a): represent the object M• by a quite semiflat complex of S-semi-
modules and the object N• by a semiflat complex of D-coflat T-semimodules, and
use the second case of Proposition 8.1.3(a). Alternatively, represent M• by a quite
S/C/A-semiflat complex of A-flat S-semimodules and N• by a complex of D-coflat
T-semimodules, and use Theorem 7.2.1(a), Theorem 8.2.3(a), the result of 2.8,
and the first case of Proposition 8.1.3(a); or represent M• by a quite semiflat
complex of semiflat S-semimodules and N• by a complex of D/B-coflat T-semi-
modules, and use the same theorems, the result of 2.8, and the fourth case of
Proposition 8.1.3(a).

Part (b): represent the object P• by a semiinjective complex of C-coinjec-
tive S-semicontramodules (having in mind Lemma 6.4(c) or Remark 6.4) and the
object N• by a semiprojective complex of D-coprojective T-semimodules, and
use the second case of Proposition 8.1.3(b). Alternatively, represent P• by a
quite S/C/A-semiinjective complex of A-injective S-semicontramodules and N•
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by a complex of D-coprojective T-semimodules, and use Theorem 7.2.1(a), Theo-
rem 8.2.3(b), the result of 4.8, and the first case of Proposition 8.1.3(b); or repre-
sent P• by a semiinjective complex of semiinjective S-semicontramodules and N•

by a complex of D/B-coprojective T-semimodules, and use the same theorems,
the result of 4.8, and the fourth case of Proposition 8.1.3(b).

Part (c): represent the object M• by a semiprojective complex of C-copro-
jective S-semicontramodules (having in mind Lemma 6.4(b) or Remark 6.4) and
the object Q• by a semiinjective complex of D-coinjective T-semicontramodules,
and use the second case of Proposition 8.1.3(c). Alternatively, represent M• by a
quite S/C/A-semiprojective complex of A-projective S-semimodules and Q• by a
complex of D-coinjective T-semicontramodules, and use Theorem 7.2.1(b), Theo-
rem 8.2.3(a), the result of 4.8, and the first case of Proposition 8.1.3(c); or represent
M• by a semiprojective complex of semiprojective S-semimodules and Q• by a
complex of D/B-coinjective T-semicontramodules, and use the same theorems,
the result of 4.8, and the fourth case of Proposition 8.1.3(c). �

Remark 2. Suppose that two objects ′M• in Dsi(simod-S) and ′N• in Dsi(simod-T)
are endowed with a morphism ′M•L

T −→ ′N•, or, which is the same, a morphism
′M• −→ ′N•RC , and two objects ′′M• in Dsi(S-simod) and ′′N• in Dsi(T-simod)
are endowed with a morphism L ′′

TM• −→ ′′N•, or, which is the same, a mor-
phism ′′M• −→ R ′′

CN•. Then the two morphisms SemiTorS(′M•, ′′M•) −→
SemiTorT(′N•, ′′N•) in D(k-mod) provided by the compositions

SemiTorS(′M•, ′′M•) −→ SemiTorS(′N•RC , ′′M•)

� SemiTorT(′N•, L ′′
TM•) −→ SemiTorT(′N•, ′′N•)

and
SemiTorS(′M•, ′′M•) −→ SemiTorS(′M•, R ′′

CN•)

� SemiTorT(′M•L
T , ′′N•) −→ SemiTorT(′N•, ′′N•)

coincide with each other. Indeed, let us represent the objects ′M• and ′N• by
complexes of right S-semimodules and T-semimodules in such a way that the ad-
joint morphisms ′M•L

T −→ ′N• and ′M• −→ ′N•RC could be represented by a map
of complexes of semimodules ′M• −→ ′N• compatible with the maps A −→ B,
C −→ D, and S −→ T. Applying to the complexes of ′M• and ′N• simultane-
ously the constructions from the proof of Theorem 2.6, one can construct a map
of quite semiflat complexes of right semimodules L3R2L1(′M•) −→ L3R2L1(′N•)
representing the same adjoint morphisms in the semiderived categories of left
semimodules. So one can assume ′M• and ′N• to be quite semiflat complexes.
Analogously, represent the morphisms L ′′

TM• −→ ′′N• and ′′M• −→ R ′′
CN• in the

semiderived categories of left semimodules by a map of quite semiflat complexes
of left semimodules ′′M• −→ ′′N• compatible with the maps A −→ B, C −→ D,
and S −→ T. Then both compositions in question are represented by the same
map of complexes of k-modules ′M• ♦S

′′M• −→ ′N• ♦T
′′N•.
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Furthermore, suppose that two objects M• in Dsi(S-simod) and N• in
Dsi(T-simod) are endowed with a morphism L

TM• −→ N•, or, which is the
same, a morphism M• −→ R

CN•, and two objects P• in Dsi(S-sicntr) and Q•

in Dsi(T-sicntr) are endowed with a morphism Q• −→ T
R
P•, or, which is the

same, a morphism C
L
Q• −→P•. Then the two morphisms SemiExtT(N•,Q•) −→

SemiExtS(M•,P•) in D(k-mod) provided by the compositions

SemiExtT(N•,Q•) −→ SemiExtT(N•, R

TP•)

� SemiExtS(R

CN•,P•) −→ SemiExtS(M•,P•)

and
SemiExtT(N•,Q•) −→ SemiExtT(L

TM•,Q•)

� SemiExtS(M•, C
L
Q•) −→ SemiExtS(M•,P•)

coincide with each other.

Corollary 4. Under the assumptions of Corollary 1(c), the mutually inverse equiv-
alences of categories

RΨS : Dsi(S-simod) −→ Dsi(S-sicntr) and LΦS : Dsi(S-sicntr) −→ Dsi(S-simod)

and the mutually inverse equivalences of categories

RΨT : Dsi(T-simod) −→ Dsi(T-sicntr) and LΦT : Dsi(T-sicntr) −→ Dsi(T-simod)

transform the derived functor N• �−→ R

CN• into the derived functor Q• �−→ C
L
Q•.

Proof. To construct the isomorphism LΦS(C
L
Q•) � R

C(LΦTQ•), represent the ob-
ject Q• by a complex of D/B-projective C-contramodules, and use Lemma 5.3.2,
Theorem 7.2.1(b), and the results of 7.1.4 and 8.1.4. To construct the isomor-
phism C

L
(RΨTN•) � RΨS(R

CN•), represent the object N• by a complex of D/B-in-
jective C-comodules, and use Lemma 5.3.2, Theorem 7.2.1(a), and the results
of 7.1.4 and 8.1.4. To show that these isomorphisms agree, it suffices to check
that for any adjoint morphisms LΦTQ• −→ N• and Q• −→ RΨTN• in the semi-
derived categories of T-semimodules and T-semicontramodules the compositions
LΦS(C

L
Q•) −→ R

C(LΦTQ•) −→ R

CN• and C
L
Q• −→ C

L
(RΨTN•) −→ RΨS(R

CN•) are
adjoint morphisms in the semiderived categories of S-semimodules and S-semi-
contramodules. Here one can represent N• by a semiprojective complex of D-co-
projective left T-semimodules and Q• by a semiinjective complex of D-coinjective
left T-semicontramodules (having in mind Lemmas 5.2 and 6.4), and use a result
of 7.1.4. �

Thus we have constructed three functors between the semiderived categories
Dsi(S-simod) � Dsi(S-sicntr) and Dsi(T-simod) � Dsi(T-sicntr): the functor de-
scribed in Corollary 4, and two functors adjoint to it from the left and from the
right, described in Corollary 1.
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Remark 3. One can show that the isomorphisms of derived functors from Corol-
lary 6.6 are compatible with the change-of-semialgebra isomorphisms from Corol-
laries 1, 3, and 4 in the following way. To check that the compositions of isomor-
phisms

SemiExtT(L

TM•,RΨT(N•)) −→ ExtT(L

TM•,N•) −→ ExtS(M•, R

CN•)

and
SemiExtT(L

TM•,RΨT(N•)) −→ SemiExtS(M•, C
L
(RΨTN•))

−→ SemiExtS(M•,RΨS(R

CN•)) −→ ExtS(M•, R

CN•)

coincide, represent the object M• by a semiprojective complex of semiprojective
left S-semimodules and the object N• by a complex of D/B-injective left T-semi-
modules, and use the result of 4.8. To check that the compositions of isomorphisms

CtrTorS(M•, C
L
Q•) −→ CtrTorT(M•L

T ,Q•) −→ SemiTorT(M•L
T ,LΦT(Q•))

and

CtrTorS(M•, C
L
Q•) −→ SemiTorS(M•,LΦS(C

L
Q•))

−→ SemiTorS(M•, R

C(LΦTQ•)) −→ SemiTorT(M•L
T ,LΦT(Q•))

coincide, represent the object M• by a quite semiflat complex of semiflat right
S-semimodules and the object Q• by a complex of D/B-projective left T-semicon-
tramodules, and use the result of 2.8. Commutativity of the respective diagrams on
the level of abelian categories is straightforward to verify under our assumptions
on the terms of the complexes representing the objects M•.

8.4 Remarks on Morita morphisms

8.4.1 Let C be a coring over a k-algebra A and D be a coring over a k-algebra B
such that C is a flat right A-module and D is a flat right B-module. Let (E,E∨)
be a right coflat Morita morphism from C to D and T be a semialgebra over the
coring D such that T is a coflat right D-comodule. In this case, there is a natural
semialgebra structure on the C-C-bicomodule

CTC = E �D T �D E∨.

The semimultiplication in CTC is defined as the composition E�DT�DE∨�CE�D

T�DE∨ −→ E�DT�DT�DE∨ −→ E�DT�DE∨ of the morphism induced by the
morphism E∨ �C E −→ D and the morphism induced by the semimultiplication
in T. The semiunit in CTC is defined as the composition C −→ E �D E∨ −→
E �D T �D E∨ of the morphism induced by the morphism C −→ E �D E∨ and the
morphism induced by the semiunit in T.

For example, if C −→ D is a map of corings compatible with a k-algebra map
A −→ B such that B is a flat right A-module and CB is a coflat right D-comodule,
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one can take E = CB and E∨ = BC. Then the algebra CTC is a universal final object
in the category of semialgebras S over C endowed with a map S −→ T compatible
with the maps A −→ B and C −→ D. The semialgebra CTC = CB �D T �D BC

can be also defined, e.g., when (E,E∨) is a Morita morphism from a k-algebra
A to a k-algebra B and BCB = E∨ ⊗A C ⊗A E −→ D is a morphism of corings
over B such that E∨ is a flat right A-module, BC = E∨ ⊗A C is a D/B-coflat left
D-comodule, T is a flat right B-module and a D/B-coflat left D-comodule, and
the rings A and B have finite weak homological dimensions.

All the results of 8.1–8.3 can be extended to the situation of a left coprojective
and right coflat Morita morphism (E,E∨) from a coring C to a coring D and a
morphism S −→ CTC of semialgebras over C. In particular, when C is a flat right
A-module, D is a flat right B-module, S is a coflat right C-comodule, T is a coflat
right D-comodule, and (E,E∨) is a right coflat Morita morphism, the functor

N �−→ CN = E �D N

from the category of left T-semimodules to the category of left S-semimodules has
a left adjoint functor

M �−→ TM = TC ♦S M.

Analogously, when C is a projective left A-module, D is a projective left B-mod-
ule, S is a coprojective left C-comodule, T is a coprojective left D-comodule, and
(E,E∨) is a left coprojective Morita morphism, the functor

Q �−→ CQ = CohomD(E∨,Q)

from the category of left T-semicontramodules to the category of left S-semicon-
tramodules has a right adjoint functor

P �−→ TP = SemiHomS(CT,P),

etc. However, one sometimes has to impose the homological dimension conditions
on A and B where they were not previously needed.

8.4.2 Assume that C is a flat right A-module and D is a flat right B-module. A
right D-comodule K is called faithfully coflat if it is a coflat D-comodule and for
any nonzero left D-comodule M the cotensor product K �D M is nonzero. A right
coflat Morita morphism (E,E∨) from C to D is called right faithfully coflat if the
right D-comodule E is faithfully coflat. A right coflat Morita morphism (E,E∨)
is right faithfully coflat if and only if the right D-comodule E∨ �C E is faithfully
coflat and if and only if the morphism E∨ �C E −→ D is surjective and its kernel
is a coflat right D-comodule. Indeed, the cotensor product E �D M is nonzero if
and only if the morphism E∨ �C E �D M −→ M is nonzero; this holds for any
nonzero left D-comodule M if and only if the morphism E∨ �C E �D M −→ M

is surjective for any left D-comodule M, and it remains to use the results of (the
proof of) Lemma 1.2.2.
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Let (E,E∨) be a right faithfully coflat Morita morphism from C to D and T

be a semialgebra over the coring D such that T is a coflat right D-comodule. Then
the functor N �−→ CN is an equivalence of the abelian categories of left T-semi-
modules and left CTC-semimodules. This follows from Theorem 7.4.1 applied to
the functor ∆: T-simod −→ C-comod mapping a T-semimodule N to the C-co-
module CN and the functor Γ: C-comod −→ T-simod left adjoint to ∆ mapping a
C-comodule M to the T-semimodule T �D DM.

Now assume that C is a projective left A-module and D is a projective left
B-module. A left D-comodule K is called faithfully coprojective if it is a coprojec-
tive D-comodule and for any nonzero left D-contramodule P the cohomomorphism
module CohomD(K,P) is nonzero. A faithfully coprojective D-comodule is faith-
fully coflat. A left coprojective Morita morphism (E,E∨) from C to D is called left
faithfully coprojective if the left D-comodule E∨ is faithfully coprojective. A left co-
projective Morita morphism (E,E∨) is left faithfully coprojective if and only if the
left D-comodule E∨�C E is faithfully coprojective and if and only if the morphism
E∨ �C E −→ D is surjective and its kernel is a coprojective left D-comodule.

Let (E,E∨) be a left faithfully coprojective Morita morphism from C to D and
T be a semialgebra over the coring D such that T is a coprojective left D-comod-
ule. Then the functor Q �−→ CQ is an equivalence of the abelian categories of left
T-semicontramodules and left CTC-semicontramodules. This follows from Theo-
rem 7.4.1 applied to the functor ∆: T-sicntr −→ C-contra mapping a T-semicon-
tramodule Q to the C-contramodule CQ and the functor Γ: C-contra −→ T-sicntr
right adjoint to ∆ mapping a C-contramodule P to the T-semicontramodule
CohomD(T,DP).

8.4.3 Assume that C is a flat right A-module and D is a flat right B-module. Let
(E,E∨) be a right coflat Morita morphism from C to D and T be a semialgebra
over the coring D such that T is a coflat right D-comodule. Then the functor
N• �−→ CN• maps D-coacyclic complexes of T-semimodules to C-coacyclic com-
plexes of CTC-semimodules and the semiderived category of left CTC-semimodules
is a localization of the semiderived category of left T-semimodules by the ker-
nel of the functor induced by N• �−→ CN• (as one can check by computing the
functor M• �−→ C(L

TM•) on the semiderived category of left CTC-semimodules).
The triangulated categories Dsi(T-simod) and Dsi(CTC-simod) are equivalent when
(E,E∨) is a right coflat Morita equivalence, or more generally when the morphism
E∨ �C E −→ D is an isomorphism.

Analogously, assume that C is a flat right A-module and D is a projective left
B-module. Let (E,E∨) be a left coprojective Morita morphism from C to D and
T be a semialgebra over the coring D such that T is a coprojective left D-comod-
ule. Then the functor Q• �−→ CQ• maps D-contraacyclic complexes of T-semi-
contramodules to C-contraacyclic complexes of CTC-semicontramodules and the
semiderived category of left CTC-semicontramodules is a localization of the semi-
derived category of left T-semicontramodules by the kernel of the functor induced
by Q• �−→ CQ•. The triangulated categories Dsi(T-sicntr) and Dsi(CTC-sicntr) are
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equivalent when (E,E∨) is a left coprojective Morita equivalence, or more generally
when the morphism E∨ �C E −→ D is an isomorphism.

Remark. The semiderived categories of left T-semimodules and left CTC-semimod-
ules can be different even when (E,E∨) is a right faithfully coflat Morita morphism
and the abelian categories of left T-semimodules and left CTC-semimodules are
equivalent. Indeed, let A = B = k be a field and F be a finite-dimensional algebra
over k. Let D = F ∗ and C = End(F )∗ be the coalgebras over k dual to the
finite-dimensional k-algebras F and End(F ). Then there is a coalgebra morphism
C −→ D dual to the algebra embedding F −→ End(F ) related to the action of
F in itself by left multiplications. Since End(F ) is a free left F -module, C is a
cofree right D-comodule. Set E = C = E∨; this is a right faithfully coprojective
Morita morphism from C to D. Now put T = D; then the semiderived category
of left T-semimodules coincides with the coderived category of left D-comodules.
At the same time, the coalgebra C is semisimple and a complex of C-comodules is
coacyclic if and only if it is acyclic, so the semiderived category of left CTC-comod-
ules is equivalent to the conventional derived category of left D-comodules. When
F is a Frobenius algebra, End(F ) is a free left and right F -module, so (E,E∨)
is a left and right faithfully coprojective Morita morphism, but the categories
Dsi(T-simod) and Dsi(CTC-simod) are still not equivalent when the homological
dimension of F is infinite. Alternatively, one can consider the right coprojective
Morita morphism from the coalgebra C = k to the coalgebra D = F ∗ with E = F ∗

and E∨ = F and the same semialgebra T = D over D; then the semialgebra
CTC over C is isomorphic to the algebra F over k; the category Dsi(T-simod) is
the coderived category of F ∗-comodules and the category Dsi(CTC-simod) is the
derived category of F -modules.

Assume that C is a flat left and right A-module, D is a flat left and right
B-module, the rings A and B have finite weak homological dimensions, T is a coflat
left and right D-comodule, and (E,E∨) is a left and right coflat Morita morphism
from C to D. Then whenever the functor N• �−→ CN• induces an equivalence of
the semiderived categories of left T-semimodules and left CTC-semimodules and
the functor N• �−→ N•C induces an equivalence of the semiderived categories of
right T-semimodules and right CTC-semimodules, these equivalences of categories
transform the functor SemiTorT into the functor SemiTorCTC .

Assume that C is a projective left and a flat right A-module, D is a projective
left and a flat right B-module, the rings A and B have finite left homological
dimensions, T is a coprojective left and a coflat right D-comodule, and (E,E∨) is
a left coprojective and right coflat Morita morphism from C to D. Then whenever
the functor N• �−→ CN• induces an equivalence of the semiderived categories
of left T-semimodules and left CTC-semimodules and the functor Q• �−→ CQ•

induces an equivalence of the semiderived categories of left T-semicontramodules
and left CTC-semicontramodules, these equivalences of categories transform the
functor SemiExtT into the functor SemiExt

CTC
and the equivalences of categories
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RΨT and LΦT into the equivalences of categories RΨ
CTC

and LΦ
CTC

. The same
applies to the functors ExtT , ExtT , and CtrTorT , under the relevant assumptions.

8.4.4 Here are some further partial results about equivalence of the semiderived
categories related to T and CTC. The problem is, essentially, to find conditions
under which a complex of left D-comodules N• is coacyclic whenever the complex
of C-comodules CN• is coacyclic, or a complex of left D-contramodules Q• is
contraacyclic whenever the complex of C-contramodules CQ• is contraacyclic.

Consider the following general setting. Let A and B be exact categories with
exact functors of infinite direct sum, ∆: B −→ A be an exact functor preserving
infinite direct sums and such that a complex C• over B is acyclic if the complex
∆(C•) over A is contractible, and Γ: A −→ B be an exact functor left adjoint
to ∆. Clearly, if a complex C• is coacyclic then the complex ∆(C•) is coacyclic;
we would like to know when the converse holds.

First, if a complex C• is coacyclic whenever the complex ∆(C•) is contract-
ible, then a complex C• is coacyclic if and only if the complex ∆(C•) is coacyclic.
Indeed, consider the bar bicomplex

· · · −−→ Γ∆Γ∆(C•) −−→ Γ∆(C•) −−→ C•

whose differentials are the alternating sums of morphisms induced by the ad-
junction morphism Γ∆ −→ Id. The total complex of this bicomplex constructed
by taking infinite direct sums along the diagonals becomes contractible after ap-
plying the functor ∆; the contracting homotopy is induced by the adjunction
morphism Id −→ ∆Γ. By assumption, it follows that the total complex itself is
coacyclic over B. On the other hand, if the complex ∆(C•) is coacyclic over A,
then every complex (Γ∆)n(C•) is coacyclic over B, since the functors ∆ and Γ
are exact and preserve infinite direct sums. The total complex of the bicomplex
· · · −→ Γ∆Γ∆(C•) −→ Γ∆(C•) is homotopy equivalent to a complex obtained
from the complexes (Γ∆)n(C•) using the operations of shift, cone, and infinite
direct sum; hence the complex C• is coacyclic.

By the same argument, a complex C• is acyclic if and only if the complex
∆(C•) is acyclic, so if the exact category B has a finite homological dimension,
then a complex C• is coacyclic if and only if the complex ∆(C•) is coacyclic. This
is the trivial case.

Finally, let us say that an exact functor ∆: B −→ A has a finite relative
homological dimension if the category B with the exact category structure formed
by the exact triples in B that split after applying ∆ has a finite homological
dimension. We claim that when the functor ∆ has a finite relative homological
dimension, a complex C• over B is coacyclic if and only if the complex ∆(C•) is
coacyclic, in our assumptions. Indeed, consider again the bar bicomplex · · · −→
Γ∆Γ∆(C•) −→ Γ∆(C•) −→ C•. One can assume that the category B contains
images of idempotent endomorphisms, as passing to the Karoubian closure doesn’t
change coacyclicity. One can also assume that the complex C• is bounded from
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above, as any acyclic complex bounded from below is coacyclic. The complex
· · · −→ Γ∆Γ∆(X) −→ Γ∆(X) is split exact in high enough (negative) degrees for
any object X ∈ B, since it is exact and the complex of homomorphisms from it
to an object Y ∈ B computes Ext(X,Y ) in the relative exact category. Let d be
an integer not smaller than the relative homological dimension; denote by Z(X)
the image of the morphism (Γ∆)d+1(X) −→ (Γ∆)d(X). Then the total complex
of the bicomplex

· · · −−→ (Γ∆)d+2(C•) −−→ (Γ∆)d+1(C•) −−→ Z(C•)

is contractible, while the total complex of the bicomplex

(Γ∆)d(C•)/Z(C•) −−→ (Γ∆)d−1(C•) −−→ · · · −−→ Γ∆(C•) −−→ C•

is coacyclic. If the complex ∆(C•) is coacyclic, the total complex of the bicomplex
· · · −→ Γ∆Γ∆(C•) −→ Γ∆(C•) is also coacyclic; thus the complex C• is coacyclic.

8.4.5 Let S be a semialgebra over a coring C and T be a semialgebra over a
coring D. Assume that C is a flat right A-module, D is a flat right B-module, S

is a coflat right C-comodule, and T is a coflat right D-comodule. A right semiflat
Morita morphism from S to T is a pair consisting of a T-semiflat S-T-bisemimod-
ule E and an S-semiflat T-S-bisemimodule E∨ endowed with an S-S-bisemimodule
morphism S −→ E♦T E∨ and a T-T-bisemimodule morphism E∨♦S E −→ T such
that the two compositions

E −−→ E ♦T E∨ ♦S E −−→ E and E∨ −−→ E∨ ♦S E ♦T E∨ −−→ E∨

are equal to the identity endomorphisms of E and E∨. A right semiflat Morita
morphism (E,E∨) from S to T induces an exact functor

M �−→ TM = E∨ ♦S M

from the category of left S-semimodules to the category of left T-semimodules and
an exact functor

N �−→ SN = E ♦T N

from the category of left T-semimodules to the category of left S-semimodules;
the former functor is left adjoint to the latter one. Conversely, any pair of adjoint
exact k-linear functors preserving infinite direct sums between the category of
left S-semimodules and left T-semimodules is induced by a right semiflat Morita
morphism. Indeed, any exact k-linear functor S-simod −→ T-simod preserving
infinite direct sums is the functor of semitensor product with an S-semiflat T-S-bi-
semimodule; this can be proven as in 7.5.2.

Analogously, assume that C is a projective left A-module, D is a projective
left B-module, S is a coprojective left C-comodule, and T is a coprojective left
D-comodule. A left semiprojective Morita morphism from S to T is defined as a
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pair consisting of an S-semiprojective S-T-bisemimodule E and a T-semiprojec-
tive T-S-bisemimodule E∨ endowed with an S-S-bisemimodule morphism S −→
E ♦T E∨ and a T-T-bisemimodule morphism E∨ ♦S E −→ T satisfying the same
conditions as above. A left semiprojective Morita morphism (E,E∨) from S to T

induces an exact functor

P �−→ TP = SemiHomS(E,P)

from the category of left S-semicontramodules to the category of left T-semicon-
tramodules and an exact functor

Q �−→ SQ = SemiHomT(E∨,Q)

from the category of left T-semicontramodules to the category of left S-semicontra-
modules; the former functor is right adjoint to the latter one. Conversely, any pair
of adjoint exact k-linear functors preserving infinite products between the category
of left S-semicontramodules and left T-semicontramodules is induced by a left
semiprojective Morita morphism. Indeed, any exact k-linear functor S-sicntr −→
T-sicntr preserving infinite products is the functor of semihomomorphisms from
an S-semiprojective S-T-bisemimodule.

A right semiflat Morita morphism (E,E∨) from S to T is called a right
semiflat Morita equivalence if the bisemimodule morphisms S −→ E ♦T E∨ and
E∨♦S E −→ T are isomorphisms; then it can be also considered as a right semiflat
Morita morphism (E∨,E) from T to S. Left semiprojective Morita equivalences are
defined in an analogous way. A right semiflat Morita equivalence between semialge-
bras S and T induces an equivalence of the abelian categories of left S-semimodules
and left T-semimodules, and in the relevant above assumptions any equivalence
between these two k-linear categories comes from a right semiflat Morita equiv-
alence. Analogously, a left semiprojective Morita equivalence between S and T

induces an equivalence of the abelian categories of left S-semicontramodules and
left T-semicontramodules, and in the relevant above assumptions any equivalence
between these two k-linear categories comes from a left semiprojective Morita
equivalence.

Assume that the coring C is a flat right A-module and the coring D is a
flat right B-module. Let T be a semialgebra over D such that T is a coflat right
D-comodule and (E,E∨) be a right faithfully coflat Morita morphism from C to D.
Then the pair of bisemimodules E = CT and E∨ = TC is a right semiflat Morita
equivalence between the semialgebras T and CTC. Analogously, assume that C

is a projective left A-module and D is a projective left B-module. Let T be a
semialgebra over D such that T is a coprojective left D-comodule and (E,E∨) be
a left faithfully coprojective Morita morphism from C to D. Then the same pair
of bisemimodules E and E∨ is a left semiprojective Morita equivalence between T

and CTC.
All the results of 8.1 can be extended to the case of a left semiprojec-

tive and right semiflat Morita morphism (E,E∨) from a semialgebra S to
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a semialgebra T. In particular, for any left T-semimodule N there are nat-
ural isomorphisms of left S-semicontramodules ΨS(SN) = HomS(S, SN) �
HomT(TS,N) � HomT(E∨,N) � SemiHomT(E∨,HomT(T,N)) = S(ΨTN) by
Proposition 6.2.2(d), etc. However, one sometimes has to strengthen the coflatness
(coprojectivity, coinjectivity) conditions to the semiflatness (semiprojectivity,
semiinjectivity) conditions.

The first assertions of Theorem 8.2.3(a), (b) and (c) do not hold for Morita
morphisms of semialgebras, though. The derived functors M• �−→ L

TM• and
P• �−→ T

R
P• still can be defined in terms of S/C-projective (= quite S/C-semi-

flat) complexes of S-semimodules and S/C-injective (= quite S/C-semiinjective)
complexes of S-semicontramodules. The right derived functor N• �−→ R

SN• can
be defined in terms of injective complexes of T-semimodules and the left derived
functor Q• �−→ S

L
Q• can be defined in terms of projective complexes of T-semi-

contramodules (see Remark 6.5).
The results of Corollaries 8.3.2–8.3.4 do not hold for Morita morphisms of

semialgebras, as one can see in the example of the Morita equivalence related to
a Frobenius algebra from Remark 8.4.3 considered as a Morita morphism in the
inverse direction. The mentioned results remain valid for left semiprojective and
right semiflat Morita morphisms from S to T when the categories of C-comodules
and C-contramodules have finite homological dimensions, or the Morita morphism
of semialgebras is induced by a left coprojective and right coflat Morita morphism
of corings, or more generally when the functors N• �−→ SN•, N• �−→ N•S, and
Q• �−→ SQ• map D-coacyclic and D-contraacyclic complexes to C-coacyclic and
C-contraacyclic complexes.

Morita equivalences of semialgebras do not induce equivalences of the semi-
derived categories of semimodules and semicontramodules, except in rather special
cases. A right semiflat Morita equivalence between S and T does induce an equiv-
alence of the semiderived categories of left S-semimodules and left T-semimodules
when the categories of left C-comodules and left D-comodules have finite homologi-
cal dimensions, or when the Morita equivalence comes from a right faithfully coflat
Morita morphism of corings and one of the conditions of 8.4.3–8.4.4 is satisfied.

8.4.6 A short summary: one encounters no problems generalizing the results of
7.1–7.4 and 8.1–8.3 to the case of a Morita morphism of k-algebras and related
maps of corings and semialgebras. The problems are manageable when one con-
siders Morita morphisms of corings. And there are severe problems with Morita
morphisms/equivalences of semialgebras, which do not always respect the essential
structure of “an object split in two halves” (see Introduction).





9 Closed Model Category Structures

By a closed model category we mean a model category in the sense of Hovey [49].
The closed model categories that we will construct are also abelian model categories
in the sense of [51], so our results can be viewed as particular cases of the general
framework developed in [50].

9.1 Complexes of comodules and contramodules

Let C be a coring over a k-algebra A. Assume that C is a projective left and a flat
right A-module and the ring A has a finite left homological dimension.

Theorem.

(a) The category of complexes of left C-comodules has a closed model category
structure with the following properties. A morphism is a weak equivalence
if and only if its cone is coacyclic. A morphism is a cofibration if and only
if it is injective and its cokernel is a complex of A-projective C-comodules.
A morphism is a fibration if and only if it is surjective and its kernel is a
complex of C/A-injective C-comodules. An object is simultaneously fibrant
and cofibrant if and only if it is a complex of coprojective left C-comodules.

(b) The category of complexes of left C-contramodules has a closed model category
structure with the following properties. A morphism is a weak equivalence if
and only if its cone is contraacyclic. A morphism is a cofibration if and only
if it is injective and its cokernel is a complex of C/A-projective C-contramod-
ules. A morphism is a fibration if and only if it is surjective and its kernel is
a complex of A-injective C-contramodules. An object is simultaneously fibrant
and cofibrant if and only if it is a complex of coinjective left C-contramodules.

Proof. Part (a): the category of complexes of left C-comodules has arbitrary limits
and colimits, since it is an abelian category with infinite direct sums and products.
The two-out-of-three property of weak equivalences follows from the octahedron
axiom, since coacyclic complexes form a triangulated subcategory of the homotopy
category of left C-comodules. The retraction properties are clear, since the classes
of projective A-modules, C/A-injective C-comodules, and coacyclic complexes of
C-comodules are closed under direct summands. It is also clear that a morphism
is a trivial cofibration if and only if it is injective and its cokernel is a coacyclic
complex of A-projective C-comodules, and a morphism is a trivial fibration if and
only if it is surjective and its kernel is a coacyclic complex of C/A-injective C-co-
modules. Now let us verify the lifting properties.

Lemma 1. Let U , V , X, and Y be four objects of an abelian category A, U −→ V
be an injective morphism with the cokernel E, and X −→ Y be a surjective mor-
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phism with the kernel K. Suppose that Ext1A(E,K) = 0. Then for any two mor-
phisms U −→ X and V −→ Y forming a commutative square with the above two
morphisms there exists a morphism V −→ X forming two commutative triangles
with the given four morphisms.

Proof. Let us first find a morphism V −→ X making a commutative triangle with
the morphisms U −→ X and U −→ V . The obstruction to extending the morphism
U −→ X from U to V lies in the group Ext1A(E,X). Since the composition U −→
X −→ Y admits an extension to V , our element of Ext1A(E,X) becomes zero in
Ext1A(E, Y ) and therefore comes from the group Ext1A(E,K). Now let us modify the
obtained morphism so that the new morphism V −→ X forms also a commutative
triangle with the morphisms V −→ Y and X −→ Y . The difference between the
given morphism V −→ Y and the composition V −→ X −→ Y is a morphism
V −→ Y annihilating U , so it comes from a morphism E −→ Y . We need to lift
the latter to a morphism E −→ X . The obstruction to this lies in Ext1A(E,K). �

To verify the condition of Lemma 1, consider an extension E• −→M• −→ K•

of a complex of A-projective left C-comodules K• by a complex of C/A-injec-
tive left C-comodules E•. By Lemma 5.3.1(a), this extension is term-wise split,
so it comes from a morphism of complexes of C-comodules K• −→ E•[1]. Now
suppose that one of the complexes K• and E• is coacyclic. Then any morphism
K• −→ E•[1] is homotopic to zero by a result of 5.5, hence the extension of
complexes E• −→M• −→ K• is split. The lifting properties are proven.

It remains to construct the functorial factorizations. These constructions
use two building blocks: one is Lemma 3.1.3(a), the other one is the following
Lemma 2(a).

Lemma 2.

(a) There exists a (not always additive) functor assigning to any left C-comodule
an injective morphism from it into a C/A-injective left C-comodule with an
A-projective cokernel.

(b) There exists a (not always additive) functor assigning to any left C-contra-
module a surjective morphism onto it from a C/A-projective left C-contra-
module with an A-injective kernel.

Proof. Part (a): let M be a left C-comodule and P(M) −→ M be the surjec-
tive morphism onto it from an A-projective C-comodule P(M) constructed in
Lemma 3.1.3(a). Let K be kernel of the map P(M) −→ M and let P(M) −→
C⊗AP(M) be the C-coaction map. Set J(M) to be the cokernel of the composition

K −−→ P(M) −−→ C⊗A P(M).

Then the composition of maps P(M) −→ C⊗A P(M) −→ J(M) factorizes through
the surjection P(M) −→ M, so there is a natural injective morphism of C-co-
modules M −→ J(M). The C-comodule J(M) is C/A-injective as the cokernel of
an injective map of C/A-injective C-comodules K −→ C ⊗A P(M). The cokernel



9.1. Complexes of comodules and contramodules 171

of the map M −→ J(M) is isomorphic to the cokernel of the map P(M) −→
C ⊗A P(M) and hence A-projective. Part (a) is proven; the construction of the
surjective morphism of C-contramodules F(P) −→ P in part (b) is completely
analogous. �

Let us first decompose functorially an arbitrary morphism of complexes of left
C-comodules L• −→M• into a cofibration followed by a fibration. This can be done
in either of two dual ways. Let us start with a surjective morphism P+(M•) −→M•

onto the complex M• from a complex of A-projective left C-comodules P+(M•)
constructed as in the proof of Theorem 2.5. Let K• be the kernel of the morphism
L• ⊕ P+(M•) −→ M• and let K• −→ J+(K•) be an injective morphism from the
complex K• into a complex of C/A-injective left C-comodules J+(K•) constructed
in an analogous way using Lemma 2. The cokernel of this morphism is a complex
of A-projective C-comodules. Let E• denote the fibered coproduct of L•⊕P+(M•)
and J+(K•) over K•. There is a natural morphism of complexes E• −→M• whose
composition with the morphism J+(K•) −→ E• is zero and composition with the
morphism L• ⊕ P+(M•) −→ E• is equal to our morphism L• ⊕ P+(M•) −→ M•.
The morphism L• −→M• is equal to the composition

L• −→ E• −→M•.

The cokernel of the morphism L• −→ E• is an extension of the cokernel of the
morphism K• −→ J+(K•) and the complex P+(M•), hence a complex of A-projec-
tive C-comodules. The kernel of the morphism E• −→M• is isomorphic to J+(K•),
which is a complex of C/A-injective C-comodules. Another way is to start with an
injective morphism L• −→ J+(L•) and consider the cokernel of the morphism
L• −→M• ⊕ J+(L•).

Now let us construct a factorization of the morphism L• −→ M• into a
cofibration followed by a trivial fibration. Represent the kernel of the morphism
E• −→M• as the quotient complex of a complex of A-projective left C-comodules
E•1 by a complex of C/A-injective C-comodules; represent the latter complex as
the quotient complex of a complex E•2 with the analogous properties, etc. The
complexes E•i are also complexes of C/A-injective C-comodules as extensions of
complexes of C/A-injective C-comodules. For d large enough, the kernel Z• of the
morphism E•d −→ E•d−1 will be a complex ofA-projective C-comodules. Actually, E•i
and Z• are complexes of coprojective C-comodules, as a C/A-injective A-projective
left C-comodule Q is coprojective (since the injection of C-comodules Q −→ C⊗AQ

splits, Q −→ C⊗A Q −→ C⊗A Q/Q being an exact triple of A-projective C-comod-
ules). Let K• be the total complex of the bicomplex

Z• −−→ E•d −−→ · · · −−→ E•1 −−→ E•.

Then the morphism L• −→M• factorizes through K• in a natural way, the kernel
of the morphism K• −→M• is a coacyclic complex of C/A-injective C-comodules,
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and the cokernel of the morphism L• −→ K• is a complex ofA-projective C-comod-
ules. Notice that the complex K• is the cone of the natural morphism L1(ker(E• →
M•)) −→ E•, where L1 denotes the functor from the proof of Theorem 4.5.

Finally, let us construct a factorization of the morphism L• −→ M• into a
trivial cofibration followed by a fibration. Represent the cokernel of the morphism
L• −→ E• as a subcomplex of a complex of C/A-injective left C-comodules 1E•

such that the quotient complex is a complex of A-projective C-comodules; repre-
sent this quotient complex as a subcomplex of a complex 2E• with the analogous
properties, etc. The complexes iE• are also complexes of A-projective C-comodules
as extensions of complexes of A-projective C-comodules (so they are complexes of
coprojective C-comodules). Let K• be the total complex of the bicomplex

E• −−→ 1E• −−→ 2E• −−→ · · · ,

constructed by taking infinite direct sums along the diagonals. Then the morphism
L• −→M• factorizes through K• in a natural way, the cokernel of the morphism
L• −→ K• is a coacyclic complex of A-projective C-comodules, and the kernel of
the morphism K• −→M• is a complex of C/A-injective C-comodules. The class of
C/A-injective C-comodules is closed under infinite direct sums by Lemma 5.3.2(a).

Part (a) is proven; the proof of part (b) is completely analogous. �

Remark. It follows from the proof of Lemma 2 that any C/A-injective left C-comod-
ule can be obtained from coinduced C-comodules by taking extensions, cokernels
of injective morphisms, and direct summands. Analogously, any C/A-projective
left C-contramodule can be obtained from induced C-contramodules by taking
extensions, kernels of surjective morphisms, and direct summands.

Let C and D be two corings satisfying the above assumptions and C −→ D

be a map of corings compatible with a k-algebra map A −→ B. Then the pair
of adjoint functors M• �−→ BM• and N• �−→ CN• is a Quillen adjunction [49]
from the category of complexes of left C-comodules to the category of complexes
of left D-comodules; the pair of adjoint functors Q• �−→ CQ• and P• �−→ BP• is
a Quillen adjunction from the category of complexes of left D-contramodules to
the category of complexes of left C-contramodules. The same applies to the case of
a Morita morphism (E,E∨) from A to B and a morphism BCB −→ D of corings
over B.

The pair of adjoint functors ΦC and ΨC applied to complexes term-wise is
not a Quillen equivalence, and not even a Quillen adjunction, between the model
category of complexes of left C-contramodules and the model category of complexes
of left C-comodules. This pair of functors is a Quillen equivalence, however, when C

is a coring over a semisimple ring A. In general, the model categories of complexes
of left C-comodules and left C-contramodules can be connected by a chain of three
Quillen equivalences (see Remark 9.2.2).



9.2. Complexes of semimodules and semicontramodules 173

9.2 Complexes of semimodules and semicontramodules

Let S be a semialgebra over a coring C over a k-algebra A. Assume that C is a
projective left and a flat right A-module, S is a coprojective left and a coflat right
C-comodule, and the ring A has a finite left homological dimension.

A left S-semimodule L is called S/C/A-projective if the functor of S-semimod-
ule homomorphisms from L maps exact triples of C/A-injective left S-semimodules
to exact triples. An A-projective left S-semimodule L is called S/C/A-semipro-
jective if the functor of semihomomorphisms from L over S maps exact triples
of C/A-coinjective left S-semicontramodules to exact triples. Analogously, a left
S-semicontramodule Q is called S/C/A-injective if the functor of S-semicontra-
module homomorphisms into Q maps exact triples of C/A-projective left S-semi-
contramodules to exact triples. An A-injective left S-semicontramodule Q is called
S/C/A-semiinjective if the functor of semihomomorphisms into Q over S maps
exact triples of C/A-coprojective left S-semimodules to exact triples.

As in Lemma 6.4, it follows from Proposition 6.2.2(c) that an A-projective
left S-semimodule is S/C/A-projective if and only if it is S/C/A-semiprojective.
Analogously, it follows from Proposition 6.2.3(c) that an A-injective left S-semi-
contramodule is S/C/A-injective if and only if it is S/C/A-semiinjective. It will
be shown below that any S/C/A-projective left S-semimodule is A-projective and
any S/C/A-injective left S-semicontramodule is A-injective.

Theorem.

(a) The category of complexes of left S-semimodules has a closed model category
structure with the following properties. A morphism is a weak equivalence if
and only if its cone is C-coacyclic. A morphism is a cofibration if and only if
it is injective and its cokernel is an S/C/A-projective complex of S/C/A-pro-
jective S-semimodules. A morphism is a fibration if and only if it is surjective
and its kernel is a complex of C/A-injective S-semimodules. An object is si-
multaneously fibrant and cofibrant if and only if it is a semiprojective complex
of semiprojective left S-semimodules.

(b) The category of complexes of left S-semicontramodules has a closed model
category structure with the following properties. A morphism is a weak equiv-
alence if and only if its cone is C-contraacyclic. A morphism is a cofibration
if and only if it is injective and its cokernel is a complex of C/A-projective
S-semicontramodules. A morphism is a fibration if and only if it is injective
and its cokernel is an S/C/A-injective complex of S/C/A-injective S-semi-
contramodules. An object is simultaneously fibrant and cofibrant if and only
if it is a semiinjective complex of semiinjective left S-semicontramodules.

Proof. Part (a): existence of limits and colimits, the two-out-of-three property
of weak equivalences, and the retraction properties are verified as in the proof
of Theorem 9.1. It is clear that a morphism is a trivial cofibration if and only
if it is injective and its cokernel is a C-coacyclic S/C/A-projective complex of
S/C/A-projective S-semimodules, and a morphism is a trivial fibration if and only
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if it is surjective and its kernel is a C-coacyclic complex of C/A-injective S-semi-
modules. To check the lifting properties, use Lemma 9.1.1. Consider an extension
E• −→ M• −→ K• of an S/C/A-projective complex of S/C/A-projective left
S-semimodules K• by a complex of C/A-injective left S-semimodules E•. By the
next Lemma 1(a), this extension is term-wise split, so it comes from a morphism of
complexes of S-semimodules K• −→ E•[1]. Now suppose that one of the complexes
K• and E• is C-coacyclic. Then any morphism K• −→ E•[1] is homotopic to zero
by a result of 6.5, hence the extension of complexes E• −→M• −→ K• is split. So
after Lemma 1 is proven it will remain to construct the functorial factorizations.

Lemma 1.

(a) A left S-semimodule L is S/C/A-projective if and only if for any C/A-injec-
tive left S-semimodule M the k-modules ExtiS(L,M) of Yoneda extensions
in the abelian category of left S-semimodules vanish for all i > 0. The functor
of S-semimodule homomorphisms into a C/A-injective S-semimodule maps
exact triples of S/C/A-projective left S-semimodules to exact triples. The
classes of S/C/A-projective left S-semimodules and S/C/A-projective com-
plexes of S/C/A-projective left S-semimodules are closed under extensions
and kernels of surjective morphisms.

(b) A left S-semicontramodule Q is S/C/A-injective if and only if for any
C/A-projective left S-semicontramodule P the k-modules ExtS,i(P,Q) of
Yoneda extensions in the abelian category of left S-semicontramodules vanish
for all i > 0. The functor of S-semicontramodule homomorphisms from a
C/A-projective S-semicontramodule maps exact triples of S/C/A-injective
left S-semicontramodules to exact triples. The classes of S/C/A-injective left
S-semicontramodules and S/C/A-injective complexes of S/C/A-injective left
S-semicontramodules are closed under extensions and cokernels of injective
morphisms.

Proof. Part (a): the forgetful functor S-simod −→ C-comod preserves injective
objects, since it is right adjoint to the exact functor of induction. Let us show
that any C/A-injective left S-semimodule M is a subsemimodule of an injective
S-semimodule (it will follow that the category of left S-semimodules has enough
injectives).

The construction of Lemma 3.3.2(b) assigns to a C/A-coinjective left
S-semicontramodule P an injective map from it into a semiinjective S-semi-
contramodule I(P) with a C/A-coinjective cokernel. Indeed, the cokernel of
the map P −→ I(P) is a C/A-coinjective C-contramodule by Lemma 3.1.3(b),
so I(P) is a C/A-coinjective C-contramodule as an extension of two C/A-coin-
jective C-contramodules and a coinjective C-contramodule as an A-injective
and C/A-coinjective C-contramodule. Hence I(P) = CohomC(S, I(P)) is a
semiinjective S-semicontramodule. The cokernel of the composition of injective
morphisms

P −−→ CohomC(S,P) −−→ CohomC(S, I(P))
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is an extension of the cokernel of the morphism

CohomC(S,P) −−→ CohomC(S, I(P))

and the cokernel of the morphism P −→ CohomC(S,P); the former is C/A-coin-
jective since the cokernel of the morphism P −→ I(P) is, and the latter is
C/A-coinjective as a C-contramodule direct summand of CohomC(S,P). Hence
the cokernel of the morphism P −→ I(P) is C/A-coinjective.

Applying these observations to the S-semicontramodule P = ΨS(M) and
using Lemmas 5.3.2(b) and 5.3.1(c), we conclude that

M � ΦSΨS(M) −−→ ΦSI(ΨSM)

is an injective morphism of S-semimodules for any C/A-injective left S-semimod-
ule M. Now the functor ΦS maps semiinjective S-semicontramodules to injective
S-semimodules by Proposition 6.2.2(a).

So any C/A-injective left S-semimodule M has an injective right resolution;
by the construction or by Lemma 5.3.1(a), this resolution is exact with respect to
the exact category of C/A-injective S-semimodules. Applying to this resolution the
functor of S-semimodule homomorphisms from an S/C/A-projective left S-semi-
module L, we obtain the desired vanishing ExtiS(L,M) = 0 for all i > 0. The
remaining assertions follow (to verify the assertions related to complexes, notice
that the class of acyclic complexes of k-modules is closed under extensions and
cokernels of injective morphisms). Part (a) is proven; the proof of part (b) is com-
pletely analogous and based on the construction of a semicontramodule projective
resolution.

Alternatively, one can argue as in the proof of Lemma 5.3.1(a-b). �

The analogous results for S/C/A-semiprojective (complexes of) left S-semi-
modules and S/C/A-semiinjective (complexes of) left S-semicontramodules can be
obtained by considering the derived functor SemiExt∗S(M,P), defined as the coho-
mology of the object SemiExtS(M,P) of D(k-mod). For an A-projective S-semi-
module M and a C/A-coinjective S-semicontramodule P or a C/A-coprojective
S-semimodule M and an A-injective S-semicontramodule P it is computed by
the cobar-complex CohomC(M,P) −→ CohomC(S �C M, P) −→ · · · , hence
SemiExtiS(M,P) = 0 for i > 0 and SemiExt0S(M,P) = SemiHomS(M,P).

Lemma 2.

(a) There exists a (not always additive) functor assigning to any left S-semimod-
ule an injective morphism from it into a C/A-injective S-semimodule with an
S/C/A-projective cokernel. Furthermore, there exists a functor assigning to
any complex of left S-semimodules an injective morphism from it into a com-
plex of C/A-injective S-semimodules such that the cokernel is a C-coacyclic
S/C/A-projective complex of S/C/A-projective S-semimodules.
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(b) There exists a (not always additive) functor assigning to any left S-semicon-
tramodule a surjective morphism onto it from a C/A-projective S-semicon-
tramodule with an S/C/A-injective kernel. Furthermore, there exists a func-
tor assigning to any complex of left S-semicontramodules a surjective mor-
phism onto it from a complex of C/A-projective S-semicontramodules such
that the kernel is a C-contraacyclic S/C/A-injective complex of S/C/A-in-
jective S-semicontramodules.

Proof. Part (a): modify the construction of the second assertion of Lemma 1.3.3,
replacing the injective morphism of C-comodules M −→ G(M) = C⊗AM with the
injective morphism of C-comodules M −→ J(M) constructed in Lemma 9.1.2(a).
In other words, for any left S-semimodule M denote by K(M) the kernel of the
morphism S�CM −→M and by Q(M) the cokernel of the composition K(M) −→
S�CM −→ S�CJ(M). The composition of maps S�CM −→ S�CJ(M) −→ Q(M)
factorizes through the surjection S �C M −→ M, so there is a natural injective
morphism of S-semimodules M −→ Q(M). The cokernel of this morphism is iso-
morphic to S �C (J(M)/M), which is an S/C/A-projective S-semimodule because
J(M)/M is an A-projective C-comodule. As in the proof of Lemma 1.3.3, the
S-semimodule morphism M −→ Q(M) can be lifted to a C-comodule morphism
M −→ S �C J(M). Let J(M) denote the inductive limit of the sequence

M −−→ S �C J(M) −−→ Q(M) −−→ S �C J(Q(M)) −−→ Q(Q(M)) −−→ · · · ;

it is the desired C/A-injective S-semimodule into which M maps injectively with
an S/C/A-projective cokernel. Indeed, J(M) is C/A-injective by Sublemma 3.3.3.B
and the cokernel of the morphism M −→ J(M) is S/C/A-projective by the next
sublemma.

Sublemma.

(a) Let 0 = U•0 −→ U•1 −→ U•2 −→ · · · be an inductive system of complexes of
left S-semimodules such that the successive cokernels coker(U•i−1 → U•i ) are
S/C/A-projective complexes of S/C/A-projective S-semimodules. Then the
inductive limit lim−→U•i is an S/C/A-projective complex of S/C/A-projective
S-semimodules.

(b) Let 0 = U•0 ←− U•1 ←− U•2 ←− · · · be a projective system of complexes of
left S-semicontramodules such that the successive kernels ker(U•i → U•i−1)
are S/C/A-injective complexes of S/C/A-injective S-semimodules. Then the
projective limit lim←−U•i is an S/C/A-injective complex of S/C/A-injective
S-semimodules.

Proof. The forgetful functor S-simod −→ A-mod preserves inductive limits, since
it preserves cokernels and infinite direct sums, so one has HomS(lim−→U•i , M•) =
lim←−HomS(U•i ,M

•) for any complex of left S-semimodules M•. Analogously, the
forgetful functor S-sicntr −→ A-mod preserves projective limits, since it preserves
kernels and infinite products, so one has HomS(P•, lim←−U•i ) = lim←−HomS(P•,U•i )
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for any complex of left S-semicontramodules P•. As the projective limits of se-
quences of surjective maps preserve exact triples and acyclic complexes, the asser-
tions of the sublemma follow from Lemma 1. �

The first statement of Lemma 2(a) is proven. To prove the second one, con-
sider the functor assigning to a complex of left S-semimodules M• the injec-
tive map from it into the complex J+(M•), which is constructed in terms of the
functor M �−→ J(M) as in the proof of Theorem 2.5. By Sublemma 9.2, the
cokernel of the morphism M• −→ J+(M•) is an S/C/A-projective complex of
S/C/A-projective S-semimodules, since a complex of S-semimodules induced from
a complex of A-projective C-comodules belongs to this class. Set 0J• = J+(M•),
1J• = J+(coker(M• → 0J•)), etc. The complexes iJ• are complexes of C/A-injec-
tive S-semimodules and the complexes coker(M• → 0J•), coker(i−1J• → iJ•) are
S/C/A-projective complexes of S/C/A-projective S-semimodules. The complexes
iJ• for i > 0 are also S/C/A-projective complexes of S/C/A-projective S-semimod-
ules as extensions of complexes with these properties. Let K• be the total complex
of the bicomplex

0J• −−→ 1J• −−→ 2J• −−→ · · · ,
constructed by taking infinite direct sums along the diagonals. Then K• is a com-
plex of C/A-injective S-semimodules and the cokernel of the injective morphism
M• −→ K• is a C-coacyclic (and even S-coacyclic) S/C/A-projective complex of
S/C/A-projective S-semimodules. To check the latter properties, one can apply
Sublemma 9.2 to the canonical filtration of the complex 0J•/M• −→ 1J• −→
2J• −→ · · ·

The proof of Lemma 2(b) is completely analogous and based on the modi-
fication of the construction of the second assertion of Lemma 3.3.3(a) using the
surjective morphism of C-contramodules F(P) −→ P from Lemma 9.1.2(b) in
place of the morphism G(P) = HomA(C,P) −→ P. �

In the sequel we will denote by M �−→ J(M) the functor constructed in
Lemma 2 rather than its more simplistic version from Lemmas 1.3.3 and 3.3.3.

Lemma 3.

(a) There exists a (not always additive) functor assigning to any left S-semimod-
ule a surjective map onto it from an S/C/A-projective S-semimodule with a
C/A-injective kernel. Furthermore, there exists a functor assigning to any
complex of left S-semimodules a surjective map onto it from an S/C/A-pro-
jective complex of S/C/A-projective S-semimodules such that the kernel is a
C-coacyclic complex of C/A-injective S-semimodules.

(b) There exists a (not always additive) functor assigning to any left S-semicon-
tramodule an injective map from it into an S/C/A-injective S-semicontra-
module with a C/A-projective cokernel. Furthermore, there exists a functor
assigning to any complex of left S-semicontramodules an injective map from
it into an S/C/A-injective complex of S/C/A-injective S-semicontramodules
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such that the cokernel is a C-contraacyclic complex of C/A-projective S-semi-
contramodules.

Proof. Part (a): for any left S-semimodule L, consider the injective morphism
L −→ J(L) from Lemma 2 and denote by K(L) its cokernel. The functor M �−→
P(M) of Lemmas 1.3.2 and 3.3.2 assigns to a C/A-injective left S-semimodule
M a surjective morphism onto it from the S-semimodule P(M) induced from a
coprojective C-comodule P(M) such that the kernel is a C/A-injective S-semimod-
ule (see the proof of Lemma 1). Denote by F(L) the kernel of the composition

P(J(L)) −−→ J(L) −−→ K(L).

The composition of maps F(L) −→ P(J(L)) −→ J(L) factorizes through the
injection L −→ J(L), so there is a natural surjective morphism of S-semimodules
F(L) −→ L. The S-semimodules P(J(L)) and K(L) are S/C/A-projective, hence
the S-semimodule F(L) is also S/C/A-projective. The kernel of the morphism
F(L) −→ L is C/A-injective, since it is isomorphic to the kernel of the morphism
P(J(L)) −→ J(L). This proves the first statement of part (a).

Now consider the functor assigning to any complex of left S-semimodules
L• the surjective map onto it from the complex F+(L•). The complex F+(L•)
is S/C/A-projective as the kernel of a surjective morphism of S/C/A-projective
complexes; it is also a complex of S/C/A-projective and A-projective S-semimod-
ules. Set F•0 = F+(L•), F•1 = F+(ker(F•0 → L•)), etc. The complexes ker(F•0 →
L•), ker(F•i → F•i−1) are complexes of C/A-injective S-semimodules, hence the
complexes F•i for i > 0 are also complexes of C/A-injective S-semimodules as
extensions of complexes of C/A-injective S-semimodules. For d large enough, the
kernel Z• of the morphism F•d−1 −→ F•d−2 will be a complex of A-projective
S-semimodules, and consequently a complex of C-coprojective S-semimodules. Let
E• be the total complex of the bicomplex

· · · −−→ S �C S �C Z• −−→ S �C Z• −−→ F•d−1 −−→ F•d−2 −−→ · · · −−→ F•0,

constructed by taking infinite direct sums along the diagonals. Then the complex
E• is a complex of S/C/A-projective S-semimodules, and it is an S/C/A-projec-
tive complex since it is homotopy equivalent to a complex obtained from such
complexes using the operations of cone and infinite direct sum. The kernel of
the morphism E• −→ L• is a complex of C/A-injective S-semimodules, and it is
C-coacyclic since it contains a C-contractible subcomplex of S-semimodules such
that the quotient complex is the total complex of a finite exact complex of com-
plexes of S-semimodules. Part (a) is proven; the proof of part (b) is completely
analogous. �

Let us show that any S/C/A-projective left S-semimodule L is A-projective.
Consider the surjective morphism F(L) −→ L from Lemma 3. Since its kernel is
C/A-injective, we have an extension of an S/C/A-projective left S-semimodule by
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a C/A-injective left S-semimodule, which is always trivial by Lemma 1. Therefore,
L is a direct summand of F(L), while F(L) is A-projective by the construction.
Analogously, any S/C/A-injective left S-semicontramodule is A-injective.

Let us show that any S/C/A-projective C/A-injective left S-semimodule M

is a direct summand of the S-semimodule induced from the C-comodule coinduced
from a projective A-module; in particular, a left S-semimodule is simultaneously
S/C/A-projective and C/A-injective if and only if it is semiprojective. Consider
the exact triple K −→ S �C M −→ M, where K = ker(S �C M → M). If an
S-semimodule M is C/A-injective, then so is the S-semimodule S �C M, since
C/A-injectivity is equivalent to C/A-coprojectivity; then the S-semimodule K is
C/A-injective as a C-comodule direct summand of S �C M. If the S-semimodule
M is also S/C/A-projective, then our exact triple splits over S and M is a direct
summand of the induced S-semimodule S�CM. Since the C-comodule M is A-pro-
jective and C/A-injective, it is a direct summand of the C-comodule coinduced
from a projective A-module. Analogously, any S/C/A-injective C/A-projective left
S-semicontramodule P is a direct summand of the S-semicontramodule coinduced
from the C-contramodule induced from an injective A-module; in particular, a left
S-semicontramodule is simultaneously S/C/A-injective and C/A-projective if and
only if it is semiinjective. In other words, M is a direct summand of a direct sum
of copies of the S-semimodule S and P is a direct summand of a product of copies
of the S-semicontramodule Homk(S, k∨).

An S/C/A-projective complex of C-coprojective left S-semimodules M• is
homotopy equivalent to a complex obtained from complexes of S-semimodules
induced from complexes of C-coprojective C-comodules using the operations of
cone and infinite direct sum. In particular, the complex M• is semiprojective.
Indeed, the total complex of the bicomplex · · · −→ S �C S �C M −→ S �C M −→
M is contractible, being a C-coacyclic S/C/A-projective complex of C/A-injec-
tive left S-semimodules. Analogously, an S/C/A-injective complex of C-coinjec-
tive left S-semicontramodules P• is homotopy equivalent to a complex obtained
from complexes of S-semicontramodules coinduced from complexes of C-coinjective
C-contramodules using the operations of cone and infinite product. In particular,
the complex P• is semiinjective.

Finally we turn to the construction of functorial factorizations. As in the
proof of Theorem 9.1, let us first decompose an arbitrary morphism of complexes
of left S-semimodules L• −→M• into a cofibration followed by a fibration. This
can be done in either of two dual ways. Let us start with an injective morphism
from the complex L• into the complex J+(L•) constructed in Lemma 2. Let K• be
the cokernel of the morphism L• −→M•⊕J+(L•) and let F+(K•) −→K• be the
surjective morphism onto the complex K• from the complex F+(K•) constructed
in Lemma 3. Let L• −→ E• −→ F+(K•) be the pull-back of the exact triple
L• −→ M• ⊕ J+(L•) −→ K• with respect to the morphism F+(K•) −→ K•.
Then the morphism L• −→M• is equal to the composition

L• −→ E• −→M•.
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The cokernel F+(K•) of the morphism L• −→ E• is an S/C/A-projective complex
of S/C/A-projective S-semimodules. The kernel of the morphism E• −→M• is an
extension of the complex J+(L•) and the kernel of the morphism F+(K•) −→ K•,
hence a complex of C/A-injective S-semimodules. Another way is to start with the
surjective morphism F+(M•) −→ M• and consider the kernel of the morphism
L• ⊕F+(M•) −→M•.

Now let us construct a factorization of the morphism L• −→ M• into a
cofibration followed by a trivial fibration. Represent the kernel of the morphism
E• −→M• as the quotient complex of an S/C/A-projective complex of S/C/A-pro-
jective left S-semimodules P• by a C-coacyclic complex of C/A-injective S-semi-
modules. Then the complex P• is also a complex of C/A-injective S-semimodules
(so it is even a semiprojective complex of semiprojective S-semimodules). Let
K• be the cone of the morphism P• −→ E•. Then the morphism L• −→ M•

factorizes through K• in a natural way, the kernel of the morphism K• −→ M•

is a C-coacyclic complex of C/A-injective S-semimodules, and the cokernel of the
morphism L• −→K• is an S/C/A-projective complex of S/C/A-projective S-semi-
modules.

It remains to construct a factorization of the morphism L• −→ M• into a
trivial cofibration followed by a fibration. Represent the cokernel of the morphism
L• −→ E• as a subcomplex of a complex of C/A-injective S-semimodules Q• such
that the quotient complex is a C-coacyclic S/C/A-projective complex of S/C/A-pro-
jective S-semimodules. Then the complex Q• is also an S/C/A-projective complex
of S/C/A-projective S-semimodules (hence a semiprojective complex of semipro-
jective S-semimodules). Let K• be the cocone of the morphism E• −→ Q•. Then
the morphism L• −→ M• factorizes through K• in a natural way, the kernel of
the morphism K• −→M• is a complex of C/A-injective S-semimodules, and the
cokernel of the morphism L• −→ K• is a C-coacyclic S/C/A-projective complex
of S/C/A-projective S-semimodules.

Part (a) of the theorem is proven; the proof of part (b) is completely analo-
gous. �

Remark 1. One can obtain descriptions of S/C/A-projective complexes of
S/C/A-projective S-semimodules, C-coacyclic S/C/A-projective complexes of
S/C/A-projective S-semimodules, etc., from the proof of the above theorem.
Namely, let M• be an S/C/A-projective complex of S/C/A-projective left S-semi-
modules; decompose the morphism 0 −→ M• into a cofibration 0 −→ K•

followed by a trivial fibration K• −→ M• by the above construction (this can
be also obtained directly from Lemma 3). Then the complex M• is a direct
summand of K• and therefore can be obtained from complexes of S-semimodules
induced from complexes of A-projective C-comodules using the operations of
cone, infinitely iterated extension in the sense of inductive limit, and kernel
of surjective morphism. Let M• be a C-coacyclic S/C/A-projective complex of
S/C/A-projective left S-semimodules; decompose the morphism 0 −→ M• into
a trivial cofibration 0 −→ K• followed by a fibration K• −→ M• by the above
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construction. Then the complex M• is a direct summand of K• and therefore up
to the homotopy equivalence can be obtained from the total complexes of exact
triples of S/C/A-projective complexes of S/C/A-projective S-semimodules using
the operations of cone and infinite direct sum. The analogous results hold for
complexes of left S-semicontramodules.

Let S and T be two semialgebras satisfying the above assumptions and S −→
T be a map of semialgebras compatible with a map of corings C −→ D and a
k-algebra map A −→ B. Then the pair of adjoint functors M• �−→ TM• and
N• �−→ CN• is a Quillen adjunction from the category of complexes of left S-semi-
modules to the category of complexes of left T-semimodules; the pair of adjoint
functors Q• �−→ CQ• and P• �−→ TP• is a Quillen adjunction from the category
of complexes of left T-semicontramodules to the category of complexes of left
S-semicontramodules. These results follow from Theorems 7.2.1 and 8.2.3(c). They
also hold in the case of a left coprojective and right coflat Morita morphism (E,E∨)
from C to D and a morphism S −→ CTC of semialgebras over C.

The pair of adjoint functors ΦS and ΨS applied to complexes term-wise is
not a Quillen equivalence, and not even a Quillen adjunction, between the model
category of complexes of left S-semicontramodules and the model category of
complexes of left S-semimodules. Instead, this pair of adjoint functors between
closed model categories has the following properties.

The functor ΦS maps trivial cofibrations of complexes of left S-semicontra-
modules to weak equivalences of complexes of left S-semimodules. The functor ΨS

maps trivial fibrations of complexes of left S-semimodules to weak equivalences
of complexes of left S-semicontramodules. For a cofibrant complex of left S-semi-
contramodules P• and a fibrant complex of left S-semimodules M•, a morphism
ΦS(P•) −→M• is a weak equivalence if and only if the corresponding morphism
P• −→ ΨS(M•) is a weak equivalence. Furthermore, the functor ΦS maps cofi-
brant complexes to fibrant ones, while the functor ΨS maps fibrant complexes
to cofibrant ones. The restrictions of the functors ΦS and ΨS are mutually in-
verse equivalences between the full subcategories formed by cofibrant complexes
of left S-semicontramodules and fibrant complexes of right S-semimodules. These
restrictions of functors also send weak equivalences to weak equivalences.

Remark 2. One can connect the above model categories of complexes of left S-semi-
modules and left S-semicontramodules by a chain of three Quillen adjunctions by
considering other model category structures on these two categories. The above
model category structure on the category of complexes of left S-semimodules can
be called the semiprojective model structure, and the model category structure
on the category of complexes of left S-semicontramodules can be called the semi-
injective model structure. In addition to these, there is also the injective model
structure on the category of complexes of left S-semimodules, and the projec-
tive model structure on the category of complexes of left S-semicontramodules.
In these alternative model structures, weak equivalences are still morphisms with
C-coacyclic or C-contraacyclic cones, respectively. A morphism of complexes of
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semimodules is a cofibration if and only if it is injective, and a morphism of com-
plexes of semicontramodules is a fibration if and only if it is surjective. A morphism
of complexes of semimodules is a fibration if and only if it is surjective and its
kernel is an injective complex of injective semimodules in the sense of Remark 6.5
and the proof of Lemma 1 above; a morphism of complexes of semicontramodules
is a cofibration if and only if it is injective and its cokernel is a projective complex
of projective semicontramodules. One can check that these are model category
structures in a way analogous to (and much simpler than) the proof of Theorem
9.2 above. The functors ΦS and ΨS are a Quillen equivalence between the injec-
tive and the projective model category structures; the identity functors are Quillen
equivalences between the semiprojective and the injective model structures, and
between the semiinjective and the projective model structures.



10 A Construction of Semialgebras

10.1 Construction of comodules and contramodules

10.1.1 Let A and B be associative k-algebras.
For any projective finitely generated left A-module U and any left A-module

V there is a natural isomorphism HomA(U,A)⊗A V � HomA(U, V ) given by the
formula u∗ ⊗ v �−→ (u �→ 〈u, u∗〉v). In particular, for any A-B-bimodule C and
any projective finitely generated left B-module D there are natural isomorphisms
HomA(C ⊗B D, A) � HomB(D,HomA(C,A)) � HomB(D,B)⊗B HomA(C,A).

It follows that there is a tensor anti-equivalence between the tensor cate-
gory of A-A-bimodules that are projective and finitely generated as left A-mod-
ules and the tensor category of A-A-bimodules that are projective and finitely
generated as right A-modules, given by the mutually-inverse functors C �−→
HomA(C,A) and K �−→ HomAop(K,A). Therefore, noncommutative ring struc-
tures on a right-projective and finitely generated A-A-bimodule K correspond bi-
jectively to coring structures on the left-projective and finitely generated A-A-bi-
module HomAop(K,A). On the other hand, for any coring C over A there is a
natural structure of a k-algebra on HomA(C, A) together with a morphism of
k-algebras A −→ HomA(C, A).

Furthermore, let K be a k-algebra endowed with a k-algebra map A −→
K such that K is a finitely generated projective right A-module, and let C =
HomAop(K,A) be the corresponding coring over A. Then the natural isomorphism
N ⊗A C = HomAop(K,N) for a right A-module N provides a bijective corre-
spondence between the structures of right K-module and right C-comodule on N .
Analogously, the natural isomorphism HomA(C, P ) = K ⊗A P for a left A-module
P provides a bijective correspondence between the structures of left K-module
and left C-contramodule on P . In other words, there are isomorphisms of abelian
categories comod-C � mod-K and C-contra � K-mod.

10.1.2 Here is a generalization of the situation we just described. Let C be a
coring over a k-algebra A and K be a k-algebra endowed with a k-algebra map
A −→ K. Suppose that we are given a pairing

φ : C⊗A K −−→ A

which is an A-A-bimodule map satisfying the following conditions of compatibility
with the comultiplication in C and the multiplication in K and with the counit of C

and the unit of K. First, the composition C⊗AK⊗AK −→ C⊗AC⊗AK⊗AK −→
C⊗AK −→ A of the map induced by the comultiplication in C, the map induced
by the pairing φ, and the pairing φ itself should be equal to the composition
C⊗A K ⊗A K −→ C⊗A K −→ A of the map induced by the multiplication in A
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and the pairing φ. Second, the composition C = C ⊗A A −→ C ⊗A K −→ A of
the map coming from the unit of K with the pairing φ should be equal to the
counit of C. Equivalently, the map K −→ HomA(C, A) induced by φ should be a
morphism of k-algebras.

Then for any right C-comodule N the composition N ⊗A K −→ N ⊗A C⊗A
K −→ N of the map induced by the C-coaction in N and the map induced by the
pairing φ defines a structure of right K-module on N. Analogously, for any left
C-contramodule P the composition K ⊗A P −→ HomA(C,P) −→ P of the map
given by the formula k′⊗p �−→ (c �→ φ(c, k′)p) and the C-contraaction map defines
a structure of left K-module on P. So the pairing φ induces faithful functors

∆φ : comod-C −−→ mod-K and ∆φ : C-contra −−→ K-mod.

In particular, a pairing φ provides the coring C with a structure of left C-co-
module endowed with a right action of the k-algebra K by C-comodule endomor-
phisms. Moreover, the data of a right action of K by endomorphisms of the left
C-comodule C agreeing with the right action of A in C is equivalent to the data of
a pairing φ.

10.1.3 When C is a projective left A-module, the functor ∆φ has a left adjoint
functor

Γφ : K-mod −−→ C-contra.

This functor sends the induced left K-module K⊗AV to the induced left C-contra-
module HomA(C, V ) for any left A-module V ; to compute Γφ(M) for an arbitrary
left K-module M , one can represent M as the cokernel of a morphism of K-mod-
ules induced from A-modules. Analogously, when C is a flat right A-module, the
functor ∆φ has a right adjoint functor

Γφ : mod-K −−→ comod-C.

This functor sends the coinduced right K-module HomAop(K,U) to the coinduced
right C-comodule U ⊗A C for any right A-module U ; to compute Γφ(N) for an
arbitrary right K-module N , one can represent N as the kernel of a morphism of
K-modules coinduced from A-modules.

Without any conditions on the coring C, the composition of functors
ΨC : C-comod −→ C-contra and ∆φ : C-contra −→ K-mod has a left adjoint
functor of the form

K-mod −−→ C-comod, M �−→ C⊗K M.

Analogously, the composition of the functors ΦCop : contra-C −→ comod-C and
∆φ : comod-C −→ mod-K has a right adjoint functor given by

mod-K −−→ contra-C, N �−→ HomKop(C, N).

So one can compute the compositions of functors ΦCΓφ and ΨCopΓφ in this way.
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10.1.4 It is easy to see that the functor ∆φ is fully faithful whenever for any right
A-module N the map

N ⊗A C −−→ HomAop(K,N), n⊗ c �−→ (k′ �→ nφ(c, k′))

is injective (cf. [23, 19.2]). In particular, when A is a semisimple ring, the functor
∆φ is fully faithful if the map C −→ HomAop(K,A) induced by the pairing φ is
injective, i.e., the pairing φ is nondegenerate in C.

10.2 Construction of semialgebras

10.2.1 Assume that a coring C over a k-algebraA is a flat left A-module. LetK be
a k-algebra endowed with a k-algebra map A −→ K and a pairing φ : C⊗AK −→
A satisfying the conditions of 10.1.2, and let R be a k-algebra endowed with a
k-algebra map f : K −→ R such that R is a flat left K-module. Then the tensor
product C ⊗K R is a coflat left C-comodule endowed with a right action of the
k-algebra K (and even of the k-algebra R) by left C-comodule endomorphisms.

Suppose that there exists a structure of right C-comodule on C⊗KR inducing
the existing structure of right K-module and such that the following three maps
are right C-comodule morphisms:

(i) the left C-coaction map C⊗K R −→ C⊗A (C⊗K R),

(ii) the semiunit map C = C ⊗K K −→ C ⊗K R induced by the k-algebra map
f : K −→ R, and

(iii) the semimultiplication map (C ⊗K R) �C (C ⊗K R) � C ⊗K R ⊗K R −→
C⊗K R, where the isomorphism is the inverse of the natural isomorphism of
Proposition 1.2.3(a) and the map C ⊗K R ⊗K R −→ C ⊗K R is induced by
the multiplication in R.

Then the semiunit and semimultiplication maps (ii) and (iii) define a semi-
algebra structure on the C-C-bicomodule S = C⊗K R.

Notice that the maps (i-iii) always preserve the right K-module structures. If
the functor ∆φ is fully faithful, then a right C-comodule structure inducing a given
rightK-module structure on C⊗KR is unique provided that it exists, and the maps
(i-iii) preserve this structure automatically. If the functor ∆φ is an equivalence of
categories, then a unique right C-comodule structure with the desired properties
always exists on C⊗K R.

The associativity of semimultiplication in S follows from the associativity of
multiplication in R and the commutativity of diagrams of associativity isomor-
phisms of cotensor products.

10.2.2 By Proposition 1.2.3(a), for any right C-comodule N there is a natural
isomorphism

N �C S � N ⊗K R,
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hence every right S-semimodule has a natural structure of right R-module. So
there is a faithful exact functor

∆φ,f : simod-S −−→ mod-R

which agrees with the functor ∆φ : comod-C −→ mod-K. Moreover, the category
of right S-semimodules is isomorphic to the category of k-modules N endowed
with a right C-comodule and right R-module structures satisfying the following
compatibility conditions: first, the induced right K-module structures should co-
incide, and second, the action map N⊗K R −→ N should be a morphism of right
C-comodules, where the right C-comodule structure on N⊗K R is provided by the
isomorphism N ⊗K R = N �C S. When the functor ∆φ is fully faithful, the cate-
gory simod-S is simply described as the full subcategory of the category of right
R-modules consisting of those modules whose right K-module structure comes
from a right C-comodule structure.

Analogously, if C is a projective left A-module and R is a projective left
K-module, then S is a coprojective left C-comodule and by Proposition 3.2.3.2(a)
for any left C-contramodule P there is a natural isomorphism

CohomC(S,P) � HomK(R,P),

hence any left S-semicontramodule has a natural structure of left R-module. So
there is a faithful exact functor

∆φ,f : S-sicntr −−→ R-mod

which agrees with the functor ∆φ : C-comod −→ K-mod. Moreover, the category
of left S-semicontramodules is isomorphic to the category of k-modules P endowed
with a left C-contramodule and a left R-module structures satisfying the follow-
ing compatibility conditions: first, the induced left K-module structures should
coincide, and second, the action map P −→ HomK(R,P) should be a morphism
of C-contramodules, where the left C-contramodule structure on HomK(R,P) is
provided by the isomorphism HomK(R,P) = CohomC(S,P).

10.2.3 WhenK is a projective finitely generated rightA-module and the pairing φ
corresponds to an isomorphism C � HomAop(K,A), the isomorphisms of categories
∆φ : comod-C � mod-K and ∆φ : C-contra � K-mod transform the functor of
contratensor product over C into the functor of tensor product over K:

N �C P � N⊗K P.

This follows from the isomorphism HomA(C,P) = K⊗AP. When in additionR is a
projective left K-module, the isomorphisms of categories ∆φ,f : simod-S � mod-R
and ∆φ,f : S-sicntr � R-mod transform the functor of contratensor product over S

into the functor of tensor product over R:

N �S P � N⊗R P.

One checks this using the isomorphism N �C S = N⊗K R and the above formula
for the contratensor product over C.
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10.2.4 The functor ∆φ,f has a right adjoint functor

Γφ,f : mod-R −−→ simod-S,

which agrees with the functor Γφ : mod-K −→ comod-C. The functor Γφ,f is con-
structed as follows. Let N be a right R-module; it has an induced right K-mod-
ule structure. Consider the composition ∆φ(Γφ(N) �C S) = ∆φΓφ(N) ⊗K R −→
N⊗KR −→ N of the isomorphism of Proposition 1.2.3(a), the map induced by the
adjunction map ∆φΓφ(N) −→ N , and the right action map. By adjunction, this
composition corresponds to a right C-comodule morphism Γφ(N)�C S −→ Γφ(N),
which provides a right S-semimodule structure on Γφ(N).

Analogously, if C is a projective left A-module and R is a projective left
K-module, then the functor ∆φ,f has a left adjoint functor

Γφ,f : R-mod −−→ S-sicntr,

which agrees with the functor Γφ : K-mod −→ C-contra. The functor Γφ,f is con-
structed as follows. Let P be a left R-module; it has an induced left K-module
structure. Consider the composition

P −→ HomK(R,P ) −→ HomK(R, ∆φΓφ(P )) = ∆φ(CohomC(S,Γφ(P )))

of the action map, the map induced by the adjunction map P −→ ∆φΓφ(P ),
and the isomorphism of Proposition 3.2.3.2(a). By adjunction, this composition
corresponds to a left C-contramodule morphism Γφ(P ) −→ CohomC(S,Γφ(P )),
which provides a left S-semicontramodule structure on Γφ(P ).

Notice that the semialgebra S has a structure of left S-semimodule endowed
with a right action of the k-algebra R by left S-semimodule endomorphisms. So
when C is a flat right A-module and S turns out to be a coflat right C-comodule,
there is the functor

S-simod −−→ R-mod, M �−→ HomS(S,M) = HomC(C,M).

This functor has the left adjoint functor

R-mod −−→ S-simod, M �−→ S⊗RM = C⊗K M.

In the case when C is a projective left A-module and R is a projective left K-mod-
ule, the former functor is isomorphic to ∆φ,fΨS, and consequently the latter func-
tor is isomorphic to ΦSΓφ,f . Analogously, when C is a projective right A-module
and S turns out to be a coprojective right C-comodule, the functor ΨSopΓφ,f
maps a right R-module N to the right S-semicontramodule HomRop(S, N) =
HomKop(C, N).

Let us point out that no explicit description of the category of left S-semi-
modules is in general available. We only described the categories of right S-semi-
modules and left S-semicontramodules, and constructed certain functors acting to
and from the category of left S-semimodules.
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10.2.5 The following observations were inspired by [3, Section 5].
Suppose that there is a commutative diagram of k-algebra maps A −→ K,

K −→ R, A′ −→ K ′, K ′ −→ R′, A −→ A′, K −→ K ′, R −→ R′. Let C

be a coring over A and C′ be a coring over A′ endowed with a map of corings
C −→ C′ compatible with the k-algebra map A −→ A′. Assume that C is a flat
left A-module, C′ is a flat left A′-module, R is a flat left K-module, and R′ is
a flat left K ′-module. Let φ : C ⊗A K −→ A and φ′ : C′ ⊗A′ K ′ −→ A′ be two
pairings satisfying the conditions of 10.1.2 and forming a commutative diagram
with the maps C ⊗A K −→ C′ ⊗A′ K ′ and A −→ A′. Furthermore, suppose that
the natural map K ⊗A A′ −→ K ′ is an isomorphism. Assume that there is a
structure of right C-comodule on C ⊗K R and a structure of right C′-comodule
on C′ ⊗K′ R′ satisfying the conditions of 10.2.1, so that C⊗K R is a semialgebra
over C and C′ ⊗K′ R′ is a semialgebra over C′. Then the natural map from the
right C′-comodule C⊗K R⊗AA′ to the right C′-comodule C′⊗K′R′ is a morphism
of right K ′-modules. If it is also a morphism of right C′-comodules, then the map
C⊗KR −→ C′⊗K′R′ is a map of semialgebras compatible with the map of corings
C −→ C′ and the k-algebra map A −→ A′.

Suppose that there is a commutative diagram of k-algebra maps A −→ K,
K −→ R, A −→ K ′, K ′ −→ R′, K −→ K ′, R −→ R′. Let C and C′ be
two corings over A and C′ −→ C be a morphism of corings over A. Assume that
C and C′ are flat left A-modules, R is a flat left K-module, and R′ is a flat
left K ′-module. Let φ : C ⊗A K −→ A and φ′ : C′ ⊗A K ′ −→ A be two pairings
satisfying the conditions of 10.1.2 and forming a commutative diagram with the
maps C′ ⊗A K −→ C ⊗A K and C′ ⊗A K −→ C′ ⊗A K ′. Furthermore, suppose
that the natural map K ′ ⊗K R −→ R′ is an isomorphism. Assume that there is
a structure of right C-comodule on C ⊗K R and a structure of right C′-comodule
on C′ ⊗K′ R′ satisfying the conditions of 10.2.1, so that C⊗K R is a semialgebra
over C and C′ ⊗K′ R′ is a semialgebra over C′. In this case, if the right K-mod-
ule map C′ ⊗K′ R′ = C′ ⊗K′ K ′ ⊗K R � C′ ⊗K R −→ C ⊗K R is a morphism of
right C-comodules, then it is a map of semialgebras compatible with the morphism
C′ −→ C of corings over A.

10.3 Entwining structures

An important particular case of the above construction of semialgebras was con-
sidered in [21]. Namely, it was noticed that there is a set of data from which one
can construct both a coring and a semialgebra.

10.3.1 Let C be a coring over a k-algebra A and A −→ B be a morphism of
k-algebras. A right entwining structure for C and B over A is an A-A-bimodule
map

ψ : C⊗A B −→ B ⊗A C

satisfying the following equations:
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(i) the composition C⊗AB⊗AB −→ B⊗AC⊗AB −→ B⊗AB⊗AC −→ B⊗AC of
two maps induced by the map ψ and the map induced by the multiplication
in B is equal to the composition C ⊗A B ⊗A B −→ C ⊗A B −→ B ⊗A C of
the map induced by the multiplication in B and the map ψ;

(ii) the map ψ forms a commutative triangle with the maps C −→ C⊗A B and
C −→ B ⊗A C coming from the unit of B;

(iii) the composition C⊗AB −→ C⊗A C⊗AB −→ C⊗AB⊗A C −→ B⊗AB⊗A C

of the map induced by the comultiplication in C and two maps induced by
the map ψ is equal to the composition C⊗AB −→ B⊗A C −→ B⊗A C⊗A C

of the map ψ and the map induced by the comultiplication in C;

(iv) the map ψ forms a commutative triangle with the maps C ⊗A B −→ B and
B ⊗A C −→ B coming from the counit of C.

A left entwining structure for C and B over A is defined as an A-A-bimodule
map

ψ# : B ⊗A C −−→ C⊗A B
satisfying the opposite equations. Notice that whenever a map ψ : C ⊗A B −→
B ⊗A C is invertible the map ψ is a right entwining structure if and only if the
map ψ# = ψ−1 is a left entwining structure.

10.3.2 A (right) entwined module over a right entwining structure ψ : C⊗AB −→
B ⊗A C is a k-module N endowed with a right C-comodule and a right B-module
structures such that the corresponding right A-module structures coincide and
the following equation holds: the composition N ⊗A B −→ N ⊗A C ⊗A B −→
N ⊗A B ⊗A C −→ N ⊗A C of the map induced by the C-coaction in N, the map
induced by the map ψ, and the map induced by the B-action in N is equal to the
composition N ⊗A B −→ N −→ N ⊗A C of the B-action map and the C-coaction
map.

A (left) entwined contramodule over a right entwining structure ψ is a k-mod-
ule P endowed with a left C-contramodule and a left B-module structures such that
the corresponding left A-module structures coincide and the following equation
holds: the composition HomA(C,P) −→ HomA(C,HomA(B,P)) = HomA(B ⊗A
C, P) −→ HomA(C ⊗A B, P) = HomA(B,HomA(C,P)) −→ HomA(B,P) of the
map induced by the B-action in P, the map induced by the map ψ, and the map
induced by the C-contraaction in P is equal to the composition HomA(C,P) −→
P −→ HomA(B,P) of the C-contraaction map and the B-action map.

(Left) entwined modules and (right) entwined contramodules over a left en-
twining structure are defined in an analogous way.

10.3.3 Let ψ : C⊗AB −→ B⊗A C be a right entwining structure. Define a coring
D over B as the left B-module

D = B ⊗A C
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endowed with the following right action of B, comultiplication, and counit. The
right B-action is the composition (B⊗A C)⊗AB −→ B⊗AB⊗A C −→ B⊗A C of
the map induced by the map ψ and the multiplication in B. The comultiplication
is the map B ⊗A C −→ B ⊗A C ⊗A C = (B ⊗A C) ⊗B (B ⊗A C) induced by the
comultiplication in C. The counit is the map B ⊗A C −→ B ⊗A A = B coming
from the counit of C. One has to use the equation (i) on the entwining map ψ to
check that the right action of B is associative, the equation (ii) to check that the
right action of B agrees with the existing right action of A, and the equations (iii)
and (iv) to check that the comultiplication and counit are right B-module maps.

Analogously, for a left entwining structure ψ# : B⊗AC −→ C⊗AB one defines
a coring D# = C ⊗A B over B. When ψ# = ψ−1 are two inverse maps satisfying
the entwining structure equations, the maps ψ and ψ# themselves are mutually
inverse isomorphisms D# � D between the corresponding corings over B.

10.3.4 Let ψ : C ⊗A B −→ B ⊗A C be a right entwining structure. Define a
semialgebra S over C as the left C-comodule

S = C⊗A B
endowed with the following right coaction of C, semimultiplication, and semiunit.
The right C-coaction is the composition C⊗AB −→ C⊗AC⊗AB −→ (C⊗AB)⊗AC

of the map induced by the comultiplication in C and the map induced by the
map ψ. The semimultiplication is the map (C ⊗A B) �C (C ⊗A B) = C ⊗A B ⊗A
B −→ C ⊗A B induced by the multiplication in B. The semiunit is the map
C = C⊗AA −→ C⊗AB coming from the unit of B. The multiple cotensor products
N�CS�CS�C· · ·�CS and the multiple cohomomorphisms CohomC(S�C· · ·�CS,P)
are associative for any right C-comodule N and any left C-contramodule P by
Propositions 1.2.5(e) and 3.2.5(h).

Analogously, for a left entwining structure ψ# : B ⊗A C −→ C ⊗A B one
defines a semialgebra S# = B⊗A C over C. When ψ# = ψ−1 are two inverse maps
satisfying the entwining structure equations, the maps ψ and ψ# themselves are
mutually inverse isomorphisms S � S# between the corresponding semialgebras
over C.

10.3.5 An entwined module over a right entwining structure ψ is the same thing as
a right D-comodule and the same thing as a right S-semimodule; in other words,
the corresponding categories are isomorphic. Analogously, an entwined module
over a left entwining structure ψ# is the same as a left D#-comodule and the same
as a left S#-semimodule. Similar assertions apply to contramodules: an entwined
contramodule over a right entwining structure ψ is the same thing as a left D-con-
tramodule and the same thing as a left S-semicontramodule; analogously for a left
entwining structure.

For any entwined module N over a right entwining structure ψ there is a
natural injective morphism

N −−→ N ⊗B D � N ⊗A C
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from N into an entwined module which as a C-comodule is coinduced from an
A-module. Analogously, for any left entwined contramodule P over ψ there is a
natural surjective morphism

HomA(C,P) � HomB(D,P) −−→ P

onto P from an entwined contramodule which as a C-contramodule is induced
from an A-module. So we obtain, in the entwining structure case, a functorial
injection from an arbitrary S-semimodule into a C/A-injective S-semimodule and a
functorial surjection onto an arbitrary S-semicontramodule from a C/A-projective
S-semicontramodule constructed in a way much simpler than that of Lemmas 1.3.3
and 3.3.3 (cf. [2, 3, 17]).

When the ring A is semisimple, there is also a functorial surjection onto an
arbitrary D-comodule N from a B-projective D-comodule N�C S � N⊗AB and a
functorial injection from an arbitrary D-contramodule P into a B-injective D-con-
tramodule CohomC(S,P) � HomA(B,P); these are much simpler constructions
than those of Lemmas 1.1.3 and 3.1.3.

When B is a flat right A-module, the construction of the semialgebra S =
C ⊗A B corresponding to an entwining structure ψ becomes a particular case of
the construction of the semialgebra S = C⊗KR corresponding to a pairing φ (take
K = A, R = B, and the only possible φ).

10.3.6 When ψ# = ψ−1 are two inverse entwining structures, there is an explicit
description of both the categories of left and right comodules over D# � D and
both the categories of left and right semimodules over S � S#.

When ψ is invertible, the multiple cotensor products N�C S�C · · ·�C S�C M

and the multiple cohomomorphisms CohomC(S �C · · ·�C S �C M, P) are associa-
tive for any right C-comodule N, left C-comodule M, and left C-contramodule P
by Propositions 1.2.5(f) and 3.2.5(j), so the functors of semitensor product and
semihomomorphism over S are everywhere defined.

10.4 Semiproduct and semimorphisms

Let ψ : C ⊗A B −→ B ⊗A C be a right entwining structure; suppose that ψ is an
invertible map. Let S = C⊗AB and D = B⊗AC be the corresponding semialgebra
over C and coring over B.

One defines [79] the semiproduct N⊗C
BM of a right entwined module N over ψ

and a left entwined module M over ψ−1 as the image of the composition of maps

N �C M −−→ N ⊗A M −−→ N ⊗B M.

Analogously, one defines the k-module of semimorphisms HomC
B(M,P) from a left

entwined module M over ψ−1 to a left entwined contramodule P over ψ as the
image of the composition of maps

HomB(M,P) −−→ HomA(M,P) −−→ CohomC(M,P).
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There is a natural map of semialgebras S −→ B compatible with the map
C −→ A of corings over A. Hence for any entwined modules N over ψ and M

over ψ−1 there is a natural injective map from the pair of morphisms N�CS�CM ⇒
N �C M to the pair of morphisms N⊗A B ⊗A M ⇒ N⊗A M . Therefore, we have
a natural surjective map

N ♦S M −−→ N ⊗C
B M,

which is an isomorphism if and only if the map N ♦S M −→ N ⊗B M is injec-
tive. Analogously, for any entwined module M over ψ−1 and entwined contra-
module P over ψ there is a natural surjective map from the pair of morphisms
HomA(M,P) ⇒ HomA(B ⊗A M, P) to the pair of morphisms CohomC(M,P) ⇒
CohomC(S �C M, P). So we get a natural injective map

HomC
B(M,P) −−→ SemiHomS(M,P),

which is an isomorphism if and only if the map HomB(M,P)→ SemiHomS(M,P)
is surjective.

Consider the natural injective morphism of entwined modules N −→ N ⊗B
D = N⊗A C. Taking the semitensor product of this morphism with M over S, we
obtain the map N ♦S M −→ (N ⊗A C) ♦S M � N ⊗B M that we are interested
in. Hence the natural map N ♦S M −→ N ⊗C

B M is an isomorphism whenever
the semitensor product with M maps A-split injections of right S-semimodules to
injections or N has such property with respect to left S-semimodules. This includes
the cases when N or M is an S-semimodule induced from a C-comodule.

Analogously, consider the natural surjective morphism of entwined con-
tramodules HomA(C,P) = HomB(D,P) −→ P. The map HomB(M,P) −→
SemiHomS(M,P) can be obtained by taking the semihomomorphisms over S

from M to the morphism HomA(C,P) −→ P or by taking the semihomomor-
phisms over S from the morphism M −→ C ⊗A M to P. Thus the natural map
HomC

B(M,P) −→ SemiHomS(M,P) is an isomorphism whenever the functor of
semihomomorphisms from M maps A-split surjections of left S-semicontramod-
ules to surjections or the functor of semihomomorphisms into P maps A-split
injections of left S-semimodules to surjections. This includes the cases when M

is an S-semimodule induced from a C-comodule or P is an S-semicontramodule
coinduced from a C-contramodule.

In the same way one constructs a natural injective map N⊗C
BM −→ N�D M

and shows that it is an isomorphism whenever the cotensor product with N or M

over D maps surjections of D-comodules to surjections, in particular, when one of
the D-comodules M or N is quasicoflat. Analogously, there is a natural surjective
map CohomD(M,P) −→ HomC

B(M,P), which is an isomorphism whenever the
functor of cohomomorphisms from M over D maps injections of left D-contra-
modules to injections or the functor of cohomomorphisms into P over D maps
surjections of left D-comodules to injections, in particular, when M is a quasico-
projective D-comodule or P is a quasicoinjective D-contramodule.



11 Relative Nonhomogeneous
Koszul Duality

11.1 Graded semialgebras

11.1.1 All the constructions of Chapters 1–10 can be carried out with the category
of k-modules replaced by the category of graded k-modules.

So one would consider a graded k-algebra A, a coring object C in the ten-
sor category of graded A-A-bimodules, a ring object S in a tensor category of
graded C-C-bicomodules, assume A to have a finite graded homological dimension,
consider graded S-semimodules and graded S-semicontramodules. All of our defini-
tions and results can be transferred to the graded situation without any difficulties.
All the functors so obtained commute with the shift of grading in modules.

Furthermore, there are two forgetful functors Σ and Π from the category of
graded k-modules k-modgr to the category k-mod, the functor Σ sending a graded
k-module to the infinite direct sum of its components and the functor Π sending
it to their infinite product. For any graded semialgebra S over a graded coring C

over a graded k-algebra A, there are natural structures of a k-algebra on ΣA, of
a coring over ΣA on ΣC, and of a semialgebra over ΣC on ΣS. For any graded
S-semimodule M there is a natural structure of a ΣS-semimodule on ΣM and for
any graded S-semicontramodule P there is a natural structure of a ΣS-semicon-
tramodule on ΠP.

The functors of semitensor product and semihomomorphism defined in the
graded setting are related to their ungraded analogues by the formulas

Σ(N ♦gr
S M) � ΣN ♦ΣS ΣM

and
ΠSemiHomgr

S (M,P) � SemiHomΣS(ΣM,ΠP).

The functors N �−→ CN and M �−→ TM commute with the forgetful functors Σ
and the functors Q �−→ CQ and P �−→ TP commute with the forgetful functors
Π. The corresponding derived functors SemiTor, SemiExt, etc., have the same
properties. However, the functors HomS, HomS, CtrTorS, ΨS, and ΦS and their
derived functors have no properties of compatibility with the functors of forgetting
the grading. Thus one has to be aware of the distinction between HomS and Homgr

S ,
ΦS and Φgr

S , etc.

11.1.2 Assume that A is a nonnegatively graded k-algebra, C is a nonnegatively
graded coring over A, and S is a nonnegatively graded semialgebra over C. Let
S-simod↑ and simod↑-S denote the categories of nonnegatively graded S-semimod-
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ules, and S-contra↓ denote the category of nonpositively graded S-semicontramod-
ules.

All the constructions of Chapters 1–4 in their graded versions preserve the
categories of comodules and semimodules graded by nonnegative integers and the
categories of contramodules and semicontramodules graded by nonpositive inte-
gers. All the definitions and results of these chapters can be transferred to the
described situation of bounded grading and no problems occur. In particular,
one can apply Lemma 2.7 to define the functors SemiTor and SemiExt in the
bounded grading case. Moreover, the functors so obtained agree with the functors
SemiTorS

gr and SemiExtgrS defined in terms of complexes with unbounded grad-
ing. This is so because the constructions of resolutions agree. For the same rea-
sons, in the assumptions of 6.3 the functors Dsi(S-simod↑) −→ Dsi(S-simodgr) and
Dsi(S-sicntr↓) −→ Dsi(S-sicntrgr) are fully faithful, and the functor CtrTor defined
by applying Lemma 6.5.2 in the bounded grading case agrees with the functor
CtrTorSgr. But the functors Ψgr

S and Φgr
S do not preserve the bounded grading.

11.2 Differential semialgebras

11.2.1 LetB be a graded k-algebra endowed with an odd derivation dB of degree 1
and D be a graded coring over B. A homogeneous map dD : D −→ D of degree 1
is called a coderivation of D with respect to dB if the biaction map B ⊗k D ⊗k
B −→ D and the comultiplication map D −→ D ⊗B D are morphisms in the
category of graded k-modules endowed with endomorphisms of degree 1, where
the endomorphisms of the tensor products are defined by the usual super-Leibniz
rule d(xy) = d(x)y + (−1)|x|xd(y) (the degree of a homogeneous element x being
denoted by |x|). In this case, it follows that the counit map D −→ B satisfies the
same condition. In the particular case when B is concentrated in the degree 0 and
dB = 0, the condition on the biaction map simply means that dD is a B-B-bimod-
ule morphism.

Now assume that B is a DG-algebra over k, i.e., d2
B = 0. A DG-coring

over B is a graded coring D over the graded ring B endowed with a coderivation
dD : D −→ D with respect to dB such that d2

D = 0.

Let D be a DG-coring over a DG-algebra B. Then the cohomology H(D)
is endowed with a natural structure of a graded coring over the graded algebra
H(B) provided that the natural maps H(D) ⊗H(B) H(D) −→ H(D ⊗B D) and
H(D)⊗H(B) H(D)⊗H(B) H(D) −→ H(D⊗B D⊗B D) are isomorphisms. A map
of DG-corings C −→ D compatible with a morphism of DG-algebras A −→ B in-
duces a map of graded corings H(C) −→ H(D) compatible with the morphism of
graded algebras H(A) −→ H(B) whenever both DG-corings C and D satisfy the
above two conditions. Here a map C −→ D from a DG-coring C over a DG-algebra
A to a DG-coring D over a DG-algebra B is called compatible with a morphism
of DG-algebras A −→ B over k if the map of graded corings C −→ D is compat-
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ible with the morphism of graded algebras A −→ B and the map C −→ D is a
morphism of complexes.

11.2.2 Coderivations of a graded coring D of degree −1 with respect to coderiva-
tions of a graded k-algebra B of degree −1 are defined in the same way as above.

Now let A be an ungraded k-algebra. A quasi-differential coring D∼ over
A is a graded coring over A endowed with a coderivation ∂ of degree 1 (with
respect to the zero derivation of the k-algebra A, which is considered as a graded
k-algebra concentrated in degree 0) such that ∂2 = 0 and the cohomology of ∂
vanishes. If D∼ is a quasi-differential coring over a k-algebra A, then the cokernel
D∼/ im ∂ of the derivation ∂ has a natural structure of graded coring over A. A
quasi-differential structure on a graded coring D is the data of a quasi-differential
coring D∼ together with an isomorphism of graded corings

D∼/ im ∂ � D.

We will denote the grading of a quasi-differential coring D∼ by lower indices,
even though the differential raises the degree. This terminology and notation is
explained by the following construction (cf. 0.4.4).

We will use Sweedler’s notation [82] p �−→ p(1)⊗p(2) for the comultiplication
map of a coring D over A; here p ∈ D and p(1) ⊗ p(2) ∈ D⊗A D. A CDG-coring
D over a k-algebra A is a graded coring over A endowed with a coderivation d
of degree −1 (with respect to the zero derivation of A) and an A-A-bimodule
map h : D2 −→ A satisfying the equations d2(p) = h(p(1))p(2) − p(1)h(p(2)) and
h(d(p)) = 0 for all p ∈ D, where the map h is considered to be extended by zero to
the components Di with i �= 2. Given a CDG-coring D over a k-algebra A and a
CDG-coring E over a k-algebraB, a morphism of CDG-corings D −→ E compatible
with a morphism of k-algebras A −→ B is a pair (g, a), where g : D −→ E is a
map of graded corings compatible with a morphism of k-algebras A −→ B and
a : D1 −→ B is an A-A-bimodule map satisfying the equations d(g(p)) = g(d(p))+
a(p(1))g(p(2)) + (−1)|p|g(p(1))a(p(2)) and h(g(q)) = h(q) + a(d(q)) + a(q(1))a(q(2))
hold for all p ∈ D and q ∈ D2 (where the map a is extended by zero to the
components Di with i �= 1).

Composition of morphisms of CDG-corings is defined by the rule

(g′, a′)(g′′, a′′) = (g′g′′, a′g′′ + a′′);

identity morphisms are the morphisms (id, 0). So the category of CDG-corings is
defined. Notice that two CDG-corings of the form (D, d′, h′) and (D, d′′, h′′) over
a k-algebra A with d′′(p) = d′(p) + a(p(1))p(2) + (−1)|p|p(1)a(p(2)) and h′′(q) =
h′(q) + a(d′(q)) + a(q(1))a(q(2)), where a : D1 −→ A is an A-A-bimodule map,
are always naturally isomorphic to each other, the isomorphism being given by
(id, a) : (D, d′, h′) −→ (D, d′′, h′′).

The category of DG-corings (over ungraded k-algebras considered as DG-al-
gebras concentrated in degree zero) has DG-corings D over k-algebras A as ob-
jects and maps of DG-corings D −→ E compatible with morphisms of k-algebras



196 11. Relative Nonhomogeneous Koszul Duality

A −→ B as morphisms. The category of quasi-differential corings can be de-
fined as the full subcategory of the category of DG-corings whose objects are
the DG-corings with acyclic differentials. One can also consider the category of
DG-corings (over ungraded k-algebras) with coderivations of degree −1. There
is an obvious faithful, but not fully faithful functor from the latter category to
the category of CDG-corings, assigning the CDG-coring (D, d, h) with h = 0
to a DG-coring (D, d) and the morphism of CDG-corings (g, 0) to a map of
DG-corings g : D −→ E compatible with a morphism of k-algebras A −→ B.

There is a natural fully faithful functor from the category of CDG-corings
to the category of quasi-differential corings, whose image consists of the quasi-
differential corings D∼ over A for which the counit map D∼0 −→ A can be pre-
sented as the composition of the coderivation component ∂0 : D∼0 −→ D∼1 and
some A-A-bimodule map δ : D∼1 −→ A. In other words, a quasi-differential cor-
ing comes from a CDG-coring if and only if the counit map D∼0 /∂−1D

∼
−1 −→ A

can be extended to an A-A-bimodule map D∼1 −→ A, where the A-A-bimodule
D∼0 /∂−1D

∼
−1 is embedded into the A-A-bimodule D∼1 by the map ∂0. In particu-

lar, the categories of quasi-differential corings and CDG-corings over a field A = k
(quasi-differential coalgebras and CDG-coalgebras over k) are naturally equivalent.

Let us first construct the inverse functor. Given a quasi-differential coring
(D∼, ∂) and a map δ : D∼1 −→ A as above, set D = D∼/ im∂ and define d and
h by the formulas d(p) = δ(p(1))p(2) + (−1)|p|p(1)δ(p(2)) and h(q) = δ(q(1))δ(q(2))
for p ∈ D∼ and q ∈ D∼2 , where the map δ is extended by zero to the components
D∼i with i �= 1 and r ∈ D denotes the image of an element r ∈ D∼. To a map of
quasi-differential corings g : D∼ −→ E∼ endowed with maps δD : D∼1 −→ A and
δE : E∼1 −→ B with the above property, compatible with a morphism of k-algebras
f : A −→ B, one assigns the morphism of CDG-corings (g, δEg − fδD), where
g : D −→ E denotes the induced morphism on the cokernels of the coderivations ∂.

Conversely, to a CDG-coring (D, d, h) over a k-algebra A one assigns the
quasi-differential coring (D∼, ∂) over A whose graded components are the A-A-bi-
modules D∼i = Di ⊕ Di−1, the coderivation ∂ is given by the formula ∂(τp +
∂q) = ∂p, and the comultiplication is given by the formula τp + ∂q �−→ τp(1) ⊗
τp(2) + (−1)|p(1)|τd(p(1))⊗ ∂p(2) + (−1)|p(2)|h(p(1))∂p(2) ⊗ ∂p(3) + ∂q(1) ⊗ τq(2) +
(−1)|q(1)|τq(1) ⊗ ∂q(2) + (−1)|q(1)|∂d(q(1)) ⊗ ∂q(2), where τp + ∂q = (p, q) is a for-
mal notation for an element of

⊕
i(Di ⊕ Di−1). To a morphism of CDG-corings

(g, a) : D −→ E, the morphism of quasi-differential corings
⊕

i(Di ⊕ Di−1) −→⊕
i(Ei ⊕Ei−1) given by the formula τp+ ∂q �−→ τg(p) + a(p(1))∂g(p(2))+ ∂g(q) is

assigned. For a quasi-differential coring (D∼, ∂) over a k-algebra A endowed with
a map δ : D∼1 −→ A with the above property and the corresponding CDG-coring
(D, d, h), the natural morphism of quasi-differential corings D∼ −→⊕

i(Di⊕Di−1)
over A is given by the formula p �−→ τp+ δ(p(1))∂p(2) for p ∈ D∼. This morphism
is an isomorphism, since the induced morphism of the cokernels of the coderiva-
tions ∂ is an isomorphism.
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11.2.3 Let B be a graded k-algebra endowed with a derivation dB of degree 1
and D be a graded coring over B endowed with a coderivation ∂D with respect
to dB . Let T be a graded semialgebra over D. A homogeneous map dT : T −→ T of
degree 1 is called a semiderivation of T with respect to dD and dB if the biaction
map B ⊗k T ⊗k B −→ T, the bicoaction map T −→ D ⊗B T ⊗B D, and the
semimultiplication map T �D T −→ T are morphisms in the category of graded
k-modules endowed with endomorphisms of degree 1. In this case, it follows that
the semiunit map D −→ T satisfies the same condition. In the particular case
when B and D are concentrated in degree 0 and dB = 0 = dD, the conditions
on the biaction and bicoaction map simply mean that dT is a D-D-bicomodule
morphism.

Let B be a DG-algebra over k and D be a DG-coring over B. A DG-semi-
algebra over D is a graded semialgebra over the graded coring D endowed with a
semiderivation dT with respect to dD and dB such that d2

T = 0.
Let T be a DG-semialgebra over a DG-coring D. Then the cohomology H(T)

is endowed with a natural structure of graded semialgebra over the graded coring
H(D) provided that

(i) the natural maps from the tensor products of cohomology to the cohomology
of the tensor products are isomorphisms for the tensor products D ⊗B D,
D⊗BD⊗BD, D⊗BT, T⊗BD, D⊗BD⊗BT, T⊗BD⊗BD, D⊗BT⊗BD,
T ⊗B T, D⊗B T ⊗B T, T ⊗B T⊗B D, T ⊗B D⊗B T, D⊗B T⊗B D⊗B T,
T⊗B D⊗B T⊗BD, T⊗B T⊗B T, T⊗BD⊗B T⊗B T, T⊗B T⊗B D⊗B T;

(ii) the multiple cotensor products H(T) �H(D) · · · �H(D) H(T) are associative,
where the graded H(D)-H(D)-bicomodule structure on H(T) is well defined
in view of (i); and

(iii) the natural maps H(T �D T) −→ H(T) �H(D) H(T), H(D⊗B T �D T) −→
H(D)⊗H(B)H(T)�H(D)H(T), H(T�DT⊗BD) −→ H(T)�H(D)H(T)⊗H(B)

H(D), and H(T �D T �D T) −→ H(T) �H(D) H(T) �H(D) H(T), which are
well defined in view of (i) and (ii), are isomorphisms.

A map of DG-semialgebras S −→ T compatible with a map of DG-corings
C −→ D and a morphism of DG-algebras A −→ B induces a map of graded
semialgebrasH(S) −→ H(T) compatible with the map of graded coringsH(C) −→
H(D) and the morphism of graded k-algebras H(A) −→ H(B) whenever both
DG-semialgebras S and T satisfy the above three conditions. Here a map S −→ T

from a DG-semialgebra S over a DG-coring C to a DG-semialgebra T over a
DG-coring D is called compatible with a map of DG-corings C −→ D and a
morphism of DG-algebras A −→ B if the map of graded semialgebras S −→ T is
compatible with the map of graded corings C −→ D and the morphism of graded
k-algebras A −→ B, and the maps S −→ T and C −→ D are morphisms of
complexes.
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11.3 One-sided SemiTor

The only purpose of this section is to weaken certain (co)flatness assumptions as
far as possible. Let S be a semialgebra over a coring C over a k-algebra A. We will
consider two situations separately.

11.3.1 Assume that C is a flat right A-module and S is a coflat right C-comodule.
Consider the functor of semitensor product over S on the Cartesian product

of the homotopy category of complexes of C-coflat right S-semimodules and the
homotopy category of complexes of left S-semimodules. The semiderived category
of C-coflat right S-semimodules is defined as the quotient category of the homotopy
category of C-coflat right S-semimodules by the thick subcategory of complexes of
right S-semimodules that as complexes of C-comodules are coacyclic with respect
to the exact category of coflat right C-comodules. A complex of left S-semimod-
ules M• is called semiflat relative to C if the complex N• ♦S M• is acyclic for any
C-contractible complex of C-coflat right S-semimodules N• (cf. 2.8).

The left derived functor SemiTorS on the Cartesian product of the semide-
rived category of C-coflat right S-semimodules and the semiderived category of left
S-semimodules is defined by restricting the functor of semitensor product to the
Cartesian product of the homotopy category of C-coflat right S-semimodules and
the homotopy category of complexes of left S-semimodules semiflat relative to C, or
to the Cartesian product of the homotopy category of semiflat complexes of right
S-semimodules and the homotopy category of left S-semimodules. This definition
of a derived functor is a particular case of both Lemmas 2.7 and 6.5.2. If N• is a
complex of C-coflat right S-semimodules and M• is a complex of left S-semimod-
ules, then the total complex of the bar bicomplex · · · −→ N•�C S�C S�C M• −→
N• �C S �C M• −→ N• �C M•, constructed by taking infinite direct sums along
the diagonals, represents the object SemiTorS(M•,N•) in D(k-mod). When the
semiunit map C −→ S is injective and its cokernel is a flat right A-module (and
hence a coflat right C-comodule by Lemma 1.2.2), one can also use the reduced bar
bicomplex · · · −→ N•�C S/C�C S/C�C M• −→ N•�C S/C�C M• −→ N•�C M•.

In the case when S is a graded semialgebra one analogously defines the derived
functor SemiTorS

gr acting from the Cartesian product of the semiderived category
of C-coflat graded right S-semimodules and the semiderived category of graded
left S-semimodules to the derived category of graded k-modules.

11.3.2 Assume that C is a flat right A-module, S is a flat right A-module and a
C/A-coflat left C-comodule, and the ring A has a finite weak homological dimen-
sion.

Consider the functor of semitensor product over S on the Cartesian product
of the homotopy category of complexes of A-flat right S-semimodules and the ho-
motopy category of complexes of C/A-coflat left S-semimodules. The semiderived
category of A-flat right S-semimodules (C/A-coflat left S-semimodules) is defined
as the quotient category of the homotopy category of A-flat right S-semimodules
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(C/A-coflat left S-semimodules) by the thick subcategory of complexes of S-semi-
modules that as complexes of C-comodules are coacyclic with respect to the exact
category of A-flat right C-comodules (C/A-coflat left C-comodules). A complex of
C/A-coflat left S-semimodules M• is called semiflat relative to A if the complex
of k-modules N• ♦S M• is acyclic for any complex of right S-semimodules N•

that as a complex of right C-comodules is coacyclic with respect to the exact cat-
egory of A-flat right C-comodules. A complex of A-flat right S-semimodules N•

is called S/C/A-semiflat if the complex of k-modules N• ♦S M• is acyclic for any
C-contractible complex of C/A-coflat left S-semimodules M• (cf. 2.8).

The left derived functor SemiTorS on the Cartesian product of the semi-
derived category of A-flat right S-semimodules and the semiderived category of
C/A-coflat left S-semimodules is defined by restricting the functor of semitensor
product to the Cartesian product of the homotopy category of A-flat right S-semi-
modules and the homotopy category of complexes of C/A-coflat left S-semimodules
semiflat relative to A, or to the Cartesian product of the homotopy category of
S/C/A-semiflat complexes of A-flat right S-semimodules and the homotopy cat-
egory of C/A-coflat left S-semimodules. This definition of a derived functor is a
particular case of both Lemmas 2.7 and 6.5.2. If N• is a complex of A-flat right
S-semimodules and M• is a complex of C/A-coflat left S-semimodules, then the to-
tal complex of the bar bicomplex · · · −→ N•�CS�CS�CM• −→ N•�CS�CM• −→
N• �C M•, constructed by taking infinite direct sums along the diagonals, repre-
sents the object SemiTorS(M•,N•) in D(k-mod). When the semiunit map C −→ S

is injective and its cokernel is a flat right A-module (the cokernel is a C/A-coflat
left C-comodule by Lemma 1.2.2), one can also use the reduced bar bicomplex
· · · −→ N• �C S/C �C S/C �C M• −→ N• �C S/C �C M• −→ N• �C M•.

In the case when S is a graded semialgebra one analogously defines the derived
functor SemiTorS

gr acting from the Cartesian product of the semiderived category
of A-flat graded right S-semimodules and the semiderived category of C/A-coflat
graded left S-semimodules to the derived category of graded k-modules.

11.4 Koszul semialgebras and corings

11.4.1 Let S be a semialgebra over a coring C over a k-algebra A. Suppose that
S is endowed with an augmentation, i.e., a morphism S −→ C of semialgebras
over C; let S+ be the kernel of this map. We will denote by Bar•(S,C) the reduced
bar complex

· · · −−→ S+ �C S+ �C S+ −−→ S+ �C S+ −−→ S+ −−→ C.

It can be also defined as the coring
⊕∞

n=0 S�Cn
+ over the k-algebraA (the “cotensor

coring” of the C-C-bicomodule S) endowed with the unique grading such that the
component S+ is situated in degree −1 and the unique coderivation (with respect
to the zero derivation of A) of degree 1 whose component mapping S+ �C S+

to S+ is equal to the semimultiplication map S+ �C S+ −→ S+. So Bar•(S,C)
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is a DG-coring over the k-algebra A considered as a DG-algebra concentrated in
degree 0.

Now let S be a graded semialgebra over a coring C over a k-algebra A, where
A and C are considered as a graded k-algebra and a graded coring concentrated
in degree 0; assume additionally that S is concentrated in nonnegative degrees, C

is the component of degree 0 in S, and the augmentation map S −→ C is simply
the projection of S to its component of degree 0. In this case there is a graded
version Bar•gr(S,C) of the above bar complex, which is a bigraded object with the
grading denoted by upper indices coming from the cotensor powers of S+ and the
grading denoted by lower indices coming from the grading of S+ itself. Notice that
the component Barin(S,C) can be only nonzero when 0 � −i � n.

Let C and D be corings over a k-algebra A. Suppose that we are given two
maps C −→ D and D −→ C that are morphisms of corings over A such that
the composition C −→ D −→ C is the identity; let D+ be the cokernel of the
map C −→ D. Assume that the multiple cotensor products D �C · · · �C D, where
D is endowed with a C-C-bicomodule structure via the morphism D −→ C, are
associative. We will denote by Cob•(D,C) the reduced cobar complex

C −−→ D+ −−→ D+ �C D+ −−→ D+ �C D+ �C D+ −−→ · · ·

It can be also defined as the semialgebra
⊕∞

n=0 D�Cn
+ over the coring C (the

“cotensor semialgebra” of the C-C-bicomodule D) endowed with the unique grading
such that the component D+ is situated in degree 1 and the unique semiderivation
(with respect to dC = 0 and dA = 0) of degree 1 whose component mapping D+ to
D+ �C D+ is equal to the comultiplication map D+ −→ D+ �C D+. So Cob•(D,C)
is a DG-semialgebra over the coring C over the k-algebra A, where A and C are
considered as a DG-algebra and a DG-coring concentrated in degree 0.

Now let D be a graded coring over a k-algebra A considered as a graded
k-algebra concentrated in degree 0 and C be a coring over A; assume additionally
that D is concentrated in nonnegative degrees, C is the component of degree 0
in D, and the maps C −→ D and D −→ C are simply the embedding of and the
projection to the component of degree 0. In this case there is a graded version
Cob•gr(D,C) of the above cobar complex, which is a bigraded object with the
grading denoted by upper indices coming from the cotensor powers of D+ and
the grading denoted by lower indices coming from the grading of D+ itself. Notice
that the component Cobin(D,C) can be only nonzero when 0 � i � n.

11.4.2 Let C be a coring over a k-algebra A. Assume that C is a flat right A-mod-
ule. A graded semialgebra S over C is called right coflat Koszul if

(i) S is nonnegatively graded and the semiunit homomorphism is an isomorphism
C � S0;

(ii) the components Si are flat right A-modules;
(iii) the cohomology Hi

n Bar•gr(S,C) are only nonzero on the diagonal −i = n; and
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(iv) whenever the component Bar•n(S,C) is a complex of A-flat right C-comod-
ules, so the diagonal cohomology H−nn Bar•gr(S,C) can be endowed with a
right C-comodule structure as the kernel of a morphism in the category of
right C-comodules, it is a coflat right C-comodule.

When the ring A has a finite weak homological dimension, there is an analo-
gous definition of a right flat and left relatively coflat Koszul semialgebra S over C.
One imposes the same conditions (i–iii) and replaces (iv) with the condition

(iv′) the diagonal cohomology H−nn Bar•gr(S,C) is a C/A-coflat left C-comodule for
all n.

A graded coring D over the k-algebra A endowed with a morphism D −→ C

of corings over A is called a right coflat Koszul coring over C if

(i) D is nonnegatively graded and the morphism D −→ C vanishes on the com-
ponents of positive degree in D and induces an isomorphism D0 � C;

(ii) whenever a component Dn is a flat right A-module, it is a coflat right C-co-
module;

(iii) whenever all the multiple cotensor products entering into the construction of
the component Cob•n(D,C) are associative, so this component is well defined,
the cohomology HiCob•n(D,C) is only nonzero on the diagonal i = n; and

(iv) in the assumptions of (iii), the diagonal cohomology Hn Cob•n(D,C) is a flat
right A-module.

When the ring A has a finite weak homological dimension, there is an analo-
gous definition of a right flat and left relatively coflat Koszul coring D over C. One
imposes the same conditions (i–ii), (iv), and replaces (iii) with the condition

(iii′) the component Dn is a C/A-coflat left C-comodule for all n.

11.4.3 The objects of the category of right coflat Koszul semialgebras are right
coflat Koszul semialgebras S over corings C over k-algebras A such that C is a flat
right A-module. Morphisms are maps of graded semialgebras S −→ S′ compatible
with maps of corings C −→ C′ and morphisms of k-algebras A −→ A′. Impos-
ing the additional assumption that A has a finite weak homological dimension,
one analogously defines the category of right flat and left relatively coflat Koszul
semialgebras.

The objects of the category of right coflat Koszul corings are right coflat
Koszul corings D over corings C over k-algebras A such that C is a flat right
A-module. Morphisms are maps of graded corings D −→ D′ compatible with
morphisms of k-algebras A −→ A′. Imposing the additional assumption that A
has a finite weak homological dimension, one analogously defines the category of
right flat and left relatively Koszul corings.

Theorem. The category of right coflat Koszul semialgebras is equivalent to the
category of right coflat Koszul corings. Analogously, the category of right flat and
left relatively coflat Koszul semialgebras is equivalent to the category of right flat
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and left relatively coflat Koszul corings. In both cases, the mutually inverse equiv-
alences are provided by the functor assigning to a Koszul semialgebra S the coring
of cohomology of the graded DG-coring Bar•gr(S,C) and the functor assigning to
a Koszul coring D the semialgebra of cohomology of the graded DG-semialgebra
Cob•gr(D,C).

Proof. The assertions of the theorem follow from Propositions 1 and 2 below.
To check the conditions of 11.2 needed for the coring of cohomology and the
semialgebra of cohomology to be defined, use Lemma 1.2.2 and Proposition 1.2.5.

�

Let C be a coring over a k-algebra A.

Proposition 1.

(a) Assume that C is a flat right A-module. Then a graded semialgebra S over
C is right coflat Koszul if and only if

(i) S is nonnegatively graded and the semiunit map is an isomorphism
C � S0;

(ii) for any n � 1 the natural map from the quotient k-module of the coten-
sor power S�Cn

1 by the sum of the kernels of its maps to cotensor prod-
ucts S�Ci−1

1 �C S2 �C S�Cn−i−1
1 , i = 1, . . . , n− 1, to the component Sn

is an isomorphism;

(iii) the lattice of submodules of the k-module S�Cn
i generated by these n−1

kernels is distributive;

(iv) all the quotient modules of embedded submodules belonging to the men-
tioned lattice are flat right A-modules in their natural right A-module
structures; and

(v) all the quotient modules of embedded submodules belonging to this lattice
are coflat right C-comodules in their right C-comodule structures that
are well defined in view of (iv).

(b) Assume that C is a flat right A-module and A has a finite weak homological
dimension. Then a graded semialgebra S over C is right flat and left relatively
coflat Koszul if and only if it satisfies the conditions (i–iv) of (a) and the
condition

(v′) all the quotient modules of embedded submodules belonging to the lattice
under consideration are C/A-coflat left C-comodules in their natural left
C-comodule structures.

Proposition 2.

(a) Assume that C is a flat right A-module. Then a graded coring D endowed
with a morphism D −→ C of corings over A is a right coflat Koszul coring
over C if and only if
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(i) D is nonpositively graded and the morphism D −→ C vanishes on
the components of positive degrees in D and induces an isomorphism
D0 � C;

(ii) for any n � 1 the natural map from the component Dn to the intersec-
tion of images of the maps from cotensor products D�Ci−1

1 �C D2 �C

D�Cn−i−1
1 , i = 1, . . . , n−1, to the cotensor power D�Cn

1 is an isomor-
phism;

(iii) the lattice of submodules of the k-module D�Cn
1 generated by these n−1

images is distributive;
(iv) all the quotient modules of the embedded submodules belonging to the

mentioned lattice are flat right A-modules in their natural right A-mod-
ule structures; and

(v) all the quotient modules of embedded submodules belonging to this lattice
are coflat right C-comodules in their right C-comodule structures that are
well defined in view of (iv).

(b) Assume that C is a flat right A-module and A has a finite weak homological
dimension. Then a graded coring D endowed with a morphism D −→ C of
corings over A is a right flat and left relatively coflat Koszul coring over C

if and only if it satisfies the conditions (i–iv) of (a) and the condition
(v′) all the quotient modules of embedded submodules belonging to the lattice

under consideration are C/A-coflat left C-comodules in their natural left
C-comodule structures.

Proof of Propositions 1 and 2. Both propositions follow by induction in the inter-
nal degree n from Lemma 1.2.2, Proposition 1.2.5, and the next Lemma 1 (parts
(a)⇐⇒(c), (a)⇐⇒(c*)), and the final assertion) and Lemma 2. �

Lemma 1. Let W be a k-module and X1, . . . , Xn−1 ⊂ W be a collection of sub-
modules such that any proper subset X1, . . . , X̂k, . . . , Xn−1 generates a distributive
lattice of submodules in W . Then the following conditions are equivalent:

(a) the collection of submodules X1, . . . , Xn−1 generates a distributive lattice of
submodules in W ;

(b) the following complex of k-modules K•(W ;X1, . . . , Xn−1) is exact

0 −→ X1 ∩ · · · ∩Xn−1 −→ X2 ∩ · · · ∩Xn−1 −→ X3 ∩ · · · ∩Xn−1/X1 −→

· · · −→
n−1⋂

s=i+1

Xs

/ ∑i−1

t=1
Xt −→ · · · −→

Xn−1/(X1 + · · ·+Xn−3) −→W/(X1 + · · ·+Xn−2)
−→W/(X1 + · · ·+Xn−1) −→ 0,

where we denote Y/Z = Y/Y ∩ Z;
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(c) the following complex of k-modules B•(W ;X1, . . . , Xn−1)

W −→
⊕

t
W/Xt −→ · · · −→

⊕

t1<···<tn−i

W/
∑n−i

s=1Xts −→
· · · −→W/

∑
sXs −→ 0

is exact everywhere except for the leftmost term;
(c∗) the following complex of k-modules B•(W ;X1, . . . , Xn−1)

0 −→ ⋂
sXs −→ · · · −→

⊕

t1<···<tn−i

⋂n−i
s=1 Xts −→ · · · −→

⊕

t
Xt −→W

is exact everywhere except for the rightmost term.

Besides, the complex in (c) is always exact at its two rightmost nontrivial terms,
and the complex in (c*) is always exact at its two leftmost nontrivial terms.

Proof. See the proof of [75, Proposition 7.2 of Chapter 1]. �

Assume that the coring C is a flat right A-module.

Lemma 2. Let W be a k-module and X1, . . . , Xn−1 ⊂ W be a collection of sub-
modules generating a distributive lattice of submodules in W .

(a) Suppose that W is a right A-module and Xs are its A-submodules. Then all
the subquotient modules in the lattice of submodules generated by Xs are flat
right A-modules if and only if for any 1 � t1 < · · · < tm−1 � n − 1 the
quotient module W/(Xt1 + · · ·+Xtm−1) is a flat right A-module.

(b) Suppose that W is a left C-comodule and Xs are its C-subcomodules. Then
all the subquotient modules in the lattice of submodules generated by Xs are
C/A-coflat left C-comodules if and only if for any 1 � t1 < · · · < tm−1 � n−1
the submodule Xt1 ∩ · · · ∩Xtm−1 is a C/A-coflat left C-comodule.

(c) Suppose that W is a right C-comodule and Xs are its C-subcomodules such
that all the subquotient modules in the lattice of submodules generated by Xs

are flat right A-modules. Then all these subquotient modules are coflat right
C-comodules if and only if for any 1 � t1 < · · · < tm−1 � n−1 the submodule
Xt1 ∩ · · · ∩Xtm−1 is a coflat right C-comodule.

Proof. Part (a): proceed by induction in n. Since the lattice is distributive, any sub-
quotient module can be presented as an iterated extension of subquotient modules
of the form

⋂
j∈J Xj/

⋂
j∈J Xj∩

∑
i/∈J Xi, where J ⊂ {1, . . . , n−1}. Whenever the

inclusion J ⊂ {1, . . . , n− 1} is proper, this subquotient module can be presented
as an element of a smaller lattice generated by the submodules Xj/Xj ∩

∑
i/∈J Xi

in the quotient module W/
∑
i/∈J Xi. It follows from the induction hypothesis that

all the submodules belonging to this smaller lattice are flat right A-modules. It
remains to show that the submodule X1∩· · ·∩Xn−1 is a flat right A-module. But
the latter submodule is the only nonzero cohomology module at the leftmost term
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of the complex of flat right A-modules B•(W ;X1, . . . , Xn−1) from Lemma 1(c).
The proofs of parts (b) and (c) are completely analogous, except for the use of
Lemma 1.2.2. (See also [75, Proposition 7.1 of Chapter 6].) �

A right coflat (right flat and left relatively coflat) Koszul semialgebra and
a right coflat (right flat and left relatively coflat) Koszul coring corresponding to
each other under the equivalence of categories from the above theorem are called
quadratic dual to each other.

11.4.4 Let S be a right coflat (right flat and left relatively coflat) Koszul semial-
gebra over a coring C and D be the right coflat (right flat and left relatively coflat)
Koszul coring over C quadratic dual to S. Then on the cotensor products S �C D

and D �C S there are structures of graded complexes whose differentials are the
compositions

Si �C Dj −−→ Si �C D1 �C Dj−1 � Si �C S1 �C Dj−1 −−→ Si+1 �C Dj−1

of the maps induced by the comultiplication in D and the maps induced by the
semimultiplication in S (and analogously for D �C S). These complexes are called
the Koszul complexes of the semialgebra S and the coring D. All the grading
components of the Koszul complexes with respect to the grading i+ j, except the
component of degree i + j = 0, are acyclic. This follows from Lemma 11.4.3.1
((a)⇐⇒(b)).

Note added in proof. After this manuscript had been prepared the author learned
that the Koszul property essentially does not depend on the basic (co)ring. In
particular, a graded coring D = C ⊕D1 ⊕D2 ⊕ · · · is right coflat (right flat and
left relatively coflat) Koszul over a coring C over A if and only if the graded coring
A⊕D1 ⊕D2 ⊕ · · · has the same property over the ring A considered as a coring
over itself, provided that Di are coflat right C-comodules whenever they are flat
right A-modules (Di are C/A-coflat left C-comodules), and C and A satisfy the
appropriate flatness and homological dimension assumptions above. Analogously,
assuming that C = A, a graded (semi)algebra S = A⊕S1⊕S2⊕· · · is right (co)flat
Koszul over A if and only if the graded (semi)algebra k ⊕ S1 ⊕ S2 ⊕ · · · is right
(co)flat Koszul over k, provided that Si are flat right A-modules and flat right
k-modules for i � 1. One can prove this using the characterizations of Koszulity
in terms of distributive lattices given in Propositions 1–2 and the results of [75,
Section 6 of Chapter 1].

11.5 Central element theorem

Let C be a coring over a k-algebra A. Assume that C is a flat right A-module.
A right coflat increasing filtration F on a semialgebra S∼ over a coring C is

a family of C-C-bicomodules FnS∼ endowed with injective morphisms of C-C-bico-
modules Fn−1S

∼ −→ FnS∼ and an isomorphism of C-C-bicomodules lim−→FnS
∼ �

S∼ such that
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(i) FiS∼ = 0 for i < 0, F0S
∼ = C, and the map F0S

∼ −→ S∼ is the semiunit
map;

(ii) the compositions FiS∼ �C FjS
∼ −→ S �C S −→ S of the maps induced by

the injections FnS∼ −→ S and the semimultiplication map factorize through
Fi+jS

∼;
(iii) the successive quotients FnS∼/Fn−1S

∼ are flat right A-modules; and
(iv) the filtration components FnS∼ are coflat right C-comodules (then the suc-

cessive quotients are also coflat right C-comodules).

Assuming that A has a finite weak homological dimension, one analogously de-
fines right flat and left relatively coflat increasing filtrations by replacing the con-
dition (iv) with the condition

(iv′) the filtration components FnS∼ are C/A-coflat left C-comodules (then the
successive quotients are also C/A-coflat left C-comodules).

Theorem. Let S∼ be a semialgebra over a coring C endowed with a right coflat
(right flat and left relatively coflat) increasing filtration F . Then the graded semi-
algebra T =

⊕
n FnS∼ over the coring C is right coflat (right flat and left relatively

coflat) Koszul if and only if the graded semialgebra S =
⊕

n FnS∼/Fn−1S
∼ over

the coring C is right coflat (right flat and left relatively coflat) Koszul.

Proof. Consider the reduced bar resolution · · · −→ T+�CT+�CT −→ T+�CT −→
T of the right T-semimodule C and denote by X• its semitensor product

· · · −−→ T+ �C T+ �C S −−→ T+ �C S −−→ S

with the left T-semimodule S. Denote by Y• the two-term complex of graded right
S-semimodules T1 −→ S0 ⊕ S1, where T1 is endowed with a right S-semimod-
ule structure via the augmentation of S and S0 ⊕ S1 is the quotient semimodule
S/

⊕
n�2 Sn; the components of the differential in this complex are the zero map

T1 −→ S0 and the projection T1 −→ S1. There is a natural morphism of complexes
of graded right S-semimodules X• −→ Y• whose components are the projections
T+ �C S −→ T1 �C S0 � T1 and S −→ S0 ⊕ S1.

All the three complexes X•, Y•, and ker(X• → Y•) are complexes of C-coflat
right S-semimodules (A-flat right S-semimodules). Let us show that the complex
ker(X• → Y•) is is coacyclic with respect to the exact category of coflat graded
right C-comodules (A-flat right C-comodules). Indeed, denote by Z• the kernel of
the map from the reduced bar resolution of the right T-semimodule C (written
down above) to C itself. The complex of graded T-semimodules Z• has a natural
endomorphism z of internal degree 1 and cohomological degree 0 induced by
the endomorphism of the reduced bar resolution acting by the identity on the
cotensor factors T+ and by the natural injections Tn−1 → Tn on the cotensor
factors T. Since Z• is a contractible complex of coflat graded right C-comodules
(A-flat right C-comodules), the endomorphism z is injective, and its cokernel is
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a complex of coflat right C-comodules (A-flat right C-comodules), this cokernel
is coacyclic with respect to the exact category of coflat graded right C-comodules
(A-flat right C-comodules). Now the kernel ker(X• → Y•) is isomorphic as a
complex of right C-comodules to the kernel of a surjective morphism from coker(z)
to the contractible two-term complex of coflat right C-comodules (A-flat right
C-comodules) T1 −→ T1.

Since the semitensor product X• ♦S C is isomorphic to Bar•gr(T,C), it
represents the object SemiTorS

gr(C,C) in the derived category of graded k-modules
(see 11.3). On the other hand, since X• is a bounded from above complex whose
terms considered as one-term complexes are semiflat complexes of graded right
S-semimodules (S/C/A-semiflat complexes of graded right S-semimodules), X•

is a semiflat complex of graded right S-semimodules (S/C/A-semiflat complex of
graded right S-semimodules). The cone of the morphism X• −→ Y• is coacyclic
with respect to the exact category of coflat graded right C-comodules (A-flat
graded right C-comodules), so the semitensor product X• ♦S C represents also the
object SemiTorT

gr(Y
•,C) in the derived category of graded k-modules.

In the semiderived category of graded C-coflat (A-flat) right S-semimodules
there is a distinguished triangle C(−1)[1] −→ Y• −→ C −→ C(−1)[2] (where the
number in round brackets denotes the shift of internal grading M(1)n = Mn+1).
It follows from the induced long exact sequence of cohomology of the objects
SemiTorS

gr(−,C) by induction in the internal degree that Bar•gr(S,C) has nonzero
cohomology on the diagonal −i = n only if and only if Bar•gr(T,C) has nonzero
cohomology on the diagonal −i = n only. Assume that this is so; then there are
short exact sequences

0 −−→ H−n+1
n−1 Bar•gr(S,C) −−→ H−nn Bar•gr(T,C) −−→ H−nn Bar•gr(S,C) −−→ 0.

Furthermore, the diagonal cohomology H−nn Bar•gr(T,C) and H−nn Bar•gr(S,C) are
flat right A-modules by Lemma 11.4.3.2(a), and so are endowed with C-C-bico-
module structures. The maps H−nn Bar•gr(T,C) −→ H−nn Bar•gr(S,C) in the short
exact sequences above are induced by the morphism of semialgebras T −→ S,
hence they are morphisms of C-C-bicomodules.

Let us describe the compositions

H−nn Bar•gr(T,C) −−→ H−nn Bar•gr(S,C) −−→ H−n−1
n+1 Bar•gr(T,C),

which will be denoted by ∂n. Let t : C −→ T1 be the natural injection. Consider
the endomorphism ∂X of internal degree 1 and cohomological degree −1 of the
complex of graded right S-semimodules X• that is defined by the following formu-
las: the component S maps to T+ �C S by t� id, the component T+ �C S maps to
T+ �C T+ �C S by t� id � id− id�t� id, etc. Consider also the endomorphism ∂Y

of internal degree 1 and cohomological degree −1 of the complex of graded right
S-semimodules Y mapping S0 ⊕ S1 to T1 by the composition of the projection
S0 ⊕ S1 → C and the embedding t. Then the endomorphisms ∂X and ∂Y form a
commutative diagram with the morphism X• −→ Y•.
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Since the endomorphism ∂Y represents in the semiderived category of C-coflat
(A-flat) graded S-semimodules the composition of morphisms Y•→C→Y•(1)[−1]
from the distinguished triangle above, the desired maps ∂n are induced by
the endomorphism ∂Bar of the bar complex Bar•gr(T,C) = X• ♦S C that is
induced by the endomorphism ∂X of the complex X•. The endomorphism
∂Bar maps the component C to T+ by t, the component T+ to T+ �C T+ by
t �C id− id�Ct, etc. Since ∂Bar is an endomorphism of complexes of C-C-bi-
comodules, ∂n are also endomorphisms of C-C-bicomodules. Hence the maps
H−n+1
n−1 Bar•gr(S,C) −→ H−nn Bar•gr(T,C) in the short exact sequences above

are morphisms of C-C-bicomodules. Now it follows easily by induction using
Lemma 1.2.2 that all H−nn Bar•gr(T,C) are coflat right C-comodules (C/A-coflat
left C-comodules) if and only if all H−nn Bar•gr(S,C) are coflat right C-comodules
(C/A-coflat left C-comodules). �

A semialgebra S∼ over a coring C endowed with a right coflat (right flat
and left relatively coflat) increasing filtration F is called a right coflat (right flat
and left relatively coflat) nonhomogeneous Koszul semialgebra over C if the equiv-
alent conditions of Theorem 11.5 are satisfied for it, i.e., the graded semialgebras⊕

n FnS
∼ and

⊕
n FnS

∼/Fn−1S
∼ are right coflat (right flat and left relatively

coflat) Koszul semialgebras over C.

11.6 Poincaré–Birkhoff–Witt theorem

Let C be a coring over a k-algebra A; assume that C is a flat right A-module. A
quasi-differential coring D∼ over A concentrated in the nonnegative degrees and
endowed with an isomorphism C � D∼0 is called right coflat (right flat and left
relatively coflat) Koszul over C if the graded coring D∼/ im ∂ is right coflat (right
flat and left relatively coflat) Koszul over C.

Lemma. Let T be a right coflat (right flat and left relatively coflat) Koszul semial-
gebra over C and E be the quadratic dual right coflat (right flat and left relatively
coflat) Koszul coring over C. Then a C-C-bicomodule morphism C −→ T1 � E1

can be extended to a graded T-T-bisemimodule morphism T −→ T of degree 1
(i.e., represents a “central element” of T) if and only if it can be extended to a
coderivation E −→ E of degree 1 of the coring E (with respect to the zero coderiva-
tion of A). Both the T-T-bisemimodule morphism and the coderivation of E with
the given component C −→ T1 � E1 are unique if they exist; the coderivation
always has a zero square.

Proof. Both conditions hold if and only if the difference of the two maps

T1 � C �C T1 −−→ T1 �C T1 and T1 � T1 �C C −−→ T1 �C T1

induced by our map C→ T1 factorizes through the injection

E2 −−→ E1 �C E1 � T1 �C T1. �
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The objects of the category of right coflat nonhomogeneous Koszul semial-
gebras are right coflat nonhomogeneous Koszul semialgebras (S∼, F ) over corings
C over k-algebras A such that C is a flat right A-module. Morphisms are maps
of semialgebras S∼ −→ S∼′ compatible with maps of corings C −→ C′ and mor-
phisms of k-algebras A −→ A′ which map the filtration components FnS∼ into
the filtration components F ′nS∼′. Imposing the additional assumption that A has
a finite weak homological dimension, one analogously defines the category of right
flat and left relatively coflat nonhomogeneous Koszul semialgebras.

The objects of the category of right coflat Koszul quasi-differential corings
are right coflat Koszul quasi-differential corings D∼ over corings C over k-algebras
A such that C is a flat right A-module. Morphisms are maps of graded corings
D∼ −→ D∼′ compatible with morphisms of k-algebras A −→ A′ and making a
commutative diagram with the coderivations ∂ and ∂′. Imposing the additional
assumption that A has finite weak homological dimension, one analogously defines
the category of right flat and left relatively coflat Koszul quasi-differential corings.

Theorem. The category of right coflat (right flat and left relatively coflat) nonho-
mogeneous Koszul semialgebras is equivalent to the category of right coflat (right
flat and left relatively coflat) Koszul quasi-differential corings. If a filtered semial-
gebra S∼ over a coring C and a quasi-differential coring D∼ correspond to each
other under this duality, then the graded semialgebra T =

⊕
n FnS∼ and the graded

coring D∼ are quadratic dual right coflat (right flat and left relatively coflat) Koszul
semialgebra and coring over C; the graded semialgebra S =

⊕
n FnS

∼/Fn−1S
∼

and the graded coring D = D∼/ im ∂ are quadratic dual right coflat (right flat
and left relatively coflat) Koszul semialgebra and coring over C; the related iso-
morphisms F1S

∼ � D∼1 and F1S
∼/F0S

∼ � D∼1 /∂0D
∼
0 are compatible with each

other; and the injection F0S
∼ −→ F1S

∼ corresponds to the coderivation compo-
nent ∂0 : D∼0 −→ D∼1 under the isomorphisms F0S

∼ � C � D∼0 and F1S
∼ � D∼1 .

Proof. It follows from the lemma that the category of right coflat (right flat and
left relatively coflat) Koszul semialgebras T endowed with a T-T-bisemimodule
morphism T −→ T of degree 1 is equivalent to the category of right coflat (right
flat and left relatively coflat) Koszul corings E endowed with a coderivation of
degree 1. It remains to prove that semialgebras T with maps T −→ T of degree 1
coming from right coflat (right flat and left relatively coflat) nonhomogeneous
Koszul semialgebras S∼ correspond under this equivalence to right coflat (right
flat and left relatively coflat) Koszul quasi-differential corings D∼ = E and vice
versa. Besides, we will have to show that whenever for a quasi-differential coring
D∼ the graded coring D∼/ im∂ is a right coflat (left relatively coflat) Koszul
coring over a coring C, the graded coring D∼ is also a right coflat (left flat and
right relatively coflat) Koszul coring over C.

According to the proof of Theorem 11.5, for any right coflat (right flat and
left relatively coflat) nonhomogeneous Koszul semialgebra S∼ there is a right coflat
(right flat and left relatively coflat) Koszul quasi-differential coring D∼. Indeed,
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set D∼ =
⊕

nH
−n
n Bar•gr(T,C), where T =

⊕
n FnS∼; then the endomorphism

∂ of the C-C-bicomodule D∼ induced by the endomorphism ∂Bar of the reduced
bar construction Bar•gr(T,C) is a coderivation of degree 1 (with respect to the
zero coderivation of A) and its restriction to D∼0 coincides with the injection
D∼0 � T0 −→ T1 � D∼1 . It also follows from this proof that the right coflat
(right flat and left relatively coflat) Koszul semialgebra S =

⊕
FnS

∼/Fn−1S
∼ is

quadratic dual to the coring D = D∼/ im ∂, which is therefore right coflat (right
flat and left relatively coflat) Koszul over C.

Let us now construct the nonhomogeneous Koszul semialgebra corresponding
to a right coflat (right coflat and left relatively coflat) Koszul quasi-differential
coring D∼ over a coring C. Set D = D∼/ im ∂. Consider the bigraded coring K

over the k-algebra A (which is considered as a bigraded k-algebra concentrated
in the bidegree (0, 0)) with the components Kp,q = D∼q−p for p � 0, q � 0 and
Kp,q = 0 otherwise. The coring K considered as a graded coring in the total
grading p+ q has a coderivation ∂K (with respect to the zero coderivation of A)
mapping the component Kp,q to Kp,q+1 by ∂q−p; one has ∂2

K = 0. There is a
morphism of bigraded corings K −→ D inducing an isomorphism of the corings
of cohomology, where the coring D is placed in the bigrading Dp,0 = D−p and
endowed with the zero differential.

Denote by K+ the cokernel of the injection C � K0,0 −→ K. Let R =⊕∞
r=0 K�Cr

+ be the “cotensor semialgebra” of the bigraded C-C-bicomodule K+. By
the definition, R is a trigraded semialgebra over the coring C (which is considered
as a trigraded coring concentrated in the tridegree (0, 0, 0)) with the gradings p
and q inherited from the bigrading of K+ and the additional grading r by the
number of cotensor factors. We will consider R as a graded semialgebra in the
total grading p+ q+ r. The semialgebra R is endowed with three semiderivations
(with respect to the zero derivation of the coring C) of total degree 1, which we
will now introduce.

Let ∂R be the only semiderivation of R which preserves K+ ⊂ R (embedded
as the part of degree r = 1) and whose restriction to K+ is equal to −∂K. Let dR

be the only semiderivation of R which maps K+ to K+ �C K+ by the composition
of the comultiplication map K+ −→ K+ �C K+ and the sign automorphism of
K+ �C K+ acting on the component Kp′,q′ �C Kp′′,q′′ as (−1)p

′+q′ . Finally, let δR
be the only semiderivation of R whose restriction to K+ is the identity map of the
component K−1,−1 � C to the semiunit component R0,0,0 = C and zero on all the
remaining components of K+. All the three differentials are constructed so that
they satisfy the super-Leibniz rule in the parity p + q + r. The semiderivations
∂R, dR, and δR have tridegrees (0, 1, 0), (0, 0, 1), and (1, 1,−1), respectively, in
the trigrading (p, q, r). All the three semiderivations have zero squares, and they
pairwise anti-commute.

There is a right coflat (right flat and left relatively coflat) increasing filtration
F on the graded semialgebra R whose component FnR is the direct sum of all
trigrading components Rp,q,r with −p � n. This filtration is compatible with the
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differentials ∂R, dR, and δR; the semialgebra
⊕

n FnR/Fn−1R with the differential
induced by ∂R + dR + δR is naturally isomorphic to the semialgebra R with the
differential ∂R + dR.

Consider the following sign-modified version of the cobar construction
Cob(D,C). Define ′Cob(D,C) as the “tensor semialgebra”

⊕
r D�Cr

+ of the
C-C-bicomodule D+ and endow it with the grading p coming from the grading
Dp = D−p of D+ and the grading r by the number of cotensor factors. We will
consider ′Cob(D,C) as a graded semialgebra over C in the total grading p + r.
Let d′Cob be the only coderivation of ′Cob(D,C) which maps D+ ⊂ ′Cob(D,C) to
D+ �C D+ by the composition of the comultiplication map D+ −→ D+ �C D+

and the sign automorphism of D+ �C D+ acting on the component Dp′ �C Dp′′

as (−1)p
′
. Then one has d′2Cob = 0. Notice that the differential d′Cob satisfies the

super-Leibniz rule in the parity p + r, while the differential dCob of the cobar
construction Cob•gr(D,C) satisfies the super-Leibniz rule in the parity r. The
automorphism of

⊕
r D�Cr

+ acting on the component Dp1 �C · · ·�C Dpr by minus
one to the power

∑r
s=1 ps(ps + 1)/2 +

∑
1�s<t�r ps(pt + 1) transforms dCob to

d′Cob, so the semialgebras of cohomology of the DG-semialgebras ′Cob(D,C) and
Cob•gr(D,C) are naturally isomorphic in the Koszul case.

Consider the morphism of DG-semialgebras (R,∂R+dR)→(′Cob(D,C),d′Cob)
induced by the morphism of corings K −→ D. This morphism of DG-semialgebras
induces an isomorphism of the semialgebras of cohomology. Indeed, the compo-
nents of fixed grading p of the DG-semialgebra (R, ∂R + dR) are the total com-
ponents of finite bicomplexes whose components of fixed grading r are multiple
cotensor products of components of fixed grading p of the DG-coring K, and the
natural maps from these multiple cotensor products to the corresponding multiple
cotensor products of components of the coring D are quasi-isomorphisms. Hence
H0
∂R+dR

(R) � S and Hi
∂R+dR

(R) = 0 for i �= 0, where S denotes the right coflat
(right flat and left relatively coflat) Koszul semialgebra quadratic dual to D. Anal-
ogously, the morphism of DG-semialgebras (R, ∂R + dR) −→ (′Cob(D,C), d′Cob)
induces quasi-isomorphisms of the tensor and cotensor products related to these
DG-semialgebras that were listed in (i) and (iii) of 11.2.3.

The associated graded quotient complexes to the tensor and cotensor prod-
uct of the DG-semialgebra (R, ∂R + dR + δR) listed in (i) and (iii) of 11.2.3
with respect to the filtrations induced by the filtration F are naturally isomor-
phic to the corresponding tensor and cotensor products of the DG-semialgebra
(R, ∂R + dR). Therefore, the associated graded modules of the cohomology of
these tensor and cotensor products of the DG-semialgebra (R, ∂R + dR + δR) are
isomorphic to the cohomology of the corresponding tensor and cotensor products
of the DG-semialgebra (R, ∂R +dR). In particular, set S∼ = H0

∂R+dR+δR
(R); then

S∼ is endowed with an increasing filtration F such that
⊕

n FnS
∼/Fn−1S

∼ � S,
while H i

∂R+dR+δR
(R) = 0 for i �= 0. Since S is a coflat right C-comodule (a flat

right A-module and a C/A-coflat left C-comodule), the associated graded quotient
modules to the tensor and cotensor products under consideration of the cohomol-
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ogy module S∼ are isomorphic to the corresponding tensor and cotensor products
of S. Thus S∼ is a semialgebra over C and F is its right coflat (right flat and left
relatively coflat) increasing filtration.

Since the semialgebra S is right coflat (right flat and left relatively coflat)
Koszul, so is the semialgebra T =

⊕
n FnS

∼. Let D∼′ be the right coflat (right
flat and left relatively coflat) coring quadratic dual to T; then D∼′ is endowed
with a coderivation ∂′, making it a right coflat (right flat and left relatively coflat)
Koszul quasi-differential coring, as we have already proven. Moreover, the cok-
ernel D′ of the coderivation ∂′ is quadratic dual to S, hence there is a natural
isomorphism of graded corings D � D′. Furthermore, the embedding of the com-
ponent D∼1 = R−1,0,1 −→ R induces an isomorphism D∼1 � F1S

∼. The compo-
sition D∼2 −→ D∼1 �C D∼1 � F1S

∼ �C F1S
∼ −→ F2S

∼ of the comultiplication
and semimultiplication maps vanishes, so there is a natural morphism of graded
corings D∼ −→ D∼′. Since the embedding F0S

∼ −→ F1S
∼ corresponds to the

map ∂0 : D∼0 −→ D∼1 under the isomorphisms F0S
∼ � C � D∼0 and F1S

∼ � D∼1 ,
the morphism D∼ −→ D∼′ forms a commutative diagram with the differentials
∂ in D∼ and ∂′ in D∼′. The induced morphism D∼/ im∂ −→ D∼′/ im∂′ coin-
cides with the natural isomorphism D −→ D′ on the components of degree 1, and
consequently on the other components as well. Hence the morphism of corings
D∼ −→ D∼′ is also an isomorphism. Thus the coring D∼ is right coflat (right flat
and left relatively coflat) Koszul over C, and the semialgebra T quadratic dual to
it together with its T-T-bicomodule endomorphism of degree 1 comes from the
right coflat (right flat and left relatively coflat) nonhomogeneous Koszul semial-
gebra S∼. �

A right coflat (right flat and left relatively coflat) nonhomogeneous Koszul
semialgebra and a right coflat (right flat and left relatively coflat) Koszul quasi-
differential coring corresponding to each other under the equivalence of categories
from Theorem 11.6 are called nonhomogeneous quadratic dual to each other.

All the definitions and results of 11.4–11.6 have their obvious analogues for
the coflatness conditions replaced with coprojectivity ones. So, when C is a pro-
jective left A-module one can speak of left coprojective Koszul semialgebras and
corings. When C is a flat right A-module and A has a finite left homological dimen-
sion, one can define right flat and left relatively projective Koszul semialgebras
and corings. When C is a projective left A-module and A has a finite left homolog-
ical dimension, one can consider left projective and right relatively coflat Koszul
semialgebras and corings. Of course, when C is a flat left A-module, one can define
left coflat Koszul semialgebras and corings, etc.

Remark. All the results of 11.4–11.6 have their analogues for semimodules and
semicontramodules over semialgebras, comodules and contramodules over corings.
In particular, for any right coflat Koszul semialgebra S and the right coflat Koszul
coring D quadratic dual to S there is a natural equivalence between the categories
of Koszul left S-semimodules and Koszul left D-comodules given by the functors



11.7. Quasi-differential comodules and contramodules 213

of cohomology of the reduced bar and cobar constructions with coefficients in the
semimodules and comodules. No (co)flatness conditions need to be imposed on the
semimodules and comodules in this setting. For any left coprojective Koszul semi-
algebra S and the left coprojective Koszul coring D quadratic dual to S there is an
equivalence between the categories of Koszul left S-semicontramodules and Koszul
left D-contramodules (which are nonpositively graded). For any right flat and left
relatively coflat Koszul semialgebra S and the right flat and left relatively coflat
Koszul coring D quadratic dual to S there is an equivalence between the categories
of A-flat Koszul right S-semimodules and A-flat Koszul right D-comodules, etc.
Furthermore, for a right coflat nonhomogeneous Koszul semialgebra S∼ and a left
semimodule M∼ over S∼ endowed with an increasing filtration F compatible with
the filtration of S∼, the semimodule

⊕
n FnM∼ is Koszul over the semialgebra⊕

n FnS
∼ if and only if the semimodule

⊕
n FnM

∼/Fn−1M
∼ is Koszul over the

semialgebra
⊕

n FnS∼/Fn−1S
∼. A filtered semimodule M∼ satisfying these con-

ditions can be called a nonhomogeneous Koszul semimodule over S∼. The Koszul
D-comodule quadratic dual to the second of these graded semimodules is naturally
isomorphic to the Koszul D∼-comodule quadratic dual to the first semimodule
with the induced D-comodule structure. A Koszul quasi-differential left D∼-co-
module is a graded left D∼-comodule that is Koszul as a D-comodule; then it is also
Koszul as a D∼-comodule. There is a natural equivalence between the categories
of nonhomogeneous Koszul left semimodules over S∼ and Koszul quasi-differential
comodules over D∼. When S∼ is a left coprojective nonhomogeneous Koszul semi-
algebra, there is an analogous equivalence of categories of nonhomogeneous Koszul
left semicontramodules over S∼ and Koszul quasi-differential contramodules over
D∼ (where nonhomogeneous Koszul semicontramodules are semicontramodules
endowed with complete decreasing filtrations).

11.7 Quasi-differential comodules and contramodules

11.7.1 Let (D∼, ∂) be a quasi-differential coring over a k-algebra A; set D =
D∼/ im ∂. Assume that D is a flat graded right A-module.

A quasi-differential left comodule over D∼ is just a graded left D∼-comod-
ule (without any differential). The DG-category of quasi-differential left D∼-co-
modules DG(D∼-qcmd) is defined as follows. The objects of DG(D∼-qcmd) are
quasi-differential left D∼-comodules. Let us construct the complex of morphisms
in the category DG(D∼-qcmd) between quasi-differential left D∼-comodules L and
M, denoted by Hom•D(L,M). The component Homn

D(L,M) of this complex is the
k-module of all homogeneous maps L −→ M of degree −n supercommuting with
the coaction of D in L and M. This means that an element f ∈ Homn

D(L,M)
should satisfy the equation f(x)(−1) ⊗ f(x)(0) = (−1)n|x(−1)|x(−1) ⊗ f(x(0)) in
Sweedler’s notation [82], where z �−→ z(−1) ⊗ z(0) denotes the left coaction maps,
p is the image of an element p ∈ D∼ in D, and |p| is the degree of a homogeneous
element p. To define the differential d(f) of an element f , consider the super-
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commutator of the coaction maps L −→ D∼ �D L and M −→ D∼ �D M with
f , that is the map δf : L −→ D∼ �D M given by the formula x �−→ f(x)(−1) �
f(x)(0)− (−1)n|x(−1)|x(−1) �f(x(0)). For any f ∈ Homn

D(L,M), the map δf factor-
izes through the injection M � D�DM −→ D∼�DM induced by the homogeneous
morphism ∂ : D −→ D∼ of degree 1 given by ∂(p) = ∂(p), hence the desired map
d(f) : L −→M of degree −n− 1.

Since the map δf and the morphism ∂ supercommute with the left coactions
of D, so does the map d(f). Let us check that d2(f) = 0, in other words, that d(f)
supercommutes with the left coactions of D∼ in L and M. Consider the two ho-
mogeneous maps L −→ D∼ �D M given by the formulas x �−→ (df)(x)(−1) �
(df)(x)(0) and x �−→ (−1)(n+1)|x(−1)|x(−1) � (df)(x(0)); we have to check that
these two maps coincide. Consider the image of the former map under the map
Homn+1

D (L, D∼ �D M) −→ Homn+1
D (L, D∼ �D D∼ �D M) given by the formula

g �−→ (x �→ (−1)(n+1)|x(−1)|∂(x(−1))�g(x(0))) and the image of the second map un-
der the map Homn+1

D (L,D∼�DM) −→ Homn+1
D (L,D∼�DD∼�DM) given by the

formula g �−→ (x �→ (−1)|g(x)1|g(x)1 � ∂(g(x)2(−1)) � g(x)2(0)), where y = y1 � y2
is a notation for an element y ∈ D∼ �D M. The sum of these two elements of
Homn+1

D (L, D∼ �D D∼ �D M) is equal to the image of the element δf under the
map Homn+1

D (L, D∼�D M) −→ Homn+1
D (L, D∼�D D∼�D M) induced by the co-

multiplication map D∼ −→ D∼�D D∼. There is a commutative square formed by
the diagonal embedding D∼ −→ D∼⊕D∼, the morphism D∼⊕D∼ −→ D∼�DD∼

given by the formula (x, y) �−→ ∂(x(1)) � x(2) + (−1)|y(1)|y(1) � ∂(y(2)), the mor-
phism ∂ : D∼ −→ D∼, and the comultiplication morphism D∼ −→ D∼ �D D∼.
Considering the filtrations originating from the two-term filtration ∂(D∼) ⊂ D∼,
one can check that this square is Cartesian. It remains Cartesian after applying
the functors − �D M and Homn+1

D (L,−), so we are done.
Let M be a quasi-differential left D∼-comodule and q : M −→ M be an

element of Hom1
D(M,M) satisfying the Maurer–Cartan equation d(q)+q2 = 0. The

quasi-differential left D∼-comodule structure on M twisted with q is constructed
as follows. First of all, the structure of a graded D-comodule on M does not change
under twisting. Next, the twisted coaction map M −→ D∼�D M is the sum of the
original coaction map and the composition M −→M −→ D∼�D M −→ D∼�D M

of the map q : M −→ M, the coaction map M −→ D∼ �D M, and the map
D∼ �D M −→ D∼ �D M induced by the morphism ∂ : D∼ −→ D∼. Denote
the quasi-differential D∼-comodule we have constructed by M(q). For any quasi-
differential left D∼-comodule L the differential in the complex Hom•D(L,M(q))
differs from the differential in the complex Hom•D(L,M) according to the formula
dq(f) = d(f) + q ◦ f .

Since infinite direct sums and shifts of objects clearly exist in the DG-cat-
egory DG(D∼-qcmd), it follows from the above construction, in particular, that
cones exist in it. Therefore, the homotopy category Hot(D∼-qcmd), whose objects
are the objects of DG(D∼-qcmd) and morphisms are the zero cohomology of the
complexes of morphisms in DG(D∼-qcmd), is naturally triangulated. Furthermore,
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for any complex of quasi-differential left D∼-comodules one can define the total
graded quasi-differential left D∼-comodule such that the corresponding graded left
D-comodule will coincide with the infinite direct sum of the shifts of the terms
of the complex considered as graded left D-comodules. In particular, one can
speak about the total quasi-differential left D∼-comodules of exact triples of quasi-
differential left D∼-comodules. This allows us to define the coderived category of
quasi-differential left D∼-comodules Dco(D∼-qcmd) as the quotient category of
the homotopy category Hot(D∼-qcmd) by its minimal triangulated subcategory
containing such objects associated to exact triples and closed under infinite direct
sums. The objects of the latter subcategory are called coacyclic quasi-differential
comodules.

11.7.2 Let (D∼,∂) be a quasi-differential coring overA; assume that D=D∼/im∂
is a flat graded left A-module.

A quasi-differential right comodule over D∼ is just a graded right D∼-co-
module. Let us define the DG-category of quasi-differential right comodules
DG(qcmd-D∼) over D∼. The objects of DG(qcmd-D∼) are quasi-differential
right D∼-comodules. The complex of morphisms Hom•D∼(R,N) in the cate-
gory DG(qcmd-D∼) between quasi-differential right D∼-comodules R and N is
constructed as follows. The component Homn

D∼(R,N) of this complex is the
k-module of all homogeneous maps R −→ N of degree −n commuting with
the D-comodule structures (without any signs). To define the differential of
an element f ∈ Hom•D(R,N), consider the map δf : R −→ N �D D∼ given by
the formula x �−→ f(x)(0) � f(x)(1) − f(x(0)) � x(1), where z �−→ z(0) ⊗ z(1)
denotes the right coaction maps. The map δf factorizes through the injection
N −→ N �D D∼ given by the formula y �−→ (−1)|y(0)|y(0) � ∂(y(1)), hence the
desired map d(f) : R −→ N.

Let N be a quasi-differential right D∼-comodule and q ∈ Hom1
D(N,N) be an

element satisfying the equation d(q) + q2 = 0. To define quasi-differential right
D∼-comodule structure on N twisted with q, set the new coaction map N −→
N �D D∼ to be the sum of the original coaction map and the composition N −→
N −→ D∼ �D N of the map q : N −→ N and the map N −→ N �D D∼ given
by the formula y �−→ (−1)|y(0)|y(0) � ∂(y(1)). Denote the quasi-differential D∼-co-
module so constructed by N(q); for any quasi-differential right D∼-comodule R

the differential in the complex Hom•D(R,N(q)) differs from the differential in the
complex Hom•D(R,N) by the rule dq(f) = d(f) + q ◦ f .

The definitions of the homotopy category of quasi-differential right D∼-co-
modules Hot(qcmd-D∼) and the coderived category of quasi-differential right
D∼-comodules Dco(qcmd-D∼) are the same as in the left quasi-differential
comodule case.

11.7.3 Let (D∼,∂) be a quasi-differential coring overA; assume that D=D∼/im∂
is a projective graded left A-module.
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A quasi-differential left contramodule over D∼ is just a graded left D∼-con-
tramodule. Let us define the DG-category of quasi-differential left D∼-contra-
modules DG(D∼-qcntr). The objects of DG(D∼-qcntr) are quasi-differential left
D∼-contramodules. The complex of morphisms HomD,•(P,Q) in the category
DG(D∼-qcntr) between quasi-differential left D∼-contramodules P and Q is con-
structed as follows. The component HomD,n(P,Q) of this complex is the k-module
of all homogeneous maps P −→ Q of degree −n supercommuting with the D-con-
tramodule structures. This means that an element f ∈ HomD,n(P,Q) should
satisfy the equation πP(f ◦ x) = (−1)mnf(πP(x)) for any x ∈ HomA(Dm,P),
where πP denotes the contraaction map. To define the differential of an element
f ∈ HomD,n(P,Q), consider the map δf : CohomD(D∼,P) −→ Q given by the
formula x �−→ πP(f ◦ x) − (−1)mnf(πP(x)) for x ∈ HomA(D∼m,P), where x
denotes the class of x in CohomD(D∼,P). The map δf factorizes through the
surjection CohomD(D∼,P) −→ CohomD(D,P) � P induced by the morphism
∂ : D −→ D∼, hence the desired map d(f) : P −→ Q.

Let P be a quasi-differential left D∼-contramodule and q ∈ HomD,1(P,P) be
an element satisfying the equation d(q) + q2 = 0. To define the quasi-differential
left D∼-contramodule structure on P twisted with q, set the new contraaction
map CohomD(D∼,P) −→ P to be the sum of the original contraaction map and
the composition of the map CohomD(D∼,P) −→ P induced by ∂ : D −→ D∼

and the map q : P −→ P. Denote the quasi-differential left D∼-contramodule
so constructed by P(q); for any quasi-differential left D∼-contramodule Q the
differential in the complex HomD,•(Q,P(q)) differs from the differential in the
complex HomD,•(Q,P) by the rule dq(f) = d(f) + q ◦ f .

The definitions of the homotopy category of quasi-differential left D∼-con-
tramodules Hot(D∼-qcntr), its triangulated subcategory of contraacyclic quasi-
differential D∼-contramodules, and the contraderived category of quasi-differential
left D∼-contramodules Dctr(D∼-qcntr) are completely analogous to the corre-
sponding definitions in the comodule case; the only difference is that one considers
infinite products instead of infinite direct sums.

Remark. One can define the DG-categories of CDG-comodules and CDG-con-
tramodules over a CDG-coring (see 11.2.2 and 0.4.4) and identify them with
the DG-categories of quasi-differential comodules and contramodules in the case
when a quasi-differential coring corresponds to a CDG-coring. More generally, let
(D∼, ∂) be a quasi-differential coring over a k-algebra A such that the compo-
nents Di of the coring D = D∼/ im ∂ are projective left A-modules. Then there
is a natural structure of quasi-differential k-algebra on the graded A-A-bimod-
ule with the components Rn∼ = HomA(D∼n , A). Let (R, d, h) be a CDG-algebra
over k corresponding to R∼. In this situation the DG-category of quasi-differential
right D∼-comodules is isomorphic to a full subcategory of the DG-category of right
CDG-modules over (R, d, h), and there is a forgetful functor from the DG-category
of quasi-differential left D∼-contramodules to the DG-category of left CDG-mod-
ules over (R, d, h).
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11.8 Koszul duality

Let C be a coring over a k-algebra A.

Theorem.

(a) Assume that C is a flat right A-module. Let S∼ be a right coflat nonhomoge-
neous Koszul semialgebra over the coring C and D∼ be the right coflat Koszul
quasi-differential coring over C nonhomogeneous quadratic dual to S∼. Then
the semiderived category of left S∼-semimodules is naturally equivalent to the
coderived category of quasi-differential left D∼-comodules.

(b) Assume that C is a flat left A-module. Let S∼ be a left coflat nonhomogeneous
Koszul semialgebra over the coring C and D∼ be the left coflat Koszul quasi-
differential coring over C nonhomogeneous quadratic dual to S∼. Then the
semiderived category of right S∼-semimodules is naturally equivalent to the
coderived category of quasi-differential right D∼-comodules.

(c) Assume that C is a projective left A-module. Let S∼ be a left coprojective
nonhomogeneous Koszul semialgebra over the coring C and D∼ be the left co-
projective Koszul quasi-differential coring over C nonhomogeneous quadratic
dual to S∼. Then the semiderived category of left S∼-semicontramodules is
naturally equivalent to the contraderived category of quasi-differential left
D∼-contramodules.

Proof. Part (a): let us construct a pair of adjoint functors between the DG-cate-
gory of complexes of left S∼-semimodules and the DG-category of quasi-differential
left D∼-comodules. The functor Ξ assigns to a left S∼-semimodule M the graded
left D-comodule D�C M endowed with the following left D∼-comodule structure.
Consider the map D∼n �C M −→ D∼n �C M equal to the sum of the identity map
and (−1)n times the composition D∼n �C M −→ D∼n−1 �C D∼1 �C M −→ D∼n−1 �C

M −→ D∼n �C M of the map induced by the comultiplication morphism D∼n −→
D∼n−1 �C D∼1 , the map induced by the semiaction morphism F1S

∼ �C M −→M,
and the map induced by the morphism ∂n−1 : D∼n−1 −→ D∼n . This map factorizes
through the surjection D∼n �C M −→ Dn �C M, since its composition with the
map D∼n−1 �C M −→ D∼n �C M induced by the morphism ∂n−1 vanishes. So we
obtain a natural map

Dn �C M −−→ D∼n �C M.

Now the compositions Di+j �C M −→ D∼i+j �C M −→ D∼i �C D∼j �C M −→
D∼i �C Dj �C M of the maps Di+j �C M −→ D∼i+j �C M we have constructed
with the maps induced by the comultiplication maps D∼i+j −→ D∼i �C D∼j and
the maps induced by the natural surjections D∼j −→ Dj define the desired graded
D∼-comodule structure on D �C M. To a complex of left S∼-semimodules M•

the functor Ξ assigns the total quasi-differential D∼-comodule of the complex of
quasi-differential D∼-comodules D �C M•.

The functor Υ assigns to a quasi-differential left D∼-comodule L the complex
of left S∼-semimodules Υ•(L) = S∼ �C L with the terms Υi(L) = S∼ �C L−i and
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the differential defined as the composition

S∼ �C L −−→ S∼ �C D∼1 �C L −−→ S∼ �C L

of the map induced by the coaction morphism L −→ D∼1 �C L and the map
induced by the semimultiplication morphism S∼ �C F1S

∼ −→ S∼. The functor
Ξ is right adjoint to the functor Υ, since both complexes Hom•D(L,Ξ(M•)) and
HomS∼(Υ•(L),M•) are naturally isomorphic to the total complex of the bicomplex
HomC(Li,Mj), one of whose differentials is induced by the differential in M• and
the other one assigns to a C-comodule morphism f : Li −→Mj the composition

Li+1 −−→ D∼1 �C Li −−→ D∼1 �C Mj � F1S
∼ �C Mj −−→ Mj

of the coaction map, the map induced by the morphism f , and the semiaction
map.

Let us show that the functors Ξ and Υ induce mutually inverse equiva-
lences between the semiderived category Dsi(S∼-simod) and the coderived category
Dco(D∼-qcmd). Firstly, the functor Ξ sends C-coacyclic complexes of S-semimod-
ules to coacyclic quasi-differential D∼-comodules. Indeed, for any complex of left
S-semimodules M• the quasi-differential D∼-comodule Ξ(M•) = D�C M• has an
increasing filtration by quasi-differential D∼-subcomodules defined by the formula

Fn(D �C M•) =
⊕

i�n Di �C M•.

The associated graded quotient quasi-differential comodule to this filtration is
described as follows. There is a functor from the DG-category of complexes of
C-comodules to the DG-category of quasi-differential D∼-comodules assigning to
a complex of C-comodules the total quasi-differential D∼-comodule of the com-
plex of quasi-differential D∼-comodules whose terms are the terms of the original
complex of C-comodules endowed with the graded D∼-comodule structure via the
embedding C � D∼0 −→ D∼. (This functor can be also described in terms of the
quasi-differential subcoring in D∼ whose components are D∼0 and ∂0(D∼0 ) ⊂ D∼1 .)
Clearly, this functor sends coacyclic complexes of C-comodules to coacyclic quasi-
differential D∼-comodules. Now the quasi-differential D∼-comodules FnΞ(M•)/
Fn−1Ξ(M•) are isomorphic to the images of the C-comodules Dn �C M• under
this functor, and are, therefore, coacyclic whenever M• is C-coacyclic.

Secondly, the functor Υ sends coacyclic quasi-differential D∼-comodules to
complexes of S∼-semimodules that are coacyclic not only over C, but even over S∼.

Thirdly, let us check that for any complex of left S-semimodules M• the cone
of the natural morphism of complexes of S-semimodules Υ•Ξ(M•) −→M• is coa-
cyclic as a complex of left C-comodules. The complex of C-comodules Υ•Ξ(M•) =
S∼ �C D �C M• has an increasing filtration given by the formula

FnΥ•Ξ(M•) =
∑
i+j�n FiS

∼ �C Dj �C M• ⊂ S∼ �C D �C M•.

The cone of the morphism Υ•Ξ(M•) −→ M• has an induced filtration F whose
components are the cones of the morphisms FnΥ•Ξ(M•) −→ M•. The quotient
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complex cone(FnΥ•Ξ(M•) →M•)/ cone(Fn−1Υ•Ξ(M•) →M•) is isomorphic to
the cone of the identity endomorphism of M• for n = 0 and to the cotensor product
of a positive-degree component of the Koszul complex S �C D and the complex
M• for n > 0 (where, as always, S =

⊕
n FnS∼/Fn−1S

∼). Thus in both cases the
quotient complex is coacyclic.

Fourthly, it remains to check that for any quasi-differential left D∼-comod-
ule L the cone of the natural morphism of quasi-differential D∼-comodules L −→
ΞΥ•(L) is coacyclic. First let us show that it suffices to consider the case when
L is a graded C-comodule endowed with a graded D∼-comodule structure via the
embedding of corings D∼0 −→ D∼. To this end, consider the increasing filtration
of L by quasi-differential D∼-subcomodules

Gn(L) = ν−1
L (

⊕
i�n D∼i �C L),

where νL : L −→ D∼ �C L denotes the coaction map. The quotient quasi-
differential comodules Gn(L)/Gn−1(L) are graded D∼-comodules originating
from graded C-comodules; the filtration G induces a filtration on the cone of
the morphism L −→ ΞΥ•(L) whose components are the cones of the morphisms
Gn(L) −→ ΞΥ•(Gn(L)); and the associated quotient quasi-differential comodules
of the latter filtration are the cones of the morphisms Gn(L)/Gn−1(L) −→
ΞΥ•(Gn(L)/Gn−1(L)).

Now assume that L is a graded C-comodule with the induced graded D∼-co-
module structure, or even a complex of C-comodules with the induced quasi-
differential D∼-comodule structure. In this case, the quasi-differential D∼-comod-
ule ΞΥ•(L) = D �C S∼ �C L has an increasing filtration by quasi-differential
subcomodules given by the formula

FnΞΥ•(L) =
∑

i+j�n Dj �C FiS
∼ �C L ⊂ D �C S∼ �C L.

The cone of the morphism L −→ ΞΥ•(L) has the induced filtration F whose
components are the cones of the morphisms L −→ FnΞΥ•(L). The associated
quotient comodules of the latter filtration are coacyclic quasi-differential D∼-co-
modules. Indeed, the component F0 cone(L −→ ΞΥ•(L)) is isomorphic to the cone
of the identity endomorphism of L, while the quotient quasi-differential comodules
with n > 0 are isomorphic to cotensor products of positive-degree components
of the Koszul complex D �C S and the C-comodule L, endowed with the quasi-
differential D∼-comodule structures originating from their structures of complexes
of C-comodules. Thus all these quotient quasi-differential comodules are coacyclic.

Part (b): we will only construct a pair of adjoint functors between the
DG-category of complexes of right S∼-semimodules and the DG-category of quasi-
differential right D∼-comodules; the rest of the proof is identical to that of part (a).
The functor Ξ assigns to a right S-semimodule N the graded right D-comodule
N �C D endowed with a right D∼-comodule structure in terms of the follow-
ing maps N �C Dn −→ N �C D∼n . Consider the map N �C Dn −→ N �C Dn

equal to the difference of the identity map and the composition N �C D∼n −→
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N �C D∼1 �C D∼n−1 −→ N �C D∼n−1 −→ N �C D∼n of the map induced by the
comultiplication morphism, the map induced by the semiaction morphism, and
the map induced by the morphism ∂n−1. This difference factorizes through the
surjection N �C D∼n −→ N �C Dn, hence the desired map. The functor Υ assigns
to a quasi-differential right D∼-comodule R the complex of right S∼-semimodules
Υ•(R) = R�CS∼ with the terms Υi(R) = R−i�CS∼ and the differentials di defines
as (−1)i times the composition R−i�CS∼ −→ R−i−1�CD∼1 �CS∼ −→ R−i−1�CS∼

of the map induced by the coaction morphism and the map induced by the semi-
multiplication morphism.

Part (c): let us construct a pair of adjoint functors between the DG-cate-
gory of complexes of left S∼-semicontramodules and the DG-category of quasi-
differential left D∼-contramodules. The functor Ξ assigns to a left S-semicontra-
module P the graded left D-contramodule CohomC(D,P) endowed with a left
D∼-contramodule structure in terms of the following maps CohomC(D∼n ,P) −→
CohomC(Dn,P). Consider the map CohomC(D∼n ,P) −→ CohomC(D∼n ,P) equal
to the difference of the identity map and the composition CohomC(D∼n ,P) −→
CohomC(D∼n−1,P) −→ CohomC(D∼n−1,CohomC(D∼1 ,P)) −→ CohomC(D∼n ,P)
of the map induced by the morphism ∂n−1, the map induced by the semicon-
traaction morphism P −→ CohomC(F1S

∼,P), and the map induced by the co-
multiplication morphism D∼n −→ D∼1 �C D∼n−1. This difference factorizes through
the injection CohomC(Dn,P) −→ CohomC(D∼n ,P), hence the desired map. The
functor Υ right adjoint to Ξ assigns to a quasi-differential left D∼-contramodule
Q the complex of left S∼-semicontramodules Υ•(Q) = CohomC(S∼,Q) with the
terms Υi(Q) = CohomC(S∼,Q−i) and the differential defined as the composition
CohomC(S∼,Q) −→ CohomC(F1S

∼ �C S∼, Q) −→ CohomC(S∼, Q) of the map
induced by the semimultiplication morphism F1S

∼ �C S∼ −→ S∼ and the map
induced by the contraaction morphism CohomC(D∼1 ,Q) −→ Q.

The rest of the proof is analogous to that of part (a), with the exception of
the argument related to the filtration G (the first step of the fourth part of the
proof). The problem here is that the decreasing filtration G of a graded D∼-con-
tramodule Q whose components are the images GnQ of the contraaction maps
CohomC(D∼/

⊕
i�n D∼i ,Q) −→ Q is not in general separated, i.e., the intersection

of GnQ may be nonzero (see Appendix A). What one should do is replace an ar-
bitrary quasi-differential left D∼-contramodule Q with the total quasi-differential
contramodule R of its bar resolution · · · −→ CohomC(D∼ �C D∼ �C D∼, Q) −→
CohomC(D∼ �C D∼, Q) −→ CohomC(D∼,Q). Since the cone of the natural mor-
phism of quasi-differential D∼-contramodules R −→ Q is contraacyclic, one can
consider the quasi-differential D∼-contramodule R instead of Q.

In addition to the filtration G introduced above, consider also the decreasing
filtration ′G of a graded D∼-contramodule Q whose components are the images
′GnQ of the contraaction maps CohomC(D/

⊕
i�n Di, Q) −→ Q. It is clear that

R � lim←−n R/′GnR, since the graded D-contramodule R is simply the infinite
product of the terms of the above bar resolution. Next one can either show that
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′G is a filtration by graded D∼-subcontramodules and use the filtration ′G of
R, or show that the filtrations G and ′G are commensurable, ′GnR ⊂ GnR ⊂
′Gn−1R, and use the filtration G of R. (The quotient quasi-differential D∼-contra-
modules GnQ/Gn+1Q originate from graded C-contramodules, while the quotient
quasi-differential D∼-contramodules ′GnQ/′Gn+1Q originate from complexes of
C-contramodules, which is also sufficient.) Both assertions for an arbitrary graded
D∼-contramodule Q follow from the fact that the composition D∼i −→ D∼1 �C

D∼i−1 −→ D∼1 �C Di−1 of the comultiplication map and the map induced by the
natural surjection D∼i−1 −→ Di−1 is injective and its cokernel, being isomorphic
to the cokernel of the comultiplication map Di −→ D1 �C Di−1, is a coprojective
left C-comodule. To check the latter, consider the composition of the map D∼i −→
D∼1 �C Di−1 in question with the map ∂i−1.

Alternatively, one can replace an arbitrary quasi-differential D∼-contra-
module Q with the cone of the morphism ker(CohomC(D∼,Q) → Q) −→
CohomC(D∼,Q) and use the appropriate generalization of Lemma A.2.3. �

Remark. Notice that no homological dimension condition on the k-algebra A
is assumed in Theorem 11.8. In particular, when C = A, so S∼ is just a fil-
tered k-algebra, Theorem 11.8 provides a description of certain semiderived cat-
egories of S∼-modules relative to F0S

∼ = A. A description of the conventional
derived category can also be obtained. Namely, in the assumptions of part (a) of
the theorem the conventional derived category of left S∼-semimodules is equiv-
alent to the quotient category of the coderived category of quasi-differential left
D∼-comodules by its minimal triangulated subcategory containing all the quasi-
differential D∼-comodules originating from acyclic complexes of left C-comodules
and closed under infinite direct sums. This is so because for any acyclic complex of
S∼-semimodules M• the quasi-differential D∼-comodules FnΞ(M•)/Fn−1Ξ(M•)
originate from acyclic complexes of C-comodules, and conversely, for any quasi-
differential D∼-comodule L originating from an acyclic complex of C-comodules
the complex of S∼-semimodules Υ•(L) is acyclic. The analogous result holds for
right S∼-semimodules in the assumptions of part (b); and in the assumptions of
part (c) the conventional derived category of left S∼-semicontramodules is equiv-
alent to the quotient category of the contraderived category of quasi-differential
left D∼-contramodules by its minimal triangulated subcategory containing all the
quasi-differential contramodules originating from acyclic complexes of left C-con-
tramodules and closed under infinite products.

11.9 SemiTor and Cotor, SemiExt and Coext

11.9.1 Let (D∼, ∂) be a quasi-differential coring over a k-algebra A; assume that
D = D∼/ im ∂ is a flat left and right A-module.

Let N be a quasi-differential right D∼-comodule and M be a quasi-differential
left D∼-comodule. Assume that one of the graded A-modules N and M is flat.
Then on the cotensor product N�D M of the graded comodules N and M over the
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graded coring D there is a natural differential with zero square, which is defined
as follows.

Consider the map δ : N �D M −→ N �D D∼ �D M given by the formula
x�y �−→ −x(0)�x(1)�y+x�y(−1)�y(0). This map factorizes through the injection
N�DM −→ N�DD∼�DM given by the formula x�y �−→ (−1)|x(0)|x(0)�∂(x(1))�
y = (−1)|x|x � ∂(y(−1)) � y(0), hence the desired map d : N �D M −→ N �D M.
Let us check that d2 = 0, that is the image of d is contained in N �D∼ M. Set
d(x�y) = x′�y′. Consider the two elements x′�y′(−1)�y

′
(0) and x′(0)�x

′
(1)�y of the

cotensor product N�DD∼�DM; we have to check that these two elements coincide.
Consider the image of the former element under the map N �D D∼ �D M −→
N�DD∼�DD∼�DM given by the formula u�b�v �−→ (−1)|u(0)|u(0)�∂(u(1))�b�v
and the image of the latter element under the map N�DD∼�DM −→ N�DD∼�D

D∼�D M given by the formula u� b� v �−→ (−1)|u|+|b|u� b�∂(v(−1))� v(0). The
sum of these two elements of N �D D∼ �D D∼ �D M is equal to the image of the
element δ(x�y) under the map N�DD∼�DM −→ N�DD∼�DD∼�DM induced
by the comultiplication map D∼ −→ D∼ �D D∼. It remains to notice that the
Cartesian square formed by the maps D∼ −→ D∼⊕D∼, D∼⊕D∼ −→ D∼�DD∼,
D∼ −→ D∼, and D∼ −→ D∼�DD∼ constructed in 11.7.1 remains Cartesian after
taking the cotensor product with N and M. We will denote the complex we have
constructed by N �•D M; its terms are N �nD M = (N �D M)−n.

Now assume that the ring A has a finite weak homological dimension. In order
to define the double-sided derived functor of the functor �•D, we will show that the
coderived category of quasi-differential D∼-comodules is equivalent to the quotient
category of the homotopy category of D-coflat quasi-differential D∼-comodules by
its intersection with the thick subcategory of coacyclic quasi-differential D∼-co-
modules.

The argument is analogous to that of either Theorem 2.5 or Theorem 2.6.
First let us construct for any quasi-differential left D∼-comodule K a morphism
into it from an A-flat quasi-differential left D∼-comodule L1(K) with a coacyclic
cone. Use the graded version of Lemma 1.1.3 to obtain a finite resolution 0 −→
Z −→ Pd−1(K) −→ · · · −→ P0(K) −→ K of a graded D∼-comodule K consisting
of A-flat graded D∼-comodules. The total quasi-differential D∼-comodule of the
complex of quasi-differential D∼-comodules

Z −−→ Pd−1(K) −−→ · · · −−→ P0(K)

is an A-flat quasi-differential D∼-comodule whose morphism into K has a coacyclic
cone. Indeed, the total quasi-differential D∼-comodule of any acyclic complex of
quasi-differential D∼-comodules bounded from below is coacyclic, since it has an
increasing filtration by quasi-differential D∼-subcomodules such that the associ-
ated quotient D∼-comodules are isomorphic to cones of identity endomorphisms
of certain quasi-differential D∼-comodules.

Now let us construct for any A-flat quasi-differential left D∼-comodule L a
morphism from it into a D-coflat quasi-differential left D∼-comodule R2(L) with
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a coacyclic cone. Consider the cobar construction

D∼ ⊗A L −−→ D∼ ⊗A D∼ ⊗A L −−→ · · · .
Notice that D∼ is a coflat graded left D-comodule, since there is an exact triple of
left D-comodules D(−1) −→ D∼ −→ D (where D(−1)i = Di−1). Hence the total
quasi-differential D∼-comodule of this cobar complex of quasi-differential D∼-co-
modules is a D-coflat quasi-differential D∼-comodule such that the map into it
from the quasi-differential D∼-comodule L has a coacyclic cone.

It is easy to see that the cotensor product of a quasi-differential right D∼-co-
module and a quasi-differential left D∼-comodule is an acyclic complex whenever
one of the two quasi-differential D∼-comodules is coacyclic and the other one is
D-coflat. The double-sided derived functor

CotorD∼
q : Dco(qcmd-D∼)× Dco(D∼-qcmd) −−→ D(k-mod)

is defined by restricting the functor �•D to the Cartesian product of the homotopy
category of quasi-differential right D∼-comodules and the homotopy category of
D-coflat quasi-differential left D∼-comodules or to the Cartesian product of the
homotopy category of D-coflat quasi-differential right D∼-comodules and the ho-
motopy category of quasi-differential left D∼-comodules, and composing it with
the localization functor Hot(k-mod) −→ D(k-mod).

11.9.2 Let (D∼, ∂) be a quasi-differential coring over a k-algebra A; assume that
D = D∼/ im ∂ is a projective left and a flat right A-module.

Let M be a quasi-differential left D∼-comodule and P be a quasi-differential
left D∼-contramodule. Assume that either the graded A-module M is projec-
tive, or the graded A-module P is injective. Then on the graded k-module
of cohomomorphisms CohomD(M,P) from the graded comodule M to the
graded contramodule P over the graded coring D there is a natural dif-
ferential with zero square, which is defined as follows. Consider the map
δ : CohomD(M,CohomD(D∼,P)) � CohomD(D∼�D M, P) −→ CohomD(M,P)
defined by the formula f �−→ πP ◦ f − f ◦ νM (where πP and νM denote
the contraaction and coaction morphisms). This map factorizes through the
surjection CohomD(D∼�D M, P) −→ CohomD(M, P) induced by the morphism
∂ : D −→ D∼, hence the map d : CohomD(M,P) −→ CohomD(M,P). We
will denote the complex we have constructed by Cohom•D(M,P); its terms are
Cohomn

D(M,P) = CohomD(M,P)−n.
Assume that the ring A has a finite left homological dimension. Then the

coderived category of quasi-differential left D∼-comodules is equivalent to the
quotient category of the homotopy category of D-coprojective quasi-differential
left D∼-comodules by its intersection with the thick subcategory of coacyclic
quasi-differential D∼-comodules. Analogously, the contraderived category of quasi-
differential left D∼-contramodules is equivalent to the quotient category of the ho-
motopy category of D-coinjective quasi-differential left D∼-contramodules by its
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intersection with the thick subcategory of contraacyclic quasi-differential D∼-con-
tramodules. The double-sided derived functor

CoextqD∼ : Dco(D∼-qcmd)op × Dctr(D∼-qcntr) −−→ D(k-mod)

is defined by restricting the functor Cohom•D to the Cartesian product of the
homotopy category of D-coprojective quasi-differential left D∼-comodules and the
homotopy category of quasi-differential left D∼-contramodules or to the Cartesian
product of the homotopy category of quasi-differential left D∼-comodules and the
homotopy category of D-coinjective quasi-differential left D∼-contramodules, and
composing it with the localization functor Hot(k-mod) −→ D(k-mod).

11.9.3 Let C be a coring over a k-algebra A. Assume that C is a flat left and
right A-module and A has a finite weak homological dimension. Let S∼ be a left
and right coflat nonhomogeneous Koszul semialgebra over C, and D∼ be the left
and right coflat Koszul quasi-differential coring nonhomogeneous quadratic dual
to S∼.

Corollary.

(a) The equivalences of categories

Dsi(simod-S∼) � Dco(qcmd-D∼) and Dsi(S∼-simod) � Dco(D∼-qcmd)

transform the derived functor SemiTorS∼
into the derived functor CotorD∼

q .
(b) Assume additionally that C is a projective left A-module, A has a finite left

homological dimension, and S∼ is a left coprojective nonhomogeneous Koszul
semialgebra. Then the equivalences of categories

Dsi(S∼-simod) � Dco(D∼-qcmd) and Dsi(S∼-sicntr) � Dctr(D∼-qcntr)

transform the derived functor SemiExtS∼ into the derived functor CoextqD∼ .

Proof. Part (a): for any complex of right S∼-semimodules N• and any quasi-
differential left D∼-comodule L there is a natural isomorphism of complexes of
k-modules

Ξ(N•) �•D L � N• ♦S∼ Υ•(L).

Indeed, both complexes are isomorphic to the total complex of the bicomplex
Ni �C Lj , one of whose differentials is induced by the differential in N• and the
other is equal to the composition

Ni �C Lj −−→ Ni �C D∼1 �C Lj−1 −−→ Ni �C Lj−1

of the map induced by the D∼-coaction in L and the map induced by the
S∼-semiaction in Ni. Now let N• be a semiflat complex of C-coflat right
S∼-semimodules and M• be a complex of left S∼-semimodules. Then there is
an isomorphism Ξ(N•) �•D Ξ(M•) � N• ♦S∼ Υ•Ξ(M•) and a quasi-isomorphism
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N• ♦S∼ Υ•Ξ(M•) −→ N• ♦S∼ M•. Analogously, for a complex of right S∼-semi-
modules N• and a semiflat complex of C-coflat left S∼-semimodules M• there is
an isomorphism Ξ(N•) �•D Ξ(M•) � Υ•Ξ(N•) ♦S∼ M• and a quasi-isomorphism
Υ•Ξ(N•) ♦S∼ M• −→ N• ♦S∼ M•. It is easy to check that the square diagram
formed by these maps is commutative. The proof of part (b) is completely
analogous. �
Question. Can one construct a comodule-contramodule correspondence (equiva-
lence between the coderived and contraderived categories) for quasi-differential
comodules and contramodules? Also, is there a natural closed model category
structure on the category of quasi-differential comodules (contramodules)?





Appendices





A Contramodules over Coalgebras
over Fields

Let C be a coassociative coalgebra with counit over a field k. It is well known
(see [82, Theorems 2.1.3 and 2.2.1] or [68, 5.1.1]) that C is the union of its finite-
dimensional subcoalgebras and any C-comodule is a union of finite-dimensional
comodules over finite-dimensional subcoalgebras of C. The dual assertion for
C-contramodules is not true: for the most common of noncosemisimple infinite-
dimensional coalgebras C there exist C-contramodules P such that the intersection
of the images of Homk(C/U,P) in P over all finite-dimensional subcoalgebras
U ⊂ C is nonzero. A weaker statement holds, however: if the contraaction map

Homk(C/U,P) −−→ P

is surjective for every finite-dimensional subcoalgebra U of C, then P = 0. Besides,
even though adic filtrations of contramodules are not in general separated, they are
always complete. Using the related techniques we show that any contraflat C-con-
tramodule is projective, generalizing the well-known result that any flat module
over a finite-dimensional algebra is projective [7].

A.1 Counterexamples

A.1.1 Let C be the coalgebra for which the dual algebra C∗ is isomorphic to the
algebra of formal power series k[[x]]. Then a C-contramodule P can be equivalently
defined as a k-vector space endowed with the following operation of summation of
sequences of vectors with formal coefficients xn: for any elements p0, p1, . . . in P,
an element of P denoted by

∑∞
n=0 x

npn is defined. This operation should satisfy
the following equations:

∑∞
n=0

xn(apn + bqn) = a
∑∞

n=0
xnpn + b

∑∞
n=0

xnqn

for a, b ∈ k, pn, qn ∈ P (linearity);
∑∞

n=0
xnpn = p0 when p1 = p2 = · · · = 0

(counity); and
∑∞

i=0
xi

(∑∞
j=0

xjpij

)
=

∑∞
n=0

xn
(∑

i+j=n
pij

)

for any pij ∈ P, i, j = 0, 1, . . . (contraassociativity). In the latter equation, the
interior summation sign in the right-hand side denotes the conventional finite sum
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of elements of a vector space, while the three other summation signs refer to the
contramodule infinite summation operation.

The following examples of C-contramodules are revealing. Let E denote the
free C-contramodule generated by the sequence of symbols e0, e1, . . . ; its elements
can be represented as formal sums

∑∞
i=0 ai(x)ei, where ai(x) are formal power

series in x such that ai(x) → 0 in the topology of k[[x]] as i → ∞. Let F denote
the free C-contramodule generated by the sequence of symbols f1, f2, . . . ; then
C-contramodule homomorphisms from F to E correspond bijectively to sequences
of elements of E that are images of the elements fi. We are interested in the map
g : F −→ E sending fi to xiei − e0; in other words, an element

∑∞
i=1 bi(x)fi of F

is mapped to the element
∑∞
i=1 x

ibi(x)ei −
(∑∞

i=1 bi(x)
)
e0. It is clear from this

formula that the element e0 ∈ E does not belong to the image of g. Let P denote
the cokernel of the morphism g and pi denote the images of the elements ei in P.
Then one has p0 = xnpn in P; in other words, the element p0 belongs to the
image of Homk(C/U,P) under the contraaction map Homk(C,P) −→ P for any
finite-dimensional subcoalgebra U = (k[[x]]/xn)∗ of C.

Now let E′ be the free C-contramodule generated by the symbols e1, e2, . . . ,
P′ denote the cokernel of the map g′ : F −→ E′ sending fi to xiei, and p′i denote
the images of e′i in P′. Then the result of the contramodule infinite summation∑∞
n=1 x

np′n is nonzero in P′, even though every element xnp′n is equal to zero.
Therefore, the contramodule summation operation cannot be understood as any
kind of limit of finite partial sums. Actually, the C-contramodule P′ is just the
direct sum of the contramodules k[[x]]/xnk[[x]] over n = 1, 2, . . . in the category
of C-contramodules. Notice that the element

∑∞
n=1 x

np′n also belongs to the image
of Homk(C/U,P′) in P′ for any finite-dimensional subcoalgebra U ⊂ C.

Remark. In the above notation, a C-contramodule structure on a k-vector space P
is uniquely determined by the underlying structure of a module over the algebra
of polynomials k[x]; the natural functor C-contra −→ k[x]-mod is fully faithful.
Indeed, for any p0, p1, . . . in P the sequence qm =

∑∞
n=0 x

npm+n ∈ P, m = 0,
1, . . . is the unique solution of the system of equations qm = pm + xqm+1. The
image of this functor is a full abelian subcategory closed under kernels, coker-
nels, extensions, and infinite products; it consists of all k[x]-modules P such that
Extik[x](k[x, x

−1], P ) = 0 for i = 0, 1. It follows that if D is a coalgebra for which
the dual algebra D∗ is isomorphic to a quotient algebra of the algebra of formal
power series k[[x1, . . . , xm]] in a finite number of (commuting) variables by a closed
ideal, then the natural functor D-contra −→ k[x1, . . . , xm]-mod is fully faithful.

A.1.2 Now let us give an example of finite-dimensional (namely, two-dimen-
sional) contramodule P over a coalgebra C such that the intersection of the images
of Homk(C/U,P) in P is nonzero. Notice that for any coalgebra C there are natu-
ral left C∗-module structures on any left C-comodule and any left C-contramodule;
that is there are natural faithful functors

C-comod −−→ C∗-mod and C-contra −−→ C∗-mod
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(where C∗ is considered as an abstract algebra without any topology). The functor
C-comod −→ C∗-mod is fully faithful, while the functor C-contra −→ C∗-mod is
fully faithful on finite-dimensional contramodules.

Let V be a vector space and C be the coalgebra such that the dual algebra
C∗ has the form ki2⊕ i2V ∗i1⊕ ki1, where i1 and i2 are idempotent elements with
i1i2 = i2i1 = 0 and i1 + i2 = 1. Then left C∗-modules are essentially pairs of
k-vector spaces M1, M2 endowed with a map

V ∗ ⊗kM1 −−→ M2,

left C-comodules are pairs of vector spaces M1, M2 endowed with a map

M1 −−→ V ⊗k M2,

and left C-contramodules are pairs of vector spaces P1, P2 endowed with a map

Homk(V,P1) −−→ P2.

In particular, the functor C-contra −→ C∗-mod is not surjective on morphisms of
infinite-dimensional objects, while the functor C-comod −→ C∗-mod is not surjec-
tive on the isomorphism classes of finite-dimensional objects. (Neither is in general
the functor C-contra −→ C∗-mod, as one can see in the example of an analogous
coalgebra with three idempotent linear functions instead of two and three vector
spaces instead of one; when k is a finite field and C is the countable direct sum
of copies of the coalgebra k, there even exists a one-dimensional C∗-module which
comes from no C-comodule or C-contramodule.)

Let P be the C-contramodule with P1 = k = P2 corresponding to a linear
function V ∗ −→ k coming from no element of V . Then the intersection of the
images of Homk(C/U,P) in P over all finite-dimensional subcoalgebras U ⊂ C is
equal to P2.

More generally, for any coalgebra C any finite-dimensional left C-comodule
M has a natural left C-contramodule structure given by the composition

Homk(C,M) � C∗ ⊗k M −−→ C∗ ⊗k C⊗k M −−→ M

of the map induced by the C-coaction in M and the map induced by the pairing
C∗ ⊗k C −→ k. The category of finite-dimensional left C-comodules is isomorphic
to a full subcategory of the category of finite-dimensional left C-contramodules; a
finite-dimensional C-contramodule comes from a C-comodule if and only if it comes
from a contramodule over a finite-dimensional subcoalgebra of C. We will see below
that every irreducible C-contramodule is a finite-dimensional contramodule over a
finite-dimensional subcoalgebra of C; it follows that the above functor provides a
bijective correspondence between irreducible left C-comodules and irreducible left
C-contramodules.
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Comparing the cobar complex for comodules with the bar complex for con-
tramodules, one discovers that for any finite-dimensional left C-comodules L and
M there is a natural isomorphism

ExtC,i(L,M) � ExtiC(L,M)∗∗.

In other words, the Ext spaces between finite-dimensional C-comodules in the cate-
gory of arbitrary C-contramodules are the completions of the Ext spaces in the cat-
egory of finite-dimensional C-comodules with respect to the profinite-dimensional
topology.

A.2 Nakayama’s Lemma

The exposition below is based on the structure theory of coalgebras, see [82, Chap-
ters VIII–IX] or [68, Chapter 5].

A coalgebra is called cosimple if it has no nontrivial proper subcoalgebras. A
coalgebra C is called cosemisimple if it is a union of finite-dimensional coalgebras
dual to semisimple k-algebras, or equivalently, if the abelian category of (left or
right) C-comodules is semisimple. Any cosemisimple coalgebra can be decomposed
into an (infinite) direct sum of cosimple coalgebras in a unique way. For any
coalgebra C, let Css denote its maximal cosemisimple subcoalgebra; it contains all
other cosemisimple subcoalgebras of C.

Lemma 1. Let C be a coalgebra over a field k and P be a nonzero left C-contra-
module. Then the image of the space Homk(C/Css,P) under the contraaction map
Homk(C,P) −→ P is not equal to P.

Proof. Notice that the coalgebra without counit D = C/Css is conilpotent , that is
any element d ∈ D is annihilated by the iterated comultiplication map D −→ D⊗n

with a large enough n (dependent on d). We will show that for any contra-
module P over a conilpotent coalgebra D surjectivity of the contraaction map
πP : Homk(D,P) −→ P implies vanishing of P. Indeed, assume that πP is surjec-
tive. Let p be an element of P; it is equal to πP(f1) for a certain map f1 : D −→ P.
Since the map πP is surjective, the map f1 can be lifted to a certain map

D −−→ Homk(D,P),

which supplies a map f2 : D⊗k D −→ P. So one constructs a sequence of maps

fi : D⊗i −−→ P

such that fi−1 = πP,1(fi), where πP,1 signifies the application of πP at the first
tensor factor of D⊗i. Set

gi = µD,2 . . i(fi) = fi ◦ µD,2 . . i, gi : D⊗D −−→ P, i � 2,
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where µD,2 . . i : D ⊗ D −→ D⊗i denotes the tensor product of the identity map
D −→ D with the iterated comultiplication map D −→ D⊗i−1. We have

πP,1(gi) = µD,1 . . i−1(fi−1) and µD(gi) = µD,1 . . i(fi).

Notice that by conilpotency of the coalgebra D the series
∑∞
i=2 gi converges in

the sense of point-wise limit of functions D ⊗k D −→ P, and even of functions
D −→ Homk(D,P). (As always, we presume the identification Homk(U⊗kV,W ) =
Homk(V,Homk(U,W )) when we consider left contramodules.) Therefore,

πP,1

(∑∞
i=2

gi

)
=

∑∞
i=2

µD,1 . . i−1(fi−1)

and
µD

(∑∞
i=2

gi

)
=

∑∞
i=2

µD,1 . . i(fi),

hence
πP,1

(∑∞
i=2

gi

)
− µD

(∑∞
i=2

gi

)
= f1.

By the contraassociativity equation, it follows that p = πP(f1) = 0. �

Lemma 2. Let coalgebra C be the direct sum of a family of coalgebras Cα. Then
any left contramodule P over C is the product of a uniquely defined family of left
contramodules Pα over Cα.

Proof. Uniqueness and functoriality is clear, since the component Pα can be re-
covered as the image of the projector corresponding to the linear function on C

that is equal to the counit on Cα and vanishes on Cβ for all β �= α. Existence is
obvious for a free C-contramodule. Now suppose that a C-contramodule Q is the
product of Cα-contramodules Qα; let us show that any subcontramodule R ⊂ Q is
the product of its images Rα under the projections Q −→ Qα. Let rα be a family
of elements of R. Consider the linear map f : C −→ R whose restriction to Cα is
equal to the composition

Cα −−→ k −−→ R

of the counit of Cα and the map sending 1 ∈ k to rα. Set r = πR(f). Then the
image of the element r under the projection R −→ Rα is equal to the image of rα
under this projection. Thus R is identified with the product of Rα. It remains to
notice that any C-contramodule is isomorphic to the quotient contramodule of a
free contramodule by one of its subcontramodules. �

Corollary. For any coalgebra C and any nonzero contramodule P over C there
exists a finite-dimensional (and even cosimple) subcoalgebra U ⊂ C such that the
image of Homk(C/U,P) under the contraaction map Homk(C,P) −→ P is not
equal to P.
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Proof. By Lemma 1, the image of the map Homk(C/Css,P) −→ P is not equal to
P. Denote this image by Q; it is a subcontramodule of P and the quotient con-
tramodule P/Q is a contramodule over Css. By Lemma 2, there exists a cosimple
subcoalgebra Cα of Css such that P/Q has a nonzero quotient which is a contra-
module over Cα. �

Lemma 3. Let C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ C be a coalgebra with an increasing sequence
of subcoalgebras. For a C-contramodule P, denote by GiP the image of the con-
traaction map Homk(C/Ci,P) −→ P. Then for any C-contramodule P the natural
map P −→ lim←−iP/G

iP is surjective.

Proof. The assertion is obvious for a free C-contramodule. Represent an arbitrary
C-contramodule P as the quotient contramodule Q/K of a free C-contramodule
Q. Since the maps GiQ −→ GiP are surjective, there are short exact sequences

0 −−→ K/K ∩GiQ −−→ Q/GiQ −−→ P/GiP −−→ 0.

Passing to the projective limits, we see that the map lim←−i Q/G
iQ −→ lim←−i P/G

iP
is surjective. �

When C =
⋃
i Ci, it follows, in particular, that K � lim←−i K/G

iK for any
C-contramodule K which is a subcontramodule of a projective C-contramodule.

A.3 Contraflat contramodules

Lemma. Let C be a coalgebra over a field k. Then a left C-contramodule is con-
traflat if and only if it is projective.

Proof. For any C-contramodule Q and any subcoalgebra V ⊂ C denote by

VQ = coker(Homk(C/V,Q)→ Q) � CohomC(V,Q)

the maximal quotient contramodule of Q that is a contramodule over V. The
key step is to construct for any Css-contramodule R a projective C-contramodule
Q such that Css

Q � R. By Lemma A.2.2, R is a product of contramodules over
cosimple components Cα of Css. Any contramodule over Cα is, in turn, a direct sum
of copies of the unique irreducible Cα-contramodule. Hence it suffices to consider
the case of an irreducible Cα-contramodule R.

Let eα be an idempotent element of the algebra C∗α such that R is isomorphic
to C∗αeα. Consider the idempotent linear function ess on Css equal to eα on Cα and
zero on Cβ for all β �= α. It is well known that for any surjective map of rings
A −→ B whose kernel is a nil ideal in A any idempotent element of B can be lifted
to an idempotent element of A. Using this fact for finite-dimensional algebras and
Zorn’s Lemma, one can show that any idempotent linear function on Css can be
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extended to an idempotent linear function on C. Let e be an idempotent linear
function on C extending ess; set Q = C∗e. Then one has

Css
Q � (Css

C∗)e � Css∗ess � R

as desired.
Now let P be a contraflat left C-contramodule. Consider a projective left

C-contramodule Q such that Css
Q � Css

P. Since Q is projective, the map Q −→
Css

P can be lifted to a C-contramodule morphism

f : Q −−→ P.

Since Css
(coker f) = coker(Css

f) = 0, it follows from Lemma A.2.1 that the mor-
phism f is surjective; it remains to show that f is injective.

For any right comodule N over a subcoalgebra U ⊂ C there is a natural
isomorphism

N �C P � N �U
UP,

hence the U-contramodule UP is contraflat. Now let U be a finite-dimensional
subcoalgebra; then UP is a flat left U∗-module. Denote by K the kernel of the
map Uf : UQ −→ UP. For any right U∗-module N we have a short exact sequence

0 −−→ N ⊗U∗ K −−→ N ⊗U∗ UQ −−→ N ⊗U∗ UP −−→ 0.

Since for any cosimple subcoalgebra Uα ⊂ U the map U∗α ⊗U∗ Uf = Uαf is an
isomorphism, we can conclude that the module U∗α ⊗U∗ K = U∗

αK is zero. It
follows that K = 0 and the map Uf is an isomorphism.

Finally, let K be the kernel of the map Q −→ P. Since Uf is an isomorphism,
the subcontramodule K ⊂ Q is contained in the image of Homk(C/U,Q) in Q for
any finite-dimensional subcoalgebra U ⊂ C. But the intersection of such images is
zero, because the Q is a projective C-contramodule. �
Remark. Much more generally, one can define left contramodules over an arbi-
trary complete and separated topological ring R where open right ideals form a
base of neighborhoods of zero (cf. [8]). Namely, for any set X let R[[X ]] denote the
set of all formal linear combinations of elements of X with coefficients converging
to zero in R, i.e., the set of all formal sums

∑
x∈X rxx, with rx ∈ R such that

for any neighborhood of zero U ⊂ R one has rx ∈ U for all but a finite number
of elements x ∈ X . Then for any set X there is a natural map of “opening the
parentheses” R[[R[[X ]]]] −→ R[[X ]] assigning a formal linear combination to a
formal linear combination of formal linear combinations; it is well defined in view
of our condition on R. There is also a map X −→ R[[X ]] defined in terms of
the unit element of R; taken together, these two natural maps make the functor
X �−→ R[[X ]] a monad on the category of sets. Left contramodules over R are,
by the definition, modules over this monad. One can see that the category of left
R-contramodules is abelian and there is a forgetful functor from it to the category
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of R-modules; this functor is exact and preserves infinite products. For example,
when R = Zl is the topological ring of l-adic integers, the category of R-contra-
modules is isomorphic to the category of weakly l-complete abelian groups in the
sense of Jannsen [54], i.e., abelian groups P such that Exti

Z
(Z[l−1], P ) = 0 for

i = 0, 1. When R is a topological algebra over a field, the above definition of an
R-contramodule is equivalent to the definition given in D.5.2. There is an obvious
way to define the contratensor product of a discrete right R-module and a left
R-contramodule. Now if T is a topological ring without unit satisfying the above
condition, and T is pronilpotent, that is for any neighborhood of zero U ⊂ T there
exists n such that T n ⊂ U , then any left T -contramodule P such that the con-
traaction map T [[P ]] −→ P is surjective vanishes. Besides, any left contramodule
over the topological product R of a family of rings (with units) Rα satisfying the
above condition is naturally the product of a family of left Rα-contramodules. Fi-
nally, let R be a topological ring satisfying the above condition and endowed with
a decreasing filtration R ⊃ G1R ⊃ G2R ⊃ · · · by closed left ideals such that any
neighborhood of zero in R contains GiR for large i. For any left R-contramodule
P , denote by GiP the image of the contraaction map GiR[[P ]] −→ P ; then the
natural map P −→ lim←−i P/G

iP is surjective. The proofs of these assertions are
analogous to those of Lemmas A.2.1–A.2.3. When open two-sided ideals form a
base of neighborhoods of zero in R and the discrete quotient rings of R are right
Artinian, a left R-contramodule P is projective if and only if for any open two-
sided ideal J ⊂ R the cokernel of the contraaction map J [[P ]] −→ P is a projective
left R/J-module. The proof of this result is analogous to that of Lemma A.3. It
follows that the class of projective left R-contramodules is closed under infinite
products under these assumptions. For a profinite ring R (defined equivalently
as a projective limit of finite rings endowed with the topology of projective limit
or as a profinite abelian group endowed with a continuous associative multiplica-
tion with unit) one can even obtain the comodule-contramodule correspondence.
Namely, the coderived category of discrete left R-modules is equivalent to the
contraderived category of left R-contramodules; this equivalence is constructed in
a way analogous to 0.2.6 with the role of a coalgebra C played by the discrete
R-R-bimodule of continuous abelian group homomorphisms R −→ Q/Z. More
generally, let R be a topological ring where open two-sided ideals form a base
of neighborhoods of zero and the discrete quotient rings are right Artinian. A
pseudo-compact right R-module [43, IV.3] is a topological right R-module whose
open submodules form a base of neighborhoods of zero and discrete quotient mod-
ules have finite length. The category of pseudo-compact right R-modules is an
abelian category with exact functors of infinite products and enough projectives;
the projective pseudo-compact right R-modules are the direct summands of in-
finite products of copies of the pseudo-compact right R-module R. There is a
natural anti-equivalence between the contraderived categories of pseudo-compact
right R-modules and left R-contramodules provided by the derived functors of
pseudo-compact module and contramodule homomorphisms into R.



B Comparison with
Arkhipov’s Ext∞/2+∗ and
Sevostyanov’s Tor∞/2+∗

Semi-infinite cohomology of associative algebras was introduced by S. Arkhipov [2,
3]; later A. Sevostyanov studied it in [79]. The constructions of derived functors
SemiTor and SemiExt in this monograph are based on three key ideas which were
not known in the 1990s, namely:

(i) the functors of semitensor product and semihomomorphisms;
(ii) the constructions of adjusted objects from Lemmas 1.3.3 and 3.3.3; and
(iii) the definitions of semiderived categories.

We have discussed already Sevostyanov’s substitute for (i) in 10.4 and men-
tioned Arkhipov’s substitute for (ii) in 10.3.5. Here we consider Arkhipov’s sub-
stitute for (i) and suggest an Arkhipov and Sevostyanov-style substitute for (iii).
Combining these together, we obtain comparison results relating our SemiExt to
Arkhipov’s Ext∞/2+∗ and our SemiTor to Sevostyanov’s Tor∞/2+∗.

Throughout this appendix we will freely use the notation and remarks of 11.1.

B.1 Algebras R and R#

B.1.1 Let R be a graded associative algebra over a field k endowed with a pair
of subalgebras K and B ⊂ R. Assume that all the components Ki are finite
dimensional, Ki = 0 for i large negative, and Bi = 0 for i large positive. Set
Ci = K∗−i and C =

⊕
i Ci; this is the coalgebra graded dual to the algebra K. The

coalgebra structure on C exists due to the conditions imposed on the grading of
K. There is a natural pairing φ : C⊗k K −→ k satisfying the conditions of 10.1.2.

Notice that a structure of graded (left or right) C-comodule on a graded
k-vector space M with Mi = 0 for i � 0 is the same as a structure of graded
(left or right) K-module on M . Analogously, a structure of graded (left or right)
C-contramodule on a graded k-vector space P with Pi = 0 for i � 0 is the
same as a structure of graded (left or right) K-module on P . Indeed, one has
Homgr

k (C, P ) � K ⊗k P .
Furthermore, assume that the multiplication map K ⊗k B −→ R is an iso-

morphism of graded vector spaces. The algebra R is uniquely determined by the
algebras K and B and the “permutation” map

B ⊗k K −−→ K ⊗k B



238 B. Comparison with Arkhipov’s Ext∞/2+∗ and Sevostyanov’s Tor∞/2+∗

obtained by restricting the multiplication map R ⊗k R −→ R � K ⊗k B to the
subspace B ⊗k K ⊂ R ⊗k R. Transferring the tensor factors K to the other sides
of this arrow, one obtains a map

C⊗k B −−→ Homgr
k (K,B), c⊗ b �−→ (k′ �→ (φ⊗ idB)(c⊗ bk′)),

where the graded Hom space in the right-hand side is defined, as always, as direct
sum of the spaces of homogeneous maps of various degrees. By the conditions
imposed on the gradings of K and B, we have B ⊗k C � Homgr

k (K,B), so we get
a homogeneous map

ψ : C⊗k B −−→ B ⊗k C.

One can check that the map ψ is a right entwining structure for the graded coal-
gebra C and the graded algebra B over k.

Conversely, if the map ψ corresponding to a “permutation” map B⊗kK −→
K ⊗k B satisfies the entwining structure equations, then the latter map can be
extended to an associative algebra structure on R = K ⊗k B with subalgebras K
and B ⊂ R. However, not every homogeneous map C⊗kB −→ B⊗k C comes from
a homogeneous map B ⊗k K −→ K ⊗k B.

In the described situation the constructions of 10.2 and 10.3 produce the
same graded semialgebra

C⊗K R = S � C⊗k B.
The pairing φ : C ⊗k K −→ k is nondegenerate in C, so the functor ∆φ is fully
faithful and in order to show that the construction of 10.2 works one only has to
check that there exists a right C-comodule structure on C⊗K R inducing the given
right K-module structure. This is so because Si = 0 for i � 0 according to the
conditions imposed on the gradings of K and B.

B.1.2 Now suppose that we are given two graded algebras R and R# with the
same two graded subalgebras K, B ⊂ R and K, B ⊂ R# such that the multipli-
cation maps

K ⊗k B −−→ R and B ⊗k K −−→ R#

are isomorphisms of vector spaces. Assume that dimkKi < ∞ for all i, Ki = 0
for i � 0, and Bi = 0 for i � 0. Furthermore, assume that the right entwining
structure ψ : C⊗kB −→ B⊗kC coming from the “permutation” map in R and the
left entwining structure ψ# : B ⊗k C −→ C⊗k B coming from the “permutation”
map in R# are inverse to each other.

Then there are isomorphisms of graded semialgebras

S = C⊗K R � C⊗k B � B ⊗k C � R# ⊗K C = S#,

which allow one to describe left and right S-semimodules and S-semicontramod-
ules in terms of left and right R-modules and R#-modules. In particular, S has a
natural structure of graded R#-R-bimodule.
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By the graded version of the result of 10.2.2, a structure of graded right
S-semimodule on a graded k-vector space N with Ni = 0 for i � 0 is the same
as a structure of graded right R-module on N . A structure of graded left S-semi-
module on a graded k-vector space M with Mi = 0 for i � 0 is the same as a
structure of graded left R#-module on M . A structure of graded left S-semicon-
tramodule on a graded k-vector space P with Pi = 0 for i � 0 is the same as a
structure of graded left R-module on P . In other words, there are isomorphisms
of the corresponding categories of graded modules and homogeneous morphisms
between them.

Besides, for any graded right R-module N with Ni = 0 for i � 0 and any
graded left R-module P with Pi = 0 for i � 0 there is a natural isomorphism
N �gr

S P � N ⊗R P . Indeed, one has N �gr
C P � N ⊗K P and (N �gr

C S)�gr
C P �

N ⊗K R⊗K P .

B.1.3 A graded K-module M with Mi = 0 for i � 0 is injective as a graded
C-comodule if and only if it is injective as a graded K-module and if and only if it
is injective in the category of graded K-modules with the same restriction on the
grading. Analogously, a graded K-module P with Pi = 0 for i� 0 is projective as
a graded C-contramodule if and only if it is projective as a graded K-module and
if and only if it is projective in the category of graded K-modules with the same
restriction on the grading.

By the graded version of Proposition 6.2.1(a), for any graded right R-mod-
ule N with Ni = 0 for i� 0 and any K-injective graded left R#-module M with
Mi = 0 for i� 0 there are natural isomorphisms

N ♦gr
S M � N �gr

S Ψgr
S (M) � N �gr

S Homgr
R#(S,M).

Analogously, for any K-injective graded right R-module N with Ni = 0 for i� 0
and any graded left R#-module M with Mi = 0 for i � 0 there is a natural
isomorphism

N ♦gr
S M �M �gr

Sop Homgr
Rop(S, N).

The contratensor products in the right-hand sides of these formulas cannot be in
general replaced by the tensor product over R and R#, as the graded S-semicon-
tramodule Ψgr

S (M) does not have zero components in large negative degrees. In
this situation the contratensor product is a certain quotient space of the tensor
product.

By the graded version of Proposition 6.2.3(a), for any K-injective graded left
R#-module M with Mi = 0 for i� 0 and any graded left R-module P with Pi = 0
for i� 0 there are natural isomorphisms

SemiHomgr
S (M,P ) � HomS

gr(Ψ
gr
S (M), P ) � HomS

gr(Homgr
R#(S,M), P ).

Here the homomorphisms of graded S-semicontramodules again cannot be re-
placed by homomorphisms of graded left R-modules. The former homomorphism
spaces are certain subspaces of the latter ones.



240 B. Comparison with Arkhipov’s Ext∞/2+∗ and Sevostyanov’s Tor∞/2+∗

By the graded version of Proposition 6.2.2(a), for any graded left R#-mod-
ule M with Mi = 0 for i� 0 and any K-projective graded left R-module P with
Pi = 0 for i� 0 there are natural isomorphisms

SemiHomgr
S (M,P ) � Homgr

S (M,Φgr
S (P )) � Homgr

R#(M, S⊗gr
R P ).

Here the homomorphisms of graded left S-semimodules can be replaced by the
homomorphisms of graded left R#-modules, since the functor ∆φ is fully faithful,
and consequently so is the functor ∆φ,f .

All of these formulas except the last one have ungraded versions:

N ♦S M � N �S HomR#(S,M), N ♦S M �M �Sop HomRop(S, N),

SemiHomS(M,P ) � HomS(HomR#(S,M), P )

under the appropriate K-injectivity conditions.

B.2 Finite-dimensional case

When the subalgebra K ⊂ R is finite-dimensional, the algebra R# can be con-
structed without any reference to the grading or the complementary subalgebra B.

B.2.1 Let K be a finite-dimensional k-algebra and C = K∗ be the coalgebra
dual to K. Then the categories of left C-comodules and left C-contramodules are
isomorphic to the category of left K-modules and the category of right C-comod-
ules is isomorphic to the category of right K-modules.

The adjoint functors ΦC and ΨC can be therefore considered as adjoint end-
ofunctors on the category of left K-modules defined by the formulas

P �−→ C⊗K P and M �−→ K �C M � HomK(C,M).

The restrictions of these functors define an equivalence between the categories of
projective and injective left K-modules.

By Proposition 1.2.3(a-b), the mutually inverse equivalences P �−→ C⊗K P
and M �−→ K�CM between the category of K-K-bicomodules that are projective
as left K-modules and the category of K-K-bicomodules that are injective as left
K-modules transform the functor of tensor product over K in the former category
into the functor of cotensor product over C in the latter one. In other words,
these two tensor categories are equivalent, and therefore there is a correspondence
between ring objects in the former and the latter tensor category.

B.2.2 Let K be a finite-dimensional k-algebra and K −→ R be a morphism
of k-algebras. By the above argument, if R is a projective left K-module, then
the tensor product S = C ⊗K R has a natural structure of semialgebra over C.
Furthermore, if S is an injective right K-module, then the cotensor product R# =
S �C K has a natural structure of k-algebra endowed with a k-algebra morphism
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K −→ R#. In this case the semialgebra S can be also obtained as the tensor
product R# ⊗K C.

By the result of 10.2.2, a structure of right S-semimodule on a k-vector space
N is the same as a structure of right R-module on N . A structure of left S-semi-
module on a k-vector space M is the same as a structure of left R#-module on
M . A structure of left S-semicontramodule on a k-vector space P is the same as a
structure of left R-module on P . In other words, the corresponding categories are
isomorphic. Besides, for any right R-module N and any left R-module P there is
a natural isomorphism N �S P � N ⊗R P (see 10.2.3).

Remark. The case of a Frobenius algebra K is of special interest. In this case
the k-algebra R# is isomorphic to the k-algebra R, but the k-algebra morphisms
K −→ R and K −→ R# differ by the Frobenius automorphism of K.

B.2.3 By Proposition 6.2.1(a), for any right R-module N and any K-injective
left R-module M there are natural isomorphisms

N ♦S M � N �S ΨS(M) � N ⊗R HomR#(S,M).

Analogously, for any K-injective right R-module N and any left R#-module M
there is a natural isomorphism

N ♦S M � HomRop(S, N)⊗R# M.

By Proposition 6.2.3(a), for any K-injective left R#-module M and any left
R-module P there are natural isomorphisms

SemiHomS(M,P ) � HomS(ΨS(M), P ) � HomR(HomR#(S,M), P ).

By Proposition 6.2.2(a), for any left R#-module M and any K-projective left
R-module P there are natural isomorphisms

SemiHomS(M,P ) � HomS(M,ΦS(P )) � HomR#(M, S⊗R P ).

All of these formulas have obvious graded versions.

B.3 Semijective complexes

Let S be a graded semialgebra over a graded coalgebra C over a field k. Suppose
that Si = 0 = Ci for i > 0 and C0 = k. Assume also that S is an injective left and
right graded C-comodule. Let C-comod↓ and comod↓-C denote the categories of
C-comodules graded by nonpositive integers, C-contra↑ denote the category of left
C-comodules graded by nonnegative integers, S-simod↓, simod↓-S, and S-sicntr↑

denote the categories of graded S-semimodules and S-semicontramodules with
analogously bounded grading.

Any acyclic complex over C-comod↓ is coacyclic with respect to C-comod↓.
Analogously, any acyclic complex over C-contra↑ is contraacyclic with respect to
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C-contra↑. Indeed, let K• be an acyclic complex of nonpositively graded C-comod-
ules. As before, we denote by upper indices the homological grading and by lower
indices the internal grading. Introduce an increasing filtration on K• by the com-
plexes of graded subcomodules FnKj =

⊕
i�−n K

j
i . Then the acyclic complexes

of trivial C-comodules FnK•/Fn−1K
• are clearly coacyclic.

So we have Dsi(S-simod↓) = D(S-simod↓) and Dsi(S-sicntr↑) = D(S-sicntr↑).
A complex M• over C-comod↓ is called injective if the complex of homoge-

neous homomorphisms into M• from any acyclic complex over C-comod↓ is acyclic.
In this case the complex of homogeneous homomorphisms into M• from any acyclic
complex over C-comodgr is also acyclic. Analogously, a complex P• over C-contra↑

is called projective if the complex of homogeneous homomorphisms from P• into
any acyclic complex over C-contra↑ is acyclic. In this case the complex of homo-
geneous homomorphisms from P• into any acyclic complex over C-contragr is also
acyclic.

By Lemma 5.4, any complex of injective objects in C-comod↓ is injective and
any complex of projective objects in C-contra↑ is projective.

A complex M• over S-simod↓ is called quite S/C-projective if the complex
of homogeneous homomorphisms from M• into any C-contractible complex over
S-simod↓ is acyclic. Equivalently, M• should belong to the minimal triangulated
subcategory of Hot(S-simod↓) containing the complexes of graded semimodules
induced from complexes over C-comod↓ and closed under infinite direct sums.
Indeed, any quite S/C-projective complex of graded S-semimodules is homotopy
equivalent to the total complex of its bar resolution.

Analogously, a complex P• over S-sicntr↑ is called quite S/C-injective if the
complex of homogeneous homomorphisms into P• from any C-contractible com-
plex over S-sicntr↑ is acyclic. Equivalently, P• should belong to the minimal tri-
angulated subcategory of Hot(S-sicntr↑) containing the complexes of graded semi-
contramodules coinduced from complexes over C-contra↑ and closed under infinite
products.

A complex M• over S-simod↓ is called semijective if it is C-injective and quite
S/C-projective. Analogously, a complex P• over S-sicntr↑ is called semijective if
it is C-projective and quite S/C-injective. Clearly, any acyclic semijective complex
of semimodules or semicontramodules is contractible.

By the graded version of Remark 6.4, any semiprojective complex of non-
positively graded C-injective S-semimodules is semijective and any semiinjective
complex of nonnegatively graded C-projective S-semicontramodules is semijective.
Hence the homotopy category of semijective complexes over S-simod↓ or S-sicntr↑

is equivalent to the derived category D(S-simod↓) or D(S-sicntr↑), any semijective
complex is semiprojective or semiinjective, and one can use semijective complexes
to compute the derived functors SemiTorS and SemiExtS.
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B.4 Explicit resolutions

Let us return to the situation of B.1.2, but make the stronger assumptions that
dimkKi < ∞ for all i, Ki = 0 for i < 0, K0 = k, and Bi = 0 for i > 0. Set
Ci = K∗−i and S = C⊗K R � R# ⊗K C = S#.

B.4.1 For any complex of nonnegatively graded left R-modules P • denote by
L2(P •) the total complex of the reduced relative bar complex

· · · −−→ R⊗B R/B ⊗B R/B ⊗B P • −−→ R⊗B R/B ⊗B P • −−→ R⊗B P •.
It does not matter whether we construct this total complex by taking infinite di-
rect sums or infinite products in the category of graded R-modules, as the two
total complexes coincide. The complex L2(P •) is a complex of K-projective non-
negatively graded left R-modules quasi-isomorphic to the complex P •.

For any complex of nonpositively graded left R#-modules M• denote by
L3(M•) the total complex of the reduced relative bar complex

· · · −−→ R# ⊗K R#/K ⊗K R#/K ⊗K M•

−−→ R# ⊗K R#/K ⊗K M• −−→ R# ⊗K M•,

constructed by taking infinite direct sums along the diagonals. The complex
L3(M•) is a quite S/C-projective complex of nonpositively graded left S-semi-
modules quasi-isomorphic to the complex M•.

By 4.8 and B.1.3, the complex

Homgr
R#(L3(M•), S⊗gr

R L2(P •))

represents the object SemiExtgrS (M•, P •) in D(k-vectgr). We have reproduced
Arkhipov’s explicit complex [2, 3] computing Ext∞/2+∗R (M•, P •).

B.4.2 For any complex of nonpositively graded left R#-modules M• denote by
R2(M•) the total complex of the reduced relative cobar complex

Homgr
B (R#,M•) −−→ Homgr

B (R#/B ⊗B R, M•)

−−→ Homgr
B (R#/B ⊗B R#/B ⊗B R, M•) −−→ · · ·

It does not matter whether we construct this total complex by taking infinite
direct sums or infinite products in the category of graded R#-modules, as the
two total complexes coincide. The complex R2(M•) is a complex of K-injective
nonpositively graded left R#-modules quasi-isomorphic to the complex M•.

For any complex of K-injective nonpositively graded left R#-modules M•

the complex L3(M•) defined in B.4.1 is a semiprojective complex of C-injective
left S-semimodules, since it is isomorphic to the total complex of the reduced bar
complex

· · · −−→ S �C S/C �C S/C �C M
• −−→ S �C S/C �C M

• −−→ S �C M
•

and the left C-comodule S/C is injective in our assumptions.
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Let N• be a complex of nonpositively graded right R-modules and M• be a
complex of nonpositively graded left R#-modules. By 10.4, the complex

N• ⊗C
B L3R2(M•)

represents the object SemiTorS
gr(N

•,M•) in D(k-vectgr). We have reproduced
Sevostyanov’s explicit complex [79] computing TorR∞/2+∗(N•,M•).

B.5 Explicit resolutions for a finite-dimensional subalgebra

Let us consider the situation of an associative algebra R endowed with a pair of
subalgebras K and B ⊂ R such that the multiplication map K ⊗k B −→ R is an
isomorphism of vector spaces and K is a finite-dimensional algebra. Let C = K∗

be the coalgebra dual to K. Then the construction of B.1.1–B.1.2 is applicable,
e.g., with R endowed by the trivial grading, and whenever the entwining map

ψ : B ⊗k C −−→ C⊗k B
turns out to be invertible, this construction produces an algebra R# with sub-
algebras K and B and isomorphisms of semialgebras S = C ⊗K R � C ⊗k B �
B ⊗k C � R# ⊗K C = S#.

B.5.1 For any complex of right R-modules N• denote by R2(N•) the total com-
plex of the reduced relative cobar complex

HomBop(R,N•) −−→ HomBop(R ⊗B R/B, N•)
−−→ HomBop(R ⊗B R/B ⊗B R/B, N•) −−→ · · · ,

constructed by taking infinite direct sums along the diagonals. The complex
R2(N•) is a complex of K-injective right R-modules and the cone of the mor-
phism N• −→ R2(N•) is K-coacyclic (and even R-coacyclic). For any complex of
left R#-modules M• the complex R2(M•) is constructed in an analogous way.

For any complex of left R-modules P • denote by L2(P •) the total complex
of the reduced relative bar complex

· · · −−→ R⊗B R/B ⊗B R/B ⊗B P • −−→ R⊗B R/B ⊗B P • −−→ R⊗B P •,
constructed by taking infinite products along the diagonals. The complex L2(P •)
is a complex of K-projective left R-modules and the cone of the morphism
L2(P •) −→ P • is K-contraacyclic (and even R-contraacyclic).

For any complex of right R-modules N• denote by L3(N•) the total complex
of the reduced relative bar complex

· · · −−→ N• ⊗K R/K ⊗K R/K ⊗K R −−→ N• ⊗K R/K ⊗K R −−→ N• ⊗K R,

constructed by taking infinite direct sums along the diagonals. The complex
L3(N•) is a quite S/C-projective complex of right S-semimodules and the cone
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of the morphism L3(N•) −→ N• is C-contractible. Whenever N• is a complex
of C-injective right S-semimodules, L3(N•) is a semiprojective complex of C-in-
jective right S-semimodules, as it was explained in B.4.2. For a complex of left
R#-modules M• the complex L3(M•) is constructed in an analogous way.

For any complex of left R-modules P • denote by R3(P •) the total complex
of the reduced relative cobar complex

HomK(R,P •) −−→ HomK(R/K ⊗K R, P •)
−−→ HomK(R/K ⊗K R/K ⊗K R, M•) −−→ · · · ,

constructed by taking infinite products along the diagonals. The complex R3(P •)
is a quite S/C-injective complex of left S-semicontramodules and the cone of the
morphism P • −→ R3(P •) is C-contractible. Whenever P • is a complex of C-projec-
tive left S-semicontramodules, R3(P •) is a semiinjective complex of C-projective
right S-semimodules, since it is isomorphic to the total complex of the reduced
cobar complex

CohomC(S, P •) −−→ CohomC(S/C �C S, P •)
−−→ CohomC(S/C �C S/C �C S, P •) −−→ · · ·

and the right C-comodule S/C is injective in our assumptions.

B.5.2 One can use these resolutions in various ways to compute the derived
functors SemiTorS, SemiExtS, ΨS, ΦS, ExtS, ExtS, and CtrTorS.

Specifically, for any complex of right R-modules N• and any complex of
left R#-modules M• the object SemiTorS(N•,M•) in D(k-vect) is represented by
either of the four complexes

N• ⊗R HomR#(S,L3R2(M•)), L3(N•)⊗R HomR#(S,R2(M•)),
HomRop(S,L3R2(N•))⊗R# M•, HomRop(S,R2(N•))⊗R# L3(M•)

according to the formulas of B.2.3 and the results of 2.8. For any complex
of left R#-modules M• and any complex of left R-modules P • the object
SemiExtS(M•, P •) in D(k-vect) is represented by any of the four complexes

HomR(HomR#(S,L3R2(M•)), P •), HomR(HomR#(S,R2(M•)),R3(P •)),
HomR#(M•, S⊗R R3L2(P •)), HomR#(L3(M•), S⊗R L2(P •))

according to the formulas of B.2.3 and the results of 4.8.
One can also use the constructions of 10.4 instead of the formulas B.2.3.
For any complex of left R#-modules M• the object ΨS(M•) in Dsi(S-sicntr)

is represented by the complex of left R-modules

HomR#(S,R2(M•)).
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For any complex of left R-modules P • the object ΦS(P •) in Dsi(S-simod) is rep-
resented by the complex of left R#-modules

S⊗R L2(P •).

For any complexes of left R#-modules L• and M• the object ExtS(L•,M•)
in D(k-vect) is represented by the complex

HomR#(L3(L•),R2(M•)).

For any complexes of left R-modules P • and Q• the object ExtS(P •, Q•) in
D(k-vect) is represented by the complex

HomR(L2(P •),R3(Q•)).

For any complex of right R-modules N• and any complex of left R-modules P •

the object CtrTorS(N•, P •) in D(k-vect) is represented by the complex

L3(N•)⊗R L2(P •).

These assertions follow from the results of 6.5.
In the situation of B.2.2 (with no complementary subalgebraB) one may have

to use the constructions of resolutions R2(N), R2(M), and L2(P ) from the proofs
of Theorems 2.6 and 4.6 instead of the constructions of B.5.1. The alternative is
simply to replace “B” with “k” in the formulas defining the resolutions R2 and
L2 in B.5.1.



C Semialgebras Associated to
Harish-Chandra Pairs

by Leonid Positselski and Dmitriy Rumynin

Recall that in 10.2 we described the categories of right semimodules and left semi-
contramodules over a semialgebra of the form S = C ⊗K R, but no satisfactory
description of the category of left semimodules over S was found. Here we consider
the situation when C and K are Hopf algebras over a field k, and, under certain
assumptions, construct a Morita equivalence between the semialgebras C ⊗K R
and R ⊗K C. So left semimodules over C ⊗K R can be described. This includes
the case of an algebraic Harish-Chandra pair (g, H) with a smooth affine algebraic
group H .

C.1 Two semialgebras

C.1.1 LetK and C be two Hopf algebras over a field k with invertible antipodes s.
Using Sweedler’s notation [82], we will denote the multiplications in K and C by
x ⊗ y �−→ xy and the comultiplications by x �−→ x(1) ⊗ x(2); the units will be
denoted by e and the counits by ε, so that one has s(x(1))x(2) = ε(x)e = x(1)s(x(2))
for x ∈ K or C. Let 〈 , 〉 : K ⊗k C −→ k be a pairing between K and C such that

〈xy, c〉 = 〈x, c(1)〉〈y, c(2)〉 and 〈x, cd〉 = 〈x(1), c〉〈x(2), d〉

for x, y ∈ K, c, d ∈ C; besides, one should have 〈x, e〉 = ε(x) and 〈e, c〉 =
ε(c). Then it follows that the pairing 〈 , 〉 is also compatible with the antipodes,
〈s(x), c〉 = 〈x, s(c)〉.

Finally, suppose that we are given an “adjoint” right coaction of C in K
denoted by x �→ x[0] ⊗ x[1], satisfying the equations

x(1)ys(x(2)) = 〈x, y[1]〉y[0]

and (xy)[0] ⊗ (xy)[1] = x[0]y[0] ⊗ x[1]y[1]; besides, assume that e[0] ⊗ e[1] = e ⊗ e.
This coaction should also satisfy the equations of compatibility with the squares
of antipodes (s2x)[0] ⊗ (s2x)[1] = s2(x[0]) ⊗ s−2(x[1]) and compatibility with the
pairing 〈s−1(x[0]), c(2)〉s(c(1))c(3)x[1] = 〈s−1(x), c〉e. When the pairing 〈 , 〉 is non-
degenerate in C, the latter four equations follow from the first one and the previous
assumptions.
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Indeed, one has

〈y, s2(x)[1]〉(s2x)[0] = y(1)s
2(x)s(y(2)) = s2((s−2y)(1)xs((s−2y)(2)))

= 〈s−2(y), x[1]〉s2(x[0]) = 〈y, s−2(x[1])〉s2(x[0])

and
〈s−1(x[0]), c(2)〉〈y, s(c(1))c(3)x[1]〉

= 〈s−1(x[0]), c(2)〉〈y(3), x[1]〉〈y(1), s(c(1))〉〈y(2), c(3)〉
= 〈s−1(y(3)xs(y(4))), c(2)〉〈s(y(1)), c(1)〉〈y(2), c(3)〉
= 〈s(y(1))y(4)s−1(x)s−1(y(3))y(2), c〉 = 〈s−1(x), c〉ε(y);

analogously for the second and the third equations.

C.1.2 Let R be an associative algebra over k endowed with a morphism of alge-
bras f : K −→ R and a right coaction of the coalgebra C, which we will denote by
u �−→ u[0] ⊗ u[1], u ∈ R. Assume that f is a morphism of right C-comodules and
the right coaction of C in R satisfies the equations

f(x)uf(s(x)) = 〈x, u[1]〉u[0]

and (uv)[0] ⊗ (uv)[1] = u[0]v[0] ⊗ u[1]v[1] for u, v ∈ R, x ∈ K.
Define a pairing φr : C⊗k K −→ k by the formula

φr(c, x) = 〈s−1(x), c〉.
The pairing φr satisfies the conditions of 10.1.2; in particular, it induces a right
action of K in C given by the formula

c← x = 〈s−1(x), c(2)〉c(1).
Assume that the morphism of k-algebras f makes R a flat left K-module. We will
now apply the construction of 10.2.1 in order to obtain a semialgebra structure on
the tensor product Sr = C⊗K R.

Define a right C-comodule structure on C⊗K R by the formula

c⊗K u �−→ c(1) ⊗K u[0] ⊗ c(2)u[1].

First let us check that this coaction is well defined.
We have (c←x)⊗u = 〈s−1x, c(2)〉c(1)⊗u �−→ c(1)⊗Ku[0]⊗〈s(−1)x, c(3)〉c(2)u[1]

and c ⊗ f(x)u �−→ c(1) ⊗K f(x[0])u[0] ⊗ c(2)x[1]u[1] = (c(1) ← x[0]) ⊗K u[0] ⊗
c(2)x[1]u[1] = c(1) ⊗K u[0] ⊗ 〈c(2), s−1(x[0])〉c(3)x[1]u[1]; now 〈s−1(x), d(2)〉d(1) =
〈s−1(x[0]), d(3)〉d(1)s(d(2))d(4)x[1] = 〈s−1(x[0], d(1)〉d(2)x[1] for d ∈ C, x ∈ K.
Furthermore, this right C-comodule structure agrees with the right K-module
structure on C⊗K R, since 〈s−1(x), c(2)u[1]〉c(1) ⊗K u[0] = 〈s−1(x(2)), c(2)〉c(1) ⊗K
〈s−1(x(1)), u[1]〉u[0] = (c← x(3))⊗K f(s−1(x(2)))uf(x(1)) = c⊗K uf(x). It is easy
to see that this right coaction of C commutes with the left coaction of C and that
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the semiunit map C −→ C ⊗K R is a morphism of right C-comodules. Finally,
to show that the semimultiplication map (C ⊗K R) �C (C ⊗K R) −→ C ⊗K R is
a morphism of right C-comodules, one defines a right C-comodule structure on
C ⊗K R ⊗K R by the formula c ⊗K u ⊗K v �−→ c(1) ⊗K u[0] ⊗K v[0] ⊗ c(2)u[1]v[1]
and checks that both the isomorphism C⊗K R⊗K R � (C⊗K R)�C (C⊗K R) and
the map C⊗K R ⊗K R −→ C⊗K R are morphisms of right C-comodules.

C.1.3 Define a pairing φl : K ⊗k C −→ k by the formula

φl(x, c) = 〈s(x), c〉.
The pairing φl induces a left action of K in C given by the formula

x→ c = 〈s(x), c(1)〉c(2).
Assume that the morphism of k-algebras f makes R a flat right K-module. We
will apply the opposite version of the construction of 10.2.1 in order to obtain a
semialgebra structure on Sl = R ⊗K C.

Define a left C-comodule structure on R ⊗K C by the formula

u⊗K c �−→ c(1)s
−1(u[1])⊗ u[0] ⊗K c(2).

This coaction is well defined, since one has

u⊗ (x→ c) = u⊗ 〈s(x), c(1)〉c(2) �−→ 〈s(x), c(1)〉c(2)s−1(u[1])⊗ u[0] ⊗K c(3)

and
uf(x)⊗ c �−→ c(1)s

−1(u[1]x[1])⊗ u[0]f(x[0])⊗K c(2)

= c(1)s
−1(x[1])s−1(u[1])⊗ u[0] ⊗K (x[0]→ c(2))

= 〈s(x[0]), c(2)〉c(1)s−1(x[1])s−1(u[1])⊗ u[0] ⊗K c(3);

now the identity 〈s(x), c(1)〉c(2) = 〈s(x[0]), c(2)〉c(1)s−1(x[1]) follows from the identi-
ties 〈s−1(x), d(2)〉d(1) = 〈s−1(x[0]), d(1)〉d(2)x[1] and (s2x)[0] ⊗ (s2x)[1] = s2(x[0])⊗
s−2(x[1]). This left C-comodule structure agrees with the left K-module struc-
ture on R ⊗K C, since 〈s(x), c(1)s−1(u[1]))〉u[0] ⊗K c(2) = 〈s(x(1)), s−1(u[1])〉 ⊗K
〈s(x(2)), c(1)〉c(2) = 〈x(1), u[1]〉u[0]⊗K (x(2)→c) = x(1)us(x(2))x(3)⊗K c = xu⊗K c.
The rest is analogous to C.1.2; the left C-comodule structure on R ⊗K R ⊗K C is
defined by the formula u⊗K v⊗K c �−→ c(1)s

−1(v[1])s−1(u[1])⊗u[0]⊗K v[0]⊗K c(2).
C.1.4 According to 10.2.2, the category of right Sr-semimodules is isomorphic
to the category of k-vector spaces N endowed with right C-comodule and right
R-module structures such that

〈s−1(x), n(1)〉n(0) = nf(x) and (nr)(0) ⊗ (nr)(1) = n(0)r[0] ⊗ n(1)r[1]

for n ∈ N, x ∈ K, r ∈ R, where n �−→ n(0) ⊗ n(1) denotes the right C-coaction
map and n⊗ r �−→ nr denotes the right R-action map.
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Assuming that R is a projective left K-module, the category of left Sr-semi-
contramodules is isomorphic to the category of k-vector spaces P endowed with
left C-contramodule and left R-module structures such that

πP(c �→ 〈s−1(x), c〉p) = f(x)p
and

πP(c �→ r[0]g(cr[1])) = rπP(g)

for p ∈ P, x ∈ K, c ∈ C, r ∈ R, g ∈ Homk(C,P), where πP denotes the
contraaction map and r ⊗ p −→ rp denotes the left action map.

The category of left Sl-semimodules is isomorphic to the category of k-vector
spaces M endowed with left C-comodule and left R-module structures such that

〈s(x),m(−1)〉m(0) = f(x)m
and

(rm)(−1) ⊗ (rm)(0) = m(−1)s
−1(r[1])⊗ r[0]m[0]

for m ∈M, x ∈ K, r ∈ R, where m �−→ m(−1)⊗m(0) denotes the left C-coaction
map and r ⊗m �−→ rm denotes the left R-action map.

C.2 Morita equivalence

C.2.1 Let E be a k-vector space endowed with a C-C-bicomodule structure and a
right C-module structure satisfying the equation

(jc)(−1) ⊗ (jc)(0) ⊗ (jc)(1) = j(−1)c(1) ⊗ j(0)c(2) ⊗ j(1)c(3)
for j ∈ E, c ∈ C, where j �−→ j(−1) ⊗ j(0) ⊗ j(1) denotes the bicoaction map and
j ⊗ c �−→ jc denotes the right action map.

In particular, E is a right Hopf module (see [82, 4.1] or [68, 1.9]) over C, hence
E is isomorphic to the tensor product E ⊗k C as a right C-comodule and a right
C-module, where E is a k-vector space which can be defined as the subspace in E

consisting of all i ∈ E such that i(0)⊗i(1) = i⊗e. One can see that E is a left C-sub-
comodule in E, so E can be identified with the tensor product E⊗kC endowed with
the bicoaction (i⊗c)(−1)⊗(i⊗c)(0)⊗(i⊗c)(1) = i(−1)c(1)⊗(i(0)⊗c(2))⊗c(3) and the
right action (i⊗c)d = i⊗cd. Besides, the isomorphism E⊗kC � C⊗kE given by the
formulas i⊗ c �−→ i(−1)c⊗ i(0) and c⊗ i �−→ i(0)⊗ s−1(i(−1))c identifies E with the
tensor product C⊗kE endowed with the bicoaction (c⊗i)(−1)⊗(c⊗i)(0)⊗(c⊗i)(1) =
c(1) ⊗ (c(2) ⊗ i(0))⊗ s−1(i(−1))c(3) and the right action (c⊗ i)d = cd⊗ i.
C.2.2 The pairings φl and φr induce left and right actions of K in E given by the
formulas x→ j = 〈s(x), j(−1)〉j(0) and j← x = 〈s−1(x), j(1)〉j(0) for j ∈ E, x ∈ K.
Assume that these two actions satisfy the equation

x[0]→ (jx[1]) = j← x, or equivalently, x→ j = (js−1(x[1]))← x[0]. (∗)
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Let us construct an isomorphism

E⊗K R � R⊗K E.

Set the map E⊗K R −→ R ⊗K E to be given by the formula

j ⊗K u �−→ u[0] ⊗K ju[1]

and the map R ⊗K E −→ E⊗K R to be given by the formula

u⊗K j �−→ js−1(u[1])⊗K u[0]

for j ∈ E, u ∈ R. We have to check that these maps are well defined.
One has

x→ (jc) = 〈s(x), j(−1)c(1)〉j(0)c(1)
= 〈s(x(2)), j(−1)〉〈s(x(1))c(1)〉j(0)c(1) = (x(2)→ j)(x(1)→ c).

Therefore,

〈x(1), d(1)〉x(2)→ (jd(2)) = (x(3)→ j)(x(2)→ (s−1(x(1))→ d)) = (x→ j)d.

Now we have (j← x) ⊗ u �−→ u[0] ⊗K (j← x)u[1] and

j ⊗ f(x)u �−→ f(x[0])u[0] ⊗K jx[1]u[1]

= f(x[0](1))u[0]f(s(x[0](2)))f(x[0](3))⊗K jx[1]u[1]

= 〈x[0](1), u[1]〉u[0]f(x[0](2))⊗K jx[1]u[2]

= u[0] ⊗K 〈x[0](1), u[1]〉x[0](2)→ (jx[1]u(2)) = u[0] ⊗K (x[0]→ (jx[1]))u[1].

Analogously, one has

(jc)← x = 〈s−1(x), j(1)c(2)〉j(0)c(1)
= 〈s−1(x(2)), j(1)〉〈s−1(x(1)), c(2)〉j(0)c(1) = (j← x(2))(c← x(1)).

Therefore,

〈s−1(x(1)), d(1)〉(js−1(d(2)))← x(2) = 〈x(1), s
−1(d(1))〉(js−1(d(2)))← x(2)

= (j← x(3))((s−1(d)← s(x(1)))← x(2)) = (j← x)s−1(d).

Now we have
u⊗ (x→ j) �−→ (x→ j)s−1(u[1])⊗K u[0]

and
uf(x)⊗ j �−→ js−1(x[1])s−1(u[1])⊗K u[0]f(x[0])

= js−1(x[1])s−1(u[1])⊗K f(x[0](3))f(s−1(x[0](2)))u[0]f(x[0](1))

= js−1(x[1])s−1(u[2])⊗K 〈s−1(x[0](1)), u[1]〉f(x[0](2))u[0]

= 〈s−1(x[0](1)), u[1]〉(js−1(x[1])s−1(u[2]))← x[0](2) ⊗K u[0]

= ((js−1(x[1]))← x[0])s−1(u[1])⊗K u[0].

Checking that these two maps are mutually inverse is easy.
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C.2.3 Assume that R is a flat left and right K-module. Then the vector space

E⊗K R � E �C (C⊗K R)

is endowed with the structures of left C-comodule, right Sr-semimodule, and right
R-module. The vector space

R⊗K E � (R ⊗K C) �C E

is endowed with the structures of right C-comodule, left Sl-semimodule, and left
R-module.

Let us check that the isomorphism E⊗K R � R⊗K E preserves the C-C-bico-
module structures. Indeed, one has (j⊗Ku)(−1)⊗(j⊗Ku)(0)⊗(j⊗Ku)(1) = j(−1)⊗
(j(0)⊗Ku[0])⊗j(1)u[1] and (u⊗K j)(−1)⊗(u⊗K j)(0)⊗(u⊗K j)(1) = j(−1)s

−1(u[1])⊗
(u[0]⊗Kj(0))⊗j(1), hence (u[0]⊗K ju[1])(−1)⊗(u[0]⊗K ju[1])(−0)⊗(u[0]⊗Kju[1])(1) =
j(−1)u[2]s

−1(u[1])⊗ (u[0]⊗K j(0)u[3])⊗ j(1)u[4] = j(−1)⊗ (u[0]⊗K j(0)u[1])⊗ j[1]u[2].
Set E ⊗K R = E � R ⊗K E. The left and right actions of R in E commute;

indeed, the left and the induced right actions of R in R ⊗K E are given by the
formulas w(u ⊗K j) = wu⊗K j and (u⊗K j)v = uv[0] ⊗K jv[1].

It follows easily that

E �C Sr � E � Sl �C E

is an Sl-Sr-bisemimodule.

C.2.4 Now assume that the C-C-bicomodule E can be included into a Morita
autoequivalence (E,E∨) of C. This means that a C-C-bicomodule E∨ is given to-
gether with isomorphisms of C-C-bicomodules E �C E∨ � C � E∨ �C E such that
the two induced isomorphisms E �C E∨ �C E ⇒ E coincide and the two induced
isomorphisms E∨ �C E �C E∨ ⇒ E∨ coincide (see 7.5). The Morita equivalence
(E,E∨) is unique if it exists, and it exists if and only if the left C-comodule E is
one-dimensional. In the latter case, the bicomodule E∨ is constructed as follows.

The left C-coaction in E has the form i(−1)⊗i(0) = cE⊗i for a certain element
cE ∈ C such that cE(1) ⊗ cE(2) = cE ⊗ cE and ε(cE) = 1. Set E∨ = Homk(E, k)
and define a left coaction of C in E∨ by the formula ı̌(−1) ⊗ ı̌(0) = s(cE)⊗ ı̌. Take
E∨ = E∨ ⊗k C and define the C-C-bicomodule structure on E∨ by the formula
(̌ı ⊗ c)(−1) ⊗ (̌ı ⊗ c)(0) ⊗ (̌ı ⊗ c)(1) = ı̌(−1)c(1) ⊗ (̌ı(0) ⊗ c(2)) ⊗ c(3). Then one has
E �C E∨ � E ⊗k E∨ ⊗k C � C and E∨ �C E � E∨ ⊗k E ⊗k C � C. There is also an
isomorphism E∨ ⊗k C � C⊗k E∨ given by the formulas analogous to C.2.1.

C.2.5 Taking the cotensor product of the isomorphism E �C Sr � Sl �C E with
the C-C-bicomodule E∨ on the left, we obtain an isomorphism

Sr � E∨ �C Sl �C E.

Define a semialgebra structure on E∨ �C Sl �C E in terms of the semialgebra
structure on Sl and the isomorphisms E �C E∨ � C � E∨ �C E (see 8.4.1). Using
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the facts that E �C Sr � Sl �C E is an Sl-Sr-bisemimodule and the isomorphism
E �C Sr � Sl �C E forms a commutative diagram with the maps E −→ E �C Sr

and E −→ Sl�C E induced by the semiunit morphisms of Sr and Sl, one can check
that Sr � E∨ �C Sl �C E is an isomorphism of semialgebras over C.

It follows that Sl and Sr are left and right coflat C-comodules. Set Sr�CE∨ =
E∨ � E∨ �C Sl; then E∨ is an Sr-Sl-bisemimodule and the pair (E,E∨) is a left
and right coflat Morita equivalence between Sl and Sr (see 8.4.5).

The category of left Sr-semimodules can be now described. Namely, it is
equivalent to the category of left Sl-semimodules; this equivalence assigns to a
left Sr-semimodule L the left Sl-semimodule E �C L and to a left Sl-semimod-
ule M the left Sr-semimodule E∨ �C M. On the level of C-comodules, one has
E �C L � E ⊗k L and E∨ �C M � E∨ ⊗k M; the left C-coaction in E ⊗k L and
E∨ ⊗k M is given by the formulas (i⊗ l)(−1) ⊗ (i⊗ l)(0) = cEl(−1) ⊗ (i⊗ l(0)) and
(̌ı⊗m)(−1) ⊗ (̌ı⊗m)(0) = s(cE)m(−1) ⊗ (̌ı⊗m(0)).

C.2.6 In particular, when the left and right actions of K in C satisfy the equation

x[0]→ (cx[1]) = c← x, or equivalently, x→ c = (cs−1(x[1]))← x[0], (∗∗)

one can take E = C = E∨. Thus the semialgebras Sr and Sl are isomorphic in this
case, the isomorphism being given by the formulas c ⊗K u �−→ u[0] ⊗K cu[1] and
u⊗K c �−→ cs−1(u[1])⊗K u[0] for c ∈ C and u ∈ R.

Remark. One can construct an isomorphism between versions of the semialgebras
Sr and Sl in slightly larger generality. Namely, let χr, χl : K −→ k be k-algebra
homomorphisms satisfying the equations

χ(x[0])x[1] = χ(x)e and χ(x[0](2))x[0](1) ⊗ x[1] = χ(x(2))x(1)[0] ⊗ x(1)[1].

These equations hold automatically when the pairing 〈 , 〉 is nondegenerate in C

(apply id⊗χ to the identity

〈y, x[1]〉x[0](1) ⊗ x[0](2) = (〈y, x[1]〉x[0])(1) ⊗ 〈y, x[1]〉x[0])(2)
= (y(1)xs(y(2)))(1) ⊗ (y(1)xs(y(2)))(2) = y(1)x(1)s(y(4))⊗ y(2)x(2)s(y(3))).

Define pairings φr : C⊗kK −→ k and φl : K⊗kC −→ k by the formulas φr(c, x) =
χr(x(2))〈s−1(x(1)), c〉 and φl(x, c) = χl(x(2))〈s(x(1)), c〉, and modify the definitions
of the right and left actions ofK in C accordingly, c←x = φr(c(2), x)c(1) and x→c =
φl(x, c(1))c(2). Then the tensor products C⊗KR andR⊗KC are semialgebras over C

with the C-C-bicomodule structures given by the same formulas as in C.1.2–C.1.3.
Assuming that the modified left and right actions of K in C satisfy the above
equation, the maps c⊗K u �−→ u[0] ⊗K cu[1]and u⊗K c �−→ cs−1(u[1])⊗K u[0] are
mutually inverse isomorphisms between these two semialgebras.
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C.2.7 The opposite coring Dop to a coring D over a k-algebra B and the opposite
semialgebra Top to a semialgebra T over D are defined in the obvious way; Dop is
a coring over Bop and Top is a semialgebra over Dop.

In the above assumptions, notice the identity s(x→c) = s(c)←s(x) for x ∈ K,
c ∈ C. Suppose that the k-algebra R is endowed with an anti-endomorphism s
satisfying the equations f(s(x)) = s(f(x)) and c(1) ⊗K (s(u))[0] ⊗ c(2)(s(u))[1] =
c(1)⊗K s(u[0])⊗u[1]c(2); the second equation follows from the first one if the pairing
〈 , 〉 is nondegenerate in C. Then there is a map of semialgebras s : (R⊗K C)op −→
C ⊗K R compatible with the isomorphism of coalgebras s : Cop � C; it is defined
by the formula s(u ⊗K c) = s(c)⊗K s(u).

Suppose that we are given a map s : E −→ E satisfying the equation (s(j))(0)⊗
(s(j))(1) = s(j(0)) ⊗ s(j(−1)). Then one has s(x→ j) = s(j)← s(x). The induced
map s : R⊗K E −→ E⊗KR given by the formula s(u⊗K j) = s(j)⊗K s(u) is a map
of right semimodules compatible with the isomorphism of coalgebras s : Cop � C

and the map of semialgebras s : Slop −→ Sr, where the right Slop-semimodule
structure on R⊗K E corresponds to its left Sl-semimodule structure.

Now assume that C is commutative,K is cocommutative, and our data satisfy
the equations s2(u) = u, s2(j) = j, s(jc) = s(j)s(c), and (s(u))[0] ⊗ (s(u))[1] =
s(u[0]) ⊗ u[1]; the latter equation holds automatically when the pairing 〈 , 〉 is
nondegenerate in C. Then the composition of the isomorphism of Sl-Sr-bisemi-
modules E⊗K R � R⊗K E and the map s : R⊗K E −→ E⊗K R in an involution
of the bisemimodule E transforming its left Sl-semimodule and right Sr-semi-
module structures into each other in a way compatible with the isomorphism of
coalgebras s : Cop −→ C and the isomorphism of semialgebras s : Slop � Sr. In
particular, in the situation of C.2.6 the map s : R ⊗K C −→ C ⊗K R becomes
an involutive anti-automorphism of the semialgebra Sl � Sr compatible with the
anti-automorphism s of the coalgebra C.

C.3 Semitensor product and semihomomorphisms,
SemiTor and SemiExt

Let us return to the assumptions of C.1.1–C.2.4.

C.3.1 Let N be a right C-comodule and M be a left C-comodule. Then one can
easily check that the two injections N �C E∨ �C M � N �C (E∨ ⊗k C) �C M �
N�C (E∨⊗kM) −→ N⊗kE∨⊗kM and N�C E∨�C M � N�C (C⊗kE∨)�C M �
(N ⊗k E∨) �C M −→ N ⊗k E∨ ⊗k M coincide.

Let N be a right Sr-semimodule and M be a left Sl-semimodule (see C.1.4).
Then the isomorphism (N⊗K R) �C (E∨⊗k M) � N �C (C⊗K R) �C E∨ �C M �
N�C E∨�C (R⊗K C)�C M � (N⊗kE∨)�C (R⊗KM) induced by the isomorphism
(C⊗K R) �C E∨ � E∨ �C (R⊗K C) can be computed as follows.

There is an isomorphism (C ⊗k R) �C E∨ � E∨ �C (R ⊗k C) defined by the
same formulas as the isomorphism Sr �C E∨ � E∨ �C Sl (⊗K being replaced with
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⊗). Hence the induced isomorphism (N ⊗k R) �C (E∨ ⊗k M) � (N ⊗k E∨) �C

(R⊗k M), which is given by the simple formula n⊗ r ⊗ ı̌⊗m �−→ n⊗ ı̌⊗ r ⊗m.
The isomorphisms (N ⊗K R) �C (E∨ ⊗k M) � (N ⊗k E∨) �C (R ⊗K M) and
(N⊗k R) �C (E∨⊗k M) � (N⊗k E∨) �C (R⊗k M) form a commutative diagram
with the natural maps (N ⊗k R) �C (E∨ ⊗k M) −→ (N ⊗K R) �C (E∨ ⊗k M)
and (N ⊗k E∨) �C (R ⊗k M) −→ (N ⊗k E∨) �C (R ⊗K M). This provides a
description of the first isomorphism whenever the latter two maps are surjective –
in particular, when either N or M is a coflat C-comodule. To compute the desired
isomorphism in the general case, it suffices to represent either N or M as the kernel
of a morphism of C-coflat semimodules (both sides of this isomorphism preserve
kernels, since R is a flat left and right K-module).

C.3.2 Let M be a left C-comodule and P be a left C-contramodule. Then one can
check that the two surjections Homk(E∨ ⊗k M, P) → CohomC(E∨ ⊗k M, P) �
CohomC(E∨�CM,P) and Homk(M,Homk(E∨,P))→ CohomC(M,Homk(E∨,P))
� CohomC(M,CohomC(E∨,P)) coincide.

Let M be a left Sl-semimodule and P be a left Sr-semicontramodule. As-
suming that R is a projective left K-module, the isomorphism CohomC(E∨⊗kM,
HomK(R,P)) � CohomC(E∨ �C M, CohomC(C ⊗K R, P)) � CohomC((R ⊗K
C) �C M, CohomC(E∨P)) � CohomC(R ⊗K M, Homk(E∨,P)) induced by the
isomorphism (C⊗K R) �C E∨ � E∨ �C (R⊗K C) can be computed as follows.

The isomorphism CohomC(E∨ ⊗k M, Homk(R,P)) � CohomC(R ⊗k M,
Homk(E∨,P)) induced by the isomorphism (C ⊗k R) �C E∨ � E∨ �C (R ⊗k C)
is given by the simple formula g �−→ h, h(r ⊗m)(̌ı) = g(̌ı⊗m)(r). The isomor-
phisms CohomC(E∨⊗kM,HomK(R,P)) � CohomC(R⊗KM,Homk(E∨,P)) and
CohomC(E∨⊗kM,Homk(R,P)) � CohomC(R⊗kM, Homk(E∨,P)) form a com-
mutative diagram with the natural maps CohomC(E∨ ⊗k M, HomK(R,P)) −→
CohomC(E∨ ⊗k M, Homk(R,P)) and CohomC(R ⊗K M, Homk(E∨,P)) −→
CohomC(R ⊗k M, Homk(E∨,P)). This provides a description of the first iso-
morphism in the case when the latter two maps are injective – in particular, when
either M is a coprojective C-comodule, or P is a coinjective C-contramodule. To
compute the desired isomorphism in the general case, it suffices to either represent
M as the kernel of a morphism of C-coprojective semimodules, or represent P as
the cokernel of a morphism of C-coinjective semicontramodules.

C.3.3 Assume that the k-algebra R is endowed with a Hopf algebra structure
u �−→ u(1) ⊗ u(2), u �−→ ε(u) with invertible antipode s such that f : K −→ R
is a Hopf algebra morphism. Let N be a right Sr-semimodule and M be a left
Sl-semimodule; assume that either N or M is a coflat C-comodule. Define right
R-module and right C-comodule structures on the tensor product N⊗k E∨ ⊗k M

by the formulas (n ⊗ ı̌ ⊗m)r = nr(2) ⊗ ı̌⊗ s−1(r(1))m and (n⊗ ı̌⊗m)(0) ⊗ (n⊗
ı̌ ⊗ m)(1) = (n(0) ⊗ ı̌ ⊗ m(0)) ⊗ s−1(m(−1))cEn(1). Then the semitensor product
N♦Sr E∨ ♦Sl M (which is easily seen to be associative) is uniquely determined by
these right R-module and right C-comodule structures on N⊗k E∨ ⊗k M.
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Indeed, the subspace N�C (E∨⊗kM) � N�C E∨�C M � (M⊗kE∨)�C M

of the space N ⊗k E∨ ⊗k M can be defined by the equation n(0) ⊗ ı̌ ⊗ m(0) ⊗
s−1(m(−1))cEn(0) = n ⊗ ı̌ ⊗ m ⊗ e. The isomorphism N ⊗k R ⊗k E∨ ⊗k M �
N⊗k E∨ ⊗k M⊗k R given by the formulas n⊗ r⊗ ı̌⊗m �−→ n⊗ ı̌⊗ r(1)m⊗ r(2)
and n⊗ ı̌⊗m⊗ r �−→ n⊗ r(2) ⊗ ı̌⊗ s−1(r(1))m transforms the pair of maps N⊗k
R⊗kE∨⊗kM ⇒ N⊗kE∨⊗kM given by the formulas n⊗r⊗ ı̌⊗m �−→ nr⊗ ı̌⊗m,
n⊗ ı̌⊗rm into the pair of maps N⊗kE∨⊗kM⊗kR ⇒ N⊗kE∨⊗kM given by the
formulas n⊗ı̌⊗m⊗r �−→ nr(2)⊗ı̌⊗s−1(r(1))m, ε(r)n⊗ı̌⊗m. This isomorphism also
transforms the subspace (N⊗kR)�C(E∨⊗kM) of N⊗kR⊗kE∨⊗kM, which can be
defined by the equation n(0)⊗r[0]⊗ı̌⊗m(0)⊗s−1(m(−1))cEn(1)r[1] = n⊗r⊗ı̌⊗m⊗e,
into the subspace of N ⊗k E∨ ⊗k M ⊗k R defined by the equation n(0) ⊗ ı̌ ⊗
r(2)[0](1)(s−1(r(1)))[0]m(0)⊗ r(2)[0](2)⊗ s−2((s−1(r(1)))[1])s−1(m(−1))cEn(1)r(2)[1] =
n ⊗ ı̌ ⊗m ⊗ r ⊗ e. Finally, the same isomorphism transforms the quotient space
N⊗K R ⊗k E∨ ⊗k M of the space N⊗k R ⊗k E∨ ⊗k M into the quotient space
(N ⊗k E∨ ⊗k M) ⊗K R of the space N ⊗k E∨ ⊗k M ⊗k R, as one can check
using the isomorphism N⊗k K ⊗k R ⊗k E∨ ⊗k M � N⊗k E∨ ⊗k M⊗k K ⊗k R
given by the formulas n ⊗ x ⊗ r ⊗ ı̌ ⊗m �−→ n ⊗ ı̌ ⊗ x(1)r(1)m ⊗ x(2) ⊗ r(2) and
n⊗ ı̌⊗m⊗ x⊗ r �−→ n⊗ x(2) ⊗ r(2) ⊗ ı̌⊗ s−1(r(1))s−1(x(1))m.

C.3.4 Let M be a left Sl-semimodule and P be a left Sr-semicontramodule;
assume that either M is a coprojective C-comodule, or P is a coinjective C-con-
tramodule. Define left R-module and left C-contramodule structures on the space
Homk(E∨⊗kM,P) by the formulas rg(̌ı⊗m) = r(2)g(̌ı⊗s−1(r(1))m) and π(h)(̌ı⊗
m) = πP(c �→ h(s−1(m(−1))cEc)(̌ı ⊗m(0))) for g ∈ Homk(E∨ ⊗k M, P) and h ∈
Homk(C,Homk(E∨⊗k M, P)), where πP denotes the C-contraaction in P. Then
the semihomomorphism space SemiHomSr(E ♦Sl M, P) is uniquely determined
by these R-module and C-contramodule structures on Homk(E∨ ⊗k M, P).

This is established in a way analogous to C.3.3 using the isomorphism
Homk(R⊗kE∨⊗kM, P) � Homk(R,Homk(E∨⊗kM, P)) given by the formulas
g �−→ h, g(r ⊗ ı̌⊗m) = h(r(2))(̌ı⊗ r(1)), h(r)(̌ı⊗m) = g(r(2) ⊗ ı̌⊗ s−1(r(1))m).

C.3.5 Now assume that C is commutative,K is cocommutative, and the equations
(s(u))[0] ⊗ (s(u))[1] = s(u[0]) ⊗ u[1], ε(u[0])u[1] = ε(u)e, and u(1)[0] ⊗ u(2)[0] ⊗
u(1)[1]u(2)[1] = u[0](1) ⊗ u[0](2) ⊗ u[1] are satisfied for u ∈ R; when the pairing 〈 , 〉
is nondegenerate in C, these equations hold automatically.

Let N be a right Sr-semimodule and M be a left Sl-semimodule. Define
right R-module and right C-comodule structures on the tensor product N ⊗k M

by the formulas (n ⊗ m)r = nr(2) ⊗ s−1(r(1))m and (n ⊗ m)(0) ⊗ (n ⊗ m)(1) =
(n(0) ⊗m(0)) ⊗ s−1(m(−1))n(1). These right action and right coaction satisfy the
equations of C.1.4, so they define a right Sr-semimodule structure on N ⊗k M.
The ground field k, endowed with the trivial left R-module and left C-comodule
structures ra = ε(r)a and a(−1) ⊗ a(0) = e ⊗ a for a ∈ k, becomes a left Sl-semi-
module. Then there is a natural isomorphism

N ♦Sr E∨ ♦Sl M � (N⊗k M) ♦Sr E∨ ♦Sl k.
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Indeed, let us first assume that either N or M is a coflat C-comodule; notice
that N⊗kM is then a coflat C-comodule, too. The isomorphism N�C(E∨⊗kM) �
(N⊗kM)�CE

∨ given by the formula n⊗ ı̌⊗m �−→ n⊗m⊗ ı̌ and the isomorphism
(N⊗KR)�C (E∨⊗kM) � ((N⊗kM)⊗KR)�CE

∨ constructed in C.3.3 transform
the pair of maps whose cokernel is N ♦Sr E∨ ♦Sl M into the pair of maps whose
cokernel is (N⊗k M) ♦Sr E∨ ♦Sl k. In the general case, represent N or M as the
kernel of a morphism of C-coflat semimodules; then the pair of maps whose cokernel
is N ♦Sr E∨ ♦Sl M and the pair of maps whose cokernel is (N⊗k M)♦Sr E∨ ♦Sl k
become the kernels of isomorphic morphisms of pairs of maps.

C.3.6 Let M be a left Sl-semimodule and P be a left Sr-semicontramod-
ule. Define left R-module and left C-contramodule structures on the space
Homk(M,P) by the formulas rg(m) = r(2)g(s−1(r(1))m) and π(h)(m) = πP(c �→
h(s−1(m(−1))c)(m(0))) for g ∈ Homk(M,P) and h ∈ Homk(C,Homk(M,P)).
These left action and left contraaction satisfy the equations of C.1.4, so they
define a left Sr-semicontramodule structure on Homk(M,P). Then there is a
natural isomorphism

SemiHomSr (E∨ ♦Sl M, P) � SemiHomSr(E∨ ♦Sl k, Homk(M,P)).

C.3.7 Let N• be a complex of right Sr-semimodules and M• be a complex of left
Sl-semimodules. Then there are natural isomorphisms

SemiTorSr

(N•, E∨ ♦Sl M•) � SemiTorSl

(N• ♦Sr E∨, M•)

� SemiTorSr

(N• ⊗k M•, E∨ ♦Sl k)

in the derived category of k-vector spaces. The isomorphism between the first two
objects is provided by the results of 8.4.3, and the isomorphism between either of
the first two objects and the third one follows from C.3.5.

Indeed, assume that the complex N• is semiflat. Then the complex N•⊗kM•

is also semiflat, since (N• ⊗k M•) ♦Sr L• � (N• ⊗k M•) ♦Sr E∨ ♦Sl E ♦Sr L• �
(N• ⊗k M• ⊗k (E ♦Sr L•)) ♦Sr E∨ ♦Sl k � N• ♦Sr E∨ ♦Sl (M• ⊗k (E ♦Sr L•)) for
any complex of left Sr-semimodules L•.

C.3.8 Let M• be a complex of left Sl-semimodules and P• be a complex of left
Sr-semicontramodules. Then there are natural isomorphisms

SemiExtSr (E∨ ♦Sl M•, P•) � SemiExtSl(M•, SemiHomSr(E∨,P•))
� SemiExtSr(E∨ ♦Sl k, Homk(M•,P•)).

C.4 Harish-Chandra pairs

For a discussion of terminology related to Harish-Chandra pairs and Harish-
Chandra modules, see D.2.5.
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C.4.1 Let (g, H) be an algebraic Harish-Chandra pair over a field k, that is H
is an algebraic group, which we will assume to be affine, g is a Lie algebra into
which the Lie algebra h of the algebraic group H is embedded, and an action of
H by Lie algebra automorphisms of g is given. Two conditions should be satisfied:
h is an H-submodule in g where H acts by the adjoint action of H in h, and the
action of h in g obtained by differentiating the action of H in g coincides with the
adjoint action of h in g. Notice that the dimension of h is presumed to be finite,
though the dimension of g may be infinite.

Set K = U(h) and R = U(g) to be the universal enveloping algebras of h
and g, and f : K −→ R to be the morphism induced by the embedding h −→ g.
Let C = C(H) be the coalgebra of functions on H . Then C, K, and R are Hopf
algebras; the adjoint action of H in h and the given action of H in g provide us
with right coactions x �−→ x[0] ⊗ x[1] and u �−→ u[0] ⊗ u[1] of C in K and R; and
there is a natural pairing 〈 , 〉 : K⊗kC −→ k such that the equations of C.1.1–C.1.2
and C.3.5 are satisfied.

C.4.2 So we obtain two opposite semialgebras Sl = Sl(g, H) and Sr = Sr(g, H)
such that the categories of left Sl-semimodules and right Sr-semimodules are iso-
morphic to the category of Harish-Chandra modules over (g, H). Recall that a
Harish-Chandra module N over (g, H) is a k-vector space endowed with g-module
and H-module structures such that the two induced h-module structures coincide
and the action map g ⊗k N −→ N is a morphism of H-modules. The assertion
follows from C.1.4; indeed, it suffices to notice that the equations of C.1.4 hold
whenever they hold for x and r belonging to some sets of generators of the algebras
K and R.

Analogously, the category of left Sr(g, H)-semicontramodules is isomorphic
to the category of k-vector spaces P endowed with g-module and C(H)-contra-
module structures such that the two induced h-module structures coincide and
the action map P −→ Homk(g,P) is a morphism of C(H)-contramodules. Here
a left C-contramodule structure induces an h-module structure by the formula
xp = −πP(c �→ 〈x, c〉p) for p ∈ P, x ∈ h, c ∈ C; for a left C-comodule M

and a left C-contramodule P, the left C-contramodule structure on Homk(M,P)
is defined by the formula π(g)(m) = πP(c �→ g(s−1(m(−1))c)(m(0))) for m ∈ M,
g ∈ Homk(C,Homk(M,P)). Vector spaces P with such structures may be called
Harish-Chandra contramodules over (g, H) (see D.2.8).

C.4.3 Now assume that the algebraic group H is smooth (i.e., reduced). Let E

be the C-C-bicomodule and right C-module of differential top forms on H , with
the bicomodule structure coming from the action of H on itself by left and right
shifts and the module structure given by the multiplication of top forms with
functions. Let E∨ be the C-C-bicomodule of top polyvector fields on H . Then the
equation of C.2.1 is clearly satisfied, and one can see that (E,E∨) is a Morita
autoequivalence of C. The left C-comodules E and E∨ can be identified with the
top exterior powers of the vector spaces Homk(h, k) and h, respectively; cE is the
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modular character of H . The inverse element anti-automorphism of H induces a
map s : E −→ E satisfying the equations of C.2.7.

Let us show that the equation (∗) of C.2.2 holds for E. First let us check that
it suffices to prove the desired equation for all x belonging to a set of generators
of the algebra K. Indeed, one has (xy)[0] → (j(xy)[1]) = x[0]y[0] → (jx[1]y[1]) =
x[0](1)y[0]s(x[0](2))x[0](3)→ (jx[1]y[1]) = 〈x[0](1), y[1]〉y[0]x[0](2)→ (jx[1]y[2]) = y[0]→
(x[0](2)→ (〈x[0](1), y[1]〉jx[1]y[2])) = y[0]→ ((x[0]→ (jx[1]))y[1]) for j ∈ E, x, y ∈ K,
since x(2) → (〈x(1), c(1)〉jc(2)) = x(2) → (j(s−1(x(1))→ c)) = (x(3) → j)(x(2) →
(s−1(x(1))→ c)) = (x→ j)c for j ∈ E, x ∈ K, c ∈ C. So it remains to check that
the equation holds for x ∈ h ⊂ K.

For h ∈ h, let rh and lh denote the left- and right-invariant vector fields
on H corresponding to h. Then one has rh = h[1]lh[0] , hence ω← h = Lierh

ω =
Lielh[0]

(ωh[1]) = h[0]→ (ωh[1]) for ω ∈ E, where Liev ω denotes the Lie derivative
of a top form ω along a vector field v.

C.4.4 Thus there is a left and right coflat Morita equivalence (E(g, H),E∨(g, H))
between the semialgebras Sr(g, H) and Sl(g, H). The functors of semitensor prod-
uct with E(g, H) and E∨(g, H) provide mutually inverse equivalences between the
category of left Sr-semimodules and the category of left Sl-semimodules. Notice
that the underlying C-comodule structures of semimodules are not preserved by
this equivalence, but get twisted with the one-dimensional modular representa-
tion of H . The Sl-Sr-bisemimodule E(g, H) is endowed with an involutive auto-
morphism transforming its two semimodule structures into each other in a way
compatible with the antipode isomorphisms Cop � C and Slop � Sr. When the
algebraic group H is unimodular (i.e., admits a biinvariant differential top form),
the equation (∗∗) of C.2.6 is satisfied, so the semialgebras Sl(g, H) and Sr(g, H)
are naturally isomorphic and endowed with an involutive anti-automorphism.

Remark. Let us assume for simplicity that the field k has characteristic 0 and
the Harish-Chandra pair (g, H) originates from an embedding of affine algebraic
groups H ⊂ G. Then the bisemimodule E(g, H) can be interpreted geometrically
as the Harish-Chandra bimodule of distributions on G, supported on H and reg-
ular along H . Technically, the desired vector space of distributions can be defined
as the direct image of the right DiffH -module of top forms on H under the closed
embedding H −→ G, where Diff denotes the rings of differential operators [14].
This vector space has two commuting structures of a Harish-Chandra module over
(g, H), one given by the action of H by left shifts and the action of g by right
invariant vector fields, the other in the opposite way; so it can be considered as
an Sl-Sr-bisemimodule. The desired map from the vector space E � E ⊗K R to
the space of distributions can be defined as the unique map forming a commuta-
tive diagram with the embeddings of the space of top forms E into both vector
spaces and preserving the right R-module structures. To prove that this map is
an isomorphism, it suffices to consider the filtration of E induced by the natural
filtration of the universal enveloping algebra R and the filtration of the space of
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distributions induced by the filtration of DiffG by the order of differential opera-
tors. When the algebraic group H is unimodular, one can identify the semialgebra
Sl � S = Sr itself with the above vector space of distributions by choosing a
nonzero biinvariant top form ω on H . The semiunit and semimultiplication in S

are then described as follows. Given a function on C, one has to multiply it with
ω and take the push-forward with respect to the closed embedding H −→ G to
obtain the corresponding distribution under the semiunit map. To describe the
semimultiplication, denote by G×H G the quotient variety of the Cartesian prod-
uct G×G by the equivalence relation (g′h, g′′) ∼ (g′, hg′′). Then the pull-back of
distributions with respect to the smooth map G×G −→ G×HG using the relative
top form ω identifies S �C S with the space of distributions on G×H G supported
in H ⊂ G ×H G and regular along H . The push-forward of distributions with
respect to the multiplication map G×H G −→ G provides the semimultiplication
in S. (Cf. Appendix F.)

C.5 Semiinvariants and semicontrainvariants

C.5.1 Let h ⊂ g be a Lie algebra with a finite-dimensional subalgebra; let N be
a g-module. Then there is a natural map

(det(h) ⊗k g/h⊗k N)h −−→ (det(h)⊗k N)h,

where det(V ) is the top exterior power of a finite-dimensional vector space V and
the superindex h denotes the h-invariants. This natural map is constructed as
follows.

Tensoring the action map g⊗kN −→ N with det(h) and passing to the h-in-
variants, we obtain a map (det(h) ⊗k g⊗k N)h −→ (det(h) ⊗k N)h. Let us check
that the composition

(det(h) ⊗k h⊗k N)h −−→ (det(h) ⊗k g⊗k N)h −−→ (det(h)⊗k N)h

vanishes. Notice that this composition only depends on the h-module structure
onN . Let n be an h-invariant element of det(h)⊗kh⊗kN ; it can be also considered
as an h-module map n∗ : (det(h)⊗k h)∗ −→ N , where V ∗ denotes the dual vector
space Homk(V, k). Let t denote the trace element of the tensor product (det(h)⊗k
h)⊗k (det(h)⊗k h)∗; then t is an h-invariant element and one has (id⊗n∗)(t) = n.
So it remains to check that the image of t under the action map

(det(h) ⊗k h)⊗k (det(h)⊗k h)∗ −−→ det(h)⊗k (det(h) ⊗k h)∗ � h∗

vanishes; this is straightforward.
We have constructed a map

(det(h)⊗k g⊗k N)h/(det(h)⊗k h⊗k N)h −−→ (det(h)⊗k N)h.
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When N is an injective U(h)-module, this provides the desired map (det(h) ⊗k
g/h⊗kN)h −→ (det(h)⊗kN)h. To construct the latter map in the general case, it
suffices to represent N as the kernel of a morphism of U(h)-injective U(g)-modules
(notice that any injective U(g)-module is an injective U(h)-module). Indeed, both
the left- and the right-hand sides of the desired map preserve kernels.

The vector space of (g, h)-semiinvariants Ng,h of a g-module N is defined
as the cokernel of the map (det(h) ⊗k g/h ⊗k N)h −→ (det(h) ⊗k N)h that we
have obtained. The (g, h)-semiinvariants are a mixture of invariants along h and
coinvariants in the direction of g relative to h.

C.5.2 Let P be another g-module. Then there is a natural map

Homk(det(h), P )h −−→ Homk(det(h) ⊗k g/h, P )h,

where the subindex h denotes the h-coinvariants. This map is constructed as fol-
lows.

Tensoring the action map P −→ Homk(g, P ) with det(h)∗ and passing to the
h-coinvariants, we obtain a map Homk(det(h), P )h −→ Homk(det(h) ⊗k g, P )h.
Let us check that the composition

Homk(det(h), P )h −−→ Homk(det(h) ⊗k g, P )h −−→ Homk(det(h)⊗k h, P )h

vanishes. Notice that this composition only depends on the h-module structure
on P . Let p be an h-invariant map Homk(det(h) ⊗k h, P ) −→ k; it can be also
considered as an h-module map p∗ : P −→ det(h) ⊗ h. Then the map p factorizes
through the map

Homk(det(h)⊗k h, P ) −−→ Homk(det(h)⊗k h, det(h) ⊗ h)

induced by p∗. So it suffices to consider the case of a finite-dimensional h-module
P = det(h) ⊗ h, when the assertion follows by duality from the result of C.5.1.

We have constructed a map from Homk(det(h), P )h to the kernel of
the map Homk(det(h) ⊗k g, P )h −→ Homk(det(h) ⊗k h, P )h. When P is a
projective U(h)-module, this provides the desired map Homk(det(h), P )h −→
Homk(det(h) ⊗k g/h, P )h. In the general case, represent P as the cokernel of a
morphism of U(h)-projective U(g)-modules and notice that both the left- and the
right-hand side of the desired map preserve cokernels.

The vector space of (g, h)-semicontrainvariants P g,h of a g-module P is de-
fined as the kernel of the map Homk(det(h), P )h −→ Homk(det(h)⊗kg/h, P )h that
we have obtained. The (g, h)-semicontrainvariants are a mixture of coinvariants
along h and invariants in the direction of g relative to h.

C.5.3 Now let (g, H) be an algebraic Harish-Chandra pair. Let N be a right
Sr(g, H)-semimodule, that is a Harish-Chandra module over (g, H). Then the
action map g ⊗k N −→ N is a morphism of Harish-Chandra modules. Tensoring
it with det(h) and passing to the H-invariants, we obtain a map

(det(h) ⊗k g⊗k N)H −−→ (det(h)⊗k N)H .
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By the result of C.5.1, the composition

(det(h)⊗k h⊗k N)H −−→ (det(h)⊗k g⊗k N)H −−→ (det(h)⊗k N)H

vanishes. When N is a coflat C(H)-comodule, this provides a natural map

(det(h)⊗k g/h⊗k N)H −−→ (det(h)⊗k N)H ;

to define this map in the general case, it suffices to represent N as the kernel of a
morphism of C-coflat Sr-semimodules (see Lemma 1.3.3).

The vector space of (g, H)-semiinvariants Ng,H is defined as the cokernel of
the map (det(h)⊗k g/h⊗k N)H −→ (det(h)⊗k N)H that we have constructed.

C.5.4 Let P be a left Sr(g, H)-semicontramodule (see C.4.2). Then the action
map P −→ Homk(g,P) is a morphism of Sr-semicontramodules. Applying to it
the functor Homk(det(h),−), we get a morphism of C(H)-contramodules. Passing
to the H-coinvariants, i.e., the maximal quotient C-contramodules with the trivial
contraaction, we obtain a map

Homk(det(h),P)H −−→ Homk(det(h)⊗k g, P)H .

By the result of C.5.2, the composition

Homk(det(h),P)H −−→ Homk(det(h)⊗k g, P)H −−→ Homk(det(h)⊗k h, P)H

vanishes. When P is a coinjective C-contramodule, this provides a natural map

Homk(det(h),P)H −−→ Homk(det(h) ⊗k g/h, P)H ;

to define this map in the general case, it suffices to represent P as the cokernel of
a morphism of C-coinjective Sr-semicontramodules (see Lemma 3.3.3).

The vector space of (g, H)-semicontrainvariants Pg,H is defined as the ker-
nel of the map Homk(det(h),P)H −→ Homk(det(h) ⊗k g/h, P)H that we have
constructed.

C.5.5 Let N be a right Sr(g, H)-semimodule and M be a left Sl(g, H)-semimod-
ule; assume that either N or M is a coflat C(H)-comodule. Then there is a natural
isomorphism

N ♦Sr E∨ ♦Sr M � (N⊗k M)g,H ,

where N⊗k M is considered as the tensor product of Harish-Chandra modules N

and M.
Indeed, introduce an increasing filtration F of the k-algebra R = U(g) whose

component FtR, t = 0, 1, . . . is the linear span of all products of elements of g
where at most t factors do not belong to h. In particular, we have F0R � K = U(h).
Set

FtS
r = C⊗K FtR;
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then we have F0S
r � C, the natural maps Ft−1S

r −→ FtS
r are injective, their

cokernels are coflat left and right C-comodules, Sr � lim−→FtS
r, and the semimulti-

plication map FpSr�CFqS
r −→ S�CS −→ S factorizes through Fp+qSr. Moreover,

the maps FpSr �C FqS
r −→ Fp+qS

r are surjective and their kernels are coflat left
and right C-comodules. (Cf. 11.5.)

Let N be a right Sr-semimodule and L be a left Sr-semimodule such that
either N or L is a coflat C-comodule. Denote by

ηt : N �C FtS
r �C L −−→ N �C L

the map equal to the difference of the map induced by the semiaction map FtSr�C

L −→ L and the map induced by the semiaction map N �C FtS
r −→ N. Let us

show that the images of ηt coincide for t � 1. Let p, q � 1; then the map

N �C FpS
r �C FqS

r �C L −−→ N �C Fp+qS
r �C L

is surjective in view of our assumption on N and L. The composition of the
map N �C FpS

r �C FqS
r �C L −→ N �C Fp+qS

r �C L with the map ηp+q is
equal to the sum of the composition of the map N �C FpS

r �C FqS
r �C L −→

N �C FpS
∼ �C L induced by the semiaction map FqSr �C L −→ L and the map

ηp, and the composition of the map N�C FpS
r �CFqS

r �C L −→ N�C FqS
r �C L

induced by the semiaction map N�CFpS
r −→ N and the map ηq. So the assertion

follows by induction. Therefore, the semitensor product N ♦S L is isomorphic to
the cokernel of the map η1.

On the other hand, the map η0 vanishes. In view of our assumption on N

and L, the quotient space (N �C F1S
r �C L)/(N �C F0S

r �C L) is isomorphic to
N�C F1S

r/F0S
r �C L. Hence the semitensor product N♦S L is isomorphic to the

cokernel of the induced map

η̄1 : N �C (F1S
r/F0S

r) �C L −−→ N �C L.

Now when L = E∨ ♦S M for a left Sl-semimodule M, the natural iso-
morphisms N �C E∨ �C M � (N ⊗k E∨ ⊗k M)H � (E∨ ⊗k N ⊗k M)H and
N �C (F1S

r/F0S
r) �C E∨ �C M � N �C (C⊗k g/h) �C E∨ �C M � (N⊗k g/h⊗k

E∨⊗kM)H � (E∨⊗kg/h⊗kN⊗kM)H given by the formulas ı̌⊗n⊗m �−→ n⊗ı̌⊗m
and n ⊗ z̄ ⊗ ı̌ ⊗ m �−→ ı̌ ⊗ z̄ ⊗ n ⊗ m identify the map η̄1 with the map whose
cokernel is, by the definition, the space of semiinvariants (N⊗k M)g,H .

C.5.6 Let M be a left Sl(g, H)-semimodule and P be a left Sr(g, H)-semicon-
tramodule; assume that either M is an coprojective C(H)-comodule, or N is a
coinjective C(H)-contramodule. Then there is a natural isomorphism

SemiHomSr(E∨ ♦Sl M, P) � Homk(M,P)g,H ,

where the structure of left Sr-semicontramodule on Homk(M,P) was introduced
in C.3.6. The proof is analogous to that of C.5.5.





D Tate Harish-Chandra Pairs
and Tate Lie Algebras

by Sergey Arkhipov and Leonid Positselski

In order to formulate the comparison theorem relating the functors SemiTor and
SemiExt to the semi-infinite (co)homology of Tate Lie algebras, one has to con-
sider Harish-Chandra pairs (g, H) with a Tate Lie algebra g and a proalgebraic
group H corresponding to a compact open subalgebra h ⊂ g. In such a situation,
the construction of a Morita equivalence from Appendix C no longer works; in-
stead, there is an isomorphism of “left” and “right” semialgebras corresponding
to different central charges. The proof of this isomorphism is based on the non-
homogeneous quadratic duality theory developed in Chapter 11 (see also 0.4).
Once the isomorphism of semialgebras is constructed and the standard semi-
infinite (co)homological complexes are introduced, the proof of the comparison
theorem becomes pretty straightforward. The equivalence between the semide-
rived categories of Harish-Chandra modules and Harish-Chandra contramodules
with complementary (or rather, shifted) central charges follows immediately from
the isomorphism of semialgebras.

D.1 Continuous coactions

D.1.1 Let k be a fixed ground field. A linear topology on a vector space over k
is a topology compatible with the vector space structure for which open vector
subspaces form a base of neighborhoods of zero. In the sequel, by a topological
vector space we will mean a k-vector space endowed with a complete and separated
linear topology. Equivalently, a topological vector space is a filtered projective
limit of discrete vector spaces with its projective limit topology. Accordingly, the
(separated) completion of a vector space endowed with a linear topology is just
the projective limit of its quotient spaces by open vector subspaces.

The category of topological vector spaces and continuous linear maps between
them has an exact category structure in which a triple of topological vector spaces
V ′ −→ V −→ V ′′ is exact if it is an exact triple of vector spaces strongly compat-
ible with the topologies, i.e., the map V ′ −→ V is closed and the map V −→ V ′′

is open. Any open surjective map of topological vector spaces is an admissible
epimorphism. Any closed injective map from a topological vector space admitting
a countable base of neighborhoods of zero is a split admissible monomorphism.

A topological vector space is called (linearly) compact if it has a base of neigh-
borhoods of zero consisting of vector subspaces of finite codimension. Equivalently,
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a topological vector space is compact if it is a projective limit of finite-dimensional
discrete vector spaces. A Tate vector space is a topological vector space admitting
a compact open subspace. Equivalently, a topological vector space is a Tate vec-
tor space if it is topologically isomorphic to the direct sum of a compact vector
space and a discrete vector space. The dual Tate vector space V ∨ to a Tate vector
space V is defined as the space of continuous linear functions V −→ k endowed
with the topology where annihilators of compact open subspaces of V form a base
of neighborhoods of zero. In particular, the dual Tate vector spaces to compact
vector spaces are discrete and vice versa; for any Tate vector space V , the natural
map V −→ (V ∨)∨ is a topological isomorphism.

D.1.2 The projective limit of a projective system of topological vector spaces
endowed with the topology of projective limit is a topological vector space. This
is called the topological projective limit.

The inductive limit of an inductive system of topological vector spaces can be
endowed with the topology of inductive limit of vector spaces with linear topolo-
gies; we will call the inductive limit endowed with this topology the uncompleted
inductive limit. The completed inductive limit is the (separated) completion of the
uncompleted inductive limit. For any countable filtered inductive system formed
by closed embeddings of topological vector spaces the uncompleted and completed
inductive limits coincide. Moreover, let Vα be a filtered inductive system of topo-
logical vector spaces satisfying the following condition. For any increasing sequence
of indices α1 � α2 � · · · the uncompleted inductive limit of Vαi is a direct sum-
mand of the uncompleted inductive limit of Vα considered as an object of the
category of vector spaces endowed with noncomplete linear topologies. Then the
uncompleted and completed inductive limits of Vα coincide.

D.1.3 We will consider three operations of tensor product of topological vector
spaces [8]. For any two topological vector spaces V and W , denote by V ⊗!W the
completion of the tensor product V ⊗kW with respect to the topology with a base
of neighborhoods of zero consisting of the vector subspaces V ′ ⊗W + V ⊗W ′,
where V ′ ⊂ V and W ′ ⊂W are open vector subspaces in V and W .

Furthermore, denote by V ⊗∗W the completion of V ⊗k W with respect to
the topology formed by the subspaces of V ⊗W satisfying the following conditions:
a vector subspace T ⊂ V ⊗W is open if

(i) there exist open subspaces V ′ ⊂ V , W ′ ⊂W such that V ′ ⊗W ′ ⊂ T ,

(ii) for any vector v ∈ V there exists a subspace W ′′ ⊂W such that v⊗W ′′ ⊂ T ,
and

(iii) for any vector w ∈ W there exists a subspace V ′′ ⊂ V such that V ′′⊗w ⊂ T .

Finally, denote by V
→⊗ W the completion of V ⊗k W with respect to the

topology formed by the subspaces satisfying the following conditions: a vector
subspace T ⊂ V ⊗k W is open if
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(i) there exists an open subspace W ′ ⊂W such that V ⊗k W ′ ⊂ T , and

(ii) for any vector w ∈ W there exists an open subspace V ′′ ⊂ V such that
V ′′ ⊗ w ⊂ T .

Set W
←⊗ V = V

→⊗W .
The topological tensor products ⊗! and ⊗∗ define two structures of asso-

ciative and commutative tensor category on the category of topological vector
spaces. The topological tensor product

→⊗ defines a structure of associative, but
not commutative tensor category on the category of topological vector spaces.
For any topological vector spaces V1, . . . , Vn and W the vector space of contin-
uous polylinear maps V1 × · · · × Vn −→ W is naturally isomorphic to the vector
space of continuous linear maps V1 ⊗∗ · · · ⊗∗ Vn −→ W . When both topological
vector spaces V and W are compact (discrete), the topological tensor product
V ⊗∗W � V →⊗W � V ←⊗W � V ⊗! W is also compact (discrete). The functor ⊗!

preserves topological projective limits. The functor ⊗∗ preserves (uncompleted or
completed) inductive limits of filtered inductive systems of open injections. The
topological tensor product V

→⊗W is the topological projective limit of
→⊗-products

of V with discrete quotient spaces of W . The functor (V,W ) �−→ V
→⊗W preserves

completed inductive limits in its second argument W . The underlying vector space
of the topological tensor product V

→⊗W is determined by (the topological vector
space W and) the underlying vector space of the topological vector space V .

For Tate vector spaces V1, . . . , Vn and a topological vector space U , consider
the vector space of continuous polylinear maps ×i Vi −→ U endowed with the
topology with a base of neighborhoods of zero formed by the subspaces of all poly-
linear maps mapping the Cartesian product of a collection of compact subspaces
V ′i ⊂ Vi into an open subspace U ′ ⊂ U (the “compact-open” topology). This vec-
tor space is naturally topologically isomorphic to the topological tensor product
V ∨1 ⊗! · · · ⊗! V ∨n ⊗! W [10, 3.8.17]. For any topological vector spaces U , W and
Tate vector space V , the vector space of continuous linear maps V ⊗∗W −→ U is
naturally isomorphic to the vector space of continuous linear mapsW −→ V ∨⊗!U .

D.1.4 Let C be a coalgebra over the field k and V be a topological vector space.
A continuous right coaction of C in V is a continuous linear map

V −−→ V ⊗! C,

where C is considered as a discrete vector space, satisfying the coassociativity and
counity equations. Namely, the map V −→ V ⊗! C should have equal compositions
with the two maps V ⊗! C ⇒ V ⊗! C⊗! C induced by the map V −→ V ⊗! C and
the comultiplication in C, and the composition of the map V −→ V ⊗! C with the
map V ⊗! C −→ V induced by the counit of C should be equal to the identity map.
Equivalently, a continuous right coaction of C in V can be defined as a continuous
linear map

V ⊗∗ C∨ −−→ V,



268 D. Tate Harish-Chandra Pairs and Tate Lie Algebras

where C∨ is considered as a compact vector space, satisfying the associativity and
unity equations. Continuous left coactions are defined in an analogous way.

A closed subspace W ⊂ V of a topological vector space V endowed with a
continuous right coaction of a coalgebra C is said to be invariant with respect to
the continuous coaction (or C-invariant) if the image of W under the continuous
coaction map V −→ V ⊗! C is contained in the closed subspace W ⊗! C ⊂ V ⊗!C. It
follows from the next lemma that any topological vector space with a continuous
coaction of a coalgebra C is a filtered projective limit of discrete vector spaces
endowed with C-comodule structures.

Lemma. For any topological vector space V endowed with a continuous coaction
V −→ V ⊗!C of a coalgebra C, open subspaces of V invariant under the continuous
coaction form a base of neighborhoods of zero in V .

Proof. Let U ⊂ V be an open subspace; then the full preimage U ′ of the open
subspace U ⊗! C ⊂ V ⊗! C under the continuous coaction map V −→ V ⊗! C is an
invariant open subspace in V contained in U . To check that U ′ is C-invariant, use
the fact the functor of ⊗!-product preserves kernels in the category of topological
vector spaces, and in particular, the ⊗!-product with C preserves the kernel of the
composition V −→ V ⊗! C −→ V/U ⊗! C. To check that U ′ is contained in U , use
the counity equation for the continuous coaction. �

The category of topological vector spaces endowed with a continuous coaction
of a coalgebra C has an exact category structure such that a triple of topological
vector spaces with continuous coactions of C is exact if and only if it is exact as a
triple of topological vector spaces.

If V is a Tate vector space with a continuous right coaction of C, then the
dual Tate vector space V ∨ is endowed with a continuous left coaction of C.

Let V be a topological vector space with a continuous right coaction of a
coalgebra C and W be a topological vector space with a continuous coaction of a
coalgebra D. Then all the three topological tensor products V ⊗!W , V ⊗∗W , and
V
→⊗W are endowed with continuous right coactions of the coalgebra C⊗k D. To

construct the continuous coaction on V ⊗! W , one uses the natural isomorphism

(V ⊗! C)⊗! (W ⊗! D) � (V ⊗! W )⊗! (C⊗k D).

The continuous coaction on V ⊗∗W is defined in terms of the natural continuous
map

(V ⊗! C)⊗∗ (W ⊗! D) −−→ (V ⊗∗W )⊗! (C⊗k D),

which exists for any topological vector spaces V , W and any discrete vector spaces
C, D. The continuous coaction on V

→⊗W is defined in terms of the natural con-
tinuous map

(V ⊗! C)
→⊗ (W ⊗! D) −−→ (V

→⊗W )⊗! (C⊗k D).
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It follows that for a commutative Hopf algebra C the topological tensor prod-
ucts V ⊗! W , V ⊗∗W , and V

→⊗W of topological vector spaces with continuous
right coactions of C are also endowed with continuous right coactions of C. Be-
sides, one can transform a continuous left coaction of C in V into a continuous
right coaction using the antipode.

Now let W , U be topological vector spaces and V be a Tate vector space;
suppose that W , U , and V are endowed with continuous coactions of a commuta-
tive Hopf algebra C. Let f : V ⊗∗W −→ U and g : W −→ V ∨ ⊗! U be continuous
linear maps corresponding to each other under the isomorphism from D.1.3; then
f preserves the continuous coactions of C if and only if g does.

D.1.5 A topological Lie algebra g is a topological vector space endowed with a Lie
algebra structure such that the bracket is a continuous bilinear map g× g −→ g.
Topological associative algebras are defined in an analogous way. For example, let
V be a Tate vector space. Denote by End(V ) the associative algebra of continuous
endomorphisms of V endowed with the compact-open topology and by gl(V ) the
Lie algebra corresponding to End(V ). Then End(V ) is a topological associative
algebra and gl(V ) is a topological Lie algebra.

Let U , V , W be topological vector spaces endowed with continuous coactions
of a commutative Hopf algebra C. Then a continuous bilinear map V ×W −→ U
is called compatible with the continuous coactions of C if the corresponding linear
map V ⊗∗ W −→ U preserves the continuous coactions of C. So one can speak
about compatibility of continuous pairings, Lie or associative algebra structures,
Lie or associative actions, etc., with continuous coactions of a commutative Hopf
algebra.

Explicitly, a bilinear map V ×W −→ U is continuous and compatible with
the continuous coactions of C if and only if the following condition holds. For any
C-invariant open subspace U ′ ⊂ U and any finite-dimensional subspaces E ⊂ V ,
F ⊂ W there should exist invariant open subspaces V ′ ⊂ V ′′ ⊂ V , W ′ ⊂
W ′′ ⊂ W such that E ⊂ V ′′, F ⊂ W ′′, the map V ′′ ⊗k W ′′ −→ U/U ′ factorizes
through V ′′/V ′ ⊗kW ′′/W ′, and the induced map V ′′/V ′ ⊗kW ′′/W ′ −→ U/U ′ is
a morphism of C-comodules.

D.1.6 For any Tate vector spaces V and W , there is a split exact triple of topo-
logical vector spaces

V ⊗∗W −−→ V
→⊗W ⊕W →⊗ V −−→ V ⊗! W,

where the first map is the sum of the natural maps V ⊗∗W −→ V
→⊗W , V ⊗∗W −→

W
→⊗ V , while the second map is the difference of the natural maps V

→⊗W −→
V ⊗! W , W

→⊗ V −→ V ⊗! W . Let us take W = V ∨. Then V ⊗! V ∨ is naturally
isomorphic to gl(V ); the spaces V

→⊗ V ∨ and V ∨
→⊗ V can be identified with the

subspaces in gl(V ) formed by the linear operators with open kernel and compact
closure of image, respectively; and V ⊗∗ V ∨ is the intersection of V

→⊗ V ∨ and
V ∨

→⊗ V in gl(V ).
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Taking the push-forward of the exact triple V ⊗∗V ∨ −→ V
→⊗V ∨⊕V ∨→⊗V −→

V ⊗!V ∨ with respect to the natural trace map tr : V ⊗∗V ∨ −→ k corresponding to
the pairing V ×V ∨ −→ k, one obtains an exact triple of topological vector spaces

k −−→ gl(V )∼ −−→ gl(V ).

This is also an exact triple of gl(V )-modules, which allows one to define [10,
2.7.8] a Lie algebra structure on gl(V )∼ making it a central extension of the Lie
algebra gl(V ). The anti-commutativity and the Jacobi identity follow from the
fact that the commutator of an operator with open kernel and an operator with
compact closure of image has zero trace.

Now assume that a Tate vector space V is endowed with a continuous coaction
of a commutative Hopf algebra C. Then V ⊗∗V ∨ −→ V

→⊗V ∨⊕V ∨→⊗V −→ V ⊗!V ∨

is an exact triple of topological vector spaces endowed with continuous coactions
of C; the trace map also preserves the continuous coactions. Thus the topological
vector space gl(V )∼ acquires a continuous coaction of C.

D.1.7 Here is another construction of the Lie algebra gl(V )∼ (see [10, 3.8.17–18]).
Consider the quotient space of the vector space V ⊗k V ∨ ⊕ V ∨ ⊗k V ⊕ k by the
relation v ⊗ g + g ⊗ v = 〈g, v〉, where 〈 , 〉 denotes the pairing of V ∨ with V . This
vector space is a Lie subalgebra of the Clifford algebra Cl(V ⊕ V ∨) of the vector
space V ⊕ V ∨ with the symmetric bilinear form given by the pairing 〈 , 〉; the Lie
bracket on this subalgebra is given by the formulas

[v1 ⊗ g1, v2 ⊗ g2] = 〈g1, v2〉v1 ⊗ g2 − 〈g2, v1〉v2 ⊗ g1, [v ⊗ g, 1] = 0.

This Lie algebra acts in the vector space V by the formulas (v ⊗ g)(v′) = 〈g, v′〉v,
1(v) = 0. There is a separated topology on this Lie algebra with a base of neigh-
borhoods of zero formed by the Lie subalgebras V ⊗W ′+V ′⊗V ∨, where V ′ ⊂ V
and W ′ ⊂ V ∨ are open subspaces such that 〈W ′, V ′〉 = 0. The completion of
this Lie algebra with respect to this topology can be easily identified with the Lie
algebra gl(V )∼ defined above.

Hence the Lie bracket on gl(V )∼ is continuous. In addition, we need to check
that when V is endowed with a continuous coaction of a commutative Hopf alge-
bra C, the Lie bracket is compatible with the continuous coaction of C in gl(V )∼.
The latter follows from the existence of a well-defined commutator map

Hom(X4, X3, X1; X/X1, X4/X1, X2/X1)⊗2 −−→ gl(X)∼/(X ⊗X⊥3 +X2 ⊗X∨)
for any flag of finite-dimensional vector spaces X1 ⊂ X2 ⊂ X3 ⊂ X4 ⊂ X , where
the Hom space in the left-hand side consists of all maps X4 −→ X/X1 sending X3

to X4/X1 and X1 to X2/X1, and Y ⊥ ⊂ X∨ denotes the orthogonal complement
to a vector subspace Y ⊂ X .

D.1.8 A Tate Lie algebra is a Tate vector space endowed with a topological Lie
algebra structure. Let g be a Tate Lie algebra endowed with a continuous coaction
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of a commutative Hopf algebra C such that the Lie algebra structure is compatible
with the continuous coaction. Then C-invariant compact open subalgebras form a
base of neighborhoods of zero in g.

Indeed, choose a C-invariant compact open subspace U ⊂ g; let h be the
normalizer of U in g, i.e., the subspace of all x ∈ g such that [x, U ] ⊂ U . Then h is
a C-invariant open subalgebra in g, since it is the kernel of the adjoint action map
g −→ Homk(U, g/U). Therefore, the intersection h ∩ U is a C-invariant compact
open subalgebra in g contained in U .

The canonical central extension g∼ of a Tate Lie algebra g is defined as
the fibered product of g and gl(g)∼ over gl(g), where g maps to gl(g) by the
adjoint representation. The vector space g∼ is endowed with the topology of fibered
product; this makes g∼ a Tate Lie algebra. The central extension g∼ −→ g splits
canonically and continuously over any compact open Lie subalgebra h ⊂ g. Indeed,
the image of h in gl(g) is contained in the open Lie subalgebra gl(g, h) ⊂ gl(g) of
endomorphisms preserving h, and gl(g, h) can be embedded into gl(g)∼ as the
completion of the subspace

g⊗k h⊥ + g∨ ⊗k h.

The natural continuous coaction of C in g∼ is constructed as the fibered
product of the coactions in g and gl(g)∼; it is clear that the Lie algebra structure
on g∼ is compatible with the continuous coaction. If h ⊂ g is a C-invariant compact
open subalgebra, then the canonical splitting h −→ g∼ preserves the continuous
coactions.

When a Tate vector space V is decomposed into a direct sum V � E ⊕ F of
a compact vector space E and a discrete vector space F , there is a natural section
gl(V ) −→ gl(V )∼ of the central extension gl(V )∼ −→ gl(V ); the image of this
section is the completion of the subspace

V ⊗ F∨ + F ⊗ V ∨ + V ∨ ⊗ E + E∨ ⊗ V.

Consequently, when a Tate Lie algebra g is decomposed into a direct sum g � h⊕b
of a compact open Lie subalgebra h and a discrete vector subspace b, there is a
natural section g −→ g∼ of the central extension g∼ −→ g; this section agrees
with the natural splitting h −→ g∼.

D.2 Construction of semialgebra

D.2.1 We will sometimes use Sweedler’s notation [82] c �−→ c(1) ⊗ c(2) for the
comultiplication map in a coassociative coalgebra C. The analogous notation for
coactions of C in a right C-comodule N and a left C-comodule M is n �−→ n(0)⊗n(1)

and m �−→ m(−1) ⊗m(0), where n, n(0) ∈ N, m, m(0) ∈M, and n(1), m(−1) ∈ C.
A Lie coalgebra L is a k-vector space endowed with a k-linear map L −→∧2

k L from L to the second exterior power of L denoted by l �−→ l{1} ∧ l{2}, which
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should satisfy the dual version of Jacobi identity

l{1}{1} ∧ l{1}{2} ∧ l{2} = l{1} ∧ l{2}{1} ∧ l{2}{2},

where l′ ∧ l′′ ∧ l′′′ denotes an element of
∧3
k L. A comodule M over a Lie coalgebra

L is a k-vector space endowed with a k-linear map M −→ L ⊗M denoted by
m �−→ m{−1} ⊗m{0} satisfying the equation

m{−1} ∧m{0}{−1} ⊗m{0}{0} = m{−1}{1} ∧m{−1}{2} ⊗m{0},

where l′ ∧ l′′ ⊗m denotes an element of
∧2
k L⊗k M.

A Tate Harish-Chandra pair (g,C) is a set of data consisting of a Tate Lie
algebra g, a commutative Hopf algebra C, a continuous coaction of C in g such that
the Lie algebra structure on g is compatible with the continuous coaction, a C-in-
variant compact open subalgebra h ⊂ g, and a continuous pairing ψ : C× h −→ k,
where C is considered with the discrete topology. This data should satisfy the
following conditions (cf. [12, Section 3.1]):

(i) The pairing ψ is compatible with the multiplication and comultiplication
in C, i.e., the map ψ̌ : C −→ h∨ corresponding to ψ is a morphism of Lie
coalgebras such that

ψ̌(c′c′′) = ε(c′)ψ̌(c′′) + ε(c′′)ψ̌(c′)

for c′, c′′ ∈ C. Here the Lie coalgebra structure on C is defined by the formula
c �−→ c(1)∧c(2) and the Lie coalgebra structure on h∨ is given by the formula

〈x∗, [x′, x′′]〉 = 〈x∗{1}, x′′〉〈x{2}, x′〉 − 〈x∗{1}, x′〉〈x∗{2}, x′′〉
for x∗ ∈ h∨, x′, x′′ ∈ h. By ε we denote the counit of C.

(ii) The pairing ψ is compatible with the continuous coaction of C in h obtained
by restricting the coaction in g and the adjoint coaction of C in itself. The
latter is defined by the formula

c �−→ c[0] ⊗ c[1] = c(2) ⊗ s(c(1))c(3),
where s denotes the antipode map of the Hopf algebra C (the square brackets
are used to avoid ambiguity of notation). The compatibility means that the
continuous linear map C⊗∗ h −→ k corresponding to ψ preserves the contin-
uous coactions, or equivalently, the map ψ̌ is a morphism of C-comodules.

(iii) The action of h in g induced by the continuous coaction of C in g and the
pairing ψ coincides with the adjoint action of h in g. Here the former action
is constructed as the projective limit of the actions of h in quotient spaces
of g by C-invariant open subspaces; for a right C-comodule N, the h-module
structure on N induced by the pairing ψ is defined by the formula

xn = −ψ(n(1), x)n(0) for x ∈ h, n ∈ N.
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Given a Tate Harish-Chandra pair (g,C), one can construct a Tate Harish-
Chandra pair (g∼,C) with the same Lie subalgebra h, where g∼ is the canonical
central extension of a Tate Lie algebra g. A continuous coaction of C in g∼ and
a canonical embedding of h into g preserving the continuous coactions of C were
constructed above; it remains to check the condition (iii). Here it suffices to notice
that the adjoint action of gl(g) in gl(g)∼ coincides with the action of gl(g) in
gl(g)∼ induced by the action of gl(g) in g, hence the adjoint action of h in gl(g)∼

coincides with the action of h in gl(g)∼ induced by the coaction of C in gl(g)∼ and
the pairing ψ.

D.2.2 Let (g′,C) be a Tate Harish-Chandra pair such that the Tate Lie algebra
g′ is a central extension of a Tate Lie algebra g with the kernel identified with k;
assume that C coacts trivially on k ⊂ g′ and the Lie subalgebra h ⊂ g′ that is a
part of the Tate Harish-Chandra pair structure does not contain k. Then (g,C) is
naturally also a Tate Harish-Chandra pair with the induced continuous coaction of
C in g and the Lie subalgebra h ⊂ g defined as the image of h in g. In this case, we
will say that (g′,C) −→ (g,C) is a central extension of Tate Harish-Chandra pairs
with the kernel k. One example of a central extension of Tate Harish-Chandra
pairs is the canonical central extension (g∼,C) −→ (g,C).

Let κ : (g′,C) −→ (g,C) be a central extension of Tate Harish-Chandra pairs
with the kernel k. Consider the tensor product

Sr
κ
(g,C) = C⊗U(h) Uκ(g),

where U(h) and U(g′) denote the universal enveloping algebras of the Lie al-
gebras h and g′ considered as Lie algebras without any topologies, Uκ(g) =
U(g′)/(1U(g′) − 1g′) is the modification of the universal enveloping algebra of g
corresponding to the central extension k −→ g′ −→ g, and 1U(g′) and 1g′ denote
the unit elements of the algebra U(g′) and the vector subspace k ⊂ g′, respectively.
The structure of right U(h)-module on C comes from the pairing φ : C⊗kU(h) −→ k
corresponding to the algebra morphism U(h) −→ C∨ induced by the Lie algebra
morphism ˇ̌ψ : h −→ C∨, where the multiplication on C∗ is defined by the formula
〈c′∗c′′∗, c〉 = 〈c′∗, c(2)〉〈c′′∗, c(1)〉 for c′∗, c′′∗ ∈ C∗, c ∈ C and the Lie bracket is
given by the formula [c′∗, c′′∗] = c′∗c′′∗ − c′′∗c′∗.

We claim that the vector space Sr
κ
(g,C) has a natural structure of semial-

gebra over the coalgebra C provided by the general construction of 10.2.1. The
construction of this semialgebra structure becomes a little simpler if one assumes
that

(iv) the pairing φ : C⊗k U(h) −→ k is nondegenerate in C,

but this is not necessary. When h is the Lie algebra of the proalgebraic group H
corresponding [30] to C, and the characteristic of the field k is zero, the condi-
tion (iv) simply means that H is connected [78].
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D.2.3 To construct a right C-comodule structure on Sr
κ
(g,C), we will have to

approximate this vector space by finite-dimensional spaces. Let V1, . . . , Vt be a
sequence of C-invariant compact open subspaces of g′ containing h and k such
that Vi + [Vi, Vi] ⊂ Vi−1. Let N be a finite-dimensional right C-comodule. Choose
a C-invariant compact open subspace W1 ⊂ h such that the C-comodule N is
annihilated by the action of W1 obtained by restricting the action of h induced by
the pairing ψ. For each i = 2, . . . , t choose a C-invariant compact open subspace
Wi ⊂ h such that Wi + [Vi,Wi] ⊂Wi−1. Denote by Sr

κ
(N;V1, . . . , Vt) the quotient

space of the vector space

N ⊗k (k ⊕ V1/W1 ⊕ · · · ⊕ (Vt/Wt)⊗t)

by the obvious relations imitating the relations in the enveloping algebra Uκ(g)
and its tensor product with N over U(h). It is easy to see that this quotient space
does not depend on the choice of the subspaces Wi. In other words, denote by
R(V1, . . . , Vt) the subspace

U(h)(k + V1 + · · ·+ V tt ) ⊂ Uκ(g);

it is an U(h)-U(h)-subbimodule of Uκ(g) and a free left U(h)-module. There is a
natural isomorphism

Sr
κ
(N;V1, . . . , Vt) � N⊗U(h) R(V1, . . . , Vt).

This is an isomorphism of right U(h)-modules; when N = D is a finite-dimensional
subcoalgebra of C, this is also an isomorphism of left C-comodules. Clearly, the
inductive limit of Sr

κ
(D;V1, . . . , Vt) over increasing t, Vi, and finite-dimensional

subcoalgebras D ⊂ C is naturally isomorphic to Sr
κ
(g,C).

Now the vector space Sr
κ
(N;V1, . . . , Vt) has a right C-comodule structure

induced by the right C-comodule structure on N⊗k (k⊕V1/W1⊕· · ·⊕ (Vt/Wt)⊗t)
obtained by taking the tensor product of the C-comodule structures on Vi/Wi and
the right C-comodule structure on N. The inductive limit of these C-comodule
structures for N = D provides the desired right C-comodule structure on Sr

κ
(g,C).

It commutes with the left C-comodule structure on Sr
κ
(g,C) and agrees with the

right U(h)-module structure, since such commutativity and agreement hold on
the level of the spaces Sr

κ
(D;V1, . . . , Vt). Furthermore, by the (classical) Poincaré–

Birkhoff–Witt theorem Uκ(g) is a free left U(h)-module. If the condition (iv) holds,
the construction of the semialgebra Sr

κ
(g,C) is finished; otherwise, we still have

to check that the semiunit map C −→ Sr
κ
(g,C) and the semimultiplication map

Sr
κ
(g,C) �C Sr

κ
(g,C) −→ Sr

κ
(g,C) are morphisms of right C-comodules.

The former is clear, and the latter can be proven in the following way.
Any finite-dimensional C-comodule N is a comodule over a finite-dimensional
subcoalgebra E ⊂ C. There is a natural isomorphism N ⊗U(h) R(V1, . . . , Vt) �
N�C (E⊗U(h)R(V1, . . . , Vt)). The corresponding isomorphism Sr

κ
(N;V1, . . . , Vt) �

N �C Sr
κ
(E;V1, . . . , Vt), which is induced by the isomorphism N � N �C E, pre-

serves the right C-comodule structures. All of this is applicable to the case of
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N = Sr
κ
(V ′1 , . . . , V ′t ; D), where V ′1 , . . . , V ′t is another sequence of subspaces of

g′ satisfying the above conditions. Now let V ′′1 , . . . , V ′′2t ⊂ g′ be a sequence of
subspaces satisfying the above conditions and such that V ′i , Vi ⊂ V ′′t+i. The map
C⊗U(h) Uκ(g)⊗U(h) Uκ(g) −→ C⊗U(h) Uκ(g) induced by the multiplication map
Uκ(g)⊗U(h) Uκ(g) −→ Uκ(g) is the inductive limit of the maps

D⊗U(h) R(V ′1 , . . . , V
′
t )⊗U(h) R(V1, . . . , Vt) −→ D⊗U(h) R(V ′′1 , . . . , V

′′
2t)

over increasing t, Vi, V ′i , V
′′
i , and D. The corresponding map

Sr
κ
(Sr

κ
(D;V ′1 , . . . , V

′
t );V1, . . . , Vt) −−→ Sr

κ
(D;V ′′1 , . . . , V

′′
2t)

is induced by the map

D⊗k (k ⊕ V ′1/W ′1 ⊕ · · · ⊕ (V ′t /W
′
t )
⊗t)⊗k (k ⊕ V1/W1 ⊕ · · · ⊕ (Vt/Wt)⊗t)

−−→ D⊗k (k ⊕ V ′′1 /W ′′1 ⊕ · · · ⊕ (V ′′2t/W
′′
2t)
⊗2t),

where the sequences of subspaces W ′i , Wi, W ′′i satisfy the above conditions with
respect to the sequences of subspaces V ′i , Vi, V

′′
i , and the right C-comodules D,

D⊗k (k⊕V ′1/W ′1⊕· · ·⊕(V ′t /W ′t )⊗t), D, respectively, and the additional condition
that W ′i , Wi ⊂W ′′t+i. One can easily see that the latter map is a morphism of right
C-comodules. The semialgebra Sr

κ
(g,C) over the coalgebra C is constructed.

D.2.4 Analogously one defines a semialgebra structure on the tensor product
Sl

κ
(g,C) = Uκ(g) ⊗U(h) C. The semialgebras Sr

κ
= Sr

κ
(g,C) and Sl

κ
= Sl

κ
(g,C)

are essentially opposite to each other (see C.2.7) up to replacing κ with −κ.
More precisely, the antipode anti-automorphisms of U(g′) and C induce a natu-
ral isomorphism of semialgebras Sr

κ
� S

lop
−κ

compatible with the isomorphism of
coalgebras Cop � C, where −κ is defined as the central extension of Tate Harish-
Chandra pairs with the kernel k that is obtained from the central extension κ by
multiplying the embedding k −→ g′ with −1.

D.2.5 A discrete module M over a topological Lie algebra g is a g-module such
that the action map g × M −→ M is continuous with respect to the discrete
topology of M . Equivalently, a g-module M is discrete if the annihilator of any
element of M is an open Lie subalgebra in g. In particular, if ψ : C× h −→ k is a
continuous pairing between a compact Lie algebra h and a coalgebra C such that
the map ψ̌ : C −→ h∨ is a morphism of Lie coalgebras, then the h-module structure
induced by a C-comodule structure by the formula of D.2.1(iii) is always discrete.

Let κ : (g′,C) −→ (g,C) be a central extension of Tate Harish-Chandra pairs
with the kernel k. Then the category of left semimodules over Sl

κ
(g,C) is isomor-

phic to the category of k-vector spaces M endowed with C-comodule and discrete
g′-module structures such that the induced discrete h-module structures coincide,
the action map g/U ⊗k L −→ M is a morphism of C-comodules for any finite-
dimensional C-subcomodule L ⊂M and any C-invariant compact open subspace
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U ⊂ g annihilating L, and the unit element of k ⊂ g′ acts by the identity in M. The
second of these three conditions can be reformulated as follows: for any C-invariant
compact subspace V ⊂ g′, the natural Lie coaction map M −→ V ∨⊗kM is a mor-
phism of C-comodules. When the assumption (iv) of D.2.2 is satisfied, the second
condition is redundant.

Abusing terminology, we will call vector spaces M endowed with such a struc-
ture Harish-Chandra modules over (g,C) with the central charge κ. Analogously,
the category of right semimodules over Sr

κ
(g,C) is isomorphic to the category

of Harish-Chandra modules over (g,C) with central charge −κ. The category of
Harish-Chandra modules over (g,C) with the central charge κ will be denoted by
Oκ(g,C).

Remark. The terminology related to Harish-Chandra modules is a hopeless mess.
In classical representation theory, by “Harish-Chandra modules” people meant
modules over a Lie algebra over the field of real numbers integrable to a maximal
compact subgroup of the corresponding Lie group [32]. Later came abstract Harish-
Chandra pairs (Lie algebra; subgroup), algebraic Harish-Chandra pairs (with an
algebraic group in the role of subgroup), and modules over these [9]. What we
might now call “Harish-Chandra modules over a semisimple Lie algebra relative
to its Borel subgroup” came to be known as “the Bernstein–Gelfand–Gelfand cate-
gory O” [53]. We reflect this terminology in the notation above. What we call “Tate
Harish-Chandra pairs” (with a proalgebraic subgroup) were first introduced, under
the name of “Harish-Chandra pairs”, by Beilinson–Feigin–Mazur in [12] (the expo-
sition in loc. cit. is restricted to the case of the ground field of complex numbers). In
our approach, some results are applicable to arbitrary Tate Harish-Chandra pairs,
or just those satisfying a weak assumption (iv). This includes Theorem D.3.1 and
Corollary D.3.1. And Tate Harish-Chandra pairs can be thought of as analogues
of the classical Harish-Chandra pairs in that the subgroup corresponds to a com-
pact Lie subalgebra h, although this is an entirely different notion of compactness.
Still the case that interests us most is that of a prounipotent subgroup (we are
not concerned about this prounipotent subgroup being maximal in any sense, but
only about it corresponding to a compact open Lie subalgebra). So what we work
with in D.6 is a variation of the classical “category O” rather than the classical
“Harish-Chandra modules”. An additional detail is that Verma modules, which
were among the most important objects of the “category O” from the classical
point of view, are hardly visible in our approach at all. Dual, or contragredient,
Verma modules are important for us instead (see Remark D.3.1). Neither do we
have any duality functor acting from our category O

κ(g,C) to itself. Instead, we
consider duality functors Oκ(g,C)op −→ Octr

−κ
(g,C) transforming Harish-Chandra

modules into Harish-Chandra contramodules (see D.2.8).

D.2.6 For a topological vector space V and a vector space P , denote by V ⊗ P̂ the
tensor product V ⊗! P = V

←⊗P considered as a vector space without any topology,
where P is endowed with the discrete topology for the purpose of making the
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topological tensor product. In other words, one has

V ⊗̂P = lim←−U V/U ⊗k P,

where the projective limit is taken over all open subspaces U ⊂ V .
For a topological vector space V , denote by

∧∗,2(V ) the completion of
∧2
k(V )

with respect to the topology with the base of neighborhoods of zero formed by
all the subspaces T ⊂ ∧2

k(V ) such that there exists an open subspace V ′ ⊂ V

for which
∧2
k(V

′) ⊂ T and for any vector v ∈ V there exists an open subspace
V ′′ ⊂ V for which v ∧ V ′′ ⊂ T . For any topological vector spaces V and W , the
vector space of continuous skew-symmetric bilinear maps V ×V −→W is naturally
isomorphic to the vector space of continuous linear maps

∧2,∗(V ) −→ W . The
space

∧∗,2(V ) is a closed subspace of the space V ⊗∗ V ; the skew-symmetrization
map V ⊗∗ V −→ V ⊗∗ V factorizes through

∧∗,2(V ).
Let g be a topological Lie algebra. A contramodule over g is a vector space

P endowed with a linear map g ⊗̂P −→ P satisfying the following version of
Jacobi equation. Consider the vector space

∧∗,2(g) ⊗̂P . There is a natural map
∧∗,2(g)⊗̂P −→ g⊗̂P induced by the bracket map

∧∗,2(g) −→ g. Furthermore,
there is a natural map

(g⊗∗ g)⊗̂P −−→ g⊗̂(g⊗̂P ),

which is constructed as follows. For any open subspace U ⊂ g there is a natural
surjection (g⊗∗ g)⊗̂P −→ (g/U ⊗∗ g)⊗̂P and for any discrete vector space F
there is a natural isomorphism

(F ⊗∗ g)⊗̂P � F ⊗k (g⊗̂P ),

so the desired map is obtained as the projective limit over U . Composing the map∧∗,2(g)⊗̂P −→ (g⊗∗ g)⊗̂P induced by the embedding
∧∗,2(g) −→ g⊗∗ g with

the map (g ⊗∗ g) ⊗̂P −→ g⊗̂(g ⊗̂P ) that we have constructed and with the
map g⊗̂(g⊗̂P ) −→ g⊗̂P induced by the contraaction map g⊗̂P −→ P , we
obtain a second map

∧∗,2(g)⊗̂P −→ P . Now the contramodule Jacobi equation
claims that the two maps

∧∗,2(g)⊗̂P ⇒ g⊗̂P should have equal compositions
with the contraaction map g⊗̂P −→ P .

Alternatively, the map (g ⊗∗ g) ⊗̂P −→ g ⊗̂(g ⊗̂P ) can be constructed
as the composition

(g⊗∗ g)⊗̂P −−→ (g
←⊗ g)⊗̂P � g

←⊗ g
←⊗ P � g⊗̂(g⊗̂P )

of the map induced by the natural continuous map g ⊗∗ g −→ g
←⊗ g and the

natural isomorphisms whose existence follows from the fact that the topological
tensor product W

←⊗V considered as a vector space without any topology does not
depend on the topology of V . The following comparison between the definitions
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of a discrete g-module and a g-contramodule can be made: a discrete g-module
structure on a vector space M is given by a continuous linear map

g⊗M � g⊗∗M = g
→⊗M −−→ M,

while a g-contramodule structure on a vector space P is given by a discontinuous
linear map

g⊗̂P � g⊗! P = g
←⊗ P −−→ P,

where M and P are endowed with discrete topologies. For any topological Lie
algebra g, the category of g-contramodules is abelian (cf. D.5.2). There is a natural
exact forgetful functor from the category of g-contramodules to the category of
modules over the Lie algebra g considered without any topology.

For any discrete g-module M and any vector space E there is a natural struc-
ture of g-contramodule on the space of linear maps Homk(M,E). The contraaction
map g⊗̂Homk(M,E) −→ Homk(M,E) is constructed as the projective limit over
all open subspaces U ⊂ g of the maps

g/U ⊗k Homk(M,E) −−→ Homk(MU , E)

given by the formula z̄ ⊗ g �−→ (m �−→ −g(z̄m)) for z̄ ∈ g/U , g ∈ Homk(M,E),
and m ∈MU , where MU ⊂M denotes the subspace of all elements of M annihi-
lated by U .

More generally, for any discrete module M over a topological Lie algebra
g1 and any contramodule P over a topological Lie algebra g2 there is a natu-
ral (g1 ⊕ g2)-contramodule structure on Homk(M,P ) with the contraaction map
(g1 ⊕ g2)⊗̂ Homk(M,P ) −→ Homk(M,P ) defined as the sum of two commuting
contraactions of g1 and g2 in Homk(M,P ), one of which is introduced above and
the other one is given by the composition

g2 ⊗̂ Homk(M,P ) −−→ Homk(M, g2 ⊗̂P ) −−→ Homk(M,P )

of the natural map g2 ⊗̂ Homk(M,P ) −→ Homk(M, g2 ⊗̂P ) and the map
Homk(M, g2 ⊗̂P ) −→ Homk(M,P ) induced by the g2-contraaction in P . Hence
for any discrete g-module M and any g-contramodule P there is a natural g-con-
tramodule structure on Homk(M,P ) induced by the diagonal embedding of Lie
algebras g −→ g⊕ g.

D.2.7 When g is a Tate Lie algebra, a g-contramodule P can be also defined as
a k-vector space endowed with a linear map

Homk(V ∨, P ) −−→ P

for every compact open subspace V ⊂ g. These linear maps should satisfy the
following two conditions: when U ⊂ V ⊂ g are compact open subspaces, the
maps Homk(U∨, P ) −→ P and Homk(V ∨, P ) −→ P should form a commutative
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diagram with the map Homk(U∨, P ) −→ Homk(V ∨, P ) induced by the natural
surjection V ∨ −→ U∨, and for any compact open subspaces V ′, V ′′, W ⊂ g such
that [V ′, V ′′] ⊂W the composition

Homk(V ′′∨ ⊗k V ′∨, P ) −−→ Homk(W∨, P ) −−→ P

of the map induced by the cobracket map W∨ −→ V ′′∨⊗k V ′∨ with the contraac-
tion map should be equal to the difference of the iterated contraaction map

Homk(V ′′∨ ⊗k V ′∨, P ) � Homk(V ′∨,Homk(V ′′∨, P )) −→ Homk(V ′∨, P ) −→ P

and the composition of the isomorphism Homk(V ′′∨ ⊗k V ′∨, P ) � Homk(V ′∨ ⊗k
V ′′∨, P ) induced by the isomorphism V ′∨⊗k V ′′∨ � V ′′∨⊗k V ′∨ with the iterated
contraaction map

Homk(V ′∨ ⊗k V ′′∨, P ) � Homk(V ′′∨,Homk(V ′∨, P )) −→ Homk(V ′′∨, P ) −→ P.

The following example illustrates the notion of a contramodule over a Tate
Lie algebra as a kind of module with infinite summation operations (cf. A.1).
Let g = k((t))d/dt be the Lie algebra of vector fields on the formal circle with
its natural topology. Denote by Li = ti+1d/dt its topological basis; then the Lie
bracket in g is given by the formula [Li, Lj ] = (j − i)Li+j . A g-contramodule P is
a k-vector space endowed with the infinite summation operations

(p−N , p−N+1, . . . ) �−→
∑+∞

i=−N Lipi

defined for any N ∈ Z and assigning to a sequence of vectors pi ∈ P the cor-
responding infinite sum, which must be also an element of P . These summation
operations should satisfy the following equations:

∑+∞
i=−N Lipi =

∑+∞
i=−M Lipi

whenever −N < −M and p−N = · · · = p−M+1 = 0 (agreement);
∑+∞

i=−N Li(api + bqi) = a
∑+∞

i=−N Lipi + b
∑+∞

i=−N Liqi

for any a, b ∈ k and pi, qi ∈ P (linearity); and

∑+∞
i=−N Li

(∑+∞
j=−M Ljpij

)
−

∑+∞
j=−M Lj

(∑+∞
i=−N Lipij

)

=
∑+∞

n=−N−M Ln

(∑

i+j=n
(j − i)pi+j

)

for any pij ∈ P , i � −N , j � −M (contra-Jacobi equation).
For a Tate Lie algebra g, a discrete g-module M , and a g-contramodule

P , the structure of g-contramodule on Homk(M,P ) defined above is given by the
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formula π(g)(m) = πP (x∗ �→ g(x∗)(m))−g(m{−1})(m{0}) for a compact open sub-
space V ⊂ g, a linear map g ∈ Homk(V ∨,Homk(M,P )), and elements x∗ ∈ V ∨,
m ∈ M , where m �−→ m{−1} ⊗ m{0} denotes the map M −→ V ∨ ⊗k M corre-
sponding to the g-action map V ×M −→ M and πP denotes the g-contraaction
map Homk(V ∨, P ) −→ P .

If ψ : C×h −→ k is a continuous pairing between a coalgebra C and a compact
Lie algebra h such that the map ψ̌ : C −→ h∨ is a morphism of Lie coalgebras,
then for any left C-contramodule P the induced contraaction of h in P is defined
as the composition Homk(h∨,P) −→ Homk(C,P) −→ P of the map induced by
the map ψ̌ and the C-contraaction map.

D.2.8 Let κ : (g′,C) −→ (g,C) be a central extension of Tate Harish-Chandra
pairs with the kernel k. Then the category of left semicontramodules over the
semialgebra Sr

κ
(g,C) is isomorphic to the category of k-vector spaces P endowed

with a left C-contramodule and a g′-contramodule structures such that the induced
h-contramodule structures coincide, for any C-invariant compact open subspace
V ⊂ g the g-contraaction map

Homk(V ∨,P) −−→ P

is a morphism of C-contramodules, and the unit element of k ⊂ g′ acts by the iden-
tity in P. Here the left C-contramodule structure on the vector space Homk(M,P)
for a left C-comodule M and a left C-contramodule P is defined by the formula
π(g)(m) = πP(c �→ g(s(m(−1))c)(m(0))) for m ∈M, g ∈ Homk(C,Homk(M,P)).

Indeed, according to 10.2.2, a left Sr
κ
-semicontramodule structure on P is

the same that a left C-contramodule and a left Uκ(g)-module structures such that
the induced U(h)-module structures on P coincide and the (semicontra)action
map

P −−→ HomU(h)(Uκ(g),P) � CohomC(Sr
κ
,P)

is a morphism of C-contramodules. The latter condition is equivalent to the map
P −→ HomU(h)(U(h) · V, P) � CohomC(C⊗U(h) U(h) · V, P) being a morphism
of C-contramodules for any compact C-invariant subspace h ⊕ k ⊂ V ⊂ g′, where
U(h) · V ⊂ Uκ(g). Given this data, one can use the short exact sequences

h⊗k P −−→ h⊗̂P ⊕ V ⊗k P −−→ V ⊗̂P

to construct the Lie contraaction maps V ⊗̂P −→ P. Then the map P −→
HomU(h)(U(h) · V, P) is a morphism of C-contramodules if and only if the map
Homk(V ∨,P) −→ P is a morphism of C-contramodules. To check this, one
can express the first condition in terms of the equality of two appropriate maps
Homk(C,P) ⇒ Homk(V,P) and the second condition in terms of the equality
of two maps Homk(V ∨ ⊗k C, P) ⇒ P. These two pairs of maps correspond to
each other under a natural isomorphism V ∨ ⊗k C � C ⊗k V ∨ depending on the
C-comodule structure on V ∨. In particular, our maps Homk(V ∨,P) −→ P are
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morphisms of h-contramodules, and it follows that they define a g′-contramodule
structure.

We will call vector spaces P endowed with such a structure Harish-Chandra
contramodules over (g,C) with the central charge κ. The abelian category of
Harish-Chandra contramodules over (g,C) with the central charge κ will be de-
noted by Octr

κ
(g,C). If κ1 : (g′,C) −→ (g,C) and κ2 : (g′′,C) −→ (g,C) are two

central extensions of Tate Harish-Chandra pairs with the kernels k, and M and P
are a Harish-Chandra module and a Harish-Chandra contramodule over (g,C) with
the central charges κ1 and κ2, respectively, then the vector space Homk(M,P)
has a natural structure of Harish-Chandra contramodule with the central charge
κ2 − κ1. Here κ2 − κ1 : (g′′′,C) −→ (g,C) denotes the Baer difference of the cen-
tral extensions κ2 and κ1. This Harish-Chandra contramodule structure consists
of the g′′′-contramodule and C-contramodule structures on Homk(M,P) defined
by the above rules.

D.3 Isomorphism of semialgebras

D.3.1 For any two central extensions of Tate Harish-Chandra pairs κ
′ : (g′,C) −→

(g,C) and κ
′′ : (g′′,C) −→ (g,C) with the kernels identified with k we denote by

κ
′ + κ

′′ their Baer sum, i.e., the central extension of Tate Harish-Chandra pairs
(g′′′,C) −→ (g,C) with g′′′ = ker(g′ ⊕ g′′ → g)/ imk, where the map g′ ⊕ g′′ −→ g
is the difference of the maps g′ −→ g and g′′ −→ g, and the map k −→ g′ ⊕ g′′ is
the difference of the maps k −→ g′ and k −→ g′′. The canonical central extension
(g∼,C) −→ (g,C) will be denoted by κ0.

We claim that for any central extension of Tate Harish-Chandra pairs
κ : (g′,C) −→ (g,C) with the kernel k such that the condition (iv) of D.2.2 is
satisfied there is a natural isomorphism

Sr
κ+κ0

(g,C) � Sl
κ
(g,C)

of semialgebras over the coalgebra C. This isomorphism is characterized by the
following three properties.

(a) Consider the increasing filtration F of the k-algebra Uκ(g) with the compo-
nents

FiUκ(g) = (k + g′ + · · ·+ g′i)U(h) = U(h)(k + g′ + · · ·+ g′i)

and the induced filtration

FiS
l
κ

= FiUκ(g)⊗U(h) C

of the semialgebra Sl
κ

= Sl
κ
(g,C). Then we have F0S

l
κ
� C, Sl

κ
� lim−→FiS

l
κ
,

and the semimultiplication maps FiSlκ�CFjS
l
κ
−→ Sl

κ
�CSl

κ
−→ Sl

κ
factorize

through Fi+iSlκ. There is an analogous filtration

FiS
r
κ+κ0

= C⊗U(h) FiUκ+κ0(g)
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of the semialgebra Sr
κ+κ0

= Sr
κ+κ0

(g,C). The desired isomorphism Sr
κ+κ0

�
Sl

κ
preserves the filtrations F .

(b) The natural maps Fi−1S
l
κ
−→ FiS

l
κ

are injective and their cokernels are
coflat left and right C-comodules, so the associated graded quotient semial-
gebra

grFSl
κ

=
⊕

i FiS
l
κ
/Fi−1S

l
κ

is defined (cf. 11.5). The semialgebra grFSl
κ

is naturally isomorphic to the
tensor product Symk(g/h) ⊗k C of the symmetric algebra Symk(g/h) of the
k-vector space g/h and the coalgebra C, endowed with the semialgebra struc-
ture corresponding to the left entwining structure

Symk(g/h)⊗k C −−→ C⊗k Symk(g/h)

for the coalgebra C and the algebra Symk(g/h) (see 10.3). Here the entwining
map is given by the formula u⊗ c �−→ cu(−1)⊗u(0), where u �−→ u(−1)⊗u(0)

denotes the C-coaction in Symk(g/h) induced by the C-coaction in g/h. Analo-
gously, the semialgebra grFSr

κ+κ0
is naturally isomorphic to the tensor prod-

uct C ⊗k Symk(g/h) endowed with the semialgebra structure corresponding
to the right entwining structure

C⊗k Symk(g/h) −−→ Symk(g/h)⊗k C.

Here the entwining map is given by the formula c⊗u �−→ u(0)⊗ cu(1), where
the right coaction u �−→ u(0) ⊗ u(1) is obtained from the above left coaction
u �−→ u(−1) ⊗ u(0) by applying the antipode. These left and right entwining
maps are inverse to each other, hence there is a natural isomorphism of
semialgebras

grFSl
κ
� grFSr

κ+κ0
.

This isomorphism can be obtained by passing to the associated graded quo-
tient semialgebras in the desired isomorphism Sl

κ
� Sr

κ+κ0
.

(c) Choose a section b′ : g/h −→ g′ of the natural surjection g′ −→ g′/(h⊕ k) �
g/h. Composing b′ with the surjection g′ −→ g, we obtain a section b of
the natural surjection g −→ g/h, hence a direct sum decomposition g �
h ⊕ b(g/h). So there is the corresponding section g −→ g∼ of the canonical
central extension g∼ −→ g; denote by b̃ the composition g/h −→ g −→ g∼

of the section b and the section g −→ g∼. The Baer sum of the sections b′

and b̃ provides a section b′′ : g/h −→ g′′, where (g′′,C) −→ (g,C) denotes the
central extension κ + κ0. Now the composition

g/h⊗k C −−→ g′ ⊗k C � F1Uκ(g)⊗k C −−→ F1S
l
κ

of the map induced by the map b′, the isomorphism induced by the natural
isomorphism g′ � F1Uκ(g), and the surjection Uκ(g)⊗k C −→ Uκ(g)⊗U(h) C
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provides a section of the natural surjection F1S
l
κ
−→ F1S

l
κ
/F0S

l
κ
� g/h⊗kC.

This section is a morphism of right C-comodules. Hence the corresponding
retraction F1S

l
κ
−→ F0S

l
κ
� C is also a morphism of right C-comodules.

Analogously, the composition

C⊗k g/h −−→ C⊗k g′′ � C⊗k F1Uκ+κ0(g) −−→ F1S
r
κ+κ0

,

where the first morphism is induced by the map b′′, is a section of the nat-
ural surjection F1S

r
κ+κ0

−→ F1S
r
κ+κ0

/F0S
r
κ+κ0

� C ⊗k g/h; this section is
a morphism of left C-comodules. Hence so is the corresponding retraction
F1S

r
κ+κ0

−→ F0S
r
κ+κ0

� C. The desired isomorphism F1S
l
κ
� F1S

r
κ+κ0

identifies the compositions

F1S
l
κ
−−→ C −−→ k and F1S

r
κ+κ0

−−→ C −−→ k

of the retractions F1S
l
κ
−→ C and F1S

r
κ+κ0

−→ C with the counit map
C −→ k. This condition holds for all sections b′.

Theorem. Assuming the condition (iv), there exists a unique isomorphism of semi-
algebras Sr

κ+κ0
(g,C) � Sl

κ
(g,C) over C satisfying the above properties (a–c).

Proof. Uniqueness is clear, since a morphism from a C-C-bicomodule to the bi-
comodule C is determined by its composition with the counit map C −→ k. The
proof of existence occupies subsections D.3.2–D.3.7.

The next result is obtained by specializing the semimodule-semicontramodule
correspondence theorem to the case of Harish-Chandra modules and contramod-
ules.

Corollary. There is a natural equivalence RΨSl
κ

= LΦ−1
Sr

κ+κ0
between the semide-

rived category of Harish-Chandra modules with the central charge κ over (g,C)
and the semiderived category of Harish-Chandra contramodules with the central
charge κ + κ0 over (g,C). Here the semiderived category of Harish-Chandra mod-
ules is defined as the quotient category of the homotopy category of complexes of
Harish-Chandra modules by the thick subcategory of C-coacyclic complexes; the
semiderived category of Harish-Chandra contramodules is analogously defined as
the quotient category by the thick subcategory of C-contraacyclic complexes.

Proof. This follows from the results of D.2.5 and D.2.8, Theorem D.3.1, and Corol-
lary 6.3. �

Remark. The main property of the equivalence of semiderived categories pro-
vided by Corollary D.3.1 is that it transforms the Harish-Chandra modules M

that, considered as C-comodules, are the cofree comodules C ⊗k E cogenerated
by a vector space E, into the Harish-Chandra contramodules P that, consid-
ered as C-contramodules, are the free contramodules Homk(C, E) generated by
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the same vector space E, and vice versa. A similar assertion holds for any com-
plexes of C-cofree Harish-Chandra modules and C-free Harish-Chandra contra-
modules. The above corollary is a way to formulate the classical duality between
Harish-Chandra modules with the complementary central charges κ and −κ−κ0

[39, 77]. Of course, there is no hope of establishing an anti-equivalence between
any kinds of exotic derived categories of arbitrary Harish-Chandra modules over
(g,C) with the complementary central charges, as the derived category of vector
spaces is not anti-equivalent to itself. At the very least, one would have to im-
pose some finiteness conditions on the Harish-Chandra modules. The introduction
of contramodules allows us to resolve this problem. Still one can use the func-
tor ΦS to construct a contravariant functor between the semiderived categories
of Harish-Chandra modules with the complementary central charges. Choose a
vector space U ; for example, U = k. Consider the functor N �−→ Homk(N, U)
acting from the semiderived category of Harish-Chandra modules over (g,C) with
the central charge −κ − κ0 to the semiderived category of Harish-Chandra con-
tramodules over (g,C) with the central charge κ + κ0. Composing this func-
tor Homk(−, U) with the functor LΦSr

κ+κ0
, one obtains a contravariant functor

Dsi(O−κ−κ0(g,C)) = Dsi(simod-Sr
κ+κ0

) −→ Dsi(Sl
κ
-simod) = Dsi(Oκ(g,C)). The

latter functor transforms the Harish-Chandra modules that as C-comodules are
cofreely cogenerated by a vector space E into the Harish-Chandra modules that
as C-comodules are cofreely cogenerated by the vector space Homk(E,U), and
similarly for complexes of C-cofree Harish-Chandra modules. One cannot avoid
using the exotic derived categories in this construction, because the functor LΦS

does not preserve acyclicity, in general (see 0.2.7).

D.3.2 The semialgebras Sl
κ

and Sr
κ+κ0

endowed with the increasing filtrations F
are left and right coflat nonhomogeneous Koszul semialgebras over the coalgebra C

(see 11.5). In other words, the graded semialgebras grFSl
κ

and grFSr
κ+κ0

over C

are left and right coflat Koszul in the sense of 11.4. Indeed, there are natural
isomorphisms of complexes of C-C-bicomodules

Bar•gr(grFSl
κ
,C) � Bar•gr(Symk(g/h), k)⊗k C

and Bar•gr(grFSr
κ+κ0

,C) � C⊗kBar•gr(Symk(g/h, k), and the k-algebra Symk(g/h)
is Koszul. Here the left C-coaction in Bar•gr(Symk(g/h), k)⊗kC is the tensor product
of the C-coaction in Bar•gr(Symk(g/h), k) induced by the C-coaction in g/h and
the left C-coaction in C, while the right C-coaction in Bar•gr(Symk(g/h), k) ⊗k C

is induced by the right C-coaction in C. The C-C-bicomodule structure on C ⊗k
Bar•gr(Symk(g/h, k) is defined in an analogous way (with the left and right sides
switched).

The left and right coflat Koszul coalgebras Dl and Dr over C quadratic dual
to the left and right coflat Koszul semialgebras grFSl

κ
and grFSr

κ+κ0
are described

as follows. One has
Dl � ∧

k(g/h)⊗k C,
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where
∧
k(g/h) denotes the exterior coalgebra of the k-vector space g/h, i.e., the

coalgebra quadratic dual to the symmetric algebra Symk(g/h). The counit of∧
k(g/h)⊗k C is the tensor product of the counits of

∧
k(g/h) and C, while the co-

multiplication in
∧
k(g/h)⊗kC is constructed as the composition

∧
k(g/h)⊗kC −→∧

k(g/h) ⊗k
∧
k(g/h) ⊗k C ⊗k C −→ ∧

k(g/h) ⊗k C ⊗k
∧
k(g/h) ⊗k C of the map

induced by the comultiplications in
∧
k(g/h) and C and the map induced by the

“permutation” map
∧
k(g/h)⊗kC −→ C⊗k

∧
k(g/h). The latter map is given by the

formula u⊗ c �−→ cu[−1]⊗u[0] for u ∈ ∧
k(g/h) and c ∈ C, where u �−→ u[−1]⊗u[0]

denotes the C-coaction in
∧
k(g/h) induced by the C-coaction in g/h.

Analogously, one has Dr � C⊗k
∧
k(g/h), where the counit of C⊗k

∧
k(g/h)

is the tensor product of the counits of
∧
k(g/h) and C, while the comultiplication

in C⊗k
∧
k(g/h) is defined in terms of the “permutation” map C⊗k

∧
k(g/h) −→∧

k(g/h)⊗kC. The latter map is given by the formula c⊗u �−→ u[0]⊗cu[1], where the
right coaction u �−→ u[0]⊗u[1] is obtained from the left coaction u �−→ u[−1]⊗u[0] by
applying the antipode. Both coalgebras

∧
k(g/h)⊗kC and C⊗k

∧
k(g/h) have grad-

ings induced by the grading of
∧
k(g/h). The two “permutation” maps are inverse

to each other, and they provide an isomorphism of graded coalgebras Dl � Dr.
Now recall that we have assumed the condition (iv) of D.2.2. Denote by

· · · ⊂ V 2C ⊂ V 1C ⊂ V 0C = C the decreasing filtration of C orthogonal to the
natural increasing filtration of the universal enveloping algebra U(h), that is

V iC = {c ∈ C | φ(c, x) = 0 for all x ∈ k + h + · · ·+ hi−1 ⊂ U(h)}.
Notice that the decreasing filtration V is compatible with both the coalgebra and
algebra structures on C; in particular, it is a filtration by ideals with respect to
the multiplication. The subspace V 1C is the kernel of the counit map C −→ k;
the subspace V 2C is the kernel of the map C −→ h∨ ⊕ k which is the sum of the
map ψ̌ and the counit map.

Define decreasing filtrations V on the coalgebras Dl and Dr by the formulas

V iDl � ∧
k(g/h)⊗k V iC and V iDr � V iC⊗k

∧
k(g/h);

these filtrations are compatible with the coalgebra structures on Dl and Dr, and
correspond to each other under the isomorphism Dl � Dr. Set Dl = D � Dr. The
coalgebra D is cogenerated by the maps D −→ D0/V

2D0 and D −→ D1/V
1D1,

i.e., the iterated comultiplication map from D to the direct product of all tensor
powers D0/V

2D0 ⊕ D1/V
1D1 is injective. Moreover, the decreasing filtration

V on D is cogenerated by the filtrations on D0/V
2D0 and D1/V

1D1, i.e., the
subspaces V iD are the full preimages of the subspaces of the induced filtration
on the product of all tensor powers of D0/V

2D0 ⊕ D1/V
1D1 under the iterated

comultiplication map.

D.3.3 Composing the equivalences of categories from 11.2.2 and Theorem 11.6,
we obtain an equivalence between the category of left (right) coflat nonhomoge-
neous Koszul semialgebras over C and the category of left (right) coflat Koszul
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CDG-coalgebras over C. Here a CDG-coalgebra (D, d, h) is called Koszul over C

if the underlying graded coalgebra D is Koszul over C. Recall that for a left
(right) coflat nonhomogeneous Koszul semialgebra S∼ and the corresponding
quasi-differential coalgebra D∼ one has F1S

∼ � D∼1 , so to construct a specific
CDG-coalgebra (D, d, h) corresponding to a given filtered semialgebra S∼ one has
to choose a linear map

δ : F1S
∼ −−→ k

such that the composition of the injection C � F0S
∼ −→ F1S

∼ with δ coincides
with the counit map of C.

Choose a section b′ : g/h −→ g′ and construct the related section b′′ : g/h −→
g′′; denote by

δlb′ : F1S
l
κ
−−→ k and δrb′′ : F1S

r
κ+κ0

−−→ k

the corresponding linear functions constructed in (c) of D.3.1. In order to obtain
an isomorphism of left and right coflat nonhomogeneous Koszul semialgebras
Sl

κ
� Sr

κ+κ0
, we will construct an isomorphism between the CDG-coalgebras

(Dl, dlb′ , h
l
b′) and (Dr, drb′′ , h

r
b′′)

corresponding to the filtered semialgebras Sl
κ

and Sr
κ+κ0

endowed with the linear
functions δlb′ and δrb′′ . For the corresponding isomorphism of semialgebras to iden-
tity the linear functions δlb′ and δrb′′ , we need this isomorphism of CDG-coalgebras
to have the form (f, 0), i.e., the change-of-connection linear function has to vanish.
The isomorphism of coalgebras Dl � Dr is already defined; all we have to do is
to check that it identifies dlb′ with drb′′ and hlb′ with hrb′′ .

Besides, we need to show that the isomorphism Sl
κ
� Sr

κ+κ0
so obtained

does not depend on the choice of b′. Here it suffices to check that changing the
section b′ to b′1 leads to isomorphisms of CDG-coalgebras

(id, al) : (Dl, drb′ , h
r
b′) −→ (Dl, drb′1 , h

r
b′1

)
and

(id, ar) : (Dr, drb′′ , h
r
b′′) −→ (Dr, drb′′1 , h

r
b′′1

)

with the linear functions al and ar being identified by the isomorphism Dl � Dr.
Since the coalgebra Dl = D � Dr is cogenerated by the maps

D −→ D0/V
2D0 ⊂ h∨ ⊕ k and D −→ D1/V1D1 � g/h,

it suffices to check that the compositions of dlb′ and drb′′ with these two maps
coincide in order to show that dlb′ = drb′′ . We will also see that these compositions
factorize through D1/V

2D1 and D2/V
1D2, respectively, and the induced map

D1/V
2D1 −→ D0/V

2D0 preserves the images of V 1 (actually, even maps the
whole of D1/V

2D1 into V 1D0/V
2D1), hence it will follow that the differential

dlb′ = drb′′ preserves the decreasing filtration V . Besides, we will see that the linear
function hlb′ = hrb′′ annihilates the subspace V 2D2 and the linear function al = ar

corresponding to a change of section b′ annihilates the subspace V 2D1.
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D.3.4 Let us introduce notation for the components of the commutator map
with respect to the direct sum decomposition g′ � h ⊕ b′(g/h) ⊕ k. As above,
the Lie coalgebra structure on h∨ is denoted by x∗ �−→ x∗{1} ∧ x∗{2}. Denote the
Lie coaction of h∨ in g/h, i.e., the map g/h −→ h∨ ⊗k g/h corresponding to the
commutator map h × g/h −→ g/h, by u �−→ u{−1} ⊗ u{0}. These two maps do
not depend on the choice of the section b′; the rest of them do.

Denote by u ⊗ x∗ �−→ u(x∗) the map g/h ⊗k h∨ −→ h∨ corresponding
to the projection of the commutator map b′(g/h) × h −→ g′ −→ h. Denote by
u∧ v �−→ {u, v} the map

∧2
k(g/h) −→ g/h corresponding to the commutator map

∧2
k b
′(g/h) −→ g/h. Denote by u∧v⊗x∗ �−→ (u, v)x∗ the map

∧2
k(g/h)⊗kh∨ −→ k

corresponding to the projection of the commutator map
∧2
k b
′(g/h) −→ g′ −→ h.

The above five maps only depend on the Lie algebra g with the subalgebra
h and the section b : g/h −→ g, but the following two will depend essentially on g′

and b′. Denote by ρ′ : g/h −→ h∨ the map corresponding to the projection of the
commutator map b′(g/h)× h −→ g′ −→ k. Denote by σ′ :

∧2
k(g/h) −→ k the map

corresponding to the projection of the commutator map
∧2
k b
′(g/h) −→ g′ −→ k.

Denote by ρ̃, σ̃ and ρ′′, σ′′ the analogous maps corresponding to the central
extensions g∼ −→ g and g′′ −→ g with the sections b̃ and b′′. Clearly, we have
ρ′′ = ρ′ + ρ̃ and σ′′ = σ′ + σ̃.

Set b = b(g/h) ⊂ g. The composition θ of the commutator map in gl(g)∼ with
the projection gl(g)∼ −→ k corresponding to the section gl(g) −→ gl(g)∼ coming
from the direct sum decomposition g � h⊕b is written explicitly as follows. For any
continuous linear operator A : g −→ g denote by Ah→b : h −→ b, Ab→h : b −→ h,
etc., its components with respect to our direct sum decomposition. Then the
cocycle θ is given by the formula θ(A ∧ B) = tr(Ab→hBh→b) − tr(Bb→hAh→b),
where tr denotes the trace of a linear operator h −→ h with an open kernel.

Using this formula, one can find that, in the above notation, ρ̃(u) =
−u{0}(u{−1}) and σ̃(u ∧ v) = −(u, v{0})v{−1} + (v, u{0})u{−1} .

D.3.5 We have Dl
0 � C, Dl

1 � g/h ⊗k C, and Dl
2 �

∧2
k(g/h) ⊗k C. The

composition of the map dlb′ : g/h ⊗k C −→ C with the counit map ε : C −→ k
vanishes, since dlb′ is a coderivation. Let us start with computing the composition
of the map dlb′ with the map ψ̌ : C −→ h∨.

The class of an element u⊗ c ∈ g/h⊗k C can be represented by the element
b′(u) ⊗U(h) c ∈ F1Uκ(g) ⊗U(h) C � Dl

1
∼ in the quasi-differential coalgebra Dl∼

corresponding to the filtered semialgebra Sl
κ
. Denote the image of b′(u) ⊗U(h) c

under the comultiplication map Dl
1
∼ −→ C ⊗k Dl

1
∼ by c1 ⊗ (z ⊗U(h) c2),

where z ∈ F1Uκ(g). The total comultiplication of b′(u) ⊗U(h) c is then equal to
c1 ⊗ (z ⊗U(h) c2) + (b′(u)⊗U(h) c(1))⊗ c(2). We have

dlb′(u⊗ c) = δlb′(b
′(u)⊗U(h) c(1))c(2) − δlb′(z ⊗U(h) c2)c1 = −δlb′(z ⊗U(h) c2)c1.
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Furthermore,

ψ(dlb′(u ⊗ c), x) = −ψ(c1, x)δlb′ (z ⊗U(h) c2) = −δlb′(xb′(u)⊗U(h) c)

= −δlb′([x, b′(u)]⊗U(h) c)− δlb′(b′(u)⊗U(h) xc)

= δlb′([b
′(u), x]⊗U(h) c) = 〈x, u(ψ̌(c))〉 + 〈x, ρ′(u)〉ε(c)

for x ∈ h, since ψ(x, c1)z ⊗U(h) c2 = xb′(u)⊗U(h) c.
So the composition of the map dlb′ : g/h⊗kC −→ C with the map ψ̌ : C −→ h∨

is equal to the composition of the map id⊗(ψ̌, ε) : g/h⊗kC −→ g/h⊗k(h∨⊕k) with
the map g/h⊗k (h∨⊕k) −→ h∨ given by the formula u⊗x∗+ v �−→ u(x∗)+ρ′(v).

Now let us compute the composition of the map dlb′ :
∧2
k(g/h) ⊗k C −→

g/h⊗kC with the map id⊗ε : g/h⊗kC −→ g/h. The vector space Dl
2
∼ is the kernel

of the semimultiplication map F1S
l
κ

�C F1S
l
κ
−→ F2S

l
κ
, which can be identified

with the kernel of the map F1Uκ(g) ⊗U(h) F1Uκ(g) ⊗U(h) C −→ F2Uκ(g)⊗U(h) C

induced by the multiplication map F1Uκ(g)⊗U(h)F1Uκ(g) −→ F2Uκ(g). The class
of an element u∧v⊗c ∈ ∧2

k(g/h)⊗kC can be represented by the element b′(u)⊗U(h)

b′(v)⊗U(h)c−b′(v)⊗U(h)b
′(u)⊗U(h)c−[b′(u), b′(v)]⊗U(h)1⊗U(h)c in the latter kernel.

Denote the image of b′(v) ⊗U(h) c under the comultiplication map Dl
1
∼ −→

C⊗k Dl
1
∼ by c1 ⊗ (z ⊗U(h) c2), where z ∈ F1Uκ(g); then the image of b′(u)⊗U(h)

b′(v) ⊗U(h) c under the comultiplication map Dl
2
∼ −→ Dl

1
∼ ⊗k Dl

1
∼ is equal to

(b′(u)⊗U(h) c1)⊗ (z⊗U(h) c2). The image of [b′(u), b′(v)]⊗U(h) 1⊗U(h) c under the
same map Dl

2
∼ −→ Dl

1
∼⊗kDl

1
∼ is equal to ([b′(u), b′(v)]⊗U(h)c(1))⊗(1⊗U(h)c(2)).

We have δlb′(b
′(u)⊗U(h)c1)z ⊗U(h) c2 = 0 and δlb′(z⊗U(h)c2)(id⊗ε)b′(u)⊗U(h) c1 =

ε(c1)δlb′(z ⊗U(h) c2)u = δlb′(b
′(v) ⊗U(h) c)u = 0, where p ∈ Dl

1 denotes the image
of an element p ∈ Dl

1
∼. Furthermore, δlb′([b

′(u), b′(v)] ⊗U(h) c(1))1⊗U(h) c(2) = 0.
Hence (id⊗ε)dlb′(u ∧ v ⊗ c) = −δlb′(1 ⊗U(h) c(2))(id⊗ε)[b′(u), b′(v)]⊗U(h) c(1) =
−(id⊗ε)[b′(u), b′(v)]⊗U(h) c = −{u, v}ε(c).

So the composition of the map dlb′ :
∧2
k(g/h) ⊗k C −→ g/h ⊗k C with

the map id⊗ε : g/h ⊗k C −→ g/h is equal to the composition of the map
id⊗ε :

∧2
k(g/h) ⊗k C −→ ∧2

k(g/h) with the map
∧2
k(g/h) −→ g/h given by the

formula u ∧ v �−→ −{u, v}.
Finally, let us compute the linear function hlb′ :

∧2
k(g/h)⊗kC −→ k. We have

δlb′(b
′(u)⊗U(h) c1)δlb′(z⊗U(h) c2) = 0, hence h(u∧ v⊗ c) = −δlb′([b′(u), b′(v)]⊗U(h)

c(1))δlb′(1⊗U(h)c(2)) = −δlb′([b′(u), b′(v)]⊗U(h)c) = −(u, v)ψ̌(c)−σ′(u∧v)ε(c). So the
linear function hlb′ is equal to the composition of the map id⊗(ψ̌, ε) :

∧2
k(g/h)⊗k

C −→ ∧2
k(g/h) ⊗k (h∨ ⊕ k) and the linear function

∧2
k(g/h) ⊗k (h∨ ⊕ k) −→ k

given by the formula u1 ∧ v1 ⊗ x∗ + u ∧ v �−→ −(u1, v1)x∗ − σ′(u ∧ v).
D.3.6 Analogously, we have Dr

0 � C, Dr
1 � C⊗kg/h, and Dr

2 � C⊗k
∧2
k(g/h). The

composition of the map drb′′ : C⊗kg/h −→ C with the map ε : C −→ k vanishes. The
composition of the map drb′′ : C⊗k g/h −→ C with the map ψ̌ : C −→ h∨ is equal to
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the composition of the map (ψ̌, ε)⊗ id: C⊗k g/h −→ (h∨⊕ k)⊗k g/h and the map
(h∨ ⊕ k) ⊗k g/h −→ h∨ given by the formula x∗ ⊗ u + v �−→ u(x∗) + ρ′′(v). The
composition of the map drb′′ : C⊗k

∧2
k(g/h) −→ C⊗k g/h with the map ε⊗ id: C⊗k

g/h −→ g/h is equal to the composition of the map ε ⊗ id : C ⊗k
∧2
k(g/h) −→

∧2
k(g/h) and the map

∧2
k(g/h) −→ g/h given by the formula u ∧ v �−→ −{u, v}.

The linear function hrb′′ : C⊗k
∧2
k(g/h) −→ k is equal to the composition of the map

(ψ̌, ε)⊗id : C⊗k
∧2
k(g/h) −→ (h∨⊕k)⊗k

∧2
k(g/h) and the linear function (h∨⊕k)⊗k∧2

k(g/h) −→ k given by the formula x∗⊗u1∧v1 +u∧v �−→ −(u1, v1)x∗−σ′′(u∧v).
The isomorphism g/h ⊗k C � C ⊗k g/h forms a commutative diagram with

the map g/h ⊗k C −→ g/h ⊗k (h∨ ⊕ k), the map C ⊗k g/h −→ (h∨ ⊕ k) ⊗k g/h,
and the isomorphism g/h ⊗k (h∨ ⊕ k) � (h∨ ⊕ k) ⊗k g/h given by the formula
u⊗x∗+v �−→ x∗⊗u+v{−1}⊗v{0}+v. Analogously, the isomorphism

∧2
k(g/h)⊗kC �

C ⊗k
∧2
k(g/h) forms a commutative diagram with the map

∧2
k(g/h) ⊗k C −→

∧2
k(g/h) ⊗k (h∨ ⊕ k), the map C ⊗k

∧2
k(g/h) −→ (h∨ ⊕ k) ⊗k

∧2
k(g/h), and the

isomorphism
∧2
k(g/h) ⊗k (h∨ ⊕ k) � (h∨ ⊕ k) ⊗k

∧2
k(g/h) given by the formula

u1 ∧ v1 ⊗ x∗ + u∧ v �−→ x∗ ⊗ u1 ∧ v1 + u{−1}⊗ u{0} ∧ v+ v{−1}⊗ u∧ v{0}+ u∧ v.
Now it is straightforward to check that the isomorphism Dl � Dr identifies

dlb′ with drb′′ modulo V 2D0⊕V 1D1⊕D2⊕D3⊕ · · · and hlb′ with hrb′′ . Indeed, one
has u(x∗)+ v{0}(v{−1})+ ρ′′(v) = u(x∗) + ρ′(v) and −(u1, v1)x∗ − (u{0}, v)u{−1} −
(u, v{0})v{−1} − σ′′(u ∧ v) = −(u1, v1)x∗ − σ′(u ∧ v).
D.3.7 Finally, let b′1 : g/h −→ g′ be another section of the surjection g′ −→
g′/(h ⊕ k) � g/h. Then we can write b′1 = b + t + t′ with t : g/h −→ h and
t′ : g/h −→ k. Analogously, the sections b̃1 : g/h −→ g∼ and b′′1 : g/h −→ g′′

corresponding to b′1 have the form b̃1 = b̃ + t + t̃ and b′′1 = b′′ + t + t′′ with
t′′ = t′ + t̃.

Denote by τ, τ1 : gl(g) −→ gl(g)∼ the sections corresponding to direct sum
decompositions g = h⊕ b(g/h) and g = h⊕ b1(g/h) with b1 = b+ t, t : g/h −→ h.
Then one has τ1(A)−τ(A) = tr(tAh→g/h) for any A ∈ gl(g), where Ah→g/h denotes
the composition h −→ g −→ g −→ g/h of the endomorphism A with the injection
h −→ g and the surjection g −→ g/h.

Using this formula, one can find that t̃(u) = −〈u{−1}, t(u{0})〉, where 〈 , 〉
denotes the natural pairing h∨ × h −→ k.

The natural isomorphism (id, al) : (Dl, dlb′ , h
l
b′) −→ (Dl, dlb′1

, hlb′1
) between the

CDG-coalgebras corresponding to the sections b′ and b′1 can be computed easily;
the linear function al : Dl

1 −→ k is the composition of the map id⊗(ψ̌, ε) : g/h⊗k
C −→ g/h ⊗k (h∨ ⊕ k) and the linear function g/h ⊗k (h∨ ⊕ k) −→ k given by
the formula u ⊗ x∗ + v �−→ −〈x∗, t(u)〉 − t′(v). Analogously, the linear function
ar in the natural isomorphism (id, ar) : (Dr, drb′′ , h

r
b′′) −→ (Dr, drb′′1

, hrb′′1
) between

the CDG-coalgebras corresponding to the sections b′′ and b′′1 is the composition
of the map (ψ̌, ε) ⊗ id : C ⊗k g/h −→ (h∨ ⊕ k) ⊗k g/h and the linear function
(h∨ ⊕ k)⊗k g/h −→ k given by the formula x∗ ⊗ u+ v �−→ −〈x∗, t(u)〉 − t′′(v).
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Now it is straightforward to check that the isomorphism Dl � Dr identifies
al with ar. Indeed, −〈x∗, t(u)〉 − 〈v{−1}, t(v{0})〉 − t′′(v) = −〈x∗, t(u)〉 − t′(v).

Theorem D.3.1 is proven. �

D.4 Semiinvariants and semicontrainvariants

D.4.1 Let g be a Tate Lie algebra, g∼ −→ g be the canonical central extension,
and h ⊂ g be a compact open subalgebra; recall that the central extension g∼ −→ g
splits canonically over h. Let N be a discrete g∼-module where the unit element
of k ⊂ g∼ acts by minus the identity. We would like to construct a natural map

(g/h⊗k N)h −−→ Nh,

where the superindex h denotes the h-invariants and the action of h in N is defined
in terms of the canonical splitting h −→ g∼.

Choose a section b : g/h −→ g of the surjection g −→ g/h. The direct sum
decomposition g � h⊕b(g/h) leads to a section of the central extension gl(g)∼ −→
gl(g), and consequently to a section of the central extension g∼ −→ g. Composing
the section b with the latter section, we get a section b̃ : g/h −→ g∼ of the surjection
g∼ −→ g∼/(h⊕ k) � g/h.

Consider the composition

(g/h⊗k N)h −−→ g/h⊗k N −−→ g∼ ⊗k N −−→ N

of the natural injection (g/h ⊗k N)h −→ h, the map g/h ⊗k N −→ g∼ ⊗k N
induced by the section b̃ : g/h −→ g∼, and the g∼-action map g∼⊗kN −→ N . Let
us check that this composition does not depend on the choice of b and its image
lies in the subspace of invariants Nh ⊂ N , so it provides the desired natural map
(g/h⊗k N)h −→ Nh.

Let u ⊗ n be a formal notation for an element of g/h ⊗k N . Denote by
n �−→ n{−1} ⊗ n{0} the map N −→ h∨ ⊗k N corresponding to the h-action map
h × N −→ N . Rewriting the identity xb̃(u)n = b̃(u)xn + [x, b̃(u)]n for x ∈ h in
the notation of D.3.4, we obtain the identity (b̃(u)n){−1} ⊗ (b̃(u)n){0} = n{−1} ⊗
b̃(u)n{0}+u{−1}⊗b̃(u{0})n−u(n{−1})⊗n{0}−u{0}(u{−1})⊗n. Now whenever u⊗n
is an h-invariant element of g/h⊗kN one has n{−1}⊗u⊗n{0}+u{−1}⊗u{0}⊗n = 0,
hence (b̃(u)n){−1} ⊗ (b̃(u)n){0} = 0 and b̃(u)n is an h-invariant element of N .

Let b1 : g/h −→ h be another section of the surjection g −→ g/h and
b̃1 : g/h −→ g∼ be the corresponding section of the surjection g∼ −→ g/h. Ac-
cording to D.3.7, we have b̃1 = b̃ + t + t̃ with a map t = b1 − b : g/h −→ h and
the linear function t̃ : g/h −→ k given by the formula t̃(u) = −〈u{−1}, t(u{0})〉.
Let u ⊗ n be an h-invariant element of g/h ⊗ N ; then the equation n{−1} ⊗ u ⊗
n{0} + u{−1} ⊗ u{0} ⊗ n = 0 implies 〈n{−1}, t(u)〉n{0} + 〈u{−1}, t(u{0})〉n = 0 and
t(u)n− t̃(u)n = 0.
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The cokernel Ng,h of the natural map (g/h ⊗k N)h −→ Nh that we have
constructed is called the space of (g, h)-semiinvariants of a discrete g-module N .
The (g, h)-semiinvariants are a mixture of h-invariants and “coinvariants along
g/h”.

D.4.2 For a topological Lie algebra h and an h-contramodule P the space of
h-coinvariants Ph is defined as the maximal quotient contramodule of P where h
contraacts by zero, i.e., the cokernel of the contraaction map h⊗̂P −→ P .

Let g be a Tate Lie algebra with a compact open subalgebra h. Let P be a
g∼-contramodule where the unit element of k ⊂ g∼ acts by the identity. We would
like to construct a natural map

Ph −−→ Homk(g/h, P )h,

where the h-contraaction in Homk(g/h, P ) is induced by the discrete action of h
in g/h and the h-contraaction in P as explained in D.2.6–D.2.7.

As above, choose a section b : g/h −→ g and construct the corresponding
section b̃ : g/h −→ g∼. Consider the composition

P −−→ Homk(g∼, P ) −−→ Homk(g/h, P ) −−→ Homk(g/h, P )h

of the map P −→ Homk(g∼, P ) corresponding to the action of g∼ in P induced by
the contraaction of g∼ in P , the map Homk(g∼, P ) −→ Homk(g/h, P ) induced by
the section b̃, and the natural surjection Homk(g/h, P ) −→ Homk(g/h, P )h. Let
us check that this composition factorizes through the natural surjection P −→ Ph

and does not depend on the choice of b, so it defines the desired map Ph −→
Homk(g/h, P )h.

Let f a linear function h∨ −→ P and πP (f) ∈ P be its image under the
contraaaction map. The image of πP (f) under the composition

P −→ Homk(g∼, P ) −→ Homk(g/h, P )

is given by the formula

u �−→ b̃(u)πP (f) = πP (x∗ �→ b̃(u)f(x∗))− b̃(u{0})f(u{−1})
+ πP (x∗ �→ f(u(x∗)))− f(u{0}(u{−1}))

in the notation of D.3.4. This element of Homk(g/h, P ) is the image of the ele-
ment g ∈ Homk(h∨,Homk(g/h, P )) given by the formula g(x∗)(u) = b̃(u)f(x∗) +
f(u(x∗)) under the contraaction map.

If b1 : g/h −→ g is a different section, then

b̃1(u) = b1(u) + t(u)− 〈u{−1}, t(u{0})〉
and for any p ∈ P the element of Homk(g/h, P ) given by the formula u �−→
t(u)p−〈u{−1}, t(u{0})〉p is the image of the element g ∈ Homk(h∨,Homk(g/h, P ))
given by the formula g(x∗)(u) = 〈x∗, t(u)〉p under the contraaction map.
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The kernel P g,h of the natural map Ph −→ Homk(g/h, P )h is called the space
of (g, h)-semicontrainvariants of a g-contramodule P . The (g, h)-semicontrainvari-
ants are a mixture of h-coinvariants and “invariants along g/h”.

Remark. The above definitions of (g, h)-semiinvariants and (g, h)-semicontrain-
variants agree with the definitions from C.5.1–C.5.2 up to twists with a one-
dimensional vector space det(h), essentially for the following reason. When g is
a discrete Lie algebra, the central extension g∼ −→ g has a canonical splitting
induced by the canonical splitting of the central extension gl(g)∼ −→ gl(g). When
g is a Tate Lie algebra and h ⊂ g is a compact open Lie subalgebra, the central
extension g∼ −→ g has a canonical splitting over h. When g is a discrete Lie alge-
bra and h ⊂ g is a finite-dimensional Lie subalgebra, these two splittings do not
agree over h; instead, they differ by the modular character of the Lie algebra h.

D.4.3 Let C be a coalgebra endowed with a coaugmentation (morphism of coalge-
bras) e : k −→ C, h be a compact Lie algebra, and ψ : C×h −→ k be a pairing such
that the map ψ̌ : h∨ −→ C is a morphism of coalgebras and ψ annihilates e(k). For
any right C-comodule N, the maximal subcomodule of N where the coaction of C

is trivial can be described as the cotensor product N �C k. Here a coaction of C is
called trivial if it is induced by e; the vector space k is endowed with the trivial
coaction. There is a natural injective map N�Ck −→ Nh, which is an isomorphism
provided that the assumption (iv) of D.2.2 holds.

Analogously, for any left C-contramodule P the maximal quotient C-con-
tramoduleof P with the trivial contraaction can be described as the space of
cohomomorphisms CohomC(k,P). There is a natural surjective map Ph −→
CohomC(k,P), which is also an isomorphism provided that the condition (iv)
holds. Indeed, it suffices to consider the case when P = Homk(C, E) is an
induced C-contramodule; in this case one only has to check that the kernel of the
composition C −→ C⊗k C −→ C ⊗k h∨ of the comultiplication map and the map
induced by the map ψ̌ coincides with e(k).

Let C be a commutative Hopf algebra. Then for any right C-comodule N

and left C-comodule M there is a natural isomorphism N �C M � (N⊗k M) �C k,
where the right C-comodule structure on N�C M is defined using the antipode and
multiplication in C. Analogously, for any left C-comodule M and left C-contramod-
ule P there is a natural isomorphism CohomC(M,P) � CohomC(k,Homk(M,P)).

D.4.4 Now let κ : (g′,C) −→ (g,C) be a central extension of Tate Harish-Chandra
pairs with the kernel k satisfying the assumption (iv) of D.2.2 and Sl

κ
= S � Sr

κ+κ0

be the corresponding semialgebra over C.

Lemma.

(a) Let N be a Harish-Chandra module with the central charge −κ − κ0 and
M be a Harish-Chandra module with the central charge κ over (g,C); in
other words, N is a right Sr

κ+κ0
-semimodule and M is a left Sl

κ
-semimod-

ule. Assume that either N or M is a coflat C-comodule. Then there is a
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natural isomorphism
N ♦S M � (N⊗k M)g,h,

where the tensor product N⊗kM is a Harish-Chandra module with the central
charge −κ0.

(b) Let M be a Harish-Chandra module with the central charge κ and P be a
Harish-Chandra contramodule with the central charge κ + κ0 over (g,C); in
other words, M is a left Sl

κ
-semimodule and P is a left Sr

κ+κ0
-semicon-

tramodule. Assume that either M is a coprojective C-comodule, or P is a
coinjective C-contramodule. Then there is a natural isomorphism

SemiHomS(M,P) � Homk(M,P)g,h,

where the space Homk(M,P) is a Harish-Chandra contramodule with the
central charge κ0.

Proof. Part (a): denote by ηi : N �C FiS �C M −→ N �C M the map equal to
the difference of the map induced by the semiaction map FiS �C M −→ M and
the map induced by the semiaction map N �C F1S −→ N. The map η0 vanishes
and the quotient space (N �C F1S �C M)/(N �C F0S �C M) is isomorphic to
N �C (F1S/F0S) �C M, hence the induced map

η̄1 : N �C (F1S/F0S) �C M −−→ N �C M.

The cokernel of the map η̄1 coincides with the semitensor product N♦S M for the
reasons explained in C.5.5. The cotensor product

N �C (F1S/F0S) �C M � N �C (g/h⊗k C) �C M � N �C (g/h⊗k M)

is isomorphic to the space of invariants (g/h⊗k M⊗k N)h in view of the assump-
tion (iv); this isomorphism coincides with the isomorphism

N �C (F1S/F0S) �C M � (g/h⊗k M⊗k N)h

induced by the isomorphism F1S/F0S � C⊗k g/h. Let us check that this isomor-
phism identifies the map η̄1 with the map whose cokernel is, by the definition, the
space of semiinvariants (N⊗k M)g,h.

Choose a section b′ : g/h −→ g′ and consider the corresponding section
b′′ : g/h −→ g′′. There is an isomorphism of right C-comodules C⊕g/h⊗kC � F1S

l
κ

given by the formula c′1 + u′ ⊗ c′ �−→ 1 ⊗U(h) c
′
1 + b′(u′) ⊗U(h) c

′ and an analo-
gous isomorphism of left C-comodules C ⊕ C ⊗k g/h � F1S

r
κ+κ0

given by the
formula c′′1 + c′′ ⊗ u′′ �−→ c′′1 ⊗U(h) 1 + c′′ ⊗U(h) b

′′(u′′). The induced isomor-
phism M ⊕ g/h ⊗k M � F1S

l
κ

�C M � F1Uκ(g) ⊗U(h) M is given by the for-
mula m1 + u ⊗ m �−→ 1 ⊗U(h) m1 + b′(u) ⊗U(h) m. Now let z = n ⊗ (c′1 +
u′ ⊗U(h) c

′)⊗m = n⊗ (c′′1 + c′′ ⊗U(h) u
′′)⊗m be an element of N �C F1S �C M.

Then the corresponding element of N �C F1Uκ(g) ⊗U(h) M can be written as
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ε(c′1)n⊗ 1⊗U(h) m+ ε(c′)n⊗ b′(u′)⊗U(h) m, hence the image of z under the map
N �C F1S �C M −→ N �C M induced by the semiaction map F1S �C M −→M is
equal to ε(c′1)n⊗m+ε(c′)n⊗ b′(u′)m. Analogously, the image of z under the map
N �C F1S �C M −→ N �C M induced by the semiaction map N �C F1S −→ N

is equal to ε(c′′1 )n ⊗m − ε(c′′)b′′(u′′)n ⊗m. One has ε(c′1) = ε(c′′1) by the condi-
tion (c) of D.3.1. Thus η1(z) = n ⊗ b′(u)m + b′′(u)n ⊗m = b̃(u)(n ⊗m), where
u = ε(c′)u′ = ε(c′′)u′′. Part (a) is proven; the proof of part (b) is completely
analogous. �

D.5 Semi-infinite homology and cohomology

D.5.1 A discrete right module N over a topological associative algebra R is a
right R-module such that the action map N ×R −→ N is continuous with respect
to the discrete topology of N . Equivalently, a right R-module N is discrete if the
annihilator of any element of N is an open right ideal in R.

Let A and B be topological associative algebras in which open right ideals
form bases of neighborhoods of zero. Then the topological tensor product A⊗! B
has a natural structure of topological associative algebra with the same property.
The tensor product of a discrete right A-module and a discrete right B-module is
naturally a discrete right A⊗! B-module.

Let κ : g′ −→ g be a central extension of topological Lie algebras with the
kernel k. Then the modified enveloping algebra Uκ(g) = U(g′)/(1U(g′) − 1g′) can
be endowed with the topology where right ideals generated by open subspaces of g′

form a base of neighborhoods of zero (see [10, 3.8.17] and [8, 2.4], where left ideals
are considered in place of our right ideals). Denote the completion of Uκ(g) with
respect to this topology by U

κ̂
(g); this is a topological associative algebra. The

category of discrete g′-modules where the unit element of k ⊂ g′ acts by minus
the identity is isomorphic to the category of discrete right U

κ̂
(g)-modules.

D.5.2 Let R be a topological associative algebra where open right ideals form a
base of neighborhoods of zero. Then for any k-vector space P there is a natural
map

R ⊗̂(R ⊗̂P ) −−→ R⊗̂P

induced by the multiplication in R; it is constructed as the projective limit over
all open right ideals U ⊂ R of the maps R/U ⊗k (R⊗̂P ) −→ R/U ⊗k P induced
by the discrete right action of R in R/U . A left contramodule over R is a vector
space P endowed with a linear map R ⊗̂P −→ P satisfying the following con-
traassociativity and unity equations. First, the two maps R⊗̂(R⊗̂P ) ⇒ R⊗̂P ,
one induced by the multiplication in R and the other induced by the contraaction
map R ⊗̂P −→ P , should have equal compositions with the contraaction map.
Second, the composition P −→ R⊗̂P −→ P of the map induced by the unit of R
and the contraaction map should be equal to the identity endomorphism of P .

The category of left R-contramodules is abelian and there is a natural ex-
act forgetful functor from it to the category of left modules over the algebra R
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considered without any topology (cf. Remark A.3). Notice also the isomorphisms

R ⊗̂(R ⊗̂P ) � R
←⊗ R←⊗ P � (R

←⊗ R)⊗̂P,

demonstrating the similarity of the above definition with the definition of a contra-
module over a Lie algebra given in D.2.6. The above natural map R⊗ (̂R⊗ P̂ ) −→
R⊗̂P is induced by the continuous multiplication map R

←⊗R −→ R, which exists
for any topological associative algebra R where open right ideals form a base of
neighborhoods of zero [8]. Just as for Lie algebras, a structure of a discrete right
R-module on a vector space N is given by a continuous linear map

N ⊗R � N ⊗∗ R = N
←⊗ R −−→ N,

while a structure of a left R-contramodule on a vector space P is given by a
discontinuous linear map

R⊗̂P � R⊗! P = R
←⊗ P −−→ P,

where N and P are endowed with discrete topologies.
For any discrete rightR-moduleN and any k-vector spaceE, the vector space

Homk(N,E) has a natural structure of left contramodule over R. The contraaction
map R⊗̂Homk(N,E) −→ Homk(N,E) is constructed as the projective limit over
all open right ideals U ⊂ R of the maps

R/U ⊗k Homk(N,E) −−→ Homk(NU , E)

given by the formulas r̄ ⊗k g �−→ (n �−→ g(nr̄)) for r̄ ∈ R/U , g ∈ Homk(N,E),
and n ∈ NU , where NU ⊂ N denotes the subspace of all elements of N annihilated
by U .

More generally, let A and B be topological associative algebras where open
right ideals form bases of neighborhoods of zero, N be a discrete right B-mod-
ule, and P be a left A-contramodule. Then the vector space Homk(N,P ) has a
natural structure of left contramodule over A ⊗! B. The contraaction map (A ⊗!

B)⊗̂Homk(N,E) −→ Homk(N,E) is constructed as the projective limit over all
open right ideals U ⊂ B of the compositions

A⊗̂(B/U ⊗k Homk(N,P )) −−→ A⊗̂ Homk(NU , P )

−−→ Homk(NU , A⊗̂P ) −−→ Homk(NU , P ),

where the first map is induced by the right B-action in N and the third map is
induced by the A-contraaction in P .

D.5.3 Let κ : g′ −→ g be a central extension of topological Lie algebras with
the kernel k. Assume that the topological Lie algebra g′ has a countable base of
neighborhoods of zero consisting of open Lie subalgebras (concerning the second
part of this condition, cf. [8]).
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Theorem. The category of g′-contramodules where the unit element of k ⊂ g′

acts by the identity is isomorphic to the category of left contramodules over the
topological associative algebra U

κ̂
(g).

Proof. It is easy to see that the composition g′⊗̂P −→ U
κ̂

(g)⊗̂P −→ P defines
a g′-contramodule structure on any left U

κ̂
(g)-contramodule P (so, in particular,

U
κ̂

(g) itself is a g′-contramodule). Let us construct the functor in the opposite
direction.

The standard homological Chevalley complex

· · · −−→ ∧2
k(g
′)⊗k Uκ(g) −−→ g′ ⊗k Uκ(g) −−→ Uκ(g) −−→ 0

is acyclic. For any open Lie subalgebra h ⊂ g′ not containing k ⊂ g′, the complex

· · · −−→ ∧2
k(h)⊗k Uκ(g) −−→ h⊗k Uκ(g) −−→ hUκ(g) −−→ 0

is an acyclic subcomplex of the previous complex. Taking the quotient complex
and passing to the projective limit over h, we obtain a split exact complex of
topological vector spaces

· · · −−→ ∧s,2(g′)⊗! Uκ(g) −−→ g′ ⊗! Uκ(g) −−→ U
κ̂

(g) −−→ 0,

where we denote by
∧s,i(g′) the completion of

∧i
k(g
′) with respect to the topol-

ogy with a base of neighborhoods of zero formed by the subspaces
∧i
k(h) and

the enveloping algebra Uκ(g) is considered as a discrete topological vector space.
Applying the functor ⊗ P̂ , we obtain an exact sequence of vector spaces

∧s,2(g′)⊗̂(Uκ(g)⊗k P ) −−→ g′ ⊗̂(Uκ(g)⊗k P ) −−→ U
κ̂

(g)⊗̂P −−→ 0

for any k-vector space P .
Now let P be a g′-contramodule where the unit element of k ⊂ g′ acts by

the identity; then, in particular, P is a g′-module and a Uκ(g)-module. It is clear
from the above exact sequence that the composition

g′ ⊗̂(Uκ(g)⊗k P ) −−→ g′ ⊗̂P −−→ P

of the map induced by the Uκ(g)-action map and the g′-contraaction map factor-
izes through U

κ̂
(g)⊗ P̂ , providing the desired contraaction map U

κ̂
(g)⊗ P̂ −→ P .

Let us check that this contraaction map satisfies the contraassociativity equa-
tion. Any element z of U

κ̂
(g)⊗̂P can be presented in the form z =

∑∞
i=0 ui⊗ pi

with ui ∈ Uκ(g) and pi ∈ P , where ui → 0 in U
κ̂

(g) as i → ∞ and the infinite
sum is understood as the limit in the topology of U

κ̂
(g) ⊗! P . Let us denote the

image of the element
∑
i ui ⊗ pi under the contraaction map U

κ̂
(g) ⊗̂P −→ P

by
∑

i uipi ∈ P . In this notation, the U
κ̂

(g)-contraaction map is defined by the
formula

∑
i(xi1xi2 · · ·xiki

)pi =
∑

i xi1 (xi2 · · ·xiki
pi) for any xit ∈ g′ and pi ∈ P

such that xi1 → 0 in g′ as i → ∞. We have to show that
∑

i ui
∑

j vijpij =
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∑
i,j(uivij)pij for any ui, vij ∈ Uκ(g) and pij ∈ P such that ui → 0 as i→∞ and

vij → 0 as j →∞ for any i.
Let us first check that

∑
i xi

∑
j yijpij =

∑
i,j(xiyij)pij for any xi, yij ∈ g′

and pij ∈ P such that xi → 0 in g′ as i → ∞ and yij → 0 in g′ as j → ∞ for
any i. Choose an integer ji for each i such that {yij | j > ji} converges to zero in
g′ as i+ j →∞. Then we have

∑

i,j
(xiyij)pij =

∑

j�ji
xi(yijpij) +

∑

j>ji
yij(xipij) +

∑

j>ji
[xi, yij ]pij .

To check that
∑

i
xi

∑

j>ji
yijpij =

∑

j>ji
yij(xipij) +

∑

j>ji
[xi, yij ]pij ,

apply the equation on the contraaction map of a contramodule over a topological
Lie algebra to the element

∑
j>ji

xi ∧ yij ⊗ pij of the vector space
∧∗,2(g′)⊗̂P .

It follows that
∑
i xi

∑
j vijpij =

∑
i,j(xivij)pij for any xi ∈ g′, vij ∈ Uκ(g),

and pij ∈ P such that xi → 0 in g′ as i→∞ and vij → 0 in U
κ̂

(g) as j →∞ for
any i. Indeed, assuming that vij = yij1yij2 · · · yijkij , where yijt ∈ g′ and yij1 → 0
in g′ as j →∞, we have

∑

i
xi

∑

j
(yij1yij2 · · · yijkij )pij =

∑

i
xi

∑

j
yij1(yij2 · · · yijkijpij)

=
∑

i,j
(xiyij1)(yij2 · · · yijkij pij) =

∑

i,j
(xiyij1yij2 · · · yijkij )pij .

Furthermore, it follows that x1 · · ·xs
∑
j vjpj =

∑
j(x1 · · ·xsvj)pj for any xt ∈ g′,

vj ∈ Uκ(g), and pj ∈ P such that vj → 0 in U
κ̂

(g) as j →∞. Now to check that∑
i ui

∑
j vijpij =

∑
i,j(uivij)pij , we can assume that ui = xi1xi2 · · ·xiki

, where
xit ∈ g′ and xi1 → 0 in g′ as i→∞. Then we have

∑

i
(xi1xi2 · · ·xiki

)
∑

j
vijpij =

∑

i
xi1 (xi2 · · ·xiki

∑

j
vijpij)

=
∑

i
xi1

∑

j
(xi2 · · ·xiki

vijpij) =
∑

i,j
(xi1xi2 · · ·xiki

vij)pij . �

Question. Can one construct an isomorphism between the categories of “g-contra-
modules with central charge κ” and left U

κ̂
(g)-contramodules without the count-

ability assumption on the topology of g′?

D.5.4 The following weaker version of Theorem D.5.3 holds without the count-
ability assumption. Let κ : g′ −→ g be a central extension of topological Lie alge-
bras with the kernel k; assume that open subalgebras form a base of neighborhoods
of zero in g′. Let B be a topological associative algebra where open right ideals
form a base of neighborhoods of zero, N be a discrete right B-module, and P be
a g′-contramodule where the unit element of k ⊂ g′ acts by the identity. Then
one can define the contraaction map (g′ ⊗! B) ⊗̂ Homk(N,P ) −→ Homk(N,P )
as in D.5.2.
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Consider the iterated contraaction map

((g′ ⊗! B)
←⊗ (g′ ⊗! B))⊗̂ Homk(N,P )

� (g′ ⊗! B)⊗̂((g′ ⊗! B)⊗̂ Homk(N,P )) −→ Homk(N,P ).

It was noticed in [8] that a topological associative algebra A has the property
that open right ideals form a base of neighborhoods of zero if and only if the
multiplication map A ⊗∗ A −→ A factorizes through A

←⊗ A. Let K denote the
kernel of the multiplication map

(g′ ⊗! B)
←⊗ (g′ ⊗! B) −−→ U

κ̂
(g)⊗! B.

We claim that the composition of the injection

K ⊗̂ Homk(N,P ) −−→ ((g′ ⊗! B)
←⊗ (g′ ⊗! B))⊗̂ Homk(N,P )

and the iterated contraaction map

((g′ ⊗! B)
←⊗ (g′ ⊗! B))⊗̂ Homk(N,P ) −−→ Homk(N,P )

vanishes.
For any topological vector spaces U , V , X , Y there is a natural map

(U ⊗! X)
←⊗ (V ⊗! Y ) −−→ (U

←⊗ V )⊗! (X
←⊗ Y ).

The composition (g′⊗!B)
←⊗(g′⊗!B) −→ (g′

←⊗g′)⊗!(B
←⊗B) −→ (g′

←⊗g′)⊗!B induces
the map ((g′⊗!B)

←⊗(g′⊗!B))⊗̂Homk(N,P ) −→ ((g′
←⊗g′)⊗!B)⊗̂Homk(N,P ). A

contraaction map ((g′
←⊗ g′)⊗!B)⊗̂ Homk(N,P ) −→ Homk(N,P ) can be defined

in terms of the discrete right action of B in N and the iterated contraaction map
(g′
←⊗ g′) ⊗̂P −→ P . The iterated contraaction map ((g′ ⊗! B)

←⊗ (g′ ⊗! B)) ⊗̂

Homk(N,P ) −→ Homk(N,P ) is equal to the composition ((g′⊗!B)
←⊗(g′⊗!B))⊗̂

Homk(N,P ) −→ ((g′
←⊗ g′) ⊗! B) ⊗̂ Homk(N,P ) −→ Homk(N,P ) of the above

induced map and contraaction map. Let Q denote the kernel of the multiplication
map

g′
←⊗ g′ −−→ U

κ̂
(g).

The image of K under the map (g′⊗!B)
←⊗ (g′⊗!B) −→ (g′

←⊗g′)⊗!B is contained
in Q⊗!B. So it suffices to check that the composition of the injection Q⊗̂P −→
(g′
←⊗ g′)⊗̂P and the iterated contraaction map (g′

←⊗ g′)⊗̂P −→ P vanishes.
The topological vector space Q is the topological projective limit of the ker-

nels of multiplication maps g′/h ⊗∗ g′ −→ Uκ(g)/hUκ(g) over all open subal-
gebras h ⊂ g′ not containing k ⊂ g′. Since the intersection of hUκ(g) and g′2

inside Uκ(g′) is equal to hg′, the kernel of the (nontopological) multiplication
map g′ ⊗k g′ −→ Uκ(g′) maps surjectively onto the kernels we are interested in.
This nontopological kernel is the image of the map

∧2
k(g
′) −→ g′ ⊗k g′ given by
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the formula x ∧ y �−→ x ⊗ y − y ⊗ x − 1 ⊗ [x, y]. The kernel of the composition
∧2
k(g
′) −→ g′⊗kg′ −→ g′/h⊗kg′ is the subspace

∧2
k(h) ⊂ ∧2

k(g
′). Hence the kernel

of the map g′/h⊗∗g′ −→ Uκ(g)/hUκ(g) is the subspace
∧2
k(g
′)/

∧2
k(h) ⊂ g′/h⊗∗g′,

embedded by the above formula, endowed with the induced topology of a closed
subspace. One can easily check that this topology on

∧2
k(g
′)/

∧2
k(h) is the topol-

ogy of the quotient space
∧∗,2(g′)/

∧∗,2(h). Thus the topological vector space Q
is isomorphic to

∧∗,2(g′).

D.5.5 The following constructions are due to Beilinson and Drinfeld [10, 3.8.19–
22].

Let V be a Tate vector space and E ⊂ V be a compact open subspace. The
graded vector space of semi-infinite forms

∧∞/2
E (V ) =

⊕
i

∧∞/2+i
E (V )

is defined as the inductive limit of the spaces
∧
k(V/U) ⊗k det(E/U)∨ over all

compact open subspaces U ⊂ E. Here det(X) denotes the top exterior power
of a finite-dimensional vector space X and

∧
k(W ) denotes the direct sum of all

exterior powers of a vector space W ; the grading on
∧
k(V/U) ⊗k det(E/U)∨ is

defined so that
∧j
k(V/U)⊗k det(E/U)∨ is the component of degree j−dim(E/U).

The limit is taken over the maps induced by the natural maps
∧j
k(V/U

′)⊗k det(U ′/U ′′) −−→ ∧j+m
k (V/U ′′),

where U ′′ ⊂ U ′ and m = dim(U ′/U ′′). The spaces of semi-infinite forms corre-
sponding to different compact open subspaces E ⊂ V , only differ by a dimensional
shift and a determinantal twist: if F ⊂ V is another compact open subspace, then
there are natural isomorphisms

∧∞/2+i
F (V ) � ∧∞/2+i+dim(E,F )

E (V )⊗k det(E,F ),

where dim(E,F ) = dim(E/E ∩ F )− dim(F/E ∩ F ) and det(E,F ) = det(E/E ∩
F )⊗k det(F/E ∩ F )∨.

Denote by Cl(V ) the algebra of endomorphisms of the vector space
∧∞/2
E (V )

endowed with the topology where annihilators of finite-dimensional subspaces of
∧∞/2
E (V ) form a base of neighborhoods of zero. Clearly, the topological associative

algebra Cl(V ) does not depend on the choice of a compact open subspace E ⊂ V ;
open left ideals form a base of neighborhoods of zero in Cl(V ). Denote by Cli(V )
the closed subspace of homogeneous endomorphisms of degree i in Cl(V ).

The Clifford algebra Cl(V ⊕ V ∨) acts naturally in
∧∞/2
E (V ), so there is a

morphism of associative algebras e : Cl(V ⊕ V ∨) −→ Cl(V ); in particular, the
map e sends V to Cl1(V ) and V ∨ to Cl−1(V ). Let

∧!,i(V ∨) denote the completion
of

∧i
k(V

∨) with respect to the topology with the base of neighborhoods of zero
formed by the subspaces U ∧ ∧i−1

k (V ∨) ⊂ ∧i
k(V

∨), where U ⊂ V ∨ is an open
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subspace. The composition
∧i
k(V

∨) −→ Cl(V ⊕ V ∨) −→ Cl(V ) can be extended
by continuity to a map

∧!,i(V ∨) −→ Cl(V ), which we will denote also by e. The
construction of D.1.7 provides a morphism of topological Lie algebras gl(V )∼ −→
Cl0(V ).

Let g be a Tate Lie algebra and κ0 : g∼ −→ g be its canonical central exten-
sion. Consider the topological tensor product g∼⊗! Cl(g)op, where Cl(g)op denotes
the topological algebra opposite to Cl(g); this topological tensor product is a bi-
module over Cl(g)op. The unit elements of Cl(g)op and k ⊂ g∼ induce embeddings
of g∼ and Cl(g)op into g∼ ⊗! Cl(g)op. Consider the difference of the composi-
tion g∼ −→ gl(g)∼ −→ Cl(g) � Cl(g)op −→ g∼ ⊗! Cl(g)op and the embedding
g∼ −→ g∼⊗!Cl(g)op; this difference maps k ⊂ g∼ to zero and so induces a natural
map

l : g −−→ g∼ ⊗! Cl0(g)op.

The composition of the map l with the embedding g∼⊗! Cl−1(g)op −→ U
κ̂0

(g)⊗!

Cl−1(g)op is an anti-homomorphism of Lie algebras, i.e., it transforms the com-
mutators to minus the commutators.

Denote by δ : g∨ −→ ∧!,2(g∨) the continuous linear map given by the formula
δ(x∗) = x∗{1} ∧x∗{2}, where 〈x∗, [x′, x′′]〉 = 〈x∗{1}, x′′〉〈x{2}, x′〉− 〈x∗{1}, x′〉〈x∗{2}, x′′〉
for x∗ ∈ g∨, x′, x′′ ∈ g. Define the map χ : g ⊗ g∨ −→ g∼ ⊗! Cl−1(g)op by the
formula

χ(x⊗ x∗) = l(x)e(x∗)op − e(x)ope(δ(x∗))op = e(x∗)opl(x)− e(δ(x∗))ope(x)op,

where aop denotes the element of Cl(g)op corresponding to an element a ∈ Cl(g);
and extend this map by continuity to a map

χ : g⊗! g∨ −−→ g∼ ⊗! Cl−1(g)op.

Identify g⊗! g∨ with End(g) and set d = χ(idg) ∈ g∼ ⊗! Cl−1(g)op.
Denote the image of d under the embedding g∼ ⊗! Cl−1(g)op −→ U

κ̂0
(g)⊗!

Cl−1(g)op also by d. Using the identity [l(x), e(y)op] = −e([x, y])op, one can check
that [d, e(x)op] = l(x) and [[d2, e(x)op], e(y)op] = 0 for all x, y ∈ g, where [ , ] de-
notes the supercommutator with respect to the grading in which U

κ̂0
(g)⊗!Cli(g)op

lies in the degree i. It is easy to see that any element of Cli(g) supercommut-
ing with e(x) for all x ∈ g is zero when i < 0; hence the same applies to ele-
ments of U

κ̂0
(g)⊗! Cli(g)op with i < 0. It follows that d is the unique element of

U
κ̂0

(g)⊗! Cl−1(g)op satisfying the equation [d, e(x)op] = l(x), and that d2 = 0.

D.5.6 Let g be a Tate Lie algebra and E ⊂ g be a compact open vector subspace.
Let N be a discrete g∼-module where the unit element of k ⊂ g∼ acts by minus
the identity. Then N can be considered as a discrete right U

κ̂0
(g)-module and

∧∞/2
E (g) is a discrete right Cl(g)op-module, so the tensor product

∧∞/2
E (g)⊗k N

is a discrete right module over U
κ̂0

(g) ⊗! Cl(g)op. The action of the element d ∈
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U
κ̂0

(g)⊗! Cl−1(g)op defines a differential d∞/2 of degree −1 on the graded vector
space CE∞/2+•(g, N) with the components

CE∞/2+i(g, N) =
∧∞/2+i
E (g)⊗k N.

One has d2
∞/2 = 0, since d2 = 0; so CE∞/2+•(g, N) becomes a complex. This

complex is called the semi-infinite homological complex and its homology is called
the semi-infinite homology of a Tate Lie algebra g with coefficients in a discrete
g∼-module N . One defines the semi-infinite homology of g with coefficients in
a complex of discrete g∼-modules N• as the homology of the total complex of
the bicomplex CE∞/2+•(g, N

•) constructed by taking infinite direct sums along the
diagonals.

Let P be a g∼-contramodule where the unit element of k ⊂ g∼ acts by
the identity. First assume that g has a countable base of neighborhoods of zero.
Then P can be considered as a left U

κ̂0
(g)-contramodule and

∧∞/2
E (g) is a dis-

crete right Cl(g)op-module, so the space of homomorphisms Homk(
∧∞/2
E (g), P )

is a left contramodule over U
κ̂0

(g) ⊗! Cl(g)op. The action of the element d ∈
U

κ̂0
(g) ⊗! Cl−1(g)op defines a differential d∞/2 of degree 1 on the graded vector

space C∞/2+•E (g, P ) with the components

C
∞/2+i
E (g, P ) = Homk(

∧∞/2+i
E (g), P ).

One has (d∞/2)2 = 0, since d2 = 0. Without the countability assumption, the
element d ∈ g∼ ⊗! Cl−1(g)op still acts on the graded vector space C∞/2+•E (g, P )
by an operator d∞/2 of degree 1. By the result of D.5.4, the identity d2 = 0 in
U

κ̂0
(g) ⊗! Cl(g)op implies the equation (d∞/2)2 = 0; so C∞/2+•E (g, P ) becomes a

complex. This complex is called the semi-infinite cohomological complex and its
cohomology is called the semi-infinite cohomology of a Tate Lie algebra g with
coefficients in a g∼-contramodule P . One defines the semi-infinite cohomology of
g with coefficients in a complex of g∼-contramodules P • as the cohomology of
the total complex of the bicomplex C∞/2+•E (g, P •) constructed by taking infinite
products along the diagonals.

D.6 Comparison theorem

D.6.1 The purpose of this subsection is to partly extend to arbitrary charac-
teristic the classical equivalence between the categories of nilpotent Lie algebras
and unipotent algebraic groups in characteristic zero (see [31, Corollary IV.2.4.5],
or [72, 3.3.6] and [78, Remark LG.V.4.1], or [48]). We will not obtain an equiv-
alence of categories, but only construct a functor assigning a commutative Hopf
algebra to a pronilpotent Lie algebra over a field k.

The correspondence h �−→ L = h∨ provides an anti-equivalence between
the categories of compact Lie algebras and Lie coalgebras. The correspondence
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between the action maps h ×M −→ M and the coaction maps M −→ h∨ ⊗k M
defines an equivalence between the categories of discrete h-modules and L-comod-
ules.

A Lie coalgebra L is called conilpotent if it is a filtered inductive limit of
finite-dimensional Lie coalgebras dual to finite-dimensional nilpotent Lie algebras;
in other words, L is conilpotent if the dual compact Lie algebra h is pronilpotent.
A comodule M over a Lie coalgebra L is called conilpotent if it is an inductive limit
of finite-dimensional comodules which can be represented as iterated extensions of
trivial comodules (that is comodules with a zero coaction map); analogously one
defines nilpotent discrete modules over topological Lie algebras. A coassociative
coalgebra C endowed with a coaugmentation map k −→ C is called conilpotent if
for every element c of the coalgebra without counit C/ im k there exists a posi-
tive integer i such that the iterated comultiplication map C/ imk −→ (C/ im k)⊗i

annihilates c.

Remark. The terminology related to conilpotent (coassociative) coalgebras is
not well settled. Sweedler [82] calls such coalgebras “pointed irreducible”, Mont-
gomery [68] calls them “connected”, and many recent publications (see, e.g., [61])
use the word “cocomplete”. The latter term comes from the condition that the
natural filtration (defined above) should be cocomplete (i.e., exhaustive). In our
view, this terminology is misleading and the term “conilpotent” is preferable.

For a conilpotent Lie coalgebra L, the conilpotent coenveloping coalgebra C(L)
is constructed as follows. Consider the category of finite-dimensional conilpotent
L-comodules together with the forgetful functor from it to the category of finite-
dimensional vector spaces; by [30, Proposition 2.14], this category is equivalent
(actually, isomorphic) to the category of finite-dimensional left comodules over a
certain uniquely defined coalgebra C(L) together with the forgetful functor from
this category to the category of finite-dimensional vector spaces. Clearly, the cat-
egory of (arbitrary) left C(L)-comodules is isomorphic to the category of conilpo-
tent L-comodules. The trivial L-comodule k defines a coaugmentation k −→ C(L);
since this is the only irreducible left C(L)-comodule, the coalgebra C(L) is conilpo-
tent.

The coalgebra C(L) is the universal final object in the category of conilpotent
coalgebras C endowed with a Lie coalgebra morphism C −→ L such that the
composition k −→ C −→ L vanishes. Indeed, there is a morphism of Lie coalgebras
C(L) −→ L, since there is a natural L-comodule structure on every left C(L)-co-
module, and in particular, on the left comodule C(L). Conversely, a morphism
C −→ L with the above properties defines a functor assigning to a left C-comod-
ule M a conilpotent L-comodule structure on the same vector space M, hence
a left C(L)-comodule structure on M; this induces a coalgebra morphism C −→
C(L). Since the category of finite-dimensional conilpotent L-comodules is a tensor
category with duality, the coalgebra C(L) acquires a Hopf algebra structure.

Let h be the compact Lie algebra dual to L; then the pairing φ : C(L) ×
U(h) −→ k is nondegenerate in C, since the morphism C(L) −→ L factorizes
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through the quotient coalgebra of C(L) by the kernel of φ, so a nonzero kernel
would be contradict the universality property.

Let M be a conilpotent C-comodule; set C = C(L) and C+ = C/ imk. Then
the natural surjective morphism from the reduced cobar complex

M −−→ C+ ⊗k M −−→ C+ ⊗k C+ ⊗k M −−→ · · ·
computing CotorC(k,M) � ExtC(k,M) onto the cohomological Chevalley complex

M −−→ L⊗k M −−→ ∧2
k L⊗k M −−→ · · ·

is a quasi-isomorphism. It suffices to check this for a finite-dimensional Lie coal-
gebra L dual to a finite-dimensional nilpotent Lie algebra h; essentially, one has
to show that the fully faithful functor from the category of nilpotent h-modules to
the category of arbitrary h-modules induces isomorphisms on the Ext spaces. This
well-known fact can be proven by induction on the dimension of h using the Serre–
Hochschild spectral sequences for both types of cohomology under consideration.
The key step is to check that for a Lie subcoalgebra E ⊂ L the C(L/E)-comodule
C(L) is injective and the E-comodule C(E) is the comodule of L/E-invariants in
the L-comodule C(L); it suffices to consider the case when L/E is one-dimensional.

D.6.2 Let g be a Tate Lie algebra and h ⊂ g be a compact open Lie subalgebra.
Assume that h is pronilpotent and the discrete h-module g/h is nilpotent. Then
the conilpotent coalgebra C = C(h∨) coacts continuously in g, making (g,C) a Tate
Harish-Chandra pair. Let k −→ g′ −→ g be a central extension of Tate Lie algebras
endowed with a splitting over h; then there are a Tate Harish-Chandra pair (g′,C)
and a central extension of Tate Harish-Chandra pairs κ : (g′,C) −→ (g,C) with
the kernel k. Denote by κ0 : (g∼,C) −→ (g,C) the canonical central extension. Set
Sl

κ
= Sl

κ
(g,C) � Sr

κ+κ0
(g,C) = Sr

κ+κ0
.

Theorem.

(a) Let N• be a complex of right Sr
κ+κ0

-semimodules and M• be a complex of
left Sl

κ
-semimodules; in other words, N• is a complex of Harish-Chandra

modules with the central charge −κ − κ0 and M• is a complex of Harish-
Chandra modules with the central charge κ over (g,C).

Then the total complex of the semi-infinite homological bicomplex
Ch
∞/2+•(g, N• ⊗k M•) constructed by taking infinite direct sums along the

diagonals represents the object SemiTorSl
κ (N•,M•) in the derived category

of k-vector spaces. Here the tensor product N• ⊗k M• is a complex of
Harish-Chandra modules with the central charge −κ0.

(b) Let M• be a complex of left Sl
κ
-semimodules and P• be a complex of

left Sr
κ+κ0

-semicontramodules; in other words, M• is a complex of Ha-
rish-Chandra modules with the central charge κ and P• is a complex of
Harish-Chandra contramodules with the central charge κ + κ0 over (g,C).
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Then the total complex of the semi-infinite cohomological bicomplex
C
∞/2+•
h (g, Homk(M•,P•)) constructed by taking infinite products along the

diagonals represents the object SemiExtSl
κ

(M•,P•) in the derived category
of k-vector spaces. Here Homk(M•,P•) is a complex of Harish-Chandra con-
tramodules with the central charge κ0.

Proof. Part (a): set Sl−κ0
� S = Sr0. Consider the semi-infinite homological com-

plex Ch
∞/2+•(g,S) of the g∼-module S with the discrete g∼-module structure orig-

inating from the left Sl−κ0
-semimodule structure. The complex Ch

∞/2+•(g,S) is
a complex of right Sr0-semimodules. Let us check that it is a semiflat complex
naturally isomorphic to the semimodule k in the semiderived category of right
Sr0-semimodules.

Let FiS denote the increasing filtration of the semialgebra S introduced
in D.3.1. Set

Fi
(∧∞/2

h (g)
)

=
∧i
k(g) ∧∧∞/2

h (h).

Denote by F the induced filtration of the tensor product Ch
∞/2+•(g,S) =

∧∞/2
h (g) ⊗k S; this is an increasing filtration of the complex of right Sr0-semi-

modules Ch
∞/2+•(g,S) by subcomplexes of right C-comodules. The complex

grFC
h
∞+•(g,S) can be identified with the total complex of the cohomological

Chevalley bicomplex
∧
k(h
∨)⊗k

∧
k(g/h)⊗k Symk(g/h)⊗k C

of the complex of h∨-comodules
∧
k(g/h)⊗kSymk(g/h)⊗kC obtained as the tensor

product of the Koszul complex
∧
k(g/h) ⊗k Symk(g/h) with the coaction of h∨

induced by the coaction in g/h and the left C-comodule C with the induced h∨-co-
module structure. It follows that the cone of the injection F0C

h
∞/2+•(g,S) −→

Ch
∞/2+•(g,S) is a coacyclic complex of right C-comodules.

The complex F0C
h
∞/2+•(g,S) is naturally isomorphic to the cohomological

Chevalley complex
∧
k(h
∨)⊗kC; it is a complex of right C-comodules bounded from

below and endowed with a quasi-isomorphism of complexes of right C-comodules
k −→ F0C

h
∞/2+•(g,S). Let us check that the right Sr0-semimodule structure on

H0C
h
∞/2+•(g,S) � k corresponds to the trivial g-module structure. The unit ele-

ment of this homology group can be represented by the cycle λ⊗1 ∈ Ch
∞/2+0(g,S),

where λ denotes the unit element of k � ∧∞/2+0
h (h) ⊂ ∧∞/2+0

h (g) and 1 ∈ C ⊂ S

is the unit (coaugmentation) element of C. Then for any z ∈ g one has (λ⊗ 1)z =
λ⊗ (1⊗U(h) z) = λ⊗ (b̃(z(0))⊗U(h) s(z(−1))) = d∞/2((z(0) ∧ λ)⊗ s(z(−1))), where
z denotes the image of z in g/h and b̃ : g/h −→ g∼ is the section correspond-
ing to any section b : g/h −→ g. The second equation holds, since the elements
1⊗U(h) z and b̃(z(0))⊗U(h) s(z(−1)) of F1S have the same images in F1S/F0S and
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are both annihilated by the left action of h and the map δl
b̃

= δrb . To check the
third equation, one can use the supercommutation relation [d, e(y)op] = l(y) for
y ∈ g.

Now let τ�0C∞/2+•(g,S) denote the quotient complex of canonical trunca-
tion of the complex of right Sr0-semimodules Ch

∞/2+•(g,S) concentrated in the
nonnegative cohomological (nonpositive homological) degrees; then there are nat-
ural morphisms of complexes of right Sr0-semimodules

k −−→ τ�0C
h
∞/2+•(g,S) ←−− Ch

∞/2+•(g,S)

with C-coacyclic cones. Indeed, recall that any acyclic complex bounded from
below is coacyclic. The embedding F0C

h
∞/2+•(g,S) −→ Ch

∞/2+•(g,S) has a

C-coacyclic cone, as has the composition F0C
h
∞/2+•(g,S) −→ Ch

∞/2+•(g,S) −→
τ�0C

h
∞/2+•(g,S), so the cone of the map Ch

∞/2+•(g,S) −→ τ�0C
h
∞/2+•(g,S) is

also C-coacyclic.
For any complex of left Sl−κ0

-semimodules K•, the semitensor product
Ch
∞/2+•(g,S)♦S K• is naturally isomorphic to the total complex of the bicomplex

Ch
∞/2+•(g,K

•), constructed by taking infinite direct sums along the diagonals.

Consider the increasing filtration of the total complex of Ch
∞/2+•(g,K

•) =
∧∞/2

h (g) ⊗k K• induced by the above filtration F of
∧∞/2

h (g). The associated
graded quotient complex of this filtration can be identified with the total complex
of the cohomological Chevalley bicomplex

∧
k(h
∨)⊗k

∧
k(g/h)⊗k K•

of the tensor product of the graded h∨-comodule
∧
k(g/h) and the complex K• with

the h∨-comodule structure induced by the left C-comodule structure. It follows that
the complex Ch

∞/2+•(g,S) ♦S K• is acyclic whenever a complex of left Sl−κ0
-semi-

modules K• is C-coacyclic, so the complex of right Sr0-semimodules Ch
∞/2+•(g,S)

is semiflat.
The tensor product Ch

∞/2+•(g,S) ⊗k N• of the complex of Harish-Chandra

modules Ch
∞/2+•(g,S) with central charge 0 and the complex of Harish-Chandra

modules N• with central charge −κ − κ0 is a complex of Harish-Chandra mod-
ules with the central charge −κ − κ0. This complex of right Sr

κ+κ0
-semimodules

is semiflat and naturally isomorphic to N• in the semiderived category of right
Sr

κ+κ0
-semimodules. The latter is clear, and to check the former, notice the iso-

morphisms of Lemma D.4.4(a)

(Ch
∞/2+•(g,S)⊗k N•) ♦Sl

κ

L• � (Ch
∞/2+•(g,S)⊗k N• ⊗k L•)g,h

� Ch
∞/2+•(g,S) ♦Sr

0
(N• ⊗k L•)
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for any complex of left Sl
κ
-semimodules L•. Now the object SemiTorSl

κ (N•,M•)
is represented by the complex

(Ch
∞/2+•(g,S)⊗k N•) ♦Sl

κ

M• � Ch
∞/2+•(g,S) ♦Sr

0
(N• ⊗k M•)

� Ch
∞/2+•(g, N• ⊗k M•)

in the derived category of k-vector spaces.
Another way to identify SemiTorSl

κ (N•,M•) with Ch
∞/2+•(g, N• ⊗k M•)

is to consider the semiflat complex of left Sl
κ
-semimodules Ch

∞/2+•(g,S) ⊗k M•

naturally isomorphic to M• in the semiderived category of left Sl
κ
-semimodules.

To check that these two identifications coincide, represent the images of N• and
M• in the semiderived categories of semimodules by arbitrary semiflat complexes.
The proof of part (b) is completely analogous. �
Question. Can one obtain the semi-infinite homology of arbitrary discrete modules
over a Tate Lie algebra with a fixed compact open subalgebra (rather than only
Harish-Chandra modules under the nilpotency conditions) as a kind of double-
sided derived functor of the functor of semiinvariants on an appropriate exotic
derived category of discrete modules? Notice that the cohomology of the Cheval-
ley complex M −→ L ⊗k M −→ ∧2

k L ⊗k M −→ · · · for a comodule M over a
Lie coalgebra L is indeed the right derived functor of the functor of L-invariants
on the abelian category of L-comodules, since the category of L-comodules has
enough injectives and the cohomology of the Chevalley complex is an effaceable
cohomological functor. The former holds since the category of discrete modules
over a compact Lie algebra h = L∨ has exact functors of filtered inductive limits
preserved by the forgetful functor to the category of k-vector spaces, and the dis-
crete h-modules U(h)⊗U(a) k induced from trivial modules over open subalgebras
a ⊂ h form a set of generators, so the forgetful functor even has a right adjoint.
To check the latter, one can represent cocycles in the cohomological Chevalley
complex by discrete h-module morphisms into M from the relative homological
complexes · · · −→ ∧2

k(h/a) ⊗U(a) Uh −→ h/a ⊗U(a) U(h) −→ U(h), which are
quotient complexes of the Chevalley homological complex of the h-module U(h)
and finite discrete h-module resolutions of the trivial h-module k. Furthermore,
the semiderived category of discrete modules over a Tate Lie algebra g, defined as
the quotient category of the homotopy category of discrete g-modules by the thick
subcategory of complexes coacyclic as complexes of discrete h-modules, does not
depend on the choice of an open compact subalgebra h ⊂ g. This can be demon-
strated by considering the tensor product over k of the above relative homological
complex with a complex of discrete h-modules coacyclic over a. Notice that in the
above proof we have essentially shown that the semi-infinite homology is a functor
on the semiderived category of discrete g-modules.

D.6.3 We keep the assumptions and notation of D.6.2, and also use the no-
tation of Corollary D.3.1. The following result makes use of the semimodule-
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semicontramodule correspondence in order to express the semi-infinite homology
and cohomology in terms of compositions of one-sided derived functors.

Corollary.

(a) Let M• be a complex of Harish-Chandra modules with the central charge κ

and P• be a complex of Harish-Chandra contramodules with the central
charge κ + κ0 over (g,C). Then the semi-infinite cohomological complex
C
∞/2+•
h (g,Homk(M•,P•)) represents the object

ExtSl
κ

(M•,LΦSr
κ+κ0

(P•)) � ExtSr
κ+κ0 (RΨSl

κ

(M•),P•)

in the derived category of k-vector spaces.
(b) Let M• be a complex of Harish-Chandra modules with the central charge κ

and N• be a complex of Harish-Chandra modules with the central charge −κ−
κ0 over (g,C). Then the semi-infinite homological complex Ch

∞/2+•(g, N•⊗k
M•) represents the object

CtrtorSr
κ+κ0 (N•,RΨSl

κ

(M•)) � CtrtorSr
−κ (M•,RΨSl

−κ−κ0
(N•))

in the derived category of k-vector spaces.

Proof. This follows from Theorem D.6.2 and Corollary 6.6. �
Remark. Set Sl0 = S � Sr

κ0
and consider the complex of left S-semimodules

R• = S ⊗k
∧h
∞/2+•(g). This is a semiprojective complex of semiprojective left

S-semimodules isomorphic to the trivial S-semimodule k in Dsi(S-simod). Assume
that the pronilpotent Lie algebra h is infinite-dimensional (cf. 0.2.7). Then the
complex of left S-semicontramodules ΨS(R•) is acyclic. Indeed, it suffices to check
that the complex of left C-contramodules obtained by applying the functor ΨC

to the cohomological Chevalley complex C ⊗k
∧
k(h
∨) is acyclic; one can reduce

this problem to the case of an abelian Lie algebra by considering the decreasing
filtration h ⊃ [h, h] ⊃ [h, [h, h]] ⊃ · · · on h and the induced increasing filtrations
on h∨ and C. The complex ΨS(R•) is also a projective complex of projective left
S-semicontramodules (see Remark 6.5 and Section 9.2); it can be thought of as
the “projective S-semicontramodule resolution of a (nonexistent) one-dimensional
left S-semicontramodule placed in the degree +∞”. It is a complex over Octr

κ0
(g,C).

For any complex of right S-semimodules N•, the contratensor product complex
N•�SΨS(R•) computes the semi-infinite homology of g with coefficients in N•. For
any complex of left S-semicontramodules P•, the complex of semicontramodule
homomorphisms HomS(ΨS(R•),P•) computes the semi-infinite cohomology of g
with coefficients in P•. (Cf. [84, Subsection 3.11.4].)





E Groups with Open
Profinite Subgroups

To a locally compact totally disconnected topological group G and a commutative
ring k one associates a family of left and right semiprojective Morita equivalent
semialgebras S = Sk(G,H) numbered by open profinite subgroups H ⊂ G. As
explained in 8.4.5, Morita equivalences of semialgebras do not have to preserve
the semiderived categories or the derived functors SemiTor and SemiExt, and this
is indeed the case here: SemiTorS and SemiExtS depend very essentially on H .
For a complex of smooth G-modules N• over k and a complex of k-flat smooth
G-modulesM• over k, we show that SemiTorSk(G,H)(N•,M•) only depends on the
complex of smooth G-modules N• ⊗kM•, and analogously for SemiExtSk(G,H).

When k is a field of zero characteristic, one can climb one step higher and
assign to a “good enough” group object G in the category of ind-pro-topological
spaces with a subgroup object H belonging to the category of pro-topological
groups a coring object in the tensor category of representations of H ×H in pro-
vector spaces over k. So there is a functor of cotensor product [45] on certain
categories of representations of central extensions of G; it has a double-sided de-
rived functor ProCotor.

E.1 Morita equivalent semialgebras

E.1.1 In the sequel, all topological spaces and topological groups are presumed
to be locally compact and totally disconnected (see [20, II.4.4 and III.4.6]).

For a topological space X and an abelian group A, denote by A(X) the
abelian group of locally constant compactly supported A-valued functions on X .
For any proper map of topological spaces X −→ Y , the pull-back map A(Y ) −→
A(X) is defined. For any étale map (local homeomorphism) of topological spaces
X −→ Y , the push-forward map A(X) −→ A(Y ) is defined.

For any topological spacesX and Y and an abelian groupA, there is a natural
isomorphism A(X × Y ) � A(X)(Y ). For any topological space X , a commutative
ring k, and a k-module A, there is a natural isomorphism A(X) � A⊗k k(X).

For a topological space X and an abelian group A, denote by A[[X ]] the
abelian group of finitely-additive compactly supported A-valued measures defined
on the open-closed subsets of X . For any map of topological spaces X −→ Y , the
push-forward map A[[X ]] −→ A[[Y ]] is defined.

For any compact topological space X , a commutative ring k, and a k-module
A, there is a natural isomorphism A[[X ]] � Homk(k(X), A). When the space X is
discrete, we use the notation A[X ] instead of A[[X ]].
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E.1.2 Let H be a profinite group and k be a commutative ring. Then the module
of locally constant functions k(H) has a natural structure of coring over k where
the left and right actions of k coincide (or a “coalgebra over k” in the more
traditional terminology of [23]). This coring structure, which we denote by C =
Ck(H), is defined as follows. The counit map k(H) −→ k is the evaluation at
the unit element e ∈ H . The comultiplication map k(H) −→ k(H) ⊗k k(H) is
provided by the pull-back map k(H) −→ k(H ×H) induced by the multiplication
map H ×H −→ H together with the identification k(H ×H) � k(H)⊗k k(H).

Let G be a topological group andH ⊂ G be an open profinite subgroup. Then
the module of locally constant compactly supported functions k(G) has a natural
structure of semialgebra over the coring Ck(H). This semialgebra structure, which
we denote by S = Sk(G,H), is defined as follows. The bicoaction map

k(G) −−→ k(H)⊗k k(G)⊗k k(H) � k(H ×G×H)

is the pull-back map induced by the multiplication map H × G ×H −→ G. The
semiunit map k(H) −→ k(G) is the push-forward map induced by the injection
H −→ G. Denote by G×H G the quotient space of the Cartesian square G×G by
the equivalence relation (g′h, g′′) ∼ (g′, hg′′) for g′, g′′ ∈ G and h ∈ H . The pull-
back map k(G×H G) −→ k(G×G) induced by the natural surjection G×G −→
G×H G identifies k(G×H G) with the cotensor product

k(G) �C(H) k(G) ⊂ k(G)⊗k k(G) � k(G×G).

The semimultiplication map k(G) �C k(G) −→ k(G) is the push-forward map
induced by the multiplication map G×H G −→ G.

The involutions k(H) −→ k(H) and k(G) −→ k(G) induced by the inverse
element maps H −→ H and G −→ G provide the isomorphism of semialgebras
Sk(G,H)op � Sk(G,H) compatible with the isomorphism of corings Ck(H)op �
Ck(H) over k (in the notation of C.2.7).

Now let H1, H2 ⊂ G be two open profinite subgroups of G. Then the k-mod-
ule k(G) = Sk(G,H1) has a natural left Sk(G,H1)-semimodule structure and
at the same time k(G) = Sk(G,H2) has a natural right Sk(G,H2)-semimodule
structure. Obviously, these two semimodule structures commute; we denote this bi-
semimodule structure on k(G) by Sk(G,H1, H2). For any three open profinite sub-
groups H1, H2, H3 ⊂ G, there is a natural isomorphism Sk(G,H1, H2) ♦Sk(G,H2)

Sk(G,H2, H3) � Sk(G,H2) ♦Sk(G,H2) Sk(G,H2) � Sk(G,H2) � Sk(G,H1, H3);
this is an isomorphism of Sk(G,H1)-Sk(G,H3)-bisemimodules.

One can check that k(H) is a projective k-module. Clearly, Sk(G,H) is a
coprojective left and right Ck(H)-comodule. So the pair

(Sk(G,H1, H2), Sk(G,H2, H1))

is a left and right semiprojective Morita equivalence between the semialgebras
Sk(G,H1) and Sk(G,H2).
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E.1.3 The semialgebra Sk(G,H) can be also obtained by the construction
of 10.2.1.

Denote by k[H ] and k[G] the group k-algebras of the groupsH and G consid-
ered as groups without any topology. There is a pairing φ : Ck(H)⊗k k[H ] −→ k
satisfying the conditions of 10.1.2, given by the formula (c, h) �−→ c(h−1) for any
c ∈ k(H) and h ∈ H . The induced functor ∆φ : comod-Ck(H) −→ mod-k[H ] is
fully faithful; its image is described as follows.

A module M over a topological group G is called smooth (discrete), if the
action map G × M −→ M is continuous with respect to the discrete topology
of M ; equivalently, M is smooth if the stabilizer of every its element is an open
subgroup in G. The functor ∆φ identifies the category of right Ck(H)-comodules
with the category of smooth H-modules over k.

The tensor product Ck(H)⊗k[H] k[G] is a smooth G-module with respect to
the action of G by right multiplications, so it becomes a semialgebra over Ck(H).
This semialgebra can be identified with Sk(G,H) by the formula (c⊗g) �−→ (g′ �−→
c(g′g−1)), where a locally constant function c : H −→ k is presumed to be extended
to G by zero. By the result of 10.2.2, the category of right Sk(G,H)-semimodules
is isomorphic to the category of smooth G-modules over k.

One also obtains the following description of the category of left Sk(G,H)-
semicontramodules. For a topological group G and a commutative ring k, a
G-contramodule over k is a k-module P endowed with a k-linear map P [[G]] −→ P
satisfying the following conditions. First, the point measure supported in the
unit element e ∈ G and corresponding to an element p ∈ P should map to the
element p. Second, the composition P [[G × G]] −→ P [[G]][[G]] −→ P of the
natural map

P [[G×G]] −−→ P [[G]][[G]]

and the iterated contraaction map P [[G]][[G]] −→ P [[G]] −→ P should be equal
to the composition P [[G×G]] −→ P [[G]] −→ P of the push-forward map P [[G×
G]] −→ P [[G]] induced by the multiplication map G×G −→ G and the contraac-
tion map P [[G]] −→ P . The images of the point measures under the contraaction
map define the forgetful functor from the category of G-contramodules over k to
the category of (nontopological) G-modules over k.

The category of left Sk(G,H)-semicontramodules is isomorphic to the
category of G-contramodules over k. Indeed, the result of 10.2.2 describes left
Sk(G,H)-semicontramodules as vector spaces endowed with compatible struc-
tures of a left Ck(H)-contramodule and a left k[G]-module, or equivalently, a
left H-contramodule and a left G-module over k. One checks that such a pair of
compatible structures can be extended to a G-contramodule structure in a unique
way.

E.1.4 For any smooth G-module M over k and any k-module E there is a natural
G-contramodule structure on the space of k-linear maps Homk(M,E). The con-
traaction map Homk(M,E)[[G]] −→ Homk(M,E) is constructed as the projective
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limit over all open subgroups U ⊂ G of the compositions

Homk(M,E)[[G]] −−→ Homk(M,E)[G/U ] −−→ Homk(MU , E)

of the maps Homk(M,E)[[G]] −→ Homk(M,E)[G/U ] induced by the surjections
G −→ G/U and the maps Homk(M,E)[G/U ] −→ Homk(MU , E) induced by the
action maps G/U ×MU −→M , where MU denotes the k-submodule of U -invari-
ants in M and G/U is the set of all left cosets of G modulo U .

More generally, let G1 and G2 be topological groups. Then for any smooth
G1-moduleM over k andG2-contramodule P over k there is a naturalG1×G2-con-
tramodule structure on Homk(M,P ) with the contraaction map

Homk(M,P )[[G1 ×G2]] −→ Homk(M,P )

defined as either of the compositions

Homk(M,P )[[G1 ×G2]] −→ Homk(M,P )[[G1]][[G2]]
−→ Homk(M,P )[[G2]] −→ Homk(M,P )

or
Homk(M,P )[[G1 ×G2]] −→ Homk(M,P )[[G2]][[G1]]

−→ Homk(M,P )[[G1]] −→ Homk(M,P ),

where the G1-contraaction map Homk(M,P )[[G1]] −→ Homk(M,P ) is defined
above and the G2-contraaction map Homk(M,P )[[G2]] −→ Homk(M,P ) is con-
structed as the composition

Homk(M,P )[[G2]] −−→ Homk(M,P [[G2]]) −−→ Homk(M,P ).

Hence for any smooth G-module M over k and any G-contramodule P over k there
is a natural G-contramodule structure on Homk(M,P ) induced by the diagonal
map of topological groups G −→ G×G.

E.2 Semiinvariants and semicontrainvariants

E.2.1 Let G be a topological group and H ⊂ G be an open profinite subgroup.
For a smooth H-module M over k, let IndGHM denote the induced G-module
k[G] ⊗k[H] M . For any smooth G-module N over k we will construct a pair of
maps

(IndGH N)H ⇒ NH ,

where the superindex H denotes the k-submodule of H-invariants. Namely, the
first map (IndGH N)H −→ NH is obtained by applying the functor of H-invariants
to the map (IndGH N) −→ N given by the formula g⊗n �−→ g(n). The second map
(IndGH N)H −→ NH only depends on the H-module structure on N .
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To define this second map, identify the induced representation IndGH N with
the k-module of all compactly supported functions G −→ N transforming the right
action of H in G into the action of H in N ; this identification assigns to a function
g �−→ ng the formal linear combination

∑
g∈G/H g ⊗ ng, where G/H denotes the

set of all left cosets of G modulo H . An H-invariant element of IndGH N is then
represented by a compactly supported function G −→ N denoted by g �−→ ng
and satisfying the equations ngh = h−1(ng) and nhg = ng for g ∈ G, h ∈ H .
The second map (IndGH N)H −→ NH sends a function g �−→ ng to the element∑
g∈H\G ng ∈ N , where H\G denotes the set of all right cosets of G modulo H .

The cokernel NG,H of this pair of maps (IndGH N)H ⇒ NH is called the
module of (G,H)-semiinvariants of a smooth G-module N . The (G,H)-semiin-
variants are a mixture of H-invariants and coinvariants along G relative to H .

E.2.2 For an H-contramodule Q over k, let CoindGH(Q) denote the coinduced
G-contramodule Homk[H](k[G], Q) � CohomCk(H)(Sk(G,H), Q). For any G-con-
tramodule P over k we will construct a pair of maps

PH ⇒ CoindGH(P )H ,

where the subindex H denotes the k-module of H-coinvariants, i.e., the maximal
quotient H-contramodule with the trivial contraaction. Namely, the first map
PH −→ CoindGH(P )H is obtained by applying the functor of H-coinvariants to
the (semicontraaction) map P −→ CoindGH(P ) given by the formula p �−→ (g �−→
g(p)).

The second map PH −→ CoindGH(P )H only depends on the H-contramodule
structure on P . It is given by the formula p �−→ ∑

g∈G/H g ∗ p for p ∈ P , where
g∗p : k[G] −→ P is the k[H ]-linear map defined by the rules hg �−→ h(p) for h ∈ H
and g′ �−→ 0 for all g′ ∈ G not belonging to the right cosetHg. Clearly, the infinite
sum over G/H converges element-wise on k[G] for any choice of representatives
of the left cosets; its image in the module of coinvariants does not depend on this
choice and is determined by the image of p in PH .

The kernel PG,H of this pair of maps PH ⇒ CoindGH(P )H is called the module
of (G,H)-semicontrainvariants of a G-contramodule P . The (G,H)-semicontra-
invariants are a mixture of H-coinvariants and invariants along G relative to H .

E.2.3 Denote by χ : G −→ Q
∗ the modular character of G, i.e., the character

with which G acts by left shifts on the one-dimensional Q-vector space of Qχ

of right invariant Q-valued measures defined on the open compact subsets of G.
Equivalently, χ(g) is equal to the ratio of the number of left cosets contained in
the double coset HgH to the number of right cosets contained in it. Whenever the
commutative ring k contains Q, there is a natural isomorphism

NG,H � (N ⊗Q Qχ)G

for any smooth G-module N over k, where the subindex G denotes the k-module
of G-coinvariants.
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Indeed, the composition MH −→ M −→ MH is an isomorphism for any
smooth H-module M over k, so in particular there are isomorphisms NH � NH
and (IndGH N)H −→ (IndGH)H . These isomorphisms transform the above pair of
maps (IndGH N)H ⇒ NH into the pair of maps (IndGH N)H ⇒ NH given by the
formulas g ⊗ n �−→ g(n) and g ⊗ n �−→ χ−1(g)n.

E.2.4 For any G-contramodule P over k denote by PG the k-module of G-in-
variants in P defined as the submodule of all p ∈ P such that for any measure
m ∈ k[[G]] the image of the measure pm ∈ P [[G]] under the contraaction map
P [[G]] −→ P is equal to the value m(G) of m at G.

Assuming that the commutative ring k contains Q, the composition QH −→
Q −→ QH is an isomorphism for any H-contramodule Q over k, as one can show
using the action of the Haar measure of the profinite group H in the contra-
module Q. One can also use the Haar measure to check that QH is the maximal
subcontramodule of Q with the trivial contraaction of H , and it follows that PG

is the maximal subcontramodule of P with the trivial contraaction of G, under
our assumption. Finally, when k ⊃ Q there is a natural isomorphism

PG,H � HomQ(Qχ, P )G.

E.2.5 Let N be a left Sk(G,H)-semimodule and M be a right Sk(G,H)-semi-
module; in other words, N and M are smooth G-modules over k. Then there is a
natural isomorphism

N ♦Sk(G,H) M � (N ⊗kM)G,H ,

where N ⊗k M is considered as a smooth G-module over k. Here the semitensor
product is well defined by Proposition 1.2.5(f).

Indeed, there is an obvious isomorphism N �Ck(H) M � (N ⊗k M)H . The
k-module N�Ck(H)Sk(G,H)�Ck(H)M can be identified with the module of locally
constant compactly supported functions f : G −→ N⊗kM satisfying the equations
f(hg) = hf(g) and f(gh) = f(g)h for g ∈ G, h ∈ H , where (g, a) �−→ ga and
(a, g) �−→ ag denote the actions of G in N ⊗k M induced by the actions in N
and M , respectively. At the same time, the k-module (IndGH(N ⊗k M))H can
be identified with the module of locally constant compactly supported functions
f ′ : G −→ N ⊗kM satisfying the equations f(hg) = f(g) and f(gh) = h−1f(g)h.
The formula f ′(g) = g−1f(g) defines an isomorphism between these two k-mod-
ules transforming the pair of maps whose cokernel is N ♦Sk(G,H) M into the pair
of maps whose cokernel is (N ⊗kM)G,H .

E.2.6 Let M be a left Sk(G,H)-semimodule and P be a left Sk(G,H)-semicon-
tramodule. Then there is a natural isomorphism

SemiHomSk(G,H)(M,P ) � Homk(M,P )G,H ,

where Homk(M,P ) is considered as a G-contramodule over k and the semihomo-
morphism module is well defined by Proposition 3.2.5(j).
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Indeed, the quotient modules CohomCk(H)(M,P ) and Homk(M,P )H of the
k-module Homk(M,P ) coincide. There are two commuting contraactions of G in
Homk(M,P ) induced by the smooth action inM and the contraaction in P ; denote
these contraaction maps by πM and πP , and the corresponding actions of G in
Homk(M,P ) by (g, x) �−→ gM (x) and (g, x) �−→ gP (x).

The k-module CohomCk(H)(Sk(G,H) �Ck(H) M, P ) can be identified with
the quotient module of the module of all finitely-additive measures defined on
compact open subsets of G and taking values in Homk(M,P ) by the submodule
generated by measures of the form

U �−→ πM (W �→ µ(U ×W−1)) − µ({(g, h) | gh ∈ U})
and

U �−→ πP (W �→ ν(U ×W )) − ν({(h, g) | hg ∈ U}),
where µ and ν are finitely-additive measures defined on compact open subsets of
G×H and H×G, respectively, and taking values in Homk(M,P ). Here U denotes
a compact open subset of G and W is an open-closed subset of H ; by W−1 we
denote the (pre)image of W under the inverse element map.

At the same time, the k-module CoindGH(Homk(M,P ))H can be identified
with the quotient module of the same module of measures on G by the submodule
generated by measures of the form

U �−→ µ′(U ×H) − µ′({(g, h) | gh ∈ U})
and

U �−→ πP (W2 �→ πM (W1 �→ ν′((W1 ∩W2)× U))) − ν′({(h, g) | hg ∈ U}),

where µ′ and ν′ are finitely-additive measures defined on compact open subsets of
G×H and H ×G, respectively, and taking values in Homk(M,P ). Here W1 and
W2 denote open-closed subsets of H . The formulas

m′(U) = πM (V �−→ m(U ∩ V −1)) and m(U) = πM (V �−→ m′(U ∩ V )),

where V denotes an open-closed subset of G, define an isomorphism between these
two quotient spaces of measures.

The pair of maps

CohomCk(H)(M,P ) ⇒ CohomCk(H)(Sk(G,H) �Ck(H) M, P )

whose kernel is SemiHomSk(G,H)(M,P ) is given by the rules

x �−→
∑

g∈G/H g
−1
M (x)δg and x �−→

∑

g∈H\G gP (x)δg,

where yδg denotes the Homk(M,P )-valued measure defined on compact open sub-
sets of G that is supported in the point g ∈ G and corresponds to an element
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y ∈ Homk(M,P ). The pair of maps Homk(M,P )H ⇒ CoindGH(Homk(M,P ))H
whose kernel is Homk(M,P )G,H is given by the rules x �−→ ∑

g∈G/H xδg and
x �−→ ∑

g∈H\G gP gM (x)δg . The above isomorphism between two quotient spaces
of measures transforms one of these two pairs of maps into the other.

E.2.7 Let H1 ⊂ H2 be two open profinite subgroups of a topological group G and
N be a smooth G-module over k. Then, at least, in the following two situations
there is a natural isomorphism NG,H1 � NG,H2 : when N as a G-module is induced
from a smoothH1-module over k, and whenN as anH2-module over k is coinduced
from a module over the trivial subgroup {e} (i.e., N is a coinduced Ck(H2)-co-
module).

These isomorphisms are constructed as follows. In the first case, one shows
that the triple semitensor product N ♦Sk(G,H1) Sk(G,H1, H2) ♦Sk(G,H2) k is asso-
ciative in the sense that the conclusion of Proposition 1.4.4 applies to it.

In the second case, one shows that the triple semitensor product N ♦Sk(G,H2)

Sk(G,H2, H1) ♦Sk(G,H1) k is associative in the similar sense. In both cases, the
argument is analogous to that of Proposition 1.4.4.

E.2.8 Let H1 ⊂ H2 be two open profinite subgroups of G and P be a G-contra-
module over k. Then, at least, in the following two situations there is a natural
isomorphism PG,H1 � PG,H2 : when P is coinduced from an H1-contramodule
over k, and when P as an H2-contramodule over k is induced from a contramodule
over the trival subgroup {e} (i.e., P is an induced Ck(H2)-contramodule).

E.3 SemiTor and SemiExt

E.3.1 Assume that the ring k has a finite weak homological dimension. Then for
any complexes of smooth G-modules N• and M• over k the object SemiTorSk(G,H)

(N•,M•) in the derived category of k-modules is defined. Furthermore, whenever
either N• or M• is a complex of k-flat smooth G-modules over k there is a natural
isomorphism

SemiTorSk(G,H)(N•,M•) � SemiTorSk(G,H)(N• ⊗kM•, k)

in D(k-mod).
Indeed, assume that M• is a complex of flat k-modules. If N• is a semiflat

complex of right Sk(G,H)-semimodules, then so is the tensor product N•⊗kM•,
since (N•⊗kM•)♦Sk(G,H) L

• � (N•⊗kM•⊗k L•)G,H � N•♦Sk(G,H) (M•⊗k L•)
for any complex of smooth G-modules L• over k, and the complex of left Ck(H)-co-
modulesM•⊗kL• is coacyclic whenever the complex of left Ck(H)-comodules L• is.
It remains to use the natural isomorphism N• ♦Sk(G,H) M

• � (N• ⊗kM•)G,H .

E.3.2 Let k′ → k be a morphism of commutative rings of finite weak homological
dimension. Then for any complex of smooth G-modules N• over k the image of the
object SemiTorSk(G,H)(N•, k) under the restriction of scalars functor D(k-mod)→
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D(k′-mod) is naturally isomorphic to the object SemiTorSk′(G,H)(N•, k′). This
follows from Corollary 8.3.3(a). In this sense, the object SemiTorSk(G,H)(N•, k)
does not depend essentially on k, but only on G, H , and N•. The cohomology
k-modules of the complex

SemiTorSk(G,H)(N•, k)

are called the semi-infinite homology of G relative to H with coefficients in N•.

Remark. When G is a discrete group, H = {e} is the trivial subgroup, and N

is a G-module over k, the cohomology of the object SemiTorSk(G,{e})(k,N) co-
incides with the discrete group homology H∗(G,N) and is concentrated in the
nonpositive cohomological degrees. When G is a profinite group, H = G is the
whole group, and N is a smooth (discrete) G-module over k, the cohomology of
SemiTorSk(G,G)(k,N) coincides with the profinite group cohomology H∗(G,N)
and is concentrated in the nonnegative cohomological degrees. More generally,
when G = G1 × G2 is the product of a discrete group G1 and a profinite group
G2, H = G2 ⊂ G, k is a field, and N = N1 ⊗k N2 is the tensor product of
a G1-module and a smooth G2-module, the cohomology of SemiTorSk(G,H)(k,N)
is isomorphic to the tensor product H∗(G1, N1) ⊗k H∗(G2, N2). Applying these
observations to the case of a finite group G, one can see that the semi-infinite
homology of a topological group G does depend essentially on the choice of an
open profinite subgroup H ⊂ G.

E.3.3 Assume that the ring k has a finite homological dimension. Then for any
complex of smooth G-modules M• over k and any complex of G-contramodules P •

over k the object SemiExtSk(G,H)(M•, P •) in the derived category of k-modules
is defined. Furthermore, whenever either M• is a complex of projective k-modules
or P • is a complex of injective k-modules there is a natural isomorphism

SemiExtSk(G,H)(M•, P •) � SemiExtSk(G,H)(k,Homk(M•, P •))

in D(k-mod).

E.3.4 Let k′ −→ k be a morphism of commutative rings of finite homological di-
mension. Then for any complex of G-contramodules P • over k the image of the ob-
ject SemiExtSk(G,H)(k, P •) under the restriction of scalars functor D(k-mod) −→
D(k′-mod) is naturally isomorphic to the object SemiExtSk′ (G,H)(k′, P •). The co-
homology k-modules of the complex

SemiExtSk(G,H)(k, P •)

are called the semi-infinite cohomology of G relative to H with coefficients in P •.
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E.4 Remarks on the Gaitsgory–Kazhdan construction

This section contains some comments on the papers [44, 45].

E.4.1 Let G be a topological group and k be a field of characteristic 0. Then the
category of discrete G×G-modules over k has a tensor category structure with the
tensor product of two modules K ′ ⊗G K ′′ defined as the module of coinvariants
of the action of G in K ′ ⊗k K ′′ induced by the action of the second copy of G in
K ′ and the action of the first copy of G in K ′′. The category of discrete G-mod-
ules over k has structures of a left and a right module category over this tensor
category; and the functor

(N,M) �−→ N ⊗GM = (N ⊗kM)G

defines a pairing between these two module categories taking values in the category
of k-vector spaces. A finitely-additive k-valued measure defined on compact open
subsets of G is called smooth if it is equal to the product of a locally constant
k-valued function on G and a (left or right invariant) Haar measure on G. The
G × G-module A(G) of compactly supported smooth k-valued measures on G is
the unit object of the above tensor category.

Notice that the G×G-module A(G) has a natural k-algebra structure, given
by the convolution of measures. However, this algebra has no unit and the category
of (left or right) modules over it contains the category of smooth G-modules over k
as a proper full subcategory.

E.4.2 For any category C, denote by Pro C and Ind C the categories of pro-objects
and ind-objects in C. Let Setfin denote the category of finite sets. We will identify
the category of compact topological spaces with the category Pro Setfin, the cate-
gory of (discrete) sets with the category Ind Setfin, and the category of topological
spaces with a full subcategory of the category Ind Pro Setfin formed by the inductive
systems of profinite sets and their open embeddings. In addition, we will consider
the category Ind Pro Setfin as a full subcategory in Pro Ind Pro Setfin and the latter
category as a full subcategory in IndPro Ind Pro Setfin. All of these categories have
symmetric monoidal structures coming from the Cartesian product of sets in Setfin.

Let H be a group object in Pro Ind Pro Setfin such that H can be represented
by a projective system of topological groups in Ind Pro Setfin and open surjective
morphisms between them. A representation of H in k-vect is just a smooth G-mod-
ule over k, where G is a quotient group object of H that is a topological group in
IndPro Setfin. The category Repk(H) of representations of H in Pro(k-vect), defined
in [44], is equivalent to the category of pro-objects in the category of representa-
tions of H in k-vect. So the category Repk(H × H) has a natural tensor category
structure with the unit object A(H) given by the projective system formed by the
modules A(G) of smooth compactly supported measures on topological groups
G that are quotient groups of H and the push-forward maps between the spaces
of measures. The category Repk(H) is a left and a right module category over
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this tensor category, and there is a pairing between these left and right module
categories taking values in Pro(k-vect).

E.4.3 Let G be a group object in Ind Pro IndPro Setfin and let H ⊂ G be a sub-
group object which belongs to Pro Ind Pro Setfin. Assume that the object G is given
by an inductive system of objects Gα ∈ Pro Ind Pro Setfin and the group object H

is given by a projective system of its quotient group objects H/Hi ∈ Ind Pro Setfin

satisfying the following conditions. It is convenient to assume that G0 = H = H
0

is the initial object in the inductive system of Gα and the final object in the pro-
jective system of H

i. As the notation suggests, H
i are normal subgroup objects of

H. The group object H acts in Gα in a way compatible with the action of H in
G by right multiplications. The quotient objects Gα/H

i are topological spaces in
IndPro Setfin. The morphisms Gα/H

i −→ Gβ/H
i are closed embeddings of topo-

logical spaces; the morphisms Gα/H
i −→ Gα/H

j are principal H
i/Hj-bundles.

Finally, the quotient objects Gα/H are compact topological spaces, i.e., belong to
Pro Setfin ⊂ Ind Pro Setfin.

Let G
′ be a group object in Ind Pro IndPro Setfin endowed with a central sub-

group object identified with the multiplicative group k∗, which is considered as a
discrete topological group, that is a group object in Ind Setfin ⊂ Pro Ind Pro Setfin.
Suppose that the quotient group object G

′/k∗ is identified with G and the central
extension G

′ −→ G is endowed with a splitting over H, i.e., H is a subgroup object
in G

′. Moreover, denote by G
′
α of the preimages of Gα in G

′ and assume that the
morphisms G

′
α/H

i −→ Gα/H
i are principal k∗-bundles of topological spaces in

IndPro Setfin.

E.4.4 One example of such a group G
′ is provided by the canonical central ex-

tension G
∼ of the group G with the kernel k∗, which is constructed as follows. For

each α let us choose i such that Ad
G

−1
α

(Hi) ⊂ H and j such that AdGα(Hj) ⊂ H
i.

For any topological group G denote by µ(G) the one-dimensional vector space of
left invariant finitely-additive k-valued Haar measures defined on compact open
subsets of G. An element of the topological space G

∼
α /H is a pair consisting of an

element of g ∈ Gα/H and an isomorphism

µ(Hi/Adg(Hj)) � µ(Hi/Hj).

The topology on G
∼
α /H is defined by the condition that the following set of sections

of the k∗-torsor G
∼
α/H −→ Gα/H consists of continuous maps. Choosem such that

Ad
G

−1
α

(Hm) ⊂ H
j, a compact open subset U in the quotient group H

i/Hm, and
an element a ∈ k∗; for each g ∈ Gα/H define the isomorphism µ(Hi/Adg(Hj)) �
µ(Hi/Hj) so that the left-invariant measure on H

i/Adg(Hj) for which the measure
of the image of U is equal to 1 corresponds to the left-invariant measure on H

i/Hj

for which the measure of the image of U is equal to a. The ratio of any two such
sections is a locally constant function. Now the object G

∼
α of Pro IndPro Setfin is

the fibered product of G
∼
α/H and Gα over Gα/H; it is easy to define the group

structure on G
∼ (one should first check that the construction of G

∼
α/H does not

depend on the choice of H
i and H

j).
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E.4.5 Let c′ : G
′ −→ G be a central extension satisfying the above conditions.

Denote by Repc′(G) the category of representations of G
′ in Pro(k-vect) in which

the central subgroup k∗ ⊂ G
′ acts tautologically by automorphisms proportional

to the identity, as defined in [44]. Then the forgetful functor Repc′(G) −→ Rep(H)
admits a right adjoint functor, which can be described as the functor of tensor
product over H with a certain representation of G

′×H in Pro(k-vect). The under-
lying pro-vector space of this representation, denoted by Cc′(G,H), is the space of
“pro-semimeasures on G relative to H on the level c′”; it is given by the projective
system formed by the vector spaces

kc′(Gα/H
i)⊗k µ(H/Hi),

where the first factor is the space of locally constant compactly supported functions
on G

′
α/H

i which transform by the tautological character under the action of k∗.
The morphism in this projective system corresponding to a change of α is the pull-
back map with respect to a closed embedding, while the morphism corresponding
to a change of i is the map of integration along the fibers of a principal bundle.
Hence the representation Cc′(G,H) considered as an object of the tensor category
Rep(H × H) is endowed with a structure of coring (with a counit Cc′(G,H) −→
A(H)), and it follows from Theorem 7.4.1 that the category Repc′(G) is equivalent
to the category of left comodules over Cc′(G,H) in Rep(H).

Now let c′′ : G
′′ −→ G be the central extension satisfying the same conditions

and complementary to c′, i.e., the Baer sum c′ + c′′ is identified with minus the
canonical central extension c0 : G

∼ −→ G. Gaitsgory and Kazhdan noticed that
one can extend the right action of H in Cc′(G,H) to an action of G

′′ commuting
with the left action of G

′, with the central subgroup k∗ of G
′′ acting tautologically.

Moreover, in [45] there is a construction of a natural anti-isomorphism of corings

Cc′(G,H) � Cc′′(G,H)

permuting the left and right actions of G
′ and G

′′. Thus the category Repc′′(G) is
equivalent to the category of right comodules over Cc′(G,H) in Rep(H).

E.4.6 So there is the functor of cotensor product

�Cc′ (G,H) : Repc′′(G)× Repc′(G) −−→ Pro(k-vect),

which is called “semi-invariants” in [45]. This functor is neither left, nor right exact
in general. One can construct its double-sided derived functor in a way analogous
to that of Remark 2.7, at least when the set of indices i is countable.

The semiderived category Dsi(Repc′(G)) is defined as the quotient category of
the homotopy category Hot(Repc′(G)) by the thick subcategory of complexes that
are contraacyclic as complexes over the abelian category Rep(H). Then Lemma 2.7
allows us to define the double-sided derived functor

ProCotorCc′(G,H) : Dsi(Repc′′(G))× Dsi(Repc′(G)) −−→ D(Pro(k-vect))
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in terms of coflat complexes in Hot(Repc′′(G)) and Hot(Repc′(G)). The key step is
to construct for any object of Repc′(G) a surjective map onto it from an object of
Repc′(G) that is flat as a representation of H. This construction is dual to that of
Lemma 1.3.3; it is based on the fact that any module over a topological group G
induced from the trivial module k over a compact open subgroup H ⊂ G is flat
with respect to the tensor product of discrete G-modules over k.

Question. Can the cotensor product N �Cc′(G,H) M of an object N ∈ Repc′′(G)
and an object M ∈ Repc′(G) be recovered from the tensor product N ⊗p

k M in
the category of pro-vector spaces, considered as a representation of G

∼ with the
diagonal action?





F Algebraic Groupoids with
Closed Subgroupoids

To any smooth affine groupoid (M,H) one can associate a coring C(H) over a ring
A(M) and a natural left and right coflat Morita autoequivalence (E,E∨) of C(H);
it has the form

C(H)⊗A(M) E � E � E ⊗A(M) C(H)
and

E∨ ⊗A(M) C(H) � E∨ � C(H)⊗A(M) E
∨,

where (E,E∨) is a certain pair of mutually inverse invertible A(M)-modules. To
any groupoid (M,G) containing (M,H) as a closed subgroupoid, one can assign
two opposite semialgebras Sl(G,H) and Sr(G,H) over C(H) together with a nat-
ural left and right semiflat Morita equivalence (E,E∨) between them formed by
the bisemimodules

Sl(G,H) �C(H) E � E � E �C(H) Sr(G,H)
and

E∨ �C(H) Sl(G,H) � E∨ � Sr(G,H) �C(H) E∨.

To obtain these results, we will have to assume the existence of a quotient vari-
ety G/H .

In this appendix, by a variety we mean a smooth algebraic variety (smooth
separated scheme) over a fixed ground field k of zero characteristic. The structure
sheaf of a variety X is denoted by O = OX and the sheaf of differential top forms
by Ω = ΩX ; for any invertible sheaf L over X , its tensor powers are denoted by Ln

for n ∈ Z.

F.1 Coring associated to affine groupoid

A (smooth) groupoid (M,G) is a set of data consisting of two varieties M and
G, two smooth morphisms s, t : G ⇒ M of source and target, a unit morphism
e : M −→ G, a multiplication morphism m : G ×M G −→ G (where the first
factor G in the fibered product G ×M G maps to M by the morphism s and the
second factor G maps to M by the morphism t), and an inverse element morphism
i : G −→ G. The following equations should be satisfied: first, se = idM = te and
m(e × idG) = idG = m(idG×e) (unity); second, tm = tp1, sm = sp2, and
m(m × idG) = m(idG×m), where p1 and p2 denote the canonical projections
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of the fibered product G ×M G to the first and the second factors, respectively
(associativity); third, si = t, ti = s, m(i× idG)∆t = es, and m(idG×i)∆s = et,
where ∆s and ∆t denote the diagonal embeddings of G into the fibered squares
of G over M with respect to the morphisms s and t, respectively (inverseness). It
follows from these equations that i2 = idG.

A groupoid (M,H) is said to be affine if M and H are affine varieties. In the
sequel (M,H) denotes an affine groupoid; its structure morphisms are denoted by
the same letters s, t, e, m, i.

Let A = A(M) = O(M) and C = C(H) = O(H) be the rings of functions on
M and H , respectively. The maps of source and target s, t : H ⇒ M induce two
maps of rings A ⇒ C, which endow C with two structures of A-module; we will
consider the A-module structure on C coming from the morphism t as a left module
structure and the A-module structure on C coming from the morphism s as a right
module structure. Then there is a natural isomorphism O(H ×M H) � C ⊗A C,
hence the multiplication morphism m : H×M H −→ H induces a comultiplication
map C −→ C ⊗A C. Besides, the unit map e : M −→ H induces a counit map
C −→ A. It follows from the associativity and unity equations of the groupoid
(M,H) that these comultiplication and counit maps are morphisms of A-A-bi-
modules satisfying the coassociativity and counity equations; so C is a coring
over A. Clearly, C is a coflat left and right A-module.

F.2 Canonical Morita autoequivalence

Consider the invertible sheaf

V = VH = ΩH ⊗ s∗(Ω−1
M )⊗ t∗(Ω−1

M )

onH . Let q1 and q2 denote the canonical projections of the fibered productH×MH
to the first and the second factors, respectively. Then there are natural isomor-
phisms

q∗1(V ) � m∗(V ) � q∗2(V )

of invertible sheaves on H ×M H . Indeed, one has q∗1(ΩH) � ΩH×MH ⊗ q∗2(Ω−1
H )⊗

q∗2t
∗(ΩM ) and m∗(ΩH) � ΩH×MH ⊗ q∗2(Ω−1

H ) ⊗ q∗2s∗(ΩM ). Now denote by U the
invertible sheaf

e∗ΩH ⊗ Ω−2
M

on M . Applying the functors of inverse image with respect to the morphisms
e× idH , idH ×e : H ⇒ H ×M H to the above isomorphisms, one obtains natural
isomorphisms of invertible sheaves

t∗U � V � s∗U.

Set E = V (H) and E∨ = V −1(H). Then E and E∨ are C-modules, and
consequently A-A-bimodules. The pull-back map V (H) −→ m∗(V )(H ×M H)
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with respect to the multiplication morphism m together with the isomorphisms

m∗(V )(H ×M H) � q∗1(V )(H ×M H) � E⊗A C

and m∗(V )(H ×M H) � q∗2(V )(H ×M H) � C ⊗A E defines the right and left
coactions of C in E. It follows from the associativity equation of H that these
coactions commute; so E is a C-C-bicomodule. Analogously one defines a C-C-bi-
module structure on E∨. Set E = U(M) and E∨ = U−1(M); then there are natural
isomorphisms of C-comodules C⊗AE � E � E⊗AC and E∨⊗AC � E∨ � C⊗AE∨.
These isomorphisms have the property that two maps E � C ⊗A E −→ E and
E � E ⊗A C −→ E induced by the counit map C −→ A coincide, and analogously
for E∨. Besides, there are obvious isomorphisms E ⊗A E∨ � A � E∨ ⊗A E.

It follows that E �C E∨ � (E ⊗A C) �C (C ⊗A E∨) � E ⊗A C ⊗A E∨ � C,
and analogously E∨ �C E � C. So the pair (E,E∨) is a left and right coflat Morita
equivalence (see 7.5) between C and itself. Since the bicomodules E and E∨ can be
expressed in the above form in terms of the A-modules E and E∨, it follows that
there are natural isomorphisms of corings

E ⊗A C⊗A E∨ � C � E∨ ⊗A C⊗A E.

F.3 Distributions and generalized sections

Let X ⊃ Z be a variety with a (smooth) closed subvariety and L be a locally
constant sheaf on X . The sheaf LZ of generalized sections of L, supported in Z
and regular along Z, can be defined as the image of L with respect to the d-th
right derived functor of the functor assigning to any quasi-coherent sheaf on X
its maximal subsheaf supported set-theoretically in Z, where d = dimX − dimZ.
The sheaf LZ is a quasi-coherent sheaf on X supported set-theoretically in Z.

There is a natural isomorphism LZ � L ⊗OX OZX . The sheaf ΩZX can be
alternatively defined as the direct image of the constant right module ΩZ over
the sheaf of differential operators DiffZ under the closed embedding Z −→ X
(see [14]); this makes ΩZX not only an OX -module, but even a DiffX -module. The
sheaf ΩZX is called the sheaf of distributions on X , supported in Z and regular
along Z.

Let g : Y −→ X be a morphism of varieties and Z ⊂ X be a closed subvariety.
Assume that the fibered product Z ×X Y is smooth and dimY − dimZ ×X Y =
dimX − dimZ if Z ×X Y is nonempty. Then there is a natural isomorphism
g∗(LZ) � (g∗L)Z×XY of quasi-coherent sheaves on Y . In particular, there is a
natural pull-back map of the modules of global generalized sections

g+ : LZ(X) −−→ (g∗L)Z×XY (Y ).

Let h : W −→ X be a morphism of varieties and Z ⊂W be a closed subvari-
ety such that the composition Z −→ W −→ X is also a closed embedding. Then
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there is a natural push-forward map h∗(ΩZW ) −→ ΩZX of quasi-coherent sheaves
on X . Consequently, for any locally constant sheaves L′ on X and L′′ on W en-
dowed with an isomorphism L′′ ⊗ Ω−1

W � h∗(L′ ⊗ Ω−1
X ) there is a push-forward

map h∗(L′′Z) −→ L′Z . In particular, there is a natural push-forward map of the
modules of generalized sections

h+ : L′′Z(W ) −−→ L′Z(X).

Let g : Y −→ X and h : W −→ X be morphisms of varieties satisfying the
above conditions with respect to a closed subvariety Z ⊂W . Assume also that the
fibered product W ×X Y is smooth and dimW ×X Y +dimX = dimW +dimY if
W ×X Y is nonempty. Set g̃ = idW ×g : W ×X Y −→W and h̃ = h× idY : W ×X
Y −→ Y . Then there is a natural isomorphism of invertible sheaves

g̃∗ΩW ⊗ Ω−1
W×XY

� h̃∗(g∗ΩX ⊗ Ω−1
Y )

on W ×X Y , as one can see by decomposing g and h into closed embeddings fol-
lowed by smooth morphisms. For any quasi-coherent sheaf F on W supported set-
theoretically in Z there is a natural isomorphism h̃∗g̃∗F � g∗h∗F of quasi-coherent
sheaves on W ×X Y . The push-forward maps of the sheaves of distributions with
respect to the morphisms h and h̃ are compatible with the pull-back isomorphisms
with respect to g and g̃ in the obvious sense.

The sheaf of generalized sections LZ of a locally constant sheaf L on a variety
X ⊃ Z is endowed with a natural increasing filtration by coherent subsheaves
FnL

Z of generalized sections of order no greater than n. This filtration is preserved
by all the above natural isomorphisms and maps. The associated graded sheaf
grFΩZX is the direct image under our closed embedding ι : Z −→ X of a sheaf
of OZ-modules naturally isomorphic to the tensor product ΩZ ⊗OZ SymOZ

NZ,X ,
where NZ,X is the normal bundle to Z in X and Sym denotes the symmetric
algebra.

In particular, there is a natural isomorphism λ0 : ι∗ΩZ −→ F0ΩZX . Further-
more, there is a natural map of sheaves of k-vector spaces λ1 : ι∗ΩZ ⊗OX TX −→
F1ΩZX which induces the isomorphism ι∗(ΩZ ⊗OZ NZ,X) � F1ΩZX/F0ΩZX , where
T = TX denotes the tangent bundle of X . The map λ1 satisfies the equation

λ1(fω ⊗ v) = λ1(ω ⊗ fv) = fλ1(ω ⊗ v)− λ0(v(f)ω)

for local sections f ∈ OX , ω ∈ ΩZ , and v ∈ TX , where (v, f) �−→ v(f) denotes
the action of vector fields in functions.

F.4 Lie algebroid of a groupoid

A Lie algebroid g over a commutative ring A is an A-module endowed with a Lie
algebra structure and a Lie action of g by derivations of A satisfying the equations
[x, ay] = a[x, y] + x(a)y and (ax)(b) = a(x(b)) for a, b ∈ A, x, y ∈ g. The
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enveloping algebra UA(g) of a Lie algebroid g over A is generated by A and g with
the relations a ·b = ab, a ·x = ax, x ·a = ax+x(a), and x ·y−y ·x = [x, y], where
(u, v) �−→ u ·v denotes the multiplication in UA(g). The algebra UA(g) is endowed
with a natural increasing filtration FnUA(g) defined by the rules F0UA(g) = imA,
F1UA(g) = imA + im g, and FnUA(g) = F1UA(g)n for n � 1. When g is a flat
A-module, the associated graded algebra grFUA(g) is isomorphic to the symmetric
algebra SymA(g) of the A-module g.

Let (M,G) be a groupoid with an affine base variety M ; set A = A(M) =
O(M). Then the A-module g = Ne(M),G(M) has a natural Lie algebroid struc-
ture. To define the action of g in A, consider the A-module (e∗TG)(M) of vec-
tor fields on e(M) tangent to G. There are natural push-forward morphisms s+,
t+ : (e∗TG)(M) ⇒ T (M). Identify g with the kernel of the morphism t+; then the
action of g in A is defined in terms of the map s+ : g −→ T (M). To define the
Lie algebra structure on g, we will embed g into a certain module of generalized
sections on G, supported in e(M) and regular along e(M).

Set
K l(G) = (t∗Ω−1

M ⊗ ΩG)e(M)(G);

this module of generalized sections is endowed with a natural filtration F . The
O(G)-module structure on K l(G) induces an A-A-bimodule structure; as in F.1,
we consider the A-module structure coming from the morphism t as a left A-mod-
ule structure and the A-module structure coming from the morphism s as a
right A-module structure. There is a natural isomorphism of A-A-bimodules A �
F0K

l(G). Define a k-linear map of sheaves

e∗Ne(M),G −−→ (t∗Ω−1
M ⊗ ΩG)e(M)

locally by the formula v �−→ t∗ω−1 ⊗ λ1(ω ⊗ v), where v is a local vector field on
e(M) tangent to G such that t∗(v) = 0 and ω is a local nonvanishing top form
on M ; it is easy to show that this expression does not depend on the choice of ω.
Passing to the global sections, we obtain an injective map g −→ F1K

l(G) inducing
an isomorphism g � F1K

l(G)/F0K
l(G). This injective map and the A-A-bimod-

ule structure satisfy the compatibility equations a · x = ax and x · a = x(a) + ax
for x ∈ g ⊂ F1K

l(G) and a ∈ A, where (a, x) �−→ ax denotes the action of A in g,
while (a, u) �−→ a · u and (u, a) �−→ u · a denote the left and right actions of A in
F1K

l(G).
Let us define a k-algebra structure on K l(G). There is a natural isomorphism

of invertible sheaves on G×M G,

p∗1(t
∗Ω−1

M ⊗ ΩG)⊗ p∗2(t∗Ω−1
M ⊗ ΩG) � p∗1t

∗Ω−1
M ⊗ ΩG×MG.

The pull-back with respect to the closed embedding G ×M G −→ G ×Speck G
provides an isomorphism

(p∗1t
∗Ω−1

M ⊗ ΩG×MG)(e×e)(M)(G×M G) � K l(G)⊗A K l(G),
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and the push-forward with respect to the multiplication map G ×M G −→ G
defines an associative multiplication K l(G)⊗AK l(G) −→ K l(G). The associated
graded algebra grFK l(G) is naturally isomorphic to SymA F1K

l(G)/F0K
l(G).

The formula (u, a) �−→ t+(s+(a)u) defines a left action ofK l(G) in A; the subspace
g in F1K

l(G) is characterized as the annihilator of the unit element of A under
this action. Hence g is a Lie subalgebra of K l(G); this makes it a Lie algebra and
a Lie algebroid over A. It follows that there is a natural isomorphism

UA(g) � K l(G).

Analogously one defines an algebra structure on the A-A-bimodule of gener-
alized sections

Kr(G) = (s∗Ω−1
M ⊗ ΩG)e(M)(G);

then there is a natural isomorphism of k-algebras UA(g)op � Kr(G).

F.5 Two Morita equivalent semialgebras

Let (M,H) −→ (M,G) be a morphism of smooth groupoids with the same base
variety M such that the groupoid H is affine and the morphism of varieties H −→
G is a closed embedding. Denote by h = Ne(M),H(M) the Lie algebroid of the
groupoid H ; then there is a natural injective morphism h −→ g of Lie algebroids
over A(M).

There is a natural pairing

φl : K l(H)⊗A C −−→ A, φl(u, c) = t+(i+(c)u)

between the algebraK l(H) and the coring C satisfying the conditions of 10.1.2 with
the left and right sides switched. The push-forward with respect to the closed em-
bedding H −→ G defines an injective morphism of k-algebras K l(H) −→ K l(G);
this is the enveloping algebra morphism induced by the morphism of Lie algebroids
h −→ g. Since h and g/h are projective A-modules, K l(G) is a projective left and
right K l(H)-module. Set

Sl = Sl(G,H) = K l(G)⊗Kl(H) C

we will use the construction of 10.2.1 to endow Sl with a structure of semialgebra
over C.

Consider the cotensor product Sl �C E � K l(G)⊗Kl(H) E. Denote by p1 and
q2 the projections of the fibered product G ×M H to the first and the second
factors. There is a natural isomorphism

p∗1(t
∗Ω−1

M ⊗ ΩG)⊗ q∗2(VH) � p∗1t
∗Ω−1

M ⊗ ΩG×MH ⊗ q∗2s∗Ω−1
M

of invertible sheaves on G ×M H , where VH = ΩH ⊗ s∗(Ω−1
M ) ⊗ t∗(Ω−1

M ) is the
invertible sheaf on H defined in F.2. The pull-back with respect to the closed
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embedding G ×M H −→ G ×Speck H identifies the tensor product K l(G) ⊗A E

with the module of generalized sections

(p∗1t
∗Ω−1

M ⊗ ΩG×MH ⊗ q∗2s∗Ω−1
M )e(M)×MH(G×M H).

The push-forward with respect to the multiplication morphism G ×M H −→ G
defines a natural map K l(G) ⊗A E −→ E, where E = V HG (G) is the space of
generalized sections of the invertible sheaf

VG = ΩG ⊗ s∗(Ω−1
M )⊗ t∗(Ω−1

M )

on G. It follows from the associativity equation for the two iterated multiplication
maps G×M H ×M H ⇒ G that this map factorizes through K l(G)⊗Kl(H) E. The
induced map

K l(G)⊗Kl(H) E −−→ E

is an isomorphism, since the associated graded map with respect to the filtra-
tions F is.

Denote by q1 and p2 the projections of the fibered productH×MG to the first
and second factors. One constructs a natural isomorphism m∗(VG) � p∗2(VG) of
invertible sheaves onH×MG in the same way as in F.2. The pull-back with respect
to the multiplication map m : H ×M G −→ G together with this isomorphism
provide a left coaction of C in E. Analogously one defines a right coaction of C

in E; it follows from the associativity equation for H ×M G×M H ⇒ G that these
two coactions commute. We have Sl�C E � E, thus the isomorphism Sl � E�C E∨

provides a left coaction of C in Sl commuting with the natural right coaction of
C in Sl.

Since the natural map E −→ E provided by the push-forward with respect
to the closed embedding H −→ G is a morphism of C-C-bicomodules, so is the
semiunit map C −→ Sl. It remains to show that the semimultiplication map Sl�C

Sl −→ Sl is a morphism of left C-comodules; here it suffices to check that the map
Sl �C Sl �C E −→ Sl �C E is a morphism of left C-comodules. After we have done
with this verification, the latter map will define a left Sl-semimodule structure
on E.

Analogously, define the pairing

φr : C⊗A Kr(H) −−→ A, φr(c, u) = s+(i+(c)u)

and set
Sr = Sr(G,H) = C⊗Kr(H) K

r(G).

The same construction makes Sr a semialgebra over C and E a right Sr-semimod-
ule. We will have to check that the left Sl-semimodule and the right Sr-semimodule
structures on E commute.

After this is done, we get an Sl-Sr-bisemimodule

Sl �C E � E � E �C Sr,
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where both the maps E ⇒ E induced by the semiunit maps C −→ Sl and C −→ Sr

coincide with the push-forward map V (H) −→ V HG (G) under the closed embedding
H −→ G. The isomorphisms E∨�CSl � E∨�CSl�CE�CE∨ � E∨�CE�CSr�CE∨ �
Sr �C E∨ define an Sr-Sl-bisemimodule

E∨ �C Sl = E∨ � Sr �C E∨

endowed with bisemimodule isomorphisms E♦Sr E∨ � (E�C Sr)♦Sr (Sr �C E∨) �
E�C Sr �C E∨ � Sl and E∨♦Sl E � (E∨�C Sl)♦Sl (Sl�C E) � E∨�C Sl�C E � Sr.
This provides a left and right semiflat Morita equivalence (E,E∨) between the
semialgebras Sl and Sr, and isomorphisms of semialgebras

Sr � E∨ �C Sl �C E and Sl � E �C Sr �C E∨.

(See 8.4.5 and 8.4.1 for the relevant definition and construction.)

F.6 Compatibility verifications

In order to check that the map

Sl �C E � Sl �C Sl �C E −−→ Sl �C E � E

is a morphism of left C-comodules, we will identify this map with a certain push-
forward map of appropriate modules of generalized sections.

Here we will need to assume the existence of a variety of left cosets G/H such
that G −→ G/H is a smooth surjective morphism and the fibered squareG×G/HG
can be identified with G×MH so that the canonical projection maps G×G/HG ⇒
G correspond to the projection and multiplication maps p1, m : G×M H ⇒ G.

Actually, we are interested in the quotient variety G ×H G of G ×M G by
the equivalence relation (g′h, g′′) ∼ (g′, hg′′) for g′, g′′ ∈ G and h ∈ H ; it can be
constructed as either of the fibered products

H\G×M G � G×H G = G×M G/H,

where H\G denotes the variety of right cosets, H\G � G/H . Analogously one can
construct the quotient variety

G×H G×H G = G×M G×M G/{(g′h1, g
′′h2, g

′′′) ∼ (g′, h1g
′′, h2g

′′′)}
for g′, g′′, g′′′ ∈ G and h1, h2 ∈ H .

We have Sl �C E � E �C E∨ �C E. Consider the natural map

r : G×M H ×M G −−→ G×H G, (g′, h, g′′) �−→ (g′h, g′′) = (g′, hg′′).

Let p1, q2, p3 denote the projections of the triple fibered product G×M H ×M G
to the three factors and n : G ×H G −→ G denote the multiplication morphism.
There are natural isomorphisms

p∗1t
∗(Ω−1

M )⊗ ΩG×MH×MG ⊗ p∗3s∗(Ω−1
M ) � p∗1(VG)⊗ q∗2(ΩH)⊗ p∗3(VG)



F.6. Compatibility verifications 331

and therefore

r∗(n∗t∗Ω−1
M ⊗ ΩG×HG ⊗ n∗s∗Ω−1

M ) � p∗1(VG)⊗ q∗2(V −1
H )⊗ p∗3(VG)

of invertible sheaves on G×M H ×M G.
The pull-back with respect to the closed embedding

G×M H ×M G −−→ G×Speck H ×Speck G

provides an isomorphism

(p∗1VG ⊗ q∗2V −1
H ⊗ p∗3VG)H×MH×MH(G×M H ×M G) � E⊗A E∨ ⊗A E.

The pull-back with respect to the smooth morphism r identifies the module of
generalized sections

(n∗t∗Ω−1
M ⊗ ΩG×HG ⊗ n∗s∗Ω−1

M )H×
HH(G×H G)

with the submodule E �C E∨ �C E ⊂ E⊗A E∨ ⊗A E, as one can see by identifying
the tensor product E⊗A C⊗A E∨⊗A C⊗AE with a module of generalized sections
on the fibered square of G×M H ×M G over G×H G. Now our map

E �C E∨ �C E −−→ E

is identified with the push-forward map with respect to the multiplication mor-
phism n; to check this, one can first identify the map

K l(G)⊗A E −−→ K l(G)⊗Kl(H) E � E �C E∨ �C E

with a push-forward map with respect to the morphism G ×M G −→ G ×H G.
The desired compatibility with the left C-comodule structures now follows from
the commutation of the pull-back and push-forward maps of generalized sections.

To check that the left Sl-semimodule and the right Sr-semimodule structures
on E commute, one can identify Sl�CE�CSr with a module of generalized sections
on G×H G×HG and use the associativity equation for the iterated multiplication
maps

G×H G×H G ⇒ G×H G −→ G.
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Math. 243, Birkhäuser Boston, Boston, MA, 2006. arXiv:math.RT/0406282

[46] S.I. Gelfand, Yu.I. Manin. Methods of homological algebra. Translation from
the 1988 Russian original. Springer-Verlag, Berlin, 1996. Or: Second edition.
Springer-Verlag, 2003.



336 Bibliography

[47] G. Hochschild. Relative homological algebra. Trans. Amer. Math. Soc. 82,
#1, pp. 246–269, 1956.

[48] G. Hochschild. Note on algebraic Lie algebras. Proc. Amer. Math. Soc. 29,
#1, pp. 10–16, 1971.

[49] M. Hovey. Model categories. Mathematical Surveys and Monographs, 63.
AMS, Providence, RI, 1999.

[50] M. Hovey. Cotorsion pairs, model category structures, and representation
theory. Math. Zeitschrift 241, #3, pp. 553–592, 2002.

[51] M. Hovey. Cotorsion pairs and model categories. Contemporary Math. 436,
AMS, Providence, RI, 2007, pp. 277–296. arXiv:math.AT/0701161

[52] D. Husemoller, J.C. Moore, J. Stasheff. Differential homological algebra and
homogeneous spaces. Journ. Pure Appl. Algebra 5, #2, pp. 113–185, 1974.

[53] J.E. Humphreys. Representations of semisimple Lie algebras in the BGG cat-
egory O. Graduate Studies in Math. 94, AMS, Providence, RI, 2008.

[54] U. Jannsen. Continuous étale cohomology. Math. Annalen 280, #2, pp. 207–
245, 1988.

[55] P. Jørgensen. The homotopy category of complexes of projective modules.
Advances Math. 193, #1, pp. 223–232, 2005. arXiv:math.RA/0312088

[56] M. Kapranov. On DG-modules over the de Rham complex and the vanishing
cycles functor. Lect. Notes Math. 1479, 1991, pp. 57–86.

[57] M. Kapranov. Semi-infinite symmetric powers. Electronic preprint
arXiv:math.QA/0107089.

[58] M. Kapranov, E. Vasserot. Vertex algebras and the formal loop space. Publ.
Math. Inst. Hautes Études Sci. 100, pp. 209–269, 2004.
arXiv:math.AG/0107143

[59] M. Kapranov, E. Vasserot. Formal loops IV: Chiral differential operators.
Electronic preprint arXiv:math.AG/0612371 .

[60] B. Keller. Deriving DG-categories. Ann. Sci. École Norm. Sup. (4) 27, #1,
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1, #1, pp. 149–159, 1968.

[84] A. Voronov. Semi-infinite homological algebra. Inventiones Math. 113, #1,
pp. 103–146, 1993.

[85] C.E. Watts. Intrinsic characterizations of some additive functors. Proc. Amer.
Math. Soc. 11, #1, pp. 5–8, 1960.

[86] C.A. Weibel. An introduction to homological algebra. Cambridge Studies in
Advanced Mathematics, 38. Cambridge University Press, 1994.



Notation

Z – ring of rational integers

Q – field of rational numbers

k – commutative ring or field

k∨ – injective cogenerator of k-modules

R, S, K – noncommutative rings

A, B, F – associative k-algebras

M , N , L, P , E, U , . . . – modules

K, E – bimodules

g, h, a – Lie algebras

g, h – Lie algebroids

G, H – topological groups, (pro)alge- braic
groups, algebraic groupoids

G, H – groups in (ind-)pro-ind-pro-finite
sets, see E.4.2–E.4.3

U , V , W , E, . . . – vector spaces

M , X, Y , Z, . . . – algebraic varieties

E, L, U , V , . . . – vector bundles/locally
free sheaves

P , Q – contramodules over topological
rings/Lie algebras/groups

C, D, E, . . . – coalgebras or corings

L – Lie coalgebra

M, N, L, R, K, E, P, Q, J, U, Z, . . . –
comodules

K, E – bicomodules

P, Q, R, K, E, F, I, U, Z, . . . – contra-
modules over coalgebras or corings

S, T, R, . . . – semialgebras

K, E – bisemimodules

M, N, L, R, K, E, P, Q, F, J, U, Z, . . .
– semimodules

P, Q, R, K, E, F, I, U, Z, . . . – semicon-
tramodules

A, H, K, M, N, E, F, . . . – categories

Θ, Ξ, ∆, Γ, Σ, Π, Λ, . . . – functors

M•, M•, M•, . . . – complexes

D – double-sided derived functor

L – left derived functor

R – right derived functor

L1, L2, L3 – functorial partial left resolu-
tions, see 2.5, 2.6, 4.5, 4.6

R1, R2, R3 – functorial partial right reso-
lutions

C/A-, D/B-, S/C-, . . . – relatively

S/C/A-, T/D/B-, . . . – birelatively

HomR(L,M), HomRop(K,N) – left mod-
ule, right module homomorphisms

N �C M – cotensor product

CohomC(M,P) – cohomomorphisms

N �C P – contratensor product over coal-
gebra or coring

HomC(L,M), HomC(P,Q) – left comod-
ule, left contramodule homomorphisms

CotorC – right or double-sided derived
functor of �C, see 0.2.2, 1.2.2, 2.7

CoextC – left or double-sided derived func-
tor of CohomC , see 0.2.5, 3.2.2, 4.7

CtrtorC – left derived functor of �C,
see 0.2.8, 5.3, 5.5

ExtC – right derived functor of HomC

ExtC – right derived functor of HomC

N ♦S M – semitensor product

SemiHomS(M,P) – semihomomorphisms

N �S P – contratensor product over semi-
algebra

HomS(L,M), HomS(P,Q) – semimod-
ule, semicontramodule homomorphisms

SemiTorS – double-sided derived functor of
♦S , see 0.3.3, 2.7

SemiExtS – double-sided derived functor
of SemiHomS , see 0.3.6, 4.7

CtrTorS – left derived functor of �S ,
see 0.3.8, 6.5

ExtS – right derived functor of HomS

ExtS – right derived functor of HomS

ΦC(P) = C �C P, ΨC(M) = HomC(C,M)
– see 0.2.6, 5.1, 5.3

LΦC , RΨC – derived comodule-contramod-
ule correspondence functors, see 5.4

ΦS(P) = S�S P, ΨS(M) = HomS(S,M)
– see 0.3.7, 6.2
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LΦS , RΨS – derived semimodule-semi-
contramodule correspondence, see 6.3

ProCotorC – see 2.7, E.4.6

IndCoextC – see 4.7

M �−→ BM , M �−→ MB , P �−→ BP –
change-of-ring functors, see 7.1.2

N �−→ CN, N �−→ NC , Q �−→ CQ –
change-of-coring functors, see 7.1.2

M �−→ TM, M �−→ MT , P �−→ TP –
change-of-semialgebra functors,
see 8.1.2

C �−→ BCB, see 7.4.1, 7.5.1

T �−→ CTC , see 8.4.1

M• �−→ L

BM•, M• �−→ M•LB , P• �−→ B
R

P•

– derived push-forwards, see 7.3

N• �−→ R

CN•, N• �−→ N•RC , Q• �−→ C
L
Q• –

derived pull-backs, see 7.3

N• �−→ R

CN•, N• �−→ N•RC , Q• �−→ C
L
Q•

– derived pull-backs, see 8.3

M• �−→ L

TM•, M• �−→ M•L
T , P• �−→

T
R
P• – derived push-forwards, see 8.3

functors ∆φ, ∆φ – see 10.1.2

functors Γφ, Γφ – see 10.1.3

functors ∆φ,f , ∆φ,f – see 10.2.2

functors Γφ,f , Γφ,f – see 10.2.4

N ⊗C
B M, HomC

B(M,P) – semiproduct,
semimorphisms, see 10.4

IndG
H N , CoindG

H P – induced and coin-
duced representations, see E.2.1–E.2.2

Nh , NH – invariants

Ph , PH – coinvariants

Ng,h , Ng,H , NG,H – semiinvariants

P g,h , Pg,H , PG,H – semicontrainvariants

♦gr
S , SemiHomgr

S , HomS
gr, Φgr

S , . . . – graded
versions of functors, see 11.1.1, B.1.3

Σ, Π – forgetting-the-grading functors,
see 11.1.1

M• �−→ Ξ(M•), L �−→ Υ•(L) – derived
Koszul duality functors, see 11.8

Rop, Cop, Sop – opposite ring, coring,
semialgebra

Cop – opposite category

IndC, ProC – categories of ind-objects,
pro-objects

Hot – (unbounded) homotopy category

D – (unbounded) derived category

Acycl, Acyclco, Acyclctr – categories of
acyclic, coacyclic, contraacyclic
complexes

Dco, Dctr, Dsi – coderived, contraderived,
semiderived category

R-mod, mod-R, k-vect – categories of left,
right R-modules, k-vector spaces

C-comod, comod-C – categories of left,
right C-comodules

C-contra – category of left C-contramod-
ules

S-simod, simod-S – categories of left, right
S-semimodules

S-sicntr – category of left S-semicontra-
modules

D∼-qcmd, qcmd-D∼ – categories of left,
right quasi-differential D∼-comodules

D∼-qcntr – category of left quasi-differ-
ential D∼-contramodules

O(g,H), Oκ(g,C) – category of Harish-
Chandra modules

Octr
κ

(g,C) – category of Harish-Chandra
contramodules

k-vectgr, k-modgr, C-comodgr, C-contragr,
S-simodgr, S-sicntrgr, . . . – categories
of graded modules, comodules, contra-
modules, semimodules, etc., see 11.1

S-simod↑, simod↑-S, S-sicntr↓, C-comod↓,
C-contra↑, S-simod↓, S-sicntr↑, . . . –
categories of nonnegatively/nonpositiv-
ely graded modules, see 11.1.2 and B.3

Repk(H) – see E.4.2

Repc′(G) – see E.4.5

Setfin – category of finite sets

εC, µC, νM , πP – counit, comultiplication,
coaction, contraaction maps

e, m, n, p – semiunit, semimultipli-
cation, semiaction, semicontra-
action morphisms

c �−→ c(1) ⊗ c(2), x �−→ x(−1) ⊗ x(0),
x �−→ x[0] ⊗ x[1], l �−→ l{1} ⊗ l{2}, . . .
– Sweedler’s notation for comultiplica-
tions and coactions,
see [82, 1.2 and 2.0].

c �−→ s(c), x �−→ s(x) – antipode map
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ker(X → Y ), coker(X → Y ), cone(X• →
Y •) – kernel, cokernel, cone of map

im ∂, im k – image of map or set

id, idC , idG, . . . – identity endomorphism

Id – identity endofunctor

V �−→ V ∗ – dual vector space

V �−→ V ∨ – dual Tate vector space
∧

k(V ) – exterior (co)algebra

Symk(V ) – symmetric (co)algebra

det(W ) =
∧dim W

k (W ) – top forms
∧∞/2

E (V ) – semi-infinite forms

U(g) – enveloping algebra

Uκ (g) – modified for a central extension,
see D.2.2

UA(g) – enveloping algebra of Lie algebroid

C(L) = C(h∨) – conilpotent coenveloping
coalgebra, see D.6.1

End – endomorphisms

End(E) – bundle of endomorphisms of a
vector bundle

End(V ), gl(V ) – continuous endomor-
phisms of Tate vector space, see D.1.5

gl(V )∼, g∼ – canonical central extensions,
see D.1.6, D.1.8

Cl(V ⊕ V ∨) – Clifford algebra, see D.1.7

Cl(V ), see D.5.5

V ⊗∗ W , V ⊗! W , V
→⊗ W , V

←⊗ W –
topological tensor products

∧∗,i(V ),
∧s,i(V ),

∧!,i(V ) – topological
exterior powers, see D.2.6, D.5.3, D.5.5

V ⊗̂P – completed tensor product,
see D.2.6

U
κ̂

(g) – topological enveloping algebra,
see D.5.1

OX – structure sheaf/trivial bundle

ΩX – sheaf/bundle of top forms

Ω(M,E) – differential forms with coeffi-
cients in vector bundle E

DiffM – differential operators on M

DiffM,E – acting in the sections of E

TX – tangent bundle

NZ,X – normal bundle to Z in X

L(X) – global sections of a sheaf L on X

G×M G – fibered product

G×H G – see C.4.4, E.1.2, F.6

(E,E∨), (E,E∨), (E,E∨) – Morita mor-
phisms

A(M) – see F.1

C(H) – see C.4.1 and F.1

Ck(H) – see E.1.2

Sr, Sl – see C.1.2–C.1.3

Sl(g,H), Sr(g,H) – see C.4.2

Sr
κ
(g,C), Sl

κ
(g,C) – see D.2.2, D.2.4

Sk(G,H) – see E.1.2

Sr(G,H), Sl(G,H) – see F.5

A(G), A(H) – see E.4.1, E.4.2

Cc′(G,H) – see E.4.5

A(X), A[X], A[[X]] – functions and mea-
sures, see E.1.1

Adg – adjoint action of a group element g
in the group

LZ – sheaf of generalized sections of L sup-
ported in Z

g∗, h∗ – inverse, direct images of quasi-
coherent sheaves

g+, h+ – pull-back, push-forward of gener-
alized sections, see F.3

ψ# = ψ−1, see 10.3

R and R#, see B.1.2, B.2.2

C �−→ Css – maximal cosemisimple sub-
coalgebra, see A.2

Bar•gr(S,C), Cob•gr(D,C) – relative bar and
cobar constructions, see 11.4.1

FiX, GnX, . . . – increasing filtrations

V iX, GnX, . . . – decreasing filtrations

grFX – associated graded object to filtered
object (X,F )

H1 × H2 ��� K – partially defined functor
(well-defined on a full subcategory)

P(M) −→ M – see 1.1.3, 1.3.2

P −→ I(P) – see 3.1.3, 3.3.2

M −→ J(M) – see Lemma 9.1.2

F(P) −→ P – see Lemma 9.1.2

P(M) −→ M – see 1.3.2

P −→ I(P) – see 3.3.2

N −→ J(N) – see 1.3.3

F(P) −→ P – see 3.3.3

M −→ J(M) – see Lemma 9.2.2

F(L) −→ L – see Lemma 9.2.3

P+(M), I+(P), P+(M), . . . – see 2.5, 2.6
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adjoint functor existence theorem, 67, 139

antipode map, 247, 272

Barr–Beck theorem, 134

BGG category O, 276

bicoaction map, 12, 30

bicomodule, 11, 30

bimodule, 25

bisemiaction morphism, 36

bisemimodule, 36

of distributions, xxi, xxii, 259, 329

bisemimodules, complex of

strongly semiflat, 54

strongly semiprojective, 88

BRST construction, xii

CDG-coalgebra, xx, 196

Koszul, quadratic dual, 285

CDG-comodule, 216

CDG-contramodule, 216

CDG-coring, 195

CDG-module, 21

CDG-ring, 20

Koszul, 21

quadratic dual, 20

central charge, xi, xxi, 276, 281, 283, 303

change-of-connection element, 20

coaction map, 3, 25

coacyclic complex, 5, 39

of A-flat C-comodules, 129

of coflat comodules, 132

coalgebra, 3

analogue of, 236

conilpotent, 232, 302

coenveloping, 302

cohomology, 303

cosemisimple, 232

cosimple, 232

direct sum of, 233

quasi-differential/CDG, xx, 196

Koszul, quadratic dual, 286

related to (pro)algebraic group, xx,
258, 273

coalgebroid, xix

coassociativity equation, 3, 25

coderivation, 194

coderived category, xiii, 5, 40

of CDG-comodules, 11

of CDG-modules, xx, 23

of comodules, 5, 40

of exact category, 40

of quasi-differential comodules, xx, 215

“relative”, 41

cohomomorphisms, 7, 59

from bicomodule, 13, 63

triple/multiple, associativity, 13, 65

of complexes, 7, 77

of quasi-differential co/contramodules,
223

coinvariants, of contramodule, 262, 291,
313

comodule, 3, 25

CDG (curved DG), 216

coflat, 10, 28

complex of, 40, 43, 50

faithfully, 161

relatively, 28, 29

complex of, 51

cofree, 4

coinduced, 25, 90

coprojective, 10, 60, 94

complex of, 78, 84, 102, 169

faithfully, 162

relatively, 60, 96

complex of, 85

in k-modω, 50

injective, 4, 10, 91

complex of, 5, 101, 103

quite relatively, 90, 94, 137

complex of, 101, 104

relatively, 90, 95, 96, 172

complex of, 97, 100, 169
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Koszul, quadratic dual, 212

over Lie coalgebra, 272, 302

cohomology, 303, 306

conilpotent, 302

quasi-differential, 213

coacyclic, 215

Koszul, quadratic dual, 213

quasicoflat, 29, 92, 127, 137

quasicoprojective, 61, 94

comodules, complex of

coacyclic, 5, 40

coflat, 40, 43, 50

“coflat”, 6

coprojective, 78, 80, 84

injective, 242

compatible map

of CDG-corings, 195

of comodules, 125

of contramodules, 125

of corings, 125

of DG-corings, 194

of DG-semialgebras, 197

of filtered semialgebras, 209

of quasi-differential corings, 196, 209

of semialgebras, 143

of semicontramodules, 143

of semimodules, 143

comultiplication map, 3, 25

continuous coaction, 267

invariant subspace, 268

contra-Jacobi equation, 277, 279

contraaction map, 6, 57, 236, 277, 294,
311

contraacyclic complex, 7, 77

of A-injective C-contramodules, 129

contraassociativity equation, 6, 57

contraderived category, xiii, 7, 77

of CDG-contramodules, 11

of CDG-modules, xx, 23

of contramodules, 7, 78

over topological ring, 236

of exact category, 77

of pseudo-compact modules, 236

of quasi-differential contramodules, xx,
216

contramodule, xii, xvii, 6, 57

CDG (curved DG), 216

coinjective, 10, 60, 94

complex of, 78, 84, 102, 169

relatively, 60, 96

complex of, 85

complete in induced topology, 234

contraflat, 10, 91, 234

quite relatively, 91

relatively, 91

direct sum of, 6, 58, 230

finite-dimensional, 230

free, 6, 230

in k-modω, 85

induced, 58, 90

irreducible, 231

Koszul, quadratic dual, 213

nonseparated in induced topology, 230

over algebraic Harish-Chandra pair,
258

over coalgebra or coring, 6, 57

over ring, xvii, 57

over Tate Harish-Chandra pair, 281

over topological group, 311

over topological Lie algebra, 277

over topological ring, 235, 294

projective, 6, 10, 91

complex of, 7, 101, 103

quite relatively, 90, 94, 137

complex of, 101, 103

relatively, 90, 95, 96, 172

complex of, 98, 100, 169

quasi-differential, 216

contraacyclic, 216

Koszul, quadratic dual, 213

quasicoinjective, 61, 94

contramodules, complex of

coinjective, 78, 80, 84

contraacyclic, 7, 78

projective, 242

contratensor product, xix

over coalgebra or coring, 8, 89

of complexes, 10, 102

over semialgebra, 15, 107

of complexes, 17, 118
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over topological ring, 236

with bicomodule, associativity, 92

with bisemimodule, 109

associativity, 111

coring, 25

CDG (curved DG), 195

DG (differential graded), 194

flat as module, xix, 26, 27

graded, 193

in k-modω, 50

“contraprojectivity” condition, 85

Koszul, 201, 212

quadratic dual, 205

of pro-semimeasures, 320

opposite, 254

projective as module, 58

quasi-differential, xx, 195

Koszul, 208

quadratic dual, 212

related to affine groupoid, xxii, 324

related to noncomm. stack, xxii

related to profinite group, xxii, 310

cotensor product, 4, 27

of bicomodules, 12, 31

triple/multiple, associativity, xvi,
12, 31

of complexes, 4, 40

of quasi-differential comodules, 221

counit map, 3, 25

counity equation, 3, 6, 25, 57

curvature element, 20

de Rham (C)DG-algebra, xx, 23

derived category

conventional unbounded, xiii, 1, 5

exotic, xiii, xviii, 5, 8

bounded/t-structure, 77

existence, 41

mixed, xiii, xviii, 13, 14

of the first/second kind, 11

derived functor

absolute, xiii

balanced, 121

differential, 10, 221–225

double-sided, xiii, xvii, 48

of the first/second kind, 10

one-sided, xiii, 120

adjoint, 156

DG-category, 22, 44, 213, 216

differential operators, xx, 23, 135, 259,
325

“crystalline”, 24

distributions, xxi, xxii, 259, 325

dualizing complex, xi

entwined

contramodule, 189, 190

module, 189, 190

entwining structure, 188

“evaluation” map, 15, 107

exact category

complexes of injectives/projectives, 98

exact/acyclic complex, 39

of comodules, 26, 90, 97

of contramodules, 58, 97

of finite homological dimension, 40

of semicontramodules, 16, 67

of semimodules, 16, 33

of topological vector spaces, 265

with continuous coaction, 268

exact functor

of finite relative homol. dimension, 164

reflecting coacyclicity, 164

formal circle, xii, 279

Frobenius algebra, 5, 163, 167, 241

generalized sections, 325

group, algebraic affine, xi, 258

smooth, xx, 258

unimodular, 259

group, proalgebraic affine, xxi, 273, 276

condition (iv), 273

prounipotent, xxi, 276, 301

group, topological, xi, 309

profinite, 310

groupoid, algebraic smooth affine, xxii,
323
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Harish-Chandra

bimodule of distributions, xxi, 259

contramodule, 258, 281

module [algebraic], 258, 276

pair, xx–xxii

algebraic, 258

Tate, 272

homological dimension, finite, xix

of k-algebra, 23

left, 58, 62, 68, 84

weak, 27, 29, 34, 84

of coring, 167

homotopy category, xxiii, 22, 44, 214, 216

Hopf algebra, 247

commutative, 269, 272

ind-k-module, xxiii, 85

ind-object, xi, 85, 318

countability assumption, 85

ind-scheme, xi

infinite summation operations, xii, 229,
279

kind, first and second, 10

Koszul [relatively]

graded comodule, 212

graded contramodule, 213

graded coring, 201

quadratic dual, 205

graded ring, 19

graded semialgebra, 200

quadratic dual, 205

graded semicontramodule, 213

graded semimodule, 212

Koszul complex, 205, 219, 304

Koszul duality, xiii, xx, 23, 24, 217, 221

Koszul, nonhomogeneous [relatively]

ring, 19

quadratic dual, 21

semialgebra, 208, 284

quadratic dual, 212, 286

semicontramodule, 213

semimodule, 213

Lie algebroid, 326

enveloping algebra, 327

Lie coalgebra, 271, 301

conilpotent, 302

coenveloping coalgebra, 302

module

discrete, over topological Lie algebra,
275

nilpotent, 302

over compact Lie algebra, 302

discrete, over topological ring, 236, 294

Harish-Chandra [algebraic], 258, 276

over k, injective cogenerator, 57

pseudo-compact, 236

smooth, over topological group, xxii,
311

module category, xvi, 6

induction functor, 25

pairing functor, xvi, 27

modules, complex of

flat, 1, 41

injective, 2

projective, 2

pure, 2, 26

monad, 25

Morita autoequivalence

of coalgebra, 252

of coring related to groupoid, 325

Morita equivalence

of coalgebras, 141

of corings

coflat, 140

coprojective, 140

of semialgebras

related to groupoid pair, xxii, 330

related to Harish-Chandra pair, xxi,
259

related to Hopf algebra pair, 247,
253

related to topological group, xxii,
310

semiflat, 166

semiprojective, 166
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Morita morphism

of k-algebras, 137

faithfully flat, 138

of coalgebras, 141

of corings, 139

coflat, 139

coprojective, 140

faithfully coflat, 161

faithfully coprojective, 162

of semialgebras

semiflat, 165

semiprojective, 165

Quillen adjunction, 172, 181

Nakayama’s Lemma for contramodules

over coalgebra, 232

over topological ring, 236

object, split in two halves, xv, 167

PBW theorem, xx, 21, 208, 274

“permutation” map, 237, 285

pro-k-module, 50

pro-object, xi, xxiii, 50, 318

countability assumption, 50, 320

pro-semimeasures, 320

pro-vector space, 318

proalgebraic group, affine, xxi, 273, 276

prounipotent, xxi, 276

profinite group, 310

profinite ring, 236

profinite set, 318

quadratic [relatively] ring, 18

quadratic dual, 18

quadratic, nonhomogeneous ring, 19

quadratic dual, 20

quasi-differential

coalgebra, xx, 196

comodule, 213

Koszul, quadratic dual, 213

contramodule, 216

Koszul, quadratic dual, 213

coring, xx, 195

Koszul, 208

quadratic dual, 212

module, 22

ring, 21

structure, xx, 21, 195

quite, xx, 90

relatively, xix, 18, 90

semi-infinite, xi

cohomology, xvi
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forms, 299
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“left” and “right”

related to groupoid pair, xxii, 328
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related to Hopf algebra pair, 248
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DG (differential graded), 197
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graded, forgetful functor Σ, 193
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quadratic dual, 205
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quadratic dual, 212, 286
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contraflat, birelatively, 119

graded, forgetful functor Σ, 193

induced, 12, 33

injective, 174, 182

Koszul, quadratic dual, 212

nonhomogeneous, 213

projective, birelatively, 173, 178, 180

semiflat, 36, 37

semiprojective, 72, 173, 179

birelatively, 173

semimodules, complex of

contraflat

birelatively, 118, 122

relatively, 17, 123

injective, 123, 182

projective

birelatively, 118, 122, 173, 180

quite relatively, 242

relatively, 16, 123

quite semiflat, 53, 157

semiflat, 13, 42, 45

birelatively, 52, 119, 199

quite birelatively, 151

relatively, 51, 198

semijective, 242

semiprojective, 15, 17, 79, 120, 173
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enveloping algebra, 294
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Lie algebra, 269
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compact, 301
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countability assumption, 295

projective limit, 266
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as ind-pro-finite set, 318
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