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6 CONTENTS
Introduction

Free or moving boundary problems appear in many areas of mathematics and science
in general. Typical examples are shape optimization, (least area for fixed volume, optimal
insulation, minimal capacity potential at prescribed volume), phase transitions (melting
of a solid, Cahn Hiliard), fluid dynamics (incompressible or compressible flow in porous
media, cavitation, flame propagation), probability and statistics (optimal stopping time,
hypothesis testing, financial mathematics), among other areas.

They are also an important mathematical tool to prove existence of solutions in nonlinear
problems, homogenization limits in random and periodic media, etc.).

A typical example of a free boundary problem is the evolution in time of a solid-liquid
configuration: Suppose that we have a container D, filled with a material that is in solid
state in some region Qo C D and liquid in Ay = D \ Q.

We know its initial temperature distribution Ty(x) and we can control what happens on
0D at all times (perfect insulation, constant temperature, etc.). Then, from this knowledge
we should be able to reconstruct the solid liquid configuration, €2;, A;, and the temperature
distribution T'(z,t) for all times ¢ > 0.

Roughly, on €, A; the temperature should satisfy some type of diffusion equation, while
across the transition surface, we should have some “balance” conditions that express the
dynamics of the melting process.

The separation surface, 0€2; between solid and liquid is thus determined implicitly by
these “balance conditions.” In attempting to construct solutions to such a problem one is
thus confronted with a choice. We could try to build “classical solutions,” that is, configu-
rations ¢, Ay, T'(z,t) where the separation surface F' = 0§2; is smooth, the function T is
smooth up to F' from both sides, and the interphase conditions on T', VT',... are satisfied
pointwise. But this is in general not possible, except in the case of low dimensions (when
F is a curve) or very special configurations.

The other option is to construct solutions of the problem by integrating the transition
condition into a “weak formulation” of the equation, be it through the conservation laws that
in many cases define them, or by a Perron-like supersolution method since the expectation
that transition processes be “organized” and “smooth” is usually linked to some sort of
“ellipticity” of the transition conditions.

The challenging issue is then, of course, to fill the bridge between weak and classical

solutions
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A comparison is in order with calculus of variations and the theory of minimal surfaces,
one of the most beautiful and successful pursuits of the last fifty years.

In the theory of minimal surfaces one builds weak solutions as boundary of sets of
finite perimeters (weak limits of polygonals of uniformly bounded perimeter) or currents
(measures supported in countable unions of Lipschitz graphs) and ends up proving that such
objects are indeed smooth hypersurfaces except for some unavoidable singular set perfectly
described.

This is achieved by different methods:

i) By exploiting the invariance of minimal surface under dilations and reducing the
problem of local regularity to global profiles (monotonicity formulas, classifications
of minimal cones).

ii) By exploiting the fact that the minimal surface equation linearizes into the Lapla-
cian (improvement of flatness).

iii) May be the most versatile approach, the DeGiorgi “oscillation decay” method,
that says that under very general conditions a Lipschitz surface that satisfies a
“translation invariant elliptic equation” improves its Lipschitz norm as we shrink

geometrically into a point.

We will see these three themes appearing time and again in these notes. In fact, we con-
sider here a particular family of free boundary problems accessible to this approach: Those
problems in which the transition occurs when a “dependent variable u” (a temperature, a
density, the expected value of a random variable) crosses or reaches a prescribed threshold
value p(x).

The same way that zero curvature forces regularity on a minimal surface, the interplay
of both functions (u — ¢)* at each side of F' = 9Q and the transition conditions (typically
relating the speed of ' with (u — ¢)F) force regularity on F, although in a much more
tenuous way.

To reproduce then the general framework of the methods described above for minimal
surfaces, it is then necessary to understand the interplay between harmonic and caloric
measure in both sides of a domain, the Hausdorff measure of the free boundary and the
growth properties of the solutions (monotonicity formulas, boundary Harnack principles).

These are important, deep tools developed in the last thirty years, that we have included
in this book. We chose in this book to restrict ourselves to two specific free boundary
problems, one elliptic, one parabolic to present the main ideas and techniques in their

simplest form.
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Let us mention two other problems of interest that admit a similar treatment. The
obstacle problem (see the notes [C5]) and the theory of flow through porous media.

In this book, we have restricted ourselves to the problem of going from weak solutions
to classical ones.

The issue of showing that classical solutions exhibit higher regularity has been treated
extensively and forms another body of work with different techniques, more in the spirit of
Schauder and other a-priori estimates.

There are of course many other problems of great interest: elliptic or parabolic systems,
hyperbolic equations, random perturbations of the transition surface, etc.

Although the issues become very complicated very fast, we hope that the techniques
and ideas presented in this book contribute to the development of more complex methods to
treat free boundary problems or, more generally, those problems where, through differential
relations, manifolds and their boundaries interact.

We would like to thank our wives, Anna and Irene, who supported and encouraged us
so much, our Institutions, the Politecnico di Milano and the University of Texas at Austin,
that hosted each other during the many years of our collaboration. Finally, we are specially
thankful to Margaret Combs, for her generosity, dedication and support that made this
book possible.

Austin and Milano,

December 2004
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Elliptic Problems



CHAPTER 1

An introductory problem

1.1. Introduction and heuristic considerations

In this part we consider free boundary problems of the following type.
In the ball B; = B1(0) we have a continuous function u satisfying:

a) Au in Q(u) ;= {u > 0} and in Q@ (u) := {u < 0}°

b) the flux balance

G(ul,u,)=0 (1.1)

across F(u) := 9Q%" (u) N By, the free boundary.

In (1.1), u} and u, denote the normal derivatives in the inward direction to Q% (u) and
Q™ (u), respectively, so that u* are both nonnegative.
The simplest example of this type of problems arises in the minimization of the varia-

tional integral

Jo(u) = /B (|Vu\2 —|—X{u>0}> dx (1.2)

that appears in many applications (e.g. in jet flows, see [AC], [ACF1], [ACF2], [ACF3]).
Suppose u is a local minimizer and assume that the free boundary is differentiable (say)
at the origin.

Since

un(z) = %u()\x)

is again a local minimizer, that is the problem is invariant under “elliptic” dilations if we
let A go to zero, we could expect to “guess” the free boundary condition by examining one
dimensional, linear solutions of the type

u(r) = ar™ — Bx~ (o, 3> 0)

in [—1,1].
If we perturb the origin by € (¢ 2 0), the Dirichlet integral

/_11(1/)2 dz

11
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o xt
l 0 ]
I = '1
FIGURE 1.1
changes from o? + 32 to

while the volume integral f_ll X{u>0} dz changes from 1 to 1 —e. The “Euler equation” at

the origin is therefore
o —p3*—-1=0
i.e., in this case we expect

Gul,u,) = (u

v

ey

)2 —(u)? =1. (1.3)

Another way to recover, at least formally, the free boundary condition (1.3) is to use the
classical Hadamard’s formula. Indeed, if we assume that F'(u) is smooth and perturb it
inward w.r.t. Q% (u) around a point x € F(u), so that |Q1(u)| decreases by §(Vol), then,
from Hadamard’s formula we get that [ |Vu™|? increases by an amount (u,;)3(Vol) while
I5, |Vu~|? decreases by (u;,)?6(Vol).

Thus, the minimization condition implies

An inward perturbation w.r.t. Q7 (u) would give the opposite inequality so that, on F(u),
the “Euler equation” for Jy is exactly (1.3).

The above considerations show a sort of “stability” property of the free boundary rela-
tion: if we perturb it towards the positive (negative) region, u; tends to increase (decrease),
so that u deviates from being a solution.

Referring to the general free boundary condition (1.1), this behavior is reflected in an
“ellipticity” condition on G that can be motivated in terms of comparison principle, like
maximum principles.

Consider, for instance, the equation

H(D?*u) =0 .
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\

FIGURE 1.2

One way of requiring its ellipticity is by asking for a strict comparison principle: what
is the natural condition on H that prevents two (smooth) solutions v and v (H(D?u) =

H(D?v) = 0) from becoming into contact, i.e.
u>v and u(xg) = v(xg) ?
At x¢ we have D?u(xg) > D?v(xg), but, suppose (poetic license...)
D?u(xg) > D*v(z)
Thus, if we ask that H be strictly increasing as a function of symmetric matrices we conclude
H(D*u(x)) > H(D*v(x0))

a contradiction. In other words, monotonicity in H with respect to D?u is “an ellipticity
condition”.

Suppose now that u and v are solutions of the same free boundary problem, with u > v.
Since away from their free boundaries F'(u) and F'(v), respectively, u and v are harmonic and
hence cannot touch, the analog of the question above is: what will exclude the possibility
that F'(u) and F'(v) can touch at a free boundary point (say xg = 0)7

Hopf maximum principle gives, at x¢g = 0,

u,jL>'U;L and u, <wv, .
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Therefore, if G = G(a,b) is strictly increasing w.r.t. a and strictly decreasing w.r.t. b, the

possibility that both

is excluded.

DEFINITION 1.1. The free boundary relation (1.1) is elliptic if G = G(a,b) is strictly

increasing w.r.t. a and strictly decreasing w.r.t. b.

The one-dimensional computation done above indicates also an important difference
between one phase and two phases problems. In one phase problems it is possible to get
universal interior bounds, in the sense that, if u is a solution in a ball B1(0) and 0 € F(u),
then |Vu| or even D?u (as in the case of the obstacle and the one phase Stefan problem) is
bounded in B; /2(0) by a universal constant, no matter what the boundary data are.

In two phase problems this is, in general, impossible. For instance, in the one dimen-
sional minimization problem, by raising the boundary data one can have a large gradient

of the solution near the origin.

1.2. A one phase singular perturbation problem

Let us go back to the minimization of the functional (1.2). If we put a boundary data

wop, = f =20

then the solution u will be nonnegative and we are dealing with a one phase problem. We
will discuss this problem in full detail in order to introduce some of the main ideas and
techniques, useful also in more general context.

We shall consider minimizers constructed as limits of singular perturbations because
in this case the technique can be somewhat simplified. Observe that the problem has no
uniqueness so there could exist other types of solutions (see [AC]). All the theory can anyway
be developed for any minimizer of Jy ([AC]).

So we start studying the minimizers v, of the variational integral
J(u) = / (IVl? + ®.(u)} da
B1

where ®; is a smooth nondecreasing function on the real line with ®;(s) = 0 for s < 0,
®y(s) =1 for s > 1, and ®.(s) = ®1(s/e). Therefore,
1 S 1 s
fels) = @) = 294 (2) = 2 ()

is an approximation of the Dirac measure.
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PROPOSITION 1.1. Given g € HY(By), there exists a minimizer u € H'(By) withu—g €
H{j(By).

A minimizer u. satisfies the Euler equation
2Au = f.(u) (1.4)

and so, since f¢ is smooth, it is a smooth solution. Since gjpp, > 0, and f. is supported in
0 < u < &, by maximum principle, u. is nonnegative.

We start now with optimal regularity and nondegeneracy. Given the jump conditions
along the free boundary, the optimal global regularity we can expect from the limiting

solution is Lipschitz continuity and this is what we prove for wu..

THEOREM 1.2. Let ¢ < 1/3 and suppose u:(0) = . Then there ezists a (universal)

constant Cy such that

IVue|[ Lo (B, ,,(0)) < Co

At this stage it is important to emphasize a renormalization property of the problem.
If u is a solution of equation (1.4) in Bgr(xg), then, the renormalization of u given by

wly) = Zu(wo + <) (1.5

satisfies the equation
1 :
Aw=fi(w) in Bp.(0)
where, notice, 0 < fi(w) < 1.
Moreover, observe that Vw(0) = Vu(xzg). Thus, to prove that u is Lipschitz in By (xg)
is equivalent to prove that w is Lipschitz in Bg/.(0). When a property is invariant under

the rescaling (1.5) we say that it is a “renormalization property.” So, Lipschitz continuity

is a renormalization property in this sense.
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The next two lemmas show two of these renormalization properties. Since they ex-
press general facts, useful in many other situations, we state them in a renormalized form.

Theorem 1.2 is then an immediate consequence.
LEMMA 1.3. Let w > 0 be a solution of
|Aw| < C in Bs(0)
If w(0) <1, then,
[Vw(0)] < Co
PROOF. Interior Shauder estimates and Harnack inequality give

Vw(0)] < C(C + [wlim@oy) <CC+)=Co O

COROLLARY 1.4. If x € By and 0 < ue(x) < e, then

Vue(z)| < C .

Corollary 1.4 shows Lipschitz continuity in the region where 0 < u. < e. Applying the

next lemma to v = u — ¢, we take care of the region (). where u > ¢.

LEMMA 1.5. Let  be an open set with 0 € 02 and v be harmonic and nonnegative in
B1NQ. Suppose that on ' = 0NN By, v = 0 and |Vv| is bounded. Then, for every x € By s

a) v(z) < Cd(x,00)sup |V
r

b) ||VUHLO<>(31/209) < C’s1;p|V1)|

PROOF. Let xg € By, NQ, h = d(x9,09) and A = supr |[Vv|. Suppose
v(xg) = Ah .
We want to show that A < C'A. Rescale v in Bp(xg) by putting

w(y) = %U(l’o + hy) .

Then, w is harmonic and nonnegative in B;(0) with w(0) = A. Since h = d(xg, 0£2), there
exists y; € 0B1(0) at which w(y;) = 0. Moreover, since Vw(y) = Vu(zg + hy), we have
[IVw(y1)| < A. Now, by Harnack inequality, in By (0),

w > CA .

In the ring B; \ B /2, compare w with the harmonic function

cA 9
-7 n_1).
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z vanishes on 9B and equals cA on 9By, therefore, by maximum principle
U)ZZ in Bl\B1/2 .

If v is the inward unit normal to 9B; at y;, we have:
n—2
A > |Vw(y)| = wy, > mC)\ .
This proves a).
For b), use interior Shauder estimates and Harnack inequality to get for any point

yGBl/QﬂQ:

w(y)
Vw(y)| < Cd(y,F)

and using a) we end the proof. L]

REMARK. In this proof we only use the behavior of v, at those points with an inner

tangent ball.

The next theorem is a linear growth result: if we stay away a fixed amount from 0f).,

then u. starts growing linearly.

THEOREM 1.6. There exist (universal) constants ci,ca such that if o € Byy and
us(zg) = A > cie (e < 3) then
d(xo,GQE) S CQ)\ .

From Theorems 1.2 and 1.6 we immediately obtain:

COROLLARY 1.7. In Q¢ = {u > c1e},

C~tdist(z, 09.) < u.(x) < Cdist(z, 09.) . (1.6)
REMARK. Observe that also (1.6) is a renormalization property.

PROOF OF THEOREM 1.6. Put d = d(xg,02:) and suppose A = ad. We want to show
that o > ¢ > 0. Rescale u in By(xg) by setting
1
w(y) = Eus(dy + x0)
Then, Aw =0 and w > 0 in By with w(0) = a. By Harnack inequality, in By /o, ca < w <
ca. Let now 1 be a radial cut-off function, ¢ =0 in By /4, 1 = 1 outside B/, and define

min{w,catp} in By
z =
w in By \ Byz



18 1. AN INTRODUCTORY PROBLEM

Then, since w is a minimizer of the functional

J(v) = /B {\w? +F€(§v)} dy

among all v € w + H}(B1) and since z is an admissible function, we must have

J(w) < J(z)

/ |V 2| —/ IVw|? < ca
B B
d d
FE - d - FE - d 2 O
/B1 <€w) Y /Bl <€z> Y c >

since, in B /4, 2 =10 and gw > ggoz > ccq. The assertion follows easily.

On the other hand,

while

OJ

REMARK. Regularity uses only the “weak equation”, while linear growth needs the

minimization property.

Our next purpose is to estimate the Hausdorff measure of the sets 0Q2... To this aim

we need the strong nondegeneracy expressed in the following theorem.

THEOREM 1.8. There exist two (universal) constants c,c1 such that if xo € B3 and

ue(zg) > cie then

sup us > cp .
Bp(xO)

If we(y) = %ug(:po + py) this is equivalent to saying that if 0 = ¢/p and w.(0) > ¢4,

then

sup we > c .
B1(0)

Once again, this is a consequence of a renormalization result expressed in the following

THEOREM 1.9. Let Q be an open set with 0 € 9Q and w > 0, Lipschitz in Bs(0) and

harmonic in 2 N By. Suppose
i) w(zo) >0>0,
ii) in the region {w > d/c1}, 1 > 1,
w(z) ~ dist(z, 0Q) .
Then

sup w > c .
Bi(zo)

First, a lemma.
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LEMMA 1.10. Under the condition of Theorem 1.9 there exist positive constants c,C,~y
such that

Cd> sup w>(1+7)d.
Bcé(x())

PROOF. Let B,(xo) be the largest ball contained in {w > d/c;}. From ii) in Theo-
rem 1.9, p ~ ¢d. Let yo € 0B,(zo) with w(yo) = §/c1. By Lipschitz continuity, for a
suitable positive h, w < 6/2¢; in By,(yo) and therefore also in a fixed fraction of 0B, (o).

Since w is harmonic in B,(zo),

0 < w(xg) = ][ u
9By (o)

so that there must be a point z1 € 0B,(x¢) with w(z1) > (1 + ~)d. This gives the second

inequality. The first one follows from Lipschitz continuity. [

PROOF OF THEOREM 1.9. We construct a polygonal along which w grows linearly,
starting from xg. From the proof of Lemma 1.10, there exists a point x; such that

|z1 — x| = dist(xg, 02) and
cw(zo) > w(xy) > (14 y)w(wo) > w(xo) +7'|x1 — o] -

Starting now from x; and iterating the application of Lemma 1.10 we construct a sequence

{x;};>1 such that |z; — z;_1| = dist(x;_1,0€,) and

cw(zj-1) = w(z;) = (1 +yw(@j—1) = wzj-1) +|z; — 2] .

Therefore
2) cw(zg) = wlzy) = (1+ ) w(xo)
b) w(w;) —w(zj-1) > |r; — 7)1

and in particular,

J
w(z;) — w(wg) > 7/2 |z — xp—1| > V' |z; — xo]
k=1

From a) we deduce that after a finite number of steps, x; exits from By (zg). Let k such

that z € By(x¢) and xg1 ¢ Bi(zg). Then
\xk—x0|20>0.

In fact, if |xx — z¢| = «, from b) and Lipschitz continuity,
k

Y| — zi_1] <9 Z lz; —xj—1| < w(zk) — w(zo) < colrr — o] = coa
j=1
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0 Q

881

F1GURE 1.4. The polygonal constructed in the proof of Theorem 1.9

so that
. 200
dist(zy, 0 ) < 2|z — 21| < —a .
Y

Thus
1 <|zpy1 — xo| < |xpr1 — x| + |xk — zo| < dist(zg, 0:) +

< (20—? n 1) a
Y
or |z, —xo| = (25F + 1)~L.

From b):

sup w > w(xy) > w(zg) + v |xp — 20| > . O
Bl(ajo)

A first consequence of Theorem 1.8 is the following result, that we call uniform positive

density of Q.. along 0Q.., ¢ > 1.

COROLLARY 1.11. Let zg € Byp. There exist (universal) constants c1,cg,c3 such that

if zo € Byj2, u(xo) = A > c1€ and p > 2, then
By(0) 1 {te > A} > o™

PROOF. Let uc.(y) = SUDR_,y(zg) Ue = CP (Theorem 1.8). Then, d(y,02:) > ci1p, by

Lipschitz continuity (or Corollary 1.7). By Harnack inequality, for ¢ small and co large,

A
ue(z) > % > % >N in Beg,(y) -

Thus, Bz,(y) C By(xo) N {us > A} O
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REMARK. The proof of Theorem 1.9 uses the conclusions of Theorem 1.6 as its hypothe-

ses but we make no use of the variational properties of w in its proof.

We are now in position to estimate the Hausdorff measure at the A scale of the level
sets Q., for A\ > 3ce, where c is a large universal constant. This is a consequence of the
following theorem, where N(FE) denotes a d-neighborhood of the set E.

THEOREM 1.12. If xg € 0Q¢-, A > 3ce, R > 1A, Br = Br(xg), then

\N,\((?QCE) N BR‘ S Cg)\Rn_l

where all the constants are universal.
We split the proof in several lemmas.

LEMMA 1.13. Under the hypotheses of Theorem 1.12:
|N>\(an€) M BR‘ ~ ’NA(ans) N ch N BR|

and
[{ce <u. < 'AYNBg] C [Na(09:) NQee N Br] C [{eg <u. < CA}N Bgl .
ProoF. It follows from Lipschitz continuity and nondegeneracy. [

LEMMA 1.14.
/ |Vue|? < AR

{ce<us<A}NBR

PROOF. By Gauss formula in Q.. N Bg, if w = min{(u. — ce)™, X\ — ce}, we have

/ V(ue — cg)Vw + / wA(ue — ce) = / w(u. — ce)} do

{ce<us<A}NBRr {ce<us<A}NBR 0[QeeNBR]
or

/ IVue|> < AR . O
{ce<us<A}NBR

It remains to relate the Dirichlet integral of u. with the measure of the set {ce < u. <

A} N Bgr. The next lemma completes the proof of Theorem 1.12.

LEMMA 1.15. If xg € 0Q¢e, A > 3ce, R > c1\, Bgr = Br(zg), then

/ Va2 ~ [{es < u. < A} Bpl

{C€<’LL5 <)\}OBR
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B:
] u, > 31/4
ug(xj) = c¢
Ug(Yj) ~A

FIGURE 1.5

PrROOF. From Lipschitz continuity the “<” inequality follows immediately. On the
other hand, let {B;} be a finite overlapping covering of 0€.. by balls of radius ¢; A and

center on 0€)... In every B; there are subballs B} and B]2 of radius r; of order )\, where

3 2
U > Z)\ and wu. < §>\

respectively.
Therefore, if m; =5 u., then [u—m;| > ¢\ at least on one of the two subballs (¢ universal).
J

Thus, by Poincaré inequality,

cA\? < ][ (ue —m;)* < Erjz][ |V ul?
B .

J B
so that
| Ve = el
B
For ¢; large enough, {ce < u. < A} C UB; and the proof is complete. O

We are now ready to pass to the limit as e — 0. Since {u.} is a bounded set in H'(B)
and uniformly locally Lipschitz, there exists a sequence u; = uc, , converging to ug, strongly

in L?(B1), weakly in H'(B;) and uniformly in every compact subset of By, as g — 0.
THEOREM 1.16. ug s a local minimizer of Jy.

Let us first record the main properties of ug, Qo = {ug > 0} and F(ug) = 92¢ N By in
the following

LEMMA 1.17. If Qo = {ug > 0} then

a) wug s locally Lipschitz in By, harmonic in £y and nondegenerate away from 0Qy N

By, that is: supp ;) uo = cp.
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b) Qq is the limit in the Hausdorff distance of Qi = {ur > cey}, i.e., given § > 0, for

c and k large enough,
B2 N C Ns(Q0) N By o
and
Bija N Qo C Ns(Q) N By o
c) |Ns(00) N Bgr| < R for every 6 > 0, in particular
|H,,_1(0Q0) N Bg| < cR™ 1. (1.7)

PROOF. a) It is clear that wug is locally Lipschitz and harmonic in 9. To see it is also
nondegenerate, let xg € {29 N By/o. Then there must exist a sequence {x;}, with 2; — o,
x; € Q; N By3. By nondegeneracy, uj(x;) > ce; implies, for any p > 0 small,

uj(y;) = sup uj>cp  (y; € 9B,u(x))) -
Bp/4(xj)
When |z; — 20| < p/4, B,a(xj) C By(xo) and y; (or a subsequence) converges to some
y* € B,(xg). Since cp < uj(y;) — uo(y*) we conclude that
sup ug > cp .
BP(ZO)

b) Suppose the first inclusion is false. Then there exists a sequence {x} such that, for

some 9,

o dist{zy, Q} >4,

o ) € (2N By

e 1, — xo with dist(zg, Qo) > 9.
Therefore, ug(zg) = 0 while ug(xg) > cex. By nondegeneracy,

ug(yr) = sup up >cp .
Bp(xk)

When |x), — xo| < 6/8, for p = 6/8, By(xr) C Bsa(z0) and (a subsequence of) yx — y* €
Bs(zg). Since ug(yx) — uo(y™) we conclude

0= sup wug>cod
35/2(950)

a contradiction.

If the second inclusion is false, there exists a sequence {zy} C o N By/y such that
dist(zg, 2 N Byjz) > 6. This means that ug(x) < cey for © € Bs/o(wy). Suppose x — x*;
then, when |z — 2*| < 6/8, Bjsjs(z*) C Bssa(wy) and therefore Bj/g(x*) C Byjp \ Lo.
Contradiction.

c) It is a consequence of b) and Theorem 1.12. O
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END OF THE PROOF OF THEOREM 1.16. We want to show that ug is a local minimizer.
Assume not. Then in some ball B, = B,.(x¢) CC By, there exist a > 0 and v € H!(By)

such that v = ug on 9B, and

/B (VP + xposoy} < /B (Va0 + Xgugay ) — -

Fix A > 0 small, and radially interpolate in a linear fashion between uy and uj in the ring
Byin N\ B, ie., define

|z =

ug +

h (uk — UO) in Br—i—h AN BT
Vh,k =

v in B,.

Then, on B, CC By,

Jrink(Vng) = / {IVonl* + Fep (vnr) }

Br—i—h
2
< chr™ ! 4 ") (ug — U0)2 + JT,O(U)

h* JB, . ,~B,

where
Jro(v) = / {\W\? + F(v)}

B,

since
/ Fak (Uh,k) = / FEk (U) < |X{v>0}‘ :
B, By

Thus

kzﬁ Jr—}—h,kz(vh,k) < chr™ ! 4+ Jr’o(v) .
On the other hand,
Jrihe(Vni) = Jr k() > Jep (ug)

and

Jro(uo) < lim Jg, (ug) -

k—oo
This follows from

/\wo|2§n_m V|

k—oo J B,

by the weak convergence of ug to ug, and (by Lemma 1.17 applied to B, instead of By /2
and Theorem 1.12) from

QN By < [ Nu(Q) N By <chr™ P 41N B, (h>>ep) .

Thus
Jro(up) < chr™ ! 4+ Jro() < Jro(v) + chr™ ! — ¢

a contradiction for h < 2%7“1_”. J
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1.3. The free boundary condition

At this point we have constructed a local minimizer ug of the functional Jy; wug is

Lipschitz and nondegenerate inside B; and for any ball Br(z¢) CC B; and any 6 > 0,
’/\/’5(890) N BRl < R ! (1.8)
which in particular means that the n — 1-dimensional Hausdorff measure of 0} is locally
finite.
At a difference with the obstacle problem, the structure of the free boundary 020N By =
F(ugp) is somewhat nicer since cusps cannot occur. This is expressed in the next theorem.
THEOREM 1.18. Let xg € 90 N By, 7 < 1/4. Then, both
|ICQo N By (xg)| ~cr™  and Qo N Bp(xg)| ~ 1" (1.9)
As a consequence, from the isoperimetric inequality and (1.7)

Hn_l(aQO N BT(.I(J)) ~ Tl (110)

PROOF. | N B, (xg)| ~ " follows from Lemma 1.17a. We have to prove that
{ug =0} N By(xg)| > cr™ .

Let v be the harmonic function in B, (zg) with ug = v on dB,(xg). Then, since v > 0 in

B,« (270)2

/ (V0 + Xugop) < / (IV0 + X{um0y) = / Vol + By (20)] -
By (o) By (z0) Br(wo)
Therefore

/ (IVuol? = [Vol?) < [{u = 0} N B, (x0)] -

T

On the other hand, by Poincaré inequality

[l =)= [ Vo-oPz G [ -0y
Br(zo) Br(zo) " J By (w0)

/ (ug —v)? < er?|{ug = 0} N B,.(x0)] .
B

so that

Now,

v(zo) = ][8B ( )u > cr
r{Z0

v(y) > er

by nondegeneracy, and

on B, 3(wg). Since, by Lipschitz continuity,

u(y) < chr
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in Bp(xg), we conclude that
v—ug >cr on Bp(xp)

if h is small enough.
Therefore
|{u:0}ﬂBr(ac0)|2£2/ (uo—v)zz%/ (ug —v)2 >er?. O
" JBr(x0) " J By (wo)

Theorem 1.18 says that both Qg and its complement C{2y have uniform density along
the free boundary F'(ug) and that € is a set of finite perimeter. But the main and most
challenging mathematical question is the regularity of F'(ug).

Before addressing this problem we must ask another basic question: precisely, in which
sense the free boundary conditions are satisfied by ug? Recall that if we knew that F'(ug)

is smooth, Hadamard’s classical formula gives
dug =1, (1.11)

There are several ways to interpret in a weak sense the condition (1.11). One way is
suggested by (1.10) and by the fact that Aug is a nonnegative measure whose total mass in

a ball B, centered on F(uq) is equivalent to r™~!. Precisely, we have:

THEOREM 1.19. Let z¢g € F(ug) and put p = Aug. Then p is a nonnegative measure
supported on F(ug) and, for any r >0

/ dyug dHy,—1 = / dp ~r" 1 (1.12)
aBT(CU()) Br(mO)

PROOF. Since (1.12) expresses a renormalization property, it is enough to check it for

r = 1. The inequality

/ (9,,u8L dH,,_ 1 <c
831(3;0)

follows just from Lipschitz continuity.
To prove the opposite inequality, let w be harmonic in By (zg) with w = ug on dB1(xg).
Then A(w — ug) = —p, w > ug and
w(y) — uo(y) = / G(y,2)dp(z) in By
B (o)
where G is the Green’s function for B;. By nondegeneracy and Lipschitz continuity there

exist a point y € By, (), h small, with ug(y) ~ ch and consequently

ugp >0 in Bep(y) .
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Thus du = 0 on By (y) and

w(y) — uoly) = / Gy, 2) d(z) < /B N (1.13)

B (xO)\Bch (y)

On the other hand, from nondegeneracy, if p > 1,

][ wP > ][ ug >c
By /2(0) By /2 (o)

and, from Harnack’s inequality,

1/p
w(y) > (][ wp> > c
31/2(900)

w(y) —up(y) > c—ch>

so that, if h is small enough

and we conclude from (1.13). O

From Theorem 1.19, we obtain immediately the following representation theorem.

THEOREM 1.20. There exists a Hy,_1-measurable function g on F(ug) N By o such that,
mn Bl/2 J
i)0<ec<g<C

11) AUO = an—l LF(uO)

REMARK. g = d};iil in the Radon-Nycodim sense.

Since, heuristically, du represents 8,,uaL dH,_1 on F(up), we expect g = 1 so that, in

conclusion, the free boundary condition c%uEJL = 1 should be interpreted as
AUO = Hn—l on F(U()) (114)

in the sense of measure. We can better understand the free boundary condition if we replace
F(up) with its reduced part F*(ug), that is the set of points x at which a generalized (interior

to Qo(up)) normal
v(z) = lim Voo (Br)
r=0 [Vxq, (Br)|
exists with |v(z)| = 1. In (1.15), |Vxq,(B;)| denotes the total variation in B, of the measure

(1.15)

Vxaq,-
Thus, let 0 € F*(up) and consider the “blow up” sequence

up(x) = kug (%) in By(0) .

Now let k — +o00. Let us record the main properties of “blow up limits.”
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First of all, since ug is locally Lipschitz continuous, for a subsequence:
Up — Use in CL(R?) (for every a < 1)
Vuyp — Vus weakly star in Ly (R") .

Clearly uoo is nonnegative, harmonic in {us > 0} and globally Lipschitz. Moreover:

LEMMA 1.21.
a) F(ug) — F(uso) locally, in the Hausdorff distance
b) X{uk>0} - X{uoo>0} in Llloc(Rn)

c) Vup — Ve a.e. in R”

PROOF. a) it follows from the uniform convergence of uj to us, and the uniform non-
degeneracy of wuy.
b) uso is nondegenerate along F'(uq). Indeed, if x € F(uso) then there exists a sequence

yr € F(ug) such that yr — x, with

and therefore, also

This implies that
Huoo > 0} N By(z)| > cr™
and therefore that |F(us)| = 0. Using a), b) follows.

c) It is enough to show that |Vug| — |Vus| a.e. in {use = 0}. Now, a.e. points in
{us = 0} are 1-density point. Let S denote the set of such points and xzy be one of these.
We claim that

Uoo () = o(|z — 29|) near zg . (1.16)
Suppose not. Then there exists a sequence z,, — x¢ such that

Uoo(Tm) S Lo
\xm—xo\

By Lipschitz continuity,

Uoo () > €Ty — 0| = crim
in By, (x,), h small. Therefore, for m large enough, and r > r,,, B,(xg) contains the ball
By, (), which is a contradiction to the 1-density of zg.

From (1.16) we get Vuoo(z9) = 0 and, in particular, that, given € > 0;

oo (). <e in Bs_(z0) .
|z — x|



1.3. THE FREE BOUNDARY CONDITION 29

From the uniform convergence of ug to us, we get

k(@) < 2e in Byj_(xq)
|z — x¢ c
provided k is large enough, say k > ko(e,d:). Then, by non degeneracy, u, = 0 in Bs_ s (o)
and consequently, ug = 0 in a neighborhood of zy and S is open. The above argument
shows that up = wugp in any compact subset of S if k is large enough. This completes the

proof of c). O

We now identify uqo

THEOREM 1.22. Let 0 € F*(ug) N Byjp. Then us is a local minimizer in R™ and
Uso(7) = (2,1(0)) "

COROLLARY 1.23.
AUO = Hn—l LF*(uo) . (1.17)

PROOF. One can prove that u, is a local minimizer in R" by using the same technique
of Theorem 1.16.
We may suppose v(0) = e,,. A well known property of sets of finite perimeter says that

the blow up limits of €2y and of CS), are, respectively, the half planes
T, >0 and x, <O0.

Thus us(x) is positive if x,, > 0 and equal to zero if x,, < 0 and in particular on the
hyperplane x,, = 0. Reflecting u, in an odd way with respect to this hyperplane, we get a
function o, harmonic in R™. Since us is globally Lipschitz, it follows (Liouville theorem)
that @i is a linear function and therefore uq.(x) = ax; for some positive a.

We want now to show that a = 1; as a consequence we obtain g = 1 proving Corol-
lary 1.23:

Aug = Hp—1 on F*(ug) . (1.18)

This gives a possible interpretation of the free boundary condition.

Suppose the problem is 1-dimensional. Then

Uoo(7) = az™ .

Make a perturbation inside (—1,1) by taking
——(xp, — b) (Jo] < 1) .
Then, the minimization condition gives, as in section 1,

a2(b+o(b)) —b>0
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from which o = 1.
In the n-dimensional case we make a similar perturbation inside a strip |z,| < 1, |2/| =

|(z1,...,2n-1)] < M with a large M. Let ¢ = ¢(z) be a cut off function such that ¢ =1

for [2'| > M +1,0<4 <1, and ¢ =0 in B}, = {|2'| < M}. Define

o'

w(az):max{l_b

Then, it is not difficult to check that

(n — b (1 = (') + et o(a), o}

| (90 = [9ux) < 03 (b+ o0)| Bissal + 1o |Bivss ~ Bl
a
and
{w > 0} — [{uco > O} < b|Byyyy| + clb] |Byya N Byl -
The minimization condition gives
(a? = 1)(b+ o(b)) + cfb|/M >0

and letting M — oo we get again a = 1. [

There are other ways to interpret the free boundary condition. Let us go back to one
of the key lemmas, Lemma 1.5, where the Lipschitz continuity of the minimizers u. (and
consequently of ug) is proved.

In that lemma, to the nonnegative harmonic function v we required to have bounded
gradient along its zero level set. In fact, we only used that v had some bounded linear
behavior at points of the free boundary where there exists a touching ball from inside
{v > 0}, i.e., a ball B C {v > 0} such that BN {v > 0} = {y}.

This would suggest to take into consideration, as far as the free boundary condition is
concerned, only the points at which there exists a touching ball from one side or the other
of F(u). (We will call these points, regular points.)

This leads naturally towards notions of free boundary condition in a viscosity sense,
that we will formalize in the next section.

We point out that these notions of solutions are considerably weaker than the one in
the measure theoretical sense, described above: H,_i-a.e. points on the free boundary have
a generalized normal, since H,,_1(F'(u) \ F*(u)) = 0, while, in principle, the set of regular
points can be very small.

Clearly, a careful balance is required in constructing the definitions if one looks for both
existence of a solution and regularity of the free boundary. For minimizers in variational

problems this need is less essential, since the minimization process conveys some “stability”
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both to the solution and its free boundary. It is not so, for instance, in evolution free
boundary problems, where the two requirements could strongly compete.

We end this section by briefly examining what happens to the free boundary conditions
u} = 1 in the one phase minimization problem if we adopt this new point of view. Suppose
0 is a regular point of F(ug) with a touching ball B (from either one of the two sides of
F(up)), whose inward normal at 0 is e,,.

Then, from Lemma 11.14 and the remark after it, ug has the linear behavior
ug(r) = az + o(|z|) (1.19)

near zero if B C C€)y, near zero and z,, > 0 if B C Q. In (1.19), 0 < ¢1 < a < ¢9, by
Lipschitz continuity and nondegeneracy.

Look again at the blow up sequence uy = kug(z/k) and at its limit us. From (1.19) we
get

Uso(T) =z (1.20)

for x,, > 0 if B C Qg or for all x if B C C€)y.

From the monotonicity formula (Theorem 12. ) and the uniform density estimate of
CQp (or from Lemma 12.8) we deduce that (1.19) holds for every x € R™, also if B C .

We can now proceed as before to prove that o = 1.

The free boundary condition is therefore to be interpreted in the following sense: near
any regular point zg € F'(ug), ug has the linear behavior

uo(x) = (& — o, v(20)) " + 0|2 — xol)

where v(z() is the normal to OB at xg, inward to .

Let us summarize: in this chapter we have shown the main general properties of a
solution to our introductory free boundary problem.

Optimal regularity (Lipschitz).

Nondegeneracy and linear growth.

Uniform density of 2 and Cf.

Finite Hausdorff measure of the free boundary.

As we will see, this will provide us with the model approach to study more general free

boundary problems.



CHAPTER 2

Viscosity solutions and their asymptotic developments

2.1. The notion of viscosity solution

The notion of viscosity solution was introduced by M. Crandall and P.L. Lions (see
[CL]) in the context of Hamilton-Jacobi equations and in the last two decades has become
the central notion in the theory of fully non linear parabolic and elliptic equations.

Let us see, for instance, how viscosity harmonic functions are defined. The key idea is
to switch the action of the Laplace operator to smooth test functions, using the comparison
principle.

Suppose D is a domain in R and ¢ € C?(D). If u is a classical subharmonic function

in D and ¢ touches u (locally) from above at xg, i.e.
@ > u mnear xg and ¢(xg) = u(xg) (2.1)

then, clearly

Ap(zo) >0 (2.2)
Analogously, if u is a classical superharmonic function in D,
¢ <wu, near xg and p(xg) = u(xg) (2.1

then
Ap(xo) <0 . (2.2)

Notice that conditions (2.2) and (2.2)" do not require derivatives of u, while (2.1) and (2.1)’

make sense with u continuous.

DEFINITION 2.1. A function u € C(D) is a viscosity subharmonic (superharmonic)
function if for every ¢ € C?(D) satisfying (2.1), (resp. (2.1)’), (2.2) (resp. (2.2)") holds; u
is a viscosity harmonic function if it is both a viscosity sub and superharmonic.

In other words u is subharmonic if the only way a smooth function may touch it from
above is by being itself subharmonic.

33
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Definition 2.1 is perfectly consistent with the classical one: w is a viscosity harmonic
function if and only if it is harmonic in the classical sense. Indeed, it is easy to prove that
if u € C(D) is a viscosity harmonic function, then u € C?(D) and Au = 0 in D.

Observe that we could equivalently have defined u subharmonic (superharmonic) in the
viscosity sense by requiring that, if ¢ € C?(2) and Ay < 0 (resp. Ap > 0) in Q, then ¢ —u
cannot have a local minimum (resp. maximum). We leave the proof of the equivalence of
the two definitions as an exercise.

As we see the “leit motiv” of the definition is to prevent that a subsolution (a su-
persolution) touches a solution from below (above). This is exactly what we require to a
viscosity solution of a free boundary problem. First, define a C*-classical sub, super solution

(1 <k < o0) as it follows:

DEFINITION 2.2. A function v € C(D) is called a C*-classical subsolution of our free
boundary problem if
i) v e CHQt ) NCHQ (v)
i) Av >0in QT (v) ={v >0} N D and O~ (v) = {v <0}°N D.
iii) The free boundary F(v) = 0Q%(v) N D is a C* surface, |[Vu™| > 0 on F(v) and

G ,v;) >0 on F(v) (2.3)

v

where v = NuF]

If the inequality in (2.3) is strict, we call v strict subsolution. A C*-classical supersolu-
tion is defined by reversing the inequalities in Definition 2.2, while a C*-classical solution
is both a C*-classical sub and super solution.

Notice that in the one phase minimization problem of Section 3, a subsolution of the
problem satisfies the condition u} > 1.

We now use classical strict sub and super solutions as test functions. From now on we

choose k = 2, to fix the ideas, but other choices may be more convenient.

DEFINITION 2.3. A function u € C'(D) is a viscosity subsolution if for every classical

strict supersolution v, v cannot touch u from above at a free boundary point.

Notice that if v € C?(€2(v)) is a superharmonic function in 2% (v) touching from above u

at a free boundary point xg, i.e., v(x) > u(x) near zy and z¢ € F(v)NF(u), then necessarily

G (v (20), v, (w0)) >0 . (2.4)
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Viscosity supersolutions are defined reversing the inequalities in Definition 2.3 and in-
terchanging sub with super. A viscosity solution is both a viscosity sub and supersolution.
So, no classical strict subsolution (supersolution) can touch a solution from below (above).

It is not difficult to prove that a C2-classical subsolution (supersolution, solution) is also
a viscosity subsolution (supersolution, solution) and that a viscosity solution (sub, super)

of class C2, with its free boundary, in Q" (w) and Q™ (w) is a classical solution (sup, super).

2.2. Asymptotic developments

The definitions of C?-viscosity sub, super and solutions can be restated in terms of
asymptotic linear behavior near a regular point of the free boundary.

Indeed, let u be a C?-viscosity solution and suppose that a classical strict subsolution
v touches u from below at 0, say. Then, the origin is a regular point from the right, i.e.,
there is a ball B touching F'(u) at zero, inside Q7 (w). By Lemma 11.14, if v denotes the
unit normal to B inward to Q% (u), we have, near zero, in B

ut(z) = alz,v)" + o|z)

with o« > 0 and in CB

with 8 > 0, finite. The free boundary condition translates into a relation between a and (3;

which is the correct one? Since v is a classical strict subsolution, we have
G(v, (0),v,(0)) > 0.
On the other hand, Hopf maximum principle gives
v} (0) < a and v, (0) > 3
so that, from the ellipticity of G:
0 < G(v)(0),0,(0)) < G(a, B) -

We reach a contradiction if G(«a,3) < 0, which is, therefore, the correct inequality.
Analogously, if v is a supersolution touching u from above at zero, there exists a ball B
touching F'(u) at zero, inside Q7 (u) = {u < 0}°. Then, if v denotes the unit normal to 0B

inward to Q7 (u) we have near zero, in B

u”(z) = Bz, v)” + o|z)
with g > 0, while in CB

u'(z) = alz,v)" + o|z)
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with o« > 0.
This time we have
0> G(v;(0),v, (0) > G(a, B) ,
a contradiction if G(«, 3) > 0.

Substantially, we require that u satisfies a supersolution condition at regular points from
the right (touching ball inside Q7 (w)) and a subsolution condition at regular points from
the left (touching ball inside Q™ (u)).

The strict condition G( &, 3) > 0 compared to G(a, 3) = 0 indicates that & > « and/or
B3 < 3 and therefore a supersolution is “more concave” than a solution at a common point
of the free boundary. This clearly prevents a supersolution from touching a solution from
above and it is perfectly analogous to the fact that a superharmonic function is more concave
than a harmonic at a common point of their graphs.

We summarize the conclusions by giving an alternative definition:

DEFINITION 2.4. A continuous function u is a viscosity solution in D if
i) it is harmonic in Q7 (u) and Q™ (u)
ii) Along F'(u), u satisfies the free boundary condition in the following sense:
a) If at z( there is a ball B C Q% (u), BN Q" (u) = {zp} and near z,
in B
ut(x) > alr — 29, )T + oz — 20]) | (a > 0) (2.5)
in CB
u”(x) < Blx —xo,v)” +ollz —xof),  (620) (2.6)
with equality along every nontangential domain in both cases, then
G(a, 8) <0 (2.7)
b) If at z¢ there is a ball B C Q7 (u), BN Q™ (u) = {zp} and near x,
in B
u”(z) = Bz —zo,v)” +o(lz —zl) ,  (8>0) (2.8)
in CB
ut (1) < alr — x0,v)T +o(jx — x0]) , (> 0) (2.9)
with equality along every nontangential domain in both cases, then

Gla,3) > 0. (2.10)
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We leave as an exercise to prove that Definitions 2.3 and 2.4 are equivalent.
(Hint: if (2.5) and (2.6) hold and G(a, ) > 0, construct a strict subsolution touching
from below at xg.)

The Definition 2.4 is based on the asymptotic behavior of u. We get an equivalent
definition involving the linear behavior of classical test functions touching the free boundary

at regular points (see Definition 2.3) replacing condition ii) by the following

ii)* a) If xp has a touching ball B inside Q" (u) and in B, near xg
ut(z) > alr — 20, )" + o]z — 20]) (> 0) (2.11)

then, in CB, near x
u” (x) > Blx — x0,v)” + o(]x — x0]) (8>0) (2.12)

for any 3 such that
G(a,3)>0.

b) If x¢ has a touching ball B inside Q™ (u) and in B, near xg

u”(z) > Ble —xo,v)" +o(|lz —xo)  (B>0) (2.13)
then, in CB, near g
ut(z) > alr —zo, )T +o(lz —20]) (@>0) (2.14)
for any @ such that
G(a,B3)<0. (2.15)

*

Let us check that conditions ii) and ii)* are equivalent. Assume ii b) holds. Then, if

(2.13) holds we have 3 > . If @ is such that G(a, 3) < 0, since G(«, 3) > G(a, 8) > 0, it
must be o > @&. Since equality holds in (2.9) along nontangential domains, (2.14) follows.
Assume now ii b)*. Let (2.8) and (2.9) hold; we want to show that G(«a, 3) > 0. If not,
G(a, ) < 0 and, for a small € > 0, G(a + 2¢,3) < 0. Then, (2.9) gives
ut(x) < (a+e){x — zo,v)" + o]z — 0|)
while (2.13) and (2.14) with @ = o+ 2¢ and 3 = (3 give

ut(x) > (a+2e)(x — z, ) + o]z — ¢|) .

Contradiction.

Analogously one can check that ii a) and ii a)* are equivalent.
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FIGURE 2.1

REMARK. As we have seen, viscosity solutions can be characterized in different ways.
The definition is clearly closed under uniform limits.

The disadvantage is that it could produce undesirable solutions, like
u(z) = arof + gz
with any a1, as such that
G(a1,0) <0 , G(a,0)<0.

Extra care will be necessary to construct solutions with the desired geometric measure

theoretic properties.

2.3. Comparison principles

Strictly speaking, the definition of viscosity subsolution (supersolution) involves a con-
dition at those points of the free boundary that are regular from the left (right). These
conditions turn out to be not enough for comparison purposes.

Suppose we intend to prove that a viscosity subsolution v cannot touch from below a
solution u at a point xy € F'(u) N F(v). Then it is natural to require the existence at xg of
a touching ball from the right (not from the left) and a proper asymptotic behavior for v
near zg that could force a contradiction. Therefore it is useful to introduce another kind of
“subsolution” with these characteristics. It turns out that a natural way to construct such
type of functions is to start from a subsolution or a solution (in the viscosity sense) and
build parallel surfaces. Here is the simplest example.

Let u be a solution in D and take

ve(x) = sup u t>0 (2.16)
Bt(fL‘)
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Let us examine the properties of v;. Since vy is the supremum of a family of translations
of u, it is subharmonic both in Q% (v;) and Q7 (v;). Let now xg € F(v;). This means that

Bi(xg) is touching F'(u) from 7 (u) at a point yy (see figure). Therefore
a) xg is regular from the right since B;(yo) C Q7 (v) and By(yg) touches F(v;) at xp.
b) o is a regular point from the left for F'(u), thus, near yyo,
u () = B{x —yo,v)” + o(|z — xo]) (8>0)
in By(xp), while

ut (@) = afz —yo,v)" +o(lr —z|) (=0

in CBy(x¢), with G(a, 3) > 0.
Hence, since v(x) > u(x + yo — xo), near xg,
v () > alx — x0,v) T + o(jx — wg))

in B¢(yo), while

vy () < Bz —x0,v)” +o(|z — o))
in CBy(yo).
Let us summarize the properties of v;:
i) Av >0 both in Q1 (v) and Q7 (v)
ii) whenever zg € F(v) has a touching ball B C Q" (v), then near zg, in B
v (x) > alr — xg, )" + o(|x — 0|) (2.17)
and in CB
v (z) < B{x — z0,v)” + 0|z — x0|) (2.18)
with &, 3 > 0, and

G(a,5) >0.

We call a function v with the properties i), ii) an R-subsolution. We can now prove the

following comparison result:

LEMMA 2.1. Let u,v be a (viscosity) solution and an R-subsolution in D, respectively.
Then if u > v, u > v in QT (v) and xg € F(u) N F(v), xo cannot be a reqular point from the
right.

PROOF. If zg is a regular point from the right we have, near xg, in a touching ball

B C Q7 (v), nontangentially,

ut(z) = alr — 20, v)" +o(|lx —20]) , vV(x) > alr —z0,v)” + oz — x0|)
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and in CB, nontangentially,

u” () = Bz — w0, v)” +o(lr —xol) , v (x) > Bz — z0, )" + 0|z — x])
with
G(a,B) <0 and G(a,B8)>0. (2.19)

Since u > v, we have & > @ and 8 < 3. The strict monotonicity of G and (2.19) imply
a = a, = f3. But u —v is a positive superharmonic function in Q*(v). By Hopf principle,
since xq is a regular point, we have (u — v)(x) > |z — zg| with € > 0, radially into Q7 (v)

along v from xy. A contradiction. O

A more refined version, of a “continuous deformation” nature, is the following theorem,

that we will use later.

THEOREM 2.2. Let vy, 0 <t < 1, be a family of R-subsolutions, continuous in 0 x [0, 1].

Let u be a solution continuous in Q. Assume that:

1) vo <uin )

v <u on 0 and vy < u in QF(v) NI for 0 <t <1

11

iii) every point o € F(vy) is a regular point from the right

1v

)

)

) the family Q (v;) is continuous, that is, for every e > 0,
O (vyy) CNA(Q (vr,))

whenever [ty — ta] < d(e).
Then

v <u in §

for every t € [0,1].

PROOF. Let E = {t € [0,1] : v; < u in Q}. E is obviously closed. Let us show that
it is open. If vy, < u, from ii) and the strong maximum principle it follows that v, < u
in Q7 (vg,). Since every point of F(vy,) is regular from the right, Lemma 2.1 and ii) imply

that Q7 (vy,) is compactly contained in QF(w), up to 9.

From assumption iv), the openness of E follows. ]

REMARK. Comparisons of this nature are necessary when a maximum principle (or
uniqueness) is not available. For instance, the classical reflection method of Alexandrov,

Serrin and Gidas, Ni, Nirenberg is of this nature.
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The family v; constructed in (2.16) is an admissible family for the comparison in the
previous theorem. It can be used for a comparison principle that says: if ui,us are solu-
tions such that u; < uo and near OS2, SUpPp, (z) U1 < us(x), then also in the interior of €2,
SUPp, (z) U1 < u2(z), keeping in particular F'(ug) t-away from F'(u).

We shall see the usefulness of this kind of principle in proving strong regularity results

for the free boundary.



CHAPTER 3

The regularity of the free boundary

3.1. Weak results

We now go back to our general free boundary problem of section 1.1 and examine the
regularity of the free boundary.

Philosophically speaking, we can divide the free boundary smoothness results in two
categories: “measure-theoretic or weak” and “higher order or strong” results.

The measure-theoretic regularity of the free boundary amounts to say that F'(u) has

finite locally (n — 1)-Hausdorff measure and, for each = € F(u),
H" Y F(u) N B, (2)) ~ "' ~ H" Y (F*(u) N B,(x))
where F*(u) denotes the reduced part of F(u). In particular
H”_lLF(u) , H”_lLF*(u) and Au*

are all positive measures, with bounded (from above and below) density with respect to
each other.

As we have seen in sections 1.2 and 1.3 for the one phase singular perturbation problem,
these weak regularity properties of the free boundary follow if one can prove two essential

features of the solution:

a) w is locally Lipschitz across the free boundary

b) u*t has linear growth and is non degenerated away from F(u), i.e.,
ut(z) > cd(x, F(u) , r € Q7 (u)

and

sup ut > Cr zo € F(u) .
Br (o)

Let’s see what are the minimal assumptions to achieve this kind of results. A parallel
with viscosity solutions of elliptic equations Lv = Tr(A(x)D?v) = 0 is in order.

A linear growth and the non degeneracy for u™ correspond to having a Harnack inequal-
ity (controlled growth) for v and this is true, for instance, if £ is strictly elliptic (A(x) > AI)
and A is bounded measurable.

43



44 3. THE REGULARITY OF THE FREE BOUNDARY

For our free boundary problem, the parallel requirement is that 0 < ¢ < u} < C in
the viscosity sense. More precisely if at xg € F(u) there is a touching ball B C Q7 (u), no

matter how small, then v has a linear behavior
u(x) = alr — x9, )T — Bl — 20,v)” + o|r — z0|)
with, for instance
o0 =G(p) .
Strict ellipticity corresponds to the strict monotonicity of G, with G(0) > 0. Ellipticity
from above (u;} < C) is then assured by the monotonicity formula (see Lemma 2.7 part 3).
In chapter 6 we shall construct solutions of our free boundary problem, precisely satis-

fying the properties a), b). Therefore their free boundaries will enjoy the above measure-

theoretic regularity.

3.2. Weak results for one phase problems

The heuristic discussion in the previous section leads naturally to the following list of
weak results for one phase problems. Suppose u is a nonnegative continuous function in
By, harmonic in its positivity set Q" (u). As usual let F(u) = 9Q7 (u) N By be the free
boundary. At every xg € F(u) at which there is a touching ball B C Q1 (u), we know u has

a linear non tangential behavior
u(z) = alxr — 20, ) + o(Jx — x0]) (3.1)
with a > 0, x € B.

LEMMA 3.1. If a < C then u is Lipschitz in By s.

PROOF. (See the beginning of section 12.1.) O

So, a uniform bound from above for u;}" in the viscosity sense gives Lipschitz continuity.

The next result we would like to have is the equivalent of Lemma 1.5, that is:
PSEUDOLEMMA 3.2. If a > ¢ > 0 then in By
u(x) > cd(z, F(u)) .
Therefore, a uniform bound from below for u would give us linear growth.
This is not true in general. The function (log |x|)™ in two dimensions provides a coun-

terexample. We will in fact construct solutions with this property in chapter 6 using Perron’s

method.
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LEmMA 3.3. If a < C and we assume the conclusions of pseudolemma 3.2 then, for
every ro € F(u) N By,

1. sup u > cp (3.2)
Bp(xo)

2. QT (u) N B,y(xo)| > cp™ (3.3)

PROOF. First, one proves that if 2o € By, and d = d(xo, F'(u)), there exists v > 0 such
that
sup > (1+7)u(wo) -
Ba(zo)
This follows as in Lemma 1.10.
Then (3.2) follows constructing a polygonal along which u grows linearly, exactly as in

the proof of Theorem 1.9. The density estimate (3.3) follows like in Corollary 1.11. O

Thus, from Lipschitz continuity and linear growth, we deduce nondegeneracy and uni-
form density of Q1 (u) along F(u). Notice that the conclusions of the above lemmas hold
in every connected component of QT (u).

Under the hypothesis of Lemma 3.3 we deduce now the measure theoretic properties of
F(u). We recall that Ns(F') denotes a d-neighborhood of F.

THEOREM 3.4. Let u be Lipschitz and non degenerate in By. Let xo € F(u) N By and
0<e<R< % Then, the following quantities are comparable with R™1:

a) 1]{0 <u < e} N Bg|

b) LIN(F(u) N Byl

c) Ne" 1, where N is the number of any family of balls of radius €, with finite over-
lapping, covering F(u) N BR.

d) H" 1 (F(u) N Br). In particular, Q" (u) is a set of finite perimeter.

PROOF. (Compare with Theorem 1.12 and Lemmas 1.13-1.14.) The key points are to
prove that, if xg € F(u) N By /o, then

/ |Vu|* ~ eR"! (3.4)
{0<u<e}NBg(xo)

/ IVl ~ e (3.5)
Bc(z0)

and
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The inequalities in (3.5) follow from Lipschitz continuity and linear growth as in Lemma 1.14.

To prove (3.4), set ue s = (min(u,e) —s)™, 0 < s < &, ue = ueo. Then (Br = Br(zo))

O:/ u&SAu:/ ug,su,jdo—/ ’VUP
Bgr OBgr Brn{s<u<e}

Therefore, letting s — 0, since u is Lipschitz and u. s < ¢,

/ IVu|?> < ceR" 1.
Brn{0<u<e}

To get the opposite inequality, let g be the Green’s function for Br and
1

(UR)”/B g(z,y)dy .

The function w satisfies Aw = (¢ R)™"xB, in Br, wpp, = 0. Then

w(z) = —

w < c¢(ocR)*™™ in Bgr\ Byg
and
—w, ~RY™™ on 0Bpg .

We write
1 1

1
—/ uugAw:—/ uuewyda+—/ wA(uug) .
€ JBg € JoBg € JBg

Now, by the linear growth of wu:

1
——/ uuswy, do > coR
€ JoBg
and, for o small,
1 c
’—/ uugAw‘S][ U+SEUR<—OR~
€ JBg Bsr 2

Hence
1 1

c(aR)z_n—/ Vu|? > —/ wA (uug) > oy
€ JBrn{o<u<e} € JBgr 2

which is the desired inequality.
With (3.4) and (3.5) at hand, consider a finite overlapping family of balls B.(z;) for

F(u) N Bg. Then
AR S NG
/UBE(»”CJ‘) Z e(z;)

~ > IBe(w))] ~ Ne™ ~ ) | Boc ()]

> |N.(F(uw)NBg| > C Vul? .
UBE(IJ)

therefore the quantities b) and c¢) are comparable.

Moreover, since u is Lipschitz and non degenerate we have

{0 <u<e}NBg|~ |N(F(u) N Bg|
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since, for proper choices of ¢ we can make
Nee(F(u))NBr C{0<u<e}NBg

or vice versa.

It follows that the quantities a), b) and c¢) are all comparable to R"!.

Finally, let { By, (z;)}, ; € F'(u), a finite covering of F'(u)N Bg by balls of radius r; <,
that approximates H" !(F(u) N Bgr). Let 7 < minr; and {Br(xé‘:)} a finite overlapping

covering for F'(u) N B, (z;). Then, on one hand

> 0B, (af)] < cR*

k.j
by the argument above with € = r. On the other hand

> 0B (af)] = et

k
again by the above discussion with R = r;. This implies
H" Y F(u) N By (z5)) > cr?_l > cr™1

and the last equivalence follows easily. [

An immediate corollary is the representation theorem (see Theorems 1.19-1.20)

. n—1
Ay = gHLF(u)

on By with g H™ l.measurable on F(u)N Byjpand 0 < ¢ < g < C. Clearly g = ) in the

sense Of measures:
— Vu-V<,0:/ ogdH™ 1 Vo € C5°(By2) -
B2 F(u)NBy 2

By combining Lipschitz continuity and non degeneracy with the monotonicity formula
it is possible to prove other useful properties of topological nature. For instance, if along the
boundary of a connected component A of Q% (u) the zero set has uniform positive density,
then A is a non tangentially accessible domain, an important property of A that allows
one to use all the Harnack principles in chapter 1, part 3. We will discuss this result in

section 12.3.

3.3. Strong results

“Strong” regularity results correspond to higher order regularity for solutions of elliptic
equations. Asking more than just uniform ellipticity (for instance, coefficients in C'*) will
produce more regular solutions (in C%%). Analogously, requiring more than just bounded-

ness and strict positivity of u} will imply higher order regularity of F'(u).
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In order to clarify the natural starting requirements to u}, let us try to (heuristically,
but see sections 6.7-6.9) classify global solutions, somewhat like in minimal surface theory.
We know that F*(u) is, in particular a set of finite perimeter and therefore almost every
point, with respect to H" | F*(u), is a differentiability point. That is, if x is one of those

points, at x is well defined a normal vector v = v(x) such that, if we set
O ={y:r(y—=) € 9 (u)}
PT =P (z,v)={y: (y —z,v) > 0}
m=m(z,v) ={y: (y—=zv) =0}
and let B = B(x) a (small) ball centered at x, then Per(£2;" N B) converges in the sense of
vector measures to Per(P™ N B), that is, for any continuous vector field :

/ (B, vy dPer =2 [ (Z,v)dH" " .
o0 NB

s

In particular, 9Q; N B converges uniformly to 7 N B and " N B to P™ N B.
In fact, suppose not; then there exists € > 0 such that for any r; there is z; € 3(2;'; with
d(zj,m) > €. Therefore Per(@Qﬂ; N Bejo(x;)) > ce™ 1, a contradiction for r; small.

It follows that, for any sequence {r;}, there is a subsequence {rj, } such that

uk(y) = —u(r;,y)

Jk
converges uniformaly in any compact subset of R™ (by the Lipschitz continuity of ). The

limit ue, will also be a Lipschitz function, harmonic and positive in P*(x,v) and harmonic

and negative in P~ (z,r). Therefore it must be a two planes solution,

Uso(y) = oy —z,v)" = Bly —z,v)”

for some o > 0 (by the nondegeneracy of u™) and 3 > 0, that, in principle could depend

on the particular subsequence. Furthermore it must be

a=G(f)

so that u is a global solution of our free boundary problem.

But now, the monotonicity formula (Lemma 12.5) implies that
a-f=J (3.6)

with J independent on the subsequence. Indeed, suppose that o, 31 and as, (B2 correspond
to two different converging subsequences {u}} and {uz}. If oy > ag, the free boundary
condition implies 31 > (2, contradicting (3.6).

Thus, all candidates o and 8 must be the same and the limit u, is unique.
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This means that the sequence u; has a nice asymptotic configuration and that the
original F'(u) is flat around x. A flatness hypothesis is thus a natural starting point to get

higher order results. Like in minimal surface theory we split the main result into two steps:

1. To prove that in a neighborhood of a “flat” point the free boundary is a Lipschitz
graph.
2. Lipschitz free boundaries are C'17,

We start with step 2, in the next chapter.



CHAPTER 4

Lipschitz free boundaries are C'!

4.1. The main theorem. Heuristic considerations and strategy

We start now to study the regularity of the free boundary in the following problem
(f.b.p. in the sequel): to find a function u such that, in the cylinder Cy = B{(0) x (—1,1),
B} (0) c R 1

Au=0 in Q" (u)={u>0} and Q (u) = {u<0}°
ul = G(u,) on F(u)=00"(u) .

v

(4.1)

We assume that F'(u) is given by the graph of a Lipschitz function z,, = f(2'), 2’ € B{(0),
with Lipschitz constant L and f(0) = 0. We want to prove that in Bi/2(0), fisaCWY

function. Precisely, the main result is the following ([C1]):

THEOREM 4.1. Let u be a viscosity solution of f.b.p. in Cy. Suppose 0 € F(u) and

) QN (u) = {(2/,2y) : xy > f(2))} where f is a Lipschitz function with Lipschitz
constant L.

ii) G is continuous, strictly increasing and there exists N > 1 such that
s NVG(s)

1s decreasing.

Then, in Bi/Q(O), f is a OV function, for some 0 < v < 1, u € CY(QF(u)) and (4.1)

holds in a classical sense.

Let us discuss some of the ideas that lead to the proof, showing first a connection with
the theory of minimal surfaces and in particular with the following result by DeGiorgi: Let
S be minimal surface in By. Assume S is the graph of a Lipschitz function x, = w(x'),
with Lipschitz constant X\. Then S is CH% in By g, for some 0 < a < 1.

The proof of DeGiorgi’s theorem is the following. Since

Diw
((1 + \Vw\2)1/2>

51




52 4. LIPSCHITZ FREE BOUNDARIES ARE C%7

T(0,e) et T

FIGURE 4.1

any directional derivative v = D,w satisfies the equation
( 52'ij?) DZ'”LUDijjU 0
i =
(

1+ |Vw?)/2 (14 |Vw|?)3/2
that is
Di(aizDjv) = 0
where
0 — (1 + \VwP)(Sw — DywDjw
Y (1 + |Vwl|?)3/2 ’
a measurable, uniformly elliptic matrix.

Applying the DeGiorgi’s Holder continuity theorem, it follows that v is Holder continu-
ous, achieving in this way the result. Let us stress the main lemma in the DeGiorgi proof.
Let v be a solution of D;(a;;Djv) = 0in By and |[v] < 1. If [{v < 0}| > 3|B;| thenv < XA < 1
in Byp. The possibility to rescale and iterate this lemma gives a geometric decay of the
Lipschitz constant in dyadic balls and therefore the Holder continuity of v.

Let us rephrase the previous argument in more geometric terms. First of all, the Lips-
chitz continuity of w can be expressed in the following way. Let I'(#,e,) be the cone with
axis e, and opening 6 given by

A = cotan 6

For any vector 7, denote by S; the surface obtained translating S by 7. Then S is Lipschitz
with constant A if for any 7 € T'(0,e,), “S; stays above S”. In other words, if |7| = 1,
(T,en) = 0 and v < 1/A, the family of surfaces Sy, y4r), t > 0, stays above S. If we choose
~v = 1/X it may happen that St(ent~r) Decomes tangent to S at some point.

In principle, the comparison theorem precludes this to happen but it does not give any
quantitative information. It is Harnack’s inequality, applied to the first derivatives of w,
that supplies what is needed. In this context Harnack’s inequality says: if the distance
between the surfaces S and Sy, 1,r) is of order ¢ at one point, then it is of order ¢ in a

neighborhood of that point. Now, depending on the direction of the normal to the surface,
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if v = 1/, one of the two surfaces Sy, +yr) separates from S by a distance of order ¢,
in at least half of the points. If we suppose that the “good” surface is Sy, ++r), then, by
Harnack’s inequality, Sy(c,4+~7) stays ct-away from S in By /. But this is exactly what the
DeGiorgi’s lemma says. Indeed, the tangential direction e,, + %T is not anymore a critical
direction in By /y, since it is now possible to translate S along the direction (1 —-c)e, + %7’
staying above S.

Thus, if we adjust our system of coordinates, the Lipschitz norm of w can be improved
in By, by a factor (1 —c’). It is another instance of the fact that “ellipticity has the virtue
of propagating instantaneously a perturbation all over the domain of definition of S.”

Going back to the proof of Theorem 4.1, the idea is to use similar considerations and
arguments to improve geometrically the Lipschitz constant of the free boundary in dyadic
cylinders

Cor = By x (—27%,27F) .

We know from section 11.4 that if in the cylinder C; the free boundary is given by a
Lipschitz graph x,, = f(2'), then, in a smaller cylinder, the solution u is increasing along
every T in a cone I'(f,e,). The opening 6 of that cone detects how flat are the level sets
of u and therefore, improving the Lipschitz constant of F'(u) amounts to an increase in the
opening . Our starting hypothesis (see Corollary 11.11) will be the existence of the cone
of monotonicity I'(#,e,) and we shall show that in correspondence to the dyadic cylinders
C5—« there exists a sequence of monotonicity cones I'(0, vx) with the following properties:

1) T(Oks1,ve41) CT(Ok, k) (6o =0)
i) if 0, = § — O, then
o < cb” c=c(n,0), b=0bn0), 0<b<1

V1 — V| < 0 — Okt -
This clearly implies v, — v and that F(u) is C™7 at 0, with normal v. In fact, if |2/| ~ 27F,
we have
f(z") — 2" v] < cdgla] (4.2)
and the speed of §; gives for the modulus of continuity of V f,

w(r)= sup |Vf(z') = V) <er?
|z’ —y'|<r
with v = —log, b.
The same procedure can be applied in a neighborhood of any free-boundary point z.

Since the bounds in ii) are uniform w.r.t. zg € F(u) N By, (say), then we conclude that
F(u) N Byp is a C1 graph.
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FIGURE 4.2. |f(2') — 2’ - v| < cbg|z]

Here is the main strategy of the proof:

Step 1: To improve the Lipschitz constant away from the free boundary, say, in a
neighborhood of g = (3ey).

Step 2: To carry the information in Step 1 to the free boundary, in By /5, giving up
a little bit of the interior improvement.

Step 3: To rescale and repeat Steps 1 and 2, observing the invariance of the problem

under elliptic dilations.

4.2. Interior improvement of the Lipschitz constant

Since we are dealing in both sides of the free boundary with two positive harmonic
functions, i.e., vt and u~, and we are assuming that F'(u) is a Lipschitz graph w.r.t. the
direction x,, we can apply Corollary 11.11, to conclude that, in a neighborhood of the free
boundary, D,;u > 0 along every 7 € I'(0, e,,) with 6 < % arcotan L or 0 > T — % artan L =
o.

We call I'(0, e,,) the monotonicity cone. The existence of such a cone means that near
F(u), all the level sets of u are uniformly Lipschitz surfaces w.r.t. the same direction e,,.

We may suppose that this happens in the whole cylinder Cy, by using, if necessary, the
invariance by elliptic dilations of the problem.

We will call §g = § — 0 the defect angle because it measures how far are the level sets

of u from being flat. Notice that, if v = Vu/|Vu| and a(o, 7) denotes the angle between

the vectors o, 7, we have a(v,e,) < dy so that

\Vu| > D, u=|Vul - cosa(v,e,) > |Vu|cos dy
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i.e., D.,u and |Vu| are equivalent.

To improve the Lipschitz constant means to increase the opening 6 of the cone of mono-
tonicity. This amounts to show that there exists a monotonicity cone I'(61,v1) containing
(0, e,), with 5o < Ady, A = A(n, ) < 1.

In this section we show how it is possible to get this improvement in a neighborhood
of an interior point, say xg = %en. The key point is to observe that the information
to start the procedure described in 4.1 is stored in the direction of Vu(zg). Indeed, let
v =v(xg) = Vu(zg)/|Vu(zo)| and H(v) be the hyperplane orthogonal to v. If o € I'(0, e,,),
lo| = 1, then Dyu(zp) > 0 and, if o € 9I'(0, e,,), in principle, D,u(xp) may be zero. This
happens if the cone is tangent to H(v) along a generatrix in the o direction. However, as
soon as dist(H(v),o) > 0 then D,u(zg) > 0, leaving room to an enlargement of the cone
of monotonicity.

Precisely, we have:

Dyu(zg)  (o,v)

= > = dist(o, H 4.
Deyulao) ~ fen,u) = () T A (43)
From Harnack’s inequality, in C/g(z0) = Bi/g(xo) X (—%, 1),
Dyu > co{o,v) D, u (4.4)

that is, if 7(o) is the unit vector in the direction o — co(o, v)e,,
DT(U)U Z 0.

We show that the family {r(c);0 € I'(8,e,)} contains a new cone of directions I'(6;,v1),
strictly larger than I'(6,e,). In fact, formula (4.4) implies that the gain in the opening is
measured by the quantity £(o) = co(o,v), |[o| =1, 0 € I'(6, e,).

This implies that for a small g > 0, for any vector ¢ € 9I'(0,e,) there exist a ball
B, (o) where

plo) = lolulo, v) = |o|usin(E(0))

E(0) = g —a(o,v)

such that the directional derivative of u is nonnegative along any vector in B, (o).
The envelope of the balls B, (o) contains a cone I'(f1, 1) that contains I'(6, e,,) and with
an opening 6, > 6.

This is precisely stated and proved in the following theorem.

THEOREM 4.2. (Intermediate cone) Let 0 < 0y < 6 < § and, for a unit vector v, let

H(v) be the hyperplane perpendicular to v. Assume that the cone I'(0,e) C H(v) and for
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any o € T'(,e) put

E(o) = g —afo,v)
Moreover, for a small positive p put
p(o) = lolusin(E(0)) ,  Su= |J Byox(o).
ocl'(6,e)

and

PROOF. Put § = § — 0 and let 01,02 (unit vectors) be the two generatrices of I'(f, e)

belonging to span{v, e}. Suppose that o is the nearest to v of the two. Thus:

a(oy,v) < g —20 |, «afog,v) < g )

These two directions give the maximum and the minimum gain in the opening of the cone

['(0,e), respectively. By replacing, if necessary, v by v such that v € span{e,v}, || =1,

(U,09) = 0 we reduce ourselves to the equality case in (4.5). This case, indeed, is the

worst possible since (o, 7) < (o,v) for any o € I'(#, €), diminishing the opening gain in each

direction. Assume therefore that equality holds in (4.5). In this case (o2,v) = 0 (no gain),

while

(01,v) =2sindsinf > 2sinfpsind  (maximum gain)

so that
p(o1) > 2pusin by sin §
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FIGURE 4.4

FIGURE 4.5. The worst situation: (og,v) = 0.

and in the plane span{v, e} we have an increase in angle estimated from below by C (1, 6p)0.
Consider now a generatrix o € 9I'(0,¢), |o| = 1 and let w be the solid angle between
the planes span{e,c} and span{e,r}. Then from the cosine law of spherical trigonometry

we have

(o,v) = cosa(e,v) - cosf + sina(e,v)sin @ - cosw =

= sind cos (1 + cosw) > sin (1 + cosw)sin g .

Therefore, if w < 10071' (say), we can say that the increase in angle is estimated from below

by Cl(ﬂaeo)
Put & = yde! + e, where e! € spanf{e, v}, |e!| =1, (e!,e) =0, v < $C1 (1, 6p), and let

S,={0:0=0+ plo)at, o €ar(h,e)}

1

where |o!| = 1, (o!,0) = 0, 0! € span{e,o}. Then, if v = (i, 0y) is small enough, for

every o € 05,

a(c,e)>0+v5=0.
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Thus S}, C S, and contains the cone I'( 6, €) with

g—a‘gu—y)(g—e). O

O]

REMARK 4.3. Theorem 4.2 holds also if we fix any 6, % < ¢’ < 6 and put, for every
occT(0,e),
T

E(o) = B —afo,v) — (0 -0

p(o) = |o|sin (6 — 0" + pE(o))

SM - U Bp(a) (O‘)
oel'(¢’,e)

The constant A still depends only on p and 6.

This remark allows a better control of the opening gain and it will be useful in the
sequel.

Applying Theorem 4.2 to our situation we get:
LEMMA 4.4 (Interior gain). There exists a cone I'(6,,71) D I'(0,e,) with
T )
where A = (0o, n) < 1, such that, in Cyg(x0)
Dyu(x) >0
for every o € T'(01,11).

The question is now how to propagate the information contained in Lemma 4.4 to the

free boundary.

4.3. A Harnack principle. Improved interior gain

The monotonicity properties of u can be reformulated in a more flexible form, by intro-
ducing a suitable function that measures the cone opening. Indeed, let 7 € F(g, en) be a
vector with small norm and put

e = |7|sin 7

Then, the monotonicity of v along the directions of I'(6, e,) amounts to ask that

ve(x) = sup u(y — 7) < u(x)
Be(z)

for x € C1_. and every (small) 7 € F(g, en)

In terms of v. one can refine Lemma 4.4, thanks to the following Harnack’s type lemma.
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X

FIGURE 4.6

LEMMA 4.5 (Harnack principle). Let 0 < uy < ug be harmonic functions in B = Br(0).
Let e < R/8 and assume that on Br_.:

ve(z) = sup u1(y) < us(x) (4.6)
B:(z)
and further
v(0) < (1 —be)uz(0)  (b>0) (4.7)

Then, for some ¢ = ¢(R), p = (R, n), we have in B%R
V(a+pub)e (¥) < ug(x) — cbeug(0) (4.8)

PROOF. For |o| < 1
w(x) = ug(x) —ur(x + €0)
is harmonic and positive (by (4.6)) in Br_.. By Harnack inequality and (4.6), in B 3R
w(x) > cw(0) > cbeusg(0) .
Shauder estimates and Harnack inequality again give

Vs (e)| < Fu(0) < Fusl0)

in Bsp. It follows that
4

ug(x) —ur(x + (1 + pb)eo) = w(x) + ui(x + o) —ui(x + (1 4 pb)eo)
cpb

Z CbSUQ(O) — 78U2(0)

> cbeug(0)

if = p(R,n) is chosen small. O
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We apply Lemma 4.5 in By /6(z0) to
ui(z) =u(z —7) and wus(z) = u(z) .

The only non trivial hypothesis to check is (4.7).
Let y € B-(x) and notice that if 7 € F(g, en) and

T=7—(y—x)
then o(7,7) < &, since |7 — 7| = |z — y| < |7]sin §. Also

|_’>—’ | ’ | . >— 1‘ ‘
S111
T T T 9 27'

since g < 7. Therefore D7u > 0 and using Harnack inequality for both Dzu and u, together

with Theorem 11.8, we deduce that

inf  Dzu > co(v, T)|Vu(zo)| > (v, T)u(xo)
B s(o)

ch\ﬂcosa(y,?)( sup u)
By g(z0)

>be sup wu
By /5(z0)

where b = b(1) = C cos(§ + a(v,7)).
It follows that, for every x € By g(xo),
u(x —7) <wu(z) — Dzu(z) < (1 —be)u(x)
which gives, in particular, for € < ﬁ (say),

sup u(y — 1) < (1 — be)u(xp)
Be(xO)

and the hypotheses of Lemma 4.5 are satisfied.
We conclude that:

LEMMA 4.6. There exist positive constants ¢ and p, depending only on 6y, n, such that,
for each small vector T € F(%, en) and every x € By g(xo)
sup  u(y —7) < u(z) — cbeu(xo) (4.9)
B(14 up)e (@)
Notice that (4.9) gives a quantitative estimate of the e-shift between the level sets of

u and those of its 7-translation and implies Lemma 4.4, perhaps with a slightly different

enlarged cone, that we still denote by I'(6y, 7).
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To see it, observe that, for 6y < 6 < 7, in the notations of Theorem 4.2 and Remark 4.3,
with ' = 0/2,

(14 bu)e = |7 (sin g) [1 + cpi cos (g + a(v, T)>]
= |7| (sin g) [1+ cpsin E(1)]

0
> |7]sin (5 n ﬂE(T) = o(7)
with o = uc%.
This means that, if

Sp = U Bp(T) (T)
TEF(g,en)

and 7 € Sg, then
D, u>0

and, in particular, also in the intermediate cone I'(§;, ;). This ends Step 1.

4.4. A continuous family of R-subsolutions

At this point the situation is the following:
e in Bl_g
ve(z) < u(x) (4.10)
which amounts to the monotonicity of u along the direction of the original cone
INCACS)
e in By s(x0), zo = Jen
V(14bp)e (T) < u(x) — egbug(zo) (4.11)
with b = b(7) = ccos(g +a(v, 1)), T € F(g, €n), which implies the monotonicity of
u in the larger cone I'(0y, 7).

The purpose is now to carry this information to the free boundary, by finding for instance

that, for some intermediate i, an inequality of the type

U(1+bﬁ)e($) < u(x)
holds in B1/2.
The idea is to use a continuous deformation method based on the comparison Theo-

rem 2.2 to transfer the improvement in By 5(wg) to By/2(0). The key point is the construc-

tion of a delicate family of subsolutions of the type considered in (2.16) but with the radius



62 4. LIPSCHITZ FREE BOUNDARIES ARE C%7

of the ball By(z) dependent on x itself, i.e., t = p(x). In fact, the family
ve(T) = sup u
Bi(x)
with £ constant, can only detect a uniform enlargement of the monotonicity cone, and, as
such, one cannot exploit the interior gain.
For this purpose we ask the question: what are the conditions on a variable radius t(z)
so that for any harmonic function u, v; will be always subharmonic.

Here is the fundamental lemma.

LEMMA 4.7. Let ¢ be a C?-positive function satisfying in By
ClVel?
¥

for C = C(n) large enough. Let u be continuous, defined in a domain  so large that the

Ap >

(4.12)

function

w(z) = sup u(z + pl)v)
lo|=1

1s well defined in By.

Then, if u is harmonic in {u > 0}, w is subharmonic in {w > 0}.

PROOF. Let us normalize the situation assuming that w(0) > 0, ¢(0) = 1 and w(0) =

supp, u is attained at x = e,. We will show that

r—0 7‘2

lim inf 1 {][B w(x)dr —w(0)| >0.
Choose the system of coordinates so that
V(0) = ae; + Bey, .
We estimate w(z) from below for x near the origin by

w(z) = u(@ + ¢(z)o)

with an appropriate choice of o = Ui|, given by

|o

n—1
0" =0"(v) = en + (Br1 — axp)er + Z Tie;
i=2
where v is to be chosen later.
Notice that
n—1

0" = 14 (Bx1 — axn)? + 77 fo
i=1
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Put y(z) =  + ¢(x)o(x). We have y(0) = e, and

y(r) =x+ {1 + (Vp(0),z) + %Dijcp(O)aziazj + 0(\3:\2)}-

. {6n + (Br1 — axy)er + ’YZfEiez’}'

i=2
1 1 n—1
. {1 — 5(63:1 — oz:z:n)2 = 572 ;xf + 0(|:c|4)} )

We can write the above expression as follows:
y(x) = e, + {first order terms} + {quadratic terms} + o(|z|?) .

The first order term is

n—1

yi(x) = 2+ (ax1 + Brn)en + (Br1 — oxp)er +7 Y xie;
1=2

that can be written in the form

y1(x) = Mx
where
1+ 75 —«
0 1+~ 0
M = : i :
0 14+~ 0
Q 0 0 1+ 0

Since det M = (1 + )" 2[(1 4+ 3)? + a?], if we choose v such that
(1+9)* =148 +a,
the transformation

r — y1(z)

can be thought as a rotation (given by the matrix M/(1++)) followed by a (14 ~)-dilation.
Put

Yy (z) = en +y1(x) -

Then, the quadratic term is given by

1 n—1

y(w) —y*(2) = 5 | Dijp(0)ziw; — (Brr — awn)® —=° 3 af| en + O(Vip(0)|2[)eo
=2
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where ey L e, and |eg| = 1. Then
f w@ds—w© = { ulyla)de - uly(0)
- ][ fu(y(2)) — u(y* (@) dz + f fuly* (2)) — u(y(0))] dz

since u(y*(z)) is harmonic.
Evaluate now u(y) — u(y*). Observe first that since w(0) = u(e,) = u(y(0)), Vu(y(0))

must point in the direction of e,. Then
u(y) — u(y®) = Vu(y®) - (y —y*) + O(ly — v*|?)
= Vulen) - (y —y) + O(ly — y* )

n—2
= §19uten)| - { DisplOpzin; = (o1 =, =1 Y- a2+ O(lalY
=2

and hence
:_2]13,, [uly) —uly")}dr = %‘VU(%)\{ASO(O) — B+’ +(n—-21%} >0
if
Ap(0) > [Ve(0)* + (n —2)7* .
Since 72 < [Vp(0)|? the last inequality is satisfied if
Ap(0) > [ V(0)[*

with ¢ > n — 1. U]

REMARK 4.8. We point out that for a C?-positive function ¢,
pAp = C|Vepl?
if and only if
1—c

% is harmonic.

In particular, if ¢!~ takes values a; on 8B (0) and ag on 0B j5(x), it will take intermediate

values “in between”, that is strictly inside B1(0) \ By /g(zo), and so will .

Given a solution u of our free boundary problem and a function ¢ satisfying the prop-

erties of Lemma 4.7, we consider the function v, defined by

vo(x) = sup u(y) .
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v, is continuous and we know that v, is subharmonic both in {v, < 0} and Q" (v,) =
{vy, > 0}. To complete the comparison we need to examine which kind of condition v,

satisfies on F'(v,) = 007 (v,). We start with the asymptotic behavior of v, at F(v,,).

LEMMA 4.9. Let u be a continuous function and

Vo(x) = sup wu

where ¢ is a positive C?-function with |V| < 1. Assume that
x1 € 00N (vy) , y1 € 00T (u)

and that (fig. 4.6)
Y1 € OBy (5,)(71)
Then:
a) x1 1s a reqular point from the right for F(v,)

b) If v = ﬁ and near yi, nontangentially,

u(y) = aly —y1,v)" +o(ly — u1) (4.13)
or
u (y) =By —yi,v)” +olly—unl) (4.14)
then near x1, nontangentially,
v (x) > ol — z1, v+ Vo(1)) T + o(|z — 1) (4.15)
or
v (z) < Bl —z1,v+ Vo(r1))” +o(|Jzr — x1]) . (4.16)

c) If F(u) is a Lipschitz graph, with Lipschitz constant X\, and |V| is small enough
(i.e., |[Vo| < c(X) < 1), then F(vy) is a Lipschitz graph with Lipschitz constant

N < A+cpsup |Vl .

PROOF. a) Notice that Q% (v,) contains the set
K = {lz —pf* < p(2)*}

since for |z —y1| < p(x), we have vy ;) () > u(y:) > 0. The boundary of K is a C*-surface,

since along 0K
V(e —yi* = ¢(2)?) = 2(x — y1 — p(2)V(z)) £ 0

because |Vp| < 1. Now, z1 € 0K so that a) is proven.
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F(v(p)

FIGURE 4.7

b) Near z;
p(x) = p(r1) + (x — 21, Vop(z1)) + o[z — z1])
hence, if
y=z+ (@)
and (4.13) holds, we have, since y; = x1 + @(z1)v,

ve(x) > uly) = afz + o)y —y1,v)" + o(ly — y1l)
afz —x1 + [p(x) — p(a)]v, ) + o(lz — z1])

= alz —x1,v + Vo(z1))T +o(|lz — z1|) .

In the same way, (4.14) implies (4.16).

c¢) Q7 (u) is union of convex cones with vertices on F(u) and therefore we can suppose
that Q7 (u) is above the graph of a smooth convex cone z,, = f(z'), »’ € R*7L.

Then v = ﬁ is the inner unit normal to a supporting plane 7 to F'(u) at y; and it

must lie in a cone with axis e, and opening artan .

On the other hand, the surfaces S; = 0K and
Sy = {dist(z, 7)* = @(x)*}

are tangent to F'(v,) at z1 from above and from below, respectively. Indeed, if x € F'(v,),
dist(x, F(u)) = () so that dist(z,7) < p(x).

Both surfaces are smooth with unit normal vector at x1 parallel to

V= V—l—Vgo(xl) .
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FIGURE 4.8

Therefore, if a(71, ) denotes the angle between the vectors 71, 7o,
a(v,e,) < a(v,ey) +a(v,v)
< artan A + arsin |Vp(z1)|
< artan A + ¢g|Vp(x1)|
Now, since |[Vyp| < 1

At alVe(z)|

tan(artan A + cg|Vo(x <
( 0‘ QO( 1)|) 1—)\01\V<,0(x1)|

1
If ‘VQO‘ < c1(1+N)° then
tana(v,ey) < A+ c1|Ve(z)|

that is F'(v,) is Lipschitz with Lipschitz constant
N<A+esup|Vep| . O

An important corollary is

LEMMA 4.10. Let u be a viscosity solution of our free boundary problem. If p satisfies
the hypotheses of Lemmas 4.9 and 4.7, then
a) vy, is subharmonic in both QF (vy,) and Q™ (vy,).
b) Every point of F(v,) is reqular from the right.
c) At every point x1 € F(vy), v, satisfies the asymptotic inequality

vp(x) > oz — 21, Nt — Bl —x1,0)” +o|lr — x1]) (4.17)
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with

a p
1 — |V(x1)] =G (1 + ‘V@(xl)‘> ' (4.18)

PROOF. Let vy(x1) = u(y1). Then y; € F(u) and (4.13), (4.14) hold with a > G(5).
Put
v+ Vo(xr)
v+ V(1)
Then, from (4.15), (4.16)

a=aly+Ve(@)|, 8= 8+ Vo) .

U=

vy(z2) > ale — x1, )t — Ble — 21,v)” + o(|x — x1])

and a > G(f) gives (4.18). O

Inequality (4.18) says that v, is “almost” a subsolution, due to the fact that V¢ is not
identically zero. We shall later perturb v, to make it a subsolution. For the moment we
will construct a family of functions ¢y, satisfying the hypotheses of Lemma 4.9 and 4.7,
such that v.,, carries the monotonicity gain from B, /8(:1:0) to the free boundary as t goes
from 0 to 1.

This means that we want ¢; = 1 along, say 0Bi, ¢y ~ 1+ ctb on 9B g(wg) and
¢ ~ 1+ [t in By s.

LEMMA 4.11. Let 0 < r < %. Then, there exist positive A = A(r), h = h(r) and a C?
family of functions ¢, 0 <t <1, defined in B; ~ Br/g(%en) such that
(i) 1 <@ <1+th
(i) erApr > CVey]?
(iii) ¢¢ =1 outside Byg
(iv) Pi|B, , = 1+ Ath
(v) [V < Cth.

PROOF. Recalling Remark 4.8, let 19 be a smooth superharmonic function in By ~
BT/Q(%en) with, say, ¥9 = 1 on 8BT/2(%en), Yo = 2 outside Byg, 1 < 1 < 2 in B; and
Yo <2—7(0<7vy<2) on B1/2- Choose ¢ > 1 and put

1/1—
Yo = ()/ ‘.

Then, poApy > C|Vol?, 21/17¢ < ¢y < 1 in By, ¢g = 2/17¢ outside By and
0o —2/17¢ > C(y) > 0in B 9. It is now easy to check that the family

21/1—6

sot:1+thsi° 0<t<1)

—91/1—c
satisfies (i)—(v), provided h is small enough. O
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FIGURE 4.9

We now go back to the solution u of our free boundary problem and construct the
family vy,, with ¢; as in Lemma 4.10. We will perturb v,, by adding a correction term
that makes it a family of subsolutions for which the comparison Theorem 2.2 applies. This
correction term is a multiple of the harmonic measure of 9B g(zo) with respect to the

domain {v,, > 0}, extended by zero in the complement.

LEMMA 4.12. Let uw be a solution of our free boundary problem and p; the family
constructed in Lemma 4.11 with r = 1/8. Let wy be a continuous function in @ =
By 10 ~ Byys(xo) defined by (fig. 4.9):

Aw; =0 in QF(v,,) NQA=Q
we=0 in Q~

wr =0 on 0By

wy = u(zo) on OBy s(wo)

Then for a small constant c¢,h and any € > 0 small enough,
Vi = Vey, + cewy (0<t<1)

1s a family of subsolution.

PROOF. The subharmonicity of V; in Q7 (V;) and Q7 (V;) follows from Lemma 4.7. We
have to check that V; has the correct asymptotic behavior. Notice that F'(V;) = F(vey,).
From Lemma 4.10, v, satisfies the inequality (4.17) with

o B
S el I
1 —¢|Ve| — (HSIV%\)
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Since |V¢i| = 0 outside By/g the right inequality is satisfied by v, and hence by V;
since wy is positive. Inside By/g M Q7 (V;) we use the comparison theorem 11.5. Let z1 €
F(V;) N Byjg. Choosing € (and therefore £|Vy|) small, from Lemma 4.9c) we have that

F(V;) are uniformly Lipschitz domains. Therefore, in a neighborhood of 1,

’UESOt < c
W o

since at an interior point the values of v.,, and w; are comparable. Therefore, from the

asymptotic development of Lemma 4.11 we deduce that
Vi (@) = (vep + c2wn) (@) 2 0 (0 — 21,0) " + ol — 21

with a* > (1 4 ce)a. To complete the proof of the lemma, we must prove that if we choose

h small enough in the definition of ¢;, then

a > G(P) .

From the properties of G, s~V G(s) is decreasing. Hence

56(0) < [ o ]_NG(—B )
T 1+5\Vg0t| 1+5\Vgpt\

or
i E ) (1 +elVa)¥ o
G(B) < (1 +elVe )G < < :
() = Veer) 14 |V 1—¢lVp| 14ce
Since |V¢| < cht, the proof is complete if h is small enough. O

Now we are ready for steps 2 and 3.

4.5. Free boundary improvement. Basic iteration

We now use the family of subsolutions constructed in Lemma 4.11, and Theorem 2.2 to

get an improvement in the opening of the monotonicity cone up to the free boundary.

LEMMA 4.13. Let u; < ug be two solutions of our free boundary problem in By, with
F(ug) Lipschitz and 0 € F(ug). Assume that in By_.

ve(x) = sup ug < ua(x) (4.19)
B:(x)
that for b > 0, small,
_ 3
ve(x) < (1 — be)usa(xp) (z0 = 2e€y)

and that
Byg(zo) € QF (u1) .
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Then, for € small enough, there exists i (depending only on n,\ in Lemma 4.11 and the

Lipschitz constant of F'(uz)) such that in By
V(14 ab)e (T) < uz(x)

PROOF. Put, for 0 <t <1,

(z) = sup wuj + Chewpy
B&Pbt (ZL‘)

where w; is as in Lemma 4.12. Then v; is a family of subsolutions. Let us check that v,

satisfies the hypotheses of Theorem 2.2 in = By/19 \ By g(wo) with respect to us.

(i) Do < ug is clear from (4.19) in By~ Q" (vp). In QT (2g) it follows from Lemma 4.5
and maximum principle, since wg = u(xg) on B /3(x).

(ii) Follows again from Lemma 4.5 and maximum principle, provided h in Lemma 4.11
is kept small enough; to ensure strict inequality along 0B ﬂm we may replace
¢ with any smaller &’.

(iii) Follows from Lemma 4.9a).

(iv) Follows from the definition of v;.

We conclude that v; < ug for each t € [0,1]. In particular
U1 < ug

which means

sup  uy < ug(x)
B4pb)e ()

in By /y since Pols, > 14+ Abh =1+ b. l
We apply Lemma 4.12 to
ui(z) =u(r —7) and wus(x) = u(x)

with 7 € F(g,en).
Thanks to Lemma 4.6 all the hypotheses are satisfied and therefore we conclude that,
in By, for every small vector 7 € F(%, en)
sup  u(y — 7) < u(x)
B1+pb)e

The immediate consequence is

LEMMA 4.14. Let u be a solution of our free boundary problem in C'. Assume that, for

some 0 < 0 < 0 < 7/2, u is monotonically increasing along any direction T € T'(0,ey,).



72 4. LIPSCHITZ FREE BOUNDARIES ARE C!Y
Then there exist A\ = A\(0,n) <1 and a cone T'(A1,1) D T'(0,e,) such that
<A (0=73—0)

and in Cy 2, Dou > 0 for every o € I'(01,v1).

We are now ready for step 3.

PROOF OF THEOREM 4.1. We repeat inductively Lemma 4.14 observing that if u is a

solution of our free boundary problem then wu,(z) = u(Z:c) is also a solution in the corre-

sponding domain. We get that, in C,—#, u is monotone increasing along a cone of directions
INC/7 (k> 0)
with 60y = 0, 1y = e, and
U'(Okt1,vk+1) D T'(Ok, vk)
Op+1 < Adg, (5k S 9k> :

2
It follows that 6, < 6o A* and hence that the free boundary is C® at the origin for some

a=a(A) >0. O



CHAPTER 5

Flat free boundaries are Lipschitz

5.1. Heuristic considerations

The second step in the proof of strong regularity results for the free boundary consists
basically in showing that, if the free boundary is uniformly close to a nice asymptotic

configuration, then it is actually Lipschitz. This is the case, for instance, when the dilations
u(Az — xp))
A

around a differentiability point xg of F'(u) converges to a two plane solution

ux(z — x) =

az! — By
in a suitable system of coordinates.

It is convenient for us to replace “closeness” to a nice limit configuration by a “flatness”
condition, expressed by e-monotonicity, along a large cone of directions I'(y,¢), a notion
treated extensively in section 11.5

In particular, our basic hypothesis will be: there are a unit vector e and an angle 6
with g > Z (say) and € > 0 (small) such that, for every ¢’ > ¢,

sup  u(y —¢e'e) < wu(x)
B/ gin gy (%)

The simplest theorem that can be proved is the following ([C2]).

FiGUuRrE 5.1. Cone of e-monotonicity.

73
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THEOREM 5.1. Let T < 0y < 5 and let u be a viscosity solution in Cy = B} x (=1,1) of
the free boundary problem
Au=0 in Q" (u) and Q (v
uy = G(u,)
where G : Rt — RY is strictly monotone and s~ NG(s) is decreasing for some large N.
Assume u(0) = 0.
Then there exists ¢ = €(6p, G) such that, if u is e-monotone in C1_. = Bj__ x (—1 +
g,1 — ¢€) along any direction T in the cone I'(0p,e), then u is fully monotone in Cy/p =

Bi/Q x (—%,1) along any direction 7 € T(61,¢€), with 61 = 01(6p,¢).

In particular, this implies that the free boundary F'(u) is Lipschitz and therefore by
Theorem 4.1, also C17.

The problem with the hypotheses of Theorem 5.1 is that if § is zero but u= # 0, u~
could be very degenerate, that is, very close to zero, and not e-monotone for any €. We will
return later on this situation proving a more powerful theorem by making u~ negligeable
in that case.

The strategy of the proof of Theorem 5.1 is based on the following inductive argument.

Supposing € small and 0 close to 7/2, we show that u is eg-monotone along any direction

of a cone I'(6g, e1) in the cylinders
Cr = B,, x (-1,1)
where
a) g, = AFe 0<A<1
b) O — Op_1 < ceh, 0<p<l1
¢) pr—pr1 <cd  0<p <1

with ¢, A\, p, p’ depending only on 6y, u, and p’ < p.

Then, we will get that in Cy /9, u is fully monotone in a little smaller cone of the type
L(6y — ce™, e)

for some positive kg = ko(fg). Therefore F'(u) is Lipschitz. Let us examine why it is possible
to implement the above strategy. The main reasons are the following.

1. From Lemma 11.12, we know that, for M large, outside an Me-strip around the free
boundary, u becomes automatically fully monotone along 7 € I'(A,e). Thus, the improve-
ment of e-monotonicity is needed only in an Me-strip Sp;. between two Lipschitz graphs

(in the direction e).
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FIGURE 5.2. The intersection of Sj;. with the boundary of the cylinder: the
“bad influence” region.

In particular, the only bad influence on the achievement of full monotonicity comes from
the intersection X/, of the strip with the boundary of the cylinder.

2. Let us try to transfer the “good information” (full monotonicity), available on the
top and the bottom of the strip, to its interior. The idea is to use the same type of con-
tinuous deformation argument of Theorem 4.1, constructing a suitable family of continuous
perturbation, as the maximum of u on balls of variable radius ¢ = ¢(z). What should we
ask to 7

Certainly, for SUDR,, , (z) U = v(z) to be a subharmonic function in its positive and

negative sets. Therefore we ask
pAp > CIVel*  (C>1).

As in section 4.4, a suitable correction has to be added to v to make it a R-subsolution;
this requires a control of |Vy.

We have now to carefully balance the size of ¢ in the strip. We know that, everywhere,

sup u(y —ee) < u(x) .

Bs sin 6

Since we are willing to give up a small part of the original cone, we may translate a little

less, say (1 — )e, and pass from sinfy to siny — . Thus, we certainly have everywhere

sup  u(y — (1 —7)e) < wu(w)

Bs(sin 00—") (1‘)

since

BE(Sineo—’Y) (:C - (1 - 7)56) C Bssineo (SU - 56) .
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e(sinfp -v)

FIGURE 5.3. A loss in e-monotonicity.

On the other hand, on the top S]\}E and the bottom S,  of the Me-strip, we know that
u is fully monotone so that, there we can write
s uly — (1—7)ee) < u(a) .
B(1-4)esin gy (T)
This means that:
a) we can take ¢(z) ~ (1 — y)esinfy on Si,. and Sj;., with a gain of ve in mono-
tonicity with no loss in the opening 6, of the cone;
b) we are forced to take p(x) ~ e(sinfy — ) near X/, the intersection of the strip

with 0C1, with a loss of order (1 — sinfp) in the opening of the cone.

3. This last loss is clearly very bad for our iteration argument, unless it decreases very
fast with the distance from 0C;. Indeed, we can control the effect of ¥, on the variable
radius, away from OC;, by means of an estimate for the harmonic measure w”(X,/.) of that

strip. According to that estimate (see Lemma 5.3),
. d(xz,0C)
d(x, ZM€)2

so that, if we are inside Sj;. at a distance at least Ce from dC; since d(x,dCy) and d(z, X /e )

W' (Epe) ~ M

are comparable, we have
wm(EME) ~ £ d(ZL‘, 8C1)_1
and

’wa(ZMg)l < Céd(x,acl)_2 .

As a consequence, the effect of ¥ ;. on the variable radius ¢ will dissipate e-away from 9C;

as

ed(x,0C1) Loscy
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and |V| will decay as
ed(x,0C) 2oscy .

This means that if we stay at a distance of order €* from 9Ci, 0 < a < 1, ¢ will

decrease from its optimal value (corresponding to no loss in monotonicity) of a quantity of

1=2a 1=2a in the opening of the cone. At the same time, the

1—2a

order & with a sacrifice of Ce
perturbation in the free boundary condition requires a correction of order |Vp| ~ ¢
4. Writing the family of variable radii in the form ey; we are lead to the following

requirements for ¢;:

a) ©iApr > ClV|?
b) ¢o < sinfy — v
c) ¢ < sinfly — v near the edges of Sy and ¢ = (1 — ) sinfy — €7, with suitable
0 < 0 < 1 (the €7 is necessary for the correction term) for at least one ¢ > 0, inside
the strip at a distance € from 0C;.
d) The various parameters have to be chosen such that a < ¢ and, for 6y close to 7/2,
v < sinfy — % (say).
In this way, letting A =1 — v, one has
sup u(y — Ae) < u(z)
Bog(z) (@)
giving Ae monotonicity in a cone I'(01,e), with 8y — 61 < Ce?, e%-away from 0CY .
That is, we gain a geometric increment of monotonicity, sacrificing a geometrically
decaying amount of angle and radius.

It is clear that a careful adjustment would produce full monotonicity in Cy /5 at least in

a cone I'(6y/2,¢€).

5.2. An auxiliary family of function

In this section we construct a perturbation family of functions adapted to a Lipschitz

d-strip.

LEMMA 5.2. Let A be the graph of a Lipschitz function x, = f(z') in B} C R"™! with
f(0) = 0 and Lipschitz norm L. Let C = B} x [-2L,2L]. Then, given § > 0 (small), there
exists a family C? functions ¢, 0 <t <1

a) 1< <1+t
b) piAp; > C|Vipy|?
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¢) pr =1 on
As={x:d(xz,ANaC) < §}
d) in the set {x : d(x,0C) > ¢}

STV PR S
ot= d(z,0C)?

e) V| < %

PRrROOF. Let 1y be the harmonic function in C with boundary values given by a -
smoothing of x 4,5. In particular
Yo=1 on AsNAC

Yo =0 outside Azs NAC .
CrLAIM. We have:

i) at a distance at least & from OC:
Yo < e8/d(x,0C)* and |Vl < ¢/d
ii) in As,
Yo >c>0.

Assume the claim. We expand, truncate and mollify of order § defining

1 = min{cho((1 — 6)x), 1} * &5 .
If ¢ is chosen large enough, 1; has the following properties:

i) 9 is defined and superharmonic in C
) V4] < /5

iii) 1 =1on AsNC

iv) in the set {x : d(x,dC) > 0}

11

Y1 < ¢d/d(z,0C)?

1/(1-2¢)
= (52

We next define

2
with ¢ > 1, the constant appearing in Lemma 5.2. Then

0> A(thy %) = (1 — 2e)hy * Aty + (1 — 2¢)(—2¢)1hy 27 Vepo|?

or

Yo Athy > 2¢|Vapy|? .
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Moreover, o4, =1, 1 < 9hg < 21/(2¢=1) and, if d(xz,0C) > 6,
o(x) > 24D _ 5 d(x,0C)72 .

Finally, the function

(2 — 1)

<t<
21/(2¢-1) _ 1 Osts<l

pr=1+1¢

has all the property a)—e) listed above. O

The claim follows from the following estimate for the harmonic measure of a thin Lips-

chitz strip.

LEMMA 5.3. Let C, f, A, As as in Lemma 5.2 and S5 = As NIC. Let w(x) = w*(Ss)

the harmonic measure of S5 in C. Then:

a) If d(z,9C) >,

b) If d(x,ANOC) < éd(x,dC) < &b,
w(z)>ec>0

where ¢ depends only on c.

PROOF. We are interested near S5. Therefore, the boundary of C is smooth so that the
Poisson kernel for the cylinder P(x,y) behaves like that of a half plane. That is, for y € 0C,
d(x,dC)

z — vyl

P(z,y) (5.2)

Moreover
w@) = | Plyxs, o)y

If we make the Lipschitz transformation
z =1, 2p = xp — f(2)

that straightens the strip Ss, the estimate (5.2) remains true and therefore, in the points of

interest,
w(z) ~h(z)  (z=2(z))

with A the harmonic function in the infinite cylinder satisfying

hjac = X|zn|<5 -
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Thus, h has the asymptotic two dimensional behavior of A*, the harmonic function in the
half plane {(z1,2,) : 21 > 0} with boundary values equal to 1 in S5 = {|2,| < J, 21 = 0}.

Since

)
Z1 521
h* (21, 2n) = ds < -2
(21, 20) /5 (on 52+ 22 = Uz 57)°

a) and b) follows after the inverse Lipschitz transformations. O

5.3. Level surfaces of normal perturbations of e-monotone functions

We are going to use the perturbation family ¢; of Lemma 5.2 in order to construct our
basic family of R-subsolution. First we need to study the level surfaces of
v(r) = sup wu
where ¢ is a smooth positive function and wu is e-monotone.

We do it through the following lemma.

LEMMA 5.4. Let ¢ € C?(By) be a positive function and let u be e-monotone along every
T e€Tl'(0,e) in a domain D so large that the function
v(r) = sup wu
15 well defined in Bj.

Assume that

- 1
sin 0 < TY Vol (sin@ - %cofﬁ - \Vgp\) :

Then, v is monotone in the cone I'(0,€); in particular its level surfaces are Lipschitz graph,

in the direction of e, with Lipschitz constant L < cotg 0.

PROOF. Let v(zg) = u(yp), with |zg — yo| = p(xp). We first estimate the maximum
angle a(yo — xo, €) between the vectors yo — xg and e. Consider yg + ce. If Begno(yo + €e)
intersects B, (;,)(T0) at a point 2z, then u(yo) < u(z), so that the maximum is achieved
when B,,(;0) (o) is tangent to Besing(yo + ce). Hence, suppose that Beging(yo + ce) touches
B (z0)(T0) at a point zp. Since

lesin @ + @(20)|* = |yo + ce — x|
= |yo — xo|* + &* — 2¢(yo — 0, €)
= &% + p(z0)% + 2ep(z0) cos a
we have

cos? 0 . (5.3)

cos = sinf —
2p(x0)
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FIGURE 5.4

As in Lemma 4.9, the set
{z () = v(zo)}
contains the domain
{z ]z —yol* < p()*}
that has the unit normal
v=(v+ Ve(xo))/|lv + V(o)
at zg, where v = (yo — x0)/|yo — xo].
Hence, if 0 < T —a(7,e), the set {x : v(x) > v(rg)} contains xo+1'(0,e) N B, for some
p>0.

The requirement on 8 is equivalent to asking
sinf < cosa(v,e) = (v, e)

Since |v 4+ Vp(zo)| < 14 |Ve(zp)|, from (5.3)

_ 1
7.0) 2 T+ Ve,

- 1 ( 0 €
S11 —
— 14+ |Ve(xo)] 2p(x0)

Therefore it is enough to require that

cos? f — \ch(a:o)\) .

sinf < (sin@ __c
1+ V(o) 2¢(0)

We will use Lemma 5.3 with 6 = 0y > 7 (say) and ¢ = oy, %5 < o < e and ¢ as in

cos? f — \Vgo(xo)|> : O

Lemma 5.2. If moreover we keep |V| < ce, v will be monotone in a cone I'( 8, ¢e) with 6

strictly positive.
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5.4. A continuous family of R subsolutions

At this point we have all the ingredients to construct a family of R-subsolutions, adapted
for a comparison theorem.

Let u be a solution of our free boundary problem in the cylinder C; = B} x (—2,2). In
the sequel we set C, = B, x (—2p,2p). If u is e-monotone along 7 € I'(0p, €), 6 > 7/4, then
(see Proposition 2, section 11.5) F(u) is contain in a e-neighborhood N (A) of the graph A
of a Lipschitz continuous function f with Lipschitz constant L < 1. Moreover, for a large
M, (see Lemma 11.12) w is fully monotone outside Njys-(A). Let now ¢; be the family of
functions constructed in Lemma 5.2:

w(x) = sup wu 0<t<1)
By oy (2) (@)
with %5 < 0 < 2¢. Then vy is well defined in C;_4.. We set QT (v;) = C1_4- N {vy > 0}. Let
also w; be the harmonic function in Q% (v;) N Nep(A) with boundary values

{u on ONere(A) NQT (vy)
Wwe =

0 otherwise.

We extend w; to zero outside QF (vy).

LEMMA 5.5. For 0 <t <1, n >0, define in C;_4,
Vg = V¢ + Nwy .

There exist positive constants c1,ca, depending only on N in Theorem 5.1 such that, if
i) g > m/4
ii) n > c10/8 (6 from the construction of @i, § > ¢)
iii) /6 < ¢y

then, vy 1s a R-subsolution of our free boundary problem in Ci_4e.

PROOF. We first make sure that F(v;) = Q71 (v;) N C1_4e is uniformly Lipschitz. Ac-

cording to Lemma 5.4,

1 . £ 9
— [ sinfy — cos“ 6y — o|V
1+U|v%‘ ( 0 200y 0 \ @t\)

must be kept strictly positive, that is, since |[V;| < ¢/§,

1 9 2 g
—— (sinfy — — cos” 6 —c—)
1+co/b ( 07 % 0 s
must be strictly positive. If, say, 0y > /4, %5 < 0 < 2 and o /6 is small, this is ensured.
We want now that v; satisfies the appropriate free boundary conditions. Since ¢, = 1

a 0-neighborhood of As (see Lemma 5.2), and d > ¢, it is enough to consider points, say,
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6 away from C;_4.. According to the calculations in Lemma 4.9, any point xzg € F(v;) is

regular from the right and near x,
0(@) > alz — 20,0+ V(20)) — Blz — 20,1+ Vo(z0)) ™ + of| — z0])

with a = G(8), and where v is the unit inward normal to the touching ball B C Q7 (v;) at
xg. Concerning the correction term wy, if we stay at distance greater than (say) 6e from

0C1_4¢, then, from the comparison Theorem A, near xg,
Wy > Cvy

with ¢ depending on 6y, n.

Hence, 10e-away from 0C;, we have
0 = &lw — w0, 7) " + Bz — 20,7)” + ol|a — o)
where
a>1+en)(l—colVeol)a, B<(1+co|Vel)s

and 7 = (v + V(xo))/|v + Ve(zo)].

For v; to be a R-subsolution we want

@ > G(p)
that is, since a = G(0)
(1 +en)(1 = co| V) G(B) = G((1+ colVear])5) (5.4)
Since |Vy| < ct/d, s7NG(s) is decreasing and G is increasing, we have
ot ot
1 —co|Vp| >1— e 1+ colVp| <1 —1—07

and

Therefore it is enough to show

e (1-e2) 2 (146%) "

This is possible if ot/é > 1 and n > ¢ /J, both depending on N. O
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5.5. Proof of Theorem 5.1

Before going to the proof of Theorem 5.1 we need to show that for an e-monotone so-
lution u of our free boundary problem, at least Me away from the free boundary, |Vu(z)|
behaves like u(z)/ dist(z, F'(u)) since u becomes fully monotone and its level surfaces Lips-
chitz graphs.

This is the content of the following Lemma.

LEMMA 5.6. Let u € C(C1), u > 0, u(0) = 0 be e-monotone along I'(0, e,), harmonic in
OF(u).

There exist eg = eo(n), M = M(n), C = C(n,0) such that if ¢ < &g and x € Cy2,
dist(z, F'(u)) > CMe, then

Vue) ~ s (5.5

PROOF. Let z € Q7 (u), dist(z, F(u)) = d,. The inequality
Vu(z)| < cu(x)/dy

comes from standard interior estimates and Harnack inequality.

Thus, let us prove that, if d, > CMe,
\Vu(z)| > cu(x)/d, .

F(u) = 097 (u) is contained in a (1 — sin #)e-strip bounded by two Lipschitz functions with
Lipschitz constant L = cotg#. Moreover, from Lemma 11.15, u is fully monotone outside a
Me neighborhood of F(u), with M = M (n), large enough.

Let zgp € Q7 (u), dyy = 10Me and set u(zg) = a. The level surface {u = a} is a Lipschitz
surface in the ball By, (xo) at distance greater than 8Me from F(u), if n = n(L) is chosen
properly small.

Consider the cylinder

T.[-20Me,20Me] x By (o) ,
and denote by w the harmonic measure in 7.

Since |0T. N {u = 0} > 4|0T:| with 0 < v < 1, v = y(n, §), from Lemma 7c) we have

also
WH(OT. 1 {u = 0}) > +/|OT.|
with 0 <+ <1, 79" =+'(n,0).

Then, from the subharmonicity of w in 7%,

< dw” < (1 —+')maxu .
a_/aTEuw <( fy)rngaxu
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Therefore, there exists yg € 91 such that

u(yo) > a = koa > a

1
1=+
and the level surface {u = koa} N Buaye(yo) has distance from F(u) less than C'Me. Notice
that {u > a} D {u > koa}. Therefore, if z € {u > koa} we have, since (u —a)* is harmonic

in T. N {u > a}, from Theorem 11.8,
(u(z) —a)™ < |Vu(z)|d(z,{u > a}) < c|Vu(x)|d, .

On the other hand,
u(x)—a—iu(a:)—a—i— 1—i u(zx) > 1—i u(z)
B ko k o ko

0
and (5.5) follows if d, > CMe and |2’ — x)| < ne. Since xy € Q1 (u) is an arbitrary point
at distance 10Me from F'(u), (5.5) holds if z € Cy /o N QT (u) with d, > CMe. O

We are now ready for the proof of Theorem 5.1. The basic inductive lemma is the

following.

LEMMA 5.7. Let u be a solution of our free boundary problem in Ci, e-monotone along
the cone of directions I'(0, e,) for some eg > €, with 7 < 6y < 0 < T. Assume u(0) = 0.
Then, there exist positive co = co(6p), €0(fo) and A = A(p), A < 1, such that u is Ae-

monotone along the cone of directions I'(0 — coe'/*, e,) in Ci/2-

PROOF. Let A < 1 to be chosen later and let
ui(x) = u(x — Aeey) .
From the e-monotonicity of u (for 1 — A < v/2/2), we have
sup ur < u(x) = ug(x) (5.6)
Ba(sin 0—(1—>\))(x)
since
Be(sin@—(l—)\))(x - )\€€n) - Bssin@(x - 5617,) .
Notice that, choosing a slightly smaller radius e(sinf — (1 — X)), X < A, we have strict
inequality in (5.6).
On the other hand, u is fully monotone outside Nyse, an Me-neighborhood of the graph
of a Lipschitz function z,, = f(z'). Therefore
sup  uy < ug(x)
B/\s sinQ(x)

for any x & Nyye.
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Our purpose is to obtain, by means of the family ¢;, an intermediate radius oy;, such

that

sup u1 < ug(x)
Bo (%)

18 N Nee.

We fix now the various parameters according to the requirements in Lemma 5.2-5.5.

forz €C

1—ce

We choose:

_ g /45— l/2

oc=c(sinf—(1-X\)—¢?), A> , n=¢c’'%,

DN W

To give room for the control of the correction term nwy, of order /4, we limit ¢ to make

sure that
oo < e(Asinf — /) (5.7)
for some ¢ to be chosen later, that is

[sinf — (1 = A)](1+1) < Asinf — /4

(with a slightly smaller ¢) or

Asin @ — ce!/4 Asin

< .
sinf —(1—X) ~ sinf — (1 - X)

1+¢t<

To have equality in (5.7) for some ¢, 0 < t < 1, it is then enough to choose A so close to one

to have

Asin 7
- <2.
sinf—(1—-XA) ~

We want to show that the family v; so chosen, satisfies
v < ug

in C;__.1/s N Noae, for 0 <t < ¢, if ¢ large enough. Since ¥; is a R-subsolution we have
only to check that v; < us on the boundary.

On the positive side, along
ONcye N Croge
we have, for R < Ry < Aesinf,
sup w1 < sup up — (Rp — Rqp)|Vu (2)] <
Br, (z) Bp,(z)
since, by Lemma 5.6, u(x) ~ d(z, F(u))|Vu(z)|.
With Ry = oy and Ry = Aesinf we get, for 0 < t < #, Ry — Ry > ¢e't1/4 so that,

AT

adjusting the constant c,

vy < (1— 61/4)u2 < uy — ety
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since wy < cug along ONgae N Ci_4e, by Harnack inequality. Thus,
@t < ug .

On 9Ci_4. N Ncare, wy = 0 and since el/2 > g, ¢ = 1 in a e-neighborhood of this set, so
that

UV = V¢ < U9 OStSt_
Consider now the set

E # () since 0 € FE, via maximum principle argument. E is obviously closed. To see that it

is open we show that if v; < ug in C1_4e N No e, then
Q+(’Ut) CcC Q+(u) mNCME NCr_se .

If not, F'(v;) and F(ug) have to touch at some point xy, which is therefore a regular point
from the right for both free boundaries.
Moreover, since ¢; = 1 in a e-neighborhood of 9C1_4-NN¢se, it must be d(xg, 9C1—_4¢) >

ce and near xq, by the comparison Theorem 11.5, we have
Wy > CUt .

We can now reach a contradiction as in the proof of Lemma 4.12.
We conclude that E = [0, ] or

vy <up in Cr_ge N Nene

for every 0 < t < t. If we stay more inside, that is in C;__..1/s NN¢are, from d) of Lemma 5.2

we deduce
1/2
ce 1/4
>14+t|1— > 14+t —ce .
Pt = d(m,86145)2] o ( )
For the maximum ¢, ¢ = ¢, we have equality in (5.7), so that, in C;__.1/s N Nowe,

opr > esinf — a4 — et/ > g(Asin g — /)

that implies

sup up < us(z) .
Bs(Asin9—561/4)(x)

Since
Asinf — cet/4 > )\ sin (6 — 0081/4)

for a suitable positive cg, the proof is complete. O
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PROOF OF THEOREM 5.1. Iteration of Lemma 5.7 gives a sequence of domains
Ck = BRk X (—4RkL,4RkL)

where R, = 1— Z];:l(c)\ps)l/ 8 in which u is A\*¢ monotone along any direction 7 of a cone

['(0k, e,,) where
k
(9k = 90 — Z(C)\pg)l/4 .
p=1
To complete the proof it is enough to choose €y = £(fp) so small that

1 1 T
o >= and 6 eoo>_(9 —). 0
Ri. > R _2an L > =5 0—|-4

5.6. A degenerate case

Theorem 5.1 holds also for one-phase problems where v~ = 0, ending up, using Theo-
rem 4.1, with a C17 free boundary, that in particular implies u > ¢ > 0 on F(u).

As we will see clearly in the parabolic case, in the hypothesis of e-monotonicity (for both
u', u”) in a flat cone is hidden, in a rather subtle way, a non degenerate free boundary
condition of the positive part u*: ul > ¢ > 0 in the viscosity sense.

The next theorem deals with a case in which u~ could be degenerate, that is very close to
zero without being identically zero. For instance if u™ is e-monotone along 7 € I'(, e,,) and
OO (u) is contained in an e-neighborhood of the graph A of a Lipschitz function z,, = f(z'),
it could be that v~ = 0 below A and 4~ > 0 somewhere between A and Q% (u). In this case
u~ is not e-monotone for any e¢.

The following theorem covers this situation ([C2]).

THEOREM 5.8. Let u be a solution of our free boundary problem in C; with 0 € F(u).

Suppose that:

i) ap <ut(x)/d(x, F(u)) < i, i.e., u is Lipschitz and has linear growth.

ii) G is increasing, s NG(s) is decreasing and moreover G is Lipschitz continuous

with G(0) > 0.

Then, there exist

a) a by <m/2

b) an €
such that, if ut is e-monotone along every T € T'(6p,e,) for some € < g, then u™ is fully
monotone in Cyso along any 7 € U'(01,ey), with 01 = 01(0o,€0). In particular, F(u) is the

graph of a Lipschitz function and therefore, by Theorem 4.1, a graph of a C*7 function.
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The strategy of the proof is to balance the situation in which u™ highly predominates
over u~ and the case in which v~ is not too small with respect to u™.

The next basic lemma deals with this dichotomy; A always denotes the graph of the
Lipschitz function f. It says that as long as u~ is very small we can improve the e-

monotonicity of u™ and when u~ goes through a threshold the whole u becomes e-monotone.

LEMMA 5.9. Let u be as in Theorem 5.8 and

m = sup |u| .
7/8

then, there exist Oy such that, if 0 > 0y > 61 > 7/4 and ¢ < g9 we have the following
alternative: there is a large constant K, such that
(a) if u=(—3en) < Kme, then u™ is Ae-monotone in C,__1s along any 7 € T'(0 —
el/4 e,) with A = \(0) < 1.
(b) if u=(—3en) > Kme, then u is ce'/8-monotone along any T € T(61,e,) in a -
neighborhood of A in Cy 5, do = do(6o)

PROOF. Let p > ¢ and xp € F(u) N Ci_2, be a point where F'(u) has a touching ball

contained in {u < 0}. Then, near xy,
u (z) = alr — 29, )" — Ble — x0,v)” + oz — x0|) .

From the monotonicity formula and i) in Theorem 5.8, we have,

0< <™
Qo p

In particular this implies that w~ is Lipschitz continuous in N,(F(u))NCi_2, with Lipschitz

constant
Lip(u™) <ém/p .
Therefore, if x € N.(A) N Ci_2,, then
u (x) <éme/p . (5.8)

Assume now alternative a), that is u™(—ge,) < Kme.
We want to control u~ below the graph A in C1_5,. Let v be the harmonic function in

{zn, < f(2")} NCi_2, with boundary values

0 on A
v =
u~ otherwise

Then, by maximum principle, in {z, < f(z)} NCi_2,

v<u<v+Cme/p. (5.9)
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FIGURE 5.5

On the other hand, from the boundary and interior Harnack inequality, there is a large

k = k(0) such that, in Ci_a, N {z, < f(z')},

1 1
v(x)§c< i )Sc( i ) (5.10)
p p
The monotonicity formula gives now, at a regular point z¢ € F'(u)
1
5 < c— \Vu™ 2|z — x> " dx < %( sup u”)?
P™ JBp(xo) P™ Bp(o)
or
—( 1
u (—se
geolme, vl 2 w | (5.11)
pl| p p

Choose p so that pFt! = ¢!/2. Then, from (5.11)
6 <Cm {sl_ﬁ +51/2} < Cmel/? .

We can now proceed as in Lemma 5.7 with

uy(z) = ut (z — Aeey)

and
us(z) = ut (x) .
Constructing the family o; corresponding to u™ instead of . To make #; an R-subsolution,

at a point z¢ € F(7;), regular from the right, we must require (see formula (5.4)):

(1+en) <1 — c%t> G(0) > G(Cme'/?) .

Since G(Cme'/?) < G(0) + Cme'/2, it is enough that

7720{%—1—51/2} (5.12)

which is satisfied with the usual choices o ~ ¢, § = el/2, n = /4,

Then, the proof goes as in Lemma 5.7 and we get that 4™ is Ae-monotone along every

Tel(0—Cel/e,) in C,_.1/s, as before.
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If alternative (b) holds, choose p = 1/8. Then (5.11) gives
1
g < cu" (—§en)

1
u (z) <cu” <—§6n> d(z, F(u)) . (5.13)
For the auxiliary function v, we use the results in section 11.4, to deduce that, in Ns,(A4) N
{zn < f(2')}, with 69 = do(6o),

(1) v is (fully) monotone along every direction 7 in the cone I'(01, —e,,), if 61 < 0y —

so that, in C7/g

(say).
(2) If 21,29 € N5, (A) N{z,, < f(2)} and
. Tro — I1 _
T = 7@2 — 331’ c F(@l, en)

then, for % <A<1landz =z + Az2 — 271),

D;v(zx) > ¢ (5.14)
Furthermore, let h = h(z) be the auxiliary harmonic function of the form

h(z) = r%g(o) (z=r0o, r=|z2|, 0 € 0By)
with ¢ the first eigenfunction of the Laplace-Beltrami operator in the polar cap

(o,—epn) < by .

Then, for zg € ANCrz and  — zg € I'(01, —ey), using Harnack inequality and the

maximum principle

v(x) > cv (—%%) h(x — ) > ¢ {u_ ( — %%) — C’sm} h(x — )

Thus, if the constant K in (b) is large enough and x — zy € ['(61, —e,), we can write
1
v(x) > cu” (—§en) |z — x0]® . (5.15)

We are now ready to prove the ce'/3-monotonicity of u~ along every 7 € I'(01,—ey), in
Ny o (A) N{xy < f(2')}. Let z1, 2 satisfy
Cocl/® > |x1 — 22| > crel/®
and 1 — x € I'(01, —e,). We want to show that
u (z2) > u (x71) . (5.16)

If 1 € Q" (u) the inequality is trivial, so it is enough to consider x; below the graph

{zn = f(2) + e} = A..
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If 21,29 are both below A, then, from (5.4)
v(z2)

v(xg) — v(xy) > e—Lel/®
do
and since (5.15) gives
1
v(xg) > cu” <——en) g/® (5.17)

we obtain

v(zg) —v(z1) > S (—len) glatl)/8
o 2

On the other hand, from (5.9), we have
_ _ 1
v<u <v+tcu (—ien)e

in C7/g. Thus

If we choose 6y enough close to 7/2, then a is close to 1. Hence we may assume a < 7

and get
u (r2) —u (z1) >0.

If 25 is below A and z is between A and A’,

w(22) — u (1) > v(ws) — cu (—%en> e> Lo <—%en> feors — e} >0

and alternative (b) is proved. O

PROOF OF THEOREM 5.8. Either we are already in alternative (b) or we iterate alter-

native (a) until we reach (if ever) alternative (b). O

A variant of Theorem 5.8 is the following

THEOREM 5.10. In the hypotheses of Theorem 5.8 replace the e-monotonicity of u™ with
the following condition: there exist 6 < 5 and & such that, if for e < &, F(u) is contained

in a e-neighborhood of the graph of a Lipschitz function x, = f(x'), with Lipschitz norm
. T -
Lip(f) < tan (5 — 9) ,

then the same conclusions hold.
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PROOF. We show that u™ is C'e-monotone in T'(6, e,,) for suitable 6 and ¢, thus reducing
Theorem 5.10 to Theorem 5.8.

Let Ay be as in Theorem 5.8 and let 8 > 6y chosen. Consider the harmonic function v
in C7/g, vanishing on A. = {z, = f(2') — coe} and v = u™ on dC7/s N {x, > f(2') — coe}.
Choose ¢g in such a way A. C CQT (u).

Then, by maximum principle, Harnack inequality, and the linear growth of u™,
u+(x) + 2cog > U(x) > u+($) > Cld(lﬁ, Ae) — C9€

in Q7 (u), if ¢g is large enough.
Moreover, for any 6y < @ < 6, v is fully monotone along any 7 € I'(6,e,) in a do-

neighborhood of A. in C3/4, with 9 = do (0o, ). In particular, if
0o > d(l‘,AE) > C3€

we get (Lemma 5.5)

v(z) £

DT'I}(QT)NWZCl—CQiZ Cl>0

1
d(x,Az) — 2
if € < ¢100/2co. Therefore, in QF (u), if 7 € T'(0, e,),
ut(z + cge) —ut(2) > v(x + c4eT) — v(T) — 2006
> c(cg — c3)e — 2¢0e > 0

if ¢4 is large enough. [



CHAPTER 6

Existence theory

6.1. Introduction

In this section we construct a viscosity solution of our free boundary problem in a
smooth (Lipschitz) bounded domain © C R™.

We use a variant of Perron method, by taking the infimum of suitable (admissible)
supersolutions and having in mind to produce solutions with all the measure theoretic
properties considered in section 5, eventually falling under the hypotheses of one of the
regularity theorems of section 5 after an appropriate rescaling.

As a warning to the fact that this is not obvious, consider the singular perturbation
problem

Au. = f(u.)
with f. as in section 1.2. When ¢ — 0, we expect a solution to converge to a function u,

harmonic when positive or negative, and satisfying on Q7 (u) the free boundary condition

() — (a2 = 1.

1% 14
A one-dimensional solution u. = u.(x;,), with slope a < 1 at +o00, will “bounce” in the
layer 0 < u. < € and comes out with opposite slope —a.
Formally, in the limit we get a two plane function
u(x) = alx,|

which is a viscosity solution of the free boundary problem. Clearly, the free boundary does
not have the usual measure theoretic properties; for instance its reduced part is empty.
To avoid this anomalous solution, one must carefully select the class of admissible su-

persolutions.

slope-a

FIGURE 6.1

95
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The main requirements are two:

e They must be suitable for comparison principles, like the R-subsolutions defined
in section 4.3.

e If we want the infimum of the selected supersolutions to be a solution in the
viscosity sense, it is reasonable to ask them also to be supersolutions in the viscosity
sense. This requires the appropriate asymptotic behavior at regular point from the
right.

We achieve these two goals by requiring that every point of their free boundary be
regular from the left, with the appropriate “concave” asymptotic behavior.

Precisely, let €2 be a bounded Lipschitz domain in R".

DEFINITION 6.1. A function w, continuous in ) is an admissible supersolution if
(a) Aw < 0in QF(w) = {w > 0} and O~ (w) = {w < 0}°.
(b) Every point z¢ € F(w) = 0Q" (w) N Q is regular from the left and near xg
wh (2) < alr —x, )T + o(|lz — z0])
w (z) > B{x — xo,v)” + o|x — xg])
with
a<G(p),

where v is the normal unit vector to the ball at the touching point zg, inward to Q7 (w).
REMARK. No uniformity whatsoever is required on the size of the tangent ball.

We denote by F the family of admissible supersolutions. The Perron method requires

also a subsolution minorant.

DEFINITION 6.2. A continuous function u in € is a strict minorant if:
(a) w is locally Lipschitz
(b) Au>0in Q" (u) and Q (u)
(¢) Every point xg € F(u) is regular from the right and near x,
u (z) < B{x — zo,v)” + o(|lz — zol)
u'(z) > afr — zo,v)" + oz — xo)
with
a>G(F) .

Thus, u is a R-subsolution. Observe that if w € F and wypq > Y90, then w > u in €.

The main theorem is the following ([C3]).
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THEOREM 6.1. Let Q) be a Lipschitz domain and g a continuous function on 0. Suppose
F is non empty and that there exists a strict minorant u with w = g on 02. Then, if G is

strictly increasing and G(0) > 0, the function
u=inf{w:weF, w>uinQ}

1s a viscosity solution of our free boundary Dirichlet problem.

EXAMPLE. Assume that  is the annulus By \ Bi, g > 0on 0B, g <0on d0By. If we
consider ug = 0 on 9By_s and harmonic otherwise we obtain for § small a subsolution. On
the other hand if u; = 0 on 0B, and harmonic otherwise, we obtain a supersolution. We

will construct a solution u between ug and wu;.

We will call v a minimal viscosity solution. As a byproduct of the proof, u turns out
to be locally Lipschitz and nondegenerate. This and the fact that u is constructed as an
infimum of “nice” R-supersolutions gives that the perimeter of the reduced part F*(u) of
the free boundary is equivalent to surface measure (section 6.7).

Then, after an appropriate rescaling of v around a point of F*(u), the free boundary
becomes flat, in the sense of Theorem 5.10, and therefore it is a C'7 surface.

The strategy of the proof of Theorem 6.1, consists in the following steps.

u™ is locally Lipschitz.
u~ is locally Lipschitz (therefore u is locally Lipschitz).
u™ is nondegenerate.

u is a viscosity supersolution.

AN Sl e

u is a viscosity subsolution.

6.2. u* is locally Lipschitz

We first show that, given w in F its harmonic replacement w in Q7 (w) still belongs to

the family F.

LEMMA 6.2. Let w € F. There is w € F such that:
a) Aw =0 in Q" ()
b) vt <w, w” =w", QT (w) C QT (w) and F(w) C F(w).

c) W > u.

PROOF. We solve the Dirichlet problem Aw = 0 in Q (w), W = w on 90T (w).
Since  is Lipschitz and F(w) = 02" (w) N Q has a tangent ball from outside at every

point, @ is uniquely defined and continuous in Q*(w). Clearly QF (@) C QT (w) and since
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w may become identically zero in some connected component of Qt(w), it could be that
QF(w) € Q7 (w). Nevertheless F(w) C F(w). Indeed if g € F(w) \ F(w), then g is an
interior point of a domain where Aw = 0, w > 0, w # 0 in any neighborhood of xg. Since
w(zp) = 0 we have a contradiction.

Therefore any point of F(w) is regular from the left. If w™ has the asymptotic devel-

opment

wt(z) < alr — x0,v)" + o — 30|)
then, since W™ < w™

w7t (2) < alr — z9,v) T + o(|z — 20])
and therefore

W (z) =w () > Bz — z0,v)” + 0|z — 20])
with
a<G(P) .

Thus, w € F and clearly w > u. O

The Lipschitz continuity of u™ is a consequence of the following lemma.

LEMMA 6.3. Let w € F, with w™ harmonic in Q" (w). Assume that, near o € F(w),

wh (2) = alz — x9, )T + o(|z — z0]) .

Then
a) if h = d(zg,0f?),
_ c
0G(0) < glwley (61)
b) for any D CC Q, w" is locally Lipschitz in D with Lipschitz constant L% satisfying
2
LT YT < Hw”L—OO(D) 9

where ¢ = ¢(diam D).

c¢) In particular, Q" (u) is open.

PROOF. a). From definition 6.1, w™ has the asymptotic behavior
w (z) > B{x — xo,v)” + o|lx — xq])

with a < G(0).
Thus, if G~(a) = 0, (6.1) is trivial and « is bounded.
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If G™1(a) > 0, then, since Aw™ > 0 in Q™ (w), we can use the monotonicity formula,

in particular lemma 6.4, to get
1wl 7 0
0?32 < ¢ o ()
and therefore also (6.1).

To prove b), let zp € Q1 (w) N D and yy € F(w) be such that
1
lzo — yo| = d(xo, F(w)) =r < §d(D,8Q) :

Then

IVw(xg)| < cw(xo) :

By the usual comparison with a radial harmonic function in the ring B, (zq) \ B, j2(x0), we

get, near yo,

w(o)
r

b) now follows from a). O

+

wt(y) > ¢ (Y — yo,v)

6.3. u is Lipschitz

We now prove that u~ also is Lipschitz. Notice first that
LEMMA 6.4. If wi,wy € F, w* = min{wy,ws} also belongs to F.

PROOF. Since
QO (w*) = QT (w1) N QT (wo)
any ball B touching F(w;) or F(ws) from the left will also touch F(w*) from the left.
The asymptotic developments in (b) of the definition 6.1 are clearly satisfied, since they

come from those of wy or ws. ]

The proof of the Lipschitz continuity of u~ is based on the following replacement tech-
nique.
Let w be a continuous function in 2 and Bg be a ball, B CC Q. Let
Q) = Q" (w) \ Br
In €4, solve Aw; = 0 with boundary data:
wy =0 on OBr, wi=w" on 00 \IBg .

In Bpg, solve Awy = 0 with boundary data we = —w™. We call the function

w1 in Ql

R(w, BR) = § W2 in BR
w in \ (Ql U BR)
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FIGURE 6.2

the replacement of w in Br. By maximum principle, R(w, Bg) < w in €.

We want to show that if w € F, its replacement in a ball Br(zg) of radius R < w™ (zg)
is still in F.

Thus, let w € F with w™ harmonic in Q" (w) and w(zg) < —h < 0. Fix € > 0,
small, to be chosen depending only on the local Lipschitz constant of u™, or equivalently
on do = d(xg,0f), and let

w = R(w, Ben(20)) -
We want to show that w € F and w > u.

Note first that the strict minorant u, being locally Lipschitz, is strictly negative in
B (xg) for € small, since u(zp) < —h. Hence @ > u. Let us see that w € F.

Clearly, the left ball condition holds for F'(w). We check the asymptotic behaviors.

If v € F(w) N F(w), since w < w, @ has the correct asymptotic behavior. Let now x;
be a point on F(w) where w(x1) > 0. Hence x1 € 0By () N F(w). Since wt(zp) = 0 and

w™ is Lipschitz in By, (20),
w < wh < Loeh in Baep (o)

where Ly is the local Lipschitz constant of w™ in By, p (zg). Thus, if v is harmonic in the

ring Bo.p,(70) \ Bepn (o), vanishing on 9B.p,(xg), v = Loch on 0Ba.;, (), we have
w < v

in the ring. Moreover, since

v(z) < Cd(x,0Bp(x0)) ,
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if near 1 we have
Wt (x) = alr —x, )T +o(|z — z0]) ,

it must be v = 2 —%0
|z1—x0|

and
a<c .
On the other hand, in Bj(xg) we have @ < 0, Aw = 0 and
w(zg) < wlzp) < —h <0,
so that, by Harnack inequality
w(z) < —ch (6.3)

in B.j/2(wo). Thus, the usual comparison with a radial barrier gives, near x1, in Bep(o),

~ ch _ r1 — XQ
< g — — 170
w(x) < o (x — x1,V) (l/ P «’170’)

that implies
W (z) > B{x — xo,v)~
with 8 > €.
Therefore if we chose € such that

c
- > G_l(CO) )
€
w is an admissible supersolution. Moreover, once ¢ is fixed, from interior estimates and
Harnack inequality we get, using (6.3),
- c . c .
V| < J\W(CUON <z in B /2(0)

which implies the equilipschitzianity of w.

We have proved the following Lemma.

LEMMA 6.5. Let w € F, w(xg) = —h < 0, dy = d(xg,00). Then there is € > 0,
depending only on dy, such that:
(a) The replacement of w in B.p(xg), W = R(w, Bep(xg)), belongs to F.
(b) w <w in Q, W > u and
V| <

MmO

in By 2(20).-
COROLLARY 6.6. Let xg be a point where
u(zo) = inf{w(xg), we F, w>u}=-h<0.

Then there exists a sequence {wy} C F, Wy > u and € > 0, depending only on dy, such that

(a) Wi (o) \ u(o)
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(b) Awy =0 in Bep(xo)
(¢) for each k, wy is Lipschitz in Bep(xg) with Lipschitz constant Ly, depending only

on dy.

PRrROOF. Let {wy} C F, wi > u such that

wi (o) \, u(xo) -
Choose k large so that wg(xg) < “(50) — —%. Replace now wy with @y in B.p(z¢) and
apply Lemma 6.5. [

COROLLARY 6.7. u is locally Lipschitz in Q, continuous in Q and harmonic in Q= (u)
and QF (u).

PROOF. We have only to show that u~ is Lipschitz and harmonic in Q7 (u). Let u(xg) =
—h < 0 and {w} as in Corollary 6.6. Then g \, u, uniformly on, say B, /4(z0). Indeed
suppose W = limy .o, Wy, and, w(x1) > u(x1), with x1 € B,y 4(x0). Consider a new sequence
¥y, converging to u at x1 and define @y, the replacement of min{oy, Wy} in B,y a(z0). Then
U N\ @ with: @ < w in Bep, (o), U(z0) = w(xo), U(r1) < w(z1). Since 4 and w are both
harmonic in B,y 4, this is a contradiction. Thus, ™ is harmonic in {u < 0}.

Note also that, since ™ is subharmonic in 2, if u(z) = 0 for a point z € Q7 (u), then

u = 0 in the corresponding connected component of Q7 (u). The proof is complete. [

Finally

COROLLARY 6.8. If K CC (), then there exists {wy} C F such that

Wi "\, U

uniformly in K. If K CC Q™ (u) we may take wy <0 in K.

PROOF. The first part follows from the fact that {w™;w € F} is an equilipschitz family
on K and the previous replacement technique. For the second part let

Kcc Ky ccQ (u)

and assume K and K7 are smooth domains. Let v be harmonic in K3 \I_{ , with v =1 on

O0K1 and v =0 in K. If ¢ is small and v is the exterior unit normal to 0K,
evy < G(0). (6.4)
If wy, \, v uniformly in K7, let k be so large that w; < 5 in K1, and consider

_ min{wg,ev} in K;
Wy, = _
g W in Q\ K
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Then, wy < 0 in K and, thanks to (6.4), w, € F. O

REMARK. u may have lost, of course, the property of being regular from the left (27 (u)).

Thus u does not belong necessarily to F anymore.

6.4. u" is nondegenerate

In this section we use the fact that v is the infimum of R-supersolutions to show that u™
is nondegenerate, with linear growth. As a consequence, F'(wy) — F(u) locally in Hausdorff

distance and X f,, ~01 — X{u>0} i Lio ().

LEMMA 6.9. (a) If z € Q" (u) then
u(z) > Cd(x, F(u))
(b) Let x € F(u) and A be a connected component of QF (u) N [By(x) \ B, jo(x)] such
that
ANOB,jy(x) #0, ANOB.(x)#0 .

Then, supqu > Cr

()
| AN By ()
| By ()]
where all the constants C'’s depend on d(x,08).

>C >0

PROOF. (a). Let g € Q7 (u), set r = d(zo, F(u)) and assume that

d(x()? Q+ (Q)) <

[\ON ]

Then the linear growth of u away from F'(u) gives

sup u > Cr

Bs,./4(0)
hence
sup u>Cr
B3, /4(z0)
and by Harnack inequality
u(zg) > Cr .

We may therefore assume u < 0 on B, 5(z9). We want to show that if u(zo) = o0 <
r we can construct an admissible supersolution smaller than w at some point, giving a
contradiction.

Select a sequence {wy} C F, uniformly converging to u in Br(zo), r < R. By Harnack

inequality for u, we may choose w € F, with w < co on B, /5(zg). Let v be harmonic in
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the ring B, 5(xo) \ B, /4(x0), v =1 on 9B, j5(20) and v = 0 on B, /4(xo). Let M > 0 and
define

0 in Br/4(x0)
w = { min{w, Mov} in Br/2(x0) \Br/4
w in Q\ BT/Q(JUO) )

Then w > u. For M large enough, depending only on n, w is continuous along 0B, /5(xo).
On the other hand, along 9B, j4(z0), vy, ~ % so that, if Mo < r, Mov, < G(0) and w is
an admissible supersolution. Since w(zg) = 0 < u(xp) this is a contradiction. a) implies
that u™ is a Lipschitz harmonic function in Q% (u) with linear growth. The conclusions in

b) and c) then follow from Lemma 3.3. O

6.5. wu is a viscosity supersolution

In this section we want to prove that u is a viscosity supersolution, that is, u satisfies
condition iia) of definition 2.4: if zg € F(u) and at zg there is a touching ball B C Q" (u),
then, near xg, in B

ut (1) = alr — z0,v)T + o]z — 20]) (> 0)
while in CB,
u(z) = Bz —zo,v)” +o(lz —zo])  (620)
with
a < G(B) .

This is a consequence of the following slightly more general lemma.

LEMMA 6.10. Assume that xo € F(u) and near xg
ut(x) = alr — x9,) T + oz — 20]) .
Then, if
u (z) = Blx —xo,v)” + o]z — x0])

we must have

a<G(B) .

PROOF. Let dy = d(xo, 02) and {wy} C F, wg \, w uniformly in By, ,(20). Then, given
a neighborhood B(zg) of xg, wy cannot remain strictly positive in B(xg), for all k large,
otherwise u would be a non-negative harmonic function, and therefore identically zero.

For each wy, let

1
B = By, , (56‘0 + —V)
’ m



6.5. u IS A VISCOSITY SUPERSOLUTION 105

m,k

F(w) F(u)

FIGURE 6.3

be the largest ball center at o + v, contained in Q% (wy,), touching F(wy,) at Ty ki, With

m
unit inward normal vy,  at z,, ;. Then, modulo subsequences, for £ — +oo0,

)\m,k — Am T,k — Tmy, Vmk — VUm

with B, (zo + =v) touching F(u) at ,,, with unit inward normal vy,.

Hence from the behavior of u™,

1
|Tm — xo| = 0 (—>
m

1 1 1
m m m
|Um —v| =o0(1) .

Now, since wy € F, definition 6.1 gives, near ,  in By,

Wi (%) < Q@ — T o Vi) T + 0(|2 — Ty )
and in CB,, j

Wy () = Bm T — T ks Vimk)~ + 0|2 — T i)
with

0< A & < G(ﬁm,kz) :

Since w,j > ut, we deduce

Q= liminf o, p > o — &,
k—+o00 ’

where €, — 0 as m — +o00.

The proof will be complete if we show that

f = limsup Bpp <05

m,k—+o00

This is a consequence of the upper semicontinuity of the limit in the monotonicity formula.
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Indeed, if 5 = 0 there is nothing to prove. Thus let B,k > 0. Fix r > 0 and let

+12 — |2
) 4 n—2
r Br(.'ljm BT(xm,k

) |z — Ty ke ) |z — 2 g2

Then, from Lemma 12.5, for every r

Jr (T o, wi) 2= C(”)a?n,kﬁgz,k : (6.5)
On the other hand, we have
kliIll Jr(Xm ke, W) = Jr (T, w) (6.6)

since Ty, ; — Ty and wy, — v uniformly. For the same reason
mEIE% I (T, w) = Jr(x0,u) . (6.7)
From Lemma 12.5 we have also
li_r}rg) Jy(z0,u) = c(n)a?F? .
Hence, given € > 0, there exists r such that
Jr(x0,u) < ¢(n)oF* + ¢
and, from (6.5), (6.6), (6.7), there are m, k such that

c(n)ag, kBmp < e(n)a?5? + 2¢

Since liminf,, 400 O k > «, it follows that B < p. O

6.6. u is a viscosity subsolution

We want now to show that u is a subsolution in the viscosity sense, that is, u satisfies
condition iib) of definition 2.4: If 2y € F(u) is a regular point from the left with touching
ball B C Q7 (u), then, near z

u (@) = Ble—a0.0) +oll —zol) B0
in B, and
ut(z) = alz —zo, )" +o(lz —20])  a>0
in CB, with
a>G(B) .

Actually, due to the nondegeneracy of u™, even if 3 = 0, both Q7 (u) and Q™ (u) are
tangent to {(z — zo,v) = 0} at xg and therefore u has a full asymptotic development, as in

the next lemma.
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A
Ug(X-yv)

9B,

>
<X,v>=-y

FIGURE 6.4

LEMMA 6.11. Assume that near xg
w(x) = afz —xo,v)" — Bz — x0,v)” + 0|z — 0|)

with a > 0, 3> 0. Then
a>G(B) .

PROOF. We use a perturbation argument, to show that, if & < G(f) we may construct
a function w € F, smaller than v at some point, contradicting the minimality of wu.

Let
1
up(v) = )l\ir% XU(IO +Az) = alz, V)T — Blz,v)” .
Assume a < G(f) — dg, with §g > 0 and choose wy \, u uniformly, so that (Corollary 6.8)

wi < 0on any K CC Q2 (u). Then, for any v = 7(d) > 0 to be chosen, we can find A\, k so

that
1
wi A (x) = ka(xo + \x)

satisfies:

(a) if B> 0, wpa(x) < up +ymin{a, 3} in By
(b) if =0, wga(z) < up+ ay and

wA(z) <0 in {{z,v) < —y} N By .
Equivalently, for any v > 0,
wi\(z) < ug(z +v) in By .

We now make a standard perturbation of ug by changing its free boundary, still keeping

it a supersolution:
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(Xv)=-y+ep(x), y<e

FIGURE 6.5

Define v as follows:
v(x) =up(x +yv) on 0B
v(x) =0 on (x,v) = —v+ ep(x)
Av=0 if (x,v) S —v+ep(z)

where ¢ > 0 is a cut-off function, ¢ = 0 outside By, ¢ = 1 inside B;,4. Along the new

free boundary,
Fv) ={{z,v) = =y +ep(x)}
we have, by standard estimates
v —al<cle+), |, =Bl <cle+n).
Hence, if we choose €,~ small, depending only on §g, and rescale back, the function

& — 4 min{we, (5(@ = 20))}  in Bi(ao)
Ok in Q\ By (x0)

becomes an element of F, since
vy < G(v,)
along F'(v).
Moreover, if v < ¢, the set
{{z,v) < =7y +ep(2)}

contains a neighborhood of the origin, that implies, after rescaling back, o € Q™ (wg), a

contradiction since Q7 (wy) D Q1 (u). O

REMARK. Let us stress once more that the minimal viscosity solution does not neces-

sarily belong to F.
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6.7. Measure theoretic properties of F'(u)

The minimal viscosity solution constructed in section 8 is locally Lipschitz and u™ is
non degenerate. Thus, we can apply to u™ Theorem 3.4 and conclude that F(u) has locally
finite (n — 1) dimensional Hausdorff measure; moreover, for H" '-a.e. point x € F(u) and

any ball B,(x) CC €,
H" Y F(u) N B(z)) ~ "1,

In particular, Q" (u) N B.(z) is a set of finite perimeter. As we pointed out in the
introduction, there is always the danger of ending up, locally, with a solution u that behaves
like u ~ |z1] for which our “fatness implies C“ theorem” will not apply in a non negligeable
part of the free boundary. We show now that this is not the case for our u. This is because
the minimality feature of v allows us to say that also the perimeter of this set is equivalent

to 7"~ 1. Precisely:

THEOREM 6.12. The reduced boundary of QO+ (u), has positive density in H" 1-measure
at any point of F(u), i.e.
H" Y F*(u) N By(2)) > er™?

for every x € F(u).

PROOF. Let xg € F(u). By rescaling, letting

1

up(z) = ;u(r(a: — x9))

it is enough to consider r = 1 and xg = 0. Let v be the auxiliary function (see the proof of
Theorem 3.4) satisfying (o < 1)

1
| Bo
v=20 on 0B;j.

Av = —

|XB0' n Bl

Take now w € F. Since w > u in QF(u), QT (u) N By cC QT (w) N By, so that Vw is a
continuous vector field in Q2+ N By and we can use it to test for perimeter.

Therefore we can write:

/ (VAw — wAv) = / (vw, — wv,) dH"™1 — / wv, dH"™1 (6.8)
Qt (u)ﬂBl F* (u)ﬂBl 8BlﬂQ+(u)

Choose now wy, \, u uniformly in By, Awy = 0 in QT (u). Since the wy, are uniformly

lipschitz, |v,| ~ cg on By and 0 < v < co?™™ outside B,, we have

\/ - (wk)yvdH”_l‘ < o> "H" Y (F*(u) N B)) .
*(u)NB1
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Moreover, as k — 400,
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/ wrv, dH" 1 =0, / wrv, dH" 1 — / wto, dH™ !
*(u)ﬂBl 8BlﬁQ+(u) 0B

and

1
—/ wiAv = Wy —>][ ut .
Ot (u)N B 1Bo| Jotwns, B,

Thus, from (6.8) we get

+ / uTv, dH" 1 < co® "H" 1 (F*(u) N By) . (6.9)
0By

By the nondegeneracy of u* we can write

/ uwto, dH" 1 > ¢ > 0
0B

while by Lipschitz continuity,

][ u+§02a.

Choosing 0 = ¢1/2¢y the proof is complete. O]

REMARK. In general, if 9 has finite (n — 1)-dimensional measure, H [La_*}z is absolutely
continuous w.r.t. H"~! with density f, 0 < f <1, H" l-a..

The theorem shows that, in our case f is strictly positive on F*(u):

O<pu<flxr)<1, H" lae. on F*(u) .

In particular

H Y (F(u) \ F*(u)) =0 .

6.8. Asymptotic developments

We want to show that, H" !-a.e. along F(u) and in particular at every point xq of the

reduced free-boundary F*(u), u has an appropriate asymptotic development.

First of all, recall that, if {2 is a set of finite perimeter and 90*( is its reduced boundary,

the following structural theorem holds [G]:

THEOREM 6.13. Let ) be a set of finite perimeter. Then, for every point x € 0*QQ, there

exists a normal unit vector v(x) in the measure theoretic sense, i.e.

and

QN Br(z)Nn{{y —x,v) >0} 1
G B,(2)] =3 (6.10)

JeonB@n{y-nn) <0} 1
it B,(0) =3 (6.1)
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In other words, (setting = = 0) if
Q. ={z:rzxeQ},

(6.10), (6.11) are equivalent to

Q-NBN{{y,v) >0} 1
L
| B1| 2

and
CQ.NBiN{{y,v) <0} 1

— = .
| B1| 2
That is, 2, N By and CQ, N By converge in measure to the half ball By N {(y,v) > 0} and
B1 N {{y,v) <0}, respectively.
We have

LEMMA 6.14. If xg € F*(u), u has at xq the asymptotic development (v = v(xg))
u(x) = alz — xo, )T — Blx — 20,v)” + o|r — z0|)
with
a=G(P) .
Before proving Lemma 6.14 let us point out some general facts, regarding perturbations
of two-plane functions.
Let > 0, 8> 0 and
ug(x) = axt — Bz, . (6.12)
Let ¢ be a cut-off function in By, ¢ =1 in By/3, ¢ =0 outside By/3. For € > 0, set
Ot = BN {x, > vp(x)}, O =B\ Q"
and consider the function v, so defined:
Avy =0 in QF and Q°
vy = az;’ on 0By N{x, >0}, v, =—PFz, on dB; N {zx, <0}
vy =0 on ByN{z, =7yp(x)} .
Then we have the following lemma, whose proof comes from standard estimates.
LEMMA 6.15. Let ug and v, be as above. Then, if v — 0,
(W) —a and  (v]), — 0

uniformly in Bz N {xy, = yo(z)}.

As a consequence:
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COROLLARY 6.16. Suppose that u s a minimal viscosity solution of our free boundary

problem such that |u — ug| < € in By. Then, if € is small enough, we must have in (6.12)
oo = G(B)| < (e)
where 6(¢) — 0 if ¢ — 0.

PROOF. Suppose not. Then o — G(3) > ¢ > 0 for a sequence £; — 0. Consider the
auxiliary function v, with v < 0. A translation v, s(x) = v, (x —se,), for some s, |s;| < €},
will touch the free boundary of u at a point x; € By/3, regular from the right and inside
the strip |z,| < e. If v and ¢; are small, by Lemma 6.15, v, s is a classical subsolution.

Contradiction.

The case o — G(8) < —¢ is treated analogously. O
Suppose now that 0 € F*(u), v(0) = e, and rescale defining
1
up(z) = Eu(Rx) :

Then, since QT (ug) = Q% (u), the structural theorem 6.13 says that By N QT (ug) and

B1 N~ (ug) converge in measure to the half balls
szBlﬁ{xn>0} and B; = B;N{z, <0}

we have:

LEMMA 6.17. Given € > 0, there exists Ry such that, if R < Ry,

QF(ug) N By C {x, > -} N By . (6.13)

PROOF. From the uniform positive density of Q" (u) along F(u), if R; — 0 and z; €
OV (up,) N{x, < —} N By, then |B, )o(x;) QT (ur,)| > ce, contradicting the convergence

in measure of Q" (ug,) to By . O

Notice that Lemma 6.17 implies that B N Q™ (ur) D {x, < —e} N By.
The proof of Lemma 6.14 is an immediate consequence of the next lemma which deals

with the asymptotic behavior of the sequence of rescalings {ugr}, as R — 0.

LEMMA 6.18. There exist unique o > 0, 8 > 0 such that every sequence { Ry}, Ry — 0,

has a subsequence { Ry, } such that

ur,, — axf — foy

uniformly in any compact subset of R", with a = G(3).
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PROOF. Let Ry — 0. Since {up,} is an equilipschitz family, we can extract a subse-
quence {u Rkj} converging uniformly in larger and larger balls to a limiting function wuyg.

We now use the monotonicity formula and the results in chapter 12. Let

1 |Vu™|? Vu~|?
J R — d d
R0 =g [, T @ [, T

Since Jg(u) is increasing, (Theorem 12.3)

Jr(u) | Jo(u) =~ -

Assume vy > 0. Since Jr(u) = J1(ur) and URy, — Uo uniformly in Bs (say), we can write

Ji(ur,,) = Ji(uo) =0 = Jo(uo) -

It must be Jy(ug) = 9. In fact, if Jo(ug) < 70, we have J,.(up) < o for r small. On the
other hand, if (ug),(z) = uo(rz)/r,

Jr(uo) = J1((uo)r)

and, since for r fixed,

%uRkj (rx) = UrRy, (z) = (uo)r(z)

uniformly, we have
Y0 < Ji(urr,, ) — Ji((uo)r) -

Contradiction.

Therefore Ji(ug) = Jo(up) which implies that J,(ug) is constant. Formula (12.14)
Corollary 12.4 (both in part 3) force ug and ug to be linear functions.

From the nondegeneracy of ug and Lemma 6.17, we deduce Q" (ug) C {z,, > 0} so that
we can write

ug(r) = ax — Bz, . (6.14)

Then, from Corollary 6.16 it must be

a=G(p) .
The case 7y = 0 reduces to 79 > 0 considering instead of u, & = u — ex,,. Then we obtain

a limiting function ug such that
+

ig (z) = ax .
Since 2 (fg) C {z, > 0} if g is like before, 4§ = ug and the nondegeneracy of ud implies
that 5 =0 in (6.14).

It only remains to prove that «, 3 are independent of the particular selected subsequence.

This follows as in the end of section 3.3, from Lemma 12.5 and the strict monotonicity of

G. O
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6.9. Regularity and compactness

It is now easy to see that if u is a minimal viscosity solution, then F'(u) is a O surface
around H" l-a.e. point.

Precisely, we have

THEOREM 6.19. For every xg € F*(u) N By s, F(u) a CYY surface in a neighborhood of

xXg-.

PROOF. Let 0 € F*(u) and ug; = %U(ij) be a sequence of rescaling of u, converging
J
to
— ot B
uo(z) = aw, — B,
as in the proof of Lemma 6.14. From the same proof, it follows that, given €, for R; < Ry(e),
F(ug;) N By is contained in the strip |z,| < . Thus, since uE is non degenerate, u}g falls
under the hypotheses of Theorem 5.10.

This ends the proof. O

As a final result we give the following compactness results.

THEOREM 6.20. Let ug be a sequence of minimal viscosity solutions to the free boundary

problems
Aup, =0 in Q7 (ug) and Q (uy)

(wf)y = Grl(uy )v)
Uy < Up < U -
Assume G, — G and u, — uw uniformly and that the assumptions on Gy and w;, are satisfied
uniformly (in particular, the uniform one side regularity of the free boundary of uy, ).
Then, if up — u uniformly in a domain D, u is a viscosity solution of the limiting free

boundary problem in D.

The proof is an adaptation of those of Lemmas 10 and 11 and we leave it as exercise.

(Hint: Let xg € F'(u) be regular from the right (left) and near xg
u(r) = alr — xo, )" — Bz — z0,v)” + o]z — 0]) .
Let z € F(ug) be regular from the right (left) and near zy,
wy(x) = ag{x — 2, )T — Bz — 20, v6) " + o]z — 20]) .
Prove that if x;, — g, then

ap < liminf ay . (Bo > limsup B) .)



Part 2

Evolution Problems



CHAPTER 7

Parabolic free boundary problems

7.1. Introduction

In this part we will discuss several free boundary problems of evolution type.

The typical problem, consists mainly on finding a function, u, in a space time domain,
that satisfies some parabolic equation (usually the heat equation) when w is different from
zero (one or two phases), and across the surface where u vanishes, there is a a balance
condition between the speed of the interphase, that is of the zero level surface, and may be
the flux discontinuity, i.e., the jump on the normal derivative of u, and may also be some
geometrical quantity along the free boundary, like its curvature.

As in the elliptic case, and at a difference with, for instance conservation laws, where
the conservation law or constitutive relation is a smooth function across a shock, and it is
the solution itself that jumps from an admissible value to another, in the case of a parabolic
free boundary problem, it is the law itself that changes discontinuously.

Some examples are Stefan like problems, that is problems of melting or solidification,
where caloric energy changes discontinuously across the melting temperature (see e.g. [D],
[F1], [F2], [K]), problems of flame propagation, where the existence of a sharp flame front
is assumed (sometimes constructed as a limit of singular perturbation problems as in our
example of chapter 1 [CV], [CLW1], [CLW2]), and more recently problems arising from
financial mathematics where the edging strategy changes when the present value of an
option goes through certain threshold.

Mathematically, the general lines of attack of the problems follow naturally those of the
elliptic case, and the necessary tools are similar: Harnack type inequalities in the interior
and at the boundary of one of the phases, optimal regularity, monotonicity formulas, and
the perturbation techniques, through continuous families of supersolutions.

But one soon realizes that the study of these problems entails new serious difficulties.

A first obvious one is the role of time, and it is already present in the standard Harnack

inequality, that says that for a non negative solution, in a parabolic cylinder, the past

117
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controls the future only by below, since one can obviously “inject” as much heat as one
likes from the sides of the cylinder, something that the bottom will never see.

This implies that on one hand stronger hypotheses have to be made in the geometry of
the problem, or the starting configuration, and that the very strong local conclusions we
obtained in the elliptic case, do not necessarily hold.

An example of this phenomena, is the waiting time counterexample to instantaneous
regularization of the free boundary for a two phase Stefan problem, that we discuss below.

A second difficulty comes from the different homogeneities corresponding, on one hand
to the evolution equation that u satisfies away from the transition surface (being a parabolic
equation, it remains invariant under dilations that are linear in space and quadratic in time),
and on the other hand to that of the free boundary, that, relating speed with flux, is of a
Hamilton Jacobi nature, and as such scales homogeneously of degree one, both in time and
space.

Hence we are faced with the dilemma that parabolic scaling will keep the heat equation,
but will, generically, make the free boundary vertical, and information will be lost, and
hyperbolic scaling will preserve the asymptotic geometry of the free boundary but we will
lose the time derivative in the parabolic part, disconnecting v in time away from the free
boundary.

Thus the very delicate balance in the intermediate rescaling we will use in the Stefan
problem, that allows us (for us an almost miraculous fact) to reconstruct a Dini domain
out of our iteration process.

Finally, the third ingredient we miss, is the very strong, local geometric measure the-
oretical properties of the free boundary, and this can usually be seen in the case in which
there is focusing (total melting of a solid region, or extinction of a flame) and all hopes of
universal regularity or non degeneracy are broken.

This is one more reason why we can only treat geometries for which one can assert a pri-

ori that, at least after finite time, focusing is ruled out (for instance, flatness hypotheses).

7.2. A class of free boundary problems and their viscosity solutions

Perhaps the best known example of parabolic two-phase free boundary problem is the
Stefan problem, a simplified model describing the melting (or solidification) of a material
with a solid-liquid interphase.

The concept of solution can be stated in several ways: classical solutions, weak solutions

on divergence form or viscosity solutions.
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Locally, a classical solution of the Stefan problem may be described as follows. In the
unit cylinder C; = Bj x (—1,1) we have two complementary domains, Q" and Q= = C;\QF,
separated by a smooth surface FF' = 9Q" N C;. In Q7 and O, respectively, we have two

solutions u; and wuo of the heat equations
Aul — alﬁtul =0= AUQ — agé?tuQ

with u9 S 0 § Uui.
The functions u; and ug are C! up to F and along F, both u; = uy = 0 and the
interphase energy balance condition

(9tu¢

= |Vui| — |Vug (7.1)

are satisfied. Note that the ratios (for i = 1,2) in the left hand side of (7.1) represent the
speed of F' in the direction —v, v = Vu™/|[Vu™].

What one is able to construct for all times are weak solutions to the equation
Au € [(u);

with 8(u) = aju™ — agu™ + sign u, subject to proper initial and boundary conditions ([K],
F1), [F2).

From [CE], u is continuous in C; and heuristically, u; = u™ in QT = {u > 0}, ug = —u~
in Q~ = {u <0}° and F = 0{u > 0} N C; becomes the free boundary.

Modeled on the example of the Stefan problem, we formally introduce the following
class of free boundary problems (f.b.p. in the sequel).

To find a function u, continuous in C; = B} x (—1,1), such that
(a) Au—ajus =0in Q7 (u) = {u > 0} NCy, and

Au —asuy = 01in Q (u) = {u <0}°NC;
(b) On F(u) = 0Q*(u) NCy, the (free boundary) condition,

V, = —G(u},u)) (7.2)

v

must be satisfied, where a; > 0, ag > 0 and V,(-,7) is the speed of the surface
F(u) N {t = 7} in the direction v = Vu™ /|Vu™|.

The basic requirements on the function G : [0,00)? — R are

(i) G is continuous in [0, c0)?
(i) G is strictly increasing in u;} and strictly decreasing in u;,

(i) G — 400 when uf —u,; — cc.
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Note that there is no nondegeneracy property of GG, since this is the case of the Stefan
problem. In fact, harmonic functions are stationary solutions of a Stefan problem and we
cannot hope for nondegeneracy properties in this case.

Let us now define what we mean by a C* classical (k > 1) sub, super, solution.

DEFINITION 7.1. A function v € C(Cy) is a C*-classical subsolution if:
(a) v € CH@* (1) N CHO(v)
(b) Av —ajvy > 0 in Q% (v) and Av — asvy > 0 in Q™ (v).
(c) The free boundary F(v) = Q% (v) N Cy is a C* surface, |[VoT| > 0 on F(v) and

v + o
-V, = = < G(UV 7UI/) (73)
(%7
where v = %

The across condition (7.3) indicates that the speed of F'(v) towards the “solid phase”
{u < 0} is “smaller” for a subsolution than for a solution. If the inequality in (7.3) is
strict, we call v a strict-subsolution.

A CP-classical supersolution is defined by reversing the inequalities in (b) and (7.3). A
C*-classical solution is both a C*-classical sub and super solution.

As in the elliptic case, we use classical strict sub and super solutions as test functions
to define viscosity solutions.

Again, from now on, it is understood that k£ = 2. Let
Qr(zo,t0) = B;(xo) X (tg — T2,t0] .

DEFINITION 7.2. A function v € C(C;) is a viscosity subsolution (supersolution) to
f.b.p. if, whenever (xg,t9) € F(u) and v is a classical strict supersolution (subsolution)
in @Q,(zo,tg) C C1, then v cannot touch u from above (below) at (xg,%p); u is a viscosity

solution if it is both a sub and a supersolution.

In other words, if u is a subsolution and v is a classical strict supersolution in Q,(zg,tg) =
Qr, and (zg,t9) € F(u), it is not possible that v > w in @, \ {(xo,t0)} and v(zg,ty) =
u(xo,to). Analogously if u is a supersolution and v is a subsolution in Q,(zg,t) it is not
possible that v < u in @, \ {(zo,t0)} and v(zg,to) = u(xo,to).

It is easy to check that a C*-classical (sub, super) solution is a solution in the viscosity
sense and that a viscosity solution u which is of class C?, with its free boundary, in Q% (u)
and Q™ (u) is also a C?-classical solution.

Sometimes it is more convenient to use the definition of viscosity solution in the following

equivalent form.
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DEFINITION 7.2'. A function u € C(Cy) is a wiscosity sub (super) solution to f.b.p. if,
for any cylinder @, Q CC Cy, and for every classical strict super (sub) solution v in Q, u < v

on 0,@ implies © < v in Q; u is a viscosity solution if it is both sub and supersolution.

Indeed the definitions 7.2 and 7.2" are equivalent.
(a) 7.2 = 7.2. Let u be a viscosity subsolution, (zg,t) € F(u), @, = Q,(xo,t0) C C1

and v a classical strict supersolution in @, such that v > u in @, \ {(zo,t0)}. If
u(zo,tg) = v(zg,to) we have a contradiction to 7.2" (in a slightly smaller cylinder
Q. (xo,t0), ¥ < 7).

(b) 7.2 = 7.2'. Let u be a viscosity subsolution, Q CC Cy, v a classical strict superso-
lution in @) such that v > u on 9,Q. Suppose v > u in Q@ is not true. Then, there
is a first time 7 and a point (xg,7) € F(u) N F(v) such that u(xg,7) = v(xg, 7).
Assume e, is the normal direction to F'(v) at (zg,7). Then, near (zg,7) we can

write,
v(z,t) = (Oé+($ —x0)p + BT (t — 7'))7L — (of(x —xo)n + 0 (t — 7'))_ +o(lz — zo| + |t — 7))

where a* = v | g* = v, with ot >0, a~ > 0 and

b _ i > GlaT,a7) .

Q at
On the other hand, for ¢t < 7, u(x,t) < v(z,t), and therefore, using theorem 1 in

the next section, we deduce

F < T o).
a__C(a L)

Contradiction. ]

REMARK. Weak solutions of the two-phase Stefan problem are viscosity solutions. This
follows from the following comparison theorem in [F1]: if u and v are sub and supersolution

in C; and v > v on 9,Cy, then v > v in C;.

7.3. Asymptotic behavior and free boundary relation

From the results in section 13.3, and in particular from Lemma 13.20, we can deduce
asymptotic inequalities at regular points of the free boundary and give a weak formulation
of the free boundary condition. First, let us clarify what we mean by regular point in this

case.

DEFINITION. A point (0,0) on F(u) is a regular point from the right (from the left) if
it has a touching ball B C Q7 (u) (B C Q (u)) with tangent plane of finite slope.
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The following theorem holds (JACS1]):

THEOREM 7.1. Let u be a wviscosity solution in Cy of the f.b.p., according to either
Definition 7.2 or 7.2. Suppose (0,0) € F(u) and that near (0,0), for t <0, the following
asymptotic inequality holds

(a) u(z,t) = (BTt +a™(z,v))" = (87t +a (2,v))” +o(d(z,t))
with o™, 0,87, €eR, at >0, a” >0

or
(b) u(z,t) < (BTt + o™ (z,v))" = (7t +a (z,v))” + o(d(z,1))
with o™, 0,87, €R, at >0, a” >0
where v denotes the inward spatial direction to Q*(u) at (0,0), and d(x,t) = |z| + |¢|.
Then

_I_
ﬁ—_i_ > Glat,a) (supersolution condition) (7.4)
o
in case (a), while
6—_ < Glat,a— (subsolution condition) (7.5)
o

in case (b).

PROOF. We give it only for case (a), the other case being completely analogous.
Let N denote the neighborhood in which (a) is valid and assume v = e,,. Define, for
A> 0,
up(x,t) = %u()\x,)\t) :
Then, in N,
uy(z,t) > (T, + )T — (a2, + 87t) +0(1)

where o(1) — uniformly in N, when X\ — 0.

If now (7.4) were false, there would exist n > 0 such that
+

+ —
a—+§G(a Lo ) =1 .

We show that this leads to a contradiction. Let R be a small parabolic neighborhood of
(0,0) contained in N, i.e.

R={(a,zp,t) : |2'| < a, |z,| <b, —tg <t <0}

with a, b, tg small. Define
LS

¢($/,$n,t) = 54+33n —|— B+t — Ct2 —|— ZC% — m



7.3. ASYMPTOTIC BEHAVIOR AND FREE BOUNDARY RELATION 123

where at = at 4+ ¢, 87 = BT + ¢ for some ¢, positive and small, to be determined
later. Choose C' > 0, large, so that the level surface {1y = 0} is strictly convex and
{ >0}NRC Q" (u).
Observe that
Ay — Aayy = 1 — da (BT —2Ct) > 0

in R if A\ is small enough.
CLAIM. Ife,a,b,tg are small enough, depending on n, G, then the function
s0=z/1+—(ié—+¢_ with = =a  +¢
Qa

1s a classical strict subsolution to the f.b.p. in R.

To prove the claim, it is enough to show that

+
QOt + _

< G(|Ve'|, |V 7.6
oo < GUVeT Ve (7.6)

on {p =0} N R. By continuity, ¢; /|Ve™| is close to

pi (0,00 gt

Vet (0,0)]  at
uniformly in R. On the other hand
gt pr

pen e M AR Ga™,a7) —n/2

if ¢ = £(n) is small enough.
Since G is continuous in all of its arguments, we obtain (7.6) if the size of R is small
enough.

If we now choose \ very small, we see that
uy(z,t) > (T, + )T — (a zp +B71) +0(1) > o(z,t)
on the parabolic boundary of R, hence in R\ {(0,0)}. Since uy is a viscosity solution

of the f.b.p., we must have uy > ¢ in R. But then, 0 = u)(0,0) > ¢(0,0) = 0 gives a

contradiction. 0

REMARK. Let u be a viscosity solution in C; and (0,0) € F(u). If (0,0) is a regular
point from the right (resp. left), then (a) (resp. (b)) holds near (0,0). Precisely, let B an
(n + 1)-dimensional ball touching F'(u) at (0,0) from the positive side. Let v = e, be the
spatial inward unit normal to B at (0,0) and azx, + 5t = 0 be the equation of the tangent
plane. Assume that the slope —3/a is finite (& > 0). Then, apply Lemma 13.20 to u™ and
u~ . We obtain

ut(z,t) > (aFz, + BTt)T +o(d(x,1)) (7.7)
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in B, with o™ > 0 (that we may assume finite) and 8% € R, and
u (x,t) < (@ xp + 07t) + o(d(z,1)) (7.8)

in CB, with = > 0 (finite) and g+ € R.

Then, the conclusion of Theorem 7.1 follows. In particular, note that

B _ Bt
o0 > 5 = Q{_+ Z G(Oé+,CM_)

and therefore sup{a : (7.7) holds} < oo.

Regular points from the left can be handled in the same way. Also, we know, from the

2
no

same lemma, that equality holds in (3) and (4), along paraboloids of the form ¢t = —vz
v > 0.

7.4. R-subsolutions and a comparison principle

As in section 2.3, for comparison purposes, it is useful to introduce another class of
subsolutions. We say that v € C'(Cy) is an R-subsolution if
(i) Av—ajvy >0 in QT (v), Av —azvy > 01in QO (v)
(ii) whenever (zg,t9) € F(v) has a touching (n + 1)-dimensional ball B C Q*(v), then,

near (xg,ty), in B,

v (x,t) > (o (x — o, v) + BT (t — 1)) + o(|lz — xo| + |t — to]) (7.9)
and in CB
v (z,t) < (o (¥ — @0, v) + B~ (t —t0))” + o(lx — wo| + [t — to]) (7.10)

where a™ > 0, f* € R, v = v(xo,ty) is the spatial inward unit normal to B at
(0, t0),
Bt <atGat,a”) (or B~ <a G(a™,a7)). (7.11)
Here
at{x —xo, ) + BT (t —tg) =0=a (x —x0,v) + B (t — o)
are equations for the tangent plane to B at (xg,tp).

The following analog of Lemma 2.1 holds.

THEOREM 7.2. Let u,v be a viscosity solution and an R-subsolution in Cq, respectively,
with u > v. Moreover let uw > v in QT (v) and (0,0) € F(v) N F(u). Then, (0,0) cannot be

a reqular point from the right.
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PROOF. Suppose B C Q7 (v) touches (0,0), with tangent plane ax, + 8t = 0, —3/«a
finite. Then, near (0,0) in B, we have

vt (x,t) > (@b, + 87)T + o(d(z,t)) (a® > 0) (7.12)
and in CB,
v (x,t) < (o x4+ B7t)” +o(d(z,t)) . (7.13)
From Theorem 7.1 and the Remark after it, we know that, near (0,0)
ut(x,t) > (atx, + BT + o(d(x,t)) (7.14)
in B, and
u”(z,t) > (@ xp + B t)” + o(d(z,t)) (7.15)

in CB, with equality along any paraboloid of the form t = —y22, v > 0.
We have:

a) computing along the paraboloid t = —yx2, v > 0, from (7.12)—(7.15) and u > v,

we deduce

and therefore

Gat,a”)>Gat,a7) . (7.16)
b) From (7.11) and (7.4) of Theorem 7.1, since at > 0,
I - L
Ga",a )g@—+:a—+§G(o¢ ,a ) (7.17)

which implies, by the strict monotonicity of G,

at=a", a =a"

2
no

On the other hand u— v is supercaloric in Q7 (v), so that Hopf principle along t = —~vx

gives, for some € > 0,

_|_

u—v>ex,) .

Contradiction. ]



CHAPTER 8

Lipschitz free boundaries: weak results

8.1. Lipschitz continuity of viscosity solutions

As we already mentioned in the introduction of chapter 7, the regularity theory follows
the lines of the elliptic theory, at least for the class of parabolic problems we deal with.

Thus, as a first step we assume that the free boundary is given by the graph of a Lipschitz
function in space and time. Although Lipschitz regularity in time versus Lipschitz regularity
in space is not, of course, the natural homogeneity balance for the study of general parabolic

equations, it is so for the study of phase transition relations of the form
Ful,u,,V,)=0

along the free boundary, which are invariant precisely under hyperbolic scaling.

In this chapter we first prove optimal regularity (Lipschitz continuity) for a solution
and then we refine the results in section 8.2, giving a more precise free boundary behavior.
In the last section, two counterexamples, one in spatial dimension n = 2 for a one-phase
Stefan problem, the other one in dimension n = 3 for a two-phase Stefan problem, indicate
that, in general, there is no instantaneous regularization of the free boundary.

We now prove optimal regularity of a viscosity solution, having Lipschitz free boundary

([ACS1)).

THEOREM 8.1. Let u be a viscosity solution to f.b.p. in Cy = By N (—1,1). If F(u) =

OO0 T (u) is Lipschitz in some space direction v, then u is Lipschitz continuous in Ci/2-

PROOF. Let dy so small that all the results in section 13.2 can be applied in a dy-
neighborhood of F(u), from both sides. In particular, from corollary 13.15 we have |u;| <
C|Vul. Thus it is enough to show that the spatial gradient is bounded across F(u).

We show that |Vu™| is bounded; a similar proof can be done for [Vu~|. Take (zq,tg) €
QT (u)NCy /9 at distance d from F(u), with d < dy. Suppose that the (n+1)-dimensional ball
By(zo,to) touches F'(u), say, at (0,0). Let h = dist((xp,0), (0,0)) and note that cd < h < d,
for ¢ = ¢(L,n). Set u(xg,0) = Ah. We want to show that A is bounded. By interior
estimates this proves the theorem.

127
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As in Lemma 13.16 set, in Q" (u)

+e

wy =u+ul™, w_=u—ulTt.

We know that Aw; >0 and Aw_ <0 in QF(u) N {¢t = 0}. Moreover
wy < cw_ .
At time t = 0, we have

Ah = u(x9,0) < wy(20,0) < ][ wy < C][ w- <co inf w_
By, /4 (xo) /4 (@0) By, (o)

where the constant ¢y depends only on n, L, a; and the value of u at, say, (%1/, —%).
Considering n > 2, set
Ah R =2
H(x):co(r”_z—l) (r”2_1) r=|r— x| .
Then AH = 0 in the ring Bj(zo) \ B;L/4(x0), H = 0 on 0Bj(xg) and H = Ah/cy on

0By / 4(z0). By maximum principle, u > w_ > H in the ring. Choose the coordinate system

so that xg = he,,. Then, near 0, inside the ring,
u(x) > w_(x) > cAx, + o(|z]) . (8.1)

We now construct a classical subsolution in a small cylinder around (0,0), smaller than
on the parabolic boundary.
Let C), = B, X (=p,p), p < % and define on the hyperplane {t = 0}, in By (z9) N By,

1
— .
U7y

Fix p small so that v < 1 and define in C,

2 (a,1) = 5 [0+ then) + (ol + t0e))]

Then, in {z* > 0}
Azt — 2t =|Vu]? — %ﬁuzn(l — 2u,,))
> Vg, (Vz, — €B) 2> (€A —cff) >0
ifo0<pg< Q%A. Let also § > 2L, L the Lipschitz constant of F'(u) and, if necessary, lower
p to make sure that u > z* in {z7 > 0} N {¢t < 0}.

Let Qt =C,Nn{z" >0}, Q" =C,\Q",and Q_, =Q N{t = —p}. In Q_, define w
as follows
Aw =10 in Q_,
w =0 on 0Q_, N F(z1)
w=2u"+ng ondQ_,\ F(zT)
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where 7 is a small positive number and g = g(x,t) is a smooth function, positive on
0pQ~ \ F(z%), vanishing on 0Q_, N F(z").
Let now 2z~ be defined in ()~ such that
Az —z =0 in@Q~
z==2u"+ng ond,Q \F(z)
27 =0 on 9,Q~ N F(z1)
ZT =w in Q_,.

At t = 0, near the origin, we have
2 (2,0) = a"x, +o(|z])

with
C1
<

by the monotonicity formula, and ¢; = ¢1(n, ||zF|] L(C,))- On the other hand, if we choose

[ such that
1 . CM . CA C1
gmll’l{T G(CA,A 2>}<ﬁ<mln{§,g<CA,A—p2)}

at (0,0) we have

2(0,0) _ -
m—ﬁ<G<CA A 2) SG(CA,O( )

By continuity, this inequality propagates in a small subcylinder C of C.
Thus, inside Cy, the function
L { 2T in Q"
—2z7  inQ”
is a classical strict subsolution. Now, if A is very large, 3 is also very large, and d{z" >
0} N C, stays to the right of F'(u) for ¢ < 0, since the free boundary of w is Lipschitz, that
is F'(u) has bounded speed.
Then, by construction, u > z on 9,C), so that it must be v > z in C. Since u(0,0) =
2(0,0) = 0, we have a contradiction. Therefore A is controlled by a constant depending on

the Lipschitz constant of F(u) and the maximum of |u| in Cy 3. O

8.2. Asymptotic behavior and free boundary relation

At a regular point of F'(u), the asymptotic behavior from both sides of the free boundary
follows from Theorem 8.1. When F(u) is Lipschitz it is possible to show a more precise
result near a point which is both of differentiability of the free boundary and of Lebesgue

differentiability with respect to surface measure, for instance, for Vu® and Dyu®.
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Notice that almost every point on F'(u) is of this kind. In fact, from section 13.2,
we know that caloric and surface measure are mutually absolutely continuous and any
partial derivative of u* is a bounded solution of the heat equation on each side of F(u).
Therefore, these derivatives have a well defined L* trace on the free boundary, in the sense

of nontangential convergence.

THEOREM 8.2. Let u be as in theorem 8.1 and let (0,0) be a common point of differ-
entiability for the free boundary and of Lebesque differentiability for Vu® and Diu* w.r.t.
surface measure.

Then, in a neighborhood of (0,0),

u(@,t) = (o (,v) + FH)T — (@~ (2,0) + 578) + od(z, 1)) (5.2)
where o {x,v) + BTt = a~ (x,v) + 37t = 0 is the equation of the tangent plane to F(u) at
(0,0). Moreover, at >0, a~ >0 and

pr=a"Ga",a")
B~ =a Gl a).

PROOF. Consider u™. The proof for u~ is similar. Since u;",u; are bounded solutions

v

of Hy,v = 0 and since (0,0) is a Lebesgue differentiability point for both functions, the

nontangential limits of u;” and u} exist when (x,t) — (0,0). Therefore, we can write

at =NT. lim ul(z,t), BT =N.T. lim  u (z,t) .

(z,t)—(0,0) (z,t)—(0,0)
(N.T. stands for Non Tangential).
Now, the asymptotic development of ™ follows easily and, since we have equality sign in

it, by theorem 8.1, the equality sign must hold also in the free boundary relation (8.4). [

8.3. Counterexamples

The natural question is now: suppose u is a viscosity solution in C;. If the free boundary
F(u) is a Lipschitz graph (in space and time) can we deduce further regularity, that is F'(u)
is actually a C17 or a C! graph?

The answer is no, in general, as the following counterexamples show.
Counterexample 1. A bidimensional one phase problem.

Consider the function

w(p,0,t) = p?{cos[g(t)0]}
where p, 6 are polar coordinates in the plane and ¢ is a smooth decreasing function greater

than 2.
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t=4-1072 t=2-102
t=3-1072

—

initial interface

Q' (u)

FIGURE 8.1. Q = (—=1071,1071) x (=1071,1071, g(t) = 2.1 — 10t

Then
Aw —wy <0

in Q1 (w) = {(p,0,t) : 10| < 7/2g(t),p > 0} and on
F(w) = {(p,0,t) - [0] = 7/29(t), p = 0} .
T _
wf =2 pr |Vt = g2

Therefore, if R < Ry is sufficiently small, in the cylinder Cr = B} x (0, R?), we have

1
_ 9 < pg(t)—Q

2¢g3
which makes w a supersolution of a one phase Stefan problem. If now w is a solution in Cr
of the same problem (in a weak or viscosity sense) with u = w on 9,CR, then u < w in Cg.
But at the origin, F'(w) has a persistent corner singularity. Since (0,0) € F(u) initially
with zero speed, (0,0) € F(u) for 0 < ¢t < R} and since u < w, the origin is a persistent

corner also for F'(u).

Counterexample 2. A three dimensional two phase problem ([ACS2]).
The same kind of hyperbolic behavior in example 1, can occur also in two phase prob-
lems, in spite of the fact that both phases have non-zero temperature.

To construct the example we need the following lemma on spherical harmonics.
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LEMMA 8.3. In R3, let D), denote the domain
Dy, ={x3 > r(Acos A0 — )}
where (r,0) are polar coordinates in the (x1,x2)-plane and X is an integer. Let p = |x|,
o=x/|x| and
P = fau(o)

be the positive harmonic function in D) ,, homogeneous of degree (A, ), vanishing on

D, with Hf)\,u”L?(SA,N) = 1 where
S/\,,u = DA:M NoB; .

Then, for X > Ao, |p| < 1,
a> 3.

Proor. The function A is constructed by separation of variables, by computing
Ah = p*lala+1)f + Asf]

where A, is the Laplace-Beltrami operator on the unit sphere B; of R3. Thus f is chosen
to be the first normalized eigenfunction of —A, for the spherical domain S} , and o must
be chosen so that a(a + 1) equals the corresponding first eigenvalue.

If we fix |u| < 1 and let A go to infinity, the domain D) , becomes very narrow; for

instance, any disc of radius ¢/ cuts the complement of Sy , in a fixed proportion so that
a~CA
if A — 4o00.

This proves the lemma. [

LEMMA 8.4. Let

w(x,t) = (1 4+ Mt)hyg+1(x) in Dyys1t
w(z,t) =0 otherwise.

Then, for € small and M properly chosen, w is a supersolution of the Stefan problem in
BL(0) x (0,¢).
PrOOF. We must show that
Aw — wy < 0 in D>\0+1,t

and that the speed of the free boundary, V,, (v pointing towards the positive region) is

smaller than —w,, on the free boundary 0D,41 ¢-
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Observe that hy , is smooth with respect to A, u since D) , changes smoothly (in fact,
analytically) in A, u. Moreover, D)y 1+ is increasing in ¢, so that by choosing M large we

can make (1 + Mt)hy,+1,+ monotone increasing in ¢. Therefore
Aw = —Dy[(1 + Mt)hy,+1,4 <O .
On the free boundary,
wy, = (1L + Mt)r®f,-(o) (a=a(X + 1,1))

where f,« denotes the (smooth) normal inward derivative of f along 9Sy,41, Thus, since

for t small a > 3, for r small we have

w, < cr

The speed of the free boundary 0D)y,41, is minus the ratio between the time and the

space components of the gradient of

g(z,t) = x5 —7r[(Ag+ 1) cos(Ag +1)8 — 1],

that is
V= ——— < —cr
T vyl
Therefore, for r,t < e, small
Vi, < —wy
which makes w a supersolution in B.(0) x (0, ¢). O

Observe now that CD) o, the complement of D), o, is obtained from D) o by a rotation
R. Therefore the same construction can be used to construct a negative subsolution in
BL(0) x (0,¢).

We define for ¢t = 0, in CDy, 414,

v(x,0) = —w(Rx,0)

and let v to evolve according to the formula

'U(.’L',t) = —(1 + Mt)h)\0+17_t(Rx) iIl CD)\0_|_17_t
v(z,t) =0 otherwise.
It is easy to check that v is indeed a subsolution of the Stefan problem in B! x (0,¢). As a

consequence:

THEOREM 8.5. Let u be the solution of the two phase Stefan problem in BL x (0,¢) with
wmatial and lateral data satisfying

v<u<w.
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t = 4-5:102

t=5:102
\

FIGURE 8.2. Regularization effect after a waiting time

Then F(u) is contained in
{xn > r[()\o + 1) cos(Ag + 1)8 — t}} N {:):n < 7“[()\0 + 1) cos(Ag + 1) + t}}

and, in particular, has a persistent corner at the origin.

Thus, Lipschitz free boundaries in evolution problems do not enjoy, in general, instan-
taneous reqularization.
A closer look at both counterexamples reveals that two main factors seem to prevent

immediate smoothing:

(a) the simultaneous vanishing of the heat fluxes from both sides of the free boundary

(b) the size of the Lipschitz constant (too large).

Points where (a) and (b) occur do not move at least for short time and are able to
carry a singularity. Concerning condition (b), in counterexample 1 the function w ceases to
be a supersolution when g becomes smaller than 2 (which seems to indicate that 7/2 is a
critical angle) and one expects the singularity will eventually disappear, showing finite time
regqularization.

Numerical evidence that this is indeed the case is shown in figures 8.1 and 8.2 (courtesy
of Nochetto, Schmidt and Verdi).

We will examine this question in chapter 10.

According to the previous observations, a regularity theory can be developed only under
additional conditions, able to prevent (a) and/or (b) above.

The next chapter deals with regularization under an appropriate nondegeneracy condi-

tion that prevents (a).



CHAPTER 9

Lipschitz free boundaries: strong results

9.1. Non degenerate problems: main result and strategy

We start to study the regularity of the free boundary. According to the final comments
in section 9.3, we shall concentrate on a class of problems, that we call non-degenerate, for
which the regularity of the free boundary can be pushed to be C'. The non-degeneracy
condition states, roughly speaking, that the heat fluxes from the two sides of the free
boundary are not vanishing simultaneously. In some cases, the validity of this condition
can be inferred by global consideration (see for instance [N]). On the other hand, we expect
this situation to be generic in a sense that will be explained in the next chapter, when we
will deal with flat free boundaries.

The main result can be stated in the following way ([ACS2]:

THEOREM 9.1. Let u be a viscosity solution to a f.b.p in C; = By x (—1,1) whose free
boundary, F(u), is given by the graph of a Lipschitz function x, = f(a',t) with Lipschitz
constant L. Assume that M = supg, |u|, u(en, —%) =1, (0,0) € F(u) and that:

(i) G = G(a,b) : RL — R is a locally Lipschitz function and, for some positive number
c*,

0.G > ", G < —c* .

(ii) (Non-degeneracy condition). There exists m > 0 such that, if (zo,to) € F(u) is a
regular point (from the right or from the left) then, for any small r,

][ lu| > mr .
Bl.(wo)

Then, the following conclusions hold:

(1) In Cyi/2, the free boundary is a Cl graph in space and time. Moreover, for any
small n > 0, there exists a positive constant co = co(n, M, L,c*,m,a1,an)
such that, for every (x',xn,t), (y',yn,t) € F(u) NCy /o,

Vo f(2 ) =V f (Y, )] < co(—log |z’ — y'|)~3/*

9.1
10, f(2',b) — O, f (2, 8)] < co(—log |t — s|)_1/2+77 . (51

135
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(2) uwe CHQT(u) NCHQ (u) and, on F(u) NCys,
u,jL >c1 >0

with ¢ = c1(n, M, L, c*,;m,ay,az,7).

STRATEGY OF THE PROOF. Although the proof follows the general lines of the elliptic
case, new features occur here that we like to emphasize. Thus, let us examine and comment
on the various steps in the proof.

Step 0. From chapters 8 and 11, we know that u is Lipschitz continuous in Cy/3 (say)
and that, near F'(u), u is monotone increasing along every direction 7 belonging to a cone
['(en,0) (cone of monotonicity) with axis e, and opening 6, § = %cot_l(L). Equivalently,

for any € > 0,

ve(p) = sup u(g—een) <ulp)  (p=(2,1)). (92)
Besino(p)

After a hyperbolic scaling we may assume that u is monotone in all of C;.

Step 1. We show that, away from the free boundary, on both sides and in parabolic
homogeneity, the enlargement of the space section of the cone of monotonicity (with a
suitable choice of new axes) is a simple consequence of Harnack inequality.

However this enlargement could occur in opposite directions in Q7 (u) and Q7 (u), as
shown in figure 9.1, preventing a common enlarged cone.

In the parabolic case, the role of the two phases is more symmetrical than in the elliptic
one, so that we do not know which one of the two is the commanding one or even if they
may alternate in being the commanding one. Therefore we must rule out the possibility
in figure 9.1 and show that there is a common axis of improvement in both phases. This
amounts to an improvement of the Lipschitz constant in space of the level sets of u, away

from F'(u).

Step 2. Due to the underlying double homogeneity (parabolic for the heat equation |,
hyperbolic for the free boundary condition) the parabolically scaling gain in step 1 is not
well suited for iteration purposes (it is too short in time). Thus, we need to prove a gain in

monotonicity, in a hyperbolically scaling region.

Step 3. The interior improvement of the Lipschitz constant in time of the level sets of u
requires new ideas. At this stage one realizes that the derivatives of u along purely spatial
directions behave differently from those involving a time component. This different behavior
will of course result in a different opening speed between the spatial section of the cone,

I'.(e,6%) and the space time-section I';(vy,6%), where 11 belongs to the plane spanned by



9.1. NON DEGENERATE PROBLEMS: MAIN RESULT AND STRATEGY 137

FIGURE 9.1

e,e;. Clearly, initially e = e, = v, 0% = #' = 0. In other words cones cease to be circular in
space and time and the decay rate of the spatial defect will be faster than that of the time
defect.

We will denote by § = 5 — 0% the defect angle in space and by p = § — 0t the defect

angle in time.

Steps 4, 5. Iteration of step 3 requires § < p3. This implies that in carrying the opening
gain to the free boundary we have to prove first regularity in space and then in time. As
in the elliptic case, this can be done by constructing a continuous family of R-subsolutions,
by varying the radius where the supremum in (9.2) is taken. It is at this stage that the
non-degeneracy condition plays its role.

We first prove (step 4) that for each time level 7, F. = F(u) N {t = 7} is a Cl-surface
with a rough modulus of continuity of V., f. Using this partial regularity in space it is

possible to obtain (step 5) a gain in space and time described by the relations

52
0 —c1— 9.3
1 (9.3)

w1 < p—cd (9.4)

o1

IN
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as long as § < p*. The improvements (9.3) and (9.4) hold in a cylinder of the form B /2 X

(_§ﬁ> 55), that shows the right scaling, intermediate between parabolic and hyperbolic.

Step 6. We now iterate steps 1 to 5. We obtain that in a sequence of contracting cylinders

Bé, p X (= 232 , 2,(3/’1 ), u is increasing along all the directions in a sequence of corresponding
k k

spatial cones I'*(vg,07¢) and space-time cones I'(7,6%), whose respective defect angles

satisfy the recurrence relations

52

Opr1 < 5k—01—k (9.5)
m

S (9.6)

with 0 < 13, Vet — vi| < e3(0k — Okt1), [Ph1 — D] < ca(Dg — Dpgr)-

From (9.5) and (9.6) we get the asymptotic behavior

c1(n) c2(1)

for any small n > 0. According to the discussion at the end of section 4.1 these asymptotic

behavior correspond exactly to the modulus of continuity of V. f and 0;f in Theorem 9.1.

In particular, if we set

w(r) = sup [Vuf(@) = Vaf)

|z =y |<r

then w(r) < co|logr|~*/3 (say, choosing = 1/6) and in particular

/W(T) dr < cp < o0 (9.7)
0 T

The condition (9.7), known as Dini-condition appears in several instances in the regularity
theory for partial differential equations. An important question we may ask is under which
minimal conditions one has C'-regularity up to the boundary for, say, a harmonic function
in a domain 2 C R™.

From [W] it turns out that a necessary and sufficient condition for this to happen is
that €2 be a Liapunov-Dini domain, i.e., a bounded domain in R", whose boundary is given
locally by the graph of a function x,, = f(2') satisfying (9.7) uniformly.

More precisely, we will use the following consequence of the results in [W]: if v is har-
monic in the C! domain , and vanishes on the surface disc Ar = 9Q N Br(zg), To € 01,

then u is C' up to Ap/y and
v, >c>0 on AR/2

if and only if (9.7) holds on Ag.
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But for the solution u of our f.b.p. (9.7) tells that QF(u) N {t = 7} is a Liapunov-Dini
domain for each 7 € (—1,3). Applying the results of [W] and the free boundary condition

we obtain the remaining assertions of Theorem 9.1.

As usual, we do not explicit the dependence of a constant when its arguments are some

of the relevant parameters n, L, M, c*, m, a1, as.

9.2. Interior gain in space (parabolic homogeneity)

According to the comments in step 0, we assume from now on that u is a viscosity
solution to f.b.p. in C; = B} x (—1,1), with (0,0) € F(u), monotone increasing along every
T € I'(en, 0). We also assume that the coefficients of u; in the heat equations Au—a;us =0
in both phases are much smaller than § = £ — # and that B1/4( en) X (=1,1) C Q7 (u),
Bi/4( 2en) x (—=1,1) C Q (u). There is no loss of generality, since we can start from a
very small neighborhood of a free boundary point, say (0,0), and perform an initial fixed

scaling of the type
u(Ax, At)

u)x(xat) = A

The following lemma parallels Lemma 4.5.
LEMMA 9.2 (Harnack principle). Let uy < ue be two viscosity solutions to f.b.p. in Cy,

monotone increasing along every T € I'(v,0), v € R, Let a = min{ay, as} and suppose

that for e >0, o > 0, small

(a) ve(z,t) = supp_(zp) u1 < ua(,t) in C1—¢
( ) if po = (36n7_%a2)

u2(po) — ve(po) > ocua(po)

(c) By j4(3en) x (=1,1) € Q*(ua).

Then, there exist positive constants C, h such that, in Bi/g(%en) x (0, iaz) we have
u2(7,t) — V(14he)e (7, 1) > Cocua(po) - (9.8)
PROOF. For any unit vector v, write (p = (z,t))

uz(p) — ur(p + (1 + ho)) = w(p) + z(p)

where

w(p) =uz(p) —ur(p+ev), z(p)=u(p+ev)—ui(p+ev(l+ho)).
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Now, w is a nonnegative solution of Aw — ajw; = 0 in B1/4 _(3e,) x (~14¢,1—¢). By

Harnack inequality, for p € B1/8(Z€n) x (0, 1a?), we have, from (9.8)

w(p) > cw(py) > coeua(po) - (9.9)

From Corollary 13.15 we have, in B1/8( en) % (0,a?)
[Vui(p)| < Cui(p) < Cur(po) < Cua(po) - (9.10)
Hence, from (9.8) and (9.9),

w(p) + z(p) > Cocus(pg) + Chosuz(pg) > Cocus(po)

for A small enough. O

The above Harnack principle remains valid if the supremum in (a) and (b) is taken only
over n-dimensional spatial balls, for every time level ¢t. Precisely, with the same proof we

have:

COROLLARY 9.3. Let ui,us as in Lemma 9.2. Suppose that for e > 0, o > 0 small,

(a) supyepy(z) u1(y,t) <ua(z,t) in Ci—.
(b) u2(po) = supyep (s, yui(y1, —3a%) > oguz(po)
(©) Bl jy(3ea) x (—1,1) € QF(wn).

Then there exist constants ¢ > 0, h > 0 such that, in B1/8( en) % (0, ia2),

ug(x,t) — sup  uy(y,t) > cocua(po) - (9.11)

EBElJrha)s(x)

We now apply corollary 9.3 to the positive part of our viscosity solution in u. Denote
by I';z(en,0) the section in space of I'(e,,0). Let 7 € T'y(en, g) be a small vector and
e = |r|sin §.

Setting uq(x,t) = u(z — 7,t), for y € Bl/4( en) we have

1 1 3 1
(y, —Zaz) =u (y - T, —Za2> =u (Zen -7, —Zaz)
3 1 1
u (Zen, —Za2) — Dzu (y*, —Za2>

(9.12)

where T = %en —y+T.



9.3. COMMON GAIN 141

Since a(7,7) < 56, Dzu is a non-negative solution of the heat equation in Q7 (u). Hence
from Harnack inequality,

1 3 1
f D-uly,—-a*) > cDsu( Se,, —=a®
yEBI/llri(3en/4) 4 (y 4a)_c v (46" a)
+z

2
(9.13)
3 1, . o
:c‘Vu 16 50 ’-\T\COS(X(V,T)

2a?). Since |7| > c|7| and a(7,7) < a(p,7) + g, by corollary 13.15,
we have, for y € B1/4(% n)

‘Vu Ge L 2) } > cu(po)

“ <y _i) < (1 - oe)ulpo)

(5 — (a(v, 1)+ g)) Applying corollary 9.3, we have proved

where 7 = Vu(3ep, —

and therefore, from (9.12),

with 0 = o(7) =

LEMMA 9.4. There exist ¢ > 0, h > 0 such that

sup
yeB(l+ha’)€( )

for every (x,t) € B’/8(4en) x (0, 3a?).

u(y — 7,t) < u(zx,t) — coeu(po)

An analogous Lemma holds for the negative part of u, in B] /8(

4en) X (07 %GQ)' Ap'
plying now the intermediate cone Theorem 4.2, we conclude that:

COROLLARY 9.5. In B 4(£ien) x (0,7a%), u™ i

, 10 is monotone increasing along every
T € (e, 0%) D Tyen, 0), respectively, with

6% < bo
where b < 1.

9.3. Common gain

At this point we have enlarged the spatial section I';(e,, ) of the monotonicity cone
in Bi/g( en) X (0, 7a*) and in Bi/s( 3en) x (0,%a?) to new cones I'fs = Ty(
Iy =T.(e”,07), respectively.

Now, if v+ = Vu(£3e,, —3a?) and

et,01) and

alvT,e,) <d or alv,e,) <6 (9.14)

we can use respectively v* or v~ as our special direction v in Theorem 4.2 and obtain a

gain on both sides with the same corrected cone T'y(e*,0%), e* = vt /|vT| or €* = v~ /||
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The problem arises when both angles in (9.14) are close to J, say
0—n= O‘(V_l_aen) ~a(v,en) <6

with 7 < J, because the new cone axis e, necessary for the gain on the positive side of u

may be far from that on the other side. For instance, it could be that

+

a(vTen) =a(v,e,) =6

and, if v* # v~ the corresponding cones I'J and T', are tangent to the original cone
I'.(en,0) along different directions, making it impossible to have a common enlarged cone.

This is precisely the situation described in figure 9.1. We rule out this situation by
estimating the distance between e’ and e~ in terms of §, showing that we can always
choose a common enlarged cone on both sides.

In the following lemma we find a good candidate for the axis of the common cone.

Let p* denote the unit vectors on the boundary of I'z(en,0), opposite to vE | respectively
(that is, (pT,v*) is minimum among all (r,v%), 7 € T';(e,,0)), and thus p™ give us the

directions for which expected gain is minimum.

LEMMA 9.6. There exists a (universal) constant K and a normal unit vector v at some

point of differentiability of the free boundary such that simultaneously,
(v, pt) < K[§ —a(vT,e,)] = Kyt

(v,p7) S K[ —a(v,e)] = Ky .
PrROOF. Normalize u' so that

3 1
<V+7en> = De,u (Zena __a2> =1.

We have:
(1) D,+u >0
(2) Dyru(3en, —5a%) = (v, pt) < [vt|cosa(vt, pt) < eyt

1
2

Denote by w the caloric measure in Q7 (u) N {t > —20a?}, evaluated at (3e,, —3a?) and set
E={(z,t) € F(u) : —10a% < t < —a?} .
Then, from (1) and (2):
0 < / Dyiut dw < ey
Since caloric and surface measure in F(u) are mutually absolutely continuous, the set
En{D,iu" > Ky*}

has surface measure as small as we want depending only on K.
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Also, since D,, u" is equivalent to caloric measure on F'(u), the set
1
En{D,,ut < E}
has surface measure as small as we want. Similarly for u=, v—, p~.
Thus, for K large, there is a point of differentiability of F'(u) where

1

1
D, ut>—=, D,u >—
=g Pel 2

and
Dp+uJr < Kyt D,-u" < K~yT .
If v is the normal unit vector to F'(u) at that point, inward to Q7 (u), we have
(v, pt) _ Dpru’

- < K2~ .
(v, en) De, ut — K

The same inequality holds for (v, p~). This completes the proof. O

We want now to show that we can associate to v, by the gain process indicated in
Theorem 4.2, a cone 'y (v, 0), that, for a small enough gain, is contained in both the cones
[} and T'; associated to vt and v~

The cones I'} and ', are constructed on the basis that, after normalization, any di-
rectional derivative D,u, with 7 € 9I' — z(e,, 0), has in a neighborhood of (:I:%, 0) a gain

of
Dyu ~ (1,v%) .

This is a consequence of formula (9.13). Therefore, to obtain a common enlarged cone on
both sides, we need to control (7, %) from below by (7, V).

This is obtained in the following corollary to Lemma 9.6.

COROLLARY 9.7. There exists a constant A = A(n, @), such that
(r,v) < Amin{(7,77), (1,77)}

for every unit vector T € 9Ty (en,0), where v = vt /vt o™ =v~ /v,

PROOF. We show that (r,v") > A(r,v). It is enough to consider 7 € 9T, (e,,0) in a
small neighborhood of p*. That is we may suppose
T =M€, + )\2,0+ + A3T*
with 7* L span{e,, p™} and A\3 < 1. Then (see figure 9.2)

a(Ae, +dapT,ph) < 05)\§ (9.15)
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9 I'x(en,0)

FIGURE 9.3. a(v1,77) < cKAT, o] < c(dy+)1/2

On the other hand, we have simultaneously
a(v,e,) <9
just because v = Vu™ /|VuT| at a free boundary point, and

T _
Oé(V,p+) 2 5 _K7+

since (v, pT) < Ky*. Therefore, the component v; of v in the (p™, e,)-plane satisfies
a(vy,vT) < cKyt (9.16)
and the normal component o satisfies
lvo| < (coy™)1/? (9.17)

(see figure 9.3).

Now, we have

v,7y=Ww—-vt, 1)+ @&, 71). (9.18)
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Since v L 7%,
(0T, 7y = (07, Mey + XapT) > ceosa(h, Ae, + AapT) .

From (9.15) we get

hence
(7)) > c(yT +6M3) . (9.19)
Moreover
(v—v"7)= (v — 0", 7) + (1o, 7) < |1 — | + 3|1
< KAyt 4 es(0yH)Y2 < é(vt +0X2) .
Finally, (9.18), (9.19) and (9.20) give

(9.20)

(v, 7y < AWt v) . O

REMARK. This indicates that the “good direction v” to improve defect can be detected

from the distribution of the normal vector along the free boundary.

9.4. Interior gain in space (hyperbolic homogeneity)

By the results in section 3, a common enlarged cone of monotonicity I';(v, ) exists on
both sides of F/(u). As it was already remarked, this gain is valid only in a parabolic region
away from the free boundary. Now, if we are willing to give up a portion of I',(v, ), we
can always have a gain in a hyperbolic region. This can be obtained in the following way.

For any unit vector 7 € I';(v,0), D-u > 0 is equivalent to

g

D:u> —D,, u
o)
where 7 = ar — fe,, 7 € T'y(ep,0), |7| =1, with > 0 and
1 <a<sin(20 —0)/sind .

Note that, if the cones touch along 7, then a =1, 3 = 0.

If we delete a small percentage of I';(e,,, ) around the contact line, we can have

&

— >co
«

where ¢ depends on the size of the deleted neighborhood. Thus, the inequality D,u >

cdDe, u holds in Bi/g(i%en) x (0, 3a?).

We will show that this inequality propagates in time to an interval of order §/u, where

we recall, u is the defect angle in time. Although we start with an (n + 1)-dimensional
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circular cone, so that § = pu, in the iterative process we will use later, the defect angle goes

to zero much faster in space than in time. Therefore we assume from the beginning § < p.

LEMMA 9.8. Let u be a wviscosity solution to f.b.p. in C1. Let 0 < 6 < p < 5. If, for
T €l (en,0)
D;u(x,t) > c¢d D, u(x,t)

in B!

1/8(:|:%en) x (0, 3a?), then there exist ¢ and co such that

D;u(x,t) > édDe, u(x,t)
in Bi/g(i%%) X (—cod/p, cod/ ).

PROOF. Let v = ae, + be;, a®> + b> = 1, be normal to the axis of the full cone of

monotonicity. Note that
|Dyu(z,t)| < cppDe,u(x,t)

for any (z,t) where the derivative exists.

By interior a priori estimates and corollary 12.14,
|Dyru(z,t)| < cuDe,u(x,t) (9.21)

if (x,t) stays uniformly away from F'(u) and 9,C;.
Now, for any p = (z,0), = € Bi/g(i%en), we have

Dyu(p+ Ny) > ¢dDe, u(p) + AD-ru(p + M)
for some 0 < |A| < |A|. Using (9.21) and corollary 13.15 again, we obtain
Dru(p+ Ay) = (¢6 — C|A[p) De, u(p + Xy) -
Choosing |A| < %% and using Harnack inequality for D,u, we see that
D:u(q) > cdDe, u(q)
if ¢ belongs, at least, to Bl/g(:t%en) X (—cod /1, cod/p). O

The convex envelope of the union of the directions in Lemma 9.8 and those in the
original cone I'y(ey,f) is easily seen to contain a cone I'y(v,0) such that u is monotone

increasing along every 7 € I',(v, 0) and
6 < bod

with by < 1.
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Xnp - Bt = 0

Zet""““ Ft (V,B )

Xn+At=0

FI1GURE 9.4. The space-time section of the monotonicity cone.

9.5. Interior gain in time

The method used in the previous sections to enlarge the cone in space fails for the
enlargement in time. We will proceed in a different way. The idea is the following.

Let e, be the projection in space of the axis of the (full) monotonicity cone with defect
angle in time py = § — 0'. This means that there are numbers A, B € R, A < B, such that
B - A= pand (D, =0y,)

A< Dyu™(z,t) < B or A<_ Dy~ (z,t)

— —=<B 9.22
—  Dput(z,t) Dyu=(z,t) — (9:22)

for (z,t) a.e. on F(u) and everywhere outside F'(u).
To increase the cone in time means to lower B or to increase A.

From the first one of (9.22), the functions
w=Diwu+ BD,u or v=-—Dywu— AD,u

satisfy the heat equation and are nonnegative in Q7 (u).

We manage to enlarge I'; in some region if in that region we can prove that
w > cuDpu or v > cuDpu .

The same kind of consideration can be done in Q7 (u).
We start by estimating in terms of §/u the oscillation of Dju, pointwise in the interior

and in measure on F'(u). The first step is:

LEMMA 9.9. Let u be a viscosity solution of f.b.p. in C;. Then

w(z, t) = u (igen,O) oy (:cn 4 %) + 0l 0(/p) (9.23)



148 9. LIPSCHITZ FREE BOUNDARIES: STRONG RESULTS

for every (x,t) € Bl/g(:i:%en) X (—cod/m, cod/p), where

at = Dyu (:I:ienﬁ) )

PROOF. For any x € B/ /8(4en) we have (D; = 0y, Dij = Og;a;)

u(x,t) = u (Zen,t> + D,u Gen,t> (a:n — _> ZD@“ (Zen, )
LS (e (x_ be) (+-3es) aran

1,7=1

We estimate each term on the right, separately. For the first one, we write

3 3 t 3
S Ens = —~Cn, D —€n, .
u(4e t) u<4e 0)+/0 tu(4e s)ds

Since | Dyu| < e¢Dyu, using corollary 13.15, we have, for |t| < ¢d/p,

” (Zen,t> —u (Zen,0> 40,0 (%) | (9.24)

For the second term, write

3 3 t 3
D,u (ien,t) = Dyu (Z’O) +/O D,u (Zen,s> ds .

Using interior estimates and corollary 13.15, we see that |Dyu| < ¢D,u implies

‘Dntu (%en,t) ‘ <coy .
Dyu (%en,t) = ay (1 + O(%)) : (9.25)

Now the third term. Since for i =1,...,n — 1, |D;u| < ¢dD,u, by the previous estimates,

Therefore, for |t| < ¢d/p,

we have, for |t| < cd/pu,

3
’Diu (Zen,t> ’ = a;0(9) .
Finally, for the fourth term, observe that, since |D;u(p)| < ¢dDpu(p), i =1,...,n—1, then,

interior estimates and corollary 13.15 give
[Dij(p)| < cdDpu(p)

whenever p is away from F'(u) and 0,C1.

Thus,using the equation Au = a1 Dyu and a1 < d, (by hypothesis)
| Dpnu(p)| < edDpu(p) + cai Dyu(p) < cdDpu(p) .
Once more, corollary 13.15 gives

|D2](p)‘§0504+ i:jzla"'an
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Collecting all the estimates above we get (9.23) for the positive side of u. In a similar

fashion we prove the result for the negative side too. O

Using Lemma 9.9 it is possible to estimate the measure of the set of points on F'(u)
where D,u™ (D,u~) is close to ay (a_). We do this by estimating their difference in the

L2-sense at all time levels.

LEMMA 9.10. Let F} denote the t-section of F(u). Then, for all [t| < cod/p

J
][ |Dpu® — ax]?dS < co’— .
By oNF} H

I
1/8

PROOF. We prove only the estimate for u™, since the negative part can be treated in a

similar way. We do this in two steps.

Step 1. To prove

0
‘][ (Dpu™ — 04+)d5‘ < coq— .
By sNFe H
Set,for()grg%
/ / 3 +
D, =< (2, x,) : || <, |xn|<Z N (u) .
We know that, after an initial rescaling if necessary, for a suitable ¢ > 0, the function

wy = u + du'™ is subharmonic in D. Then, for a.e. t, [t| < ¢d/p,

0< Awy(x,t)dx = / Dywy(x,t)dS,
Dy s 0D g
or
/ Vu™(z,t)|dS, < / Dywy(z,t)dS, + Dywy (x,t)dS,
FtﬂaDl/g Sl/8 T1/8
where
Sy =<|x| =, \xn|<1 N (u), T,= \x|<r,xnzz N (u) .
Since:
|Djw4| < (14 ¢d)|Djul j=1,...,n (9.26)
|Diu| < cdDpu j=1,...,n—-1 (9.27)

IVu™| > Dyu™
we have, from Lemma 9.9,

/ Dyut dS, < cb DpudS; + (1 + O(d/u))/ oy dS,
FtﬂaDl/g S1/8

Ty 8
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or
/ (Dput —ay)dS, < (cd + O(5/,u))/ ay dS,; <ay0(/p) .

FmaDl/g T1/8

Similarly, using w_ = u — du'T¢, superharmonic, we obtain

/ (Dpu™ —ay)dSy > —a,0(6/p) .
FyN0y 8

Step 2. To prove

4
| ][ <(Dnu+)2 — ozﬁ_) dS| <cai—.
:/L/lOmFt 2
As in Step 1, for a.e. t, |t| < ¢d/p,

/ V(Dpwy ) Vs dz < / [V(an+)vw+ n an+Aw+} dr = | Dyw,Dyw, dS,
T r 0D,

or

1
/ Dnu\VuﬂdSm—k—/ Dn(\vw+\2)da;g/ Dywy Dywy de—i—/ (Dpw,)?dS, .
8D,NF, 2 Jp, Sy

T

Integrating the second term on the left with respect to x,, and using |Vuy|> > D,u, we

obtain
1

1
- / (Dpu)?dS, < | DywyD,wy dS, + = / (Dpwy)?dS, .
2 0D, NF; Sr 2

Since |D;u| < ¢dDpu for i =1,...,n — 1, also |D;w,| < ¢dDyw4, so that

/ (Dyu)?dS, < cd / (Dypwy )* dS, + / (Dypw, ) dS, .
0D, NF} Sk

T

™

Integrate the last inequality with respect to r from 1/10 to R < 1/8. We get, since
D110 C Dy C Dp,

1 i 1
10 8D1/100Ft 1/10 J Sg 10 Tr

Integrating by parts the first term on the right and using the subharmonicity of w., we

obtain

1 1
<R — —) / (Dpu)? dS, < (R — —) / (Dpw,)?dS,+
]‘O 8D1/100Ft 10 TR

+ co / w+Dyw+ de + / w+D,,w+ de + / w+an+ dSm
Sk S1/10 Tr\T1/10

Using (9.26) and (9.26), we can write, using Lemma 9.9,

1 1
(R — —> / (Dpu)?dS, < (R — —) / (Dpu)? dS,+
10 8D1/100Ft 10 TR

+c5{ / 6D, (u?) dS, + / 6D, (u?) dS, + / anude} .
Sr Sl/lO TR\Tl/IO
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Integrating the two middle terms on the right and using corollary 13.15, we get

1 1
(R — —) / (Dpu)?dS, < (R — —> / (Dpu)? dS,+
10 8D1/100Ft ]‘O TR

+c5{ / S(Dyu)? dS, + / S(Dyu)? dS, + / (Dnu)zde}
OSrM{zn=3/4} 051 /10M{zn=3/4} Tr\T1 /10

and, using Lemma 9.9,

< (R - i) / (Dyu)® dS; + e6®a? + e (1 + 0@)) 0% |Tr = Tijro -
10) Jr, Z

Choose now R = 1—10 + 6. We have, then
J
/ ((Dnu)? —a3) dS; < cdai < c—a? . (9.28)
8D1/100Ft 2
If we use w_ instead of wy we get > —c%o& in (9.28). Combining Steps 1 and 2 we arrive

at the desired result. O

With Lemma 9.10 at hand we can now show how to increase in time the cone of mono-
tonicity. Actually, the enlargement can be done simultaneously on both sides of F'(u), if we
stay away from F'(u) itself.

Precisely, we have

LEMMA 9.11. Let b= ’HTB and assume
G(a—l—aa—) > —b (7’68]?. G(Q-l-aa—) < _b) :
There exist positive constants c,co such that, if § is small, § < u3, then

Dtu Dtu
— <B-— .= > A
D= cl (resp Do = + CM)

in Bi/g(i%en) X (—cod/p, cod /).

PROOF. Assume G(ay,a_) > —b. The other case is analogous. Observe that w =
Dyu + BDyu satisfies Aw — a1 Dyw = 0 in Q1 (u) and Aw — asDyw = 0 in Q7 (u).
Let [t| < cod/u, co as in Lemmas 9.9 and 9.10. Moreover, let

Ry = Q" (u) N (—ay +t,t)

and w®? be the caloric measure in R; evaluated at (z,t).

Now, on the free boundary, a.e. with respect to surface measure, we have
Dtu+ Dtu+
Dput  |Vut|

By Lemma 9.10, if ¢ is suitably chosen, since 513 < clt,

(1+0(8)) = (1 + O6)G(|Vu™]|, [Vu]) . (9.29)

¥ = {p ceFNRy: \Dnui(p) —ay| < 651/3ai} :
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then
% > F R
for any ¢t € (—cod/u, cod/p).
From the results in section 13.5, the restriction of w@b to FN Ry is an As weight with

respect to surface measure, so that we have
W@ () >¢>0 (9.30)
for every (z,t) € By/g x (—cod/p,cod/ ).
On the other hand, on >, by the local Lipschitz continuity of G,
G(IVu™|, |[Vu~|) = Glay,a ) + O(6Y?) > —b + O(5'/3)
> _B+cu+0@Y3)>—-B+éep .
Therefore, if (z,t) € Bi/s(%en) X (cod/p, cod /), we can write

w(z,t) =/ w dw®? > / wdw®D > epo, w®D(3,) > éuay .
6pRt ¢
Since Dyu(z,t) = a1 (1+0(0/pn)) < cag in Bi/g(%en) X (—cpd/p, cod/ ) we obtain finally
w(x,t) > euDpu(x,t) .

In Q7 (u) the same inequality holds in Bi/g(—%en) X (—cod /1, cod /). O

9.6. A continuous family of subcaloric functions

As in the elliptic case, starting from a viscosity solution u, we construct a particular
family of subcaloric functions, that plays a major role in carrying to the free boundary the
interior gains obtained in sections 4 and 5.

These functions are again constructed by taking the supremum of u over (n + 1)-
dimensional balls (thus, space-time balls) with variable radius ¢ = ¢(z,t). The main
question is to find the right condition on ¢ that makes the supremum a subcaloric function

in its positivity and negativity set. This is the content of the following lemma.

LEMMA 9.12. Let u be a viscosity solution to f.b.p. in C3, monotone increasing along
every T € I'(e, 0). Suppose ¢ is a C? function such that 1 < ¢ <2 and satisfies

2
Dip >0, Ap—eDyp— Y7

—2|Vp| >0
in C3, for some positive constant ¢ — 1,co,C,C > 1, depending on n,0. Then, the function

vp(x,t) =  sup u (9.31)
BLp(m,t) ({E,t)

satisfies Av, — a1 Dy, > 0 in {v, > 0} NCy and Avy, — asDyvy, > 0 in {v, <0} NC;.
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PROOF. It is enough to show that the expression

lim inf {M][ [v(x,T) —v(&, T)] d:l:} —ajlimsup l[1)<p(§,7'—|—h) —v,(&,7)] (9.32)
BL(E) h

r—0 r2 h—0

(7 = 1,2) is nonnegative for every (§,t) € {v, > 0} N Cy. For simplicity, assume (§,7) =
(0,0), v,(0,0) > 0 and ¢(0,0) = 1. To estimate the first term from below we proceed as in
Lemma 4.7. Choose the system of coordinates so that

(1) v,(0,0) = u(p) where p =ce, +ne; |P|=1,¢>0.

(2) Vp(0,0) = aer + Pey.

By the definition of v,

for
v
y(x) = 2+ /2 (2,0) — n? - ﬁ
where
pr1 — axy, v
Uy = €y + — = o + - Z Ti€; (9.33)
i=2
with ~ such that
2 5 2o
1 =(1+— — . 9.34
eap=(1+2) +5 (9.34)

Expand and collect terms to get

y(@) =y (@) + g(@)en + O(Jz*)7* + O(|[*)e”

where
n—1
* 1 1
y'(z) =cen +x+ g(ﬁxl — amy)er + 2(04%1 + Bxy)en + Z T;i€;
i=2
is €e, plus a first order term,
1 i (Bry — axy)?  0%(axy + Bry)? 2n_1 9
q(z) = 5 Z D;jo(0,0)x;x; — = LA = My sz
ij=1 i=2
is the quadratic part, and 7*,e* € R", |7%| = |e*| =1, v* - €, = 0.

By the choice of v in (9.34), the transformation
x— y(z) —eey
is a rotation in the (ej,ey) plane (see Lemma 4.7). Therefore

. 2n(n+2) .
ti 220Dty @) )] e = (12 B
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Evaluate now u(y(z),n) — u(y*(z),n), observing that Vu(p) = Vu(y(0),n) must point in
the direction of e,,. We have
u(y,m) —u(y*,n) = Vuly*,n) - (y = y*) + O(ly — y*[*)
= Vu(p) - (y —y") + Oy — y**)
= [Vu(p)l{a(z) + O(|z*)}

Therefore
. 2n(n+2) .
tig 220 12 ][BT@ [u(y(z),m) — uly*(@),m)] do =
- P fap0.0 - L@t 4 - (n- 20
> U fag0,0) - %\W(O,O)\Q} .

From the above calculations, we have (v(0,0) =

lim inf Mjm][ (v(x,0) —v(0,0))
r—0 T BT(O)
n
—2 (0

> (1472 8a(p) + 782 L ng0,0) -

02}

—ar{e|Vu(p)| - Dip(0,0) + Dyu(p)(1 + 6Dy(0,0)) } -

The second term in (9.32) can be easily bounded from below by

Hence, using the equation Au(p) = a;Dyu(p), we see that the full expression in (9.32) is

greater or equal to
1 2 n 2
“[Vu(p)| - { A¢(0,0) = 15 Digp(0,0) — 55 Vip(0,0)[2 |
2 V(0,0)[?
+ a1 Dyu(p) {?ﬁ + M — 0D (0, O)} :

2
£
Since u is monotone along every 7 € I'(e, 0), |us| < cot 8|Vu| and € > sin26. Therefore

(9.35)

1
(9:35) = =[Vu(p)| { 5¢(0,0) — e1Dye(0,0) = CIV(0,0)1* = 2] Vp(0,0)|}
where c¢q, co depend only on 6, while ¢ depends on n, 6. [

We now have to examine which kind of condition v, satisfies on F(v,) = 907" (v,,),

(compare with Lemma 4.9). First, the asymptotic behavior.

LEMMA 9.13. Let u be a viscosity solution to f.b.p. in C3 and define, in Cq
vo(x,t) = sup u
ng(m,t)(mvt)
with ¢ as in Lemma 9.12 and |Dypl, [Vo| < 1. If (x0,t0) € F(vy,) NC1, (yo,50) € F(u) N
83@(:30,150) (LE(), to), then



9.6. A CONTINUOUS FAMILY OF SUBCALORIC FUNCTIONS 155

(i) F(vy) has a tangent (n + 1)-dimensional ball at (xg,to) from the right (i.e., there
is B C Q% (vy,) such that 0B N F(vy,) = {(x0, o)}

(ii) if F(u) is a Lipschitz graph and |Vp|, Dyp are small enough (depending on the
Lipschitz constant L of F(u)), the set F(vy) is a Lipschitz graph with Lipschitz
constant

L' < L+ Csup(|Vy| + D)
(iii) if near (yo, So), at the so-level, u has the asymptotic expansion

+

u(y, $0) = (Y — Yo, V)" —a—(y —yo,v)" + oy — vol)

where v = (Yo — x0)/|yo — xol|, then, near (zg,to) at the to-level,
" +
o(@,t0) > <x A LU to)>
Yo — o

(70(3:071:0)
lyo — o]

—Oé—<33—l‘o,V+ V90($0,t0)> + o(|lz — zol) -

PROOF. The proofs of (i) and (ii) are identical to the proofs of a) and ¢) in Lemma 4.9.

To prove (iii), for x near xg, set y = = + v@o(x) where

p(x) = V2 (2, t0) — (s0 — t0)? < (. o) -

Then, v(x,ty) > u(y, sp). Hence, since
To,t
#a) = plan) + (2= a0, E0 G000, t) ) + o — )
Yo — ol
we have (¢(wo) = |0 — Yo|)

zo,t
MVS£7(390,750)> +o(|z — xo]) ,
|$0 —90’

from which we easily conclude the proof. O

(y—yo,V>=<33—l‘o,V+

If u,p,v, are as in the preceding lemmas it is not difficult to show that v, is “almost

Y

an R-subsolution,” in the sense explained in section 8.4.

In fact, if (xo,%0), (yo,s0) are as in (ii) of Lemma 9.13, at (yo, so) F(u) has a tangent
ball from the left with slope (so — t9)/|yo — o]
Therefore, u has the asymptotic expansion in iii) with
so — to
Yo — o

On the other hand if vy = agv + Bpe; is the normal unit vector to F(vy,) at (o, %), we have

< Glay,a-) .

(see the proof of ¢) in Lemma 4.9)

Bo _ ( so—lto (20, to)

Qo |y0 - 370’ ‘yO - 370‘

Dﬂﬂ(ﬂfo,to)) T
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where
_ ’t
P R I O)VSO(Jioato) :
\yo - xo! |yo - 330\
Then
—t t t
@ S ( S0 0 + SO(CUO, 0>Dt§0($0,t0)> ) <1 + CSO(QS'O, 0)\Vg0(ac0,to)\)
Qo 1Yo — 20| |yo — o 1Yo — xo|
or
I} cp(xg,t
2 < Glag,al) + cplzo, to) (Dyp(zo, to) + V(. o)) - (9.36)
%) |yo - 330|

From Lemma 9.13, iii), if = is near zp, we can write

v, (3, t0) > ol (x — 20, v*) T — o’ (x — 20, V") + o(|z — x0]) (9.36")

where

"
Y

al =y, ol =a_|r .

v =1%/|T
Since Dy, |V| are small and ¢(zo,t0)/|yo — xo| < ¢ = ¢(n, ), we have
90(370’ tO)

Yo — o
and, using the Lipschitz continuity of G, from (9.36) we get

as—ai| < ax(l-|77]) <c (IVe(zo, to)[+Drp(0, to)) < e(|Vp(wo, to)|+Drp(20, o))

COROLLARY 9.14. Let v, as in lemma 9.13. Then, at (xo,t0) € F(v,),

g—z < Gla, %) + e(Duplwo, to) + [Vep(wo, to)]) (9.37)

9.7. Free boundary improvement. Propagation Lemma

In this section we show how an interior gain can be carried to the free boundary. Follow-
ing the same lines of the elliptic case, we first construct a family of functions ¢,), depending
on the parameter n, 0 < n < 1, and satisfying the requirements in the above lemma.
In the end we want the v.,, , defined as in (9.31), to carry the monotonicity gain from
Bi/g(:t%en) X (—cod/p, cod /1) to the free-boundary as n goes from 0 to 1. This means
that we must have ¢, < 1 along 9,C1_., ¢, = 1+ nb on the sides and top of the internal
cylinders and ¢, ~ 1+ enb (¢ > 0, b > 0 both small) in C /5.

LEMMA 9.15. Let 0 < Ty < T and C > 1. There exist positive constants, C,k and
hg, depending only on C and Ty, such that, for any h, 0 < h < hg, there is a family of

C?-continuous functions on, 0 <n <1, defined in the closure of
_ 3 _ 3

(1) 1 <@, <l+nhinD

such that:
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%A%—quw%ﬂ%ﬁ—@szomD
3) ¢n =1 outside BY 3 x (—£T,T)
4) oy > 1+ wnh in B}y x (=5, %)
5) Dipy, V| < Cnh in D

(6) Dypy >0 in D

(
(
(
(

provided ci and co are small enough.

PROOF. Set
Py = —1+ 90717_0 :
If ¢ > 1 and 1, satisfies
Ay — c1 Dy — 1|V, <0 (9.38)

then ¢, satisfies (2). Now, if ¢; and ¢y are small enough, it is not difficult to construct a

C? function ¢ satisfying (9.38) in D, such that

(—a < <0 in D

P =0 outfide Bé/g x (=%T,T)
{9 < —kb in@bQXP%LQ
D], VY[ <é in D

(D <0 inD .

Choose h small and a,b,¢ (b < a) so that
1—bknh < (1+knh)™ ¢, 1—anh < (1+4+7nh)'7¢, and é&c—1)<2%.
Then, if ¢, = nhi, the function
oy = (1+ wn)l/l—c

satisfies (1)—(6). O
The following lemma is fundamental.

LEMMA 9.16. Let uq < uo be two viscosity solutions to f.b.p. in Co, with Lipschitz free
boundaries. Assume uo satisfies the hypotheses of Theorem 1, in particular the nondegen-
eracy condition (i), and G satisfies condition (i) of the same theorem. Suppose further,

that

ve(z,t) = sup up < ug
Be(z,t)
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Xn

Byg(-3e) X (FT.5T)

— B gEen) x (-2T.97)

7

FIGURE 9.5. The domain D in (9.39)

in By x (=T,T) and, for some positive e, h,C and o > 0,
_ 3 3
V(i4on)e(T,1) S uz(w,t) — Cocuy <Zen,0) vV (x,t) € Bi/s (Zen) x (=T,T) C Q" (uz)

V(14on)e (T, t) < up(z,t) + Cocuy (—%en,0> V (z,t) € Bl/s <—%en> x (=1,T) C Q (ug) .

Then, if € and h are small enough, there exists v, 0 < v < 1, such that
. p T T
V(14-~0oh)e < ug m 1/2 X _57 5 .

PROOF. We construct a continuous family of functions o, < ug for 0 < n < 1, such that
V1 2 U(14~yho)e I Bi/Q x (=T,T). Let ¢, be the family of radii constructed in Lemma 9.15

and set
Uy = Vep,, T COEW

with ¢ to be chosen later and w the continuous function in

D= [Bg/m\{ 1/8(3en) UBl/g(g )}] x (—%T, %T) (9.39)

defined as follows:
Aw —a Dyw =0 in DNQ"(ug)
Aw—aDiw =0 in DNOQ (uz)
w = tus(+2e,,0) on 831/8(:I:%en) (=T, 57T)
w=0 on F(ug) and on the rest of 0,D .

We prove now that the set E of n’s for which @,, < uy is open and closed in [0, 1]. Notice
first that, by hypothesis and maximum principle, the set E is nonempty. Also, it is clearly
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closed. To show that it is open, assuming that @, < uy for some 7y € [0, 1], it is enough to
show that D N Q*(v,,) is compactly contained in D N Q7 (uz).
Replacing ¢, if necessary, by any smaller &', we have that v,, < ug on 9,D. Thus, if

D ccC Q7 (vy,,) is not true, there exists (xg,t9) € F(0y,) N F(uz) N D.
CLAIM. If h is small enough, at (zo,to) Uy, satisfies a subsolution condition.

Indeed, let (yo, so) € F'(u2) N OBey,, (wo,t0). Then, if v = (yo — x0)/|yo — xo|, at so-level,

near o,

ur(y, s0) = oty — yo, )" — Wy — yo, )™ + o(ly — wol)

with o > 0.
On the other hand, (x¢,to) is a regular point from the right for both F'(v,,) and F'(u2).
If vy = agv + Bpes is the normal unit vector to both free boundaries, inward to the positive

side, we have, from lemma 9.13 and corollary 9.14,

Ve (2,t0) (L5 T0) > @ (& — 20,v") " — o (z — 20,v") ™ + o(|z — 20])

with
o) = a$)\7*| , af = oz(_l)|7*\ , T =v-+ 829‘0;;70_(?(;?0)VS00170 (x0,t0) ,
and
g_?) < G(al,a) +ceoh . (9.40)

Notice that, if (xo,%p) belongs to the region of constant gy, then we can take h = 0 in
(9.40) and @, satisfies a subsolution condition. If this is not the case, (zo,%p) stays away
from 0,D and we can apply the comparison theorem 12.3 and use the monotonicity of s

along a space time cone to get
w > couz in QT (ug) and w > —coup in Q7 (uz) , (9.41)

near (xg,tg)-

Now, at tg-level, near xy we have

ug(z,ty) = af) (x — mo, V") — a? (x — z0,v")” + o(|]z — x0|) (9.42)
with
60
> G('?,a?) . (9.43)

Thus, we have, near xg, at to level, from (9.41) and (9.42)

Y —a_{x —xz,v") + o(|lz — z0])
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where
= * (2) ~ (2)
04 = o) +cpgoay’ , Q= —Cpeoa’ .

Since uy — vy, > 0 and it is supercaloric in Q7 (7,,) we have al? < a_ and, by Hopf
(2)

maximum principle, o}’ > ay. Therefore
Glay,a ) < G, a?) (9.44)

by the strict monotonicity of G.

On the other hand, from (9.40) and the hypotheses on G,

0
— < Glay,a_) — c*coga(ozf) + 04(_2)) + ceoh

< G(at,a-) —eo(c*com — ch)
< G(ay,a-)
if h < c*com/ec.

But then, from (9.43) and (9.44) we get

60

G(O_‘-Haf—) < @ < G(@-HO_‘—) .

We have reached a contradiction that concludes the proof. ]

9.8. Regularization of the free boundary in space

In this section we apply the propagation lemma to show that the free boundary is a C*
domain in space. This preliminary step is necessary to say that the defect angle in space is
as small as we want in order to be able to apply the results of sections 4 and 5, in particular
lemmas 9.8 and 9.11, that require § < p.

We use the symbol (I'(v, 8, 6) to denote an “elliptic” cone with axis v and opening # in

space and 0! in space-time.

LEMMA 9.17. Let w be a wiscosity solution to f.b.p. in C; monotone increasing along
every 7 € I'(e,,0,0"), for some 0 < §y < 0 < 6 < 5. Then there exist positive constants
c,¢ and a unit vector v1 such that, in 31/2 x (=1,1), the function

w*(z,t) = u(z,cd’t)
is monotone increasing along every direction T € T'(vy,01,0%) with

01 — 0y > c5* | 0% > 6 .

ProoF. From Corollary 9.5 and Lemma 9.6, u is monotone increasing along every

7€, (v,0), with § — 0 < b6, b< 1, in Bl/g(i%en) X (—%cﬁ, 1—16a2).
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The cone I';(v,0) contains T'; (e, ). Consider all spatial unit vectors 7 € T;(en, 0) \ N,
where A/ denotes a neighborhood of the line ', (e, #) VO, (v, #) in the case the two cones
touch. From Lemma 9.8,

D;u > ¢édD.,u

inside the internal cylinders B /S(j:%en) X (—‘%‘5, %‘5)
Cecy
M

Choose now a number ¢; < 1, set ¢ = and perform a dilation in time of order 82,
that is, set
u*(x,t) = u(x, cst)
Observe that the coefficient of the t-derivative of u; in the heat equations for u; as well

as in the free boundary condition is multiplied by the factor 1/é5%. Also, the region B} x

(_@ cd 1 1
W c10? c20

cone which certainly contains a circular cone I'(e,, ), if ¢; is small enough.

is mapped into B/ X and the cone I'(e,, 0, 6") is transformed into a
1

Take now a direction in space and time p € I'(e,,, 0) of the form p = A\jo + Asey, with o
unit vector in I'y(e,,,0) \ N, A1 + A3 =1 and | Xy < 2 %. We have

D,u* > cdD.,u" (9.45)

in Bi/s

vector of the form

+3¢,) X (==L, 1), since |Dyu*| < @2D, u*. Let now 7 € T en,Q be a small
4 c10’ ¢c190 n 2

T=np (0<n<1)

and (xg,tg) € Bi/g(:lz%en) X (—Cl%,cl%). Then, if ¢ = |T\sing, (y,s) € B:(xg,tp) and
T

T=7+4 (xo—y,to — s), we have
ui(y,s) =u*((y,s) — 7) = u*((xg,t0) — 7) = u* (w0, t0) — Dru*(,1) .
From (9.45) and the fact that D, u ~ u/d,+, we obtain

Ve(xo,to) = sup wuy < u'(wo,to) — coeu”(xg, to) - (9.46)
Be(zo,to)

Then, Lemma 9.2 (with ug = u*) gives that there exist h > 0, ¢ > 0, such that
V(1+ho)e (T, 1) < u*(z,t) — céeu™ (2o, t0)

for every (z,t) in a parabolic neighborhood of (xg, tg).

/ 3 I
(xo,t()) € Bl/8 <:|:46n X 013’ 10

we have u*(xg,tg) ~ u*(i%en, 0), respectively, we can write

But, since for

V(1+ho)e (T, 1) < u'(z,t) — cdeu” (i%en, 0)
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for every (z,t) € Bi/g(:i:%en) X (—?15, ?15), respectively.

Since u; and u* are two viscosity solutions to f.b.p. in the region Bj_,. X (—61%5, 61—5)
and satisfy the hypotheses of the propagation lemma, taking into account the modifications
in the free boundary relation due to the time scaling, we deduce that, for a small positive
constant -,

V(14yhs?)e < U
in Bi /2 X (—%15, %15) Notice that, in order to apply the propagation lemma, the coefficient
of D;u* in the heat equation must be kept small. This can be obtained by a previous
hyperbolic scaling and will produce at the end of our iteration procedure a very weak
modulus of continuity of V. f.

The last inequality implies that, along any direction of the form 7 + (1 + vhd3)D, ¥ €
R™*1 |p| = 1, w* is monotone increasing. Using again the geometric theorem 4.2, it is

readily seen that the convex envelope of this family of directions and the cone I'(e,,#)

contains a new cone
I'(vy,01,0") with 8" > 0y and, for some constants by, bs,

91—92[)153, ‘Vl—en‘ﬁbg(s.
Iteration of Lemma 9.17 gives:

THEOREM 9.18. Let u be a wviscosity solution to f.b.p. in Ci. If all the hypotheses of
Theorem 9.1 hold and, in particular, F(u) is given by the Lipschitz graph x, = f(a',t),
then, for each t, |t| < 1, Vuf is continuous in 31/2. That is Fy = F(u) N {t} is a C!
surface in Bi/Q x (—1,1).

PROOF. We iterate Lemma 9.17. Set u(z,t) = u(z,ed3t) where §p = § and ¢, § are as in

Lemma 9.17. By this lemma ug is monotone increasing along any direction 7 € I'(v1, 01, 6%)
with 67 > 6 and 01 = § — 61 < do — d in By, x (=1, 1).
Suppose now that uy = ug(z,t), k > 1 satisfies the hypotheses of Lemma 9.17 in a cone

I (v, O, 0%) with 6 > 0,
O = g — Ok <1 — b0}y, Vg — vp—1| < b2dg—1
in By x (—1,1). Set
Upr1 (1) = ug (27 Fx, 27" 6ot) - 27k
where 75 is the smallest integer such that 27" < 55,%. Then, by Lemma 9.17, ugyq is

: t 1ot
monotone in a cone I'(vgy1, k41,05, ,) with 8}, > 0y and

9
Vg1 — vg| < b2y 011 < 6 — b1j;
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in Bf, x (=1,1).

The recurrence relation implies d; — 0 as k — +o00 and the conclusion follows. ]

9.9. Free boundary regularity in space and time

The fact that the defect angle in space can be made as small as we prefer, allows us to
use the results in sections 4 and 5.

In the final iteration process the delicate balance between the defect angles in space and
time gives a modulus of continuity in time and an improved one in space.

As we already noticed in section 5, for some A, B, 0 < B — A < cu, u is monotone
increasing along the directions e; + Be,, and —e; — Ae,,. To enlarge the cone in time, we
have to lower B or to increase A.

The main Lemma, which shows the initial step in the iteration process, is the following.

LEMMA 9.19 (Basic iteration). Let u be a viscosity solution to f.b.p. in C1. Suppose the

hypotheses of Theorem 9.1 hold. In particular, assume that:

(i) u is monotone increasing along any direction of a space cone
1
Lz(en, ), O§00§0<§7r

(ii) There exist constant ¢1 (positive) and A, B such that u is monotone increasing

along the directions e; + Be,, and —e; — Ae,,, with
O0<B—-—A<cpu.

Then, if 0 = § —0 < p3, there exist constants ci,ca,co (positive) and Ay, B,

depending only onn, 8y, and a spatial unit vector vy such that, in By /5 X (—%, %f)
(a) u is monotone increasing along every T € I'(vy,61) with
T 52
(51 25—91 S(S—Cl— |V1—6n| §01(5 (947)
7

(b) u is monotone increasing along the directions e; + Bivy and —ey — Ajvy with

0<B1—Ai<éur and i <p—cid . (9.48)

ProOOF. We first perform a dilation in time setting

w(z,t) = u (x %) .

After this dilation, the coefficient of the t-derivative in the heat equations as well as in
the free boundary conditions is multiplied by u/d. Also, the regions Bf x (—1,1) and
Bl
tively.

(£3e,) x (—%‘S, CZ—‘;) are mapped to B} x (=&, %) and Bi/g(:lz%en) X (—cg, cp), respec-
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The condition ii) becomes: w is monotone increasing along the directions

) 0
e; +—Be, and —e — —Ae,
1 t

with
0<B-A<c¢c).
To enlarge the cone in space and prove (a), consider the spatial vectors 7 € I';.(e,,0—9),
with |7| < 6 and let
e =|r|sind .
If we define wy(x,t) = w(x — 7,t), clearly we have

sup wi(y,t) < w(z,t) V (z,t) € B]_. X (—H, H) :
yeB: (@) 00

We proceed now as in section 4, by deleting, say, 1—10 of the original cone, containing a
neighborhood of both the generatrices of T';(ey,6) opposite to Vu(+32e,, —2a?). This is
possible thanks to Lemma 9.6 and Corollary 9.7. We conclude that, for any vector 7 in the

remaining cone I'}(e,,6), we have
3
D;w > ¢dD,,w in Bi/8 <i16n) X (—cop,cp) - (9.49)

This inequality extends to derivatives along directions having a t-component of order .
Indeed, if for the spatial unit vector 7 (9.49) holds, then, for A3 + \? = 1, since
)
|Dyw| < é—Dpw
14
we have
0
MD-w + NoDyw > (c)\lé — 6)\2—> De,w > ¢dD., w
i
as long as || < §, since 6/p < 1. As a consequence, if p is a unit vector in R*™! and
1/8

w((z,t) — 7) —w(x,t) = —D;w(Z,t) < —céeD,, w(x,t)

3
< —cedw™ (izen, O)

T =17 +ep, we can write, for every (z,t) € B} o(£3e,) X (—cp, ¢g), respectively

(since |T| > ce and by Corollary 13.14). Therefore

3
ve(z,t) = sup wy < w(x,t) — cedw™ (:I:—en,,())
B (x,t) 4

respectively in Bj /S(i%en) X (—cg,cp). From the Harnack principle (Lemma 9.2), for a

small positive h, in the same set we obtain

3
V(14hs)e S W — cedw™ (izen,,0> .
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Hence, w satisfies the hypotheses of the propagation lemma with 7= C and h = h. By

taking account the effect of the dilation in time, we conclude that, for a small v > 0, in

Bl % (-2,9),

V(14ho2 e S W -

This amounts to say that w is monotone increasing along all the directions of the form
52
T=7T+ (1 + fyhz> Ep (9.50)

in B} /2 % (=%, 2). The convex envelope of the old cone I', (e, , ) and the set of directions

(9.50) contains a new cone (in space) I';(v1, 61) such that

_(52
vy —v|<e¢d and 60 —60=ch—
1

which, after rescaling back in time, corresponds to (a) with ¢; = ch.
To prove (b), notice first that the new axis v is shifted with respect to e, of order § in
a spatial direction orthogonal to e,. Since § < u3, we can use the results of Lemma 9.11

that, in the present situation, read
) )
Diw+ —BD., w>cdD.,,w or —Dw—A—D, w>cdD. w .
M M

Suppose that the left inequality holds and call p, p1, respectively, the unit vectors in the
directions
) )
et + —Be, and e+ —Bu.
M M
Then it is easy to check that, if [e!| =1, e! - e, = 0 and \? + \3 = 1,
2

)
MDDz w4+ XoDgw > <C(5 —¢—B — 61(52> D, w > ¢dD,,w
]

in Bi/g(i%en) X (—cp,cp), as long as |Ao| < 24, since
52
Djw > cDsw — ¢c—BD,,w .
]
Let now p* denote the direction below p; (with respect to time) in the (e, v1)-plane, which
makes an angle § with py.

For any small vector 7 in the p* direction, set again
£ =|7|sind , wy(z,t) = w((x,t) — 1) .

Then

ve(z,t) = sup w; <w(x,t) in Bj__ X (—
Be(z,t)

Proceeding exactly as before, we conclude that

V(14che2 /e =W 1IN Bi/z X (—5, 9
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This implies, that, in the same set, w is monotone increasing along the directions

o _ 52
e + <—B - 5h—> 1
M H
that is, rescaling back in time, u is monotone increasing along the directions

e; + (B — ehd)vy .
Therefore (b) holds with B; = B — ¢hd, A; = A and
B —A; =B —A—¢chd <c(u— c0)
so that the proof is complete. ]

We are now ready to complete the proof of Theorem 9.1.

PROOF OF THEOREM 9.1. By the results in the previous sections, for A\ large enough,
the function uy(z,t) = %u()\:c, At), that we call u again, falls under the hypotheses of the

propagation lemma. Now we proceed inductively, by applying Theorem 9.18 to
up(z,t) = 2Pu(27F, 27%¢) E>1.

In this way we define a sequence of space cones I'y (v, 0;) and sequences {Ay}, {Bx},

{6k}, {px} with the following properties: in

/ Co5k 00(5
Do <_2’“uk’ 2’%’“) ’

(a) u is monotone increasing along every 7 € ', (v, 0y),

(b) w is monotone increasing along the directions
e; + By, and @ — e — Apvg

(c) the sequences {0} and {ux} satisfy the recurrent relations

2

Opa1 < O — 1%
M

Pht1 < p — €20k
as long as 0 < p13.
(d) [Vkt1 — vils |[Ag+1 — Akl |Br41 — Byl < ¢hdy and

0< B — A < copy, -

From (c) we obtain the asymptotic behavior

_am) _ )
32— 0 MR pipy

for any small 7 > 0. Then, using (a), (b) and (d) the assertion (9.1) of the main theorem
follows. To prove (9.2), notice that at each time level tg € (—3,3), QF(u) N {t = to} is a

O,
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Liapunov-Dini domain. Since u; is bounded, the results of [W] apply and therefore Vu®
are continuous up to the free boundary at each time level .

On the other hand Vu® have non tangential limits everywhere on F(u), therefore Vu®
are continuous in space and time. From the free boundary condition, that now holds in a
pointwise sense everywhere, we deduce that ui are continuous in (z,t) on F(u). From this
and the existence of non tangential limits of u;" everywhere on F(u) we conclude that u;-

is continuous in (x,t) up to QF(u), respectively. O



CHAPTER 10

Flat free boundaries are smooth

10.1. Main result and strategy

According to the results in the previous chapter, under a nondegeneracy condition pre-
venting simultaneous vanishing of the heat flow from both phases, Lipschitz free boundaries
enjoy instantaneous regularization and viscosity solutions are classical.

Coming back to the counterexamples of section 9.3, we realized that in absence of non-
degeneracy (in the above sense) the achievement of further regularity of the free boundary
depends on its Lipschitz constant in space. Our main result, indeed, implies that if this
Lipschitz constant is small enough (depending on dimension and the oscillation in time of
the solution) then the above regularity results hold; i.e., roughly speaking, we are actually
in a “nondegenerate” situation.

It turns out that to be in a nondegenerate situation enough for regularization, it is not
necessary for the free boundary to be a Lipschitz graph or even a graph at all. It is enough
to have a suitable flatness condition that we express, as in the elliptic case, in the following

flexible version of e-monotonicity.

DEFINITION 10.1. We say that u is e-monotone along the directions of a cone I'(e, 6),
if for a small § > 0 and every 7 € I'(e, 6 — 9)
sup  u(g —e7) < u(p) .
g€ B¢ sin 5(P)

In the case of our free boundary problem, the results in section 13.4 can be summarized

as follows.

COROLLARY 10.1. Let u be a viscosity solution to our free boundary problem in C; =
B! x (=1,1), e-monotone along every T € T'y(en, 0*) UTy(v,0), v € span{en, e}
Then there exist positive C, ¢ such that, at a distance greater than C\/e from F(u), u is

fully monotone along any

7€ Dplen, 0* — ce) UTy(v, 0" — c\/e) .

We can now state the main result of this chapter.

169
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THEOREM 10.2. Let u be a viscosity solution of a f.b.p. in Co = B x (—2,2), e-monotone
along all directions T € Ty(ey, 05)UTt(en, 0%). Set My = supe, u and assume u(e,, —3) = 1,
(0,0) € F(u).

Moreover, let G = G(a,b) be a Lipschitz function with Lipschitz constant Lg such that

D,G>c*>0, DyG<—c".

Then, if € and d9 = § — 0y are small enough, depending only on n and 0%, the following

conclusions holds:

1. In Cy the free boundary is a C' graph, say x, = f(2',t), in space and time. More-
over, there exists a positive constant C1 depending only on n, My, Lg,c*, a, 0" such
that for every (', xn,t), (Y yn,s) € F(u),

() IVar £, 8) = Var f (5, D] < e1(—log |2 — 3/])~4/3
(b) [Duf(a',t) — Duf(a!,5)] < c1(—logls — ¢]) /3
2. u € CHQ(u)) NCHQ™(v)) and on F(u) NCy

u;r202>0

with ca = co(n, My, Lg,c*,a,0%).

In particular, Theorem 10.2 holds for 0-monotone (i.e., fully monotone) functions. In

fact, as an immediate consequence we have the following:

COROLLARY 10.3. Replace in Theorem 10.2 the e-monotonicity hypothesis with the fol-
lowing one:

The free boundary F(u) is given by the graph of a Lipschitz function x, = f(x',t)

with Lipschitz constant Ly in space and Lo in time. Then, there exists Lo =

Lo(n,, L1) such that, if L1 < Lg, the conclusions 1. and 2. in Theorem 10.2 holds.

STRATEGY OF THE PROOF. The main problems arise of course from the lack of a prior:
control of the normal derivatives (in the viscosity sense) of u at the free boundary. Let us

see what are the relevant ideas needed to overcome this difficulty.

Step 1. Interior enlargement of the cone in space. Saying that u is monotone along any
direction 7 belonging to a spatial cone I';(e,,0*) amounts to asking that for any &’ > 0
us(p) = sup  u(qg—-<'e,) <u(p). (10.1)
qu;/ Sine(p)
The function u., measures the opening of the monotonicity cone, and one tries to get

inequality (10.1) in a smaller region for 7 belonging to a larger cone.
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Thanks to Corollary 10.1, this can be done ve'-away from the free boundary, for any

¢’ > 0, using the same techniques of sections 2—4, chapter 9.

Step 2. More delicate is the improvement of the space-time cone I't(e,,0*), since in
section 9.5 we used full monotonicity up to the free boundary. The idea is to approximate
u by suitable monotone super and subsolutions v,v which fall under the hypotheses of
Lemma 9.11.

In this way we obtain an improvement in monotonicity for both ¥ and v that can be

transferred to u via an estimate of the approximation error.

Step 3. We want to carry to the free boundary the gain obtained in steps 1 and 2. What
we can do is to carry only e-monotonicity in a larger cone.

We need however to counterbalance the lack of nondegeneracy through a rather delicate
control from below of u} in the viscosity sense, at regular points of the free boundary. This
sort of Hopf maximum principle is to be expected if in the iteration of the various steps the
opening speed of the cones of e-monotonicity is enough to reconstruct in a neighborhood of
(0,0) a Lyapunov-Dini domain.

This is exactly what happens, but at the same time it is necessary, at each iteration

step, to decrease at a suitable rate the ¢ in the e-monotonicity of u. This is done in

Step 4. Since e-monotonicity implies full monotonicity \/e-away from the free boundary,
it is possible to improve the e-monotonicity itself, i.e., to decrease ¢, at the price of giving
up a small portion of the enlarged cone. This improvement of e-monotonicity up to the free
boundary can be obtained via a family of perturbations in the style of section 5.4. Also at

this stage, the key point is the control of u at regular points of F(u).

Step 5. We perform a double-iteration procedure that consists at each step of a cone
enlargement and of an e-monotonicity improvement, in a sequence of contracting cylinders.
Again, due to the underlying double homogeneity of the problem, the sequence of contract-
ing domains is neither hyperbolically nor parabolically scaling and the opening speed of the
monotonicity cones is logarithmic. This produces the logarithmic modulus of continuity of

Dyp, V f appearing in the theorem.

The next section deals with steps 1 and 2.

10.2. Interior enlargement of the monotonicity cone

The first step in the strategy of proof of theorem is the enlargement of the monotonicity

cone away from the free boundary. According to Corollary 10.1 our e-monotone solution is
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fully monotone /e-away from the free boundary and therefore the technique in chapter 9,
sections 2—4, can be used to get an enlargement of the spatial section of the cone. Precisely,

we have:

LEMMA 10.4. Let u be a viscosity solution to our f.b.p. in C; = B} x (—=1,1). Suppose
that u is fully monotone along every T € Ty(en, 0%) UT (v, 0%), with v € span{e,, e}, in the
domain Cy N {d(p, F(u)) > ¢V}, for 0 <~ < 3 and e >0 small.

Then, there exist ¢,h,0 < h < 1, 8% and &, all dependent only on 6%, 0%, a, n, such that

i) Ty(en,0%) C Ty(e,0%) and 5 — 6% < h(5 — 6%)
ii) w is fully monotone in I'y(€,0%) in the cylinder Bi/s(%en) X (—
6 < p, where 6 =5 — 0%, p=7% — 0"

cd cb
B

) provided

The enlargement of the cone of monotonicity in time away from the free boundary,
done in section 9.5, requires full monotonicity up to the free boundary. This is not our
case here and therefore we have to argue differently. The idea is to use suitable monotone
replacements of u, constructed by taking supremum or infimum of u over balls of radius 7.

First of all let us state a lemma analogous to Lemma 5.6.

LEMMA 10.5. Let u be a viscosity solution of our f.b.p., €7-monotone along every di-
rection T € Uy(en,0%) UTy(v,0'), v € span{e,, e}, and fully monotone outside an Me -
neighborhood of F(u). Then, there exist constants ¢,C and Cy, depending only on n, 6*
and 6%, such that

cdpDe, u(p) < u(p) < CdpDe, u(p)

where d, = d(p, F(u)), for every p with dy > cpe?.

The proof follows closely the proof of Lemma 5.6 mentioned above. Let now u as in

Lemma 10.5 and, for 0 <4/ <y < 3, define

o(p) = inf w v(p) = sup u
B (») B )

and

Ge(p) = ulp + 47 en) | u(p) = ulp — 47" ey) .
LEMMA 10.6. The following hold:
(i) in O () UQF ()
0 — .| < ce” D, e
and in Q7 (0) UQ™ (v)

v —u.| < gV Dy, u.
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(ii) © and v are monotone increasing along every
7€ Tylen, 0% —ce VYU — e v) .
(iii) v is supercaloric in Q1 (v) UQ™ (v) and v is subcaloric in QF(v) U Q™ (v).
(iv) Fach point of F(v) is reqular from the left and if B(yo,so) C 27 (v) touches F(v)
at (xg,to) with slope _%’ then ay > 0 and near xg
>+

o(x,t) < ar{x —xo, V)" —a_{(x — x9,v)” + o(|x — xg|)

where v = |y0 §0|, with

b > Glag,a) .
Ot
(v) FEach point of F(v) is reqular from the right and if B(yo, s0) C Q7 (v) touches F(v)

at (xg,tg) with slope —g—:, then a_ > 0 and near xg

v(x,tg) > oy (z — 20, ) " — a_(x — x0,v)” + o]z — 70])
with
A= < Glag,a_) .
a_

PROOF. (i) is an easy consequence of Lemma 10.5; (ii) follows from Lemma 5.3; (iii) is

obvious since v and v are infimum and supremum of translations of caloric functions. Finally,

iv) and v) follow from Lemma 8.13. O

REMARK. Properties (iii) and (iv), (v) say that v and v are R-supersolutions and R-

subsolutions, respectively, in the terminology of section 8.4.

Now we replace v and v by their caloric counterparts in their positive and negative

regions, in strips centered at free boundary points and of height a = min(a;,a2). We shall

treat only the v case, since that of v can be done in an analogous way.

and

Let (0,0) € F(v) be the center of the strip

2n 2n
R, {|x!<3 ] < 21 \t\<an}
let
RE=Q50)NR,.

Denote by v the function that satisfies

and

Av —ajvy =0 in R1+, Av —agvy =0 in Ry

- +
v=1 on O,R] .
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By the maximum principle and Lemma 10.6
/ /
[ue —v| < ce” De, . and |u, —v| < ce” D, e

in Rli, respectively.
Also, since © is supercaloric in R UR], vT < o™ and v~ > ©~. Therefore at each point

(zo,t9) € F(v) = F(v), we have the following asymptotic development:
v(z,tg) < af(x —x0,0) " — a* (x — x0,7) " + 0|z — m0))

with o’y < oy and a® > a_, and by the monotonicity properties of G

%25 Glar,a) 2 Glada)
Oé+ a4

Let My := maxp+ v and my := miny+ v+ where
R by
1

2

Since on 8Rf, v = v, then %—I and % are controlled above by a constant depending only
on n, My, 6%, and 6'. This means that after an appropriate rescaling, v and v~ satisfy the
hypotheses of Theorem 13.13. In particular, in a d-neighborhood of F'(v) in R; /g we have
that v is monotonically increasing along the directions of a space-time cone F(é, en) where
0 = O(n,0%,0"). Actually v is monotone increasing in all of R, /5 for some cone of directions.

This is precisely the content of the following lemma:

LEMMA 10.7. Let " < ~'/4. Then, in Ry, v is monotone increasing along any

direction T € T (0% — ¢V | e,,) and T € (0" — ce” v) C Sp{en, e}, with c = c¢(n, L).

PROOF. By Lemma 10.6, on F(v), D;vt > 0 for any
el (0* —ce' ™ en) UT (08 — '™ 0) .

Therefore for any p € R;L/8

D-v'(p) > /

D,v" dw? > —/ |D vt | dwP =: —2(p)
apR;r/g\F(v)

8PR¢/8\F(U)

where w denotes the caloric measure of A — a1 D; in R;L/S. By Lemma 13.11,

+ + 2 [l +
HDtU HL2<R-7|‘/8)7HVU HL2(R¢/8)§C(n79)“U HLQ(R;_/8).

Replacing, if necessary, 8pR;“/8 by a nearby parallel surface, we may assume that Dot €

LQ(apR;/S) with

HDTU—FHL%(%R?/B) S CM+ y
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which implies that z(2e,) < ¢M,. Since z = 0 on F(v), by Corollary 13.9 in ij/5, we have

z(éen)
z(p) < C#%en)

Therefore, by Corollary13.15, if d, = dist(p, F'(v)) < J, then

vt (p) < et (p) .

v (p) < edpDe, v (p) .
Hence, for " < 3,
Dot (p) + 7 De, vt (p) 2 (7" = edy) De, vt (p) = 0
if d, <c e (7" < 6).
Consider now the points p with d, > ¢~ 1e7". For the function u.(p) = u(p + 47 en),

the free boundary F(u.) is at a distance greater than 3¢ from R

Recall that on d,R;" we have
5 — 1| < e£7 D, e
therefore by the maximum principle,

vt — 4| < eV D, i .

+
4/5°

By Schauder estimates, whenever d, > 557", peER
Dyt — Dyiiel, |VoT — V| < (672D, tic < ce” D, e
since 7" < +'/4; in particular,
Dot — Driie > ¢ D, . .
Therefore, if 7 € T (6% — ¢, e,) UTL (0" — e, v)
DTvJr >0.

For v~ we can proceed in an analogous manner. The proof is complete. ]

Finally, we are in position to apply the method of section 5. Let e; + Be,, and —e; — Ae,
be the vectors of the generatrix of the cone I'y(6* — ce?",v) (v € Sp{en, e;}). Notice that if
p=7%5-"0,

B—-—A<c(p+e")<eéu

provided that " < p.

LEMMA 10.8. Let ay = D, u*(3e,). If

_A+B

Glag,a_) > —b 5

(respectively, G(ay,a_) < =b),
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then there exist c¢,¢ > 0 such that if § is small and § < cp’
Dyu™ + (B —cp)De,ut >0 (resp., Dyu™ + (A + cp)De,u™ <0)

).

,C

T >
Tl

in Byso(fen) x (—¢
PROOF. Suppose G(aq,a_) > —b. Set ai = D.,vE(2e,). In every strip Ry/5(po)

centered at py € F'(v) we apply to v Lemma 10.11. Therefore, since G(a’, o) > —b—ce"",
)

in B1/30(%en) X (—E%,Eﬁ) we have
Dw*t + BD. vt > (Cp— ce” VD, v > euDe, v .
Hence the conclusion follows, since
Dt — Dt < e’ D, ut, |De, vt — D, ut| <’ D, ut .

If G(ay,a—,e,) < —b, we use the caloric replacement of v instead of . ]

10.3. Control of u, at a “contact point”

In order to be able to propagate the gain in section 2 from the interior to the free
boundary we need to have a control of u, at regular points of F'(u). We are dealing with
the following situation:

Let Ty := ' (0k, k) be a sequence of spatial cones,
D={x=(2,2,) eR": |2/| <2, g(z") <z, < 2}
with g a Lipschitz function and 0 € F' = {x : z,, = g(2/)}. Suppose that

(a) O = % — 0, < (k:-i—]c\’f%’ a>0, N>1, and |I/k; — Vk:+1’ < 5((5k _5kz+1)
(b) there exists kg such that, for k < ko,

s O [Byr (0) \ By—s—1(0)] C D N [By—t (0) \ By—s—1(0)]

and a ball ngo,&:k = 2% tangent from inside to F’ at 0, with Vi, as inward

normal.

Then the following lemma holds.

LEMMA 10.9 (Contact point lemma). Let {I'x}r>1 and D be as above and w a positive
superharmonic function, continuous in D, and vanishing on F'. Then there exists a constant

¢ = c(n,a,N) such that, near 0,
w(x) > cwolz, Vi)

where wo = min{w(z) : x € DN {xz, = 2}}.
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FI1GURE 10.1. The geometry in the contact point lemma

ProoF. We will construct a Lyapunov-Dini domain
D' ={(',x,) € R" : 2, > (), |2'| < 2,2, < 2}
such that
(i) ¢(a') > g(a’) if 2| <2 and ©(0) ~ g,
(ii) ¢ € C! and wy,(r) < Cy [log(%)]_l_a,(r < 4) where a’ = a/2 and wy,, denotes the
modulus of continuity of V.

Suppose that v, = e, and set

b(s) = /O e [log(%)] T

Then (s) is increasing and ¥ (s) > cas(log %)_1_“/. Therefore the graph z, = ¥(|2’|)

intersects 0Ty, at points Z’ such that

1
Ohy \ T —
|:Z’/‘ < 8exp ( <%> ) = 8exp (—035k01+a )
2

1/1—|—CLI)

with ¢(|2']) < c30k, exp(—c36y, . Since

— a7 1 7 — T 1 7 14a
5k0 +a > co +a (kO +N) 1+a’

1+a
1+a’

for some N large and > 1, we have

_ 1
W7D < 1o

If we set p(z') = ¥(|]2'|) + eg,, choosing ¢; large enough and using (a),(b), it is easily seen

that the domain D' = {(2/,z,) : ¢(2') < x, < 2} has the desired properties.
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To prove that w satisfies the inequality above, denote by Z(x) the harmonic measure in
D’ of the set D' N {x, =2} and by w the Poisson integral of w in D. Using the results of

[W], we infer that there exists a constant ¢ = ¢(n) such that
Z,(0) >c.

On the other hand, using Hopf and maximum principles, if x,, is small we can write

0 U A
w(oaxn) > Cw(pko) > cwo (pko)
':En €k0 €k0

> cw

where wp = minimum of w on D N{z, = 2} and pg, = (0,€x,). Since w > w the proof is

complete. L]

10.4. A continuous family of perturbations

The full monotonicity away from the free boundary yields a gain in the e-monotonicity on
the free boundary. This can be achieved by means of a continuous family of perturbations,
as in section 5.2. Although the construction of this family follows here a different approach,
the underlying ideas are exactly those expressed in section 5.1. We introduce the following
notation:

Npev = {p = (2, zp,t) : d(p, F) <be"} for b>0,0<y<1
Co.r1 = Noev N {]2’| < R} N {Jt] < T}
()c r-a smooth domain such that C%R,T CQerT CChRrT -

Here, we assume that u is €7-monotone along all directions 7 € T',(0%,¢e,) U T4 (6%, v)

and, as in the main theorem, that § is very small (6 = 5 — 0%, p =75 —0").

LEMMA 10.10. Let by, bo, b3, and D be positive constants; then there exists a family of
C? functions ¥y, = p(x,t), n € [0,1], in Qc g1 such that
(i) 0 < b <1, <1+n for some constant b,
. Vi, |2
(i) Athy — b1 Dytby — b V| — b2 > 0,
(iii) Dy, [Vipy| < G277 0< B <y <1,
n n>7D
(IV) thn Z 0,
(v) ¥y <1in Qe prN ({—T <t<-T+e*}U{R - # < |2 < R}),
(i) ¥y > 1+ (1 — Ce%) in Qe pr N ({t > T 42 n{|e| < R — 6“2/4}) where
O<a<y—20.

PROOF. Let g1 = g1(t) € C°([-T,T]) and g2 = go(x) € C*°(Bpg) such that

T+t
t)=1{2—
g1(t) ( 5o

> for —T <t<—T+ 242
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g1(t) strictly decreasing from 1 + &% to 1 + %5/3 for —T + 2 4+ 2P < ¢t < T with
gi (t) < _Cgﬁ’

a/4
g=1if R—¢

<|z| <R,
g2 =0 if |z| < R— /4
Let F" be the lateral part of Qo527 N {u > 0}. Under the dilation z — 7%, t — £74,
F+ becomes a uniformly smooth surface F.f at a distance of order 1 from the dilated free
boundary. Due to the flatness of the free boundary the space curvature of Fj is bounded by
cé. Therefore, for each t, the spatial distance function d. = d(x,t) from F;L is well-defined
up to a distance of order 1/§, and we have |Azd.| < ¢d, |Did;| < CLy, where L; is the

Lipschitz constant in time of F'.

Define
x

Gla,t) = gu(t) + ga(a) + 4770 (. (5) —0d2 ()

If o = 0(Lg) >0 and A > 0 are chosen properly, G has the following properties:
(a) D:G <0, |D:G| < ce™“.
(b) |[VG| < e/, and
(c) AG < —cAe™.

Now, for C' > 1 large enough, set F(x,t) = (1+G(a: t))

1
1-2C'; then, it is easy to see that

the functions
F(x,t) —1
ST (o
32C-1 — 1

have the required properties. L]

LEMMA 10.11. Let u be a wiscosity solution of a free boundary problem satisfying the
hypothesis of the main theorem. For 0 < e, 0 < A <1, let u(q) = u(q — AeT) and
vy(p) = sup a(q) , re R 7| =1, (10.2)
quawn (p)
where 1y, are the auziliary functions constructed in the previous lemma. Suppose the supre-
mum in (10.2) occurs uniformly away from the top and the bottom points of the ball, at a
distance not smaller than p. Then,
(i) vy is subcaloric in QF (vy) and Q~ (vy),
(ii) 9T (vy) is uniformly Lipschitz in space-time with Lipschitz constant in space L <
tan(5 — 0F) + ce1 7,
(iii) if (xo,t0) € F(vy) and (yo, S0) € F(u) with

(%0, 50) € OB yyp(a0,t0) (T05 t0)
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then (xzg,to) is a regular point from the right. Moreover, if near (yo, so) along the

paraboloid s = sg — v{y — yo,v)? (7 > 0), u has the asymptotic expansion

u(y,s) = o (y —yo, )" —a_(y—yo,v)” + o(ly — yol)

where v = é’g:f]gv then near (zo,tg) along the paraboloid t = tq — ~(x — xq,V)?
oy (o, Lo "
vp(z,t) Zoy <93 — T,V + ﬁv(mbn»
U¢n($07 tO)

— o <:r:—:c0,u+ V(awn)>_+0(\x—xo|)

Yo — o

: —t
with |;8_x%| < Glay,a_,v).

PROOF. (i) At the point where the supremum occurs we have the estimate |us| < ¢|V ul,
with ¢ depending on p. The proof then is similar to that of lemma 10.12.
Except for minor changes, the proofs of (ii) and (iii) follow those of lemma 4.9 and

lemma 10.13, respectively. 0

10.5. Improvement of s-monotonicity

In this section, using the family of subsolutions of the previous section, we show how
to obtain a gain in e-monotonicity on the free boundary. Also, repeating the process for
this gain a finite number of times, € can be decreased enough so that the hypotheses of our
main inductive argument are fulfilled.

Let u be a viscosity solution to our free boundary problem in Crr = BR(0) x (=T, T), e-
monotone along every direction 7 € I';(0%, e, ) UT (0", v) where v € Sp{ep, e;}. If 6 = 5 —607
and d < p=7% — 0" e <, we know that in Cp_. 7, after a dilation in time t — %t,

sup  u(q — 1) < u(p)
q€Be sin 5(p)
for any 7 € T'(6% — §,e,) UTy (0L — p,vy), |7| = 1, where I'y(6%,v,) is the dilated cone in

space-time. Since for any A < 1 close to 1
Bs(p— AeT) C Beging(p —e7) (o0 =¢lsind — (1 —=N)]),

it follows that

sup u(q — Aet) < u(p) .
Bs(p)

On the other hand, by Corollary 10.1, outside an £7-neighborhood of F'(u), for 0 < v < %,

w is fully monotone in I'y(6%,e,) U T (6%, v), but for a correction of order ¢ for #* and /¢
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for 6, which can be neglected since € < §. This implies that for any 0 < A < 1

sup  u(q — AeT) < u(p) .
B)\ssiné(p)

Now, in order to gain in e-monotonicity near F'(u), we find an intermediate radius o1, using

the auxiliary function 1), constructed in the previous section. First, a technical lemma.

LEMMA 10.12. Let o, B, v (< %) , and Q. g7 be as in Section 4. Suppose that in
QE,R—ClEO‘,T—CQ&'a

wi(p) = sup u(q— Aet) < u(p)
By, (p)

where £1 = e(Asin 6 — ceP), for any T € T,(60% —6,ey,) or T € T1(0L —6,v4) (vs € Sp{en, er}).
Then on 00 R—cieo T—cyea at a distance MeY (M large) from F(u)

wi(p) < (1 —e"7 M u(p) -

PROOF. Set ws(p) = SUpPg,_ (p) u(q — \eT) where f5 = eAsind. Then using Lemma 10.5

we deduce
wi(p) < wap) — " HVu(p)| < ulp) — " Tu(p)

for p € 00 R—cieo T—cpex and dist(p, F'(u)) > Me7. O

LEMMA 10.13 (Basic Iteration). Let u be a viscosity solution to our free boundary prob-
lem in Cry := BR(0) x (=T,T) that is e-monotone along every direction T € I'y(6%,e,) U
[4(0%,v), v € Sp{en, et }. Suppose that 6 < p®. Then there exists an g9 > 0 (g9 < 6) and
0 < A= Meo) < 1 such that, if € < €, u is Ae-monotone in the cones T'y(0% — é=P, e,,) and

[ (0t — e’ v), in the domain CRr—co7—cc N Qe pr where 0 < a < B < %

PrOOF. Choose 7 such that

o(1—17) = Aesind — ce' ™

where 0 = £(sind — (1 — A)). Take 1 — A = Zsind; then since 0 < ¢ < § < 1, we have
% < 1 < 1. Perform the dilation in time t — %t. This assures that the supremum of the

new u in balls is taken uniformly away from top and bottom. Now set
Ty = vy + e TP
where v;, is the function defined in Lemma 10.11 and w has the following properties:

Aw —ajwy =0 in Q+(’Un) N Qe rT
w =1 OpQe r T N{p : d(p, F(v,)) > Me7}
w =0 everywhere else in Q. g7
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where @ is the caloric function in Crp N Q™ (v,) with boundary values zero on F(v,) and
equals to u everywhere else on the parabolic boundary of Cr N Q" (v,). Notice that by the
maximum principle @ < w in Cgr N QT (vy).

Following our discussion above, we want to show that for every n € [0, 7]

in Qe g NCR—cea,T—cear-

The set {n € [0,7] : v, < u} is nonempty since by the maximum principle and
Lemma 10.12, n = 0 belongs to this set. Also, it is easy to see that this set is closed.
To show it is open, it is enough to show that Q. p7 N {v,, > 0} is compactly contained
in Q. pr N {u > 0}, if v, < u, for ny € [0,7). Suppose not; then there exists a point
(xo,t0) € F(y,) N F(u) which is, due to the construction of v,, a regular point and
d((zo,t0),0pQ rT) > ce?. Since F(v,) is Lipschitz, by Corollary 13.9, we have w > cu
in a €7-neighborhood of (z¢,%p) in {v, > 0}.

On the other hand, by Lemma 13.16 w_ = @(1 — @"), for a suitable small > 0, is a
positive superharmonic function on the hyperplane ¢ = t; and therefore, by Lemma 10.9,
(w-), > ¢é> 0 at g, where v = v*/|v*| with v* = (yo — o + 02| Vby|)/|yo — zo|. Notice
that at (xo,tp) we have @, = (w_),.

Now, v,, has the following asymptotic development at the contact point (z¢,%o) along

t =ty —y{x — z0, )%

+

Upo (z,t) > aq(x — 20,v)" —a_(x —z0,v)” + 0|z — z0|)

where
G > (1= o Vi, |) + 747

with a4 and a_ as in Lemma 10.11.

Also, along the same paraboloid, near (zg, o),

u(x,t) = af) (x — x, V)" — at? (x — x0,v)” + o(|z — x¢])

and

5(2) so — to + o2, (zo, to) Dy, (T, t .
Gaf,a?) < 5 = (22 f;(fx”‘) 0 (20:10) ) | -
o 0 0

So— 1t
< (M i ca\thno!) (1 + Col Vi)
1Yo — o]

< (og,a )+ Coe' ™ .
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Since G is Lipschitz, a <~y — ( and ﬁ > c* > 0, we have

G(al?,0?) < G(ay,a ) — 0 (e - 6) < Glay,a) .
(2) (2)

By Hopf maximum principle, oy’ > a4 and o™’ < a_, so we arrive to a contradiction.

Since Asind — ce® > Asin(§ — é”), the conclusion follows easily. O

COROLLARY 10.14. Let u be as in Lemma 10.13 with ¢ = ¢, = 1/16%F (k large), 6 =
5, = /K (some a > 0), and A\, = 1 — Ssinéy. Then there exist o/ (< a) and 3 (< 3)
such that u is exy1-monotone for every direction 7 € 'y (0% — cag;l, en) U (68 — csg;l, v),

in the domain C ro.
R— R Aoy i

PRrROOF. It is enough to iterate Lemma 10.13 a number of times such that
s 1
T
and choose o/ and 3 so that

1 /
chg)\gs < cgg 5= C€§+1
Y

and

1
g cef A\ < cgh——= T < 05k+1 : O
k

10.6. Propagation of cone enlargement to the free boundary

The enlarged cone of full monotonicity of Section 2 yields only an enlarged cone of e-
monotonicity on the free boundary. This is precisely what we prove in this section, using the
continuous family of perturbations constructed in Lemma 9.15. For reader’s convenience

we repeat here the statement of that lemma.

LEMMA 9.15. Let 0 < Ty < T and C > 1. There exist positive constants, C,k and
ho, depending only on C and Ty, such that, for any h, 0 < h < hg, there is a family of

C?-continuous functions ©on, 0 <n <1, defined in the closure of

D=5\ {1 (Gen) U B~ Jen) b < ()

(1) 1<, <1+nhinD

2) Apy — e1Dypy — CVEE — )|V > 0 in D
3) ¢y =1 outside Bé/g (—ZT T)
)
)

such that:

4 90,7>1+m;hm31/2 x (=L 2,2

(
(
(
(5) Dypn,|Vo| < Cnh in D
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(6) Dypy >0 in D

provided ci and co are small enough.
The next lemma is perfectly analogous in both statement and proof to Lemma 10.11.

LEMMA 10.15. Let uy be a viscosity solution of our free boundary problem in Co satisfying

the hypotheses of the main theorem. For 0 < e, o < 1 define

Vo(p) =  sup  wui(q) (10.3)
qGBsapan (p)

where @qy are the functions constructed in the preceding lemma. Suppose the supremum in
(10.3) occurs uniformly away from the top and the bottom points of the ball at a distance

not smaller than p > 0. Then
1. V, is subcaloric in QT (V,) and Q= (V,),
2. 097 (V;) is uniformly Lipschitz with Lipschitz constant L' < tan(5—05)+Ce|Vpay|,
3. if (zo,t0) € F(V;) and (yo,s0) € F(u1) with

(%0, 80) € OBey,, (20,t0) (0, t0)

then (xg,to) is a regular point from the right and if, near (yo, So) along the parab-

oloid s = sg — y(y — yo, )2 (7 > 0), u1 has the asymptotic expansion

1 1 _
ui(y, s) = ol (y = yo, )" = a{y — o, v)” + olly — o))
where v = @8:5&, then, near (xo,to), along the paraboloid t = tg — y(x — o, V)2,

5290077 (3707 tO)

+
Vi (z,to) ga(j) <x — X0,V + Voon (o, t0)>

1Yo — o]
X _
E Qs , T
- o <x — To,V + 201G O)V%n(ﬁcoato)>
lyo — ol
+ o(|z — zol)
with =0 < Glay,a_,v).

lyo—zo]) —

The next lemma is a propagation lemma similar to Lemma 9.16. The key point here
is the use of the estimate of Section 3 in order to control the degeneracy of the solution at

free boundary points (see Lemma 10.9).

LEMMA 10.16. Let u; < uo be two viscosity solutions of our free boundary problem in Co
satisfying the hypotheses of the main theorem, with uy as in Lemma 10.15. Assume further

that

ve(x,t) = sup uy < ug(x,t)
Be(z,t)
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for (z,t) € Ci 7 and for some h small

u2(2,t) — V(1ho)e (T, 1) > Coeuy <§€,0)

for every (x,t) € B1/8( en) X (=T,T) C {ug > 0}. Then ife > 0 and h > 0 are small
enough, there exists 0 < ¢ <1 such that in Cy/o /2

U(l—f-cho)s(xv t) < u (I, t) :

PrROOF. We construct a continuous family of functions ‘_/,, < ug for 0 < 7 <1 such that

Vl > U(1+-cho)e in Cl/2,T/2- Set
V(x,t) = Vy(z,t) + CoeW (x, 1)

where Vi, are defined in Lemma 10.15 and W is a continuous function in
3 9 9
_ / /
defined as follows:

AW —a;DiW =0 in DnN{V, >0}

o (Beno) o 05 (20) x (r 2)
0 in (DN{V, <0}) u( {8B1/8 (3 ) x ( 190T 190T)})

where @ is the caloric function in C*T = QT (V,) N [B] /8(4en) x (=T,T)] with boundary

W =

values zero on F(V,) and equal to ug everywhere else on the parabolic boundary of C*.
Notice that @ < ug in CT and @(3e,) > cua(2e,,).

We want to show that the set S = {n € [0,1] : Vj, < ua} is open and closed. S # &
and closed follow by the maximum principle. To show it is open, assume that ‘_/770 < ug for
some 79 € [0,1]; then it is enough to prove that D N {V,, > 0} is compactly contained in
D N {uy > 0}. If not, there exist (zg,to) € F(Vy,) N F(up) N D, which is by construction
a regular point. Since F(V})) is Lipschitz, by Corollary 13.9, W > ct in {V,, > 0} strictly
away from the parabolic boundary of D.

By Lemma 13.15, time level ¢t = tg, w_ = @(1 — a"), for some small r > 0, is superhar-

monic and therefore by Lemma 10.9 (w_), > ¢ > 0 at xg, where v = ﬁ with

= (yO — o+ 52@anvx¢0n)/|y0 - 33‘0‘ .

Hence at (zg,t0), (u2), = (w-), > ¢ > 0.
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Near (zg,tg), we have, along the paraboloid t = tq—~(z —xq, )2, v > 0, the asymptotic

development
Vio (2, ) > g {w — xo,v) " — oz(_l)(a: — x0,v)" + o(|x — zo|)
where
ay > ang)(l — Coeh) + Casaf)
and
(x,tg) = af) (x — zo, V)T — al? (x — xo,v)” + o|x — x0]) -
Now,

—t 2 to) Doy t
G(af),a(z)) < z;) _ (so —to +¢ 90’017(51;’0, 0)Dt@on, (0 0)\V*|_1
o Yo xo\

—t
< (8070 + C’Ush) (14 Coceh)
Yo — ol

<GV, aM) + Cozh .

Since G is Lipschitz and 8—% >c* >0, 6—% < —c* < 0, we have

G(a?,a?) < Glay,aV) = Coe(ce — h) < Glay,aV) .
(2) (2)

On the other hand, Hopf maximum principle gives o} > a4 and o

(1)

< «a’, so we arrive

at a contradiction. O

LEMMA 10.17 (Cone Basic Iteration). Let u be a viscosity solution of our free boundary
problem in Cr g (with R and S less than 1 and R close to 1), e-monotone along any direction
in Iz (0%, e,) UT(0%,e,). suppose that 6 = § — 0%, 6§ < p =5 — 0%, and e < 6. Then

there exist positive constants c¢1,co, and C and unit vectors e and v where e is spatial and

v € Spie, et} such that, in By (0) X (—g—j, %)7 w is e-monotone in T, (607, e,) UT(6%,11)
with ,

2—9%:51 §5—Cl—

2 Y
and

T

5—91—M1 < p—c2

PROOF. In order to enlarge the space cone, take any vector
T€TL(6° —9,en)
with |7| < § and let € = |7|sind. Define

ui(z,t) = u(x — 7,t)
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and argue as in Lemma 10.18, so that the hypothesis of the preceding lemma are fulfilled
(with us = u). Hence the result. To enlarge the time cone, take 7 € T'y(6* — d,11) with

|7] < 6 and € = |7|sind and proceed likewise. O

10.7. Proof of the main theorem

We are now ready to finish the proof of Theorem 10.2. We shall apply Corollary 10.14

and Lemma 10.16 inductively in the following manner. For simplicity, let

5 ! k> 1 ! d !
~ =, s ~ an L = =
g (k + k)4/3 Pk ™ s K (32)k-+h

th : / Cé Cé
At the k™ step we have, in B;_,(0) x (_2’“ukk’ﬁ
I‘x(Glﬁ,e(k’)) UT(0},vr), where 0F = 5 — 0k, 0L, = 5 — i, e(®) a spatial unit vector, and

v € Sp{e(k>, et}
Set

), u ex-monotone along every 7 €

up(z,t) = 2Pu(2 %2, 27%¢)

( C(Sk C(Sk
Hie 7 Mk

(6%, e®)) U T'.(0%,vy). Notice that by Corollary 10.1 uy is fully monotone away from the

whose domain of definition is B X ) and which is &-monotone (&, = 2¥¢;) in
free boundary at a distance 5%, with v = %. Apply Corollary 10.14 to u; with R = 1 and
T =% (with a = % and = %, for instance) in order to have in

1k
Cop o C(Sk / )

B, x[-Z%k g 2O o

1€ < TR

ug €r+1-monotone along any direction in

(07 — 05k+17 ek )UFt(HZ—CE/IfH,Vk).

Now, apply Lemma 10.16 to up with R =1 = 52‘;1 and § = 9% _ éz‘;l to have in
, ( Coy C(Sk>
/2 20k 2u
uy, Ep41-monotone in 'y (67, ety U L4(0}, 11, Vit1) where
T 0% _ o

k
— Opy1 = Op+1 < Op _Cl,ul-c CEhit

s ‘ _g
9 9k+1 = pgt1 < pg — C20k — cefH .

Taking (' < % we see that the above choices of dy, ur, and ¢, are compatible with these
inequalities. Hence the proof of the first assertion of the theorem follows easily.

To prove the second assertion we observe that at each time level toQ* N {t = to} is a

+

Lyapunov-Dini domain. By the results in [W] V u™ are continuous up to the free boundary,
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at each level of time. This, in turn, implies that u; is bounded. We can now argue as in the

end of the proof of Theorem 10.1 to complete the proof.

10.8. Finite time regularization

In this section we show two applications of our theory regarding “small perturbations”
of nice solutions.

The interesting fact is that they are small L*° perturbations, a bound that is easy to
obtain just from the uniform continuity of the temperature, a well-known property of the
Stefan problem. In fact, our first application is to solutions of the classical Stefan problem
(here a; = ap) defined in the infinite cylinder B; x [0, +00) and having a nice asymptotic
behavior as t — +o00. The main result is that, no matter how “bad” is the initial data, the
solution regularizes after a finite time. It is well known that finite waiting time is a common
feature of solutions to degenerate diffusions.

Note that harmonic functions are stationary solutions of the Stefan problem:

THEOREM 10.18. Suppose u is a solution of the two-phase Stefan problem in B} x [0, +00)
converging for t — +0o0 to a harmonic function us = uso(x), x € By, uniformly in any
compact subset of Bi. Suppose that at vo € F(us), |Vuso(xo)| # 0. Then there exists
T* > 0 and a neighborhood V of g such that in V x [T*,+00), F(u) is a C' graph and u

18 a classical solution.

REMARK. T* depends on the € in Theorem 10.2 and on a bound from below of |Vu|
in V.

PROOF. In a neighborhood V' of g, us is monotone along the directions in a cone
['(6°°,v). Therefore, choosing V' such that |Vus ()| > ¢ > 0in V, if T* is large enough,
u(x,t), t > T*, is e-monotone along the directions of I'(6°°,v) and the directions of a
space-time cone I'y(0?,v) (with the same v and 6! large). The conclusions follow now from

Theorem 10.2. Ul

The second application pertains to being close to a traveling wave.

Traveling waves for the Stefan problem are of the form

ug(x,t) = (A+1)(e"™ — 1)t — A(e"™ — 1) .

LEMMA 10.19. Let u be a solution of the two-phase Stefan problem in RY x (0, 00) with

initial values

u(@,0) = (A+1)(e™™ =1+ ()" — Ale™™ =1+ p())”
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where A is a positive constant and ¢ a continuous function, compactly supported in R™.

Then, as t — oo, uniformly in x,

u(z,t) — (A+ 1) - 1T — A - 1) -0 .
ProoF. If M > 0 is chosen large enough, we claim that the function

(o)

where f(s) = § —arctan(s), is a supersolution to the two-phase Stefan problem. It is enough

to check that

vf > (v )? — vl vy (10.4)

Tn Tn Tn

along the free boundary of v, i.e., at the zero level set of v. Now

v (z,t) = (A+1) (et_x" +Mf (\/fi—l) (—%W))

+ _ _ _t—xy / In 1
an—(A+1)< e +Mf <\/t—|—1> \/t+1>

(%

. I / Tn 1
A (e () )

Substituting in (10.4) we have to check that

t—an / In _1 Ln
s (75) (g

t—xpn / Ln 1 2
2(‘6 M (m—l) m—l)

on v(z,t) =0, or

(=211 +3176) (3 2

2(t+ 1)
2 / 1 20 ¢l 2 1
> (1= MF() =201 = MFDMS () + M)
where s = \/i—"ﬁ Equivalently:
PO =276+ 16 (3755 )
> =21 = M) () + MU (5 -
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Now, since 1 =M f(s) > 0 on v = 0, we have s > M — 17 for some c. Since also f'(s) = %,

the second term on the left is larger than the second on the right. Therefore the inequality

is true if
1
> _9f
or
2 1

arctan — > .
g s  1+s82t+1

Since s > M — 17, the inequality is true if M is large enough.

In analogous way, the function

e -insu 1)) a1 ()

is a subsolution to the two phase Stefan problem in R™ x (0, +o00), if M is large enough.

Now, given ¢, we can always find M large such that v and w are super and subsolution,
respectively, and
w(z,0) < u(z,0) <v(x,0) .
By maximum principle, this implies
w(:r:,t) < u(:r,t) < U(I‘,t)
for every t > 0. Since both v and w converge to the travelling wave ug for t — 400,

uniformly in x, the proof is complete. [

The above lemma shows that a compactly supported perturbation of an initial travelling
wave has a two plane asymptotic free boundary as ¢t — +o00, uniformly in .

Therefore, with the same proof of Theorem 10.18, we have:
THEOREM 10.20. Let u(x,0) be a compactly supported perturbation of a travelling wave
mitial data, i.e., let
up(x,0) = (A+1)(e ™ — )T — A(e™™ — 1)~ (A>0)
and let g be a compactly supported continuous function in R™ such that
uo(,0) — @o(x) < u(x,0) < uo(,0) + wo(z) -

Then, after a finite time T* = T*(ug, po), the free boundary of the solution u(x,t) to the

Stefan problem with initial data u(x,0), is a smooth graph

Ty = g(:c',t) )
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CHAPTER 11

Boundary behavior of harmonic functions

11.1. Harmonic functions in Lipschitz domains

In this section we study the properties of harmonic functions in Lipschitz domains, since
it is a theory we encounter often in proving regularity results for both elliptic and parabolic
problems.

The importance of rescaling is by now very well recognized in a mathematical problem,
and Lipschitz domains are precisely a class of rescaling invariant domains.

A bounded domain 2 € R" is a Lipschitz domain if it is locally given by the domain
above the graph of a Lipschitz function. This means that for any = € 02 there is a ball B
centered at x such that, in a suitable coordinate system (x/,x,) = (x1,...,2Zn_1,%,) With

origin at x,
QONB={(2',2,) : 2, > f(2')} N B

where f is a Lipschitz function with Lipschitz constant less than equal L (independent of
x) and f(0) = 0.

Such domains satisfy both an interior and exterior cone condition and therefore they
are regular for the Dirichlet problem.

If x € 012, a non-tangential region at = is a truncated cone of the type
['(z) = {y € Q; dist(y,00Q) = vz — y[} N By(z)}

with some positive v and p.

We say that a property holds non-tangentially near x € Of) if it holds in every non-
tangential region at x, with p < pg, small.

The main points of the theory we are going to develop are the following. Suppose our

Lipschitz domain is
Q={2'| <1, f(@') <z, <4L} (L>1) (11.1)

with f(0) = 0. Let u,v be two positive harmonic functions in §2, continuously vanishing on
{z, = f(2')}. We will prove:

193
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a) u(3e,) controls u in By N, e,

1
sup u < c(n, L)u (—en)
Bl/gﬁQ 2

b) The ratio u(ge,)/v(5en) controls u/v in By N, ie.

1
ul\se€
sup ¢ < c¢(n,L) (% ) :

This implies that u/v is Holder-continuous up to the boundary 02, in B, /2-

c) u and u,_ are comparable in the natural way, i.e., there exists § = d(n,L) > 0

such that u,, > 0in Bs N} and
u(x) ~ ug, (x) - dist(x, 0Q) .

The first two points a) and b) are true not just for harmonic functions in Lipschitz
domains but also for solutions of uniformly elliptic equations with bounded measurable
coefficients. Indeed, this class is invariant under dilations and bilipschitz transformations.

More precisely, let u be a solution of
Lu = div(A(z)Vu) =0
with A bounded, measurable and uniformly elliptic:
A< Az) < AT (11.2)

in a Lipschitz domain D.
Let y = T(x) a bilipschitz transformation from € onto the Lipschitz domain €. Then
v(y) = u(T~(y)) is also a solution of an equation in the same class. In fact, for any test

function ¢ € C3°(2), one has
/(V¢)TAVU dx =0
Q

which, after the change of variables y = T'(x), becomes
[ (76D ADy) Vil der(Dy)| ! dy

where ¢ = (T~ 1(y)) and Dy is the Jacobian matrix of the transformation.

The new matrix
M = |det Dy| "' (Dy)" A(Dy)  (z=T""(y))

is again uniformly elliptic.
Therefore, the study of solutions of uniformly elliptic equations with bounded measur-

able coefficients in our basic Lipschitz domain (11.1) can be reduced to the study in the
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half ball
Bf = B1(0)n{z, >0}

by the local transformation

and a dilation.

REMARK 11.1. Let u be a solution of Lu = 0 in B, continuously vanishing on {x,, = 0}.
If we extend u to {z, < 0} in an odd fashion, i.e.,
w(xy, ..., xn) = —u(T1,...,—Tp)

when x,, < 0, then the extended u is a solution in B (therefore across x,, = 0) of the elliptic
equation
div(A(z)Vu) =0

where the elements a;; of A are defined for z,, < 0 as follows:

in(T1, . Tpn) = —Qin(T1, ..., —Tp) i#n
anj(T1,. . Tp) = —Gnj(X1,..., —Tp) j#n
and
aij(azl, ce ,a:n) = aij(:rl, ceey —xn)

in the other cases.

This remark is very useful since it allows one to use interior results, such as the following

classical ones.

THEOREM 11.2 (DeGiorgi oscillation lemma). Let v be a subsolution of Lv = 0 in By,
satisfying
a) v<l1
b) {v <0} =a>0
Then

supv < p(a) < 1.
B2

THEOREM 11.3 (DeGiorgi-Nash-Moser Interior Harnack inequality). Let v be a non-

negative solution in By, then for r <1

supu < ¢(1 —7) Pinfu
B, By
with ¢,p depending only on n and \. (For r close to one, we may choose the constant c

equal to one by making p large.)
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THEOREM 11.4 (Littman, Stampacchia, Weinberger—Behavior of the fundamental so-
lution). The fundamental solution of L behaves like that of the Laplacian, more precisely:
Let B1 C Q, and G satisfy

a) L(G) = —6 (Dirac’s)
b) Glag =0

Then on By

C C
5<G<—% (=)

Tn—2

with Cy,Cy depending only on n and .

The function GG in Theorem 11.4 is the £-Green function for €2 with pole at y = 0. We
will denote by G (x,y) the £-Green function with pole y.
Notice that, with respect to the variable y, G2 (x, ) satisfies the adjoint equation

L*Gr(x,-) = div(AT (y)V,Ge(z, ) = =0, .

Clearly, if A = AT, then Gz(z,y) = Gz (y,z) = Gr«(x,y). Here is a proof of Theorem 11.4
in this case. Notice that we can assume A € C*°, so that G, € C™ off the diagonal x = y.
On any sphere |x| = h, h < %, all values of G, are comparable from Harnack inequality,

since in the ring
1
Ry, = {Eh < |z| < 2h}
G is a non-negative solution of Lv = 0.
We note that:

a) The theorem is true for £ = A.

b) L-capacity and A capacity are comparable. Precisely, take a closed set E C By
and minimize the Dirichlet integral [ B | Dv|? among all functions in Hj(B1), such
that w = 1 on E (in the H! sense). The minimizer ug is harmonic in B; \ E and

equal to 1 on E. Moreover

/ |Duo\2 = capx (F) .
By

On the other hand, if we minimize
/ (Vo)L A(Vv)
B

the minimizer u; is a solution of Lv =0 1in By \ F, is equal to 1 on E and

/ (Vu1)T AVuy = cap,(E) .
By
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Clearly
A2 capp(E) < cap,(E) < M capa(E) . (11.3)

If By, = {Gc(z,0) > h}, then
1

capp(E
pe(En) = 5
independently of the elliptic operator £. In fact, the minimizer is g, = % min(Gr, h)

so that (G = G.(+,0))
1=~ [ £Geog= [ (Vn)TAVGe = heap,(Ey)
B1 Bl

c) Let ), = {|z| < h}, h < 3. Set
b= min G, (z,0) .

a = max Gg(z,0) , min

|z|=h

Then, from b),
1 1
— = cap(Fa) < capp(3p) < capp(Ep) = R

From Harnack inequality a ~ b, and therefore

cap,(3p) ~ Ge(x,0)71 . (11.4)

From (11.4) and (11.3) we easily conclude the proof.

11.2. Boundary Harnack principles

The first two main results we are going to prove are expressed in normalized form in
the following two theorems ([AthC], [CFMS], [JK]).

THEOREM 11.5 (Boundary Harnack inequality or Carleson estimate). Let u be a positive

solution to Lu = 0 in B], continuously vanishing on {z, = 0}.

Normalize u so that
1
U (§en) =1.
Then, in Bi_/w
u< M

with M = M(n, \).

THEOREM 11.6 (Comparison principle). Let u,v be positive solution to Lw = 0 in By,

continuously vanishing on {x, = 0}, with

(i) (i)
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Then, in Bt

1/2°
Yo of class C“
u
and
Z R <cmn .
U ﬁoo(Bj/z) U Ca(B;r/z)

With the results of the previous section we are ready for the proof of Theorem 11.5.

PROOF OF THEOREM 11.5. We start with three remarks
a) If Yy € {x;, = 0}, then supp, (y,)u decreases polynomially, i.e., for r < R
sup u < (i) sup u .
Br(Yo) Br(Y0)
Indeed, when extended by u = 0 for z,, < 0, u is a subsolution of Lu = 0 and
1
[fu = 0} 1 B, (Yo)] = £|B,(¥o)].
From DeGiorgi oscillation Lemma, with p = p(1/2), we get:
sup u < Sup u.
B,./2(Yo) Br(Yo)
b) From the interior Harnack inequality
1
sup u<s Py (—en) =5 P
Bg/4ﬂ{l‘n25} 2

+

1/2 is attained,

¢) Since u takes continuously the value zero at {x,, = 0}, the sup of uin B
ie.,
supu = u(Xo) = M .
BTt
1/2
We will now show that if M > M, large, we can construct a sequence of points Xy, all

contained in B, X} — {x, = 0}, and such that u(X}) goes to +oo.

3/4
Construction. We will denote by Y} the projection of X onto the {z, = 0} axis.

From interior Harnack inequality,
M =u(Xpy) < |Xo—Yo|™".
Thus, with e = 1/p
do = | Xo — Yo < M*

that is, X is very close to the {x,, = 0} plane.

Now we use the oscillation lemma backwards: since,

sup u > u(Xg) > M,
Bdo(YO)
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this implies that

sup u=u(Xy)>TM
Baa, (Yo)

for T = -+, a universal constant bigger than one).
A(1/2)

Again, by Harnack inequality, as with dy, we obtain that
dy = ’Xl — Y1| < (CZ—W‘Z\f)_E
and, by using again the oscillation lemma backwards, as with u(x1), we obtain that

u(Xy) = sup u > Tu(X;) > T*M.

B2d1

Once more, by Harnack inequality,
do = | Xy — Ya| < (T?°M)~° .

We repeat inductively the process, and we get a sequence of points X, satisfying
a) u(Xy) >TFM
b) | Xk — Yi| < (TFM)~*
¢) | Xk — Xgp_1| <4(TFIM)~*
All we have to make sure is that in this construction we always stayed inside, say By 6.

But T' is universal, € is universal and we can choose M as large as we please, so we can

make Y | X — Xp_1| < 1/16, and get, for M > My, a contradiction. O

The proof of Theorem 11.6 is divided into two main steps.

u

Step 1. Show that ¥ remains bounded in BT/Z up to {z, = 0}.
Step 2. Rescaling and iteration of step 1.

Proof of Step 1. We want to show that ; remains bounded in Bfr/z.
1

Since u(ge,) = v(3e,) = 1, we have, from Theorem 11.5, that

: +
v<M in B2/3

and from interior Harnack inequality, that (M large)

1 1
- ; + Z
u > M>0 n Bz/gﬂ{xnz 8} .
Let v1 and v such that Lv; = Lvy =0 in B;/?) with:

vy =1 on 8B;/3ﬂ{xn>0}, vy =0 on {z, =0}

1
v9 =1 on 8B$3ﬂ{xn>§} , v =0 on the rest of 8B;/3.
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K Xn:0

\
Ql/z(% en)

FIGURE 11.1

+

a3 We have

Then, by maximum principle, in B

1
v< Mv; and UZM’UQ.

+
1/2°

This is a consequence of the following lemma, where we set

Step 1 follows if we can prove that v; < Cvy in B

Q2r = Qor(rey) ={0 <y, <2, |zj| <r, j=1,...,n—1}.

LEMMA 11.7. Let Fy, Fy be two faces of Q2, different from {x, = 0}. Let v; (i = 1,2)
be the function satisfying

a) Lv; =0 in Q9
b) vi|3Q2 = XF;
Then in Q/2,

V1 SCUQ.

The function v; is called the £-harmonic measure of F; in Q2 = Q2(e;,) and the lemma
expresses a doubling property of L-harmonic measure. It states that two adjacent “balls”
along the boundary of a Lipschitz domain have comparable L-harmonic measure. L-
harmonic measure may be absolutely singular with respect to Lebesgue measure so this
is a nontrivial result. When £ = A though, harmonic and surface measures are mutually

absolutely continuous. We will come back to these questions in the next section.

PROOF. From the oscillation lemma, by extending (1 — v;) identically zero across F; we
get that (1 —v;) < p < 1, near Fj, say on the cube Qf, of sides one with one face lying on
F; (see figure 11.1). Thus v;(e,) > (1 — ) > 0 and v; is strictly positive inside @2, say in

Ql(en), the cube of sides one centered at e,,.
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Let G(X,Y) denote the (£) Green function in the cube Q2. From Theorem 11.4,
G(X,ep) is bounded for X on the boundary of Q;(e,), vanishes on Qs and hence

G(X,en) < c(p)v2(X) (11.5)

in Q2(en) \ Ql(en)-

We now show that for X in Q,/y = Ql/g(ien), also v1(X) < CG(X,ey,). For that, we
“freeze” X in Q15 and recall that Ly G(X,Y) = 0, i.e., G is a solution in Y for X fixed,
as long as X # Y, in particular for Y ¢ Q3/4(%en).

Therefore, Theorem 11.5 applies and with X always frozen in Q) ,

G(X,Y) < CG(X,en)

for say, Y ¢ Qs/s(3en).

Since G vanishes in 0@)2, the standard energy estimate says that

IVyG(X,Y)|?dy < C/ G%(z,y)dy < CG*(X,ey) .

/QQ(en)\QMéen) Q2(en)\Q3/4(3en)

We now take a C'°° function 7, vanishing in a % neighborhood of Fi, and n = 1 on Ql(%en)

and represent vy (X) for X in @ /4(%(3”), by the formulas (no boundary terms left)

/ (nu)(Y)Ly G(X,Y) dy + g VT () AVy G(X,Y ) dy = 0

and

/ n(Y)G(X,Y)Lv1(Y)dy + / VEm(G)AVu dy =0 .

2 2
This gives us, after subtracting

v (X) = / VTnA[mVyG — GVu)dy .

2

But on the support of Vn,
|vi]|gr < C and |G| < CG(X,ey) - (11.6)

So v1(X) < CG(X,ep).
(Note that [(Vnu1)? is bounded from the standard energy inequality since 7 vanishes
near Fi.)

This completes the proof of Lemma 11.7 and therefore of step 1 in the proof of Theo-
rem 11.6. ]



202 11. BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS

Proof of Step 2. It consists in showing a C'“ estimate by iteration, in the following

way.

LEMMA 11.8. There are constants aj, b, ﬁ <ap <b. <M, and a constant A < 1,
such that: On BX-

2—k

aru < v <bgu and (b —ag) < A(bp_1 —ar_1) -

PROOF. By induction: renormalize B;k to B} by the transformation @(X) = u(27*X),

define the positive functions

i = £ 8
) = (=D

and look at the positive numbers w;(3€,), wa(3e,). One of them is bigger than 11(3e,,)
since wy(3€,) + wa(se,) = u(3en).
Say wi(3e,). Then, by the inductive hypothesis, 2w (X) is a non-negative solution of

L =0, vanishes on {z,, = 0} and 2w (3e,) > u(3e,). Hence

211)1 1
— Z I
u 1B}, M
o . . _|_
or, renormalizing back, in B, ..,
vV — apl 1

>
(bk — ak)u - 2M
that is, in By (k41)

2M
So bk:+1 = b and Ak+1 = a + ﬁ(bk — a/{;). U]

1
[ak+—(bk—ak)] u<wv<bgu.

11.3. An excursion on harmonic measure

Let £ = div(A(x)V) be a uniformly elliptic operator. Given a smooth function g on

0B1, we can solve the Dirichlet problem

Lu=0 in B
u=g¢g on 0Bj.

For x fixed in By, the map
g+ u(z)

is continuous from C(9B;) to R and it is monotone, i.e., by maximum principle

91 < g2 = w1 (2) < ug(x) .
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Thus there exists a non-negative Borel measure w” on dB; such that
u(x) = / g(o)dw®(o) .
0B1

The measure w” is called £-harmonic measure (harmonic measure if £ = A) in By, evaluated
at x. If A is smooth and G(x,y) is the £-Green function in Bj, then, from the divergence

theorem,
u(x) =/ 9(0)0,,.G(z,0)do
0B1
where 0,,G(z,-) is the conormal derivative of G with respect to £, that is
0. G(x,0) = A(0)VG(z,0)v(0)
with v the interior unit normal to 9B at o.
Therefore, in this case
dw®(o) = 0,,G(x,0)do = K(z,0)do (11.7)

(K is the Poisson kernel).

For general uniformly elliptic A, the £-harmonic measure could be completely singular
with respect to surface measure (see [MM], [CFK]).

Nevertheless, Lemma 11.7 shows that w” is a doubling measure, a property that we can
express in non-rescaled version as follows: for P € 0By, let A.(P) = B,(P) N 9dBy be a

surface disc of radius 7 and = € By /5. Then
W (Boy(P)) < e N (A(P))
Moreover, (11.5) and (11.6) (in non-rescaled form) can be written as
W (AR (P)) ~ r"2G(x, (1 — 1) P) (11.8)

which may be considered a weak form of (11.7).
In the case of the Laplacian in Lipschitz domains, harmonic measure enjoys many more

properties, as the next lemma says (see [D]).

LEMMA 11.9. Let Q be a bounded Lipschitz domain in R™. Then, if x € Q) is fixed and
o denotes surface measure on 0f1,

a) w' <o and o K W*
b) if K = %= then K(z,-) € L?(99) and

(‘i_|/AK%w> gc(‘iﬁ/AKd(O (11.9)

for every surface disc A C 0S), where the constant ¢ depends only on n, the Lips-
chitz character of Q and dist(z,0).



204 11. BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS

c) there exist positive constants ¢ and §, depending only on n, the Lipschitz character

of Q and dist(z, 0) such that, for every surface disc A and every Borel set E C A,

W (E) |E[’
(A SC(\N) : (11.10)

Inequality (11.9) is a reverse Schwarz inequality for K while (11.10), in the theory of
weights (see [CF]), says that w” is an A, weight with respect to surface measure.

A quick proof of a) and b) can be obtained as follows. Note first that, by approximation,
it is enough to prove a) and b) assuming () is smooth, as long as the estimates under
consideration depend only on n, dist(x,09) and the Lipschitz character of . Let g(-) =
G(zx,-) be the Green function in Q, A, = A,(P) a surface disc centered at P € 912, and ¢
a smooth function vanishing outside Bs,(P), such that 0 < ¢ <1 and ¢ =1 in B,.(P).

We can assume r < rg small so that, in By, (P), 02 is described by the graph y,, = f(v/),
and dist(x,0Q) > 10ry.

Observe that, from (11.8), since 952 is smooth,

gu(P) ~ K(z, P) ~ gy, (P) . (11.11)
We have:
/ {-A%9)gy, + ©*9Agy, } dy = / ©* 9y Gz, do . (11.12)
BQT(P)QQ Aa,
From (11.11):
/ O’ GyGe, do > c [ K do . (11.13)
A2r Ar

On the other hand Ag,, = 0 in By,(P) N2 and

/ A(*9) gy, dy = / {gAp* +2V*Vg} gy, dy
Bor (P)NQ2 Bor (P)NQ2

C

Using standard energy estimates and |Vo| < £, |Ap| < 5 we get

1“2
C
‘ / A(£°9) gy, dy‘ < / 9> dy
B, (P)NQ 7" J Bar (P)NQ

<cr"3¢%((1 —r)P) (from Theorem 11.5)

< crw®(Ag,)]? from (11.8)

1 2
S CTl_n[wx(Ar)]2 — C,rn—l <|A ‘ /A Kd0'> (dOUbllng) .

This inequality and (11.12), (11.13) give (11.9). O]
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11.4. Monotonicity properties

We are now ready to prove the third of our main results:

THEOREM 11.10. Let u be a non negative harmonic function in the domain
Q={]2"| <1, f(a') <z, <4L}

where f is Lipschitz with constant L, f(0) = 0.
Assume u vanishes continuously on {x, = f(x')}. Then, there exists 6 > 0, 6 = d(n, L),

such that,

Uy, () ~ dist(z, 0Q)u(z) (11.14)
m
1
Qs = {\x’\ <3 flz) <z, < 46L} .
Theorem 11.10 is a consequence of the following two lemmas.
LEMMA 11.11. Let u as in Theorem 11.5. Assume u,, > 0 in . Then (11.14) holds
m 91/2.

PROOF. Let x = de,, € 2y/5. From Theorem 11.5, we have
u(ndey) < en“u(dey)

so that if = n(n, L) is small enough, we have u(nde, ) < 3u(de,). Therefore

)
%u(éen) < / Uy, (sen) ds < u(dey) . (11.15)
né

Since u,,, is positive, along the segment nde,,, de,, all the values of u, are comparable, by

Harnack inequality, and (11.14) follows from (11.15).

LEMMA 11.12. Let u as in Theorem 11.5. Then, for some § = §(n, L) > 0, uy_ >0 in
Qs.

PROOF. Let h be the harmonic measure in 2 of the set 9Q \ graph(f). By comparing h
with its translations along the direction e, in their common domain of definition, we obtain
hy, >0 in Q.

Set v = vh and adjust v so that
u(Len) = v(Ley) .

Then, from Theorem 11.6
U~ (11.16)
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n 91/2 and
v(z)  u(y) |~
u(y) . u(Le1)

Let us freeze y at distance d from the graph of f. Then, o) = Collen) = ©

In By/s(y) we get

< clx — y|%v(x) < ed®v(x)

),
'u(x) v(y) (@)

< cd*u, () (from Lemma 11.11) .
We now take the x,, derivative on the unfrozen variable and evaluate at y. From standard

interior estimates for w = u — kv, Kk = u(y)/v(y), we get

|, (y) — K02, (Y)] < cd®v,, (y)
that is,
Uz, (y) = (K — cd™)vz, (y) -

The last term is positive if d < d(n, L) is small enough. O

Lemma 11.12 holds if instead of u,, we consider the derivative of v along a direction 7
entering the domain ). As a consequence, in a neighborhood of the graph of f, there exists

an entire cone of directions along which « is nondecreasing. Precisely we have

COROLLARY 11.13. Let u as in Theorem 11.5. There exists 6 = 6(n, L) and § = 6(n, L)
such that, for every T € T'(ey, 0)

D,u>0 in Q.

We will call I'(ey,, 6), cone of monotonicity. Observe that the existence of a monotonicity
cone in ()5, implies that the level surfaces of u are all Lipschitz surfaces, with a common

Lipschitz constant, with respect to a common direction.

11.5. e-monotonicity and full monotonicity

In the regularization of “flat” free boundaries, the key notion is “c-monotonicity.”

DEFINITION 11.1. We say that a function u is e-monotone in the direction 7 if
u(x + A1) > u(x)

for every A > e.

The following proposition establishes the connection between e-monotonicity and flat-

ness of level surfaces.
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PROPOSITION 11.14. Let u be e-monotone in every direction T € I'(0,¢€). Then, the level

surfaces of u, that is the sets O{u > t}, are contained in a (1 — sin 0)e-neighborhood of the

graph of a Lipschitz function, with Lipschitz constant cotg .

PROOF. Let V' be the union of the cones = 4 ce + I'(0,¢), for z € d{u > t}. then

V C {u > t} and A = 9V is the graph of a Lipschitz function with Lipschitz constant

cotg 6. Moreover, if y € A, then dist(y,0{u > t}) < (1 —sinf)e.

O

When we particularize to harmonic functions, e-monotonicity in a ball of radius Me,

M large, implies full monotonicity in a smaller ball. This is a consequence of the following

lemma (note that u(x + e1) > u(x) is satisfied by the harmonic function €™ cos 7).

LEMMA 11.15. Let § > 0, u be harmonic in Byrs = Bars(0) (M > 6) and in Byy/os

u(x + A1) > u(x)
for every A with 1 < X< 149. Then, if M = M (n) is large enough,

D:u(0) > ¢(n,d0)[u(r) —u(0)] .

PROOF. Iterating (11.17) 3 times we deduce that
u(x + A1) > u(x)

for every A >

1
Rescaling gu(a:) — du(z/d)) we may assume
u(x + A1) > u(x)
for every A\ > 1; that is, u is 1-monotone along 7. Thus, for 1 < A < M/2,
ha(x) = u(x + A1) — u(z)

is harmonic, non negative in Bjs/». Harnack inequality gives
h)\(x
ha(y

~—

0<c < < ¢

~—

for every x,y € Bjy/y.

If, in particular, A is an integer, A < %M and y € B)y/g, we have

A
hay) =Y h(y+ (G —1)7) ~ Mu(y) .

Therefore, if z,y € By/g

(11.17)

(11.18)

(11.19)
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Since for A\ real, A\ > 2

the inequality (11.19) holds for any A, 2 < A < % in Byy/s. Moreover, in Bj/g we also

have
c
D, hy| < —=h,(0) .
ENERCING
Now,
D;hy(0) = Dyu(AT) — Dyu(0)

and therefore we can write
Clhl(O) S h1(27') = u(37') — U(QT) =

3 3
_ / Dou(Ar) d = / D, (0) dA + Dyu(0)

3
c
< — [ hx(0)dA + Dru(0
=7, A(0) dX + Dru(0)
< %hl(o) + D7u(0)
and if M = M(n) is large enough, the lemma follows. O

Here is a rescaled corollary.

COROLLARY 11.16. Let w be harmonic in Bi. Then, there is a critical value €y =
eo(n) > 0 such that, if
u(x + A1) > u(x)

for every A > eq, then
c(n
D;u(0) > %[U(S()T) —u(0)] .
We call the statements in Lemma 11.15 and Corollary 11.16, eg-monotonicity implies
full monotonicity.
We conclude this section with an equivalent definition of e-monotonicity, which turns

out to be more flexible when applied to free boundary problems:

DEFINITION 11.2. We say that u is eg-monotone in the cone I'(6,e) if, for any € > gg

sup  u(y —ee) < u(x)
Basin@(z)

Clearly Definition 11.2 implies Definition 11.1. On the other hand Definition 11.1 implies
Definition 11.2 with g9 = (1 + sin#).
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FIGURE 11.2. For an gp-monotone function in I'(0, e), u(y) < u(x) when y
is not in the shaded region.

11.6. Linear behavior at regular boundary points

In this section we examine the behavior of a positive harmonic function in a domain 2
near a regular point of a part of 9¢2, where it vanishes.

If xg € 0N), we say that xg is a regular point from the right (left) if there exists a ball
B such that B C 2 (B C CQ2) and BN 0N = {xp}, that is, if 00 at x( satisfies an interior
(exterior) ball condition. In this case we say that the ball B touches 02 at zy from the
right or from the left, respectively. The first result is the following.

LEMMA 11.17. Let u be a positive harmonic function in a domain 2. Assume that

xo € 02 and that u vanishes in Bi(xg) N OQY. Then

a) If xo is regular from the right, with touching ball B, either near xq, in B, u grows

more than any linear function or it has the asymptotic development
u(x) > alr — xg,v) + o(|x — xo|) (11.20)

with o > 0, where v is the unit normal to 0B at xq, inward to ).
Moreover, equality holds in (11.20) in every non-tangential region.

b) If xq is reqular from the left, near x,
u(z) < Bz — z, )" + o]z — ¢|) (11.21)

with 6 > 0 and equality in every non tangential region.

Moreover, if B > 0, then B s tangent to 0X) at xg.

PROOF. a) Suppose the ball B has radius R and center yg : B = Bgr(yp). Without loss
of generality we may assume that xo = 0 and v = e,,. Let h be the harmonic function in
the ring Br(yo) \BR/2(yO), vanishing on dBg(yo) and equal to 1 on dBg/»(yo). Then, near

0,

h(z) = L}Z)xn + o(|x]) . (11.22)
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Let
ag = sup{m : u(x) > mh(x) in By N Bgr(yo)}
and (k > 1)
ag = sup{m : u(x) > mh(z) in By—x N Br(yo)} -
The sequence «j is increasing. Let a = supay. If & = oo, u grows more than any linear

c(n)

function near xg. If @ < oo, set a = =z~&. Then, from the definition of a,

u(z) > ah(x) + o(|z|) = ax, + o|x]) . (11.23)

Assume now there is a sequence of points z*, with |2¥| = 7, ~ d(z¥,0Bg(yo)) such that,
for some 9y > 0,

u(z®) — ah(z®) > dolz"| .
Then, also

u(z®) — ozkjh(a:k) > 6ol (11.24)
where k; is such that 270 < r, < 274,

Now, the function
w(x) = u(x) — oy, h(r)

is harmonic and positive in B,-x; N Br(yo). From (11.24) and Harnack inequality, we have

u(z) — ag; h(r) > cdo|x”|

in a fixed portion of B,,. From the Poisson representation formula, we have, in B, P

Br(yo)
u(z) — ap, h(x) > codolz®| . (11.25)

For k large and = near zero (11.25) implies
u(x) — axy > codoxy + of|x|)

which contradicts the definition of a.
To prove b), extend u to zero outside . Now u is subharmonic and let i be the Kelvin
transform of h with respect to 0B. Let
Bo = inf{m : mh(z) > u(z) in CBRN B}
B = inf{m : mh(z) > u(x) in CBrN By-r} .

The sequence (3 is decreasing. Let B =inf Bx. Then 8 > 0 and if 3 = C(Ig) B we have, near
0,
u(z) < Bh(z) + o(|jz]) = B} + o(|z]) . (11.26)
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For the proof that equality holds in (11.26) inside every non-tangential region one can
proceed as for the equality in (11.20).

Finally, if 3 > 0 and Bp is not tangent to 92 at 0, there exists a sequence of points z* €
CQ approaching the origin with |2%| ~ d(2*,0Q) and u(z*) = 0. Since u is subharmonic,
this is incompatible with a non trivial linear behavior of u at 0, along any non-tangential

direction. ]

REMARK 11.18. If in Lemma 11.17 we know that u is Lipschitz up to the boundary
then, clearly o and ( in (11.20) and (11.21) are bounded by the Lipschitz constant of w.

Moreover, equality in (11.20) holds in B near z(, not only along non-tangential domains.

The same conclusion holds if we knew that u is monotonically increasing along any

direction of a cone I'(0, ), with axis ¥ such that (v,v) > ny > 0.

In the asymptotic developments (11.20) and (11.21), « and [ represent natural sub-
stitutes for normal derivatives at points xy where u is not smooth. In Remark 11.18 we
have seen that if w is Lipschitz, then a and 3 are uniformly bounded. We conclude this
chapter with a lemma that somehow reverses the situation: boundedness of o and (3 implies

Lipschitz continuity.

LEMMA 11.19 (Lipschitz regularity of harmonic functions with control on u,). Let u
be a non-negative harmonic function in Q N By. Assume that 0 € 0F), that u vanishes on
01 N By and that whenever xg € 02 N By is a reqular point from the right,

lim inf —U(ZE‘O +ev)

< g
e—0+ £

where v is the inner unit normal to the touching ball at xo. Then w is Lipschitz in Q2N By /o

and

[ullLip(B, ,5) < cao -

PROOF. It is enough to show that u(z) < cd(z,09Q). Let d(z,02) = h (< 3). Then
By () touches 092 at some point zy. By Harnack inequality,

inf u > coulx) .
g,y v = 0ul®)

If v is the harmonic function in the ring Bj(2) \ Byo(x) vanishing on 9By (), equal to

cou(z) on By, o(), then, in the ring v < u. Since

lim v(zg + ev) e u(x)
e—0+ € h
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we get

and the proof is complete.



CHAPTER 12

Monotonicity formulas and applications

12.1. A 2-dimensional formula

In one phase problems, the Lipschitz continuity of the solution v in, say, By, = B; /2(0)
comes simply from the fact that 0 belongs to the free boundary and that u is defined in B;.

For instance, let u be the viscosity solution of the free boundary problem in section 6.1
and © = 0. If z € Byjp and u(x) = A > 0, let h = dist(x, F'(u)) and 2o € 9Bx(z) N F(u).
Let us show that A\ < ch.

By Harnack’s inequality, u > ¢\ in By o(x) and hence, if w is the radially symmetric

harmonic function in the ring Bp(x) \ Bh/g(m) with wigp, () = ¢A and wipp, () = 0, then
u > w

in the ring.

If v is the unit inner normal to 0By (x) at xg, we have

A

QUV:C—
h

while, near xp, non tangentially
u(z) = alr — zo, )" + o(|z — z¢|)
= G(0){z — xo, V)" + o(|x — x0]) .

Therefore we get

or
A< Ch.

Clearly the above calculation is not enough for two phase problems, where the solution may
have both positive and negative part with large slope.

One way to solve this problem is through some monotonicity formulas. The simplest
one is the following.

213
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THEOREM 12.1. Let By C R? and uy,us € HY(B3), continuous and nonnegative in Ba,

supported and harmonic in disjoint domains €1, s, respectively, with 0 € 0L); and
u; =0 along 0 NB =T (1=1,2)

Then, the quantity

1
J(R):ﬁ/B \vu1|2dx-/3 Vs |? da
R R

is monotone increasing in R, R < 3/2.

PROOF. We want to prove that J'(R) > 0 a.e. in 0 < R < 3. Observe that ¢;(r) =
4 Is. |Vu;|? dz = Jo. |Vu;|?do is in L'(0,2). By rescaling, it is enough to prove that
J'(1) > 0. We have:

J'(l):/ ]Vu1\2da:-/ \Vu2|2da:—|—/ |Vu1]2d:1:-/ |V |? da
aBl B1 Bl aBl

—4/ |Vu1\2d9:-/ Vsl dx .
Bl Bl

Dividing by J(1) we get

Vuy 2 dx / Vus 2 dx
J'1) /831 [Vl L, JoB Vol 4

J(1) / Vo |* dx / (Vg |? da
Bl Bl

Now, 2|Vu;|? < Au? so that

1/2 1/2
/ |V | de < / wi(ui)y do < (/ u? da) (/ (u;)? da)
B1 0B1 0Bq 0Bq

where u, denotes the exterior radial derivative of u along 0Bj.

Moreover, if ug denotes the tangential derivative of u along 0B,

/831 Vu|* dx > 2</€)Bl (ui); da) " (/aBl (u;)3 da) v . (12.1)

Hence, it is enough to show that

( /8 ()} da)l/lj ) ( /8 () d0>1/12/2
U tee) ([, )

/vgda// v? do
r; r;

Now, the quotients
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are minimized by the first eigenfunction of the domains 0B; N €);, respectively. Since
Q1 N Qs = (), we can optimize further and ask: given any domain I' in the unit circle of

prescribed measure p, which is the one with the smallest eigenvalue, i.e.,

2
vy do
i

vGHé(Fl) /Ude' .
I

A symmetrization argument gives that the optimal domain is a connected arc. Moreover,

the larger the arc, the smaller the quotient, thus the sum

(i) (o)
(o)™ (Lo

takes its minimum for two adjacent, complementary arcs with u; and us the corresponding

=hL+ 1

eigenfunctions.

If the arcs have length a27 and (1 — )27, the corresponding eigenfunctions are

.0 . 0
sin— and sin ——
2 2(1 — )
and thus
LtD> -+ 1 L >2  (0<a<1)
il — Q
PP E 00 T2(1—a) 2a(l—a) T =0 =
which completes the proof. ]

REMARK 12.2. The above computations become exact for linear functions. More pre-
cisely, if v(z) = AzT (A > 0), equality holds in (12.1) since both the normal and the

tangential gradient have the same L?-norm on 0B;.

12.2. The n-dimensional formula

In dimension n > 2 it seems to be natural to consider the quantity

1

7 ) \Vu1|2da:/B Vs |* dx (12.2)
R R

However, this time, the above computation fails because the estimate

1/2 1/2
/ Vu|*do = / [(u,)? + |Voul|?] do > 2(/ (uT)2> (/ IV gul? da)
0B1 0B1 0B 0B1

is not exact, the L?-norms of the normal and tangential gradient being different, even for

linear functions.
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To understand the higher dimensional situation, we first relate the eigenfunctions of the
Laplace-Beltrami operator on the sphere to the homogeneity of harmonic functions. In R",

the Laplacian in polar coordinates reads
Uy + ——Ur + 5 Dgu
r r

where Ay is the Laplace-Beltrami operator, that one obtains by minimizing the Dirichlet
integral [, [Voul?do.
Given a domain I' C 9By, an eigenfunction g € H(T') of —Ay can be extended to a

homogeneous harmonic function v = u(z) in the cone generated by I', by writing
u(x) =rg(0)
and choosing a = a(I") according to

Apg+Ag=0 in T

or
/|Wg\2da:A/g2da
r Q
and
/ Vool
A= inf L
ve HY(I) /Uz
r
Since

Ay = o2 [oz(oz — 1)+ a(n— 1)]g(9) + 772 Agg =0
a = «a(I") must satisfy
ala—1)+an—1)—A=0
or
>+ n—2)a—A=0. (12.3)

A particular case corresponds to @« =1, A =n — 1 and ¢(f) = cos 6,,_1 = the restriction to
the upper unit sphere of u(z) = x;}, where 0 < 6,1 < 7.

In this case, on 0Bj,

while

/ IVoul* do = (n — 1)/ u? do
aBl 831

and thus, inequality (12.1) is not exact.
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FIGURE 12.1

The computations become exact if instead of looking at (12.2) we look at

_L/ Va1 [ [Vl
L e e S

J(R) dz = Ji(R) - J»(R) (12.4)

Let us make a few remarks

e Each one of the factors Ji,.Jo can be understood as an average of |Vu;|?, i.e., we
are dividing the volume integral in a domain of size R™ by a factor R? - r"~2.

In fact, if u; is the positive part of a linear function, u;(x) = a;z;}, then

Ji(R) = ¢(n)a?
where ¢(n) = “ and w, is the surface of the unit ball in R".

e J; has a linear scaling. That is, if uy(z) = fu(Az)

Ji (%ﬂﬂ) = Ji(R,u)

e If the supports of u; and us are two domains D and D5 separated by a nice surface

S through the origin and D, u;(0) exist (¥ normal unit vector to S at 0) then

lim Ji(R) = e(n)(Dyu;)’

e As we shall see in the proof of Theorem 12.3, each one of the J; is controlled from

above by 7«%7{3,« u? so that we have a good control of J(R).
As before we end up with checking that the quantity

Vu12da / Vuzzda
) o 7 AL

J(1 2 2
(1) / WZI_L g / \VZ2_|2 g
B, |7| B, ||

(12.5)

is nonnegative.
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But now, transforming the volume integrals into boundary integrals, we get:

i2 1 A ; 2
[ Eoant[ S,
By |z[" 2 Jp, |z
-9 )2
I'; 2 Bq ‘x‘n

-2
— [ wtwdo+ 232 [ do
FZ‘ 2 Pi

/Bl (u)?A (mi_z) dz =0

This means we must examine quotients of the type

/[(ur)Q + |Vgul?] do
I

—2
/ {uur + n uﬂ do
r 2

We look for the optimal partition of u2 and |Vyu|? for a given domain T.

since u;(0) = 0 and therefore

(u c Hg(r)) (12.6)

If A = \(T") is the corresponding eigenvalue then we can write, for any 0 < § < 1

/F\V0U|2d02)\/ru2d0:ﬁ>\/F---+(1_5))\/F...

We let the first piece go with fF u? and the other one control ”T_Z fr u? directly. Precisely,

we write

1/2 1/2
2 2 2 2 _ 2
/F[ur-i— |Vou|®] do > 2</FUT da) <ﬁ)\/ru da) + (1 B))\/Fu do . (12.7)

and we want to control

1/2 1/2 _ 9
(/u%da) (/u2d0> +n /uzda.
r r 2 Jr

Therefore we balance the two terms in (12.7), choosing 3 such that

(- B =250

or
BA+(n—2)(BNY2 =X =0
which is nothing but the equation for the positive homogeneity constant a = «(I") in (12.3).
Thus if we choose
B = o?
the quotient in (12.6) is greater than equal to 2a. Going back to (12.5), we are left to prove
that

>2lo +az—2] >0 (o4 =ay(l) >0) (12.8)
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for any couple of disjoint domains I'1,I's C 0B;.

The positive set function a = ("), I' C 0B is called the characteristic constant of T
(see [FH]).

Thus, our optimization problem is reduced to show that, given to adjacent domains I'y
and I's on the unit sphere, the sum of their characteristic constants is greater than equal

to 2. Let us list a few facts.

a) ([S]). By symmetrization, among all domains I" on 9B; with prescribed (n — 1)-

dimensional surface area, a spherical cap, i.e., a set of the form
I'* =0By N{x, > s} (—l<s<1)

has the smallest characteristic constant «, and thus, the smallest eigenvalue A,

with
1
/ (U,/)Q(l . $2)(n—2)/2 dr
A= inf =2

1
u(s)=0 / uz(l . $2)(n—1)/2 dr

(by changing variables © = x,, = cos @, in polar coordinates).
b) ([FH]). The minimum decreases with dimension, since an n; dimensional configura-
tion can be extended (without changing the homogeneities) to a higher no = ny+k

dimension, so we scale properly and study the problem for large dimension.

Note that, since a(a + (n — 2)) = A, then
A 1
— = - 2 —_— _— _— -
o {\/(n 2)2+4X — (n 2)] n—2+0(n2)
for n large, so it is enough to study & for n — 400, with
1
) / (U/)2(1 . x2)(n—2)/2 dx

== inf ==

1
T u(sn)=0 / u2(1 o x2)(n—1)/2 dr

This suggests the change of variable y = n'/2z. Thus, letting h,, = n'/2s,,

o0 2
/ (u/)2(1 . y_>(n—2)/2 dy

2
But (1 — %)(”_2)/ 2 converges in compact sets to e=v*/ 2 so, if we choose a convergent

sequence of hy, h,;, — h (h may be +o00), then (see [FH]) & converges to the Gaussian
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eigenvalue:

/Oo(fu')ze_yQ/2 dy
A(h) = inf Zh : (12.9)
u(h):O/ uZe V12 dy
h

Notice that if h,, — —00

w(hn)= hin 2
(hn)=0 / u2(1—y—)"/2dy
n

Observe also that, if w, = |0B1| and |I'*| = yw,, 0 <y < 1, v fixed, then

e
v = \/%/h p(—t*/2)dt (12.10)

how one can see “passing” to the limit for n — +o00 in the relation

* 1
N = ’F ’ _ wn—l/ (1 _x2)(n—1)/2 dr .

Wn Wn

Therefore, our problem is reduced to show that, if I'1,I'y C 9By, I'1 NIy = () and
A(h1),A(h2) correspond to I'; and T'y, respectively, then

A(hl) + A(hg) > 2 (12.11)
Now, A = A(h) is the first Dirichlet eigenvalue of the one-dimensional Ornstein-Uhlenbeck
operator
d? N d
r—
Cdx? U da

in the set (h,4+00). We analyze the properties of A(h).

c) ([BKP]). A = A(h) is convex. Let up, be the first normalized eigenfunction associ-
ated to A(h), i.e

2
( diQ + x%) up(z) = A(h)up(x) x> h

up(h) =0, \/%/+oo exp(—%)dmzl

Put vp,(z) = up(z)e *"/4. Then
d2

———vn(@) + ( 77— 5)%(3;) — A(h)vp(z)
and vy (h) = 0, f oo 2 dx = 1. This means that vy is the first Dirichlet eigenfunc-

tion on [h, +00) assomated to the Hermite operator
d? 1, 1
()

and A(h) is the corresponding eigenvalue.
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Since V(z) = 1% — 3 is convex and [ exp(—tV (z))dz < oo for every t > 0,

from [BL] we deduce that A(h) is a convex function.
d) From [BKP]| again, A = A(h) is strictly increasing, A(0) = 1 and A(h) — 0 as

h — —oo, A(h) — +00 as h — +00. Moreover
4
A'(0) = —(1 —-1n2) (12.12)
s

In particular, if hy 4+ hg > 0, then

hi 4+ ha
2

A(hy) + A(hy) > 2A ( ) > 2A(0) = 2. (12.13)

We can now go back to our optimization problem and in particular to inequality (12.11).
Given I'1,T'y C 9By, 'y NT'y = 0, let the numbers ~; = |I';|/w, and h; be defined according
to formula (12.10).

Observe that, since I'y NT'y = () then v; + v2 < 1 and hence hy + hy > 0. Indeed, if
hi + he < 0 and, for instance hy < 0 < ho, we would have vy > v(—hs), Y(—h2) + 12 =1
(by the evenness of the Gaussian) so that 1 + 2 > 1, a contradiction.

From (12.13) we conclude that

J'(1)
J(1)

> 2[A(h1) + A(he) — 2} >0 (12.14)
We summarize and refine the above discussion in the following important result ([ACF]).

THEOREM 12.3 (Monotonicity formula). Let ui,us be non-negative subharmonic func-
tions in C(By). Assume that uy - ug = 0 and that uy(0) = uz(0) = 0. Set

1 2 2
J(r) = —4/ \V21_|2 d:z:/ |V:2_|2 dx O<r<l1.
r* JB, |z| B, |7

Then J(r) is finite and is an increasing function of r. Moreover

(12.15)

DN | —

2 2
J(r) < cn)wllizp,y - lluallzzgy  0<r<
PROOF. Observe that Au; and Aus are measures. Denote by v,, mollifiers of u;. Then
2 2 2
Avs = 2|Vun,|® + 20 Avy, > 2|V op,|
and therefore, if ¢ is a test function in C§°(B;),

/U%A(p: lim v2 Ap = lim AvZ
B1

m—-+00 By m——+00 B

> lim 2/ |va\2g0=2/ Va2
Bl Bl

m——400



222 12. MONOTONICITY FORMULAS AND APPLICATIONS

This means that Au? > 2|Vuq|? in the sense of measures and that u; € HL_(B). Let now

1 be a cutoff function, ¥ =1 in B,, v = 0 outside By, r < %, and put

Je =M * g

’2—71

where g(z) = |z and 7. is an approximation of the identity. We have

2 ¢gs‘vul |2 dr < A(¢g€)u% dx
BQT BQT’

= / uirpAg. dz + 2/ uiV - Vg dx + / ui Ag. dx
Bo, Bor~Byr Bo,~B:r

< c(n) / utyme dx + c(n)r™" / u? da
Ba, B

2r \Br

Letting ¢ — 0, since u1(0) = 0, we get

2
/ ‘|Z|Zl_‘2 dx < c(n)r‘”/ u? dx . (12.16)
B, Boy B,

An analogous inequality holds for us and hence () is finite for 0 < r < 1.

Since

r— 7“2_"/ |Vul"2 do (1=2,2)
0B,

is in L1(0,1) we have

dr Jg, |x|"=2

de = rz_"/ V> do a.e.
0B,
It follows that

4
J’(r):—T—S/B |x|2—n\vu1|2dx-/3 227" Vg |2 dat
1
+—4/ |:c|2_”\Vu1|2d:r-/ 27" Vg |* do+
= JB, 0B,

1
4 P2V 2 do / 22" Vs da -

ri dB; B,
We want to show that J'(r) > 0 a.e. By rescaling, we can assume that » = 1 and conclude,
from (12.14) that J'(1) > 0.

Since J(r) is increasing, from (12.16) we deduce, for 0 < r < 3,

1
J0) < J(35) € colunlap, - Mzl O
A more precise result can be obtained observing that (12.14) gives
2
J(r) = ZJ(r) [A(hl) 4 A(hy) — 2} .

Here I'; = I';(r) (i = 1,2) are the projections of 0B, N {u; > 0} on the unit sphere 0B;.
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COROLLARY 12.4. The strict inequality
A(hy) +A(he) =2>0

holds unless I';(r) are both half spheres. In particular, if at least one of T'; digresses from

being a hemisphere by an area of size cwy,, then
A(hy) + A(hg) —2 > ce* . (12.17)
As a consequence r_CEQJ(r) s a non-decreasing function and
J(r) < J(1)re . (12.18)

PROOF. If I' C 9B; and |I'| = (3 — €)wy, then

Lo /Ooe (—t?/2) dt L ! /he ( t2/2)dt>1 L,
——f£=—= Xp(— = - — — Xp(— —— —N.
2 27 Jh P 2 VorJo P — 2 \or

Hence h > +/27 e and from d), (12.13),

A(h1) + A(ho) —2 > cA”(0)(h? + h3) > <2 . O

12.3. Consequences and applications

The usefulness of the function J(r) in free boundary problems comes from the fact that
it gives a control of the linear behavior of the solution from both sides of the free boundary.
More precisely, one has the following consequence of the monotonicity formula.

Introduce the notations

1 |Vut|? 1 IV~ |2 _
T R) = = d — de | = J& .
J(u, R) (]ZQ /BR |x|n—2 ! R? /BR ‘.77‘”_2 ! JR (u)JR (u)

LEMMA 12.5. Let u,v be continuous functions in Bs such that u(0) = v(0) and outside

their zero sets, Au =0, vAv > 0. If, near the origin,
ut (z) < vE(x) 4 o(x) (12.19)
then

J(u, 04) < J(v,04) .

PrOOF. If J(u;04) = 0 or J(v;04) = oo there is nothing to prove. Also, if J(v;0+) = 0
then J(u;0+) = 0, by (12.19) and Corollary 12.4. Therefore, suppose J(u;0+) > 0 and
0 < J(v;0+) < co. From Corollary 12.4, in particular from (12.18), for every R <1 (say),

1QF (u) N Br| > c¢R™ .
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Set up(z) = fu(Rz) and define Ug by

uh Up
Up =—L—, Up=—+“L—.
\/ I () v/ Jr (W)
Observe that

a) Poincaré inequality gives

1
2 : (uﬁ)2 < c/B \Vui? < ch(uR) = JjR(u) )

b) From a), J(Ug;s) is well defined for R,s < 1. In particular J*(Ug) = 1 for every

R < 1. Moreover, along some subsequence {R,},
- +
Ur, = Us

uniformly in any compact subset of Bj.

c) J(Up;s) =1 for every s < 1. Indeed

J(UR].;S) o J(u;st) .
J(Ur,;t)  J(u;tRy)

as R; — 0 and therefore we get J(Uop; s) = J(Up;t) = 1, since J(Ug,;7) — J(Uo; 7).
d) From c) and Corollary 12.4 again, we deduce that, in a suitable system of coordi-

inates, USE are linear functions, that is
Uo(z) = az,; — Bz,

with o232 = 16/w?2. Define now Vz by
+ —
Vi=—E_ y;=_—_E_
T (u) Jg (1)

Since 0 < J(v;04) < oo, we have also 0 < J(Vg;0+) < co. From (12.19) it follows
that

Vi (z) > Ug(z) + ol|z]) -

Consider Vi and let a(z') = inf{xz,, : Vi (2/,z,) > 0, 2 = (2/,2,) € B} and {(2) =
\/s2 — |7'|? — a(z’). Notice that Q7 (Vg) is tangent to {z, = 0} since at 3% > 0, so that
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the point (2, a(z")) € Bs for |2/| < s — o(s), if s < r. We have

[ vtz [ i
Bs Bs

>

ol VA—
/{|1"|<s—o(s)} E(.’L‘/) ( a(x')<zn<r/s2—|x'|?

2
1
> / - ( max V]%L d:z:n> dx’
{|z’|<s—o(s)} (I) a(z")<zn<r/s2—|z'|2

2
1
> / max Uy + 0(3)) de' = At .
{la'|<s—o(s)} £(2") <a<m'><xn<\/52x’2 !

The same inequality holds for V. As a consequence, JS(VJ%) > 3_”14;t r- Since Ur — Uy

S

uniformly in compact sets, one has, letting first R — 0 and then s — 0,
J(v;sR)  J(v;04) -1

T (Vi) = Jw,R)  J(u;04) =

OJ

COROLLARY 12.6. Let u be continuous in By, u(0) = 0 and uAu > 0 outside its zero

set. If near the origin, for some o > 0, 3 > 0,
ut(z) > azt + o(x)

u(z) = Bz} + o()
then
o3 < c(n)J(u; 0+)
where c(n) = 16/w?, with equality when u = az;” — fBx,, .
As a consequence we prove the Lipschitz continuity of a viscosity solution to a free
boundary problem, in a very general situation.
THEOREM 12.7. Let u be a viscosity solution of a free boundary problem in By, satisfying
the following condition: near every xg € F(u) where
uw(z) = alr — x9, )" — Blx — z0,v)” + oz — x0|) (12.20)
(e >0, 3 >0), there are constants Cy, Co such that

6 <1 wmplies a <Cy

and
a <1 implies <Oy
with Cp, Cy independent of xg (they may depend on u). Then u is Lipschitz continuous in

By o with the Lipschitz constant bounded by max{C1, Ca, HUH%OO(Bl)}'
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PROOF. It is enough to prove |u(x)| < cdist(z, F(u)) in Byjp. Let z € Byo, u(z) =
A > 0 and h = dist(z, F(u)), zo € OBp(z) N F(u). Then, near xg, u has the nontangential
asymptotic behavior (12.20) for some « > 0, 3 > 0.

Comparing u with a radially symmetric harmonic function in the ring By (x) \ B, /2(z)
vanishing on 9By (z) and equal to ¢\ on 0By s(r), we deduce, as at the beginning of

section 1, that

A < cah .

If now B < 1, then A < c¢1h, while if 8 > 1, Lemma 12.5 for u; = u™*, us = v~ and g as
the origin, gives
a? < e(n) B2 |ull 7o g,y < e(n)llull 7o (p,) -
Therefore
A < c(n)|[ullFoo )b

which gives the Lipschitz continuity of u™.

Analogously we deduce the Lipschitz continuity of u ™. [

Another useful application of the monotonicity formula and specifically of Corollary 12.4,
formula (12.18), occurs for instance in one phase problems, to rule out some degenerate sit-
uations such as two connected components of the positivity set touching at a free boundary
point. This cannot occur in presence of non trivial linear behavior together with positive

density of the zero set. Precisely we have

LEMMA 12.8. Let uw > 0 be a continuous function in By, harmonic in its positivity set

QT (u). Suppose Q1 and Qo are two connected components of QT (u) and 0 € 9Qy. If
i) near 0, in
u(z) = az, + o(|z)
with a > 0,
ii) CQ (u) has positive density at 0
then, either
a) 0 ¢ 892
or

b) near 0, in Qo,

u(x) = of|z]) .
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PROOF. If 0 € 9y, applying the monotonicity formula to u; = g, and ug = uq,,

extended by zero outside 21 and g, respectively, from ii) and formula (12.18) we get
4
7)< ¢ el sy
If ug has a non trivial linear behavior near 0, (??7) gives a contradiction. O

Even in more general situations, the monotonicity formula can give topological infor-

mation on the positivity set Q7 (u).

LEMMA 12.9. Let u > 0 be continuous in By, harmonic in Q7 (u). Let Q1 be a connected
component of Q" (u) and 0 € 0Q1. Let J(r) be as in theorem 12.3 for uy = wjq, and
ug = u —uy. Then, if J(0+) > 0, ezactly two connected components Q1 and Qo of Q1 (u)

are tangent at 0, and in a suitable system of coordinates,
u(z) = axi + g +o(|z|)

with a > 0, 3 > 0.

Clearly, J(0+) > 0 forces a non trivial linear behavior near 0 in any connected com-
ponent of Q% (u) touching at 0; therefore there is no room for more than two connected
components of the positivity set touching at 0. If J(04) = 0, in general, nothing can be

deduced regarding the topological structure of Q% (u) near 0.

We end this section with a quantitative version of lemma 12.8: in one phase prob-
lems, like those in section 13.2, the combination of Lipschitz continuity, nondegeneracy and
positive density of the zero set forces the free boundary to be non tangentially accessible,
preventing in particular two connected components of Q% (u) to touch.

Let us briefly review the notion of non tangentially accessible domain (N.T.A. domain).
Their importance stems from the fact they are the most general domains for which the
Harnack and comparison theorems (interior and at the boundary) presented in sections 11.2,
11.3 are valid (see [JK]).

Given a domain €2 and a positive number M, we say that a ball B, C Q is M-

nontangential if its distance from 0€) is comparable to its radius, that is
M~ < dist(B,.,00) < Mr .

Given x,y € Q, a M-Harnack chain from x to y is a finite sequence of M -nontangential
balls such that the first one contains z, the last one contains y and such that consecutive
balls intersect. The number of balls of a chain is the length of the chain.

Let us define what is a Harnack chain condition.
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DEFINITION 12.1. Let €2 be an open set in R™; Q satisfies a M -Harnack chain condition
if, for every § > 0 and every couple of points z,y € € such that |z — y| < me and
Bs(x), Bs(y) C Q, there is a M-Harnack chain from z to y whose length depends on m but

not on 9.
We now define N.T.A. domains.

DEFINITION 12.2. A bounded open set 2 C R™ is a N.T.A. domain if there exist M and
ro such that

i) for every @ € 092 and every r < rg, there is y € Q for which
M r<|Q—-yl<r and Brav(y) CQ;

ii) a M-Harnack chain condition holds;
iii) R™ \ © has uniform positive density at every point, i.e., there exists ¢y > 0 such
that, for x € R™ \ €,
1B, () \ Q] > cor™ .

The following result holds.

THEOREM 12.10. Let u > 0 be a continuous function in By, harmonic in Q% (u). Assume
that for each v € F(u) N Byp and r < %

i) w is Lipschitz and nondegenerate, that is

sup u > cr
B, (z)

ii) there exists n > 0 such that
|Br () \ Q7 (u)| > ™ .

Then QF (u) N Byjy is a N.T.A. domain.

PROOF. Since u is Lipschitz and non degenerate, we only have to prove the Harnack

chain condition. Suppose then that z,y are points in Q% (u) with |z — y| < md and
Bs(x) € Q7 (u) . Bs(y) € Q" (u) .

for some m > 0 and J > 0.

Suppose d(z, F(u)) < d(y, F(u)) = do. If 69 > 2md then = € B,5(y) C Q1 (u) and one
can easily find the Harnack balls chain.

Thus let 6y < 2md and yo € F(u) be such that |yg — y| = dp. Then, for R > rq = 4md,
z and y belong to Brs(yo). Let d = § min{u(z), u(y)}.
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We will show that, if R > crg, where ¢ may depend on u but not on x and y, then, the
connected components A, and A, of Br(yo) N {u > d} that contain = and y, respectively,

are actually the same.

Assume A, # A, and use the monotonicity formula for u; = (u — d)r;lz and uy =

(u — d)r;ly (extended by zero outside A, and A,). Since ii) holds, from Corollary 12.4 we
get that, if

1 |V 2 Vg2
90(7”)2—4/ —n_zdz'/ [P
™ J B, (yo)n A, 12— Yol Br(yo)nA, 12 — Yol
for some positive = ((n) the function
ri— 1 Pp(r)

is non-decreasing.

Now, if L denotes the Lipschitz constant of u, we have
o(r) <e(n)L*=C .
CLAIM. if r > rq, then
o(r) >e¢>0

with ¢ independent of r.

Using the claim we have:
erg” < rgPe(ro) < R™Pp(R) < cRP
so that
R <crg.

Thus, if R > crg, Ay = Ay = A. Since A is open and connected, there is a curve I' C A

joining x and y. For each z € I we have, from i), that
1
u(z) >d= 5 min{u(z),u(y)} > ¢éd .

Therefore, if z € I' and [p — 2| < %, we have
c
> —Llp—2z| > —9§
ulp) =z u(z) = Llp — z[ = o7
so that, if p = 526, B,(z) C " (u). Since

I c|JB(2)

zel



230 12. MONOTONICITY FORMULAS AND APPLICATIONS

F(u)

FIGURE 12.2. The Harnack chain condition for Q" (u) in Theorem 12.10

we can find a sequence of points 21 = x, 29,...,2ny_1, 28y = y of I'such that I" C Uj\le B,(z)
and that

N
> Xy (®) < cl)

Moreover, since p = %5, ro = 4md and z; € By(yo), we can choose the length N
independent on x,y and J.

We now prove the claim. We show that

2
/ L”_Q dz > cr? . (12.21)
Bry (yo)nAx |7 — Yo["

Since
2mLé > u(x) > cod
if 0 = ¢o/4L, then B,s(x) C A, (since |z — yo| < 3md) with

u(z) > %u(m) in Bgs(z) .

Let C be the convex hull of B,s(x) and {yo}. Every point z € C can be described by py’
with p = |z —yol, 0 < p < p1(y’) and ¢/ in a subset X of OB;.
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For each ¢y € X, consider po(y') = sup{p : u(py’) = d} so that the segment py/,
po(y) < p < p1(y) is contained in A,. Notice that po(y’) > ¢d and, since p1y’ € B,s(x),

3
ulpry’) = Jul@) .
Therefore, for each 3’ € X:
1 P1
1) < ulpry') — ulpoy)) < [ [Vuloy)|dp
Po

which implies

P1
/ Vu(py)lpdp > cb* .
PO

Integrating this equality over X we get

/ Vut)] - |z — yol* " dz > C8
C

and Schwarz inequality gives (12.21) with C' = C(m, L,n). In the same way one can prove

that ,
Vu
/ ‘—1‘71_2 dz > cr%
By (y0)NAy |2 — ol

and the claim follows. O

12.4. A parabolic monotonicity formula

In this section we present two monotonicity formulas for pairs of disjointly supported
subsolutions of the heat equation (one global in space and one local) ([C4)).
In the last section we show an application to a two-phase singular perturbation evolution
problem.
The global formula
Let uq us be two disjointly supported, continuous and non-negative subcaloric functions
in the strip R™ x [—1,0), i.e.,
a) Au; — Dyu; >0
b) ujug =0
c) u1(0,0) =u1(0,0) = 0.

Assume that the u; have moderate growth at infinity, for instance
|z

/ u?(z, —1)dr < CeW+e)
Br

for R large, some £ > 0 and let

Then,
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THEOREM 12.11. For 0 <t < 1, the function

J(u1,uz, t) = tl2</n /_i yvu1\2r(a:,—s)dxds> </n /_(: |Vus|*T(z, —s) da:ds)

18 monotone increasing in t.

REMARK. If the u; are linear functions, i.e., u1 = ax,’, us = Bz, , J is constant.

PROOF. Computing the derivative we get, setting J(¢) = J(u1, u2,t) = 5 1(t) - Ir(t),

J/(l) =211, + IiIQ + Ilfé .

Thus, we must prove that
I L
—+==>2.
L I

Using that u1(0,0) = u2(0,0) = 0 the fact that

Au? — Dyu® = 2u(A — Dy)u + 2|Vul? > 2|Vul?

and that
[A 4+ Dy|(T'(x,—s)) =0
we may transform the I; in spatial integrals at time t = —1, i.e., we must prove that
S [V (2, _1)‘26_%6133 N Jpn [Vug(, —1)‘26_@(&1:
Jpn [ (=, —1)]26_¥d37 Jrnlu2(z, —1)]2€_$daz

attains its minimum when u; are a pair of linear functions (in which case all formulas are
exact and J is constant).

Notice that in the process of integrating by parts, we need a growth control at infinity
in space.

Since the u; are subcaloric and non-negative, a control at ¢ = —1 suffices.

It is now easy to deduce the optimality estimate using once more the results in [BKP]
first, among all domains of given Gauss mass, the smallest eigenvalue is attained by a half
space, i.e.,

Jo Vul2e=* dz
Jqu?e dx

is minimum for 2 = {x,, > «} with appropriate «; and second, the first eigenvalue is a

convex function of «, in particular
AMa) + AM(—a) > 2X(0) .

But A(0) is the eigenvalue corresponding to a linear function as eigenfunction. This com-

pletes the proof of the formula. O
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The local formula

Next a local theorem.

THEOREM 12.12. Assume that u; (i = 1,2) satisfy the hypotheses a), b), ¢) of Theo-
rem 12.10 and moreover that they are in L? of the unit cylinder C; = B1(0) x (—1,0). Let
¢ be a cut-off function in x, i.e., ¢ =0 outside By3, ¢ =1 in By and smooth.

Then if w; = u;p and J(t) = J(wi, wa,t),

J(OF) = J(t) < Ae™ w72 ey lu2lF2 e,

for some C = C(n), A= A(||u;]|2)-
REMARK. It follows from the proof that

L(t) < gl za g, gy + e Muilz ey -
In particular, say,
J(1/2) < e(m) w72, luzllzee,) -
PROOF. Since u; € L?(Cy) and u; > 0, Au; — Dyu; > 0, we have
Vu; € L*(Co_s) .

We compute as before
2 1 1
J,(t) = —t—3]1[2 + t—QI{IQ -+ t—211[é ,
but when we try to transform I; into a boundary integral for time —¢, we have to estimate
both the error in I; and I/ in order to control the product. The error in I; comes from

trying to estimate

0
/ / IV (up) |*T(x, —s) dz ds
R7 J—t
from above by [p. fft 1/2(A — Dy)(u)?I dx ds.

Now
1/2(A — Dy)(up)? — |V (up)[* = up(A — Dy)(up)
> (up)[ulp +2VuVp] .
All of these terms are supported outside the ball of radius 1/2, where ¢ = 1. Thus, since

IT(z, )] < ce=C/t for —t < s < 0 and since ”“Z'H%P(CQ/?,) < C”uiH%ﬂ(cl)’

Ii(t) < / w?(x, —t)T(x,t) de + ”uiH2L2(c1)€_C/t :

I! introduces no error by itself, only as a factor in the error introduced by I;.
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So, for I we only need a crude estimate by above. We use simply that sup|, I'(z,t) <

+"/2 to estimate

() < Cr/? /B Vs, —1)|% + (i, —£)2] d -
2/3

o/t

Putting all together, we have (changing the constant in e to absorb all negative powers

of t)

J(t) > ~Cem flur (=03 s, ) - 02 32ey) + lua s =D s, ) - By b
Therefore
J(OF) — J(t) < Ae ¢/t luallZ e lu2ll2 ey -

12.5. A singular perturbation parabolic problem

Finally, we give an application to an equation appearing in combustion, [CV].

THEOREM 12.13. Let u be a solution in C; = By x (—1,t) of
Au —up = B (u) ,

where

) 0<fe(u) < €,

ii) support Bz(u) = {0 < u < e},
and assume that, say,

[ullpoc ey < C

Then
y<C

IVal ey s

with C independent of .

Note: In [CV] this theorem is proved for non-negative solutions.

PrROOF. We may apply Theorem 12.12 to
up = (u—N", uy=(u—N)"

for any A < 0.
Therefore on Cs 4, ||[Vul[pe < C independent of € (just from i) in the region u < 0.
Note that

Hu||W2’p(CS/4) S C(E) I
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and therefore it is easy to compute
J(O%) = CITu(0)[' < Clullbse,
whenever u < 0 at the point chosen as origin. More precisely in the region {u < 2¢},
Vu| < C .
Indeed consider (zg,tp) in such a region and rescale the problem
w(z, t) = %u(e(:ﬂ — o) + 20, €2(t — 1) + to) -

This rescales an e-parabolic neighborhood of (zg,tp) onto the unit cylinder around the
origin. Let us bound w by below on the closure of C'= B; x (—0,0) for ¢ > 0 small. Since

on w < 0 we have
[Vw| = |Vu| < C,

on those sections of time on which Bs saN{w > 0} is not empty, w > —C (just by integrating
along segments).

The family of times for which Bs /4N {w > 0} is empty forms an open set. Suppose that
for some tg € (ta,tg), inf, w(z,ty) = —M < —C. Since |Vw| = |Vu| < C on all of the slice

w(z,t) < -M < —C' .

We now consider the barrier

S 1) + MG~ 1)
which controls w by above for tg <t < g where w is negative and caloric.

Then w(0,tg) < —% + Mo < —%_ < —C' if 0 = 1/4n. This contradicts the fact that
w > —C on tg.

But now w being bounded by below, (A — D;)w being bounded and
w(0,0) <2
the Harnack inequality and standard a priori estimates imply that
|Vu(xg,t0)| = [Vw(0,0)] < C .

Finally, we have to control |Vu| on the domain Q. = {u > e}. This follows from the
standard Bernstein technique.

Let ¢ be a cut-off function for the 1/2 cylinder C; /5 = By /9 X (—1/2,0) and consider in
(). the function

©*|Vul|* + \u?
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for A a large constant. Then
(A = De)(¢°|Vul® + Xu?) = [(A = Dy)¢®]|Vul® + 20p;uiju;
+ @2 Dijul* + 2\ Vul* >0
if X is large. Since ¢*|Vul?* + Au? is under control on (€. NCy /2), the theorem is complete.
0



CHAPTER 13

Boundary behavior of caloric functions

13.1. Caloric functions in Lip(1,1/2) domains

By a A-caloric function (and if A = 1, just caloric) we mean a nonnegative solution, u,

of the heat equation
Hyu=Au—Au; =0 (A>0) (13.1)

in some domain D C R™!, that vanishes locally on some distinguished part of D. The
term refers to the fact that, in some sense, along that part of 0D, u resembles the funda-
mental solution of the heat equation in D.

In particular, we will consider the case when the domain D is the intersection of some
(n + 1)-dimensional cube @ with €2, one side of the graph of a function, i.e., Q = {z, >
f(2',t)} and the distinguished part of 9D is precisely 092 N Q.

In this section, f will be a Lip(1,1/2) function, that is, for some positive constant L:
[F(@ 1) = f(s9)] < L2 —y'| + [t — s'/?)
and
D = {(2',zp,t) - xy > f(2',1), z, <8nL, |2'| <2, |t] <4} .
We assume that f(0,0) = 0. The symbol 9,D denotes the parabolic boundary of D:

OpD = (Dp{t=—-4}) U (@D N{|t| <4})=D_4US

bottom points side points
This kind of domain is regular for the Dirichlet problem.
For (¢, 7) € graph(f) and r > 0, we introduce parabolic cubes, boxes and surface discs

as follows.
Q. (&,7) = {(x,t) : |2'| <7, |zn| < 4nLr, |t| <r?}
(€, 7) = Qr(§,7)N D, Ap(E,7) =Qr(§,7)NID .
When (&, 7) = (0,0), we simply write @, ¥, and A,.
Notice that D = Wy, Q2 N OD = Q2 N graph(f) = As. Furthermore, we define, for
7| <2 and r <1,
e inward point A, (&, 7) = (&,&, + 6nLr,T)

237
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Xn

F1GURrE 13.1. Parabolic box and disc.

inward future point A, (&,7) = (€/,&, + 6nLr, T + 2r?)
inward past point A,.(¢,7) = (&,&, — 6nLr, 7 — 2r?)
e the parabolic distances §((x,t), (y,s)) = |z — y| + |t — s|'/?
and
0zt = 6((,1),(0,0))
Accordingly, a caloric function in W, is a nonnegative solution of (13.1), vanishing on A,.

Caloric functions in Lip(1,1/2) domains enjoy a number of important properties that
parallel those valid for harmonic functions in Lipschitz domains, such as a Carleson estimate
(or boundary Harnack inequality) and a boundary comparison principle.

In these results, the presence of a time lag reflects irreversibility in time. However,
for caloric functions vanishing on the lateral boundary S, a backward (in time) Harnack
inequality holds up to S. This implies a doubling property for the caloric measure and the
Holder continuity of the quotient of two caloric functions vanishing on the same disc on S.

In the rest of this section we state precisely the above results.
The Green function for the domain D with pole at (y, s) is defined when t > s by

G(z,t;y,s) =Tz —y,t —s) = V(x,t;y,s)

where
22
[(z,t) = [47t] 2 exp {—E] t>0
is the fundamental solution of the heat equation and V (-, -; y, s) is the solution of the problem
Hu=20 in D
u(o,t) =T'(c —y,t —s) on 0,D

The adjoint Green function

G*(y,s;x,t) = G(x,t;y, s)
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corresponds to the adjoint operator H* = A + 0.
For E a Borel subset of 9,D, the caloric measure w9 (E) = wg’t) (E) evaluated at

(x,t) € D is defined as the value at (x,t) of the solution to the problem

Hu=0 in D
u=xg on O,D

where x g is the characteristic function of E. If g € C(9,D), the solution of the problem

Hu=0 in D
u=yg on 0,D

is given by

u(z, t) = /8 sloyt=do)

The (forward) Harnack inequality adapted to our case says:

THEOREM 13.1 (Harnack Inequality). Let u be a caloric function in D. Then there

exists a positive constant ¢ = c¢(n, L) such that
u(4,) < cu(4,)

for any r < 1.
Moreover ([K], [FGS])

THEOREM 13.2 (Boundary Harnack principle or Carleson estimate). Let u be caloric in
Wo,.. Then there exists ¢ = c¢(n,L) and o = a(n, L), 0 < a < 1, such that

u(x,t) <c <%)au(&) V(z,t) € ¥y .

r

THEOREM 13.3 (Comparison). Suppose u,v are positive caloric in Vo, C D. Then there

exists ¢ = ¢(n, L) such that
u(e.t)  u(4,)
v(z,t) — wv(4y)

for every (x,t) € W, 5.

If we consider caloric functions vanishing on the lateral part S of D the above results

can be refined as follows.

THEOREM 13.4 (Backward Harnack Inequality). (B.H.I.) Let u be caloric in D, vanish-
ing on S. Then
u(A,) < cu(A,) (13.2)

with ¢ = ¢(n, L).



240 13. BOUNDARY BEHAVIOR OF CALORIC FUNCTIONS

Let us point out some consequences of (13.2).

THEOREM 13.5 (Mutual continuity of caloric functions). Let w,v be caloric in D, u =

v=0onS. Then
yu(A) _ulet) _ u(A)
v(Ay) ~ v(x,t) v(Ay)

with ¢ = c¢(n, L). Moreover, u/v € C*%/?(¥1), 0 < o < 1.

< <c in Uy (13.3)

In particular, notice that if v > v, applying (13.3) to u — v and u we get:
Hopf principle: in ¥, u > yv with v > 1 depending on u(A4;)/v(A;) (say).

THEOREM 13.6 (Doubling property for the caloric measure). Let r < 1. For every
(.’L‘,t) €D \ kIj37“/2; t > 7“2,
wTD(AL) < aw™D(A, ) (13.4)
with ¢ = ¢(n, L).

In view of the application to free boundary problems we actually need the following

version of the backward Harnack inequality, valid for caloric functions vanishing just on a

lateral disc ([ACS1]).
THEOREM 13.7. Let u be caloric in D, m = u(Ass;) and M = suppu. Then there
exists a constant ¢ = c(n, L, M /m) such that, if r < 1/2,

u(A,) < cu(4,) . (13.5)

PROOF. Let By ={t=—-1}ND and 3 =0¥ 1 N{-2 <t < —%;2, =4nL}.

Denote by w%x’t) the caloric measure in ¥ and by S; the lateral boundary of ¥y. For

r<1/2,

w(A,) = /B w(o)w (do) + /S w(o)wi (do) = uy(A,) + ua(4,) .

Since u; vanishes on S7, the B.H.I. gives

ui(A,) <cui(4,) . (13.6)
On the other hand, the doubling property of the caloric measure implies, that
WD (81) < e(n, L)w®D(5) (13.7)
for all (x,t) € Uy /3. Therefore, by maximum principle,

us(z,t) < e(n, L)Mw®H(B) (13.8)
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in Wy/3. Now, from Harnack inequality, since r < 1/2,
us(4,) > / w(o)w?r (do) > mwr(3) . (13.9)
B

Since w(® () is zero on the lateral part of Wy/3, we have

w(B) < e(n, L)w?r (B)

so that, from (13.6)—(13.9) we obtain

u(A,) < cur(4,) + eMw™ (8) < cur (4,) + cMw? (3)

< cui(4,) + c%m(zﬁh) <c (1 + %) u(4,) . O

m
COROLLARY 13.8. Let uy,uz as in Theorem 13.7. Then, in Wy 9,

C_lul(Al/Q) < ul(x,t) < CUI(A1/2)
uz(Ayj2) = ua(w,t) uz(Ay/2)
where ¢ = c(n, L, My /my, Ma/m3). Moreover uy/uz € C*(112) for some 0 < ow < 1. The

C® norm of ui/us and o depend only on n, L, %, ]’\”4—2

PROOF. From Theorems 13.3 and 13.7,
1 u1 (A7) < uy(x,t) < Cul(Al/Q)
uz(Ayj2) — ua(w,t) uz(Ay/2)

with ¢ = ¢(n, L, %) To prove that uj/us is Holder continuous, we show inductively by

(13.10)

renormalization that in Wy, £k >0
)\ku2 S (A1 S AkUQ (13.11)

with Ay — A\, < " for some v < 1, v depending on n, L, M;/m;. For this purpose, suppose
(13.11) holds in W5« and renormalize by setting

wp(z,t) = u (275 12, 471, up(,t) = up(27F e, 4R )

Then

A < =R <Ay (13.12)
Uk

in Wy. Consider the largest of the ratios
Uk(él:a/z) - Akvk(43/2) or Akvk(43/2) - Uk(él:a/z)
(A — Ar)vr(4s)2) (Ak = Ao (Azpe)

To fix ideas, assume the largest is the first one. Then

1
Uk:(A3/2) - Akvk(él:s/z) > §(Akz - )\k)vk(43/2) .

Let my = ug(A43/9) — Apvr(4s)2) and

My, = sup(ug — Apvy) -
P
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From the boundary Harnack principle,
M < clug(As ) — Arvr(As)o)]
< (A — M) ug(As)9)
since ug(As/n) < Apvg(Asj2). Thus
M, - 2cvk(z‘_l3/2) <e (n,L, %)
Mg V(432 ma
by Theorem 13.7.

With the ratio M /mj under control, we apply (13.10) to wr = up — A\gvg and z =
(Ak — )\k)vk. We get, in ¥y,

Wy ka(f‘h/z) S ka(élg/z) S . (n I %)

2k zk(Ary2) — z(Agge) ma
Thus, in ¥4
Ak+1 E/\k—l-C(Ak—)\k;) < % < Ag .
k
Letting Ag11 = Ak, we have
Ak—|—1 — >‘k+1 S (Ak — )\k)(l — C) = ’Y(Ak — )\k) S ’)/k+1 . []

13.2. Caloric functions in Lipschitz domains

In this section we examine the boundary behavior of caloric functions in domains D

above the graph of a Lipschitz function z,, = f(2/,t), that is
[f(@'t) = f(y,s)] < Ll — 2'| + [t — s]) -

Lipschitz continuity in time versus Lipschitz continuity in time is the proper homogene-
ity balance in studying the phase transition relations of the form F(u},u;,V,) considered
in Chapters 8-10.

The main result is that, in a neighborhood of the graph of f, the time derivative of
a caloric function u is controlled from above by its spatial gradient. This amounts to say
that there, the level sets of u are uniformly Lipschitz surfaces in space and time w.r.t. the
e, axis and there exists a space-time cone of directions I'(e,, §) along which u is monotone
increasing. Thus, the situation is perfectly analogous to the elliptic one.

We start with the analogous of Lemmas (11.10) and (11.11). Clearly all the results of
section 1 remains valid in the context of Lipschitz domains. We keep the same notations.

In particular M = supp u and m = u(4z/,).
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We introduce also the elliptic distances
d((2,0), (y,5)) = (|z = t* + [t = s[*)"/?
dy = inf{d((x,1), (y,5)) : (y, ) € graph(f)} .

LEMMA 13.9. Let u be caloric in D. If Do, u > 0 in Wy, then

c_l’U/(Z‘,t) U(Z,t)
dac,t dx t

M

< D, u(z,t) <c

in Uy, with ¢ = c¢(n, L, M/m).

PROOF. Let (z,t) € ¥; and choose (§,7) € graph(f) such that (x,t) = A, (&, 1), for

some r > 0. Now

u(A,(&,71)) —u(€ + dep, 7 — 2r / D, u(é + sen, ™ — 2r?)ds .

By the parabolic Carleson estimate (Theorem 13.2)

w(€ + Sep, T — 2r%) < ¢ (é)a w(A,(€,7)) .

r

Choosing ¢ small enough and using Theorem 13.7, we get

%umr(m)) < erDe, u(4,(€,7)) -

On the other hand, by Schauder and Harnack inequalities and Theorem 13.7 again,

crDe u(Ar(&,7)) < cu(A,(€,7)) < cu(A-(&,7)) .

Since r ~ dg ¢, the proof is complete. O

LEMMA 13.10. Let u be caloric in D. Then there exists d = d(n, L, M/m) > 0 such that
m Wy N {dac,t < d},
D, u>0.

PROOF. Let ¥ = 0,W3/5 \ graph(f) and set u; = u, up = CWSIZZ(E)’ with ¢ chosen such
that
ui(Ay) = uz(A4s) .
By Corollary 13.8,
<™ <o (13.13)

U2
in Uy, with ¢ = ¢(n, L, M/m). By comparing uys with its e,-translations, we obtain

Den’U/Q >0
in ¥;. Since u; /uy € C**/2(¢h;) by Corollary 13.8, for all (x,t), (y,s) € ¥ we can write

ui(z,t)  ui(y,s) g e
ug(x,t)  ua(y,s) < ] yl+ 1t |5) (13.14)
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Fix (y,s) € ¥1. Then, if (x,t) varies in a parabolic cylindrical neighborhood of (y,s) of
radius %dy,sa we have, from (13.14), Harnack inequality and Lemma 13.9,

Uy (y7 3)
U2 (ya 3)

up(z,t)

(xa t)| < CUQ(CU, t) dg,s < CUQ(ya 8) dg,s < CDenUQ (y7 S) d;js_l :

Now, by interior Schauder estimates, in a parabolic neighborhood of (y, s) of radius idy,s,

u1(y, s)
U2 (y7 S)

‘Denul(x,t) — Denug(x,t)‘ < ¢De,uz(y, s) dy

and therefore, from (13.13),

u1(y, s) a
Denul(yas) > [U2(y75) - Cdy,s] Dean(yvs)

= (C - CdZ,s)Denu(ya S)

which is positive if d,,  is small enough depending on n, L, M /m. [

We now establish a control for the derivatives of v along admissible directions involving

a time component. First we need some L?-estimates for u; and the spatial gradient V.

LEMMA 13.11. Let u be caloric in D. Then Vu,u; € L*(¥1) and

IVull 2wy, lluell 2wy < ellullrzw,,)

with ¢ = ¢(n, L).

PROOF. By approximation, it is enough to prove the lemma assuming D is a smooth
domain (and thus u smooth in D), as long as the estimates under consideration depend
only on the Lipschitz character of dD.

The estimate
IVullr2(w,) < cllull2(w,)
is a standard energy inequality and follows from the fact that, when extended by zero
outside D, across graph(f), u is a subsolution of the heat equation. It is then enough to
multiply the equation Au = u; by ¢?u, where ¢? is a cut-off function in space, independent
of time, and integrate by parts.

We now want to prove
”Ut”L?(\Ifl) < C||UHL2(\IJ1) .

Let n?, n = n(z,t), be a cut-off function such that n = 1 in Q; and 1 = 0 outside of W3/

Now

/ {H*(n*u)ug, + (Hug, )n*u} dxdt = / 01Uy, Ug, dog dt (13.15)
D A

3/2
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where H* = A + 0y, Ag/y = graph(f) N Q3/2, v, is the space interior normal to D and do,
denotes surface measure in space. On the other hand, Hu,, = 0 and
H*(n*u) = 2n°uy + 2Vn? - Vu + uH* (n?) .

Therefore, using Schwarz inequality and the L?-estimate for Vu, from (13.15) we get

1
/ 02Uy, Uy, dog dt < ¢ { — / u? dx dt + 6/ n? (uy)? da dt} (13.16)
AT € Jws,, U390

for any € > 0, with ¢ = ¢(n, L).
We want to control the L? norm of u; by the left-hand side of (13.16). To this purpose,
multiply the heat equation by n?u; and integrate by parts; we get

/ 0 (ug)? da dt = / n*uAude dt
\113/2 \113/2

1
= —/ P uguy, dog dt — / 2nuVu - Vndx dt — = / ?(|Vu|?); dx dt .
A3/2 ‘1’3/2 2 ‘113/2
Another integration by parts gives

/ 7 (|Vul?); do dt = —/ | Vul>v do — / 20m¢|Vu|? da dt
U3/

Az/o V32

where v¢ denotes the {-component of the interior normal to W3/, and do is surface measure
in space and time.
Now, along Ag /s, due to the Lipschitz character of D, we have
\Vu| =uy,, |u] <c(n,L)ug, .
Therefore

/ n2‘ut‘ul/m doy dt < C(na L) / n2uﬂ?an1: do, dt
Az)o A

and
‘ / 0| Vu|*v do, dt‘ < ¢(n, L)/ Uy, Uy, doyg dt .
Az AV

As a consequence, from (13.16):

1
/ 1 (ug)? de dt < c(n, L){— / w? da dt + 5/ n* (ug)? da dt} .
V3o € Juy,, V32

The proof is complete if we choose £ small enough. O

LEMMA 13.12. Let u be caloric in D. Then, for any direction entering into D, i.e.,
U= ae, + e, a® + 52 =1, a >0, such that 0 < tan_l(%) < %cot_l(L),
Dyu>0

m WiN {dx,t < dy}, with dy = do(n, L, M /m, Hu‘le(\I,g/Q).
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PROOF. Take i = ae, + Be,y1 with &> + 32 =1, @ > 0 and 0 < tan_l(%) <
2cot™}(L). For 0 < h < hg small, set p = (z,t) and

for all p € W53, where the superscript denotes negative part. Note that w, is subcaloric,
nonnegative in Wy /3 and wy (p) = 0 on As/3. Extend w to all of Q5/3 by setting w, =0 in
Q3/2\ D. Let Q" be a subcube of Q5 /3, chosen so that 9,Q* C Q5/3\Q3/2 and [[ut]|2(9,0%),
IVullL2s,0+) < cllVul[L2(w,,) for some (universal) big constant c. Denote by w¥ the caloric

measure in Q* evaluated at p and define

wp) = [ et
p

Then, if H™ denotes the n-dimensional Hausdorff measure on 9,Q",
zn(p) < |lwy, L2, lldwl /dH" || 12(0,0%)
< c([[Vullrz(a,0+) + llutllz20,0+)) ldwl /dH" || 25,0+ (13.17)
clldw?/dH"|[12(5,0+) < Vullz2(w,,,)
with ¢ = ¢(n, L), since
wy, (p) < Mp(Vu)(p)
where, Mj is the Hardy-Littlewood maximal function along the fi-line through p. Now

consider

vp(p) = / wy, dw?
Op(Q*N¥5,3)

where w? is the caloric measure in Q* N Vs 3.

Observe that vy, is caloric in Q* N ¥5,3. By the maximum principle, we see that
5/3

Wy, < U S 2p (13.18)

in Q* N V¥s5/3. From Theorem 13.3 we have

(13.19)
in ¥;. On the other hand,

dwfl
dH™

L2(0p,Q*)
so that, (13.17) and Lemma 13.11 give

zn (A1) < e(n, L) maxu . (13.20)

Us/3
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From Carleson estimate and B.H.I.

maxu < c¢(n, L, M/m)u(A;)

V5,3

and therefore, from (13.18), (13.19) and (13.20),
w, < c(n, L, M/m)u
in W;. Since the last estimate is independent of h, we obtain
(Dpu)~ < c(n, L, M/m)u (13.21)
in ;. Choose now u = ae, + fBe,s1 with
a=Vita/V2, B=38/V20+a).

Then o? + 5% =1, tan™ (ﬂ) = tan_l(%) < %COt_l(L)-

(e

By Lemma 13.9 and (13.21), in ¥y,

1
D, u(p) = ————=|D,.. u(p) + Dzu
ut(p) i @)[ entt(p) + Dpu(p))]
1 c
> ———| — —c | up) .
W21+ @) <dp ) )
Thus for dy, small enough, D, u(p) > 0 and the proof is complete. ]

The Lemmas 13.10 and 13.12 remain valid if we replace the e,-directional derivative
by any spatial derivative along a direction making an angle less than %cot_l(L) with the
enp-axis. This allows us, using Lemma 13.12, to obtain a whole cone of directions in space

and time along which a caloric function is monotone increasing. Thus we have:

THEOREM 13.13. Let u be caloric in D. There exists dy = do(n, L, M /m, Hu||L2(\I,3/2))
such that, in W1 N {dy+ < do}, u is monotonically increasing along every direction T €

[(en,0), where § < 3 cot™(L).

Theorem 13.13 has a number of interesting and useful consequences. For instance some
of the results in this section become invariant under elliptic scaling.

Indeed, let us introduce elliptic cubes and boxes:
Qr&, 1) ={(z,t) : || <, |zp| <4nLr, |t| <7}
(g, T) = Q&) ND

We have:
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COROLLARY 13.14. Let u be caloric in W5 ., monotone increasing along every o €

[(en,0). Then there exist positive constants c¢,C depending only on n,L, such that, in

wr, forr <1,

dp i\
u(z,t) <c ( ’t> u(Ay) (13.22)
T
t t t
c—luglx’ ) < |V, 1)] < c% g < &0 (13.23)
x,t .’E,t LU,t

)

PROOF. The parabolic Carleson estimate, Theorem 13.2, gives, if ({,7) € QN OD, for
some 0 < 3 < 1,

u(z,t) <c <%)Bu(ﬁr(§,7))
for every (z,t) € U,.(¢,7). Now, observe that, if o € I'(e,,0), 0 = ae, — Be;, o® + 3% = 1,
B > 0, then
u(A-(6.7) Suld,(E7) +s0)  (0<r<g) .
Choose (say) s = r/2 and use Harnack inequality to get

w(A(6,7)) < cu(A,) .

Since (£,7) € QF N D is arbitrary, (13.22) follows.
To prove (13.23) it is enough to notice that the existence of a cone of monotonicity in
space and time implies
lug| < c|Vul|, |Vu| < ¢|De, ul
for some ¢ = (¢,n,0). Then (13.23) follows as in Lemma 13.9 using the elliptic Carleson

estimate (13.22), where ¢ = ¢(n, L). O

In turn, the estimate (13.23) implies that at each level of time, a caloric function wu, is

“almost a harmonic function.” Precisely, we have:

LEMMA 13.15. Let u be caloric in D, monotone increasing along every o € I'(ey,0).
Then there exist € > 0, depending only on n, L and d > 0, depending only on n, L and (say)
u(Ay), such that

wy =u+u', wo=u—u'"e (13.23bis)

are subharmonic and superharmonic in

Wlﬂ{dm7t<d}ﬂ{t:ﬂ.

PROOF. It is enough to consider ¢ = 0. From (13.23),

_ u(z,0)

Vu(z,0)| ~ uz,0)
d:c,O

dw,O

and  |Au(z,0)| = |u(z,0)| < g

(13.24)
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where ¢ = ¢(n, L). By Harnack inequality and using the cone of monotonicity, we have, for
a large N = N(n, L),

u(x,0) > cu(Ay) -di\fo (13.25)
with ¢ = ¢(n, L). Choosing ¢ < 1/N, we get
Awy = Au(l+ (14 )uf) + (1 + e)u | Vu|?

and, using (13.24), (13.25),

u(x,0)
dx,O .

Awy(z,0) > <—C1 + ¢z - U(Al)sdij,\é_l)

Thus if d; o is small enough, w4 is subharmonic. A similar argument gives w_ superhar-

monic. L]

An important consequence of the subharmonicity of w is that, in typical phase transi-

tion problems, we can apply the monotonicity formula of Theorem 12.3. In fact, we have:

COROLLARY 13.16. Let uy be a Ai-caloric function in Wi and us a Aa-caloric function
in Q1\ V1. Suppose uy and ug satisfy the hypotheses of Lemma 13.15. Then, for anyr < rg,
ro depending only on n, L, A1, Ao, u1(A1),u2(A1), and any n-dimensional ball B). centered

at 0, on the hyperplane t = 0,

\Vullz-][ IVus|? < ellur||? oo mr mg 1ual|? oo s
][B;ﬂ\lll BI\T, Loo(ByNWy) Lo (By\Wh)

where ¢ depends only on n, L, A1, \a.

PROOF. Choose ¢, d; (for u1) and dy (for ug) as in Lemma 13.15 and let 79 < min{dy,d2}.
Consider now u1 + (u1)'™¢ and call w; its extension by zero in Q7 \ ¥;. Similarly, call ws
the extension by zero in Wy of ug + (ug)!*e.

Then wq,ws fall into the hypotheses of the monotonicity formula for r» < rg. Then

1 Vs |? dx'/ |Vaws|?
B

rt g x| e

= dx < C(n)leH%oo(Bg)HWH%OO(Bi) '

Due to the Lipschitz character of Wy,

1 Vw; |2
— | wZ_L dx > ][ |Vw;|* da (1=1,2)
r? Jp x| B

/
T

and the proof can be easily completed. ]
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Xn

xn = f(X',t)

FI1GURE 13.2

13.3. Asymptotic behavior near the zero set

13.3.1. Lipschitz domains. The object of this section is a study of the behavior of
a caloric function, near a part of the boundary where it vanishes.

In the next two lemmas D is a Lipschitz domain, like in section 2. Then, by Lemma 13.15,
u is “almost” harmonic at each time level near )1 N 0D and its boundary behavior is like

in Lemma 11.17 and remark 11.18.

LEMMA 13.17. Let u be caloric in D, monotone increasing along every o € I'(ey,0).
Suppose there is an n-dimensional ball B C DN {t = 0} (resp. B' C CD N {t = 0}) such
that B'N oD = {(0,0)}.

Then near x = 0, on the hyperplane t = 0, if v denotes the inward (resp. outward)

normal unit vector to 0B at (0,0),
u(z,0) = alz, )" + o(|z|) (13.26)

for some o € (0,00] (resp. a € [0,00)). When a = oo we mean that u grows faster than

any linear function.

PROOF. Let w; and w_ be as in Lemma 13.15. Since u'™® = o(u), (13.26) will follow

if we prove that

w—(z,0) = afz,v)" + o(|z])
when B’ C DN {t =0}, and

wy(2,0) = afz, )" + o(|z])

when B’ ¢ CD N {t = 0}.
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Suppose B' C DN {t = 0} and let > 0 be the radius of B’. With no loss of generality

we may assume that v = e,,. For § < -~ and a = 5——, define in B%(0) N B’ the function
n—1 2n—1) 5
1, 1

_ = R, P A V4
plr) = wn+ 2" 2a(n — 1)|:1: |

Then, Ap =0 and Bj§(0) N {p > 0} C B5(0) N B’. Moreover, it is enough to prove (13.26)
in Bs(0) N {yp > 0}.
Let
ap, = sup{m : w_(x,0) > mp(z), ¥V z € Bs/r(0) N {p > 0}}

and, since ay, is nondecreasing, set

a =supar = lim ay .
k—o0

Notice that a > 0. If & = oo then we are done. If a < 0o, then
w—(x,0) > ap(z) + o(|z|) = ax, + o|x|) (13.27)

in Bs5(0) N{¢ > 0}. We want to show that equality holds in (13.27).
Suppose not. Then there exists a sequence of points {z*} with 2*¥ — 0, such that
w_(z*,0) — app(z*) > "]
for some 1 > 0. Since w_ is monotone increasing along I'(e,, 8), with no loss of generality
we may suppose that d,x o ~ |z¥| = §/2F and that k > kg, with kg large, to be chosen later.
Let h be harmonic in By, ; (0) N D with h = w, on 9(Bj,_«, N D). Then

h>wy >w_ in B:SZ*’“O NnD

and, a fortiori, since oy < ag11 < @,
hz") — agr1p(a™) > nja”|
h(z) — ag1¢(x) >0 in By i N{p >0} .

/

By Harnack inequality, on a fixed (independent of k) portion of 9B, , (0), we have

(13.28)

h(z) — apyro(x) > enl|z”| . (13.29)
Rescale by setting
wi(x) = 2P Th(27F ) — g1 28 Lo(27 R ) = hi(x) — appion () -

Then wy, is harmonic and positive in Bj;(0) and from (13.29), on a fixed portion I's of
0B;5(0),

wE > cn .
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Let w be the harmonic measure in B5(0) N {¢; > 0}. Then, in BS/Z(O) N{pr > 0}, by the

comparison principle for harmonic function,

wi(x) = enwi (T's) = e(0)npr () -
Rescaling back, we obtain
h(z) — arp10(x) = c(0)ne(x) (13.30)
in By, .—1(0) N {e > 0}.
Choose now kg and ¢, depending only on &, n, L, such that
wy < (14 ¢ M)w_
in B’

852~ ko
set we have

(0) N {p > 0}. Then, by maximum principle, since w_ is superharmonic, in this

h< (14 ¢ Fo)w_
and, from (13.30)

g1 + c(d)
in Bf, ,_1(0) N {e > 0}, a contradiction to the definition of ay 1, if ko is large.

In the case B’ C CD N {t = 0}, choose § and a as above and define
SN L 5 1 72
Px) = wn 2" + 2a(n — 1) 1"
Then, ¢ is harmonic and Bj(0) NCB C Bj(0) N {¢ > 0}. Moreover, set

i () = ( 0) z € Dn Bj0)
v z € CD N B5(0).

Then w; is subharmonic in Bj§(0). Define now
o = inf{m : Wy <m@, Ve By . (0)N{g>0}}
and, since ay is non increasing, set

a=infar = lim o .

k—o0
We have 0 < o < oo and, in Bj5(0) N {¢ > 0},
w4 (z) < ap(z) +o(|zl) = azl +of|z]) . (13.32)
To show that equality holds in (13.32) one can proceed as before. L]

We now prove an asymptotic estimate in space and time at regular points of the zero

set.

LEMMA 13.18. Let u be caloric in D, monotone increasing along every o € I'(ey,0).

Assume that there is an (n + 1)-dimensional ball B such that BN 0D = {(0,0)}, and
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(i) B C D. Then, near (0,0), fort <0
u(x,t) > [Bt + alx, )] + o(d(z, 1)) (13.33)

for some B € R, a € (0, 0], where v is the spatial unit inward normal to 0BN{t =

0} and d(x,t) = \/|z]? + t2.

(il) B € CD. Then, near (0,0), fort <0
u(z,t) < [Bt + alx, )" + o(d(z,t)) (13.34)

for some B € R, a € [0,00), where v is the outward unit normal to OB at (0,0).

Moreover, equality holds in (13.33), (13.34) when t = 0.

PROOF. First assume B C D and, without loss of generality, that v = e,. Define

B [ |2/ ¢l X~ 4
¢($,t):a$n+ﬁt+§I%—Clt t—l—T — C9 E—SE‘% —m]_lﬂfj,

where « is as in Lemma 13.17 if a < oo, otherwise is any a > 0, and 3 € R is chosen so
that the level surface {¢(x,t) = 0} is tangent to B at (0,0).

The function 1 is a solution of the heat equation: Hi = 0. Moreover one can choose
c1 > 1land co >0, e > 0so that {¢p(x,t) > 0} N B:(0,0) C B. The conclusion of the lemma,

will follow if we can prove that, near (0,0), for ¢ <0,

u(z, t) > () + o(d(z, 1)) (13.35)
in {4z, 1) > 0} N B.(0,0).
Define
Psl,t) = () — 5 (x T %)
and, for h > 0,

Dp.s = {¢s(x,t) > 0} N {|zn| < Vh, —h <t <0} .
Then, (13.35) follows if we show that, for every small § > 0 and for a small h > 0
u(x,t) > Ys(z,t) + o(d(x,t)) + o(h)

in Dhy(g.
Take 0 < d; < d and observe that:

a) on 0Dy, 5, N {5, (z,t) = 0}, we have clearly

u > s, .
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Xn

FI1GURE 13.3

b) on 0Dy 5, N {x, > hcotf, t = —h}, we have, by the cone of monotonicity,
w(z, —h) — s, (x,—h) > u(x', z, — hcot 6,0) — s, (z, —h)

and by Lemma 13.17
> afxy, — hcot0) + o|x|) — s, (x, —h)

> —ch + o(|z]) + o(h) = —ch + o(x, h)
c) on ODp s, N{xy < hcotd, t = —h}, u >0 and ¢s5, < ch+ o(|z]) + o(h) so that
u(z, —h) — s, (x,—h) > —ch + o(|z|) + o(h) = —ch + o(x, h)
d) on Sy, = 9D}, 5, N {x, = Vh}, we have, by the cone of monotonicity,
w(@', Vh,t) > u(x',Vh — (t +h)cot 0, —h) .
For h small, v'h — (t + h) cot § > hcot 6, so that, from b),

u(x',Vh,t) > —ch + o(|z]) + o(h) = —ch + oz, h) .
Now set g(x,t) = —Ehw;f’?, where w,(lxé? denotes the caloric measure in Dy, s, of the set
0Dy 5, \ {¢5, = 0}. Choosing ¢ large enough, by maximum principle, we can write
u—15 =g in Dpg, .
By a priori estimates, in Dy, /95,
9¢], Vgl < VR
and therefore, in the same set,
g(xz,t) > —cVhax, .

Thus, in Dp, /95,

u(z,t) — s, (x,t) > —cVha, . (13.36)
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Let now h be so small that
14+ cvVh <6 .
Then, from (13.36),

u(x7t) > ¢6($7t) - _t((Sl - 6) + O(d(x?t))
> s(z,t) + o(d(x,t)) + o(h) .

SH e

In case (ii), set
D, t) = —p(—x,t)
and observe that, B.(0,0) NCB C B.(0,0) N {¢ > 0}.
Now, if we extend u by zero across 0D, we can proceed as above to prove that, near
(0,0), for t <0
u(z,t) < P(x,t) + o(d(z,t))
in B.(0,0) N {4 > 0}.

The conclusion follows easily. O

REMARK. One can prove that, actually, the conclusions of Lemma 13.18 hold near (0, 0)

also for ¢t > 0. See, anyway, the next lemma.

13.3.2. General domains. Suppose we now drop the hypotheses that D is a Lipschitz
domain and it is merely an open set. Thus, let u be caloric in D, vanishing (say) on
F =90D N Q; and assume (0,0) € F and it is a regular point.

At this level of generality asymptotic inequalities like (13.33) and (13.34) still hold,
restricting (z,t) € B in the case (i) and (z,t) € CB in the case (ii). On the other hand,
when D is Lipschitz, equality holds for ¢ = 0. In general, we can only achieve equality along
paraboloids coming from the past. To show it we need (13.33) and (13.34) to hold also for
t > 0, near (0,0). Precisely, we have

LEMMA 13.19. Let u be caloric in the open set D, vanishing on F' = 0D N Q1. Suppose
(0,0) € F and there is an (n + 1)-dimensional ball B such that BN F = {(0,0)}. Assume
that the tangent plane to B at (0,0) is given by

Bt + alx,v)y =0
for some spatial unit vector v and some real numbers &, 3, @ > 0 (—B/o_z finite). Then,
either u grows more than any linear function or:
a) The asymptotic behavior in (i) and (ii) of Lemma 13.18 hold near (0,0) in B (with
at finite) and in CB, respectively.
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b) Equality holds in (13.33), (13.34) along any paraboloids of the form t = —y{x,v)?,
v > 0.

PrROOF. Assume first B C D and v = e,. Take 9 as in Lemma 13.18. Let C} =
By—i(0,0) N (=47 47F)
Dk:Ckﬂ{¢>0}.

For 27F < ¢, set
myg = sup{m : u(z,t) > mi(x,t), V (x,t) € Dy} .

Clearly, mj > 0 for each k and my is nondecreasing. Define my, = sup mg.
If mo = 00, then u grows more than any linear function near (0,0). On the other hand,

if myo is finite, we have
u(z,t) > moot(x,t) + o(d(x,t)) in B:N{yp >0} .

Setting & = Moo, B = Moo 3, we have (13.33), with a = &, 3 = 3.
If (ii) holds, let

¢(iﬁa t) - _w(_x7 t)

and extend u by zero outside D. Moreover, let
Dp=Cpn{p>0}.
If ¢1, ¢9, and € are suitably chosen, we have B.(0,0) NCB C B-(0,0) N {¢) > 0}. Define
my, = inf{m : u(z,t) < mp(x,t), V (x,t) € Di} .
Then my is nonincreasing and if we set mq, = inf my, we have
w(z,t) < mooth(z,t) + o(d(z, t))

in B.(0,0) N {t) > 0}. If we set @ = moor, § = Moo, we obtain (13.34), again with o = @
and 3 = 3.

Take now a paraboloid ¢ = —yz2, v > 0, and assume that equality does not hold in
(13.33). Then, there exists a sequence of points {py = (xx,tx)} with tp = —v(z)2 such
that p, — (0,0) and

u(pr) — Moo (Pr) = M (pk)
for some 7 > 0 and k large enough. Let C; = By—; x (—477,477). We can find a subsequence
{jr} such that py, € Cj, \ Cj, ., and t, < —47k+12 27Ik+1 < |g;| < 279%~1. Then, with my

as in Lemma 13.18, since my, ., < Moo,

k+1

u(pr) — my, Y (oK) = o (pk) -
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Perform the dilation x +— 277k, t — 477%t and set
Uz, t) = 2%u(27k e, 47908) | (x,t) = 2TRap(27 Tk g, 47IRE)

C}, transforms into C; and C'j into C’ko, for some kg. In Q1 = C1 N {15 > 0} we have

k+1

u(p) — myy.,9(p) 2 0
and
@(p) = mj,,$(B) = b (p) (13.37)
where p € Q1 \Ql/g is the dilated py. Let p = (5, &,,t) and introduce the set

Y ={(a,xn,t) |2/ <b, xy=Tn+b, t+b<t<t+2b}

where b is positive and small enough so that ¥ C Qy, £ + 3b < —4 o,
From Harnack inequality and (13.37), on X

i(p) — mj,, V(p) > enp(p) (e =c(n,b)) .

Let now w” be the caloric measure in Q; N {z, < &, + b} Then, in Qko = é’ko Nn{y >0}

i(p) — m; B(F) > / 6=y, 0] de? >

> enwh(%)
with ¢ = (n,b). On the other hand, since wP(¥) vanishes on Cy, N {1/ = 0}, by the

comparison Theorem 13.3,
P A
() | wh(E)

(p) )(4)

in Qg,, where A = (0,2 *o+1 4=kot1y " A = (0, —2 ko1 _4=ko+1)  Rescaling back, we

obtain

> ¢(n,b)

u(p) — my, ., (p) = enp(p)

in Cj, . ,, which contradicts the definition of m;, _ .

Jk+17
In the case the ball B touches 0D at (0,0) from the other side, the proof is similar. [

13.4. e-monotonicity and full monotonicity

The notion of e-monotonicity can be clearly extended to function u = u(x,t): given

e > 0, u is e-monotone in the direction 7 if

u(p+ A1) > u(p)  (p=(z,1))

for every A\ > €.

Suppose one of the following conditions holds:

(i) w is uniformly close to a two-plane function of the type ax; — bz, , a,b >0
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(ii) w is trapped between two strictly monotone functions (i.e., with derivatives along
some (space-time) direction strictly positive)
(iii) w is uniformly close to a strictly monotone function along some spatial direction

and with small oscillation in time.

Then it is easy to check that, for a suitable £ > 0, u is e-monotone in a cone of (space-time)
directions.

Situations like (i), (ii) or (iii) occur, for instance, in studying asymptotic limits (as
t — 400 or t — 07) or blowup sequences %u()\x, At) as A — 0. Two examples of applications
of these notions are given in section 10.8.

We denote by the symbols T';(e,6%) and T';(v,6%) with v € span{e,,e;}, respectively,
a spatial circular cone of opening 8% and axis e and a two-dimensional space-time cone of
opening 0! and axis v. Also, we recall, (71, 72) denotes the angle between the two directions
71 and 7v.

In this section we show that if a nonnegative caloric function u is e-monotone in a
cylinder Q 77 = B:/sW X (—eM,eM) along every direction 7 € I';(e,,0%) U I'y(v,0),
then, in half the cylinder, u is fully monotone along the directions of slightly smaller cones.

Precisely, the main result of this section is the following.

THEOREM 13.20. Let u be a nonnegative caloric function in Q 57, €-monotone along

every 7 € Lp(en,0%) UTy(v,0"), v € span{e,,e;}. Then there exists ¢ > 0 such that
D,u(0,0) >0

for every 7 € Tz(ey, 0% — ce) UT (v, 0" — c\/€).

We divide the proof in four steps.

1. Control of u; by u from below for solution of Au + hu,, —us = 0.

2. e-monotonicity implies monotonicity for directions 7 = «e,, + Bes, |G| > By > 0.

3. Monotonicity along 7 € I't(v,0y) and e-monotonicity along a spacial direction e
implies monotonicity along € = e + cev.

4. e-monotonicity along 7 = ae, + Be;, § # 0, implies monotonicity along 7. =

T + clal\/e ey.

LEMMA 13.21 (Step 1). Let u be a nonnegative solution of Lu = Au+ huy, —uy = 0 in

B5(0) x (—=2,0) where h is a real constant. Then, there exists a constant n > 0, n = n(n,h)
such that

ug(z,0) > —c(n)u(zx,t)
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or every x € B’ ,,(0) and every t, —m <t < 0.
1/2 n

PROOF. Let G denote the Green’s function in B x (—1,0] for the operator £. Then, if
v denotes the exterior normal to Bj,
w(e,0) = [ Gle,0ip,~1)usly. ~1)dy
B}

0
—/ 0,G(z, 05y, t)u(y, t) doy, dt
_1.JoB;

— / G, 0;y, —1)(Au + hug, )(y, —1) dy
B

/
1

0
-1 J0B]

0
_ / / 9,(9,G(x,0;y, t)u(y, 1)) dt do,
0B, J 1

= AG(z,0;y, —u(y, —1) dy
By

T / hGyn (.’17, 0; Y, —1)U(y, _1) dy
B/

1

0
+/ 0:0,G(z,0;y,t)u(y,t) doy, dt .
~1JoB;

Now, there exists nn > 0 such that 0,0,G(z,0;y,t) is nonnegative in 9B} x [—n,0). In fact,
perform the change of variables y, = —ht + yn, ¥; = 9;, i =1,...,n—1,t = s, and set

U(y7 S) - u(ylv —hS + Yns S) .

The function v satisfies the heat equation in the tilted cylinder

C={(y,s): [y]>+ (=hs+yn)’ <4, —2<s<0} .

If G denotes the corresponding Green’s function, we have

G(ZL‘,O; y/7 —hs + yn70) - G(JZ, O;ya 3)

and therefore what we want to prove is that (95 — hd,, )G, (z,0;y, s) is nonnegative on the
lateral side of C' for |s| small.

Let I'(z,0;y, s) be the fundamental solution of the heat equation. Then, for s < 0,

dsL(x,0;y,8) = |2mn(—4ms) 27 — (—drs)~ 272 [%H I'(z,05y, s)

Yn — Tn
2
and therefore (05 — hoy, )['(x,0;y,s) < 0 for |x —y| > 1/4 and |s| small enough.

aynr($70;y78) - (—47TS)_%_1P(.CU,O;y,3) )
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Since G(x,0;y,s) = '(z,0;y,s) + W(z,0)(Y, ) where w at s = 0 is zero of infinite order,
we conclude that, for  small enough, G is strictly decreasing along the direction es — he,

on the lateral part of the cylinder

Co={ly =P+ (~hs+yn—zn)* < 15, s€[-0,0)} .

Since G vanishes for s = 0 in the set B} — B / 4(x) and on the lateral part of C}, we conclude
that G, is increasing along e5; — he, on the set 9B} x [—1,0). Going back to the original
variables, we have 9;G, > 0 on 9B} x [-n,0).

By the fact that G is smooth away from the pole and by the Harnack inequality, the

proof is complete. ]

LEMMA 13.22 (Step 2). Let u be a nonnegative caloric function in Q 77 = B:/W X
(—eM,eM). Suppose that u is e-monotone in the direction T = ae, + Be; with o + 32 =1
and |B| > 1/2. Then, if M is large enough,

D,u(0,0) >0 .

PROOF. Suppose first that « = 0 and § = 1. For any A\, 1 < A < %\/M define in

Q\/EW/Q
wy(z,t) = ulx, t + Xe) —u(x,t) ;
then
Dywy (0, —Xe) = Dpu(0,0) — Dyu(0, —Ne)

or

2 2

/ Dywy (0, —Xe) dA = Dyu(0,0) —/ Dyu(0, —Xe) dA .

1 1

Therefore

2

2
1
/ Dywy (0, =) dA = Dyu(0,0) + [ ~Dyu(0, ~Ae) dA
1 1

1
= Dyu(0,0) — Zw1 (0, —2¢) .

If 1 <X <+M/10, by Harnack inequality, wy(0,y) < cAw1(0,y) in Qm/g, so that, from
Lemma 13.22,

C(n) C(n)
D — > —— —eMn) > ———= -2
ywy (0, —Ae) Y wy (0, —eMn) ] Awi (0, —2¢)
if M is chosen large enough. Hence

DtU,(O, 0) 2

™ | =
/:\
|
=Q
N——

which is positive if M is large.
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Suppose, now, that « > 0, # > 1/2. Perform the transformation y; = x;,i =1,...,n—1,

Yn = %t — Zp, and s =t and set
vy, s) = u(,t) .

Then v is ¢-monotone in the e; direction and

&) : B B
Lv— v, = Av — Evyn — vy =0 in Bi/aW/Z X (—EsM, asM) NQ /a7 -
Then as above, D;u(0,0) > 0. The other cases are treated in a similar fashion. L]

From Lemma 13.22 we infer that if a nonnegative caloric function is e-monotone in a
cylinder Q) =i along all the directions of a two-dimensional space-time cone T'y(v, 6f), then
it is fully monotone along the same directions in a smaller concentric cylinder. Therefore
in this smaller cylinder we have an estimate of the type |u¢| < ¢|V u|, with ¢ = c(n, M, 60§).

This observation will be used in the following lemma:

LEMMA 13.23 (Step 3). Let u be a nonnegative caloric function in Qe == BL,, X
(—e2M?,e2M?). Suppose that u is monotone in I'i(e,,0) for some 0y and e-monotone
along a space direction e. Then, if M = M(n,0y) is large enough and eM small (< 1),
there exists a ¢ = c¢(n,0y) such that Dzu(0,0) > 0 where € = e + ce Me,.

PROOF. For any 1 <\ < M/2 and (z,t) € Q.p1/2 define
wy(z,t) = u(x + Aee, t) — u(x,t) .
Using the Harnack inequality in Q.pr/4, we have
wy(z,t) < wiyqa(z,t) < Chwy(z,t + rM?)
for some fixed r > 0. Since
D.w»(0,0) = Dc.u(Aee,0) — Deu(0,0)

by the above inequality and Schauder estimates, we obtain

wi (ge,0) = u(2ee, 0) — u(ce, 0)

2
:/ eD.wy(0,0) dX\ + eD.u(0,0)
1

C 2
< M/ wy (0, 7> M?) dX + e Deu(0,0)
1

/

C
< Mwl(se, 262 M?) + eD.u(0,0) .
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Now,
w (e, 262 M?) = w (ge, 26 M?) — wy (e, 0) + wy (ge, 0)
< max | Dyw1 |2e® M? 4 w1 (e, 0)
< C'D,,,u(0,0) - 262 M? 4 w; (ce, 0) .
Therefore, if M is large enough

1
D.u(0,0) 4+ ceM D, u(0,0) > wi(ce, 0) <1 - %) ->0.

LEMMA 13.24 (Step 4). Suppose u is a nonnegative caloric function in

Q\/m: Bi/m X (—€M,€M)

that is (fully) monotonically increasing along a cone T'y(en,00) and e-monotone along a
direction T = ae + Be; where o® + 32 = 1, B # 0, and e spatial direction. Then if
M = M(n,0) is large enough and € small enough,

D~ u(0,0) >0

where 7. = T + clal\/ee,, for some ¢ = ¢(n,0).
PROOF. Suppose >0 (5 < %) Let 1 <A< %\/M and set

wA(p) = u(p) —ulp —Aet)  (p = (x,1)) .

Since

Dyu(—XeT) = —eDyu(—AeT) ,
we have

2
wi(—e7) = u(—e7) — u(—2e7) = — /1 Dyu(—Aer) dA
_ / *Dou(er) d = Dou(0) — ¢ / Dy (0) d

2 2
— eDu(0) — e / aDowy(0) dA — ¢ / BDywx(0) dA .
1 1
By Schauder estimates in @) NEYITE and Harnack inequality,

CA

‘Dew/\(o)‘ < \/m

C
MwA(gMet) < wi(—ace + 2eMey)

and

wi(—acge + 2eMey) < CeM D, u(0) + wyi(—eT) .
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On the other hand, by Lemma 13.21

c _ _
Dywy (0) > —]\(4—77210,\(—87560 : —Mn<t<0.
Choosing M large enough and ¢ of order 1, by Harnack inequality
c
Dyw)y(0) > —]\(4—772101(—67') :

Collecting all our estimates, we have

wy(—e1) < eD;u(0) + %ﬁwl(—m) + c\a\\/%wl(—ﬂ)
+ clalev/evV M D, u(0)

B _ c\a|£] 1

M VM| €

which is positive if M is large enough. The case # < 0, can be treated in similar fashion. [

or

Dy u(0) > wy(—e7) [1 .

REMARK. Note that if a = 0 in the above lemma, then 7. = 7.

13.5. An excursion on caloric measure

Although caloric measure in a Lip(1,1/2) domain D has the doubling properties ex-
pressed in Theorem 13.6, it is not absolutely continuous with respect to the measure
dH"™1 x dt on the parabolic boundary 9,D (see [KW]). On the other hand, if D is a
Lipschitz cylinder, that is D = Q x (0,7") where Q C R" is a Lipschitz domain, then the
two measures are mutually absolutely continuous and a theorem similar to Theorem 11.9,

holds ([F'S]). It turns out that the same kind of result holds also in Lip(1,1) domains.

THEOREM 13.25. Let D = Wy be a Lipschitz domain on one side of a graph A = {x, =
f(@' )}, with |2’ < 1, |t| < 1. Let Py = (z0,t0) € D, fived, and denote by w'® the caloric

measure in D at By and by o the surface measure on 0,D. Let Ko = d‘zl’:o. Then on A

(a) WP KL 0, 0 K W

(b) Ko € L?(A) and, for every parabolic surface disc A, C AN{—1+n <t <ty—n}

1/2
(J[ Kj dU) < ¢(n, Lip(f),Po,n)][ Ko do
JAS Ay
(c) Ko € Aso(do) on A.

PROOF. We can assume that D is smooth, as long as all the estimates depend only on
n,Lip(D), Py. Let (0,0) € graph(f) and A, = A,(0,0). From [FGS] we have, for r < ty/2
and A, = A,(0,0)

w(A,) ~ r"G(Py, A,) (13.38)
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that is, on A,
Ko(y,s) ~ Gy, (Po; y,5) -

Since H*Gy,, (Po;y,s) = 0 away from Fy, we have, from the adjoint version of (13.15),

/ K2do < c(n, Lip(f), ) / H(G2G)G,, dyds (13.39)
Ay D

where ¢ = ¢(y, s) is a cut-off function such that ¢ =1 in @, and ¢ = 0 outside 13, /5.

Since
H(*G) = 2V¢? - VG + GH(p?)

we have, using Schwarz inequality and Lemma 13.11

| [ 161Gy, dyds| < ctnLip(). 2 [ cPayds
D P3/2

< c(n, Lip(f), Py)r" 1G*(Py, A,)
by boundary Harnack principle.
From (13.38) and (13.39), we get
K2do < cr " Hwh(A)))?
Ar

from which (a) and (b) follow easily. Now (c) is a consequence of the results in [CF]. O

Not only caloric and surface measure are mutually absolutely continuous on D.

Another important consequence of Lemma 13.15 is that caloric, harmonic and surface
measure are mutually absolutely continuous on 0D at each time level. More precisely, let
G = G(x,t;y, s) be the Green’s function for the domain D and set G(z) = G(ey, 1,x,0).
Moreover, let g = g(x) be the Green’s function for the Laplace operator in DN {t = 0} with
pole at e,. Let GL = G + (G’)1+€ and denote by P(G4) the harmonic replacements of G
in D, respectively. From the adjoint version of Lemma 13.15 and the comparison theorem
for harmonic functions, it follows that, for suitable d; and constants ¢, C', depending only

on n, L, and the values of G and ¢ at z = %en (say), we have
P(Gy)>cg and P(G_-)<Cyg

in ¥ N {d%o < dl} N {t = O}.

By maximum principle, lowering d; if necessary, we can write
P(Gy) <CP(G-)<CG_-<CG

and

P(G-) > cP(Gy) > cGy > cG



13.5. AN EXCURSION ON CALORIC MEASURE 265
in Uy N{dyo < di} N {t =0}. Therefore in this set
Glg~c. (13.40)
It follows that, basically, the normal derivative, G,, of G on A; N {t = 0} determines
simultaneously the densities of caloric and harmonic measure.
Therefore, they are mutually absolutely continuous at each level time between —1 and

1. From (13.40) their relative density is controlled from above and below by a constant

depending only on n, L, G(%en), g(%en).
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