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Preface

Linear matrix inequalities (LMIs) have emerged recently as a useful tool for solving a
number of control problems. The basic idea of the LMI method in control is to interpret a
given control problem as a semidefinite programming (SDP) problem, i.e., an optimization
problem with linear objective and positive semidefinite constraints involving symmetric
matrices that are affine in the decision variables.

The LMI formalism is relevant for many reasons. First, writing a given problem in
this form brings an efficient, numerical solution. Also, the approach is particularly suited
to problems with "uncertain" data and multiple (possibly conflicting) specifications. Fi-
nally, this approach seems to be widely applicable, not only in control, but also in other
areas where uncertainty arises.

Purpose and intended audience

Since the early 1990s, with the developement of interior-point methods for solving SDP
problems, the LMI approach has witnessed considerable attention in the control area
(see the regularity of the invited sessions in the control conferences and workshops).
Up to now, two self-contained books related to this subject have appeared. The book
Interior Point Polynomial Methods in Convex Programming: Theory and Applications,
by Nesterov and Nemirovskii, revolutionarized the field of optimization by showing that a
large class of nonlinear convex programming problems (including SDP) can be solved very
efficiently. A second book, also published by SIAM in 1994, Linear Matrix Inequalities
in System and Control Theory, by Boyd, El Ghaoui, Feron, and Balakrishnan, shows
that the advances in convex optimization can be successfully applied to a wide variety
of difficult control problems.

At this point, a natural question arises: Why another book on LMIs?

One aim of this book is to describe, for the researcher in the control area, several
important advances made both in algorithms and software and in the important issues in
LMI control pertaining to analysis, design, and applications. Another aim is to identify
several important issues, both in control and optimization, that need to be addressed in
the future.

We feel that these challenging issues require an interdisciplinary research effort, which
we sought to foster. For example, Chapter 1 uses an optimization formalism, in the hope
of encouraging researchers in optimization to look at some of the important ideas in LMI
control (e.g., deterministic uncertainty, robustness) and seek nonclassical applications
and challenges in the control area. Bridges go both ways, of course: for example, the
"primal-dual" point of view that is so successful in optimization is also important in
control.

xvii



xviii Preface

Book outline
In our chapter classification, we sought to provide a continuum from numerical meth-
ods to applications, via some theoretical problems involving analysis and synthesis for
uncertain systems. Basic notation and acronyms are listed after the preface.

After this outline, we provide some alternative keys for reading this book.

Part I: Introduction

Chapter 1: Robust Decision Problems in Engineering: A Linear Matrix Inequality
Approach, by L. El Ghaoui and S.-I. Niculescu.

This chapter is an introduction to the "LMI method" in robust control theory and
related areas. A large class of engineering problems with uncertainty can be expressed as
optimization problems, where the objective and constraints are perturbed by unknown-
but-bounded parameters. The authors present a robust decision framework for a large
class of such problems, for which (approximate) solutions are computed by solving opti-
mization problems with LMI constraints.

The authors emphasize the wide scope of the method, and the anticipated interplay
between the tools developed in LMI robust control, and related areas where uncertain
decision problems arise.

Part II: Algorithms and software

Chapter 2: Mixed Semidefinite-Quadratic-Linear Programs, by J.-P. A. Haeberly,
M. V. Nayakkankuppam, and M. L. Overton.

The authors consider mixed semidefinite-quadratic-linear programs. These are linear
optimization problems with three kinds of cone constraints, namely, the semidefinite
cone, the quadratic cone, and the nonnegative orthant. The chapter outlines a primal-
dual path-following method to solve these problems and highlights the main features
of SDPpack, a Matlab package that solves such programs. Furthermore, the authors
give some examples where such mixed programs arise and provide numerical results on
benchmark problems.

Chapter 3: Nonsmooth Algorithms to Solve Semidefinite Programs, by C. Lemarechal
and F. Oustry.

Today, SDP problems are usually solved by interior-point methods, which are elegant,
efficient, and well suited. However, they have limitations, particularly in large-scale or
ill-conditioned cases. On the other hand, SDP is an instance of nonsmooth optimization
(NSO), which enjoys some particular structure. This chapter briefly reviews the works
that have been devoted to solving SDP with NSO tools and presents some recent results
on bundle methods for SDP. Finally, the authors outline some possibilities for future
work.

Chapter 4: sdpsol: A Parser/Solver for Semidefinite Programs with Matrix Struc-
ture, by S.-P. Wu and S. Boyd.

This chapter describes a parser/solver for a class of LMI problems, the so-called max-
det problems, which arise in a wide variety of engineering problems. These problems often
have matrix structure, which has two important practical ramifications: first, it makes
the job of translating the problem into a standard SDP or max-det format tedious, and,
second, it opens the possibility of exploiting the structure to speed up the computation.

In this chapter the authors describe the design and implementation of sdpsol, a
parser/solver for SDPs and max-det problems, sdpsol allows problems with matrix
structure to be described in a simple, natural, and convenient way.
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Part III: Analysis

Chapter 5: Parametric Lyapunov Functions for Uncertain Systems: The Multiplier
Approach, by M. Fu and S. Dasgupta.

This chapter proposes a parametric multiplier approach to deriving parametric Lya-
punov functions for robust stability analysis of linear systems involving uncertain pa-
rameters. This new approach generalizes the traditional multiplier approach used in the
absolute stability literature where the multiplier is independent of the uncertain param-
eters. The main result provides a general framework for studying multiaffine Lyapunov
functions. It is shown that these Lyapunov functions can be found using LMI techniques.
Several known results on parametric Lyapunov functions are shown to be special cases.

Chapter 6: Optimization of Integral Quadratic Constraints, by U. Jonsson and
A. Rantzer.

A large number of performance criteria for uncertain and nonlinear systems can be
unified in terms of integral quadratic constraints. This makes it possible to systematically
combine and evaluate such criteria in terms of LMI optimization.

A given combination of nonlinear and uncertain components usually satisfies infinitely
many integral quadratic constraints. The problem to identify the most appropriate con-
straint for a given analysis problem is convex but infinite dimensional. A systematic
approach, based on finite-dimensional LMI optimization, is suggested in this chapter.
Numerical examples are included.

Chapter 7: Linear Matrix Inequality Methods for Robust H2 Analysis: A Survey
with Comparisons, by F. Paganini and E. Feron.

This chapter provides a survey of different approaches for the evaluation of H2-
performance in the worst case over structured system uncertainty, all of which rely on
LMI computation. These methods apply to various categories of parametric or dynamic
uncertainty (linear time-invariant (LTI), linear time-varying (LTV), or nonlinear time-
varying (NLTV)) and build on different interpretations of the H2 criterion. It is shown
nevertheless how they can be related by using the language of LMIs and the so-called
5-procedure for quadratic signal constraints. Mathematical comparisons and examples
are provided to illustrate the relative merits of these approaches as well as a common
limitation.

Part IV: Synthesis

Chapter 8: Robust H2 Control, by K. Y. Yang, S. R. Hall, and E. Feron.
In this chapter, the problem of analyzing and synthesizing controllers that optimize

the H2 performance of a system subject to LTI uncertainties is considered. A set of
upper bounds on the system performance is derived, based on the theory of stability
multipliers and the solution of an original optimal control problem. A Gauss-Seidel-like
algorithm is proposed to design robust and efficient controllers via LMIs. An efficient
solution procedure involves the iterative solution of Riccati equations both for analysis
and synthesis purposes. The procedure is used to build robust and efficient controllers for
a space-borne active structural control testbed, the Middeck Active Control Experiment
(MACE). Controller design cycles are now short enough for experimental investigation.

Chapter 9: A Linear Matrix Inequality Approach to the Design of Robust H2
Filters, by C. E. de Souza and A. Trofino.

This chapter is concerned with the robust minimum variance filtering problem for
linear continuous-time systems with parameter uncertainty in all the matrices of the
system state-space model, including the coefficient matrices of the noise signals. The
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admissible parameter uncertainty is assumed to belong to a given convex bounded poly-
hedral domain. The problem addressed here is the design of a linear stationary filter that
ensures a guaranteed optimal upper bound for the asymptotic estimation error variance,
irrespective of the parameter uncertainty. This filter can be regarded as a robust version
of the celebrated Kalman filter for dealing with systems subject to convex bounded pa-
rameter uncertainty. Both the design of full-order and reduced-order robust filters are
analyzed. We develop LMI-based methodologies for the design of such robust filters.
The proposed methodologies have the advantage that they can easily handle additional
design constraints that keep the problem convex.

Chapter 10: Robust Mixed Control and Linear Parameter-Varying Control with
Full Block Scalings, by C. W. Scherer.

This chapter considers systems affected by time-varying parametric uncertainties.
The author devises a technique that allows us to equivalently translate robust perfor-
mance analysis specifications characterized through a single Lyapunov function into the
corresponding analysis test with multipliers. Out of the multitude of possible applica-
tions of this so-called full block <S-procedure, the chapter concentrates on a discussion of
robust mixed control and of designing linear parameter-varying (LPV) controllers.

Chapter 11: Advanced Gain-Scheduling Techniques for Uncertain Systems, by
P. Apkarian and R. J. Adams.

This chapter is concerned with the design of gain-scheduled controllers for uncertain
LPV systems. Two alternative design techniques for constructing such controllers are
discussed. Both techniques are amenable to LMI problems via a gridding of the parameter
space and a selection of basis functions. The problem of synthesis for robust performance
is then addressed by a new scaling approach for gain-scheduled control. The validity of
the theoretical results is demonstrated through a two-link flexible manipulator design
example. This is a challenging problem that requires scheduling of the controller in the
manipulator geometry and robustness in the face of uncertainty in the high frequency
range.

Chapter 12: Control Synthesis for Well-Posedness of Feedback Systems, by T.
Iwasaki.

A wide variety of control synthesis problems reduces to the same type of computa-
tional problems involving LMIs. The main objective of this chapter is to show explicitly
a general class of control problems that reduce to the same computational problem. The
class is defined by the closed-loop specifications given in terms of the well-posedness
of feedback systems. The author shows that this class includes many existing control
problems as special cases, and such problems can be reduced to a search for structured
positive definite matrices satisfying LMIs and possibly rank constraints.

Part V: Nonconvex problems

Chapter 13: Alternating Projection Algorithms for Linear Matrix Inequalities Prob-
lems with Rank Constraints, by K. M. Grigoriadis and E. B. Beran.

Recently a large class of fixed-order control design problems has been formulated in a
unified way as LMI problems with additional coupling matrix rank constraints. Because
of the nonconvexity of the rank constraints, efficient convex programming algorithms
cannot be used to find a solution. In this chapter, the method of alternating projec-
tions along with efficient SDP algorithms are proposed to address these problems of
combined LMIs and coupling matrix rank constraints. Alternating projection algorithms
exploit the geometry of these problems to obtain feasible solutions. Directional alter-
nating projection methods that enhance the computational efficiency of the algorithms
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are also described. Extensive computational experiments are provided to indicate the
effectiveness and complexity of the proposed algorithms.

Chapter 14: Bilinearity and Complementarity in Robust Control, by M. Mesbahi,
M. G. Safonov, and G. P. Papavassilopoulos.

The authors present an overview of the key developments in the methodological,
structural, and computational aspects of the bilinear matrix inequality (BMI) feasibil-
ity problem. In this direction, the chapter presents the connections of the BMI with
robust control theory and its geometric properties, including interpretations of the BMI
as a rank-constrained LMI, as an extreme form problem (EFP), and as a semidefinite
complementarity problem (SDCP). Computational implications and algorithms are also
discussed.

Part VI: Applications

Chapter 15: Linear Controller Design for the NEC Laser Bonder via Linear Matrix
Inequality Optimization, by J. Oishi and V. Balakrishnan.

The authors describe a computer-aided control system design method for designing
an LTI controller for the NEC Laser Bonding machine. The procedure consists of numer-
ically searching over the set of Youla parameters that describe the set of stabilizing LTI
controllers for an LTI model of the Laser Bonder; this search is conducted using convex
optimization techniques involving LMIs. The design specifications include constraints
on the transient and steady-state tracking of a specific input, as well as bounds on the
norms of certain closed-loop maps of interest. The design procedure is shown to yield a
controller that optimally satisfies the various performance specifications.

Chapter 16: Multiobjective Robust Control Toolbox for Linear-Matrix-Inequality-
Based Control, by S. Dussy.

This chapter presents a collection of LMI-based synthesis tools for a large class of
nonlinear uncertain systems, packaged in a set of Matlab functions. Most of them are
based on a cone complementarity problem and provide solutions for the robust state- and
output-feedback controller synthesis under various specifications. These specifications
include performance requirements via a-stability or C-2-ga.m bounds and command input
and outputs bounds. Two numerical examples, namely, an inverted pendulum and a
nonlinear benchmark, are provided.

Chapter 17: Multiobjective Control for Robot Telemanipulators, by J. P. Folcher
and C. Andriot.

This chapter addresses the control of robot telemanipulators in the presence of un-
certainties, disturbance, and measurement noise. The controller design problem can be
divided into several multiobjective robust controller synthesis problems for LTI systems
subject to dissipative perturbations. Synthesis specifications include robust stability, ro-
bust performance (H2 norm) bounds, and time-domain bounds (output and command
input peak). Sufficient conditions for the existence of an LTI controller such that the
closed-loop system satisfies all specifications simultaneously are derived. An efficient
cone complementarity linearization algorithm enables us to solve numerically the asso-
ciate optimization problem. This multiobjective synthesis approach is used to design the
force controller of a single joint of a slave manipulator.

How to read the book

The book is the result of the work of many different authors, each with a different point
of view. We have sought to provide a coherent and unitary text, without sacrificing the
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individuality of each contribution. Some redundancy might result from this; however, we
feel it is always beneficial to provide different views on similar problems.

There are several themes, emphasized as key words in the list below, that come across
the sequential order of the book. An interested reader might read the corresponding
chapters independently.

• Several chapters deal with the so-called <S-procedure and its applications in control:
Chapter 1 puts it in the context of Lagrange relaxations, Chapters 8 and 10 gener-
alize the result to different settings. Also, Lyapunov functions (a theme recurrent
in the book) can be interpreted in the context of Lagrange multipliers, as explained
in Chapter 1.

• The robust 13.2 problem is evoked first in its analysis aspect in Chapter 7. Chapters
8 and 10 deal with the corresponding control synthesis problem in different ways;
Chapter 9 addresses the issues of filter design in this context.

• Nonconvex optimization problems arise mainly in three forms in control, as LMI
problems with rank constraints, as BMI problems, or as cone complementarity
problems. The similarity between these points of view is outlined in Chapter 1
and are explored in more detail in Part V. The so-called cone complementarity
formulation, mentioned in Chapters 1 and 14 (under the name SCDP) is used in a
practical context in Chapters 16 and 17.

• Linear parameter-varying (LPV) systems are considered in Chapters 10 and (to
a lesser extent) 12, where a general framework, encompassing robust control, is
outlined. Chapter 11 is devoted to techniques improving the possible conservatism
of the method.

• The search for multipliers in the context of robustness analysis is addressed in
Chapter 5 under a "parametric Lyapunov function" point of view, while Chapter
6 develops the "integral quadratic constraint" (IQC) approach; Chapter 17 uses
a very similar approach in a practical application. Note that Chapter 1 makes
some connections between Lyapunov functions, multipliers (in the above "control"
sense), and Lagrange relaxations in optimization.

• Algorithms and software issues are broadly mentioned in Chapter 1. Chapters 2
and 3 describe algorithms, and Chapter 4 describes a parser/solver for a general
class of LMI problems. Chapter 16 uses a specialized Matlab toolbox for some
robust control problems.

• Some numerical results and applications are mentioned throughout the book, com-
ing across as illustrations of software performance (Part II), applications of system
analysis (Chapters 6 and 7), or control synthesis methods (Chapters 11 and 13).
Part VI is dedicated to realistic design examples.
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Notation

The real numbers, real k-vectors, real m x n matrices.
R+ ,  j R  Th e  nonnegativ e real numbers and the imaginary numbers, re-
spectively.

C The complex numbers.
C° Unit circle of the complex plane.

C+, C , C~ The open right half, closed right half, and open left half complex
planes, respectively.

a*, 3ft(a) The complex conjugate and the real part of
Ex Expected value of (the random variable) x.
Hp pth Hardy space (in this book, p is either 2 or oo).

Lp(R,RnXm) pth Hilbert space of functions mapping R to Rnxm. (p - 2 in
this book; also, the abbreviation Li2 is used.)

5 The closure of a set 5.
int5 The interior of a set 5.

S* The dual cone of a set 5 C Sn is defined to be

5n Space of real, symmetric matrices of order n.
<S" Space of real, positive semidefinite, symmetric matrices of order

n.
CoS Convex hull of the set 5 C Rn, given by

(Without loss of generality, we can take p = n + I here.)
Ik The k x k identity matrix. The subscript is omitted when k is

not relevant or can be determined from context.
MT Transpose of a matrix
M* Complex-conjugate transpose of a matrix

where a* denotes the complex conjugate of
Tr(M) Trace of M e Rnxn; i.e., £<Li MU. Sometimes the parentheses

are omitted if context permits.
Tr(ATB) Scalar product of two real matrices A, B. Again, the parentheses

are omitted if context permits.
KerM Nullspace of a matrix M.

xxv
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XXVI Notation

IrnM Range of a matrix M.
RankM Rank of a matrix M.

M1- Orthogonal complement of M, a matrix of maximal rank such
that MTM-L — 0; the rows of ML form a basis for the nullspace
ofMT.

Aft Moore-Penrose pseudoinverse of M.
Af > 0 M is symmetric and positive semidefmite; i.e., M = MT and

for all
Af > 0 M is symmetric and positive definite; i.e., zTMz > 0 for all

nonzero z € Rn.
Af > N M and N are symmetric and

M1/2 For M > 0, M1/2 is the unique Z = ZT such that

sectX Bilinear sector transformation of a square matrix, defined (when
applicable) a
The maximum eigenvalue of the matrix
For P = PT, Q = QT > 0, Amax(P, Q) denotes the maximum ei-
genvalue of the symmetric pencil
The minimum eigenvalue of

||M|| The spectral norm of a matrix or vector
It reduces to the Euclidean norm, i.e., ||x|| = VxTx, for a vector
x.

\\M\\F The Frobenius norm of a matrix or vector
It reduces to the Euclidean norm, i.e., ||x|| = VxTx, for a vector
x.

diag(- • •) Block-diagonal matrix formed from the arguments, i.e.,

Vec(Af) vector obtained by stacking up the columns of matrix M.
A <8> B The Kronecker product of matrices A, B.

Herm(M) The Hermitian part of matrix M, i.e., the matrix
Partitioned matrix notation for transfer functions:

The upper and lower linear fractional transformations of a matrix
A and a partitioned matrix M, defined as

and



votationn

N)  The linear fractional transformation (LFT) or star product of two
partioned matrices M, JV, defined as

A Uncertainty matrix.
A Uncertainty set, including the zero matrix in general.

xxvii
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Chapter 1

Robust Decision Problems in
Engineering: A Linear Matrix
Inequality Approach

L. El Ghaoui and S.-I. Niculescu

1.1 Introduction

1.1.1 Basic idea
The basic idea of the LMI method is to formulate a given problem as an optimization
problem with linear objective and linear matrix inequality (LMI) constraints. An LMI
constraint on a vector x e Rm is one of the form

where the symmetric matrices Fj = F? G RJVxJV, i = 0,. . . ,m, are given. The mini-
mization problem

where c € Rm, and F > 0 means the matrix F is symmetric and positive semidefinite,
is called a semidefinite program (SDP). The above framework is particularly attractive
for the following reasons.

Efficient numerical solution. SDP optimization problems can be solved very efficiently
using recent interior-point methods for convex optimization (the global optimum is found
in polynomial time). This brings a numerical solution to problems when no analytical
or closed-form solution is known.

Robustness against uncertainty. The approach is very well suited for problems with
uncertainty in the data. Based on a deterministic description of uncertainty (with de-
tailed structure and hard bounds), a systematic procedure enables us to formulate an
SDP optimization problem that yields a robust solution. This statement has implications
for a wide scope of engineering problems, where measurements, modelling errors, etc.,
are often present.

3
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Multicriteria problems. The approach enables us to impose many different (possibly
conflicting) specifications in the design process, allowing us to explore trade-offs and
analyze limits of performance and feasibility. This offers a drastic advantage over design
methods that rely on a single criterion deemed to reflect all design constraints; the choice
of a relevant criterium is sometimes a nontrivial task.

Wide applicability. The techniques used in the approach are relevant far beyond
control and estimation. This opens exciting avenues of research where seemingly very
different problems are analyzed and solved in a unified framework. For example, the
method known in LMI-based control as the S-procedure can be successfully applied in
combinatorial optimization, leading to efficient relaxations of hard problems.

1.1.2 Approximation and complexity

At this point we should comment on a very important aspect of the LMI approach, which
puts in perspective the above.

The LMI approach is deeply related to the branch of theoretical computer science
that seeks to classify problems in terms of their computational complexity [323]. In a
sense, the approach is an approximation technique for a class of (NP-) hard problems,
via polynomial-time algorithms, and thus hinges on a dividing line between "hard" and
"easy" in the sense of computational complexity.

This point of view shows that the LMI approach is not only a numerical approach
to practical problems. It also requires one to consider the complexity analysis of a given
problem and to seek an approximation in the case of a "hard" problem. This concern
is quite new in control; see [53] for a survey and references on complexity analysis of
control problems.

1.1.3 Purpose of the chapter
In this chapter, we describe a general LMI-based method to cope with engineering deci-
sion problems with uncertainty and illustrate its relevance, both in control and in other
areas. This chapter is intended to serve two kinds of objectives.

The first is to introduce the reader to the LMI method for control and help under-
stand some of the issues treated in more detail in the subsequent chapters. References
that would usefully complement this reading include a book on the LMI approach in
system and control theory by Boyd, El Ghaoui, Feron, and Balakrishnan [64], a book on
algorithms for LMI problems by Nesterov and Nemirovskii [296], and [404]. Also, the
course notes [66] contain many results on convex optimization and applications.

Another purpose of this chapter is to open the method to other areas. In our presen-
tation, we have tried to give an "optimization point of view" of the method in an effort to
put it in perspective with classical relaxation methods. This effort is mainly motivated
by the belief that the approach could be useful in many other fields, especially regarding
robustness issues. This topic of robustness is receiving renewed attention in the field of
optimization, as demonstrated by a series of recent papers [42, 127, 39].

1.1.4 Outline

Section 1.2 defines robust solutions to problems with uncertain data and outlines the
general ideas involved in Lagrange relaxations for these problems. Section 1.3 is devoted
to models of uncertain systems. In section 1.4, we concentrate on SDP problems with
uncertain data matrices and detail a general methodology for computing appropriate
bounds on these problems. Section 1.5 briefly describes algorithms, software, and related
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issues for solving general SDPs. (This section, written with the help of Michael Overton
and Frangois Oustry, can be read independently of the rest of this chapter.) Some
illustrative examples taken from the control area, which complement those put forth in
the other chapters, are given in section 1.6. Section 1.7 presents a number of examples
taken out of control. Finally, section 1.8 explores some perspectives and challenges that
lie ahead.

1.2 Decision problems with uncertain data

1.2.1 Decision problems
Many engineering analysis and design problems can be seen as decision problems. In
control engineering, one must decide which controller gains to choose in order to satisfy
the desired specifications. This decision involves several trade-offs.

In this context, decision problems are based on two "objects": a set of decision
variables that reflect the engineer's choices (controller gains, actuator location, etc.) and
a set of constraints on these decision variables that reflect the specifications imposed
by the problem (desired closed-loop behavior, etc.). Such problems can be sometimes
translated in terms of mathematical programming problems of the form

(1.3) minimize /o(x) subject to x € #, fi(x) < 0, i = 1,... ,p,

where /o, /i, . . . , fp are given scalar-valued functions of the decision vector x G Rm, and
X is a subset of Rm. In some problems, X is infinite dimensional, and the decision vector
x is a function.

In the language of control theory, we can interpret the above as a multispecification
control problem, where several (possibly conflicting) constraints have to be satisfied.

Let us comment on the limitations of the above mathematical framework. The desired
specifications are sometimes easy to describe mathematically as in the above model (for
example, when we seek to ensure a desired maximum overshoot). Others are more
difficult to handle and not less important, such as economic constraints (cost of design),
reliability and ease of implementation (time needed to obtain a successful design), etc.
These "soft" constraints can be neglected or taken into account implicitly (for example,
choosing a PID controller structure, as opposed to a more complicated one). A classical
way to handle these constraints is by hierarchical decision, where soft constraints are
taken into account at a higher level of managerial decision (e.g., allowing a constrained
budget for the whole control problem).

1.2.2 Using uncertainty models
In some applications, the "data" in problem (1.3) is not well known; the previous "op-
timization model" falls short of handling this case, so it would be useful to consider
decision problems with uncertainty. For this, it is necessary to introduce models for
uncertain systems; this is the purpose of section 1.3.

There are other motivations for us to use such models. Real-world phenomena are
very complex (nonlinear, time-varying, infinite-dimensional, etc.). To cope with analysis
and design problems for such systems, we almost always have to use (finite-dimensional,
linear, stationary) approximations. We believe that a finer way to handle complexity is
to use approximations with uncertainty.

We thus make the distinction between "physical" and "engineering" uncertainties.
The first are due to ignorance of the precise physical behavior; the second come from a
voluntary simplifying assumption. (This technique can be referred to as embedding.)
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Assume, for instance, that in a complex system two variables p, q are linked by a
nonlinear relation p = 6(q). The function 6 may be very difficult to identify (this is a
physical uncertainty). Moreover, we may choose to "embed" this nonlinearity in a family
of linear relations of the form p = 6q, where the scalar 8 is inside a known sector. (The
latter may be inferred from physical knowledge.) We thus obtain a linear model with
(engineering) uncertainty that is more tractable than the nonlinear one. The technique
of embedding may be conservative, but it usually gives rise to tractable problems.

1.2.3 Robust decision problems

In some applications, the "data" in problem (1.3) is not well known; that is, every /j
depends not only on x but also on a real "uncertainty matrix"1 A. The latter is only
known to belong to a set of admissible perturbations A. We may then define a variety
of robust decision problems and associated solutions. These problems are based on a
worst-case analysis of the effect of perturbations.

Robustness analysis

We define the robust feasibility set

The analysis problem is to check if a given candidate solution x is robustly feasible.

Robust synthesis

A robust synthesis problem is to find a vector x that satisfies robustness constraints. We
may distinguish the following:

• A robust feasibility problem, where we seek a vector x that belongs to

• A robust optimality problem, defined as

Here, we seek to minimize the worst-case value of the objective fo(x, A) over the
set of robustly feasible solutions. (We note that the objective function /o may be
assumed independent of the perturbation without loss of generality.)

Parameter-scheduled synthesis. In such a problem, we allow the decision vector to
be a function of the perturbation. In this case, we assume that the decision vector
is not finite dimensional but evolves in a set X of functions (of the perturbation
A). The problem reads formally as the robust synthesis ones, but with X a set of
functions.

Mixed parameter- scheduled/robust problems. In some problems, the decision vector
is a mixture of a set of real variables and of functions of some parameters. In
control, this kind of problem occurs when only some parameters are available for
measurement.

1We take the uncertainty to be a matrix instead of a vector for reasons to be made clear later.
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In control theory, we interpret the above problems as robust multispecification con-
trol problems, where several (possibly conflicting) constraints have to be satisfied in a
robust manner. We note that these problems are in general very hard to solve (noncom-
putationally tractable). References on complexity of such problems in control include
[86, 291, 72, 52, 393, 144].

Robust decision problems first arose (to our knowledge) in the field of automatic
control. In fact, robustness is presented in the classical control textbooks as the main
reason for using feedback. Good references on robust control include the book by Zhou,
Doyle, and Glover [446]; Dahleh and Diaz-Bobillo [88]; and Green and Limebeer [175].

In other areas of engineering, uncertainty is generally dealt with using stochastic
models for uncertainty. In stochastic optimization, the uncertainty is assumed to have a
known distribution, and a typical problem is to evaluate the distribution of the optimal
value, of the solution, etc.; a good reference on this subject is the book by Dempster [97].

Models with deterministic uncertainty are less classical in engineering optimization.
Ben Tal and Nemirovski consider a truss topology design problem with uncertainty on
the loading forces [41, 40]. In a more recent work [42], they introduce and study the com-
plexity of robust optimality problems in the sense defined above in the context of convex
optimization. Their approach is based on ellipsoidal bounds for the perturbation. The
paper [127] addresses the computation of bounds for a class of robust problems and uses
a control-based approach to solve for these bounds via linear-fractional representations
(LFRs) and SDR

1.2.4 Lagrange relaxations for min-max problems
Robust decision problems such as problem (1.5) belong to the class of min-max problems.
To attack them, we can thus use a versatile technique, called Lagrange relaxation, that
enables us to approximate a set of complicated constraints by a "more tractable" set.

To understand the technique, let us assume that the uncertainty set A is a subset of
R' that can be described by a finite number of (nonlinear) constraints

where the g^s are given scalar-valued functions of the perturbation vector 6. Now,
observe that the property

holds if there exist nonnegative scalars TI, . . . , rq such that

The above condition is rewritten

The above idea can be used for general min-max problems of the form (1.5). The basic
idea is to approximate a min-max problem by a (hopefully easier) minimization problem.
To motivate this idea, we take an example of the robust optimality problem (1.5) with
no constraints on x (p = 0). That is, we consider
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The Lagrange relaxation technique yields an upper bound on the above problem:

In some cases, computing the (unconstrained) maximum in the above problem is very
easy; then the min-max problem is approximated (via an upper bound) by a minimization
problem (the minimization variables are x and r). (The scalars TJ appearing in the above
are often referred to as Lagrange multipliers.) Note that, for x fixed, the above problem is
convex in r ; if /o is convex in rr, then we may use (subgradient-based) convex optimization
to solve the relaxed problem. The technique thus requires that computing values and
subgradient of the "max" part (a function of x, r) is computationally tractable.

The upper bounds found via Lagrange relaxations can be improved as long as we are
able to solve and compute corresponding subgradients for a constrained "max" problem
in (1.8). For example, we may choose to relax only a subset of the constraints &(£) < 0
and keep the remaining ones as hard constraints in the maximization problem. Dif-
ferent choices of "relaxed" versus "nonrelaxed" constraints lead to different Lagrange
relaxations (and upper bounds).

A special case: The 5-procedure. The well-known <S-procedure is an application of
Lagrange relaxation in the case when the g^s are quadratic functions of 6 e R'. In this
case, checking (1.6) yields a simple LMI in the multipliers T^ The 5-procedure lemma,
which we recall below, is widely used, not only in control theory [258, 140, 64] but also
in connection with trust region methods in optimization [376, 381].

Lemma 1.1 (5-procedure). Let go, . . . ,gp be quadratic functions of the variable 6 €
Rm:

where F» = F? '. The following condition on po, • • • > 9p

holds if there exist scalars T» > 0, i = 1, . . . ,p, such that

When p=l, the converse holds, provided that there is some 60 such that gi(6o) > 0.

1.3 Uncertainty models

A typical decision problem is defined via some data, which we collect for convenience in
a matrix M. For example, if the problem is defined in terms of the transfer function of
an LTI system M(s) — D + C(sl — A)~1B, the matrix M contains the four matrices
A, B, C, D.

When the data is uncertain, we need to describe as compactly as possible the way
the perturbation A affects the data matrix and also the structure of the perturbation
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set A. This will result in an uncertainty model for the data. Formally, an uncertainty
model for the data is defined as a matrix set

where M is a (possibly nonlinear) matrix-valued function of the "perturbation matrix"
A, and A is a matrix set.

1.3.1 Linear- fractional models

Definition

A linear- fractional model is a set of the form (1.11), where the following three assumptions
are made.

Linear-fractional assumption. We assume that the matrix-valued function can be
written, for almost every A, as

for appropriate constant matrices M,L,R and

Uncertainty set assumption. In addition, the uncertainty set A is required to satisfy
the following.

For every vector pair p, g, the condition

can be characterized as a linear matrix inequality on a rank-one matrix:

where $A is a given linear operator "characterizing" A.

Well-posedness assumption. To simplify our exposition, we make a last assumption
from now on that the above model is well posed over A, meaning that

Checking well-posedness is very difficult in general; using the theory developed in sec-
tion 1.4, we can derive sufficient LMI conditions for well-posedness. Chapter 12 discusses
the issue of well-posedness in more detail.

Motivations

The above uncertainty models for the data seem very specialized. However, they can
cover a wide variety of uncertain matrices, as we now show.

First, the linear-fractional assumption made on the matrix function M(A) is moti-
vated by the following lemma, a constructive proof of which appears in, e.g., [56, 446].
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Lemma 1.2. Every (matrix-valued) rational function M(<5) of 6 € Rp that is well de-
fined for 6 = 0 admits an LFR of the form

valid for whenever det(/ — DA) ^ 0 for appropriate matrices M, L, R, D and integers

We note that, when I = 1 (that is, for a monovariable rational matrix function), the
matrices M, L, R, D are simply a state-space realization of the transfer matrix M+L(sI—
D)~1R, where s = 1/6. An LFR of M can then always be constructed in a "minimal"
way, such that the size of matrix A is exactly the order of M in s. In the multivariable
case, the integers TI are greater than the degrees of the corresponding variable Si in
M, and the issue of minimality is much more subtle. Finally, we note that when M is
polynomial in its argument, an LFR can always be constructed such that D is strictly
upper triangular, so that this LFR is everywhere well posed, as is M.

The LFR generalizes the state-space representation known for (monovariable) transfer
matrices to the multivariable case.2 For other comments on the LFR formalism, see, for
example, [108, 254].

The above lemma shows that we can handle almost arbitrary algebraic functions of
perturbation parameters, provided we define the perturbation matrix A as a diagonal
matrix, with repeated elements. (In the following, we pay special attention to such
diagonal perturbation structures.)

The uncertainty set assumption made on the set A can appear also very specialized.
In fact, it can handle a wide array of uncertainty bounds. The following is a short list of
examples.

Unstructured case. Assume

This case is referred to as the "unstructured perturbations" case and is a classic since
the development of HQQ control. The corresponding characterization is

Euclidean-norm bounds. Assume

The corresponding characterization is

(In the above, <ft denotes the ith r, x 1 block in vector q.}

2The above representation is usually referred to as the "linear-fractional transformation" (LFT) [446].
We believe the term representation is more appropriate here.
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Maximum-norm bounds. Assume

The corresponding characterization is

(Again, pi (resp., qi) denotes the ith Ti x 1 block in vector q (resp., p).)

Sector bounds. Assume A = {s • I \ s G C, s + s* > 0}. The corresponding
characterization is

Of course, it is possible to mix different bounds to cover more complicated cases.

1.3.2 Operator point of view
The above uncertainty models for data matrices can be interpreted as input-output maps,
as follows. Given A e A, the input-output relationship between two vectors u and t/,

can be rewritten, if det(7 — DA) ^ 0, as a quadratic one:

The above representation is not surprising: It shows that a nonlinear (algebraic) con-
straint can always be seen as a quadratic one, provided we introduce enough "dummy"
variables (here, the vectors p, q).

In view of our assumption on the uncertainty set A, the "uncertain constraint"

can be rewritten in a quadratic matrix inequality form

The operator point of view allows us to consider (linear) dynamical relationships. For
example, the LTI system

where A is a constant matrix, can be represented in the frequency domain as

When we need to analyze stability, we restrict ourselves to all complex s such that 5Rs > 0.
In this case, the uncertain system to be considered is

In section 1.4.6, we follow up this idea in connection with Lyapunov theory.
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1.3.3 Examples
Let us now show how the above tools can be used to describe compactly a wide array
of uncertain matrices and dynamical systems. To simplify our description, we take the
operator point of view mentioned previously.

Matrices

The above framework covers the case when some (matrix) data occurring in the robust
decision problem is affected by a perturbation vector <5, in an algebraic manner, and the
vector 6 is unknown-but-bounded.

Consider, for example, an "uncertain matrix" M(£), where M is an algebraic function
of vector <5, and 6 is unknown-but-bounded in the maximum-norm sense. This matrix
can be represented as an input-output operator u —> y := M(<5)u in the form

The above form consitutes a linear-fractional model for the uncertain linear constraint
y = M(6)u, \\6\\oo < 1.

Model (1.18) can also be represented in the quadratic matrix inequality form (1.17),
where $A is defined in (1.16).

Dynamical systems

The input-output relationship y = M(A)w may involve a dynamical system; in this case
also, LFR models can be used.

For example, the uncertain dynamical system

can be represented, with the assumptions made previously in force, as

It is possible to consider nonlinear systems with the above representations, using an
"embedding" technique. Roughly speaking, if we know bounds on the trajectories of the
above uncertain system, then these bounds will also hold for the nonlinear system

if A(y) e A for every y. (This technique, which is more powerful than the classical
linearization technique, is related to the comparison principle in differential equations;
see [238] for more details.)

We take another example arising in the control of linear systems with delayed input,
where we assume only time-delay interval uncertainty. Consider the following (frequency-
domain) constraint:

where HQ is a transfer function that represents the nominal system of the form
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with Hnd free of delay and 6n as the nominal delay. The uncertainty 6 is of the form

where A is an unknown-but-bounded real scalar (— 1 < A < 1). A way to handle this
class of systems is to aproximate the delay uncertainty term using a first-order real Fade
approximant. An LFR of the approximation is

Using this LFR, we may obtain an LFR for the delayed system. (An alternate repre-
sentation of this kind of uncertainty is given below.) Analysis and comparisons between
several approximations of the delay uncertainty can be found in [415].

1.3.4 Toward other models
We now briefly mention other possible models. (For other remarks and comments on
uncertainty modeling, we refer to [378].)

Integral quadratic constraint models

An alternative to the class of the above parameter-dependent models is one where we
assume that some signals in a known linear time-invariant (LTI) system are subject to
integral quadratic constraints (IQCs) that are usually written in the frequency domain.
Thus, the unknown part of the system is only subject to energy-type constraints. For
other comments on this formalism, see, for example, [274, 341].

This class of systems is perhaps more versatile than the class of parameter-dependent
systems seen above. We can use this models to "embed" a large class of complicated
systems, such as systems with delays, parameter-dependent systems with bounds on the
parameter's rate of variation, infinite-dimensional systems, etc.

Consider for example the following system:

where the uncertainty block A(£) satisfies an IQC. This IQC is defined as follows: let II :
jH »— > Crxr be a bounded measurable function, with appropriate r. The corresponding
IQC is

where p, q are the Fourier transforms of p, q e L2[0, oo).
As an example, we consider again the delayed system (1.19) with 6n = 0, and the

uncertainty delay interval of the form [0, p\. A different way to handle the uncertainty on
the delay is to suppose that the uncertain "quantity" is Aw(t) = u(t — h) — u(t), h < p
(here, u(-) is the input signal). This signal satisfies the IQC above, with (see [341]):

where a and (3 are bounded real-valued functions on the imaginary axis such that

IQCs are examined in more detail in Chapter 6 of this book.
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Polytopic models

In a polytopic model [64], we assume that the state-space matrices of the system are only
known to lie in a given polytope. For example,

Here, the set of admissible perturbations of T> is the polytope {A A; > 0, ^ A* = 1},
and the mapping </> assigns the linear combination ]T) \Ai to the vector A. Polytopic
systems are considered in Chapter 9 of this book.

Refined perturbation sets

The above models are very rough in that they impose no restriction on the rate of change
of the perturbed elements. For example, the polytopic model (1.22) could be used for a
system subject to possible failures; each matrix Ai in (1.22) represents a specific operating
mode for the system. In practice, this model will be very conservative, as it does not
prevent the system from jumping arbitrarily fast from a mode to any other. Some refined
models simply impose a bound on the rate of variation of the perturbation parameters
and make use of LMI analysis, which takes into account this bound.

Stochastic models

These models are often used in engineering to describe uncertainty and could be inter-
preted as more refined than deterministic ones. For example, for a system with several
failure modes, a model that is more refined than the polytopic model could be based
on systems with Markovian jumps. With the matrices Ai of the polytopic model, we
associate a "transition probability matrix" that describes the probability of change from
one mode to the other. Similarly, it is possible to consider a linear-fractional model,
where the uncertain matrix A obeys a known white-noise-type distribution; see [118] for
an example.

The reader should not make a conflict out of the distinction deterministic/stochastic:
it is possible to consider stochastic models with deterministic uncertainty. For example,
we may consider a linear system with Markovian jumps, where the transition probability
matrix is unknown-but-bounded (see [121]).

1.4 Robust SDP

Robust decision problems are defined in terms of (a) a "nominal" problem of the form (1.3)
and (b) an uncertainty model for the data. Equipped with (matrix-based) uncertainty
models for the data described previously, we need to define more precisely the form of
the nominal problem. It turns out that a class of problems very rich in applications is
precisely an SDP. This motivates the study of robust SDP problems, which correspond
to an SDP with uncertain data.

1.4.1 Definition

Consider the case when the constraints /*(#, 6) < 0, i = 1,... ,p, can be written as

where F is affine in the decision variable x and takes its values in the set of symmetric
matrices.
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We make the assumption that F is a linear-fractional function of A, with LFR

where F(x) = F(x)T and L(x) are affine matrix-valued functions of x, and R, D are
given matrices, while the uncertainty matrix A is restricted to a set A. We assume that
the above LFR is well posed over A, and, in addition, we assume that the set A satisfies
the uncertainty set assumption defined in section 1.3.1.

The problem

is called a robust SDP problem. Note that we assumed that the "objective vector" c is
independent of perturbation; this is done without loss of generality.

The above problem is convex; however, it is in general very difficult to solve (NP-hard;
see [154, 323]). Checking if a given candidate solution x is robustly feasible is already
very difficult in general. Our objective is to find lower bounds on this problem in the
form of SDP.

1.4.2 Lagrange relaxation of a robust SDP
Let us fix the decision variable x and seek a sufficient condition for

Using the LFR, and using the well-posedness assumption, we rewrite the above as

With the previous characterization p = Ag, the above is seen to be equivalent to

We are ready now to use Lagrange relaxation, following the general ideas evoked in
section 1.2.4. The previous condition holds if there exists a positive semidefinite matrix
S such that V

or, equivalently,

where $^ is the dual map of $ A •
Hence, the Lagrange relaxation of robust SDP is an SDP of the form

min CTX subject to 5 > 0 and (1.24).

The variables in this SDP are x (the original decision variable) and 5 (the "multiplier"
matrix). The SDP provides an approximation of the robust SDP in the following senses:
(a) it yields an upper bound on the robust SDP; (b) any optimal x is robust (i.e., it is
feasible V A e A); (c) in the unstructured case (A defined by (1.14)), the approximation
is exact.

such that
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A special case: Robust linear programming (LP)

Consider the LP

Assume that the a^'s and 6i's are subject to unstructured perturbations. That is, the
perturbed value of [af bi]T is [af 6j]T + <§i, where \\6i\\2 < p, i = 1,..., L, and p > 0 is a
given measure of the perturbation level. We seek a robust solution to our problem; that
is, we seek x that minimizes CTX subject to the robustness constraints

This is a special case of a robust optimality problem, as defined in section 1.2.3.
Using the previous theory, it is straightforward to show that the robust LP is equiv-

alent to the problem

The above problem is a second-order cone program (SOCP) for which efficient special-
purpose interior-point methods are available (see section 1.5.1).

We note that for every p > 0, the above problem yields a unique solution, that is, a
regular (in particular, continuous) function of the problem's data (the o^'s and the &j's).
Thus, the approach provides a regularization procedure for the LP (1.25).

A simple variation of the robust LP is LP with implementation constraints, where
we seek a solution x such that for every 8x, \\6x\\ < p, the modified vector x + 6x still
satisfies the constraint of the original LP. This problem arises for example in the area of
optimal filter design, where the filter's coefficients can be implemented only with finite
precision.

1.4.3 A dual view: Rank relaxation
Lagrange relaxation can be interpreted in a dual way, in terms of relaxation of a rank
constraint of the rank-one, positive semidefinite matrix

which appears in (1.23). Define

Define also the convex set

Let us fix the decision variable x again. Condition (1.23) holds if and only if

The robust SDP problem writes as the max-min problem



1.4. Robust SDP 17

Relaxing the rank constraint yields lower bound

which, by virtue of the saddle-point theorem (recall X is convex), is equivalent to the
SDP in variable X

The above is the dual of the SDP obtained via Lagrange relaxation. We will see in sec-
tion 1.7.1 how this connection between Lagrange and rank relaxation has been recognized
earlier in the special case of combinatorial optimization problems. For a related point
of view on the geometrical properties of rank-constrained symmetric matrices, see [192]
and references therein.

1.4.4 Extension to nonconvex nominal problems
In many cases, notably in control synthesis, we encounter problems where the nominal
problem is nonconvex. Most of these problems can be turned into cone complementarity
problems (see section 1.5.2 for more details).

We have seen how to handle uncertainty in (convex) SDPs, which are symmetric
eigenvalue problems. To illustrate the ideas, let us consider a (nonconvex) unsymmetric
eigenvalue problem. For example, consider the following robust synthesis problem:

where p(-) denotes the spectral radius, and M(x, A) is affine in x and rational in A € A,
given in an LFR

(We note that the fact that M is affine in x is done without much loss of generality.)

Robustness analysis

Let us fix A, x, and seek sufficient condition for

Let us first "forget" uncertainty and apply Lagrange relaxation to the problem of checking
if

We obtain that A is an upper bound on spectral radius if and only if there exist X > 0
such that

The above condition is an LMI in X, which implies that we can apply the robust
SDP methodology to handle the case when M is uncertain. We obtain that A is an
upper bound on maximal spectral radius if there exist P > 0 and 5 such that

For fixed x, minimizing A a (quasi-) convex problem (over S and P) results in an upper
bound on the worst-case spectral radius.
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Robust synthesis

We now seek a sufficient condition, A being fixed, so that

holds. Now x becomes a variable. Due to possible cross products between x and P in
the previous sufficient condition, the problem is not convex, contrary to what happens
in the robust SDP case.

Let X = A2P, Y = P"1, and write problem as a conic complementarity problem

Condition (1.27) is true if and only if the optimum is A2n.
The problem we obtain is a generalization of the SDP, in the sense that the SDP

is a special complementarity problem (see section 1.5). In general, the above problem
is not convex; however, several efficient techniques can be used (see Part V). One of
these techniques, described in Chapters 16 and 17, relies on a simple linearization of the
quadratic objective and leads to a sequence of SDPs. In some cases, this approximation
technique is guaranteed to yield the global optimum of the original problem (see [128]).

1.4.5 On quality of relaxations
Associated with the relaxation methods comes the need to evaluate the quality of the
approximations involved. In the context of a robust SDP, the first results are due to
Nemirovski [39].

To illustrate the ideas involved in this analysis, consider the following robustness
analysis problem: Given I symmetric n x n FI, . . . , F/, and a scalar p, check if

This seemingly simple problem is NP-hard. If we apply Lagrange relaxation, we obtain
that a sufficient condition for property PI (i.e., p = I in (1.28)) to hold is

To evaluate the quality of the above approximation, we seek the smallest p such that
condition (1.29) implies Pp holds. Clearly, such a p satisfies p > 1; the closer to 1, the
better the approximation is.

Nemirovski has proved that p < min(v
/n, %//)• In terms of control, we interpret

this result as a bound on the quality of the approximation to a kind of "/z-analysis"
problem [108], with affine dependences and Euclidean-norm bounds. More refined results,
including for other norm bounds, are underway [290].

1.4.6 Link with Lyapunov functions
There is more than one connection between the approach proposed here and Lyapunov
theory; we will briefly hint at these connections here.
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Lyapunov functions and Lagrange multipliers

Lyapunov functions can be interpreted in the context of Lagrange relaxations, which
establish an interesting link between two "central" methods in control and optimization.

For the sake of simplicity, we first consider the problem of establishing stability of
the LTI system

where x 6 Rn is the state, and A 6 Rnxn is a (constant) square matrix. It is well known
that the system is stable if and only if

This shows that the stability problem is a robustness analysis problem (with respect to
"uncertain" parameter s).

To attack it using Lagrange relaxation, we first use an LFR of the problem. Introduce
p = sx] our robustness analysis problem is equivalent to checking if

Let us eliminate the "uncertain parameter" s by noting that

Let us apply a Lagrange relaxation idea now. A sufficient condition for stability is that
there exists a "multiplier" matrix S > 0 such that

A simple computation leads to the classical Lyapunov condition

which corresponds to the Lyapunov function candidate V(x) = xTSx.
Let us give another example of the "Lagrange relaxation" method for dynamical

systems. Consider a system with delayed state

The system is stable independent of the delay r > 0 if

An equivalent stability condition is that

This time, we may relax the two matrix inequality constraints, which after some matrix
calculations yields the sufficient (possibly conservative) condition for stability: There
exists symmetric matrices 5, Z such that 5 > 0, Z > 0, and

To this condition, we can associate a "Lyapunov function candidate," termed as a
Lyapunov-Krasovskii functional, defined as
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Quadratic stability

The robust decision methodology can also be applied in the quadratic stability analysis
for an uncertain system subject to unknown-but-bounded uncertainty:

where A satisfies the assumptions of section 1.3.1 and A is defined via the LFR

(Recall that we assume that this LFR is well posed over A.)
To analyze stability, the idea is to apply Lagrange relaxation twice. In a first step, we

"forget" uncertainty and apply Lagrange relaxation to the "frozen" system. This results
in a sufficient condition for stability: There exists a matrix 5 such that

This condition is known as a quadratic stability condition, since it requires the existence
of a quadratic Lyapunov function proving stability of the uncertain system.

In general, the above condition is still not tractable, despite the fact it is a convex
condition on S. However, the relaxed problem above now belongs to the realm of robust
SDP. We can apply Lagrange relaxation again. We obtain that if there exist matrices S
and W such that

holds, where $A is the linear operator that characterizes the uncertainty set A, then
the system is quadratically stable.

The above problem is an SDP, with decision variable S (linked to the quadratic Lya-
punov function proving quadratic stability), and W. When A is the set defined by (1.14),
the above condition is the well-known small gain theorem (see [64] and references therein).

The above idea can be extended in various ways, as illustrated in some other chapters
(Parts III and IV) of this book. For example, we may consider parameter-dependent, or
frequency-dependent Lyapunov functions, based on so-called IQCs.

Stochastic Lyapunov functions

Stochastic Lyapunov functions have been introduced by Kushner [237], and their use
in the context of LMI optimization has been introduced in [64, 120, 121]. Consider 
stochastic system of the form

where w is a scalar standard Wiener process (the "derivative" of this process can be
interpreted as a random perturbation on the state-space matrix, hence the name multi-
plicative noise given to such perturbations). The above systems are useful models in a
number of areas, most notably finance [256].

The second moment X = E(xxT) obeys the deterministic equation
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The stability of this system hinges on the existence of a linear Lyapunov function

where 5 > 0, which proves stability of the deterministic system (1.33) (evolving over
the positive semidefinite cone). It can be shown that the (second-moment) stability is
guaranteed if and only if

A stochastic Lyapunov function (in the sense of Kushner), namely
corresponds to this Lyapunov function.

One of the advantages of LMI formulations to stochastic control problems is that
once an LMI formulation is known, it is possible to apply Lagrange relaxation in the case
when the "data" (for example, the "nominal" matrix A in the above) is uncertain.

1.5 Algorithms and software for SDP

Algorithms for SDPs are now the subject of intense research in the field of optimization,
especially since 1995. This progress should have a great impact on LMI-based control
as algorithms become more efficient. Recent methods to solve a general SDP can be
roughly divided in two classes: interior-point methods and nondifferentiable optimization
methods. These algorithms have been implemented, and several interior-point software
packages are now generally available.

1.5.1 Facts about SDP and related problems

We briefly recall some important results on SDP and related problems.

Duality

The problem dual to problem (1.37) is

where Z is a symmetric NxN matrix and Ci is the ith coordinate of vector c. When both
problems are strictly feasible (that is, when there exist x, Z, which satisfy the constraints
strictly), the existence of optimal points is guaranteed [296, Theorem 4.2.1], and both
problems have equal optimal objectives.

Related convex problems

We list several problems that are related to SDPs.
Second-order cone programming problems are special cases of SDPs. They take the

form

where Ci € RniXm, di € Rn<, &i € Rm, /» 6 R, i = 1,..., L. The special structure of
SOCPs can be exploited in algorithms to yield much faster methods than using general-
purpose SDP methods; see, e.g., [296, 240, 9], as well as Chapter 3 of this book.
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Determinant maximization (max-det) problems are of the form

where G is an affine function taking values in the set of symmetric matrices of order p.
Max-det problems are convex optimization problems and can be solved in polynomial
time with interior-point methods [296, 402]. Chapter 2 of this book provides more details
on max-det problems. Other interesting applications of max-det problems are reviewed
in [406].

Generalized eigenvalue problems (GEVPs) are generalizations of SDPs, of the form

minimize A subject to

Here, A, B, and C are symmetric matrices that depend affinely on x e Rm. GEVPs
are not convex but are quasi convex and amenable to interior-point methods similar to
those used for SDPs; see [63, 295].

1.5.2 Interior-point methods
One way to view interior-point methods is as a reduction of the original problem to a
sequence of differentiable, unconstrained minimization subproblems. Each subproblem
can then be efficiently solved, perhaps approximately. These methods can be described
in the context of self-concordant barrier and potential functions; this is the point of view
taken in [296, 404].

Primal-dual interior-point methods

Without doubt, the most efficient interior-point methods for LP are the primal-dual
interior-point methods [423]. When a primal-dual interior-point method is used, each
subproblem can be described by a linear least squares problem or, equivalently, a system
of linear equations. These methods are very efficient for four reasons: (1) they enjoy
robust convergence from infeasible starting points, with guaranteed complexity when
implemented accordingly (though typically this is not done in practice); (2) they converge
rapidly, even if the solutions are not unique; (3) the linear systems to be solved are sparse
(or can be made sparse by, for example, using standard techniques to handle dense
columns in the constraint matrix); consequently, very large problems can be solved; (4)
the inherent ill conditioning in the linear systems to be solved does not, in practice,
greatly limit achievable accuracy. However, this ill-conditioning does mean that iterative
methods (e.g., conjugate gradient) are not generally practical to solve the linear systems:
the standard workhorse is sparse Cholesky.

Since 1995, there has been a flurry of papers on primal-dual interior-point methods
for SDPs; a complete bibliography on this subject is outside the scope of this chapter.
Relevant references include [297, 8, 233, 286, 338, 391,190, 404, 5, 219]. In these methods,
the subproblem to be solved is again simply a system of linear equations, although this
is not always equivalent to a least-squares problem. As in LP, these methods converge
very rapidly; various complexity results are now available; software packages have also
recently become available. However, primal-dual methods are not necessarily the best at
exploiting sparsity in the data. The linear system that must be solved at every iteration
invariably has dimension m, the number of variables in the primal form of the SDP.
Therefore, with present technology, primal-dual methods are highly efficient if m is not
too large (say, less than 1000), but if it is much larger, they are not practical unless
sparsity can be exploited. See [38] for a primal alternative to primal-dual methods that
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quite effectively exploits sparsity in SDPs arising in applications to graph theory. Even
this approach, however, is limited by the size of linear systems that can be solved.

In what follows, we briefly describe primal-dual path-following methods, following
Kojima et al. [233].

Optimality conditions and central path

When the primal problem (1.2) and its dual (1.35) are both strictly feasible, then we
may write the optimality conditions

where £ is an affine subspace:

We can interpret the above conditions as complementarity conditions over the positive
semidefinite cone, similar to those arising in LP [233]. The convexity of the original
SDP is transported here into a property of monotonicity of £, which is crucial for the
algorithm outlined below to converge globally.

We introduce a parameter p, that modifies the above conditions, as follows:

Under strict feasibility conditions, the above system defines a unique primal-dual pair
(FM,ZM). Solving (1.40) for decreasing values of the parameter \JL leads to an optimal
solution. The path followed by (FM,ZM) as /u — » 0 is referred to as the central path,
which explains the qualification "path following."

For each value of /^, the conditions (1.40) can be interpreted as the optimality condi-
tions for a differentiable problem involving a barrier function. Thus, the above description
of interior-point methods can be interpreted in the context of barrier functions [296, 404].

Predictor and corrector steps

Assume that we have found a pair (Ffc, Z<-) that is close to the central path (i.e., approx-
imately solve (1.40)). To find the new iterate, two steps are taken. In the predictor step,
we seek to approach the optimum, that is, to satisfy ZF = 0. In the corrector step, we
seek to return close to the central path by ensuring ZF = fj,I.

The search directions 6x, 6Z for each step (predictor and corrector) are computed by
linearization of the constraint ZF = 0 (predictor) or ZF = p,I (corrector) around the
current value of (x,Z). Each step thus gives rise to a linear system in the elements of
6x, 6Z. Note that ZF can be linearized in a number of ways, depending on the specific
method used.

The step lengths may be chosen small enough so that the new iterates will be guar-
anteed to be close to the central path again (and thus, strictly feasible). Here, closeness
is measured using a proximity function such as

(Many alternatives are possible; see [233].) Depending on the proximity function used,
we may define long-step and short-step strategies (see, for example, [286]).

There are two different approaches to initialization that have become standard. One
approach uses an "infeasible start," i.e., points that satisfy the cone inequality constraints
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but not the linear equality constraints. If the original problem turns out to be either
primal or dual infeasible, iterates with large norms will typically be generated, alerting
the user that the problem is most likely either primal or dual infeasible. The other
approach is to construct a modified problem for which feasible starting points are known,
which then guarantees that either the original problem will be solved or a certificate of
infeasibility will be found [298]. Although this approach is very attractive theoretically,
it remains unclear whether it is better than the infeasible-start approach in practice.

In fact, the whole issue of feasibility is much more subtle for SDP than it is for LP.
An interesting discussion on this subject can be found in [257].

1.5.3 Nondifferentiable optimization methods

When the number of variables is sufficiently large, and sparsity cannot be effectively
exploited, it may be advantageous to consider alternative methods to solve SDPs. For
simplicity, we only discuss an LMI feasibility problem, where a solution to a set of LMIs
is sought; such problems appear routinely in control, e.g., in stability analysis.

An LMI feasibility problem is easily formulated as an eigenvalue minimization prob-
lem of the form

where F(x) is an affine function taking values in the set of real symmetric matrices
and Amax denotes largest eigenvalue. (To see this, note that there exists an x such
that F(x) < 0 if and only if the minimum of Amax(F(a;)) is below zero.) The function
f ( x ) = Amax(F(a;)) is a nondifferentiable function; yet it is convex and all theoretical
tools from convex analysis apply to this function: In particular, first-order and second-
order generalized derivatives can be explicitly quantified and numerically implemented
for this class of functions [305, 397, 373, 310, 137].

In Chapter 3 of this book, an extensive review of existing nondifferentiable opti-
mization methods (NDOMs) is proposed ranging from early subgradient methods to
the modern bundle methods. Chapter 3 also includes some very recent developments
on second-order bundle methods as well as numerical results of a new type: a mixed
polyhedral-semidefinite bundle method enables us to check the stability of polytopic lin-
ear differential inclusions with 1000 state variables (which implies more than m = 500,000
variables). A second-order bundle method is shown to bring in practice an asymptotic
superlinear rate of convergence for smaller problems. Some perspectives are sketched to
see how the latter methods could be made efficient on large-scale problems.

1.5.4 Software

Software for solving SDPs is generally available, both freely on the Internet and commer-
cially. (To our knowledge, most of these SDP algorithms use interior-point methods.)
Much of this has become available quite recently. Here is a (probably incomplete) list:

• The Matlab control toolbox, developed by Cabinet and others [153] uses Nesterov
and Nemirovski's projective algorithm [296, 293].

• The code sdpsol, described in Chapter 2 of this book, is a parser/solver for SDPs
and max-det problems, sdpsol uses the code SP, developed by Vandenberghe and
Boyd [402].
http: //www. Stanford. edu/"boyd/group_index. html
The toolbox Imitool, developed by El Ghaoui, Nikoukha, and Delebecque [126],

http://www.stanford.edu/~boyd/group_index.html
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and later by Commeau, is an interface to the codes SP, SDPpack, and SDPHA.
http : //www . ensta . f r/~gropco/

• The code SDPpack, outlined in Chapter 3 of this book, implements a primal-dual
algorithm due to Alizadeh, Haeberly, and Overton [8] and Alizadeh et al. [6].
http : //www . cs . nyu . edu/cs/f aculty/overton/sdppack/sdppack . html

• The code SDPA: developed by Fujisawa, Kojima, and Nakata; the underlying
algorithm is described in [233].
ftp : //ftp . is . t itech . ac . jp/pub/OpRes/sof tware/SDPA

• The code SDPHA: developed by Brixius, Sheng, and Potra; for a description of
the underlying algorithm, see the web page.
http : //www . cs . uiowa . edu/brixius/SDPHA

• The code SDPT3: uses the algoritm of Todd, Toh, and Tiituncii [391].
http : //www . math . nus . sg/"mattohkc/SDPT3 . tar . Z

• The code SeDuMi: developed by Sturm.
http : //www . crl . mcmaster . ca/ASPC/people/sturm/sof tware/

1.6 Illustrations in control

This book abounds with examples of applications of the LMI framework to control prob-
lems. In this section, we seek to provide complementary examples.

1.6.1 Optimal control and SDP duality

Notions central to SDP theory, such as duality, optimality conditions, sensitivity analysis,
etc., have usually interesting interpretations for the analysis of (optimal) control prob-
lems. For example, the perturbation theory for the general SDP recently developed by
Shapiro [372, 373] and Bonnans, Cominetti, and Shapiro [55] can be used for the analysis
of Lyapunov and Riccati inequalities and equations encountered in optimal control.

The following example shows how SDP duality and optimality theory can be used
in an optimal control problem. In a variety of stochastic control problems, a Riccati
equation of the following form [422] arises:

where Q = QT > 0, .R > 0, and A, B, G are matrices of appropriate sizes. When G = 0,
we recover a standard Riccati equation (which can be solved via the eigenvectors of a
Hamiltonian matrix). In the general case G ̂  0, the problem of computing the solution
is nontrivial.

Under hypotheses that are physically reasonable, detailed below, we can solve the
above equation using an SDP as follows. Consider the SDP

We form the problem dual to (1.43) (see section 1.5):

http://www.ensta.fr/~gropco/
http://www.cs.nyu.edu/cs/faculty/overton/sdppack/sdppack.html
http://www.cs.uiowa.edu/brixius/SDPHA
http://www.math.nus.sg/~mattohkc/SDPT3.tar.Z
htt://www.crl.mcmaster.ca/ASPC/people/sturm/software/
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The above problem is strictly feasible if and only if the underlying stochastic system
is stabilizable in a stochastic sense (with static state-feedback control law u = Kx,
K — UX~1}. Likewise, it is easy to show that the primal problem (1.43) is strictly
feasible when this system is detectable. Let us make the hypothesis of primal and dual
strict feasibility.

Since both primal and dual problems are strictly feasible, it follows that a set of
feasible primal-dual variables (P, X, U, S) are optimal if and only if

from which we get

With R > 0, we obtain U = KX, where K = -R~1BTP. The first equation of (1.45)
then writes

Finally, we observe that X > 0: if Xz = 0 for some z, then Uz = 0 (from U = KX).
Since U, X are feasible for (1.44), we obtain

which implies z = 0. The conclusion is that P satisfies the Riccati equation; furthermore,
the control law u = Kx is stabilizing, since X > 0, and

For other references where duality theory and control links are exploited, see, for exam-
ple, [413].

The above approach can be extended to some other classes of nonstandard Riccati
equations, involving, for example, jump linear systems [3], problems with indefinite con-
trol weighting matrix R [324], etc.

1.6.2 Impulse differential systems
Impulse differential systems are systems subject to state discontinuities (or jumps). These
systems are hybrid, in the sense that they obey to a mixture of discrete- and continuous-
time behaviors. See [27, 358] for references and also [439] for an application in the context
of telecommunications. In classical control, hybrid systems are very common: they arise
when one controls a (continuous-time) system with a discrete-time controller.

A typical impulse linear differential system is of the form

where A, M are given square n x n matrices, and r», i = 0, 1, . . . , is a strictly increasing
infinite sequence of time instants, which determine when the (otherwise smooth) trajec-
tory suddenly jumps from x(r~) to X(T*). By proper choice of the impulse matrix M,
one seeks to guarantee stability, using small impulses at properly chosen time instants.
(In the following, we assume the jumps are separated by a fixed interval T.)
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The stability analysis of impulse systems is nontrivial in general. In [439], Yang
and Chua have devised (based on an earlier result by [358]) a stability criterion, using
quadratic Lyapunov functions. It turns out that it is easy to rewrite this criterion in the
form of an LMI condition, as follows. If there exists S > 0 such that

then the system is asymptotically stable.
The above conditions can be interpreted in terms of the ellipsoid S — {£ | £TS£ < 1}:

the first LMI says that, during the "continuous-time behavior," the trajectory never
escapes the (possibly bigger) ellipsoid {£ | £TS£ < e~2aT}; the last two conditions
ensure that the jump brings the state back to £, which implies some kind of invariance
for S. Note that we do not assume the continuous system to be stable, since the decay
rate a may be negative; in some sense, we are requiring that the "degree of stability" of
the discrete-time behavior dominates that of the continuous-time one.

The above condition is an LMI in 5 for fixed A, a, which shows that the problem of
checking stability (based on quadratic stability) is tractable, provided a plane search (on
A, a) is used. The main advantage of the LMI formulation is that it allows for designing
an appropriate impulse M: with the change of variables U = SM, the above conditions
become convex in both S, U.

With an LMI (sufficient) condition stability in hand, we can address a variety of
control problems.

For example, we can extend the results to nonlinear and/or uncertain systems; for ex-
ample, we may allow the matrix A to be unknown-but-bounded, or consider the case when
the system without impulses is LTI with a sector-bounded nonlinearity, and apply Lur'e
stability conditions [64]. Likewise, it is possible to deal with optimal (state-feedback)
control problems using the framework used in section 1.6.1.

1.6.3 Delay differential systems
Delay systems arise in many applications, especially when a physical or biological trans-
port phenomenon occurs (see, e.g., Murray [288] for interesting examples in biology).

A typical problem in control of delay system is to analyze stability as a function of
delay, where the delay is viewed as a parameter of the system. The problem is still largely
open [100]; even in the linear case, and with multiple (noncommensurable) delays, the
problem is NP-hard (see Toker and Ozbay [395] for a precise statement and results).

We may distinguish delay-independent stability analysis (i.e., no information on the
delay size is used) and delay-dependent stability analysis (based on this information).
Sufficient stability conditions, both delay independent or not, have been devised using
LMIs; see, e.g., [428, 248, 143]. Important tools in stability analysis are based on ex-
tensions of classical Lyapunov theory, leading to Krasovskii functionals or Razumikhin
functions [186]. The Razumikhin theorem has been linked to the S-procedure of sec-
tion 1.2.4 in [301]. A survey of results and further comments are given in [301].

In section 1.4.6, we have given a delay-independent stability result, based on Lagrange
relaxations, which is related to a particular choice of Lyapunov-Krasovskii functional can-
didate. This approach can be extended to a delay-dependent result, using an embedding
technique (comparison principle) as follows.

Consider the stability analysis problem for the delay-differential system (1.30). We
introduce the distributed delay system
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and argue that the above system is an embedding of the original system (1.30), in the
sense that stability of the above guarantees that of (1.30) (in fact, the above is an
integration of the original equations over one delay interval). Using Laplace transforms
and straightforward computations, we obtain a sufficient condition for stability:

It is then straightforward to apply the Lagrange relaxation technique (see section 1.4.6)
and obtain the following delay-dependent relaxed LMI condition:

Computing a lower bound on the largest allowable delay is a generalized eigenvalue
optimization problem (GEVP). Refinements of these results can be found in [300].

To the above LMI condition corresponds a Lyapunov-Krasovskii functional candidate
of the form

The above ideas can be extended to multiple delays (seen as independent uncertain
parameters). A different idea, leading to similar results, is based on the IQC theorem,
combined with the Kalman-Yakubovich-Popov lemma [143] (see Chapter 6 for more on
IQCs). The basic idea here is to view the delay as an uncertainty that satisfies a given
IQC (see section 1.3.1) and then apply IQC analysis.

It is possible to refine the results using a more computationally intensive LMI con-
dition, using an idea similar in some sense to the one exploited in the context of ro-
bustness analysis with multipliers (see Chapters 6 and 11, for example). Indeed, for
the system (1.30), we may exhibit a Lyapunov-Krasovskii functional that yields a nec-
essary and sufficient condition for stability [207]. Unfortunately, this functional cannot
be parametrized using a finite-dimensional function (as is the case when working with
LTI systems and quadratic Lyapunov functions); rather, it depends on several matrix
functions (defined over an interval [—r 0]). It is possible to discretize this parametriza-
tion [179] and obtain LMIs whose degree of conservativeness is arbitrarily low, with an
inversely proportional computational effort.

1.6.4 Open- loop and predictive robust control
Robust optimization opens up the possibility of designing robust open-loop controllers
for uncertain systems. This idea is suggested in [66], and we briefly elaborate on it now.
Consider, for example, a dynamical system

where A*, B* € Rnxn", Cfc 6 Rn»xn, and D* are unknown-but-bounded time- varying
matrices. We are given a time horizon T > 0 and denote by u and y the vectors
(UQ, . . . ,WT-I) € RTn" and (yo> • • • >2/T-i) € RTn". We also define three polytopes (or
ellipsoids) U C RTriu, AQ, and y € Rrn", sets of admissible controls, initial conditions,
and outputs constraints, respectively.
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The problem is to find a u e U, if any, such that for every XQ € AQ, the resulting
output satisfies y £ y.

If the state-space matrices are exactly known, the problem is equivalent to a simple
linear program. In the case when the state-space matrices are uncertain, the robust
counterpart can be approximated using the robust decision methodology. In terms of
optimization, this versatile framework gives rise to challenging large-scale problems.

One way to avoid the curse of dimensionality is to construct ellipsoids of confidence
for the future state and optimize (over a few time steps) the control vector. This idea is
similar to the one used in model predictive control. The construction of the corresponding
ellipsoids of confidence can be done using the techniques proposed shortly in section 1.7.2,
in a recursive manner.

1.7 Robustness out of control

The title of this section is borrowed from that of a talk by J. C. Doyle [105].
The LMI formalism provides a unitary framework, not only for various control prob-

lems, but also in other fields, where LMIs have recently emerged as a useful tool. We
give some examples of this interplay, concentrating on areas where control-related no-
tions (e.g., robustness) seem to play a role that goes sometimes unrecognized yet, such
as interval linear algebra.

1.7.1 LMIs in combinatorial optimization
SDPs are now recognized as yielding very efficient relaxations for (hard) combinatorial
problems [161]. It turns out that these SDP relaxations for combinatorial problems can
be obtained as special cases of the methodology outlined in section 1.4. (The connec-
tion between 5-procedure and such relaxations is presented in [66].) In turn, the SDP
relaxations open up interesting perspectives for handling combinatorial problems with
uncertain data, in view of the tools developed for the robust SDP.

We illustrate this via a simple example. Consider the NP-hard problem

where W is a given symmetric matrix. When W assumes some special structure, the
above problem is known in the combinatorial optimization literature as "the maximum
cut" (MAX-CUT) problem [161, 154].

This problem is a robustness analysis problem, as defined in section 1.2.3. First we
note that, without loss of generality, we may assume W > 0 and rewrite the problem as
a robust synthesis problem:

Let us now apply our results, with

for appropriate matrices F, L, R, and with A = diag(<$i,. . . , <5j). The uncertainty set is

The above set satisfies the assumptions made in section 1.3.1.
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We obtain easily the following SDP approximation, yielding an upper bound on the
original problem:

(1.47) minTrS subject to W < 5, 5 diagonal.

In [161], Goemans and Williamson have also proposed an SDP relaxation (i.e., an upper
bound) of the problem. The technique is actually a special case of the general technique
described in section 1.4.3. Introduce the variable X = 68T and rewrite problem (1.46)
in the equivalent form

Relaxing the nonconvex constraint rankX = 1, we obtain an SDP that is exactly the
"dual" (in the sense of SDP; see section 1.5.1) of (1.47). As shown in [161], the above
relaxation is the most efficient currently available (in terms of closeness to the actual
optimum in a certain stochastic sense).

Once an SDP formulation of the original problem is known, we can consider problems
in which the "data matrix" W is uncertain, starting from the "nominal problem" (1.47).
(In practice, such problems often arise in telecommunications, and the matrix W is
estimated from statistics.)

1.7.2 Interval calculus
A basic problem in interval computations is the following. We are given a function f
from R/ to Rm and a set confidence V for 6 € R* in the form of a product of intervals.
We seek to estimate intervals of confidence for the components of x = f (6) when 6 ranges
to V. (Sometimes, f is given in implicit form, as in the interval linear algebra problem;
we return to this case in the next section.) Obtaining exact estimates for intervals of
confidence for the elements of solutions x is in general NP-hard (see [345, 346] for the
interval linear algebra case).

One classical approach to this problem resorts to interval calculus, introduced by
Moore [287], where each one of the basic operations (+, —, x, /) is replaced by an "interval
counterpart," and standard (e.g., LU) linear algebra algorithms are adapted to this new
"algebra." Many refinements of this basic idea have been proposed, but the algorithms
based on this idea have in general exponential complexity. (For control applications of
interval calculus, see, e.g., [99].)

Robust SDP can be used for this problem as follows. Assume we can describe f
explicitely as a rational function of its arguments; from Lemma 1.2, we can construct (in
polynomial time) an LFR of f in the form

Assume first that we seek an ellipsoid of confidence for the solution in the form

where XQ € Rn is the center and P > 0 defines the "shape" (our parametrization allows
for degenerate, "flat" ellipsoids to handle cases when some components of the solution
are certain). We seek to minimize the "size" of £ subject to f(<$) € £ for every 8 € *D.
Measuring the size of £ by TrP (other measures are possible), we obtain the following
equivalent formulation of the problem:

minimize TrP subject to
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The above is obviously a robust SDP problem (in variables xo,P) for which an explicit
SDP counterpart (approximation) can be devised, provided V takes_the form of ajgen-
eral) ellipsoidal set. (A typical set is a product of intervals II [̂  <5i], where £i; 8i are
given.)

The above method finds ellipsoids of confidence, but it is also possible to find intervals
of confidence for the components of f (6) by modifying the objective of the above robust
SDP suitably (for example, if we minimize the (1,1) component of the matrix variable
P instead of its trace, we will obtain an interval of confidence for the first component of

when 6 ranges to T>).

1.7.3 Structured linear algebra

Many linear algebra problems involve matrices with a given structure (in identification,
for instance, we obtain least squares problems in which the coefficient matrix has a
Toeplitz structure). One of the most active research areas in numerical linear algebra
pertains to exploiting perturbation structure, both for error analysis and for computing
the solution.

Consider, for example, a polynomial interpolation problem leading to a linear system
of the form Ax = 6, where x contains the polynomial coefficients and A is a matrix with a
Vandermonde structure. In some applications, the interpolation points are not precisely
known. This results in an "uncertain Vandermonde system" of the form A(6)x = b(6),
where A(<5), b(£) are matrix- valued (resp., vector- valued) polynomial functions of a per-
turbation vector 6.

A structured linear equation is a model of the form

where A(6), b(<5) are (affine) functions of a parameter vector 6 € R', and x is the variable.
We assume that 6 is unknown-but-bounded; for example, ||£||oo < 1- (Note that (1.50)
is not an equation but a model of the way an equation is subject to perturbations.) The
above model can be represented in the linear-fractional form:

A number of problems pertain to the structured equation (1.50).

Robust least squares

One such problem is robust least squares, where we seek a vector x that minimizes the
worst-case residual

Such a vector can be termed robust in the sense that it minimizes the effect of pertur-
bations on the "performance" (measured by the residual). The above problem has many
implications in control, notably in robust identification.

The robust least-squares problem is a robust SDP problem, since the nominal prob-
lem, i.e., the classical least-squares problem, is a special case of an SDP. Details on this
approach are given in [125].
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Condition estimates and accurate solutions

Another problem is to measure the sensitivity of a candidate solution x. A way to
quantify this sensitivity (or backward error) is to compute

It is also interesting to compute a vector x that minimizes (an upper bound on) the
above quantity. Such a vector is a solution for (1.50) with minimum sensitivity with
respect to the perturbation vector 6; in this sense, it is accurate (with respect to the
given perturbation structure and bounds).

As seen in the next paragraph, the above problems are robust SDP problems, which
can be attacked using the methodology described previously.

Interval linear algebra

The basic problem of interval linear algebra is a slight variation on the problem considered
in section 1.7.2 and is as follows. We are given matrices A e Rnxn, b € Rn, the elements
of which are only known within intervals; in other words, [A b] is only known to belong
to an "interval matrix set" U. we seek to compute intervals of confidence for the set of
solutions, if any, to the equation Ax = b.

To attack this problem we seek an ellipsoid of confidence in the form (1.48), where
P > 0. For simplicity, we assume first that A, b are given; using the S-procedure, we
find that a necessary and sufficient condition for £ to be an ellipsoid of confidence is that
there exists a scalar multiplier r such that

This condition is easily converted in an LMI in XQ,P. Prom then on, we can use the
robust SDP methodology to handle the case when A, b are uncertain.

For further reference, we detail the result in the special case when [A b] is an uncertain
matrix subject to "unstructured additive perturbations." Assume

where [A b] € Rnx(m+1) and p > 0 are given. In this case, our results are exact and yield
an ellipsoid center of the form

(We assume that crmin([^4 6]) > p; otherwise the ellipsoid of confidence is unbounded.
Except in degenerate cases, this guarantees the existence of the inverse in the above.)

Structured total least squares

The so-called structured total least squares (STLS) problem, which arises in many areas,
e.g., in identification and other inverse problems in engineering [96], is as follows. We
are given A(6) e Rmxn, b(<$) € Rm, two (algebraic) functions of a parameter 6 € R'.
The STLS problem is

Here, we are interested in finding one value of the "perturbation" vector 6 that makes
the vector x feasible. In this sense, the problem belongs to the class of "backward error
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analysis" problems: A perturbation is sought such that the linear equation above becomes
consistent.

The STLS problem can be solved (at least approximately) by resorting to robust
optimization as follows. A scalar p is an upper bound on the objective in (1.53) if there
exists x € Rm such that

Assume that we have computed an ellipsoid of confidence of center XQ and shape matrix
P, denoted by £p, for the set of solutions of the above constraint. The quantity

min p subject to £p is not empty

is an upper bound on the STLS problem. The above problem turns out to be a GEVP,
with variables p, XQ, P-

In the unstructured (additive) perturbations case, we recover the classical notion of
the total least-squares solution developed by Golub and Van Loan [171]. The upper
bound computed via GEVP is exact; the ellipsoid of confidence can be shown to be
reduced by the singleton, and the optimal center is given by (1.52), where p = crmin([A &]).

1.7.4 Robust portfolio optimization

A portfolio is a collection of financial assets, say, pi, . . . ,pn. Each asset Pi has a (random)
return over a given horizon, denoted TJ. If x» is the proportion of the total value of an
asset p invested in the ith asset, then the return of the portfolio over the given horizon
is p = XiTi H V xnrn = rTx.

The return of each asset is, of course, unknown a priori. However, it is possible to
deduce from past measurements the values of the mean // = E(r) and covariance matrix
V = E(rrT). The standard mean-variance portfolio choice problem, introduced in the
fifties by Markowitz [263], is to minimize the variance of the asset's return, xTFx, subject
to a given level a of mean return, a = HTX.

This problem can be written

(In the above, e stands for the n-vector with every component equal to one.) The problem
above belongs to the class of a convex quadratic problem (a subset of SDP problems),
and, as such, can be very efficiently solved using interior-point methods.

One may then consider variations of this problem and solve them using the LMI
framework. We obtain one interesting example when we assume that the mean and
covariance matrices are unknown-but-bounded. This leads to portfolio choices that are
robust with respect to uncertainty in mean and covariance. Another interesting per-
spective is to formulate the problem in a dynamic (multistage) setting and apply robust
control techniques to devise a robust portfolio update.

1.8 Perspectives and challenges

1.8.1 Algorithms and software
Efficient algorithms and software should exploit the structure of the given problem in
the most systematic way. For example, many problems in control lead to SDPs of the
form (1.2), where the coefficient matrices are sparse. A sparse SDP solver would thus be
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extremely useful. Interior-point methods seem difficult to adapt directly to sparse LMI
problems. To understand why, recall from section 1.5.2 that at each step we have to find
(approximate) solutions to a complementarity equation of the form

where /z is a parameter, and F (resp., Z) is the primal (resp., dual) variable. Sparsity
of F does not imply that of Z, and this makes the use of sparse computations uneasy to
propagate throughout the iterations.

In contrast, the nondifferentiable methods, described in section 1.5.3, and in more
detail in Chapter 3, seem promising for sparse SDPs. In particular, first-order (bundle)
methods only require the computation of a (few) subgradient(s), and this can be done
with sparse calculus. One problem with such methods is slow convergence, but we
believe that using second-order information (such as t/-Lagrangians) , it will be possible
to increase convergence speed at a controlled increased cost per iteration (recall that with
the C/-Lagrangian method, we work on a subspace of dimension equal to the multiplicity
at the optimum, and this number is often much smaller than the size of the problem).
More theoretical studies are needed to make this statement anything else than a belief.
In particular, more work is needed on generic multiplicity at the optimum for SDPs,
along the lines of [310, 326, 7].

Sparsity is not the only structure of which we may take advantage. SDPs that per-
tain to matrices with Toeplitz or Lyapunov, etc., structure can often be solved much
faster than general SDPs. (Structure is also crucial information to use for solving linear
equations.) This issue is raised in detail in Chapter 4 of this book.

1.8.2 Nonconvex LMI-constrained problems
A number of problems arising in control and other fields are not convex. We encounter
the following classes. (We only discuss feasibility problems, to simplify; see Part V of
this book for more on these problems.)

Bilinear -matrix inequality (BMI) problems are of the following form:

Find x such that

where F,, Gij are given symmetric matrices. This class contains much of combinatorial
optimization; a typical example of such a problem is the MAX-CUT problem mentioned
in section 1.7.1.

Rank-constrained problems (RCPs) are of the following form:

Find x such that             

where F(-),G(-) are two affine matrix functions (with F(-) symmetric), and k is a
given integer. Rank-constrained problems arise in, e.g., reduced-order feedback control
(see [108, 124, 128]).

Conic complementarity problems (CCPs) consist of solving

where K, is a convex subset of the cone of semidefinite matrices, and F, Z are variables.
When the problem is "monotone" (that is, when the set /C is a "self-dual" cone), then
the above problem can be solved using primal-dual interior-point methods for SDPs. For
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general cones /C, however, the above problem is hard. Conic complementarity problems
are generalizations of the famous linear complementarity problems and arise in many
situations, including robust control (see [128]); see section 1.4.4 for an example.

The above problems are in general NP-hard. As we will see, they are polynomially
equivalent, in the sense that we may transform one into the other in polynomial time.
This equivalence can be used to devise efficient relaxation algorithms.

First, we may rewrite any BMI in the form of an RCP, as follows. Define
and rewrite the constraint in (1.54) as

We obtain a rank-constrained problem. Dropping the rank constraint yields an LMI
condition, which provides us with a relaxation of the original BMI problems, very similar
to the one used in combinatorial optimization (see section 1.7.1).

Conversely, any rank-constrained problem is a BMI and a CCP. First we may assume
without loss of generality that the matrix G(x) is square (UG x UG] and symmetric. Next,
the constraint RankG(:r) < k is equivalent to saying that TrZF = 0, F > 0, Z > 0,
where

for some M € RncXfe, 5 e RnGXn°, S > I, U, V of appropriate size. Note that the
constraint TrZF = 0 can be written as a BMI, which shows the polynomial equivalence
between BMIs and RCPs.

By solving the CCP

where /C denotes the cone of positive semidefinite pairs (F,Z) of the form (1.57), with
5 > /, we solve the original RCP.

The conic complementarity formulation seems very similar to the problem we en-
counter in primal-dual interior-point methods for solving SDPs. This suggests an algo-
rithmic approach to such problems, where we directly apply a primal-dual interior-point
method to the problem. (Of course, this method will converge globally when the comple-
mentarity problem is monotone.) For nonmonotone problems, the method will at least
provide a local minimum.

1.8.3 Dynamical systems over cones
The developments made in section 1.4.6 seem to indicate that to analyze a (possibly
stochastic) dynamical system with a vector state x € Rn in the context of LMIs, it
is fruitful to consider the (equivalent) system describing the evolution of the matrix
X = XXT (or its expected value, if a stochastic system is at hand).

By definition, the resulting (deterministic) dynamical system leaves the positive
semidefinite cone invariant. This motivates a closer study of dynamical systems of the form

where <f> is a deterministic map, with the property that the positive semidefinite cone is
invariant for (1.58). There seem to be a number of (apparently unexplored) interesting
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connections between several optimization and control notions, all related to systems of
the form above.

For example, for the LTI system x = Ax, the resulting cone-invariant system takes
the form (1.58), with (f>(X) = ATX + XAT. A (linear) Lyapunov candidate of the form
V(X) = TrXS (with S > 0 given) proving stability of system (1.58) can be interpreted
as a primal-dual gap (X is the "primal" variable, S the "dual" one) and is related to a
quadratic Lyapunov function proving stability of the original (state-vector) system. The
complementarity condition of the form (1.40) encountered in SDP, where a product of
primal and dual variables are inverse of each other, can be related to the notion of adjoint
system. Indeed, we note that if X(t) is a trajectory of (1.58), with X(t) invertible for
every t > 0, then the inverse matrix S(t) = X(i)"1 satifies the adjoint system

It would be interesting to see how the above connections can be exploited in control
and optimization problems and if the study of cone-invariant systems (1.58) can be made
for cones other than the positive semidefinite cone.

1.8.4 Quality of relaxations for uncertain systems

As seen in section 1.4.5, the problem of estimating the quality of relaxations is crucial in
robust SDP, and this opens several challenging new problems. Good quality estimates
would be of great importance for robust control, as they would enable us to bound the
conservativeness of well-known tools such as //-analysis.

Consider for example the uncertain dynamical system

where the n x n matrix A is an algebraic function of its argument 6 € R*.
A sufficient condition for stability is quadratic stability (see section 1.4.6):

In turn, the above condition can be relaxed using robust SDP techniques, leading to a
(tractable, sufficient) LMI condition of the form (1.32).

In some cases, it is possible to assess the possible conservativeness of this LMI condi-
tion over the quadratic stability one. For example, if A is affine in 6, then Nemirovski's
results apply (see section 1.4.5), leading to a quality bound (in the sense defined in
section 1.4.5) of min(y/n, %//)•

The more general case when the matrix A is nonlinear (algebraic) in the parameter
vector 6 can perhaps be attacked using a singular perturbation technique, as follows.
Represent A in the LFR format

As usual, we assume this LFR to be well posed over A. Now let c > 0, and associate to
system (1.59) the following "augmented" system:

where A is the set defined in (1.15).
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Under certain conditions classical in singular perturbations theory, involving (robust)
stability of the matrix DgpA — / for A e A,3 the above system can serve as an ap-
proximation to system (1.59). For every e > 0, the above system is equivalent to an
uncertain linear system, with affine dependence on the uncertain parameters 6. For this
system, the conservativeness estimate for quadratic stability is mm(\/n -f AT, >//), where
N = 7*1 H h r j . Since by definition TJ > 1, we obtain the conservativeness estimate \/

The challenge here is to see how this analysis can be extended to the case of arbitrarily
small e in order to give a rigorous conservativeness estimate.

1.9 Concluding remarks

In this chapter, we sought to give an overview of the LMI method. We proposed a unitary
framework based on optimization ideas for addressing a large class of decision problems
with uncertainty. We have indicated some possible research directions where this method
could be applied.

In control theory, to borrow words from Doyle, Packard, and Zhou [108],

LMIs play the same central role in the postmodern theory as Lyapunov func-
tion and Riccati equations played in the modern, and in turn various graphical
techniques such as Bode, Nyquist and Nichols plots played in the classical.

Thus, the LMI approach constitutes a basis for a "postmodern control theory" [108],
which allows robust, multicriteria synthesis. Benefits of both classical (PID) or modern
(LQG, HOQ) approaches are combined: reduced number and clear physical interpretation
of design parameters and simplicity of numerical solution, even for multivariable prob-
lems. In addition, this approach provides guarantees for the design and allows (possibly
competing) specifications.

In our opinion, LMI-based control methods have reached a certain degree of "aca-
demic" maturity, even though many control areas are yet unexplored. Both theoretical
grounds and efficient algorithms are now available, and this should lead to more and
more industrial applications, some of which are in progress.

We strongly believe that the LMI approach could be applied to many other engineer-
ing problems, especially design problems with robustness and multicriteria issues. We
presented some of these problems with an optimization point of view. The reason is that
the language of optimization seems the best suited as a common framework for these
problems.

In some ways, we could widen the scope of the above quote from [108] by saying that
LMIs (and convex optimization ideas) should play the same central role in "postmodern"
engineering as numerical linear algebra (least squares, eigenvalue problems, etc.) played
in the past 20 years.
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3If A is polynomial in 6, then Dqp can be constructed as a strictly upper triangular matrix, and
jpA — / is stable for every A € A.
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Chapter 2

Mixed
Semidefinite-Quadratic-Linear
Programs

Jean-Pierre A. Haeberly,
Madhu V. Nayakkankuppam,
and Michael L. Overt on

2.1 Introduction

In this chapter, we consider mixed semidefinite-quadratic-linear programs (SQLPs).
These are linear optimization problems with three kinds of cone constraints, namely,
the semidefinite cone, the quadratic cone, and the nonnegative orthant. This chapter
outlines a primal-dual path-following method to solve these problems and highlights the
main features of SDPpack, a Matlab package that solves such programs. Furthermore,
we give some examples where such mixed programs arise and provide numerical results
on benchmark problems.

A mixed SQLP has the form

where y € Rm and

The first set of constraints (2.2) consists of L semidefinite cone constraints of size
ni , . . . , r iL, respectively. The second set of constraints (2.3) consists of M quadratic

41
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cone constraints of size pi, . . . ,PM, respectively. The final constraint (2.4) consists of po
ordinary linear inequality constraints. We use y instead of x as the optimization variable,
with maximization objective bTy instead of minimization objective CTX as used elsewhere
in this book in order to make the notation used here more compatible with the SDPpack
software to be described later in this chapter.

It is convenient to rewrite the problem as follows:

where
We write

and

The dual optimization problem is

where the dual variables are Z(fc) € S"*, k = 1,...,L, z(fc) € Rpfc, and £<*> € R,
fc = 1,...,M, and 2;^°^ € Rp°. Note that the constraints Z^ > 0 are semidefinite
constraints. We write

and

Let us denote the primal objective (2.1) by P(y) and the dual objective (2.9) by
,z^). If y and (Z,z,z^}, respectively, satisfy the primal and dual feasibility

constraints, it immediately follows that

Since Z and F are both positive semidefinite, TrZF > 0; this follows using the Cholesky
factorizations Z — RTR and F = SPS as
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where || • \\F stands for the Probenius norm. Likewise, Cauchy-Schwarz shows that
zTf > 0, since

Also, of course, (z^}Tf^ > 0 is implied by z^ > 0, /<°> > 0. Thus we have

with equality (a zero duality gap) if and only if TrZF = 0, zTf = 0, and
These three conditions are called complementarity conditions and may be summarized as

Furthermore, again using Cholesky, we see that if TrZF = 0, then the matrix product
ZF must itself be zero (since SRT = 0), and therefore (since Z and F are symmetric)
that ZF + FZ = 0. (Recall that this is a block-diagonal matrix equation.)

Likewise, we can also elaborate on the second complementarity condition. The con-
dition for equality in Cauchy-Schwarz shows that if zTf = 0, then

Following [2], this condition may be conveniently expressed as

where eq is a block vector whose fcth block is
and the block-diagonal matrix

has blocks defined, for a e R, a e Rp, by the "arrow matrix"

Finally, the third complementarity condition ( z ) T f = 0 implies the component-
wise condition (z (0))fc(/ (0))fc = 0, k = 1, . . . ,po, since z(0) > 0 and /(0) > 0. Letting
ei = [1, . . . , 1]T, we write this as

This much is just linear algebra. To go further we make use of a well-known result
from optimization theory [296] stating that if strictly feasible primal and dual variables
exist (points that satisfy all the inequalities strictly), then the optimal primal and dual
objective values are equal and that there exist primal and dual variables achieving these
optimal values. Thus, the complementarity conditions must hold at the (optimal) solu-
tions.

In what follows we make this strict feasibility assumption and we also assume, mainly
for convenience, that there are no redundant equality constraints in the dual formulation
of the problem.
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2.2 A primal-dual interior-point method

The SQLP described in section 1 can be efficiently solved with interior-point methods. Of
the many flavors of interior-point methods [297, 423] , we briefly describe the algorithm
implemented in the public domain package SDPpack [6]. This is a primal-dual path-
following algorithm based on the "XZ+ZX" direction of [8] (to be translated here as
"ZF+FZ" given the notational differences), using a Mehrotra predictor-corrector scheme.

The optimality conditions are completely determined by the three complementarity
conditions together with the primal and the dual constraints. Let svec denote a map
from symmetric, block diagonal matrices (with block sizes ni, . . . , UL) to column vectors,
so that svec(F) G RN, where

and such that TrZF = svec(^)Tsvec(F) for all symmetric block-diagonal matrices Z,
F. Then we may abbreviate the primal slack linear constraints (2.5)-(2.7) by

where

and

The dimensions of As, A9, and A^ are, respectively, m x AT, m x
m x PQ. The dual equality constraints (2.10) are then written

Furthermore, the complementarity conditions can be written

where eq and e^ were defined in section 2.1. We collect the primal and dual equality
constraints and a relaxed form of the complementarity condition, called a "centering"
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condition, in the nonlinear system of equations

where p, > 0 is a parameter. It is well known that, for all p, > 0, this nonlinear system of
equations has a unique solution satisfying the cone inequality constraints, and the set of
such solutions is called the central path [296]. As /u —> 0, this central solution converges
to a (not necessarily unique) primal-dual solution of the SQLP.

The algorithm we now outline uses Newton's method to approximately follow the cen-
tral path as n —» 0. For a given approximate primal-dual solution (y, F, /, /(°\ Z, z, z^)
and central path parameter n, Newton's method defines a "search direction" by the linear
system of equations

where the Jacobian J of H is the matrix

Here the symbol * is the "symmetrized Kronecker product" [8]: For symmetric block-
diagonal matrices ^4, B, X (with block sizes

This linear system is not solved directly but via an efficient method exploiting block
Gaussian elimination that is outlined in the next section.

Once primal and dual "search directions" are computed, it is necessary to compute
steps along these to the relevant cone boundaries, so that subsequent iterates will respect
the inequality constraints. This requires an eigenvalue computation of a block-diagonal
symmetric matrix to determine the step to the boundary of the semidefinite cone, the
solution of M quadratic equations to determine the step to the boundary of the quadratic
cone, and an ordinary ratio test to determine the step to the boundary of the positive
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orthant. The minimum of these step lengths determines the maximum step that can be
taken. This procedure is used to determine one step length for the primal variables and
another for the dual variables.

At a more detailed level, the algorithm uses a predictor-corrector scheme. This re-
quires the following steps, which constitute one interior-point iteration:

• Given a current iterate (y,F, /, / ° Z , z, z ) , compute a predictor search direc-
tion by solving the linear system (2.13), with /u = 0, for (Aypred, AFpred, A/pred,
(A/(°))pred, AZpred, Azpred, (Az(0))pred).

• Compute the primal and dual step lengths to the cone boundaries along this direc-
tion, apred and /?pred, respectively, so that

and

are each on the boundary of the product of the semidefinite cone, the quadratic
cone, and the positive orthant.

• Compute

3

where v = 53*11 nk + Y^k=i(Pk + 1) + Po- This expression for p, is known as
Mehrotra's formula.

• Recompute the relaxed complementarity conditions in the right-hand side of (2.13)
using the Mehrotra formula for /z and including second-order corrections, by sub-
stituting

for the last three components in the right-hand side of (2.13). Solve the linear
system again for a corrector search direction.

• Compute primal and dual step lengths a and 0 along the corrector search direction
and update the primal and dual variables accordingly. The step lengths are chosen
so that the new iterates satisfy the inequality constraints. Furthermore, they are
never set to a value larger than unity. This can be done by taking the step length
to be the smaller of unity and a fixed fraction (say, 0.999) times the step to the
boundary of the cone. If a unit primal (dual) step is taken, the new iterate also
satisfies the primal (dual) equality constraints.

The choice of the sequence of values for p, greatly influences the performance of the
algorithm. The method described above is Mehrotra's predictor-corrector scheme [276],
originally proposed for linear programming, which significantly reduces the number of



2.3. Software 47

interior-point iterations needed to compute a solution of given accuracy. The predic-
tor step helps calculate a target value for /z, while the corrector step includes some
second-order terms lost in the linearization of H in the predictor step. For a detailed
interpretation of Mehrotra's predictor-corrector scheme, see [423, pp. 193-198].

2.3 Software

In this section, we first discuss some implementation details involved in solving the linear
system arising in each interior-point iteration. Then we highlight the main features of
SDPpack (Version 0.9 Beta),4 a package (based on Matlab 5.0) for solving SQLP, written
by the authors together with F. Alizadeh and S. Schmieta.

2.3.1 Some implementation issues
The Newton system (2.13) admits a reduction to a compact Schur complement form via
block Gauss elimination. Let

so that

Eliminating (svec(AF), A/, A/°) in (2.13), the matrix J transforms to

and on further elimination of (svec(AZ), Az, Az0), we arrive at the m x m Schur com-
plement matrix

in a linear system involving only the variable Ay. The Schur complement matrix M
can be computed as the sum of the individual Schur complements for the semidefinite
(Ms), the quadratic (M9), and the linear (M*) parts. Moreover, Ms and Mq can be
computed blockwise. Writing A5

fc' (likewise A^fc' ) to mean the columns of Aa (likewise
Aq) corresponding to the fcth block, we can verify that M = Ma + Mq + Me, where

The contribution to the (i, j ) entry of Ma from the fcth semidefinite block can be com-
puted as F/ ' • Vj ' , where the n^ x njt symmetric matrix V ' is the solution to the

4Available from the SDPpack web page: http://www.cs.nyu.edu/overton/sdppack.

http://www.cs.nyu.edu/overton/sdppack
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Lyapunov equation

where #Jfc) = Z^F^ + F^ Z^ . The standard method to solve this equation is via
the spectral factorization F^ = Pdiag(A)P:r, where P is an orthonormal matrix of
eigenvectors and A = [Ai, . . . , AnJT, a vector of eigenvalues. The Lyapunov equation is
solved by computing

where the symbol o in (2.17) denotes the Hadamard (or componentwise) product. The
contribution from the fcth quadratic block to Mq can be computed efficiently by observing
that the arrow matrix arw(^*\^^) is the sum of a diagonal matrix and a matrix of
rank two.

2.3.2 Using SDPpack
We now describe how to use the main routines of SDPpack (Version 0.9 beta); in what
follows, » denotes the Matlab prompt.

The problem data and an initial starting point are stored using structures:

Matlab variables Data
A.s, A.q, A.I
b 6
C.s, C.q, C.I
blk.s, blk.q, blk.l
X.s, X.q, X.I
y
Z . 8 , Z . q , Z . l

For example, the following lines of Matlab code set up a randomly generated SQLP:

» setpath; '/. add SDPpack subdirectories to Matlab path
» blk.s = [555] ; blk.q = [10 10]; blk.l = 30;
» m = 10;
» sqlrnd; 7. set up a random, strictly feasible SQLP

The constraint matrix A . s may be set up using the routine makeA, which assumes that
the matrices F» are stored using Matlab's cell arrays. Here is an example with two
semidefinite blocks and one quadratic block:

» clear
» blk.s = [33]; blk.q = 3; m = 2;
» b = [1 2] ' ;
» negF{l} « speye(6);
» negF{2}(l:3,l:3) = sparse([l 23 ; 2 4 5 ; 3 5 6 ] ) ;
» negF{2}(4:6,4:6) = sparse([l 0 0 ; 0 2 2 ; 0 2 3 ] ) ;
» A.s = makeACnegF, blk.s); '/. creates the 2 x 12 matrix A.s
» C.s(l:3,l:3) = sparse (ones (3, 3) );
» C.s(4:6,4:6) = sparse (zeros (3, 3) );
» A.q - [1 2 3; 4 5 6];
» C.q = [1 -1 -1]';
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Note that when there is more than one semidefinite block (as in the example above with
two blocks), the constraint matrices negF{i} containing —Fi (i = 1,... , m) and the cost
matrix C. s containing FQ must be stored in sparse format. The routines import (export)
can be used to load (save) ASCII data from (to) a file.

Once the problem data are set up, the optimization parameters, which are stored in
the structure opt, must be assigned appropriate values; these may be initialized to their
default values with the routine

» setopt;

The next step is to provide a starting point, i.e., the variables X, y, and Z. Gener-
ally, it suffices to provide an infeasible starting point, i.e., points for which (2.5)-(2.7)
and (2.10) need not necessarily hold, although the cone inequalities (2.8) and (2.11)
must be satisfied. A default starting point (usually infeasible) may be generated with
the routine

» init;

which initializes the primal variable y to zero, the primal slack variables Z.s, Z.q, Z.I
to scalefac * (7,eq,e^), and the dual variables X.s, X.q, X.I to scalefac * (I,e9,e^),
where scalefac is a user-defined scale factor set to a default value by setopt. Again, if
there is more than one semidefinite block, the matrices X. s and Z. s must be stored in
the sparse format.

The solver can then be invoked with the Matlab function call
>> [X, y, Z, iter, compval, feasval, objval, termflag] = ...

fsql(A, b, C, blk, X, y, Z, opt);

or by the driver script

» sql;

which optionally prints out additional summary information5 about the accuracy to
which the problem was solved and the CPU time consumed. In the later iterations, it is
common to see Matlab warnings about ill-conditioned systems of linear systems. This ill
conditioning is a common phenomenon in interior-point methods. The warnings may be
suppressed by the Matlab command warning off.

When the algorithm terminates, a termination flag indicates the cause for termination,
which is usually one of the following:

• A solution of the requested accuracy has been found. In this case, the sum of the
primal infeasibility, the dual infeasibility and complementarity at the computed
solution satisfies both an absolute and a relative tolerance, specified in the opt
structure.

• An iterate (F, /, /^) or (Z,z,z^) violates a cone constraint—a normal phe-
nomenon that usually happens due to numerical rounding errors in the last stages
of the algorithm. In this case, the previous iterate, which does satisfy the cone
constraints, is returned as the computed solution.

• The Schur complement matrix is numerically singular. If this occurs in the early
stages of the algorithm, the most likely cause is linear dependence in the rows of
the constraint matrix A. Preprocessing can be done (cf. section 2.3.3) to detect
and rectify this situation.

5 References to "primal" and "dual" in the output (and in the User Guide) actually refer to the "dual"
and "primal" problems in the notation used here.
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• The algorithm fails to make sufficient progress in an iteration. The progress made
in an iteration is deemed insufficient (based on parameters in the opt structure)
if the step causes an inordinate increase in the primal or the dual infeasibilities
without a commensurate decrease in complementarity. Again, the previous iterate
is returned as the computed solution.

• The norm of (F, /, /^) or of (Z, z, z^) exceeds a threshold (defined by the user in
the opt structure). Primal (dual) unboundedness is an indication of dual (primal)
infeasibility.

For full details, we refer the reader to the SDPpack User Manual [6]; see also Table 2.1.
Due to the loop overhead in Matlab, each block diagonal matrix is stored as one large

sparse matrix, instead of as individual blocks. This has the advantage that a sparse
block in such a matrix is efficiently handled using Matlab's sparse matrix operations. On
the other hand, a dense block suffers the penalty involved in sparse matrix access. The
loop overhead in Matlab also hinders the effective use of sparsity in the formation of the
Schur complement matrix. For instance, in the truss topology design problems, most of
the blocks in every constraint matrix are completely zero, and hence do not contribute
to the Schur complement at all (see (2.15)), but this could not be exploited effectively. A
stand-alone C code currently under development incorporates some techniques to improve
performance on sparse problems.

2.3.3 Miscellaneous features
The package provides several support routines that include the following:

• The routines scomp, pcond, and dcond to examine complementarity and degener-
acy conditions [7, 132]. These may be used, in particular, to check whether the
computed primal and dual solutions are unique.

• The routine makesql to generate random SQLPs with solutions having prescribed
"ranks." This routine lets the user specify

— for each semidefmite block k, the rank of F^ (likewise

— for each quadratic block k, whether f^ (likewise z^) lies in the interior of
the quadratic cone, or on its boundary, or is identically zero; and

— for the linear block, the number of components of /^ (likewise z^) that are
positive.

Since nondegeneracy automatically implies bounds on ranks of the solution [7],
this routine is particularly useful in generating test problems whose solutions have
specified degeneracy and complementarity properties.

The routine preproc to examine the consistency of the constraints. If they are
consistent, the redundant constraints, if any, are eliminated via a QR factorization
of the constraint matrix A (see (2.14)).

The specialized solvers dsdp and Isdp (based on the "XZ method" [190, 235]) that
exploit the special structure of problems arising in combinatorial optimization (for
example, MAX-CUT relaxations and the Lovasz ^-function). In these applications,
the number of semidefinite blocks L = 1 and the matrices F^\ . . . , F$ are all of
the form e»ef or CjcJ + e^ef . Here e, stands for the unit vector with 1 in the ith
location and zeros everywhere else.
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More information about any routine is available by typing help <routine name> from
the Matlab prompt.

2.4 Applications

We consider two examples of SQLP.

Robust least squares. This problem is taken from [125]. Given B, AB 6 Rrxs (r > s]
and d, Ad G Rr, we want to compute the unstructured robust least squares solution
x G Rs that minimizes the worst-case residual

where the perturbation [AB Ad] is unknown, but the bound p on its norm is
known. It is shown in [125] that this problem can be formulated using quadratic
cone constraints. Adding componentwise bound constraints, say, xmjn < x < xmax,
converts this into an SQLP with a quadratic and a linear component.

Clock mesh design. This circuit design problem, taken from [405], deals with the prop-
agation of a clock signal in integrated circuits. A rectangular mesh with fixed grid
points is given. The interconnecting wire segment between grid points i and j is
assumed to be a rectangular strip of a fixed length, but variable width dij. The
electrical characteristics of each wire segment are modeled as a 7r-segment, i.e.,
a grounded input capacitance, a grounded output capacitance, and a connecting
conductance, all of which are assumed to depend affinely on the design parameters
d^. A synchronous clock signal (of fixed frequency) applied to a fixed subset of the
grid points has to be propagated to the entire mesh with minimal delay. There is
an inherent trade-off between the dominant delay (see [405] for the definition) and
the power consumption of the circuit. The goal is to optimally choose the widths
d^ of the rectangular wire segments so that the power consumption of the circuit
is minimized for a fixed value of the dominant delay that we are willing to tolerate.
It is shown in [405] that this can be formulated as a semidefinite program (SDP).
Physical limitations on the width of the segments further impose bound constraints
of the form dmin < d^ < dmax, which results in an SQLP with a semidefinite and a
linear block. Now consider a slight variation of this problem: The objective is the
same as before, but now we have a rectangular mesh whose grid spacing is not fixed.
Here the wire widths are fixed, but the spacing li between successive columns and
TJ between successive rows of grid points are variables with /min < li < lmax and
7"min < TI < rmax. Let us further impose a restriction on the maximum allowable
size of the circuit by imposing a bound on the length of the diagonal of the rect-
angular mesh. This last bound constraint is a convex quadratic constraint, thus
resulting in an SQLP with semidefinite, quadratic, and linear components.

2.5 Numerical results
In this section, we present numerical results on a variety of test problems, both randomly
generated and from applications. The latter come from control theory (LMI problems)
and truss topology design. The randomly generated problems include general dense
problems, the unstructured robust least squares problem, and problems with specific
sparsity structure such as those arising from the clock mesh design application.
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Table 2.1: Legend for termination flag tf.

tf Description

-2
-1
0
1
2
3
4
5
6
7

|| (Z, z , z ( ° ) ) \ \ exceeds user-defined limit.
||(F, /, /(°))|| exceeds user-defined limit.
A solution of requested accuracy has been found.
(Z, z, 2^°)) or (F, /, /(°)) is outside the cone or on its boundary.
F has a nonpositive eigenvalue.
Schur complement matrix is numerically singular.
Insufficient progress.
Primal or dual step length is too small.
Exceeded maximum number of iterations allowed.
Failed data validation checks.

In the tables, the first column (#) is the problem number, the second column is the
dimension of the primal slack variable

m is the dimension of y, iter is the number of interior-point iterations, r^, rp, and rc

are, respectively, the dual infeasibility norm (see (2.10)), the primal infeasibility norm
(see (2.5)-(2.7)), and the complementarity Tr(ZF) + zTf + (z(0))T/(°) evaluated at the
computed solution. The quantity scalef ac is the factor by which the default starting
point ((/, eq,e£),0, (7,e9,e^)) is scaled. When scalef ac is omitted, it means that the
default value of 100 was used. The quantities rp, r<f, and rc are all shown on a log
(base 10) scale. The last column (tf) is the termination flag (denoted termf lag in the
SDPpack User Guide). A brief description of this flag is given in Table 2.1; for a more
detailed explanation, consult the SDPpack User Guide [6]. The asterisks, if any, next
to a termination flag indicate the number of restarts that were necessary: If the primal
or the dual step lengths get very small, the starting point is scaled with a larger value
of scalef ac, the fraction of the step taken toward the boundaries of the cones is made
more conservative (i.e., reduced), and the algorithm is restarted. The primal and the
dual objective values, denoted P(y) and T>(Z, z, z^) in the tables, are provided only
for the LMI and the truss topology design problems,6 and not for any of the randomly
generated ones.

All the runs were performed on a Sun Spare Ultra II workstation (200 MHz CPU with
192 MB of memory). Unless explicitly noted otherwise in the tables, all the problems
were solved with SDPpack's options set to their default values.

Random dense problems. Table 2.2 shows results for problems with only semidefinite
constraints. Table 2.3 shows results for problems with only quadratic cone con-
straints. In Table 2.2, each problem has three blocks of equal size; the five runs
tabulated there correspond to block sizes of 20, 40, 60, 80, and 100. Each problem
in Table 2.3 also has three blocks of equal size; the block sizes for the five runs are
50, 100, 150, 200, and 250.

Clock mesh design. This problem from [405] was described in section 2.4. These are
problems with one semidefinite block and a linear block. The constraint matrices

6Available from the SDPpack web page.
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Table 2.2: Randomly generated with semidefinite blocks only.

# II dim
1
2
3
4
5

630
2460
5490
9720
15150

m
60
120
180
240
300

iter
14
13
15
13
14

Td

-13
-13
-12
-12
-10

rp

-14
-13
-13
-13
-13

rc

-14
-12
-11
-12
-07

CPU sees
1.88e+01
1.57e+02
8.45e+02
2.13e+03
5.72e+03

tf

0
0
0
0
4

Table 2.3: Randomly generated with quadratic blocks only.

# II dim
1
2
3
4
5

150
300
450
600
750

m

50
100
150
200
250

iter
8
8
8
8
8

T<L
-14
-13
-13
-12
-13

rp

-15
-14
-13
-14
-13

Tc

-10
-13
-10
-11
-10

CPU sees
5.40e-01
1.29e+00
3.48e+00
7.00e+00
1.28e+01

tf

0
0
0
0
0

Table 2.4: Clock mesh design problems (scalefac = 1000):
#2 a 12 x 12 mesh.

is an 8 x 8 mesh, and

# II dim
1
2

3609
14989

m
144
312

iter
16
21

Td

-13
-12

rp

-16
-16

rc

-09
-09

CPU sees
1.92e+02
2.84e+03

tf

0
0

are extremely sparse, and the spatial mesh adjacency relation they describe gives
them a banded structure; the results are shown in Table 2.4.

Robust least squares. This problem from [125] was described in section 2.4. Numer-
ical results for this problem class are shown in Table 2.5.

Truss topology design. These problems are pure SDPs that arise in truss topology
design. The constraint matrices here are extremely sparse even for the moderately
sized problems. The results are summarized in Table 2.6.

LMI problems. These problems are pure SDPs that arise in control applications. On
the problems where the final complementarity residual is unsatisfactory (see Ta-
ble 2.7), the dual iterates indeed get large, indicating that the primal problem may
be infeasible or weakly infeasible [257].

2.6 Other computational issues
Several enhancements to the basic interior-point iteration of section 2.2 have been pro-
posed, and some used with success, in linear programming. We are concerned with
extending some of these techniques to SQLP, namely,

• Gondzio's multiple centrality corrections [172], and

• Mehrotra's higher-order corrections [275].
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Table 2.5: Unstructured robust-least squares problems (scalef ac = 1000).

# II dim
1
2
3
4
5

1103
2203
3303
4403
5503

m
102
202
302
402
502

iter
7
7
7
7
7

Td

-13
-12
-12
-12
-12

rp

-13
-13
-13
-12
-12

rc

-09
-09
-09
-09
-09

CPU sees
3.32e+00
1.74e+01
4.93e+01
1.02e+02
1.86e+02

tf
0
0
0
0
0

Table 2.6: Truss topology design.

# || dim
1
2
3
4
5
6
7

8

19
331
91
37

1816
901
451
6271

m
6
58
27
12

208
172
86
496

iter
10
12
15
11
15
28
29
18

rd
-14
-13
-14
-13
-10
-07
-06
-10

rp

-15
-14
-15
-16
-14
-13
-13
-14

Tc

-11
-11
-08
-11
-09
-07
-08
-11

2>(Z,*,*W)
9.00e+00
1.23e+02
9.11e+00
9.01e+00
1.33e+02
9.01e+02
9.00e+02
1.33e+02

?(y)
9.00e+00
1.23e+02
9.11e+00
9.01e+00
1.33e+02
9.01e+02
9.00e+02
1.33e+02

CPU sees
4.20e-01
4.81e+00
1.86e+00
6.10e-01
7.28e+01
5.85e+01
2.40e+01
1.13e+03

tf
0
0
4
0
0
4
4
0

The main motivation behind considering these enhancements for SQLP is the ratio of
the cost of forming and factorizing the Schur complement matrix relative to the cost of
a backsolve. For SQLP, this ratio is typically much larger than for LP. Thus, having
expended the effort involved in forming and factorizing the Schur complement matrix,
it is worthwhile to improve the quality of the search direction by solving multiple linear
systems with the same coefficient matrix but different right-hand sides. Both the above
schemes can be extended to SQLP and are described in detail elsewhere [184]. In our
preliminary experiments, adapting Gondzio's multiple centrality corrections to SQLP
reduces iteration count and CPU time roughly to the same extent as reported for LP.
On the other hand, Mehrotra's higher-order corrections reduce the number of iterations
and the overall CPU time significantly; this observation is different from LP experience,
where the overall CPU time is typically not reduced.

2.7 Conclusions

In this chapter, we have described mixed SQLPs. These are linear optimization problems
with mixed cone constraints, namely, the semidefinite cone, the quadratic cone, and the
nonnegative orthant. This problem class includes pure semidefinite programming, convex
quadratically constrained quadratic programming, and linear programming as special
cases. We have presented a primal-dual interior-point algorithm for such problems and
have described the salient features of SDPpack (Version 0.9 beta), a software package
that implements this algorithm. A couple of examples have been given to illustrate how
such mixed programs arise in practice, and the numerical results shown here demonstrate
the performance of SDPpack on several classes of test problems. Finally, we have briefly
listed some enhancements of interior-point algorithms for LP; their extensions to SQLP
have been implemented in a new stand-alone C code currently under development.
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Table 2.7: LMI problems from HQQ control (scalefac = 1000).

# II d
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

41
51
51
51
51
51
51
51
51
66
97
120
178
227
273
51

m
13
13
13
13
13
13
13
13
13
21
31
43
57
73
91
13

iter
12
14
16
15
17
33
11
15
17
27
23
25
29
30
18
17

Td

-08
-09
-05
-06
-04
-02
-05
-05
-07
-05
-07
-08
-04
-07
-06
-07

rp

-12
-11
-12
-10
-12
-11
-11
-11
-13
-07
-07
-07
-09
-09
-08
-13

rc

-10
-08
-10
-11
-09
-08
-07
-09
-11
-05
-04
-01
-02
-03
-02
-11

V(Z,z,zW)
-2.03e+00
-l.lOe-fOl
-5.70e+01
-2.75e+02
-3.63e+02
-4.49e+02
-3.91e+02
-1.16e+02
-2.36e+02
-1.09e+02
-6.60e+01
-2.00e-01
-4.44e+01
-1.30e+01
-2.39e+01
-2.36e-f02

P(y)
-2.03e+00
-1.10e+01
-5.69e+01
-2.75e+02
-3.63e+02
-4.49e+02
-3.91e+02
-1.16e+02
-2.36e+02
-1.09e+02
-6.59e+01
-1.78e-01
-4.44e+01
-1.30e+01
-2.40e+01
-2.36e+02

CPU sees
7.60e-01
9.20e-01
9.90e-01
9.10e-01
1.04e+00
2.00e+00
6.90e-01
9.10e-01
1.05e+00
2.30e+00
3.23e+00
5.31e+00
8.73e+00
1.39e+01
2.23e-f01
1.08e+00

tf
2
4
1
2
1
2
1
1
2
-1
-1
-1
2
5

-1*
2
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Chapter 3

Nonsmooth Algorithms to
Solve Semidefinite Programs

Claude Lemarechal and Frangois Oustry

3.1 Introduction
Many practical applications of LMI methods require the solutions of some large-scale
semidefinite programs (SDPs). In this chapter, we describe nonsmooth algorithms to
solve SDPs, with two motivations in mind:

- to increase the size of tractable eigenvalue optimization problems,

- to improve asymptotic properties of the algorithms.

Both properties cannot be achieved simultaneously. Yet a good trade-off must be iden-
tified between problem size and speed of convergence; and this happens to be possible
with algorithms for nonsmooth optimization, which in addition offer a lot of flexibility.

After a short introduction of the objects necessary for later understanding, we out-
line in section 3.2 the existing nonsmooth algorithms that can be used "off the shelf"
in the present framework. Among them are bundle methods, which have recently been
specialized to exploit the particular structure of the problem; section 3.3 is devoted to
them, while their specialized versions form section 3.4. Finally, even though the problem
belongs to the realm of nonsmooth optimization, it lends itself to second-order analysis.
Accordingly, second-order algorithms can be applied, which bring good asymptotic prop-
erties. This is the subject of section 3.5, which contains a condensed introduction to the
necessary theory, together with corresponding implementations. Comparative numerical
illustrations are given in section 3.6, and we conclude with a section on possible future
developments.

Original structure: Convexity. Let us write an SDP as

minimize CTX subject to

where c G Rm is the cost vector and F is an affine mapping from

57
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The key characteristic of the problem is the constraint-function / := Amax o F, more
precisely, the function X i-> Xmax(X). This latter function is convex: it is the support
function of the compact convex set

This can be seen from the Rayleigh variational formulation

where • is the standard scalar product in «Sn.
Interior-point methods transform the original problem (3.1) to a smooth one by adding

some structure, thereby obtaining polynomiality; but some information is then lost, which
is useful for local convergence. By contrast, nonsmooth analysis directly handles the
problem with its "pure structure."

The role of convex analysis was first emphasized by R. Bellman and K. Fan in [37]
and developed further in [195, 247], among others. A first step is to express the subdif-
ferential dAmax(X), and this comes easily from elementary convex analysis: indeed (see,
for example, Proposition VI. 2. 1.5 in [194]) (3.2) shows that this subdifferential is the face
of Cn exposed by X. In other words, let r be the multiplicity of Amax(X) and let Q be an
n x r matrix whose columns form an orthonormal basis of the corresponding eigenspace.
Then

This formulation will be used in the so-called rich-oracle methods. For poor-oracle meth-
ods we will rather refer to an equivalent form:

Once dAmax is thus characterized, df is derived by simple chain rules. In fact, denote
by F* : Sn -* Rm the adjoint of T\

Then the subdifferential of / at x is just the image by F* of the subdifferential of Amax

at X = F(x):

Remark 3.1. A further advantage of this approach via nonsmooth analysis is that it
does not rely on affinity of the mapping A: smoothness suffices. When A is not affine,
f is no longer convex, but its essential composite structure is preserved. Namely, (3.5)
can be applied by replacing the linear operator F* by F*:

Note that the subdifferential (of Amax, and hence of /) is highly unstable: it changes
drastically when the multiplicity of Amax changes. As will be seen in section 3.3, the whole
idea of so-called bundle methods can be seen as constructing good approximations of a
much more stable object than the subdifferential of a convex function, the approximate
subdifferential. For e > 0, the £-subdifferential d£f(x) is defined by
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It is not hard to see that, for the maximum eigenvalue function,

and for / = Amax o A the same chain rule still applies:

From (3.6) we see that d£Xmax(X) is no longer a face of Cn: it is the intersection of Cn

with the half-space {V € Sn : V • X > Xmax(X) — e}. In particular, almost all matrices
in d£Xmax(X) have rank n (for e > 0), whereas the rank of matrices in d\max(X) is at
most the multiplicity r, which is 1 for almost all X; this gives an idea of the big gap
existing between these two convex sets.

SDP and maximum eigenvalue minimization. For the sake of simplicity, most of
the algorithms we present here are designed to solve the unconstrained problem

Note that nonsmooth algorithms can be used to solve (3.1) as well, using exact penalty
or more sophisticated techniques as in [244].

Remark 3.2. In some cases, for example, when the diagonal of F(x) is fixed [189] or
free [307], transforming (3.1) to (3.8) can be done efficiently because an efficient value
for the penalty coefficient is known. Such is often the case when (3.1) is the relaxation
of a graph problem; see [178] or [160] for more on the origins of these problems.

We also mention that algorithms for nonsmooth optimization extend in a straightfor-
ward way to the more general problem

where Amax = AI > A2 > • • • > An are the eigenvalues in decreasing order and r < n is a
given integer. In fact, the above function is convex as well.

Poor, rich, and intermediate oracles. For a resolution algorithm to work, it is
necessary to compute information regarding (3.1) or (3.8) for given matrices X = F(x):
Typically, it can be the spectrum of X, or its QR decomposition, etc. We find it conve-
nient to consider this computation as done by an oracle that, having X as input, answers
the required information. A distinguished feature of nonsmooth optimization is that it
can be satisfied with "poor oracles," which compute only the maximal eigenvalue, to-
gether with just one associated eigenvector. In view of (3.5) and (3.4), this provides a
subgradient of Amax or of /.

Needless to say, poor oracles are advantageous for problems with large n. The price
to pay is that the corresponding algorithms usually have modest speed of convergence.
On the other hand, nonsmooth optimization accommodates "intermediate" oracles, com-
puting a number r € {1, . . . , n} of largest eigenvalues and associated eigenvectors (with
r possibly varying along the iterations). This supposedly improves performances; it is
thus possible to balance sophistication of the oracle with convergence speed of the mini-
mization algorithm.
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3.2 Classical methods

The nonsmooth optimization problem (3.8) can be solved by any existing algorithm for
nonsmooth optimization, ignoring the particular structure enjoyed by the function Amax.
Such methods use a poor oracle and are fairly classical. They can be divided into two
classes, based on totally different motivations.

Subgradient methods. The methods of the first class have developed in the 1960s,
mainly in Russia and Ukraine (see the review [335]). Let the oracle have computed at
Xk a subgradient gk of the form F*vvT for some eigenvector v; see (3.5) and (3.4). Then
the basic subgradient method computes

For the moment, Wk is the identity Im in Rm. As for the step size tk > 0, known
formulas are

(the second formula is valid only if the optimal value / of (3.8) is known).
The above method is purely "Markovian," in the sense that iteration k depends only

on the differential information of / at xk. In the 1970s, N. Z. Shor inserted a memory
mechanism to update the preconditioner Wk in (3.9). As explained in his monograph
[375], the basic object for this is space dilation along a vector £ = & € Rm, i.e., the
operator that multiplies by a = ak > 0 the component along £ of each vector in Rm.
The well-known ellipsoid algorithm is obtained with & = 9k and specific values for a*,
tk. On the other hand, taking & = 9k — 9k-i results in the so-called r-algorithm, lesser
known but rather efficient in many cases.

Pure cutting-plane method. The methods of the second class are all based on ap-
proximating / by the polyhedral (or cutting-plane) "model"

Here, f ( x i ) = Amax(F(xj)) and <fc = f*VivJ (see (3.4) and (3.5)) make up the infor-
mation computed by the poor oracle at each iterate Xi, prior to the current iteration
k. Incidentally, note the heavily "non-Markovian" character of this object: it involves
explicitly the past information, stored in a "bundle" {f(xi),9i}i=i> The next iterate
Xfc+i is computed with the help of this information, and the whole success of the method
will rely on the optimizer's ability to appropriately weight the elements of the bundle.

Now, the pure cutting-plane method uses the simplest strategy: take for xk+i a
minimizer of /&; this amounts to solving the linear program with an additional variable r:

A simple example, due to A. S. Nemirovski and reported in [194, section XV.1.1], il-
lustrates the instability of this scheme: in some situations, billions of iterations may be
needed to obtain just one-digit accuracy.
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Method of analytic centers. A recent strategy to cope with the above instability is
as follows. In the graph-space Rm x R, consider the set Pk defined by

here Ik := mini/i(zi) is the best function value returned by the oracle up to the fcth
iteration. Because fk is polyhedral, Pk is a convex polyhedron; write it in terms of
abstract affine inequalities as

In the pure cutting-plane method, Zk+i = (xk+i, fkfak+i}) is the lowest point in Pk.
A more stable point was defined in [379]: the analytic center of P^, i.e., is the unique
solution of the optimization problem

Here, we recognize the usual barrier associated with a convex polyhedron. Naturally,
the above optimization problem cannot be solved exactly (this would imply an infinite
subalgorithm at each iteration k of the outer nonsmooth optimization algorithm). On
the other hand, the numerous works in interior-point methods and complexity theory can
be used as a guide to control the number of Newton iterations to be performed for each /c,
while preserving the main convergence properties of the outer algorithm. An algorithm
based on these ideas, ACCPM, is described in [162]. Appropriate implementations of
this algorithm have been used successfully for some applications; as for its theoretical
properties, see [294], [163] for some first complexity results.

Bundle methods. Another stabilization process is achieved by bundle methods. In the
framework or eigenvalue optimization, this was done, for example, in [231, 278, 366] (t
method of [231] is best explained in [232]). Actually, these works deal with the nonconvex
case (F(-) nonaffine). Numerical experiments are reported in [366] for relaxations of
combinatorial problems with n ~ 100 and m ~ 1000.

Actually, these methods have recently received increased attention and rather sophis-
ticated variants, exploiting the structure of the present problem, have been developed.
For future reference, we find it convenient to study this class of methods more deeply.

3.3 A short description of standard bundle methods
For a study of bundle methods, we recommend [194, Chapter XV]; see also [230] for their
application to nonconvex problems, and the direct resolution of constrained problems
such as (3.1), without a detour via (3.8).

We now demonstrate the principles underlying these methods, to minimize a general
convex function. At the fcth iteration, we have a stability center, call it Xk, and we
perform the following operations:

(i) we choose a mode/, call it (pk, supposed to represent /;

(ii) we choose a norming, call it || • ||fc;

(iii) we compute a candidate yk+i realizing a compromise between diminishing the
model
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and keeping close to the stability center

(iv) the candidate is then assessed in terms of the true function /, and the stability
center xk is
- moved to y^+i if it is deemed good enough (descent step),
- or left as it is (null step).

Thus, two sequences are involved in this description, rather than one: The sequence of
iterates is now denoted by {yfc}, while {xk} is rather a subsequence of selected iterates.

Depending on the specific choices made for the above operations, a whole family of
bundle methods can be constructed. We now describe probably the most efficient of
them: cutting planes with stabilization by penalty.

Such a method has the following features: (i) The model taken for the kth iteration
is still the cutting-plane function <pk := fk of (3.10). (ii) The norm is split into two parts:
first, we choose a symmetric positive definite matrix Mk and we set ||a;||fc := xTMkx\
second, we choose a spring strength u.k > 0. (iii) The candidate is then the minimizer of

1 2
the function (pk(-} + % p>k\\ • — xk\\k-

Remark 3.3. This last function is related to the Moreau-Yosida regularization of f:

Call yk+i the unique solution of this last problem when x = xk. Then, insofar as (pk ~ /,
yfc+i approximates the so-called proximal point

The present stabilization of cutting planes is therefore also called the proximal bundle
method.

Then the resulting algorithm has the following form.

Algorithm 3.1 (cutting planes with stabilization by penalty). The initial point
x\ is given, together with a stopping tolerance 5 > 0. Choose a spring strength u.\ > 0,
a positive definite matrix MI £ Rmxm, and a descent coefficient u> e ]0,1[. Initialize the
iteration counter k = I and yi = xi; compute /(yi) and g\ € df(y\)-

• STEP 1. Compute the solution yk+i of

and set the decrement of the model

STEP 2. If6k < 6 stop.
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• STEP 3. Call the oracle to obtain f ( y k + i ) and gk+i e d f ( y k + i ) . If

set Zfc+i = yk+i, choose Hk+i > 0 and Mfc+i >- 0. Otherwise set £fc+i = Xfc (nuJJ
step).sep .
Update the model
Replace k by k 4- 1 and loop to Step 1.

Naturally, the "master program" (3.12) is nothing more than a linear-quadratic pro-
gram resembling (3.11):

This form makes it easier to write the dual of (3.12), a crucial point to fully understand the
different variants of bundle methods. Let us denote by
the unit simplex of Rfc and by &\ the linearization errors between the yi's and Xk'

In the result below we also introduce Wk := M.. l and the dual norm

Lemma 3.1 (see [194, LemmaXV.2.4.1]). For /Zfc > 0 and Mfc >- 0, the unique
solution of the penalized problem (3.12) = (3.14) is

where <5 e Rfc solves

Furthermore, with 6k of (3.13) and gk := Z^i=i ^iPi> we have the primaJ-duaJ relation

We also give the following result, relating the subdifferentials at previous iterates with
the approximate subdifferential at the current stability center.

Proposition 3.1 (see [194, Proposition XIV.2.1.1]). For all y € Rm and a e Afc,
we have

where efc is the vector of linearization errors defined in (3.15). In particular, for e >
mint el

k,
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Thus, for a solving (3.17), consider £k and g~k of Lemma 3.1. We see that g^ €
d £ k f ( x k ) . Indeed we have

A nice interpretation of Lemma 3.1 in terms of the subgradient algorithm (3.9) ensues;
this interpretation will be important for our further development. If we compare (3.16)
with (3.9), we see that (l/fJ>k) can be interpreted as a step length and that the chosen
subgradient is now the projection (for the current dual norm) of the origin onto the
approximation Sk(£k) C d £ k f ( x k ) .

In what follows, we denote by Algorithm 3.1* the (dual) version of Algorithm 3.1,
where we solve (3.17) instead of (3.12) and yk+i is updated by (3.16).

Remark 3.4. The relation gk G d£kf(xk) implies

As a result, Xk satisfies an approximate minimality condition if both \\gk\\ and £k are
small. In view of (3.18), this will be the case when 6k is small, providing that p-k^max(Mk)
is not large. This explains the stopping criterion in Step 2 of the algorithm.

To conclude this section, we mention another important point: It is actually possible
to "clean the bundle" so as to avoid an intolerably growing number of affine functions in
the model <fk- All known implementations of Algorithm 3.1 take Mfc = 7m and differ by
the management of ^k (a crucial problem for efficiency). The most recent implementation
is described in [246], where some comparative numerical experiments are reported.

3.4 Specialized bundle methods
It is observed in [366] that dramatic improvements can be obtained with a slightly en-
riched oracle, which computes at Xk not only f ( x k ) and some eigenvector Vk, but also
a few more eigenvectors corresponding to "almost maximal" eigenvalues. This extra in-
formation can be inserted into the the definition of /t, which will approximate / more
accurately while staying polyhedral. This is the basis for the methods described in this
section.

3.4.1 Rich oracle: Dual methods
The first instance of a nonsmooth algorithm to solve (3.8) is probably the pioneering
work [87], which definitely adopts a dual approach. As mentioned above, the idea there
is to realize that the eigenvectors associated with eigenvalues of F(x) falling within e
of Amax(jP(x)) yield an enlarged df(x) (denoted by S£f(x) below), which turns out to
produce good descent directions. A quantitative analysis of this enlargement is given in
[307]. At X e Sn and for e > 0, we use the following notation:

matrix whose columns form an
orthonormal basis of the re(X)-dimensional space
spanned by the corresponding eigenvectors.

Then, by analogy with (3.3) and (3.5), we consider the following enlarged subdiffer-
entials S£Xmax(X) and 6£f(x):
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Since the columns of Q£(X) span in particular the first eigenspace of X, it is clear that
6£f(x) contains the exact subdifferential. To see that this enlargement is included in the
e-subdifferential d £ f ( x ) , it suffices to note that any V = Q£(X)ZQ£(X}T € <5£Amax(X),
which obviously lies in Cn, also lies in the half-space {V e Sn : V • X > Xm&x(X) - £}'•
In fact,

since Together with
(3.6) and (3.7), we do have

The whole purpose of the first-order analysis in [307] then consists in quantifying
the distance between 6£f(x) and def(x) (knowing that we would like to approximate
the latter set). Clearly, 6£Xmax(X) does not contain any full-rank matrix if r£(X) < n;
this seems to imply that this set is a poor approximation of the (full-dimensional) e-
subdifferential. Nevertheless, it is proved in [307] that the shortest element

does provide a good descent direction de — —g£. Specifically, / is guaranteed to decrease
along d£ by a quantity proportional to the gap defined at X — F(x) by &£(X) :=

Prom there, a minimization algorithm can be constructed. At each iterate x = Xk,
one chooses e = £fc, one constructs the inner approximation <5e/(zfc), one computes
its corresponding shortest element to obtain a direction dk , along which a line search is
performed. With a choice of £k careful enough to appropriately control the gap A£fc (Xfc),
a globally convergent method is obtained [307].

3.4.2 Rich oracle: A primal approach
The algorithm outlined above implies a delicate choice of e. In fact, this parameter plays
an ambivalent role:

(i) It is the tolerance on the largest eigenvalue, driving the quality of the direction of
search; as such, e should be "large."

(ii) It is also the final accuracy driving the quality of the solution: The algorithm
stops when 6£f(xk) contains a small vector (see Remark 3.4); as such, e should be
"small."

In the present section, we combine the two subdifferential enlargements of sections 3.3,
3.4.1. This allows us to restrict the e of the latter section to its role (ii) of a stopping
tolerance. We therefore fix this e to a small tolerance e. The resulting 8sf becomes
a slim enlargement of d/, but it is enriched with the bundle Sfc(£fc) of Proposition 3.1.
Alternatively, we can consider Sgf as enriching the bundle Sfc(£fc). In addition to this
mutual enrichment, we also transform the dual formulation of section 3.4.1 to a primal
one as in section 3.3.

Since we are dealing now with f-subgradients, in particular those belonging to
at iteration k, we need to adapt Proposition 3.1. At iteration fc, we have k — I previous
e-subgradients, & € 6ef(yi) for i = 1, . . . , fc — 1, and at the current point
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which will be considered as a local dual variable (together with the vector a € A&). We
define now the ^-linearization errors at iteration yk:

We see here that the kih linearization error plays a particular role since it becomes a
function of the dual variable g.

Proposition 3.2. For all y € Rm, a € Afc, and gk € S s f ( y k ) , we have

In particular, for

Proof. Follow line by line the proof of [194, Proposition XIV.2.1.1], starting with the
e-subgradient inequalities

instead of the subgradient inequalities.

Our (inner) approximation o f d £ f ( x k ) is now SktS(e) of (3.26). Then the dual program
(3.17) is no longer quadratic and becomes

where Qk and rk stand, respectively, for Qg(F(yk)) and re(F(yk)) of (3.21).
In section 3.3 we presented a primal formulation and interpreted it in the dual space.

Here we do a reverse presentation by introducing the Lagrange multiplier fj,k associated
with the constraint (*) above: (3.27) can be written in a penalized form

Prom now on, we assume nk > 0. Going further into our primalization process, we
construct the dual of (3.28) and obtain the following result.

Proposition 3.3. Up to the multiplicative factor p,k > 0, the dual of (3.28) is
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If (tk+i,yk+i) and (a, Z) solve, respectively, (3.29) and (3.28), we have the following
primal-dual relations wher

where

Proof. Problems (3.28) and (3.29) are two convex optimization problems: a convex
quadratic objective is minimized under LMI constraints; we apply duality theory (see
[373], for example). Consider (3.29); for fixed y G Rm and t large enough, the constraints
are strictly satisfied; i.e., the Slater condition clearly holds. Then there is no duality gap
and it suffices to prove that the dual of (3.29) is (3.28). For this let us introduce a
(k — l)-uple a G R/0"1 of nonnegative scalar multipliers (associated with the k — 1 scalar
constaints) and a positive semidefinite matrix multiplier U € <Srfe (associated with the
LMI constraint). The associated Lagrangian is

The dual of (3.29) is then

For the minimization in (3.32) to have a finite value we need the multipliers to satisfy
the following hidden constraint:

On the other hand, the Lagrangian is strongly convex in y and the optimality condition
for the minimization part gives us

Plugging this relation into the Lagrangian, setting
ak = Trt/, we obtain (3.28) after multiplication by

3.4.3 A large class of bundle methods
Starting from the above development, several options can be made to obtain imple-
mentable bundle methods, which will combine the global convergence properties of a
bundling mechanism with the fast termination allowed by a rich oracle.

and

3
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Models. Consider the function (f>k defined in (3.31). Prom (3.23) and (3.6), we have
for all gi € 6sf(yi), * = 1, . . . , A; - 1,

For these Vj's, we therefore have

On the other hand,

Then introduce the set

Recall (3.2); the following inequalities hold:

We see that, if based on the intermediate model above, a bundle method can be seen as a
process to update approximations Ck of the big convex set Cn. Furthermore, observe that
the first inequality becomes an equality when e = 0. Then such an approach resembles
that of [189], which consists in approximating Cn by

here V G Cn is an aggregate matrix that contains information from the previous iterates,
and the columns of Pk are orthonormal vectors storing past and current information.

Implementations. Consider now the effective resolution of the quadratic-sdp problem
(3.29) or (3.28). In view of its nonlinear constraints, it cannot be solved exactly; and
since it must be solved at each iteration of the outer minimization algorithm, a fast
method is in order.

In [189] (where 5 = 0), this subproblem is solved using interior-point methods; the
bundle scheme is thereby assigned the role of a master program controlling the size of
small quadratic-sdp problems.

Here, we propose the approximate resolution of (3.28) in two steps:

(qpi) compute an approximate solution gk of

(qp2) then solve the quadratic program

where
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Four main reasons lead us to this choice:

(i) The support function of the set fizf(yk] is known explicitly; therefore, an efficient
method, called the support black-box function in [307, section 3.1], can be used to
obtain an approximation of (3.34).

(ii) Step (qpi) can be viewed as a refinement of the oracle giving f(yk) and gk'. Now gk
coming from (qpi) is a carefully selected element of &sf(yk), possibly more efficient
than any exact subgradient at yk.

(iii) By decomposing (3.28) in two steps, local and global work are cleanly separated:
While (qp2) guarantees global convergence, the solution gk of (3.34) is exactly the
local information needed to form the so-called W-Hessian of / and get asymptotic
quadratic convergence (see section 3.5 below).

(iv) Step (qp2) is similar to (3.17), with approximate instead of exact subgradients:
Then the two steps can be naturally inserted in the general scheme of (3.3) (see
Algorithm 3.2 below); the resulting method can be seen as a polyhedral-semidefinite
proximal bundle method.

In view of this last point, the notation of (3.10) can still be used (even though the
#i's have a different origin), keeping in mind that it is now f — e that underapproximates
/. Indeed, we can see from (3.31), (3.33) that the models are ordered as follows: For all
yeR m ,

In a way, the present approach consists in replacing the model (f>k of (3.31) by fk — £.
Thus, the analysis of (3.17) can be reproduced to obtain the analogue of Lemma 3.1.

Lemma 3.2. For fj,k > 0 and Mk > 0, the unique solution of

Furthermore, setting

we have

Algorithm 3.2 (polyhedral-sdp proximal bundle method). The initial point x\
is given, together with a stopping tolerance 6 > 0. Choose a spring strength u.\ > 0,
the tolerance e > 0, a positive definite matrix M, and a descent coefficient u e ]0,1[.
Initialize the iteration counter k = 1 and y\ = x\; compute f ( y \ ) and g\ G d f ( y \ ) .

• STEP 1. Compute a solution a of (qp2) and set

• STEP 2. If6k < 8 stop.
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• STEP 3. Call the oracle. Compute an approximate solution gk+i € 6sf(yk+i) of
(3.34) and ek according to (3.36). If

set Xk+i = yjt+i, and choose fj,k+i > 0 and Mk+i >- 0. Otherwise set
(null step).
Replace k with k + l and loop to Step 1.

When £ = 0, Algorithm 3.2 is exactly Algorithm 3.1*. Numerical experiments re-
ported in section 3.6 will show that the introduction of £ together with (qpi) significantly
improves the speed of convergence.

As for theoretical properties, the global convergence of Algorithm 3.2 is analyzed just
as in [194, section XV. 3. 2]. Via an appropriate control of the sequence {/ifcAmax(.Mfc)},
and assuming 6 > 0, the algorithm stops at some iteration k; then the last iterate satisfies
an approximate minimality condition, alluded to in Remark 3.4.

3.5 Second-order schemes
The rich structure enjoyed by Amax allows an appropriate second-order analysis, even
though VAmax does not exist. This can be performed with tools from differential geom-
etry: [24, 310, 311, 374] or from convex analysis via the recent ZY-Lagrangian theory of
[245].

3.5.1 Local methods
With an appropriate second-order approximation of Amax on hand, Newton-type methods
can be developed for (3.1) or (3.8). This is done by M. L. Overton in [308], inspired by the
work of R. Fletcher [137]. The approach is further developed in [309, 311, 310, 374, 130],
and revisited in the light of ZY-Lagrangians in [305].

These methods are local, in the sense that convergence can be guaranteed only in
a neighborhood of a solution x*. Furthermore the multiplicity r* of Amax(F(x*)) must
be known. It is then natural to combine the globally convergent bundle methods of
section 3.4 with the present fast local methods by inserting in the former the appro-
priate second-order information used by the latter. For methods of section 3.4.1, this
is done in [307], Without any assumption on (3.8), the resulting algorithm generates a
minimizing sequence. Its quadratic convergence needs some strict complementarity and
nondegeneracy assumptions.

Here, we proceed to demonstrate how the same metric can be inserted in a primal
formulation like section 3.4.3. For this, we first need to explain what such a metric is;
we do this via the W-Lagrangian theory.

3.5.2 Decomposition of the space

Notationally, a hat on a matrix or vector (say, x) will suggest some intermediate variable,
rather than the current point of an algorithm. We denote by Air the set of matrices
whose maximum eigenvalue has a fixed multiplicity r 6 {1, . . . , n}. At a point X € Mr,
we decompose the space <Sn as the direct sum of U\mM(X) and V\max(X], the tangent
and normal spaces to M.r at X. These two subspaces have an explicit description:
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where r and Q are the r0(X) and QQ(X) of (3.21).
To this decomposition of <Sn, there corresponds the following decomposition of the

space of variables Rm: At a point x e Rm such that F(x) = X e Mr, i.e., x e A~lMr,
we write

where W/(x) := /"^A™^) and Vf(x) := Uf(x}JL.
It is shown in [305] that Uf (x) is the largest subspace where the directional derivative

/'(x, •) of / at x is linear, and Vf(x) is the linear subspace parallel to the affine hull of
df(x).

3.5.3 Second-order developments

Take x € A~lMr and G € Cn such that f*G e df(x). At the primal-dual pair (X,G)
we define the following symmetric operator H(X, G):

where
The operator induced by H(X,G) in the subspace U\maiX(X) is called the ZY-Hessian

of Amax at (X,G). It collects the relevant second-order information on Amax along M.r
as follows.

Theorem 3.1. For all D € Sn such that X + D e Mr, we have

In the space of decision variables, (3.44) is written as the following: For all d e Rm such
thatF(x) + FdeMr,

Proof. The first development (3.44) is given in [305, Theorem 4.12, Corollary 4.13]. The
second development is obtained by taking D = F d and by noticing that

3.5.4 Quadratic step

Now we come back to our algorithmical motivations. So far, the viscosity parameter I
had the role (ii) of a stopping criterion (see the beginning of section 3.4.2). At this stage
we assign it an additional role:

(iii) e enables us to "stabilize" the multiplicity of

At iteration fc, assume that yk = Xk (i.e., the previous step was a descent step). As
in section 3.4.1, we denote by r^ and Qk the approximate multiplicity rs(F(xk)) and
the associated matrix Qs(F(xk)) of (3.21). The rationale for our quadratic step is to
minimize the quadratic approximation of (3.45) (or an "e-regularization" of it) on the
linearized constraint F(xk + d) € Mrk (knowing that MTk is supposed to contain the
optimal solution). For this we introduce a dual matrix Gk € Cn such that T* Gk = 9k,
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where gk € Sg\maLX(F(xk)} is the output of (qpi) in section 3.4.3. We also introduce the
symmetric operator

where F* := F(xk)-
In [305, section 5.4], the constraint requiring F(xk+d) € M.ric is shown to be linearized

as F(xk +d) € ^AmaxC-^fc)- This is a linear equation, which can be written, using (3.42),

We therefore obtain the following quadratic step:

We define Uk and Vfc, the e-regularizations ofltf(xk) and

We assume that e-transversality holds at xk'- [D<j>]k is onto (or, equivalently, [D(f>]^ is
injective). If in addition the Hessian matrix Hk is positive definite on Uk, then (3.47)
has a unique solution dk. Under these assumptions (3.47) can be solved in two steps.

Normal step. Since [D<t>]k is onto, it has a right inverse
[D(f>]*k)-

1. Define

Then we have

Tangent step. The set of directions d satisfying the linear equation of (3.47) is vk +Uk .
Then, setting u — d — vk, (3.47) is the simple problem

whose unique solution is

Here Puk is the orthogonal projection onto Uk\ Puk is symmetric, Pfik = Im and
Range Puk =Uk-

The unique solution of (3.47) is then

3.5.5 The dual metric
The previous section concerned a quadratic model of / yielding fast asymptotic conver-
gence of an algorithm. Now we suggest a possibility to choose the metric in (qp2). We
look for a matrix Wk of the form Wk = Wuk + Wyfc such that

Wuk and W"vfc are symmetric ,
Wyk + Wvk is positive definite ,
Range and Range
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Prom the previous paragraph, it is rather natural to take

Now we want to choose Wyfe so that the dual problem (3.34) is well conditioned. Notice
that the enlargement 6 e f ( x k } can be described by

where gc := T* . Then the metric induced by || • \\k^ in Srit is [D4>}koWVk o [£></>]£.
Thus a natural choice for W\;k is

since in this case the induced metric in 5rfc is the standard Probenius norm.

3.5.6 A second-order bundle method
Now we can state an algorithm piecing together the objects defined in the preceding
sections. When Algorithm 3.2 has just performed a descent step, the model seems good
and a Newton step can be tried. On the other hand, a null step seems to indicate that the
bundle is not rich enough (at least locally), and a more conservative strategy is advisable
to enrich the bundle.

Algorithm 3.3 (second-order proximal bundle method). The initial point x\ is
given, together with a stopping tolerance 6 > 0. Choose a spring strength Hi > 0,
the tolerance E > 0, a positive definite matrix MI, and a descent coefficient m €]0, 1[.
Initialize the iteration counter k = 1 and y\ = x\; compute f ( y \ ) and g\ € df(y\).

• STEP 1. If yk = xk goto Step 1.1 else goto Step 1.2.

STEP 1.1. Compute dk '.= vk + uk, where vk and uk, respectively, are given
by (3.49) and (3.51). Set

STEP 1.2. Compute a solving (qp2) and set

STEP 2. If6k < 6 stop.

STEP 3. Call the oracle. Compute an approximate solution gk+i € Sef(yk+i) of
(3.34) and ek according to (3.36). If

Replace k with k + 1 and loop to Step 1.
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Figure 3.1: Influence of e.

As far as the bundling mechanism is concerned, this algorithm is formally the same
as Algorithm 3.2. Its global convergence is therefore established likewise, via appropriate
safeguards on the various metrics used (see the end of section 3.5.1). Its local convergence
is also easy to analyze: When /ifc = 1 is accepted for the descent test, the algorithm be-
comes the second-order bundle method of [307] and therefore enjoys the same asymptotic
properties.

3.6 Numerical results

3.6.1 Influence of e

This first example is aimed at illustrating an observation made by Schramm and Zowe and
reported by Overton in [309]. We consider the Lovasz problem for a class of undirected
graphs given in [366]: given integers a > I and a> > 3, set n = auj + 1 and define the
graph C%~1 to have the property that vertices i and j (in {!,...,n}) are adjacent if
j - i <u)oii + n-j < u. This property defines the structure of the variables M of
Lovasz problem:

where e is the n-vector on all ones.
Figure 3.1 shows the influence of e on a small instance of (3.54), where a = 3 and

o> = 4: this gives m = 39 variables in the 13 x 13 symmetric matrix M. We observe
here not only the improvement of the algorithm for e > 0 but also a super-linear behavior
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Table 3.1: Lovasz problem.

a

10
20
20

(jj

6
10
50

n

61
201
1001

m

1891
1809

49049

r
10.120845

20.106
99.2

\\9\\
6.1 10~7

4.2 10~3

1.1 KT1

# iter

129
481
96

CPU time

20s
16 min

5 h

without the use of second-order information. This might be explained by the peculiar
structure of these problems: The multiplicity at the solution is very high (r* = 7 to
precision 10~8) and V*, the affine hull of df(x*}, is therefore very large. Moreover,
first-order information is enough to get a second-order approximation of / in V* [245].

3.6.2 Large-scale problems
Lovasz problem. In order to be able to solve (3.54) when n is large, we exploit in
the oracle the sparse structure of the adjacency matrices M. In Table 3.1, we report for
several values of a and a;, the final value of the function, the norm of the corresponding
aggregate subgradient, the number of total iterations (descent or null steps), and the
total CPU time used by Algorithm 3.2 on a Sun Spare Ultra 1 with 196 MB RAM.

Quadratic stability of polytopic linear differential inclusions (PLDIs). In this
paragraph, along the lines of [64, Chapter 5], we analyze the stability of a PLDI

where the A^s are given stable n x n real matrices. Then we define the structured
mapping:

a sufficient condition for (3.55) to be quadratically stable is

Then an equivalent condition for (3.56) to hold is to require that the value of the eigen-
value optimization problem

is negative. Actually, using a generalization of Lyapunov's theorem [199, Theorem 2.4.10],
we can drop the constraint P > 0; the equality constraint can also be removed by
eliminating one variable. Yet for the implementation of the oracle presented in section
3.4.3, we do keep the matricial structure of the decision variable P instead of decomposing
P on a basis of <Sn; the minimized functions have the form

where E is the symmetric matrix with zeros everywhere except Enn = n and P equals P
everywhere except Pnn := — Y%=i PH- The adjoints of P •-> F-P have a similar matricial
structure. This formulation eases the resolution of (3.57) when n and m = "H"1) - l
are large numbers. In Table 3.2, we take L = 2 and we generate stable random matrices
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Table 3.2: PLDI, n > 500.

n
500
1000

m
125249
500499

/*
io-2

5.110-2

\\9\\
io-2

6.3 10~2

#iter
80
47

CPU time
7h

20 h

AI and AI of various sizes. The most difficult situations are when the value of (3.57)
is nonnegative. We report for such situations the final value of the function, the norm
of the corresponding aggregate subgradient, the number of total iterations (descent or
null steps), and the total CPU time. Algorithm 3.2 is run with the viscosity parameter
e = 10~3 and the stopping tolerance 6 = IQ~2. We note that the observed multiplicity
to the precision 10 * e is, in these situations, r* = n.

3.6.3 Superlinear convergence
In this paragraph we focus our attention on a small instance of (3.57): n = 5 and the
matrices A\ and AI are given by

Although both A\ and A2 are stable, their respective spectral abscissa are a(Ai) =
—2.93e — 05 and 01(^2) = — 3.25e — 06; there is no quadratic Lyapunov function proving
the stability of (3.55). Indeed, using the second-order proximal bundle method, we solve
(3.57) to machine precision: At the final point P* generated by the algorithm we have
g € df(P*) with \\g\\ < 2e - 15. The final value is /* := /(P*) = 0.01149788039455
with multiplicity 4 to the machine precision; the next eigenvalue is AS(^" • E + F - P*) =
—0.00670989012524. The corresponding solution is positive definite,

Figure 3.2 shows us the acceleration produced by the introduction of second-order
information. In particular, we observe the asymptotic superlinear convergence. Algo-
rithm 3.2 is run with e — 10~8. Algorithm 3.3 is initialized with e = 10~~3, and a
dynamic update of the form lk+i '•= 0-9 * £* is used when e~k is too large compared wit
the £k of (3.39). This management of e enables us to enter more rapidly the region of
superlinear convergence.

3.7 Perspectives
Depending on the type of problem to be solved, the need for further work can be antici-
pated in the following directions.

Poor oracles. Despite some isolated experiments reported in section 3.3, the re
capabilities of standard bundle methods have not been really investigated so far. Can
they solve problems for which other alternatives are impractical or inefficient? How
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Figure 3.2: Acceleration with second-order information.

large of problems can be solved in practice? To what extent can intermediate oracles
be helpful, and how can their additional information be used most efficiently? These
questions are not clearly answered yet.

Rich oracles. The real issue underlying the ideas in section 3.4.1 is not completely
understood. Are there connections between the dual and primal approaches adopted
there? Do these approaches come from a general approximating scheme, or are they
just isolated tricks without a firm ground? These questions are important for further
developments, for an adequate link with section 3.5, and also for a direct resolution of
(3.1).

Another issue is the bulk of work necessary for methods of section 3.5: Computing the
ZY-Hessian appearing in (3.43) really involves heavy computations. The question of ap-
proximating this operator by quasi-Newton updates is therefore important for numerical
implementations.

On the theoretical side, we mention the question of relating the present nonsmooth
analysis with interior points. For example, it should be interesting to relate the W-Hessian
with the Hessian of the potential function associated with 
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Chapter 4

sdpsol: A Parser/Solver for
Semidefinite Programs with
Matrix Structure

Shao-Po Wu and Stephen Boyd

4.1 Introduction

This chapter describes a parser /solver for a class of linear matrix inequality (LMI) prob-
lems, the so-called max-det problems. A variety of analysis and design problems in
control, communication and information theory, statistics, combinatorial optimization,
computational geometry, circuit design, and other fields can be expressed as semidefinite
program (SDP) problems or determinant maximization problems (max-det problems).
These problems often have matrix structure, which has two important practical ram-
ifications: First, it makes the job of translating the problem into a standard SDP or
max-det format tedious, and, second, it opens the possibility of exploiting the structure
to speed up the computation.

In this chapter, we describe the design and implementation of sdpsol, a parser /solver
for SDPs and max-det problems, sdpsol allows problems with matrix structure to be
described in a simple, natural, and convenient way. Moreover, it allows algorithms to
exploit problem structure to gain efficiency. Although the current implementation of
sdpsol exploits only block-diagonal structure in the solution algorithm, the language
and parser were designed with exploiting general matrix structure in mind.

4.1.1 Max-det problems and SDPs

A max-det problem has the form

minimize 
subject to

79
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where the optimization variable is the vector x € Rm. The matrix functions G^ : Rm — >•
RliXli and F<*> : Rm -* R««xri« are affine:

where G^*' and F^ are symmetric for j = 0, . . . , m. The inequality signs in (4.1) denote
matrix inequalities. We call G^(x) > 0 and F^(x) > 0 LMIs in the variable x. Of
course the LMI constraints in (4.1) can be combined into one large block-diagonal LMI
with diagonal blocks G(i>(z) and F<*>(x).

When K = 1 and G^(x) = 1, the max-det problem (4.1) reduces to the well-known
SDP problem:

The max-det problem (4.1) and the SDP (4.2) are convex optimization problems.
In fact, LMI constraints can represent many common convex constraints, including lin-
ear inequalities, convex quadratic inequalities, and matrix norm and eigenvalue con-
straints. SDPs and max-det problems arise in many applications; see Alizadeh [5], Boyd,
El Ghaoui, Feron, and Balakrishnan [64], Lewis and Overton [247], Nesterov and Ne-
mirovsky [296, section 6.4], Vandenberghe and Boyd [404], and Vandenberghe, Boyd,
and Wu [407] for many examples.

SDPs and max-det problems can be solved very efficiently, both in worst-case com-
plexity theory and in practice, using interior-point methods (see [404] and [407]). Current
general-purpose solvers such as SP [402], MAXDET [427], SDPT3 [392], SDPA [145],
SDPMATH [74], and SDPpack [6] use the standard format (4.2) (and (4.1)) or a simple
variation (e.g., its dual form).

4.1.2 Matrix structure

In many SDPs and max-det problems the optimization variables are matrices of various
dimensions and structure, e.g., row or column vectors, or symmetric or diagonal matrices.
In general, the optimization variables can be collected and expressed as (X^), . . . , X^M^),
where X^ e RpiX9< and X^ may have structure (e.g., symmetric, diagonal, upper
triangular, etc.). These matrix variables can be vectorized into the single vector variable
x that appears in the standard format problems (4.1) and (4.2). To vectorize X^t we
find a basis E^\ . . . , E£] such that

where x^ € Rmi denotes the vectorized X^. For example, if X^ € RpiXqi has no
structure, we have x^ = vec(X^) and mi = p^; if X^ € RpiX9< is diagonal (pi = ft),
we have rpW = diag(X^) and m* = p,. Doing this for i = 1,...,M, we obtain the
vectorized variable x € Rm, m = mi + • • • -f- mM> and

Note that each variable X^ of the problem corresponds to part of the vectorized variable
x. With this correspondence, we can convert the problem to the standard form (4.1)
or (4.2), and vice versa.
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The following example illustrates this vectorization process. We consider the problem

where A, B are given matrices (i.e., problem data), and the symmetric P G Rnxn and
diagonal R G Rfcxfc are the optimization variables.

We vectorize P and R as

where Pij denotes an nx n zero matrix except the (i,j) and (j, i) entries are 1; R± denotes
a k x k zero matrix except the (i,i) entry is 1. Substituting (4.4) and (4.5) for P and R
everywhere in the SDP (4.3), we obtain the problem of the form (4.2) in the optimization
variable

4.1.3 Implications of the matrix structure

Clearly it is straightforward but inconvenient to convert an SDP or a max-det problem
with matrix structure into the standard form (4.2) or (4.1). This conversion obscures the
problem structure and the correspondence between the variables X^ and the vectorized
variable x, which makes it hard to interpret the results after the problem is solved.

Moreover, the problem structure can be exploited by interior-point methods for sub-
stantial efficiency gain (see [403] and [67] for examples). To illustrate the idea with a
simple example, consider the operation

that evaluates the —ATP — PA term in the first matrix inequality of (4.3). C(P) is an
O(n3) operation because it involves matrix multiplications of n x n matrices. However,
if we vectorize P as shown in (4.4), then C(P] becomes

which is an O(n4) operation.

4.1.4 sdpsol and related work

In this paper, we describe the design and implementation of sdpsol, a parser/solver for
SDPs and max-det problems with matrix structure. Problems can be specified in the
sdpsol language in a form very close to their natural mathematical descriptions. As an
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example, the SDP (4.3) can be specified as
variable P(n,n) symmetric;
variable R(k,k) diagonal;

minimize objective = Tr(P);

The problem specification is then compiled by the sdpsol parser into the standard form
and passed to the solution algorithm to be solved. The solution (optimal variables) will
again be interpreted by the parser and returned in their specified structure.

Evidently, the sdpsol parser/solver automates the tedious and inconvenient step
of converting an SDP or a max-det problem into the standard form. It also allows a
structural description of the problem such that sophisticated solution algorithms can
exploit the problem structure to gain efficiency.

There exist several similar tools that use a specification language to describe and solve
certain mathematical programming problems. A well-known example is AMPL [139],
which handles linear and integer programming problems.

LMITOOL [126] and the LMI Control Toolbox [151] provide convenient Matlab in-
terfaces that allow the user to specify SDPs with matrix structure (specifically the ones
arising in control), using a different approach from the parser/solver described in this
paper.

In section 4.2, we describe the design of the specification language. A preliminary
implementation of sdpsol (version beta) is described in section 4.3. In section 4.4, we
give several examples to illustrate various features of sdpsol.

4.2 Language design

4.2.1 Matrix variables and affine expressions

The fundamental data structure of the sdpsol language is, as in Matlab [266], the matrix.
The language provides a Matlab-like grammar, including various facilities to manipulate
matrix expressions. For example, it provides commands that construct matrices, oper-
ations such as matrix multiplication and transpose, and matrix functions such as trace
and inner product. The language also supports assignments; i.e., expressions can be
assigned to internal variables that can later be used in the problem specification. Vari-
ous algorithm parameters, such as tolerance or maximum number of iterations, can be
initialized using assignments.

An important extension beyond Matlab is that the sdpsol language provides matrix
variables and, by extension, matrix expressions formed from matrix variables and matrix
constants. Matrix variables of various dimensions and structure can be declared using
variable declaration statements. For example, the statements
variable P(7,7) symmetric;
variable x(k,l), y;
declare a 7 x 7 symmetric variable P, a k x 1 variable x, and a scalar variable y.

Variables can be used to form affine expressions, i.e., expressions that depend affmely
on the optimization variables. For example, the expression (assuming P is a variable and
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A, D are constant square matrices)

is an affine expression that depends affinely on P. Affine expressions can be used to
construct LMI constraints and the objective function of SDPs and max-det problems.

As each affine expression is parsed, sdpsol keeps track of its dependence on the
variables, adding the dependency information to an internal table for later reference,
e.g., by a solver.

4.2.2 Constraints and objective
Various types of (affine) constraints are supported by the language, including matrix in-
equalities, componentwise inequalities, and equality constraints. Constraints are formed
with affine expressions and relation operators, as in

which specify the matrix inequality ATP + PA + D < — /, the componentwise inequality
diagP > 0, and the equality TrP = 1.

The objective function is specified via an assignment, as in

maximize objective = Tr(P) ;

which assigns TrP to the internal variable objective and makes maximizing it the ob-
jective. A feasibility problem (i.e., a problem that determines whether a set of constraints
is feasible or not) is specified without an objective statement.

4.2.3 Duality
We associate with the max-det problem (4.1) the dual problem (see [407] for details):

where the dual variables are symmetric matrices W^ G RiiXii for i = 1, . . . , K, symmet-
ric matrices Z(i) € RniXUi for i = 1, . . . , L, and a vector z e Rp (assuming A € Rpxm

and 6 e Rp in (4.1)). We will refer to (4.1) as the primal problem of (4.6). Note that (4.6)
is itself a max-det problem.

Similarly, we can associate with the SDP (4.2) the dual

which is also an SDP.
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The dual problem has several practical uses; e.g., the optimal dual variables give a
sensitivity analysis of the primal problem. The most efficient SDP and max-det solvers
are primal dual; i.e., they simultaneously solve the primal and dual problems, sdpsol
automatically forms the dual from the primal problem specification. The dual problem
is used by the solver and also, if requested, returns to the user optimal dual variables.

There is a simple relation between the form (size and structure) of the primal con-
straints and the dual variables (and vice versa). Observe that for each constraint in (4.1)
(or (4.2)), there is a dual variable of the same dimensions and structure associated with it.
The variables associated with the primal LMI constraints are constrained to be positive
definite in the dual problem, while the variables associated with the equality constraints
are unconstrained.

Taking the SDP (4.3) as an example, we have that sdpsol associates the dual variables

with the three matrix inequalities, respectively, and z € R with the equality constraint.
After some manipulation (which can be easily performed by sdpsol), we have the dual
problem

where P^, Ri are given by (4.4) and (4.5), 6ij = I if i = j, otherwise zero.
sdpsol provides an alternate form of constraint specifications, in which the user

associates a name with each constraint, which is then used by sdpsol to refer to the dual
variables. For example, the statements (assuming P,A,D£ Rnxn)
constraint lyap 
constraint equ 

specify (and name) the constraints ATP+PA+D < —I and TrP = 1. sdpsol associates
with these constraints the dual variables with names

lyap -dual G Rnxn, lyap .dual symmetric,
equjdual € R.

After the solution phase, sdpsol returns the optimal values of these dual variables.

4.3 Implementation
We have implemented a preliminary version of the parser/solver, sdpsol version beta.
The parser is implemented using BISON and FLEX. Two solvers, SP [402] and MAXDET
[427], are used to solve the resulting SDPs and max-det problems. Both solvers exploit
only block-diagonal structure, so the current version of sdpsol is not particularly efficient.

Both SP and MAXDET are primal-dual methods that require a feasible starting
primal and dual point, sdpsol uses the method described in [404, section 6] to handle
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the feasibility phase of the problem; that is, sdpsol either finds a feasible starting point
(to start the optimization phase) or proves that the problem is infeasible. If there is no
objective in the problem specification, sdpsol simply solves the feasibility problem only.

A Matlab interface is provided by sdpsol to import problem data and export the
results, sdpsol can also be invoked from within Matlab interactively.

4.3.1 Handling equality constraints
Neither SP nor MAXDET handles problems with equality constraints, so the current
implementation of sdpsol eliminates them, uses SP or MAXDET to solve the resulting
problem (which has no equality constraints), and finally reassembles the variables before
reporting the results.

The equality constraints given in the problem specification can be collected and put
into the form of Ax = b (A € Rpxm,6 e Rp) as given in (4.1) and (4.2). We assume
that the rank of A, say, r, is strictly less than m (otherwise the problem has a trivial
solution). The matrix A is often not full rank, because sdpsol does not detect and
remove redundancy in the equality constraints specified. For example, a 2 x 2 matrix
variable X can be constrained to be symmetric by the constraint specification

X == X ' ;

sdpsol interprets the above statement as the following four equality constraints:

Evidently one constraint X^\ = X\<2 is necessary. This will show up as two zero rows in
A and two identical rows of A; in particular, A will not be full rank.

Instead of keeping track of such situations, sdpsol builds up the matrix A paying
no attention to rank, sdpsol then performs a complete orthogonal decomposition (see
[171]) on A such that

where P is a column permutation matrix (for column pivoting), R\\ G Rrxr is upper
triangular, and Q, U € Rpxp are orthogonal matrices.

All x € Rm satisfying the equality constraints can be expressed as

we can express the max-det problem (4.1) as
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where x 6 Rm is the optimization variables and Bkj denotes the ( k , j ) entry of B.
Evidently, the above process reduces the optimization problem (4.1) in Rm with equality
constraints to (4.10) in Rm without any equality constraint. Similar methods apply to
the SDP (4.2).

We should add that eliminating variables destroys the matrix structure that could
be exploited by a solver. A future version of sdpsol would directly pass the equality
constraints to an SDP/max-det solver that handles equality constraints.

4.4 Examples

In this section, we give several examples to illustrate various features of sdpsol.

4.4.1 Lyapunov inequality
As a very simple example, consider a linear system described by the differential equation

where A € Rnxn is given. The linear system is stable (i.e., all solutions of (4.11)
converge to zero), if and only if there exists a symmetric, positive definite P such that
the Lyapunov inequality

is satisfied. The problem of finding such a P (if one exists) can be specified in the sdpsol
language as follows:
'/. Lyapunov inequality
variable P(n,n) symmetric;

In the problem specification, an n x n symmetric variable P is declared. An affine
expression ATP + PA is formed and is used to specify the Lyapunov inequality. Another
LMI, P > 0, constrains P to be positive definite. Since no objective is given, sdpsol
solves the feasibility problem that either finds a feasible P or shows that the problem is
infeasible.

Note that this problem can be solved analytically. Indeed, we can solve the linear
equation ATP + PA + / = 0 for the matrix P, which is positive definite if and only if
(4.11) is stable.

4.4.2 Popov analysis
Consider the mass-spring-damper system with a vibrating base shown in Figure 4.1.

The masses are 1kg each, the dampers have the damper constant 0.5nt/m/s, and the
springs are nonlinear: Fi = 0i(£i), where

The base vibration is described by
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Figure 4.1: Mass-spring-damper system.

where RMS(to) < 1 but is otherwise unknown. Our goal is to find an upper bound on
RMS(z).

The mass-spring-damper system can be described by the Lur'e system (see [64, sec-
tion 8.1]) with 7 states and 3 nonlinearities

where x e R7, p € R3 and the functions 4>i satisfy the [0,1] sector condition; i.e.,

for i — 1,2,3. One method to find an upper bound is to find a 72 and a Lyapunov
function of the form

where Cqi denotes the ith row of Cq such that

for all w,z satisfying (4.12). The square root of 72 yields an upper bound on RMS(z).
The problem of finding 72 and the Lyapunov function (4.13) can be further relaxed

using the «S-procedure to the following SDP (see [64, section 8.1.4]):
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Figure 4.2: RMS(2) of mass-spring-damper system and upper bound.

where P = PT e R7x7, L,T e R3x3 diagonal, and 72 € R+ are the optimization
variables. The square root of the optimal 72 of (4.14) is an upper bound of RMS(z) if
there exists P, L, T that satisfy the constraints.

The SDP (4.14) can be described using the sdpsol language as follows:
'/. Popov analysis of a mass-spring-damper system
variable P(7,7) symmetric;
variable L(3,3), T(3,3) diagonal;
variable gamma_sqr;

Again, the specification in the sdpsol language is very close to the mathematical de-
scription (4.14). The objective of the problem is to minimize RMS_bound_sqr, the square
of the RMS bound, which is equal to the variable gamma_sqr.

Unlike the previous example, this problem of finding an upper bound on RMS(z)
has no analytical solution. However, one can easily specify and solve the problem using
sdpsol. We show in Figure 4.2 an envelope of possible RMS(z) obtained via Monte-Carlo
simulation and the upper bound obtained via solving (4.14). RMS(z) of the nominal
system is shown in the dashed line.

4.4.3 .D-optimal experiment design
Consider the problem of estimating a vector x from a measurement y = Ax + w, where
w ~ AT(0, /) is the measurement noise. The error covariance of the minimum-variance
estimator is equal to A^(A^}T = (ATA)~l. We suppose that the rows of the matrix
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Figure 4.3: D-optimal experiment design.

can be chosen among M possible test vectors

The goal of experiment design is to choose the vectors a» so that the determinant of the
error covariance (ATA)~l is minimized. This is called the D-optimal experiment design.

We can write ATA = Y ^ - , AtT/*M*) , where A» is the fraction of rows a/c equal to
(

* * * A

^~ ...v,̂  ^ l'. We ignore the fact that the numbers Aj are integer multiples of l/q and
instead treat them as continuous variables, which is justified in practice when q is large.

In D-optimal experiment design, A» are chosen to minimize the determinant of the
error covariance matrix, which can be cast as the max-det problem

This problem can be described in the sdpsol language as
7. D-optimal experiment design
variable lambda(M,l);

lambda .> 0;
sum(lambda) == 1;

Cov_inv = zeros(p,p);
for i=l:M;

Cov_inv = Cov_inv + lambda(i,l)*v(:,i)*v(:,i)';
end;

minimize log_det_Cov = -logdet(Cov_inv);

In the specification, an M-vector lambda is declared to be the optimization variable. The
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Figure 4.4: Mass-spring system.

(componentwise) inequality constraint specifies that each entry of lambda is positive, and
the equality constraint says the summation of all entries of lambda is 1.

A for-loop is used to construct Cov_inv, the inverse of the covariance matrix, to
• r *jP

be ]T)i=i Aj7/*M*' . The objective of the optimization problem is to minimize the log
determinant of the inverse of Cov_inv. An implicit LMI constraint, Cov_inv > 0 is
added to the problem as soon as the objective is specified. This LMI corresponds to the
G(x) > 0 term in (4.1), and it ensures that the log-determinant term is well defined.

A numerical example of /^-optimal experiment design involving 50 test vectors in R2

is shown in Figure 4.3. The circle is the origin; the dots are the test vectors that are not
used in the experiment; the x's are the vectors that are used. The optimal experiment
allocates all measurements to only two test vectors.

4.4.4 Lyapunov exponent analysis
Consider the mass-spring system shown in Figure 4.4 [63, section 7]: Two unit masse
and a wall (infinite mass) are connected by nonlinear springs with spring constants that
can change instantly over the range of [1,2]. We would like to find an upper bound on
the rate of extracting energy from (or pumping energy into) the system by loosening and
stiffening the springs.

The system can be described by the differential inclusion

where the four extreme cases (i.e., ki = 1 or 2, i = 1,2) are denoted by y = Ajy,
j = 1,..., 4. It is shown in [63, 64] that an upper bound is given by the solution of the
generalized eigenvalue problem:

The above problem is a quasi-convex optimization problem and cannot be posed as an
SDP or a max-det problem. However, we can solve (4.16) via bisecting an interval of a
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and solve, for each a, the SDP feasibility problem

until the minimum feasible a is found.
We can specify (4.17) in the sdpsol language as

'/, Lyapunov exponent analysis via bisection

With a simple Matlab script that performs the bisection and checks the feasibility results
returned by sdpsol, we can solve the problem easily. In fact, since a > 0 and

we can use bisection over the interval [0,2.12] and get the optimal bound w 0.33.

4.5 Summary

Using a parser/solver (such as sdpsol described in this paper) to solve SDPs and max-det
problems has the following advantages:

• Problems with matrix structure can be conveniently specified. The process of
converting problems into the standard forms is automatized.

• Problem structure is kept during compilation and can be exploited fully by sophis-
ticated solvers to gain efficiency.

• The solver can be easily updated or changed by modifying its interface with the
parser. There is no need to change the problem specifications.
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A1'*P+P*a1-2-alpha*p<0;
A2'*P+P*a2-2-alpha*p<0;

A3'*P+P*a3-2-alpha*p<0;
A4'*P+P*a4-2-alpha*p<0;
Tr(P) == 1;

P>0;



variable p(4,4) symmetric;
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