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Introduction

Free or moving boundary problems appear in many areas of mathematics and science

in general. Typical examples are shape optimization, (least area for fixed volume, optimal

insulation, minimal capacity potential at prescribed volume), phase transitions (melting

of a solid, Cahn Hiliard), fluid dynamics (incompressible or compressible flow in porous

media, cavitation, flame propagation), probability and statistics (optimal stopping time,

hypothesis testing, financial mathematics), among other areas.

They are also an important mathematical tool to prove existence of solutions in nonlinear

problems, homogenization limits in random and periodic media, etc.).

A typical example of a free boundary problem is the evolution in time of a solid-liquid

configuration: Suppose that we have a container D, filled with a material that is in solid

state in some region Ω0 ⊂ D and liquid in Λ0 = D \ Ω0.

We know its initial temperature distribution T0(x) and we can control what happens on

∂D at all times (perfect insulation, constant temperature, etc.). Then, from this knowledge

we should be able to reconstruct the solid liquid configuration, Ωt, Λt, and the temperature

distribution T (x, t) for all times t > 0.

Roughly, on Ωt,Λt the temperature should satisfy some type of diffusion equation, while

across the transition surface, we should have some “balance” conditions that express the

dynamics of the melting process.

The separation surface, ∂Ωt between solid and liquid is thus determined implicitly by

these “balance conditions.” In attempting to construct solutions to such a problem one is

thus confronted with a choice. We could try to build “classical solutions,” that is, configu-

rations Ωt, Λt, T (x, t) where the separation surface F = ∂Ωt is smooth, the function T is

smooth up to F from both sides, and the interphase conditions on T , ∇T ,... are satisfied

pointwise. But this is in general not possible, except in the case of low dimensions (when

F is a curve) or very special configurations.

The other option is to construct solutions of the problem by integrating the transition

condition into a “weak formulation” of the equation, be it through the conservation laws that

in many cases define them, or by a Perron-like supersolution method since the expectation

that transition processes be “organized” and “smooth” is usually linked to some sort of

“ellipticity” of the transition conditions.

The challenging issue is then, of course, to fill the bridge between weak and classical

solutions
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A comparison is in order with calculus of variations and the theory of minimal surfaces,

one of the most beautiful and successful pursuits of the last fifty years.

In the theory of minimal surfaces one builds weak solutions as boundary of sets of

finite perimeters (weak limits of polygonals of uniformly bounded perimeter) or currents

(measures supported in countable unions of Lipschitz graphs) and ends up proving that such

objects are indeed smooth hypersurfaces except for some unavoidable singular set perfectly

described.

This is achieved by different methods:

i) By exploiting the invariance of minimal surface under dilations and reducing the

problem of local regularity to global profiles (monotonicity formulas, classifications

of minimal cones).

ii) By exploiting the fact that the minimal surface equation linearizes into the Lapla-

cian (improvement of flatness).

iii) May be the most versatile approach, the DeGiorgi “oscillation decay” method,

that says that under very general conditions a Lipschitz surface that satisfies a

“translation invariant elliptic equation” improves its Lipschitz norm as we shrink

geometrically into a point.

We will see these three themes appearing time and again in these notes. In fact, we con-

sider here a particular family of free boundary problems accessible to this approach: Those

problems in which the transition occurs when a “dependent variable u” (a temperature, a

density, the expected value of a random variable) crosses or reaches a prescribed threshold

value ϕ(x).

The same way that zero curvature forces regularity on a minimal surface, the interplay

of both functions (u− ϕ)± at each side of F = ∂Ω and the transition conditions (typically

relating the speed of F with (u − ϕ)±ν ) force regularity on F , although in a much more

tenuous way.

To reproduce then the general framework of the methods described above for minimal

surfaces, it is then necessary to understand the interplay between harmonic and caloric

measure in both sides of a domain, the Hausdorff measure of the free boundary and the

growth properties of the solutions (monotonicity formulas, boundary Harnack principles).

These are important, deep tools developed in the last thirty years, that we have included

in this book. We chose in this book to restrict ourselves to two specific free boundary

problems, one elliptic, one parabolic to present the main ideas and techniques in their

simplest form.
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Let us mention two other problems of interest that admit a similar treatment. The

obstacle problem (see the notes [C5]) and the theory of flow through porous media.

In this book, we have restricted ourselves to the problem of going from weak solutions

to classical ones.

The issue of showing that classical solutions exhibit higher regularity has been treated

extensively and forms another body of work with different techniques, more in the spirit of

Schauder and other a-priori estimates.

There are of course many other problems of great interest: elliptic or parabolic systems,

hyperbolic equations, random perturbations of the transition surface, etc.

Although the issues become very complicated very fast, we hope that the techniques

and ideas presented in this book contribute to the development of more complex methods to

treat free boundary problems or, more generally, those problems where, through differential

relations, manifolds and their boundaries interact.

We would like to thank our wives, Anna and Irene, who supported and encouraged us

so much, our Institutions, the Politecnico di Milano and the University of Texas at Austin,

that hosted each other during the many years of our collaboration. Finally, we are specially

thankful to Margaret Combs, for her generosity, dedication and support that made this

book possible.

Austin and Milano,

December 2004



Part 1

Elliptic Problems



CHAPTER 1

An introductory problem

1.1. Introduction and heuristic considerations

In this part we consider free boundary problems of the following type.

In the ball B1 = B1(0) we have a continuous function u satisfying:

a) Δu in Ω+(u) := {u > 0} and in Ω−(u) := {u ≤ 0}0
b) the flux balance

G(u+
ν , u−

ν ) = 0 (1.1)

across F (u) := ∂Ω+(u) ∩B1, the free boundary.

In (1.1), u+
ν and u−

ν denote the normal derivatives in the inward direction to Ω+(u) and

Ω−(u), respectively, so that u±
ν are both nonnegative.

The simplest example of this type of problems arises in the minimization of the varia-

tional integral

J0(u) =
∫

B1

(|∇u|2 + χ{u>0}
)

dx (1.2)

that appears in many applications (e.g. in jet flows, see [AC], [ACF1], [ACF2], [ACF3]).

Suppose u is a local minimizer and assume that the free boundary is differentiable (say)

at the origin.

Since

uλ(x) =
1
λ

u(λx)

is again a local minimizer, that is the problem is invariant under “elliptic” dilations if we

let λ go to zero, we could expect to “guess” the free boundary condition by examining one

dimensional, linear solutions of the type

u(x) = αx+ − βx− (α, β > 0)

in [−1, 1].

If we perturb the origin by ε (ε ≷ 0), the Dirichlet integral∫ 1

−1
(u′)2 dx

11
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α2

1− ε
+

β2

1 + ε
≈ α2 + β2 + ε(α2 − β2)

while the volume integral
∫ 1
−1 χ{u>0} dx changes from 1 to 1− ε. The “Euler equation” at

the origin is therefore

α2 − β2 − 1 = 0

i.e., in this case we expect

G(u+
ν , u−

ν ) = (u+
ν )2 − (u−

ν )2 = 1 . (1.3)

Another way to recover, at least formally, the free boundary condition (1.3) is to use the

classical Hadamard’s formula. Indeed, if we assume that F (u) is smooth and perturb it

inward w.r.t. Ω+(u) around a point x ∈ F (u), so that |Ω+(u)| decreases by δ(Vol), then,

from Hadamard’s formula we get that
∫
B1
|∇u+|2 increases by an amount (u+

ν )δ(Vol) while∫
B1
|∇u−|2 decreases by (u−

ν )2δ(Vol).

Thus, the minimization condition implies

(u+
ν )2 − (u−

ν )2 ≥ 1 .

An inward perturbation w.r.t. Ω−(u) would give the opposite inequality so that, on F (u),

the “Euler equation” for J0 is exactly (1.3).

The above considerations show a sort of “stability” property of the free boundary rela-

tion: if we perturb it towards the positive (negative) region, u+
ν tends to increase (decrease),

so that u deviates from being a solution.

Referring to the general free boundary condition (1.1), this behavior is reflected in an

“ellipticity” condition on G that can be motivated in terms of comparison principle, like

maximum principles.

Consider, for instance, the equation

H(D2u) = 0 .
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v = 0

u = 0

F(v) F(u)

v > u > 0

Figure 1.2

One way of requiring its ellipticity is by asking for a strict comparison principle: what

is the natural condition on H that prevents two (smooth) solutions u and v (H(D2u) =

H(D2v) = 0) from becoming into contact, i.e.

u ≥ v and u(x0) = v(x0) ?

At x0 we have D2u(x0) ≥ D2v(x0), but, suppose (poetic license...)

D2u(x0) > D2v(x0) .

Thus, if we ask that H be strictly increasing as a function of symmetric matrices we conclude

H(D2u(x0)) > H(D2v(x0)) ,

a contradiction. In other words, monotonicity in H with respect to D2u is “an ellipticity

condition”.

Suppose now that u and v are solutions of the same free boundary problem, with u ≥ v.

Since away from their free boundaries F (u) and F (v), respectively, u and v are harmonic and

hence cannot touch, the analog of the question above is: what will exclude the possibility

that F (u) and F (v) can touch at a free boundary point (say x0 = 0)?

Hopf maximum principle gives, at x0 = 0,

u+
ν > v+

ν and u−
ν < v−ν .
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Therefore, if G = G(a, b) is strictly increasing w.r.t. a and strictly decreasing w.r.t. b, the

possibility that both

G(u+
ν , u−

ν ) = G(v+
ν , v−ν ) = 0

is excluded.

Definition 1.1. The free boundary relation (1.1) is elliptic if G = G(a, b) is strictly

increasing w.r.t. a and strictly decreasing w.r.t. b.

The one-dimensional computation done above indicates also an important difference

between one phase and two phases problems. In one phase problems it is possible to get

universal interior bounds, in the sense that, if u is a solution in a ball B1(0) and 0 ∈ F (u),

then |∇u| or even D2u (as in the case of the obstacle and the one phase Stefan problem) is

bounded in B1/2(0) by a universal constant, no matter what the boundary data are.

In two phase problems this is, in general, impossible. For instance, in the one dimen-

sional minimization problem, by raising the boundary data one can have a large gradient

of the solution near the origin.

1.2. A one phase singular perturbation problem

Let us go back to the minimization of the functional (1.2). If we put a boundary data

u|∂B1
= f ≥ 0

then the solution u will be nonnegative and we are dealing with a one phase problem. We

will discuss this problem in full detail in order to introduce some of the main ideas and

techniques, useful also in more general context.

We shall consider minimizers constructed as limits of singular perturbations because

in this case the technique can be somewhat simplified. Observe that the problem has no

uniqueness so there could exist other types of solutions (see [AC]). All the theory can anyway

be developed for any minimizer of J0 ([AC]).

So we start studying the minimizers vε of the variational integral

Jε(u) =
∫

B1

{|∇u|2 + Φε(u)} dx

where Φ1 is a smooth nondecreasing function on the real line with Φ1(s) = 0 for s ≤ 0,

Φ1(s) = 1 for s ≥ 1, and Φε(s) = Φ1(s/ε). Therefore,

fε(s) = Φ′
ε(s) =

1
ε
Φ′

1

(s

ε

)
=

1
ε
f1

(s

ε

)
is an approximation of the Dirac measure.
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Proposition 1.1. Given g ∈ H1(B1), there exists a minimizer u ∈ H1(B1) with u−g ∈
H1

0 (B1).

A minimizer uε satisfies the Euler equation

2Δu = fε(u) (1.4)

and so, since fε is smooth, it is a smooth solution. Since g|∂B1
≥ 0, and fε is supported in

0 < u < ε, by maximum principle, uε is nonnegative.

We start now with optimal regularity and nondegeneracy. Given the jump conditions

along the free boundary, the optimal global regularity we can expect from the limiting

solution is Lipschitz continuity and this is what we prove for uε.

Theorem 1.2. Let ε < 1/3 and suppose uε(0) = ε. Then there exists a (universal)

constant C0 such that

‖∇uε‖L∞(B1/2(0)) ≤ C0

At this stage it is important to emphasize a renormalization property of the problem.

If u is a solution of equation (1.4) in BR(x0), then, the renormalization of u given by

w(y) =
1
ε
u(x0 + εy) (1.5)

satisfies the equation

Δw =
1
2
f1(w) in BR/ε(0)

where, notice, 0 ≤ f1(w) ≤ 1.

Moreover, observe that ∇w(0) = ∇u(x0). Thus, to prove that u is Lipschitz in B1(x0)

is equivalent to prove that w is Lipschitz in BR/ε(0). When a property is invariant under

the rescaling (1.5) we say that it is a “renormalization property.” So, Lipschitz continuity

is a renormalization property in this sense.
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The next two lemmas show two of these renormalization properties. Since they ex-

press general facts, useful in many other situations, we state them in a renormalized form.

Theorem 1.2 is then an immediate consequence.

Lemma 1.3. Let w ≥ 0 be a solution of

|Δw| ≤ C in B2(0)

If w(0) ≤ 1, then,

|∇w(0)| ≤ C0

Proof. Interior Shauder estimates and Harnack inequality give

|∇w(0)| ≤ C̄(C + ‖w‖L∞(B1(0))) ≤ C̄(C + 1) ≡ C0 �

Corollary 1.4. If x ∈ B1/2 and 0 ≤ uε(x) ≤ ε, then

|∇uε(x)| ≤ C .

Corollary 1.4 shows Lipschitz continuity in the region where 0 ≤ uε ≤ ε. Applying the

next lemma to v = u− ε, we take care of the region Ωε where u > ε.

Lemma 1.5. Let Ω be an open set with 0 ∈ ∂Ω and v be harmonic and nonnegative in

B1∩Ω. Suppose that on Γ ≡ ∂Ω∩B1, v = 0 and |∇v| is bounded. Then, for every x ∈ B1/2

a) v(x) ≤ C d(x, ∂Ω) sup
Γ
|∇v|

b) ‖∇v‖L∞(B1/2∩Ω) ≤ C sup
Γ
|∇v|

Proof. Let x0 ∈ B1/2 ∩Ω, h = d(x0, ∂Ω) and A = supΓ |∇v|. Suppose

v(x0) = λh .

We want to show that λ ≤ CA. Rescale v in Bh(x0) by putting

w(y) =
1
h

v(x0 + hy) .

Then, w is harmonic and nonnegative in B1(0) with w(0) = λ. Since h = d(x0, ∂Ω), there

exists y1 ∈ ∂B1(0) at which w(y1) = 0. Moreover, since ∇w(y) = ∇v(x0 + hy), we have

|∇w(y1)| ≤ A. Now, by Harnack inequality, in B1/2(0),

w ≥ cλ .

In the ring B1 � B̄1/2, compare w with the harmonic function

z(y) =
cλ

2n−2 − 1
(|y|2−n − 1) .
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z vanishes on ∂B1 and equals cλ on ∂B1/2, therefore, by maximum principle

w ≥ z in B1 � B1/2 .

If ν is the inward unit normal to ∂B1 at y1, we have:

A ≥ |∇w(y1)| ≥ wν ≥ n− 2
2n−2 − 1

cλ .

This proves a).

For b), use interior Shauder estimates and Harnack inequality to get for any point

y ∈ B1/2 ∩ Ω:

|∇w(y)| ≤ C
w(y)

d(y,Γ)
and using a) we end the proof. �

Remark. In this proof we only use the behavior of vν at those points with an inner

tangent ball.

The next theorem is a linear growth result: if we stay away a fixed amount from ∂Ωε,

then uε starts growing linearly.

Theorem 1.6. There exist (universal) constants c1, c2 such that if x0 ∈ B1/2 and

uε(x0) = λ ≥ c1ε (ε < 1
3) then

d(x0, ∂Ωε) ≤ c2λ .

From Theorems 1.2 and 1.6 we immediately obtain:

Corollary 1.7. In Ωc1ε = {u > c1ε},

C−1 dist(x, ∂Ωε) ≤ uε(x) ≤ C dist(x, ∂Ωε) . (1.6)

Remark. Observe that also (1.6) is a renormalization property.

Proof of Theorem 1.6. Put d = d(x0, ∂Ωε) and suppose λ = αd. We want to show

that α ≥ c > 0. Rescale u in Bd(x0) by setting

w(y) =
1
d
uε(dy + x0) .

Then, Δw = 0 and w ≥ 0 in B1 with w(0) = α. By Harnack inequality, in B1/2, cα ≤ w ≤
cα. Let now ψ be a radial cut-off function, ψ ≡ 0 in B1/4, ψ ≡ 1 outside B1/2 and define

z =

{
min{w, cαψ} in B1/2

w in B1 � B1/2
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Then, since w is a minimizer of the functional

J̃(v) =
∫

B1

{
|∇v|2 + Fε

(d

ε
v
)}

dy

among all v ∈ w + H1
0 (B1) and since z is an admissible function, we must have

J̃(w) ≤ J(z)

On the other hand, ∫
B1

|∇z|2 −
∫

B1

|∇w|2 ≤ cα

while ∫
B1

Fε

(d

ε
w
)

dy −
∫

B1

Fε

(d

ε
z
)

dy ≥ c > 0

since, in B1/4, z = 0 and d
εw ≥ d

εcα ≥ cc1. The assertion follows easily. �

Remark. Regularity uses only the “weak equation”, while linear growth needs the

minimization property.

Our next purpose is to estimate the Hausdorff measure of the sets ∂Ωcε. To this aim

we need the strong nondegeneracy expressed in the following theorem.

Theorem 1.8. There exist two (universal) constants c, c1 such that if x0 ∈ B1/2 and

uε(x0) ≥ c1ε then

sup
Bρ(x0)

uε ≥ cρ .

If wε(y) = 1
ρuε(x0 + ρy) this is equivalent to saying that if δ = ε/ρ and wε(0) ≥ c1δ,

then

sup
B1(0)

wε ≥ c .

Once again, this is a consequence of a renormalization result expressed in the following

Theorem 1.9. Let Ω be an open set with 0 ∈ ∂Ω and w ≥ 0, Lipschitz in B2(0) and

harmonic in Ω ∩B2. Suppose

i) w(x0) ≥ δ > 0,

ii) in the region {w ≥ δ/c1}, c1 > 1,

w(x) ∼ dist(x, ∂Ω) .

Then

sup
B1(x0)

w ≥ c .

First, a lemma.
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Lemma 1.10. Under the condition of Theorem 1.9 there exist positive constants c, C, γ

such that

Cδ ≥ sup
Bcδ(x0)

w ≥ (1 + γ)δ .

Proof. Let Bρ(x0) be the largest ball contained in {w > δ/c1}. From ii) in Theo-

rem 1.9, ρ ∼ cδ. Let y0 ∈ ∂Bρ(x0) with w(y0) = δ/c1. By Lipschitz continuity, for a

suitable positive h, w ≤ δ/2c1 in Bhρ(y0) and therefore also in a fixed fraction of ∂Bρ(x0).

Since w is harmonic in Bρ(x0),

δ ≤ w(x0) =
∫
−

∂Bρ(x0)
u

so that there must be a point x1 ∈ ∂Bρ(x0) with w(x1) ≥ (1 + γ)δ. This gives the second

inequality. The first one follows from Lipschitz continuity. �

Proof of Theorem 1.9. We construct a polygonal along which w grows linearly,

starting from x0. From the proof of Lemma 1.10, there exists a point x1 such that

|x1 − x0| = dist(x0, ∂Ωε) and

cw(x0) ≥ w(x1) ≥ (1 + γ)w(x0) ≥ w(x0) + γ′|x1 − x0| .

Starting now from x1 and iterating the application of Lemma 1.10 we construct a sequence

{xj}j≥1 such that |xj − xj−1| = dist(xj−1, ∂Ωε) and

cw(xj−1) ≥ w(xj) ≥ (1 + γ)w(xj−1) ≥ w(xj−1) + γ′|xj − xj−1| .

Therefore

a) cjw(x0) ≥ w(xj) ≥ (1 + γ)jw(x0)

b) w(xj)− w(xj−1) ≥ γ′|xj − xj−1|
and in particular,

w(xj)− w(x0) ≥ γ′
j∑

k=1

|xk − xk−1| ≥ γ′|xj − x0| .

From a) we deduce that after a finite number of steps, xj exits from B1(x0). Let k such

that xk ∈ B1(x0) and xk+1 /∈ B1(x0). Then

|xk − x0| ≥ c > 0 .

In fact, if |xk − x0| = α, from b) and Lipschitz continuity,

γ′|xk − xk−1| ≤ γ′
k∑

j=1

|xj − xj−1| ≤ w(xk)− w(x0) ≤ c0|xk − x0| = c0α
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Figure 1.4. The polygonal constructed in the proof of Theorem 1.9

so that

dist(xk, ∂Ωε) ≤ 2|xk − xk−1| ≤ 2c0

γ′ α .

Thus
1 ≤ |xk+1 − x0| ≤ |xk+1 − xk|+ |xk − x0| ≤ dist(xk, ∂Ωε) + α

≤
(

2
c0

γ′ + 1
)

α

or |xk − x0| ≥ (2 c0
γ′ + 1)−1.

From b):

sup
B1(x0)

w ≥ w(xk) ≥ w(x0) + γ′|xk − x0| ≥ c . �

A first consequence of Theorem 1.8 is the following result, that we call uniform positive

density of Ωcε along ∂Ωcε, c� 1.

Corollary 1.11. Let x0 ∈ B1/2. There exist (universal) constants c1, c2, c3 such that

if x0 ∈ B1/2, u(x0) = λ ≥ c1ε and ρ ≥ c2λ, then

|Bρ(x0) ∩ {uε > λ}| ≥ c3ρ
n .

Proof. Let uε(y) = supBρ/2(x0) uε = cρ (Theorem 1.8). Then, d(y, ∂Ωε) ≥ c1ρ, by

Lipschitz continuity (or Corollary 1.7). By Harnack inequality, for c̄ small and c2 large,

uε(x) ≥ cρ

2
≥ cc2λ

2
> λ in Bc̄ρ(y) .

Thus, Bc̄ρ(y) ⊂ Bρ(x0) ∩ {uε > λ}. �
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Remark. The proof of Theorem 1.9 uses the conclusions of Theorem 1.6 as its hypothe-

ses but we make no use of the variational properties of w in its proof.

We are now in position to estimate the Hausdorff measure at the λ scale of the level

sets Ωcε, for λ > 3cε, where c is a large universal constant. This is a consequence of the

following theorem, where Nδ(E) denotes a δ-neighborhood of the set E.

Theorem 1.12. If x0 ∈ ∂Ωcε, λ > 3cε, R ≥ c1λ, BR = BR(x0), then

|Nλ(∂Ωcε) ∩BR| ≤ c3λRn−1

where all the constants are universal.

We split the proof in several lemmas.

Lemma 1.13. Under the hypotheses of Theorem 1.12:

|Nλ(∂Ωcε) ∩BR| ∼ |Nλ(∂Ωcε) ∩Ωcε ∩BR|

and [{cε < uε < c−1λ} ∩BR

] ⊂ [Nλ(∂Ωcε) ∩Ωcε ∩BR] ⊂ [{cε < uε < Cλ} ∩BR] .

Proof. It follows from Lipschitz continuity and nondegeneracy. �

Lemma 1.14. ∫
{cε<uε<λ}∩BR

|∇uε|2 ≤ cλRn−1

Proof. By Gauss formula in Ωcε ∩BR, if w = min{(uε − cε)+, λ− cε}, we have∫
{cε<uε<λ}∩BR

∇(uε − cε)∇w +
∫

{cε<uε<λ}∩BR

wΔ(uε − cε) =
∫

∂[Ωcε∩BR]

w(uε − cε)+ν dσ

or ∫
{cε<uε<λ}∩BR

|∇uε|2 ≤ c0λRn−1 . �

It remains to relate the Dirichlet integral of uε with the measure of the set {cε < uε <

λ} ∩BR. The next lemma completes the proof of Theorem 1.12.

Lemma 1.15. If x0 ∈ ∂Ωcε, λ > 3cε, R ≥ c1λ, BR = BR(x0), then∫
{cε<uε<λ}∩BR

|∇uε|2 ∼ |{cε < uε < λ} ∩BR|
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6 c

Bj

c1

xj
xj yj

u (yj)
u (xj) = c

u > 3 /4

u < 2 /3

Figure 1.5

Proof. From Lipschitz continuity the “≤” inequality follows immediately. On the

other hand, let {Bj} be a finite overlapping covering of ∂Ωcε by balls of radius c1λ and

center on ∂Ωcε. In every Bj there are subballs B1
j and B2

j of radius rj of order λ, where

uε ≥ 3
4
λ and uε ≤ 2

3
λ

respectively.

Therefore, if mj =
∫−Bj

uε, then |u−mj | ≥ cλ at least on one of the two subballs (c universal).

Thus, by Poincaré inequality,

cλ2 ≤
∫
−

Bj

(uε −mj)2 ≤ c̄r2
j

∫
−

Bj

|∇εu|2

so that ∫
Bj

|∇εu|2 ≥ c|Bj |
For c1 large enough, {cε < uε < λ} ⊂ UBj and the proof is complete. �

We are now ready to pass to the limit as ε→ 0. Since {uε} is a bounded set in H1(B1)

and uniformly locally Lipschitz, there exists a sequence uk = uεk
, converging to u0, strongly

in L2(B1), weakly in H1(B1) and uniformly in every compact subset of B1, as εk → 0.

Theorem 1.16. u0 is a local minimizer of J0.

Let us first record the main properties of u0, Ω0 = {u0 > 0} and F (u0) = ∂Ω0 ∩ B1 in

the following

Lemma 1.17. If Ω0 = {u0 > 0} then

a) u0 is locally Lipschitz in B1, harmonic in Ω0 and nondegenerate away from ∂Ω0 ∩
B1/2, that is: supBρ(x) u0 ≥ cρ.
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b) Ω0 is the limit in the Hausdorff distance of Ωk = {uk > cεk}, i.e., given δ > 0, for

c and k large enough,

B1/2 ∩Ωk ⊂ Nδ(Ω0) ∩B1/2

and

B1/2 ∩Ω0 ⊂ Nδ(Ωk) ∩B1/2

c) |Nδ(∂Ω0) ∩BR| ≤ cδRn−1 for every δ > 0, in particular

|Hn−1(∂Ω0) ∩BR| ≤ cRn−1 . (1.7)

Proof. a) It is clear that u0 is locally Lipschitz and harmonic in Ω0. To see it is also

nondegenerate, let x0 ∈ Ω0 ∩ B1/2. Then there must exist a sequence {xj}, with xj → x0,

xj ∈ Ωj ∩B2/3. By nondegeneracy, uj(xj) ≥ cεj implies, for any ρ > 0 small,

uj(yj) = sup
Bρ/4(xj)

uj ≥ cρ
(
yj ∈ ∂Bρ/4(xj)

)
.

When |xj − x0| ≤ ρ/4, Bρ/4(xj) ⊂ Bρ(x0) and yj (or a subsequence) converges to some

y∗ ∈ Bρ(x0). Since cρ ≤ uj(yj)→ u0(y∗) we conclude that

sup
Bρ(x0)

u0 ≥ cρ .

b) Suppose the first inclusion is false. Then there exists a sequence {xk} such that, for

some δ,

• dist{xk,Ω0} ≥ δ,

• xk ∈ Ωk ∩B1/2.

• xk → x0 with dist(x0,Ω0) ≥ δ.

Therefore, u0(x0) = 0 while uk(xk) ≥ cεk. By nondegeneracy,

uk(yk) = sup
Bρ(xk)

uk ≥ cρ .

When |xk − x0| < δ/8, for ρ = δ/8, Bρ(xk) ⊂ Bδ/2(x0) and (a subsequence of) yk → y∗ ∈
Bδ(x0). Since uk(yk)→ u0(y∗) we conclude

0 = sup
Bδ/2(x0)

u0 ≥ cδ

a contradiction.

If the second inclusion is false, there exists a sequence {xk} ⊂ Ω0 ∩ B1/2 such that

dist(xk,Ωk ∩ B1/2) ≥ δ. This means that uk(x) ≤ cεk for x ∈ Bδ/2(xk). Suppose xk → x∗;

then, when |xk − x∗| < δ/8, Bδ/8(x∗) ⊂ Bδ/2(xk) and therefore Bδ/8(x∗) ⊂ B1/2 � Ω0.

Contradiction.

c) It is a consequence of b) and Theorem 1.12. �
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End of the proof of Theorem 1.16. We want to show that u0 is a local minimizer.

Assume not. Then in some ball Br = Br(x0) ⊂⊂ B1, there exist a > 0 and v ∈ H1(B1)

such that v = u0 on ∂Br and∫
Br

{|∇v|2 + χ{v>0}} ≤
∫

Br

{|∇u0|2 + χ{u0>0}} − a .

Fix h > 0 small, and radially interpolate in a linear fashion between u0 and uk in the ring

Br+h � Br, i.e., define

vh,k =

⎧⎪⎨
⎪⎩

u0 +
|x| − r

h
(uk − u0) in Br+h � Br

v in Br.

Then, on Br+h ⊂⊂ B1,

Jr+h,k(vh,k) =
∫

Br+h

{|∇vh,k|2 + Fεk
(vh,k)}

≤ chrn−1 +
2
h2

∫
Br+h�Br

(uk − u0)2 + Jr,0(v)

where

Jr,0(v) =
∫

Br

{
|∇v|2 + F (v)

}
since ∫

Br

Fεk
(vh,k) =

∫
Br

Fεk
(v) ≤ |χ{v>0}| .

Thus

lim
k→∞

Jr+h,k(vh,k) ≤ chrn−1 + Jr,0(v) .

On the other hand,

Jr+h,k(vh,k) ≥ Jr,k(vh,k) ≥ Jεk
(uk)

and

Jr,0(u0) ≤ lim
k→∞

Jεk
(uk) .

This follows from ∫
Br

|∇v0|2 ≤ lim
k→∞

∫
Br

|∇uk|2

by the weak convergence of uk to u0, and (by Lemma 1.17 applied to Br instead of B1/2

and Theorem 1.12) from

|Ω0 ∩Br| ≤ |Nh(Ωk) ∩Br| ≤ chrn−1 + |Ωk ∩Br| (h� εk) .

Thus

Jr,0(u0) ≤ chrn−1 + Jr,0(v) ≤ Jr,0(v) + chrn−1 − a

a contradiction for h < a
2cr

1−n. �
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1.3. The free boundary condition

At this point we have constructed a local minimizer u0 of the functional J0; u0 is

Lipschitz and nondegenerate inside B1 and for any ball BR(x0) ⊂⊂ B1 and any δ > 0,

|Nδ(∂Ω0) ∩BR| ≤ cδRn−1 (1.8)

which in particular means that the n − 1-dimensional Hausdorff measure of ∂Ω0 is locally

finite.

At a difference with the obstacle problem, the structure of the free boundary ∂Ω0∩B1 =

F (u0) is somewhat nicer since cusps cannot occur. This is expressed in the next theorem.

Theorem 1.18. Let x0 ∈ ∂Ω0 ∩B1/2, r ≤ 1/4. Then, both

|CΩ0 ∩Br(x0)| ∼ crn and |Ω0 ∩Br(x0)| ∼ rn (1.9)

As a consequence, from the isoperimetric inequality and (1.7)

Hn−1(∂Ω0 ∩Br(x0)) ∼ rn−1 . (1.10)

Proof. |Ω0 ∩Br(x0)| ∼ rn follows from Lemma 1.17a. We have to prove that

|{u0 = 0} ∩Br(x0)| ≥ crn .

Let v be the harmonic function in Br(x0) with u0 = v on ∂Br(x0). Then, since v > 0 in

Br(x0):∫
Br(x0)

(|∇u0|2 + χ{u0>0}
) ≤ ∫

Br(x0)

(|∇v|2 + χ{v>0}
)

=
∫

Br(x0)
|∇v|2 + |Br(x0)| .

Therefore ∫
Br

(|∇u0|2 − |∇v|2) ≤ |{u = 0} ∩Br(x0)| .
On the other hand, by Poincaré inequality∫

Br(x0)

(|∇u0|2 − |∇v|2) =
∫

Br(x0)
|∇(u0 − v)|2 ≥ c

r2

∫
Br(x0)

(u0 − v)2

so that ∫
Br

(u0 − v)2 ≤ cr2|{u0 = 0} ∩Br(x0)| .
Now,

v(x0) =
∫
−

∂Br(x0)
u ≥ cr

by nondegeneracy, and

v(y) ≥ cr

on Br/2(x0). Since, by Lipschitz continuity,

u(y) ≤ chr
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in Bhr(x0), we conclude that

v − u0 ≥ cr on Bhr(x0)

if h is small enough.

Therefore

|{u = 0} ∩Br(x0)| ≥ c

r2

∫
Br(x0)

(u0 − v)2 ≥ c

r2

∫
Bhr(x0)

(u0 − v)2 ≥ cr2 . �

Theorem 1.18 says that both Ω0 and its complement CΩ0 have uniform density along

the free boundary F (u0) and that Ω0 is a set of finite perimeter. But the main and most

challenging mathematical question is the regularity of F (u0).

Before addressing this problem we must ask another basic question: precisely, in which

sense the free boundary conditions are satisfied by u0? Recall that if we knew that F (u0)

is smooth, Hadamard’s classical formula gives

∂νu+
0 = 1 . (1.11)

There are several ways to interpret in a weak sense the condition (1.11). One way is

suggested by (1.10) and by the fact that Δu0 is a nonnegative measure whose total mass in

a ball Br centered on F (u0) is equivalent to rn−1. Precisely, we have:

Theorem 1.19. Let x0 ∈ F (u0) and put μ = Δu0. Then μ is a nonnegative measure

supported on F (u0) and, for any r > 0∫
∂Br(x0)

∂νu
+
0 dHn−1 =

∫
Br(x0)

dμ ∼ rn−1 . (1.12)

Proof. Since (1.12) expresses a renormalization property, it is enough to check it for

r = 1. The inequality ∫
∂B1(x0)

∂νu+
0 dHn−1 ≤ c

follows just from Lipschitz continuity.

To prove the opposite inequality, let w be harmonic in B1(x0) with w = u0 on ∂B1(x0).

Then Δ(w − u0) = −μ, w ≥ u0 and

w(y)− u0(y) =
∫

B1(x0)
G(y, z) dμ(z) in B1

where G is the Green’s function for B1. By nondegeneracy and Lipschitz continuity there

exist a point y ∈ Bh(x0), h small, with u0(y) ∼ ch and consequently

u0 > 0 in Bch(y) .
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Thus dμ = 0 on Bch(y) and

w(y)− u0(y) =
∫

B1(x0)�Bch(y)
G(y, z) dμ(z) ≤ c

∫
B1(x0)

dμ . (1.13)

On the other hand, from nondegeneracy, if p > 1,∫
−

B1/2(x0)
wp ≥

∫
−

B1/2(x0)
up

0 ≥ c

and, from Harnack’s inequality,

w(y) ≥
(∫
−

B1/2(x0)
wp

)1/p

≥ c

so that, if h is small enough

w(y)− u0(y) ≥ c− ch ≥ c

2
and we conclude from (1.13). �

From Theorem 1.19, we obtain immediately the following representation theorem.

Theorem 1.20. There exists a Hn−1-measurable function g on F (u0)∩B1/2 such that,

in B1/2:

i) 0 < c ≤ g ≤ C

ii) Δu0 = gHn−1�F (u0)

Remark. g = dμ
dHn−1

in the Radon-Nycodim sense.

Since, heuristically, dμ represents ∂νu+
0 dHn−1 on F (u0), we expect g ≡ 1 so that, in

conclusion, the free boundary condition ∂νu+
0 = 1 should be interpreted as

Δu0 = Hn−1 on F (u0) (1.14)

in the sense of measure. We can better understand the free boundary condition if we replace

F (u0) with its reduced part F ∗(u0), that is the set of points x at which a generalized (interior

to Ω0(u0)) normal

ν(x) = lim
r→0

∇χΩ0(Br)
|∇χΩ0(Br)| (1.15)

exists with |ν(x)| = 1. In (1.15), |∇χΩ0(Br)| denotes the total variation in Br of the measure

∇χΩ0.

Thus, let 0 ∈ F ∗(u0) and consider the “blow up” sequence

uk(x) = ku0

(x

k

)
in Bk(0) .

Now let k → +∞. Let us record the main properties of “blow up limits.”
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First of all, since u0 is locally Lipschitz continuous, for a subsequence:

uk → u∞ in Cα
loc(R

2) (for every α < 1)

∇uk → ∇u∞ weakly star in L∞
loc(R

n) .

Clearly u∞ is nonnegative, harmonic in {u∞ > 0} and globally Lipschitz. Moreover:

Lemma 1.21.

a) F (uk)→ F (u∞) locally, in the Hausdorff distance

b) χ{uk>0} → χ{u∞>0} in L1
loc(R

n)

c) ∇uk → ∇u∞ a.e. in R
n

Proof. a) it follows from the uniform convergence of uk to u∞ and the uniform non-

degeneracy of uk.

b) u∞ is nondegenerate along F (u∞). Indeed, if x ∈ F (u∞) then there exists a sequence

yk ∈ F (uk) such that yk → x, with ∫
−

∂Br(yk)
uk ≥ cr

and therefore, also ∫
−

∂Br(x)
u∞ ≥ cr .

This implies that

|{u∞ > 0} ∩Br(x)| ≥ crn

and therefore that |F (u∞)| = 0. Using a), b) follows.

c) It is enough to show that |∇uk| → |∇u∞| a.e. in {u∞ = 0}. Now, a.e. points in

{u∞ = 0} are 1-density point. Let S denote the set of such points and x0 be one of these.

We claim that

u∞(x) = o(|x− x0|) near x0 . (1.16)

Suppose not. Then there exists a sequence xm → x0 such that
u∞(xm)
|xm − x0| ≥ c > 0 .

By Lipschitz continuity,

u∞(x) ≥ c|xm − x0| ≡ crm

in Bhrm(xm), h small. Therefore, for m large enough, and r � rm, Br(x0) contains the ball

Bhrm(xm), which is a contradiction to the 1-density of x0.

From (1.16) we get ∇u∞(x0) = 0 and, in particular, that, given ε > 0;

u∞(x)
|x− x0| ≤ ε in Bδε(x0) .
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From the uniform convergence of uk to u∞, we get
uk(x)
|x− x0| < 2ε in Bδε(x0)

provided k is large enough, say k ≥ k0(ε, δε). Then, by non degeneracy, uk ≡ 0 in Bδε/2
(x0)

and consequently, u0 = 0 in a neighborhood of x0 and S is open. The above argument

shows that uk = u0 in any compact subset of S if k is large enough. This completes the

proof of c). �

We now identify u∞

Theorem 1.22. Let 0 ∈ F ∗(u0) ∩B1/2. Then u∞ is a local minimizer in R
n and

u∞(x) = 〈x, ν(0)〉+

Corollary 1.23.

Δu0 = Hn−1�F ∗(u0) . (1.17)

Proof. One can prove that u∞ is a local minimizer in R
n by using the same technique

of Theorem 1.16.

We may suppose ν(0) = en. A well known property of sets of finite perimeter says that

the blow up limits of Ω0 and of CΩ0 are, respectively, the half planes

xn > 0 and xn < 0 .

Thus u∞(x) is positive if xn > 0 and equal to zero if xn ≤ 0 and in particular on the

hyperplane xn = 0. Reflecting u∞ in an odd way with respect to this hyperplane, we get a

function ũ∞, harmonic in R
n. Since u∞ is globally Lipschitz, it follows (Liouville theorem)

that ũ∞ is a linear function and therefore u∞(x) = αx+
n for some positive α.

We want now to show that α = 1; as a consequence we obtain g ≡ 1 proving Corol-

lary 1.23:

Δu0 = Hn−1 on F ∗(u0) . (1.18)

This gives a possible interpretation of the free boundary condition.

Suppose the problem is 1-dimensional. Then

u∞(x) = αx+ .

Make a perturbation inside (−1, 1) by taking

w(x) =
α

1− b
(xn − b) (|b| < 1) .

Then, the minimization condition gives, as in section 1,

α2(b + o(b)) − b ≥ 0
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from which α = 1.

In the n-dimensional case we make a similar perturbation inside a strip |xn| < 1, |x′| =
|(x1, . . . , xn−1)| < M with a large M . Let ψ = ψ(x′) be a cut off function such that ψ ≡ 1

for |x′| ≥M + 1, 0 ≤ ψ ≤ 1, and ψ ≡ 0 in B′
M = {|x′| < M}. Define

w(x) = max
{

α

1− b
(xn − b)+

(
1− ψ(x′)

)
+ αx+

n ψ(x′), 0
}

Then, it is not difficult to check that∫
BM

(|∇w|2 − |∇u∞|2
) ≤ α2

(
b + o(b)

)|B′
M+1|+ C|b| |B′

M+1 � B′
M |

and

|{w > 0}| − |{u∞ > 0}| ≤ b|B′
M+1|+ c|b| |B′

M+1 � B′
M | .

The minimization condition gives

(α2 − 1)
(
b + o(b)

)
+ c|b|/M ≥ 0

and letting M →∞ we get again α = 1. �

There are other ways to interpret the free boundary condition. Let us go back to one

of the key lemmas, Lemma 1.5, where the Lipschitz continuity of the minimizers uε (and

consequently of u0) is proved.

In that lemma, to the nonnegative harmonic function v we required to have bounded

gradient along its zero level set. In fact, we only used that v had some bounded linear

behavior at points of the free boundary where there exists a touching ball from inside

{v > 0}, i.e., a ball B ⊂ {v > 0} such that B ∩ {v > 0} = {y}.
This would suggest to take into consideration, as far as the free boundary condition is

concerned, only the points at which there exists a touching ball from one side or the other

of F (u). (We will call these points, regular points.)

This leads naturally towards notions of free boundary condition in a viscosity sense,

that we will formalize in the next section.

We point out that these notions of solutions are considerably weaker than the one in

the measure theoretical sense, described above: Hn−1-a.e. points on the free boundary have

a generalized normal, since Hn−1(F (u) � F ∗(u)) = 0, while, in principle, the set of regular

points can be very small.

Clearly, a careful balance is required in constructing the definitions if one looks for both

existence of a solution and regularity of the free boundary. For minimizers in variational

problems this need is less essential, since the minimization process conveys some “stability”
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both to the solution and its free boundary. It is not so, for instance, in evolution free

boundary problems, where the two requirements could strongly compete.

We end this section by briefly examining what happens to the free boundary conditions

u+
ν = 1 in the one phase minimization problem if we adopt this new point of view. Suppose

0 is a regular point of F (u0) with a touching ball B (from either one of the two sides of

F (u0)), whose inward normal at 0 is en.

Then, from Lemma 11.14 and the remark after it, u0 has the linear behavior

u0(x) = αx+
n + o(|x|) (1.19)

near zero if B ⊂ CΩ0, near zero and xn ≥ 0 if B ⊂ Ω0. In (1.19), 0 < c1 ≤ α ≤ c2, by

Lipschitz continuity and nondegeneracy.

Look again at the blow up sequence uk = ku0(x/k) and at its limit u∞. From (1.19) we

get

u∞(x) = αx+
n (1.20)

for xn ≥ 0 if B ⊂ Ω0 or for all x if B ⊂ CΩ0.

From the monotonicity formula (Theorem 12. ) and the uniform density estimate of

CΩ0 (or from Lemma 12.8) we deduce that (1.19) holds for every x ∈ R
n, also if B ⊂ Ω0.

We can now proceed as before to prove that α = 1.

The free boundary condition is therefore to be interpreted in the following sense: near

any regular point x0 ∈ F (u0), u0 has the linear behavior

u0(x) = 〈x− x0, ν(x0)〉+ + o(|x− x0|)
where ν(x0) is the normal to ∂B at x0, inward to Ω0.

Let us summarize: in this chapter we have shown the main general properties of a

solution to our introductory free boundary problem.

Optimal regularity (Lipschitz).

Nondegeneracy and linear growth.

Uniform density of Ω and CΩ.

Finite Hausdorff measure of the free boundary.

As we will see, this will provide us with the model approach to study more general free

boundary problems.



CHAPTER 2

Viscosity solutions and their asymptotic developments

2.1. The notion of viscosity solution

The notion of viscosity solution was introduced by M. Crandall and P.L. Lions (see

[CL]) in the context of Hamilton-Jacobi equations and in the last two decades has become

the central notion in the theory of fully non linear parabolic and elliptic equations.

Let us see, for instance, how viscosity harmonic functions are defined. The key idea is

to switch the action of the Laplace operator to smooth test functions, using the comparison

principle.

Suppose D is a domain in R
n and ϕ ∈ C2(D). If u is a classical subharmonic function

in D and ϕ touches u (locally) from above at x0, i.e.

ϕ ≥ u near x0 and ϕ(x0) = u(x0) (2.1)

then, clearly

Δϕ(x0) ≥ 0 (2.2)

Analogously, if u is a classical superharmonic function in D,

ϕ ≤ u , near x0 and ϕ(x0) = u(x0) (2.1′)

then

Δϕ(x0) ≤ 0 . (2.2′)

Notice that conditions (2.2) and (2.2)′ do not require derivatives of u, while (2.1) and (2.1)′

make sense with u continuous.

Definition 2.1. A function u ∈ C(D) is a viscosity subharmonic (superharmonic)

function if for every ϕ ∈ C2(D) satisfying (2.1), (resp. (2.1)′), (2.2) (resp. (2.2)′) holds; u

is a viscosity harmonic function if it is both a viscosity sub and superharmonic.

In other words u is subharmonic if the only way a smooth function may touch it from

above is by being itself subharmonic.

33
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Definition 2.1 is perfectly consistent with the classical one: u is a viscosity harmonic

function if and only if it is harmonic in the classical sense. Indeed, it is easy to prove that

if u ∈ C(D) is a viscosity harmonic function, then u ∈ C2(D) and Δu = 0 in D.

Observe that we could equivalently have defined u subharmonic (superharmonic) in the

viscosity sense by requiring that, if ϕ ∈ C2(Ω) and Δϕ ≤ 0 (resp. Δϕ ≥ 0) in Ω, then ϕ−u

cannot have a local minimum (resp. maximum). We leave the proof of the equivalence of

the two definitions as an exercise.

As we see the “leit motiv” of the definition is to prevent that a subsolution (a su-

persolution) touches a solution from below (above). This is exactly what we require to a

viscosity solution of a free boundary problem. First, define a Ck-classical sub, super solution

(1 ≤ k ≤ ∞) as it follows:

Definition 2.2. A function v ∈ C(D) is called a Ck-classical subsolution of our free

boundary problem if

i) v ∈ Ck(Ω̄+(v)) ∩ Ck(Ω̄−(v))

ii) Δv ≥ 0 in Ω+(v) = {v > 0} ∩D and Ω−(v) = {v ≤ 0}0 ∩D.

iii) The free boundary F (v) = ∂Ω+(v) ∩D is a Ck surface, |∇u+| > 0 on F (v) and

G(v+
ν , v−ν ) ≥ 0 on F (v) (2.3)

where ν = ∇u+

|∇u+| .

If the inequality in (2.3) is strict, we call v strict subsolution. A Ck-classical supersolu-

tion is defined by reversing the inequalities in Definition 2.2, while a Ck-classical solution

is both a Ck-classical sub and super solution.

Notice that in the one phase minimization problem of Section 3, a subsolution of the

problem satisfies the condition u+
ν ≥ 1.

We now use classical strict sub and super solutions as test functions. From now on we

choose k = 2, to fix the ideas, but other choices may be more convenient.

Definition 2.3. A function u ∈ C(D) is a viscosity subsolution if for every classical

strict supersolution v, v cannot touch u from above at a free boundary point.

Notice that if v ∈ C2(Ω̄(v)) is a superharmonic function in Ω±(v) touching from above u

at a free boundary point x0, i.e., v(x) ≥ u(x) near x0 and x0 ∈ F (v)∩F (u), then necessarily

G
(
v+
ν (x0), v−ν (x0)

) ≥ 0 . (2.4)
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Viscosity supersolutions are defined reversing the inequalities in Definition 2.3 and in-

terchanging sub with super. A viscosity solution is both a viscosity sub and supersolution.

So, no classical strict subsolution (supersolution) can touch a solution from below (above).

It is not difficult to prove that a C2-classical subsolution (supersolution, solution) is also

a viscosity subsolution (supersolution, solution) and that a viscosity solution (sub, super)

of class C2, with its free boundary, in Ω̄+(w) and Ω̄−(w) is a classical solution (sup, super).

2.2. Asymptotic developments

The definitions of C2-viscosity sub, super and solutions can be restated in terms of

asymptotic linear behavior near a regular point of the free boundary.

Indeed, let u be a C2-viscosity solution and suppose that a classical strict subsolution

v touches u from below at 0, say. Then, the origin is a regular point from the right, i.e.,

there is a ball B touching F (u) at zero, inside Ω+(w). By Lemma 11.14, if ν denotes the

unit normal to ∂B inward to Ω+(u), we have, near zero, in B

u+(x) = α〈x, ν〉+ + o(|x|)
with α > 0 and in CB

u−(x) = β〈x, ν〉− + o(|x|)
with β ≥ 0, finite. The free boundary condition translates into a relation between α and β;

which is the correct one? Since v is a classical strict subsolution, we have

G(v+
ν (0), v−ν (0)) > 0 .

On the other hand, Hopf maximum principle gives

v+
ν (0) < α and v−ν (0) > β

so that, from the ellipticity of G:

0 < G(v+
ν (0), v−ν (0)) < G(α, β) .

We reach a contradiction if G(α, β) ≤ 0, which is, therefore, the correct inequality.

Analogously, if v is a supersolution touching u from above at zero, there exists a ball B

touching F (u) at zero, inside Ω−(u) = {u ≤ 0}o. Then, if ν denotes the unit normal to ∂B

inward to Ω+(u) we have near zero, in B

u−(x) = β〈x, ν〉− + o(|x|)
with β > 0, while in CB

u+(x) = α〈x, ν〉+ + o(|x|)
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with α ≥ 0.

This time we have

0 > G(v+
ν (0), v−ν (0)) > G(α, β) ,

a contradiction if G(α, β) ≥ 0.

Substantially, we require that u satisfies a supersolution condition at regular points from

the right (touching ball inside Ω+(w)) and a subsolution condition at regular points from

the left (touching ball inside Ω−(u)).

The strict condition G( ᾱ, β̄ ) > 0 compared to G(α, β) = 0 indicates that ᾱ > α and/or

β̄ < β and therefore a supersolution is “more concave” than a solution at a common point

of the free boundary. This clearly prevents a supersolution from touching a solution from

above and it is perfectly analogous to the fact that a superharmonic function is more concave

than a harmonic at a common point of their graphs.

We summarize the conclusions by giving an alternative definition:

Definition 2.4. A continuous function u is a viscosity solution in D if

i) it is harmonic in Ω+(u) and Ω−(u)

ii) Along F (u), u satisfies the free boundary condition in the following sense:

a) If at x0 there is a ball B ⊂ Ω+(u), B ∩ Ω+(u) = {x0} and near x0,

in B

u+(x) ≥ α〈x− x0, ν〉+ + o(|x− x0|) , (α > 0) (2.5)

in CB
u−(x) ≤ β〈x− x0, ν〉− + o(|x− x0|) , (β ≥ 0) (2.6)

with equality along every nontangential domain in both cases, then

G(α, β) ≤ 0 (2.7)

b) If at x0 there is a ball B ⊂ Ω−(u), B ∩ Ω−(u) = {x0} and near x0,

in B

u−(x) ≥ β〈x− x0, ν〉− + o(|x− x0|) , (β > 0) (2.8)

in CB
u+(x) ≤ α〈x− x0, ν〉+ + o(|x− x0|) , (α ≥ 0) (2.9)

with equality along every nontangential domain in both cases, then

G(α, β) ≥ 0 . (2.10)
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We leave as an exercise to prove that Definitions 2.3 and 2.4 are equivalent.

(Hint: if (2.5) and (2.6) hold and G(α, β) > 0, construct a strict subsolution touching u

from below at x0.)

The Definition 2.4 is based on the asymptotic behavior of u. We get an equivalent

definition involving the linear behavior of classical test functions touching the free boundary

at regular points (see Definition 2.3) replacing condition ii) by the following

ii)* a) If x0 has a touching ball B inside Ω+(u) and in B, near x0

u+(x) ≥ ᾱ〈x− x0, ν〉+ + o(|x− x0|) (α ≥ 0) (2.11)

then, in CB, near x0

u−(x) ≥ β̄〈x− x0, ν〉− + o(|x− x0|) (β ≥ 0) (2.12)

for any β̄ such that

G( ᾱ, β̄ ) > 0 .

b) If x0 has a touching ball B inside Ω−(u) and in B, near x0

u−(x) ≥ β̄〈x− x0, ν〉+ + o(|x− x0|) (β̄ ≥ 0) (2.13)

then, in CB, near x0

u+(x) ≥ ᾱ〈x− x0, ν〉+ + o(|x− x0|) (ᾱ ≥ 0) (2.14)

for any ᾱ such that

G( ᾱ, β̄ ) < 0 . (2.15)

Let us check that conditions ii) and ii)* are equivalent. Assume ii b) holds. Then, if

(2.13) holds we have β ≥ β̄. If ᾱ is such that G(ᾱ, β̄) < 0, since G(α, β̄) ≥ G(α, β) ≥ 0, it

must be α ≥ ᾱ. Since equality holds in (2.9) along nontangential domains, (2.14) follows.

Assume now ii b)*. Let (2.8) and (2.9) hold; we want to show that G(α, β) ≥ 0. If not,

G(α, β) < 0 and, for a small ε > 0, G(α + 2ε, β) < 0. Then, (2.9) gives

u+(x) ≤ (α + ε)〈x− x0, ν〉+ + o(|x− x0|)

while (2.13) and (2.14) with ᾱ = α + 2ε and β̄ = β give

u+(x) ≥ (α + 2ε)〈x − x0, ν〉+ + o(|x− x0|) .

Contradiction.

Analogously one can check that ii a) and ii a)* are equivalent.
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+(vt)
+(u)

F(vt)

F(u)

t
x0

y0

Figure 2.1

Remark. As we have seen, viscosity solutions can be characterized in different ways.

The definition is clearly closed under uniform limits.

The disadvantage is that it could produce undesirable solutions, like

u(x) = α1x
+
1 + α2x

−
1

with any α1, α2 such that

G(α1, 0) ≤ 0 , G(α2, 0) ≤ 0 .

Extra care will be necessary to construct solutions with the desired geometric measure

theoretic properties.

2.3. Comparison principles

Strictly speaking, the definition of viscosity subsolution (supersolution) involves a con-

dition at those points of the free boundary that are regular from the left (right). These

conditions turn out to be not enough for comparison purposes.

Suppose we intend to prove that a viscosity subsolution v cannot touch from below a

solution u at a point x0 ∈ F (u) ∩ F (v). Then it is natural to require the existence at x0 of

a touching ball from the right (not from the left) and a proper asymptotic behavior for v

near x0 that could force a contradiction. Therefore it is useful to introduce another kind of

“subsolution” with these characteristics. It turns out that a natural way to construct such

type of functions is to start from a subsolution or a solution (in the viscosity sense) and

build parallel surfaces. Here is the simplest example.

Let u be a solution in D and take

vt(x) = sup
Bt(x)

u t > 0 (2.16)
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Let us examine the properties of vt. Since vt is the supremum of a family of translations

of u, it is subharmonic both in Ω+(vt) and Ω−(vt). Let now x0 ∈ F (vt). This means that

Bt(x0) is touching F (u) from Ω−(u) at a point y0 (see figure). Therefore

a) x0 is regular from the right since Bt(y0) ⊂ Ω+(vt) and Bt(y0) touches F (vt) at x0.

b) y0 is a regular point from the left for F (u), thus, near y0,

u−(x) = β〈x− y0, ν〉− + o(|x− x0|) (β > 0)

in Bt(x0), while

u+(x) = α〈x− y0, ν〉+ + o(|x− x0|) (α ≥ 0)

in CBt(x0), with G(α, β) ≥ 0.

Hence, since vt(x) ≥ u(x + y0 − x0), near x0,

v+
t (x) ≥ α〈x− x0, ν〉+ + o(|x− x0|)

in Bt(y0), while

v−t (x) ≤ β〈x− x0, ν〉− + o(|x− x0|)
in CBt(y0).

Let us summarize the properties of vt:

i) Δv ≥ 0 both in Ω+(v) and Ω−(v)

ii) whenever x0 ∈ F (v) has a touching ball B ⊂ Ω+(v), then near x0, in B

v+(x) ≥ ᾱ〈x− x0, ν〉+ + o(|x− x0|) (2.17)

and in CB
v−(x) ≤ β̄〈x− x0, ν〉− + o(|x− x0|) (2.18)

with ᾱ, β̄ ≥ 0, and

G(ᾱ, β̄) ≥ 0 .

We call a function v with the properties i), ii) an R-subsolution. We can now prove the

following comparison result:

Lemma 2.1. Let u, v be a (viscosity) solution and an R-subsolution in D, respectively.

Then if u ≥ v, u > v in Ω+(v) and x0 ∈ F (u)∩F (v), x0 cannot be a regular point from the

right.

Proof. If x0 is a regular point from the right we have, near x0, in a touching ball

B ⊂ Ω+(v), nontangentially,

u+(x) = α〈x− x0, ν〉+ + o(|x− x0|) , v+(x) ≥ ᾱ〈x− x0, ν〉− + o(|x− x0|)
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and in CB, nontangentially,

u−(x) = β〈x− x0, ν〉− + o(|x− x0|) , v−(x) ≥ β̄〈x− x0, ν〉+ + o(|x− x0|)

with

G(α, β) ≤ 0 and G(ᾱ, β̄) ≥ 0 . (2.19)

Since u ≥ v, we have α ≥ ᾱ and β ≤ β̄. The strict monotonicity of G and (2.19) imply

α = ᾱ, β = β̄. But u− v is a positive superharmonic function in Ω+(v). By Hopf principle,

since x0 is a regular point, we have (u − v)(x) ≥ |x − x0| with ε > 0, radially into Ω+(v)

along ν from x0. A contradiction. �

A more refined version, of a “continuous deformation” nature, is the following theorem,

that we will use later.

Theorem 2.2. Let vt, 0 ≤ t ≤ 1, be a family of R-subsolutions, continuous in Ω̄× [0, 1].

Let u be a solution continuous in Ω̄. Assume that:

i) v0 ≤ u in Ω

ii) vt ≤ u on ∂Ω and vt < u in Ω+(vt) ∩ ∂Ω for 0 ≤ t ≤ 1

iii) every point x0 ∈ F (vt) is a regular point from the right

iv) the family Ω+(vt) is continuous, that is, for every ε > 0,

Ω+(vt1) ⊂ Nε(Ω+(vt2))

whenever |t1 − t2| ≤ δ(ε).

Then

vt ≤ u in Ω

for every t ∈ [0, 1].

Proof. Let E = {t ∈ [0, 1] : vt ≤ u in Ω̄}. E is obviously closed. Let us show that

it is open. If vt0 ≤ u, from ii) and the strong maximum principle it follows that vt0 < u

in Ω+(vt0). Since every point of F (vt0) is regular from the right, Lemma 2.1 and ii) imply

that Ω+(vt0) is compactly contained in Ω+(w), up to ∂Ω.

From assumption iv), the openness of E follows. �

Remark. Comparisons of this nature are necessary when a maximum principle (or

uniqueness) is not available. For instance, the classical reflection method of Alexandrov,

Serrin and Gidas, Ni, Nirenberg is of this nature.
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The family vt constructed in (2.16) is an admissible family for the comparison in the

previous theorem. It can be used for a comparison principle that says: if u1, u2 are solu-

tions such that u1 ≤ u2 and near ∂Ω, supBt(x) u1 ≤ u2(x), then also in the interior of Ω,

supBt(x) u1 ≤ u2(x), keeping in particular F (u2) t-away from F (u1).

We shall see the usefulness of this kind of principle in proving strong regularity results

for the free boundary.



CHAPTER 3

The regularity of the free boundary

3.1. Weak results

We now go back to our general free boundary problem of section 1.1 and examine the

regularity of the free boundary.

Philosophically speaking, we can divide the free boundary smoothness results in two

categories: “measure-theoretic or weak” and “higher order or strong” results.

The measure-theoretic regularity of the free boundary amounts to say that F (u) has

finite locally (n− 1)-Hausdorff measure and, for each x ∈ F (u),

Hn−1(F (u) ∩Br(x)) ∼ rn−1 ∼ Hn−1(F ∗(u) ∩Br(x))

where F ∗(u) denotes the reduced part of F (u). In particular

Hn−1	F (u) , Hn−1	F ∗(u) and Δu+

are all positive measures, with bounded (from above and below) density with respect to

each other.

As we have seen in sections 1.2 and 1.3 for the one phase singular perturbation problem,

these weak regularity properties of the free boundary follow if one can prove two essential

features of the solution:

a) u is locally Lipschitz across the free boundary

b) u+ has linear growth and is non degenerated away from F (u), i.e.,

u+(x) ≥ c d(x, F (u) , x ∈ Ω+(u)

and

sup
Br(x0)

u+ ≥ C r x0 ∈ F (u) .

Let’s see what are the minimal assumptions to achieve this kind of results. A parallel

with viscosity solutions of elliptic equations Lv = Tr(A(x)D2v) = 0 is in order.

A linear growth and the non degeneracy for u+ correspond to having a Harnack inequal-

ity (controlled growth) for v and this is true, for instance, if L is strictly elliptic (A(x) ≥ λI)

and A is bounded measurable.

43
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For our free boundary problem, the parallel requirement is that 0 < c < u+
ν ≤ C in

the viscosity sense. More precisely if at x0 ∈ F (u) there is a touching ball B ⊂ Ω+(u), no

matter how small, then u has a linear behavior

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|)

with, for instance

α = G(β) .

Strict ellipticity corresponds to the strict monotonicity of G, with G(0) > 0. Ellipticity

from above (u+
ν ≤ C) is then assured by the monotonicity formula (see Lemma 2.7 part 3).

In chapter 6 we shall construct solutions of our free boundary problem, precisely satis-

fying the properties a), b). Therefore their free boundaries will enjoy the above measure-

theoretic regularity.

3.2. Weak results for one phase problems

The heuristic discussion in the previous section leads naturally to the following list of

weak results for one phase problems. Suppose u is a nonnegative continuous function in

B1, harmonic in its positivity set Ω+(u). As usual let F (u) = ∂Ω+(u) ∩ B1 be the free

boundary. At every x0 ∈ F (u) at which there is a touching ball B ⊂ Ω+(u), we know u has

a linear non tangential behavior

u(x) = α〈x− x0, ν〉+ + o(|x− x0|) (3.1)

with α > 0, x ∈ B.

Lemma 3.1. If α ≤ C then u is Lipschitz in B1/2.

Proof. (See the beginning of section 12.1.) �

So, a uniform bound from above for u+
ν in the viscosity sense gives Lipschitz continuity.

The next result we would like to have is the equivalent of Lemma 1.5, that is:

Pseudolemma 3.2. If α ≥ c > 0 then in B1/2

u+(x) ≥ c d(x, F (u)) .

Therefore, a uniform bound from below for u+
ν would give us linear growth.

This is not true in general. The function (log |x|)+ in two dimensions provides a coun-

terexample. We will in fact construct solutions with this property in chapter 6 using Perron’s

method.
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Lemma 3.3. If α ≤ C and we assume the conclusions of pseudolemma 3.2 then, for

every x0 ∈ F (u) ∩B1/2,

1. sup
Bρ(x0)

u ≥ cρ (3.2)(
ρ <

1
3

)
2. |Ω+(u) ∩Bρ(x0)| ≥ cρn (3.3)

Proof. First, one proves that if x0 ∈ B1/2 and d = d(x0, F (u)), there exists γ > 0 such

that

sup
Bd(x0)

u ≥ (1 + γ)u(x0) .

This follows as in Lemma 1.10.

Then (3.2) follows constructing a polygonal along which u grows linearly, exactly as in

the proof of Theorem 1.9. The density estimate (3.3) follows like in Corollary 1.11. �

Thus, from Lipschitz continuity and linear growth, we deduce nondegeneracy and uni-

form density of Ω+(u) along F (u). Notice that the conclusions of the above lemmas hold

in every connected component of Ω+(u).

Under the hypothesis of Lemma 3.3 we deduce now the measure theoretic properties of

F (u). We recall that Nδ(F ) denotes a δ-neighborhood of F .

Theorem 3.4. Let u be Lipschitz and non degenerate in B1. Let x0 ∈ F (u) ∩B1/2 and

0 < ε < R < 1
2 . Then, the following quantities are comparable with Rn−1:

a) 1
ε |{0 < u < ε} ∩BR|

b) 1
ε |Nε(F (u)) ∩BR|

c) Nεn−1, where N is the number of any family of balls of radius ε, with finite over-

lapping, covering F (u) ∩BR.

d) Hn−1(F (u) ∩BR). In particular, Ω+(u) is a set of finite perimeter.

Proof. (Compare with Theorem 1.12 and Lemmas 1.13–1.14.) The key points are to

prove that, if x0 ∈ F (u) ∩B1/2, then∫
{0<u<ε}∩BR(x0)

|∇u|2 ∼ εRn−1 (3.4)

and ∫
Bε(x0)

|∇u|2 ∼ εn (3.5)
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The inequalities in (3.5) follow from Lipschitz continuity and linear growth as in Lemma 1.14.

To prove (3.4), set uε,s = (min(u, ε) − s)+, 0 < s < ε, uε = uε,0. Then (BR = BR(x0))

0 =
∫

BR

uε,sΔu =
∫

∂BR

uε,suν dσ −
∫

BR∩{s<u<ε}
|∇u|2

Therefore, letting s→ 0, since u is Lipschitz and uε,s ≤ ε,∫
BR∩{0<u<ε}

|∇u|2 ≤ cεRn−1 .

To get the opposite inequality, let g be the Green’s function for BR and

w(x) = − 1
(σR)n

∫
BσR

g(x, y) dy .

The function w satisfies Δw = (σR)−nχBσR
in BR, w|∂BR

= 0. Then

w ≤ c(σR)2−n in BR \BσR

and

−wν ∼ R1−n on ∂BR .

We write
1
ε

∫
BR

uuεΔw =
1
ε

∫
∂BR

uuεwν dσ +
1
ε

∫
BR

w Δ(uuε) .

Now, by the linear growth of u:

−1
ε

∫
∂BR

uuεwν dσ ≥ c0R

and, for σ small, ∣∣∣1
ε

∫
BR

uuεΔw
∣∣∣ ≤ ∫
−

BσR

u+ ≤ c̄σR <
c0

2
R .

Hence

c(σR)2−n 1
ε

∫
BR∩{0<u<ε}

|∇u|2 ≥ 1
ε

∫
BR

wΔ(uuε) ≥ c0

2
R

which is the desired inequality.

With (3.4) and (3.5) at hand, consider a finite overlapping family of balls Bε(xj) for

F (u) ∩BR. Then ∫
UBε(xj)

|∇u|2 ∼
∑∫

Bε(xj)
|∇u|2

∼
∑
|Bε(xj)| ∼ Nεn ∼

∑
|B2ε(xj)|

≥ |Nε(F (u)) ∩BR| ≥ C

∫
UBε(xj)

|∇u|2 .

therefore the quantities b) and c) are comparable.

Moreover, since u is Lipschitz and non degenerate we have

|{0 < u < ε} ∩BR| ∼ |Nε(F (u)) ∩BR|
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since, for proper choices of c we can make

Ncε(F (u)) ∩BR ⊂ {0 < u < ε} ∩BR

or vice versa.

It follows that the quantities a), b) and c) are all comparable to Rn−1.

Finally, let {Brj (xj)}, xj ∈ F (u), a finite covering of F (u)∩BR by balls of radius rj < ε,

that approximates Hn−1(F (u) ∩ BR). Let r < min rj and {Br(xk
j )} a finite overlapping

covering for F (u) ∩Brj(xj). Then, on one hand∑
k,j

|∂Br(xk
j )| ≤ cRn−1

by the argument above with ε = r. On the other hand∑
k

|∂Br(xk
j )| ≥ crn−1

j

again by the above discussion with R = rj . This implies

Hn−1(F (u) ∩Brj(xj)) ≥ crn−1
j ≥ crn−1

and the last equivalence follows easily. �

An immediate corollary is the representation theorem (see Theorems 1.19–1.20)

Δu = gHn−1
	F (u)

on B1/2 with g Hn−1-measurable on F (u)∩B1/2 and 0 ≤ c ≤ g ≤ C. Clearly g = u+
ν in the

sense of measures:

−
∫

B1/2

∇u · ∇ϕ =
∫

F (u)∩B1/2

ϕg dHn−1 ∀ ϕ ∈ C∞
0 (B1/2) .

By combining Lipschitz continuity and non degeneracy with the monotonicity formula

it is possible to prove other useful properties of topological nature. For instance, if along the

boundary of a connected component A of Ω+(u) the zero set has uniform positive density,

then A is a non tangentially accessible domain, an important property of A that allows

one to use all the Harnack principles in chapter 1, part 3. We will discuss this result in

section 12.3.

3.3. Strong results

“Strong” regularity results correspond to higher order regularity for solutions of elliptic

equations. Asking more than just uniform ellipticity (for instance, coefficients in Cα) will

produce more regular solutions (in C2,α). Analogously, requiring more than just bounded-

ness and strict positivity of u+
ν will imply higher order regularity of F (u).
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In order to clarify the natural starting requirements to u+
ν , let us try to (heuristically,

but see sections 6.7–6.9) classify global solutions, somewhat like in minimal surface theory.

We know that F ∗(u) is, in particular a set of finite perimeter and therefore almost every

point, with respect to Hn−1�F ∗(u), is a differentiability point. That is, if x is one of those

points, at x is well defined a normal vector ν = ν(x) such that, if we set

Ω+
r = {y : r(y − x) ∈ Ω+(u)}

P+ = P+(x, ν) = {y : 〈y − x, ν〉 > 0}
π = π(x, ν) = {y : 〈y − x, ν〉 = 0}

and let B = B(x) a (small) ball centered at x, then Per(Ω+
r ∩B) converges in the sense of

vector measures to Per(P+ ∩B), that is, for any continuous vector field �ϕ:∫
∂Ω+

r ∩B
〈�ϕ, ν〉 dPer r→0−−−→

∫
π
〈�ϕ, ν〉 dHn−1 .

In particular, ∂Ω+
r ∩B converges uniformly to π ∩B and Ω+

r ∩B to P+ ∩B.

In fact, suppose not; then there exists ε > 0 such that for any rj there is xj ∈ ∂Ω+
rj

with

d(xj , π) > ε. Therefore Per(∂Ω+
rj
∩Bε/2(xj)) ≥ cεn−1, a contradiction for rj small.

It follows that, for any sequence {rj}, there is a subsequence {rjk
} such that

uk(y) =
1

rjk

u(rjk
y)

converges uniformaly in any compact subset of R
n (by the Lipschitz continuity of u). The

limit u∞ will also be a Lipschitz function, harmonic and positive in P+(x, ν) and harmonic

and negative in P−(x, ν). Therefore it must be a two planes solution,

u∞(y) = α〈y − x, ν〉+ − β〈y − x, ν〉−

for some α > 0 (by the nondegeneracy of u+) and β ≥ 0, that, in principle could depend

on the particular subsequence. Furthermore it must be

α = G(β)

so that u∞ is a global solution of our free boundary problem.

But now, the monotonicity formula (Lemma 12.5) implies that

α · β = J (3.6)

with J independent on the subsequence. Indeed, suppose that α1, β1 and α2, β2 correspond

to two different converging subsequences {u1
k} and {u2

k}. If α1 > α2, the free boundary

condition implies β1 > β2, contradicting (3.6).

Thus, all candidates α and β must be the same and the limit u∞ is unique.
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This means that the sequence uk has a nice asymptotic configuration and that the

original F (u) is flat around x. A flatness hypothesis is thus a natural starting point to get

higher order results. Like in minimal surface theory we split the main result into two steps:

1. To prove that in a neighborhood of a “flat” point the free boundary is a Lipschitz

graph.

2. Lipschitz free boundaries are C1,γ .

We start with step 2, in the next chapter.



CHAPTER 4

Lipschitz free boundaries are C1,γ

4.1. The main theorem. Heuristic considerations and strategy

We start now to study the regularity of the free boundary in the following problem

(f.b.p. in the sequel): to find a function u such that, in the cylinder C1 = B′
1(0) × (−1, 1),

B′
1(0) ⊂ R

n−1,

Δu = 0 in Ω+(u) = {u > 0} and Ω−(u) = {u ≤ 0}0

u+
ν = G(u−

ν ) on F (u) = ∂Ω+(u) .
(4.1)

We assume that F (u) is given by the graph of a Lipschitz function xn = f(x′), x′ ∈ B′
1(0),

with Lipschitz constant L and f(0) = 0. We want to prove that in B′
1/2(0), f is a C1,γ

function. Precisely, the main result is the following ([C1]):

Theorem 4.1. Let u be a viscosity solution of f.b.p. in C1. Suppose 0 ∈ F (u) and

i) Ω+(u) = {(x′, xn) : xn > f(x′)} where f is a Lipschitz function with Lipschitz

constant L.

ii) G is continuous, strictly increasing and there exists N > 1 such that

s−NG(s)

is decreasing.

Then, in B′
1/2(0), f is a C1,γ function, for some 0 < γ ≤ 1, u ∈ C1,γ(Ω̄±(u)) and (4.1)

holds in a classical sense.

Let us discuss some of the ideas that lead to the proof, showing first a connection with

the theory of minimal surfaces and in particular with the following result by DeGiorgi: Let

S be minimal surface in B1. Assume S is the graph of a Lipschitz function xn = w(x′),

with Lipschitz constant λ. Then S is C1,α in B1/2, for some 0 < α ≤ 1.

The proof of DeGiorgi’s theorem is the following. Since

Di

(
Diw

(1 + |∇w|2)1/2

)
= 0

51



52 4. LIPSCHITZ FREE BOUNDARIES ARE C1,γ

en + 1

St (en + )

S

t

( ,e)

en 1

Figure 4.1

any directional derivative v = Dτw satisfies the equation

Di

(
δijDjv

(1 + |∇w|2)1/2
− DiwDjwDjv

(1 + |∇w|2)3/2

)
= 0

that is

Di(aijDjv) = 0

where

aij =
(1 + |∇w|2)δij −DiwDjw

(1 + |∇w|2)3/2
,

a measurable, uniformly elliptic matrix.

Applying the DeGiorgi’s Hölder continuity theorem, it follows that v is Hölder continu-

ous, achieving in this way the result. Let us stress the main lemma in the DeGiorgi proof.

Let v be a solution of Di(aijDjv) = 0 in B1 and |v| ≤ 1. If |{v < 0}| ≥ 1
2 |B1| then v ≤ λ < 1

in B1/2. The possibility to rescale and iterate this lemma gives a geometric decay of the

Lipschitz constant in dyadic balls and therefore the Hölder continuity of v.

Let us rephrase the previous argument in more geometric terms. First of all, the Lips-

chitz continuity of w can be expressed in the following way. Let Γ(θ, en) be the cone with

axis en and opening θ given by

λ = cotan θ

For any vector τ , denote by Sτ the surface obtained translating S by τ . Then S is Lipschitz

with constant λ if for any τ ∈ Γ(θ, en), “Sτ stays above S”. In other words, if |τ | = 1,

〈τ, en〉 = 0 and γ ≤ 1/λ, the family of surfaces St(en+γτ), t > 0, stays above S. If we choose

γ = 1/λ it may happen that St(en+γτ) becomes tangent to S at some point.

In principle, the comparison theorem precludes this to happen but it does not give any

quantitative information. It is Harnack’s inequality, applied to the first derivatives of w,

that supplies what is needed. In this context Harnack’s inequality says: if the distance

between the surfaces S and St(en+γτ) is of order t at one point, then it is of order t in a

neighborhood of that point. Now, depending on the direction of the normal to the surface,
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if γ = 1/λ, one of the two surfaces St(en±γτ) separates from S by a distance of order t,

in at least half of the points. If we suppose that the “good” surface is St(en+γτ), then, by

Harnack’s inequality, St(en+γτ) stays ct-away from S in B1/2. But this is exactly what the

DeGiorgi’s lemma says. Indeed, the tangential direction en + 1
λτ is not anymore a critical

direction in B1/2, since it is now possible to translate S along the direction (1− c)en + 1
λτ

staying above S.

Thus, if we adjust our system of coordinates, the Lipschitz norm of w can be improved

in B1/2 by a factor (1− c′). It is another instance of the fact that “ellipticity has the virtue

of propagating instantaneously a perturbation all over the domain of definition of S.”

Going back to the proof of Theorem 4.1, the idea is to use similar considerations and

arguments to improve geometrically the Lipschitz constant of the free boundary in dyadic

cylinders

C2−k = B′
2−k × (−2−k, 2−k) .

We know from section 11.4 that if in the cylinder C1 the free boundary is given by a

Lipschitz graph xn = f(x′), then, in a smaller cylinder, the solution u is increasing along

every τ in a cone Γ(θ, en). The opening θ of that cone detects how flat are the level sets

of u and therefore, improving the Lipschitz constant of F (u) amounts to an increase in the

opening θ. Our starting hypothesis (see Corollary 11.11) will be the existence of the cone

of monotonicity Γ(θ, en) and we shall show that in correspondence to the dyadic cylinders

C2−k there exists a sequence of monotonicity cones Γ(θk, νk) with the following properties:

i) Γ(θk+1, νk+1) ⊂ Γ(θk, νk) (θ0 = θ)

ii) if δk = π
2 − θk, then

δk ≤ c bk c = c(η, θ), b = b(η, θ), 0 < b < 1

|νk+1 − νk| ≤ δk − δk+1 .

This clearly implies νk → ν and that F (u) is C1,γ at 0, with normal ν. In fact, if |x′| ≈ 2−k,

we have

|f(x′)− x′ · ν| ≤ cδk|x′| (4.2)

and the speed of δk gives for the modulus of continuity of ∇f ,

ω(r) = sup
|x′−y′|<r

|∇f(x′)−∇f(y′)| ≤ c rγ

with γ = − log2 b.

The same procedure can be applied in a neighborhood of any free-boundary point x0.

Since the bounds in ii) are uniform w.r.t. x0 ∈ F (u) ∩ B1/2 (say), then we conclude that

F (u) ∩B1/2 is a C1,γ graph.
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Figure 4.2. |f(x′)− x′ · ν| ≤ cδk|x|

Here is the main strategy of the proof:

Step 1: To improve the Lipschitz constant away from the free boundary, say, in a

neighborhood of x0 = (3
4en).

Step 2: To carry the information in Step 1 to the free boundary, in B1/2, giving up

a little bit of the interior improvement.

Step 3: To rescale and repeat Steps 1 and 2, observing the invariance of the problem

under elliptic dilations.

4.2. Interior improvement of the Lipschitz constant

Since we are dealing in both sides of the free boundary with two positive harmonic

functions, i.e., u+ and u−, and we are assuming that F (u) is a Lipschitz graph w.r.t. the

direction xn, we can apply Corollary 11.11, to conclude that, in a neighborhood of the free

boundary, Dτu ≥ 0 along every τ ∈ Γ(θ, en) with θ ≤ 1
2 arcotan L or θ ≥ π

4 − 1
2 artan L ≡

θ0.

We call Γ(θ, en) the monotonicity cone. The existence of such a cone means that near

F (u), all the level sets of u are uniformly Lipschitz surfaces w.r.t. the same direction en.

We may suppose that this happens in the whole cylinder C1, by using, if necessary, the

invariance by elliptic dilations of the problem.

We will call δ0 = π
2 − θ the defect angle because it measures how far are the level sets

of u from being flat . Notice that, if ν = ∇u/|∇u| and α(σ, τ) denotes the angle between

the vectors σ, τ , we have α(ν, en) ≤ δ0 so that

|∇u| ≥ Denu = |∇u| · cos α(ν, en) ≥ |∇u| cos δ0
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i.e., Denu and |∇u| are equivalent.

To improve the Lipschitz constant means to increase the opening θ of the cone of mono-

tonicity. This amounts to show that there exists a monotonicity cone Γ(θ1, ν1) containing

Γ(θ, en), with δ0 ≤ λδ1, λ = λ(n, θ0) < 1.

In this section we show how it is possible to get this improvement in a neighborhood

of an interior point, say x0 = 3
4en. The key point is to observe that the information

to start the procedure described in 4.1 is stored in the direction of ∇u(x0). Indeed, let

ν = ν(x0) = ∇u(x0)/|∇u(x0)| and H(ν) be the hyperplane orthogonal to ν. If σ ∈ Γ(θ, en),

|σ| = 1, then Dσu(x0) ≥ 0 and, if σ ∈ ∂Γ(θ, en), in principle, Dσu(x0) may be zero. This

happens if the cone is tangent to H(ν) along a generatrix in the σ direction. However, as

soon as dist(H(ν), σ) > 0 then Dσu(x0) > 0, leaving room to an enlargement of the cone

of monotonicity.

Precisely, we have:

Dσu(x0)
Denu(x0)

=
〈σ, ν〉
〈en, ν〉 ≥ 〈σ, ν〉 = dist(σ,H(ν)) (4.3)

From Harnack’s inequality, in C1/8(x0) = B′
1/8(x0)× (−1

8 , 1
8),

Dσu ≥ c0〈σ, ν〉Denu (4.4)

that is, if τ(σ) is the unit vector in the direction σ − c0〈σ, ν〉en,

Dτ(σ)u ≥ 0 .

We show that the family {τ(σ);σ ∈ Γ(θ, en)} contains a new cone of directions Γ(θ1, ν1),

strictly larger than Γ(θ, en). In fact, formula (4.4) implies that the gain in the opening is

measured by the quantity E(σ) = c0〈σ, ν〉, |σ| = 1, σ ∈ Γ(θ, en).

This implies that for a small μ > 0, for any vector σ ∈ ∂Γ(θ, en) there exist a ball

Bρ(σ)(σ) where

ρ(σ) = |σ|μ〈σ, ν〉 = |σ|μ sin(E(σ))

E(σ) =
π

2
− α(σ, ν) ,

such that the directional derivative of u is nonnegative along any vector in Bρ(σ)(σ).

The envelope of the balls Bρ(σ)(σ) contains a cone Γ(θ1, ν1) that contains Γ(θ, en) and with

an opening θ1 > θ.

This is precisely stated and proved in the following theorem.

Theorem 4.2. (Intermediate cone) Let 0 < θ0 < θ < π
2 and, for a unit vector ν, let

H(ν) be the hyperplane perpendicular to ν. Assume that the cone Γ(θ, e) ⊂ H(ν) and for
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any σ ∈ Γ̄(θ, e) put

E(σ) =
π

2
− α(σ, ν) .

Moreover, for a small positive μ put

ρ(σ) = |σ|μ sin(E(σ)) , Sμ =
⋃

σ∈Γ̄(θ,e)

Bρ(σ)(σ) .

Then, there exist θ̄ and λ = λ(μ, θ0) < 1 such that

Γ(θ, e) ⊂ Γ(θ̄, ē) ⊂ Sμ

and
π

2
− θ̄ ≤ λ

(π

2
− θ

)
.

Proof. Put δ = π
2 − θ and let σ1, σ2 (unit vectors) be the two generatrices of Γ(θ, e)

belonging to span{ν, e}. Suppose that σ1 is the nearest to ν of the two. Thus:

α(σ1, ν) ≤ π

2
− 2θ , α(σ2, ν) ≤ π

2
. (4.5)

These two directions give the maximum and the minimum gain in the opening of the cone

Γ(θ, e), respectively. By replacing, if necessary, ν by ν̄ such that ν̄ ∈ span{e, ν}, | ν̄ | = 1,

〈ν̄, σ2〉 = 0 we reduce ourselves to the equality case in (4.5). This case, indeed, is the

worst possible since 〈σ, ν̄〉 ≤ 〈σ, ν〉 for any σ ∈ Γ(θ, e), diminishing the opening gain in each

direction. Assume therefore that equality holds in (4.5). In this case 〈σ2, ν〉 = 0 (no gain),

while

〈σ1, ν〉 = 2 sin δ sin θ ≥ 2 sin θ0 sin δ (maximum gain)

so that

ρ(σ1) ≥ 2μ sin θ0 sin δ



4.2. INTERIOR IMPROVEMENT OF THE LIPSCHITZ CONSTANT 57

1

2

e

H(v)

v

Figure 4.4

v

e

1

2

Figure 4.5. The worst situation: 〈σ2, ν〉 = 0.

and in the plane span{ν, e} we have an increase in angle estimated from below by C0(μ, θ0)δ.

Consider now a generatrix σ ∈ ∂Γ(θ, e), |σ| = 1 and let ω be the solid angle between

the planes span{e, σ} and span{e, ν}. Then from the cosine law of spherical trigonometry

we have

〈σ, ν〉 = cos α(e, ν) · cos θ + sinα(e, ν) sin θ · cos ω =

= sin δ cos δ(1 + cos ω) ≥ sin θ0(1 + cos ω) sin δ .

Therefore, if ω ≤ 99
100π (say), we can say that the increase in angle is estimated from below

by C1(μ, θ0)δ.

Put ē = γδe1 + e, where e1 ∈ span{e, ν}, |e1| = 1, 〈e1, e〉 = 0, γ ≤ 1
3C1(μ, θ0), and let

S′
μ = {σ̄ : σ̄ = σ + ρ(σ)σ1, σ ∈ ∂Γ(θ, e)}

where |σ1| = 1, 〈σ1, σ〉 = 0, σ1 ∈ span{e, σ}. Then, if γ = γ(μ, θ0) is small enough, for

every σ̄ ∈ ∂S′
μ,

α( σ̄, ē ) ≥ θ + γδ ≡ θ̄ .
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Thus S′
μ ⊂ Sμ and contains the cone Γ( θ̄, ē) with

π

2
− θ̄ ≤ (1− γ)

(π

2
− θ

)
. �

�

Remark 4.3. Theorem 4.2 holds also if we fix any θ′, θ
2 ≤ θ′ < θ and put, for every

σ ∈ Γ̄(θ′, e),

E(σ) =
π

2
− α(σ, ν) − (θ − θ′)

ρ(σ) = |σ| sin (θ − θ′ + μE(σ)
)

Sμ =
⋃

σ∈Γ̄(θ′,e)

Bρ(σ)(σ)

The constant λ still depends only on μ and θ0.

This remark allows a better control of the opening gain and it will be useful in the

sequel.

Applying Theorem 4.2 to our situation we get:

Lemma 4.4 (Interior gain). There exists a cone Γ(θ̄1, ν̄1) ⊃ Γ(θ, en) with

δ̄1 ≤ λ̄δ0

(
δ̄1 =

π

2
− θ̄1

)
where λ̄ = λ̄(θ0, n) < 1, such that, in C1/8(x0)

Dσu(x) ≥ 0

for every σ ∈ Γ(θ̄1, ν̄1).

The question is now how to propagate the information contained in Lemma 4.4 to the

free boundary.

4.3. A Harnack principle. Improved interior gain

The monotonicity properties of u can be reformulated in a more flexible form, by intro-

ducing a suitable function that measures the cone opening. Indeed, let τ ∈ Γ(θ
2 , en) be a

vector with small norm and put

ε = |τ | sin θ

2
.

Then, the monotonicity of u along the directions of Γ(θ, en) amounts to ask that

vε(x) ≡ sup
Bε(x)

u(y − τ) ≤ u(x)

for x ∈ C1−ε and every (small) τ ∈ Γ(θ
2 , en)

In terms of vε one can refine Lemma 4.4, thanks to the following Harnack’s type lemma.
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Lemma 4.5 (Harnack principle). Let 0 ≤ u1 ≤ u2 be harmonic functions in BR = BR(0).

Let ε ≤ R/8 and assume that on BR−ε:

vε(x) = sup
Bε(x)

u1(y) ≤ u2(x) (4.6)

and further

vε(0) ≤ (1− bε)u2(0) (b > 0) (4.7)

Then, for some c̄ = c̄(R), μ = μ(R,n), we have in B 3
4
R

v(1+μb)ε(x) ≤ u2(x)− c̄bεu2(0) (4.8)

Proof. For |σ| < 1

w(x) = u2(x)− u1(x + εσ)

is harmonic and positive (by (4.6)) in BR−ε. By Harnack inequality and (4.6), in B 3
4
R,

w(x) ≥ cw(0) ≥ cbεu2(0) .

Shauder estimates and Harnack inequality again give

|∇u1(x)| ≤ c

R
u1(0) ≤ c

R
u2(0)

in B 3
4
R. It follows that

u2(x)− u1(x + (1 + μb)εσ) = w(x) + u1(x + εσ) − u1(x + (1 + μb)εσ)

≥ cbεu2(0) − cμb

R
εu2(0)

≥ c̄bεu2(0)

if μ = μ(R,n) is chosen small. �
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We apply Lemma 4.5 in B1/6(x0) to

u1(x) = u(x− τ) and u2(x) = u(x) .

The only non trivial hypothesis to check is (4.7).

Let y ∈ Bε(x) and notice that if τ ∈ Γ(θ
2 , en) and

τ̄ = τ − (y − x)

then α(τ, τ̄ ) ≤ θ
2 , since |τ̄ − τ | = |x− y| ≤ |τ | sin θ

2 . Also

|τ̄ | ≥ |τ | − |τ | sin θ

2
≥ 1

2
|τ |

since θ
2 < π

4 . Therefore Dτ̄u ≥ 0 and using Harnack inequality for both Dτ̄u and u, together

with Theorem 11.8, we deduce that

inf
B1/8(x0)

Dτ̄u ≥ c0〈ν, τ̄ 〉|∇u(x0)| ≥ c〈ν, τ̄ 〉u(x0)

≥ c1|τ̄ | cos α(ν, τ̄ )
(

sup
B1/8(x0)

u
)

≥ bε sup
B1/8(x0)

u

where b = b(τ) = C cos(θ
2 + α(ν, τ)).

It follows that, for every x ∈ B1/8(x0),

u(x− τ̄) ≤ u(x)−Dτ̄u(x̃) ≤ (1− bε)u(x) ,

which gives, in particular, for ε < 1
100 (say),

sup
Bε(x0)

u(y − τ) ≤ (1− bε)u(x0)

and the hypotheses of Lemma 4.5 are satisfied.

We conclude that:

Lemma 4.6. There exist positive constants c̄ and μ, depending only on θ0, n, such that,

for each small vector τ ∈ Γ(θ
2 , en) and every x ∈ B1/8(x0)

sup
B(1+μb)ε(x)

u(y − τ) ≤ u(x)− c̄bεu(x0) (4.9)

Notice that (4.9) gives a quantitative estimate of the ε-shift between the level sets of

u and those of its τ -translation and implies Lemma 4.4, perhaps with a slightly different

enlarged cone, that we still denote by Γ(θ̄1, ν̄1).
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To see it, observe that, for θ0 ≤ θ < π
2 , in the notations of Theorem 4.2 and Remark 4.3,

with θ′ = θ/2,

(1 + bμ)ε = |τ |
(

sin
θ

2

)[
1 + cμ cos

(θ

2
+ α(ν, τ)

)]

= |τ |
(

sin
θ

2

)
[1 + cμ sin E(τ)]

≥ |τ | sin
(θ

2
+ μ̄E(τ

)
≡ ρ(τ)

with μ̄ = μcθ0
2 .

This means that, if

Sμ̄ =
⋃

τ∈Γ( θ
2
,en)

Bρ(τ)(τ)

and τ ∈ Sμ̄, then

Dτu ≥ 0

and, in particular, also in the intermediate cone Γ(θ̄1, ν̄1). This ends Step 1.

4.4. A continuous family of R-subsolutions

At this point the situation is the following:

• in B1−ε

vε(x) ≤ u(x) (4.10)

which amounts to the monotonicity of u along the direction of the original cone

Γ(θ, en)

• in B1/8(x0), x0 = 3
4en

v(1+bμ)ε(x) ≤ u(x)− c̄εbu2(x0) (4.11)

with b = b(τ) = c cos(θ
2 + α(ν, τ)), τ ∈ Γ(θ

2 , en), which implies the monotonicity of

u in the larger cone Γ(θ̄1, ν̄1).

The purpose is now to carry this information to the free boundary, by finding for instance

that, for some intermediate μ̄, an inequality of the type

v(1+bμ̄)ε(x) ≤ u(x)

holds in B1/2.

The idea is to use a continuous deformation method based on the comparison Theo-

rem 2.2 to transfer the improvement in B1/8(x0) to B1/2(0). The key point is the construc-

tion of a delicate family of subsolutions of the type considered in (2.16) but with the radius
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of the ball Bt(x) dependent on x itself, i.e., t = ϕ(x). In fact, the family

vt(x) = sup
Bt(x)

u

with t constant, can only detect a uniform enlargement of the monotonicity cone, and, as

such, one cannot exploit the interior gain.

For this purpose we ask the question: what are the conditions on a variable radius t(x)

so that for any harmonic function u, vt will be always subharmonic.

Here is the fundamental lemma.

Lemma 4.7. Let ϕ be a C2-positive function satisfying in B1

Δϕ ≥ C|∇ϕ|2
ϕ

(4.12)

for C = C(n) large enough. Let u be continuous, defined in a domain Ω so large that the

function

w(x) = sup
|σ|=1

u(x + ϕ(x)ν)

is well defined in B1.

Then, if u is harmonic in {u > 0}, w is subharmonic in {w > 0}.

Proof. Let us normalize the situation assuming that w(0) > 0, ϕ(0) = 1 and w(0) =

supB1
u is attained at x = en. We will show that

lim inf
r→0

1
r2

[∫
−

Br

w(x) dx − w(0)
]
≥ 0 .

Choose the system of coordinates so that

∇ϕ(0) = αe1 + βen .

We estimate w(x) from below for x near the origin by

w(x) ≥ u(x + ϕ(x)σ)

with an appropriate choice of σ = σ∗
|σ∗| , given by

σ∗ = σ∗(x) = en + (βx1 − αxn)e1 + γ

n−1∑
i=2

xiei

where γ is to be chosen later.

Notice that

|σ∗|2 = 1 + (βx1 − αxn)2 + γ2
n−1∑
i=1

x2
i
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Put y(x) = x + ϕ(x)σ(x). We have y(0) = en and

y(x) = x +
{
1 + 〈∇ϕ(0), x〉 + 1

2
Dijϕ(0)xixj + o(|x|2)

}
·

·
{
en + (βx1 − αxn)e1 + γ

n−1∑
i=2

xiei

}
·

·
{
1− 1

2
(βx1 − αxn)2 − 1

2
γ2

n−1∑
i=2

x2
i + o(|x|4)

}
.

We can write the above expression as follows:

y(x) = en + {first order terms}+ {quadratic terms}+ o(|x|2) .

The first order term is

y1(x) = x + (αx1 + βxn)en + (βx1 − αxn)e1 + γ
n−1∑
i=2

xiei ,

that can be written in the form

y1(x) = Mx

where

M =

⎛
⎜⎜⎜⎜⎜⎝

1 + β −α
0 1 + γ 0
...

. . .
...

0 1 + γ 0
α 0 · · · 0 1 + β

⎞
⎟⎟⎟⎟⎟⎠ .

Since detM = (1 + γ)n−2[(1 + β)2 + α2], if we choose γ such that

(1 + γ)2 = (1 + β)2 + α2 ,

the transformation

x→ y1(x)

can be thought as a rotation (given by the matrix M/(1+γ)) followed by a (1+γ)-dilation.

Put

y∗(x) = en + y1(x) .

Then, the quadratic term is given by

y(x)− y∗(x) =
1
2

[
Dijϕ(0)xixj − (βx1 − αxn)2 − γ2

n−1∑
i=2

x2
i

]
en + O(|∇ϕ(0)|2|x|2)e0
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where e0 ⊥ en and |e0| = 1. Then∫
−

Br

w(x) dx − w(0) ≥
∫
−

Br

u(y(x)) dx − u(y(0))

=
∫
−

Br

[u(y(x))− u(y∗(x))] dx +
∫
−

Br

[u(y∗(x)) − u(y(0))] dx

=
∫
−

Br

[u(y(x))− u(y∗(x))] dx

since u(y∗(x)) is harmonic.

Evaluate now u(y) − u(y∗). Observe first that since w(0) = u(en) = u(y(0)), ∇u(y(0))

must point in the direction of en. Then

u(y)− u(y∗) = ∇u(y∗) · (y − y∗) + O(|y − y∗|2)
= ∇u(en) · (y − y∗) + O(|y − y∗|2)

=
1
2
|∇u(en)| ·

{
Dijϕ(0)xixj − (βx1 − αxn)2 − γ2

n−2∑
i=2

x2
i

}
+ O(|x|4)

and hence

1
r2

∫
−

Br

[u(y)− u(y∗)] dx =
1
2n
|∇u(en)|{Δϕ(0)− [β2 + α2 + (n− 2)γ2]

} ≥ 0

if

Δϕ(0) ≥ |∇ϕ(0)|2 + (n− 2)γ2 .

Since γ2 ≤ |∇ϕ(0)|2 the last inequality is satisfied if

Δϕ(0) ≥ c|∇ϕ(0)|2

with c ≥ n− 1. �

Remark 4.8. We point out that for a C2-positive function ϕ,

ϕΔϕ = C|∇ϕ|2

if and only if

ϕ1−c is harmonic.

In particular, if ϕ1−c takes values a1 on ∂B1(0) and a2 on ∂B1/8(x0), it will take intermediate

values “in between”, that is strictly inside B1(0) \B1/8(x0), and so will ϕ.

Given a solution u of our free boundary problem and a function ϕ satisfying the prop-

erties of Lemma 4.7, we consider the function vϕ defined by

vϕ(x) = sup
Bϕ(x)(x)

u(y) .
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vϕ is continuous and we know that vϕ is subharmonic both in {vϕ < 0} and Ω+(vϕ) =

{vϕ > 0}. To complete the comparison we need to examine which kind of condition vϕ

satisfies on F (vϕ) = ∂Ω+(vϕ). We start with the asymptotic behavior of vϕ at F (vϕ).

Lemma 4.9. Let u be a continuous function and

vϕ(x) = sup
Bϕ(x)(x)

u

where ϕ is a positive C2-function with |∇ϕ| < 1. Assume that

x1 ∈ ∂Ω+(vϕ) , y1 ∈ ∂Ω+(u)

and that (fig. 4.6)

y1 ∈ ∂Bϕ(x1)(x1) .

Then:

a) x1 is a regular point from the right for F (vϕ)

b) If ν = y1−x1

|y1−x1| and near y1, nontangentially,

u+(y) = α〈y − y1, ν〉+ + o(|y − y1|) (4.13)

or

u−(y) = β〈y − y1, ν〉− + o(|y − y1|) (4.14)

then near x1, nontangentially,

v+(x) ≥ α〈x− x1, ν +∇ϕ(x1)〉+ + o(|x− x1|) (4.15)

or

v−(x) ≤ β〈x− x1, ν +∇ϕ(x1)〉− + o(|x− x1|) . (4.16)

c) If F (u) is a Lipschitz graph, with Lipschitz constant λ, and |∇ϕ| is small enough

(i.e., |∇ϕ| ≤ c(λ)� 1), then F (vϕ) is a Lipschitz graph with Lipschitz constant

λ′ ≤ λ + c1 sup |∇ϕ| .

Proof. a) Notice that Ω+(vϕ) contains the set

K = {|x− y1|2 < ϕ(x)2}

since for |x−y1| < ϕ(x), we have vϕ(x)(x) > u(y1) > 0. The boundary of K is a C2-surface,

since along ∂K

∇(|x− y1|2 − ϕ(x)2) = 2(x− y1 − ϕ(x)∇ϕ(x)) �= 0

because |∇ϕ| < 1. Now, x1 ∈ ∂K so that a) is proven.
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y
1

x
1

F(u)

F(v )

+(u)

+(v )

(x1)

Figure 4.7

b) Near x1

ϕ(x) = ϕ(x1) + 〈x− x1,∇ϕ(x1)〉+ o(|x− x1|) ,

hence, if

y = x + ϕ(x)ν

and (4.13) holds, we have, since y1 = x1 + ϕ(x1)ν,

vϕ(x) ≥ u(y) = α〈x + ϕ(x)ν − y1, ν〉+ + o(|y − y1|)
= α〈x− x1 + [ϕ(x)− ϕ(x1)]ν, ν〉+ + o(|x− x1|)
= α〈x− x1, ν +∇ϕ(x1)〉+ + o(|x− x1|) .

In the same way, (4.14) implies (4.16).

c) Ω+(u) is union of convex cones with vertices on F (u) and therefore we can suppose

that Ω+(u) is above the graph of a smooth convex cone xn = f(x′), x′ ∈ R
n−1.

Then ν = y1−x1

|y1−x1| is the inner unit normal to a supporting plane π to F (u) at y1 and it

must lie in a cone with axis en and opening artan λ.

On the other hand, the surfaces S1 = ∂K and

S2 = {dist(x, π)2 = ϕ(x)2}

are tangent to F (vϕ) at x1 from above and from below, respectively. Indeed, if x ∈ F (vϕ),

dist(x, F (u)) = ϕ(x) so that dist(x, π) ≤ ϕ(x).

Both surfaces are smooth with unit normal vector at x1 parallel to

ν̄ = ν +∇ϕ(x1) .
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en

F(u)

y1

 = artan

Figure 4.8

Therefore, if a(τ1, τ2) denotes the angle between the vectors τ1, τ2,

a(ν̄, en) ≤ a(ν, en) + a(ν, ν̄ )

≤ artan λ + arsin |∇ϕ(x1)|
≤ artan λ + c0|∇ϕ(x1)|

Now, since |∇ϕ| < 1

tan(artan λ + c0|∇ϕ(x1)|) ≤ λ + c1|∇ϕ(x1)|
1− λc1|∇ϕ(x1)|

If |∇ϕ| ≤ 1
c1(1+λ) , then

tan a(ν̄, en) ≤ λ + c1|∇ϕ(x1)|
that is F (vϕ) is Lipschitz with Lipschitz constant

λ′ ≤ λ + c1 sup |∇ϕ| . �

An important corollary is

Lemma 4.10. Let u be a viscosity solution of our free boundary problem. If ϕ satisfies

the hypotheses of Lemmas 4.9 and 4.7, then

a) vϕ is subharmonic in both Ω+(vϕ) and Ω−(vϕ).

b) Every point of F (vϕ) is regular from the right.

c) At every point x1 ∈ F (vϕ), vϕ satisfies the asymptotic inequality

vϕ(x) ≥ ᾱ〈x− x1, ν̄〉+ − β̄〈x− x1, ν̄〉− + o(|x− x1|) (4.17)
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with
ᾱ

1− |∇ϕ(x1)| ≥ G

(
β̄

1 + |∇ϕ(x1)|
)

. (4.18)

Proof. Let vϕ(x1) = u(y1). Then y1 ∈ F (u) and (4.13), (4.14) hold with α ≥ G(β).

Put

ν̄ =
ν +∇ϕ(x1)
|ν +∇ϕ(x1)| , ᾱ = α|ν +∇ϕ(x1)| , β̄ = β|ν +∇ϕ(x1)| .

Then, from (4.15), (4.16)

vϕ(x) ≥ ᾱ〈x− x1, ν̄〉+ − β̄〈x− x1, ν〉− + o(|x− x1|)
and α ≥ G(β) gives (4.18). �

Inequality (4.18) says that vϕ is “almost” a subsolution, due to the fact that ∇ϕ is not

identically zero. We shall later perturb vϕ to make it a subsolution. For the moment we

will construct a family of functions ϕt, satisfying the hypotheses of Lemma 4.9 and 4.7,

such that vεϕt carries the monotonicity gain from B1/8(x0) to the free boundary as t goes

from 0 to 1.

This means that we want ϕt = 1 along, say ∂B1, ϕt ≈ 1 + ctb on ∂B1/8(x0) and

ϕt ≈ 1 + μ̄tb in B1/2.

Lemma 4.11. Let 0 < r ≤ 1
8 . Then, there exist positive λ = λ(r), h = h(r) and a C2

family of functions ϕt, 0 ≤ t ≤ 1, defined in B̄1 � Br/2(3
4en) such that

(i) 1 ≤ ϕt ≤ 1 + th

(ii) ϕtΔϕt ≥ C|∇ϕt|2
(iii) ϕt ≡ 1 outside B7/8

(iv) ϕt|B1/2
≥ 1 + λth

(v) |∇ϕt| ≤ Cth.

Proof. Recalling Remark 4.8, let ψ0 be a smooth superharmonic function in B̄1 �

Br/2(3
4en) with, say, ψ0 = 1 on ∂Br/2(3

4en), ψ0 ≡ 2 outside B7/8, 1 ≤ ψ0 ≤ 2 in B̄1 and

ψ0 ≤ 2− γ (0 < γ < 2) on B̄1/2. Choose c > 1 and put

ϕ0 = ψ
1/1−c
0 .

Then, ϕ0Δϕ0 ≥ C|∇ϕ0|2, 21/1−c ≤ ϕ0 ≤ 1 in B̄1, ϕ0 ≡ 21/1−c outside B7/8 and

ϕ0 − 21/1−c ≥ C(γ) > 0 in B1/2. It is now easy to check that the family

ϕt = 1 + th
ϕ0 − 21/1−c

1− 21/1−c
(0 ≤ t ≤ 1)

satisfies (i)–(v), provided h is small enough. �
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x0

wt = u(x0)

wt = 0

wt = 0

wt = 0

F(v
t

)

+(v
t

)

Figure 4.9

We now go back to the solution u of our free boundary problem and construct the

family vϕt with ϕt as in Lemma 4.10. We will perturb vϕt by adding a correction term

that makes it a family of subsolutions for which the comparison Theorem 2.2 applies. This

correction term is a multiple of the harmonic measure of ∂B1/8(x0) with respect to the

domain {vϕt > 0}, extended by zero in the complement.

Lemma 4.12. Let u be a solution of our free boundary problem and ϕt the family

constructed in Lemma 4.11 with r = 1/8. Let wt be a continuous function in Ω =

B̄9/10 � B1/8(x0) defined by (fig. 4.9):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δwt = 0 in Ω+(vϕt) ∩ Ω ≡ Ωt

wt ≡ 0 in Ω̄ � Ωt

wt = 0 on ∂B9/10

wt = u(x0) on ∂B1/8(x0)

Then for a small constant c, h and any ε > 0 small enough,

Vt = vεϕt + cεwt (0 ≤ t ≤ 1)

is a family of subsolution.

Proof. The subharmonicity of Vt in Ω+(Vt) and Ω−(Vt) follows from Lemma 4.7. We

have to check that Vt has the correct asymptotic behavior. Notice that F (Vt) = F (vεϕt).

From Lemma 4.10, vεϕt satisfies the inequality (4.17) with

ᾱ

1− ε|∇ϕt| ≥ G

(
β̄

1 + ε|∇ϕt|
)
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Since |∇ϕt| ≡ 0 outside B7/8 the right inequality is satisfied by vεϕt and hence by Vt

since wt is positive. Inside B7/8 ∩ Ω+(Vt) we use the comparison theorem 11.5. Let x1 ∈
F (Vt) ∩ B7/8. Choosing ε (and therefore ε|∇ϕt|) small, from Lemma 4.9c) we have that

F (Vt) are uniformly Lipschitz domains. Therefore, in a neighborhood of x1,

vεϕt

wt
≤ c

since at an interior point the values of vεϕt and wt are comparable. Therefore, from the

asymptotic development of Lemma 4.11 we deduce that

V +
t (x) = (vεϕt + cεwt)+(x) ≥ α∗〈x− x1, ν〉+ + o(|x− x1|)

with α∗ ≥ (1 + cε)ᾱ. To complete the proof of the lemma, we must prove that if we choose

h small enough in the definition of ϕt, then

α∗ ≥ G(β̄) .

From the properties of G, s−NG(s) is decreasing. Hence

β̄−NG(β̄) ≤
[

β̄

1 + ε|∇ϕt|
]−N

G

(
β̄

1 + ε|∇ϕt|
)

or

G(β̄) ≤ (1 + ε|∇ϕt|)NG

(
β̄

1 + ε|∇ϕt|
)
≤ (1 + ε|∇ϕt|)N

1− ε|∇ϕt|
α∗

1 + cε
.

Since |∇ϕt| ≤ cht, the proof is complete if h is small enough. �

Now we are ready for steps 2 and 3.

4.5. Free boundary improvement. Basic iteration

We now use the family of subsolutions constructed in Lemma 4.11, and Theorem 2.2 to

get an improvement in the opening of the monotonicity cone up to the free boundary.

Lemma 4.13. Let u1 ≤ u2 be two solutions of our free boundary problem in B1, with

F (u2) Lipschitz and 0 ∈ F (u2). Assume that in B1−ε

vε(x) = sup
Bε(x)

u1 ≤ u2(x) (4.19)

that for b > 0, small,

vε(x0) ≤ (1− bε)u2(x0)
(
x0 = 3

4en

)
and that

B1/8(x0) ⊂ Ω+(u1) .
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Then, for ε small enough, there exists μ̄ (depending only on n, λ in Lemma 4.11 and the

Lipschitz constant of F (u2)) such that in B1/2

v(1+μ̄b)ε(x) ≤ u2(x) .

Proof. Put, for 0 ≤ t ≤ 1,

v̄t(x) = sup
Bεϕbt

(x)
u1 + Cbεwbt

where wt is as in Lemma 4.12. Then v̄t is a family of subsolutions. Let us check that v̄t

satisfies the hypotheses of Theorem 2.2 in Ω = B9/10 � B1/8(x0) with respect to u2.

(i) v̄0 ≤ u2 is clear from (4.19) in B9/10�Ω+(v̄0). In Ω+(v̄0) it follows from Lemma 4.5

and maximum principle, since w0 = u(x0) on ∂B1/8(x0).

(ii) Follows again from Lemma 4.5 and maximum principle, provided h in Lemma 4.11

is kept small enough; to ensure strict inequality along ∂B1∩Ω+(v̄t) we may replace

ε with any smaller ε′.

(iii) Follows from Lemma 4.9a).

(iv) Follows from the definition of v̄t.

We conclude that v̄t ≤ u2 for each t ∈ [0, 1]. In particular

v̄1 ≤ u2

which means

sup
B(1+μ̄b)ε(x)

u1 ≤ u2(x)

in B1/2 since ϕb|B1/2
≥ 1 + λbh ≡ 1 + μ̄b. �

We apply Lemma 4.12 to

u1(x) = u(x− τ) and u2(x) = u(x)

with τ ∈ Γ(θ
2 , en).

Thanks to Lemma 4.6 all the hypotheses are satisfied and therefore we conclude that,

in B1/2, for every small vector τ ∈ Γ(θ
2 , en)

sup
B(1+μ̄b)ε

u(y − τ) ≤ u(x)

The immediate consequence is

Lemma 4.14. Let u be a solution of our free boundary problem in C1. Assume that, for

some 0 < θ̄ < θ ≤ π/2, u is monotonically increasing along any direction τ ∈ Γ(θ, en).
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Then there exist λ = λ(θ̄, n) < 1 and a cone Γ(θ1, ν2) ⊃ Γ(θ, en) such that

δ1 ≤ λδ0

(
δ1 =

π

2
− θ1

)
and in C1/2, Dσu ≥ 0 for every σ ∈ Γ(θ1, ν1).

We are now ready for step 3.

Proof of Theorem 4.1. We repeat inductively Lemma 4.14 observing that if u is a

solution of our free boundary problem then uh(x) = u(hx)
h is also a solution in the corre-

sponding domain. We get that, in C2−k , u is monotone increasing along a cone of directions

Γ(θk, νk) (k ≥ 0)

with θ0 = θ, ν0 = en and

Γ(θk+1, νk+1) ⊃ Γ(θk, νk)

δk+1 ≤ λδk

(
δk =

π

2
− θk

)
.

It follows that δk ≤ δ0λ
k and hence that the free boundary is C1,α at the origin for some

α = α(λ) > 0. �



CHAPTER 5

Flat free boundaries are Lipschitz

5.1. Heuristic considerations

The second step in the proof of strong regularity results for the free boundary consists

basically in showing that, if the free boundary is uniformly close to a nice asymptotic

configuration, then it is actually Lipschitz. This is the case, for instance, when the dilations

uλ(x− x0) =
u(λ(x− x0))

λ

around a differentiability point x0 of F (u) converges to a two plane solution

αx+
1 − βx−

1

in a suitable system of coordinates.

It is convenient for us to replace “closeness” to a nice limit configuration by a “flatness”

condition, expressed by ε-monotonicity, along a large cone of directions Γ(θ0, ε), a notion

treated extensively in section 11.5

In particular, our basic hypothesis will be: there are a unit vector e and an angle θ0

with θ0 > π
4 (say) and ε > 0 (small) such that, for every ε′ ≥ ε,

sup
Bε′ sin θ0

(x)
u(y − ε′e) ≤ u(x)

The simplest theorem that can be proved is the following ([C2]).

x - 'e x - e

'sin 0

sin 0

x e

Figure 5.1. Cone of ε-monotonicity.

73



74 5. FLAT FREE BOUNDARIES ARE LIPSCHITZ

Theorem 5.1. Let π
4 < θ0 < π

2 and let u be a viscosity solution in C1 = B′
1× (−1, 1) of

the free boundary problem

Δu = 0 in Ω+(u) and Ω−(u)

u+
ν = G(u−

ν )

where G : R
+ → R

+ is strictly monotone and s−NG(s) is decreasing for some large N .

Assume u(0) = 0.

Then there exists ε = ε(θ0, G) such that, if u is ε-monotone in C1−ε = B′
1−ε × (−1 +

ε, 1 − ε) along any direction τ in the cone Γ(θ0, e), then u is fully monotone in C1/2 =

B′
1/2 × (−1

2 , 1
2 ) along any direction τ ∈ Γ(θ1, e), with θ1 = θ1(θ0, ε).

In particular, this implies that the free boundary F (u) is Lipschitz and therefore by

Theorem 4.1, also C1,γ .

The problem with the hypotheses of Theorem 5.1 is that if β is zero but u− �≡ 0, u−

could be very degenerate, that is, very close to zero, and not ε-monotone for any ε. We will

return later on this situation proving a more powerful theorem by making u− negligeable

in that case.

The strategy of the proof of Theorem 5.1 is based on the following inductive argument.

Supposing ε small and θ0 close to π/2, we show that u is εk-monotone along any direction

of a cone Γ(θk, e1) in the cylinders

C̃k = Bρk
× (−1, 1)

where

a) εk = λkε 0 < λ < 1

b) θk − θk−1 ≤ cεp
k 0 < p < 1

c) ρk − ρk−1 ≤ cεp′
k 0 < p′ < 1

with c, λ, p, p′ depending only on θ0, u, and p′ < p.

Then, we will get that in C1/2, u is fully monotone in a little smaller cone of the type

Γ(θ0 − cεk0 , e)

for some positive k0 = k0(θ0). Therefore F (u) is Lipschitz. Let us examine why it is possible

to implement the above strategy. The main reasons are the following.

1. From Lemma 11.12, we know that, for M large, outside an Mε-strip around the free

boundary, u becomes automatically fully monotone along τ ∈ Γ(θ, e). Thus, the improve-

ment of ε-monotonicity is needed only in an Mε-strip SMε between two Lipschitz graphs

(in the direction e).
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} ~M

M SM
- 

SM
+ 

e

Figure 5.2. The intersection of SMε with the boundary of the cylinder: the
“bad influence” region.

In particular, the only bad influence on the achievement of full monotonicity comes from

the intersection ΣMε of the strip with the boundary of the cylinder.

2. Let us try to transfer the “good information” (full monotonicity), available on the

top and the bottom of the strip, to its interior. The idea is to use the same type of con-

tinuous deformation argument of Theorem 4.1, constructing a suitable family of continuous

perturbation, as the maximum of u on balls of variable radius ϕ = ϕ(x). What should we

ask to ϕ?

Certainly, for supBϕ(x)(x) u = v(x) to be a subharmonic function in its positive and

negative sets. Therefore we ask

ϕΔϕ ≥ C|∇ϕ|2 (C � 1) .

As in section 4.4, a suitable correction has to be added to v to make it a R-subsolution;

this requires a control of |∇ϕ|.
We have now to carefully balance the size of ϕ in the strip. We know that, everywhere,

sup
Bε sin θ0

u(y − εe) ≤ u(x) .

Since we are willing to give up a small part of the original cone, we may translate a little

less, say (1− γ)ε, and pass from sin θ0 to sin θ0 − γ. Thus, we certainly have everywhere

sup
Bε(sin θ0−γ)(x)

u(y − (1− γ)ε) ≤ u(x)

since

Bε(sin θ0−γ)(x− (1− γ)εe) ⊂ Bε sin θ0(x− εe) .
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} 

}
x

(sin 0 )
(1 )

sin 0

Figure 5.3. A loss in ε-monotonicity.

On the other hand, on the top S+
Mε and the bottom S−

Mε of the Mε-strip, we know that

u is fully monotone so that, there we can write

sup
B(1−γ)ε sin θ0

(x)
u(y − (1− γ)εe) ≤ u(x) .

This means that:

a) we can take ϕ(x) ≈ (1 − γ)ε sin θ0 on S+
Mε and S−

Mε, with a gain of γε in mono-

tonicity with no loss in the opening θ0 of the cone;

b) we are forced to take ϕ(x) ≈ ε(sin θ0 − γ) near ΣMε, the intersection of the strip

with ∂C1, with a loss of order γ(1 − sin θ0) in the opening of the cone.

3. This last loss is clearly very bad for our iteration argument, unless it decreases very

fast with the distance from ∂C1. Indeed, we can control the effect of ΣMε on the variable

radius, away from ∂C1, by means of an estimate for the harmonic measure ωx(ΣMε) of that

strip. According to that estimate (see Lemma 5.3),

ωx(ΣMε) ∼Mε
d(x, ∂C1)

d(x,ΣMε)2

so that, if we are inside SMε at a distance at least Cε from ∂C1 since d(x, ∂C1) and d(x,ΣMε)

are comparable, we have

ωx(ΣMε) ∼ ε d(x, ∂C1)−1

and

|∇ωx(ΣMε)| ≤ C εd(x, ∂C1)−2 .

As a consequence, the effect of ΣMε on the variable radius ϕ will dissipate ε-away from ∂C1
as

ε d(x, ∂C1)−1oscϕ
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and |∇ϕ| will decay as

ε d(x, ∂C1)−2oscϕ .

This means that if we stay at a distance of order εa from ∂C1, 0 < a < 1, ϕ will

decrease from its optimal value (corresponding to no loss in monotonicity) of a quantity of

order ε1−2a with a sacrifice of Cε1−2a in the opening of the cone. At the same time, the

perturbation in the free boundary condition requires a correction of order |∇ϕ| ∼ ε1−2a.

4. Writing the family of variable radii in the form εϕt we are lead to the following

requirements for ϕt:

a) ϕtΔϕt ≥ C|∇ϕt|2
b) ϕ0 ≤ sin θ0 − γ

c) ϕt ≤ sin θ0 − γ near the edges of SMε and ϕt = (1 − γ) sin θ0 − εσ , with suitable

0 < σ < 1 (the εσ is necessary for the correction term) for at least one t̄ > 0, inside

the strip at a distance εa from ∂C1.
d) The various parameters have to be chosen such that a < σ and, for θ0 close to π/2,

γ ≤ sin θ0 − 1
2 (say).

In this way, letting λ = 1− γ, one has

sup
Bϕt̄(x)(x)

u(y − λε) ≤ u(x)

giving λε monotonicity in a cone Γ(θ1, e), with θ0 − θ1 ≤ Cεσ, εa-away from ∂C1.

That is, we gain a geometric increment of monotonicity, sacrificing a geometrically

decaying amount of angle and radius.

It is clear that a careful adjustment would produce full monotonicity in C1/2 at least in

a cone Γ(θ0/2, e).

5.2. An auxiliary family of function

In this section we construct a perturbation family of functions adapted to a Lipschitz

δ-strip.

Lemma 5.2. Let A be the graph of a Lipschitz function xn = f(x′) in B′
1 ⊂ R

n−1 with

f(0) = 0 and Lipschitz norm L. Let C = B̄′
1 × [−2L, 2L]. Then, given δ > 0 (small), there

exists a family C2 functions ϕt, 0 ≤ t ≤ 1

a) 1 ≤ ϕt ≤ 1 + t

b) ϕtΔϕt ≥ C|∇ϕt|2
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c) ϕt ≈ 1 on

Aδ = {x : d(x,A ∩ ∂C) < δ}
d) in the set {x : d(x, ∂C) > δ}

ϕt ≥ 1 + t

[
1− Cδ

d(x, ∂C)2
]

e) |∇ϕt| ≤ Ct
δ

Proof. Let ψ0 be the harmonic function in C with boundary values given by a δ-

smoothing of χA2δ
. In particular

ψ0 ≡ 1 on Aδ ∩ ∂C
ψ0 ≡ 0 outside A3δ ∩ ∂C .

Claim. We have:

i) at a distance at least δ from ∂C:

ψ0 ≤ cδ/d(x, ∂C)2 and |∇ψ0| ≤ c/δ

ii) in Aδ,

ψ0 ≥ c > 0 .

Assume the claim. We expand, truncate and mollify of order δ defining

ψ1 = min{cψ0((1− δ)x), 1} ∗ ξδ .

If c is chosen large enough, ψ1 has the following properties:

i) ψ1 is defined and superharmonic in C
ii) |∇ψ1| ≤ c/δ

iii) ψ1 ≡ 1 on Aδ ∩ C
iv) in the set {x : d(x, ∂C) > δ}

ψ1 ≤ cδ/d(x, ∂C)2

We next define

ψ2 =
(

1 + ψ1

2

)1/(1−2c)

with c > 1, the constant appearing in Lemma 5.2. Then

0 ≥ Δ(ψ1−2c
2 ) = (1− 2c)ψ−2c

2 Δψ2 + (1 − 2c)(−2c)ψ−2c−1
2 |∇ψ2|2

or

ψ2Δψ2 ≥ 2c|∇ψ2|2 .
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Moreover, ψ2|Aδ
≡ 1, 1 ≤ ψ2 ≤ 21/(2c−1) and, if d(x, ∂C) > δ,

ψ2(x) ≥ 21/(2c−1) − cδ d(x, ∂C)−2 .

Finally, the function

ϕt = 1 + t
(ψ2 − 1)

21/(2c−1) − 1
0 ≤ t ≤ 1

has all the property a)–e) listed above. �

The claim follows from the following estimate for the harmonic measure of a thin Lips-

chitz strip.

Lemma 5.3. Let C, f , A, Aδ as in Lemma 5.2 and Sδ = Aδ ∩ ∂C. Let w(x) = ωx(Sδ)

the harmonic measure of Sδ in C. Then:

a) If d(x, ∂C) ≥ δ,

w(x) ≤ c
δd(x, ∂C)
d(x, Sδ)2

. (5.1)

b) If d(x,A ∩ ∂C) ≤ c̄d(x, ∂C) ≤ c̄δ,

w(x) ≥ c > 0

where c depends only on c̄.

Proof. We are interested near Sδ. Therefore, the boundary of C is smooth so that the

Poisson kernel for the cylinder P (x, y) behaves like that of a half plane. That is, for y ∈ ∂C,

P (x, y) ∼ d(x, ∂C)
|x− y|n . (5.2)

Moreover

w(x) =
∫

∂C
P (x, y)χSδ

(y) dy .

If we make the Lipschitz transformation

z′ = x′ , zn = xn − f(x′)

that straightens the strip Sδ, the estimate (5.2) remains true and therefore, in the points of

interest,

w(x) ∼ h(z) (z = z(x))

with h the harmonic function in the infinite cylinder satisfying

h|∂C = χ|zn|<δ .



80 5. FLAT FREE BOUNDARIES ARE LIPSCHITZ

Thus, h has the asymptotic two dimensional behavior of h∗, the harmonic function in the

half plane {(z1, zn) : z1 > 0} with boundary values equal to 1 in S∗
δ = {|zn| < δ, z1 = 0}.

Since

h∗(z1, zn) =
∫ δ

−δ

z1

(zn − s)2 + z2
1

ds ≤ c
δz1

d(z, S∗
δ )2

a) and b) follows after the inverse Lipschitz transformations. �

5.3. Level surfaces of normal perturbations of ε-monotone functions

We are going to use the perturbation family ϕt of Lemma 5.2 in order to construct our

basic family of R-subsolution. First we need to study the level surfaces of

v(x) = sup
Bϕ(x)(x)

u

where ϕ is a smooth positive function and u is ε-monotone.

We do it through the following lemma.

Lemma 5.4. Let ϕ ∈ C2(B1) be a positive function and let u be ε-monotone along every

τ ∈ Γ(θ, e) in a domain D so large that the function

v(x) = sup
Bϕ(x)(x)

u

is well defined in B1.

Assume that

sin θ̄ ≤ 1
1 + |∇ϕ|

(
sin θ − ε

2ϕ
cos2 θ − |∇ϕ|

)
.

Then, v is monotone in the cone Γ( θ̄, e); in particular its level surfaces are Lipschitz graph,

in the direction of e, with Lipschitz constant L̃ ≤ cotg θ̄.

Proof. Let v(x0) = u(y0), with |x0 − y0| = ϕ(x0). We first estimate the maximum

angle α(y0 − x0, e) between the vectors y0 − x0 and e. Consider y0 + εe. If Bε sin θ(y0 + εe)

intersects Bϕ(x0)(x0) at a point z, then u(y0) < u(z), so that the maximum is achieved

when Bϕ(x0)(x0) is tangent to Bε sin θ(y0 + εe). Hence, suppose that Bε sin θ(y0 + εe) touches

Bϕ(x0)(x0) at a point z0. Since

|ε sin θ + ϕ(x0)|2 = |y0 + εe− x0|2

= |y0 − x0|2 + ε2 − 2ε〈y0 − x0, e〉
= ε2 + ϕ(x0)2 + 2εϕ(x0) cos α

we have

cos α = sin θ − ε

2ϕ(x0)
cos2 θ . (5.3)
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x0

y0

9
B (x0)(x0)

(x) = |x y0|2- 

e

- - 

v > v (x0)

Figure 5.4

As in Lemma 4.9, the set

{x : v(x) ≥ v(x0)}
contains the domain

{x : |x− y0|2 ≤ ϕ(x)2}
that has the unit normal

ν̄ = (ν +∇ϕ(x0))/|ν +∇ϕ(x0)|
at x0, where ν = (y0 − x0)/|y0 − x0|.

Hence, if θ̄ ≤ π
2 −α( ν̄, e), the set {x : v(x) ≥ v(x0)} contains x0 +Γ( θ̄, e)∩Bρ, for some

ρ > 0.

The requirement on θ̄ is equivalent to asking

sin θ̄ ≤ cos α( ν̄, e) = 〈ν̄, e〉
Since |ν +∇ϕ(x0)| ≤ 1 + |∇ϕ(x0)|, from (5.3)

〈ν̄, e〉 ≥ 1
1 + |∇ϕ(x0)| 〈ν +∇ϕ(x0), e〉

≥ 1
1 + |∇ϕ(x0)|

(
sin θ − ε

2ϕ(x0)
cos2 θ − |∇ϕ(x0)|

)
.

Therefore it is enough to require that

sin θ̄ ≤ 1
1 + |∇ϕ(x0)|

(
sin θ − ε

2ϕ(x0)
cos2 θ − |∇ϕ(x0)|

)
. �

We will use Lemma 5.3 with θ = θ0 > π
4 (say) and ϕ = σϕt, 1

2ε < σ < ε and ϕt as in

Lemma 5.2. If moreover we keep |∇ϕ| < cε, v will be monotone in a cone Γ( θ̄, e) with θ̄

strictly positive.
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5.4. A continuous family of R subsolutions

At this point we have all the ingredients to construct a family of R-subsolutions, adapted

for a comparison theorem.

Let u be a solution of our free boundary problem in the cylinder C1 = B′
1 × (−2, 2). In

the sequel we set Cρ = B′
ρ× (−2ρ, 2ρ). If u is ε-monotone along τ ∈ Γ(θ0, e), θ0 > π/4, then

(see Proposition 2, section 11.5) F (u) is contain in a ε-neighborhood Nε(A) of the graph A

of a Lipschitz continuous function f with Lipschitz constant L < 1. Moreover, for a large

M , (see Lemma 11.12) u is fully monotone outside NMε(A). Let now ϕt be the family of

functions constructed in Lemma 5.2:

vt(x) = sup
Bσϕt(x)(x)

u (0 ≤ t < 1)

with 1
2ε < σ < 2ε. Then vt is well defined in C1−4ε. We set Ω+(vt) = C1−4ε ∩ {vt > 0}. Let

also wt be the harmonic function in Ω+(vt) ∩ NCMε(A) with boundary values

wt =

{
u on ∂NCMε(A) ∩Ω+(vt)
0 otherwise.

We extend wt to zero outside Ω+(vt).

Lemma 5.5. For 0 ≤ t ≤ 1, η > 0, define in C1−4ε,

v̄t = vt + ηwt .

There exist positive constants c1, c2, depending only on N in Theorem 5.1 such that, if

i) θ0 ≥ π/4

ii) η ≥ c1σ/δ (δ from the construction of ϕt, δ � ε)

iii) σ/δ ≤ c2

then, v̄t is a R-subsolution of our free boundary problem in C1−4ε.

Proof. We first make sure that F (vt) = ∂Ω+(vt) ∩ C1−4ε is uniformly Lipschitz. Ac-

cording to Lemma 5.4,
1

1 + σ|∇ϕt|
(

sin θ0 − ε

2σϕt
cos2 θ0 − σ|∇ϕt|

)
must be kept strictly positive, that is, since |∇ϕt| ≤ c/δ,

1
1 + cσ/δ

(
sin θ0 − ε

2σ
cos2 θ0 − c

σ

δ

)
must be strictly positive. If, say, θ0 > π/4, 1

2ε < σ < 2ε and σ/δ is small, this is ensured.

We want now that v̄t satisfies the appropriate free boundary conditions. Since ϕt ≡ 1

a δ-neighborhood of Aδ (see Lemma 5.2), and δ � ε, it is enough to consider points, say,



5.4. A CONTINUOUS FAMILY OF R SUBSOLUTIONS 83

6ε away from C1−4ε. According to the calculations in Lemma 4.9, any point x0 ∈ F (vt) is

regular from the right and near x0,

vt(x) ≥ α〈x− x0, ν +∇ϕ(x0)〉+ − β〈x− x0, ν +∇ϕ(x0)〉− + o(|x− x0|)

with α = G(β), and where ν is the unit inward normal to the touching ball B ⊂ Ω+(vt) at

x0. Concerning the correction term wt, if we stay at distance greater than (say) 6ε from

∂C1−4ε, then, from the comparison Theorem A, near x0,

wt ≥ cvt

with c depending on θ0, n.

Hence, 10ε-away from ∂C1, we have

v̄t ≥ α̃〈x− x0, ν̃〉+ + β〈x− x0, ν̃〉− + o(|x− x0|)

where

α̃ ≥ (1 + cη)(1 − cσ|∇ϕt|)α , β̃ ≤ (1 + cσ|∇ϕt|)β

and ν̃ = (ν +∇ϕ(x0))/|ν +∇ϕ(x0)|.
For v̄t to be a R-subsolution we want

α̃ ≥ G(β̃)

that is, since α = G(β)

(1 + cη)(1 − cσ|∇ϕt|)G(β) ≥ G
(
(1 + cσ|∇ϕt|)β

)
. (5.4)

Since |∇ϕt| ≤ ct/δ, s−NG(s) is decreasing and G is increasing, we have

1− cσ|∇ϕt| ≥ 1− c
σt

δ
, 1 + cσ|∇ϕt| ≤ 1 + c

σt

δ

and

G(β) ≥
(

1 + c
σt

δ

)−N

G

((
1 + c

σt

δ

)
β

)
.

Therefore it is enough to show

(1 + cη)
(

1− c
σt

δ

)
≥
(

1 + c
σt

δ

)N

.

This is possible if σt/δ � 1 and η � σ/δ, both depending on N . �
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5.5. Proof of Theorem 5.1

Before going to the proof of Theorem 5.1 we need to show that for an ε-monotone so-

lution u of our free boundary problem, at least Mε away from the free boundary, |∇u(x)|
behaves like u(x)/dist(x, F (u)) since u becomes fully monotone and its level surfaces Lips-

chitz graphs.

This is the content of the following Lemma.

Lemma 5.6. Let u ∈ C(C1), u ≥ 0, u(0) = 0 be ε-monotone along Γ(θ, en), harmonic in

Ω±(u).

There exist ε0 = ε0(n), M = M(n), C = C(n, θ) such that if ε ≤ ε0 and x ∈ C1/2,

dist(x, F (u)) > CMε, then

|∇u(x)| ∼ u(x)
dist(x, F (u))

. (5.5)

Proof. Let x ∈ Ω+(u), dist(x, F (u)) = dx. The inequality

|∇u(x)| ≤ cu(x)/dx

comes from standard interior estimates and Harnack inequality.

Thus, let us prove that, if dx ≥ CMε,

|∇u(x)| ≥ cu(x)/dx .

F (u) = ∂Ω+(u) is contained in a (1− sin θ)ε-strip bounded by two Lipschitz functions with

Lipschitz constant L = cotg θ. Moreover, from Lemma 11.15, u is fully monotone outside a

Mε neighborhood of F (u), with M = M(n), large enough.

Let x0 ∈ Ω+(u), dx0 = 10Mε and set u(x0) = a. The level surface {u = a} is a Lipschitz

surface in the ball B4ηε(x0) at distance greater than 8Mε from F (u), if η = η(L) is chosen

properly small.

Consider the cylinder

Tε[−20Mε, 20Mε] ×B′
ηε(x0) ,

and denote by ω the harmonic measure in Tε.

Since |∂Tε ∩ {u = 0}| ≥ γ|∂Tε| with 0 < γ < 1, γ = γ(n, θ), from Lemma 7c) we have

also

ωx(∂Tε ∩ {u = 0}) ≥ γ′|∂Tε|
with 0 < γ′ < 1, γ′ = γ′(n, θ).

Then, from the subharmonicity of u in Tε,

a ≤
∫

∂Tε

u dωx ≤ (1− γ′)max
∂Tε

u .
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Therefore, there exists y0 ∈ ∂Tε such that

u(y0) ≥ 1
(1− γ′)

a ≡ k0a > a

and the level surface {u = k0a} ∩B4ηε(y0) has distance from F (u) less than CMε. Notice

that {u > a} ⊃ {u > k0a}. Therefore, if x ∈ {u > k0a} we have, since (u− a)+ is harmonic

in Tε ∩ {u > a}, from Theorem 11.8,

(u(x) − a)+ ≤ c|∇u(x)|d(x, ∂{u > a}) ≤ c|∇u(x)| dx .

On the other hand,

u(x)− a =
1
k0

u(x)− a +
(

1− 1
k0

)
u(x) ≥

(
1− 1

k0

)
u(x)

and (5.5) follows if dx ≥ CMε and |x′ − x′
0| < ηε. Since x0 ∈ Ω+(u) is an arbitrary point

at distance 10Mε from F (u), (5.5) holds if x ∈ C1/2 ∩ Ω+(u) with dx ≥ CMε. �

We are now ready for the proof of Theorem 5.1. The basic inductive lemma is the

following.

Lemma 5.7. Let u be a solution of our free boundary problem in C1, ε-monotone along

the cone of directions Γ(θ, en) for some ε0 > ε, with π
4 < θ0 ≤ θ ≤ π

2 . Assume u(0) = 0.

Then, there exist positive c0 = c0(θ0), ε0(θ0) and λ = λ(θ0), λ < 1, such that u is λε-

monotone along the cone of directions Γ(θ − c0ε
1/4, en) in C1/2.

Proof. Let λ < 1 to be chosen later and let

u1(x) = u(x− λεen) .

From the ε-monotonicity of u (for 1− λ <
√

2/2), we have

sup
Bε(sin θ−(1−λ))(x)

u1 ≤ u(x) ≡ u2(x) (5.6)

since

Bε(sin θ−(1−λ))(x− λεen) ⊂ Bε sin θ(x− εen) .

Notice that, choosing a slightly smaller radius ε(sin θ − (1 − λ′)), λ′ < λ, we have strict

inequality in (5.6).

On the other hand, u is fully monotone outside NMε, an Mε-neighborhood of the graph

of a Lipschitz function xn = f(x′). Therefore

sup
Bλε sin θ(x)

u1 ≤ u2(x)

for any x /∈ NMε.
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Our purpose is to obtain, by means of the family ϕt, an intermediate radius σϕt, such

that

sup
Bσϕt (x)

u1 ≤ u2(x)

for x ∈ C1−cε1/8 ∩ NCMε.

We fix now the various parameters according to the requirements in Lemma 5.2–5.5.

We choose:

σ = ε(sin θ − (1− λ)− ε2) , λ ≥ 3
2
−
√

2
2

, η = ε1/4 , δ = ε1/2 .

To give room for the control of the correction term ηwt, of order ε1/4, we limit t to make

sure that

σϕt ≤ ε(λ sin θ − c̄ε1/4) (5.7)

for some c̄ to be chosen later, that is

[sin θ − (1− λ)](1 + t) ≤ λ sin θ − c̄ε1/4

(with a slightly smaller c̄) or

1 + t ≤ λ sin θ − c̄ε1/4

sin θ − (1− λ)
≤ λ sin π

4

sin π
4 − (1− λ)

.

To have equality in (5.7) for some t̄, 0 < t̄ ≤ 1, it is then enough to choose λ so close to one

to have
λ sin π

4

sin π
4 − (1− λ)

≤ 2 .

We want to show that the family v̄t so chosen, satisfies

v̄t ≤ u2

in C1−cε1/8 ∩ NCMε, for 0 ≤ t ≤ t̄, if c large enough. Since v̄t is a R-subsolution we have

only to check that v̄t < u2 on the boundary.

On the positive side, along

∂NCMε ∩ C1−4ε

we have, for R1 ≤ R2 ≤ λε sin θ,

sup
BR1

(x)
u1 ≤ sup

BR2
(x)

u1 − (R2 −R1)|∇u1(x)| ≤
[
1− R2 −R2

CMε

]
u2(x)

since, by Lemma 5.6, u(x) ∼ d(x, F (u))|∇u(x)|.
With R1 = σϕt and R2 = λε sin θ we get, for 0 ≤ t ≤ t̄, R2 − R1 ≥ c̄ε1+1/4 so that,

adjusting the constant c̄,

vt ≤ (1− c̃1/4)u2 < u2 − ε1/4wt
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since wt ≤ cu2 along ∂NCMε ∩ C1−4ε, by Harnack inequality. Thus,

v̄t < u2 .

On ∂C1−4ε ∩ NCMε, wt = 0 and since ε1/2 � ε, ϕt ≡ 1 in a ε-neighborhood of this set, so

that

v̄t = vt < u2 0 ≤ t ≤ t̄ .

Consider now the set

E = {t : v̄t ≤ u2 in C1−4ε ∩ NCMε}
E �= ∅ since 0 ∈ E, via maximum principle argument. E is obviously closed. To see that it

is open we show that if vt ≤ u2 in C1−4ε ∩ NCMε, then

Ω+(vt) ⊂⊂ Ω+(u) ∩NCMε ∩ C1−4ε .

If not, F (vt) and F (u2) have to touch at some point x0, which is therefore a regular point

from the right for both free boundaries.

Moreover, since ϕt ≡ 1 in a ε-neighborhood of ∂C1−4ε∩NCMε, it must be d(x0, ∂C1−4ε) ≥
cε and near x0, by the comparison Theorem 11.5, we have

wt ≥ cvt .

We can now reach a contradiction as in the proof of Lemma 4.12.

We conclude that E = [0, t̄] or

v̄t ≤ u2 in C1−4ε ∩ NCMε

for every 0 ≤ t ≤ t̄. If we stay more inside, that is in C1−cε1/8∩NCMε, from d) of Lemma 5.2

we deduce

ϕt ≥ 1 + t

[
1− cε1/2

d(x, ∂C1−4ε)2

]
≥ 1 + t(1− cε1/4) .

For the maximum t, t = t̄, we have equality in (5.7), so that, in C1−cε1/8 ∩NCMε,

σϕt̄ ≥ ελ sin θ − c̄ε1+1/4 − ctε1+1/4 ≥ ε(λ sin θ − c̃ε1/4)

that implies

sup
B

ε(λ sin θ−c̃ε1/4)
(x)

u1 ≤ u2(x) .

Since

λ sin θ − c̃ε1/4 ≥ λ sin(θ − c0ε
1/4)

for a suitable positive c0, the proof is complete. �
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Proof of Theorem 5.1. Iteration of Lemma 5.7 gives a sequence of domains

Ck = BRk
× (−4RkL, 4RkL)

where Rk = 1−∑k
p=1(cλ

pε)1/8, in which u is λkε monotone along any direction τ of a cone

Γ(θk, en) where

θk = θ0 −
k∑

p=1

(cλpε)1/4 .

To complete the proof it is enough to choose ε0 = ε(θ0) so small that

Rk > R∞ ≥ 1
2

and θk > θ∞ ≥ 1
2

(
θ0 +

π

4

)
. �

5.6. A degenerate case

Theorem 5.1 holds also for one-phase problems where u− ≡ 0, ending up, using Theo-

rem 4.1, with a C1,γ free boundary, that in particular implies u+
ν ≥ c > 0 on F (u).

As we will see clearly in the parabolic case, in the hypothesis of ε-monotonicity (for both

u+, u−) in a flat cone is hidden, in a rather subtle way, a non degenerate free boundary

condition of the positive part u+: u+
ν ≥ c > 0 in the viscosity sense.

The next theorem deals with a case in which u− could be degenerate, that is very close to

zero without being identically zero. For instance if u+ is ε-monotone along τ ∈ Γ(θ, en) and

∂Ω+(u) is contained in an ε-neighborhood of the graph A of a Lipschitz function xn = f(x′),

it could be that u− ≡ 0 below A and u− > 0 somewhere between A and Ω+(u). In this case

u− is not ε-monotone for any ε.

The following theorem covers this situation ([C2]).

Theorem 5.8. Let u be a solution of our free boundary problem in C1 with 0 ∈ F (u).

Suppose that:

i) α0 ≤ u+(x)/d(x, F (u)) ≤ α1, i.e., u+ is Lipschitz and has linear growth.

ii) G is increasing, s−NG(s) is decreasing and moreover G is Lipschitz continuous

with G(0) > 0.

Then, there exist

a) a θ0 < π/2

b) an ε0

such that, if u+ is ε-monotone along every τ ∈ Γ(θ0, en) for some ε ≤ ε0, then u+ is fully

monotone in C1/2 along any τ ∈ Γ(θ1, en), with θ1 = θ1(θ0, ε0). In particular, F (u) is the

graph of a Lipschitz function and therefore, by Theorem 4.1, a graph of a C1,γ function.
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The strategy of the proof is to balance the situation in which u+ highly predominates

over u− and the case in which u− is not too small with respect to u+.

The next basic lemma deals with this dichotomy; A always denotes the graph of the

Lipschitz function f . It says that as long as u− is very small we can improve the ε-

monotonicity of u+ and when u− goes through a threshold the whole u becomes ε-monotone.

Lemma 5.9. Let u be as in Theorem 5.8 and

m = sup
C7/8

|u| .

then, there exist θ0 such that, if θ ≥ θ0 > θ1 > π/4 and ε ≤ ε0 we have the following

alternative: there is a large constant K, such that

(a) if u−(−1
2en) < Kmε, then u+ is λε-monotone in C1−ε1/8 along any τ ∈ Γ(θ −

ε1/4, en) with λ = λ(θ0) < 1.

(b) if u−(−1
2en) ≥ Kmε, then u is cε1/8-monotone along any τ ∈ Γ(θ1, en) in a δ0-

neighborhood of A in C1/2, δ0 = δ0(θ0)

Proof. Let ρ � ε and x0 ∈ F (u) ∩ C1−2ρ be a point where F (u) has a touching ball

contained in {u ≤ 0}. Then, near x0,

u−(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|) .

From the monotonicity formula and i) in Theorem 5.8, we have,

0 ≤ β ≤ c
α1

α0

m

ρ
.

In particular this implies that u− is Lipschitz continuous in Nρ(F (u))∩C1−2ρ with Lipschitz

constant

Lip(u−) ≤ c̄ m/ρ .

Therefore, if x ∈ Nε(A) ∩ C1−2ρ, then

u−(x) ≤ c̄mε/ρ . (5.8)

Assume now alternative a), that is u−(−1
2en) < Kmε.

We want to control u− below the graph A in C1−2ρ. Let v be the harmonic function in

{xn < f(x′)} ∩ C1−2ρ with boundary values

v =

{
0 on A

u− otherwise

Then, by maximum principle, in {xn ≤ f(x′)} ∩ C1−2ρ

v ≤ ū ≤ v + C̄mε/ρ . (5.9)
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{

u = 0--

u = 0-
+v   = u- v = u-

A
2

Figure 5.5

On the other hand, from the boundary and interior Harnack inequality, there is a large

k = k(θ0) such that, in C1−2ρ ∩ {xn < f(x′)},

v(x) ≤ c
v(−1

2en)
ρk

≤ c
u(−1

2en)
ρk

. (5.10)

The monotonicity formula gives now, at a regular point x0 ∈ F (u)

β2 ≤ c
1
ρ2

∫
Bρ(x0)

|∇u−|2|x− x0|2−n dx ≤ c

ρ2
( sup
Bρ(x0)

u−)2

or

β ≤ c

ρ

{
mε

ρ
+

u−(−1
2en)

ρk

}
. (5.11)

Choose ρ so that ρk+1 = ε1/2. Then, from (5.11)

β ≤ Cm
{
ε1− 1

k+1 + ε1/2
}
≤ Cmε1/2 .

We can now proceed as in Lemma 5.7 with

u1(x) = u+(x− λεen)

and

u2(x) = u+(x) .

Constructing the family v̄t corresponding to u+ instead of u. To make v̄t an R-subsolution,

at a point x0 ∈ F (v̄t), regular from the right, we must require (see formula (5.4)):

(1 + cη)
(

1− c
σt

δ

)
G(0) ≥ G(Cmε1/2) .

Since G(Cmε1/2) ≤ G(0) + Cmε1/2, it is enough that

η ≥ c
{σ

δ
+ ε1/2

}
(5.12)

which is satisfied with the usual choices σ ∼ ε, δ = ε1/2, η = ε1/4.

Then, the proof goes as in Lemma 5.7 and we get that u+ is λε-monotone along every

τ ∈ Γ(θ − Cε1/4, en) in C1−ε1/8, as before.
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If alternative (b) holds, choose ρ = 1/8. Then (5.11) gives

β ≤ cu−
(
−1

2
en

)
so that, in C7/8

u−(x) ≤ cu−
(
−1

2
en

)
d(x, F (u)) . (5.13)

For the auxiliary function v, we use the results in section 11.4, to deduce that, in Nδ0(A)∩
{xn < f(x′)}, with δ0 = δ0(θ0),

(1) v is (fully) monotone along every direction τ in the cone Γ(θ1,−en), if θ1 ≤ θ0− π
8

(say).

(2) If x1, x2 ∈ Nδ0(A) ∩ {xn < f(x′)} and

τ =
x2 − x1

|x2 − x1| ∈ Γ(θ1,−en)

then, for 1
2 ≤ λ ≤ 1 and x = x1 + λ(x2 − x1),

Dτv(x) ≥ c
v(x2)

δ0
. (5.14)

Furthermore, let h = h(z) be the auxiliary harmonic function of the form

h(z) = rag(σ) (z = rσ, r = |z|, σ ∈ ∂B1)

with g the first eigenfunction of the Laplace-Beltrami operator in the polar cap

〈σ,−en〉 ≤ θ0 .

Then, for x0 ∈ A ∩ C7/8 and x − x0 ∈ Γ(θ1,−en), using Harnack inequality and the

maximum principle

v(x) ≥ cv

(
−1

2
en

)
h(x− x0) ≥ c

{
u−

(
− 1

2
en

)
− Cεm

}
h(x− x0)

Thus, if the constant K in (b) is large enough and x− x0 ∈ Γ(θ1,−en), we can write

v(x) ≥ c u−
(
−1

2
en

)
|x− x0|a . (5.15)

We are now ready to prove the cε1/8-monotonicity of u− along every τ ∈ Γ(θ1,−en), in

Nδ0/2
(A) ∩ {xn < f(x′)}. Let x1, x2 satisfy

c2ε
1/8 ≥ |x1 − x2| ≥ c1ε

1/8

and x1 − x2 ∈ Γ(θ1,−en). We want to show that

u−(x2) ≥ u−(x1) . (5.16)

If x1 ∈ Ω+(u) the inequality is trivial, so it is enough to consider x1 below the graph

{xn = f(x′) + ε} = Aε.
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If x1, x2 are both below A, then, from (5.4)

v(x2)− v(x1) ≥ c
v(x2)

δ0
ε1/8

and since (5.15) gives

v(x2) ≥ cu−
(
−1

2
en

)
εa/8 (5.17)

we obtain

v(x2)− v(x1) ≥ c

δ0
u−

(
−1

2
en

)
ε(a+1)/8 .

On the other hand, from (5.9), we have

v ≤ u− ≤ v + cu−
(
−1

2
en

)
ε

in C7/8. Thus

u−(x2)− u−(x1) ≥ v(x2)− v(x1)− cu−
(
−1

2
en

)
ε

≥ c

δ0
u−

(
−1

2
en

){
ε(a+1)/8 − cε

}
.

If we choose θ0 enough close to π/2, then a is close to 1. Hence we may assume a < 7

and get

u−(x2)− u−(x1) ≥ 0 .

If x2 is below A and x1 is between A and A′,

u−(x2)− u−(x1) ≥ v(x2)− cu−
(
−1

2
en

)
ε ≥ c

δ0
u−

(
−1

2
en

){
εa/8 − cε

}
≥ 0

and alternative (b) is proved. �

Proof of Theorem 5.8. Either we are already in alternative (b) or we iterate alter-

native (a) until we reach (if ever) alternative (b). �

A variant of Theorem 5.8 is the following

Theorem 5.10. In the hypotheses of Theorem 5.8 replace the ε-monotonicity of u+ with

the following condition: there exist θ̄ < π
2 and ε̄ such that, if for ε < ε̄, F (u) is contained

in a ε-neighborhood of the graph of a Lipschitz function xn = f(x′), with Lipschitz norm

Lip(f) ≤ tan
(π

2
− θ̄

)
,

then the same conclusions hold.
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Proof. We show that u+ is Cε-monotone in Γ(θ, en) for suitable θ and ε, thus reducing

Theorem 5.10 to Theorem 5.8.

Let θ0 be as in Theorem 5.8 and let θ̄ > θ0 chosen. Consider the harmonic function v

in C7/8, vanishing on Aε = {xn = f(x′) − c0ε} and v = u+ on ∂C7/8 ∩ {xn > f(x′) − c0ε}.
Choose c0 in such a way Aε ⊂ CΩ+(u).

Then, by maximum principle, Harnack inequality, and the linear growth of u+,

u+(x) + 2c0ε ≥ v(x) ≥ u+(x) ≥ c1d(x,Aε)− c2ε

in Ω+(u), if c0 is large enough.

Moreover, for any θ0 < θ < θ̄, v is fully monotone along any τ ∈ Γ(θ, en) in a δ0-

neighborhood of Aε in C3/4, with δ0 = δ0(θ0, θ̄). In particular, if

δ0 ≥ d(x,Aε) > c3ε

we get (Lemma 5.5)

Dτv(x) ∼ v(x)
d(x,Aε)

≥ c1 − c2
ε

d(x,Aε)
≥ 1

2
c1 > 0

if ε ≤ c1δ0/2c2. Therefore, in Ω+(u), if τ ∈ Γ(θ, en),

u+(x + c4ετ)− u+(x) ≥ v(x + c4ετ)− v(x)− 2c0ε

≥ c(c4 − c3)ε− 2c0ε > 0

if c4 is large enough. �



CHAPTER 6

Existence theory

6.1. Introduction

In this section we construct a viscosity solution of our free boundary problem in a

smooth (Lipschitz) bounded domain Ω ⊂ R
n.

We use a variant of Perron method, by taking the infimum of suitable (admissible)

supersolutions and having in mind to produce solutions with all the measure theoretic

properties considered in section 5, eventually falling under the hypotheses of one of the

regularity theorems of section 5 after an appropriate rescaling.

As a warning to the fact that this is not obvious, consider the singular perturbation

problem

Δuε = fε(uε)

with fε as in section 1.2. When ε → 0, we expect a solution to converge to a function u,

harmonic when positive or negative, and satisfying on ∂Ω+(u) the free boundary condition

(u+
ν )2 − (u−

ν )2 = 1 .

A one-dimensional solution uε = uε(xn), with slope α < 1 at +∞, will “bounce” in the

layer 0 < uε < ε and comes out with opposite slope −α.

Formally, in the limit we get a two plane function

u(x) = α|xn|
which is a viscosity solution of the free boundary problem. Clearly, the free boundary does

not have the usual measure theoretic properties; for instance its reduced part is empty.

To avoid this anomalous solution, one must carefully select the class of admissible su-

persolutions.

slopeslope-

u < 
vn

Figure 6.1
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The main requirements are two:

• They must be suitable for comparison principles, like the R-subsolutions defined

in section 4.3.

• If we want the infimum of the selected supersolutions to be a solution in the

viscosity sense, it is reasonable to ask them also to be supersolutions in the viscosity

sense. This requires the appropriate asymptotic behavior at regular point from the

right .

We achieve these two goals by requiring that every point of their free boundary be

regular from the left , with the appropriate “concave” asymptotic behavior.

Precisely, let Ω be a bounded Lipschitz domain in R
n.

Definition 6.1. A function w, continuous in Ω̄ is an admissible supersolution if

(a) Δw ≤ 0 in Ω+(w) = {w > 0} and Ω−(w) = {w ≤ 0}0.
(b) Every point x0 ∈ F (w) = ∂Ω+(w) ∩Ω is regular from the left and near x0

w+(x) ≤ α〈x− x0, ν〉+ + o(|x− x0|)
w−(x) ≥ β〈x− x0, ν〉− + o(|x− x0|)

with

α < G(β) ,

where ν is the normal unit vector to the ball at the touching point x0, inward to Ω+(w).

Remark. No uniformity whatsoever is required on the size of the tangent ball.

We denote by F the family of admissible supersolutions. The Perron method requires

also a subsolution minorant .

Definition 6.2. A continuous function u in Ω̄ is a strict minorant if:

(a) u is locally Lipschitz

(b) Δu ≥ 0 in Ω+(u) and Ω−(u)

(c) Every point x0 ∈ F (u) is regular from the right and near x0,

u−(x) ≤ β〈x− x0, ν〉− + o(|x− x0|)
u+(x) ≥ α〈x− x0, ν〉+ + o(|x− x0|)

with

α > G(β) .

Thus, u is a R-subsolution. Observe that if w ∈ F and w|∂Ω ≥ u|∂Ω, then w > u in Ω.

The main theorem is the following ([C3]).
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Theorem 6.1. Let Ω be a Lipschitz domain and g a continuous function on ∂Ω. Suppose

F is non empty and that there exists a strict minorant u with u = g on ∂Ω. Then, if G is

strictly increasing and G(0) > 0, the function

u = inf{w : w ∈ F , w ≥ u in Ω̄}
is a viscosity solution of our free boundary Dirichlet problem.

Example. Assume that Ω is the annulus B2 \ B̄1, g > 0 on ∂B2, g < 0 on ∂B1. If we

consider u0 = 0 on ∂B2−δ and harmonic otherwise we obtain for δ small a subsolution. On

the other hand if u1 = 0 on ∂B1+δ and harmonic otherwise, we obtain a supersolution. We

will construct a solution u between u0 and u1.

We will call u a minimal viscosity solution. As a byproduct of the proof, u turns out

to be locally Lipschitz and nondegenerate. This and the fact that u is constructed as an

infimum of “nice” R-supersolutions gives that the perimeter of the reduced part F ∗(u) of

the free boundary is equivalent to surface measure (section 6.7).

Then, after an appropriate rescaling of u around a point of F ∗(u), the free boundary

becomes flat, in the sense of Theorem 5.10, and therefore it is a C1,γ surface.

The strategy of the proof of Theorem 6.1, consists in the following steps.

1. u+ is locally Lipschitz.

2. u− is locally Lipschitz (therefore u is locally Lipschitz).

3. u+ is nondegenerate.

4. u is a viscosity supersolution.

5. u is a viscosity subsolution.

6.2. u+ is locally Lipschitz

We first show that, given w in F its harmonic replacement w̃ in Ω+(w) still belongs to

the family F .

Lemma 6.2. Let w ∈ F . There is w̃ ∈ F such that:

a) Δw̃ = 0 in Ω+(w̃)

b) w̃+ ≤ w, w̃− = w−, Ω+(w̃) ⊆ Ω+(w) and F (w̃) ⊆ F (w).

c) w̃ ≥ u.

Proof. We solve the Dirichlet problem Δw̃ = 0 in Ω+(w), w̃ = w on ∂Ω+(w).

Since Ω is Lipschitz and F (w) = ∂Ω+(w) ∩ Ω has a tangent ball from outside at every

point, w̃ is uniquely defined and continuous in Ω̄+(w). Clearly Ω+(w̃) ⊆ Ω+(w) and since
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w̃ may become identically zero in some connected component of Ω+(w), it could be that

Ω+(w̃) ⊂ Ω+(w). Nevertheless F (w̃) ⊆ F (w). Indeed if x0 ∈ F (w̃) \ F (w), then x0 is an

interior point of a domain where Δw̃ = 0, w̃ ≥ 0, w̃ �≡ 0 in any neighborhood of x0. Since

w̃(x0) = 0 we have a contradiction.

Therefore any point of F (w̃) is regular from the left. If w+ has the asymptotic devel-

opment

w+(x) ≤ α〈x− x0, ν〉+ + o(|x− x0|)
then, since w̃+ ≤ w+

w̃+(x) ≤ α〈x− x0, ν〉+ + o(|x− x0|)
and therefore

w̃−(x) = w−(x) ≥ β〈x− x0, ν〉− + o(|x− x0|)
with

α < G(β) .

Thus, w̃ ∈ F and clearly w̃ ≥ u. �

The Lipschitz continuity of u+ is a consequence of the following lemma.

Lemma 6.3. Let w ∈ F , with w+ harmonic in Ω+(w). Assume that, near x0 ∈ F (w),

w+(x) = α〈x− x0, ν〉+ + o(|x− x0|) .

Then

a) if h = d(x0, ∂Ω),

αG−1(α) ≤ c

h2
‖w‖2L∞(Ω) (6.1)

b) for any D ⊂⊂ Ω, w+ is locally Lipschitz in D with Lipschitz constant L+
D satisfying

L+
DG−1(L+

D) ≤ c

(‖w‖L∞(D)

d(D,∂Ω)

)2

(6.2)

where c = c(diam D).

c) In particular, Ω+(u) is open.

Proof. a). From definition 6.1, w− has the asymptotic behavior

w−(x) ≥ β〈x− x0, ν〉− + o(|x− x0|)

with α < G(β).

Thus, if G−1(α) = 0, (6.1) is trivial and α is bounded.
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If G−1(α) > 0, then, since Δw− ≥ 0 in Ω−(w), we can use the monotonicity formula,

in particular lemma 6.4, to get

α2β2 ≤ c
‖w‖4L∞(Ω)

h4

and therefore also (6.1).

To prove b), let x0 ∈ Ω+(w) ∩D and y0 ∈ F (w) be such that

|x0 − y0| = d(x0, F (w)) = r <
1
2
d(D,∂Ω) .

Then

|∇w(x0)| ≤ c
w(x0)

r
.

By the usual comparison with a radial harmonic function in the ring Br(x0) \ B̄r/2(x0), we

get, near y0,

w+(y) ≥ c
w(x0)

r
〈y − y0, ν〉+ .

b) now follows from a). �

6.3. u is Lipschitz

We now prove that u− also is Lipschitz. Notice first that

Lemma 6.4. If w1, w2 ∈ F , w∗ = min{w1, w2} also belongs to F .

Proof. Since

Ω+(w∗) = Ω+(w1) ∩ Ω+(w2)

any ball B touching F (w1) or F (w2) from the left will also touch F (w∗) from the left.

The asymptotic developments in (b) of the definition 6.1 are clearly satisfied, since they

come from those of w1 or w2. �

The proof of the Lipschitz continuity of u− is based on the following replacement tech-

nique.

Let w be a continuous function in Ω̄ and BR be a ball, BR ⊂⊂ Ω. Let

Ω1 = Ω+(w) \ B̄R

In Ω1, solve Δw1 = 0 with boundary data:

w1 = 0 on ∂BR , w1 = w+ on ∂Ω1 \ ∂BR .

In BR, solve Δw2 = 0 with boundary data w2 = −w−. We call the function

R(w,BR) =

⎧⎪⎨
⎪⎩

w1 in Ω̄1

w2 in B̄R

w in Ω \ (Ω̄1 ∪ B̄R)
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9
BR

w1 = 0

w2 = 0

w2= - w - 

w1 = 0 1

Figure 6.2

the replacement of w in BR. By maximum principle, R(w,BR) ≤ w in Ω.

We want to show that if w ∈ F , its replacement in a ball BR(x0) of radius R� w−(x0)

is still in F .

Thus, let w ∈ F with w+ harmonic in Ω+(w) and w(x0) ≤ −h < 0. Fix ε > 0,

small, to be chosen depending only on the local Lipschitz constant of u+, or equivalently

on d0 = d(x0, ∂Ω), and let

w̃ = R(w,Bεh(x0)) .

We want to show that w̃ ∈ F and w̃ ≥ u.

Note first that the strict minorant u, being locally Lipschitz, is strictly negative in

Bεh(x0) for ε small, since u(x0) < −h. Hence w̃ ≥ u. Let us see that w̃ ∈ F .

Clearly, the left ball condition holds for F (w̃). We check the asymptotic behaviors.

If x1 ∈ F (w̃) ∩ F (w), since w̃ ≤ w, w̃ has the correct asymptotic behavior. Let now x1

be a point on F (w̃) where w(x1) > 0. Hence x1 ∈ ∂Bεh(x0) ∩ F (w̃). Since w+(x0) = 0 and

w+ is Lipschitz in Bd0/2
(x0),

w̃ ≤ w+ ≤ L0εh in B2εh(x0)

where L0 is the local Lipschitz constant of w+ in Bd0/2
(x0). Thus, if v is harmonic in the

ring B2εh(x0) \ B̄εh(x0), vanishing on ∂Bεh(x0), v = L0εh on ∂B2εh(x0), we have

w̃ ≤ v

in the ring. Moreover, since

v(x) ≤ C d(x, ∂Bεh(x0)) ,
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if near x1 we have

w̃+(x) = α〈x− x1, ν〉+ + o(|x− x0|) ,

it must be ν = x1−x0
|x1−x0| and

α ≤ c0 .

On the other hand, in Bεh(x0) we have w̃ ≤ 0, Δw̃ = 0 and

w̃(x0) ≤ w(x0) ≤ −h < 0 ,

so that, by Harnack inequality

w̃(x) ≤ −ch (6.3)

in Bεh/2(x0). Thus, the usual comparison with a radial barrier gives, near x1, in Bεh(x0),

w̃(x) ≤ −ch

εh
〈x− x1, ν〉−

(
ν =

x1 − x0

|x1 − x0|
)

that implies

w̃−(x) ≥ β〈x− x0, ν〉−

with β ≥ c
ε .

Therefore if we chose ε such that
c

ε
> G−1(c0) ,

w̃ is an admissible supersolution. Moreover, once ε is fixed, from interior estimates and

Harnack inequality we get, using (6.3),

|∇w̃| ≤ c

εh
|w̃(x0)| ≤ c

ε
in Bεh/2(x0)

which implies the equilipschitzianity of w̃.

We have proved the following Lemma.

Lemma 6.5. Let w ∈ F , w(x0) = −h < 0, d0 = d(x0, ∂Ω). Then there is ε > 0,

depending only on d0, such that:

(a) The replacement of w in Bεh(x0), w̃ = R(w,Bεh(x0)), belongs to F .

(b) w̃ ≤ w in Ω, w̃ ≥ u and

|∇w̃| ≤ c

ε
in Bεh/2(x0).

Corollary 6.6. Let x0 be a point where

u(x0) = inf{w(x0), w ∈ F , w > u} = −h < 0 .

Then there exists a sequence {w̃k} ⊂ F , w̃k ≥ u and ε > 0, depending only on d0, such that

(a) w̃k(x0)↘ u(x0)
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(b) Δw̃k = 0 in Bεh(x0)

(c) for each k, w̃k is Lipschitz in Bεh(x0) with Lipschitz constant L0, depending only

on d0.

Proof. Let {wk} ⊂ F , wk > u such that

wk(x0)↘ u(x0) .

Choose k large so that wk(x0) ≤ u(x0)
2 = −h

2 . Replace now wk with w̃k in Bεh(x0) and

apply Lemma 6.5. �

Corollary 6.7. u is locally Lipschitz in Ω, continuous in Ω̄ and harmonic in Ω−(u)

and Ω+(u).

Proof. We have only to show that u− is Lipschitz and harmonic in Ω−(u). Let u(x0) =

−h < 0 and {w̃k} as in Corollary 6.6. Then w̃k ↘ u, uniformly on, say Bεh/4(x0). Indeed

suppose w̃ = limk→∞ w̃k and, w̃(x1) > u(x1), with x1 ∈ Bεh/4(x0). Consider a new sequence

ṽk converging to u at x1 and define ũk the replacement of min{ṽk, w̃k} in Bεh/2(x0). Then

ũk ↘ ũ with: ũ ≤ w̃ in Bεh/2(x0), ũ(x0) = w̃(x0), ũ(x1) < w̃(x1). Since ũ and w̃ are both

harmonic in Bεh/4, this is a contradiction. Thus, u− is harmonic in {u < 0}.
Note also that, since u− is subharmonic in Ω, if u(z) = 0 for a point z ∈ Ω−(u), then

u ≡ 0 in the corresponding connected component of Ω−(u). The proof is complete. �

Finally

Corollary 6.8. If K ⊂⊂ Ω, then there exists {wk} ⊂ F such that

wk ↘ u

uniformly in K. If K ⊂⊂ Ω−(u) we may take wk ≤ 0 in K.

Proof. The first part follows from the fact that {w+;w ∈ F} is an equilipschitz family

on K̄ and the previous replacement technique. For the second part let

K ⊂⊂ K1 ⊂⊂ Ω−(u)

and assume K and K1 are smooth domains. Let v be harmonic in K1 \ K̄, with v = 1 on

∂K1 and v ≡ 0 in K̄. If ε is small and ν is the exterior unit normal to ∂K,

εv+
ν|∂K

< G(0) . (6.4)

If wk ↘ u uniformly in K̄1, let k be so large that wk ≤ ε
2 in K̄1, and consider

w̄k =

{
min{wk, εv} in K̄1

wk in Ω \ K̄1
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Then, w̄k ≤ 0 in K and, thanks to (6.4), w̄k ∈ F . �

Remark. u may have lost, of course, the property of being regular from the left (Ω−(u)).

Thus u does not belong necessarily to F anymore.

6.4. u+ is nondegenerate

In this section we use the fact that u is the infimum of R-supersolutions to show that u+

is nondegenerate, with linear growth. As a consequence, F (wk)→ F (u) locally in Hausdorff

distance and χ{wk>0} → χ{u>0} in L1
loc(Ω).

Lemma 6.9. (a) If x ∈ Ω+(u) then

u(x) ≥ Cd(x, F (u))

(b) Let x ∈ F (u) and A be a connected component of Ω+(u) ∩ [Br(x) \ B̄r/2(x)] such

that

Ā ∩ ∂Br/2(x) �= ∅ , Ā ∩ ∂Br(x) �= ∅ .

Then, supA u ≥ Cr

(c)
|A ∩Br(x)|
|Br(x)| ≥ C > 0

where all the constants C’s depend on d(x, ∂Ω).

Proof. (a). Let x0 ∈ Ω+(u), set r = d(x0, F (u)) and assume that

d(x0,Ω+(u)) ≤ r

2
.

Then the linear growth of u away from F (u) gives

sup
B3r/4(x0)

u ≥ Cr

hence

sup
B3r/4(x0)

u ≥ Cr

and by Harnack inequality

u(x0) ≥ Cr .

We may therefore assume u ≤ 0 on Br/2(x0). We want to show that if u(x0) = σ �
r we can construct an admissible supersolution smaller than u at some point, giving a

contradiction.

Select a sequence {wk} ⊂ F , uniformly converging to u in BR(x0), r ≤ R. By Harnack

inequality for u, we may choose w ∈ F , with w ≤ cσ on Br/2(x0). Let v be harmonic in
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the ring Br/2(x0) \ B̄r/4(x0), v = 1 on ∂Br/2(x0) and v = 0 on ∂Br/4(x0). Let M > 0 and

define

w̄ =

⎧⎪⎨
⎪⎩

0 in B̄r/4(x0)
min{w,Mσv} in B̄r/2(x0) \ B̄r/4

w in Ω \ B̄r/2(x0) .

Then w̄ ≥ u. For M large enough, depending only on n, w̄ is continuous along ∂Br/2(x0).

On the other hand, along ∂Br/4(x0), vν ∼ C
r so that, if Mσ � r, Mσvν < G(0) and w̄ is

an admissible supersolution. Since w̄(x0) = 0 < u(x0) this is a contradiction. a) implies

that u+ is a Lipschitz harmonic function in Ω+(u) with linear growth. The conclusions in

b) and c) then follow from Lemma 3.3. �

6.5. u is a viscosity supersolution

In this section we want to prove that u is a viscosity supersolution, that is, u satisfies

condition iia) of definition 2.4: if x0 ∈ F (u) and at x0 there is a touching ball B ⊂ Ω+(u),

then, near x0, in B

u+(x) = α〈x− x0, ν〉+ + o(|x− x0|) (α > 0)

while in CB,

u−(x) = β〈x− x0, ν〉− + o(|x− x0|) (β ≥ 0)

with

α ≤ G(β) .

This is a consequence of the following slightly more general lemma.

Lemma 6.10. Assume that x0 ∈ F (u) and near x0

u+(x) = α〈x− x0, ν〉+ + o(|x− x0|) .

Then, if

u−(x) = β〈x− x0, ν〉− + o(|x− x0|)
we must have

α ≤ G(β) .

Proof. Let d0 = d(x0, ∂Ω) and {wk} ⊂ F , wk ↘ u uniformly in Bd0/2
(x0). Then, given

a neighborhood B(x0) of x0, wk cannot remain strictly positive in B(x0), for all k large,

otherwise u would be a non-negative harmonic function, and therefore identically zero.

For each wk, let

Bm,k = Bλm,k

(
x0 +

1
m

ν

)



6.5. u IS A VISCOSITY SUPERSOLUTION 105

x0

F(wk) F(u)

x0u

xm,k
m,k

x0+    v1 
m-

x0+    v1 
m-

mxm

Figure 6.3

be the largest ball center at x0 + 1
mν, contained in Ω+(wk), touching F (wk) at xm,k, with

unit inward normal νm,k at xm,k. Then, modulo subsequences, for k → +∞,

λm,k → λm , xm,k → xm, νm,k → νm

with Bλm(x0 + 1
mν) touching F (u) at xm, with unit inward normal νm.

Hence from the behavior of u+,

|xm − x0| = o

(
1
m

)
1
m

+ o

(
1
m

)
≤ λm ≤ 1

m

|νm − ν| = o(1) .

Now, since wk ∈ F , definition 6.1 gives, near xm,k in Bm,k

w+
k (x) ≤ αm,k〈x− xm,k, νm,k〉+ + o(|x− xm,k|)

and in CBm,k

w−
k (x) ≥ βm,k〈x− xm,k, νm,k〉− + o(|x− xm,k|)

with

0 < αm,k ≤ G(βm,k) .

Since w+
k ≥ u+, we deduce

αm = lim inf
k→+∞

αm,k ≥ α− εm

where εm → 0 as m→ +∞.

The proof will be complete if we show that

β̄ = lim sup
m,k→+∞

βm,k ≤ β .

This is a consequence of the upper semicontinuity of the limit in the monotonicity formula.
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Indeed, if β̄ = 0 there is nothing to prove. Thus let βm,k > 0. Fix r > 0 and let

Jr(xm,k, wk) =
1
r4

∫
Br(xm,k)

|∇w+
k |2

|x− xm,k|n−2
dx

∫
Br(xm,k)

|∇w−
k |2

|x− xm,k|n−2
dx

Then, from Lemma 12.5, for every r

Jr(xm,k, wk) ≥ c(n)α2
m,kβ

2
m,k . (6.5)

On the other hand, we have

lim
k→+∞

Jr(xm,k, wk) = Jr(xm, u) (6.6)

since xm,k → xm and wk → u uniformly. For the same reason

lim
m→+∞ Jr(xm, u) = Jr(x0, u) . (6.7)

From Lemma 12.5 we have also

lim
r→0

Jr(x0, u) = c(n)α2β2 .

Hence, given ε > 0, there exists r such that

Jr(x0, u) ≤ c(n)α2β2 + ε

and, from (6.5), (6.6), (6.7), there are m,k such that

c(n)α2
m,kβ

2
m,k ≤ c(n)α2β2 + 2ε .

Since lim infm,k→+∞ αm,k ≥ α, it follows that β̄ ≤ β. �

6.6. u is a viscosity subsolution

We want now to show that u is a subsolution in the viscosity sense, that is, u satisfies

condition iib) of definition 2.4: If x0 ∈ F (u) is a regular point from the left with touching

ball B ⊂ Ω−(u), then, near x0

u−(x) = β〈x− x0, ν〉− + o(|x− x0|) β ≥ 0

in B, and

u+(x) = α〈x− x0, ν〉+ + o(|x− x0|) α > 0

in CB, with

α ≥ G(β) .

Actually, due to the nondegeneracy of u+, even if β = 0, both Ω+(u) and Ω−(u) are

tangent to {〈x− x0, ν〉 = 0} at x0 and therefore u has a full asymptotic development, as in

the next lemma.
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Lemma 6.11. Assume that near x0

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|)

with α > 0, β ≥ 0. Then

α ≥ G(β) .

Proof. We use a perturbation argument, to show that, if α < G(β) we may construct

a function w ∈ F , smaller than u at some point, contradicting the minimality of u.

Let

u0(x) = lim
λ→0

1
λ

u(x0 + λx) = α〈x, ν〉+ − β〈x, ν〉− .

Assume α ≤ G(β) − δ0, with δ0 > 0 and choose wk ↘ u uniformly, so that (Corollary 6.8)

wk ≤ 0 on any K ⊂⊂ Ω−(u). Then, for any γ = γ(δ) > 0 to be chosen, we can find λ, k so

that

wk,λ(x) =
1
λ

wk(x0 + λx)

satisfies:

(a) if β > 0, wk,λ(x) ≤ u0 + γ min{α, β} in B̄1

(b) if β = 0, wk,λ(x) ≤ u0 + αγ and

wk,λ(x) ≤ 0 in {〈x, ν〉 < −γ} ∩ B̄1 .

Equivalently, for any γ > 0,

wk,λ(x) ≤ u0(x + γν) in B̄1 .

We now make a standard perturbation of u0 by changing its free boundary, still keeping

it a supersolution:
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v = 0 v = 0

9
B1

v = u0(x- )

(x, ) = - + (x), <

0

Figure 6.5

Define v as follows:⎧⎪⎨
⎪⎩

v(x) = u0(x + γν) on ∂B1

v(x) = 0 on 〈x, ν〉 = −γ + εϕ(x)
Δv = 0 if 〈x, ν〉 ≶ −γ + εϕ(x)

where ϕ ≥ 0 is a cut-off function, ϕ ≡ 0 outside B1/2, ϕ ≡ 1 inside B1/4. Along the new

free boundary,

F (v) = {〈x, ν〉 = −γ + εϕ(x)}
we have, by standard estimates

|v+
ν − α| ≤ c(ε + γ) , |v−ν − β| ≤ c(ε + γ) .

Hence, if we choose ε, γ small, depending only on δ0, and rescale back, the function

w̄k =

{
min{wk, λv( 1

λ (x− x0))} in Bλ(x0)
wk in Ω \Bλ(x0)

becomes an element of F , since

v+
ν < G(v−ν )

along F (v).

Moreover, if γ � ε, the set

{〈x, ν〉 ≤ −γ + εϕ(x)}
contains a neighborhood of the origin, that implies, after rescaling back, x0 ∈ Ω−(w̄k), a

contradiction since Ω+(w̄k) ⊇ Ω+(u). �

Remark. Let us stress once more that the minimal viscosity solution does not neces-

sarily belong to F .
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6.7. Measure theoretic properties of F (u)

The minimal viscosity solution constructed in section 8 is locally Lipschitz and u+ is

non degenerate. Thus, we can apply to u+ Theorem 3.4 and conclude that F (u) has locally

finite (n− 1) dimensional Hausdorff measure; moreover , for Hn−1-a.e. point x ∈ F (u) and

any ball Br(x) ⊂⊂ Ω,

Hn−1(F (u) ∩Br(x)) ∼ rn−1 .

In particular, Ω+(u) ∩ Br(x) is a set of finite perimeter. As we pointed out in the

introduction, there is always the danger of ending up, locally, with a solution u that behaves

like u ∼ |x1| for which our “flatness implies C1,α theorem” will not apply in a non negligeable

part of the free boundary. We show now that this is not the case for our u. This is because

the minimality feature of u allows us to say that also the perimeter of this set is equivalent

to rn−1. Precisely:

Theorem 6.12. The reduced boundary of Ω+(u), has positive density in Hn−1-measure

at any point of F (u), i.e.

Hn−1(F ∗(u) ∩Br(x)) ≥ crn−1

for every x ∈ F (u).

Proof. Let x0 ∈ F (u). By rescaling, letting

ur(x) =
1
r
u(r(x− x0))

it is enough to consider r = 1 and x0 = 0. Let v be the auxiliary function (see the proof of

Theorem 3.4) satisfying (σ < 1)⎧⎨
⎩Δv = − 1

|Bσ|χBσ in B1

v = 0 on ∂B1.

Take now w ∈ F . Since w > u in Ω̄+(u), Ω+(u) ∩ B1 ⊂⊂ Ω+(w) ∩ B1, so that ∇w is a

continuous vector field in Ω+ ∩B1 and we can use it to test for perimeter.

Therefore we can write:∫
Ω+(u)∩B1

(vΔw − wΔv) =
∫

F ∗(u)∩B1

(vwν −wvν) dHn−1 −
∫

∂B1∩Ω+(u)
wvν dHn−1 (6.8)

Choose now wk ↘ u uniformly in B̄1, Δwk = 0 in Ω+(u). Since the wk are uniformly

lipschitz, |vν | ∼ c0 on ∂B1 and 0 ≤ v < cσ2−n outside Bσ, we have∣∣ ∫
F ∗(u)∩B1

(wk)νv dHn−1
∣∣∣ ≤ cσ2−nHn−1(F ∗(u) ∩B1) .
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Moreover, as k → +∞,∫
F ∗(u)∩B1

wkvν dHn−1 → 0 ,

∫
∂B1∩Ω+(u)

wkvν dHn−1 →
∫

∂B1

u+vν dHn−1

and

−
∫

Ω+(u)∩B1

wkΔv =
1
|Bσ|

∫
Ω+(u)∩Bσ

wk →
∫
−

Bσ

u+ .

Thus, from (6.8) we get∫
−

Bσ

u+ +
∫

∂B1

u+vν dHn−1 ≤ cσ2−nHn−1(F ∗(u) ∩B1) . (6.9)

By the nondegeneracy of u+ we can write∫
∂B1

u+vν dHn−1 ≥ c1 > 0

while by Lipschitz continuity, ∫
−

Bσ

u+ ≤ c2σ .

Choosing σ = c1/2c2 the proof is complete. �

Remark. In general, if ∂Ω has finite (n− 1)-dimensional measure, Hn−1
	∂∗Ω is absolutely

continuous w.r.t. Hn−1 with density f , 0 ≤ f ≤ 1, Hn−1-a.e.

The theorem shows that, in our case f is strictly positive on F ∗(u):

0 < μ ≤ f(x) ≤ 1 , Hn−1-a.e. on F ∗(u) .

In particular

Hn−1(F (u) \ F ∗(u)) = 0 .

6.8. Asymptotic developments

We want to show that, Hn−1-a.e. along F (u) and in particular at every point x0 of the

reduced free-boundary F ∗(u), u has an appropriate asymptotic development.

First of all, recall that, if Ω is a set of finite perimeter and ∂∗Ω is its reduced boundary,

the following structural theorem holds [G]:

Theorem 6.13. Let Ω be a set of finite perimeter. Then, for every point x ∈ ∂∗Ω, there

exists a normal unit vector ν(x) in the measure theoretic sense, i.e.

lim
r→0

|Ω ∩Br(x) ∩ {〈y − x, ν〉 ≥ 0}|
|Br(x)| =

1
2

(6.10)

and

lim
r→0

|CΩ ∩Br(x) ∩ {〈y − x, ν〉 ≤ 0}|
|Br(x)| =

1
2

(6.11)
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In other words, (setting x = 0) if

Ωr = {x : rx ∈ Ω} ,

(6.10), (6.11) are equivalent to

|Ωr ∩B1 ∩ {〈y, ν〉 ≥ 0}|
|B1| → 1

2

and
CΩr ∩B1 ∩ {〈y, ν〉 ≤ 0}

|B1| → 1
2

.

That is, Ωr ∩B1 and CΩr ∩B1 converge in measure to the half ball B1 ∩ {〈y, ν〉 ≥ 0} and

B1 ∩ {〈y, ν〉 ≤ 0}, respectively.

We have

Lemma 6.14. If x0 ∈ F ∗(u), u has at x0 the asymptotic development (ν = ν(x0))

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|)
with

α = G(β) .

Before proving Lemma 6.14 let us point out some general facts, regarding perturbations

of two-plane functions.

Let α > 0, β ≥ 0 and

u0(x) = αx+
n − βx−

n . (6.12)

Let ϕ be a cut-off function in B1, ϕ ≡ 1 in B1/3, ϕ ≡ 0 outside B2/3. For ε > 0, set

Ω+ = B1 ∩ {xn > γϕ(x)} , Ω− = B1 \ Ω̄+ ,

and consider the function vγ so defined:

Δvγ = 0 in Ω+ and Ω−

vγ = αx+
n on ∂B1 ∩ {xn ≥ 0}, vγ = −βx−

n on ∂B1 ∩ {xn < 0}
vγ = 0 on B1 ∩ {xn = γϕ(x)} .

Then we have the following lemma, whose proof comes from standard estimates.

Lemma 6.15. Let u0 and vγ be as above. Then, if γ → 0,

(v+
γ )ν → α and (v−γ )ν → β

uniformly in B7/8 ∩ {xn = γϕ(x)}.

As a consequence:
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Corollary 6.16. Suppose that u is a minimal viscosity solution of our free boundary

problem such that |u− u0| ≤ ε in B1. Then, if ε is small enough, we must have in (6.12)

|α−G(β)| ≤ δ(ε)

where δ(ε) → 0 if ε→ 0.

Proof. Suppose not. Then α − G(β) > δ̄ > 0 for a sequence εj → 0. Consider the

auxiliary function vγ , with γ < 0. A translation vγ,s(x) = vγ(x−sen), for some sj, |sj| < εj ,

will touch the free boundary of u at a point xj ∈ B2/3, regular from the right and inside

the strip |xn| < ε. If γ and εj are small, by Lemma 6.15, vγ,s is a classical subsolution.

Contradiction.

The case α−G(β) < −δ̄ is treated analogously. �

Suppose now that 0 ∈ F ∗(u), ν(0) = en and rescale defining

uR(x) =
1
R

u(Rx) .

Then, since Ω+(uR) = Ω+
R(u), the structural theorem 6.13 says that B1 ∩ Ω+(uR) and

B1 ∩ Ω−(uR) converge in measure to the half balls

B+
1 = B1 ∩ {xn > 0} and B−

1 = B1 ∩ {xn < 0}

we have:

Lemma 6.17. Given ε > 0, there exists R0 such that, if R < R0,

Ω+(uR) ∩B1 ⊂ {xn > −ε} ∩B1 . (6.13)

Proof. From the uniform positive density of Ω+(u) along F (u), if Rj → 0 and xj ∈
∂Ω+(uRj )∩{xn ≤ −ε}∩B1, then |Bε/2(xj)∩Ω+(uRj )| ≥ cε, contradicting the convergence

in measure of Ω+(uRj ) to B+
1 . �

Notice that Lemma 6.17 implies that B1 ∩ Ω−(uR) ⊃ {xn ≤ −ε} ∩B1.

The proof of Lemma 6.14 is an immediate consequence of the next lemma which deals

with the asymptotic behavior of the sequence of rescalings {uR}, as R→ 0.

Lemma 6.18. There exist unique α > 0, β ≥ 0 such that every sequence {Rk}, Rk → 0,

has a subsequence {Rkj
} such that

uRkj
→ αx+

n − βx−
n

uniformly in any compact subset of R
n, with α = G(β).
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Proof. Let Rk → 0. Since {uRk
} is an equilipschitz family, we can extract a subse-

quence {uRkj
} converging uniformly in larger and larger balls to a limiting function u0.

We now use the monotonicity formula and the results in chapter 12. Let

JR(u) =
1

R4

∫
BR

|∇u+|2
|x|n−2

dx

∫
BR

|∇u−|2
|x|n−2

dx .

Since JR(u) is increasing, (Theorem 12.3)

JR(u) ↓ J0(u) ≡ γ0 .

Assume γ0 > 0. Since JR(u) = J1(uR) and uRkj
→ u0 uniformly in B2 (say), we can write

J1(uRkj
)→ J1(u0) = γ0 ≥ J0(u0) .

It must be J0(u0) = γ0. In fact, if J0(u0) < γ0, we have Jr(u0) < γ0 for r small. On the

other hand, if (u0)r(x) = u0(rx)/r,

Jr(u0) = J1((u0)r)

and, since for r fixed,
1
r
uRkj

(rx) = urRkj
(x)→ (u0)r(x)

uniformly, we have

γ0 ≤ J1(urRkj
)→ J1((u0)r) .

Contradiction.

Therefore J1(u0) = J0(u0) which implies that Jr(u0) is constant. Formula (12.14)

Corollary 12.4 (both in part 3) force u+
0 and u−

0 to be linear functions.

From the nondegeneracy of u+
0 and Lemma 6.17, we deduce Ω+(u0) ⊂ {xn ≥ 0} so that

we can write

u0(x) = αx+
n − βx−

n . (6.14)

Then, from Corollary 6.16 it must be

α = G(β) .

The case γ0 = 0 reduces to γ0 > 0 considering instead of u, ũ = u − εx−
n . Then we obtain

a limiting function ũ0 such that

ũ+
0 (x) = αx+

n .

Since Ω+(ũ0) ⊂ {xn ≥ 0} if u0 is like before, ũ+
0 = u+

0 and the nondegeneracy of u+
0 implies

that β = 0 in (6.14).

It only remains to prove that α, β are independent of the particular selected subsequence.

This follows as in the end of section 3.3, from Lemma 12.5 and the strict monotonicity of

G. �
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6.9. Regularity and compactness

It is now easy to see that if u is a minimal viscosity solution, then F (u) is a C1,γ surface

around Hn−1-a.e. point.

Precisely, we have

Theorem 6.19. For every x0 ∈ F ∗(u)∩B1/2, F (u) a C1,γ surface in a neighborhood of

x0.

Proof. Let 0 ∈ F ∗(u) and uRj = 1
Rj

u(Rjx) be a sequence of rescaling of u, converging

to

u0(x) = αx+
n − βx−

n

as in the proof of Lemma 6.14. From the same proof, it follows that, given ε, for Rj < R0(ε),

F (uRj ) ∩ B1 is contained in the strip |xn| < ε. Thus, since u+
R is non degenerate, u+

R falls

under the hypotheses of Theorem 5.10.

This ends the proof. �

As a final result we give the following compactness results.

Theorem 6.20. Let uk be a sequence of minimal viscosity solutions to the free boundary

problems

Δuk = 0 in Ω+(uk) and Ω−(uk)

(u+
k )ν = Gk((u−

k )ν)

uk ≤ uk ≤ ūk .

Assume Gk → G and uk → u uniformly and that the assumptions on Gk and uk are satisfied

uniformly (in particular, the uniform one side regularity of the free boundary of uk).

Then, if uk → u uniformly in a domain D, u is a viscosity solution of the limiting free

boundary problem in D.

The proof is an adaptation of those of Lemmas 10 and 11 and we leave it as exercise.

(Hint: Let x0 ∈ F (u) be regular from the right (left) and near x0

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|) .

Let xk ∈ F (uk) be regular from the right (left) and near xk

wk(x) = αk〈x− xk, νk〉+ − βk〈x− x0, νk〉− + o(|x− x0|) .

Prove that if xk → x0, then

α0 ≤ lim inf αk . (β0 ≥ lim supβk) .)
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Evolution Problems



CHAPTER 7

Parabolic free boundary problems

7.1. Introduction

In this part we will discuss several free boundary problems of evolution type.

The typical problem, consists mainly on finding a function, u, in a space time domain,

that satisfies some parabolic equation (usually the heat equation) when u is different from

zero (one or two phases), and across the surface where u vanishes, there is a a balance

condition between the speed of the interphase, that is of the zero level surface, and may be

the flux discontinuity, i.e., the jump on the normal derivative of u, and may also be some

geometrical quantity along the free boundary, like its curvature.

As in the elliptic case, and at a difference with, for instance conservation laws, where

the conservation law or constitutive relation is a smooth function across a shock, and it is

the solution itself that jumps from an admissible value to another, in the case of a parabolic

free boundary problem, it is the law itself that changes discontinuously.

Some examples are Stefan like problems, that is problems of melting or solidification,

where caloric energy changes discontinuously across the melting temperature (see e.g. [D],

[F1], [F2], [K]), problems of flame propagation, where the existence of a sharp flame front

is assumed (sometimes constructed as a limit of singular perturbation problems as in our

example of chapter 1 [CV], [CLW1], [CLW2]), and more recently problems arising from

financial mathematics where the edging strategy changes when the present value of an

option goes through certain threshold.

Mathematically, the general lines of attack of the problems follow naturally those of the

elliptic case, and the necessary tools are similar: Harnack type inequalities in the interior

and at the boundary of one of the phases, optimal regularity, monotonicity formulas, and

the perturbation techniques, through continuous families of supersolutions.

But one soon realizes that the study of these problems entails new serious difficulties.

A first obvious one is the role of time, and it is already present in the standard Harnack

inequality, that says that for a non negative solution, in a parabolic cylinder, the past
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controls the future only by below, since one can obviously “inject” as much heat as one

likes from the sides of the cylinder, something that the bottom will never see.

This implies that on one hand stronger hypotheses have to be made in the geometry of

the problem, or the starting configuration, and that the very strong local conclusions we

obtained in the elliptic case, do not necessarily hold.

An example of this phenomena, is the waiting time counterexample to instantaneous

regularization of the free boundary for a two phase Stefan problem, that we discuss below.

A second difficulty comes from the different homogeneities corresponding, on one hand

to the evolution equation that u satisfies away from the transition surface (being a parabolic

equation, it remains invariant under dilations that are linear in space and quadratic in time),

and on the other hand to that of the free boundary, that, relating speed with flux, is of a

Hamilton Jacobi nature, and as such scales homogeneously of degree one, both in time and

space.

Hence we are faced with the dilemma that parabolic scaling will keep the heat equation,

but will, generically, make the free boundary vertical, and information will be lost, and

hyperbolic scaling will preserve the asymptotic geometry of the free boundary but we will

lose the time derivative in the parabolic part, disconnecting u in time away from the free

boundary.

Thus the very delicate balance in the intermediate rescaling we will use in the Stefan

problem, that allows us (for us an almost miraculous fact) to reconstruct a Dini domain

out of our iteration process.

Finally, the third ingredient we miss, is the very strong, local geometric measure the-

oretical properties of the free boundary, and this can usually be seen in the case in which

there is focusing (total melting of a solid region, or extinction of a flame) and all hopes of

universal regularity or non degeneracy are broken.

This is one more reason why we can only treat geometries for which one can assert a pri-

ori that, at least after finite time, focusing is ruled out (for instance, flatness hypotheses).

7.2. A class of free boundary problems and their viscosity solutions

Perhaps the best known example of parabolic two-phase free boundary problem is the

Stefan problem, a simplified model describing the melting (or solidification) of a material

with a solid-liquid interphase.

The concept of solution can be stated in several ways: classical solutions, weak solutions

on divergence form or viscosity solutions.
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Locally, a classical solution of the Stefan problem may be described as follows. In the

unit cylinder C1 = B′
1×(−1, 1) we have two complementary domains, Ω+ and Ω− = C1\Ω̄+,

separated by a smooth surface F = ∂Ω+ ∩ C1. In Ω+ and Ω−, respectively, we have two

solutions u1 and u2 of the heat equations

Δu1 − a1∂tu1 = 0 = Δu2 − a2∂tu2

with u2 ≤ 0 ≤ u1.

The functions u1 and u2 are C1 up to F and along F , both u1 = u2 = 0 and the

interphase energy balance condition

∂tui

|∇ui| = |∇u1| − |∇u2| (7.1)

are satisfied. Note that the ratios (for i = 1, 2) in the left hand side of (7.1) represent the

speed of F in the direction −ν, ν = ∇u+/|∇u+|.
What one is able to construct for all times are weak solutions to the equation

Δu ∈ β(u)t

with β(u) = a1u
+ − a2u

− + sign u, subject to proper initial and boundary conditions ([K],

[F1], [F2]).

From [CE], u is continuous in C1 and heuristically, u1 = u+ in Ω+ = {u > 0}, u2 = −u−

in Ω− = {u ≤ 0}0 and F = ∂{u > 0} ∩ C1 becomes the free boundary .

Modeled on the example of the Stefan problem, we formally introduce the following

class of free boundary problems (f.b.p. in the sequel).

To find a function u, continuous in C1 = B′
1 × (−1, 1), such that

(a) Δu− a1ut = 0 in Ω+(u) = {u > 0} ∩ C1, and

Δu− a2ut = 0 in Ω−(u) = {u ≤ 0}0 ∩ C1
(b) On F (u) = ∂Ω+(u) ∩ C1, the (free boundary) condition,

Vν = −G(u+
ν , u−

ν ) (7.2)

must be satisfied, where a1 > 0, a2 > 0 and Vν(·, τ) is the speed of the surface

F (u) ∩ {t = τ} in the direction ν = ∇u+/|∇u+|.
The basic requirements on the function G : [0,∞)2 �→ R are

(i) G is continuous in [0,∞)2

(ii) G is strictly increasing in u+
ν and strictly decreasing in u−

ν

(iii) G→ +∞ when u+
ν − u−

ν →∞.
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Note that there is no nondegeneracy property of G, since this is the case of the Stefan

problem. In fact, harmonic functions are stationary solutions of a Stefan problem and we

cannot hope for nondegeneracy properties in this case.

Let us now define what we mean by a Ck classical (k ≥ 1) sub, super, solution.

Definition 7.1. A function v ∈ C(C1) is a Ck-classical subsolution if:

(a) v ∈ Ck(Ω̄+(v)) ∩ Ck(Ω̄−(v))

(b) Δv − a1vt ≥ 0 in Ω+(v) and Δv − a2vt ≥ 0 in Ω−(v).

(c) The free boundary F (v) = ∂Ω+(v) ∩ C1 is a Ck surface, |∇v+| > 0 on F (v) and

−Vν =
v+
t

v+
ν
≤ G(v+

ν , v−ν ) (7.3)

where ν = ∇v+

|∇v+| .

The across condition (7.3) indicates that the speed of F (v) towards the “solid phase”

{u ≤ 0}0 is “smaller” for a subsolution than for a solution. If the inequality in (7.3) is

strict , we call v a strict-subsolution.

A Ck-classical supersolution is defined by reversing the inequalities in (b) and (7.3). A

Ck-classical solution is both a Ck-classical sub and super solution.

As in the elliptic case, we use classical strict sub and super solutions as test functions

to define viscosity solutions.

Again, from now on, it is understood that k = 2. Let

Qr(x0, t0) = B′
r(x0)× (t0 − r2, t0] .

Definition 7.2. A function u ∈ C(C1) is a viscosity subsolution (supersolution) to

f.b.p. if, whenever (x0, t0) ∈ F (u) and v is a classical strict supersolution (subsolution)

in Qr(x0, t0) ⊂ C1, then v cannot touch u from above (below) at (x0, t0); u is a viscosity

solution if it is both a sub and a supersolution.

In other words, if u is a subsolution and v is a classical strict supersolution in Qr(x0, t0) =

Qr, and (x0, t0) ∈ F (u), it is not possible that v > u in Qr \ {(x0, t0)} and v(x0, t0) =

u(x0, t0). Analogously if u is a supersolution and v is a subsolution in Qr(x0, t0) it is not

possible that v < u in Qr \ {(x0, t0)} and v(x0, t0) = u(x0, t0).

It is easy to check that a C2-classical (sub, super) solution is a solution in the viscosity

sense and that a viscosity solution u which is of class C2, with its free boundary, in Ω̄+(u)

and Ω̄−(u) is also a C2-classical solution.

Sometimes it is more convenient to use the definition of viscosity solution in the following

equivalent form.
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Definition 7.2
′
. A function u ∈ C(C1) is a viscosity sub (super) solution to f.b.p. if,

for any cylinder Q, Q ⊂⊂ C1, and for every classical strict super (sub) solution v in Q, u < v

on ∂pQ implies u < v in Q̄; u is a viscosity solution if it is both sub and supersolution.

Indeed the definitions 7.2 and 7.2′ are equivalent.

(a) 7.2′ ⇒ 7.2. Let u be a viscosity subsolution, (x0, t0) ∈ F (u), Qr = Qr(x0, t0) ⊂ C1
and v a classical strict supersolution in Qr, such that v > u in Qr \ {(x0, t0)}. If

u(x0, t0) = v(x0, t0) we have a contradiction to 7.2′ (in a slightly smaller cylinder

Qr′(x0, t0), r′ < r).

(b) 7.2 ⇒ 7.2′. Let u be a viscosity subsolution, Q ⊂⊂ C1, v a classical strict superso-

lution in Q such that v > u on ∂pQ. Suppose v > u in Q̄ is not true. Then, there

is a first time τ and a point (x0, τ) ∈ F (u) ∩ F (v) such that u(x0, τ) = v(x0, τ).

Assume en is the normal direction to F (v) at (x0, τ). Then, near (x0, τ) we can

write,

v(x, t) =
(
α+(x− x0)n + β+(t− τ)

)+ − (
α−(x− x0)n + β−(t− τ)

)− + o(|x− x0|+ |t− τ |)
where α± = v±xn

, β± = v±t , with α+ > 0, α− > 0 and

β−

α− =
β+

α+
> G(α+, α−) .

On the other hand, for t ≤ τ , u(x, t) < v(x, t), and therefore, using theorem 1 in

the next section, we deduce

β−

α− ≤ C(α+, α−) .

Contradiction. �

Remark. Weak solutions of the two-phase Stefan problem are viscosity solutions. This

follows from the following comparison theorem in [F1]: if u and v are sub and supersolution

in C1 and u > v on ∂pC1, then u > v in C1.

7.3. Asymptotic behavior and free boundary relation

From the results in section 13.3, and in particular from Lemma 13.20, we can deduce

asymptotic inequalities at regular points of the free boundary and give a weak formulation

of the free boundary condition. First, let us clarify what we mean by regular point in this

case.

Definition. A point (0, 0) on F (u) is a regular point from the right (from the left) if

it has a touching ball B ⊂ Ω+(u) (B ⊂ Ω−(u)) with tangent plane of finite slope.
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The following theorem holds ([ACS1]):

Theorem 7.1. Let u be a viscosity solution in C1 of the f.b.p., according to either

Definition 7.2 or 7.2′. Suppose (0, 0) ∈ F (u) and that near (0, 0), for t ≤ 0, the following

asymptotic inequality holds

(a) u(x, t) ≥ (β+t + α+〈x, ν〉)+ − (β−t + α−〈x, ν〉)− + o(d(x, t))

with α+, α−, β+, β− ∈ R, α+ > 0, α− ≥ 0

or

(b) u(x, t) ≤ (β+t + α+〈x, ν〉)+ − (β−t + α−〈x, ν〉)− + o(d(x, t))

with α+, α−, β+, β− ∈ R, α+ ≥ 0, α− > 0

where ν denotes the inward spatial direction to Ω+(u) at (0, 0), and d(x, t) = |x|+ |t|.
Then

β+

α+
≥ G(α+, α−) (supersolution condition) (7.4)

in case (a), while
β−

α− ≤ G(α+, α−) (subsolution condition) (7.5)

in case (b).

Proof. We give it only for case (a), the other case being completely analogous.

Let N denote the neighborhood in which (a) is valid and assume ν = en. Define, for

λ > 0,

uλ(x, t) =
1
λ

u(λx, λt) .

Then, in N ,

uλ(x, t) ≥ (α+xn + β+t)+ − (α−xn + β−t) + o(1)

where o(1)→ uniformly in N , when λ→ 0.

If now (7.4) were false, there would exist η > 0 such that

β+

α+
≤ G(α+, α−)− η .

We show that this leads to a contradiction. Let R be a small parabolic neighborhood of

(0, 0) contained in N , i.e.

R = {(x′, xn, t) : |x′| < a, |xn| < b, −t0 < t ≤ 0}

with a, b, t0 small. Define

ψ(x′, xn, t) = ᾱ+xn + β̄+t− ct2 + x2
n −

|x′|2
2(n− 1)
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where ᾱ+ = α+ + ε, β̄+ = β+ + ε for some ε, positive and small, to be determined

later. Choose C > 0, large, so that the level surface {ψ = 0} is strictly convex and

{ψ > 0} ∩R ⊂ Ω+(u).

Observe that

Δψ − λa1ψt = 1− λa1(β̄+ − 2Ct) > 0

in R if λ is small enough.

Claim. If ε, a, b, t0 are small enough, depending on η,G, then the function

ϕ = ψ+ − ᾱ−

ᾱ+
ψ− with ᾱ− = α− + ε

is a classical strict subsolution to the f.b.p. in R.

To prove the claim, it is enough to show that

ϕ+
t

|∇ϕ+| ≤ G(|∇ϕ+|, |∇ϕ−|) (7.6)

on {ϕ = 0} ∩R. By continuity, ϕ+
t /|∇ϕ+| is close to

ϕ+
t (0, 0)

|∇ϕ+(0, 0)| =
β̄+

ᾱ+

uniformly in R. On the other hand

β̄+

ᾱ+
=

β+

α+
+ O(ε) ≤ G(α+, α−)− η/2

if ε = ε(η) is small enough.

Since G is continuous in all of its arguments, we obtain (7.6) if the size of R is small

enough.

If we now choose λ very small, we see that

uλ(x, t) ≥ (α+xn + β+t)+ − (α−xn + β−t)− + o(1) > ϕ(x, t)

on the parabolic boundary of R, hence in R \ {(0, 0)}. Since uλ is a viscosity solution

of the f.b.p., we must have uλ > ϕ in R̄. But then, 0 = uλ(0, 0) > ϕ(0, 0) = 0 gives a

contradiction. �

Remark. Let u be a viscosity solution in C1 and (0, 0) ∈ F (u). If (0, 0) is a regular

point from the right (resp. left), then (a) (resp. (b)) holds near (0, 0). Precisely, let B an

(n + 1)-dimensional ball touching F (u) at (0, 0) from the positive side. Let ν = en be the

spatial inward unit normal to B at (0, 0) and ᾱxn + β̄t = 0 be the equation of the tangent

plane. Assume that the slope −β̄/ᾱ is finite (ᾱ > 0). Then, apply Lemma 13.20 to u+ and

u−. We obtain

u+(x, t) ≥ (α+xn + β+t)+ + o(d(x, t)) (7.7)
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in B, with α+ > 0 (that we may assume finite) and β+ ∈ R, and

u−(x, t) ≤ (α−xn + β−t)− + o(d(x, t)) (7.8)

in CB, with α− > 0 (finite) and β+ ∈ R.

Then, the conclusion of Theorem 7.1 follows. In particular, note that

∞ >
β̄

ᾱ
=

β+

α+
≥ G(α+, α−)

and therefore sup{α : (7.7) holds} <∞.

Regular points from the left can be handled in the same way. Also, we know, from the

same lemma, that equality holds in (3) and (4), along paraboloids of the form t = −γx2
n,

γ > 0.

7.4. R-subsolutions and a comparison principle

As in section 2.3, for comparison purposes, it is useful to introduce another class of

subsolutions. We say that v ∈ C(C1) is an R-subsolution if

(i) Δv − a1vt ≥ 0 in Ω+(v), Δv − a2vt ≥ 0 in Ω−(v)

(ii) whenever (x0, t0) ∈ F (v) has a touching (n+1)-dimensional ball B ⊂ Ω+(v), then,

near (x0, t0), in B,

v+(x, t) ≥ (α+〈x− x0, ν〉+ β+(t− t0))+ + o(|x− x0|+ |t− t0|) (7.9)

and in CB
v−(x, t) ≤ (α−〈x− x0, ν〉+ β−(t− t0))− + o(|x− x0|+ |t− t0|) (7.10)

where α± ≥ 0, β± ∈ R, ν = ν(x0, t0) is the spatial inward unit normal to B at

(x0, t0),

β+ ≤ α+G(α+, α−) (or β− ≤ α−G(α+, α−)) . (7.11)

Here

α+〈x− x0, ν〉+ β+(t− t0) = 0 = α−〈x− x0, ν〉+ β−(t− t0)

are equations for the tangent plane to B at (x0, t0).

The following analog of Lemma 2.1 holds.

Theorem 7.2. Let u, v be a viscosity solution and an R-subsolution in C1, respectively,

with u ≥ v. Moreover let u > v in Ω+(v) and (0, 0) ∈ F (v) ∩ F (u). Then, (0, 0) cannot be

a regular point from the right.
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Proof. Suppose B ⊂ Ω+(v) touches (0, 0), with tangent plane αxn + βt = 0, −β/α

finite. Then, near (0, 0) in B, we have

v+(x, t) ≥ (α+xn + β+t)+ + o(d(x, t)) (α+ > 0) (7.12)

and in CB,

v−(x, t) ≤ (α−xn + β−t)− + o(d(x, t)) . (7.13)

From Theorem 7.1 and the Remark after it, we know that, near (0, 0)

u+(x, t) ≥ (ᾱ+xn + β̄+t)+ + o(d(x, t)) (7.14)

in B, and

u−(x, t) ≥ (ᾱ−xn + β̄−t)− + o(d(x, t)) (7.15)

in CB, with equality along any paraboloid of the form t = −γx2
n, γ > 0.

We have:

a) computing along the paraboloid t = −γx2
n, γ > 0, from (7.12)–(7.15) and u ≥ v,

we deduce

ᾱ+ ≥ α+ , ᾱ− ≤ α−

and therefore

G(ᾱ+, ᾱ−) ≥ G(α+, α−) . (7.16)

b) From (7.11) and (7.4) of Theorem 7.1, since α+ > 0,

G(ᾱ+, ᾱ−) ≤ β̄+

ᾱ+
=

β+

α+
≤ G(α+, α−) (7.17)

which implies, by the strict monotonicity of G,

ᾱ+ = α+ , ᾱ− = α− .

On the other hand u−v is supercaloric in Ω+(v), so that Hopf principle along t = −γx2
n,

gives, for some ε > 0,

u− v ≥ εx+
n .

Contradiction. �
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Lipschitz free boundaries: weak results

8.1. Lipschitz continuity of viscosity solutions

As we already mentioned in the introduction of chapter 7, the regularity theory follows

the lines of the elliptic theory, at least for the class of parabolic problems we deal with.

Thus, as a first step we assume that the free boundary is given by the graph of a Lipschitz

function in space and time. Although Lipschitz regularity in time versus Lipschitz regularity

in space is not, of course, the natural homogeneity balance for the study of general parabolic

equations, it is so for the study of phase transition relations of the form

F (u+
ν , u−

ν , Vν) = 0

along the free boundary, which are invariant precisely under hyperbolic scaling.

In this chapter we first prove optimal regularity (Lipschitz continuity) for a solution

and then we refine the results in section 8.2, giving a more precise free boundary behavior.

In the last section, two counterexamples, one in spatial dimension n = 2 for a one-phase

Stefan problem, the other one in dimension n = 3 for a two-phase Stefan problem, indicate

that, in general, there is no instantaneous regularization of the free boundary.

We now prove optimal regularity of a viscosity solution, having Lipschitz free boundary

([ACS1]).

Theorem 8.1. Let u be a viscosity solution to f.b.p. in C1 = B′
1 ∩ (−1, 1). If F (u) =

∂Ω+(u) is Lipschitz in some space direction ν, then u is Lipschitz continuous in C1/2.

Proof. Let d0 so small that all the results in section 13.2 can be applied in a d0-

neighborhood of F (u), from both sides. In particular, from corollary 13.15 we have |ut| ≤
C|∇u|. Thus it is enough to show that the spatial gradient is bounded across F (u).

We show that |∇u+| is bounded; a similar proof can be done for |∇u−|. Take (x0, t0) ∈
Ω+(u)∩C1/2 at distance d from F (u), with d ≤ d0. Suppose that the (n+1)-dimensional ball

Bd(x0, t0) touches F (u), say, at (0, 0). Let h = dist((x0, 0), (0, 0)) and note that cd ≤ h ≤ d,

for c = c(L, n). Set u(x0, 0) = Ah. We want to show that A is bounded. By interior

estimates this proves the theorem.

127
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As in Lemma 13.16 set, in Ω+(u)

w+ = u + u1+ε , w− = u− u1+ε .

We know that Δw+ ≥ 0 and Δw− ≤ 0 in Ω+(u) ∩ {t = 0}. Moreover

w+ ≤ cw− .

At time t = 0, we have

Ah = u(x0, 0) ≤ w+(x0, 0) ≤
∫
−

B′
h/4

(x0)
w+ ≤ c

∫
−

B′
h/4

(x0)
w− ≤ c0 inf

B′
h(x0)

w−

where the constant c0 depends only on n,L, a1 and the value of u at, say, (3
4ν,−3

4).

Considering n > 2, set

H(x) =
Ah

c0(rn−2 − 1)

(
hn−2

rn−2
− 1

)
r = |x− x0| .

Then ΔH = 0 in the ring B′
h(x0) \ B̄′

h/4(x0), H = 0 on ∂Bh(x0) and H = Ah/c0 on

∂B′
h/4(x0). By maximum principle, u > w− > H in the ring. Choose the coordinate system

so that x0 = hen. Then, near 0, inside the ring,

u(x) > w−(x) ≥ cAxn + o(|x|) . (8.1)

We now construct a classical subsolution in a small cylinder around (0, 0), smaller than u

on the parabolic boundary.

Let Cρ = B′
ρ × (−ρ, ρ), ρ ≤ h

2 and define on the hyperplane {t = 0}, in B′
h(x0) ∩B′

ρ,

v =
1
2
H .

Fix ρ small so that v < 1 and define in Cρ

z+(x, t) =
1
2
[
v(x + tβen) + (v(x + tβen))2

]+
.

Then, in {z+ > 0}

Δz+ − z+
t = |∇v|2 − 1

2
βvxn(1− 2vxn)

≥ vxn(vxn − c̄β) ≥ (c̄A− cβ) > 0

if 0 < β < c̄
2cA. Let also β > 2L, L the Lipschitz constant of F (u) and, if necessary, lower

ρ to make sure that u > z+ in {z+ > 0} ∩ {t < 0}.
Let Q+ = Cρ ∩ {z+ > 0}, Q− = Cρ \ Q̄+, and Q−ρ = Q̄− ∩ {t = −ρ}. In Q−ρ define w

as follows ⎧⎪⎨
⎪⎩

Δw = 0 in Q−ρ

w = 0 on ∂Q−ρ ∩ F (z+)
w = 2u− + ηg on ∂Q−ρ \ F (z+)
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where η is a small positive number and g = g(x, t) is a smooth function, positive on

∂pQ
− \ F (z+), vanishing on ∂Q−ρ ∩ F (z+).

Let now z− be defined in Q− such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δz− − z−t = 0 in Q−

z− = 2u− + ηg on ∂pQ
− \ F (z+)

z− = 0 on ∂pQ
− ∩ F (z+)

z− = w in Q−ρ.

At t = 0, near the origin, we have

z−(x, 0) = α−x−
n + o(|x|)

with

α− ≤ c1

Aρ2

by the monotonicity formula, and c1 = c1(n, ‖z±‖L∞(Cρ)). On the other hand, if we choose

β such that

1
3

min
{

C̄M

2c
,G

(
CA,

c1

Aρ2

)}
< β < min

{
C̄A

2c
, g

(
CA,

c1

Aρ2

)}
at (0, 0) we have

z+
t (0, 0)

z+
en(0, 0)

= β < G

(
CA,

c1

Aρ2

)
≤ G(CA,α−) .

By continuity, this inequality propagates in a small subcylinder Cρ′ of Cρ.

Thus, inside Cρ′ , the function

z =

{
z+ in Q+

−z− in Q−

is a classical strict subsolution. Now, if A is very large, β is also very large, and ∂{z+ >

0} ∩ Cρ stays to the right of F (u) for t < 0, since the free boundary of u is Lipschitz, that

is F (u) has bounded speed.

Then, by construction, u > z on ∂pCρ so that it must be u > z in Cρ′ . Since u(0, 0) =

z(0, 0) = 0, we have a contradiction. Therefore A is controlled by a constant depending on

the Lipschitz constant of F (u) and the maximum of |u| in C̄2/3. �

8.2. Asymptotic behavior and free boundary relation

At a regular point of F (u), the asymptotic behavior from both sides of the free boundary

follows from Theorem 8.1. When F (u) is Lipschitz it is possible to show a more precise

result near a point which is both of differentiability of the free boundary and of Lebesgue

differentiability with respect to surface measure, for instance, for ∇u± and Dtu
±.
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Notice that almost every point on F (u) is of this kind. In fact, from section 13.2,

we know that caloric and surface measure are mutually absolutely continuous and any

partial derivative of u± is a bounded solution of the heat equation on each side of F (u).

Therefore, these derivatives have a well defined L∞ trace on the free boundary, in the sense

of nontangential convergence.

Theorem 8.2. Let u be as in theorem 8.1 and let (0, 0) be a common point of differ-

entiability for the free boundary and of Lebesgue differentiability for ∇u± and Dtu
± w.r.t.

surface measure.

Then, in a neighborhood of (0, 0),

u(x, t) = (α+〈x, ν〉+ β+t)+ − (α−〈x, ν〉+ β−t)− + o(d(x, t)) (8.2)

where α+〈x, ν〉+ β+t = α−〈x, ν〉+ β−t = 0 is the equation of the tangent plane to F (u) at

(0, 0). Moreover, α+ ≥ 0, α− ≥ 0 and

β+ = α+G(α+, α−)

β− = α−G(α+, α−) .

Proof. Consider u+. The proof for u− is similar. Since u+
t , u+

ν are bounded solutions

of Ha1v = 0 and since (0, 0) is a Lebesgue differentiability point for both functions, the

nontangential limits of u+
t and u+

ν exist when (x, t)→ (0, 0). Therefore, we can write

α+ = N.T. lim
(x,t)→(0,0)

u+
ν (x, t) , β+ = N.T. lim

(x,t)→(0,0)
u+

t (x, t) .

(N.T. stands for Non Tangential).

Now, the asymptotic development of u+ follows easily and, since we have equality sign in

it, by theorem 8.1, the equality sign must hold also in the free boundary relation (8.4). �

8.3. Counterexamples

The natural question is now: suppose u is a viscosity solution in C1. If the free boundary

F (u) is a Lipschitz graph (in space and time) can we deduce further regularity, that is F (u)

is actually a C1,γ or a C1 graph?

The answer is no, in general, as the following counterexamples show.

Counterexample 1. A bidimensional one phase problem.

Consider the function

w(ρ, θ, t) = ρg(t){cos[g(t)θ]}+

where ρ, θ are polar coordinates in the plane and g is a smooth decreasing function greater

than 2.
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t = 4 . 10-2

t = 3 . 10-2

t = 2 . 10-2

t = 10-2
t = 0

initial interface

+(u)

Figure 8.1. Ω = (−10−1, 10−1)× (−10−1, 10−1, g(t) = 2.1 − 10t

Then

Δw − wt < 0

in Ω+(w) = {(ρ, θ, t) : |θ| < π/2g(t), ρ > 0} and on

F (w) = {(ρ, θ, t) : |θ| − π/2g(t), ρ ≥ 0} .

w+
t = −π

2
g1

g
ρg , |∇w+|2 = ρ2g−2g2 .

Therefore, if R ≤ R0 is sufficiently small, in the cylinder CR = B′
R × (0, R2), we have

−πg1

2g3
≤ ρg(t)−2

which makes w a supersolution of a one phase Stefan problem. If now u is a solution in CR

of the same problem (in a weak or viscosity sense) with u = w on ∂pCR, then u ≤ w in CR.

But at the origin, F (w) has a persistent corner singularity. Since (0, 0) ∈ F (u) initially

with zero speed, (0, 0) ∈ F (u) for 0 ≤ t < R2
0 and since u ≤ w, the origin is a persistent

corner also for F (u).

Counterexample 2. A three dimensional two phase problem ([ACS2]).

The same kind of hyperbolic behavior in example 1, can occur also in two phase prob-

lems, in spite of the fact that both phases have non-zero temperature.

To construct the example we need the following lemma on spherical harmonics.
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Lemma 8.3. In R
3, let Dλ,μ denote the domain

Dλ,μ = {x3 > r(λ cos λθ − μ)}

where (r, θ) are polar coordinates in the (x1, x2)-plane and λ is an integer. Let ρ = |x|,
σ = x/|x| and

hλ,μ = ραfλ,μ(σ)

be the positive harmonic function in Dλ,μ, homogeneous of degree α(λ, μ), vanishing on

∂Dλ,μ, with ‖fλ,μ‖L2(Sλ,μ) = 1 where

Sλ,μ = Dλ,μ ∩ ∂B1 .

Then, for λ > λ0, |μ| < 1,

α ≥ 3 .

Proof. The function h is constructed by separation of variables, by computing

Δh = ρα−2[α(α + 1)f + Δσf ]

where Δσ is the Laplace-Beltrami operator on the unit sphere ∂B1 of R
3. Thus f is chosen

to be the first normalized eigenfunction of −Δσ for the spherical domain Sλ,μ and α must

be chosen so that α(α + 1) equals the corresponding first eigenvalue.

If we fix |μ| ≤ 1 and let λ go to infinity, the domain Dλ,μ becomes very narrow; for

instance, any disc of radius c/λ cuts the complement of Sλ,μ in a fixed proportion so that

α ∼ Cλ

if λ→ +∞.

This proves the lemma. �

Lemma 8.4. Let {
w(x, t) = (1 + Mt)hλ0+1,t(x) in Dλ0+1,t

w(x, t) = 0 otherwise.

Then, for ε small and M properly chosen, w is a supersolution of the Stefan problem in

B′
ε(0) × (0, ε).

Proof. We must show that

Δw −wt ≤ 0 in Dλ0+1,t

and that the speed of the free boundary, Vν (ν pointing towards the positive region) is

smaller than −wν , on the free boundary ∂Dλ0+1,t.
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Observe that hλ,μ is smooth with respect to λ, μ since Dλ,μ changes smoothly (in fact,

analytically) in λ, μ. Moreover, Dλ0+1,t is increasing in t, so that by choosing M large we

can make (1 + Mt)hλ0+1,t monotone increasing in t. Therefore

Δw = −Dt[(1 + Mt)hλ0+1,t] < 0 .

On the free boundary,

wν = (1 + Mt)rαfν∗(σ) (α = α(λ0 + 1, t))

where fν∗ denotes the (smooth) normal inward derivative of f along ∂Sλ0+1,t. Thus, since

for t small α ≥ 3, for r small we have

wν ≤ cr3 .

The speed of the free boundary ∂Dλ0+1,t is minus the ratio between the time and the

space components of the gradient of

g(x, t) = x3 − r[(λ0 + 1) cos(λ0 + 1)θ − t] ,

that is

Vν = − r

|∇g| ≤ −cr .

Therefore, for r, t < ε, small

Vν ≤ −wν

which makes w a supersolution in B′
ε(0)× (0, ε). �

Observe now that CDλ,0, the complement of Dλ,0, is obtained from Dλ,0 by a rotation

R. Therefore the same construction can be used to construct a negative subsolution in

B′
ε(0) × (0, ε).

We define for t = 0, in CDλ0+1,t,

v(x, 0) = −w(Rx, 0)

and let v to evolve according to the formula{
v(x, t) = −(1 + Mt)hλ0+1,−t(Rx) in CDλ0+1,−t

v(x, t) = 0 otherwise.

It is easy to check that v is indeed a subsolution of the Stefan problem in B′
ε × (0, ε). As a

consequence:

Theorem 8.5. Let u be the solution of the two phase Stefan problem in B′
ε× (0, ε) with

initial and lateral data satisfying

v ≤ u ≤ w .
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t = 3.10-2

t = 3.5.10-2t = 4.5.10-2

t = 4.10-2
t = 5.10-2

Figure 8.2. Regularization effect after a waiting time

Then F (u) is contained in{
xn ≥ r

[
(λ0 + 1) cos(λ0 + 1)θ − t

]} ∩ {xn ≤ r
[
(λ0 + 1) cos(λ0 + 1)θ + t

]}
and, in particular, has a persistent corner at the origin.

Thus, Lipschitz free boundaries in evolution problems do not enjoy, in general, instan-

taneous regularization.

A closer look at both counterexamples reveals that two main factors seem to prevent

immediate smoothing:

(a) the simultaneous vanishing of the heat fluxes from both sides of the free boundary

(b) the size of the Lipschitz constant (too large).

Points where (a) and (b) occur do not move at least for short time and are able to

carry a singularity. Concerning condition (b), in counterexample 1 the function w ceases to

be a supersolution when g becomes smaller than 2 (which seems to indicate that π/2 is a

critical angle) and one expects the singularity will eventually disappear, showing finite time

regularization.

Numerical evidence that this is indeed the case is shown in figures 8.1 and 8.2 (courtesy

of Nochetto, Schmidt and Verdi).

We will examine this question in chapter 10.

According to the previous observations, a regularity theory can be developed only under

additional conditions, able to prevent (a) and/or (b) above.

The next chapter deals with regularization under an appropriate nondegeneracy condi-

tion that prevents (a).



CHAPTER 9

Lipschitz free boundaries: strong results

9.1. Non degenerate problems: main result and strategy

We start to study the regularity of the free boundary. According to the final comments

in section 9.3, we shall concentrate on a class of problems, that we call non-degenerate, for

which the regularity of the free boundary can be pushed to be C1. The non-degeneracy

condition states, roughly speaking, that the heat fluxes from the two sides of the free

boundary are not vanishing simultaneously. In some cases, the validity of this condition

can be inferred by global consideration (see for instance [N]). On the other hand, we expect

this situation to be generic in a sense that will be explained in the next chapter, when we

will deal with flat free boundaries.

The main result can be stated in the following way ([ACS2]:

Theorem 9.1. Let u be a viscosity solution to a f.b.p in C1 = B′
1 × (−1, 1) whose free

boundary, F (u), is given by the graph of a Lipschitz function xn = f(x′, t) with Lipschitz

constant L. Assume that M = supC1
|u|, u(en,−2

3) = 1, (0, 0) ∈ F (u) and that:

(i) G = G(a, b) : R
2
+ → R is a locally Lipschitz function and, for some positive number

c∗,

∂aG ≥ c∗ , ∂bG ≤ −c∗ .

(ii) (Non-degeneracy condition). There exists m > 0 such that, if (x0, t0) ∈ F (u) is a

regular point (from the right or from the left) then, for any small r,∫
−

B′
r(x0)

|u| ≥ mr .

Then, the following conclusions hold:

(1) In C1/2, the free boundary is a C1 graph in space and time. Moreover, for any

small η > 0, there exists a positive constant c0 = c0(n,M,L, c∗,m, a1, a,η)

such that, for every (x′, xn, t), (y′, yn, t) ∈ F (u) ∩ C1/2,

|∇x′f(x′, t)−∇x′f(y′, t)| ≤ c0(− log |x′ − y′|)−3/2+η

|∂tf(x′, b)− ∂tf(x′, s)| ≤ c0(− log |t− s|)−1/2+η .
(9.1)

135
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(2) u ∈ C1(Ω̄+(u)) ∩C1(Ω̄−(u)) and, on F (u) ∩ C1/2,

u+
ν ≥ c1 > 0

with c1 = c1(n,M,L, c∗,m, a1, a2, η).

Strategy of the proof. Although the proof follows the general lines of the elliptic

case, new features occur here that we like to emphasize. Thus, let us examine and comment

on the various steps in the proof.

Step 0. From chapters 8 and 11, we know that u is Lipschitz continuous in C2/3 (say)

and that, near F (u), u is monotone increasing along every direction τ belonging to a cone

Γ(en, θ) (cone of monotonicity) with axis en and opening θ, θ = 1
2 cot−1(L). Equivalently,

for any ε > 0,

vε(p) = sup
Bε sin θ(p)

u(q − εen) ≤ u(p) (p = (x, t)) . (9.2)

After a hyperbolic scaling we may assume that u is monotone in all of C1.
Step 1. We show that, away from the free boundary, on both sides and in parabolic

homogeneity, the enlargement of the space section of the cone of monotonicity (with a

suitable choice of new axes) is a simple consequence of Harnack inequality.

However this enlargement could occur in opposite directions in Ω+(u) and Ω−(u), as

shown in figure 9.1, preventing a common enlarged cone.

In the parabolic case, the role of the two phases is more symmetrical than in the elliptic

one, so that we do not know which one of the two is the commanding one or even if they

may alternate in being the commanding one. Therefore we must rule out the possibility

in figure 9.1 and show that there is a common axis of improvement in both phases. This

amounts to an improvement of the Lipschitz constant in space of the level sets of u, away

from F (u).

Step 2. Due to the underlying double homogeneity (parabolic for the heat equation ,

hyperbolic for the free boundary condition) the parabolically scaling gain in step 1 is not

well suited for iteration purposes (it is too short in time). Thus, we need to prove a gain in

monotonicity, in a hyperbolically scaling region.

Step 3. The interior improvement of the Lipschitz constant in time of the level sets of u

requires new ideas. At this stage one realizes that the derivatives of u along purely spatial

directions behave differently from those involving a time component. This different behavior

will of course result in a different opening speed between the spatial section of the cone,

Γx(e, θx) and the space time-section Γt(ν1, θ
t), where ν1 belongs to the plane spanned by
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Figure 9.1

e, et. Clearly, initially e = en = ν, θx = θt = θ. In other words cones cease to be circular in

space and time and the decay rate of the spatial defect will be faster than that of the time

defect.

We will denote by δ = π
2 − θx the defect angle in space and by μ = π

2 − θt the defect

angle in time.

Steps 4, 5. Iteration of step 3 requires δ � μ3. This implies that in carrying the opening

gain to the free boundary we have to prove first regularity in space and then in time. As

in the elliptic case, this can be done by constructing a continuous family of R-subsolutions,

by varying the radius where the supremum in (9.2) is taken. It is at this stage that the

non-degeneracy condition plays its role.

We first prove (step 4) that for each time level τ , Fτ = F (u) ∩ {t = τ} is a C1-surface

with a rough modulus of continuity of ∇x′f . Using this partial regularity in space it is

possible to obtain (step 5) a gain in space and time described by the relations

δ1 ≤ δ − c1
δ2

μ
(9.3)

μ1 ≤ μ− c2δ (9.4)
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as long as δ � μ3. The improvements (9.3) and (9.4) hold in a cylinder of the form B′
1/2 ×

(−1
2

δ
μ , 1

2
δ
μ), that shows the right scaling, intermediate between parabolic and hyperbolic.

Step 6. We now iterate steps 1 to 5. We obtain that in a sequence of contracting cylinders

B′
2−k × (− δk

2kμk
, δk

2kμk
), u is increasing along all the directions in a sequence of corresponding

spatial cones Γx(νk, θ
x
k) and space-time cones Γt(ν̄k, θ

t
k), whose respective defect angles

satisfy the recurrence relations

δk+1 ≤ δk − c1
δ2
k

μk
(9.5)

μk+1 ≤ μk − c2δk (9.6)

with δk � μ3
k, |νk+1 − νk| ≤ c3(δk − δk+1), |ν̄k+1 − ν̄k| ≤ c4(ν̄k − ν̄k+1).

From (9.5) and (9.6) we get the asymptotic behavior

δk ∼ c1(η)
k3/2−η

, μk ∼ c2(η)
k1/2−η

for any small η > 0. According to the discussion at the end of section 4.1 these asymptotic

behavior correspond exactly to the modulus of continuity of ∇x′f and ∂tf in Theorem 9.1.

In particular, if we set

ω(r) = sup
|x′−y′|<r

|∇x′f(x′)−∇x′f(y′)|

then ω(r) ≤ c0| log r|−4/3 (say, choosing η = 1/6) and in particular∫
0

ω(r)
r

dr ≤ cD <∞ (9.7)

The condition (9.7), known as Dini-condition appears in several instances in the regularity

theory for partial differential equations. An important question we may ask is under which

minimal conditions one has C1-regularity up to the boundary for, say, a harmonic function

in a domain Ω ⊂ R
n.

From [W] it turns out that a necessary and sufficient condition for this to happen is

that Ω be a Liapunov-Dini domain, i.e., a bounded domain in R
n, whose boundary is given

locally by the graph of a function xn = f(x′) satisfying (9.7) uniformly.

More precisely, we will use the following consequence of the results in [W]: if v is har-

monic in the C1 domain Ω, and vanishes on the surface disc ΔR = ∂Ω ∩BR(x0), x0 ∈ ∂Ω,

then u is C1 up to ΔR/2 and

vν ≥ c > 0 on ΔR/2

if and only if (9.7) holds on ΔR.
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But for the solution u of our f.b.p. (9.7) tells that Ω±(u) ∩ {t = τ} is a Liapunov-Dini

domain for each τ ∈ (−1
2 , 1

2). Applying the results of [W] and the free boundary condition

we obtain the remaining assertions of Theorem 9.1.

As usual, we do not explicit the dependence of a constant when its arguments are some

of the relevant parameters n,L,M, c∗,m, a1, a2.

9.2. Interior gain in space (parabolic homogeneity)

According to the comments in step 0, we assume from now on that u is a viscosity

solution to f.b.p. in C1 = B′
1 × (−1, 1), with (0, 0) ∈ F (u), monotone increasing along every

τ ∈ Γ(en, θ). We also assume that the coefficients of ut in the heat equations Δu−aiut = 0

in both phases are much smaller than δ = π
2 − θ and that B′

1/4(
3
4en) × (−1, 1) ⊂ Ω+(u),

B′
1/4(−3

4en) × (−1, 1) ⊂ Ω−(u). There is no loss of generality, since we can start from a

very small neighborhood of a free boundary point, say (0, 0), and perform an initial fixed

scaling of the type

uλ(x, t) =
u(λx, λt)

λ
.

The following lemma parallels Lemma 4.5.

Lemma 9.2 (Harnack principle). Let u1 ≤ u2 be two viscosity solutions to f.b.p. in C1,
monotone increasing along every τ ∈ Γ(ν, θ), ν ∈ R

n+1. Let a = min{a1, a2} and suppose

that for ε > 0, σ > 0, small

(a) vε(x, t) = supBε(x,t) u1 ≤ u2(x, t) in C1−ε

(b) if p0 = (3
4en,−1

4a2),

u2(p0)− vε(p0) ≥ σεu2(p0)

(c) B′
1/4(

3
4en)× (−1, 1) ⊂ Ω+(u1).

Then, there exist positive constants C, h such that, in B′
1/8(

3
4en)× (0, 1

4a2) we have

u2(x, t)− v(1+hσ)ε(x, t) ≥ Cσεu2(p0) . (9.8)

Proof. For any unit vector ν̄, write (p = (x, t))

u2(p)− u1(p + εν̄(1 + hσ)) = w(p) + z(p)

where

w(p) = u2(p)− u1(p + εν̄) , z(p) = u1(p + εν̄)− u1(p + εν̄(1 + hσ)) .



140 9. LIPSCHITZ FREE BOUNDARIES: STRONG RESULTS

Now, w is a nonnegative solution of Δw − a1wt = 0 in B′
1/4−ε(

3
4en) × (−1 + ε, 1 − ε). By

Harnack inequality, for p ∈ B1/8(3
4en)× (0, 1

4a2), we have, from (9.8)

w(p) ≥ cw(p0) ≥ cσεu2(p0) . (9.9)

From Corollary 13.15 we have, in B′
1/8(

3
4en)× (0, a2)

|∇u1(p)| ≤ Cu1(p) ≤ Cu1(p0) ≤ Cu2(p0) . (9.10)

Hence, from (9.8) and (9.9),

w(p) + z(p) ≥ Cσεu2(p0) + Chσεu2(p0) ≥ C̄σεu2(p0)

for h small enough. �

The above Harnack principle remains valid if the supremum in (a) and (b) is taken only

over n-dimensional spatial balls, for every time level t. Precisely, with the same proof we

have:

Corollary 9.3. Let u1, u2 as in Lemma 9.2. Suppose that for ε > 0, σ > 0 small,

(a) supy∈B′
ε(x) u1(y, t) ≤ u2(x, t) in C1−ε

(b) u2(p0)− supy∈B′
ε(

3
4
en) u1(y1,−1

4a2) ≥ σεu2(p0)

(c) B′
1/4(

3
4en)× (−1, 1) ⊂ Ω+(u1).

Then there exist constants c > 0, h > 0 such that, in B′
1/8(

3
4en)× (0, 1

4a2),

u2(x, t)− sup
y∈B′

(1+hσ)ε
(x)

u1(y, t) ≥ cσεu2(p0) . (9.11)

We now apply corollary 9.3 to the positive part of our viscosity solution in u. Denote

by Γx(en, θ) the section in space of Γ(en, θ). Let τ ∈ Γx(en, θ
2 ) be a small vector and

ε = |τ | sin θ
2 .

Setting u1(x, t) = u(x− τ, t), for y ∈ B′
1/4(

3
4en) we have

u1

(
y,−1

4
a2

)
= u

(
y − τ,−1

4
a2

)
= u

(
3
4
en − τ̄ ,−1

4
a2

)

= u

(
3
4
en,−1

4
a2

)
−Dτ̄u

(
y∗,−1

4
a2

) (9.12)

where τ̄ = 3
4en − y + τ .
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Since α(τ, τ̄ ) ≤ 1
2θ, Dτ̄u is a non-negative solution of the heat equation in Ω+(u). Hence,

from Harnack inequality,

inf
y∈B′

|τ |+ 1
4

(3en/4)
Dτ̄u

(
y,−1

4
a2

)
≥ cDτ̄u

(
3
4
en,−1

2
a2

)
=

= c
∣∣∣∇u

(
3
4
en,−1

2
a2

) ∣∣∣ · |τ̄ | cos α(ν̄, τ̄ )

(9.13)

where ν̄ = ∇u(3
4en,−1

2a2). Since |τ̄ | ≥ c|τ | and α(ν̄, τ̄) ≤ α(ν̄, τ) + θ
2 , by corollary 13.15,

we have, for y ∈ B′
1/4(

3
4en) ∣∣∣∇u

(
3
4
en,−1

2
a2

) ∣∣∣ ≥ cu(p0)

and therefore, from (9.12),

u1

(
y,−1

4
a2

)
≤ (1− σε)u(p0)

with σ = σ(τ) = c(π
2 − (α(ν̄, τ) + θ

2)). Applying corollary 9.3, we have proved:

Lemma 9.4. There exist c > 0, h > 0 such that

sup
y∈B′

(1+hσ)ε
(x)

u(y − τ, t) ≤ u(x, t)− cσεu(p0)

for every (x, t) ∈ B′
1/8(

3
4en)× (0, 1

4a2).

An analogous Lemma holds for the negative part of u, in B′
1/8(−3

4en) × (0, 1
4a2). Ap-

plying now the intermediate cone Theorem 4.2, we conclude that:

Corollary 9.5. In B′
1/8(±3

4en) × (0, 1
4a2), u± is monotone increasing along every

τ ∈ Γx(e±, θ±) ⊃ Γx(en, θ), respectively, with

δ± ≤ b̄δ

where b̄ < 1.

9.3. Common gain

At this point we have enlarged the spatial section Γx(en, θ) of the monotonicity cone

in B′
1/8(

3
4en) × (0, 1

4a2) and in B′
1/8(−3

4en) × (0, 1
4a2) to new cones Γ+

x = Γx(e+, θ+) and

Γ−
x = Γx(e−, θ−), respectively.

Now, if ν± = ∇u(±3
4en,−1

2a2) and

α(ν+, en) < δ or α(ν−, en) < δ (9.14)

we can use respectively ν+ or ν− as our special direction ν in Theorem 4.2 and obtain a

gain on both sides with the same corrected cone Γx(e∗, θ∗), e∗ = ν+/|ν+| or ex = ν−/|ν−|.
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The problem arises when both angles in (9.14) are close to δ, say

δ − η = α(ν+, en) ≈ α(ν−, en) ≤ δ

with η � δ, because the new cone axis e+, necessary for the gain on the positive side of u

may be far from that on the other side. For instance, it could be that

α(ν+, en) = α(ν−, en) = δ

and, if ν+ �= ν−, the corresponding cones Γ+
x and Γ−

x are tangent to the original cone

Γx(en, θ) along different directions, making it impossible to have a common enlarged cone.

This is precisely the situation described in figure 9.1. We rule out this situation by

estimating the distance between e+ and e− in terms of δ, showing that we can always

choose a common enlarged cone on both sides.

In the following lemma we find a good candidate for the axis of the common cone.

Let ρ± denote the unit vectors on the boundary of Γx(en, θ), opposite to ν±, respectively

(that is, 〈ρ±, ν±〉 is minimum among all 〈τ, ν±〉, τ ∈ Γx(en, θ)), and thus ρ± give us the

directions for which expected gain is minimum.

Lemma 9.6. There exists a (universal) constant K and a normal unit vector ν at some

point of differentiability of the free boundary such that simultaneously,

〈ν, ρ+〉 ≤ K[δ − α(ν+, en)] ≡ Kγ+

〈ν, ρ−〉 ≤ K[δ − α(ν−, en)] ≡ Kγ− .

Proof. Normalize u+ so that

〈ν+, en〉 = Denu

(
3
4
en,−1

2
a2

)
= 1 .

We have:

(1) Dρ+u ≥ 0

(2) Dρ+u
(

3
4en,−1

2a2
)

= 〈ν+, ρ+〉 ≤ |ν+| cos α(ν+, ρ+) ≤ cγ+

Denote by ω the caloric measure in Ω+(u)∩{t ≥ −20a2
1}, evaluated at (3

4en,−1
2a2) and set

E = {(x, t) ∈ F (u) : −10a2
1 < t < −a2

1} .

Then, from (1) and (2):

0 ≤
∫

E
Dρ+u+ dω ≤ cγ+ .

Since caloric and surface measure on F (u) are mutually absolutely continuous, the set

E ∩ {Dρ+u+ ≥ Kγ+}
has surface measure as small as we want depending only on K.
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Also, since Denu+ is equivalent to caloric measure on F (u), the set

E ∩
{

Denu+ <
1
K

}
has surface measure as small as we want. Similarly for u−, ν−, ρ−.

Thus, for K large, there is a point of differentiability of F (u) where

Denu+ ≥ 1
K

, Denu− ≥ 1
K

and

Dρ+u+ ≤ Kγ+ , Dρ−u− ≤ Kγ+ .

If ν is the normal unit vector to F (u) at that point, inward to Ω+(u), we have

〈ν, ρ+〉
〈ν, en〉 =

Dρ+u+

Denu+
≤ K2γ+ .

The same inequality holds for 〈ν, ρ−〉. This completes the proof. �

We want now to show that we can associate to ν, by the gain process indicated in

Theorem 4.2, a cone Γ̄x(ν, θ̄), that, for a small enough gain, is contained in both the cones

Γ+
x and Γ−

x associated to ν+ and ν−.

The cones Γ+
x and Γ−

x are constructed on the basis that, after normalization, any di-

rectional derivative Dτu, with τ ∈ ∂Γ − x(en, θ), has in a neighborhood of (±3
4 , 0) a gain

of

Dτu ∼ 〈τ, ν±〉 .

This is a consequence of formula (9.13). Therefore, to obtain a common enlarged cone on

both sides, we need to control 〈τ, ν±〉 from below by 〈τ, ν〉.
This is obtained in the following corollary to Lemma 9.6.

Corollary 9.7. There exists a constant A = A(n, θ), such that

〈τ, ν〉 ≤ Amin{〈τ, ν̄+〉, 〈τ, ν̄−〉}

for every unit vector τ ∈ ∂Γx(en, θ), where ν̄+ = ν+/|ν+|, ν̄− = ν−/|ν−|.

Proof. We show that 〈τ, ν̄+〉 ≥ A〈τ, ν〉. It is enough to consider τ ∈ ∂Γx(en, θ) in a

small neighborhood of ρ+. That is we may suppose

τ = λ1en + λ2ρ
+ + λ3τ

∗

with τ∗ ⊥ span{en, ρ+} and λ3 � 1. Then (see figure 9.2)

α(λ1en + λ2ρ
+, ρ+) ≤ cδλ2

3 (9.15)
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6 x(en, )

+

sin

3

xn

Figure 9.2. sinβ ≈ δλ2
3, δ = π

2 − θ, |ρ+| = |τ | = 1.

6 x(en, )

xn

+

sin
< cK +_

_

 
2
_ K +_ _

>_

1

+_

| 2|

Figure 9.3. α(ν1, ν̄
+) ≤ cK̄γ+, |ν2| ≤ c(δγ+)1/2

On the other hand, we have simultaneously

α(ν, en) ≤ δ

just because ν = ∇u+/|∇u+| at a free boundary point, and

α(ν, ρ+) ≥ π

2
− K̄γ+

since 〈ν, ρ+〉 ≤ Kγ+. Therefore, the component ν1 of ν in the (ρ+, en)-plane satisfies

α(ν1, ν̄
+) ≤ cK̄γ+ (9.16)

and the normal component ν2 satisfies

|ν2| ≤ (cδγ+)1/2 (9.17)

(see figure 9.3).

Now, we have

〈ν, τ〉 = 〈ν − ν̄+, τ〉+ 〈ν̄+, τ〉 . (9.18)
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Since ν̄+ ⊥ τ∗,

〈ν̄+, τ〉 = 〈ν̄+, λ1en + λ2ρ
+〉 ≥ c cos α(ν̄+, λ1en + λ2ρ

+) .

From (9.15) we get

α(ν̄+, λ1en + λ2ρ
+) ≤ α(ν̄+, ρ+) + α(λ1en + λ2ρ

+, ρ+)

≤ π

2
− γ+ + cδλ2

3

hence

〈ν̄+τ〉 ≥ c(γ+ + δλ2
3) . (9.19)

Moreover
〈ν − ν̄+, τ〉 = 〈ν1 − ν̄+, τ〉+ 〈ν2, τ〉 ≤ |ν1 − ν̄+|+ λ3|ν2|

≤ cK̄γ+ + cλ3(δγ+)1/2 ≤ c̃(γ+ + δλ2
3) .

(9.20)

Finally, (9.18), (9.19) and (9.20) give

〈ν, τ〉 ≤ A〈ν̄+, ν〉 . �

Remark. This indicates that the “good direction ν” to improve defect can be detected

from the distribution of the normal vector along the free boundary.

9.4. Interior gain in space (hyperbolic homogeneity)

By the results in section 3, a common enlarged cone of monotonicity Γx(ν, θ̄) exists on

both sides of F (u). As it was already remarked, this gain is valid only in a parabolic region

away from the free boundary. Now, if we are willing to give up a portion of Γx(ν, θ̄), we

can always have a gain in a hyperbolic region. This can be obtained in the following way.

For any unit vector τ̄ ∈ Γx(ν, θ̄), Dτ̄u ≥ 0 is equivalent to

Dτu ≥ β

α
Denu

where τ̄ = ατ − βen, τ ∈ Γx(en, 0), |τ | = 1, with β ≥ 0 and

1 ≤ α ≤ sin(2θ̄ − θ)/ sin θ .

Note that, if the cones touch along τ , then α = 1, β = 0.

If we delete a small percentage of Γx(en, θ) around the contact line, we can have
β

α
≥ cδ

where c depends on the size of the deleted neighborhood. Thus, the inequality Dτu ≥
cδDenu holds in B′

1/8(±3
4en)× (0, 1

2a2).

We will show that this inequality propagates in time to an interval of order δ/μ, where

we recall, μ is the defect angle in time. Although we start with an (n + 1)-dimensional
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circular cone, so that δ = μ, in the iterative process we will use later, the defect angle goes

to zero much faster in space than in time. Therefore we assume from the beginning δ ≤ μ.

Lemma 9.8. Let u be a viscosity solution to f.b.p. in C1. Let 0 < δ ≤ μ < π
2 . If, for

τ ∈ Γx(en, θ)

Dτu(x, t) ≥ cδDenu(x, t)

in B′
1/8(±3

4en)× (0, 1
4a2), then there exist c̄ and c0 such that

Dτu(x, t) ≥ c̄δDenu(x, t)

in B′
1/8(±3

4en)× (−c0δ/μ, c0δ/μ).

Proof. Let γ = aen + bet, a2 + b2 = 1, be normal to the axis of the full cone of

monotonicity. Note that

|Dγu(x, t)| ≤ cμDenu(x, t)

for any (x, t) where the derivative exists.

By interior a priori estimates and corollary 12.14,

|Dγτu(x, t)| ≤ cμDenu(x, t) (9.21)

if (x, t) stays uniformly away from F (u) and ∂pC1.
Now, for any p = (x, 0), x ∈ B′

1/8(±3
4en), we have

Dτu(p + λγ) ≥ cδDenu(p) + λDγτu(p + λ̃γ)

for some 0 < |λ̃| < |λ|. Using (9.21) and corollary 13.15 again, we obtain

Dτu(p + λγ) ≥ (cδ − C|λ|μ)Denu(p + λγ) .

Choosing |λ| ≤ 1
2

cδ
cμ and using Harnack inequality for Dτu, we see that

Dτu(q) ≥ cδDenu(q)

if q belongs, at least, to B1/8(±3
4en)× (−c0δ/μ, c0δ/μ). �

The convex envelope of the union of the directions in Lemma 9.8 and those in the

original cone Γx(en, θ) is easily seen to contain a cone Γx(ν, θ̄) such that u is monotone

increasing along every τ ∈ Γx(ν, θ̄) and

δ̄ ≤ b̄0δ

with b̄0 < 1.
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t

xn

xn - Bt = 0

t ( , t)
2 t

xn + At = 0

Figure 9.4. The space-time section of the monotonicity cone.

9.5. Interior gain in time

The method used in the previous sections to enlarge the cone in space fails for the

enlargement in time. We will proceed in a different way. The idea is the following.

Let en be the projection in space of the axis of the (full) monotonicity cone with defect

angle in time μ = π
2 − θt. This means that there are numbers A,B ∈ R, A ≤ B, such that

B −A ≈ μ and (Dn = ∂xn)

A ≤ −Dtu
+(x, t)

Dnu+(x, t)
≤ B or A ≤ −Dtu

−(x, t)
Dnu−(x, t)

≤ B (9.22)

for (x, t) a.e. on F (u) and everywhere outside F (u).

To increase the cone in time means to lower B or to increase A.

From the first one of (9.22), the functions

w = Dtu + BDnu or v = −Dtu−ADnu

satisfy the heat equation and are nonnegative in Ω+(u).

We manage to enlarge Γt in some region if in that region we can prove that

w ≥ cμDnu or v ≥ cμDnu .

The same kind of consideration can be done in Ω−(u).

We start by estimating in terms of δ/μ the oscillation of Dnu, pointwise in the interior

and in measure on F (u). The first step is:

Lemma 9.9. Let u be a viscosity solution of f.b.p. in C1. Then

u(x, t) = u

(
±3

4
en, 0

)
+ α±

(
xn ± 3

4

)
+ α±O(δ/μ) (9.23)
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for every (x, t) ∈ B′
1/8(±3

4en)× (−c0δ/μ, c0δ/μ), where

α± = Dnu

(
±3

4
en, 0

)
.

Proof. For any x ∈ B′
1/8(

3
4en), we have (Di = ∂xi , Dij = ∂xixj )

u(x, t) = u

(
3
4
en, t

)
+ Dnu

(
3
4
en, t

)(
xn − 3

4

)
+

n−1∑
i=1

Diu

(
3
4
en, t

)
xi

+
∫ 1

0

∫ s

0

n∑
i,j=1

Diju

(
(1− r)

3
4
en + rx, t

)(
x− 3

4
en

)
i

(
x− 3

4
en

)
j

dr ds .

We estimate each term on the right, separately. For the first one, we write

u

(
3
4
en, t

)
= u

(
3
4
en, 0

)
+
∫ t

0
Dtu

(
3
4
en, s

)
ds .

Since |Dtu| ≤ cDnu, using corollary 13.15, we have, for |t| ≤ cδ/μ,

u

(
3
4
en, t

)
= u

(
3
4
en, 0

)
+ α+O

(
δ

μ

)
. (9.24)

For the second term, write

Dnu

(
3
4
en, t

)
= Dnu

(
3
4
, 0
)

+
∫ t

0
Dntu

(
3
4
en, s

)
ds .

Using interior estimates and corollary 13.15, we see that |Dtu| ≤ cDnu implies∣∣∣Dntu

(
3
4
en, t

) ∣∣∣ ≤ cα+ .

Therefore, for |t| ≤ cδ/μ,

Dnu

(
3
4
en, t

)
= α+

(
1 + O

( δ

μ

))
. (9.25)

Now the third term. Since for i = 1, . . . , n − 1, |Diu| ≤ cδDnu, by the previous estimates,

we have, for |t| ≤ cδ/μ, ∣∣∣Diu

(
3
4
en, t

) ∣∣∣ = α+O(δ) .

Finally, for the fourth term, observe that, since |Diu(p)| ≤ cδDnu(p), i = 1, . . . , n−1, then,

interior estimates and corollary 13.15 give

|Dij(p)| ≤ cδDnu(p)

whenever p is away from F (u) and ∂pC1.

Thus,using the equation Δu = a1Dtu and a1 < δ, (by hypothesis)

|Dnnu(p)| ≤ cδDnu(p) + ca1Dnu(p) ≤ cδDnu(p) .

Once more, corollary 13.15 gives

|Dij(p)| ≤ cδα+ i, j = 1, . . . , n .
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Collecting all the estimates above we get (9.23) for the positive side of u. In a similar

fashion we prove the result for the negative side too. �

Using Lemma 9.9 it is possible to estimate the measure of the set of points on F (u)

where Dnu+ (Dnu−) is close to α+ (α−). We do this by estimating their difference in the

L2-sense at all time levels.

Lemma 9.10. Let Ft denote the t-section of F (u). Then, for all |t| ≤ c0δ/μ∫
−

B′
1/8

∩Ft

|Dnu± − α±|2 dS ≤ cα2
±

δ

μ
.

Proof. We prove only the estimate for u+, since the negative part can be treated in a

similar way. We do this in two steps.

Step 1. To prove ∣∣∣∣
∫
−

B′
1/8

∩Ft

(Dnu+ − α+) dS

∣∣∣∣ ≤ cα+
δ

μ
.

Set, for 0 ≤ r ≤ 1
8

Dr =
{

(x′, xn) : |x′| < r, |xn| < 3
4

}
∩ Ω+(u) .

We know that, after an initial rescaling if necessary, for a suitable ε > 0, the function

w+ = u + δu1+ε is subharmonic in D. Then, for a.e. t, |t| ≤ cδ/μ,

0 ≤
∫

D1/8

Δw+(x, t) dx =
∫

∂D1/8

Dνw+(x, t) dSx

or ∫
Ft∩∂D1/8

|∇u+(x, t)| dSx ≤
∫

S1/8

Dνw+(x, t) dSx +
∫

T1/8

Dνw+(x, t) dSx

where

Sr =
{
|x′| = r, |xn| < 3

4

}
∩ Ω+(u) , Tr =

{
|x′| < r, xn =

3
4

}
∩ Ω+(u) .

Since:

|Djw+| ≤ (1 + cδ)|Dju| j = 1, . . . , n (9.26)

|Diu| ≤ cδDnu j = 1, . . . , n − 1 (9.27)

|∇u+| ≥ Dnu+

we have, from Lemma 9.9,∫
Ft∩∂D1/8

Dnu+ dSx ≤ cδ

∫
S1/8

Dnu dSx + (1 + O(δ/μ))
∫

T1/8

α+ dSx
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or ∫
Ft∩∂D1/8

(Dnu+ − α+) dSx ≤ (cδ + O(δ/μ))
∫

T1/8

α+ dSx ≤ α+O(δ/μ) .

Similarly, using w− = u− δu1+ε, superharmonic, we obtain∫
Ft∩∂1/8

(Dnu+ − α+) dSx ≥ −α+O(δ/μ) .

Step 2. To prove ∣∣∣∣
∫
−

B′
1/10

∩Ft

(
(Dnu+)2 − α2

+

)
dS

∣∣∣∣ ≤ cα2
+

δ

μ
.

As in Step 1, for a.e. t, |t| ≤ cδ/μ,∫
Dr

∇(Dnw+)∇w+ dx ≤
∫

Dr

[
∇(Dnw+)∇w+ + Dnw+Δw+

]
dx =

∫
∂Dr

Dnw+Dνw+ dSx

or∫
∂Dr∩Ft

Dnu|∇u+| dSx +
1
2

∫
Dr

Dn(|∇w+|2) dx ≤
∫

Sr

Dnw+Dνw+ dSx +
∫

Tr

(Dnw+)2 dSx .

Integrating the second term on the left with respect to xn, and using |∇u+|2 ≥ Dnu, we

obtain
1
2

∫
∂Dn∩Ft

(Dnu)2 dSx ≤
∫

Sr

Dnw+Dνw+ dSx +
1
2

∫
Tr

(Dnw+)2 dSx .

Since |Diu| ≤ cδDnu for i = 1, . . . , n− 1, also |Diw+| ≤ cδDnw+, so that∫
∂Dr∩Ft

(Dnu)2 dSx ≤ cδ

∫
SR

(Dnw+)2 dSx +
∫

Tr

(Dnw+)2 dSx .

Integrate the last inequality with respect to r from 1/10 to R ≤ 1/8. We get, since

D1/10 ⊂ Dr ⊂ DR,(
R− 1

10

)∫
∂D1/10∩Ft

(Dnu)2 dSx ≤ cδ

∫ R

1/10

∫
SR

|∇w+|2 dSx dr+
(

R− 1
10

)∫
TR

(Dnw+)2 dSx .

Integrating by parts the first term on the right and using the subharmonicity of w+, we

obtain(
R− 1

10

)∫
∂D1/10∩Ft

(Dnu)2 dSx ≤
(

R− 1
10

)∫
TR

(Dnw+)2 dSx+

+ cδ

{∫
SR

w+Dνw+ dSx +
∫

S1/10

w+Dνw+ dSx +
∫

TR\T1/10

w+Dnw+ dSx

}

Using (9.26) and (9.26), we can write, using Lemma 9.9,(
R− 1

10

)∫
∂D1/10∩Ft

(Dnu)2 dSx ≤
(

R− 1
10

)∫
TR

(Dnu)2 dSx+

+ cδ

{∫
SR

δDn(u2) dSx +
∫

S1/10

δDn(u2) dSx +
∫

TR\T1/10

uDnu dSx

}
.
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Integrating the two middle terms on the right and using corollary 13.15, we get(
R− 1

10

)∫
∂D1/10∩Ft

(Dnu)2 dSx ≤
(

R− 1
10

)∫
TR

(Dnu)2 dSx+

+ cδ

{∫
∂SR∩{xn=3/4}

δ(Dnu)2 dSx +
∫

∂S1/10∩{xn=3/4}
δ(Dnu)2 dSx +

∫
TR\T1/10

(Dnu)2 dSx

}

and, using Lemma 9.9,

≤
(

R− 1
10

)∫
TR

(Dnu)2 dSx + cδ2α2
+ + cδ

(
1 + O

( δ

μ

))
α2

+|TR − T1/10| .

Choose now R = 1
10 + δ. We have, then∫

∂D1/10∩Ft

(
(Dnu)2 − α2

+

)
dSx ≤ cδα2

+ ≤ c
δ

μ
α2

+ . (9.28)

If we use w− instead of w+ we get ≥ −c δ
μα2

+ in (9.28). Combining Steps 1 and 2 we arrive

at the desired result. �

With Lemma 9.10 at hand we can now show how to increase in time the cone of mono-

tonicity. Actually, the enlargement can be done simultaneously on both sides of F (u), if we

stay away from F (u) itself.

Precisely, we have

Lemma 9.11. Let b = A+B
2 and assume

G(α+, α−) ≥ −b (resp. G(α+, α−) ≤ −b) .

There exist positive constants c, c0 such that, if δ is small, δ � μ3, then

−Dtu

Dnu
≤ B − cμ

(
resp. − Dtu

Dnu
≥ A + cμ

)
in B′

1/8(±3
4en)× (−c0δ/μ, c0δ/μ).

Proof. Assume G(α+, α−) ≥ −b. The other case is analogous. Observe that w =

Dtu + BDnu satisfies Δw − a1Dtw = 0 in Ω+(u) and Δw − a2Dtw = 0 in Ω−(u).

Let |t| ≤ c0δ/μ, c0 as in Lemmas 9.9 and 9.10. Moreover, let

Rt = Ω+(u) ∩ (−a1 + t, t)

and ω(x,t) be the caloric measure in Rt evaluated at (x, t).

Now, on the free boundary, a.e. with respect to surface measure, we have
Dtu

+

Dnu+
=

Dtu
+

|∇u+|(1 + O(δ)) = (1 + O(δ))G(|∇u+|, |∇u−|) . (9.29)

By Lemma 9.10, if c̄ is suitably chosen, since δ1/3 ≤ cμ,

Σt =
{

p ∈ F ∩ R̄t : |Dnu±(p)− α±| ≤ c̄δ1/3α±
}

,
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then

|Σt| ≥ 1
3
|F ∩ R̄t|

for any t ∈ (−c0δ/μ, c0δ/μ).

From the results in section 13.5, the restriction of ω(x,t) to F ∩ R̄t is an A∞ weight with

respect to surface measure, so that we have

ω(x,t)(Σt) ≥ c > 0 (9.30)

for every (x, t) ∈ B1/8 × (−c0δ/μ, c0δ/μ).

On the other hand, on Σt, by the local Lipschitz continuity of G,

G(|∇u+|, |∇u−|) = G(α+, α−) + O(δ1/3) ≥ −b + O(δ1/3)

≥ −B + cμ + O(δ1/3) ≥ −B + c̄μ .

Therefore, if (x, t) ∈ B′
1/8(

3
4en)× (c0δ/μ, c0δ/μ), we can write

w(x, t) =
∫

∂pRt

w dω(x,t) ≥
∫

Σt

w dω(x,t) ≥ c̄μα+ω(x,t)(Σt) ≥ c̃μα+ .

Since Dnu(x, t) = α+(1 + O(δ/μ)) ≤ cα+ in B′
1/8(

3
4en)× (−c0δ/μ, c0δ/μ) we obtain finally

w(x, t) ≥ c̃μDnu(x, t) .

In Ω−(u) the same inequality holds in B′
1/8(−3

4en)× (−c0δ/μ, c0δ/μ). �

9.6. A continuous family of subcaloric functions

As in the elliptic case, starting from a viscosity solution u, we construct a particular

family of subcaloric functions, that plays a major role in carrying to the free boundary the

interior gains obtained in sections 4 and 5.

These functions are again constructed by taking the supremum of u over (n + 1)-

dimensional balls (thus, space-time balls) with variable radius ϕ = ϕ(x, t). The main

question is to find the right condition on ϕ that makes the supremum a subcaloric function

in its positivity and negativity set. This is the content of the following lemma.

Lemma 9.12. Let u be a viscosity solution to f.b.p. in C3, monotone increasing along

every τ ∈ Γ(e, θ). Suppose ϕ is a C2 function such that 1 ≤ ϕ ≤ 2 and satisfies

Dtϕ ≥ 0, Δϕ− c1Dtϕ− C
|∇ϕ|2

ϕ
− c2|∇ϕ| ≥ 0

in C3, for some positive constant c− 1, c2, C,C > 1, depending on n, θ. Then, the function

vϕ(x, t) = sup
Bϕ(x,t)(x,t)

u (9.31)

satisfies Δvϕ − a1Dtvϕ ≥ 0 in {vϕ > 0} ∩ C1 and Δvϕ − a2Dtvϕ ≥ 0 in {vϕ < 0} ∩ C1.
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Proof. It is enough to show that the expression

lim inf
r→0

{
2(n + 2)

r2

∫
−

B′
r(ξ)

[v(x, τ) − v(ξ, τ)] dx

}
−aj lim sup

h→0

1
h

[vϕ(ξ, τ +h)−vϕ(ξ, τ)] (9.32)

(j = 1, 2) is nonnegative for every (ξ, t) ∈ {vϕ > 0} ∩ C1. For simplicity, assume (ξ, τ) =

(0, 0), vϕ(0, 0) > 0 and ϕ(0, 0) = 1. To estimate the first term from below we proceed as in

Lemma 4.7. Choose the system of coordinates so that

(1) vϕ(0, 0) = u(p) where p = εen + ηet |ν̄| = 1, ε > 0.

(2) ∇ϕ(0, 0) = αe1 + βen.

By the definition of vϕ

vϕ(x, 0) ≥ u(y(x), η)

for

y(x) = x +
√

ϕ2(x, 0)− η2 · νx

|νx|
where

νx = en +
βx1 − αxn

ε2
e1 +

γ

ε

n−1∑
i=2

xiei (9.33)

with γ such that

(1 + γ)2 =
(

1 +
β

ε

)2

+
α2

ε2
. (9.34)

Expand and collect terms to get

y(x) = y∗(x) + q(x)en + O(|x|2)τ∗ + O(|x|3)e∗

where

y∗(x) = εen + x +
1
ε
(βx1 − αxn)e1 +

1
ε
(αx1 + βxn)en + γ

n−1∑
i=2

xiei

is εen plus a first order term,

q(x) =
1
2ε

⎧⎨
⎩

n∑
i,j=1

Dijϕ(0, 0)xixj − (βx1 − αxn)2

ε2
− δ2(αx1 + βxn)2

ε2
− γ2

n−1∑
i=2

x2
i

⎫⎬
⎭

is the quadratic part, and τ∗, e∗ ∈ R
n, |τ∗| = |e∗| = 1, γ∗ · en = 0.

By the choice of γ in (9.34), the transformation

x �→ y∗(x)− εen

is a rotation in the (e1, en) plane (see Lemma 4.7). Therefore

lim
r→0

2n(n + 2)
r2

∫
−

Br(0)

[
u(y∗(x), η) − u(p)

]
dx = (1 + γ)2Δu(p) .
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Evaluate now u(y(x), η) − u(y∗(x), η), observing that ∇u(p) = ∇u(y(0), η) must point in

the direction of en. We have

u(y, η)− u(y∗, η) = ∇u(y∗, η) · (y − y∗) + O(|y − y∗|2)
= ∇u(p) · (y − y∗) + O(|y − y∗|2)
= |∇u(p)|{q(x) + O(|x|3)}

Therefore

lim
r→0

2n(n + 2)
r2

∫
−

Br(0)
[u(y(x), η) − u(y∗(x), η)] dx =

=
|∇u(p)|

ε

{
Δϕ(0, 0) − 1 + δ2

ε2
(α2 + β2)− (n− 2)γ2

}

≥ |∇u(p)|
ε

{
Δϕ(0, 0) − n

ε2
|∇ϕ(0, 0)|2

}
.

From the above calculations, we have (v(0, 0) = u(p))

lim inf
r→0

{
2n(n + 2)

r2

∫
−

Br(0)
(v(x, 0) − v(0, 0)) dx

}

≥ (1 + γ)2Δu(p) +
|∇u(p)|

ε

{
Δϕ(0, 0) − n

ε2
|∇ϕ(0, 0)|2

}
The second term in (9.32) can be easily bounded from below by

−a1

{
ε|∇u(p)| ·Dtϕ(0, 0) + Dtu(p)(1 + δDtϕ(0, 0))

}
.

Hence, using the equation Δu(p) = a1Dtu(p), we see that the full expression in (9.32) is

greater or equal to
1
ε
|∇u(p)| ·

{
Δϕ(0, 0) − a1ε

2Dtϕ(0, 0) − n

ε2
|∇ϕ(0, 0)|2

}
+ a1Dtu(p)

{
2β
ε

+
|∇ϕ(0, 0)|2

ε2
− δDtϕ(0, 0)

}
.

(9.35)

Since u is monotone along every τ ∈ Γ(e, θ), |ut| ≤ cot θ|∇u| and ε ≥ sin 2θ. Therefore

(9.35) ≥ 1
ε
|∇u(p)|

{
Δϕ(0, 0) − c1Dtϕ(0, 0) − C|∇ϕ(0, 0)|2 − c2|∇ϕ(0, 0)|

}
where c1, c2 depend only on θ, while c depends on n, θ. �

We now have to examine which kind of condition vϕ satisfies on F (vϕ) = ∂Ω+(vϕ),

(compare with Lemma 4.9). First, the asymptotic behavior.

Lemma 9.13. Let u be a viscosity solution to f.b.p. in C3 and define, in C1
vϕ(x, t) = sup

Bϕ(x,t)(x,t)
u

with ϕ as in Lemma 9.12 and |Dtϕ|, |∇ϕ| � 1. If (x0, t0) ∈ F (vϕ) ∩ C1, (y0, s0) ∈ F (u) ∩
∂Bϕ(x0,t0)(x0, t0), then
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(i) F (vϕ) has a tangent (n + 1)-dimensional ball at (x0, t0) from the right (i.e., there

is B ⊂ Ω+(vϕ) such that ∂B ∩ F (vϕ) = {(x0, t0)}.
(ii) if F (u) is a Lipschitz graph and |∇ϕ|, Dtϕ are small enough (depending on the

Lipschitz constant L of F (u)), the set F (vϕ) is a Lipschitz graph with Lipschitz

constant

L′ ≤ L + C sup(|∇ϕ|+ Dtϕ)

(iii) if near (y0, s0), at the s0-level, u has the asymptotic expansion

u(y, s0) = α+〈y − y0, ν〉+ − α− 〈y − y0, ν〉− + o(|y − y0|)
where ν = (y0 − x0)/|y0 − x0|, then, near (x0, t0) at the t0-level,

v(x, t0) ≥ α1

〈
x− x0, ν

+ ϕ(x0, t0)
|y0 − x0|∇ϕ(x0, t0)

〉+

− α−
〈

x− x0, ν +
ϕ(x0, t0)
|y0 − x0|∇ϕ(x0, t0)

〉−
+ o(|x− x0|) .

Proof. The proofs of (i) and (ii) are identical to the proofs of a) and c) in Lemma 4.9.

To prove (iii), for x near x0, set y = x + νϕ̄(x) where

ϕ̄(x) =
√

ϕ2(x, t0)− (s0 − t0)2 ≤ ϕ(x, t0) .

Then, v(x, t0) ≥ u(y, s0). Hence, since

ϕ̄(x) = ϕ̄(x0) +
〈

x− x0,
ϕ(x0, t0)
|y0 − x0|∇ϕ(x0, t0)

〉
+ o(|x− x0|) ,

we have (ϕ̄(x0) = |x0 − y0|)

〈y − y0, ν〉 =
〈

x− x0, ν +
ϕ(x0, t0)
|x0 − y0|∇ϕ(x0, t0)

〉
+ o(|x− x0|) ,

from which we easily conclude the proof. �

If u, ϕ, vϕ are as in the preceding lemmas it is not difficult to show that vϕ is “almost

an R-subsolution,” in the sense explained in section 8.4.

In fact, if (x0, t0), (y0, s0) are as in (ii) of Lemma 9.13, at (y0, s0) F (u) has a tangent

ball from the left with slope (s0 − t0)/|y0 − x0|.
Therefore, u has the asymptotic expansion in iii) with

s0 − t0
|y0 − x0| ≤ G(α+, α−) .

On the other hand if ν0 = α0ν +β0et is the normal unit vector to F (vϕ) at (x0, t0), we have

(see the proof of c) in Lemma 4.9)

β0

α0
=
(

s0 − t0
|y0 − x0| +

ϕ(x0, t0)
|y0 − x0|Dtϕ(x0, t0)

)
· |τ∗|−1
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where

τ∗ =
y0 − x0

|y0 − x0| +
ϕ(x0, t0)
|y0 − x0|∇ϕ(x0, t0) .

Then
β0

α0
≤
(

s0 − t0
|y0 − x0| +

ϕ(x0, t0)
|y0 − x0|Dtϕ(x0, t0)

)
·
(

1 +
cϕ(x0, t0)
|y0 − x0| |∇ϕ(x0, t0)|

)
or

β0

α0
≤ G(α+, α−) +

cϕ(x0, t0)
|y0 − x0| (Dtϕ(x0, t0) + |∇ϕ(x0, t0)|) . (9.36)

From Lemma 9.13, iii), if x is near x0, we can write

vϕ(x, t0) ≥ α∗
+〈x− x0, ν

∗〉+ − α∗
−〈x− x0, ν

∗〉− + o(|x− x0|) (9.36′)

where

α∗
+ = α+|τ∗| , α∗

− = α−|τ∗| , ν∗ = τ∗/|τ∗| .
Since Dtϕ, |∇ϕ| are small and ϕ(x0, t0)/|y0 − x0| ≤ c = c(n, θ), we have

|α±−α∗
±| ≤ α±(1−|τ∗|) ≤ c

ϕ(x0, t0)
|y0 − x0|(|∇ϕ(x0, t0)|+Dtϕ(x0, t0)) ≤ c(|∇ϕ(x0, t0)|+Dtϕ(x0, t0))

and, using the Lipschitz continuity of G, from (9.36) we get

Corollary 9.14. Let vϕ as in lemma 9.13. Then, at (x0, t0) ∈ F (vϕ),

β0

α0
≤ G(α∗

+, α∗
−) + c(Dtϕ(x0, t0) + |∇ϕ(x0, t0)|) . (9.37)

9.7. Free boundary improvement. Propagation Lemma

In this section we show how an interior gain can be carried to the free boundary. Follow-

ing the same lines of the elliptic case, we first construct a family of functions ϕη, depending

on the parameter η, 0 ≤ η ≤ 1, and satisfying the requirements in the above lemma.

In the end we want the vεϕη , defined as in (9.31), to carry the monotonicity gain from

B′
1/8(±3

4en) × (−c0δ/μ, c0δ/μ) to the free-boundary as η goes from 0 to 1. This means

that we must have ϕη ≤ 1 along ∂pC1−ε, ϕη ≈ 1 + ηb on the sides and top of the internal

cylinders and ϕη ≈ 1 + cηb (c > 0, b > 0 both small) in C1/2.

Lemma 9.15. Let 0 < T0 ≤ T and C > 1. There exist positive constants, C̄, k and

h0, depending only on C and T0, such that, for any h, 0 < h < h0, there is a family of

C2-continuous functions ϕη, 0 ≤ η ≤ 1, defined in the closure of

D =
[
B′ \

{
B̄′

1/8

(3
4
en

)
∪ B̄′

1/8

(
− 3

4
en

)}]
× (−T, T )

such that:

(1) 1 ≤ ϕη ≤ 1 + ηh in D̄
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(2) Δϕη − c1Dtϕη − C
|∇ϕη |2

ϕη
− c2|∇ϕ| ≥ 0 in D

(3) ϕη ≡ 1 outside B′
8/3 × (−7

8T, T )

(4) ϕη ≥ 1 + κηh in B′
1/2 × (−T

2 , T
2 )

(5) Dtϕη, |∇ϕ| ≤ C̄ηh in D̄

(6) Dtϕη ≥ 0 in D

provided c1 and c2 are small enough.

Proof. Set

ψη = −1 + ϕ1−c
η .

If c > 1 and ψη satisfies

Δψη − c1Dtψη − c1|∇ψη| ≤ 0 (9.38)

then ϕη satisfies (2). Now, if c1 and c2 are small enough, it is not difficult to construct a

C2 function ψ satisfying (9.38) in D, such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−a ≤ ψ ≤ 0 in D̄

ψ ≡ 0 outside B′
8/9 × (−7

8T, T )

ψ ≤ −κb in B̄′
1/2 × [−T

2 , T
2 ]

|Dtψ|, |∇ψ| ≤ c̃ in D̄

Dtψ ≤ 0 in D̄ .

Choose h small and a, b, c̃ (b < a) so that

1− bκηh ≤ (1 + κηh)1−c , 1− aηh ≤ (1 + ηh)1−c , and c̃(c− 1) < 2cc̄ .

Then, if ψη = ηhψ, the function

ϕη = (1 + ψη)1/1−c

satisfies (1)–(6). �

The following lemma is fundamental.

Lemma 9.16. Let u1 ≤ u2 be two viscosity solutions to f.b.p. in C2, with Lipschitz free

boundaries. Assume u2 satisfies the hypotheses of Theorem 1, in particular the nondegen-

eracy condition (ii), and G satisfies condition (i) of the same theorem. Suppose further,

that

vε(x, t) = sup
Bε(x,t)

u1 ≤ u2
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Figure 9.5. The domain D in (9.39)

in B′
1 × (−T, T ) and, for some positive ε, h, C̄ and σ ≥ 0,

v(1+σh)ε(x, t) ≤ u2(x, t) − C̄σεu2

(
3
4
en, 0

)
∀ (x, t) ∈ B′

1/8

(
3
4
en

)
× (−T, T ) ⊂ Ω+(u2)

v(1+σh)ε(x, t) ≤ u2(x, t) + C̄σεu2

(
−3

4
en, 0

)
∀ (x, t) ∈ B′

1/8

(
−3

4
en

)
× (−T, T ) ⊂ Ω−(u2) .

Then, if ε and h are small enough, there exists γ, 0 < γ < 1, such that

v(1+γσh)ε ≤ u2 in B′
1/2 ×

(
−T

2
,
T

2

)
.

Proof. We construct a continuous family of functions v̄η ≤ u2 for 0 ≤ η ≤ 1, such that

v̄1 ≥ v(1+γhσ)ε in B′
1/2 × (−T, T ). Let ϕη be the family of radii constructed in Lemma 9.15

and set

v̄η = vεϕση + cσεw

with c to be chosen later and w the continuous function in

D =
[
B′

9/10 \
{

B′
1/8

(3
4
en

)
∪B′

1/8

(3
4
en

)}]
×
(
− 9

10
T,

9
10

T

)
(9.39)

defined as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δw − a1Dtw = 0 in D ∩ Ω+(u2)
Δw − a2Dtw = 0 in D ∩ Ω−(u2)
w = ±u2(±3

4en, 0) on ∂B′
1/8(±3

4en)× (− 9
10T, 9

10T )
w = 0 on F (u2) and on the rest of ∂pD .

We prove now that the set E of η’s for which v̄η ≤ u2 is open and closed in [0, 1]. Notice

first that, by hypothesis and maximum principle, the set E is nonempty. Also, it is clearly
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closed. To show that it is open, assuming that v̄η0 ≤ u2 for some η0 ∈ [0, 1], it is enough to

show that D ∩ Ω+(v̄η0) is compactly contained in D ∩Ω+(u2).

Replacing ε, if necessary, by any smaller ε′, we have that v̄η0 < u2 on ∂pD. Thus, if

D ⊂⊂ Ω+(v̄η0) is not true, there exists (x0, t0) ∈ F (v̄η0) ∩ F (u2) ∩D.

Claim. If h is small enough, at (x0, t0) v̄η0 satisfies a subsolution condition.

Indeed, let (y0, s0) ∈ F (u2) ∩ ∂Bεϕη0
(x0, t0). Then, if ν = (y0 − x0)/|y0 − x0|, at s0-level,

near y0,

u1(y, s0) = α
(1)
+ 〈y − y0, ν〉+ − α

(1)
− 〈y − y0, ν〉− + o(|y − y0|)

with α
(1)
− > 0.

On the other hand, (x0, t0) is a regular point from the right for both F (v̄η0) and F (u2).

If ν0 = α0ν + β0et is the normal unit vector to both free boundaries, inward to the positive

side, we have, from lemma 9.13 and corollary 9.14,

vεϕη0 (x,t0)(x, t0) ≥ α∗
+〈x− x0, ν

∗〉+ − α∗
−〈x− x0, ν

∗〉− + o(|x− x0|)

with

α∗
+ = α

(1)
+ |τ∗| , α∗

− = α
(1)
− |τ∗| , τ∗ = ν +

ε2ϕση0(x0, y0)
|y0 − x0| ∇ϕση0(x0, t0) ,

and
β0

α0
≤ G(α∗

+, α∗
−) + cεσh . (9.40)

Notice that, if (x0, t0) belongs to the region of constant ϕση0 then we can take h = 0 in

(9.40) and v̄η0 satisfies a subsolution condition. If this is not the case, (x0, t0) stays away

from ∂pD and we can apply the comparison theorem 12.3 and use the monotonicity of u2

along a space time cone to get

w ≥ c0u2 in Ω+(u2) and w ≥ −c0u2 in Ω−(u2) , (9.41)

near (x0, t0).

Now, at t0-level, near x0 we have

u2(x, t0) = α
(2)
+ 〈x− x0, ν

∗〉+ − α
(2)
− 〈x− x0, ν

∗〉− + o(|x− x0|) (9.42)

with
β0

α0
≥ G(α(2)

+ , α
(2)
− ) . (9.43)

Thus, we have, near x0, at t0 level, from (9.41) and (9.42)

v̄η(x, t0) ≥ ᾱ+〈x− x0, ν
∗〉+ − ᾱ−〈x− x0, ν

∗〉− + o(|x− x0|)
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where

ᾱ+ = α∗
+ + c0εσα

(2)
+ , ᾱ− = α∗

− − c0εσα
(2)
− .

Since u2 − v̄η0 ≥ 0 and it is supercaloric in Ω+(v̄η0) we have α
(2)
− ≤ ᾱ− and, by Hopf

maximum principle, α
(2)
+ > ᾱ+. Therefore

G(ᾱ+, ᾱ−) < G(α(2)
+ , α

(2)
− ) (9.44)

by the strict monotonicity of G.

On the other hand, from (9.40) and the hypotheses on G,

β0

α0
≤ G(ᾱ+, ᾱ−)− c∗c0εσ(α(2)

+ + α
(2)
− ) + cεσh

≤ G(ᾱ+, ᾱ−)− εσ(c∗c0m− ch)

≤ G(ᾱ+, ᾱ−)

if h < c∗c0m/c.

But then, from (9.43) and (9.44) we get

G(ᾱ+, ᾱ−) <
β0

α0
≤ G(ᾱ+, ᾱ−) .

We have reached a contradiction that concludes the proof. �

9.8. Regularization of the free boundary in space

In this section we apply the propagation lemma to show that the free boundary is a C1

domain in space. This preliminary step is necessary to say that the defect angle in space is

as small as we want in order to be able to apply the results of sections 4 and 5, in particular

lemmas 9.8 and 9.11, that require δ � μ.

We use the symbol (Γ(ν, θ, θt) to denote an “elliptic” cone with axis ν and opening θ in

space and θt in space-time.

Lemma 9.17. Let u be a viscosity solution to f.b.p. in C1 monotone increasing along

every τ ∈ Γ(en, θ, θt), for some 0 < θ0 ≤ θt ≤ θ ≤ π
2 . Then there exist positive constants

c, c̄ and a unit vector ν1 such that, in B′
1/2 × (−1, 1), the function

u∗(x, t) = u(x, c̄δ2t)

is monotone increasing along every direction τ ∈ Γ(ν1, θ1, θ
t
1) with

θ1 − θ0 ≥ cδ3 , θt
1 ≥ θ0 .

Proof. From Corollary 9.5 and Lemma 9.6, u is monotone increasing along every

τ ∈ Γx(ν, θ̄), with θ̄ − θ ≤ b̄δ, b < 1, in B1/8(±3
4en)× (− 1

16a2, 1
16a2).
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The cone Γx(ν, θ̄) contains Γx(en, θ). Consider all spatial unit vectors τ ∈ Γx(en, θ)\N ,

where N denotes a neighborhood of the line ∂Γx(en, θ)∩∂Γx(ν, θ̄) in the case the two cones

touch. From Lemma 9.8,

Dτu ≥ c̃δDenu

inside the internal cylinders B′
1/8(±3

4en)× (− c0δ
μ , c0δ

μ ).

Choose now a number c1 � 1, set c̄ = Cc1
μ and perform a dilation in time of order c̄δ2,

that is, set

u∗(x, t) = u(x, c̄δ2t)

Observe that the coefficient of the t-derivative of u1 in the heat equations for u1 as well

as in the free boundary condition is multiplied by the factor 1/c̄δ2. Also, the region B′
1 ×

(− c0δ
μ , c0δ

μ ) is mapped into B′
1 × (− 1

c1δ , 1
c2δ ) and the cone Γ(en, θ, θt) is transformed into a

cone which certainly contains a circular cone Γ(en, θ), if c1 is small enough.

Take now a direction in space and time ρ ∈ Γ(en, θ) of the form ρ = λ1σ + λ2et, with σ

unit vector in Γx(en, θ) \ N , λ1 + λ2
2 = 1 and |λ2| ≤ 1

2
λ1
c̄δ . We have

Dρu
∗ ≥ cδDenu∗ (9.45)

in B′
1/8(±3

4en) × (− 1
c1δ ,

1
c1δ ), since |Dtu

∗| ≤ c̄δ2Denu∗. Let now τ ∈ Γ(en, θ
2) be a small

vector of the form

τ = ηρ (0 < η ≤ 1)

and (x0, t0) ∈ B′
1/8(±3

4en) × (− 1
c1δ , 1

c1δ ). Then, if ε = |τ | sin θ
2 , (y, s) ∈ Bε(x0, t0) and

τ̄ = τ + (x0 − y, t0 − s), we have

u1(y, s) ≡ u∗((y, s)− τ̄) = u∗((x0, t0)− τ) = u∗(x0, t0)−Dτu∗(x̄, t̄) .

From (9.45) and the fact that Denu ∼ u/dx,t, we obtain

v̄ε(x0, t0) ≡ sup
Bε(x0,t0)

u1 ≤ u∗(x0, t0)− cδεu∗(x0, t0) . (9.46)

Then, Lemma 9.2 (with u2 = u∗) gives that there exist h > 0, c > 0, such that

v̄(1+hδ)ε(x, t) ≤ u∗(x, t)− cδεu∗(x0, t0)

for every (x, t) in a parabolic neighborhood of (x0, t0).

But, since for

(x0, t0) ∈ B′
1/8

(
±3

4
en

)
×
(
− 1

c1δ
,

1
c1δ

)
we have u∗(x0, t0) ∼ u∗(±3

4en, 0), respectively, we can write

v̄(1+hδ)ε(x, t) ≤ u∗(x, t)− cδεu∗
(
±3

4
en, 0

)
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for every (x, t) ∈ B′
1/8(±3

4en)× (− 1
c1δ , 1

c1δ ), respectively.

Since u1 and u∗ are two viscosity solutions to f.b.p. in the region B′
1−2ε × (− 1

c1δ , 1
c1δ )

and satisfy the hypotheses of the propagation lemma, taking into account the modifications

in the free boundary relation due to the time scaling, we deduce that, for a small positive

constant γ,

v̄(1+γhδ3)ε ≤ u∗

in B′
1/2×(− 1

2c1δ , 1
2c1δ ). Notice that, in order to apply the propagation lemma, the coefficient

of Dtu
∗ in the heat equation must be kept small. This can be obtained by a previous

hyperbolic scaling and will produce at the end of our iteration procedure a very weak

modulus of continuity of ∇x′f .

The last inequality implies that, along any direction of the form τ + (1 + γhδ3)ν̃, ν̃ ∈
R

n+1, |ν̃| = 1, u∗ is monotone increasing. Using again the geometric theorem 4.2, it is

readily seen that the convex envelope of this family of directions and the cone Γ(en, θ)

contains a new cone

Γ(ν1, θ1, θ
t) with θt ≥ θ2 and, for some constants b1, b2,

θ1 − θ ≥ b1δ
3 , |ν1 − en| ≤ b2δ .

Iteration of Lemma 9.17 gives:

Theorem 9.18. Let u be a viscosity solution to f.b.p. in C1. If all the hypotheses of

Theorem 9.1 hold and, in particular, F (u) is given by the Lipschitz graph xn = f(x′, t),

then, for each t, |t| < 1, ∇x′f is continuous in B′
1/2. That is Ft = F (u) ∩ {t} is a C1

surface in B′
1/2 × (−1, 1).

Proof. We iterate Lemma 9.17. Set u1(x, t) = u(x, c̄δ2
0t) where δ0 = δ and c̄, δ are as in

Lemma 9.17. By this lemma u0 is monotone increasing along any direction τ ∈ Γ(ν1, θ1, θ
t
1)

with θt
1 ≥ θ0 and δ1 = π

2 − θ1 ≤ δ0 − cδ3
0 in B′

1/2 × (−1, 1).

Suppose now that uk = uk(x, t), k ≥ 1 satisfies the hypotheses of Lemma 9.17 in a cone

Γ(νk, θk, θ
t
k) with θt

k ≥ 0,

δk =
π

2
− θk ≤ δk−1 − b1δ

3
k−1 , |νk − νk−1| ≤ b2δk−1

in B1/2 × (−1, 1). Set

uk+1(x, t) = uk(2−rkx, c̄2−rkδ2
kt) · 2rk

where rk is the smallest integer such that 2−rk < c̄δ2
k. Then, by Lemma 9.17, uk+1 is

monotone in a cone Γ(νk+1, θk+1, θ
t
k+1) with θt

k+1 ≥ θ0 and

|νk+1 − νk| ≤ b2δk , δk+1 ≤ δk − b1δ
2
k
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in B′
1/2 × (−1, 1).

The recurrence relation implies δk → 0 as k → +∞ and the conclusion follows. �

9.9. Free boundary regularity in space and time

The fact that the defect angle in space can be made as small as we prefer, allows us to

use the results in sections 4 and 5.

In the final iteration process the delicate balance between the defect angles in space and

time gives a modulus of continuity in time and an improved one in space.

As we already noticed in section 5, for some A,B, 0 < B − A ≤ cμ, u is monotone

increasing along the directions et + Ben and −et − Aen. To enlarge the cone in time, we

have to lower B or to increase A.

The main Lemma, which shows the initial step in the iteration process, is the following.

Lemma 9.19 (Basic iteration). Let u be a viscosity solution to f.b.p. in C1. Suppose the

hypotheses of Theorem 9.1 hold. In particular, assume that:

(i) u is monotone increasing along any direction of a space cone

Γx(en, θ) , 0 ≤ θ0 ≤ θ <
1
2
π

(ii) There exist constant c̄1 (positive) and A,B such that u is monotone increasing

along the directions et + Ben and −et −Aen, with

0 < B −A ≤ c̄1μ .

Then, if δ = π
2 − θ � μ3, there exist constants c1, c2, c0 (positive) and A1, B1,

depending only on n, θ0, and a spatial unit vector ν1 such that, in B1/2×(− c0δ
2μ , c0δ

2μ ):

(a) u is monotone increasing along every τ ∈ Γ(ν1, θ1) with

δ1 =
π

2
− θ1 ≤ δ − c1

δ2

μ
|ν1 − en| ≤ c1δ (9.47)

(b) u is monotone increasing along the directions et + B1ν1 and −et −A1ν1 with

0 < B1 −A1 ≤ c̄1μ1 and μ1 ≤ μ− c1δ . (9.48)

Proof. We first perform a dilation in time setting

w(x, t) = u

(
x,

δt

μ

)
.

After this dilation, the coefficient of the t-derivative in the heat equations as well as in

the free boundary conditions is multiplied by μ/δ. Also, the regions B′
1 × (−1, 1) and

B′
1/8(±3

4en)× (− c0δ
μ , c0δ

μ ) are mapped to B′
1 × (−μ

δ , μ
δ ) and B′

1/8(±3
4en)× (−c0, c0), respec-

tively.
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The condition ii) becomes: w is monotone increasing along the directions

et +
δ

μ
Ben and − et − δ

μ
Aen

with

0 < B −A ≤ c̄1δ .

To enlarge the cone in space and prove (a), consider the spatial vectors τ ∈ Γx(en, θ−δ),

with |τ | ≤ δ and let

ε = |τ | sin δ .

If we define w1(x, t) = w(x− τ, t), clearly we have

sup
y∈Bε(x)

w1(y, t) ≤ w(x, t) ∀ (x, t) ∈ B′
1−ε ×

(
−μ

δ
,
μ

δ

)
.

We proceed now as in section 4, by deleting, say, 1
10 of the original cone, containing a

neighborhood of both the generatrices of Γx(en, θ) opposite to ∇u(±3
4en,−1

2a2). This is

possible thanks to Lemma 9.6 and Corollary 9.7. We conclude that, for any vector τ in the

remaining cone Γ1
x(en, θ), we have

Dτw ≥ cδDenw in B′
1/8

(
±3

4
en

)
× (−c0, c0) . (9.49)

This inequality extends to derivatives along directions having a t-component of order δ.

Indeed, if for the spatial unit vector τ (9.49) holds, then, for λ2
2 + λ2

1 = 1, since

|Dtw| ≤ c̃
δ

μ
Dnw

we have

λ1Dτw + λ2Dtw ≥
(

cλ1δ − c̃λ2
δ

μ

)
Denw ≥ c̃δDenw

as long as |λ1| ≤ δ, since δ/μ � 1. As a consequence, if ρ is a unit vector in R
n+1 and

τ̄ = τ + ερ, we can write, for every (x, t) ∈ B′
1/8(±3

4en)× (−c0, c0), respectively

w((x, t) − τ̄)− w(x, t) = −Dτ̄w(x̄, t̄) ≤ −cδεDenw(x, t)

≤ −cεδw±
(
±3

4
en, 0

)
(since |τ̄ | ≥ cε and by Corollary 13.14). Therefore

vε(x, t) ≡ sup
Bε(x,t)

w1 ≤ w(x, t) − cεδw±
(
±3

4
en, , 0

)

respectively in B′
1/8(±3

4en) × (−c0, c0). From the Harnack principle (Lemma 9.2), for a

small positive h̄, in the same set we obtain

v(1+h̄δ)ε ≤ w − cεδw±
(
±3

4
en, , 0

)
.
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Hence, w satisfies the hypotheses of the propagation lemma with T = C and h = h̄. By

taking account the effect of the dilation in time, we conclude that, for a small γ > 0, in

B′
1/2 × (− c0

2 , c0
2 ),

v(1+γh̄δ2/μ)ε ≤ w .

This amounts to say that w is monotone increasing along all the directions of the form

τ̄ = τ +
(

1 + γh̄
δ2

μ

)
ερ (9.50)

in B′
1/2× (− c0

2 , c0
2 ). The convex envelope of the old cone Γ′

x(en, , θ) and the set of directions

(9.50) contains a new cone (in space) Γx(ν1, θ1) such that

|ν1 − ν| ≤ cδ and θ1 − θ = c̄h̄
δ2

μ

which, after rescaling back in time, corresponds to (a) with c1 = c̄h̄.

To prove (b), notice first that the new axis ν1 is shifted with respect to en of order δ in

a spatial direction orthogonal to en. Since δ � μ3, we can use the results of Lemma 9.11

that, in the present situation, read

Dtw +
δ

μ
BDenw ≥ cδDenw or −Dtw −A

δ

μ
Denw ≥ cδDenw .

Suppose that the left inequality holds and call ρ̄, ρ̄1, respectively, the unit vectors in the

directions

et +
δ

μ
Ben and et +

δ

μ
Bν1.

Then it is easy to check that, if |e1| = 1, e1 · en = 0 and λ2
1 + λ2

2 = 1,

λ1Dρ̄1w + λ2De1w ≥
(

cδ − c̃
δ2

μ
B − c̃1δ

2

)
Denw ≥ c̃δDν1w

in B′
1/8(±3

4en)× (−c0, c0), as long as |λ2| ≤ 2δ, since

Dρ̄1w ≥ cDρ̄w − c̃
δ2

μ
BDenw .

Let now ρ∗ denote the direction below ρ̄1 (with respect to time) in the (et, ν1)-plane, which

makes an angle δ with ρ̄1.

For any small vector τ in the ρ∗ direction, set again

ε = |τ | sin δ , w1(x, t) = w((x, t) − τ) .

Then

vε(x, t) ≡ sup
Bε(x,t)

w1 ≤ w(x, t) in B′
1−ε ×

(
−μ

δ
+ ε,

μ

δ
− ε

)
.

Proceeding exactly as before, we conclude that

v(1+c̄h̄δ2/μ)ε ≤ w in B′
1/2 ×

(
−c0

2
,
c0

2

)
.
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This implies, that, in the same set, w is monotone increasing along the directions

et +
(

δ

μ
B − c̄h̄

δ2

μ

)
ν1

that is, rescaling back in time, u is monotone increasing along the directions

et + (B − c̄h̄δ)ν1 .

Therefore (b) holds with B1 = B − c̄h̄δ, A1 = A and

B1 −A1 = B −A− c̄h̄δ ≤ c̄1(μ− c2δ)

so that the proof is complete. �

We are now ready to complete the proof of Theorem 9.1.

Proof of Theorem 9.1. By the results in the previous sections, for λ large enough,

the function uλ(x, t) = 1
λu(λx, λt), that we call u again, falls under the hypotheses of the

propagation lemma. Now we proceed inductively, by applying Theorem 9.18 to

uk(x, t) = 2ku(2−k, 2−kt) k ≥ 1 .

In this way we define a sequence of space cones Γx(νk, θk) and sequences {Ak}, {Bk},
{δk}, {μk} with the following properties: in

B′
2−k ×

(
− c0δk

2kμk
,

c0δ

2kμk

)
,

(a) u is monotone increasing along every τ ∈ Γx(νk, θk),

(b) u is monotone increasing along the directions

et + Bkνk and − et −Akνk

(c) the sequences {δk} and {μk} satisfy the recurrent relations

δk+1 ≤ δk − c1
δ2
k

μk

μk+1 ≤ μk − c2δk

as long as δk � μ3
k.

(d) |νk+1 − νk|, |Ak+1 −Ak|, |Bk+1 −Bk| ≤ c̄hδk and

0 < Bk −Ak ≤ c2μk .

From (c) we obtain the asymptotic behavior

δk ∼ c1(η)
k3/2−η

, μk ∼ c2(η)
k1/2−η

for any small η > 0. Then, using (a), (b) and (d) the assertion (9.1) of the main theorem

follows. To prove (9.2), notice that at each time level t0 ∈ (−1
2 , 1

2), Ω±(u) ∩ {t = t0} is a
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Liapunov-Dini domain. Since ut is bounded, the results of [W] apply and therefore ∇u±

are continuous up to the free boundary at each time level t0.

On the other hand ∇u± have non tangential limits everywhere on F (u), therefore ∇u±

are continuous in space and time. From the free boundary condition, that now holds in a

pointwise sense everywhere, we deduce that u±
t are continuous in (x, t) on F (u). From this

and the existence of non tangential limits of u±
t everywhere on F (u) we conclude that u±

t

is continuous in (x, t) up to Ω±(u), respectively. �



CHAPTER 10

Flat free boundaries are smooth

10.1. Main result and strategy

According to the results in the previous chapter, under a nondegeneracy condition pre-

venting simultaneous vanishing of the heat flow from both phases, Lipschitz free boundaries

enjoy instantaneous regularization and viscosity solutions are classical.

Coming back to the counterexamples of section 9.3, we realized that in absence of non-

degeneracy (in the above sense) the achievement of further regularity of the free boundary

depends on its Lipschitz constant in space. Our main result, indeed, implies that if this

Lipschitz constant is small enough (depending on dimension and the oscillation in time of

the solution) then the above regularity results hold; i.e., roughly speaking, we are actually

in a “nondegenerate” situation.

It turns out that to be in a nondegenerate situation enough for regularization, it is not

necessary for the free boundary to be a Lipschitz graph or even a graph at all. It is enough

to have a suitable flatness condition that we express, as in the elliptic case, in the following

flexible version of ε-monotonicity.

Definition 10.1. We say that u is ε-monotone along the directions of a cone Γ(e, θ),

if for a small δ > 0 and every τ ∈ Γ(e, θ − δ)

sup
q∈Bε sin δ(p)

u(q − ετ) ≤ u(p) .

In the case of our free boundary problem, the results in section 13.4 can be summarized

as follows.

Corollary 10.1. Let u be a viscosity solution to our free boundary problem in C1 =

B′
1 × (−1, 1), ε-monotone along every τ ∈ Γx(en, θ∗) ∪ Γt(ν, θt), ν ∈ span{en, et}.

Then there exist positive C, c such that, at a distance greater than C
√

ε from F (u), u is

fully monotone along any

τ ∈ Γx(en, θ∗ − cε) ∪ Γt(ν, θt − c
√

ε) .

We can now state the main result of this chapter.

169
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Theorem 10.2. Let u be a viscosity solution of a f.b.p. in C2 = B′
2×(−2, 2), ε-monotone

along all directions τ ∈ Γx(en, θ∗0)∪Γt(en, θ∗). Set M0 = supC2
u and assume u(en,−3

2 ) = 1,

(0, 0) ∈ F (u).

Moreover, let G = G(a, b) be a Lipschitz function with Lipschitz constant LG such that

DaG ≥ c∗ > 0 , DbG ≤ −c∗ .

Then, if ε and δ0 = π
2 − θ∗0 are small enough, depending only on n and θ∗, the following

conclusions holds:

1. In C1 the free boundary is a C1 graph, say xn = f(x′, t), in space and time. More-

over, there exists a positive constant C1 depending only on n,M0, LG, c∗, a, θ∗ such

that for every (x′, xn, t), (y′yn, s) ∈ F (u),

(a) |∇x′f(x′, t)−∇x′f(y′, t)| ≤ c1(− log |x′ − y′|)−4/3

(b) |Dtf(x′, t)−Dtf(x′, s)| ≤ c1(− log |s− t|)−1/3

2. u ∈ C1(Ω̄+(u)) ∩C1(Ω̄−(u)) and on F (u) ∩ C1
u+

ν ≥ c2 > 0

with c2 = c2(n,M0, LG, c∗, a, θ∗).

In particular, Theorem 10.2 holds for 0-monotone (i.e., fully monotone) functions. In

fact, as an immediate consequence we have the following:

Corollary 10.3. Replace in Theorem 10.2 the ε-monotonicity hypothesis with the fol-

lowing one:

The free boundary F (u) is given by the graph of a Lipschitz function xn = f(x′, t)

with Lipschitz constant L1 in space and L2 in time. Then, there exists L0 =

L0(n, , L1) such that, if L1 ≤ L0, the conclusions 1. and 2. in Theorem 10.2 holds.

Strategy of the proof. The main problems arise of course from the lack of a priori

control of the normal derivatives (in the viscosity sense) of u at the free boundary. Let us

see what are the relevant ideas needed to overcome this difficulty.

Step 1. Interior enlargement of the cone in space. Saying that u is monotone along any

direction τ belonging to a spatial cone Γx(en, θ∗) amounts to asking that for any ε′ > 0

uε′(p) = sup
q∈B′

ε′ sin θ
(p)

u(q − ε′en) ≤ u(p) . (10.1)

The function uε′ measures the opening of the monotonicity cone, and one tries to get

inequality (10.1) in a smaller region for τ belonging to a larger cone.
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Thanks to Corollary 10.1, this can be done
√

ε′-away from the free boundary, for any

ε′ > 0, using the same techniques of sections 2–4, chapter 9.

Step 2. More delicate is the improvement of the space-time cone Γt(en, θ∗), since in

section 9.5 we used full monotonicity up to the free boundary. The idea is to approximate

u by suitable monotone super and subsolutions v̄, v which fall under the hypotheses of

Lemma 9.11.

In this way we obtain an improvement in monotonicity for both v̄ and v that can be

transferred to u via an estimate of the approximation error.

Step 3. We want to carry to the free boundary the gain obtained in steps 1 and 2. What

we can do is to carry only ε-monotonicity in a larger cone.

We need however to counterbalance the lack of nondegeneracy through a rather delicate

control from below of u+
ν in the viscosity sense, at regular points of the free boundary. This

sort of Hopf maximum principle is to be expected if in the iteration of the various steps the

opening speed of the cones of ε-monotonicity is enough to reconstruct in a neighborhood of

(0, 0) a Lyapunov-Dini domain.

This is exactly what happens, but at the same time it is necessary, at each iteration

step, to decrease at a suitable rate the ε in the ε-monotonicity of u. This is done in

Step 4. Since ε-monotonicity implies full monotonicity
√

ε-away from the free boundary,

it is possible to improve the ε-monotonicity itself, i.e., to decrease ε, at the price of giving

up a small portion of the enlarged cone. This improvement of ε-monotonicity up to the free

boundary can be obtained via a family of perturbations in the style of section 5.4. Also at

this stage, the key point is the control of u+
ν at regular points of F (u).

Step 5. We perform a double-iteration procedure that consists at each step of a cone

enlargement and of an ε-monotonicity improvement, in a sequence of contracting cylinders.

Again, due to the underlying double homogeneity of the problem, the sequence of contract-

ing domains is neither hyperbolically nor parabolically scaling and the opening speed of the

monotonicity cones is logarithmic. This produces the logarithmic modulus of continuity of

Dtϕ,∇f appearing in the theorem.

The next section deals with steps 1 and 2.

10.2. Interior enlargement of the monotonicity cone

The first step in the strategy of proof of theorem is the enlargement of the monotonicity

cone away from the free boundary. According to Corollary 10.1 our ε-monotone solution is
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fully monotone
√

ε-away from the free boundary and therefore the technique in chapter 9,

sections 2–4, can be used to get an enlargement of the spatial section of the cone. Precisely,

we have:

Lemma 10.4. Let u be a viscosity solution to our f.b.p. in C1 = B′
1 × (−1, 1). Suppose

that u is fully monotone along every τ ∈ Γx(en, θx)∪Γt(ν, θt), with ν ∈ span{en, et}, in the

domain C1 ∩ {d(p, F (u)) > cεγ}, for 0 < γ ≤ 1
2 and ε > 0 small.

Then, there exist c, h, 0 < h < 1, θ̄x and ē, all dependent only on θx, θt, a, n, such that

i) Γx(en, θx) ⊂ Γx(ē, θ̄x) and π
2 − θ̄x ≤ h(π

2 − θx)

ii) u is fully monotone in Γx(ē, θ̄x) in the cylinder B′
1/8(

3
4en) × (− cδ

μ , cδ
μ ) provided

δ ≤ μ, where δ = π
2 − θx, μ = π

2 − θt.

The enlargement of the cone of monotonicity in time away from the free boundary,

done in section 9.5, requires full monotonicity up to the free boundary. This is not our

case here and therefore we have to argue differently. The idea is to use suitable monotone

replacements of u, constructed by taking supremum or infimum of u over balls of radius εγ .

First of all let us state a lemma analogous to Lemma 5.6.

Lemma 10.5. Let u be a viscosity solution of our f.b.p., εγ-monotone along every di-

rection τ ∈ Γx(en, θx) ∪ Γt(ν, θt), ν ∈ span{en, et}, and fully monotone outside an Mεγ-

neighborhood of F (u). Then, there exist constants c, C and C0, depending only on n, θx

and θt, such that

cdpDenu(p) ≤ u(p) ≤ CdpDenu(p)

where dp = d(p, F (u)), for every p with dp ≥ c0ε
γ .

The proof follows closely the proof of Lemma 5.6 mentioned above. Let now u as in

Lemma 10.5 and, for 0 < γ′ < γ < 1
2 , define

v̄(p) = inf
B

εγ′ (p)
u v(p) = sup

B
εγ′ (p)

u

and

ūε(p) = u(p + 4εγ′
en) , uε(p) = u(p− 4εγ′

en) .

Lemma 10.6. The following hold:

(i) in Ω+(v̄) ∪Ω+(v)

|v̄ − ūε| ≤ cεγ′
Denūε

and in Ω−(v̄) ∪ Ω−(v)

|v − uε| ≤ cεγ′
Denuε
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(ii) v̄ and v are monotone increasing along every

τ ∈ Γx(en, θx − cε−1−γ′
) ∪ Γt(θt − cε1−γ′

, ν) .

(iii) v̄ is supercaloric in Ω+(v̄) ∪ Ω−(v) and v is subcaloric in Ω+(v) ∪ Ω−(v).

(iv) Each point of F (v̄) is regular from the left and if B(y0, s0) ⊂ Ω−(v̄) touches F (v̄)

at (x0, t0) with slope − β+

α+
, then α+ > 0 and near x0

v̄(x, t0) ≤ α+〈x− x0, ν〉+ − α−〈x− x0, ν〉− + o(|x− x0|)
where ν = y0−x0

|y0−x0| , with

β+

α+
≥ G(α+, α−) .

(v) Each point of F (v) is regular from the right and if B(y0, s0) ⊂ Ω+(v) touches F (v)

at (x0, t0) with slope − β−
α− , then α− > 0 and near x0

v(x, t0) ≥ α+〈x− x0, ν〉+ − α−〈x− x0, ν〉− + o(|x− x0|)
with

β−
α−
≤ G(α+, α−) .

Proof. (i) is an easy consequence of Lemma 10.5; (ii) follows from Lemma 5.3; (iii) is

obvious since v̄ and v are infimum and supremum of translations of caloric functions. Finally,

iv) and v) follow from Lemma 8.13. �

Remark. Properties (iii) and (iv), (v) say that v̄ and v are R-supersolutions and R-

subsolutions, respectively, in the terminology of section 8.4.

Now we replace v̄ and v by their caloric counterparts in their positive and negative

regions, in strips centered at free boundary points and of height a = min(a1, a2). We shall

treat only the v̄ case, since that of v can be done in an analogous way.

Let (0, 0) ∈ F (v̄) be the center of the strip

Rη =
{
|x′| < 2η

3
, |xn| < 2η

3
, |t| < aη

}
and let

R±
η = Ω±(v̄) ∩Rη .

Denote by v the function that satisfies

Δv − a1vt = 0 in R+
1 , Δv − a2vt = 0 in R−

1

and

v = v̄ on ∂pR
±
1 .



174 10. FLAT FREE BOUNDARIES ARE SMOOTH

By the maximum principle and Lemma 10.6

|ūε − v| ≤ cεγ′
Den ūε and |uε − v| ≤ cεγ′

Den ūε

in R̄±
1 , respectively.

Also, since v̄ is supercaloric in R+
1 ∪R−

1 , v+ ≤ v̄+ and v− ≥ v̄−. Therefore at each point

(x0, t0) ∈ F (v) = F (v̄), we have the following asymptotic development:

v(x, t0) ≤ α∗
+〈x− x0, ν̄〉+ − α∗

−〈x− x0, ν̄〉− + o(|x− x0|)

with α∗
+ ≤ α+ and α∗− ≥ α−, and by the monotonicity properties of G

β∗
+

α∗
+

=
β+

α+
≥ G(α+, α−) ≥ G(α∗

+, α∗
−) .

Let M± := maxR±
1

v± and m± := minΣ± v± where

Σ± =
{

xn = ±2
3

}
∩ ∂R±

1 .

Since on ∂R±
1 , v = v̄, then M+

m+
and M−

m− are controlled above by a constant depending only

on n, M0, θx, and θt. This means that after an appropriate rescaling, v+ and v− satisfy the

hypotheses of Theorem 13.13. In particular, in a δ-neighborhood of F (v) in R7/8 we have

that v is monotonically increasing along the directions of a space-time cone Γ(θ̄, en) where

θ̄ = θ̄(n, θx, θt). Actually v is monotone increasing in all of R4/5 for some cone of directions.

This is precisely the content of the following lemma:

Lemma 10.7. Let γ′′ < γ′/4. Then, in R4/5, v is monotone increasing along any

direction τ ∈ Γx(θx − cεγ′′
, en) and τ ∈ Γx(θt − cεγ′′

, ν) ⊂ Sp{en, et}, with c = c(n,L).

Proof. By Lemma 10.6, on F (v), Dτv+ ≥ 0 for any

τ ∈ Γx(θ∗ − cε1−γ′
, en) ∪ Γt(θt − cε1−γ′

, ν) .

Therefore for any p ∈ R+
7/8

Dτv+(p) ≥
∫

∂pR+
7/8

\F (v)
Dτv+ dωp ≥ −

∫
∂pR+

7/8
\F (v)

|Dτv
+| dωp =: −z(p)

where ω denotes the caloric measure of Δ− a1Dt in R+
7/8. By Lemma 13.11,

‖Dtv
+‖L2(R+

7/8
), ‖∇v+‖L2(R+

7/8
) ≤ c(n, θ̄)‖v+‖L2(R+

7/8
) .

Replacing, if necessary, ∂pR
+
7/8 by a nearby parallel surface, we may assume that Dτv

+ ∈
L2(∂pR

+
7/8

) with

‖Dτv
+‖L2(∂pR+

7/8
) ≤ cM+ ,
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which implies that z(4
5en) ≤ c̄M+. Since z = 0 on F (v), by Corollary 13.9 in R+

4/5, we have

z(p) ≤ c
z(4

5en)
v+(4

5en)
v+(p) ≤ cv+(p) .

Therefore, by Corollary13.15, if dp = dist(p, F (v)) ≤ δ, then

v+(p) ≤ cdpDenv+(p) .

Hence, for γ′′ < γ′
4 ,

Dτv
+(p) + εγ′′

Denv+(p) ≥ (εγ′′ − cdp)Denv+(p) ≥ 0

if dp ≤ c−1εγ′′
(εγ′′

< δ).

Consider now the points p with dp ≥ c−1εγ′′
. For the function ūε(p) = u(p + 4εγ′

en),

the free boundary F (uε) is at a distance greater than 3εγ′
from R+

1 .

Recall that on ∂pR
+
1 we have

|v̄ − ūε| ≤ cεγ′
Denūε

therefore by the maximum principle,

|v+ − ūε| ≤ cεγ′
Den ūε .

By Schauder estimates, whenever dp ≥ c̄εγ′′
, p ∈ R+

4/5,

|Dtv
+ −Dtūε|, |∇v+ −∇ūε| ≤ c(εγ′−2γ′′

)Den ūε ≤ cεγ′′
Den ūε

since γ′′ < γ′/4; in particular,

Dτv
+ −Dτ ūε ≥ cεγ′′

Denūε .

Therefore, if τ ∈ Γx(θx − cεγ′′
, en) ∪ Γt(θt − cεγ′′

, ν)

Dτv+ ≥ 0 .

For v− we can proceed in an analogous manner. The proof is complete. �

Finally, we are in position to apply the method of section 5. Let et +Ben and −et−Aen

be the vectors of the generatrix of the cone Γt(θt − cεγ′′
, ν) (ν ∈ Sp{en, et}). Notice that if

μ = π
2 − θt,

B −A ≤ c(μ + εγ′′
) ≤ c̄μ

provided that εγ′′ � μ.

Lemma 10.8. Let α± = Denu±(3
4en). If

G(α+, α−) ≥ −b ≡ −A + B

2
(respectively, G(α+, α−) ≤ −b) ,
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then there exist c, c̄ > 0 such that if δ is small and δ ≤ cμ3

Dtu
+ + (B − cμ)Denu+ ≥ 0 (resp., Dtu

+ + (A + cμ)Denu+ ≤ 0)

in B1/30(3
4en)× (−c̄ δ

μ , c̄ δ
μ).

Proof. Suppose G(α+, α−) ≥ −b. Set α∗± = Denv±(3
4en). In every strip R4/5(p0)

centered at p0 ∈ F (v) we apply to v Lemma 10.11. Therefore, since G(α∗
+, α∗−) ≥ −b−cεγ′′

,

in B1/30(3
4en)× (−c̄ δ

μ , c̄ δ
μ) we have

Dtv
+ + BDenv+ ≥ (Cμ− cεγ′′

)Denv+ ≥ c̄μDenv+ .

Hence the conclusion follows, since

|Dtv
+ −Dtu

+| ≤ cεγ′′
Denu+ , |Denv+ −Denu+| ≤ cεγ′′

Denu+ .

If G(α+, α−, en) ≤ −b, we use the caloric replacement of v instead of v̄. �

10.3. Control of uν at a “contact point”

In order to be able to propagate the gain in section 2 from the interior to the free

boundary we need to have a control of uν at regular points of F (u). We are dealing with

the following situation:

Let Γk := Γx(θk, νk) be a sequence of spatial cones,

D = {x = (x′, xn) ∈ R
n : |x′| < 2 , g(x′) < xn < 2}

with g a Lipschitz function and 0 ∈ F ′ = {x : xn = g(x′)}. Suppose that

(a) δk = π
2 − θk ≤ C0

(k+N)1+α , a > 0, N � 1, and |νk − νk+1| ≤ c̄(δk − δk+1)

(b) there exists k0 such that, for k ≤ k0,

Γk ∩ [B2−k(0) \B2−k−1(0)] ⊂ D ∩ [B2−k(0) \B2−k−1(0)]

and a ball Bεk0
, εk = 2−4k tangent from inside to F ′ at 0, with νk0 as inward

normal.

Then the following lemma holds.

Lemma 10.9 (Contact point lemma). Let {Γk}k≥1 and D be as above and w a positive

superharmonic function, continuous in D̄, and vanishing on F ′. Then there exists a constant

c = c(n, a,N) such that, near 0,

w(x) ≥ cw0〈x, νk0〉

where w0 = min{w(x) : x ∈ D̄ ∩ {xn = 2}}.
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Figure 10.1. The geometry in the contact point lemma

Proof. We will construct a Lyapunov-Dini domain

D′ = {(x′, xn) ∈ R
n : xn > ϕ(x′), |x′| < 2, xn < 2}

such that

(i) ϕ(x′) > g(x′) if |x′| < 2 and ϕ(0) ∼ εk0

(ii) ϕ ∈ C1 and ω∇ϕ(r) ≤ C1[log(8
r )]−1−a′

(r ≤ 4) where a′ = a/2 and ω∇ϕ denotes the

modulus of continuity of ∇ϕ.

Suppose that νk0 = en and set

ψ(s) =
∫ s

0
c1

[
log

(8
r

)]−1−a′

dr .

Then ψ(s) is increasing and ψ(s) ≥ c2s(log 8
s )−1−a′

. Therefore the graph xn = ψ(|x′|)
intersects ∂Γk0 at points x̄′ such that

|x̄′| ≤ 8 exp

(
−
(

δk0

c2

)− 1
1+a′

)
= 8exp

(
−c3δ

− 1
1+a′

k0

)

with ψ(|x̄′|) ≤ c3δk0 exp(−c3δ
−1/1+a′
k0

). Since

δ
− 1

1+a′
k0

≥ c
− 1

1+a′
0 (k0 + N)

1+a
1+a′

for some N large and 1+a
1+a′ > 1, we have

ψ(|x̄′|) ≤ 1
10

εk0 .

If we set ϕ(x′) = ψ(|x′|) + εk0, choosing c1 large enough and using (a),(b), it is easily seen

that the domain D′ = {(x′, xn) : ϕ(x′) < xn < 2} has the desired properties.
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To prove that w satisfies the inequality above, denote by Z(x) the harmonic measure in

D′ of the set ∂D′ ∩ {xn = 2} and by w̄ the Poisson integral of w in D. Using the results of

[W], we infer that there exists a constant c = c(n) such that

Zν(0) ≥ c .

On the other hand, using Hopf and maximum principles, if xn is small we can write
w̄(0, xn)

xn
≥ c

w̄(pk0)
εk0

≥ cw0
Z(pk0)

εk0

≥ cw0

where w0 = minimum of w̄ on D ∩ {xn = 2} and pk0 = (0, εk0). Since w ≥ w̄ the proof is

complete. �

10.4. A continuous family of perturbations

The full monotonicity away from the free boundary yields a gain in the ε-monotonicity on

the free boundary. This can be achieved by means of a continuous family of perturbations,

as in section 5.2. Although the construction of this family follows here a different approach,

the underlying ideas are exactly those expressed in section 5.1. We introduce the following

notation:
Nbεγ = {p = (x′, xn, t) : d(p, F ) < bεγ} for b > 0 , 0 < γ < 1

Cb,R,T = Nbεγ ∩ {|x′| < R} ∩ {|t| < T}
Ωε,R,T -a smooth domain such that C b

2
,R,T ⊂ Ωε,R,T ⊂ Cb,R,T .

Here, we assume that u is εγ-monotone along all directions τ ∈ Γx(θx, en) ∪ Γt(θt, ν)

and, as in the main theorem, that δ is very small (δ = π
2 − θx, μ = π

2 − θt).

Lemma 10.10. Let b1, b2, b3, and D be positive constants; then there exists a family of

C2 functions ψη = ψη(x, t), η ∈ [0, 1], in Ωε,R,T such that

(i) 0 < b̄ ≤ ψη ≤ 1 + η for some constant b̄,

(ii) Δψη − b1Dtψη − b2|∇ψη| − b3
|∇ψη |2

ψη
≥ 0,

(iii) Dtψη, |∇ψη| ≤ C
Dεβ−γ 0 < β < γ < 1,

(iv) Dtψη ≥ 0,

(v) ψη ≤ 1 in Ωε,R,T ∩
(
{−T < t < −T + εα} ∪ {R − εα/4

2 < |x′| < R}
)
,

(vi) ψη ≥ 1 + η(1 − Cεβ) in Ωε,R,T ∩
(
{t > −T + 2εα} ∩ {|x′| < R − εα/4

2 }
)

where

0 < α < γ − β.

Proof. Let g1 = g1(t) ∈ C∞([−T, T ]) and g2 = g2(x) ∈ C∞(BR) such that

g1(t) =
(

2− T + t

2εα

)
for − T ≤ t ≤ −T + 2εα + 2εα+β ,
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g1(t) strictly decreasing from 1 + εβ to 1 + 1
2εβ for −T + 2εα + 2εα+β < t ≤ T with

g′1(t) < −cεβ ,

g1 = 1 if R− εα/4

2
< |x| < R ,

g2 = 0 if |x| < R− εα/4 .

Let F+
ε be the lateral part of ∂Ωb,2R,2T ∩{u > 0}. Under the dilation x→ εγ x̃, t→ εγ t̃,

F+
ε becomes a uniformly smooth surface F̃+

ε at a distance of order 1 from the dilated free

boundary. Due to the flatness of the free boundary the space curvature of F̃+
ε is bounded by

cδ. Therefore, for each t, the spatial distance function dε = d(x, t) from F̃+
ε is well-defined

up to a distance of order 1/δ, and we have |Δx̃dε| ≤ cδ, |Dtdε| ≤ CL1, where L1 is the

Lipschitz constant in time of F .

Define

G(x, t) = g1(t) + g2(x) + Aε2γ−α
(
dε

( x

εγ

)
− σd2

ε

( x

εγ

))
.

If σ = σ(L0) > 0 and A > 0 are chosen properly, G has the following properties:

(a) DtG ≤ 0, |DtG| ≤ cε−α.

(b) |∇G| ≤ cε−α/4, and

(c) ΔG ≤ −cAε−α.

Now, for C > 1 large enough, set F (x, t) = (1+G(x,t)
3 )

1
1−2C ; then, it is easy to see that

the functions

ψη(x, t) = 1 + η

(
F (x, t)− 1

3
1

2C−1 − 1

)
∀ η ∈ [0, 1] ,

have the required properties. �

Lemma 10.11. Let u be a viscosity solution of a free boundary problem satisfying the

hypothesis of the main theorem. For 0 < ε, σ � λ < 1, let ū(q) = u(q − λετ) and

vη(p) = sup
q∈Bσψη (p)

ū(q) , τ ∈ R
n+1 , |τ | = 1 , (10.2)

where ψη are the auxiliary functions constructed in the previous lemma. Suppose the supre-

mum in (10.2) occurs uniformly away from the top and the bottom points of the ball, at a

distance not smaller than ρ. Then,

(i) vη is subcaloric in Ω+(vη) and Ω−(vη),

(ii) ∂Ω+(vη) is uniformly Lipschitz in space-time with Lipschitz constant in space L ≤
tan(π

2 − θx
0 ) + cε1−α,

(iii) if (x0, t0) ∈ F (vη) and (y0, s0) ∈ F (ū) with

(y0, s0) ∈ ∂Bσψ(x0,t0)(x0, t0) ,
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then (x0, t0) is a regular point from the right. Moreover, if near (y0, s0) along the

paraboloid s = s0 − γ〈y − y0, ν〉2 (γ > 0), u has the asymptotic expansion

ū(y, s) = α+〈y − y0, ν〉+ − α−〈y − y0, ν〉− + o(|y − y0|)

where ν = y0−x0

|y0−x0| , then near (x0, t0) along the paraboloid t = t0 − γ〈x− x0, ν〉2

vη(x, t) ≥α+

〈
x− x0, ν +

σψη(x0, t0)
|y0 − x0| ∇(σψη)

〉+

− α−
〈

x− x0, ν +
σψη(x0, t0)
|y0 − x0| ∇(σψη)

〉−
+ o(|x− x0|)

with s0−t0
|y0−x0| ≤ G(α+, α−, ν).

Proof. (i) At the point where the supremum occurs we have the estimate |ut| ≤ c|∇xu|,
with c depending on ρ. The proof then is similar to that of lemma 10.12.

Except for minor changes, the proofs of (ii) and (iii) follow those of lemma 4.9 and

lemma 10.13, respectively. �

10.5. Improvement of ε-monotonicity

In this section, using the family of subsolutions of the previous section, we show how

to obtain a gain in ε-monotonicity on the free boundary. Also, repeating the process for

this gain a finite number of times, ε can be decreased enough so that the hypotheses of our

main inductive argument are fulfilled.

Let u be a viscosity solution to our free boundary problem in CR,T = B′
R(0)×(−T, T ), ε-

monotone along every direction τ ∈ Γx(θx, en)∪Γt(θt, ν) where ν ∈ Sp{en, et}. If δ = π
2 −θx

and δ � μ = π
2 − θt, ε� δ, we know that in CR−ε,T−ε, after a dilation in time t→ δ

μ t,

sup
q∈Bε sin δ(p)

u(q − ετ) ≤ u(p)

for any τ ∈ Γx(θx − δ, en) ∪ Γt(θt∗ − μ, ν∗), |τ | = 1, where Γt(θt∗, ν∗) is the dilated cone in

space-time. Since for any λ < 1 close to 1

Bσ(p− λετ) ⊂ Bε sin δ(p− ετ) (σ = ε[sin δ − (1− λ)]) ,

it follows that

sup
Bσ(p)

u(q − λετ) ≤ u(p) .

On the other hand, by Corollary 10.1, outside an εγ-neighborhood of F (u), for 0 < γ ≤ 1
2 ,

u is fully monotone in Γx(θx, en) ∪ Γt(θt, ν), but for a correction of order ε for θx and
√

ε
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for θt, which can be neglected since ε� δ. This implies that for any 0 < λ ≤ 1

sup
Bλε sin δ(p)

u(q − λετ) ≤ u(p) .

Now, in order to gain in ε-monotonicity near F (u), we find an intermediate radius σψη , using

the auxiliary function ψη constructed in the previous section. First, a technical lemma.

Lemma 10.12. Let α, β, γ (≤ 1
2 ) , and Ωε,R,T be as in Section 4. Suppose that in

Ωε,R−c1εα,T−c2εα

w1(p) = sup
B�1

(p)
u(q − λετ) ≤ u(p)

where �1 = ε(λ sin δ− cεβ), for any τ ∈ Γx(θx− δ, en) or τ ∈ Γt(θt∗− δ, ν∗) (ν∗ ∈ Sp{en, et}).
Then on ∂Ωε,R−c1εα,T−c2εα at a distance Mεγ (M large) from F (u)

w1(p) ≤ (1− c̄ε1+β−γ)u(p) .

Proof. Set w2(p) = supB�2
(p) u(q − λετ) where �2 = ελ sin δ. Then using Lemma 10.5

we deduce

w1(p) ≤ w2(p)− cεβ+1|∇u(p)| ≤ u(p)− c̄εβ+1−γu(p)

for p ∈ ∂Ωε,R−c1εα,T−c2εα and dist(p, F (u)) ≥Mεγ . �

Lemma 10.13 (Basic Iteration). Let u be a viscosity solution to our free boundary prob-

lem in CR,T := B′
R(0) × (−T, T ) that is ε-monotone along every direction τ ∈ Γx(θx, en) ∪

Γt(θt, ν), ν ∈ Sp{en, et}. Suppose that δ � μ3. Then there exists an ε0 > 0 (ε0 � δ) and

0 < λ = λ(ε0) < 1 such that, if ε < ε0, u is λε-monotone in the cones Γx(θx − c̄εβ, en) and

Γt(θt − c̄εβ, ν), in the domain CR−εα,T−εα ∩Ωε,R,T where 0 < α < β < 1
2 .

Proof. Choose η̄ such that

σ(1− η̄) = λε sin δ − cε1+β

where σ = ε(sin δ − (1 − λ)). Take 1 − λ = 1
2 sin δ; then since 0 < ε � δ � 1, we have

1
3 < η̄ < 1. Perform the dilation in time t → δ

μ t. This assures that the supremum of the

new u in balls is taken uniformly away from top and bottom. Now set

v̄η = vη + c̄ε1+β−γw

where vη is the function defined in Lemma 10.11 and w has the following properties:⎧⎪⎨
⎪⎩

Δw − a1wt = 0 in Ω+(vη) ∩ Ωε,R,T

w = ũ ∂pΩε,R,T ∩ {p : d(p, F (vη)) > Mεγ}
w = 0 everywhere else in Ωε,R,T
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where ũ is the caloric function in CR,T ∩ Ω+(vη) with boundary values zero on F (vη) and

equals to u everywhere else on the parabolic boundary of CR,T ∩Ω+(vη). Notice that by the

maximum principle ũ ≤ u in CR,T ∩ Ω+(vη).

Following our discussion above, we want to show that for every η ∈ [0, η̄]

v̄η ≤ u

in Ωε,R,T ∩ CR−cεα,T−cεα.

The set {η ∈ [0, η̄] : v̄η ≤ u} is nonempty since by the maximum principle and

Lemma 10.12, η = 0 belongs to this set. Also, it is easy to see that this set is closed.

To show it is open, it is enough to show that Ωε,R,T ∩ {v̄η0 > 0} is compactly contained

in Ωε,R,T ∩ {u > 0}, if v̄η0 ≤ u, for η0 ∈ [0, η̄). Suppose not; then there exists a point

(x0, t0) ∈ F (v̄η0) ∩ F (u) which is, due to the construction of ψη , a regular point and

d((x0, t0), ∂pΩε,R,T ) ≥ cεγ . Since F (vη) is Lipschitz, by Corollary 13.9, we have w ≥ cũ

in a εγ-neighborhood of (x0, t0) in {vη > 0}.
On the other hand, by Lemma 13.16 w− = ũ(1 − ũr), for a suitable small r > 0, is a

positive superharmonic function on the hyperplane t = t0 and therefore, by Lemma 10.9,

(w−)ν ≥ c̃ > 0 at x0, where ν = ν∗/|ν∗| with ν∗ = (y0 − x0 + σ2ψη |∇ψη|)/|y0 − x0|. Notice

that at (x0, t0) we have ũν = (w−)ν .

Now, v̄η0 has the following asymptotic development at the contact point (x0, t0) along

t = t0 − γ〈x− x0, ν〉2:

v̄η0(x, t) ≥ ᾱ+〈x− x0, ν〉+ − α−〈x− x0, ν〉− + o(|x− x0|)

where

ᾱ+ ≥ α+(1− σ|∇ψη0 |) + cε1−γ+β

with α+ and α− as in Lemma 10.11.

Also, along the same paraboloid, near (x0, t0),

u(x, t) = α
(2)
+ 〈x− x0, ν〉+ − α

(2)
− 〈x− x0, ν〉− + o(|x− x0|)

and

G(α(2)
+ , α

(2)
− ) ≤ β

(2)
+

α
(2)
+

≡
(

s0 − t0 + σ2ψη0(x0, t0)Dtψη0(x0, t0)
|y0 − x0|

)
|ν∗|−1

≤
(

s0 − t0
|y0 − x0| + Cσ|Dtψη0 |

)
(1 + Cσ|∇ψη0 |)

≤ (α+, α−) + Cδε1−α .
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Since G is Lipschitz, α < γ − β and ∂G
∂α+
≥ c∗ > 0, we have

G(α(2)
+ , α

(2)
− ) ≤ G(ᾱ+, α−)− Cε1−γ+β(c− δ) ≤ G(ᾱ+, α−) .

By Hopf maximum principle, α
(2)
+ > ᾱ+ and α

(2)
− < α−, so we arrive to a contradiction.

Since λ sin δ − cεβ > λ sin(δ − c̄εβ), the conclusion follows easily. �

Corollary 10.14. Let u be as in Lemma 10.13 with ε = εk = 1/16k (k large), δ =

δk = c/k1+α (some a > 0), and λk = 1− 1
2 sin δk. Then there exist α′ (< α) and β′ (< β)

such that u is εk+1-monotone for every direction τ ∈ Γx(θx − cεβ′
k+1, en) ∪ Γt(θt − cεβ′

k+1, ν),

in the domain C
R−εα′

k+1,T−εα′
k+1

.

Proof. It is enough to iterate Lemma 10.13 a number of times such that

λs
k ≤

1
16

and choose α′ and β′ so that ∑
s

cεβ
kλβs

k ≤ cεβ
k

1

1− λβ
k

≤ cεβ′
k+1

and ∑
s

cεα
k λαs

k ≤ cεα
k

1
1− λγ

k

≤ cεα′
k+1 . �

10.6. Propagation of cone enlargement to the free boundary

The enlarged cone of full monotonicity of Section 2 yields only an enlarged cone of ε-

monotonicity on the free boundary. This is precisely what we prove in this section, using the

continuous family of perturbations constructed in Lemma 9.15. For reader’s convenience

we repeat here the statement of that lemma.

Lemma 9.15. Let 0 < T0 ≤ T and C > 1. There exist positive constants, C̄, k and

h0, depending only on C and T0, such that, for any h, 0 < h < h0, there is a family of

C2-continuous functions ϕη, 0 ≤ η ≤ 1, defined in the closure of

D =
[
B′ \

{
B̄′

1/8

(3
4
en

)
∪ B̄′

1/8

(
− 3

4
en

)}]
× (−T, T )

such that:

(1) 1 ≤ ϕη ≤ 1 + ηh in D̄

(2) Δϕη − c1Dtϕη − C
|∇ϕη |2

ϕη
− c2|∇ϕ| ≥ 0 in D

(3) ϕη ≡ 1 outside B′
8/3 × (−7

8T, T )

(4) ϕη ≥ 1 + κηh in B′
1/2 × (−T

2 , T
2 )

(5) Dtϕη, |∇ϕ| ≤ C̄ηh in D̄
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(6) Dtϕη ≥ 0 in D

provided c1 and c2 are small enough.

The next lemma is perfectly analogous in both statement and proof to Lemma 10.11.

Lemma 10.15. Let u1 be a viscosity solution of our free boundary problem in C2 satisfying

the hypotheses of the main theorem. For 0 < ε, σ < 1 define

Vη(p) = sup
q∈Bεϕση (p)

u1(q) (10.3)

where ϕση are the functions constructed in the preceding lemma. Suppose the supremum in

(10.3) occurs uniformly away from the top and the bottom points of the ball at a distance

not smaller than p > 0. Then

1. Vη is subcaloric in Ω+(Vη) and Ω−(Vη),

2. ∂Ω+(Vη) is uniformly Lipschitz with Lipschitz constant L′ ≤ tan(π
2−θx

0)+Cε|∇ϕση |,
3. if (x0, t0) ∈ F (Vη) and (y0, s0) ∈ F (u1) with

(y0, s0) ∈ ∂Bεϕση(x0,t0)(x0, t0) ,

then (x0, t0) is a regular point from the right and if, near (y0, s0) along the parab-

oloid s = s0 − γ〈y − y0, ν〉2 (γ > 0), u1 has the asymptotic expansion

u1(y, s) = α
(1)
+ 〈y − y0, ν〉+ − α

(1)
− 〈y − y0, ν〉− + o(|y − y0|)

where ν = y0−x0

|y0−x0| , then, near (x0, t0), along the paraboloid t = t0 − γ〈x− x0, ν〉2,

Vη(x, t0) �α
(1)
+

〈
x− x0, ν +

ε2ϕση(x0, t0)
|y0 − x0| ∇ϕση(x0, t0)

〉+

− α
(1)
−

〈
x− x0, ν +

ε2ϕση(x0, t0)
|y0 − x0| ∇ϕση(x0, t0)

〉−

+ o(|x− x0|)
with s0−t0

|y0−x0|) ≤ G(α+, α−, ν).

The next lemma is a propagation lemma similar to Lemma 9.16. The key point here

is the use of the estimate of Section 3 in order to control the degeneracy of the solution at

free boundary points (see Lemma 10.9).

Lemma 10.16. Let u1 ≤ u2 be two viscosity solutions of our free boundary problem in C2
satisfying the hypotheses of the main theorem, with u1 as in Lemma 10.15. Assume further

that

vε(x, t) = sup
Bε(x,t)

u1 ≤ u2(x, t)



10.6. PROPAGATION OF CONE ENLARGEMENT TO THE FREE BOUNDARY 185

for (x, t) ∈ C1,T and for some h small

u2(x, t)− v(1+hσ)ε(x, t) ≥ Cσεu2

(
3
4
ε, 0

)

for every (x, t) ∈ B′
1/8(

3
4en) × (−T, T ) ⊂ {u2 > 0}. Then if ε > 0 and h > 0 are small

enough, there exists 0 < c < 1 such that in C1/2, T/2

v(1+chσ)ε(x, t) ≤ u2(x, t) .

Proof. We construct a continuous family of functions V̄η ≤ u2 for 0 ≤ η ≤ 1 such that

V̄1 ≥ v(1+chσ)ε in C1/2, T/2. Set

V̄η(x, t) = Vη(x, t) + CσεW (x, t)

where Vη are defined in Lemma 10.15 and W is a continuous function in

D =
[
B′

9/10(0)− F ′
1/8

(3
4
en

)]
×
(
− 9

10
T,

9
10

T

)

defined as follows:

ΔW − a1DtW = 0 in D ∩ {Vη > 0}

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũ

(
3
4
en, 0

)
on ∂B′

1/8

(
3
4
en

)
×
(
− 9

10
T,

9
10

T

)

0 in
(
D ∩ {Vη ≤ 0}

)
∪
(

∂pD −
{

∂B′
1/8

(
3
4
en

)
×
(
− 9

10
T,

9
10

T

)})

where ũ is the caloric function in C+ = Ω+(Vη) ∩ [B̄′
1/8(

3
4en) × (−T, T )] with boundary

values zero on F (Vη) and equal to u2 everywhere else on the parabolic boundary of C+.

Notice that ũ ≤ u2 in C+ and ũ(3
4en) ≥ cu2(3

4en).

We want to show that the set S = {η ∈ [0, 1] : V̄η ≤ u2} is open and closed. S �= ∅

and closed follow by the maximum principle. To show it is open, assume that V̄η0 ≤ u2 for

some η0 ∈ [0, 1]; then it is enough to prove that D ∩ {V̄η0 > 0} is compactly contained in

D ∩ {u2 > 0}. If not, there exist (x0, t0) ∈ F (V̄η0) ∩ F (u0) ∩ D, which is by construction

a regular point. Since F (Vη) is Lipschitz, by Corollary 13.9, W ≥ cũ in {Vη > 0} strictly

away from the parabolic boundary of D.

By Lemma 13.15, time level t = t0, w− = ũ(1− ũr), for some small r > 0, is superhar-

monic and therefore by Lemma 10.9 (w−)ν ≥ c̃ > 0 at x0, where ν = ν∗
|ν∗| with

ν∗ = (y0 − x0 + ε2ϕση∇xϕση)/|y0 − x0| .

Hence at (x0, t0), (u2)ν = (w−)ν ≥ c̃ > 0.
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Near (x0, t0), we have, along the paraboloid t = t0−γ〈x−x0, ν〉2, γ > 0, the asymptotic

development

V̄η0(x, t) ≥ ᾱ+〈x− x0, ν〉+ − α
(1)
− 〈x− x0, ν〉− + o(|x− x0|)

where

ᾱ+ ≥ α
(1)
+ (1− Cσεh) + Cσεα

(2)
+

and

u2(x, t0) = α
(2)
+ 〈x− x0, ν〉+ − α

(2)
− 〈x− x0, ν〉− + o(|x− x0|) .

Now,

G(α(2)
+ , α

(2)
− ) ≤ β

(2)
+

α
(2)
+

≡ (s0 − t0 + ε2ϕση(x0, t0)Dtϕση0(x0t0)
|y0 − x0| |ν∗|−1

≤
(

s0 − t0
|y0 − x0| + Cσεh

)
(1 + Cσεh)

≤ G(α(1)
+ , α

(1)
− ) + C̄σεh .

Since G is Lipschitz and ∂G
∂α+
≥ c∗ > 0, ∂G

∂α− ≤ −c∗ < 0, we have

G(α(2)
+ , α

(2)
− ) ≤ G(ᾱ+, α

(1)
− )− Cσε(cc̃− h) ≤ G(ᾱ+, α

(1)
− ) .

On the other hand, Hopf maximum principle gives α
(2)
+ > ᾱ+ and α

(2)
− < α

(1)
− , so we arrive

at a contradiction. �

Lemma 10.17 (Cone Basic Iteration). Let u be a viscosity solution of our free boundary

problem in CR,S (with R and S less than 1 and R close to 1), ε-monotone along any direction

in Γx(θx, en) ∪ Γt(θ∗, en). suppose that δ = π
2 − θ∗, δ � μ = π

2 − θ∗, and ε � δ. Then

there exist positive constants c1, c2, and C and unit vectors e and ν1 where e is spatial and

ν1 ∈ Sp{e, et} such that, in B1/2(0)× (−Cδ
2μ , Cδ

2μ ), u is ε-monotone in Γx(θx
1 , en) ∪ Γt(θt

1, ν1)

with
π

2
− θx

1 = δ1 ≤ δ − c1
δ2

μ

and
π

2
− θt

1 = μ1 ≤ μ− c2δ .

Proof. In order to enlarge the space cone, take any vector

τ ∈ Γx(θx − δ, en)

with |τ | � δ and let ε = |τ | sin δ. Define

u1(x, t) = u(x− τ, t)
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and argue as in Lemma 10.18, so that the hypothesis of the preceding lemma are fulfilled

(with u2 = u). Hence the result. To enlarge the time cone, take τ ∈ Γt(θt − δ, ν1) with

|τ | � δ and ε = |τ | sin δ and proceed likewise. �

10.7. Proof of the main theorem

We are now ready to finish the proof of Theorem 10.2. We shall apply Corollary 10.14

and Lemma 10.16 inductively in the following manner. For simplicity, let

δk ∼ 1
(k + k̄)4/3

, k̄ � 1 , μk ∼ 1
k1/3

, and εk =
1

(32)k+k̄
.

At the kth step we have, in B′
2−k(0) × (− Cδk

2kμk
, Cδk

2kμk
), u εk-monotone along every τ ∈

Γx(θx
k , e(k)) ∪ Γt(θt

k, νk), where θx
k = π

2 − δk, θt
k = π

2 − μk, e(k) a spatial unit vector, and

νk ∈ Sp{e(k), et}.
Set

uk(x, t) = 2ku(2−kx, 2−kt)

whose domain of definition is B′
1 × (−Cδk

μk
, Cδk

μk
) and which is ε̄k-monotone (ε̄k = 2kεk) in

Γx(θx
k , e(k)) ∪ Γt(θt

k, νk). Notice that by Corollary 10.1 uk is fully monotone away from the

free boundary at a distance εγ
k, with γ = 3

8 . Apply Corollary 10.14 to uk with R = 1 and

T = Cδk
μk

(with α = 1
8 and β = 1

6 , for instance) in order to have in

B′
1−ε̄α′

k+1

×
(
−Cδk

μk
+ ε̄α′

k+1,
Cδk

μk
− ε̄α′

k+1

)
uk ε̄k+1-monotone along any direction in

Γx(θx
k − cε̄β′

k+1, e
(k)) ∪ Γt(θt

k − cε̄β′
k+1, νk) .

Now, apply Lemma 10.16 to uk with R = 1 = ε̄α′
k+1 and S = Cδk

μk
− ε̄α′

k+1 to have in

B′
1/2 ×

(
−Cδk

2μk
,
Cδk

2μk

)

uk ε̄k+1-monotone in Γx(θx
k+1, e

(k+1)) ∪ Γt(θt
k+1, νk+1) where

π

2
− θx

k+1 = δk+1 ≤ δk − c1
δ2
k

μk
− cε̄β′

k+1 ,

π

2
− θt

k+1 = μk+1 ≤ μk − c2δk − cε̄β′
k+1 .

Taking β′ < 1
4 we see that the above choices of δk, μk, and εk are compatible with these

inequalities. Hence the proof of the first assertion of the theorem follows easily.

To prove the second assertion we observe that at each time level t0Ω± ∩ {t = t0} is a

Lyapunov-Dini domain. By the results in [W] ∇xu± are continuous up to the free boundary,
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at each level of time. This, in turn, implies that ut is bounded. We can now argue as in the

end of the proof of Theorem 10.1 to complete the proof.

10.8. Finite time regularization

In this section we show two applications of our theory regarding “small perturbations”

of nice solutions.

The interesting fact is that they are small L∞ perturbations, a bound that is easy to

obtain just from the uniform continuity of the temperature, a well-known property of the

Stefan problem. In fact, our first application is to solutions of the classical Stefan problem

(here a1 = a2) defined in the infinite cylinder B̄1 × [0,+∞) and having a nice asymptotic

behavior as t→ +∞. The main result is that, no matter how “bad” is the initial data, the

solution regularizes after a finite time. It is well known that finite waiting time is a common

feature of solutions to degenerate diffusions.

Note that harmonic functions are stationary solutions of the Stefan problem:

Theorem 10.18. Suppose u is a solution of the two-phase Stefan problem in B̄′
1×[0,+∞)

converging for t → +∞ to a harmonic function u∞ = u∞(x), x ∈ B1, uniformly in any

compact subset of B1. Suppose that at x0 ∈ F (u∞), |∇u∞(x0)| �= 0. Then there exists

T ∗ > 0 and a neighborhood V of x0 such that in V × [T ∗,+∞), F (u) is a C1 graph and u

is a classical solution.

Remark. T ∗ depends on the ε in Theorem 10.2 and on a bound from below of |∇u∞|
in V .

Proof. In a neighborhood V of x0, u∞ is monotone along the directions in a cone

Γ(θ∞, ν). Therefore, choosing V such that |∇u∞(x)| ≥ c > 0 in V , if T ∗ is large enough,

u(x, t), t ≥ T ∗, is ε-monotone along the directions of Γ(θ∞, ν) and the directions of a

space-time cone Γt(θt, ν) (with the same ν and θt large). The conclusions follow now from

Theorem 10.2. �

The second application pertains to being close to a traveling wave.

Traveling waves for the Stefan problem are of the form

u0(x, t) = (A + 1)(et−xn − 1)+ −A(et−xn − 1)− .

Lemma 10.19. Let u be a solution of the two-phase Stefan problem in R
N × (0,∞) with

initial values

u(x, 0) = (A + 1)(e−xn − 1 + ϕ(x))+ −A(e−xn − 1 + ϕ(x))−
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where A is a positive constant and ϕ a continuous function, compactly supported in R
n.

Then, as t→∞, uniformly in x,

u(x, t)− (A + 1)(et−xn − 1)+ −A(et−xn − 1)− → 0 .

Proof. If M > 0 is chosen large enough, we claim that the function

v(x, t) = (A + 1)
(

et−xn − 1 + Mf

(
xn√
t + 1

))+

−A

(
et−xn − 1 + Mf

(
xn√
t + 1

))−

where f(s) = π
2−arctan(s), is a supersolution to the two-phase Stefan problem. It is enough

to check that

v+
t ≥ (v+

xn
)2 − v+

xn
v−xn

(10.4)

along the free boundary of v, i.e., at the zero level set of v. Now

v+
t (x, t) = (A + 1)

(
et−xn + Mf ′

(
xn√
t + 1

)(
−1

2
xn

(t + 1)3/2

))

v+
xn

= (A + 1)
(
−et−xn + Mf ′

(
xn√
t + 1

)
1√

t + 1

)

v−xn
= A

(
−et−xn + Mf ′

(
xn√
t + 1

)
1√

t + 1

)
.

Substituting in (10.4) we have to check that

et−xn + Mf ′
(

xn√
t + 1

)(
−1

2
xn

(t + 1)3/2

)

≥
(
−et−xn + Mf ′

(
xn√
t + 1

)
1√

t + 1

)2

on v(x, t) = 0, or

(1−Mf(s)) + Mf ′(s)
(
−1

2
s

(t + 1)

)

≥ (1−Mf(s))2 − 2(1 −Mf(s))Mf ′(s)
1√

t + 1
+ M2(f ′(s))2

1
t + 1

where s = xn√
t+1

. Equivalently:

f(s)(1−Mf(s)) + f ′(s)
(
− s

2(t + 1)

)

≥ −2(1−Mf(s))f ′(s)
1√

t + 1
+ M(f ′(s))2

1
t + 1

.
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Now, since 1−Mf(s) > 0 on v = 0, we have s ≥M− c
M for some c. Since also f ′(s) = −1

1+s2 ,

the second term on the left is larger than the second on the right. Therefore the inequality

is true if

f(x) ≥ −2f ′(s)
1√

t + 1
or

arctan
1
s
≥ 2

1 + s2

1√
t + 1

.

Since s ≥M − c
M , the inequality is true if M is large enough.

In analogous way, the function

w(x, t) = (A + 1)
(

et−xn − 1−Mf

(
xn√
t + 1

))+

−A

(
et−xn − 1−Mf

(
xn√
t + 1

))−

is a subsolution to the two phase Stefan problem in R
n × (0,+∞), if M is large enough.

Now, given ϕ, we can always find M large such that v and w are super and subsolution,

respectively, and

w(x, 0) ≤ u(x, 0) ≤ v(x, 0) .

By maximum principle, this implies

w(x, t) ≤ u(x, t) ≤ v(x, t)

for every t ≥ 0. Since both v and w converge to the travelling wave u0 for t → +∞,

uniformly in x, the proof is complete. �

The above lemma shows that a compactly supported perturbation of an initial travelling

wave has a two plane asymptotic free boundary as t→ +∞, uniformly in x.

Therefore, with the same proof of Theorem 10.18, we have:

Theorem 10.20. Let u(x, 0) be a compactly supported perturbation of a travelling wave

initial data, i.e., let

u0(x, 0) = (A + 1)(e−xn − 1)+ −A(e−xn − 1)− (A > 0)

and let ϕ0 be a compactly supported continuous function in R
n such that

u0(x, 0) − ϕ0(x) ≤ u(x, 0) ≤ u0(x, 0) + ϕ0(x) .

Then, after a finite time T ∗ = T ∗(u0, ϕ0), the free boundary of the solution u(x, t) to the

Stefan problem with initial data u(x, 0), is a smooth graph

xn = g(x′, t) .
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CHAPTER 11

Boundary behavior of harmonic functions

11.1. Harmonic functions in Lipschitz domains

In this section we study the properties of harmonic functions in Lipschitz domains, since

it is a theory we encounter often in proving regularity results for both elliptic and parabolic

problems.

The importance of rescaling is by now very well recognized in a mathematical problem,

and Lipschitz domains are precisely a class of rescaling invariant domains.

A bounded domain Ω ∈ R
n is a Lipschitz domain if it is locally given by the domain

above the graph of a Lipschitz function. This means that for any x ∈ ∂Ω there is a ball B

centered at x such that, in a suitable coordinate system (x′, xn) = (x1, . . . , xn−1, xn) with

origin at x,

Ω ∩B = {(x′, xn) : xn > f(x′)} ∩B

where f is a Lipschitz function with Lipschitz constant less than equal L (independent of

x) and f(0) = 0.

Such domains satisfy both an interior and exterior cone condition and therefore they

are regular for the Dirichlet problem.

If x ∈ ∂Ω, a non-tangential region at x is a truncated cone of the type

Γ(x) = {y ∈ Ω; dist(y, ∂Ω) ≥ γ|x− y|} ∩Bρ(x)}

with some positive γ and ρ.

We say that a property holds non-tangentially near x ∈ ∂Ω if it holds in every non-

tangential region at x, with ρ ≤ ρ0, small.

The main points of the theory we are going to develop are the following. Suppose our

Lipschitz domain is

Ω = {|x′| < 1, f(x′) < xn < 4L} (L > 1) (11.1)

with f(0) = 0. Let u, v be two positive harmonic functions in Ω, continuously vanishing on

{xn = f(x′)}. We will prove:

193
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a) u(1
2en) controls u in B1/2 ∩ Ω, i.e.,

sup
B1/2∩Ω

u ≤ c(n,L)u
(

1
2
en

)

b) The ratio u(1
2en)/v(1

2en) controls u/v in B1/2 ∩ Ω, i.e.

sup
B1/2∩Ω

u

v
≤ c(n,L)

u(1
2en)

v(1
2en)

.

This implies that u/v is Hölder-continuous up to the boundary ∂Ω, in B1/2.

c) u and uxn are comparable in the natural way, i.e., there exists δ = δ(n,L) > 0

such that uxn > 0 in Bδ ∩Ω and

u(x) ∼ uxn(x) · dist(x, ∂Ω) .

The first two points a) and b) are true not just for harmonic functions in Lipschitz

domains but also for solutions of uniformly elliptic equations with bounded measurable

coefficients. Indeed, this class is invariant under dilations and bilipschitz transformations.

More precisely, let u be a solution of

Lu = div(A(x)∇u) = 0

with A bounded, measurable and uniformly elliptic:

λ−1I ≤ A(x) ≤ λI , (11.2)

in a Lipschitz domain D.

Let y = T (x) a bilipschitz transformation from Ω onto the Lipschitz domain Ω′. Then

v(y) = u(T−1(y)) is also a solution of an equation in the same class. In fact, for any test

function ϕ ∈ C∞
0 (Ω), one has ∫

Ω
(∇ϕ)T A∇u dx = 0

which, after the change of variables y = T (x), becomes∫
Ω′

(∇ψ)T (Dy)T A(Dy)∇v|det(Dy)|−1 dy

where ψ = ϕ(T−1(y)) and Dy is the Jacobian matrix of the transformation.

The new matrix

M = |detDy|−1(Dy)T A(Dy) (x = T−1(y))

is again uniformly elliptic.

Therefore, the study of solutions of uniformly elliptic equations with bounded measur-

able coefficients in our basic Lipschitz domain (11.1) can be reduced to the study in the



11.1. HARMONIC FUNCTIONS IN LIPSCHITZ DOMAINS 195

half ball

B+
1 = B1(0) ∩ {xn > 0}

by the local transformation

y′ = x′ yn = xn − f(x′)

and a dilation.

Remark 11.1. Let u be a solution of Lu = 0 in B+
1 , continuously vanishing on {xn = 0}.

If we extend u to {xn < 0} in an odd fashion, i.e.,

u(x1, . . . , xn) = −u(x1, . . . ,−xn)

when xn < 0, then the extended u is a solution in B1 (therefore across xn = 0) of the elliptic

equation

div(A(x)∇u) = 0

where the elements aij of A are defined for xn < 0 as follows:

ain(x1, . . . , xn) = −ain(x1, . . . ,−xn) i �= n

anj(x1, . . . , xn) = −anj(x1, . . . ,−xn) j �= n

and

aij(x1, . . . , xn) = aij(x1, . . . ,−xn)

in the other cases.

This remark is very useful since it allows one to use interior results, such as the following

classical ones.

Theorem 11.2 (DeGiorgi oscillation lemma). Let v be a subsolution of Lv = 0 in B1,

satisfying

a) v ≤ 1

b) |{v ≤ 0}| = a > 0

Then

sup
B1/2

v ≤ μ(a) < 1 .

Theorem 11.3 (DeGiorgi-Nash-Moser Interior Harnack inequality). Let v be a non-

negative solution in B1, then for r < 1

sup
Br

u ≤ c(1 − r)−p inf
Br

u

with c, p depending only on n and λ. (For r close to one, we may choose the constant c

equal to one by making p large.)
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Theorem 11.4 (Littman, Stampacchia, Weinberger—Behavior of the fundamental so-

lution). The fundamental solution of L behaves like that of the Laplacian, more precisely:

Let B1 ⊂ Ω, and G satisfy

a) L(G) = −δ0 (Dirac’s)

b) G|∂G = 0

Then on B1/2

C1

rn−2
≤ G ≤ C2

rn−2
(r = |x|)

with C1, C2 depending only on n and λ.

The function G in Theorem 11.4 is the L-Green function for Ω with pole at y = 0. We

will denote by GL(x, y) the L-Green function with pole y.

Notice that, with respect to the variable y, GL(x, ·) satisfies the adjoint equation

L∗GL(x, ·) = div(AT (y)∇yGL(x, ·)) = −δx .

Clearly, if A = AT , then GL(x, y) = GL(y, x) = GL∗(x, y). Here is a proof of Theorem 11.4

in this case. Notice that we can assume A ∈ C∞, so that GL ∈ C∞ off the diagonal x = y.

On any sphere |x| = h, h < 1
2 , all values of GL are comparable from Harnack inequality,

since in the ring

Rh =
{

1
2
h < |x| < 2h

}
GL is a non-negative solution of Lv = 0.

We note that:

a) The theorem is true for L = Δ.

b) L-capacity and Δ capacity are comparable. Precisely, take a closed set E ⊂ B1

and minimize the Dirichlet integral
∫
B1
|Dv|2 among all functions in H1

0 (B1), such

that u ≡ 1 on E (in the H1 sense). The minimizer u0 is harmonic in B1 \ E and

equal to 1 on E. Moreover∫
B1

|Du0|2 = capΔ(E) .

On the other hand, if we minimize∫
B1

(∇v)T A(∇v)

the minimizer u1 is a solution of Lv = 0 in B1 \ E, is equal to 1 on E and∫
B1

(∇u1)T A∇u1 = capL(E) .
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Clearly

λ−2 capΔ(E) ≤ capL(E) ≤ λ2 capΔ(E) . (11.3)

If Eh = {GL(x, 0) > h}, then

capL(Eh) =
1
h

independently of the elliptic operator L. In fact, the minimizer is gh = 1
h min(GL, h)

so that (GL = GL(·, 0))

1 = −
∫

B1

LGL · gh =
∫

B1

(∇gh)T A∇GL = h capL(Eλ) .

c) Let Σh = {|x| < h}, h ≤ 1
2 . Set

a = max
|x|=h

GL(x, 0) , b = min
|x|=h

GL(x, 0) .

Then, from b),
1
a

= capL(Ea) ≤ capL(Σh) ≤ capL(Eb) =
1
b

.

From Harnack inequality a ∼ b, and therefore

capL(Σh) ∼ GL(x, 0)−1 . (11.4)

From (11.4) and (11.3) we easily conclude the proof. �

11.2. Boundary Harnack principles

The first two main results we are going to prove are expressed in normalized form in

the following two theorems ([AthC], [CFMS], [JK]).

Theorem 11.5 (Boundary Harnack inequality or Carleson estimate). Let u be a positive

solution to Lu = 0 in B+
1 , continuously vanishing on {xn = 0}.

Normalize u so that

u

(
1
2
en

)
= 1 .

Then, in B+
1/2,

u ≤M

with M = M(n, λ).

Theorem 11.6 (Comparison principle). Let u, v be positive solution to Lw = 0 in B+
1 ,

continuously vanishing on {xn = 0}, with

u

(
1
2
en

)
= v

(
1
2
en

)
= 1 .
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Then, in B̄+
1/2,

v

u
is of class Cα

and ∥∥∥v

u

∥∥∥
L∞(B+

1/2
)

,
∥∥∥v

u

∥∥∥
Cα(B̄+

1/2
)
≤ C(n, λ) .

With the results of the previous section we are ready for the proof of Theorem 11.5.

Proof of Theorem 11.5. We start with three remarks

a) If Y0 ∈ {xn = 0}, then supBr(Y0) u decreases polynomially, i.e., for r < R

sup
Br(Y0)

u ≤
( r

R

)α
sup

BR(Y0)
u .

Indeed, when extended by u ≡ 0 for xn < 0, u is a subsolution of Lu = 0 and

|{u = 0} ∩Br(Y0)| = 1
2
|Br(Y0)|.

From DeGiorgi oscillation Lemma, with μ = μ(1/2), we get:

sup
Br/2(Y0)

u ≤ μ sup
Br(Y0)

u .

b) From the interior Harnack inequality

sup
B3/4∩{xn≥s}

u ≤ s−pu

(
1
2
en

)
= s−p .

c) Since u takes continuously the value zero at {xn = 0}, the sup of u in B+
1/2 is attained,

i.e.,

sup
B+

1/2

u = u(X0) = M .

We will now show that if M ≥M0 large, we can construct a sequence of points Xk, all

contained in B+
3/4, Xk → {xn = 0}, and such that u(Xk) goes to +∞.

Construction. We will denote by Yk the projection of Xk onto the {xn = 0} axis.

From interior Harnack inequality,

M = u(X0) ≤ |X0 − Y0|−p .

Thus, with ε = 1/p

d0 = |X0 − Y0| ≤M−ε

that is, X0 is very close to the {xn = 0} plane.

Now we use the oscillation lemma backwards: since,

sup
Bd0

(Y0)
u ≥ u(X0) ≥M ,
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this implies that

sup
B2d0

(Y0)
u = u(X1) ≥ TM

(for T = 1
λ(1/2) , a universal constant bigger than one).

Again, by Harnack inequality, as with d0, we obtain that

d1 = |X1 − Y1| ≤ (TM)−ε

and, by using again the oscillation lemma backwards, as with u(x1), we obtain that

u(X2) = sup
B2d1

u ≥ Tu(X1) ≥ T 2M.

Once more, by Harnack inequality,

d2 = |X2 − Y2| ≤ (T 2M)−ε .

We repeat inductively the process, and we get a sequence of points Xk, satisfying

a) u(Xk) ≥ T kM

b) |Xk − Yk| ≤ (T kM)−ε

c) |Xk −Xk−1| ≤ 4(T k−1M)−ε

All we have to make sure is that in this construction we always stayed inside, say B9/16.

But T is universal, ε is universal and we can choose M as large as we please, so we can

make
∑ |Xk −Xk−1| ≤ 1/16, and get, for M ≥M0, a contradiction. �

The proof of Theorem 11.6 is divided into two main steps.

Step 1. Show that v
u remains bounded in B+

1/2 up to {xn = 0}.
Step 2. Rescaling and iteration of step 1.

Proof of Step 1. We want to show that v
u remains bounded in B+

1/2.

Since u(1
2en) = v(1

2en) = 1, we have, from Theorem 11.5, that

v ≤M in B+
2/3

and from interior Harnack inequality, that (M large)

u ≥ 1
M

> 0 in B+
2/3 ∩

{
xn ≥ 1

8

}
.

Let v1 and v2 such that Lv1 = Lv2 = 0 in B+
2/3 with:

v1 = 1 on ∂B+
2/3 ∩ {xn > 0} , v1 = 0 on {xn = 0}

v2 = 1 on ∂B+
2/3 ∩

{
xn >

1
8

}
, v2 = 0 on the rest of ∂B+

2/3 .
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en

xn = 0

Fj QFj

Q1/2( en)1 
4

Figure 11.1

Then, by maximum principle, in B+
2/3 we have

v ≤Mv1 and u ≥ 1
M

v2 .

Step 1 follows if we can prove that v1 ≤ Cv2 in B+
1/2.

This is a consequence of the following lemma, where we set

Q2r = Q2r(ren) = {0 < xn < 2r, |xj| < r, j = 1, . . . , n− 1} .

Lemma 11.7. Let F1, F2 be two faces of Q2, different from {xn = 0}. Let vi (i = 1, 2)

be the function satisfying

a) Lvi = 0 in Q2

b) vi|∂Q2 = χFi

Then in Q1/2,

v1 ≤ Cv2 .

The function vi is called the L-harmonic measure of Fi in Q2 = Q2(en) and the lemma

expresses a doubling property of L-harmonic measure. It states that two adjacent “balls”

along the boundary of a Lipschitz domain have comparable L-harmonic measure. L-

harmonic measure may be absolutely singular with respect to Lebesgue measure so this

is a nontrivial result. When L = Δ though, harmonic and surface measures are mutually

absolutely continuous. We will come back to these questions in the next section.

Proof. From the oscillation lemma, by extending (1− vi) identically zero across Fi we

get that (1− vi) ≤ μ < 1, near Fi, say on the cube QFi of sides one with one face lying on

Fi (see figure 11.1). Thus vi(en) ≥ (1 − μ) > 0 and vi is strictly positive inside Q2, say in

Q̃1(en), the cube of sides one centered at en.
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Let G(X,Y ) denote the (L) Green function in the cube Q2. From Theorem 11.4,

G(X, en) is bounded for X on the boundary of Q̃1(en), vanishes on ∂Q2 and hence

G(X, en) ≤ c(μ)v2(X) (11.5)

in Q2(en) \ Q̃1(en).

We now show that for X in Q1/2 = Q1/2(1
4en), also v1(X) ≤ CG(X, en). For that, we

“freeze” X in Q1/2 and recall that LY G(X,Y ) = 0, i.e., G is a solution in Y for X fixed,

as long as X �= Y , in particular for Y /∈ Q3/4(3
8en).

Therefore, Theorem 11.5 applies and with X always frozen in Q1/2,

G(X,Y ) ≤ CG(X, en)

for say, Y /∈ Q3/4(3
8en).

Since G vanishes in ∂Q2, the standard energy estimate says that∫
Q2(en)\Q1(

1
2
en)
|∇Y G(X,Y )|2 dy ≤ C

∫
Q2(en)\Q3/4( 3

8
en)

G2(x, y) dy ≤ CG2(X, en) .

We now take a C∞ function η, vanishing in a 1
4 neighborhood of F1, and η ≡ 1 on Q1(1

2en)

and represent v1(X) for X in Q1/4(1
8en), by the formulas (no boundary terms left)∫

Q2

(ηv1)(Y )LY G(X,Y ) dy +
∫

Q2

∇T (ηv1)A∇Y G(X,Y ) dy = 0

and ∫
Q2

η(Y )G(X,Y )Lv1(Y ) dy +
∫

Q2

∇T
Y (η(G)A∇v1 dy = 0 .

This gives us, after subtracting

v1(X) =
∫

Q2

∇T ηA[v1∇Y G−G∇v1] dy .

But on the support of ∇η,

‖v1‖H1 ≤ C and ‖G‖H1 ≤ CG(X, en) . (11.6)

So v1(X) ≤ CG(X, en).

(Note that
∫

(∇ηv1)2 is bounded from the standard energy inequality since η vanishes

near F1.)

This completes the proof of Lemma 11.7 and therefore of step 1 in the proof of Theo-

rem 11.6. �
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Proof of Step 2. It consists in showing a Cα estimate by iteration, in the following

way.

Lemma 11.8. There are constants ak, bk, 1
M ≤ ak ≤ bk ≤ M , and a constant Λ < 1,

such that: On B+
2−k ,

aku ≤ v ≤ bku and (bk − ak) ≤ Λ(bk−1 − ak−1) .

Proof. By induction: renormalize B+
2−k to B+

1 by the transformation ū(X) = u(2−kX),

define the positive functions

w1(X) =
(v̄ − akū)(X)

bk − ak

w2(X) =
(bkū− v̄)(X)

bk − ak

and look at the positive numbers w1(1
2en), w2(1

2en). One of them is bigger than 1
2 ū(1

2en)

since w1(1
2en) + w2(1

2en) = ū(1
2en).

Say w1(1
2en). Then, by the inductive hypothesis, 2w1(X) is a non-negative solution of

L = 0, vanishes on {xn = 0} and 2w1(1
2en) ≥ ū(1

2en). Hence

2w1

ū

∣∣∣
B+

1/2

≥ 1
M

or, renormalizing back, in B+
2−(k+1) ,

v − aku

(bk − ak)u
≥ 1

2M

that is, in B2−(k+1) [
ak +

1
2M

(bk − ak)
]

u ≤ v ≤ bku .

So bk+1 = bk and ak+1 = ak + 1
2M (bk − ak). �

11.3. An excursion on harmonic measure

Let L = div(A(x)∇) be a uniformly elliptic operator. Given a smooth function g on

∂B1, we can solve the Dirichlet problem{
Lu = 0 in B1

u = g on ∂B1 .

For x fixed in B1, the map

g �→ u(x)

is continuous from C(∂B1) to R and it is monotone, i.e., by maximum principle

g1 ≤ g2 =⇒ u1(x) ≤ u2(x) .
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Thus there exists a non-negative Borel measure ωx on ∂B1 such that

u(x) =
∫

∂B1

g(σ) dωx(σ) .

The measure ωx is called L-harmonic measure (harmonic measure if L = Δ) in B1, evaluated

at x. If A is smooth and G(x, y) is the L-Green function in B1, then, from the divergence

theorem,

u(x) =
∫

∂B1

g(σ)∂νLG(x, σ) dσ

where ∂νLG(x, ·) is the conormal derivative of G with respect to L, that is

∂νLG(x, σ) = A(σ)∇yG(x, σ)ν(σ)

with ν the interior unit normal to ∂B1 at σ.

Therefore, in this case

dωx(σ) = ∂νLG(x, σ) dσ = K(x, σ) dσ (11.7)

(K is the Poisson kernel).

For general uniformly elliptic A, the L-harmonic measure could be completely singular

with respect to surface measure (see [MM], [CFK]).

Nevertheless, Lemma 11.7 shows that ωx is a doubling measure, a property that we can

express in non-rescaled version as follows: for P ∈ ∂B1, let Δr(P ) = Br(P ) ∩ ∂B1 be a

surface disc of radius r and x ∈ B1/2. Then

ωx(Δ2r(P )) ≤ c(n, λ)ωx(Δr(P )) .

Moreover, (11.5) and (11.6) (in non-rescaled form) can be written as

ωx(Δr(P )) ∼ rn−2G(x, (1 − r)P ) (11.8)

which may be considered a weak form of (11.7).

In the case of the Laplacian in Lipschitz domains, harmonic measure enjoys many more

properties, as the next lemma says (see [D]).

Lemma 11.9. Let Ω be a bounded Lipschitz domain in R
n. Then, if x ∈ Ω is fixed and

σ denotes surface measure on ∂Ω,

a) ωx � σ and σ � ωx

b) if K = dωx

dσ , then K(x, ·) ∈ L2(∂Ω) and(
1
|Δ|

∫
Δ

K2 dσ

)
≤ c

(
1
|Δ|

∫
Δ

K dσ

)
(11.9)

for every surface disc Δ ⊂ ∂Ω, where the constant c depends only on n, the Lips-

chitz character of Ω and dist(x, ∂Ω).
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c) there exist positive constants c and δ, depending only on n, the Lipschitz character

of Ω and dist(x, ∂Ω) such that, for every surface disc Δ and every Borel set E ⊆ Δ,

ωx(E)
ωx(Δ)

≤ c

( |E|
|Δ|

)δ

. (11.10)

Inequality (11.9) is a reverse Schwarz inequality for K while (11.10), in the theory of

weights (see [CF]), says that ωx is an A∞ weight with respect to surface measure.

A quick proof of a) and b) can be obtained as follows. Note first that, by approximation,

it is enough to prove a) and b) assuming Ω is smooth, as long as the estimates under

consideration depend only on n, dist(x, ∂Ω) and the Lipschitz character of Ω. Let g(·) =

G(x, ·) be the Green function in Ω, Δr = Δr(P ) a surface disc centered at P ∈ ∂Ω, and ϕ

a smooth function vanishing outside B2r(P ), such that 0 ≤ ϕ ≤ 1 and ϕ = 1 in Br(P ).

We can assume r ≤ r0 small so that, in B4r(P ), ∂Ω is described by the graph yn = f(y′),

and dist(x, ∂Ω) ≥ 10r0.

Observe that, from (11.8), since ∂Ω is smooth,

gν(P ) ∼ K(x, P ) ∼ gyn(P ) . (11.11)

We have: ∫
B2r(P )∩Ω

{−Δ(ϕ2g)gyn + ϕ2gΔgyn

}
dy =

∫
Δ2r

ϕ2gνgxn dσ . (11.12)

From (11.11): ∫
Δ2r

ϕ2gνgxn dσ ≥ c

∫
Δr

K2 dσ . (11.13)

On the other hand Δgyn = 0 in B2r(P ) ∩ Ω and∫
B2r(P )∩Ω

Δ(ϕ2g)gyn dy =
∫

B2r(P )∩Ω

{
gΔϕ2 + 2∇ϕ2∇g

}
gyn dy .

Using standard energy estimates and |∇ϕ| ≤ c
r , |Δϕ| ≤ c

r2 we get

∣∣∣ ∫
B2r(P )∩Ω

Δ(ϕ2g)gyn dy
∣∣∣ ≤ c

r3

∫
B2r(P )∩Ω

g2 dy

≤ c rn−3g2((1− r)P ) (from Theorem 11.5)

≤ c r1−n[ωx(Δ2r)]2 from (11.8)

≤ c r1−n[ωx(Δr)]2 = c rn−1

(
1
|Δr|

∫
Δr

K dσ

)2

(doubling) .

This inequality and (11.12), (11.13) give (11.9). �
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11.4. Monotonicity properties

We are now ready to prove the third of our main results:

Theorem 11.10. Let u be a non negative harmonic function in the domain

Ω = {|x′| < 1, f(x′) < xn < 4L}
where f is Lipschitz with constant L, f(0) = 0.

Assume u vanishes continuously on {xn = f(x′)}. Then, there exists δ > 0, δ = δ(n,L),

such that,

uxn(x) ∼ dist(x, ∂Ω)u(x) (11.14)

in

Ωδ =
{
|x′| < 1

2
, f(x′) < xn < 4δL

}
.

Theorem 11.10 is a consequence of the following two lemmas.

Lemma 11.11. Let u as in Theorem 11.5. Assume uxn ≥ 0 in Ω. Then (11.14) holds

in Ω1/2.

Proof. Let x = δen ∈ Ω1/2. From Theorem 11.5, we have

u(ηδen) ≤ cηαu(δen)

so that if η = η(n,L) is small enough, we have u(ηδen) ≤ 1
2u(δen). Therefore

1
2
u(δen) ≤

∫ δ

ηδ
uxn(sen) ds ≤ u(δen) . (11.15)

Since uxn is positive, along the segment ηδen, δen all the values of uxn are comparable, by

Harnack inequality, and (11.14) follows from (11.15).

Lemma 11.12. Let u as in Theorem 11.5. Then, for some δ = δ(n,L) > 0, uxn ≥ 0 in

Ωδ.

Proof. Let h be the harmonic measure in Ω of the set ∂Ω \graph(f). By comparing h

with its translations along the direction en in their common domain of definition, we obtain

hxn ≥ 0 in Ω .

Set v = γh and adjust γ so that

u(Len) = v(Len) .

Then, from Theorem 11.6

u ∼ v (11.16)
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in Ω1/2 and ∣∣∣∣u(x)
v(x)

− u(y)
v(y)

∣∣∣∣ ≤ c|x− y|α .

Let us freeze y at distance d from the graph of f . Then, u(y)
v(y) ≈ cu(Le1)

v(Le1) = c.

In Bd/2(y) we get∣∣∣∣u(x)− u(y)
v(y)

v(x)
∣∣∣∣ ≤ c|x− y|αv(x) ≤ cdαv(x)

≤ cdα+1vxn(x) (from Lemma 11.11) .

We now take the xn derivative on the unfrozen variable and evaluate at y. From standard

interior estimates for w = u− κv, κ = u(y)/v(y), we get

|uxn(y)− κvxn(y)| ≤ cdαvxn(y)

that is,

uxn(y) ≥ (κ− cdα)vxn(y) .

The last term is positive if d ≤ δ(n,L) is small enough. �

Lemma 11.12 holds if instead of uxn we consider the derivative of u along a direction τ

entering the domain Ω. As a consequence, in a neighborhood of the graph of f , there exists

an entire cone of directions along which u is nondecreasing. Precisely we have

Corollary 11.13. Let u as in Theorem 11.5. There exists δ = δ(n,L) and θ = θ(n,L)

such that, for every τ ∈ Γ(en, θ)

Dτu ≥ 0 in Ωδ .

We will call Γ(en, θ), cone of monotonicity . Observe that the existence of a monotonicity

cone in Ωδ, implies that the level surfaces of u are all Lipschitz surfaces, with a common

Lipschitz constant, with respect to a common direction.

11.5. ε-monotonicity and full monotonicity

In the regularization of “flat” free boundaries, the key notion is “ε-monotonicity.”

Definition 11.1. We say that a function u is ε-monotone in the direction τ if

u(x + λτ) ≥ u(x)

for every λ ≥ ε.

The following proposition establishes the connection between ε-monotonicity and flat-

ness of level surfaces.
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Proposition 11.14. Let u be ε-monotone in every direction τ ∈ Γ(θ, e). Then, the level

surfaces of u, that is the sets ∂{u > t}, are contained in a (1− sin θ)ε-neighborhood of the

graph of a Lipschitz function, with Lipschitz constant cotg θ.

Proof. Let V be the union of the cones x + εe + Γ(θ, e), for x ∈ ∂{u > t}. then

V ⊂ {u > t} and A = ∂V is the graph of a Lipschitz function with Lipschitz constant

cotg θ. Moreover, if y ∈ A, then dist(y, ∂{u > t}) ≤ (1− sin θ)ε. �

When we particularize to harmonic functions, ε-monotonicity in a ball of radius Mε,

M large, implies full monotonicity in a smaller ball. This is a consequence of the following

lemma (note that u(x + e1) ≥ u(x) is satisfied by the harmonic function eπy cos πx).

Lemma 11.15. Let δ > 0, u be harmonic in BM/δ = BM/δ(0) (M � δ) and in BM/2δ

u(x + λτ) ≥ u(x) (11.17)

for every λ with 1 ≤ λ ≤ 1 + δ. Then, if M = M(n) is large enough,

Dτu(0) ≥ c(n, δ)[u(τ) − u(0)] . (11.18)

Proof. Iterating (11.17) 1
δ times we deduce that

u(x + λτ) ≥ u(x)

for every λ ≥ 1
δ .

Rescaling (u(x) �→ δu(x/δ)) we may assume

u(x + λτ) ≥ u(x)

for every λ ≥ 1; that is, u is 1-monotone along τ . Thus, for 1 < λ < M/2,

hλ(x) = u(x + λτ)− u(x)

is harmonic, non negative in BM/2. Harnack inequality gives

0 ≤ c1 ≤ hλ(x)
hλ(y)

≤ c2

for every x, y ∈ BM/4.

If, in particular, λ is an integer, λ < 1
8M and y ∈ BM/8, we have

hλ(y) =
λ∑

j=1

h1(y + (j − 1)τ) ∼ λh1(y) .

Therefore, if x, y ∈ BM/8

0 ≤ c1 ≤ hλ(x)
λh1(y)

≤ c2 . (11.19)
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Since for λ real, λ ≥ 2

h[λ]−1 ≤ hλ ≤ h[λ]+2

the inequality (11.19) holds for any λ, 2 ≤ λ ≤ M
8 in BM/8. Moreover, in BM/8 we also

have

|Dτhλ| ≤ c(n)
M

hλ(0) .

Now,

Dτhλ(0) = Dτu(λτ)−Dτu(0)

and therefore we can write
c1h1(0) ≤ h1(2τ) = u(3τ) − u(2τ) =

=
∫ 3

2
Dτu(λτ) dλ =

∫ 3

2
Dτhλ(0) dλ + Dτu(0)

≤ c

M

∫ 3

2
hλ(0) dλ + Dτu(0)

≤ c

M
h1(0) + Dτu(0)

and if M = M(n) is large enough, the lemma follows. �

Here is a rescaled corollary.

Corollary 11.16. Let u be harmonic in B1. Then, there is a critical value ε0 =

ε0(n) > 0 such that, if

u(x + λτ) ≥ u(x)

for every λ > ε0, then

Dτu(0) ≥ c(n)
ε0

[u(ε0τ)− u(0)] .

We call the statements in Lemma 11.15 and Corollary 11.16, ε0-monotonicity implies

full monotonicity.

We conclude this section with an equivalent definition of ε-monotonicity, which turns

out to be more flexible when applied to free boundary problems:

Definition 11.2. We say that u is ε0-monotone in the cone Γ(θ, e) if, for any ε > ε0

sup
Bε sin θ(x)

u(y − εe) ≤ u(x)

Clearly Definition 11.2 implies Definition 11.1. On the other hand Definition 11.1 implies

Definition 11.2 with ε0 = ε(1 + sin θ).
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( ,e)

xe - 0ex - e

sin
y

Figure 11.2. For an ε0-monotone function in Γ(θ, e), u(y) ≤ u(x) when y
is not in the shaded region.

11.6. Linear behavior at regular boundary points

In this section we examine the behavior of a positive harmonic function in a domain Ω

near a regular point of a part of ∂Ω, where it vanishes.

If x0 ∈ ∂Ω, we say that x0 is a regular point from the right (left) if there exists a ball

B such that B ⊂ Ω (B ⊂ CΩ) and B ∩ ∂Ω = {x0}, that is, if ∂Ω at x0 satisfies an interior

(exterior) ball condition. In this case we say that the ball B touches ∂Ω at x0 from the

right or from the left, respectively. The first result is the following.

Lemma 11.17. Let u be a positive harmonic function in a domain Ω. Assume that

x0 ∈ ∂Ω and that u vanishes in B1(x0) ∩ ∂Ω. Then

a) If x0 is regular from the right, with touching ball B, either near x0, in B, u grows

more than any linear function or it has the asymptotic development

u(x) ≥ α〈x− x0, ν〉+ o(|x− x0|) (11.20)

with α > 0, where ν is the unit normal to ∂B at x0, inward to Ω.

Moreover, equality holds in (11.20) in every non-tangential region.

b) If x0 is regular from the left, near x0,

u(x) ≤ β〈x− x0, ν〉+ + o(|x− x0|) (11.21)

with β ≥ 0 and equality in every non tangential region.

Moreover, if β > 0, then B is tangent to ∂Ω at x0.

Proof. a) Suppose the ball B has radius R and center y0 : B = BR(y0). Without loss

of generality we may assume that x0 = 0 and ν = en. Let h be the harmonic function in

the ring BR(y0) \ B̄R/2(y0), vanishing on ∂BR(y0) and equal to 1 on ∂BR/2(y0). Then, near

0,

h(x) =
c(n)
R

xn + o(|x|) . (11.22)



210 11. BOUNDARY BEHAVIOR OF HARMONIC FUNCTIONS

Let

α0 = sup{m : u(x) ≥ mh(x) in B1 ∩BR(y0)}
and (k ≥ 1)

αk = sup{m : u(x) ≥ mh(x) in B2−k ∩BR(y0)} .

The sequence αk is increasing. Let α̃ = supαk. If α̃ = ∞, u grows more than any linear

function near x0. If α̃ <∞, set α = c(n)
R α̃. Then, from the definition of α̃,

u(x) ≥ α̃h(x) + o(|x|) = αxn + o(|x|) . (11.23)

Assume now there is a sequence of points xk, with |xk| = rk ∼ d(xk, ∂BR(y0)) such that,

for some δ0 > 0,

u(xk)− αh(xk) > δ0|xk| .
Then, also

u(xk)− αkj
h(xk) > δ0|xk| (11.24)

where kj is such that 2−6kj < rk ≤ 2−4kj .

Now, the function

w(x) = u(x)− αkj
h(x)

is harmonic and positive in B
2−kj ∩BR(y0). From (11.24) and Harnack inequality, we have

u(x)− αkj
h(x) ≥ cδ0|xk|

in a fixed portion of ∂Brk
. From the Poisson representation formula, we have, in Brk/2

∩
BR(y0)

u(x)− αkj
h(x) ≥ c0δ0|xk| . (11.25)

For k large and x near zero (11.25) implies

u(x)− αxn ≥ c0δ0xn + o(|x|)

which contradicts the definition of α.

To prove b), extend u to zero outside Ω. Now u is subharmonic and let h̃ be the Kelvin

transform of h with respect to ∂B. Let

β0 = inf{m : mh̃(x) ≥ u(x) in CBR ∩B1}
βk = inf{m : mh̃(x) ≥ u(x) in CBR ∩B2−k} .

The sequence βk is decreasing. Let β̃ = inf βk. Then β̃ ≥ 0 and if β = c(n)
R β̃ we have, near

0,

u(x) ≤ βh̃(x) + o(|x|) = βx+
n + o(|x|) . (11.26)
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For the proof that equality holds in (11.26) inside every non-tangential region one can

proceed as for the equality in (11.20).

Finally, if β > 0 and BR is not tangent to ∂Ω at 0, there exists a sequence of points xk ∈
CΩ approaching the origin with |xk| ∼ d(xk, ∂Ω) and u(xk) = 0. Since u is subharmonic,

this is incompatible with a non trivial linear behavior of u at 0, along any non-tangential

direction. �

Remark 11.18. If in Lemma 11.17 we know that u is Lipschitz up to the boundary

then, clearly α and β in (11.20) and (11.21) are bounded by the Lipschitz constant of u.

Moreover, equality in (11.20) holds in B near x0, not only along non-tangential domains.

The same conclusion holds if we knew that u is monotonically increasing along any

direction of a cone Γ(θ, ν̄), with axis ν̄ such that 〈ν̄, ν〉 ≥ η0 > 0.

In the asymptotic developments (11.20) and (11.21), α and β represent natural sub-

stitutes for normal derivatives at points x0 where u is not smooth. In Remark 11.18 we

have seen that if u is Lipschitz, then α and β are uniformly bounded. We conclude this

chapter with a lemma that somehow reverses the situation: boundedness of α and β implies

Lipschitz continuity.

Lemma 11.19 (Lipschitz regularity of harmonic functions with control on uν). Let u

be a non-negative harmonic function in Ω ∩ B1. Assume that 0 ∈ ∂Ω, that u vanishes on

∂Ω1 ∩B1 and that whenever x0 ∈ ∂Ω ∩B1 is a regular point from the right,

lim inf
ε→0+

u(x0 + εν)
ε

≤ α0

where ν is the inner unit normal to the touching ball at x0. Then u is Lipschitz in Ω∩B1/2

and

‖u‖Lip(B1/2) ≤ cα0 .

Proof. It is enough to show that u(x) ≤ cd(x, ∂Ω). Let d(x, ∂Ω) = h (< 1
2). Then

Bh(x) touches ∂Ω at some point x0. By Harnack inequality,

inf
Bh/2(x)

u ≥ c0u(x) .

If v is the harmonic function in the ring Bh(x) \ B̄h/2(x) vanishing on ∂Bh(x), equal to

c0u(x) on Bh/2(x), then, in the ring v ≤ u. Since

lim
ε→0+

v(x0 + εν)
ε

= c1
u(x)

h
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we get

c1
u(x)

h
≤ α0

and the proof is complete. �



CHAPTER 12

Monotonicity formulas and applications

12.1. A 2-dimensional formula

In one phase problems, the Lipschitz continuity of the solution u in, say, B1/2 = B1/2(0)

comes simply from the fact that 0 belongs to the free boundary and that u is defined in B1.

For instance, let u be the viscosity solution of the free boundary problem in section 6.1

and ū ≡ 0. If x ∈ B1/2 and u(x) = λ > 0, let h = dist(x, F (u)) and x0 ∈ ∂Bh(x) ∩ F (u).

Let us show that λ ≤ ch.

By Harnack’s inequality, u ≥ c̄λ in Bh/2(x) and hence, if w is the radially symmetric

harmonic function in the ring Bh(x) � B̄h/2(x) with w|∂Bh/2(x) = c̄λ and w|∂Bh(x) = 0, then

u ≥ w

in the ring.

If ν is the unit inner normal to ∂Bh(x) at x0, we have

wν = c
λ

h

while, near x0, non tangentially

u(x) = α〈x− x0, ν〉+ + o(|x− x0|)
= G(0)〈x − x0, ν〉+ + o(|x− x0|) .

Therefore we get

c
λ

h
≤ G(0)

or

λ ≤ Ch .

Clearly the above calculation is not enough for two phase problems, where the solution may

have both positive and negative part with large slope.

One way to solve this problem is through some monotonicity formulas. The simplest

one is the following.

213



214 12. MONOTONICITY FORMULAS AND APPLICATIONS

Theorem 12.1. Let B1 ⊂ R
2 and u1, u2 ∈ H1(B2), continuous and nonnegative in B2,

supported and harmonic in disjoint domains Ω1,Ω2, respectively, with 0 ∈ ∂Ωi and

ui = 0 along ∂Ωi ∩B1 = Γi (i = 1, 2)

Then, the quantity

J(R) =
1

R4

∫
BR

|∇u1|2 dx ·
∫

BR

|∇u2|2 dx

is monotone increasing in R, R ≤ 3/2.

Proof. We want to prove that J ′(R) ≥ 0 a.e. in 0 < R < 3
2 . Observe that ϕi(r) =

d
dr

∫
Br
|∇ui|2 dx =

∫
∂Br
|∇ui|2 dσ is in L1(0, 2). By rescaling, it is enough to prove that

J ′(1) ≥ 0. We have:

J ′(1) =
∫

∂B1

|∇u1|2 dx ·
∫

B1

|∇u2|2 dx +
∫

B1

|∇u1|2 dx ·
∫

∂B1

|∇u2|2 dx

− 4
∫

B1

|∇u1|2 dx ·
∫

B1

|∇u2|2 dx .

Dividing by J(1) we get

J ′(1)
J(1)

=

∫
∂B1

|∇u1|2 dx∫
B1

|∇u1|2 dx

+

∫
∂B1

|∇u2|2 dx∫
B1

|∇u2|2 dx

− 4 .

Now, 2|∇ui|2 ≤ Δu2
i so that∫

B1

|∇ui|2 dx ≤
∫

∂B1

ui(ui)r dσ ≤
(∫

∂B1

u2
i dσ

)1/2(∫
∂B1

(ui)2r dσ

)1/2

where ur denotes the exterior radial derivative of u along ∂B1.

Moreover, if uθ denotes the tangential derivative of u along ∂B1,∫
∂B1

|∇ui|2 dx ≥ 2
(∫

∂B1

(ui)2r dσ

)1/2

·
(∫

∂B1

(ui)2θ dσ

)1/2

. (12.1)

Hence, it is enough to show that(∫
∂B1

(u1)2θ dσ

)1/2

(∫
∂B1

u2
1 dσ

)1/2
+

(∫
∂B1

(u2)2θ dσ

)1/2

(∫
∂B1

u2
2 dσ

)1/2
− 2 ≥ 0 .

Now, the quotients ∫
Γi

v2
θ dσ

/∫
Γi

v2 dσ
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are minimized by the first eigenfunction of the domains ∂B1 ∩ Ω̄i, respectively. Since

Ω1 ∩ Ω2 = ∅, we can optimize further and ask: given any domain Γ in the unit circle of

prescribed measure μ, which is the one with the smallest eigenvalue, i.e.,

inf
v∈H1

0 (Γ1)

∫
Γ

v2
θ dσ∫

Γ
v2 dσ

.

A symmetrization argument gives that the optimal domain is a connected arc. Moreover,

the larger the arc, the smaller the quotient, thus the sum(∫
Γ1

(u1)2θ dσ

)1/2

(∫
Γ1

(u1)2 dσ

)1/2
+

(∫
Γ2

(u2)2θ dσ

)1/2

(∫
Γ2

(u2)2 dσ

)2 = I1 + I2

takes its minimum for two adjacent, complementary arcs with u1 and u2 the corresponding

eigenfunctions.

If the arcs have length α2π and (1− α)2π, the corresponding eigenfunctions are

sin
θ

2α
and sin

θ

2(1− α)

and thus

I1 + I2 ≥ 1
2α

+
1

2(1 − α)
=

1
2α(1 − α)

≥ 2 (0 ≤ α ≤ 1)

which completes the proof. �

Remark 12.2. The above computations become exact for linear functions. More pre-

cisely, if v(x) = λx+ (λ > 0), equality holds in (12.1) since both the normal and the

tangential gradient have the same L2-norm on ∂B1.

12.2. The n-dimensional formula

In dimension n > 2 it seems to be natural to consider the quantity

1
R2n

∫
BR

|∇u1|2 dx

∫
BR

|∇u2|2 dx (12.2)

However, this time, the above computation fails because the estimate∫
∂B1

|∇u|2 dσ =
∫

∂B1

[(ur)2 + |∇θu|2] dσ ≥ 2
(∫

∂B1

(ur)2
)1/2(∫

∂B1

|∇θu|2 dσ

)1/2

is not exact, the L2-norms of the normal and tangential gradient being different, even for

linear functions.
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To understand the higher dimensional situation, we first relate the eigenfunctions of the

Laplace-Beltrami operator on the sphere to the homogeneity of harmonic functions. In R
n,

the Laplacian in polar coordinates reads

urr +
n− 1

r
ur +

1
r2

Δθu

where Δθ is the Laplace-Beltrami operator, that one obtains by minimizing the Dirichlet

integral
∫
∂B1
|∇θu|2 dσ.

Given a domain Γ ⊂ ∂B1, an eigenfunction g ∈ H1
0 (Γ) of −Δθ can be extended to a

homogeneous harmonic function u = u(x) in the cone generated by Γ, by writing

u(x) = rαg(θ)

and choosing α = α(Γ) according to

Δθg + λg = 0 in Γ

or ∫
Γ
|∇θg|2 dσ = λ

∫
Ω

g2 dσ

and

λ = inf
v∈H1

0 (Γ)

∫
Γ
|∇θv|2∫
Γ

v2

Since

Δu = rα−2
[
α(α − 1) + α(n− 1)

]
g(θ) + rα−2Δθg = 0

α = α(Γ) must satisfy

α(α − 1) + α(n− 1)− λ = 0

or

α2 + (n− 2)α− λ = 0 . (12.3)

A particular case corresponds to α = 1, λ = n− 1 and g(θ) = cos θn−1 = the restriction to

the upper unit sphere of u(x) = x+
n , where 0 < θn−1 < π

2 .

In this case, on ∂B1,

u2
r = u2

while ∫
∂B1

|∇θu|2 dσ = (n− 1)
∫

∂B1

u2 dσ

and thus, inequality (12.1) is not exact.
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D2 D1
u2 = 0

u1 = 0

0

u2 u2 > 0

u1 u1 > 0

S

Figure 12.1

The computations become exact if instead of looking at (12.2) we look at

J(R) =
1

R2

∫
BR

|∇u1|2
|x|n−2

dx · 1
R2

∫
BR

|∇u2|2
|x|n−2

dx ≡ J1(R) · J2(R) (12.4)

Let us make a few remarks

• Each one of the factors J1, J2 can be understood as an average of |∇ui|2, i.e., we

are dividing the volume integral in a domain of size Rn by a factor R2 · rn−2.

In fact, if ui is the positive part of a linear function, ui(x) = αix
+
n , then

Ji(R) = c(n)α2
i

where c(n) = ωn
4 and ωn is the surface of the unit ball in R

n.

• Ji has a linear scaling. That is, if uλ(x) = 1
λu(λx)

Ji

(
R

λ
, uλ

)
= Ji(R,u)

• If the supports of u1 and u2 are two domains D1 and D2 separated by a nice surface

S through the origin and Dνui(0) exist (ν normal unit vector to S at 0) then

lim
R→0

Ji(R) = c(n)(Dνui)2

• As we shall see in the proof of Theorem 12.3, each one of the Ji is controlled from

above by 1
r2

∫−Br
u2

i so that we have a good control of J(R).

As before we end up with checking that the quantity

J ′(1)
J(1)

=

∫
∂B1

|∇u1|2 dσ∫
B1

|∇u1|2
|x|n−2

dx

+

∫
∂B1

|∇u2|2 dσ∫
B1

|∇u2|2
|x|n−2

dx

− 4 (12.5)

is nonnegative.
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But now, transforming the volume integrals into boundary integrals, we get:∫
B1

|∇ui|2
|x|n−2

dx =
1
2

∫
B1

Δ(ui)2

|x|n−2
dx =

=
∫

Γi

ui(ui)r dσ +
n− 2

2

∫
B1

∇(ui)2 · x
|x|n dx

=
∫

Γi

ui(ui)r dσ +
n− 2

2

∫
Γi

u2 dσ

since ui(0) = 0 and therefore ∫
B1

(ui)2Δ
(

1
|x|n−2

)
dx = 0 .

This means we must examine quotients of the type∫
Γ
[(ur)2 + |∇θu|2] dσ∫

Γ

[
uur +

n− 2
2

u2
]
dσ

(
u ∈ H1

0 (Γ)
)

(12.6)

We look for the optimal partition of u2
r and |∇θu|2 for a given domain Γ.

If λ = λ(Γ) is the corresponding eigenvalue then we can write, for any 0 < β < 1∫
Γ
|∇θu|2 dσ ≥ λ

∫
Γ

u2 dσ = βλ

∫
Γ
· · ·+ (1− β)λ

∫
Γ
· · ·

We let the first piece go with
∫
Γ u2

r and the other one control n−2
2

∫
Γ u2 directly. Precisely,

we write∫
Γ
[u2

r + |∇θu|2] dσ ≥ 2
(∫

Γ
u2

r dσ

)1/2(
βλ

∫
Γ

u2 dσ

)1/2

+ (1− β)λ
∫

Γ
u2 dσ . (12.7)

and we want to control(∫
Γ

u2
r dσ

)1/2(∫
Γ

u2 dσ

)1/2

+
n− 2

2

∫
Γ

u2 dσ .

Therefore we balance the two terms in (12.7), choosing β such that
2

n− 2
(1− β)λ = 2(βλ)1/2

or

βλ + (n − 2)(βλ)1/2 − λ = 0

which is nothing but the equation for the positive homogeneity constant α = α(Γ) in (12.3).

Thus if we choose

βλ = α2

the quotient in (12.6) is greater than equal to 2α. Going back to (12.5), we are left to prove

that
J ′(1)
J(1)

≥ 2[α1 + α2 − 2] ≥ 0
(
αi = αi(Γi) > 0

)
(12.8)
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for any couple of disjoint domains Γ1,Γ2 ⊂ ∂B1.

The positive set function α = α(Γ), Γ ⊂ ∂B1 is called the characteristic constant of Γ

(see [FH]).

Thus, our optimization problem is reduced to show that, given to adjacent domains Γ1

and Γ2 on the unit sphere, the sum of their characteristic constants is greater than equal

to 2. Let us list a few facts.

a) ([S]). By symmetrization, among all domains Γ on ∂B1 with prescribed (n − 1)-

dimensional surface area, a spherical cap, i.e., a set of the form

Γ∗ = ∂B1 ∩ {xn > s} (−1 < s < 1)

has the smallest characteristic constant α, and thus, the smallest eigenvalue λ,

with

λ = inf
u(s)=0

∫ 1

s
(u′)2(1− x2)(n−2)/2 dx∫ 1

s
u2(1− x2)(n−1)/2 dx

(by changing variables x = xn = cos θ, in polar coordinates).

b) ([FH]). The minimum decreases with dimension, since an n1 dimensional configura-

tion can be extended (without changing the homogeneities) to a higher n2 = n1+k

dimension, so we scale properly and study the problem for large dimension.

Note that, since α(α + (n− 2)) = λ, then

α =
1
2

[√
(n− 2)2 + 4λ− (n− 2)

]
=

λ

n− 2
+ o

( 1
n2

)
for n large, so it is enough to study α̃ for n→ +∞, with

α̃ =
1
n

inf
u(sn)=0

∫ 1

sn

(u′)2(1− x2)(n−2)/2 dx∫ 1

sn

u2(1− x2)(n−1)/2 dx

This suggests the change of variable y = n1/2x. Thus, letting hn = n1/2sn,

α̃ = inf
u(hn)=0

∫ ∞

hn

(u′)2
(
1− y2

n

)(n−2)/2
dy∫ ∞

hn

u2
(
1− y2

n

)(n−1)/2
dy

.

But (1 − y2

n )(n−2)/2 converges in compact sets to e−y2/2, so, if we choose a convergent

sequence of hn, hnj → h (h may be ±∞), then (see [FH]) α̃ converges to the Gaussian
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eigenvalue:

Λ(h) = inf
u(h)=0

∫ ∞

h
(u′)2e−y2/2 dy∫ ∞

h
u2e−y2/2 dy

. (12.9)

Notice that if hn → −∞

inf
u(hn)=0

∫ hn

−∞
(u′)2

(
1− y2

n

)(n−2)/2
dy∫ hn

−∞
u2
(
1− y2

n

)n/2
dy

→ +∞

Observe also that, if ωn = |∂B1| and |Γ∗| = γωn, 0 < γ < 1, γ fixed, then

γ =
1√
2π

∫ +∞

h
exp(−t2/2) dt (12.10)

how one can see “passing” to the limit for n→ +∞ in the relation

γ =
|Γ∗|
ωn

=
ωn−1

ωn

∫ 1

sn

(1− x2)(n−1)/2 dx .

Therefore, our problem is reduced to show that, if Γ1,Γ2 ⊂ ∂B1, Γ1 ∩ Γ2 = ∅ and

Λ(h1),Λ(h2) correspond to Γ1 and Γ2, respectively, then

Λ(h1) + Λ(h2) ≥ 2 (12.11)

Now, Λ = Λ(h) is the first Dirichlet eigenvalue of the one-dimensional Ornstein-Uhlenbeck

operator

− d2

dx2
+ x

d

dx
in the set (h,+∞). We analyze the properties of Λ(h).

c) ([BKP]). Λ = Λ(h) is convex. Let uh be the first normalized eigenfunction associ-

ated to Λ(h), i.e.,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
− d2

dx2
+ x

d

dx

)
uh(x) = Λ(h)uh(x) x > h

uh(h) = 0 ,
1√
2π

∫ +∞

h
u2

h(x) exp
(
− x2

2

)
dx = 1 .

Put vh(x) = uh(x)e−x2/4. Then

− d2

dx2
vh(x) +

(1
4
x2 − 1

2

)
vh(x) = Λ(h)vh(x)

and vh(h) = 0,
∫ +∞
h v2

h dx = 1. This means that vh is the first Dirichlet eigenfunc-

tion on [h,+∞) associated to the Hermite operator

− d2

dx2
+
(1

4
x2 − 1

2

)
and Λ(h) is the corresponding eigenvalue.



12.2. THE n-DIMENSIONAL FORMULA 221

Since V (x) = 1
4x2 − 1

2 is convex and
∫

R
exp(−tV (x)) dx < ∞ for every t > 0,

from [BL] we deduce that Λ(h) is a convex function.

d) From [BKP] again, Λ = Λ(h) is strictly increasing , Λ(0) = 1 and Λ(h) → 0 as

h→ −∞, Λ(h)→ +∞ as h→ +∞. Moreover

Λ′′(0) =
4
π

(1− ln 2) (12.12)

In particular, if h1 + h2 ≥ 0, then

Λ(h1) + Λ(h2) ≥ 2Λ
(

h1 + h2

2

)
≥ 2Λ(0) = 2 . (12.13)

We can now go back to our optimization problem and in particular to inequality (12.11).

Given Γ1,Γ2 ⊂ ∂B1, Γ1 ∩ Γ2 = ∅, let the numbers γi = |Γi|/ωn and hi be defined according

to formula (12.10).

Observe that, since Γ1 ∩ Γ2 = ∅ then γ1 + γ2 ≤ 1 and hence h1 + h2 ≥ 0. Indeed, if

h1 + h2 < 0 and, for instance h1 < 0 < h2, we would have γ1 > γ(−h2), γ(−h2) + γ2 = 1

(by the evenness of the Gaussian) so that γ1 + γ2 > 1, a contradiction.

From (12.13) we conclude that

J ′(1)
J(1)

≥ 2
[
Λ(h1) + Λ(h2)− 2

]
≥ 0 . (12.14)

We summarize and refine the above discussion in the following important result ([ACF]).

Theorem 12.3 (Monotonicity formula). Let u1, u2 be non-negative subharmonic func-

tions in C(B1). Assume that u1 · u2 = 0 and that u1(0) = u2(0) = 0. Set

J(r) =
1
r4

∫
Br

|∇u1|2
|x|n−2

dx

∫
Br

|∇u2|2
|x|n−2

dx , 0 < r < 1 .

Then J(r) is finite and is an increasing function of r. Moreover

J(r) ≤ c(n)‖u1‖2L2(B1) · ‖u2‖2L2(B1) 0 < r ≤ 1
2

. (12.15)

Proof. Observe that Δu1 and Δu2 are measures. Denote by vm mollifiers of u1. Then

Δv2
m = 2|∇vm|2 + 2vmΔvm ≥ 2|∇vm|2

and therefore, if ϕ is a test function in C∞
0 (B1),∫

B1

u2
1Δϕ = lim

m→+∞

∫
B1

v2
mΔϕ = lim

m→+∞

∫
B1

Δv2
mϕ

≥ lim
m→+∞ 2

∫
B1

|∇vm|2ϕ = 2
∫

B1

|∇u1|2ϕ .



222 12. MONOTONICITY FORMULAS AND APPLICATIONS

This means that Δu2
1 ≥ 2|∇u1|2 in the sense of measures and that u1 ∈ H1

loc(B1). Let now

ψ be a cutoff function, ψ ≡ 1 in Br, ψ ≡ 0 outside B2r, r < 1
2 , and put

gε = ηε ∗ g

where g(x) = |x|2−n and ηε is an approximation of the identity. We have

2
∫

B2r

ψgε|∇u1|2 dx ≤
∫

B2r

Δ(ψgε)u2
1 dx

=
∫

B2r

u2
1ψΔgε dx + 2

∫
B2r�Br

u2
1∇ψ · ∇gε dx +

∫
B2r�Br

u2
1Δψgε dx

≤ c(n)
∫

B2r

u2
1ψηε dx + c(n)r−n

∫
B2r�Br

u2
1 dx

Letting ε→ 0, since u1(0) = 0, we get∫
Br

|∇u1|2
|x|n−2

dx ≤ c(n)r−n

∫
B2r�Br

u2
1 dx . (12.16)

An analogous inequality holds for u2 and hence ϕ(r) is finite for 0 < r < 1.

Since

r �−→ r2−n

∫
∂Br

|∇ui|2 dσ (i = 2, 2)

is in L1(0, 1) we have

d

dr

∫
Br

|∇ui|2
|x|n−2

dx = r2−n

∫
∂Br

|∇ui|2 dσ a.e.

It follows that

J ′(r) = − 4
r5

∫
Br

|x|2−n|∇u1|2 dx ·
∫

Br

|x|2−n|∇u2|2 dx+

+
1
r4

∫
Br

|x|2−n|∇u1|2 dx ·
∫

∂Br

r2−n|∇u2|2 dσ+

+
1
r4

∫
∂Br

r2−n|∇u1|2 dσ ·
∫

Br

|x|2−n|∇u2|2 dx .

We want to show that J ′(r) ≥ 0 a.e. By rescaling, we can assume that r = 1 and conclude,

from (12.14) that J ′(1) ≥ 0.

Since J(r) is increasing, from (12.16) we deduce, for 0 < r ≤ 1
2 ,

J(r) ≤ J
(1

2

)
≤ c(n)‖u1‖2L2(B1) · ‖u2‖2L2(B1) �

A more precise result can be obtained observing that (12.14) gives

J ′(r) ≥ 2
r
J(r)

[
Λ(h1) + Λ(h2)− 2

]
.

Here Γi = Γi(r) (i = 1, 2) are the projections of ∂Br ∩ {ui > 0} on the unit sphere ∂B1.
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Corollary 12.4. The strict inequality

Λ(h1) + Λ(h2) = 2 > 0

holds unless Γi(r) are both half spheres. In particular, if at least one of Γi digresses from

being a hemisphere by an area of size εωn, then

Λ(h1) + Λ(h2)− 2 ≥ cε2 . (12.17)

As a consequence r−cε2
J(r) is a non-decreasing function and

J(r) ≤ J(1)rcε2
. (12.18)

Proof. If Γ ⊂ ∂B1 and |Γ| = (1
2 − ε)ωn then

1
2
− ε =

1√
2π

∫ ∞

h
exp(−t2/2) dt =

1
2
− 1√

2π

∫ h

0
exp(−t2/2) dt ≥ 1

2
− 1√

2π
h .

Hence h ≥ √2π ε and from d), (12.13),

Λ(h1) + Λ(h2)− 2 ≥ cΛ′′(0)(h2
1 + h2

2) ≥ cε2 . �

12.3. Consequences and applications

The usefulness of the function J(r) in free boundary problems comes from the fact that

it gives a control of the linear behavior of the solution from both sides of the free boundary.

More precisely, one has the following consequence of the monotonicity formula.

Introduce the notations

J(u;R) =
(

1
R2

∫
BR

|∇u+|2
|x|n−2

dx

)(
1

R2

∫
BR

|∇u−|2
|x|n−2

dx

)
≡ J+

R (u)J−
R (u) .

Lemma 12.5. Let u, v be continuous functions in B2 such that u(0) = v(0) and outside

their zero sets, Δu = 0, vΔv ≥ 0. If, near the origin,

u±(x) ≤ v±(x) + o(x) (12.19)

then

J(u, 0+) ≤ J(v, 0+) .

Proof. If J(u; 0+) = 0 or J(v; 0+) =∞ there is nothing to prove. Also, if J(v; 0+) = 0

then J(u; 0+) = 0, by (12.19) and Corollary 12.4. Therefore, suppose J(u; 0+) > 0 and

0 < J(v; 0+) <∞. From Corollary 12.4, in particular from (12.18), for every R ≤ 1 (say),

|Ω±(u) ∩BR| ≥ cRn .
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Set uR(x) = 1
Ru(Rx) and define UR by

U+
R =

u+
R√

J+
R (u)

, U−
R =

u−
R√

J−
R (u)

.

Observe that

a) Poincaré inequality gives

1
s2

∫
Bs

(u±
R)2 ≤ c

∫
Bs

|∇u±
R|2 ≤ cJ±

s (uR) = J±
sR(u) .

b) From a), J(UR; s) is well defined for R, s ≤ 1. In particular J±
1 (UR) = 1 for every

R ≤ 1. Moreover, along some subsequence {Rj},

U±
Rj
→ U±

0

uniformly in any compact subset of B1.

c) J(U0; s) = 1 for every s ≤ 1. Indeed

J(URj ; s)
J(URj ; t)

=
J(u; sRj)
J(u; tRj)

→ 1

as Rj → 0 and therefore we get J(U0; s) = J(U0; t) = 1, since J(URj ; r)→ J(U0; r).

d) From c) and Corollary 12.4 again, we deduce that, in a suitable system of coordi-

inates, U±
0 are linear functions, that is

U0(x) = αx+
n − βx−

n

with α2β2 = 16/ω2
n. Define now VR by

V +
R =

v+
R√

J+
R (u)

, V −
R =

v−R√
J−

R (u)
.

Since 0 < J(v; 0+) <∞, we have also 0 < J(VR; 0+) <∞. From (12.19) it follows

that

V ±
R (x) ≥ U±

R (x) + o(|x|) .

Consider V +
R and let a(x′) = inf{xn : V +

R (x′, xn) > 0, x = (x′, xn) ∈ Br} and �(x′) =√
s2 − |x′|2 − a(x′). Notice that Ω+(VR) is tangent to {xn = 0} since α+β+ > 0, so that



12.3. CONSEQUENCES AND APPLICATIONS 225

the point (x′, a(x′)) ∈ Bs for |x′| < s− o(s), if s ≤ r. We have∫
Bs

|∇V +
R |2 ≥

∫
Bs

|(V +
R )xn |2

≥
∫
{|x′|<s−o(s)}

1
�(x′)

(∫
a(x′)<xn<

√
s2−|x′|2

|(V +
R )xn | dxn

)2

dx′

≥
∫
{|x′|<s−o(s)}

1
�(x′)

(
max

a(x′)<xn<
√

s2−|x′|2
V +

R dxn

)2

dx′

≥
∫
{|x′|<s−o(s)}

1
�(x′)

(
max

a(x′)<xn<
√

s2−|x′|2
U+

R + o(s)

)2

dx′ ≡ A+
s,R .

The same inequality holds for V −
R . As a consequence, Js(V ±

R ) ≥ s−nA±
s,R. Since UR → U0

uniformly in compact sets, one has, letting first R→ 0 and then s→ 0,

J(VR; s) =
J(v; sR)
J(u;R)

→ J(v; 0+)
J(u; 0+)

≥ 1 .

�

Corollary 12.6. Let u be continuous in B1, u(0) = 0 and uΔu ≥ 0 outside its zero

set. If near the origin, for some α ≥ 0, β ≥ 0,

u+(x) ≥ αx+
n + o(x)

u−(x) ≥ βx+
n + o(x)

then

α2β2 ≤ c(n)J(u; 0+)

where c(n) = 16/ω2
n, with equality when u = αx+

n − βx−
n .

As a consequence we prove the Lipschitz continuity of a viscosity solution to a free

boundary problem, in a very general situation.

Theorem 12.7. Let u be a viscosity solution of a free boundary problem in B1, satisfying

the following condition: near every x0 ∈ F (u) where

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|) (12.20)

(α ≥ 0, β ≥ 0), there are constants C1, C2 such that

β ≤ 1 implies α ≤ C1

and

α ≤ 1 implies β ≤ C2

with C1, C2 independent of x0 (they may depend on u). Then u is Lipschitz continuous in

B1/2 with the Lipschitz constant bounded by max{C1, C2, ‖u‖2L∞(B1)}.
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Proof. It is enough to prove |u(x)| ≤ cdist(x, F (u)) in B1/2. Let x ∈ B1/2, u(x) =

λ > 0 and h = dist(x, F (u)), x0 ∈ ∂Bh(x) ∩ F (u). Then, near x0, u has the nontangential

asymptotic behavior (12.20) for some α > 0, β ≥ 0.

Comparing u with a radially symmetric harmonic function in the ring Bh(x) \ B̄h/2(x)

vanishing on ∂Bh(x) and equal to cλ on ∂Bh/2(x), we deduce, as at the beginning of

section 1, that

λ ≤ cαh .

If now β ≤ 1, then λ ≤ c1h, while if β > 1, Lemma 12.5 for u1 = u+, u2 = u− and x0 as

the origin, gives

α2 ≤ c(n)β−2‖u‖4L∞(B1) ≤ c(n)‖u‖4L∞(B1) .

Therefore

λ ≤ c(n)‖u‖2L∞(B1)h

which gives the Lipschitz continuity of u+.

Analogously we deduce the Lipschitz continuity of u−. �

Another useful application of the monotonicity formula and specifically of Corollary 12.4,

formula (12.18), occurs for instance in one phase problems, to rule out some degenerate sit-

uations such as two connected components of the positivity set touching at a free boundary

point. This cannot occur in presence of non trivial linear behavior together with positive

density of the zero set. Precisely we have

Lemma 12.8. Let u ≥ 0 be a continuous function in B1, harmonic in its positivity set

Ω+(u). Suppose Ω1 and Ω2 are two connected components of Ω+(u) and 0 ∈ ∂Ω1. If

i) near 0, in Ω1

u(x) = αx+
n + o(|x|)

with α > 0,

ii) CΩ+(u) has positive density at 0

then, either

a) 0 /∈ ∂Ω2

or

b) near 0, in Ω2,

u(x) = o(|x|) .
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Proof. If 0 ∈ ∂Ω2, applying the monotonicity formula to u1 = u|Ω1
and u2 = u|Ω2

,

extended by zero outside Ω1 and Ω2, respectively, from ii) and formula (12.18) we get

J(r) ≤ c · rγ‖u‖4L∞(B1) .

If u2 has a non trivial linear behavior near 0, (??) gives a contradiction. �

Even in more general situations, the monotonicity formula can give topological infor-

mation on the positivity set Ω+(u).

Lemma 12.9. Let u ≥ 0 be continuous in B1, harmonic in Ω+(u). Let Ω1 be a connected

component of Ω+(u) and 0 ∈ ∂Ω1. Let J(r) be as in theorem 12.3 for u1 = u|Ω1
and

u2 = u − u1. Then, if J(0+) > 0, exactly two connected components Ω1 and Ω2 of Ω+(u)

are tangent at 0, and in a suitable system of coordinates,

u(x) = αx+
1 + βx−

1 + o(|x|)
with α > 0, β > 0.

Clearly, J(0+) > 0 forces a non trivial linear behavior near 0 in any connected com-

ponent of Ω+(u) touching at 0; therefore there is no room for more than two connected

components of the positivity set touching at 0. If J(0+) = 0, in general, nothing can be

deduced regarding the topological structure of Ω+(u) near 0.

We end this section with a quantitative version of lemma 12.8: in one phase prob-

lems, like those in section 13.2, the combination of Lipschitz continuity, nondegeneracy and

positive density of the zero set forces the free boundary to be non tangentially accessible,

preventing in particular two connected components of Ω+(u) to touch.

Let us briefly review the notion of non tangentially accessible domain (N.T.A. domain).

Their importance stems from the fact they are the most general domains for which the

Harnack and comparison theorems (interior and at the boundary) presented in sections 11.2,

11.3 are valid (see [JK]).

Given a domain Ω and a positive number M , we say that a ball Br ⊂ Ω is M -

nontangential if its distance from ∂Ω is comparable to its radius, that is

M−1r ≤ dist(Br, ∂Ω) ≤Mr .

Given x, y ∈ Ω, a M -Harnack chain from x to y is a finite sequence of M -nontangential

balls such that the first one contains x, the last one contains y and such that consecutive

balls intersect. The number of balls of a chain is the length of the chain.

Let us define what is a Harnack chain condition.
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Definition 12.1. Let Ω be an open set in R
n; Ω satisfies a M -Harnack chain condition

if, for every δ > 0 and every couple of points x, y ∈ Ω such that |x − y| ≤ mε and

Bδ(x), βδ(y) ⊂ Ω, there is a M -Harnack chain from x to y whose length depends on m but

not on δ.

We now define N.T.A. domains.

Definition 12.2. A bounded open set Ω ⊂ R
n is a N.T.A. domain if there exist M and

r0 such that

i) for every Q ∈ ∂Ω and every r ≤ r0, there is y ∈ Ω for which

M−1r < |Q− y| < r and Br/M (y) ⊂ Ω ;

ii) a M -Harnack chain condition holds;

iii) R
n \ Ω has uniform positive density at every point, i.e., there exists c0 > 0 such

that, for x ∈ R
n \ Ω,

|Br(x) \Ω| ≥ c0r
n .

The following result holds.

Theorem 12.10. Let u ≥ 0 be a continuous function in B1, harmonic in Ω+(u). Assume

that for each x ∈ F (u) ∩B1/2 and r ≤ 1
3

i) u is Lipschitz and nondegenerate, that is

sup
Br(x)

u ≥ cr

ii) there exists η > 0 such that

|Br(x) \ Ω+(u)| ≥ ηrn .

Then Ω+(u) ∩B1/2 is a N.T.A. domain.

Proof. Since u is Lipschitz and non degenerate, we only have to prove the Harnack

chain condition. Suppose then that x, y are points in Ω+(u) with |x− y| ≤ mδ and

Bδ(x) ⊂ Ω+(u) , Bδ(y) ⊂ Ω+(u) .

for some m > 0 and δ > 0.

Suppose d(x, F (u)) ≤ d(y, F (u)) = δ0. If δ0 ≥ 2mδ then x ∈ Bmδ(y) ⊂ Ω+(u) and one

can easily find the Harnack balls chain.

Thus let δ0 < 2mδ and y0 ∈ F (u) be such that |y0 − y| = δ0. Then, for R ≥ r0 ≡ 4mδ,

x and y belong to BR/2(y0). Let d = 1
2 min{u(x), u(y)}.
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We will show that, if R > cr0, where c may depend on u but not on x and y, then, the

connected components Ax and Ay of BR(y0) ∩ {u > d} that contain x and y, respectively,

are actually the same.

Assume Ax �= Ay and use the monotonicity formula for u1 = (u − d)+|Ax
and u2 =

(u − d)+|Ay
(extended by zero outside Ax and Ay). Since ii) holds, from Corollary 12.4 we

get that, if

ϕ(r) =
1
r4

∫
Br(y0)∩Ax

|∇u1|2
|z − y0|n−2

dz ·
∫

Br(y0)∩Ay

|∇u2|2
|z − y0|n−2

dz ,

for some positive β = β(η) the function

r �−→ r−βϕ(r)

is non-decreasing.

Now, if L denotes the Lipschitz constant of u, we have

ϕ(r) ≤ c(n)L4 ≡ C .

Claim. if r ≥ r0, then

ϕ(r) ≥ c̄ > 0

with c̄ independent of r.

Using the claim we have:

c̄r−β
0 ≤ r−β

0 ϕ(r0) ≤ R−βϕ(R) ≤ c̄R−β

so that

R ≤ cr0 .

Thus, if R > cr0, Ax = Ay = A. Since A is open and connected, there is a curve Γ ⊂ A

joining x and y. For each z ∈ Γ we have, from i), that

u(z) ≥ d =
1
2

min{u(x), u(y)} ≥ c̃δ .

Therefore, if z ∈ Γ and |p− z| ≤ c̃
2L , we have

u(p) ≥ u(z) − L|p− z| ≥ c̃

2L
δ

so that, if ρ = c̃
2Lδ, Bρ(z) ⊂ Ω+(u). Since

Γ ⊂
⋃
z∈Γ

Bρ(z)
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Figure 12.2. The Harnack chain condition for Ω+(u) in Theorem 12.10

we can find a sequence of points z1 = x, z2, . . . , zN−1, zN = y of Γ such that Γ ⊂ ⋃N
j=1 Bρ(zj)

and that
N∑

j=1

χBρ(zj)(y) ≤ c(n) .

Moreover, since ρ = c̃
2Lδ, r0 = 4mδ and zj ∈ Bcr0(y0), we can choose the length N

independent on x, y and δ.

We now prove the claim. We show that∫
Br0 (y0)∩Ax

|∇u1|2
|z − y0|n−2

dz ≥ cr2
0 . (12.21)

Since

2mLδ ≥ u(x) ≥ c0δ ,

if σ = c0/4L, then Bσδ(x) ⊂ Ax (since |x− y0| ≤ 3mδ) with

u(z) ≥ 3
4
u(x) in Bσδ(x) .

Let C be the convex hull of Bσδ(x) and {y0}. Every point z ∈ C can be described by ρy′

with ρ = |z − y0|, 0 ≤ ρ < ρ1(y′) and y′ in a subset Σ of ∂B1.
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For each y′ ∈ Σ, consider ρ0(y′) = sup{ρ : u(ρy′) = d} so that the segment ρy′,

ρ0(y′) < ρ < ρ1(y′) is contained in Ax. Notice that ρ0(y′) ≥ cδ and, since ρ1y
′ ∈ ∂Bσδ(x),

u(ρ1y
′) ≥ 3

4
u(x) .

Therefore, for each y′ ∈ Σ:
1
4
u(x) ≤ u(ρ1y

′)− u(ρ0y
′) ≤

∫ ρ1

ρ0

|∇u(ρy′)| dρ

which implies ∫ ρ1

ρ0

|∇u(ρy′)|ρ dρ ≥ cδ2 .

Integrating this equality over Σ we get∫
C
|∇u(t)| · |z − y0|2−n dz ≥ Cδ2

and Schwarz inequality gives (12.21) with C = C(m,L, n). In the same way one can prove

that ∫
Br0 (y0)∩Ay

|∇u1|2
|z − y0|n−2

dz ≥ cr2
0

and the claim follows. �

12.4. A parabolic monotonicity formula

In this section we present two monotonicity formulas for pairs of disjointly supported

subsolutions of the heat equation (one global in space and one local) ([C4]).

In the last section we show an application to a two-phase singular perturbation evolution

problem.

The global formula

Let u1 u2 be two disjointly supported, continuous and non-negative subcaloric functions

in the strip Rn × [−1, 0), i.e.,

a) Δui −Dtui ≥ 0

b) u1u2 ≡ 0

c) u1(0, 0) = u1(0, 0) = 0.

Assume that the ui have moderate growth at infinity, for instance∫
BR

u2
i (x,−1) dx ≤ Ce

|x|2
(4+ε)

for R large, some ε > 0 and let

Γ(x, t) =
1

tn/2
e−

|x|2
4t .

Then,
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Theorem 12.11. For 0 < t ≤ 1, the function

J(u1, u2, t) =
1
t2

(∫
Rn

∫ 0

−t
|∇u1|2Γ(x,−s) dx ds

)(∫
Rn

∫ 0

−t
|∇u2|2Γ(x,−s) dx ds

)
is monotone increasing in t.

Remark. If the ui are linear functions, i.e., u1 = αx+
n , u2 = βx−

n , J is constant.

Proof. Computing the derivative we get, setting J(t) = J(u1, u2, t) ≡ 1
t2 I1(t) · I2(t),

J ′(1) = −2I1I2 + I ′1I2 + I1I
′
2 .

Thus, we must prove that
I ′1
I1

+
I ′2
I2
≥ 2 .

Using that u1(0, 0) = u2(0, 0) = 0 the fact that

Δu2 −Dtu
2 = 2u(Δ −Dt)u + 2|∇u|2 ≥ 2|∇u|2

and that

[Δ + Dt](Γ(x,−s)) = 0

we may transform the Ii in spatial integrals at time t = −1, i.e., we must prove that∫
Rn |∇u1(x,−1)|2e− |x|2

4 dx∫
Rn [u1(x,−1)]2e−

|x|2
4 dx

+

∫
Rn |∇u2(x,−1)|2e− |x|2

4 dx∫
Rn [u2(x,−1)]2e−

|x|2
4 dx

attains its minimum when ui are a pair of linear functions (in which case all formulas are

exact and J is constant).

Notice that in the process of integrating by parts, we need a growth control at infinity

in space.

Since the ui are subcaloric and non-negative, a control at t = −1 suffices.

It is now easy to deduce the optimality estimate using once more the results in [BKP]

first, among all domains of given Gauss mass, the smallest eigenvalue is attained by a half

space, i.e., ∫
Ω |∇u|2e−x2

dx∫
Ω u2e−x2dx

is minimum for Ω = {xn ≥ α} with appropriate α; and second, the first eigenvalue is a

convex function of α, in particular

λ(α) + λ(−α) ≥ 2λ(0) .

But λ(0) is the eigenvalue corresponding to a linear function as eigenfunction. This com-

pletes the proof of the formula. �
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The local formula

Next a local theorem.

Theorem 12.12. Assume that ui (i = 1, 2) satisfy the hypotheses a), b), c) of Theo-

rem 12.10 and moreover that they are in L2 of the unit cylinder C1 = B1(0) × (−1, 0). Let

ϕ be a cut-off function in x, i.e., ϕ ≡ 0 outside B2/3, ϕ ≡ 1 in B1/2 and smooth.

Then if wi = uiϕ and J(t) = J(w1, w2, t),

J(0+)− J(t) ≤ Ae−c/t‖u1‖2L2(C1)‖u2‖2L2(C1)

for some C = C(n), A = A(‖ui‖L2).

Remark. It follows from the proof that

Ii(t) ≤ 1
tn/2
‖ui‖2L2(B1×{t}) + e−c/t‖ui‖2L2(C1) .

In particular, say,

J(1/2) ≤ c(n)‖u1‖2L2(C1)‖u2‖2L2(C1) .

Proof. Since ui ∈ L2(C1) and ui ≥ 0, Δui −Dtui ≥ 0, we have

∇ui ∈ L2(C2−ε) .

We compute as before

J ′(t) = − 2
t3

I1I2 +
1
t2

I ′1I2 +
1
t2

I1I
′
2 ,

but when we try to transform Ii into a boundary integral for time −t, we have to estimate

both the error in Ii and I ′i in order to control the product. The error in Ii comes from

trying to estimate ∫
Rn

∫ 0

−t
|∇(uϕ)|2Γ(x,−s) dx ds

from above by
∫

Rn

∫ 0
−t 1/2(Δ −Dt)(uϕ)2Γ dx ds.

Now

1/2(Δ −Dt)(uϕ)2 − |∇(uϕ)|2 = uϕ(Δ −Dt)(uϕ)

≥ (uϕ)[uΔϕ + 2∇u∇ϕ] .

All of these terms are supported outside the ball of radius 1/2, where ϕ ≡ 1. Thus, since

|Γ(x, s)| ≤ ce−C/t for −t < s < 0 and since ‖ui‖2H1(C2/3) ≤ c‖ui‖2L2(C1),

Ii(t) ≤
∫

Rn

w2
i (x,−t)Γ(x, t) dx + ‖ui‖2L2(C1)e

−C/t .

I ′i introduces no error by itself, only as a factor in the error introduced by Ii.
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So, for I ′i we only need a crude estimate by above. We use simply that sup|x| Γ(x, t) ≤
t−n/2 to estimate

I ′i(t) ≤ Ct−n/2

∫
B2/3

[|∇ui(x,−t)|2 + (ui(x,−t))2] dx .

Putting all together, we have (changing the constant in e−C/t to absorb all negative powers

of t)

J ′(t) ≥ −Ce−C/t
{
‖u1(·,−t)‖2H1(B2/3) · ‖u2‖2L2(C1) + ‖u2(·,−t)‖2H1(B2/3) · ‖u1‖2L2(C1)

}
Therefore

J(0+)− J(t) ≤ Ae−C/t · ‖u1‖2L2(C1)‖u2‖2L2(C1) .

�

12.5. A singular perturbation parabolic problem

Finally, we give an application to an equation appearing in combustion, [CV].

Theorem 12.13. Let u be a solution in C1 = B1 × (−1, t) of

Δu− ut = βε(u) ,

where

i) 0 ≤ βε(u) ≤ C
ε ,

ii) support βε(u) = {0 ≤ u ≤ ε},
and assume that, say,

‖u‖L∞(C1) ≤ C .

Then

‖∇u‖L∞(C1/2) ≤ C̄

with C̄ independent of ε.

Note: In [CV] this theorem is proved for non-negative solutions.

Proof. We may apply Theorem 12.12 to

u1 = (u− λ)+ , u2 = (u− λ)−

for any λ < 0.

Therefore on C3/4, ‖∇u‖L∞ ≤ C̄ independent of ε (just from i) in the region u ≤ 0.

Note that

‖u‖W 2,p(C3/4) ≤ C(ε) ,
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and therefore it is easy to compute

J(0+) = C|∇u(0)|4 ≤ C‖u‖4C2(C1)

whenever u ≤ 0 at the point chosen as origin. More precisely in the region {u < 2ε},

|∇u| ≤ C̄ .

Indeed consider (x0, t0) in such a region and rescale the problem

w(x, t) =
1
ε
u(ε(x− x0) + x0, ε

2(t− t0) + t0) .

This rescales an ε-parabolic neighborhood of (x0, t0) onto the unit cylinder around the

origin. Let us bound w by below on the closure of C = B1 × (−σ, 0) for σ > 0 small. Since

on w < 0 we have

|∇w| = |∇u| ≤ C̄ ,

on those sections of time on which B̄3/4∩{w ≥ 0} is not empty, w ≥ −C (just by integrating

along segments).

The family of times for which B̄3/4∩{w ≥ 0} is empty forms an open set. Suppose that

for some t0 ∈ (tα, tβ), infx w(x, t0) = −M � −C. Since |∇w| = |∇u| ≤ C on all of the slice

w(x, t) ≤ −M̄ � −C .

We now consider the barrier
M̄

2n
(|x|2 − 1) + M̄(t− t0)

which controls w by above for t0 ≤ t ≤ tβ where w is negative and caloric.

Then w(0, tβ) ≤ − M̄
2n + M̄σ ≤ − M̄

4 < −C if σ = 1/4n. This contradicts the fact that

w ≥ −C on tβ.

But now w being bounded by below, (Δ−Dt)w being bounded and

w(0, 0) ≤ 2

the Harnack inequality and standard a priori estimates imply that

|∇u(x0, t0)| = |∇w(0, 0)| ≤ C̄ .

Finally, we have to control |∇u| on the domain Ωε = {u > ε}. This follows from the

standard Bernstein technique.

Let ϕ be a cut-off function for the 1/2 cylinder C1/2 = B1/2 × (−1/2, 0) and consider in

Ωε the function

ϕ2|∇u|2 + λu2
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for λ a large constant. Then

(Δ−Dt)(ϕ2|∇u|2 + λu2) = [(Δ−Dt)ϕ2]|∇u|2 + 2ϕϕiuijuj

+ ϕ2|Diju|2 + 2λ|∇u|2 ≥ 0

if λ is large. Since ϕ2|∇u|2 + λu2 is under control on ∂(Ωε ∩C1/2), the theorem is complete.

�



CHAPTER 13

Boundary behavior of caloric functions

13.1. Caloric functions in Lip(1, 1/2) domains

By a λ-caloric function (and if λ = 1, just caloric) we mean a nonnegative solution, u,

of the heat equation

Hλu = Δu− λut = 0 (λ > 0) (13.1)

in some domain D ⊂ R
n+1, that vanishes locally on some distinguished part of ∂D. The

term refers to the fact that, in some sense, along that part of ∂D, u resembles the funda-

mental solution of the heat equation in D.

In particular, we will consider the case when the domain D is the intersection of some

(n + 1)-dimensional cube Q with Ω, one side of the graph of a function, i.e., Ω = {xn >

f(x′, t)} and the distinguished part of ∂D is precisely ∂Ω ∩Q.

In this section, f will be a Lip(1, 1/2) function, that is, for some positive constant L:

|f(x′, t)− f(y′, s)| ≤ L(|x′ − y′|+ |t− s|1/2)

and

D = {(x′, xn, t) : xn > f(x′, t), xn < 8nL, |x′| < 2, |t| < 4} .

We assume that f(0, 0) = 0. The symbol ∂pD denotes the parabolic boundary of D:

∂pD = (D̄n{t = −4})
bottom points

∪ (∂D ∩ {|t| < 4})
side points

≡ D−4 ∪ S

This kind of domain is regular for the Dirichlet problem.

For (ξ, τ) ∈ graph(f) and r > 0, we introduce parabolic cubes, boxes and surface discs

as follows.

Qr(ξ, τ) = {(x, t) : |x′| < r, |xn| < 4nLr, |t| < r2}
Ψn(ξ, τ) = Qr(ξ, τ) ∩D, Δr(ξ, τ) = Qr(ξ, τ) ∩ ∂D .

When (ξ, τ) = (0, 0), we simply write Qr, Ψr and Δr.

Notice that D = Ψ2, Q2 ∩ ∂D = Q2 ∩ graph(f) = Δ2. Furthermore, we define, for

|τ | ≤ 2 and r ≤ 1,

• inward point Ar(ξ, τ) = (ξ′, ξn + 6nLr, τ)

237
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Ar

Ar

Ar

r~

xn = f(x',t)

r
(0,0)

r 2r2

D

t

xn

x'

Figure 13.1. Parabolic box and disc.

inward future point Ār(ξ, τ) = (ξ′, ξn + 6nLr, τ + 2r2)

inward past point A
¯ r(ξ, τ) = (ξ′, ξn − 6nLr, τ − 2r2)

• the parabolic distances δ((x, t), (y, s)) = |x− y|+ |t− s|1/2

and

δx,t = δ((x, t), (0, 0))

Accordingly, a caloric function in Ψr is a nonnegative solution of (13.1), vanishing on Δr.

Caloric functions in Lip(1, 1/2) domains enjoy a number of important properties that

parallel those valid for harmonic functions in Lipschitz domains, such as a Carleson estimate

(or boundary Harnack inequality) and a boundary comparison principle.

In these results, the presence of a time lag reflects irreversibility in time. However,

for caloric functions vanishing on the lateral boundary S, a backward (in time) Harnack

inequality holds up to S. This implies a doubling property for the caloric measure and the

Hölder continuity of the quotient of two caloric functions vanishing on the same disc on S.

In the rest of this section we state precisely the above results.

The Green function for the domain D with pole at (y, s) is defined when t > s by

G(x, t; y, s) = Γ(x− y, t− s)− V (x, t; y, s)

where

Γ(x, t) = [4πt]−n/2 exp
[
−x2

4t

]
t > 0

is the fundamental solution of the heat equation and V (·, ·; y, s) is the solution of the problem{
Hu = 0 in D

u(σ, t) = Γ(σ − y, t− s) on ∂pD

The adjoint Green function

G∗(y, s;x, t) = G(x, t; y, s)
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corresponds to the adjoint operator H∗ = Δ + ∂t.

For E a Borel subset of ∂pD, the caloric measure ω(x,t)(E) = ω
(x,t)
D (E) evaluated at

(x, t) ∈ D is defined as the value at (x, t) of the solution to the problem{
Hu = 0 in D

u = χE on ∂pD

where χE is the characteristic function of E. If g ∈ C(∂pD), the solution of the problem{
Hu = 0 in D

u = g on ∂pD

is given by

u(x, t) =
∫

∂pD
g(σ)ω(x,t)(dσ) .

The (forward) Harnack inequality adapted to our case says:

Theorem 13.1 (Harnack Inequality). Let u be a caloric function in D. Then there

exists a positive constant c = c(n,L) such that

u(A
¯ r) ≤ cu(Ār)

for any r ≤ 1.

Moreover ([K], [FGS])

Theorem 13.2 (Boundary Harnack principle or Carleson estimate). Let u be caloric in

Ψ2r. Then there exists c = c(n,L) and α = α(n,L), 0 < α ≤ 1, such that

u(x, t) ≤ c

(
δx,t

r

)α

u(Ār) ∀ (x, t) ∈ Ψr/2 .

Theorem 13.3 (Comparison). Suppose u, v are positive caloric in Ψ2r ⊂ D. Then there

exists c = c(n,L) such that
u(x, t)
v(x, t)

≥ c
u(A

¯ r)
v(Ār)

for every (x, t) ∈ Ψr/2.

If we consider caloric functions vanishing on the lateral part S of D the above results

can be refined as follows.

Theorem 13.4 (Backward Harnack Inequality). (B.H.I.) Let u be caloric in D, vanish-

ing on S. Then

u(Ār) ≤ cu(A
¯ r) (13.2)

with c = c(n,L).
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Let us point out some consequences of (13.2).

Theorem 13.5 (Mutual continuity of caloric functions). Let u, v be caloric in D, u =

v = 0 on S. Then

c−1 u(A1)
v(A1)

≤ u(x, t)
v(x, t)

≤ c
u(A1)
v(A1)

in Ψ1 (13.3)

with c = c(n,L). Moreover, u/v ∈ Cα,α/2(Ψ̄1), 0 < α < 1.

In particular, notice that if u > v, applying (13.3) to u− v and u we get:

Hopf principle: in Ψ1, u ≥ γv with γ > 1 depending on u(A1)/v(A1) (say).

Theorem 13.6 (Doubling property for the caloric measure). Let r ≤ 1. For every

(x, t) ∈ D \Ψ3r/2, t ≥ r2,

ω(x,t)(Δr) ≤ cω(x,t)(Δr/2) (13.4)

with c = c(n,L).

In view of the application to free boundary problems we actually need the following

version of the backward Harnack inequality, valid for caloric functions vanishing just on a

lateral disc ([ACS1]).

Theorem 13.7. Let u be caloric in D, m = u(A
¯ 3/2) and M = supD u. Then there

exists a constant c = c(n,L,M/m) such that, if r ≤ 1/2,

u(Ār) ≤ cu(A
¯ r) . (13.5)

Proof. Let B1 = {t = −1} ∩ D̄ and β = ∂Ψ1 ∩ {−2
3 < t < −1

2 ;xn = 4nL}.
Denote by ω

(x,t)
1 the caloric measure in Ψ1 and by S1 the lateral boundary of Ψ1. For

r ≤ 1/2,

u(Ār) =
∫

B1

u(σ)ωĀr
1 (dσ) +

∫
S1

u(σ)ωĀr
1 (dσ) ≡ u1(Ār) + u2(Ār) .

Since u1 vanishes on S1, the B.H.I. gives

u1(Ār) ≤ cu1(A¯ r) . (13.6)

On the other hand, the doubling property of the caloric measure implies, that

ω
(x,t)
1 (S1) ≤ c(n,L)ω(x,t)(β) (13.7)

for all (x, t) ∈ Ψ2/3. Therefore, by maximum principle,

u2(x, t) ≤ c(n,L)Mω(x,t)(β) (13.8)
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in Ψ2/3. Now, from Harnack inequality, since r ≤ 1/2,

u2(A¯ r) ≥
∫

β
u(σ)ωA

¯ r(dσ) ≥ mωA
¯ r(β) . (13.9)

Since ω(x,t)(β) is zero on the lateral part of Ψ2/3, we have

ωĀr(β) ≤ c(n,L)ωA
¯ r(β)

so that, from (13.6)–(13.9) we obtain

u(Ār) ≤ cu1(A¯ r) + cMωĀr(β) ≤ cu1(A¯ r) + cMωA
¯ r(β)

≤ cu1(A¯ r) + c
M

m
u2(A¯ r) ≤ c

(
1 +

M

m

)
u(A

¯ r) . �

Corollary 13.8. Let u1, u2 as in Theorem 13.7. Then, in Ψ1/2,

c−1 u1(A1/2)
u2(A1/2)

≤ u1(x, t)
u2(x, t)

≤ c
u1(A1/2)
u2(A1/2)

where c = c(n,L,M1/m1,M2/m2). Moreover u1/u2 ∈ Cα(ψ̄1/2) for some 0 < α < 1. The

Cα norm of u1/u2 and α depend only on n,L, m1
M1

, m2
M2

.

Proof. From Theorems 13.3 and 13.7,

c−1 u1(A1/2)
u2(A1/2)

≤ u1(x, t)
u2(x, t)

≤ c
u1(A1/2)
u2(A1/2)

(13.10)

with c = c(n,L, mi
Mi

). To prove that u1/u2 is Hölder continuous, we show inductively by

renormalization that in Ψ2−k , k ≥ 0

λku2 ≤ u1 ≤ Λku2 (13.11)

with Λk − λk ≤ γk for some γ < 1, γ depending on n,L,Mi/mi. For this purpose, suppose

(13.11) holds in Ψ2−k and renormalize by setting

uk(x, t) = u1(2−k−1x, 4−k−1t), vk(x, t) = u2(2−k−1x, 4−k−1t) .

Then

λk ≤ uk

vk
≤ Λk (13.12)

in Ψ2. Consider the largest of the ratios
uk(A¯ 3/2)− λkvk(A¯ 3/2)

(Λk − λk)vk(A¯ 3/2)
or

Λkvk(A¯ 3/2)− uk(A¯ 3/2)
(Λk − λk)vk(A

¯ 3/2)
.

To fix ideas, assume the largest is the first one. Then

uk(A¯ 3/2)− λkvk(A¯ 3/2) ≥
1
2
(Λk − λk)vk(A¯ 3/2) .

Let mk = uk(A¯ 3/2)− λkvk(A¯ 3/2) and

Mk = sup
Ψ2

(uk − λkvk) .
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From the boundary Harnack principle,

Mk ≤ c[uk(Ā3/2)− λkvk(Ā3/2)]

≤ c(Λk − λk)vk(Ā3/2)

since uk(Ā3/2) ≤ Λkvk(Ā3/2). Thus

Mk

mk
≤ 2c

vk(Ā3/2)
vk(A

¯ 3/2)
≤ c

(
n,L,

M2

m2

)

by Theorem 13.7.

With the ratio Mk/mk under control, we apply (13.10) to wk = uk − λkvk and zk =

(Λk − λk)vk. We get, in Ψ1,

wk

zk
≥ c

wk(A1/2)
zk(A1/2)

≥ c
wk(A¯ 3/2)
zk(Ā3/2)

≥ c

(
n,L,

M2

m2

)
.

Thus, in Ψ1

λk+1 ≡ λk + c(Λk − λk) ≤ uk

vk
≤ Λk .

Letting Λk+1 = Λk, we have

Λk+1 − λk+1 ≤ (Λk − λk)(1− c) ≡ γ(Λk − λk) ≤ γk+1 . �

13.2. Caloric functions in Lipschitz domains

In this section we examine the boundary behavior of caloric functions in domains D

above the graph of a Lipschitz function xn = f(x′, t), that is

|f(x′, t)− f(y′, s)| ≤ L(|x− x′|+ |t− s|) .

Lipschitz continuity in time versus Lipschitz continuity in time is the proper homogene-

ity balance in studying the phase transition relations of the form F (u+
ν , u−

ν , Vν) considered

in Chapters 8–10.

The main result is that, in a neighborhood of the graph of f , the time derivative of

a caloric function u is controlled from above by its spatial gradient. This amounts to say

that there, the level sets of u are uniformly Lipschitz surfaces in space and time w.r.t. the

en axis and there exists a space-time cone of directions Γ(en, θ) along which u is monotone

increasing. Thus, the situation is perfectly analogous to the elliptic one.

We start with the analogous of Lemmas (11.10) and (11.11). Clearly all the results of

section 1 remains valid in the context of Lipschitz domains. We keep the same notations.

In particular M = supD u and m = u(A
¯ 3/2).
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We introduce also the elliptic distances

d((x, t), (y, s)) = (|x− t|2 + |t− s|2)1/2

dx,t = inf{d((x, t), (y, s)) : (y, s) ∈ graph(f)} .

Lemma 13.9. Let u be caloric in D. If Denu ≥ 0 in Ψ2, then

c−1 u(x, t)
dx,t

≤ Denu(x, t) ≤ c
u(x, t)
dx,t

in Ψ1, with c = c(n,L,M/m).

Proof. Let (x, t) ∈ Ψ1 and choose (ξ, τ) ∈ graph(f) such that (x, t) = Ar(ξ, τ), for

some r > 0. Now

u(A
¯ r(ξ, τ))− u(ξ + δen, τ − 2r2) =

∫ nLr

δ
Denu(ξ + sen, τ − 2r2) ds .

By the parabolic Carleson estimate (Theorem 13.2)

u(ξ + δen, τ − 2r2) ≤ c

(
δ

r

)α

u(Ār(ξ, τ)) .

Choosing δ small enough and using Theorem 13.7, we get
1
2
u(Ar(ξ, τ)) ≤ crDenu(Ar(ξ, τ)) .

On the other hand, by Schauder and Harnack inequalities and Theorem 13.7 again,

crDenu(Ar(ξ, τ)) ≤ cu(Ār(ξ, τ)) ≤ cu(Ar(ξ, τ)) .

Since r ∼ dx,t, the proof is complete. �

Lemma 13.10. Let u be caloric in D. Then there exists d = d(n,L,M/m) > 0 such that

in Ψ1 ∩ {dx,t < d},
Denu ≥ 0 .

Proof. Let Σ = ∂pΨ3/2 \ graph(f) and set u1 = u, u2 = cω
(x,t)
Ψ3/2

(Σ), with c chosen such

that

u1(A1) = u2(A2) .

By Corollary 13.8,

c−1 ≤ u1

u2
≤ c (13.13)

in Ψ1, with c = c(n,L,M/m). By comparing u2 with its en-translations, we obtain

Denu2 > 0

in Ψ1. Since u1/u2 ∈ Cα,α/2(ψ̄1) by Corollary 13.8, for all (x, t), (y, s) ∈ ψ1 we can write∣∣∣∣u1(x, t)
u2(x, t)

− u1(y, s)
u2(y, s)

∣∣∣∣ ≤ c(|x− y|+ |t− s|1/2)α . (13.14)
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Fix (y, s) ∈ ψ1. Then, if (x, t) varies in a parabolic cylindrical neighborhood of (y, s) of

radius 1
2dy,s, we have, from (13.14), Harnack inequality and Lemma 13.9,∣∣∣∣u1(x, t)− u1(y, s)

u2(y, s)
u2(x, t)

∣∣∣∣ ≤ cu2(x, t) dα
y,s ≤ cu2(y, s) dα

y,s ≤ cDenu2(y, s) dα+1
y,s .

Now, by interior Schauder estimates, in a parabolic neighborhood of (y, s) of radius 1
4dy,s,∣∣∣∣Denu1(x, t) − u1(y, s)

u2(y, s)
Denu2(x, t)

∣∣∣∣ ≤ cDenu2(y, s) dα
y,s

and therefore, from (13.13),

Denu1(y, s) ≥
[
u1(y, s)
u2(y, s)

− c dα
y,s

]
Denu2(y, s)

≥ (c− c dα
y,s)Denu(y, s)

which is positive if dy,s is small enough depending on n,L,M/m. �

We now establish a control for the derivatives of u along admissible directions involving

a time component. First we need some L2-estimates for ut and the spatial gradient ∇u.

Lemma 13.11. Let u be caloric in D. Then ∇u, ut ∈ L2(Ψ1) and

‖∇u‖L2(Ψ1), ‖ut‖L2(Ψ1) ≤ c‖u‖L2(Ψ3/2)

with c = c(n,L).

Proof. By approximation, it is enough to prove the lemma assuming D is a smooth

domain (and thus u smooth in D̄), as long as the estimates under consideration depend

only on the Lipschitz character of ∂D.

The estimate

‖∇u‖L2(Ψ1) ≤ c‖u‖L2(Ψ1)

is a standard energy inequality and follows from the fact that, when extended by zero

outside D, across graph(f), u is a subsolution of the heat equation. It is then enough to

multiply the equation Δu = ut by ϕ2u, where ϕ2 is a cut-off function in space, independent

of time, and integrate by parts.

We now want to prove

‖ut‖L2(Ψ1) ≤ c‖u‖L2(Ψ1) .

Let η2, η = η(x, t), be a cut-off function such that η ≡ 1 in Q1 and η ≡ 0 outside of Ψ3/2.

Now ∫
D
{H∗(η2u)uxn + (Huxn)η2u} dx dt =

∫
Δ3/2

η2uνxuxn dσx dt (13.15)
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where H∗ = Δ + ∂t, Δ3/2 = graph(f) ∩Q3/2, νx is the space interior normal to D and dσx

denotes surface measure in space. On the other hand, Huxn = 0 and

H∗(η2u) = 2η2ut + 2∇η2 · ∇u + uH∗(η2) .

Therefore, using Schwarz inequality and the L2-estimate for ∇u, from (13.15) we get∫
Δ3/2

η2uνxuxn dσx dt ≤ c

{
1
ε

∫
Ψ3/2

u2 dx dt + ε

∫
Ψ3/2

η2(ut)2 dx dt

}
(13.16)

for any ε > 0, with c = c(n,L).

We want to control the L2 norm of ut by the left-hand side of (13.16). To this purpose,

multiply the heat equation by η2ut and integrate by parts; we get∫
Ψ3/2

η2(ut)2 dx dt =
∫

Ψ3/2

η2utΔu dx dt

= −
∫

Δ3/2

η2utuνx dσx dt−
∫

Ψ3/2

2ηut∇u · ∇η dx dt− 1
2

∫
Ψ3/2

η2(|∇u|2)t dx dt .

Another integration by parts gives∫
Ψ3/2

η2(|∇u|2)t dx dt = −
∫

Δ3/2

η2|∇u|2νt dσ −
∫

Ψ3/2

2ηηt|∇u|2 dx dt

where νt denotes the t-component of the interior normal to Ψ3/2 and dσ is surface measure

in space and time.

Now, along Δ3/2, due to the Lipschitz character of D, we have

|∇u| = uνx, |ut| ≤ c(n,L)uxn .

Therefore ∫
Δ3/2

η2|ut|uνx dσx dt ≤ c(n,L)
∫

Δ3/2

η2uxnuνx dσx dt

and ∣∣∣∣
∫

Δ3/2

η2|∇u|2νt dσx dt

∣∣∣∣ ≤ c(n,L)
∫

Δ3/2

η2uxnuνx dσx dt .

As a consequence, from (13.16):∫
Ψ3/2

η2(ut)2 dx dt ≤ c(n,L)
{

1
ε

∫
Ψ3/2

u2 dx dt + ε

∫
Ψ3/2

η2(ut)2 dx dt

}
.

The proof is complete if we choose ε small enough. �

Lemma 13.12. Let u be caloric in D. Then, for any direction entering into D, i.e.,

μ = αen + βen+1, α2 + β2 = 1, α > 0, such that 0 < tan−1( |β|α ) < 1
2 cot−1(L),

Dμu ≥ 0

in Ψ1 ∩ {dx,t < d0}, with d0 = d0(n,L,M/m, ‖u‖L2(Ψ3/2
).
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Proof. Take μ̄ = ᾱen + β̄en+1 with ᾱ2 + β̄2 = 1, ᾱ > 0 and 0 < tan−1( |β̄|
1+ᾱ ) <

1
2 cot−1(L). For 0 < h < h0 small, set p = (x, t) and

w−
h (p) =

[
u(p + hμ̄)− u(p)

h

]−
for all p ∈ Ψ5/3, where the superscript denotes negative part. Note that w−

h is subcaloric,

nonnegative in Ψ5/3 and w−
h (p) = 0 on Δ5/3. Extend w−

h to all of Q5/3 by setting w−
h = 0 in

Q3/2 \D. Let Q∗ be a subcube of Q5/3, chosen so that ∂pQ
∗ ⊂ Q5/3 \Q̄3/2 and ‖ut‖L2(∂pQ∗),

‖∇u‖L2(∂pQ∗) ≤ c‖∇u‖L2(Ψ5/3) for some (universal) big constant c. Denote by ωp
∗ the caloric

measure in Q∗ evaluated at p and define

zh(p) =
∫

∂pQ∗
w−

h dωp
∗ .

Then, if Hn denotes the n-dimensional Hausdorff measure on ∂pQ
∗,

zh(p) ≤ ‖w−
h ‖L2(∂pQ∗)‖dωp

∗/dHn‖L2(∂pQ∗)

≤ c(‖∇u‖L2(∂pQ∗) + ‖ut‖L2(∂pQ∗))‖dωp
∗/dHn‖L2(∂pQ∗)

c‖dωp
∗/dHn‖L2(∂pQ∗) ≤ ‖∇u‖L2(Ψ5/3)

(13.17)

with c = c(n,L), since

w−
h (p) ≤Mμ̄(∇u)(p)

where, Mμ̄ is the Hardy-Littlewood maximal function along the μ̄-line through p. Now

consider

vh(p) =
∫

∂p(Q∗∩Ψ5/3)
w−

h dωp

where ωp is the caloric measure in Q∗ ∩Ψ5/3.

Observe that vh is caloric in Q∗ ∩Ψ5/3. By the maximum principle, we see that

w−
h ≤ vh ≤ zh (13.18)

in Q∗ ∩Ψ5/3. From Theorem 13.3 we have

vh

u
≤ c(n,L)

vh(Ā1)
u(A

¯ 1)
(13.19)

in Ψ1. On the other hand, ∥∥∥∥∥dωĀ1∗
dHn

∥∥∥∥∥
L2(∂pQ∗)

≤ c(n)

so that, (13.17) and Lemma 13.11 give

zh(Ā1) ≤ c(n,L)max
Ψ̄5/3

u . (13.20)
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From Carleson estimate and B.H.I.

max
Ψ̄5/3

u ≤ c(n,L,M/m)u(A
¯ 1)

and therefore, from (13.18), (13.19) and (13.20),

w−
h ≤ c(n,L,M/m)u

in Ψ1. Since the last estimate is independent of h, we obtain

(Dμ̄u)− ≤ c(n,L,M/m)u (13.21)

in Ψ1. Choose now μ = αen + βen+1 with

α =
√

1 + ᾱ/
√

2 , β = β̄/
√

2(1 + ᾱ) .

Then α2 + β2 = 1, tan−1( |β|α ) = tan−1( |β|
1+ᾱ ) < 1

2 cot−1(L).

By Lemma 13.9 and (13.21), in Ψ1,

Dμu(p) =
1√

2(1 + ᾱ)
[Denu(p) + Dμ̄u(p)]

≥ 1√
2(1 + ᾱ)

(
c

dp
− c

)
u(p) .

Thus for dp small enough, Dμu(p) ≥ 0 and the proof is complete. �

The Lemmas 13.10 and 13.12 remain valid if we replace the en-directional derivative

by any spatial derivative along a direction making an angle less than 1
2 cot−1(L) with the

en-axis. This allows us, using Lemma 13.12, to obtain a whole cone of directions in space

and time along which a caloric function is monotone increasing. Thus we have:

Theorem 13.13. Let u be caloric in D. There exists d0 = d0(n,L,M/m, ‖u‖L2(Ψ3/2))

such that, in Ψ1 ∩ {dx,t < d0}, u is monotonically increasing along every direction τ ∈
Γ(en, θ), where θ < 1

2 cot−1(L).

Theorem 13.13 has a number of interesting and useful consequences. For instance some

of the results in this section become invariant under elliptic scaling.

Indeed, let us introduce elliptic cubes and boxes:

Q∗
r(ξ, τ) = {(x, t) : |x′| < r, |xn| < 4nLr, |t| < r}

Ψ∗
r(ξ, τ) = Q∗

r(ξ, τ) ∩D .

We have:



248 13. BOUNDARY BEHAVIOR OF CALORIC FUNCTIONS

Corollary 13.14. Let u be caloric in Ψ∗
2r, monotone increasing along every σ ∈

Γ(en, θ). Then there exist positive constants c, C depending only on n,L, such that, in

Ψ∗
r, for r ≤ 1,

u(x, t) ≤ c

(
dx,t

r

)α

u(Ar) (13.22)

c−1 u(x, t)
dx,t

≤ |∇u(x, t)| ≤ c
u(x, t)
dx,t

, |ut| ≤ c
u(x, t)
dx,t

. (13.23)

Proof. The parabolic Carleson estimate, Theorem 13.2, gives, if (ξ, τ) ∈ Q∗
r ∩ ∂D, for

some 0 < β < 1,

u(x, t) ≤ c

(
dx,t

r

)β

u(Ār(ξ, τ))

for every (x, t) ∈ Ψr(ξ, τ). Now, observe that, if σ ∈ Γ(en, θ), σ = αen − βet, α2 + β2 = 1,

β > 0, then

u(Ār(ξ, τ)) ≤ u(Ār(ξ, τ) + sσ)
(
0 < r ≤ r

2

)
.

Choose (say) s = r/2 and use Harnack inequality to get

u(Ār(ξ, τ)) ≤ cu(Ar) .

Since (ξ, τ) ∈ Q∗
r ∩ ∂D is arbitrary, (13.22) follows.

To prove (13.23) it is enough to notice that the existence of a cone of monotonicity in

space and time implies

|ut| ≤ c|∇u| , |∇u| ≤ c|Denu|
for some c = (c, n, θ). Then (13.23) follows as in Lemma 13.9 using the elliptic Carleson

estimate (13.22), where c = c(n,L). �

In turn, the estimate (13.23) implies that at each level of time, a caloric function u, is

“almost a harmonic function.” Precisely, we have:

Lemma 13.15. Let u be caloric in D, monotone increasing along every σ ∈ Γ(en, θ).

Then there exist ε > 0, depending only on n,L and d > 0, depending only on n,L and (say)

u(A1), such that

w+ = u + u1+ε , w− = u− u1+ε (13.23bis)

are subharmonic and superharmonic in

Ψ1 ∩ {dx,t < d} ∩ {t = t̄} .

Proof. It is enough to consider t̄ = 0. From (13.23),

|∇u(x, 0)| ≈ u(x, 0)
dx,0

and |Δu(x, 0)| = |ut(x, 0)| ≤ c1
u(x, 0)
dx,0

(13.24)
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where c = c(n,L). By Harnack inequality and using the cone of monotonicity, we have, for

a large N = N(n,L),

u(x, 0) ≥ cu(A1) · dN
x,0 (13.25)

with c = c(n,L). Choosing ε < 1/N , we get

Δw+ = Δu(1 + (1 + ε)uε) + ε(1 + ε)uε−1|∇u|2

and, using (13.24), (13.25),

Δw+(x, 0) ≥
(
−c1 + c2 · u(A1)εdεN−1

x,0

) u(x, 0)
dx,0

.

Thus if dx,0 is small enough, w+ is subharmonic. A similar argument gives w− superhar-

monic. �

An important consequence of the subharmonicity of w+ is that, in typical phase transi-

tion problems, we can apply the monotonicity formula of Theorem 12.3. In fact, we have:

Corollary 13.16. Let u1 be a λ1-caloric function in Ψ1 and u2 a λ2-caloric function

in Q1\Ψ̄1. Suppose u1 and u2 satisfy the hypotheses of Lemma 13.15. Then, for any r ≤ r0,

r0 depending only on n,L, λ1, λ2, u1(A1), u2(A1), and any n-dimensional ball B′
r centered

at 0, on the hyperplane t = 0,∫
−

B′
r∩Ψ1

|∇u1|2 ·
∫
−

B′
r\Ψ1

|∇u2|2 ≤ c‖u1‖2L∞(B′
1∩Ψ1)‖u2‖2L∞(B′

2\Ψ1)

where c depends only on n,L, λ1, λ2.

Proof. Choose ε, d1 (for u1) and d2 (for u2) as in Lemma 13.15 and let r0 ≤ min{d1, d2}.
Consider now u1 + (u1)1+ε and call w1 its extension by zero in Q1 \ Ψ̄1. Similarly, call w2

the extension by zero in Ψ1 of u2 + (u2)1+ε.

Then w1, w2 fall into the hypotheses of the monotonicity formula for r ≤ r0. Then

1
r4

∫
B′

r

|∇w1|2
|x|n−2

dx ·
∫

B′
r

|∇w2|2
|x|n−2

dx ≤ c(n)‖w1‖2L∞(B′
1)‖w2‖2L∞(B′

1) .

Due to the Lipschitz character of Ψ1,

1
r2

∫
B′

r

|∇wi|2
|x|n−2

dx ≥
∫
−

B′
r

|∇wi|2 dx (i = 1, 2)

and the proof can be easily completed. �
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t

xn

x'
t = 0

(0,0)

xn = f(x',t)

D

B'

Figure 13.2

13.3. Asymptotic behavior near the zero set

13.3.1. Lipschitz domains. The object of this section is a study of the behavior of

a caloric function, near a part of the boundary where it vanishes.

In the next two lemmas D is a Lipschitz domain, like in section 2. Then, by Lemma 13.15,

u is “almost” harmonic at each time level near Q1 ∩ ∂D and its boundary behavior is like

in Lemma 11.17 and remark 11.18.

Lemma 13.17. Let u be caloric in D, monotone increasing along every σ ∈ Γ(en, θ).

Suppose there is an n-dimensional ball B′ ⊂ D ∩ {t = 0} (resp. B′ ⊂ CD ∩ {t = 0}) such

that B′ ∩ ∂D = {(0, 0)}.
Then near x = 0, on the hyperplane t = 0, if ν denotes the inward (resp. outward)

normal unit vector to ∂B at (0, 0),

u(x, 0) = α〈x, ν〉+ + o(|x|) (13.26)

for some α ∈ (0,∞] (resp. α ∈ [0,∞)). When α = ∞ we mean that u grows faster than

any linear function.

Proof. Let w+ and w− be as in Lemma 13.15. Since u1+ε = o(u), (13.26) will follow

if we prove that

w−(x, 0) = α〈x, ν〉+ + o(|x|)
when B′ ⊂ D ∩ {t = 0}, and

w+(x, 0) = α〈x, ν〉+ + o(|x|)

when B′ ⊂ CD ∩ {t = 0}.
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Suppose B′ ⊂ D ∩ {t = 0} and let r > 0 be the radius of B′. With no loss of generality

we may assume that ν = en. For δ < r
n−1 and a = r

2(n−1) , define in B′
δ(0)∩B′ the function

ϕ(x) = xn +
1
2a

x2
n −

1
2a(n − 1)

|x′|2 .

Then, Δϕ = 0 and B′
δ(0) ∩ {ϕ > 0} ⊂ B′

δ(0) ∩ B′. Moreover, it is enough to prove (13.26)

in Bδ(0) ∩ {ϕ > 0}.
Let

αk = sup{m : w−(x, 0) ≥ mϕ(x), ∀ x ∈ Bδ/2k (0) ∩ {ϕ > 0}}
and, since αk is nondecreasing, set

α = supαk = lim
k→∞

αk .

Notice that α > 0. If α =∞ then we are done. If α <∞, then

w−(x, 0) ≥ αϕ(x) + o(|x|) = αxn + o(|x|) (13.27)

in Bδ(0) ∩ {ϕ > 0}. We want to show that equality holds in (13.27).

Suppose not. Then there exists a sequence of points {xk} with xk → 0, such that

w−(xk, 0) − αϕ(xk) ≥ η|xk|

for some η > 0. Since w− is monotone increasing along Γ(en, θ), with no loss of generality

we may suppose that dxk,0 ≈ |xk| = δ/2k and that k > k0, with k0 large, to be chosen later.

Let h be harmonic in B′
δ2−k0

(0) ∩D with h = w+ on ∂(B′
δ2−k0

∩D). Then

h ≥ w+ ≥ w− in B′
δ2−k0

∩D

and, a fortiori, since αk ≤ αk+1 ≤ α,

h(xk)− αk+1ϕ(xk) ≥ η|xk|
h(x)− αk+1ϕ(x) ≥ 0 in B′

δ2−k+1 ∩ {ϕ > 0} .
(13.28)

By Harnack inequality, on a fixed (independent of k) portion of ∂B′
δ2−k (0), we have

h(x)− αk+1ϕ(x) ≥ cη|xk| . (13.29)

Rescale by setting

wk(x) = 2k−1h(2−k+1x)− αk+12k−1ϕ(2−k+1x) ≡ hk(x)− αk+1ϕk(x) .

Then wk is harmonic and positive in B′
2δ(0) and from (13.29), on a fixed portion Γδ of

∂B′
δ(0),

wk ≥ cη .
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Let wx
k be the harmonic measure in B′

δ(0)∩ {ϕk > 0}. Then, in B′
δ/2(0) ∩ {ϕk > 0}, by the

comparison principle for harmonic function,

wk(x) ≥ cηωx
k (Γδ) ≥ c(δ)ηϕk(x) .

Rescaling back, we obtain

h(x)− αk+1ϕ(x) ≥ c(δ)ηϕ(x) (13.30)

in B′
δ2−k−1(0) ∩ {ϕ > 0}.
Choose now k0 and c, depending only on ε, n, L, such that

w+ ≤ (1 + c−k0)w−

in B′
δ2−k0

(0) ∩ {ϕ > 0}. Then, by maximum principle, since w− is superharmonic, in this

set we have

h ≤ (1 + c−k0)w−

and, from (13.30)

w−(x) ≥ αk+1 + c(δ)
1 + c−k0

ϕ(x) (13.31)

in B′
δ2−k−1(0) ∩ {ϕ > 0}, a contradiction to the definition of αk+1, if k0 is large.

In the case B′ ⊂ CD ∩ {t = 0}, choose δ and a as above and define

ϕ̃(x) = xn − 1
2a

x2
n +

1
2a(n − 1)

|x′|2 .

Then, ϕ̃ is harmonic and B′
δ(0) ∩ CB ⊂ B′

δ(0) ∩ {ϕ̃ > 0}. Moreover, set

w̃+(x) =

{
w+(x, 0) x ∈ D ∩B′

δ(0)
0 x ∈ CD ∩B′

δ(0).

Then w̃+ is subharmonic in B′
δ(0). Define now

αk = inf{m : w̃+ ≤ mϕ̃, ∀ x ∈ B′
δ2−k(0) ∩ {ϕ̃ > 0}}

and, since αk is non increasing, set

α = inf αk = lim
k→∞

αk .

We have 0 ≤ α <∞ and, in B′
δ(0) ∩ {ϕ̃ > 0},

w̃+(x) ≤ αϕ̃(x) + o(|x|) = αx+
n + o(|x|) . (13.32)

To show that equality holds in (13.32) one can proceed as before. �

We now prove an asymptotic estimate in space and time at regular points of the zero

set.

Lemma 13.18. Let u be caloric in D, monotone increasing along every σ ∈ Γ(en, θ).

Assume that there is an (n + 1)-dimensional ball B such that B̄ ∩ ∂D = {(0, 0)}, and
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(i) B ⊂ D. Then, near (0, 0), for t ≤ 0

u(x, t) ≥ [βt + α〈x, ν〉]+ + o(d(x, t)) (13.33)

for some β ∈ R, α ∈ (0,∞], where ν is the spatial unit inward normal to ∂B∩{t =

0} and d(x, t) =
√|x|2 + t2.

(ii) B ⊂ CD. Then, near (0, 0), for t ≤ 0

u(x, t) ≤ [βt + α〈x, ν〉]+ + o(d(x, t)) (13.34)

for some β ∈ R, α ∈ [0,∞), where ν is the outward unit normal to ∂B at (0, 0).

Moreover, equality holds in (13.33), (13.34) when t = 0.

Proof. First assume B ⊂ D and, without loss of generality, that ν = en. Define

ψ(x, t) = αxn + βt +
β

2
x2

n − c1t

[
t +
|x|2
n

]
− c2

[ |x′|2
n− 1

− x2
n

]
− c1

12n

n∑
j=1

x4
j ,

where α is as in Lemma 13.17 if α < ∞, otherwise is any α > 0, and β ∈ R is chosen so

that the level surface {ψ(x, t) = 0} is tangent to B at (0, 0).

The function ψ is a solution of the heat equation: Hψ = 0. Moreover one can choose

c1 � 1 and c2 > 0, ε > 0 so that {ψ(x, t) > 0}∩Bε(0, 0) ⊂ B. The conclusion of the lemma

will follow if we can prove that, near (0, 0), for t ≤ 0,

u(x, t) ≥ ψ(x, t) + o(d(x, t)) (13.35)

in {ψ(x, t) > 0} ∩Bε(0, 0).

Define

ψδ(x, t) = ψ(x, t) − δ

(
xn +

β

2α
x2

n +
β

α
t

)
and, for h > 0,

Dh,δ = {ψδ(x, t) > 0} ∩ {|xn| <
√

h, −h < t < 0} .

Then, (13.35) follows if we show that, for every small δ > 0 and for a small h > 0

u(x, t) ≥ ψδ(x, t) + o(d(x, t)) + o(h)

in Dh,δ.

Take 0 < δ1 < δ and observe that:

a) on ∂Dh,δ1 ∩ {ψδ1(x, t) = 0}, we have clearly

u ≥ ψδ1 .
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t

xn

x'

Dh,

Sh

t = 0

t = -h

xn + t = 0

h

h

= 0

= 0

Figure 13.3

b) on ∂Dh,δ1 ∩ {xn ≥ h cot θ, t = −h}, we have, by the cone of monotonicity,

u(x,−h)− ψδ1(x,−h) ≥ u(x′, xn − h cot θ, 0)− ψδ1(x,−h)

and by Lemma 13.17

≥ α(xn − h cot θ) + o(|x|) − ψδ1(x,−h)

≥ −ch + o(|x|) + o(h) ≡ −ch + o(x, h)

c) on ∂Dh,δ1 ∩ {xn < h cot θ, t = −h}, u ≥ 0 and ψδ1 ≤ ch + o(|x|) + o(h) so that

u(x,−h)− ψδ1(x,−h) ≥ −ch + o(|x|) + o(h) ≡ −ch + o(x, h)

d) on Sh = ∂Dh,δ1 ∩ {xn =
√

h}, we have, by the cone of monotonicity,

u(x′,
√

h, t) ≥ u(x′,
√

h− (t + h) cot θ,−h) .

For h small,
√

h− (t + h) cot θ ≥ h cot θ, so that, from b),

u(x′,
√

h, t) ≥ −ch + o(|x|) + o(h) ≡ −ch + o(x, h) .

Now set g(x, t) = −c̄hω
(x,t)
h,δ1

, where ω
(x,t)
h,δ1

denotes the caloric measure in Dh,δ1 of the set

∂Dh,δ1 \ {ψδ1 = 0}. Choosing c̄ large enough, by maximum principle, we can write

u− ψδ1 ≥ g in Dh,δ1 .

By a priori estimates, in Dh/2,δ1 ,

|gt|, |∇g| ≤ c
√

h

and therefore, in the same set,

g(x, t) ≥ −c
√

h xn .

Thus, in Dh/2,δ1 ,

u(x, t)− ψδ1(x, t) ≥ −c
√

h xn . (13.36)
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Let now h be so small that

δ1 + c
√

h < δ .

Then, from (13.36),

u(x, t) ≥ ψδ(x, t)− β

α
t(δ1 − δ) + o(d(x, t))

≥ ψδ(x, t) + o(d(x, t)) + o(h) .

In case (ii), set

ψ̃(x, t) = −ψ(−x, t)

and observe that, Bε(0, 0) ∩ CB ⊂ Bε(0, 0) ∩ {ψ̃ > 0}.
Now, if we extend u by zero across ∂D, we can proceed as above to prove that, near

(0, 0), for t ≤ 0

u(x, t) ≤ ψ̃(x, t) + o(d(x, t))

in Bε(0, 0) ∩ {ψ̃ > 0}.
The conclusion follows easily. �

Remark. One can prove that, actually, the conclusions of Lemma 13.18 hold near (0, 0)

also for t ≥ 0. See, anyway, the next lemma.

13.3.2. General domains. Suppose we now drop the hypotheses that D is a Lipschitz

domain and it is merely an open set. Thus, let u be caloric in D, vanishing (say) on

F = ∂D ∩Q1 and assume (0, 0) ∈ F and it is a regular point.

At this level of generality asymptotic inequalities like (13.33) and (13.34) still hold,

restricting (x, t) ∈ B in the case (i) and (x, t) ∈ CB in the case (ii). On the other hand,

when D is Lipschitz, equality holds for t = 0. In general, we can only achieve equality along

paraboloids coming from the past. To show it we need (13.33) and (13.34) to hold also for

t > 0, near (0, 0). Precisely, we have

Lemma 13.19. Let u be caloric in the open set D, vanishing on F = ∂D ∩Q1. Suppose

(0, 0) ∈ F and there is an (n + 1)-dimensional ball B such that B̄ ∩ F = {(0, 0)}. Assume

that the tangent plane to B at (0, 0) is given by

β̄t + ᾱ〈x, ν〉 = 0

for some spatial unit vector ν and some real numbers ᾱ, β̄, ᾱ > 0 (−β̄/ᾱ finite). Then,

either u grows more than any linear function or:

a) The asymptotic behavior in (i) and (ii) of Lemma 13.18 hold near (0, 0) in B (with

α+ finite) and in CB, respectively.
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b) Equality holds in (13.33), (13.34) along any paraboloids of the form t = −γ〈x, ν〉2,
γ > 0.

Proof. Assume first B ⊂ D and ν = en. Take ψ as in Lemma 13.18. Let Ck =

B2−k(0, 0) ∩ (−4−k, 4−k)

Dk = Ck ∩ {ψ > 0} .

For 2−k < ε, set

mk = sup{m : u(x, t) ≥ mψ(x, t), ∀ (x, t) ∈ Dk} .

Clearly, mk > 0 for each k and mk is nondecreasing. Define m∞ = supmk.

If m∞ =∞, then u grows more than any linear function near (0, 0). On the other hand,

if m∞ is finite, we have

u(x, t) ≥ m∞ψ(x, t) + o(d(x, t)) in Bε ∩ {ψ > 0} .

Setting ᾱ = m∞α, β̄ = m∞β, we have (13.33), with α = ᾱ, β = β̄.

If (ii) holds, let

ψ̃(x, t) = −ψ(−x, t)

and extend u by zero outside D. Moreover, let

D̃k = Ck ∩ {ψ̃ > 0} .

If c1, c2, and ε are suitably chosen, we have Bε(0, 0) ∩ CB ⊂ Bε(0, 0) ∩ {ψ̃ > 0}. Define

mk = inf{m : u(x, t) ≤ mψ̃(x, t), ∀ (x, t) ∈ D̃k} .

Then mk is nonincreasing and if we set m∞ = inf mk, we have

u(x, t) ≤ m∞ψ̃(x, t) + o(d(x, t))

in Bε(0, 0) ∩ {ψ̃ > 0}. If we set ᾱ = m∞α, β̄ = m∞β, we obtain (13.34), again with α = ᾱ

and β = β̄.

Take now a paraboloid t = −γx2
n, γ > 0, and assume that equality does not hold in

(13.33). Then, there exists a sequence of points {pk = (xk, tk)} with tk = −γ(xk)2n such

that pn → (0, 0) and

u(pk)−m∞ψ(pk) ≥ ηψ(pk)

for some η > 0 and k large enough. Let Cj = B2−j×(−4−j , 4−j). We can find a subsequence

{jk} such that pk ∈ Cjk
\ C̄jk+1

and tk < −4−jk+12, 2−jk+1 < |xk| < 2−jk−1. Then, with mk

as in Lemma 13.18, since mjk+1
< m∞,

u(pk)−mjk+1
ψ(pk) ≥ ηψ(pk) .
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Perform the dilation x �→ 2−jkx, t �→ 4−jk t and set

ũ(x, t) = 2jku(2−jkx, 4−jkt) , ψ̃(x, t) = 2jkψ(2−jkx, 4−jk t) .

Cjk
transforms into C̃1 and C̃jk+1

into C̃k0 , for some k0. In Q̃1 = C̃1 ∩ {ψ̃ > 0} we have

ũ(p)−mjk+1
ψ̃(p) ≥ 0

and

ũ(p̃)−mjk+1
ψ̃(p̃) ≥ ηψ̃(p̃) (13.37)

where p̃ ∈ Q̃1 \ Q̃1/2 is the dilated pk. Let p̃ = (p̃′, x̃n, t̃) and introduce the set

Σ =
{
(x′, xn, t) : |x′| < b, xn = x̃n + b, t̃ + b < t < t̃ + 2b

}
where b is positive and small enough so that Σ ⊂ Q̃1, t̃ + 3b < −4−k0 .

From Harnack inequality and (13.37), on Σ

ũ(p)−mjk+1
ψ̃(p) ≥ cηψ̃(p) (c = c(n, b)) .

Let now ωp be the caloric measure in Q̃1 ∩ {xn < x̃n + b} Then, in Q̃k0 = C̃k0 ∩ {ψ̃ > 0}

ũ(p)−mjk
ψ̃(p̃) ≥

∫
Σ
[ũ−mjk+1

ψ̃] dωp ≥
≥ cηωp(Σ)

with c = (n, b). On the other hand, since ωp(Σ) vanishes on C̃k0 ∩ {ψ̃ = 0}, by the

comparison Theorem 13.3,
ωp(Σ)
ψ̃(p)

≥ c
ωĀ(Σ)
ψ̃(A

¯
)
≥ c(n, b)

in Q̃k0, where Ā = (0, 2−k0+1, 4−k0+1), A
¯

= (0,−2−k0+1,−4−k0+1). Rescaling back, we

obtain

u(p)−mjk+1
ψ(p) ≥ cηψ(p)

in Cjk+1
, which contradicts the definition of mjk+1

.

In the case the ball B touches ∂D at (0, 0) from the other side, the proof is similar. �

13.4. ε-monotonicity and full monotonicity

The notion of ε-monotonicity can be clearly extended to function u = u(x, t): given

ε > 0, u is ε-monotone in the direction τ if

u(p + λτ) ≥ u(p) (p = (x, t))

for every λ ≥ ε.

Suppose one of the following conditions holds:

(i) u is uniformly close to a two-plane function of the type ax+
n − bx−

n , a, b > 0
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(ii) u is trapped between two strictly monotone functions (i.e., with derivatives along

some (space-time) direction strictly positive)

(iii) u is uniformly close to a strictly monotone function along some spatial direction

and with small oscillation in time.

Then it is easy to check that, for a suitable ε > 0, u is ε-monotone in a cone of (space-time)

directions.

Situations like (i), (ii) or (iii) occur, for instance, in studying asymptotic limits (as

t→ +∞ or t→ 0+) or blowup sequences 1
λu(λx, λt) as λ→ 0. Two examples of applications

of these notions are given in section 10.8.

We denote by the symbols Γx(e, θx) and Γt(ν, θt) with ν ∈ span{en, et}, respectively,

a spatial circular cone of opening θx and axis e and a two-dimensional space-time cone of

opening θt and axis ν. Also, we recall, α(τ1, τ2) denotes the angle between the two directions

τ1 and τ2.

In this section we show that if a nonnegative caloric function u is ε-monotone in a

cylinder Q√
εM = B′√

εM
× (−εM, εM) along every direction τ ∈ Γx(en, θx) ∪ Γt(ν, θt),

then, in half the cylinder, u is fully monotone along the directions of slightly smaller cones.

Precisely, the main result of this section is the following.

Theorem 13.20. Let u be a nonnegative caloric function in Q√
εM , ε-monotone along

every τ ∈ Γx(en, θx) ∪ Γt(ν, θt), ν ∈ span{en, et}. Then there exists c > 0 such that

Dτu(0, 0) ≥ 0

for every τ ∈ Γx(en, θx − cε) ∪ Γt(ν, θt − c
√

ε).

We divide the proof in four steps.

1. Control of ut by u from below for solution of Δu + huxn − ut = 0.

2. ε-monotonicity implies monotonicity for directions τ = αen + βet, |β| ≥ β0 > 0.

3. Monotonicity along τ ∈ Γt(ν, θ0) and ε-monotonicity along a spacial direction e

implies monotonicity along ē = e + cεν.

4. ε-monotonicity along τ = αen + βet, β �= 0, implies monotonicity along τε =

τ + c|α|√ε en.

Lemma 13.21 (Step 1). Let u be a nonnegative solution of Lu = Δu + huxn − ut = 0 in

B′
2(0)× (−2, 0) where h is a real constant. Then, there exists a constant η > 0, η = η(n, h)

such that

ut(x, 0) ≥ −c(η)u(x, t)



13.4. ε-MONOTONICITY AND FULL MONOTONICITY 259

for every x ∈ B′
1/2(0) and every t, −η ≤ t ≤ 0.

Proof. Let G denote the Green’s function in B′
1× (−1, 0] for the operator L. Then, if

ν denotes the exterior normal to B′
1,

ut(x, 0) =
∫

B′
1

G(x, 0; y,−1)ut(y,−1) dy

−
∫ 0

−1

∫
∂B′

1

∂νG(x, 0; y, t)ut(y, t) dσy dt

=
∫

B′
1

G(x, 0; y,−1)(Δu + huxn)(y,−1) dy

+
∫ 0

−1

∫
∂B′

1

∂t∂νG(x, 0; y, t)u(y, t) dt dσy

−
∫

∂B′
1

∫ 0

−1
∂t(∂νG(x, 0; y, t)u(y, t)) dt dσy

=
∫

B′
1

ΔG(x, 0; y,−1)u(y,−1) dy

−
∫

B′
1

hGyn(x, 0; y,−1)u(y,−1) dy

+
∫ 0

−1

∫
∂B′

1

∂t∂νG(x, 0; y, t)u(y, t) dσy dt .

Now, there exists η > 0 such that ∂t∂νG(x, 0; y, t) is nonnegative in ∂B′
1 × [−η, 0). In fact,

perform the change of variables yn = −ht + ỹn, yi = ỹi, i = 1, . . . , n− 1, t = s, and set

v(y, s) = u(y′,−hs + yn, s) .

The function v satisfies the heat equation in the tilted cylinder

C̃ =
{
(y, s) : |y′|2 + (−hs + yn)2 ≤ 4, −2 ≤ s ≤ 0

}
.

If G̃ denotes the corresponding Green’s function, we have

G(x, 0; y′,−hs + yn, 0) = G̃(x, 0; y, s)

and therefore what we want to prove is that (∂s − h∂yn)G̃ν(x, 0; y, s) is nonnegative on the

lateral side of C̃ for |s| small.

Let Γ(x, 0; y, s) be the fundamental solution of the heat equation. Then, for s < 0,

∂sΓ(x, 0; y, s) =
[
2πn(−4πs)−

n
2
−1 − (−4πs)−

n
2
−2
[(x− y)2

4

]]
· Γ(x, 0; y, s)

∂ynΓ(x, 0; y, s) =
yn − xn

2
(−4πs)−

n
2
−1Γ(x, 0; y, s) ,

and therefore (∂s − h∂yn)Γ(x, 0; y, s) < 0 for |x− y| ≥ 1/4 and |s| small enough.
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Since G̃(x, 0; y, s) = Γ(x, 0; y, s) + w(x,0)(y, s) where w at s = 0 is zero of infinite order,

we conclude that, for η small enough, G̃ is strictly decreasing along the direction es − hen

on the lateral part of the cylinder

C̃x =
{|y′ − x′|2 + (−hs + yn − xn)2 ≤ 1

16 , s ∈ [−η, 0)
}

.

Since G̃ vanishes for s = 0 in the set B′
1−B′

1/4(x) and on the lateral part of C̃1, we conclude

that G̃ν is increasing along es − hen on the set ∂B′
1 × [−η, 0). Going back to the original

variables, we have ∂tGν > 0 on ∂B′
1 × [−η, 0).

By the fact that G is smooth away from the pole and by the Harnack inequality, the

proof is complete. �

Lemma 13.22 (Step 2). Let u be a nonnegative caloric function in Q√
εM = B′√

εM
×

(−εM, εM). Suppose that u is ε-monotone in the direction τ = αen + βet with α2 + β2 = 1

and |β| ≥ 1/2. Then, if M is large enough,

Dτu(0, 0) ≥ 0 .

Proof. Suppose first that α = 0 and β = 1. For any λ, 1 < λ < 1
4

√
M define in

Q√
εM/2

wλ(x, t) = u(x, t + λε)− u(x, t) ;

then

Dtwλ(0,−λε) = Dtu(0, 0) −Dtu(0,−λε)

or ∫ 2

1
Dtwλ(0,−λε) dλ = Dtu(0, 0) −

∫ 2

1
Dtu(0,−λε) dλ .

Therefore ∫ 2

1
Dtwλ(0,−λε) dλ = Dtu(0, 0) +

∫ 2

1

1
ε
Dλu(0,−λε) dλ

= Dtu(0, 0) − 1
ε
w1(0,−2ε) .

If 1 ≤ λ ≤ √M/10, by Harnack inequality, wλ(0, y) ≤ cλw1(0, y) in Q√
εM/8, so that, from

Lemma 13.22,

Dtwλ(0,−λε) ≥ −C(η)
εM

wλ(0,−εMη) ≥ −C(η)
εM

λw1(0,−2ε)

if M is chosen large enough. Hence

Dtu(0, 0) ≥ 1
ε

(
1− C

M

)
,

which is positive if M is large.
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Suppose, now, that α > 0, β ≥ 1/2. Perform the transformation yi = xi, i = 1, . . . , n−1,

yn = α
β t− xn, and s = t and set

v(y, s) = u(x, t) .

Then v is εβ-monotone in the es direction and

Lv − vs = Δv − α

β
vyn − vs = 0 in B′√

εM/2
×
(
−β

α
εM,

β

α
εM

)
∩Q√

εM .

Then as above, Dτu(0, 0) ≥ 0. The other cases are treated in a similar fashion. �

From Lemma 13.22 we infer that if a nonnegative caloric function is ε-monotone in a

cylinder Q√
εM along all the directions of a two-dimensional space-time cone Γt(ν, θt

0), then

it is fully monotone along the same directions in a smaller concentric cylinder. Therefore

in this smaller cylinder we have an estimate of the type |ut| ≤ c|∇xu|, with c = c(n,M, θt
0).

This observation will be used in the following lemma:

Lemma 13.23 (Step 3). Let u be a nonnegative caloric function in QεM := B′
εM ×

(−ε2M2, ε2M2). Suppose that u is monotone in Γt(en, θ0) for some θ0 and ε-monotone

along a space direction e. Then, if M = M(n, θ0) is large enough and εM small (< 1),

there exists a c = c(n, θ0) such that Dēu(0, 0) ≥ 0 where ē = e + cεMen.

Proof. For any 1 ≤ λ < M/2 and (x, t) ∈ QεM/2 define

wλ(x, t) := u(x + λεe, t)− u(x, t) .

Using the Harnack inequality in QεM/4, we have

wλ(x, t) ≤ w[λ]+2(x, t) ≤ Cλw1(x, t + rM2)

for some fixed r > 0. Since

Dewλ(0, 0) = Deu(λεe, 0) −Deu(0, 0) ,

by the above inequality and Schauder estimates, we obtain

w1(εe, 0) = u(2εe, 0) − u(εe, 0)

=
∫ 2

1
εDewλ(0, 0) dλ + εDeu(0, 0)

≤ C

M

∫ 2

1
wλ(0, rε2M2) dλ + εDeu(0, 0)

≤ C ′

M
w1(εe, 2ε2M2) + εDeu(0, 0) .



262 13. BOUNDARY BEHAVIOR OF CALORIC FUNCTIONS

Now,

w1(εe, 2ε2M2) = w1(εe, 2ε2M2)− w1(εe, 0) + w1(εe, 0)

≤ max |Dtw1|2ε2M2 + w1(εe, 0)

≤ C ′Denu(0, 0) · 2ε2M2 + w1(εe, 0) .

Therefore, if M is large enough

Deu(0, 0) + cεMDenu(0, 0) ≥ w1(εe, 0)
(
1− c

M

) 1
ε
≥ 0 .

�

Lemma 13.24 (Step 4). Suppose u is a nonnegative caloric function in

Q√
εM = B′√

εM
× (−εM, εM)

that is (fully) monotonically increasing along a cone Γt(en, θ0) and ε-monotone along a

direction τ = αe + βet where α2 + β2 = 1, β �= 0, and e spatial direction. Then if

M = M(n, θ) is large enough and ε small enough,

Dτεu(0, 0) ≥ 0

where τε = τ + c|α|√εen for some c = c(n, θ).

Proof. Suppose β > 0 (β < 1
2 ). Let 1 ≤ λ ≤ 1

2

√
M and set

wλ(p) = u(p)− u(p − λετ) (p = (x, t)) .

Since

Dλu(−λετ) = −εDτu(−λετ) ,

we have

w1(−ετ) = u(−ετ)− u(−2ετ) = −
∫ 2

1
Dλu(−λετ) dλ

=
∫ 2

1
εDτu(λετ) dλ = εDτu(0)− ε

∫ 2

1
Dτwλ(0) dλ

= εDτu(0)− ε

∫ 2

1
αDewλ(0) dλ − ε

∫ 2

1
βDtwλ(0) dλ .

By Schauder estimates in Q√
εM/4, and Harnack inequality,

|Dewλ(0)| ≤ C√
εM

wλ(εMet) ≤ Cλ√
εM

w1(−αεe + 2εMet)

and

w1(−αεe + 2εMet) ≤ CεMDenu(0) + w1(−ετ) .
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On the other hand, by Lemma 13.21

Dtwλ(0) ≥ −c(η)
Mε

wλ(−εt̄et) , −Mη ≤ t̄ ≤ 0 .

Choosing M large enough and t̄ of order 1, by Harnack inequality

Dtwλ(0) ≥ −c(η)
Mε

w1(−ετ) .

Collecting all our estimates, we have

w1(−ετ) ≤ εDτu(0) +
C

M
βw1(−ετ) + c|α|

√
ε

M
w1(−ετ)

+ c|α|ε√ε
√

MDenu(0)
or

Dτεu(0) ≥ w1(−ετ)
[
1− cβ

M
− c|α|

√
ε√
M

]
1
ε

which is positive if M is large enough. The case β < 0, can be treated in similar fashion. �

Remark. Note that if α = 0 in the above lemma, then τε = τ .

13.5. An excursion on caloric measure

Although caloric measure in a Lip(1, 1/2) domain D has the doubling properties ex-

pressed in Theorem 13.6, it is not absolutely continuous with respect to the measure

dHn−1 × dt on the parabolic boundary ∂pD (see [KW]). On the other hand, if D is a

Lipschitz cylinder, that is D = Ω × (0, T ) where Ω ⊂ R
n is a Lipschitz domain, then the

two measures are mutually absolutely continuous and a theorem similar to Theorem 11.9,

holds ([FS]). It turns out that the same kind of result holds also in Lip(1, 1) domains.

Theorem 13.25. Let D = Ψ1 be a Lipschitz domain on one side of a graph A = {xn =

f(x′, t)}, with |x′| < 1, |t| < 1. Let P0 = (x0, t0) ∈ D, fixed, and denote by ωP0 the caloric

measure in D at P0 and by σ the surface measure on ∂pD. Let K0 = dωP0

dσ . Then on A

(a) ωp0 � σ, σ � ωP0

(b) K0 ∈ L2(A) and, for every parabolic surface disc Δr ⊂ A ∩ {−1 + η ≤ t ≤ t0 − η}(∫
−

Δr

K2
0 dσ

)1/2

≤ c(n,Lip(f), P0, η)
∫
−

Δr

K0 dσ

(c) K0 ∈ A∞(dσ) on A.

Proof. We can assume that D is smooth, as long as all the estimates depend only on

n,Lip(D), P0. Let (0, 0) ∈ graph(f) and Δr = Δr(0, 0). From [FGS] we have, for r ≤ t0/2

and Ar = Ar(0, 0)

ωP0(Δr) ∼ rnG(P0, Ar) (13.38)
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that is, on Δr,

K0(y, s) ∼ Gyn(P0; y, s) .

Since H∗Gyn(P0; y, s) = 0 away from P0, we have, from the adjoint version of (13.15),∫
Δr

K2
0 dσ ≤ c(n,Lip(f), P0)

∫
D

H(ϕ2G)Gyn dy ds (13.39)

where ϕ = ϕ(y, s) is a cut-off function such that ϕ ≡ 1 in Qr and ϕ ≡ 0 outside ψ3r/2.

Since

H(ϕ2G) = 2∇ϕ2 · ∇G + GH(ϕ2)

we have, using Schwarz inequality and Lemma 13.11∣∣∣ ∫
D

H(ϕ2G)Gyn dy ds
∣∣∣ ≤ c(n,Lip(f), P0) · r−3

∫
ψ3/2

G2 dy ds

≤ c(n,Lip(f), P0)rn−1G2(P0, Ar)

by boundary Harnack principle.

From (13.38) and (13.39), we get∫
Δr

K2
0 dσ ≤ cr−n−1(ωP0(Δr))2

from which (a) and (b) follow easily. Now (c) is a consequence of the results in [CF]. �

Not only caloric and surface measure are mutually absolutely continuous on D.

Another important consequence of Lemma 13.15 is that caloric, harmonic and surface

measure are mutually absolutely continuous on ∂D at each time level. More precisely, let

G = G(x, t; y, s) be the Green’s function for the domain D and set G̃(x) = G(en, 1, x, 0).

Moreover, let g = g(x) be the Green’s function for the Laplace operator in D∩{t = 0} with

pole at en. Let G± = G̃± (G̃)1+ε and denote by P (G±) the harmonic replacements of G±
in D, respectively. From the adjoint version of Lemma 13.15 and the comparison theorem

for harmonic functions, it follows that, for suitable d1 and constants c, C, depending only

on n,L, and the values of G̃ and g at x = 1
2en (say), we have

P (G+) ≥ cg and P (G−) ≤ Cg

in Ψ1 ∩ {dx,0 < d1} ∩ {t = 0}.
By maximum principle, lowering d1 if necessary, we can write

P (G+) ≤ CP (G−) ≤ CG− ≤ CG

and

P (G−) ≥ cP (G+) ≥ cG+ ≥ cG
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in Ψ1 ∩ {dx,0 < d1} ∩ {t = 0}. Therefore in this set

G̃/g ∼ c . (13.40)

It follows that, basically, the normal derivative, G̃ν , of G̃ on Δ1 ∩ {t = 0} determines

simultaneously the densities of caloric and harmonic measure.

Therefore, they are mutually absolutely continuous at each level time between −1 and

1. From (13.40) their relative density is controlled from above and below by a constant

depending only on n,L, Ḡ(1
2en), g(1

2en).
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