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To the Student

With the hope that this work will stimulate 
an interest in Engineering Mechanics 

and provide an acceptable guide to its understanding.
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It is intended that this book provide the student with a clear and
thorough presentation of the theory and application of the principles of
mechanics of materials. To achieve this objective, over the years this
work has been shaped by the comments and suggestions of hundreds of
reviewers in the teaching profession, as well as many of the author’s
students. The eighth edition has been significantly enhanced from the
previous edition, and it is hoped that both the instructor and student will
benefit greatly from these improvements.

New to This Edition
• Updated Content. Some portions of the text have been rewritten
in order to enhance clarity and be more succinct. In this regard, some
new examples have been added and others have been modified to
provide more emphasis on the application of important concepts.
Also, the artwork has been improved throughout the book to support
these changes.
• New Photos. The relevance of knowing the subject matter is
reflected by the real-world applications depicted in over 44 new or
updated photos placed throughout the book. These photos generally
are used to explain how the relevant principles apply to real-world
situations and how materials behave under load.
• Fundamental Problems. These problem sets are located just
after each group of example problems. They offer students simple
applications of the concepts covered in each section and, therefore,
provide them with the chance to develop their problem-solving skills
before attempting to solve any of the standard problems that follow.
The fundamental problems may be considered as extended examples,
since the key equations and answers are all listed in the back of the
book. Additionally, when assigned, these problems offer students an
excellent means of preparing for exams, and they can be used at a later
time as a review when studying for the Fundamentals of Engineering
Exam.
• Conceptual Problems. Throughout the text, usually at the end of
each chapter, there is a set of problems that involve conceptual
situations related to the application of the principles contained in the
chapter. These analysis and design problems are intended to engage
the students in thinking through a real-life situation as depicted in a
photo. They can be assigned after the students have developed some
expertise in the subject matter and they work well either for individual
or team projects.
• New Problems. There are approximately 35%, or about 550, new
problems added to this edition, which involve applications to many
different fields of engineering. Also, this new edition now has
approximately 134 more problems than in the previous edition.

PREFACE
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• Problems with Hints. With the additional homework problems in
this new edition, every problem indicated with a bullet (•) before the
problem number includes a suggestion, key equation, or additional
numerical result that is given along with the answer in the back of the
book. These problems further encourage students to solve problems on
their own by providing them with additional checks to the solution.

Contents
The subject matter is organized into 14 chapters. Chapter 1 begins with
a review of the important concepts of statics, followed by a formal
definition of both normal and shear stress, and a discussion of normal
stress in axially loaded members and average shear stress caused by
direct shear.

In Chapter 2 normal and shear strain are defined, and in Chapter 3 a
discussion of some of the important mechanical properties of materials
is given. Separate treatments of axial load, torsion, and bending are
presented in Chapters 4, 5, and 6, respectively. In each of these chapters,
both linear-elastic and plastic behavior of the material are considered.
Also, topics related to stress concentrations and residual stress are
included. Transverse shear is discussed in Chapter 7, along with a
discussion of thin-walled tubes, shear flow, and the shear center. Chapter 8
includes a discussion of thin-walled pressure vessels and provides a partial
review of the material covered in the previous chapters, such that the state
of stress results from combined loadings. In Chapter 9 the concepts for
transforming multiaxial states of stress are presented. In a similar manner,
Chapter 10 discusses the methods for strain transformation, including the
application of various theories of failure. Chapter 11 provides a means for
a further summary and review of previous material by covering design
applications of beams and shafts. In Chapter 12 various methods for
computing deflections of beams and shafts are covered. Also included is a
discussion for finding the reactions on these members if they are statically
indeterminate. Chapter 13 provides a discussion of column buckling, and
lastly, in Chapter 14 the problem of impact and the application of various
energy methods for computing deflections are considered.

Sections of the book that contain more advanced material are
indicated by a star (*). Time permitting, some of these topics may be
included in the course. Furthermore, this material provides a suitable
reference for basic principles when it is covered in other courses, and it
can be used as a basis for assigning special projects.

Alternative Method of Coverage. Some instructors prefer to
cover stress and strain transformations first, before discussing specific
applications of axial load, torsion, bending, and shear. One possible
method for doing this would be first to cover stress and its
transformation, Chapter 1 and Chapter 9, followed by strain and its
transformation, Chapter 2 and the first part of Chapter 10. The
discussion and example problems in these later chapters have been
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styled so that this is possible. Also, the problem sets have been
subdivided so that this material can be covered without prior knowledge
of the intervening chapters. Chapters 3 through 8 can then be covered
with no loss in continuity.

Hallmark Elements
Organization and Approach. The contents of each chapter are
organized into well-defined sections that contain an explanation of
specific topics, illustrative example problems, and a set of homework
problems. The topics within each section are placed into subgroups
defined by titles. The purpose of this is to present a structured method
for introducing each new definition or concept and to make the book
convenient for later reference and review.

Chapter Contents. Each chapter begins with a full-page
illustration that indicates a broad-range application of the material
within the chapter. The “Chapter Objectives” are then provided to give a
general overview of the material that will be covered.

Procedures for Analysis. Found after many of the sections of the
book, this unique feature provides the student with a logical and orderly
method to follow when applying the theory. The example problems are
solved using this outlined method in order to clarify its numerical
application. It is to be understood, however, that once the relevant
principles have been mastered and enough confidence and judgment
have been obtained, the student can then develop his or her own
procedures for solving problems.

Photographs. Many photographs are used throughout the book to
enhance conceptual understanding and explain how the principles of
mechanics of materials apply to real-world situations.

Important Points. This feature provides a review or summary of
the most important concepts in a section and highlights the most
significant points that should be realized when applying the theory to
solve problems.

Example Problems. All the example problems are presented in a
concise manner and in a style that is easy to understand.

Homework Problems. Numerous problems in the book depict
realistic situations encountered in engineering practice. It is hoped that
this realism will both stimulate the student’s interest in the subject and
provide a means for developing the skill to reduce any such problem
from its physical description to a model or a symbolic representation to
which principles may be applied. Throughout the book there is an
approximate balance of problems using either SI or FPS units.
Furthermore, in any set, an attempt has been made to arrange the
problems in order of increasing difficulty. The answers to all but every
fourth problem are listed in the back of the book. To alert the user to a
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problem without a reported answer, an asterisk(*) is placed before the
problem number. Answers are reported to three significant figures,
even though the data for material properties may be known with less
accuracy. Although this might appear to be a poor practice, it is done
simply to be consistent and to allow the student a better chance to
validate his or her solution. A solid square (■) is used to identify
problems that require a numerical analysis or a computer application.

Appendices. The appendices of the book provide a source for
review and a listing of tabular data. Appendix A provides information
on the centroid and the moment of inertia of an area. Appendices B and
C list tabular data for structural shapes, and the deflection and slopes of
various types of beams and shafts.

Accuracy Checking. The Eighth Edition has undergone our
rigorous Triple Accuracy Checking review. In addition to the author’s
review of all art pieces and pages, the text was checked by the following
individuals:

• Scott Hendricks, Virginia Polytechnic University

• Karim Nohra, University of South Florida

• Kurt Norlin, Laurel Tech Integrated Publishing Services

• Kai Beng Yap, Engineering Consultant
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Resources for Instructors
• Instructor’s Solutions Manual. An instructor’s solutions manual
was prepared by the author. The manual includes homework assignment
lists and was also checked as part of the accuracy checking program.

• Presentation Resources. All art from the text is available in
PowerPoint slide and JPEG format. These files are available for
download from the Instructor Resource Center at http://www.
pearsonhighered. com. If you are in need of a login and password for this
site, please contact your local Pearson Prentice Hall representative.

• Video Solutions. Developed by Professor Edward Berger,
University of Virginia, video solutions located on the Companion
Website offer step-by-step solution walkthroughs of representative
homework problems from each section of the text. Make efficient use of
class time and office hours by showing students the complete and
concise problem solving approaches that they can access anytime and
view at their own pace. The videos are designed to be a flexible resource
to be used however each instructor and student prefers. A valuable
tutorial resource, the videos are also helpful for student self-evaluation
as students can pause the videos to check their understanding and 
work alongside the video. Access the videos at http://www.
pearsonhighered.com/hibbeler and follow the links for the Mechanics of
Materials text.

Resources for Students
• Companion Website—The Companion Website, located at
http://www.pearsonhighered.com/hibbeler includes opportunities for
practice and review including:

• Video Solutions—Complete, step-by-step solution walkthroughs
of representative homework problems from each section. Videos
offer:

• Fully Worked Solutions—Showing every step of representative
homework problems, to help students make vital connections
between concepts.

• Self-Paced Instruction—Students can navigate each problem
and select, play, rewind, fast-forward, stop, and jump-to-sections
within each problem’s solution.

• 24/7 Access—Help whenever students need it with over 20
hours of helpful review.

An access code for the Mechanics of Materials, Eighth Edition website
was included with this text. To redeem the code and gain access to
the site, go to http://www.pearsonhighered.com/hibbeler and follow the
directions on the access code card. Access can also be purchased directly
from the site.

http://www.pearsonhighered.com
http://www.pearsonhighered.com
http://www.pearsonhighered.com/hibbeler
http://www.pearsonhighered.com/hibbeler
http://www.pearsonhighered.com/hibbeler
http://www.pearsonhighered.com/hibbeler
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The bolts used for the connections of this steel framework are subjected to stress. In this
chapter we will discuss how engineers design these connections and their fasteners.



1

3

CHAPTER OBJECTIVES

In this chapter we will review some of the important principles of
statics and show how they are used to determine the internal resultant
loadings in a body. Afterwards the concepts of normal and shear
stress will be introduced, and specific applications of the analysis and
design of members subjected to an axial load or direct shear will be
discussed.

1.1 Introduction

Mechanics of materials is a branch of mechanics that studies the internal
effects of stress and strain in a solid body that is subjected to an external
loading. Stress is associated with the strength of the material from which
the body is made, while strain is a measure of the deformation of the
body. In addition to this, mechanics of materials includes the study of
the body’s stability when a body such as a column is subjected to
compressive loading. A thorough understanding of the fundamentals of
this subject is of vital importance because many of the formulas and rules
of design cited in engineering codes are based upon the principles of this
subject.

Stress



Historical Development. The origin of mechanics of materials
dates back to the beginning of the seventeenth century, when Galileo
performed experiments to study the effects of loads on rods and beams
made of various materials. However, at the beginning of the eighteenth
century, experimental methods for testing materials were vastly
improved, and at that time many experimental and theoretical studies
in this subject were undertaken primarily in France, by such notables as
Saint-Venant, Poisson, Lamé, and Navier.

Over the years, after many of the fundamental problems of mechanics
of materials had been solved, it became necessary to use advanced
mathematical and computer techniques to solve more complex problems.
As a result, this subject expanded into other areas of mechanics, such as the
theory of elasticity and the theory of plasticity. Research in these fields
is ongoing, in order to meet the demands for solving more advanced
problems in engineering.

1.2 Equilibrium of a Deformable Body

Since statics has an important role in both the development and application
of mechanics of materials, it is very important to have a good grasp of its
fundamentals. For this reason we will review some of the main principles
of statics that will be used throughout the text.

External Loads. A body is subjected to only two types of external
loads; namely, surface forces or body forces, Fig. 1–1.

Surface Forces. Surface forces are caused by the direct contact of one
body with the surface of another. In all cases these forces are distributed
over the area of contact between the bodies. If this area is small in
comparison with the total surface area of the body, then the surface force
can be idealized as a single concentrated force, which is applied to a point
on the body. For example, the force of the ground on the wheels of a
bicycle can be considered as a concentrated force. If the surface loading is
applied along a narrow strip of area, the loading can be idealized as a
linear distributed load, w(s). Here the loading is measured as having an
intensity of force/length along the strip and is represented graphically by a
series of arrows along the line s. The resultant force of w(s) is
equivalent to the area under the distributed loading curve, and this
resultant acts through the centroid C or geometric center of this area. The
loading along the length of a beam is a typical example of where this
idealization is often applied.

FR
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Fig. 1–1

w(s)

 Concentrated force
idealization

Linear distributed
load 

Surface 
force 

Body
force

s

C

G

FR W



Body Forces. A body force is developed when one body exerts a force on
another body without direct physical contact between the bodies. Examples
include the effects caused by the earth’s gravitation or its electromagnetic
field.Although body forces affect each of the particles composing the body,
these forces are normally represented by a single concentrated force acting
on the body. In the case of gravitation, this force is called the weight of the
body and acts through the body’s center of gravity.

Support Reactions. The surface forces that develop at the supports
or points of contact between bodies are called reactions. For two-
dimensional problems, i.e., bodies subjected to coplanar force systems,
the supports most commonly encountered are shown in Table 1–1. Note
carefully the symbol used to represent each support and the type of
reactions it exerts on its contacting member. As a general rule, if the
support prevents translation in a given direction, then a force must be
developed on the member in that direction. Likewise, if rotation is
prevented, a couple moment must be exerted on the member. For example,
the roller support only prevents translation perpendicular or normal to
the surface. Hence, the roller exerts a normal force F on the member at
its point of contact. Since the member can freely rotate about the roller,
a couple moment cannot be developed on the member.

1.2 EQUILIBRIUM OF A DEFORMABLE BODY 5

1

F

F

Type of connection Reaction

Cable

Roller

One unknown: F

One unknown: F

F
Smooth support One unknown: F

 External pin

Internal pin

Fx

Fy

Fx

Fy

Two unknowns: Fx, Fy

Fx

Fy
M

Fixed support Three unknowns: Fx, Fy, M

Two unknowns: Fx, Fy

Type of connection Reaction

u u

u

Many machine elements are pin connected
in order to enable free rotation at their
connections. These supports exert a force on
a member, but no moment.

TABLE 1–1
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Equations of Equilibrium. Equilibrium of a body requires both
a balance of forces, to prevent the body from translating or having
accelerated motion along a straight or curved path, and a balance of
moments, to prevent the body from rotating. These conditions can be
expressed mathematically by two vector equations

(1–1)

Here, represents the sum of all the forces acting on the body, and
is the sum of the moments of all the forces about any point O

either on or off the body. If an x, y, z coordinate system is established
with the origin at point O, the force and moment vectors can be resolved
into components along each coordinate axis and the above two
equations can be written in scalar form as six equations, namely,

(1–2)

Often in engineering practice the loading on a body can be represented
as a system of coplanar forces. If this is the case, and the forces lie in the
x–y plane, then the conditions for equilibrium of the body can be
specified with only three scalar equilibrium equations; that is,

(1–3)

Here all the moments are summed about point O and so they will be
directed along the z axis.

Successful application of the equations of equilibrium requires
complete specification of all the known and unknown forces that act on
the body, and so the best way to account for all these forces is to draw
the body’s free-body diagram.

©Fx = 0
©Fy = 0

©MO = 0

©Fx = 0 ©Fy = 0 ©Fz = 0
©Mx = 0 ©My = 0 ©Mz = 0

©  MO

©  F

©F = 0
©MO = 0

1

In order to design the horizontal members
of this building frame, it is first necessary to
find the internal loadings at various points
along their length.
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Internal Resultant Loadings. In mechanics of materials, statics
is primarily used to determine the resultant loadings that act within a
body. For example, consider the body shown in Fig. 1–2a, which is held in
equilibrium by the four external forces.∗ In order to obtain the internal
loadings acting on a specific region within the body, it is necessary to pass
an imaginary section or “cut” through the region where the internal
loadings are to be determined. The two parts of the body are then
separated, and a free-body diagram of one of the parts is drawn, Fig. 1–2b.
Notice that there is actually a distribution of internal force acting on the
“exposed” area of the section. These forces represent the effects of the
material of the top part of the body acting on the adjacent material of
the bottom part.

Although the exact distribution of this internal loading may be unknown,
we can use the equations of equilibrium to relate the external forces on the
bottom part of the body to the distribution’s resultant force and moment,

and at any specific point O on the sectioned area, Fig. 1–2c. It
will be shown in later portions of the text that point O is most often
chosen at the centroid of the sectioned area, and so we will always choose
this location for O, unless otherwise stated. Also, if a member is long and
slender, as in the case of a rod or beam, the section to be considered is
generally taken perpendicular to the longitudinal axis of the member.
This section is referred to as the cross section.

MRO
,FR

1

*The body’s weight is not shown, since it is assumed to be quite small, and therefore
negligible compared with the other loads.

Fig. 1–2

section

F4

F2

(a)

F1

F3

F1
F2

(b)

FR 

F1 F2

O

MRO

(c)
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Three Dimensions. Later in this text we will show how to relate the
resultant loadings, and to the distribution of force on the
sectioned area, and thereby develop equations that can be used for
analysis and design. To do this, however, the components of and 
acting both normal and perpendicular to the sectioned area must be
considered, Fig. 1–2d. Four different types of resultant loadings can then
be defined as follows:

Normal force, N. This force acts perpendicular to the area. It is
developed whenever the external loads tend to push or pull on the two
segments of the body.

Shear force, V. The shear force lies in the plane of the area and it is
developed when the external loads tend to cause the two segments of
the body to slide over one another.

Torsional moment or torque, T. This effect is developed when the
external loads tend to twist one segment of the body with respect to
the other about an axis perpendicular to the area.

Bending moment, M. The bending moment is caused by the
external loads that tend to bend the body about an axis lying within the
plane of the area.

In this text, note that graphical representation of a moment or torque is
shown in three dimensions as a vector with an associated curl. By the right-
hand rule, the thumb gives the arrowhead sense of this vector and the
fingers or curl indicate the tendency for rotation (twisting or bending).

MRO
FR

MRO
,FR

1

(d)

O

F1 F2

N

T

M
V

Torsional
Moment

Bending
Moment

Shear
Force

MRO

FR

Normal
Force

O

(c)

MRO

F1 F2

FR

Fig. 1–2 (cont.)



1.2 EQUILIBRIUM OF A DEFORMABLE BODY 9

Coplanar Loadings. If the body is subjected to a coplanar system of
forces,Fig. 1–3a, then only normal-force, shear-force,and bending- moment
components will exist at the section, Fig. 1–3b. If we use the x, y, z
coordinate axes, as shown on the left segment, then N can be obtained by
applying and V can be obtained from Finally, the
bending moment can be determined by summing moments about
point O (the z axis), in order to eliminate the moments
caused by the unknowns N and V.

©MO = 0,
MO

©Fy = 0.©Fx = 0,

1

Fig. 1–3

section

F4

F3
F2

F1

(a)

O

V
MO

N
x

y

Bending
Moment

Shear
Force

Normal
Force

(b)

F2

F1

Important Points

• Mechanics of materials is a study of the relationship between the
external loads applied to a body and the stress and strain caused
by the internal loads within the body.

• External forces can be applied to a body as distributed or
concentrated surface loadings, or as body forces that act
throughout the volume of the body.

• Linear distributed loadings produce a resultant force having a
magnitude equal to the area under the load diagram, and having a
location that passes through the centroid of this area.

• A support produces a force in a particular direction on its
attached member if it prevents translation of the member in that
direction, and it produces a couple moment on the member if it
prevents rotation.

• The equations of equilibrium and must be
satisfied in order to prevent a body from translating with
accelerated motion and from rotating.

• When applying the equations of equilibrium, it is important to
first draw the free-body diagram for the body in order to account
for all the terms in the equations.

• The method of sections is used to determine the internal
resultant loadings acting on the surface of the sectioned body. In
general, these resultants consist of a normal force, shear force,
torsional moment, and bending moment.

©M = 0©F = 0
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1

The following examples illustrate this procedure numerically and also
provide a review of some of the important principles of statics.

Procedure for Analysis

The resultant internal loadings at a point located on the section of a
body can be obtained using the method of sections. This requires
the following steps.

Support Reactions.

• First decide which segment of the body is to be considered. If the
segment has a support or connection to another body, then before
the body is sectioned, it will be necessary to determine the
reactions acting on the chosen segment. To do this draw the free-
body diagram of the entire body and then apply the necessary
equations of equilibrium to obtain these reactions.

Free-Body Diagram.

• Keep all external distributed loadings, couple moments, torques,
and forces in their exact locations, before passing an imaginary
section through the body at the point where the resultant internal
loadings are to be determined.

• Draw a free-body diagram of one of the “cut” segments and
indicate the unknown resultants N, V, M, and T at the section.
These resultants are normally placed at the point representing
the geometric center or centroid of the sectioned area.

• If the member is subjected to a coplanar system of forces, only N,
V, and M act at the centroid.

• Establish the x, y, z coordinate axes with origin at the centroid
and show the resultant internal loadings acting along the axes.

Equations of Equilibrium.

• Moments should be summed at the section, about each of the
coordinate axes where the resultants act. Doing this eliminates
the unknown forces N and V and allows a direct solution for M
(and T).

• If the solution of the equilibrium equations yields a negative
value for a resultant, the assumed directional sense of the
resultant is opposite to that shown on the free-body diagram.
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1

Determine the resultant internal loadings acting on the cross section
at C of the cantilevered beam shown in Fig. 1–4a.

SOLUTION
Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered.

Free-Body Diagram. The free-body diagram of segment CB is shown
in Fig. 1–4b. It is important to keep the distributed loading on the
segment until after the section is made. Only then should this loading
be replaced by a single resultant force. Notice that the intensity of the
distributed loading at C is found by proportion, i.e., from Fig. 1–4a,

The magnitude of the
resultant of the distributed load is equal to the area under the
loading curve (triangle) and acts through the centroid of this area.
Thus, which acts from
C as shown in Fig. 1–4b.

Equations of Equilibrium. Applying the equations of equilibrium
we have

Ans.

Ans.

Ans.

NOTE: The negative sign indicates that acts in the opposite
direction to that shown on the free-body diagram. Try solving this
problem using segment AC, by first obtaining the support reactions at
A, which are given in Fig. 1–4c.

MC

MC = -1080 N # m

-MC - 540 N12 m2 = 0d+ ©MC = 0;

VC = 540 N

VC - 540 N = 0+ c©Fy = 0;

NC = 0

-NC = 0:+ ©Fx = 0;

1
316 m2 = 2 mF = 1

21180 N>m216 m2 = 540 N,

w = 180 N>m.w>6 m = 1270 N>m2>9 m,

EXAMPLE 1.1

(a)

A B

C
3 m 6 m

270 N/m

Fig. 1–4

180 N/m

540 N

2 m 4 mVC

MC

NC

(b)

BC

1.5 m
0.5 m

1 m

180 N/m
90 N/m

540 N
135 N

VC

MC

NC

(c)

1215 N

3645 N�m
CA
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1

Determine the resultant internal loadings acting on the cross section at
C of the machine shaft shown in Fig. 1–5a. The shaft is supported by
journal bearings at A and B,which only exert vertical forces on the shaft.

EXAMPLE 1.2

Fig. 1–5

(c)

40 N
18.75 N

0.250 m

0.025 m

MC

VC

C
A

NC 

225 N

C
D

200 mm
100 mm 100 mm

50 mm50 mm

800 N/m

B

(a)

A

0.275 m
0.125 m

(800 N/m)(0.150 m) = 120 N

0.100 m

225 N

Ay By

B

(b)

SOLUTION
We will solve this problem using segment AC of the shaft.

Support Reactions. The free-body diagram of the entire shaft is
shown in Fig. 1–5b. Since segment AC is to be considered, only the
reaction at A has to be determined. Why?

The negative sign indicates that acts in the opposite sense to that
shown on the free-body diagram.

Free-Body Diagram. The free-body diagram of segment AC is
shown in Fig. 1–5c.

Equations of Equilibrium.

Ans.

Ans.

Ans.

NOTE: The negative signs for and indicate they act in the
opposite directions on the free-body diagram. As an exercise,
calculate the reaction at B and try to obtain the same results using
segment CBD of the shaft.

MCVC

MC = -5.69 N # m

MC + 40 N10.025 m2 + 18.75 N10.250 m2 = 0d+ ©  MC = 0;

VC = -58.8 N

-18.75 N - 40 N - VC = 0+ c ©  Fy = 0;

NC = 0:+ ©  Fx = 0;

Ay

Ay = -18.75 N

-Ay10.400 m2 + 120 N10.125 m2 - 225 N10.100 m2 = 0d+  © MB = 0;
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1

The 500-kg engine is suspended from the crane boom in Fig. 1–6a.
Determine the resultant internal loadings acting on the cross section
of the boom at point E.

SOLUTION
Support Reactions. We will consider segment AE of the boom so
we must first determine the pin reactions at A. Notice that member
CD is a two-force member. The free-body diagram of the boom is
shown in Fig. 1–6b. Applying the equations of equilibrium,

Free-Body Diagram. The free-body diagram of segment AE is
shown in Fig. 1–6c.

Equations of Equilibrium.

Ans.

Ans.

Ans.ME = -2452.5 N # m = -2.45 kN # m

ME + 12452.5 N211 m2 = 0d+ ©ME = 0;

VE = -2452.5 N = -2.45 kN

-VE - 2452.5 N = 0+ c ©Fy = 0;

NE = -9810 N = -9.81 kN

NE + 9810 N = 0:+ ©Fx = 0;

Ay = 2452.5 N

-Ay + 112 262.5 N2A35 B - 50019.812 N = 0+ c©Fy = 0;

Ax = 9810 N

Ax - 112 262.5 N2A45 B = 0:+ ©Fx = 0;

FCD = 12 262.5 N

FCD A35 B12 m2 - [50019.812 N]13 m2 = 0d+ ©MA = 0;

EXAMPLE 1.3

A

1 m2 m

500(9.81) N

Ay 

Ax     

FCD     

(b)

3
4

5

9810 N

2452.5 N

VE

ME

NE

(c)

EA

1 m

A

1 m1 m1 m

1.5 m

E

C

B

D

(a)

Fig. 1–6
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1

Determine the resultant internal loadings acting on the cross section
at G of the beam shown in Fig. 1–7a. Each joint is pin connected.

EXAMPLE 1.4

(d)

NG   

MGVG
2 ft

3
4

5

7750 lb1500 lb

A G

(a)

300 lb/ft

2 ft 2 ft 6 ft

1500 lb

A

B

G D

C

3 ft
E

3 ft

6 ft (6 ft) � 4 ft

(6 ft)(300 lb/ft) � 900 lb

1500 lb

Ey � 2400 lb

Ex � 6200 lb

FBC � 6200 lb

(b)

2
3

1
2

SOLUTION
Support Reactions. Here we will consider segment AG. The
free-body diagram of the entire structure is shown in Fig. 1–7b. Verify
the calculated reactions at E and C. In particular, note that BC is a
two-force member since only two forces act on it. For this reason the
force at C must act along BC, which is horizontal as shown.

Since BA and BD are also two-force members, the free-body
diagram of joint B is shown in Fig. 1–7c. Again, verify the magnitudes
of forces and 

Free-Body Diagram. Using the result for the free-body
diagram of segment AG is shown in Fig. 1–7d.

Equations of Equilibrium.

Ans.

Ans.

Ans.MG = 6300 lb # ft

MG - 17750 lb2A35 B12 ft2 + 1500 lb12 ft2 = 0d+ ©MG = 0;

VG = 3150 lb

-1500 lb + 7750 lb A35 B - VG = 0+ c ©Fy = 0;

7750 lb A45 B + NG = 0  NG = -6200 lb:+ ©Fx = 0;

FBA ,

FBD .FBA

6200 lb

3
4

5

(c)

B

FBA � 7750 lb
FBD � 4650 lb

Fig. 1–7
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1

Determine the resultant internal loadings acting on the cross section
at B of the pipe shown in Fig. 1–8a. The pipe has a mass of and
is subjected to both a vertical force of 50 N and a couple moment of

at its end A. It is fixed to the wall at C.

SOLUTION
The problem can be solved by considering segment AB, so we do not
need to calculate the support reactions at C.

Free-Body Diagram. The x, y, z axes are established at B and the
free-body diagram of segment AB is shown in Fig. 1–8b. The resultant
force and moment components at the section are assumed to act in
the positive coordinate directions and to pass through the centroid of
the cross-sectional area at B. The weight of each segment of pipe is
calculated as follows:

These forces act through the center of gravity of each segment.

Equations of Equilibrium. Applying the six scalar equations of
equilibrium, we have∗

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

NOTE: What do the negative signs for and indicate?
Note that the normal force whereas the shear force

is Also, the torsional moment is

and the bending moment is 

2130.322 + 1022 = 30.3 N # m.

MB =TB = (MB)y = 77.8 N # m

VB = 21022 + 184.322 = 84.3 N.

NB = (FB)y = 0,
1MB2y1MB2x

1MB2z = 0©1MB2z = 0;

(MB)y = -77.8 N # m

(MB)y + 24.525 N 10.625 m2 + 50 N 11.25 m2 = 0©1MB2y = 0;

1MB2x = -30.3 N # m

- 24.525 N 10.5 m2 - 9.81 N 10.25 m2 = 0

1MB2x + 70 N # m - 50 N 10.5 m2©1MB2x = 0;

1FB2z = 84.3 N

1FB2z - 9.81 N - 24.525 N - 50 N = 0©Fz = 0;

(FB)y = 0©Fy = 0;

1FB2x = 0©Fx = 0;

 WAD = 12 kg>m211.25 m219.81 N>kg2 = 24.525 N

 WBD = 12 kg>m210.5 m219.81 N>kg2 = 9.81 N

70 N # m

2 kg>m

EXAMPLE 1.5

*The magnitude of each moment about an axis is equal to the magnitude of each
force times the perpendicular distance from the axis to the line of action of the force.
The direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.

Fig. 1–8

0.625 m

70 N·m

(b)

y0.625 m

A

50 N

0.25 m
0.25 m

x

z

9.81 N

24.525 N
B

(FB)z

(MB)z

(MB)x

(FB)x

(MB)y

(FB)y

0.75 m

50 N

1.25 m

B

A

0.5 m

C

D

70 N�m

(a)
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1 FUNDAMENTAL PROBLEMS

F1–1. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

F1–4. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

A B

C

2 m 2 m1 m

60 kN�m

1 m

10 kN

F1–2. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

A B
C

1.5 m 1.5 m

100 N/m
200 N/m

F1–3. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

A
B

2 m 2 m 2 m

C

20 kN/m

A
C

B

3 m3 m

10 kN/m

F1–5. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

3 ft 3 ft 3 ft

300 lb/ft

A
BC

F1–6. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

3 m

2 m 2 m 2 m

A

D

C B

5 kN/m

F1–1

F1–2

F1–5

F1–6F1–3

F1–4



1.2 EQUILIBRIUM OF A DEFORMABLE BODY 17

1

1–1. Determine the resultant internal normal force acting
on the cross section through point A in each column. In
(a), segment BC weighs 180 >ft and segment CD weighs
250 >ft. In (b), the column has a mass of 200 >m.kglb

lb

1–3. Determine the resultant internal torque acting on the
cross sections through points B and C.

PROBLEMS

8 kN

3 m

1 m

6 kN6 kN

4.5 kN4.5 kN

200 mm200 mm

A

(b)

200 mm200 mm
3 kip3 kip

5 kip

10 ft

4 ft

4 ft

8 in.8 in.

A

C

D

(a)

B

Prob. 1–1

1–2. Determine the resultant internal torque acting on the
cross sections through points C and D.The support bearings
at A and B allow free turning of the shaft.

Prob. 1–2

A

BD

C300 mm

200 mm

150 mm
200 mm

250 mm

150 mm

400 N�m

150 N�m

250 N�m

3 ft

2 ft

2 ft

1 ft

B

A

C

500 lb�ft

350 lb�ft

600 lb�ft

Prob. 1–3

*1–4. A force of 80 N is supported by the bracket as
shown. Determine the resultant internal loadings acting on
the section through point A.

0.1 m

0.3 m

30�

80 N

A

45�

Prob. 1–4

•1–5. Determine the resultant internal loadings in the
beam at cross sections through points D and E. Point E is
just to the right of the 3-kip load.

6 ft 4 ft

A

4 ft

B CD E

6 ft

3 kip

1.5 kip/ ft

Prob. 1–5



1–6. Determine the normal force, shear force, and moment
at a section through point C. Take 

1–7. The cable will fail when subjected to a tension of 2 kN.
Determine the largest vertical load P the frame will support
and calculate the internal normal force, shear force, and
moment at the cross section through point C for this loading.

P = 8 kN.

18 CHAPTER 1 STRESS

1–11. The force acts on the gear tooth.
Determine the resultant internal loadings on the root of the
tooth, i.e., at the centroid point A of section a–a.

F = 80 lb
1

0.75 m

C

P

A

B

0.5 m
0.1 m

0.75 m 0.75 m

Probs. 1–6/7

*1–8. Determine the resultant internal loadings on the
cross section through point C. Assume the reactions at
the supports A and B are vertical.

•1–9. Determine the resultant internal loadings on the
cross section through point D. Assume the reactions at
the supports A and B are vertical.

0.5 m 0.5 m
1.5 m1.5 m

C
A B

3 kN/m
6 kN

D

Probs. 1–8/9

1–10. The boom DF of the jib crane and the column DE
have a uniform weight of 50 lb/ft. If the hoist and load weigh
300 lb, determine the resultant internal loadings in the crane
on cross sections through points A, B, and C.

Prob. 1–10

a

30�

a

F � 80 lb

0.23 in.

45�

A

0.16 in.

Prob. 1–11

*1–12. The sky hook is used to support the cable of a
scaffold over the side of a building. If it consists of a smooth
rod that contacts the parapet of a wall at points A, B, and C,
determine the normal force, shear force, and moment on
the cross section at points D and E.

0.2 m

0.2 m 0.2 m

0.2 m

0.2 m

0.3 m

0.3 m

18 kN

A

D E

B

C

Prob. 1–12

5 ft

7 ft

C

D F

E

B A

300 lb

2 ft 8 ft 3 ft



1.2 EQUILIBRIUM OF A DEFORMABLE BODY 19

1
•1–13. The 800-lb load is being hoisted at a constant speed
using the motor M, which has a weight of 90 lb. Determine
the resultant internal loadings acting on the cross section
through point B in the beam. The beam has a weight of
40 lb>ft and is fixed to the wall at A.

1–14. Determine the resultant internal loadings acting on
the cross section through points C and D of the beam in
Prob. 1–13.

M

4 ft 3 ft 4 ft

C B

1.5 ft
A

0.25 ft

4 ft 3 ft

D

Probs. 1–13/14

1–15. Determine the resultant internal loading on the
cross section through point C of the pliers. There is a pin at
A, and the jaws at B are smooth.

*1–16. Determine the resultant internal loading on the
cross section through point D of the pliers.

120 mm 40 mm

15 mm

80 mm

A

C

D

30�

20 N

20 N

B

Probs. 1–15/16

•1–17. Determine resultant internal loadings acting on
section a–a and section b–b. Each section passes through
the centerline at point C.

45� 

1.5 m

1.5 m

3 m

45� 

A

C

B

b a

a
b

5 kN

Prob. 1–17

1–18. The bolt shank is subjected to a tension of 80 lb.
Determine the resultant internal loadings acting on the
cross section at point C.

A B

C

90� 
6 in.

Prob. 1–18

1–19. Determine the resultant internal loadings acting on
the cross section through point C. Assume the reactions at
the supports A and B are vertical.

*1–20. Determine the resultant internal loadings acting
on the cross section through point D. Assume the reactions
at the supports A and B are vertical.

3 ft 3 ft

DCA B

6 ft  

6 kip/ft6 kip/ft

Probs. 1–19/20
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•1–21. The forged steel clamp exerts a force of N
on the wooden block. Determine the resultant internal
loadings acting on section a–a passing through point A.

F = 900
1

200 mm

a

a
F � 900 N

F � 900 N

30�
A

Prob. 1–21

1–22. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the
cross section at G.

1–23. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the
cross section at H.

0.2 m
0.2 m

0.4 m

0.3 m

0.5 m

75�

0.6 m

C

A

E

B

F

D
H

G

Probs. 1–22/23

*1–24. The machine is moving with a constant velocity. It
has a total mass of 20 Mg, and its center of mass is located at
G, excluding the front roller. If the front roller has a mass of
5 Mg, determine the resultant internal loadings acting on
point C of each of the two side members that support the
roller. Neglect the mass of the side members. The front
roller is free to roll.

4 m

2 m

1.5 m

A

C

B

G

Prob. 1–24

•1–25. Determine the resultant internal loadings acting on
the cross section through point B of the signpost.The post is
fixed to the ground and a uniform pressure of 7 > acts
perpendicular to the face of the sign.

ft2lb

4 ft

z

y

6 ft

x

B

A

3 ft

2 ft

3 ft

7 lb/ft2

Prob. 1–25
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1
1–26. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the
pulleys fixed to the shaft. Determine the resultant
internal loadings acting on the cross section located at
point C. The 300-N forces act in the �z direction and the
500-N forces act in the �x direction. The journal bearings
at A and B exert only x and z components of force on the
shaft.

*1–28. The brace and drill bit is used to drill a hole at O. If
the drill bit jams when the brace is subjected to the forces
shown, determine the resultant internal loadings acting on
the cross section of the drill bit at A.

y

B

C

400 mm

150 mm

200 mm

250 mm

A

x

z

300 N 300 N

500 N

500 N

1–27. The pipe has a mass of 12 >m. If it is fixed to the
wall at A, determine the resultant internal loadings acting
on the cross section at B. Neglect the weight of the wrench
CD.

kg

300 mm

200 mm

150 mm

60 N

60 N
400 mm

150 mm

B

A

x

y

z

C

D

z

x
y

AO

9 in.
6 in.

6 in. 6 in.

9 in.3 in.

Fx � 30 lb

Fy � 50 lb

Fz � 10 lb

•1–29. The curved rod has a radius r and is fixed to the
wall at B. Determine the resultant internal loadings acting
on the cross section through A which is located at an angle u
from the horizontal.

r
A

B

P

U

1–30. A differential element taken from a curved bar is
shown in the figure. Show that 

and dT>du = M.dM>du = -T,
dV>du = -N,dN>du = V,

M V

N du

M � dM T � dT

N � dN
V � dV

T

Prob. 1–26

Prob. 1–27

Prob. 1–28

Prob. 1–29

Prob. 1–30
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1.3 Stress

It was stated in Section 1.2 that the force and moment acting at a
specified point O on the sectioned area of the body, Fig. 1–9, represents
the resultant effects of the actual distribution of loading acting over the
sectioned area, Fig. 1–10a. Obtaining this distribution is of primary
importance in mechanics of materials. To solve this problem it is
necessary to establish the concept of stress.

We begin by considering the sectioned area to be subdivided into
small areas, such as shown in Fig. 1–10a. As we reduce to
a smaller and smaller size, we must make two assumptions regarding
the properties of the material. We will consider the material to be
continuous, that is, to consist of a continuum or uniform distribution of
matter having no voids. Also, the material must be cohesive, meaning
that all portions of it are connected together, without having breaks,
cracks, or separations. A typical finite yet very small force acting on

is shown in Fig. 1–10a. This force, like all the others, will have a
unique direction, but for further discussion we will replace it by its three
components, namely, and which are taken tangent,
tangent, and normal to the area, respectively. As approaches zero, so
do and its components; however, the quotient of the force and area
will, in general, approach a finite limit. This quotient is called stress, and
as noted, it describes the intensity of the internal force acting on a specific
plane (area) passing through a point.

¢F
¢A

¢Fz,¢Fy,¢Fx,

¢A,
¢F,

¢A¢A

1

F1 F2

O

MRO FR

Fig. 1–9

F1 F2
F1

�F

�A

�F
�Fz

z

yx
�Fx �Fy

z

(c)x y
(b)

zz

x y
(a)x y

tyz

sy
tyx

txz

sx txy

Fig. 1–10
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1
Normal Stress. The intensity of the force acting normal to is
defined as the normal stress, (sigma). Since is normal to the area
then

(1–4)

If the normal force or stress “pulls” on as shown in Fig. 1–10a, it is
referred to as tensile stress, whereas if it “pushes” on it is called
compressive stress.

Shear Stress. The intensity of force acting tangent to is called
the shear stress, (tau). Here we have shear stress components,

(1–5)

Note that in this subscript notation z specifies the orientation of the
area Fig. 1–11, and x and y indicate the axes along which each shear
stress acts.

General State of Stress. If the body is further sectioned by
planes parallel to the x�z plane, Fig. 1–10b, and the y–z plane, Fig. 1–10c,
we can then “cut out” a cubic volume element of material that represents
the state of stress acting around the chosen point in the body. This state
of stress is then characterized by three components acting on each face
of the element, Fig. 1–12.

Units. Since stress represents a force per unit area, in the
International Standard or SI system, the magnitudes of both normal and
shear stress are specified in the basic units of newtons per square meter

This unit, called a pascal is rather small, and
in engineering work prefixes such as kilo- symbolized by k,
mega- symbolized by M, or giga- symbolized by G, are used
to represent larger, more realistic values of stress.* Likewise, in the
Foot-Pound-Second system of units, engineers usually express stress in
pounds per square inch (psi) or kilopounds per square inch (ksi), where
1 kilopound 1kip2 = 1000 lb.

11092,11062, 11032,11 Pa = 1 N>m221N>m22.
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 tzy = lim
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Fig. 1–11

*Sometimes stress is expressed in units of where However, in
the SI system, prefixes are not allowed in the denominator of a fraction and therefore it is
better to use the equivalent 1 N>mm2 = 1 MN>m2 = 1 MPa.

1 mm = 10-3 m.N>mm2,

Fig. 1–12
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1

P

P

(a) (b)

P

P

Region of
uniform
deformation
of bar

P

P

External force

Cross-sectional
area

Internal force

(c)

Fig. 1–13
(d)

P

�F � s�A

P

y

x

x

z

y

A�

s

1.4 Average Normal Stress in an 
Axially Loaded Bar

In this section we will determine the average stress distribution acting on
the cross-sectional area of an axially loaded bar such as the one shown in
Fig. 1–13a. This bar is prismatic since all cross sections are the same
throughout its length. When the load P is applied to the bar through the
centroid of its cross-sectional area, then the bar will deform uniformly
throughout the central region of its length, as shown in Fig. 1–13b,
provided the material of the bar is both homogeneous and isotropic.

Homogeneous material has the same physical and mechanical properties
throughout its volume, and isotropic material has these same properties
in all directions. Many engineering materials may be approximated as
being both homogeneous and isotropic as assumed here. Steel, for
example, contains thousands of randomly oriented crystals in each cubic
millimeter of its volume, and since most problems involving this material
have a physical size that is very much larger than a single crystal, the
above assumption regarding its material composition is quite realistic.

Note that anisotropic materials such as wood have different properties
in different directions, and although this is the case, like wood if the
anisotropy is oriented along the bar’s axis, then the bar will also deform
uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass a section
through the bar, and separate it into two parts, then equilibrium requires
the resultant normal force at the section to be P, Fig. 1–13c. Due to the
uniform deformation of the material, it is necessary that the cross section
be subjected to a constant normal stress distribution, Fig. 1–13d.
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1
As a result, each small area on the cross section is subjected to a

force , and the sum of these forces acting over the entire
cross-sectional area must be equivalent to the internal resultant force P
at the section. If we let and therefore , then,
recognizing is constant, we have

(1–6)

Here

average normal stress at any point on the cross-sectional area

internal resultant normal force, which acts through the centroid of
the cross-sectional area. P is determined using the method of
sections and the equations of equilibrium

cross-sectional area of the bar where is determined

Since the internal load P passes through the centroid of the cross-
section the uniform stress distribution will produce zero moments about
the x and y axes passing through this point, Fig. 1–13d. To show this, we
require the moment of P about each axis to be equal to the moment of
the stress distribution about the axes, namely,

These equations are indeed satisfied, since by definition of the centroid,
and (See Appendix A.)

Equilibrium. It should be apparent that only a normal stress exists
on any small volume element of material located at each point on
the cross section of an axially loaded bar. If we consider vertical
equilibrium of the element, Fig. 1–14, then apply the equation of 
force equilibrium,

s = s¿

s1¢A2 - s¿1¢A2 = 0©  Fz = 0;

1x dA = 0.1y dA = 0

0 = -LA
 x dF = -LA

 xs dA = -sLA
 x dA1MR2y = ©  My;

0 = LA
 y dF = LA

 ys dA = sLA
 y dA1MR2x = ©  Mx;

sA =

P =
s =

s =
P

A

 P = s A

 LdF = LA
s dA+ c  FRz = ©Fz;

s

¢F: dF¢A: dA

¢F = s ¢A
¢A

�A

s

s¿

Fig. 1–14
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In other words, the two normal stress components on the element must
be equal in magnitude but opposite in direction. This is referred to as
uniaxial stress.

The previous analysis applies to members subjected to either tension
or compression, as shown in Fig. 1–15. As a graphical interpretation, the
magnitude of the internal resultant force P is equivalent to the volume
under the stress diagram; that is,
Furthermore, as a consequence of the balance of moments, this resultant
passes through the centroid of this volume.

Although we have developed this analysis for prismatic bars, this
assumption can be relaxed somewhat to include bars that have a slight
taper. For example, it can be shown, using the more exact analysis of the
theory of elasticity, that for a tapered bar of rectangular cross section, for
which the angle between two adjacent sides is 15°, the average normal
stress, as calculated by is only 2.2% less than its value found
from the theory of elasticity.

Maximum Average Normal Stress. In our analysis both the
internal force P and the cross-sectional area A were constant along the
longitudinal axis of the bar, and as a result the normal stress is
also constant throughout the bar’s length. Occasionally, however, the bar
may be subjected to several external loads along its axis, or a change in its
cross-sectional area may occur. As a result, the normal stress within the
bar could be different from one section to the next, and, if the maximum
average normal stress is to be determined, then it becomes important
to find the location where the ratio P�A is a maximum. To do this it is
necessary to determine the internal force P at various sections along the
bar. Here it may be helpful to show this variation by drawing an axial or
normal force diagram. Specifically, this diagram is a plot of the normal
force P versus its position x along the bar’s length. As a sign convention,
P will be positive if it causes tension in the member, and negative if it
causes compression. Once the internal loading throughout the bar is
known, the maximum ratio of P�A can then be identified.

s = P>A

s = P>A,

P = s A 1volume = height * base2.

1

�

P

PP

P

Tension Compression

s

s

s

P—
A�s

P—
A

Fig. 1–15

This steel tie rod is used as a hanger to
suspend a portion of a staircase, and as a
result it is subjected to tensile stress.
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1Important Points

• When a body subjected to external loads is sectioned, there is a
distribution of force acting over the sectioned area which holds
each segment of the body in equilibrium. The intensity of this
internal force at a point in the body is referred to as stress.

• Stress is the limiting value of force per unit area, as the area
approaches zero. For this definition, the material is considered to
be continuous and cohesive.

• The magnitude of the stress components at a point depends upon
the type of loading acting on the body, and the orientation of the
element at the point.

• When a prismatic bar is made from homogeneous and isotropic
material, and is subjected to an axial force acting through the
centroid of the cross-sectional area, then the center region of
the bar will deform uniformly. As a result, the material will be
subjected only to normal stress. This stress is uniform or averaged
over the cross-sectional area.

Procedure for Analysis

The equation gives the average normal stress on the cross-
sectional area of a member when the section is subjected to an
internal resultant normal force P. For axially loaded members,
application of this equation requires the following steps.

Internal Loading.

• Section the member perpendicular to its longitudinal axis at the
point where the normal stress is to be determined and use the
necessary free-body diagram and force equation of equilibrium to
obtain the internal axial force P at the section.

Average Normal Stress.

• Determine the member’s cross-sectional area at the section and
calculate the average normal stress 

• It is suggested that be shown acting on a small volume element
of the material located at a point on the section where stress is
calculated. To do this, first draw on the face of the element
coincident with the sectioned area A. Here acts in the same
direction as the internal force P since all the normal stresses on
the cross section develop this resultant. The normal stress on
the other face of the element acts in the opposite direction.

s

s

s

s

s = P>A.

s = P>A
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1 EXAMPLE 1.6

(b)

9 kN

9 kN

12 kN

12 kN

PAB � 12 kN

PBC � 30 kN

PCD � 22 kN 22 kN

P (kN)

x
12
22
30

(c)

12 kN 22 kN
9 kN

9 kN

4 kN

4 kN
35 mm

A DB C

(a)

The bar in Fig. 1–16a has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it is subjected to the loading shown.

SOLUTION
Internal Loading. By inspection, the internal axial forces in regions
AB, BC, and CD are all constant yet have different magnitudes. Using
the method of sections, these loadings are determined in Fig. 1–16b;
and the normal force diagram which represents these results graphically
is shown in Fig. 1–16c. The largest loading is in region BC, where

Since the cross-sectional area of the bar is constant, the
largest average normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1–6, we have

Ans.

NOTE: The stress distribution acting on an arbitrary cross section of
the bar within region BC is shown in Fig. 1–16d. Graphically the volume
(or “block”) represented by this distribution of stress is equivalent to
the load of 30 kN; that is, 30 kN = 185.7 MPa2135 mm2110 mm2.

sBC =
PBC

A
=

3011032 N
10.035 m210.010 m2 = 85.7 MPa

PBC = 30 kN.

(d)

30 kN

85.7 MPa35 mm

10 mm

Fig. 1–16
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1

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1–17a. If AB has a diameter of 10 mm and BC has a diameter of
8 mm, determine the average normal stress in each rod.

EXAMPLE 1.7

A

60� B

C

3
4

5

(a) (b)

60�

FBA FBC

y

x

80(9.81) � 784.8 N

B

3
4

5

Fig. 1–17

SOLUTION
Internal Loading. We must first determine the axial force in each
rod.A free-body diagram of the lamp is shown in Fig. 1–17b.Applying
the equations of force equilibrium,

By Newton’s third law of action, equal but opposite reaction, these
forces subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1–6,

Ans.

Ans.

NOTE: The average normal stress distribution acting over a cross
section of rod AB is shown in Fig. 1–17c, and at a point on this cross
section, an element of material is stressed as shown in Fig. 1–17d.

 sBA =
FBA

ABA
=

632.4 N

p10.005 m22 = 8.05 MPa

 sBC =
FBC

ABC
=

395.2 N

p10.004 m22 = 7.86 MPa

FBA = 632.4 NFBC = 395.2 N,

FBC A35 B + FBA sin 60° - 784.8 N = 0+ c ©Fy = 0;

FBC A45 B - FBA cos 60° = 0:+ ©Fx = 0;

632.4 N

8.05 MPa

8.05 MPa

(c)(d)
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1

The casting shown in Fig. 1–18a is made of steel having a specific
weight of Determine the average compressive stress
acting at points A and B.

gst = 490 lb>ft3.

EXAMPLE 1.8

0.75 ft

0.75 ft

2.75 ft

y

z

x

(a)

A

B0.75 ft
0.4 ft

Fig. 1–18

2.75 ft

(b)

A

P

(c)

9.36 psi

B

Wst

SOLUTION
Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1–18b. The weight of this segment is determined from 
Thus the internal axial force P at the section is

Average Compressive Stress. The cross-sectional area at the sec-
tion is and so the average compressive stress becomes

Ans.

NOTE: The stress shown on the volume element of material in
Fig. 1–18c is representative of the conditions at either point A or B.
Notice that this stress acts upward on the bottom or shaded face of the
element since this face forms part of the bottom surface area of the
section, and on this surface, the resultant internal force P is pushing
upward.

= 9.36 psis = 1347.5 lb>ft2 11 ft2>144 in22
 s =

P

A
=

2381 lb

p10.75 ft22 = 1347.5 lb>ft2

A = p10.75 ft22,
P = 2381 lb

P - 1490 lb>ft3212.75 ft2[p10.75 ft22] = 0

P - Wst = 0+ c ©Fz = 0;

Wst = gst Vst .
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1EXAMPLE 1.9

(b)

x

3 kN

A

200 mm

FAB

FC

x

A

B

C

200 mm

(a)

3 kN

Fig. 1–19
SOLUTION
Internal Loading. The forces at A and C can be related by considering
the free-body diagram for member AC, Fig. 1–19b. There are three
unknowns, namely, and x. To solve this problem we will
work in units of newtons and millimeters.

(1)

(2)

Average Normal Stress. A necessary third equation can be written
that requires the tensile stress in the bar AB and the compressive
stress at C to be equivalent, i.e.,

Substituting this into Eq. 1, solving for then solving for we
obtain

The position of the applied load is determined from Eq. 2,
Ans.

NOTE: as required.0 6 x 6 200 mm,

x = 124 mm

 FC = 1857 N
 FAB = 1143 N

FC ,FAB ,

 FC = 1.625FAB

 s =
FAB

400 mm2 =
FC

650 mm2

 -3000 N1x2 + FC1200 mm2  = 0d+ ©MA = 0;

 FAB + FC - 3000 N = 0+ c ©Fy = 0;

FC ,FAB ,

Member AC shown in Fig. 1–19a is subjected to a vertical force of
3 kN. Determine the position x of this force so that the average
compressive stress at the smooth support C is equal to the average
tensile stress in the tie rod AB. The rod has a cross-sectional area of

and the contact area at C is 650 mm2.400 mm2
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1.5 Average Shear Stress

Shear stress has been defined in Section 1.3 as the stress component that
acts in the plane of the sectioned area. To show how this stress can
develop, consider the effect of applying a force F to the bar in Fig. 1–20a.
If the supports are considered rigid, and F is large enough, it will cause
the material of the bar to deform and fail along the planes identified by
AB and CD. A free-body diagram of the unsupported center segment of
the bar, Fig. 1–20b, indicates that the shear force must be
applied at each section to hold the segment in equilibrium. The average
shear stress distributed over each sectioned area that develops this shear
force is defined by

(1–7)

Here

average shear stress at the section, which is assumed to be the
same at each point located on the section
internal resultant shear force on the section determined from
the equations of equilibrium

area at the section

The distribution of average shear stress acting over the sections is
shown in Fig. 1–20c. Notice that is in the same direction as V, since
the shear stress must create associated forces all of which contribute to
the internal resultant force V at the section.

The loading case discussed here is an example of simple or direct
shear, since the shear is caused by the direct action of the applied load F.
This type of shear often occurs in various types of simple connections
that use bolts, pins, welding material, etc. In all these cases, however,
application of Eq. 1–7 is only approximate. A more precise investigation
of the shear-stress distribution over the section often reveals that much
larger shear stresses occur in the material than those predicted by this
equation. Although this may be the case, application of Eq. 1–7 is
generally acceptable for many problems in engineering design and
analysis. For example, engineering codes allow its use when considering
design sizes for fasteners such as bolts and for obtaining the bonding
strength of  glued joints subjected to shear loadings.

tavg

A =

V =

tavg =

tavg =
V

A

V = F>2

1

(b)

(c)

F

F

VV

tavg

F

(a)

B
D

A
C

Fig. 1–20
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1

Pure shear

(a) (b)

�

Section plane

x

y

z

�y

�z

�x
t¿zy

tzy

t¿yz

tyz

t

t

t

t

Fig. 1–21

Shear Stress Equilibrium. Figure 1–21a shows a volume element
of material taken at a point located on the surface of a sectioned area
which is subjected to a shear stress . Force and moment equilibrium
requires the shear stress acting on this face of the element to be
accompanied by shear stress acting on three other faces. To show this we
will first consider force equilibrium in the y direction. Then

force

stress area

In a similar manner, force equilibrium in the z direction yields 
Finally, taking moments about the x axis,

moment

force arm

stress area

so that

In other words, all four shear stresses must have equal magnitude and
be directed either toward or away from each other at opposite edges of
the element, Fig. 1–21b.This is referred to as the complementary property
of shear, and under the conditions shown in Fig. 1–21, the material is
subjected to pure shear.

tzy = tœ
zy = tyz = tœ

yz = t

tzy = tyz

-tzy1¢x ¢y2 ¢z + tyz1¢x ¢z2 ¢y = 0©Mx = 0;

tyz = tœ
yz .

tzy = tœ
zy

tzy1¢x ¢y2 - tœ
zy ¢x ¢y = 0©Fy = 0;

tzy
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1 Important Points

• If two parts are thin or small when joined together, the applied
loads may cause shearing of the material with negligible bending.
If this is the case, it is generally assumed that an average shear
stress acts over the cross-sectional area.

• When shear stress acts on a plane, then equilibrium of a volume
element of material at a point on the plane requires associated
shear stress of the same magnitude act on three adjacent sides of
the element.

t

Procedure for Analysis

The equation is used to determine the average shear
stress in the material. Application requires the following steps.

Internal Shear.

• Section the member at the point where the average shear stress is
to be determined.

• Draw the necessary free-body diagram, and calculate the internal
shear force V acting at the section that is necessary to hold the
part in equilibrium.

Average Shear Stress.

• Determine the sectioned area A, and determine the average
shear stress 

• It is suggested that be shown on a small volume element of
material located at a point on the section where it is determined.
To do this, first draw on the face of the element, coincident
with the sectioned area A. This stress acts in the same direction
as V. The shear stresses acting on the three adjacent planes can
then be drawn in their appropriate directions following the
scheme shown in Fig. 1–21.

tavg

tavg

tavg = V>A.

tavg = V>A
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1

Determine the average shear stress in the 20-mm-diameter
pin at A and the 30-mm-diameter pin at B that support the
beam in Fig. 1–22a.

SOLUTION
Internal Loadings. The forces on the pins can be obtained by
considering the equilibrium of the beam, Fig. 1–22b.

Thus, the resultant force acting on pin A is

The pin at A is supported by two fixed “leaves” and so the free-body
diagram of the center segment of the pin shown in Fig. 1–22c has two
shearing surfaces between the beam and each leaf. The force of the
beam (21.36 kN) acting on the pin is therefore supported by shear
force on each of these surfaces. This case is called double shear. Thus,

In Fig. 1–22a, note that pin B is subjected to single shear, which occurs
on the section between the cable and beam, Fig. 1–22d. For this pin
segment,

Average Shear Stress.

Ans.

Ans.1tB2avg =
VB

AB
=

12.511032 N
p

4
10.03 m22

= 17.7 MPa

1tA2avg =
VA

AA
=

10.6811032 N
p

4
10.02 m22

= 34.0 MPa

VB = FB = 12.5 kN

VA =
FA

2
=

21.36 kN
2

= 10.68 kN

FA = 2A 2
x + A 2

y = 2(7.50 kN)2 + (20 kN)2 = 21.36 kN

Ay = 20 kN

Ay + 112.5 kN2a 4
5
b - 30 kN = 0+c ©Fy = 0;

Ax = 7.50 kN112.5 kN2a3
5
b - Ax = 0:+ ©Fx = 0;

FB = 12.5 kNFBa4
5
b16 m2 - 30 kN12 m2 = 0d+ ©MA = 0;

EXAMPLE 1.10

4 m

(a)

2 m

30 kN

A B

C

3
45

(c)

VA

VA

FA � 21.36 kN

(d)

VB

FB � 12.5 kN

Fig. 1–22

4 m

(b)

2 m

30 kN

A

3

45

FB 

Ax 

Ay
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1

If the wood joint in Fig. 1–23a has a width of 150 mm, determine the
average shear stress developed along shear planes a–a and b–b. For
each plane, represent the state of stress on an element of the material.

EXAMPLE 1.11

SOLUTION
Internal Loadings. Referring to the free-body diagram of the
member, Fig. 1–23b,

Now consider the equilibrium of segments cut across shear planes a–a
and b–b, shown in Figs. 1–23c and 1–23d.

Average Shear Stress.

Ans.

Ans.

The state of stress on elements located on sections a–a and b–b is
shown in Figs. 1–23c and 1–23d, respectively.

1tb2avg =
Vb

Ab
=

311032 N
10.125 m210.15 m2 = 160 kPa

1ta2avg =
Va

Aa
=

311032 N
10.1 m210.15 m2 = 200 kPa

Vb = 3 kN3 kN - Vb = 0:+ ©Fx = 0;

Va = 3 kNVa - 3 kN = 0:+ ©Fx = 0;

F = 3 kN6 kN - F - F = 0:+  ©Fx = 0;

0.1 m 0.125 m

(a)

 6 kN  6 kN

b b

a a

(b)

 6 kN

F

F

Fig. 1–23

 3 kN

(c)

Vata � 200 kPa

 3 kN

(d)

Vbtb = 160 kPa
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1

The inclined member in Fig. 1–24a is subjected to a compressive force
of 600 lb. Determine the average compressive stress along the smooth
areas of contact defined by AB and BC, and the average shear stress
along the horizontal plane defined by DB.

EXAMPLE 1.12

1 in.

3

45

600 lb

1.5 in. 3 in.
2 in.

A
C

B

D

(a) Fig. 1–24

SOLUTION
Internal Loadings. The free-body diagram of the inclined member
is shown in Fig. 1–24b. The compressive forces acting on the areas of
contact are

Also, from the free-body diagram of the top segment ABD of the
bottom member, Fig. 1–24c, the shear force acting on the sectioned
horizontal plane DB is

Average Stress. The average compressive stresses along the
horizontal and vertical planes of the inclined member are

Ans.

Ans.

These stress distributions are shown in Fig. 1–24d.
The average shear stress acting on the horizontal plane defined by

DB is

Ans.

This stress is shown uniformly distributed over the sectioned area in
Fig. 1–24e.

tavg =
360 lb

13 in.211.5 in.2 = 80 psi

 sBC =
FBC

ABC
=

480 lb
12 in.211.5 in.2 = 160 psi

 sAB =
FAB

AAB
=

360 lb
11 in.211.5 in.2 = 240 psi

V = 360 lb:+ ©Fx = 0;

FBC - 600 lb A45 B = 0 FBC = 480 lb+c ©Fy = 0;

FAB - 600 lb A35 B = 0 FAB = 360 lb:+ ©Fx = 0;

(b)

3

45

600 lb

FAB

FBC

(c)

V

360 lb

(d)

3

45

600 lb

160 psi

240 psi

(e)

360 lb

80 psi
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1 FUNDAMENTAL PROBLEMS

F1–7. The uniform beam is supported by two rods AB
and CD that have cross-sectional areas of and

, respectively. Determine the intensity w of the
distributed load so that the average normal stress in each
rod does not exceed 300 kPa.

15 mm2
10 mm2

F1–10. If the 600-kN force acts through the centroid of the
cross section, determine the location of the centroid and
the average normal stress developed on the cross section.
Also, sketch the normal stress distribution over the cross
section.

y

w

A C

B D

6 m

F1–7

F1–8. Determine the average normal stress developed on
the cross section. Sketch the normal stress distribution over
the cross section.

 300 kN

100 mm

80 mm

F1–8

F1–9. Determine the average normal stress developed on
the cross section. Sketch the normal stress distribution over
the cross section.

4 in. 1 in.

1 in.
4 in. 1 in.

15 kip

F1–9

80 mm

300 mm

60 mm

–y
80 mm

 600 kN

x

y60 mm

F1–10

F1–11. Determine the average normal stress developed
at points A, B, and C. The diameter of each segment is
indicated in the figure.

2 kip3 kip 8 kip9 kip

1 in.
0.5 in. 0.5 in.

A
B

C

F1–11

F1–12. Determine the average normal stress developed in
rod AB if the load has a mass of 50 kg. The diameter of rod
AB is 8 mm.

8 mm

A

D

B

C

5

4
3

F1–12
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1–31. The column is subjected to an axial force of 8 kN,
which is applied through the centroid of the cross-sectional
area. Determine the average normal stress acting at section
a–a. Show this distribution of stress acting over the area’s
cross section.

•1–33. The bar has a cross-sectional area A and is
subjected to the axial load P. Determine the average
normal and average shear stresses acting over the shaded
section, which is oriented at from the horizontal. Plot the
variation of these stresses as a function of u 10 … u … 90°2.

u

PROBLEMS

20 N 20 N

250 mm 250 mm

12 mm

A

B

Prob. 1–32

8 kN

a
a

75 mm

10 mm

10 mm 10 mm
75 mm

70 mm

70 mm

Prob. 1–31

*1–32. The lever is held to the fixed shaft using a tapered
pin AB, which has a mean diameter of 6 mm. If a couple is
applied to the lever, determine the average shear stress in
the pin between the pin and lever.

P

u

P

A

Prob. 1–33

1–34. The built-up shaft consists of a pipe AB and solid
rod BC. The pipe has an inner diameter of 20 mm and outer
diameter of 28 mm. The rod has a diameter of 12 mm.
Determine the average normal stress at points D and E and
represent the stress on a volume element located at each of
these points.

C

ED

A
4 kN

8 kN

B 6 kN

6 kN

Prob. 1–34

1–35. The bars of the truss each have a cross-sectional
area of Determine the average normal stress in
each member due to the loading State whether
the stress is tensile or compressive.

*1–36. The bars of the truss each have a cross-sectional
area of If the maximum average normal stress in
any bar is not to exceed 20 ksi, determine the maximum
magnitude P of the loads that can be applied to the truss.

1.25 in2.

P = 8 kip.
1.25 in2.

3 ft

4 ft 4 ft

P
0.75 P

E DA

B C

Probs. 1–35/36



*1–40. The pins on the frame at B and C each have a
diameter of 0.25 in. If these pins are subjected to double
shear, determine the average shear stress in each pin.

•1–41. Solve Prob. 1–40 assuming that pins B and C are
subjected to single shear.

1–42. The pins on the frame at D and E each have a
diameter of 0.25 in. If these pins are subjected to double
shear, determine the average shear stress in each pin.

1–43. Solve Prob. 1–42 assuming that pins D and E are
subjected to single shear.

40 CHAPTER 1 STRESS

•1–37. The plate has a width of 0.5 m. If the stress distri-
bution at the support varies as shown, determine the force
P applied to the plate and the distance d to where it is
applied.

1

4 m

30 MPa

P
d

    � (15x    ) MPa1/2s

x

Prob. 1–37

1–38. The two members used in the construction of an
aircraft fuselage are joined together using a 30° fish-mouth
weld. Determine the average normal and average shear
stress on the plane of each weld. Assume each inclined
plane supports a horizontal force of 400 lb.

800 lb 800 lb

30�

1 in.
1 in.

1.5 in. 30�

Prob. 1–38

1–39. If the block is subjected to the centrally applied
force of 600 kN, determine the average normal stress in the
material. Show the stress acting on a differential volume
element of the material.

50 mm

150 mm

150 mm
50 mm

100 mm
100 mm

600 kN150 mm

150 mm

Prob. 1–39

3 ft 3 ft

3 ft

3 ft

1.5 ft

CB

A

D
E300 lb

500 lb

1.5 ft

Probs. 1–40/41/42/43

*1–44. A 175-lb woman stands on a vinyl floor wearing
stiletto high-heel shoes. If the heel has the dimensions
shown, determine the average normal stress she exerts on
the floor and compare it with the average normal stress
developed when a man having the same weight is wearing
flat-heeled shoes. Assume the load is applied slowly, so that
dynamic effects can be ignored. Also, assume the entire
weight is supported only by the heel of one shoe.

1.2 in.

0.5 in.

0.1 in.
0.3 in.

Prob. 1–44
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1
•1–45. The truss is made from three pin-connected
members having the cross-sectional areas shown in the
figure. Determine the average normal stress developed in
each member when the truss is subjected to the load shown.
State whether the stress is tensile or compressive.

3 ft

4 ft

B

A

C

500 lb
A

A
C

 �
 0

.6
 in

.2

ABC � 0.8 in.2
A A

B
 �

 1
.5

 in
.2

Prob. 1–45

1–46. Determine the average normal stress developed
in links AB and CD of the smooth two-tine grapple that
supports the log having a mass of 3 Mg. The cross-
sectional area of each link is 

1–47. Determine the average shear stress developed
in pins A and B of the smooth two-tine grapple that
supports the log having a mass of 3 Mg. Each pin has a
diameter of 25 mm and is subjected to double shear.

400 mm2.

30�

0.2 m

1.2 m

A C

E DB

20�

0.4 m
30�

Probs. 1–46/47

*1–48. The beam is supported by a pin at A and a short
link BC. If P = 15 kN, determine the average shear stress
developed in the pins at A, B, and C. All pins are in double
shear as shown, and each has a diameter of 18 mm.

Prob. 1–48

C

B
A

0.5m
1 m 1.5 m 1.5 m

0.5 m
P 4P 4P 2P

30�

Prob. 1–49

1–50. The block is subjected to a compressive force of
2 kN. Determine the average normal and average shear
stress developed in the wood fibers that are oriented along
section a–a at 30° with the axis of the block.

150 mm
2 kN 2 kN

a

30�

50 mm

a

Prob. 1–50

•1–49. The beam is supported by a pin at A and a short
link BC. Determine the maximum magnitude P of the loads
the beam will support if the average shear stress in each pin
is not to exceed 80 MPa. All pins are in double shear as
shown, and each has a diameter of 18 mm.

C

B
A

0.5m
1 m 1.5 m 1.5 m

0.5 m
P 4P 4P 2P

30�
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1–51. During the tension test, the wooden specimen is
subjected to an average normal stress of 2 ksi. Determine
the axial force P applied to the specimen. Also, find the
average shear stress developed along section a–a of 
the specimen.

1

P

P

1 in.
2 in.

4 in.

4 in.

a

a

Prob. 1–51

*1–52. If the joint is subjected to an axial force of
, determine the average shear stress developed in

each of the 6-mm diameter bolts between the plates and the
members and along each of the four shaded shear planes.

•1–53. The average shear stress in each of the 6-mm diameter
bolts and along each of the four shaded shear planes is not
allowed to exceed 80 MPa and 500 kPa, respectively.
Determine the maximum axial force P that can be applied
to the joint.

P = 9 kN

P

P

100 mm

100 mm

Probs. 1–52/53

1–54. The shaft is subjected to the axial force of 40 kN.
Determine the average bearing stress acting on the collar C
and the normal stress in the shaft.

40 kN

30 mm

40 mm

C

Prob. 1–54

1–55. Rods AB and BC each have a diameter of 5 mm. If
the load of is applied to the ring, determine the
average normal stress in each rod if .

*1–56. Rods AB and BC each have a diameter of 5 mm.
Determine the angle of rod BC so that the average
normal stress in rod AB is 1.5 times that in rod BC. What is
the load P that will cause this to happen if the average
normal stress in each rod is not allowed to exceed 100 MPa?

u

u = 60°
P = 2 kN

u

C

B

P

A

Probs. 1–55/56
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1
•1–57. The specimen failed in a tension test at an angle of
52° when the axial load was 19.80 kip. If the diameter of the
specimen is 0.5 in., determine the average normal and
average shear stress acting on the area of the inclined
failure plane. Also, what is the average normal stress acting
on the cross section when failure occurs?

52�

0.5 in.

Prob. 1–57

1–58. The anchor bolt was pulled out of the concrete wall
and the failure surface formed part of a frustum and
cylinder. This indicates a shear failure occurred along the
cylinder BC and tension failure along the frustum AB. If
the shear and normal stresses along these surfaces have the
magnitudes shown, determine the force P that must have
been applied to the bolt.

30 mm4.5 MPa

3 MPa 3 MPa

P

50 mm

A

25 mm 25 mm

B

C

45�45�

Prob. 1–58

1–59. The open square butt joint is used to transmit a
force of 50 kip from one plate to the other. Determine the
average normal and average shear stress components that
this loading creates on the face of the weld, section AB.

30�

30�

50 kip

50 kip

2 in.

6 in.
A

B

Prob. 1–59

*1–60. If , determine the average shear stress
developed in the pins at A and C. The pins are subjected to
double shear as shown, and each has a diameter of 18 mm.

•1–61. Determine the maximum magnitude P of the load
the beam will support if the average shear stress in each pin
is not to allowed to exceed 60 MPa. All pins are subjected
to double shear as shown, and each has a diameter of
18 mm.

P = 20 kN

C

P P

2 m2 m2 mA
B

30�

Probs. 1–60/61
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1–62. The crimping tool is used to crimp the end of the
wire E. If a force of 20 lb is applied to the handles,
determine the average shear stress in the pin at A.The pin is
subjected to double shear and has a diameter of 0.2 in. Only
a vertical force is exerted on the wire.

1–63. Solve Prob. 1–62 for pin B. The pin is subjected to
double shear and has a diameter of 0.2 in.

1

A

20 lb

20 lb

5 in.
1.5 in. 2 in. 1 in.

E C

B D

Probs. 1–62/63

*1–64. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the glue can withstand a
maximum average shear stress of 800 kPa, determine the
maximum allowable clamping force F.

•1–65. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the clamping force is

, determine the average shear stress developed
in the glued shear plane.
F = 900 N

50 mm

45�

25 mm

F

F

glue

Probs. 1–64/65

1–66. Determine the largest load P that can be a applied
to the frame without causing either the average normal
stress or the average shear stress at section a–a to exceed

and , respectively. Member CB
has a square cross section of 25 mm on each side.

t = 60 MPas = 150 MPa

2 m

B

A
C

1.5 m

a

a

P

Prob. 1–66

1–67. The prismatic bar has a cross-sectional area A. If it
is subjected to a distributed axial loading that increases
linearly from at to at , and then
decreases linearly to at , determine the
average normal stress in the bar as a function of x for

*1–68. The prismatic bar has a cross-sectional area A. If it
is subjected to a distributed axial loading that increases
linearly from at to at , and then
decreases linearly to at , determine the
average normal stress in the bar as a function of x for

.a 6 x … 2a

x = 2aw = 0
x = aw = w0x = 0w = 0

0 … x 6 a.

x = 2aw = 0
x = aw = w0x = 0w = 0

x

a a

w0

Probs. 1–67/68
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1
•1–69. The tapered rod has a radius of in.
and is subjected to the distributed loading of

>in. Determine the average normal stress
at the center of the rod, B.
w = (60 + 40x) lb

r = (2 - x>6)

w � (60 � 40x) lb/ in.

r = (2 �      ) in.

x

3 in. 3 in.

r

x—
6

B

Prob. 1–69

1–70. The pedestal supports a load P at its center. If the
material has a mass density determine the radial
dimension r as a function of z so that the average normal
stress in the pedestal remains constant. The cross section is
circular.

r,

z

r

P

r1

Prob. 1–70

1–71. Determine the average normal stress at section a–a
and the average shear stress at section b–b in member AB.
The cross section is square, 0.5 in. on each side.

150 lb/ft

B

A

C 4 ft

b

b

a

a

60�

Prob. 1–71

*1–72. Consider the general problem of a bar made from
m segments, each having a constant cross-sectional area 
and length If there are n loads on the bar as shown,
write a computer program that can be used to determine
the average normal stress at any specified location x. Show
an application of the program using the values 

A2 = 1 in2.P2 = -300 lb,
d2 = 6 ft,L2 = 2 ft,A1 = 3 in2,P1 = 400 lb,d1 = 2 ft,
L1 = 4 ft,

Lm .
Am

P2P1
Pn

AmA2A1

d1

d2

dn

L1 L2 Lm

x

Prob. 1–72
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1.6 Allowable Stress

To properly design a structural member or mechanical element it is
necessary to restrict the stress in the material to a level that will be safe.
To ensure this safety, it is therefore necessary to choose an allowable
stress that restricts the applied load to one that is less than the load the
member can fully support. There are many reasons for doing this. For
example, the load for which the member is designed may be different
from actual loadings placed on it. The intended measurements of a
structure or machine may not be exact, due to errors in fabrication or in
the assembly of its component parts. Unknown vibrations, impact, or
accidental loadings can occur that may not be accounted for in the
design. Atmospheric corrosion, decay, or weathering tend to cause
materials to deteriorate during service. And lastly, some materials, such
as wood, concrete, or fiber-reinforced composites, can show high
variability in mechanical properties.

One method of specifying the allowable load for a member is to use a
number called the factor of safety. The factor of safety (F.S.) is a ratio of
the failure load to the allowable load Here is found from
experimental testing of the material, and the factor of safety is selected
based on experience so that the above mentioned uncertainties are
accounted for when the member is used under similar conditions of
loading and geometry. Stated mathematically,

(1–8)

If the load applied to the member is linearly related to the stress
developed within the member, as in the case of using and

then we can also express the factor of safety as a ratio of the 
failure stress (or ) to the allowable stress (or );∗ that is,

(1–9)

or

(1–10)F.S. =
tfail

tallow

F.S. =
sfail

sallow

tallowsallowtfailsfail

tavg = V>A,
s = P>A

F.S. =
Ffail

Fallow

FfailFallow .Ffail

1

*In some cases, such as columns, the applied load is not linearly related to stress and
therefore only Eq. 1–8 can be used to determine the factor of safety. See Chapter 13.
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1
In any of these equations, the factor of safety must be greater than 1 in

order to avoid the potential for failure. Specific values depend on the
types of materials to be used and the intended purpose of the structure
or machine. For example, the F.S. used in the design of aircraft or space-
vehicle components may be close to 1 in order to reduce the weight of
the vehicle. Or, in the case of a nuclear power plant, the factor of safety
for some of its components may be as high as 3 due to uncertainties
in loading or material behavior. In many cases, the factor of safety for a
specific case can be found in design codes and engineering handbooks.
These values are intended to form a balance of ensuring public and
environmental safety and providing a reasonable economic solution to
design.

1.7 Design of Simple Connections

By making simplifying assumptions regarding the behavior of the
material, the equations and can often be used to
analyze or design a simple connection or mechanical element. In
particular, if a member is subjected to normal force at a section, its
required area at the section is determined from

(1–11)

On the other hand, if the section is subjected to an average shear force,
then the required area at the section is

(1–12)

As discussed in Sec. 1.6, the allowable stress used in each of these
equations is determined either by applying a factor of safety to the
material’s normal or shear failure stress or by finding these stresses
directly from an appropriate design code.

Three examples of where the above equations apply are shown in
Fig. 1–25.

A =
V
tallow

A =
P
sallow

tavg = V>As = P>A

B

(�b)allow

P

Assumed uniform 
normal stress 
distribution

A �
P

(�b)allow

The area of the column base plate B is determined
from the allowable bearing stress for the concrete.

P

d

Assumed uniform shear stress

P

tallow

l � —————P
tallowpd

The embedded length l of this rod in concrete 
can be determined using the allowable shear 

stress of the bonding glue. 

P

P

The area of the bolt for this lap joint
is determined from the shear stress, 
which is largest between the plates.

P

V � P

Assumed uniform 
shear stress

P

A �

tallow

P
tallow

Fig. 1–25
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1 Important Point

• Design of a member for strength is based on selecting an
allowable stress that will enable it to safely support its intended
load. Since there are many unknown factors that can influence
the actual stress in a member, then depending upon the intended
use of the member, a factor of safety is applied to obtain the
allowable load the member can support.

Procedure for Analysis

When solving problems using the average normal and shear stress
equations, a careful consideration should first be made as to choose
the section over which the critical stress is acting. Once this section
is determined, the member must then be designed to have a
sufficient area at the section to resist the stress that acts on it. This
area is determined using the following steps.

Internal Loading.

• Section the member through the area and draw a free-body
diagram of a segment of the member.The internal resultant force at
the section is then determined using the equations of equilibrium.

Required Area.

• Provided the allowable stress is known or can be determined,
the required area needed to sustain the load at the section is then
determined from or A = V>tallow.A = P>sallow

Appropriate factors of safety must be
considered when designing cranes and
cables used to transfer heavy loads.
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1

The control arm is subjected to the loading shown in Fig. 1–26a.
Determine to the nearest the required diameter of the steel pin
at C if the allowable shear stress for the steel is tallow = 8 ksi.

1
4 in.

EXAMPLE 1.13

Fig. 1–26

3
5

42 in.3 in.

8 in.

Cx

3 kip
5 kip

FAB

Cy

(b)

C

(a)

C

3
5

42 in.3 in.

8 in.

A

C

3 kip
5 kip

B

SOLUTION
Internal Shear Force. A free-body diagram of the arm is shown in
Fig. 1–26b. For equilibrium we have

The pin at C resists the resultant force at C, which is

Since the pin is subjected to double shear, a shear force of 3.041 kip
acts over its cross-sectional area between the arm and each supporting
leaf for the pin, Fig. 1–26c.

Required Area. We have

Use a pin having a diameter of

Ans.d = 3
4 in. = 0.750 in.

 d = 0.696 in.

 pad

2
b2

= 0.3802 in2

A =
V
tallow

=
3.041 kip

8 kip>in2 = 0.3802 in2

FC = 211 kip22 + 16 kip22 = 6.082 kip

Cy - 3 kip - 5 kip A35 B = 0 Cy = 6 kip+ c ©Fy = 0;

-3 kip - Cx + 5 kip A45 B = 0 Cx = 1 kip:+ ©Fx = 0;

FAB = 3 kip

FAB18 in.2 - 3 kip 13 in.2 - 5 kip A35 B15 in.2 = 0d+ ©MC = 0;

(c)

3.041 kip

3.041 kip

6.082 kip

Pin at C
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1

The suspender rod is supported at its end by a fixed-connected circular
disk as shown in Fig. 1–27a. If the rod passes through a 40-mm-diameter
hole, determine the minimum required diameter of the rod and
the minimum thickness of the disk needed to support the 20-kN load.
The allowable normal stress for the rod is and the
allowable shear stress for the disk is tallow = 35 MPa.

sallow = 60 MPa,

EXAMPLE 1.14

Fig. 1–27

20 kN

A allow

(b)

40 mm

t

20 kN

t

d

(a)

40 mm

SOLUTION
Diameter of Rod. By inspection, the axial force in the rod is 20 kN.
Thus the required cross-sectional area of the rod is

;

so that

Ans.

Thickness of Disk. As shown on the free-body diagram in
Fig. 1–27b, the material at the sectioned area of the disk must resist
shear stress to prevent movement of the disk through the hole. If this
shear stress is assumed to be uniformly distributed over the sectioned
area, then, since we have

Ans.t = 4.55110-32 m = 4.55 mm

2p10.02 m21t2 =
2011032 N

3511062 N>m2A =
V
tallow

;

V = 20 kN,

 d = 0.0206 m = 20.6 mm

p

4
d2 =

2011032 N
6011062 N>m2A =

P
sallow
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1

The shaft shown in Fig. 1–28a is supported by the collar at C, which is
attached to the shaft and located on the right side of the bearing at B.
Determine the largest value of P for the axial forces at E and F so
that the bearing stress on the collar does not exceed an allowable
stress of and the average normal stress in the shaft
does not exceed an allowable stress of 1st2allow = 55 MPa.

1sb2allow = 75 MPa

EXAMPLE 1.15

P
2 P

(b)

3P80 mm

60 mm
P

A

F
P2

CE

B

(a)

20 mm

(c)

Axial
Force

Position

3P
2P

SOLUTION
To solve the problem we will determine P for each possible failure
condition. Then we will choose the smallest value. Why?

Normal Stress. Using the method of sections, the axial load within
region FE of the shaft is 2P, whereas the largest axial force, 3P, occurs
within region EC, Fig. 1–28b. The variation of the internal loading is
clearly shown on the normal-force diagram, Fig. 1–28c. Since the cross-
sectional area of the entire shaft is constant, region EC is subjected to
the maximum average normal stress.Applying Eq. 1–11, we have

;

Ans.
Bearing Stress. As shown on the free-body diagram in Fig. 1–28d,
the collar at C must resist the load of 3P, which acts over a bearing
area of Thus,

By comparison, the largest load that can be applied to the shaft is
since any load larger than this will cause the allowable

normal stress in the shaft to be exceeded.

NOTE: Here we have not considered a possible shear failure of the
collar as in Example 1.14.

P = 51.8 kN,

 P = 55.0 kN

 2.199110-32 m2 =
3P

7511062 N>m2A =
P
sallow

;

Ab = [p10.04 m22 - p10.03 m22] = 2.199110-32 m2.

 P = 51.8 kN

p10.03 m22 =
3P

5511062 N>m2A =
P
sallow

3P

(d)

C

Fig. 1–28
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1

The rigid bar AB shown in Fig. 1–29a is supported by a steel rod AC
having a diameter of 20 mm and an aluminum block having a cross-
sectional area of The 18-mm-diameter pins at A and C are
subjected to single shear. If the failure stress for the steel and aluminum
is and respectively, and the
failure shear stress for each pin is determine the largest
load P that can be applied to the bar.Apply a factor of safety of

SOLUTION
Using Eqs. 1–9 and 1–10, the allowable stresses are

The free-body diagram of the bar is shown in Fig. 1–29b. There are
three unknowns.Here we will apply the moment equations of equilibrium
in order to express and in terms of the applied load P.We have

(1)

(2)

We will now determine each value of P that creates the allowable
stress in the rod, block, and pins, respectively.

Rod AC. This requires

Using Eq. 1,

P =
1106.8 kN212 m2

1.25 m
= 171 kN

FAC = 1sst2allow1AAC2 = 34011062 N>m2 [p10.01 m22] = 106.8 kN

 FB12 m2 - P10.75 m2 = 0d+ ©MA = 0;

 P11.25 m2 - FAC12 m2 = 0d+ ©MB = 0;

FBFAC

 tallow =
tfail

F.S.
=

900 MPa
2

= 450 MPa

 1sal2allow =
1sal2fail

F.S.
=

70 MPa
2

= 35 MPa

 1sst2allow =
1sst2fail

F.S.
=

680 MPa
2

= 340 MPa

F.S. = 2.
tfail = 900 MPa,

1sal2fail = 70 MPa,1sst2fail = 680 MPa

1800 mm2.

EXAMPLE 1.16

Block B. In this case,

FB = 1sal2allow AB = 3511062 N>m2 [1800 mm2 110-62 m2>mm2] = 63.0 kN

Using Eq. 2,

Pin A or C. Due to single shear,

From Eq. 1,

By comparison,as P reaches its smallest value (168 kN), the allowable
normal stress will first be developed in the aluminum block. Hence,

Ans.P = 168 kN

P =
114.5 kN 12 m2

1.25 m
= 183 kN

FAC = V = tallow A = 45011062 N>m2 [p10.009 m22] = 114.5 kN

P =
163.0 kN212 m2

0.75 m
= 168 kN

Fig. 1–29

2 m

A

0.75 m

(a)

Aluminum

Steel P

B

C

(b)

A

0.75 m

P

1.25 m
B

FB

FAC
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1FUNDAMENTAL PROBLEMS

F1–13. Rods AC and BC are used to suspend the 200-kg
mass. If each rod is made of a material for which the average
normal stress can not exceed 150 MPa, determine the
minimum required diameter of each rod to the nearest mm.

F1–16. If each of the three nails has a diameter of 4 mm
and can withstand an average shear stress of 60 MPa,
determine the maximum allowable force P that can be
applied to the board.

A B

C

60�60�

F1–13

F1–14. The frame supports the loading shown. The pin at
A has a diameter of 0.25 in. If it is subjected to double shear,
determine the average shear stress in the pin.

3 ft

2 ft

A E
C

D

B

2 ft

600 lb

10 kip

5 kip

5 kip

F1–15

F1–14

F1–15. Determine the maximum average shear stress
developed in each -diameter bolt.3>4-in.

P

F1–16

F1–17. The strut is glued to the horizontal member at
surface AB. If the strut has a thickness of 25 mm and the glue
can withstand an average shear stress of 600 kPa, determine
the maximum force P that can be applied to the strut.

50 mm

A B

60�

P

F1–17

F1–18. Determine the maximum average shear stress
developed in the 30-mm-diameter pin.

30 kN

40 kN

F1–18
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1
F1–19. If the eyebolt is made of a material having a yield
stress of MPa, determine the minimum required
diameter d of its shank. Apply a factor of safety 
against yielding.

F.S. = 1.5
sY = 250

30 kN
d

F1–19

F1–20

F1–20. If the bar assembly is made of a material having
a yield stress of ksi, determine the minimum
required dimensions and to the nearest Apply a
factor of safety against yielding. Each bar has a
thickness of 0.5 in.

F.S. = 1.5
1>8 in.h2h1

sY = 50

A
BC

15 kip

15 kip

30 kip
h1

h2

F1–22

80 kN

F1–21

50 mm

60 mm120 mm

a

a

P
40 mm

Section a-a

F1–21. Determine the maximum force P that can be
applied to the rod if it is made of material having a yield
stress of MPa. Consider the possibility that failure
occurs in the rod and at section a–a. Apply a factor of safety
of against yielding.F.S. = 2

sY = 250

F1–22. The pin is made of a material having a failure
shear stress of . Determine the minimum
required diameter of the pin to the nearest mm. Apply a
factor of safety of against shear failure.F.S. = 2.5

tfail = 100 MPa

F1–23

40 mm

75 mm

80 mm

30 mm

P

F1–23. If the bolt head and the supporting bracket are
made of the same material having a failure shear stress of

, determine the maximum allowable force P
that can be applied to the bolt so that it does not pull
through the plate. Apply a factor of safety of 
against shear failure.

F.S. = 2.5

tfail = 120 MPa

F1–24

A
B

9 ft

300 lb/ft     

F1–24. Six nails are used to hold the hanger at A against
the column. Determine the minimum required diameter of
each nail to the nearest if it is made of material
having . Apply a factor of safety of 
against shear failure.

F.S. = 2tfail = 16 ksi
1>16 in.
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1

•1–73. Member B is subjected to a compressive force of
800 lb. If A and B are both made of wood and are thick,
determine to the nearest the smallest dimension h of
the horizontal segment so that it does not fail in shear. The
average shear stress for the segment is tallow = 300 psi.

1
4  in.

3
8  in.

*1–76. The lapbelt assembly is to be subjected to a force
of 800 N. Determine (a) the required thickness t of
the belt if the allowable tensile stress for the material
is (b) the required lap length 
if the glue can sustain an allowable shear stress of

and (c) the required diameter of
the pin if the allowable shear stress for the pin is
(tallow)p = 30 MPa.

dr(tallow)g = 0.75 MPa,

dl(st)allow = 10 MPa,

PROBLEMS

800 lbB

h
A

12

5
13

Prob. 1–73
1–74. The lever is attached to the shaft A using a key that
has a width d and length of 25 mm. If the shaft is fixed and
a vertical force of 200 N is applied perpendicular to the
handle, determine the dimension d if the allowable shear
stress for the key is tallow = 35 MPa.

500 mm

20 mm

d
aa

A

200 N

Prob. 1–74

1–75. The joint is fastened together using two bolts.
Determine the required diameter of the bolts if the failure
shear stress for the bolts is Use a factor of
safety for shear of F.S. = 2.5.

tfail = 350 MPa.

80 kN

40 kN

30 mm

30 mm

40 kN

Prob. 1–75

800 N

800 N

t

dr

dl

45 mm

Prob. 1–76

•1–77. The wood specimen is subjected to the pull of 
10 kN in a tension testing machine. If the allowable normal
stress for the wood is and the
allowable shear stress is determine the
required dimensions b and t so that the specimen reaches
these stresses simultaneously. The specimen has a width of 
25 mm.

tallow = 1.2 MPa,
(st)allow = 12 MPa

10 kN

10 kN

A t

b

Prob. 1–77
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1
1–78. Member B is subjected to a compressive force of
600 lb. If A and B are both made of wood and are 1.5 in.
thick, determine to the nearest the smallest dimension
a of the support so that the average shear stress along the
blue line does not exceed . Neglect friction.tallow = 50 psi

1>8 in.

600 lb

a

A

B4

53

Prob. 1–78

1–79. The joint is used to transmit a torque of
. Determine the required minimum diameter

of the shear pin A if it is made from a material having a
shear failure stress of MPa. Apply a factor of
safety of 3 against failure.

tfail = 150

T = 3 kN # m

A

 T

 T
100 mm

Probs. 1–79/80

•1–81. The tension member is fastened together using two
bolts, one on each side of the member as shown. Each bolt
has a diameter of 0.3 in. Determine the maximum load P
that can be applied to the member if the allowable shear
stress for the bolts is and the allowable
average normal stress is .sallow = 20 ksi

tallow = 12 ksi

60�

PP

Prob. 1–81

*1–80. Determine the maximum allowable torque T that
can be transmitted by the joint. The shear pin A has a
diameter of 25 mm, and it is made from a material having a
failure shear stress of MPa. Apply a factor of
safety of 3 against failure.

tfail = 150

1–82. The three steel wires are used to support the
load. If the wires have an allowable tensile stress of

, determine the required diameter of each
wire if the applied load is .P = 6 kN
sallow = 165 MPa

30�45� B

D

P

A

C

Probs. 1–82/83

1–83. The three steel wires are used to support the
load. If the wires have an allowable tensile stress of

, and wire AB has a diameter of 6 mm, BC
has a diameter of 5 mm, and BD has a diameter of 7 mm,
determine the greatest force P that can be applied before
one of the wires fails.

sallow = 165 MPa
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1
*1–84. The assembly consists of three disks A, B, and C
that are used to support the load of 140 kN. Determine the
smallest diameter of the top disk, the diameter within
the support space, and the diameter of the hole in the
bottom disk. The allowable bearing stress for the material
is and allowable shear stress is
tallow = 125 MPa.
1sallow2b = 350 MPa

d3

d2d1

10 mm

20 mm

140 kN

d2

d3

d1

A
B

C

Prob. 1–84

•1–85. The boom is supported by the winch cable that has
a diameter of 0.25 in. and an allowable normal stress of

Determine the greatest load that can be
supported without causing the cable to fail when 
and Neglect the size of the winch.f = 45°.

u = 30°
sallow = 24 ksi.

20 ft

f

u

A

B

d

Probs. 1–85/86

1–87. The oak post is supported on
the pine block. If the allowable bearing stresses for
these materials are and ,
determine the greatest load P that can be supported. If
a rigid bearing plate is used between these materials,
determine its required area so that the maximum load P can
be supported. What is this load?

spine = 25 MPasoak = 43 MPa

60 mm * 60 mm

P

Prob. 1–87

1–86. The boom is supported by the winch cable that has
an allowable normal stress of If it is
required that it be able to slowly lift 5000 lb, from 
to determine the smallest diameter of the cable to
the nearest The boom AB has a length of 20 ft.
Neglect the size of the winch. Set d = 12 ft.

1
16 in.

u = 50°,
u = 20°

sallow = 24 ksi.

*1–88. The frame is subjected to the load of 4 kN which
acts on member ABD at D. Determine the required
diameter of the pins at D and C if the allowable shear stress
for the material is Pin C is subjected to
double shear, whereas pin D is subjected to single shear.

tallow = 40 MPa.

B

1.5 m

4 kN

45� 1.5 m1 m

1.5 m

DC
E

A

Prob. 1–88
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1
•1–89. The eye bolt is used to support the load of 5 kip.
Determine its diameter d to the nearest and the
required thickness h to the nearest of the support so
that the washer will not penetrate or shear through it. The
allowable normal stress for the bolt is and
the allowable shear stress for the supporting material is
tallow = 5 ksi.

sallow = 21 ksi

1
8  in.

1
8  in.

1 in.

d

5 kip

h

Prob. 1–89

1–90. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load ,
determine the required minimum diameter of pins B and C.
Use a factor of safety of 2 against failure. The pins are made
of material having a failure shear stress of ,
and each pin is subjected to double shear.

1–91. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load of ,
determine the factor of safety of pins B and C against
failure if they are made of a material having a shear failure
stress of . Pin B has a diameter of 7.5 mm,
and pin C has a diameter of 6.5 mm. Both pins are subjected
to double shear.

tfail = 150 MPa

P = 1500 N

tfail = 150 MPa

P = 1500 N

CB

D

A

P

300 mm
100 mm

30 mm

60�

Probs. 1–90/91

*1–92. The compound wooden beam is connected together
by a bolt at B.Assuming that the connections at A, B, C, and
D exert only vertical forces on the beam, determine the
required diameter of the bolt at B and the required outer
diameter of its washers if the allowable tensile stress for the
bolt is and the allowable bearing stress
for the wood is Assume that the hole in
the washers has the same diameter as the bolt.

1sb2allow = 28 MPa.
1st2allow = 150 MPa

1.5 m1.5 m1.5 m1.5 m2 m2 m

B

C D
A

3 kN 1.5 kN
2 kN

Prob. 1–92

•1–93. The assembly is used to support the distributed
loading of . Determine the factor of safety with
respect to yielding for the steel rod BC and the pins at B and
C if the yield stress for the steel in tension is 
and in shear . The rod has a diameter of 0.40 in.,
and the pins each have a diameter of 0.30 in.

1–94. If the allowable shear stress for each of the 0.30- 
in.-diameter steel pins at A, B, and C is ,
and the allowable normal stress for the 0.40-in.-diameter
rod is , determine the largest intensity w of
the uniform distributed load that can be suspended from
the beam.

sallow = 22 ksi

tallow = 12.5 ksi

ty = 18 ksi
sy = 36 ksi

w = 500 lb>ft

C

B

A

4 ft

3 ft

1 ft

w

Probs. 1–93/94
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1
1–95. If the allowable bearing stress for the material
under the supports at A and B is 
determine the size of square bearing plates and 
required to support the load. Dimension the plates to the
nearest mm.The reactions at the supports are vertical.Take
P = 100 kN.

B¿A¿
1sb2allow = 1.5 MPa,

3 m

P

A¿ B¿
A B

40 kN/m

1.5 m 1.5 m

Probs. 1–95/96

*1–96. If the allowable bearing stress for the material
under the supports at A and B is 
determine the maximum load P that can be applied to the
beam. The bearing plates and have square cross
sections of and 
respectively.

250 mm * 250 mm,150 mm * 150 mm
B¿A¿

1sb2allow = 1.5 MPa,

B

A

D

C

4 kN

6 kN
5 kN

3 m2 m2 m 3 m

Prob. 1–97

•1–97. The rods AB and CD are made of steel having a
failure tensile stress of Using a factor of
safety of for tension, determine their smallest
diameter so that they can support the load shown. The
beam is assumed to be pin connected at A and C.

F.S. = 1.75
sfail = 510 MPa.

1–98. The aluminum bracket A is used to support the
centrally applied load of 8 kip. If it has a constant thickness
of 0.5 in., determine the smallest height h in order to
prevent a shear failure. The failure shear stress is

Use a factor of safety for shear of F.S. = 2.5.tfail = 23 ksi.

8 kip

hA

Prob. 1–98

20 mm

75 mm

10 mm

aa b

t
P

37.5 mm

37.5 mm

Probs. 1–99/100

1–99. The hanger is supported using the rectangular pin.
Determine the magnitude of the allowable suspended load
P if the allowable bearing stress is MPa, the
allowable tensile stress is MPa, and the
allowable shear stress is Take 

and 

*1–100. The hanger is supported using the rectangular
pin. Determine the required thickness t of the hanger, and
dimensions a and b if the suspended load is 
The allowable tensile stress is the
allowable bearing stress is and the
allowable shear stress is tallow = 125 MPa.

(sb)allow = 290 MPa,
(st)allow = 150 MPa,

P = 60 kN.

b = 25 mm.a = 5 mm,
t = 6 mm,tallow = 130 MPa.

(st)allow = 150
(sb)allow = 220
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The internal loadings in a body consist
of a normal force, shear force, bending
moment, and torsional moment. They
represent the resultants of both a
normal and shear stress distribution
that acts over the cross section. To
obtain these resultants, use the method
of sections and the equations of
equilibrium.

 ©Mz = 0

 ©My = 0

 ©Mx = 0

  ©Fz = 0

  ©Fy = 0

 ©Fx = 0

CHAPTER REVIEW

If a bar is made from homogeneous
isotropic material and it is subjected to
a series of external axial loads that
pass through the centroid of the cross
section, then a uniform normal stress
distribution will act over the cross
section. This average normal stress can
be determined from where
P is the internal axial load at the
section.

s = P>A,

s =
P

A

The average shear stress can be
determined using where
V is the shear force acting on the
cross-sectional area A. This formula
is often used to find the average
shear stress in fasteners or in parts
used for connections.

tavg = V>A,

tavg =
V

A

The design of any simple connection
requires that the average stress along
any cross section not exceed an
allowable stress of or 
These values are reported in codes and
are considered safe on the basis of
experiments or through experience.
Sometimes a factor of safety is
reported provided the ultimate stress
is known.

tallow .sallow

F.S. =
sfail

sallow
=
tfail

tallow

s

PP

s s �
P
A

F

V V

tavg �
V
A

O

F1 F2

N

T

M
V

Torsional
Moment

Bending
Moment

Shear
Force

Normal
Force
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1

P1–1. Here hurricane winds caused the failure of this
highway sign. Assuming the wind creates a uniform pressure
on the sign of 2 kPa, use reasonable dimensions for the sign
and determine the resultant shear and moment at the two
connections where the failure occurred.

P1–3. The hydraulic cylinder H applies a horizontal force F on
the pin at A. Draw the free-body diagram of the pin and show
the forces acting on it. Using the method of sections, explain
why the average shear stress in the pin is largest at sections
through the gaps D and E and not at some intermediate section.

P1–2. The two structural tubes are connected by the pin
which passes through them. If the vertical load being
supported is 100 kN, draw a free-body diagram of the pin and
then use the method of sections to find the maximum average
shear force in the pin. If the pin has a diameter of 50 mm, what
is the maximum average shear stress in the pin?

P1–4. The vertical load on the hook is 1000 lb. Draw the
appropriate free-body diagrams and determine the maximum
average shear force on the pins at A, B, and C. Note that due
to symmetry four wheels are used to support the loading on
the railing.

CONCEPTUAL PROBLEMS

E HAD

A

B C

P1–1 P1–3

P1–2
P1–4
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1

•1–101. The 200-mm-diameter aluminum cylinder
supports a compressive load of 300 kN. Determine the
average normal and shear stress acting on section a–a.
Show the results on a differential element located on the
section.

1–103. Determine the required thickness of member BC
and the diameter of the pins at A and B if the allowable
normal stress for member BC is and the
allowable shear stress for the pins is tallow = 10 ksi.

sallow = 29 ksi

REVIEW PROBLEMS

30�

300 kN

a

d

a

Prob. 1–101

1–102. The long bolt passes through the 30-mm-thick
plate. If the force in the bolt shank is 8 kN, determine the
average normal stress in the shank, the average shear
stress along the cylindrical area of the plate defined by
the section lines a–a, and the average shear stress in the
bolt head along the cylindrical area defined by the section
lines b–b.

8 kN
18 mm

7 mm

30 mm

8 mm a

a

b

b

Prob. 1–102

C

60�
8 ftB A

2 kip/ft

1.5 in.

Prob. 1–103

*1–104. Determine the resultant internal loadings acting
on the cross sections located through points D and E of the
frame.

4 ft

1.5 ft
A

D

5 ft3 ft
C

2.5 ft

E

B

150 lb/ft

Prob. 1–104



1
•1–105. The pulley is held fixed to the 20-mm-diameter
shaft using a key that fits within a groove cut into the
pulley and shaft. If the suspended load has a mass of
50 kg, determine the average shear stress in the key along
section a–a. The key is 5 mm by 5 mm square and 12 mm
long.

1–107. The yoke-and-rod connection is subjected to a
tensile force of 5 kN. Determine the average normal stress
in each rod and the average shear stress in the pin A
between the members.

75 mm

a a

Prob. 1–105

1–106. The bearing pad consists of a 150 mm by 150 mm
block of aluminum that supports a compressive load of
6 kN. Determine the average normal and shear stress acting
on the plane through section a–a. Show the results on a
differential volume element located on the plane.

30�

150 mm

6 kN

a

a

Prob. 1–106

25 mm

40 mm

30 mm

A

5 kN

5 kN

Prob. 1–107

*1–108. The cable has a specific weight 
and cross-sectional area A. If the sag s is small, so that its
length is approximately L and its weight can be distributed
uniformly along the horizontal axis, determine the average
normal stress in the cable at its lowest point C.

(weight>volume)g

s

L/2 L/2

C

A B

Prob. 1–108
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When the bolt causes compression of these two transparent plates it produces strains
in the material that shows up as a spectrum of colors when displayed under polarized
light. These strains can be related to the stress in the material.
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CHAPTER OBJECTIVES

In engineering the deformation of a body is specified using the
concepts of normal and shear strain. In this chapter we will define these
quantities and show how they can be determined for various types of
problems.

2.1 Deformation

Whenever a force is applied to a body, it will tend to change the body’s
shape and size. These changes are referred to as deformation, and they
may be either highly visible or practically unnoticeable. For example, a
rubber band will undergo a very large deformation when stretched,
whereas only slight deformations of structural members occur when a
building is occupied by people walking about. Deformation of a body
can also occur when the temperature of the body is changed. A typical
example is the thermal expansion or contraction of a roof caused by the
weather.

In a general sense, the deformation of a body will not be uniform
throughout its volume, and so the change in geometry of any line
segment within the body may vary substantially along its length. Hence,
to study deformational changes in a more uniform manner, we will
consider line segments that are very short and located in the
neighborhood of a point. Realize, however, that these changes will also
depend on the orientation of the line segment at the point. For example,
a line segment may elongate if it is oriented in one direction, whereas it
may contract if it is oriented in another direction.

Strain

Note the before and after positions of three
different line segments on this rubber
membrane which is subjected to tension. The
vertical line is lengthened, the horizontal line
is shortened, and the inclined line changes
its length and rotates.



66 CHAPTER 2 STRAIN

2

Deformed body

A¿

B¿

�s¿

(b)

Fig. 2–1

2.2 Strain

In order to describe the deformation of a body by changes in length of
line segments and the changes in the angles between them, we will
develop the concept of strain. Strain is actually measured by
experiments, and once the strain is obtained, it will be shown in the next
chapter how it can be related to the stress acting within the body.

Normal Strain. If we define the normal strain as the change in
length of a line per unit length, then we will not have to specify the actual
length of any particular line segment. Consider, for example, the line AB,
which is contained within the undeformed body shown in Fig. 2–1a. This
line lies along the n axis and has an original length of After
deformation, points A and B are displaced to and and the line
becomes a curve having a length of Fig. 2–1b. The change in length
of the line is therefore If we define the average normal strain
using the symbol (epsilon), then

(2–1)

As point B is chosen closer and closer to point A, the length of the line
will become shorter and shorter, such that Also, this causes to
approach such that Consequently, in the limit the normal
strain at point A and in the direction of n is

(2–2)

Hence, when (or ) is positive the initial line will elongate, whereas if
is negative the line contracts.
Note that normal strain is a dimensionless quantity, since it is a ratio of

two lengths. Although this is the case, it is sometimes stated in terms of a
ratio of length units. If the SI system is used, then the basic unit for length
is the meter (m). Ordinarily, for most engineering applications will be
very small, so measurements of strain are in micrometers per meter

where In the Foot-Pound-Second system,
strain is often stated in units of inches per inch ( ). Sometimesin.>in.

1 mm = 10-6 m.1mm>m2,
P

P
PavgP

P = lim
B:A along n

¢s¿ - ¢s

¢s
 

¢s¿: 0.A¿,
B¿¢s: 0.

Pavg =
¢sœ - ¢s

¢s
 

Pavg

¢s¿ - ¢s.
¢s¿,

B¿,A¿
¢s.Undeformed body

n

�s
A

B

(a)



Undeformed body

n
 t

A

B
C

(a)

p

2

Deformed body

B¿

A¿

C¿

(b)

u¿
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Fig. 2–2

for experimental work, strain is expressed as a percent, e.g.,
As an example, a normal strain of can be

reported as , or 0.0480%. Also, one can state
this answer as simply (480 “micros”).

Shear Strain. Deformations not only cause line segments to
elongate or contract, but they also cause them to change direction. If we
select two line segments that are originally perpendicular to one another,
then the change in angle that occurs between these two line segments is
referred to as shear strain. This angle is denoted by (gamma) and is
always measured in radians (rad), which are dimensionless. For example,
consider the line segments AB and AC originating from the same point
A in a body, and directed along the perpendicular n and t axes, Fig. 2–2a.
After deformation, the ends of both lines are displaced, and the lines
themselves become curves, such that the angle between them at A is 
Fig. 2–2b. Hence the shear strain at point A associated with the n and t
axes becomes

(2–3)

Notice that if is smaller than the shear strain is positive, whereas if
is larger than the shear strain is negative.p>2u¿

p>2u¿

gnt =
p

2
-

 

lim u¿
B : A along n
C : A along t

 

u¿,

g

480 m
480 mm>m,in.>in.480110-62 480110-620.001 m>m = 0.1%.
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Fig. 2–3

Cartesian Strain Components. Using the definitions of normal
and shear strain, we will now show how they can be used to describe the
deformation of the body in Fig. 2–3a. To do so, imagine the body is
subdivided into small elements such as the one shown in Fig. 2–3b.
This element is rectangular, has undeformed dimensions and

and is located in the neighborhood of a point in the body, Fig. 2–3a.
If the element’s dimensions are very small, then its deformed shape will
be a parallelepiped, Fig. 2–3c, since very small line segments will remain
approximately straight after the body is deformed. In order to achieve
this deformed shape, we will first consider how the normal strain
changes the lengths of the sides of the rectangular element, and then
how the shear strain changes the angles of each side. For example,
elongates , so its new length is . Therefore, the
approximate lengths of the three sides of the parallelepiped are

And the approximate angles between these sides are

Notice that the normal strains cause a change in volume of the element,
whereas the shear strains cause a change in its shape. Of course, both of
these effects occur simultaneously during the deformation.

In summary, then, the state of strain at a point in a body requires
specifying three normal strains, and three shear strains,

These strains completely describe the deformation of a
rectangular volume element of material located at the point and
oriented so that its sides are originally parallel to the x, y, z axes.
Provided these strains are defined at all points in the body, then the
deformed shape of the body can be determined.

gxz .gyz ,
gxy ,Pz ,Py ,Px ,

p

2
- gxy p

2
- gyz p

2
- gxz

11 + Px2 ¢x 11 + Py2 ¢y 11 + Pz2 ¢z

¢x + Px¢xPx¢x
¢x

¢z,
¢y,¢x,

(a)

y

x

z

(b)
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The rubber bearing support under this
concrete bridge girder is subjected to
both normal and shear strain. The
normal strain is caused by the weight
and bridge loads on the girder, and the
shear strain is caused by the horizontal
movement of the girder due to
temperature changes.

Small Strain Analysis. Most engineering design involves
applications for which only small deformations are allowed. In this text,
therefore, we will assume that the deformations that take place within a
body are almost infinitesimal. In particular, the normal strains occurring
within the material are very small compared to 1, so that This
assumption has wide practical application in engineering, and it is often
referred to as a small strain analysis. It can be used, for example, to
approximate , and , provided is very small.utan u = ucos u = 1sin u = u,

P V 1.

Important Points

• Loads will cause all material bodies to deform and, as a result,
points in a body will undergo displacements or changes in position.

• Normal strain is a measure per unit length of the elongation or
contraction of a small line segment in the body, whereas shear strain
is a measure of the change in angle that occurs between two small
line segments that are originally perpendicular to one another.

• The state of strain at a point is characterized by six strain
components: three normal strains and three shear
strains These components depend upon the original
orientation of the line segments and their location in the body.

• Strain is the geometrical quantity that is measured using
experimental techniques. Once obtained, the stress in the body
can then be determined from material property relations, as
discussed in the next chapter.

• Most engineering materials undergo very small deformations,and so
the normal strain This assumption of “small strain analysis”
allows the calculations for normal strain to be simplified, since first-
order approximations can be made about their size.

P V 1.

gxz .gyz ,gxy ,
PzPy ,Px ,
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The slender rod shown in Fig. 2–4 is subjected to an increase of
temperature along its axis, which creates a normal strain in the rod of

where z is measured in meters. Determine (a) the
displacement of the end B of the rod due to the temperature increase,
and (b) the average normal strain in the rod.

Pz = 40110-32z1>2,

EXAMPLE 2.1

Fig. 2–4

200 mm

A

z

dz

B

SOLUTION
Part (a). Since the normal strain is reported at each point along the
rod, a differential segment dz, located at position z, Fig. 2–4, has a
deformed length that can be determined from Eq. 2–1; that is,

The sum of these segments along the axis yields the deformed length
of the rod, i.e.,

The displacement of the end of the rod is therefore

Ans.

Part (b). The average normal strain in the rod is determined from
Eq. 2–1, which assumes that the rod or “line segment” has an original
length of 200 mm and a change in length of 2.39 mm. Hence,

Ans.Pavg =
¢s¿ - ¢s

¢s
=

2.39 mm
200 mm

= 0.0119 mm>mm

¢B = 0.20239 m - 0.2 m = 0.00239 m = 2.39 mm T

 = 0.20239 m

 = Cz + 40110-32 23 z3>2 D ƒ00.2 m

 z¿ = L
0.2 m

0
C1 + 40110-32z1>2 D  dz

 dz¿ = C1 + 40110-32z1>2 D  dz

 dz¿ = dz + Pz dz
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When force P is applied to the rigid lever arm ABC in Fig. 2–5a, the
arm rotates counterclockwise about pin A through an angle of 0.05°.
Determine the normal strain developed in wire BD.

SOLUTION I
Geometry. The orientation of the lever arm after it rotates about
point A is shown in Fig. 2–5b. From the geometry of this figure,

Then

For triangle ABD the Pythagorean theorem gives

Using this result and applying the law of cosines to triangle AB
D,

LAD = 21300 mm22 + 1400 mm22 = 500 mm

f = 90° - a + 0.05° = 90° - 53.1301° + 0.05° = 36.92°

a =  tan- 1a400 mm
300 mm

b = 53.1301°

EXAMPLE 2.2

Normal Strain.

Ans.

SOLUTION II
Since the strain is small, this same result can be obtained by approximating
the elongation of wire BD as , shown in Fig. 2–5b. Here,

Therefore,

Ans.PBD =
¢LBD

LBD
=

0.3491 mm
300 mm

= 0.00116 mm>mm

¢LBD = uLAB = c a 0.05°
180°

b1p rad2 d1400 mm2 = 0.3491 mm

¢LBD

PBD =
LB¿D - LBD

LBD
=

300.3491 mm - 300 mm
300 mm

= 0.00116 mm>mm

 = 300.3491 mm

 = 21500 mm22 + 1400 mm22 - 21500 mm21400 mm2 cos 36.92°

 LB¿D = 2LAD
2 + L2

AB¿ - 21LAD21LAB¿) cos f

AB

D

C
400 mm

(a)

 P 300 mm

A

B

B¿

D

C 400 mm

400 mm

(b)

 P

300 mm

u � 0.05��LBD f

a

Fig. 2–5



Due to a loading, the plate is deformed into the dashed shape shown
in Fig. 2–6a. Determine (a) the average normal strain along the side
AB, and (b) the average shear strain in the plate at A relative to the
x and y axes.
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EXAMPLE 2.3

Fig. 2–6

300 mm

(a)

CA

B

y

x

250 mm

3 mm

2 mm

(b)

A

B

250 mm

3 mm

2 mm
B¿

(c)

CA

u¿

gxy

B

y

x 

250 mm

3 mm2 mm

B¿

SOLUTION
Part (a). Line AB, coincident with the y axis, becomes line after
deformation, as shown in Fig. 2–6b. The length of is

The average normal strain for AB is therefore

Ans.

The negative sign indicates the strain causes a contraction of AB.

Part (b). As noted in Fig. 2–6c, the once 90° angle BAC between the
sides of the plate at A changes to due to the displacement of B to

Since then is the angle shown in the figure.
Thus,

Ans.gxy = tan-1 a 3 mm
250 mm - 2 mm

b = 0.0121 rad

gxygxy = p>2 - u¿,B¿.
u¿

 = -7.93110-32 mm>mm

 1PAB2avg =
AB¿ - AB

AB
=

248.018 mm - 250 mm
250 mm

AB¿ = 21250 mm - 2 mm22 + 13 mm22 = 248.018 mm

AB¿
AB¿
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The plate shown in Fig. 2–7a is fixed connected along AB and held in
the horizontal guides at its top and bottom, AD and BC. If its right
side CD is given a uniform horizontal displacement of 2 mm,
determine (a) the average normal strain along the diagonal AC, and
(b) the shear strain at E relative to the x, y axes.

SOLUTION
Part (a). When the plate is deformed, the diagonal AC becomes

Fig. 2–7b. The length of diagonals AC and can be found
from the Pythagorean theorem. We have

Therefore the average normal strain along the diagonal is

Ans.

Part (b). To find the shear strain at E relative to the x and y axes, it
is first necessary to find the angle after deformation, Fig. 2–7b. We
have

Applying Eq. 2–3, the shear strain at E is therefore

Ans.

The negative sign indicates that the angle is greater than 90°.

NOTE: If the x and y axes were horizontal and vertical at point E,
then the 90° angle between these axes would not change due to the
deformation, and so at point E.gxy = 0

u¿

gxy =
p

2
- 1.58404 rad = -0.0132 rad

 u¿ = 90.759° = a p
180°

b190.759°2 = 1.58404 rad

 tan a u¿
2
b =

76 mm
75 mm

u¿

 = 0.00669 mm>mm

 1PAC2avg =
AC¿ - AC

AC
=

0.21355 m - 0.21213 m
0.21213 m

 AC¿ = 210.150 m22 + 10.152 m22 = 0.21355 m

 AC = 210.150 m22 + 10.150 m22 = 0.21213 m

AC¿AC¿,

EXAMPLE 2.4

Fig. 2–7

150 mm

(a)

2 mm

y

150 mm

x

D

B C

A

E

76 mm

(b)

75 mm

E¿

D¿

B C¿

A

75 mm

76 mm

u¿
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FUNDAMENTAL PROBLEMS

F2–1. When force P is applied to the rigid arm ABC,
point B displaces vertically downward through a distance of
0.2 mm. Determine the normal strain developed in wire CD.

F2–4. The triangular plate is deformed into the shape
shown by the dashed line. Determine the normal strain
developed along edge BC and the average shear strain at
corner A with respect to the x and y axes.

A
B C

D

400 mm
200 mm 300 mm

P

F2–1

F2–2. If the applied force P causes the rigid arm ABC to
rotate clockwise about pin A through an angle of 0.02°,
determine the normal strain developed in wires BD and CE.

A
B C

D

600 mm 600 mm

600 mm

E

400 mm
P

F2–2

F2–3. The rectangular plate is deformed into the shape of a
rhombus shown by the dashed line. Determine the average
shear strain at corner A with respect to the x and y axes.

 y

x
A

B

D C

300 mm

2 mm

4 mm

400 mm

F2–3

A

C

B

 y

x

300 mm

3 mm

5 mm
400 mm

F2–4

F2–5. The square plate is deformed into the shape shown
by the dashed line. Determine the average normal strain
along diagonal AC and the shear strain of point E with
respect to the x and y axes.

 y x

E

A B

D C

300 mm

300 mm
3 mm3 mm

4 mm

F2–5
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2–1. An air-filled rubber ball has a diameter of 6 in. If the
air pressure within it is increased until the ball’s diameter
becomes 7 in., determine the average normal strain in the
rubber.

2–2. A thin strip of rubber has an unstretched length of
15 in. If it is stretched around a pipe having an outer diameter
of 5 in., determine the average normal strain in the strip.

2–3. The rigid beam is supported by a pin at A and wires
BD and CE. If the load P on the beam causes the end C to
be displaced 10 mm downward, determine the normal strain
developed in wires CE and BD.

•2–5. The rigid beam is supported by a pin at A and wires
BD and CE. If the distributed load causes the end C to be
displaced 10 mm downward, determine the normal strain
developed in wires CE and BD.

PROBLEMS

C

3 m

ED

2 m

4 m

P

BA

2 m

*2–4. The two wires are connected together at A. If the
force P causes point A to be displaced horizontally 2 mm,
determine the normal strain developed in each wire.

P
30�

30� A

B

C

300 mm

300 mm

Prob. 2–4

Prob. 2–3

C
2 m

E

D

2 m
1.5 m

BA
3 m

w

Prob. 2–5

2–6. Nylon strips are fused to glass plates. When
moderately heated the nylon will become soft while the
glass stays approximately rigid. Determine the average
shear strain in the nylon due to the load P when the
assembly deforms as indicated.

2 mm

3 mm

5 mm

3 mm

3 mm

5 mm

P

y

x

Prob. 2–6



2–7. If the unstretched length of the bowstring is 35.5 in.,
determine the average normal strain in the string when it is
stretched to the position shown.
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18 in.

6 in.

18 in.

Prob. 2–7

*2–8. Part of a control linkage for an airplane consists of a
rigid member CBD and a flexible cable AB. If a force is
applied to the end D of the member and causes it to rotate
by determine the normal strain in the cable.
Originally the cable is unstretched.

•2–9. Part of a control linkage for an airplane consists
of a rigid member CBD and a flexible cable AB. If a force
is applied to the end D of the member and causes a
normal strain in the cable of , determine
the displacement of point D. Originally the cable is
unstretched.

0.0035 mm>mm

u = 0.3°,

400 mm

300 mm

A

B

D P

300 mm

C

u

Probs. 2–8/9

2–10. The corners B and D of the square plate are given
the displacements indicated. Determine the shear strains at
A and B.

2–11. The corners B and D of the square plate are given
the displacements indicated. Determine the average normal
strains along side AB and diagonal DB.

3 mm

3 mm

16 mm16 mm

16 mm

16 mm

y

x

A

B

C

D

Probs. 2–10/11

*2–12. The piece of rubber is originally rectangular.
Determine the average shear strain at A if the corners B
and D are subjected to the displacements that cause the
rubber to distort as shown by the dashed lines.

•2–13. The piece of rubber is originally rectangular and
subjected to the deformation shown by the dashed lines.
Determine the average normal strain along the diagonal
DB and side AD.

gxy

300 mm

400 mm

D

A

y

x

3 mm

2 mm
B

C

Probs. 2–12/13
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2–14. Two bars are used to support a load.When unloaded,
AB is 5 in. long, AC is 8 in. long, and the ring at A has
coordinates (0, 0). If a load P acts on the ring at A, the
normal strain in AB becomes , and the
normal strain in AC becomes 
Determine the coordinate position of the ring due to the
load.

2–15. Two bars are used to support a load P. When
unloaded, AB is 5 in. long, AC is 8 in. long, and the ring at A
has coordinates (0, 0). If a load is applied to the ring at A, so
that it moves it to the coordinate position (0.25 in.,

), determine the normal strain in each bar.-0.73 in.

PAC = 0.035 in.>in.
PAB = 0.02 in.>in.

y

x

B C

A

5 in. 8 in.

60�

P

Probs. 2–14/15

*2–16. The square deforms into the position shown by the
dashed lines. Determine the average normal strain along
each diagonal, AB and CD. Side remains horizontal.D¿B¿

A

50 mm
8 mm

50 mm

3 mm

53 mm

D

y

x

D¿
B

C
C¿

B¿

91.5�

Prob. 2–16

•2–17. The three cords are attached to the ring at B.When
a force is applied to the ring it moves it to point , such
that the normal strain in AB is and the normal strain in
CB is . Provided these strains are small, determine the
normal strain in DB. Note that AB and CB remain
horizontal and vertical, respectively, due to the roller guides
at A and C.

PCB

PAB

B¿

A¿

A

B¿

B

C ¿
CD

L

u

Prob. 2–17

2–18. The piece of plastic is originally rectangular.
Determine the shear strain at corners A and B if the
plastic distorts as shown by the dashed lines.

2–19. The piece of plastic is originally rectangular.
Determine the shear strain at corners D and C if the
plastic distorts as shown by the dashed lines.

*2–20. The piece of plastic is originally rectangular.
Determine the average normal strain that occurs along the
diagonals AC and DB.

gxy

gxy

300 mm

400 mm
D A

y

x

3 mm

2 mm

B

5 mm

2 mm
4 mm

2 mm

C

Probs. 2–18/19/20
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•2–21. The force applied to the handle of the rigid lever
arm causes the arm to rotate clockwise through an angle of
3° about pin A. Determine the average normal strain
developed in the wire. Originally, the wire is unstretched.

2

A

B

C

D

600 mm

45�

Prob. 2–21

2–22. A square piece of material is deformed into the
dashed position. Determine the shear strain at A.

2–23. A square piece of material is deformed into the
dashed parallelogram. Determine the average normal strain
that occurs along the diagonals AC and BD.

*2–24. A square piece of material is deformed into the
dashed position. Determine the shear strain at C.gxy

gxy

15 mm DA

15 mm

CB

15.18 mm

15.18 mm

15.24 mm

89.7�

y

x

Probs. 2–22/23/24

•2–25. The guy wire AB of a building frame is originally
unstretched. Due to an earthquake, the two columns of the
frame tilt Determine the approximate normal
strain in the wire when the frame is in this position.
Assume the columns are rigid and rotate about their lower
supports.

u = 2°.

B

A

1 m

3 m

u � 2�

4 m

u � 2�

Prob. 2–25

2–26. The material distorts into the dashed position
shown. Determine (a) the average normal strains along
sides AC and CD and the shear strain at F, and (b) the
average normal strain along line BE.

2–27. The material distorts into the dashed position
shown. Determine the average normal strain that occurs
along the diagonals AD and CF.

gxy

x

y

80 mm

75 mm

10 mm

90 mm

25 mm15 mm
D

E

FA

B

C

Probs. 2–26/27
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300 mm

�y

x

y

Prob. 2–32

y

x
1 ft

1 ft

AB

A¿

y � x2

Prob. 2–31

*2–28. The wire is subjected to a normal strain that is
defined by where x is in millimeters. If the wire
has an initial length L, determine the increase in its length.

P = xe- x2
,

x

x

L

P � xe�x2
 

Prob. 2–28

•2–29. The curved pipe has an original radius of 2 ft. If it is
heated nonuniformly, so that the normal strain along its
length is determine the increase in length of
the pipe.

2–30. Solve Prob. 2–29 if P = 0.08 sin u.

P = 0.05 cos u,

2 ft

Au

Probs. 2–29/30

2–31. The rubber band AB has an unstretched length of
1 ft. If it is fixed at B and attached to the surface at point

determine the average normal strain in the band. The
surface is defined by the function ft, where x is
in feet.

y = (x2)
A¿,

*2–32. The bar is originally 300 mm long when it is flat. If it
is subjected to a shear strain defined by where
x is in meters, determine the displacement at the end of
its bottom edge. It is distorted into the shape shown, where
no elongation of the bar occurs in the x direction.

¢y
gxy = 0.02x,

•2–33. The fiber AB has a length L and orientation If its
ends A and B undergo very small displacements and 
respectively, determine the normal strain in the fiber when
it is in position A¿B¿.

vB ,uA

u.

A

y

x

B¿

B
vB

uA A¿

L
u

Prob. 2–33

2–34. If the normal strain is defined in reference to the
final length, that is,

instead of in reference to the original length, Eq. 2–2, show
that the difference in these strains is represented as a
second-order term, namely, Pn - Pn

œ = PnPn
œ .

Pn
œ = lim

p:p¿
a¢s¿ - ¢s

¢s¿
b



Horizontal ground displacements caused by an earthquake produced excessive strains
in these bridge piers until they fractured. The material properties of the concrete and
steel reinforcement must be known so that engineers can properly design this
structure and thereby avoid such failures.
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CHAPTER OBJECTIVES

Having discussed the basic concepts of stress and strain, we will in
this chapter show how stress can be related to strain by using
experimental methods to determine the stress–strain diagram for a
specific material. The behavior described by this diagram will then
be discussed for materials that are commonly used in engineering.
Also, mechanical properties and other tests that are related to the
development of mechanics of materials will be discussed.

3.1 The Tension and Compression Test

The strength of a material depends on its ability to sustain a load
without undue deformation or failure. This property is inherent in the
material itself and must be determined by experiment. One of the most
important tests to perform in this regard is the tension or compression
test. Although several important mechanical properties of a material
can be determined from this test, it is used primarily to determine the
relationship between the average normal stress and average normal
strain in many engineering materials such as metals, ceramics, polymers,
and composites.

Mechanical Properties
of Materials
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L0 � 2 in.

d0 � 0.5 in.

Fig. 3–1

load
dial

motor
and load
controls

movable
upper

crosshead

tension
specimen

Fig. 3–2

3

Electrical–resistance
strain gauge

Fig. 3–3

To perform a tension or compression test a specimen of the material is
made into a “standard” shape and size. It has a constant circular cross
section with enlarged ends, so that failure will not occur at the grips.
Before testing, two small punch marks are placed along the specimen’s
uniform length. Measurements are taken of both the specimen’s initial
cross-sectional area, and the gauge-length distance between the
punch marks. For example, when a metal specimen is used in a tension
test it generally has an initial diameter of (13 mm) and a
gauge length of (50 mm), Fig. 3–1. In order to apply an axial
load with no bending of the specimen, the ends are usually seated into
ball-and-socket joints.A testing machine like the one shown in Fig. 3–2 is
then used to stretch the specimen at a very slow, constant rate until it
fails. The machine is designed to read the load required to maintain this
uniform stretching.

At frequent intervals during the test, data is recorded of the applied
load P, as read on the dial of the machine or taken from a digital readout.
Also, the elongation between the punch marks on the
specimen may be measured using either a caliper or a mechanical or
optical device called an extensometer. This value of (delta) is then used
to calculate the average normal strain in the specimen. Sometimes,
however, this measurement is not taken, since it is also possible to read
the strain directly by using an electrical-resistance strain gauge, which
looks like the one shown in Fig. 3–3. The operation of this gauge is
based on the change in electrical resistance of a very thin wire or piece
of metal foil under strain. Essentially the gauge is cemented to the
specimen along its length. If the cement is very strong in comparison to
the gauge, then the gauge is in effect an integral part of the specimen,
so that when the specimen is strained in the direction of the gauge, the
wire and specimen will experience the same strain. By measuring the
electrical resistance of the wire, the gauge may be calibrated to read
values of normal strain directly.

d

d = L - L0

L0 = 2 in.
d0 = 0.5 in.

L0A0,

Typical steel specimen with attached
strain gauge.
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3.2 The Stress–Strain Diagram

It is not feasible to prepare a test specimen to match the size, and 
of each structural member. Rather, the test results must be reported so
they apply to a member of any size. To achieve this, the load and
corresponding deformation data are used to calculate various values of
the stress and corresponding strain in the specimen. A plot of the results
produces a curve called the stress–strain diagram. There are two ways in
which it is normally described.

Conventional Stress–Strain Diagram. We can determine the
nominal or engineering stress by dividing the applied load P by the
specimen’s original cross-sectional area This calculation assumes that
the stress is constant over the cross section and throughout the gauge
length. We have

(3–1)

Likewise, the nominal or engineering strain is found directly from the
strain gauge reading, or by dividing the change in the specimen’s gauge
length, by the specimen’s original gauge length Here the strain is
assumed to be constant throughout the region between the gauge points.
Thus,

(3–2)

If the corresponding values of and are plotted so that the vertical
axis is the stress and the horizontal axis is the strain, the resulting curve is
called a conventional stress–strain diagram. Realize, however, that two
stress–strain diagrams for a particular material will be quite similar, but
will never be exactly the same.This is because the results actually depend
on variables such as the material’s composition, microscopic
imperfections, the way it is manufactured, the rate of loading, and the
temperature during the time of the test.

We will now discuss the characteristics of the conventional stress–strain
curve as it pertains to steel, a commonly used material for fabricating
both structural members and mechanical elements. Using the method
described above, the characteristic stress–strain diagram for a steel
specimen is shown in Fig. 3–4. From this curve we can identify four
different ways in which the material behaves, depending on the amount
of strain induced in the material.

Ps

P =
d

L0

L0.d,

s =
P

A0

A0.

L0,A0

3
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Elastic Behavior. Elastic behavior of the material occurs when
the strains in the specimen are within the light orange region shown in
Fig. 3–4. Here the curve is actually a straight line throughout most of
this region, so that the stress is proportional to the strain. The material
in this region is said to be linear elastic. The upper stress limit to this
linear relationship is called the proportional limit, If the stress
slightly exceeds the proportional limit, the curve tends to bend and
flatten out as shown. This continues until the stress reaches the elastic
limit. Upon reaching this point, if the load is removed the specimen
will still return back to its original shape. Normally for steel, however,
the elastic limit is seldom determined, since it is very close to the
proportional limit and therefore rather difficult to detect.

Yielding. A slight increase in stress above the elastic limit will result
in a breakdown of the material and cause it to deform permanently.
This behavior is called yielding, and it is indicated by the rectangular
dark orange region of the curve. The stress that causes yielding is called
the yield stress or yield point, and the deformation that occurs
is called plastic deformation. Although not shown in Fig. 3–4, for low-
carbon steels or those that are hot rolled, the yield point is often
distinguished by two values. The upper yield point occurs first,
followed by a sudden decrease in load-carrying capacity to a lower
yield point. Notice that once the yield point is reached, then as shown
in Fig. 3–4, the specimen will continue to elongate (strain) without any
increase in load. When the material is in this state, it is often referred to
as being perfectly plastic.

sY,

spl.

3

elastic
region

yielding strain
hardening

necking

elastic
behavior

plastic behavior

elastic limit
yield stress

ultimate
stress

true fracture stress

fracture
stress

Conventional and true stress-strain diagrams
for ductile material (steel) (not to scale)

P

s¿f

sf

sY
spl

su

s

proportional limit

Fig. 3–4
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Strain Hardening. When yielding has ended, an increase in load can
be supported by the specimen, resulting in a curve that rises continuously
but becomes flatter until it reaches a maximum stress referred to as the
ultimate stress, The rise in the curve in this manner is called strain
hardening, and it is identified in Fig. 3–4 as the region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its
cross-sectional area will decrease.This decrease is fairly uniform over the
specimen’s entire gauge length; however, just after, at the ultimate
stress, the cross-sectional area will begin to decrease in a localized
region of the specimen. As a result, a constriction or “neck” tends to
form in this region as the specimen elongates further, Fig. 3–5a. This
region of the curve due to necking is indicated in dark green in Fig. 3–4.
Here the stress–strain diagram tends to curve downward until the specimen
breaks at the fracture stress, Fig. 3–5b.

True Stress–Strain Diagram. Instead of always using the original
cross-sectional area and specimen length to calculate the (engineering)
stress and strain, we could have used the actual cross-sectional area and
specimen length at the instant the load is measured. The values of stress
and strain found from these measurements are called true stress and true
strain, and a plot of their values is called the true stress–strain diagram.
When this diagram is plotted it has a form shown by the light-blue
curve in Fig. 3–4. Note that the conventional and true diagrams
are practically coincident when the strain is small. The differences
between the diagrams begin to appear in the strain-hardening range,
where the magnitude of strain becomes more significant. In particular,
there is a large divergence within the necking region. Here it can be
seen from the conventional diagram that the specimen actually
supports a decreasing load, since is constant when calculating
engineering stress, However, from the true diagram,
the actual area A within the necking region is always decreasing until
fracture, and so the material actually sustains increasing stress,
since s = P>A.

sf¿ ,

s–Ps = P>A0.
A0

s–P

s–P

sf,

su.

3

Typical necking pattern which has occurred
on this steel specimen just before fracture.

Necking Failure of a
ductile material

Fig. 3–5

(a) (b)

This steel specimen clearly shows the necking
that occurred just before the specimen failed.
This resulted in the formation of a “cup-cone”
shape at the fracture location, which is
characteristic of ductile materials.
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Although the true and conventional stress–strain diagrams are
different, most engineering design is done so that the material supports
a stress within the elastic range. This is because the deformation of the
material is generally not severe and the material will restore itself
when the load is removed. The true strain up to the elastic limit will
remain small enough so that the error in using the engineering values
of and is very small (about 0.1%) compared with their true values.
This is one of the primary reasons for using conventional stress–strain
diagrams.

The above concepts can be summarized with reference to Fig. 3–6,
which shows an actual conventional stress–strain diagram for a mild steel
specimen. In order to enhance the details, the elastic region of the curve
has been shown in light blue color using an exaggerated strain scale, also
shown in light blue. Tracing the behavior, the proportional limit is
reached at (241 MPa), where This is
followed by an upper yield point of (262 MPa), then
suddenly a lower yield point of (248 MPa). The end of
yielding occurs at a strain of which is 25 times greater
than the strain at the proportional limit! Continuing, the specimen
undergoes strain hardening until it reaches the ultimate stress of

(434 MPa), then it begins to neck down until a fracture
occurs, (324 MPa). By comparison, the strain at failure,

is 317 times greater than Ppl!Pf = 0.380 in.>in.,
sf = 47 ksi

su = 63 ksi

PY = 0.030 in.>in.,
1sY2l = 36 ksi

1sY2u = 38 ksi
Ppl = 0.0012 in.>in.spl = 35 ksi

Ps

3

0.10 0.20 0.30 0.40
0.001 0.002 0.003 0.004

0.050

Stress–strain diagram for mild steel

50

40

30

20
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60
su � 63

s(ksi)

P (in./in.)

Ppl � 0.0012
PY � 0.030

Pf � 0.380

spl � 35

sf � 47

(sY)u � 38
(sY)l � 36

Fig. 3–6
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3.3 Stress–Strain Behavior of Ductile
and Brittle Materials

Materials can be classified as either being ductile or brittle, depending on
their stress–strain characteristics.

Ductile Materials. Any material that can be subjected to large
strains before it fractures is called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit
large deformation before failing.

One way to specify the ductility of a material is to report its percent
elongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a
percent. Thus, if the specimen’s original gauge length is and its length
at fracture is then

(3–3)

As seen in Fig. 3–6, since this value would be 38% for a mild
steel specimen.

The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:

(3–4)

Here is the specimen’s original cross-sectional area and is the area
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may
also exhibit ductile stress–strain characteristics similar to steel, whereby
they undergo elastic stress–strain behavior, yielding at constant stress,
strain hardening, and finally necking until fracture. In most metals,
however, constant yielding will not occur beyond the elastic range. One
metal for which this is the case is aluminum. Actually, this metal often
does not have a well-defined yield point, and consequently it is standard
practice to define a yield strength using a graphical procedure called the
offset method. Normally a 0.2% strain ( ) is chosen, and from
this point on the axis, a line parallel to the initial straight-line portion
of the stress–strain diagram is drawn. The point where this line
intersects the curve defines the yield strength. An example of the
construction for determining the yield strength for an aluminum alloy is
shown in Fig. 3–7. From the graph, the yield strength is 
(352 MPa).

sYS = 51 ksi

P
0.002 in.>in.

AfA0

Percent reduction of area =
A0 - Af

A0
 1100%2

Pf = 0.380,

Percent elongation =
Lf - L0

L0
 1100%2

Lf,
L0

3

50

40

30

20

10

0.005 0.010
0.002

(0.2% offset)

60

Yield strength for an aluminum alloy

sYS � 51

P (in./in.)

s (ksi)

Fig. 3–7
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Realize that the yield strength is not a physical property of the
material, since it is a stress that causes a specified permanent strain in the
material. In this text, however, we will assume that the yield strength,
yield point, elastic limit, and proportional limit all coincide unless
otherwise stated. An exception would be natural rubber, which in fact
does not even have a proportional limit, since stress and strain are not
linearly related. Instead, as shown in Fig. 3–8, this material, which is
known as a polymer, exhibits nonlinear elastic behavior.

Wood is a material that is often moderately ductile, and as a result it is
usually designed to respond only to elastic loadings. The strength
characteristics of wood vary greatly from one species to another, and for
each species they depend on the moisture content, age, and the size and
arrangement of knots in the wood. Since wood is a fibrous material, its
tensile or compressive characteristics will differ greatly when it is loaded
either parallel or perpendicular to its grain. Specifically, wood splits
easily when it is loaded in tension perpendicular to its grain, and
consequently tensile loads are almost always intended to be applied
parallel to the grain of wood members.

3

2.0

1.5

1.0

0.5

2 4 6 8 10

s (ksi)

P (in./in.)

s–P diagram for natural rubber

Fig. 3–8

s–P diagram for gray cast iron

�0.06 �0.05 �0.04 �0.03 �0.02 �0.01

�20

0.01

�40

�60

�80

�100

�120

20
B

A

C

sf � 22

s (ksi)

P (in./in.)

Fig. 3–9

Concrete used for structural purposes must
be routinely tested in compression to be
sure it provides the necessary design
strength for this bridge deck. The concrete
cylinders shown are compression tested for
ultimate stress after curing for 30 days.
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Brittle Materials. Materials that exhibit little or no yielding before
failure are referred to as brittle materials. Gray cast iron is an example,
having a stress–strain diagram in tension as shown by portion AB of the
curve in Fig. 3–9. Here fracture at (152 MPa) took place
initially at an imperfection or microscopic crack and then spread rapidly
across the specimen, causing complete fracture. Since the appearance of
initial cracks in a specimen is quite random, brittle materials do not have
a well-defined tensile fracture stress. Instead the average fracture stress
from a set of observed tests is generally reported. A typical failed
specimen is shown in Fig. 3–10a.

Compared with their behavior in tension, brittle materials, such as
gray cast iron, exhibit a much higher resistance to axial compression, as
evidenced by portion AC of the curve in Fig. 3–9. For this case any cracks
or imperfections in the specimen tend to close up, and as the load
increases the material will generally bulge or become barrel shaped as
the strains become larger, Fig. 3–10b.

Like gray cast iron, concrete is classified as a brittle material, and it
also has a low strength capacity in tension. The characteristics of its
stress–strain diagram depend primarily on the mix of concrete (water,
sand, gravel, and cement) and the time and temperature of curing. A
typical example of a “complete” stress–strain diagram for concrete is
given in Fig. 3–11. By inspection, its maximum compressive strength 
is almost 12.5 times greater than its tensile strength,
(34.5 MPa) versus (2.76 MPa). For this reason, concrete
is almost always reinforced with steel bars or rods whenever it is designed
to support tensile loads.

It can generally be stated that most materials exhibit both ductile and
brittle behavior. For example, steel has brittle behavior when it contains a
high carbon content, and it is ductile when the carbon content is reduced.
Also, at low temperatures materials become harder and more brittle,
whereas when the temperature rises they become softer and more
ductile. This effect is shown in Fig. 3–12 for a methacrylate plastic.

1st2max = 0.40 ksi
1sc2max = 5 ksi

sf = 22 ksi

3
(b)

Compression causes
material to bulge out

Fig. 3–10

Steel rapidly loses its strength when
heated. For this reason engineers often
require main structural members to be
insulated in case of fire.
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Fig. 3–11
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Tension failure of
a brittle material
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3.4 Hooke’s Law

As noted in the previous section, the stress–strain diagrams for most
engineering materials exhibit a linear relationship between stress and
strain within the elastic region. Consequently, an increase in stress causes
a proportionate increase in strain. This fact was discovered by Robert
Hooke in 1676 using springs and is known as Hooke’s law. It may be
expressed mathematically as

(3–5)

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s modulus, named after Thomas Young,
who published an account of it in 1807.

Equation 3–5 actually represents the equation of the initial straight-
lined portion of the stress–strain diagram up to the proportional limit.
Furthermore, the modulus of elasticity represents the slope of this line.
Since strain is dimensionless, from Eq. 3–5, E will have the same units as
stress, such as psi, ksi, or pascals. As an example of its calculation,
consider the stress–strain diagram for steel shown in Fig. 3–6. Here

and so that

As shown in Fig. 3–13, the proportional limit for a particular type of
steel alloy depends on its carbon content; however, most grades of steel,
from the softest rolled steel to the hardest tool steel, have about the

E =
spl

Ppl
=

35 ksi
0.0012 in.>in.

= 2911032 ksi

Ppl = 0.0012 in.>in.,spl = 35 ksi

s = EP
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Fig. 3–13
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same modulus of elasticity, generally accepted to be or
200 GPa. Values of E for other commonly used engineering materials are
often tabulated in engineering codes and reference books. Representative
values are also listed on the inside back cover of this book. It should
be noted that the modulus of elasticity is a mechanical property that
indicates the stiffness of a material. Materials that are very stiff, such
as steel, have large values of E [ or 200 GPa], whereas
spongy materials such as vulcanized rubber may have low values
[ or 0.70 MPa].

The modulus of elasticity is one of the most important mechanical
properties used in the development of equations presented in this text. It
must always be remembered, though, that E can be used only if a
material has linear elastic behavior. Also, if the stress in the material is
greater than the proportional limit, the stress–strain diagram ceases to be
a straight line and so Eq. 3–5 is no longer valid.

Strain Hardening. If a specimen of ductile material, such as steel,
is loaded into the plastic region and then unloaded, elastic strain is
recovered as the material returns to its equilibrium state. The plastic
strain remains, however, and as a result the material is subjected to a
permanent set. For example, a wire when bent (plastically) will spring
back a little (elastically) when the load is removed; however, it will not
fully return to its original position. This behavior can be illustrated on
the stress–strain diagram shown in Fig. 3–14a. Here the specimen is first
loaded beyond its yield point A to point Since interatomic forces
have to be overcome to elongate the specimen elastically, then these
same forces pull the atoms back together when the load is removed,
Fig. 3–14a. Consequently, the modulus of elasticity, E, is the same, and
therefore the slope of line is the same as line OA.

If the load is reapplied, the atoms in the material will again be displaced
until yielding occurs at or near the stress and the stress–strain diagram
continues along the same path as before, Fig. 3–14b. It should be noted,
however, that this new stress–strain diagram, defined by now has
a higher yield point a consequence of strain-hardening. In other
words, the material now has a greater elastic region; however, it has less
ductility, a smaller plastic region, than when it was in its original state.

1A¿2, O¿A¿B,

A¿,

O¿A¿

A¿.

Er = 0.10 ksi

Est = 2911032 ksi

Est = 2911032 ksi

3

(a)
permanent

set
elastic
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elastic
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plastic
region
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unload

A

A¿
B

O¿O

E

E

s

P

(b)
O¿O

elastic
region

plastic
region

A¿
B

P

s

Fig. 3–14

This pin was made from a hardened steel alloy,
that is, one having a high carbon content. It
failed due to brittle fracture.
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3.5 Strain Energy

As a material is deformed by an external loading, it tends to store energy
internally throughout its volume. Since this energy is related to the
strains in the material, it is referred to as strain energy. To obtain this
strain energy consider a volume element of material from a tension
test specimen. It is subjected to uniaxial stress as shown in Fig. 3–15.
This stress develops a force on the top and
bottom faces of the element after the element of length undergoes a
vertical displacement By definition, work is determined by the
product of the force and displacement in the direction of the force. Since
the force is increased uniformly from zero to its final magnitude 
when the displacement is attained, the work done on the element
by the force is equal to the average force magnitude times the
displacement This “external work” on the element is equivalent to
the “internal work” or strain energy stored in the element—assuming
that no energy is lost in the form of heat. Consequently, the strain energy

is Since the volume of the
element is then 

For applications, it is sometimes convenient to specify the strain
energy per unit volume of material. This is called the strain-energy
density, and it can be expressed as

(3–6)

If the material behavior is linear elastic, then Hooke’s law applies,
and therefore we can express the elastic strain-energy density in

terms of the uniaxial stress as

(3–7)

Modulus of Resilience. In particular, when the stress reaches
the proportional limit, the strain-energy density, as calculated by Eq. 3–6
or 3–7, is referred to as the modulus of resilience, i.e.,

(3–8)

From the elastic region of the stress–strain diagram, Fig. 3–16a, notice
that is equivalent to the shaded triangular area under the diagram.
Physically a material’s resilience represents the ability of the material to
absorb energy without any permanent damage to the material.
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Modulus of Toughness. Another important property of a
material is the modulus of toughness, This quantity represents the
entire area under the stress–strain diagram, Fig. 3–16b, and therefore it
indicates the strain-energy density of the material just before it fractures.
This property becomes important when designing members that may be
accidentally overloaded. Alloying metals can also change their resilience
and toughness. For example, by changing the percentage of carbon in
steel, the resulting stress–strain diagrams in Fig. 3–17 show how the
degrees of resilience and toughness can be changed.

ut.

3

(b)

ut

Modulus of toughness ut

P

s

Fig. 3–16 (cont.)

soft steel
(0.1% carbon)
most ductile

hard steel
(0.6% carbon)
highest strength

structural steel
(0.2% carbon)
toughest

P

s

Fig. 3–17

This nylon specimen exhibits a high degree
of toughness as noted by the large amount
of necking that has occurred just before
fracture.

Important Points

• A conventional stress–strain diagram is important in engineering
since it provides a means for obtaining data about a material’s
tensile or compressive strength without regard for the material’s
physical size or shape.

• Engineering stress and strain are calculated using the original
cross-sectional area and gauge length of the specimen.

• A ductile material, such as mild steel, has four distinct behaviors as
it is loaded.They are elastic behavior, yielding, strain hardening, and
necking.

• A material is linear elastic if the stress is proportional to the strain
within the elastic region.This behavior is described by Hooke’s law,

where the modulus of elasticity E is the slope of the line.

• Important points on the stress–strain diagram are the proportional
limit, elastic limit, yield stress, ultimate stress, and fracture stress.

• The ductility of a material can be specified by the specimen’s
percent elongation or the percent reduction in area.

• If a material does not have a distinct yield point, a yield strength can
be specified using a graphical procedure such as the offset method.

• Brittle materials, such as gray cast iron, have very little or no
yielding and so they can fracture suddenly.

• Strain hardening is used to establish a higher yield point for a
material. This is done by straining the material beyond the elastic
limit, then releasing the load. The modulus of elasticity remains
the same; however, the material’s ductility decreases.

• Strain energy is energy stored in a material due to its deformation.
This energy per unit volume is called strain-energy density. If
it is measured up to the proportional limit, it is referred to as
the modulus of resilience, and if it is measured up to the point
of fracture, it is called the modulus of toughness. It can be
determined from the area under the diagram.s-P

s = EP,
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3

EXAMPLE 3.1

A tension test for a steel alloy results in the stress–strain diagram
shown in Fig. 3–18. Calculate the modulus of elasticity and the
yield strength based on a 0.2% offset. Identify on the graph the
ultimate stress and the fracture stress.

sf � 90

O 0.02
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120
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0.0016
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0.0020
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0.0024

0.14 0.16 0.18 0.20 0.22 0.24
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B

C

A

E E

A¿ A¿

P (in./in.)

su � 108

sYS � 68

Pf � 0.23

s (ksi)

Fig. 3–18
SOLUTION
Modulus of Elasticity. We must calculate the slope of the initial
straight-line portion of the graph. Using the magnified curve and
scale shown in blue, this line extends from point O to an estimated
point A, which has coordinates of approximately ( ,
50 ksi). Therefore,

Ans.

Note that the equation of line OA is thus 

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2%
or and graphically extend a (dashed) line parallel to
OA until it intersects the curve at The yield strength is
approximately

Ans.

Ultimate Stress. This is defined by the peak of the graph,
point B in Fig. 3–18.

Ans.

Fracture Stress. When the specimen is strained to its maximum of
it fractures at point C. Thus,

Ans.sf = 90 ksi

Pf = 0.23 in.>in.,

su = 108 ksi

s–P
sYS = 68 ksi

A¿.s–P
0.0020 in.>in.

s = 31.211032P.

E =
50 ksi

0.0016 in.>in.
= 31.211032 ksi

0.0016 in.>in.
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3

EXAMPLE 3.2

The stress–strain diagram for an aluminum alloy that is used for
making aircraft parts is shown in Fig. 3–19. If a specimen of this
material is stressed to 600 MPa, determine the permanent strain that
remains in the specimen when the load is released. Also, find the
modulus of resilience both before and after the load application.

SOLUTION
Permanent Strain. When the specimen is subjected to the load,
it strain-hardens until point B is reached on the diagram. The
strain at this point is approximately . When the load is
released, the material behaves by following the straight line BC,
which is parallel to line OA. Since both lines have the same slope, the
strain at point C can be determined analytically. The slope of line OA
is the modulus of elasticity, i.e.,

From triangle CBD, we require

;

This strain represents the amount of recovered elastic strain. The
permanent strain, is thus

Ans.

Note: If gauge marks on the specimen were originally 50 mm apart,
then after the load is released these marks will be 

apart.

Modulus of Resilience. Applying Eq. 3–8, we have∗

Ans.

Ans.

NOTE: By comparison, the effect of strain-hardening the material has
caused an increase in the modulus of resilience; however, note that the
modulus of toughness for the material has decreased since the area under
the original curve, OABF, is larger than the area under curve CBF.

 = 2.40 MJ>m3

 1ur2final =
1
2

 splPpl =
1
2

 1600 MPa210.008 mm>mm2
 = 1.35 MJ>m3

 1ur2initial =
1
2

 splPpl =
1
2

 1450 MPa210.006 mm>mm2

10.01502150 mm2 = 50.75 mm
50 mm +

 = 0.0150 mm>mm

 POC = 0.023 mm>mm - 0.008 mm>mm

POC,

 CD = 0.008 mm>mm

75.011092 Pa =
60011062 Pa

CD
E =

BD

CD

E =
450 MPa

0.006 mm>mm
= 75.0 GPa

0.023 mm>mm
s–P

* Work in the SI system of units is measured in joules, where 1 J = 1 N # m.

O

750

F

0.040.030.020.01

600

300

150

parallel

DC

B

A

0.023PY � 0.006

sY � 450

s (MPa)

P (mm/mm)

POC

Fig. 3–19
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3

EXAMPLE 3.3

An aluminum rod shown in Fig. 3–20a has a circular cross section and is
subjected to an axial load of 10 kN. If a portion of the stress–strain
diagram is shown in Fig. 3–20b, determine the approximate elongation
of the rod when the load is applied.Take Eal = 70 GPa.

(a)

600 mm 400 mm

15 mm20 mm

A B C
10 kN 10 kN

Fig. 3–20

SOLUTION
For the analysis we will neglect the localized deformations at the point
of load application and where the rod’s cross-sectional area suddenly
changes. (These effects will be discussed in Sections 4.1 and 4.7.)
Throughout the midsection of each segment the normal stress and
deformation are uniform.

In order to find the elongation of the rod, we must first obtain the
strain. This is done by calculating the stress, then using the stress–strain
diagram.The normal stress within each segment is

From the stress–strain diagram, the material in segment AB is
strained elastically since Using Hooke’s law,

The material within segment BC is strained plastically, since
From the graph, for 

. The approximate elongation of the rod is therefore

Ans. = 18.3 mm

 d = ©PL = 0.00045471600 mm2 + 0.04501400 mm2
0.045 mm>mm

PBC LsBC = 56.59 MPa,sBC 7 sY = 40 MPa.

PAB =
sAB

Eal
=

31.8311062 Pa

7011092 Pa
= 0.0004547 mm>mm

sAB 6 sY = 40 MPa.

 sBC =
P

A
=

1011032 N
p10.0075 m22 = 56.59 MPa

 sAB =
P

A
=

1011032 N
p10.01 m22 = 31.83 MPa

60
50

30
20
10

O 0.02 0.04 0.06

F
56.6

sY � 40

s (MPa)

PBC � 0.0450

(b)
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3

FUNDAMENTAL PROBLEMS

F3–1. Define homogeneous material.

F3–2. Indicate the points on the stress-strain diagram
which represent the proportional limit and the ultimate
stress.

F3–10. The material for the 50-mm-long specimen has the
stress–strain diagram shown. If determine the
elongation of the specimen.

F3–11. The material for the 50-mm-long specimen has the
stress–strain diagram shown. If is applied and
then released, determine the permanent elongation of the
specimen.

P = 150 kN

P = 100 kN,

A

B C E

P

D

s

F3–2

F3–3. Define the modulus of elasticity E.

F3–4. At room temperature, mild steel is a ductile
material. True or false?

F3–5. Engineering stress and strain are calculated using
the actual cross-sectional area and length of the specimen.
True or false?

F3–6. As the temperature increases the modulus of
elasticity will increase. True or false?

F3–7. A 100-mm long rod has a diameter of 15 mm. If an
axial tensile load of 100 kN is applied, determine its change
is length.

F3–8. A bar has a length of 8 in. and cross-sectional
area of 12 in2. Determine the modulus of elasticity of the
material if it is subjected to an axial tensile load of 10 kip
and stretches 0.003 in. The material has linear-elastic
behavior.

F3–9. A 10-mm-diameter brass rod has a modulus of
elasticity of If it is 4 m long and subjected to
an axial tensile load of 6 kN, determine its elongation.

E = 100 GPa.

E = 200 GPa.

P

P

450

0.00225 0.03
P (mm/mm)

500

20 mms (MPa)

F3–10/11

F3–12. If the elongation of wire BC is 0.2 mm after the
force P is applied, determine the magnitude of P. The wire
is A-36 steel and has a diameter of 3 mm.

A

B

C

400 mm

200 mm
300 mm P

F3–12
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3

•3–1. A concrete cylinder having a diameter of 6.00 in. and
gauge length of 12 in. is tested in compression.The results of
the test are reported in the table as load versus contraction.
Draw the stress–strain diagram using scales of 
and From the diagram, determine
approximately the modulus of elasticity.

1 in. = 0.2110-32 in.>in.
1 in. = 0.5 ksi

*3–4. A tension test was performed on a specimen having
an original diameter of 12.5 mm and a gauge length of
50 mm. The data are listed in the table. Plot the stress–strain
diagram, and determine approximately the modulus of
elasticity, the ultimate stress, and the fracture stress. Use a
scale of and 
Redraw the linear-elastic region, using the same stress scale
but a strain scale of 

3–5. A tension test was performed on a steel specimen
having an original diameter of 12.5 mm and gauge length
of 50 mm. Using the data listed in the table, plot the
stress–strain diagram, and determine approximately the
modulus of toughness. Use a scale of and
20 mm = 0.05 mm>mm.

20 mm = 50 MPa

20 mm = 0.001 mm>mm.

20 mm = 0.05 mm>mm.20 mm = 50 MPa

PROBLEMS

0
5.0
9.5
16.5
20.5
25.5
30.0
34.5
38.5
46.5
50.0
53.0

0
0.0006
0.0012
0.0020
0.0026
0.0034
0.0040
0.0045
0.0050
0.0062
0.0070
0.0075

Load (kip) Contraction (in.)

Prob. 3–1

3–2. Data taken from a stress–strain test for a ceramic are
given in the table.The curve is linear between the origin and
the first point. Plot the diagram, and determine the modulus
of elasticity and the modulus of resilience.

3–3. Data taken from a stress–strain test for a ceramic are
given in the table. The curve is linear between the origin
and the first point. Plot the diagram, and determine
approximately the modulus of toughness.The rupture stress
is sr = 53.4 ksi.

0
33.2
45.5
49.4
51.5
53.4

0
0.0006
0.0010
0.0014
0.0018
0.0022

S (ksi) P (in./in.)

Probs. 3–2/3

 0
 11.1
 31.9
 37.8
 40.9
 43.6
 53.4
 62.3
 64.5
 62.3
 58.8

 0
 0.0175
 0.0600
 0.1020
 0.1650
 0.2490
 1.0160
 3.0480
 6.3500
 8.8900
11.9380

Load (kN) Elongation (mm)

Probs. 3–4/5

3–6. A specimen is originally 1 ft long, has a diameter of
0.5 in., and is subjected to a force of 500 lb. When the force
is increased from 500 lb to 1800 lb, the specimen elongates
0.009 in. Determine the modulus of elasticity for the
material if it remains linear elastic.

3–7. A structural member in a nuclear reactor is made of a
zirconium alloy. If an axial load of 4 kip is to be supported
by the member, determine its required cross-sectional area.
Use a factor of safety of 3 relative to yielding. What is the
load on the member if it is 3 ft long and its elongation is
0.02 in.? ksi, ksi. The material has
elastic behavior.

sY = 57.5Ezr = 14(103)
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3–10. The stress–strain diagram for a metal alloy having
an original diameter of 0.5 in. and a gauge length of 2 in. is
given in the figure. Determine approximately the modulus
of elasticity for the material, the load on the specimen that
causes yielding, and the ultimate load the specimen will
support.

3–11. The stress–strain diagram for a steel alloy having an
original diameter of 0.5 in. and a gauge length of 2 in. is
given in the figure. If the specimen is loaded until it is
stressed to 90 ksi, determine the approximate amount of
elastic recovery and the increase in the gauge length after it
is unloaded.

*3–12. The stress–strain diagram for a steel alloy having
an original diameter of 0.5 in. and a gauge length of 2 in.
is given in the figure. Determine approximately the
modulus of resilience and the modulus of toughness for
the material.

*3–8. The strut is supported by a pin at C and an A-36
steel guy wire AB. If the wire has a diameter of 0.2 in.,
determine how much it stretches when the distributed load
acts on the strut.

3

9 ft

200 lb/ft

C

A

B

60�

Prob. 3–8

125 lb

s (ksi)

P (in./in.)
0.05 0.10

4.50

3.75

3.00

2.25

1.50

0.75

A

Prob. 3–9

•3–9. The diagram for a collagen fiber bundle from
which a human tendon is composed is shown. If a segment
of the Achilles tendon at A has a length of 6.5 in. and an
approximate cross-sectional area of determine its
elongation if the foot supports a load of 125 lb, which causes
a tension in the tendon of 343.75 lb.

0.229 in2,

s–P

0

105

90

75

60

45

30

15

00
0 0.350.05 0.10 0.15 0.20 0.25 0.30

0.0070.001  0.002 0.003 0.004 0.005 0.006 

P (in./in.)

s (ksi)

Probs. 3–10/11/12

8000 lb8000 lb
5 in.

Prob. 3–13

•3–13. A bar having a length of 5 in. and cross-sectional
area of 0.7 is subjected to an axial force of 8000 lb.
If the bar stretches 0.002 in., determine the modulus of
elasticity of the material. The material has linear-elastic
behavior.

in2



100 CHAPTER 3 MECHANICAL PROPERT IES OF MATER IALS

3–14. The rigid pipe is supported by a pin at A and an
A-36 steel guy wire BD. If the wire has a diameter of
0.25 in., determine how much it stretches when a load of

acts on the pipe.

3–15. The rigid pipe is supported by a pin at A and an 
A-36 guy wire BD. If the wire has a diameter of 0.25 in.,
determine the load P if the end C is displaced 0.075 in.
downward.

P = 600 lb

3–17. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress–strain diagram
is shown in the figure. Estimate (a) the proportional limit,
(b) the modulus of elasticity, and (c) the yield strength
based on a 0.2% strain offset method.

3–18. A tension test was performed on an aluminum 2014-
T6 alloy specimen. The resulting stress–strain diagram is
shown in the figure. Estimate (a) the modulus of resilience;
and (b) modulus of toughness.

3

3 ft 3 ft

C
DA

B

P4 ft

Probs. 3–14/15

P

P

600 mm

50 mm250

0.00125 0.05
P (mm/mm)

500

50 mm 5 mm

5 mm

s (MPa)

Prob. 3–16

*3–16. Determine the elongation of the square hollow bar
when it is subjected to the axial force If this
axial force is increased to and released, find
the permanent elongation of the bar. The bar is made of a
metal alloy having a stress–strain diagram which can be
approximated as shown.

P = 360 kN
P = 100 kN.

P (in./in.)0.02 0.04 0.06 0.08 0.10
0.002 0.004 0.006 0.008 0.010

10

20

30

40

50

60

70

0

s (ksi)

Probs. 3–17/18

3–19. The stress–strain diagram for a bone is shown, and
can be described by the equation �

where is in kPa. Determine the yield
strength assuming a 0.3% offset.

*3–20. The stress–strain diagram for a bone is shown and
can be described by the equation �

where is in kPa. Determine the modulus
of toughness and the amount of elongation of a 200-mm-
long region just before it fractures if failure occurs at
P = 0.12 mm>mm .

ss3,0.36110-122
0.45110-62 sP =

s0.36110-122 s3,
P = 0.45110-62 s

P

P

P � 0.45(10�6)s + 0.36(10�12)s3

P

s

Probs. 3–19/20



3.5 STRAIN ENERGY 101

3–23. By adding plasticizers to polyvinyl chloride, it is
possible to reduce its stiffness. The stress–strain diagrams
for three types of this material showing this effect are given
below. Specify the type that should be used in the
manufacture of a rod having a length of 5 in. and a diameter
of 2 in., that is required to support at least an axial load of
20 kip and also be able to stretch at most 14 in.

•3–21. The stress–strain diagram for a polyester resin
is given in the figure. If the rigid beam is supported by a
strut AB and post CD, both made from this material, and
subjected to a load of determine the angle
of tilt of the beam when the load is applied. The diameter
of the strut is 40 mm and the diameter of the post is
80 mm.

3–22. The stress–strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD made from this material, determine the
largest load P that can be applied to the beam before it
ruptures. The diameter of the strut is 12 mm and the
diameter of the post is 40 mm.

P = 80 kN,

3

0

tension

compression

0.01 0.02 0.03 0.04

95

80

100

70

60

50

40
32.2

20

0

0.75 m

B

C

D

A

P

0.75 m 0.5 m

2 m

P (mm/mm)

s (MPa)

Probs. 3–21/22

s (ksi)

0

15

 (in./in.)
0.10 0.20 0.30

P

P

flexible

(plasticized)

unplasticized

copolymer

P

10

5

0

Prob. 3–23

s (ksi)

P (10–6)
0.1 0.2 0.3 0.4 0.5

80

60

40

20

Prob. 3–24

*3–24. The stress–strain diagram for many metal alloys
can be described analytically using the Ramberg-Osgood
three parameter equation where E, k, and
n are determined from measurements taken from the
diagram. Using the stress–strain diagram shown in the
figure, take and determine the other two
parameters k and n and thereby obtain an analytical
expression for the curve.

E = 3011032 ksi

P = s>E + ksn,
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3.6 Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but it also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise, a compressive force acting on a body causes
it to contract in the direction of the force and yet its sides expand laterally.

Consider a bar having an original radius r and length L and subjected
to the tensile force P in Fig. 3–21. This force elongates the bar by an
amount , and its radius contracts by an amount Strains in the
longitudinal or axial direction and in the lateral or radial direction are,
respectively,

In the early 1800s, the French scientist S. D. Poisson realized that within the
elastic range the ratio of these strains is a constant, since the deformations

and are proportional. This constant is referred to as Poisson’s ratio,
(nu), and it has a numerical value that is unique for a particular material

that is both homogeneous and isotropic. Stated mathematically it is

(3–9)

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Notice
that these strains are caused only by the axial or longitudinal force P; i.e.,
no force or stress acts in a lateral direction in order to strain the material
in this direction.

Poisson’s ratio is a dimensionless quantity, and for most nonporous
solids it has a value that is generally between and Typical values of

for common engineering materials are listed on the inside back cover.
For an “ideal material” having no lateral deformation when it is stretched
or compressed Poisson’s ratio will be 0. Furthermore, it will be shown in
Sec. 10.6 that the maximum possible value for Poisson’s ratio is 0.5.
Therefore 0 … n … 0.5.

n

1
3.1

4

n = -
Plat

Plong

n

d¿d

Plong =
d

L
 and Plat =

d¿
r

d¿.d
3

P

P
r

Final Shape

L

Original Shape

Tension

d/2

d¿

d/2

When the rubber block is compressed
(negative strain) its sides will expand
(positive strain). The ratio of these strains
remains constant.

Fig. 3–21
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EXAMPLE 3.4

A bar made of A-36 steel has the dimensions shown in Fig. 3–22. If an
axial force of is applied to the bar, determine the change
in its length and the change in the dimensions of its cross section after
applying the load. The material behaves elastically.

P = 80 kN

y

x

z

P � 80 kN

P � 80 kN

100 mm

1.5 m
50 mm

Fig. 3–22

SOLUTION
The normal stress in the bar is

From the table on the inside back cover for A-36 steel 
and so the strain in the z direction is

The axial elongation of the bar is therefore

Ans.

Using Eq. 3–9, where as found from the inside back
cover, the lateral contraction strains in both the x and y directions are

Thus the changes in the dimensions of the cross section are

Ans.

Ans. dy = PyLy = - [25.6110-62]10.05 m2 = -1.28 mm

 dx = PxLx = - [25.6110-62]10.1 m2 = -2.56 mm

Px = Py = -nstPz = -0.32[80110-62] = -25.6 mm>m

nst = 0.32

dz = PzLz = [80110-62]11.5 m2 = 120 mm

Pz =
sz

Est
=

16.011062 Pa

20011092 Pa
= 80110-62 mm>mm

Est = 200 GPa,

sz =
P

A
=

8011032 N
10.1 m210.05 m2 = 16.011062 Pa
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3.7 The Shear Stress–Strain Diagram

In Sec. 1.5 it was shown that when a small element of material is
subjected to pure shear, equilibrium requires that equal shear stresses
must be developed on four faces of the element.These stresses must
be directed toward or away from diagonally opposite corners of the
element, as shown in Fig. 3–23a. Furthermore, if the material is
homogeneous and isotropic, then this shear stress will distort the
element uniformly, Fig. 3–23b. As mentioned in Sec. 2.2, the shear strain

measures the angular distortion of the element relative to the sides
originally along the x and y axes.

The behavior of a material subjected to pure shear can be studied in a
laboratory using specimens in the shape of thin tubes and subjecting
them to a torsional loading. If measurements are made of the applied
torque and the resulting angle of twist, then by the methods to be
explained in Chapter 5, the data can be used to determine the shear
stress and shear strain, and a shear stress–strain diagram plotted. An
example of such a diagram for a ductile material is shown in Fig. 3–24.
Like the tension test, this material when subjected to shear will exhibit
linear-elastic behavior and it will have a defined proportional limit
Also, strain hardening will occur until an ultimate shear stress is
reached. And finally, the material will begin to lose its shear strength
until it reaches a point where it fractures,

For most engineering materials, like the one just described, the elastic
behavior is linear, and so Hooke’s law for shear can be written as

(3–10)

Here G is called the shear modulus of elasticity or the modulus of
rigidity. Its value represents the slope of the line on the diagram,
that is, Typical values for common engineering materials are
listed on the inside back cover. Notice that the units of measurement for
G will be the same as those for (Pa or psi), since is measured in
radians, a dimensionless quantity.

It will be shown in Sec. 10.6 that the three material constants, E, and
G are actually related by the equation

(3–11)

Provided E and G are known, the value of can then be determined
from this equation rather than through experimental measurement.
For example, in the case of A-36 steel, and

so that, from Eq. 3–11, nst = 0.32.Gst = 11.011032 ksi,
Est = 2911032 ksi

n

G =
E

211 + n2

n,

gt

G = tpl>gpl.
t–g

t = Gg

tf.

tu

tpl.

gxy

txy

3

x

y

(a)

txy

x

y

(b)

p

2
�

gxy

2

gxy

2

gxy

Fig. 3–23

G

t

tu

tf

tpl

g
grgugpl

Fig. 3–24
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EXAMPLE 3.5

A specimen of titanium alloy is tested in torsion and the shear stress–
strain diagram is shown in Fig. 3–25a. Determine the shear modulus
G, the proportional limit, and the ultimate shear stress. Also,
determine the maximum distance d that the top of a block of this
material, shown in Fig. 3–25b, could be displaced horizontally if the
material behaves elastically when acted upon by a shear force V.
What is the magnitude of V necessary to cause this displacement?

SOLUTION
Shear Modulus. This value represents the slope of the straight-line
portion OA of the diagram. The coordinates of point A are
(0.008 rad, 52 ksi). Thus,

Ans.

The equation of line OA is therefore which is
Hooke’s law for shear.

Proportional Limit. By inspection, the graph ceases to be linear at
point A. Thus,

Ans.

Ultimate Stress. This value represents the maximum shear stress,
point B. From the graph,

Ans.

Maximum Elastic Displacement and Shear Force. Since the
maximum elastic shear strain is 0.008 rad, a very small angle, the top
of the block in Fig. 3–25b will be displaced horizontally:

Ans.

The corresponding average shear stress in the block is 
Thus, the shear force V needed to cause the displacement is

Ans. V = 624 kip

 52 ksi =
V

13 in.214 in.2tavg =
V

A
;

tpl = 52 ksi.

 d = 0.016 in.

 tan10.008 rad2 L 0.008 rad =
d

2 in.

tu = 73 ksi

tpl = 52 ksi

t = Gg = 6500g,

G =
52 ksi

0.008 rad
= 6500 ksi

t–g

90
80
70
60
50
40
30
20
10

0.73

B

A

(a)

t (ksi)

tu � 73

gpl � 0.008 gu � 0.54
g (rad)

tpl � 52

O

4 in.
3 in.

2 in. g

d

V

(b)

Fig. 3–25



EXAMPLE 3.6

An aluminum specimen shown in Fig. 3–26 has a diameter of
and a gauge length of If a force of 165 kN

elongates the gauge length 1.20 mm, determine the modulus of
elasticity. Also, determine by how much the force causes the diameter
of the specimen to contract. Take and 

SOLUTION
Modulus of Elasticity. The average normal stress in the specimen is

and the average normal strain is

Since the material behaves elastically. The
modulus of elasticity is therefore

Ans.

Contraction of Diameter. First we will determine Poisson’s ratio
for the material using Eq. 3–11.

Since then by Eq. 3–9,

The contraction of the diameter is therefore

Ans. = 0.0416 mm

 d¿ = 10.001662125 mm2

 Plat = -0.00166 mm>mm

 0.347 = -
Plat

0.00480 mm>mm

 n = -
Plat

Plong

Plong = 0.00480 mm>mm,

 n = 0.347

 26 GPa =
70.0 GPa
211 + n2

 G =
E

211 + n2

Eal =
s

P
=

336.111062 Pa

0.00480
= 70.0 GPa

s 6 sY = 440 MPa,

P =
d

L
=

1.20 mm
250 mm

= 0.00480 mm>mm

s =
P

A
=

16511032 N
1p>4210.025 m22 = 336.1 MPa

sY = 440 MPa.Gal = 26 GPa

L0 = 250 mm.d0 = 25 mm
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3

d0
L0

165 kN

165 kN

Fig. 3–26



*3.8 Failure of Materials Due to Creep 
and Fatigue

The mechanical properties of a material have up to this point been
discussed only for a static or slowly applied load at constant temperature.
In some cases, however, a member may have to be used in an environment
for which loadings must be sustained over long periods of time at elevated
temperatures, or in other cases, the loading may be repeated or cycled.
We will not consider these effects in this book, although we will briefly
mention how one determines a material’s strength for these conditions,
since they are given special treatment in design.

Creep. When a material has to support a load for a very long period
of time, it may continue to deform until a sudden fracture occurs or its
usefulness is impaired. This time-dependent permanent deformation is
known as creep. Normally creep is considered when metals and ceramics
are used for structural members or mechanical parts that are subjected
to high temperatures. For some materials, however, such as polymers and
composite materials—including wood or concrete—temperature is not
an important factor, and yet creep can occur strictly from long-term load
application. As a typical example, consider the fact that a rubber
band will not return to its original shape after being released from a
stretched position in which it was held for a very long period of time.
In the general sense, therefore, both stress and�or temperature play a
significant role in the rate of creep.

For practical purposes, when creep becomes important, a member is
usually designed to resist a specified creep strain for a given period of
time. An important mechanical property that is used in this regard is
called the creep strength. This value represents the highest stress the
material can withstand during a specified time without exceeding an
allowable creep strain. The creep strength will vary with temperature,
and for design, a given temperature, duration of loading, and allowable
creep strain must all be specified. For example, a creep strain of 0.1% per
year has been suggested for steel in bolts and piping.

Several methods exist for determining an allowable creep strength
for a particular material. One of the simplest involves testing several
specimens simultaneously at a constant temperature, but with each
subjected to a different axial stress. By measuring the length of time
needed to produce either an allowable strain or the fracture strain for
each specimen, a curve of stress versus time can be established.
Normally these tests are run to a maximum of 1000 hours. An example
of the results for stainless steel at a temperature of 1200°F and
prescribed creep strain of 1% is shown in Fig. 3–27. As noted, this
material has a yield strength of 40 ksi (276 MPa) at room temperature
(0.2% offset) and the creep strength at 1000 h is found to be
approximately (138 MPa).sc = 20 ksi
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The long-term application of the cable
loading on this pole has caused the pole to
deform due to creep.

40

s(ksi)

30

20

10

0 200 400 600 800 1000
t(h)

s–t diagram for stainless steel
at 1200�F and creep strain at 1%

Fig. 3–27
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In general, the creep strength will decrease for higher temperatures or
for higher applied stresses. For longer periods of time, extrapolations from
the curves must be made. To do this usually requires a certain amount of
experience with creep behavior, and some supplementary knowledge
about the creep properties of the material. Once the material’s creep
strength has been determined, however, a factor of safety is applied to
obtain an appropriate allowable stress for design.

Fatigue. When a metal is subjected to repeated cycles of stress
or strain, it causes its structure to break down, ultimately leading to
fracture. This behavior is called fatigue, and it is usually responsible
for a large percentage of failures in connecting rods and crankshafts of
engines; steam or gas turbine blades; connections or supports for bridges,
railroad wheels, and axles; and other parts subjected to cyclic loading.
In all these cases, fracture will occur at a stress that is less than the
material’s yield stress.

The nature of this failure apparently results from the fact that there
are microscopic imperfections, usually on the surface of the member,
where the localized stress becomes much greater than the average stress
acting over the cross section.As this higher stress is cycled, it leads to the
formation of minute cracks. Occurrence of these cracks causes a further
increase of stress at their tips or boundaries, which in turn causes a
further extension of the cracks into the material as the stress continues
to be cycled. Eventually the cross-sectional area of the member is
reduced to the point where the load can no longer be sustained, and as a
result sudden fracture occurs. The material, even though known to be
ductile, behaves as if it were brittle.

In order to specify a safe strength for a metallic material under
repeated loading, it is necessary to determine a limit below which no
evidence of failure can be detected after applying a load for a specified
number of cycles. This limiting stress is called the endurance or fatigue
limit. Using a testing machine for this purpose, a series of specimens are
each subjected to a specified stress and cycled to failure. The results are
plotted as a graph representing the stress S (or ) on the vertical axis
and the number of cycles-to-failure N on the horizontal axis. This graph
is called an S–N diagram or stress–cycle diagram, and most often the
values of N are plotted on a logarithmic scale since they are generally
quite large.

Examples of S–N diagrams for two common engineering metals are
shown in Fig. 3–28. The endurance limit is usually identified as the
stress for which the S–N graph becomes horizontal or asymptotic. As
noted, it has a well-defined value of (186 MPa) for steel.
For aluminum, however, the endurance limit is not well defined, and so
it is normally specified as the stress having a limit of 500 million cycles,

(131 MPa). Once a particular value is obtained, it is
often assumed that for any stress below this value the fatigue life is
infinite, and therefore the number of cycles to failure is no longer given
consideration.

1Sel2al = 19 ksi

1Sel2st = 27 ksi

s

3

Engineers must account for possible fatigue
failure of the moving parts of this oil-
pumping rig.

The design of members used for amusement
park rides requires careful consideration of
cyclic loadings that can cause fatigue.
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50

40

(Sel)st � 27

(Sel)al � 19

30

20

10

0
10.1 10 100 1000500

aluminum

steel

N(106)

S (ksi)

S–N diagram for steel and aluminum alloys
(N axis has a logarithmic scale)

Important Points

• Poisson’s ratio, , is a ratio of the lateral strain of a homogeneous
and isotropic material to its longitudinal strain. Generally these
strains are of opposite signs, that is, if one is an elongation, the
other will be a contraction.

• The shear stress–strain diagram is a plot of the shear stress
versus the shear strain. If the material is homogeneous and
isotropic, and is also linear elastic, the slope of the straight line
within the elastic region is called the modulus of rigidity or the
shear modulus, G.

• There is a mathematical relationship between G, E, and .

• Creep is the time-dependent deformation of a material for which
stress and/or temperature play an important role. Members
are designed to resist the effects of creep based on their material
creep strength, which is the largest initial stress a material can
withstand during a specified time without exceeding a specified
creep strain.

• Fatigue occurs in metals when the stress or strain is cycled. This
phenomenon causes brittle fracture of the material. Members
are designed to resist fatigue by ensuring that the stress in the
member does not exceed its endurance or fatigue limit. This
value is determined from an S–N diagram as the maximum
stress the material can resist when subjected to a specified
number of cycles of loading.

n

n

Fig. 3–28
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20 mm

P � 50 kN

P � 50 kN

600 mm

F3–14

150 mm

0.5 mm

150 mm

P 

F3–15

150 mm
 a � 3 mm

150 mm

P 

130

0.005

A

t(MPa)

g (rad)

F3–16

FUNDAMENTAL PROBLEMS

F3–13. A 100-mm long rod has a diameter of 15 mm. If an
axial tensile load of 10 kN is applied to it, determine the
change in its diameter.

F3–14. A solid circular rod that is 600 mm long and 20 mm
in diameter is subjected to an axial force of The
elongation of the rod is and its diameter
becomes Determine the modulus of
elasticity and the modulus of rigidity of the material.Assume
that the material does not yield.

d¿ = 19.9837 mm.
d = 1.40 mm,

P = 50 kN.

E = 70 GPa, n = 0.35.

F3–16. A 20-mm-wide block is bonded to rigid plates at its
top and bottom. When the force P is applied the block
deforms into the shape shown by the dashed line. If 
and P is released, determine the permanent shear strain in
the block.

a = 3 mm

F3–15. A 20-mm-wide block is firmly bonded to rigid
plates at its top and bottom.When the force P is applied the
block deforms into the shape shown by the dashed line.
Determine the magnitude of P. The block’s material has
a modulus of rigidity of Assume that the
material does not yield and use small angle analysis.

G = 26 GPa.
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•3–25. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.

np = 0.4.Ep = 2.70 GPa,

*3–28. The elastic portion of the stress–strain diagram for
a steel alloy is shown in the figure. The specimen from
which it was obtained had an original diameter of 13 mm
and a gauge length of 50 mm. If a load of kN is
applied to the specimen, determine its diameter and gauge
length. Take n = 0.4.

P = 20

PROBLEMS

300 N

200 mm

300 N

Prob. 3–25

400

P(mm/mm)
0.002

s(MPa)

Prob. 3–27

3–27. The elastic portion of the stress–strain diagram for a
steel alloy is shown in the figure. The specimen from which
it was obtained had an original diameter of 13 mm and a
gauge length of 50 mm. When the applied load on the
specimen is 50 kN, the diameter is 12.99265 mm. Determine
Poisson’s ratio for the material.

•3–29. The aluminum block has a rectangular cross
section and is subjected to an axial compressive force of
8 kip. If the 1.5-in. side changed its length to 1.500132 in.,
determine Poisson’s ratio and the new length of the 2-in.
side. Eal � 10(103) ksi.

3 in.

1.5 in.

8 kip
8 kip 2 in.

Prob. 3–29

3–26. The short cylindrical block of 2014-T6 aluminum,
having an original diameter of 0.5 in. and a length of 1.5 in.,
is placed in the smooth jaws of a vise and squeezed until the
axial load applied is 800 lb. Determine (a) the decrease in its
length and (b) its new diameter.

400

P(mm/mm)
0.002

s(MPa)

Prob. 3–28

800 lb 800 lb

Prob. 3–26
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•3–33. The support consists of three rigid plates, which
are connected together using two symmetrically placed
rubber pads. If a vertical force of 5 N is applied to plate
A, determine the approximate vertical displacement of
this plate due to shear strains in the rubber. Each pad
has cross-sectional dimensions of 30 mm and 20 mm.
Gr = 0.20 MPa.

3

4 in. u

y

x
5 in.

Prob. 3–30

3–31. The shear stress–strain diagram for a steel alloy is
shown in the figure. If a bolt having a diameter of 0.75 in.
is made of this material and used in the double lap joint,
determine the modulus of elasticity E and the force P
required to cause the material to yield. Take n = 0.3.

P

0.00545

  60

g(rad)

t(ksi)

P/2
P/2

Prob. 3–31

*3–32. A shear spring is made by bonding the rubber
annulus to a rigid fixed ring and a plug. When an axial load
P is placed on the plug, show that the slope at point y in
the rubber is For small
angles we can write Integrate this
expression and evaluate the constant of integration using
the condition that at From the result compute
the deflection of the plug.y = d

r = ro.y = 0

dy>dr = -P>12phGr2.
- tan1P>12phGr22.dy>dr = - tan g =

P

y

ro
ri

y

r

h

d

Prob. 3–32

C B

40 mm40 mm

A

5 N

Prob. 3–33

P

h

aa

A
d

Prob. 3–34

3–34. A shear spring is made from two blocks of rubber,
each having a height h, width b, and thickness a. The
blocks are bonded to three plates as shown. If the plates
are rigid and the shear modulus of the rubber is G,
determine the displacement of plate A if a vertical load P is
applied to this plate. Assume that the displacement is small
so that d = a tan g L ag.

3–30. The block is made of titanium Ti-6A1-4V and is
subjected to a compression of 0.06 in. along the y axis, and its
shape is given a tilt of Determine and gxy.Py,Px,u = 89.7°.



CHAPTER REVIEW 113

3

One of the most important tests for material strength is the tension test. The results, found
from stretching a specimen of known size, are plotted as normal stress on the vertical axis and
normal strain on the horizontal axis.

Many engineering materials exhibit initial
linear elastic behavior, whereby stress is
proportional to strain, defined by Hooke’s
law, Here E, called the modulus
of elasticity, is the slope of this straight
line on the stress–strain diagram.

s = EP.
s = EP

When the material is stressed beyond the
yield point, permanent deformation will
occur. In particular, steel has a region of
yielding, whereby the material will exhibit
an increase in strain with no increase in
stress. The region of strain hardening
causes further yielding of the material
with a corresponding increase in stress.
Finally, at the ultimate stress, a localized
region on the specimen will begin to
constrict, forming a neck. It is after this
that the fracture occurs.

Ductile materials, such as most metals,
exhibit both elastic and plastic behavior.
Wood is moderately ductile. Ductility is
usually specified by the permanent
elongation to failure or by the percent
reduction in the cross-sectional area. Percent reduction of area =

A0 - Af

A0
 1100%2

Percent elongation =
Lf - L0

L0
 1100%2

CHAPTER REVIEW

s

P

P
sE

ductile material

elastic
region

yielding strain
hardening

necking

elastic
behavior

plastic behavior

elastic limit
yield stress

ultimate
stress fracture

stress

P

sf

sY
spl

su

s

proportional limit
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Brittle materials exhibit little or no
yielding before failure. Cast iron, concrete,
and glass are typical examples.

The yield point of a material at A can be
increased by strain hardening. This is
accomplished by applying a load that
causes the stress to be greater than the
yield stress, then releasing the load. The
larger stress becomes the new yield
point for the material.

A¿

When a load is applied to a member,
the deformations cause strain energy to
be stored in the material. The strain
energy per unit volume or strain energy
density is equivalent to the area under
the stress–strain curve. This area up to
the yield point is called the modulus of
resilience.The entire area under the stress–
strain diagram is called the modulus of
toughness.

s

P
brittle material

permanent
set

elastic
recovery

elastic
region

plastic
region

load

unloadE

E

s

P

A

A¿

ur

Modulus of resilience

Ppl

spl

s

P 

ut

Modulus of toughness

s

P
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Poisson’s ratio is a dimensionless
material property that relates the
lateral strain to the longitudinal strain.
Its range of values is 0 … n … 0.5.

n

n = -
Plat

Plong

Shear stress versus shear strain
diagrams can also be established for
a material. Within the elastic region,

where G is the shear
modulus, found from the slope of the
line. The value of can be obtained
from the relationship that exists
between G, E and n.

n

t = Gg,

When materials are in service for
long periods of time, considerations
of creep become important. Creep is
the time rate of deformation, which
occurs at high stress and/or high
temperature. Design requires that
the stress in the material not exceed
an allowable stress which is based on
the material’s creep strength.

Fatigue can occur when the material
undergoes a large number of cycles
of loading. This effect will cause
microscopic cracks to form, leading
to a brittle failure.To prevent fatigue,
the stress in the material must not
exceed a specified endurance or
fatigue limit.

P

P
r

Final Shape

L

Original Shape

Tension

d/2

d¿

d/2

t

g

g

tG

G =
E

211 + n2
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3–35. The elastic portion of the tension stress–strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 2 in. and a
diameter of 0.5 in. When the applied load is 9 kip, the new
diameter of the specimen is 0.49935 in. Compute the shear
modulus for the aluminum.

*3–36. The elastic portion of the tension stress–strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 2 in. and a
diameter of 0.5 in. If the applied load is 10 kip, determine
the new diameter of the specimen. The shear modulus is
Gal = 3.811032 ksi.

Gal

3–38. A short cylindrical block of 6061-T6 aluminum,
having an original diameter of 20 mm and a length of
75 mm, is placed in a compression machine and squeezed
until the axial load applied is 5 kN. Determine (a) the
decrease in its length and (b) its new diameter.

3–39. The rigid beam rests in the horizontal position on
two 2014-T6 aluminum cylinders having the unloaded lengths
shown. If each cylinder has a diameter of 30 mm, determine
the placement x of the applied 80-kN load so that the beam
remains horizontal. What is the new diameter of cylinder A
after the load is applied? nal = 0.35.

REVIEW PROBLEMS

0.00614

70

s(ksi)

P (in./in.)

Probs. 3–35/36

3–37. The diagram for elastic fibers that make up
human skin and muscle is shown. Determine the modulus 
of elasticity of the fibers and estimate their modulus of
toughness and modulus of resilience.

s–P

3 m

210 mm220 mm

x

A B

80 kN

Prob. 3–39

*3–40. The head H is connected to the cylinder of a
compressor using six steel bolts. If the clamping force in
each bolt is 800 lb, determine the normal strain in the
bolts. Each bolt has a diameter of If and

what is the strain in each bolt when the
nut is unscrewed so that the clamping force is released?
Est = 2911032 ksi,

sY = 40 ksi3
16 in.

H

LC

Prob. 3–40

21 2.25

11

55

P(in./in.)

s(psi)

Prob. 3–37
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3–43. The 8-mm-diameter bolt is made of an aluminum
alloy. It fits through a magnesium sleeve that has an inner
diameter of 12 mm and an outer diameter of 20 mm. If the
original lengths of the bolt and sleeve are 80 mm and
50 mm, respectively, determine the strains in the sleeve and
the bolt if the nut on the bolt is tightened so that the tension
in the bolt is 8 kN. Assume the material at A is rigid.

Emg = 45 GPa.Eal = 70 GPa,

•3–41. The stone has a mass of 800 kg and center of gravity
at G. It rests on a pad at A and a roller at B.The pad is fixed
to the ground and has a compressed height of 30 mm, a
width of 140 mm, and a length of 150 mm. If the coefficient
of static friction between the pad and the stone is 
determine the approximate horizontal displacement of the
stone, caused by the shear strains in the pad, before the
stone begins to slip. Assume the normal force at A acts
1.5 m from G as shown. The pad is made from a material
having MPa and n = 0.35.E = 4

ms = 0.8,

3

0.4 m

1.25 m 1.5 m

0.3 m
P

B A

G

Prob. 3–41

2 ft 3 ft

4 ft

3 ft

D AB

E

C

W

Prob. 3–42

3–42. The bar DA is rigid and is originally held in the
horizontal position when the weight W is supported from C.
If the weight causes B to be displaced downward 0.025 in.,
determine the strain in wires DE and BC. Also, if the wires
are made of A-36 steel and have a cross-sectional area of
0.002 in2, determine the weight W.

50 mm

30 mm

A

Prob. 3–43

400 mm

A

B

P

400 mm

u

Prob. 3–44

*3–44. The A-36 steel wire AB has a cross-sectional area
of and is unstretched when Determine
the applied load P needed to cause u = 44.9°.

u = 45.0°.10 mm2



The string of drill pipe suspended from this traveling block on an oil rig is subjected
to extremely large loadings and axial deformations.
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CHAPTER OBJECTIVES

In Chapter 1, we developed the method for finding the normal stress
in axially loaded members. In this chapter we will discuss how to
determine the deformation of these members, and we will also develop
a method for finding the support reactions when these reactions cannot
be determined strictly from the equations of equilibrium. An analysis
of the effects of thermal stress, stress concentrations, inelastic
deformations, and residual stress will also be discussed.

4.1 Saint-Venant’s Principle

In the previous chapters, we have developed the concept of stress as a
means of measuring the force distribution within a body and strain as
a means of measuring a body’s deformation. We have also shown that
the mathematical relationship between stress and strain depends on
the type of material from which the body is made. In particular, if the
material behaves in a linear elastic manner, then Hooke’s law applies,
and there is a proportional relationship between stress and strain.

Axial Load 
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*When section c–c is so located, the theory of elasticity predicts the maximum stress to be
smax = 1.02savg.

Using this idea, consider the manner in which a rectangular bar will
deform elastically when the bar is subjected to a force P applied along its
centroidal axis, Fig. 4–1a. Here the bar is fixed connected at one end, with
the force applied through a hole at its other end. Due to the loading, the
bar deforms as indicated by the once horizontal and vertical grid lines
drawn on the bar. Notice how the localized deformation that occurs
at each end tends to even out and become uniform throughout the
midsection of the bar.

If the material remains elastic then the strains caused by this
deformation are directly related to the stress in the bar. As a result, the
stress will be distributed more uniformly throughout the cross-sectional
area when the section is taken farther and farther from the point where
any external load is applied. For example, consider a profile of the
variation of the stress distribution acting at sections a–a, b–b, and c–c,
each of which is shown in Fig. 4–1b. By comparison, the stress tends
to reach a uniform value at section c–c, which is sufficiently removed
from the end since the localized deformation caused by P vanishes.
The minimum distance from the bar’s end where this occurs can be
determined using a mathematical analysis based on the theory of
elasticity.

It has been found that this distance should at least be equal to the
largest dimension of the loaded cross section. Hence, section c–c should
be located at a distance at least equal to the width (not the thickness) of
the bar.*

(a)

P

a
b
c

a
b
c

Lines located away
from the load and support
remain straight

Load distorts lines
located near load

Load distorts lines
located near support

Fig. 4–1
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Fig. 4–1 (cont.)

In the same way, the stress distribution at the support will also even
out and become uniform over the cross section located the same distance
away from the support.

The fact that stress and deformation behave in this manner is referred
to as Saint-Venant’s principle, since it was first noticed by the French
scientist Barré de Saint-Venant in 1855. Essentially it states that the
stress and strain produced at points in a body sufficiently removed from
the region of load application will be the same as the stress and strain
produced by any applied loadings that have the same statically equivalent
resultant, and are applied to the body within the same region. For
example, if two symmetrically applied forces act on the bar,
Fig. 4–1c, the stress distribution at section c–c will be uniform and
therefore equivalent to as in Fig. 4–1b.savg = P>A

P>2

section a–a section b–b

(b)

section c–c

PPP

savg �
P
A

section c–c

(c)

savg �

P
2

P
2

P
A

Notice how the lines on this rubber membrane
distort after it is stretched. The localized
distortions at the grips smooth out as stated by
Saint-Venant’s principle.
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4.2 Elastic Deformation of an Axially
Loaded Member

Using Hooke’s law and the definitions of stress and strain, we will now
develop an equation that can be used to determine the elastic
displacement of a member subjected to axial loads. To generalize the
development, consider the bar shown in Fig. 4–2a, which has a cross-
sectional area that gradually varies along its length L.The bar is subjected
to concentrated loads at its ends and a variable external load distributed
along its length. This distributed load could, for example, represent the
weight of the bar if it does not remain horizontal, or friction forces acting
on the bar’s surface. Here we wish to find the relative displacement
(delta) of one end of the bar with respect to the other end as caused by
this loading. We will neglect the localized deformations that occur at
points of concentrated loading and where the cross section suddenly
changes. From Saint-Venant’s principle, these effects occur within small
regions of the bar’s length and will therefore have only a slight effect on
the final result. For the most part, the bar will deform uniformly, so the
normal stress will be uniformly distributed over the cross section.

Using the method of sections, a differential element (or wafer) of length
dx and cross-sectional area A(x) is isolated from the bar at the arbitrary
position x. The free-body diagram of this element is shown in Fig. 4–2b.
The resultant internal axial force will be a function of x since the external
distributed loading will cause it to vary along the length of the bar. This
load, P(x), will deform the element into the shape indicated by the dashed
outline, and therefore the displacement of one end of the element with
respect to the other end is The stress and strain in the element are

Provided the stress does not exceed the proportional limit, we can apply
Hooke’s law; i.e.,

 dd =
P1x2 dx

A1x2E

 
P1x2
A1x2 = Ea dd

dx
b

 s = EP

s =
P1x2
A1x2 and P =

dd

dx

dd.

d

dx
dd

(b)

P(x) P(x)P2P1

x dx

L

(a)
d

Fig. 4–2
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For the entire length L of the bar, we must integrate this expression to
find . This yields

(4–1)

where

displacement of one point on the bar relative to the other point

original length of bar

internal axial force at the section, located a distance x from
one end

cross-sectional area of the bar, expressed as a function of x

modulus of elasticity for the material

Constant Load and Cross-Sectional Area. In many cases
the bar will have a constant cross-sectional area A; and the material will
be homogeneous, so E is constant. Furthermore, if a constant external
force is applied at each end, Fig. 4–3, then the internal force P
throughout the length of the bar is also constant. As a result, Eq. 4–1 can
be integrated to yield

(4–2)

If the bar is subjected to several different axial forces along its length, or
the cross-sectional area or modulus of elasticity changes abruptly from
one region of the bar to the next, the above equation can be applied
to each segment of the bar where these quantities remain constant. The
displacement of one end of the bar with respect to the other is then found
from the algebraic addition of the relative displacements of the ends of
each segment. For this general case,

(4–3)d = a PL

AE

d =
PL

AE

 E =
 A1x2 =

 P1x2 =
 L =
 d =

d = L
L

0

P1x2 dx

A1x2E

d

The vertical displacement at the top of these
building columns depends upon the loading
applied on the roof and to the floor attached
to their midpoint.

P

d

P

x

L

Fig. 4–3
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Sign Convention. In order to apply Eq. 4–3, we must develop a
sign convention for the internal axial force and the displacement of one
end of the bar with respect to the other end. To do so, we will consider
both the force and displacement to be positive if they cause tension
and elongation, respectively, Fig. 4–4; whereas a negative force and
displacement will cause compression and contraction, respectively.

For example, consider the bar shown in Fig. 4–5a. The internal axial
forces “P,” are determined by the method of sections for each segment,
Fig. 4–5b. They are This
variation in axial load is shown on the axial or normal force diagram for
the bar, Fig. 4–5c. Since we now know how the internal force varies
throughout the bar’s length, the displacement of end A relative to end D
is determined from

If the other data are substituted and a positive answer is calculated, it
means that end A will move away from end D (the bar elongates),
whereas a negative result would indicate that end A moves toward 
end D (the bar shortens). The double subscript notation is used to
indicate this relative displacement however, if the displacement
is to be determined relative to a fixed point, then only a single subscript
will be used. For example, if D is located at a fixed support, then the
displacement will be denoted as simply dA.

1dA>D2;

dA>D = a  
PL

AE
=
15 kN2LAB

AE
+
1-3 kN2LBC

AE
+
1-7 kN2LCD

AE

PCD = -7 kN.PBC = -3 kN,PAB = +5 kN,�P

�P

�d

�d

Fig. 4–4

Positive sign convention for P and d

DA B C

8 kN 4 kN

LAB LBC LCD

(a)

5 kN 7 kN

A

A B

8 kN

(b)

D
7 kN

PAB � 5 kN

PBC � 3 kN

PCD � 7 kN

5 kN

5 kN

P (kN)

x

5

�3

�7

(c)

Fig. 4–5
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Important Points

• Saint-Venant’s principle states that both the localized deformation and stress which occur within the
regions of load application or at the supports tend to “even out” at a distance sufficiently removed from
these regions.

• The displacement of one end of an axially loaded member relative to the other end is determined by
relating the applied internal load to the stress using and relating the displacement to the strain using

Finally these two equations are combined using Hooke’s law, which yields Eq. 4–1.

• Since Hooke’s law has been used in the development of the displacement equation, it is important that no
internal load causes yielding of the material, and that the material is homogeneous and behaves in a linear
elastic manner.

s = EP,P = dd>dx.
s = P>A

Procedure for Analysis

The relative displacement between any two points A and B on an axially loaded member can be determined
by applying Eq. 4–1 (or Eq. 4–2). Application requires the following steps.

Internal Force.

• Use the method of sections to determine the internal axial force P within the member.

• If this force varies along the member’s length due to an external distributed loading, a section should be
made at the arbitrary location x from one end of the member and the force represented as a function of x,
i.e., P(x).

• If several constant external forces act on the member, the internal force in each segment of the member,
between any two external forces, must be determined.

• For any segment, an internal tensile force is positive and an internal compressive force is negative. For
convenience, the results of the internal loading can be shown graphically by constructing the normal-force
diagram.

Displacement.

• When the member’s cross-sectional area varies along its length, the area must be expressed as a function of
its position x, i.e., A(x).

• If the cross-sectional area, the modulus of elasticity, or the internal loading suddenly changes, then Eq. 4–2
should be applied to each segment for which these quantities are constant.

• When substituting the data into Eqs. 4–1 through 4–3, be sure to account for the proper sign for the
internal force P.Tensile loadings are positive and compressive loadings are negative.Also, use a consistent
set of units. For any segment, if the result is a positive numerical quantity, it indicates elongation; if it is
negative, it indicates a contraction.
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EXAMPLE 4.1

P (kip)

x (ft)

7

15
0

2

3.5

4.5�9

(c)

4 kip 4 kip

15 kip

4 kip 4 kip

15 kip15 kip

(b)

8 kip8 kip

PAB � 15 kip

PBC � 7 kip

PCD � 9 kip

4 kip 4 kip

8 kip8 kip

15 kip

1.5 ft

2 ft

1 ft

A

B

C

D

(a)

The A-36 steel bar shown in Fig. 4–6a is made from two segments
having cross-sectional areas of and 
Determine the vertical displacement of end A and the displacement
of B relative to C.

2 in2.ABD =AAB = 1 in2

Fig. 4–6

SOLUTION
Internal Force. Due to the application of the external loadings, the
internal axial forces in regions AB, BC, and CD will all be different.
These forces are obtained by applying the method of sections and the
equation of vertical force equilibrium as shown in Fig. 4–6b. This
variation is plotted in Fig. 4–6c.

Displacement. From the inside back cover,
Using the sign convention, i.e., internal tensile forces are positive and
compressive forces are negative, the vertical displacement of A
relative to the fixed support D is

Est = 2911032 ksi.

Ans.= + 0.0127 in.

+
[-9 kip]11 ft2112 in.>ft2
12 in22[2911032 kip>in2]

  dA = a  
PL

AE
=

[+15 kip]12 ft2112 in.>ft2
11 in22[2911032 kip>in2]

+
[+7 kip]11.5 ft2112 in.>ft2
12 in22[2911032 kip>in2]

Since the result is positive, the bar elongates and so the displacement
at A is upward.

Applying Eq. 4–2 between points B and C, we obtain,

Ans.

Here B moves away from C, since the segment elongates.

dB>C =
PBC LBC

ABC E
=

[+7 kip]11.5 ft2112 in.>ft2
12 in22[2911032 kip>in2]

= +0.00217 in.



4.2 ELASTIC DEFORMATION OF AN AXIALLY LOADED MEMBER 127

4

EXAMPLE 4.2

The assembly shown in Fig. 4–7a consists of an aluminum tube AB
having a cross-sectional area of A steel rod having a diameter
of 10 mm is attached to a rigid collar and passes through the tube. If a
tensile load of 80 kN is applied to the rod, determine the displacement
of the end C of the rod. Take Eal = 70 GPa.Est = 200 GPa,

400 mm2.

400 mm

600 mm

AB

80 kN

(a)

C 80 kN

80 kN

(b)

PAB � 80 kN

PBC � 80 kN

Fig. 4–7

SOLUTION
Internal Force. The free-body diagram of the tube and rod segments
in Fig. 4–7b, shows that the rod is subjected to a tension of 80 kN and the
tube is subjected to a compression of 80 kN.

Displacement. We will first determine the displacement of end C
with respect to end B.Working in units of newtons and meters, we have

The positive sign indicates that end C moves to the right relative to
end B, since the bar elongates.

The displacement of end B with respect to the fixed end A is

Here the negative sign indicates that the tube shortens, and so B
moves to the right relative to A.

Since both displacements are to the right, the displacement of C
relative to the fixed end A is therefore

Ans. = 0.00420 m = 4.20 mm:
 dC = dB + dC>B = 0.001143 m + 0.003056 m1:+ 2 

 = -0.001143 m = 0.001143 m:
 dB =

PL

AE
=

[-8011032 N]10.4 m2
[400 mm2110-62 m2>mm2][7011092 N>m2]

dC>B =
PL

AE
=

[+8011032 N]10.6 m2
p10.005 m22[20011092 N>m2]

= +0.003056 m:
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EXAMPLE 4.3

Rigid beam AB rests on the two short posts shown in Fig. 4–8a. AC is
made of steel and has a diameter of 20 mm, and BD is made of
aluminum and has a diameter of 40 mm. Determine the displacement
of point F on AB if a vertical load of 90 kN is applied over this point.
Take 

SOLUTION
Internal Force. The compressive forces acting at the top of each
post are determined from the equilibrium of member AB, Fig. 4–8b.
These forces are equal to the internal forces in each post, Fig. 4–8c.

Displacement. The displacement of the top of each post is

Post AC:

Post BD:

A diagram showing the centerline displacements at A, B, and F on
the beam is shown in Fig. 4–8d. By proportion of the blue shaded
triangle, the displacement of point F is therefore

Ans.dF = 0.102 mm + 10.184 mm2a400 mm
600 mm

b = 0.225 mm T

 = 0.102 mm T

 dB =
PBD LBD

ABD Eal
=

[-3011032 N]10.300 m2
p10.020 m22[7011092 N>m2]

= -102110-62 m

 = 0.286 mm T

 dA =
PAC LAC

AAC Est
=

[-6011032 N]10.300 m2
p10.010 m22[20011092 N>m2]

= -286110-62 m

Eal = 70 GPa.Est = 200 GPa,

200 mm
400 mm

300 mm

F

A

C

B

D

90 kN

(a)

200 mm
400 mm

90 kN

60 kN 30 kN
(b)

60 kN

PAC � 60 kN

30 kN

PBD � 30 kN
(c)

400 mm

0.184 mm

0.286 mm

0.102 mm 600 mm

0.102 mm

BA F

(d)

dF

Fig. 4–8
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EXAMPLE 4.4

A member is made from a material that has a specific weight and
modulus of elasticity E. If it is in the form of a cone having the
dimensions shown in Fig. 4–9a, determine how far its end is displaced
due to gravity when it is suspended in the vertical position.

SOLUTION
Internal Force. The internal axial force varies along the member
since it is dependent on the weight W(y) of a segment of the member
below any section, Fig. 4–9b. Hence, to calculate the displacement,
we must use Eq. 4–1. At the section located a distance y from its free
end, the radius x of the cone as a function of y is determined by
proportion; i.e.,

The volume of a cone having a base of radius x and height y is

Since the internal force at the section becomes

Displacement. The area of the cross section is also a function of
position y, Fig. 4–9b. We have

Applying Eq. 4–1 between the limits of and yields

Ans.

NOTE: As a partial check of this result, notice how the units of the
terms, when canceled, give the displacement in units of length as
expected.

 =
gL2

6E

 =
g

3EL
L

0
y dy

 d = L
L

0

P1y2 dy

A1y2E = L
L

0

C 1gpr0
2>3L22 y3 D  dy

C 1pr0
2>L22 y2 D  E

y = Ly = 0

A1y2 = px2 =
pr0

2

L2  y2

P1y2 =
gpr0

2

3L2  y3+ c ©Fy = 0;

W = gV,

V =
1
3

 pyx2 =
pr0

2

3L2 y3

x
y

=
r0

L
;  x =

r0

L
 y

g

Fig. 4–9

y

L

x

r0

(a)

y

y

x

W(y)

(b)

P(y)
x
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CBA

50 kN
40 kN

50 kN

600 mm 400 mm

F4–1

10 kN
15 kN

15 kN

20 kN
10 kN

10 kN
400 mm400 mm 400 mm

20 mm 20 mm

A

a
B

D
C

40 mm30 mm

Section a-a

F4–2

FUNDAMENTAL PROBLEMS

F4–1. The 20-mm-diameter A-36 steel rod is subjected
to the axial forces shown. Determine the displacement of
end C with respect to the fixed support at A.

F4–4. If the 20-mm-diameter rod is made of A-36 steel
and the stiffness of the spring is determine
the displacement of end A when the 60-kN force is applied.

k = 50 MN>m,

F4–2. Segments AB and CD of the assembly are solid
circular rods, and segment BC is a tube. If the assembly
is made of 6061-T6 aluminum, determine the displacement
of end D with respect to end A.

F4–3. The 30-mm-diameter A-36 steel rod is subjected to
the loading shown. Determine the displacement of end A
with respect to end C.

A B C

600 mm

3

3

4

4

5

5

90 kN

30 kN

30 kN
400 mm

F4–3

k � 50 MN/m400 mm

400 mm

60 kN

A

B

F4–4

F4–5. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the uniform distributed axial load. Determine
the displacement of end A.

A

900 mm

30 kN/m

F4–5

F4–6. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the triangular distributed axial load.
Determine the displacement of end A.

A

900 mm

45 kN/m

F4–6
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•4–1. The ship is pushed through the water using an A-36
steel propeller shaft that is 8 m long, measured from the
propeller to the thrust bearing D at the engine. If it has an
outer diameter of 400 mm and a wall thickness of 50 mm,
determine the amount of axial contraction of the shaft
when the propeller exerts a force on the shaft of 5 kN. The
bearings at B and C are journal bearings.

4–3. The A-36 steel rod is subjected to the loading shown.
If the cross-sectional area of the rod is determine
the displacement of its end D. Neglect the size of the
couplings at B, C, and D.

*4–4. The A-36 steel rod is subjected to the loading
shown. If the cross-sectional area of the rod is 
determine the displacement of C. Neglect the size of the
couplings at B, C, and D.

50 mm2,

50 mm2,

PROBLEMS

A B C
D

8 m

5 kN

Prob. 4–1

4–2. The copper shaft is subjected to the axial loads
shown. Determine the displacement of end A with respect
to end D. The diameters of each segment are 

and Take Ecu = 1811032 ksi.dCD = 1 in.dBC = 2 in.,
dAB = 3 in.,

1 kip6 kip

A
3 kip

2 kip

2 kipB C D

50 in. 75 in. 60 in.

Prob. 4–2

A

1.25 m1.5 m1 m

DCB 4 kN9 kN 2 kN

Probs. 4–3/4

4–5. The assembly consists of a steel rod CB and an
aluminum rod BA, each having a diameter of 12 mm. If the rod
is subjected to the axial loadings at A and at the coupling B,
determine the displacement of the coupling B and the end
A. The unstretched length of each segment is shown in the
figure. Neglect the size of the connections at B and C, and
assume that they are rigid. Est = 200 GPa, Eal = 70 GPa.

18 kN

2 m3 m

6 kN

B AC

Prob. 4–5

4–6. The bar has a cross-sectional area of and
Determine the displacement of its end A

when it is subjected to the distributed loading.
E = 3511032 ksi.

3 in2,

w � 500x1/3 lb/in.

4 ft

x

A

Prob. 4–6
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4–7. The load of 800 lb is supported by the four 304 stainless
steel wires that are connected to the rigid members AB and
DC. Determine the vertical displacement of the load if the
members were horizontal before the load was applied. Each
wire has a cross-sectional area of 

*4–8. The load of 800 lb is supported by the four 304 stain-
less steel wires that are connected to the rigid members AB
and DC. Determine the angle of tilt of each member after
the load is applied.The members were originally horizontal,
and each wire has a cross-sectional area of 0.05 in2.

0.05 in2.

4.5 ft

2 ft 5 ft
CD

A B

1 ft

4 ft

E F

800 lb

H

Probs. 4–7/8

•4–9. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC. The cross-sectional area of each rod
is given in the figure. If a force of 6 kip is applied to the ring
F, determine the horizontal displacement of point F.

4–10. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC. The cross-sectional area of each rod
is given in the figure. If a force of 6 kip is applied to the ring
F, determine the angle of tilt of bar AC.

6 ft

1 ft AEF � 2 in2

AAB � 1.5 in2

ACD � 1 in2

4 ft

2 ft

 6 kip
F

A

C

E

B

D

1 ft

Probs. 4–9/10

4–11. The load is supported by the four 304 stainless steel
wires that are connected to the rigid members AB and DC.
Determine the vertical displacement of the 500-lb load if
the members were originally horizontal when the load was
applied. Each wire has a cross-sectional area of 

*4–12. The load is supported by the four 304 stainless
steel wires that are connected to the rigid members AB and
DC. Determine the angle of tilt of each member after the
500-lb load is applied. The members were originally
horizontal, and each wire has a cross-sectional area of
0.025 in2.

0.025 in2.

1.8 ft
1 ft 2 ft

CD

A B
3 ft 1 ft

5 ft

3 ft

E F G

500 lb

I

H

Probs. 4–11/12

P

L

Prob. 4–13

•4–13. The bar has a length L and cross-sectional area A.
Determine its elongation due to the force P and its own
weight.The material has a specific weight
and a modulus of elasticity E.

(weight>volume)g
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4–14. The post is made of Douglas fir and has a diameter
of 60 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance that is uniformly distributed
along its sides of determine the force F at its
bottom needed for equilibrium.Also, what is the displacement
of the top of the post A with respect to its bottom B?
Neglect the weight of the post.

4–15. The post is made of Douglas fir and has a diameter
of 60 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance that is distributed along its
length and varies linearly from at to 

at determine the force F at its bottom
needed for equilibrium. Also, what is the displacement of
the top of the post A with respect to its bottom B? Neglect
the weight of the post.

y = 2 m,3 kN>m
w =y = 0w = 0

w = 4 kN>m,

w

y

A

2 m

20 kN

B
F

Probs. 4–14/15

*4–16. The linkage is made of two pin-connected A-36
steel members, each having a cross-sectional area of 
If a vertical force of is applied to point A,
determine its vertical displacement at A.

•4–17. The linkage is made of two pin-connected A-36
steel members, each having a cross-sectional area of 
Determine the magnitude of the force P needed to displace
point A 0.025 in. downward.

1.5 in2.

P = 50 kip
1.5 in2.

1.5 ft1.5 ft

C

A

B

2 ft

P

Probs. 4–16/17

4–18. The assembly consists of two A-36 steel rods and a
rigid bar BD. Each rod has a diameter of 0.75 in. If a force
of 10 kip is applied to the bar as shown, determine the
vertical displacement of the load.

4–19. The assembly consists of two A-36 steel rods and a
rigid bar BD. Each rod has a diameter of 0.75 in. If a force
of 10 kip is applied to the bar, determine the angle of tilt of
the bar.

0.75 ft

3 ft

1.25 ft

 10 kip

A

E

F

C

B D

1 ft

2 ft

Probs. 4–18/19

*4–20. The rigid bar is supported by the pin-connected
rod CB that has a cross-sectional area of and is
made of A-36 steel. Determine the vertical displacement of
the bar at B when the load is applied.

500 mm2

Prob. 4–20

4 m

3 m

B

45 kN/m

A

C
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•4–21. A spring-supported pipe hanger consists of two
springs which are originally unstretched and have a stiffness
of three 304 stainless steel rods, AB and CD,
which have a diameter of 5 mm, and EF, which has a
diameter of 12 mm, and a rigid beam GH. If the pipe and
the fluid it carries have a total weight of 4 kN, determine the
displacement of the pipe when it is attached to the support.

4–22. A spring-supported pipe hanger consists of two
springs, which are originally unstretched and have a
stiffness of three 304 stainless steel rods, AB
and CD, which have a diameter of 5 mm, and EF, which has
a diameter of 12 mm, and a rigid beam GH. If the pipe is
displaced 82 mm when it is filled with fluid, determine the
weight of the fluid.

k = 60 kN>m,

k = 60 kN>m,

A C

DB

F

G H
E

0.25 m0.25 m

0.75 m

k k

0.75 m

Probs. 4–21/22

4–23. The rod has a slight taper and length L. It is
suspended from the ceiling and supports a load P at its end.
Show that the displacement of its end due to this load is

Neglect the weight of the material. The
modulus of elasticity is E.
d = PL>1pEr2r12.

P

L

r2

r1

Prob. 4–23

*4–24. Determine the relative displacement of one end of
the tapered plate with respect to the other end when it is
subjected to an axial load P.

P

t

d1

d2

h

P

Prob. 4–24

4–25. Determine the elongation of the A-36 steel member
when it is subjected to an axial force of 30 kN. The member
is 10 mm thick. Use the result of Prob. 4–24.

30 kN 30 kN

0.5 m

20 mm

75 mm

Prob. 4–25

4–26. The casting is made of a material that has a specific
weight and modulus of elasticity E. If it is formed into a
pyramid having the dimensions shown, determine how far
its end is displaced due to gravity when it is suspended in
the vertical position.

g

b0
b0

L

Prob. 4–26
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4–27. The circular bar has a variable radius of 
and is made of a material having a modulus of elasticity
of E. Determine the displacement of end A when it is
subjected to the axial force P.

r = r0e
ax

r � r0 e
ax

r0

L

x

A P

B

Prob. 4–27

*4–28. The pedestal is made in a shape that has a radius
defined by the function where y is
in feet. If the modulus of elasticity for the material is

determine the displacement of its top
when it supports the 500-lb load.
E = 1411032 psi,

r = 2>12 + y1>22 ft,

4 ft

y

r

y

500 lb

0.5 ft

r �

1 ft

2
(2 � y 1/2)

Prob. 4–28

•4–29. The support is made by cutting off the two
opposite sides of a sphere that has a radius If the original
height of the support is determine how far it shortens
when it supports a load P. The modulus of elasticity is E.

r0>2,
r0 .

r0

P

r0

2

Prob. 4–29

4–30. The weight of the kentledge exerts an axial force of
P � 1500 kN on the 300-mm diameter high strength
concrete bore pile. If the distribution of the resisting skin
friction developed from the interaction between the soil
and the surface of the pile is approximated as shown, and
the resisting bearing force F is required to be zero,
determine the maximum intensity for equilibrium.
Also, find the corresponding elastic shortening of the pile.
Neglect the weight of the pile.

p0 kN>m

F

P

p0

12 m

Prob. 4–30



136 CHAPTER 4 AXIAL LOAD

4

4.3 Principle of Superposition

The principle of superposition is often used to determine the stress
or displacement at a point in a member when the member is subjected
to a complicated loading. By subdividing the loading into components,
the principle of superposition states that the resultant stress or
displacement at the point can be determined by algebraically summing
the stress or displacement caused by each load component applied
separately to the member.

The following two conditions must be satisfied if the principle of
superposition is to be applied.

1. The loading must be linearly related to the stress or displacement
that is to be determined. For example, the equations and

involve a linear relationship between P and or 

2. The loading must not significantly change the original geometry or
configuration of the member. If significant changes do occur, the
direction and location of the applied forces and their moment
arms will change. For example, consider the slender rod shown in
Fig. 4–10a, which is subjected to the load P. In Fig. 4–10b, P is replaced
by two of its components, If P causes the rod to deflect
a large amount, as shown, the moment of the load about its support,
Pd, will not equal the sum of the moments of its component loads,

because

This principle will be used throughout this text whenever we assume
Hooke’s law applies and also, the bodies that are considered will be such
that the loading will produce deformations that are so small that the
change in position and direction of the loading will be insignificant and
can be neglected.

d1 Z d2 Z d.Pd Z P1d1 + P2d2 ,

P = P1 + P2 .

d.sd = PL>AE
s = P>A

(a)

d

P

(b)

�
d1

d2

�

P1
P2

Fig. 4–10
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4.4 Statically Indeterminate Axially
Loaded Member

Consider the bar shown in Fig. 4–11a which is fixed supported at both
of its ends. From the free-body diagram, Fig. 4–11b, equilibrium requires

This type of problem is called statically indeterminate, since the
equilibrium equation(s) are not sufficient to determine the two reactions
on the bar.

In order to establish an additional equation needed for solution, it is
necessary to consider how points on the bar displace. Specifically, an
equation that specifies the conditions for displacement is referred to 
as a compatibility or kinematic condition. In this case, a suitable
compatibility condition would require the displacement of one end of
the bar with respect to the other end to be equal to zero, since the end
supports are fixed. Hence, the compatibility condition becomes

This equation can be expressed in terms of the applied loads by using
a load–displacement relationship, which depends on the material
behavior. For example, if linear-elastic behavior occurs, can
be used. Realizing that the internal force in segment AC is and in
segment CB the internal force is Fig. 4–11c, the above equation can
be written as

Assuming that AE is constant, then , so that using
the equilibrium equation, the equations for the reactions become

Since both of these results are positive, the direction of the reactions is
shown correctly on the free-body diagram.

FA = P¢LCB

L
≤ and FB = P¢LAC

L
≤

FA = FB1LCB>LAC2

FALAC

AE
-

FBLCB

AE
= 0

-FB ,
+FA ,

d = PL>AE

dA>B = 0

FB + FA - P = 0+ c ©F = 0;
LAC

P

C

LCB

L

A

B

(a)

P

(c)

FB

FA FA

FA

FB

FB

(b)

Fig. 4–11
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Most concrete columns are reinforced with
steel rods;and since these two materials work
together in supporting the applied load, the
forces in each material become statically
indeterminate.

Important Points

• The principle of superposition is sometimes used to simplify
stress and displacement problems having complicated loadings.
This is done by subdividing the loading into components, then
algebracially adding the results.

• Superposition requires that the loading be linearly related to the
stress or displacement, and the loading does not significantly
change the original geometry of the member.

• A problem is statically indeterminate if the equations of equilibrium
are not sufficient to determine all the reactions on a member.

• Compatibility conditions specify the displacement constraints
that occur at the supports or other points on a member.

Procedure for Analysis

The support reactions for statically indeterminate problems are
determined by satisfying equilibrium, compatibility, and force-
displacement requirements for the member.

Equilibrium.

• Draw a free-body diagram of the member in order to identify all
the forces that act on it.

• The problem can be classified as statically indeterminate if the
number of unknown reactions on the free-body diagram is greater
than the number of available equations of equilibrium.

• Write the equations of equilibrium for the member.

Compatibility.

• Consider drawing a displacement diagram in order to investigate
the way the member will elongate or contract when subjected to
the external loads.

• Express the compatibility conditions in terms of the 
displacements caused by the loading.

• Use a load–displacement relation, such as to relate
the unknown displacements to the reactions.

• Solve the equilibrium and compatibility equations for the
reactions. If any of the results has a negative numerical value, it
indicates that this force acts in the opposite sense of direction to
that indicated on the free-body diagram.

d = PL>AE,



4.4 STATICALLY INDETERMINATE AXIALLY LOADED MEMBER 139

4

EXAMPLE 4.5

The steel rod shown in Fig. 4–12a has a diameter of 10 mm. It is fixed
to the wall at A, and before it is loaded, there is a gap of 0.2 mm between
the wall at and the rod. Determine the reactions at A and if the
rod is subjected to an axial force of as shown. Neglect the
size of the collar at C. Take 

SOLUTION
Equilibrium. As shown on the free-body diagram, Fig. 4–12b, we
will assume that force P is large enough to cause the rod’s end B to
contact the wall at The problem is statically indeterminate since
there are two unknowns and only one equation of equilibrium.

(1)

Compatibility. The force P causes point B to move to with no
further displacement. Therefore the compatibility condition for the
rod is

This displacement can be expressed in terms of the unknown
reactions using the load–displacement relationship, Eq. 4–2, applied
to segments AC and CB, Fig. 4–12c. Working in units of newtons and
meters, we have

or

(2)

Solving Eqs. 1 and 2 yields

Ans.

Since the answer for is positive, indeed end B contacts the wall at
as originally assumed.

NOTE: If were a negative quantity, the problem would be
statically determinate, so that and FA = 20 kN.FB = 0

FB

B¿
FB

FA = 16.0 kN FB = 4.05 kN

FA10.4 m2 - FB10.8 m2 = 3141.59 N # m

-  
FB10.8 m2

p10.005 m22[20011092 N>m2]

0.0002 m =
FA10.4 m2

p10.005 m22[20011092 N>m2]

dB>A = 0.0002 m =
FALAC

AE
-

FBLCB

AE

dB>A = 0.0002 m

B¿,

-FA - FB + 2011032 N = 0:+ ©Fx = 0;

B¿.

Est = 200 GPa.
P = 20 kN

B¿B¿

Fig. 4–12

(c)

FB

FA FA

FB

FA FB

(b)

P � 20 kN

400 mm 800 mm

A B¿
C B

P � 20 kN

(a)

0.2 mm
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EXAMPLE 4.6

The aluminum post shown in Fig. 4–13a is reinforced with a brass
core. If this assembly supports an axial compressive load of 
applied to the rigid cap, determine the average normal stress in
the aluminum and the brass. Take and

SOLUTION
Equilibrium. The free-body diagram of the post is shown in
Fig. 4–13b. Here the resultant axial force at the base is represented by
the unknown components carried by the aluminum, and brass,

The problem is statically indeterminate. Why?
Vertical force equilibrium requires

(1)

Compatibility. The rigid cap at the top of the post causes both the
aluminum and brass to displace the same amount. Therefore,

Using the load–displacement relationships,

(2)

Solving Eqs. 1 and 2 simultaneously yields

Since the results are positive, indeed the stress will be compressive.
The average normal stress in the aluminum and brass is therefore

Ans.

Ans.

NOTE: Using these results, the stress distributions are shown in
Fig. 4–13c.

 sbr =
3 kip

p11 in.22 = 0.955 ksi

 sal =
6 kip

p[12 in.22 - 11 in.22] = 0.637 ksi

Fal = 6 kip Fbr = 3 kip

Fal = 2Fbr

Fal = FbrBp[12 in.22 - 11 in.22]
p11 in.22 R B1011032 ksi

1511032 ksi
R

 Fal = FbraAal

Abr
b aEal

Ebr
b

 
FalL

AalEal
=

FbrL

AbrEbr

dal = dbr

-9 kip + Fal + Fbr = 0+ c ©Fy = 0;

Fbr .
Fal ,

Ebr = 1511032 ksi.
Eal = 1011032 ksi

P = 9 kip,

P � 9 kip

(b)

Fbr

Fal

1.5 ft

P � 9 kip

(a)

1 in.2 in.

(c)

sal � 0.637 ksi

sbr � 0.955 ksi

Fig. 4–13
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EXAMPLE 4.7

The three A-36 steel bars shown in Fig. 4–14a are pin connected to a
rigid member. If the applied load on the member is 15 kN, determine
the force developed in each bar. Bars AB and EF each have a cross-
sectional area of and bar CD has a cross-sectional area of

SOLUTION
Equilibrium. The free-body diagram of the rigid member is shown
in Fig. 4–14b. This problem is statically indeterminate since there are
three unknowns and only two available equilibrium equations.

(1)

(2)

Compatibility. The applied load will cause the horizontal line ACE
shown in Fig. 4–14c to move to the inclined line The
displacements of points A, C, and E can be related by similar triangles.
Thus the compatibility equation that relates these displacements is

Using the load–displacement relationship, Eq. 4–2, we have

(3)

Solving Eqs. 1–3 simultaneously yields

Ans.

Ans.

Ans. FE = 2.02 kN

 FC = 3.46 kN

 FA = 9.52 kN

FC = 0.3FA + 0.3FE

FCL

130 mm22Est
=

1
2

 c FAL

150 mm22Est
d +

1
2

 c FEL

150 mm22Est
d

dC =
1
2

 dA +
1
2

 dE

dA - dE

0.8 m
=
dC - dE

0.4 m

A¿C¿E¿.

-FA10.4 m2 + 15 kN10.2 m2 + FE10.4 m2 = 0d+ ©MC = 0;

FA + FC + FE - 15 kN = 0+ c ©Fy = 0;

30 mm2.
50 mm2,

Fig. 4–14

0.4 m

(c)

C
0.4 m

A E

A¿
C ¿

E ¿

dA

dA � dE

dC � dE

dE

dC

dE

15 kN

0.2 m 0.2 m
0.4 m

(b)

FA FC FE

C

15 kN

0.4 m

B

A

(a)

D

C

F

E

0.5 m

0.2 m 0.2 m
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EXAMPLE 4.8

The bolt shown in Fig. 4–15a is made of 2014-T6 aluminum alloy and is
tightened so it compresses a cylindrical tube made of Am 1004-T61
magnesium alloy.The tube has an outer radius of and it is assumed
that both the inner radius of the tube and the radius of the bolt are
The washers at the top and bottom of the tube are considered to be
rigid and have a negligible thickness. Initially the nut is hand tightened
snugly; then, using a wrench, the nut is further tightened one-half turn.
If the bolt has 20 threads per inch, determine the stress in the bolt.

SOLUTION
Equilibrium. The free-body diagram of a section of the bolt and the
tube, Fig. 4–15b, is considered in order to relate the force in the bolt

to that in the tube, Equilibrium requires

(1)

Compatibility. When the nut is tightened on the bolt, the tube
will shorten and the bolt will elongate Fig. 4–15c. Since the
nut undergoes one-half turn, it advances a distance of 

along the bolt.Thus, the compatibility of these displacements
requires

Taking the moduli of elasticity from the table on the inside back
cover, and applying Eq. 4–2, yields

(2)

Solving Eqs. 1 and 2 simultaneously, we get

The stresses in the bolt and tube are therefore

Ans.

These stresses are less than the reported yield stress for each material,
and (see the inside back cover), and

therefore this “elastic” analysis is valid.
1sY2mg = 22 ksi1sY2al = 60 ksi

 st =
Ft

At
=

11.22 kip

p[10.5 in.22 - 10.25 in.22] = 19.1 ksi

 sb =
Fb

Ab
=

11.22 kip

p10.25 in.22 = 57.2 ksi

Fb = Ft = 11.22 kip

0.78595Ft = 25 - 1.4414Fb

0.025 in. -
Fb13 in.2

p10.25 in.22[10.611032 ksi]

Ft13 in.2
p[10.5 in.22 - 10.25 in.22][6.4811032 ksi]

=

dt = 0.025 in. - db1+ c2
0.025 in.

(1
2)( 1

20 in.) =
db ,dt ,

Fb - Ft = 0+ c ©Fy = 0;

Ft .Fb

1
4 in.

1
2 in.,

Fig. 4–15

(c)

0.025 in.

Initial
position

Final
position

dt

db

(b)

Ft

Fb

3 in.

in.

(a)

in.1
2

1
4



4.5 THE FORCE METHOD OF ANALYSIS FOR AXIALLY LOADED MEMBERS 143

4

No displacement at B

(a)

Displacement at B when
redundant force at B

is removed

(b)

Displacement at B when
only the redundant force at

B is applied

(c)

A

P

FB

�

�

P

A

A

B

C

LAC

LCB

L

dP

dB

Fig. 4–16

4.5 The Force Method of Analysis
for Axially Loaded Members

It is also possible to solve statically indeterminate problems by writing
the compatibility equation using the principle of superposition. This
method of solution is often referred to as the flexibility or force method
of analysis. To show how it is applied, consider again the bar in 
Fig. 4–16a. If we choose the support at B as “redundant” and temporarily
remove its effect on the bar, then the bar will become statically
determinate as in Fig. 4–16b. By using the principle of superposition, we
must add back the unknown redundant load as shown in Fig. 4–16c.

If load P causes B to be displaced downward by an amount the
reaction must displace end B of the bar upward by an amount 
such that no displacement occurs at B when the two loadings are
superimposed. Thus,

This equation represents the compatibility equation for displacements at
point B, for which we have assumed that displacements are positive
downward.

Applying the load–displacement relationship to each case, we have
and Consequently,

From the free-body diagram of the bar, Fig. 4–11b, the reaction at A
can now be determined from the equation of equilibrium,

Since then

These results are the same as those obtained in Sec. 4.4, except that here
we have applied the condition of compatibility to obtain one reaction
and then the equilibrium condition to obtain the other.

FA = PaLCB

L
b

LCB = L - LAC ,

PaLAC

L
b + FA - P = 0+ c ©Fy = 0;

 FB = PaLAC

L
b

 0 =
PLAC

AE
-

FBL

AE

dB = FBL>AE.dP = PLAC>AE

0 = dP - dB1+ T2

dB ,FB

dP ,
FB ,
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EXAMPLE 4.9

The A-36 steel rod shown in Fig. 4–17a has a diameter of 10 mm. It is
fixed to the wall at A, and before it is loaded there is a gap between
the wall at and the rod of 0.2 mm. Determine the reactions at A
and Neglect the size of the collar at C. Take 

SOLUTION
Compatibility. Here we will consider the support at as
redundant. Using the principle of superposition, Fig. 4–17b, we have

(1)

The deflections and are determined from Eq. 4–2.

Substituting into Eq. 1, we get

Ans.

Equilibrium. From the free-body diagram, Fig. 4–17c,

Ans.:+ ©Fx = 0; -FA + 20 kN - 4.05 kN = 0 FA = 16.0 kN

 FB = 4.0511032 N = 4.05 kN

 0.0002 m = 0.5093(10- 3) m - 76.3944110- 92FB

 dB =
FBLAB

AE
=

FB11.20 m2
p10.005 m22[20011092 N>m2]

= 76.3944110- 92FB

 dP =
PLAC

AE
=

[2011032 N]10.4 m2
p10.005 m22[20011092 N>m2]

= 0.5093(10- 3) m

dBdP

0.0002 m = dP - dB1:+ 2
B¿

Est = 200 GPa.B¿.
B¿

Procedure for Analysis

The force method of analysis requires the following steps.

Compatibility.

• Choose one of the supports as redundant and write the equation of compatibility. To do this, the known
displacement at the redundant support, which is usually zero, is equated to the displacement at the
support caused only by the external loads acting on the member plus (vectorially) the displacement at this
support caused only by the redundant reaction acting on the member.

• Express the external load and redundant displacements in terms of the loadings by using a load–
displacement relationship, such as 

• Once established, the compatibility equation can then be solved for the magnitude of the redundant force.

Equilibrium.

• Draw a free-body diagram and write the appropriate equations of equilibrium for the member using the
calculated result for the redundant. Solve these equations for any other reactions.

d = PL>AE.

Fig. 4–17

(b)

0.2 mm

�

�
FB

P � 20 kN

P � 20 kN
Initial

position

Final
position

400 mm
800 mm

C
P � 20 kN

(a)

0.2 mm

A B¿

20 kNFA 3.39 kN

(c)

dP

dB
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4–31. The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 30 kip, determine the average normal
stress in the concrete and in each rod. Each rod has a
diameter of 0.75 in.

*4–32. The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 30 kip, determine the required diameter
of each rod so that one-fourth of the load is carried by the
concrete and three-fourths by the steel.

4–34. The 304 stainless steel post A has a diameter of
and is surrounded by a red brass C83400 tube B.

Both rest on the rigid surface. If a force of 5 kip is applied
to the rigid cap, determine the average normal stress
developed in the post and the tube.

4–35. The 304 stainless steel post A is surrounded by a red
brass C83400 tube B. Both rest on the rigid surface. If a
force of 5 kip is applied to the rigid cap, determine the
required diameter d of the steel post so that the load is
shared equally between the post and tube.

d = 2 in.

PROBLEMS

3 ft

30 kip

4 in.

Probs. 4–31/32

500 mm

80 kN

Prob. 4–33

•4–33. The steel pipe is filled with concrete and subjected
to a compressive force of 80 kN. Determine the average
normal stress in the concrete and the steel due to this
loading. The pipe has an outer diameter of 80 mm and an
inner diameter of 70 mm. Ec = 24 GPa.Est = 200 GPa,

5 kip

d 0.5 in.

8 in.
A

3 in.

B A

B

Probs. 4–34/35

*4–36. The composite bar consists of a 20-mm-diameter
A-36 steel segment AB and 50-mm-diameter red brass
C83400 end segments DA and CB. Determine the average
normal stress in each segment due to the applied load.

•4–37. The composite bar consists of a 20-mm-diameter
A-36 steel segment AB and 50-mm-diameter red brass
C83400 end segments DA and CB. Determine the 
displacement of A with respect to B due to the applied 
load.

50 mm 20 mm

D C75 kN

75 kN

100 kN

100 kN

A B

500 mm250 mm 250 mm

Probs. 4–36/37
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4–38. The A-36 steel column, having a cross-sectional area
of is encased in high-strength concrete as shown. If
an axial force of 60 kip is applied to the column, determine
the average compressive stress in the concrete and in the
steel. How far does the column shorten? It has an original
length of 8 ft.

4–39. The A-36 steel column is encased in high-strength
concrete as shown. If an axial force of 60 kip is applied to
the column, determine the required area of the steel so that
the force is shared equally between the steel and concrete.
How far does the column shorten? It has an original length
of 8 ft.

18 in2,

60 kip

9 in.

8 ft

16 in.

Probs. 4–38/39

*4–40. The rigid member is held in the position shown by
three A-36 steel tie rods. Each rod has an unstretched length
of 0.75 m and a cross-sectional area of Determine
the forces in the rods if a turnbuckle on rod EF undergoes
one full turn. The lead of the screw is 1.5 mm. Neglect the
size of the turnbuckle and assume that it is rigid. Note: The
lead would cause the rod, when unloaded, to shorten 1.5 mm
when the turnbuckle is rotated one revolution.

125 mm2.

0.5 m

B

A

D

C0.5 m

0.75 m

0.75 m

F

E

Prob. 4–40

•4–41. The concrete post is reinforced using six steel
reinforcing rods, each having a diameter of 20 mm.
Determine the stress in the concrete and the steel if the post
is subjected to an axial load of 900 kN.

4–42. The post is constructed from concrete and six A-36
steel reinforcing rods. If it is subjected to an axial force of
900 kN, determine the required diameter of each rod so that
one-fifth of the load is carried by the steel and four-fifths by
the concrete. Ec = 25 GPa.Est = 200 GPa,

Ec = 25 GPa.
Est = 200 GPa,

900 kN

375 mm

250 mm

Probs. 4–41/42

4–43. The assembly consists of two red brass C83400
copper alloy rods AB and CD of diameter 30 mm, a stainless
304 steel alloy rod EF of diameter 40 mm, and a rigid cap G.
If the supports at A, C and F are rigid, determine the
average normal stress developed in rods AB, CD and EF.

40 kN

40 kN

300 mm 450 mm

30 mm

30 mm

40 mm

A B

C D

E F

G

Prob. 4–43
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*4–44. The two pipes are made of the same material and
are connected as shown. If the cross-sectional area of BC is
A and that of CD is 2A, determine the reactions at B and D
when a force P is applied at the junction C.

L–2
L–2

B C
D

P

Prob. 4–44

•4–45. The bolt has a diameter of 20 mm and passes
through a tube that has an inner diameter of 50 mm and an
outer diameter of 60 mm. If the bolt and tube are made of
A-36 steel, determine the normal stress in the tube and bolt
when a force of 40 kN is applied to the bolt.Assume the end
caps are rigid.

40 kN

150 mm

160 mm

40 kN

Prob. 4–45

4–46. If the gap between C and the rigid wall at D is
initially 0.15 mm, determine the support reactions at A and
D when the force is applied. The assembly
is made of A36 steel.

P = 200 kN

A

P

B
C

D

50 mm

600 mm 600 mm 0.15 mm

25 mm

Prob. 4–46

4–47. Two A-36 steel wires are used to support the 650-lb
engine. Originally, AB is 32 in. long and is 32.008 in.
long. Determine the force supported by each wire when the
engine is suspended from them. Each wire has a cross-
sectional area of 0.01 in2.

A¿B¿

*4–48. Rod AB has a diameter d and fits snugly between
the rigid supports at A and B when it is unloaded. The
modulus of elasticity is E. Determine the support reactions
at A and B if the rod is subjected to the linearly distributed
axial load.

BB¿

AA¿

Prob. 4–47

A B

L

x

p �       xp0
L

p0

Prob. 4–48
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•4–49. The tapered member is fixed connected at its ends
A and B and is subjected to a load at 
Determine the reactions at the supports. The material is
2 in. thick and is made from 2014-T6 aluminum.

4–50. The tapered member is fixed connected at its ends
A and B and is subjected to a load P. Determine the location
x of the load and its greatest magnitude so that the average
normal stress in the bar does not exceed The
member is 2 in. thick.

sallow = 4 ksi.

x = 30 in.P = 7 kip

60 in.

3 in.

x

A
B

6 in. P

Probs. 4–49/50

4–51. The rigid bar supports the uniform distributed load
of 6 Determine the force in each cable if each cable
has a cross-sectional area of and 

*4–52. The rigid bar is originally horizontal and is
supported by two cables each having a cross-sectional area
of and Determine the slight
rotation of the bar when the uniform load is applied.

E = 3111032 ksi.0.05 in2,

E = 3111032 ksi.0.05 in2,
kip>ft.

•4–53. The press consists of two rigid heads that are held
together by the two A-36 steel rods. A 6061-
T6-solid-aluminum cylinder is placed in the press and the
screw is adjusted so that it just presses up against the
cylinder. If it is then tightened one-half turn, determine
the average normal stress in the rods and in the cylinder.
The single-threaded screw on the bolt has a lead of 0.01 in.
Note: The lead represents the distance the screw advances
along its axis for one complete turn of the screw.

4–54. The press consists of two rigid heads that are held
together by the two A-36 steel rods. A 6061-
T6-solid-aluminum cylinder is placed in the press and the
screw is adjusted so that it just presses up against the
cylinder. Determine the angle through which the screw can
be turned before the rods or the specimen begin to yield.
The single-threaded screw on the bolt has a lead of 0.01 in.
Note: The lead represents the distance the screw advances
along its axis for one complete turn of the screw.

1
2-in.-diameter

1
2-in.-diameter

4–55. The three suspender bars are made of A-36 steel
and have equal cross-sectional areas of .
Determine the average normal stress in each bar if the rigid
beam is subjected to the loading shown.

450 mm2

3 ft

A
D

C

B
3 ft

6 kip/ft

3 ft

6 ft

Probs. 4–51/52

12 in.

10 in.

2 in.

Probs. 4–53/54

BA

D

C

FE

2 m 50 kN
80 kN

1 m 1 m 1 m 1 m

Prob. 4–55
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*4–56. The rigid bar supports the 800-lb load. Determine
the normal stress in each A-36 steel cable if each cable has a
cross-sectional area of .

•4–57. The rigid bar is originally horizontal and is
supported by two A-36 steel cables each having a cross-
sectional area of . Determine the rotation of the bar
when the 800-lb load is applied.

0.04 in2

0.04 in2

4–58. The horizontal beam is assumed to be rigid and
supports the distributed load shown. Determine the vertical
reactions at the supports. Each support consists of a wooden
post having a diameter of 120 mm and an unloaded
(original) length of 1.40 m. Take 

4–59. The horizontal beam is assumed to be rigid and
supports the distributed load shown. Determine the angle
of tilt of the beam after the load is applied. Each support
consists of a wooden post having a diameter of 120 mm and
an unloaded (original) length of 1.40 m.Take Ew = 12 GPa.

Ew = 12 GPa.

•4–61. The distributed loading is supported by the three
suspender bars. AB and EF are made of aluminum and CD
is made of steel. If each bar has a cross-sectional area of

determine the maximum intensity of the
distributed loading so that an allowable stress of 

in the steel and in the
aluminum is not exceeded.
Assume ACE is rigid.

Eal = 70 GPa.Est = 200 GPa,
1sallow2al = 94 MPa180 MPa

1sallow2st =
w450 mm2,

*4–60. The assembly consists of two posts AD and CF
made of A-36 steel and having a cross-sectional area of

, and a 2014-T6 aluminum post BE having a cross-
sectional area of . If a central load of 400 kN is
applied to the rigid cap, determine the normal stress in each
post. There is a small gap of 0.1 mm between the post BE
and the rigid member ABC.

1500 mm2
1000 mm2

5 ft 5 ft 6 ft
A

D

C

B

800 lb

12 ft

Probs. 4–56/57

1.40 m

A B C

1 m2 m

18 kN/m

Probs. 4–58/59

C

D E F

A B

400 kN

0.5 m 0.5 m

0.4 m

Prob. 4–60

2 m

B D F

A C E

1.5 m 1.5 m

al st al

w

Prob. 4–61
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4–62. The rigid link is supported by a pin at A, a steel wire
BC having an unstretched length of 200 mm and cross-
sectional area of and a short aluminum block
having an unloaded length of 50 mm and cross-sectional
area of If the link is subjected to the vertical load
shown, determine the average normal stress in the wire and
the block.

4–63. The rigid link is supported by a pin at A, a steel wire
BC having an unstretched length of 200 mm and cross-
sectional area of and a short aluminum block
having an unloaded length of 50 mm and cross-sectional area
of If the link is subjected to the vertical load shown,
determine the rotation of the link about the pin A. Report
the answer in radians. Eal = 70 GPa.Est = 200 GPa,

40 mm2.

22.5 mm2,

Eal = 70 GPa.Est = 200 GPa,

40 mm2.

22.5 mm2,

*4–64. The center post B of the assembly has an original
length of 124.7 mm, whereas posts A and C have a length of
125 mm. If the caps on the top and bottom can be
considered rigid, determine the average normal stress in
each post. The posts are made of aluminum and have a
cross-sectional area of Eal = 70 GPa.400 mm2.

•4–65. The assembly consists of an A-36 steel bolt and a
C83400 red brass tube. If the nut is drawn up snug against
the tube so that then turned an additional
amount so that it advances 0.02 mm on the bolt, determine
the force in the bolt and the tube.The bolt has a diameter of
7 mm and the tube has a cross-sectional area of 

4–66. The assembly consists of an A-36 steel bolt and a
C83400 red brass tube. The nut is drawn up snug against
the tube so that Determine the maximum
additional amount of advance of the nut on the bolt so that
none of the material will yield. The bolt has a diameter of
7 mm and the tube has a cross-sectional area of 100 mm2.

L = 75 mm.

100 mm2.

L = 75 mm,

4–67. The three suspender bars are made of the same
material and have equal cross-sectional areas A. Determine
the average normal stress in each bar if the rigid beam ACE
is subjected to the force P.

C

B A

200 mm

150 mm100 mm
150 mm

D

50 mm

450 N

Probs. 4–62/63

125 mm
100 mm 100 mm

A B C

800 kN/m

800 kN/m

Prob. 4–64

L

Probs. 4–65/66

L
P

d

B

A

D

C

F

E

d
2

d
2

Prob. 4–67
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4.6 Thermal Stress

A change in temperature can cause a body to change its dimensions.
Generally, if the temperature increases, the body will expand, whereas if
the temperature decreases, it will contract. Ordinarily this expansion or
contraction is linearly related to the temperature increase or decrease
that occurs. If this is the case, and the material is homogeneous and
isotropic, it has been found from experiment that the displacement of a
member having a length L can be calculated using the formula

(4–4)

where

a property of the material, referred to as the linear coefficient
of thermal expansion. The units measure strain per degree of
temperature. They are (Fahrenheit) in the FPS system,
and (Celsius) or (Kelvin) in the SI system. Typical
values are given on the inside back cover

the algebraic change in temperature of the member

the original length of the member

the algebraic change in the length of the member

The change in length of a statically determinate member can easily be
calculated using Eq. 4–4, since the member is free to expand or contract
when it undergoes a temperature change. However, in a statically
indeterminate member, these thermal displacements will be constrained
by the supports, thereby producing thermal stresses that must be
considered in design. Determining these thermal stresses is possible
using the methods outlined in the previous sections. The following
examples illustrate some applications.

 dT =
 L =

 ¢T =

1>K1>°C
1>°F

 a =

dT = a ¢TL

Most traffic bridges are designed with
expansion joints to accommodate the
thermal movement of the deck and thus
avoid any thermal stress.

Long extensions of ducts and pipes that
carry fluids are subjected to variations in
climate that will cause them to expand
and contract. Expansion joints, such as the
one shown, are used to mitigate thermal
stress in the material.
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EXAMPLE 4.10

The A-36 steel bar shown in Fig. 4–18a is constrained to just fit
between two fixed supports when If the temperature is
raised to determine the average normal thermal stress
developed in the bar.

SOLUTION
Equilibrium. The free-body diagram of the bar is shown in
Fig. 4–18b. Since there is no external load, the force at A is equal but
opposite to the force at B; that is,

The problem is statically indeterminate since this force cannot be
determined from equilibrium.

Compatibility. Since the thermal displacement at A
that occurs, Fig. 4–18c, is counteracted by the force F that is required
to push the bar back to its original position. The compatibility
condition at A becomes

Applying the thermal and load–displacement relationships, we
have

Thus, from the data on the inside back cover,

Since F also represents the internal axial force within the bar, the
average normal compressive stress is thus

Ans.

NOTE: From the magnitude of F, it should be apparent that changes
in temperature can cause large reaction forces in statically
indeterminate members.

s =
F

A
=

2.871 kip

10.5 in.22 = 11.5 ksi

 = 2.871 kip

 = [6.60110-62>°F]1120°F - 60°F210.5 in.22[2911032 kip>in2]

 F = a¢TAE

0 = a¢TL -
FL

AE

dA>B = 0 = dT - dF1+ c2

dF

dTdA>B = 0,

FA = FB = F+ c ©Fy = 0;

T2 = 120°F,
T1 = 60°F.

Fig. 4–18

(b)

F

F

(c)

dT

dF

2 ft

0.5 in.

0.5 in.

A

B

(a)
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EXAMPLE 4.11

The rigid beam shown in Fig. 4–19a is fixed to the top of the three
posts made of A-36 steel and 2014-T6 aluminum. The posts each have
a length of 250 mm when no load is applied to the beam, and the
temperature is Determine the force supported by each
post if the bar is subjected to a uniform distributed load of 
and the temperature is raised to 

SOLUTION
Equilibrium. The free-body diagram of the beam is shown in Fig.4–19b.
Moment equilibrium about the beam’s center requires the forces in the
steel posts to be equal. Summing forces on the free-body diagram,
we have

(1)

Compatibility. Due to load, geometry, and material symmetry, the
top of each post is displaced by an equal amount. Hence,

(2)

The final position of the top of each post is equal to its displacement
caused by the temperature increase, plus its displacement caused by
the internal axial compressive force, Fig. 4–19c. Thus, for the steel and
aluminum post, we have

Applying Eq. 2 gives

Using Eqs. 4–2 and 4–4 and the material properties on the inside back
cover, we get

-1dst2T + 1dst2F = -1dal2T + 1dal2F

dal = -1dal2T + 1dal2F1+ T2
dst = -1dst2T + 1dst2F1+ T2

dst = dal1+ T2

2Fst + Fal - 9011032 N = 0+ c ©Fy = 0;

T2 = 80°C.
150 kN>mT1 = 20°C.

(3)Fst = 1.216Fal - 165.911032
 = - [23110-62>°C]180°C - 20°C210.250 m2 +

Fal10.250 m2
p10.030 m22[73.111092 N>m2]

 - [12110-62>°C]180°C - 20°C210.250 m2 +
Fst10.250 m2

p10.020 m22[20011092 N>m2]

To be consistent, all numerical data has been expressed in terms
of newtons, meters, and degrees Celsius. Solving Eqs. 1 and 3
simultaneously yields

Ans.

The negative value for indicates that this force acts opposite to
that shown in Fig. 4–19b. In other words, the steel posts are in tension
and the aluminum post is in compression.

Fst

Fst = -16.4 kN Fal = 123 kN

Fig. 4–19

150 kN/m300 mm 300 mm

(a)

SteelAluminumSteel

250 mm
40 mm

60 mm

40 mm

(c)

Initial Position

Final Position

(dst)T
(dal)T

(dal)F

(dst)Fdst � dal

(b)

Fst Fal Fst

90 kN
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EXAMPLE 4.12

A 2014-T6 aluminum tube having a cross-sectional area of is
used as a sleeve for an A-36 steel bolt having a cross-sectional area of

Fig. 4–20a. When the temperature is the nut
holds the assembly in a snug position such that the axial force in the
bolt is negligible. If the temperature increases to 
determine the force in the bolt and sleeve.

SOLUTION
Equilibrium. The free-body diagram of a top segment of the
assembly is shown in Fig. 4–20b. The forces and are produced
since the sleeve has a higher coefficient of thermal expansion than the
bolt, and therefore the sleeve will expand more when the temperature
is increased. It is required that

(1)

Compatibility. The temperature increase causes the sleeve and bolt
to expand and Fig. 4–20c. However, the redundant forces

and elongate the bolt and shorten the sleeve. Consequently, the
end of the assembly reaches a final position, which is not the same as
its initial position. Hence, the compatibility condition becomes

Applying Eqs. 4–2 and 4–4, and using the mechanical properties from
the table on the inside back cover, we have

Using Eq. 1 and solving gives

Ans.

NOTE: Since linear elastic material behavior was assumed in this
analysis, the average normal stresses should be checked to make sure
that they do not exceed the proportional limits for the material.

Fs = Fb = 20.3 kN

 -
Fs10.150 m2

1600 mm22110-6 m2>mm22[73.111092 N>m2]

 = [23110-62>°C]180°C - 15°C210.150 m2
 

Fb10.150 m2
1400 mm22110-6 m2>mm22[20011092 N>m2]

 [12110-62>°C]180°C - 15°C210.150 m2 +

d = 1db2T + 1db2F = 1ds2T - 1ds2F1+ T2

FsFb

1db2T ,1ds2T

Fs = Fb+ c ©Fy = 0;

FsFb

T2 = 80°C,

T1 = 15°C,400 mm2,

600 mm2

150 mm

(a)

(b)

Fb

Fs

(ds)F

(ds)T

(db)T

(db)F
d

Initial
position

Final
position

(c)

Fig. 4–20
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*4–68. A steel surveyor’s tape is to be used to measure the
length of a line. The tape has a rectangular cross section of
0.05 in. by 0.2 in. and a length of 100 ft when and
the tension or pull on the tape is 20 lb. Determine the
true length of the line if the tape shows the reading to
be 463.25 ft when used with a pull of 35 lb at The
ground on which it is placed is flat.
Est = 2911032 ksi.

ast = 9.60110-62>°F,
T2 = 90°F.

T1 = 60°F

4–71. A 6-ft-long steam pipe is made of A-36 steel with
It is connected directly to two turbines A

and B as shown. The pipe has an outer diameter of 4 in.
and a wall thickness of 0.25 in. The connection was made
at If the turbines’ points of attachment are
assumed rigid, determine the force the pipe exerts on
the turbines when the steam and thus the pipe reach a
temperature of

*4–72. A 6-ft-long steam pipe is made of A-36 steel with
It is connected directly to two turbines A and

B as shown. The pipe has an outer diameter of 4 in. and a
wall thickness of 0.25 in. The connection was made at

If the turbines’ points of attachment are
assumed to have a stiffness of determine
the force the pipe exerts on the turbines when the steam
and thus the pipe reach a temperature of T2 = 275°F.

k = 8011032 kip>in.,
T1 = 70°F.

sY = 40 ksi.

T2 = 275°F.

T1 = 70°F.

sY = 40 ksi.

PROBLEMS

0.05 in.

0.2 in.

 P P

Prob. 4–68

300 mm 200 mm
100 mm

Steel

ast � 12(10�6)/�C
Est � 200 GPa

Acu � 515 mm2

Abr � 450 mm2
Ast � 200 mm2

abr � 21(10�6)/°C
Ebr � 100 GPa

Brass

acu � 17(10�6)/�C
Ecu � 120 GPa

Copper

Prob. 4–69

•4–69. Three bars each made of different materials are
connected together and placed between two walls when the
temperature is Determine the force exerted
on the (rigid) supports when the temperature becomes

The material properties and cross-sectional
area of each bar are given in the figure.
T2 = 18°C.

T1 = 12°C.

4–70. The rod is made of A-36 steel and has a diameter of
0.25 in. If the rod is 4 ft long when the springs are compressed
0.5 in. and the temperature of the rod is , determine
the force in the rod when its temperature is T = 160°F.

T = 40°F

•4–73. The pipe is made of A-36 steel and is connected to
the collars at A and B. When the temperature is 60° F, there
is no axial load in the pipe. If hot gas traveling through the
pipe causes its temperature to rise by 
where x is in feet, determine the average normal stress in the
pipe. The inner diameter is 2 in., the wall thickness is 0.15 in.

4–74. The bronze C86100 pipe has an inner radius of
0.5 in. and a wall thickness of 0.2 in. If the gas flowing
through it changes the temperature of the pipe uniformly
from at A to at B, determine the
axial force it exerts on the walls.The pipe was fitted between
the walls when T = 60°F.

TB = 60°FTA = 200°F

¢T = 140 + 15x2°F,

4 ft

k � 1000 lb/ in. k � 1000 lb/ in.

Prob. 4–70

6 ft

A B

Probs. 4–71/72

8 ft
A B

Probs. 4–73/74
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4–78. The A-36 steel rod has a diameter of 50 mm and is
lightly attached to the rigid supports at A and B when

. If the temperature becomes and an
axial force of is applied to its center, determine
the reactions at A and B.

4–79. The A-36 steel rod has a diameter of 50 mm and is
lightly attached to the rigid supports at A and B when

. Determine the force P that must be applied to
the collar at its midpoint so that, when , the
reaction at B is zero.

T2 = 30°C
T1 = 50°C

P = 200 kN
T2 = 20°CT1 = 80°C

40 ft

d d

Prob. 4–75

A C E

B D

1.5 in.

0.25 in. 3 in.

Prob. 4–76

4–75. The 40-ft-long A-36 steel rails on a train track are laid
with a small gap between them to allow for thermal
expansion. Determine the required gap so that the rails just
touch one another when the temperature is increased from

to Using this gap, what would be the
axial force in the rails if the temperature were to rise to

The cross-sectional area of each rail is 5.10 in2.T3 = 110°F?

T2 = 90°F.T1 = -20°F

d

*4–76. The device is used to measure a change in temper-
ature. Bars AB and CD are made of A-36 steel and 2014-T6
aluminum alloy respectively. When the temperature is
at 75°F, ACE is in the horizontal position. Determine the
vertical displacement of the pointer at E when the
temperature rises to 150°F.

•4–77. The bar has a cross-sectional area A, length L,
modulus of elasticity E, and coefficient of thermal
expansion The temperature of the bar changes uniformly
along its length from at A to at B so that at any point
x along the bar Determine the
force the bar exerts on the rigid walls. Initially no axial force
is in the bar and the bar has a temperature of TA.

T = TA + x1TB - TA2>L.
TBTA

a.

*4–80. The rigid block has a weight of 80 kip and is to be
supported by posts A and B, which are made of A-36 steel,
and the post C, which is made of C83400 red brass. If all the
posts have the same original length before they are loaded,
determine the average normal stress developed in each post
when post C is heated so that its temperature is increased
by 20°F. Each post has a cross-sectional area of 8 in2.

x

TA TB

A B

Prob. 4–77

0.5 m

P

0.5 m

A BC

Probs. 4–78/79

A C B

3 ft 3 ft

Prob. 4–80
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4–83. The wires AB and AC are made of steel, and wire
AD is made of copper. Before the 150-lb force is applied,
AB and AC are each 60 in. long and AD is 40 in. long. If 
the temperature is increased by determine the 
force in each wire needed to support the load. Take

Each wire has a cross-sectional area of
0.0123 in2.
acu = 9.60(10-6)>°F.

ast = 8(10-6)>°F,Ecu = 17(103) ksi,Est = 29(103) ksi,

80°F,

•4–81. The three bars are made of A-36 steel and form
a pin-connected truss. If the truss is constructed when

determine the force in each bar when
Each bar has a cross-sectional area of 

4–82. The three bars are made of A-36 steel and form
a pin-connected truss. If the truss is constructed when

determine the vertical displacement of joint A
when Each bar has a cross-sectional area of
2 in2.

T2 = 150°F.
T1 = 50°F,

2 in2.T2 = 110°F.
T1 = 50°F,

4–86. The steel bolt has a diameter of 7 mm and fits
through an aluminum sleeve as shown. The sleeve has an
inner diameter of 8 mm and an outer diameter of 10 mm.
The nut at A is adjusted so that it just presses up against 
the sleeve. If the assembly is originally at a temperature 
of and then is heated to a temperature of

determine the average normal stress in the
bolt and the sleeve.

.aal = 23(10-6)>°C14(10-6)>°C,
ast =Eal = 70 GPa,Est = 200 GPa,

T2 = 100°C,
T1 = 20°C

*4–84. The AM1004-T61 magnesium alloy tube AB is
capped with a rigid plate E.The gap between E and end C of
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm
when the temperature is at 30° C. Determine the normal
stress developed in the tube and the rod if the temperature
rises to 80° C. Neglect the thickness of the rigid cap.

•4–85. The AM1004-T61 magnesium alloy tube AB is
capped with a rigid plate. The gap between E and end C of
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm
when the temperature is at 30° C. Determine the highest
temperature to which it can be raised without causing
yielding either in the tube or the rod. Neglect the thickness
of the rigid cap.

3  ft

D

4 ft

5 
ft 5 ft

A

3 ft

CB

Probs. 4–81/82

45� 45� 60 in.60 in.

150 lb

40 in.

CDB

A

Prob. 4–83

25 mm 20 mm

Section a-a
a

a
B C DA

300 mm 450 mm

0.2 mm

25 mm

E

Probs. 4–84/85

A

Prob. 4–86
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4.7 Stress Concentrations

In Sec. 4.1, it was pointed out that when an axial force is applied to a
member, it creates a complex stress distribution within the localized
region of the point of load application. Not only do complex stress
distributions arise just under a concentrated loading, they can also arise
at sections where the member’s cross-sectional area changes. For
example, consider the bar in Fig. 4–21a, which is subjected to an axial
force P. Here the once horizontal and vertical grid lines deflect into an
irregular pattern around the hole centered in the bar. The maximum
normal stress in the bar occurs on section a–a, which is taken through the
bar’s smallest cross-sectional area. Provided the material behaves in a
linear-elastic manner, the stress distribution acting on this section can be
determined either from a mathematical analysis, using the theory of
elasticity, or experimentally by measuring the strain normal to section
a–a and then calculating the stress using Hooke’s law,
Regardless of the method used, the general shape of the stress
distribution will be like that shown in Fig. 4–21b. In a similar manner, if
the bar has a reduction in its cross section, achieved using shoulder fillets
as in Fig. 4–22a, then again the maximum normal stress in the bar will
occur at the smallest cross-sectional area, section a–a, and the stress
distribution will look like that shown in Fig. 4–22b.

s = EP.

a

a

Distorted
(a)

P

Actual stress distribution
(b)

Average stress distribution
(c)

smax

savg

Undistorted

 P

PP

P

P

Fig. 4–21

This saw blade has grooves cut into it in
order to relieve both the dynamic stress that
develops within it as it rotates and the
thermal stress that develops as it heats up.
Note the small circles at the end of each
groove. These serve to reduce the stress
concentrations that develop at the end of
each groove.
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In both of these cases, force equilibrium requires the magnitude of the
resultant force developed by the stress distribution to be equal to P. In
other words,

(4–5)

This integral graphically represents the total volume under each of the
stress-distribution diagrams shown in Fig. 4–21b or Fig. 4–22b. The
resultant P must act through the centroid of each volume.

In engineering practice, the actual stress distributions in Fig. 4–21b and
Fig. 4–22b do not have to be determined. Instead, only the maximum
stress at these sections must be known, and the member is then designed
to resist this stress when the axial load P is applied. Specific values of this
maximum normal stress can be determined by experimental methods or
by advanced mathematical techniques using the theory of elasticity. The
results of these investigations are usually reported in graphical form using
a stress-concentration factor K. We define K as a ratio of the maximum
stress to the average normal stress acting at the cross section; i.e.,

(4–6)

Provided K is known, and the average normal stress has been calculated
from where A is the smallest cross-sectional area,
Figs. 4–21c and 4–22c, then the maximum normal stress at the cross
section is smax = K1P>A2.

savg = P>A,

K =
smax

savg

P = LA
s dA

P

a

Distorted
(a)

P

Actual stress distribution
(b)

a

smax

savg

Average stress distribution
(c)

Undistorted

PP

P

P

Fig. 4–22

Stress concentrations often arise at sharp
corners on heavy machinery. Engineers
can mitigate this effect by using stiffeners
welded to the corners.
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Specific values of K are generally reported in handbooks related to
stress analysis.* Examples are given in Figs. 4–24 and 4–25. Note that K
is independent of the bar’s material properties; rather, it depends only
on the bar’s geometry and the type of discontinuity. As the size r of
the discontinuity is decreased, the stress concentration is increased.
For example, if a bar requires a change in cross section, it has 
been determined that a sharp corner, Fig. 4–23a, produces a stress-
concentration factor greater than 3. In other words, the maximum
normal stress will be three times greater than the average normal stress
on the smallest cross section. However, this can be reduced to, say, 1.5 by
introducing a fillet, Fig. 4–23b. A further reduction can be made by
means of small grooves or holes placed at the transition, Fig. 4–23c and
4–23d. In all of these cases these designs help to reduce the rigidity of the
material surrounding the corners, so that both the strain and the stress
are more evenly spread throughout the bar.

The stress-concentration factors given in Figs. 4–24 and 4–25 were
determined on the basis of a static loading, with the assumption that
the stress in the material does not exceed the proportional limit. If the
material is very brittle, the proportional limit may be at the fracture
stress, and so for this material, failure will begin at the point of stress
concentration. Essentially a crack begins to form at this point, and a
higher stress concentration will develop at the tip of this crack. This,
in turn, causes the crack to propagate over the cross section, resulting
in sudden fracture. For this reason, it is very important to use stress-
concentration factors in design when using brittle materials. On the
other hand, if the material is ductile and subjected to a static load, it is
often not necessary to use stress-concentration factors since any stress
that exceeds the proportional limit will not result in a crack. Instead,
the material will have reserve strength due to yielding and strain-
hardening. In the next section we will discuss the effects caused by this
phenomenon.

Stress concentrations are also responsible for many failures of
structural members or mechanical elements subjected to fatigue
loadings. For these cases, a stress concentration will cause the material to
crack if the stress exceeds the material’s endurance limit, whether or not
the material is ductile or brittle. Here, the material localized at the tip of
the crack remains in a brittle state, and so the crack continues to grow,
leading to a progressive fracture. As a result, one must seek ways to limit
the amount of damage that can be caused by fatigue.

P P

(a)

P P

(b)

P P

(c)

P P

(d)

Fig. 4–23

*See Lipson, C. and R. C. Juvinall, Handbook of Stress and Strength, Macmillan.
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3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

K

P P

h

w

t

r

savg �

� 4.0w
h

� 3.0w
h � 2.0w

h

� 1.5w
h

� 1.2w
h

� 1.1w
h

r
h

P
ht

Fig. 4–24

3.2

3.0

2.8

2.6

2.4

2.2

2.0
0 0.1 0.2 0.3 0.4 0.5

K

w

t

2r

P P

r
w

P
(w � 2r)t

savg �

Fig. 4–25

Important Points

• Stress concentrations occur at sections where the cross-sectional
area suddenly changes. The more severe the change, the larger
the stress concentration.

• For design or analysis, it is only necessary to determine the
maximum stress acting on the smallest cross-sectional area. This
is done using a stress concentration factor, K, that has been
determined through experiment and is only a function of the
geometry of the specimen.

• Normally the stress concentration in a ductile specimen that is
subjected to a static loading will not have to be considered in
design; however, if the material is brittle, or subjected to fatigue
loadings, then stress concentrations become important.

Failure of this steel pipe in tension occurred
at its smallest cross-sectional area, which is
through the hole. Notice how the material
yielded around the fractured surface.
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*4.8 Inelastic Axial Deformation

Up to this point we have only considered loadings that cause the
material of a member to behave elastically. Sometimes, however, a
member may be designed so that the loading causes the material to yield
and thereby permanently deform. Such members are often made from a
highly ductile metal such as annealed low-carbon steel having a
stress–strain diagram that is similar to that of Fig. 3–6 and for simplicity
can be modeled as shown in Fig. 4–26b. A material that exhibits this
behavior is referred to as being elastic perfectly plastic or elastoplastic.

To illustrate physically how such a material behaves, consider the bar
in Fig. 4–26a, which is subjected to the axial load P. If the load causes an
elastic stress to be developed in the bar, then applying Eq. 4–5,
equilibrium requires A. Furthermore, the stress 
causes the bar to strain as indicated on the stress–strain diagram,
Fig. 4–26b. If P is now increased to such that it causes yielding of the
material, that is, then again The load

is called the plastic load since it represents the maximum load that can
be supported by an elastoplastic material. For this case, the strains are
not uniquely defined. Instead, at the instant is attained, the bar is first
subjected to the yield strain Fig. 4–26b, after which the bar will
continue to yield (or elongate) such that the strains then etc., are
generated. Since our “model” of the material exhibits perfectly plastic
material behavior, this elongation will continue indefinitely with no
increase in load. In reality, however, the material will, after some
yielding, actually begin to strain-harden so that the extra strength it
attains will stop any further straining. As a result, any design based on
this behavior will be safe, since strain-hardening provides the potential
for the material to support an additional load if necessary.

P3 ,P2 ,
PY ,

sY

Pp

Pp = 1sY dA = sYA.s = sY ,
Pp

P1

s1P = 1s1 dA = s1

s = s1

(b)

s1

sY

s

P1 P2 P3
PPY

P

(a)
s

Fig. 4–26
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Consider now the case of a bar having a hole through it as shown in
Fig. 4–27a. As the magnitude of P is increased, a stress concentration
occurs in the material at the edge of the hole, on section a–a. The stress
here will reach a maximum value of, say, and have a
corresponding elastic strain of Fig. 4–27b. The stresses and
corresponding strains at other points on the cross section will be smaller,
as indicated by the stress distribution shown in Fig. 4–27c. Equilibrium
requires In other words, P is geometrically equivalent to
the “volume” contained within the stress distribution. If the load is now
increased to so that then the material will begin to yield
outward from the hole, until the equilibrium condition is
satisfied, Fig. 4–27d.As shown, this produces a stress distribution that has
a geometrically greater “volume” than that shown in Fig. 4–27c.A further
increase in load will cause the material over the entire cross section to
yield eventually. When this happens, no greater load can be sustained by
the bar. This plastic load is shown in Fig. 4–27e. It can be calculated
from the equilibrium condition

where A is the bar’s cross-sectional area at section a–a.
The following examples illustrate numerically how these concepts

apply to other types of problems for which the material has elastoplastic
behavior.

Pp = LA
 sY dA = sYA

Pp

P¿ = 1s dA
smax = sY ,P¿,

P = 1s dA.

P1 ,
smax = s1

P

(a)
P

aa

(b)

s

sY

s1

PP1 PY

(c)

P

s1 s1

(d)

P ¿

sY sY

(e)

PP

sY sY

Fig. 4–27
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*4.9 Residual Stress

If an axially loaded member or group of such members forms a statically
indeterminate system that can support both tensile and compressive
loads, then excessive external loadings, which cause yielding of the
material, will create residual stresses in the members when the loads
are removed.The reason for this has to do with the elastic recovery of the
material that occurs during unloading. To show this, consider a prismatic
member made from an elastoplastic material having the stress–strain
diagram shown in Fig. 4–28. If an axial load produces a stress in the
material and a corresponding plastic strain then when the load is
removed, the material will respond elastically and follow the line CD in
order to recover some of the plastic strain. A recovery to zero stress at
point will be possible only if the member is statically determinate,
since the support reactions for the member must be zero when the load is
removed. Under these circumstances the member will be permanently
deformed so that the permanent set or strain in the member is

If the member is statically indeterminate, however, removal of the
external load will cause the support forces to respond to the elastic
recovery CD. Since these forces will constrain the member from full
recovery, they will induce residual stresses in the member. To solve a
problem of this kind, the complete cycle of loading and then unloading
of the member can be considered as the superposition of a positive load
(loading) on a negative load (unloading).The loading, O to C, results in a
plastic stress distribution, whereas the unloading, along CD, results only
in an elastic stress distribution. Superposition requires the loads to
cancel; however, the stress distributions will not cancel, and so residual
stresses will remain.

PO¿.

O¿

PC ,
sY

Fig. 4–28

D

PO¿

CA
B

O

O¿
PC

s

sY

P
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EXAMPLE 4.13

The bar in Fig. 4–29a is made of steel that is assumed to be elastic
perfectly plastic, with Determine (a) the maximum
value of the applied load P that can be applied without causing the
steel to yield and (b) the maximum value of P that the bar can support.
Sketch the stress distribution at the critical section for each case.

SOLUTION
Part (a). When the material behaves elastically, we must use a
stress-concentration factor determined from Fig. 4–24 that is unique
for the bar’s geometry. Here

From the figure The maximum load, without causing
yielding, occurs when The average normal stress is

Using Eq. 4–6, we have

Ans.

This load has been calculated using the smallest cross section. The
resulting stress distribution is shown in Fig. 4–29b. For equilibrium,
the “volume” contained within this distribution must equal 9.14 kN.

Part (b). The maximum load sustained by the bar will cause all the
material at the smallest cross section to yield. Therefore, as P is
increased to the plastic load it gradually changes the stress
distribution from the elastic state shown in Fig. 4–29b to the plastic
state shown in Fig. 4–29c. We require

Ans.

Here equals the “volume” contained within the stress distribution,
which in this case is Pp = sYA.

Pp

 Pp = 16.0 kN

 25011062 Pa =
Pp

10.002 m210.032 m2

 sY =
Pp

A

Pp ,

 PY = 9.14 kN

 25011062 Pa = 1.75 c PY

10.002 m210.032 m2 d
 smax = Ksavg ;   sY = KaPY

A
b

savg = P>A.
smax = sY.

K L 1.75.

 
w
h

=
40 mm

140 mm - 8 mm2 = 1.25

 
r

h
=

4 mm
140 mm - 8 mm2 = 0.125

sY = 250 MPa.

Fig. 4–29

PP

(c)

sY

PY

(b)

sY

P

2 mm

40 mm

4 mm

P

4 mm

(a)
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The rod shown in Fig. 4–30a has a radius of 5 mm and is made of
an elastic perfectly plastic material for which 

Fig. 4–30c. If a force of is applied to the rod and
then removed, determine the residual stress in the rod.

SOLUTION
The free-body diagram of the rod is shown in Fig. 4–30b. Application
of the load P will cause one of three possibilities, namely, both
segments AC and CB remain elastic, AC is plastic while CB is elastic,
or both AC and CB are plastic.∗

An elastic analysis, similar to that discussed in Sec. 4.4, will produce
and at the supports. However, this results in

a stress of

Since the material in segment AC will yield, we will assume that AC
becomes plastic, while CB remains elastic.

For this case, the maximum possible force developed in AC is

and from the equilibrium of the rod, Fig. 4–31b,

The stress in each segment of the rod is therefore

 sCB =
27.0 kN

p10.005 m22 = 344 MPa 1tension2 6 420 MPa 1OK2

 sAC = sY = 420 MPa 1compression2

FB = 60 kN - 33.0 kN = 27.0 kN

1FA2Y = sYA = 42011032 kN>m2 [p10.005 m22] = 33.0 kN

 sCB =
15 kN

p10.005 m22 = 191 MPa 1tension2

 sAC =
45 kN

p10.005 m22 = 573 MPa 1compression2 7 sY = 420 MPa

FB = 15 kNFA = 45 kN

P = 60 kN70 GPa,
E =sY = 420 MPa,

100 mm
300 mm

CA BP � 60 kN

(a)

C P � 60 kNA B
FA FB

(b)

Fig. 4–30

EXAMPLE 4.14

*The possibility of CB becoming plastic before AC will not occur because when point C
moves, the strain in AC (since it is shorter) will always be larger than the strain in CB.
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Residual Stress. In order to obtain the residual stress, it is also
necessary to know the strain in each segment due to the loading. Since
CB responds elastically,

Here the yield strain is

Therefore, when P is applied, the stress–strain behavior for the
material in segment CB moves from O to Fig. 4–30c, and the stress–
strain behavior for the material in segment AC moves from O to If
the load P is applied in the reverse direction, in other words, the load
is removed, then an elastic response occurs and a reverse force of

and must be applied to each segment.
As calculated previously, these forces now produce stresses

(tension) and (compression), and as
a result the residual stress in each member is

Ans.

Ans.

This residual stress is the same for both segments, which is to be
expected. Also note that the stress–strain behavior for segment AC
moves from to in Fig. 4–30c, while the stress–strain behavior for
the material in segment CB moves from to when the load is
removed.

C¿A¿
D¿B¿

 1sCB2r = 344 MPa - 191 MPa = 153 MPa

 1sAC2r = -420 MPa + 573 MPa = 153 MPa

sCB = 191 MPasAC = 573 MPa

FB = 15 kNFA = 45 kN

B¿.
A¿,

PY =
sY

E
=

420(106) N>m2

70(109) N>m2 = 0.006

PAC =
dC

LAC
= -

0.001474 m
0.100 m

= -0.01474

PCB =
dC

LCB
=

0.001474 m
0.300 m

= +0.004913

dC =
FBLCB

AE
=

127.0 kN210.300 m2
p10.005 m22[7011062 kN>m2]

= 0.001474 m

420

�420

PAC � �0.01474

PCB � 0.004913

344
153

D¿

B¿

A¿

C¿
O

s(MPa)

(c)

P(mm/mm)

Fig. 4–30 (cont.)
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4

EXAMPLE 4.15

Two steel wires are used to lift the
weight of 3 kip, Fig. 4–31a. Wire AB has
an unstretched length of 20.00 ft and
wire AC has an unstretched length of
20.03 ft. If each wire has a cross-
sectional area of and the steel
can be considered elastic perfectly
plastic as shown by the graph in
Fig. 4–31b, determine the force in each
wire and its elongation.

SOLUTION
Once the weight is supported by both
wires, then the stress in the wires
depends on the corresponding strain.

There are three possibilities, namely, the strains in both wires are
elastic, wire AB is plastically strained while wire AC is elastically
strained, or both wires are plastically strained.We will assume that AC
remains elastic and AB is plastically strained.

Investigation of the free-body diagram of the suspended weight,
Fig. 4–31c, indicates that the problem is statically indeterminate. The
equation of equilibrium is

(1)

Since AB becomes plastically strained then it must support its
maximum load.

Ans.

Therefore, from Eq. 1,

Ans.

Note that wire AC remains elastic as assumed since the stress in the
wire is The corresponding
elastic strain is determined by proportion, Fig. 4–31b; i.e.,

The elongation of AC is thus

Ans.

And from Fig. 4–31d, the elongation of AB is then

Ans.dAB = 0.03 ft + 0.00681 ft = 0.0368 ft

dAC = 10.0003402120.03 ft2 = 0.00681 ft

 PAC = 0.000340

 
PAC

10 ksi
=

0.0017
50 ksi

sAC = 0.500 kip>0.05 in2 = 10 ksi 6 50 ksi.

TAC = 0.500 kip

TAB = sYAAB = 50 ksi 10.05 in22 = 2.50 kip

TAB + TAC - 3 kip = 0+ c ©Fy = 0;

s–P

0.05 in2,

Fig. 4–31

0.0017

50

(b)

P (in./in.)

s (ksi)

20.03 ft20.00 ft

A

CB

(a)

TACTAB

3 kip (c)

Final position

B
C

dAB � 0.03 ft � dAC

(d)

Initial position

A

20.00 ft 20.03 ft

dAC
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4

4–87. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of 

*4–88. If the allowable normal stress for the bar is
determine the maximum axial force P

that can be applied to the bar.
sallow = 120 MPa,

P = 8 kN.
4–91. Determine the maximum axial force P that can be
applied to the bar. The bar is made from steel and has an
allowable stress of 

*4–92. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 2 kip.

sallow = 21 ksi.

PROBLEMS

r � 10 mm

40 mm 20 mm

P P

20 mm

5 mm

Probs. 4–87/88

3350 lb 3350 lb

1 in.

0.25 in.

w

•4–89. The member is to be made from a steel plate that is
0.25 in. thick. If a 1-in. hole is drilled through its center, de-
termine the approximate width w of the plate so that it can
support an axial force of 3350 lb. The allowable stress is
sallow = 22 ksi.

•4–93. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 8 kN.

Prob. 4–89

200 mm

r = 30 mm

r = 30 mm

120 mm

60 mm

60 mm

200 mm800 mm
P

P

B

A

C

D

Prob. 4–90

4–90. The A-36 steel plate has a thickness of 12 mm. If
there are shoulder fillets at B and C, and 
determine the maximum axial load P that it can support.
Calculate its elongation, neglecting the effect of the fillets.

sallow = 150 MPa,

P P

1.25 in.
1.875 in. 0.125 in.

0.75 in.
r � 0.25 in.

Probs. 4–91/92

r = 15 mm

60 mm 30 mm

P P

12 mm

5 mm

Prob. 4–93

4–94. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar.Also,
what is the stress-concentration factor for this geometry?

1 in.

4 in.

0.5 in.

B

A

3 ksi
12 ksi

P

Prob. 4–94
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4–95. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar.Also,
what is the stress-concentration factor for this geometry?

4

4–98. The bar has a cross-sectional area of and is
made of a material that has a stress–strain diagram that
can be approximated by the two line segments shown.
Determine the elongation of the bar due to the applied
loading.

0.5 in2

0.8 in.

0.6 in.

0.6 in.

P
0.2 in.

6 ksi

36 ksi

0.5 in.
A

B

Prob. 4–95

20 mm
80 mm

5 MPa

30 MPa

B

A

10 mm

P

Prob. 4–96

*4–96. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar.Also,
what is the stress-concentration factor for this geometry?

•4–97. The 300-kip weight is slowly set on the top of a post
made of 2014-T6 aluminum with an A-36 steel core. If both
materials can be considered elastic perfectly plastic,
determine the stress in each material.

Aluminum

Steel

2 in.
1 in.

Prob. 4–97

5 kip8 kipA B C

5 ft 2 ft

40

20

0.001 0.021
P (in./in.)

s(ksi)

Prob. 4–98

4–99. The rigid bar is supported by a pin at A and two
steel wires, each having a diameter of 4 mm. If the yield
stress for the wires is and 
determine the intensity of the distributed load that can
be placed on the beam and will just cause wire EB to
yield. What is the displacement of point G for this case?
For the calculation, assume that the steel is elastic
perfectly plastic.

*4–100. The rigid bar is supported by a pin at A and two
steel wires, each having a diameter of 4 mm. If the yield
stress for the wires is and 
determine (a) the intensity of the distributed load that
can be placed on the beam that will cause only one of the
wires to start to yield and (b) the smallest intensity of
the distributed load that will cause both wires to yield. For
the calculation, assume that the steel is elastic perfectly
plastic.

w
Est = 200 GPa,sY = 530 MPa,

w
Est = 200 GPa,sY = 530 MPa,

400 mm 250 mm
150 mm

w

A

800 mm

E

B

D

C
G

Probs. 4–99/100
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*4–104. The rigid beam is supported by three 25-mm
diameter A-36 steel rods. If the beam supports the force of

, determine the force developed in each rod.
Consider the steel to be an elastic perfectly-plastic material.

•4–105. The rigid beam is supported by three 25-mm
diameter A-36 steel rods. If the force of is
applied on the beam and removed, determine the residual
stresses in each rod. Consider the steel to be an elastic
perfectly-plastic material.

P = 230 kN

P = 230 kN

4

•4–101. The rigid lever arm is supported by two A-36 steel
wires having the same diameter of 4 mm. If a force of

is applied to the handle, determine the force
developed in both wires and their corresponding elongations.
Consider A-36 steel as an elastic-perfectly plastic material.

4–102. The rigid lever arm is supported by two A-36 steel
wires having the same diameter of 4 mm. Determine the
smallest force P that will cause (a) only one of the wires to
yield; (b) both wires to yield. Consider A-36 steel as an
elastic-perfectly plastic material.

P = 3 kN

A

B D

C E

P

450 mm

150 mm

30�

150 mm

300 mm

Probs. 4–101/102

B

C

D

A

L

L

L

P
u

u

Prob. 4–103

A

D E

B C

F

400 mm

600 mm

400 mm 400 mm

P

Probs. 4–104/105

4–103. The three bars are pinned together and subjected
to the load P. If each bar has a cross-sectional area A, length
L, and is made from an elastic perfectly plastic material, for
which the yield stress is determine the largest load
(ultimate load) that can be supported by the bars, i.e., the
load P that causes all the bars to yield. Also, what is the
horizontal displacement of point A when the load reaches
its ultimate value? The modulus of elasticity is E.

sY,

4–106. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has a
cross-sectional area of 1.25 in2 and is made from a material
having a stress–strain diagram that can be approximated by
the two line segments shown. If a load of is
applied to the beam, determine the stress in each bar and
the vertical displacement of the beam.

4–107. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has
a cross-sectional area of 0.75 in2 and is made from a
material having a stress–strain diagram that can be
approximated by the two line segments shown. Determine
the intensity of the distributed loading w needed to cause
the beam to be displaced downward 1.5 in.

w = 25 kip>ft

5 ft

A CB

w

4 ft 4 ft

A B

60

36

0.0012 0.2
∋

(ksi)s

(in./in.)

Probs. 4–106/107
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*4–108. The rigid beam is supported by the three posts A,
B, and C of equal length. Posts A and C have a diameter of
75 mm and are made of aluminum, for which 
and Post B has a diameter of 20 mm and
is made of brass, for which and

Determine the smallest magnitude of P
so that (a) only rods A and C yield and (b) all the posts yield.

•4–109. The rigid beam is supported by the three posts
A, B, and C. Posts A and C have a diameter of 60 mm
and are made of aluminum, for which and

Post B is made of brass, for which
and If ,

determine the largest diameter of post B so that all the
posts yield at the same time.

P = 130 kN1sY2br = 590 MPa.Ebr = 100 GPa
1sY2al = 20 MPa.

Eal = 70 GPa

1sY2br = 590 MPa.
Ebr = 100 GPa

1sY2al = 20 MPa.
Eal = 70 GPa

4

4–110. The wire BC has a diameter of 0.125 in. and the
material has the stress–strain characteristics shown in the
figure. Determine the vertical displacement of the handle at
D if the pull at the grip is slowly increased and reaches a
magnitude of (a) (b) P = 600 lb.P = 450 lb,

al

2 m 2 m 2 m

A B

P P

C
br al

2 m

Probs. 4–108/109

A B

C

D

P

50 in. 30 in.

40 in.

0.007 0.12

70
80

s (ksi)

P (in./in.)

Prob. 4–110

4–111. The bar having a diameter of 2 in. is fixed
connected at its ends and supports the axial load P. If the
material is elastic perfectly plastic as shown by the
stress–strain diagram, determine the smallest load P needed
to cause segment CB to yield. If this load is released,
determine the permanent displacement of point C.

*4–112. Determine the elongation of the bar in
Prob. 4–111 when both the load P and the supports are
removed.

2 ft

A C

20

0.001

P

B

3 ft

P (in./in.)

s (ksi)

Probs. 4–111/112

•4–113. A material has a stress–strain diagram that can be
described by the curve Determine the deflection

of the end of a rod made from this material if it has a
length L, cross-sectional area A, and a specific weight g.
d

s = cP1>2.

L A

d

s

P

Prob. 4–113
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4

When a loading is applied at a point on a body, it
tends to create a stress distribution within the body
that becomes more uniformly distributed at regions
removed from the point of application of the load.
This is called Saint-Venant’s principle.

Superposition of load and displacement is possible
provided the material remains linear elastic and
no significant changes in the geometry of the
member occur after loading.

The reactions on a statically indeterminate bar can
be determined using the equilibrium equations
and compatibility conditions that specify the
displacement at the supports. These displacements
are related to the loads using a load–displacement
relationship such as d = PL>AE.

CHAPTER REVIEW

The relative displacement at the end of an axially
loaded member relative to the other end is
determined from

d = L
L

0

P1x2 dx

AE

If a series of concentrated external axial forces are
applied to a member and AE is also constant for
the member, then

For application, it is necessary to use a sign
convention for the internal load P and displacement

We considered tension and elongation as positive
values. Also, the material must not yield, but rather
it must remain linear elastic.

d.

d = ©  
PL

AE
P4P1 P2 P3

L
d

P2P1

x dx

L
d

P

savg �
P
A

P



174 CHAPTER 4 AXIAL LOAD

4

A change in temperature can cause a member
made of homogeneous isotropic material to change
its length by

If the member is confined, this change will produce
thermal stress in the member.

d = a¢TL

Holes and sharp transitions at a cross section will
create stress concentrations. For the design of a
member made of brittle material one obtains the
stress concentration factor K from a graph, which
has been determined from experiment.This value is
then multiplied by the average stress to obtain the
maximum stress at the cross section.

smax = Ksavg

If the loading in a bar made of ductile material
causes the material to yield, then the stress
distribution that is produced can be determined
from the strain distribution and the stress–strain
diagram. Assuming the material is perfectly plastic,
yielding will cause the stress distribution at the
cross section of a hole or transition to even out and
become uniform.

If a member is constrained and an external loading
causes yielding, then when the load is released, it
will cause residual stress in the member.

P

s1 s1

PP

sY sY



CONCEPTUAL PROBLEMS 175

4

CONCEPTUAL PROBLEMS

A

P4–1

P4–1. The concrete footing A was poured when this column
was put in place. Later the rest of the foundation slab was
poured. Can you explain why the 45° cracks occurred at each
corner? Can you think of a better design that would avoid
such cracks?

P4–2

P4–2. The row of bricks, along with mortar and an internal
steel reinforcing rod, was intended to serve as a lintel beam to
support the bricks above this ventilation opening on an
exterior wall of a building. Explain what may have caused the
bricks to fail in the manner shown.
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•4–117. Two A-36 steel pipes, each having a cross-
sectional area of are screwed together using a
union at B as shown. Originally the assembly is adjusted so
that no load is on the pipe. If the union is then tightened
so that its screw, having a lead of 0.15 in., undergoes two full
turns, determine the average normal stress developed in the
pipe. Assume that the union at B and couplings at A and C
are rigid. Neglect the size of the union. Note: The lead would
cause the pipe, when unloaded, to shorten 0.15 in. when the
union is rotated one revolution.

0.32 in2,

4–118. The brass plug is force-fitted into the rigid casting.
The uniform normal bearing pressure on the plug is
estimated to be 15 MPa. If the coefficient of static friction
between the plug and casting is determine the
axial force P needed to pull the plug out. Also, calculate the
displacement of end B relative to end A just before the plug
starts to slip out. Ebr = 98 GPa.

ms = 0.3,

4

2 ft3 ft

B CA

Prob. 4–117

B
P

15 MPa

100 mm 150 mm

20 mm
A

Prob. 4–118

4–114. The 2014-T6 aluminum rod has a diameter of 0.5 in.
and is lightly attached to the rigid supports at A and B when

If the temperature becomes and
an axial force of is applied to the rigid collar as
shown, determine the reactions at A and B.

4–115. The 2014-T6 aluminum rod has a diameter of
0.5 in. and is lightly attached to the rigid supports at A
and B when Determine the force P that must
be applied to the collar so that, when the
reaction at B is zero.

T = 0°F,
T1 = 70°F.

P = 16 lb
T2 = -10°F,T1 = 70°F.

*4–116. The rods each have the same 25-mm diameter
and 600-mm length. If they are made of A-36 steel,
determine the forces developed in each rod when the
temperature increases to 50° C.

REVIEW PROBLEMS

5 in. 8 in.
P/2

P/2
A B

Probs. 114/115

AB

D

C

600 mm

600 mm

60�

60�

Prob. 4–116
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4

4–119. The assembly consists of two bars AB and CD of
the same material having a modulus of elasticity and
coefficient of thermal expansion and a bar EF having a
modulus of elasticity and coefficient of thermal
expansion All the bars have the same length L and
cross-sectional area A. If the rigid beam is originally
horizontal at temperature determine the angle it makes
with the horizontal when the temperature is increased
to T2.

T1,

a2.
E2

a1,
E1

L

d

B

A

F

E

D

C

d

Prob. 4–119

5 in.

4 in.

12 in.

6 in.

350 lb

A

B

C

Prob. 4–120

*4–120. The rigid link is supported by a pin at A and two
A-36 steel wires, each having an unstretched length of 12 in.
and cross-sectional area of Determine the force
developed in the wires when the link supports the vertical
load of 350 lb.

0.0125 in2.



The torsional stress and angle of twist of this soil auger depend upon the output of
the machine turning the bit as well as the resistance of the soil in contact with the
shaft.
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CHAPTER OBJECTIVES

In this chapter we will discuss the effects of applying a torsional
loading to a long straight member such as a shaft or tube. Initially we
will consider the member to have a circular cross section. We will show
how to determine both the stress distribution within the member and
the angle of twist when the material behaves in a linear elastic manner
and also when it is inelastic. Statically indeterminate analysis of shafts
and tubes will also be discussed, along with special topics that include
those members having noncircular cross sections. Lastly, stress
concentrations and residual stress caused by torsional loadings will be
given special consideration.

5.1 Torsional Deformation
of a Circular Shaft

Torque is a moment that tends to twist a member about its longitudinal
axis. Its effect is of primary concern in the design of axles or drive shafts
used in vehicles and machinery. We can illustrate physically what
happens when a torque is applied to a circular shaft by considering
the shaft to be made of a highly deformable material such as rubber,
Fig. 5–1a. When the torque is applied, the circles and longitudinal grid
lines originally marked on the shaft tend to distort into the pattern
shown in Fig. 5–1b. Note that twisting causes the circles to remain circles,
and each longitudinal grid line deforms into a helix that intersects the
circles at equal angles. Also, the cross sections from the ends along the
shaft will remain flat—that is, they do not warp or bulge in or out—and
radial lines remain straight during the deformation, Fig. 5–1b. From these
observations we can assume that if the angle of twist is small, the length
of the shaft and its radius will remain unchanged.

Torsion 5
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If the shaft is fixed at one end and a torque is applied to its other end,
the dark green shaded plane in Fig. 5–2 will distort into a skewed form as
shown. Here a radial line located on the cross section at a distance x from
the fixed end of the shaft will rotate through an angle The angle

so defined, is called the angle of twist. It depends on the position x
and will vary along the shaft as shown.

In order to understand how this distortion strains the material, we will
now isolate a small element located at a radial distance (rho) from the
axis of the shaft, Fig. 5–3. Due to the deformation as noted in Fig. 5–2, the
front and rear faces of the element will undergo a rotation—the back
face by and the front face by As a result, the difference
in these rotations, causes the element to be subjected to a shear
strain. To calculate this strain, note that before deformation the angle
between the edges AB and AC is 90°; after deformation, however, the
edges of the element are AD and AC and the angle between them is 
From the definition of shear strain, Eq. 2–4, we have

g =
p

2
- u¿

u¿.

¢f,
f1x2 + ¢f.f1x2,

r

f1x2, f1x2.

Before deformation
(a)

After deformation
(b)

Longitudinal
lines become

twisted

Circles remain
circular

Radial lines
remain straight

T

T

Fig. 5–1

T

x

y

x

The angle of twist f(x) increases as x increases.

Undeformed
plane

Deformed
plane

z

f(x)

Fig. 5–2

5

Notice the deformation of the rectangular
element when this rubber bar is subjected
to a torque.
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x � �x

T

y

x

z

x

c

Shear strain of element

C

A

D
B

Deformed
plane

Undeformed
plane

�x
g

g

�f

f(x)
r

r

u¿

Fig. 5–3

This angle, is indicated on the element. It can be related to the length
of the element and the angle between the shaded planes by

considering the length of arc BD, that is

Therefore, if we let and 

(5–1)

Since dx and are the same for all elements located at points on the
cross section at x, then is constant over the cross section, and
Eq. 5–1 states that the magnitude of the shear strain for any of these
elements varies only with its radial distance from the axis of the shaft.
In other words, the shear strain within the shaft varies linearly along any
radial line, from zero at the axis of the shaft to a maximum at its
outer boundary, Fig. 5–4. Since then

(5–2)

The results obtained here are also valid for circular tubes. They
depend only on the assumptions regarding the deformations mentioned
above.

g = ar
c
bgmax

df>dx = g>r = gmax>c,
gmax

r

df>dx
df

g = r 

df

dx

¢f: df,¢x: dx

BD = r¢f = ¢x g

¢f¢x
g,

5

c

df

dx

The shear strain at points on
the cross section increases linearly

with r, i.e., g�(r/c)gmax.

g

gmax

r

Fig. 5–4
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5.2 The Torsion Formula

When an external torque is applied to a shaft it creates a corresponding
internal torque within the shaft. In this section, we will develop an
equation that relates this internal torque to the shear stress distribution
on the cross section of a circular shaft or tube.

If the material is linear-elastic, then Hooke’s law applies, and
consequently a linear variation in shear strain, as noted in the previous
section, leads to a corresponding linear variation in shear stress along
any radial line on the cross section. Hence, will vary from zero at the
shaft’s longitudinal axis to a maximum value, at its outer surface.
This variation is shown in Fig. 5–5 on the front faces of a selected number
of elements, located at an intermediate radial position and at the outer
radius c. Due to the proportionality of triangles, we can write

(5–3)

This equation expresses the shear-stress distribution over the cross section
in terms of the radial position of the element. Using it, we can now apply
the condition that requires the torque produced by the stress distribution
over the entire cross section to be equivalent to the resultant internal
torque T at the section, which holds the shaft in equilibrium, Fig. 5–5.

r

t = ar
c
btmax

r

tmax ,
t

t = Gg,

5

tmax

tmax

tmax
tt

t

Shear stress varies linearly along
each radial line of the cross section.

T

c dA

r

Fig. 5–5
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Specifically, each element of area dA, located at is subjected
to a force of The torque produced by this force is

We therefore have for the entire cross section

(5–4)

Since is constant,

(5–5)

The integral depends only on the geometry of the shaft. It represents
the polar moment of inertia of the shaft’s cross-sectional area about the
shaft’s longitudinal axis. We will symbolize its value as J, and therefore
the above equation can be rearranged and written in a more compact
form, namely,

(5–6)

Here

the maximum shear stress in the shaft, which occurs at the
outer surface

the resultant internal torque acting at the cross section. Its value
is determined from the method of sections and the equation of
moment equilibrium applied about the shaft’s longitudinal axis

the polar moment of inertia of the cross-sectional area

the outer radius of the shaft

Combining Eqs. 5–3 and 5–6, the shear stress at the intermediate
distance can be determined from

(5–7)

Either of the above two equations is often referred to as the torsion
formula. Recall that it is used only if the shaft is circular and the material
is homogeneous and behaves in a linear elastic manner, since the
derivation is based on Hooke’s law.

t =
Tr

J

r

c =
J =

T =

tmax =

tmax =
Tc

J

T =
tmax

c LA
r2 dA

tmax>c

T = LA
r1t dA2 = LA

rar
c
btmax dA

dT = r1t dA2. dF = t dA.
r,

5



184 CHAPTER 5 TORS ION

5

dr

c
r

Fig. 5–6

(a)

T

t tmax

tmax

Shear stress varies linearly along
each radial line of the cross section.

(b)

tmax

Fig. 5–7

T T
Failure of a wooden shaft due to torsion.

Fig. 5–8

Solid Shaft. If the shaft has a solid circular cross section, the polar
moment of inertia J can be determined using an area element in the form
of a differential ring or annulus having a thickness and circumference

Fig. 5–6. For this ring, and so

(5–8)

Note that J is a geometric property of the circular area and is always
positive. Common units used for its measurement are or 

The shear stress has been shown to vary linearly along each radial line
of the cross section of the shaft. However, if an element of material on
the cross section is isolated, then due to the complementary property of
shear, equal shear stresses must also act on four of its adjacent faces as
shown in Fig. 5–7a. Hence, not only does the internal torque T develop a
linear distribution of shear stress along each radial line in the plane of
the cross-sectional area, but also an associated shear-stress distribution
is developed along an axial plane, Fig. 5–7b. It is interesting to note that
because of this axial distribution of shear stress, shafts made from wood
tend to split along the axial plane when subjected to excessive torque,
Fig. 5–8. This is because wood is an anisotropic material. Its shear
resistance parallel to its grains or fibers, directed along the axis of the
shaft, is much less than its resistance perpendicular to the fibers, directed
in the plane of the cross section.

in4.mm4

J =
p

2
 c4

J = LA
r2 dA = L

c

0
r212pr dr2 = 2pL

c

0
r3 dr = 2pa1

4
br4 `

0

c

dA = 2pr dr,2pr,
dr
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Tubular Shaft. If a shaft has a tubular cross section,with inner radius
and outer radius then from Eq. 5–8 we can determine its polar moment
of inertia by subtracting J for a shaft of radius from that determined
for a shaft of radius The result is

(5–9)

Like the solid shaft, the shear stress distributed over the tube’s 
cross-sectional area varies linearly along any radial line, Fig. 5–9a.
Furthermore, the shear stress varies along an axial plane in this same
manner, Fig. 5–9b.

Absolute Maximum Torsional Stress. If the absolute
maximum torsional stress is to be determined, then it becomes important
to find the location where the ratio Tc�J is a maximum. In this regard, it
may be helpful to show the variation of the internal torque T at each
section along the axis of the shaft by drawing a torque diagram, which is
a plot of the internal torque T versus its position x along the shaft’s length.
As a sign convention, T will be positive if by the right-hand rule the thumb
is directed outward from the shaft when the fingers curl in the direction
of twist as caused by the torque, Fig. 5–5. Once the internal torque
throughout the shaft is determined, the maximum ratio of Tc�J can then
be identified.

J =
p

2
 1co

4 - ci
42

co .
ci

co ,
ci

5

This tubular drive shaft for a truck 
was subjected to an excessive torque,
resulting in failure caused by yielding of
the material.

T

(a)

ci

co

Shear stress varies linearly along
each radial line of the cross section.

(b)

tmax

tmax

tmax

tmax

Fig. 5–9
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Important Points

• When a shaft having a circular cross section is subjected to a torque, the cross section remains plane while
radial lines rotate. This causes a shear strain within the material that varies linearly along any radial line,
from zero at the axis of the shaft to a maximum at its outer boundary.

• For linear elastic homogeneous material the shear stress along any radial line of the shaft also varies
linearly, from zero at its axis to a maximum at its outer boundary. This maximum shear stress must not
exceed the proportional limit.

• Due to the complementary property of shear, the linear shear stress distribution within the plane of the
cross section is also distributed along an adjacent axial plane of the shaft.

• The torsion formula is based on the requirement that the resultant torque on the cross section is equal to the
torque produced by the shear stress distribution about the longitudinal axis of the shaft. It is required that
the shaft or tube have a circular cross section and that it is made of homogeneous material which has
linear-elastic behavior.

Procedure for Analysis

The torsion formula can be applied using the following procedure.

Internal Loading.

• Section the shaft perpendicular to its axis at the point where the shear stress is to be determined, and use
the necessary free-body diagram and equations of equilibrium to obtain the internal torque at the section.

Section Property.

• Calculate the polar moment of inertia of the cross-sectional area. For a solid section of radius c,
and for a tube of outer radius and inner radius 

Shear Stress.

• Specify the radial distance measured from the center of the cross section to the point where the shear
stress is to be found. Then apply the torsion formula or if the maximum shear stress is to be
determined use When substituting the data, make sure to use a consistent set of units.

• The shear stress acts on the cross section in a direction that is always perpendicular to The force it
creates must contribute a torque about the axis of the shaft that is in the same direction as the internal
resultant torque T acting on the section. Once this direction is established, a volume element located at the
point where is determined can be isolated, and the direction of acting on the remaining three adjacent
faces of the element can be shown.

tt

r.

tmax = Tc>J.
t = Tr>J,

r,

J = p1co
4 - ci

42>2.ci ,co

J = pc4>2,
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EXAMPLE 5.1

The solid shaft of radius c is subjected to a torque T, Fig. 5–10a.
Determine the fraction of T that is resisted by the material contained
within the outer region of the shaft, which has an inner radius of 
and outer radius c.

SOLUTION
The stress in the shaft varies linearly, such that Eq. 5–3.
Therefore, the torque on the ring (area) located within the
lighter-shaded region, Fig. 5–10b, is

For the entire lighter-shaded area the torque is

So that

(1)

This torque can be expressed in terms of the applied torque T
by first using the torsion formula to determine the maximum stress in
the shaft. We have

or

Substituting this into Eq. 1 yields

Ans.

NOTE: Here, approximately 94% of the torque is resisted by the
lighter-shaded region, and the remaining 6% (or ) of T is resisted
by the inner “core” of the shaft, to As a result, the
material located at the outer region of the shaft is highly effective in
resisting torque, which justifies the use of tubular shafts as an efficient
means for transmitting torque, and thereby saving material.

r = c>2.r = 0

1
16

T¿ =
15
16

 T

tmax =
2T

pc3

tmax =
Tc

J
=

Tc

1p>22c4

T¿

T¿ =
15p
32

 tmaxc
3

 =
2ptmax

c
 
1
4

 r4 `
c>2
c

 T¿ =
2ptmax

c L
c

c>2
r3 dr

dT¿ = r1t dA2 = r1r>c2tmax12pr dr2

dT¿
t = 1r>c2tmax ,

c>2

(a)

T

cc–
2

c–
2

(b)

c

dr

r
tmaxt

Fig. 5–10
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EXAMPLE 5.2

42.5 kip�in.

30 kip�in.

12.5 kip�in.
a

a

(a)

(b)

42.5 kip�in.

30 kip�in.

T

x

Fig. 5–11

SOLUTION
Internal Torque. The bearing reactions on the shaft are
zero, provided the shaft’s weight is neglected. Furthermore,
the applied torques satisfy moment equilibrium about the
shaft’s axis.

The internal torque at section a–a will be determined from
the free-body diagram of the left segment, Fig. 5–11b. We have

Section Property. The polar moment of inertia for the shaft is

Shear Stress. Since point A is at 

Ans.

Likewise for point B, at we have

Ans.

NOTE: The directions of these stresses on each element at A and B,
Fig. 5–11c, are established from the direction of the resultant internal
torque T, shown in Fig. 5–11b. Note carefully how the shear stress acts
on the planes of each of these elements.

tB =
Tr

J
=
112.5 kip # in.210.15 in.2

10.497 in42 = 3.77 ksi

r = 0.15 in.,

tA =
Tc

J
=
112.5 kip # in.210.75 in.2

10.497 in42 = 18.9 ksi

r = c = 0.75 in.,

J =
p

2
 10.75 in.24 = 0.497 in4

42.5 kip # in. - 30 kip # in. - T = 0 T = 12.5 kip # in.©Mx = 0;
(c)

x0.15 in.0.75 in.

B

A

18.9 ksi

3.77 ksi

12.5 kip·in.

The shaft shown in Fig. 5–11a is supported by two bearings and is
subjected to three torques. Determine the shear stress developed at
points A and B, located at section a–a of the shaft, Fig. 5–11c.
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EXAMPLE 5.3

The pipe shown in Fig. 5–12a has an inner diameter of 80 mm and an
outer diameter of 100 mm. If its end is tightened against the support at
A using a torque wrench at B, determine the shear stress developed in
the material at the inner and outer walls along the central portion of
the pipe when the 80-N forces are applied to the wrench.

SOLUTION
Internal Torque. A section is taken at an intermediate location C
along the pipe’s axis, Fig. 5–12b. The only unknown at the section is
the internal torque T. We require

Section Property. The polar moment of inertia for the pipe’s
cross-sectional area is

Shear Stress. For any point lying on the outside surface of the pipe,
we have

Ans.

And for any point located on the inside surface, so
that

Ans.

NOTE: To show how these stresses act at representative points D
and E on the cross-section, we will first view the cross section from the
front of segment CA of the pipe, Fig. 5–12a. On this section, Fig. 5–12c,
the resultant internal torque is equal but opposite to that shown in
Fig. 5–12b.The shear stresses at D and E contribute to this torque and
therefore act on the shaded faces of the elements in the directions
shown. As a consequence, notice how the shear-stress components act
on the other three faces. Furthermore, since the top face of D and the
inner face of E are in stress-free regions taken from the pipe’s outer
and inner walls, no shear stress can exist on these faces or on the other
corresponding faces of the elements.

ti =
Tci

J
=

40 N # m 10.04 m2
5.796110-62 m4 = 0.276 MPa

r = ci = 0.04 m,

to =
Tco

J
=

40 N # m 10.05 m2
5.796110-62 m4 = 0.345 MPa

r = co = 0.05 m,

J =
p

2
 [10.05 m24 - 10.04 m24] = 5.796110-62 m4

T = 40 N # m

©My = 0; 80 N 10.3 m2 + 80 N 10.2 m2 - T = 0

200 mm

80 N

(a)

B

80 N
C

300 mm

A

300 mm

200 mm

80 N

80 N

(b)

z

x

T y

(c)
T

D

E

tE � 0.276 MPa
tD � 0.345 MPa

Fig. 5–12
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5.3 Power Transmission

Shafts and tubes having circular cross sections are often used to transmit
power developed by a machine. When used for this purpose, they are
subjected to a torque that depends on the power generated by the
machine and the angular speed of the shaft. Power is defined as the work
performed per unit of time.Also, the work transmitted by a rotating shaft
equals the torque applied times the angle of rotation.Therefore, if during
an instant of time dt an applied torque T causes the shaft to rotate 
then the instantaneous power is

Since the shaft’s angular velocity is we can express the
power as

(5–10)

In the SI system, power is expressed in watts when torque is
measured in newton-meters and is in radians per second

In the FPS system, the basic units of power
are foot-pounds per second however, horsepower (hp) is
often used in engineering practice, where

For machinery, the frequency of a shaft’s rotation, f, is often reported.
This is a measure of the number of revolutions or cycles the shaft
makes per second and is expressed in hertz Since

then and so the above equation for power
becomes

(5–11)

Shaft Design. When the power transmitted by a shaft and its
frequency of rotation are known, the torque developed in the shaft can be
determined from Eq. 5–11, that is, Knowing T and the
allowable shear stress for the material, we can determine the size of
the shaft’s cross section using the torsion formula, provided the material
behavior is linear elastic. Specifically, the design or geometric parameter

becomes

(5–12)

For a solid shaft, and thus, upon substitution, a unique value
for the shaft’s radius c can be determined. If the shaft is tubular, so that

design permits a wide range of possibilities for the
solution. This is because an arbitrary choice can be made for either or

and the other radius can then be determined from Eq. 5–12.ci

co

J = 1p>221co
4 - ci

42,
J = 1p>22c4,

J
c

=
T
tallow

J>c

tallow ,
T = P>2pf.

P = 2pfT

v = 2pf,1 cycle = 2p rad,
11 Hz = 1 cycle>s2.

1 hp = 550 ft # lb>s
1ft # lb>s2;11 W = 1 N # m>s2.1rad>s2 v1N # m2

P = Tv

v = du>dt,

P =
T du

dt

du,

The chain drive transmits the torque
developed by the electric motor to the shaft.
The stress developed in the shaft depends
upon the power transmitted by the motor
and the rate of rotation of the connecting
shaft. .P = Tv
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EXAMPLE 5.4

A solid steel shaft AB shown in Fig. 5–13 is to be used to transmit 
5 hp from the motor M to which it is attached. If the shaft rotates
at and the steel has an allowable shear stress of

determine the required diameter of the shaft to the
nearest 18  in.
tallow = 14.5 ksi,
v = 175 rpm

M

A

B
v

Fig. 5–13

SOLUTION
The torque on the shaft is determined from Eq. 5–10, that is,
Expressing P in foot-pounds per second and in 
we have

Thus,

Applying Eq. 5–12 yields

Since select a shaft having a diameter of

Ans.d =
7
8

  in. = 0.875 in.

2c = 0.858 in.,

 c = 0.429 in.

 c = ¢ 2T
ptallow

≤1>3
= ¢21150.1 ft # lb2112 in.>ft2

p114 500 lb>in22 ≤1>3
 
J
c

=
p

2
 
c4

c
=

T
tallow

T = 150.1 ft # lb

2750 ft # lb>s = T118.33 rad>s2P = Tv;

v =
175 rev

min
 a2p rad

1 rev
b a 1 min

60 s
b = 18.33 rad>s

P = 5 hp a550 ft # lb>s
1 hp

b = 2750 ft # lb>s

radians>second,v

P = Tv.
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40 mm

T

30 mm

A

B

60 mm

T � 10 kN�m

40 mm

A

B

FUNDAMENTAL PROBLEMS

F5–1. The solid circular shaft is subjected to an internal
torque of T � 5 kN m. Determine the shear stress
developed at points A and B. Represent each state of stress
on a volume element.

# F5–4. Determine the maximum shear stress developed in
the 40-mm diameter shaft.

F5–1

F5–2

F5–2. The hollow circular shaft is subjected to an internal
torque of Determine the shear stress
developed at points A and B. Represent each state of stress
on a volume element.

T = 10 kN # m.

F5–3. The shaft is hollow from A to B and solid from B to
C. Determine the maximum shear stress developed in the
shaft. The shaft has an outer diameter of 80 mm, and the
thickness of the wall of the hollow segment is 10 mm.

B

A

C

 2 kN�m

4 kN�m

F5–3

6 kN

10 kN

4 kN

2 kN

150 mm

100 mm

A

B

C

D

F5–4

F5–5

F5–5. Determine the maximum shear stress developed in
the shaft at section .a-a

C

D

A

 600 N � m

 600 N � m

1500 N � m

B 1500 N � m

a

a

Section a–a

40 mm
30 mm

F5–6. Determine the shear stress developed at point A on
the surface of the shaft. Represent the state of stress on
a volume element at this point. The shaft has a radius of
40 mm.

A

800 mm

 5 kN�m/m

F5–6
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•5–1. A shaft is made of a steel alloy having an allowable
shear stress of If the diameter of the shaft is
1.5 in., determine the maximum torque T that can be
transmitted. What would be the maximum torque if a
1-in.-diameter hole is bored through the shaft? Sketch the
shear-stress distribution along a radial line in each case.

T¿

tallow = 12 ksi.
*5–4. The tube is subjected to a torque of 
Determine the amount of this torque that is resisted by the
gray shaded section. Solve the problem two ways: (a) by
using the torsion formula, (b) by finding the resultant of the
shear-stress distribution.

750 N # m.

PROBLEMS

Prob. 5–1

Prob. 5–2

T

T ¿

r¿

r

T

Prob. 5–3

C 75 mm

10 kN�m

75 mm50 mm

A B 4 kN�m

5–2. The solid shaft of radius r is subjected to a torque T.
Determine the radius of the inner core of the shaft that
resists one-half of the applied torque . Solve the
problem two ways: (a) by using the torsion formula, (b) by
finding the resultant of the shear-stress distribution.

1T>22
r¿

5–6. The solid shaft has a diameter of 0.75 in. If it is
subjected to the torques shown, determine the maximum
shear stress developed in regions BC and DE of the shaft.
The bearings at A and F allow free rotation of the shaft.

5–7. The solid shaft has a diameter of 0.75 in. If it is
subjected to the torques shown, determine the maximum
shear stress developed in regions CD and EF of the shaft.
The bearings at A and F allow free rotation of the shaft.

5–5. The copper pipe has an outer diameter of 40 mm and
an inner diameter of 37 mm. If it is tightly secured to the wall
at A and three torques are applied to it as shown, determine
the absolute maximum shear stress developed in the pipe.

5–3. The solid shaft is fixed to the support at C and
subjected to the torsional loadings shown. Determine the
shear stress at points A and B and sketch the shear stress on
volume elements located at these points.

Prob. 5–4

75 mm

100 mm

25 mm

750 N�m

A

80 N�m

20 N�m

30 N�m

Prob. 5–5

A

B

C

D

E
F

40 lb�ft
25 lb�ft

20 lb�ft

35 lb�ft

Probs. 5–6/7
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*5–8. The solid 30-mm-diameter shaft is used to transmit
the torques applied to the gears. Determine the absolute
maximum shear stress on the shaft.

•5–9. The shaft consists of three concentric tubes, each
made from the same material and having the inner and
outer radii shown. If a torque of is applied to
the rigid disk fixed to its end, determine the maximum shear
stress in the shaft.

T = 800 N # m

Prob. 5–8

Prob. 5–9

5

300 N m�

A
200 N m�

500 N m�

300 mm

400 mm

500 mm

400 N m�

B

D

C

T � 800 N�m

2 m ri � 20 mm
ro � 25 mm

ri � 26 mm
ro � 30 mm

ri � 32 mm
ro � 38 mm

5–10. The coupling is used to connect the two shafts
together. Assuming that the shear stress in the bolts is
uniform, determine the number of bolts necessary to make
the maximum shear stress in the shaft equal to the shear
stress in the bolts. Each bolt has a diameter d.

T

r

T

R

Prob. 5–10

5–11. The assembly consists of two sections of galvanized
steel pipe connected together using a reducing coupling at B.
The smaller pipe has an outer diameter of 0.75 in. and an
inner diameter of 0.68 in., whereas the larger pipe has an
outer diameter of 1 in. and an inner diameter of 0.86 in. If
the pipe is tightly secured to the wall at C, determine the
maximum shear stress developed in each section of the pipe
when the couple shown is applied to the handles of the
wrench.

*5–12. The motor delivers a torque of to the shaft
AB. This torque is transmitted to shaft CD using the gears
at E and F. Determine the equilibrium torque T� on shaft
CD and the maximum shear stress in each shaft. The
bearings B, C, and D allow free rotation of the shafts.

•5–13. If the applied torque on shaft CD is 
determine the absolute maximum shear stress in each shaft.
The bearings B, C, and D allow free rotation of the shafts,
and the motor holds the shafts fixed from rotating.

75 N # m,T¿ =

50 N # m

C

B

A

15 lb 6 in.

15 lb

8 in.

Prob. 5–11

50 mm

B

30 mm

35 mm 125 mm
D

C
E

F
T ¿

A

Probs. 5–12/13



5.3 POWER TRANSMISSION 195

•5–17. The rod has a diameter of 1 in. and a weight of
10 lb/ft. Determine the maximum torsional stress in the rod
at a section located at A due to the rod’s weight.

5–18. The rod has a diameter of 1 in. and a weight of
15 lb/ft. Determine the maximum torsional stress in the rod
at a section located at B due to the rod’s weight.

5–14. The solid 50-mm-diameter shaft is used to transmit
the torques applied to the gears. Determine the absolute
maximum shear stress in the shaft.

5

A

250 N m�

325 N m�

75 N m�

500 mm

400 mm

500 mm

150 N m�B

D

C

Prob. 5–14

5–15. The solid shaft is made of material that has an
allowable shear stress of MPa. Determine the
required diameter of the shaft to the nearest mm.

*5–16. The solid shaft has a diameter of 40 mm.
Determine the absolute maximum shear stress in the shaft
and sketch the shear-stress distribution along a radial line
of the shaft where the shear stress is maximum.

tallow = 10

25 N�m

15 N�m

70 N�m

30 N�m

60 N�m

A

B

C

D

E

Probs. 5–15/16

4 ft

1.5 ft

4.5 ft A

B
1.5 ft

Probs. 5–17/18

5–19. Two wrenches are used to tighten the pipe. If P �
300 N is applied to each wrench, determine the maximum
torsional shear stress developed within regions AB and BC.
The pipe has an outer diameter of 25 mm and inner
diameter of 20 mm. Sketch the shear stress distribution for
both cases.

*5–20. Two wrenches are used to tighten the pipe. If the
pipe is made from a material having an allowable shear stress
of MPa, determine the allowable maximum force
P that can be applied to each wrench. The pipe has an outer
diameter of 25 mm and inner diameter of 20 mm.

tallow = 85

250 mm

250 mm

A

P

P

B

C

Probs. 5–19/20
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•5–21. The 60-mm-diameter solid shaft is subjected to the
distributed and concentrated torsional loadings shown.
Determine the absolute maximum and minimum shear
stresses on the outer surface of the shaft and specify their
locations, measured from the fixed end A.

5–22. The solid shaft is subjected to the distributed and
concentrated torsional loadings shown. Determine the
required diameter d of the shaft to the nearest mm if the
allowable shear stress for the material is tallow = 50 MPa.

5–23. Consider the general problem of a circular shaft
made from m segments each having a radius of If there
are n torques on the shaft as shown, write a computer
program that can be used to determine the maximum shear
stress at any specified location x along the shaft. Show an
application of the program using the values 

d2 = 5 ft.T2 = -600 lb # ft,
d1 = 0,T1 = 800 lb # ft,c2 = 1 in.,L2 = 4 ft,c1 = 2 in.,

L1 = 2 ft,

cm .

5

*5–24. The copper pipe has an outer diameter of 2.50 in.
and an inner diameter of 2.30 in. If it is tightly secured to the
wall at C and a uniformly distributed torque is applied to it
as shown, determine the shear stress developed at points A
and B. These points lie on the pipe’s outer surface. Sketch
the shear stress on volume elements located at A and B.

•5–25. The copper pipe has an outer diameter of 2.50 in.
and an inner diameter of 2.30 in. If it is tightly secured to
the wall at C and it is subjected to the uniformly distributed
torque along its entire length, determine the absolute
maximum shear stress in the pipe. Discuss the validity of
this result.

1.5 m

0.8 m
C

B

A

1200 N�m

2 kN�m/m

Probs. 5–21/22

 A

T1

T2

Tn

d1
d2

dn

L1

L2

Lm

Prob. 5–23

T
h

ro ri

Prob. 5–26

125 lb�ft/ft
4 in.

C

9 in.

12 in.

B

A

Probs. 5–24/25

5–26. A cylindrical spring consists of a rubber annulus
bonded to a rigid ring and shaft. If the ring is held fixed and
a torque T is applied to the shaft, determine the maximum
shear stress in the rubber.
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5–27. The A-36 steel shaft is supported on smooth
bearings that allow it to rotate freely. If the gears are
subjected to the torques shown, determine the maximum
shear stress developed in the segments AB and BC. The
shaft has a diameter of 40 mm.

*5–28. The A-36 steel shaft is supported on smooth
bearings that allow it to rotate freely. If the gears are
subjected to the torques shown, determine the required
diameter of the shaft to the nearest mm if .tallover = 60 MPa

5

300 N m�

100 N m�

200 N m�
A

B

C

Probs. 5–27/28

•5–29. When drilling a well at constant angular velocity,
the bottom end of the drill pipe encounters a torsional
resistance Also, soil along the sides of the pipe creates a
distributed frictional torque along its length, varying
uniformly from zero at the surface B to at A. Determine
the minimum torque that must be supplied by the drive
unit to overcome the resisting torques, and compute
the maximum shear stress in the pipe. The pipe has an outer
radius and an inner radius ri .ro

TB

tA

TA .

TA

L

B

TB

tA
A

Prob. 5–29

5–30. The shaft is subjected to a distributed torque along
its length of where x is in meters. If the
maximum stress in the shaft is to remain constant at
80 MPa, determine the required variation of the radius c of
the shaft for 0 … x … 3 m.

t = 110x22 N # m>m,

c
x

3 m

t � (10x2) N�m/m

Prob. 5–30

5–31. The solid steel shaft AC has a diameter of 25 mm and
is supported by smooth bearings at D and E. It is coupled to
a motor at C, which delivers 3 kW of power to the shaft
while it is turning at If gears A and B remove 1 kW
and 2 kW, respectively, determine the maximum shear stress
developed in the shaft within regions AB and BC. The shaft
is free to turn in its support bearings D and E.

50 rev>s.

A
CB ED

1 kW

2 kW 3 kW

25 mm

Prob. 5–31

A
B150 rev/min

Prob. 5–32

*5–32. The pump operates using the motor that has a
power of 85 W. If the impeller at B is turning at 
determine the maximum shear stress developed in the
20-mm-diameter transmission shaft at A.

150 rev>min,
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•5–33. The gear motor can develop 2 hp when it turns at
If the shaft has a diameter of 1 in., determine

the maximum shear stress developed in the shaft.

5–34. The gear motor can develop 3 hp when it turns at
If the allowable shear stress for the shaft is

determine the smallest diameter of the shaft
to the nearest that can be used.1

8  in.
tallow = 12 ksi,
150 rev>min.

450 rev>min.
•5–37. A ship has a propeller drive shaft that is turning at 

while developing 1800 hp. If it is 8 ft long and
has a diameter of 4 in., determine the maximum shear stress
in the shaft caused by torsion.

5–38. The motor A develops a power of 300 W and turns
its connected pulley at Determine the required
diameters of the steel shafts on the pulleys at A and B if the
allowable shear stress is tallow = 85 MPa.

90 rev>min.

1500 rev>min

5

Probs. 5–33/34

Probs. 5–35/36

60 mm

150 mm

90 rev/min

A

BBB

Prob. 5–38

A

FC ED

4 kW
5 kW 12 kW

25 mm3 kW

B

Probs. 5–39/40

5–35. The 25-mm-diameter shaft on the motor is made
of a material having an allowable shear stress of

If the motor is operating at its maximum
power of 5 kW, determine the minimum allowable rotation
of the shaft.

*5–36. The drive shaft of the motor is made of a material
having an allowable shear stress of If the
outer diameter of the tubular shaft is 20 mm and the wall
thickness is 2.5 mm, determine the maximum allowable
power that can be supplied to the motor when the shaft is
operating at an angular velocity of 1500 rev>min.

tallow = 75 MPa.

tallow = 75 MPa.
5–39. The solid steel shaft DF has a diameter of 25 mm
and is supported by smooth bearings at D and E. It is
coupled to a motor at F, which delivers 12 kW of power to
the shaft while it is turning at If gears A, B, and C
remove 3 kW, 4 kW, and 5 kW respectively, determine the
maximum shear stress developed in the shaft within regions
CF and BC. The shaft is free to turn in its support bearings
D and E.

*5–40. Determine the absolute maximum shear stress
developed in the shaft in Prob. 5–39.

50 rev>s.
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*5–44. The drive shaft AB of an automobile is made of a
steel having an allowable shear stress of If the
outer diameter of the shaft is 2.5 in. and the engine delivers
200 hp to the shaft when it is turning at 
determine the minimum required thickness of the shaft’s
wall.

•5–45. The drive shaft AB of an automobile is to be
designed as a thin-walled tube. The engine delivers 150 hp
when the shaft is turning at Determine the
minimum thickness of the shaft’s wall if the shaft’s outer
diameter is 2.5 in.The material has an allowable shear stress
of tallow = 7 ksi.

1500 rev>min.

1140 rev>min,

tallow = 8 ksi.
•5–41. The A-36 steel tubular shaft is 2 m long and has an
outer diameter of 50 mm. When it is rotating at 40 rad s, it
transmits 25 kW of power from the motor M to the pump
P. Determine the smallest thickness of the tube if the
allowable shear stress is .

5–42. The A-36 solid tubular steel shaft is 2 m long and has
an outer diameter of 60 mm. It is required to transmit
60 kW of power from the motor M to the pump P.
Determine the smallest angular velocity the shaft can have
if the allowable shear stress is .tallow = 80 MPa

tallow = 80 MPa

>

5

MP

Probs. 5–41/42

2.5 in.
d

Prob. 5–43

AB

Probs. 5–44/45

5–43. A steel tube having an outer diameter of 2.5 in. is
used to transmit 35 hp when turning at 
Determine the inner diameter d of the tube to the nearest

if the allowable shear stress is tallow = 10 ksi.1
8  in.

2700 rev>min.
5–46. The motor delivers 15 hp to the pulley at A while
turning at a constant rate of 1800 rpm. Determine to the
nearest in. the smallest diameter of shaft BC if the
allowable shear stress for steel is The belt
does not slip on the pulley.

tallow = 12 ksi.

1
8

3 in.

A

B C

1.5 in.

Prob. 5–46
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5.4 Angle of Twist

Occasionally the design of a shaft depends on restricting the amount of
rotation or twist that may occur when the shaft is subjected to a torque.
Furthermore, being able to compute the angle of twist for a shaft is
important when analyzing the reactions on statically indeterminate
shafts.

In this section we will develop a formula for determining the angle of
twist (phi) of one end of a shaft with respect to its other end. The shaft
is assumed to have a circular cross section that can gradually vary along
its length, Fig. 5–14a. Also, the material is assumed to be homogeneous
and to behave in a linear-elastic manner when the torque is applied.
Like the case of an axially loaded bar, we will neglect the localized
deformations that occur at points of application of the torques and
where the cross section changes abruptly. By Saint-Venant’s principle,
these effects occur within small regions of the shaft’s length and
generally they will have only a slight effect on the final result.

Using the method of sections, a differential disk of thickness dx,
located at position x, is isolated from the shaft, Fig. 5–14b. The internal
resultant torque is T(x), since the external loading may cause it to vary
along the axis of the shaft. Due to T(x), the disk will twist, such that the
relative rotation of one of its faces with respect to the other face is 
Fig. 5–14b. As a result an element of material located at an arbitrary
radius within the disk will undergo a shear strain The values of and

are related by Eq. 5–1, namely,

(5–13)df = g 
dx
r

df
gg.r

df,

f

Fig. 5–14

5

Oil wells are commonly drilled to depths
exceeding a thousand meters.As a result, the
total angle of twist of a string of drill pipe can
be substantial and must be determined.

x

dx

T3

T2

x

y

z

T1

(a) (b)

c

T(x)

dxdf

df

g g

gmax

r

r



5.4 ANGLE OF TWIST 201

Since Hooke’s law, applies and the shear stress can be
expressed in terms of the applied torque using the torsion formula

then Substituting this into Eq. 5–13,
the angle of twist for the disk is

Integrating over the entire length L of the shaft, we obtain the angle of
twist for the entire shaft, namely,

(5–14)

Here

the angle of twist of one end of the shaft with respect to the
other end, measured in radians

the internal torque at the arbitrary position x, found from the
method of sections and the equation of moment equilibrium
applied about the shaft’s axis

the shaft’s polar moment of inertia expressed as a function of
position x

the shear modulus of elasticity for the material

Constant Torque and Cross-Sectional Area. Usually in
engineering practice the material is homogeneous so that G is constant.
Also, the shaft’s cross-sectional area and the external torque are
constant along the length of the shaft, Fig. 5–15. If this is the case, the
internal torque the polar moment of inertia and
Eq. 5–14 can be integrated, which gives

(5–15)

The similarities between the above two equations and those for an axially
loaded bar ( and ) should be noted.d = PL>AEd = 1P1x2 dx>A1x2E

f =
TL

JG

J1x2 = J,T1x2 = T,

G =

J1x2 =

T1x2 =

f =

f = L
L

0

T1x2 dx

J1x2G

df =
T1x2

J1x2G dx

g = T1x2r>J1x2G.t = T1x2r>J1x2,
g = t>G,

5

When computing both the stress and the
angle of twist of this soil auger, it is necessary
to consider the variable torsional loading
which acts along its length.

f

L

T

T

Fig. 5–15
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Equation 5–15 is often used to determine the shear modulus of
elasticity G of a material. To do so, a specimen of known length and
diameter is placed in a torsion testing machine like the one shown in
Fig. 5–16. The applied torque T and angle of twist are then measured
along the length L. Using Eq. 5–15, Usually, to obtain a
more reliable value of G, several of these tests are performed and the
average value is used.

Multiple Torques. If the shaft is subjected to several different
torques, or the cross-sectional area or shear modulus changes abruptly
from one region of the shaft to the next, Eq. 5–15 can be applied to each
segment of the shaft where these quantities are all constant. The angle of
twist of one end of the shaft with respect to the other is then found from
the vector addition of the angles of twist of each segment. For this case,

(5–16)

Sign Convention. In order to apply this equation, we must develop
a sign convention for both the internal torque and the angle of twist of
one end of the shaft with respect to the other end. To do this, we will use
the right-hand rule, whereby both the torque and angle will be positive,
provided the thumb is directed outward from the shaft when the fingers
curl to give the tendency for rotation, Fig. 5–17.

To illustrate the use of this sign convention, consider the shaft shown
in Fig. 5–18a. The angle of twist of end A with respect to end D is to be
determined. Three segments of the shaft must be considered, since the

f = aTL

JG

G = TL>Jf.
f

5

Load
dial

Motor
controls

Load
range

selector

Torque
strain

recorder

Fixed
head

Specimen

Motor
Turning

head

Movable unit
on rails

Fig. 5–16
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internal torque will change at B and at C. Using the method of sections,
the internal torques are found for each segment, Fig. 5–18b. By the
right-hand rule, with positive torques directed away from the sectioned
end of the shaft, we have and

These results are also shown on the torque diagram
for the shaft, Fig. 5–18c. Applying Eq. 5–16, we have

If the other data is substituted and the answer is found as a positive
quantity, it means that end A will rotate as indicated by the curl of the
right-hand fingers when the thumb is directed away from the shaft,
Fig. 5–18a. The double subscript notation is used to indicate this relative
angle of twist however, if the angle of twist is to be determined
relative to a fixed support, then only a single subscript will be used. For
example, if D is a fixed support, then the angle of twist will be denoted
as fA .

1fA>D2;

fA>D =
1+80 N # m2 LAB

JG
+
1-70 N # m2 LBC

JG
+
1-10 N # m2 LCD

JG

TCD = -10 N # m.
TBC = -70 N # m,TAB = +80 N # m,

5

Positive sign convention
 for T and f.

x

�T(x)

�T(x)

�f(x)

�f(x)

f

Fig. 5–17

Fig. 5–18

(b)

80 N�m

150 N�m
TBC � 70 N�m

80 N�m
TAB � 80 N�m

TCD � 10 N�m

10 N�m

(a)

LAB

LBC

LCD

A

B
C

D

80 N�m

150 N�m
60 N�m

10 N�m

T (N�m)

x

80

�70

�10

(c)
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5

Important Point

• When applying Eq. 5–14 to determine the angle of twist, it is
important that the applied torques do not cause yielding of the
material and that the material is homogeneous and behaves in a
linear elastic manner.

Procedure for Analysis

The angle of twist of one end of a shaft or tube with respect to the
other end can be determined using the following procedure.

Internal Torque.

• The internal torque is found at a point on the axis of the shaft
by using the method of sections and the equation of moment
equilibrium, applied along the shaft’s axis.

• If the torque varies along the shaft’s length, a section should be
made at the arbitrary position x along the shaft and the internal
torque represented as a function of x, i.e., T(x).

• If several constant external torques act on the shaft between its
ends, the internal torque in each segment of the shaft, between
any two external torques, must be determined. The results can be
represented graphically as a torque diagram.

Angle of Twist.

• When the circular cross-sectional area of the shaft varies along
the shaft’s axis, the polar moment of inertia must be expressed as
a function of its position x along the axis, J(x).

• If the polar moment of inertia or the internal torque suddenly changes
between the ends of the shaft, then or

must be applied to each segment for which J, G, and
T are continuous or constant.

• When the internal torque in each segment is determined, be
sure to use a consistent sign convention for the shaft, such as
the one discussed in Fig. 5–17. Also make sure that a consistent
set of units is used when substituting numerical data into the
equations.

f = TL>JG
f = 11T1x2>J1x2G2 dx
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5

Fig. 5–19

(a)

P

40 N�m

280 N�m

0.4 m

0.3 m

0.5 m

100 mm

A

B

C

D

E

150 N�m

(c)

T (N�m)

x (m)

150

0

�130

0.4 0.7 1.2

�170

TDE � 170 N�m

(b)

40 N�m

280 N�m

150 N�m

(d)

fA � 0.212 rad

100 mm
P sP

A

280 N�m

150 N�m

TCD � 130 N�m

TAC � 150 N�m
150 N�m

The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5–19a. If the shear modulus of elasticity is 80 GPa
and the shaft has a diameter of 14 mm, determine the displacement of
the tooth P on gear A.The shaft turns freely within the bearing at B.

SOLUTION
Internal Torque. By inspection, the torques in segments AC, CD,
and DE are different yet constant throughout each segment.
Free-body diagrams of appropriate segments of the shaft along with
the calculated internal torques are shown in Fig. 5–19b. Using the
right-hand rule and the established sign convention that positive
torque is directed away from the sectioned end of the shaft, we have

These results are also shown on the torque diagram, Fig. 5–19c.

Angle of Twist. The polar moment of inertia for the shaft is

Applying Eq. 5–16 to each segment and adding the results
algebraically, we have

Since the answer is negative, by the right-hand rule the thumb is
directed toward the end E of the shaft, and therefore gear A will
rotate as shown in Fig. 5–19d.

The displacement of tooth P on gear A is

Ans.

NOTE: Remember that this analysis is valid only if the shear stress
does not exceed the proportional limit of the material.

sP = fAr = 10.2121 rad21100 mm2 = 21.2 mm

+
1-170 N # m210.5 m2

3.771110-92 m4 [8011092 N>m22] = -0.2121 rad

+
1-130 N # m210.3 m2

3.771110-92 m4 [8011092 N>m22]

fA = aTL

JG
=

1+150 N # m210.4 m2
3.771110-92 m4 [8011092 N>m2]

J =
p

2
 10.007 m24 = 3.771110-92 m4

TAC = +150 N # m TCD = -130 N # m TDE = -170 N # m
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EXAMPLE 5.6

The two solid steel shafts shown in Fig. 5–20a are coupled together
using the meshed gears. Determine the angle of twist of end A of shaft
AB when the torque is applied.Take Shaft
AB is free to rotate within bearings E and F, whereas shaft DC is fixed
at D. Each shaft has a diameter of 20 mm.

SOLUTION
Internal Torque. Free-body diagrams for each shaft are shown
in Fig. 5–20b and 5–20c. Summing moments along the x axis of
shaft AB yields the tangential reaction between the gears of 

Summing moments about the x axis of shaft
DC, this force then creates a torque of 

on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of in shaft DC,
Fig. 5–20c. This angle of twist is

Since the gears at the end of the shaft are in mesh, the rotation 
of gear C causes gear B to rotate Fig. 5–20b, where

We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the torque, Fig. 5–20b. We have

The rotation of end A is therefore determined by adding and
since both angles are in the same direction, Fig. 5–20b. We have

Ans.fA = fB + fA>B = 0.0134 rad + 0.0716 rad = +0.0850 rad

fA>B ,
fB

fA>B =
TABLAB

JG
=

1+45 N # m212 m2
1p>2210.010 m24[8011092 N>m2]

= +0.0716 rad

45 N # m

 fB = 0.0134 rad

 fB10.15 m2 = 10.0269 rad210.075 m2
fB ,

fC

fC =
TLDC

JG
=

1+22.5 N # m211.5 m2
1p>2210.010 m24[8011092 N>m2]

= +0.0269 rad

22.5 N # m

22.5 N # m
300 N 10.075 m2 =1TD2x =

45 N # m>0.15 m = 300 N.
F =

G = 80 GPa.T = 45 N # m

A

 T � 45 N�m

D

E F

(a)

2 m

75 mm

B

150 mm

1.5 m
C

Fig. 5–20

A
Fy

T � 45 N�m

Fz

Ey
Ez

(b)

B

F � 300 N
0.150 m

fB � 0.0134 rad

Dx

Dy
Dz(TD)x � 22.5 N�m

fC

C

0.075 m

F � 300 N

(c)

(MD)y

(MD)z
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EXAMPLE 5.7

The 2-in.-diameter solid cast-iron post shown in Fig. 5–21a is buried
24 in. in soil. If a torque is applied to its top using a rigid wrench,
determine the maximum shear stress in the post and the angle of twist
at its top.Assume that the torque is about to turn the post, and the soil
exerts a uniform torsional resistance of along its 24-in.
buried length.

SOLUTION
Internal Torque. The internal torque in segment AB of the post is
constant. From the free-body diagram, Fig. 5–21b, we have

The magnitude of the uniform distribution of torque along the buried
segment BC can be determined from equilibrium of the entire post,
Fig. 5–21c. Here

Hence, from a free-body diagram of a section of the post located at
the position x, Fig. 5–21d, we have

Maximum Shear Stress. The largest shear stress occurs in region
AB, since the torque is largest there and J is constant for the post.
Applying the torsion formula, we have

Ans.

Angle of Twist. The angle of twist at the top can be determined
relative to the bottom of the post, since it is fixed and yet is about to
turn. Both segments AB and BC twist, and so in this case we have

Ans. =
14 400 lb # in2

1p>2211 in.24 550011032 lb>in2 = 0.00167 rad

 =
10 800 lb # in2

JG
+

12.5[12422>2] lb # in2

JG

 =
1300 lb # in.236 in.

JG
 + L

24 in.

0
 
12.5x dx

JG

 fA =
TABLAB

JG
+ L

LBC

0
 
TBC dx

JG

tmax =
TAB c

J
=
1300 lb # in.211 in.2
1p>2211 in.24 = 191 psi

TBC = 12.5x

TBC - 12.5x = 0©Mz = 0;

t = 12.5 lb # in.>in.

25 lb 112 in.2 - t124 in.2 = 0©Mz = 0

TAB = 25 lb 112 in.2 = 300 lb # in.©Mz = 0;

G = 5.511032 ksi.
t lb # in.>in.

Fig. 5–21

2 in.

36 in.

24 in.

A

(a)

B

C

t

6 in.

6 in. 25 lb
25 lb

TAB

(b)

6 in.

6 in. 25 lb25 lb

24 in.

24t

(c)

36 in.

6 in.

6 in. 25 lb
25 lb

x

t � 12.5 lb�in./ in.

(d)

TBC



208 CHAPTER 5 TORS ION

5

600 mm

400 mm

A

C

B

 3 kN�m

2 kN�m

4 kN 10 kN

6 kN

2 kN

150 mm

100 mm

150 mm

150 mm

450 mm

B

A

B

A

900 mm

 3 kN�m

A

B

200 mm

200 mm

200 mm

200 mm

 600 N�m

 500 N�m

 300 N�m

 500 N�m

 900 N�m

FUNDAMENTAL PROBLEMS

F5–7. The 60-mm-diameter A-36 steel shaft is subjected to
the torques shown. Determine the angle of twist of end A
with respect to C.

F5–10. A series of gears are mounted on the 40-mm-
diameter A-36 steel shaft. Determine the angle of twist of
gear B relative to gear A.

F5–8. Determine the angle of twist of wheel B with
respect to wheel A. The shaft has a diameter of 40 mm and
is made of A-36 steel.

F5–9. The hollow 6061-T6 aluminum shaft has an outer and
inner radius of co 40 mm and ci 30 mm, respectively.
Determine the angle of twist of end A.The flexible support at
B has a torsional stiffness of k = 90 kN # m>rad.

==

F5–11. The 80-mm-diameter shaft is made of A-36 steel. If
it is subjected to the uniform distributed torque, determine
the angle of twist of end A with respect to B.

800 mm

A

B

 5 kN�m/m

B

A

C

400 mm

600 mm

15 kN�m/m

F5–12. The 80-mm-diameter shaft is made of A-36 steel. If
it is subjected to the triangular distributed load, determine
the angle of twist of end A with respect to C.

F5–7

F5–8

F5–9 F5–12

F5–11

F5–10
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5–47. The propellers of a ship are connected to a A-36
steel shaft that is 60 m long and has an outer diameter of
340 mm and inner diameter of 260 mm. If the power output is
4.5 MW when the shaft rotates at determine the
maximum torsional stress in the shaft and its angle of twist.

*5–48. A shaft is subjected to a torque T. Compare the
effectiveness of using the tube shown in the figure with that
of a solid section of radius c. To do this, compute the percent
increase in torsional stress and angle of twist per unit length
for the tube versus the solid section.

20 rad>s,

5–50. The hydrofoil boat has an A-36 steel propeller
shaft that is 100 ft long. It is connected to an in-line diesel
engine that delivers a maximum power of 2500 hp and
causes the shaft to rotate at 1700 rpm. If the outer
diameter of the shaft is 8 in. and the wall thickness is 
determine the maximum shear stress developed in the
shaft. Also, what is the “wind up,” or angle of twist in the
shaft at full power?

3
8 in.,

PROBLEMS

T

T

c

c

c
2

Prob. 5–48

400 mm

400 mm

250 mm
85 N m�

85 N m�

A

B

C

D

Prob. 5–49

•5–49. The A-36 steel axle is made from tubes AB and CD
and a solid section BC. It is supported on smooth bearings
that allow it to rotate freely. If the gears, fixed to its ends, are
subjected to torques, determine the angle of twist
of gear A relative to gear D. The tubes have an outer
diameter of 30 mm and an inner diameter of 20 mm. The
solid section has a diameter of 40 mm.

85-N # m

100 ft

Prob. 5–50

A

B

Probs. 5–51/52

5–51. The engine of the helicopter is delivering 600 hp
to the rotor shaft AB when the blade is rotating at
1200 Determine to the nearest the diameter
of the shaft AB if the allowable shear stress is 
and the vibrations limit the angle of twist of the shaft to
0.05 rad. The shaft is 2 ft long and made from L2 steel.

*5–52. The engine of the helicopter is delivering 600 hp
to the rotor shaft AB when the blade is rotating at
1200 Determine to the nearest the diameter of
the shaft AB if the allowable shear stress is 
and the vibrations limit the angle of twist of the shaft to
0.05 rad. The shaft is 2 ft long and made from L2 steel.

tallow = 10.5 ksi

1
8 in.rev>min.

tallow = 8 ksi

1
8 in.rev>min.
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•5–53. The 20-mm-diameter A-36 steel shaft is subjected
to the torques shown. Determine the angle of twist of the
end B.

5

5–54. The assembly is made of A-36 steel and consists of a
solid rod 20 mm in diameter fixed to the inside of a tube
using a rigid disk at B. Determine the angle of twist at D.
The tube has an outer diameter of 40 mm and wall thickness
of 5 mm.

5–55. The assembly is made of A-36 steel and consists of a
solid rod 20 mm in diameter fixed to the inside of a tube
using a rigid disk at B. Determine the angle of twist at C.
The tube has an outer diameter of 40 mm and wall thickness
of 5 mm.

A

80 N�m

20 N�m

30 N�m
B

D

C

800 mm

600 mm
200 mm

Prob. 5–53

0.4 m
B

D

C

0.3 m

0.1 m

60 N�m

150 N�m

A

Probs. 5–54/55

*5–56. The splined ends and gears attached to the A-36
steel shaft are subjected to the torques shown. Determine
the angle of twist of end B with respect to end A. The shaft
has a diameter of 40 mm.

300 N�m

A
200 N�m

500 N�m

300 mm

400 mm

500 mm

400 N�m

B

D

C

Prob. 5–56

6 in.

8 in.

10 in.

A

B

C

D

Probs. 5–57/58

•5–57. The motor delivers 40 hp to the 304 stainless steel
shaft while it rotates at 20 Hz. The shaft is supported on
smooth bearings at A and B, which allow free rotation of
the shaft.The gears C and D fixed to the shaft remove 25 hp
and 15 hp, respectively. Determine the diameter of the
shaft to the nearest if the allowable shear stress is

and the allowable angle of twist of C with
respect to D is 0.20 .

5–58. The motor delivers 40 hp to the 304 stainless steel
solid shaft while it rotates at 20 Hz.The shaft has a diameter
of 1.5 in. and is supported on smooth bearings at A and B,
which allow free rotation of the shaft. The gears C and D
fixed to the shaft remove 25 hp and 15 hp, respectively.
Determine the absolute maximum stress in the shaft and
the angle of twist of gear C with respect to gear D.

°
tallow = 8 ksi

1
8  in.



5–63. The device serves as a compact torsional spring. It is
made of A-36 steel and consists of a solid inner shaft CB
which is surrounded by and attached to a tube AB using a
rigid ring at B. The ring at A can also be assumed rigid
and is fixed from rotating. If a torque of is
applied to the shaft, determine the angle of twist at the end C
and the maximum shear stress in the tube and shaft.

*5–64. The device serves as a compact torsion spring. It is
made of A-36 steel and consists of a solid inner shaft CB
which is surrounded by and attached to a tube AB using a
rigid ring at B. The ring at A can also be assumed rigid and
is fixed from rotating. If the allowable shear stress for the
material is and the angle of twist at C is
limited to , determine the maximum torque 
that can be applied at the end C.

Tfallow = 3°
tallow = 12 ksi

T = 2 kip # in.
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5–59. The shaft is made of A-36 steel. It has a diameter of
1 in. and is supported by bearings at A and D, which allow
free rotation. Determine the angle of twist of B with respect
to D.

*5–60. The shaft is made of A-36 steel. It has a diameter of
1 in. and is supported by bearings at A and D, which allow
free rotation. Determine the angle of twist of gear C with
respect to B.

5

A

60 lb�ft

60 lb�ft

2 ft

2.5 ft

3 ft
D

B

C

Probs. 5–59/60

A 40 lb�ft

80 lb�ft

8 in.

10 in.

12 in.
4 in.

D

C

10 in.

30 in.

6 in.
B

Probs. 5–61/62

•5–61. The two shafts are made of A-36 steel. Each has a
diameter of 1 in., and they are supported by bearings at A,
B, and C, which allow free rotation. If the support at D is
fixed, determine the angle of twist of end B when the
torques are applied to the assembly as shown.

5–62. The two shafts are made of A-36 steel. Each has a
diameter of 1 in., and they are supported by bearings at A,
B, and C, which allow free rotation. If the support at D is
fixed, determine the angle of twist of end A when the
torques are applied to the assembly as shown.

12 in.

1 in.

0.75 in.
12 in.

0.5 in.

A

T

C

B

Probs. 5–63/64

6 in.

4 in.

A

C

B

200 lb�in.

Prob. 5–65

•5–65. The A-36 steel assembly consists of a tube having
an outer radius of 1 in. and a wall thickness of 0.125 in. Using
a rigid plate at B, it is connected to the solid 1-in-diameter
shaft AB. Determine the rotation of the tube’s end C if a
torque of 200 lb in. is applied to the tube at this end. The
end A of the shaft is fixed supported.

#
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5–66. The 60-mm diameter shaft ABC is supported by two
journal bearings, while the 80-mm diameter shaft EH is
fixed at E and supported by a journal bearing at H. If

and , determine the angle of
twist of gears A and C. The shafts are made of A-36 steel.

5–67. The 60-mm diameter shaft ABC is supported by two
journal bearings, while the 80-mm diameter shaft EH is fixed
at E and supported by a journal bearing at H. If the angle
of twist at gears A and C is required to be 0.04 rad,
determine the magnitudes of the torques T1 and T2. The
shafts are made of A-36 steel.

T2 = 4 kN # mT1 = 2 kN # m

5

*5–68. The 30-mm-diameter shafts are made of L2 tool
steel and are supported on journal bearings that allow the
shaft to rotate freely. If the motor at A develops a torque of

on the shaft AB, while the turbine at E is fixed
from turning, determine the amount of rotation of gears B
and C.

T = 45 N # m

600 mm

100 mm

600 mm

900 mm

DA
E

H

B

C
T1

T2

75 mm

Probs. 5–66/67

45 N�m
A

0.75 m

50 mm1.5 m

0.5 m

B

C

E

D

75 mm

Prob. 5–68

•5–69. The shafts are made of A-36 steel and each has a
diameter of 80 mm. Determine the angle of twist at end E.

5–70. The shafts are made of A-36 steel and each has a
diameter of 80 mm. Determine the angle of twist of gear D.

A
B

C

D

E

0.6 m

0.6 m

0.6 m

150 mm

200 mm

150 mm

10 kN�m

2 kN�m

Probs. 5–69/70

 A

T1

T2

Tn

d1
d2

dn

L1

L2

Lm

Prob. 5–71

5–71. Consider the general problem of a circular shaft
made from m segments, each having a radius of and shear
modulus If there are n torques on the shaft as shown,
write a computer program that can be used to determine
the angle of twist of its end A. Show an application of the
program using the values 

d2 = 0.8 m.T2 = 600 N # m,d1 = 0.25 m,T1 = -450 N # m,
G2 = 15 GPa,c2 = 0.05 m,L2 = 1.5 m,G1 = 30 GPa,

c1 = 0.02 m,L1 = 0.5 m,

Gm .
cm



5–75. When drilling a well, the deep end of the drill pipe
is assumed to encounter a torsional resistance 
Furthermore, soil friction along the sides of the pipe creates
a linear distribution of torque per unit length, varying from
zero at the surface B to at A. Determine the necessary
torque that must be supplied by the drive unit to turn
the pipe. Also, what is the relative angle of twist of one end
of the pipe with respect to the other end at the instant the
pipe is about to turn? The pipe has an outer radius and an
inner radius The shear modulus is G.ri .

ro

TB

t0

TA .
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*5–72. The 80-mm diameter shaft is made of 6061-T6
aluminum alloy and subjected to the torsional loading
shown. Determine the angle of twist at end A.

5

B

A

C

0.6 m

0.6 m

2 kN�m

10 kN�m/m

Prob. 5–72

T

r

r2

A

B

L

Prob. 5–73

•5–73. The tapered shaft has a length L and a radius r at
end A and 2r at end B. If it is fixed at end B and is subjected
to a torque T, determine the angle of twist of end A. The
shear modulus is G.

5–74. The rod ABC of radius c is embedded into a medium
where the distributed torque reaction varies linearly from
zero at C to t0 at B. If couple forces P are applied to the lever
arm, determine the value of t0 for equilibrium. Also, find the
angle of twist of end A. The rod is made from material
having a shear modulus of G.

L
2

L
2

d
2

d
2

P

P
A

B

t0C

Prob. 5–74

t0

L

A

BTB

TA

Prob. 5–75

*5–76. A cylindrical spring consists of a rubber annulus
bonded to a rigid ring and shaft. If the ring is held fixed and
a torque T is applied to the rigid shaft, determine the angle
of twist of the shaft. The shear modulus of the rubber is G.
Hint: As shown in the figure, the deformation of the
element at radius r can be determined from Use
this expression along with from Prob. 5–26,
to obtain the result.

t = T>12pr2h2
rdu = drg.

r

dr

g

du

gdr � rdu

T

h

ro

ri

r

Prob. 5–76
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5.5 Statically Indeterminate 
Torque-Loaded Members

A torsionally loaded shaft may be classified as statically indeterminate
if the moment equation of equilibrium, applied about the axis of the
shaft, is not adequate to determine the unknown torques acting on
the shaft.An example of this situation is shown in Fig. 5–22a.As shown
on the free-body diagram, Fig. 5–22b, the reactive torques at the
supports A and B are unknown.We require that

In order to obtain a solution, we will use the method of analysis
discussed in Sec. 4.4. The necessary condition of compatibility, or the
kinematic condition, requires the angle of twist of one end of the shaft
with respect to the other end to be equal to zero, since the end supports
are fixed. Therefore,

Provided the material is linear elastic, we can apply the load–displacement
relation to express the compatibility condition in terms of the
unknown torques. Realizing that the internal torque in segment AC is 
and in segment CB it is Fig. 5–22c, we have

TALAC

JG
-

TBLBC

JG
= 0

-TB ,
+TA

f = TL>JG

fA>B = 0

T - TA - TB = 0©Mx = 0;

(b)

(c)

T

TA

TA

TA

TB

TB

TB

LAC

LBC

L
C

(a)

T

A

B

Fig. 5–22
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Solving the above two equations for the reactions, realizing that
we get

and TB = T¢LAC

L
≤TA = T¢LBC

L
≤

L = LAC + LBC ,

Procedure for Analysis

The unknown torques in statically indeterminate shafts are determined
by satisfying equilibrium, compatibility, and torque-displacement
requirements for the shaft.

Equilibrium.

• Draw a free-body diagram of the shaft in order to identify all
the external torques that act on it. Then write the equation of
moment equilibrium about the axis of the shaft.

Compatibility.

• Write the compatibility equation between two points along the
shaft. Give consideration as to how the supports constrain the
shaft when it is twisted.

• Express the angles of twist in the compatibility condition in
terms of the torques, using a torque-displacement relation, such
as .

• Solve the equilibrium and compatibility equations for the
unknown reactive torques. If any of the magnitudes have a
negative numerical value, it indicates that this torque acts in
the opposite sense of direction to that shown on the free-body
diagram.

f = TL>JG

The shaft of this cutting machine is fixed at
its ends and subjected to a torque at its
center, allowing it to act as a torsional spring.
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EXAMPLE 5.8

The solid steel shaft shown in Fig. 5–23a has a diameter of 20 mm. If it
is subjected to the two torques, determine the reactions at the fixed
supports A and B.

SOLUTION
Equilibrium. By inspection of the free-body diagram, Fig. 5–23b, it
is seen that the problem is statically indeterminate since there is
only one available equation of equilibrium and there are two
unknowns. We require

(1)

Compatibility. Since the ends of the shaft are fixed, the angle of
twist of one end of the shaft with respect to the other must be zero.
Hence, the compatibility equation becomes

This condition can be expressed in terms of the unknown torques by
using the load–displacement relationship, Here there
are three regions of the shaft where the internal torque is constant.
On the free-body diagrams in Fig. 5–23c we have shown the internal
torques acting on the left segments of the shaft which are sectioned in
each of these regions.This way the internal torque is only a function of

. Using the sign convention established in Sec. 5.4, we have

so that

Ans.

Using Eq. 1,

Ans.

The negative sign indicates that acts in the opposite direction of
that shown in Fig. 5–23b.

TA

TA = -345 N # m 
TB = 645 N # m

-TB10.2 m2
JG

+
1800 - TB211.5 m2

JG
+

(300 - TB)10.3 m2
JG

= 0

TB

f = TL>JG.

fA>B = 0

-TB + 800 N # m - 500 N # m - TA = 0©Mx = 0;

(a)

B

0.2 m

1.5 m

0.3 m

C

D

A

800 N·m

500 N·m

(b)

x
TB

TA

800 N�m

500 N�m

(c)

300 � TB

800 � TBTB

TB

TB

800 N�m

TB

800 N�m

500 N�m

Fig. 5–23
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EXAMPLE 5.9

The shaft shown in Fig. 5–24a is made from a steel tube, which is
bonded to a brass core. If a torque of is applied at
its end, plot the shear-stress distribution along a radial line of its
cross-sectional area. Take 

SOLUTION
Equilibrium. A free-body diagram of the shaft is shown in Fig. 5–24b.
The reaction at the wall has been represented by the unknown amount
of torque resisted by the steel, and by the brass, Working in
units of pounds and inches, equilibrium requires

(1)

Compatibility. We require the angle of twist of end A to be
the same for both the steel and brass since they are bonded
together. Thus,

Applying the load–displacement relationship,

(2)

Solving Eqs. 1 and 2, we get

The shear stress in the brass core varies from zero at its center to a
maximum at the interface where it contacts the steel tube. Using the
torsion formula,

For the steel, the minimum and maximum shear stresses are

The results are plotted in Fig. 5–24c. Note the discontinuity of shear
stress at the brass and steel interface. This is to be expected, since the
materials have different moduli of rigidity; i.e., steel is stiffer than
brass and thus it carries more shear stress at the interface.
Although the shear stress is discontinuous here, the shear strain is not.
Rather, the shear strain is the same for both the brass and the steel.

1Gst 7 Gbr2

1tst2max =
12911.5 lb # in.211 in.2

1p>22[11 in.24 - 10.5 in.24] = 1977 psi

1tst2min =
12911.5 lb # in.210.5 in.2
1p>22[11 in.24 - 10.5 in.24] = 989 psi

1tbr2max =
188.5 lb # in.210.5 in.2
1p>2210.5 in.24 = 451 psi

 Tbr = 88.5 lb # in. = 7.38 lb # ft
 Tst = 2911.5 lb # in. = 242.6 lb # ft

Tst = 32.88 Tbr

TbrL

1p>2210.5 in.24 5.2011032 kip>in2

TstL

1p>22[11 in.24 - 10.5 in.24]11.411032 kip>in2 =

f = TL>JG,
f = fst = fbr

-Tst - Tbr + 1250 lb # ft2112 in.>ft2 = 0

Tbr .Tst ,

Gbr = 5.2011032 ksi.Gst = 11.411032 ksi,

T = 250 lb # ft

Fig. 5–24

(a)

4 ft

B

A
T � 250 lb�ft

1 in.

0.5 in.

(b)
x

f

250 lb�ft

Tbr

Tst

Shear–stress distribution

(c)

1977 psi
989 psi

1 in.

0.5 in.

451 psi

Sh
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A

C
0.4 m

0.8 m

300 N�m

B

Prob. 5–77

A

C

D 1 m

1 m

1.5 m

200 N�m

500 N�m

B

Prob. 5–78

5–78. The A-36 steel shaft has a diameter of 60 mm and is
fixed at its ends A and B.If it is subjected to the torques shown,
determine the absolute maximum shear stress in the shaft.

5 in.

8 in.

12 in.

1 in.

0.5 in.
A

B

C

D 500 lb�ft

Prob. 5–79

A
600 mm

600 mm

600 mm

B

2 kN�m

4 kN�m

C

D

Probs. 5–80/81

•5–77. The A-36 steel shaft has a diameter of 50 mm and is
fixed at its ends A and B. If it is subjected to the torque,
determine the maximum shear stress in regions AC and CB
of the shaft.

PROBLEMS

5–79. The steel shaft is made from two segments: AC has a
diameter of 0.5 in, and CB has a diameter of 1 in. If it is
fixed at its ends A and B and subjected to a torque of

determine the maximum shear stress in the shaft.
Gst = 10.811032 ksi.
500 lb # ft,

*5–80. The shaft is made of A-36 steel, has a diameter of
80 mm, and is fixed at B while A is loose and can rotate
0.005 rad before becoming fixed. When the torques are
applied to C and D, determine the maximum shear stress in
regions AC and CD of the shaft.

•5–81. The shaft is made of A-36 steel and has a diameter
of 80 mm. It is fixed at B and the support at A has a torsional
stiffness of If it is subjected to the gear
torques shown, determine the absolute maximum shear stress
in the shaft.

k = 0.5 MN # m>rad.

5–82. The shaft is made from a solid steel section AB and
a tubular portion made of steel and having a brass core.
If it is fixed to a rigid support at A, and a torque of

is applied to it at C, determine the angle of
twist that occurs at C and compute the maximum shear
stress and maximum shear strain in the brass and steel.
Take Gst = 11.511032 ksi, Gbr = 5.611032 ksi.

T = 50 lb # ft

A

0.5 in.

1 in.

2 ft

3 ft

B

C
T � 50 lb�ft

Prob. 5–82
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5–87. Determine the rotation of the gear at E in 
Prob. 5–86.

5

5–83. The motor A develops a torque at gear B of 
which is applied along the axis of the 2-in.-diameter steel shaft
CD. This torque is to be transmitted to the pinion gears at E
and F. If these gears are temporarily fixed, determine the
maximum shear stress in segments CB and BD of the shaft.
Also, what is the angle of twist of each of these segments? The
bearings at C and D only exert force reactions on the shaft
and do not resist torque. Gst = 1211032 ksi.

450 lb # ft,

4 ft 3 ft

B

DC

A

E F

450 lb�ft

Prob. 5–83

*5–84. A portion of the A-36 steel shaft is subjected to a
linearly distributed torsional loading. If the shaft has the
dimensions shown, determine the reactions at the fixed
supports A and C. Segment AB has a diameter of 1.5 in. and
segment BC has a diameter of 0.75 in.

•5–85. Determine the rotation of joint B and the absolute
maximum shear stress in the shaft in Prob. 5–84.

A

B
60 in.

48 in.

C

300 lb�in./in.

Probs. 5–84/85

5–86. The two shafts are made of A-36 steel. Each has a
diameter of 25 mm and they are connected using the gears
fixed to their ends. Their other ends are attached to fixed
supports at A and B. They are also supported by journal
bearings at C and D, which allow free rotation of the shafts
along their axes. If a torque of is applied to the
gear at E as shown, determine the reactions at A and B.

500 N # m

B

50 mm

100 mm

A

C

D

1.5 m

0.75 m

500 N�m

F

E

Probs. 5–86/87

*5–88. The shafts are made of A-36 steel and have the
same diameter of 4 in. If a torque of 15 kip ft is applied to
gear B, determine the absolute maximum shear stress
developed in the shaft.

•5–89. The shafts are made of A-36 steel and have the
same diameter of 4 in. If a torque of 15 kip ft is applied to
gear B, determine the angle of twist of gear B.

#

#

2.5 ft

15 kip�ft

3 ft

12 in.

6 in.

2.5 ft

A

D

B

C

E

Probs. 5–88/89
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600 lb�ft

3 ft

A

B

C

D
E

F

4 in.

2 in.

Prob. 5–90

*5–92. If the shaft is subjected to a uniform distributed
torque of , determine the maximum shear
stress developed in the shaft. The shaft is made of 2014-T6
aluminum alloy and is fixed at A and C.

t = 20 kN # m>m

Prob. 5–91

L/2

T

c

A
2c

B

L/2

A

B

Section a–a

80 mm

60 mm
a

a
600 mm

400 mm

C

20 kN�m/m

Prob. 5–93

•5–93. The tapered shaft is confined by the fixed supports
at A and B. If a torque T is applied at its mid-point,
determine the reactions at the supports.

5–90. The two 3-ft-long shafts are made of 2014-T6
aluminum. Each has a diameter of 1.5 in. and they are
connected using the gears fixed to their ends. Their other
ends are attached to fixed supports at A and B. They are
also supported by bearings at C and D, which allow free
rotation of the shafts along their axes. If a torque of
is applied to the top gear as shown, determine the maximum
shear stress in each shaft.

600 lb # ft

5–91. The A-36 steel shaft is made from two segments: AC
has a diameter of 0.5 in. and CB has a diameter of 1 in. If 
the shaft is fixed at its ends A and B and subjected to a
uniform distributed torque of along segment
CB, determine the absolute maximum shear stress in the
shaft.

60 lb # in.>in.

5 in.

20 in.
1 in.

0.5 in.
A

B

C

60 lb�in./ in.

Prob. 5–92

5–94. The shaft of radius c is subjected to a distributed
torque t, measured as of shaft. Determine the
reactions at the fixed supports A and B.

torque>length

B

x

L A

)
t0

2t0

)((t � t0 1 � 2x
L

Prob. 5–94
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*5.6 Solid Noncircular Shafts

It was demonstrated in Sec. 5.1 that when a torque is applied to a shaft
having a circular cross section—that is, one that is axisymmetric—the
shear strains vary linearly from zero at its center to a maximum at its
outer surface. Furthermore, due to the uniformity of the shear strain at
all points on the same radius, the cross sections do not deform, but rather
remain plane after the shaft has twisted. Shafts that have a noncircular
cross section, however, are not axisymmetric, and so their cross sections
will bulge or warp when the shaft is twisted. Evidence of this can be seen
from the way grid lines deform on a shaft having a square cross section
when the shaft is twisted, Fig. 5–25.As a consequence of this deformation
the torsional analysis of noncircular shafts becomes considerably more
complicated and will not be considered in this text.

Using a mathematical analysis based on the theory of elasticity,
however, it is possible to determine the shear-stress distribution within a
shaft of square cross section. Examples of how this shear stress varies
along two radial lines of the shaft are shown in Fig. 5–26a. Because these
shear-stress distributions vary in a complex manner, the shear strains
they create will warp the cross section as shown in Fig. 5–26b. In
particular notice that the corner points of the shaft must be subjected to
zero shear stress and therefore zero shear strain. The reason for this
can be shown by considering an element of material located at one of
these points, Fig. 5–26c. One would expect the top face of this element
to be subjected to a shear stress in order to aid in resisting the applied
torque T. This, however, cannot occur since the complementary shear
stresses and acting on the outer surface of the shaft, must be zero.t¿,t

Fig. 5–25

Undeformed

T

T

Deformed

Fig. 5–26

tmax
T

(c)

t¿ � 0

t � 0

t¿ � 0
t � 0

T

tmax

Shear stress distribution
along two radial lines

(a)

Warping of 
cross-sectional area

(b)
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Notice the deformation of the square element when this rubber bar is subjected to a
torque.

The results of the analysis for square cross sections, along with other
results from the theory of elasticity, for shafts having triangular and
elliptical cross sections, are reported in Table 5–1. In all cases the
maximum shear stress occurs at a point on the edge of the cross section
that is closest to the center axis of the shaft. In Table 5–1 these points
are indicated as “dots” on the cross sections. Also given are formulas
for the angle of twist of each shaft. By extending these results to a shaft
having an arbitrary cross section, it can also be shown that a shaft having
a circular cross section is most efficient, since it is subjected to both
a smaller maximum shear stress and a smaller angle of twist than a
corresponding shaft having a noncircular cross section and subjected to
the same torque.

The drill shaft is connected to the soil
auger using a shaft having a square cross
section.

Shape of
cross section

Tmax 

Ellipse

b

b

a a

2 T
pa3b3G

(a2 + b2)TL

Square

a

a

T
a3

4.81 T TL
a4G

7.10 TL

Equilateral triangle

a

a

a3
20 T

a4G
46 TLa

F

pab2

TABLE 5–1
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EXAMPLE 5.10

The 6061-T6 aluminum shaft shown in Fig. 5–27 has a cross-sectional
area in the shape of an equilateral triangle. Determine the largest
torque T that can be applied to the end of the shaft if the allowable
shear stress is and the angle of twist at its end is restricted
to How much torque can be applied to a shaft of
circular cross section made from the same amount of material?

SOLUTION
By inspection, the resultant internal torque at any cross section along
the shaft’s axis is also T. Using the formulas for and in
Table 5–1, we require

Also,

Ans.

By comparison, the torque is limited due to the angle of twist.

Circular Cross Section. If the same amount of aluminum is to be
used in making the same length of shaft having a circular cross
section, then the radius of the cross section can be calculated.We have

The limitations of stress and angle of twist then require

Ans.

Again, the angle of twist limits the applied torque.

NOTE: Comparing this result with that given above
it is seen that a shaft of circular cross section can support

37% more torque than the one having a triangular cross section.
1170 lb # in.2, 1233 lb # in.2

T = 233 lb # in.

0.02 rad =
T14 ft2112 in.>ft2

1p>2210.557 in.24[3.711062 lb>in2]
fallow =

TL

JGal
;

T = 2170 lb # in.

811032 lb>in2 =
T10.557 in.2

1p>2210.557 in.24tallow =
Tc

J
;

c = 0.557 in.

pc2 =
1
2

 11.5 in.211.5 sin 60°2Acircle = Atriangle ;

T = 170 lb # in.

0.02 rad =
46T14 ft2112 in.>ft2

11.5 in.24[3.711062 lb>in2]
fallow =

46TL

a4Gal
;

T = 1350 lb # in.

811032 lb>in2 =
20T

11.5 in.23tallow =
20T

a3 ;

ftmax

fallow = 0.02 rad.
tallow = 8 ksi

60�

1.5 in.

4 ft

T

Fig. 5–27
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*The terminology “flow” is used since q is analogous to water flowing through a tube of
rectangular cross section having a constant depth and variable width Although the
water’s velocity at each point along the tube will be different (like ), the flow 
will be constant.

q = vwtavgv
w.

*5.7 Thin-Walled Tubes Having Closed
Cross Sections

Thin-walled tubes of noncircular cross section are often used to
construct light-weight frameworks such as those used in aircraft. In some
applications, they may be subjected to a torsional loading. In this section
we will analyze the effects of applying a torque to a thin-walled tube
having a closed cross section, that is, a tube that does not have any breaks
or slits along its length. Such a tube, having a constant yet arbitrary cross-
sectional shape, and variable thickness t, is shown in Fig. 5–28a. Since the
walls are thin, we will obtain the average shear stress by assuming that this
stress is uniformly distributed across the thickness of the tube at any given
point. Before we do this, however, we will first discuss some preliminary
concepts regarding the action of shear stress over the cross section.

Shear Flow. Shown in Figs. 5–28a and 5–28b is a small element
of the tube having a finite length s and differential width dx. At
one end the element has a thickness and at the other end the
thickness is Due to the internal torque T, shear stress is
developed on the front face of the element. Specifically, at end A
the shear stress is and at end B it is These stresses can be
related by noting that equivalent shear stresses and must also
act on the longitudinal sides of the element. Since these sides have
a constant width dx, the forces acting on them are 
and Equilibrium requires these forces to be of
equal magnitude but opposite direction, so that

This important result states that the product of the average shear stress
times the thickness of the tube is the same at each point on the tube’s
cross-sectional area. This product is called shear flow,* q, and in general
terms we can express it as

(5–17)

Since q is constant over the cross section, the largest average shear stress
must occur where the tube’s thickness is the smallest.

q = tavgt

tAtA = tBtB

dFB = tB1tB dx2. dFA = tA1tA dx2
tBtA

tB .tA ,

tB .
tA ,

T

(a)

x

dx

s

t
O

tA

tB

dx
s

(b)

A

B

tA

tB

tB

tA

Fig. 5–28
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Now if a differential element having a thickness t, length ds, and
width dx is isolated from the tube, Fig. 5–28c, it is seen that the front
face over which the average shear stress acts is Hence,

or In other words, the shear flow
measures the force per unit length along the tube’s cross-sectional area.

It is important to realize that the shear-stress components shown in
Fig. 5–28c are the only ones acting on the tube. Components acting in
the other direction, as shown in Fig. 5–28d, cannot exist. This is
because the top and bottom faces of the element are at the inner and
outer walls of the tube, and these boundaries must be free of stress.
Instead, as noted above, the applied torque causes the shear flow and
the average stress to always be directed tangent to the wall of the tube,
such that it contributes to the resultant internal torque T.

Average Shear Stress. The average shear stress can be
related to the torque T by considering the torque produced
by this shear stress about a selected point O within the tube’s
boundary, Fig. 5–28e. As shown, the shear stress develops a force

on an element of the tube. This force acts
tangent to the centerline of the tube’s wall, and if the moment arm is
h, the torque is

For the entire cross section, we require

Here the “line integral” indicates that integration must be performed
around the entire boundary of the area. Since the shear flow 
is constant, it can be factored out of the integral, so that

A graphical simplification can be made for evaluating the integral
by noting that the mean area, shown by the blue colored triangle in
Fig. 5–28e, is Thus,

T = 2tavg tLdAm = 2tavg tAm

dAm = 11>22h ds.

T = tavg tCh ds

q = tavg t

T = Chtavg t ds

dT = h1dF2 = h1tavg t ds2

dF = tavg dA = tavg1t ds2

q = dF>ds.dF = tavg (t ds) = q ds,
dA = t ds.

(d)

Stress-free boundary
(bottom)

Stress-free boundary
(top)

t¿ � t¿¿ � 0

(c)

tavg

t

dsdx

(e)

x

h

T
O

ds

t

dF

(f)

Am

Fig. 5–28 (cont.)
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Solving for we have

(5–18)

Here

the average shear stress acting over a particular thickness of the
tube

the resultant internal torque at the cross section

the thickness of the tube where is to be determined

the mean area enclosed within the boundary of the centerline of
the tube’s thickness. is shown shaded in Fig. 5–28f

Since then the shear flow throughout the cross section
becomes

(5–19)

Angle of Twist. The angle of twist of a thin-walled tube of length L
can be determined using energy methods, and the development of the
necessary equation is given as a problem later in the text.* If the material
behaves in a linear elastic manner and G is the shear modulus, then this
angle given in radians, can be expressed as

(5–20)

Here again the integration must be performed around the entire boundary
of the tube’s cross-sectional area.

f =
TL

4Am
2 GC

ds

t

f,

q =
T

2Am

q = tavg t,

Am

Am =

tavgt =
T =

tavg =

tavg =
T

2tAm

tavg ,

*See Prob. 14–12.

Important Points

• Shear flow q is the product of the tube’s thickness and the
average shear stress. This value is the same at all points along the
tube’s cross section. As a result, the largest average shear stress
on the cross section occurs where the thickness is smallest.

• Both shear flow and the average shear stress act tangent to the
wall of the tube at all points and in a direction so as to contribute
to the resultant internal torque.
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EXAMPLE 5.11

Calculate the average shear stress in a thin-walled tube having a
circular cross section of mean radius and thickness t, which is
subjected to a torque T, Fig. 5–29a. Also, what is the relative angle of
twist if the tube has a length L?

SOLUTION
Average Shear Stress. The mean area for the tube is 
Applying Eq. 5–18 gives

Ans.

We can check the validity of this result by applying the torsion
formula. In this case, using Eq. 5–9, we have

Since and 

so that Ans.

which agrees with the previous result.
The average shear-stress distribution acting throughout the tube’s

cross section is shown in Fig. 5–29b. Also shown is the shear-stress
distribution acting on a radial line as calculated using the torsion
formula. Notice how each acts in a direction such that it contributes
to the resultant torque T at the section. As the tube’s thickness
decreases, the shear stress throughout the tube becomes more uniform.

Angle of Twist. Applying Eq. 5–20, we have

The integral represents the length around the centerline boundary,
which is Substituting, the final result is

Ans.

Show that one obtains this same result using Eq. 5–15.

f =
TL

2prm
3 Gt

2prm .

f =
TL

4Am
2 GC

ds

t
=

TL

41prm
2 22GtCds

tavg

tavg =
Trm

J
=

Trm

2prm
3 t

=
T

2ptrm
2

J =
p

2
 12rm

2 212rm2t = 2prm
3 tt = ro - ri ,rm L ro L ri

 =
p

2
 1ro

2 + ri
221ro + ri21ro - ri2

 =
p

2
 1ro

2 + ri
221ro

2 - ri
22

 J =
p

2
 1ro

4 - ri
42

tavg =
T

2tAm
=

T

2ptrm
2

Am = prm
2 .

rm

t

T
rm

L

(a)

T

T

Actual shear-stress
distribution

(torsion formula)

Average shear-stress
distribution

(thin-wall approximation)

(b)

rm

tavg

tavg

tmax

Fig. 5–29
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EXAMPLE 5.12

The tube is made of C86100 bronze and has a rectangular cross
section as shown in Fig. 5–30a. If it is subjected to the two torques,
determine the average shear stress in the tube at points A and B.Also,
what is the angle of twist of end C? The tube is fixed at E.

0.5 m

1.5 m

25 N�m

60 N�m

C

D

B

A
5 mm

3 mm

3 mm

60 mm

40 mm (a)

E

SOLUTION
Average Shear Stress. If the tube is sectioned through points A
and B, the resulting free-body diagram is shown in Fig. 5–30b. The
internal torque is As shown in Fig. 5–30d, the mean area is

Applying Eq. 5–18 for point A, so that

Ans.

And for point B, and therefore

Ans.

These results are shown on elements of material located at points A
and B, Fig. 5–30e. Note carefully how the torque in Fig. 5–30b
creates these stresses on the back sides of each element.

35-N # m

tB =
T

2tAm
=

35 N # m

210.003 m210.00200 m22 = 2.92 MPa

tB = 3 mm,

tA =
T

2tAm
=

35 N # m

210.005 m210.00200 m22 = 1.75 MPa

tA = 5 mm,

Am = 10.035 m210.057 m2 = 0.00200 m2

35 N # m.

Fig. 5–30
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Angle of Twist. From the free-body diagrams in Fig. 5–30b
and 5–30c, the internal torques in regions DE and CD are 
and respectively. Following the sign convention outlined in
Sec. 5.4, these torques are both positive. Thus, Eq. 5–20 becomes

Ans. = 6.29110-32 rad

 +
35 N # m 11.5 m2

410.00200 m22213811092 N>m22  c2a57 mm
5 mm

b + 2a35 mm
3 mm

b d

 =
60 N # m 10.5 m2

410.00200 m22213811092 N>m22  c2a57 mm
5 mm

b + 2a35 mm
3 mm

b d

 f = a TL

4Am
2 GC

ds

t

60 N # m,
35 N # m

Fig. 5–30

57 mm

35 mm

Am

(d)

60 N�m

60 N�m

(c)

(e)

2.92 MPa

1.75 MPa

B

A

B

A

60 N�m

25 N�m

35 N�m

(b)
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A

r

a

a A

Prob. 5–95

a

a b

Prob. 5–96

5–95. Compare the values of the maximum elastic shear
stress and the angle of twist developed in 304 stainless steel
shafts having circular and square cross sections. Each shaft
has the same cross-sectional area of length of 36 in.,
and is subjected to a torque of 4000 lb # in.

9 in2,

5–98. The shaft is made of red brass C83400 and has an
elliptical cross section. If it is subjected to the torsional
loading shown, determine the maximum shear stress within
regions AC and BC, and the angle of twist of end B
relative to end A.

5–99. Solve Prob. 5–98 for the maximum shear stress
within regions AC and BC, and the angle of twist of end B
relative to C.

f

f

PROBLEMS

*5–96. If and , determine the
maximum shear stress in the circular and elliptical shafts
when the applied torque is . By what
percentage is the shaft of circular cross section more
efficient at withstanding the torque than the shaft of
elliptical cross section?

T = 80 N # m

b = 15 mma = 25 mm

•5–97. It is intended to manufacture a circular bar to resist
torque; however, the bar is made elliptical in the process of
manufacturing, with one dimension smaller than the other
by a factor k as shown. Determine the factor by which the
maximum shear stress is increased.

*5–100. Segments AB and BC of the shaft have circular
and square cross sections, respectively. If end A is subjected
to a torque of , determine the absolute
maximum shear stress developed in the shaft and the angle
of twist of end A. The shaft is made from A-36 steel and is
fixed at C.

•5–101. Segments AB and BC of the shaft have circular and
square cross sections, respectively. The shaft is made from
A-36 steel with an allowable shear stress of ,
and an angle of twist at end A which is not allowed to exceed
0.02 rad. Determine the maximum allowable torque T that
can be applied at end A.The shaft is fixed at C.

tallow = 75 MPa

T = 2 kN # m

kd d

d

Prob. 5–97

20 mm
50 mm

2 m

1.5 m

20 N�m

B

30 N�m

50 N�m

A

C

Probs. 5–98/99

B

C

A

600 mm

30 mm
90 mm

90 mm

600 mm

T

Probs. 5–100/101
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5–102. The aluminum strut is fixed between the two walls
at A and B. If it has a 2 in. by 2 in. square cross section, and
it is subjected to the torque of at C, determine the
reactions at the fixed supports. Also, what is the angle of
twist at C? Gal = 3.811032 ksi.

80 lb # ft

*5–104. The 6061-T6 aluminum bar has a square cross
section of 25 mm by 25 mm. If it is 2 m long, determine the
maximum shear stress in the bar and the rotation of one
end relative to the other end.

5–103. The square shaft is used at the end of a drive cable in
order to register the rotation of the cable on a gauge. If it has
the dimensions shown and is subjected to a torque of
determine the shear stress in the shaft at point A. Sketch the
shear stress on a volume element located at this point.

8 N # m,

5–107. Determine the constant thickness of the rectangular
tube if the average shear stress is not to exceed 12 ksi when a
torque of is applied to the tube.Neglect stress
concentrations at the corners. The mean dimensions of the
tube are shown.

*5–108. Determine the torque T that can be applied to the
rectangular tube if the average shear stress is not to exceed
12 ksi. Neglect stress concentrations at the corners. The
mean dimensions of the tube are shown and the tube has a
thickness of 0.125 in.

T = 20 kip # in.

•5–105. The steel shaft is 12 in. long and is screwed into
the wall using a wrench. Determine the largest couple
forces F that can be applied to the shaft without causing the
steel to yield.

5–106. The steel shaft is 12 in. long and is screwed into the
wall using a wrench. Determine the maximum shear stress
in the shaft and the amount of displacement that each
couple force undergoes if the couple forces have a
magnitude of Gst = 10.811032 ksi.F = 30 lb,

tY = 8 ksi.

2 ft

3 ft

80 lb�ft

A

C

B

Prob. 5–102

A

8 N�m

5 mm

5 mm

Prob. 5–103

1.5 m

25 mm
25 mm

0.5 m

20 N�m

60 N·m
80 N�m

C

A

B

Prob. 5–104

8 in.

8 in.

1 in.

1 in.

12 in.

F

F

Probs. 5–105/106

2 in.

4 in.

T

Probs. 5–107/108
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1.20 in.

0.5 in.

0.6 in.

1.80 in.

Prob. 5–109

1.80 in.

1.20 in.

0.5 in.

0.6 in.

Prob. 5–110

a

t

a

a

t

t

Prob. 5–111

a b

e
2

e
2

a � b
2

Prob. 5–1125–110. For a given average shear stress, determine the
factor by which the torque-carrying capacity is increased if
the half-circular sections are reversed from the dashed-line
positions to the section shown. The tube is 0.1 in. thick.

5–111. A torque T is applied to two tubes having the cross
sections shown. Compare the shear flow developed in each
tube.

*5–112. Due to a fabrication error the inner circle of the
tube is eccentric with respect to the outer circle. By what
percentage is the torsional strength reduced when the
eccentricity e is one-fourth of the difference in the radii?

•5–113. The mean dimensions of the cross section of an
airplane fuselage are shown. If the fuselage is made of 
2014-T6 aluminum alloy having allowable shear stress of

, and it is subjected to a torque of 6000 kip ft,
determine the required minimum thickness t of the cross
section to the nearest Also, find the corresponding
angle of twist per foot length of the fuselage.

5–114. The mean dimensions of the cross section of an
airplane fuselage are shown. If the fuselage is made from
2014-T6 aluminum alloy having an allowable shear stress of

and the angle of twist per foot length of
fuselage is not allowed to exceed determine
the maximum allowable torque that can be sustained by the
fuselage. The thickness of the wall is t = 0.25 in.

0.001 rad>ft,
tallow = 18 ksi

1>16 in.

#tallow = 18 ksi

•5–109. For a given maximum shear stress, determine the
factor by which the torque carrying capacity is increased if
the half-circular section is reversed from the dashed-line
position to the section shown. The tube is 0.1 in. thick.

3 ft

3 ft

4.5 ft

t

Probs. 5–113/114
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*5–116. The tube is made of plastic, is 5 mm thick, and has
the mean dimensions shown. Determine the average shear
stress at points A and B if it is subjected to the torque of

Show the shear stress on volume elements
located at these points.
T = 5 N # m.

•5–117. The mean dimensions of the cross section of the
leading edge and torsion box of an airplane wing can be
approximated as shown. If the wing is made of 2014-T6
aluminum alloy having an allowable shear stress of

MPa and the wall thickness is 10 mm,
determine the maximum allowable torque and the
corresponding angle of twist per meter length of the wing.

5–118. The mean dimensions of the cross section of the
leading edge and torsion box of an airplane wing can 
be approximated as shown. If the wing is subjected to a
torque of and the wall thickness is 10 mm,
determine the average shear stress developed in the wing
and the angle of twist per meter length of the wing. The
wing is made of 2014-T6 aluminum alloy.

4.5 MN # m

tallow = 125

5–119. The symmetric tube is made from a high-strength
steel, having the mean dimensions shown and a thickness of
5 mm. If it is subjected to a torque of 
determine the average shear stress developed at points A
and B. Indicate the shear stress on volume elements located
at these points.

T = 40 N # m,

5–115. The tube is subjected to a torque of 
Determine the average shear stress in the tube at points A
and B.

750 N # m.

60 mm

100 mm

4 mm

4 mm

6 mm

6 mm

B

A

750 N�m

Prob. 5–115

A

30 mm

T

40 mm
40 mm

50 mm

60 mm

B

Prob. 5–116

2 m

10 mm
0.25 m

10 mm

10 mm

0.25 m

0.5 m

Probs. 5–117/118

60 mm

20 mm
30 mm

40 N�m

A
B

Prob. 5–119
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5.8 Stress Concentration

The torsion formula, cannot be applied to regions of a shaft
having a sudden change in the cross section. Here the shear-stress and
shear-strain distributions in the shaft become complex and can be
obtained only by using experimental methods or possibly by a
mathematical analysis based on the theory of elasticity. Three common
discontinuities of the cross section that occur in practice are shown in
Fig. 5–31.They are at couplings, which are used to connect two collinear
shafts together, Fig. 5–31a, keyways, used to connect gears or pulleys to a
shaft, Fig. 5–31b, and shoulder fillets, used to fabricate a single collinear
shaft from two shafts having different diameters, Fig. 5–31c. In each case
the maximum shear stress will occur at the point (dot) indicated on the
cross section.

The necessity to perform a complex stress analysis at a shaft
discontinuity to obtain the maximum shear stress can be eliminated by
using a torsional stress-concentration factor, K. As in the case of axially
loaded members, Sec. 4.7, K is usually taken from a graph based on
experimental data. An example, for the shoulder-fillet shaft, is shown 
in Fig. 5–32. To use this graph, one first finds the geometric ratio 
to define the appropriate curve, and then once the abscissa is
calculated, the value of K is found along the ordinate.

r>dD>d

tmax = Tc>J,

(a)

(b)

(c)

0.300.250.200.150.100.050.00
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
r

T
T

D d

K D/d � 2.5

2.0

1.67

1.25

1.11

r
d

Fig. 5–31

Fig. 5–32
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The maximum shear stress is then determined from

(5–21)

Here the torsion formula is applied to the smaller of the two connected
shafts, since occurs at the base of the fillet, Fig. 5–31c.

Note from the graph that an increase in fillet radius r causes a decrease
in K. Hence the maximum shear stress in the shaft can be reduced by
increasing the fillet radius. Also, if the diameter of the larger shaft is
reduced, the D�d ratio will be lower and so the value of K and therefore

will be lower.
Like the case of axially loaded members, torsional stress concentration

factors should always be used when designing shafts made from brittle
materials, or when designing shafts that will be subjected to fatigue or
cyclic torsional loadings. These conditions give rise to the formation
of cracks at the stress concentration, and this can often lead to a
sudden fracture. On the other hand, if large static torsional loadings are
applied to a shaft made from ductile material, then inelastic strains will
develop within the shaft. Yielding of the material will cause the stress
distribution to become more evenly distributed throughout the shaft, so
that the maximum stress will not be limited to the region of stress
concentration. This phenomenon will be discussed further in the next
section.

tmax

tmax

tmax = K 
Tc

J

Important Points

• Stress concentrations in shafts occur at points of sudden 
cross-sectional change, such as couplings, keyways, and at shoulder
fillets. The more severe the change in geometry, the larger the
stress concentration.

• For design or analysis, it is not necessary to know the exact 
shear-stress distribution on the cross section. Instead, it is possible
to obtain the maximum shear stress using a stress concentration
factor, K, that has been determined through experiment, and is
only a function of the geometry of the shaft.

• Normally a stress concentration in a ductile shaft subjected to a
static torque will not have to be considered in design; however, if
the material is brittle, or subjected to fatigue loadings, then stress
concentrations become important.

Stress concentrations can arise at the
coupling of these shafts, and this must
be taken into account when the shaft is
designed.
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EXAMPLE 5.13

The stepped shaft shown in Fig. 5–33a is supported by bearings at A
and B. Determine the maximum stress in the shaft due to the applied
torques.The shoulder fillet at the junction of each shaft has a radius of
r = 6 mm.

A

B

30 N�m

30 N�m

60 N�m

20 mm

40 mm

(a)

30 N�m
T � 30 N�m

(b)

Shear-stress
distribution
predicted by

torsion formula

Actual shear-stress
distribution caused

by stress concentration

(c)

tmax = 3.10 MPa

SOLUTION
Internal Torque. By inspection, moment equilibrium about the
axis of the shaft is satisfied. Since the maximum shear stress occurs at
the rooted ends of the smaller diameter shafts, the internal torque

can be found there by applying the method of sections,
Fig. 5–33b.

Maximum Shear Stress. The stress-concentration factor can be
determined by using Fig. 5–32. From the shaft geometry we have

Thus, the value of is obtained.
Applying Eq. 5–21, we have

Ans.

NOTE: From experimental evidence, the actual stress distribution
along a radial line of the cross section at the critical section looks
similar to that shown in Fig. 5–33c. Notice how this compares with the
linear stress distribution found from the torsion formula.

tmax = K 
Tc

J
; tmax = 1.3B 30 N # m 10.020 m2

1p>2210.020 m24 R = 3.10 MPa

K = 1.3

 
r

d
=

6 mm
2120 mm2 = 0.15

 
D

d
=

2140 mm2
2120 mm2 = 2

130 N # m2

Fig. 5–33
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*5.9 Inelastic Torsion

If the torsional loadings applied to the shaft are excessive, then the
material may yield, and, consequently, a “plastic analysis” must be
used to determine the shear-stress distribution and the angle of
twist. To perform this analysis, then as before, it is necessary to
meet the conditions of both deformation and equilibrium for the
shaft.

It was shown in Sec. 5.1 that regardless of the material behavior,
the shear strains that develop in a circular shaft will vary linearly,
from zero at the center of the shaft to a maximum at its outer
boundary, Fig. 5–34a.Also, the resultant internal torque at the section
must be equivalent to the torque caused by the entire shear-stress
distribution over the cross section. This condition can be expressed
mathematically by considering the shear stress acting on an
element of area dA located a distance from the center of the shaft,
Fig. 5–34b. The force produced by this stress is and the
torque produced is For the entire shaft we
require

(5–22)

If the area dA over which acts can be defined as a differential
ring having an area of Fig. 5–34c, then the above
equation can be written as

(5–23)

These conditions of geometry and loading will now be used to
determine the shear-stress distribution in a shaft when the shaft is
subjected to two types of torque.

Elastic-Plastic Torque. Let us consider the material in the shaft
to exhibit an elastic-perfectly plastic behavior.As shown in Fig. 5–35a,
this is characterized by a shear stress–strain diagram for which the
material undergoes an increasing amount of shear strain when the
shear stress reaches the yield point tY.

T = 2pL
c

0
tr2 dr

dA = 2pr dr,
t

T = LA
rt dA

dT = r dF = r(t dA).
dF = t dA,

r

t

c

(a)

Linear shear–strain
distribution

gmax

(b)

dA

T
t

r

(c)

dA � 2pr dr

 dr
r

Fig. 5–34

Severe twist of an aluminum specimen caused
by the application of a plastic torque.
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If the internal torque produces the maximum elastic shear strain , at
the outer boundary of the shaft, then the maximum elastic torque 
that produces this distribution can be found from the torsion formula,

so that 

(5–24)

Furthermore, the angle of twist can be determined from Eq. 5–13,
namely,

(5–25)

If the applied torque increases in magnitude above it will begin to
cause yielding. First at the outer boundary of the shaft, and then,
as the maximum shear strain increases to, say, in Fig. 5–35a, the
yielding boundary will progress inward toward the shaft’s center,
Fig. 5–35b.As shown, this produces an elastic core, where, by proportion,
the radius of the core is Also, the outer portion of the
material forms a plastic annulus or ring, since the shear strains 
within this region are greater than . The corresponding shear-stress
distribution along a radial line of the shaft is shown in Fig. 5–35c. It is
established by taking successive points on the shear-strain distribution
in Fig. 5–35b and finding the corresponding value of shear stress from
the diagram, Fig. 5–35a. For example, at gives and at

also gives etc.
Since in Fig. 5–35c can now be expressed as a function of we can

apply Eq. 5–23 to determine the torque. We have

(5–26) =
ptY

6
 14c3 - rY

3 2

 =
p

2rY
 tYrY

4 +
2p
3

 tY1c3 - rY
3 2

 =
2p
rY

 tYL
rY

0
r3 dr + 2ptYL

c

rY

r2 dr

 = 2pL
rY

0
¢tY 

r

rY
≤r2 dr + 2pL

c

rY

tYr
2 dr

 T = 2pL
c

0
tr2 dr

r,t

tY ;gYr = rY,
tY,g¿r = c,t–g

gY

g

rY = 1gY>g¿2c.

g¿
r = c,

TY,

df = g 
dx
r

TY =
p

2
 tYc3

tY = TYc>3(p>2)c44,
TY

gY

Fig. 5–35

c

(b)

Shear–strain distribution

Plastic
annulus

Elastic
core

rY

gY

g¿

(a)

gY g¿
g

tY

t

c

(c)

Shear–stress distribution

T

rY

tY
tY
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Plastic Torque. Further increases in T tend to shrink the radius of
the elastic core until all the material will yield, i.e., Fig. 5–35b.
The material of the shaft will then be subjected to perfectly plastic behav-
ior and the shear-stress distribution becomes uniform, so that 
Fig. 5–35d. We can now apply Eq. 5–23 to determine the plastic torque

which represents the largest possible torque the shaft will support.

(5–27)

Compared with the maximum elastic torque Eq. 5–24, it can be seen
that

In other words, the plastic torque is 33% greater than the maximum
elastic torque.

Unfortunately, the angle of twist for the shear-stress distribution
cannot be uniquely defined. This is because does not correspond
to any unique value of shear strain As a result, once is
applied, the shaft will continue to deform or twist with no corresponding
increase in shear stress.

*5.10 Residual Stress

When a shaft is subjected to plastic shear strains caused by torsion,
removal of the torque will cause some shear stress to remain in the shaft.
This stress is referred to as residual stress, and its distribution can be
calculated using superposition and elastic recovery. (See Sec. 4.9.)

For example, if causes the material at the outer boundary of the shaft
to be strained to , shown as point C on the curve in Fig. 5–36, the
release of Tp will cause a reverse shear stress, such that the material
behavior will follow the straight-lined segment CD, creating some elastic
recovery of the shear strain This line is parallel to the initial straight-
lined portion AB of the diagram, and thus both lines have a slope G as
indicated.

t–g
g1 .

t-gg1

Tp

Tpg Ú gY .
t = tY

f

Tp =
4
3

 TY

TY ,

 =
2p
3

 tYc3

 Tp = 2pL
c

0
tYr

2 dr

Tp ,

t = tY ,

rY: 0,
Tp

(d)

Fully plastic torque

c
TY

Fig. 5–35 (cont.)

A

B
C

D

G G

Maximum elastic
recovery is 2gY

Reversed elastic
material behavior

Elastic-plastic
material behavior

t

tY

gY

�tY

g1
g

Fig. 5–36
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Since elastic recovery occurs, we can superimpose on the plastic
torque stress distribution in Fig. 5–37a a linear stress distribution caused
by applying the plastic torque in the opposite direction, Fig. 5–37b.
Here the maximum shear stress for this stress distribution, is called
the modulus of rupture for torsion. It is determined from the torsion
formula,* which gives

Using Eq. 5–27,

Note that reversed application of using the linear shear-stress
distribution in Fig. 5–37b is possible here, since the maximum recovery
for the elastic shear strain is as noted in Fig. 5–37. This corresponds
to a maximum applied shear stress of which is greater than the
maximum shear stress of calculated above. Hence, by superimposing
the stress distributions involving applications and then removal of the
plastic torque, we obtain the residual shear-stress distribution in the shaft
as shown in Fig. 5–37c. It should be noted from this diagram that the
shear stress at the center of the shaft, shown as must actually be zero,
since the material along the axis of the shaft is never strained.The reason
this is not zero is because we assumed that all the material of the shaft
was strained beyond the yield point in order to determine the plastic
torque, Fig. 5–37a. To be more realistic, an elastic–plastic torque should
be considered when modeling the material behavior. Doing so leads to
the superposition of the stress distribution shown in Fig. 5–37d.

tY ,

4
3 tY

2tY ,
2gY ,

Tp

tr =
[12>32ptYc3]c

1p>22c4 =
4
3

 tY

tr =
Tpc

J
=

Tpc

1p>22c4

tr ,
Tp

*The torsion formula is valid only when the material behaves in a linear elastic manner;
however, the modulus of rupture is so named because it assumes that the material behaves
elastically and then suddenly ruptures at the proportional limit.

Plastic torque applied
causing plastic shear strains

throughout the shaft
(a)

Tp

tY

Plastic torque reversed
causing elastic shear strains

throughout the shaft
(b)

Tp

tr

Residual shear–stress
distribution in shaft

(c)

tY

tr � tY

Elastic–plastic torque applied Elastic–plastic torque reversed Residual shear–stress
distribution in shaft

�

(d)

Tep

Tep

tY

tmax � tr

tmax � tY
�

Fig. 5–37
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Ultimate Torque. In the general case, most engineering materials
will have a shear stress–strain diagram as shown in Fig. 5–38a.
Consequently, if T is increased so that the maximum shear strain in the
shaft becomes Fig. 5–38b, then, by proportion occurs at

Likewise, the shear strains at, say, and 
can be found by proportion, i.e., and If the
corresponding values of and are taken from the diagram
and plotted, we obtain the shear-stress distribution, which acts along a
radial line on the cross section, Fig. 5–38c. The torque produced by this
stress distribution is called the ultimate torque,

The magnitude of can be determined by “graphically” integrating
Eq. 5–23.To do this, the cross-sectional area of the shaft is segmented into
a finite number of rings, such as the one shown shaded in Fig. 5–38d. The
area of this ring, is multiplied by the shear stress that
acts on it, so that the force can be determined. The torque
created by this force is then The addition of all
the torques for the entire cross section, as determined in this manner,
gives the ultimate torque that is, Eq. 5–23 becomes 
If, however, the stress distribution can be expressed as an analytical
function, as in the elastic and plastic torque cases, then the
integration of Eq. 5–23 can be carried out directly.

t = f1r2,
Tu L 2p©tr2 ¢r.Tu ;

¢T = r ¢F = r1t ¢A2.¢F = t ¢A
t¢A = 2pr ¢r,

Tu

Tu.

t–gtut2 ,tY ,t1 ,
g2 = 1r2>c2gu .g1 = 1r1>c2gu

r = r2 ,r = r1rY = 1gY>gu2c.
gYg = gu ,

(a)

Tu

TY

T

g
g1 g2gY gu

T2

T1

(b)

Ultimate shear-strain distribution

c
g1

g2gY
gu

rY

(c)

Ultimate shear-stress distribution

cTu

rY

TY

T1

T2 Tu

(d)

Tu

�r

TuT

r

�A � 2pr�r

Fig. 5–38Important Points

• The shear-strain distribution along a radial line on the cross
section of a shaft is based on geometric considerations, and it is
found to always vary linearly along the radial line. Once it is
established, the shear-stress distribution can then be determined
using the shear stress–strain diagram.

• If the shear-stress distribution for the shaft is established, it
produces a torque about the axis of the shaft that is equivalent to
the resultant internal torque acting on the cross section.

• Perfectly plastic behavior assumes the shear-stress distribution is
constant. When it occurs, the shaft will continue to twist with no
increase in torque. This torque is called the plastic torque.
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EXAMPLE 5.14

The tubular shaft in Fig. 5–39a is made of an aluminum alloy that is
assumed to have an elastic-plastic diagram as shown. Determine
the maximum torque that can be applied to the shaft without causing
the material to yield, and the maximum torque or plastic torque that
can be applied to the shaft. Also, what should the minimum shear
strain at the outer wall be in order to develop a fully plastic torque?

SOLUTION
Maximum Elastic Torque. We require the shear stress at the outer
fiber to be 20 MPa. Using the torsion formula, we have

Ans.

The shear-stress and shear-strain distributions for this case are
shown in Fig. 5–39b. The values at the tube’s inner wall have been
obtained by proportion.

Plastic Torque. The shear-stress distribution in this case is shown in
Fig. 5–39c. Application of Eq. 5–23 requires We have

Ans.

For this tube represents a 20% increase in torque capacity
compared with the elastic torque 

Outer Radius Shear Strain. The tube becomes fully plastic when
the shear strain at the inner wall becomes as shown in
Fig. 5–39c. Since the shear strain remains linear over the cross section,
the plastic strain at the outer fibers of the tube in Fig. 5–39c is
determined by proportion.

Ans.go = 0.477110-32 rad

go

50 mm
=

0.286110-32 rad

30 mm

0.286110-32 rad,

TY .
Tp

 = 4.11 kN # m

 Tp = 2pL
0.05 m

0.03 m
[2011062 N>m2]r2 dr = 125.6611062 

1
3

 r3 `
0.03 m

0.05 m

t = tY .

TY = 3.42 kN # m

2011062 N>m2 =
TY10.05 m2

1p>22[10.05 m24 - 10.03 m24]tY =
TYc

J
;

t–g

50 mm

30 mm

T

20

(a)

0.286 (10�3)

t (MPa)

g (rad)

(b)

Elastic shear–stress distribution

Elastic shear–strain distribution

20 MPa

12 MPa

0.286 (10�3) rad

0.172 (10�3) rad

50 mm

30 mm

(c)
Plastic shear–stress distribution

20 MPa

Initial plastic shear–strain distribution

0.286 (10�3) rad

0.477 (10�3) rad

Fig. 5–39
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EXAMPLE 5.15

A solid circular shaft has a radius of 20 mm and length of 1.5 m. The
material has an elastic–plastic diagram as shown in Fig. 5–40a.
Determine the torque needed to twist the shaft f = 0.6 rad.

t–g

SOLUTION
We will first obtain the shear-strain distribution, then establish the
shear-stress distribution. Once this is known, the applied torque can
be determined.

The maximum shear strain occurs at the surface of the shaft,
Since the angle of twist is for the entire 1.5-m length of
the shaft, then using Eq. 5–25, for the entire length we have

The shear-strain distribution is shown in Fig. 5–40b. Note that
yielding of the material occurs since in
Fig. 5–40a. The radius of the elastic core, can be obtained by
proportion. From Fig. 5–40b,

Based on the shear-strain distribution, the shear-stress distribution,
plotted over a radial line segment, is shown in Fig. 5–40c. The torque
can now be obtained using Eq. 5–26. Substituting in the numerical
data yields

Ans. = 1.25 kN # m

 =
p[7511062 N>m2]

6
 [410.02 m23 - 10.004 m23]

 T =
ptY

6
 14c3 - rY

3 2

 rY = 0.004 m = 4 mm

 
rY

0.0016
=

0.02 m
0.008

rY ,
gmax 7 gY = 0.0016 rad

gmax = 0.008 rad

0.6 =
gmax11.5 m2
10.02 m2f = g 

L
r

;

f = 0.6 rad
r = c.

(c)

Shear–stress distribution

20 mm
tY � 75 MPa

rY � 4 mm

Shear–strain distribution

(b)

gY � 0.0016 rad

gmax � 0.008 rad

20 mm

rY

75

(a)

t (MPa)

0.0016 0.008
g (rad)

Fig. 5–40
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EXAMPLE 5.16

A tube in Fig. 5–41a has a length of 5 ft and the material has an elastic-
plastic diagram, also shown in Fig. 5–41a. Determine the plastic
torque What is the residual shear-stress distribution if is
removed just after the tube becomes fully plastic?

SOLUTION
Plastic Torque. The plastic torque will strain the tube such that
all the material yields. Hence the stress distribution will appear as
shown in Fig. 5–41b. Applying Eq. 5–23, we have

Ans.

When the tube just becomes fully plastic, yielding has started at the
inner wall, i.e., at Fig. 5–41a. The angle of
twist that occurs can be determined from Eq. 5–25, which for the
entire tube becomes

When is removed, or in effect reapplied in the opposite
direction, then the “fictitious” linear shear-stress distribution shown in
Fig. 5–41c must be superimposed on the one shown in Fig. 5–41b. In
Fig. 5–41c the maximum shear stress or the modulus of rupture is
found from the torsion formula

Also, at the inner wall of the tube the shear stress is

Ans.

The resultant residual shear-stress distribution is shown in Fig. 5–41d.

ti = 114.93 ksi2a1 in.
2 in.
b = 7.47 ksi

tr =
Tpco

J
=
1175.9 kip # in.212 in.2
1p>22[12 in.24 - 11 in.24] = 14.93 ksi

Tp

fp = gY 
L
ci

=
10.002215 ft2112 in.>ft2

11 in.2 = 0.120 rad g

gY = 0.002 rad,ci = 1 in.,

 =
2p
3

 11211032 lb>in22[12 in.23 - 11 in.23] = 175.9 kip # in.

 Tp = 2pL
co

ci

tYr
2 dr =

2p
3

 tY1co
3 - ci

32

Tp

TpTp .
t–g

12

(a)
0.002

T

co � 2 in.

ci � 1 in.

g (rad)

t (ksi)

(c)

Plastic torque reversed

7.47 ksi

 Tp

tr � 14.93 ksi

(b)

Plastic torque applied

12 ksi

 Tp

Fig. 5–41

Residual shear–stress distribution

2.93 ksi

4.53 ksi (d)
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*5–120. The steel used for the shaft has an allowable shear
stress of If the members are connected with
a fillet weld of radius determine the maximum
torque T that can be applied.

r = 4 mm,
tallow = 8 MPa.

*5–124. The steel used for the shaft has an allowable shear
stress of If the members are connected
together with a fillet weld of radius determine
the maximum torque T that can be applied.

r = 2.25 mm,
tallow = 8 MPa.

PROBLEMS

20 mm 20 mm

T

50 mm

T
2

T
2

Prob. 5–120

•5–121. The built-up shaft is to be designed to rotate
at 720 rpm while transmitting 30 kW of power. Is this
possible? The allowable shear stress is 

5–122. The built-up shaft is designed to rotate at 540 rpm.
If the radius of the fillet weld connecting the shafts
is and the allowable shear stress for the
material is determine the maximum power
the shaft can transmit.

tallow = 55 MPa,
r = 7.20 mm,

tallow = 12 MPa.

5–123. The steel shaft is made from two segments: AB and
BC, which are connected using a fillet weld having a radius
of 2.8 mm. Determine the maximum shear stress developed
in the shaft.

75 mm

60 mm

Probs. 5–121/122

50 mm

20 mm 100 N�m

60 N�m

A

C

B

40 N�m

D

Prob. 5–123

30 mm 30 mm
15 mm

T
T
2

T
2

Prob. 5–124
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160

0.004
g (rad)

t (MPa)

T
T

80 mm

Prob. 5–129

T

2 in.

6

0.0006
g (rad)

t (ksi)

12

0.0048

Prob. 5–130

•5–129. The solid shaft is made of an elastic-perfectly
plastic material as shown. Determine the torque T needed
to form an elastic core in the shaft having a radius of

If the shaft is 3 m long, through what angle
does one end of the shaft twist with respect to the other end?
When the torque is removed, determine the residual stress
distribution in the shaft and the permanent angle of twist.

rY = 20 mm.

5–130. The shaft is subjected to a maximum shear strain
of 0.0048 rad. Determine the torque applied to the shaft 
if the material has strain hardening as shown by the shear
stress–strain diagram.

•5–125. The assembly is subjected to a torque of 710 
If the allowable shear stress for the material is ksi,
determine the radius of the smallest size fillet that can be used
to transmit the torque.

tallow = 12
lb # in.

5–126. A solid shaft is subjected to the torque T, which
causes the material to yield. If the material is elastic plastic,
show that the torque can be expressed in terms of the angle
of twist of the shaft as where 
and are the torque and angle of twist when the material
begins to yield.

5–127. A solid shaft having a diameter of 2 in. is made
of elastic-plastic material having a yield stress of

and shear modulus of 
Determine the torque required to develop an elastic core
in the shaft having a diameter of 1 in. Also, what is the
plastic torque?

*5–128. Determine the torque needed to twist a short
3-mm-diameter steel wire through several revolutions if it is
made from steel assumed to be elastic plastic and having a
yield stress of Assume that the material
becomes fully plastic.

tY = 80 MPa.

G = 1211032 ksi.tY = 16 ksi

fY

TYT = 4
3 TY11 - f3

 Y>4f32,f

710 lb�ft

1.5 in.

0.75 in.

710 lb�in.A

B

C

Prob. 5–125
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c

c
2

Prob. 5–132

1 in.

0.75 in.

T

T

12

0.005
g (rad)

t (ksi)

Prob. 5–133

5–131. An 80-mm diameter solid circular shaft is made of
an elastic-perfectly plastic material having a yield shear
stress of . Determine (a) the maximum elastic
torque ; and (b) the plastic torque 

*5–132. The hollow shaft has the cross section shown and
is made of an elastic-perfectly plastic material having a
yield shear stress of . Determine the ratio of the plastic
torque to the maximum elastic torque .TYTp

tY

Tp.TY

tY = 125 MPa

5–133. The shaft consists of two sections that are rigidly
connected. If the material is elastic plastic as shown,
determine the largest torque T that can be applied to the
shaft. Also, draw the shear-stress distribution over a radial
line for each section. Neglect the effect of stress
concentration.

5–134. The hollow shaft is made of an elastic-perfectly
plastic material having a shear modulus of G and a yield
shear stress of . Determine the applied torque when the
material of the inner surface is about to yield (plastic torque).
Also, find the corresponding angle of twist and the maximum
shear strain. The shaft has a length of L.

TptY

5–135. The hollow shaft has inner and outer diameters of
60 mm and 80 mm, respectively. If it is made of an elastic-
perfectly plastic material, which has the diagram shown,
determine the reactions at the fixed supports A and C.

t-g

c0ci

Prob. 5–134

g (rad)

120

0.0016

450 mm

150 mm

A

B

C

15 kN�m

t (MPa)

Prob. 5–135
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t (ksi)

g (rad)

10

0.004

T

T

3 ft

6 in.

3 in.

Probs. 5–138/139

35 mm

30 mm

210

0.003
g (rad)

t (MPa)

T

Prob. 5–140

5–139. The tube is made of elastic-perfectly plastic
material, which has the diagram shown. Determine the
torque T that just causes the inner surface of the shaft to
yield. Also, find the residual shear-stress distribution in the
shaft when the torque is removed.

t-g

*5–140. The 2-m-long tube is made of an elastic-perfectly
plastic material as shown. Determine the applied torque T
that subjects the material at the tube’s outer edge to a shear
strain of What would be the permanent
angle of twist of the tube when this torque is removed?
Sketch the residual stress distribution in the tube.

gmax = 0.006 rad.

*5–136. The tubular shaft is made of a strain-hardening
material having a diagram as shown. Determine the
torque T that must be applied to the shaft so that the
maximum shear strain is 0.01 rad.

t-g

•5–137. The shear stress–strain diagram for a solid
50-mm-diameter shaft can be approximated as shown in
the figure. Determine the torque T required to cause a
maximum shear stress in the shaft of 125 MPa. If the shaft is
1.5 m long, what is the corresponding angle of twist?

T

0.75 in.

10

0.005
g (rad)

t (ksi)

15

0.01

0.5 in.

Prob. 5–136

50

0.0025
g (rad)

t (MPa)

125

0.010

1.5 m

T

T

Prob. 5–137

5–138. A tube is made of elastic-perfectly plastic material,
which has the diagram shown. If the radius of the
elastic core is , determine the applied torque T.
Also, find the residual shear-stress distribution in the shaft
and the permanent angle of twist of one end relative to the
other when the torque is removed.

rY = 2.25  in.
t-g
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t (MPa)

t (MPa)

180

0.0024

g (rad)

g (rad)

36

0.002

450 mm

A

B

100 mm

60 mm

Steel Alloy

Copper Alloy

 15 kN�m

Prob. 5–141

T

r

Prob. 5–142

•5–141. A steel alloy core is bonded firmly to the copper
alloy tube to form the shaft shown. If the materials have the

diagrams shown, determine the torque resisted by the
core and the tube.
t-g

5–142. A torque is applied to the shaft of radius r. If the
material has a shear stress–strain relation of ,
where k is a constant, determine the maximum shear stress
in the shaft.

t = kg1>6
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CHAPTER REVIEW

Torque causes a shaft having a circular cross section 
to twist, such that the shear strain in the shaft is
proportional to its radial distance from the center of
the shaft. Provided the material is homogeneous and
linear elastic, then the shear stress is determined from
the torsion formula,

The design of a shaft requires finding the geometric
parameter,

Often the power P supplied to a shaft rotating at is
reported, in which case the torque is determined from
P = Tv.

v

J
c

=
T
tallow

t =
Tr

J

T � T(x)

x

f

T

tmax

tmax

t

T1

f

T3

T2

co

ci

T

tmax

tmax

The angle of twist of a circular shaft is determined from

If the internal torque and JG are constant within each
segment of the shaft then

For application, it is necessary to use a sign convention for
the internal torque and to be sure the material remains
linear elastic.

f = aTL

JG

f = L
L

0

 T1x2 dx

JG

If the shaft is statically indeterminate, then the reactive
torques are determined from equilibrium, compatibility
of twist, and a torque-twist relationship, such as
f = TL>JG.
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Am

T

t

T
tmax

cT tY tY

rY

Solid non-circular shafts tend to warp out of plane when
subjected to a torque. Formulas are available to determine the
maximum elastic shear stress and the twist for these cases.

The average shear stress in thin-walled tubes is determined by
assuming the shear stress across each thickness t of the tube is

constant. Its value is determined from 

Stress concentrations occur in shafts when the cross section
suddenly changes. The maximum shear stress is determined
using a stress concentration factor K, which is determined
from experiment and represented in graphical form. Once 

obtained,

If the applied torque causes the material to exceed the elastic
limit, then the stress distribution will not be proportional to
the radial distance from the centerline of the shaft. Instead, the
internal torque is related to the stress distribution using the
shear-stress–shear-strain diagram and equilibrium.

If a shaft is subjected to a plastic torque, which is then
released, it will cause the material to respond elastically,
thereby causing residual shear stress to be developed in the
shaft.

tmax = KaTc

J
b .

tavg =
T

2tAm
.
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Prob. 5–143

Prob. 5–144

5–143. Consider a thin-walled tube of mean radius r and
thickness t. Show that the maximum shear stress in the tube
due to an applied torque T approaches the average shear
stress computed from Eq. 5–18 as r>t: q .

5–146. Rod AB is made of A-36 steel with an allowable
shear stress of , and tube BC is made of
AM1004-T61 magnesium alloy with an allowable shear
stress of . The angle of twist of end C is
not allowed to exceed 0.05 rad. Determine the maximum
allowable torque T that can be applied to the assembly.

1tallow2mg = 45 MPa

1tallow2st = 75 MPa

REVIEW PROBLEMS

75 mm

30� 30� t

t

r

E G

4 m

t � 5 mm

r � 60 mm

10 kN�m

a

a

A

B

C

T

0.4 m

0.3 m

60 mm

50 mm

30 mm
Section a–a

*5–144. The 304 stainless steel shaft is 3 m long and has an
outer diameter of 60 mm. When it is rotating at it
transmits 30 kW of power from the engine E to the
generator G. Determine the smallest thickness of the shaft
if the allowable shear stress is and the
shaft is restricted not to twist more than 0.08 rad.

tallow = 150 MPa

60 rad>s,

5–147. A shaft has the cross section shown and is made of
2014-T6 aluminum alloy having an allowable shear stress of

. If the angle of twist per meter length is
not allowed to exceed 0.03 rad, determine the required
minimum wall thickness t to the nearest millimeter when
the shaft is subjected to a torque of T = 15 kN # m.

tallow = 125  MPa

•5–145. The A-36 steel circular tube is subjected to a
torque of Determine the shear stress at the mean
radius and compute the angle of twist of the
tube if it is 4 m long and fixed at its far end. Solve the
problem using Eqs. 5–7 and 5–15 and by using Eqs. 5–18
and 5–20.

r = 60 mm
10 kN # m.

Prob. 5–145

Prob. 5–146

Prob. 5–147
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2 ft 1.5 ft

B

DC

A

E F

500 lb ft·

Prob. 5–148

*5–148. The motor A develops a torque at gear B of
500 which is applied along the axis of the 2-in.-
diameter A-36 steel shaft CD. This torque is to be
transmitted to the pinion gears at E and F. If these gears are
temporarily fixed, determine the maximum shear stress in
segments CB and BD of the shaft. Also, what is the angle of
twist of each of these segments? The bearings at C and D
only exert force reactions on the shaft.

lb # ft,

5–149. The coupling consists of two disks fixed to separate
shafts, each 25 mm in diameter. The shafts are supported on
journal bearings that allow free rotation. In order to limit
the torque T that can be transmitted, a “shear pin” P is used
to connect the disks together. If this pin can sustain an
average shear force of 550 N before it fails, determine the
maximum constant torque T that can be transmitted from
one shaft to the other. Also, what is the maximum shear
stress in each shaft when the “shear pin” is about to fail?

5–150. The rotating flywheel and shaft is brought to a
sudden stop at D when the bearing freezes. This causes the
flywheel to oscillate clockwise–counterclockwise, so that a
point A on the outer edge of the flywheel is displaced
through a 10-mm arc in either direction. Determine the
maximum shear stress developed in the tubular 304
stainless steel shaft due to this oscillation. The shaft has an
inner diameter of 25 mm and an outer diameter of 35 mm.
The journal bearings at B and C allow the shaft to rotate
freely.

5–151. If the solid shaft AB to which the valve handle is
attached is made of C83400 red brass and has a diameter of
10 mm, determine the maximum couple forces F that can be
applied to the handle just before the material starts to fail.
Take What is the angle of twist of the
handle? The shaft is fixed at A.

tallow = 40 MPa.

25 mmP

25 mm

130 mm

T

T

Prob. 5–149

2 m C

B

D

A

80 mm

Prob. 5–150

F

150 mm

150 mm

F

A

150 mm

B

Prob. 5–151



Beams are important structural members used in building construction. Their design is
often based upon their ability to resist bending stress, which forms the subject matter
of this chapter.



Simply supported beam

Cantilevered beam

Overhanging beam

Fig. 6–1
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CHAPTER OBJECTIVES

Beams and shafts are important structural and mechanical elements
in engineering. In this chapter we will determine the stress in these
members caused by bending. The chapter begins with a discussion of
how to establish the shear and moment diagrams for a beam or shaft.
Like the normal-force and torque diagrams, the shear and moment
diagrams provide a useful means for determining the largest shear and
moment in a member, and they specify where these maximums occur.
Once the internal moment at a section is determined, the bending
stress can then be calculated. First we will consider members that are
straight, have a symmetric cross section, and are made of homogeneous
linear elastic material. Afterward we will discuss special cases involving
unsymmetric bending and members made of composite materials.
Consideration will also be given to curved members, stress
concentrations, inelastic bending, and residual stresses.

6.1 Shear and Moment Diagrams

Members that are slender and support loadings that are applied
perpendicular to their longitudinal axis are called beams. In general,
beams are long, straight bars having a constant cross-sectional area.
Often they are classified as to how they are supported. For example, a
simply supported beam is pinned at one end and roller supported at the
other, Fig. 6–1, a cantilevered beam is fixed at one end and free at the
other, and an overhanging beam has one or both of its ends freely
extended over the supports. Beams are considered among the most
important of all structural elements. They are used to support the floor
of a building, the deck of a bridge, or the wing of an aircraft. Also, the
axle of an automobile, the boom of a crane, even many of the bones of
the body act as beams.

Bending 6
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Because of the applied loadings, beams develop an internal shear
force and bending moment that, in general, vary from point to point
along the axis of the beam. In order to properly design a beam it
therefore becomes necessary to determine the maximum shear and
moment in the beam. One way to do this is to express V and M as
functions of their arbitrary position x along the beam’s axis. These
shear and moment functions can then be plotted and represented by
graphs called shear and moment diagrams. The maximum values of V
and M can then be obtained from these graphs. Also, since the shear
and moment diagrams provide detailed information about the variation
of the shear and moment along the beam’s axis, they are often used by
engineers to decide where to place reinforcement materials within the
beam or how to proportion the size of the beam at various points
along its length.

In order to formulate V and M in terms of x we must choose the origin
and the positive direction for x. Although the choice is arbitrary, most
often the origin is located at the left end of the beam and the positive
direction is to the right.

In general, the internal shear and moment functions of x will be
discontinuous, or their slope will be discontinuous, at points where a
distributed load changes or where concentrated forces or couple
moments are applied. Because of this, the shear and moment functions
must be determined for each region of the beam between any two
discontinuities of loading. For example, coordinates and will
have to be used to describe the variation of V and M throughout the
length of the beam in Fig. 6–2. These coordinates will be valid only
within the regions from A to B for from B to C for and from
C to D for 

Beam Sign Convention. Before presenting a method for
determining the shear and moment as functions of x and later plotting
these functions (shear and moment diagrams), it is first necessary to
establish a sign convention so as to define “positive” and “negative”
values for V and M. Although the choice of a sign convention is
arbitrary, here we will use the one often used in engineering practice
and shown in Fig. 6–3. The positive directions are as follows: the
distributed load acts upward on the beam; the internal shear force
causes a clockwise rotation of the beam segment on which it acts; and
the internal moment causes compression in the top fibers of the segment
such that it bends the segment so that it holds water. Loadings that are
opposite to these are considered negative.

x3 .
x2,x1,

x3x2,x1,

P

DB
C

A

w0

x1
x2

x3

Fig. 6–2

V
Positive external distributed load

Positive internal shear

Positive internal moment

V

MM

Beam sign convention

w(x)

Fig. 6–3
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Procedure for Analysis

The shear and moment diagrams for a beam can be constructed using the following procedure.

Support Reactions.

• Determine all the reactive forces and couple moments acting on the beam, and resolve all the forces into
components acting perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

• Specify separate coordinates x having an origin at the beam’s left end and extending to regions of the beam
between concentrated forces and/or couple moments, or where there is no discontinuity of distributed
loading.

• Section the beam at each distance x, and draw the free-body diagram of one of the segments. Be sure V
and M are shown acting in their positive sense, in accordance with the sign convention given in Fig. 6–3.

• The shear is obtained by summing forces perpendicular to the beam’s axis.

• To eliminate V, the moment is obtained directly by summing moments about the sectioned end of the
segment.

Shear and Moment Diagrams.

• Plot the shear diagram (V versus x) and the moment diagram (M versus x). If numerical values of the
functions describing V and M are positive, the values are plotted above the x axis, whereas negative values
are plotted below the axis.

• Generally it is convenient to show the shear and moment diagrams below the free-body diagram of the beam.

Important Points

• Beams are long straight members that are subjected to loads perpendicular to their longitudinal axis. They
are classified according to the way they are supported, e.g., simply supported, cantilevered, or overhanging.

• In order to properly design a beam, it is important to know the variation of the internal shear and moment
along its axis in order to find the points where these values are a maximum.

• Using an established sign convention for positive shear and moment, the shear and moment in the beam
can be determined as a function of its position x on the beam, and then these functions can be plotted to
form the shear and moment diagrams. 
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EXAMPLE 6.1

Draw the shear and moment diagrams for the beam shown in Fig. 6–4a.

SOLUTION
Support Reactions. The support reactions are shown in Fig. 6–4c.

Shear and Moment Functions. A free-body diagram of the left
segment of the beam is shown in Fig. 6–4b. The distributed loading on
this segment, is represented by its resultant force only after the
segment is isolated as a free-body diagram.This force acts through the
centroid of the area comprising the distributed loading, a distance of

from the right end. Applying the two equations of equilibrium
yields

(1)

(2)

Shear and Moment Diagrams. The shear and moment diagrams
shown in Fig. 6–4c are obtained by plotting Eqs. 1 and 2. The point of
zero shear can be found from Eq. 1:

NOTE: From the moment diagram, this value of x represents the
point on the beam where the maximum moment occurs, since by
Eq. 6–2 (see Sec. 6.2) the slope From Eq. 2, we 
have

 =
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EXAMPLE 6.2

Draw the shear and moment diagrams for the beam shown in Fig. 6–5a.

(d)

V

M

x

(c)

M

V

x

x

�

w �

w0

x

w0L2

3

w0L2

3

w0L2

3

w0L
2

w0L
2

w0L
2

w0 x
L w0 x

L

x1
3

1
2

Fig. 6–5

SOLUTION
Support Reactions. The distributed load is replaced by its resultant
force and the reactions have been determined as shown in Fig. 6–5b.

Shear and Moment Functions. A free-body diagram of a beam
segment of length x is shown in Fig. 6–5c. Note that the intensity of
the triangular load at the section is found by proportion, that is,

or With the load intensity known, the
resultant of the distributed loading is determined from the area under
the diagram. Thus,

(1)

(2)

These results can be checked by applying Eqs. 6–1 and 6–2 of Sec. 6.2,
that is,

OK

OK

Shear and Moment Diagrams. The graphs of Eqs. 1 and 2 are
shown in Fig. 6–5d.
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dx
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=
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EXAMPLE 6.3

Draw the shear and moment diagrams for the beam shown in Fig. 6–6a.

SOLUTION
Support Reactions. The distributed load is divided into triangular
and rectangular component loadings and these loadings are then
replaced by their resultant forces. The reactions have been
determined as shown on the beam’s free-body diagram, Fig. 6–6b.

Shear and Moment Functions. A free-body diagram of the left
segment is shown in Fig. 6–6c. As above, the trapezoidal loading is
replaced by rectangular and triangular distributions. Note that the
intensity of the triangular load at the section is found by proportion.
The resultant force and the location of each distributed loading are
also shown. Applying the equilibrium equations, we have

(1)

(2)

Equation 2 may be checked by noting that that is, Eq. 1.
Also, This equation checks, since when

and when Fig. 6–6a.

Shear and Moment Diagrams. Equations 1 and 2 are plotted 
in Fig. 6–6d. Since the point of maximum moment occurs when

(Eq. 6–2), then, from Eq. 1,

Choosing the positive root,

Thus, from Eq. 2,

 = 163 kip # ft

 Mmax = 3019.7352 - 19.73522 -
19.73523

27

x = 9.735 ft

V = 0 = 30 - 2x -
x2

9

dM>dx = V = 0

w = -6 kip>ft,x = 18 ft,w = -2 kip>ft,x = 0,
w = dV>dx = -2 - 2

9 x.
dM>dx = V,

M = ¢30x - x2 -
x3

27
≤  kip # ft

-30 kip1x2 + 12 kip>ft2xax

2
b +

1
2

 14 kip>ft2a x

18 ft
bxax

3
b + M = 0

d+ ©M = 0;

V = ¢30 - 2x -
x2

9
≤  kip

30 kip - 12 kip>ft2x -
1
2

 14 kip>ft2a x

18 ft
bx - V = 0+ c ©Fy = 0;

Fig. 6–6

(a)

18 ft

6 kip/ ft

2 kip/ ft

(b)

9 ft

42 kip30 kip

12 ft
18 ft

36 kip 36 kip
4 kip/ ft

2 kip/ ft

30 kip

2x
4 x

V
M

(c)

4

2 kip/ ft

kip/ ft

1
2

x
18

x
18

x
3

x
2

x
2

(d)

V(kip)

x(ft)

x(ft)

 Mmax � 163 kip�ftM(kip�ft)

42 kip30 kip

30

�42

9.735 ft

6 kip/ ft

2 kip/ ft



6.1 SHEAR AND MOMENT DIAGRAMS 261

6

EXAMPLE 6.4

Draw the shear and moment diagrams for the beam shown in Fig. 6–7a.

SOLUTION
Support Reactions. The reactions at the supports have been
determined and are shown on the free-body diagram of the beam,
Fig. 6–7d.

Shear and Moment Functions. Since there is a discontinuity of
distributed load and also a concentrated load at the beam’s center,
two regions of x must be considered in order to describe the shear and
moment functions for the entire beam.

Fig. 6–7b:

(1)

(2)

Fig. 6–7c:

(3)

(4)

These results can be checked in part by noting that 
and Also, when Eqs. 1 and 2 give

and when Eqs. 3 and 4
give and These values check with the
support reactions shown on the free-body diagram, Fig. 6–7d.

Shear and Moment Diagrams. Equations 1 through 4 are plotted
in Fig. 6–7d.
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6.2 Graphical Method for Constructing
Shear and Moment Diagrams

In cases where a beam is subjected to several different loadings,
determining V and M as functions of x and then plotting these equations
can become quite tedious. In this section a simpler method for
constructing the shear and moment diagrams is discussed—a method
based on two differential relations, one that exists between distributed
load and shear, and the other between shear and moment.

Regions of Distributed Load. For purposes of generality,
consider the beam shown in Fig. 6–8a, which is subjected to an arbitrary
loading. A free-body diagram for a small segment of the beam is
shown in Fig. 6–8b. Since this segment has been chosen at a position x
where there is no concentrated force or couple moment, the results to be
obtained will not apply at these points of concentrated loading.

Notice that all the loadings shown on the segment act in their positive
directions according to the established sign convention, Fig. 6–3. Also,
both the internal resultant shear and moment, acting on the right face of
the segment, must be changed by a small amount in order to keep the
segment in equilibrium. The distributed load has been replaced by a
resultant force that acts at a fractional distance from
the right side, where [for example, if is uniform, ].
Applying the equations of equilibrium to the segment, we have

k = 1
2w(x)0 6 k 6 1

k1¢x2w1x2 ¢x

¢x

6

Failure of this table occurred at the brace
support on its right side. If drawn, the
bending moment diagram for the table
loading would indicate this to be the point
of maximum internal moment.

(b)

M � �M
M
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k(�x)

Free-body diagram
of segment�x

O

V � �V

Fig. 6–8
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Dividing by and taking the limit as the above two equations
become

(6–1)

(6–2)

These two equations provide a convenient means for quickly
obtaining the shear and moment diagrams for a beam. Equation 6–1
states that at a point the slope of the shear diagram equals the intensity
of the distributed loading. For example, consider the beam in Fig. 6–9a.
The distributed loading is negative and increases from zero to 
Therefore, the shear diagram will be a curve that has a negative slope,
increasing from zero to Specific slopes and

are shown in Fig. 6–9b.
In a similar manner, Eq. 6–2 states that at a point the slope of the

moment diagram is equal to the shear. Notice that the shear diagram in
Fig. 6–9b starts at decreases to zero, and then becomes negative
and decreases to The moment diagram will then have an initial
slope of which decreases to zero, then the slope becomes negative
and decreases to Specific slopes 0, and are
shown in Fig. 6–9c.
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dx
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          slope of  
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dV
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 = w1x2

¢x: 0,¢x

¢M = V ¢x + w1x2 k1¢x22
-V ¢x - M - w1x2 ¢x[k1¢x2] + 1M + ¢M2 = 0d+ ©MO = 0;

¢V = w1x2 ¢x

V + w1x2 ¢x - 1V + ¢V2 = 0+ c ©Fy = 0;
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Equations 6–1 and 6–2 may also be rewritten in the form 
and Noting that dx and V dx represent differential
areas under the distributed loading and shear diagram, respectively, we
can integrate these areas between any two points C and D on the beam,
Fig. 6–9d, and write

(6–3)

(6–4)

Equation 6–3 states that the change in shear between C and D is equal to
the area under the distributed-loading curve between these two points,
Fig. 6–9d. In this case the change is negative since the distributed load
acts downward. Similarly, from Eq. 6–4, the change in moment between
C and D, Fig. 6–9f, is equal to the area under the shear diagram within
the region from C to D. Here the change is positive.

Since the above equations do not apply at points where a concentrated
force or couple moment acts, we will now consider each of these cases.

Regions of Concentrated Force and Moment. A free-
body diagram of a small segment of the beam in Fig. 6–10a taken from
under the force is shown in Fig. 6–10a. Here it can be seen that force
equilibrium requires

(6–5)

Thus, when F acts upward on the beam, is positive so the shear will
“jump” upward. Likewise, if F acts downward, the jump will be
downward.

When the beam segment includes the couple moment , Fig. 6–10b,
then moment equilibrium requires the change in moment to be

Letting we get

(6–6)

In this case, if is applied clockwise, is positive so the moment
diagram will “jump” upward. Likewise, when acts counterclockwise,
the jump will be downward.1¢M2 M0

¢MM0

¢M = M0
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Procedure for Analysis

The following procedure provides a method for constructing the
shear and moment diagrams for a beam based on the relations
among distributed load, shear, and moment.

Support Reactions.

• Determine the support reactions and resolve the forces acting on
the beam into components that are perpendicular and parallel to
the beam’s axis.

Shear Diagram.

• Establish the V and x axes and plot the known values of the shear
at the two ends of the beam.

• Notice how the values of the distributed load vary along the
beam, and realize that each of these values indicates the way the
shear diagram will slope (dV�dx � w). Here w is positive when it
acts upward.

• If a numerical value of the shear is to be determined at a point, one
can find this value either by using the method of sections and the
equation of force equilibrium, or by using which
states that the change in the shear between any two points is equal
to the area under the load diagram between the two points.

Moment Diagram.

• Establish the M and x axes and plot the known values of the
moment at the ends of the beam.

• Notice how the values of the shear diagram vary along the beam,
and realize that each of these values indicates the way the
moment diagram will slope (dM�dx � V).

• At the point where the shear is zero, and therefore
this would be a point of maximum or minimum moment.

• If a numerical value of the moment is to be determined at the
point, one can find this value either by using the method of
sections and the equation of moment equilibrium, or by using

which states that the change in moment
between any two points is equal to the area under the shear
diagram between the two points.

• Since must be integrated to obtain and is
integrated to obtain M(x), then if is a curve of degree n,
will be a curve of degree and M(x) will be a curve of degree

. For example, if is uniform, will be linear and
M(x) will be parabolic.

V(x)w(x)n + 2
n + 1

V(x)w(x)
V(x)¢V,w(x)

¢M = 1V1x2 dx,

dM>dx = 0,

¢V = 1w1x2 dx,
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EXAMPLE 6.5

Draw the shear and moment diagrams for the beam shown in Fig. 6–11a.

SOLUTION
Support Reactions. The reaction at the fixed support is shown on
the free-body diagram, Fig. 6–11b.

Shear Diagram. The shear at each end of the beam is plotted first,
Fig. 6–11c. Since there is no distributed loading on the beam, the slope
of the shear diagram is zero as indicated. Note how the force P at the
center of the beam causes the shear diagram to jump downward an
amount P, since this force acts downward.

Moment Diagram. The moments at the ends of the beam are
plotted, Fig. 6–11d. Here the moment diagram consists of two sloping
lines, one with a slope of �2P and the other with a slope of �P.

The value of the moment in the center of the beam can be
determined by the method of sections, or from the area under the
shear diagram. If we choose the left half of the shear diagram,

M ƒx = L = -3PL + (2P)(L) = -PL

M ƒx = L = M ƒx = 0 + ¢M

Fig. 6–11
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P
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w � 0 
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(b)

(c)

(d)

downward force P
downward jump P
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EXAMPLE 6.6

Draw the shear and moment diagrams for the beam shown in 
Fig. 6–12a.

(a)

L L

M0

SOLUTION
Support Reactions. The reactions are shown on the free-body
diagram in Fig. 6–12b.

Shear Diagram. The shear at each end is plotted first, Fig. 6–12c.
Since there is no distributed load on the beam, the shear diagram has
zero slope and is therefore a horizontal line.

Moment Diagram. The moment is zero at each end, Fig. 6–12d. The
moment diagram has a constant negative slope of �M0�2L since this
is the shear in the beam at each point. Note that the couple moment

causes a jump in the moment diagram at the beam’s center, but it
does not affect the shear diagram at this point.
M0

Fig. 6–12

(b)

(c)

V

(d)

M

x

x

L L

M0

M0/2LM0/2L

M0 /2

M0 /2

M0/2L�

–

w � 0 
slope � 0

clockwise moment M0
positive jump M0

V � negative constant 
slope � negative constant
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EXAMPLE 6.7

Draw the shear and moment diagrams for each of the beams shown in
Figs. 6–13a and 6–14a.

SOLUTION
Support Reactions. The reactions at the fixed support are shown
on each free-body diagram, Figs. 6–13b and Fig. 6–14b.

Shear Diagram. The shear at each end point is plotted first, Figs. 6–13c
and 6–14c. The distributed loading on each beam indicates the slope
of the shear diagram and thus produces the shapes shown.

Moment Diagram. The moment at each end point is plotted first,
Figs. 6–13d and 6–14d. Various values of the shear at each point on the
beam indicate the slope of the moment diagram at the point. Notice
how this variation produces the curves shown.

NOTE: Observe how the degree of the curves from w to V to M
increases exponentially due to the integration of and

. For example, in Fig. 6–14, the linear distributed load
produces a parabolic shear diagram and cubic moment diagram.
dM = Vdx

dV = w dx

(a)
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w0

(b)

w0L
w0

w0L2

2

(c)

V

x

w0L
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(d)
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x

w0L2

2
�
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)

Fig. 6–13
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Fig. 6–14
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EXAMPLE 6.8

Draw the shear and moment diagrams for the cantilever beam
in Fig. 6–15a.

SOLUTION
Support Reactions. The support reactions at the fixed support
B are shown in Fig. 6–15b.

Shear Diagram. The shear at end A is �2 kN. This value is
plotted at x � 0, Fig. 6–15c. Notice how the shear diagram is
constructed by following the slopes defined by the loading w.
The shear at m is �5 kN, the reaction on the beam. This
value can be verified by finding the area under the distributed
loading, Eq. 6–3.

Moment Diagram. The moment of zero at is plotted in
Fig. 6–15d. Notice how the moment diagram is constructed based
on knowing its slope, which is equal to the shear at each point.
The change of moment from to m is determined
from the area under the shear diagram. Hence, the moment at

m is

This same value can be determined from the method of sections,
Fig. 6–15e.

M ƒx = 2 m = M ƒx = 0 + ¢M = 0 + [-2 kN(2 m)] = -4 kN # m

x = 2

x = 2x = 0

x = 0

V ƒx = 4 m = V ƒx = 2 m + ¢V = -2 kN - (1.5 kN>m)(2 m) = -5 kN

x = 4

(d)

(c)

(b)

2 kN

2 m

2 4

�5

�2

2 m
By � 5 kN

MB � 11 kN�m

x (m)

V (kN)

2
0

�11

�4

x (m)

M (kN�m)

w � 0
slope � 0

w � negative constant
slope � negative constant

V � negative constant 
slope � negative constant V � negative increasing

slope � negative increasing

1.5 kN/m

4

Fig. 6–15

2 kN
1.5 kN/m

(a)

A
B

2 m 2 m

(e)

2 kN

2 m

V � 2 kN

M � 4 kN�m
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EXAMPLE 6.9

Draw the shear and moment diagrams for the overhang beam in
Fig. 6–16a.

SOLUTION
Support Reactions. The support reactions are shown in
Fig. 6–16b.

Shear Diagram. The shear of �2 kN at end A of the beam
is plotted at x � 0, Fig. 6–16c. The slopes are determined
from the loading and from this the shear diagram is
constructed, as indicated in the figure. In particular, notice
the positive jump of 10 kN at m due to the force By, as
indicated in the figure.

Moment Diagram. The moment of zero at x � 0 is
plotted, Fig. 6–16d. Then following the behavior of the slope
found from the shear diagram, the moment diagram is
constructed. The moment at x � 4 m is found from the area
under the shear diagram.

We can also obtain this value by using the method of sections,
as shown in Fig. 6–16e.

M ƒx = 4 m = M ƒx = 0 + ¢M = 0 + [-2 kN(4 m)] = -8 kN # m

x = 4

4 m 2 m

Ay � 2 kN By � 10 kN

A

�2

8

64

4

0 x (m)

V (kN)

6

�8

0 x (m)

M (kN�m)

w � 0
slope � 0

V � negative decreasing
slope � negative decreasing

V � negative constant
slope � negative constant

w � negative constant
slope � negative constant

(d)

(c)

(b)

4 kN/m

slope � 0

4 m

2 kN

A

(e)

V � 2 kN

M � 8 kN�m

Fig. 6–16

4 kN/m

4 m 2 m

(a)

A
B
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EXAMPLE 6.10

The shaft in Fig. 6–17a is supported by a thrust bearing at A and a
journal bearing at B. Draw the shear and moment diagrams.

Fig. 6–17

BA

12 ft

(a)

120 lb/ft

SOLUTION
Support Reactions. The support reactions are shown in 
Fig. 6–17b.

Shear Diagram. As shown in Fig. 6–17c, the shear at is
�240. Following the slope defined by the loading, the shear
diagram is constructed, where at B its value is �480 lb. Since the
shear changes sign, the point where must be located. To do
this we will use the method of sections. The free-body diagram of
the left segment of the shaft, sectioned at an arbitrary position x, is
shown in Fig. 6–17e. Notice that the intensity of the distributed
load at x is w � 10x, which has been found by proportional
triangles, i.e., 120�12 � w�x.

Thus, for V � 0,

Moment Diagram. The moment diagram starts at 0 since there
is no moment at A; then it is constructed based on the slope as
determined from the shear diagram. The maximum moment
occurs at where the shear is equal to zero, since

Fig. 6–17d,

Finally, notice how integration, first of the loading w which is linear,
produces a shear diagram which is parabolic, and then a moment
diagram which is cubic.

NOTE: Having studied these examples, test yourself by covering
over the shear and moment diagrams in Examples 6–1 through 6–4
and see if you can construct them using the concepts discussed here.

Mmax = 1109 lb # ft

Mmax + 1
2[(10)(6.93)] 6.93 A13(6.93) B - 240(6.93) = 0

d+ ©M = 0;

dM>dx = V = 0,
x = 6.93 ft,

x = 6.93 ft

240 lb - 1
2(10x)x = 0+ c ©Fy = 0;

V = 0

x = 0

B

120 lb/ft

A

12 ft

Ay = 240 lb
By � 480 lb

126.93

6.93

240

� 480

V (lb)

x (ft)

12
0

0

M (lb�ft)

x (ft)

w � negative increasing 
slope � negative increasing

V � negative increasing 
slope � negative increasing

V � positive decreasing 
slope � positive decreasing

(d)

(c)

(b)

V � 0
slope � 0

1109

A

x

(e)

Ay � 240 lb

x
3

[       ] x1
2

10 x

10 x

V

M
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FUNDAMENTAL PROBLEMS

F6–1. Express the shear and moment functions in terms 
of x, and then draw the shear and moment diagrams for the
cantilever beam.

F6–4. Express the shear and moment functions in terms of x,
where and m, and then draw
the shear and moment diagrams for the cantilever beam.

1.5 m 6 x 6 30 6 x 6 1.5 m

F6–2. Express the shear and moment functions in terms 
of x, and then draw the shear and moment diagrams for the
cantilever beam.

x

3 m

12 kN/m

9 ft

x

2 kip/ft

18 kip·ft

3 m

9 kN

x

F6–3. Express the shear and moment functions in terms 
of x, and then draw the shear and moment diagrams for the
cantilever beam.

1.5 m 1.5 m

9 kN

x

4 kN�m

F6–5. Express the shear and moment functions in terms 
of x, and then draw the shear and moment diagrams for the
simply supported beam.

A B

x

6 m

30 kN·m

F6–6. Express the shear and moment functions in terms 
of x, and then draw the shear and moment diagrams for the
simply supported beam.

x
6 m

50 kN�m 20 kN�m

BA

F6–1

F6–2

F6–3 F6–6

F6–5

F6–4
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F6–7. Draw the shear and moment diagrams for the simply
supported beam.

24 kN�m

BA
C

4 m 2 m

F6–8. Draw the shear and moment diagrams for the
cantilever beam.

12 kN�m

6 kN

1.5 m 1.5 m

A B
C

F6–9. Draw the shear and moment diagrams for the double
overhang beam.

1.5 m 1.5 m3 m
BA

18 kN�m6 kN�m

F6–10. Draw the shear and moment diagrams for the simply
supported beam.

3 m 3  m

6 kN/m

BA
C

F6–11. Draw the shear and moment diagrams for the
double-overhang beam.

A B

4 kN/m 4 kN/m

3 m 1.5 m1.5 m

F6–12. Draw the shear and moment diagrams for the simply
supported beam.

A B

3 m

10 kN/m 10 kN/m

3 m

C

F6–13. Draw the shear and moment diagrams for the simply
supported beam.

A
B

600 lb
200 lb/ft

6 ft 3 ft 3 ft

C D

F6–14. Draw the shear and moment diagrams for the
overhang beam.

2 m

20 kN

4 m

A
B

20 kN/m

C

F6–7

F6–8

F6–9

F6–10 F6–14

F6–11

F6–12

F6–13
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6–1. Draw the shear and moment diagrams for the shaft.
The bearings at A and B exert only vertical reactions on the
shaft.

*6–4. Draw the shear and moment diagrams for the
cantilever beam.

PROBLEMS

A B

250 mm
800 mm

24 kN

6–2. Draw the shear and moment diagrams for the simply
supported beam.

A B

M � 2 kN�m

4 kN

2 m 2 m 2 m

6–3. The engine crane is used to support the engine,
which has a weight of 1200 lb. Draw the shear and moment
diagrams of the boom ABC when it is in the horizontal
position shown.

5 ft3 ft

CB

4 ft

A

2 kN/m

6 kN�m
2 m

A

6–5. Draw the shear and moment diagrams for the beam.

2 m 3 m

10 kN 8 kN

15 kN�m

6–6. Draw the shear and moment diagrams for the overhang
beam.

A

B

C

4 m 2 m

8 kN/m

6–7. Draw the shear and moment diagrams for the
compound beam which is pin connected at B.

4 ft

6 kip 8 kip

A

C
B

6 ft 4 ft 4 ft

Prob. 6–1 

Prob. 6–2 

Prob. 6–3 

Prob. 6–4 

Prob. 6–5 

Prob. 6–6 

Prob. 6–7 
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*6–8. Draw the shear and moment diagrams for the
simply supported beam.

6–9. Draw the shear and moment diagrams for the beam.
Hint: The 20-kip load must be replaced by equivalent
loadings at point C on the axis of the beam.

A B

150 lb/ft

12 ft

300 lb�ft

6–10. Members ABC and BD of the counter chair are
rigidly connected at B and the smooth collar at D is allowed
to move freely along the vertical slot. Draw the shear and
moment diagrams for member ABC.

B

4 ft

A

4 ft 4 ft

15 kip

20 kip

C

1 ft

6–11. The overhanging beam has been fabricated with 
a projected arm BD on it. Draw the shear and moment
diagrams for the beam ABC if it supports a load of 800 lb.
Hint: The loading in the supporting strut DE must be replaced
by equivalent loads at point B on the axis of the beam.

A

D

B
C

P � 150 lb

1.5 ft1.5 ft
1.5 ft

*6–12. A reinforced concrete pier is used to support the
stringers for a bridge deck. Draw the shear and moment
diagrams for the pier when it is subjected to the stringer
loads shown. Assume the columns at A and B exert only
vertical reactions on the pier.

800 lb
D

B
A

E

C

6 ft 4 ft

5 ft

2 ft

6–13. Draw the shear and moment diagrams for the
compound beam.It is supported by a smooth plate at A which
slides within the groove and so it cannot support a vertical
force, although it can support a moment and axial load.

1 m 1 m 1 m 1 m1.5 m
60 kN 60 kN35 kN 35 kN 35 kN

1.5 m

A B

a

A B

a a a

P P

C
D

Prob. 6–8 

Prob. 6–11 

Prob. 6–9 

Prob. 6–10 

Prob. 6–12

Prob. 6–13 
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•6–17. Draw the shear and moment diagrams for the
cantilevered beam.

x

BA

800 lb
500 lb

3 ft 2 ft
0.5 ft

0.5 ft

6–18. Draw the shear and moment diagrams for the beam,
and determine the shear and moment throughout the beam
as functions of x.

300 lb 200 lb/ft

A

6 ft

6–19. Draw the shear and moment diagrams for the beam.

6 ft 4 ft

2 kip/ft 8 kip

x

10 kip

40 kip�ft

*6–20. Draw the shear and moment diagrams for the
simply supported beam.

6–15. Consider the general problem of the beam subjected
to n concentrated loads. Write a computer program that
can be used to determine the internal shear and moment
at any specified location x along the beam, and plot the
shear and moment diagrams for the beam. Show an
application of the program using the values 

.d1 = 5 ft, P2 = 800 lb, d2 = 15 ft, L1 = 10 ft, L = 15 ft 
P1 = 500 lb,

10 in.
4 in.

50 in.
A B C

D

120�

*6–16. Draw the shear and moment diagrams for the shaft
and determine the shear and moment throughout the shaft
as a function of x. The bearings at A and B exert only
vertical reactions on the shaft.

P1 P2 Pn

d1

d2

dn

L1

L

A

30 kip�ft

B

5 ft 5 ft

2 kip/ ft

5 ft

 10 kN

10 kN/m

3 m

A B

3 m

Prob. 6–14 

Prob. 6–15 

Prob. 6–16 Prob. 6–20 

Prob. 6–19 

Prob. 6–18 

Prob. 6–17 

6–14. The industrial robot is held in the stationary
position shown. Draw the shear and moment diagrams of
the arm ABC if it is pin connected at A and connected to a
hydraulic cylinder (two-force member) BD. Assume the
arm and grip have a uniform weight of 1.5 lb�in. and
support the load of 40 lb at C.
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•6–21. The beam is subjected to the uniform distributed
load shown. Draw the shear and moment diagrams for the
beam.

6–22. Draw the shear and moment diagrams for the
overhang beam.

6–23. Draw the shear and moment diagrams for the beam.
It is supported by a smooth plate at A which slides within
the groove and so it cannot support a vertical force, although
it can support a moment and axial load.

BA

C
2 m

1.5 m

1 m

2 kN/m

*6–24. Determine the placement distance a of the roller
support so that the largest absolute value of the moment is
a minimum. Draw the shear and moment diagrams for this
condition.

4 kN/m

3 m 3 m

A
B

6–25. The beam is subjected to the uniformly distributed
moment m ( ). Draw the shear and moment
diagrams for the beam.

moment>length

L

A
B

w

6–26. Consider the general problem of a cantilevered
beam subjected to n concentrated loads and a constant
distributed loading w. Write a computer program that can
be used to determine the internal shear and moment at
any specified location x along the beam, and plot the shear
and moment diagrams for the beam. Show an application
of the program using the values 
w = 800 N>m, a1 = 2 m, a2 = 4 m, L = 4 m. 

P1 = 4 kN, d1 = 2 m,

L
A

m

P1

L

w

a1

d1

d2

dn

a2

P2 Pn

Prob. 6–21 

Prob. 6–22 

Prob. 6–23 Prob. 6–26

Prob. 6–25 

Prob. 6–24 

a

w

L

A
B
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6–27. Draw the shear and moment diagrams for the beam.

*6–28. Draw the shear and moment diagrams for the beam.

•6–29. Draw the shear and moment diagrams for the
beam.

B

w0

A
2L
3

L
3

6–30. Draw the shear and moment diagrams for the 
compound beam.

–
3
L –

3
L –

3
L

w0

A B

6–31. Draw the shear and moment diagrams for the beam
and determine the shear and moment in the beam as
functions of x.

BA
4.5 m 4.5 m

5 kN/m5 kN/m

*6–32. The smooth pin is supported by two leaves A and
B and subjected to a compressive load of 0.4 kN�m caused
by bar C. Determine the intensity of the distributed load w0
of the leaves on the pin and draw the shear and moment
diagram for the pin.

BA

6 ft

150 lb/ft 150 lb/ft

3 ft

C

•6–33. The ski supports the 180-lb weight of the man. If
the snow loading on its bottom surface is trapezoidal as
shown, determine the intensity w, and then draw the shear
and moment diagrams for the ski.

x

BA

w0

L–
2

L–
2

20 mm

0.4 kN/m

w0

20 mm 60 mm

w0
A B

C

180 lb

w w
1.5 ft 3 ft 1.5 ft

3 ft

Prob. 6–27 

Prob. 6–28 

Prob. 6–29 

Prob. 6–30 Prob. 6–33 

Prob. 6–32 

Prob. 6–31 
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6–34. Draw the shear and moment diagrams for the
compound beam.

6–35. Draw the shear and moment diagrams for the beam
and determine the shear and moment as functions of x.

*6–36. Draw the shear and moment diagrams for the
overhang beam.

3 m 3 m
1.5 m 1.5 m

5 kN
3 kN/m

A
B C D

6–37. Draw the shear and moment diagrams for the beam.

3 m 3 m

x

A B

200 N/m

400 N/m

6–38. The dead-weight loading along the centerline of the
airplane wing is shown. If the wing is fixed to the fuselage at
A, determine the reactions at A, and then draw the shear
and moment diagram for the wing.

A
B

M � 10 kN�m
2 m 2 m 2 m

6 kN
18 kN

6–39. The compound beam consists of two segments that
are pinned together at B. Draw the shear and moment
diagrams if it supports the distributed loading shown.

B

4.5 m 4.5 m

50 kN/m

A

50 kN/m

A

*6–40. Draw the shear and moment diagrams for the
simply supported beam.

3 ft

400 lb/ft
250 lb/ft

3000 lb

15 000 lb

2 ft8 ft

A

2/3 L

A C
B

1/3 L

w

A
B

2 m 2 m

10 kN 10 kN

15 kN�m

2 m

Prob. 6–34 

Prob. 6–35 

Prob. 6–36 

Prob. 6–37

Prob. 6–38 

Prob. 6–39 

Prob. 6–40
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6–41. Draw the shear and moment diagrams for the
compound beam. The three segments are connected by pins
at B and E.

6–42. Draw the shear and moment diagrams for the
compound beam.

6–43. Draw the shear and moment diagrams for the beam.
The two segments are joined together at B.

A

B

2 m

0.8 kN/m

1 m
2 m

1 m
2 m

1 m1 m

C D

E

F

3 kN 3 kN

*6–44. Draw the shear and moment diagrams for the beam.

BA C
D

2 m 1 m 1 m

5 kN/m

•6–45. Draw the shear and moment diagrams for the
beam.

A C

3 ft 8 ft

3 kip/ft

5 ft

B

8 kip

6–46. Draw the shear and moment diagrams for the beam.

8 ft

A B
x

w

w � x2

8 kip/ ft
1
8

L

A B
x

w

w0
w � 

w0

L2 x2

w0 w � w0  sin x

BA

w

x

L–
2

p–
L

L–
2

Prob. 6–41 

Prob. 6–42

Prob. 6–43 Prob. 6–46

Prob. 6–45

Prob. 6–44



6.3 BENDING DEFORMATION OF A STRAIGHT MEMBER 281

6

6.3 Bending Deformation 
of a Straight Member

In this section, we will discuss the deformations that occur when a
straight prismatic beam, made of homogeneous material, is subjected to
bending. The discussion will be limited to beams having a cross-sectional
area that is symmetrical with respect to an axis, and the bending moment
is applied about an axis perpendicular to this axis of symmetry as
shown in Fig. 6–18. The behavior of members that have unsymmetrical
cross sections, or are made from several different materials, is based on
similar observations and will be discussed separately in later sections of
this chapter.

By using a highly deformable material such as rubber, we can illustrate
what happens when a straight prismatic member is subjected to a bending
moment. Consider, for example, the undeformed bar in Fig. 6–19a, which
has a square cross section and is marked with longitudinal and transverse
grid lines. When a bending moment is applied, it tends to distort these
lines into the pattern shown in Fig. 6–19b. Notice that the longitudinal
lines become curved and the vertical transverse lines remain straight and
yet undergo a rotation.

The bending moment causes the material within the bottom portion of
the bar to stretch and the material within the top portion to compress.
Consequently, between these two regions there must be a surface, called
the neutral surface, in which longitudinal fibers of the material will not
undergo a change in length, Fig. 6–18.

Before deformation

(a)

M

M

After deformation

(b)

Horizontal lines
become curved

Vertical lines remain
straight, yet rotate

x

y

z
M

Axis of
symmetry

Longitudinal
axis

Neutral
surface

Fig. 6–19

Fig. 6–18
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From these observations we will make the following three
assumptions regarding the way the stress deforms the material. First, the
longitudinal axis x, which lies within the neutral surface, Fig. 6–20a, does
not experience any change in length. Rather the moment will tend to
deform the beam so that this line becomes a curve that lies in the x–y
plane of symmetry, Fig. 6–20b. Second, all cross sections of the beam
remain plane and perpendicular to the longitudinal axis during the
deformation. And third, any deformation of the cross section within its
own plane, as noticed in Fig. 6–19b, will be neglected. In particular, the
z axis, lying in the plane of the cross section and about which the cross
section rotates, is called the neutral axis, Fig. 6–20b.

In order to show how this distortion will strain the material, we will
isolate a small segment of the beam located a distance x along the beam’s
length and having an undeformed thickness Fig. 6–20a.This element,
taken from the beam, is shown in profile view in the undeformed and

¢x,Note the distortion of the lines due to
bending of this rubber bar. The top line
stretches, the bottom line compresses, and
the center line remains the same length.
Furthermore the vertical lines rotate and yet
remain straight.

neutral
axis

(b)

x

y

z

longitudinal
axis

z

neutral
surface

M

x

y

z

x

(a)

�x

Fig. 6–20
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deformed positions in Fig. 6–21. Notice that any line segment located
on the neutral surface, does not change its length, whereas any line
segment located at the arbitrary distance y above the neutral surface,
will contract and become after deformation. By definition, the
normal strain along is determined from Eq. 2–2, namely,

We will now represent this strain in terms of the location y of the
segment and the radius of curvature of the longitudinal axis of the
element. Before deformation, Fig. 6–21a. After deformation

has a radius of curvature with center of curvature at point 
Fig. 6–21b. Since defines the angle between the sides of the element,

In the same manner, the deformed length of 
becomes Substituting into the above equation, we get

or

(6–7)

This important result indicates that the longitudinal normal strain of
any element within the beam depends on its location y on the cross

P = -
y

r

P = lim
¢u:0

1r - y2¢u - r¢u
r¢u

¢s¿ = 1r - y2¢u. ¢s¢x = ¢s = r¢u.
¢u

O¿,r,¢x
¢s = ¢x,

r

P = lim
¢s:0

¢s¿ - ¢s

¢s

¢s
¢s¿

¢s,

¢x,

longitudinal

axis

y

Undeformed element

(a)

longitudinal
axis y

Deformed element

(b)

�s � �x �s¿

�u

O¿

�x

�x

�x

r

Fig. 6–21
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Fig. 6–22

section and the radius of curvature of the beam’s longitudinal axis at the
point. In other words, for any specific cross section, the longitudinal
normal strain will vary linearly with y from the neutral axis. A
contraction will occur in fibers located above the neutral axis

whereas elongation will occur in fibers located below the
axis This variation in strain over the cross section is shown in Fig.
6–22. Here the maximum strain occurs at the outermost fiber, located a
distance of y � c from the neutral axis. Using Eq. 6–7, since 
then by division,

So that

(6–8)

This normal strain depends only on the assumptions made with regards
to the deformation. When a moment is applied to the beam, therefore, it
will only cause a normal stress in the longitudinal or x direction. All the
other components of normal and shear stress will be zero. It is this
uniaxial state of stress that causes the material to have the longitudinal
normal strain component defined by Eq. 6–8. Furthermore, by
Poisson’s ratio, there must also be associated strain components

and which deform the plane of the cross-sectional
area, although here we have neglected these deformations. Such
deformations will, however, cause the cross-sectional dimensions to
become smaller below the neutral axis and larger above the neutral axis.
For example, if the beam has a square cross section, it will actually
deform as shown in Fig. 6–23.

Pz = -nPx,Py = -nPx

Px,

P = - ay

c
bPmax

P
Pmax

= - ay>r
c>r b

Pmax = c>r,
1-y2. 1+P21+y2, 1-P2

Fig. 6–23

y
c

Normal strain distribution

�x

�Pmax

PmaxP��
y
c

M

y

xz
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Fig. 6–24

6.4 The Flexure Formula

In this section, we will develop an equation that relates the stress
distribution in a beam to the internal resultant bending moment acting
on the beam’s cross section. To do this we will assume that the material
behaves in a linear-elastic manner and therefore a linear variation of
normal strain, Fig. 6–24a, must then be the result of a linear variation in
normal stress, Fig. 6–24b. Hence, like the normal strain variation, will
vary from zero at the member’s neutral axis to a maximum value, a
distance c farthest from the neutral axis. Because of the proportionality
of triangles, Fig. 6–23b, or by using Hooke’s law, and Eq. 6–8, we
can write

(6–9)

This equation describes the stress distribution over the cross-sectional
area. The sign convention established here is significant. For positive
M, which acts in the direction, positive values of y give negative
values for that is, a compressive stress since it acts in the negative x
direction. Similarly, negative y values will give positive or tensile
values for If a volume element of material is selected at a specific
point on the cross section, only these tensile or compressive normal
stresses will act on it. For example, the element located at is
shown in Fig. 6–24c.

We can locate the position of the neutral axis on the cross section by
satisfying the condition that the resultant force produced by the stress
distribution over the cross-sectional area must be equal to zero. Noting
that the force acts on the arbitrary element dA in Fig. 6–24c,
we require

 =
-smax

c LA
y dA

 = LA
 - ay

c
bsmax dA

 0 = LA
 dF = LA

s dAFR = ©Fx;

dF = s dA

+y

s.

s,
+z

s = - ay

c
bsmax

s = EP,

smax,
s

y

x

c
y

Normal strain variation
(profile view)

(a)

y

x
y

M

Bending stress variation
(profile view)

(b)

c

P

Pmax

smax

s

This wood specimen failed in bending due
to its fibers being crushed at its top and torn
apart at its bottom.
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Since is not equal to zero, then

(6–10)

In other words, the first moment of the member’s cross-sectional area
about the neutral axis must be zero.This condition can only be satisfied if
the neutral axis is also the horizontal centroidal axis for the cross section.*
Consequently, once the centroid for the member’s cross-sectional area is
determined, the location of the neutral axis is known

We can determine the stress in the beam from the requirement that
the resultant internal moment M must be equal to the moment produced
by the stress distribution about the neutral axis. The moment of dF in
Fig. 6–24c about the neutral axis is Since using
Eq. 6–9, we have for the entire cross section,

or

(6–11)M =
smax

c LA
y2 dA

M = LA
y dF = LA

y1s dA2 = LA
y¢y

c
 smax≤  dA1MR2z = ©Mz ;

dF = s dA,dM = y dF.

LA
y dA = 0

smax>c

y c

Bending stress variation

(c)

x

z
dA

M dF

ysmax

s

s

s

Fig. 6–24 (cont.)

*Recall that the location for the centroid of the cross-sectional area is defined from
the equation If then and so the centroid lies on the
reference (neutral) axis. See Appendix A.

y = 0,1y dA = 0,y = 1y dA>1dA.
y
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The integral represents the moment of inertia of the cross-sectional area
about the neutral axis. We will symbolize its value as I. Hence, Eq. 6–11
can be solved for and written as

(6–12)

Here

maximum normal stress in the member, which occurs at
a point on the cross-sectional area farthest away from the
neutral axis

resultant internal moment, determined from the method
of sections and the equations of equilibrium, and calculated
about the neutral axis of the cross section

perpendicular distance from the neutral axis to a point
farthest away from the neutral axis. This is where acts

moment of inertia of the cross-sectional area about the
neutral axis

Since Eq. 6–9, the normal stress at the intermediate
distance y can be determined from an equation similar to Eq. 6–12.
We have

(6–13)

Note that the negative sign is necessary since it agrees with the
established x, y, z axes. By the right-hand rule, M is positive along the

axis, y is positive upward, and therefore must be negative 
(compressive) since it acts in the negative x direction, Fig. 6–24c.

Either of the above two equations is often referred to as the flexure
formula. It is used to determine the normal stress in a straight member,
having a cross section that is symmetrical with respect to an axis, and the
moment is applied perpendicular to this axis.Although we have assumed
that the member is prismatic, we can in most cases of engineering design
also use the flexure formula to determine the normal stress in members
that have a slight taper. For example, using a mathematical analysis based
on the theory of elasticity, a member having a rectangular cross section
and a length that is tapered 15° will have an actual maximum normal
stress that is about 5.4% less than that calculated using the flexure
formula.

s+z

s = -
My

I

smax>c = -s>y,

 I = the

smax

 c = the

 M = the

 smax = the

smax =
Mc

I

smax
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Important Points

• The cross section of a straight beam remains plane when the beam deforms due to bending. This causes
tensile stress on one portion of the cross section and compressive stress on the other portion. In between
these portions, there exists the neutral axis which is subjected to zero stress.

• Due to the deformation, the longitudinal strain varies linearly from zero at the neutral axis to a maximum
at the outer fibers of the beam. Provided the material is homogeneous and linear elastic, then the stress
also varies in a linear fashion over the cross section.

• The neutral axis passes through the centroid of the cross-sectional area.This result is based on the fact that
the resultant normal force acting on the cross section must be zero.

• The flexure formula is based on the requirement that the resultant internal moment on the cross section is
equal to the moment produced by the normal stress distribution about the neutral axis.

Procedure for Analysis

In order to apply the flexure formula, the following procedure is suggested.

Internal Moment.

• Section the member at the point where the bending or normal stress is to be determined, and obtain the
internal moment M at the section.The centroidal or neutral axis for the cross section must be known, since
M must be calculated about this axis.

• If the absolute maximum bending stress is to be determined, then draw the moment diagram in order to
determine the maximum moment in the member.

Section Property.

• Determine the moment of inertia of the cross-sectional area about the neutral axis. Methods used for its
calculation are discussed in Appendix A, and a table listing values of I for several common shapes is given
on the inside front cover.

Normal Stress.

• Specify the distance y, measured perpendicular to the neutral axis to the point where the normal stress 
is to be determined. Then apply the equation or if the maximum bending stress is to be 
calculated, use When substituting the data, make sure the units are consistent.

• The stress acts in a direction such that the force it creates at the point contributes a moment about the
neutral axis that is in the same direction as the internal moment M, Fig. 6–24c. In this manner the stress
distribution acting over the entire cross section can be sketched, or a volume element of the material can
be isolated and used to graphically represent the normal stress acting at the point.

smax = Mc>I.
s = -My>I,
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EXAMPLE 6.11

A beam has a rectangular cross section and is subjected to the stress
distribution shown in Fig. 6–25a. Determine the internal moment M at
the section caused by the stress distribution (a) using the flexure
formula, (b) by finding the resultant of the stress distribution using
basic principles.

SOLUTION
Part (a). The flexure formula is From Fig. 6–25a,

and The neutral axis is defined as line NA,
because the stress is zero along this line. Since the cross section has a
rectangular shape, the moment of inertia for the area about NA is
determined from the formula for a rectangle given on the inside front
cover; i.e.,

Therefore,

Ans.

Part (b). The resultant force for each of the two triangular stress
distributions in Fig. 6–25b is graphically equivalent to the volume
contained within each stress distribution. Thus, each volume is

These forces, which form a couple, act in the same direction as the
stresses within each distribution, Fig. 6–25b. Furthermore, they act
through the centroid of each volume, i.e., from the
neutral axis of the beam. Hence the distance between them is 8 in. as
shown. The moment of the couple is therefore

Ans.

NOTE: This result can also be obtained by choosing a horizontal
strip of area dA � (6 in.) dy and using integration by applying 
Eq. 6–11.

M = 36 kip18 in.2 = 288 kip # in. = 24 kip # ft

2
316 in.2 = 4 in.

F =
1
2

 16 in.212 kip>in2216 in.2 = 36 kip

M = 288 kip # in. = 24 kip # ft

2 kip>in2 =
M16 in.2
864 in4smax =

Mc

I
;

I =
1

12
 bh3 =

1
12

 16 in.2112 in.23 = 864 in4

smax = 2 ksi.c = 6 in.
smax = Mc>I. A

N

6 in.

6 in.

2 ksi

2 ksi
(a)

6 in.

A

N

6 in.

6 in.

F

�F

(b)

6 in.

4 in.

4 in.

Fig. 6–25
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EXAMPLE 6.12

The simply supported beam in Fig. 6–26a has the cross-sectional area
shown in Fig. 6–26b. Determine the absolute maximum bending stress
in the beam and draw the stress distribution over the cross section at
this location.

6 m

5 kN/m

(a)

SOLUTION
Maximum Internal Moment. The maximum internal moment in
the beam, occurs at the center.

Section Property. By reasons of symmetry, the neutral axis passes
through the centroid C at the midheight of the beam, Fig. 6–26b. The
area is subdivided into the three parts shown, and the moment of
inertia of each part is calculated about the neutral axis using the
parallel-axis theorem. (See Eq. A–5 of Appendix A.) Choosing to
work in meters, we have

Ans.

A three-dimensional view of the stress distribution is shown in
Fig. 6–26d. Notice how the stress at points B and D on the cross
section develops a force that contributes a moment about the
neutral axis that has the same direction as M. Specifically, at point B,

and so

sB = -
22.5(103) N # m10.150 m2

301.3110-62 m4 = -11.2 MPasB = -
MyB

I
;

yB = 150 mm,

smax =
22.5(103) N # m10.170 m2

301.3110-62 m4 = 12.7 MPasmax =
Mc

I
;

 = 301.3110-62 m4

 + c 1
12

 10.020 m210.300 m23 d
 = 2 c 1

12
 10.25 m210.020 m23 + 10.25 m210.020 m210.160 m22 d

 I = ©1I + Ad22

M = 22.5 kN # m,

12.7 MPa

11.2 MPaB

D M � 22.5 kN�m

12.7 MPa

(d)

M (kN�m)

x (m)

22.5

3 6

(c)

Fig. 6–26

20 mm

N A

B
C

D

20 mm

250 mm

150 mm

150 mm

(b)

20 mm
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EXAMPLE 6.13

2 m 1 m

2.6 kN

12
5 a

a
(a)

13

 = 0.05909 m = 59.09 mm

 y =
©yA

©A
=

2[0.100 m]10.200 m210.015 m2 + [0.010 m]10.02 m210.250 m2
210.200 m210.015 m2 + 0.020 m10.250 m2

 = 42.26110-62 m4

+  2 c 1
12

 10.015 m210.200 m23 + 10.015 m210.200 m210.100 m - 0.05909 m22 d
I = c 1

12
 10.250 m210.020 m23 + 10.250 m210.020 m210.05909 m - 0.010 m22 d

This dimension is shown in Fig. 6–27c.
Applying the moment equation of equilibrium about the neutral

axis, we have

Section Property. The moment of inertia about the neutral axis is
determined using the parallel-axis theorem applied to each of the three
composite parts of the cross-sectional area.Working in meters, we have

M = 4.859 kN # m

2.4 kN12 m2 + 1.0 kN10.05909 m2 - M = 0d+ ©MNA = 0;

The beam shown in Fig. 6–27a has a cross-sectional area in the shape
of a channel, Fig. 6–27b. Determine the maximum bending stress that
occurs in the beam at section a–a.

SOLUTION
Internal Moment. Here the beam’s support reactions do not have
to be determined. Instead, by the method of sections, the segment to the
left of section a–a can be used, Fig. 6–27c. In particular, note that
the resultant internal axial force N passes through the centroid of the
cross section. Also, realize that the resultant internal moment must be
calculated about the beam’s neutral axis at section a–a.

To find the location of the neutral axis, the cross-sectional area is
subdivided into three composite parts as shown in Fig. 6–27b. Using
Eq. A–2 of Appendix A, we have

Fig. 6–27

250 mm

200 mm
AN

15 mm

20 mm

(b)

C

15 mm

_
y � 59.09 mm

2 m

M
N

V

(c)

2.4 kN

1.0 kN 0.05909 m

C

Maximum Bending Stress. The maximum bending stress occurs at
points farthest away from the neutral axis. This is at the bottom of the
beam, Thus,

Ans.

Show that at the top of the beam the bending stress is 

NOTE: The normal force of and shear force will
also contribute additional stress on the cross section. The superposition
of all these effects will be discussed in Chapter 8.

V = 2.4 kNN = 1 kN

s¿ = 6.79 MPa.

smax =
Mc

I
=

4.859(103) N # m10.1409 m2
42.26110-62 m4 = 16.2 MPa

c = 0.200 m - 0.05909 m = 0.1409 m.
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EXAMPLE 6.14

The member having a rectangular cross section, Fig. 6–28a, is designed
to resist a moment of In order to increase its strength and
rigidity, it is proposed that two small ribs be added at its bottom,
Fig. 6–28b. Determine the maximum normal stress in the member for
both cases.

SOLUTION
Without Ribs. Clearly the neutral axis is at the center of the cross
section, Fig. 6–28a, so Thus,

Therefore the maximum normal stress is

Ans.

With Ribs. From Fig. 6–28b, segmenting the area into the large main
rectangle and the bottom two rectangles (ribs), the location of the
centroid and the neutral axis is determined as follows:

This value does not represent c. Instead

Using the parallel-axis theorem, the moment of inertia about the
neutral axis is

c = 0.035 m - 0.01592 m = 0.01908 m

 = 0.01592 m

 =
[0.015 m]10.030 m210.060 m2 + 2[0.0325 m]10.005 m210.010 m2

10.03 m210.060 m2 + 210.005 m210.010 m2

 y =
©yA

©A

y

smax =
Mc

I
=
140 N # m210.015 m2

0.135110-62 m4 = 4.44 MPa

I =
1

12
 bh3 =

1
12

 10.060 m210.030 m23 = 0.135110-62 m4

y = c = 15 mm = 0.015 m.

40 N # m.60 mm

30 mm

_
y40 N·m

(a)

40 N�m

30 mm _
y

10 mm

10 mm

N

A

5 mm

(b)

Therefore, the maximum normal stress is

Ans.

NOTE: This surprising result indicates that the addition of the ribs
to the cross section will increase the normal stress rather than decrease
it, and for this reason they should be omitted.

smax =
Mc

I
=

40 N # m10.01908 m2
0.1642110-62 m4 = 4.65 MPa

 = 0.1642110-62 m4

 + 2 c 1
12

 10.010 m210.005 m23 + 10.010 m210.005 m210.0325 m - 0.01592 m22 d
 I = c 1

12
 10.060 m210.030 m23 + 10.060 m210.030 m210.01592 m - 0.015 m22 d

Fig. 6–28
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200 mm

M

150 mm

150 mm

50 mm

30 mm

30 mm

50 mm

30 mm

30 mm

150 mm

25 mm

M

A

150 mm

50 mm

50 mm

50 mm

25 mm

FUNDAMENTAL PROBLEMS

F6–15. If the beam is subjected to a bending moment of
determine the maximum bending stress in

the beam.
M = 20 kN # m,

F6–18. If the beam is subjected to a bending moment of
determine the maximum bending stress in

the beam.
M = 10 kN # m,

300 mm

20 mm

20 mm

20 mm
M

200 mm

150 mm

150 mm

300 mm

M

200 mm

300 mm

20 mm

20 mm
20 mm

M

F6–16. If the beam is subjected to a bending moment of
sketch the bending stress distribution over

the beam’s cross section.
M = 50 kN # m,

F6–17. If the beam is subjected to a bending moment of
determine the maximum bending stress in

the beam.
M = 50 kN # m,

F6–19. If the beam is subjected to a bending moment of
determine the bending stress developed at

point A.
M = 5 kN # m,

F6–15

F6–16

F6–17

F6–18

F6–19
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200 mm

150 mm

z

y

x

M 

50 mm

30 mm

A

B

C
5 mm

5 mm

5 mm

5 mm
5 mm

7 mm 7 mm10 mm

6–47. A member having the dimensions shown is used 
to resist an internal bending moment of 
Determine the maximum stress in the member if the
moment is applied (a) about the z axis (as shown) (b) about
the y axis. Sketch the stress distribution for each case.

M = 90 kN # m.

*6–48. Determine the moment M that will produce a
maximum stress of 10 ksi on the cross section.

•6–49. Determine the maximum tensile and compressive
bending stress in the beam if it is subjected to a moment of
M = 4 kip # ft.

*6–52. The beam is subjected to a moment M. Determine
the percentage of this moment that is resisted by the
stresses acting on both the top and bottom boards, A and B,
of the beam.

•6–53. Determine the moment M that should be applied
to the beam in order to create a compressive stress at point
D of Also sketch the stress distribution
acting over the cross section and compute the maximum
stress developed in the beam.

sD = 30 MPa.

6–50. The channel strut is used as a guide rail for a trolley.
If the maximum moment in the strut is 
determine the bending stress at points A, B, and C.

6–51. The channel strut is used as a guide rail for a trolley.
If the allowable bending stress for the material is

determine the maximum bending moment
the strut will resist.
sallow = 175 MPa,

M = 30 N # m,

PROBLEMS

150 mm

25 mm

25 mm

150 mm

M

25 mm

25 mm

B

A

D

Prob. 6–47

Probs. 6–50/51

Probs. 6–52/53

3 in.

D

A B

0.5 in.

M

0.5 in.

3 in.

C

10 in.

0.5 in.0.5 in.

Probs. 6–48/49 
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6–54. The beam is made from three boards nailed together
as shown. If the moment acting on the cross section is

determine the maximum bending stress in
the beam. Sketch a three-dimensional view of the stress
distribution acting over the cross section.

6–55. The beam is made from three boards nailed together
as shown. If the moment acting on the cross section is

determine the resultant force the bending
stress produces on the top board.
M = 600 N # m,

M = 600 N # m,

6–58. If the beam is subjected to an internal moment of
determine the maximum tensile and

compressive bending stress in the beam.

6–59. If the beam is made of material having an allowable
tensile and compressive stress of and

respectively, determine the maximum
allowable internal moment M that can be applied to the
beam.

(sallow)c = 22 ksi,
(sallow)t = 24 ksi

M = 100 kip # ft,

*6–56. The aluminum strut has a cross-sectional area in
the form of a cross. If it is subjected to the moment

determine the bending stress acting at points
A and B, and show the results acting on volume elements
located at these points.

•6–57. The aluminum strut has a cross-sectional area in
the form of a cross. If it is subjected to the moment

determine the maximum bending stress in
the beam, and sketch a three-dimensional view of the stress
distribution acting over the entire cross-sectional area.

M = 8 kN # m,

M = 8 kN # m,

*6–60. The beam is constructed from four boards as
shown. If it is subjected to a moment of 
determine the stress at points A and B. Sketch a 
three-dimensional view of the stress distribution.

•6–61. The beam is constructed from four boards as
shown. If it is subjected to a moment of 
determine the resultant force the stress produces on the top
board C.

Mz = 16 kip # ft,

Mz = 16 kip # ft,

25 mm

200 mm

150 mm

20 mm

20 mm

M � 600 N�m

A

20 mm

B

20 mm

100 mm

50 mm
50 mm

100 mm

M � 8 kN�m

6 in.

3 in.

2 in.

3 in.

M

1.5 in.

10 in.

10 in.

1 in.

14 in.

1 in.

1 in.

Mz � 16 kip�ft

y

z

x

1 in.

A
C

B

Probs. 6–54/55 Probs. 6–58/59

Probs. 6–60/61Probs. 6–56/57
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6–62. A box beam is constructed from four pieces of
wood, glued together as shown. If the moment acting on the
cross section is 10 kN m, determine the stress at points A and
B and show the results acting on volume elements located at
these points.

#

6–63. Determine the dimension a of a beam having a
square cross section in terms of the radius r of a beam with
a circular cross section if both beams are subjected to the
same internal moment which results in the same maximum
bending stress.

*6–64. The steel rod having a diameter of 1 in. is subjected
to an internal moment of Determine the
stress created at points A and B. Also, sketch a three-
dimensional view of the stress distribution acting over the
cross section.

M = 300 lb # ft .

•6–65. If the moment acting on the cross section of the
beam is determine the maximum bending
stress in the beam. Sketch a three-dimensional view of the
stress distribution acting over the cross section.

6–66. If determine the resultant force the
bending stress produces on the top board A of the beam.

M = 4 kip # ft,

M = 4 kip # ft,

6–67. The rod is supported by smooth journal bearings 
at A and B that only exert vertical reactions on the shaft. If

determine the absolute maximum bending
stress in the beam, and sketch the stress distribution acting
over the cross section.

*6–68. The rod is supported by smooth journal bearings at
A and B that only exert vertical reactions on the shaft.
Determine its smallest diameter d if the allowable bending
stress is sallow = 180 MPa.

d = 90 mm,

20 mm 20 mm

250 mm

M � 10 kN�m

160 mm

25 mm

25 mm B

A

a

r
a

M � 300 lb�ft

A

BB

45�

0.5 in.

12 in.

12 in.

1.5 in.

1.5 in.

1.5 in.
M

A

B

d

A

3 m 1.5 m

12 kN/m

Prob. 6–62

Probs. 6–65/66

Probs. 6–67/68

Prob. 6–63

Prob. 6–64
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•6–69. Two designs for a beam are to be considered.
Determine which one will support a moment of 

with the least amount of bending stress. What is
that stress? 
150 kN # m

M =

6–70. The simply supported truss is subjected to the
central distributed load. Neglect the effect of the diagonal
lacing and determine the absolute maximum bending stress
in the truss.The top member is a pipe having an outer diameter
of 1 in. and thickness of and the bottom member is a
solid rod having a diameter of 12  in.

3
16  in.,

6–71. The axle of the freight car is subjected to wheel
loadings of 20 kip. If it is supported by two journal bearings at
C and D, determine the maximum bending stress developed
at the center of the axle, where the diameter is 5.5 in.

200 mm

300 mm

(a) (b)

15 mm

30 mm

15 mm

200 mm

300 mm

30 mm

15 mm

30 mm

6 ft

5.75 in.

6 ft 6 ft

100 lb/ft

C DA B

20 kip 20 kip

10 in. 10 in.
60 in.

*6–72. The steel beam has the cross-sectional area shown.
Determine the largest intensity of distributed load that it
can support so that the maximum bending stress in the
beam does not exceed 

•6–73. The steel beam has the cross-sectional area shown.
If determine the maximum bending stress
in the beam.

w0 = 0.5 kip>ft,

smax = 22 ksi.

w0

6–74. The boat has a weight of 2300 lb and a center of
gravity at G. If it rests on the trailer at the smooth contact A
and can be considered pinned at B, determine the absolute
maximum bending stress developed in the main strut of
the trailer. Consider the strut to be a box-beam having the
dimensions shown and pinned at C.

6–75. The shaft is supported by a smooth thrust bearing at
A and smooth journal bearing at D. If the shaft has the cross
section shown, determine the absolute maximum bending
stress in the shaft.

10 in.

8 in.

0.30 in.

12 ft 12 ft

0.30 in.

0.3 in.

w0

1 ft

3 ft
D

A

B
C

1 ft
5 ft 4 ft

G

1.75 in.

3 in. 1.75 in.

1.5 in.

A C DB

3 kN 3 kN

0.75 m 0.75 m1.5 m

40 mm 25 mm

Prob. 6–69

Probs. 6–72/73

Prob. 6–74

Prob. 6–75

Prob. 6–70

Prob. 6–71
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*6–76. Determine the moment M that must be applied to
the beam in order to create a maximum stress of 80 MPa.
Also sketch the stress distribution acting over the cross
section.

•6–81. If the reaction of the ballast on the railway tie can be
assumed uniformly distributed over its length as shown,
determine the maximum bending stress developed in the tie.
The tie has the rectangular cross section with thickness

6–82. The reaction of the ballast on the railway tie can be
assumed uniformly distributed over its length as shown.
If the wood has an allowable bending stress of 
1.5 ksi, determine the required minimum thickness t of the
rectangular cross sectional area of the tie to the nearest in.1

8

sallow =

t = 6 in.

•6–77. The steel beam has the cross-sectional area shown.
Determine the largest intensity of distributed load w that it
can support so that the bending stress does not exceed

6–78. The steel beam has the cross-sectional area shown.
If determine the absolute maximum bending
stress in the beam.

w = 5 kip>ft,

smax = 22 ksi. 6–83. Determine the absolute maximum bending stress
in the tubular shaft if and 

*6–84. The tubular shaft is to have a cross section such
that its inner diameter and outer diameter are related by

Determine these required dimensions if the
allowable bending stress is sallow = 155 MPa.
di = 0.8do.

do = 200 mm.di = 160 mm

6–79. If the beam ACB in Prob. 6–9 has a square cross
section, 6 in. by 6 in., determine the absolute maximum
bending stress in the beam.

*6–80. If the crane boom ABC in Prob. 6–3 has a
rectangular cross section with a base of 2.5 in., determine its
required height h to the nearest if the allowable bending
stress is sallow = 24 ksi.

1
4  in.

6–85. The wood beam has a rectangular cross section in
the proportion shown. Determine its required dimension b
if the allowable bending stress is sallow = 10 MPa.

260 mm

20 mm
30 mm

300 mm

M

30 mm    

30 mm    

20 mm    

10 in.

8 in.

0.30 in.

8 ft 8 ft 8 ft

0.30 in.

0.3 in.

w w

5 ft1.5 ft 1.5 ft

15 kip 15 kip

12 in.

t

w

500 N/m

2 m 2 m

1.5b

b
A B

A B

di do

3 m 1 m

15 kN/m

60 kN � m

Prob. 6–76

Probs. 6–81/82

Probs. 6–83/84

Prob. 6–85

Probs. 6–77/78
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6–86. Determine the absolute maximum bending stress
in the 2-in.-diameter shaft which is subjected to the
concentrated forces. The journal bearings at A and B only
support vertical forces.

6–87. Determine the smallest allowable diameter of the
shaft which is subjected to the concentrated forces. The
journal bearings at A and B only support vertical forces.
The allowable bending stress is sallow = 22 ksi.

*6–88. If the beam has a square cross section of 9 in. on
each side, determine the absolute maximum bending stress
in the beam.

•6–93. The man has a mass of 78 kg and stands motionless at
the end of the diving board. If the board has the cross section
shown, determine the maximum normal strain developed in
the board. The modulus of elasticity for the material is

Assume A is a pin and B is a roller.E = 125 GPa.

6–94. The two solid steel rods are bolted together along
their length and support the loading shown. Assume the
support at A is a pin and B is a roller. Determine the required
diameter d of each of the rods if the allowable bending
stress is 

6–95. Solve Prob. 6–94 if the rods are rotated so that
both rods rest on the supports at A (pin) and B (roller).

90°

sallow = 130 MPa.

•6–89. If the compound beam in Prob. 6–42 has a square
cross section, determine its dimension a if the allowable
bending stress is 

6–90. If the beam in Prob. 6–28 has a rectangular cross
section with a width b and a height h, determine the
absolute maximum bending stress in the beam.

sallow = 150 MPa.

6–91. Determine the absolute maximum bending stress
in the 80-mm-diameter shaft which is subjected to the
concentrated forces. The journal bearings at A and B only
support vertical forces.

*6–92. Determine the smallest allowable diameter of the
shaft which is subjected to the concentrated forces. The
journal bearings at A and B only support vertical forces.
The allowable bending stress is sallow = 150 MPa.

15 in.

15 in.
B

A

800 lb

30 in.

600 lb

A
B

8 ft 8 ft

800 lb/ft
1200 lb

0.5 m 0.6 m0.4 m

20 kN

A B

12 kN

B CA
1.5 m 2.5 m

350 mm

20 mm
30 mm

10 mm 10 mm 10 mm

B

A

2 m

80 kN
20 kN/m

2 m
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This dimensionless number n is called the transformation factor. It
indicates that the cross section, having a width b on the original beam,
Fig. 6–36a, must be increased in width to in the region where
material 1 is being transformed into material 2, Fig. 6–36e.

In a similar manner, if the less stiff material 2 is transformed into the
stiffer material 1, the cross section will look like that shown in Fig. 6–36f.
Here the width of material 2 has been changed to where

In this case the transformation factor will be less than
one since In other words, we need less of the stiffer material to
support the moment.

Once the beam has been transformed into one having a single
material, the normal-stress distribution over the transformed cross
section will be linear as shown in Fig. 6–36g or 6–36h. Consequently, the
centroid (neutral axis) and moment of inertia for the transformed area
can be determined and the flexure formula applied in the usual manner
to determine the stress at each point on the transformed beam. The
stress in the transformed beam will be equivalent to the stress in the same
material of the actual beam; however, the stress found on the transformed
material has to be multiplied by the transformation factor n (or ), since
the area of the transformed material, is n times the area
of actual material That is,

(6–21)

Example 6.17 numerically illustrates application of the transformed
section method.

 s = ns¿
 s dz dy = s¿n dz dy

 dF = s dA = s¿dA¿

dA = dz dy.
dA¿ = n dz dy,

n¿

E1 7 E2 .
n¿n¿ = E2>E1 .

b1 = n¿b,

b2 = nb

2

2

y

z

(g)

Bending-stress variation for
beam transformed to material  2

x

M

1

1

y

z

(h)

Bending-stress variation for
beam transformed to material  1

x

M

Fig. 6–36 (cont.)

dy

y

z

h

b

2

(e)
Beam transformed to material  2

x

2

ndz

y

b2 � nb

h

b1 � n¿b

1

1

b

(f)

Beam transformed to material  1

Important Points

• Composite beams are made from different materials in order to
efficiently carry a load. Application of the flexure formula
requires the material to be homogeneous, and so the cross section
of the beam must be transformed into a single material if this
formula is to be used to calculate the bending stress.

• The transformation factor n is a ratio of the moduli of the different
materials that make up the beam. Used as a multiplier, it converts
the width of the cross section of the composite beam into a beam
made from a single material so that this beam has the same
strength as the composite beam. Stiff material will thus be replaced
by more of the softer material and vice versa.

• Once the stress in the transformed section is determined, it must
be multiplied by the transformation factor to obtain the stress in
the actual beam.
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*6.7 Reinforced Concrete Beams

All beams subjected to pure bending must resist both tensile and
compressive stresses. Concrete, however, is very susceptible to cracking
when it is in tension, and therefore by itself it will not be suitable for
resisting a bending moment.* In order to circumvent this shortcoming,
engineers place steel reinforcing rods within a concrete beam at a
location where the concrete is in tension, Fig. 6–37a. To be most effective,
these rods are located farthest from the beam’s neutral axis, so that the
moment created by the forces developed in them is greatest about the
neutral axis. Furthermore, the rods are required to have some concrete
coverage to protect them from corrosion or loss of strength in the event
of a fire. Codes used for actual reinforced concrete design assume the
ability of concrete will not support any tensile loading, since the possible
cracking of concrete is unpredictable. As a result, the normal stress
distribution acting on the cross-sectional area of a reinforced concrete
beam is assumed to look like that shown in Fig. 6–37b.

The stress analysis requires locating the neutral axis and determining
the maximum stress in the steel and concrete. To do this, the area of steel

is first transformed into an equivalent area of concrete using the
transformation factor This ratio, which gives 
requires a “greater” amount of concrete to replace the steel. The
transformed area is and the transformed section looks like that
shown in Fig. 6–37c. Here d represents the distance from the top of the
beam to the (transformed) steel, b is the beam’s width, and is the yet
unknown distance from the top of the beam to the neutral axis.To obtain

, we require the centroid C of the cross-sectional area of the
transformed section to lie on the neutral axis, Fig. 6–37c. With reference
to the neutral axis, therefore, the moment of the two areas, must be
zero, since Thus,

Once is obtained from this quadratic equation, the solution proceeds
in the usual manner for obtaining the stress in the beam. Example 6.18
numerically illustrates application of this method.

h¿

 
b

2
 h¿2 + nAsth¿ - nAstd = 0

 bh¿ ah¿
2
b - nAst1d - h¿2 = 0

y = ©y
'

A>©A = 0.
©y

'
A,

h¿

h¿

nAst

n 7 1,n = Est>Econc .
Ast

(a)

b

d

M

A

(b)

M

Concrete assumed
cracked within
this region.

N

(c)

A

N

b
dh¿

C

n Ast

Fig. 6–37

*Inspection of its particular stress–strain diagram in Fig. 3–11 reveals that concrete can
be 12.5 times stronger in compression than in tension.
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EXAMPLE 6.17

A composite beam is made of wood and reinforced with a steel
strap located on its bottom side. It has the cross-sectional area
shown in Fig. 6–38a. If the beam is subjected to a bending moment of

determine the normal stress at points B and C. Take
and Est = 200 GPa.Ew = 12 GPa

M = 2 kN # m,

(a)

150 mm

20 mm

C

B
150 mm

M � 2 kN�m
_
y

9 mm

(b)

150 mm

20 mm

C

B¿

 N

A

150 mm

The moment of inertia about the neutral axis is therefore

 = 9.358110-62 m4

 + c 1
12

 10.009 m210.150 m23 + 10.009 m210.150 m210.095 m - 0.03638 m22 d
 INA = c 1

12
 10.150 m210.02 m23 + 10.150 m210.02 m210.03638 m - 0.01 m22 d

y =
©yA

©A
=

[0.01 m]10.02 m210.150 m2 + [0.095 m]10.009 m210.150 m2
0.02 m10.150 m2 + 0.009 m10.150 m2 = 0.03638 m

SOLUTION
Section Properties. Although the choice is arbitrary, here we will
transform the section into one made entirely of steel. Since steel has a
greater stiffness than wood the width of the wood must
be reduced to an equivalent width for steel. Hence n must be less than
one. For this to be the case, so that

The transformed section is shown in Fig. 6–38b.
The location of the centroid (neutral axis), calculated from a

reference axis located at the bottom of the section, is

bst = nbw =
12 GPa

200 GPa
 1150 mm2 = 9 mm

n = Ew>Est,

1Est 7 Ew2,

Fig. 6–38



6.7 REINFORCED CONCRETE BEAMS 317

6
Normal Stress. Applying the flexure formula, the normal stress at

and C is

Ans.

The normal-stress distribution on the transformed (all steel) section is
shown in Fig. 6–38c.

The normal stress in the wood at B in Fig. 6–38a, is determined from
Eq. 6–21; that is,

Ans.

Using these concepts, show that the normal stress in the steel and
the wood at the point where they are in contact is and

respectively. The normal-stress distribution in the
actual beam is shown in Fig. 6–38d.
sw = 0.210 MPa,

sst = 3.50 MPa

sB = nsB¿ =
12 GPa

200 GPa
 128.56 MPa2 = 1.71 MPa

 sC =
2(103) N # m10.03638 m2

9.358110-62 m4 = 7.78 MPa

 sB¿ =
2(103) N # m10.170 m - 0.03638 m2

9.358110-62 m4 = 28.6 MPa

B¿

7.78 MPa

28.6 MPa

3.50 MPa

B¿

C

(c)

M � 2 kN�m

7.78 MPa

C

3.50 MPa

0.210 MPa

1.71 MPa

B

(d)

M � 2 kN�m

Fig. 6–38 (cont.) 
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EXAMPLE 6.18

The reinforced concrete beam has the cross-sectional area shown in
Fig. 6–39a. If it is subjected to a bending moment of 
determine the normal stress in each of the steel reinforcing rods and
the maximum normal stress in the concrete. Take 
and 

SOLUTION
Since the beam is made from concrete, in the following analysis we
will neglect its strength in supporting a tensile stress.

Section Properties. The total area of steel,
will be transformed into an equivalent area of concrete,

Fig. 6–39b. Here

We require the centroid to lie on the neutral axis. Thus or

Solving for the positive root,

h¿ = 4.85 in.

 h¿2 + 2.11h¿ - 33.7 = 0

 12 in. 1h¿2 
h¿
2

- 12.65 in2116 in. - h¿2 = 0

©y
'

A = 0,

A¿ = nAst =
2911032 ksi

3.611032 ksi
 11.571 in22 = 12.65 in2

1.571 in2
Ast = 2[p10.5 in.22] =

Econc = 3.611032 ksi.
Est = 2911032 ksi

M = 60 kip # ft,

Using this value for the moment of inertia of the transformed
section about the neutral axis is

 = 2029 in4+ 12.65 in2 116 in. - 4.85 in.22
 I = c 1

12
 112 in.214.85 in.23 + 12 in. 14.85 in.2a4.85 in.

2
b2 d

h¿,

Normal Stress. Applying the flexure formula to the transformed
section, the maximum normal stress in the concrete is

Ans.

The normal stress resisted by the “concrete” strip, which replaced the
steel, is

The normal stress in each of the two reinforcing rods is therefore

Ans.

The normal-stress distribution is shown graphically in Fig. 6–39c.

sst = ns¿conc = ¢ 2911032 ksi

3.611032 ksi
≤3.96 ksi = 31.9 ksi

s¿conc =
[60 kip # ft112 in.>ft2]116 in. - 4.85 in.2

2029 in4 = 3.96 ksi

1sconc2max =
[60 kip # ft112 in.>ft2]14.85 in.2

2029 in4 = 1.72 ksi

12 in.

18 in.

2 in.1-in.-diameter bars

60 kip�ft

(a)

C
AN

12 in.

h¿ 16 in.

A¿ � 12.65 in2

(b)

(c)

1.72 ksi

31.9 ksi

31.9 ksi

4.85 in.

Fig. 6–39
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*6.8 Curved Beams

The flexure formula applies to a straight member, since it was shown that
the normal strain within it varies linearly from the neutral axis. If the
member is curved, however, this assumption becomes inaccurate, and so
we must develop another method to describe the stress distribution. In
this section we will consider the analysis of a curved beam, that is, a
member that has a curved axis and is subjected to bending. Typical
examples include hooks and chain links. In all cases, the members are 
not slender, but rather have a sharp curve, and their cross-sectional
dimensions are large compared with their radius of curvature.

The following analysis assumes that the cross section is constant and
has an axis of symmetry that is perpendicular to the direction of the
applied moment M, Fig. 6–40a. Also, the material is homogeneous and
isotropic, and it behaves in a linear-elastic manner when the load is
applied. Like the case of a straight beam, we will also assume that the
cross sections of the member remain plane after the moment is applied.
Furthermore, any distortion of the cross section within its own plane will
be neglected.

To perform the analysis, three radii, extending from the center of
curvature of the member, are identified in Fig. 6–40a. Here 
references the known location of the centroid for the cross-sectional area,
R references the yet unspecified location of the neutral axis, and r locates
the arbitrary point or area element dA on the cross section.

rO¿

M MR

r

y

Rr

eN A

y

C

dA

(a)

Centroid

Neutral axis

Area element dA
_
r

_
r

O ¿

A A

This crane hook represents a typical example
of a curved beam.

Fig. 6–40
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If we isolate a differential segment of the beam, Fig. 6–40b, the stress
tends to deform the material such that each cross section will rotate
through an angle . The normal strain in the strip (or line) of
material located at r will now be determined. This strip has an original
length Fig. 6–40b. However, due to the rotations the strip’s
total change in length is Consequently, .
If we let which is the same for any particular strip, we have

Unlike the case of straight beams, here it can be seen
that the normal strain is a nonlinear function of r, in fact it varies in a
hyperbolic fashion. This occurs even though the cross section of the
beam remains plane after deformation. If the material remains linearly
elastic then and so

(6–22)

This variation is also hyperbolic, and since it has now been established,
we can determine the location of the neutral axis and relate the stress
distribution to the resultant internal moment M.

To obtain the location R of the neutral axis, we require the resultant
internal force caused by the stress distribution acting over the cross
section to be equal to zero; i.e.,

Since Ek and R are constants, we have

Solving for R yields

(6–23)

Here

the location of the neutral axis, specified from the center of
curvature of the member

the cross-sectional area of the member

the arbitrary position of the area element dA on the cross
section, specified from the center of curvature of the member

The integral in Eq. 6–23 has been evaluated for various cross-sectional
geometries, and the results for some common cross sections are listed in
Table 6–1.

O¿
r =

A =
O¿

R =

R =
A

LA
 
dA
r

RLA
 
dA
r

- LA
 dA = 0

 LA
 EkaR - r

r
b  dA = 0

 LA
 s dA = 0FR = ©Fx ;

s = EkaR - r
r
b

s = EP

P = k(R - r)>r.
k = du>du, P = du1R - r2>r dudu1R - r2. du>2r du,

Pdu>2

6

(b)

M

M
(R � r)

(R � r)

r

rdu

du

du

2
du

2

du

2

du

2
(R � r)

O¿

Fig. 6–40 (cont.)

Shape

2a

2b

2c

b

b

r2

r1

r2

r1

_
r

_
r

� c
22p

_
r

_
  r2�

2pb
a

�bln
r2 
r1

b r2 

(r2 � r1)

b  ln
r2 
r1

� a
2_

r
_

  r2
�

dA
r1

A

TABLE 6–1
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In order to relate the stress distribution to the resultant bending
moment, we require the resultant internal moment to be equal to the
moment of the stress distribution calculated about the neutral axis.
From Fig. 6–40a, the stress acting on the area element dA and located
a distance y from the neutral axis, creates a moment about the neutral
axis of For the entire cross section, we require

Since and is defined by Eq. 6–22, we have

Expanding, realizing that Ek and R are constants, then

The first integral is equivalent to as determined from Eq. 6–23, and
the second integral is simply the cross-sectional area A. Realizing that
the location of the centroid of the cross section is determined from

the third integral can be replaced by Thus,

Finally, solving for Ek in Eq. 6–22, substituting into the above equation,
and solving for we have

(6–24)

Here

the normal stress in the member

the internal moment, determined from the method of sections
and the equations of equilibrium and calculated about the
neutral axis for the cross section. This moment is positive if it
tends to increase the member’s radius of curvature, i.e., it tends
to straighten out the member

the cross-sectional area of the member

the distance measured from the center of curvature to the
neutral axis, determined from Eq. 6–23

the distance measured from the center of curvature to the
centroid of the cross section

the distance measured from the center of curvature to the
point where the stress is to be determineds

 r =

 r =

 R =
 A =

 M =
 s =

s =
M1R - r2
Ar1r - R2

s,

M = EkA1r - R2
rA.r = 1r dA>A,

A>R

M = Ek¢R2

L
 

A
 
dA
r

- 2RLA
 dA + LA

 r dA≤

M = LA
 1R - r2EkaR - r

r
b  dA

sy = R - r,M = 1ys dA.
dM = y1s dA2.

s,

6
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From Fig. 6–40a, Also, the constant and usually very small
distance between the neutral axis and the centroid is When
these results are substituted into Eq. 6–24, we can also write

(6–25)

These two equations represent two forms of the so-called curved-
beam formula, which like the flexure formula can be used to determine
the normal-stress distribution in a curved member. This distribution is,
as previously stated, hyperbolic; an example is shown in Fig. 6–40c and
6–40d. Since the stress acts along the circumference of the beam, it is
sometimes called circumferential stress. Note that due to the curvature
of the beam, the circumferential stress will create a corresponding
component of radial stress, so called since this component acts in the
radial direction. To show how it is developed, consider the free-body
diagram of the segment shown in Fig. 6–40e. Here the radial stress is
necessary since it creates the force that is required to balance
the two components of circumferential forces dF which act along the
line 

Sometimes the radial stresses within curved members may become
significant, especially if the member is constructed from thin plates and
has, for example, the shape of an I-section. In this case the radial stress
can become as large as the circumferential stress, and consequently the
member must be designed to resist both stresses. For most cases,
however, these stresses can be neglected, especially if the member has a
solid section. Here the curved-beam formula gives results that are in very
close agreement with those determined either by experiment or by a
mathematical analysis based on the theory of elasticity.

The curved-beam formula is normally used when the curvature of the
member is very pronounced, as in the case of hooks or rings. However,
if the radius of curvature is greater than five times the depth of the
member, the flexure formula can normally be used to determine the
stress. For example, for rectangular sections for which this ratio equals 5,
the maximum normal stress, when determined by the flexure formula,
will be about 7% less than its value when determined by the curved-
beam formula. This error is further reduced when the radius of
curvature-to-depth ratio is more than 5.*

O¿B.

dFr

sr

s =
My

Ae1R - y2

e = r - R.
r = R - y.

Bending stress variation
(profile view)

(c)

M

smax

(d)

M

A

N

smax

(e)

B

sr

s

s dF

dF

dFr

O¿

Fig. 6–40 (cont.)

*See, for example, Boresi, A. P., et al., Advanced Mechanics of Materials, 3rd ed., p. 333,
1978, John Wiley & Sons, New York.



6.8 CURVED BEAMS 323

6

Important Points

• The curved-beam formula should be used to determine the
circumferential stress in a beam when the radius of curvature is
less than five times the depth of the beam.

• Due to the curvature of the beam, the normal strain in the beam
does not vary linearly with depth as in the case of a straight beam.
As a result, the neutral axis does not pass through the centroid of
the cross section.

• The radial stress component caused by bending can generally be
neglected, especially if the cross section is a solid section and not
made from thin plates.

Procedure for Analysis

In order to apply the curved-beam formula the following procedure
is suggested.

Section Properties.

• Determine the cross-sectional area A and the location of the
centroid, measured from the center of curvature.

• Find the location of the neutral axis, R, using Eq. 6–23 or
Table 6–1. If the cross-sectional area consists of n “composite”
parts, determine for each part. Then, from Eq. 6–23, for
the entire section, In all cases,

Normal Stress.

• The normal stress located at a point r away from the center of
curvature is determined from Eq. 6–24. If the distance y to the
point is measured from the neutral axis, then find and
use Eq. 6–25.

• Since generally produces a very small number, it is best to
calculate and R with sufficient accuracy so that the subtraction
leads to a number e having at least four significant figures.

• If the stress is positive it will be tensile, whereas if it is negative it
will be compressive.

• The stress distribution over the entire cross section can be
graphed, or a volume element of the material can be isolated and
used to represent the stress acting at the point on the cross
section where it has been calculated.

r
r - R

e = r - R

R 6 r.R = ©A>©11  dA>r2.1dA>r

r,
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EXAMPLE 6.19

The curved bar has a cross-sectional area shown in Fig. 6–41a. If it is
subjected to bending moments of determine the maximum
normal stress developed in the bar.

4 kN # m,

200 mm

250 mm

B

A

200 mm

50 mm

30 mm

50 mm
280 mm

4 kN·m 4 kN·m

–r

(a)

O ¿

Fig. 6–41

SOLUTION
Internal Moment. Each section of the bar is subjected to the
same resultant internal moment of Since this moment tends
to decrease the bar’s radius of curvature, it is negative. Thus,

Section Properties. Here we will consider the cross section to be
composed of a rectangle and triangle. The total cross-sectional area is

The location of the centroid is determined with reference to the center
of curvature, point Fig. 6–41a.

 = 0.23308 m

 =
[0.225 m]10.05 m210.05 m2 + [0.260 m] 

1
210.050 m210.030 m2

3.250110-32 m2

 r =
© r

'
A

©A

O¿,

©A = 10.05 m22 +
1
2

 10.05 m210.03 m2 = 3.250110-32 m2

M = -4 kN # m.

4 kN # m.
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We can find for each part using Table 6–1. For the rectangle,

And for the triangle,

LA

dA
r

= 0.05 ma ln 
0.250 m
0.200 m

b = 0.011157 m

1A dA>r

Thus the location of the neutral axis is determined from

LA

dA
r

=
10.05 m210.280 m2
10.280 m - 0.250 m2  a ln 

0.280 m
0.250 m

b - 0.05 m = 0.0028867 m

Note that as expected. Also, the calculations were performed
with sufficient accuracy so that 

is now accurate to three significant figures.

Normal Stress. The maximum normal stress occurs either at A or
B. Applying the curved-beam formula to calculate the normal stress at
B, we have

At point A, and the normal stress is

Ans.

By comparison, the maximum normal stress is at A. A two-dimensional
representation of the stress distribution is shown in Fig. 6–41b.

= 129 MPa

 sA =
M1R - rA2
ArA1r - R2 =

1-4 kN # m210.23142 m - 0.280 m2
3.250110-32 m210.280 m2(0.00166 m2

rA = 0.280 m

 = -116 MPa

 sB =
M1R - rB2
ArB1r - R2 =

1-4 kN # m210.23142 m - 0.200 m2
3.250110-32 m210.200 m210.00166 m2

rB = 0.200 m,

0.00166 m
1r - R2 = 0.23308 m - 0.23142 m =

R 6 r

R =
©A

©LA
dA>r

=
3.250110-32 m2

0.011157 m + 0.0028867 m
= 0.23142 m

B

A

(b)

129 MPa

116 MPa

4 kN�m

Fig. 6–41 (cont.)
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6.9 Stress Concentrations

The flexure formula cannot be used to determine the stress distribution
within regions of a member where the cross-sectional area suddenly
changes, since the normal-stress and strain distributions at the section
become nonlinear. The results can only be obtained through experiment
or, in some cases, by using the theory of elasticity. Common discontinuities
include members having notches on their surfaces, Fig. 6–42a, holes for
passage of fasteners or other items, Fig. 6–42b, or abrupt changes in the
outer dimensions of the member’s cross section, Fig. 6–42c.The maximum
normal stress at each of these discontinuities occurs at the section taken
through the smallest cross-sectional area.

For design, it is generally important to only know the maximum
normal stress developed at these sections, not the actual stress
distribution. As in the previous cases of axially loaded bars and
torsionally loaded shafts, we can obtain the maximum normal stress due
to bending using a stress-concentration factor K. For example, Fig. 6–43
gives values of K for a flat bar that has a change in cross section using
shoulder fillets. To use this graph simply find the geometric ratios 
and and then find the corresponding value of K for a particularr>h w>h

(a)

(b)

(c)

Fig. 6–42
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1.0

r
h

b
r � 4

b
r � 2

b
r � 1

b
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geometry. Once K is obtained, the maximum bending stress shown in
Fig. 6–45 is determined using

(6–26)

In the same manner, Fig. 6–44 can be used if the discontinuity consists of
circular grooves or notches.

Like axial load and torsion, stress concentration for bending should
always be considered when designing members made of brittle materials
or those that are subjected to fatigue or cyclic loadings. Also, realize that
stress-concentration factors apply only when the material is subjected to
elastic behavior. If the applied moment causes yielding of the material, as
is the case with ductile materials, the stress becomes redistributed
throughout the member, and the maximum stress that results will be
lower than that determined using stress-concentration factors. This
phenomenon is discussed further in the next section.

smax = K 
Mc

I

MM

smax

smax

Fig. 6–45

Stress concentrations caused by bending
occur at the sharp corners of this window
lintel and are responsible for the crack at the
corner.

Important Points

• Stress concentrations occur at points of sudden cross-sectional
change, caused by notches and holes, because here the stress and
strain become nonlinear. The more severe the change, the larger
the stress concentration.

• For design or analysis, the maximum normal stress occurs on the
smallest cross-sectional area.This stress can be obtained by using a
stress concentration factor, K, that has been determined through
experiment and is only a function of the geometry of the member.

• Normally, the stress concentration in a ductile material subjected
to a static moment will not have to be considered in design;
however, if the material is brittle, or subjected to fatigue loading,
then stress concentrations become important.



328 CHAPTER 6 BENDING

6

EXAMPLE 6.20

The transition in the cross-sectional area of the steel bar is achieved
using shoulder fillets as shown in Fig. 6–46a. If the bar is subjected to
a bending moment of determine the maximum normal stress
developed in the steel. The yield stress is 

SOLUTION
The moment creates the largest stress in the bar at the base of the
fillet, where the cross-sectional area is smallest.The stress-concentration
factor can be determined by using Fig. 6–43. From the geometry of the
bar, we have Thus,

These values give Applying Eq. 6–26, we have

Ans.

This result indicates that the steel remains elastic since the stress is
below the yield stress (500 MPa).

NOTE: The normal-stress distribution is nonlinear and is shown in
Fig. 6–46b. Realize, however, that by Saint-Venant’s principle, Sec. 4.1,
these localized stresses smooth out and become linear when one
moves (approximately) a distance of 80 mm or more to the right of
the transition. In this case, the flexure formula gives 
Fig. 6–46c. Also note that the choice of a larger-radius fillet will
significantly reduce since as r increases in Fig. 6–43, K will
decrease.

smax,

smax = 234 MPa,

smax = K 
Mc

I
= 11.452 

15(103) N # m210.04 m2
C 1
1210.020 m210.08 m23 D = 340 MPa

K = 1.45.

r

h
=

16 mm
80 mm

= 0.2 w
h

=
120 mm
80 mm

= 1.5

w = 120 mm.h = 80 mm,r = 16 mm,

sY = 500 MPa.
5 kN # m,

120 mm
r � 16 mm

80 mm

20 mm
(a)

5 kN�m

5 kN�m

(b)

340 MPa

340 MPa

5 kN�m

5 kN�m

Fig. 6–46

5 kN�m

(c)

234 MPa

234 MPa

5 kN�m
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6–127. The composite beam is made of 6061-T6 aluminum
(A) and C83400 red brass (B). Determine the dimension h of
the brass strip so that the neutral axis of the beam is located
at the seam of the two metals. What maximum moment
will this beam support if the allowable bending stress for
the aluminum is and for the brass

*6–128. The composite beam is made of 6061-T6 aluminum
(A) and C83400 red brass (B). If the height 
determine the maximum moment that can be applied to the
beam if the allowable bending stress for the aluminum is

and for the brass 1sallow2br = 35 MPa.1sallow2al = 128 MPa

h = 40 mm,

1sallow2br = 35 MPa?
1sallow2al = 128 MPa

6–131. The Douglas fir beam is reinforced with A-36
straps at its center and sides. Determine the maximum
stress developed in the wood and steel if the beam 
is subjected to a bending moment of .
Sketch the stress distribution acting over the cross section.

Mz = 7.50 kip # ft

PROBLEMS

B

A
50 mm

150 mm

h

Probs. 6–127/128

y

z6 in.

0.5 in. 0.5 in.

2 in. 2 in.

0.5 in.

Prob. 6–131

w

A

B

15 ft

3 in.

3 in.

3 in.

Probs. 6–129/130

•6–129. Segment A of the composite beam is made from
2014-T6 aluminum alloy and segment B is A-36 steel. If

, determine the absolute maximum bending
stress developed in the aluminum and steel. Sketch the
stress distribution on the cross section.

6–130. Segment A of the composite beam is made from
2014-T6 aluminum alloy and segment B is A-36 steel. If
the allowable bending stress for the aluminum and steel are

and , determine the
maximum allowable intensity w of the uniform distributed
load.

(sallow)st = 22 ksi(sallow)al = 15 ksi

w = 0.9 kip>ft

0.5 in.

6 in.

0.5 in.

0.5 in.

12 in.
M

0.5 in.

Probs. 6–132/133

*6–132. The top plate is made of 2014-T6 aluminum and is
used to reinforce a Kevlar 49 plastic beam. Determine the
maximum stress in the aluminum and in the Kevlar if the
beam is subjected to a moment of 

•6–133. The top plate made of 2014-T6 aluminum is used
to reinforce a Kevlar 49 plastic beam. If the allowable
bending stress for the aluminum is and
for the Kevlar , determine the maximum
moment M that can be applied to the beam.

(sallow)k = 8 ksi
(sallow)al = 40 ksi

M = 900 lb # ft.
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6–134. The member has a brass core bonded to a steel
casing. If a couple moment of is applied at its end,
determine the maximum bending stress in the member.
Ebr = 100 GPa, Est = 200 GPa.

8 kN # m

6

•6–137. If the beam is subjected to an internal moment of
, determine the maximum bending stress

developed in the A-36 steel section A and the 2014-T6
aluminum alloy section B.

M = 45 kN # m

3 m

100 mm

20 mm
100 mm
20 mm

20 mm 20 mm

8 kN�m

Prob. 6–134
M

150 mm

15 mm

B

A

50 mm

Prob. 6–137

d

200 mm

M

Prob. 6–138

0.5 in.

4 in.

0.5 in.

0.5 in.

15 in.
M � 850 lb�ft

Prob. 6–135

6–135. The steel channel is used to reinforce the wood
beam. Determine the maximum stress in the steel and in
the wood if the beam is subjected to a moment of

Est = 29(103) ksi, Ew = 1600 ksi.M = 850 lb # ft.

3 in.

0.5 in.

0.5 in.

4 in.

x

y

z

M

Prob. 6–136

*6–136. A white spruce beam is reinforced with A-36 steel
straps at its top and bottom as shown. Determine the
bending moment M it can support if 

.and (sallow)w = 2.0 ksi
(sallow)st = 22 ksi

6–138. The concrete beam is reinforced with three 20-mm
diameter steel rods. Assume that the concrete cannot
support tensile stress. If the allowable compressive stress
for concrete is and the allowable
tensile stress for steel is , determine
the required dimension d so that both the concrete and steel
achieve their allowable stress simultaneously. This condition
is said to be ‘balanced’. Also, compute the corresponding
maximum allowable internal moment M that can be applied
to the beam. The moduli of elasticity for concrete and steel
are and , respectively.Est = 200 GPaEcon = 25 GPa

(sallow)st = 220 MPa
(sallow)con = 12.5 MPa



6.9 STRESS CONCENTRATIONS 331

6–139. The beam is made from three types of plastic that
are identified and have the moduli of elasticity shown in
the figure. Determine the maximum bending stress in the
PVC.

•6–141. The reinforced concrete beam is used to support
the loading shown. Determine the absolute maximum
normal stress in each of the A-36 steel reinforcing rods and
the absolute maximum compressive stress in the concrete.
Assume the concrete has a high strength in compression
and yet neglect its strength in supporting tension.

6

15 in.

8 in.

2 in.
1 in. diameter rods

4 ft8 ft4 ft

10 kip10 kip

Prob. 6–141

PVC EPVC � 450 ksi

Escon EE � 160 ksi

Bakelite EB � 800 ksi

3 ft 4 ft

500 lb 500 lb

3 ft

3 in.

1 in.
2 in.

2 in.

Prob. 6–139

*6–140. The low strength concrete floor slab is integrated
with a wide-flange A-36 steel beam using shear studs (not
shown) to form the composite beam. If the allowable
bending stress for the concrete is and
allowable bending stress for steel is 
determine the maximum allowable internal moment M that
can be applied to the beam.

(sallow)st = 165 MPa,
(sallow)con = 10 MPa,

M

100 mm

400 mm
15 mm

15 mm

15 mm

200 mm

1 m

Prob. 6–140

4 in.

18 in.

8 in.
8 in. 6 in.

2 in.

1-in. diameter rods

M

Prob. 6–142

6–142. The reinforced concrete beam is made using two
steel reinforcing rods. If the allowable tensile stress 
for the steel is and the allowable
compressive stress for the concrete is ,
determine the maximum moment M that can be applied to
the section. Assume the concrete cannot support a tensile
stress. Est = 29(103) ksi, Econc = 3.8(103) ksi.

(sconc)allow = 3 ksi
(sst)allow = 40 ksi

6–143. For the curved beam in Fig. 6–40a, show that when
the radius of curvature approaches infinity, the curved-beam
formula, Eq. 6–24, reduces to the flexure formula, Eq. 6–13.
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*6–144. The member has an elliptical cross section. If it is
subjected to a moment of , determine the
stress at points A and B. Is the stress at point , which is
located on the member near the wall, the same as that at A?
Explain.

•6–145. The member has an elliptical cross section. If the
allowable bending stress is determine the
maximum moment M that can be applied to the member.

sallow = 125 MPa,

A¿
M = 50 N # m

6

*6–148. The curved beam is subjected to a bending
moment of as shown. Determine the stress
at points A and B, and show the stress on a volume element
located at each of these points.

•6–149. The curved beam is subjected to a bending
moment of . Determine the stress at point C.M = 900 N # m

M = 900 N # m

B

A¿

A

100 mm

250 mm

150 mm

M

75 mm

Probs. 6–144/145

30�

B

A

100 mm

150 mm

20 mm
15 mm

400 mm

B

A

M

C

C

Probs. 6–148/149

75 mm

250 mm

150 mm

10 mm

10 mm

10 mm

150 mm

160 mm

P

P

Probs. 6–146/147

� 25 lb�in.M

= 25 lb�in.M

1 in.
30�

a

a

0.75 in.

0.63 in.

Prob. 6–150

6–146. Determine the greatest magnitude of the applied
forces P if the allowable bending stress is 
in compression and in tension.

6–147. If determine the maximum tensile and
compressive bending stresses in the beam.

P = 6 kN,

(sallow)t = 120 MPa
(sallow)c = 50 MPa

6–150. The elbow of the pipe has an outer radius of
0.75 in. and an inner radius of 0.63 in. If the assembly is
subjected to the moments of determine the
maximum stress developed at section .a-a

M = 25 lb # in.,
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•6–153. The ceiling-suspended C-arm is used to support
the X-ray camera used in medical diagnoses. If the camera
has a mass of 150 kg, with center of mass at G, determine
the maximum bending stress at section A.

6

6–151. The curved member is symmetric and is subjected
to a moment of Determine the bending
stress in the member at points A and B. Show the stress
acting on volume elements located at these points.

M = 600 lb # ft.

8 in.

A

MM

B

2 in.

1.5 in.

0.5 in.

Prob. 6–151

A

G

20 mm
100 mm

200 mm

40 mm

1.2 m

Prob. 6–153

75 mm

50 mm

150 mm

162.5 mm

a

a

60� 60�

250 N

250 N

75 mm

Prob. 6–152

*6–152. The curved bar used on a machine has a
rectangular cross section. If the bar is subjected to a couple
as shown, determine the maximum tensile and compressive
stress acting at section . Sketch the stress distribution
on the section in three dimensions.

a-a

200 mm210 mm

220 mm

10 mm

20 mm

A

Probs. 6–154/155

6–154. The circular spring clamp produces a compressive
force of 3 N on the plates. Determine the maximum bending
stress produced in the spring at A. The spring has a
rectangular cross section as shown.

6–155. Determine the maximum compressive force the
spring clamp can exert on the plates if the allowable
bending stress for the clamp is sallow = 4 MPa.
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*6–156. While in flight, the curved rib on the jet plane is
subjected to an anticipated moment of at the
section. Determine the maximum bending stress in the rib
at this section, and sketch a two-dimensional view of the
stress distribution.

M = 16 N # m

6

•6–161. The simply supported notched bar is subjected to
two forces P. Determine the largest magnitude of P that can
be applied without causing the material to yield.The material
is A-36 steel. Each notch has a radius of 

6–162. The simply supported notched bar is subjected to
the two loads, each having a magnitude of 
Determine the maximum bending stress developed in the
bar, and sketch the bending-stress distribution acting over
the cross section at the center of the bar. Each notch has a
radius of r = 0.125 in.

P = 100 lb.

r = 0.125 in.

0.6 m

5 mm
20 mm

5 mm

30 mm

5 mm

16 N�m

Prob. 6–156

20 in. 20 in.

1.75 in.

0.5 in.

P P

1.25 in.

20 in. 20 in.

Probs. 6–161/162

200 mm 200 mm

7 mm
40 mm60 mm

350 N

BA C

7 mm

L
2

L
2

Prob. 6–163

M

10 mm

M

30 mm
45 mm

3 mm
6 mm

Prob. 6–164

12.5 in.

14.5 in.
1 in.

MM

Probs. 6–157/158

•6–157. If the radius of each notch on the plate is
determine the largest moment that can be

applied. The allowable bending stress for the material is

6–158. The symmetric notched plate is subjected to
bending. If the radius of each notch is and the
applied moment is determine the maximum
bending stress in the plate.

M = 10 kip # ft,
r = 0.5 in.

sallow = 18 ksi.

r = 0.5 in.,

80 mm

20 mm 7 mm

M M
r

r

Probs. 6–159/160

6–159. The bar is subjected to a moment of 
Determine the smallest radius r of the fillets so that 
an allowable bending stress of is not
exceeded.

*6–160. The bar is subjected to a moment of 
If determine the maximum bending

stress in the material.
r = 5 mm,17.5 N # m.

M =

sallow = 124 MPa

M = 40 N # m.

6–163. Determine the length L of the center portion of
the bar so that the maximum bending stress at A, B, and C is
the same. The bar has a thickness of 10 mm.

*6–164. The stepped bar has a thickness of 15 mm.
Determine the maximum moment that can be applied to its
ends if it is made of a material having an allowable bending
stress of .sallow = 200 MPa
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*6.10 Inelastic Bending

The equations for determining the normal stress due to bending that
have previously been developed are valid only if the material behaves in
a linear-elastic manner. If the applied moment causes the material to
yield, a plastic analysis must then be used to determine the stress
distribution. For bending of straight members three conditions must
be met.

Linear Normal-Strain Distribution. Based only on geometric
considerations, it was shown in Sec. 6.3 that the normal strains always
vary linearly from zero at the neutral axis of the cross section to a
maximum at the farthest point from the neutral axis.

Resultant Force Equals Zero. Since there is only a resultant
internal moment acting on the cross section, the resultant force caused
by the stress distribution must be equal to zero. Since creates a force
on the area dA of Fig. 6–47, then for the entire cross-sectional
area A, we have

(6–27)

This equation provides a means for obtaining the location of the neutral axis.

Resultant Moment. The resultant moment at the section must be
equivalent to the moment caused by the stress distribution about the
neutral axis. Since the moment of the force about the
neutral axis is Fig 6–47, then summing the results over
the entire cross section, we have,

(6–28)

These conditions of geometry and loading will now be used to show how
to determine the stress distribution in a beam when it is subjected to a
resultant internal moment that causes yielding of the material.
Throughout the discussion we will assume that the material has a 
stress-strain diagram that is the same in tension as it is in compression.
For simplicity, we will begin by considering the beam to have a 
cross-sectional area with two axes of symmetry; in this case, a rectangle
of height h and width b, as shown in Fig. 6–48a. Two cases of loading that
are of special interest will be considered.

M = LA
y1s dA21MR2z = ©Mz ;

dM = y1s dA2, dF = s dA

LA
s dA = 0FR = ©Fx ;

dF = s dA,
s

y dA

y

x

z

M

s

Fig. 6–47
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Plastic Moment. Some materials, such as steel, tend to exhibit elastic-
perfectly plastic behavior when the stress in the material reaches If
the applied moment is just sufficient to produce yielding in the
top and bottom fibers of the beam as shown in Fig. 6–48b, then we can
determine using the flexure formula or

(6–29)

If the internal moment the material at the top and bottom of
the beam will begin to yield, causing a redistribution of stress over the cross
section until the required internal moment M is developed. If this causes
normal-strain distribution as shown in Fig. 6–48b, then the corresponding
normal-stress distribution is determined from the stress–strain diagram
shown in Fig. 6–48c. Here the strains correspond to stresses

respectively.When these and other stresses like them are plotted on
the cross section, we obtain the stress distribution shown in Fig. 6–48d or
6–48e. Here the tension and compression stress “blocks” each consist of
component rectangular and triangular blocks. The resultant forces they
produce are equivalent to their volumes.

Because of the symmetry, Eq. 6–27 is satisfied and the neutral axis passes
through the centroid of the cross section as shown. The applied moment
M can be related to the yield stress using Eq. 6–28. From Fig. 6–48e,
we require
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Or using Eq. 6–29,

(6–30)

As noted in Fig. 6–48e, M produces two zones of plastic yielding and an
elastic core in the member. The boundary between them is located a
distance from the neutral axis. As M increases in magnitude,
approaches zero. This would render the material entirely plastic and the
stress distribution will then look like that shown in Fig. 6–48f. From
Eq. 6–30 with or by finding the moments of the stress “blocks”
around the neutral axis, we can write this limiting value as

(6–31)

Using Eq. 6–29, or Eq. 6–30 with we have

(6–32)

This moment is referred to as the plastic moment. Its value applies only
for a rectangular section, since the analysis depends on the geometry of
the cross section.

Beams used in steel buildings are sometimes designed to resist a plastic
moment. When this is the case, codes usually list a design property for a
beam called the shape factor. The shape factor is defined as the ratio

(6–33)

This value specifies the additional moment capacity that a beam can
support beyond its maximum elastic moment. For example, from Eq. 6–32,
a beam having a rectangular cross section has a shape factor of 
Therefore this section will support 50% more bending moment than its
maximum elastic moment when it becomes fully plastic.

k = 1.5.

k =
Mp

MY
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 MY
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4
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Fig. 6–48 (cont.)
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Residual Stress. When the plastic moment is removed from the
beam then it will cause residual stress to be developed in the beam.
These stresses are often important when considering fatigue and other
types of mechanical behavior, and so we will discuss a method used
for their computation. To explain how this is done, we will assume that

causes the material at the top and bottom of the beam to be strained
to as shown by point B on the curve in Fig. 6–49a. A
release of this moment will cause this material to recover some of this
strain elastically by following the dashed path BC. Since this recovery is
elastic, we can superimpose on the stress distribution in Fig. 6–49b a
linear stress distribution caused by applying the plastic moment in the
opposite direction, Fig. 6–49c. Here the maximum stress, which is called
the modulus of rupture for bending, can be determined from the
flexure formula when the beam is loaded with the plastic moment.
We have

 smax =
Mc

I
=

Mp A12 h B
A 1

12 bh3 B =
A14 bh2sY B A12 h B
A 1

12 bh3 B  = 1.5sY

sr,

s–PP1 1W  PY2,
Mp

(a)

E E

B

�0.5 sY

C

Actual elastic
recovery

Elastic-plastic
loading

PY

2PY

PP1

sY

s

�sY

Fig. 6–49
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This reversed application of the plastic moment is possible here, since
maximum elastic recovery strain at the top and bottom of the beam is

as shown in Fig. 6–49a. This corresponds to a maximum stress of 
which is greater than the required stress of as calculated above,
Fig. 6–49c.

The superposition of the plastic moment, Fig. 6–49b, and its removal,
Fig. 6–49c, gives the residual-stress distribution shown in Fig. 6–49d. As
an exercise, use the component triangular “blocks” that represent this
stress distribution and show that it results in a zero-force and zero-moment
resultant on the member as required.

Ultimate Moment. Consider now the more general case of a beam
having a cross section that is symmetrical only with respect to the vertical
axis, while the moment is applied about the horizontal axis, Fig. 6–50a.
We will assume that the material exhibits strain hardening and that its
stress–strain diagrams for tension and compression are different,Fig.6–50b.

If the moment M produces yielding of the beam, difficulty arises 
in finding both the location of the neutral axis and the maximum strain
that is produced in the beam. This is because the cross section is
unsymmetrical about the horizontal axis and the stress–strain behavior
of the material is not the same in tension and compression. To solve this
problem, a trial-and-error procedure requires the following steps:

1. For a given moment M, assume the location of the neutral axis and
the slope of the “linear” strain distribution, Fig. 6–50c.

2. Graphically establish the stress distribution on the member’s cross
section using the curve to plot values of stress corresponding to
values of strain.The resulting stress distribution, Fig. 6–50d, will then
have the same shape as the curve.s–P

s–P

1.5sY

2sY2PY

Fig. 6–50
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3. Determine the volumes enclosed by the tensile and compressive
stress “blocks.” (As an approximation, this may require dividing
each block into composite regions.) Equation 6–27 requires the
volumes of these blocks to be equal, since they represent the
resultant tensile force T and resultant compressive force C on
the section, Fig. 6–50e. If these forces are unequal, an adjustment as to
the location of the neutral axis must be made (point of zero strain)
and the process repeated until Eq. 6–27 is satisfied.

4. Once the moments produced by T and C can be calculated
about the neutral axis. Here the moment arms for T and C are
measured from the neutral axis to the centroids of the volumes
defined by the stress distributions, Fig. 6–50e. Equation 6–28
requires If this equation is not satisfied, the slope
of the strain distribution must be adjusted and the computations for
T and C and the moment must be repeated until close agreement is
obtained.

This trial-and-error procedure is obviously very tedious, and fortunately
it does not occur very often in engineering practice. Most beams are
symmetric about two axes, and they are constructed from materials that
are assumed to have similar tension-and-compression stress–strain
diagrams. Whenever this occurs, the neutral axis will pass through the
centroid of the cross section, and the process of relating the stress
distribution to the resultant moment is thereby simplified.

M = Ty¿ + Cy–.

T = C,

1T = C2

Assumed location of
neutral axis

Strain distribution
(profile view)

(c)

Assumed slope of
strain distribution

P1

P2

Stress distribution
(profile view)

(d)

M

s1

s2

y¿¿

A

(e)
N y¿ T

C

Fig. 6–50 (cont.)

Important Points

• The normal strain distribution over the cross section of a beam is
based only on geometric considerations and has been found to
always remain linear, regardless of the applied load. The normal
stress distribution, however, must be determined from the material
behavior, or stress–strain diagram once the strain distribution is
established.

• The location of the neutral axis is determined from the condition
that the resultant force on the cross section is zero.

• The resultant internal moment on the cross section must be equal
to the moment of the stress distribution about the neutral axis.

• Perfectly plastic behavior assumes the normal stress distribution
is constant over the cross section, and the beam will continue to
bend, with no increase in moment. This moment is called the
plastic moment.
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EXAMPLE 6.21

The steel wide-flange beam has the dimensions shown in Fig. 6–51a. If
it is made of an elastic perfectly plastic material having a tensile and
compressive yield stress of determine the shape factor
for the beam.

SOLUTION
In order to determine the shape factor, it is first necessary to calculate
the maximum elastic moment and the plastic moment 

Maximum Elastic Moment. The normal-stress distribution for the
maximum elastic moment is shown in Fig. 6–51b. The moment of
inertia about the neutral axis is

Mp .MY

sY = 36 ksi,

Applying the flexure formula, we have

MY = 1519.5 kip # in. 36 kip>in2 =
MY15 in.2
211.0 in4smax =

Mc

I
;

I = c 1
12

 10.5 in.219 in.23 d + 2 c 1
12

 18 in.210.5 in.23 + 8 in. 10.5 in.214.75 in.22 d = 211.0 in4

Plastic Moment. The plastic moment causes the steel over the
entire cross section of the beam to yield, so that the normal-stress
distribution looks like that shown in Fig. 6–51c. Due to symmetry of
the cross-sectional area and since the tension and compression
stress–strain diagrams are the same, the neutral axis passes through
the centroid of the cross section. In order to determine the plastic
moment, the stress distribution is divided into four composite
rectangular “blocks,” and the force produced by each “block” is equal
to the volume of the block. Therefore, we have

These forces act through the centroid of the volume for each block.
Calculating the moments of these forces about the neutral axis, we 
obtain the plastic moment:

Shape Factor. Applying Eq. 6–33 gives

Ans.

NOTE: This value indicates that a wide-flange beam provides a very
efficient section for resisting an elastic moment. Most of the moment
is developed in the flanges, i.e., in the top and bottom segments,
whereas the web or vertical segment contributes very little. In this
particular case, only 14% additional moment can be supported by the
beam beyond that which can be supported elastically.

k =
Mp

MY
=

1732.5 kip # in.
1519.5 kip # in.

= 1.14

Mp = 2[12.25 in.2181 kip2] + 2[14.75 in.21144 kip2] = 1732.5 kip # in.

 C2 = T2 = 36 kip>in2 10.5 in.218 in.2 = 144 kip

 C1 = T1 = 36 kip>in2 10.5 in.214.5 in.2 = 81 kip

(c)

A

36 ksi

36 ksi

N

T2

T1

C1

C2

Mp

8 in.

9 in.

0.5 in.

0.5 in.

0.5 in.

(a)

(b)

A

36 ksi

MY

36 ksi

N

Fig. 6–51
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EXAMPLE 6.22

A T-beam has the dimensions shown in Fig. 6–52a. If it is made of an
elastic perfectly plastic material having a tensile and compressive
yield stress of determine the plastic moment that can
be resisted by the beam.

sY = 250 MPa,

Fig. 6–52

120 mm

15 mm

15 mm

(a)

100 mm

(b)

15 mm

C2

C1

Mp

250 MPa

d

N

A

100 mm

T

15 mm
(120 mm � d)

Hence the resultant plastic moment about the neutral axis is

Ans.Mp = 29.4 kN # m

375 kNa0.01 m +
0.015 m

2
bMp = 412.5 kNa0.110 m

2
b + 37.5 kNa0.01 m

2
b  +  

SOLUTION
The “plastic” stress distribution acting over the beam’s cross-sectional
area is shown in Fig. 6–52b. In this case the cross section is not
symmetric with respect to a horizontal axis, and consequently, the
neutral axis will not pass through the centroid of the cross section. To
determine the location of the neutral axis, d, we require the stress
distribution to produce a zero resultant force on the cross section.
Assuming that we have

Using this result, the forces acting on each segment are 

 C2 = 250 MN>m2 10.015 m210.100 m2 = 375 kN

 C1 = 250 MN>m2 10.015 m210.010 m2 = 37.5 kN

 T = 250 MN>m2 10.015 m210.110 m2 = 412.5 kN

d = 0.110 m 6 0.120 m OK

-  250 MPa 10.015 m210.100 m2 = 0

250 MPa 10.015 m21d2 - 250 MPa 10.015 m210.120 m - d2
T - C1 - C2 = 0LA

s dA = 0;

d … 120 mm,
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EXAMPLE 6.23

The steel wide-flange beam shown in Fig. 6–53a is subjected to a fully
plastic moment of If this moment is removed, determine 
the residual-stress distribution in the beam. The material is elastic
perfectly plastic and has a yield stress of 

SOLUTION
The normal-stress distribution in the beam caused by is shown in
Fig. 6–53b. When is removed, the material responds elastically.
Removal of requires applying in its reverse direction and
therefore leads to an assumed elastic stress distribution as shown 
in Fig. 6–53c. The modulus of rupture is computed from the 
flexure formula. Using and from
Example 6.21, we have

As expected,
Superposition of the stresses gives the residual-stress distribution

shown in Fig. 6–53d. Note that the point of zero normal stress was
determined by proportion; i.e., from Fig. 6–53b and 6–53c, we require
that

 y = 4.38 in.

 
41.1 ksi

5 in.
=

36 ksi
y

sr 6 2sY .

 sr =
1732.5 kip # in. 15 in.2

211.0 in4 = 41.1 ksi

 smax =
Mc

I
;

I = 211.0 in4Mp = 1732.5 kip # in.
sr

MpMp

Mp

Mp

sY = 36 ksi.

Mp .

8 in.

9 in.

0.5 in.

0.5 in.

0.5 in.

(a)

Plastic moment applied
(profile view)

36 ksi

(b)

5 in.

5 in.

Mp

Plastic moment reversed
(profile view)

(c)

36 ksi

y
5 in.

5 in.

Mp

sr � 41.1 ksi

sr � 41.1 ksi

5.05 ksi

36 ksi

4.38 in.

4.38 in.

Residual stress distribution

(d)

5.05 ksi

Fig. 6–53
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EXAMPLE 6.24

The beam in Fig. 6–54a is made of an alloy of titanium that has a
stress–strain diagram that can in part be approximated by two straight
lines. If the material behavior is the same in both tension and
compression, determine the bending moment that can be applied to
the beam that will cause the material at the top and bottom of the
beam to be subjected to a strain of .0.050 in.>in

3 in.

2 in.

M

(a)

0.010
s

 �
 1

5(
10

3 )P
0.050

150

190

s(ksi)

P (in./in.)

s � 1000P � 140

SOLUTION I
By inspection of the stress–strain diagram, the material is said to exhibit
“elastic-plastic behavior with strain hardening.” Since the cross section
is symmetric and the tension–compression diagrams are the same,
the neutral axis must pass through the centroid of the cross section.The
strain distribution, which is always linear, is shown in Fig. 6–54b.
In particular, the point where maximum elastic strain ( )
occurs has been determined by proportion, such that 

or 
The corresponding normal-stress distribution acting over the cross

section is shown in Fig. 6–54c. The moment produced by this
distribution can be calculated by finding the “volume” of the stress
blocks. To do so we will subdivide this distribution into two triangular
blocks and a rectangular block in both the tension and compression
regions, Fig. 6–54d. Since the beam is 2 in. wide, the resultants and their
locations are determined as follows:

 y1 = 0.3 in. +
2
3

 11.2 in.2 = 1.10 in.

 T1 = C1 =
1
2

 11.2 in.2140 kip>in2212 in.2 = 48 kip

y = 0.3 in.=  0.010>y 0.05>1.5 in.
0.010 in.>in.

s–P
0.05

0.05

Strain distribution

(b)

1.5 in.

0.010

0.010

y � 0.3 in.

Fig. 6–54
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The moment produced by this normal-stress distribution about the
neutral axis is therefore

Ans.

SOLUTION II
Rather than using the above semigraphical technique, it is also
possible to find the moment analytically. To do this we must express
the stress distribution in Fig. 6–54c as a function of position y along
the beam. Note that has been given in Fig. 6–54a.Also, from
Fig. 6–54b, the normal strain can be determined as a function of position
y by proportional triangles; i.e.,

Substituting this into the functions shown in Fig. 6–54a gives

(1)

(2)

From Fig. 6–54e, the moment caused by acting on the area strip
is

Using Eqs. 1 and 2, the moment for the entire cross section is thus

Ans. = 772 kip # in.

 M = 2B2L
0.3 in.

0
500y2 dy + 2L

1.5 in.

0.3 in.
133.3y2 + 140y2 dyR

dM = y1s dA2 = ys12 dy2
dA = 2 dy

s

 s = 33.33y + 140  0.3 in. … y … 1.5 in.

 s = 500y  0 … y … 0.3 in.

s–P

P =
0.05
1.5

 y 0 … y … 1.5 in.

s = f1P2

 = 772 kip # in.

 M = 2[48 kip 11.10 in.2 + 360 kip 10.90 in.2 + 45 kip 10.2 in.2]

 y3 =
2
3

 10.3 in.2 = 0.2 in.

 T3 = C3 =
1
2

 10.3 in.21150 kip>in2212 in.2 = 45 kip

 y2 = 0.3 in. +
1
2

 11.2 in.2 = 0.90 in.

 T2 = C2 = 11.2 in.21150 kip>in2212 in.2 = 360 kip

1.5 in.

Stress distribution

(c)

150 ksi

150 ksi

190 ksi

190 ksi

y � 0.3 in.

(d)

C3
T3

T2
T1

y2

C2

C1

150 ksi
40 ksi

y1

y3

1.2 in.

0.3 in.

(e)

N

A

s

2 in.

y dy

Fig. 6–54 (cont.)
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a

a
a

a

a

a

25 mm

150 mm
150 mm

25 mm 25 mm

25 mm

200 mm

15 mm

15 mm

20 mm

200 mm

Mp

t

b

h

t

t

•6–165. The beam is made of an elastic plastic material for
which Determine the residual stress in the
beam at its top and bottom after the plastic moment is
applied and then released.

Mp

sY = 250 MPa.

6–166. The wide-flange member is made from an elastic-
plastic material. Determine the shape factor.

6–167. Determine the shape factor for the cross section.

*6–168. The beam is made of elastic perfectly plastic
material. Determine the maximum elastic moment and the
plastic moment that can be applied to the cross section.
Take and sY = 36 ksi.a = 2 in.

•6–169. The box beam is made of an elastic perfectly
plastic material for which Determine the
residual stress in the top and bottom of the beam after the
plastic moment is applied and then released.Mp

sY = 250 MPa.

PROBLEMS

Prob. 6–165

Prob. 6–166

Prob. 6–167/168

Prob. 6–169
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200 mm

15 mm

15 mm

20 mm

200 mm

Mp

3 in.

3 in.
1.5 in.

1.5 in.

6 in.

6–170. Determine the shape factor for the wide-flange
beam.

6–171. Determine the shape factor of the beam’s cross
section.

*6–172. The beam is made of elastic-perfectly plastic
material. Determine the maximum elastic moment and the
plastic moment that can be applied to the cross section.
Take .sY = 36 ksi

•6–173. Determine the shape factor for the cross section
of the H-beam.

3 in.

3 in.
1.5 in.

1.5 in.

6 in.

200 mm

Mp 20 mm

20 mm

200 mm

20 mm

Prob. 6–170

Prob. 6–171

Prob. 6–172

Prob. 6–173
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200 mm

Mp 20 mm

20 mm

200 mm

20 mm

3 in.

3 in.

3 in.

3 in. 3 in.
3 in.

6–174. The H-beam is made of an elastic-plastic material
for which . Determine the residual stress in
the top and bottom of the beam after the plastic moment

is applied and then released.Mp

sY = 250 MPa

6–175. Determine the shape factor of the cross section.

*6–176. The beam is made of elastic-perfectly plastic
material. Determine the maximum elastic moment and the
plastic moment that can be applied to the cross section.
Take sY = 36 ksi .

•6–177. Determine the shape factor of the cross section
for the tube.

3 in.

3 in.

3 in.

3 in. 3 in.
3 in.

6 in.

5 in.

Prob. 6–174

Prob. 6–175 Prob. 6–177

Prob. 6–176
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6–178. The beam is made from elastic-perfectly plastic
material. Determine the shape factor for the thick-walled
tube.

6–179. Determine the shape factor for the member.

*6–180. The member is made from an elastic-plastic
material. Determine the maximum elastic moment and the
plastic moment that can be applied to the cross section.
Take sY = 36 ksi.h = 6 in.,b = 4 in.,

•6–181. The beam is made of a material that can be
assumed perfectly plastic in tension and elastic perfectly
plastic in compression. Determine the maximum bending
moment M that can be supported by the beam so that the
compressive material at the outer edge starts to yield.

ri

ro

–
2

–
2

h

b

h

–
2

–
2

h

b

h

	

h

a

M
sY

�sY

Prob. 6–178

Prob. 6–179

Prob. 6–180

Prob. 6–181
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6–182. The box beam is made from an elastic-plastic
material for which . Determine the intensity of
the distributed load that will cause the moment to be 
(a) the largest elastic moment and (b) the largest plastic
moment.

w0

sY = 25 ksi

6–183. The box beam is made from an elastic-plastic
material for which . Determine the magnitude
of each concentrated force P that will cause the moment to
be (a) the largest elastic moment and (b) the largest plastic
moment.

sY = 36 ksi

*6–184. The beam is made of a polyester that has the
stress–strain curve shown. If the curve can be represented
by the equation where 
is in radians, determine the magnitude of the force P that
can be applied to the beam without causing the maximum
strain in its fibers at the critical section to exceed
Pmax = 0.003 in.>in.

tan-1115P2s = [20 tan-1115P2] ksi,

•6–185. The plexiglass bar has a stress–strain curve that
can be approximated by the straight-line segments shown.
Determine the largest moment M that can be applied to the
bar before it fails.

9 ft

16 in.12 in.

8 in.

w0

6 in.

9 ft

6 ft 8 ft

12 in.10 in.

6 in.

5 in.

6 ft

PP

8 ft 8 ft

P

2 in.

4 in.

P(in./in.)


s(ksi)
s � 20 tan�1(15 P)

20 mm

20 mm

M

�0.06 �0.04

0.02 0.04

60

�80

compression

tension

failure

s (MPa)

P (mm/mm)

�100

40

Prob. 6–182

Prob. 6–183 Prob. 6–185

Prob. 6–184
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6–186. The stress–strain diagram for a titanium alloy can
be approximated by the two straight lines. If a strut made of
this material is subjected to bending, determine the moment
resisted by the strut if the maximum stress reaches a value
of (a) and (b) .sBsA 

6–187. A beam is made from polypropylene plastic and has
a stress–strain diagram that can be approximated by the curve
shown. If the beam is subjected to a maximum tensile and
compressive strain of determine the
maximum moment M.

P = 0.02 mm>mm,

*6–188. The beam has a rectangular cross section and is
made of an elastic-plastic material having a stress–strain
diagram as shown. Determine the magnitude of the
moment M that must be applied to the beam in order to
create a maximum strain in its outer fibers of P max = 0.008.

•6–189. The bar is made of an aluminum alloy having a
stress–strain diagram that can be approximated by the
straight line segments shown. Assuming that this diagram is
the same for both tension and compression, determine the
moment the bar will support if the maximum strain at the
top and bottom fibers of the beam is P max = 0.03.

3 in.

M

2 in.

0.040.01

sB � 180

sA � 140

B

A

P (in./in.)


s (ksi)

400 mm

200 mm

M

0.004

200

P (mm/mm)


s(MPa)

90

0.050.006 0.025

80

60
4 in. M

3 in.
P(in./ in.)


s(ksi)

P (mm/mm)

M

M
100 mm

30 mm


s(Pa)

s� 10(106)P1/4

Prob. 6–186

Prob. 6–187

Prob. 6–188

Prob. 6–189
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Shear and moment diagrams are
graphical representations of the internal
shear and moment within a beam.They
can be constructed by sectioning the
beam an arbitrary distance x from the
left end, using the equilibrium equations
to find V and M as functions of x, and
then plotting the results. A sign
convention for positive distributed
load, shear, and moment must be
followed.

CHAPTER REVIEW

It is also possible to plot the shear and
moment diagrams by realizing that at
each point the slope of the shear
diagram is equal to the intensity of the
distributed loading at the point.

w =
dV

dx

Likewise, the slope of the moment
diagram is equal to the shear at the
point.

V =
dM

dx

The shear and moment at any point
can be obtained using the method of
sections. The maximum (or minimum)
moment occurs where the shear is
zero.

¢V = 1w dx
The area under the distributed loading
diagram between the points represents
the change in shear.

The area under the shear diagram
represents the change in moment. ¢M = 1V dx

V
Positive external distributed load

Positive internal shear

Positive internal moment

V

MM

w(x)

w � w(x) wB

A
C D

B

w = negative decreasing
slope = negative decreasing

V = positive decreasing
slope = positive decreasing

�wB

0

0

x

x

V

VA

VA

VC

VD

�VB

�VB

M

�wC

�wD
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A bending moment tends to produce a
linear variation of normal strain within
a straight beam. Provided the material
is homogeneous, and linear elastic,
then equilibrium can be used to relate
the internal moment in the beam to the
stress distribution. The result is the
flexure formula,

where I and c are determined from the
neutral axis that passes through the
centroid of the cross section.

If the cross-sectional area of the beam
is not symmetric about an axis that is
perpendicular to the neutral axis, then
unsymmetrical bending will occur. The
maximum stress can be determined
from formulas, or the problem can be
solved by considering the superposition
of bending caused by the moment
components and about the
principal axes of inertia for the area.

MzMy

smax =
Mc

I

s = -
Mzy

Iz
+

Myz

Iy

Beams made from composite materials
can be “transformed” so their cross
section is considered as if it were made
from a single material. To do this, the
transformation factor n, which is a
ratio of the moduli of elasticity of the
materials, is used to change the width b
of the beam.

Once the cross section is
transformed, then the stress in the
beam can be determined in the usual
manner using the flexure formula.

cx

M

y

smax

xz

y

M

My

Mz

M

h

b

2

1
n =

E1

E2
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Curved beams deform such that the
normal strain does not vary linearly
from the neutral axis. Provided the
material is homogeneous and linear
elastic and the cross section has an axis
of symmetry, then the curved beam
formula can be used to determine the
bending stress.

or

s =
My

Ae1R - y2

s =
M1R - r2
Ar1r - R2

s max = K
Mc

I

Stress concentrations occur in
members having a sudden change 
in their cross section, caused, for
example, by holes and notches. The
maximum bending stress at these
locations is determined using a stress
concentration factor K that is found
from graphs determined from
experiment.

If the bending moment causes the stress
in the material to exceed its elastic limit,
then the normal strain will remain
linear; however, the stress distribution
will vary in accordance with the stress–
strain diagram.The plastic and ultimate
moments supported by the beam can be
determined by requiring the resultant
force to be zero and the resultant
moment to be equivalent to the moment
of the stress distribution.

If an applied plastic or ultimate
moment is released, it will cause the
material to respond elastically, thereby
inducing residual stresses in the beam.

M

A

smax

N

M

M

A

N Mph
2

h
2

sY

sY
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CONCEPTUAL PROBLEMS

P6–1

P6–1. The steel saw blade passes over the drive wheel of the
band saw. Using appropriate measurements and data, explain
how to determine the bending stress in the blade.

P6–2

P6–2. This crane boom on a ship has a moment of inertia that
varies along its length. Draw the moment diagram for the boom
to explain why the boom tapers as shown.

P6–3

P6–3. Hurricane winds caused failure of this highway sign by
bending the supporting pipes at their connections with the
column. Assuming the pipes are made of A-36 steel, use
reasonable dimensions for the sign and pipes, and try and
estimate the smallest uniform wind pressure acting on the face
of the sign that caused the pipes to yield.

P6–4

P6–4. These garden
shears were manufactured
using an inferior material.
Using a loading of 50 lb
applied normal to the
blades, and appropriate
dimensions for the shears,
determine the absolute
maximum bending stress
in the material and show
why the failure occurred
at the critical location on
the handle.(b) 

(a) 
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6–190. The beam is made from three boards nailed together
as shown. If the moment acting on the cross section is

determine the resultant force the bending
stress produces on the top board.

6–191. The beam is made from three boards nailed together
as shown. Determine the maximum tensile and compressive
stresses in the beam.

M = 650 N # m,

•6–193. The composite beam consists of a wood core and
two plates of steel. If the allowable bending stress for
the wood is , and for the steel

, determine the maximum moment that
can be applied to the beam.

6–194. Solve Prob. 6–193 if the moment is applied about
the y axis instead of the z axis as shown.

Ew = 11 GPa, Est = 200 GPa.
(sallow)st = 130 MPa

(sallow)w = 20 MPa

REVIEW PROBLEMS

M � 650 N�m

250 mm

15 mm

125 mm 20 mm

20 mm

*6–192. Determine the bending stress distribution in
the beam at section a–a. Sketch the distribution in three
dimensions acting over the cross section.

15 mm

400 mm

80 N80 N

15 mm

100 mm

75 mm

80 N 80 N

400 mm300 mm300 mm

a

a

125 mm

20 mm

20 mm
75 mm

z

x

y

M

6–195. A shaft is made of a polymer having a parabolic
cross section. If it resists an internal moment of

, determine the maximum bending stress
developed in the material (a) using the flexure formula and
(b) using integration. Sketch a three-dimensional view of
the stress distribution acting over the cross-sectional area.
Hint: The moment of inertia is determined using Eq. A–3 of
Appendix A.

M = 125 N # m

y

z

x

M � 125 N· m

50 mm

100 mm

50 mm

y � 100 – z 

2/ 25

Probs. 6–190/191

Prob. 6–192

Probs. 6–193/194

Prob. 6–195
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*6–196. Determine the maximum bending stress in the
handle of the cable cutter at section a–a. A force of 45 lb is
applied to the handles. The cross-sectional area is shown in
the figure.

6–199. Draw the shear and moment diagrams for the shaft
if it is subjected to the vertical loadings of the belt, gear, and
flywheel. The bearings at A and B exert only vertical
reactions on the shaft.

4 in.

45 lb20�

a

a

3 in.

5 in.

A

45 lb

0.75 in.

0.50 in.

•6–197. The curved beam is subjected to a bending
moment of as shown. Determine the stress at
points A and B and show the stress on a volume element
located at these points.

M = 85 N # m

30�

M � 85 N�m

B

A

100 mm

150 mm

20 mm

20 mm

15 mm

400 mm

B

A

A B

200 mm

450 N

150 N

300 N

200 mm
400 mm 300 mm

*6–200. A member has the triangular cross section
shown. Determine the largest internal moment M that can
be applied to the cross section without exceeding allowable
tensile and compressive stresses of and

, respectively.(sallow)c = 15 ksi
(sallow)t = 22 ksi

2 in.
2 in.

4 in.

M
4 in.

•6–201. The strut has a square cross section a by a and is
subjected to the bending moment M applied at an angle as
shown. Determine the maximum bending stress in terms of
a, M, and . What angle will give the largest bending stress
in the strut? Specify the orientation of the neutral axis for
this case.

uu

u

M
x

z

y

a

a

�

6–198. Draw the shear and moment diagrams for the
beam and determine the shear and moment in the beam as
functions of x, where 0 … x 6 6 ft .

6 ft 4 ft

2 kip/ ft

50 kip�ft

8 kip

x

Prob. 6–196

Prob. 6–197

Prob. 6–198

Prob. 6–199

Prob. 6–200

Prob. 6–201



Railroad ties act as beams that support very large transverse shear loadings. As a result,
if they are made of wood they will tend to split at their ends, where the shear loads are
the largest.
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CHAPTER OBJECTIVES

In this chapter, we will develop a method for finding the shear stress in
a beam having a prismatic cross section and made from homogeneous
material that behaves in a linear-elastic manner. The method of analysis
to be developed will be somewhat limited to special cases of cross-
sectional geometry. Although this is the case, it has many wide-range
applications in engineering design and analysis. The concept of shear
flow, along with shear stress, will be discussed for beams and thin-walled
members. The chapter ends with a discussion of the shear center.

7.1 Shear in Straight Members

In general, a beam will support both shear and moment. The shear V is
the result of a transverse shear-stress distribution that acts over the
beam’s cross section. Due to the complementary property of shear,
however, this stress will create corresponding longitudinal shear
stresses which will act along longitudinal planes of the beam as shown
in Fig. 7–1.

Transverse Shear

Fig. 7–1

Longitudinal
shear stress

Transverse
shear stress

V

t

t
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(a) Before deformation

V

(b) After deformation

V

Fig. 7–3

To illustrate this effect, consider the beam to be made from three
boards, Fig. 7–2a. If the top and bottom surfaces of each board are
smooth, and the boards are not bonded together, then application of
the load P will cause the boards to slide relative to one another when
the beam deflects. However, if the boards are bonded together, then the
longitudinal shear stresses acting between the boards will prevent their
relative sliding, and consequently the beam will act as a single unit,
Fig. 7–2b.

As a result of the shear stress, shear strains will be developed and
these will tend to distort the cross section in a rather complex manner.
For example, consider the short bar in Fig. 7–3a made of a highly
deformable material and marked with horizontal and vertical grid lines.
When a shear V is applied, it tends to deform these lines into the pattern
shown in Fig. 7–3b. This nonuniform shear-strain distribution will cause
the cross section to warp.

P

Boards not bonded together
(a)

Boards bonded together
(b)

P

Fig. 7–2

Shear connectors are “tack welded” to this
corrugated metal floor liner so that when
the concrete floor is poured, the connectors
will prevent the concrete slab from slipping
on the liner surface. The two materials will
thus act as a composite slab.
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Fig. 7–4

As a result, when a beam is subjected to both bending and shear, the
cross section will not remain plane as assumed in the development of
the flexure formula. Although this is the case, we can generally assume
the cross-sectional warping due to shear is small enough so that it can
be neglected. This assumption is particularly true for the most common
case of a slender beam; that is, one that has a small depth compared with
its length.

7.2 The Shear Formula

Because the strain distribution for shear is not easily defined, as in the
case of axial load, torsion, and bending, we will develop the shear
formula in an indirect manner. To do this we will consider the horizontal
force equilibrium of a portion of the element taken from the beam in
Fig. 7–4a. A free-body diagram of this element is shown in Fig. 7–4b. This
distribution is caused by the bending moments M and We have
excluded the effects of V, and on the free-body diagram
since these loadings are vertical and will therefore not be involved in a
horizontal force summation. The element in Fig. 7–4b will indeed satisfy

since the stress distribution on each side of the element forms
only a couple moment and therefore a zero force resultant.
©Fx = 0

w(x)V + dV,
M + dM.

7

A

Area � A¿
Section plane

t

dx

y ¿

N

_
y ¿

w

M1

F1 F2

M2dxx

x

(a)

M � dM
M

dF ¿¿ dF ¿

dF ¿¿ dF ¿

dx

�Fx � 0 satisfied

(b)
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Now consider the shaded top portion of the element that has been
sectioned at from the neutral axis, Fig. 7–4a. This segment has a width
t at the section, and the two cross-sectional sides each have an area 
Because the resultant moments on each side of the element differ by
dM, it can be seen in Fig. 7–4c that will not be satisfied unless a
longitudinal shear stress acts over the bottom face of the segment. We
will assume this shear stress is constant across the width t of the bottom
face. It acts on the area t dx. Applying the equation of horizontal force
equilibrium, and using the flexure formula, Eq. 6–13, we have

(7–1)

Solving for we get

This equation can be simplified by noting that (Eq. 6–2).
Also, the integral represents the moment of the area about the
neutral axis. We will denote this by the symbol Q. Since the location of
the centroid of the area is determined from we
can also write

(7–2)Q = LA¿
y dA¿ = y¿A¿

y¿ = 1A¿y dA¿>A¿,A¿

A¿
V = dM>dx

t =
1
It

 adM

dx
bLA¿

y dA¿

t,

adM

I
bLA¿

y dA¿ = t1t dx2

 LA¿
aM + dM

I
by dA¿ - LA¿

aM

I
by dA¿ - t1t dx2 = 0

 LA¿
s¿ dA¿ - LA¿

s dA¿ - t1t dx2 = 0;+ ©Fx = 0;

t

©Fx = 0

A¿.
y¿

M � dM

M � dM

M

(c) Profile view

y¿

A¿

Three-dimensional view

t

M

dx

s s¿s¿
s

t

t

Fig. 7–4 (cont.)

(a)

A

Area � A¿
Section plane

t

dx

y ¿

N

_
y ¿
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A

Area � A¿

t

N

_
y ¿

t

V

Fig. 7–5

The final result is therefore

(7–3)

Here, as shown in Fig. 7–5,

the shear stress in the member at the point located a distance 
from the neutral axis. This stress is assumed to be constant and
therefore averaged across the width t of the member

the internal resultant shear force, determined from the method
of sections and the equations of equilibrium

the moment of inertia of the entire cross-sectional area
calculated about the neutral axis

the width of the member’s cross-sectional area, measured at the
point where is to be determined

A
, where is the area of the top (or bottom) portion of the
member’s cross-sectional area, above (or below) the section
plane where t is measured, and is the distance from the
neutral axis to the centroid of 

The above equation is referred to as the shear formula. Although in
the derivation we considered only the shear stresses acting on the beam’s
longitudinal plane, the formula applies as well for finding the transverse
shear stress on the beam’s cross-section. Recall that these stresses are
complementary and numerically equal.

Also, because the flexure formula was used in the derivation, it is
necessary that the material behave in a linear elastic manner and have a
modulus of elasticity that is the same in tension as it is in compression.

A¿
y¿

A¿y¿Q =
t

 t =

 I =

 V =

y¿ t =

t =
VQ

It

7
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N

A

Flanges
V

Web

Fig. 7–7

Limitations on the Use of the Shear Formula. One of the
major assumptions used in the development of the shear formula is that
the shear stress is uniformly distributed over the width t at the section. In
other words, the average shear stress is calculated across the width. We
can test the accuracy of this assumption by comparing it with a more
exact mathematical analysis based on the theory of elasticity. For
example, if the beam’s cross section is rectangular, the shear-stress
distribution across the neutral axis as calculated from the theory of
elasticity varies as shown in Fig. 7–6. The maximum value, occurs
at the sides of the cross section, and its magnitude depends on the ratio

( ). For sections having a is only about
3% greater than the shear stress calculated from the shear formula,
Fig. 7–6a. However, for flat sections, say is about 40%
greater than Fig. 7–6b. The error becomes even greater as the
section becomes flatter, or as the ratio increases. Errors of this
magnitude are certainly intolerable if one uses the shear formula to
determine the shear stress in the f lange of the wide-flange beam shown
in Fig. 7–7.

It should also be pointed out that the shear formula will not give
accurate results when used to determine the shear stress at the
flange–web junction of a wide-flange beam, since this is a point of sudden
cross-sectional change and therefore a stress concentration occurs
here. Fortunately, these limitations for applying the shear formula to
the flanges of a wide-flange beam are not important in engineering
practice. Most often engineers must only calculate the average maximum
shear stress in the beam, which occurs at the neutral axis, where the

( ) ratio for the web is very small, and therefore the
calculated result is very close to the actual maximum shear stress as
explained above.

width>depthb>h

b>htmax ,
t¿maxb>h = 2,

t¿maxb>h = 0.5,width>depthb>h
t¿max ,

(a)

b � 0.5h

h
AN

(b)

b � 2h

AN

t¿max

t¿max

VQ
Ittmax �

VQ
Ittmax �

h

Fig. 7–6
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Another important limitation on the use of the shear formula can be
illustrated with reference to Fig. 7–8a, which shows a member having a
cross section with an irregular or nonrectangular boundary. If we apply
the shear formula to determine the (average) shear stress along the
line AB, it will be directed downward as shown in Fig. 7–8b. However,
consider an element of material taken from the boundary point B,
Fig. 7–8c. Here on the front face of the element is resolved into
components, and acting perpendicular and parallel to the boundary.
By inspection, must be equal to zero since its corresponding longitudinal
component on the stress-free boundary surface, must be zero. To
satisfy this boundary condition, therefore, the shear stress acting on this
element must actually be directed tangent to the boundary. As a result, the
shear-stress distribution across line AB is directed as shown in Fig. 7–8d.
Here specific values for the shear stress must be obtained using the
theory of elasticity. Note, however, that we can apply the shear formula
to obtain the shear stress acting across each of the colored lines in Fig.
7–8a. These lines intersect the tangents to the boundary at right angles,
and as shown in Fig. 7–8e, the transverse shear stress is vertical and
constant along each line.

To summarize the above points, the shear formula does not give
accurate results when applied to members having cross sections that are
short or flat, or at points where the cross section suddenly changes. Nor
should it be applied across a section that intersects the boundary of the
member at an angle other than 90°. Instead, for these cases the shear
stress should be determined using more advanced methods based on the
theory of elasticity.

t¿,
t¿

t–t¿
t

t

7

(a)

A B

V

Stress-free
outer surface

(c)

Shear-stress distribution
from shear formula

A B

(b)

t

t

t¿ � 0

t¿¿

t¿¿ t¿
(d)

A B

tmax tmax

Fig. 7–8



366 CHAPTER 7 TRANSVERSE SHEAR

7

Important Points

• Shear forces in beams cause nonlinear shear-strain distributions over the cross section, causing it to warp.

• Due to the complementary property of shear stress, the shear stress developed in a beam acts over the
cross section of the beam and along its longitudinal planes.

• The shear formula was derived by considering horizontal force equilibrium of the longitudinal shear-stress
and bending-stress distributions acting on a portion of a differential segment of the beam.

• The shear formula is to be used on straight prismatic members made of homogeneous material that has
linear elastic behavior. Also, the internal resultant shear force must be directed along an axis of symmetry
for the cross-sectional area.

• The shear formula should not be used to determine the shear stress on cross sections that are short or flat,
at points of sudden cross-sectional changes, or at a point on an inclined boundary.

Procedure for Analysis

In order to apply the shear formula, the following procedure is suggested.

Internal Shear.

• Section the member perpendicular to its axis at the point where the shear stress is to be determined, and
obtain the internal shear V at the section.

Section Properties.

• Determine the location of the neutral axis, and determine the moment of inertia I of the entire cross-sectional
area about the neutral axis.

• Pass an imaginary horizontal section through the point where the shear stress is to be determined.
Measure the width t of the cross-sectional area at this section.

• The portion of the area lying either above or below this width is Determine Q by using 
Here is the distance to the centroid of measured from the neutral axis. It may be helpful to realize
that is the portion of the member’s cross-sectional area that is being “held onto the member” by the
longitudinal shear stresses. See Fig. 7–4c.

Shear Stress.

• Using a consistent set of units, substitute the data into the shear formula and calculate the shear stress 

• It is suggested that the direction of the transverse shear stress be established on a volume element of
material located at the point where it is calculated. This can be done by realizing that acts on the cross
section in the same direction as V. From this, the corresponding shear stresses acting on the other three
planes of the element can then be established.

t

t

t.

A¿
A¿,y¿

Q = y¿A¿.A¿.
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EXAMPLE 7.1

(b)

20 mm

50 mm

4 kN

50 mm

4 kN

(a)

Fig. 7–9

The solid shaft and tube shown in Fig. 7–9a are subjected to the shear 
force of 4 kN. Determine the shear stress acting over the diameter of 
each cross section.

SOLUTION
Section Properties. Using the table on the inside front cover, the 
moment of inertia of each section, calculated about its diameter (or
neutral axis), is

The semicircular area shown shaded in Fig. 7–9b, above (or below)
each diameter, represents Q, because this area is “held onto the member”
by the longitudinal shear stress along the diameter.

Shear Stress. Applying the shear formula where m for the
solid section, and for the tube, we have

Ans.

Ans.

NOTE: As discussed in the limitations for the shear formula, the
calculations performed here are valid since the shear stress along
the diameter is vertical and therefore tangent to the boundary of the
cross section. An element of material on the diameter is subjected to
“pure shear” as shown in Fig. 7–9b.

 ttube =
VQ

It
=

4(103) N(78.0(10- 6) m3)

4.783(10- 6) m4(0.06 m)
= 1.09 MPa

 tsolid =
VQ

It
=

4(103) N(83.33(10- 6) m3)

4.909(10- 6) m4(0.1 m)
= 679 kPa

t = 2(0.03 m) = 0.06 m
t = 0.1

 = 78.0(10- 6) m3

 =
4(0.05 m)

3p
 ap(0.05 m)2

2
b -

4(0.02 m)
3p

 ap(0.02 m)2

2
b

 Qtube = gy¿A¿ =
4co

3p
 apc2

o

2
b -

4ci

3p
 apc2

i

2
b

 Qsolid = y¿A¿ =
4c

3p
 apc2

2
b =

4(0.05 m)
3p

 ap(0.05 m)2

2
b = 83.33 (10- 6) m3

 Itube =
1
4

 p(c4
o - c4

i ) =
1
4
p3(0.05 m)4 - (0.02 m)44 = 4.783(10- 6) m4

 Isolid =
1
4

 pc4 =
1
4

 p(0.05 m)4 = 4.909(10- 6) m4
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EXAMPLE 7.2

Determine the distribution of the shear stress over the cross section of
the beam shown in Fig. 7–10a.

(c)

b

N

Tmax

A

V

dy
y

Shear–stress distribution

b

y

N

A

A¿

(b)

h
2

h
2

_
y ¿

Fig. 7–10

V

(a)

h

b

SOLUTION
The distribution can be determined by finding the shear stress at an
arbitrary height y from the neutral axis, Fig. 7–10b, and then plotting
this function. Here, the dark colored area will be used for Q.∗
Hence

Applying the shear formula, we have

(1)

This result indicates that the shear-stress distribution over the cross
section is parabolic. As shown in Fig. 7–10c, the intensity varies from
zero at the top and bottom, , to a maximum value at the
neutral axis, . Specifically, since the area of the cross section is

, then at we have

(2)t max = 1.5 
V

A

y = 0A = bh
y = 0

y = ;h>2

t =
VQ

It
=

V A12 B 3(h2>4) - y24b
A 1

12 bh3 Bb =
6V

bh3 ah2

4
- y2b

Q = y¿A¿ = cy +
1
2

 ah

2
- ybd ah

2
- ybb =

1
2
ah2

4
- y2bb

A¿

*The area below y can also be used , but doing so involves a bit
more algebraic manipulation.

3A¿ = b(h>2 + y)4
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This same value for can be obtained directly from the shear
formula, , by realizing that occurs where Q is largest,
since V, I, and t are constant. By inspection, Q will be a maximum
when the entire area above (or below) the neutral axis is considered;
that is, and Thus,

By comparison, is 50% greater than the average shear stress
determined from Eq. 1–7; that is, .

It is important to realize that also acts in the longitudinal direction
of the beam, Fig. 7–10d. It is this stress that can cause a timber beam to
fail as shown Fig. 7–10e. Here horizontal splitting of the wood starts
to occur through the neutral axis at the beam’s ends, since there the
vertical reactions subject the beam to large shear stress and wood has
a low resistance to shear along its grains, which are oriented in the
longitudinal direction.

It is instructive to show that when the shear-stress distribution, Eq. 1,
is integrated over the cross section it yields the resultant shear V. To
do this, a differential strip of area is chosen, Fig. 7–10c, and
since acts uniformly over this strip, we have

 =
6V

h3  Bh2

4
 ah

2
+

h

2
b -

1
3

 ¢h3

8
+

h3

8
≤ R = V

 =
6V

h3  Bh2

4
 y -

1
3

 y3Rh>2
-h>2

 LA
t dA = L

h>2

-h>2
 
6V

bh3 ¢h2

4
- y2≤b dy

t

dA = b dy

t max 

tavg = V>At max 

t max =
VQ

It
=

V(h>4)(bh>2)

C 1
12bh3 Db = 1.5 

V

A

y¿ = h>4.A¿ = bh>2

t max t = VQ>It
t max 

N

A

(d)

tmax

P

(e)

Typical shear failure of this wooden
beam occurred at the support and
through the approximate center of its
cross section.

Fig. 7–10 (cont.)
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EXAMPLE 7.3

A steel wide-flange beam has the dimensions shown in Fig. 7–11a.
If it is subjected to a shear of plot the shear-stress
distribution acting over the beam’s cross-sectional area.

V = 80 kN,

N A

0.02 m

0.100 m

0.300 m

B B¿
A¿

(c)

Fig. 7–11

(a)

300 mm

15 mm

20 mm

20 mm

A

N

100 mm

100 mm

V � 80 kN
1.13 MPa

22.6 MPa

B¿

B

C

tB¿ � 1.13 MPa

tB � 22.6 MPa

tC � 25.2 MPa

(b)

SOLUTION
Since the flange and web are rectangular elements, then like the
previous example, the shear-stress distribution will be parabolic and in
this case it will vary in the manner shown in Fig. 7–11b. Due to
symmetry, only the shear stresses at points B, and C have to be
determined. To show how these values are obtained, we must first
determine the moment of inertia of the cross-sectional area about the
neutral axis. Working in meters, we have

For point and is the dark shaded area shown
in Fig. 7–11c. Thus,

so that

For point B, and Fig. 7–11c. Hence

Note from the discussion of “Limitations on the Use of the Shear
Formula” that the calculated value for both and will actually be
very misleading. Why?

tBtB¿

tB =
VQB

ItB
=

80(103) N10.660110-32 m32
155.6110-62 m410.015 m2 = 22.6 MPa

QB = QB¿ ,tB = 0.015 m

tB¿ =
VQB¿

ItB¿
=

80(103) N10.660110-32 m32
155.6110-62 m410.300 m2 = 1.13 MPa

QB¿ = y¿A¿ = [0.110 m]10.300 m210.02 m2 = 0.660110-32 m3

A¿tB¿ = 0.300 m,B¿,

 = 155.6110-62 m4

 + 2 c 1
12

 10.300 m210.02 m23 + 10.300 m210.02 m210.110 m22 d
 I = c 1

12
 10.015 m210.200 m23 d

B¿,



7.2 THE SHEAR FORMULA 371

7

N A

0.02 m

0.100 m

0.300 m

C

0.015 m
A¿

(d)

For point C, and is the dark shaded area shown in
Fig. 7–11d. Considering this area to be composed of two rectangles,
we have

Thus,

NOTE: From Fig. 7–11b, note that most of the shear stress occurs in
the web and is almost uniform throughout its depth, varying from
22.6 MPa to 25.2 MPa. It is for this reason that for design, some codes
permit the use of calculating the average shear stress on the cross
section of the web rather than using the shear formula. This will be
discussed further in Chapter 11.

tC = tmax =
VQC

ItC
=

80(103) N[0.735110-32 m3]

155.6110-62 m410.015 m2 = 25.2 MPa

 = 0.735110-32 m3

 + [0.05 m]10.015 m210.100 m2
 QC = ©y¿A¿ = [0.110 m]10.300 m210.02 m2

A¿tC = 0.015 m

Fig. 7–11 (cont.)



372 CHAPTER 7 TRANSVERSE SHEAR

7

EXAMPLE 7.4

The beam shown in Fig. 7–12a is made from two boards. Determine
the maximum shear stress in the glue necessary to hold the boards
together along the seam where they are joined.

SOLUTION
Internal Shear. The support reactions and the shear diagram for the
beam are shown in Fig. 7–12b. It is seen that the maximum shear in the
beam is 19.5 kN.

Section Properties. The centroid and therefore the neutral axis
will be determined from the reference axis placed at the bottom of the
cross-sectional area, Fig. 7–12a. Working in units of meters, we have

 =
[0.075 m]10.150 m210.030 m2 + [0.165 m]10.030 m210.150 m2

10.150 m210.030 m2 + 10.030 m210.150 m2 = 0.120 m

 y =
© 'yA

©A

The moment of inertia, about the neutral axis, Fig. 7–12a, is therefore

 = 27.0110-62 m4

 + c 1
12

 10.150 m210.030 m23 + 10.030 m210.150 m210.165 m - 0.120 m22 d

 I = c 1
12

 10.030 m210.150 m23 + 10.150 m210.030 m210.120 m - 0.075 m22 d

The top board (flange) is being held onto the bottom board (web) by
the glue, which is applied over the thickness Consequently

is defined as the area of the top board, Fig. 7–12a. We have

Shear Stress. Using the above data and applying the shear formula
yields

Ans.

The shear stress acting at the top of the bottom board is shown in
Fig. 7–12c.

NOTE: It is the glue’s resistance to this longitudinal shear stress that
holds the boards from slipping at the right-hand support.

tmax =
VQ

It
=

19.5(103) N10.2025110-32 m32
27.0110-62 m410.030 m2 = 4.88 MPa

 = 0.2025110-32 m3

 Q = y¿A¿ = [0.180 m - 0.015 m - 0.120 m]10.03 m210.150 m2
A¿

t = 0.03 m.

4 m 4 m

6.5 kN/m

(a)

150 mm

N A

30 mm

150 mm

30 mm

_
y

4.88 MPa

Plane containing glue

(c)

V � 19.5 kN

Fig. 7–12

6 m

26 kN

2 m

19.5 kN6.5 kN

(b)

6.5

4
5 8

�19.5

V (kN)

x (m)
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FUNDAMENTAL PROBLEMS

F7–1. If the beam is subjected to a shear force of
kN, determine the shear stress developed at point

A. Represent the state of stress at A on a volume element.
V = 100

F7–2. Determine the shear stress at points A and B on the
beam if it is subjected to a shear force of kN.V = 600

F7–3. Determine the absolute maximum shear stress
developed in the beam.

F7–4. If the beam is subjected to a shear force of
kN, determine the maximum shear stress developed

in the beam.
V = 20

F7–5. If the beam is made from four plates and subjected
to a shear force of kN, determine the maximum
shear stress developed in the beam.

V = 20

200 mm

90 mm

300 mm

20 mm

20 mm

20 mm V

A

F7–1

200 mm

V

150 mm

150 mm

50 mm

30 mm

30 mm
30 mm

30 mm

50 mm

F7–4

150 mm

50 mm

25 mm

25 mm

A

150 mm

50 mm

50 mm

V

F7–5

A

1 ft 3 in.

6 in.

1 ft1 ft

6 kip
3 kip

B

F7–3

100 mm

100 mm

100 mm

100 mm

100 mm

100 mm

B

A V

F7–2
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A

B
V

20 mm

20 mm

20 mm

300 mm

200 mm

200 mm

•7–1. If the wide-flange beam is subjected to a shear of
determine the shear stress on the web at A.

Indicate the shear-stress components on a volume element
located at this point.

7–2. If the wide-flange beam is subjected to a shear of
determine the maximum shear stress in the

beam.

7–3. If the wide-flange beam is subjected to a shear of
determine the shear force resisted by the web

of the beam.
V = 20 kN,

V = 20 kN,

V = 20 kN,

*7–4. If the T-beam is subjected to a vertical shear of
determine the maximum shear stress in the

beam. Also, compute the shear-stress jump at the flange-
web junction AB. Sketch the variation of the shear-stress
intensity over the entire cross section.

•7–5. If the T-beam is subjected to a vertical shear of
determine the vertical shear force resisted by

the flange.
V = 12 kip,

V = 12 kip,

7–7. If the wide-flange beam is subjected to a shear of
determine the maximum shear stress in the

beam.

*7–8. If the wide-flange beam is subjected to a shear of
determine the shear force resisted by the web

of the beam.
V = 30 kN,

V = 30 kN,

7–6. If the beam is subjected to a shear of 
determine the web’s shear stress at A and B. Indicate the
shear-stress components on a volume element located
at these points. Show that the neutral axis is located at

from the bottom and INA = 0.2182110-32 m4.y = 0.1747 m

V = 15 kN,

PROBLEMS

Probs. 7–1/2/3

A

B

V

30 mm
25 mm

30 mm

250 mm

200 mm

125 mm

Prob. 7–6

A

B
V

30 mm
25 mm

30 mm

250 mm

200 mm

200 mm

Probs. 7–7/8

BB

V � 12 kip

6 in.

3 in.

4 in.

4 in.
4 in.

A

Probs. 7–4/5
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•7–9. Determine the largest shear force V that the member
can sustain if the allowable shear stress is

7–10. If the applied shear force determine the
maximum shear stress in the member.

V = 18 kip,

tallow = 8 ksi.
7–13. Determine the maximum shear stress in the strut if
it is subjected to a shear force of 

7–14. Determine the maximum shear force V that the
strut can support if the allowable shear stress for the
material is tallow = 40 MPa.

V = 20 kN.

7–11. The wood beam has an allowable shear stress of
Determine the maximum shear force V that

can be applied to the cross section.
tallow = 7 MPa.

7–15. Plot the shear-stress distribution over the cross
section of a rod that has a radius c. By what factor is the
maximum shear stress greater than the average shear stress
acting over the cross section?

*7–12. The beam has a rectangular cross section and is
made of wood having an allowable shear stress of 
200 psi. Determine the maximum shear force V that can be
developed in the cross section of the beam. Also, plot the
shear-stress variation over the cross section.

tallow =

*7–16. A member has a cross section in the form of an
equilateral triangle. If it is subjected to a shear force V,
determine the maximum average shear stress in the member
using the shear formula. Should the shear formula actually be
used to predict this value? Explain.

V
3 in. 1 in.

1 in.

1 in.

3 in.

Probs. 7–9/10

50 mm

50 mm

200 mm

100 mm
50 mm

V

50 mm

Prob. 7–11

V
60 mm

12 mm

20 mm

20 mm

80 mm

12 mm

Probs. 7–13/14

c

V

y

 V

12 in. 

8 in. 
Prob. 7–12

V

a

h

Prob. 7–16

Prob. 7–15
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•7–17. Determine the maximum shear stress in the strut if
it is subjected to a shear force of 

7–18. Determine the maximum shear force V that the strut
can support if the allowable shear stress for the material is

7–19. Plot the intensity of the shear stress distributed over
the cross section of the strut if it is subjected to a shear force
of V = 600 kN.

tallow = 45 MPa.

V = 600 kN.
7–22. Determine the shear stress at point B on the web of
the cantilevered strut at section a–a.

7–23. Determine the maximum shear stress acting at
section a–a of the cantilevered strut.

*7–20. The steel rod is subjected to a shear of 30 kip.
Determine the maximum shear stress in the rod.

•7–21. The steel rod is subjected to a shear of 30 kip.
Determine the shear stress at point A. Show the result on a
volume element at this point.

*7–24. Determine the maximum shear stress in the T-beam
at the critical section where the internal shear force is
maximum.

•7–25. Determine the maximum shear stress in the 
T-beam at point C. Show the result on a volume element
at this point.

V

150 mm

30 mm

100 mm
100 mm

100 mm

30 mm

Probs. 7–17/18/19

30 kip

2 in.

1 in.
A

Probs. 7–20/21

a

a

2 kN 4 kN

250 mm 250 mm 300 mm

20 mm
50 mm

70 mm

20 mm

B

Probs. 7–22/23

3 m 1.5 m1.5 m

10 kN/m

A

150 mm

150 mm 30 mm

30 mm

B
C

Probs. 7–24/25
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7–26. Determine the maximum shear stress acting in the
fiberglass beam at the section where the internal shear
force is maximum.

7–29. Write a computer program that can be used to
determine the maximum shear stress in the beam that has
the cross section shown, and is subjected to a specified
constant distributed load and concentrated force P. Show
an application of the program using the values 

and h = 150 mm.b = 50 mm,t2 = 20 mm,t1 = 15 mm,
w = 400 N>m,d2 = 2 m,d1 = 0,P = 1.5 kN,a = 2 m,

L = 4 m,
w

7–27. Determine the shear stress at points C and D
located on the web of the beam.

*7–28. Determine the maximum shear stress acting in the
beam at the critical section where the internal shear force is
maximum.

7–30. The beam has a rectangular cross section and is
subjected to a load P that is just large enough to develop a
fully plastic moment at the fixed support. If the
material is elastic-plastic, then at a distance the
moment creates a region of plastic yielding with
an associated elastic core having a height This situation
has been described by Eq. 6–30 and the moment M is
distributed over the cross section as shown in Fig. 6–48e.
Prove that the maximum shear stress developed in the beam
is given by where the cross-
sectional area of the elastic core.

A¿ = 2y¿b,tmax = 3
21P>A¿2,

2y¿.
M = Px

x 6 L
Mp = PL

7–31. The beam in Fig. 6–48f is subjected to a fully plastic
moment Prove that the longitudinal and transverse
shear stresses in the beam are zero. Hint: Consider an element
of the beam as shown in Fig. 7–4c.

Mp .

A

150 lb/ft

D

0.75 in.

0.75 in.4 in.

6 in.

2 ft
6 ft6 ft

0.5 in.

200 lb/ft

4 in.

Prob. 7–26

A

3 kip/ft

D

D

C

C

B

1 in.

1 in.6 in.

4 in.

4 in.

6 ft 6 ft6 ft

0.75 in.

6 in.

Probs. 7–27/28

P
d1

a

L

d2

w

A B

t1

t1

t2

b

h

Prob. 7–29

h

b L

P
x

Plastic region

2y¿

Elastic region

Prob. 7–30



378 CHAPTER 7 TRANSVERSE SHEAR

7

7.3 Shear Flow in Built-Up Members

Occasionally in engineering practice, members are “built up” from
several composite parts in order to achieve a greater resistance to loads.
Examples are shown in Fig. 7–13. If the loads cause the members to
bend, fasteners such as nails, bolts, welding material, or glue may be
needed to keep the component parts from sliding relative to one
another, Fig. 7–2. In order to design these fasteners or determine their
spacing, it is necessary to know the shear force that must be resisted by
the fastener. This loading, when measured as a force per unit length of
beam, is referred to as shear flow q.*

The magnitude of the shear flow can be obtained using a development
similar to that for finding the shear stress in the beam.To show this, we will
consider finding the shear flow along the juncture where the segment in
Fig. 7–14a is connected to the flange of the beam. As shown in Fig. 7–14b,
three horizontal forces must act on this segment. Two of these forces, F
and are developed by normal stresses caused by the moments M
and respectively. The third force, which for equilibrium equals
dF, acts at the juncture and it is to be supported by the fastener. Realizing
that dF is the result of dM, then, like Eq. 7–1, we have

The integral represents Q, that is, the moment of the segment’s area 
in Fig. 7–14b about the neutral axis for the entire cross section. Since the
segment has a length dx, the shear flow, or force per unit length along the
beam, is Hence dividing both sides by dx and noting that

Eq. 6–2, we can write

(7–4)

Here

the shear flow, measured as a force per unit length along the
beam

the internal resultant shear force, determined from the method
of sections and the equations of equilibrium

the moment of inertia of the entire cross-sectional area
computed about the neutral axis

, where is the cross-sectional area of the segment that is
connected to the beam at the juncture where the shear flow is
to be calculated, and is the distance from the neutral axis to
the centroid of A¿

y¿

A¿y¿A¿Q =

 I =

 V =

 q =

q =
VQ

I

V = dM>dx,
q = dF>dx.

A¿

dF =
dM

I LA¿
y dA¿

M + dM,
F + dF,

Fig. 7–13

*The use of the word “flow” in this terminology will become meaningful as it pertains to
the discussion in Sec. 7.5.
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Application of this equation follows the same “procedure for analysis”
as outlined in Sec. 7.2 for the shear formula. It is very important to
identify Q correctly when determining the shear flow at a particular
junction on the cross section. A few examples should serve to illustrate
how this is done. Consider the beam cross sections shown in Fig. 7–15.The
shaded segments are connected to the beam by fasteners and at the
planes of connection, identified by the thick black lines, the shear
flow q is determined by using a value of Q calculated from and
indicated in each figure.This value of q will be resisted by a single fastener
in Fig. 7–15a, by two fasteners in Fig. 7–15b, and by three fasteners in
Fig. 7–15c. In other words, the fastener in Fig. 7–15a supports the
calculated value of q, and in Figs. 7–15b and 7–15c each fastener
supports q�2 and q�3, respectively.

y¿A¿

7

dx

dx

M � dM

M

(a)

dx

dF

F � dF
(b)

t
F

A¿

Fig. 7–14

Important Point

• Shear flow is a measure of the force per unit length along the axis
of a beam. This value is found from the shear formula and is used
to determine the shear force developed in fasteners and glue that
holds the various segments of a composite beam together.

Fig. 7–15

A¿

AN

(c)

_
y ¿

A¿

AN

(a)

_
y ¿ N A

(b)

A¿

_
y ¿
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EXAMPLE 7.5

The beam is constructed from four boards glued together as shown in
Fig. 7–16a. If it is subjected to a shear of determine the
shear flow at B and C that must be resisted by the glue.

SOLUTION
Section Properties. The neutral axis (centroid) will be located from
the bottom of the beam, Fig. 7–16a.Working in units of meters, we have

V = 850 kN,

 = 0.1968 m

 y =
©'yA

©A
=

2[0.15 m]10.3 m210.01 m2 + [0.205 m]10.125 m210.01 m2 + [0.305 m]10.250 m210.01 m2
210.3 m210.01 m2 + 0.125 m10.01 m2 + 0.250 m10.01 m2

The moment of inertia about the neutral axis is thus

 = 87.52110-62 m4

 + c 1
12

 10.250 m210.01 m23 + 10.250 m210.01 m210.305 m - 0.1968 m22 d
 + c 1

12
 10.125 m210.01 m23 + 10.125 m210.01 m210.205 m - 0.1968 m22 d

 I = 2 c 1
12

 10.01 m210.3 m23 + 10.01 m210.3 m210.1968 m - 0.150 m22 d

Since the glue at B and in Fig. 7–16b “holds” the top board to the
beam, we have

Likewise, the glue at C and “holds” the inner board to the beam,
Fig. 7–16b, and so

Shear Flow. For B and we have

And for C and 

Since two seams are used to secure each board, the glue per meter
length of beam at each seam must be strong enough to resist one-half
of each calculated value of Thus,

Ans.qB = 1.31 MN>m and qC = 0.0498 MN>m
q¿.

qœ
C =

VQC

I
=

85011032 N10.01026110-32 m32
87.52110-62 m4 = 0.0996 MN>m

C¿,

qœ
B =

VQB

I
=

85011032 N10.271110-32 m32
87.52110-62 m4 = 2.63 MN>m

B¿

 = 0.01026110-32 m3

 QC = yœ
CAœ

C = [0.205 m - 0.1968 m]10.125 m210.01 m2
C¿

 = 0.271110-32 m3

 QB = yœ
BAœ

B = [0.305 m - 0.1968 m]10.250 m210.01 m2
B¿

Fig. 7–16

250 mm
10 mm

10 mm

200 mm

300 mm

125 mm 10 mm10 mm

AN

_
y

_ 
  y¿B

_ 
  y¿C

V � 850 kN

B

C

(a)

AN

B

C

(b)

C ¿

B¿

A¿C

A¿B
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EXAMPLE 7.6

A box beam is constructed from four boards nailed together as shown
in Fig. 7–17a. If each nail can support a shear force of 30 lb, determine
the maximum spacing s of the nails at B and at C so that the beam will
support the force of 80 lb.

SOLUTION
Internal Shear. If the beam is sectioned at an arbitrary point along
its length, the internal shear required for equilibrium is always

and so the shear diagram is shown in Fig. 7–17b.

Section Properties. The moment of inertia of the cross-sectional
area about the neutral axis can be determined by considering a

square minus a square.

The shear flow at B is determined using found from the darker
shaded area shown in Fig. 7–17c. It is this “symmetric” portion of the
beam that is to be “held” onto the rest of the beam by nails on the left
side and by the fibers of the board on the right side.
Thus,

Likewise, the shear flow at C can be determined using the “symmetric”
shaded area shown in Fig. 7–17d. We have

Shear Flow.

These values represent the shear force per unit length of the beam
that must be resisted by the nails at B and the fibers at Fig. 7–17c,
and the nails at C and the fibers at Fig. 7–17d, respectively. Since in
each case the shear flow is resisted at two surfaces and each nail can
resist 30 lb, for B the spacing is

Ans.

And for C,

Ans.sC =
30 lb

17.059>22 lb>in.
= 8.50 in. Use sC = 8.5 in.

sB =
30 lb

111.76>22 lb>in.
= 5.10 in. Use sB = 5 in.

C¿,
B¿,

 qC =
VQC

I
=

80 lb120.25 in32
229.5 in4 = 7.059 lb>in.

 qB =
VQB

I
=

80 lb133.75 in32
229.5 in4 = 11.76 lb>in.

QC = y¿A¿ = [3 in.]14.5 in.211.5 in.2 = 20.25 in3

QB = y¿A¿ = [3 in.]17.5 in.211.5 in.2 = 33.75 in3

QB

I =
1

12
 17.5 in.217.5 in.23 -

1
12

 14.5 in.214.5 in.23 = 229.5 in4

4.5-in. * 4.5-in.7.5-in. * 7.5-in.

V = 80 lb,

Fig. 7–17

(a)

80 lb

s

6 in. 1.5 in.

6 in.

1.5 in.

B

C

1.5 in.

(b)

V (lb)

x (ft)

80

(c)

7.5 in.

B B¿
AN

3 in.
1.5 in.

4.5 in.

C ¿
AN

C

(d)

3 in.
1.5 in.
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EXAMPLE 7.7

Nails having a total shear strength of 40 lb are used in a beam that can
be constructed either as in Case I or as in Case II, Fig. 7–18. If the nails
are spaced at 9 in., determine the largest vertical shear that can be
supported in each case so that the fasteners will not fail.

N

3 in.

1 in.
4 in.

0.5 in.

0.5 in.

Case I

A N
� 9 in.s

1 in.

5 in.

0.5 in.

Case II

AAA

1 in.1 in.

� 9 in.s

0.5 in.

Fig. 7–18

SOLUTION
Since the cross section is the same in both cases, the moment of inertia
about the neutral axis is

Case I. For this design a single row of nails holds the top or bottom
flange onto the web. For one of these flanges,

so that

Ans.

Case II. Here a single row of nails holds one of the side boards onto
the web. Thus,

Ans. V = 81.3 lb

 
40 lb
9 in.

=
V11.125 in32

20.58 in4

 q =
VQ

I

Q = y¿A¿ = [2.25 in.]11 in.10.5 in.22 = 1.125 in3

 V = 27.1 lb

 
40 lb
9 in.

=
V13.375 in32

20.58 in4

 q =
VQ

I

Q = y¿A¿ = [2.25 in.]13 in.10.5 in.22 = 3.375 in3

I =
1

12
 13 in.215 in.23 - 2 c 1

12
 11 in.214 in.23 d = 20.58 in4
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FUNDAMENTAL PROBLEMS

F7–6. The two identical boards are bolted together to
form the beam. Determine the maximum allowable spacing
s of the bolts to the nearest mm if each bolt has a shear
strength of 15 kN. The beam is subjected to a shear force of

F7–7. The two identical boards are bolted together to
form the beam. If the spacing of the bolts is mm
and each bolt has a shear strength of 15 kN, determine the
maximum shear force V the beam can resist.

s = 100

V = 50 kN.

F7–8. Two identical 20-mm thick plates are bolted to the
top and bottom flange to form the built-up beam. If the
beam is subjected to a shear force of 
determine the allowable maximum spacing s of the bolts to
the nearest mm. Each bolt has a shear strength of 30 kN.

V = 300 kN,

F7–10. The boards are bolted together to form the built-
up beam. If the beam is subjected to a shear force of

determine the allowable maximum spacing of
the bolts to the nearest in. Each bolt has a shear strength
of 6 kip.

1
8

V = 15 kip,

F7–9. The boards are bolted together to form the built-
up beam. If the beam is subjected to a shear force of

determine the allowable maximum spacing of
the bolts to the nearest mm. Each bolt has a shear strength
of 8 kN.

V = 20 kN,

100 mm

100 mm

300 mm

V

s

s

F7–6/7

200 mm

25 mm

50 mm

V

25 mm

50 mm

150 mm

150 mm

s
s

F7–9

4 in.

3 in.

3 in.

1 in.

1 in.

4 in.

1 in.

0.5 in.
0.5 in.

V

s
s

F7–10

20 mm

10 mm

10 mm

200 mm

200 mm

10 mm

20 mm

300 mm

s

s

V

F7–8
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*7–32. The beam is constructed from two boards fastened
together at the top and bottom with two rows of nails
spaced every 6 in. If each nail can support a 500-lb shear
force, determine the maximum shear force V that can be
applied to the beam.

•7–33. The beam is constructed from two boards
fastened together at the top and bottom with two rows of
nails spaced every 6 in. If an internal shear force of

is applied to the boards, determine the shear
force resisted by each nail.
V = 600 lb

*7–36. The beam is fabricated from two equivalent
structural tees and two plates. Each plate has a height of 
6 in. and a thickness of 0.5 in. If a shear of is
applied to the cross section, determine the maximum spacing
of the bolts. Each bolt can resist a shear force of 15 kip.

•7–37. The beam is fabricated from two equivalent
structural tees and two plates. Each plate has a height of 
6 in. and a thickness of 0.5 in. If the bolts are spaced at

determine the maximum shear force V that can
be applied to the cross section. Each bolt can resist a
shear force of 15 kip.

s = 8 in.,

V = 50 kip

7–34. The beam is constructed from two boards fastened
together with three rows of nails spaced If
each nail can support a 450-lb shear force, determine the
maximum shear force V that can be applied to the beam. The
allowable shear stress for the wood is 

7–35. The beam is constructed from two boards fastened
together with three rows of nails. If the allowable shear
stress for the wood is determine the
maximum shear force V that can be applied to the beam.
Also, find the maximum spacing s of the nails if each nail
can resist 650 lb in shear.

tallow = 150 psi,

tallow = 300 psi.

s = 2 in. apart.

7–38. The beam is subjected to a shear of 
Determine the average shear stress developed in each nail
if the nails are spaced 75 mm apart on each side of the
beam. Each nail has a diameter of 4 mm.

V = 2 kN.

PROBLEMS

V
2 in.

6 in.

6 in.

6 in.

2 in.

Probs. 7–32/33

V

1.5 in.

s

s

6 in.

1.5 in.

Probs. 7–34/35

3 in.

3 in.

A

V

0.5 in.

1 in.

0.5 in.

6 in.

ss

NN

Probs. 7–36/37

75 mm
75 mm

50 mm

25 mm

200 mm

200 mm

25 mm V

Prob. 7–38
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7–39. A beam is constructed from three boards bolted
together as shown. Determine the shear force developed
in each bolt if the bolts are spaced apart and the
applied shear is V = 35 kN.

s = 250 mm

7–42. The T-beam is nailed together as shown. If the nails
can each support a shear force of 950 lb, determine the
maximum shear force V that the beam can support and the
corresponding maximum nail spacing s to the nearest in.
The allowable shear stress for the wood is .tallow = 450 psi

1
8

*7–40. The double-web girder is constructed from two
plywood sheets that are secured to wood members at its top
and bottom. If each fastener can support 600 lb in single
shear, determine the required spacing s of the fasteners
needed to support the loading Assume A is
pinned and B is a roller.

•7–41. The double-web girder is constructed from two
plywood sheets that are secured to wood members at its top
and bottom. The allowable bending stress for the wood is

and the allowable shear stress is 
If the fasteners are spaced and each fastener can
support 600 lb in single shear, determine the maximum load
P that can be applied to the beam.

s = 6 in.
tallow = 3 ksi.sallow = 8 ksi

P = 3000 lb.

7–43. Determine the average shear stress developed in the
nails within region AB of the beam. The nails are located on
each side of the beam and are spaced 100 mm apart. Each
nail has a diameter of 4 mm. Take 

*7–44. The nails are on both sides of the beam and each
can resist a shear of 2 kN. In addition to the distributed
loading, determine the maximum load P that can be applied
to the end of the beam. The nails are spaced 100 mm apart
and the allowable shear stress for the wood is .tallow = 3 MPa

P = 2 kN.

s = 250 mm

250 mm100 mm

25 mm

25 mm

25 mm

350 mm
V

Prob. 7–39

P

B

s

A

2 in.
2 in.

10 in.

6 in.
0.5 in. 0.5 in.

2 in.
2 in.

4 ft 4 ft

Probs. 7–40/41

12 in.

12 in.2 in.

2 in.

V

s

s

Prob. 7–42

P

1.5 m 1.5 m

B CA

40 mm

20 mm
20 mm

100 mm

200 mm

200 mm

2 kN/m

Probs. 7–43/44
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•7–45. The beam is constructed from four boards which
are nailed together. If the nails are on both sides of the
beam and each can resist a shear of 3 kN, determine
the maximum load P that can be applied to the end of the
beam.

*7–48. The box beam is constructed from four boards that
are fastened together using nails spaced along the beam
every 2 in. If each nail can resist a shear of 50 lb, determine
the greatest shear V that can be applied to the beam without
causing failure of the nails.

7–46. A built-up timber beam is made from the four
boards, each having a rectangular cross section. Write a
computer program that can be used to determine the
maximum shear stress in the beam when it is subjected to
the shear V. Show an application of the program for a
specific set of dimensions.

7–47. The beam is made from four boards nailed together
as shown. If the nails can each support a shear force of 
100 lb., determine their required spacing s
 and s if the beam
is subjected to a shear of .V = 700 lb

7–49. The timber T-beam is subjected to a load consisting
of n concentrated forces, . If the allowable shear for
each of the nails is known, write a computer program that
will specify the nail spacing between each load. Show an
application of the program using the values 

, , ,
and Vnail = 200 lb.h2 = 1 in.,b2 = 8 in.,h1 = 10 in.,

b1 = 1.5 in.,P2 = 1500 lb,a2 = 8 ftP1 = 600 lba1 = 4 ft
L = 15 ft,

VnailPn

P

2 m 2 m

3 kN

B CA

30 mm

30 mm
30 mm

100 mm

250 mm30 mm

150 mm

Prob. 7–45

bn

hn

h1

h2

b3

b1

b2
V

Prob. 7–46
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B
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A

1 in.

C
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s

D
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V
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Prob. 7–48
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h1

b2
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L
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s1 s2
s3 sn
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7.4 Shear Flow in Thin-Walled Members

In this section we will show how to apply the shear flow equation
to find the shear-flow distribution throughout a member’s

cross-sectional area. We will assume that the member has thin walls,
that is, the wall thickness is small compared to its height or width.
As will be shown in the next section, this analysis has important
applications in structural and mechanical design.

Like the shear stress, the shear flow acts on both the longitudinal
and transverse planes of the member. To show how to establish its
direction on the cross section, consider the segment dx of the wide-
flange beam in Fig. 7–19a. Free-body diagrams of two segments B and
C taken from the top flange are shown in Figs. 7–19b and 7–19c. The
force dF must act on the longitudinal section in order to balance the
normal forces F and F � dF created by the moments M and M � dM,
respectively. Now, if the corner elements B and C of each segment
are removed, then the transverse components q act on the cross
section as shown in Figs. 7–19b and 7–19c. Using this method, show
that the shear flow at the corresponding points and on the
bottom flange in Fig. 7–19d is directed as shown.

Although it is also true that will create vertical shear-flow
components on this element, here we will neglect its effects. This is
because this component, like the shear stress, is approximately zero
throughout the thickness of the element. Here, the flange is thin and
the top and bottom surfaces of the element are free of stress, Fig. 7–19e.
To summarize then, only the shear flow component that acts parallel to
the sides of the flange will be considered.

V + dV

C¿B¿

q = VQ>I

Fig. 7–19

(a)

M � dM

V � dV

dx

t

M

V

B

C

(b)

F

F � dF
dF

BdA

q

B

t

q assumed constant
throughout flange
thickness

q¿ assumed to be zero
throughout flange
thickness since top
and bottom of
flange are
stress free

(e)(d)

B

B¿

C ¿

C

dF

(c)

F

F � dF
dx

C

t

q

C
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Having determined the direction of the shear flow in each flange,
we can now find its distribution along the top right flange of the beam in
Fig. 7–20a. To do this, consider the shear flow q, acting on the colored
element dx, located an arbitrary distance x from the centerline of the
cross section, Fig. 7–20b. Here  so that

(7–5)

By inspection, this distribution varies in a linear manner from at
to at (The limitation of is

possible here since the member is assumed to have “thin walls” and so
the thickness of the web is neglected.) Due to symmetry, a similar
analysis yields the same distribution of shear flow for the other flange
segments, so that the results are as shown in Fig. 7–20d.

The total force developed in each flange segment can be determined
by integration. Since the force on the element dx in Fig. 7–20b is

then

We can also determine this result by finding the area under the triangle
in Fig. 7–20d. Hence,

All four of these forces are shown in Fig. 7–20e, and we can see from
their direction that horizontal force equilibrium of the cross section is
maintained.

Ff =
1
2

 1qmax2fab

2
b =

Vt db2

16I

Ff = Lq dx = L
b>2

0

Vt d

2I
 ab

2
- xb  dx =

Vt db2

16I

dF = q dx,

x = 0x = 0.1qmax2f = Vt db>4Ix = b>2 q = 0

q =
VQ

I
=

V[d>2]1b>2 - x2t
I

=
Vt d

2I
 ab

2
- xb

Q = y¿A¿ = [d>2]1b>2 - x2t,

b

t

t

A

V
N

t

(a)

d
2

d
2

(b)

N A

x

dx

t

q
d
2

b
2

(c)

N A

b
t

t

t

y
q

dy d
2

Fig. 7–20
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A similar analysis can be performed for the web, Fig. 7–20c. Here q must
act downward, and at element we have

so that

(7–6)

For the web, the shear flow varies in a parabolic manner, from
at 

at Fig. 7–20d.
Integrating to determine the force in the web, we have,

Simplification is possible by noting that the moment of inertia for the
cross-sectional area is

Neglecting the first term, since the thickness of each flange is small, then

Substituting this into the above equation, we see that which is
to be expected, Fig. 7–20e.

Fw = V,

I =
td2

4
 a2b +

1
3

 db

I = 2B 1
12

 bt3 + btad

2
b2R +

1
12

 td3

 =
Vtd2

4I
 a2b +

1
3

 db

 =
Vt

I
Bdb

2
 y +

1
2

 ¢d2

4
 y -

1
3

 y3≤ R `
-d>2
d>2

 Fw = Lq dy = L
d>2

-d>2
Vt

I
 Bdb

2
+

1
2

 ¢d2

4
- y2≤ R  dy

Fw ,
y = 0,

1Vt d>I21b>2 + d>8)to 1qmax2w =y = d>2q = 21qmax2f = Vt db>2I

q =
VQ

I
=

Vt

I
 Bdb

2
+

1
2

 ¢d2

4
- y2≤ R

[y + 11>221d>2 - y2] t1d>2 - y2 = bt d>2 + 1t>221d2>4 - y22,
Q = ©y¿A¿ = [d>2]1bt2 +dy

7

Shear-flow distribution

(d)

(qmax)f

(qmax)f

(qmax)w

2(qmax)f

2(qmax)f

(e)

Ff Ff

FfFf

Fw � V

Fig. 7–20 (cont.)



390 CHAPTER 7 TRANSVERSE SHEAR

7

From the foregoing analysis, three important points should be observed.
First, the value of q changes over the cross section, since Q will be different
for each area segment for which it is determined. In particular, q will
vary linearly along segments (flanges) that are perpendicular to the
direction of V, and parabolically along segments (web) that are inclined or
parallel to V. Second, q will always act parallel to the walls of the member,
since the section on which q is calculated is taken perpendicular to the
walls. And third, the directional sense of q is such that the shear appears
to “flow” through the cross section, inward at the beam’s top flange,
“combining” and then “flowing” downward through the web, since it must
contribute to the shear force V, and then separating and “flowing”
outward at the bottom flange. If one is able to “visualize” this “flow” it will
provide an easy means for establishing not only the direction of q, but also
the corresponding direction of . Other examples of how q is directed
along the segments of thin-walled members are shown in Fig. 7–21. In all
cases, symmetry prevails about an axis that is collinear with V.As a result,
q “flows” in a direction such that it will provide the vertical force V and yet
also satisfy horizontal force equilibrium for the cross section.

t

A¿

Fig. 7–21

Shear flow q

V
V

V

V

Important Points

• The shear flow formula can be used to determine the
distribution of the shear flow throughout a thin-walled member
provided the shear V acts along an axis of symmetry or principal
centroidal axis of inertia for the cross section.

• If a member is made from segments having thin walls, only the
shear flow parallel to the walls of the member is important.

• The shear flow varies linearly along segments that are perpendicular
to the direction of the shear V.

• The shear flow varies parabolically along segments that are
inclined or parallel to the direction of the shear V.

• On the cross section, the shear “flows” along the segments so that
it results in the vertical shear force V and yet satisfies horizontal
force equilibrium.

q = VQ>I
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EXAMPLE 7.8

The thin-walled box beam in Fig. 7–22a is subjected to a shear of 
10 kip. Determine the variation of the shear flow throughout the cross
section.

SOLUTION
By symmetry, the neutral axis passes through the center of the cross
section. For thin-walled members we use centerline dimensions for
calculating the moment of inertia.

Only the shear flow at points B, C, and D has to be determined. For
point B, the area Fig. 7–22b, since it can be thought of as
being located entirely at point B. Alternatively, can also represent
the entire cross-sectional area, in which case since

Because then

For point C, the area is shown dark shaded in Fig. 7–22c. Here,
we have used the mean dimensions since point C is on the centerline
of each segment. We have

Since there are two points of attachment,

The shear flow at D is determined using the three dark-shaded
rectangles shown in Fig. 7–22d. Again, using centerline dimensions

qC =
1
2

 aVQC

I
b =

1
2

 a10 kip117.5 in32
179.7 in4 b = 0.487 kip>in.

QC = y¿A¿ = 13.5 in.215 in.211 in.2 = 17.5 in3

A¿

qB = 0

QB = 0,y¿ = 0.
QB = y¿A¿ = 0
A¿

A¿ L 0,

I =
1

12
 12 in.217 in.23 + 2 [15 in.211 in.213.5 in.22] = 179.7 in.4 

QD = ©y¿A¿ = 2 c3.5 in.
2
d11 in.213.5 in.2 + [3.5 in.]15 in.211 in.2 = 29.75 in3

Because there are two points of attachment,

Using these results, and the symmetry of the cross section, the
shear-flow distribution is plotted in Fig. 7–22e. The distribution is
linear along the horizontal segments (perpendicular to V) and parabolic
along the vertical segments (parallel to V).

qD =
1
2

 aVQD

I
b =

1
2

 a10 kip129.75 in32
179.7 in4 b = 0.828 kip>in.

Fig. 7–22
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A
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D
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3 in.
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1 in.2 in.2 in. 1 in.
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B

(b)

A¿

AN

3.5 in.

4 in.

5 in.

N A

1 in.

1 in.
4 in.

(c)
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3.5 in.
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A

3.5 in.

N A

(e)

0.828 kip/ in.

0.487 kip/ in.

0.487 kip/ in.

(d)
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*7.5 Shear Center for Open 
Thin-Walled Members

In the previous section, it was assumed that the internal shear V was
applied along a principal centroidal axis of inertia that also represents an
axis of symmetry for the cross section. In this section we will consider the
effect of applying the shear along a principal centroidal axis that is not an
axis of symmetry. As before, only open thin-walled members will be
analyzed, so the dimensions to the centerline of the walls of the members
will be used. A typical example of this case is the channel section shown
in Fig. 7–23a. Here it is cantilevered from a fixed support and is subjected
to the force P. If this force is applied along the once vertical,
unsymmetrical axis that passes through the centroid C of the cross
section, the channel will not only bend downward, it will also twist
clockwise as shown.

(a)

P

C

P

(e)

(qmax)w

(qmax)f

(qmax)f

Shear-flow distribution

(b)

dCA

Ff

Ff

V � P

(c)

A

P

O

(d)

e

�

Fig. 7–23
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To understand why the member twists, it is necessary to show the shear-
flow distribution along the channel’s flanges and web,Fig.7–23b.When this
distribution is integrated over the flange and web areas, it will give
resultant forces of in each flange and a force of in the web,
Fig. 7–23c. If the moments of these forces are summed about point A, it can
be seen that the couple or torque created by the flange forces is responsible
for twisting the member. The actual twist is clockwise when viewed from
the front of the beam as shown in Fig. 7–23a, since reactive internal
“equilibrium” forces cause the twisting. In order to prevent this twisting
it is therefore necessary to apply P at a point O located an eccentric
distance e from the web of the channel, Fig. 7–23d. We require

or

Using the method discussed in the previous section, can be evaluated
in terms of and the dimensions of the flanges and web. Once this
is done, then P will cancel upon substitution into the above equation, and
it becomes possible to express e simply as a function of the cross-sectional
geometry (see Example 7.9). The point O so located is called the shear
center or flexural center. When P is applied at the shear center, the beam
will bend without twisting as shown in Fig. 7–23e. Design handbooks often
list the location of this point for a variety of beams having thin-walled
cross sections that are commonly used in practice.

From this analysis, it should be noted that the shear center will always
lie on an axis of symmetry of a member’s cross-sectional area. For
example, if the channel is rotated 90° and P is applied at A, Fig. 7–24a, no
twisting will occur since the shear flow in the web and flanges for this
case is symmetrical, and therefore the force resultants in these elements
will create zero moments about A, Fig. 7–24b. Obviously, if a member has
a cross section with two axes of symmetry, as in the case of a wide-flange
beam, the shear center will then coincide with the intersection of these
axes (the centroid).

P 1=  V2 Ff

e =
Ffd

P

©MA = Ffd = Pe,

Ff

V = PFf

7

P

(a)

A A

P

A

(b)

Ff Ff

�V �
P
2

V �
P
2

Fig. 7–24

Demonstration of how a cantilever beam
deflects when loaded through the centroid
(above) and through the shear center
(below).
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Important Points

• The shear center is the point through which a force can be applied
which will cause a beam to bend and yet not twist.

• The shear center will always lie on an axis of symmetry of the
cross section.

• The location of the shear center is only a function of the
geometry of the cross section, and does not depend upon 
the applied loading.

Procedure for Analysis

The location of the shear center for an open thin-walled member for
which the internal shear is in the same direction as a principal
centroidal axis for the cross section may be determined by using the
following procedure.

Shear-Flow Resultants.

• By observation, determine the direction of the shear flow
through the various segments of the cross section, and sketch the
force resultants on each segment of the cross section. (For
example, see Fig. 7–23c.) Since the shear center is determined by
taking the moments of these force resultants about a point (A),
choose this point at a location that eliminates the moments of as
many force resultants as possible.

• The magnitudes of the force resultants that create a moment
about A must be calculated. For any segment this is done by
determining the shear flow q at an arbitrary point on the segment
and then integrating q along the segment’s length. Realize that V
will create a linear variation of shear flow in segments that are
perpendicular to V, and a parabolic variation of shear flow in
segments that are parallel or inclined to V.

Shear Center.

• Sum the moments of the shear-flow resultants about point A and
set this moment equal to the moment of V about A. Solve this
equation to determine the moment-arm or eccentric distance e,
which locates the line of action of V from A.

• If an axis of symmetry for the cross section exists, the shear center
lies at the point where this axis intersects the line of action of V.
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EXAMPLE 7.9

Determine the location of the shear center for the thin-walled channel
section having the dimensions shown in Fig. 7–25a.

SOLUTION
Shear-Flow Resultants. A vertical downward shear V applied to the
section causes the shear to flow through the flanges and web as shown in
Fig. 7–25b. This causes force resultants and V in the flanges and web
as shown in Fig. 7–25c. We will take moments about point A so that only
the force on the lower flange has to be determined.

The cross-sectional area can be divided into three component
rectangles—a web and two flanges. Since each component is assumed to
be thin, the moment of inertia of the area about the neutral axis is

From Fig. 7–25d, q at the arbitrary position x is

Hence, the force is

This same result can also be determined by first finding 
Fig. 7–25b, then determining the triangular area 

Shear Center. Summing moments about point A, Fig. 7–25c, we
require

Thus,

Ans.

As stated previously, e depends only on the geometry of the cross
section.

e =
b2

[1h>32 + 2b]

Ve = Ffh =
Vb2h

2h[1h>62 + b]
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2 b1qmax2f = Ff .
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Ff = L
b

0
q dx =

V

h[1h>62 + b]L
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0
1b - x2 dx =
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=
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=
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th2

2
 ah

6
+ bb

Ff

Ff

Fig. 7–25
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EXAMPLE 7.10

Determine the location of the shear center for the angle having
equal legs, Fig. 7–26a. Also, find the internal shear force resultant in
each leg.

b

45�

45�

b

t

t

(a)

Shear-flow distribution

(b)

qmax

qmax

(c)

F

F

O O�

V

Fig. 7–26

SOLUTION
When a vertical downward shear V is applied at the section, the shear
flow and shear-flow resultants are directed as shown in Fig. 7–26b and
7–26c, respectively. Note that the force F in each leg must be equal,
since for equilibrium the sum of their horizontal components must be
equal to zero.Also, the lines of action of both forces intersect point O;
therefore, this point must be the shear center since the sum of the
moments of these forces and V about O is zero, Fig. 7–26c.

The magnitude of F can be determined by first finding the shear
flow at the arbitrary location s along the top leg, Fig. 7–26d. Here

Q = y¿A¿ =
1

22
 a1b - s2 +

s

2
b ts =

1

22
 ab -

s

2
bst
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The moment of inertia of the angle, about the neutral axis, must be
determined from “first principles,” since the legs are inclined with
respect to the neutral axis. For the area element Fig. 7–26e,
we have

Thus, the shear flow is

The variation of q is parabolic, and it reaches a maximum value when
as shown in Fig. 7–26b. The force F is therefore

Ans.

NOTE: This result can be easily verified since the sum of the vertical
components of the force F in each leg must equal V and,as stated previously,
the sum of the horizontal components equals zero.
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Fig. 7–26 (cont.)
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100 mm

90 mm90 mm

200 mm

200 mm

180 mm

190 mm

10 mm

10 mm

V

A D
C

B

Probs. 7–50/51 

*7–52. A shear force of is applied to the
symmetric box girder. Determine the shear flow at A and B.

•7–53. A shear force of is applied to the box
girder. Determine the shear flow at C.

V = 18 kN

V = 18 kN

C

A

150 mm

10 mm

10 mm

100 mm

100 mm

10 mm

10 mm

125 mm

150 mm

10 mm
30 mm

B

V10 mm

Probs. 7–52/53 

A

V

0.5 in.

0.5 in.

5 in.

5 in.

0.5 in.

2 in. 0.5 in.

8 in.

B

A

C

D

Probs. 7–56/57 

30 mm
40 mm

30 mm

V

A
B40 mm

10 mm

10 mm

10 mm10 mm

Probs. 7–54/55 

*7–56. The beam is subjected to a shear force of
. Determine the shear flow at points A and B.

•7–57. The beam is constructed from four plates and is
subjected to a shear force of . Determine the
maximum shear flow in the cross section.

V = 5 kip

V = 5 kip

7–50. A shear force of is applied to the box
girder. Determine the shear flow at points A and B.

7–51. A shear force of is applied to the box
girder. Determine the shear flow at points C and D.

V = 450 kN

V = 300 kN 7–54. The aluminum strut is 10 mm thick and has the cross
section shown. If it is subjected to a shear of, ,
determine the shear flow at points A and B.

7–55. The aluminum strut is 10 mm thick and has the cross
section shown. If it is subjected to a shear of ,
determine the maximum shear flow in the strut.

V = 150 N

V = 150 N

PROBLEMS
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7–58. The channel is subjected to a shear of .
Determine the shear flow developed at point A.

7–59. The channel is subjected to a shear of .
Determine the maximum shear flow in the channel.

V = 75 kN

V = 75 kN 7–62. Determine the shear-stress variation over the cross
section of the thin-walled tube as a function of elevation y and
show that , where Hint: Choose a
differential area element . Using 
formulate Q for a circular section from to and show
that where  cos u = 2R2 - y2>R.Q = 2R2t cos u,

(p - u)u

dQ = y dA,dA = Rt du
A = 2prt.t max = 2V>A

200 mm

30 mm

30 mm

V � 75 kN

30 mm

400 mm

A

Probs. 7–58/59 
t

y
du

ds

R

u

Prob. 7–62

Oh

b2 b1

t

e

Prob. 7–63

45�

45�

d

O

b

e

Prob. 7–64

45� 45�

V

A

B

5 in.
5 in.

0.25 in.

Prob. 7–60

6 in.

0.5 in.

2 in.

2 in.
6 in.0.5 in.

V

A

B

0.5 in.

0.5 in.
0.5 in.

Prob. 7–61

*7–60. The angle is subjected to a shear of .
Sketch the distribution of shear flow along the leg AB.
Indicate numerical values at all peaks.

V = 2 kip

•7–61. The assembly is subjected to a vertical shear of
. Determine the shear flow at points A and B and

the maximum shear flow in the cross section.
V = 7 kip

7–63. Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown where . The member segments have
the same thickness t.

b2 7 b1

*7–64. Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown. The member segments have the same
thickness t.
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•7–65. Determine the location e of the shear center,
point O, for the thin-walled member having a slit along its
side. Each element has a constant thickness t.

*7–68. Determine the location e of the shear center,
point O, for the beam having the cross section shown. The
thickness is t.

t

a

e

a

a

O

Prob. 7–65

e

O

r

1—
2 r

1—
2 r

Prob. 7–68

h

b

e
O

h1

h1

Prob. 7–69

e

r O
a

a

t

Prob. 7–70

a

a

a

60�

60�

O

e

Prob. 7–66

b

b

O

t

e

h
2

h
2

Prob. 7–67

7–66. Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown.

7–67. Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown. The member segments have the same
thickness t.

•7–69. Determine the location e of the shear center,
point O, for the thin-walled member having the cross
section shown. The member segments have the same
thickness t.

7–70. Determine the location e of the shear center, point O,
for the thin-walled member having the cross section shown.
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Transverse shear stress in beams is determined indirectly
by using the flexure formula and the relationship
between moment and shear The result
is the shear formula

In particular, the value for Q is the moment of the
area about the neutral axis, . This area is
the portion of the cross-sectional area that is “held
on” to the beam above (or below) the thickness t
where is to be determined.t

Q = y¿A¿A¿

t =
VQ

It

dM>dx2.1V =

CHAPTER REVIEW

If the beam has a rectangular cross section, then the
shear-stress distribution will be parabolic, having a
maximum value at the neutral axis. The maximum 

shear stress can be determined using .t = 1.5 V

A

Fasteners, such as nails, bolts, glue, or welds, are used
to connect the composite parts of a “built-up” section.
The shear force resisted by these fasteners is
determined from the shear flow, q, or force per unit
length, that must be carried by the beam. The shear
flow is

q =
VQ

I

A

Area � A¿

t

N

_
y ¿

t

N

A

Vtmax

Shear–stress distribution

N A
y¿¯

A¿
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If the beam is made from thin-walled segments, then
the shear-flow distribution along each segment can be
determined. This distribution will vary linearly along
horizontal segments, and parabolically along inclined
or vertical segments.

Provided the shear-flow distribution in each element
of an open thin-walled section is known, then using a
balance of moments, the location O of the shear center
for the cross section can be determined. When a load
is applied to the member through this point, the member
will bend, and not twist.

Shear-flow distribution

(qmax)f

(qmax)f

(qmax)w

2(qmax)f

2(qmax)f

P

O

e

]
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7–71. Sketch the intensity of the shear-stress distribution
acting over the beam’s cross-sectional area, and determine
the resultant shear force acting on the segment AB. The
shear acting at the section is . Show that 
INA = 872.49 in4.

V = 35 kip

•7–73. The member is subjected to a shear force of
. Determine the shear flow at points A, B, and C.

The thickness of each thin-walled segment is 15 mm.
V = 2 kN

REVIEW PROBLEMS

2 in.

3 in.

3 in.

6 in.

8 in.

A

B

C

V

Prob. 7–71 

300 mm
A

B

C

100 mm

200 mm

V � 2 kN

Prob. 7–73 

3 in.

4 in.

3 in.

3 in.

0.5 in.

0.5 in.

0.5 in.0.5 in.

V

Probs. 7–74/75 1 in.

12 in.

3 in.

B

V

1 in.

10 in.

A

1 in.

1 in.

Prob. 7–72 

*7–72. The beam is fabricated from four boards nailed
together as shown. Determine the shear force each nail
along the sides C and the top D must resist if the nails are
uniformly spaced at The beam is subjected to a
shear of V = 4.5 kip.

s = 3 in.

7–74. The beam is constructed from four boards glued
together at their seams. If the glue can withstand 
what is the maximum vertical shear V that the beam can
support?

7–75. Solve Prob. 7–74 if the beam is rotated 90° from the
position shown.

75 lb>in.,



The offset hanger supporting this ski gondola is subjected to the combined loadings
of axial force and bending moment.
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CHAPTER OBJECTIVES

This chapter serves as a review of the stress analysis that has been
developed in the previous chapters regarding axial load, torsion,
bending, and shear. We will discuss the solution of problems where
several of these internal loads occur simultaneously on a member’s cross
section. Before doing this, however, the chapter begins with an analysis
of stress developed in thin-walled pressure vessels.

8.1 Thin-Walled Pressure Vessels

Cylindrical or spherical vessels are commonly used in industry to serve
as boilers or tanks. When under pressure, the material of which they
are made is subjected to a loading from all directions. Although this is
the case, the vessel can be analyzed in a simple manner provided it has a
thin wall. In general,“thin wall” refers to a vessel having an inner-radius-
to-wall-thickness ratio of 10 or more Specifically, when

the results of a thin-wall analysis will predict a stress that is
approximately 4% less than the actual maximum stress in the vessel. For
larger ratios this error will be even smaller.

Provided the vessel wall is “thin,” the stress distribution throughout its
thickness will not vary significantly, and so we will assume that it is
uniform or constant. Using this assumption, we will now analyze the state
of stress in thin-walled cylindrical and spherical pressure vessels. In both
cases, the pressure in the vessel is understood to be the gauge pressure,
that is, it measures the pressure above atmospheric pressure, since
atmospheric pressure is assumed to exist both inside and outside the
vessel’s wall before the vessel is pressurized.

r>t
r>t = 10

1r>t Ú 102.

Combined Loadings

Cylindrical pressure vessels, such as this
gas tank, have semi-spherical end caps
rather than flat ones in order to reduce the
stress in the tank.
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Cylindrical Vessels. Consider the cylindrical vessel in Fig. 8–1a,
having a wall thickness t, inner radius r, and subjected to a gauge
pressure p that developed within the vessel by a contained gas. Due to
this loading, a small element of the vessel that is sufficiently removed
from the ends and oriented as shown in Fig. 8–1a, is subjected to normal
stresses in the circumferential or hoop direction and in the
longitudinal or axial direction.

The hoop stress can be determined by considering the vessel to be
sectioned by planes a, b, and c. A free-body diagram of the back segment
along with the contained gas is shown in Fig. 8–1b. Here only the
loadings in the x direction are shown. These loadings are developed by
the uniform hoop stress acting on the vessel’s wall, and the pressure
acting on the vertical face of the gas. For equilibrium in the x direction,
we require

(8–1)

The longitudinal stress can be determined by considering the left
portion of section b of the cylinder, Fig. 8–1a. As shown in Fig. 8–1c,
acts uniformly throughout the wall, and p acts on the section of the
contained gas. Since the mean radius is approximately equal to the
vessel’s inner radius, equilibrium in the y direction requires

(8–2)

In the above equations,

the normal stress in the hoop and longitudinal directions,
respectively. Each is assumed to be constant throughout the
wall of the cylinder, and each subjects the material to
tension.

the internal gauge pressure developed by the contained
gas

the inner radius of the cylinder

the thickness of the wall 1r>t Ú 102t =
r =

p =

s1 , s2 =

s2 =
pr

2t

s212prt2 - p1pr22 = 0©Fy = 0;

s2

s1 =
pr

t

2[s11t dy2] - p12r dy2 = 0©Fx = 0;

s1 ,

s2s1

(a)

z

y

b a
c

x

t

rs1

s2

t

dy

2r

t

p

(b)

s1

s1

t

(c)

p

r

s2

Fig. 8–1



8.1 THIN-WALLED PRESSURE VESSELS 407

8

By comparison, note that the hoop or circumferential stress is
twice as large as the longitudinal or axial stress. Consequently, when
fabricating cylindrical pressure vessels from rolled-formed plates, the
longitudinal joints must be designed to carry twice as much stress as the
circumferential joints.

Spherical Vessels. We can analyze a spherical pressure vessel
in a similar manner. To do this, consider the vessel to have a wall
thickness t, inner radius r, and subjected to an internal gauge pressure
p, Fig. 8–2a. If the vessel is sectioned in half, the resulting free-body
diagram is shown in Fig. 8–2b. Like the cylinder, equilibrium in the y
direction requires

(8–3)

This is the same result as that obtained for the longitudinal stress in the
cylindrical pressure vessel. Furthermore, from the analysis, this stress will
be the same regardless of the orientation of the hemispheric free-body
diagram. Consequently, a small element of the material is subjected to
the state of stress shown in Fig. 8–2a.

The above analysis indicates that an element of material taken from
either a cylindrical or a spherical pressure vessel is subjected to biaxial
stress, i.e., normal stress existing in only two directions. Actually, the
pressure also subjects the material to a radial stress, which acts along
a radial line. This stress has a maximum value equal to the pressure p at
the interior wall and it decreases through the wall to zero at the exterior
surface of the vessel, since the gauge pressure there is zero. For thin-
walled vessels, however, we will ignore this radial-stress component,
since our limiting assumption of results in and being,
respectively, 5 and 10 times higher than the maximum radial stress,

Finally, if the vessel is subjected to an external pressure, the
compressive stress developed within the thin wall may cause the vessel
to become unstable, and collapse may occur by buckling rather than
causing the material to fracture.

1s32max = p.

s1s2r>t = 10

s3 ,

s2 =
pr

2t

s2(2prt) - p1pr22 = 0©Fy = 0;

Shown is the barrel of a shotgun which
was clogged with debris just before
firing. Gas pressure from the charge
increased the circumferential stress
within the barrel enough to cause the
rupture.

t

(a)

r
y

x

z

a

s2

s2

t

p

(b)

r

s2

Fig. 8–2
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EXAMPLE 8.1

A cylindrical pressure vessel has an inner diameter of 4 ft and a
thickness of Determine the maximum internal pressure it can
sustain so that neither its circumferential nor its longitudinal stress
component exceeds 20 ksi. Under the same conditions, what is the
maximum internal pressure that a similar-size spherical vessel can
sustain?

SOLUTION
Cylindrical Pressure Vessel. The maximum stress occurs in the
circumferential direction. From Eq. 8–1 we have

Ans.

Note that when this pressure is reached, from Eq. 8–2, the stress
in the longitudinal direction will be 
Furthermore, the maximum stress in the radial direction occurs on the
material at the inner wall of the vessel and is 
This value is 48 times smaller than the circumferential stress (20 ksi),
and as stated earlier, its effects will be neglected.

Spherical Vessel. Here the maximum stress occurs in any two
perpendicular directions on an element of the vessel, Fig. 8–2a. From
Eq. 8–3, we have

Ans.

NOTE: Although it is more difficult to fabricate, the spherical
pressure vessel will carry twice as much internal pressure as a
cylindrical vessel.

 p = 833 psi

 20 kip>in2 =
p124 in.2
2 A12  in. Bs2 =

pr

2t
;

1s32max = p = 417 psi.

s2 = 1
2120 ksi2 = 10 ksi.

 p = 417 psi

 20 kip>in2 =
p124 in.2

1
2  in.

s1 =
pr

t
;

1
2  in.
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8–1. A spherical gas tank has an inner radius of 
If it is subjected to an internal pressure of 
determine its required thickness if the maximum normal
stress is not to exceed 12 MPa.

8–2. A pressurized spherical tank is to be made of 
0.5-in.-thick steel. If it is subjected to an internal pressure
of determine its outer radius if the maximum
normal stress is not to exceed 15 ksi.

8–3. The thin-walled cylinder can be supported in one of
two ways as shown. Determine the state of stress in the wall
of the cylinder for both cases if the piston P causes the
internal pressure to be 65 psi. The wall has a thickness of
0.25 in. and the inner diameter of the cylinder is 8 in.

p = 200 psi,

p = 300 kPa,
r = 1.5 m. •8–5. The spherical gas tank is fabricated by bolting together

two hemispherical thin shells of thickness 30 mm. If the gas
contained in the tank is under a gauge pressure of 2 MPa,
determine the normal stress developed in the wall of the tank
and in each of the bolts.The tank has an inner diameter of 8 m
and is sealed with 900 bolts each 25 mm in diameter.
8–6. The spherical gas tank is fabricated by bolting
together two hemispherical thin shells. If the 8-m inner
diameter tank is to be designed to withstand a gauge pressure
of 2 MPa, determine the minimum wall thickness of the
tank and the minimum number of 25-mm diameter bolts
that must be used to seal it.The tank and the bolts are made
from material having an allowable normal stress of 150 MPa
and 250 MPa, respectively.

PROBLEMS

P

(a) (b)

P

8 in. 8 in.

Prob. 8–3 

*8–4. The tank of the air compressor is subjected to an
internal pressure of 90 psi. If the internal diameter of
the tank is 22 in., and the wall thickness is 0.25 in.,
determine the stress components acting at point A. Draw a
volume element of the material at this point, and show the
results on the element.

A

Prob. 8–4 

Probs. 8–5/6 

8–7. A boiler is constructed of 8-mm thick steel plates that
are fastened together at their ends using a butt joint
consisting of two 8-mm cover plates and rivets having a
diameter of 10 mm and spaced 50 mm apart as shown. If the
steam pressure in the boiler is 1.35 MPa, determine (a) the
circumferential stress in the boiler’s plate apart from
the seam,(b) the circumferential stress in the outer cover plate
along the rivet line a–a, and (c) the shear stress in the rivets.

a

8 mm

50 mm a

0.75 m

Prob. 8–7 



s

s s

4 psi4 psi

410 CHAPTER 8 COMBINED LOADINGS

8

*8–8. The gas storage tank is fabricated by bolting together
two half cylindrical thin shells and two hemispherical shells
as shown. If the tank is designed to withstand a pressure
of 3 MPa, determine the required minimum thickness of
the cylindrical and hemispherical shells and the minimum
required number of longitudinal bolts per meter length at
each side of the cylindrical shell. The tank and the 25 mm
diameter bolts are made from material having an allowable
normal stress of 150 MPa and 250 MPa, respectively. The
tank has an inner diameter of 4 m.

•8–9. The gas storage tank is fabricated by bolting together
two half cylindrical thin shells and two hemispherical shells
as shown. If the tank is designed to withstand a pressure of
3 MPa, determine the required minimum thickness of the
cylindrical and hemispherical shells and the minimum
required number of bolts for each hemispherical cap. The
tank and the 25 mm diameter bolts are made from material
having an allowable normal stress of 150 MPa and 250 MPa,
respectively. The tank has an inner diameter of 4 m.

8–11. The staves or vertical members of the wooden tank
are held together using semicircular hoops having a
thickness of 0.5 in. and a width of 2 in. Determine the
normal stress in hoop AB if the tank is subjected to an
internal gauge pressure of 2 psi and this loading is
transmitted directly to the hoops. Also, if 0.25-in.-diameter
bolts are used to connect each hoop together, determine the
tensile stress in each bolt at A and B. Assume hoop AB
supports the pressure loading within a 12-in. length of the
tank as shown.

Probs. 8–8/9 

Prob. 8–10 

8–10. A wood pipe having an inner diameter of 3 ft is
bound together using steel hoops each having a cross-
sectional area of If the allowable stress for the hoops
is determine their maximum spacing s along
the section of pipe so that the pipe can resist an internal
gauge pressure of 4 psi. Assume each hoop supports the
pressure loading acting along the length s of the pipe.

sallow = 12 ksi,
0.2 in2.

6 in.
12 in.

18 in.

12 in.
6 in.

A B

Prob. 8–11 

*8–12. Two hemispheres having an inner radius of 2 ft and
wall thickness of 0.25 in. are fitted together, and the inside
gauge pressure is reduced to psi. If the coefficient
of static friction is between the hemispheres,
determine (a) the torque T needed to initiate the rotation
of the top hemisphere relative to the bottom one, (b) the
vertical force needed to pull the top hemisphere off
the bottom one, and (c) the horizontal force needed to slide
the top hemisphere off the bottom one.

ms = 0.5
-10

2 ft

0.25 in.

Prob. 8–12 



8.1 THIN-WALLED PRESSURE VESSELS 411

8

•8–13. The 304 stainless steel band initially fits snugly
around the smooth rigid cylinder. If the band is then subjected
to a nonlinear temperature drop of 
where is in radians, determine the circumferential stress in
the band.

u

¢T = 20 sin2 u °F,

*8–16. The cylindrical tank is fabricated by welding a
strip of thin plate helically, making an angle with the
longitudinal axis of the tank. If the strip has a width w and
thickness t, and the gas within the tank of diameter d is
pressured to p, show that the normal stress developed along
the strip is given by .su = (pd>8t)(3 - cos 2u)

u

8–15. The inner ring A has an inner radius and outer
radius . Before heating, the outer ring B has an inner
radius and an outer radius , and . If the outer ring
is heated and then fitted over the inner ring, determine the
pressure between the two rings when ring B reaches the
temperature of the inner ring.The material has a modulus of
elasticity of E and a coefficient of thermal expansion of .a

r2 7 r3r4r3

r2

r1

8–14. The ring, having the dimensions shown, is placed
over a flexible membrane which is pumped up with a
pressure p. Determine the change in the internal radius of
the ring after this pressure is applied. The modulus of
elasticity for the ring is E.

10 in.

u

in.

1 in.

1
64

Prob. 8–13 

r1

r2

r3

A B

r4

Prob. 8–15

p

ro

w

ri

Prob. 8–14 

w

u

Prob. 8–16 

8–17. In order to increase the strength of the pressure
vessel, filament winding of the same material is wrapped
around the circumference of the vessel as shown. If the
pretension in the filament is T and the vessel is subjected to
an internal pressure p, determine the hoop stresses in the
filament and in the wall of the vessel. Use the free-body
diagram shown, and assume the filament winding has a
thickness t
 and width w for a corresponding length of the
vessel.

T

p

w

t ¿

L

t

T

s1

s1

Prob. 8–17 
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8.2 State of Stress Caused 
by Combined Loadings

In previous chapters we developed methods for determining the stress
distributions in a member subjected to either an internal axial force, a
shear force, a bending moment, or a torsional moment. Most often,
however, the cross section of a member is subjected to several of these
loadings simultaneously. When this occurs, the method of superposition
can be used to determine the resultant stress distribution. Recall from
Sec. 4.3 that the principle of superposition can be used for this purpose
provided a linear relationship exists between the stress and the loads.
Also, the geometry of the member should not undergo significant change
when the loads are applied. These conditions are necessary in order to
ensure that the stress produced by one load is not related to the stress
produced by any other load.

This chimney is subjected to the combined
loading of wind and weight. It is important
to investigate the tensile stress in the
chimney since masonry is weak in tension.

Procedure for Analysis

The following procedure provides a general means for establishing
the normal and shear stress components at a point in a member
when the member is subjected to several different types of loadings
simultaneously. It is assumed that the material is homogeneous and
behaves in a linear elastic manner. Also, Saint-Venant’s principle
requires that the point where the stress is to be determined is far
removed from any discontinuities in the cross section or points of
applied load.

Internal Loading.

• Section the member perpendicular to its axis at the point where
the stress is to be determined and obtain the resultant internal
normal and shear force components and the bending and
torsional moment components.

• The force components should act through the centroid of the
cross section, and the moment components should be computed
about centroidal axes, which represent the principal axes of
inertia for the cross section.

Stress Components.

• Determine the stress component associated with each internal
loading. For each case, represent the effect either as a distribution
of stress acting over the entire cross-sectional area, or show the
stress on an element of the material located at a specified point
on the cross section.
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Problems in this section, which involve combined loadings, serve as a
basic review of the application of the stress equations mentioned above.
A thorough understanding of how these equations are applied, as
indicated in the previous chapters, is necessary if one is to successfully
solve the problems at the end of this section. The following examples
should be carefully studied before proceeding to solve the problems.

Normal Force.
• The internal normal force is developed by a uniform normal-stress

distribution determined from 

Shear Force.
• The internal shear force in a member is developed by a 

shear-stress distribution determined from the shear formula,
Special care, however, must be exercised when

applying this equation, as noted in Sec. 7.2.

Bending Moment.
• For straight members the internal bending moment is developed by

a normal-stress distribution that varies linearly from zero at the
neutral axis to a maximum at the outer boundary of the member.
This stress distribution is determined from the flexure formula,

If the member is curved, the stress distribution is
nonlinear and is determined from 

Torsional Moment.
• For circular shafts and tubes the internal torsional moment is

developed by a shear-stress distribution that varies linearly from
the central axis of the shaft to a maximum at the shaft’s outer
boundary. This stress distribution is determined from the
torsional formula,

Thin-Walled Pressure Vessels.
• If the vessel is a thin-walled cylinder, the internal pressure p

will cause a biaxial state of stress in the material such that the
hoop or circumferential stress component is and the
longitudinal stress component is If the vessel is a thin-
walled sphere, then the biaxial state of stress is represented by two
equivalent components, each having a magnitude of 

Superposition.
• Once the normal and shear stress components for each loading

have been calculated, use the principle of superposition and
determine the resultant normal and shear stress components.

• Represent the results on an element of material located at the
point, or show the results as a distribution of stress acting over
the member’s cross-sectional area.

s2 = pr>2t.

s2 = pr>2t.
s1 = pr>t

t = Tr>J.

s = My>[Ae1R - y2].s = My>I.

t = VQ>It.

s = P>A.
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EXAMPLE 8.2

A force of 150 lb is applied to the edge of the member shown in
Fig. 8–3a. Neglect the weight of the member and determine the state
of stress at points B and C.

SOLUTION
Internal Loadings. The member is sectioned through B and C. For
equilibrium at the section there must be an axial force of 150 lb acting
through the centroid and a bending moment of about the
centroidal or principal axis, Fig. 8–3b.

Stress Components.

Normal Force. The uniform normal-stress distribution due to the
normal force is shown in Fig. 8–3c. Here

Bending Moment. The normal-stress distribution due to the
bending moment is shown in Fig. 8–3d. The maximum stress is

Superposition. If the above normal-stress distributions are added
algebraically, the resultant stress distribution is shown in Fig. 8–3e.
Although it is not needed here, the location of the line of zero stress
can be determined by proportional triangles; i.e.,

Elements of material at B and C are subjected only to normal or
uniaxial stress as shown in Figs. 8–3f and 8–3g. Hence,

Ans.

Ans. sC = 15 psi 1compression2
 sB = 7.5 psi 1tension2

 x = 3.33 in.

 
7.5 psi

x
=

15 psi
110 in. - x2

smax =
Mc

I
=

750 lb # in.15 in.2
1
1214 in.2110 in.23 = 11.25 psi

s =
P

A
=

150 lb
110 in.214 in.2 = 3.75 psi

750 lb # in.

(a)

5 in.

2 in.
2 in.

150 lb

C
B

5 in.

150 lb

(b)
150 lb

750 lb�in.

C
B

(c)

C
B

3.75 psi
3.75 psi

Normal Force

C
B

11.25 psi 11.25 psi

(d)
Bending Moment

� �
C

B
7.5 psi 15 psi

x
(10 in. � x)

(e)
Combined Loading

7.5 psi

B

(f)

15 psi

C

(g)

Fig. 8–3
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EXAMPLE 8.3

(a)

t � 0.5 in.

A

3 ft

r � 24 in.

(b)

3 ft

Ww � Wst

ps2

A

(c)

10.2 psi

62.4 psi
A

Fig. 8–4

The tank in Fig. 8–4a has an inner radius of 24 in. and a thickness
of 0.5 in. It is filled to the top with water having a specific weight
of If it is made of steel having a specific weight of

determine the state of stress at point A. The tank is open
at the top.

SOLUTION
Internal Loadings. The free-body diagram of the section of both
the tank and the water above point A is shown in Fig. 8–4b. Notice that
the weight of the water is supported by the water surface just below the
section, not by the walls of the tank. In the vertical direction, the walls
simply hold up the weight of the tank. This weight is

The stress in the circumferential direction is developed by the water
pressure at level A. To obtain this pressure we must use Pascal’s law,
which states that the pressure at a point located a depth z in the water is

Consequently, the pressure on the tank at level A is

Stress Components.

Circumferential Stress. Since the tank
is a thin-walled vessel. Applying Eq. 8–1, using the inner radius 
we have

Ans.

Longitudinal Stress. Since the weight of the tank is supported
uniformly by the walls, we have

Ans.

NOTE: Equation 8–2, does not apply here, since the tank is
open at the top and therefore, as stated previously, the water cannot
develop a loading on the walls in the longitudinal direction.

Point A is therefore subjected to the biaxial stress shown in Fig. 8–4c.

s2 = pr>2t,

s2 =
Wst

Ast
=

777.7 lb

p[124.5 in.22 - 124 in.22] = 10.2 psi

s1 =
pr

t
=

1.30 lb>in2 124 in.2
0.5 in.

= 62.4 psi

r = 24 in.,
r/t = 24 in.>0.5 in. = 48 7 10,

p = gwz = 162.4 lb>ft3213 ft2 = 187.2 lb>ft2 = 1.30 psi

p = gwz.

 = 777.7 lb

 Wst = gstVst = 1490 lb>ft32Bpa24.5
12

 ftb2

- pa24
12

 ftb2R13 ft2

gst = 490 lb>ft3,
gw = 62.4 lb>ft3.
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EXAMPLE 8.4

The member shown in Fig. 8–5a has a rectangular cross section.
Determine the state of stress that the loading produces at point C.

(a)

1.5 m

250 mm

50 mm
1.5 m

2 m4 m

125 mm

2.5 m

C
C

A

B

50 kN/m

(c)

16.45 kN

21.93 kN

1.5 m

C

M
N

V

125 kN

97.59 kN
3

45

16.45 kN

21.93 kN

3
45

4 m

1.25 m

1.25 m

(b)

Fig. 8–5

SOLUTION
Internal Loadings. The support reactions on the member have
been determined and are shown in Fig. 8–5b. If the left segment AC of
the member is considered, Fig. 8–5c, the resultant internal loadings
at the section consist of a normal force, a shear force, and a bending
moment. Solving,

N = 16.45 kN V = 21.93 kN M = 32.89 kN # m
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Stress Components.

Normal Force. The uniform normal-stress distribution acting over
the cross section is produced by the normal force, Fig. 8–5d.At point C,

Shear Force. Here the area since point C is located at the
top of the member. Thus and for C, Fig. 8–5e, the shear
stress

Bending Moment. Point C is located at from the
neutral axis, so the normal stress at C, Fig. 8–5f, is

Superposition. The shear stress is zero. Adding the normal stresses
determined above gives a compressive stress at C having a value of

Ans.

This result, acting on an element at C, is shown in Fig. 8–5g.

sC = 1.32 MPa + 63.16 MPa = 64.5 MPa

sC =
Mc

I
=
132.89(103) N # m210.125 m2
C 1
12 10.050 m210.250 m23 D = 63.16 MPa

y = c = 0.125 m

tC = 0

Q = y¿A¿ = 0
A¿ = 0,

sC =
P

A
=

16.45(103) N
10.050 m210.250 m2 = 1.32 MPa

C

sC � 1.32 MPa

Normal Force

(d)

C

Shear Force

(e)

tC � 0

�
C

sC � 63.16 MPa

Bending Moment

(f)

�

Fig. 8–5 (cont.)

64.5 MPa

(g)
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EXAMPLE 8.5

The rectangular block of negligible weight in Fig. 8–6a is subjected to
a vertical force of 40 kN, which is applied to its corner. Determine the
largest normal stress acting on a section through ABCD.

SOLUTION
Internal Loadings. If we consider the equilibrium of the bottom
segment of the block, Fig. 8–6b, it is seen that the 40-kN force must act
through the centroid of the cross section and two bending-moment
components must also act about the centroidal or principal axes of
inertia for the section. Verify these results.

Stress Components.

Normal Force. The uniform normal-stress distribution is shown in
Fig. 8–6c. We have

Bending Moments. The normal-stress distribution for the 
moment is shown in Fig. 8–6d. The maximum stress is

Likewise, for the moment, Fig. 8–6e, the maximum
normal stress is

Superposition. By inspection the normal stress at point C is the
largest since each loading creates a compressive stress there. Therefore 

Ans.sC = -125 kPa - 375 kPa - 375 kPa = -875 kPa

smax =
Mycx

Iy
=

16(103) N # m10.4 m2
C 1
12 10.4 m210.8 m23 D = 375 kPa

16-kN # m

smax =
Mxcy

Ix
=

8(103) N # m10.2 m2
C 1
12 10.8 m210.4 m23 D = 375 kPa

8-kN # m

s =
P

A
=

40(103) N
10.8 m210.4 m2 = 125 kPa

B

(a)

0.8 m

C
A

D

40 kN

0.4 m

Fig. 8–6

(b)

C

B

A

D40 kN

y
x

z

8 kN�m8 kN�m
16 kN�m

Normal force
(40 kN)

(c)

C

B

A

D
125 kPa

Bending moment
(8 kN�m)

(d)

C

B

A

D

375 kPa

Bending moment
(16 kN�m)

(e)

C

B

A

375 kPa

�
375 kPa 375 kPa

D

�
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EXAMPLE 8.6

A rectangular block has a negligible weight and is subjected to a vertical
force P, Fig. 8–7a. (a) Determine the range of values for the eccentricity

of the load along the y axis so that it does not cause any tensile stress
in the block. (b) Specify the region on the cross section where P may be
applied without causing a tensile stress in the block.

SOLUTION
Part (a). When P is moved to the centroid of the cross section, Fig. 8–7b,
it is necessary to add a couple moment in order to maintain a
statically equivalent loading.The combined normal stress at any coordinate
location y on the cross section caused by these two loadings is

Here the negative sign indicates compressive stress.
For positive Fig. 8–7a, the smallest compressive 
stress will occur along edge AB, where 
Fig. 8–7b. (By inspection, P causes compression
there, but causes tension.) Hence,

This stress will remain negative, i.e., compressive,
provided the term in parentheses is positive; i.e.,

Since and then

Ans.

In other words, if the stress in the block along edge AB
or CD will be zero or remain compressive.

NOTE: This is sometimes referred to as the “middle-third rule.” It is very
important to keep this rule in mind when loading columns or arches having
a rectangular cross section and made of material such as stone or concrete,
which can support little or no tensile stress. We can extend this analysis in
the same way by placing P along the x axis in Fig. 8–7. The result will
produce a shaded parallelogram shown in Fig. 8–7c.This region is referred
to as the core or kern of the section.When P is applied within the kern, the
normal stress at the corners of the cross section will be compressive.

-  
1
6 h … ey … 1

6 h,

1 7
6ey

h
  or  ey 6

1
6

 h

Ix = 1
12 bh3,A = bh

1 7
Aeyh

2Ix

smin = -  
P

A
 ¢1 -

Aeyh

2Ix
≤

Mx

y = -h>2,
ey ,

s = -  
P

A
-
1Pey2y

Ix
= -  

P

A
 ¢1 +

Aeyy

Ix
≤

Mx = Pey

ey

(a)

b

P

y

x

z

h

ey

y

�

(b)

C

B

A

D

P
y

Mx � Pey

xh
2

y � �

Here is an example of where combined
axial and bending stress can occur.

Fig. 8–7

(c)

P
y

x

A

E G

F H
b
6

b
6

h
6

h
6
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EXAMPLE 8.7

The solid rod shown in Fig. 8–8a has a radius of 0.75 in. If it is subjected
to the force of 500 lb, determine the state of stress at point A.

SOLUTION
Internal Loadings. The rod is sectioned
through point A. Using the free-body
diagram of segment AB, Fig. 8–8b, the
resultant internal loadings are determined
from the equations of equilibrium. Verify
these results. In order to better “visualize”
the stress distributions due to these
loadings, we can consider the equal but
opposite resultants acting on segment AC,
Fig. 8–8c.

Stress Components.

Normal Force. The normal-stress distri-
bution is shown in Fig. 8–8d. For point A,
we have

Bending Moment. For the moment, so the
normal stress at point A, Fig. 8–8e, is

Superposition. When the above results are superimposed, it is seen
that an element of material at A is subjected to the normal stress

Ans.(sA)y = 0.283 ksi + 21.13 ksi = 21.4 ksi

= 21,126 psi = 21.13 ksi

(sA)y =
Mc

I
=

7000 lb # in.(0.75 in.)

314p(0.75 in.)44

c = 0.75 in.,

(sA)y =
P

A
=

500 lb
p(0.75 in.)2 = 283 psi = 0.283 ksi

Fig. 8–8

8 in.

10 in.

14 in.

500 lb

x
A

B

C

(a)

y

10 in.

14 in.

500 lb

(b)

500 lb (14 in.) � 7000 lb�in.

500 lb

x

z

y

A

Bending moment
(7000 lb�in.)

(e)

21.13 ksi0.283 ksi

Normal force
(500 lb)

(d)

A

7000 lb�in.

500 lb

(c)

��
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EXAMPLE 8.8

The solid rod shown in Fig. 8–9a has a radius of 0.75 in. If it is subjected
to the force of 800 lb, determine the state of stress at point A.

SOLUTION
Internal Loadings. The rod is sectioned through 
point A. Using the free-body diagram of segment AB,
Fig. 8–9b, the resultant internal loadings are
determined from the six equations of
equilibrium. Verify these results. The equal
but opposite resultants are shown acting on
segment AC, Fig. 8–9c.

Stress Components.

Shear Force. The shear-stress distribution is shown in
Fig. 8–9d. For point A, Q is determined from the shaded semi-
circular area. Using the table on the inside front cover, we have

so that

Bending Moment. Since point A lies on the neutral
axis, Fig. 8–9e, the normal stress is

Torque. At point A, Fig.8–9f. Thus the shear stress is

Superposition. Here the element of material at A is subjected only to
a shear stress component, where

Ans.(tyz)A = 0.604 ksi + 16.90 ksi = 17.5 ksi

(tyz)A =
Tc

J
=

11 200 lb # in.10.75 in.2
C12 p10.75 in.24 D = 16 901 psi = 16.90 ksi

rA = c = 0.75 in.,

sA = 0

 = 604 psi = 0.604 ksi

 (tyz)A =
VQ

It
=

800 lb10.2813 in32
C14p10.75 in.24 D210.75 in.2

Q = y¿A¿ =
410.75 in.2

3p
 c1

2
 p10.75 in.22 d = 0.2813 in3

Fig. 8–9

800 lb

8 in.

10 in.

14 in.

x
A

B

C

(a)

z

y

10 in.

14 in.
800 lb

(b)

800 lb (14 in.) � 11 200 lb�in.

800 lb (10 in.) � 8000 lb�in.

800 lb

x

z

y

16.90 ksi

A

Torsional moment
(11 200 lb�in.)

(f)

A

Bending moment
(8000 lb�in.)

(e)

0.604 ksi

A

Shear force
(800 lb)

(d)

A¿8000 lb�in.

11 200 lb�in.800 lb

(c)

� � �



422 CHAPTER 8 COMBINED LOADINGS

8

FUNDAMENTAL PROBLEMS

F8–1. Determine the normal stress developed at corners
A and B of the column.

F8–3. Determine the state of stress at point A on the cross
section of the beam at section a–a.

300 kN

500 kN

50 mm

100 mm

100 mm

100 mm

150 mm150 mm

150 mm 150 mm

A

z

y
x

B

F8–1

A

2 m
0.5 m 0.5 m0.5 m

30 kN

a

a

50 mm

10 mm

10 mm

10 mm

180 mm

100 mm

Section a–a

F8–3

P

P
2 in.

2 in.
0.5 in.a a

F8–4

300 mm

100 mm

100 mm

0.5 m

Section a–a

400 kN

a

a

A

F8–2

F8–2. Determine the state of stress at point A on the cross
section at section a–a of the cantilever beam.

F8–4. Determine the magnitude of the load P that will
cause a maximum normal stress of in the
link along section a–a.

s max = 30 ksi
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F8–5. The beam has a rectangular cross section and is
subjected to the loading shown. Determine the components
of stress and at point B.txysy ,sx ,

F8–6. Determine the state of stress at point A on the cross
section of the pipe assembly at section a–a.

F8–7. Determine the state of stress at point A on the cross
section of the pipe at section a–a.

F8–8. Determine the state of stress at point A on the cross
section of the shaft at section a–a.

1.5 in. 1.5 in.

10 in.

400 lb
x

y

z

1 in.

B

500 lb

2 in.

2 in.

F8–5

a

A

A

a
300 mm

300 mm

Section a – a

50 mm

40 mm

6 kN

z

y

x

F8–7

a

a

400 mm

200 mm

A

A

Section a – a

20 mm

1500 N

1000 N

z

yx

F8–6

100 mm a

300 N

300 N

900 N

900 N

100 mm

600 mm

400 mm

300 mm

100 mm

A

Section a – a

25 mm

20 mm

A

z

y

x

a

F8–8
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8–18. The vertical force P acts on the bottom of the plate
having a negligible weight. Determine the shortest distance
d to the edge of the plate at which it can be applied so that
it produces no compressive stresses on the plate at section
a–a. The plate has a thickness of 10 mm and P acts along the
center line of this thickness.

•8–21. The coping saw has an adjustable blade that is
tightened with a tension of 40 N. Determine the state of
stress in the frame at points A and B.

PROBLEMS

a

500 mm

P

a

300 mm

200 mm

d

Prob. 8–18 

8–19. Determine the maximum and minimum normal
stress in the bracket at section a–a when the load is applied
at 

*8–20. Determine the maximum and minimum normal
stress in the bracket at section a–a when the load is applied
at x = 300 mm.

x = 0.

8–22. The clamp is made from members AB and AC,
which are pin connected at A. If it exerts a compressive
force at C and B of 180 N, determine the maximum
compressive stress in the clamp at section a–a.The screw EF
is subjected only to a tensile force along its axis.

8–23. The clamp is made from members AB and AC,
which are pin connected at A. If it exerts a compressive
force at C and B of 180 N, sketch the stress distribution
acting over section a–a. The screw EF is subjected only to
a tensile force along its axis.

100 kN

x

200 mm
150 mm

15 mm

15 mm

aa

Probs. 8–19/20 

180 N

180 NB

C

F

E

A

a a

30 mm 40 mm

15 mm

15 mm
Sectiona – a

Probs. 8–22/23 

75 mm

50 mm

8 mm

3 mm

3 mm

8 mm
A

B100 mm

Prob. 8–21 



Section a – a and b – b

G

a

a

C

B

600 mm

50 mm

12.5 mm

A

300 mm600 mm

30�

1.5 m
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*8–24. The bearing pin supports the load of 700 lb.
Determine the stress components in the support member 
at point A. The support is 0.5 in. thick.

•8–25. The bearing pin supports the load of 700 lb.
Determine the stress components in the support member 
at point B. The support is 0.5 in. thick.

*8–28. The joint is subjected to a force of P � 80 lb and
F � 0. Sketch the normal-stress distribution acting over
section a–a if the member has a rectangular cross-sectional
area of width 2 in. and thickness 0.5 in.

•8–29. The joint is subjected to a force of and
. Determine the state of stress at points A and B

and sketch the results on differential elements located at
these points. The member has a rectangular cross-sectional
area of width 0.75 in. and thickness 0.5 in.

F = 150 lb
P = 200 lb

30�

2 in.

A A

B B

3 in.

1.25 in.

700 lb

0.75 in.

0.5 in.

Probs. 8–24/25 

8–26. The offset link supports the loading of 
Determine its required width w if the allowable normal
stress is The link has a thickness of 40 mm.

8–27. The offset link has a width of and a
thickness of 40 mm. If the allowable normal stress is

determine the maximum load P that can
be applied to the cables.
sallow = 75 MPa,

w = 200 mm

sallow = 73 MPa.

P = 30 kN.

P

P

w50 mm

Probs. 8–26/27 

Probs. 8–28/29

Prob. 8–30 

8–30. If the 75-kg man stands in the position shown,
determine the state of stress at point A on the cross section
of the plank at section a–a. The center of gravity of the man
is at G. Assume that the contact point at C is smooth.

a

2 in.

aA

P

F

1.25 in.

0.5 in.
B
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8–31. Determine the smallest distance d to the edge of the
plate at which the force P can be applied so that it produces
no compressive stresses in the plate at section a–a. The
plate has a thickness of 20 mm and P acts along the
centerline of this thickness.

*8–32. The horizontal force of acts at the end
of the plate. The plate has a thickness of 10 mm and P acts
along the centerline of this thickness such that 
Plot the distribution of normal stress acting along 
section a–a.

d = 50 mm.

P = 80 kN

•8–33. The pliers are made from two steel parts pinned
together at A. If a smooth bolt is held in the jaws and a
gripping force of 10 lb is applied at the handles, determine
the state of stress developed in the pliers at points B and C.
Here the cross section is rectangular, having the dimensions
shown in the figure.

8–34. Solve Prob. 8–33 for points D and E.

8–35. The wide-flange beam is subjected to the loading
shown. Determine the stress components at points A and B
and show the results on a volume element at each of these
points. Use the shear formula to compute the shear stress.

*8–36. The drill is jammed in the wall and is subjected to
the torque and force shown. Determine the state of stress at
point A on the cross section of drill bit at section a–a.

•8–37. The drill is jammed in the wall and is subjected to
the torque and force shown. Determine the state of stress at
point B on the cross section of drill bit at section a–a.

a

P

a

200 mm

300 mm

d

Probs. 8–31/32

4 in.2.5 in.

10 lb

10 lb

30�
3 in.

B

C

A

0.2 in.

0.2 in.B

C

0.2 in.
D

E

D

E

0.18 in.

0.2 in.

1.75 in.

0.1 in.

Probs. 8–33/34

6 ft4 ft
2 ft2 ft2 ft

500 lb
2500 lb 3000 lb

A

B

4 in.

4 in.

0.5 in.

0.5 in.

2 in.

0.5 in.

B

A

Prob. 8–35

150 N

3
4

5

125 mm

20 N ·m

400 mm

a

a

5 mm

B

A

Section a – a

z

x

y

y

Probs. 8–36/37
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8–38. Since concrete can support little or no tension, this
problem can be avoided by using wires or rods to prestress
the concrete once it is formed. Consider the simply
supported beam shown, which has a rectangular cross
section of 18 in. by 12 in. If concrete has a specific weight of

determine the required tension in rod AB, which
runs through the beam so that no tensile stress is developed
in the concrete at its center section a–a. Neglect the size of
the rod and any deflection of the beam.

8–39. Solve Prob. 8–38 if the rod has a diameter of 0.5 in.
Use the transformed area method discussed in Sec. 6.6.

Ec = 3.6011032 ksi.Est = 2911032 ksi,

150 lb>ft3,

*8–40. Determine the state of stress at point A when
the beam is subjected to the cable force of 4 kN. Indicate
the result as a differential volume element.

•8–41. Determine the state of stress at point B when
the beam is subjected to the cable force of 4 kN. Indicate
the result as a differential volume element.

8–42. The bar has a diameter of 80 mm. Determine the
stress components that act at point A and show the results
on a volume element located at this point.

8–43. The bar has a diameter of 80 mm. Determine the
stress components that act at point B and show the results
on a volume element located at this point.

*8–44. Determine the normal stress developed at points 
A and B. Neglect the weight of the block.

•8–45. Sketch the normal stress distribution acting over the
cross section at section a–a. Neglect the weight of the block.

16 in.

4 ft 4 ft
a

a

A B
18 in.

6 in. 6 in.

2 in.

Probs. 8–38/39 

2 m
0.75 m

1 m

4 kN

G

250 mm

375 mm

B C
D

A

200 mm

20 mm

20 mm150 mm

15 mm
A

B

100 mm

Probs. 8–40/41 

a

a

6 in.

6 kip

12 kip3 in.

A B

Probs. 8–44/45 

300 mm

200 mm

B
A

5 kN

4
3 5

Probs. 8–42/43

8–46. The support is subjected to the compressive load P.
Determine the absolute maximum and minimum normal
stress acting in the material.

P

a—
2

a—
2

a—
2

a—
2

Prob. 8–46
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8–47. The support is subjected to the compressive load P.
Determine the maximum and minimum normal stress
acting in the material. All horizontal cross sections are
circular.

*8–48. The post has a circular cross section of radius c.
Determine the maximum radius e at which the load can be
applied so that no part of the post experiences a tensile
stress. Neglect the weight of the post.

•8–49. If the baby has a mass of 5 kg and his center of
mass is at G, determine the normal stress at points A and B
on the cross section of the rod at section a–a. There are two
rods, one on each side of the cradle.

8–50. The C-clamp applies a compressive stress on the
cylindrical block of 80 psi. Determine the maximum normal
stress developed in the clamp.

r

P

Prob. 8–47

0.75 in.

4 in.

1 in.

4.5 in.

0.25 in.

Prob. 8–50

x

y

z

A

a a a a

a

a

D
ez

eyB
C

P

Prob. 8–51

Section a–a

75 mm 6 mm
G

500 mm

15�

a
A Ba

Prob. 8–49

P

c

e

Prob. 8–48

8–51. A post having the dimensions shown is subjected to
the bearing load P. Specify the region to which this load can
be applied without causing tensile stress to be developed at
points A, B, C, and D.
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•8–53. The masonry pier is subjected to the 800-kN load.
Determine the equation of the line along which
the load can be placed without causing a tensile stress in the
pier. Neglect the weight of the pier.

8–54. The masonry pier is subjected to the 800-kN load. If
and determine the normal stress at

each corner A, B, C, D (not shown) and plot the stress
distribution over the cross section. Neglect the weight of
the pier.

y = 0.5 m,x = 0.25 m

y = f1x2

*8–52. The hook is used to lift the force of 600 lb.
Determine the maximum tensile and compressive stresses
at section a–a. The cross section is circular and has a
diameter of 1 in. Use the curved-beam formula to compute
the bending stress.

8–55. The bar has a diameter of 40 mm. If it is subjected to
the two force components at its end as shown, determine
the state of stress at point A and show the results on a
differential volume element located at this point.

*8–56. Solve Prob. 8–55 for point B.

aa
2.5 in.

1.5 in.

300 lb 300 lb

600 lb

Prob. 8–52

100 mm

150 mm

y

x

z

BA

300 N

500 N

Probs. 8–55/56

B

A

z

y

x

500 lb

12 in.

8 in.  

800 lb

600 lb

Probs. 8–57/58

2.25 m

2.25 m
1.5 m

1.5 m

A
B

C

y

x
x

y

800 kN

Probs. 8–53/54

•8–57. The 2-in.-diameter rod is subjected to the loads
shown. Determine the state of stress at point A, and show the
results on a differential element located at this point.

8–58. The 2-in.-diameter rod is subjected to the loads
shown. Determine the state of stress at point B, and show
the results on a differential element located at this point.
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8–59. If determine the maximum normal
stress developed on the cross section of the column.

*8–60. Determine the maximum allowable force P, if the
column is made from material having an allowable normal
stress of sallow = 100 MPa.

P = 60 kN, 8–63. The uniform sign has a weight of 1500 lb and
is supported by the pipe AB, which has an inner radius of
2.75 in. and an outer radius of 3.00 in. If the face of the sign
is subjected to a uniform wind pressure of 
determine the state of stress at points C and D. Show the
results on a differential volume element located at each of
these points. Neglect the thickness of the sign, and assume
that it is supported along the outside edge of the pipe.

*8–64. Solve Prob. 8–63 for points E and F.

p = 150 lb>ft2,

100 mm

15 mm

15 mm

15 mm

75 mm

150 mm

150 mm

100 mm

100 mm

P

2P

Probs. 8–59/60

•8–61. The beveled gear is subjected to the loads shown.
Determine the stress components acting on the shaft at
point A, and show the results on a volume element located
at this point. The shaft has a diameter of 1 in. and is fixed to
the wall at C.

8–62. The beveled gear is subjected to the loads shown.
Determine the stress components acting on the shaft at
point B, and show the results on a volume element located
at this point. The shaft has a diameter of 1 in. and is fixed to
the wall at C.

C

B

x

z
y

A

200 lb

125 lb75 lb

8 in.

3 in.

Probs. 8–61/62

3 ft

6 ft

12 ft

B

A

y

x
z

150 lb/ft2

C
D

FE

Probs. 8–63/64

•8–65. Determine the state of stress at point A on the
cross section of the pipe at section a–a.

8–66. Determine the state of stress at point B on the cross
section of the pipe at section a–a.

50 lb
B

A

12 in.10 in.

a

a

60°

0.75 in.

1 in.
Section a–a

z

x
y

Probs. 8–65/66
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•8–67. The eccentric force P is applied at a distance 
from the centroid on the concrete support shown.
Determine the range along the y axis where P can be applied
on the cross section so that no tensile stress is developed in
the material.

ey 8–70. The shaft is subjected to the loading
shown. Determine the stress components at point A. Sketch
the results on a volume element located at this point. The
journal bearing at C can exert only force components 
and on the shaft, and the thrust bearing at D can exert
force components and on the shaft.

8–71. Solve Prob. 8–70 for the stress components at
point B.

DzDy ,Dx ,
Cz

Cy

3
4-in.-diameter

2

ey

P

3

h
3

b
2

b
2

h

z

x

y

Prob. 8–67

*8–68. The bar has a diameter of 40 mm. If it is subjected
to a force of 800 N as shown,determine the stress components
that act at point A and show the results on a volume element
located at this point.

•8–69. Solve Prob. 8–68 for point B.

150 mm

200 mm z

yx

BA

800 N

30�

Probs. 8–68/69

x

C

A

B

125 lb

2 in.

8 in.

8 in.

125 lb

D

20 in.

20 in.

10 in.

z

y

2 in.

Probs. 8–70/71

*8–72. The hook is subjected to the force of 80 lb.
Determine the state of stress at point A at section a–a. The
cross section is circular and has a diameter of 0.5 in. Use the
curved-beam formula to compute the bending stress.

•8–73. The hook is subjected to the force of 80 lb.
Determine the state of stress at point B at section a–a. The
cross section has a diameter of 0.5 in. Use the curved-beam
formula to compute the bending stress.

a

a

80 lb

1.5 in.

A A

B

B

45�

Probs. 8–72/73
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A pressure vessel is considered to
have a thin wall provided 
For a thin-walled cylindrical vessel,
the circumferential or hoop stress is

This stress is twice as great as the
longitudinal stress,

Thin-walled spherical vessels have the
same stress within their walls in all
directions. It is

Superposition of stress components
can be used to determine the normal
and shear stress at a point in a member
subjected to a combined loading. To
do this, it is first necessary to determine
the resultant axial and shear forces and
the internal resultant torsional and
bending moments at the section where
the point is located. Then the normal
and shear stress resultant components
at the point are determined by
algebraically adding the normal and
shear stress components of each
loading.

s1 = s2 =
pr

2t

s2 =
pr

2t

s1 =
pr

t

r>t Ú 10.
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t �
Tr
J

T



CONCEPTUAL PROBLEMS 433

8

CONCEPTUAL PROBLEMS

B

A

P8–1

P8–1. Explain why failure of this garden hose occurred
near its end and why the tear occurred along its length. Use
numerical values to explain your result. Assume the water
pressure is 30 psi.

P8–3

P8–3. Unlike the turnbuckle at B, which is connected
along the axis of the rod, the one at A has been welded to the
edges of the rod, and so it will be subjected to additional
stress. Use the same numerical values for the tensile load in
each rod and the rod’s diameter, and compare the stress in
each rod.

P8–4

P8–4. A constant wind blowing against the side of this
chimney has caused creeping strains in the mortar joints, such
that the chimney has a noticeable deformation. Explain how
to obtain the stress distribution over a section at the base of
the chimney, and sketch this distribution over the section.

P8–2

P8–2. This open-ended silo contains granular material. It
is constructed from wood slats and held together with steel
bands. Explain, using numerical values, why the bands are
not spaced evenly along the height of the cylinder. Also,
how would you find this spacing if each band is to be
subjected to the same stress?



1 m

1 m

1 m

b

a

a

b

C
B

A

30�

1 m
0.5 m0.5 m

75 mm

75 mm

25 mm

Section b – b

FD

50 mm

75 mm
25 mm

Section a – a

E
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8–74. The block is subjected to the three axial loads
shown. Determine the normal stress developed at points A
and B. Neglect the weight of the block.

•8–77. The eye is subjected to the force of 50 lb.
Determine the maximum tensile and compressive stresses at
section The cross section is circular and has a diameter
of 0.25 in. Use the curved-beam formula to compute the
bending stress.

8–78. Solve Prob. 8–77 if the cross section is square, having
dimensions of 0.25 in. by 0.25 in.

a-a.

REVIEW PROBLEMS

4 in.2 in.
2 in.

5 in.

5 in.

3 in.

50 lb

100 lb
250 lb

B
A

Prob. 8–74 

1.25 in.

aa

50 lb

0.25 in.

Probs. 8–77/78 

a a

2 in.
75 lb

M
F

1 in. 0.5 in.

Section a – a

Prob. 8–79 Probs. 8–75/76 

8–75. The 20-kg drum is suspended from the hook
mounted on the wooden frame. Determine the state of
stress at point E on the cross section of the frame at
section a–a. Indicate the results on an element.

*8–76. The 20-kg drum is suspended from the hook
mounted on the wooden frame. Determine the state of
stress at point F on the cross section of the frame at
section b–b. Indicate the results on an element.

8–79. If the cross section of the femur at section a–a can
be approximated as a circular tube as shown, determine the
maximum normal stress developed on the cross section at
section a–a due to the load of 75 lb.
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*8–80. The hydraulic cylinder is required to support a
force of If the cylinder has an inner diameter
of 100 mm and is made from a material having an allowable
normal stress of determine the required
minimum thickness t of the wall of the cylinder.

•8–81. The hydraulic cylinder has an inner diameter of
100 mm and wall thickness of If it is made from
a material having an allowable normal stress of 

MPa, determine the maximum allowable force P.150
sallow =

t = 4 mm.

sallow = 150 MPa,

P = 100 kN.

8–82. The screw of the clamp exerts a compressive force
of 500 lb on the wood blocks. Determine the maximum
normal stress developed along section The cross
section there is rectangular, 0.75 in. by 0.50 in.

a-a.

8–83. Air pressure in the cylinder is increased by exerting
forces on the two pistons, each having a radius
of 45 mm. If the cylinder has a wall thickness of 2 mm,
determine the state of stress in the wall of the cylinder.

*8–84. Determine the maximum force P that can be
exerted on each of the two pistons so that the circumferential
stress component in the cylinder does not exceed 3 MPa.
Each piston has a radius of 45 mm and the cylinder has a
wall thickness of 2 mm.

P = 2 kN

•8–85. The cap on the cylindrical tank is bolted to the tank
along the flanges. The tank has an inner diameter of 1.5 m
and a wall thickness of 18 mm. If the largest normal stress is
not to exceed 150 MPa, determine the maximum pressure
the tank can sustain. Also, compute the number of bolts
required to attach the cap to the tank if each bolt has a
diameter of 20 mm. The allowable stress for the bolts is

8–86. The cap on the cylindrical tank is bolted to the tank
along the flanges. The tank has an inner diameter of 1.5 m
and a wall thickness of 18 mm. If the pressure in the tank is

determine the force in each of the 16 bolts
that are used to attach the cap to the tank. Also, specify the
state of stress in the wall of the tank.

p = 1.20 MPa,

1sallow2b = 180 MPa.

t

100 mm

P

Probs. 8–80/81 

4 in.

0.75 in.
a

a

Prob. 8–82 

47 mm

P

P

Probs. 8–83/84 

Probs. 8–85/86



These turbine blades are subjected to a complex pattern of stress. For design it is
necessary to determine where and in what direction the maximum stress occurs.
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CHAPTER OBJECTIVES

In this chapter, we will show how to transform the stress components
that are associated with a particular coordinate system into components
associated with a coordinate system having a different orientation.
Once the necessary transformation equations are established, we will
then be able to obtain the maximum normal and maximum shear stress
at a point and find the orientation of elements upon which they act.
Plane-stress transformation will be discussed in the first part of the
chapter, since this condition is most common in engineering practice.
At the end of the chapter we will discuss a method for finding the
absolute maximum shear stress at a point when the material is
subjected to both plane and three-dimensional states of stress.

9.1 Plane-Stress Transformation

It was shown in Sec. 1.3 that the general state of stress at a point is
characterized by six independent normal and shear stress components,
which act on the faces of an element of material located at the point,
Fig. 9–1a. This state of stress, however, is not often encountered in
engineering practice. Instead, engineers frequently make approximations
or simplifications of the loadings on a body in order that the stress
produced in a structural member or mechanical element can be analyzed
in a single plane.When this is the case, the material is said to be subjected to
plane stress, Fig. 9–1b. For example, if there is no load on the surface of a
body, then the normal and shear stress components will be zero on the face
of an element that lies on this surface. Consequently, the corresponding
stress components on the opposite face will also be zero, and so the
material at the point will be subjected to plane stress. This case occurred
throughout the previous chapter.

Stress Transformation 9 
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The general state of plane stress at a point is therefore represented by
a combination of two normal-stress components, and one shear-
stress component, which act on four faces of the element. For
convenience, in this text we will view this state of stress in the x–y plane,
Fig. 9–2a. If this state of stress is defined on an element having a different
orientation as in Fig. 9–2b, then it will be subjected to three different
stress components defined as . In other words, the state of
plane stress at the point is uniquely represented by two normal stress
components and one shear stress component acting on an element that
has a specific orientation at the point.

In this section, we will show how to transform the stress components
from the orientation of an element in Fig. 9–2a to the orientation of the
element in Fig. 9–2b. This is like knowing two force components, say,
and directed along the x, y axes, that produce a resultant force 
and then trying to find the force components and directed along
the axes, so they produce the same resultant. The transformation
for force must only account for the force component’s magnitude and
direction. The transformation of stress components, however, is more
difficult since the transformation must account for the magnitude and
direction of each stress component and the orientation of the area upon
which each component acts.

y¿x¿,
Fy¿ ,Fx¿

FR ,Fy ,
Fx

tx¿y¿sy¿ ,sx¿ ,

txy ,
sy ,sx ,

Fig. 9–2

General state of stress

(a)

Plane stress

(b)

tyz

tyz

txy

txy
txytxy

txz

txz

sz

sx
sx

sy
sy

Fig. 9–1
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y

x

(b)

�

y¿

x ¿
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(a)

y

x

sy

sx

txy

(b)

�

y¿

x ¿sy¿
sx ¿

tx ¿y¿
u

(d)

y¿

x ¿

sx

sy

sx ¿

tx ¿y¿

txy

txy

u

�A sin u

�A sin u

�A cos u

�A cos u

�A

�A

(e)

x ¿

y¿

sy¿

sx

sy

tx ¿y¿

txy

ux

y

x ¿
y¿

(c)

�A sin u

�A cos u
�Au

u

Fig. 9–3

Procedure for Analysis

If the state of stress at a point is known for a given orientation of an
element of material, Fig. 9–3a, then the state of stress in an element
having some other orientation, Fig. 9–3b, can be determined using
the following procedure.

• To determine the normal and shear stress components 
acting on the face of the element, Fig. 9–3b, section the
element in Fig. 9–3a as shown in Fig. 9–3c. If the sectioned area is

then the adjacent areas of the segment will be and

• Draw the free-body diagram of the segment, which requires
showing the forces that act on the segment, Fig. 9–3d.This is done
by multiplying the stress components on each face by the area
upon which they act.

• Apply the force equations of equilibrium in the and 
directions.The area will cancel from the equations and so the
two unknown stress components and can be determined.

• If acting on the face of the element in Fig. 9–3b, is to be
determined, then it is necessary to consider a segment of 
the element as shown in Fig. 9–3e and follow the same procedure 
just described. Here, however, the shear stress does not have
to be determined if it was previously calculated, since it is com-
plementary, that is, it must have the same magnitude on each of 
the four faces of the element, Fig. 9–3b.

tx¿y¿

+y¿sy¿ ,

tx¿y¿sx¿

¢A
y¿x¿

¢A cos u.
¢A sin u¢A,

+x¿
tx¿y¿sx¿ ,

u,
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EXAMPLE 9.1

The state of plane stress at a point on the surface of the airplane
fuselage is represented on the element oriented as shown in Fig. 9–4a.
Represent the state of stress at the point on an element that is oriented
30° clockwise from the position shown.

(a)30�

a

a

b

b

50 MPa

80 MPa

25 MPa

SOLUTION
The rotated element is shown in Fig. 9–4d. To obtain the stress
component on this element we will first section the element in Fig. 9–4a
by the line a–a. The bottom segment is removed, and assuming the
sectioned (inclined) plane has an area the horizontal and vertical
planes have the areas shown in Fig. 9–4b.The free-body diagram of this
segment is shown in Fig. 9–4c. Applying the equations of force
equilibrium in the and directions to avoid a simultaneous solution
for the two unknowns and we have

Ans.

Ans.

Since is negative, it acts in the opposite direction of that shown in
Fig. 9–4c. The results are shown on the top of the element in Fig. 9–4d,
since this surface is the one considered in Fig. 9–4c.

sx¿

tx¿y¿ = 68.8 MPa

+ 125 ¢A sin 30°2 sin 30° = 0

- 125 ¢A cos 30°2 cos 30° - 180 ¢A sin 30°2 cos 30°

tx¿y¿ ¢A - 150 ¢A cos 30°2 sin 30°+a©Fy¿ = 0;

sx¿ = -4.15 MPa

+ 125 ¢A sin 30°2 cos 30° = 0

+ 125 ¢A cos 30°2 sin 30° + 180 ¢A sin 30°2 sin 30°

sx¿ ¢A - 150 ¢A cos 30°2 cos 30°+Q©Fx¿ = 0;

tx¿y¿ ,sx¿

y¿x¿

¢A,30�

(b)

�A
�A sin 30�

�A cos 30�

(c)

y¿

x ¿

x
60�

30�

30�

30�

30�

sx ¿ �A

tx ¿y¿ �A

25 �A cos 30�

50 �A cos 30�

80 �A sin 30�

25 �A sin 30�

Fig. 9–4
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We must now repeat the procedure to obtain the stress on the
perpendicular plane b–b. Sectioning the element in Fig. 9–4a along
b–b results in a segment having sides with areas shown in Fig. 9–4e.
Orienting the axis outward, perpendicular to the sectioned face,
the associated free-body diagram is shown in Fig. 9–4f. Thus,

Ans.

Ans.

Since is a negative quantity, it acts opposite to its direction shown
in Fig. 9–4f. The stress components are shown acting on the right side
of the element in Fig. 9–4d.

From this analysis we may therefore conclude that the state of stress
at the point can be represented by choosing an element oriented as
shown in Fig. 9–4a, or by choosing one oriented as shown in Fig. 9–4d.
In other words, these states of stress are equivalent.

sx¿

tx¿y¿ = 68.8 MPa

+ 150 ¢A sin 30°2 cos 30° = 0

+ 180 ¢A cos 30°2 sin 30° - 125 ¢A sin 30°2 sin 30°

-tx¿y¿ ¢A + 125 ¢A cos 30°2 cos 30°+Q©Fy¿ = 0;

sx¿ = -25.8 MPa

- 150 ¢A sin 30°2 sin 30° = 0

+ 180 ¢A cos 30°2 cos 30° - 125 ¢A sin 30°2 cos 30°

sx¿ ¢A - 125 ¢A cos 30°2 sin 30°+R©Fx¿ = 0;

+x¿

30�

(e)

�A sin 30�

�A cos 30�
�A

y¿

x ¿

x

30� 

30� 

30� 

30� 

(f)

30� 

25 �A sin 30�

25 �A cos 30�

80 �A cos 30�

50 �A sin 30�

sx ¿ �A

tx ¿y¿ �A

(d)

a

a

b

b

25.8 MPa

68.8 MPa
4.15 MPa



442 CHAPTER 9 STRESS TRANSFORMATION

9

9.2 General Equations of Plane-Stress
Transformation

The method of transforming the normal and shear stress components
from the x, y to the coordinate axes, as discussed in the previous
section, can be developed in a general manner and expressed as a set of
stress-transformation equations.

Sign Convention. First we must establish a sign convention for
the stress components. To do this the and axes are used to define
the outward normal from a side of the element. Then and
are positive when they act in the positive x and directions, and and

are positive when they act in the positive y and directions, Fig. 9–5.
The orientation of the plane on which the normal and shear stress

components are to be determined will be defined by the angle , which is
measured from the axis to the axis, Fig. 9–5b. Notice that the
unprimed and primed sets of axes in this figure both form right-handed
coordinate systems; that is, the positive z (or ) axis is established by the
right-hand rule. Curling the fingers from x (or ) toward y (or ) gives
the direction for the positive z (or ) axis that points outward, along the
thumb. The angle will be positive provided it follows the curl of the
right-hand fingers, i.e., counterclockwise as shown in Fig. 9–5b.

Normal and Shear Stress Components. Using the
established sign convention, the element in Fig. 9–6a is sectioned along
the inclined plane and the segment shown in Fig. 9–6b is isolated.
Assuming the sectioned area is then the horizontal and vertical faces
of the segment have an area of and respectively.¢A cos u,¢A sin u

¢A,

u

z¿
y¿x¿

z¿

+x¿+x
u

y¿tx¿y¿

txyx¿
sx¿sx

+x¿+x

y¿x¿,

(b)

x

y

y¿

x ¿

Positive Sign Convention

�u

sx’

tx’y’

x

y

(a)

�sx

�txy

�sy

Fig. 9–5
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The resulting free-body diagram of the segment is shown in Fig. 9–6c.
Applying the equations of equilibrium to determine the unknown normal
and shear stress components and we have

These two equations may be simplified by using the trigonometric
identities and 

in which case,

(9–1)

(9–2)

If the normal stress acting in the direction is needed, it can be
obtained by simply substituting for into Eq. 9–1,
Fig. 9–6d. This yields

(9–3)

If is calculated as a positive quantity, it indicates that it acts in the
positive direction as shown in Fig. 9–6d.y¿
sy¿

sy¿ =
sx + sy

2
-
sx - sy

2
 cos 2u - txy sin 2u

u1u = u + 90°2y¿

 tx¿y¿ = -
sx - sy

2
 sin 2u + txy cos 2u

 sx¿ =
sx + sy

2
+
sx - sy

2
 cos 2u + txy sin 2u

11 + cos 2u2>2,
cos2 u =sin2 u = 11 - cos 2u2>2,sin 2u = 2 sin u cos u,

tx¿y¿ = 1sy - sx2 sin u cos u + txy1cos2 u - sin2 u2
- 1txy ¢A cos u2 cos u + 1sx ¢A cos u2 sin u = 0

tx¿y¿ ¢A + 1txy ¢A sin u2 sin u - 1sy ¢A sin u2 cos u+a©Fy¿ = 0;

sx¿ = sx cos2 u + sy sin2 u + txy12 sin u cos u2
- 1txy ¢A cos u2 sin u - 1sx ¢A cos u2 cos u = 0

sx¿ ¢A - 1txy ¢A sin u2 cos u - 1sy ¢A sin u2 sin u+Q©Fx¿ = 0;

tx¿y¿ ,sx¿

9

Procedure for Analysis

To apply the stress transformation Eqs. 9–1 and 9–2, it is simply
necessary to substitute in the known data for and in
accordance with the established sign convention, Fig. 9–5. If and

are calculated as positive quantities, then these stresses act in
the positive direction of the and axes.

For convenience, these equations can easily be programmed on a
pocket calculator.

y¿x¿
tx¿y¿

sx¿

utxy ,sy ,sx ,

Fig. 9–6
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EXAMPLE 9.2

The state of plane stress at a point is represented by the element shown
in Fig. 9–7a. Determine the state of stress at the point on another
element oriented 30° clockwise from the position shown.

SOLUTION
This problem was solved in Example 9.1 using basic principles. Here
we will apply Eqs. 9–1 and 9–2. From the established sign convention,
Fig. 9–5, it is seen that

Plane CD. To obtain the stress components on plane CD, Fig. 9–7b,
the positive axis is directed outward, perpendicular to CD, and the
associated axis is directed along CD. The angle measured from the x
to the axis is (clockwise).Applying Eqs. 9–1 and 9–2 yields

Ans.

Ans.

The negative signs indicate that and act in the negative and
directions, respectively.The results are shown acting on the element

in Fig. 9–7d.

Plane BC. In a similar manner, the stress components acting on face
BC, Fig. 9–7c, are obtained using Applying Eqs. 9–1 and 9–2,*
we get

Ans.

Ans.

Here has been calculated twice in order to provide a check. The
negative sign for indicates that this stress acts in the negative 
direction, Fig. 9–7c. The results are shown on the element in Fig. 9–7d.

x¿sx¿

tx¿y¿

 = 68.8 MPa

 tx¿y¿ = -  
-80 - 50

2
 sin 2160°2 + 1-252 cos 2160°2

 = -4.15 MPa

 sx¿ =
-80 + 50

2
+

-80 - 50
2

 cos 2160°2 + 1-252 sin 2160°2

u = 60°.

y¿
x¿tx¿y¿sx¿

 = -68.8 MPa

 = -  
-80 - 50

2
 sin 21-30°2 + 1-252 cos 21-30°2

 tx¿y¿ = -  

sx - sy

2
 sin 2u + txy cos 2u

 = -25.8 MPa

 =
-80 + 50

2
+

-80 - 50
2

 cos 21-30°2 + 1-252 sin 21-30°2
 sx¿ =

sx + sy

2
+
sx - sy

2
 cos 2u + txy sin 2u

u = -30°x¿
y¿

x¿

sx = -80 MPa sy = 50 MPa txy = -25 MPa

x

(c)

B

y¿

x¿

30�

C

D

u�60�

50 MPa

(a)

80 MPa

25 MPa

25.8 MPa

68.8 MPa
4.15 MPa

(d)

x

(b)

B
y¿

x ¿

30�

C

D

u � �30�

Fig. 9–7 *Alternatively, we could apply Eq. 9–3 with rather than Eq. 9–1.u = -30°
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9.3 Principal Stresses and Maximum 
In-Plane Shear Stress

From Eqs. 9–1 and 9–2, it can be seen that the magnitudes of and 
depend on the angle of inclination of the planes on which these stresses
act. In engineering practice it is often important to determine the
orientation of the element that causes the normal stress to be a maximum
and a minimum and the orientation that causes the shear stress to be a
maximum. In this section each of these problems will be considered.

In-Plane Principal Stresses. To determine the maximum and
minimum normal stress, we must differentiate Eq. 9–1 with respect to 
and set the result equal to zero. This gives

Solving this equation we obtain the orientation of the planes of
maximum and minimum normal stress.

(9–4)

The solution has two roots, , and Specifically, the values of 
and are 180° apart, so and will be 90° apart.

The values of and must be substituted into Eq. 9–1 if we are to
obtain the required normal stresses. To do this we can obtain the
necessary sine and cosine of and from the shaded triangles
shown in Fig. 9–8.The construction of these triangles is based on Eq. 9–4,
assuming that and are both positive or both negative
quantities.

1sx - sy2txy

2up2
2up1

up2
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up2
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2up2

2up1
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.up1

tan 2up =
txy

1sx - sy2>2

u = up

dsx¿

du
= -
sx - sy

2
 12 sin 2u2 + 2txy cos 2u = 0

u

u

tx¿y¿sx¿

�

�

2

2

2

�txy

txy

sx � sy

sx � sy

sx � sy

txy2

2

2up2

2up1

t

s

Fig. 9–8
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Substituting these trigonometric values into Eq. 9–1 and simplifying, we
obtain

(9–5)

Depending upon the sign chosen, this result gives the maximum or
minimum in-plane normal stress acting at a point, where This
particular set of values are called the in-plane principal stresses, and the
corresponding planes on which they act are called the principal planes
of stress, Fig. 9–9. Furthermore, if the trigonometric relations for or

are substituted into Eq. 9–2, it can be seen that in other
words, no shear stress acts on the principal planes.

tx¿y¿ = 0;up2

up1

s1 Ú s2 .

s1,2 =
sx + sy

2
; C¢

sx - sy

2
≤2

+ txy 

2

The cracks in this concrete beam were caused
by tension stress, even though the beam was
subjected to both an internal moment and
shear. The stress-transformation equations
can be used to predict the direction of the
cracks, and the principal normal stresses that
caused them.

�
x 

x¿

x–

In-plane principal stresses

sy

s1

s2

sx

txy

up2 
� up1

� 90�

up1

Fig. 9–9
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Maximum In-Plane Shear Stress. The orientation of an element
that is subjected to maximum shear stress on its sides can be determined
by taking the derivative of Eq. 9–2 with respect to and setting the result
equal to zero. This gives

(9–6)

The two roots of this equation, and can be determined from the
shaded triangles shown in Fig. 9–10. By comparison with Eq. 9–4,
is the negative reciprocal of and so each root is 90° from ,
and the roots and are 45° apart. Therefore, an element subjected to
maximum shear stress will be 45° from the position of an element that
is subjected to the principal stress.

Using either one of the roots or the maximum shear stress can
be found by taking the trigonometric values of and from
Fig. 9–10 and substituting them into Eq. 9–2. The result is

(9–7)

The value of as calculated from this equation is referred to as the
maximum in-plane shear stress because it acts on the element in the x–y
plane.

Substituting the values for and into Eq. 9–1, we see that
there is also an average normal stress on the planes of maximum in-plane
shear stress. We get

(9–8)

Like the stress-transformation equations, it may be convenient to
program Eqs. 9–4 through 9–8 for use on a pocket calculator.

savg =
sx + sy

2

cos 2ussin 2us

t max
in-plane

= C¢
sx - sy

2
≤2

+ txy 

2t max
in-plane

cos 2ussin 2us

us2
,us1

upus

2up2ustan 2up

tan 2us

us2
,us1

tan 2us =
-1sx - sy2>2

txy

u

Important Points

• The principal stresses represent the maximum and minimum
normal stress at the point.

• When the state of stress is represented by the principal stresses,
no shear stress will act on the element.

• The state of stress at the point can also be represented in terms of
the maximum in-plane shear stress. In this case an average normal
stress will also act on the element.

• The element representing the maximum in-plane shear stress
with the associated average normal stresses is oriented 45° from
the element representing the principal stresses.

�

sx � sy

sx � sy

txy

�txy

2us1

2us2

2

2

t

s

Fig. 9–10
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EXAMPLE 9.3

The state of plane stress at a failure point on the shaft is shown on
the element in Fig. 9–11a. Represent this stress state in terms of the
principal stresses.

SOLUTION
From the established sign convention, we have

Orientation of Element. Applying Eq. 9–4,

Solving, and referring to this root as as will be shown below, yields

Since the difference between and is 180°, we have

Recall that is measured positive counterclockwise from the x axis to
the outward normal ( axis) on the face of the element, and so the
results are shown in Fig. 9–11b.

Principal Stress. We have

Ans.

Ans.

The principal plane on which each normal stress acts can be
determined by applying Eq. 9–1 with, say, We have

Hence, acts on the plane defined by 
whereas acts on the plane defined by The
results are shown on the element in Fig. 9–11c. Recall that no shear
stress acts on this element.

up1
= 66.3°.s1 = 116 MPa
up2

= -23.7°,s2 = -46.4 MPa

 = -46.4 MPa

 =
-20 + 90

2
+

-20 - 90
2

 cos 21-23.7°2 + 60 sin 21-23.7°2
 sx¿ =

sx + sy

2
+
sx - sy

2
 cos 2u + txy sin 2u

u = up2
= -23.7°.

 s2 = -46.4 MPa

 s1 = 116 MPa
 = 35.0 ; 81.4

 =
-20 + 90

2
; B a

-20 - 90
2

b2

+ 16022
 s1,2 =

sx + sy

2
; B ¢sx - sy

2
≤2

+ txy 

2

x¿
u

2up1
= 180° + 2up2

= 132.51° up1
= 66.3°

2up2
2up1

2up2
= -47.49° up2

= -23.7°

up2
,

tan 2up =
txy

1sx - sy2>2 =
60

1-20 - 902>2

sx = -20 MPa sy = 90 MPa txy = 60 MPa

90 MPa

60 MPa

20 MPa

(a)

23.7�

66.3�

x¿

y¿y¿

x¿

x

x

(b)

B

A

(c)

� 116 MPa

� 46.4 MPa

up2 
� 23.7�

up1 
� 66.3�

s2

s1

Fig. 9–11

Notice how the failure plane is at 
an angle due to tearing of the
material, Fig. 9–11c.

123.7°2
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EXAMPLE 9.4

35 MPa

35 MPa

B

A

81.4 MPa

21.3�

(c)

90 MPa

(a)

60 MPa

20 MPa

(b)

x¿

y¿

y¿

x¿

21.3�

111.3�
81.4 MPa

x

Fig. 9–12

The state of plane stress at a point on a body is represented on the 
element shown in Fig. 9–12a. Represent this stress state in terms of the
maximum in-plane shear stress and associated average normal stress.

SOLUTION
Orientation of Element. Since 
and applying Eq. 9–6, we have

Note that these angles shown in Fig. 9–12b are 45° away from the 
principal planes of stress, which were determined in Example 9.3.

Maximum In-Plane Shear Stress. Applying Eq. 9–7,

Ans.

The proper direction of on the element can be determined
by substituting into Eq. 9–2. We have

This positive result indicates that acts in the positive
direction on this face Fig. 9–12b. The shear stresses on
the other three faces are directed as shown in Fig. 9–12c.

Average Normal Stress. Besides the maximum shear stress, as
calculated above, the element is also subjected to an average normal
stress determined from Eq. 9–8; that is,

Ans.

This is a tensile stress. The results are shown in Fig. 9–12c.

savg =
sx + sy

2
=

-20 + 90
2

= 35 MPa

1u = 21.3°2 y¿= tx¿y¿t max
in-plane

 = 81.4 MPa

 = - a -20 - 90
2

b  sin 2121.3°2 + 60 cos 2121.3°2

 tx¿y¿ = - ¢sx - sy

2
≤  sin 2u + txy cos 2u

u = us2
= 21.3°
t max

in-plane

 = ; 81.4 MPa

 = C¢
sx - sy

2
≤2

+ txy 

2 = B a
-20 - 90

2
b2

+ 16022t max
in-plane

 2us1
= 180° + 2us2

  us1
= 111.3°

 2us2
= 42.5°  us2

= 21.3°

 tan 2us =
-1sx - sy2>2

txy
=

-1-20 - 902>2
60

txy = 60 MPa,
sy = 90 MPa,sx = -20 MPa,
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EXAMPLE 9.5

When the torsional loading T is applied to the bar in Fig. 9–13a, it
produces a state of pure shear stress in the material. Determine (a) the
maximum in-plane shear stress and the associated average normal
stress, and (b) the principal stress.

SOLUTION
From the established sign convention,

Maximum In-Plane Shear Stress. Applying Eqs. 9–7 and 9–8,
we have

Ans.

Ans.

Thus, as expected, the maximum in-plane shear stress is represented
by the element in Fig. 9–13a.

NOTE: Through experiment it has been found that materials that
are ductile will fail due to shear stress. As a result, if the bar in Fig.
9–13a is made of mild steel, the maximum in-plane shear stress will
cause it to fail as shown in the adjacent photo.

Principal Stress. Applying Eqs. 9–4 and 9–5 yields

 savg =
sx + sy

2
=

0 + 0
2

= 0

 t max
in-plane

= C¢
sx - sy

2
≤2

+ txy 

2 = 21022 + 1-t22 = ;t

sx = 0 sy = 0 txy = -t

If we now apply Eq. 9–1 with then

Thus, acts at as shown in Fig. 9–13b, and acts
on the other face,

NOTE: Materials that are brittle fail due to normal stress. Therefore,
if the bar in Fig. 9–13a is made of cast iron it will fail in tension at a 45°
inclination as seen in the adjacent photo.

up1
= -45°.

s1 = tup2
= 45°s2 = -t

 = 0 + 0 + 1-t2 sin 90° = -t

 sx¿ =
sx + sy

2
+
sx - sy

2
 cos 2u + txy sin 2u

up2
= 45°,

Ans. s1, 2 =
sx + sy

2
; Ba

sx - sy

2
b2

+ txy 

2 = 0 ; 21022 + t2 = ;t

 tan 2up =
txy

1sx - sy2>2 =
-t

10 - 02>2 ,  up2
= 45°, up1

= -45°

Fig. 9–13

T
T

(a)

t

(b)

45�
x 

y¿ x¿

s2 � t

s1 � t
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EXAMPLE 9.6

When the axial loading P is applied to the bar in Fig. 9–14a, it
produces a tensile stress in the material. Determine (a) the principal
stress and (b) the maximum in-plane shear stress and associated
average normal stress.

SOLUTION
From the established sign convention,

Principal Stress. By observation, the element oriented as shown in
Fig. 9–14a illustrates a condition of principal stress since no shear
stress acts on this element. This can also be shown by direct
substitution of the above values into Eqs. 9–4 and 9–5. Thus,

Ans.

NOTE: Experiments have shown that brittle materials will fail due to
normal stress. Thus if the bar in Fig. 9–14a is made of cast iron, it will
cause failure as shown in the adjacent photo.

Maximum In-Plane Shear Stress. Applying Eqs. 9–6, 9–7, and 9–8,
we have

Ans.

Ans.

To determine the proper orientation of the element, apply Eq. 9–2.

This negative shear stress acts on the face, in the negative 
direction as shown in Fig. 9–14b.

NOTE: If the bar in Fig. 9–14a is made of a ductile material such as
mild steel then shear stress will cause it to fail.This can be noted in the
adjacent photo, where within the region of necking, shear stress has
caused “slipping” along the steel’s crystalline boundaries, resulting in
a plane of failure that has formed a cone around the bar oriented at
approximately 45° as calculated above.

y¿x¿

tx¿y¿ = -  

sx - sy

2
 sin 2u + txy cos 2u = -  

s - 0
2

 sin 90° + 0 = -  
s

2

 savg =
sx + sy

2
=
s + 0

2
=
s

2

= C¢
sx - sy

2
≤2

+ txy 

2 = B a
s - 0

2
b2

+ 1022 = ;
s

2
t max

in-plane

 tan 2us =
-1sx - sy2>2

txy
=

-1s - 02>2
0

;  us1
= 45°, us2

= -45°

s1 = s s2 = 0

sx = s sy = 0 txy = 0
(a)

P

P

s

(b)

45�
x 

x¿
y¿

tin-plane �
   max

s
s

s

2savg �

2

2savg �

Fig. 9–14



452 CHAPTER 9 STRESS TRANSFORMATION

9

F9–1

F9–2

FUNDAMENTAL PROBLEMS

F9–1. Determine the normal stress and shear stress acting
on the inclined plane AB. Sketch the result on the sectioned
element.

F9–4. Determine the equivalent state of stress on an
element at the same point that represents the maximum 
in-plane shear stress at the point.

500 kPa

A

B

30� 100 kPa

400 kPa

700 kPa

60 mm

2 m

2 kN

4 kN

30 mm

B

300 kPa

400 kPa

F9–2. Determine the equivalent state of stress on an
element at the same point oriented 45° clockwise with
respect to the element shown.

F9–3. Determine the equivalent state of stress on an
element at the same point that represents the principal
stresses at the point. Also, find the corresponding
orientation of the element with respect to the element
shown.

F9–5. The beam is subjected to the load at its end.
Determine the maximum principal stress at point B.

F9–6. The beam is subjected to the loading shown.
Determine the principal stress at point C.

80 kPa

30 kPa

3 m 3 m

8 kN/m

A

150 mm

75 mm

75 mm

C

C

B

F9–3

F9–4

F9–5

F9–6



9.3 PRINCIPAL STRESSES AND MAXIMUM IN-PLANE SHEAR STRESS 453

9

9–3. The state of stress at a point in a member is shown on
the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

9–1. Prove that the sum of the normal stresses
is constant. See Figs. 9–2a and 9–2b.

9–2. The state of stress at a point in a member is shown on
the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

sx + sy = sx¿ + sy¿

*9–4. The state of stress at a point in a member is shown
on the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

•9–5. Solve Prob. 9–4 using the stress-transformation
equations developed in Sec. 9.2.

PROBLEMS

60� 

B

A

5 ksi

8 ksi

2 ksi

Prob. 9–2

Prob. 9–3

Probs. 9–4/5

Probs. 9–6/7

60� 

B

A

500 psi

350 psi

9–6. The state of stress at a point in a member is shown on
the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

9–7. Solve Prob. 9–6 using the stress-transformation
equations developed in Sec. 9.2. Show the result on a
sketch.

60� 

B

A 400 psi

650 psi

30� 
B

A
90 MPa

60� 

50 MPa

35 MPa
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*9–8. Determine the normal stress and shear stress acting
on the inclined plane AB. Solve the problem using the
method of equilibrium described in Sec. 9.1.

•9–9. Determine the normal stress and shear stress acting
on the inclined plane AB. Solve the problem using the stress
transformation equations. Show the result on the sectioned
element.

•9–13. Determine the equivalent state of stress on an
element if the element is oriented 60° clockwise from the
element shown. Show the result on a sketch.

80 MPa

45 MPa

A

B

45�

Probs. 9–8/9

200 psi

350 psi

75 psi

9–10. The state of stress at a point in a member is shown
on the element. Determine the stress components acting on
the inclined plane AB. Solve the problem using the method
of equilibrium described in Sec. 9.1.

9–11. Solve Prob. 9–10 using the stress-transformation
equations developed in Sec. 9.2. Show the result on a sketch.

30�

B

A

2 ksi

4 ksi

3 ksi

*9–12. Determine the equivalent state of stress on an
element if it is oriented 50° counterclockwise from the
element shown. Use the stress-transformation equations.

16 ksi

10 ksi

Probs. 9–10/11

Prob. 9–12

Prob. 9–13

9–14. The state of stress at a point is shown on the element.
Determine (a) the principal stress and (b) the maximum
in-plane shear stress and average normal stress at the point.
Specify the orientation of the element in each case. Show
the results on each element.

30 ksi

12 ksi

Prob. 9–14

9–15. The state of stress at a point is shown on the element.
Determine (a) the principal stress and (b) the maximum
in-plane shear stress and average normal stress at the point.
Specify the orientation of the element in each case. Show
the results on each element.

80 MPa

60 MPa

50 MPa

Prob. 9–15
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Prob. 9–16 Prob. 9–19

*9–16. The state of stress at a point is shown on the
element. Determine (a) the principal stress and (b) the
maximum in-plane shear stress and average normal stress at
the point. Specify the orientation of the element in each case.
Sketch the results on each element.

9–19. The state of stress at a point is shown on the element.
Determine (a) the principal stress and (b) the maximum
in-plane shear stress and average normal stress at the point.
Specify the orientation of the element in each case. Sketch
the results on each element.

60 MPa

45 MPa

30 MPa

50 MPa

125 MPa

75 MPa

•9–17. Determine the equivalent state of stress on an
element at the same point which represents (a) the principal
stress, and (b) the maximum in-plane shear stress and the
associated average normal stress. Also, for each case,
determine the corresponding orientation of the element
with respect to the element shown. Sketch the results on
each element.

Prob. 9–17

9–18. A point on a thin plate is subjected to the two
successive states of stress shown. Determine the resultant
state of stress represented on the element oriented as
shown on the right.

� �
25�

sy

sx

txy

350 MPa

58 MPa200 MPa

60�

120 MPa

160 MPa

2 ksi

4 ksi

45�

60�

b b

a

a

sb

*9–20. The stress acting on two planes at a point is
indicated. Determine the normal stress and the principal
stresses at the point.

sb

Prob. 9–18

Prob. 9–20

Prob. 9–21

•9–21. The stress acting on two planes at a point is
indicated. Determine the shear stress on plane a–a and the
principal stresses at the point.

80 ksi

60 ksi

90� 
45� 

60� 

b

a

a

b

ta



456 CHAPTER 9 STRESS TRANSFORMATION

9

Probs. 9–23/24

9–22. The T-beam is subjected to the distributed loading
that is applied along its centerline. Determine the principal
stress at point A and show the results on an element located
at this point.

•9–23. The wood beam is subjected to a load of 12 kN. If a
grain of wood in the beam at point A makes an angle of 25°
with the horizontal as shown, determine the normal and
shear stress that act perpendicular and parallel to the grain
due to the loading.

*9–24. The wood beam is subjected to a load of 12 kN.
Determine the principal stress at point A and specify the
orientation of the element.

•9–25. The bent rod has a diameter of 20 mm and is
subjected to the force of 400 N. Determine the principal
stress and the maximum in-plane shear stress that is
developed at point A. Show the results on a properly
oriented element located at this point.

9–26. The bracket is subjected to the force of 3 kip.
Determine the principal stress and maximum in-plane shear
stress at point A on the cross section at section a–a. Specify
the orientation of this state of stress and show the results on
elements.

9–27. The bracket is subjected to the force of 3 kip.
Determine the principal stress and maximum in-plane shear
stress at point B on the cross section at section a–a. Specify
the orientation of this state of stress and show the results on
elements.

0.5 m1 m

A

200 mm

200 mm
20 mm

20 mm

100 kN/m

A
75 mm

Prob. 9–22

250 mm

400 N400 N

100 mm 150 mm

A

2 m 4 m1 m
12 kN

25�
75 mm

300 mm

200 mm

A

a

a 3 in.
3 kip3 kip

A

B

2 in.

1 in. 0.25 in.

0.25 in.

0.25 in.

Section a – a

Prob. 9–25

Probs. 9–26/27

The following problems involve material covered in 
Chapter 8.
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Prob. 9–30

Probs. 9–31/32

B

A

1 m 3 m

25 kNA

B
10 mm

10 mm

200 mm

10 mm

200 mm

30�
110 mm

8 kN/m

*9–28. The wide-flange beam is subjected to the loading
shown. Determine the principal stress in the beam at point
A and at point B. These points are located at the top and
bottom of the web, respectively. Although it is not very
accurate, use the shear formula to determine the shear
stress.

9–30. The cantilevered rectangular bar is subjected to the
force of 5 kip. Determine the principal stress at points A
and B.

9–31. Determine the principal stress at point A on the
cross section of the arm at section a–a. Specify the
orientation of this state of stress and indicate the results on
an element at the point.

*9–32. Determine the maximum in-plane shear stress
developed at point A on the cross section of the arm at
section a–a. Specify the orientation of this state of stress and
indicate the results on an element at the point.

Prob. 9–28

5

3 in.

3 in.
4

5 kip

1.5 in.
1.5 in.1.5 in.

1.5 in.

1 in.

1 in.

15 in.

B

A

3

•9–29. The wide-flange beam is subjected to the loading
shown. Determine the principal stress in the beam at
point A, which is located at the top of the web. Although
it is not very accurate, use the shear formula to determine
the shear stress. Show the result on an element located at
this point.

A

30 kN 120 kN/m

A

20 mm
20 mm

150 mm

20 mm

150 mm

0.9 m 0.3 m

Prob. 9–29

Section a – a

a

a

A

D

B C

500 N

60�

50 mm

7.5 mm

7.5 mm

7.5 mm
20 mm

0.15 m 0.15 m
0.35 m
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•9–33. The clamp bears down on the smooth surface at E
by tightening the bolt. If the tensile force in the bolt is 40 kN,
determine the principal stress at points A and B and show
the results on elements located at each of these points. The
cross-sectional area at A and B is shown in the adjacent
figure.

9–35. The square steel plate has a thickness of 10 mm and
is subjected to the edge loading shown. Determine the
maximum in-plane shear stress and the average normal
stress developed in the steel.

9–34. Determine the principal stress and the maximum
in-plane shear stress that are developed at point A in the 
2-in.-diameter shaft. Show the results on an element
located at this point. The bearings only support vertical
reactions.

100 mm
50 mm

A

E

B
B

A

50 mm

30 mm

25 mm

100 mm

300 mm

Prob. 9–33

A

24 in. 12 in. 12 in.

300 lb

3000 lb3000 lb

Prob. 9–34

200 mm

200 mm

50 N/m

50 N/m

*9–36. The square steel plate has a thickness of 0.5 in. and
is subjected to the edge loading shown. Determine the
principal stresses developed in the steel.

•9–37. The shaft has a diameter d and is subjected to the
loadings shown. Determine the principal stress and the
maximum in-plane shear stress that is developed at point A.
The bearings only support vertical reactions.

4 in.

4 in.

16 lb/in.

16 lb/in.

Prob. 9–36

A

F F

P

L
2

L
2

Prob. 9–37

Prob. 9–35
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9–38. A paper tube is formed by rolling a paper strip in
a spiral and then gluing the edges together as shown.
Determine the shear stress acting along the seam, which is
at 30° from the vertical, when the tube is subjected to an
axial force of 10 N.The paper is 1 mm thick and the tube has
an outer diameter of 30 mm.

9–39. Solve Prob. 9–38 for the normal stress acting
perpendicular to the seam.

*9–40. Determine the principal stresses acting at point A
of the supporting frame. Show the results on a properly
oriented element located at this point.

•9–41. Determine the principal stress acting at point B,
which is located just on the web, below the horizontal
segment on the cross section. Show the results on a properly
oriented element located at this point. Although it is not
very accurate, use the shear formula to calculate the shear
stress.

9–42. The drill pipe has an outer diameter of 3 in., a wall
thickness of 0.25 in., and a weight of If it is
subjected to a torque and axial load as shown, determine
(a) the principal stress and (b) the maximum in-plane shear
stress at a point on its surface at section a.

50 lb>ft.

9–43. Determine the principal stress in the beam at 
point A.

10 N 10 N 

30�

30 mm

800 mm

150 mm

300 mm

15 mm

12 mm

130 mm

A

A 6 kN

3

45

B

B

Probs. 9–38/39

Probs. 9–40/41

800 lb�ft

20 ft

20 ft

1500 lb

a

Prob. 9–42

0.5 m 0.25 m
60 mm

150 mm150 kN
50 mm

60 kN

AA

Prob. 9–43
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Probs. 9–47/48 Prob. 9–50

*9–44. Determine the principal stress at point A which is
located at the bottom of the web. Show the results on an
element located at this point.

•9–45. Determine the maximum in-plane shear stress in
the box beam at point A. Show the results on an element
located at this point.

9–46. Determine the principal stress in the box beam at
point B. Show the results on an element located at this point.

9–47. The solid shaft is subjected to a torque, bending
moment, and shear force as shown. Determine the principal
stresses acting at point A.

*9–48. Solve Prob. 9–47 for point B.

•9–49. The internal loadings at a section of the beam are
shown. Determine the principal stress at point A. Also
compute the maximum in-plane shear stress at this point.

0.3 m0.6 m

A
10 mm

10 mm

200 mm

10 mm

150 mm

A

150 kN/m

Prob. 9–44

450 mm

300 N�m

45 N�m

800 N

A
B

25 mm

200 mm

50 mm

50 mm

x

y

z

A

50 mm

200 mm

800 kN

40 kN�m 500 kN

30 kN�m

2 ft 2 ft1.5 ft
0.5 ft

A

B

4 kip
10 kip

4 in.
A

B4 in. 3 in.
3 in.

6 in. Probs. 9–45/46

Prob. 9–49

200 mm

50 mm

50 mm

100 mm

A

B

C

800 N
500 N30 N�m

40 N�m

9–50. The internal loadings at a section of the beam
consist of an axial force of 500 N, a shear force of 800 N,
and two moment components of and 
Determine the principal stress at point A.Also calculate the
maximum in-plane shear stress at this point.

40 N # m.30 N # m
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9.4 Mohr’s Circle—Plane Stress

In this section, we will show how to apply the equations for plane stress
transformation using a graphical solution that is often convenient to
use and easy to remember. Furthermore, this approach will allow us to
“visualize” how the normal and shear stress components and vary
as the plane on which they act is oriented in different directions, Fig. 9–15a.

If we write Eqs. 9–1 and 9–2 in the form

(9–9)

(9–10)

then the parameter can be eliminated by squaring each equation and
adding the equations together. The result is

For a specific problem, are known constants. Thus the above
equation can be written in a more compact form as

(9–11)

where

(9–12)

If we establish coordinate axes, positive to the right and positive
downward, and then plot Eq. 9–11, it will be seen that this equation
represents a circle having a radius R and center on the axis at point

Fig. 9–15b. This circle is called Mohr’s circle, because it was
developed by the German engineer Otto Mohr.
C1savg, 02,

s

ts

R = C¢
sx - sy

2
≤2

+ txy
2

savg =
sx + sy

2

1sx¿ - savg22 + tx¿y¿
2 = R2

txysy ,sx ,

Bsx¿ - ¢sx + sy

2
≤ R2

+ tx¿y¿
2 = ¢sx - sy

2
≤2

+ txy
2

u

tx¿y¿ = - ¢sx - sy

2
≤  sin 2u + txy cos 2u

sx¿ - ¢sx + sy

2
≤ = ¢sx - sy

2
≤  cos 2u + txy sin 2u

tx¿y¿sx¿

x ¿

(a)

y¿

x

tx ¿y¿

txy

sx ¿

sx

sy

u

C

(b)

R �sx

t

txy

s

2

� txy2

2
sx � sy

2
sx � sy

2
sx � sy

savg � 

P

Fig. 9–15
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Each point on Mohr’s circle represents the two stress components 
and acting on the side of the element defined by the axis, when
the axis is in a specific direction . For example, when is coincident
with the x axis as shown in Fig. 9–16a, then and 

We will refer to this as the “reference point” A and plot its
coordinates Fig. 9–16c.

Now consider rotating the axis 90° counterclockwise, Fig. 9–16b.
Then These values are the coordinates of point

on the circle, Fig. 9–16c. Hence, the radial line CG is 180°
counterclockwise from the “reference line” CA. In other words, a
rotation of the axis on the element will correspond to a rotation 

on the circle in the same direction.*
Once constructed, Mohr’s circle can be used to determine the

principal stresses, the maximum in-plane shear stress and associated
average normal stress, or the stress on any arbitrary plane.

2u
x¿u

G1sy, -txy2
tx¿y¿ = -txy .sx¿ = sy ,

x¿
A1sx , txy2,

tx¿y¿ = txy .
sx¿ = sx ,u = 0°

x¿u

x¿tx¿y¿

sx¿

x, x ¿

(a)

y, y¿sy

sx � sx ¿

txy � tx ¿y¿
u � 0�

C

R

G

A

(c)

sy

sx

txy

s

t

savg

�txy

u � 0�

2u � 180�

2
sx � sy

x

(b)

x ¿

y¿

sy

sx

txy

u � 90�

Fig. 9–16

*If instead the axis were established positive upwards, then the angle on the circle
would be measured in the opposite direction to the orientation of the plane.u

2ut
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Procedure for Analysis

The following steps are required to draw and use Mohr’s circle.

Construction of the Circle.

• Establish a coordinate system such that the horizontal axis
represents the normal stress with positive to the right, and the
vertical axis represents the shear stress with positive
downwards, Fig. 9–17a.*

• Using the positive sign convention for as shown in 
Fig. 9–17b, plot the center of the circle C, which is located on the 
axis at a distance from the origin, Fig. 9–17a.

• Plot the “reference point” A having coordinates This
point represents the normal and shear stress components on the
element’s right-hand vertical face, and since the axis coincides
with the x axis, this represents Fig. 9–17a.

• Connect point A with the center C of the circle and determine
CA by trigonometry. This distance represents the radius R of the
circle, Fig. 9–17a.

• Once R has been determined, sketch the circle.

Principal Stress.

• The principal stresses and are the coordinates of
points B and D where the circle intersects the axis, i.e., where

Fig. 9–17a.

• These stresses act on planes defined by angles and 
Fig. 9–17c. They are represented on the circle by angles 
(shown) and (not shown) and are measured from the radial
reference line CA to lines CB and CD, respectively.

• Using trigonometry, only one of these angles needs to be calculated
from the circle, since and are 90° apart. Remember that the
direction of rotation on the circle (here it happens to be
counterclockwise) represents the same direction of rotation from
the reference axis to the principal plane Fig. 9–17c.*

Maximum In-Plane Shear Stress.

• The average normal stress and maximum in-plane shear stress
components are determined from the circle as the coordinates of
either point E or F, Fig. 9–17a.

• In this case the angles and give the orientation of the planes
that contain these components, Fig. 9–17d.The angle is shown
in Fig. 9–17a and can be determined using trigonometry. Here the
rotation happens to be clockwise, from CA to CE, and so must
be clockwise on the element, Fig. 9–17d.*

us1

2us1

us2
us1

1+x¿2,1+x2 up

2up

up2
up1

2up2

2up1

up2
,up1

t = 0,
s

s2 1s1 Ú s22s1

u = 0°,
x¿

A1sx, txy2.
savg = 1sx + sy2>2

s

txy ,sy ,sx ,

t,
s,
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x¿

(e)

y¿

x

tx ¿y¿

txy

sx ¿
sx

sy

u

x

x¿

(d)

y¿
savg

savg

us1

(tx ¿y¿)max
             in-plane

(c)

x

x¿
s2

s1

up2
 � up1

 � 90�

up1

C

F

E

D

R

B

A

(a)

P

savg

tx ¿y¿

sx

sx ¿

t

txy

s

u � 0�

2u

2us1

2up1

(b)

sy

txy

sx

Fig. 9–17

Procedure for Analysis (continued)

Stresses on Arbitrary Plane.

• The normal and shear stress components and acting on a
specified plane or axis, defined by the angle Fig. 9–17e, can
be obtained from the circle using trigonometry to determine the
coordinates of point P, Fig. 9–17a.

• To locate P, the known angle (in this case counterclockwise),
Fig. 9–17e, must be measured on the circle in the same direction
(counterclockwise), from the radial reference line CA to the
radial line CP, Fig. 9–17a.*

2u
u

u,x¿
tx¿y¿sx¿

*If the axis were constructed positive upwards, then the angle on the circle
would be measured in the opposite direction to the orientation of the axis.x¿u

2ut
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EXAMPLE 9.7

(b)

BD
C

s (ksi)

t (ksi)

R �
 8.496

12

6

A

2up2

(a)

P

T

12 ksi

6 ksi

A
M

Fig. 9–18

Due to the applied loading, the element at point A on the solid shaft in
Fig. 9–18a is subjected to the state of stress shown. Determine the principal
stresses acting at this point.

SOLUTION
Construction of the Circle. From Fig. 9–18a,

The center of the circle is at

The reference point and the center are plotted in
Fig. 9–18b. The circle is constructed having a radius of

Principal Stress. The principal stresses are indicated by the
coordinates of points B and D. We have, for 

Ans.

Ans.

The orientation of the element can be determined by calculating the
angle in Fig. 9–18b, which here is measured counterclockwise from
CA to CD. It defines the direction of and its associated principal
plane. We have

The element is oriented such that the axis or is directed 22.5°
counterclockwise from the horizontal (x axis) as shown in Fig. 9–18c.

s2x¿

 up2
= 22.5°

 2up2
= tan-1 

6
12 - 6

= 45.0°

s2up2

2up2

 s2 = -6 - 8.49 = -14.5 ksi

 s1 = 8.49 - 6 = 2.49 ksi

s1 7 s2,

R = 2112 - 622 + 1622 = 8.49 ksi

C1-6, 02A1-12, -62
savg =

-12 + 0
2

= -6 ksi

sx = -12 ksi sy = 0 txy = -6 ksi

(c)

22.5�

2.49 ksi

x¿14.5 ksi

x
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EXAMPLE 9.8

The state of plane stress at a point is shown on the element in Fig. 9–19a.
Determine the maximum in-plane shear stress at this point.

SOLUTION
Construction of the Circle. From the problem data,

The axes are established in Fig.9–19b.The center of the circle C is
located on the axis, at the point

Point C and the reference point are plotted. Applying
the Pythagorean theorem to the shaded triangle to determine the
circle’s radius CA, we have

Maximum In-Plane Shear Stress. The maximum in-plane shear
stress and the average normal stress are identified by point E (or F )
on the circle. The coordinates of point E(35, 81.4) give

Ans.

Ans.

The angle , measured counterclockwise from CA to CE, can be
found from the circle, identified as We have

Ans.

This counterclockwise angle defines the direction of the axis,
Fig. 9–19c. Since point E has positive coordinates, then the average
normal stress and the maximum in-plane shear stress both act in the
positive and directions as shown.y¿x¿

x¿

us1
= 21.3°

2us1
= tan-1 a20 + 35

60
b = 42.5°

2us1
.

us1

 savg = 35 MPa

= 81.4 MPat max
in-plane

R = 216022 + 15522 = 81.4 MPa

A1-20, 602

savg =
-20 + 90

2
= 35 MPa

s

ts,

sx = -20 MPa sy = 90 MPa txy = 60 MPa

Fig. 9–19

90 MPa

(a)

60 MPa

20 MPa

C

A

(b)

35

60

20

81.4

F

E

R �
 81

.4

s (MPa)

t (MPa)

2us1

(c)

81.4 MPa
35 MPa

21.3�
x

y¿

x¿
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EXAMPLE 9.9

The state of plane stress at a point is shown on the element in 
Fig. 9–20a. Represent this state of stress on an element oriented 30°
counterclockwise from the position shown.

SOLUTION
Construction of the Circle. From the problem data,

The and axes are established in Fig. 9–20b. The center of the circle
C is on the axis at

The reference point for has coordinates 
Hence from the shaded triangle the radius CA is

Stresses on 30° Element. Since the element is to be rotated
30° counterclockwise, we must construct a radial line CP,

counterclockwise, measured from 
Fig. 9–20b. The coordinates of point must now be
obtained. From the geometry of the circle,

Ans.

Ans.

These two stress components act on face BD of the element shown
in Fig. 9–20c since the axis for this face is oriented 30°
counterclockwise from the x axis.

The stress components acting on the adjacent face DE of the
element, which is 60° clockwise from the positive x axis, Fig. 9–20c, are
represented by the coordinates of point Q on the circle. This point
lies on the radial line CQ, which is 180° from CP. The coordinates of
point Q are

Ans.

Ans.

NOTE: Here acts in the direction.-y¿tx¿y¿

 tx¿y¿ = -111.66 sin 29.042 = -5.66 ksi 1check2
 sx¿ = 2 + 11.66 cos 29.04° = 12.2 ksi

x¿

 tx¿y¿ = 11.66 sin 29.04° = 5.66 ksi

 sx¿ = 2 - 11.66 cos 29.04° = -8.20 ksi

 f = tan-1
 
6
10

= 30.96° c = 60° - 30.96° = 29.04°

P1sx¿ , tx¿y¿2
CA 1u = 0°2,2130°2 = 60°

R = 211022 + 1622 = 11.66

A1-8, -62.u = 0°

savg =
-8 + 12

2
= 2 ksi

s

ts

sx = -8 ksi sy = 12 ksi txy = -6 ksi

Fig. 9–20

12 ksi

8 ksi

6 ksi

(a)

29.04�

11.66
Q

P

A

60�

120�
R � 11.666

c � 29.04�

f

s (ksi)

t (ksi)

sx¿

tx¿y¿

8 2

C

(b)

11.66

5.66 ksi

60�

x¿

y¿

y¿

30�

8.20 ksi
B

D

E

12.2 ksi

x¿

(c)

x

x
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F9–7

40 mm

4 kN·m

4 kN·m
30 mm

F9–8

FUNDAMENTAL PROBLEMS

F9–7. Determine the normal stress and shear stress acting
on the inclined plane AB. Sketch the result on the sectioned
element.

F9–10. Determine the principal stress developed at point A
on the cross section of the beam at section a–a.

500 kPa

A

B

30�

F9–8. Determine the equivalent state of stress on an
element at the same point that represents the principal
stresses at the point. Also, find the corresponding
orientation of the element with respect to the element
shown. Sketch the results on the element.

300 mm

30 kN

a

a

50 mm

50 mm
150 mm

Section a–a

A

F9–11. Determine the maximum in-plane shear stress
developed at point A on the cross section of the beam at
section a–a, which is located just to the left of the 60-kN
force. Point A is just below the flange.

A
B

0.5 m 1 m

60 kN

180 mm

10 mm

10 mm

10 mm

100 mm

A

a

a

Section a-a

F9–9

F9–9. The hollow circular shaft is subjected to the torque
of 4 kN m. Determine the principal stress developed at a
point on the surface of the shaft.

#

80 kPa

30 kPa

F9–10

F9–11
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9–51. Solve Prob. 9–4 using Mohr’s circle.

*9–52. Solve Prob. 9–6 using Mohr’s circle.

•9–53. Solve Prob. 9–14 using Mohr’s circle.

9–54. Solve Prob. 9–16 using Mohr’s circle.

9–55. Solve Prob. 9–12 using Mohr’s circle.

*9–56. Solve Prob. 9–11 using Mohr’s circle.

9–57. Mohr’s circle for the state of stress in Fig. 9–15a is
shown in Fig. 9–15b. Show that finding the coordinates of
point on the circle gives the same value as the
stress-transformation Eqs. 9–1 and 9–2.

9–58. Determine the equivalent state of stress if an
element is oriented 25° counterclockwise from the element
shown.

P1sx¿ , tx¿y¿2

*9–60. Determine the equivalent state of stress if an
element is oriented 30° clockwise from the element shown.
Show the result on the element.

•9–61. Determine the equivalent state of stress for an
element oriented 60° counterclockwise from the element
shown. Show the result on the element.

PROBLEMS

550 MPa

Prob. 9–58

9–59. Determine the equivalent state of stress if an
element is oriented 20° clockwise from the element shown.

2 ksi

3 ksi

4 ksi

Prob. 9–59

9 ksi

4 ksi

6 ksi

Prob. 9–60

250 MPa

400 MPa

560 MPa

Prob. 9–61
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9–62. Determine the equivalent state of stress for an
element oriented 30° clockwise from the element shown.
Show the result on the element.

9–63. Determine the principal stress, the maximum in-plane
shear stress, and average normal stress. Specify the orientation
of the element in each case.

*9–64. Determine the principal stress, the maximum 
in-plane shear stress, and average normal stress. Specify the
orientation of the element in each case.

•9–65. Determine the principal stress, the maximum in-
plane shear stress, and average normal stress. Specify the
orientation of the element in each case.

9–66. Determine the principal stress, the maximum in-plane
shear stress, and average normal stress. Specify the orientation
of the element in each case.

9–67. Determine the principal stress, the maximum in-plane
shear stress, and average normal stress. Specify the orientation
of the element in each case.

*9–68. Draw Mohr’s circle that describes each of the
following states of stress.

2 ksi

5 ksi

Prob. 9–62

5 ksi

15 ksi

Prob. 9–63

20 MPa

30 MPa

80 MPa

Prob. 9–64

300 psi

120 psi

Prob. 9–65

30 MPa

45 MPa

50 MPa

Prob. 9–66

200 MPa

500 MPa

350 MPa

Prob. 9–67

700 psi

600 psi

(a) (b) (c)

4 ksi

40 MPa

Prob. 9–68
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3 in.

3 in.
4

5 kip

1.5 in.
1.5 in.1.5 in.

1.5 in.

1 in.

1 in.

15 in.

B

A

3
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The following problems involve material covered in
Chapter 8.

9–69. The frame supports the distributed loading of
200 N�m. Determine the normal and shear stresses at point
D that act perpendicular and parallel, respectively, to the
grain. The grain at this point makes an angle of 30° with the
horizontal as shown.

9–70. The frame supports the distributed loading of
200 N�m. Determine the normal and shear stresses at point
E that act perpendicular and parallel, respectively, to the
grain. The grain at this point makes an angle of 60° with the
horizontal as shown.

9–71. The stair tread of the escalator is supported on two
of its sides by the moving pin at A and the roller at B. If a
man having a weight of 300 lb stands in the center of the
tread, determine the principal stresses developed in the
supporting truck on the cross section at point C. The stairs
move at constant velocity.

*9–72. The thin-walled pipe has an inner diameter of 
0.5 in. and a thickness of 0.025 in. If it is subjected to an
internal pressure of 500 psi and the axial tension and
torsional loadings shown, determine the principal stress at a
point on the surface of the pipe.

•9–73. The cantilevered rectangular bar is subjected to the
force of 5 kip. Determine the principal stress at point A.

9–74. Solve Prob. 9–73 for the principal stress at point B.

9–75. The 2-in.-diameter drive shaft AB on the helicopter
is subjected to an axial tension of 10 000 lb and a torque
of Determine the principal stress and the
maximum in-plane shear stress that act at a point on the
surface of the shaft.

300 lb # ft.

4 m

1 m 1.5 m

1.5 m

200 N/m

B

CD

100 mm

200 mm

100 mm

50 mm

30� 75 mm

E

30 mm

60�

A
Probs. 9–69/70

A

B

30�

30�1.5 ft

0.5 ft

0.5 ft

C

2 in.

0.5 in.
C

1 in.

1.25 ft

Prob. 9–71

20 lb�ft 20 lb�ft

200 lb200 lb

Prob. 9–72

Probs. 9–73/74

A
B

Prob. 9–75
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•9–77. A spherical pressure vessel has an inner radius of
5 ft and a wall thickness of 0.5 in. Draw Mohr’s circle for the
state of stress at a point on the vessel and explain the
significance of the result. The vessel is subjected to an
internal pressure of 80 psi.

9–78. The cylindrical pressure vessel has an inner radius
of 1.25 m and a wall thickness of 15 mm. It is made from
steel plates that are welded along the 45° seam. Determine
the normal and shear stress components along this seam if
the vessel is subjected to an internal pressure of 8 MPa.

•9–79. Determine the normal and shear stresses at point
D that act perpendicular and parallel, respectively, to the
grains. The grains at this point make an angle of 30° with
the horizontal as shown. Point D is located just to the left of
the 10-kN force.

*9–80. Determine the principal stress at point D, which is
located just to the left of the 10-kN force.

•9–81. Determine the principal stress at point A on the
cross section of the hanger at section a–a. Specify the
orientation of this state of stress and indicate the result on
an element at the point.

9–82. Determine the principal stress at point A on the
cross section of the hanger at section b–b. Specify the
orientation of the state of stress and indicate the results on
an element at the point.

9–83. Determine the principal stresses and the maximum
in-plane shear stress that are developed at point A. Show
the results on an element located at this point.The rod has a
diameter of 40 mm.

1.25 m

45�

Prob. 9–78

2 m1 m 1 m

B

C

100 mm

300 mm

A
D

D
100 mm

100 mm 30�

10 kN

Probs. 9–79/80

a b

ba

0.75 m 0.75 m

250 mm250 mm

0.5 m

900 N900 N

50 mm

25 mm

100 mm

5 mm
5 mm

5 mm

Sections a – a
 and b – b

A

Probs. 9–81/82

450 N

450 N

100 mm
A

B

150 mm

150 mm

Prob. 9–83

*9–76. The pedal crank for a bicycle has the cross section
shown. If it is fixed to the gear at B and does not rotate
while subjected to a force of 75 lb, determine the principal
stress in the material on the cross section at point C.

B A

75 lb75 lb

4 in.

0.3 in.
0.2 in.

0.4 in.
0.4 in.

C
3 in.

Prob. 9–76
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9.5 Absolute Maximum Shear Stress

When a point in a body is subjected to a general three-dimensional
state of stress, an element of material has a normal-stress and two
shear-stress components acting on each of its faces, Fig. 9–21a. Like the
case of plane stress, it is possible to develop stress-transformation
equations that can be used to determine the normal and shear stress
components and acting on any skewed plane of the element, Fig. 9–21b.
Furthermore, at the point it is also possible to determine the unique
orientation of an element having only principal stresses acting on its
faces. As shown in Fig. 9–21c, in general these principal stresses will
have magnitudes of maximum, intermediate, and minimum intensity,
i.e., This is a condition known as triaxial stress.

A discussion of the transformation of stress in three dimensions is
beyond the scope of this text; however, it is discussed in books related 
to the theory of elasticity. For our purposes, we will confine our 
attention only to the case of plane stress. For example, consider the

smax Ú sint Ú smin .

ts

s

t

(b) (c)

triaxial stress

smin

sint

smax

(a)

Fig. 9–21
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material to be subjected to the in-plane principal stresses and 
shown in Fig. 9–22a, where both of these stresses are tensile. If we view
the element in two dimensions, that is, in the y–z, x–z, and x–y planes,
Fig. 9–22b, 9–22c, and 9–22d, then we can use Mohr’s circle to determine
the maximum in-plane shear for each case and from this, determine the
absolute maximum shear stress in the material. For example, the diameter
of Mohr’s circle extends between 0 and for the case shown in Fig. 9–22b.
From this circle, Fig. 9–22e, the maximum in-plane shear stress is

. For all three circles, it is seen that although the maximum in-
plane shear stress is , this value is not the absolute
maximum shear stress. Instead, from Fig. 9–22e,

(9–13)
and have 

the same sign
s2s1

t 
max
abs =

s1

2

tx¿y¿ = (s1 - s2)>2
ty¿z¿ = s2>2

s2

s2s1

z

yx

x–y plane stress

(a)

s1

s2

Fig. 9–22

y

z

(b)

s2

x

z

(c)

s1

x

y

(d)

s1

s2

s
s1

s2

(e)

Absolute maximum
shear stress

Maximum in-plane
shear stress

(tx¿y¿)max

(ty¿z¿)max

(tx¿z¿)max

t

0
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If one of the in-plane principal stresses has the opposite sign of that of
the other, Fig. 9–23a, then the three Mohr’s circles that describe the state of
stress for element orientations about each coordinate axis are shown in
Fig. 9–23b. Clearly, in this case

(9–14)
and have

opposite signs

Calculation of the absolute maximum shear stress as indicated here is
important when designing members made of a ductile material, since the
strength of the material depends on its ability to resist shear stress. This
situation will be discussed further in Sec. 10.7.

s2s1

t 
max
abs =

s1 - s2

2

s1
s2

y

x–y  plane stress

(a)

z

x

(b)

Maximum in-plane and
absolute maximum shear stress

s1s2
s

(tx¿y¿)max

t

(tx¿z¿)max

(ty¿z¿)max

Fig. 9–23

Important Points

• The general three-dimensional state of stress at a point can be
represented by an element oriented so that only three principal
stresses act on it.

• In the case of plane stress, if the in-plane principal stresses both
have the same sign, the absolute maximum shear stress will occur
out of the plane and has a value of This value is
greater than the in-plane shear stress.

• If the in-plane principal stresses are of opposite signs, then the
absolute maximum shear stress will equal the maximum in-plane
shear stress; that is, t 

max
abs = 1smax - smin2>2.

t 
max
abs = smax>2.

smax, sint, smin
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EXAMPLE 9.10

The point on the surface of the cylindrical pressure vessel in Fig. 9–24a
is subjected to the state of plane stress. Determine the absolute
maximum shear stress at this point.

(b)

88

16

16

32

s (MPa)

t (MPa)

s1

s2

(a)

32 MPa

16 MPa

Fig. 9–24

SOLUTION
The principal stresses are . If these stresses
are plotted along the axis, the three Mohr’s circles can be constructed
that describe the stress state viewed in each of the three perpendicular
planes, Fig. 9–24b. The largest circle has a radius of 16 MPa and
describes the state of stress in the plane only containing ,
shown shaded in Fig. 9–24a. An orientation of an element 45° within
this plane yields the state of absolute maximum shear stress and the
associated average normal stress, namely,

Ans.

This same result for can be obtained from direct application of
Eq. 9–13.

Ans.

savg =
32 + 0

2
= 16 MPa

 t 
max
abs =

s1

2
=

32
2

= 16 MPa

t abs
max

 savg = 16 MPa

 t 
max
abs = 16 MPa

s1 = 32 MPa

s

s2 = 16 MPas1 = 32 MPa,

By comparison, the maximum in-plane shear stress can be
determined from the Mohr’s circle drawn between and

Fig. 9–24b. This gives a value of

 savg =
32 + 16

2
= 24 MPa

=
32 - 16

2
= 8 MPat max

in-plane

s2 = 16 MPa,
s1 = 32 MPa
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EXAMPLE 9.11

Due to an applied loading, an element at the point on a machine shaft is
subjected to the state of plane stress shown in Fig. 9–25a.Determine the
principal stresses and the absolute maximum shear stress at the point.

SOLUTION
Principal Stresses. The in-plane principal stresses can
be determined from Mohr’s circle. The center of the
circle is on the axis at 
Plotting the reference point the radius CA
is established and the circle is drawn as shown in
Fig. 9–25b. The radius is

The principal stresses are at the points where the circle
intersects the axis; i.e.,

From the circle, the counterclockwise angle measured
from CA to the axis, is

Thus,

This counterclockwise rotation defines the direction of the axis and
and its associated principal plane, Fig. 9–25c. We have

Ans.

Absolute Maximum Shear Stress. Since these
stresses have opposite signs, applying Eq. 9–14 we have

Ans.

NOTE: These same results can also be obtained by
drawing Mohr’s circle for each orientation of an element
about the and axes, Fig. 9–25d. Since and are
of opposite signs, then the absolute maximum shear
stress equals the maximum in-plane shear stress.

s2s1zy,x,

 savg =
31.2 - 51.2

2
= -10 psi

 t 
max
abs =

s1 - s2

2
=

31.2 - 1-51.22
2

= 41.2 psi

s1 = 31.2 psi s2 = -51.2 psi

s2

x¿

u = 38.0°

2u = tan-1a 40
20 - 10

b = 76.0°

-s
2u,

 s2 = -10 - 41.2 = -51.2 psi

 s1 = -10 + 41.2 = 31.2 psi

s

R = 2120 - 1022 + 14022 = 41.2 psi

A1-20, -402,savg = 1-20 + 02>2 = -10 psi.s

(a)

40 psi

20 psi

2u

(b)

C

10

20

R
 �

 41.2

40

A

(s2, 0) (s1, 0)

t (psi)

s (psi)

51.2 psi

x
38.0�

x¿31.2 psi

y¿

(c)

(d)

C

10

A
2u � 76.0� � 90� � 166�

s2 � �51.2 psi s1 � 31.2 psi

t (psi)

s (psi)

 � 41.2 psitabs
     max

Fig. 9–25
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5 ksi

3 ksi

(a)

180 MPa

(b)

140 MPa

Prob. 9–84

400 psi

300 psi

Prob. 9–85

90 MPa

z

yx

80 MPa

Prob. 9–86

30 psi

70 psi

z

yx 120 psi

Prob. 9–87

*9–84. Draw the three Mohr’s circles that describe each of
the following states of stress.

9–87. The stress at a point is shown on the element.
Determine the principal stress and the absolute maximum
shear stress.

•9–85. Draw the three Mohr’s circles that describe the
following state of stress.

*9–88. The stress at a point is shown on the element.
Determine the principal stress and the absolute maximum
shear stress.

9–86. The stress at a point is shown on the element.
Determine the principal stress and the absolute maximum
shear stress.

PROBLEMS

z

yx

2 ksi

8 ksi

Prob. 9–88
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•9–89. The stress at a point is shown on the element.
Determine the principal stress and the absolute maximum
shear stress.

9–90. The state of stress at a point is shown on the
element. Determine the principal stress and the absolute
maximum shear stress.

9–91. Consider the general case of plane stress as shown.
Write a computer program that will show a plot of the three
Mohr’s circles for the element, and will also calculate the
maximum in-plane shear stress and the absolute maximum
shear stress.

*9–92. The solid shaft is subjected to a torque, bending
moment, and shear force as shown. Determine the principal
stress acting at points A and B and the absolute maximum
shear stress.

•9–93. The propane gas tank has an inner diameter of
1500 mm and wall thickness of 15 mm. If the tank is
pressurized to 2 MPa, determine the absolute maximum
shear stress in the wall of the tank.

9–94. Determine the principal stress and absolute
maximum shear stress developed at point A on the cross
section of the bracket at section a–a.

9–95. Determine the principal stress and absolute
maximum shear stress developed at point B on the cross
section of the bracket at section a–a.

z

yx

120 MPa

150 MPa

Prob. 9–89

2.5 ksi

z

yx

4 ksi

5 ksi

Prob. 9–90

sy

txy

sx

Prob. 9–91

450 mm

300 N�m

45 N�m
800 N

A
B

25 mm

Prob. 9–92

Prob. 9–93

6 in.

12 in.

500 lb

1.5 in.1.5 in.

0.25 in.0.25 in.

0.5 in. 0.25 in.

aa

3
4

5

A
B

Section a – a

Probs. 9–94/95
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Plane stress occurs when the material at a point
is subjected to two normal stress components

and and a shear stress Provided
these components are known, then the stress
components acting on an element having a
different orientation can be determined using
the two force equations of equilibrium or the
equations of stress transformation.

 tx¿y¿ = -
sx - sy

2
 sin 2u + txy cos 2u

+ txy sin 2u sx¿ =
sx + sy

2
+
sx - sy

2
 cos 2u

u

txy .sysx

CHAPTER REVIEW

y

x

sy

sx

txy

y¿

x ¿sy¿

sx ¿

tx ¿y¿

u

u

For design, it is important to determine the
orientation of the element that produces
the maximum principal normal stresses and
the maximum in-plane shear stress. Using the
stress transformation equations, it is found that
no shear stress acts on the planes of principal
stress. The principal stresses are

The planes of maximum in-plane shear stress
are oriented 45° from this orientation, and on
these shear planes there is an associated
average normal stress.

 savg =
sx + sy

2

= C¢
sx - sy

2
≤2

+ txy 

2t max
in-plane

s1,2 =
sx + sy

2
; C¢

sx - sy

2
≤2

+ txy 

2

�

sy

sx

txy

savg

savg

t max
in-plane

x 

s1

s2
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Mohr’s circle provides a semi-
graphical method for finding the stress
on any plane, the principal normal
stresses, and the maximum in-plane
shear stress. To draw the circle, the 
and axes are established, the center
of the circle C and
the reference point A are
plotted. The radius R of the circle 
extends between these two points and
is determined from trigonometry.

1sx , txy2
[1sx + sy2>2, 0]

t

s

C

R �

A

sx

t

txy

s

2
� txy2  

2
sx � sy

2
sx � sy

2
sx � sy

savg � 

If and are of the same sign, then
the absolute maximum shear stress
will lie out of plane.

In the case of plane stress, the
absolute maximum shear stress will
be equal to the maximum in-plane
shear stress provided the principal
stresses and have the opposite
sign.

=
s1 - s2

2
t abs

max

s2s1

=
s1

2
t abs

max

s2s1

x–y plane stress

s1

s2

s1
s2

x–y  plane stress
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T

0.75 m
A

0.75 m
A

F

Probs. 9–96/97

*9–96. The solid propeller shaft on a ship extends outward
from the hull. During operation it turns at 
when the engine develops 900 kW of power. This causes a
thrust of on the shaft. If the shaft has an outer
diameter of 250 mm, determine the principal stresses at any
point located on the surface of the shaft.

•9–97. The solid propeller shaft on a ship extends outward
from the hull. During operation it turns at 
when the engine develops 900 kW of power. This causes a
thrust of on the shaft. If the shaft has a
diameter of 250 mm, determine the maximum in-plane shear
stress at any point located on the surface of the shaft.

9–98. The steel pipe has an inner diameter of 2.75 in. and
an outer diameter of 3 in. If it is fixed at C and subjected to
the horizontal 20-lb force acting on the handle of the pipe
wrench at its end, determine the principal stresses in the
pipe at point A, which is located on the surface of the pipe.

F = 1.23 MN

v = 15 rad>s

F = 1.23 MN

v = 15 rad>s
*9–100. The clamp exerts a force of 150 lb on the boards
at G. Determine the axial force in each screw, AB and CD,
and then compute the principal stresses at points E and F.
Show the results on properly oriented elements located at
these points. The section through EF is rectangular and is 
1 in. wide.

9–101. The shaft has a diameter d and is subjected to the
loadings shown. Determine the principal stress and
the maximum in-plane shear stress that is developed
anywhere on the surface of the shaft.

9–99. Solve Prob. 9–98 for point B, which is located on the
surface of the pipe.

REVIEW PROBLEMS

10 in.

20 lb

12 in.

A

C

y
z

x

B

Probs. 9–98/99

A C

G

E

B D

0.5 in.

150 lb

150 lb

4 in.
1.5 in.1.5 in.

F

Prob. 9–100

F

F  

T0

T0

Prob. 9–101
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9–102. The state of stress at a point in a member is shown
on the element. Determine the stress components acting on
the plane AB.

•9–105. The wooden strut is subjected to the loading
shown. Determine the principal stresses that act at point C
and specify the orientation of the element at this point.
The strut is supported by a bolt (pin) at B and smooth
support at A.

9–103. The propeller shaft of the tugboat is subjected to
the compressive force and torque shown. If the shaft has an
inner diameter of 100 mm and an outer diameter of 150 mm,
determine the principal stress at a point A located on the
outer surface.

*9–104. The box beam is subjected to the loading shown.
Determine the principal stress in the beam at points A
and B.

9–106. The wooden strut is subjected to the loading
shown. If grains of wood in the strut at point C make an
angle of 60° with the horizontal as shown, determine the
normal and shear stresses that act perpendicular and
parallel to the grains, respectively, due to the loading. The
strut is supported by a bolt (pin) at B and smooth support
at A.

50 MPa

30�
28 MPa

A

B

100 MPa

Prob. 9–102

A

2 kN·m

10 kN

Prob. 9–103

3 ft 2.5 ft 5 ft2.5 ft

A

B

800 lb 1200 lb

6 in.
A

B6 in. 8 in.

8 in.

Prob. 9–104

50 N 50 N 40 N 40 N

100 mm

B

A

60�

C

25 mm

200 mm
100 mm

200 mm 200 mm 200 mm

50 mm

100 mm

50 N 50 N 40 N 40 N

100 mm

B

A

60�

C

25 mm

200 mm
100 mm

200 mm 200 mm 200 mm

50 mm

100 mm

Prob. 9–105

Prob. 9–106



Complex stresses developed within this airplane wing are analyzed from strain gauge data.
(Courtesy of Measurements Group, Inc., Raleigh, North Carolina, 27611, USA.)
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CHAPTER OBJECTIVES

The transformation of strain at a point is similar to the transformation
of stress, and as a result the methods of Chapter 9 will be applied 
in this chapter. Here we will also discuss various ways for measuring
strain and develop some important material-property relationships,
including a generalized form of Hooke’s law. At the end of the chapter,
a few of the theories used to predict the failure of a material will be
discussed.

10.1 Plane Strain

As outlined in Sec. 2.2, the general state of strain at a point in a body is
represented by a combination of three components of normal strain,

and three components of shear strain These six
components tend to deform each face of an element of the material, and
like stress, the normal and shear strain components at the point will vary
according to the orientation of the element. The strains at a point are
often determined by using strain gauges, which measure normal strain in
specified directions. For both analysis and design, however, engineers
must sometimes transform this data in order to obtain the strain in other
directions.

gyz .gxz ,gxy ,Pz ,Py ,
Px ,

Strain Transformation 10
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To understand how this is done, we will first confine our attention to a
study of plane strain. Specifically, we will not consider the effects of the
components and In general, then, a plane-strained element 
is subjected to two components of normal strain, and one
component of shear strain, Although plane strain and plane stress
each have three components lying in the same plane, realize that plane
stress does not necessarily cause plane strain or vice versa.The reason for
this has to do with the Poisson effect discussed in Sec. 3.6. For example, if
the element in Fig. 10–1 is subjected to plane stress and not only
are normal strains and produced, but there is also an associated
normal strain, This is obviously not a case of plane strain. In general,
then, unless the Poisson effect will prevent the simultaneous
occurrence of plane strain and plane stress.

10.2 General Equations of Plane-Strain
Transformation

It is important in plane-strain analysis to establish transformation
equations that can be used to determine the components of normal
and shear strain at a point, provided the x, y components of strain are
known. Essentially this problem is one of geometry and requires relating
the deformations and rotations of line segments, which represent the
sides of differential elements that are parallel to each set of axes.

Sign Convention. Before the strain-transformation equations can
be developed, we must first establish a sign convention for the strains.
With reference to the differential element shown in Fig. 10–2a, normal
strains and are positive if they cause elongation along the x and y
axes, respectively, and the shear strain is positive if the interior angle
AOB becomes smaller than 90°. This sign convention also follows the
corresponding one used for plane stress, Fig. 9–5a, that is, positive 

will cause the element to deform in the positive directions,
respectively.

The problem here will be to determine at a point the normal and shear
strains measured relative to the axes, if we know 

measured relative to the x, y axes. If the angle between the x and
axes is then, like the case of plane stress, will be positive provided

it follows the curl of the right-hand fingers, i.e., counterclockwise, as
shown in Fig. 10–2b.

uu,x¿
gxy ,Py ,

Px ,y¿x¿,gx¿y¿ ,Py¿ ,Px¿ ,

gxyPy ,Px ,txy

sy ,sx ,

gxy

PyPx

y¿x¿,

n = 0,
Pz .

PyPx

sy ,sx

gxy .
Py ,Px ,

gyz .gxz ,Pz ,

Fig. 10–1

10

Fig. 10–2

Plane stress, sx, sy, does not cause plane
strain in the x–y plane since Pz ≠ 0.

x
y

z

Pydy

Pzdz

Pxdx

sx sy

x

y

(a)

dy

A

O
B

�Pydy

dx �Pxdx

gxy

2
�

gxy

2
�

x

y
y ¿

x ¿

(b)

Positive sign convention

�u
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Normal and Shear Strains. In order to develop the strain-
transformation equation for we must determine the elongation of
a line segment that lies along the axis and is subjected to strain
components As shown in Fig. 10–3a, the components of the
line along the x and y axes are

(10–1)

When the positive normal strain occurs, the line dx is elongated
Fig. 10–3b, which causes line to elongate Likewise,

when occurs, line dy elongates Fig. 10–3c, which causes line 
to elongate Finally, assuming that dx remains fixed in
position, the shear strain which is the change in angle between dx
and dy, causes the top of line dy to be displaced to the right, as
shown in Fig. 10–3d. This causes to elongate If all three
of these elongations are added together, the resultant elongation of 
is then

From Eq. 2–2, the normal strain along the line is 
Using Eq. 10–1, we therefore have

(10–2)Px¿ = Px cos2 u + Py sin2 u + gxy sin u cos u

Px¿ = dx¿>dx¿.dx¿

dx¿ = Px dx cos u + Py dy sin u + gxy dy cos u

dx¿
gxy dy cos u.dx¿
gxy dy

gxy ,
Py dy sin u.

dx¿Py dy,Py

Px dx cos u.dx¿Px dx,
Px

 dy = dx¿ sin u

 dx = dx¿ cos u

dx¿
gxy .Py ,Px ,

x¿dx¿
Px¿ ,

10

(b)

Normal strain Px

dx¿

x

y
y ¿ x ¿

dx

u

Pxdx cosu

Pxdx
Pxdx sinu

x

y
y ¿

x ¿

dx

Before deformation

(a)

dy
dx ¿

u

x

y

x ¿y ¿

Normal strain Py

dy
dx¿

(c)

Pydy sinu

Pydy cosu

u

u
Pydy

Fig. 10–3

The rubber specimen is constrained between
the two fixed supports, and so it will undergo
plane strain when loads are applied to it in the
horizontal plane.

x

y

x ¿

dx ¿dy¿

(d)

Shear strain gxy

dx

gxydy cosugxydy sinu

u

gxydy

dy
gxy

y ¿
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The strain-transformation equation for can be developed by
considering the amount of rotation each of the line segments and 
undergo when subjected to the strain components First 
we will consider the rotation of which is defined by the
counterclockwise angle shown in Fig. 10–3e. It can be determined by
the displacement caused by using To obtain 
consider the following three displacement components acting in the 
direction: one from giving Fig. 10–3b; another from 
giving Fig. 10–3c; and the last from giving 
Fig. 10–3d. Thus, as caused by all three strain components, is

Dividing each term by and using Eq. 10–1, with we have

(10–3)

As shown in Fig. 10–3e, the line rotates by an amount We can
determine this angle by a similar analysis, or by simply substituting

for into Eq. 10–3. Using the identities 
we have

Since and represent the rotation of the sides and of a
differential element whose sides were originally oriented along the 
and axes, Fig. 10–3e, the element is then subjected to a shear strain of

(10–4)gx¿y¿ = a - b = -21Px - Py2 sin u cos u + gxy1cos2 u - sin2 u2
y¿

x¿
dy¿dx¿ba

 = -1-Px + Py2 cos u sin u - gxy cos2 u

 b = 1-Px + Py2 sin1u + 90°2 cos1u + 90°2 - gxy sin21u + 90°2
cos1u + 90°2 = -sin u,

sin1u + 90°2 = cos u,uu + 90°

b.dy¿

a = 1-Px + Py2 sin u cos u - gxy sin2 u

a = dy¿>dx¿,dx¿

dy¿ = -Px dx sin u + Py dy cos u - gxy dy sin u

dy¿,
-gxy dy sin u,gxy ,Py dy cos u,

Py ,-Px dx sin u,Px ,
y¿
dy¿,a = dy¿>dx¿.dy¿

a

dx¿,
gxy .Py ,Px ,

dy¿dx¿
gx¿y¿

10

x

y

x¿

y ¿

dy ¿
b a

udx ¿

dx ¿dy ¿

dy ¿

(e)

Fig. 10–3 (cont.)

x

y

x ¿

dx ¿dy¿

(d)

Shear strain gxy

dx

gxydy cosugxydy sinu

u

gxydy

dy
gxy

y ¿
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Using the trigonometric identities 
and we can rewrite Eqs. 10–2 and

10–4 in the final form

(10–5)

(10–6)

These strain-transformation equations give the normal strain in the
direction and the shear strain of an element oriented at an angle
as shown in Fig. 10–4. According to the established sign convention,

if is positive, the element elongates in the positive direction,
Fig. 10–4a, and if is positive, the element deforms as shown in
Fig. 10–4b.

If the normal strain in the direction is required, it can be obtained
from Eq. 10–5 by simply substituting for The result is

(10–7)

The similarity between the above three equations and those for plane-
stress transformation, Eqs. 9–1, 9–2, and 9–3, should be noted. By
comparison, correspond to and 
correspond to gx¿y¿>2.gxy>2,

tx¿y¿txy ,Py¿ ;Px¿ ,Py ,Px ,sy¿sx¿ ,sy ,sx ,

Py¿ =
Px + Py

2
-

Px - Py

2
 cos 2u -

gxy

2
 sin 2u

u.1u + 90°2y¿

gx¿y¿

x¿Px¿

u,
gx¿y¿x¿

Px¿

gx¿y¿

2
= - ¢ Px - Py

2
≤  sin 2u +

gxy

2
 cos 2u

Px¿ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

sin2 u + cos2 u = 1,(1 + cos 2u)>2,
cos2 u =sin 2u = 2 sin u cos u,

x

y

x ¿

y ¿

dy ¿

dx ¿

Positive normal strain, Px ¿

(a)

u

Positive shear strain, gx ¿y¿

(b)

x

y

x ¿

y ¿

dy ¿

dx ¿
u

Fig. 10–4
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Principal Strains. Like stress, an element can be oriented at a point
so that the element’s deformation is caused only by normal strains, with
no shear strain. When this occurs the normal strains are referred to as
principal strains, and if the material is isotropic, the axes along which
these strains occur will coincide with the axes that define the planes of
principal stress.

From Eqs. 9–4 and 9–5, and the correspondence between stress and
strain mentioned above, the direction of the axis and the two values of
the principal strains and are determined from

(10–8)

(10–9)

Maximum In-Plane Shear Strain. Using Eqs. 9–6, 9–7, and 9–8,
the direction of the axis, and the maximum in-plane shear strain and
associated average normal strain are determined from the following
equations:

(10–10)

(10–11)

(10–12)Pavg =
Px + Py

2

g max 
in-plane

2
= Ba

Px - Py

2
b2

+ agxy

2
b2

tan 2us = - ¢ Px - Py

gxy
≤

x¿

P1,2 =
Px + Py

2
; C¢

Px - Py

2
≤2

+ ¢gxy

2
≤2

tan 2up =
gxy

Px - Py

P2P1

x¿

10

Important Points

• In the case of plane stress, plane-strain analysis may be used within the plane of the stresses to analyze the
data from strain gauges. Remember, though, there will be a normal strain that is perpendicular to the
gauges due to the Poisson effect.

• When the state of strain is represented by the principal strains, no shear strain will act on the element.

• The state of strain at a point can also be represented in terms of the maximum in-plane shear strain. In this
case an average normal strain will also act on the element.

• The element representing the maximum in-plane shear strain and its associated average normal strains is
45° from the orientation of an element representing the principal strains.

Complex stresses are often developed 
at the joints where the cylindrical
and hemispherical vessels are joined
together. The stresses are determined by
making measurements of strain.
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EXAMPLE 10.1

A differential element of material at a point is subjected to a state
of plane strain
which tends to distort the element as shown in Fig. 10–5a. Determine
the equivalent strains acting on an element of the material oriented at
the point, clockwise 30° from the original position.

SOLUTION
The strain-transformation Eqs. 10–5 and 10–6 will be used to solve the
problem. Since is positive counterclockwise, then for this problem

Thus,

Ans.

 
gx¿y¿

2
= - ¢ Px - Py

2
≤  sin 2u +

gxy

2
 cos 2u

 Px¿ = 213110-62
 +  B200110-62

2
R  sin121-30°22

= c500 + 1-3002
2

d110-62 + c500 - 1-3002
2

d110-62 cos121-30°22

 Px¿ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

u = -30°.
u

gxy = 200110-62,Py = -300110-62,Px = 500110-62,

 = - c500 - 1-3002
2

d110-62 sin121-30°22 +
200110-62

2
 cos121-30°22

Ans.

The strain in the direction can be obtained from Eq. 10–7 with
However, we can also obtain using Eq. 10–5 with

Fig. 10–5b. We have with replacing 

Ans.

These results tend to distort the element as shown in Fig. 10–5c.

Py¿ = -13.4110-62
 +

200110-62
2

 sin12160°22

 = c500 + 1-3002
2

d110-62 + c500 - 1-3002
2

d110-62 cos12160°22

 Py¿ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

Px¿ ,Py¿u = 60°1u = -30° + 90°2, Py¿u = -30°.
y¿

gx¿y¿ = 793110-62

x

y

dy

dx

(a)

gxy

2

gxy

2

Pxdx

Pydy

x

y

y ¿

x ¿
(b)

u � 60�

u � �30�

dy ¿
Py¿dy ¿

Px¿dx ¿

dx ¿

x ¿

y ¿

(c)

gx ¿y¿

2

gx ¿y¿

2

Fig. 10–5
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EXAMPLE 10.2

A differential element of material at a point is subjected to a state
of plane strain defined by 

which tends to distort the element as shown in Fig. 10–6a.
Determine the principal strains at the point and the associated
orientation of the element.

SOLUTION
Orientation of the Element. From Eq. 10–8 we have

Thus, and so that

Ans.

Each of these angles is measured positive counterclockwise, from the x
axis to the outward normals on each face of the element, Fig. 10–6b.

Principal Strains. The principal strains are determined from Eq. 10–9.
We have

Ans.

We can determine which of these two strains deforms the element in
the direction by applying Eq. 10–5 with Thus,

Hence When subjected to the principal strains, the element
is distorted as shown in Fig. 10–6b.

Px¿ = P2 .

Px¿ = -353110-62
 +

80110-62
2

 sin 21-4.14°2

 = a -350 + 200
2

b110-62 + a -350 - 200
2

b110-62 cos 21-4.14°2

 Px¿ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

u = -4.14°.x¿

P1 = 203110-62 P2 = -353110-62
 = -75.0110-62 ; 277.9110-62
 =
1-350 + 2002110-62

2
; BB a -350 - 200

2
b2

+ a80
2
b2 R110-62

 P1,2 =
Px + Py

2
; B a

Px - Py

2
b2

+ agxy

2
b2

up = -4.14° and 85.9°

-8.28° + 180° = 171.72°,2up = -8.28°

 =
80110-62

1-350 - 2002110-62

 tan 2up =
gxy

Px - Py

80110-62, gxy =Py = 200110-62,Px = -350110-62,

x

y

(a)

gxy

2

gxy

2

Pxdxdx

dy

Pydy

x

y

(b)

y ¿

P1dy ¿

P2dx ¿ x ¿
�4.14�

85.9�

Fig. 10–6
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EXAMPLE 10.3

A differential element of material at a point is subjected to a state 
of plane strain defined by 

which tends to distort the element as shown in
Fig. 10–7a. Determine the maximum in-plane shear strain at the point
and the associated orientation of the element.

SOLUTION
Orientation of the Element. From Eq. 10–10 we have

Thus, and so that

Note that this orientation is 45° from that shown in Fig. 10–6b in
Example 10.2 as expected.

Maximum In-Plane Shear Strain. Applying Eq. 10–11 gives

Ans.

Due to the square root, the proper sign of can be obtained by
applying Eq. 10–6 with We have

This result is positive and so tends to distort the element so
that the right angle between and is decreased (positive sign
convention), Fig. 10–7b.

Also, there are associated average normal strains imposed on the
element that are determined from Eq. 10–12:

These strains tend to cause the element to contract, Fig. 10–7b.

Pavg =
Px + Py

2
=

-350 + 200
2

 110-62 = -75110-62

dy¿dx¿
gmax

in-plane

gx¿y¿ = 556110-62
 = - a -350 - 200

2
b110-62 sin 2140.9°2 +

80110-62
2

 cos 2140.9°2
 
gx¿y¿

2
= -

Px - Py

2
 sin 2u +

gxy

2
 cos 2u

us = 40.9°.
gmax

in-plane

 gmax 
in-plane

= 556110-62
 = BB a -350 - 200

2
b2

+ a80
2
b2R110-62

 
gmax 

in-plane

2
= Ba

Px - Py

2
b2

+ agxy

2
b2

us = 40.9° and 131°

81.72° + 180° = 261.72°,2us = 81.72°

tan 2us = - ¢ Px - Py

gxy
≤ = -

1-350 - 2002110-62
80110-62

gxy = 80110-62, Py = 200110-62,Px = -350110-62,

x

y

(a)
dx

dy

A

O
B

Pxdx

Pydy
gxy

2 gxy

2

(b)

x

y

x ¿
y ¿

40.9�
Pavgdx ¿Pavgdy ¿

dx ¿
dy ¿

(gxy)max

2

(gxy)max

2

Fig. 10–7
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*10.3 Mohr’s Circle—Plane Strain

Since the equations of plane-strain transformation are mathematically
similar to the equations of plane-stress transformation, we can also solve
problems involving the transformation of strain using Mohr’s circle.

Like the case for stress, the parameter in Eqs. 10–5 and 10–6 can be
eliminated and the result rewritten in the form

(10–13)

where

Equation 10–13 represents the equation of Mohr’s circle for strain. It has
a center on the axis at point and a radius R.C1Pavg , 02P

 R = B a
Px - Py

2
b2

+ agxy

2
b2

 Pavg =
Px + Py

2

1Px¿ - Pavg22 + ¢gx¿y¿

2
≤2

= R2

u

Procedure for Analysis

The procedure for drawing Mohr’s circle for strain follows the same
one established for stress.

Construction of the Circle.

• Establish a coordinate system such that the abscissa represents
the normal strain with positive to the right, and the ordinate
represents half the value of the shear strain, with positive
downward, Fig. 10–8.

• Using the positive sign convention for as shown in
Fig. 10–2, determine the center of the circle C, which is located 
on the axis at a distance from the origin,
Fig. 10–8.

• Plot the reference point A having coordinates This
point represents the case for which the axis coincides with the
x axis. Hence Fig. 10–8.

• Connect point A with the center C of the circle and from the
shaded triangle determine the radius R of the circle, Fig. 10–8.

• Once R has been determined, sketch the circle.

u = 0°,
x¿

A1Px , gxy>22.
Pavg = 1Px + Py2>2P

gxy ,Py ,Px ,

g>2,
P,

Fig. 10–8

C

A

R �
2 2

�2
Px � Py gxy

2

2
Px � Py

gxy

2

P

Px

2
Px � Py

Pavg �

g

2

u � 0�
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Fig. 10–9

C

A

(a)

D

Q

B

P

E

F

g

2

gxy

2

u � 0�

2up1

2us1

2u

Pavg

P

P1

P2

x

(b)

up1

y ¿

x ¿

y

(1 � P1)dx ¿

(1 � P2)dy ¿

x

y

(c)

x ¿

y ¿

Pavgdx ¿

Pavgdy ¿

us1

x

y

(d)

x ¿

y ¿

u

Px ¿dx ¿

Py¿dy¿

*If the axis were constructed positive upwards, then the angle on the circle
would be measured in the opposite direction to the orientation of the plane.u

2ug>2

Principal Strains.

• The principal strains and are determined from the circle
as the coordinates of points B and D, that is where 
Fig. 10–9a.

• The orientation of the plane on which acts can be determined
from the circle by calculating using trigonometry. Here this
angle happens to be counterclockwise from the radial reference
line CA to line CB, Fig. 10–9a. Remember that the rotation of 
must be in this same direction, from the element’s reference axis x
to the axis, Fig. 10–9b.*

• When and are indicated as being positive as in Fig. 10–9a,
the element in Fig. 10–9b will elongate in the and directions
as shown by the dashed outline.

Maximum In-Plane Shear Strain.

• The average normal strain and half the maximum in-plane shear
strain are determined from the circle as the coordinates of point
E or F, Fig. 10–9a.

• The orientation of the plane on which and act can be 
determined from the circle by calculating using trigonometry.
Here this angle happens to be clockwise from the radial
reference line CA to line CE, Fig. 10–9a. Remember that the
rotation of must be in this same direction, from the element’s
reference axis x to the axis, Fig. 10–9c.*

Strains on Arbitrary Plane.

• The normal and shear strain components and for a plane
oriented at an angle Fig. 10–9d, can be obtained from the circle
using trigonometry to determine the coordinates of point P,
Fig. 10–9a.

• To locate P, the known angle of the axis is measured on the
circle as This measurement is made from the radial reference
line CA to the radial line CP. Remember that measurements 
for on the circle must be in the same direction as for the 

axis.*

• If the value of is required, it can be determined by
calculating the coordinate of point Q in Fig. 10–9a. The line
CQ lies 180° away from CP and thus represents a 90° rotation
of the axis.x¿

P
Py¿

x¿
u2u

2u.
x¿u

u,
gx¿y¿Px¿

x¿
us1

2us1

Pavggmax
in-plane

y¿x¿
P2P1

x¿

up1

2up1

P1

g>2 = 0,
P2P1
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EXAMPLE 10.4

The state of plane strain at a point is represented by the components
and Determine

the principal strains and the orientation of the element.

SOLUTION
Construction of the Circle. The and axes are established in
Fig. 10–10a. Remember that the positive axis must be directed
downward so that counterclockwise rotations of the element
correspond to counterclockwise rotation around the circle, and vice
versa. The center of the circle C is located on the axis at

Since the reference point has coordinates
From the shaded triangle in Fig. 10–10a, the

radius of the circle is CA; that is,

Principal Strains. The coordinates of points B and D represent
the principal strains. They are

Ans.

Ans.

The direction of the positive principal strain is defined by the
counterclockwise angle measured from the radial reference line
CA to the line CB. We have

Ans.

Hence, the side of the element is oriented counterclockwise 8.35°
as shown in Fig. 10–10b. This also defines the direction of The
deformation of the element is also shown in the figure.

P1 .
dx¿

 up1
= 8.35°

 tan 2up1
=

60
1250 - 502

1u = 0°2 2up1
,

P1

 P2 = 150 - 208.82110-62 = -159110-62
 P1 = 150 + 208.82110-62 = 259110-62

P

R = C21250 - 5022 + 16022 D 110-62 = 208.8110-62

A1250110-62, 60110-622. A 1u = 0°2gxy>2 = 60110-62,

Pavg =
250 + 1-1502

2
 110-62 = 50110-62

P

g>2g>2P

gxy = 120110-62.Py = -150110-62,Px = 250110-62,

(a)

60

A

C
R � 208.8

50

250

B(P1, 0)D(�P2, 0)
P (10�6)

(10�6)

2up1

g

2

x

y

(b)

x ¿

dx ¿

y ¿

P1dx ¿

P2dy ¿

dy ¿

up1
 � 8.35�

Fig. 10–10
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EXAMPLE 10.5

The state of plane strain at a point is represented by the components
and Determine

the maximum in-plane shear strains and the orientation of an element.

SOLUTION
The circle has been established in the previous example and is shown
in Fig. 10–11a.

Maximum In-Plane Shear Strain. Half the maximum in-plane shear
strain and average normal strain are represented by the coordinates of
point E or F on the circle. From the coordinates of point E,

Ans.

To orient the element, we can determine the clockwise angle 
measured from to CE.

Ans.

This angle is shown in Fig. 10–11b. Since the shear strain defined from
point E on the circle has a positive value and the average normal
strain is also positive, these strains deform the element into the
dashed shape shown in the figure.

us1
= 36.7°

2us1
= 90° - 218.35°2

CA 1u = 0°2 2us1

 Pavg = 50110-62
 1gx¿y¿2max

in-plane
= 418110-62

 
1gx¿y¿2max

in-plane

2
= 208.8110-62

gxy = 120110-62.Py = -150110-62,Px = 250110-62,

Fig. 10–11

(b)

x

y

x ¿

y ¿

us1
 � 36.7�

(a)

F

60
A

C
50

250

R � 208.8

P (10�6)

2us1

(10�6)g

2

u � 0�

gmax

2
in–planePavg,E



EXAMPLE 10.6

The state of plane strain at a point is represented on an element having
components and 
Determine the state of strain on an element oriented 20° clockwise from
this reported position.

SOLUTION
Construction of the Circle. The and axes are established in
Fig. 10–12a. The center of the circle is on the axis at

The reference point A has coordinates The
radius CA determined from the shaded triangle is therefore

Strains on Inclined Element. Since the element is to be oriented
20° clockwise, we must establish a radial line CP,
clockwise, measured from CA Fig. 10–12a. The coordinates
of point P are obtained from the geometry of the circle.
Note that

Thus,

Ans.

Ans.

The normal strain can be determined from the coordinate of
point Q on the circle, Fig. 10–12a. Why?

Ans.

As a result of these strains, the element deforms relative to the 
axes as shown in Fig. 10–12b.

y¿x¿,

Py¿ = -1200 - 111.8 cos 13.43°2110-62 = -91.3110-62

PPy¿

 gx¿y¿ = -52.0110-62
 
gx¿y¿

2
= -1111.8 sin 13.43°2110-62

 = -309110-62
 Px¿ = -1200 + 111.8 cos 13.43°2110-62

c = 40° - 26.57° = 13.43°f = tan-1a 50
1300 - 2002 b = 26.57°,

1Px¿ , gx¿y¿>22
1u = 0°2, 2120°2 = 40°

R = C21300 - 20022 + 15022 D 110-62 = 111.8110-62

A1-300110-62, 50110-622.

Pavg = a -300 - 100
2

b110-62 = -200110-62

P
g>2P

gxy = 100110-62.Py = -100110-62,Px = -300110-62,
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Fig. 10–12

20�

(b)

x ¿

x

y ¿y

(a)

Q
50

A

C

300

R � 111.8

P

200

Px ¿

Py ¿

P (10�6)

(10�6)g

2

gx¿y¿

2

gx¿y¿

2

13.43�

40�

c � 13.43�

f
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y

x

Prob. 10–2

10–1. Prove that the sum of the normal strains in
perpendicular directions is constant.

10–2. The state of strain at the point has components 
of and
Use the strain-transformation equations to determine the
equivalent in-plane strains on an element oriented at an
angle of counterclockwise from the original position.
Sketch the deformed element due to these strains within the
x–y plane.

30°

gxy = 400(10-62.Py = -300 110-62,Px = 200 110-62,

10–5. The state of strain at the point on the arm 
has components 

Use the strain-transformation equations to
determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and show
how the strains deform the element within the x–y plane.

-825110-62.
gxy =Py = -450110-62,Px = 250110-62,

PROBLEMS

10–3. A strain gauge is mounted on the 1-in.-diameter
A-36 steel shaft in the manner shown. When the shaft is
rotating with an angular velocity of , the
reading on the strain gauge is Determine
the power output of the motor. Assume the shaft is only
subjected to a torque.

P = 800110-62.
v = 1760 rev>min

60�

Prob. 10–3

*10–4. The state of strain at a point on a wrench
has components 

Use the strain-transformation equations to
determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and show
how the strains deform the element within the x–y plane.

150110-62.
gxy =Py = -180110-62,Px = 120110-62,

y

x

Prob. 10–5

10–6. The state of strain at the point has components of
and 

Use the strain-transformation equations to determine the
equivalent in-plane strains on an element oriented at an
angle of counterclockwise from the original position.
Sketch the deformed element due to these strains within
the x–y plane.

10–7. The state of strain at the point has components of
and 

Use the strain-transformation equations to determine the
equivalent in-plane strains on an element oriented 
clockwise. Sketch the deformed element due to these
strains within the x–y plane.

u = 30°

gxy = -150110-62.Py = 300110-62,Px = 100110-62,

60°

gxy = -300110-62.Py = 400110-62,Px = -100110-62,

x

y

Probs. 10–6/7
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Prob. 10–8

*10–8. The state of strain at the point on the bracket 
has components �

Use the strain-transformation equations to
determine the equivalent in-plane strains on an element
oriented at an angle of counterclockwise from the
original position. Sketch the deformed element due to these
strains within the x–y plane.

u = 20°

-175110-62.
gxyPy = -650110-62,Px = -200110-62,

10–10. The state of strain at the point on the bracket 
has components �

Use the strain-transformation equations to
determine the equivalent in-plane strains on an element
oriented at an angle of clockwise from the original
position. Sketch the deformed element due to these strains
within the x–y plane.

u = 30°

310110-62.
gxyPy = -250110-62,Px = 400110-62,

10–11. The state of strain at the point has components of
and 

Use the strain-transformation equations to determine (a)
the in-plane principal strains and (b) the maximum in-plane
shear strain and average normal strain. In each case specify
the orientation of the element and show how the strains
deform the element within the x–y plane.

gxy = 100110-62.Py = -200110-62,Px = -100110-62,

y

x

10–9. The state of strain at the point has components of
and 

Use the strain-transformation equations to determine (a)
the in-plane principal strains and (b) the maximum in-plane
shear strain and average normal strain. In each case specify
the orientation of the element and show how the strains
deform the element within the x–y plane.

gxy = -100110-62.Py = -120110-62,Px = 180110-62,

x

y

Prob. 10–9

Prob. 10–10

y

x

x

y

Prob. 10–11
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*10–12. The state of plane strain on an element is given by
and 

Determine the equivalent state of strain on an element at
the same point oriented 45° clockwise with respect to the
original element.

gxy = -200110-62.Py = 300110-62,Px = 500110-62,

10–13. The state of plane strain on an element is
and Determine

the equivalent state of strain which represents (a) the
principal strains, and (b) the maximum in-plane shear strain
and the associated average normal strain. Specify the
orientation of the corresponding elements for these states
of strain with respect to the original element.

gxy = 150110-62.Py = 0,Px = -300110-62,

10–14. The state of strain at the point on a boom of an
hydraulic engine crane has components of 

and Use the strain-
transformation equations to determine (a) the in-plane
principal strains and (b) the maximum in-plane shear strain
and average normal strain. In each case, specify the
orientation of the element and show how the strains deform
the element within the x–y plane.

gxy = -180110-62.Py = 300110-62,
Px = 250110-62,

■10–15. Consider the general case of plane strain where
and are known. Write a computer program that

can be used to determine the normal and shear strain,
and on the plane of an element oriented from the
horizontal. Also, include the principal strains and the
element’s orientation, and the maximum in-plane shear
strain, the average normal strain, and the element’s
orientation.

*10–16. The state of strain at a point on a support
has components of 

Use the strain-transformation equations
to determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case specify the orientation of the element and show
how the strains deform the element within the x–y plane.

•10–17. Solve part (a) of Prob. 10–4 using Mohr’s circle.

10–18. Solve part (b) of Prob. 10–4 using Mohr’s circle.

10–19. Solve Prob. 10–8 using Mohr’s circle.

*10–20. Solve Prob. 10–10 using Mohr’s circle.

•10–21. Solve Prob. 10–14 using Mohr’s circle.

gxy = -675110-62.
Py = 400110-62,Px = 350110-62,

ugx¿y¿ ,
Px¿

gxyPy ,Px ,

y

x

dx

dy

Pydy

Pxdx

gxy

2

gxy

2

Prob. 10–12

y

x

dx

dy

 Pxdx

gxy

2

gxy

2

Prob. 10–13

Prob. 10–14

y x
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Fig. 10–13

*10.4 Absolute Maximum Shear Strain

In Sec. 9.5 it was pointed out that in the case of plane stress, the absolute
maximum shear stress in an element of material will occur out of the plane
when the principal stresses have the same sign, i.e., both are tensile or both
are compressive. A similar result occurs for plane strain. For example, if
the principal in-plane strains cause elongations, Fig. 10–13a, then the three
Mohr’s circles describing the normal and shear strain components for
elements oriented about the and axes are shown in Fig. 10–13b.
By inspection, the largest circle has a radius Hence,

(10–14)

This value gives the absolute maximum shear strain for the material.
Note that it is larger than the maximum in-plane shear strain, which is

Now consider the case where one of the in-plane principal strains is
of opposite sign to the other in-plane principal strain, so that causes
elongation and causes contraction, Fig. 10–14a. Mohr’s circles, which
describe the strains on each element’s orientation about the 
axes, are shown in Fig. 10–14b. Here

(10–15)

We may therefore summarize the above two cases as follows. If the
in-plane principal strains both have the same sign, the absolute maximum
shear strain will occur out of plane and has a value of
However, if the in-plane principal strains are of opposite signs, then the
absolute maximum shear strain equals the maximum in-plane shear strain.

g 
max
abs = Pmax .

P1 and P2 have opposite signs

g 
max
abs = 1gx¿y¿2 max

in-plane = P1 - P2

z¿y¿,x¿,
P2

P1

1gx¿y¿2max = P1 - P2 .

P1 and P2 have the same sign

g 
max
abs = 1gx¿z¿2max = P1

R = 1gx¿z¿2max>2.
z¿y¿,x¿,

x y

z

x�y plane strain

(a)

(1 – P2)dy (1 � P1)dx

(b)

2

(gxz)max

PP1�P2

g

2

2

(gyz)max

2

(gxy)max

x

x�y  plane strain

y

z

(a)

(1 � P1)dx(1 � P2)dy

(b)

PP1

g

2

(gxz)max

2

(gxy)max

2

(gyz)max

2

P2

Fig. 10–14

Important Points

• The absolute maximum shear strain will be larger than the
maximum in-plane shear strain whenever the in-plane principal
strains have the same sign. When this occurs the absolute
maximum shear strain will act out of the plane.

• If the in-plane principal strains are of opposite signs, then 
the absolute maximum shear strain will equal the maximum 
in-plane shear strain.
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EXAMPLE 10.7

The state of plane strain at a point is represented by the strain
components 
Determine the maximum in-plane shear strain and the absolute
maximum shear strain.

gxy = 150110-62.Py = 200110-62,Px = -400110-62,

Fig. 10–15

400

75

100

R � 309
A

P1
P(10�6)

(10�6)

P2

g

2

2
in–plane

(gx¿y¿)max

SOLUTION
Maximum In-Plane Shear Strain. We will solve this problem using
Mohr’s circle. From the strain components, the center of the circle is
on the axis at

Since the reference point A has coordinates
As shown in Fig. 10–15, the radius of the

circle is therefore

Calculating the in-plane principal strains from the circle, we have

Also, the maximum in-plane shear strain is

Ans.

Absolute Maximum Shear Strain. From the above results, we
have The three Mohr’s circles,
plotted for element orientations about each of the x, y, z axes, are also
shown in Fig. 10–15. It is seen that since the principal in-plane strains
have opposite signs, the maximum in-plane shear strain is also the
absolute maximum shear strain; i.e.,

Ans.g 
max
abs = 618110-62

P2 = -409110-62.P1 = 209110-62,
gmax 

in-plane
= P1 - P2 = [209 - 1-4092]110-62 = 618110-62

 P2 = 1-100 - 3092110-62 = -409110-62
 P1 = 1-100 + 3092110-62 = 209110-62

R = C21400 - 10022 + 17522 D 110-62 = 309110-62
1-400110-62, 75110-622.

gxy>2 = 75110-62,
Pavg =

-400 + 200
2

 110-62 = -100110-62
P
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10.5 Strain Rosettes

When performing a tension test on a specimen as discussed in Sec. 3.1,
the normal strain in the material is measured using an electrical-
resistance strain gauge, which consists of a wire grid or piece of metal
foil bonded to the specimen. For a general loading on a body, however,
the strains at a point on its free surface are determined using a cluster of
three electrical-resistance strain gauges, arranged in a specified pattern.
This pattern is referred to as a strain rosette, and once the normal strains
on the three gauges are measured, the data can then be transformed to
specify the state of strain at the point. Since these strains are measured
only in the plane of the gauges, and since the body is stress-free on its
surface, the gauges may be subjected to plane stress but not plane strain.
Although the strain normal to the surface is not measured, realize that
the out-of-plane displacement caused by this strain will not affect the
in-plane measurements of the gauges.

In the general case, the axes of the three gauges are arranged at the
angles shown in Fig. 10–16a. If the readings are taken, we
can determine the strain components at the point by applying
the strain-transformation equation, Eq. 10–2, for each gauge.We have

(10–16)

The values of are determined by solving these three equations
simultaneously.

Strain rosettes are often arranged in 45° or 60° patterns. In the case of
the 45° or “rectangular” strain rosette shown in Fig. 10–16b,

so that Eq. 10–16 gives

And for the 60° strain rosette in Fig. 10–16c,
Here Eq. 10–16 gives

(10–17)

Once are determined, the transformation equations of
Sec. 10.2 or Mohr’s circle can then be used to determine the principal 
in-plane strains and the maximum in-plane shear strain at the point.

gxyPy,Px,

 gxy =
2
13

 1Pb - Pc2
 Py =

1
3

 12Pb + 2Pc - Pa2
 Px = Pa

uc = 120°.
ub = 60°,ua = 0°,

 gxy = 2Pb - 1Pa + Pc2
 Py = Pc

 Px = Pa

uc = 90°,ub = 45°,
ua = 0°,

gxyPy,Px,

 Pc = Px cos2 uc + Py sin2 uc + gxy sin uc cos uc

 Pb = Px cos2 ub + Py sin2 ub + gxy sin ub cos ub

 Pa = Px cos2 ua + Py sin2 ua + gxy sin ua cos ua

gxyPy,Px,
PcPb,Pa,ucub,ua,

10

Fig. 10–16

x

a

b

c
(a)

ub

uc
ua

45�

45�

a

b

c

x

45� strain rosette

(b)

60�

a

b

x

60� strain rosette

(c)

60�

c

Typical electrical resistance 45° strain rosette.
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EXAMPLE 10.8

The state of strain at point A on the bracket in Fig. 10–17a is measured
using the strain rosette shown in Fig. 10–17b. Due to the loadings, the
readings from the gauges give and

Determine the in-plane principal strains at the point
and the directions in which they act.

SOLUTION
We will use Eqs. 10–16 for the solution. Establishing an x axis as
shown in Fig. 10–17b and measuring the angles counterclockwise 
from the axis to the centerlines of each gauge, we have 

and Substituting these results, along with the
problem data, into the equations gives

(1)

(2)

(3)

Using Eq. 1 and solving Eqs. 2 and 3 simultaneously, we get

These same results can also be obtained in a more direct manner from
Eq. 10–17.

The in-plane principal strains can be determined using Mohr’s
circle.The reference point on the circle is at 
and the center of the circle, C, is on the axis at 
Fig. 10–17c. From the shaded triangle, the radius is

The in-plane principal strains are thus

Ans.

Ans.

Ans.

NOTE: The deformed element is shown in the dashed position in
Fig. 10–17d. Realize that, due to the Poisson effect, the element is also
subjected to an out-of-plane strain, i.e., in the z direction, although this
value will not influence the calculated results.

 up2
= 19.3°

 2up2
= tan-1

 
74.5

1153 - 602 = 38.7°

 P2 = 153110-62 - 119.1110-62 = 33.9110-62
 P1 = 153110-62 + 119.1110-62 = 272110-62

R = C21153 - 6022 + 174.522 D 110-62 = 119.1110-62

Pavg = 153110-62,P
A [60110-62, -74.5110-62]

Px = 60110-62 Py = 246110-62 gxy = -149110-62

 = 0.25Px + 0.75Py - 0.433gxy

 264110-62 = Px cos2 120° + Py sin2 120° + gxy sin 120° cos 120°

 = 0.25Px + 0.75Py + 0.433gxy

 135110-62 = Px cos2 60° + Py sin2 60° + gxy sin 60° cos 60°

 = Px

 60110-62 = Px cos2 0° + Py sin2 0° + gxy sin 0° cos 0°

uc = 120°.ub = 60°,
ua = 0°,+x

Pc = 264110-62. Pb = 135110-62,Pa = 60110-62,

(c)

2up2

60

74.5

153

A

C

R � 119.2
P(10�6)P1P2

(10�6)
g

2

(d)

x

up2
 � 19.3�

x¿

y¿

(b)

60�

a

b

x

120�

c

(a)

b
a

c

A

Fig. 10–17
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10–22. The strain at point A on the bracket has
components 

Determine (a) the principal strains at A in the
plane, (b) the maximum shear strain in the x–y plane,

and (c) the absolute maximum shear strain.
x–y
-650110-62.

gxy =Py = 550110-62,Px = 300110-62,
*10–24. The strain at point A on the pressure-vessel wall
has components 

Determine (a) the principal strains at A, in the
plane, (b) the maximum shear strain in the x–y plane,

and (c) the absolute maximum shear strain.
x–y
650110-62.

gxy =Py = 720110-62,Px = 480110-62,

PROBLEMS

y

xA

Prob. 10–22

10–23. The strain at point A on the leg of the angle has
components 

Determine (a) the principal strains at A in the
plane, (b) the maximum shear strain in the x–y plane,

and (c) the absolute maximum shear strain.
x–y
-125110-62.

gxy =Py = 180110-62,Px = -140110-62,

•10–25. The 60° strain rosette is mounted on the bracket.
The following readings are obtained for each gauge:

and 
Determine (a) the principal strains and (b) the maximum
in-plane shear strain and associated average normal strain.
In each case show the deformed element due to these
strains.

Pc = 150110-62.Pb = 250110-62,Pa = -100110-62,

A

Prob. 10–23

y

xA

Prob. 10–24

60�

60�
a

b

c

Prob. 10–25
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10–29. Consider the general orientation of three strain
gauges at a point as shown. Write a computer program that
can be used to determine the principal in-plane strains and
the maximum in-plane shear strain at the point. Show an
application of the program using the values 

Pc = 80110-62.
uc = 220°,Pb = 100110-62,ub = 125°,Pa = 160110-62,
ua = 40°,

*10–28. The strain rosette is mounted on the link of
the backhoe. The following readings are obtained from
each gauge:
Determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and associated average
normal strain.

Pc = 480110-62.Pb = -300110-62,Pa = 650110-62,
45°

10–27. The 45° strain rosette is mounted on a steel shaft.
The following readings are obtained from each gauge:

and 
Determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case show the deformed element due to these
strains.

Pc = -450110-62.Pb = -250110-62,Pa = 300110-62,

10–26. The 60° strain rosette is mounted on a beam.
The following readings are obtained for each gauge:

and 
Determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case show the deformed element due to these
strains.

Pc = 250110-62.Pb = - 450110-62,Pa = 200110-62,

60�

30� 30�

a

b

c

Prob. 10–26

45� 45�
a

b
c

Prob. 10–27

45�

a

b

c

45�

Prob. 10–28

x

a

b

c

ua

ub

uc

Prob. 10–29
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10.6 Material-Property Relationships

In this section we will present some important relationships involving a
material’s properties that are used when the material is subjected to
multiaxial stress and strain. To do so we will assume that the material is
homogeneous and isotropic and behaves in a linear-elastic manner.

Generalized Hooke’s Law. If the material at a point is subjected
to a state of triaxial stress, Fig. 10–18a, associated normal
strains will be developed in the material. The stresses can be
related to these strains by using the principle of superposition, Poisson’s
ratio, and Hooke’s law, as it applies in the uniaxial
direction, For example, consider the normal strain of the
element in the x direction, caused by separate application of each normal
stress. When is applied, Fig. 10–18b, the element elongates in the x
direction and the strain is

Application of causes the element to contract with a strain ,
Fig. 10–18c. Here

Likewise, application of Fig. 10–18d, causes a contraction such that

PÔ
x = -n 

sz

E

sz,

Pfl
x = -n 

sy

E

Pfl
xsy

Pœ
x =
sx

E

Pœ
x

sx

P = s>E.
Plat = -nPlong,

PzPy,Px,
sz,sy,sx,

10

Fig. 10–18

(a)

sx sx
sy

sy

sz
sz

(d)(c)(b)

� � �
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When these three normal strains are superimposed, the normal strain
is determined for the state of stress in Fig. 10–18a. Similar equations

can be developed for the normal strains in the y and z directions. The
final results can be written as

(10–18)

These three equations express Hooke’s law in a general form for a
triaxial state of stress. For application tensile stresses are considered
positive quantities, and compressive stresses are negative. If a resulting
normal strain is positive, it indicates that the material elongates, whereas
a negative normal strain indicates the material contracts.

If we now apply a shear stress to the element, Fig. 10–19a,
experimental observations indicate that the material will deform only
due to a shear strain ; that is, will not cause other strains in the
material. Likewise, and will only cause shear strains and 
Figs. 10–19b and 10–19c, and so Hooke’s law for shear stress and shear
strain can be written as

(10–19)gxy =
1
G

 txy gyz =
1
G

 tyz gxz =
1
G

 txz

gxz,gyztxztyz

txygxy

txy

 Pz =
1
E

 [sz - n1sx + sy2]

 Py =
1
E

 [sy - n1sx + sz2]

 Px =
1
E

 [sx - n1sy + sz2]

Px

(a)

txy

(b)

tyz

(c)

tzx

Fig. 10–19
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Relationship Involving E, , and G. In Sec. 3.7 it was stated that
the modulus of elasticity E is related to the shear modulus G by Eq. 3–11,
namely,

(10–20)

One way to derive this relationship is to consider an element of the
material to be subjected to pure shear Fig. 10–20a.
Applying Eq. 9–5 to obtain the principal stresses yields and

This element must be oriented counterclockwise
from the x axis as shown in Fig. 10–20b. If the three principal stresses

and are substituted into the first of
Eqs. 10–18, the principal strain can be related to the shear stress 
The result is

(10–21)

This strain, which deforms the element along the axis, can also
be related to the shear strain . To do this, first note that
since then from the first and second Eqs. 10–18,

Substituting these results into the strain transformation
Eq. 10–9, we get

By Hooke’s law, so that Substituting into
Eq. 10–21 and rearranging terms gives the final result, namely, Eq. 10–20.

Dilatation and Bulk Modulus. When an elastic material is
subjected to normal stress, its volume will change. For example, consider
a volume element which is subjected to the principal stresses
If the sides of the element are originally dx, dy, dz, Fig. 10–21a, then
after application of the stress they become

Fig. 10–21b. The change in volume of the element is
therefore

Neglecting the products of the strains since the strains are very small, we
have

The change in volume per unit volume is called the “volumetric strain”
or the dilatation e. It can be written as

(10–22)

By comparison, the shear strains will not change the volume of the
element, rather they will only change its rectangular shape.

e =
dV

dV
= Px + Py + Pz

dV = 1Px + Py + Pz2 dx dy dz

dV = 11 + Px211 + Py211 + Pz2 dx dy dz - dx dy dz

11 + Pz2 dz,
11 + Py2 dy,11 + Px2 dx,

sz.sy,sx,

Pmax = txy>2G.gxy = txy>G,

P1 = Pmax =
gxy

2

Px = Py = 0.
sx = sy = sz = 0,

gxy

x¿

Pmax =
txy

E
 11 + n2

txy.Pmax

smin = -txysint = 0,smax = txy,

up1
= 45°smin = -txy.

smax = txy

1sx = sy = sz = 02,

G =
E

211 + n2

N

Fig. 10–20

Fig. 10–21

x

y

(a)

txy

x

y

smin � �txy
smax � txy

up1
 � 45�

(b)

x¿

(a)

dx

dz

dy

(b)

(1 � Py)dy (1 � Px)dx

(1 � Pz)dz

sz

sy
sx
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Also, if we use Hooke’s law, as defined by Eq. 10–18, we can write the
dilatation in terms of the applied stress. We have

(10–23)

When a volume element of material is subjected to the uniform
pressure p of a liquid, the pressure on the body is the same in all
directions and is always normal to any surface on which it acts. Shear
stresses are not present, since the shear resistance of a liquid is zero. This
state of “hydrostatic” loading requires the normal stresses to be equal in
any and all directions, and therefore an element of the body is subjected
to principal stresses Fig. 10–22. Substituting into
Eq. 10–23 and rearranging terms yields

(10–24)

Since this ratio is similar to the ratio of linear elastic stress to strain,
which defines E, i.e., the term on the right is called the volume
modulus of elasticity or the bulk modulus. It has the same units as stress
and will be symbolized by the letter k; that is,

(10–25)

Note that for most metals so If a material existed that did
not change its volume then and k would have to be infinite.
From Eq. 10–25 the theoretical maximum value for Poisson’s ratio is
therefore During yielding, no actual volume change of the
material is observed, and so is used when plastic yielding occurs.n = 0.5

n = 0.5.

dV = e = 0,
k L E.n L  

1
3

k =
E

311 - 2n2

s>P = E,

p

e
= -

E

311 - 2n2

sx = sy = sz = -p,

e =
1 - 2n

E
 1sx + sy + sz2

Important Points

• When a homogeneous isotropic material is subjected to a state of
triaxial stress, the strain in each direction is influenced by the
strains produced by all the stresses.This is the result of the Poisson
effect, and results in the form of a generalized Hooke’s law.

• Unlike normal stress, a shear stress applied to homogeneous
isotropic material will only produce shear strain in the same
plane.

• The material constants E, G, and are related mathematically.

• Dilatation, or volumetric strain, is caused only by normal strain,
not shear strain.

• The bulk modulus is a measure of the stiffness of a volume of
material. This material property provides an upper limit to
Poisson’s ratio of which remains at this value while
plastic yielding occurs.

n = 0.5,

n

Fig. 10–22

Hydrostatic stress

sy � p
sx � p

sz � p
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EXAMPLE 10.9

The bracket in Example 10–8, Fig. 10–23a, is made of steel for which
Determine the principal stresses at point A.nst = 0.3.Est = 200 GPa,

(a)

b
a

c

A

SOLUTION I
From Example 10.8 the principal strains have been determined as

Since point A is on the surface of the bracket for which there is no
loading, the stress on the surface is zero, and so point A is subjected to
plane stress. Applying Hooke’s law with we have

(1)

(2)

Solving Eqs. 1 and 2 simultaneously yields

Ans.

Ans. s2 = 25.4 MPa

 s1 = 62.0 MPa

 6.7811062 = s2 - 0.3s1

 33.9110-62 =
s2

20011092 -
0.3

20011092  s1 P2 =
s2

E
-
n

E
 s1 ;

 54.411062 = s1 - 0.3s2

 272110-62 =
s1

20011092 -
0.3

20011092  s2 P1 =
s1

E
-
n

E
 s2 ;

s3 = 0,

 P2 = 33.9110-62
 P1 = 272110-62

Fig. 10–23
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SOLUTION II
It is also possible to solve the problem using the given state of strain,

as specified in Example 10.8. Applying Hooke’s law in the x–y plane,
we have

The shear stress is determined using Hooke’s law for shear. First,
however, we must calculate G.

Thus,

The Mohr’s circle for this state of plane stress has a reference point
and center at Fig.10–23b.

The radius is determined from the shaded triangle.

Therefore,

Ans.

Ans.

NOTE: Each of these solutions is valid provided the material is both
linear elastic and isotropic, since then the principal planes of stress
and strain coincide.

 s2 = 43.7 MPa - 18.3 MPa = 25.4 MPa

 s1 = 43.7 MPa + 18.3 MPa = 62.0 MPa

R = 2143.7 - 29.422 + 111.4622 = 18.3 MPa

savg = 43.7 MPa,A129.4 MPa, -11.46 MPa2

txy = 76.911092[-149110-62] = -11.46 MPatxy = Ggxy ;

G =
E

211 + n2 =
200 GPa

211 + 0.32 = 76.9 GPa

sx = 29.4 MPa sy = 58.0 MPa

246110-62 =
sy

20011092 Pa
-

0.3sx

20011092 Pa
Py =

sy

E
-
n

E
 sx ;

60110-62 =
sx

20011092 Pa
-

0.3sy

20011092 Pa
Px =

sx

E
-
n

E
 sy ;

Px = 60110-62 Py = 246110-62 gxy = -149110-62

s (MPa)

29.4

11.46

43.7

(b)

s1s2

A

C

R � 18.3

t (MPa)
Fig. 10–23 (cont.)
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EXAMPLE 10.10

The copper bar in Fig. 10–24 is subjected to a uniform loading along
its edges as shown. If it has a length width 
and thickness before the load is applied, determine its
new length, width, and thickness after application of the load.
Take ncu = 0.34.Ecu = 120 GPa,

t = 20 mm
b = 50 mm,a = 300 mm,

Fig. 10–24

500 MPa

500 MPa

800 MPa

800 MPa

a

b

t

SOLUTION
By inspection, the bar is subjected to a state of plane stress. From the
loading we have

The associated normal strains are determined from the generalized
Hooke’s law, Eq. 10–18; that is,

The new bar length, width, and thickness are therefore

Ans.

Ans.

Ans. t¿ = 20 mm + 1-0.0008502120 mm2 = 19.98 mm

 b¿ = 50 mm + 1-0.006432150 mm2 = 49.68 mm

 a¿ = 300 mm + 0.008081300 mm2 = 302.4 mm

 = 0 -
0.34

12011032 MPa
 1800 MPa - 500 MPa2 = -0.000850

 Pz =
sz

E
-
n

E
 1sx + sy2

 =
-500 MPa

12011032 MPa
-

0.34

12011032 MPa
 1800 MPa + 02 = -0.00643

 Py =
sy

E
-
n

E
 1sx + sz2

 =
800 MPa

12011032 MPa
-

0.34

12011032 MPa
 1-500 MPa + 02 = 0.00808

 Px =
sx

E
-
n

E
 1sy + sz2

sx = 800 MPa sy = -500 MPa txy = 0 sz = 0



10.6 MATERIAL-PROPERTY RELATIONSHIPS 515

10

EXAMPLE 10.11

If the rectangular block shown in Fig. 10–25 is subjected to a uniform
pressure of determine the dilatation and the change in
length of each side. Take n = 0.45.E = 600 psi,

p = 20 psi,

Fig. 10–25

SOLUTION
Dilatation. The dilatation can be determined using Eq. 10–23 with

We have

Ans.

Change in Length. The normal strain on each side can be
determined from Hooke’s law, Eq. 10–18; that is,

Thus, the change in length of each side is

Ans.

Ans.

Ans.

The negative signs indicate that each dimension is decreased.

 dc = -0.0033313 in.2 = -0.0100 in.

 db = -0.0033312 in.2 = -0.00667 in.

 da = -0.0033314 in.2 = -0.0133 in.

 =
1

600 psi
 [-20 psi - 10.4521-20 psi - 20 psi2] = -0.00333 in.>in.

 P =
1
E

 [sx - n1sy + sz2]

 = -0.01 in3>in3

 =
1 - 210.452

600 psi
 [31-20 psi2]

 e =
1 - 2n

E
 1sx + sy + sz2

sx = sy = sz = -20 psi.

a � 4 in. b � 2 in.

c � 3 in.
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Prob. 10–36

12 ksi

20 ksi
8 ksi

Prob. 10–38

*10–36. The steel shaft has a radius of 15 mm. Determine
the torque T in the shaft if the two strain gauges, attached to
the surface of the shaft, report strains of 
and Also, compute the strains acting in the x
and y directions. nst = 0.3.Est = 200 GPa,

Py¿ = 80110-62.
Px¿ = -80110-62

Prob. 10–39

Probs. 10–34/35

10–30. For the case of plane stress, show that Hooke’s law
can be written as

10–31. Use Hooke’s law, Eq. 10–18, to develop the strain-
transformation equations, Eqs. 10–5 and 10–6, from the
stress-transformation equations, Eqs. 9–1 and 9–2.

*10–32. A bar of copper alloy is loaded in a tension
machine and it is determined that and 

Determine the modulus of
elasticity, and the dilatation, of the copper.

•10–33. The principal strains at a point on the aluminum
fuselage of a jet aircraft are and 

Determine the associated principal stresses at 
the point in the same plane.
Hint: See Prob. 10–30.

10–34. The rod is made of aluminum 2014-T6. If it is
subjected to the tensile load of 700 N and has a diameter of
20 mm, determine the absolute maximum shear strain in the
rod at a point on its surface.

10–35. The rod is made of aluminum 2014-T6. If it is
subjected to the tensile load of 700 N and has a diameter of
20 mm, determine the principal strains at a point on the
surface of the rod.

nal = 0.33.Eal = 1011032 ksi,
400110-62.

P2 =P1 = 780110-62

ncu = 0.35.
ecu,Ecu,

sz = 0.sy = 0,sx = 14 ksi,
Px = 940110-62

sx =
E

11 - n22  1Px + nPy2, sy =
E

11 - n22  1Py + nPx2

10–37. Determine the bulk modulus for each of the
following materials: (a) rubber, and
(b) glass,

10–38. The principal stresses at a point are shown in the
figure. If the material is A-36 steel, determine the principal
strains.

ng = 0.24.Eg = 811032 ksi,
nr = 0.48,Er = 0.4 ksi,

PROBLEMS

700 N700 N

45�

y

x

x¿y¿T

T

10–39. The spherical pressure vessel has an inner
diameter of 2 m and a thickness of 10 mm. A strain gauge
having a length of 20 mm is attached to it, and it is observed
to increase in length by 0.012 mm when the vessel
is pressurized. Determine the pressure causing this
deformation, and find the maximum in-plane shear stress,
and the absolute maximum shear stress at a point on the
outer surface of the vessel. The material is steel, for which

and nst = 0.3.Est = 200 GPa

20 mm
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Prob. 10–40

*10–40. The strain in the x direction at point A on the
steel beam is measured and found to be 
Determine the applied load P. What is the shear strain 
at point A? nst = 0.3.Est = 2911032 ksi,

gxy

Px = -100110-62.
10–43. A single strain gauge, placed on the outer surface
and at an angle of 30° to the axis of the pipe, gives a reading
at point A of Determine the horizontal
force P if the pipe has an outer diameter of 2 in. and an
inner diameter of 1 in. The pipe is made of A-36 steel.

*10–44. A single strain gauge, placed in the vertical plane
on the outer surface and at an angle of 30° to the axis of the
pipe, gives a reading at point A of 
Determine the principal strains in the pipe at point A. The
pipe has an outer diameter of 2 in. and an inner diameter of
1 in. and is made of A-36 steel.

Pa = -200(10-6).

Pa = -200(10-6).

10–45. The cylindrical pressure vessel is fabricated using
hemispherical end caps in order to reduce the bending stress
that would occur if flat ends were used.The bending stresses
at the seam where the caps are attached can be eliminated
by proper choice of the thickness and of the caps and
cylinder, respectively. This requires the radial expansion to
be the same for both the hemispheres and cylinder. Show
that this ratio is Assume that the
vessel is made of the same material and both the cylinder
and hemispheres have the same inner radius. If the cylinder
is to have a thickness of 0.5 in., what is the required thickness
of the hemispheres? Take  n = 0.3.

tc>th = 12 - n2>11 - n2.

tcth
10–42. The principal stresses at a point are shown in 
the figure. If the material is aluminum for which

and determine the principal
strains.

nal = 0.33,Eal = 1011032 ksi

•10–41. The cross section of the rectangular beam is
subjected to the bending moment M. Determine an
expression for the increase in length of lines AB and CD.
The material has a modulus of elasticity E and Poisson’s
ratio is n.

3 ft 4 ft 7 ft

3 in.
y

x

P

A

h

b

A

B
D

C

M

Prob. 10–41

26 ksi

15 ksi
10 ksi

Prob. 10–42

30�

1.5 ft

2.5 ft

A

P

Probs. 10–43/44

Prob. 10–45

tc
th

r

0.5 in.

0.5 in.
8 in.
0.5 in.

6 in.

A

3 in.
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10–46. The principal strains in a plane, measured
experimentally at a point on the aluminum fuselage of a jet
aircraft, are and If this is
a case of plane stress, determine the associated principal
stresses at the point in the same plane. ksi
and 

10–47. The principal stresses at a point are shown in 
the figure. If the material is aluminum for which

and determine the principal
strains.

nal = 0.33,Eal = 1011032 ksi

nal = 0.33.
Eal = 10(103)

P2 = 350(10-6).P1 = 630(10-6)

•10–49. Initially, gaps between the A-36 steel plate and
the rigid constraint are as shown. Determine the normal
stresses and developed in the plate if the temperature
is increased by To solve, add the thermal
strain to the equations for Hooke’s Law.a¢T

¢T = 100°F.
sysx

10–50. Two strain gauges a and b are attached to a plate
made from a material having a modulus of elasticity of

GPa and Poisson’s ratio If the gauges give
a reading of and determine
the intensities of the uniform distributed load and 
acting on the plate. The thickness of the plate is 25 mm.

10–51. Two strain gauges a and b are attached to the
surface of the plate which is subjected to the uniform
distributed load and 
If the gauges give a reading of and

determine the modulus of elasticity E,
shear modulus G, and Poisson’s ratio for the material.n

Pb = 100110-62,
Pa = 450110-62

wy = -175 kN>m.wx = 700 kN>m

wywx

Pb = 100110-62,Pa = 450110-62
n = 0.35.E = 70

*10–48. The 6061-T6 aluminum alloy plate fits snugly into
the rigid constraint. Determine the normal stresses and

developed in the plate if the temperature is increased by
To solve, add the thermal strain to the

equations for Hooke’s Law.
a¢T¢T = 50°C.

sy

sx

3 ksi

4 ksi
8 ksi

Prob. 10–47

300 mm

400 mmy

x

Prob. 10–48

6 in.

0.0015 in.

8 in. 0.0025 in.

y

x

Prob. 10–49

y

z x

a

b

45�

wy

wx

Probs. 10–50/51
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*10–52. The block is fitted between the fixed supports. If
the glued joint can resist a maximum shear stress of

determine the temperature rise that will
cause the joint to fail. Take ksi, and 
Hint: Use Eq. 10–18 with an additional strain term of 
(Eq. 4–4).

a¢T
n = 0.2,E = 10 (103)

tallow = 2 ksi,

*10–56. A thin-walled cylindrical pressure vessel has an
inner radius r, thickness t, and length L. If it is subjected
to an internal pressure p, show that the increase in
its inner radius is and the
increase in its length is Using these
results, show that the change in internal volume becomes

Since and are
small quantities, show further that the change in volume
per unit volume, called volumetric strain, can be written as

10–57. The rubber block is confined in the U-shape
smooth rigid block. If the rubber has a modulus of elasticity
E and Poisson’s ratio , determine the effective modulus of
elasticity of the rubber under the confined condition.

n

dV>V = pr12.5 - 2n2>Et.

P2P1dV = pr211 + P12211 + P22L - pr2L.

¢L = pLr112 - n2>Et.
dr = rP1 = pr211 - 1

2 n2>Et

10–58. A soft material is placed within the confines of a
rigid cylinder which rests on a rigid support. Assuming that

and determine the factor by which the
modulus of elasticity will be increased when a load is
applied if for the material.n = 0.3

Py = 0,Px = 0

•10–53. The smooth rigid-body cavity is filled with liquid
6061-T6 aluminum. When cooled it is 0.012 in. from the top
of the cavity. If the top of the cavity is covered and the
temperature is increased by 200°F, determine the stress
components and in the aluminum. Hint: Use
Eqs. 10–18 with an additional strain term of (Eq. 4–4).

10–54. The smooth rigid-body cavity is filled with liquid
6061-T6 aluminum. When cooled it is 0.012 in. from the top
of the cavity. If the top of the cavity is not covered and the
temperature is increased by 200°F, determine the strain
components and in the aluminum. Hint: Use
Eqs. 10–18 with an additional strain term of (Eq. 4–4).a¢T

PzPy ,Px ,

a¢T
szsy ,sx ,

10–55. A thin-walled spherical pressure vessel having an
inner radius r and thickness t is subjected to an internal
pressure p. Show that the increase in the volume within 
the vessel is Use a small-strain
analysis.

¢V = 12ppr4>Et211 - n2.

40�

4 in.

4 in.

6 in.

0.012 in.

x

y

z

Probs. 10–53/54

P

Prob. 10–57

P

y

z

x

Prob. 10–58

Prob. 10–52
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*10.7 Theories of Failure

When an engineer is faced with the problem of design using a specific
material, it becomes important to place an upper limit on the state of
stress that defines the material’s failure. If the material is ductile, failure is
usually specified by the initiation of yielding, whereas if the material is
brittle, it is specified by fracture. These modes of failure are readily
defined if the member is subjected to a uniaxial state of stress, as in the
case of simple tension; however, if the member is subjected to biaxial or
triaxial stress, the criterion for failure becomes more difficult to establish.

In this section we will discuss four theories that are often used in
engineering practice to predict the failure of a material subjected to a
multiaxial state of stress. No single theory of failure, however, can be
applied to a specific material at all times, because a material may behave
in either a ductile or brittle manner depending on the temperature,
rate of loading, chemical environment, or the way the material is shaped
or formed. When using a particular theory of failure, it is first necessary
to calculate the normal and shear stress at points where they are the
largest in the member. Once this state of stress is established, the
principal stresses at these critical points are then determined, since each
of the following theories is based on knowing the principal stress.

Ductile Materials

Maximum-Shear-Stress Theory. The most common type of yielding
of a ductile material such as steel is caused by slipping, which occurs along
the contact planes of randomly ordered crystals that make up the
material. If we make a specimen into a highly polished thin strip and
subject it to a simple tension test, we can actually see how this slipping
causes the material to yield, Fig. 10–26. The edges of the planes of
slipping as they appear on the surface of the strip are referred to as
Lüder’s lines. These lines clearly indicate the slip planes in the strip,
which occur at approximately 45° with the axis of the strip.

The slipping that occurs is caused by shear stress. To show this,
consider an element of the material taken from a tension specimen,
when it is subjected to the yield stress Fig. 10–27a. The maximum
shear stress can be determined by drawing Mohr’s circle for the element,
Fig. 10–27b. The results indicate that

(10–26)tmax =
sY

2

sY,

Fig. 10–26

45�

Lüder’s lines on
mild steel strip
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Furthermore, this shear stress acts on planes that are 45° from the planes
of principal stress, Fig. 10–27c, and these planes coincide with the
direction of the Lüder lines shown on the specimen, indicating that
indeed failure occurs by shear.

Using this idea, that ductile materials fail by shear, in 1868 Henri
Tresca proposed the maximum-shear-stress theory or Tresca yield
criterion. This theory can be used to predict the failure stress of a ductile
material subjected to any type of loading. The theory states that yielding
of the material begins when the absolute maximum shear stress in the
material reaches the shear stress that causes the same material to yield
when it is subjected only to axial tension. Therefore, to avoid failure, it is
required that in the material must be less than or equal to 
where is determined from a simple tension test.

For application we will express the absolute maximum shear stress in
terms of the principal stresses. The procedure for doing this was
discussed in Sec. 9.5 with reference to a condition of plane stress, that is,
where the out-of-plane principal stress is zero. If the two in-plane
principal stresses have the same sign, i.e., they are both tensile or both
compressive, then failure will occur out of the plane, and from Eq. 9–13,

If instead the in-plane principal stresses are of opposite signs, then
failure occurs in the plane, and from Eq. 9–14,

Using these equations and Eq. 10–26, the maximum-shear-stress theory
for plane stress can be expressed for any two in-plane principal stresses
and by the following criteria:

(10–27)

A graph of these equations is given in Fig. 10–28. Clearly, if any point
of the material is subjected to plane stress, and its in-plane principal
stresses are represented by a coordinate ( , ) plotted on the boundary
or outside the shaded hexagonal area shown in this figure, the material
will yield at the point and failure is said to occur.

s2s1

ƒs1 - s2 ƒ = sY6 s1 , s2 have opposite signs

ƒs1 ƒ = sY

ƒs2 ƒ = sY
r s1 , s2 have same signs

s2

s1

t
max
abs =

s1 - s2

2

t
max
abs =

s1

2

sY

sY>2,t
max
abs

Fig. 10–27

Axial tension

T

T

sY

(a)

s

(b)

90� 
A(0, 0)

savg �
sY

2

sY

2
�max �

s1 � sYs2 � 0

�

45�

y ¿

(c)

x ¿

x

tmax �
sY

2 savg �
sY

2

Maximum-shear-stress theory

s1

�sY

�sY

�sY

�sY

s2

Fig. 10–28
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Maximum-Distortion-Energy Theory. It was stated in Sec. 3.5 that
an external loading will deform a material, causing it to store energy
internally throughout its volume. The energy per unit volume of material
is called the strain-energy density, and if the material is subjected to a
uniaxial stress the strain-energy density, defined by Eq. 3–6, becomes

(10–28)

If the material is subjected to triaxial stress, Fig. 10–29a, then each
principal stress contributes a portion of the total strain-energy density,
so that

Furthermore, if the material behaves in a linear-elastic manner, then
Hooke’s law applies. Therefore, substituting Eq. 10–18 into the above
equation and simplifying, we get

(10–29)

This strain-energy density can be considered as the sum of two parts,
one part representing the energy needed to cause a volume change of
the element with no change in shape, and the other part representing the
energy needed to distort the element. Specifically, the energy stored in the
element as a result of its volume being changed is caused by application
of the average principal stress, since this stress
causes equal principal strains in the material, Fig. 10–29b. The remaining
portion of the stress, causes the
energy of distortion, Fig. 10–29c.

Experimental evidence has shown that materials do not yield when
subjected to a uniform (hydrostatic) stress, such as discussed above.
As a result, in 1904, M. Huber proposed that yielding in a ductile
material occurs when the distortion energy per unit volume of the
material equals or exceeds the distortion energy per unit volume of the
same material when it is subjected to yielding in a simple tension test.
This theory is called the maximum-distortion-energy theory, and since it
was later redefined independently by R. von Mises and H. Hencky, it
sometimes also bears their names.

To obtain the distortion energy per unit volume, we will substitute the
stresses and for and 
respectively, into Eq. 10–29, realizing that 
Expanding and simplifying, we obtain

ud =
1 + n

6E
 C 1s1 - s222 + 1s2 - s322 + 1s3 - s122 D

savg = 1s1 + s2 + s32>3.
s3 ,s2 ,s1 ,1s3 - savg21s2 - savg2,1s1 - savg2,

savg

1s3 - savg2,1s2 - savg2,1s1 - savg2,
savg = 1s1 + s2 + s32>3,

u =
1

2E
 Cs1 

2 + s2 

2 + s3 

2 - 2n1s1s2 + s1s3 + s3s22 D

u =
1
2

 s1P1 +
1
2

 s2P2 +
1
2

 s3P3

u =
1
2

 sP

Fig. 10–29

(a)

s3

s2
s1

�

(b)

savg

savg
savg

(c)

�

(s2 � savg)

(s3 � savg)

(s1 � savg)
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In the case of plane stress, and this equation reduces to

For a uniaxial tension test, and so

Since the maximum-distortion-energy theory requires then
for the case of plane or biaxial stress, we have

(10–30)

This is the equation of an ellipse, Fig. 10–30. Thus, if a point in the
material is stressed such that is plotted on the boundary or
outside the shaded area, the material is said to fail.

A comparison of the above two failure criteria is shown in Fig. 10–31.Note
that both theories give the same results when the principal stresses are
equal, i.e., or when one of the principal stresses is zero and
the other has a magnitude of . If the material is subjected to pure shear,
then the theories have the largest discrepancy in predicting failure. The
stress coordinates of these points on the curves can be determined by
considering the element shown in Fig. 10–32a. From the associated Mohr’s
circle for this state of stress, Fig. 10–32b, we obtain principal stresses
and Thus, with then from Eq. 10–27, the maximum-
shear-stress theory gives and from Eq. 10–30, the 
maximum-distortion-energy theory gives Fig.10–31.

Actual torsion tests, used to develop a condition of pure shear in a
ductile specimen, have shown that the maximum-distortion-energy
theory gives more accurate results for pure-shear failure than the
maximum-shear-stress theory. In fact, since 
the shear stress for yielding of the material, as given by the maximum-
distortion-energy theory, is 15% more accurate than that given by the
maximum-shear-stress theory.

1sY>132>1sY>22 = 1.15,

1sY>23,  -sY>232,
1sY>2,  -sY>22,
s1 = -s2,s2 = -t.

s1 = t

t,sY

s1 = s2 = sY,

(s1, s2)

s1
 2 - s1s2 + s2 

2 = sY
 2

ud = 1ud2Y ,

1ud2Y =
1 + n

3E
 sY

 2

s2 = s3 = 0,s1 = sY ,

ud =
1 + n

3E
 As1

 2 - s1s2 + s2
 2 B

s3 = 0,

Maximum-distortion-energy theory

s1

sY

sY

�sY

�sY

s2

Pure shear
s2

s1

sY

sY

�sY

�sY(�sY,�sY)

(sY, sY)

�
sY

3
,sY

3

�
sY

2
,sY

2

Fig. 10–30

Fig. 10–31

(a)

t

(b)

90�

A (t, 0)

s2 � �t s1 � t
s

t

Fig. 10–32
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Brittle Materials

Maximum-Normal-Stress Theory. It was previously stated that
brittle materials, such as gray cast iron, tend to fail suddenly by fracture
with no apparent yielding. In a tension test, the fracture occurs when
the normal stress reaches the ultimate stress Fig. 10–33a. Also,
brittle fracture occurs in a torsion test due to tension since the plane of
fracture for an element is at 45° to the shear direction, Fig. 10–33b. The
fracture surface is therefore helical as shown.* Experiments have further
shown that during torsion the material’s strength is somewhat unaffected
by the presence of the associated principal compressive stress being at
right angles to the principal tensile stress. Consequently, the tensile stress
needed to fracture a specimen during a torsion test is approximately the
same as that needed to fracture a specimen in simple tension. Because of
this, the maximum-normal-stress theory states that a brittle material will
fail when the maximum tensile stress, , in the material reaches a value
that is equal to the ultimate normal stress the material can sustain when
it is subjected to simple tension.

If the material is subjected to plane stress, we require that

(10–31)

These equations are shown graphically in Fig. 10–34. Therefore, if the
stress coordinates at a point in the material fall on the boundary
or outside the shaded area, the material is said to fracture. This theory is
generally credited to W. Rankine, who proposed it in the mid-1800s.
Experimentally it has been found to be in close agreement with the
behavior of brittle materials that have stress–strain diagrams that are
similar in both tension and compression.

Mohr’s Failure Criterion. In some brittle materials tension and
compression properties are different. When this occurs a criterion based
on the use of Mohr’s circle may be used to predict failure. This method
was developed by Otto Mohr and is sometimes referred to as Mohr’s
failure criterion.To apply it, one first performs three tests on the material.
A uniaxial tensile test and uniaxial compressive test are used to
determine the ultimate tensile and compressive stresses and

respectively. Also a torsion test is performed to determine the
material’s ultimate shear stress . Mohr’s circle for each of these stresstult

1sult2c ,
1sult2t

1s1 , s22

 ƒs2 ƒ = sult

 ƒs1 ƒ = sult

s1

sult ,

Failure of a brittle material
in tension

(a)

45�

Failure of a brittle material
in torsion

(b)

45�

Maximum-normal-stress theory

s2

sult

sult

�sult

�sult
s1

Fig. 10–33

Fig. 10–34 *A stick of blackboard chalk fails in this way when its ends are twisted with the fingers.



10.7 THEORIES OF FAILURE 525

10

conditions is then plotted as shown in Fig. 10–35. These three circles are
contained in a “failure envelope” indicated by the extrapolated colored
curve that is drawn tangent to all three circles. If a plane-stress condition
at a point is represented by a circle that has a point of tangency with the
envelope, or if it extends beyond the envelope’s boundary, then failure is
said to occur.

We may also represent this criterion on a graph of principal stresses 
and .This is shown in Fig. 10–36. Here failure occurs when the absolute
value of either one of the principal stresses reaches a value equal to or
greater than or or in general, if the state of stress at a point
defined by the stress coordinates is plotted on the boundary or
outside the shaded area.

Either the maximum-normal-stress theory or Mohr’s failure criterion
can be used in practice to predict the failure of a brittle material.
However, it should be realized that their usefulness is quite limited. A
tensile fracture occurs very suddenly, and its initiation generally depends
on stress concentrations developed at microscopic imperfections of 
the material such as inclusions or voids, surface indentations, and 
small cracks. Since each of these irregularities varies from specimen 
to specimen, it becomes difficult to specify fracture on the basis of a
single test.

1s1 , s22
1sult2c1sult2t

s2

s1

Important Points

• If a material is ductile, failure is specified by the initiation of yielding, whereas if it is brittle, it is specified
by fracture.

• Ductile failure can be defined when slipping occurs between the crystals that compose the material. This
slipping is due to shear stress and the maximum-shear-stress theory is based on this idea.

• Strain energy is stored in a material when it is subjected to normal stress. The maximum-distortion-energy
theory depends on the strain energy that distorts the material, and not the part that increases its volume.

• The fracture of a brittle material is caused only by the maximum tensile stress in the material, and not the
compressive stress. This is the basis of the maximum-normal-stress theory, and it is applicable if the
stress–strain diagram is similar in tension and compression.

• If a brittle material has a stress–strain diagram that is different in tension and compression, then Mohr’s
failure criterion may be used to predict failure.

• Due to material imperfections, tensile fracture of a brittle material is difficult to predict, and so theories of
failure for brittle materials should be used with caution.

Mohr’s failure criterion

(sult)t

(sult)t

(sult)c

(sult)c

s2

s1

Failure envelope

s
(sult)t(sult)c

tult

t

Fig. 10–35

Fig. 10–36
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EXAMPLE 10.12

The solid cast-iron shaft shown in Fig. 10–37a is subjected to a torque
of Determine its smallest radius so that it does not fail
according to the maximum-normal-stress theory. A specimen of cast
iron, tested in tension, has an ultimate stress of 1sult2t = 20 ksi.

T = 400 lb # ft.

Fig. 10–37

r

T � 400 lb�ft

T � 400 lb�ft

(a)

s1s2

(b)

s

tmax

�tmax

t

SOLUTION
The maximum or critical stress occurs at a point located on the surface
of the shaft. Assuming the shaft to have a radius r, the shear stress is

Mohr’s circle for this state of stress (pure shear) is shown in Fig. 10–37b.
Since then

The maximum-normal-stress theory, Eq. 10–31, requires

Thus, the smallest radius of the shaft is determined from

Ans. r = 0.535 in.

 
3055.8 lb # in.

r3 = 20 000 lb>in2

 
3055.8 lb # in.

r3 … 20 000 lb>in2

 ƒs1 ƒ … sult

s1 = -s2 = tmax =
3055.8 lb # in.

r3

R = tmax ,

tmax =
Tc

J
=
1400 lb # ft2112 in.>ft2r

1p>22r4 =
3055.8 lb # in.

r3
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EXAMPLE 10.13

The solid shaft shown in Fig. 10–38a has a radius of 0.5 in. and is made
of steel having a yield stress of Determine if the loadings
cause the shaft to fail according to the maximum-shear-stress theory
and the maximum-distortion-energy theory.

SOLUTION
The state of stress in the shaft is caused by both the axial force and the
torque. Since maximum shear stress caused by the torque occurs in
the material at the outer surface, we have

The stress components are shown acting on an element of material
at point A in Fig. 10–38b. Rather than using Mohr’s circle, the principal
stresses can also be obtained using the stress-transformation Eq. 9–5.

Maximum-Shear-Stress Theory. Since the principal stresses have
opposite signs, then from Sec. 9.5, the absolute maximum shear stress
will occur in the plane, and therefore, applying the second of
Eqs. 10–27, we have

Thus, shear failure of the material will occur according to this theory.

Maximum-Distortion-Energy Theory. Applying Eq. 10–30, we have

Using this theory, failure will not occur.

 1187 … 1296

 C 19.5622 - 19.5621-28.662 + 1-28.6622 D …
? 13622

 As1
 2 - s1s2 + s2

 2 B … sY 

2

 38.2 7 36

 ƒ 9.56 - 1-28.662 ƒ …
?

36

 ƒs1 - s2 ƒ … sY

 s2 = -28.66 ksi

 s1 = 9.56 ksi

 = -9.55 ; 19.11

 =
-19.10 + 0

2
; B a

-19.10 - 0
2

b2

+ 116.5522
 s1,2 =

sx + sy

2
; B a

sx - sy

2
b2

+ txy
 2

 txy =
Tc

J
=

3.25 kip # in. 10.5 in.2
p
210.5 in.24 = 16.55 ksi

 sx =
P

A
=

-15 kip

p10.5 in.22 = -19.10 ksi

sY = 36 ksi.

A

15 kip

(a)

3.25 kip�in.0.5 in.

(b)

16.55 ksi

19.10 ksi

Fig. 10–38
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10–59. A material is subjected to plane stress. Express
the distortion-energy theory of failure in terms of 
and 

*10–60. A material is subjected to plane stress. Express
the maximum-shear-stress theory of failure in terms of 

and Assume that the principal stresses are of
different algebraic signs.

•10–61. An aluminum alloy 6061-T6 is to be used for 
a solid drive shaft such that it transmits 40 hp at 2400

Using a factor of safety of 2 with respect to
yielding, determine the smallest-diameter shaft that can be
selected based on the maximum-shear-stress theory.

10–62. Solve Prob. 10–61 using the maximum-distortion-
energy theory.

10–63. An aluminum alloy is to be used for a drive shaft
such that it transmits 25 hp at 1500 Using a factor 
of safety of 2.5 with respect to yielding, determine the
smallest-diameter shaft that can be selected based on the
maximum-distortion-energy theory.

*10–64. A bar with a square cross-sectional area is made
of a material having a yield stress of If the bar
is subjected to a bending moment of determine
the required size of the bar according to the maximum-
distortion-energy theory. Use a factor of safety of 1.5 with
respect to yielding.

•10–65. Solve Prob. 10–64 using the maximum-shear-
stress theory.

10–66. Derive an expression for an equivalent torque 
that, if applied alone to a solid bar with a circular cross
section, would cause the same energy of distortion as
the combination of an applied bending moment M and
torque T.

10–67. Derive an expression for an equivalent bending
moment that, if applied alone to a solid bar with a
circular cross section, would cause the same energy of
distortion as the combination of an applied bending
moment M and torque T.

Me

Te

75 kip # in.,
sY = 120 ksi.

sY = 3.5 ksi.

rev>min.

rev>min.

txy .sy ,
sx ,

txy .
sy ,sx ,

*10–68. The short concrete cylinder having a diameter of
50 mm is subjected to a torque of and an axial
compressive force of 2 kN. Determine if it fails according to
the maximum-normal-stress theory. The ultimate stress of
the concrete is sult = 28 MPa.

500 N # m

PROBLEMS

500 N�m

500 N�m

2 kN

2 kN

Prob. 10–68

Prob. 10–69

•10–69. Cast iron when tested in tension and compression
has an ultimate strength of and

respectively. Also, when subjected to
pure torsion it can sustain an ultimate shear stress of

Plot the Mohr’s circles for each case and
establish the failure envelope. If a part made of this
material is subjected to the state of plane stress shown,
determine if it fails according to Mohr’s failure criterion.

tult = 168 MPa.

1sult2c = 420 MPa,
1sult2t = 280 MPa

120 MPa

220 MPa

100 MPa

10–70. Derive an expression for an equivalent bending
moment that, if applied alone to a solid bar with a
circular cross section, would cause the same maximum
shear stress as the combination of an applied moment M
and torque T. Assume that the principal stresses are of
opposite algebraic signs.

Me
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10–71. The components of plane stress at a critical point
on an A-36 steel shell are shown. Determine if failure
(yielding) has occurred on the basis of the maximum-shear-
stress theory.

*10–72. The components of plane stress at a critical point
on an A-36 steel shell are shown. Determine if failure
(yielding) has occurred on the basis of the maximum-
distortion-energy theory.

10–75. If the A-36 steel pipe has outer and inner
diameters of 30 mm and 20 mm, respectively, determine the
factor of safety against yielding of the material at point A
according to the maximum-shear-stress theory.

*10–76. If the A-36 steel pipe has an outer and inner
diameter of 30 mm and 20 mm, respectively, determine the
factor of safety against yielding of the material at point A
according to the maximum-distortion-energy theory.

•10–77. The element is subjected to the stresses shown. If
determine the factor of safety for the loading

based on the maximum-shear-stress theory.

10–78. Solve Prob. 10–77 using the maximum-distortion-
energy theory.

sY = 36 ksi,

10–79. The yield stress for heat-treated beryllium copper
is ksi. If this material is subjected to plane stress
and elastic failure occurs when one principal stress is 145 ksi,
what is the smallest magnitude of the other principal stress?
Use the maximum-distortion-energy theory.

sY = 130

•10–73. If the 2-in. diameter shaft is made from brittle
material having an ultimate strength of for
both tension and compression, determine if the shaft fails
according to the maximum-normal-stress theory. Use a
factor of safety of 1.5 against rupture.

10–74. If the 2-in. diameter shaft is made from cast 
iron having tensile and compressive ultimate strengths 
of and respectively,
determine if the shaft fails in accordance with Mohr’s
failure criterion.

1sult2c = 75 ksi,1sult2t = 50 ksi

sult = 50 ksi

60 MPa

70 MPa

40 MPa

Probs. 10–71/72

30 kip
4 kip · ft

Probs. 10–73/74

150 mm

100 mm

200 mm

200 mm

900 N

900 N

A

Probs. 10–75/76

Probs. 10–77/78

12 ksi

4 ksi

8 ksi
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Probs. 10–80/81

Probs. 10–82/83

Prob. 10–85

*10–80. The plate is made of hard copper, which yields at 
Using the maximum-shear-stress theory,

determine the tensile stress that can be applied to the
plate if a tensile stress is also applied.

•10–81. Solve Prob. 10–80 using the maximum-distortion-
energy theory.

sy = 0.5sx

sx

sY = 105 ksi.
•10–85. The state of stress acting at a critical point on a
machine element is shown in the figure. Determine the
smallest yield stress for a steel that might be selected for the
part, based on the maximum-shear-stress theory.

10–86. The principal stresses acting at a point on a thin-
walled cylindrical pressure vessel are 
and If the yield stress is determine the maximum
value of p based on (a) the maximum-shear-stress theory and
(b) the maximum-distortion-energy theory.

10–87. If a solid shaft having a diameter d is subjected to
a torque T and moment M, show that by the maximum-
shear-stress theory the maximum allowable shear stress is

Assume the principal stresses
to be of opposite algebraic signs.

*10–88. If a solid shaft having a diameter d is subjected to a
torque T and moment M, show that by the maximum-normal-
stress theory the maximum allowable principal stress is
sallow = 116>pd321M + 2M2 + T22.

tallow = 116>pd322M2 + T2.

sY,s3 = 0.
s2 = pr>2t,s1 = pr>t,

10–82. The state of stress acting at a critical point on the
seat frame of an automobile during a crash is shown in the
figure. Determine the smallest yield stress for a steel that
can be selected for the member, based on the maximum-
shear-stress theory.

10–83. Solve Prob. 10–82 using the maximum-distortion-
energy theory.

*10–84. A bar with a circular cross-sectional area is made
of SAE 1045 carbon steel having a yield stress of

If the bar is subjected to a torque of 
30 and a bending moment of 56 determine
the required diameter of the bar according to the
maximum-distortion-energy theory. Use a factor of safety
of 2 with respect to yielding.

kip # in.,kip # in.
sY = 150 ksi.

sy � 0.5sx

sx

25 ksi

80 ksi

8 ksi

4 ksi

10 ksi

Probs. 10–87/88

T T
MM
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•10–89. The shaft consists of a solid segment AB and a
hollow segment BC, which are rigidly joined by the
coupling at B. If the shaft is made from A-36 steel,
determine the maximum torque T that can be applied
according to the maximum-shear-stress theory. Use a factor
of safety of 1.5 against yielding.

10–90. The shaft consists of a solid segment AB and a
hollow segment BC, which are rigidly joined by the
coupling at B. If the shaft is made from A-36 steel,
determine the maximum torque T that can be applied
according to the maximum-distortion-energy theory. Use a
factor of safety of 1.5 against yielding.

10–91. The internal loadings at a critical section along the
steel drive shaft of a ship are calculated to be a torque of

a bending moment of and an axial
thrust of 2500 lb. If the yield points for tension and shear are

and respectively, determine the
required diameter of the shaft using the maximum-shear-
stress theory.

tY = 50 ksi,sY = 100 ksi

1500 lb # ft,2300 lb # ft,

•10–93. The gas tank is made from A-36 steel and
has an inner diameter of 1.50 m. If the tank is designed
to withstand a pressure of 5 MPa, determine the required
minimum wall thickness to the nearest millimeter using
(a) the maximum-shear-stress theory, and (b) maximum-
distortion-energy theory. Apply a factor of safety of 1.5
against yielding.

*10–92. The gas tank has an inner diameter of 1.50 m and
a wall thickness of 25 mm. If it is made from A-36 steel and
the tank is pressured to 5 MPa, determine the factor of
safety against yielding using (a) the maximum-shear-stress
theory, and (b) the maximum-distortion-energy theory.

T

T

A

B

C

80 mm

100 mm
80 mm

Probs. 10–89/90

2500 lb

2300 lb�ft
1500 lb�ft

Prob. 10–91

Prob. 10–92

Prob. 10–93
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When an element of material is
subjected to deformations that only
occur in a single plane, then it
undergoes plane strain. If the strain
components and are known
for a specified orientation of the
element, then the strains acting 
for some other orientation of the
element can be determined using the
plane-strain transformation equations.
Likewise, the principal normal strains
and maximum in-plane shear strain
can be determined using transformation
equations.

gxyPy ,Px ,
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 Pavg =
Px + Py
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g

in-plane
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2
= B a

Px - Py
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Px + Py

2
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Px - Py

2
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+ agxy

2
b2

 
gx¿y¿

2
= - ¢ Px - Py

2
≤  sin 2u +

gxy

2
 cos 2u

 Py¿ =
Px + Py

2
-

Px - Py

2
 cos 2u -

gxy

2
 sin 2u

 Px¿ =
Px + Py

2
+

Px - Py

2
 cos 2u +

gxy

2
 sin 2u

Strain transformation problems can
also be solved in a semi-graphical
manner using Mohr’s circle. To 
draw the circle, the and axes 
are established and the center of
the circle and the
“reference point” A
are plotted. The radius of the circle
extends between these two points 
and is determined from trigonometry.

1Px , gxy>22
C [1Px + Py2>2, 0]

g>2P C

A

R �
2 2

�2
Px � Py gxy

2

2
Px � Py

gxy

2

P

Px

2
Px � Py

Pavg �

g

2

u � 0�

If and have the same sign then
the absolute maximum shear strain
will be out of plane.

In the case of plane strain, the
absolute maximum shear strain will
be equal to the maximum in-plane
shear strain provided the principal
strains and have opposite signs.P2P1

P2P1

g
max
abs = P1 - P2

 g
max
in-plane = P1 - P2

 g
max
abs = P1
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If the material is subjected to triaxial
stress, then the strain in each
direction is influenced by the strain
produced by all three stresses.
Hooke’s law then involves the
material properties E and .n

 Pz =
1
E

 [sz - n1sx + sy2]

 Py =
1
E

 [sy - n1sx + sz2]

 Px =
1
E

 [sx - n1sy + sz2]

If E and are known, then G can be
determined.

n

The dilatation is a measure of
volumetric strain.

The bulk modulus is used to measure
the stiffness of a volume of material.

If the principal stresses at a critical
point in the material are known, then
a theory of failure can be used as a
basis for design.

Ductile materials fail in shear, and
here the maximum-shear-stress theory
or the maximum-distortion-energy
theory can be used to predict failure.
Both of these theories make
comparison to the yield stress of a
specimen subjected to a uniaxial
tensile stress.

Brittle materials fail in tension, and
so the maximum-normal-stress theory
or Mohr’s failure criterion can be
used to predict failure. Here comparisons
are made with the ultimate tensile
stress developed in a specimen.

G =
E

211 + n2

k =
E

311 - 2n2

e =
1 - 2n

E
 1sx + sy + sz2
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10–94. A thin-walled spherical pressure vessel has an
inner radius r, thickness t, and is subjected to an internal
pressure p. If the material constants are E and , determine
the strain in the circumferential direction in terms of the
stated parameters.

10–95. The strain at point A on the shell has components
.

Determine (a) the principal strains at A, (b) the maximum
shear strain in the x–y plane, and (c) the absolute maximum
shear strain.

Pz = 0gxy = 275(10- 6),Py = 400(10- 6),Px = 250(10- 6),

n

*10–96. The principal plane stresses acting at a point are
shown in the figure. If the material is machine steel having a
yield stress of determine the factor of
safety with respect to yielding if the maximum-shear-stress
theory is considered.

sY = 500 MPa,

10–98. The 60° strain rosette is mounted on a beam.
The following readings are obtained for each gauge:

and 
Determine (a) the in-plane principal strains and (b) the
maximum in-plane shear strain and average normal strain.
In each case show the deformed element due to these
strains.

Pc = 350110-62.Pb = -700110-62,Pa = 600110-62,

•10–97. The components of plane stress at a critical point
on a thin steel shell are shown. Determine if failure
(yielding) has occurred on the basis of the maximum-
distortion-energy theory. The yield stress for the steel is

.sY = 650 MPa

REVIEW PROBLEMS

y

x
A

Prob. 10–95

100 MPa

150 MPa

Prob. 10–96

Prob. 10–97

340 MPa

55 MPa

65 MPa

60�

a

b

c

60�

60�

Prob. 10–98
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10–99. A strain gauge forms an angle of 45° with the axis
of the 50-mm diameter shaft. If it gives a reading of

when the torque T is applied to the shaft,
determine the magnitude of T. The shaft is made from A-36
steel.

P = -200110-62
10–102. The state of plane strain on an element is

and 
Determine the equivalent state of strain on an element at
the same point oriented 30° clockwise with respect to the
original element. Sketch the results on the element.

gxy = -300110-62.Py = 200110-62,Px = 400110-62,

10–103. The state of plane strain on an element is
and 

Determine the equivalent state of strain, which represents
(a) the principal strains, and (b) the maximum in-plane shear
strain and the associated average normal strain. Specify
the orientation of the corresponding element at the point
with respect to the original element. Sketch the results on the
element.

-300110-62.gxy =Py = 200110-62,Px = 400110-62,

10–101. A differential element is subjected to plane strain
that has the following components:

Use the strain-transformation
equations and determine (a) the principal strains and (b) the
maximum in-plane shear strain and the associated average
strain. In each case specify the orientation of the element
and show how the strains deform the element.

gxy = -325110-62.420110-62,
Py =Px = 950110-62,

*10–100. The A-36 steel post is subjected to the forces
shown. If the strain gauges a and b at point A give readings
of and determine the
magnitudes of and P2.P1

Pb = 175110-62,Pa = 300110-62

45�

T

T

Prob. 10–99

c c

2 ft

1 in.

2 in.

1 in.

4 in.

a
b 45�

AA

P2

P1

A

Section c– c

Prob. 10–100

y

x

dy

dx

Pydy

Pxdx

gxy

2

gxy

2

Prob. 10–102

y

x

dy

dx

Pydy

Pxdx

gxy

2

gxy

2

Prob. 10–103



Beams are important structural members that are used to support roof and floor loadings.
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CHAPTER OBJECTIVES

In this chapter, we will discuss how to design a beam so that it is able
to resist both bending and shear loads. Specifically, methods used for
designing prismatic beams and determining the shape of fully stressed
beams will be developed. At the end of the chapter, we will consider
the design of shafts based on the resistance of both bending and
torsional moments.

11.1 Basis for Beam Design

Beams are said to be designed on the basis of strength so that they can
resist the internal shear and moment developed along their length. To
design a beam in this way requires application of the shear and flexure
formulas provided the material is homogeneous and has linear elastic
behavior. Although some beams may also be subjected to an axial force,
the effects of this force are often neglected in design since the axial stress
is generally much smaller than the stress developed by shear and bending.

Design of Beams 
and Shafts
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As shown in Fig. 11–1, the external loadings on a beam will create
additional stresses in the beam directly under the load. Notably, a
compressive stress will be developed, in addition to the bending stress

and shear stress discussed previously. Using advanced methods of
analysis, as treated in the theory of elasticity, it can be shown that 
diminishes rapidly throughout the beam’s depth, and for most beam
span-to-depth ratios used in engineering practice, the maximum value
of generally represents only a small percentage compared to the
bending stress that is, Furthermore, the direct application
of concentrated loads is generally avoided in beam design. Instead,
bearing plates are used to spread these loads more evenly onto the
surface of the beam.

Although beams are designed mainly for strength, they must also be
braced properly along their sides so that they do not buckle or suddenly
become unstable. Furthermore, in some cases beams must be designed
to resist a limited amount of deflection, as when they support ceilings
made of brittle materials such as plaster. Methods for finding beam
deflections will be discussed in Chapter 12, and limitations placed on
beam buckling are often discussed in codes related to structural or
mechanical design.

Since the shear and flexure formulas are used for beam design, we will
discuss the general results obtained when these equations are applied to
various points in a cantilevered beam that has a rectangular cross section
and supports a load P at its end, Fig. 11–2a.

In general, at an arbitrary section a–a along the beam’s axis, Fig. 11–2b,
the internal shear V and moment M are developed from a parabolic
shear-stress distribution, and a linear normal-stress distribution, Fig. 11–2c.
As a result, the stresses acting on elements located at points 1 through 5
along the section will be as shown in Fig. 11–2d. Note that elements 1 and
5 are subjected only to the maximum normal stress, whereas element 3,
which is on the neutral axis, is subjected only to the maximum shear
stress. The intermediate elements 2 and 4 resist both normal and shear
stress.

In each case the state of stress can be transformed into principal
stresses, using either the stress-transformation equations or Mohr’s
circle. The results are shown in Fig. 11–2e. Here each successive element,
1 through 5, undergoes a counterclockwise orientation. Specifically,
relative to element 1, considered to be at the 0° position, element 3 is
oriented at 45° and element 5 is oriented at 90°.

sx W sy .sx ,
sy

sy

txysx

sy

Fig. 11–1

11

w

P

y

x 

sy

sy

txy

txy

sx

sx

A

Whenever large shear loads occur on a
beam it is important to use stiffeners such as
at A, in order to prevent any localized
failure such as crimping of the beam flanges.
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(a)

a

a

P

Fig. 11–2

P

Stress trajectories for
cantilevered beam

Fig. 11–3

(b)

P

V

M2

3
4

1

5

Bending stress
distribution

Shear stress
distribution

(c)

1

2

3

4

5

(d)

x–y stress components

1

2

3

4

5

Principal stresses

(e)

If this analysis is extended to many vertical sections along the beam
other than a–a, a profile of the results can be represented by curves
called stress trajectories. Each of these curves indicated the direction of a
principal stress having a constant magnitude. Some of these trajectories
are shown for the cantilevered beam in Fig. 11–3. Here the solid lines
represent the direction of the tensile principal stresses and the dashed
lines represent the direction of the compressive principal stresses. As
expected, the lines intersect the neutral axis at 45° angles (like element
3) and the solid and dashed lines will intersect at 90° because the
principal stresses are always 90° apart. Knowing the direction of these
lines can help engineers decide where to reinforce a beam if it is made of
brittle material so that it does not crack or become unstable.



540 CHAPTER 11 DESIGN OF BEAMS AND SHAFTS

11.2 Prismatic Beam Design

Most beams are made of ductile materials and when this is the case
it is generally not necessary to plot the stress trajectories for the
beam. Instead, it is simply necessary to be sure the actual bending
stress and shear stress in the beam do not exceed allowable bending
and shear stress for the material as defined by structural or mechanical
codes. In the majority of cases the suspended span of the beam will be
relatively long, so that the internal moments become large. When this
occurs the engineer will first consider a design based upon bending
and then check the shear strength. A bending design requires a
determination of the beam’s section modulus, a geometric property
which is the ratio of I and c, that is, Using the flexure formula,

we have

(11–1)

Here M is determined from the beam’s moment diagram, and the
allowable bending stress, is specified in a design code. In many
cases the beam’s as yet unknown weight will be small and can be
neglected in comparison with the loads the beam must carry. However,
if the additional moment caused by the weight is to be included in the

design, a selection for S is made so that it slightly exceeds
Once is known, if the beam has a simple cross-sectional shape,

such as a square, a circle, or a rectangle of known width-to-height
proportions, its dimensions can be determined directly from since

However, if the cross section is made from several elements,
such as a wide-flange section, then an infinite number of web and flange
dimensions can be determined that satisfy the value of In practice,
however, engineers choose a particular beam meeting the requirement
that from a handbook that lists the standard shapes available
from manufacturers. Often several beams that have the same section
modulus can be selected from these tables. If deflections are not
restricted, usually the beam having the smallest cross-sectional area is
chosen, since it is made of less material and is therefore both lighter and
more economical than the others.

S 7 Sreq’d

Sreq’d .

Sreq’d = I>c.
Sreq’d ,

Sreq’d

Sreq’d .

sallow ,

Sreq’d =
Mmax

sallow

s = Mc>I,
S = I>c.

11

A B

The two floor beams are connected
to the beam AB, which transmits the load
to the columns of this building frame.
For design, all the connections can be
considered to act as pins.
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Once the beam has been selected, the shear formula 
can then be used to check that the allowable shear stress is not exceeded.
Often this requirement will not present a problem. However, if the
beam is “short” and supports large concentrated loads, the shear-stress
limitation may dictate the size of the beam. This limitation is particularly
important in the design of wood beams, because wood tends to split
along its grain due to shear (see Fig. 7–10e).

Fabricated Beams. Since beams are often made of steel or wood,
we will now discuss some of the tabulated properties of beams made
from these materials.

Steel Sections. Most manufactured steel beams are produced by
rolling a hot ingot of steel until the desired shape is formed. These so-
called rolled shapes have properties that are tabulated in the American
Institute of Steel Construction (AISC) manual. A representative listing
for wide-flange beams taken from this manual is given in Appendix B.As
noted in this appendix, the wide-flange shapes are designated by their
depth and weight per unit length; for example, indicates a
wide-flange cross section (W) having a depth of 18 in. and a weight
of 46 lb ft, Fig. 11–4. For any given section, the weight per length,
dimensions, cross-sectional area, moment of inertia, and section modulus
are reported. Also included is the radius of gyration r, which is a
geometric property related to the section’s buckling strength.This will be
discussed in Chapter 13. Appendix B and the AISC Manual also list data
for other members such as channels and angles.

>
W18 * 46

tallow Ú VQ>It

11

18 in.
0.360 in.

6 in.

W18 � 46

0.605 in.

Fig. 11–4

Typical profile view of a steel wide-flange
beam.

Wood Sections. Most beams made of wood have rectangular cross
sections because such beams are easy to manufacture and handle.
Manuals, such as that of the National Forest Products Association, list the
dimensions of lumber often used in the design of wood beams. Often,
both the nominal and actual dimensions are reported. Lumber is
identified by its nominal dimensions, such as (2 in. by 4 in.);
however, its actual or “dressed” dimensions are smaller, being 1.5 in. by
3.5 in.The reduction in the dimensions occurs in order to obtain a smooth
surface from lumber that is rough sawn. Obviously, the actual dimensions
must be used whenever stress calculations are performed on wood beams.

2 * 4
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Built-up Sections. A built-up section is constructed from two or
more parts joined together to form a single unit. Since Sreq’d ,
the capacity of the beam to resist a moment will vary directly with its
section modulus, and since Sreq’d then Sreq’d is increased if I is
increased. In order to increase I, most of the material should be placed as
far away from the neutral axis as practical. This, of course, is what makes
a deep wide-flange beam so efficient in resisting a moment. For a very
large load, however, an available rolled-steel section may not have a
section modulus great enough to support the load. Rather than using
several available beams, instead engineers will usually “build up” a beam
made from plates and angles.A deep I-shaped section having this form is
called a plate girder. For example, the steel plate girder in Fig. 11–5 has
two flange plates that are either welded or, using angles, bolted to the
web plate.

Wood beams are also “built up,” usually in the form of a box beam
section, Fig. 11–6a. They may be made having plywood webs and larger
boards for the flanges. For very large spans, glulam beams are used.These
members are made from several boards glue-laminated together to form
a single unit, Fig. 11–6b.

Just as in the case of rolled sections or beams made from a single piece,
the design of built-up sections requires that the bending and shear
stresses be checked. In addition, the shear stress in the fasteners, such as
weld, glue, nails, etc., must be checked to be certain the beam acts as a
single unit. The principles for doing this were outlined in Sec. 7.4.

= I>c,

= M>sallow

11

Fig. 11–5

Welded Bolted

Steel plate girders

Wooden box beam

(a)

Glulam beam

(b)

Fig. 11–6

Important Points

• Beams support loadings that are applied perpendicular to their
axes. If they are designed on the basis of strength, they must resist
allowable shear and bending stresses.

• The maximum bending stress in the beam is assumed to be much
greater than the localized stresses caused by the application of
loadings on the surface of the beam.
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Procedure for Analysis

Based on the previous discussion, the following procedure provides a rational method for the design of a
beam on the basis of strength.

Shear and Moment Diagrams.

• Determine the maximum shear and moment in the beam. Often this is done by constructing the beam’s
shear and moment diagrams.

• For built-up beams, shear and moment diagrams are useful for identifying regions where the shear and
moment are excessively large and may require additional structural reinforcement or fasteners.

Bending Stress.

• If the beam is relatively long, it is designed by finding its section modulus using the flexure formula,

• Once is determined, the cross-sectional dimensions for simple shapes can then be computed, since

• If rolled-steel sections are to be used, several possible values of S may be selected from the tables in
Appendix B. Of these, choose the one having the smallest cross-sectional area, since this beam has the
least weight and is therefore the most economical.

• Make sure that the selected section modulus, S, is slightly greater than so that the additional
moment created by the beam’s weight is considered.

Shear Stress.

• Normally beams that are short and carry large loads, especially those made of wood, are first designed to
resist shear and then later checked against the allowable-bending-stress requirements.

• Using the shear formula, check to see that the allowable shear stress is not exceeded; that is, use

• If the beam has a solid rectangular cross section, the shear formula becomes 
(See Eq. 2 of Example 7.2.), and if the cross section is a wide flange, it is generally appropriate to assume
that the shear stress is constant over the cross-sectional area of the beam’s web so that 
where is determined from the product of the beam’s depth and the web’s thickness. (See the note at
the end of Example 7.3.)

Adequacy of Fasteners.

• The adequacy of fasteners used on built-up beams depends upon the shear stress the fasteners can resist.
Specifically, the required spacing of nails or bolts of a particular size is determined from the allowable shear
flow, calculated at points on the cross section where the fasteners are located. (See Sec. 7.3.)qallow = VQ>I,

Aweb

tallow Ú Vmax>Aweb ,

tallow Ú 1.51Vmax>A2
tallow Ú Vmax Q>It.

Sreq’d ,

Sreq’d = I>c.
Sreq’d

Sreq’d = Mmax>sallow .
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EXAMPLE 11.1

A beam is to be made of steel that has an allowable bending stress of
and an allowable shear stress of Select

an appropriate W shape that will carry the loading shown in Fig. 11–7a.

SOLUTION
Shear and Moment Diagrams. The support reactions have been
calculated, and the shear and moment diagrams are shown in Fig. 11–7b.
From these diagrams, and 

Bending Stress. The required section modulus for the beam is
determined from the flexure formula,

Using the table in Appendix B, the following beams are adequate:

The beam having the least weight per foot is chosen, i.e.,

The actual maximum moment which includes the weight of
the beam, can be calculated and the adequacy of the selected beam
can be checked. In comparison with the applied loads, however, the
beam’s weight, will only slightly
increase In spite of this,

OK

Shear Stress. Since the beam is a wide-flange section, the average
shear stress within the web will be considered. (See Example 7.3.)
Here the web is assumed to extend from the very top to the very
bottom of the beam. From Appendix B, for a 

Thus,

OK

Use a Ans.W18 * 40.

tavg =
Vmax

Aw
=

30 kip
117.90 in.210.315 in.2 = 5.32 ksi 6 14.5 ksi

tw = 0.315 in.
W18 * 40, d = 17.90 in.,

Sreq’d = 60 in3 6 68.4 in3

Sreq’d .
10.040 kip>ft2118 ft2 = 0.720 kip,

Mmax ,

W18 * 40

 W8 * 67 S = 60.4 in3

 W10 * 54 S = 60.0 in3

 W12 * 50 S = 64.7 in3

 W14 * 43 S = 62.7 in3

 W16 * 45 S = 72.7 in3

 W18 * 40 S = 68.4 in3

Sreq’d =
Mmax

sallow
=

120 kip # ft 112 in.>ft2
24 kip>in2 = 60 in3

Mmax = 120 kip # ft.Vmax = 30 kip

tallow = 14.5 ksi.sallow = 24 ksi

(a)

40 kip 20 kip

6 ft6 ft6 ft

(b)

10 kip 50 kip

10

V (kip)

M (kip�ft)

�30

20
x (ft)

x (ft)

�120

60

8 ft

6 ft6 ft6 ft

40 kip 20 kip

Fig. 11–7
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EXAMPLE 11.2

The laminated wooden beam shown in Fig. 11–8a supports a uniform
distributed loading of If the beam is to have a height-to-width
ratio of 1.5, determine its smallest width.The allowable bending stress
is and the allowable shear stress is 
Neglect the weight of the beam.

SOLUTION
Shear and Moment Diagrams. The support reactions at A and B
have been calculated and the shear and moment diagrams are shown
in Fig. 11–8b. Here 

Bending Stress. Applying the flexure formula,

Assuming that the width is a, then the height is Fig. 11–8a.
Thus,

Shear Stress. Applying the shear formula for rectangular sections
(which is a special case of , Example 7.2), we have

EQUATION
Since the design fails the shear criterion, the beam must be redesigned
on the basis of shear.

Ans.

This larger section will also adequately resist the normal stress.

 a = 0.183 m = 183 mm

 600 kN>m2 = 1.5 
20(103) N
1a211.5a2

 tallow = 1.5 
Vmax

A

 = 0.929 MPa 7 0.6 MPa

 tmax = 1.5 

Vmax

A
= 11.52 

20(103) N
10.147 m211.5210.147 m2

tmax = VQ>It

 a = 0.147 m

 a3 = 0.003160 m3

 Sreq’d =
I
c

= 0.00119 m3 =
1

121a211.5a23
10.75a2

1.5a,

Sreq’d =
Mmax

sallow
=

10.67(103) N # m

911062 N>m2 = 0.00119 m3

Mmax = 10.67 kN # m.Vmax = 20 kN,

tallow = 0.6 MPa.sallow = 9 MPa

12 kN>m.

Fig. 11–8

1 m

(a)

12 kN/m

a

1.5a

3 mA B

�12

20

x (m)

x (m)

(b)

16 kN32 kN

�16

M (kN�m)

V (kN)

�6

10.67

1.33 m

1.33 m

12 kN/m

1 m 3 m
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EXAMPLE 11.3

The wooden T-beam shown in Fig. 11–9a is made from two
boards. If the allowable bending stress is

and the allowable shear stress is 
determine if the beam can safely support the loading shown. Also,
specify the maximum spacing of nails needed to hold the two boards
together if each nail can safely resist 1.50 kN in shear.

tallow = 0.8 MPa,sallow = 12 MPa
200 mm * 30 mm

Fig. 11–9

�1

1.5

x (m)

x (m)
(b)

0.5

M (kN�m)

V (kN)

2

2 m

1.5 kN

1 kN

0.5 kN/m

1.5 kN

2 m

200 mm

200 mm

30 mm

30 mm

_
y

SOLUTION
Shear and Moment Diagrams. The reactions on the beam are
shown, and the shear and moment diagrams are drawn in Fig. 11–9b.
Here 

Bending Stress. The neutral axis (centroid) will be located from
the bottom of the beam. Working in units of meters, we have

Thus,

Since (not ), we require

OK1211062 Pa Ú
2(103) N # m10.1575 m2

60.125110-62 m4 = 5.2411062 Pa

sallow Ú
Mmaxc

I

0.230 m - 0.1575 m = 0.0725 mc = 0.1575 m

= 60.125110-62 m4

+ c 1
12

 10.2 m210.03 m23 + 10.03 m210.2 m210.215 m - 0.1575 m22 d

 I = c 1
12

 10.03 m210.2 m23 + 10.03 m210.2 m210.1575 m - 0.1 m22 d

 =
10.1 m210.03 m210.2 m2 + 0.215 m10.03 m210.2 m2

0.03 m10.2 m2 + 0.03 m10.2 m2 = 0.1575 m

 y =
©yA

©A

Mmax = 2 kN # m.Vmax = 1.5 kN,

2 m

(a)

1.5 kN
0.5 kN/m

C
B

2 m

D
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Shear Stress. Maximum shear stress in the beam depends upon the
magnitude of Q and t. It occurs at the neutral axis, since Q is a
maximum there and the neutral axis is in the web, where the thickness

is smallest for the cross section. For simplicity, we will use
the rectangular area below the neutral axis to calculate Q, rather than
a two-part composite area above this axis, Fig. 11–9c. We have

so that

OK

Nail Spacing. From the shear diagram it is seen that the shear varies
over the entire span. Since the nail spacing depends on the magnitude
of shear in the beam, for simplicity (and to be conservative), we will
design the spacing on the basis of for region BC and

for region CD. Since the nails join the flange to the web,
Fig. 11–9d, we have
V = 1 kN

V = 1.5 kN

800(103) Pa Ú
1.5(103) N[0.372110-32] m3

60.125110-62 m4 10.03 m2 = 309(103) Pa

tallow Ú
VmaxQ

It

Q = y¿A¿ = a0.1575 m
2

b [10.1575 m210.03 m2] = 0.372110-32 m3

t = 0.03 m

Q = y¿A¿ = 10.0725 m - 0.015 m2[10.2 m210.03 m2] = 0.345110-32 m3

The shear flow for each region is therefore

One nail can resist 1.50 kN in shear, so the maximum spacing becomes

For ease of measuring, use

Ans.

Ans. sCD = 250 mm

 sBC = 150 mm

 sCD =
1.50 kN

5.74 kN>m = 0.261 m

 sBC =
1.50 kN

8.61 kN>m = 0.174 m

 qCD =
VCDQ

I
=

1(103) N[0.345110-32 m3]

60.125110-62 m4 = 5.74 kN>m

 qBC =
VBCQ

I
=

1.5(103) N[0.345110-32 m3]

60.125110-62 m4 = 8.61 kN>m

0.1575 m

0.03 m

AN
0.0725 m

(c)

0.2 m

AN
0.0725 m

(d)

0.03 m

Fig. 11–9 (cont.)
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1 m

2a

1 m

6 kN6 kN

a

F11–1

1.5 ft 1.5 ft

3 kip

3 kip � ft

F11–2

FUNDAMENTAL PROBLEMS

F11–1. Determine the minimum dimension a to the nearest
mm of the beam’s cross section to safely support the load.
The wood has an allowable normal stress of 
and an allowable shear stress of .tallow = 1 MPa

sallow = 10 MPa

F11–4. Determine the minimum dimension h to the nearest
of the beam’s cross section to safely support the load.

The wood has an allowable normal stress of 
and an allowable shear stress of .tallow =  200 psi

sallow = 2 ksi

1
8 in.

F11–2. Determine the minimum diameter d to the nearest
of the rod to safely support the load. The rod is

made of a material having an allowable normal stress
of and an allowable shear stress of

.tallow =  10 ksi
sallow =  20 ksi

1
8 in.

F11–3. Determine the minimum dimension a to the nearest
mm of the beam’s cross section to safely support the load.The
wood has an allowable normal stress of and
an allowable shear stress of .tallow =  1 .5 MPa

sallow =  12 MPa

F11–5. Determine the minimum dimension b to the nearest
mm of the beam’s cross section to safely support the load.
The wood has an allowable normal stress of 
and an allowable shear stress of .tallow = 1 .5 MPa

sallow = 12 MPa

F11–6. Select the lightest W410-shaped section that can
safely support the load. The beam is made of steel having 
an allowable normal stress of and an
allowable shear stress of .tallow =  75 MPa

sallow =  150 MPa

1 m0.5 m

15 kN

A B

a

2 a

F11–3

6 ft

4 in.

1.5 kip/ft

A B

h

F11–4

A B

b

1 m 1 m 1 m 1 m 

50 kN

   5 kN�m   5 kN�m 

3b

F11–5

A
B

1 m

150 kN

2 m

F11–6
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11–3. The brick wall exerts a uniform distributed load
of on the beam. If the allowable bending stress
is ksi, determine the required width b of the
flange to the nearest in.1

4

sallow = 22
1.20 kip>ft

11–2. The brick wall exerts a uniform distributed load
of on the beam. If the allowable bending stress
is and the allowable shear stress is

select the lightest wide-flange section with
the shortest depth from Appendix B that will safely support
the load.

tallow = 12 ksi,
sallow = 22 ksi

1.20 kip>ft •11–5. Select the lightest-weight steel wide-flange beam
from Appendix B that will safely support the machine loading
shown. The allowable bending stress is and
the allowable shear stress is tallow = 14 ksi.

sallow = 24 ksi

11–6. The compound beam is made from two sections,
which are pinned together at B. Use Appendix B and select
the lightest-weight wide-flange beam that would be safe for
each section if the allowable bending stress is 
and the allowable shear stress is The beam
supports a pipe loading of 1200 lb and 1800 lb as shown.

tallow = 14 ksi.
sallow = 24 ksi

11–1. The simply supported beam is made of timber that
has an allowable bending stress of and an
allowable shear stress of Determine its
dimensions if it is to be rectangular and have a height-to-
width ratio of 1.25.

tallow = 500 kPa.
sallow = 6.5 MPa

*11–4. Draw the shear and moment diagrams for the
shaft, and determine its required diameter to the nearest

if and . The bearings at A
and D exert only vertical reactions on the shaft.The loading
is applied to the pulleys at B, C, and E.

tallow = 3 ksisallow = 7 ksi1
4 in.

PROBLEMS

Prob. 11–1

Prob. 11–2

2 m 2 m4 m

8 kN/m

4 ft 6 ft10 ft

1.20 kip/ft

Prob. 11–3

4 ft 6 ft

9 in.

0.5 in.

0.5 in.

0.5 in.

10 ft

1.20 kip/ft

b

A
B

14 in. 20 in. 15 in. 12 in.

80 lb
110 lb

35 lb

C
D

E

Prob. 11–4

Prob. 11–5

Prob. 11–6

5 kip

2 ft2 ft2 ft2 ft2 ft

5 kip 5 kip 5 kip

6 ft 6 ft 8 ft 10 ft

B
A C

1200 lb
1800 lb
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11–7. If the bearing pads at A and B support only vertical
forces, determine the greatest magnitude of the uniform
distributed loading w that can be applied to the beam.

tallow = 1.5 MPa.sallow = 15 MPa,

11–11. The timber beam is to be loaded as shown. If the ends
support only vertical forces, determine the greatest magnitude
of P that can be applied. , tallow = 700 kPa.sallow = 25 MPa

*11–12. Determine the minimum width of the beam to 
the nearest that will safely support the loading of

The allowable bending stress is 
and the allowable shear stress is tallow = 15 ksi.

sallow = 24 ksiP = 8 kip.

1
4 in.

•11–13. Select the shortest and lightest-weight steel wide-
flange beam from Appendix B that will safely support the
loading shown.The allowable bending stress is 
and the allowable shear stress is tallow = 12 ksi.

sallow = 22 ksi
•11–9. Select the lightest-weight W12 steel wide-flange
beam from Appendix B that will safely support the loading
shown, where . The allowable bending stress 
is and the allowable shear stress is 

.

11–10. Select the lightest-weight W14 steel wide-flange
beam having the shortest height from Appendix B that 
will safely support the loading shown, where 
The allowable bending stress is and the
allowable shear stress is tallow = 12 ksi.

sallow = 22 ksi
P = 12 kip.

tallow = 12 ksi
sallow = 22 ksi

P = 6 kip

*11–8. The simply supported beam is made of timber that
has an allowable bending stress of and an
allowable shear stress of . Determine its
smallest dimensions to the nearest in. if it is rectangular
and has a height-to-width ratio of 1.5.

1
8

tallow = 100 psi
sallow = 1.20 ksi

150 mm

25 mm

25 mm

150 mm

A

w

B

1 m 1 m

Prob. 11–7

3 ft 3 ft

12 kip/ft

b

1.5 b

A B

Prob. 11–8

6 ft6 ft9 ft

PP

Probs. 11–9/10

4 m

150 mm

40 mm

30 mm

120 mm

A B

4 m

P

Prob. 11–11

Prob. 11–12

Prob. 11–13

P

6 ft 6 ft

A
6 in. B

4 ft

4 kip
10 kip

6 kip

BA

4 ft 4 ft 4 ft
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11–14. The beam is used in a railroad yard for loading and
unloading cars. If the maximum anticipated hoist load is
12 kip, select the lightest-weight steel wide-flange section
from Appendix B that will safely support the loading. The
hoist travels along the bottom flange of the beam,

and has negligible size. Assume the beam
is pinned to the column at B and roller supported at A.
The allowable bending stress is and 
the allowable shear stress is tallow = 12 ksi.

sallow = 24 ksi

1 ft … x … 25 ft,

*11–16. The simply supported beam is composed of two 
sections built up as shown. Determine the

maximum uniform loading w the beam will support if
the allowable bending stress is and the
allowable shear stress is .

•11–17. The simply supported beam is composed of two
sections built up as shown. Determine if the beam

will safely support a loading of w . The allowable
bending stress is and the allowable shear
stress is .tallow = 14 ksi

sallow = 22 ksi
= 2 kip>ft

W12 * 22

tallow = 14 ksi
sallow = 22 ksi

W12 * 22

11–15. The simply supported beam is made of timber that
has an allowable bending stress of and an
allowable shear stress of Determine its
dimensions if it is to be rectangular and have a height-
to-width ratio of 1.25.

tallow = 75 psi.
sallow = 960 psi

11–18. Determine the smallest diameter rod that will
safely support the loading shown. The allowable bending
stress is and the allowable shear stress
is .

11–19. The pipe has an outer diameter of 15 mm.
Determine the smallest inner diameter so that it will safely
support the loading shown. The allowable bending stress
is and the allowable shear stress is

.tallow = 97 MPa
sallow = 167 MPa

tallow = 97 MPa
sallow = 167 MPa

A B

C

12 kip

27 ft
x

15 ft

Prob. 11–14

6 ft 6 ft

5 kip/ft

b

1.25 b

A B

Prob. 11–15

24 ft

w

Probs. 11–16/17

Probs. 11–18/19

1.5 m

25 N/m

1.5 m

15 N/m 15 N/m
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*11–20. Determine the maximum uniform loading w
the beam will support if the allowable bending
stress is and the allowable shear stress is

.

•11–21. Determine if the beam will safely
support a loading of . The allowable bending
stress is and the allowable shear stress
is .tallow = 12 ksi

sallow = 22 ksi
w = 1.5 kip>ft

W14 * 22

tallow = 12 ksi
sallow = 22 ksi

W12 * 14
11–23. The box beam has an allowable bending stress
of and an allowable shear stress of

. Determine the maximum intensity w of
the distributed loading that it can safely support. Also,
determine the maximum safe nail spacing for each third of
the length of the beam. Each nail can resist a shear force
of 200 N.

tallow = 775 kPa
sallow = 10 MPa

*11–24. The simply supported joist is used in the
construction of a floor for a building. In order to keep the
floor low with respect to the sill beams C and D, the ends of
the joists are notched as shown. If the allowable shear stress
for the wood is and the allowable bending
stress is determine the height h that will
cause the beam to reach both allowable stresses at the same
time. Also, what load P causes this to happen? Neglect the
stress concentration at the notch.

11–25. The simply supported joist is used in the
construction of a floor for a building. In order to keep the
floor low with respect to the sill beams C and D, the ends of
the joists are notched as shown. If the allowable shear stress
for the wood is psi and the allowable bending
stress is psi, determine the smallest height h
so that the beam will support a load of . Also,
will the entire joist safely support the load? Neglect the
stress concentration at the notch.

P = 600 lb
sallow = 1700

tallow = 350

sallow = 1500 psi,
tallow = 350 psi

11–22. Determine the minimum depth h of the beam to
the nearest that will safely support the loading shown.
The allowable bending stress is and the
allowable shear stress is The beam has a
uniform thickness of 3 in.

tallow = 10 ksi.
sallow = 21 ksi

1
8 in.

10 ft

10 ft

w

Probs. 11–20/21

A
B

h

6 ft12 ft

4 kip/ft

Prob. 11–22

6 m150 mm
30 mm

250 mm

30 mm

30 mm
w

Prob. 11–23

Probs. 11–24/25

15 ft

2 in.

h

10 in.

A

B

C

D

15 ftP
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11–26. Select the lightest-weight steel wide-flange beam
from Appendix B that will safely support the loading
shown. The allowable bending stress is and
the allowable shear stress is .tallow = 12 ksi

sallow = 22 ksi

•11–29. The wood beam has a rectangular cross section.
Determine its height h so that it simultaneously reaches
its allowable bending stress of and an
allowable shear stress of . Also, what is the
maximum load P that the beam can then support? 

tallow = 150 psi
sallow = 1.50 ksi

11–27. The T-beam is made from two plates welded
together as shown. Determine the maximum uniform
distributed load w that can be safely supported on the beam
if the allowable bending stress is and the
allowable shear stress is .tallow = 70 MPa

sallow = 150 MPa

*11–28. The beam is made of a ceramic material having 
an allowable bending stress of psi and an
allowable shear stress of psi. Determine the
width b of the beam if the height h = 2b.

tallow = 400
sallow = 735

11–30. The beam is constructed from three boards as
shown. If each nail can support a shear force of 300 lb,
determine the maximum allowable spacing of the nails, s,

, for regions AB, BC, and CD respectively. Also, if the
allowable bending stress is and the allowable
shear stress is determine if it can safely
support the load.

tallow = 150 psi,
sallow = 1.5 ksi

s¿, s–

5 kip

6 ft 12 ft

A
B

18 kip ft

Prob. 11–26

1.5 m

200 mm
20 mm

200 mm

20 mm

1.5  m

w

A

Prob. 11–27

b

h

6 in. 2 in.2 in.

6 lb/in.
10 lb

15 lb

P

1.5 ft 1.5 ft3 ft

6 in.

h

A B

P

Prob. 11–29

A

2 in.

10 in.

2 in.

4 in.

10 in.

500 lb

s s¿

1500 lb

s¿¿

6 ft6 ft6 ft

B C D

Prob. 11–30Prob. 11–28
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Fig. 11–10

(a)

(b)
Haunched concrete beam

(c)

Wide-flange beam with cover plates

*11.3 Fully Stressed Beams

Since the moment in a beam generally varies along its length, the choice
of a prismatic beam is usually inefficient since it is never fully stressed 
at points where the internal moment is less than the maximum moment
in the beam. In order to reduce the weight of the beam, engineers
sometimes choose a beam having a variable cross-sectional area, such
that at each cross section along the beam, the bending stress reaches its
maximum allowable value. Beams having a variable cross-sectional
area are called nonprismatic beams. They are often used in machines
since they can be readily formed by casting. Examples are shown in 
Fig. 11–10a. In structures such beams may be “haunched” at their ends as
shown in Fig. 11–10b. Also, beams may be “built up” or fabricated in a
shop using plates. An example is a girder made from a rolled-shaped
wide-flange beam and having cover plates welded to it in the region
where the moment is a maximum, Fig. 11–10c.

The stress analysis of a nonprismatic beam is generally very difficult to
perform and is beyond the scope of this text. Most often these shapes are
analyzed by using a computer or the theory of elasticity. The results
obtained from such an analysis, however, do indicate that the
assumptions used in the derivation of the flexure formula are
approximately correct for predicting the bending stresses in
nonprismatic sections, provided the taper or slope of the upper or lower
boundary of the beam is not too severe. On the other hand, the shear
formula cannot be used for nonprismatic beam design, since the results
obtained from it are very misleading.

Although caution is advised when applying the flexure formula to
nonprismatic beam design, we will show here, in principle, how this
formula can be used as an approximate means for obtaining the beam’s
general shape. In this regard, the size of the cross section of a
nonprismatic beam that supports a given loading can be determined
using the flexure formula written as

If we express the internal moment M in terms of its position x along the
beam, then since is a known constant, the section modulus S or the
beam’s dimensions become a function of x. A beam designed in this
manner is called a fully stressed beam. Although only bending stresses
have been considered in approximating its final shape, attention must
also be given to ensure that the beam will resist shear, especially at
points where concentrated loads are applied.

sallow

S =
M
sallow

11
The beam for this bridge pier has a variable
moment of inertia. This design will reduce
material weight and save cost.
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EXAMPLE 11.4

Determine the shape of a fully stressed, simply supported beam that
supports a concentrated force at its center, Fig. 11–11a. The beam has
a rectangular cross section of constant width b, and the allowable
stress is sallow .

Fig. 11–11

P

(a)

x

h

L
2

L
2

h0

x

V

M

(b)

h

b

P
2

SOLUTION
The internal moment in the beam, Fig. 11–11b, expressed as a function
of position, is

Hence the required section modulus is

Since then for a cross-sectional area h by b we have

If at then

so that

Ans.

By inspection, the depth h must therefore vary in a parabolic
manner with the distance x.

NOTE: In practice this shape is the basis for the design of leaf
springs used to support the rear-end axles of most heavy trucks or
train cars as shown in the adjacent photo. Note that although this
result indicates that at it is necessary that the beam
resist shear stress at the supports, and so practically speaking, it must
be required that at the supports, Fig. 11–11a.h 7 0

x = 0,h = 0

h2 = ¢2h0 

2

L
≤x

h0 

2 =
3PL

2sallowb

x = L>2,h = h0

 h2 =
3P

sallowb
 x

 
I
c

=
1
12 bh3

h>2 =
P

2sallow
 x

S = I>c,

S =
M
sallow

=
P

2sallow
 x

M =
P

2
 x

0 … x 6 L>2,
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EXAMPLE 11.5

The cantilevered beam shown in Fig. 11–12a is formed into a
trapezoidal shape having a depth at A and a depth at B. If it
supports a load P at its end, determine the absolute maximum
normal stress in the beam. The beam has a rectangular cross section
of constant width b.

3h0h0

Fig. 11–12

SOLUTION
At any cross section, the maximum normal stress occurs at the top and
bottom surface of the beam. However, since and the
section modulus S increases as x increases, the absolute maximum
normal stress does not necessarily occur at the wall B, where the
moment is maximum. Using the flexure formula, we can express the
maximum normal stress at an arbitrary section in terms of its position
x, Fig. 11–12b. Here the internal moment has a magnitude of 
Since the slope of the bottom of the beam is Fig. 11–12a, the
depth of the beam at position x is

h =
2h0

L
 x + h0 =

h0

L
 12x + L2

2h0>L,
M = Px.

smax = M>S

x

P

h0

A

(b)

V � P

M � Px

(a)

x

P

L

hA

B

h

b

h0

3h0
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Applying the flexure formula, we have

(1)

To determine the position x where the absolute maximum normal
stress occurs, we must take the derivative of with respect to x and
set it equal to zero. This gives

Thus,

Substituting into Eq. 1 and simplifying, the absolute maximum normal
stress is therefore

Ans.

Note that at the wall, B, the maximum normal stress is

which is 11.1% smaller than 

NOTE: Recall that the flexure formula was derived on the basis of
assuming the beam to be prismatic. Since this is not the case here,
some error is to be expected in this analysis and that of Example 11.4.
A more exact mathematical analysis, using the theory of elasticity,
reveals that application of the flexure formula as in the above
example gives only small errors in the normal stress if the tapered
angle of the beam is small. For example, if this angle is 15°, the stress
calculated from the formula will be about 5% greater than that
calculated by the more exact analysis. It may also be worth noting that
the calculation of was done only for illustrative purposes,
since, by Saint-Venant’s principle, the actual stress distribution at the
support (wall) is highly irregular.

1smax2B

sabs
max

.

1smax2B =
Mc

I
=

PL11.5h02
C 1
12 b13h023 D =

2
3

 
PL

bh0 

2

sabs
max

=
3
4

 
PL

bh0 

2

x =
1
2

 L

 L2 - 4x2 = 0

 4x2 + 4xL + L2 - 8x2 - 4xL = 0

ds

dx
= ¢6PL2

bh0 

2 ≤  

112x + L22 - x12212x + L2122
12x + L24 = 0

s

s =
Mc

I
=

Px1h>22
A 1

12 bh3 B =
6PL2x

bh0 

2
 12x + L22
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Fig. 11–13

*11.4 Shaft Design

Shafts that have circular cross sections are often used in the design of
mechanical equipment and machinery. As a result, they can be subjected
to cyclic or fatigue stress, which is caused by the combined bending and
torsional loads they must transmit or resist. In addition to these loadings,
stress concentrations may exist on a shaft due to keys, couplings, and
sudden transitions in its cross-sectional area (Sec. 5.8). In order to design
a shaft properly, it is therefore necessary to take all of these effects
into account.

Here we will discuss some of the important aspects of the design of
shafts required to transmit power. These shafts are often subjected to
loads applied to attached pulleys and gears, such as the one shown in
Fig. 11–13a. Since the loads can be applied to the shaft at various angles,
the internal bending and torsional moments at any cross section can be
determined by first replacing the loads by their statically equivalent
counterparts and then resolving these loads into components in two
perpendicular planes, Fig. 11–13b.The bending-moment diagrams for the
loads in each plane can then be drawn, and the resultant internal moment
at any section along the shaft is then determined by vector addition,

Fig. 11–13c. In addition to the moment, segments
of the shaft are also subjected to different internal torques, Fig. 11–13b.
To account for this general variation of torque along the shaft, a torque
diagram may also be drawn, Fig. 11–13d.

M = 2M2
x + M2

z  ,

11

(a)

A

B
P1

P2

(b)

x

z

Az

T

T

y

(P1)z

(P1)x

P2

Ax

Bz

Bx

Moment diagram caused by
loads in y-z plane

y
Moment diagram caused by

loads in x-y plane

y

(c)

Mx Mz

Torque diagram caused by torques
applied about the shaft’s axis

(d)

y

T

Ty
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Once the moment and torque diagrams have been established, it is
then possible to investigate certain critical sections along the shaft where
the combination of a resultant moment M and a torque T creates the
worst stress situation. Since the moment of inertia of the shaft is the same
about any diametrical axis, we can apply the flexure formula using the
resultant moment to obtain the maximum bending stress. As shown in
Fig. 11–13e, this stress will occur on two elements, C and D, each located
on the outer boundary of the shaft. If a torque T is also resisted at this
section, then a maximum shear stress is also developed on these
elements, Fig. 11–13f. Furthermore, the external forces will also create
shear stress in the shaft determined from however, this stress
will generally contribute a much smaller stress distribution on the cross
section compared with that developed by bending and torsion. In some
cases, it must be investigated, but for simplicity, we will neglect its effect
in the following analysis. In general, then, the critical element D (or C)
on the shaft is subjected to plane stress as shown in Fig. 11–13g, where

If the allowable normal or shear stress for the material is known, the
size of the shaft is then based on the use of these equations and selection
of an appropriate theory of failure. For example, if the material is known
to be ductile, then the maximum-shear-stress theory may be appropriate.
As stated in Sec. 10.7, this theory requires the allowable shear stress, which
is determined from the results of a simple tension test, to be equal to the
maximum shear stress in the element. Using the stress-transformation
equation, Eq. 9–7, for the stress state in Fig. 11–13g, we have

Since and this equation becomes

Solving for the radius of the shaft, we get

(11–2)

Application of any other theory of failure will, of course, lead to a
different formulation for c. However, in all cases it may be necessary to
apply this formulation at various “critical sections” along the shaft in
order to determine the particular combination of M and T that gives the
largest value for c.

The following example illustrates the procedure numerically.

c = ¢ 2
ptallow

 2M2 + T2≤1>3

tallow =
2

pc3 2M2 + T2

J = pc4>2,I = pc4>4

 = B a
Mc

2I
b2

+ aTc

J
b2

 tallow = B a
s

2
b2

+ t2

s =
Mc

I
 and t =

Tc

J

t = VQ>It;

11

M

A

N C

(e)

D

s

T

C

(f)

D
t

t

D

�

(g)

s

s

t
t

Fig. 11–13 (cont.)
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EXAMPLE 11.6

The shaft in Fig. 11–14a is supported by smooth journal bearings at A
and B. Due to the transmission of power to and from the shaft, the
belts on the pulleys are subjected to the tensions shown. Determine
the smallest diameter of the shaft using the maximum-shear-stress
theory, with tallow = 50 MPa.

(b)

7.5 N�m

950 N

z

y 

x

650 N

475 N

475 N

150 N

7.5 N�m

0.250 m

0.250 m

0.150 m

500 N

A

(a)

B
C

0.250 m

0.250 m

0.150 m

400 N

550 N

300 N

200 N

z

y

x

D 0.075 m

0.050 m

SOLUTION
The support reactions have been calculated and are shown on
the free-body diagram of the shaft, Fig. 11–14b. Bending-moment
diagrams for and are shown in Figs. 11–14c and 11–14d,
respectively. The torque diagram is shown in Fig. 11–14e. By
inspection, critical points for bending moment occur either at C or B.
Also, just to the right of C and at B the torsional moment is 
At C, the resultant moment is

whereas at B it is smaller, namely

MB = 75 N # m

MC = 21118.75 N # m22 + 137.5 N # m22 = 124.5 N # m

7.5 N # m.

MzMx

Fig. 11–14
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Since the design is based on the maximum-shear-stress theory,
Eq. 11–2 applies. The radical will be the largest at a
section just to the right of C. We have

Thus, the smallest allowable diameter is

Ans.d = 210.0117 m2 = 23.3 mm

 = 0.0117 m

 = ¢ 2

p150211062 N>m221124.5 N # m22 + 17.5 N # m22≤1>3
 c = ¢ 2

ptallow
 2M2 + T2≤1>3

2M2 + T2

y (m)

A

475 N 950 N 475 N

118.75

C B D

0.250 m 0.150 m

(c)

0.250 m

Mx (N�m)

A

150 N 500 N650 N

75 N�m

C B D

0.250 m 0.250 m 0.150 m

(d)

37.5 N�m

y (m)

Mz (N�m)

A

–7.5

C B
D

0.250 m 0.150 m

(e)

7.5 N�m 7.5 N�m

0.250 m
Ty (N�m)

y (m)

Fig. 11–14 (cont.)
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Prob. 11–33

x

L––
2

L––
2

h0
h

w0

B

CA

Prob. 11–34

L

2h0

–
2

–
2

L

h0

w0

h0

Prob. 11–36

11–31. The tapered beam supports a concentrated force P
at its center. If it is made from a plate that has a constant
width b, determine the absolute maximum bending stress in
the beam.

*11–32. The beam is made from a plate that has a constant
thickness b. If it is simply supported and carries a uniform
load w, determine the variation of its depth as a function of
x so that it maintains a constant maximum bending stress

throughout its length.sallow

11–35. The beam is made from a plate that has a constant
thickness b. If it is simply supported and carries the
distributed loading shown, determine the maximum
bending stress in the beam.

*11–36. Determine the variation of the radius r of the
cantilevered beam that supports the uniform distributed
load so that it has a constant maximum bending stress 
throughout its length.

smax

•11–33. The beam is made from a plate having a constant
thickness t and a width that varies as shown. If it supports a
concentrated force P at its center, determine the absolute
maximum bending stress in the beam and specify its
location x, 0 6 x 6 L>2.

11–34. The beam is made from a plate that has a constant
thickness b. If it is simply supported and carries the
distributed loading shown, determine the variation of its
depth as a function of x so that it maintains a constant
maximum bending stress throughout its length.sallow

PROBLEMS

Prob. 11–31

Prob. 11–32

P

h0
2h0 h0

L
2

L
2

x

y

w

L––
2

L––
2

h0

b

L—
2

P

P—
2

L—
2

P—
2

x

t

b0

L
x

r0

w

r

Prob. 11–35
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•11–37. Determine the variation in the depth d of a
cantilevered beam that supports a concentrated force P at
its end so that it has a constant maximum bending stress

throughout its length. The beam has a constant
width b0 .
sallow

11–38. Determine the variation in the width b as a
function of x for the cantilevered beam that supports a
uniform distributed load along its centerline so that it has
the same maximum bending stress throughout its
length. The beam has a constant depth t.

sallow

•11–41. The end gear connected to the shaft is subjected
to the loading shown. If the bearings at A and B exert only
y and z components of force on the shaft, determine the
equilibrium torque T at gear C and then determine the
smallest diameter of the shaft to the nearest millimeter that
will support the loading. Use the maximum-shear-stress
theory of failure with 

11–42. The end gear connected to the shaft is subjected to
the loading shown. If the bearings at A and B exert only y
and z components of force on the shaft, determine the
equilibrium torque T at gear C and then determine the
smallest diameter of the shaft to the nearest millimeter
that will support the loading. Use the maximum-distortion-
energy theory of failure with sallow = 80 MPa.

tallow = 60 MPa.

11–39. The shaft is supported on journal bearings that do
not offer resistance to axial load. If the allowable normal
stress for the shaft is , determine to the
nearest millimeter the smallest diameter of the shaft that
will support the loading. Use the maximum-distortion-
energy theory of failure.

*11–40. The shaft is supported on journal bearings that do
not offer resistance to axial load. If the allowable shear
stress for the shaft is , determine to the
nearest millimeter the smallest diameter of the shaft that
will support the loading. Use the maximum-shear-stress
theory of failure.

tallow = 35 MPa

sallow = 80 MPa

Prob. 11–37

Prob. 11–38

L

P

x
d0d

t

L

w

b0—
2

b0—
2

x

b—
2

Probs. 11–39/40

Probs. 11–41/42

500 mm

250 mm

250 mm

B

x
C

DA

z

y

30�

30�

30�
100 mm

150 mm

100 N

250 N

150 N

50 N

30�

100 mm

250 mm

150 mm

x

y

z

50 mm

75 mm

100 mm

Fz � 1.5 kN

A

C

B

T
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11–43. The shaft is supported by bearings at A and B that
exert force components only in the x and z directions on
the shaft. If the allowable normal stress for the shaft is

, determine to the nearest in. the smallest 
diameter of the shaft that will support the loading. Use the
maximum-distortion-energy theory of failure.

1
8sallow = 15 ksi

•11–45. The bearings at A and D exert only y and z
components of force on the shaft. If ,
determine to the nearest millimeter the smallest-diameter
shaft that will support the loading. Use the maximum-shear-
stress theory of failure.

tallow = 60 MPa

Prob. 11–43
Prob. 11–45

8 in.

12 in.

6 in.

10 in.
y

x

z

B
E

D

A

C

Fz � 300 lb

Fy � 300 lb

6 in.

2 in.

4 in.

F¿x � 100 lb

Prob. 11–44

8 in.

12 in.

6 in.

10 in.
y

x

z

B
E

D

A

C

Fz � 300 lb

Fy � 300 lb

6 in.

2 in.

4 in.

F¿x � 100 lb

350 mm

400 mm

200 mm

z

B

C

D

50 mm

75 mm

y

x

A
Fz � 2 kN

Fy � 3 kN

Prob. 11–46

350 mm

400 mm

200 mm

z

B

C

D

50 mm

75 mm

y

x

A
Fz � 2 kN

Fy � 3 kN

*11–44. The shaft is supported by bearings at A and B
that exert force components only in the x and z directions
on the shaft. If the allowable normal stress for the shaft is

, determine to the nearest in. the smallest
diameter of the shaft that will support the loading. Use the
maximum-shear-stress theory of failure.Take tallow = 6 ksi .

1
8sallow = 15 ksi

11–46. The bearings at A and D exert only y and z
components of force on the shaft. If ,
determine to the nearest millimeter the smallest-diameter
shaft that will support the loading. Use the maximum-
distortion-energy theory of failure. sallow = 130 MPa.

tallow = 60 MPa
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Failure of a beam occurs when the internal shear or
moment in the beam is a maximum. To resist these
loadings, it is therefore important that the associated
maximum shear and bending stress not exceed allowable
values as stated in codes. Normally, the cross section of a
beam is first designed to resist the allowable bending stress,

sallow =
Mmaxc

I

CHAPTER REVIEW

Then the allowable shear stress is checked. For rectangular
sections, and for wide-flange sections
it is appropriate to use In general, use

tallow =
VQ

It

tallow Ú Vmax>Aweb.
tallow Ú 1.51Vmax>A2

For built-up beams, the spacing of fasteners or the strength
of glue or weld is determined using an allowable shear flow

qallow =
VQ

I

Fully stressed beams are nonprismatic and designed
such that each cross section along the beam will resist the
allowable bending stress. This will define the shape of
the beam.

A mechanical shaft generally is designed to resist both
torsion and bending stresses. Normally, the internal
bending moment can be resolved into two planes, and 
so it is necessary to draw the moment diagrams for each
bending-moment component and then select the maximum
moment based on vector addition. Once the maximum
bending and shear stresses are determined, then depending
upon the type of material, an appropriate theory of failure
is used to compare the allowable stress to what is required.

A

B
P1

P2
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11–47. Draw the shear and moment diagrams for the shaft,
and then determine its required diameter to the nearest
millimeter if and The
bearings at A and B exert only vertical reactions on the
shaft.

tallow = 80 MPa.sallow = 140 MPa

*11–48. The overhang beam is constructed using two 2-in.
by 4-in. pieces of wood braced as shown. If the allowable
bending stress is determine the largest
load P that can be applied. Also, determine the associated
maximum spacing of nails, s, along the beam section AC if
each nail can resist a shear force of 800 lb.Assume the beam
is pin-connected at A, B, and D. Neglect the axial force
developed in the beam along DA.

sallow = 600 psi,

•11–49. The bearings at A and B exert only x and z
components of force on the steel shaft. Determine the
shaft’s diameter to the nearest millimeter so that it can
resist the loadings of the gears without exceeding an
allowable shear stress of Use the
maximum-shear-stress theory of failure.

tallow = 80 MPa.

REVIEW PROBLEMS

Prob. 11–47

A B

125 mm
600 mm

75 mm

800 N

1500 N

Prob. 11–48

Prob. 11–49

B

2 ft

2 ft

3 ft

A

C

P

s

4 in.

2 in.
2 in.

D

A

75 mm

150 mm

350 mm

250 mm

z

x

y

50 mm

B

Fz � 7.5 kN

Fx � 5 kN

A

75 mm

150 mm

350 mm

250 mm

z

x

y

50 mm

B

Fz � 7.5 kN

Fx � 5 kN

11–50. The bearings at A and B exert only x and z
components of force on the steel shaft. Determine the
shaft’s diameter to the nearest millimeter so that it can resist
the loadings of the gears without exceeding an allowable
shear stress of Use the maximum-
distortion-energy theory of failure with  sallow = 200 MPa.

tallow = 80 MPa.

Prob. 11–50
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11–51. Draw the shear and moment diagrams for the
beam. Then select the lightest-weight steel wide-flange
beam from Appendix B that will safely support the loading.
Take and tallow = 12 ksi .sallow = 22 ksi,

*11–52. The beam is made of cypress having an allowable
bending stress of and an allowable shear
stress of Determine the width b of the beam
if the height .h = 1.5b

tallow = 80 psi .
sallow = 850 psi

•11–53. The tapered beam supports a uniform distributed
load w. If it is made from a plate and has a constant width b,
determine the absolute maximum bending stress in the
beam.

Prob. 11–51

Prob. 11–52

Prob. 11–53

Probs. 11–54/55

B
A

12 ft 6 ft

3 kip/ft

1.5 kip � ft

5 ft 5 ft

75 lb/ft

b

h � 1.5b

A B

300 lb

2 h0 
h0

w

h0 

L––
2

L––
2

150 mm
x

y

z

B

A

500 N

100 mm

100 mm

150 mm

200 mm 500 N

11–54. The tubular shaft has an inner diameter of 15 mm.
Determine to the nearest millimeter its outer diameter if it
is subjected to the gear loading. The bearings at A and B
exert force components only in the y and z directions on the
shaft. Use an allowable shear stress of , and
base the design on the maximum-shear-stress theory of
failure.

11–55. Determine to the nearest millimeter the diameter
of the solid shaft if it is subjected to the gear loading. The
bearings at A and B exert force components only in
the y and z directions on the shaft. Base the design on
the maximum-distortion-energy theory of failure with

.sallow = 150 MPa

tallow = 70 MPa



If the curvature of this pole is measured, it is then possible to determine the bending
stress developed within it.
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CHAPTER OBJECTIVES

Often limits must be placed on the amount of deflection a beam or
shaft may undergo when it is subjected to a load, and so in this chapter
we will discuss various methods for determining the deflection and
slope at specific points on beams and shafts. The analytical methods
include the integration method, the use of discontinuity functions, and
the method of superposition. Also, a semigraphical technique, called
the moment-area method, will be presented. At the end of the chapter,
we will use these methods to solve for the support reactions on a beam
or shaft that is statically indeterminate.

12.1 The Elastic Curve

The deflection of a beam or shaft must often be limited in order to
provide integrity and stability of a structure or machine, and prevent the
cracking of any attached brittle materials such as concrete or glass.
Furthermore, code restrictions often require these members not vibrate
or deflect severely in order to safely support their intended loading. Most
important, though, deflections at specific points on a beam or shaft must
be determined if one is to analyze those that are statically indeterminate.

Before the slope or the displacement at a point on a beam (or shaft) is
determined, it is often helpful to sketch the deflected shape of the beam
when it is loaded, in order to “visualize” any computed results and thereby
partially check these results. The deflection curve of the longitudinal axis
that passes through the centroid of each cross-sectional area of a beam is
called the elastic curve. For most beams the elastic curve can be sketched
without much difficulty. When doing so, however, it is necessary to know
how the slope or displacement is restricted at various types of supports.
In general, supports that resist a force, such as a pin, restrict
displacement, and those that resist a moment, such as a fixed wall, restrict
rotation or slope as well as displacement. With this in mind, two typical
examples of the elastic curves for loaded beams (or shafts), sketched to
an exaggerated scale, are shown in Fig. 12–1.

Deflection of Beams
and Shafts 12

P

P

Fig. 12–1
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If the elastic curve for a beam seems difficult to establish, it is

suggested that the moment diagram for the beam be drawn first. Using
the beam sign convention established in Sec. 6.1, a positive internal
moment tends to bend the beam concave upward, Fig. 12–2a. Likewise,
a negative moment tends to bend the beam concave downward,
Fig. 12–2b. Therefore, if the moment diagram is known, it will be easy
to construct the elastic curve. For example, consider the beam in
Fig. 12–3a with its associated moment diagram shown in Fig. 12–3b.
Due to the roller and pin supports, the displacement at B and D must
be zero. Within the region of negative moment, AC, Fig. 12–3b, the elastic
curve must be concave downward, and within the region of positive
moment, CD, the elastic curve must be concave upward. Hence, there
must be an inflection point at point C, where the curve changes from
concave up to concave down, since this is a point of zero moment.
Using these facts, the beam’s elastic curve is sketched in Fig. 12–3c. It
should also be noted that the displacements and are especially
critical. At point E the slope of the elastic curve is zero, and there the
beam’s deflection may be a maximum. Whether is actually greater
than depends on the relative magnitudes of and and the location
of the roller at B.

Following these same principles, note how the elastic curve in Fig. 12–4
was constructed. Here the beam is cantilevered from a fixed support at A
and therefore the elastic curve must have both zero displacement and
zero slope at this point.Also, the largest displacement will occur either at
D, where the slope is zero, or at C.

P2P1¢A

¢E

¢E¢A

DInflection point
Elastic curve

A

C

(c)

M

x

Moment diagram

(b)

�C

�D

P

(a) A
CD

M

Fig. 12–4

�M �M

Positive internal moment
concave upwards

(a)

Fig. 12–2

Negative internal moment
concave downwards

(b)

�M �M

M

x

Moment diagram

(b)

B

E

D

Inflection point

C

A

(c)

Elastic curve

�E

�A

P1 P2

A D
EC

B
(a)

Fig. 12–3
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12

Fig. 12–5

Moment-Curvature Relationship. We will now develop an
important relationship between the internal moment and the radius of
curvature (rho) of the elastic curve at a point. The resulting equation
will be used for establishing each of the methods presented in the chapter
for finding the slope and displacement at points on the elastic curve.

The following analysis, here and in the next section, will require the
use of three coordinates. As shown in Fig. 12–5a, the x axis extends
positive to the right, along the initially straight longitudinal axis of the
beam. It is used to locate the differential element, having an undeformed
width dx. The axis extends positive upward from the x axis. It measures
the displacement of the elastic curve. Lastly, a “localized” y coordinate is
used to specify the position of a fiber in the beam element. It is measured
positive upward from the neutral axis (or elastic curve) as shown in
Fig. 12–5b. Recall that this same sign convention for x and y was used in
the derivation of the flexure formula.

To derive the relationship between the internal moment and we
will limit the analysis to the most common case of an initially straight
beam that is elastically deformed by loads applied perpendicular to the
beam’s x axis and lying in the x– plane of symmetry for the beam’s
cross-sectional area. Due to the loading, the deformation of the beam is
caused by both the internal shear force and bending moment. If the
beam has a length that is much greater than its depth, the greatest
deformation will be caused by bending, and therefore we will direct our
attention to its effects. Deflections caused by shear will be discussed in
Chapter 14.
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When the internal moment M deforms the element of the beam, the

angle between the cross sections becomes Fig. 12–5b. The arc dx
represents a portion of the elastic curve that intersects the neutral axis
for each cross section. The radius of curvature for this arc is defined as
the distance which is measured from the center of curvature to dx.
Any arc on the element other than dx is subjected to a normal strain. For
example, the strain in arc ds, located at a position y from the neutral axis,
is However, and 
and so or

(12–1)

If the material is homogeneous and behaves in a linear-elastic manner,
then Hooke’s law applies, Also, since the flexure formula
applies, Combining these two equations and substituting
into the above equation, we have

(12–2)

where

the radius of curvature at the point on the elastic curve 
( is referred to as the curvature)

internal moment in the beam at the point

material’s modulus of elasticity

beam’s moment of inertia about the neutral axis

The product EI in this equation is referred to as the flexural rigidity,
and it is always a positive quantity. The sign for therefore depends on
the direction of the moment. As shown in Fig. 12–6, when M is positive,

extends above the beam, i.e., in the positive direction; when M is
negative, extends below the beam, or in the negative direction.

Using the flexure formula, we can also express the
curvature in terms of the stress in the beam, namely,

(12–3)

Both Eqs. 12–2 and 12–3 are valid for either small or large radii of
curvature. However, the value of is almost always calculated as a very
large quantity. For example, consider an A-36 steel beam made from a

(Appendix B), where and 
When the material at the outer fibers, is about to yield, then,
from Eq. 12–3, Values of calculated at other points along
the beam’s elastic curve may be even larger, since cannot exceed at
the outer fibers.
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Fig. 12–5 (cont.)
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1212.2 Slope and Displacement 
by Integration

The equation of the elastic curve for a beam can be expressed mathematically
as To obtain this equation, we must first represent the curvature

in terms of and x. In most calculus books it is shown that this
relationship is

Substituting into Eq. 12–2, we have

(12–4)

This equation represents a nonlinear second-order differential equation.
Its solution, which is called the elastica, gives the exact shape of the elastic
curve, assuming, of course, that beam deflections occur only due to bending.
Through the use of higher mathematics, elastica solutions have been
obtained only for simple cases of beam geometry and loading.

In order to facilitate the solution of a greater number of deflection
problems, Eq. 12–4 can be modified. Most engineering design codes
specify limitations on deflections for tolerance or esthetic purposes, and
as a result the elastic deflections for the majority of beams and shafts
form a shallow curve. Consequently, the slope of the elastic curve, which is
determined from , will be very small, and its square will be negligible
compared with unity.* Therefore the curvature, as defined above, can be
approximated by Using this simplification, Eq. 12–4 can
now be written as

(12–5)

It is also possible to write this equation in two alternative forms. If we
differentiate each side with respect to x and substitute 
(Eq. 6–2), we get

(12–6)

Differentiating again, using (Eq. 6–1), yields

(12–7)
d2

dx2 ¢EI 
d2v

dx2 ≤ = w1x2
w = dV>dx

d

dx
 ¢EI 

d2v

dx2 ≤ = V1x2

V = dM>dx

d2v

dx2 =
M

EI

1>r = d2v>dx2.

dv>dx

d2v>dx2

[1 + 1dv>dx22]3>2 =
M

EI

1
r

=
d2v>dx2

[1 + 1dv>dx22]3>2

v11>r2v = f1x2.

*See Example 12.1.
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12
For most problems the flexural rigidity (EI) will be constant along the

length of the beam. Assuming this to be the case, the above results may
be reordered into the following set of three equations:

(12–8)

(12–9)

(12–10)

Solution of any of these equations requires successive integrations to
obtain the deflection of the elastic curve. For each integration it is
necessary to introduce a “constant of integration” and then solve for all
the constants to obtain a unique solution for a particular problem. For
example, if the distributed load w is expressed as a function of x and
Eq. 12–8 is used, then four constants of integration must be evaluated;
however, if the internal moment M is determined and Eq. 12–10 is used,
only two constants of integration must be found. The choice of which
equation to start with depends on the problem. Generally, however, it is
easier to determine the internal moment M as a function of x, integrate
twice, and evaluate only two integration constants.

Recall from Sec. 6.1 that if the loading on a beam is discontinuous, that
is, consists of a series of several distributed and concentrated loads, then
several functions must be written for the internal moment, each valid
within the region between the discontinuities. Also, for convenience in
writing each moment expression, the origin for each x coordinate can be
selected arbitrarily. For example, consider the beam shown in Fig. 12–7a.
The internal moment in regions AB, BC, and CD can be written in terms
of the and coordinates selected, as shown in either Fig. 12–7b or
Fig. 12–7c, or in fact in any manner that will yield in as simple
a form as possible. Once these functions are integrated twice through the
use of Eq. 12–10 and the constants of integration determined, the functions
will give the slope and deflection (elastic curve) for each region of the
beam for which they are valid.

M = f1x2x3x2 ,x1 ,

v

 EI 
d2v

dx2 = M1x2

 EI 
d3v

dx3 = V1x2

 EI 
d4v

dx4 = w1x2

Fig. 12–7

(a)

B C
A D

P
w

A D

(b)

P
w

B C
x1

x2

x3

A D

(c)

P
w

B C

x1 x2 x3
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12
Sign Convention and Coordinates. When applying Eqs. 12–8
through 12–10, it is important to use the proper signs for M, V, or as
established by the sign convention that was used in the derivation of
these equations. For review, these terms are shown in their positive
directions in Fig. 12–8a. Furthermore, recall that positive deflection, is
upward, and as a result, the positive slope angle will be measured
counterclockwise from the x axis when x is positive to the right. The
reason for this is shown in Fig. 12–8b. Here positive increases dx and 
in x and create an increased that is counterclockwise. If, however,
positive x is directed to the left, then will be positive clockwise,
Fig. 12–8c.

Realize that by assuming to be very small, the original horizontal
length of the beam’s axis and the arc of its elastic curve will be about the
same. In other words, ds in Fig. 12–8b and 12–8c is approximately equal to
dx, since As a result,
points on the elastic curve are assumed to be displaced vertically, and not
horizontally. Also, since the slope angle will be very small, its value in
radians can be determined directly from u L tan u = dv>dx.

u

21 + 1dv>dx22 dx L dx.ds = 21dx22 + 1dv22 =

dv>dx

u

uv
dv

u

v,

w

dx

Elastic curve

O¿v

x

ds

Positive sign convention

(b)

�u

du

�r

�x

�v
�dv

�r

Fig. 12–8

�w

�M

�V�V

�M

Positive sign convention

(a)

dx

Elastic curve

O¿

dv
�v

�x

v

x

Positive sign convention

(c)

dsdu
�u

�r

�r

The design of a roof system requires a careful
consideration of deflection. For example,
rain can accumulate on areas of the roof,
which then causes ponding, leading to further
deflection, then further ponding, and finally
possible failure of the roof.
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12
Boundary and Continuity Conditions. When solving Eqs.12–8,
12–9, or 12–10, the constants of integration are determined by evaluating
the functions for shear, moment, slope, or displacement at a particular
point on the beam where the value of the function is known.These values
are called boundary conditions. Several possible boundary conditions that
are often used to solve beam (or shaft) deflection problems are listed in
Table 12–1. For example, if the beam is supported by a roller or pin (1, 2,
3, 4), then it is required that the displacement be zero at these points.
Furthermore, if these supports are located at the ends of the beam (1, 2),
the internal moment in the beam must also be zero. At the fixed support
(5), the slope and displacement are both zero, whereas the free-ended
beam (6) has both zero moment and zero shear. Lastly, if two segments
of a beam are connected by an “internal” pin or hinge (7), the moment
must be zero at this connection.

If the elastic curve cannot be expressed using a single coordinate, then
continuity conditions must be used to evaluate some of the integration
constants. For example, consider the beam in Fig. 12–9a. Here two 
x coordinates are chosen with origins at A. Each is valid only within the
regions and Once the functions for the
slope and deflection are obtained, they must give the same values for
the slope and deflection at point B so the elastic curve is physically
continuous. Expressed mathematically, this requires that 
and These conditions can be used to evaluate two
constants of integration. If instead the elastic curve is expressed 
in terms of the coordinates and shown in 
Fig. 12–9b, then the continuity of slope and deflection at B requires

and In this particular case, a negative
sign is necessary to match the slopes at B since extends positive to
the right, whereas extends positive to the left. Consequently, is
positive counterclockwise, and is positive clockwise. See Figs. 12–8b
and 12–8c.

u2

u1x2

x1

v11a2 = v21b2.u11a2 = -u21b2
0 … x2 … b,0 … x1 … a

v11a2 = v21a2.
u11a2 = u21a2

a … x2 … 1a + b2.0 … x1 … a

Fig. 12–9

TABLE 12–1

Roller

Pin

Fixed end

1

2

3

4

5

Internal pin or hinge

6

7

� � 0

� � 0

� � 0

Free end
M � 0

M � 0

V � 0

u � 0

Roller
M � 0
� � 0

Pin
M � 0
� � 0

A C

x2

x1

P

a b
B

(a)

u

v

v1, v2 

x1

A C

x2

v

v1 v2

B

(b)

P

a b

u
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12Procedure for Analysis

The following procedure provides a method for determining the
slope and deflection of a beam (or shaft) using the method of
integration.

Elastic Curve.

• Draw an exaggerated view of the beam’s elastic curve. Recall that
zero slope and zero displacement occur at all fixed supports, and
zero displacement occurs at all pin and roller supports.

• Establish the x and coordinate axes. The x axis must be parallel
to the undeflected beam and can have an origin at any point along
the beam, with a positive direction either to the right or to the
left.

• If several discontinuous loads are present, establish x
coordinates that are valid for each region of the beam between
the discontinuities. Choose these coordinates so that they will
simplify subsequent algebraic work.

• In all cases, the associated positive axis should be directed
upward.

Load or Moment Function.
• For each region in which there is an x coordinate, express the loading

or the internal moment M as a function of x. In particular,
always assume that M acts in the positive direction when applying
the equation of moment equilibrium to determine 

Slope and Elastic Curve.

• Provided EI is constant, apply either the load equation
which requires four integrations to get

or the moment equation which
requires only two integrations. For each integration it is important
to include a constant of integration.

• The constants are evaluated using the boundary conditions for
the supports (Table 12–1) and the continuity conditions that
apply to slope and displacement at points where two functions
meet. Once the constants are evaluated and substituted back into
the slope and deflection equations, the slope and displacement at
specific points on the elastic curve can then be determined.

• The numerical values obtained can be checked graphically by
comparing them with the sketch of the elastic curve. Realize that
positive values for slope are counterclockwise if the x axis extends
positive to the right, and clockwise if the x axis extends positive to
the left. In either of these cases, positive displacement is upward.

EI d2v>dx2 = M1x2,v = v1x2,EI d4v>dx4 = w1x2,

M = f1x2.
w

v

v
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12 EXAMPLE 12.1

The cantilevered beam shown in Fig. 12–10a is subjected to a vertical
load P at its end. Determine the equation of the elastic curve. EI is
constant.

SOLUTION I
Elastic Curve. The load tends to deflect the beam as shown in
Fig. 12–10a. By inspection, the internal moment can be represented
throughout the beam using a single x coordinate.

Moment Function. From the free-body diagram, with M acting in
the positive direction, Fig. 12–10b, we have

Slope and Elastic Curve. Applying Eq. 12–10 and integrating twice
yields

(1)

(2)

(3)

Using the boundary conditions at and at
Eqs. 2 and 3 become

Thus, and Substituting these results into
Eqs. 2 and 3 with we get

Ans.

Maximum slope and displacement occur at for which

(4)

(5) vA = -
PL3

3EI

 uA =
PL2

2EI

A1x = 02,
v =

P

6EI
 1-x3 + 3L2x - 2L32

u =
P

2EI
 1L2 - x22

u = dv>dx,
C2 = -PL3>3.C1 = PL2>2
 0 = -

PL3

6
+ C1L + C2

 0 = -
PL2

2
+ C1

x = L,
v = 0x = Ldv>dx = 0

 EIv = -
Px3

6
+ C1x + C2

 EI 
dv

dx
= -

Px2

2
+ C1

 EI 
d2v

dx2 = -Px

M = -Px

P

x

x BA

vA

Elastic curve

L

v

(a)

uA

Fig. 12–10

M
x

(b)

P

V
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12The positive result for indicates counterclockwise rotation and the
negative result for indicates that is downward. This agrees with
the results sketched in Fig. 12–10a.

In order to obtain some idea as to the actual magnitude of the slope
and displacement at the end A, consider the beam in Fig. 12–10a to
have a length of 15 ft, support a load of and be made of 
A-36 steel having Using the methods of Sec. 11.2, if
this beam was designed without a factor of safety by assuming the
allowable normal stress is equal to the yield stress 
then a would be found to be adequate From
Eqs. 4 and 5 we get

Since this justifies the use of
Eq. 12–10, rather than applying the more exact Eq. 12–4, for computing
the deflection of beams. Also, since this numerical application is for a
cantilevered beam, we have obtained larger values for and than
would have been obtained if the beam were supported using pins,
rollers, or other fixed supports.

SOLUTION II
This problem can also be solved using Eq. 12–8,
Here for Fig. 12–10a, so that upon integrating
once we get the form of Eq. 12–9, i.e.,

The shear constant can be evaluated at since 
(negative according to the beam sign convention, Fig. 12–8a). Thus,

Integrating again yields the form of Eq. 12–10, i.e.,

Here at so and as a result one obtains Eq. 1 and
the solution proceeds as before.

C2
œ = 0,x = 0,M = 0

EI 
d2v

dx2 = -Px + C2
œ = M

EI 
d3v

dx3 = -P

C1
œ = -P.

VA = -Px = 0,C1
œ

EI 
d3v

dx3 = C1
œ = V

EI 
d4v

dx4 = 0

0 … x … L,w1x2 = 0
EI d4v>dx4 = w1x2.

vu

uA
2 = 1dv>dx22 = 0.000270 rad2 � 1,

 vA = -
6 kip115 ft23112 in.>ft23

3[2911032 kip>in2]1204 in42 = -1.97 in.

 uA =
6 kip115 ft22112 in.>ft22

2[2911032 kip>in2]1204 in42 = 0.0164 rad

1I = 204 in42.W12 * 26
sallow = 36 ksi;

Est = 2911032 ksi.
P = 6 kip,

vAvA

uA
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12 EXAMPLE 12.2

The simply supported beam shown in Fig. 12–11a supports the
triangular distributed loading. Determine its maximum deflection. EI
is constant.

(a)

w0

Elastic curvex
L
2

L
2

x
M

V

(b)

�x x

x
3

2w0

L

w0x2

L

w0 L
4

xw �
2w0

L

1
2

Fig. 12–11

SOLUTION I
Elastic Curve. Due to symmetry, only one x coordinate is needed
for the solution, in this case The beam deflects as
shown in Fig. 12–11a. The maximum deflection occurs at the center
since the slope is zero at this point.

Moment Function. A free-body diagram of the segment on the left
is shown in Fig. 12–11b. The equation for the distributed loading is

(1)

Hence,

M = -
w0x

3

3L
+

w0L

4
 x

M +
w0x

2

L
 ax

3
b -

w0L

4
 1x2 = 0d+ ©MNA = 0;

w =
2w0

L
 x

0 … x … L>2.
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12Slope and Elastic Curve. Using Eq. 12–10 and integrating twice,
we have

(2)

The constants of integration are obtained by applying the boundary
condition at and the symmetry condition that 
at This leads to

Hence,

Determining the maximum deflection at we have

Ans.

SOLUTION II
Since the distributed loading acts downward, it is negative according
to our sign convention. Using Eq. 1 and applying Eq. 12–8, we have

Since at then Integrating again
yields

Here at so This yields Eq. 2. The solution now
proceeds as before.

C2
œ = 0.x = 0,M = 0

 EI 
d2v

dx2 = M = -
w0

3L
 x3 +

w0L

4
 x + C2

œ

 EI 
d3v

dx3 = V = -
w0

L
 x2 +

w0L

4

C1
œ = w0L>4.x = 0,V = +w0L>4

 EI 
d3v

dx3 = V = -
w0

L
 x2 + C1

œ

 EI 
d4v

dx4 = -
2w0

L
 x

vmax = -
w0L

4

120EI

x = L>2,

 EIv = -
w0

60L
 x5 +

w0L

24
 x3 -

5w0L
3

192
 x

 EI 
dv

dx
= -

w0

12L
 x4 +

w0L

8
 x2 -

5w0L
3

192

C1 = -
5w0L

3

192
 C2 = 0

x = L>2.
dv>dx = 0x = 0v = 0

 EIv = -
w0

60L
 x5 +

w0L

24
 x3 + C1x + C2

 EI 
dv

dx
= -

w0

12L
 x4 +

w0L

8
 x2 + C1

 EI 
d2v

dx2 = M = -
w0

3L
 x3 +

w0L

4
 x
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12 EXAMPLE 12.3

The simply supported beam shown in Fig. 12–12a is subjected to the
concentrated force P. Determine the maximum deflection of the
beam. EI is constant.

Fig. 12–12

A C

P

B

(a)

2a a

D

x1

x2

A
C

(b)

vD

v

x

D uD � 0

A
x2 V2

M2

M1

P

B

(c)

2a

(x2 � 2a)

x1 V1

P
3

P
3

SOLUTION
Elastic Curve. The beam deflects as shown in Fig. 12–12b. Two
coordinates must be used, since the moment function will change at P.
Here we will take and having the same origin at A.

Moment Function. From the free-body diagrams shown in 
Fig. 12–12c,

Slope and Elastic Curve. Applying Eq. 12–10 for , for
and integrating twice yields

(1)

(2)

Likewise for for 

(3)

(4) EIv2 =
2P

3
 ¢3

2
 ax2 

2 -
x2 

3

6
≤ + C3x2 + C4

 EI 

dv2

dx2
=

2P

3
 ¢3ax2 -

x2 

2

2
≤ + C3

 EI 

d2v2

dx2 

2 =
2P

3
 13a - x22

2a 6 x2 … 3a,M2 ,

 EIv1 =
P

18
 x1 

3 + C1x1 + C2

 EI 

dv1

dx1
=

P

6
 x1 

2 + C1

 EI 

d2v1

dx1 

2 =
P

3
 x1

0 … x1 6 2a,
M1

 M2 =
P

3
 x2 - P1x2 - 2a2 =

2P

3
 13a - x22

 M1 =
P

3
 x1

x2 ,x1
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12The four constants are evaluated using two boundary conditions,
namely, and Also, two continuity
conditions must be applied at B, that is, at

and at Substitution as specified
results in the following four equations:

x1 = x2 = 2a.v1 = v2x1 = x2 = 2a
dv1>dx1 = dv2>dx2

v2 = 0.x2 = 3a,v1 = 0x1 = 0,

P

18
 12a23 + C112a2 + C2 =

2P

3
 ¢3

2
 a12a22 -

12a23
6
≤ + C312a2 + C4v112a2 = v212a2;

P

6
 12a22 + C1 =

2P

3
 ¢3a12a2 -

12a22
2
≤ + C3

dv112a2
dx1

=
dv212a2

dx2
;

0 =
2P

3
 ¢3

2
 a13a22 -

13a23
6
≤ + C313a2 + C4v2 = 0 at x2 = 3a;

0 = 0 + 0 + C2v1 = 0 at x1 = 0;

Solving, we get

Thus Eqs. 1–4 become

(5)

(6)

(7)

(8)

By inspection of the elastic curve, Fig. 12–12b, the maximum
deflection occurs at D, somewhere within region AB. Here the slope
must be zero. From Eq. 5,

Substituting into Eq. 6,

Ans.

The negative sign indicates that the deflection is downward.

vmax = -0.484 
Pa3

EI

x1 = 1.633a

1
6

 x1 

2 -
4
9

 a2 = 0

 v2 =
Pa

EI
 x2 

2 -
P

9EI
 x2 

3 -
22Pa2

9EI
 x2 +

4Pa3

3EI

 
dv2

dx2
=

2Pa

EI
 x2 -

P

3EI
 x2 

2 -
22Pa2

9EI

 v1 =
P

18EI
 x1 

3 -
4Pa2

9EI
 x1

 
dv1

dx1
=

P

6EI
 x1 

2 -
4Pa2

9EI

 C3 = -
22
9

 Pa2  C4 =
4
3

 Pa3

 C1 = -
4
9

 Pa2  C2 = 0
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12 EXAMPLE 12.4

The beam in Fig. 12–13a is subjected to a load P at its end. Determine
the displacement at C. EI is constant.

A

C

B

(a)

a

x1

vC

P

x2

2a

(b)

P

M1

V1

M2

V2

x1 x2

P
2

Fig. 12–13

SOLUTION
Elastic Curve. The beam deflects into the shape shown in 
Fig. 12–13a. Due to the loading, two x coordinates will be considered,
namely, and where is directed to the left
from C, since the internal moment is easy to formulate.

Moment Functions. Using the free-body diagrams shown in 
Fig. 12–13b, we have

Slope and Elastic Curve. Applying Eq. 12–10,

For 

(1)

(2) EIv1 = -
P

12
 x1 

3 + C1x1 + C2

 EI 

dv1

dx1
= -

P

4
 x1 

2 + C1

 EI 

d2v1

dx1 

2 = -
P

2
 x10 … x1 … 2a:

M1 = -
P

2
 x1 M2 = -Px2

x20 … x2 6 a,0 … x1 6 2a
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12
For 

(3)

(4)

The four constants of integration are determined using three
boundary conditions, namely, at at and

at , and one continuity equation. Here the continuity
of slope at the roller requires at and

Why is there a negative sign in this equation? (Note that
continuity of displacement at B has been indirectly considered in the
boundary conditions, since at and )
Applying these four conditions yields

Solving, we obtain

Substituting and into Eq. 4 gives

The displacement at C is determined by setting We get

Ans.vC = -
Pa3

EI

x2 = 0.

v2 = -
P

6EI
 x2 

3 +
7Pa2

6EI
 x2 -

Pa3

EI

C4C3

C1 =
Pa2

3
 C2 = 0 C3 =

7
6

 Pa2 C4 = -Pa3

-
P

4
 12a22 + C1 = - a -

P

2
 1a22 + C3bdv112a2

dx1
= -

dv21a2
dx2

;

0 = -
P

6
 a3 + C3a + C4v2 = 0 at x2 = a;

0 = -
P

12
 12a23 + C112a2 + C2v1 = 0 at x1 = 2a;

0 = 0 + 0 + C2v1 = 0 at x1 = 0;

x2 = a.x1 = 2av1 = v2 = 0

x2 = a.
x1 = 2adv1>dx1 = -dv2>dx2

x2 = av2 = 0
x1 = 2a,v1 = 0x1 = 0,v1 = 0

 EIv2 = -
P

6
 x2 

3 + C3x2 + C4

 EI 

dv2

dx2
= -

P

2
 x2 

2 + C3

 EI 

d2v2

dx2 

2 = -Px20 … x2 … a:
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12

3 m

30 kN�m

A

F12–1

3 m

10 kN�m

10 kN

A

F12–2

FUNDAMENTAL PROBLEMS

F12–1. Determine the slope and deflection of end
A of the cantilevered beam. GPa and

.I =  65.0(106) mm4
E =  200

F12–4. Determine the maximum deflection of the simply
supported beam. The beam is made of wood having a
modulus of elasticity of and a rectangular
cross section of b � 3 in. and h � 6 in.

Ew = 1.5(103) ksi

F12–5. Determine the maximum deflection of the simply
supported beam. GPa and .I = 39.9(10-6) m4E = 200

F12–2. Determine the slope and deflection of end A of the
cantilevered beam. E = 200 GPa and I = 65.0(106) mm4.

F12–3. Determine the slope of end A of the cantilevered
beam. GPa and .I = 65.0(106) mm4E = 200

3 m

10 kN
3 kN/m

A

F12–3

F12–6. Determine the slope of the simply supported beam
at A. GPa and .I = 39.9(10-6) m4E = 200

A
B

12 ft

100 lb/ft

F12–4

6 m

40 kN · m 10 kN · m

A B

F12–5

3 m

20 kN

10 kN · m 10 kN · m

3 m

A
B

F12–6
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12

•12–1. An A-36 steel strap having a thickness of 10 mm and
a width of 20 mm is bent into a circular arc of radius 10 m.
Determine the maximum bending stress in the strap.

12–2. A picture is taken of a man performing a pole vault,
and the minimum radius of curvature of the pole is
estimated by measurement to be 4.5 m. If the pole is 40 mm
in diameter and it is made of a glass-reinforced plastic for
which GPa, determine the maximum bending
stress in the pole.

Eg = 131

r =
*12–4. Determine the equations of the elastic curve using
the and coordinates. EI is constant.x2x1

PROBLEMS

r � 4.5 m

Prob. 12–2

3.5 in.

9 ft

A B

C

3 ft 18 in.

2 in.

Prob. 12–3

L

P

x1 x2

a

Prob. 12–4

L

A

B

P

x1 x2

L
2

Prob. 12–5

12–3. When the diver stands at end C of the diving board,
it deflects downward 3.5 in. Determine the weight of the
diver. The board is made of material having a modulus of
elasticity of .E = 1.5(103) ksi

•12–5. Determine the equations of the elastic curve for
the beam using the and coordinates. EI is constant.x2x1

12–6. Determine the equations of the elastic curve for the
beam using the and coordinates. Specify the beam’s
maximum deflection. EI is constant.

x3x1

L

A

B

P

x1

x3

L
2

Prob. 12–6
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•12–9. Determine the equations of the elastic curve using
the and coordinates. EI is constant.x2x1

12–7. The beam is made of two rods and is subjected to
the concentrated load P. Determine the maximum
deflection of the beam if the moments of inertia of the rods
are and and the modulus of elasticity is E.IBC ,IAB

12–10. Determine the maximum slope and maximum
deflection of the simply supported beam which is subjected
to the couple moment EI is constant.M0 .

12–11. Determine the equations of the elastic curve for the
beam using the and coordinates. Specify the beam’s
maximum deflection. EI is constant.

x2x1

*12–8. Determine the equations of the elastic curve for
the beam using the and coordinates. EI is constant.x2x1

12

*12–12. Determine the equations of the elastic curve for
the beam using the and coordinates. Specify the slope
at A and the maximum displacement of the shaft. EI is
constant.

x2x1

A

B

C

L

P

l

Prob. 12–7

P

x1

x2

L
2

L
2

Prob. 12–8

P

L

A B

x1

ba

x2

Prob. 12–9

A

L

B

M0

2a

A
B

P

x1

x2

a

Prob. 12–10

Prob. 12–11

A B

P P 

L

x1

x2

a a

Prob. 12–12
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12–13. The bar is supported by a roller constraint at B,
which allows vertical displacement but resists axial load and
moment. If the bar is subjected to the loading shown,
determine the slope at A and the deflection at C. EI is
constant

12–14. The simply supported shaft has a moment of inertia
of 2I for region BC and a moment of inertia I for regions
AB and CD. Determine the maximum deflection of the
beam due to the load P.

*12–16. The fence board weaves between the three smooth
fixed posts. If the posts remain along the same line, determine
the maximum bending stress in the board. The board has a
width of 6 in. and a thickness of 0.5 in. .
Assume the displacement of each end of the board relative
to its center is 3 in.

E = 1.60(103) ksi

•12–17. Determine the equations of the elastic curve for
the shaft using the and coordinates. Specify the slope
at A and the deflection at C. EI is constant.

x2x1

12–18. Determine the equation of the elastic curve for the
beam using the x coordinate. Specify the slope at A and the
maximum deflection. EI is constant.

12–19. Determine the deflection at the center of the beam
and the slope at B. EI is constant.

12–15. Determine the equations of the elastic curve for
the shaft using the and coordinates. Specify the slope
at A and the deflection at the center of the shaft. EI is
constant.

x3x1

P

A
C

B

L
2

L
2

Prob. 12–13

CA D

P

–
4
L –

4
L –

4
L –

4
L

B

Prob. 12–14

A B

a a

P

b

P

x1

x3

Prob. 12–15

4 ft 4 ft

A CB

3 in.

Prob. 12–16

A B C

L L

x1 x2

0M

2

Prob. 12–17

A

L
B

M0 M0

x

Probs. 12–18/19
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*12–20. Determine the equations of the elastic curve
using the and coordinates, and specify the slope at A
and the deflection at C. EI is constant.

x2x1

12–23. The beam is subjected to the linearly varying
distributed load. Determine the maximum slope of the
beam. EI is constant.

*12–24. The beam is subjected to the linearly varying
distributed load. Determine the maximum deflection of the
beam. EI is constant.

•12–21. Determine the elastic curve in terms of the 
and coordinates and the deflection of end C of the
overhang beam. EI is constant.

x2

x1

•12–25. Determine the equation of the elastic curve
for the simply supported beam using the x coordinate.
Determine the slope at A and the maximum deflection. EI
is constant.

12–22. Determine the elastic curve for the cantilevered
beam using the x coordinate. Specify the

maximum slope and maximum deflection. E = 29(103) ksi .
W14 * 30

12

A B C

x1 x2
20 kip�ft

8 kip

 20 ft 10 ft

Prob. 12–20

w

L L
2

C

B

A

x1

x2

Prob. 12–21

B
A

x

3 kip/ft

9 ft

Prob. 12–22

L

BA

x

w0

Probs. 12–23/24

x

A B

12 kN/m

6 m6 m

Prob. 12–25
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12–27. Wooden posts used for a retaining wall have a
diameter of 3 in. If the soil pressure along a post varies
uniformly from zero at the top A to a maximum of 
at the bottom B, determine the slope and displacement at
the top of the post. .Ew = 1.6(103) ksi

300 lb>ft

*12–28. Determine the slope at end B and the maximum
deflection of the cantilevered triangular plate of constant
thickness t. The plate is made of material having a modulus
of elasticity E.

•12–29. The beam is made of a material having a specific
weight . Determine the displacement and slope at its end
A due to its weight. The modulus of elasticity for the
material is E.

g

12–30. The beam is made of a material having a specific
weight of . Determine the displacement and slope at its
end A due to its weight. The modulus of elasticity for the
material is E.

g

12
12–26. Determine the equations of the elastic curve using
the coordinates and and specify the slope and deflection
at B. EI is constant.

x2 ,x1

L

A

B

a

w

x1

x2

C

Prob. 12–26

6 ft

A

300 lb/ft
B

Prob. 12–27

L

t

b
2

b
2

w 

A

B
x

Prob. 12–28

b

L

Ah

Prob. 12–29

r

A

L

Prob. 12–30
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12–31. The tapered beam has a rectangular cross section.
Determine the deflection of its free end in terms of the load
P, length L, modulus of elasticity E, and the moment of
inertia of its fixed end.I0

*12–32. The beam is made from a plate that has a constant
thickness t and a width that varies linearly. The plate is cut
into strips to form a series of leaves that are stacked to
make a leaf spring consisting of n leaves. Determine the
deflection at its end when loaded. Neglect friction between
the leaves.

12

b

L

AP

Prob. 12–31

b

L

P

Prob. 12–32

•12–33. The tapered beam has a rectangular cross section.
Determine the deflection of its center in terms of the load
P, length L, modulus of elasticity E, and the moment of
inertia of its center.Ic

b L—
2

L—
2

P

Prob. 12–33

P

nb

b

x

x
L
2

L
2

Prob. 12–34

12–34. The leaf spring assembly is designed so that it is
subjected to the same maximum stress throughout its length.
If the plates of each leaf have a thickness t and can slide
freely between each other, show that the spring must be in
the form of a circular arc in order that the entire spring
becomes flat when a large enough load P is applied. What
is the maximum normal stress in the spring? Consider
the spring to be made by cutting the n strips from the
diamond-shaped plate of thickness t and width b.The modulus
of elasticity for the material is E. Hint: Show that the radius
of curvature of the spring is constant.



*12.3 Discontinuity Functions

The method of integration, used to find the equation of the elastic curve
for a beam or shaft, is convenient if the load or internal moment can be
expressed as a continuous function throughout the beam’s entire length.
If several different loadings act on the beam, however, the method becomes
more tedious to apply, because separate loading or moment functions must
be written for each region of the beam. Furthermore, integration of these
functions requires the evaluation of integration constants using both
boundary and continuity conditions. For example, the beam shown in
Fig. 12–14 requires four moment functions to be written. They describe
the moment in regions AB, BC, CD, and DE. When applying the
moment-curvature relationship, and integrating each
moment equation twice, we must evaluate eight constants of integration.
These involve two boundary conditions that require zero displacement
at points A and E, and six continuity conditions for both slope and
displacement at points B, C, and D.

In this section, we will discuss a method for finding the equation of the
elastic curve for a multiply loaded beam using a single expression, either
formulated from the loading on the beam, or from the beam’s
internal moment, If the expression for is substituted into

and integrated four times, or if the expression for
M is substituted into and integrated twice, the
constants of integration will be determined only from the boundary
conditions. Since the continuity equations will not be involved, the analysis
will be greatly simplified.

Discontinuity Functions. In order to express the load on the beam
or the internal moment within it using a single expression, we will use two
types of mathematical operators known as discontinuity functions.

EI d2v>dx2 = M1x2EI d4v>dx4 = w1x2 wM = M1x2. w = w1x2,

EI d2v>dx2 = M,

12.3 DISCONTINUITY FUNCTIONS 593
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A E

P w

CB D

M0

Fig. 12–14

For safety purposes these cantilevered beams
that support sheets of plywood must be
designed for both strength and a restricted
amount of deflection.



(1)

(2)

(3)

(4) slope � m

Loading Loading Function
w � w(x)

w � M08x�a9�2

w � P8x�a9�1

w � w08x�a90

w � m8x�a91x
a

w0

x
a

P

x
a

x
a

M0

Shear V �  w(x)dx Moment  M �   Vdx

V � M08x�a9�1

V � P8x�a90

V � w08x�a91

V � 8x�a92
2
m

M � M08x�a90

M � P8x�a91

M �
 

8x�a92
2

 w0

M � 8x�a93
6
m

TABLE 12–2
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Macaulay Functions. For purposes of beam or shaft deflection,
Macaulay functions, named after the mathematician W. H. Macaulay, can
be used to describe distributed loadings. These functions can be written
in general form as

(12–11)

Here x represents the coordinate position of a point along the beam, and
a is the location on the beam where a “discontinuity” occurs, namely the
point where a distributed loading begins. Note that the Macaulay function

is written with angle brackets to distinguish it from the
ordinary function written with parentheses. As stated by the
equation, only when is otherwise it is zero.
Furthermore, these functions are valid only for exponential values

Integration of Macaulay functions follows the same rules as for
ordinary functions, i.e.,

(12–12)

Note how the Macaulay functions describe both the uniform load
and triangular load shown in Table 12–2, items 3

and 4. This type of description can, of course, be extended to distributed
loadings having other forms. Also, it is possible to use superposition with

1n = 12,w0 1n = 02

L8x - a9n dx =
8x - a9n + 1

n + 1
+ C

n Ú 0.

8x - a9n = 1x - a2n,x Ú a
1x - a2n,

8x - a9n

n Ú 0

8x - a9n = b0 for x 6 a

1x - a2n for x Ú a
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the uniform and triangular loadings to create the Macaulay function for a
trapezoidal loading. Using integration, the Macaulay functions for shear,

and moment, are also shown in the table.

Singularity Functions. These functions are only used to describe the
point location of concentrated forces or couple moments acting on a
beam or shaft. Specifically, a concentrated force P can be considered as a
special case of a distributed loading, where the intensity of the loading is

such that its length is where Fig. 12–15.The area under
this loading diagram is equivalent to P, positive upward, and so we will
use the singularity function

(12–13)

to describe the force P. Here so that the units for are force per
length, as it should be. Furthermore, the function takes on the value of P
only at the point where the load occurs, otherwise it is zero.

In a similar manner, a couple moment considered positive
clockwise, is a limit as of two distributed loadings as shown in 
Fig. 12–16. Here the following function describes its value.

(12–14)

The exponent in order to ensure that the units of force per
length, are maintained.

Integration of the above two singularity functions follow the rules of
operational calculus and yields results that are different from those of
Macaulay functions. Specifically,

(12–15)

Using this formula, notice how and P, described in Table 12–2, items 1
and 2, are integrated once, then twice, to obtain the internal shear and
moment in the beam.

Application of Eqs. 12–11 through 12–15 provides a rather direct
means for expressing the loading or the internal moment in a beam as a
function of x. When doing so, close attention must be paid to the signs of
the external loadings. As stated above, and as shown in Table 12–2,
concentrated forces and distributed loads are positive upward, and couple
moments are positive clockwise. If this sign convention is followed, then
the internal shear and moment are in accordance with the beam sign
convention established in Sec. 6.1.

M0

n = -1, -2L8x - a9ndx = 8x - a9n + 1,

w,n = -2,

w = M08x - a9-2 = b0 for x Z a

M0 for x = a

P: 0
M0 ,

x = a

wn = -1

w = P8x - a9-1 = b 0 for x Z a

P for x = a

P: 0,P,w = P>P

M = 1V dx,V = 1w1x2 dx,

P

x

�

a

x

a

w �
P
P

P

x

=

a

x

a

M0

w � 
P

P
M0

P2

M0

P2

�

w � 
P

P
�

P

P

Fig. 12–16

Fig. 12–15



596 CHAPTER 12 DEFLECT ION OF BEAMS AND SHAFTS

12
As an example of how to apply discontinuity functions to describe

the loading or internal moment consider the beam loaded as shown in
Fig. 12–17a. Here the reactive 2.75-kN force created by the roller,
Fig. 12–17b, is positive since it acts upward, and the 1.5-kN�m couple
moment is also positive since it acts clockwise. Finally, the trapezoidal
loading is negative and has been separated into triangular and uniform
loadings. From Table 12–2, the loading at any point x on the beam is
therefore

w = 2.75 kN8x - 09-1 + 1.5 kN # m8x - 3 m9-2 - 3 kN>m8x - 3 m90 - 1 kN>m28x - 3 m91

The reactive force at B is not included here since x is never greater than
6 m, and furthermore, this value is of no consequence in calculating the
slope or deflection. We can determine the moment expression directly
from Table 12–2, rather than integrating this expression twice. In either
case,

 = 2.75x + 1.58x - 390 - 1.58x - 392 -
1
6

 8x - 393
 M = 2.75 kN8x - 091 + 1.5 kN # m8x - 3 m90 -

3 kN>m
2

 8x - 3 m92 -
1 kN>m2

6
 8x - 3 m93

The deflection of the beam can now be determined after this equation
is integrated two successive times and the constants of integration are
evaluated using the boundary conditions of zero displacement at A
and B.

3 m

A

3 m

B

3 kN/m
1.5 kN�m

6 kN/m

(a)

3 m 3 m

3 kN/m

2.75 kN

3 kN/m

(b)

m �                � 1 kN/m2

3 m
3 kN/m

1.5 kN�m

By

Bx

Fig. 12–17
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12Procedure for Analysis

The following procedure provides a method for using discontinuity
functions to determine a beam’s elastic curve. This method is
particularly advantageous for solving problems involving beams or
shafts subjected to several loadings, since the constants of integration
can be evaluated by using only the boundary conditions, while the
compatibility conditions are automatically satisfied.

Elastic Curve.

• Sketch the beam’s elastic curve and identify the boundary
conditions at the supports.

• Zero displacement occurs at all pin and roller supports, and zero
slope and zero displacement occur at fixed supports.

• Establish the x axis so that it extends to the right and has its 
origin at the beam’s left end.

Load or Moment Function.

• Calculate the support reactions at and then use the
discontinuity functions in Table 12–2 to express either the loading

or the internal moment M as a function of x. Make sure to
follow the sign convention for each loading as it applies for this
equation.

• Note that the distributed loadings must extend all the way
to the beam’s right end to be valid. If this does not occur,
use the method of superposition, which is illustrated in
Example 12.6.

Slope and Elastic Curve.

• Substitute into , or M into the moment
curvature relation and integrate to obtain the
equations for the beam’s slope and deflection.

• Evaluate the constants of integration using the boundary
conditions, and substitute these constants into the slope and
deflection equations to obtain the final results.

• When the slope and deflection equations are evaluated at any
point on the beam, a positive slope is counterclockwise, and a
positive displacement is upward.

EI d2v>dx2 = M,
EI d4v>dx4 = w1x2w

w

x = 0
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12 EXAMPLE 12.5

Determine the maximum deflection of the beam shown in Fig. 12–18a.
EI is constant.

10 ft

(a)

20 ft

8 kip

120 kip�ft

vC vD

D

A

B

C

10 ft

30 ft

8 kip

120 kip�ft

x 6 kip 2 kip

(b)

Fig. 12–18

SOLUTION
Elastic Curve. The beam deflects as shown in Fig. 12–18a. The
boundary conditions require zero displacement at A and B.

Loading Function. The reactions have been calculated and are
shown on the free-body diagram in Fig. 12–18b. The loading function
for the beam can be written as

The couple moment and force at B are not included here, since they
are located at the right end of the beam, and x cannot be greater than
30 ft. Integrating we get

In a similar manner, yields

 = 1-8x + 68x - 10912 kip # ft

 M = -88x - 091 + 68x - 1091
dM>dx = V

V = -88x - 090 + 68x - 1090
dV>dx = w1x2,

w = -8 kip 8x - 09-1 + 6 kip 8x - 10 ft9- 1
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12Notice how this equation can also be established directly using the
results of Table 12–2 for moment.

Slope and Elastic Curve. Integrating twice yields

(1)

From Eq. 1, the boundary condition at and at
gives

Solving these equations simultaneously for and we get 
and Thus,

(2)

(3)

From Fig. 12–18a, maximum displacement may occur either at C, or at
D, where the slope To obtain the displacement of C, set

in Eq. 3. We get

Ans.

The negative sign indicates that the displacement is downward as shown
in Fig. 12–18a. To locate point D, use Eq. 2 with and 
This gives

Solving for the positive root,

Hence, from Eq. 3,

Comparing this value with we see that vmax = vC .vC ,

 vD =
5006 kip # ft3

EI

 EIvD = -
4
3

 120.323 + 120.3 - 1023 + 1333120.32 - 12 000

xD = 20.3 ft

xD 

2 + 60xD - 1633 = 0

0 = -4xD 

2 + 31xD - 1022 + 1333

dv>dx = 0.x 7 10 ft

vC = -
12 000 kip # ft3

EI

x = 0
dv>dx = 0.

 EIv = -
4
3

 x3 + 8x - 1093 + 1333x - 12 000

 EI 
dv

dx
= -4x2 + 38x - 1092 + 1333

C2 = -12 000.
C1 = 1333C2 ,C1

 0 = -36 000 + 130 - 1023 + C11302 + C2

 0 = -1333 + 110 - 1023 + C11102 + C2

x = 30 ft
v = 0x = 10 ftv = 0

 EIv = -
4
3

 x3 + 8x - 1093 + C1x + C2

 EI 
dv

dx
= -4x2 + 38x - 1092 + C1

 EI 
d2v

dx2 = -8x + 68x - 1091
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12 EXAMPLE 12.6

Determine the equation of the elastic curve for the cantilevered beam
shown in Fig. 12–19a. EI is constant.

SOLUTION
Elastic Curve. The loads cause the beam to deflect as shown in
Fig. 12–19a. The boundary conditions require zero slope and
displacement at A.

Loading Function. The support reactions at A have been
calculated and are shown on the free-body diagram in Fig. 12–19b.
Since the distributed loading in Fig. 12–19a does not extend to C as
required, we can use the superposition of loadings shown in Fig. 12–19b
to represent the same effect. By our sign convention, the beam’s
loading is therefore

The 12-kN load is not included here, since x cannot be greater than 9 m.
Because then by integrating, neglecting the constant of
integration since the reactions are included in the load function, we have

dV>dx = w1x2,
+ 50 kN # m8x - 5 m9-2 + 8 kN>m8x - 5 m90

w = 52 kN8x - 09-1 - 258 kN # m8x - 09-2 - 8 kN>m8x - 090

V = 528x - 090 - 2588x - 09-1 - 88x - 091 + 508x - 59-1 + 88x - 591

Furthermore, so that integrating again yieldsdM>dx = V,

 = 1-258 + 52x - 4x2 + 508x - 590 + 48x - 592) kN # m

 M = -2588x - 090 + 528x - 091 -
1
2

 1828x - 092 + 508x - 590 +
1
2

 1828x - 592

This same result can be obtained directly from Table 12–2.

Slope and Elastic Curve. Applying Eq. 12–10 and integrating
twice, we have

12 kN

5 m

(a)

4 m

8 kN/m
50 kN�m

A
B

C

(b)

12 kN

4 m

8 kN/m

50 kN�m
A B C

8 kN/m52 kN

258 kN�m

5 m

Fig. 12–19

 EIv = -129x2 +
26
3

 x3 -
1
3

 x4 + 258x - 592 +
1
3

 8x - 594 + C1x + C2

 EI 
dv

dx
= -258x + 26x2 -

4
3

 x3 + 508x - 591 +
4
3

 8x - 593 + C1

 EI 
d2v

dx2 = -258 + 52x - 4x2 + 508x - 590 + 48x - 592

Since at and at so 
Thus,

C2 = 0.x = 0,v = 0C1 = 0;x = 0,dv>dx = 0

Ans.v =
1

EI
 a -129x2 +

26
3

 x3 -
1
3

 x4 + 258x - 592 +
1
3

 8x - 594b  m
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15 mm

250 N 80 N

200 mm 200 mm300 mm

BA

x

A

B

2 kip

8 ft

4 kip

4 kip�ft

8 ft8 ft

12–35. The shaft is made of steel and has a diameter of
15 mm. Determine its maximum deflection. The bearings at
A and B exert only vertical reactions on the shaft.

.Est = 200 GPa

*12–36. The beam is subjected to the loads shown.
Determine the equation of the elastic curve. EI is constant.

12–38. The shaft supports the two pulley loads shown.
Determine the equation of the elastic curve. The bearings
at A and B exert only vertical reactions on the shaft. EI is
constant.

12–39. Determine the maximum deflection of the simply
supported beam. and .I = 65.0(106) mm4E = 200 GPa

PROBLEMS

Prob. 12–35

Prob. 12–36

•12–37. Determine the deflection at each of the pulleys
C, D, and E. The shaft is made of steel and has a diameter
of 30 mm. The bearings at A and B exert only vertical
reactions on the shaft. .Est = 200 GPa

150 N 60 N 150 N

250 mm 250 mm250 mm 250 mm

D
EC

BA

Prob. 12–37

A B

40 lb

x

20 in.20 in.20 in.

60 lb

Prob. 12–38

2 m2 m 2 m

30 kN
15 kN

A B

Prob. 12–39

A
CB

D

L
3

L
3

L
3

M0 M0

Probs. 12–40/41

*12–40. Determine the eqution of the elastic curve, the
slope at A, and the deflection at B of the simply supported
beam. EI is constant.

•12–41. Determine the equation of the elastic curve and
the maximum deflection of the simply supported beam. EI
is constant.
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12
12–42. Determine the equation of the elastic curve, the
slope at A, and the maximum deflection of the simply 
supported beam. EI is constant.

12–43. Determine the maximum deflection of the
cantilevered beam. The beam is made of material having an

and .I = 65.0(106) mm6E = 200 GPa

12–46. Determine the maximum deflection of the simply
supported beam. and .I = 65.0(106) mm4E = 200 GPa

12–47. The wooden beam is subjected to the load
shown. Determine the equation of the elastic curve. If

, determine the deflection and the slope at
end B.
Ew = 12 GPa

*12–48. The beam is subjected to the load shown. Determine
the slopes at A and B and the displacement at C. EI is
constant.

*12–44. The beam is subjected to the load shown. Determine
the equation of the elastic curve. EI is constant.

•12–45. The beam is subjected to the load shown.
Determine the displacement at and the slope at A.
EI is constant.

x = 7 m

L
3

L
3

L
3

PP

A B

Prob. 12–42

A

30 kN/m

1.5 m 1.5 m

15kN

Prob. 12–43

BA

x
4 m 3 m

3 kN/m
50 kN

3 m

Probs. 12–44/45

1.5 m 1.5 m 3 m

15 kN/m20 kN

A

B

Prob. 12–46

BA

x

6 kN4 kN

3 m 1.5 m

2 kN/m

200 mm

400 mm

1.5 m

Prob. 12–47

x

A
C B

3 m 5 m

30 kN
12 kN/m

Prob. 12–48
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12
•12–49. Determine the equation of the elastic curve of the
simply supported beam and then find the maximum
deflection. The beam is made of wood having a modulus of
elasticity .E = 1.5(103) ksi

12–50. The beam is subjected to the load shown.
Determine the equations of the slope and elastic curve. EI
is constant.

*12–52. The wooden beam is subjected to the load shown.
Determine the equation of the elastic curve. Specify the
deflection at the end C. Ew = 1.6(103) ksi .

12–53. Determine the displacement at C and the slope at
A of the beam.

A B

6 ft 3 ft

600 lb
500 lb/ft

3 ft

3 in.

6 in.

Prob. 12–49

A
B

5 m 3 m

x

2 kN/m 8 kN�m

Prob. 12–50

12–51. The beam is subjected to the load shown. Determine
the equation of the elastic curve. EI is constant.

A B

3 m1.5 m

6 kN/m 20 kN

1.5 m

Prob. 12–51

6 in.

12 in.A
C

9 ft

x

1.5 kip

B

0.8 kip/ft

9 ft

Prob. 12–52

A
B

6 ft 9 ft

x

8 kip/ ft

C

Prob. 12–53

12–54. The beam is subjected to the load shown. Determine
the equation of the elastic curve. EI is constant.

A
B

9 ft 15 ft

x

6 kip/ft

Prob. 12–54
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12 *12.4 Slope and Displacement by 
the Moment-Area Method

The moment-area method provides a semigraphical technique for finding
the slope and displacement at specific points on the elastic curve of a beam
or shaft. Application of the method requires calculating areas associated
with the beam’s moment diagram; and so if this diagram consists of simple
shapes, the method is very convenient to use. Normally this is the case
when the beam is loaded with concentrated forces and couple moments.

To develop the moment-area method we will make the same assumptions
we used for the method of integration: The beam is initially straight, it is
elastically deformed by the loads, such that the slope and deflection of
the elastic curve are very small, and the deformations are only caused by
bending. The moment-area method is based on two theorems, one used
to determine the slope and the other to determine the displacement at a
point on the elastic curve.

Theorem 1. Consider the simply supported beam with its associated
elastic curve, shown in Fig. 12–20a.A differential segment dx of the beam
is isolated in Fig. 12–20b. Here the beam’s internal moment M deforms
the element such that the tangents to the elastic curve at each side of the
element intersect at an angle This angle can be determined from
Eq. 12–10, written as

Since the slope is small, and therefore

(12–16)

If the moment diagram for the beam is constructed and divided by
the flexural rigidity, EI, Fig. 12–20c, then this equation indicates that 
is equal to the area under the “M�EI diagram” for the beam segment dx.
Integrating from a selected point A on the elastic curve to another point
B, we have

(12–17)

This equation forms the basis for the first moment-area theorem.

Theorem 1: The angle between the tangents at any two points on
the elastic curve equals the area under the M�EI diagram between these
two points.

The notation is referred to as the angle of the tangent at B measured
with respect to the tangent at A. From the proof it should be evident that
this angle is measured counterclockwise, from tangent A to tangent B, if
the area under the M�EI diagram is positive. Conversely, if the area is

uB>A

uB>A = L
B

A
 
M

EI
 dx

du

du =
M

EI
 dx

u = dv>dx,

EI 
d2v

dx2 = EI 
d

dx
 adv

dx
b = M

du.

dx

w

BA

A B

tan B tan A

(a)

Elastic curve

uB/A

dx

du

(b)

M M

dx
BA

(c)

 —
E I
M

 —
E I
M

x

 —
E I
M Diagram

Fig. 12–20



A B

tan B

tan A

(a)

x

tA/B dt

dx

du

ds¿

w

A

dx

B
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12
negative, or lies below the x axis, the angle is measured clockwise
from tangent A to tangent B. Furthermore, from the dimensions of
Eq. 12–17, will be in radians.

Theorem 2. The second moment-area theorem is based on the
relative deviation of tangents to the elastic curve. Shown in Fig. 12–21a is
a greatly exaggerated view of the vertical deviation dt of the tangents on
each side of the differential element dx. This deviation is caused by the
curvature of the element and has been measured along a vertical line
passing through point A on the elastic curve. Since the slope of the elastic
curve and its deflection are assumed to be very small, it is satisfactory to
approximate the length of each tangent line by x and the arc by dt.
Using the circular-arc formula where r is the length x and s is dt,
we can write Substituting Eq. 12–16 into this equation and
integrating from A to B, the vertical deviation of the tangent at A with
respect to the tangent at B can then be determined; that is,

(12–18)

Since the centroid of an area is found from and
represents the area under the M EI diagram, we can also

write

(12–19)

Here is the distance from A to the centroid of the area under the M/EI
diagram between A and B, Fig. 12–21b.

The second moment-area theorem can now be stated in reference to
Fig. 12–21a as follows:

Theorem 2: The vertical distance between the tangent at a point (A) on
the elastic curve and the tangent extended from another point (B) equals
the moment of the area under the M�EI diagram between these two points
(A and B). This moment is calculated about the point (A) where the
vertical distance is to be determined.

Note that is not equal to which is shown in Fig. 12–21c.
Specifically, the moment of the area under the M EI diagram between
A and B is calculated about point A to determine Fig. 12–21b, and it
is calculated about point B to determine Fig. 12–21c.

If the moment of a positive M EI area between A and B is found for
it indicates that point A is above the tangent extended from point B,

Fig. 12–21a. Similarly, negative M EI areas indicate that point A is below
the tangent extended from point B. This same rule applies for tB>A .

>tA>B ,
> tB>A ,

tA>B ,
>

tB>A ,tA>B

1tA>B2

x

tA>B = xL
B

A
 
M

EI
 dx

>11M>EI2 dx
x1dA = 1x dA,

tA>B = L
B

A
x 

M

EI
 dx

dt = x du.
s = ur,

ds¿

uB>A

uB>A

Fig. 12–21

tanB tanA

BA

(c)

x

A B
tB/A

tA/B

M
EI

_
x ¿

BA

(b)

 —
E I
M

x
_
x



606 CHAPTER 12 DEFLECT ION OF BEAMS AND SHAFTS

12 Procedure for Analysis

The following procedure provides a method that may be used to
apply the two moment-area theorems.

M�EI Diagram.

• Determine the support reactions and draw the beam’s M�EI
diagram. If the beam is loaded with concentrated forces, the M�EI
diagram will consist of a series of straight line segments, and the
areas and their moments required for the moment-area theorems
will be relatively easy to calculate. If the loading consists of a
series of distributed loads, the M�EI diagram will consist of
parabolic or perhaps higher-order curves, and it is suggested that
the table on the inside front cover be used to locate the area and
centroid under each curve.

Elastic Curve.

• Draw an exaggerated view of the beam’s elastic curve. Recall that
points of zero slope and zero displacement always occur at a fixed
support, and zero displacement occurs at all pin and roller supports.

• If it becomes difficult to draw the general shape of the elastic
curve, use the moment (or M�EI) diagram. Realize that when the
beam is subjected to a positive moment, the beam bends concave
up, whereas negative moment bends the beam concave down.
Furthermore, an inflection point or change in curvature occurs
where the moment in the beam (or M�EI) is zero.

• The unknown displacement and slope to be determined should
be indicated on the curve.

• Since the moment-area theorems apply only between two tangents,
attention should be given as to which tangents should be
constructed so that the angles or vertical distance between them
will lead to the solution of the problem. In this regard, the tangents
at the supports should be considered, since the beam has zero
displacement and/or zero slope at the supports.

Moment-Area Theorems.

• Apply Theorem 1 to determine the angle between any two
tangents on the elastic curve and Theorem 2 to determine the
vertical distance between the tangents.

• The algebraic sign of the answer can be checked from the angle
or vertical distance indicated on the elastic curve.

• A positive represents a counterclockwise rotation of the tangent
at B with respect to the tangent at A, and a positive indicates
that point B on the elastic curve lies above the extended tangent
from point A.

tB>A
uB>A
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12EXAMPLE 12.7

Determine the slope of the beam shown in Fig. 12–22a at point B.
EI is constant.

(a)

P

A

L

B

(b)

B
L

A x 

PL
EI

�

M
EI

(c) tan B

tan A

B

A uB/A

uB

SOLUTION
M�EI Diagram. See Fig. 12–22b.

Elastic Curve. The force P causes the beam to deflect as shown in
Fig. 12–22c. (The elastic curve is concave downward, since M�EI is
negative.) The tangent at B is indicated since we are required to find 
Also, the tangent at the support (A) is shown. This tangent has a known
zero slope. By the construction, the angle between tan A and tan B, that
is, is equivalent to or

Moment-Area Theorem. Applying Theorem 1, is equal to the
area under the M EI diagram between points A and B; that is,

Ans.

The negative sign indicates that the angle measured from the tangent at
A to the tangent at B is clockwise. This checks, since the beam slopes
downward at B.

 = -
PL2

2EI

uB = uB>A =
1
2

 a -
PL

EI
bL

> uB>A

uB = uB>A
uB ,uB>A ,

uB.

Fig. 12–22
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12 EXAMPLE 12.8

Determine the displacement of points B and C of the beam shown in 
Fig. 12–23a. EI is constant.

(a)

A B C M0 

L
2

L
2

(b)

BA x C

L
2

L
4

L
2

M
EI

M0

EI
�

Fig. 12–23

SOLUTION
M�EI Diagram. See Fig. 12–23b.

Elastic Curve. The couple moment at C causes the beam to deflect as
shown in Fig. 12–23c. The tangents at B and C are indicated since we are
required to find and Also, the tangent at the support (A) is
shown since it is horizontal. The required displacements can now be
related directly to the vertical distance between the tangents at B and A
and C and A. Specifically,

Moment-Area Theorem. Applying Theorem 2, is equal to the
moment of the shaded area under the M EI diagram between A and B
calculated about point B (the point on the elastic curve), since this is the
point where the vertical distance is to be determined. Hence, from
Fig. 12–23b,

Ans.

Likewise, for we must determine the moment of the area under
the entire M EI diagram from A to C about point C (the point on the
elastic curve). We have

Ans.

NOTE: Since both answers are negative, they indicate that points B and
C lie below the tangent at A. This checks with Fig. 12–23c.

¢C = tC>A = aL

2
b B ¢ -

M0

EI
≤1L2R = -

M0L
2

2EI

>
tC>A

¢B = tB>A = aL

4
b B ¢ -

M0

EI
≤ aL

2
b R = -

M0L
2

8EI

> tB>A

 ¢C = tC>A

 ¢B = tB>A

¢C .¢B

(c)

tan B

tan C

tan A

B

tB/A � �B

tC/A � �C 

C

A
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12EXAMPLE 12.9

Determine the slope at point C of the shaft in Fig. 12–24a. EI is constant.

P

(a)

A B
D C

L
2

L
4

L
4

(b)

x 
D C

L
4

PL
4 EI PL

8 EI

M
EI

(c)

tan C

tan D (horizontal)

CD

uC/D

uC

Fig. 12–24

SOLUTION
M�EI Diagram. See Fig. 12–24b.

Elastic Curve. Since the loading is applied symmetrically to the beam,
the elastic curve is symmetric, and the tangent at D is horizontal,
Fig. 12–24c. Also the tangent at C is drawn, since we must find the slope

By the construction, the angle between the tangents at tan D
and C is equal to that is,

Moment-Area Theorem. Using Theorem 1, is equal to the
shaded area under the M EI diagram between points D and C. We have

Ans.

What does the positive result indicate?

uC = uC>D = a PL

8EI
b aL

4
b +

1
2

 a PL

4EI
-

PL

8EI
b aL

4
b =

3PL2

64EI

> uC>D

uC = uC>D

uC ;
uC>DuC .
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12

(b)

x 
C

2 m 4 m 2 m

A B

M
EI

8
EI

24
EI

(c)

tan C

tan A

C
tan B B

A

uC/A

uA

uC tB/A

EXAMPLE 12.10

Determine the slope at point C for the steel beam in Fig. 12–25a. Take

SOLUTION
M�EI Diagram. See Fig. 12–25b.

Elastic Curve. The elastic curve is shown in Fig. 12–25c.The tangent at
C is shown since we are required to find Tangents at the supports, A
and B, are also constructed as shown. Angle is the angle between
the tangents at A and C. The slope at A, in Fig. 12–25c can be found
using This equation is valid since is actually very
small, so that in meters can be approximated by the length of a
circular arc defined by a radius of and a sweep of in
radians. (Recall that ) From the geometry of Fig. 12–25c, we have

(1)

Note that Example 12.9 could also be solved using this method.

Moment-Area Theorems. Using Theorem 1, is equivalent to the
area under the M EI diagram between points A and C; that is,

Applying Theorem 2, is equivalent to the moment of the area
under the M EI diagram between B and A about point B (the point on
the elastic curve), since this is the point where the vertical distance is to
be determined. We have

Substituting these results into Eq. 1, we get

We have calculated this result in units of kN and m, so converting EI
into these units, we have

Ans.uC =
32 kN # m2

[20011062 kN>m2][17110-62 m4]
= 0.00941 rad b

uC =
320 kN # m2

18 m2EI
-

8 kN # m2

EI
=

32 kN # m2

EI
 b

 =
320 kN # m3

EI

 + a2
3

 12 m2b c1
2

 12 m2a 24 kN # m
EI

b d
 tB>A = a2 m +

1
3

 16 m2b c1
2

 16 m2a 24 kN # m
EI

b d

> tB>A

uC>A =
1
2

 12 m2a 8 kN # m
EI

b =
8 kN # m2

EI

> uC>A

ƒ uC ƒ = ƒ uA ƒ - ƒ uC>A ƒ = ` tB>A
8
` - ƒ uC>A ƒ

s = ur.
uALAB = 8 m

tB>A
tB>Aƒ uA ƒ = ƒ tB>A ƒ >LAB .

uA ,
uC>A

uC .

I = 1711062 mm4.Est = 200 GPa,

Fig. 12–25

(a)

A B
C

2 m

16 kN

4 m 2 m
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12EXAMPLE 12.11

Determine the displacement at C for the beam shown in Fig. 12–26a.
EI is constant.

SOLUTION
M/EI Diagram. See Fig. 12–26b.

Elastic Curve. The tangent at C is drawn on the elastic curve since we
are required to find Fig. 12–26c. (Note that C is not the location of
the maximum deflection of the beam, because the loading and hence the
elastic curve are not symmetric.) Also indicated in Fig. 12–26c are the
tangents at the supports A and B. It is seen that If 
is determined, then can be found from proportional triangles, that is,

or Hence,

(1)

Moment-Area Theorem. Applying Theorem 2 to determine and
we have

Substituting these results into Eq. 1 gives

Ans. =
M0L

2

16EI
 T

 ¢C =
1
2

 ¢M0L
2

6EI
≤ - ¢M0L

2

48EI
≤

 tC>B = a1
3

 aL

2
b b B1

2
 aL

2
b ¢ M0

2EI
≤ R =

M0L
2

48EI

 tA>B = a1
3

 1L2b B1
2

 1L2¢M0

EI
≤ R =

M0L
2

6EI

tC>B ,
tA>B

¢C =
tA>B

2
- tC>B

¢¿ = tA>B>2.¢¿>1L>22 = tA>B>L
¢¿

tA>B¢C = ¢¿ - tC>B .

¢C ,

(a)

A C

M0

B

L
2

L
2

(b)

x 
A C BL

2
L
2

M
EI

M0

EI
M0

2EI

(c)

tan C
C

B 
tan A

tan B

�¿

A

tC/B
tA/B

�C

L
2

L
2

Fig. 12–26
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12 EXAMPLE 12.12

(c) tan C
C

B

tan A

tan B
A

�¿
tC/A 

tB/A

�C

(a)

A
B

C 

5 kip

10 kip5 kip

12 ft 12 ft

(b)

x 

12 ft 12 ft

A B C

M
EI

�60
EI

Fig. 12–27

Determine the displacement at point C for the steel overhanging beam
shown in Fig. 12–27a. Take I = 125 in4.Est = 2911032 ksi,

SOLUTION
M�EI Diagram. See Fig. 12–27b.

Elastic Curve. The loading causes the beam to deflect as shown in
Fig. 12–27c. We are required to find By constructing tangents at C
and at the supports A and B, it is seen that However,
can be related to by proportional triangles; that is,
or Hence

(1)

Moment-Area Theorem. Applying Theorem 2 to determine and
we have

Why are these terms negative? Substituting the results into Eq. 1 yields

Realizing that the calculations were made in units of kip and ft, we have

Ans.¢C =
5760 kip # ft311728 in3>ft32
[2911032 kip>in2]1125 in42 = 2.75 in. T

¢C =
8640 kip # ft3

EI
- 2¢1440 kip # ft3

EI
≤ =

5760 kip # ft3

EI
 T

 tB>A = a1
3

 112 ft2b c1
2

 112 ft2a -
60 kip # ft

EI
b d = -

1440 kip # ft3

EI

 = -
8640 kip # ft3

EI

 tC>A = 112 ft2a1
2

 124 ft2a -
60 kip # ft

EI
b b

tB>A ,
tC>A

¢C = ƒ tC>A ƒ - 2 ƒ tB>A ƒ

¢ ¿ = 2 ƒ tB>A ƒ .
¢¿>24 = ƒ tB>A ƒ >12tB>A

¢¿¢C = ƒ tC>A ƒ - ¢¿.
¢C .
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12FUNDAMENTAL PROBLEMS

F12–7. Determine the slope and deflection of end A of the
cantilevered beam. and I = 65.0(10- 6) m4.E = 200 GPa

F12–10. Determine the slope and deflection at A of the
cantilevered beam. E = 29(103) ksi, I = 24.5 in4.

B A

6 kN

20 kN�m

3 m

F12–7

B A

20 kN
10 kN

1 m 1 m

F12–8

B A

60 kN

30 kN�m

1m 1 m

F12–9

F12–8. Determine the slope and deflection of end A of the
cantilevered beam. and .I = 126(10-6) m4E = 200 GPa

F12–9. Determine the slope and deflection of end A of the
cantilevered beam. and .I = 121(10-6) m4E = 200 GPa

B

A

3 kip

3 ft 3 ft

2 kip/ft

F12–10

3 m

20 kN

10 kN�m 10 kN�m

3 m

A
B

C

F12–11

6 m

40 kN�m 10 kN�m

A
B

F12–12

F12–11. Determine the maximum deflection of the simply
supported beam. and I = 42.8(10-6) m4.E = 200 GPa

F12–12. Determine the maximum deflection of the simply
supported beam. and I = 39.9(10-6) m4.E = 200 GPa
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12

15 kip

15 ft30 ft

B

A

C 

Prob. 12–55

10 kN

3 m6 m

B

A

C 

Prob. 12–56 

A

L
2

L
2

P P

B

Prob. 12–57

*12–56. Determine the slope and deflection at C. EI is
constant.

*12–60. If the bearings at A and B exert only vertical
reactions on the shaft, determine the slope at A and the
maximum deflection of the shaft. EI is constant.

•12–57. Determine the deflection of end B of the
cantilever beam. E is constant.

6 ft 6 ft12 ft

B
C

A

20 kip�ft 20 kip�ft

Prob. 12–58

C

BA

D

50 lb�ft

2 ft 4 ft 2 ft

50 lb�ft

Prob. 12–60 

12–55. Determine the slope and deflection at C. EI is
constant.

12–58. Determine the slope at A and the maximum
deflection. EI is constant.

PROBLEMS

6 ft 6 ft12 ft

B
C

A

20 kip�ft 20 kip�ft

Prob. 12–59

12–59. Determine the slope and deflection at C. EI is
constant.
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12

L

M0 M0

A B

Prob. 12–61

•12–61. Determine the maximum slope and the maximum
deflection of the beam. EI is constant.

•12–65. Determine the position a of roller support B in
terms of L so that the deflection at end C is the same as the
maximum deflection of region AB of the overhang beam.
EI is constant.

12–62. Determine the deflection and slope at C. EI is
constant.

LL

A

M0

B C

Prob. 12–62

12–63. Determine the slope at A of the overhang beam.
and .

*12–64. Determine the deflection at C of the overhang
beam. and I = 45.5(106) mm4.E = 200 GPa

I = 45.5(106) mm4E = 200 GPa

12–66. Determine the slope at A of the simply supported
beam. EI is constant.

12–67. The beam is subjected to the load P as shown.
Determine the magnitude of force F that must be applied
at the end of the overhang C so that the deflection at C is
zero. EI is constant.

A
B

C

4 m

30 kN

2 m

30 kN�m

Probs. 12–63/64

A
B

C

a

L

P

Prob. 12–65

A B

L
3

2L
3

P

Prob. 12–66

a a a

BA
C

P
F

Prob. 12–67
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12
*12–68. If the bearings at A and B exert only vertical
reactions on the shaft, determine the slope at A and the
maximum deflection.

*12–72. Determine the value of a so that the displacement
at C is equal to zero. EI is constant.

•12–69. The beam is subjected to the loading shown.
Determine the slope at A and the displacement at C.Assume
the support at A is a pin and B is a roller. EI is constant.

12–70. The shaft supports the gear at its end C.
Determine the deflection at C and the slopes at the
bearings A and B. EI is constant.

12–71. The shaft supports the gear at its end C. Determine
its maximum deflection within region AB. EI is constant.
The bearings exert only vertical reactions on the shaft.

•12–73. The shaft is subjected to the loading shown. If the
bearings at A and B only exert vertical reactions on the
shaft, determine the slope at A and the displacement at C.
EI is constant.

12–74. Determine the slope at A and the maximum
deflection in the beam. EI is constant.

P

a a

C

BA

2a

M0 Pa�

D

Prob. 12–68

A C B

PPP

a a a a

Prob. 12–69

A B C

P2
––L

2
––L

Probs. 12–70/71

a

A
C

B

a

M0 M0

Prob. 12–73

A

P

BC

P

a
L
2

L
2

Prob. 12–72

A B

6 ft6 ft 12 ft

12 kip

24 kip�ft

Prob. 12–74
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12
12–75. The beam is made of a ceramic material. In order
to obtain its modulus of elasticity, it is subjected to the
elastic loading shown. If the moment of inertia is I and the
beam has a measured maximum deflection , determine E.
The supports at A and D exert only vertical reactions on the
beam.

¢

12–78. The rod is constructed from two shafts for which
the moment of inertia of AB is I and of BC is 2I. Determine
the maximum slope and deflection of the rod due to the
loading. The modulus of elasticity is E.

*12–76. The bar is supported by a roller constraint at B,
which allows vertical displacement but resists axial load
and moment. If the bar is subjected to the loading shown,
determine the slope at A and the deflection at C. EI is
constant.

•12–77. The bar is supported by the roller constraint at C,
which allows vertical displacement but resists axial load
and moment. If the bar is subjected to the loading shown,
determine the slope and displacement at A. EI is constant.

12–79. Determine the slope at point D and the deflection
at point C of the simply supported beam. The beam is made
of material having a modulus of elasticity E.The moment of
inertia of segments AB and CD of the beam is I, while the
moment of inertia of segment BC of the beam is 2I.

A D

a a

L

B C

P P

Prob. 12–75

P

A
B

C

L
2

L
2

Prob. 12–78

A

B C
D

L
2

L
4

L
4

PP

Prob. 12–79
L—
2

L—
2

P

A
C

B

Prob. 12–76

A

B
C

P

2aa

Prob. 12–77

*12–80. Determine the slope at point A and the maximum
deflection of the simply supported beam. The beam is made
of material having a modulus of elasticity E.The moment of
inertia of segments AB and CD of the beam is I, while the
moment of inertia of segment BC is 2I.

A

B C
D

L
2

L
4

L
4

PP

Prob. 12–80
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12
•12–81. Determine the position a of roller support B in
terms of L so that deflection at end C is the same as the
maximum deflection of region AB of the simply supported
overhang beam. EI is constant.

*12–84. Determine the slope at C and deflection at B. EI
is constant.

a

A

B C

L

M0

Prob. 12–81

6 ft 6 ft

3 kip/ft   

B
A

Prob. 12–82

A B
aa

w

C

P

Prob. 12–83

12–82. The cantilevered beam is made of A-36
steel and is subjected to the loading shown. Determine the
slope and displacement at its end B.

W10 * 15

12–83. The cantilevered beam is subjected to the loading
shown. Determine the slope and displacement at C.Assume
the support at A is fixed. EI is constant.

•12–85. Determine the slope at B and the displacement
at C. The member is an A-36 steel structural tee for which
I = 76.8 in4.

12–86. The A-36 steel shaft is used to support a rotor that
exerts a uniform load of 5 kN�m within the region CD of
the shaft. Determine the slope of the shaft at the bearings
A and B. The bearings exert only vertical reactions on the
shaft.

C

BA

a a

w

Prob. 12–84

5 kip

3 ft3 ft

B
A C

1.5 kip/ ft

Prob. 12–85

300 mm 100 mm100 mm

C D
20 mm 40 mm

5 kN/m
BA

20 mm

Prob. 12–86
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1212.5 Method of Superposition

The differential equation satisfies the two necessary
requirements for applying the principle of superposition; i.e., the load

is linearly related to the deflection and the load is assumed
not to change significantly the original geometry of the beam or shaft.As
a result, the deflections for a series of separate loadings acting on a beam
may be superimposed. For example, if is the deflection for one load
and is the deflection for another load, the total deflection for both
loads acting together is the algebraic sum Using tabulated
results for various beam loadings, such as the ones listed in Appendix C,
or those found in various engineering handbooks, it is therefore possible
to find the slope and displacement at a point on a beam subjected to
several different loadings by algebraically adding the effects of its various
component parts.

The following examples illustrate how to use the method of superposition
to solve deflection problems, where the deflection is caused not only by
beam deformations, but also by rigid-body displacements, such as those
that occur when the beam is supported by springs.

v1 + v2 .
v2

v1

v1x2,w1x2
EI d4v>dx4 = w1x2

The resultant deflection at any point on this beam can be determined from the
superposition of the deflections caused by each of the separate loadings acting
on the beam.
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12 EXAMPLE 12.13

Determine the displacement at point C and the slope at the support A
of the beam shown in Fig. 12–28a. EI is constant.

(a)

8 kN

4 m

A

C

B

vC

=

2 kN/m

4 m 4 m

A
C

B

2 kN/m

(vC)1

(vC)2

(b)

+

4 m

A
C

B

(c)

8 kN

4 m

4 m

uA (uA)1

(uA)2

Fig. 12–28

SOLUTION
The loading can be separated into two component parts as shown in
Figs. 12–28b and 12–28c. The displacement at C and slope at A are
found using the table in Appendix C for each part.

For the distributed loading,

For the 8-kN concentrated force,

The displacement at C and the slope at A are the algebraic sums of
these components. Hence,

Ans.

Ans. 1+ T2        vC = 1vC21 + 1vC22 =
139 kN # m3

EI
T 

 1+b2        uA = 1uA21 + 1uA22 =
56 kN # m2

EI
 b 

 1vC22 =
PL3

48EI
=

8 kN18 m23
48EI

=
85.33 kN # m3

EI
 T

 1uA22 =
PL2

16EI
=

8 kN18 m22
16EI

=
32 kN # m2

EI
 b

 1vC21 =
5wL4

768EI
=

512 kN>m218 m24
768EI

=
53.33 kN # m3

EI
 T

 1uA21 =
3wL3

128EI
=

312 kN>m218 m23
128EI

=
24 kN # m2

EI
 b
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12EXAMPLE 12.14

Determine the displacement at the end C of the overhanging beam
shown in Fig. 12–29a. EI is constant.

SOLUTION
Since the table in Appendix C does not include beams with overhangs,
the beam will be separated into a simply supported and a cantilevered
portion. First we will calculate the slope at B, as caused by the
distributed load acting on the simply supported span, Fig. 12–29b.

Since this angle is small, and the vertical
displacement at point C is

Next, the 10-kN load on the overhang causes a statically equivalent
force of 10 kN and couple moment of at the support B of
the simply supported span, Fig. 12–29c. The 10-kN force does not
cause a displacement or slope at B; however, the couple
moment does cause a slope. The slope at B due to this moment is

so that the extended point C is displaced

Finally, the cantilevered portion BC is displaced by the 10-kN force,
Fig. 12–29d. We have

Summing these results algebraically, we obtain the displacement of
point C,

1+ T2  vC = -
26.7
EI

+
53.3
EI

+
26.7
EI

=
53.3 kN # m3

EI
T    Ans.

1vC23 =
PL3

3EI
=

10 kN12 m23
3EI

=
26.67 kN # m3

EI
 T

1vC22 = 12 m2¢26.7 kN # m2

EI
≤ =

53.33 kN # m3

EI
 T

1uB22 =
M0L

3EI
=

20 kN # m14 m2
3EI

=
26.67 kN # m2

EI
 b

20-kN # m

20 kN # m

1vC21 = 12 m2¢13.33 kN # m2

EI
≤ =

26.67 kN # m3

EI
 c

1uB21 L tan1uB21 ,

1uB21 =
wL3

24EI
=

5 kN>m14 m23
24EI

=
13.33 kN # m2

EI
 g

B
A

(a) =
4 m

5 kN/m

2 m

C

10 kN

B
A

(b)

+

4 m

5 kN/m

2 m

C

B
A

(c)

+

4 m 2 m

2 m

C

10 kN

(d)
B

C

10 kN

20 kN�m

(uB)2

(uB)2

(uB)1

(uB)1

(vC)3

(vC)2

(vC)1

Fig. 12–29
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12 EXAMPLE 12.15

Determine the displacement at the end C of the cantilever beam shown
in Fig. 12–30. EI is constant.

6 m 2 m

A
B

C

4 kN/m

vB

vC

uB

SOLUTION
Using the table in Appendix C for the triangular loading, the slope
and displacement at point B are

The unloaded region BC of the beam remains straight, as shown in
Fig. 12–30. Since is small, the displacement at C becomes

Ans. =
244.8 kN # m3

EI
 T

 =
172.8 kN # m3

EI
+

36 kN # m2

EI
 12 m2

 1+ T2  vC = vB + uB1LBC2

uB

 vB =
w0L

4

30EI
=

4 kN>m16 m24
30EI

=
172.8 kN # m3

EI

 uB =
w0L

3

24EI
=

4 kN>m16 m23
24EI

=
36 kN # m2

EI

Fig. 12–30
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12EXAMPLE 12.16

The steel bar shown in Fig. 12–31a is supported by two springs at its ends A
and B. Each spring has a stiffness of and is originally
unstretched. If the bar is loaded with a force of 3 kip at point C, determine
the vertical displacement of the force. Neglect the weight of the bar and
take 

SOLUTION
The end reactions at A and B are calculated and shown in Fig. 12–31b.
Each spring deflects by an amount

If the bar is considered to be rigid, these displacements cause it to
move into the position shown in Fig. 12–31b. For this case, the vertical
displacement at C is

We can find the displacement at C caused by the deformation of the
bar, Fig. 12–31c, by using the table in Appendix C. We have

 = 0.0667 ft +
2
3

 [0.1333 ft - 0.0667 ft] = 0.1111 ft T

 1vC21 = 1vB21 +
6 ft
9 ft

 [1vA21 - 1vB21]

 1vB21 =
1 kip

15 kip>ft = 0.0667 ft

 1vA21 =
2 kip

15 kip>ft = 0.1333 ft

I = 12 in4.Est = 2911032 ksi,

k = 15 kip>ft

1 kip2 kip
Rigid body displacement

(b)

6 ft

A B

3 ft

k � 15 kip/ft k � 15 kip/ft

=

3 kip

6 ft

A
B

3 ft
C

+

3 kip Original position

C

(a)

6 ft3 ft

3 kip

Deformable body displacement

(c)

(vC)2

(vA)1
(vC)1 (vB)1

Fig. 12–31

 = 0.0149 ft T

 =
3 kip13 ft216 ft2[19 ft22 - 16 ft22 - 13 ft22]

6[2911032kip>in2]1144 in2>1 ft22112 in4211 ft4>20 736 in4219 ft2

 1vC22 =
Pab

6EIL
 1L2 - b2 - a22

Adding the two displacement components, we get

Ans.vC = 0.1111 ft + 0.0149 ft = 0.126 ft = 1.51 in. T1+ T2
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12 kip

BA

12 ft 12 ft

50 kip�ft

C

Prob. 12–87

A

BD
C

aaa

w

Probs. 12–89/90

AB

6 ft 6 ft

6 kip 4 kip

Prob. 12–88

B
A

9 kN/m

3 m 3 m

10 kN

C

Prob. 12–91

A B

3 kN 3 kN

1.5 m 1.5 m 3 m

C

100 m

200 m

Prob. 12–92

6 kip/ft

8 ft 8 ft

A B

C

5 kip�ft

Prob. 12–93

*12–88. The cantilevered beam is made of 
A-36 steel and is subjected to the loading shown. Determine
the displacement at B and the slope at A.

W10 * 15

•12–89. Determine the slope and deflection at end C of
the overhang beam. EI is constant.

12–90. Determine the slope at A and the deflection at
point D of the overhang beam. EI is constant.

*12–92. Determine the slope at A and the deflection
at point C of the simply supported beam. The modulus of
elasticity of the wood is E = 10 GPa .

•12–93. The simply supported beam is made
of A-36 steel and is subjected to the loading shown.
Determine the deflection at its center C.

W8 * 24

12–87. The simply supported beam is made of
A-36 steel and is subjected to the loading shown. Determine
the deflection at its center C.

W12 * 45 12–91. Determine the slope at B and the deflection at
point C of the simply supported beam. and
I = 45.5(106) mm4.

E = 200 GPa

PROBLEMS
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12

A

B

6 in.

3 in.

8 kip

Prob. 12–94

4 kN/m

B
A

5 m

20 kN

5 m

C

Prob. 12–95

12–94. Determine the vertical deflection and slope at the
end A of the bracket. Assume that the bracket is fixed
supported at its base, and neglect the axial deformation of
segment AB. EI is constant.

*12–96. Determine the deflection at end E of beam CDE.
The beams are made of wood having a modulus of elasticity
of E = 10 GPa.

12–95. The simply supported beam is made of A-36 steel
and is subjected to the loading shown. Determine the
deflection at its center C. I = 0.1457(10-3) m4.

•12–97. The pipe assembly consists of three equal-sized
pipes with flexibility stiffness EI and torsional stiffness GJ.
Determine the vertical deflection at point A.

A

C

D
a

a
a

a

E B

1.5 m

1.5 m

3 kN

2 m

1 m
75 mm

150 mm

Section a – a

Prob. 12–96

B

C

P

A
L–
2

L–
2

L–
2

Prob. 12–97
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12
12–98. Determine the vertical deflection at the end A of
the bracket. Assume that the bracket is fixed supported at
its base B and neglect axial deflection. EI is constant.

12–99. Determine the vertical deflection and slope at
the end A of the bracket. Assume that the bracket is fixed
supported at its base, and neglect the axial deformation of
segment AB. EI is constant.

*12–100. The framework consists of two A-36 steel
cantilevered beams CD and BA and a simply supported
beam CB. If each beam is made of steel and has a moment
of inertia about its principal axis of determine
the deflection at the center G of beam CB.

Ix = 118 in4,

•12–101. The wide-flange beam acts as a cantilever. Due
to an error it is installed at an angle with the vertical.
Determine the ratio of its deflection in the x direction to its
deflection in the y direction at A when a load P is applied at
this point. The moments of inertia are and For the
solution, resolve P into components and use the method of
superposition. Note: The result indicates that large lateral
deflections (x direction) can occur in narrow beams,

when they are improperly installed in this
manner. To show this numerically, compute the deflections
in the x and y directions for an A-36 steel with

and L = 12 ft.u = 10°,P = 1.5 kip,
W10 * 15,

Iy V Ix,

Iy.Ix

u

12–102. The simply supported beam carries a uniform
load of . Code restrictions, due to a plaster ceiling,
require the maximum deflection not to exceed of the
span length. Select the lightest-weight A-36 steel wide-
flange beam from Appendix B that will satisfy this
requirement and safely support the load. The allowable
bending stress is and the allowable shear
stress is Assume A is a pin and B a roller
support.

tallow = 14 ksi.
sallow = 24 ksi

1>360
2 kip>ft

a
P

A

b

B

Prob. 12–98

A

C

B

4 in.

3 in.

80 lb

20 lb/ in.

Prob. 12–99

16 ft

A

D

8 ft

8 ftC G

B

15 kip

Prob. 12–100

x

L

yP

A

Vertical

u

u

Prob. 12–101

4 ft

A B

8 ft

8 kip

4 ft

2 kip/ft

8 kip

Prob. 12–102
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1212.6 Statically Indeterminate Beams
and Shafts

The analysis of statically indeterminate axially loaded bars and
torsionally loaded shafts has been discussed in Secs. 4.4 and 5.5,
respectively. In this section we will illustrate a general method for
determining the reactions on statically indeterminate beams and shafts.
Specifically, a member of any type is classified as statically indeterminate
if the number of unknown reactions exceeds the available number of
equilibrium equations.

The additional support reactions on the beam or shaft that are not
needed to keep it in stable equilibrium are called redundants. The
number of these redundants is referred to as the degree of indeterminacy.
For example, consider the beam shown in Fig. 12–32a. If the free-body
diagram is drawn, Fig. 12–32b, there will be four unknown support
reactions, and since three equilibrium equations are available for
solution, the beam is classified as being indeterminate to the first degree.
Either or can be classified as the redundant, for if any one of
these reactions is removed, the beam remains stable and in equilibrium
( cannot be classified as the redundant, for if it were removed,

would not be satisfied.) In a similar manner, the continuous
beam in Fig. 12–33a is indeterminate to the second degree, since there
are five unknown reactions and only three available equilibrium
equations, Fig. 12–33b. Here the two redundant support reactions can be
chosen among and Dy .Cy ,By ,Ay ,

©Fx = 0
Ax

MABy ,Ay ,

Fig. 12–32

(b)

P

MA

Ax

Ay

By

(a)

P1 P2 P3

A D

CB

(a)

P

A
B

Fig. 12–33

(b)

P1 P2 P3

Ay By Cy Dy

Ax
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12
To determine the reactions on a beam (or shaft) that is statically

indeterminate, it is first necessary to specify the redundant reactions. We
can determine these redundants from conditions of geometry known as
compatibility conditions. Once determined, the redundants are then
applied to the beam, and the remaining reactions are determined from
the equations of equilibrium.

In the following sections we will illustrate this procedure for solution
using the method of integration, Sec. 12.7; the moment-area method,
Sec. 12.8; and the method of superposition, Sec. 12.9.

12.7 Statically Indeterminate Beams and
Shafts—Method of Integration

The method of integration, discussed in Sec. 12.2, requires two
integrations of the differential equation once the
internal moment M in the beam is expressed as a function of position x.
If the beam is statically indeterminate, however, M can also be
expressed in terms of the unknown redundants. After integrating this
equation twice, there will be two constants of integration along with the
redundants to be determined. Although this is the case, these unknowns
can always be found from the boundary and/or continuity conditions for
the problem.

The following example problems illustrate specific applications of this
method using the procedure for analysis outlined in Sec. 12.2.

d2v>dx2 = M>EI

An example of a statically indeterminate
beam used to support a bridge deck.
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12EXAMPLE 12.17

The beam is subjected to the distributed loading shown in
Fig. 12–34a. Determine the reaction at A. EI is constant.

SOLUTION
Elastic Curve. The beam deflects as shown in Fig. 12–34a. Only
one coordinate x is needed. For convenience we will take it
directed to the right, since the internal moment is easy to
formulate.

Moment Function. The beam is indeterminate to the first degree as
indicated from the free-body diagram, Fig. 12–34b. We can express the
internal moment M in terms of the redundant force at A using the
segment shown in Fig. 12–34c. Here

Slope and Elastic Curve. Applying Eq. 12–10, we have

The three unknowns and are determined from the boundary
conditions and 
Applying these conditions yields

Solving,

Ans.

NOTE: Using the result for the reactions at B can be determined
from the equations of equilibrium, Fig. 12–34b. Show that 

and MB = w0L
2>15.By = 2w0L>5,

Bx = 0,
Ay ,

 C1 = -
1

120
 w0L

3 C2 = 0

 Ay =
1

10
 w0L

0 =
1
6

 AyL3 -
1

120
 w0L

4 + C1L + C2v = 0;x = L,

0 =
1
2

 AyL2 -
1

24
 w0L

3 + C1
dv

dx
= 0;x = L,

0 = 0 - 0 + 0 + C2v = 0;x = 0,

v = 0.x = L,dv>dx = 0;x = L,v = 0;x = 0,
C2C1 ,Ay ,

 EIv =
1
6

 Ayx3 -
1

120
 w0 

x5

L
+ C1x + C2

 EI 
dv

dx
=

1
2

 Ayx2 -
1

24
 w0 

x4

L
+ C1

 EI 
d2v

dx2 = Ayx -
1
6

 w0 
x3

L

M = Ayx -
1
6

 w0 
x3

L

A

x
L

B

w0

(a)

By

MB

Bx A

L

w0L

(b)
Ay

L
2
3

1
3

1
2

M

V

(c)
Ay

xx

w0
w0

A
2
3

1
3

1
2

x
L

x2

L

Fig. 12–34
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A

x
L

B

w

(a)

(b)

wL

 MA � M¿ MB � M¿

VB �
wL
2VA �

wL
2

L
2

L
2

(c)

wx

 M¿ x

M

V

wL
2

x
2

EXAMPLE 12.18

Fig. 12–35

The beam in Fig. 12–35a is fixed supported at both ends and is subjected
to the uniform loading shown. Determine the reactions at the supports.
Neglect the effect of axial load.

SOLUTION
Elastic Curve. The beam deflects as shown in Fig. 12–35a. As in the
previous problem, only one x coordinate is necessary for the solution
since the loading is continuous across the span.

Moment Function. From the free-body diagram, Fig. 12–35b, the
respective shear and moment reactions at A and B must be equal,
since there is symmetry of both loading and geometry. Because of this,
the equation of equilibrium, requires

Ans.

The beam is indeterminate to the first degree, where is redundant.
Using the beam segment shown in Fig. 12–35c, the internal moment M
can be expressed in terms of as follows:

Slope and Elastic Curve. Applying Eq. 12–10, we have

The three unknowns, and can be determined from the three
boundary conditions at which yields at

which yields and at which yields

Ans.

Using these results, notice that because of symmetry the remaining
boundary condition at is automatically satisfied.

NOTE: It should be realized that this method of solution is generally
suitable when only one x coordinate is needed to describe the elastic
curve. If several x coordinates are needed, equations of continuity must
be written, thus complicating the solution process.

x = Ldv>dx = 0

M¿ =
wL2

12

x = L,v = 0C1 = 0;x = 0,
dv>dx = 0C2 = 0;x = 0,v = 0

C2 ,C1 ,M¿,

 EIv =
wL

12
 x3 -

w
24

 x4 -
M¿
2

 x2 + C1x + C2

 EI 
dv

dx
=

wL

4
 x2 -

w
6

 x3 - M¿x + C1

 EI 
d2v

dx
=

wL

2
 x -

w
2

 x2 - M¿

M =
wL

2
 x -

w
2

 x2 - M¿

M¿

M¿

VA = VB =
wL

2

©Fy = 0,
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12

*12–104. Determine the value of a for which the
maximum positive moment has the same magnitude as the
maximum negative moment. EI is constant.

•12–105. Determine the reactions at the supports A, B,
and C; then draw the shear and moment diagrams. EI is
constant.

12–107. Determine the moment reactions at the supports
A and B. EI is constant.

*12–108. Determine the reactions at roller support A and
fixed support B.

L

P

a

Prob. 12–104

CA
B

P P

L
2

L
2

L
2

L
2

Prob. 12–105

L

BA

w

3
2L
3

Prob. 12–108

L

P P

A B

aa

Prob. 12–107 

L

A B

P

L

Prob. 12–106

A
B

L

M0

Prob. 12–103 

12–103. Determine the reactions at the supports A and B,
then draw the moment diagram. EI is constant.

12–106. Determine the reactions at the supports, then
draw the shear and moment diagram. EI is constant.

PROBLEMS
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•12–109. Use discontinuity functions and determine the
reactions at the supports, then draw the shear and moment
diagrams. EI is constant.

12–110. Determine the reactions at the supports, then
draw the shear and moment diagrams. EI is constant.

*12–112. Determine the moment reactions at fixed
supports A and B. EI is constant.

12–111. Determine the reactions at pin support A and
roller supports B and C. EI is constant.

•12–113. The beam has a constant and is supported
by the fixed wall at B and the rod AC. If the rod has a 
cross-sectional area and the material has a modulus of
elasticity determine the force in the rod.E2 ,

A2

E1I1

12–114. The beam is supported by a pin at A, a roller at B,
and a post having a diameter of 50 mm at C. Determine the
support reactions at A, B, and C. The post and the beam are
made of the same material having a modulus of elasticity

and the beam has a constant moment of
inertia I = 255(106) mm4.
E = 200 GPa,

8 ft 10 ft

3 kip/ft

C

A
B

Prob. 12–109

BA

L
2

L
2

w0

Prob. 12–112

A B 

C

w

L1

L2

Prob. 12–113

BC
A

15 kN/m

6 m

1 m

6 m
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B
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12*12.8 Statically Indeterminate Beams
and Shafts—Moment-Area Method

If the moment-area method is used to determine the unknown
redundants of a statically indeterminate beam or shaft, then the M�EI
diagram must be drawn such that the redundants are represented as
unknowns on this diagram. Once the M�EI diagram is established, the
two moment-area theorems can then be applied to obtain the proper
relationships between the tangents on the elastic curve in order to meet
the conditions of displacement and/or slope at the supports of the beam.
In all cases the number of these compatibility conditions will be
equivalent to the number of redundants, and so a solution for the
redundants can be obtained.

Moment Diagrams Constructed by the Method of
Superposition. Since application of the moment-area theorems
requires calculation of both the area under the M�EI diagram and the
centroidal location of this area, it is often convenient to use separate
M�EI diagrams for each of the known loads and redundants rather than
using the resultant diagram to calculate these geometric quantities. This
is especially true if the resultant moment diagram has a complicated
shape. The method for drawing the moment diagram in parts is based on
the principle of superposition.

Most loadings on cantilevered beams or shafts will be a combination of
the four loadings shown in Fig. 12–36. Construction of the associated
moment diagrams, also shown in this figure, has been discussed in the
examples of Chapter 6. Based on these results, we will now show how
to use the method of superposition to represent the resultant moment
diagram by a series of separate moment diagrams for the cantilevered
beam shown in Fig. 12–37a. To do this, we will first replace the loads
by a system of statically equivalent loads. For example, the three
cantilevered beams shown in Fig. 12–37a are statically equivalent to the

Fig. 12–36

P

L

M

x 

�PL
(a)

Sloping line

L

M

x

(b)

M0

M0

Zero sloping line

L

M

x 

(c)

Parabolic curve

w

�wL2

2

L

M

x 

(d)

w0

Cubic curve

�w0L
2

6
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12

resultant beam, since the load at each point on the resultant beam is
equal to the superposition or addition of the loadings on the three
separate beams. Thus, if the moment diagrams for each separate beam
are drawn, Fig. 12–37b, the superposition of these diagrams will yield
the moment diagram for the resultant beam, shown at the top. For
example, from each of the separate moment diagrams, the moment at
end A is as
verified by the top moment diagram. This example demonstrates that it
is sometimes easier to construct a series of separate statically equivalent
moment diagrams for the beam, rather than constructing its more
complicated resultant moment diagram. Obviously, the area and location
of the centroid for each part are easier to establish than those of the
centroid for the resultant diagram.

MA = -8 kN # m - 30 kN # m - 20 kN # m = -58 kN # m,

M

x (m)

�58

2 4

�40

�10

M

x (m)

�8

2

M

x (m)

�30

2

2

M

x (m)

�20

4

(kN�m)

(kN�m)

(kN�m)

(kN�m)

Superposition of moment diagrams

(b)

�

4

4

2 m 2 m

30 kN�m

5 kN4 kN/m
13 kN

58 kN�m

2 m

4 kN/m
8 kN

8 kN�m

30 kN�m

30 kN�m

4 m

5 kN
5 kN

20 kN�m

Superposition of loadings

(a)

2 m

A

A

A

A

�
�

�

��

Fig. 12–37
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12

In a similar manner, we can also represent the resultant moment
diagram for a simply supported beam by using a superposition of
moment diagrams for each loading acting on a series of simply supported
beams. For example, the beam loading shown at the top of Fig. 12–38a is
equivalent to the sum of the beam loadings shown below it.
Consequently, the sum of the moment diagrams for each of these three
loadings can be used rather than the resultant moment diagram shown at
the top of Fig. 12–38b.

The examples that follow should also clarify some of these points and
illustrate how to use the moment-area theorems to obtain the redundant
reactions on statically indeterminate beams and shafts. The solutions
follow the procedure for analysis outlined in Sec. 12.4.

M

x (m)

Resultant moment diagram

�20 �20

(kN�m)

Superposition of moment diagrams

(b)

M

x (m)

(kN�m)

70

90
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12
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(kN�m)

12

M

x (m)
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6

12 m
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�

�
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5 kN/m
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(a)

20 kN�m

20 kN�m

�

�
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�

Fig. 12–38
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12 EXAMPLE 12.19

The beam is subjected to the concentrated force shown in
Fig. 12–39a. Determine the reactions at the supports. EI is constant.

(a)

L

B
A

P

L

L

(b)

B

P

MA

Ax

Ay

By

L

(c)

L 2L
x

M
EI

2PL
EI

�

PL
EI

�

ByL

EI

(d)

B

A

tB/A � 0

tanA

tanB

Fig. 12–39

SOLUTION
M�EI Diagram. The free-body diagram is shown in Fig. 12–39b.
Using the method of superposition, the separate diagrams for
the redundant reaction and the load P are shown in Fig. 12–39c.

Elastic Curve. The elastic curve for the beam is shown in
Fig. 12–39d. The tangents at the supports A and B have been
constructed. Since then

Moment-Area Theorem. Applying Theorem 2, we have

Ans.

Equations of Equilibrium. Using this result, the reactions at A on
the free-body diagram, Fig. 12–39b, are

Ans.

Ans.

Ans.MA = 0.5PL

-MA + 2.5P1L2 - P12L2 = 0d+ ©MA = 0;

Ay = 1.5P

-Ay + 2.5P - P = 0+ c ©Fy = 0;

Ax = 0:+ ©Fx = 0;

By = 2.5P

 + a2
3

 Lb c1
2

 a -PL

EI
b1L2 d = 0

 tB>A = a2
3

 Lb B 1
2

 ¢ByL

EI
≤LR + aL

2
b c -PL

EI
 1L2 d

tB>A = 0
¢B = 0,

By

M>EI
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12EXAMPLE 12.20

The beam is subjected to the couple moment at its end C as shown in
Fig. 12–40a. Determine the reaction at B. EI is constant.

SOLUTION
M�EI Diagram. The free-body diagram is shown in Fig. 12–40b. By
inspection, the beam is indeterminate to the first degree. In order to
obtain a direct solution, we will choose as the redundant. Using
superposition, the M EI diagrams for and each applied to a
simply supported beam, are shown in Fig. 12–40c. (Note that for such a
beam and do not contribute to an M EI diagram.)

Elastic Curve. The elastic curve for the beam is shown in Fig. 12–40d.
The tangents at A, B, and C have been established. Since

then the vertical distances shown must be
proportional; i.e.,

(1)

From Fig. 12–40c, we have

Substituting into Eq. 1 and simplifying yields

Ans.

Equations of Equilibrium. The reactions at A and C can now be
determined from the equations of equilibrium, Fig. 12–40b. Show that

and 
Note from Fig. 12–40e that this problem can also be worked in terms of

the vertical distances,

tB>A =
1
2

 tC>A

Ay = M0>4L.Cy = 5M0>4L,Ax = 0,

By =
3M0

2L

 tA>C = 1L2B1
2

 ¢ByL

2EI
≤12L2R + a2

3
 12L2b B1

2
 ¢ -M0

EI
≤12L2R

 + aL

2
b B ¢ -M0

2EI
≤1L2R

 tB>C = a1
3

 Lb B1
2

 ¢ByL

2EI
≤1L2R + a2

3
 Lb B1

2
 ¢ -M0

2EI
≤1L2R

tB>C =
1
2

 tA>C

¢A = ¢B = ¢C = 0,

>CyAy ,Ax ,

M0 ,By> By

(a)

B
A

L

M0 
C

L

(b)

Ax

Ay Cy

By

M0

LL

(c)

2L
x

L

M
EI

M0

2EI
�

M0

2EI
� M0

EI
�

ByL

2EI

(d)

B

A

tanA
tanC

C

L

L
tanB

tB/C
tA/C

(e)

BA
tanB

tanC

tanA

L
L

tC/A

tB/A

Fig. 12–40
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*12–116. The rod is fixed at A, and the connection at B
consists of a roller constraint which allows vertical
displacement but resists axial load and moment. Determine
the moment reactions at these supports. EI is constant.

•12–117. Determine the value of a for which the
maximum positive moment has the same magnitude as the
maximum negative moment. EI is constant.

12–119. Determine the reactions at the supports, then
draw the shear and moment diagrams. EI is constant.
Support B is a thrust bearing.

*12–120. Determine the moment reactions at the supports
A and B. EI is constant.

L

B
A M0

A B

w

L

L

a

P

CA
B

L

M0 M0

L

CA B

L

P

L
2

L
2

Prob. 12–115 

Prob. 12–116 

Prob. 12–117

L–
2

A B

w

L–
2

Prob. 12–120

Prob. 12–119

Prob. 12–118 

12–115. Determine the moment reactions at the supports
A and B, then draw the shear and moment diagrams. EI is
constant.

12–118. Determine the reactions at the supports, then
draw the shear and moment diagrams. EI is constant.

PROBLEMS
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1212.9 Statically Indeterminate Beams and
Shafts—Method of Superposition

The method of superposition has been used previously to solve for the
redundant loading on axially loaded bars and torsionally loaded
shafts. In order to apply this method to the solution of statically
indeterminate beams (or shafts), it is first necessary to identify the
redundant support reactions as explained in Sec. 12.6. By removing
them from the beam we obtain the so-called primary beam, which is
statically determinate and stable, and is subjected only to the external
load. If we add to this beam a succession of similarly supported beams,
each loaded with a separate redundant, then by the principle of
superposition, we obtain the actual loaded beam. Finally, in order to
solve for the redundants, we must write the conditions of compatibility
that exist at the supports where each of the redundants acts. Since the
redundant forces are determined directly in this manner, this method
of analysis is sometimes called the force method. Once the redundants
are obtained, the other reactions on the beam can then be determined
from the three equations of equilibrium.

To clarify these concepts, consider the beam shown in Fig. 12–41a. If
we choose the reaction at the roller as the redundant, then the
primary beam is shown in Fig. 12–41b, and the beam with the
redundant acting on it is shown in Fig. 12–41c. The displacement at
the roller is to be zero, and since the displacement of point B on the
primary beam is and causes point B to be displaced upward 
we can write the compatibility equation at B as

The displacements and can be obtained using any one of the
methods discussed in Secs. 12.2 through 12.5. Here we will obtain
them directly from the table in Appendix C. We have

Substituting into the compatibility equation, we get

Now that is known, the reactions at the wall are determined from
the three equations of equilibrium applied to the free-body diagram of
the beam, Fig. 12–41d. The results are

MA =
3

16
 PL

Ax = 0 Ay =
11
16

 P

By

By =
5

16
 P

0 = -
5PL3

48EI
+

ByL3

3EI

vB =
5PL3

48EI
 and vœ

B =
ByL3

3EI

vœ
BvB

0 = -vB + vœ
B1+ c2

vB
œ ,ByvB ,

By

By

Fig. 12–41
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P
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L
2

L
2

L
2

L
2
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As stated in Sec. 12.6, choice of the redundant is arbitrary, provided
the primary beam remains stable. For example, the moment at A for the
beam in Fig. 12–42a can also be chosen as the redundant. In this case the
capacity of the beam to resist is removed, and so the primary beam is
then pin supported at A, Fig. 12–42b. To it we add the beam with the
redundant at A acting on it, Fig. 12–42c. Referring to the slope at A
caused by the load P as and the slope at A caused by the redundant

as the compatibility equation for the slope at A requires

Again using the table in Appendix C, we have

Thus,

This is the same result determined previously. Here the negative sign for
simply means that acts in the opposite sense of direction of that

shown in Fig. 12–42c.
MAMA

MA = -
3

16
 PL

0 =
PL2

16EI
+

MAL

3EI

uA =
PL2

16EI
 and uA

œ =
MAL

3EI

0 = uA + uA
œ1e+2

uA
œ ,MA

uA ,

MA

Redundant MA removed

BA

P

(b)

Only redundant MA applied

BA(c)

MA
�

Actual beam

BA

P

(a)

�

L
2

L
2

L
2

L
2

uA

u¿A

Fig. 12–42
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B

A(a)

C

D

P1

P1

P2

P2

Actual beam

�

B

A(b)

C

D

Redundant By and Cy removed

�

vB vC

B
A(c)

C D

By

Only redundant By applied

�

B
A(d)

C D

Cy

v¿¿

Only redundant Cy applied

B

v¿B v¿C

v¿¿C

Another example that illustrates this method is given in Fig. 12–43a. In
this case the beam is indeterminate to the second degree and therefore
two compatibility equations will be necessary for the solution. We will
choose the forces at the roller supports B and C as redundants. The
primary (statically determinate) beam deforms as shown in Fig. 12–43b
when the redundants are removed. Each redundant force deforms
this beam as shown in Figs. 12–43c and 12–43d, respectively. By
superposition, the compatibility equations for the displacements at B
and C are

(12–20)

Here the displacement components and will be expressed in
terms of the unknown and the components and will be
expressed in terms of the unknown When these displacements have
been determined and substituted into Eq. 12–20, these equations may
then be solved simultaneously for the two unknowns and Cy .By

Cy .
vC

flvB
flBy ,

vC
œvB

œ

0 = vC + vC
œ + vC

fl 1+ T2
0 = vB + vB

œ + vB
fl 1+ T2

Fig. 12–43
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12 Procedure for Analysis

The following procedure provides a means for applying the method
of superposition (or the force method) to determine the reactions
on statically indeterminate beams or shafts.

Elastic Curve.

• Specify the unknown redundant forces or moments that must be
removed from the beam in order to make it statically
determinate and stable.

• Using the principle of superposition, draw the statically
indeterminate beam and show it equal to a sequence of
corresponding statically determinate beams.

• The first of these beams, the primary beam, supports the same
external loads as the statically indeterminate beam, and each of
the other beams “added” to the primary beam shows the beam
loaded with a separate redundant force or moment.

• Sketch the deflection curve for each beam and indicate
symbolically the displacement (slope) at the point of each
redundant force (moment).

Compatibility Equations.

• Write a compatibility equation for the displacement (slope) at
each point where there is a redundant force (moment).

• Determine all the displacements or slopes using an appropriate
method as explained in Secs. 12.2 through 12.5.

• Substitute the results into the compatibility equations and solve
for the unknown redundants.

• If a numerical value for a redundant is positive, it has the same
sense of direction as originally assumed. Similarly, a negative
numerical value indicates the redundant acts opposite to its
assumed sense of direction.

Equilibrium Equations.

• Once the redundant forces and/or moments have been
determined, the remaining unknown reactions can be found from
the equations of equilibrium applied to the loadings shown on
the beam’s free-body diagram.

The following examples illustrate application of this procedure. For
brevity, all displacements and slopes have been found using the table in
Appendix C.
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12EXAMPLE 12.21

Fig. 12–44

Actual beam

B
A

10 ft

(a)

B

B

By

v¿B

vB

5 ft

�

�

5 ft
8 kip

10 ft

2 kip/ ft

Redundant By removed

2 kip/ ft18 kip

40 kip�ft
0

8 kip

5

5

V (kip)

M (kip�ft)

x (ft)

x (ft)

�40

18 8

�10

25

(kip)

10 kip

Only redundant By applied
10 ft

5 ft
8 kip

2 kip/ ft

(b)

(c)

5 ft

(d)

(e)

Determine the reactions at the roller support B of the beam shown
in Fig. 12–44a, then draw the shear and moment diagrams. EI is
constant.

SOLUTION
Principle of Superposition. By inspection, the beam is statically
indeterminate to the first degree. The roller support at B will be
chosen as the redundant so that will be determined directly.
Figures 12–44b and 12–44c show application of the principle of
superposition. Here we have assumed that acts upward on the
beam.

Compatibility Equation. Taking positive displacement as
downward, the compatibility equation at B is

(1)

These displacements can be obtained directly from the table in
Appendix C.

Substituting into Eq. 1 and solving yields

Ans.

Equilibrium Equations. Using this result and applying the three
equations of equilibrium, we obtain the results shown on the
beam’s free-body diagram in Fig. 12–44d. The shear and moment
diagrams are shown in Fig. 12–44e.

By = 10 kip

0 =
3333
EI

-
333.3By

EI

 vB
œ =

PL3

3EI
=

By110 ft23
3EI

=
333.3 ft3 By

EI
 c

 =
2 kip>ft110 ft24

8EI
+

518 kip2110 ft23
48EI

=
3333 kip # ft3

EI
 T

 vB =
wL4

8EI
+

5PL3

48EI

0 = vB - vB
œ1+ T2

By

By
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12 EXAMPLE 12.22

The beam in Fig. 12–45a is fixed supported to the wall at A and pin
connected to a rod BC. If for both
members, determine the force developed in the rod due to the
loading. The moment of inertia of the beam about its neutral axis is
I = 475 in4.

E = 2911032 ksi1
2-in.-diameter

SOLUTION I
Principle of Superposition. By inspection, this problem is
indeterminate to the first degree. Here B will undergo an unknown
displacement since the rod will stretch. The rod will be treated as
the redundant and hence the force of the rod is removed from the
beam at B, Fig. 12–45b, and then reapplied, Fig. 12–45c.

Compatibility Equation. At point B we require

(1)

The displacements and are determined from the table in
Appendix C. is calculated from Eq. 4–2.Working in kilopounds and
inches, we have

Thus, Eq. 1 becomes

Ans.FBC = 1.78 kip

0.01686FBC = 0.1045 - 0.04181FBC1+ T2

 vB
œ =

PL3

3EI
=

FBC110 ft23112 in.>ft23
3[2911023 kip>in2]1475 in42 = 0.04181FBCc

 vB =
5PL3

48EI
=

518 kip2110 ft23112 in.>ft23
48[2911032 kip>in2]1475 in42 = 0.1045 in. T

 vB
fl =

PL

AE
=

FBC18 ft2112 in.>ft2
1p>42A12 in. B2[2911032 kip>in2]

= 0.01686FBC T

vB
fl

vB
œvB

vfl
B = vB - vB

œ1+ T2

vB
fl ,

5 ft
A

B

5 ft
v¿¿

Actual beam and rod

8 kip

(a)

C

8 ft

B
A

Redundant FBC removed

8 kip

(b)

B

vB
A

Only redundant FBC applied

(c)

B
FBC

v¿B

Fig. 12–45
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SOLUTION II
Principle of Superposition. We can also solve this problem by
removing the pin support at C and keeping the rod attached to the
beam. In this case the 8-kip load will cause points B and C to be
displaced downward the same amount Fig. 12–45e, since no force
exists in rod BC. When the redundant force is applied at point C,
it causes the end C of the rod to be displaced upward and the end
B of the beam to be displaced upward Fig. 12–45f. The difference
in these two displacements, represents the stretch of the rod due
to so that Hence, from Figs. 12–45d, 12–45e, and
12–45f, the compatibility of displacement at point C is

(2)

From Solution I, we have

Therefore, Eq. 2 becomes

Ans.FBC = 1.78 kip

0 = 0.1045 - 10.01686FBC + 0.04181FBC21+ T2

 vB
œ = 0.04181FBCc

 vBC = vB
fl = 0.01686FBCc

 vC = vB = 0.1045 in. T

0 = vC - 1vBC + vB
œ 21+ T2

vC
œ = vBC + vB

œ .FBC ,
vBC ,

vB
œ ,

vC
œ

FBC

vC ,

A

Redundant FBC removed

8 kip

(e)

B

C
vC 

A

Only redundant FBC applied

(f)

B

C

v¿C

v¿B

vBC

FBC

A
5 ft

Actual beam and rod

8 kip

(d)

C

B
5 ft

Fig. 12–45 (cont.)
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12 EXAMPLE 12.23

Determine the moment at B for the beam shown in Fig. 12–46a. EI is
constant. Neglect the effects of axial load.

SOLUTION
Principle of Superposition. Since the axial load on the beam
is neglected, there will be a vertical force and moment at A and B.
Here there are only two available equations of equilibrium

and so the problem is indeterminate to the second
degree. We will assume that and are redundant, so that by the
principle of superposition, the beam is represented as a cantilever,
loaded separately by the distributed load and reactions and 
Figs. 12–46b, 12–46c, and 12–46d.

MB ,By

MBBy

1©M = 0, ©Fy = 02

B

Redundants MB and By removed

A(b)

�

6 ft

3 kip/ ft

B

Actual beam

A(a)

�

6 ft

3 kip/ ft

6 ft

B

vB

Only redundant By applied

A(c)

�

12 ft B

By

Only redundant MB applied

A(d)

B

v¿¿B

v¿B

MB

6 ft

12 ft
u¿¿

u¿

uB

B

Fig. 12–46
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12Compatibility Equations. Referring to the displacement and slope
at B, we require

(1)

(2)

Using the table in Appendix C to calculate the slopes and
displacements, we have

Substituting these values into Eqs. 1 and 2 and canceling out the
common factor EI, we get

Solving these equations simultaneously gives

Ans. MB = 11.25 kip # ft

 By = -3.375 kip

0 = 1134 + 576By + 72MB1+ T2
0 = 108 + 72By + 12MB1e+2

 vB
fl =

ML2

2EI
=

MB112 ft22
2EI

=
72MB

EI
 T

 uB
fl =

ML

EI
=

MB112 ft2
EI

=
12MB

EI
 b

 vB
œ =

PL3

3EI
=

By112 ft23
3EI

=
576By

EI
 T

 uB
œ =

PL2

2EI
=

By112 ft22
2EI

=
72By

EI
 b

 vB =
7wL4

384EI
=

713 kip>ft2112 ft24
384EI

=
1134 kip # ft3

EI
 T

 uB =
wL3

48EI
=

3 kip>ft 112 ft23
48EI

=
108 kip # ft2

EI
 b

0 = vB + vB
œ + vB

fl 1+ T2
0 = uB + uB

œ + uB
fl 1e+2
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12 FUNDAMENTAL PROBLEMS

F12–13. Determine the reactions at the fixed support A
and the roller B. EI is constant.

F12–16. Determine the reaction at the roller B. EI is
constant.

F12–14. Determine the reactions at the fixed support A
and the roller B. EI is constant.

F12–15. Determine the reactions at the fixed support
A and the roller B. Support B settles 2 mm.
I = 65.0(10-6) m4.

E = 200 GPa,

F12–17. Determine the reaction at the roller B. EI is
constant.

F12–18. Determine the reaction at the roller support B if
it settles 5 mm. and I = 65.0(10-6) m4.E = 200 GPa

A B

40 kN

4 m 2 m

F12–13

A
B

w0

L

F12–14

A
B

6 m

10 kN/m

F12–15

A

B
C

L L

M0

F12–16

A

B

C

4 m 6 m2 m

50 kN

F12–17

A
B

C

6 m 6 m

10 kN/m

F12–18
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12

•12–121. Determine the reactions at the bearing supports
A, B, and C of the shaft, then draw the shear and moment
diagrams. EI is constant. Each bearing exerts only vertical
reactions on the shaft.

*12–124. The assembly consists of a steel and an aluminum
bar, each of which is 1 in. thick, fixed at its ends A and B, and
pin connected to the rigid short link CD. If a horizontal
force of 80 lb is applied to the link as shown, determine
the moments created at A and B.
Eal = 1011032 ksi.

Est = 2911032 ksi,

PROBLEMS

400 N

1 m 1 m

CA B

1 m 1 m

400 N

Prob. 12–121

A B
L
2

P

L

Prob. 12–122

12–122. Determine the reactions at the supports A and B.
EI is constant.

12–123. Determine the reactions at the supports A, B, and
C, then draw the shear and moment diagrams. EI is constant.

•12–125. Determine the reactions at the supports A, B,
and C, then draw the shear and moment diagrams. EI is
constant.

12–126. Determine the reactions at the supports A and B.
EI is constant.

6 ft 12 ft

3 kip/ ft

A B
C

6 ft

12 kip

Prob. 12–123

80 lb

30 in.

C D

A B

0.5 in.

1 in.

Aluminum

Steel

Prob. 12–124

3 m

A B
C

3 m 3 m 3 m

10 kN 10 kN

Prob. 12–125

L

A

M0

B

Prob. 12–126
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12
12–127. Determine the reactions at support C. EI is
constant for both beams.

*12–128. The compound beam segments meet in the
center using a smooth contact (roller). Determine the
reactions at the fixed supports A and B when the load P is
applied. EI is constant.

12–130. Determine the reactions at A and B. Assume the
support at A only exerts a moment on the beam. EI is
constant.

12–131. The beam is supported by the bolted supports at its
ends. When loaded these supports do not provide an actual
fixed connection, but instead allow a slight rotation before
becoming fixed. Determine the moment at the connections
and the maximum deflection of the beam.

a

•12–129. The beam has a constant and is supported
by the fixed wall at B and the rod AC. If the rod has a cross-
sectional area and the material has a modulus of
elasticity determine the force in the rod.E2,

A2

E1 I1

*12–132. The beam is supported by a pin at A, a spring
having a stiffness k at B, and a roller at C. Determine the
force the spring exerts on the beam. EI is constant.

A C

D

P

B

L
2

L
2

Prob. 12–127

P

L

A
C B

L

Prob. 12–128

A

L2

L1

B

C

w

Prob. 12–129

L–
2

L–
2

A B

P

Prob. 12–130

P

L—
2

L—
2

Prob. 12–131

A
B

L L

k

w

C

Prob. 12–132
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12

�

L
a

w0

Prob. 12–133

400
lb400

lb

2 ft

3 ft

5 ft

5 ft

5 ft

A

B

C

Prob. 12–135

A

B
C

6 m

1 m

6 m

0.2 mm

30 kN/m

Prob. 12–134

A
C

D

B

3 m

3 m

3 m

Prob. 12–136

•12–133. The beam is made from a soft linear elastic
material having a constant EI. If it is originally a distance 
from the surface of its end support, determine the distance a
at which it rests on this support when it is subjected to the
uniform load which is great enough to cause this to
happen.

w0 ,

¢

12–134. Before the uniform distributed load is applied on
the beam, there is a small gap of 0.2 mm between the beam
and the post at B. Determine the support reactions at A, B,
and C. The post at B has a diameter of 40 mm, and the
moment of inertia of the beam is The
post and the beam are made of material having a modulus
of elasticity of E = 200 GPa.

I = 875(106) mm4.

12–135. The 1-in.-diameter A-36 steel shaft is supported
by unyielding bearings at A and C. The bearing at B rests
on a simply supported steel wide-flange beam having a
moment of inertia of If the belt loads on the
pulley are 400 lb each, determine the vertical reactions at
A, B, and C.

I = 500 in4.

*12–136. If the temperature of the 75-mm-diameter post
CD is increased by 60°C, determine the force developed in
the post.The post and the beam are made of A-36 steel, and
the moment of inertia of the beam is I = 255(106) mm4.
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12 CHAPTER REVIEW

The elastic curve represents the centerline
deflection of a beam or shaft. Its shape can
be determined using the moment diagram.
Positive moments cause the elastic curve to
be concave upwards and negative moments
cause it to be concave downwards.The radius
of curvature at any point is determined from

1
r

=
M

EI

The equation of the elastic curve and its
slope can be obtained by first finding the
internal moment in the member as a
function of x. If several loadings act on the
member, then separate moment functions
must be determined between each of
the loadings. Integrating these functions
once using gives the
equation for the slope of the elastic curve,
and integrating again gives the equation
for the deflection. The constants of
integration are determined from the
boundary conditions at the supports, or in
cases where several moment functions
are involved, continuity of slope and
deflection at points where these functions
join must be satisfied.

EI1d2v>dx22 = M1x2

Discontinuity functions allow one to
express the equation of the elastic curve as
a continuous function, regardless of the
number of loadings on the member. This
method eliminates the need to use
continuity conditions, since the two
constants of integration can be determined
solely from the two boundary conditions.

M

x

Moment diagram

Inflection point

Elastic curve

u � 0
v � 0

P

x1
x2

v1 � v2

v � 0

dv2

dx2

dv1

dx1
�

Boundary conditions

Continuity conditions
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12The moment-area method is a semi-
graphical technique for finding the slope of
tangents or the vertical distance between
tangents at specific points on the elastic
curve. It requires finding area segments
under the M�EI diagram, or the moment of
these segments about points on the elastic
curve. The method works well for M�EI
diagrams composed of simple shapes, such
as those produced by concentrated forces
and couple moments.

The deflection or slope at a point on a
member subjected to combinations of
loadings can be determined using the
method of superposition. The table in
Appendix C is available for this purpose.

Statically indeterminate beams and shafts
have more unknown support reactions than
available equations of equilibrium. To solve,
one first identifies the redundant reactions.
The method of integration or the moment-
area theorems can then be used to solve for
the unknown redundants. It is also possible
to determine the redundants by using
the method of superposition, where one
considers the conditions of continuity at the
redundant. Here the displacement due to
the external loading is determined with the
redundant removed, and again with the
redundant applied and the external loading
removed. The tables in Appendix C can
be used to determine these necessary
displacements.

A B

tan B tan AuB/A
BA

x

M
EI uB/A � Area

BA
x

M
EI

_
x ¿

tB/A �
_
x ¿(Area)

tanB

tanA

A B
tB/A
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12

•12–137. The shaft supports the two pulley loads shown.
Using discontinuity functions, determine the equation of
the elastic curve.The bearings at A and B exert only vertical
reactions on the shaft. EI is constant.

*12–140. Using the moment-area method, determine the
slope and deflection at end C of the shaft. The 75-mm-
diameter shaft is made of material having E = 200 GPa.

REVIEW PROBLEMS

A B

12 in. 12 in. 36 in.

70 lb

180 lb

x

Prob. 12–137

12–138. The shaft is supported by a journal bearing at A,
which exerts only vertical reactions on the shaft, and by a
thrust bearing at B, which exerts both horizontal and
vertical reactions on the shaft. Draw the bending-moment
diagram for the shaft and then, from this diagram, sketch
the deflection or elastic curve for the shaft’s centerline.
Determine the equations of the elastic curve using the
coordinates and EI is constant.x2 .x1

12–139. The simply supported beam is subjected
to the loading shown. Using the method of superposition,
determine the deflection at its center C. The beam is made
of A-36 steel.

W8 * 24

•12–141. Determine the reactions at the supports. EI is
constant. Use the method of superposition.

12–142. Determine the moment reactions at the supports
A and B. Use the method of integration. EI is constant.

A B

12 in.

80 lb

x1

4 in.

x2

4 in.
80 lb

12 in.

Prob. 12–138

8 ft 8 ft

6 kip/ ft

A B

C

5 kip�ft

Prob. 12–139

A B C

1 m 1 m 1 m

15 kN

3 kN

Prob. 12–140

A D
B

L

w

L L

C

Prob. 12–141

L

A

w0

B

Prob. 12–142
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12
12–143. If the cantilever beam has a constant thickness t,
determine the deflection at end A. The beam is made of
material having a modulus of elasticity E.

*12–144. Beam ABC is supported by beam DBE and
fixed at C. Determine the reactions at B and C. The beams
are made of the same material having a modulus of
elasticity and the moment of inertia of both
beams is I = 25.0(106) mm4.

E = 200 GPa,

•12–145. Using the method of superposition, determine
the deflection at C of beam AB. The beams are made of
wood having a modulus of elasticity of E = 1.5(103) ksi .

B

A

L

x

h0

w0

Prob. 12–143

A
B

C
ED

6 ft

100 lb/ft

6 ft
4 ft4 ft

3 in.

6 in.

a

a

a

a

Section a – a

Prob. 12–145

B

B

D E

A

DE

AC

C

2 m 4 m

9 kN/ma

a

3 m 3 m

Section a – a

Prob. 12–144

r

A

B

t

v

Prob. 12–146

12–146. The rim on the flywheel has a thickness t, width b,
and specific weight If the flywheel is rotating at a
constant rate of , determine the maximum moment
developed in the rim. Assume that the spokes do not
deform. Hint: Due to symmetry of the loading, the slope of
the rim at each spoke is zero. Consider the radius to be
sufficiently large so that the segment AB can be considered
as a straight beam fixed at both ends and loaded with a
uniform centrifugal force per unit length. Show that this
force is w � btgv2r>g.

v

g.



The columns used to support this water tank are braced at their mid-height in order
to reduce their chance of buckling.
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CHAPTER OBJECTIVES

In this chapter, we will discuss the behavior of columns and indicate
some of the methods used for their design. The chapter begins with a
general discussion of buckling, followed by a determination of the
axial load needed to buckle a so-called ideal column. Afterwards, a
more realistic analysis is considered, which accounts for any bending
of the column. Also, inelastic buckling of a column is presented as a
special topic. At the end of the chapter we will discuss some of the
methods used to design both concentrically and eccentrically loaded
columns made of common engineering materials.

13.1 Critical Load

Whenever a member is designed, it is necessary that it satisfy specific
strength, deflection, and stability requirements. In the preceding
chapters we have discussed some of the methods used to determine a
member’s strength and deflection, while assuming that the member was
always in stable equilibrium. Some members, however, may be subjected
to compressive loadings, and if these members are long and slender the
loading may be large enough to cause the member to deflect laterally or
sidesway. To be specific, long slender members subjected to an axial
compressive force are called columns, and the lateral deflection that
occurs is called buckling. Quite often the buckling of a column can lead
to a sudden and dramatic failure of a structure or mechanism, and as a
result, special attention must be given to the design of columns so that
they can safely support their intended loadings without buckling.

Buckling of Columns 13
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The maximum axial load that a column can support when it is on the
verge of buckling is called the critical load, Fig. 13–1a. Any
additional loading will cause the column to buckle and therefore deflect
laterally as shown in Fig. 13–1b. In order to better understand the nature
of this instability, consider a two-bar mechanism consisting of weightless
bars that are rigid and pin connected as shown in Fig. 13–2a. When the
bars are in the vertical position, the spring, having a stiffness k, is
unstretched, and a small vertical force P is applied at the top of one of
the bars. We can upset this equilibrium position by displacing the pin at
A by a small amount Fig. 13–2b. As shown on the free-body diagram
of the pin when the bars are displaced, Fig. 13–2c, the spring will produce
a restoring force while the applied load P develops two
horizontal components, which tend to push the pin (and
the bars) further out of equilibrium. Since is small, and

Thus the restoring spring force becomes and the
disturbing force is 

If the restoring force is greater than the disturbing force, that is,
then, noticing that cancels out, we can solve for P, which

gives

This is a condition for stable equilibrium since the force developed by the
spring would be adequate to restore the bars back to their vertical
position. However, if or

then the mechanism would be in unstable equilibrium. In other words, if this
load P is applied, and a slight displacement occurs at A, the mechanism will
tend to move out of equilibrium and not be restored to its original position.

P 7
kL

4
 unstable equilibrium

kLu>2 6 2Pu,

P 6
kL

4
 stable equilibrium

ukuL>2 7 2Pu,

2Px = 2Pu.
F = kuL>2,tan u L u.

¢ L u1L>22u

Px = P tan u,
F = k¢,

¢,

Pcr ,

13

Fig. 13–1

Pcr

Pcr

(a)

P � Pcr

P � Pcr

(b)
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The intermediate value of P, which requires is the
critical load. Here

This loading represents a case of the mechanism being in neutral
equilibrium. Since is independent of the (small) displacement of the
bars, any slight disturbance given to the mechanism will not cause it to
move further out of equilibrium, nor will it be restored to its original
position. Instead, the bars will remain in the deflected position.

These three different states of equilibrium are represented graphically
in Fig. 13–3. The transition point where the load is equal to the critical
value is called the bifurcation point.At this point the mechanism
will be in equilibrium for any small value of measured either to the
right or to the left of the vertical. Physically, represents the load for
which the mechanism is on the verge of buckling. It is quite reasonable to
determine this value by assuming small displacements as done here;
however, it should be understood that may not be the largest value of
P that the mechanism can support. Indeed, if a larger load is placed on
the bars, then the mechanism may have to undergo a further deflection
before the spring is compressed or elongated enough to hold the
mechanism in equilibrium.

Like the two-bar mechanism just discussed, the critical buckling loads
on columns supported in various ways can be obtained, and the method
used to do this will be explained in the next section. Although in
engineering design the critical load may be considered to be the largest
load the column can support, realize that, like the two-bar mechanism
in the deflected or buckled position, a column may actually support an

Pcr

Pcr

u,
P = Pcr

uPcr

Pcr =
kL

4
 neutral equilibrium

kLu>2 = 2Pu,

13

Fig. 13–2

P

k

(a)

A

L
2

L
2

A

(b)

P

k

L
2

L
2

u

u

L
2

� � u( )
P

P tan u

u

u

P tan u

F A

P

(c)

Bifurcation point

Unstable
equilibrium

P

O

Neutral
equilibrium

Stable
equilibrium

u

Pcr �
kL
4

Fig. 13–3
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Fig. 13–4

even greater load than Unfortunately, however, this loading may
require the column to undergo a large deflection, which is generally not
tolerated in engineering structures or machines. For example, it may take
only a few newtons of force to buckle a meterstick, but the additional
load it may support can be applied only after the stick undergoes a
relatively large lateral deflection.

13.2 Ideal Column with Pin Supports

In this section we will determine the critical buckling load for a column
that is pin supported as shown in Fig. 13–4a.The column to be considered
is an ideal column, meaning one that is perfectly straight before loading,
is made of homogeneous material, and upon which the load is applied
through the centroid of the cross section. It is further assumed that the
material behaves in a linear-elastic manner and that the column buckles
or bends in a single plane. In reality, the conditions of column straightness
and load application are never accomplished; however, the analysis to be
performed on an “ideal column” is similar to that used to analyze initially
crooked columns or those having an eccentric load application. These
more realistic cases will be discussed later in this chapter.

Since an ideal column is straight, theoretically the axial load P could
be increased until failure occurs by either fracture or yielding of the
material. However, when the critical load is reached, the column will
be on the verge of becoming unstable, so that a small lateral force F,
Fig. 13–4b, will cause the column to remain in the deflected position
when F is removed, Fig. 13–4c. Any slight reduction in the axial load P
from will allow the column to straighten out, and any slight increase
in P, beyond will cause further increases in lateral deflection.Pcr ,

Pcr

Pcr

Pcr .

Some slender pin-connected members used
in moving machinery, such as this short link,
are subjected to compressive loads and thus
act as columns.

13

P

(a)

L

(b)

Pcr

F

(c)

Pcr
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Fig. 13–5

Whether or not a column will remain stable or become unstable when
subjected to an axial load will depend on its ability to restore itself, which
is based on its resistance to bending. Hence, in order to determine the
critical load and the buckled shape of the column, we will apply Eq. 12–10,
which relates the internal moment in the column to its deflected shape, i.e.,

(13–1)

Recall that this equation assumes that the slope of the elastic curve is
small and that deflections occur only by bending. When the column is in
its deflected position, Fig. 13–5a, the internal bending moment can be
determined by using the method of sections. The free-body diagram of a
segment in the deflected position is shown in Fig. 13–5b. Here both the
deflection and the internal moment M are shown in the positive
direction according to the sign convention used to establish Eq. 13–1.
Moment equilibrium requires Thus Eq. 13–1 becomes

(13–2)

This is a homogeneous, second-order, linear differential equation with
constant coefficients. It can be shown by using the methods of
differential equations, or by direct substitution into Eq. 13–2, that the
general solution is

(13–3)

The two constants of integration are determined from the boundary
conditions at the ends of the column. Since at then 
And since at then

This equation is satisfied if however, then which is a
trivial solution that requires the column to always remain straight, even
though the load may cause the column to become unstable. The other
possibility is for

which is satisfied if

A
P

EI
 L = np

sinaA
P

EI
 Lb = 0

v = 0,C1 = 0;

C1 sinaA
P

EI
 Lb = 0

x = L,v = 0
C2 = 0.x = 0,v = 0

v = C1 sinaA
P

EI
 xb + C2 cosaA

P

EI
 xb

d2v

dx2 + a P

EI
bv = 0

EI 
d2v

dx2 = -Pv

M = -Pv.

v

EI 
d2v

dx2 = M
13

L v

v

x

x

P

P

(a)

P

M

x

(b)

P

v
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Fig. 13–5 (cont.)

or

(13–4)

The smallest value of P is obtained when so the critical load for
the column is therefore*

This load is sometimes referred to as the Euler load, named after the
Swiss mathematician Leonhard Euler, who originally solved this problem
in 1757. The corresponding buckled shape is defined by the equation

Here the constant represents the maximum deflection, which
occurs at the midpoint of the column, Fig. 13–5c. Specific values for 
cannot be obtained, since the exact deflected form for the column is
unknown once it has buckled. It has been assumed, however, that this
deflection is small.

Note that the critical load is independent of the strength of the
material; rather it only depends on the column’s dimensions (I and L)
and the material’s stiffness or modulus of elasticity E. For this reason, as
far as elastic buckling is concerned, columns made, for example, of high-
strength steel offer no advantage over those made of lower-strength
steel, since the modulus of elasticity for both is approximately the same.
Also note that the load-carrying capacity of a column will increase as the
moment of inertia of the cross section increases. Thus, efficient columns
are designed so that most of the column’s cross-sectional area is located
as far away as possible from the principal centroidal axes for the section.
This is why hollow sections such as tubes are more economical than solid
sections. Furthermore, wide-flange sections, and columns that are “built
up” from channels, angles, plates, etc., are better than sections that are
solid and rectangular.

C1

vmax ,C1

v = C1 sin 
px

L

Pcr =
p2EI

L2

n = 1,

P =
n2p2EI

L2  n = 1, 2, 3, Á

13

*n represents the number of waves in the deflected shape of the column. For example,
if then two waves will appear, Fig. 13–5c. Here the critical load is 4 Pcr just prior to
buckling, which practically speaking will not exist.

n = 2,

L

P

P

vmax

v

x

n � 1

L
2

n � 2

P � 4Pcr

P � 4Pcr

L
2

L
2

(c)



13.2 IDEAL COLUMN WITH PIN SUPPORTS 663

It is also important to realize that a column will buckle about the
principal axis of the cross section having the least moment of inertia (the
weakest axis). For example, a column having a rectangular cross section,
like a meter stick, as shown in Fig. 13–6, will buckle about the a–a axis,
not the b–b axis. As a result, engineers usually try to achieve a balance,
keeping the moments of inertia the same in all directions. Geometrically,
then, circular tubes would make excellent columns. Also, square tubes or
those shapes having are often selected for columns.

Summarizing the above discussion, the buckling equation for a 
pin-supported long slender column can be rewritten, and the terms
defined as follows:

(13–5)

where

critical or maximum axial load on the column just before it 
begins to buckle. This load must not cause the stress in the
column to exceed the proportional limit

modulus of elasticity for the material

least moment of inertia for the column’s cross-sectional area

unsupported length of the column, whose ends are pinned

For purposes of design, the above equation can also be written in a
more useful form by expressing where A is the cross-sectional
area and r is the radius of gyration of the cross-sectional area. Thus,

or

(13–6)

Here

critical stress, which is an average normal stress in the column
just before the column buckles. This stress is an elastic stress
and therefore 

modulus of elasticity for the material

unsupported length of the column, whose ends are pinned

smallest radius of gyration of the column, determined from 
where I is the least moment of inertia of the

column’s cross-sectional area A

The geometric ratio in Eq. 13–6 is known as the slenderness ratio. It
is a measure of the column’s flexibility, and as will be discussed later, it
serves to classify columns as long, intermediate, or short.

L>r
r = 2I>A ,

r =
 L =
 E =

scr … sY

 scr =

scr =
p2E

1L>r22

 aP

A
b

cr
=
p2E

1L>r22

 Pcr =
p2E1Ar22

L2

I = Ar2,

L =
I =
E =

Pcr =

Pcr =
p2EI

L2

Ix L Iy

13

Fig. 13–6

P

a

a

b

b

Typical interior steel pipe columns used to
support the roof of a single story building.
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It is possible to graph Eq. 13–6 using axes that represent the critical
stress versus the slenderness ratio. Examples of this graph for
columns made of a typical structural steel and aluminum alloy are
shown in Fig. 13–7. Note that the curves are hyperbolic and are valid
only for critical stresses below the material’s yield point (proportional
limit), since the material must behave elastically. For the steel the yield
stress is and for the aluminum it is

Substituting into Eq. 13–6,
the smallest allowable slenderness ratios for the steel and aluminum
columns are therefore and respectively.
Thus, for a steel column, if Euler’s formula can be used to
determine the critical load since the stress in the column remains elastic.
On the other hand, if the column’s stress will exceed the
yield point before buckling can occur, and therefore the Euler formula is
not valid in this case.

1L>r2st 6 89,

1L>r2st Ú 89,
1L>r2al = 60.5,1L>r2st = 89

scr = sY1sY2al = 27 ksi [Eal = 1011032 ksi].
1sY2st = 36 ksi [Est = 2911032 ksi],

13

36

27

50 100 150 200

Aluminum
alloy

Structural
steel

60.5 89

scr (103) ksi

(sY � 36 ksi)

(sY � 27 ksi)

L
r

40

30

20

10

0

Fig. 13–7

Important Points

• Columns are long slender members that are subjected to axial
compressive loads.

• The critical load is the maximum axial load that a column can
support when it is on the verge of buckling. This loading
represents a case of neutral equilibrium.

• An ideal column is initially perfectly straight, made of
homogeneous material, and the load is applied through the
centroid of the cross section.

• A pin-connected column will buckle about the principal axis of
the cross section having the least moment of inertia.

• The slenderness ratio is , where r is the smallest radius of
gyration of the cross section. Buckling will occur about the axis
where this ratio gives the greatest value.

L>r
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13

EXAMPLE 13.1

The A-36 steel member shown in Fig. 13–8 is to be used as a
pin-connected column. Determine the largest axial load it can support
before it either begins to buckle or the steel yields.

W8 * 31

Fig. 13–8

12 ft

x

x

y y

SOLUTION
From the table in Appendix B, the column’s cross-sectional area and
moments of inertia are and 
By inspection, buckling will occur about the y–y axis. Why? Applying
Eq. 13–5, we have

When fully loaded, the average compressive stress in the column is

Since this stress exceeds the yield stress (36 ksi), the load P is
determined from simple compression:

Ans.

In actual practice, a factor of safety would be placed on this loading.

 P = 329 kip 36 ksi =
P

9.13 in2 ;

scr =
Pcr

A
=

512 kip

9.13 in2 = 56.1 ksi

Pcr =
p2EI

L2 =
p2[2911032 kip>in2]137.1 in42

[12 ft112 in.>ft2]2 = 512 kip

Iy = 37.1 in4.Ix = 110 in4,A = 9.13 in2,
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Fig. 13–9

The tubular columns used to support this
water tank have been braced at three
locations along their length to prevent them
from buckling.

13.3 Columns Having Various Types 
of Supports

The Euler load was derived for a column that is pin connected or free to
rotate at its ends. Oftentimes, however, columns may be supported in some
other way. For example, consider the case of a column fixed at its base and
free at the top, Fig. 13–9a. As the column buckles the load displaces 
and at x the displacement is . From the free-body diagram in Fig. 13–9b,
the internal moment at the arbitrary section is 
Consequently, the differential equation for the deflection curve is

(13–7)

Unlike Eq. 13–2, this equation is nonhomogeneous because of the
nonzero term on the right side. The solution consists of both a
complementary and a particular solution, namely,

The constants are determined from the boundary conditions. At 
so that Also,

At so that The deflection curve is therefore

(13–8)

Since the deflection at the top of the column is that is, at 
we require

The trivial solution indicates that no buckling occurs, regardless of
the load P. Instead,

The smallest critical load occurs when so that

(13–9)

By comparison with Eq. 13–5, it is seen that a column fixed-supported at
its base and free at its top will support only one-fourth the critical load
that can be applied to a column pin-supported at both ends.

Pcr =
p2EI

4L2

n = 1,

cosaA
P

EI
 Lb = 0 or A

P

EI
 L =

np

2
, n = 1, 3, 5 Á

d = 0

d cosaA
P

EI
 Lb = 0

v = d,
x = L,d,

v = d c1 - cosaA
P

EI
 xb d

C1 = 0.dv>dx = 0,x = 0,

dv

dx
= C1A

P

EI
 cosaA

P

EI
 xb - C2A

P

EI
 sinaA

P

EI
 xb

C2 = -d.v = 0,
x = 0,

v = C1 sinaA
P

EI
 xb + C2 cosaA

P

EI
 xb + d

d2v

dx2 +
P

EI
 v =

P

EI
 d

EI 
d2v

dx2 = P1d - v2

M = P1d - v2.v
d

13

L
v

v

x

x
P

(a)

d

x
P

P

M

(b)

v

d
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Fig. 13–10

Other types of supported columns are analyzed in much the same way
and will not be covered in detail here.* Instead, we will tabulate the
results for the most common types of column support and show how to
apply these results by writing Euler’s formula in a general form.

Effective Length. As stated previously, the Euler formula, Eq. 13–5,
was developed for the case of a column having ends that are pinned or
free to rotate. In other words, L in the equation represents the
unsupported distance between the points of zero moment. This formula
can be used to determine the critical load on columns having other types
of support provided “L” represents the distance between the zero-
moment points. This distance is called the column’s effective length,
Obviously, for a pin-ended column Fig. 13–10a. For the fixed- and
free-ended column, the deflection curve, Eq. 13–8, was found to be one-
half that of a column that is pin connected and has a length of 2L,
Fig. 13–10b.Thus the effective length between the points of zero moment
is Examples for two other columns with different end supports
are also shown in Fig. 13–10.The column fixed at its ends, Fig. 13–10c, has
inflection points or points of zero moment from each support. The
effective length is therefore represented by the middle half of its length,
that is, Lastly, the pin- and fixed-ended column, Fig. 13–10d,
has an inflection point at approximately 0.7L from its pinned end, so that

Rather than specifying the column’s effective length, many design
codes provide column formulas that employ a dimensionless coefficient
K called the effective-length factor. This factor is defined from

(13–10)

Specific values of K are also given in Fig. 13–10. Based on this generality,
we can therefore write Euler’s formula as

(13–11)

or

(13–12)

Here is the column’s effective-slenderness ratio. For example, if
the column is fixed at its base and free at its end, we have and
therefore Eq. 13–11 gives the same result as Eq. 13–9.

K = 2,
(KL>r)

scr =
p2E

1KL>r22

Pcr =
p2EI

1KL22

Le = KL

Le = 0.7L.

Le = 0.5L.

L>4
Le = 2L.

Le = L,
Le .

13

Pinned ends

P

(a)

K � 1

L � Le

L

P

Fixed and free ends

(b)

K � 2

Le � 2L

Fixed ends

(c)
K � 0.5

P

L Le � 0.5L

Pinned and fixed ends

(d)
K � 0.7

P

L

Le � 0.7L

*See Problems 13–43, 13–44, and 13–45.
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13

EXAMPLE 13.2

A steel column is 24 ft long and is fixed at its ends as shown
in Fig. 13–11a. Its load-carrying capacity is increased by bracing it
about the y–y (weak) axis using struts that are assumed to be pin 
connected to its midheight. Determine the load it can support so that
the column does not buckle nor the material exceed the yield stress.
Take and 

SOLUTION
The buckling behavior of the column will be different about the x–x and
y–y axes due to the bracing.The buckled shape for each of these cases is
shown in Figs. 13–11b and 13–11c. From Fig. 13–11b, the effective length
for buckling about the x–x axis is
and from Fig. 13–11c, for buckling about the y–y axis,

The moments of inertia for a
are found from the table in Appendix B. We have

Applying Eq. 13–11,

(1)

(2)

By comparison, buckling will occur about the y–y axis.
The area of the cross section is so the average compressive

stress in the column is

Since this stress is less than the yield stress, buckling will occur before
the material yields. Thus,

Ans.

NOTE: From Eq. 13–12 it can be seen that buckling will always occur
about the column axis having the largest slenderness ratio, since a large
slenderness ratio will give a small critical stress.Thus, using the data for
the radius of gyration from the table in Appendix B, we have

Hence, y–y axis buckling will occur, which is the same conclusion
reached by comparing Eqs. 1 and 2.

 aKL
r
b

y
=

100.8 in.
1.46 in.

= 69.0

 aKL
r
b

x
=

144 in.
2.56 in.

= 56.2

Pcr = 263 kip

scr =
Pcr

A
=

262.5 kip

4.43 in2 = 59.3 ksi

4.43 in2,

 1Pcr2y =
p2EIy

1KL2y2 =
p2[2911032 ksi]9.32 in4

1100.8 in.22 = 262.5 kip

 1Pcr2x =
p2EIx

1KL2x2 =
p2[2911032 ksi]29.1 in4

1144 in.22 = 401.7 kip

Iy = 9.32 in4.
Ix = 29.1 in4,

W6 * 150.7124 ft>22 = 8.40 ft = 100.8 in.
1KL2y =

1KL2x = 0.5124 ft2 = 12 ft = 144 in.,

sY = 60 ksi.Est = 2911032 ksi

W6 * 15

Fig. 13–11

(a)

P

x

x

y

y

12 ft

12 ft

12 ft

(b)

x–x axis buckling

(c)

y–y axis buckling

8.40 ft
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EXAMPLE 13.3

The aluminum column is fixed at its bottom and is braced at its top by
cables so as to prevent movement at the top along the x axis, Fig. 13–12a.
If it is assumed to be fixed at its base, determine the largest allowable
load P that can be applied. Use a factor of safety for buckling of

Take 

SOLUTION
Buckling about the x and y axes is shown in Fig. 13–12b and 13–12c,
respectively. Using Fig. 13–10a, for x–x axis buckling, so

Also, for y–y axis buckling, so

Applying Eq. 13–11, the critical loads for each case are

By comparison, as P is increased the column will buckle about the x–x
axis. The allowable load is therefore

Ans.

Since

Euler’s equation can be applied.

scr =
Pcr

A
=

424 kN

7.5110-32 m2 = 56.5 MPa 6 215 MPa

Pallow =
Pcr

F.S.
=

424 kN
3.0

= 141 kN

 = 1.31 MN

 1Pcr2y =
p2EIy

1KL2y2 =
p2[7011092 N>m2]123.2110-62 m42

13.5 m22
 = 424 kN

 1Pcr2x =
p2EIx

1KL2x2 =
p2[7011092 N>m2]161.3110-62 m42

110 m22

1KL2y = 0.715 m2 = 3.5 m.
K = 0.7,1KL2x = 215 m2 = 10 m.

K = 2,

Iy = 23.2110-62 m4.Ix = 61.3110-62 m4,
A = 7.5110-32 m2,sY = 215 MPa,Eal = 70 GPa,F.S. = 3.0.

Fig. 13–12

(a)

P

x

y

5 m

z

x–x axis buckling

(b)

Le � 10 m

y–y axis buckling

(c)

Le � 3.5 m



6 m

6 m

P

x
y

12 ft

4 in.

2 in.

F13–3
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FUNDAMENTAL PROBLEMS

F13–1. A 50-in.-long rod is made from a 1-in.-diameter
steel rod. Determine the critical buckling load if the ends
are fixed supported.

F13–2. A 12-ft wooden rectangular column has the
dimensions shown. Determine the critical load if the ends are
assumed to be pin-connected. Yielding
does not occur.

E = 1.611032 ksi.

E = 29(103) ksi, sY = 36 ksi .

F13–4. A steel pipe is fixed supported at its ends. If it is 5 m
long and has an outer diameter of 50 mm and a thickness of
10 mm, determine the maximum axial load P that it can
carry without buckling.

F13–5. Determine the maximum force P that can be
supported by the assembly without causing member AC
to buckle. The member is made of A-36 steel and has a
diameter of 2 in. Take F.S. � 2 against buckling.

Est = 200 GPa, sY = 250 MPa.

F13–3. The A-36 steel column can be considered pinned
at its top and bottom and braced against its weak axis at the
mid-height. Determine the maximum allowable force P that
the column can support without buckling. Apply a 
against buckling.Take 
and Iy = 18.8(10-6) m4.

87.3(10-6) m4,A = 7.4(10-3) m2, Ix =
F.S. = 2

F13–6. The A-36 steel rod BC has a diameter of 50 mm
and is used as a strut to support the beam. Determine the
maximum intensity w of the uniform distributed load that
can be applied to the beam without causing the strut to
buckle. Take F.S. � 2 against buckling.

F13–2

P

3 ft

4 ft

C
A

B

F13–5

B

C

6 m
3 m

A

w

F13–6



P

k

A

L
2

L
2

Prob. 13–1

k

k

P

L
3

L
3

L
3

A

Prob. 13–2
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•13–1. Determine the critical buckling load for the column.
The material can be assumed rigid.

13–2. Determine the critical load for the rigid bar and
spring system. Each spring has a stiffness k.

Pcr

*13–4. Rigid bars AB and BC are pin connected at B. If
the spring at D has a stiffness k, determine the critical load

for the system.Pcr

13–3. The leg in (a) acts as a column and can be modeled
(b) by the two pin-connected members that are attached to a
torsional spring having a stiffness k (torque�rad). Determine
the critical buckling load. Assume the bone material is rigid.

PROBLEMS

L—
2

L—
2

P

(b)(a)

k

Prob. 13–3

k

A

B

D

a

C

P

a

a

Prob. 13–4
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•13–5. An A-36 steel column has a length of 4 m and is
pinned at both ends. If the cross sectional area has the
dimensions shown, determine the critical load.

13–6. Solve Prob. 13–5 if the column is fixed at its bottom
and pinned at its top.

25 mm

10 mm

10 mm

25 mm

25 mm

25 mm

Probs. 13–5/6

6 in.

0.25 in.

0.25 in.

0.25 in. 0.25 in.

5.5 in.

Probs. 13–7/8

13

13–7. A column is made of A-36 steel, has a length of 20 ft,
and is pinned at both ends. If the cross-sectional area has
the dimensions shown, determine the critical load.

*13–8. A column is made of 2014-T6 aluminum, has a
length of 30 ft, and is fixed at its bottom and pinned at its
top. If the cross-sectional area has the dimensions shown,
determine the critical load.

•13–9. The column is made of A-36 steel and is
fixed supported at its base. If it is subjected to an axial load
of determine the factor of safety with respect to
buckling.

13–10. The column is made of A-36 steel.
Determine the critical load if its bottom end is fixed
supported and its top is free to move about the strong axis
and is pinned about the weak axis.

W14 * 38

P = 15 kip,

W14 * 38

13–11. The A-36 steel angle has a cross-sectional area of
and a radius of gyration about the x axis of
and about the y axis of The

smallest radius of gyration occurs about the z axis and is
If the angle is to be used as a pin-connected 

10-ft-long column, determine the largest axial load that can
be applied through its centroid C without causing it to buckle.

rz = 0.644 in.

ry = 0.879 in.rx = 1.26 in.
A = 2.48 in2

*13–12. An A-36 steel column has a length of 15 ft and is
pinned at both ends. If the cross-sectional area has the
dimensions shown, determine the critical load.

20 ft

P

Probs. 13–9/10

x x

y

y

z

z

C

Prob. 13–11

8 in.

0.5 in. 6 in.

0.5 in.

0.5 in.

Prob. 13–12
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•13–13. An A-36 steel column has a length of 5 m and is
fixed at both ends. If the cross-sectional area has the
dimensions shown, determine the critical load.

13

•13–17. The 10-ft wooden rectangular column has the
dimensions shown. Determine the critical load if the ends
are assumed to be pin connected.

13–18. The 10-ft column has the dimensions shown.
Determine the critical load if the bottom is fixed and the
top is pinned. sY = 5 ksi.Ew = 1.611032 ksi,

sY = 5 ksi.
Ew = 1.611032 ksi,

13–19. Determine the maximum force P that can be 
applied to the handle so that the A-36 steel control rod BC
does not buckle. The rod has a diameter of 25 mm.

13–14. The two steel channels are to be laced together
to form a 30-ft-long bridge column assumed to be pin
connected at its ends. Each channel has a cross-sectional
area of and moments of inertia 

The centroid C of its area is located in
the figure. Determine the proper distance d between the
centroids of the channels so that buckling occurs about the
x–x and axes due to the same load. What is the value
of this critical load? Neglect the effect of the lacing.

sY = 50 ksi.Est = 2911032 ksi,

y¿ –y¿

Iy = 0.382 in4.
Ix = 55.4 in4,A = 3.10 in2

13–15. An A-36-steel column is fixed at one end
and free at its other end. If it is subjected to an axial load
of 20 kip, determine the maximum allowable length of the
column if against buckling is desired.

*13–16. An A-36-steel column is fixed at one
end and pinned at the other end. If it is subjected to an axial
load of 60 kip, determine the maximum allowable length of
the column if against buckling is desired.F.S. = 2

W8 * 24

F.S. = 2

W8 * 24

10 mm50 mm

10 mm

100 mm

Prob. 13–13

1.231 in.0.269 in.

d

y y¿

C C

y y¿

x x

Prob. 13–14

10 ft

4 in.

2 in.

Probs. 13–17/18

P

C

350 mm

800 mm
45�

250 mm

A

B

Prob. 13–19
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*13–20. The is made of A-36 steel and is used
as a column that has a length of 15 ft. If its ends are assumed
pin supported, and it is subjected to an axial load of 100 kip,
determine the factor of safety with respect to buckling.

•13–21. The is made of A-36 steel and is used
as a column that has a length of 15 ft. If the ends of the
column are fixed supported, can the column support the
critical load without yielding?

W10 * 45

W10 * 45

13

15 ft

P

P Probs. 13–20/21

13–22. The structural A-36 steel column has a
length of 12 ft. If its bottom end is fixed supported while
its top is free, and it is subjected to an axial load of

determine the factor of safety with respect to
buckling.

13–23. The structural A-36 steel column has a
length of 12 ft. If its bottom end is fixed supported while its
top is free, determine the largest axial load it can support.
Use a factor of safety with respect to buckling of 1.75.

W12 * 87

P = 380 kip,

W12 * 87

12 ft

P

Probs. 13–22/23

*13–24. An L-2 tool steel link in a forging machine is pin
connected to the forks at its ends as shown. Determine the
maximum load P it can carry without buckling. Use a factor
of safety with respect to buckling of Note from
the figure on the left that the ends are pinned for buckling,
whereas from the figure on the right the ends are fixed.

F.S. = 1.75.

PP

P P

24 in.

1.5 in. 0.5 in.

Prob. 13–24

•13–25. The is used as a structural A-36 steel
column that can be assumed pinned at both of its ends.
Determine the largest axial force P that can be applied
without causing it to buckle.

W14 * 30

25 ft

P

Prob. 13–25
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13–27. Determine the maximum allowable intensity w of
the distributed load that can be applied to member BC
without causing member AB to buckle. Assume that AB is
made of steel and is pinned at its ends for x–x axis buckling
and fixed at its ends for y–y axis buckling. Use a factor
of safety with respect to buckling of 3.

*13–28. Determine if the frame can support a load of
if the factor of safety with respect to buckling

of member AB is 3. Assume that AB is made of steel and is
pinned at its ends for x–x axis buckling and fixed at its ends
for y–y axis buckling. sY = 360 MPa.Est = 200 GPa,

w = 6 kN>m

sY = 360 MPa.
Est = 200 GPa,

13

13–26. The A-36 steel bar AB has a square cross section.
If it is pin connected at its ends, determine the maximum
allowable load P that can be applied to the frame. Use a
factor of safety with respect to buckling of 2.

10 ft 1.5 in.

BA
1.5 in.

1.5 in. 30�

C

P

Prob. 13–26

1.5 m

2 m

w

B

A

0.5 m

C

30 mm

x

x

y y
20 mm

30 mm

Probs. 13–27/28

•13–29. The beam supports the load of As a
result, the A-36 steel member BC is subjected to a
compressive load. Due to the forked ends on the member,
consider the supports at B and C to act as pins for x–x axis
buckling and as fixed supports for y–y axis buckling.
Determine the factor of safety with respect to buckling
about each of these axes.

13–30. Determine the greatest load P the frame will
support without causing the A-36 steel member BC to
buckle. Due to the forked ends on the member, consider the
supports at B and C to act as pins for x–x axis buckling and
as fixed supports for y–y axis buckling.

P = 6 kip.

P
4 ft

A B

C

4 ft

3 ft
3 in.

1 in.x

xy

y

Probs. 13–29/30

2 ft 2 ft

4  ft

B

A

w

C

Prob. 13–31

13–31. Determine the maximum distributed load that can
be applied to the bar so that the A-36 steel strut AB does
not buckle. The strut has a diameter of 2 in. It is pin
connected at its ends.
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*13–32. The members of the truss are assumed to be pin
connected. If member AC is an A-36 steel rod of 2 in.
diameter, determine the maximum load P that can be
supported by the truss without causing the member to buckle.

D

C
B

P

3 ft

A

4 ft

Prob. 13–32

13

6 m

3 m

4 m

y x
40 mm

40 mm
C

B

A

40 mm

w

•13–33. The steel bar AB of the frame is assumed to be pin
connected at its ends for y–y axis buckling. If 
determine the factor of safety with respect to buckling about
the y–y axis due to the applied loading.
sY = 360 MPa.

Est = 200 GPa,

w = 3 kN>m,

*13–36. If load C has a mass of 500 kg, determine the
required minimum diameter of the solid L2-steel rod AB
to the nearest mm so that it will not buckle. Use 
against buckling.

•13–37. If the diameter of the solid L2-steel rod AB is
50 mm, determine the maximum mass C that the rod can
support without buckling. Use against buckling.F.S. = 2

F.S. = 2

13–38. The members of the truss are assumed to be pin
connected. If member GF is an A-36 steel rod having a
diameter of 2 in., determine the greatest magnitude of load
P that can be supported by the truss without causing this
member to buckle.

13–39. The members of the truss are assumed to be pin
connected. If member AG is an A-36 steel rod having a
diameter of 2 in., determine the greatest magnitude of load
P that can be supported by the truss without causing this
member to buckle.

A
B

D

CE 2 m

2 m

1.5 m

P

Prob. 13–33

13–34. The members of the truss are assumed to be pin
connected. If member AB is an A-36 steel rod of 40 mm
diameter, determine the maximum force P that can be
supported by the truss without causing the member to buckle.

13–35. The members of the truss are assumed to be pin
connected. If member CB is an A-36 steel rod of 40 mm
diameter, determine the maximum load P that can be
supported by the truss without causing the member to buckle.

B

C

D

45°

A

60°

4 m

Probs. 13–36/37

G

A B
D

C

F

P

16 ft 16 ft

12 ft

P

16 ft

EH

Probs. 13–38/39Probs. 13–34/35
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*13–40. The column is supported at B by a support that
does not permit rotation but allows vertical deflection.
Determine the critical load EI is constant.Pcr .

•13–41. The ideal column has a weight (force�length)
and rests in the horizontal position when it is subjected to the
axial load P.Determine the maximum moment in the column
at midspan. EI is constant. Hint: Establish the differential
equation for deflection, Eq. 13–1, with the origin at the mid
span. The general solution is

where k2 = P>EI.1w>12P22x2 - 1wL>12P22x - 1wEI>P22
v = C1 sin kx + C2 cos kx +

w

13–43. The column with constant EI has the end
constraints shown. Determine the critical load for the
column.

*13–44. Consider an ideal column as in Fig. 13–10c, having
both ends fixed. Show that the critical load on the column
is given by Hint: Due to the vertical
deflection of the top of the column, a constant moment 

will be developed at the supports. Show that
The solution is of the form

•13–45. Consider an ideal column as in Fig. 13–10d, having
one end fixed and the other pinned.Show that the critical load
on the column is given by Hint:Due to the
vertical deflection at the top of the column,a constant moment

will be developed at the fixed support and horizontal
reactive forces will be developed at both supports. Show
that The solution
is of the form

After application of the boundary conditions
show that Solve by trial and
error for the smallest nonzero root.

1P>EI L.tan 11P>EIL2 =
1R¿>P21L - x2.

C2 cos 11P>EIx2 +v = C1 sin 11P>EIx2 +
1R¿>EI21L - x2.d2v>dx2 + 1P>EI2v =

R¿
M¿

Pcr = 20.19EI>L2.

C2 cos11P>EIx2 + M¿>P.v = C1 sin11P>EIx2 +
M¿>EI.d2v>dx2 + 1P>EI2v =

M¿

Pcr = 4p2EI>L2.
13–42. The ideal column is subjected to the force F at its
midpoint and the axial load P. Determine the maximum
moment in the column at midspan. EI is constant. Hint:
Establish the differential equation for deflection, Eq. 13–1.
The general solution is 
where k2 = P>EI.c2 = F>2EI,

v = C1 sin kx + C2 cos kx - c2x>k2,

13
L

Pcr

A

B

Prob. 13–40

L

P

w

Prob. 13–41

P

F

L
2

L
2

Prob. 13–42

L

P

Prob. 13–43
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*13.4 The Secant Formula

The Euler formula was derived assuming the load P is always applied
through the centroid of the column’s cross-sectional area and that the
column is perfectly straight. This is actually quite unrealistic, since
manufactured columns are never perfectly straight, nor is the application
of the load known with great accuracy. In reality, then, columns never
suddenly buckle; instead they begin to bend, although ever so slightly,
immediately upon application of the load. As a result, the actual criterion
for load application should be limited either to a specified deflection of
the column or by not allowing the maximum stress in the column to
exceed an allowable stress.

To study this effect, we will apply the load P to the column at a short
eccentric distance e from its centroid, Fig. 13–13a. This loading on the
column is statically equivalent to the axial load P and bending moment

shown in Fig. 13–13b. As shown, in both cases, the ends A and
B are supported so that they are free to rotate (pin supported). As
before, we will only consider small slopes and deflections and linear-
elastic material behavior. Furthermore, the x– plane is a plane of
symmetry for the cross-sectional area.

From the free-body diagram of the arbitrary section, Fig. 13–13c, the
internal moment in the column is

(13–13)

The differential equation for the deflection curve is therefore

EI 
d2v

dx2 = -P1e + v2

M = -P1e + v2

v

M¿ = Pe

13

L

v

v

x

P

M¿ � Pe

M¿ � Pe

P
x

(b)

L

v

v

x

B

P

P
x

e

A

(a)

v

x

P

P
M

e

(c)

Fig. 13–13

The column supporting this crane is
unusually long. It will be subjected
not only to uniaxial load, but also a
bending moment.To ensure it will not
buckle, it should be braced at the roof
as a pin connection.
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or

This equation is similar to Eq. 13–7 and has a general solution consisting
of the complementary and particular solutions, namely,

(13–14)

To evaluate the constants we must apply the boundary conditions. At
so And at which gives

Since and 
we have

Hence, the deflection curve, Eq. 13–14, can be written as

(13–15)

Maximum Deflection. Due to symmetry of loading, both
the maximum deflection and maximum stress occur at the column’s
midpoint. Therefore, when so

(13–16)

Notice that if e approaches zero, then approaches zero. However, if
the terms in the brackets approach infinity as e approaches zero, then

will have a nonzero value. Mathematically, this would represent the
behavior of an axially loaded column at failure when subjected to the
critical load Therefore, to find we require

(13–17)

which is the same result found from the Euler formula, Eq. 13–5.
If Eq. 13–16 is plotted as load P versus deflection for various

values of eccentricity e, the family of colored curves shown in Fig. 13–14
results. Here the critical load becomes an asymptote to the curves, and of

vmax

 Pcr =
p2EI

L2

 A
Pcr

EI
 
L

2
=
p

2

 sec¢A
Pcr

EI
 
L

2
b = q

PcrPcr .

vmax

vmax

vmax = e csecaA
P

EI
 
L

2
b - 1 d

v = vmax ,x = L>2,

v = e c tanaA
P

EI
 
L

2
b  sinaA

P

EI
 xb + cosaA

P

EI
 xb - 1 d

C1 = e tanaA
P

EI
 
L

2
b

2 sin(2P>EI L>2) cos (2P>EI L>2),
sin(2P>EI L) =1 - cos(2P>EI L) = 2 sin2(2P>EI L>2)

C1 =
e[1 - cos(2P>EI L)]

sin(2P>EI L)

v = 0,x = L,C2 = e.v = 0,x = 0,

v = C1 sin A
P

EI
 x + C2 cos A

P

EI
 x - e

d2v

dx2 +
P

EI
 v = -

P

EI
 e

13
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course represents the unrealistic case of an ideal column As
stated earlier, e is never zero due to imperfections in initial column
straightness and load application; however, as the curves tend to
approach the ideal case. Furthermore, these curves are appropriate only
for small deflections, since the curvature was approximated by 
when Eq. 13–16 was developed. Had a more exact analysis been
performed, all these curves would tend to turn upward, intersecting and
then rising above the line This, of course, indicates that a larger
load P is needed to create larger column deflections. We have not
considered this analysis here, however, since most often engineering
design restricts the deflection of columns to small values.

It should also be noted that the colored curves in Fig. 13–14 apply only
for linear-elastic material behavior. Such is the case if the column is long
and slender. However, if a short or intermediate-length stocky column is
considered, then the applied load, as it is increased, may eventually cause
the material to yield, and the column will begin to behave in an inelastic
manner. This occurs at point A for the black curve in Fig. 13–14. As the
load is further increased, the curve never reaches the critical load, and
instead the load reaches a maximum value at B. Afterwards, a sudden
decrease in load-carrying capacity occurs as the column continues to
yield and deflect by larger amounts.

Lastly, the colored curves in Fig. 13–14 also illustrate that a nonlinear
relationship occurs between the load P and the deflection As a result,
the principle of superposition cannot be used to determine the total
deflection of a column caused by applying successive loads to the
column. Instead, the loads must first be added, and then the
corresponding deflection due to their resultant can be determined.
Physically, the reason that successive loads and deflections cannot be
superimposed is that the column’s internal moment depends on both the
load P and the deflection that is, Eq. 13–13.M = -P1e + v2,v,

v.

P = Pcr .

d2v>dx2

e: 0,

1e = 02.

13

P

Pcr
Ideal column
(small deflections)

Inelastic behavior

A

B

eas 0

spl is reached

vmax

e � 0

Fig. 13–14
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The Secant Formula. The maximum stress in the column can
be determined by realizing that it is caused by both the axial load and
the moment, Fig. 13–15a. Maximum moment occurs at the column’s
midpoint, and using Eqs. 13–13 and 13–16, it has a magnitude of

(13–18)

As shown in Fig. 13–15b, the maximum stress in the column is
compressive, and it has a value of

Since the radius of gyration is defined as the above equation
can be written in a form called the secant formula :

(13–19)

Here

maximum elastic stress in the column, which occurs at the
inner concave side at the column’s midpoint. This stress is
compressive

vertical load applied to the column. unless 
then (Eq. 13–5)

eccentricity of the load P, measured from the centroidal axis
of the column’s cross-sectional area to the line of action of P

distance from the centroidal axis to the outer fiber of the
column where the maximum compressive stress occurs

cross-sectional area of the column

unsupported length of the column in the plane of bending.
For supports other than pins, the effective length 
should be used. See Fig. 13–10

modulus of elasticity for the material

radius of gyration, where I is calculated about
the centroidal or bending axis

Like Eq. 13–16, Eq. 13–19 indicates that there is a nonlinear
relationship between the load and the stress. Hence, the principle of
superposition does not apply, and therefore the loads have to be added
before the stress is determined. Furthermore, due to this nonlinear
relationship, any factor of safety used for design purposes applies to the
load and not to the stress.

For a given value of graphs of Eq. 13–19 can be plotted as
the slenderness ratio versus the average stress for various
values of the eccentricity ratio A specific set of graphs for a
structural-grade A-36 steel having a yield point of smax = sY = 36 ksi

ec>r2.
P>AKL>rsmax ,

r = 2I>A , r =
 E =

Le = KL
L =
A =

smax

 c =

 e =
P = Pcr

e = 0;P 6 Pcr P =

 smax =

smax =
P

A
 B1 +

ec

r2  seca L

2r
 A

P

EA
b R

r2 = I>A,

smax =
P

A
+

Pec

I
 secaA

P

EI
 
L

2
bsmax =

P

A
+

Mc

I
;

M = ƒ P1e + vmax2 ƒ M = Pe secaA
P

EI
 
L

2
b 13

�
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stress

(b)
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Resultant
stress

�

smax

Fig. 13–15
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v
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M
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and a modulus of elasticity of is shown in Fig. 13–16.
Note that when or when Eq. 13–19 gives 
where P is the critical load on the column, defined by Euler’s formula.
This results in Eq. 13–6, which has been plotted in Fig. 13–7 and
repeated in Fig. 13–16. Since both Eqs. 13–6 and 13–19 are valid only for
elastic loadings, the stresses shown in Fig. 13–16 cannot exceed

represented here by the horizontal line.sY = 36 ksi,

smax = P>A,ec>r2: 0,e: 0,
Est = 2911032 ksi

13

The curves in Fig. 13–16 indicate that differences in the eccentricity
ratio have a marked effect on the load-carrying capacity of columns that
have small slenderness ratios. However, columns that have large
slenderness ratios tend to fail at or near the Euler critical load
regardless of the eccentricity ratio. When using Eq. 13–19 for design
purposes, it is therefore important to have a somewhat accurate value
for the eccentricity ratio for shorter-length columns.

Design. Once the eccentricity ratio has been determined, the
column data can be substituted into Eq. 13–19. If a value of 
is chosen, then the corresponding load can be determined from a
trial-and-error procedure, since the equation is transcendental and
cannot be solved explicitly for As a design aid, computer software,
or graphs such as those in Fig. 13–16, can also be used to determine 
directly.

Realize that is the load that will cause the column to develop a
maximum compressive stress of at its inner concave fibers. Due to the
eccentric application of this load will always be smaller than the
critical load which is determined from the Euler formula that
assumes (unrealistically) that the column is axially loaded. Once is
obtained, an appropriate factor of safety can then be applied in order to
specify the column’s safe load.

PY

Pcr ,
PY ,

sY

PY

PY

PY .

PY

smax = sY

Important Points

• Due to imperfections in manufacturing or specific application of
the load, a column will never suddenly buckle; instead, it begins
to bend.

• The load applied to a column is related to its deflection in a
nonlinear manner, and so the principle of superposition does not
apply.

• As the slenderness ratio increases, eccentrically loaded columns
tend to fail at or near the Euler buckling load.

50 100
A-36 structural steel

150 200

36

Euler’s formula
Eq. 13–60.5

1.0

1.5

(ksi)P
A

KL
r

ec

r2
� 0

Est � 29 (103) ksi, sY � 36 ksi

40

30

20

10

0

= 0.1—ec
r2

Fig. 13–16
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EXAMPLE 13.4

The A-36 steel column shown in Fig. 13–17a is fixed at its
base and braced at the top so that it is fixed from displacement, yet
free to rotate about the y–y axis.Also, it can sway to the side in the y–z
plane. Determine the maximum eccentric load the column can
support before it either begins to buckle or the steel yields.

SOLUTION
From the support conditions it is seen that about the y–y axis the
column behaves as if it were pinned at its top and fixed at the bottom
and subjected to an axial load P, Fig. 13–17b. About the x–x axis the
column is free at the top and fixed at the bottom, and it is subjected to
both an axial load P and moment Fig. 13–17c.

y–y Axis Buckling. From Fig. 13–10d the effective length factor is
so Using the table

in Appendix B to determine for the section and applying
Eq. 13–11, we have

x–x Axis Yielding. From Fig. 13–10b, so 
Again using the table in Appendix B to determine

and and applying
the secant formula, we have

Substituting the data and simplifying yields

Solving for by trial and error, noting that the argument for the
secant is in radians, we get

Ans.

Since this value is less than failure will occur about 
the x–x axis.

1Pcr2y = 1383 kip,

Px = 88.4 kip

Px

421.2 = Px[1 + 2.979 sec(0.07002Px)]

sY =
Px

A
 B1 +

ec

rx
2 sec¢ 1KL2x

2rx
 A

Px

EA
≤ R

rx = 3.53 in.,c = 8.25 in.>2 = 4.125 in.,A = 11.7 in2,
24 ft = 288 in.

1KL2x = 21122 ft =Kx = 2,

1Pcr2y =
p2EIy

1KL2y2 =
p2[2911032 ksi]149.1 in42

1100.8 in.22 = 1383 kip

W8 * 40Iy

1KL2y = 0.71122 ft = 8.40 ft = 100.8 in.Ky = 0.7,

M = P19 in.2,

W8 * 40

(a)

9 in.

x

x

y

y

12 ft

P
z

(b) y–y axis buckling

8.40 ft
12 ft

P

12 ft

(c)

P

x–x axis yielding

M � P(9 in.)

Fig. 13–17



*13.5 Inelastic Buckling

In engineering practice, columns are generally classified according to the
type of stresses developed within the column at the time of failure. Long
slender columns will become unstable when the compressive stress
remains elastic. The failure that occurs is referred to as elastic instability.
Intermediate columns fail due to inelastic instability, meaning that the
compressive stress at failure is greater than the material’s proportional
limit. And short columns, sometimes called posts, do not become
unstable; rather the material simply yields or fractures.

Application of the Euler equation requires that the stress in the
column remain below the material’s yield point (actually the
proportional limit) when the column buckles, and so this equation
applies only to long columns. In practice, however, most columns are
selected to have intermediate lengths.The behavior of these columns can
be studied by modifying the Euler equation so that it applies for inelastic
buckling. To show how this can be done, consider the material to have a
stress–strain diagram as shown in Fig. 13–18a. Here the proportional
limit is and the modulus of elasticity, or slope of the line AB, is E.

If the column has a slenderness ratio that is less than then
the critical stress in the column must be greater than For example,
suppose a column has a slenderness ratio of with
corresponding critical stress needed to cause instability. When
the column is about to buckle, the change in stress and strain that occurs
in the column is within a small range and so that the modulus
of elasticity or stiffness for the material can be taken as the tangent
modulus defined as the slope of the diagram at point D,
Fig. 13–18a. In other words, at the time of failure, the column behaves as
if it were made from a material that has a lower stiffness than when it
behaves elastically, Et 6 E.

s-PEt = ¢s>¢P

¢P,¢s

sD 7 spl

1KL>r21 6 1KL>r2pl ,
spl .
1KL>r2pl ,

spl ,
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(a)

B

D

E

Et

s

sD

spl

P

�P

�s

Fig. 13–18

This crane boom failed by buckling
caused by an overload. Note the region
of localized collapse.
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In general, therefore, as the slenderness ratio (KL�r) decreases, the
critical stress for a column continues to rise; and from the diagram,
the tangent modulus for the material decreases. Using this idea, we can
modify Euler’s equation to include these cases of inelastic buckling by
substituting the material’s tangent modulus for E, so that

(13–20)

This is the so-called tangent modulus or Engesser equation, proposed
by F. Engesser in 1889. A plot of this equation for intermediate and
short-length columns of a material defined by the diagram in
Fig. 13–18a is shown in Fig. 13–18b.

No actual column can be considered to be either perfectly straight
or loaded along its centroidal axis, as assumed here, and therefore it
is indeed very difficult to develop an expression that will provide a
complete analysis of this phenomenon. As a result, other methods of
describing the inelastic buckling of columns have been considered. One
of these methods was developed by the aeronautical engineer F. R.
Shanley and is called the Shanley theory of inelastic buckling.Although it
provides a better description of the phenomenon than the tangent
modulus theory, as explained here, experimental testing of a large
number of columns, each of which approximates the ideal column, has
shown that Eq. 13–20 is reasonably accurate in predicting the column’s
critical stress. Furthermore, the tangent modulus approach to modeling
inelastic column behavior is relatively easy to apply.

s-P

scr =
p2Et

1KL>r22

Et

s-P

Long columns

(b)

Short and intermediate
length columns

ElasticInelastic

scr

spl

sD

scr �
p2Et

(KL/r)2

scr �
p2E

(KL/r)2

KL
rKL

r 1

KL
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Fig. 13–18 (cont.)
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EXAMPLE 13.5

A solid rod has a diameter of 30 mm and is 600 mm long. It is made of
a material that can be modeled by the stress–strain diagram shown in
Fig. 13–19. If it is used as a pin-supported column, determine the
critical load.

SOLUTION
The radius of gyration is

and therefore the slenderness ratio is

Applying Eq. 13–20 we have,

(1)

First we will assume that the critical stress is elastic. From Fig. 13–19,

Thus, Eq. 1 becomes

Since inelastic buckling occurs.
From the second line segment of the diagram, Fig. 13–19, we

have

Applying Eq. 1 yields

Since this value falls within the limits of 150 MPa and 270 MPa, it is
indeed the critical stress.

The critical load on the rod is therefore

Ans.Pcr = scrA = 185.1(106) Pa[p10.015 m22] = 131 kN

scr = 1.542110- 32[12011032] MPa = 185.1 MPa

Et =
¢s
¢P

=
270 MPa - 150 MPa

0.002 - 0.001
= 120 GPa

s-P
scr 7 spl = 150 MPa,

scr = 1.542110- 32[15011032] MPa = 231.3 MPa

E =
150 MPa

0.001
= 150 GPa

scr =
p2Et

1KL>r22 =
p2Et

18022 = 1.542110- 32Et

KL
r

=
11600 mm2

7.5 mm
= 80

r = A
I

A
= B

1p>42115 mm24
p115 mm22 = 7.5 mm

270

0.001 0.002

s (MPa)

spl � 150

P

Fig. 13–19
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13–46. Determine the load P required to cause the A-36
steel column to fail either by buckling or by
yielding. The column is fixed at its base and free at its top.

W8 * 15
•13–49. The tube is made of copper and has an outer
diameter of 35 mm and a wall thickness of 7 mm. Using a
factor of safety with respect to buckling and yielding of

determine the allowable eccentric load P. The
tube is pin supported at its ends. GPa,
750 MPa.

13–50. The tube is made of copper and has an outer
diameter of 35 mm and a wall thickness of 7 mm. Using a
factor of safety with respect to buckling and yielding of

determine the allowable eccentric load P that it
can support without failure. The tube is fixed supported at
its ends. GPa, MPa.sY = 750Ecu = 120

F.S. = 2.5,

sY =Ecu = 120
F.S. = 2.5,

13–51. The wood column is fixed at its base and can be
assumed pin connected at its top. Determine the maximum
eccentric load P that can be applied without causing the
column to buckle or yield.

*13–52. The wood column is fixed at its base and can
be assumed fixed connected at its top. Determine the
maximum eccentric load P that can be applied without
causing the column to buckle or yield.
sY = 8 ksi.

Ew = 1.811032 ksi,

sY = 8 ksi.Ew = 1.811032 ksi,

PROBLEMS

8 ft

1 in.
P

Prob. 13–46

13–47. The hollow red brass C83400 copper alloy shaft is
fixed at one end but free at the other end. Determine the
maximum eccentric force P the shaft can support without
causing it to buckle or yield. Also, find the corresponding
maximum deflection of the shaft.

*13–48. The hollow red brass C83400 copper alloy shaft is
fixed at one end but free at the other end. If the eccentric
force is applied to the shaft as shown, determine
the maximum normal stress and the maximum deflection.

P = 5 kN

P

a

a

150 mm

2 m

30 mm

20 mm

Section a – a

Probs. 13–47/48

P

10 ft

10 in.

4 in.
x

y

P

x

y

Probs. 13–51/52

2 m

14 mm

P P

Probs. 13–49/50
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•13–53. The A-36-steel column is fixed at its
base. Its top is constrained to rotate about the y–y axis and
free to move along the y–y axis. Also, the column is braced
along the x–x axis at its mid-height. Determine the
allowable eccentric force P that can be applied without
causing the column either to buckle or yield. Use 
against buckling and against yielding.

13–54. The A-36-steel column is fixed at its
base. Its top is constrained to rotate about the y–y axis and
free to move along the y–y axis. Also, the column is braced
along the x–x axis at its mid-height. If 
determine the maximum normal stress developed in the
column.

P = 25 kN,

W200 * 22

F.S. = 1.5
F.S. = 2

W200 * 22

•13–57. The A-36-steel column is fixed at its
base. Its top is constrained to rotate about the y–y axis and
free to move along the y–y axis. If determine
the allowable eccentric force P that can be applied without
causing the column either to buckle or yield. Use 
against buckling and against yielding.

13–58. The A-36-steel column is fixed at its
base. Its top is constrained to rotate about the y–y axis and
free to move along the y–y axis. Determine the force P and
its eccentricity e so that the column will yield and buckle
simultaneously.

W250 * 28

F.S. = 1.5
F.S. = 2

e = 350 mm,

W250 * 28

13–55. The wood column is fixed at its base, and its top
can be considered pinned. If the eccentric force 
is applied to the column, investigate whether the column
is adequate to support this loading without buckling or
yielding. Take and sY = 15 MPa.E = 10 GPa

P = 10 kN

13

x

x
y

y

P

5 m

5 m

100 mm

Probs. 13–53/54

P

5 m

150 mm
x

75 mm 75 mm

25 mm

25 mm
xy

Probs. 13–55/56

x

x
y

y

P

6 m

e

Probs. 13–57/58

*13–56. The wood column is fixed at its base, and its
top can be considered pinned. Determine the maximum
eccentric force P the column can support without 
causing it to either buckle or yield. Take 
and sY = 15 MPa.

E = 10 GPa
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13–59. The steel column supports the two eccentric
loadings. If it is assumed to be pinned at its top, fixed at the
bottom, and fully braced against buckling about the y–y
axis, determine the maximum deflection of the column
and the maximum stress in the column.

*13–60. The steel column supports the two eccentric
loadings. If it is assumed to be fixed at its top and bottom,
and braced against buckling about the y–y axis, determine
the maximum deflection of the column and the maximum
stress in the column. sY = 360 MPa.Est = 200 GPa,

sY = 360 MPa.
Est = 200 GPa,

13–61. The A-36-steel column is pinned at its
top and fixed at its base. Also, the column is braced along
its weak axis at mid-height. If investigate
whether the column is adequate to support this loading.
Use against buckling and against
yielding.

•13–62. The A-36-steel column is pinned at its
top and fixed at its base. Also, the column is braced along
its weak axis at mid-height. Determine the allowable force
P that the column can support without causing it either
to buckle or yield. Use against buckling and

against yielding.F.S. = 1.5
F.S. = 2

W250 * 45

F.S. = 1.5F.S. = 2

P = 250 kN,

W250 * 45

13–63. The structural A-36 steel member is
used as a 20-ft-long column that is assumed to be fixed at
its top and fixed at its bottom. If the 15-kip load is applied
at an eccentric distance of 10 in., determine the maximum
stress in the column.

*13–64. The structural A-36 steel member is
used as a column that is assumed to be fixed at its top and
pinned at its bottom. If the 15-kip load is applied at an
eccentric distance of 10 in., determine the maximum stress
in the column.

W14 * 26

W14 * 26

13

50 kN

80 mm

6 m

120 mm
130 kN

100 mm

10 mm

10 mm10 mm
100 mm

y y

x

x

Probs. 13–59/60

4 m

250 mm 250 mm

4 m

PP
4

Probs. 13–61/62

15 kip
10 in.

20 ft

Probs. 13–63/64
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•13–65. Determine the maximum eccentric load P the
2014-T6-aluminum-alloy strut can support without causing
it either to buckle or yield. The ends of the strut are 
pin-connected.

13–66. The structural A-36 steel column is fixed
at its bottom and free at its top. If it is subjected to the
eccentric load of 75 kip, determine the factor of safety with
respect to either the initiation of buckling or yielding.

13–67. The structural A-36 steel column is fixed
at its bottom and pinned at its top. If it is subjected to the
eccentric load of 75 kip, determine if the column fails by
yielding. The column is braced so that it does not buckle
about the y–y axis.

W8 * 48

W8 * 48

13–70. A column of intermediate length buckles when the
compressive stress is 40 ksi. If the slenderness ratio is 60,
determine the tangent modulus.

13–71. The 6-ft-long column has the cross section shown
and is made of material which has a stress-strain diagram
that can be approximated as shown. If the column is
pinned at both ends, determine the critical load for the
column.

*13–72. The 6-ft-long column has the cross section shown
and is made of material which has a stress-strain diagram
that can be approximated as shown. If the column is fixed
at both ends, determine the critical load for the
column.

Pcr

Pcr

*13–68. Determine the load P required to cause the steel
structural A-36 steel column to fail either by

buckling or by yielding. The column is fixed at its bottom
and the cables at its top act as a pin to hold it.

•13–69. Solve Prob. 13–68 if the column is an A-36 steel
section.W12 * 16

W12 * 50

13

3 m

100 mm

150 mm

100 mm

50 mm

150 mm
a

a

P P

Section a – a

Prob. 13–65

12 ft

8 in.
y

y x

75 kip

Probs. 13–66/67

25 ft

2 in.
P

Probs. 13–68/69

(ksi)

P (in./in.)

55

25

0.001 0.004

3 in.

5 in.
0.5 in.

0.5 in.

0.5 in.

s

Probs. 13–71/72
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•13–73. The stress-strain diagram of the material of a
column can be approximated as shown. Plot P�A vs. KL�r
for the column.

13–75. The stress-strain diagram for a material can be
approximated by the two line segments shown. If a bar
having a diameter of 80 mm and a length of 1.5 m is made
from this material, determine the critical load provided the
ends are pinned. Assume that the load acts through the axis
of the bar. Use Engesser’s equation.

*13–76. The stress-strain diagram for a material can be
approximated by the two line segments shown. If a bar
having a diameter of 80 mm and a length of 1.5 m is made
from this material, determine the critical load provided the
ends are fixed.Assume that the load acts through the axis of
the bar. Use Engesser’s equation.

•13–77. The stress-strain diagram for a material can be
approximated by the two line segments shown. If a bar
having a diameter of 80 mm and length of 1.5 m is made
from this material, determine the critical load provided one
end is pinned and the other is fixed. Assume that the load
acts through the axis of the bar. Use Engesser’s equation.

13–74. Construct the buckling curve, P�A versus L�r,
for a column that has a bilinear stress–strain curve in
compression as shown. The column is pinned at its ends.

13

P (in./in.)

200

350

0.0010 0.004

s (MPa)

Prob. 13–73

0.001 0.004

140

260

s (MPa)

P (mm/mm)

Prob. 13–74

1100

200

0.001 0.007
P (mm/mm)

s (MPa)

Probs. 13–75/76/77
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*13.6 Design of Columns for 
Concentric Loading

The theory presented thus far applies to columns that are perfectly
straight, made of homogeneous material, and originally stress free.
Practically speaking, though, as stated previously, columns are not
perfectly straight, and most have residual stresses in them, primarily due
to nonuniform cooling during manufacture. Also, the supports for
columns are less than exact, and the points of application and directions
of loads are not known with absolute certainty. In order to compensate
for these effects, which actually vary from one column to the next, many
design codes specify the use of column formulas that are empirical. By
performing experimental tests on a large number of axially loaded
columns, the results may be plotted and a design formula developed by
curve-fitting the mean of the data.

An example of such tests for wide-flange steel columns is shown in 
Fig. 13–20. Notice the similarity between these results and those of the
family of curves determined from the secant formula, Fig. 13–16. The
reason for this similarity has to do with the influence of an “accidental”
eccentricity ratio on the column’s strength.As stated in Sec. 13.4, this ratio
has more of an effect on the strength of short and intermediate-length
columns than on those that are long. Tests have indicated that can
range from 0.1 to 0.6 for most axially loaded columns.

In order to account for the behavior of different-length columns, design
codes usually specify several formulas that will best fit the data within the
short, intermediate, and long column range. Hence, each formula will apply
only for a specific range of slenderness ratios, and so it is important that the
engineer carefully observe the KL�r limits for which a particular formula is
valid. Examples of design formulas for steel, aluminum, and wood columns
that are currently in use will now be discussed.The purpose is to give some
idea as to how columns are designed in practice.These formulas should not,
however, be used for the design of actual columns, unless the code from
which they are referenced is consulted.

ec>r2

Euler formula
Eq. 13–6

Short column

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

Intermediate column Long column
——KL
r

scr

sY

Fig. 13–20

These long unbraced timber columns are
used to support the roof of this building.
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Steel Columns. Columns made of structural steel can be designed
on the basis of formulas proposed by the Structural Stability Research
Council (SSRC). Factors of safety have been applied to these formulas and
adopted as specifications for building construction by the American
Institute of Steel Construction (AISC). Basically these specifications
provide two formulas for column design, each of which gives the maximum
allowable stress in the column for a specific range of slenderness ratios.*

For long columns the Euler formula is proposed, i.e.,

Application of this formula requires that a factor of safety 
be applied.Thus, for design,

(13–21)

As stated, this equation is applicable for a slenderness ratio bounded by
200 and A specific value of is obtained by requiring
the Euler formula to be used only for elastic material behavior. Through
experiments it has been determined that compressive residual stresses
can exist in rolled-formed steel sections that may be as much as one-half
the yield stress. Consequently, if the stress in the Euler formula is greater
than the equation will not apply. Therefore the value of is
determined as follows:

(13–22)

Columns having slenderness ratios less than are designed on
the basis of an empirical formula that is parabolic and has the form

Since there is more uncertainty in the use of this formula for longer
columns, it is divided by a factor of safety defined as follows:

Here it is seen that at and increases to
at Hence, for design purposes,1KL>r2c .F.S. = 23

12 L 1.92
KL>r = 0F.S. = 5

3 L 1.67

F.S. =
5
3

+
3
8

 
1KL>r2
1KL>r2c -

1KL>r23
81KL>r2c 

3

smax = B1 -
1KL>r22

21KL>r2c 

2RsY

1KL>r2c
 
1
2

 sY =
p2E

1KL>r2c 

2  or  aKL
r
b

c
= B

2p2E
sY

1KL>r2c1
2 sY ,

1KL>r2c1KL>r2c .

sallow =
12p2E

231KL>r22 aKL
r
b

c
…

KL
r

… 200

F.S. = 23
12 L 1.92

p2E>1KL>r22. smax =

*The current AISC code enables engineers to use one of two methods for design, namely,
Load and Resistance Factor Design,andAllowable Stress Design.The latter is explained here.

0.6

0.261

Eq. 13–23

Eq. 13–21

——KL
r c

——KL
r0

————
sallow
sY

(13–23)sallow =
B1 -

1KL>r22
21KL>r2c 

2RsY

15>32 + [13>821KL>r2>1KL>r2c] - C 1KL>r23>81KL>r2c 

3 D
Equations 13–21 and 13–23 are plotted in Fig. 13–21.When applying any of
these equations, either FPS or SI units can be used for the calculations.

Fig. 13–21



694 CHAPTER 13 BUCKL ING OF COLUMNS

13

Aluminum Columns. Column design for structural aluminum is
specified by the Aluminum Association using three equations, each
applicable for a specific range of slenderness ratios. Since several types of
aluminum alloy exist, there is a unique set of formulas for each type. For a
common alloy (2014-T6) used in building construction, the formulas are

(13–24)

(13–25)

(13–26)

These equations are plotted in Fig. 13–22. As shown, the first two
represent straight lines and are used to model the effects of columns in
the short and intermediate range.The third formula has the same form as
the Euler formula and is used for long columns.

Timber Columns. Columns used in timber construction are
designed on the basis of formulas published by the National Forest
Products Association (NFPA) or the American Institute of Timber
Construction (AITC). For example, the NFPA formulas for the
allowable stress in short, intermediate, and long columns having a
rectangular cross section of dimensions b and d, where d is the smallest
dimension of the cross section, are

(13–27)

(13–28)

(13–29)

Here wood has a modulus of elasticity of and an
allowable compressive stress of 1.2 ksi parallel to the grain. In particular,
Eq. 13–29 is simply Euler’s equation having a factor of safety of 3. These
three equations are plotted in Fig. 13–23.

Ew = 1.811032 ksi

 sallow =
540 ksi

1KL>d22 26 6
KL

d
… 50

 sallow = 1.20 c1 -
1
3

 aKL>d
26.0

b2 d  ksi 11 6
KL

d
… 26

 sallow = 1.20 ksi 0 …
KL

d
… 11

 sallow =
54 000 ksi

1KL>r22 55 …
KL

r

 sallow = c30.7 - 0.23aKL
r
b d  ksi 12 6

KL
r

6 55

 sallow = 28 ksi 0 …
KL

r
… 12

28

18

12 55
——KL
r

Eq. 13–24

Eq. 13–25

Eq. 13–26

0

sallow(ksi)

1.2

——KL
d

sallow(ksi)

Eq. 13–28

0.8

0.216

11 26 50

Eq. 13–27

Eq. 13–29

0

Fig. 13–22

Fig. 13–23



13.6 DESIGN OF COLUMNS FOR CONCENTRIC LOADING 695

13

Procedure for Analysis

Column Analysis.

• When using any formula to analyze a column, that is, to find its
allowable load, it is first necessary to calculate the slenderness
ratio in order to determine which column formula applies.

• Once the average allowable stress has been calculated, the
allowable load on the column is determined from 

Column Design.

• If a formula is used to design a column, that is, to determine the
column’s cross-sectional area for a given loading and effective
length, then a trial-and-check procedure generally must be
followed when the column has a composite shape, such as a 
wide-flange section.

• One possible way to apply a trial-and-check procedure would be
to assume the column’s cross-sectional area, and calculate the
corresponding stress Also, use an appropriate design
formula to determine the allowable stress From this,
calculate the required column area 

• If the design is safe. When making the comparison,
it is practical to require to be close to but greater than 
usually within 2–3%. A redesign is necessary if 

• Whenever a trial-and-check procedure is repeated, the choice of
an area is determined by the previously calculated required area.
In engineering practice this method for design is usually
shortened through the use of computer software or published
tables and graphs.

A¿ 6 Areq’d .
Areq’d ,A¿

A¿ 7 Areq’d ,

Areq’d = P>sallow .
sallow .

s¿ = P>A¿.
A¿,

P = sallowA.

These timber columns can be considered
pinned at their bottom and fixed
connected to the beams at their tops.
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EXAMPLE 13.6

An A-36 steel member is used as a pin-supported column,
Fig. 13–24. Using the AISC column design formulas, determine the
largest load that it can safely support.

SOLUTION
The following data for a is taken from the table in
Appendix B.

Since for both x and y axis buckling, the slenderness ratio is
largest if is used. Thus,

From Eq. 13–22, we have

Here so Eq. 13–23 applies.

The allowable load P on the column is therefore

Ans.P = 476 kip

16.17 kip>in2 =
P

29.4 in2sallow =
P

A
;

 = 16.17 ksi

 =
[1 - 172.4522>21126.122]36 ksi

15>32 + [13>82172.45>126.12] - [172.4523>81126.123]

 sallow =
B1 -

1KL>r22
21KL>r2c2RsY

15>32 + [13>821KL>r2>1KL>r2c] - C 1KL>r23>81KL>rc23 D

0 6 KL>r 6 1KL>r2c ,

 = 126.1

 = B
2p2[2911032 ksi]

36 ksi

 aKL
r
b

c
= B

2p2E
sY

KL
r

=
1116 ft2112 in.>ft2

2.65 in.
= 72.45

ry

K = 1

A = 29.4 in2 rx = 4.60 in. ry = 2.65 in.

W10 * 100

W10 * 100

P

x

x

y

y

16 ft

P

Fig. 13–24
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EXAMPLE 13.7

The steel rod in Fig. 13–25 is to be used to support an axial load of
18 kip. If and determine the smallest
diameter of the rod as allowed by the AISC specification. The rod is
fixed at both ends.

sY = 50 ksi,Est = 2911032 ksi

Fig. 13–25

18 kip18 kip

15 ft

d

SOLUTION
For a circular cross section the radius of gyration becomes

Applying Eq. 13–22, we have

Since the rod’s radius of gyration is unknown, KL�r is unknown, and
therefore a choice must be made as to whether Eq. 13–21 or Eq. 13–23
applies.We will consider Eq. 13–21. For a fixed-end column so

Use

Ans.

For this design, we must check the slenderness-ratio limits; i.e.,

Since use of Eq. 13–21 is appropriate.107.0 6 160 6 200,

KL
r

=
0.5115 ft2112 in.>ft2
12.25 in.>42 = 160

d = 2.25 in. = 2 
1
4  in.

 d = 2.11 in.

 
22.92

d2 = 1.152d2

 
18 kip

11>42pd2 =
12p2[2911032 kip>in2]

23[0.5115 ft2112 in.>ft2>1d>42]2

 sallow =
12p2E

231KL>r22

K = 0.5,

aKL
r
b

c
= B

2p2E
sY

= B
2p2[2911032 ksi]

50 ksi
= 107.0

r = A
I

A
= B

11>42p1d>224
11>42pd2 =

d

4



698 CHAPTER 13 BUCKL ING OF COLUMNS

13

EXAMPLE 13.8

A bar having a length of 30 in. is used to support an axial compressive
load of 12 kip, Fig. 13–26. It is pin supported at its ends and made of
a 2014-T6 aluminum alloy. Determine the dimensions of its cross-
sectional area if its width is to be twice its thickness.

SOLUTION
Since is the same for both x and y axis buckling, the
larger slenderness ratio is determined using the smaller radius of
gyration, i.e., using 

(1)

Here we must apply Eq. 13–24, 13–25, or 13–26. Since we do not as yet
know the slenderness ratio, we will begin by using Eq. 13–24.

Checking the slenderness ratio, we have

Try Eq. 13–26, which is valid for 

Ans.

From Eq. 1,

OK

NOTE: It would be satisfactory to choose the cross section with
dimensions 1 in. by 2 in.

KL
r

=
103.9
1.05

= 99.3 7 55

 b = 1.05 in.

 
12

2b1b2 =
54 000

1103.9>b22

 
P

A
=

54 000 ksi

1KL>r22

KL>r Ú 55,

KL
r

=
103.9
0.463

= 224.5 7 12

 b = 0.463 in.

 
12 kip
2b1b2 = 28 kip>in2

 
P

A
= 28 ksi

KL
ry

=
KL

2Iy>A =
11302

211>1222b1b32>[2b1b2] =
103.9

b

Imin = Iy :

KL = 30 in.

Fig. 13–26

12 kip

30 in.

12 kip

2bb

yx
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EXAMPLE 13.9

A board having cross-sectional dimensions of 5.5 in. by 1.5 in. is used
to support an axial load of 5 kip, Fig. 13–27. If the board is assumed
to be pin supported at its top and bottom, determine its greatest
allowable length L as specified by the NFPA.

Fig. 13–27

SOLUTION
By inspection, the board will buckle about the y axis. In the NFPA
equations, Assuming that Eq. 13–29 applies, we have

Ans.

Here

Since the solution is valid.26 6 KL>d … 50,

KL

d
=

1144.8 in.2
1.5 in.

= 29.8

 L = 44.8 in.

 
5 kip

15.5 in.211.5 in.2 =
540 ksi

11 L>1.5 in.22

 
P

A
=

540 ksi

1KL>d22
d = 1.5 in.

5 kip

L

5.5 in.1.5 in.

y
x

5 kip
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13–78. Determine the largest length of a structural A-36
steel rod if it is fixed supported and subjected to an axial
load of 100 kN. The rod has a diameter of 50 mm. Use the
AISC equations.

13–79. Determine the largest length of a 
structural steel column if it is pin supported and subjected
to an axial load of 290 kip. .
Use the AISC equations.

*13–80. Determine the largest length of a 
structural A-36 steel section if it is pin supported and is
subjected to an axial load of 28 kip. Use the AISC equations.

•13–81. Using the AISC equations, select from Appendix B
the lightest-weight structural A-36 steel column that is 14 ft
long and supports an axial load of 40 kip.The ends are pinned.
Take

13–82. Using the AISC equations, select from Appendix B
the lightest-weight structural A-36 steel column that is 12 ft
long and supports an axial load of 40 kip.The ends are fixed.
Take 

13–83. Using the AISC equations, select from Appendix B
the lightest-weight structural A-36 steel column that is 24 ft
long and supports an axial load of 100 kip. The ends are
fixed.

*13–84. Using the AISC equations, select from Appendix B
the lightest-weight structural A-36 steel column that is 30 ft
long and supports an axial load of 200 kip. The ends are
fixed.

•13–85. A A-36-steel column of 30-ft length is
pinned at both ends and braced against its weak axis at mid-
height. Determine the allowable axial force P that can be
safely supported by the column. Use the AISC column
design formulas.

13–86. Check if a column can safely support an
axial force of The column is 20 ft long and is
pinned at both ends and braced against its weak axis at
mid-height. It is made of steel having and

Use the AISC column design formulas.sY = 50 ksi.
E = 29(103) ksi

P = 250 kip.
W10 * 39

W8 * 24

sY = 50 ksi.

sY = 50 ksi.

W10 * 12

sY = 50 ksiEst = 29(103) ksi,

W10 * 45

13–87. A 5-ft-long rod is used in a machine to transmit
an axial compressive load of 3 kip. Determine its smallest
diameter if it is pin connected at its ends and is made of a
2014-T6 aluminum alloy.

*13–88. Check if a column can safely support
an axial force of The column is 15 ft long and
is pinned at both of its ends. It is made of steel having

and Use the AISC column
design formulas.

•13–89. Using the AISC equations, check if a column
having the cross section shown can support an axial force of
1500 kN.The column has a length of 4 m, is made from A-36
steel, and its ends are pinned.

sY = 50 ksi.E = 29(103) ksi

P = 200 kip.
W10 * 45

PROBLEMS

350 mm

10 mm

300 mm

20 mm20 mm

Prob. 13–89

13–90. The A-36-steel tube is pinned at both ends. If it
is subjected to an axial force of 150 kN, determine the
maximum length that the tube can safely support using the
AISC column design formulas.

100 mm

80 mm

Prob. 13–90
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13–91. The bar is made of a 2014-T6 aluminum alloy.
Determine its smallest thickness b if its width is 5b. Assume
that it is pin connected at its ends.

*13–92. The bar is made of a 2014-T6 aluminum alloy.
Determine its smallest thickness b if its width is 5b. Assume
that it is fixed connected at its ends.

5b
b

8 ft

600 lb

600 lb

Probs. 13–91/92

100 mm

15 mm170 mm

15 mm

15 mm

Probs. 13–93/94

•13–93. The 2014-T6 aluminum column of 3-m length has
the cross section shown. If the column is pinned at both
ends and braced against the weak axis at its mid-height,
determine the allowable axial force P that can be safely
supported by the column.

13–94. The 2014-T6 aluminum column has the cross
section shown. If the column is pinned at both ends and
subjected to an axial force determine the
maximum length the column can have to safely support the
loading.

P = 100 kN,

13–95. The 2014-T6 aluminum hollow section has the
cross section shown. If the column is 10 ft long and is fixed
at both ends, determine the allowable axial force P that can
be safely supported by the column.

*13–96. The 2014-T6 aluminum hollow section has the
cross section shown. If the column is fixed at its base and
pinned at its top, and is subjected to the axial force

determine the maximum length of the column
for it to safely support the load.
P = 100 kip,

4 in.

3 in.

Probs. 13–95/96

P

6 in.
yx

y x
6 in.

P

10 ft

Probs. 13–97/98/99

•13–97. The tube is 0.25 in. thick, is made of a 2014-T6
aluminum alloy, and is fixed at its bottom and pinned at its
top. Determine the largest axial load that it can support.

13–98. The tube is 0.25 in. thick, is made of a 2014-T6
aluminum alloy, and is fixed connected at its ends.
Determine the largest axial load that it can support.

13–99. The tube is 0.25 in. thick, is made of 2014-T6
aluminum alloy and is pin connected at its ends. Determine
the largest axial load it can support.



702 CHAPTER 13 BUCKL ING OF COLUMNS

13

*13–100. A rectangular wooden column has the cross
section shown. If the column is 6 ft long and subjected to an
axial force of determine the required minimum
dimension a of its cross-sectional area to the nearest 
so that the column can safely support the loading. The
column is pinned at both ends.

•13–101. A rectangular wooden column has the cross
section shown. If and the column is 12 ft long,
determine the allowable axial force P that can be safely
supported by the column if it is pinned at its top and fixed at
its base.

13–102. A rectangular wooden column has the cross
section shown. If and the column is subjected to
an axial force of determine the maximum
length the column can have to safely support the load. The
column is pinned at its top and fixed at its base.

P = 15 kip,
a = 3 in.

a = 3 in.

1
16 in.

P = 15 kip,

2a

a

Probs. 13–100/101/102

14 ft

a

Prob. 13–103

13–103. The timber column has a square cross section and
is assumed to be pin connected at its top and bottom. If it
supports an axial load of 50 kip, determine its smallest side
dimension a to the nearest Use the NFPA formulas.1

2  in.

*13–104. The wooden column shown is formed by gluing
together the boards. If the column is pinned
at both ends and is subjected to an axial load 
determine the required number of boards needed to form
the column in order to safely support the loading.

P = 20 kip,
6 in. * 0.5 in.

9 ft

6 in.
0.5 in.

P

P

Prob. 13–104

P

L

4 in.

2 in.
x

x

y

y

Probs. 13–105/106

•13–105. The column is made of wood. It is fixed at its
bottom and free at its top. Use the NFPA formulas to
determine its greatest allowable length if it supports an
axial load of 

13–106. The column is made of wood. It is fixed at its
bottom and free at its top. Use the NFPA formulas to
determine the largest allowable axial load P that it can
support if it has a length L = 4 ft.

P = 2 kip.
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*13.7 Design of Columns for
Eccentric Loading

Occasionally a column may be required to support a load acting either
at its edge or on an angle bracket attached to its side, such as shown in
Fig. 13–28a. The bending moment which is caused by the
eccentric loading, must be accounted for when the column is designed.
There are several acceptable ways in which this is done in engineering
practice. We will discuss two of the most common methods.

Use of Available Column Formulas. The stress distribution
acting over the cross-sectional area of the column shown in Fig. 13–28a is
determined from a superposition of both the axial force P and the bending
moment In particular, the maximum compressive stress is

(13–30)

A typical stress profile is shown in Fig. 13–28b. If we conservatively
assume that the entire cross section is subjected to the uniform stress

as determined from Eq. 13–30, then we can compare with
which is determined using the formulas given in Sec. 13.6.

Calculation of is usually done using the largest slenderness ratio
for the column, regardless of the axis about which the column
experiences bending. This requirement is normally specified in design
codes and will in most cases lead to a conservative design. If

then the column can carry the specified loading. If this inequality does
not hold, then the column’s area A must be increased, and a new 
and must be calculated. This method of design is rather simple to
apply and works well for columns that are short or of intermediate
length.

Interaction Formula. When designing an eccentrically loaded
column it is desirable to see how the bending and axial loads interact, so
that a balance between these two effects can be achieved. To do this, we
will consider the separate contributions made to the total column area
by the axial force and moment. If the allowable stress for the axial load is

then the required area for the column needed to support the
load P is

Similarly, if the allowable bending stress is then since
the required area of the column needed to support the

eccentric moment is determined from the flexure formula, that is,
I = Ar2,

1sb2allow ,

Aa =
P

1sa2allow

1sa2allow ,

sallow

smax

smax … sallow

sallow

sallow ,
smaxsmax

smax =
P

A
+

Mc

I

M = Pe.

M = Pe,

P

e

�

(a)

P

M � Pe

(b)

smax

Fig. 13–28
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The total area A for the column needed to resist both the axial load
and moment requires that

or

(13–31)

Here

axial stress caused by the force P and determined from
where A is the cross-sectional area of the

column

bending stress caused by an eccentric load or applied
moment M; is found from where I is the
moment of inertia of the cross-sectional area calculated
about the bending or centroidal axis

allowable axial stress as defined by formulas given in
Sec. 13.6 or by other design code specifications. For this
purpose, always use the largest slenderness ratio for the
column, regardless of the axis about which the column
experiences bending

allowable bending stress as defined by code specifications

Notice that, if the column is subjected only to an axial load, then the
bending-stress ratio in Eq. 13–31 would be equal to zero and the
design will be based only on the allowable axial stress. Likewise, when
no axial load is present, the axial-stress ratio is zero and the stress
requirement will be based on the allowable bending stress. Hence, each
stress ratio indicates the contribution of axial load or bending moment.
Since Eq. 13–31 shows how these loadings interact, this equation
is sometimes referred to as the interaction formula. This design
approach requires a trial-and-check procedure, where it is required that
the designer pick an available column and then check to see if the
inequality is satisfied. If it is not, a larger section is then picked and the
process repeated. An economical choice is made when the left side is
close to but less than 1.

The interaction method is often specified in codes for the design of
columns made of steel, aluminum, or timber. In particular, for allowable
stress design, the American Institute of Steel Construction specifies the
use of this equation only when the axial-stress ratio 
For other values of this ratio, a modified form of Eq. 13–31 is used.

sa>1sa2allow … 0.15.

 1sb2allow =

 1sa2allow =

sb = Mc>I,sb

 sb =

sa = P>A,
 sa =

 
sa

1sa2allow
+

sb

1sb2allow
… 1

 
P>A
1sa2allow

+
Mc>Ar2

1sb2allow
… 1

Aa + Ab =
P

1sa2allow
+

Mc

1sb2allowr2 … A

Ab =
Mc

1sb2allowr2

Typical example of a column used to
support an eccentric roof loading.
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EXAMPLE 13.10

The column in Fig. 13–29 is made of aluminum alloy 2014-T6 and is
used to support an eccentric load P. Determine the maximum
magnitude of P that can be supported if the column is fixed at its base
and free at its top. Use Eq. 13–30.

80 in.

P

2 in. 1 in.

2 in.
2 in.

Fig. 13–29

SOLUTION
From Fig. 13–10b, The largest slenderness ratio for the column
is therefore

By inspection, Eq. 13–26 must be used Thus,

The maximum compressive stress in the column is determined from
the combination of axial load and bending. We have

Assuming that this stress is uniform over the cross section, we require

Ans. P = 2.25 kip

 0.7031 = 0.3125Psallow = smax ;

 = 0.3125P

 =
P

2 in.14 in.2 +
P11 in.212 in.2

11>12212 in.214 in.23

 smax =
P

A
+
1Pe2c

I

sallow =
54 000 ksi

1KL>r22 =
54 000 ksi

1277.122 = 0.7031 ksi

1277.1 7 552.

KL
r

=
2180 in.2

2[11>12214 in.212 in.23]>[12 in.2 4 in.]
= 277.1

K = 2.
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EXAMPLE 13.11

The A-36 steel column in Fig. 13–30 is pin connected at
its ends and is subjected to the eccentric load P. Determine the
maximum allowable value of P using the interaction method if the
allowable bending stress is 

SOLUTION
Here The necessary geometric properties for the are
taken from the table in Appendix B.

We will consider because this will lead to the largest value of the
slenderness ratio. Also, is needed since bending occurs about the x
axis To determine the allowable compressive
stress, we have

Since

then and so Eq. 13–23 must be used.

Applying the interaction Eq. 13–31 yields

Ans.

Checking the application of the interaction method for the steel
section, we require

OK
sa

1sa2allow
=

8.43 kip>15.87 in.2
10.28 kip>in2 = 0.140 6 0.15

P = 8.43 kip

 
P>5.87 in2

10.28 ksi
+

P130 in.213.10 in.2>141.4 in42
22 ksi

= 1

sa

1sa2allow
+

sb

1sb2allow
… 1

 = 10.28 ksi

 =
[1 - 112022>21126.122]36 ksi

15>32 + [13>8211202>1126.12] - [112023>81126.123]

 sallow =
[1 - 1KL>r22>21KL>r2c 

2]sY

15>32 + [13>821KL>r2>1KL>r2c] - C 1KL>r23>81KL>r2c 

3 D

KL>r 6 1KL>r2c

aKL
r
b

c
= B

2p2E
sY

= B
2p2[2911032 ksi]

36 ksi
= 126.1

KL
r

=
1[15 ft112 in.>ft2]

1.50 in.
= 120

1c = 6.20 in.>2 = 3.10 in.2.Ix

ry

A = 5.87 in2 Ix = 41.4 in4 ry = 1.50 in. d = 6.20 in.

W6 * 20K = 1.

1sb2allow = 22 ksi.

W6 * 20

P

M � P(30 in.)

15 ft

P

x

30 in.

y

Fig. 13–30
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EXAMPLE 13.12

The timber column in Fig. 13–31 is made from two boards nailed
together so that the cross section has the dimensions shown. If the
column is fixed at its base and free at its top, use Eq. 13–30 to determine
the eccentric load P that can be supported.

60 in.

x
y

3 in.

P

3 in.
1 in.

3 in.

Fig. 13–31

SOLUTION
From Fig. 13–10b, Here we must calculate to determine
which equation from Eqs. 13–27 through 13–29 should be used.
Since is determined using the largest slenderness ratio, we
choose This is done to make this ratio as large as possible,
and thereby yields the lowest possible allowable axial stress. We have

Since the allowable axial stress is determined using
Eq. 13–29. Thus,

Applying Eq. 13–30 with we have

Ans.P = 1.22 kip

0.3375 ksi =
P

(3 in.)16 in.2 +
P14 in.213 in.2

11>12213 in.216 in.23

sallow =
P

A
+

Mc

I

sallow = smax ,

sallow =
540 ksi

1KL>d22 =
540 ksi

14022 = 0.3375 ksi

26 6 KL>d 6 50

KL

d
=

2160 in.2
3 in.

= 40

d = 3 in.
sallow

KL>dK = 2.
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12 ft

80 kip

y

y

x

x

10 in.

P

z

Probs. 13–107/108

12 ft

y
x

yx

P

P

M

M

Probs. 13–109/110

P

10 ft

40 kip

16 in.

Probs. 13–111/112

13–107. The structural A-36 steel column
supports an axial load of 80 kip in addition to an eccentric
load P. Determine the maximum allowable value of P based
on the AISC equations of Sec. 13.6 and Eq. 13–30. Assume
the column is fixed at its base, and at its top it is free to sway
in the x–z plane while it is pinned in the y–z plane.

*13–108. The structural A-36 steel column
supports an axial load of 80 kip in addition to an eccentric
load of Determine if the column fails based on
the AISC equations of Sec. 13.6 and Eq. 13–30.Assume that
the column is fixed at its base, and at its top it is free to sway
in the x–z plane while it is pinned in the y–z plane.

P = 60 kip.

W12 * 45

W14 * 53

13–111. The structural A-36 steel column
is fixed at its bottom and free at its top. Determine the
greatest eccentric load P that can be applied using
Eq. 13–30 and the AISC equations of Sec. 13.6.

*13–112. The structural A-36 steel column is
fixed at its bottom and free at its top. If it is subjected to a
load of determine if it is safe based on the AISC
equations of Sec. 13.6 and Eq. 13–30.

P = 2 kip,

W10 * 45

W14 * 43

PROBLEMS

•13–109. The structural A-36 steel column is
fixed at its top and bottom. If a horizontal load (not shown)
causes it to support end moments of 
determine the maximum allowable axial force P that can be
applied. Bending is about the x–x axis. Use the AISC
equations of Sec. 13.6 and Eq. 13–30.

13–110. The column is fixed at its top and
bottom. If a horizontal load (not shown) causes it to support
end moments of determine the maximum
allowable axial force P that can be applied. Bending is
about the x–x axis. Use the interaction formula with
1sb2allow = 24 ksi.

M = 15 kip # ft,

W14 * 22

M = 10 kip # ft,

W14 * 22
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•13–117. A 16-ft-long column is made of aluminum alloy
2014-T6. If it is fixed at its top and bottom, and a
compressive load P is applied at point A, determine the
maximum allowable magnitude of P using the equations of
Sec. 13.6 and Eq. 13–30.

13–118. A 16-ft-long column is made of aluminum alloy
2014-T6. If it is fixed at its top and bottom, and a
compressive load P is applied at point A, determine the
maximum allowable magnitude of P using the equations of
Sec. 13.6 and the interaction formula with 1sb2allow = 20 ksi.

13

•13–113. The A-36-steel column is fixed at its
base. Its top is constrained to move along the x–x axis but
free to rotate about and move along the y–y axis. Determine
the maximum eccentric force P that can be safely supported
by the column using the allowable stress method.

13–114. The A-36-steel column is fixed at its
base. Its top is constrained to move along the x–x axis but
free to rotate about and move along the y–y axis. Determine
the maximum eccentric force P that can be safely supported
by the column using an interaction formula. The allowable
bending stress is 

13–115. The A-36-steel column is fixed at its
base. Its top is constrained to move along the x–x axis but
free to rotate about and move along the y–y axis. If the
eccentric force is applied to the column,
investigate if the column is adequate to support the loading.
Use the allowable stress method.

*13–116. The A-36-steel column is fixed at its
base. Its top is constrained to move along the x–x axis but
free to rotate about and move along the y–y axis. If the
eccentric force is applied to the column,
investigate if the column is adequate to support the loading.
Use the interaction formula.The allowable bending stress is
(sb)allow = 15 ksi.

P = 15 kip

W12 * 50

P = 15 kip

W12 * 50

(sb)allow = 15 ksi.

W10 * 45

W10 * 45

x

x
y

y

P

24 ft

12 in.

Probs. 13–113/114/115/116

8 in.

0.5 in.

0.5 in.

4.25 in.

y

x x

8 in.
y

P

A
0.5 in.

Probs. 13–117/118

13–119. The 2014-T6 hollow column is fixed at its base
and free at its top. Determine the maximum eccentric
force P that can be safely supported by the column. Use the
allowable stress method. The thickness of the wall for the
section is 

*13–120. The 2014-T6 hollow column is fixed at its base
and free at its top. Determine the maximum eccentric force
P that can be safely supported by the column. Use the
interaction formula. The allowable bending stress is

The thickness of the wall for the section is
t = 0.5 in.
(sb)allow = 30 ksi.

t = 0.5 in.

P
6 in.

6 in.

3 in.

8 ft

Probs. 13–119/120
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•13–121. The 10-ft-long bar is made of aluminum alloy
2014-T6. If it is fixed at its bottom and pinned at the top,
determine the maximum allowable eccentric load P that can
be applied using the formulas in Sec. 13.6 and Eq. 13–30.

13–122. The 10-ft-long bar is made of aluminum alloy
2014-T6. If it is fixed at its bottom and pinned at the top,
determine the maximum allowable eccentric load P that
can be applied using the equations of Sec. 13.6 and the
interaction formula with 1sb2allow = 18 ksi.

3 in.1.5 in.

1.5 in.

x

x
y y

2 in.

2 in.

P

Probs. 13–121/122

13–123. The rectangular wooden column can be
considered fixed at its base and pinned at its top. Also, the
column is braced at its mid-height against the weak axis.
Determine the maximum eccentric force P that can be safely
supported by the column using the allowable stress method.

*13–124. The rectangular wooden column can be
considered fixed at its base and pinned at its top. Also, the
column is braced at its mid-height against the weak axis.
Determine the maximum eccentric force P that can be
safely supported by the column using the interaction
formula. The allowable bending stress is (sb)allow = 1.5 ksi.

5 ft

5 ft

P
6 in.

6 in.

6 in.

3 in.

Probs. 13–123/124

•13–125. The 10-in.-diameter utility pole supports the
transformer that has a weight of 600 lb and center of gravity
at G. If the pole is fixed to the ground and free at its
top, determine if it is adequate according to the NFPA
equations of Sec. 13.6 and Eq. 13–30.

G

18 ft

15 in.

Prob. 13–125

13–126. Using the NFPA equations of Sec. 13.6 and
Eq. 13–30, determine the maximum allowable eccentric
load P that can be applied to the wood column.Assume that
the column is pinned at both its top and bottom.

13–127. Using the NFPA equations of Sec. 13.6 and
Eq. 13–30, determine the maximum allowable eccentric
load P that can be applied to the wood column.Assume that
the column is pinned at the top and fixed at the bottom.

6 in.

12 ft

P
0.75 in.

3 in.

Probs. 13–126/127



CHAPTER REVIEW 711

13

CHAPTER REVIEW

Pcr

Buckling is the sudden instability that occurs
in columns or members that support an axial
compressive load. The maximum axial load
that a member can support just before
buckling is called the critical load Pcr.

The critical load for an ideal column is
determined from Euler’s formula, where

for pin supports, for fixed
supports, for a pin and a fixed
support, and for a fixed support and a
free end.

K = 2
K = 0.7

K = 0.5K = 1

If the axial loading is applied eccentrically
to the column, then the secant formula can
be used to determine the maximum stress
in the column.

When the axial load causes yielding of the
material, then the tangent modulus should
be used with Euler’s formula to determine
the critical load for the column. This is
referred to as Engesser’s equation.

Empirical formulas based on experimental
data have been developed for use in the
design of steel, aluminum, and timber
columns.

smax =
P

A
c1 +

ec

r2  seca L

2rA
P

EA
 b d

Pcr =
p2EI

1KL22

scr =
p2Et

1KL>r22
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*13–128. The wood column is 4 m long and is required to
support the axial load of 25 kN. If the cross section is square,
determine the dimension a of each of its sides using a factor
of safety against buckling of The column is
assumed to be pinned at its top and bottom. Use the Euler
equation. and sY = 10 MPa.Ew = 11 GPa,

F.S. = 2.5.

13–130. Determine the maximum intensity w of the
uniform distributed load that can be applied on the beam
without causing the compressive members of the supporting
truss to buckle. The members of the truss are made from 
A-36-steel rods having a 60-mm diameter. Use F.S. = 2
against buckling.

REVIEW PROBLEMS

25 kN

4 m
a

a

Prob. 13–128

P

k

k

B

A

C

L
2

L
2

Prob. 13–129

•13–129. If the torsional springs attached to ends A and
C of the rigid members AB and BC have a stiffness k,
determine the critical load Pcr.

2 m 3.6 m

1.5 m

B

C

A

D

w

Prob. 13–130

13–131. The steel column supports an axial load
of 60 kip in addition to an eccentric load P. Determine the
maximum allowable value of P based on the AISC equations
of Sec. 13.6 and Eq. 13–30. Assume that in the x–z plane

and in the y–z plane 
sY = 50 ksi.

Est = 2911032 ksi,Ky = 2.0.Kx = 1.0

W10 * 45

10 ft

60 kip

y x

yx

8 in.

P
z

Prob. 13–131
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13–135. The A-36-steel column can be
considered pinned at its top and fixed at its base. Also, the
column is braced at its mid-height against the weak axis.
Determine the maximum axial load the column can support
without causing it to buckle.

W200 * 46

13

*13–132. The A-36-steel column can be considered pinned
at its top and fixed at its base. Also, it is braced at its
mid-height along the weak axis. Investigate whether a

section can safely support the loading shown.
Use the allowable stress method.

•13–133. The A-36-steel column can be considered pinned
at its top and fixed at its base. Also, it is braced at
its mid-height along the weak axis. Investigate whether a

section can safely support the loading shown.
Use the interaction formula.The allowable bending stress is
(sb)allow = 100 MPa.

W250 * 45

W250 * 45

P

P

5 ft

2 in.
0.5 in.

Prob. 13–134

6 m

6 m

Prob. 13–135

20 mm

4 m

P

A

10 mm

100 mm

100 mm

10 mm
150 mm

A
100 mm

10 mm

Probs. 13–136/137

4.5 m

4.5 m

600 mm
40 kN10 kN

Probs. 13–132/133

13–134. The member has a symmetric cross section. If it is
pin connected at its ends, determine the largest force it can
support. It is made of 2014-T6 aluminum alloy.

*13–136. The structural A-36 steel column has the cross
section shown. If it is fixed at the bottom and free at the top,
determine the maximum force P that can be applied at A
without causing it to buckle or yield. Use a factor of safety
of 3 with respect to buckling and yielding.

•13–137. The structural A-36 steel column has the cross
section shown. If it is fixed at the bottom and free at the top,
determine if the column will buckle or yield when the load

Use a factor of safety of 3 with respect to
buckling and yielding.
P = 10 kN.



As piles are driven in place, their ends are subjected to impact loading. The nature of
impact and the energy derived from it must be understood in order to determine the
stress developed within the pile.
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CHAPTER OBJECTIVES

In this chapter, we will show how to apply energy methods to solve
problems involving deflection. The chapter begins with a discussion of
work and strain energy, followed by a development of the principle of
conservation of energy. Using this principle, the stress and deflection
of a member are determined when the member is subjected to
impact. The method of virtual work and Castigliano’s theorem are
then developed, and these methods are used to determine the
displacement and slope at points on structural members and
mechanical elements.

14.1 External Work and Strain Energy

The deflection of joints on a truss or points on a beam or shaft can be
determined using energy methods. Before developing any of these
methods, however, we will first define the work caused by an external
force and couple moment and show how to express this work in terms of
a body’s strain energy. The formulations to be presented here and in the
next section will provide the basis for applying the work and energy
methods that follow throughout the chapter.

Energy Methods 14
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P

(a)

�

P¿

P

(c)

F

� �¿
x

P
P¿

(b)

�¿
�

Fig. 14–1

Work of a Force. In mechanics, a force does work when it
undergoes a displacement dx that is in the same direction as the force.The
work done is a scalar, defined as If the total displacement is 

, the work becomes

(14–1)

To show how to apply this equation, we will calculate the work done
by an axial force applied to the end of the bar shown in Fig. 14–1a.As the
magnitude of the force is gradually increased from zero to some limiting
value the final displacement of the end of the bar becomes If
the material behaves in a linear-elastic manner, then the force will be
directly proportional to the displacement; that is,
Substituting into Eq. 14–1 and integrating from 0 to we get

(14–2)

Therefore, as the force is gradually applied to the bar, its magnitude
builds from zero to some value P, and consequently, the work done is
equal to the average force magnitude, , times the total displacement

We can represent this graphically as the light-blue shaded area of the
triangle in Fig. 14–1c.

Suppose, however, that P is already applied to the bar and that another
force is now applied, so that the end of the bar is displaced further by
an amount Fig. 14–1b. The work done by is equal to the gray
shaded triangular area, but now the work done by P when the bar
undergoes this further displacement is

(14–3)

Here the work represents the dark-blue shaded rectangular area in
Fig. 14–1c. In this case P does not change its magnitude, since the bar’s
displacement is caused only by Therefore, work here is simply the
force magnitude P times the displacement ¢¿.

P¿.¢¿

Ue
œ = P¢¿

P¿¢¿,
P¿

¢.
P>2

Ue =
1
2

 P¢

¢,
F = 1P>¢2x.

¢.F = P,

Ue = L
¢

0
F dx

¢
dUe = F dx.

14
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M

u

Fig. 14–2

Work of a Couple Moment. A couple moment M does work
when it undergoes an angular displacement along its line of action.
The work is defined as Fig. 14–2. If the total angular
displacement is rad, the work becomes

(14–4)

As in the case of force, if the couple moment is applied to a body
having linear elastic material behavior, such that its magnitude is
increased gradually from zero at to M at then the work is

(14–5)

However, if the couple moment is already applied to the body and other
loadings further rotate the body by an amount then the work is

Strain Energy. When loads are applied to a body, they will deform
the material. Provided no energy is lost in the form of heat, the external
work done by the loads will be converted into internal work called strain
energy. This energy, which is always positive, is stored in the body and is
caused by the action of either normal or shear stress.

Normal Stress. If the volume element shown in Fig. 14–3 is subjected
to the normal stress then the force created on the element’s
top and bottom faces is If this force is
applied gradually to the element, like the force P discussed previously,
its magnitude is increased from zero to while the element
undergoes an elongation The work done by is therefore

Since the volume of the element
is we have

(14–6)

Notice that is always positive, even if is compressive, since and
will always be in the same direction.
In general then, if the body is subjected only to a uniaxial normal stress
the strain energy in the body is then

(14–7)Ui = LV
 
sP
2

 dV

s,

Pz

szszdUi

dUi =
1
2

 szPz dV

dV = dx dy dz,

1
2[sz dx dy]Pz dz.dUi = 1

2 dFz d¢z =
dFzd¢z = Pz dz.

dFz ,

dFz = sz dA = sz dx dy.
sz ,

Uœ
e = Mu¿

u¿,

Ue =
1
2

 Mu

u,u = 0

Ue = L
u

0
M du

u

dUe = M du,
du

14

dz

dx

dy

sz

Fig. 14–3
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Also, if the material behaves in a linear-elastic manner, then Hooke’s law
applies, and we can express the strain energy in terms of the normal
stress as

(14–8)

Shear Stress. A strain-energy expression similar to that for normal
stress can also be established for the material when it is subjected
to shear stress. Consider the volume element shown in Fig. 14–4. Here
the shear stress causes the element to deform such that only the shear
force acting on the top face of the element, is displaced

relative to the bottom face. The vertical faces only rotate, and
therefore the shear forces on these faces do no work. Hence, the strain
energy stored in the element is

or since 

(14–9)

The strain energy stored in the body is therefore

(14–10)

Like the case for normal strain energy, shear strain energy is always
positive since and are always in the same direction. If the material is
linear elastic, then, applying Hooke’s law, we can express the
strain energy in terms of the shear stress as

(14–11)Ui = LV
 
t2

2G
 dV

g = t>G,
gt

Ui = LV
 

tg

2
 dV

dUi =
1
2

 tg dV

dV = dx dy dz

dUi =
1
2

 [t1dx dy2]g dz

g dz
dF = t1dx dy2,

Ui = LV
 
s2

2E
 dV

dx

dy

dz
t

gdz

g

Fig. 14–4

14
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In the next section, we will use Eqs. 14–8 and 14–11 to obtain formal
expressions for the strain energy stored in members subjected to several
types of loads. Once this is done we will then be able to develop the
energy methods necessary to determine the displacement and slope at
points on a body.

Multiaxial Stress. The previous development may be expanded to
determine the strain energy in a body when it is subjected to a general
state of stress, Fig. 14–5a. The strain energies associated with each of
the normal and shear stress components can be obtained from Eqs. 14–6
and 14–9. Since energy is a scalar, the total strain energy in the body is
therefore

(14–12)

The strains can be eliminated by using the generalized form of Hooke’s
law given by Eqs. 10–18 and 10–19. After substituting and combining
terms, we have

(14–13)

If only the principal stresses act on the element, Fig. 14–5b,
this equation reduces to a simpler form, namely,

(14–14)

This equation was used in Sec. 10.7 as a basis for developing the
maximum-distortion-energy theory.

Ui = LV
c 1
2E

 As1 

2 + s2 

2 + s3 

2 B -
n

E
 1s1s2 + s2s3 + s1s32d dV

s3s2 ,s1 ,

 +
1

2G
 Atxy 

2 + tyz 

2 + txz 

2 B d  dV

 Ui = LV
c 1
2E

 Asx 

2 + sy 

2 + sz 

2 B -
n

E
 1sxsy + sysz + sxsz2

 +
1
2

 txygxy +
1
2

 tyzgyz +
1
2

 txzgxz d  dV

 Ui = LV
c1
2

 sxPx +
1
2

 syPy +
1
2

 szPz

14

(a)

sz

sy
sx

txz tyz

txy

(b)

s3

s2

s1

Fig. 14–5
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14.2 Elastic Strain Energy for Various
Types of Loading

Using the equations for elastic strain energy developed in the previous
section, we will now formulate the strain energy stored in a member
when it is subjected to an axial load, bending moment, transverse shear,
and torsional moment. Examples will be given to show how to calculate
the strain energy in members subjected to each of these loadings.

Axial Load. Consider a bar of variable yet slightly tapered cross
section, Fig. 14–6.The internal axial force at a section located a distance x
from one end is N. If the cross-sectional area at this section is A, then the
normal stress on the section is Applying Eq. 14–8, we have

If we choose an element or differential slice having a volume
the general formula for the strain energy in the bar is

therefore

(14–15)

For the more common case of a prismatic bar of constant cross-
sectional area A, length L, and constant axial load N, Fig. 14–7,
Eq. 14–15, when integrated, gives

(14–16)

Notice that the bar’s elastic strain energy will increase if the length of
the bar is increased, or if the modulus of elasticity or cross-sectional area
is decreased. For example, an aluminum rod will
store approximately three times as much energy as a steel rod

having the same size and subjected to the same load.
However, doubling the cross-sectional area of a rod will decrease its
ability to store energy by one-half. The following example illustrates
this point numerically.

[Est = 2911032 ksi]

[Eal = 1011032 ksi]

Ui =
N2L

2AE

Ui = L
L

0
 

N2

2AE
 dx

dV = A dx,

Ui = LV
 

sx 

2

2E
 dV = LV

 
N2

2EA2 dV

s = N>A.

14

x

xA

N

s

Fig. 14–6

L

A

N

N

Fig. 14–7
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EXAMPLE 14.1

One of the two high-strength steel bolts A and B shown in Fig. 14–8 is
to be chosen to support a sudden tensile loading. For the choice it is
necessary to determine the greatest amount of elastic strain energy
that each bolt can absorb. Bolt A has a diameter of 0.875 in. for 2 in.
of its length and a root (or smallest) diameter of 0.731 in. within the
0.25-in. threaded region. Bolt B has “upset” threads, such that the
diameter throughout its 2.25-in. length can be taken as 0.731 in. In
both cases, neglect the extra material that makes up the threads. Take

sY = 44 ksi.Est = 2911032 ksi,

2 in.

0.25 in.

0.875 in.

0.731 in.

A

2.25 in.
0.731 in.

B

Fig. 14–8
SOLUTION
Bolt A. If the bolt is subjected to its maximum tension, the
maximum stress of will occur within the 0.25-in. region.
This tension force is

Applying Eq. 14–16 to each region of the bolt, we have

Ans.

Bolt B. Here the bolt is assumed to have a uniform diameter of
0.731 in. throughout its 2.25-in. length.Also, from the calculation above,
it can support a maximum tension force of Thus,

Ans.

NOTE: By comparison, bolt B can absorb 36% more elastic energy
than bolt A, because it has a smaller cross section along its shank.

Ui =
N2L

2AE
=

118.47 kip2212.25 in.2
2[p10.731 in.>222][2911032 ksi]

= 0.0315 in. # kip

Pmax = 18.47 kip.

 = 0.0231 in. # kip

 =
118.47 kip2212 in.2

2[p10.875 in.>222][2911032 ksi]
+

118.47 kip2210.25 in.2
2[p10.731 in.>222][2911032 ksi]

 Ui = a  
N2L

2AE

Pmax = sYA = 44 ksi Bpa0.731 in.
2

b2R = 18.47 kip

sY = 44 ksi
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*Recall that the flexure formula, as used here, can also be used with justifiable accuracy
to determine the stress in slightly tapered beams. (See Sec. 6.4.) So in the general sense, I
in Eq. 14–17 may also have to be expressed as a function of x.

Bending Moment. Since a bending moment applied to a straight
prismatic member develops normal stress in the member, we can use
Eq. 14–8 to determine the strain energy stored in the member due
to bending. For example, consider the axisymmetric beam shown in
Fig. 14–9. Here the internal moment is M, and the normal stress acting on
the arbitrary element a distance y from the neutral axis is If
the volume of the element is where dA is the area of its
exposed face and dx is its length, the elastic strain energy in the beam is

or

Realizing that the area integral represents the moment of inertia of the
area about the neutral axis, the final result can be written as

(14–17)

To evaluate the strain energy, therefore, we must first express the
internal moment as a function of its position x along the beam, and then
perform the integration over the beam’s entire length.∗ The following
examples illustrate this procedure.

Ui = L
L

0
 
M2 dx

2EI

Ui = L
L

0
 

M2

2EI2 ¢LA
y2 dA≤  dx

Ui = LV
 
s2

2E
 dV = LV

 
1

2E
 aMy

I
b2

 dA dx

dV = dA dx,
s = My>I.

14

x

x
z

y

y
dA

M

s

Fig. 14–9
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EXAMPLE 14.2

Determine the elastic strain energy due to bending of the cantilevered
beam in Fig. 14–10a. EI is constant.

w

L

(a)

Fig. 14–10

SOLUTION
The internal moment in the beam is determined by establishing the x
coordinate with origin at the left side. The left segment of the beam is
shown in Fig. 14–10b. We have

Applying Eq. 14–17 yields

or

Ans.

We can also obtain the strain energy using an x coordinate having
its origin at the right side of the beam and extending positive to the
left, Fig. 14–10c. In this case,

Applying Eq. 14–17, we obtain the same result as before; however,
more calculations are involved in this case.

 M = -
wL2

2
+ wLx - w¢x2

2
≤

 -M - wxax

2
b + wL1x2 -

wL2

2
= 0d+ ©MNA = 0;

Ui =
w2L5

40EI

Ui = L
L

0
 
M2 dx

2EI
= L

L

0
 

[-w1x2>22]2 dx

2EI
=

w2

8EIL
L

0
x4 dx

 M = -w¢x2

2
≤

 M + wxax

2
b = 0d+ ©MNA = 0;

M

V
x

wx

(b)

x
2

M

wL

x

wx

(c)

V

x
2

wL2

2



EXAMPLE 14.3

Determine the bending strain energy in region AB of the beam
shown in Fig. 14–11a. EI is constant.

SOLUTION
A free-body diagram of the beam is shown in Fig. 14–11b. To obtain
the answer we can express the internal moment in terms of any one
of the indicated three “x” coordinates and then apply Eq. 14–17.
Each of these solutions will now be considered.

From the free-body diagram of the section in 
Fig. 14–11c, we have

Ans.

Using the free-body diagram of the section in 
Fig. 14–11d gives

Ans.

From the free-body diagram in Fig. 14–11e, we have

Ans.

NOTE: This and the previous example indicate that the strain
energy for the beam can be found using any suitable x coordinate. It is
only necessary to integrate over the range of the coordinate where the
internal energy is to be determined. Here the choice of provides
the simplest solution.

x1

 Ui = L  
M2 dx

2EI
= L

2L

L
 

[P1x3 - 2L2]2 dx3

2EI
=

P2L3

6EI

 M3 = P1x3 - 2L2
-M3 + 2P1x3 - L2 - P1x32 = 0d+ ©MNA = 0;

L … x3 … 2L.

 Ui = L  
M2 dx

2EI
= L

L

0
 

[P1x2 - L2]2 dx2

2EI
=

P2L3

6EI

 M2 = P1x2 - L2
-M2 + 2P1x22 - P1x2 + L2 = 0d+ ©MNA = 0;

0 … x2 … L.

 Ui = L  
M2 dx

2EI
= L

L

0
 

1-Px122 dx1

2EI
=

P2L3

6EI

 M1 = -Px1

M1 + Px1 = 0d+ ©MNA = 0;

0 … x1 … L.
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Fig. 14–11

A
B

(a)

L

P

L

C

A
B

(b)

P

C 

P

x1 x2

x3

L

2 P

V1

M1

(c)

A

P

x1

(d)

P 

V2

M2
x2 L

2 P

(e)

P 

V3

M3

(x3 � L)

x3

L

2 P



Fig. 14–12

Fig. 14–13

Transverse Shear. The strain energy due to shear stress in a beam
element can be determined by applying Eq. 14–11. Here we will consider
the beam to be prismatic and to have an axis of symmetry about the y
axis as shown in Fig. 14–12. If the internal shear at the section x is V, then
the shear stress acting on the volume element of material, having an area
dA and length dx, is Substituting into Eq. 14–11, the strain
energy for shear becomes

The integral in parentheses can be simplified if we define the form factor
for shear as

(14–18)

Substituting into the above equation, we get

(14–19)

The form factor defined by Eq. 14–18 is a dimensionless number that
is unique for each specific cross-sectional area. For example, if the beam
has a rectangular cross section of width b and height h, Fig. 14–13, then

Substituting these terms into Eq. 14–18, we get

(14–20)

The form factor for other sections can be determined in a similar manner.
Once obtained, this factor is substituted into Eq. 14–19 and the strain
energy for transverse shear can then be evaluated.

fs =
bh

A 1
12 bh3 B2L

h>2

-h>2
 
b2

4b2 ¢h2

4
- y2≤2

b dy =
6
5

 Q = y¿A¿ = ay +
1h>22 - y

2
b  bah

2
- yb =

b

2
 ¢h2

4
- y2≤

 I =
1

12
 bh3

 dA = b dy

 t = b

Ui = L
L

0
 

fsV
2 dx

2GA

fs =
A

I2LA
 

Q2

t2  dA

Ui = L
L

0
 

V2

2GI2 ¢LA
 

Q2

t2  dA≤  dx

Ui = LV
 
t2

2G
 dV = LV

 
1

2G
 aVQ

It
b2

 dA dx

t = VQ>It.
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b
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y
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h
2

h
2

h
2
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EXAMPLE 14.4

Determine the strain energy in the cantilevered beam due to shear
if the beam has a square cross section and is subjected to a uniform
distributed load Fig. 14–14a. EI and G are constant.w,

Fig. 14–14

x

wx

(b)

M 

V

x
2

L

w

(a)

a
a

SOLUTION
From the free-body diagram of an arbitrary section, Fig. 14–14b, we have

Since the cross section is square, the form factor (Eq. 14–20)
and therefore Eq. 14–19 becomes

or

Ans.

NOTE: Using the results of Example 14.2, with the
ratio of shear to bending strain energy is

Since and (Sec. 10.6), then as an upper
bound, so that

It can be seen that this ratio will increase as L decreases. However,
even for very short beams, where, say, the contribution due to
shear strain energy is only 8% of the bending strain energy. For this
reason, the shear strain energy stored in beams is usually neglected in
engineering analysis.

L = 5a,

1Ui2s
1Ui2b = 2a a

L
b2

E = 3G,
n … 1

2G = E>211 + n2

1Ui2s
1Ui2b =

w2L3>5Ga2

w2L5>40E A 1
12 a4 B =

2
3

 a a

L
b2

 
E

G

I = 1
12 a4,A = a2,

1Ui2s =
w2L3

5GA

1Ui2s = L
L

0
 

6
51-wx22 dx

2GA
=

3w2

5GAL
L

0
x2 dx

fs = 6
5

 V = -wx

 -V - wx = 0+ c ©Fy = 0;



Torsional Moment. To determine the internal strain energy in a
circular shaft or tube due to an applied torsional moment, we must apply
Eq. 14–11. Consider the slightly tapered shaft in Fig. 14–15. A section of
the shaft taken a distance x from one end is subjected to an internal
torque T. The shear stress distribution that causes this torque varies
linearly from the center of the shaft. On the arbitrary element of area
dA and length dx, the stress is The strain energy stored in the
shaft is thus

Since the area integral represents the polar moment of inertia J for the
shaft at the section, the final result can be written as

(14–21)

The most common case occurs when the shaft (or tube) has a constant
cross-sectional area and the applied torque is constant, Fig. 14–16.
Integration of Eq. 14–21 then gives

(14–22)

From this equation we may conclude that, like an axially loaded member,
the energy-absorbing capacity of a torsionally loaded shaft is decreased by
increasing the diameter of the shaft, since this increases J.

Ui =
T2L

2GJ

Ui = L
L

0
 

T2

2GJ
 dx

= L
L

0
 

T2

2GJ2 ¢LA
r2 dA≤  dx Ui = LV

 
t2

2G
 dV = LV

 
1

2G
 aTr

J
b2

 dA dx

t = Tr>J.
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Fig. 14–15

Fig. 14–16

T

x

x

dA

t

r

T

T

L

Important Points

• A force does work when it moves through a displacement. When
a force is applied to a body and its magnitude is increased
gradually from zero to F, the work is whereas if the
force is constant when the displacement occurs then 

• A couple moment does work when it displaces through a rotation.

• Strain energy is caused by the internal work of the normal and
shear stresses. It is always a positive quantity.

• The strain energy can be related to the resultant internal loadings
N, V, M, and T.

• As the beam becomes longer, the strain energy due to bending
becomes much larger than the strain energy due to shear. For this
reason, the shear strain energy in beams can generally be neglected.

U = F¢.
U = 1F>22¢,

The following example illustrates how to determine the strain energy
in a circular shaft due to a torsional loading.
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14

EXAMPLE 14.5

The tubular shaft in Fig. 14–17a is fixed at the wall and subjected to
two torques as shown. Determine the strain energy stored in the shaft
due to this loading. G = 75 GPa.

Fig. 14–17

40 N�m

55 N�m

750 mm

300 mm

15 mm

80 mm

(a)

40 N�m 40 N�m 55 N�m

(b)

T � 40 N�m T � 15 N�m

SOLUTION
Using the method of sections, the internal torque is first determined
within the two regions of the shaft where it is constant, Fig. 14–17b.
Although these torques ( and ) are in opposite
directions, this will be of no consequence in determining the strain
energy, since the torque is squared in Eq. 14–22. In other words, the
strain energy is always positive. The polar moment of inertia for the
shaft is

Applying Eq. 14–22, we have

Ans. = 233 mJ

 =
140 N # m2210.750 m2

2[7511092 N>m2]36.30110-62 m4 +
115 N # m2210.300 m2

2[7511092 N>m2]36.30110-62 m4

 Ui = a  
T2L

2GJ

J =
p

2
 [10.08 m24 - 10.065 m24] = 36.30110-62 m4

15 N # m40 N # m
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14–1. A material is subjected to a general state of plane
stress. Express the strain energy density in terms of the
elastic constants E, G, and and the stress components 

and txy .sy ,
sx ,n

•14–5. Determine the strain energy in the rod assembly.
Portion AB is steel, BC is brass, and CD is aluminum.

and .Eal = 73.1 GPaEst = 200 GPa, Ebr = 101 GPa,

PROBLEMS

sy

sx

txy

Prob. 14–1

A B
C

75 mm
20 kN

30 kN

30 kN

100 mm

0.5 m1.5 m

Prob. 14–3

14–2. The strain-energy density must be the same whether
the state of stress is represented by and or
by the principal stresses and This being the case,
equate the strain–energy expressions for each of these two
cases and show that 

14–3. Determine the strain energy in the stepped
rod assembly. Portion AB is steel and BC is
brass.
(sY)st = 250 MPa.

(sY)br = 410 MPa,Est = 200 GPa,Ebr = 101 GPa,

G = E>[211 + n2].
s2 .s1

txy ,sy ,sx ,

14–6. If determine the total strain energy
stored in the truss. Each member has a cross-sectional area
of and is made of A-36 steel.

14–7. Determine the maximum force P and the
corresponding maximum total strain energy stored in the
truss without causing any of the members to have
permanent deformation. Each member has the cross-
sectional area of and is made of A-36 steel.2.511032 mm2

2.511032 mm2

P = 60 kN,

*14–4. Determine the torsional strain energy in the A-36
steel shaft. The shaft has a diameter of 40 mm.

0.5 m

0.5 m

0.5 m

900 N�m

200 N�m

300 N�m

Prob. 14–4

3 kN
A

B
C D15 mm

20 mm
25 mm

5 kN

5 kN

2 kN

2 kN

200 mm400 mm300 mm

Prob. 14–5

P

1.5 m

2 m

A

B

C

D

Probs. 14–6/7
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0.5 m

0.5 m

0.5 m
3 kN�m

4 kN�m

Prob. 14–8

0.6 m

0.4 m

0.5 m6 kN�m

12 kN�m

8 kN�m

Prob. 14–9

*14–8. Determine the torsional strain energy in the A-36
steel shaft. The shaft has a radius of 30 mm.

14–11. The shaft assembly is fixed at C. The hollow
segment BC has an inner radius of 20 mm and outer radius
of 40 mm, while the solid segment AB has a radius of
20 mm. Determine the torsional strain energy stored in the
shaft. The shaft is made of 2014-T6 aluminum alloy. The
coupling at B is rigid.

•14–9. Determine the torsional strain energy in the A-36
steel shaft. The shaft has a radius of 40 mm.

14–10. Determine the torsional strain energy stored in the
tapered rod when it is subjected to the torque T. The rod is
made of material having a modulus of rigidity of G.

*14–12. Consider the thin-walled tube of Fig. 5–28. Use
the formula for shear stress, Eq. 5–18, and
the general equation of shear strain energy, Eq. 14–11, to
show that the twist of the tube is given by Eq. 5–20,
Hint: Equate the work done by the torque T to the strain
energy in the tube, determined from integrating the strain
energy for a differential element, Fig. 14–4, over the volume
of material.

•14–13. Determine the ratio of shearing strain energy to
bending strain energy for the rectangular cantilever beam
when it is subjected to the loading shown.The beam is made
of material having a modulus of elasticity of E and Poisson’s
ratio of .n

tavg = T>2tAm,

2r0

r0

L

T

Prob. 14–10

A

600 mm

600 mm

60 N�m

30 N�m
20 mm

20 mm

40 mm

B

C

Prob. 14–11

P

a

a

Section a – a

h

L

b

Prob. 14–13
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14–14. Determine the bending strain-energy in the beam
due to the loading shown. EI is constant.

•14–17. Determine the bending strain energy in the A-36
steel beam. I = 99.2 (106) mm4.

14–15. Determine the bending strain energy in the beam.
EI is constant.

14–18. Determine the bending strain energy in the A-36
steel beam due to the distributed load. I = 122 (106) mm4.

*14–16. Determine the bending strain energy in the A-36
structural steel beam. Obtain the answer using
the coordinates and , and and .x31b2 x2x41a2 x1

W10 * 12

14–19. Determine the strain energy in the horizontal
curved bar due to torsion. There is a vertical force P acting
at its end. JG is constant.

L—
2

L—
2

B

M0

A C

Prob. 14–14

P P

L
4

L
4

L
2

Prob. 14–15

12 ft 6 ft

x2 x3

x4x1

6 kip

Prob. 14–16

6 m

9 kN/m

Prob. 14–17

B A

15 kN/m

3 m

Prob. 14–18

r

P

90�

Prob. 14–19
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2 m

1 m

8 kN

2 m 1 m

8 kN

Prob. 14–20

LC

P

L—
2

y

z

x

B

A

Prob. 14–21

P
L

h

b

Prob. 14–2214

*14–20. Determine the bending strain energy in the beam
and the axial strain energy in each of the two rods. The
beam is made of 2014-T6 aluminum and has a square cross
section 50 mm by 50 mm. The rods are made of A-36 steel
and have a circular cross section with a 20-mm diameter.

•14–21. The pipe lies in the horizontal plane. If it is
subjected to a vertical force P at its end, determine the
strain energy due to bending and torsion. Express the
results in terms of the cross-sectional properties I and J, and
the material properties E and G.

14–22. The beam shown is tapered along its width. If a
force P is applied to its end, determine the strain energy in
the beam and compare this result with that of a beam that
has a constant rectangular cross section of width b and
height h.

14–23. Determine the bending strain energy in the
cantilevered beam due to a uniform load w. Solve the
problem two ways. (a) Apply Eq. 14–17. (b) The load w dx
acting on a segment dx of the beam is displaced a distance y,
where , the equation of
the elastic curve. Hence the internal strain energy in the
differential segment dx of the beam is equal to the external
work, i.e., . Integrate this equation to
obtain the total strain energy in the beam. EI is constant.

dUi = 1
21w dx21-y2

y = w1-x4 + 4L3x - 3L42>124EI2

*14–24. Determine the bending strain energy in the
simply supported beam due to a uniform load w. Solve the
problem two ways. (a) Apply Eq. 14–17. (b) The load w dx
acting on the segment dx of the beam is displaced a distance
y, where , the equation
of the elastic curve. Hence the internal strain energy in the
differential segment dx of the beam is equal to the external
work, i.e., . Integrate this equation to
obtain the total strain energy in the beam. EI is constant.

dUi = 1
21w dx21-y2

y = w1-x4 + 2Lx3 - L3x2>124EI2

L
dx x

w dx

w

Prob. 14–23

L
dxx

w

w dx

Prob. 14–24
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14.3 Conservation of Energy

All energy methods used in mechanics are based on a balance of energy,
often referred to as the conservation of energy. In this chapter, only
mechanical energy will be considered in the energy balance; that is, the
energy developed by heat, chemical reactions, and electromagnetic
effects will be neglected. As a result, if a loading is applied slowly to a
body, then physically the external loads tend to deform the body so that
the loads do external work as they are displaced. This external work
on the body is transformed into internal work or strain energy which
is stored in the body. Furthermore, when the loads are removed, the
strain energy restores the body back to its original undeformed position,
provided the material’s elastic limit is not exceeded. The conservation of
energy for the body can therefore be stated mathematically as

(14–23)

We will now show three examples of how this equation can be applied
to determine the displacement of a point on a deformable member or
structure. As the first example, consider the truss in Fig. 14–18 subjected
to the load P. Provided P is applied gradually, the external work done
by P is determined from Eq. 14–2, that is, where is the
vertical displacement of the truss at the joint where P is applied.
Assuming that P develops an axial force N in a particular member, the
strain energy stored in this member is determined from Eq. 14–16, that is,

Summing the strain energies for all the members of the
truss, we can write Eq. 14–23 as

(14–24)

Once the internal forces (N) in all the members of the truss are
determined and the terms on the right calculated, it is then possible to
determine the unknown displacement ¢.

1
2

 P¢ = a  
N2L

2AE

Ui = N2L>2AE.

¢Ue = 1
2 P¢,

Ue = Ui

Ui ,
Ue

14

P

�

Fig. 14–18
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P

�

Fig. 14–19

As a second example, consider finding the vertical displacement 
under the load P acting on the beam in Fig. 14–19. Again, the external
work is In this case the strain energy is the result of internal
shear and moment loadings caused by P. In particular, the contribution
of strain energy due to shear is generally neglected in most beam
deflection problems unless the beam is short and supports a very large
load. (See Example 14.4.) Consequently, the beam’s strain energy will be
determined only by the internal bending moment M, and therefore,
using Eq. 14–17, Eq. 14–23 can be written symbolically as

(14–25)

Once M is expressed as a function of position x and the integral is
evaluated, can then be determined.

As a last example, we will consider a beam loaded by a couple moment
as shown in Fig. 14–20. This moment causes the rotational

displacement at the point of application of the couple moment. Since
the couple moment only does work when it rotates, using Eq. 14–5, the
external work is Therefore Eq. 14–23 becomes

(14–26)

Here the strain energy is the result of the internal bending moment
M caused by application of the couple moment Once M has been
expressed as a function of x and the strain energy evaluated, then 
which measures the slope of the elastic curve can be determined.

In each of the above examples, it should be noted that application of
Eq. 14–23 is quite limited, because only a single external force or couple
moment must act on the member or structure. Also, the displacement
can only be calculated at the point and in the direction of the external
force or couple moment. If more than one external force or couple
moment were applied, then the external work of each loading would
involve its associated unknown displacement. As a result, all these
unknown displacements could not be determined, since only the single
Eq. 14–23 is available for the solution. Although application of the
conservation of energy as described here has these restrictions, it does
serve as an introduction to more general energy methods, which we will
consider throughout the rest of this chapter.

u

M0 .

1
2

 M0 u = L
L

0
 
M2

2EI
 dx

Ue = 1
2 M0u.

u

M0

¢

1
2

 P¢ = L
L

0
 
M2

2EI
 dx

Ue = 1
2 P¢.

¢

14

M0

u

Fig. 14–20
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EXAMPLE 14.6

The three-bar truss in Fig. 14–21a is subjected to a horizontal force of
5 kip. If the cross-sectional area of each member is determine
the horizontal displacement at point B. E = 2911032 ksi.

0.20 in2,

Fig. 14–21

A

B

C

2 ft
4 ft

5 kip

30�

(a)

60�

5 kip

30�

60� C

B

NAB � 2.89 kip

NBC � 5.77 kip NAC � 5 kip

Cy

5.77 kip

(b)

SOLUTION
We can apply the conservation of energy to solve this problem
because only a single external force acts on the truss and the required
displacement happens to be in the same direction as the force.
Furthermore, the reactive forces on the truss do no work since they
are not displaced.

Using the method of joints, the force in each member is determined
as shown on the free-body diagrams of the pins at B and C, Fig. 14–21b.

Applying Eq. 14–24, we have

Notice that since N is squared, it does not matter if a particular
member is in tension or compression. Substituting in the numerical
data for A and E and solving, we get

Ans. = 0.0979 in. :
 1¢B2h =

47.32 kip # ft112 in.>ft2
10.2 in22[2911032 kip>in2]

 1¢B2h =
47.32 kip # ft

AE

+
15 kip2213.46 ft2

2AE

 
1
2

 15 kip21¢B2h =
12.89 kip2212 ft2

2AE
+
1-5.77 kip2214 ft2

2AE

 
1
2

 P¢ = a  
N2L

2AE
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EXAMPLE 14.7

The cantilevered beam in Fig. 14–22a has a rectangular cross section
and is subjected to a load P at its end. Determine the displacement of
the load. EI is constant.

SOLUTION
The internal shear and moment in the beam as a function of x are
determined using the method of sections, Fig. 14–22b.

When applying Eq. 14–23 we will consider the strain energy due to
both shear and bending. Using Eqs. 14–19 and 14–17, we have

(1)

The first term on the right side of this equation represents the strain
energy due to shear, while the second is the strain energy due to
bending. As stated in Example 14.4, for most beams the shear strain
energy is much smaller than the bending strain energy. To show when
this is the case for the beam in Figure 14–22a, we require

Since (see Example 14.4), then

Hence if L is relatively long compared with h, the beam becomes
slender and the shear strain energy can be neglected. In other words,
the shear strain energy becomes important only for short, deep beams.
For example, beams for which have approximately 28 times
more bending strain energy than shear strain energy, so neglecting the
shear strain energy represents an error of about 3.6%. With this in
mind, Eq. 1 can be simplified to

so that

Ans.¢ =
PL3

3EI

1
2

 P¢ =
P2L3

6EI

L = 5h

0.9 � aL

h
b2

E … 3G

 
3

5G
�

2L2

Eh2

 
3
5

 
P2L

G1bh2 �
P2L3

6E C 1
121bh32 D

 
3
5

 
P2L

GA
�

P2L3

6EI

 = L
L

0
 

A65 B1-P22 dx

2GA
+ L

L

0
 

1-Px22 dx

2EI
=

3P2L

5GA
+

P2L3

6EI

 
1
2

 P¢ = L
L

0
 

fsV
2 dx

2GA
+ L

L

0
 
M2 dx

2EI

Fig. 14–22

L

(a)

b
h

P

x
M � �Px

V � �P

P

(b)
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•14–25. Determine the horizontal displacement of joint A.
Each bar is made of A-36 steel and has a cross-sectional
area of .1.5 in2

*14–28. Determine the horizontal displacement of joint D.
AE is constant.

PROBLEMS

4 ft

CB

D

A

3 ft

3 ft

2 kip

Prob. 14–25

L

P
C

L

BA

L

Prob. 14–26

14–26. Determine the horizontal displacement of joint C.
AE is constant.

14–27. Determine the vertical displacement of joint C. AE
is constant.

L

P

C

L

B

A

L

Prob. 14–27

L

P

A
B

D C

L0.8

L0.6

Prob. 14–28

•14–29. The cantilevered beam is subjected to a couple
moment applied at its end. Determine the slope of the
beam at B. EI is constant.

M0

L
B

A M0

Prob. 14–29

BA

C

4 in.

12 in.

a

a

Section a – a

100 kip

1.5 ft1.5 ft

Prob. 14–30

14–30. Determine the vertical displacement of point C of
the simply supported 6061-T6 aluminum beam. Consider
both shearing and bending strain energy.
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14–31. Determine the slope at the end B of the A-36 steel
beam. .I = 8011062 mm4

14–34. The A-36 steel bars are pin connected at B. If
each has a square cross section, determine the vertical
displacement at B.

*14–32. Determine the deflection of the beam at its center
caused by shear. The shear modulus is G.

14–35. Determine the displacement of point B on the 
A-36 steel beam. I = 8011062 mm4.

•14–33. The A-36 steel bars are pin connected at B and C.
If they each have a diameter of 30 mm, determine the slope
at E.

*14–36. The rod has a circular cross section with a moment
of inertia I. If a vertical force P is applied at A, determine
the vertical displacement at this point. Only consider the
strain energy due to bending. The modulus of elasticity is E.

8 m

A B

6 kN�m

Prob. 14–31

b

h

P

L
2

L
2

Prob. 14–32

300 N�m

A D

3 m 2 m 2 m 3 m

CB

E

Prob. 14–33

A
2 in.

2 in.

800 lb

B C D

8 ft 4 ft 10 ft

Prob. 14–34

3 m 5 m

A C

20 kN

B

Prob. 14–35

r

P

A

Prob. 14–36
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•14–37. The load P causes the open coils of the spring to
make an angle with the horizontal when the spring is
stretched. Show that for this position this causes a torque

and a bending moment at the
cross section. Use these results to determine the maximum
normal stress in the material.

14–38. The coiled spring has n coils and is made from a
material having a shear modulus G. Determine the stretch
of the spring when it is subjected to the load P.Assume that
the coils are close to each other so that and the
deflection is caused entirely by the torsional stress in the coil.

u L 0°

M = PR sin uT = PR cos u

u

*14–40. The rod has a circular cross section with a polar
moment of inertia J and moment of inertia I. If a vertical
force P is applied at A, determine the vertical displacement
at this point. Consider the strain energy due to bending and
torsion. The material constants are E and G.

14–39. The pipe assembly is fixed at A. Determine 
the vertical displacement of end C of the assembly. The
pipe has an inner diameter of 40 mm and outer diameter
of 60 mm and is made of A-36 steel. Neglect the shearing
strain energy.

•14–41. Determine the vertical displacement of end B of
the frame. Consider only bending strain energy. The frame
is made using two A-36 steel wide-flange
sections.

W460 * 68

P

P

R
d 

u

Probs. 14–37/38

800 mm

400 mm

C

B600 N

A

Prob. 14–39

r

P

x

z

y

A

Prob. 14–40

B

A

20 kN

4 m

3 m

Prob. 14–41
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14.4 Impact Loading

Throughout this text we have considered all loadings to be applied to a
body in a gradual manner, such that when they reach a maximum value the
body remains static. Some loadings, however, are dynamic; that is, they
vary with time. A typical example would be caused by the collision of
objects. This is called an impact loading. Specifically, impact occurs when
one object strikes another, such that large forces are developed between
the objects during a very short period of time.

If we assume no energy is lost during impact, due to heat, sound or
localized plastic deformations, then we can study the mechanics of impact
using the conservation of energy. To show how this is done, we will first
analyze the motion of a simple block-and-spring system as shown in 
Fig. 14–23. When the block is released from rest, it falls a distance h,
striking the spring and compressing it a distance before momentarily
coming to rest. If we neglect the mass of the spring and assume that the
spring responds elastically, then the conservation of energy requires that
the energy of the falling block be transformed into stored (strain) energy
in the spring; or in other words, the work done by the block’s weight,
falling is equal to the work needed to displace the end of the
spring by an amount Since the force in a spring is related to by
the equation where k is the spring stiffness, then applying the
conservation of energy and Eq. 14–2, we have

(14–27)

This quadratic equation may be solved for The maximum root is

If the weight W is supported statically by the spring, then the top
displacement of the spring is Using this simplification,
the above equation becomes

or

(14–28)¢max = ¢st B1 + C1 + 2 ¢ h

¢st
≤ R

¢max = ¢st + 21¢st22 + 2¢sth

¢st = W>k.

¢max =
W

k
+ C a

W

k
b2

+ 2aW

k
bh

¢max .

 ¢max
2 -

2W

k
 ¢max - 2aW

k
bh = 0

 W1h + ¢max2 =
1
2

 k¢max
2

 W1h + ¢max2 =
1
2

 1k¢max2 ¢max

 Ue = Ui

F = k¢max ,
¢max¢max .

h + ¢max ,

¢max

This crash barrier is designed to absorb 
the impact energy of moving vehicles.

h

k

�max

Fig. 14–23
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∗Recall from physics that kinetic energy is “energy of motion.” For the translation of a
body it is determined from where m is the body’s mass, m = W>g.1

2 mv2,

Once is calculated, the maximum force applied to the spring can
be determined from

(14–29)

It should be realized, however, that this force and associated
displacement occur only at an instant. Provided the block does not
rebound off the spring, it will continue to vibrate until the motion
dampens out and the block assumes the static position, Note also
that if the block is held just above the spring, and released, then,
from Eq. 14–28, the maximum displacement of the block is

In other words, when the block is released from the top of the spring
(a dynamic load), the displacement is twice what it would be if it were set
on the spring (a static load).

Using a similar analysis, it is also possible to determine the maximum
displacement of the end of the spring if the block is sliding on a smooth
horizontal surface with a known velocity v just before it collides with the
spring, Fig. 14–24. Here the block’s kinetic energy,∗ will be
transformed into stored energy in the spring. Hence,

(14–30)

Since the static displacement at the top of the spring caused by the
weight W resting on it is then

(14–31)

The results of this simplified analysis can be used to determine both the
approximate deflection and the stress developed in a deformable member
when it is subjected to impact. To do this we must make the necessary
assumptions regarding the collision, so that the behavior of the colliding
bodies is similar to the response of the block-and-spring models discussed
above. Hence we will consider the moving body to be rigid like the block
and the stationary body to be deformable like the spring.Also, it is assumed
that the material behaves in a linear-elastic manner.When collision occurs,
the bodies remain in contact until the elastic body reaches its maximum
deformation,and during the motion the inertia or mass of the elastic body is
neglected.Realize that each of these assumptions will lead to a conservative
estimate of both the maximum stress and deflection of the elastic body. In
other words, their values will be larger than those that actually occur.

¢max = B
¢stv

2

g

¢st = W>k,

 ¢max = B
Wv2

gk

 
1
2

 aW
g
bv2 =

1
2

 k¢max
2

 Ue = Ui

1
21W>g2v2,

¢max = 2¢st

h = 0,
¢st .

Fmax = k¢max

¢max

k
v

�max

Fig. 14–24
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A few examples of when this theory can be applied are shown in
Fig. 14–25. Here a block of known weight is dropped onto a post and a
beam, causing them to deform a maximum amount The energy of
the falling block is transformed momentarily into axial strain energy in
the post and bending strain energy in the beam.∗ In order to determine
the deformation we could use the same approach as for the
block–spring system, and that is to write the conservation-of-energy
equation for the block and post or block and beam, and then solve for

However, we can also solve these problems in a more direct
manner by modeling the post and beam by an equivalent spring. For
example, if a force P displaces the top of the post then a
spring having a stiffness would be displaced the same amount
by P, that is, In a similar manner, from Appendix C, a force P
applied to the center of a simply supported beam displaces the center

and therefore an equivalent spring would have a
stiffness of It is not necessary, however, to actually find the
equivalent spring stiffness to apply Eq. 14–28 or 14–30. All that is needed
to determine the dynamic displacement, is to calculate the static
displacement, due to the weight of the block resting on the
member.

Once is determined, the maximum dynamic force can then be
calculated from If we consider to be an equivalent
static load then the maximum stress in the member can be determined
using statics and the theory of mechanics of materials. Recall that this
stress acts only for an instant. In reality, vibrational waves pass through
the material, and the stress in the post or the beam, for example, does not
remain constant.

The ratio of the equivalent static load to the static load 
is called the impact factor, n. Since and , then
from Eq. 14–28, we can express it as

(14–32)

This factor represents the magnification of a statically applied load so
that it can be treated dynamically. Using Eq. 14–32, n can be calculated
for any member that has a linear relationship between load and
deflection. For a complicated system of connected members, however,
impact factors are determined from experience and experimental
testing. Once n is determined, the dynamic stress and deflection at the
point of impact are easily found from the static stress and static
deflection caused by the load W, that is, and
¢max = n¢st .

smax = nsst¢st

sst

n = 1 + C 1 + 2¢ h

¢st
≤

Pst = k¢stPmax = k¢max

Pst = WPmax

PmaxPmax = k¢max .
¢max

Pst = W¢st ,
¢max ,

k = 48EI>L3.
¢ = PL3>48EI,

¢ = P>k.
k = AE>L ¢ = PL>AE,

¢max .

¢max ,

¢max .

Fig. 14–25

∗Strain energy due to shear is neglected for reasons discussed in Example 14.4.

h

�max

h

�max

The members of this crash guard must be
designed to resist a prescribed impact loading
in order to arrest the motion of a rail car.
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Important Points

• Impact occurs when a large force is developed between two
objects which strike one another during a short period of time.

• We can analyze the effects of impact by assuming the moving
body is rigid, the material of the stationary body is linear elastic,
no energy is lost during collision, the bodies remain in contact
during collision, and the inertia of the elastic body is neglected.

• The dynamic load on a body can be determined by multiplying
the static load by an impact factor.

EXAMPLE 14.8

The aluminum pipe shown in Fig. 14–26 is used to support a load of
150 kip. Determine the maximum displacement at the top of the pipe
if the load is (a) applied gradually, and (b) applied by suddenly
releasing it from the top of the pipe when Take

and assume that the aluminum behaves elastically.

SOLUTION
Part (a). When the load is applied gradually, the work done by the
weight is transformed into elastic strain energy in the pipe. Applying
the conservation of energy, we have

Ans.

Part (b). Here Eq. 14–28 can be applied, with Hence,

Ans.

Hence, the displacement of the weight when applied dynamically is
twice as great as when the load is applied statically. In other words, the
impact factor is Eq. 14–32.n = 2,

 = 0.0417 in.

 = 2¢st = 210.02083 in.2
 ¢max = ¢st B1 + C1 + 2¢ h

¢st
≤ R

h = 0.

 = 0.02083 in. = 0.0208 in.

 ¢st =
WL

AE
=

150 kip112 in.2
p[13 in.22 - 12.5 in.22]1011032 kip>in2

 
1
2

 W¢st =
W2L

2AE

 Ue = Ui

Eal = 1011032 ksi
h = 0.

3 in. h
t � 0.5 in.

12 in.

150 kip

Fig. 14–26
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EXAMPLE 14.9

The A-36 steel beam shown in Fig. 14–27a is a Determine
the maximum bending stress in the beam and the beam’s maximum
deflection if the weight is dropped from a height 
onto the beam.

SOLUTION I
We will apply Eq. 14–28. First, however, we must calculate Using
the table in Appendix C, and the data in Appendix B for the
properties of a we have

Ans.

The equivalent static load that causes this displacement is therefore 

The internal moment caused by this load is maximum at the center
of the beam, such that by the method of sections, Fig. 14–27b,

Applying the flexure formula to determine the
bending stress, we have

Ans.

SOLUTION II
It is also possible to obtain the dynamic or maximum deflection

from first principles. The external work of the falling weight 
W is Since the beam deflects and

then

Solving and choosing the positive root yields

Ans.¢max = 0.420 in.

20.55¢2
max - 1.50¢max - 3.00 = 0

11.50 kip212 in. + ¢max2 =
1
2

 B48[2911032 kip>in2]209 in4

116 ft23112 in.>ft23 R  ¢max
2

W1h + ¢max2 =
1
2

 ¢48EI¢max

L3 ≤  ¢max

Ue = Ui

Pmax = 48EI¢max>L3,
¢max ,Ue = W1h + ¢max2.

¢max

 =
12[2911032 kip>in2]10.420 in.219.92 in.>22

116 ft22112 in.>ft22 = 19.7 ksi

 smax =
Mmaxc

I
=

PmaxLc

4I
=

12E ¢maxc

L2

Mmax = PmaxL>4.

P max =
48EI

L3 ¢max =
4812911032 ksi21209 in42
116 ft23 112 in.>ft23 10.420 in.2 =  17.3 kip

 = 0.03649 in.B1 + B1 + 2a 2 in.
0.03649 in.

b R = 0.420 in.

 ¢max = ¢st B1 + C1 + 2¢ h

¢st
≤ R

 ¢st =
WL3

48EI
=

(1.50 kip)116 ft23112 in.>ft23
48[2911032 ksi]1209 in42 = 0.03649 in.

W10 * 39,

¢st .

Est = 2911032 ksi.
h = 2 in.W = 1.50 kip

W10 * 39.

8 ft

h � 2 in.
W

(a)

8 ft

Mmax

V

(b)

—
2
L

2
Pmax

Fig. 14–27



14.4 IMPACT LOADING 745

14

EXAMPLE 14.10

A railroad car that is assumed to be rigid and has a mass of 80 Mg is
moving forward at a speed of when it strikes a steel
200-mm by 200-mm post at A, Fig. 14–28a. If the post is fixed to the
ground at C, determine the maximum horizontal displacement of its
top B due to the impact. Take 

SOLUTION
Here the kinetic energy of the railroad car is transformed into internal
bending strain energy only for region AC of the post. (Region BA is
not subjected to an internal loading.) Assuming that point A is
displaced then the force that causes this displacement
can be determined from the table in Appendix C. We have

(1)

Substituting in the numerical data yields

Using Eq. 1, the force is therefore

With reference to Fig. 14–28b, segment AB of the post remains
straight. To determine the maximum displacement at B, we must first
determine the slope at A. Using the appropriate formula from the
table in Appendix C to determine we have

The maximum displacement at B is thus

Ans. = 11.62 mm + 10.01162 rad2 111032 mm = 23.2 mm

 1¢B2max = 1¢A2max + uALAB

uA =
PmaxLAC

2

2EI
=

275.411032 N 11.5 m22
2[20011092 N>m2] C 1

1210.2 m24 D = 0.01162 rad

uA ,

Pmax =
3[20011092 N>m2] C 1

1210.2 m24 D 10.01162 m2
11.5 m23 = 275.4 kN

Pmax

1¢A2max = B
8011032 kg10.2 m>s2211.5 m23
3[20011092 N>m2] C 1

1210.2 m24 D = 0.01162 m = 11.62 mm

 
1
2

 mv2 =
1
2

 
3EI

LAC
3  1¢A22max ;  1¢A2max = B

mv2LAC
3

3EI

 
1
2

 mv2 =
1
2

 Pmax1¢A2maxUe = Ui ;

Pmax =
3EI1¢A2max

LAC
3

Pmax1¢A2max ,

Est = 200 GPa.

v = 0.2 m>s

Fig. 14–28

1 m
1.5 m

200 mm

200 mm

(a)

A

B

C

v � 0.2 m/s

B

A

C

(b)

1 m

1.5 m

uA

(�A)max

(�B)max

Pmax
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150 ft

Prob. 14–44

h

10 mm

5 mm

300 mm

200 mm

Prob. 14–46

h

10 mm

5 mm

300 mm

200 mm

Prob. 14–45

14–42. A bar is 4 m long and has a diameter of 30 mm. If it
is to be used to absorb energy in tension from an impact
loading, determine the total amount of elastic energy that it
can absorb if (a) it is made of steel for which

and (b) it is made from an
aluminum alloy for which 

14–43. Determine the diameter of a red brass C83400 bar
that is 8 ft long if it is to be used to absorb of
energy in tension from an impact loading. No yielding occurs.

*14–44. A steel cable having a diameter of 0.4 in. wraps
over a drum and is used to lower an elevator having a weight
of 800 lb. The elevator is 150 ft below the drum and is
descending at the constant rate of 2 ft�s when the drum
suddenly stops. Determine the maximum stress developed in
the cable when this occurs. .sY = 50 ksiEst = 2911032 ksi,

800 ft # lb

sY = 405 MPa.Eal = 70 GPa,
sY = 800 MPa,Est = 200 GPa,

•14–45. The composite aluminum bar is made from two
segments having diameters of 5 mm and 10 mm. Determine
the maximum axial stress developed in the bar if the 5-kg
collar is dropped from a height of 
Eal = 70 GPa, sY = 410 MPa.

h = 100 mm.

PROBLEMS

14–46. The composite aluminum bar is made from two
segments having diameters of 5 mm and 10 mm. Determine
the maximum height h from which the 5-kg collar should
be dropped so that it produces a maximum axial stress in the
bar of s max = 300 MPa, Eal = 70 GPa, sY = 410 MPa.
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40 mm 20 mm

300 mm300 mm v

ABC

Probs. 14–47/48

14–47. The 5-kg block is traveling with the speed of
just before it strikes the 6061-T6 aluminum

stepped cylinder. Determine the maximum normal stress
developed in the cylinder.

*14–48. Determine the maximum speed of the 5-kg
block without causing the 6061-T6 aluminum stepped
cylinder to yield after it is struck by the block.

v

v = 4 m>s
14–51. The aluminum bar assembly is made from two
segments having diameters of 40 mm and 20 mm.
Determine the maximum height h from which the 60-kg
collar can be dropped so that it will not cause the bar to
yield. Take sY = 410 MPa.Eal = 70 GPa,

A

B

1 m

1 m

200 mm

200 mm
v � 0.5 m/s

Prob. 14–49

2 ft

k

3 ft/s

2 ft

Prob. 14–52

h

1.2 m

40 mm

20 mm

A

B

C

0.6 m

Probs. 14–50/51
•14–49. The steel beam AB acts to stop the oncoming
railroad car, which has a mass of 10 Mg and is coasting
towards it at Determine the maximum stress
developed in the beam if it is struck at its center by the
car. The beam is simply supported and only horizontal
forces occur at A and B. Assume that the railroad car
and the supporting framework for the beam remains rigid.
Also, compute the maximum deflection of the beam.

.sY = 250 MPaEst = 200 GPa,

v = 0.5 m>s .

14–50. The aluminum bar assembly is made from two
segments having diameters of 40 mm and 20 mm.
Determine the maximum axial stress developed in the bar if
the 10-kg collar is dropped from a height of 
Take .Eal = 70 GPa, sY = 410 MPa

h = 150 mm.

*14–52. The 50-lb weight is falling at at the instant it
is 2 ft above the spring and post assembly. Determine the
maximum stress in the post if the spring has a stiffness of

The post has a diameter of 3 in. and a
modulus of elasticity of Assume the
material will not yield.

E = 6.8011032 ksi.
k = 200 kip>in.

3 ft>s
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10 in.

Prob. 14–55

•14–53. The 50-kg block is dropped from 
onto the bronze C86100 tube. Determine the minimum
length L the tube can have without causing the tube to yield.

14–54. The 50-kg block is dropped from 
onto the bronze C86100 tube. If determine
the maximum normal stress developed in the tube.

L = 900 mm,
h = 600 mm

h = 600 mm *14–56. The sack of cement has a weight of 90 lb. If it is
dropped from rest at a height of onto the center of
the structural steel A-36 beam, determine the
maximum bending stress developed in the beam due to the
impact. Also, what is the impact factor?

•14–57. The sack of cement has a weight of 90 lb.
Determine the maximum height h from which it can be
dropped from rest onto the center of the 
structural steel A-36 beam so that the maximum bending
stress due to impact does not exceed 30 ksi.

W10 * 39

W10 * 39
h = 4 ft

14–55. The steel chisel has a diameter of 0.5 in. and a
length of 10 in. It is struck by a hammer that weighs 3 lb, and
at the instant of impact it is moving at 12 ft�s. Determine
the maximum compressive stress in the chisel, assuming
that 80% of the impacting energy goes into the chisel.
Est = 2911032 ksi, sY = 100 ksi.

14–58. The tugboat has a weight of 120 000 lb and is
traveling forward at 2 ft�s when it strikes the 12-in.-diameter
fender post AB used to protect a bridge pier. If the post is
made from treated white spruce and is assumed fixed at the
river bed, determine the maximum horizontal distance
the top of the post will move due to the impact. Assume
the tugboat is rigid and neglect the effect of the water.

12 ft 12 ft

h

Probs. 14–56/57

12 ft

A

C

B

3 ft

Prob. 14–58

L

A

B

h � 600 mm

30 mm
20 mm

aaSection a – a

Probs. 14–53/54
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L

A

L

2c

B

h

W

Prob. 14–59

14–59. The wide-flange beam has a length of 2L, a depth
2c, and a constant EI. Determine the maximum height h
at which a weight W can be dropped on its end without
exceeding a maximum elastic stress in the beam.s max 

14–63. The diver weighs 150 lb and, while holding himself
rigid, strikes the end of the wooden diving board.
Determine the maximum height h from which he can jump
onto the board so that the maximum bending stress in the
wood does not exceed 6 ksi. The board has a thickness of
1.5 in. and width of 1.5 ft. Ew = 1.811032 ksi.

C

h

A B

2 m4 m

Probs. 14–60/61

4 ft 10 ft

h

v

Probs. 14–62/63

8 ft

BA

8 ft

4 ft

3 in.

4 in.
kk

Probs. 14–64/65

*14–60. The 50-kg block C is dropped from 
onto the simply supported beam. If the beam is an A-36
steel wide-flange section, determine the
maximum bending stress developed in the beam.

•14–61. Determine the maximum height h from which the
50-kg block C can be dropped without causing yielding in
the A-36 steel wide flange section when the
block strikes the beam.

W310 * 39

W250 * 45

h = 1.5 m

14–62. The diver weighs 150 lb and, while holding himself
rigid, strikes the end of a wooden diving board with
a downward velocity of . Determine the maximum
bending stress developed in the board. The board has a
thickness of 1.5 in. and width of 1.5 ft.
sY = 8 ksi.

Ew = 1.811032 ksi,

4 ft>s
1h = 02

*14–64. The weight of 175 lb is dropped from a height of
4 ft from the top of the A-36 steel beam. Determine the
maximum deflection and maximum stress in the beam if the
supporting springs at A and B each have a stiffness of

The beam is 3 in. thick and 4 in. wide.

•14–65. The weight of 175 lb, is dropped from a height of
4 ft from the top of the A-36 steel beam. Determine the load
factor n if the supporting springs at A and B each have a
stiffness of The beam is 3 in. thick and 4 in.
wide.

k = 300 lb/in.

k = 500 lb>in.



3 m

A

C

h

B

k
100 mm

200 mm

a

a

Section a – a

Probs. 14–66/67
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A

B

k

k

2 m

300 mm

2 m

v

400 mm

300 mm

Section a – a

a a

Probs. 14–68/69

12 ft

12 ft

v � 5 ft/s

k

k k

0.9 m 0.9 m

v � 0.75 m/s

Prob. 14–70

14–66. Block C of mass 50 kg is dropped from height
onto the spring of stiffness 

mounted on the end B of the 6061-T6 aluminum cantilever
beam. Determine the maximum bending stress developed
in the beam.

14–67. Determine the maximum height h from which
200-kg block C can be dropped without causing the 6061-T6
aluminum cantilever beam to yield. The spring mounted on
the end B of the beam has a stiffness of k = 150 kN>m.

k = 150 kN>mh = 0.9 m
14–70. The simply supported structural A-36
steel beam lies in the horizontal plane and acts as a shock
absorber for the 500-lb block which is traveling toward it at
5 ft�s. Determine the maximum deflection of the beam and
the maximum stress in the beam during the impact. The
spring has a stiffness of k = 1000 lb>in.

W10 * 15

14–71. The car bumper is made of polycarbonate-
polybutylene terephthalate. If , determine the
maximum deflection and maximum stress in the bumper if it
strikes the rigid post when the car is coasting at 
The car has a mass of 1.80 Mg, and the bumper can
be considered simply supported on two spring supports
connected to the rigid frame of the car. For the bumper
take and

.k = 1.5 MN>m
sY = 30 MPac = 75 mm,I = 30011062 mm4,

v = 0.75 m/s.

E = 2.0 GPa

Prob. 14–71

*14–68. The 2014-T6 aluminum bar AB can slide freely
along the guides mounted on the rigid crash barrier. If the
railcar of mass 10 Mg is traveling with a speed of

, determine the maximum bending stress
developed in the bar.The springs at A and B have a stiffness
of .

•14–69. The 2014-T6 aluminum bar AB can slide freely
along the guides mounted on the rigid crash barrier.
Determine the maximum speed the 10-Mg railcar without
causing the bar to yield when it is struck by the railcar. The
springs at A and B have a stiffness of k = 15 MN>m.

v

k = 15 MN>m
v = 1.5 m>s
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*14.5 Principle of Virtual Work

The principle of virtual work was developed by John Bernoulli in 1717,
and like other energy methods of analysis, it is based on the conservation
of energy. Although the principle of virtual work has many applications
in mechanics, in this text we will use it to obtain the displacement and
slope at a point on a deformable body.

To do this, we will consider the body to be of arbitrary shape as shown
in Fig. 14–29b, and to be subjected to the “real loads” and It is
assumed that these loads cause no movement of the supports; however,
in general they can strain the material beyond the elastic limit. Suppose
that it is necessary to determine the displacement of point A on the
body. Since there is no force acting at A, then will not be included as an
external “work term” in the equation when the conservation of energy
principle is applied to the body. In order to get around this limitation, we
will place an imaginary or “virtual” force on the body at point A, such
that acts in the same direction as Furthermore, this load is applied to
the body before the real loads are applied, Fig. 14–29a. For convenience,
which will be made clear later, we will choose to have a “unit”
magnitude; that is, It is to be emphasized that the term “virtual”
is used to describe this load because it is imaginary and does not actually
exist as part of the real loading.

This external virtual load, however, does create an internal virtual load
u in a representative element or fiber of the body, as shown in
Fig. 14–29a. As expected, and u can be related by the equations of
equilibrium. Also, because of and u, the body and the element will
each undergo a virtual (imaginary) displacement, although we will not be

P¿
P¿

P¿ = 1.
P¿

¢.P¿
P¿

¢
¢

P3 .P2 ,P1 ,

Fig. 14–29

L

A

dL

P1

P2

P3

Application of real loads
(b)

�

L
u

u

A

Application of virtual unit load
(a)

P¿�1
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L
uu

uu

A

Application of virtual unit 
couple moment

(a)

M¿�1

Fig. 14–30

L

A

dL

P1

P2

P3

Application of real loads
(b)

u

concerned with their magnitudes. Once the virtual load is applied and
then the body is subjected to the real loads and point A will be
displaced a real amount which causes the element to be displaced dL,
Fig. 14–29b. As a result, the external virtual force and internal virtual
load u “ride along” or are displaced by and dL, respectively.
Consequently these loads perform external virtual work on the
body and internal virtual work on the element. Considering only
the conservation of virtual energy, the external virtual work is then equal
to the internal virtual work done on all the elements of the body.
Therefore, we can write the virtual-work equation as

virtual loadings

(14–34)

real displacements

Here

virtual unit load acting in the direction of 

virtual load acting on the element

displacement caused by the real loads

displacement of the element in the direction of u,
caused by the real loads

By choosing it can be seen that the solution for follows
directly, since ¢ = ©u dL.

¢P¿ = 1,

 dL = internal

 ¢ = external

 u = internal

¢ P¿ = 1 = external

1 # ¢ = ©u # dL

u # dL
1 # ¢

¢
P¿

¢,
P3 ,P2 ,P1 ,
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∗See Engineering Mechanics: Statics, 12th edition, R.C. Hibbeler, Prentice Hall, Inc.,
2009.

In a similar manner, if the angular displacement or slope of the
tangent at a point on the body is to be determined at A, Fig. 14–30b, then
a virtual couple moment having a “unit” magnitude, is applied at the
point, Fig. 14–30a. As a result, this couple moment causes a virtual load

in one of the elements of the body. Assuming the real loads 
deform the element an amount dL, the angular displacement can be
found from the virtual-work equation

virtual loadings

(14–35)

real displacements

Here

virtual unit couple moment acting in the 
direction of 

virtual load acting on an element

angular displacement in radians caused 
by the real loads

displacement of the element in the direction 
of caused by the real loads

This method for applying the principle of virtual work is often referred
to as the method of virtual forces, since a virtual force is applied, resulting
in a determination of an external real displacement. The equation of
virtual work in this case represents a statement of compatibility
requirements for the body. Although it is not important here, realize that
we can also apply the principle of virtual work as a method of virtual
displacements. In this case, virtual displacements are imposed on the body
when the body is subjected to real loadings. This method can be used to
determine the external reactive force on the body or an unknown internal
loading. When it is used in this manner, the equation of virtual work is a
statement of the equilibrium requirements for the body.∗

Internal Virtual Work. The terms on the right side of Eqs. 14–34
and 14–35 represent the internal virtual work developed in the body.The
real internal displacements dL in these terms can be produced in several
different ways. For example, these displacements may result from
geometric fabrication errors, from a change in temperature, or more
commonly from stress. In particular, no restriction has been placed on
the magnitude of the external loading, so the stress may be large enough
to cause yielding or even strain hardening of the material.

uu ,
 dL = internal

 u = external

 uu = internal

u

 M¿ = 1 = external

1 # u = ©uu dL

u

P1, P2, P3uu

M¿,
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If we assume that the material behavior is linear elastic and the stress
does not exceed the proportional limit, we can then formulate the
expressions for internal virtual work caused by stress using the equations
of elastic strain energy developed in Sec. 14.2. They are listed in the
center column of Table 14–1. Recall that each of these expressions
assumes that the internal loading N, V, M, or T was applied gradually
from zero to its full value. As a result, the work done by these resultants
is shown in these expressions as one-half the product of the internal
loading and its displacement. In the case of the virtual-force method,
however, the “full” virtual internal loading is applied before the real
loads cause displacements, and therefore the work of the virtual loading
is simply the product of the virtual load and its real displacement.
Referring to these internal virtual loadings (u) by the corresponding
lowercase symbols n, m, and t, the virtual work due to axial load, shear,
bending moment, and torsional moment is listed in the right-hand
column of Table 14–1. Using these results, the virtual-work equation for
a body subjected to a general loading can therefore be written as

(14–36)

In the following sections we will apply the above equation to problems
involving the displacement of joints on trusses, and points on beams and
mechanical elements. We will also include a discussion of how to handle
the effects of fabrication errors and differential temperature. For
application it is important that a consistent set of units be used for all the
terms. For example, if the real loads are expressed in kilonewtons and the
body’s dimensions are in meters, a 1-kN virtual force or virtual
couple should be applied to the body. By doing so a calculated
displacement will be in meters, and a calculated slope will be in radians.¢

1-kN # m

1 # ¢ = L  
nN

AE
 dx + L  

mM

EI
 dx + L  

fsvV

GA
 dx + L  

tT

GJ
 dx

v,

Axial load N

Shear V

Bending moment M

Torsional moment T

Deformation
caused by

Strain
energy

Internal
virtual work

mM
EI

—— dx
L

03

fsvV
GA

—— dx
L

03

nN
EA
—— dx

L

03

tT
GJ

—— dx
L

03

M2

2EI
—— dx
L

03

fsV
2

2GA
—— dx
L

03

N2

2EA
—— dx
L

03

T2

2GJ
—— dx
L

03

TABLE 14–1
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L
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*14.6 Method of Virtual Forces 
Applied to Trusses

In this section, we will apply the method of virtual forces to determine
the displacement of a truss joint. To illustrate the principles, the vertical
displacement of joint A of the truss shown in Fig. 14–31b will be
determined. To do this, we must place a virtual unit force at this joint,
Fig. 14–31a, so that when the real loads and are applied to the truss,
they cause the external virtual work .The internal virtual work in each
member is . Since each member has a constant cross-sectional area A,
and n and N are constant throughout the member’s length, then from
Table 14–1, the internal virtual work for each member is

Therefore, the virtual-work equation for the entire truss is

(14–37)

Here

virtual unit load acting on the truss joint in the
direction of 

displacement caused by the real loads on the truss

virtual force in a truss member caused by the external
virtual unit load

force in a truss member caused by the real loads

of a member

area of a member

of elasticity of a member E = modulus

 A = cross-sectional

 L = length

 N = internal

 n = internal

 ¢ = joint

¢
 1 = external

1 # ¢ = a  
nNL

AE

L
L

0
 
nN

AE
 dx =

nNL

AE

n¢L
1 # ¢

P2P1
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Temperature Change. Truss members can change their length
due to a change in temperature. If is the coefficient of thermal
expansion for a member and is the change in temperature, the
change in length of a member is (Eq. 4–4). Hence, we can
determine the displacement of a selected truss joint due to this
temperature change from Eq. 14–34, written as

(14–38)

Here

external virtual unit load acting on the truss joint in the
direction of 

joint displacement caused by the temperature change

internal virtual force in a truss member caused by the external
virtual unit load

coefficient of thermal expansion of material

change in temperature of member

length of member

Fabrication Errors. Occasionally errors in fabricating the lengths
of the members of a truss may occur. If this happens, the displacement 
in a particular direction of a truss joint from its expected position can be
determined from direct application of Eq. 14–34 written as

(14–39)

Here

external virtual unit load acting on the truss joint in the
direction of 

joint displacement caused by the fabrication errors

internal virtual force in a truss member caused by the external
virtual unit load

difference in length of the member from its intended length
caused by a fabrication error

A combination of the right-hand sides of Eqs. 14–37 through 14–39
will be necessary if external loads act on the truss and some of the
members undergo a temperature change or have been fabricated with
the wrong dimensions.

 ¢L =

 n =
 ¢ =

¢
 1 =

1 # ¢ = ©n ¢L

¢

 L =
 ¢T =

 a =

 n =
 ¢ =

¢
 1 =

1 # ¢ = ©na ¢TL

¢L = a ¢TL
¢T

a
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Procedure for Analysis

The following procedure provides a method that may be used to
determine the displacement of any joint on a truss using the method
of virtual forces.

Virtual Forces n.

• Place the virtual unit load on the truss at the joint where the 
displacement is to be determined. The load should be directed
along the line of action of the displacement.

• With the unit load so placed and all the real loads removed from
the truss, calculate the internal n force in each truss member.
Assume that tensile forces are positive and compressive forces
are negative.

Real Forces N.

• Determine the N forces in each member. These forces are caused
only by the real loads acting on the truss. Again, assume that
tensile forces are positive and compressive forces are negative.

Virtual-Work Equation.

• Apply the equation of virtual work to determine the desired
displacement. It is important to retain the algebraic sign for each
of the corresponding n and N forces when substituting these
terms into the equation.

• If the resultant sum is positive, the displacement is
in the same direction as the virtual unit load. If a negative value
results, is opposite to the virtual unit load.

• When applying an increase in temperature,
will be positive; whereas a decrease in temperature will be

negative.

• For when a fabrication error causes an increase
in the length of a member, is positive, whereas a decrease in
length is negative.

• When applying this method, attention should be paid to the units
of each numerical quantity. Notice, however, that the virtual unit
load can be assigned any arbitrary unit: pounds, kips, newtons,
etc., since the n forces will have these same units, and as a result,
the units for both the virtual unit load and the n forces will cancel
from both sides of the equation.

¢L
1 # ¢ = ©n ¢L,

¢T,
1 # ¢ = ©na ¢TL,

¢

¢©nNL>AE
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EXAMPLE 14.11

Determine the vertical displacement of joint C of the steel truss shown
in Fig. 14–32a.The cross-sectional area of each member is
and Est = 200 GPa.

A = 400 mm2

SOLUTION
Virtual Forces n. Since the vertical displacement at joint C is to be
determined, only a vertical 1-kN virtual load is placed at joint C; and
the force in each member is calculated using the method of joints. The
results of this analysis are shown in Fig. 14–32b. Using our sign
convention, positive numbers indicate tensile forces and negative
numbers indicate compressive forces.

Real Forces N. The applied load of 100 kN causes forces in the
members that are also calculated using the method of joints. The
results of this analysis are shown in Fig. 14–32c.

Virtual-Work Equation. Arranging the data in tabular form, we have

Member n N L nNL

AB 0 4 0
BC 0 141.4 2.828 0
AC 2.828 565.7
CD 1 200 2 400

© 965.7 kN2 # m

-141.4-1.414

-100

1 kN

(b)

0

�
1.4

14
 kN

0

Virtual forces

1 kN
D C

B
A

200 kN

(c)

�100 kN
100 kN

Real forces

�
14

1.4
 kN

141.4 kN

D C

B
A

Fig. 14–32

D C

B
A

2 m 2 m

2 m

(a)

100 kN

Thus,

Substituting the numerical values for A and E, we have

Ans. ¢Cv
= 0.01207 m = 12.1 mm

 1 kN # ¢Cv
=

965.7 kN2 # m

[400110-62 m2] 20011062 kN>m2

1 kN # ¢Cv
= a  

nNL

AE
=

965.7 kN2 # m
AE
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EXAMPLE 14.12

Determine the horizontal displacement of the roller at B of the truss
shown in Fig. 14–33a. Due to radiant heating, member AB is subjected
to an increase in temperature of and this member has
been fabricated 3 mm too short. The members are made of steel, for
which and The cross-sectional area
of each member is 250 mm2.

Est = 200 GPa.ast = 12110-62>°C

¢T = +60°C,

C 

B

30�

4 m

30�

A

(a)

6 kN

�1.155 kN

C 

B

0

1 kN

A 0

(b)

Virtual forces

�12 kN

C 

B

6 kN

A 10.39 kN

�12 kN

(c)

Real forces

Fig. 14–33

SOLUTION
Virtual Forces n. A horizontal 1-kN virtual load is applied to
the truss at joint B, and the forces in each member are calculated,
Fig. 14–33b.

Real Forces N. Since the n forces in members AC and BC are zero,
the N forces in these members do not have to be determined. Why?
For completeness, though, the entire “real” force analysis is shown in
Fig. 14–33c.

Virtual-Work Equation. The loads, temperature, and the fabrication
error all affect the displacement of point B; therefore, Eqs. 14–37,
14–38, and 14–39 must be combined, which gives

Ans. = 1.25 mm ;
 ¢Bh

= 0.00125 m

 + 1-1.155 kN21-0.003 m2
 + 0 + 0 + 1-1.155 kN2[12110-62>°C]160°C214 m2
 = 0 + 0 +

1-1.155 kN21-12 kN214 m2
[250110-62 m2][20011062 kN>m2]

 1 kN # ¢Bh
= a  

nNL

AE
+ ©na ¢TL + ©n¢L
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4 m

A

20 kN

3 m3 m
B

30 kN

C

D

E

*14–72. Determine the horizontal displacement of joint B
on the two-member frame. Each A-36 steel member has a
cross-sectional area of 2 in2.

PROBLEMS

14–75. Determine the vertical displacement of joint C on
the truss. Each A-36 steel member has a cross-sectional area
of 

*14–76. Determine the vertical displacement of joint D on
the truss. Each A-36 steel member has a cross-sectional area
of A = 300 mm2.

A = 300 mm2.

C

B

5 ft
60� 

30� 

A

800 lb

C

B

8 ft

A

6 ft 6 ft

200 lb

•14–73. Determine the horizontal displacement of point B.
Each A-36 steel member has a cross-sectional area of 2 in2.

14–74. Determine the vertical displacement of point B.
Each A-36 steel member has a cross-sectional area of 
2 in2.

•14–77. Determine the vertical displacement of point B.
Each A-36 steel member has a cross-sectional area of 

14–78. Determine the vertical displacement of point E.
Each A-36 steel member has a cross-sectional area of 
4.5 in2.

4.5 in2.

C

6 ft

A

DEF

5 kip
8 ft

B

8 ft

Prob. 14–72

Probs. 14–73/74 Probs. 14–77/78

Probs. 14–75/76
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14–83. Determine the vertical displacement of joint C.
Each A-36 steel member has a cross-sectional area of 

*14–84. Determine the vertical displacement of joint H.
Each A-36 steel member has a cross-sectional area of

.4.5 in2

4.5 in2.

14

14–79. Determine the horizontal displacement of joint B
of the truss. Each A-36 steel member has a cross-sectional
area of .

*14–80. Determine the vertical displacement of joint C of
the truss. Each A-36 steel member has a cross-sectional area
of 400 mm2.

400 mm2

Probs. 14–79/80

Probs. 14–81/82

Probs. 14–83/84

Probs. 14–85/86

1.5 m

C
B

2 m
4 kN

A
D

5 kN

•14–81. Determine the vertical displacement of point A.
Each A-36 steel member has a cross-sectional area of 

.

14–82. Determine the vertical displacement of point B.
Each A-36 steel member has a cross-sectional area of

.400 mm2

400 mm2

30 kN
20 kN

1.5 m 1.5 m

2 m

A
B

E D

C

E

9 ft

A

I

B
12 ft

H

C

G

D

6 kip

12 ft12 ft12 ft

8 kip6 kip

FJ

•14–85. Determine the vertical displacement of joint
C. The truss is made from A-36 steel bars having a 
cross- sectional area of .

14–86. Determine the vertical displacement of joint
G. The truss is made from A-36 steel bars having a 
cross-sectional area of 150 mm2.

150 mm2

A

G

C D

E

FH

B

6 kN 6 kN

2 m

2 m

1.5 m 1.5 m 1.5 m 1.5 m

12 kN
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*14.7 Method of Virtual Forces
Applied to Beams

In this section we will apply the method of virtual forces to determine
the displacement and slope at a point on a beam. To illustrate the
principles, the vertical displacement of point A on the beam shown in
Fig. 14–34b will be determined. To do this we must place a vertical unit
load at this point, Fig. 14–34a, so that when the “real” distributed load w
is applied to the beam it will cause the internal virtual work .
Because the load causes both a shear V and moment M within the beam,
we must actually consider the internal virtual work due to both of these
loadings. In Example 14.7, however, it was shown that beam deflections
due to shear are negligible compared with those caused by bending,
particularly if the beam is long and slender. Since this type of beam is
most often used in practice, we will only consider the virtual strain
energy due to bending, Table 14–1. Hence, the real load causes the
element dx to deform so its sides rotate by an angle ,
which causes internal virtual work Applying Eq. 14–34, the virtual-
work equation for the entire beam, we have

(14–40)

Here

external virtual unit load acting on the beam in the direction 
of 

displacement caused by the real loads acting on the beam

internal virtual moment in the beam, expressed as a function 
of x and caused by the external virtual unit load

internal moment in the beam, expressed as a function of x and
caused by the real loads

modulus of elasticity of the material

moment of inertia of the cross-sectional area about the neutral
axis

In a similar manner, if the slope of the tangent at a point on the
beam’s elastic curve is to be determined, a virtual unit couple moment
must be applied at the point, and the corresponding internal virtual
moment has to be determined. If we apply Eq. 14–35 for this case and
neglect the effect of shear deformations, we have

(14–41)1 # u = L
L

0
 

muM

EI
 dx

mu

u

 I =
 E =

 M =

 m =
 ¢ =

¢
 1 =

1 # ¢ = L
L

0
 
mM

EI
 dx

m du.
du = 1M>EI2dx

1 # ¢

¢
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When applying these equations, keep in mind that the integrals on the
right side represent the amount of virtual bending strain energy that is
stored in the beam. If concentrated forces or couple moments act on the
beam or the distributed load is discontinuous, a single integration cannot
be performed across the beam’s entire length. Instead, separate x
coordinates must be chosen within regions that have no discontinuity of
loading.Also, it is not necessary that each x have the same origin; however,
the x selected for determining the real moment M in a particular region
must be the same x as that selected for determining the virtual moment m
or within the same region. For example, consider the beam shown in
Fig. 14–35. In order to determine the displacement at D, we can use to
determine the strain energy in region AB, for region BC, for region
DE, and for region DC. In any case, each x coordinate should be
selected so that both M and m (or ) can easily be formulated.

Unlike beams, as discussed here, some members may also be
subjected to significant virtual strain energy caused by axial load, shear,
and torsional moment.When this is the case, we must include in the above
equations the energy terms for these loadings as formulated in Eq. 14–36.

mu

x4

x3x2

x1

mu

A

x

x
dx

v

m

r

Virtual loads

(a)

1

Fig. 14–34

A
x

�

x

w

dx

V

M

R

(b)

Real loads

du

A

Real loads

E
DCB

P
w

(b)

x2 x4

x3x1

A

Virtual load

E
DCB

1

(a)

x2 x4

x3x1

Fig. 14–35
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Procedure for Analysis

The following procedure provides a method that may be used to
determine the displacement and slope at a point on the elastic curve
of a beam using the method of virtual forces.

Virtual Moments m or .

• Place a virtual unit load on the beam at the point and directed
along the line of action of the desired displacement.

• If the slope is to be determined, place a virtual unit couple moment
at the point.

• Establish appropriate x coordinates that are valid within regions
of the beam where there is no discontinuity of both real and 
virtual load.

• With the virtual load in place, and all the real loads removed from
the beam, calculate the internal moment m or as a function of
each x coordinate.

• Assume that m or acts in the positive direction according to
the established beam sign convention for positive moment,
Fig. 6–3.

Real Moments.

• Using the same x coordinates as those established for m or 
determine the internal moments M caused by the real loads.

• Since positive m or was assumed to act in the conventional
“positive direction,” it is important that positive M acts in this same
direction. This is necessary since positive or negative internal
virtual work depends on the directional sense of both the virtual
load, defined by or and displacement, caused by 

Virtual-Work Equation.

• Apply the equation of virtual work to determine the desired
displacement or slope It is important to retain the algebraic
sign of each integral calculated within its specified region.

• If the algebraic sum of all the integrals for the entire beam is
positive, or is in the same direction as the virtual unit load or 
virtual unit couple moment. If a negative value results, or is
opposite to the virtual unit load or couple moment.

u¢
u¢

u.¢

;M.;mu ,;m

mu

mu ,

mu

mu

mU



14.7 METHOD OF VIRTUAL FORCES APPLIED TO BEAMS 765

14

EXAMPLE 14.13

Determine the displacement of point B on the beam shown in
Fig. 14–36a. EI is constant.

L

(a)

w

B A

Fig. 14–36

B

L

x v

1

m � �1 x

(b)
Virtual loads

x

1

V

(c)
Real loads

w

wx

x

M��wx x
2

B

–x
2

SOLUTION
Virtual Moment m. The vertical displacement of point B is
obtained by placing a virtual unit load at B, Fig. 14–36b. By inspection,
there are no discontinuities of loading on the beam for both the real
and virtual loads. Thus, a single x coordinate can be used to determine
the virtual strain energy. This coordinate will be selected with its
origin at B, so that the reactions at A do not have to be determined in
order to find the internal moments m and M. Using the method of
sections, the internal moment m is shown in Fig. 14–36b.

Real Moment M. Using the same x coordinate, the internal moment
M is shown in Fig. 14–36c.

Virtual-Work Equation. The vertical displacement at B is thus

Ans. ¢B =
wL4

8EI

 1 # ¢B = L  
mM

EI
 dx = L

L

0
 

1-1x21-wx2>22 dx

EI
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EXAMPLE 14.14

Determine the slope at point B of the beam shown in Fig. 14–37a. EI
is constant.

SOLUTION
Virtual Moments . The slope at B is determined by placing a
virtual unit couple moment at B, Fig. 14–37b. Two x coordinates must
be selected in order to determine the total virtual strain energy in the
beam. Coordinate accounts for the strain energy within segment
AB, and coordinate accounts for the strain energy in segment BC.
Using the method of sections the internal moments within each of
these segments are shown in Fig. 14–37b.

Real Moments M. Using the same coordinates and (Why?),
the internal moments M are shown in Fig. 14–37c.

Virtual-Work Equation. The slope at B is thus

Ans.

The negative sign indicates that is opposite to the direction of the
virtual couple moment shown in Fig. 14–37b.

uB

 uB = -
3PL2

8EI

 = L
L>2

0
 

01-Px12 dx1

EI
+ L

L>2

0
 

15-P[1L>22 + x2]6 dx2

EI

 1 # uB = L  

muM

EI
 dx

x2x1

mu

x2

x1

mU

C

A

(a)

P

B

1

B

1v2

v1

Virtual loads

mu2 � 1

mu1 � 0

(b) Real load

P

P

P

(c)

—
2
L—

2
L

V2

V1

x2
x2 x1

x1

x2

x2

x1

x1

M1 � �Px1

M2 � �P(
L
2

�x2)
—
2
L

—
2
L

Fig. 14–37
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14–87. Determine the displacement at point C. EI is
constant.

*14–92. Determine the displacement at B of the 1.5-in-
diameter A-36 steel shaft.

•14–93. Determine the slope of the 1.5-in-diameter A-36
steel shaft at the bearing support A.

PROBLEMS

A

P

B

C

a a–
2
a –

2
a

P

3 m

A

1.5 m

4 kN/m

B C

120 mm

180 mm

15 kN

10 m 5 m

2 kN/m

BA

C

320 lb

A

320 lb

140 lb
140 lb

1.5 ft

2 ft

B

D

2 ft

3 ft

C

*14–88. The beam is made of southern pine for which
. Determine the displacement at A.Ep = 13 GPa

•14–89. Determine the displacement at C of the A-36
steel beam.

14–90. Determine the slope at A of the A-36 steel beam.
.

14–91. Determine the slope at B of the A-36 steel beam.
.I = 7011062 mm4

I = 7011062 mm4

I = 7011062 mm4.

14–94. The beam is made of Douglas fir. Determine the
slope at C.

8 kN

1.5 m

A

1.5 m

B C

120 mm

180 mm

1.5 m

3 m

A

3 m

200 mm

400 mm 4 kN/m

B

14–95. The beam is made of oak, for which .
Determine the slope and displacement at A.

Eo = 11 GPa

Prob. 14–87

Prob. 14–88

Probs. 14–89/90/91

Probs. 14–92/93

Prob. 14–94

Prob. 14–95
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*14–96. Determine the displacement at point C. EI is
constant.

•14–97. Determine the slope at point C. EI is constant.

14–98. Determine the slope at point A. EI is constant.

14–103. Determine the displacement of end C of the
overhang Douglas fir beam.

*14–104. Determine the slope at A of the overhang white
spruce beam.

14
A C

B

aa

P

14–99. Determine the slope at point A of the simply
supported Douglas fir beam.

*14–100. Determine the displacement at C of the simply
supported Douglas fir beam.

C

A
B

1.5 m 1 m

3 kN

0.5 m

a

a

75 mm

150 mm

Section a – a

0.6 kN�m

•14–101. Determine the slope of end C of the overhang
beam. EI is constant.

14–102. Determine the displacement of point D of the
overhang beam. EI is constant.

A C
B

w

D
L
2

L
2

L
2

C

A
B

8 ft 4 ft

400 lb

a

a

3 in.

6 in.

Section a – a

400 lb�ft

•14–105. Determine the displacement at point B. The
moment of inertia of the center portion DG of the shaft is
2I, whereas the end segments AD and GC have a moment
of inertia I. The modulus of elasticity for the material is E.

aa a a

A

B G

C

w

D

L
2
– L

2
–

A
C

w0

B

14–106. Determine the displacement of the shaft at C. EI
is constant.

14–107. Determine the slope of the shaft at the bearing
support A. EI is constant.

Probs. 14–96/97/98

Probs. 14–99/100

Probs. 14–101/102

Probs. 14–103/104

Prob. 14–105

Probs. 14–106/107
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*14–112. The frame is made from two segments, each
of length L and flexural stiffness EI. If it is subjected 
to the uniform distributed load determine the vertical
displacement of point C. Consider only the effect of
bending.

•14–113. The frame is made from two segments, each
of length L and flexural stiffness EI. If it is subjected to
the uniform distributed load, determine the horizontal
displacement of point B. Consider only the effect of
bending.

14

*14–108. Determine the slope and displacement of end C
of the cantilevered beam. The beam is made of a material
having a modulus of elasticity of E. The moments of
inertia for segments AB and BC of the beam are 2I and I,
respectively.

Prob. 14–108

A
B C

P

L
2

L
2

A B
C

3 m

12 kN/m
6 kN/m

3 m

•14–109. Determine the slope at A of the A-36 steel
simply supported beam.

14–110. Determine the displacement at point C of the 
A-36 steel simply supported beam.W200 * 46

W200 * 46

14–111. The simply supported beam having a square cross
section is subjected to a uniform load w. Determine the
maximum deflection of the beam caused only by bending,
and caused by bending and shear. Take E = 3G.

L a

a

w

L

L

A

B
C

w

L

L

P

A

14–114. Determine the vertical displacement of point A
on the angle bracket due to the concentrated force P. The
bracket is fixed connected to its support. EI is constant.
Consider only the effect of bending.

Probs. 14–109/110

Prob. 14–111

Probs. 14–112/113

Prob. 14–114
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14–115. Beam AB has a square cross section of 100 mm by
100 mm. Bar CD has a diameter of 10 mm. If both members
are made of A-36 steel, determine the vertical displacement
of point B due to the loading of 10 kN.

*14–116. Beam AB has a square cross section of 100 mm
by 100 mm. Bar CD has a diameter of 10 mm. If both
members are made of A-36 steel, determine the slope at A
due to the loading of 10 kN.

14

14–119. Determine the vertical displacement of point C.
The frame is made using A-36 steel members.
Consider only the effects of bending.

*14–120. Determine the horizontal displacement of end
B. The frame is made using A-36 steel 
members. Consider only the effects of bending.

W250 * 45

W250 * 45

3 m 2 m

10 kN

A D B

C

2 m

14–117. Bar ABC has a rectangular cross section of 
300 mm by 100 mm. Attached rod DB has a diameter 
of 20 mm. If both members are made of A-36 steel,
determine the vertical displacement of point C due to the
loading. Consider only the effect of bending in ABC and
axial force in DB.

14–118. Bar ABC has a rectangular cross section of
300 mm by 100 mm. Attached rod DB has a diameter 
of 20 mm. If both members are made of A-36 steel,
determine the slope at A due to the loading. Consider only
the effect of bending in ABC and axial force in DB.

•14–121. Determine the displacement at point C. EI is 
constant.

3 m

20 kN

A B

C

4 m

D

100 mm

300 mm

3 m

A

C

D

B

5 m

2.5 m

15 kN/m

15 kN

2.5 m

A B

a a

M 0C

Probs. 14–115/116

Probs. 14–117/118

Probs. 14–119/120

Prob. 14–122

A B

a a

M 0C

Prob. 14–121

14–122. Determine the slope at B. EI is constant.
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*14.8 Castigliano’s Theorem

In 1879, Alberto Castigliano, an Italian railroad engineer, published a
book in which he outlined a method for determining the displacement
and slope at a point in a body. This method, which is referred to as
Castigliano’s second theorem, applies only to bodies that have constant
temperature and material with linear-elastic behavior. If the
displacement at a point is to be determined, the theorem states that the
displacement is equal to the first partial derivative of the strain energy in
the body with respect to a force acting at the point and in the direction of
displacement. In a similar manner, the slope of the tangent at a point in a
body is equal to the first partial derivative of the strain energy in the
body with respect to a couple moment acting at the point and in the
direction of the slope angle.

To derive Castigliano’s second theorem, consider a body of any
arbitrary shape, which is subjected to a series of n forces 
Fig. 14–38. According to the conservation of energy, the external work
done by these forces is equal to the internal strain energy stored in the
body. However, the external work is a function of the external loads,

Eq. 14–1, so the internal work is also a function of the
external loads. Thus,

(14–42)

Now, if any one of the external forces, say is increased by a differential
amount the internal work will also be increased, such that the strain
energy becomes

(14–43)Ui + dUi = Ui +
0Ui

0Pj
 dPj

dPj ,
Pj ,

Ui = Ue = f1P1 , P2 , . . . , Pn2

Ue = ©1P dx,

Pn ,. . . ,P2 ,P1 ,

P1

P3

Pn

P2

Fig. 14–38
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This value, however, will not depend on the sequence in which the n
forces are applied to the body. For example, we could apply to the
body first, then apply the loads In this case, would
cause the body to displace a differential amount in the direction of

By Eq. 14–2 the increment of strain energy would
be This quantity, however, is a second-order differential and
may be neglected. Further application of the loads causes

to move through the displacement so that now the strain energy
becomes

(14–44)

Here, as above, is the internal strain energy in the body, caused by
the loads and is the additional strain energy
caused by 

In summary, Eq. 14–43 represents the strain energy in the body
determined by first applying the loads then 
Eq. 14–44 represents the strain energy determined by first applying 
and then the loads Since these two equations must be
equal, we require

(14–45)

which proves the theorem; i.e., the displacement in the direction
of is equal to the first partial derivative of the strain energy with
respect to 

Castigliano’s second theorem, Eq. 14–45, is a statement regarding the
body’s compatibility requirements, since it is a condition related to
displacement. Also, the above derivation requires that only conservative
forces be considered for the analysis. These forces can be applied in any
order, and furthermore, they do work that is independent of the path
and therefore create no energy loss. As long as the material has
linear-elastic behavior, the applied forces will be conservative and the
theorem is valid. Castigliano’s first theorem is similar to his second
theorem; however, it relates the load to the partial derivative of the
strain energy with respect to the corresponding displacement, that is,

The proof is similar to that given above. This theorem is
another way of expressing the equilibrium requirements for the body;
however, it has limited application and therefore it will not be
discussed here.

Pj = 0Ui>0¢j .

Pj

Pj .
Pj

¢j

¢j =
0Ui

0Pj

Pn .. . . ,P2 ,P1 ,
dPj

dPj ;Pn ,. . . ,P2 ,P1 ,

dPj .
dPj¢jPn ,. . . ,P2 ,P1 ,

Ui

Ui + dUi = Ui + dPj ¢j

¢jdPj

Pn. . . ,P2 ,P1 ,

1
2 dPj d¢j.

(Ue = 1
2 Pj ¢j),dPj .

d¢j

dPjPn .. . . ,P2 ,P1 ,
dPj
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*14.9 Castigliano’s Theorem 
Applied to Trusses

Since a truss member is only subjected to an axial load, the strain energy
for the member is given by Eq. 14–16, Substituting this
equation into Eq. 14–45 and omitting the subscript i, we have

It is generally easier to perform the differentiation prior to summation.
Also, L, A, and E are constant for a given member, and therefore we can
write

(14–46)

Here

displacement of the truss joint

force of variable magnitude applied to the truss 
joint in the direction of 

axial force in a member caused by both force P
and the actual loads on the truss

of a member

area of a member

of elasticity of the material

By comparison, Eq. 14–46 is similar to that used for the method of
virtual forces, Eq. 14–37 except that n is replaced
by These terms, n and are the same, since they represent
the change of the member’s axial force with respect to the load P or, in
other words, the axial force per unit load.

0N>0P,0N>0P.
11 # ¢ = ©nNL>AE2,

 E = modulus

 A = cross-sectional

 L = length

 N = internal

¢
 P = an external

 ¢ =

¢ = aNa 0N

0P
b  

L

AE

¢ =
0

0Pa  
N2L

2AE

Ui = N2L>2AE.
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EXAMPLE 14.15

Determine the vertical displacement of joint C of the steel truss
shown in Fig. 14–39a. The cross-sectional area of each member is

and 

SOLUTION
External Force P. A vertical force P is applied to the truss at joint
C, since this is where the vertical displacement is to be determined,
Fig. 14–39b.

Est = 200 GPa.A = 400 mm2,

D C

B

A

2 m 2 m

2 m

(a)

100 kN

Procedure for Analysis

The following procedure provides a method that may be used to determine the displacement of any joint on
a truss using Castigliano’s second theorem.

External Force P.

• Place a force P on the truss at the joint where the displacement is to be determined. This force is assumed
to have a variable magnitude and should be directed along the line of action of the displacement.

Internal Forces N.

• Determine the force N in each member in terms of both the actual (numerical) loads and the (variable)
force P. Assume that tensile forces are positive and compressive forces are negative.

• Find the respective partial derivative for each member.

• After N and have been determined, assign P its numerical value if it has actually replaced a real
force on the truss. Otherwise, set P equal to zero.

Castigliano’s Second Theorem.

• Apply Castigliano’s second theorem to determine the desired displacement It is important to retain
the algebraic signs for corresponding values of N and when substituting these terms into the
equation.

• If the resultant sum is positive, is in the same direction as P. If a negative value
results, is opposite to P.¢

¢©N10N>0P2L>AE

0N>0P
¢.

0N>0P

0N>0P

Fig. 14–39
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Castigliano’s Second Theorem. Applying Eq. 14–46, we have

Substituting the numerical values for A and E, we get

Ans.

This solution should be compared with that of Example 14.11, using
the virtual-work method.

 = 0.01207 m = 12.1 mm

 ¢Cv
=

965.7 kN # m

[400110-62 m2] 20011062 kN>m2

¢Cv
= ©Na 0N

0P
b  

L

AE
=

965.7 kN # m
AE

Member N L

AB 0 4 0
BC 141.4 0 141.4 2.828 0
AC 2.828 565.7
CD 1 200 2 400

© 965.7 kN # m

200 + P
-141.4-1.414-(141.4 + 1.414P)

-100-100

Na 0N
0P
bLN1P = 020N

0P

Fig. 14–39 (cont.)

∗It may be more convenient to analyze the truss with just the 100-kN load on it, then
analyze the truss with the P load on it. The results can then be summed algebraically to
give the N forces.

Internal Forces N. The reactions at the truss supports A and D are
calculated and the results are shown in Fig. 14–39b. Using the method
of joints, the N forces in each member are determined, Fig. 14–39c.∗

For convenience, these results along with their partial derivatives
are listed in tabular form. Note that since P does not actually

exist as a real load on the truss, we require P = 0.
0N>0P

(b)

P

D C

B
A

200 kN � P

200 kN � P

100 kN � P 100 kN

200 kN � P

100 kN � P

141.4 kN � 1.414 P

100 kN
A

(c)

45�

100 kN

100 kN
B

141.4 kN

45�
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*14.10 Castigliano’s Theorem 
Applied to Beams

The internal strain energy for a beam is caused by both bending and
shear. However, as pointed out in Example 14.7, if the beam is long and
slender, the strain energy due to shear can be neglected compared with
that of bending. Assuming this to be the case, the internal strain energy
for a beam is given by Eq. 14–17. Omitting the
subscript i, Castigliano’s second theorem, becomes 

Rather than squaring the expression for internal moment, integrating,
and then taking the partial derivative, it is generally easier to differentiate
prior to integration. Provided E and I are constant, we have

(14–47)¢ = L
L

0
Ma 0M

0P
b  

dx

EI

¢ =
0

0PL
L

0
 
M2 dx

2EI

¢i = 0Ui>0Pi ,
Ui = 1M2 dx>2EI,

14–123. Solve Prob. 14–72 using Castigliano’s theorem.

*14–124. Solve Prob. 14–73 using Castigliano’s theorem.

•14–125. Solve Prob. 14–75 using Castigliano’s theorem.

14–126. Solve Prob. 14–76 using Castigliano’s theorem.

14–127. Solve Prob. 14–77 using Castigliano’s theorem.

*14–128. Solve Prob. 14–78 using Castigliano’s theorem.

•14–129. Solve Prob. 14–79 using Castigliano’s theorem.

14–130. Solve Prob. 14–80 using Castigliano’s theorem.

14–131. Solve Prob. 14–81 using Castigliano’s theorem.

*14–132. Solve Prob. 14–82 using Castigliano’s theorem.

•14–133. Solve Prob. 14–83 using Castigliano’s theorem.

14–134. Solve Prob. 14–84 using Castigliano’s theorem.

PROBLEMS
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Here

of the point caused by the real loads acting on the
beam

force of variable magnitude applied to the beam at
the point and in the direction of 

moment in the beam, expressed as a function of x and
caused by both the force P and the actual loads on the beam

of elasticity of the material

of inertia of cross-sectional area about the neutral axis

If the slope of the tangent at a point on the elastic curve is to be
determined, the partial derivative of the internal moment M with
respect to an external couple moment acting at the point must be
found. For this case,

(14–48)

The above equations are similar to those used for the method of
virtual forces, Eqs. 14–40 and 14–41, except m and replace 
and respectively.

In addition, if axial load, shear, and torsion cause significant strain
energy within the member, then the effects of all these loadings should
be included when applying Castigliano’s theorem. To do this we must
use the strain-energy functions developed in Sec. 14.2, along with their
associated partial derivatives. The result is

0M>0M¿,
0M>0Pmu

u = L
L

0
Ma 0M

0M¿
b  

dx

EI

M¿

u

 I = moment

 E = modulus

 M = internal

¢
 P = an external

 ¢ = displacement

14

(14–49)+L
L

0
Ma 0M

0P
b  

dx

EI
+ L

L

0
Ta 0T

0P
b  

dx

GJ
¢ = ©Na 0N

0P
b  

L

AE
+ L

L

0
fsVa 0V

0P
b  

dx

GA

The method of applying this general formulation is similar to that used
to apply Eqs. 14–47 and 14–48.
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Procedure for Analysis

The following procedure provides a method that may be used to
apply Castigliano’s second theorem.

External Force P or Couple Moment .

• Place a force P on the beam at the point and directed along the
line of action of the desired displacement.

• If the slope of the tangent is to be determined at the point, place
a couple moment at the point.

• Assume that both P and have a variable magnitude.

Internal Moments M.

• Establish appropriate x coordinates that are valid within regions
of the beam where there is no discontinuity of force, distributed
load, or couple moment.

• Determine the internal moments M as a function of x, the actual
(numerical) loads, and P or , and then find the partial
derivatives or for each coordinate x.

• After M and or have been determined, assign P
or its numerical value if it has actually replaced a real force or
couple moment. Otherwise, set P or equal to zero.

Castigliano’s Second Theorem.

• Apply Eq. 14–47 or 14–48 to determine the desired displacement
or It is important to retain the algebraic signs for

corresponding values of M and or 

• If the resultant sum of all the definite integrals is positive, or 
is in the same direction as P or If a negative value results,
or is opposite to P or M¿.u

¢M¿.
u¢

0M>0M¿.0M>0P
u.¢

M¿
M¿

0M>0M¿0M>0P

0M>0M¿0M>0P
M¿

M¿

M¿

Mœ
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EXAMPLE 14.16

Determine the displacement of point B on the beam shown in 
Fig. 14–40a. EI is constant.

L

A

(a)

w

B

x

(b)

L

w

B A

P

V

(c)

wx

M 

x

P
x
2

Fig. 14–40

SOLUTION
External Force P. A vertical force P is placed on the beam at B as
shown in Fig. 14–40b.

Internal Moments M. A single x coordinate is needed for the
solution, since there are no discontinuities of loading between A and
B. Using the method of sections, Fig. 14–40c, the internal moment and
its partial derivative are determined as follows:

Setting gives

Castigliano’s Second Theorem. Applying Eq. 14–47, we have

Ans.

The similarity between this solution and that of the virtual-work
method, Example 14.13, should be noted.

 =
wL4

8EI

 ¢B = L
L

0
Ma 0M

0P
b  

dx

EI
= L

L

0
 

1-wx2>221-x2 dx

EI

M =
-wx2

2
 and 0M

0P
= -x

P = 0

 
0M

0P
= -x

 M = -
wx2

2
- Px

M + wxax

2
b + P1x2 = 0d+ ©MNA = 0;
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14

EXAMPLE 14.17

Determine the slope at point B of the beam shown in Fig. 14–41a. EI
is constant.

SOLUTION
External Couple Moment M . Since the slope at point B is to be
determined, an external couple moment is placed on the beam at
this point, Fig. 14–41b.

Internal Moments M. Two coordinates, and must be used to
completely describe the internal moments within the beam since
there is a discontinuity, at B. As shown in Fig. 14–41b, ranges
from A to B and ranges from B to C. Using the method of sections,
Fig. 14–41c, the internal moments and the partial derivatives for 
and are determined as follows:

,

,

Castigliano’s Second Theorem. Setting and applying 
Eq. 14–48, we have

M¿ = 0

0M2

0M¿
= 1M2 = M¿ - PaL

2
+ x2bd+ ©MNA = 0;

0M1

0M¿
= 0M1 = -Px1d+ ©MNA = 0;

x2

x1

x2

x1M¿,

x2 ,x1

M¿
œ

Ans. = L
L>2

0
 

1-Px12102 dx1

EI
+ L

L>2

0
 

-P[1L>22 + x2]112 dx2

EI
= -

3PL2

8EI
 uB = L

L

0
Ma 0M

0M¿
b  

dx

EI

Note the similarity between this solution and that of Example 14.14.

14–135. Solve Prob. 14–87 using Castigliano’s theorem.

*14–136. Solve Prob. 14–88 using Castigliano’s theorem.

•14–137. Solve Prob. 14–90 using Castigliano’s theorem.

14–138. Solve Prob. 14–92 using Castigliano’s theorem.

14–139. Solve Prob. 14–93 using Castigliano’s theorem.

*14–140. Solve Prob. 14–96 using Castigliano’s theorem.

14–141. Solve Prob. 14–97 using Castigliano’s theorem.

14–142. Solve Prob. 14–98 using Castigliano’s theorem.

14–143. Solve Prob. 14–112 using Castigliano’s theorem.

*14–144. Solve Prob. 14–114 using Castigliano’s theorem.

•14–145. Solve Prob. 14–121 using Castigliano’s theorem.

PROBLEMS

A
C

P

(a)

BL
2

L
2

AC
x1B

P

(b)

M¿

x2

Fig. 14–41

x1

x2
B

P

P

(c)

M¿

M1

V1

M2

V2

L
2
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14

When a force (couple moment) acts on a deformable
body it will do external work when it displaces
(rotates). The internal stresses produced in the
body also undergo displacement, thereby creating
elastic strain energy that is stored in the material.
The conservation of energy states that the external
work done by the loading is equal to the internal
elastic strain energy produced by the stresses in
the body.

CHAPTER REVIEW

Ue = Ui

¢  max  = n¢st

s max  = nsst

n = 1 + C1 + 2¢ h

¢st
≤

The conservation of energy can be used to solve
problems involving elastic impact, which assumes
the moving body is rigid and all the strain energy is
stored in the stationary body. This leads to use of
an impact factor n, which is a ratio of the dynamic
load to the static load. It is used to determine the
maximum stress and displacement of the body at
the point of impact.

 1 # u = L
L

0
 

muM

EI
 dx

 1 # ¢ = L
L

0
 
mM

EI
 dx

 1 # ¢ = a  
nNL

AE

The principle of virtual work can be used to
determine the displacement of a joint on a truss
or the slope and the displacement of points on
a beam. It requires placing an external virtual
unit force (virtual unit couple moment) at the
point where the displacement (rotation) is to be
determined. The external virtual work that is
produced by the external loading is then equated
to the internal virtual strain energy in the structure.

 u = L
L

0
Ma 0M

0M¿
b  

dx

EI

 ¢ = L
L

0
Ma 0M

0P
b  

dx

EI

 ¢ = aNa 0N

0P
b  

L

AE

Castigliano’s second theorem can also be used to
determine the displacement of a joint on a truss or
the slope and the displacement at a point on a beam.
Here a variable force P (couple moment M ) is
placed at the point where the displacement (slope)
is to be determined. The internal loading is then
determined as a function of P (M ) and its partial
derivative with respect to P (M ) is determined.
Castigliano’s second theorem is then applied to
obtain the desired displacement (rotation).

¿
¿

¿
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a a a

P

C

D

h

k

A
B

2 m4 m

8 in.

4 in.6 in.

0.2 in.

A B

2 m

C

D

B

A
1.5 m1.5 m

5 kN

14–146. Determine the bending strain energy in the beam
due to the loading shown. EI is constant.

•14–149. The L2 steel bolt has a diameter of 0.25 in., and
the link AB has a rectangular cross section that is 0.5 in.
wide by 0.2 in. thick. Determine the strain energy in the link
AB due to bending, and in the bolt due to axial force. The
bolt is tightened so that it has a tension of 350 lb. Neglect
the hole in the link.

REVIEW PROBLEMS

14–147. The 200-kg block D is dropped from a height
onto end C of the A-36 steel overhang

beam. If the spring at B has a stiffness ,
determine the maximum bending stress developed in the
beam.

*14–148. Determine the maximum height h from which
the 200-kg block D can be dropped without causing the
A-36 steel overhang beam to yield. The spring
at B has a stiffness k = 200 kN>m .

W200 * 36

k = 200 kN>m
W200 * 36h = 1 m

14–150. Determine the vertical displacement of joint A.
Each bar is made of A-36 steel and has a cross-sectional
area of . Use the conservation of energy.600 mm2

Prob. 14–146

Probs. 14–147/148

Prob. 14–149

Prob. 14–150
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*14–156. Determine the displacement of point B on the
aluminum beam. Use the conservation
of energy.

Eal = 10.611032 ksi.

14

14–151. Determine the total strain energy in the A-36
steel assembly. Consider the axial strain energy in the two
0.5-in.-diameter rods and the bending strain energy in the
beam for which I = 43.4 in4.

3 ft

4 ft4 ft

500 lb

*14–152. Determine the vertical displacement of joint E.
For each member . Use the
method of virtual work.

•14–153. Solve Prob. 14–152 using Castigliano’s theorem.

E = 200 GPaA = 400 mm2,

C

1.5 m

A

DEF

45 kN
2 m

B

2 m

14–154. The cantilevered beam is subjected to a couple
moment applied at its end. Determine the slope of the
beam at B. EI is constant. Use the method of virtual 
work.

14–155. Solve Prob. 14–154 using Castigliano’s theorem.

M0

L
B

A M0

Prob. 14–151

Probs. 14–152/153

Prob. 14–156

Probs. 14–154/155

A

3 kip

C

B

12 ft 12 ft

1 in.
6 in.

1 in.
3 in.3 in.

Prob. 14–157

12 ft

4 ft

14–157. A 20-lb weight is dropped from a height of 4 ft
onto the end of a cantilevered A-36 steel beam. If the beam
is a determine the maximum stress developed in
the beam.

W12 * 50,
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A.1 Centroid of an Area

The centroid of an area refers to the point that defines the geometric
center for the area.If the area has an arbitrary shape,as shown in Fig.A–1a,
the x and y coordinates defining the location of the centroid C are
determined using the formulas

(A–1)

The numerators in these equations are formulations of the “moment” of
the area element dA about the y and the x axis, respectively, Fig. A–1b;
the denominators represent the total area A of the shape.

x = LA
 x dA

LA
 dA

 y = LA
 y dA

LA
 dA

Geometric Properties
of an AreaA

APPENDIX

Fig. A–1

(a)

y

x

_
y

_
x

C

A

(b)

y

x
x

y

dA
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A

The location of the centroid for some areas may be partially or
completely specified by using symmetry conditions. In cases where the
area has an axis of symmetry, the centroid for the area will lie along this
axis. For example, the centroid C for the area shown in Fig. A–2 must lie
along the y axis, since for every elemental area dA a distance to the
right of the y axis, there is an identical element a distance to the left.
The total moment for all the elements about the axis of symmetry will
therefore cancel; that is, (Eq. A–1), so that In cases
where a shape has two axes of symmetry, it follows that the centroid lies
at the intersection of these axes, Fig. A–3. Based on the principle of
symmetry, or using Eq. A–1, the locations of the centroid for common
area shapes are listed on the inside front cover.

Composite Areas. Often an area can be sectioned or divided into
several parts having simpler shapes. Provided the area and location of
the centroid of each of these “composite shapes” are known, one
can eliminate the need for integration to determine the centroid for the
entire area. In this case, equations analogous to Eq. A–1 must be used,
except that finite summation signs replace the integrals; i.e.,

(A–2)

Here and represent the algebraic distances or x, y coordinates for the
centroid of each composite part, and represents the sum of the areas
of the composite parts or simply the total area. In particular, if a hole, or
a geometric region having no material, is located within a composite
part, the hole is considered as an additional composite part having a
negative area. Also, as discussed above, if the total area is symmetrical
about an axis, the centroid of the area lies on the axis.

The following example illustrates application of Eq. A–2.

©A
y~x~

x =
©x'A

©A
 y =

©y'A

©A

x = 0.1x dA = 0

-x
+x

y

x

dA

C

dA

�x �x

C

Fig. A–3

Fig. A–2
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A

EXAMPLE A.1

Fig. A–4

y

x

C

2 in.

5 in.

11.5 in.10 in.

3 in.

8 in.

(a)

_
y

y

x

C

2 in.

�1.5 in.

�8 in.

10 in.

3 in.

(b)

_
y

y

x

C

3 in.

5 in.
6.5 in.

10 in.
13 in.

8 in.

(c)

3 in.

_
y

Locate the centroid C of the cross-sectional area for the T-beam
shown in Fig. A–4a.

SOLUTION I
The y axis is placed along the axis of symmetry so that Fig.A–4a.
To obtain we will establish the x axis (reference axis) through the
base of the area. The area is segmented into two rectangles as shown,
and the centroidal location for each is established.Applying Eq.A–2,
we have

Ans.

SOLUTION II
Using the same two segments, the x axis can be located at the top of
the area, Fig. A–4b. Here

Ans.

The negative sign indicates that C is located below the x axis,
which is to be expected. Also note that from the two answers

which is the depth of the beam.

SOLUTION III
It is also possible to consider the cross-sectional area to be one large
rectangle less two small rectangles shown shaded in Fig A–4c. Here
we have

Ans. = 8.55 in.

 y =
©y~A

©A
=

[6.5 in.]113 in.218 in.2 - 2[5 in.]110 in.213 in.2
113 in.218 in.2 - 2110 in.213 in.2

8.55 in. + 4.45 in. = 13.0 in.,

 = -4.45 in.

 y =
©y~A

©A
=

[-1.5 in.]13 in.218 in.2 + [-8 in.]110 in.212 in.2
13 in.218 in.2 + 110 in.212 in.2

 = 8.55 in.

 y =
©y~A

©A
=

[5 in.]110 in.212 in.2 + [11.5 in.]13 in.218 in.2
110 in.212 in.2 + 13 in.218 in.2

y

y
x = 0,
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A

y

x

x

y

dA

O

r

Fig. A–5

A.2 Moment of Inertia for an Area

The moment of inertia of an area often appears in formulas used in
mechanics of materials. It is a geometric property that is calculated about
an axis, and for the x and y axes shown in Fig. A–5, it is defined as

(A–3)

These integrals have no physical meaning, but they are so named
because they are similar to the formulation of the moment of inertia of a
mass, which is a dynamical property of matter.

We can also calculate the moment of inertia of an area about the pole
O or z axis, Fig. A–5. This is referred to as the polar moment of inertia,

(A–4)

Here r is the perpendicular distance from the pole (z axis) to the element
dA.The relationship between and is possible since 
Fig. A–5.

From the above formulations it is seen that and will always
be positive, since they involve the product of distance squared and area.
Furthermore, the units for moment of inertia involve length raised to the
fourth power, e.g., or 

Using the above equations, the moments of inertia for some common
area shapes have been calculated about their centroidal axes and are
listed on the inside front cover.

Parallel-Axis Theorem for an Area. If the moment of inertia
for an area is known about a centroidal axis, we can determine the
moment of inertia of the area about a corresponding parallel axis using
the parallel-axis theorem. To derive this theorem, consider finding the
moment of inertia of the shaded area shown in Fig. A–6 about the x axis.
In this case, a differential element dA is located at the arbitrary distance

from the centroidal axis, whereas the fixed distance between the x¿y¿

in4.ft4,mm4,m4,

JOIy ,Ix ,

r2 = x2 + y2,IyIx ,JO

JO = LA
 r

2 dA = Ix + Iy

 Iy = LA
 x

2 dA

 Ix = LA
 y

2 dA

y

x

y¿dA

O

d

x¿

x¿

dy

dx
C

y¿

Fig. A–6
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A

parallel x and axes is Since the moment of inertia of dA about the
x axis is then for the entire area,

The first term on the right represents the moment of inertia of the area
about the axis, The second term is zero since the axis passes
through the area’s centroid C, that is, since 
The final result is therefore

(A–5)

A similar expression can be written for that is,

(A–6)

And finally, for the polar moment of inertia about an axis perpendicular
to the x–y plane and passing through the pole O (z axis), Fig. A–6, we
have

(A–7)

The form of each of the above equations states that the moment of
inertia of an area about an axis is equal to the area’s moment of inertia
about a parallel axis passing through the “centroid” plus the product of the
area and the square of the perpendicular distance between the axes.

Composite Areas. Many cross-sectional areas consist of a series of
connected simpler shapes, such as rectangles, triangles, and semicircles.
In order to properly determine the moment of inertia of such an area
about a specified axis, it is first necessary to divide the area into its
composite parts and indicate the perpendicular distance from the axis to
the parallel centroidal axis for each part. Using the table on the inside
front cover of the book, the moment of inertia of each part is determined
about the centroidal axis. If this axis does not coincide with the specified
axis, the parallel-axis theorem, should be used to determine
the moment of inertia of the part about the specified axis.The moment of
inertia of the entire area about this axis is then determined by summing
the results of its composite parts. In particular, if a composite part has a
“hole,” the moment of inertia for the composite is found by “subtracting”
the moment of inertia for the hole from the moment of inertia of the
entire area including the hole.

I = I + Ad2,

JO = JC + Ad2

Iy = Iy¿ + Adx
 2

Iy ,

Ix = Ix¿ + Ady
 2

y¿ = 0.1y¿ dA = y¿A = 0
x¿Ix¿ .x¿

Ix = LA
1y¿ + dy22 dA = LA

 y¿2 dA + 2dyLA
 y¿ dA + dy

 2

LA
 dA

dIx = 1y¿ + dy22 dA,
dy .x¿



A.2 MOMENT OF INERTIA FOR AN AREA 789

A

EXAMPLE A.2

Determine the moment of inertia of the cross-sectional area of the 
T-beam shown in Fig. A–7a about the centroidal axis.x¿

x¿
C

5 in.
8.55 in.10 in.

8 in.

(a)

2 in.

4.45 in.
1.5 in.
1.5 in.

Fig. A–7

3 in.

13 in.

3 in.

(b)

x¿

5 in.
8.55 in.10 in.

2 in.

4.45 in.

6.5 in.

C

SOLUTION I
The area is segmented into two rectangles as shown in Fig. A–7a, and
the distance from the axis and each centroidal axis is determined.
Using the table on the inside front cover, the moment of inertia of a
rectangle about its centroidal axis is Applying the parallel-
axis theorem, Eq. A–5, to each rectangle and adding the results, we
have

Ans.

SOLUTION II
The area can be considered as one large rectangle less two small
rectangles, shown shaded in Fig. A–7b. We have

Ans. I = 646 in4

 -  2 c 1
12

 13 in.2110 in.23 + 13 in.2110 in.218.55 in. - 5 in.22d

 = c 1
12

 18 in.2113 in.23 + 18 in.2113 in.218.55 in. - 6.5 in.22 d
 I = ©(Ix¿ + Ady

 2)

 I = 646 in4

 + c 1
12

 18 in.213 in.23 + 18 in.213 in.214.45 in. - 1.5 in.22 d

 = c 1
12

 12 in.2110 in.23 + 12 in.2110 in.218.55 in. - 5 in.22 d
 I = ©(Ix¿ + Ady

 2)

I = 1
12 bh3.

x¿
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A

EXAMPLE A.3

Fig. A–8

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm

(a)

300 mm

x

100 mm

y

100 mm

(b)

D200 mm

B

A

250 mm

200 mm
250 mm300 mm

Determine the moments of inertia of the beam’s cross-sectional area
shown in Fig. A–8a about the x and y centroidal axes.

SOLUTION
The cross section can be considered as three composite rectangular
areas A, B, and D shown in Fig.A–8b. For the calculation, the centroid
of each of these rectangles is located in the figure. From the table on
the inside front cover, the moment of inertia of a rectangle about its
centroidal axis is Hence, using the parallel-axis theorem
for rectangles A and D, the calculations are as follows:

Rectangle A:

I = 1
12 bh3.

 = 1.9011092 mm4

 Iy = Iy¿ + Adx
 2 =

1
12

 1300 mm21100 mm23 + 1100 mm21300 mm21250 mm22
 = 1.42511092 mm4

 Ix = Ix¿ + Ady
 2 =

1
12

 1100 mm21300 mm23 + 1100 mm21300 mm21200 mm22

Rectangle B:

Rectangle D:

 Iy =
1
12

 1100 mm21600 mm23 = 1.8011092 mm4

 Ix =
1
12

 1600 mm21100 mm23 = 0.0511092 mm4

The moments of inertia for the entire cross section are thus

Ans.

Ans. = 5.6011092 mm4

 Iy = 1.9011092 + 1.8011092 + 1.9011092
 = 2.9011092 mm4

 Ix = 1.42511092 + 0.0511092 + 1.42511092

 = 1.9011092 mm4

 Iy = Iy¿ + Adx
 2 =

1
12

 1300 mm21100 mm23 + 1100 mm21300 mm21250 mm22
 = 1.42511092 mm4

 Ix = Ix¿ + Ady
 2 =

1
12

 1100 mm21300 mm23 + 1100 mm21300 mm21200 mm22
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A.3 Product of Inertia for an Area

In general, the moment of inertia for an area is different for every axis
about which it is computed. In some applications of mechanical or
structural design it is necessary to know the orientation of those axes that
give, respectively, the maximum and minimum moments of inertia for the
area. The method for determining this is discussed in Sec. A.4. To use this
method, however, one must first determine the product of inertia for the
area as well as its moments of inertia for given x, y axes.

The product of inertia for the area A shown in Fig. A–9 is defined as

(A–8)

Like the moment of inertia, the product of inertia has units of length
raised to the fourth power, e.g., or However, since x or y
may be a negative quantity, while dA is always positive, the product of
inertia may be positive, negative, or zero, depending on the location and
orientation of the coordinate axes. For example, the product of inertia

for an area will be zero if either the x or y axis is an axis of symmetry
for the area. To show this, consider the shaded area in Fig. A–10, where
for every element dA located at point (x, y) there is a corresponding
element dA located at Since the products of inertia for these
elements are, respectively, xy dA and their algebraic sum or
the integration of all the elements of area chosen in this way will cancel
each other. Consequently, the product of inertia for the total area
becomes zero.

-xy dA,
1x, -y2.

Ixy

in4.ft4,mm4m4,

Ixy = LA
 xy dA

A

y

x

x

y

A

dA

Fig. A–9

y

x

x
y

dA

dA

–y

Fig. A–10
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A

Parallel-Axis Theorem. Consider the shaded area shown in
Fig. A–11, where and represent a set of centroidal axes, and x and y
represent a corresponding set of parallel axes. Since the product of inertia
of dA with respect to the x and y axes is 
then for the entire area,

The first term on the right represents the product of inertia of the area
with respect to the centroidal axis, The second and third terms are
zero since the moments of the area are taken about the centroidal axis.
Realizing that the fourth integral represents the total area A, we
therefore have

(A–9)

The similarity between this equation and the parallel-axis theorem
for moments of inertia should be noted. In particular, it is important
that here the algebraic signs for and be maintained when applying
Eq. A–9.

dydx

Ixy = Ix¿y¿ + Adxdy

Ix¿y¿ .

 = LA
 x¿y¿ dA + dxLA

 y¿ dA + dyLA
 x¿ dA + dxdyLA

 dA

 Ixy = LA
1x¿ + dx21y¿ + dy2 dA

dIxy = 1x¿ + dx21y¿ + dy2 dA,

y¿x¿

y

x

C

dA

y¿

x¿

x¿

y¿

dy

dx

Fig. A–11
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A

EXAMPLE A.4

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm

(a)

Determine the product of inertia of the beam’s cross-sectional area,
shown in Fig. A–12a, about the x and y centroidal axes.

SOLUTION
As in Example A.3, the cross section can be considered as three
composite rectangular areas A, B, and D, Fig. A–12b. The coordinates
for the centroid of each of these rectangles are shown in the figure. Due
to symmetry, the product of inertia of each rectangle is zero about a
set of axes that pass through the rectangle’s centroid. Hence,
application of the parallel-axis theorem to each of the rectangles yields

Rectangle A:

Rectangle B:

Rectangle D:

The product of inertia for the entire cross section is thus

Ans. = -3.0011092 mm4

 Ixy = [-1.5011092 mm4] + 0 + [-1.5011092 mm4]

 = -1.5011092 mm4

 = 0 + 1300 mm21100 mm21250 mm21-200 mm2
 Ixy = Ix¿y¿ + Adxdy

 = 0
 = 0 + 0

 Ixy = Ix¿y¿ + Adxdy

 = -1.5011092 mm4

 = 0 + 1300 mm21100 mm21-250 mm21200 mm2
 Ixy = Ix¿y¿ + Adxdy

y¿x¿,

300 mm

x

100 mm

y

100 mm

(b)

D200 mm

B

A

250 mm

200 mm
250 mm300 mm

Fig. A–12
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A.4 Moments of Inertia for an Area
about Inclined Axes

In mechanical or structural design, it is sometimes necessary to calculate
the moments and product of inertia and for an area with
respect to a set of inclined and axes when the values for 
and are known. As shown in Fig. A–13, the coordinates to the area
element dA from each of the two coordinate systems are related by the
transformation equations

Using these equations, the moments and product of inertia of dA
about the and axes become

Expanding each expression and integrating, realizing that
and we obtain

These equations may be simplified by using the trigonometric identities
and in which case

(A–10)

 Ix¿y¿ =
Ix - Iy

2
 sin 2u + Ixy cos 2u

 Iy¿ =
Ix + Iy

2
-

Ix - Iy

2
 cos 2u + Ixy sin 2u

 Ix¿ =
Ix + Iy

2
+

Ix - Iy

2
 cos 2u - Ixy sin 2u

cos 2u = cos2 u - sin2 u,sin 2u = 2 sin u cos u

 Ix¿y¿ = Ix sin u cos u - Iy sin u cos u + Ixy1cos2 u - sin2 u2
 Iy¿ = Ix sin2 u + Iy cos2 u + 2Ixy sin u cos u

 Ix¿ = Ix cos2 u + Iy sin2 u - 2Ixy sin u cos u

Ixy = 1xy dA,Iy = 1x2 dA,
Ix = 1y2 dA,

 dIx¿y¿ = x¿y¿ dA = 1x cos u + y sin u21y cos u - x sin u2 dA

 dIy¿ = x¿2 dA = 1x cos u + y sin u22 dA

 dIx¿ = y¿2 dA = 1y cos u - x sin u22 dA

y¿x¿

 y¿ = y cos u - x sin u

 x¿ = x cos u + y sin u

Ixy

Iy ,Ix ,u,y¿x¿
Ix¿y¿Iy¿Ix¿ ,

A

y

x

dA

O

y

x¿

x

y¿

y¿

x¿
y cos u

x sin u

y sin u
x cos u

u

u

u

Fig. A–13
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A

Principal Moments of Inertia. Note that and 
depend on the angle of inclination, of the axes. We will now
determine the orientation of these axes about which the moments of
inertia for the area, and are maximum and minimum. This
particular set of axes is called the principal axes of inertia for the area,
and the corresponding moments of inertia with respect to these axes are
called the principal moments of inertia. In general, there is a set of
principal axes for every chosen origin O; however, in mechanics of
materials the area’s centroid is the most important location for O.

The angle which defines the orientation of the principal axes
for the area, can be found by differentiating the first of Eq. A–10 with
respect to and setting the result equal to zero. Thus,

Therefore, at 

(A–11)

This equation has two roots, and which are 90 apart and so
specify the inclination of each principal axis.

The sine and cosine of and can be obtained from the triangles
shown in Fig. A–14, which are based on Eq. A–11. If these trigonometric
relations are substituted into the first or second of Eq. A–10 and
simplified, the result is

(A–12)

Depending on the sign chosen, this result gives the maximum or
minimum moment of inertia for the area. Furthermore, if the above
trigonometric relations for and are substituted into the third of
Eq. A–10, it will be seen that that is, the product of inertia with
respect to the principal axes is zero. Since it was indicated in Sec. A.3 that
the product of inertia is zero with respect to any symmetrical axis, it
therefore follows that any symmetrical axis and the one perpendicular to
it represent principal axes of inertia for the area. Also, notice that the
equations derived in this section are similar to those for stress and strain
transformation developed in Chapters 9 and 10, respectively.

Ix¿y¿ = 0;
up2

up1

Imax
min

=
Ix + Iy

2
; C ¢

Ix - Iy

2
≤2

+ Ixy
 2

2up2
2up1

°up2
,up1

tan 2up =
-Ixy

1Ix - Iy2>2

u = up ,

dIx¿

du
= -2¢Ix - Iy

2
≤  sin 2u - 2Ixy cos 2u = 0

u

u = up ,

Iy¿ ,Ix¿

y¿x¿,u,
Ix¿y¿Iy¿ ,Ix¿ ,

I 

Ixy

2up1

2up2

�Ixy

Ixy

Ix � Iy

2
�

Ix � Iy

2

� Ixy
2

Ix � Iy

2

2

Fig. A–14
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A

EXAMPLE A.5

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm
C

y¿

x¿

up2 
� �32.9�

up1 
� 57.1�

Fig. A–15

Ix = 2.9011092 mm4 Iy = 5.6011092 mm4 Ixy = -3.0011092 mm4

Determine the principal moments of inertia for the beam’s cross-
sectional area shown in Fig. A–15 with respect to an axis passing
through the centroid C.

SOLUTION
The moments and product of inertia of the cross section with respect
to the x, y axes have been determined in Examples A.3 and A.4. The
results are

Using Eq. A–11, the angles of inclination of the principal axes 
and are

Thus, as shown in Fig. A–15,

The principal moments of inertia with respect to the and axes
are determined by using Eq. A–12.

y¿x¿

up1 = 57.1° and up2 = -32.9°

2up1
= 114.2° and 2up2

= -65.8°

tan 2up =
-Ixy

1Ix - Iy2>2 =
3.0011092

[2.9011092 - 5.6011092]>2 = -2.22

y¿
x¿

 = 4.2511092 ; 3.2911092
 =

2.9011092 + 5.6011092
2

; CB
2.9011092 - 5.6011092

2
R2

+ [-3.0011092]2

 Imax
min

=
Ix + Iy

2
; C ¢

Ix - Iy

2
≤2

+ Ixy
 2

or

Ans.

Specifically, the maximum moment of inertia,
occurs with respect to the axis (major axis), since by inspection most
of the cross-sectional area is farthest away from this axis. To show this,
substitute the data with into the first of Eq.A–10.u = 57.1°

x¿
Imax = 7.5411092 mm4,

Imax = 7.5411092 mm4 Imin = 0.96011092 mm4
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A

A.5 Mohr’s Circle for Moments of Inertia

Equations A–10 through A–12 have a semi-graphical solution that is
convenient to use and generally easy to remember. Squaring the first and
third of Eq. A–10 and adding, it is found that

(A–13)

In any given problem, and are variables, and and are
known constants. Thus, the above equation may be written in compact
form as

When this equation is plotted, the resulting graph represents a circle of
radius

and having its center located at point (a, 0), where The
circle so constructed is called Mohr’s circle. Its application is similar to
that used for stress and strain transformation developed in Chapters 9
and 10, respectively.

a = 1Ix + Iy2>2.

R = C ¢
Ix - Iy

2
≤2

+ Ixy
 2

1Ix¿ - a22 + Ix¿y¿
  2 = R2

IxyIy ,Ix ,Ix¿y¿Ix¿

¢Ix¿ -
Ix + Iy

2
≤2

+ Ix¿y¿
  2 = ¢Ix - Iy

2
≤2

+ Ixy
 2

Procedure for Analysis

The main purpose for using Mohr’s circle here is to have a
convenient means of transforming and into the principal
moments of inertia for the area. The following procedure provides a
method for doing this.

Calculate , , .
Establish the x, y axes for the area, with the origin located at the
point P of interest, usually the centroid, and determine and

Fig. A–16a.Ixy ,
Iy ,Ix ,

IxyIyIx

IxyIy ,Ix ,

x

y

x¿

y¿
Minor axis for principal
moment of inertia, Imin 

Major axis for principal
moment of inertia, Imax 

P

(a)

up1

Fig. A–16
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A

Procedure for Analysis (continued)

Construct the Circle.
Establish a rectangular coordinate system such that the horizontal
axis represents the moment of inertia I, and the vertical axis
represents the product of inertia Fig. A–16b. Determine the
center of the circle, C, which is located a distance from
the origin, and plot the “reference point” A having coordinates

By definition, is always positive, whereas can either
be positive or negative. Connect the reference point A with the
center of the circle, and determine the distance CA by trigonometry.
This distance represents the radius of the circle, Fig. A–16b. Finally,
draw the circle.

IxyIx1Ix , Ixy2.
1Ix + Iy2>2

Ixy ,

Principal Moments of Inertia.
The points where the circle intersects the I axis give the values of the
principal moments of inertia and Here the product of
inertia will be zero at these points, Fig. A–16b.

To find the orientation of the major principal axis, determine by
trigonometry the angle measured from the radius CA to the
positive I axis, Fig.A–16b.This angle represents twice the angle from
the x axis to the axis of maximum moment of inertia 
Fig. A–16a. Both the angle on the circle, and the angle on the
area, must be measured in the same sense, as shown in Fig. A–16.
The minor axis is for minimum moment of inertia which is
always perpendicular to the major axis defining Imax .

Imin ,
up1

,
2up1

,
Imax ,

2up1
,

Imax .Imin

I 

(b)

C

A

R�

2up1

Imin

Imax

Ix � Iy

2
Ix � Iy

2

� Ixy
2

Ix � Iy

2

2Ixy

Ixy

Ix

Fig. A–16 (cont.)
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A

EXAMPLE A.6

Fig. A–17

400 mm

400 mm

x

100 mm

y

100 mm

600 mm

100 mm

(a)

C

y¿

x¿

up1 
� 57.1�

(b)

4.25

2.90 C

1.35

3.00
B

A(2.90, �3.00)

Ixy(109) mm4

I(109) mm4

(c)

C

A(2.90, �3.00)

3.29

Imin � 0.960

Imax � 7.54

Ixy(109) mm4

I(109) mm4

2up1

C

Use Mohr’s circle to determine the principal moments of inertia for
the beam’s cross-sectional area, shown in Fig. A–17a, with respect to
principal axes passing through the centroid C.

SOLUTION

Compute , , . The moments of inertia and the product 
of inertia have been determined in Examples A.3 and A.4 with
respect to the x, y axes shown in Fig. A–17a. The results are

and

Construct the Circle. The I and axes are shown in Fig. A–17b.
The center of the circle, C, lies at a distance 

from the origin. When the reference point
is connected to point C, the radius CA is determined

from the shaded triangle CBA using the Pythagorean theorem:

The circle is constructed in Fig. A–17c.

Principal Moments of Inertia. The circle intersects the I axis at
points (7.54, 0) and (0.960, 0). Hence

Ans.

Ans.

As shown in Fig.A–17c, the angle is determined from the circle
by measuring counterclockwise from CA to the positive I axis. Hence,

The major principal axis (for ) is therefore
oriented at an angle measured counterclockwise, from the
positive x axis. The minor axis is perpendicular to this axis. The results
are shown in Fig. A–17a.

up1
= 57.1°,

Imax = 7.5411092 mm4

 up1
= 57.1°

 2up1
= 180° - tan-1a ƒ BA ƒ

ƒ BC ƒ
b = 180° - tan-1a3.00

1.35
b = 114.2°

2up1

 Imin = 0.96011092 mm4

 Imax = 7.5411092 mm4

CA = 211.3522 + 1-3.0022 = 3.29

A(2.90, -3.00)
(2.90 + 5.60)>2 = 4.25

1Ix + Iy2>2 =
Ixy

Ixy = -3.0011092 mm4.Iy = 5.6011092 mm4,Ix = 2.9011092 mm4,

IxyIyIx



800

Geometric Properties
of Structural ShapesB

APPENDIX

Wide-Flange Sections or W Shapes FPS Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

in. in. in. in. in. in.

30.6 24.06 0.500 12.750 0.750 3100 258 10.1 259 40.7 2.91
27.7 24.31 0.515 9.065 0.875 2700 222 9.87 109 24.0 1.98
24.7 24.10 0.470 9.020 0.770 2370 196 9.79 94.4 20.9 1.95
22.4 23.92 0.440 8.990 0.680 2100 176 9.69 82.5 18.4 1.92
20.1 23.73 0.415 8.965 0.585 1830 154 9.55 70.4 15.7 1.87
18.2 23.74 0.430 7.040 0.590 1550 131 9.23 34.5 9.80 1.38
16.2 23.57 0.395 7.005 0.505 1350 114 9.11 29.1 8.30 1.34

19.1 18.35 0.450 7.590 0.750 1070 117 7.49 54.8 14.4 1.69
17.6 18.24 0.415 7.555 0.695 984 108 7.47 50.1 13.3 1.69
16.2 18.11 0.390 7.530 0.630 890 98.3 7.41 44.9 11.9 1.67
14.7 17.99 0.355 7.495 0.570 800 88.9 7.38 40.1 10.7 1.65
13.5 18.06 0.360 6.060 0.605 712 78.8 7.25 22.5 7.43 1.29
11.8 17.90 0.315 6.015 0.525 612 68.4 7.21 19.1 6.35 1.27
10.3 17.70 0.300 6.000 0.425 510 57.6 7.04 15.3 5.12 1.22

16.8 16.43 0.430 7.120 0.715 758 92.2 6.72 43.1 12.1 1.60
14.7 16.26 0.380 7.070 0.630 659 81.0 6.68 37.2 10.5 1.59
13.3 16.13 0.345 7.035 0.565 586 72.7 6.65 32.8 9.34 1.57
10.6 15.86 0.295 6.985 0.430 448 56.5 6.51 24.5 7.00 1.52
9.12 15.88 0.275 5.525 0.440 375 47.2 6.41 12.4 4.49 1.17
7.68 15.69 0.250 5.500 0.345 301 38.4 6.26 9.59 3.49 1.12

15.6 13.92 0.370 8.060 0.660 541 77.8 5.89 57.7 14.3 1.92
12.6 13.66 0.305 7.995 0.530 428 62.7 5.82 45.2 11.3 1.89
11.2 14.10 0.310 6.770 0.515 385 54.6 5.87 26.7 7.88 1.55
10.0 13.98 0.285 6.745 0.455 340 48.6 5.83 23.3 6.91 1.53
8.85 13.84 0.270 6.730 0.385 291 42.0 5.73 19.6 5.82 1.49
7.69 13.91 0.255 5.025 0.420 245 35.3 5.65 8.91 3.54 1.08
6.49 13.74 0.230 5.000 0.335 199 29.0 5.54 7.00 2.80 1.04W14 * 22

W14 * 26
W14 * 30
W14 * 34
W14 * 38
W14 * 43
W14 * 53

W16 * 26
W16 * 31
W16 * 36
W16 * 45
W16 * 50
W16 * 57

W18 * 35
W18 * 40
W18 * 46
W18 * 50
W18 * 55
W18 * 60
W18 * 65

W24 * 55
W24 * 62
W24 * 68
W24 * 76
W24 * 84
W24 * 94
W24 * 104

in3in4in3in4in2in. : lb>ft
tfbftw



WIDE-FLANGE SECTIONS OR W SHAPES FPS UNITS 801

B

Wide-Flange Sections or W Shapes FPS Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

in. in. in. in. in. in.

25.6 12.53 0.515 12.125 0.810 740 118 5.38 241 39.7 3.07
14.7 12.19 0.370 8.080 0.640 394 64.7 5.18 56.3 13.9 1.96
13.2 12.06 0.335 8.045 0.575 350 58.1 5.15 50.0 12.4 1.94
7.65 12.22 0.230 6.490 0.380 204 33.4 5.17 17.3 5.34 1.51
6.48 12.31 0.260 4.030 0.425 156 25.4 4.91 4.66 2.31 0.847
4.71 11.99 0.220 3.990 0.265 103 17.1 4.67 2.82 1.41 0.773
4.16 11.91 0.200 3.970 0.225 88.6 14.9 4.62 2.36 1.19 0.753

29.4 11.10 0.680 10.340 1.120 623 112 4.60 207 40.0 2.65
15.8 10.09 0.370 10.030 0.615 303 60.0 4.37 103 20.6 2.56
13.3 10.10 0.350 8.020 0.620 248 49.1 4.32 53.4 13.3 2.01
11.5 9.92 0.315 7.985 0.530 209 42.1 4.27 45.0 11.3 1.98
8.84 10.47 0.300 5.810 0.510 170 32.4 4.38 16.7 5.75 1.37
5.62 10.24 0.250 4.020 0.395 96.3 18.8 4.14 4.29 2.14 0.874
4.41 9.99 0.230 4.000 0.270 68.9 13.8 3.95 2.89 1.45 0.810
3.54 9.87 0.190 3.960 0.210 53.8 10.9 3.90 2.18 1.10 0.785

19.7 9.00 0.570 8.280 0.935 272 60.4 3.72 88.6 21.4 2.12
17.1 8.75 0.510 8.220 0.810 228 52.0 3.65 75.1 18.3 2.10
14.1 8.50 0.400 8.110 0.685 184 43.3 3.61 60.9 15.0 2.08
11.7 8.25 0.360 8.070 0.560 146 35.5 3.53 49.1 12.2 2.04
9.13 8.00 0.285 7.995 0.435 110 27.5 3.47 37.1 9.27 2.02
7.08 7.93 0.245 6.495 0.400 82.8 20.9 3.42 18.3 5.63 1.61
4.44 8.11 0.245 4.015 0.315 48.0 11.8 3.29 3.41 1.70 0.876

7.34 6.38 0.320 6.080 0.455 53.4 16.7 2.70 17.1 5.61 1.52
5.87 6.20 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50
4.74 6.28 0.260 4.030 0.405 32.1 10.2 2.60 4.43 2.20 0.966
4.43 5.99 0.230 5.990 0.260 29.1 9.72 2.56 9.32 3.11 1.46
3.55 6.03 0.230 4.000 0.280 22.1 7.31 2.49 2.99 1.50 0.918
2.68 5.90 0.170 3.940 0.215 16.4 5.56 2.47 2.19 1.11 0.905W6 * 9

W6 * 12
W6 * 15
W6 * 16
W6 * 20
W6 * 25

W8 * 15
W8 * 24
W8 * 31
W8 * 40
W8 * 48
W8 * 58
W8 * 67

W10 * 12
W10 * 15
W10 * 19
W10 * 30
W10 * 39
W10 * 45
W10 * 54
W10 * 100

W12 * 14
W12 * 16
W12 * 22
W12 * 26
W12 * 45
W12 * 50
W12 * 87

in3in4in3in4in2in. : lb>ft
tfbftw
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B

y

y

xx d

bf

tw

tf

American Standard Channels or C Shapes FPS Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

in. in. in. in. in. in.

14.7 15.00 0.716 11�16 3.716 0.650 5�8 404 53.8 5.24 11.0 3.78 0.867
11.8 15.00 0.520 1�2 3.520 0.650 5�8 349 46.5 5.44 9.23 3.37 0.886
9.96 15.00 0.400 3�8 3.400 0.650 5�8 315 42.0 5.62 8.13 3.11 0.904

8.82 12.00 0.510 1�2 3.170 0.501 1�2 162 27.0 4.29 5.14 2.06 0.763
7.35 12.00 0.387 3�8 3.047 3 0.501 1�2 144 24.1 4.43 4.47 1.88 0.780
6.09 12.00 0.282 5�16 2.942 3 0.501 1�2 129 21.5 4.61 3.88 1.73 0.799

8.82 10.00 0.673 11�16 3.033 3 0.436 7�16 103 20.7 3.42 3.94 1.65 0.669
7.35 10.00 0.526 1�2 2.886 0.436 7�16 91.2 18.2 3.52 3.36 1.48 0.676
5.88 10.00 0.379 3�8 2.739 0.436 7�16 78.9 15.8 3.66 2.81 1.32 0.692
4.49 10.00 0.240 1�4 2.600 0.436 7�16 67.4 13.5 3.87 2.28 1.16 0.713

5.88 9.00 0.448 7�16 2.648 0.413 7�16 60.9 13.5 3.22 2.42 1.17 0.642
4.41 9.00 0.285 5�16 2.485 0.413 7�16 51.0 11.3 3.40 1.93 1.01 0.661
3.94 9.00 0.233 1�4 2.433 0.413 7�16 47.9 10.6 3.48 1.76 0.962 0.669

5.51 8.00 0.487 1�2 2.527 0.390 3�8 44.0 11.0 2.82 1.98 1.01 0.599
4.04 8.00 0.303 5�16 2.343 0.390 3�8 36.1 9.03 2.99 1.53 0.854 0.615
3.38 8.00 0.220 1�4 2.260 0.390 3�8 32.6 8.14 3.11 1.32 0.781 0.625

4.33 7.00 0.419 7�16 2.299 0.366 3�8 27.2 7.78 2.51 1.38 0.779 0.564
3.60 7.00 0.314 5�16 2.194 0.366 3�8 24.2 6.93 2.60 1.17 0.703 0.571
2.87 7.00 0.210 3�16 2.090 0.366 3�8 21.3 6.08 2.72 0.968 0.625 0.581

3.83 6.00 0.437 7�16 2.157 0.343 5�16 17.4 5.80 2.13 1.05 0.642 0.525
3.09 6.00 0.314 5�16 2.034 2 0.343 5�16 15.2 5.06 2.22 0.866 0.564 0.529
2.40 6.00 0.200 3�16 1.920 0.343 5�16 13.1 4.38 2.34 0.693 0.492 0.537

2.64 5.00 0.325 5�16 1.885 0.320 5�16 8.90 3.56 1.83 0.632 0.450 0.489
1.97 5.00 0.190 3�16 1.750 0.320 5�16 7.49 3.00 1.95 0.479 0.378 0.493

2.13 4.00 0.321 5�16 1.721 0.296 5�16 4.59 2.29 1.47 0.433 0.343 0.450
1.59 4.00 0.184 3�16 1.584 0.296 5�16 3.85 1.93 1.56 0.319 0.283 0.449

1.76 3.00 0.356 3�8 1.596 0.273 1�4 2.07 1.38 1.08 0.305 0.268 0.416
1.47 3.00 0.258 1�4 1.498 0.273 1�4 1.85 1.24 1.12 0.247 0.233 0.410
1.21 3.00 0.170 3�16 1.410 0.273 1�4 1.66 1.10 1.17 0.197 0.202 0.4041 

3
8C3 * 4.1

1 
1
2C3 * 5

1 
5
8C3 * 6

1 
5
8C4 * 5.4

1 
3
4C4 * 7.25

1 
3
4C5 * 6.7

1 
7
8C5 * 9

1 
7
8C6 * 8.2

C6 * 10.5
2 

1
8C6 * 13

2 
1
8C7 * 9.8

2 
1
4C7 * 12.25

2 
1
4C7 * 14.75

2 
1
4C8 * 11.5

2 
3
8C8 * 13.75

2 
1
2C8 * 18.75

2 
3
8C9 * 13.4

2 
1
2C9 * 15

2 
5
8C9 * 20

2 
5
8C10 * 15.3

2 
3
4C10 * 20

2 
7
8C10 * 25

C10 * 30

C12 * 20.7
C12 * 25

3 
1
8C12 * 30

3 
3
8C15 * 33.9

3 
1
2C15 * 40

3 
3
4C15 * 50

in3in4in3in4in2in. : lb>ft
tfbftw



ANGLES HAVING EQUAL LEGS FPS UNITS 803

B

y

y

y
x

z

z

x

x

Angles Having Equal Legs FPS Units

Size and Weight
x–x axis y–y axis z–z axis

thickness per foot Area A I S r y I S r x r

in. lb in. in. in. in. in.

51.0 15.0 89.0 15.8 2.44 2.37 89.0 15.8 2.44 2.37 1.56

38.9 11.4 69.7 12.2 2.47 2.28 69.7 12.2 2.47 2.28 1.58

26.4 7.75 48.6 8.36 2.50 2.19 48.6 8.36 2.50 2.19 1.59

37.4 11.0 35.5 8.57 1.80 1.86 35.5 8.57 1.80 1.86 1.17

28.7 8.44 28.2 6.66 1.83 1.78 28.2 6.66 1.83 1.78 1.17

19.6 5.75 19.9 4.61 1.86 1.68 19.9 4.61 1.86 1.68 1.18

14.9 4.36 15.4 3.53 1.88 1.64 15.4 3.53 1.88 1.64 1.19

23.6 6.94 15.7 4.53 1.51 1.52 15.7 4.53 1.51 1.52 0.975

16.2 4.75 11.3 3.16 1.54 1.43 11.3 3.16 1.54 1.43 0.983

12.3 3.61 8.74 2.42 1.56 1.39 8.74 2.42 1.56 1.39 0.990

18.5 5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778

12.8 3.75 5.56 1.97 1.22 1.18 5.56 1.97 1.22 1.18 0.782

9.8 2.86 4.36 1.52 1.23 1.14 4.36 1.52 1.23 1.14 0.788

6.6 1.94 3.04 1.05 1.25 1.09 3.04 1.05 1.25 1.09 0.795

11.1 3.25 3.64 1.49 1.06 1.06 3.64 1.49 1.06 1.06 0.683

8.5 2.48 2.87 1.15 1.07 1.01 2.87 1.15 1.07 1.01 0.687

5.8 1.69 2.01 0.794 1.09 0.968 2.01 0.794 1.09 0.968 0.694

9.4 2.75 2.22 1.07 0.898 0.932 2.22 1.07 0.898 0.932 0.584

7.2 2.11 1.76 0.833 0.913 0.888 1.76 0.833 0.913 0.888 0.587

4.9 1.44 1.24 0.577 0.930 0.842 1.24 0.577 0.930 0.842 0.592

7.7 2.25 1.23 0.724 0.739 0.806 1.23 0.724 0.739 0.806 0.487

5.9 1.73 0.984 0.566 0.753 0.762 0.984 0.566 0.753 0.762 0.487

4.1 1.19 0.703 0.394 0.769 0.717 0.703 0.394 0.769 0.717 0.491

4.7 1.36 0.479 0.351 0.594 0.636 0.479 0.351 0.594 0.636 0.389

3.19 0.938 0.348 0.247 0.609 0.592 0.348 0.247 0.609 0.592 0.391

1.65 0.484 0.190 0.131 0.626 0.546 0.190 0.131 0.626 0.546 0.398L2 * 2 * 1
8

L2 * 2 * 1
4

L2 * 2 * 3
8

L2 
1
2 * 2 

1
2 * 1

4

L2 
1
2 * 2 

1
2 * 3

8

L2 
1
2 * 2 

1
2 * 1

2

L3 * 3 * 1
4

L3 * 3 * 3
8

L3 * 3 * 1
2

L3 
1
2 * 3 

1
2 * 1

4

L3 
1
2 * 3 

1
2 * 1

2

L3 
1
2 * 3 

1
2 * 1

2

L4 * 4 * 1
4

L4 * 4 * 3
8

L4 * 4 * 1
2

L4 * 4 * 3
4

L5 * 5 * 3
8

L5 * 5 * 1
2

L5 * 5 * 3
4

L6 * 6 * 3
8

L6 * 6 * 1
2

L6 * 6 * 3
4

L6 * 6 * 1

L8 * 8 * 1
2

L8 * 8 * 3
4

L8 * 8 * 1

in3in4in3in4in2
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Wide-Flange Sections or W Shapes SI Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

mm mm mm mm mm mm

19 800 611 12.70 324.0 19.0 1 290 4 220 255 108 667 73.9
17 900 617 13.10 230.0 22.2 1 120 3 630 250 45.1 392 50.2
15 900 612 11.90 229.0 19.6 985 3 220 249 39.3 343 49.7
14 400 608 11.20 228.0 17.3 875 2 880 247 34.3 301 48.8
12 900 603 10.50 228.0 14.9 764 2 530 243 29.5 259 47.8
11 800 603 10.90 179.0 15.0 646 2 140 234 14.4 161 34.9
10 500 599 10.00 178.0 12.8 560 1 870 231 12.1 136 33.9

12 300 466 11.40 193.0 19.0 445 1 910 190 22.8 236 43.1
11 400 463 10.50 192.0 17.7 410 1 770 190 20.9 218 42.8
10 400 460 9.91 191.0 16.0 370 1 610 189 18.6 195 42.3
9 460 457 9.02 190.0 14.5 333 1 460 188 16.6 175 41.9
8 730 459 9.14 154.0 15.4 297 1 290 184 9.41 122 32.8
7 590 455 8.00 153.0 13.3 255 1 120 183 7.96 104 32.4
6 640 450 7.62 152.0 10.8 212 942 179 6.34 83.4 30.9

10 800 417 10.90 181.0 18.2 315 1 510 171 18.0 199 40.8
9 510 413 9.65 180.0 16.0 275 1 330 170 15.6 173 40.5
8 560 410 8.76 179.0 14.4 245 1 200 169 13.8 154 40.2
6 820 403 7.49 177.0 10.9 186 923 165 10.1 114 38.5
5 890 403 6.99 140.0 11.2 156 774 163 5.14 73.4 29.5
4 960 399 6.35 140.0 8.8 126 632 159 4.02 57.4 28.5

10 100 354 9.40 205.0 16.8 227 1 280 150 24.2 236 48.9
8 150 347 7.75 203.0 13.5 179 1 030 148 18.8 185 48.0
7 200 358 7.87 172.0 13.1 160 894 149 11.1 129 39.3
6 450 355 7.24 171.0 11.6 141 794 148 9.68 113 38.7
5 710 352 6.86 171.0 9.8 121 688 146 8.16 95.4 37.8
4 960 353 6.48 128.0 10.7 102 578 143 3.75 58.6 27.5
4 190 349 5.84 127.0 8.5 82.9 475 141 2.91 45.8 26.4W360 * 33

W360 * 39
W360 * 45
W360 * 51
W360 * 57
W360 * 64
W360 * 79

W410 * 39
W410 * 46
W410 * 53
W410 * 67
W410 * 74
W410 * 85

W460 * 52
W460 * 60
W460 * 68
W460 * 74
W460 * 82
W460 * 89
W460 * 97

W610 * 82
W610 * 92
W610 * 101
W610 * 113
W610 * 125
W610 * 140
W610 * 155

103 mm3106 mm4103 mm3106 mm4mm2mm : kg>m
tfbftw
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B

Wide-Flange Sections or W Shapes SI Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

mm mm mm mm mm mm

16 500 318 13.10 308.0 20.6 308 1940 137 100 649 77.8
9 480 310 9.40 205.0 16.3 165 1060 132 23.4 228 49.7
8 530 306 8.51 204.0 14.6 145 948 130 20.7 203 49.3
4 930 310 5.84 165.0 9.7 84.8 547 131 7.23 87.6 38.3
4 180 313 6.60 102.0 10.8 65.0 415 125 1.92 37.6 21.4
3 040 305 5.59 101.0 6.7 42.8 281 119 1.16 23.0 19.5
2 680 303 5.08 101.0 5.7 37.0 244 117 0.986 19.5 19.2

19 000 282 17.30 263.0 28.4 259 1840 117 86.2 656 67.4
10 200 256 9.40 255.0 15.6 126 984 111 43.1 338 65.0
8 560 257 8.89 204.0 15.7 104 809 110 22.2 218 50.9
7 400 252 8.00 203.0 13.5 87.3 693 109 18.8 185 50.4
5 700 266 7.62 148.0 13.0 71.1 535 112 7.03 95 35.1
3 620 260 6.35 102.0 10.0 39.9 307 105 1.78 34.9 22.2
2 850 254 5.84 102.0 6.9 28.8 227 101 1.22 23.9 20.7
2 280 251 4.83 101.0 5.3 22.5 179 99.3 0.919 18.2 20.1

12 700 229 14.50 210.0 23.7 113 987 94.3 36.6 349 53.7
11 000 222 13.00 209.0 20.6 94.7 853 92.8 31.4 300 53.4
9 100 216 10.20 206.0 17.4 76.6 709 91.7 25.4 247 52.8
7 580 210 9.14 205.0 14.2 61.2 583 89.9 20.4 199 51.9
5 890 203 7.24 203.0 11.0 45.5 448 87.9 15.3 151 51.0
4 570 201 6.22 165.0 10.2 34.4 342 86.8 7.64 92.6 40.9
2 860 206 6.22 102.0 8.0 20.0 194 83.6 1.42 27.8 22.3

4 730 162 8.13 154.0 11.6 22.2 274 68.5 7.07 91.8 38.7
3 790 157 6.60 153.0 9.3 17.1 218 67.2 5.54 72.4 38.2
2 860 152 5.84 152.0 6.6 12.1 159 65.0 3.87 50.9 36.8
3 060 160 6.60 102.0 10.3 13.4 168 66.2 1.83 35.9 24.5
2 290 153 5.84 102.0 7.1 9.19 120 63.3 1.26 24.7 23.5
1 730 150 4.32 100.0 5.5 6.84 91.2 62.9 0.912 18.2 23.0W150 * 14

W150 * 18
W150 * 24
W150 * 22
W150 * 30
W150 * 37

W200 * 22
W200 * 36
W200 * 46
W200 * 59
W200 * 71
W200 * 86
W200 * 100

W250 * 18
W250 * 22
W250 * 28
W250 * 45
W250 * 58
W250 * 67
W250 * 80
W250 * 149

W310 * 21
W310 * 24
W310 * 33
W310 * 39
W310 * 67
W310 * 74
W310 * 129

103 mm3106 mm4103 mm3106 mm4mm2mm : kg>m
tfbftw

y

y

xx

bf

tw

tf

d
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B

American Standard Channels or C Shapes SI Units

Web
Flange

Area Depth thickness width thickness
x–x axis y–y axis

Designation A d I S r I S r

mm mm mm mm mm mm

9 480 381.0 18.20 94.4 16.50 168 882 133 4.58 61.8 22.0
7 610 381.0 13.20 89.4 16.50 145 761 138 3.84 55.1 22.5
6 430 381.0 10.20 86.4 16.50 131 688 143 3.38 50.9 22.9

5 690 305.0 13.00 80.5 12.70 67.4 442 109 2.14 33.8 19.4
4 740 305.0 9.83 77.4 12.70 59.9 393 112 1.86 30.9 19.8
3 930 305.0 7.16 74.7 12.70 53.7 352 117 1.61 28.3 20.2

5 690 254.0 17.10 77.0 11.10 42.9 338 86.8 1.61 27.1 17.0
4 740 254.0 13.40 73.3 11.10 38.0 299 89.5 1.40 24.3 17.2
3 790 254.0 9.63 69.6 11.10 32.8 258 93.0 1.17 21.6 17.6
2 900 254.0 6.10 66.0 11.10 28.1 221 98.4 0.949 19.0 18.1

3 790 229.0 11.40 67.3 10.50 25.3 221 81.7 1.01 19.2 16.3
2 850 229.0 7.24 63.1 10.50 21.2 185 86.2 0.803 16.7 16.8
2 540 229.0 5.92 61.8 10.50 19.9 174 88.5 0.733 15.8 17.0

3 550 203.0 12.40 64.2 9.90 18.3 180 71.8 0.824 16.5 15.2
2 610 203.0 7.70 59.5 9.90 15.0 148 75.8 0.637 14.0 15.6
2 180 203.0 5.59 57.4 9.90 13.6 134 79.0 0.549 12.8 15.9

2 790 178.0 10.60 58.4 9.30 11.3 127 63.6 0.574 12.8 14.3
2 320 178.0 7.98 55.7 9.30 10.1 113 66.0 0.487 11.5 14.5
1 850 178.0 5.33 53.1 9.30 8.87 99.7 69.2 0.403 10.2 14.8

2 470 152.0 11.10 54.8 8.70 7.24 95.3 54.1 0.437 10.5 13.3
1 990 152.0 7.98 51.7 8.70 6.33 83.3 56.4 0.360 9.22 13.5
1 550 152.0 5.08 48.8 8.70 5.45 71.7 59.3 0.288 8.04 13.6

1 700 127.0 8.25 47.9 8.10 3.70 58.3 46.7 0.263 7.35 12.4
1 270 127.0 4.83 44.5 8.10 3.12 49.1 49.6 0.199 6.18 12.5

1 370 102.0 8.15 43.7 7.50 1.91 37.5 37.3 0.180 5.62 11.5
1 030 102.0 4.67 40.2 7.50 1.60 31.4 39.4 0.133 4.65 11.4

1 140 76.2 9.04 40.5 6.90 0.862 22.6 27.5 0.127 4.39 10.6
948 76.2 6.55 38.0 6.90 0.770 20.2 28.5 0.103 3.83 10.4
781 76.2 4.32 35.8 6.90 0.691 18.1 29.8 0.082 3.32 10.2C75 * 6

C75 * 7
C75 * 9

C100 * 8
C100 * 11

C130 * 10
C130 * 13

C150 * 12
C150 * 16
C150 * 19

C180 * 15
C180 * 18
C180 * 22

C200 * 17
C200 * 20
C200 * 28

C230 * 20
C230 * 22
C230 * 30

C250 * 23
C250 * 30
C250 * 37
C250 * 45

C310 * 31
C310 * 37
C310 * 45

C380 * 50
C380 * 60
C380 * 74

103 mm3106 mm4103 mm3106 mm4mm2mm : kg>m
tfbftw

y

y

xx d
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B

Angles Having Equal Legs SI Units

Mass
per

x–x axis y–y axis z–z axis

Size and thickness Meter Area I S r y I S r x r

mm kg mm mm mm mm mm

75.9 9 680 36.9 258 61.7 60.1 36.9 258 61.7 60.1 39.6
57.9 7 380 28.9 199 62.6 57.8 28.9 199 62.6 57.8 40.1
39.3 5 000 20.2 137 63.6 55.5 20.2 137 63.6 55.5 40.4

55.7 7 100 14.6 139 45.3 47.2 14.6 139 45.3 47.2 29.7
42.7 5 440 11.6 108 46.2 45.0 11.6 108 46.2 45.0 29.7
29.2 3 710 8.22 75.1 47.1 42.7 8.22 75.1 47.1 42.7 30.0
22.2 2 810 6.35 57.4 47.5 41.5 6.35 57.4 47.5 41.5 30.2

35.1 4 480 6.54 73.9 38.2 38.7 6.54 73.9 38.2 38.7 24.8
24.1 3 060 4.68 51.7 39.1 36.4 4.68 51.7 39.1 36.4 25.0
18.3 2 330 3.64 39.7 39.5 35.3 3.64 39.7 39.5 35.3 25.1

27.5 3 510 3.23 46.4 30.3 32.4 3.23 46.4 30.3 32.4 19.8
19.0 2 420 2.34 32.6 31.1 30.2 2.34 32.6 31.1 30.2 19.9
14.6 1 840 1.84 25.3 31.6 29.0 1.84 25.3 31.6 29.0 20.0
9.8 1 250 1.28 17.3 32.0 27.9 1.28 17.3 32.0 27.9 20.2

16.5 2 100 1.52 24.5 26.9 26.9 1.52 24.5 26.9 26.9 17.3
12.6 1 600 1.20 19.0 27.4 25.8 1.20 19.0 27.4 25.8 17.4
8.6 1 090 0.840 13.0 27.8 24.6 0.840 13.0 27.8 24.6 17.6

14.0 1 770 0.915 17.5 22.7 23.6 0.915 17.5 22.7 23.6 14.8
10.7 1 360 0.726 13.6 23.1 22.5 0.726 13.6 23.1 22.5 14.9
7.3 927 0.514 9.39 23.5 21.3 0.514 9.39 23.5 21.3 15.0

11.5 1 450 0.524 12.1 19.0 20.6 0.524 12.1 19.0 20.6 12.4
8.8 1 120 0.420 9.46 19.4 19.5 0.420 9.46 19.4 19.5 12.4
6.1 766 0.300 6.59 19.8 18.2 0.300 6.59 19.8 18.2 12.5

7.0 877 0.202 5.82 15.2 16.2 0.202 5.82 15.2 16.2 9.88
4.7 605 0.146 4.09 15.6 15.1 0.146 4.09 15.6 15.1 9.93
2.5 312 0.080 2.16 16.0 13.9 0.080 2.16 16.0 13.9 10.1L51 * 51 * 3.2

L51 * 51 * 6.4
L51 * 51 * 9.5

L64 * 64 * 6.4
L64 * 64 * 9.5
L64 * 64 * 12.7

L76 * 76 * 6.4
L76 * 76 * 9.5
L76 * 76 * 12.7

L89 * 89 * 6.4
L89 * 89 * 9.5
L89 * 89 * 12.7

L102 * 102 * 6.4
L102 * 102 * 9.5
L102 * 102 * 12.7
L102 * 102 * 19.0

L127 * 127 * 9.5
L127 * 127 * 12.7
L127 * 127 * 19.0

L152 * 152 * 9.5
L152 * 152 * 12.7
L152 * 152 * 19.0
L152 * 152 * 25.4

L203 * 203 * 12.7
L203 * 203 * 19.0
L203 * 203 * 25.4

106 mm3106 mm4106 mm3106 mm4mm2

y

y

y
x

z

z

x

x
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Chapter 1

F1–1 Entire beam:

60 � 10(2) � Ay(2) � 0 Ay � 20 kN

Left segment:
NC � 0 Ans.

20 � VC � 0 VC � 20 kN Ans.

MC � 60 � 20(1) � 0 MC � �40 kN m Ans.

F1–2 Entire beam:

By(3) � 100(1.5)(0.75) � 200(1.5)(2.25) � 0
By � 262.5 N

Right segment:
NC � 0 Ans.

VC � 262.5 � 200(1.5) � 0 VC � 37.5 N Ans.

262.5(1.5) � 200(1.5)(0.75) � MC � 0

MC � 169 N m Ans.

F1–3 Entire beam:

Bx � 0
20(2)(1) � By(4) � 0 By � 10 kN

Right segment:
NC � 0 Ans.

VC � 10 � 0 VC � 10 kN Ans.

-MC � 10(2) � 0 MC � �20 kN m Ans.

F1–4 Entire beam:

Ay � 27.5 kN

Left segment:
NC � 0 Ans.

27.5 � 10(3) � VC � 0 VC � -2.5 kN Ans.

MC � 10(3)(1.5) � 27.5(3) � 0 MC � 37.5 kN m Ans.

F1–5 Entire beam:

Ax � 0

Ay � 825 lb

Left segment:
NC � 0 Ans.

825 � 300(3) � VC � 0 VC � -75 lb Ans.

MC � 300(3)(1.5) - 825(3) � 0 MC � 1125 lb ft Ans.#d+ ©MC = 0;

+ c ©Fy = 0;
:+ ©Fx = 0;

300(6)(3) -
1
2

(300)(3)(1) - Ay(6) = 0d+ ©MB = 0;

:+ ©Fx = 0;

#d+ ©MC = 0;

+ c ©Fy = 0;
:+ ©Fx = 0;

1
2

(10)(3)(2) + 10(3)(4.5) - Ay(6) = 0d+ ©MB = 0;

#d+ ©MC = 0;

+ c ©Fy = 0;
:+ ©Fx = 0;

d+ ©MA = 0;
:+ ©Fx = 0;

#
d+ ©MC = 0;

+ c ©Fy = 0;
:+ ©Fx = 0;

d+ ©MA = 0;

#d+ ©MC = 0;

+ c ©Fy = 0;
:+ ©Fx = 0;

d+ ©MB = 0;

Fundamental Problems Partial Solutions and Answers
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F1–6 Entire beam:

FBD = 37.5 kN

Ax = 30 kN

Ay = 7.5 kN

Left segment:
NC � 30 � 0 NC � 30 kN Ans.

7.5 � 5(2) � VC � 0 VC � -2.5 kN Ans.

MC � 5(2)(1) � 7.5(2) � 0 MC � 5 kN m Ans.#d+ ©MC = 0;

+ c ©Fy = 0;

:+ ©Fx = 0;

Ay + 37.5a3
5
b - 5(6) = 0+ c ©Fy = 0;

37.5a4
5
b - Ax = 0:+ ©Fx = 0;

FBDa3
5
b(4) - 5(6)(3) = 0d+ ©MA = 0;

F1–7 Beam:
TCD � 2w

TAB � w

Rod AB:

w � 3 N�m

Rod CD:

Ans.

F1–8 A = p(0.12 - 0.082) = 3.6(10-3)p m2

Ans.

F1–9 A = 3[4(1)] � 12 in2

Ans.

F1–10 Consider the cross section to be a rectangle and
two triangles.

Ans.

Ans.savg =
P

A
=

600(103)

0.06
= 10 MPa

= 0.13 m = 130 mm

 y =
©y~A

©A
=

0.15[(0.3)(0.12)] + (0.1) c1
2

(0.16)(0.3) d
0.3(0.12) +

1
2

(0.16)(0.3)

savg =
P

A
=

15
12

= 1.25 ksi

savg =
P

A
=

300(103)

3.6(10- 3)p
= 26.5 MPa

w = 2.25 N>m
s =

P

A
; 300(103) =

2w
15

;

s =
P

A
; 300(103) =

w
10

;

©Fy = 0;

©MA = 0;
F1–11

Ans.

Ans.

Ans.

F1–12

FAD = 50(9.81) N = 490.5 N

FAC � 817.5 N

FAB � 654 N

Ans.

F1–13 Ring C:

2F cos 60° - 200(9.81) � 0 F � 1962 N

d � 0.00408 m � 4.08 mm

Use d � 5 mm Ans.

150(106) =
1962
p

4
d2

(sallow)avg =
F

A
;

+ c ©Fy = 0;

(sAB)avg =
FAB

AAB
=

654

16(10- 6)p
= 13.0 MPa

AAB =
p

4
(0.0082) = 16(10- 6)p m2

817.5a4
5
b - FAB = 0:+ ©Fx = 0;

FACa3
5
b - 490.5 = 0+ c ©Fy = 0;

sC =
NC

AC
=

2
0.0625p

= 10.2 ksi (T)

sB =
NB

AB
=

-6
0.25p

= -7.64 ksi = 7.64 ksi (C)

sA =
NA

AA
=

3
0.0625p

= 15.3 ksi (T)

AA = AC =
p

4
(0.52) = 0.0625p in2, AB =

p

4
(12) = 0.25p in2
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F1–14 Entire frame:

Ans.

F1–15 Double shear:

4V - 10 � 0 V = 2.5 kip

Ans.

F1–16 Single shear:

P - 3V = 0

P = 2.262(103) N � 2.26 kN Ans.

F1–17 V - P cos 60° = 0 V = 0.5P

P = 1.732(103) N � 1.73 kN Ans.
F1–18 The resultant force on the pin is

Here we have double shear:

Ans.

F1–19 30 - N = 0 N = 30 kN

d � 15.14 mm
Use d = 16 mm Ans.

166.67(106) =
30(103)

p

4
d2

sallow =
N

A
;

sallow =
sY

F.S.
=

250
1.5

= 166.67 MPa

:+ ©Fx = 0;

tavg =
V

A
=

25(103)

0.225(10- 3)p
= 35.4 MPa

A =
p

4
(0.032) = 0.225(10- 3)p m2

V =
F

2
=

50
2

= 25 kN

F = 2302 + 402 = 50 kN.

600(103) =
0.5P

1.4434(10- 3)
(tavg)allow =

V

A
;

A = a 0.05
 sin 60°

b(0.025) = 1.4434(10- 3) m2

:+ ©Fx = 0;

60(106) =

P

3

4(10- 6)p
(tavg)allow =

V

A
;

A =
p

4
(0.0042) = 4(10- 6)p m2

V =
P

3
©Fx = 0;

tavg =
V

A
=

2.5
0.140625p

= 5.66 ksi

A =
p

4
a3

4
b2

= 0.140625p in2

©Fx = 0;

(tA)avg =
FA>2

A
=

1000>2
p
410.2522 = 10.2 ksi

FA = 2160022 + 180022 = 1000 lb
Ax = 800 lb©MB = 0;

Ay = 600 lb©Fy = 0;

F1–20

NAB - 30 = 0 NAB = 30 kip
NBC - 15 - 15 - 30 � 0 NBC = 60 kip

Segment AB:

33.33 �

h1 = 1.8 in.

Segment BC:

h2 � 3.6 in.

Use in. and in. Ans.

F1–21 N = P

Aa-a = 2(0.06 - 0.03)(0.05) � 3(10-3) m2

The rod will fail first.

125(106) =

P = 157.08(103) N � 157 kN Ans.

F1–22 80 - 2V � 0 V � 40 kN

d = 0.03568 m � 35.68 mm
Use d � 36 mm Ans.

F1–23 V = P

� 48 MPa

Area of shear plane for bolt head and plate:

Ap = pdt = p(0.08)(0.03) = 0.0024p m2

Ab = pdt = p(0.04)(0.075) = 0.003p m2

tallow =
tfail

F.S.
=

120
2.5

40(106) =
40(103)

p

4
d2

tallow =
V

A
;

tallow =
tfail

F.S.
=

100
2.5

= 40 MPa

:+ ©Fx = 0;

P

1.2566(10- 3)
sallow =

N

Ar
;

Ar =
p

4
(0.042) = 1.2566(10- 3) m2

sallow =
sY

F.S.
=

250
2

= 125 MPa

h2 = 3
5
8

h1 = 1
7
8

33.33 =
60

h2(0.5)
sallow =

NBC

ABC
;

30
h1(0.5)

sallow =
NAB

AAB
;

sallow =
sY

F.S.
=

50
1.5

= 33.33 ksi

:+ ©Fx = 0;
:+ ©Fx = 0;
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Since the area of shear plane for the plate is
smaller,

48(106) =

P = 361.91(103) N = 362 kN Ans.

F1–24

V � 150 lb

8(103) �

d � 0.1545 in.

Use d � in. Ans.

Chapter 2

F2–1

= Ans.

F2–2

Ans.

Ans.

F2–3

Ans. = -0.00833 rad
 = 0.005 - 0.01333
 = a - b

 =
p

2
- ap

2
- a + b b

 (gA)xy =
p

2
- u

b =
4

300
= 0.01333 rada =

2
400

= 0.005 rad

PCE =
dC

LCE
=

0.4189
600

= 0.698(10- 3) mm>mm

PBD =
dB

LBD
=

0.2094
400

= 0.524(10- 3) mm>mm

dC = uLAC = 0.3491(10- 3)(1200) = 0.4189 mm
dB = uLAB = 0.3491(10- 3)(600) = 0.2094 mm

u = a0.02°
180°

bp rad = 0.3491(10- 3) rad

dC

LCD
=

0.3
300

= 0.001 mm>mmPCD

dC = 0.3 mm
dC

600
=

0.2
400

;

3
16

150
p

4
d2

tallow =
V

A
;

tallow =
tfail

F.S.
=

16
2

= 8 ksi

1
2

(300)(9)(6) - 6V(9) = 0d+ ©MB = 0;

P

0.0024p
tallow =

V

Ap
;

F2–4

LBC = = 500 mm

LB
C = = 502.2290 mm

= 0.007407 rad

Ans.

= = �0.00741 rad Ans.

F2–5

LAC = = 424.2641 mm

LA
C 
 = = 425.7370 mm

= 0.00347 mm�mm Ans.

Ans.

Chapter 3
F3–1 Material has uniform properties throughout. Ans.

F3–2 Proportional limit is A. Ans.

Ultimate stress is D. Ans.

F3–3 The initial slope of the diagram. Ans.

F3–4 True. Ans.

F3–5 False. Use the original cross-sectional area
and length. Ans.

F3–6 False. It will normally decrease. Ans.

F3–7

Ans.

F3–8

Ans.E = 2.22(106) psi

0.003 =
(10 000)(8)

12E

d = PL =
PL

AE
;

 P =
s

E
=

P

AE

 = 0.283 mm

 d = PL =
PL

AE
=

100(103)(0.100)
p
4(0.015)2 200(109)

 P =
s

E
=

P

AE

s - P

(gE)xy =
p

2
- u =

p

2
- 1.6040 = -0.0332 rad 

(PAC)avg =
LA¿C¿ - LAC

LAC
=

425.7370 - 424.2641
424.2641

u

2
= tan- 1aLC¿D¿

LA¿D¿
b ; u = 2 tan- 1a306

296
b = 1.6040 rad

2LC¿D¿
2 + LA¿D¿

2 = 23062 + 2962

2LCD
2  + LAD

2 = 23002 + 3002

-a(gA)xy =
p

2
- u =

p

2
- ap

2
+ ab

 = 0.00446 mm>mm

 (PBC)avg =  
LB¿C - LBC

LBC
=

502.2290 - 500
500

a =
3

405

2(300 - 3)2 + (400 + 5)2

23002 + 4002
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F3–9

Ans.

F3–10

Since = 450 MPa, Hooke’s Law is
applicable.

� � 200 GPa

Ans.

F3–11

Since � 450 MPa, Hooke’s Law is not
applicable. From the geometry of the stress-strain
diagram,

When the load is removed, the strain recovers
along a line parallel to the original elastic line.

Here � � 200 GPa.

The elastic recovery is

Ans.

F3–12

Since MPa, Hooke’s Law is valid.

Ans.

FBC = 942.48 N
942.48(0.4) - P(0.6) = 0
P = 628.31 N = 628 N

d+ ©MA = 0;

sBC =
FBC

ABC
;  133.33(106) =

FBC
p
4(0.0032)

sBC 6 sY = 250
 = 133.33 MPa

 sBC = EPBC = 200(109)[0.6667(10-3)]

 PBC =
dBC

LBC
=

0.2
300

= 0.6667(10-3) mm>mm

dp = PpL = 0.01511(50) = 0.755 mm

 = 0.01511 mm>mm
 Pp = P - Pr = 0.017493 - 0.002387

 Pr =
s

E
=

477.46(106)

200(109)
= 0.002387 mm>mm

450(106)

0.00225
E =

sY

PY

P = 0.017493

P - 0.00225
0.03 - 0.00225

=
477.46 - 450

500 - 450

s 7 sY

s =
P

A
=

150(103)
p
4(0.022)

= 477.46 MPa

d = PL = 0.001592(50) = 0.0796 mm

P =
s

E
=

318.31(106)

200(109)
= 0.001592 mm>mm

450(106)

0.00225
E =

sY

PY

s 6 sY

s =
P

A
=

100(103)
p
4(0.022)

= 318.31 MPa

 = 3.06 mm

 d = PL =
PL

AE
=

6(103)4
p
4(0.01)2 100(109)

 P =
s

E
=

P

AE F3–13

Ans.

F3–14

Ans.

Ans.

F3–15

260 kN Ans.

F3–16

When P is removed, the shear strain recovers
along a line parallel to the original elastic line.

Ans.

Chapter 4

F4–1

Ans. = -0.318 mm

 =
-20(106) N # mm

AE

 dC =
1

AE
{40(103)(400) + [-60(103)(600)]}

 A =
p

4
(0.022) = 0.1(10-3)p m2

 gp = g - gr = 0.02 - 0.005 = 0.015 rad
 gr = gY = 0.005 rad

g =
p

2
- u =

p

2
- ap

2
- ab = a = 0.02 rad

a =
3

150
= 0.02 rad

P =

86.67(106) =
P

0.15(0.02)
t =

V

A
;

 t = Gg = [26(109)](0.003333) = 86.67 MPa
 = a = 0.003333 rad

 g =
p

2
- u =

p

2
- ap

2
- ab

a =
0.5
150

= 0.003333 rad

 G =
E

2(1 + n)
=

68.21
2(1 + 0.3493)

= 25.3 GPa

 n = -
Pe

Pa
= -

-0.815(10-3)

0.002333
= 0.3493 = 0.349

Pe =
d¿ - d

d
=

19.9837 - 20
20

= -0.815(10-3) mm>mm

E =
s

Pa
=

159.15(106)

0.002333
= 68.2 GPa

Pa =
d

L
=

1.40
600

= 0.002333 mm>mm

s =
P

A
=

50(103)
p
4(0.022)

= 159.15 MPa

 dd = (-0.283(10-3))(15 mm) = -4.24(10-3) mm

 = -0.283(10-3)

 Plat = -nPlong = -0.35(0.808(10-3))

Plong =
s

E
=

56.59(106)

70(109)
= 0.808(10-3)

s =
P

A
=

10(103)
p
4(0.015)2 = 56.59 MPa
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F4–2

Ans.

F4–3

Ans.

F4–4

Ans.

F4–5

Internal load P(x) � 30(103)x

Ans.

F4–6 Distributed load P(x) � x � 50(103)x N�m 

Internal load P(x) = � 25(103)x2

Ans. = 0.265 mm

 =
1

[0.1(10- 3)p][73.1(109)]
 L

0.9 m

0
[25(103)x2]dx

 dA = L
L

0

P(x)dx

AE

1
2(50(103))x(x)

45(103)

0.9

 = 0.529(10-3) m = 0.529 mm

 =
1

[0.1(10-3)p][73.1(109)] L
0.9 m

0
30(103)x dx

dA = L
P(x)dx

AE

A =
p

4
(0.022) = 0.1(10- 3)p m2

 = 1.9639(10-3) m = 1.96 mm T
 dA = 1.2(10-3) + 0.7639(10-3)

 + T   dA = dB + dA>B

dB =
Fsp

k
=

60(103)

50(106)
= 1.2(10-3)m T

 = 0.7639(10-3)m T

 dA>B =
PL

AE
=

[60(103)](0.8)

[0.1(10-3)p][200(109)]

 = -0.772(10-3) m = -0.772 mm

 - 2a4
5
b30(103) d(0.4) + [-90(103)(0.6)]f

 dC =
1

0.225(10- 3)p[200(109)]
 e c -90(103)

 A =
p

4
(0.032) = 0.225(10-3)p m2

 = -0.449 mm

 +  
[-20(103)](400)

[0.1(10- 3)p][68.9(109)]

 +  
[10(103)](400)

[0.175(10- 3)p][68.9(109)]

 dD>A =
[-10(103)](400)

[0.1(10- 3)p][68.9(109)]

 ABC =
p

4
(0.042 - 0.032) = 0.175(10-3)p m2

 AAB = ACD =
p

4
(0.022) = 0.1(10-3)p m2 Chapter 5

F5–1 J � � 1.28(10�6) m4

A � max � � � 49.7 MPa Ans.

B � � � 37.3 MPa Ans.

F5–2 J � � 5.2(10�6)p m4

tB � tmax � � � 36.7 MPa Ans.

tA � � � 24.5 MPa Ans.

F5–3 JAB � � 0.875(10-6)p m4

JBC � � 1.28(10-6)pm4

(tAB)max � � � 29.1 MPa

(tBC)max � �

� 59.7 MPa Ans.

F5–4 TAB � 0, TBC � 600 N·m, TCD � 0

J � � 80(10�9)p m4

tmax � � � 47.7 MPa Ans.

F5–5 JBC � � 0.875(10�6)pm4

(tBC)max � �

� 30.6 MPa Ans.

F5–6 t � 5(103) N·m�m
Internal torque is T � 5(103)(0.8) � 4000 N·m

J � � 1.28(10�6)p m4

tA � � � 39.8 MPa Ans.
4000(0.04)

1.28(10- 6)p

TAc

J

p

2
(0.044)

2100(0.04)

0.875(10- 6)p

TBC cBC

JBC

p

2
(0.044 - 0.034)

600(0.02)

80(10- 9)p
Tc

J

p

2
(0.024)

[6(103)](0.04)

1.28(10- 6)p

TBC cBC

JBC

[2(103)](0.04)

0.875(10- 6)p

TAB cAB

JAB

p

2
(0.044)

p

2
(0.044 - 0.034)

10(103)(0.04)

5.2(10- 6)p

TrA

J

10(103)(0.06)

5.2(10- 6)p

Tc

J

p

2
(0.064 - 0.044)

5(103)(0.03)

1.28(10- 6)p

TrB

J
t

5(103)(0.04)

1.28(10- 6)p

TC

J
tt

p
p

2
(0.044)
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F5–7 J � � 0.405(10�6)p m4

�

� - 0.00838 rad � �0.480° Ans.

F5–8 J � � 80(10�9)p m4

�

� 0.01432 rad � 0.821° Ans.

F5–9 J � � 0.875(10�6)p m4

� �

� 0.03778 rad

� � � 0.03333 rad

�

� 0.03333 � 0.03778
� 0.07111 rad � 4.07° Ans.

F5–10 J � � 80(10�9)p m4

�

� 200 � 500]
� 0.01061 rad � 0.608° Ans.

F5–11 J � � 1.28(10�6)p m4

t � 5(103) N·m�m

Internal torque is 5(103)x N·m

�

�

� 0.00531 rad � 0.304° Ans.

F5–12 J � � 1.28(10�6)p m4

Distributed torque is t �

� 25(103)x N·m�m 

15(103)

0.6
(x)

p

2
(0.044)

1

[1.28(10- 6)p][75(109)]L
0.8 m 

0
5(103)xdx

L
L

0

T(x)dx

JG
fA>B

p

2
(0.044)

0.2
[80(10- 9)p][75(109)]

[600 + (-300)fB>A

p

2
(0.024)

fB + fA>BfA

3(103)

90(103)

TB

k
fB

3(103)(0.9)

[0.875(10- 6)p][26(109)]

TAB LAB

JG
fA>B

p

2
(0.044 - 0.034)

600(0.45)

[80(10- 9)p][75(109)]
fB>A

p

2
(0.024)

+ 1(103)(0.4)}

1

[0.405(10- 6)p][75(109)]
{[-2(103)](0.6)fA>C

p

2
(0.034) Internal torque is T(x) �

� 12.5(103)x2 N·m

�

�

� 0.008952 rad � 0.513° Ans.

Chapter 6

F6–1 � Fy � 0; �V � 9 � 0 V � �9 kN Ans.

MO � 0; M � 9x � 0 M � {�9x} kN · m
Ans.

F6–2 � Fy � 0; �V � 2x � 0 V � {�2x} kip Ans.

MO � 0;

M � {18 � x2} kip · ft Ans.

F6–3 � Fy � 0;

V � {�2x2} kN Ans.

MO � 0;

M � Ans.

F6–4 0 x � 1.5 m

� Fy � 0; V � 0 Ans.

MO � 0; M � 4 � 0 M � 4 kN · m Ans.

1.5 m � x 3 m
� Fy � 0; �V � 9 � 0 V � �9 kN Ans.

MO � 0; M � 9(x � 1.5) � 4 � 0
M � {17.5 � 9x} kN · m Ans.

F6–5 MB � 0; Ay (6) � 30 � 0 Ay � 5 kN
� Fy � 0; �V � 5 � 0 V � �5 kN

Ans.

MO � 0; M � 5x � 0 M � {�5x} kN · m
Ans.

F6–6 MB � 0; Ay (6) � 20 � 50 � 0

Ay � 5 kN

� Fy � 0; �V � 5 � 0 V � �5 kN
Ans.

MO � 0; M � 5x � 50 � 0

M � {50 � 5x} kN · m Ans.

d+ ©

cg

d+ ©

d+ ©

cg
d+ ©

d+ ©
cg

…
d+ ©

cg
…

e -
2
3

x3 f  kN # m

M + c1
2

(4x)(x) d ax

3
b = 0g

-V -
1
2

(4x)(x) = 0cg

M + 2xax

2
b - 18 = 0d+ ©

cg

d+ ©
cg

1

[1.28(10- 6)p][75(109)]
cL

0.6 m

0
12.5(103)x2dx + 4500(0.4)d

L
L

0

T(x)dx

JG
+

TBC LBC

JG
fA>C

1
2

(25x)(x)
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F6–7 Shear diagram. Zero slope to 

Moment diagram. Constant
negative slope to 
Constant negative slope to 

F6–8 Shear diagram. Zero slope to 

Moment diagram. Constant
negative slope to 

Constant negative slope to 

F6–9 Shear diagram. Zero slope to
Zero slope to
Zero slope to

Moment diagram. Zero slope to
Constant positive slope

to Zero slope to

F6–10 Shear diagram. Constant negative
slope to 
Negative decreasing slope,

Moment diagram. Positive
decreasing slope. Negative
decreasing slope to 

F6–11 Shear diagram. Negative constant
slope, Zero
slope to 
Constant negative slope,

Moment diagram. Negative
increasing slope, Zero slope,

Positive decreasing slope,

F6–12 Shear diagram. Negative decreasing
slope to zero slope at 
Negative increasing slope to 

Moment diagram. Positive
decreasing slope to zero slope at 

Negative increasing slope.

F6–13 Shear diagram. Constant negative
slope. Zero
slope.
Zero slope.

Moment diagram. Positive
decreasing slope to 
Negative increasing slope to M = 2700, x = 6.

M = 2756, x = 5.25.x = 5.25.
M = 0, x = 0.

V = -750, x = 12.
V = -750, x = 9+ .V = -150, x = 9- , 

V= 0, x = 5.25, V= -150, x = 6.
V = 1050, x = 0.

M = 0, x = 6.
x = 3.M = 15,

x = 3.
M = 0, x = 0.

V = -15, x = 6.
V = 0, x = 0.x = 3.

V = 15, x = 0.

M = 0, x = 6.
x = 4.5.M = -4.5,

M = -4.5, x = 1.5.
M = 0, x = 0.

V = 0, x = 6.
V = 6, x = 4.5+ .V = 0, x = 4.5-.x = 4.5.

V = 0, x = 1.5+ .x = 1.5-,V = -6,
V = 0, x = 0.

M = 0, x = 6.
x = 2.75.M = 22.7,

M = 0, x = 0.

x = 6.V = -10.5,
x = 3.V = 0, x = 2.75, V = -1.5,x = 3.

V = 16.5, x = 0.

M = 18, x = 6.
M = 18, x = 4.5.x = 4.5.

M = 6, x = 1.5.x = 1.5.
M = 6, x = 0.

V = 0, x = 6.
x = 4.5+.V = 0,x = 4.5-,

V = 4, x = 1.5+ .x = 1.5-.
x = 0.V = 0, 

x = 3.
M = -30,x = 1.5+ .

M = -9, x = 1.5-, M = -21,
M = 0, x = 0.

x = 3.V = -6, x = 0.

M = 0, x = 6.
M = -16, x = 4- , M = 8, x = 4+ .
M = 0, x = 0.

x = 6.V = -4, x = 0. Constant negative slope.
Constant negative slope.

F6–14 Shear diagram. Constant negative
slope,

Zero slope,

Moment diagram. Positive
decreasing slope, to zero slope at 

Negative increasing slope,
Positive constant slope,

F6–15 I �

smax � � � 74.5 MPa Ans.

F6–16 � � 0.1 m

I � � 0.225 m4

(smax)c � �

� 44.4 MPa (C) Ans.

(smax)t � � � 22.2 MPa (T) Ans.

F6–17 I �

� 0.18636(10�3) m4

smax � � Ans.

F6–18

� 0.50963 m4

smax � � � 3.92 MPa Ans.

F6–19

sA � � � 1.98 MPa (T) Ans.-
5(103)(-0.15)

0.37917(10- 3)

MyA

I

10(103)(0.2)

0.50963(10- 3)
Mc

I

(10- 3)

I = 2 c 1
12

(0.03)(0.43)d + 2 c 1
12

(0.14)(0.033)+ 0.14(0.03)(0.152)d

50(103)(0.15)

0.18636(10- 3)
= 40.2 MPa

Mc

I

1
12

(0.2)(0.33) -
1

12
(0.18)(0.263)

50(103)(0.1)

0.225(10- 3)

My

I

50(103)(0.3 - 0.1)

0.225(10- 3)
Mc

I

(10- 3)
1

36
(0.3)(0.33)

0.3
3

y

20(103)(0.1)

26.84(10- 6)

Mc

I

= 26.84(10- 6)  m4

2 c 1
12

(0.02)(0.23) d +
1

12
(0.26)(0.023)

M = 0, x = 6.
M = -40, x = 4.
M = 22.5, x = 1.5.

x = 1.5.
M = 0, x = 0.

V = 20, x = 6.x = 4+ .
V = 20,V = 0, x = 1.5, V = -50, x = 4-.

V = 30, x = 0.

M = 0, x = 12.
M = 2250, x = 9.

I =
1

12
(0.05)(0.4)3 + 2 c 1

12
(0.025)(0.3)3 d

= 0.37917(10- 3) m4
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F6–20 My �

Mz �

Iy � � 0.2 m4

Iz � � 0.45 m4

s�

sA �

� 30 MPa (T) Ans.

sB � 

� 10 MPa (T) Ans.

tan a �

tan a �

a � 71.6° Ans.

F6–21 Maximum stress occurs at D or A.

(smax)D �

� 40.4 psi Ans.

Chapter 7

F7–1 I �

� 26.84 m4

QA � 0.055(0.09)(0.02) � 99(10�6) m3

A � �

� 18.4 MPa Ans.

F7–2 I � � 0.24167(10�3) m4

QA � y 1A 1 � y 2A 2

�

� 1.375(10�3) m3

c1
2

(0.05) d(0.05)(0.3) + 0.1(0.1)(0.1)

¿¿¿¿

1
12

(0.1)(0.33) +
1
12

(0.2)(0.13)

100(103)[99(10- 6)]

[26.84(10- 6)](0.02)

VQA

It
t

(10- 6)

2 c 1
12

(0.02)(0.23) d +
1

12
(0.26)(0.023)

(50 cos 30°)12(3)
1
12(4)(6)3

+
(50 sin 30°)12(2)

1
12(6)(4)3

c0.45(10- 3)

0.2(10- 3)
d a4

3
b

Iz

Iy
 tan u

-
[30(103)](0.15)

0.45(10- 3)
+

[40(103)](0.1)

0.2(10- 3)

-
[30(103)](-0.15)

0.45(10- 3)
+

[40(103)](0.1)

0.2(10- 3)

-
Mzy

Iz
+

Myz

Iy

(10- 3)
1

12
(0.2)(0.33)

(10- 3)
1

12
(0.3)(0.23)

= 30 kN # m50a3
5
b

= 40 kN # m50a4
5
b QB � y 3A 3 � 0.1(0.1)(0.1) � 1(10�3) m3

tA � � � 11.4 MPa Ans.

tB � � � 24.8 MPa Ans.

F7–3 Vmax � 4.5 kip

I � � 54 in4

Qmax � � 1.5(3)(3) � 13.5 in3

(tmax)abs � � � 375 psi

Ans.

F7–4

Ans.

F7–5

Ans.

F7–6 I � � 0.2 m4

Q � y A � 0.05(0.1)(0.3) � 1.5 m3

qallow � � �

qallow � �

s � 0.08 m � 80 mm Ans.

50(103)[1.5(10- 3)]

0.2(10- 3)

30(103)

s

VQ

I
;

30(103)

s

2[15(103)]

s
2aF

s
b

(10- 3)¿¿

(10- 3)
1

12
(0.3)(0.23)

 = 1.65 MPa

 tmax =
VQmax

It
=

20(103)[1.5625(10- 3)]

[0.37917(10- 3)][2(0.025)]

+ (0.1)(0.05)(0.2) = 1.5625(10- 3) m3

Qmax = 2y¿1A¿1 + y¿2A¿2 = 2(0.075)(0.025)(0.15)

 = 0.37917(103) m4

 I =
1

12
(0.05)(0.4)3 + 2 c 1

12
 (0.025)(0.3)3 d

tmax =
VQmax

It
=

20(103)[1.83(10- 3)]

0.50963(10- 3)[2(0.3)]
= 1.20 MPa

+ (0.15)(0.14)(0.03) = 1.83(10- 3) m3

Qmax = 2y¿1A¿1 + y¿2A¿2 = 2(0.1)(0.2)(0.03)

 + 0.14(0.03)(0.152)d = 0.50963(10- 3) m4

 I = 2 c 1
12

 (0.03)(0.4)3 d + 2 c 1
12

(0.14)(0.03)3

4.5(103)(13.5)

54(3)

Vmax Qmax 

It

A¿y¿

1
12

(3)(63)

600(103)[1(10- 3)]

[0.24167(10- 3)](0.1)

VQ

It

600(103)[1.375(10- 3)]

[0.24167(10- 3)](0.3)

VQ

It

¿¿
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F7–7 I � � 0.2 m4

Q � y A � 0.05(0.1)(0.3) � 1.5 m3

qallow � � � 300 N�m

qallow � 300 �

V � 40 N � 40 kN Ans.

F7–8 I �

� 0.3075 m4

Q � y A � 0.16(0.02)(0.2) � 0.64 m3

qallow � � �

qallow � �

s � 0.09609 m � 96.1 mm
Use s � 96 mm Ans.

F7–9

� 0.62917 m4

Q � y A � 0.15(0.2)(0.05) � 1.5 m3

qallow � � �

qallow � �

s � 0.3356 m � 335.56 mm
Use s � 335 mm Ans.

F7–10 I �

� 100.67 in4

Q � y A � 3(4)(0.5) � 6 in3

qallow � �

qallow � �

s � 6.711 in.

Use s � in. Ans.6
5
8

15(6)

100.67
6
s

VQ

I
;

6
s

F
s

¿¿

1
12

(1)(63) + 4 c 1
12

(0.5)(43) + 0.5(4)(32) d

20(103)[1.5(10- 3)]

0.62917(10- 3)

16(103)

s

VQ

I
;

16(103)

s

2[8(103)]

s
2aF

s
b

(10- 3)¿¿

(10- 3)

I = 2 c 1
12

(0.025)(0.33)d + 2c 1
12

(0.05)(0.23) + 0.05(0.2)(0.152)d

300(103)[0.64(10- 3)]

0.3075(10- 3)

60(103)

s

VQ

I
;

60(103)

s

2[30(103)]

s
2aF

s
b

(10- 3)¿¿

(10- 3)

1
12

(0.2)(0.343) -
1

12
(0.19)(0.283)

(103)

V[1.5(10- 3)]

0.2(10- 3)
(103)

VQ

I
;

(103)
2[15(103)]

0.1
2aF

s
b

(10- 3)¿¿

(10- 3)
1

12
(0.3)(0.23) Chapter 8

F8–1 � Fz � (FR)z; �500 � 300 � P

P � �800 kN

Mx � 0; 300(0.05) � 500(0.1) � Mx

Mx � �35 kN · m

My � 0; 300(0.1) � 500(0.1) � My

My � �20 kN · m

A � 0.3(0.3) � 0.09 m2

Ix � Iy � � 0.675 m4

sA �

� 3.3333 MPa � 3.33 MPa (T) Ans.

sB �

� �12.22 MPa � 12.2 MPa (C) Ans.

F8–2 � Fy � 0; V � 400 � 0 V � 400 kN

MA � 0; �M � 400(0.5) � 0 M � �200 kN · m

I � � 0.225 m4

sA � � 

� �44.44 MPa � 44.4 MPa (C) Ans.

tA � � �17.8 MPa Ans.

F8–3 Left reaction is 20 kN.
Left segment:

� Fy � 0; 20 � V � 0 V � 20 kN

Ms � 0; M � 20(0.5) � 0 M � 10 kN · m

I �

� 22.9267 m4

sA � � 

� �21.81 MPa � 21.8 MPa (C) Ans.

tA � �

Ans.= 10.7 MPa

20(103)[0.123(10- 3)]

[22.9267(10- 6)](0.01)

VQA

It

-
[10(103)](0.05)

22.9267(10- 6)
-

MyA

I

+  0.095(0.1)(0.01) = 0.123(10-3) m3

QA = y¿1A¿1 + y¿2A¿2 = 0.07(0.04)(0.01)
(10- 6)

1
12

(0.1)(0.23) -
1

12
(0.09)(0.183)

d+ ©
cg

400(103)[1(10- 3)]

0.225(10- 3)(0.1)

VQ

It

[200(103)](-0.05)

0.225(10- 3)

My

I

QA = y¿A¿ = 0.1(0.1)(0.1) = 1(10- 3) m3

(10- 3)
1

12
(0.1)(0.33)

d+ ©

cg

-800(103)

0.09
+

[20(103)](0.15)

0.675(10- 3)
-

[35(103)](0.15)

0.675(10- 3)

-800(103)

0.09
+

[20(103)](0.15)

0.675(10- 3)
+

[35(103)](0.15)

0.675(10- 3)

(10- 3)
1

12
(0.3)(0.33)

g

g

cg
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F8–4 At the section through centroidal axis:

N � P

V � 0
M � (2 � 1)P � 3P

s�

30 �

P � 3 kip Ans.

F8–5 At section through B:

N � 500 lb, V � 400 lb
M � 400(10) � 4000 lb · in.
Axial load:

sx � � � 41.667 psi (T)

Shear load:

txy � � � 37.5 psi

Bending moment:

sx � � � 250 psi (C)

Thus
sx � 41.667 � 250 � 208 psi (C) Ans.

sy � 0 Ans.

txy � 37.5 psi Ans.

F8–6 Top segment:

Fy � 0; Vy � 1000 � 0 Vy � �1000 N
Fx � 0; Vx � 1500 � 0 Vx � 1500 N
Mz � 0; Tz � 1500(0.4) � 0 Tz � 600 N · m
My � 0; My � 1500(0.2) � 0 My � 300 N · m
Mx � 0; Mx � 1000(0.2) � 0 Mx � 200 N · m

Iy � Ix � � 40 p m4

J � � 80 pm4

(Qy)A � � 5.3333 m3

sA � �

� 47.7 MPa (T) Ans.

[(tzy)T]A � � � 47.746 MPa
600(0.02)

80(10- 9)p

Tzc

J

200(0)

40(10- 9)p
+

300(0.02)

40(10- 9)p

Mxy

Ix
+

Myz

Iy

(10- 6)
4(0.02)

3p
cp

2
(0.022) d

(10- 9)
p

2
(0.024)

(10- 9)
p

4
(0.024)

g
g
g
g
g

4000(1)
1
12(3)(4)3

My

I

400[(1.5)(3)(1)]

[ 1
12(3)(4)3]3

VQ

It

500
4(3)

P

A

P

2(0.5)
+

(3P)(1)
1
12(0.5)(2)3

P

A
+

Mc

I

[(tzy)V]A � �

� 1.061 MPa

Combining these two shear stress components,
(tzy)A � 47.746 � 1.061 � 48.8 MPa Ans.

F8–7 Right Segment:

Fz � 0; Vz � 6 � 0 Vz � 6 kN
My � 0; Ty � 6(0.3) � 0 Ty � 1.8 kN m
Mx � 0; Mx � 6(0.3) � 0 Mx � 1.8 kN m

Ans.

Combining these two shear stress components,
(tyz)A � 15.53 � 4.210 � 11.3 MPa Ans.

F8–8 Left Segment:
Fz � 0; Vz � 900 � 300 � 0 Vz � 1200 N

My � 0; Ty � 300(0.1) � 900(0.1) � 0 Ty � 60 N m
Mx � 0; Mx � (900 � 300)0.3 � 0 Mx � �360 N m

(Qy)A � 0

Ans.

Ans.

Ans.[(tyz)V]A =
Vz (Qz)A

Ixt
= 0

[(txy)T]A =
TyrA

J
=

60(0.025)

0.1153125(10- 6)p
= 4.14 MPa

sA =
Mxy

Ix
=

(360)(0.025)

57.65625(10- 9)p
= 49.7 MPa

J =
p

2
(0.0254 - 0.024) = 0.1153125(10-6)p m4

Ix =
p

4
(0.0254 - 0.024) = 57.65625(10- 9)p m4

#©

#©
©

= 4.210 MPa

[(tyz)V]A =
Vz(Qz)A

Ixt
=

6(103)[40.6667(10- 6)]

[0.9225(10- 6)p](0.02)

[(tyz)T]A =
Tyc

J
=

[1.8(103)](0.05)

1.845(10- 6)p
= 15.53 MPa

sA =
Mxz

Ix
=

1.8(103)

0.9225(10- 6)p
= 0

 = 40.6667(10- 6) m3

 =
4(0.05)

3p
cp

2
(0.052) d -

4(0.04)

3p
cp

2
(0.042) d

 (Qz)A = y2¿A2¿ - y1¿A1¿

J =
p

2
(0.054 - 0.044) = 1.845(10- 6)p m4

Ix =
p

4
(0.054 - 0.044) = 0.9225(10- 6)p m4

#©

#©
©

1000[5.3333(10- 6)]

[40(10- 9)p](0.04)

Vy(Qy)A

Ixt
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Chapter 9
F9–1 u � 120° sx � 500 kPa sy � 0 txy � 0

Apply Eqs. 9–1, 9–2.
Ans.

Ans.

F9–2 u � �45° sx � 0 sy � �400 kPa
txy � �300 kPa
Apply Eqs. 9–1, 9–3, 9–2.

100 kPa Ans.

Ans.

Ans.

F9–3 sx � 80 MPa sy � 0 txy � 30 MPa
Apply Eqs. 9–5, 9–4.
s1 � 90 MPa s2 � �10 MPa Ans.

up � 18.43° and 108.43°

From Eq. 9–1,

Thus,
(up)1 � 18.4° and (up)2 � 108° Ans.

F9–4 sx � 100 kPa sy � 700 kPa
txy � �400 kPa
Apply Eqs. 9–7, 9–8.

tmax
in-plane � 500 kPa Ans.

savg � 400 kPa Ans.

F9–5 At the cross section through B:

Note since 
Thus

Ans.

F9–6
Segment AC:

(since )
(since C is on neutral axis)

Ans.s1 = s2 = 0
sC = 0

VC = 0tC = 0
MC = 24 kN # mVC = 0

Ay = By = 12 kN

s2 = 0
s1 = 224 MPa

Q = 0.tB = 0
= 224 MPa 1T2

sB =
P

A
+

Mc

I
=

411032
0.0310.062 +

41103210.032
1
1210.03210.0623

M = 2122 = 4 kN # m
V = 2 kNN = 4 kN

 = 90  MPa = s1

+ 30 sin 2(18.43°)

 sx¿ =
80 + 0

2
+

80 - 0
2

 cos 2(18.43°)

tx¿y¿ = 200 kPa
sy¿ = -500 kPa
sx¿ =

tx¿y¿ = 217 kPa
sx ¿ = 125 kPa

F9–7

The coordinates of the center C of the circle and
the reference point A are

A(500, 0) C(250, 0)
R � CA � 500 � 250 � 250 kPa
u� 120° (counterclockwise). Rotate the radial line
CA counterclockwise 2u � 240° to the coordinates
of point 

a � 240° � 180° � 60°
� 250 � 250 cos 60° � 125 kPa Ans.

250 sin 60° � 217 kPa Ans.

F9–8

The coordinates of the center C of the circle and
the reference point A are

A(80, 30) C(40, 0)

R � CA � � 50 MPa
s1 � 40 � 50 � 90 MPa Ans.

s2 � 40 � 50 � �10 MPa Ans.

tan 2(up)1 � � 0.75

(up)1 � 18.4° (counterclockwise) Ans.

F9–9 J � � 0.875(10�6)p m4

sx � sy � 0 and txy � �58.21 MPa

The coordinates of the reference point A and the
center C of the circle are

A(0, �58.21) C(0, 0)
R � CA � 58.21 MPa
s1 � 0 � 58.21 � 58.2 MPa Ans.

s2 � 0 � 58.21 � �58.2 MPa Ans.

F9–10
V � 30 � 0 V � 30 kN

�M � 30(0.3) � 0 M � �9 kN m#d+ ©MO = 0;

+ c ©Fy = 0;

savg =
sx + sy

2
= 0

t =
Tc

J
=

4(103)(0.04)

0.875(10- 6)p
= 58.21 MPa

p

2
(0.044 - 0.034)

30
80 - 40

2(80 - 40)2 + 302

savg =
sx + sy

2
=

80 + 0
2

= 40 kPa

tx¿y¿ =
sx¿

P(sx¿, tx¿y¿).

savg =
sx + sy

2
=

500 + 0
2

= 250  kPa
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sx � 16 MPa,sy � 0, and txy � �5.333 MPa

The coordinates of the reference point A and the center C
of the circle are

A (16, �5.333) C(8, 0)

R � CA � � 9.615 MPa
s1 � 8 � 9.615 � 17.6 MPa Ans.

s2 � 8 � 9.615 � �1.61 MPa Ans.

F9–11
60(1) � Ay(1.5) � 0 Ay � 40 kN

40 � V � 0 V � 40 kN

M � 40(0.5) � 0 M � 20 kN m

sx � �78.51 MPa,sy � 0, and txy � �16.57 MPa

The coordinates of the reference point A and the center C
of the circle are

A(�78.51, �16.57) C(�39.26, 0)

tmax
in-plane � |R| � 42.6 MPa Ans.

 = 42.61 MPa
 R = CA = 2[-78.51 - (-39.26)]2 + (-16.57)2

savg =
sx + sy

2
=

-78.51 + 0
2

= -39.26 MPa

tA =
VQA

It
=

40(103)[95(10- 6)]

[22.9267(10- 6)](0.01)
= 16.57 MPa

 = 78.51 MPa (C)

 sA = -  
MyA

I
= -

[20(103)](0.09)

22.9267(10- 6)
= -78.51 MPa

 QA = y¿A¿ = 0.095(0.01)(0.1) = 95(10- 6) m3

I =
1

12
(0.1)(0.23) -

1
12

(0.09)(0.183) = 22.9267(10- 6) m4

#d+ ©MO = 0;

+ c ©Fy = 0;

d+ ©MB = 0;

2(16 - 8)2 + (-5.333)2

savg =
sx + sy

2
=

16 + 0
2

= 8 MPa

tA =
VQA

It
=

30(103)[0.125(10- 3)]

14.0625(10- 6)(0.05)
= 5.333 MPa

sA = -  
MyA

I
=

[-9(103)](0.025)

14.0625(10- 6)
= 16 MPa (T)

QA = y¿A¿ = 0.05(0.05)(0.05) = 0.125(10- 3) m3

I =
1

12
(0.05)(0.153) = 14.0625(10- 6) m4 Chapter 11

F11–1

Vmax � 12 kN Mmax � 18 kN m

10(106) �

a � 0.1392 m � 139.2 mm
Use a � 140 mm Ans.

I � � 0.2561(10�3) m4

Qmax � � 1.372(10�3) m3

tmax � �

� 0.459 MPa � tallow � 1 MPa (OK)

F11–2

Vmax � 3 kip Mmax � 12 kip ft

d � 4.19 in.

Use d � in. Ans.

I � � 16.015 in4

� 0.282 ksi � tallow � 10 ksi (OK)

F11–3

Vmax � 10 kN Mmax � 5 kN m

I � �

12(106) �

a � 0.0855 m � 85.5 mm
Use a � 86 mm Ans.

5(103)(a)

2
3

a4
sallow =

Mmaxc

I
;

2
3

a41
12

(a)(2a)3

#

tmax =
V max Q max 

It
=

3(6.397)

16.015(4.25)

Qmax =
4(4.25>2)

3p
c1
2
ap

4
b(4.252) d = 6.397 in3

p

64
(4.254)

4
1
4

sallow =
Mmax c

I
;  20 =

12(12)ad

2
b

pd4

64

I =
p

4
ad

2
b4

=
pd4

64

#

12(103)[1.372(10- 3)]

[0.2561(10- 3)](0.14)

V max Q max 

It

0.14
2

(0.14)(0.14)

2
3

(0.144)

18(103)(a)

2
3

a4
sallow =

Mmax c

I
;

#
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I � � 36.4672(10�6) m4

Qmax �

� 0.318028(10�3) m3

�

F11–4

Vmax � 4.5 kip Mmax � 6.75 kip ft

h � 7.794 in.

h � 8.4375 in. (controls)

Use h � in. Ans.

F11–5

Vmax � 25 kN Mmax � 20 kN m

b � 0.1036 m � 103.6 mm
Use b � 104 mm Ans.

I � 2.25(0.1044) � 0.2632(10�3) m4

Qmax � 0.75(0.104)[1.5(0.104)(0.104)] � 1.2655(10�3) m3

.

F11–6

Vmax � 150 kN Mmax � 150 kN m

Sreq’d � � � 0.001 m3 � 1000(103) mm3150(103)

150(106)

M max 

sallow

#

= 1.156 MPa 6 tallow = 1.5 MPa (OK)

=
25(103)[1.2655(10- 3)]

[0.2632(10- 3)](0.104)
tmax =

Vmax Q max 

It

12(106) =
20(103)(1.5b)

2.25b4sallow =
M max c

I
;

I =
1

12
(b)(3b)3 = 2.25b4

#

8
1
2

0.2 =
4.5ah2

2
b

h3

3
(4)

tmax =
Vmax Q max 

It
;

Qmax = y¿A¿ =
h

4
ah

2
b(4) =

h2

2

2 =
6.75(12)ah

2
b

h3

3

sallow =
Mmax c

I
;

I =
1

12
(4)(h3) =

h3

3

#

= 1.01 MPa 6 tallow = 1.5 MPa (OK)

10(103)[0.318028(10- 3)]

[36.4672(10- 6)](0.086)
tmax =

Vmax Q max 

It

0.086
2

(0.086)(0.086)

2
3

(0.0864) Select W410 � 67 [Sx � 1200(103) mm3, d � 410 mm,
and tw � 8.76 mm]. Ans.

Chapter 12

F12–1

M(x) � 30 kN m

� 30x � C1

15x2 � C1x � C2

At x � 3 m,

C1 � �90 kN m2

At x � 3 m, .
C2 � 135 kN m3

�

For end A, x � 0

Ans.

� � 0.01038 m � 10.4 mm

Ans.

F12–2

M(x) � (�10x � 10) kN m

� �10x � 10

� �5x2 � 10x � C1

At x � 3 m, � 0.

EI(0) � �5(32) � 10(3) � C1 C1 � 75 kN m2

At x � 3 m,

C2 � �135 kN m3#EI(0) = -
5
3

(33) - 5(32) + 75(3) + C2

v = 0.

#

dv

dx

EIv = -
5
3

x3 - 5x2 + C1x + C2

EI
dv

dx

EI
d2x

dx2

#d+ ©MO = 0;

135(103)

200(109)[65.0(10- 6)]
vA = v ƒ x = 0

= -
90(103)

200(109)[65.0(10- 6)]
= -0.00692 raduA =

dv

dx
`
x = 0

v =
1

EI
(15x2 - 90x + 135)

1
EI

(30x - 90)
dv

dx

#
v = 0

#

dv

dx
= 0.

EIv =

EI
dv

dx

EI
d2v

dx2 = 30

#d+ ©MO = 0;

= 41.76 MPa 6  tallow = 75 MPa (OK)

=
150(103)

0.00876(0.41)
tmax =

V

twd
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For end A, x � 0

�

� � 0.00577 rad Ans.

� 

� � �0.01038 m � �10.4 mm

Ans.

F12–3

M(x) � kN m

�

At x � 3 m, � 0.

EI(0) � C1 � 58.5 kN m2

�

For end A, x � 0

A � � � 0.0045 rad Ans.

F12–4

M(x) � (600x � 50x2) lb ft

� 600x � 50x2

� 300x2 � 16.667x3 � C1

100x3 � 4.1667x4 � C1x � C2

At x � 0,
EI(0) � 100(03) � 4.1667(04) � C1(0) � C2 C2 � 0
At x � 12 ft,
EI(0) � 100(123) � 4.1667(124) � C1(12)

C1 � �7200 lb · ft2

�
1

EI
(300x2 - 16.667x3 - 7200)

dv

dx

v = 0.

v = 0.
EIv =

EI
dv

dx

EI
d2x

dx2

#d+ ©MO = 0;

Ay = 600 lb

58.5(103)

200(109)[65.0(10- 6)]

dv

dx
ƒ x = 0u

1
EI
a -

1
2

x3 - 5x2 + 58.5bdv

dx

#-
1
2

(33) - 5(32) + C1

dv

dx

-
1
2

x3 - 5x2 + C1EI
dv

dx

EI
d2x

dx2 = -
3
2

x2 - 10x

#a- 3
2

x2 - 10xbd+ ©MO = 0;

-
135(103)

200(109)[65.0(10- 6)]

1
EI
c - 5

3
(03) - 5(02) + 75(0) - 135 dvA = v ƒ x = 0

75(103)

200(109)[65.0(10- 6)]

1
EI

[-5(0) - 10(0) + 75]uA =
dv

dx
`
x = 0

v =
1

EI
a -

5
3

x3 - 5x2 + 75x - 135b

dv

dx
=

1
EI

(-5x2 - 10x + 75)

occurs where � 0.

300x2 � 16.667x3 � 7200 � 0
x � 6 ft Ans.

� �0.576 in. Ans.

F12–5

M(x) � (40 � 5x) kN m

� 40 � 5x

� 40x � 2.5x2 � C1

20x2 � 0.8333x3 � C1x � C2

At x � 0,
EI(0) � 20(02) � 0.8333(03) � C1(0) � C2 C2 � 0
At x � 6 m,
EI(0) � 20(62) � 0.8333(63) � C1(6) � 0

C1 � �90 kN m2

�

occurs where � 0.

40x � 2.5x2 � 90 � 0
x � 2.7085 m

� � �0.01424 m � �14.2 mm

Ans.

F12–6

M(x) � (10x � 10) kN m

� 10x � 10

� 5x2 � 10x � C1

Due to symmetry, � 0 at x � 3 m.
dv

dx

EI
dv

dx

EI
d2x

dx2

#d+ ©MO = 0;

-
113.60(103)

200(109)[39.9(10- 6)]

1
EI

[20(2.70852) - 0.83333(2.70853) - 90(2.7085)]v =

dv

dx
vmax

v =
1

EI
(20x2 - 0.8333x3 - 90x)

1
EI

(40x - 2.5x2 - 90)
dv

dx

#
v = 0.

v = 0.
EIv =

EI
dv

dx

EI
d2x

dx2

#d+ ©MO = 0;

 =
-27 000(12 in.>ft)3

1.5(106) c 1
12

(3)(63) d

 v =
1

EI
[100(63) - 4.1667(64) - 7200(6)]

dv

dx
vmax

v =
1

EI
(100x3 - 4.1667x4 - 7200x)
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EI(0) � 5(32) � 10(3) � C1 C1 � �75 kN m2

�

At x � 0,

� Ans.

F12–7

Since B is a fixed support, B � 0.

A � | A�B| � �

� � 0.00669 rad Ans.

�A � |tA�B| �

� � 0.01108 m � 11.1 mm Ans.

F12–8

Since B is a fixed support, B � 0.

A � | A�B| � �

� � 0.00179 rad Ans.

�A � |tA�B| �

� �

� 0.002447 m � 2.48 mm Ans.

F12–9

Since B is a fixed support, B � 0.

A � | A�B| � �

� � 0.00372 rad Ans.

�A � |tA�B| �

�

� � 0.004545 m � 4.55 mm Ans.
110(103)

200(109)[121(10- 6)]

110  kN # m3

EI

1.6667c1
2
a 60

EI
b(1)d + (1)c 30

EI
(2)d

90(103)

200(109)[121(10- 6)]

90  kN # m2

EI

1
2
c 60
EI

(1) d +
30
EI

(2)uu

u

61.667(103)

200(109)[126(10- 6)]

61.667 kN # m3

EI

(1.6667) c1
2
a 30

EI
b(1) d + 1.5 c 20

EI
(1) d + 0.6667 c1

2
a 20

EI
b(1) d

45(103)

200(109)[126(10- 6)]

45 kN # m2

EI

1
2
a 50

EI
+

20
EI
b(1) +

1
2
a 20

EI
b(1)uu

u

144(103)

200(109)[65(10- 6)]

(1.5) c 20
EI

(3) d + 2 c1
2
a 18

EI
b(3) d

87(103)

200(109)[65(10- 6)]

87 kN # m2

EI

1
2
a 38

EI
+

20
EI
b(3)uu

u

-75(103)

200(109)(39.9(10- 6))
= -9.40(10- 3) rad

dv

dx

1
EI

[5x2 + 10x - 75]
dv

dx

# F12–10

Since B is a fixed support, B � 0.

A � | A�B| � �

� � 0.00128 rad Ans.

�A � |tA�B| �

� � � 0.0640 in. Ans.

F12–11

Due to symmetry, the slope at the midspan of the beam
(point C) is zero, i.e., C � 0.

�max � �C � |tA�C| �

�

� � 0.0158 m � 15.8 mm Ans.

F12–12

tA�B � �

B � � �

The maximum deflection occurs at point C where the slope
of the elastic curve is zero.

�

2.5x2 � 10x � 60 � 0
x � 3.2915 m
�max � |tB�C| �

�

� � 0.01424 m � 14.2 mm Ans.T
113.60(103)

200(109)[39.9(10- 6)]

113.60  kN # m3

EI

2
3

(3.2915)e1
2
c5(3.2915)

EI
d(3.2915)f +

1
2

(3.2915)c 10
EI

(3.2915)d

a 10
EI
bx +

1
2
a 5x

EI
bx

60
EI

uB = uB>C

60
EI

360
EI

6

|tA>B|

L
u

360
EI

2 c1
2
a 30

EI
b(6) d + 3 c 10

EI
(6) d

T
135(103)

200(109)[42.8(10- 6)]

135 kN # m3

EI

(2) c1
2
a 30

EI
b(3) d + 1.5 c 10

EI
(3) d

u

263.25(123)

29(103)(245)

263.25  kip # ft3

EI

4 c1
2
a 18

EI
b(6) d + (3 + 2.25) c1

3
a 9

EI
b(3) d

63(122)

29(103)(245)

63  kip # ft2

EI

1
2
a 18

EI
b(6) +

1
3
a 9

EI
b(3)uu

u
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F12–13

� �

� �

0 �

By � 70 kN Ans.

Ax � 0 Ans.

70 � 40 � Ay � 0 Ay � 30 kN Ans.

70(4) � 40(6) � MA � 0
MA � 40 kN m Ans.

F12–14

To use the deflection tables, consider loading as a
superposition of uniform distributed load minus a
triangular load.

(� )

Ans.

Ax � 0 Ans.

Ay � � 0

Ay � Ans.

� 0

MA � Ans.

F12–15

� � 0.12461 m 

� � 5.5385(10�6)By

(� )
0.002 � 0.12461 � 5.5385(10�6)By

By � 22.14(103) N � 22.1 kN Ans.

Ax � 0 Ans.:+ ©Fx = 0;

vB = (vB)1 + (vB)2T

c
By(63)

3[200(109)][65.0(10- 6)]
(vB)2 =

ByL3

3EI

T
[10(103)](64)

8[200(109)][65.0(10- 6)]
(vB)1 =

wL4

8EI

7w0L
2

120

MA +
11w0L

40
(L) -

1
2

w0La2
3

Lbd+ ©MA = 0;

9w0L

40

11w0L

40
-

1
2

w0L+ c ©Fy = 0;

:+ ©Fx = 0;

 By =
11w0L

40

 0 = -
w0L

4

8EI
+

w0L
4

30EI
+

ByL3

3EI

 vB = 0 = (vB)1 + (vB)2 + (vB)3c

(vB)3 =
ByL3

3EI
c(vB)2 =

w0L
4

30EI
c(vB)1 =

w0L
4

8EI
T

#
d+ ©MA = 0;

+ c ©Fy = 0;

:+ ©Fx = 0;

-
1493.33

EI
+

21.33By

EI

(+ c)vB = 0 = (vB)1 + (vB)2

21.33By

EI
c

By(43)

3EI
(vB)2 =

PL3

3EI

1493.33
EI

T
40(42)

6EI
[3(6) - 4](vB)1 =

Px2

6EI
(3L - x)

Ay � 22.14 � 10(6) � 0 Ay � 37.9 kN
Ans.

MA � 22.14(6) � 10(6)(3) � 0
MA � 47.2 kN m Ans.

F12–16

�

�

(� )

0 �

By � Ans.

F12–17

� �

�

� � �

(� )

0 �

By � 42.6 kN Ans.

F12–18

� � � 0.20769 

� � � 2.7692(10�6)By

(� )
0.005 � 0.20769 � 2.7692(10�6)By

By � 73.19(103) N � 73.2 kN Ans.

Chapter 13

F13–1

P � � � 22.5 kip Ans.

s� � � 28.6 ksi � sY OK
22.5
p(0.5)2

P

A

p2(29(103))(p4(0.5)4)

[0.5(50)]2

p2EI

(KL)2

vB = (vB)1 + (vB)2c

c
By(123)

48[200(109)][65.0(10- 6)]

ByL3

48EI
(vB)2

T
5[10(103)](124)

384[200(109)][65.0(10- 6)]

5wL4

384EI
(vB)1

-
1533.3 kN # m3

EI
+

36By

EI

vB = 0 = (vB)1 + (vB)2c

c
36By

EI

By(123)

48EI

ByL3

48EI
(vB)2

1533.3 kN # m3

EI
T

50(4)(6)

6EI(12)
(122 - 42 - 62)

Pbx

6EIL
(L2 - b2 - x2)(vB)1

3MO

2L

-
MOL2

4EI
+

ByL3

6EI

vB = 0 = (vB)1 + (vB)2c

c
ByL3

6EI
(vB)2 =

By(2L)3

48EI

MOL2

4EI
T(vB)1 =

MOL

6EI(2L)
[(2L)2 - L2]

#
d+ ©MA = 0;

+ c ©Fy = 0;
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F13–2

P � �

� 2.03 kip Ans.

F13–3

For buckling about the x axis, Kx � 1 and Lx � 12 m.

Pcr � � � 1.197(106) N

For buckling about the y axis, L � 6 m and Ky � 1

Pcr � �

� 1.031(106) N (controls)

Pallow � � � 515 kN Ans.

scr � � � 139.30 MPa �sY � 250 MPa 
(OK)

F13–4

A � p((0.025)2 � (0.015)2) � 1.257 (10�3) m2

I � � 267.04(10�9) m4

P � � � 84.3 kN Ans.

s� � � 67.1 MPa � 250 MPa (OK)
84.3(103)

1.257(10- 3)
P

A

p2(200(109))(267.04)(10- 9)

[0.5(5)]2

p2EI

(KL)2

1
4
p((0.025)4 - (0.015)4)

1.031(106)

7.4(10- 3)

Pcr

A

1.031(106)

2

Pcr

F.S.

p2[200(109)][18.8(10- 6)]

[1(6)]2

p2EIy

(KyLy)2

p2[200(109)][87.3(10- 6)]

[1(12)]2

p2EIx

(KxLx)2

p2(1.6)(103)[ 1
12(4)(2)3]

[1(12)(12)]2

p2EI

(KL)2

F13–5

FAB � 1.6667P (T)

FAC � 1.3333P (C)

A � � p in2 I � �

Pcr � FAC (F.S.) � 1.3333P(2) � 2.6667P

Pcr �

2.6667P �

P � 36.59 kip � 36.6 kip Ans.

scr � � � 31.06 ksi � sY � 36 ksi 
(OK)

F13–6

w(6)(3) � FBC(6) � 0 FBC � 3w

A � � 0.625(10�3)pm2 I �

� 97.65625(10�9)pm4

Pcr � FBC(F.S.) � 3w(2) � 6w

Pcr �

6w �

w � 11.215(103) N�m � 11.2 kN�m Ans.

scr � � � 34.27 MPa �sY � 250 MPa
(OK)

6[11.215(103)]

0.625(10- 3)p

Pcr

A

p2[200(109)][97.65625(10- 9)p]

[1(3)]2

p2EI

(KL)2

p

4
(0.0254)

p

4
(0.052)

d+ ©MA = 0;

2.6667(36.59)

p

Pcr

A

p2[29(103)] cp
4
d

[1(4)(12)]2

p2EI

(KL)2

p

4
  in4p

4
(14)

p

4
(22)

1.6667Pa4
5
b  -  FAC = 0:+ ©Fx = 0;

FABa3
5
b - P = 0+ c ©Fy = 0;



Chapter 1
1–1. (a) (b)

1–2.

1–3.

1–5.
,

1–6.

1–7. ,

1–9. ,

1–10. ,
,

1–11.

1–13.

1–14.

1–15.

1–17.

1–18.
1–19.
1–21.

1–22.
1–23.

1–25.

(TB)z = 52.5 lb # ft
(TB)z - 105(0.5) = 0;(MB)y = 788 lb # ft,

(MB)y - 105(7.5) = 0;(MB)x = 0,
(NB)z = 0,(VB)y = 0,(VB)x = 105 lb,

MH = -4.12 kN # m
VH = -20.6 kN,NH = -2.71 kN,

MG = 0VG = 0,NG = 9.81 kN,
Ma - a = 180 N # m900(0.2) - Ma - a = 0,

Va - a = 450 N,Na - a = 779 N,
MC = 31.5 kip # ftVC = 4.50 kip,NC = 0,

MC = -480 lb # in.VC = 0,NC = -80 lb,
Mb - b = 3.75 kN # m

Vb - b = 3.54 kN,Nb - b = -1.77 kN,
Ma - a = 3.75 kN # m,Va - a = 1.25 kN,
Na - a = -3.75 kN,NB = 5.303 kN,

MC = 0.9 N # mNC = 0,VC = 60 N,

MD = -15.7 kip # ft
VD = 1.45 kip,ND = 0,MC = -6.18 kip # ft,

VC = 1.08 kip,NC = -0.4 kip,
MB = -3.12 kip # ft 
-MB - 0.16(2) - 0.8(4.25) + 0.4(1.5) = 0,

VB = 0.960 kip,NB = -0.4 kip,

MA = 14.5 lb # in.NA = 20.7 lb,VA = 77.3 lb,

MC = -8.125 kip # ftNC = -1.20 kip,VC = 0,
MB = -6.325 kip # ftVB = 850 lb,NB = 0,
MA = -1.125 kip # ftVA = 450 lb,NA = 0,

MD = 3.94 kN # m
VD = -1.875 kN,ND = 0,By = 3.00 kN

MC = 0.400 kN # mVC = -0.533 kN,
NC = -2.00 kN,P = 0.533 kN

MC = 6.00 kN # m
VC = -8.00 kN,NC = -30.0 kN,

ME = -24.0 kip # ft
VE = -9.00 kip,NE = 0,MD = 13.5 kip # ft,

VD = 0.750 kip,ND = 0,By = 6.00 kip
Ay = 3.00 kip,9.00(4) - Ay(12) = 0,

TC = 500 lb # ftTB = 150 lb # ft,

TD = 0TC = 250 N # m,

FA = 34.9 kNFA = 13.8 kip,

1–26.

1–27.

1–29.

1–31.

1–33.

,

1–34.

1–35. Joint A:

Joint E:

Joint B:

1–37.

1–38.

1–39.

1–41.

1–42.

1–43.

1–45. Joint B:

Joint A:

1–46.
1–47. tA = 138 MPa

s = 339 MPa

sAC = 833 psi      (T)
sBC = 469 psi      (T)

= 417 psi      (C),sAB =
FAB

AAB
=

625
1.5

(tE)avg = 12.4 ksi(tD)avg = 13.2 ksi,

(tE)avg = 6.22 ksi(tD)avg = 6.62 ksi,

(tB)avg = 12.1 ksi

FB = FC = 594.24 lb,
By = 150 lb,Cy = 150 lb,

Ey = 350 lb,Ex = 500 lb,Dy = 650 lb,

savg = 5 MPa

t = 115 psis = 66.7 psi,

d = 2.40 mP = 40 MN,
dF = 7.5(106) x1>2 dx,

sBD = 18.7 ksi   (C)

sBC = 23.5 ksi   (T),

sEB = 4.80 ksi   (T)

sED = 8.53 ksi   (C),

sAE = 8.53 ksi   (C),
sAB = 10.7 ksi   (T),

sD = 13.3 MPa (C), sE = 70.7 MPa (T)

tavg =
P

2A
 sin 2us =

P

A
 sin2 u

N = P sin u,V = P cos u,

s = 1.82 MPa

MA = Pr(1 - cos u)
MA - P[r(1 - cos u)] = 0,

VA = P sin u,VA - P sin u = 0,
NA = P cos u,P cos u - NA = 0,

(MB)z = 0
(MB)y = 6.23 N # m,(TB)x = 9.42 N # m,

(VB)z = 70.6 N,(VB)y = 0,(NB)x = 0,

(MC)z = -138 N # m(TC)y = 0,
(MC)x = -108 N # m,
(VC)z = -240 N,

(NC)y = 0,(VC)x = -250 N,
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1–49.

1–50.

1–51.

1–53.

1–54.

1–55.
1–57.

Inclined plane:
Cross section:

1–58.
1–59.
1–61.

1–62.
1–63.
1–65.
1–66.

1–67.

1–69. ,

1–70.

1–71.

1–73. ,

1–74.

1–75.

1–77. Shear limitation,
Tension limitation,

1–78.

1–79.

1–81.

1–82.

1–83.
1–85. ,

1–86.

1–87.
Pmax = 155 kN

A = 6.19(10- 3) m2,P =  90 kN,

d = 1
1
16

 in.

W = 431 lbFAB = 1442.9 lbT = 1178.10 lb,
P = 4.43 kN

dBC = 6.00 mm
dAB = 6.50 mm,dBD = 7.00 mm,

P = 3.26 kip
N = 2.827 kip,P = 3.39 kip,V = 1.696 kip,

dA = 27.6 mm

a = 6 
1
2

 in. 

b = 33.3 mm
t = 167 mm,

d = 13.5 mm

d = 5.71 mm

h = 2
3
4

 in.h = 2.74 in.

tb - b = 600 psisa - a = 1.39 ksi,

r = r1e
argpr1

2

2P
b z

s = 102 psiN = 720 lbA = 7.069 in2,

s =
w0

2aA
(2a2 - x2)

P = 62.5 kN
tavg = 509 kPaV = 636.40 N,

(tB)avg =  1.59 ksi
(tA)avg =  3.71 ksi
P = 15.3 kN

FA = 2P,Ay = P,Ax = 1.732P,
tavg = 1.80 ksis = 3.125 ksi,

P = 68.3 kN
tavg = 0s = 101 ksi,
t¿avg = 48.9 ksi,s¿ = 62.6 ksi,

N = 15.603 kip,V = 12.19 kip,
(savg)BC = 58.8 MPa(savg)AB = 118 MPa,

(savg)b = 31.8 MPa(savg)s = 56.6 MPa,

P = 9.05 kNVp = P>4,Vb = P>4,

(ta - a)avg = 250 psiP = 4 kip,

(ta - a)avg = 115 kPa(sa - a)avg = 66.7 kPa,
P = 3.70 kN

FA = 11P,Ay = 5.5P,Ax = 9.5263P,
1–89.

1–90.
1–91.
1–93.

1–94.
1–95.
1–97.

1–98.
1–99.
1–101.

1–102.

1–103.

1–105. ,
1–106.
1–107.

Chapter 2
2–1.
2–2.
2–3.
2–5. ,

2–6.
2–7.
2–9.

2–10.
2–11.

2–13.

2–14. y = -0.218 in.x = -0.192 in.,

PAD = 0.0281(10- 3) mm>mm
PDB = -0.00680 mm>mm,

DB = 500 mm,D¿B¿ = 496.6014 mm,
AB¿ = 300.00667,AD¿ = 400.01125 mm,

(Pavg)BD = -0.1875 mm>mm
(Pavg)AB = -0.0889 mm>mm,

(gxy)B = -0.206 rad(gxy)A = 0.206 rad,
¢D = 4.38 mm

AB¿ = 501.75 mm,AB = 500 mm,
Pavg = 0.0689 in.>in.
g = 0.197 rad
(Pavg)CE = 0.005 mm>mm

(Pavg)BD = 0.00267 mm>mmdB = 4 mm,
PBD = 0.00107 mm>mmPCE = 0.00250 mm>mm,

P = 0.0472 in.>in.
P = 0.167 in.>in.

tavg = 5.09 MPa
s30 = 7.07 MPa,s40 = 3.98 MPa,
ta - a = 115 kPasa - a = 200 kPa,
tavg = 61.3 MPaF = 3678.75 N

dB =
13
16

 in.dA = 1
1
8

 in.,t =
1
4

 in.,

(tavg)b = 45.5 MPa

(tavg)a = 4.72 MPa,ss = 208 MPa,

(ta - a)avg = 4.13 MPa(sa - a)avg = 7.16 MPa,
Va - a = 150 kN,Na - a = 259.81 kN,

P = 55.0 kN
h = 1.74 in.

dCD = 5.41 mmdAB = 6.02 mm,
FAB = 8.30 kN,FCD = 6.70 kN,

aB¿ = 300 mmaA¿ = 130 mm,
w = 0.530 kip>ft

(F.S.)pins = 1.53tpins = 11.79 ksi,
(F.S.)rod = 2.71,srod = 13.26 ksi,

(F.S.)C = 2.13(F.S.)B = 2.24,
dC = 6.29 mmdB = 7.08 mm,

h =
3
8

 in.5(103) =
5(103)

p(1)(h)
,

d =
5
8

 in.,21.0(103) =
5(103)
p
4d2 ,
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2–15.

2–17.

2–18.

2–19.

2–21.
2–22.
2–23. ,

2–25.

2–26.

2–27.

2–29.

2–30.
2–31.

2–33.

Chapter 3

3–1.

3–2. ,

3–3.

3–5.

3–6.

3–7.
3–9.

3–10. ,
3–11. ,

¢L = 0.094 in.
Elastic Recovery = 0.003 in.>in.

Pult = 19.6 kipPY = 11.8 kipE = 30.0(103) ksi,

d = 0.228 in.P = 0.035 in.>in.,s = 1.50 ksi,
A = 0.209 in2, P = 1.62 kip

E = 8.83(103) ksi

(ut)approx = 117 MJ>m3

(ur)approx = 85.0 
in # lb

in3

ur = 9.96 
in # lb

in3E = 55.3(103) ksi

Eapprox =
1.31 - 0

0.0004 - 0
= 3.275(103) ksi

PAB =
yB sin u

L
-

uA cos u

L

PAB = c1 +
2(vB sin u - uA cos u)

L
d

1
2 - 1,

Pavg = 0.479 ft>ft
¢L = 0.16 ft
¢L = 0.100 ft

¢L = L
90°

0
(0.05 cos u)(2 du),P = 0.05 cos u,

(Pavg)CF = -0.0687 mm>mm
(Pavg)AD = 0.132 mm>mm,
(Pavg)BE = 0.0635 mm>mm
(gxy)F = 0.245 rad,
(Pavg)CD = 0.125 mm>mm,
(Pavg)AC = 0.0112 mm>mm,
PAB = 16.8(10- 3) mm>mm

AB = 5.00 m,A¿B¿ = 5.08416 m,
PBD = 11.3(10- 3) mm>mm
PAC = 16.7(10- 3) mm>mm
(gA)xy = 5.24(10- 3) rad

Pavg = 0.0258 mm>mmLB¿D = 0.6155 m,
(gD)xy = 11.6(10- 3) rad
(gC)xy = -11.6(10- 3) rad,
(gA)xy = -11.6(10- 3) rad
(gB)xy = 11.6(10- 3) rad,
PDB = PAB cos2u + PCB sin2u

LDB¿ = L21 + (2PAB cos2 u + 2PCB sin2 u),

PAC = 0.0274 in.>in.PAB = 0.152 in.>in.,
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3–13.

3–14.
3–15.
3–17.

3–18. ,

3–19.
3–21.

3–22.
3–23. From the stress–strain diagram, the 

copolymer will satisfy both stress and 
strain requirements.

3–25.

3–26. (a)
(b)

3–27.
3–29.

3–30. , ,

3–31. ,
3–33.

3–34.

3–35.
3–37.
3–38. ,
3–39.
3–41.
3–42.

3–43.

Chapter 4

4–1.

4–2.
4–3.
4–5. dA = 6.14 mm

dD = 0.850 mm
dA/D = 0.766(10-3) in.

= -3.64(10- 3) mmdA =
-5.00(103)(8)

p
4(0.42 - 0.32)200(109)

Pr = 0.000884 mm>mm
Pb = 0.00227 mm>mm,
PBC = 0.00193 in.>in.

W = 112 lb,PDE = 0.00116 in.>in., 
dh = 3.02 mmG = 1.481 MPa,t = 148.89 kPa,

x = 1.53 m, d¿A = 30.008 mm
d¿ = 20.0016 mmd = -0.0173 mm

E = 5.5 psi, ut = 19.25 psi, ur = 11 psi
Gal = 4.31(103) ksi

d =
Pa

2bhG

d = 0.833 mm
g = 0.02083 rad,tavg = 4166.67 Pa,

E = 28.6(103) ksiP = 53.0 kip
gxy = -0.00524 rad

Px = 0.00540 in.>in.Py = -0.0150 in.>in.
h¿ = 2.000176 in.

n = 0.330,Plat = 0.0000880,Plong = -0.0002667,
n = 0.300

d¿ = 0.5000673 in.
d = -0.577(10-3) in.

d = 0.126 mm, ¢d = -0.00377 mm
s = 1.697 MPa,

P = 11.3 kN
a = 0.708°

PCD = 0.002471 mm>mm,sCD = 7.958 MPa,
PAB = 0.009885 mm>mm,sAB = 31.83 MPa,

s = 2.22 MPa

[(Ui)t]approx = 6.50(103) 
in # lb

in3(Ui)r = 88 
in # lb

in3

spl = 44 ksi, sY = 60 ksi, E = 11.0 (103) ksi
P = 570 lb
dBD = 0.0632 in.
E = 28.6(103) ksi

P = 0.000400 in.>in.,s = 11.43 ksi,



4–6.
4–7.
4–9.

4–10.
4–11.

4–13.

4–14.
4–15.
4–17.
4–18.
4–19.
4–21.

4–22.
4–25.

4–26.

4–27.

4–29.

4–30.
4–31.
4–33.

4–34.
4–35.
4–37.
4–38.

4–39.
4–41.

4–42.
4–43.
4–45.

4–46. FD = 20.4 kN, FA = 180 kN
sb = 32.4 MPa, st = 34.5 MPa
Fb = 10.17 (103) N, Ft = 29.83 (103) N,
sAB = 26.5 MPa, sEF = 33.8 MPa
d = 24.6 mm
scon = 8.42 MPa, sst = 67.3 MPa
Pcon = 36.552 Pst,
Ast = 18.2 in2, d = 0.00545 in.
d = 0.0055 in.
sst = 1.66 ksi, scon = 0.240 ksi,

dA>B = 0.335 mmFD = 107.89 kN,
d = 2.39 in.
sbr = 0.341 ksi, sst = 0.654 ksi
sst = 48.8 MPa, scon = 5.85 MPa
Pst = 57.47 kN, Pcon = 22.53 kN,
sst = 3.14 ksi, scon = 0.455 ksi

d = 2.93 mmp0 = 250 kN>m,

d =
0.511P

pr0E

When y =
r0

4
: u = 14.48°,

y = r0 sin u; dy = r0 cos u du,
A = pr2 = p(r0 cos u)2 = pr2

0 cos2 u,

d = -  
P

2apr0
2E

 A1 - e-2aL B
d =

gL2

6E

d = 0.360 mm
W = 9.69 kN

dtot = 33.9 mmdC = 0.5332 mm,
dA>B = 0.3958 mm,dD = 0.1374 mm,

u = 0.439(10-3) rad
dF = 0.0230 in.T

P = 46.4 kipd = -0.4310(10- 3)P,
dA>B = -1.03 mm
dA>B = -0.864 mm

=
gL2

2E
+

PL

AE
d =

1
AEL

L

0
(gAx + P) dx

dt = 0.0260 in.
u = 0.00878°
dF = 0.0113 in.

d¿E = 0.0036782 in.,dF>E = 0.0020690 in.,
dA = 0.0110344 in.,dC = 0.0055172 in.,

dP = 0.0350 in.T
dA = 0.0128 in.
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4–47.
4–49.
4–50.

4–51.
4–53.

4–54.
4–55. ,

4–57.

4–58.

4–59.
4–61. Assume failure of AB and EF:

Assume failure of CD:

4–62.
4–63.

4–65.

4–66.

4–67.

4–69.

4–70.

4–71.

4–73.

4–74.

4–75.

4–77.

4–78.
4–79.
4–81.

4–82.
4–83.
4–85.
4–86.
4–87.
4–89.
4–90.
4–91.
4–93. Maximum normal stress at fillet:

Maximum normal stress at the hole:

4–94. P = 15 kip, K = 1.60
smax = 88.3 MPa

K = 2.65,
K = 1.4,

P = 1.21 kip
P = 77.1 kN, d = 0.429 mm

w = 2.49 in.K = 2.45,
smax = 190 MPa
ss = 40.1 MPa, sb = 29.5 MPa

T = 172° CF = 107 442.47 N,
FAC = 10.0 lb, FAD = 136 lb
dA = 0.0407 in.c
FAD = 6.54 kip, FAC = FAB = 4.09 kip
620.136 = 75FAB + 48FAD,
P = 188 kN
FB = 183 kN, FA = 383 kN

F =
aAE

2
 (TB - TA)0 = ¢T - dF,

d = 0.348 in., F = 19.5 kip

F = 7.60 kip

s = 19.1 ksiF = 19.14A,0 = dT - dF,

F = 116 kip

F = 0.509 kip

F = 4.20 kN0 = ¢T - d,

sAB =
7P

12A
, sCD =

P

3A
, sEF =

P

12A

a = 0.120 mm

P = 1.16 kN0.02 = dt + db,

u = 0.00365°
sD = 13.4 MPa, sBC = 9.55 MPa
w = 45.9 kN>m

FCD = 81 000 N,
F = 42 300 N,

u = 1.14(10-3)°

FA = 5.79 kN, FB = 9.64 kN, FC = 11.6 kN

u = 0.0633°FCD = 614.73 lb, FBC = 454.69 lb,
sCF = 113 MPa
sBE = 96.3 MPa, sAD = 79.6 MPa
u = 698°
srod = 9.28 ksi, scyl = 1.16 ksi

Fal = 3.644 kip,Fst = 1.822 kip,
TCD = 27.2 kip, TCD = 9.06 kip

x = 28.9 in., P = 60.4 kip
FA = 4.09 kip, FB = 2.91 kipy = 3 - 0.025x,

TAB = 361 lb, TA¿B¿ = 289 lb



4–95.
4–97.

4–98.
4–99.
4–101.

4–102. (a) (b)

4–103.

4–105.

,

4–106.
4–107.
4–109.

4–110. (a)
(b)

4–111.

4–113.

4–114.
4–115.
4–117.
4–118.

4–119.

Chapter 5
5–1. (a) (b) ,

5–2. (a) (b)
5–3.
5–5.
5–6.
5–7.

5–9. ,
tmax = 11.9 MPa
J = 2.545(10-6) m4

(tCD)max = 2.17 ksi(tEF)max = 0,
(tDE)max = 3.62 ksi(tBC)max = 5.07 ksi,

tmax = 26.7 MPa
tB = 6.04 MPa, tA = 6.04 MPa

r¿ = 0.841rr¿ = 0.841r,

tr= 0.5 in. =
6.381(0.5)

p
2(0.754 - 0.54)

= 8.00 ksi

T¿ = 6.38 kip # in.T = 7.95 kip # in.,

u =
3E2L(T2 - T1)(a2 - a1)

d(5E2 + E1)

P = 56.5 kN, dB>A = 0.0918 mm
sAB = 145 ksiP = 46.4 kip,

P = 4.85 kip
FB = 2.13 kip, FA = 2.14 kip

d =
g3L3

3c2d =
1

A2c2L
L

0
(gAx)2 dx,

P = 126 kip, ¢d = 0.00720 in. ;
dD = 6.40 in.
dD = 0.375 in.

dB = 17.8 mm
Fst = 146.9 kN,(Fal)Y = 56.55 kN,

w = 10.9 kip>ft
sA = 53.33 ksi, d = 8.69 in.
(sAD)r = 35.5 MPa (C)
(sBE)r = 53.2 MPa (T)
(sCF)r = 17.7 MPa (C),

FAD = 15 436.93 N,FBE = 91 844.61 N,
FCF = 122 718.46 N,sCF = 250 MPa (T),

P = sYA(2 cos u + 1), dA =
sYL

E cos u

P = 3.14 kNP = 2.62 kN,

dCD = 0.324 mm, dAB = 0.649 mm

FAB = 3.14 kN, FCD = 2.72 kN,

FCD = 1800 N, FAB = 3600 N,

w = 21.9 kN>m, dG = 4.24 mm

dC = 0.432 in.

sst = 36.0 ksi, sal = 19.8 ksi
Pal = 156.91 kip, Pst = 143.09 kip,
P = 16.8 kip, K = 1.29

5–10.

5–11.
5–13. , ,

5–14.
5–15.
5–17. ,

5–18.
5–19.
5–21. ,

5–22.
5–25.

5–26.

5–27.

5–29. ,

5–30.

5–31.
5–33. ,

,

5–34.

5–35.
5–37. ,

,

5–38.

5–39.

5–41.

5–42.

5–43.

5–45. ,
,

t = 0.104 in.
ri = 1.1460 in.
T = 525.21 lb # ft

d = 2
1
2

 in.

v = 17.7 rad>s
t = 2.5 mm
T = 625 N # m,

(tmax)BC = 7.26 MPa

(tmax)CF = 12.5 MPa,

dB = 16.8  mmdA = 12.4 mm,

tmax = 6.02 ksi
T = 6302.54 lb # ft
P = 990 000 ft # lb>s
v = 21.7 rad>s
d =

7
8

 in.

tmax = 1.43 ksi
T = 280.11 lb # in
P = 1100 ft # lb>s

(tBC)max = 3.11 MPa(tAB)max = 1.04 MPa,

c = (2.98 x) mm

tmax =
(2TA + tAL)ro

p(r4
o - ri

4)

TB =
2TA + tAL

2
,TA +

1
2

tAL - TB = 0

(tBC)max = 15.9 MPa(tAB)max = 23.9 MPa,

tmax =
T

2pri
2h

tabs
max

= 3.59 ksiTmax = 260.42 lb # ft,
d = 57 mm

tmax = 42.4 MPad = 0,
tmin = 0,d = 0.9 m,

TAB = (2000x - 1200) N # m
(tmax)BC = 82.8 MPa(tmax)AB = 41.4 MPa,

tmax = 7.33 ksi
tmax = 4.89 ksi

J = 0.03125p in.4,TA = 960 lb # in.
d = 33 mm
(tmax)abs = 10.2 MPa

(tCD)max = 8.91 MPa(tEA)max = 5.66 MPa,
TA = 30.0 N # mF = 600 N
tBC = 2.36 ksitAB = 7.82 ksi,

n =
2r3

Rd2
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5–46.

5–47.

5–49.

5–50.

5–51.
5–53.

5–54.
5–55.
5–57.

5–58.

5–59.
5–61.

5–62.
5–63.

5–65.

5–66.

5–67.

5–69.

5–70.

5–73.

f =
7TL

12pr4G

J(x) =
pr4

2L4(L + x)4,

fD = 1.42°
fE = 1.20°
fC = 0.008952 rad,
fB = 0.01194 rad,
T2 = 3.28 kN # m
T1 = 2.19 kN # m,
fC = fB + fC>B,
fA = fB + fA>B,
fC = 2.30°
fA = 2.66°,
fC = 0.113°
fC/B = -0.0001119 rad,
fB = 0.001852 rad,
fC = 2.66°
(tBA)max = 1.86 ksi,
(tBC)max = 10.2 ksi,
fA = 1.78°
fB = 1.53°
fF = 0.02667 rad,
fE = 0.01778 rad,
fB>D = 1.15°
fC>D = 0.0661°

t
abs
max
    = 3.17 ksi,

d = 1
1
4

 in.TD = 65.65 lb # ft,

TM = 175.07 lb # ft, TC = 109.42 lb # ft,
fC = 0.227°
fD = 1.01°
fB = ƒ5.74° ƒ
TDA = -90 N # m,
TCD = -60 N # m,
TBC = -80 N # m,
d = 2.75 in.
f = 4.43°
tmax = 2.83 ksi,
fA>D = 0.879°
TBC = -85 N # m,
TAB = -85 N # m,

tmax = 44.3 MPa, f = 11.9°

d =
7
8

 in.
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5–74.

5–75.

5–77.

5–78.
5–79.

5–81.

5–82.

5–83.

5–85.

5–86.

5–87.

5–89.

5–90.

5–91.

5–93. ,

TA =
152
189

 T

TB =
37

189
 T,

J(x) =
pc4

2L4
 (L + x)4

t abs = 5.50 ksi
max

(tAC)max = 2.17 ksi

(tBD)max = 4.35 ksi,

fB = 0.955°
TA = 12.79 kip # ft,
TE = 4.412 kip # ft,
F = 4.412 kip,

fE = 1.66°

TA = 55.6 N # m
TB = 222 N # m,

t
abs

= 13.3  ksi
max

fB = 1.75°,TR = (300x - 2.5x2) lb # in.,
f = 0.338°
(tBD)max = 1.96 ksi,

(tBC)max = 1.47 ksi,

(gbt)max = 17.2(10- 6) rad

(tbr)max = 96.1 psi,

(gst)max = 34.3(10- 6) rad,

(tst)max = 395 psi,

fC = 0.116°,
tCD = 24.9 MPa

TB = 0.502 kN # m,

TA = 1.498 kN # m,

tAC = 29.3 ksi
tAC = 9.77 MPa

(tCB)max = 4.07 MPa

(tAC)max = 8.15 MPa,

TB = 100 N # m,
TA = 200 N # m,

f =
2L(t0L + 3TA)

3p(ro
4 - ri

4)G

f =
4PLd

3pr4G

to =
4 pd

L
,



5–117.

5–118.

5–119.
5–121.

5–122.
5–123.
5–125.
5–127.

5–129.

5–130.
5–131.

5–133.

5–134.

5–135.
5–137.

5–138.
5–139.

5–141.

5–142.

5–145.
Eq. 5–7:
Eq. 5–18:

Eq. 5–15:
Eq. 5–20: f = 4.503°

f = 4.495°,

tavg = 88.42 MPa,
tr= 0.06 m = 88.27 MPa,

ri = 0.0575 m,ro = 0.0625 m,

tmax =
19T

12pr3

Tc = 7.61 kN # m
Plastic, Tt = 7.39 kN # m,Tt 7 (TY)t,

Tc = 5743.05 N # m,Elastic, Tt = 9256.95 N # m,
at 1.5 in., t = -3.78 ksi

t = 2.44 ksi,at 3 in.,T = 41.2 kip # ft,
fP = 0.413°T = 39.2 kip # ft,

f = 34.4°
T = 3.27 kN # m,
t2 = 4(109)r + 25(106),
t1 = 8(109)r,

rg = 0.00625 m,
TA = 5.70 kN # mTC = 9.3 kN # m,

gmax =
cotY

ci G

f =
tYL

ci G
,

TP =
2
3
pty Aco

3 - ci
3 B ,

T = 110 lb # ft
TP = 16.8 kN # m
TY = 12.6 kN # m,
T = 14.4 kip # ft
fr = 12.2°
f¿ = 0.3875 rad,
G = 40 GPa,
f = 34.4°,
T = 20.8 kN # m,
TP = 2.79 kip # ft
T = 2.71 kip # ft,

r = 0.075 in.K = 1.40,
(tmax)f = 50.6 MPa
P = 101 kW
No, it is not possible.
r = 7.98 mm,
K = 1.28,
(tavg)A = (tavg)B = 357 kPa
f = 0.407°>m
tavg = 119 MPa,
f = 0.428°>m
T = 4.73 MN # m,
Am = 1.8927 m2,
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5–94.

5–95.

,

5–97.

5–98.

5–99.

5–101.

5–102.

5–103.
5–105.
5–106.

5–107.
5–109.

5–110.

5–111.

5–113.

5–114.

5–115.

(tavg)B = 10.4 MPa

(tavg)A = 15.6 MPa,

f = 5134 kip # ft

f = 0.0536°

t =
5

16
 in.,

Am = 7959.50 in2,

qst =
p

4
 qct

The factor of increase = 2.85
Factor = 1.66
Am¿ = 2.4002 in2,
Am = 1.4498 in2,
t = 0.104 in.
dF = 0.0303 in.
tmax = 2.31 ksi,

F = 104 lbT = 1663.2 lb # in.,
(tmax)A = 308 MPa
fC = 0.0925°
TA = 48 lb # ft,
TB = 32 lb # ft,
T = 2.80 kN # m
For segment BC, T = 11 366.94 N # m,
For segment AB, T = 3180.86 N # m,
fB>C = ƒ 0.0643° ƒ
(tAC)max = 1.59 MPa,

(tBC)max = 0.955 MPa,

fB>A = 0.207°
(tAC)max = 1.59 MPa,

(tBC)max = 0.955 MPa,

Factor of increase in shear stress =
1
k2

(tmax)c =
16T

pk2d3 ,

(tmax)c =
16T

pd3
 ,

fr = 0.0657°

fc = 0.0582°

(tr)max = 713 psi,

(tc)max = 525 psi,

TA =
3t0 L

4

TB =
7t0L

12
,



5–146.
5–147.
5–149.
5–150.
5–151.

Chapter 6
6–1.
6–2.
6–3.

6–5.
6–6.

6–7.

6–9.
6–10.
6–11.
6–13.

6–14.
6–17.

6–18.

6–19.
6–21.

6–22.
6–23.
6–25.
6–27.

6–29.

6–30.

6–31.

M = -
w0

3L
(L - x)3V =

w0

L
(L - x)2,

M =
w0

24
(-12x2 + 18Lx - 7L2),

V =
w0

4
(3L - 4x),

x = 2.54, V = 0, M = 346
M = 25.31 kN # mAt x = 4.5 m,

M = 25.67 kN # m,At x = 4.108 m,
x = 4.11, V = 0, M = 25.7,
M = -0.00617w0L

2

x = (L>3)-, V = -w0L>18,
x = L, V = 0, M = 0
x = L, V = -wL, M = 0
x = 3-, V = -10, M = -18

Ay = 1.5 kN
FBC = 7.5 kN,
x = 0.75, V = 0, M = 0.5625,
x = 5-, V = -10, M = -25
M = {8.00x - 120} kip # ft
V = 8.00 kip
M = {-x2 + 30.0x - 216} kip # ft,

V = {30.0 - 2x} kip,

M = {-300x - 5.556x3} lb # ft

V = {-300 - 16.67x2} lb,

x = 6, V = -900, M = -3000,
x = 14+, V = 115, M = -3875

x = 3a-, V = -P, M = -Pa

x = 6-, V = -800, M = -4800
x = 1.5-, V = 150, M = 225
x = 4+, V = -3.33, M = 46.7

x = 4-, V = -6, M = -24
V = -20, M = -16
x = 1.5, V = 0, M = 9, x = 4-,
x = 2+, V = 8, M = -39

x = 3-, V = -2000, M = -6000
x = 2-, V = 1, M = 2, x = 4-, V = 1, M = 6
x = 0.25-, V = -24, M = -6

f = 1.86°F = 26.2 N,
tmax = 82.0 MPa

tmax = 23.3 MPaT = 71.5 N # m,
t = 8 mm
T = 331 N # m
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6–33.

6–34.
6–35.

6–37.

6–38.

6–39.

6–41.
6–42.
6–43.

6–45.

6–46.
6–47.

6–49.

6–50.

6–51.
6–53.

6–54.
6–55.

6–57.

6–58.

6–59.
6–61.

6–62.

6–63. a = 1.68r

sB = 5.17 MPa (T)

sA = 6.21 MPa (C),

(FR)C = 11.8 kip
sD = 0.2978 ksi,sA = 2.0544 ksi,

I = 1093.07 in4,y = 9.3043 in.,
M = 101 kip # ft
(smax)C = 20.0 ksi (C)

(smax)T = 23.8 ksi (T),

smax = 49.4 MPa
I = 17.8133(10- 6) m4,

F = 4.56 kN
smax = 2.06 MPa

smax = 40.0 MPaM = 36.5 kN # m,
I = 91.14583(10- 6) m4,
M = 771 N # m

sC = 4.14 MPa
sB = 1.01 MPa,
sA = 6.81 MPa,

(sc)max = 1.78 ksi(st)max = 3.72 ksi,
INA = 91.73 in4,

y = 3.40 in.,

smax = 90 MPa
smax = 120 MPa,
x = 0, V = 2w0L>p, M = -w0L

2>p
M =

w0Lx

12
-

w0x
4

12L2

x = 0.630L, V = 0, M = 0.0394w0L
2,

x = 14, V = 0, M = 24
x = 1, V = 0, M = 2.50
x = 4-, V = -2.8, M = -2.4

x = L, V = -
23
54

 wL, M = -
5

54
 wL2

Ax = 0Ay = 9.375 kip,

x = 4.5, V = 0, M = 169

M = e -
100
9

 x3 + 500x - 600 f  N # m

V = e -
100
3

x2 + 500 f  N,

M = (200 x) N # m,V = 200 N,
x = 3-, V = -11.5, M = -21
M = 15.0 lb # ft
V = 30.0 lb,
w = 40.0 lb>ft,



6–109.

6–110.

6–111.

6–114.

6–115.

6–117.

6–118.

6–119.

6–121.

6–122.

6–123.

6–125.

6–126.

6–127.

6–129.

6–130.

6–131.

6–133.

6–134.

6–135.

6–137.

6–138.

6–139.

6–141.

(sst)max = 18.3 ksi(scon)max = 1.95 ksi,

I = 1358.78 in4,h¿ = 5.517 in.,

Ast = 2.3562 in2,Mmax = 40 kip # ft,

(smax)pvc = 1.53 ksi

M = 98.6 kN # md = 531 mm,

(smax)al = 171 MPa(smax)st = 154 MPa,

I = 18.08(10- 6) m4,y = 0.1882 m,

(sw)max = 77.0 psi(sst)max = 1.40 ksi,

(sst)max = 20.1 MPa

M = 16.4 kip # ft

INA = 85.4170 in4,y = 2.5247 in.,

(smax)w = 0.558 ksi(smax)st = 8.51 ksi,

w = 0.875 kip>ft
(smax)al = 13.3 ksi

(smax)st = 22.6 ksi,I = 30.8991 in4,

y = 2.3030 in.,Mmax = 25.3125 kip # ft,

M = 6.60 kN # m

h = 41.3 mm,

sA = 21.0 ksi

sA = 21.0 ksi (C)

y¿A = -2.828 in.,z¿A = 1.155 in.,

sA = 293 kPa (C)

sA = 293 kPa (C)

smax = 161 MPaMmax = 427.2 N # m,

M = 1186 kN # m

a = -66.5°sB = 131 MPa (C),

sA = 7.60 MPa (T)Iy = 13.34583(10- 6) m4,

Iz = 28.44583(10- 6) m4,

My = -600.0 N # m,Mz = -1039.23 N # m,

sB = 7.81 ksi

sA = 8.95 ksi

a = -3.74°

sB = 0.587 MPa (T),

sA = 1.30 MPa (C),y = 57.4 mm,

M = 119 kip # ft

a = 65.1°

smax = 2.01 ksi (C),smax = 2.01 ksi (T),

Iz = 1584 in4,Iy = 736 in4,

Mz = -14.14 kip # ft,My = -14.14 kip # ft,
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6–65.

6–66.

6–67.

6–69.

6–70.

6–71.

6–73.

6–74.

6–75.

6–77.

6–78.

6–79.

6–81.

6–82.

6–83.

6–85.

6–86.

6–87.

6–89.

6–90.

6–91.

6–93.

6–94.
6–95.
6–97.
6–98.
6–99.

6–101.
6–102.

6–103.

6–105.

6–106.

6–107.

(smax)t =
3M

b h2 a2Et + 2Ec

2Ec

b

c =
h2Ec

2Et + 2Ec

,

smax = 147 psi

b = 7
1
2

 in.I =
2
3

 b4,

v = 11.25 kN>m
sA = 11.8 ksisB = 13.3 ksi,
smax = 19.8 ksiI = 204.84375 in4,

smax = 5.60 ksi
smax = 7.59 ksi

P = 119 lbMmax = 2P,
d = 199 mm
d = 116 mm

Pmax = 0.711(10- 3) mm>mm

I = 0.79925(10- 6) m4,y = 0.012848 m,

smax = 119 MPa

smax =
23w0L

2

36bh2

a = 66.9 mmMmax = 7.50 kN # m,

d = 2 in.

smax = 19.1 ksi

b = 53.1 mm

smax = 129 MPa

t = 5
1
2

 in.

smax = 1.25 ksiw = 3.75 kip>ft,
smax = 15.6 ksi

smax = 66.8 ksi

w = 1.65 kip>ftI = 152.344 in4,

sallow = 52.8 MPa

smax = 21.1 ksi

smax = 10.0 ksiI = 152.344 in4,

smax = 12.2 ksi

smax = 22.1 ksi

smax = 74.7 MPa

Ib = 0.36135(10- 3) m4,

Ia = 0.21645(10- 3) m4,

smax = 158 MPa

FR = 3.13 kip

s = 155 psismax = 193 psi,I = 1863 in4,



6–142.

6–145.

6–146.

6–147.

6–149.

6–150.

6–151.

6–153.

6–154.
6–155.
6–157.
6–158.
6–159.
6–161.
6–162.
6–163.
6–165.

6–166.

6–167.
6–169.

6–170.
6–171.
6–173.

6–174.
6–175.
6–177.

6–178.

6–179.

6–181.

6–182. (a) (b)

6–183. (a) (b) P = 45.5 kipP = 37.3 kip,

w0 = 22.8 kip>ftw0 = 18.0 kip>ft,
M =

11ah2

54
 sYd =

2
3

h,

k = 2

k =
16ro(r3

o - r3
i )

3p(r4
o - r4

i )

k = 1.38MY = 87.83sY, Mp = 121.33sY,
k = 1.71
sT = sB = 142 MPa

k = 1.57MY = 0.000268sY,
Ix = 26.8(10- 6) m4, Mp = 0.00042sY,
k = 1.70
k = 1.17

s¿top = s¿bottom = 67.1 MPa

I = 91.14583(10- 6) m4,Mp = 289 062.5 N # m,
k = 1.71

k =
3h

2
 c4bt(h - t) + t(h - 2t)2

bh3 - (b - t)(h - 2t)3 d
stop = sbottom = 43.5 MPa

Mp = 211.25 kN # m,Iz = 82.78333(10- 6) m4,
L = 950 mm
smax = 29.5 ksi

P = 122 lbK = 1.92,
r = 5.00 mm
smax = 12.0 ksi

M = 15.0 kip # ftK = 2.60,
P = 3.09 N
st = 2.01 MPa (T)

sB = 26.2 MPa (C)A = 0.008 m2,

©LA

dA
r

= 6.479051(10- 3) m,r = 1.235 m,

sB = 12.7 ksi (C)sA = 10.6 ksi (T),

(smax)c = 120 psi (C)(smax)t = 204 psi (T),

sC = 2.66 MPa (T)

©LA

dA
r

= 8.348614(10- 3) m,

r = 0.5150 m,©A = 0.00425 m2,

(smax)c = -5.44 MPa

(smax)t = 4.51 MPa,

P = 55.2 kN

M = 14.0 kN # m
LA

dA
r

= 0.053049301 m,A = 0.0028125p m2,

M = 97.5 kip # ft
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6–185.

6–186. (a) (b)

6–187.

6–189.

6–190.

6–191.

6–193.

6–194.

6–195. (a) (b)

6–197.

6–198.

6–199.

6–201.

Chapter 7
7–1.

7–2.
7–3.
7–5.

7–6.
7–7.
7–9.
7–10.
7–11.
7–13.

7–14.

7–15.

7–17.

7–18.
7–19.

(tw)max = 37.4 MPa
(tf)max = 9.24 MPa,
V = 723 kN
tmax = 37.4 MPa
Qmax = 1.09125(10-3) m3,

I = 0.175275(10-3) m4,

The factor =
4
3

V = 190 kN
tmax = 4.22 MPa

I = 4.8646(10-6) m4,y = 0.080196 m,
V = 100 kN
tmax = 4.48 ksi

V = 32.1 kipI = 6.75 in4,y = 1.1667 in.,
tmax = 4.62 MPa

tB = 1.65 MPatA = 1.99 MPa,
Vf = 3.82 kipQ = 65.34 - 6y2,

INA = 390.60 in4,y = 3.30 in.,
Vw = 19.0 kN
tmax = 3.46 MPa
tA = 2.56 MPa
I = 0.2501(10- 3) m4, QA = 0.64(10- 3) m3,

a = 45°u = 45°,

ds

du
= 0,s =

6M

a3  (cos u + sin u),

x = 0.6-, V = -233, M = -50

M = -x2 + 20x - 166V = 20 - 2x,

sB = 265 kPa (T)sA = 225 kPa (C),

A = 6.25(10- 3) m2,LA

dA
r

= 0.012908358 m,

smax = 0.410 MPasmax = 0.410 MPa,

M = 26.4 kN # m

M = 14.9 kN # m

n = 18.182, I = 0.130578(10- 3) m4,

(smax)c = 1.62 MPa (C)

(smax)t = 3.43 MPa (T),

FR = 5.88 kN

M = 73.5 kip # fts = 82 ksi,

M = 251 N # m

M = 59.8 kip # ftM = 35.0 kip # ft,

M = 94.7 N # ms - 50sd - 3500(106)d = 0,



7–66.

7–67.

7–69.

7–70.

7–71.

7–73.

7–74.
7–75.

Chapter 8
8–1.
8–2.
8–3. Case (a):

Case (b):
8–5.

8–6.
8–7. (a) (b)

(c)
8–9.

8–10.
8–11.
8–13.

8–14.

8–15.

8–17.

8–18.
8–19. sR = 33.3 MPa (T)sL = 66.7 MPa (C),

d = 66.7 mm

sw =
pr

t + t¿
-

T

wt

sfil =
pr

t + t¿
+

T

wt¿
,

p =
E(r2 - r3)

r2
2

r2 - r1
+

r2
3

r4 - r3

dri
=

pr2
i

E(ro - ri)

sc = 2.69 ksidF - dT = 0,
sh = 432 psi, sb = 8.80 ksi
s = 33.3 in.

ns = 308 bolts(Pb)allow = 122.72(103) N,
tc = 40 mm, ts = 20 mm,

(tavg)r = 322 MPa
s¿1 = 79.1 MPa,s1 = 127 MPa,

t = 26.7 mm, n = 820 bolts
sb = 228 MPa

Pb = 35.56(103)p N,s = 133 MPa,
s1 = 1.04 ksi, s2 = 520 psi
s1 = 1.04 ksi, s2 = 0

ro = 75.5 in.
t = 18.8 mm

V = 749 lb
V = 4.10 kip
qC = 3.78 kN>m

qB = 1.21 kN>m,qA = 0,
QC = 0.16424(10-3) m3,QA = 0,

INA = 86.93913(10-6) m4,

y = 0.08798 m,

VAB = 9.96 kip

e =
4r (sin a - a cos a)

2a - sin 2a

e =
b(6h1h

2 + 3h2b - 8h3
1)

2h3 + 6bh2 - (h - 2h1)
3

I =
t

12
 (2h3 + 6bh2 - (h - 2h1)

3),

Pe = F(h) + 2V(b),

e = 0

e =
223

3
a
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7–21.

7–22.
7–23.
7–25.

7–26.
7–27.
7–33.
7–34.

7–35.

7–37.
7–38.
7–39.
7–41.

7–42.

7–43.

7–45.

7–47.

7–50.
7–51.

7–53.

7–54.

7–55.

7–57.

7–58.

7–59.

7–61.

7–62.

7–63.

7–65.

e =
7

10
aQ2 =

at

2
 (a + 2x),

Q1 =
t

2
 y2,I =

10
3

 a3t,

e =
3(b2

2 - b2
1)

h + 6(b1 + b2)

t =
V

pR2t
2R2 - y2

qmax = 641 lb>in.

qB = 452 lb>in.,qA = 196 lb>in.,

I = 92.569 in4,y = 2.8362 in.,

qmax = 232 kN>m
qA = 215 kN>m
qmax = 414 lb>in.

I = 145.98 in4,y = 3.70946 in.,

qmax = 1.63 kN>m
qB = 1.25 kN>mqA = 1.39 kN>m,

qC = 38.6 kN>m
QC = 0.5375(10-3) m3,INA = 125.17(10-6) m4,

qD = 601 kN>mqC = 0,
qB = 462 kN>mqA = 228 kN>m,

s¿ = 1.21 in.s = 8.66 in.,
P = 6.60 kN

Q = 0.450(10-3) m3,INA = 72.0(10-6) m4,

(tnail)avg = 119 MPa

s = 1
1
8

 in.V = 8.82 kip,

P = 6.91 kip
Qmax = 208.5 in3,

Q = 168 in2,INA = 2902 in4,
F = 12.5 kN
tn = 35.2 MPa

V = 34.5 kipQ = 10.125 in3,INA = 93.25 in4,

s = 2
1
8

 in.V = 1.80  kip,

V = 1.35 kip
F = 675 lbQ = 12.0 in4,I = 32.0 in4,

tD = 1.17 ksitC = 1.43 ksi,
tmax = 280 psi

tmax = 3.67 MPaQmax = 0.216(10-3) m3,
I = 27.0(10-6) m4,VC = -13.75 kN,

tmax = 4.85 MPa
tB = 4.41 MPa

tA = 2.39 ksiQ =
2
3

(4 - y2)3>2,I = 4p in4,



8–21.

8–22.
8–23.
8–25.

8–26.
8–27.
8–29.

8–30.
8–31.
8–33.

8–34.
8–35.

8–37.

8–38.
8–39.

8–41.

8–42.
8–43.

8–45.

8–46.

8–47.

8–49.

8–50.
8–51.

8–53.

8–54.
sC = 128 kPa (C), sD = 69.1 kPa (C)  
sA = 9.88 kPa (T), sB = 49.4 kPa (C),  

y = 0.75 - 1.5xIy = 10.125 m4,
A = 13.5 m2, Ix = 22.78125 m4,

6ey + 18ez 6 5a

(st)max = 8.37 ksi, (sc)max = -6.95 ksi
sA = 89.1 MPa (C), sB = 79.3 kPa (T)
M = 14.2463 N # m,
R = 0.080889 m, N = -24.525 N,

smax =
0.368P

r2  (C), smin =
0.0796P

r2  (T)

smax =
1.33P

a2  (C), smin =
P

3a2 (T)

sA = 1.00 ksi (C), sB = 3.00 ksi (C)

Iz = 54.0 in4,A = 18.0 in2, Iy = 13.5 in4,

s = 23.9 MPa (C), t = 0.796 MPa
t = 1.06 MPas = 17.9 MPa (C),

sB = 0.522 MPa (C), tB = 0QB = 0,
A = 9.00 (10- 3) m2, I = 82.8 (10- 6) m,

T = 2.16 kip
T = 2.16 kip
tB = 100 MPa

sB = 1.53 MPa (C),J = 0.3125p(10- 9) m4,

A = 25p(10- 6) m2, Iz = 0.15625p(10- 9) m4,

tB = 0.869 ksi
sA = -9.41 ksi, tA = 0, sB = 2.69 ksi,

tE = 0sD = 0, tD = 667 psi, sE = 23.3 ksi  (T),

tC = 162 psitB = 0, sC = 62.5 psi (C),
sB = 5.56 ksi (T),QC = 4(10- 3) in3,

I = 1.0667(10- 3) in4, QB = 0,
d = 66.7 mm
sA = 504 kPa (C), tA = 14.9 kPa
tA = 600 psi, tB = 0
sA = 533 psi (T), sB = 1067 psi (C),
I = 0.0078125 in4,
A = 0.375 in2, QA = 0.0234375 in3,
P = 109 kN
w = 79.7 mm
sB = 5.35 ksi, tB = 0
M = 175 lb # in.,

V = 350 lb,N = 606.218 lb,
smax = 1.07 MPa
smax = 1.07 MPa

sB = 62.5 MPa= 123 MPa,sA = -
P

A
+

Mc

I
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8–55.
8–57.

8–58.

8–59.

8–61.

8–62.

8–63.

8–65.

8–66.

8–67.

8–69.

8–70.

8–71.

8–73.

8–74.

8–75.

8–77.

8–78.
8–79.
8–81.

8–82.
8–83.
8–85.

8–86. Fb = 133 kNs1 = 50.0 MPa, s2 = 25.0 MPa,
n = 113 bolts

Fb = 6.3617(106) N,p = 3.60 MPa,
s1 = 7.07 MPa, s2 = 0
smax = 44.0 ksi (T)
P = 94.2 kN

F = 30(103)p,p = 12(106) MPa,
smax = 236 psi (C)

(sc)max = 24.0 ksi (C)(st)max = 28.8 ksi (T),
(sc)max = 40.8 ksi (C)(st)max = 49.0 ksi (T),

LA

dA
r

= 0.035774 in., A = 0.049087 in2,

sE = 802 kPa, tE = 69.8 kPa

sA = -21.3 psi, sB = -12.2 psi

s = 1.62 psi (T), t = 384 psi

QB = 0.0104167 in3,I = 0.9765625(10- 3)p in4,

R = 1.74103 in, e = 0.0089746 in,

sB = 0, tB = 0.377 ksi

tA = 0, sA = 30.2 ksi (C)

sB = -21.7 MPa, tB = 0

A = 1.256637 (10- 3) m2, QB = 0,

I = 0.1256637 (10- 6) m4,

-
h

6
… ey …

h

12
s = -

2P

bh3 (h2 + 18eyy),

sB = 466 psi (C), tB = 422 psi 

sA = 605 psi (T), tA = 327 psi 

(Qz)A = 0.38542 in3,

(Qy)A = 0,J = 1.07379 in4,

Iy = Iz = 0.53689 in4,Mz = -433.01 lb # in,

My = 250 lb # in,T = -519.62 lb # in,

tC = -52.4 ksitD = 62.4 ksi,

sC = 15.6 ksi (T), sD = 124 ksi (T), 

sB = 7.80 ksi (T), tB = 3.40 ksi

tA = -2.84 ksi

sA = 16.2 ksi (T),(QA)z = 0.08333 in3,

I = 0.049087 in4, (QA)x = 0,

A = 0.7854 in2, J = 0.098175 in4,

smax = 71.0 MPa (C)

s = 5.86 ksi (C), t = 4.80 ksi

t = 4.84 ksi

s = 17.6 ksi (T),Mx = 4800 lb # in,

Vx = -500 lb, Ty = -7200 lb # in,

Ny = 800 lb, Vz = -600 lb,
sA = 11.9 MPa (T), tA = -0.318 MPa
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Chapter 9
9–2. ,

9–3. ,

9–5. ,

,

9–6. ,

9–7. ,

9–9.
,

,

9–10. ,

9–11. ,

9–13.
,

, ,

9–14. (a) , ,
,

(b) , ,

9–15. , ,
,

,

9–17.

,

,

,

,

9–18. ,

9–19. ,
,

, ,

9–21.

9–22. ,

9–23. , ,
, tx¿y¿ = 0.958 MPasx¿ = 0.507 MPa

QA = 1.6875(10-3) m3I = 0.45(10-3) m4

(up)1 = 78.1°, (up)2 = -11.9°
s1 = 4.93 MPa, s2 = -111 MPa
s1 = 80.1 ksi, s2 = 19.9 ksi

sx = 51.962 ksi, txy = 30 ksi,

savg = 80 MPa

us = -16.8°, 73.2°tmax
in-plane

= 144 MPa

(up)1 = -61.8°, (up)2 = 28.2°
s1 = 224 MPa, s2 = -64.2 MPa

txy = 102 MPa

sx = -193 MPa, sy = -357 MPa

savg = 25 MPatmax
in-plane

= 112 MPa

(up)1 = -13.3°, (up)2 = 76.7°

s1 = 137 MPa, s2 = -86.8 MPa

txy = -50 MPa

sx = 125 MPa, sy = -75 MPa, 

us = -5.65°, 84.3°tmax
in-plane

= 51.0 MPa

(up)1 = 39.3° (up)2 = -50.7°
s2 = -121 MPas1 = -19.0 MPa

us = -25.7°, 64.3°

savg = -15 ksitmax
in-plane

= 19.2 ksi

up1
= -70.7°up

2
= 19.3°

s2 = -34.2 ksis1 = 4.21 ksi

tx¿y¿ = 201 psisy¿ = 127 psisx¿ = -277 psi

sy = -350 psi, txy = 75 psi
u = -60°, sx = 200 psi, 

tx¿y¿ = 4.17 ksisx¿ = -2.71 ksi

tx¿y¿ = 4.17 ksisx¿ = -2.71 ksi

tx¿y¿ = 40 MPasx¿ = -5 MPa

sy = 0, txy = 45 MPa
u = +135°, sx = 80 MPa,  

tx¿y¿ = -34.8 MPasx¿ = 49.7 MPa

tx¿y¿ = -34.8 MPasx¿ = 49.7 MPa

tx¿y¿ = 455 psisx¿ = -388 psi

txy = 0, u = 30°sx = -650 psi, sy = 400 psi, 

tx¿y¿ = 41.5 psisx¿ = -678 psi

tx¿y¿ = 4.63 ksisx¿ = -3.48 ksi

9–25. ,
,

,
,

9–26. ,
, ,

9–27. ,
, ,

9–29.

,

9–30.

9–31.

9–33. , ,

,

9–34.

9–35.

9–37.

9–38.
9–39.

9–41.

9–42.

9–43.
(up)1 = 81.9°, (up)2 = -8.11°
s1 = 1.27 MPa, s2 = -62.4 MPa,

tmax
in-plane

= 3.55 ksi
s1 = 2.97 ksi, s2 = -4.12 ksi,

up = -7.63°s1 = 21.2 MPa, s2 = -0.380 MPa,
A = 3.75(10-3) m2,
y = 0.0991 m, I = 7.4862(10-6) m4,

sx = 82.3 kPa
tx¿y¿ = -47.5 kPa

tmax
in-plane

=
2
pd2 a2PL

d
- Fb

s1 =
4
pd2 a2PL

d
- Fb , s2 = 0,

A =
p

4
d2, I =

p

64
d4, QA = 0,

savg = 0tmax
in-plane

= 5 kPa,

us = 45°, -45°tmax
in-plane

= 668 psi,
s1 = 0, s2 = -1.34 ksi,

up1
= -15.0°, up2

= 45.0°
s1 = 24.0, s2 = -24.0 MPa,
s1 = 0, s2 = -192 MPa,
QB = 9.375(10-6) m3

QA = 0I = 0.3125(10-6) m4

(up)1 = 13.4°, (up)2 = 103°
s1 = 6.38 MPa, s2 = -0.360 MPa,
Point B: s1 = 0.0723 ksi, s2 = -0.683 ksi
Point A: s1 = 1.50 ksi, s2 = -0.0235 ksi,

(up)1 = 15.7°, (up)2 = -74.3°
s1 = 64.9 MPa, s2 = -5.15 MPa
I = 49.175(10-6) m4, QA = 0.255(10-3) m3,

V = 70.5 kN, M = 39.15 kN # m,

savg = -11.5 ksi

us = 45°, 135°tmax
in-plane

= 11.5 ksi
s1 = 0, s2 = -22.9 ksi

savg = 14.9 ksi

us = -45°, 45°tmax
in-plane

= 14.9 ksi
s1 = 29.8 ksi, s2 = 0

savg = -63.0 MPatmax
in-plane

= 63.0 MPa
s1 = 0, s2 = -126 MPa

I = 2.5(10-9)p m4,A = 0.1(10- 3)p m2

N = 400 N, M = 100 N # m



9–45.

9–46.

9–47.

9–49.

9–50.

9–51.

9–53. ,

9–54. ,

9–55.

9–58.

9–59.

9–61.

9–62.

9–63.

(a)

(b)

9–65.

us = -25.7°

tmax
in-plane

= 192 psi,savg = 150 psi,

up = 19.3°,s2 = -42.1 psi,
s1 = 342 psi,R = 192.094,

us = 28.2° (Counterclockwise)

tmax
in-plane

= -9.01 ksi,

up1
= 16.8° (Clockwise)

s2 = -1.51 ksi,s1 = 16.5 ksi,

savg = 7.50 ksi

sy¿ = -3.25 ksitx¿y¿ = 3.03 ksi,sx¿ = 0.250 ksi,

sy¿ = -11.1 MPa

tx¿y¿ = 551 MPa,sx¿ = -299 MPa,

savg = -155 MPa, R = 569.23 MPa,

sy¿ = -3.99 ksi

tx¿y¿ = -1.46 ksi,sx¿ = 4.99 ksi,

sy¿ = 421 MPa

tx¿y¿ = -354 MPa,sx¿ = -421 MPa,

sy¿ = 9.89 ksi

tx¿y¿ = 7.70 ksi,sx¿ = -19.9 ksi,
us1 = 30.1° clockwise

savg = -7.50 MPa,tmax
in-plane

= 60.5 MPa,

up1 = 14.9° counterclockwise,

s2 = -68.0 MPas1 = 53.0 MPa,

tmax
in-plane

= 19.2 ksi, savg = -15 ksi, us2 = 64.3°

up2 = 19.3°,s1 = 4.21 ksi, s2 = -34.2 ksi,
R = 19.21 ksi

sx¿ = -388 psi, tx¿y¿ = 455 psi

tmax
in-plane

= 10 kPas1 = 0, s2 = -20 kPa,

tmax
in-plane

= 38.7 MPa

s1 = 0, s2 = -77.4 MPa,(QA)y = 0,

Iy = 68.75(10-6) m4,Iz = 0.350(10-3) m4, 

s1 = 5.50 MPa, s2 = -0.611 MPa

(up)1 = 45°, (up)2 = -45°

s1 = 219 psi, s2 = -219 psi,
savg = -2.70 ksi, us = 45°, -45°

tmax
in-plane

= 2.70 ksi,I = 86.6667 in4, QA = 0,

V = 2 kip, M = 13 kip # ft, 9–66. (a) ,

(b)

9–67. (a)

(b)

9–69.

9–70.

9–71.
9–73.

9–74.
9–75.

9–77.
9–78.
9–79.

9–81.

,

9–82.

9–83.

9–85.

9–86.

9–87.

tabs
max

= 83.2 psisint = 0 psi,

smin = -8.22 psi,smax = 158 psi,

tabs
max

= 91.8 MPa

s3 = -46.8 MPa,
s2 = 137 MPa,s1 = 0,

smin = -300 psi, sint = 0, smax = 400 psi

us = 45° (Counterclockwise)

tmax
in-plane

= 3.76 MPa,
s1 = 7.52 MPa, s2 = 0,

(up)1 = 3.44° (Counterclockwise)

s2 = -0.118 MPa,s1 = 32.5 MPa,

(up)1 = 6.08° (Counterclockwise)

s1 = 9.18 MPa, s2 = -0.104 MPa,

A = 1.4(10-3) m2, I = 1.7367(10-6) m4

N = 900 N, V = 900 N, M = 675 N # m,

tx¿y¿ = 592 kPa
sx¿ = 470 kPa,
R = 0.5984 MPa,
t = 0.2222 MPa, savg = 0.5556 MPa,

tx¿y¿ = 167 MPasx¿ = 500 MPa,
s1 = s2 = 4.80 ksi

tmax
in-plane

= 2.79 ksi
s2 = -1.20 ksi,s1 = 4.38 ksi,
s2 = -0.683 ksis1 = 0.0723 ksi,
s2 = -0.0235 ksis1 = 1.50 ksi,

A = 18.0 in2, I = 54.0 in4, QA = 10.125 in3,
s2 = -206 psis1 = 68.6 psi,

tx¿y¿ = 21.7 kPa
sx ¿ = -12.5 kPa,

tx¿y¿ = -22.6 kPa
sx ¿ = 11.0 kPa,

us = 14.4° (Clockwise)

tmax
in-plane

= 571 MPa,

up1
= 30.6° (Counterclockwise)

s2 = -496 MPa,
s1 = 646 MPa,
u2 = 4.27°

savg = 37.5 MPa,

tmax
in-plane

= 50.6 MPa,
s2 = -13.1 MPa
s1 = 88.1 MPa
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9–89.

9–90. , ,

9–93.

9–94. psi,

9–95. ,

9–97.

9–98.

9–99.

9–101.

9–102. ,
9–103. ,

,

9–105.

9–106. ,

Chapter 10
10–2. , ,

10–3.

10–5. (a) , ,

,

(b) ,

Pavg = -100(10- 6)

gmax 
in-plane

= 1.08(10- 3)

up2 = 65.2°up1 = -24.8°

P2 = -641(10- 6)P1 = 441(10- 6)

P = 111 hp

Py¿ = -348(10- 6)

gx¿y¿ = -233(10- 6)Px¿ = 248(10- 6)

tx¿y¿ = -13.2 kPasx¿ = -22.9 kPa

up1
= -45°; up2

= 45°
s1 = 26.4 kPa, s2 = -26.4 kPa,t = 26.4 kPa,

I = 2.0833(10-6) m4,QC = 31.25(10-6) m3,

(up)2 = 41.1° (Clockwise)
s2 = -4.30 MPa
s1 = 3.29 MPa

tx¿y¿ = 35.7 MPasx¿ = -63.3 MPa

tmax
in-plane

=
2
pd2AF2 + 64T0

2

d2

s2 = -
2
pd2 aF + AF2 + 64T0

2

d2 b ,

s1 =
2
pd2 a-F + AF2 + 64T0

2

d2 b ,

s1 = 329 psi, s2 = -72.1 psi

s1 = 119 psi, s2 = -119 psi

tmax
in-plane

= 23.2 MPa
A = 0.015625p m2, J = 0.3835(10-3) m4,

T0 = 60.0(103) N # m,P = 0.900(106) N # m>s,

tabs
max

= 5.46 ksi
sint = smin = 0,smax = 10.9 ksi

tabs
max

= 755 psi
smin = -926sint = 0,smax = 582 psi,

tabs
max

= 50 MPa
smin = 0,sint = 50 MPa,smax = 100 MPa,

tabs
max

= 5.48 ksi
s3 = -4.23 ksis2 = 0s1 = 6.73 ksi,

tabs
max

= 162 MPa
s3 = -102 MPa,
s1 = 222 MPa, s2 = 0 MPa,
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10–6. , ,

10–7. , ,

10–9. , ,
,

, ,

10–10. , ,

10–11. , ,
,

, , ,

10–13. , ,
, ,

,

10–14. (a) , ,
,

(b) ,

,

10–17. , ,

,

10–18. , ,

10–19. , ,

10–21. (a) ,
, ,

(b) ,

,

10–22. (a) ,

(b)

(c) gabs
max

= 773(10- 6)

gmax
in-plane

= 696(10- 6)

P2 = 76.8(10- 6)P1 = 773(10- 6)

Pavg = 275(10- 6)us = -7.76°,  82.2°

gmax
in-plane

= 187(10- 6)

up2 = 37.2°up1 = -52.8°P2 = 182(10- 6)
P1 = 368(10- 6)R = 93.408,

gx¿y¿ = -423(10- 6)

Py¿ = -541(10- 6)Px¿ = -309(10- 6)

us = -31.7°

Pavg = -30(10- 6)(gxy) max
in-plane

= 335(10- 6)

up = 13.3°P2 = -198(10- 6)

P1 = 138(10- 6)R = 167.71(10-6)

Pavg = 275(10- 6)us = -7.76°,  82.2°

gmax
in-plane

= 187(10- 6)

up2 = 37.2°up1 = -52.8°
P2 = 182(10- 6)P1 = 368(10- 6)

Pavg = -150(10- 6)

us = 31.7°, 122°,gmax
in-plane

= 335(10- 6)

(up)2 = -13.3°(up)1 = 76.7°
P2 = -318(10- 6)P1 = 17.7(10- 6)

Pavg = -150(10- 6)

67.5°us = -22.5°gmax
in-plane

= 141(10- 6)

(up)1 = 22.5°, (up)2 = -67.5°
P2 = -221(10- 6)P1 = -79.3(10- 6)

gx¿y¿ = 718(10- 6)

Py¿ = 46.7(10- 6)Px¿ = 103(10- 6)

Pavg = 30(10- 6)-54.2°us = 35.8°

gmax 
in-plane

= 316(10- 6),

(up)1 = -9.22°, (up)2 = 80.8°
P2 = -128(10- 6)P1 = 188(10- 6)

Py¿ = 185(10- 6)

gx¿y¿ = -248(10- 6)Px¿ = 215(10- 6)

Py¿ = 155(10- 6)

gx¿y¿ = 583(10- 6)Px¿ = 145(10- 6)



10–23. (a) ,

(b, c)

10–25.

,

10–26. ,

,

, ,

10–27. , ,

,

,

,

10–33.

10–34.

10–35.

10–37. (a)

(b)

10–38.

10–39.

10–41.

10–42.

10–43.
10–45.
10–46. s2 = 6.26 ksis1 = 8.37 ksi,

th = 0.206 in.
P = 390 lb

Pz = -2.44(10- 3)

Py = -0.972(10- 3),Px = 2.35(10- 3),

¢LCD =
6 nM
Eh2 

¢LAB =
3 nM
2Ebh

,

sz = -
12 My

bh3 , Py =
12 nMy

Ebh3 ,

tabs
max

= 85.7 MPa

tmax
in-plane

= 0,
r = 3.43 MPa,

Pmin = -910(10- 6)

Pmax = 546(10- 6), Pint = 364(10- 6),

Kg = 5.13(103) ksi

Kr = 3.33 ksi,

Pint = Pmin = -10.7(10- 6)Pmax = 30.5(10- 6),

g  abs
max      = 41.1(10- 6)

s2 = 7.38 ksis1 = 10.2 ksi,s3 = 0,
us = 12.5° (Clockwise)

Pavg = -75(10- 6)

gmax
in-plane

= 828(10- 6)

(up)1 = 32.5° (Counterclockwise)

P2 = -489(10- 6)P1 = 339(10- 6)

us = 16.8° (Clockwise)

Pavg = 0gmax
in-plane

= 902(10- 6)

(up)1 = 28.2°(Counterclockwise)

P1 = 451(10- 6), P2 = -451(10- 6)

us = 36.9° (Counterclockwise)

Pavg = 100(10- 6),gmax
in-plane

= 416(10- 6)

R = 208.17(10-6),(up)2 = 8.05° (Clockwise),

P2 = -108(10- 6),P1 = 308(10- 6),

gabs
max

= gmax
in-plane

= 344(10- 6)

P2 = -152(10- 6)P1 = 192(10- 6)
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10–47.

10–49. and 

10–50.

10–51.

10–53. ,
,
,

10–54.

10–57.

10–58.
10–59.

10–61.

10–62.

10–63.

10–65.

10–66.

10–67.

10–69.

10–70.

10–71. No.

10–73. ,
Yes.

10–74. No.

10–75.
10–77.

10–78.

10–79.

10–81. sx = 121 ksis2 =
sx

2
,

s2 = 38.9 ksi

F.S. = 1.80

F.S. = 1.59
s1 = 7.314 ksi, s2 = -15.314 ksi,
F.S. = 1.43

t = 30.56 ksis = -9.549 ksi,

Me = 2M2 + T2

Yes.
s2 = 50 - 197.23 = -147 MPa,
s1 = 50 + 197.23 = 247 MPa,

Me = AM2 +
3
4

T2

Te = A
4
3

M2 + T2

a = 1.78 in.s =
450
a3 ,

d = 1.88 in.

d = 0.794 in.

d = 0.833 in.

T =
3300

x
 lb # in,v = 80 p rad>s,

s2
x + s2

y - sxsy + 3t2
xy = s2

Y

k = 1.35

Eeff =
E

1 - n2

Pz = 5.44(10- 3)Px = Py = 0,

sz = -55.2 ksisx = sy = -70.0 ksi,

0 = sz - 0.35sx - 0.35sy + 6.20
0 = sy - 0.35sz - 0.35sx + 26.2
0 = sx - 0.35sy - 0.35sz + 26.2

G = 25.0 GPa
n = 0.335,E = 67.7 GPa,

wx = 723 kN>mwy = -184 kN>m,

sy = 16.8 ksi (C)sx = 15.5 ksi (C),

Py = 0.25(10-3), sz = 0,Px = 0.3125(10-3),

P3 = -763(10- 6)

P1 = 833(10- 6), P2 = 168(10- 6),



10–82.

10–83.
10–85.

10–86. (a)

(b)

10–89.

10–90.
10–91.
10–93.

(a)
(b)

10–94.

10–95. (a)

(b)

(c)

10–97.
10–98.

(a) ,

(b)

10–99.

10–101.

10–102.

10–103.

,

us = 16.8° (Counterclockwise)

gmax
in-plane

= -361(10- 6)

(up)1 = 28.2° (Clockwise),P2 = 120(10- 6),

P1 = 480(10- 6),Pavg = 300(10- 6),

Py¿ = 120(10- 6)

gx¿y¿ = 23.2(10- 6),Px¿ = 480(10- 6),

us = 29.2° (Counterclockwise)

Pavg = 685(10- 6),gmax
in-plane

= -622(10- 6),

(up)1 = 15.8° (Clockwise),

P1 = 996(10- 6), P2 = 374(10- 6),

T = 736 N # m
us = 9.78° (Clockwise)

gmax
in-plane

= -1593(10- 6),

up = 54.8° (Clockwise)

P2 = -713(10- 6)P1 = 880(10- 6),

Pavg = 83.3(10- 6),
No.s1 = 350.42 MPa, s2 = -65.42 MPa,

g
abs = 482(10
max

- 6)

gmax
in-plane

= 313(10- 6)

P2 = 168(10- 6)P1 = 482(10- 6),

P =
pr

2Et
(1 - n)

t = 19.5 mm
t = 22.5 mm

sallow = 166.67(106) Pa,
d = 1.50 in.
T = 9.67 kN # m
T = 838 kN # m
s1 = 9947.18T, s2 = -9947.18T,

(tmax)s = 9947.18T,(tmax)h = 8626.28T,

p =
2t

23r
 sY

p =
1
r
sY

sY = 19.7 ksi
s1 = 8.8489 ksi, s2 = -10.8489 ksi,
sY = 91.0 ksi

sY = 94.3 ksi Chapter 11
11–1.

11–2.
11–3.
11–5.

11–6.

11–7.

11–9.

11–10.
11–11.
11–13.

11–14.
11–15.
11–17. No, the beam 

fails due to bending stress criteria.
11–18.
11–19.
11–21. , Yes.

11–22.

11–23.

11–25.

11–26.

11–27.

11–29.

11–30.

Yes, it can support the load.

11–31.

11–33. . The bending stress 

is constant throughout the span.

s =
3PL

2b0t2S =
b0 r

2

3L
 x,

smax =
3PL

8bh2
0

s– = 11
1
2

 in.

s¿ = 5
3
4

 in.,Use s = 3
3
4

 in.,

P = 4.32 kip
h = 7.20 in.,P = 83.33h2,

w = 10.8 kN>m
Use W14 * 22
Yes, the joist will safely support the load.
h = 0.643 in.,
smid = 50.2 mm
sends = 16.7 mm,
w = 3.02 kN>m,

Use h = 9
1
8

 in.

smax = 17.46 ksi
di = 13.0 mm
d = 11.4 mm

S = 65.23 in3, smax = 26.5 ksi.
b = 15.5 in.
Use W14 * 30
Use W12 * 26
Sreq’d = 32.73 in3,
P = 2.49 kN
Use W14 * 43
Use W12 * 26
tmax = 2.67 ksi,

Sreq’d = 29.45 in3,

w = 6.12 kN>m
Member BC: Use W6 * 9
Member AB: Use W10 * 12,
Use W12 * 16

Sreq’d = 15.0 in3,
Use b = 4.25 in.
Use W12 * 22

h = 264 mmb = 211 mm,
Qmax = 0.1953125b3,Ix = 0.16276b4,

844 ANSWERS TO SELECTED PROBLEMS



11–34.

11–35.

11–37.

11–38.

11–39.
11–41.

11–42.

11–43.

11–45. ,

11–46.
11–47.
11–49.
11–50.
11–51.

11–53. ,

11–54.
11–55.

Chapter 12
12–1.

12–2.
12–3.

12–5.

12–6.

12–7. vmax =
P

3EIAB
ea1 -

IAB

IAC
b l3 - L3 f

vmax =
PL3

8EI

v3 =
P

12EI
 (2x3

3 - 9Lx3
3 + 10L2x3 - 3L3),

v1 =
Px1

12EI
(-x3

1 + L2),

v2 =
P

24EI
 (-4x3

2 + 7L2x2 - 3L3)

v1 =
P

12EI
 (-x3

1 + L2x1),

M(x1) = -
P

2
 x1, M(x2) = -Px2,

W = 113 lb
s = 582 MPa

smax =
c
r

 E = 100 MPa

Use d = 19 mm
Use d = 21 mm

smax =
wL2

4bh2
0

S =
bh2

0

6L2 (2x + L)2

Use W10 * 12
Use d = 41 mm

Use d = 44 mmM = 1274.75 N # m,
Use d = 21 mm
d = 34.3 mm

Use d = 36 mmM = 496.1 N # m, c = 0.0176 m

Use d = 1
1
4

 in.

Use d = 33 mmT = 100 N # m,
Use d = 29 mm

c = 0.01421,T = 100 N # m,
Use d = 20 mm

b =
b0

L2x2

d = d0A
x

L
sallow =

Px

b0d
2>6,

s
abs
max

=
0.155w0L

2

bh0
2

h =
h0

L3>2(3L2x - 4x3)1>2
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12–9.

12–10.

12–11.

12–13.

12–14.

12–15.

12–17.

, ,

12–18.

12–19. ,

12–21.

12–22. vmax = 0.369 in.Tumax = 0.00466 rad,

vC =
11wL4

384EI
T

M(x1) = -
wL

8
x1, M(x2) = -

w
2

x2
2, 

v ƒx = L
2

= 0uB =
M0L

6EI

vmax =
0.0160 M0L

2

EI
cvmax =

0.0160 M0L
2

EI
T ,

v =
M0

6EIL
(3Lx2 - 2x3 - L2x),uA = -

M0L

6EI
,

vC =
7M0L

2

24EI
c

v2 =
M0

24EI
(12x2

2 - 20Lx2 + 7L2),

v1 =
M0

6EIL
(x3

1 - L2x1),uA =
M0L

6EI

M(x1) =
M0

L
 x1, M(x2) = M0,

vC =
Pab2

8 EI
v3 =

Pax3

2EI
 (-x3 + b),

- a2 (2a + 3b)],

v1 =
P

6EI
 [-x3

1 + 3a(a + b)x1uA =
Pab

2EI
 ,

vmax =
3PL3

256EI
T

vC =
-PL3

6EI
uA = -

3
8

 
PL2

EI
 ,

vmax =
0.484 Pa3

EI
T

v2 =
P

18EI
(-x3

2 + 9ax2
2 - 19a2x2 + 3a3),

v1 =
P

9EI
 (x3

1 - 5a2x1),

vmax = -
23M0L

2

27EI

umax =
M0L

3EI
,

v2 =
Pa

6EIL
(3x3

2 L - x3
2 - (2L2 + a2)x2 + a2L)

v1 =
Pb

6EIL
Ax3

1 - (L2 - b2)x1 B ,
M1 =

Pb

L
 x1, M2 = Pa a1 -

x2

L
 b ,



12–39.

12–41.

12–42.

12–43.

12–45. ,

12–46.

12–47.

12–49.

vmax = 1.76 in T

-
125
6

x4 +
125
6
8x - 694 - 23625x d ,

v =
1

EI
c400x3 - 1008x - 993

- 250x2 + 2508x - 692,
M = 2400x - 6008x - 99

vB = -51.7 mmuB = -0.705°,
vmax = 11.0 mm T

- 0.6258x - 394 +
1

24
8x - 395 - 77.625x d ,

v =
1

EI
c3.75x3 -

10
3
8x - 1.593

v ƒx = 7 m = -
835 kN # m3

EI

uA = -
279 kN # m2

EI
,

M = 24.6x - 1.5x2 + 1.58x - 492 - 508x - 79
vmax = 12.9 mm T

+
1
6
8x - 1.595 +

5
4
8x - 1.594 d ,

v =
1

EI
c6.25x3 - 33.75x2 -

1
6

x5

vmax =
23PL3

648 EI
 T

- 3hx -
2
3

Li3

- 2L2x d ,

v =
P

18EI
c3x3 - 3hx -

L

3
i3

uA =
PL2

9EI
,

vmax =
5M0L

2

72EI
 T

- 3hx -
2
3

Li2

- Lx d ,
v =

M0

6EI
c3hx -

L

3
i2

M = M0hx -
L

3
i0

- M0hx -
2
3

Li ,

vmax = 13.3 mm T
- 2.58x - 493 - 93.333x],

v =
1

EI
[4.1667x3 - 58x - 293
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12–23.

12–25. ,

,

12–26.

12–27.

12–29.

12–30. ,

12–31.

12–33.

12–34.

12–35.

12–37.

,

12–38.

18.38x - 4093 + 4000x] lb # in3

v =
1

EI
 [-1.67x3 - 6.67 8x - 2093 +

vE = -0.501 mmvD = -0.698 mm,

vC = vE = -0.501 mm,- 1508x - 0.759
M = 180x - 1508x - 0.259 - 608x - 0.59
vmax = -3.64 mm

smax =
3PL

2nbt2

vC = -
PL3

32EIC
I = a2Ic

L
bx,

vmax = -
PL3

2EI0

vA ƒx = 0 = -
gL4

6r2E

uA =
gL3

3r2E
,

I = a2Lc

L
bx

vA ƒx = 0 =
gL4

h2E

uA =
2gL3

h2E
,I(x) =

bh3

12L3 x3,

vA = -3.52 in.uA = 0.0611 rad,

vB =
wa3

24EI
 (-4L + a)

v2 =
wa3

24EI
 (-4x2 + a),

v1 =
w

24EI
 A -x4

1 + 4ax3
1 - 6a2x2

1 B ,
uB = -

wa3

6EI
,

vmax =
2074 kN # m3

EI
T

v =
1

EI
 a6x3 -

1
60

x5 - 540xb  kN # m3,

uA =
540 kN # m2

EI

M(x) = a36x -
1
3

x3b  kN # m

umax =
w0L

3

45EI
 



12–50.

12–51.

12–53.

12–54.

12–55.

12–57.

12–58. ,

12–59. ,

12–61.

¢max = ƒ tB>C ƒ  =
M0L

2

8EI

uC>A =
M0L

2EI
, umax = uA =

M0L

2EI
,

vC =
1080 kip # ft3

EI
 T

uC =
240 kip # ft2

EI
 

vmax = vC =
1080 kip # ft

EI
 T

uA =
120 kip # ft2

EI

¢B = ƒ tB>A ƒ =
7PL3

16EI
 T ,

uB = ƒuB>A ƒ =
5PL2

8EI
,

¢C =
50 625

EI
uC =

3937.5
EI

,

 - 256x + 2637] kip # ft3

+ 0.005568x - 995
 v =

1
EI

[-0.00556x5 + 12.98x - 993
vC = -

3110 kip # ft3

EI

uA =
302 kip # ft2

EI
,

+ 25.1x - 36.4] kN # m3

+ 0.258x - 1.594 + 4.6258x - 4.593
v =

1
EI

[-0.25x4 + 0.2088x - 1.593
+ 9.58x6 kN # m3

+ 0.8338x - 594 + 2.978x - 592
v =

1
EI
50.0333x3 - 0.0833x4

+ 9.586 kN # m2,

+ 0.3338x -  593 + 8.90 8x -  592
dv

dx
=

1
EI
50.100x2 - 0.333x3
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12–62.

12–63.

12–65. ,

, 

12–66.

12–67.

12–69.

12–70.

12–71.

12–73.

12–74.

12–75.

12–77.

12–78.

12–79.

12–81.

a = 0.865L

¢D = ƒ tA>D ƒ =
13M0a

2

27EI
,x =

13
3

 a,

uA =
ƒ tB>A ƒ

a
=

M0a

6EI
,¢C = ƒ tC>A ƒ -

ƒ tB>A ƒ
a

L,

uD =
PL2

16EI
, ¢C =

5PL3

384EI
 

umax =
5PL2

16EI
, ¢max =

3PL3

16EI

¢A = ƒ tA>C ƒ - ƒ tB>C ƒ =
7Pa3

3EI
T

uA = ƒuA>C ƒ =
5Pa2

2EI
,tA>C = -

13Pa3

3EI
,

tB>C = -
2Pa3

EI
,uA>C = -

5Pa2

2EI
,

E =
Pa

24¢I
(3L2 - 4a2)

vmax =
3048 kip # ft3

EI
 T

M0a
2

4EI
 c¢C = ` 12 tB>A ` - ƒ tC>A ƒ =

uA =
ƒ tB>A ƒ

L
=

5M0a

12EI
,

tB>A = -
5M0a

2

6EI
, tC>A = -

M0a
2

6EI
,

¢max =
0.00802PL3

EI

uB =
PL2

12EI
uA =

PL2

24EI
,¢C =

PL3

12EI
 ,

19Pa3

6EI
T¢C = tA>C =uA = uA>C =

5Pa2

2EI
,

F =
P

4

uA =
4PL2

81EI

a = 0.858Lx =
23
3

 a

uA =
ƒ tB>A ƒ

a
,¢C = ƒ tC>A ƒ -

ƒ tB>A ƒ
a

L

uA = 0.00879 rad

uC =
4M0L

3EI
¢C =

5M0L
2

6EI
,



12–102.

12–103.

12–105.

12–106.

12–107.

12–109.

12–110.

12–111.

12–113.

12–114.

12–115.

12–117.

12–118.

12–119.

12–121.

12–122.

12–123.

Cy = 14.625 kipAy = 2.625 kip,

By = 30.75 kip,Cx = 0, 

MA =
PL

4
Ay =

3P

4
,By =

7P

4
,

Cy = 125 NAy = 125 N,By = 550 N,

vB– =
1.3333By m3

EI
 c ,

vB¿ =
366.67 N # m3

EI
 T ,

Ay =
3P

32
Cy =

13P

32
,By =

11P

16
,Bx = 0,

Cx = 0By =
3M0

L
,Cy =

3M0

2L
,Ay =

3M0

2L
,

a = 0.414L

Ay =
P(L - a)2(2L + a)

2L3 ,(tA>B)2 =
AyL3

3EI
,

(tA>B)1 =
-P(L - a)2(2L + a)

6EI
,

MA =
M0

2
Ay =

3M0

2L
,By =

3M0

2L
,Ax = 0,

By = 34.0 kNAy = 34.0 kN,

FC = 112 kN,Ax = 0, 

TAC =
3A2E2wL 4

1

8(A2E2L
3

1 + 3E1I1L2)

Ma =
wL1

2

2
- TACL1,

By =
5wL

8
Cy = -

wL

16
,Ay =

7wL

16
,Ax = 0,

Ay =
w0L

10
By =

4w0L

5
,Cy =

w0L

10
,Ax = 0,

Ay = 10.7 kipCy = 1.07 kip T ,By = 14.4 kip,

-  
3
2

 8x - 1092, M(x) = Cyx + By 8x - 109
MB =

Pa

L
 (L - a)MA =

Pa

L
(L - a),

By =
5P

2
Ay =

3P

2
,MA =

PL

2
,

Cy =
5

16
 P, By =

11
8

 P, Ay =
5

16
 P

M(x2) = Cyx2 - Px2 +
PL

2
,M(x1) = Cyx1,

MB =
M0

2
By =

3M0

2L
,Ay =

3M0

2L
,

Use W14 * 34
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12–82. ,

12–83.

12–85.

12–86.

12–87.

12–89.

12–90.

12–91.

12–93.

12–94.

12–95.

12–97.

12–98.

12–99.

12–101.

xmax = 3.09 in.

ymax = 0.736 in.,xmax
ymax

=
Ix

Iy
 tan u,

ymax =
P cos u L3

3EIx
; xmax =

P sin u L3

3EIy
,

(¢A)v =
4000 lb # in3

EI
 T

uA =
1053 lb # in2

EI
,

¢A =
Pa2(3b + a)

3EI

¢A = PL3a 1
12EI

+
1

8JG
b(¢A)2 =

PL3

8JG
,

¢B =
PL3

24EI
, (¢A)1 =

PL3

24EI
, u =

PL2

4JG
,

¢C = 23.2 m  T

uA =
36
EI

¢A =
72
EI

,

¢C = 1.90 in.(¢C)2 =
80
EI

 T ,

¢2(x) =
Mx

6LEI
 (L2 - x2),

(¢C)1 =
2560
EI

 T ,

¢C = 13.3 mm TuB = 0.00722 rad,

¢D =
wa4

12EI
 TuA =

wa3

6EI
,

¢C =
wa4

8EI
  TuC =

wa3

6EI
,

(¢C)3 = (uB)3(a) =
wa4

3EI
 T ,

(¢C)2 =
wa4

8EI
 T ,(uC)2 =

wa3

6EI
,

(¢C)1 =
wa4

3EI
 c ,(uC)1 = (uB)1 =

wa3

3EI
,

¢C = 0.895 in.  T
uA = 0.175°

¢C = ƒ tA>C ƒ = 0.0371 in. T
uB = ƒuB>C ƒ = 0.00160 rad,

¢C =
a3

24EI
 (64P + 7wa)T

uC =
a2

6EI
(12P + wa),

vB = 0.981 in. TuB = 0.00778 rad



12–125.

12–126.

12–127.

12–129.

12–130.

12–131.

12–133.

,

12–134.

12–135.

12–137.

12–138.

12–139.

12–141.

Dx � 0

12–142.

12–143. vA =
w0L

4

Eth0
3 T

MA =
w0L

2

20
MB =

w0L
2

30
,

Dy =
2wL

5
,Ay =

2wL

5
,

By = Cy =
11wL

10
,¢BC = ¢CB =

7ByL3

18EI
,

¢BB = ¢CC =
4ByL3

9EI
,¢B = ¢C =

11wL4

12EI
,

¢C = 1.90 in.  T

v2 =
1

EI
(-4.44x3

2 + 640x2) lb # in3

v1 =
1

EI
(4.44x3

1 - 640x1) lb # in3,

 - 11.78x - 2493 + 38 700x - 412 560]

 v =
1

EI
[-30x3 + 46.258x - 1293

M = -180x + 277.5 8x - 129 - 70 8x - 249,
Cy = 76.8 lbAy = 243 lb,By = 634 lb,

Ay = Cy = 70.1 kN

FB = 220 kN,Ax = 0,

a = L - a72¢EI

w0
b 1

4R = a 8¢EIw3
0

9
b

1
4

¢ =
w0(L - a)4

8EI
-

R(L - a)3

3EI
,

¢max =
PL3

192EI
+
aL

4
M = aPL

8
-

2EI

L
ab ,

By = PBx = 0,MB =
3PL

8
,MA =

PL

8
,

TAC =
3wA2E2L

4
1

8[3E1I1L2 + A2E2L
3
1]

dA =
TACL3

1

3E1I1
,¢A =

TACL2

A2E2
,(¢A)¿ =

wL4
1

8E1I1
;

Cy =
P

3
Cx = 0, 

MA =
M0

2
Ay =

3M0

2L
,By =

3M0

2L
,Ax = 0,

Ay = Cy = 3.125 kN

By = 13.75 kN,(vB)y =
36By

EI
 c,

(vp)1 = (vp)2 =
247.5 kN # m3

EI
 T ,Cx = 0,

ANSWERS TO SELECTED PROBLEMS 849

12–145.

12–146.

Chapter 13

13–1.

13–2.

13–3.

13–5.

13–6.

13–7.

13–9.

13–10.

13–11.

13–13. ,

13–14.

13–15.

13–17.

13–18.

13–19.

13–21. No.

13–22.

13–23.

13–25.

13–26.

13–27.

13–29.

13–30.

13–31.
13–33.

F.S. = 2.25

Iy = 0.4267(10-6) m4, Pcr = 33.69 kN,

FAB = 15 kN, A = 3.2(10-3) m2,
w = 32.5 kip>ft
P = 23.9 kip

F.S. = 3.98x–x axis: F.S. = 8.94, y–y axis:

Pcr = 178.9 kip,FBC = 20 kip,

w = 5.55 kN>m
P = 2.42 kip

P = 62.3 kipA = 8.85 in2, Iy = 19.6 in4,

P = 475 kip

F.S. = 2.19

Pcr = 1886.92 kip,

P = 29.9 kN

Pcr = 5.97 kip

Pcr = 2.92 kipIy = 2.6667 in4,

A = 8.00 in2, Ix = 10.667 in4,

L = 15.1 ft

Pcr = 245 kipd = 8.43 in.,

Pcr = 272 kNI = 0.86167(10-6) m4

Pcr = 20.4 kip

Pcr = 271 kip

F.S. = 2.21Pcr = 33.17 kip,

Pcr = 158 kip

Pcr = 46.4 kN

Pcr = 22.7 kNIx = Iy = 0.184167(10-6) m4,

A = 1.10(10-3) m2,

Pcr =
4k

L

Pcr =
5
9

 kL

Pcr =
kL

4
F = 2Pu, Fs =

kLu

2
,

Mmax =
p2btgv2r3

108g

¢C = 0.644 in.T(¢C)2 =
27 000 lb # ft3

EI
 T ,

(¢C)1 =
3200 lb # ft3

EI
 T ,¢D =

6400 lb # ft3

EI
 T ,



13–69.

13–70.

13–71.

13–73.

13–75.

13–77.

13–78.

13–79.

13–81. Use W6 � 15

13–82. Use W6 � 9
13–83. Use W8 � 24

13–85.

13–86. Yes.

13–87.

13–89.

The column is adequate.
13–90.

13–91.

13–93.

13–94.
13–95.

13–97.

13–98.

13–99.

13–101. ,

13–102.

13–103. Use 

13–105. L � 3.87 ft

13–106.
13–107. P = 7.83 kip

Pallow = 1.875 kip

KL

d
= 1.00L,

a = 7
1
2

 in.

L = 8.89 ft

Pallow = 8.61 kipsallow = 0.4783 ksi

Pallow = 109 kip

Pallow = 143 kip

Pallow = 129 kipA = 5.57 in2, I = 31.7448 in4,

Pallow = 108 kip
L = 3.08 m

Pallow = 422 kNIy = 2.5478(10- 6) m4,

Ix = 31.86625(10- 6) m4,A = 5.55(10- 3) m2,

b = 0.704 in.

L = 4.46 m

Iy = 90.025833(10-6) m4.A = 0.0151 m2,

d = 1.42 in.

Pallow = 80.9 kip

aKL
r
b

y
= 111.80,aKL

r
b

x
= 105.26,

sallow = 11.28 ksi,

L = 10.9 ft

L = 3.56 m

Pcr = 2700 kNr = 0.02 m,

E2 = 150 GPa,E1 = 200 GPa,

Pcr = 1323 kN

P

A
=

1.974(106)

aKL
r
b2  MPa

KL
r

7 99.3:

49.7 6
KL

r
6 99.3: 

P

A
= 200 MPa,

P

A
=

0.4935(106)

aKL
r
b2  MPa,

KL
r

6 49.7:

Pcr = 110 kip

Et = 14.6 (103) ksi

P = 18.3 kip(KL)y = (KL)x = 210 in.,
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13–34.
13–35.

13–37.

13–38.

13–39.

13–41.

13–42.

13–43.

13–45.

13–46.

13–47.

13–49.

13–50.

13–51.

13–53.

13–54.

13–55. The column is adequate.

13–57. Strong axis yielding controls.

13–58.

13–59.

13–61. The column is adequate.

13–62. ,

13–63.

13–65.

13–66.

13–67. The column does not fail by yielding.

F.S. = 1.56

Pcr = 83.5 kN(KL)x = (KL)y = 3 m,

smax = 6.22 ksi
Pallow = 268 kN

Pallow = 346.92 kNe = 0.15 m,

vmax = 24.3 mmsmax = 199 MPa,

e = 175 mmPcr = 199 kN,

Pallow = 89.0 kN

smax = 130 MPa

Pallow = 26.3 kN

Pcr = 98.70 kN, Pallow = 49.35 kN,

P = 73.5 kip

P = 20.1 kN

P = 6.75 kN

I = 64.1152(10- 9) m4, Pmax = Pcr = 18.98 kN,

A = 0.61575(10-3) m2,

vmax = 42.1 mmP = 5.87 kN,

P = 26.5 kip

M(x) = R¿(L - x) - Pv

Pcr =
p2EI

4L2

Mmax = -
F

2A
EI

P
 tanaA

P

EI
 
L

2
b

vmax =
F

2P
cA

EI

P
 tanaA

P

EI
 
L

2
b -

L

2
d ,

Mmax = -
wEI

P
csecaA

P

EI
 
L

2
b - 1 d

vmax =
wEI

P2 csecaA
P

EI
 
L

2
b -

PL2

8EI
- 1 d ,

M(x) =
w
2

 (x2 - Lx) - Pv,

P = 2.34 kip

P = 4.57 kip

m = 7.06 kgI = 97.65625(10-9)pm4,

A = 0.625(10-3)p m2,FAB = 26.8014m,

P = 110 kN
P = 46.5 kN



13–109.

13–110.

13–111.

13–113.

13–114.

13–115. The column is not adequate.

13–117.

13–118.

13–119.

13–121.

13–122.

13–123.

13–125. Yes.

13–126.

13–127.

13–129.

13–130.
13–131.

13–133.

Yes.

13–134.

13–135.

13–137.

No.

Chapter 14

14–1.

14–3. (Ui)a = 3.28 J

Ui

V
=

1
2E

 (s2
x + s2

y - 2nsxsy) +
t2

xy

2G

Iz = 7.5125(10-4) m4,

Iy = 20.615278(10-6) m4,x = 0.06722 m,

Pcr = 839 kN

Pallow = 57.6 kip

aKL
r
b

x
= 56.25, aKL

r
b

y
= 128.21 (controls),

P = 25.0 kip
w = 4.63 kN>m

Pcr =
2k

L
M =

PL

2
 u,

Bx = 0, By =
2M

L sin u
, M =

PL

2
 sin u,

P = 3.44 kip

P = 1.69 kip

KL

d
= 43.2 in.,

P = 2.48 kip

P = 132 kip

P = 98.0 kip

Iy = 32.0 in4,A = 24.0 in2, Ix = 72.0 in4,

P = 2.79 kip

P = 98.6 kip

P = 95.7 kip

A = 12 in.2, Ix = 166 in.4, Iy = 42.75 in.4,

P = 14.6 kip

P = 8.60 kipaKL
r
b

y
= 100.30,

aKL
r
b

x
= 133.33 (controls),

P = 4.07 kip

P = 79.4 kip

P = 80.3 kip

(sa)allow = 16.510 ksi,
KL
ry

= 69.231,
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14–5. , , ,

14–6.

14–7.

14–9. , ,
,

14–10.

14–11.

14–13. , ,

14–14.

14–15.

14–17. ,

14–18.

14–19.

14–21. , ,

14–22. , 1.5 times as great as for a uniform

cross section

14–23. (a) (b)

14–25.

14–26.

14–27.

14–29.

14–30.

14–31.

14–33. ,

14–34.

14–35. ¢B = 11.7 mm

¢B = 2.67 in.
uE = 3.15°

Ue = 150 uE,Ui =
65 625

EI

uB = 0.00100 rad

Ui = 0.726 in # kip, ¢C = 0.0145 in.

uB =
M0L

EI
Ue =

1
2

 (M0 uB),

¢C =
2PL

AE

(¢C)h =
2PL

AE

(¢A)h = 0.0142 in.

FDC = 3.00 kip (T),FDB = 2.50 kip (C),

FAB = 1.50 kip (C),FAD = 2.50 kip (T),

Ui =
w2L5

40EI
Ui =

w2L5

40EI
,

Ui =
3P2L3

bh3E 

Ui = P2L3 c 3
16EI

+
1

8JG
dMx = PyTy =

PL

2

Ui =
P2r3

JG
 a3p

8
- 1b

(Ui)b = 29.3 J

(Ui)b = 33.6 JM(x) = a9x -
1
4

x3b  

kN # m

(Ui)b =
P2L3

48EI

Ui =
M2

0L

24EI

(Ui)y

(Ui)b
=

3(1 + n)
5

 a h

L
b2

M = -PxV = -P

(Ui)t = 0.0637 J

(Ui)t =
7T2L

24pr0
4G

Ui = 149 JT = -10.0 kN # m
T = 2.0 kN # mT = 8.0 kN # m

P = 375 kN, (Ui)a = 1.69 kJ

(Ui)a = 43.2 J

Ui = 0.372 J
NCD = -3 kNNBC = 7 kNNAB = 3 kN



14–78.

14–79.

14–81.

14–82.

14–83.

14–85.

14–86.

14–87.

14–89.

14–90.

14–91.

14–93.

14–94.

14–95.

14–97.

14–98.

14–99.

14–101.

14–102.

14–103. ¢C = 0.557 in. T

¢D =
wL4

96EI
 T

uC =
13wL3

576EI
mu(x1) = -

x1

L
, mu(x2) = 1,

M(x2) =
w
3L

 x2
3,M(x1) =

w
24

 (11Lx1 - 12x1
2),

uA = 0.00700 rad

uA =
Pa2

6EI

uC =
5Pa2

6EI

mu =
x1

a
, mu = 1,

M1 = Px, M2 = Px2,

¢A = 27.4 mm T , uA = 5.75(10-3) rad

uC = 5.89(10-3) rad

uA = 2.73°

mu = 1 - 0.1176x1, mu = 0.1176x3,

M = 327.06x1, M = 654.12 + 47.06x2,

uB = 0.00595 rad

uA = 0.00298 rad

¢C = 40.9 mm T

m(x1) = 0.50x1, m(x2) = x2,

M(x1) = 2.50x1, M(x2) = x2
2,

¢C =
572.92 kN # m3

EI
,

¢C =
23Pa3

24EI

(¢G)v = 3.41 mm T

(¢C)v = 5.81 mm T

1 N # (¢C)v =
174.28125(103)

0.15(10-3)[200(109)]
,

¢Cv
= 0.163 in.

(¢B)v = 3.79 mm T

(¢A)v = 6.23 mm T

1 N # (¢A)v =
498.125(103) N2 # m

AE
,

¢Bh
= 0.367 mm

(¢E)v = 0.00966 in. T
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14–37.

14–38.

14–39.

14–41.

14–42. (a) (b)
14–43.
14–45.
14–46.
14–47.
14–49.

14–50.
14–51.
14–53.
14–54.
14–55.
14–57.
14–58.

14–59.

14–61.

14–62.

14–63.
14–65.

14–66.

14–67.
14–69.

14–70.

14–71.

14–73.

14–74.

14–75.

14–77.

(¢B)v = 0.0124 in. T

1 kip # (¢B)v =
1620 kip2 # in.

AE
,

¢Cv
= 20.4 mm

(¢B)v = 0.0931(10-3) in. T

(¢B)h = 0.699(10-3) in. :
1 lb # (¢B)h =

40 533.33 lb2 # in
AE

,

¢max = 23.3 mm, smax = 4.89 MPa

¢beam = 0.481 in., smax = 10.1 ksi

v = 5.75 m>s
kb = 49.3425(106) N>m, ¢b = 0.050342 m,
h = 6.57 m

smax = 47.8 MPa

n = 16.7kbeam = 1.7700 kip>in.,
h = 3.73 in.

smax = 5.88 ksi

h = 2.23 mn = 209.13,

h =
smaxL

2

3Ec
 csmaxI

WLc
- 2 d

(¢A)max = 15.4 in.
h = 11.6 ftn = 195.08,sst = 153.78 psi,

smax = 43.6 ksi
smax = 207 MPa

L = 325 mmsst = 0.3123 MPa,
h = 0.571 m
smax = 85.7 MPa
smax = 237 MPa, ¢max = 3.95 mm

k = 160(106) N>m,¢st = 0.613125(10-3) m,
smax = 216 MPa
h = 69.6 mm

smax = 359 MPa¢st = 9.8139(10- 6) m,
d = 5.35 in.

Ui = 3.31 kJUi = 4.52 kJ,
¢B = 15.2 mm

M2 = 60(103) N # m,M1 = -20(103)x1,

¢C = 2.13 mm

¢ =
64nPR3

d4G

smax =
16PR

pd3  [sin u + 1]

T = PR cos u, M = PR sin u,



14–105.

14–106.

14–107.

14–109.

14–110.

14–111. Bending and shear:

Bending only:

14–113.

14–114.

14–115.

14–117.

14–118.

14–119.

14–121.

14–122.

14–123.

14–125.

14–126.

14–127. (¢B)v = 0.0124 in. T

¢Dv
= 4.88 mm

= 20.4 mm¢Cv
=  

1225.26(103)

300(10- 6)(200)(109)

¢Bh
= 0.00191 in.

uB =
M0 a

3EI

¢C =
5M0 a2

6EI
m = 1x, m = 1x,

M =
M0

a
, M = M0,

(¢C)v = 16.8 mm T

uA = 0.991(10- 3) rad

¢C = 17.9 mm T

¢B = 43.5 mm T

¢Av
=

4PL3

3EI

(¢B)h =
wL4

4EI
 :

m(x1) = 0, m(x2) = 1.0L - 1.0x4,

M(x2) =
wL2

2
,M(x1) =

w
2

x 2
1,

¢ =
5w

96G
aL

a
b4

¢ = aw
G
b aL

a
b2 c a 5

96
b aL

a
b2

+
3

20
d ,

¢C = 16.7 mm T

uA = 0.00927 rad

mu(x2) = (0.1667x2) kN # m,

mu(x1) = (1 - 0.1667x1) kN # m,

M(x2) = (22.5x2 - 3x 2
2) kN # m,

M(x1) = (31.5x1 - 6x1
2) kN # m,

uA =
5w0L

3

192EI

¢C =
w0L

4

120EI

¢B =
65wa4

48EI
Tm(x2) =

1
2

 (x2 + a), m(x1) =
x1

2
,

M(x1) = wax1,M(x2) = wa(a + x2) -
w
2

x2
2, 
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14–129.

14–130.

14–131.

14–133.

14–134.

14–135.

14–137.

14–138.

14–139.

14–141.

14–142.

14–143.

14–145.

14–146.

14–147.

14–149. Bending strain energy:

Axial force strain energy:

14–150.

14–151.

14–153.

14–154.

14–155.

14–157. smax = 10.5 ksi

uB =
M0L

EI

uB =
M0 L

EI

¢Ev
=

236.25(103)

400(10- 6)(200)(109)
= 2.95 mm

(Ui)t = 2.23 in # lb

¢A = 0.536 mm

= 0.344 in # lb(Ua)i =  
(350)2(8)

2(29)(106)(p4)(0.252)

= 10.1 ft # lb,(Ub)i =
1.176(106)

29(106)( 1
12)(0.5)(0.23)

smax = 116 MPa

Ui =
5P2a3

6EI

¢C =
5M0 a2

6EI

M =
M0

a
x, M = M0, M = Px, M = Px,

(¢C)v =
5wL4

8EI
 T

uA =
Pa2

6EI

uC =
5Pa2

6EI

uA = 2.73°

¢B = 1.54 in.

uA =
41.667(103)

200(109) C70(10- 6) D = 0.00298 rad

¢C =
23Pa3

24EI

¢Hv
= 0.156 in.

¢Cv
=

21 232
4.5(29)(103)

= 0.163 in.

(¢A)v = 6.23 mm T

¢Cv
= 0.0375 mm

= 0.367 mm¢Bh
=

29.375(103)

400(10- 6)(200)(109)



A
Absolute maximum shear strain, 

502–503, 532
Absolute maximum shear stress (�max),

182–183, 185–186, 473–477,
480–481

Allowable stress, 46–47, 60
Aluminum columns, 694
Angle of twist (�), 180–181, 200–207, 222,

226, 250
circular shafts, 180–181, 200–207, 250
constant torque and, 201–202
cross-sectional area for, 200
multiple torques and, 202
noncircular shafts, 222
procedure for analysis of, 204
sign convention for, 202–203
thin-walled tubes, 226
tortional deformation and, 180–181

Angles with equal legs, geometric
properties of, 803, 807

Anisotropic materials, 24
Annulus (differential ring), 184, 237–238
Area (A), 784–799

centroid, 784–786
composite, 785, 788
geometric properties of, 784–799
inclined axes, 794–796
Mohr’s circle for, 797–799
moment of inertia for, 787–790,

794–799
parallel-axis theorem, 787–788, 792
principle moments of inertia, 795–796
procedure for analysis of, 797–799
product of inertia for, 791–793

Average shear stress (�avg), 32–45, 60,
225–226, 251

Axial (longitudinal) stress, 406
Axial (normal) force diagram, 26, 124
Axial loads, 24–31, 118–177, 720–721

average normal stress distribution,
24–25

constant stress of, 24–25, 122–123
cross-sectional areas, 24–25, 122–123,

158–161, 174
deformation of, 119–177
displacement (�), 122–129, 137–144,

151–154, 173–174
elastic deformation of, 122–129
elastic strain energy (Ui), 720–721
equilibrium and, 25–26
force (flexibility) method of analysis

for, 143–144
inelastic deformation, 162–165, 174
internal axial force, 720

load-displacement relationship,
137–138, 143–144

material properties of, 24–25
normal stress (�) in, 24–31
prismatic bars, 24–31
procedures for analysis of, 27, 125,

138, 144
relative displacement (�) of, 

122–125, 173
residual stress in, 166–168, 174
Saint Venant’s principle, 119–121, 173
sign convention for, 124, 173
statically indeterminate,137–142, 173
stress concentrations in, 158–161, 174
superposition, principle of, 136, 173
thermal stress and, 151–154, 174
uniaxial stress, 25–26
uniform deformation, 24–25

Axis of symmetry, 302–303, 392–393

B
Beams, 254–357, 359–403, 537–557, 565,

568–655, 762–766, 776–780,
800–808. See also Deflection

angles with equal legs, 803, 807
bearing plates for, 538
bending and, 254–357
built-up members, 378–382, 401, 

542, 565
cantilevered, 255
Castigliano’s theorem applied to,

776–780
channels (C shape), 802, 806
composite, 312–314, 353
cross sections of, 281–292, 

302–305, 353
curved, 319–325, 354
deflection of, 538, 568–655, 808
deformation of by bending, 281–284
design of, 537–557, 565
fabricated, 541–542
flexure formula for, 285–292, 353
fully stressed, 554–557, 565
geometric properties for shapes of,

800–807
hyperbolic stress variations, 320
inelastic bending of, 335–345, 354
integration, method for, 573–585,

628–630, 653
linear stress variations, 284–287
moment diagrams for, 633–637
moment-area method for, 604–612,

633–637, 653
nonprismatic, 554, 565
overhanging, 255

plane cross-sections of, 282, 312, 319
prismatic, 540–547
procedures for analysis of, 257, 265,

288, 323, 366, 543, 764, 779
reinforced concrete, 315–318
residual stress of, 338–339, 354
section modulus (S), 540, 554
shear and moment diagrams for,

255–271, 352
shear center (O), 392–397, 402
shear flow (q) in, 378–391, 401–402
shear formula for, 361–372
shear stresses (t) in, 359–403
sign conventions for, 256, 264, 305
simply supported, 255, 635
slopes of, 808
statically indeterminate, 627–630,

633–637, 639–647, 653
straight members, 255–310, 352–353,

359–361
stress concentrations in, 326–328, 354
stress distribution, 538–539
superposition method for, 619–623,

639–647, 653
thin-walled members, 387–397, 402
transformation factor (n), 

313–314, 353
transformed-section method applied

to, 313–314, 353
transverse shear in, 359–403
unsymmetric bending of, 302–308, 353
virtual work analysis of, 762–766
wide-flange (W shape) sections,

800–801, 804–805
Bearing plates, 538
Bending, 254–357. See also Moments (M)

beams, 312–314, 353
curved beams, 319–325, 354
deformation, 281–284
flexure formula for, 285–292, 353
inelastic, 335–345, 354
procedures for analysis of, 257, 265,

288, 323
reinforced concrete beams, 315–318
residual stress by, 338–339, 354
shear and moment diagrams for,

255–271, 352
sign conventions for, 256, 

264, 305
straight members, 255–310, 

352–353
stress concentrations and, 

326–328, 354
ultimate moment, 339–340
unsymmetric, 302–308, 353

854
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Bending moment (M), 8, 264, 281, 353,
722–724

deformation of beams, 264, 281, 353
elastic strain energy (Ui), 722–724
equilibrium and, 8
shear and moment diagrams and, 264

Biaxial stress, 407
Body forces, 5
Boundary conditions, 576, 652
Brittle materials, 89, 108, 114, 160, 235,

524–525, 533
fatigue failure, 108, 235
material failure, 89, 114, 235
maximum-normal-stress theory, 524
Mohr’s failure criterion, 524–525
multiaxial stress, 524–525, 533
stress concentrations and, 160, 235
torsional loadings, 235

Buckling, 656–713
bifurcation point, 659
columns, 656–713
critical load (Pcr), 657–660, 711
determination of, 656–660, 711
Engesser’s equation for, 685, 711
Euler load, 662–663, 711
ideal columns, 660–665, 711
inelastic, 684–686, 711
least moment of inertia and, 663
secant formula and, 678–683, 711
tangent modulus (Et), 684–685

Built-up members, 378–382, 401, 
542, 565

design of, 401, 542, 565
shear flow (q) in, 378–382, 401

Bulging, 221
Bulk modulus (k), 511, 533

C
Cantilevered beams, 255
Cartesian components of strain, 68
Castigliano’s theorem, 771–781

beams, applied to, 776–780
compatibility requirements, 772
procedures for analysis using, 773, 778
trusses, applied to, 773–775

Center of curvature (O
), 572
Centroid, 7, 9, 319, 392, 784–786
Centroidal axis, beam cross sections, 286
Channels (C shape) properties, 802, 806
Circular shafts, 179–191, 250
Circumferential (hoop) stress, 322, 406
Closed cross section, 224
Cohesive materials, 22
Columns, 656–713

aluminum, 694
buckling, 656–713

concentric loading, design for, 692–699
critical load (Pcr), 657–663, 711
cross sections of, 662–663, 703–704
deflection, maximum (vmax), 679–681
design of, 682, 692–699, 703–707
eccentric loading, design for, 703–707
eccentricity ratio, 681–682 
effective length (Le), 667
Engesser’s equation for, 685, 711
equilibrium of, 658–659 
Euler load, 662–663, 711
graphs for, 664, 679–682, 684–685,

692–694
ideal, 660–665, 711
inelastic buckling, 684–686, 711
least moment of inertia in, 663
pin-supported, 660–665
procedure for analysis of, 695
radius of gyration (r), 663
secant formula for, 678–683, 711
slenderness ratio (L/r), 663–664, 667
steel, 693
tangent modulus (Et), 684–685
timber, 694
various supports for, 666–669

Combined loadings, 405–435
biaxial stress, 407
circumferential (hoop) stress

direction, 406
cylindrical vessels, 406–407, 432
longitudinal (axial) stress 

direction, 406
procedure for analysis of, 412–413
radial stress, 407
spherical vessels, 407, 432
state of stress caused by, 412–421, 432
thin-walled pressure vessels, 

405–408, 432
Compatibility conditions, 137–138,

143–144, 628, 772
Composite areas, 785, 788
Composite beams, bending analysis of,

312–314, 353
Compression, 124, 256
Compression test, 81–82
Compressive stress, 23
Concentrated force, 4
Concentric loading, column design for,

692–699
Conservation of energy, 733–736, 781
Constant torque, 201–202
Continuity conditions, 576, 652
Continuous materials, 22
Contraction, 102, 124
Conventional stress–strain diagrams, 83–85
Coordinates for deflection, 575

Coplanar force, 6, 9
Coplanar loads, 9
Couple moment, work of a, 717
Couplings, 234
Creep, 107–108, 115
Creep strength, 107
Critical load (Pcr), 657–663, 711
Cross sections, 7, 24–25, 122–123, 158–161,

174, 180–189, 200–202, 221–225,
234, 237–239, 250–251, 281–292,
302–305, 313–314, 319–320,
335–340, 353–354, 360–377,
387–397, 401–402, 662–663, 703–704

angle of twist (�) and, 200–202
annulus (differential ring), 184,

237–238
average normal stress, for

determination of, 24–25
axial loads, 24–25, 122–123, 

158–161, 174
axis of symmetry for, 302–303,

392–393
beams, 281–292, 302–305, 313–314,

319–320, 335–340, 353–354,
360–377, 387–397, 401–402

bending deformation and, 281–284,
353

bulging, 221
centroid, 7, 9, 319, 392
centroidal axis for beams, 286
circular, 108–189, 200–202
closed, 224
columns, 662–663, 703–704
constant load and, 123, 173
constant torque and, 201–202
eccentric loads, 703–704
elastic deformation, 122–123, 173
hyperbolic stress variation, 320
inelastic behavior, 162–163, 174,

237–239, 251, 335–340, 354
least moment of inertia, 663
linear stress variation, 182, 284–287
method of sections and, 7
neutral axis for beams, 282–284,

286–287, 305, 319–320
plane, 282, 312, 319
polar moment of inertia of, 183
radius of gyration (r), 663
rectangular, 221–223, 663
shafts, 180–189, 200–202, 222, 250
shape variations, 222, 320
shear stress (�), 182–185
solid, 184, 190
stress concentration factor (K),

158–161, 174, 234
thin-walled members, 387–397, 402
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Cross sections (continued)
torsional loads, 180–189, 201,

221–225, 237–239, 250–251
transformed-section method,

313–314, 353
transverse shear stress, 361–377,

387–397, 401–402
tubular, 185, 190
unsymmetrical, 302–305
warping, 221–222, 360–361

Curvature-momentum relationship,
571–572

Curved-beam formula, 321–322
Curved beams, bending analysis of,

319–325, 354
Cylindrical vessels, combined loadings of,

406–407, 432

D
Deflection, 538, 568–655, 679–681, 808

beams, 538, 808
columns, 679–681
coordinates, 575
discontinuity functions, 596–600, 652
displacement, 573–585, 604–612, 652
elastic curve for, 569–600, 652
integration, method, 573–585,

628–630
maximum (vmax), 679–681
moment-area method, 604–612,

633–637, 653
procedures for analysis of, 577, 597,

606, 642
sign conventions for, 575, 604–605
slope, 570, 573–585, 604–612, 652
statically indeterminate shafts and

beams, 627–630, 633–637,
639–647, 653

superposition, method of, 619–623,
633–647, 653

Deformable bodies, 4–22
cross section, 7
equations of equilibrium, 6
equilibrium of, 4–22
external loads, 4–5
internal resultant loads, 7–9
procedure for analysis of, 10
right-hand rule for, 8
support reactions, 5

Deformation, 24–25, 65–68, 84, 87–96, 104,
113–114, 118–177, 179–181,
221–223, 281–284, 353, 445–451,
480, 490, 532.  See also
Displacement (�); Strain (�)

angle of twist (�), 180–181, 222
axially loaded members, 24–25,

118–177

beams, 281–284, 353
bending, 281–284, 353
bulging, 221
changes in a body, 65–68
circular shafts, 179–181
cross-sections and, 24–25, 158–161,

174, 180–181, 222, 281–284, 353
elastic, 84, 86, 113–114, 122–129
inelastic, 162–165, 174
mechanical material properties and,

84, 87–96, 113–114
noncircular shafts, 221–223
plastic behavior, 84, 91, 113–114
principal stresses (in-plane), 

445–451, 480
principal strains, 490, 532
Saint-Venant’s principle, 119–121, 173
shear strain (�), 180–181
strain energy, 92–96, 114
superposition, principle of, 136, 173
torsional, 179–181, 221–223
uniform, 24–25
warping, 221–222
yielding, 84, 87–89, 113

Density, strain-energy (u), 92
Design, 47–59, 60, 190–191, 537–557, 565,

682, 692–699, 703–707
aluminum columns, 694
beams, 537–557, 565
columns, 682, 692–699, 703–707
concentric loading of columns,

692–699
eccentric loading of columns, 703–707
power transmission and, 190–191
procedures of analysis for, 48, 

543, 695
secant formula and, 682
shafts, 190–191, 558–565
simple connections, 47–59, 60
steel columns, 693
timber columns, 694
torque diagrams for, 558

Differential ring (annulus), 184, 237–238
Dilatation (e), 510–511, 533
Direct (simple) shear loads, 32
Direction (orientation), 390, 406, 442–443,

480, 485–489, 532, 539
normal and shear strain components,

485–489, 532
normal and shear stress components,

442–443, 480
plane-strain transformation, 

485–489, 532
plane-stress transformation, 

442–443, 480
stress, sense of, 390, 406
stress trajectories, 539

Discontinuity functions, 596–600, 652
Discontinuous functions, 256
Displacement (�), 122–129, 137–144,

151–154, 173–174
axially loaded members, 122–125,

137–144, 151–154, 173–174
compatibility (kinematic) conditions,

137–138, 143–144
elastic deformation, 122–125,

151–154, 173–174
force (flexibility) method for, 143–144
load-displacement relationship,

137–138, 143–144, 173
procedure for analysis of, 125, 

138, 144
relative, 122–125, 173
sign convention for, 124
statically indeterminate members,

137–142
thermal (stress) (�T), 151–154, 174

Distortion energy, 522–523
Distributed loads, 262–264, 594–596
Disturbing spring force, 658
Ductile materials, 87–88, 113, 235, 

520–523, 533
failure of, 235, 520–523, 533
maximum-distortion-energy theory,

522–523
maximum-shear-stress theory,

520–521
multiaxial stress, 520–523, 533
slipping, 520–521
stress concentration, 235
stress–strain diagrams for, 87–88, 113
torsional loadings, 235
Tresca yield criterion, 521

E
Eccentric loading, column design for,

703–707
Eccentricity ratio, 681–682 
Effective length (Le), 667
Effective slenderness ratio (KL/r), 667
Effective-slenderness ratio, 667
Elastic behavior, 84, 86, 88, 90–91, 104,

113–114, 122–129, 151–154,
159–161, 173–174, 234–237, 251,
326–328, 354

axially loaded members, 122–129,
159–161, 173–174

bending (beams), 326–328, 354
cross-sectional area of, 122–123, 173
deformation, 84, 113–114, 122–129,

151–154, 173–174
displacement (�) and, 122–129,

151–154, 173–174
elastic limit, 84, 86, 113
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nonlinear, 88
procedure for analysis of, 125
proportional limit (�pl), 84, 86, 104
relative displacement (�) of, 

122–125, 173
shear modulus (G), 104
sign convention for, 124
stress concentrations, 159–161, 174,

234–237, 251, 326–328, 354
thermal displacement (stress) (�T),

151–154, 174
torsional loads, 234–237, 251
Young’s modulus (E), 90–91, 113–114

Elastic curve, 569–600, 652
boundary conditions, 576, 652
center of curvature (O
), 572
continuity conditions, 576, 652
coordinates, 575
deflection diagram of, 569–570
discontinuity functions, 596–600, 652
distributed loadings, 594–596
elastica, 573
flexural rigidity (EI), 572, 574
inflection point, 570
integration, method for, 573–585
internal moments and, 571–572
Macauly functions, 594–595
moment-area method for, 604–612
moment-curvature relationship,

571–572
procedures for analysis of, 577–597
radius of curvature, 572
sign convention for, 575
singularity functions, 595–596
slope of, 570, 573–585, 604–612
tangents to, 604–606

Elastic-plastic torque, 237–238
Elastic strain energy (Ui), 720–728

axial loads, 720–721
bending moments, 722–724
transverse shear, 725–726
torsional moments, 727–728

Elastica, 573
Elastoplastic behavior, 162–163, 174
Electrical-resistance strain gauge, 82, 504
Elongation, 87, 102, 113, 124
Endurance (fatigue) limit (Sel), 108–109
Energy methods, 714–783

Castigliano’s theorem, 771–781
conservation of energy, 733–736, 781
couple moment, work of, 717
elastic strain energy (Ui), 720–728
external work, 715–719
force, work of, 716
impact loading, 740–745
internal work, 717–728
method 751–770, 781 

strain energy, 715–728
virtual work, 751–770, 781

Engesser’s equation, 685, 711
Engineering stress or strain, 83
Equilibrium, 4–22, 25–26, 33, 60, 658–659

axial loads, 25–26
column buckling and, 658–659 
coplanar loads, 9
deformable bodies, 4–22
equations of, 6, 60
external loads, 4–5
free-body diagrams, 6–9
internal resultant loads, 7–8
neutral, 659
normal stress (�), 25–26
procedure for analysis of, 10
shear stress (�), 33
spring force and, 658–659
stable, 658–659
support reactions, 5
unstable, 658–659

Euler load, 662–663, 711
Extensometer, 82
External loads, 4–5
External work, 715–719

F
Fabricated beams, 541–542, 565

built-up sections, 542, 565
design of, 541–542, 565
glulam beams, 542
steel sections, 541
wood sections, 541–542

Factor of safety (F.S.), 46–47, 60
Failure, 107–109, 115, 235, 520–527, 533

axial loadings, 107–109, 115
brittle materials, 108, 235, 

524–525, 533
creep, 107–108, 115
ductile materials, 235, 520–523, 533
endurance (fatigue) limit (Sel),

108–109
fatigue, 108–109, 115, 235
fracture, 520, 524
maximum-distortion-energy theory,

522–523
maximum-normal-stress theory, 524
maximum-shear-stress theory,

520–521
Mohr’s failure criterion, 524–525
multiaxial stress, 520–527, 533
slipping, 520–521
stress concentrations and, 160, 235
stress–cycle (S–N) diagrams for,

108–109
torsional loadings, 235
Tresca yield criterion, 521

Fatigue, 108–109, 115, 160, 235
Flexibility method of analysis, 143–144
Flexural center (O), 392–393
Flexural rigidity (EI), 572, 574
Flexure formula, 285–292, 353
Force (F), 4–9, 22–23, 92, 264, 285, 335,

658–659
body, 5
concentrated, 4
concentrated moments and, regions

of, 264
coplanar, 6, 9
disturbing, 658
equations of equilibrium, 6
external loads, 4–5
internal resultant loads, 7–8
normal (N), 8
restoring, 658
resultant (FR), 4, 7–8, 285, 335
shear (V), 8
stress components, 22–23
spring, 658–659
support reactions, 5
surface, 4
weight, 5
work, 92

Force method of analysis, 143–144,
639–647

Fracture stress (�f), 85
Fracture, 520, 524
Fully stressed beams, 554–557, 565

G
Gauge-length distance, 82
Gauge pressure, 405
Glulam beams, 542

H
Hertz (Hz), units of, 190
Homogenous materials, 24
Hooke’s law, 90–91, 113, 508–509
Hoop (circumferential) stress, 322, 406
Hyperbolic stress variation, 320

I
Ideal columns, 660–665, 711

critical load (Pcr), 660–663, 711
Euler load, 662–663, 711
least moment of inertia in, 663
pin-supported, 660–665, 711
radius of gyration (r), 663
slenderness ratio (L/r), 663–664
trivial solution for, 661–662

Impact loading, 740–745
Inclined axes, moments of inertia for an

area about, 794–796
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Inelastic behavior, 162–168, 174, 237–241,
251, 335–345, 354

annulus (differential ring), 237–238
axial loads, 162–168, 174
bending (beams), 335–345, 354
cross section of, 162–163, 174,

237–239, 251, 335–340, 354
deformation, 162–165, 174
elastic-plastic torque, 237–238
elastoplastic, 162–163, 174
linear normal-strain distribution, 335
plastic moment (MY), 336–339, 354
plastic torque (Tp), 239
residual stress (�r), 166–168, 174,

239–241, 251, 338–339, 354
resultant force (FR), 335
resultant moment (MR), 335
torsional loads, 237–241, 251
ultimate moment, 339–340, 354

Inelastic buckling, 684–686, 711
Engesser’s equation for, 685, 711
Shanley theory of, 685
tangent modulus (Et), 

684–685
Inertia (I), 287, 303–305, 663, 787–790,

794–799
area (A) moments of, 787–790,

794–799
bending, 287
column buckling, 663
inclined axes, 794–796
least moment of, 663
Mohr’s circle for moments of,

797–799
moments of, 287, 304–305, 787–790,

794–799
parallel-axis theorem for, 

787–788, 792
principal axes of, 303, 795–796
product of, 303, 791–793
unsymmetric bending, 303–305

Inflection point, 570
Integration, 573–585, 628–630

deflection, 573–585, 628–630
elastic curve by, 573–585
statically indeterminate shafts and

beams, 628–630
Internal axial force, 720
Internal loads, 7–8, 22, 26, 34, 60

method of sections for, 7–8
resultant normal stress (P), 26, 60
shear, 34
stress and, 7–8, 22, 60

Internal shear, 34
Internal work, 717–728, 753–754. 

See also Strain energy
Isentropic materials, 24

K
Keyways, 234
Kinematic conditions, 137–138

L
Lateral contraction, 102
Least moment of inertia, 663
Linear coefficient of thermal expansion

(�), 151
Linear distributed load w(s), 4
Linear normal-strain distribution, 335
Linear stress/strain variations, 182,

284–287
Load (P), 4–9, 22, 24–32, 118–177, 

262–264, 405–435, 594–596,
657–660, 662–663, 692–699,
703–707, 711, 720–728, 740–745

axial, 24–31, 118–177, 720–721
bifurcation point, 659
column buckling, 657–660, 662–663,

692–699, 703–707, 711
combined, 405–435
concentric, 692–699
constant stress of, 24–25, 122–123
coplanar, 9
critical (Pcr), 657–660, 711
cross section, 7
deflection and, 594–596
direct (simple) shear, 32
distributed, 22, 262–264, 594–596
eccentric, 703–707
elastic strain energy for, 720–728
equilibrium of deformable bodies

and, 4–9
Euler formula for, 662–663, 711
external, 4–5
force (F) and, 4–9
impact, 740–745
internal, 7–8, 22, 26, 34, 60
linear distributed w(s), 4
moments (M) and, 6–9
regions of distributed, 262–264
three-dimensional resultant, 8

Load-displacement relationship, 137–138,
143–144, 173

Longitudinal (axial) stress, 406
Longitudinal elongation, 102
Lüders lines, 520–521

M
Macauly functions, 594–595
Magnitude, 26
Material properties, 22, 24–25, 80–117,

508–515, 533
anisotropic, 24
brittleness, 89, 108, 114
bulk modulus (k), 511, 533

cohesive, 22
continuous, 22
creep, 107–108, 115
dilatation (e), 510–511, 533
ductility, 87–88, 113
elastic behavior, 84, 88, 90–91,

113–114
failure, 107–109, 115
fatigue, 108–109, 115
homogenous, 24
Hooke’s law, 90–91, 113, 508–509
isentropic, 24
mechanical, 80–117
modulus of elasticity (E), 90–91, 113
modulus of resilience (ur), 92, 114
modulus of rigidity (G), 104
modulus of toughness (ut), 93, 114
multiaxial stress and strain, 508–515
necking, 85, 113
permanent set, 91
plastic behavior, 84, 91, 113–114
Poisson’s ratio (�), 102–103, 115
shear modulus (G), 104–106, 

115, 510, 533
strain energy, 92–96, 114
strain hardening, 85, 91, 113–114
strain transformation and

relationships of, 508–515, 533
stress–strain (�–	) diagrams for,

83–96, 104–106, 113–115
tension (compression) test for, 

81–82, 113
uniform deformation, 24–25
yielding, 84, 113

Maximum deflection (vmax), 679–681
Maximum-distortion-energy theory,

522–523
Maximum-normal-stress theory, 524
Maximum-shear-stress theory, 520–521
Mechanics of materials, 3–4
Method of sections, 7–9
Modulus of elasticity (E), 90–91, 

113–114, 510
Modulus of resilience (ur), 92, 114
Modulus of rigidity (G), 104
Modulus of rupture (�r or �r), 240, 338
Modulus of toughness (ut), 93, 114
Mohr’s circle, 461–467, 481, 494–498,

524–525, 532–533, 797–799
area (A) moments of inertia, 797–799
Mohr’s failure criterion, 524–525, 533
plane-strain transformation, 

494–498, 532
plane-stress transformation, 

461–467, 481
procedures for analysis of, 463–464,

494–495
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Moment-area method, 604–612, 
633–637, 653

displacement by, 604–612
moment diagrams for, 633–637
procedure for analysis of, 606
slope by, 604–612
statically indeterminate shafts and

beams, 633–637, 653
theorem 1, 604–605
theorem 2, 605

Moments (M), 6–9, 264, 281, 287, 302–305,
335–340, 353–354, 559, 571–572,
787–790, 794–799

area (A), 787–790, 794–799
arbitrarily applied, 304–305
bending (beams), 8, 281, 302–305,

335–340, 353–354
concentrated force and, regions 

of, 264
coplanar loads, 9
curvature relationship, 571–572
deflection, 571–572
elastic curve and, 571–572
equilibrium and, 6–9
inertia (I), 287, 304–305, 787–790,

794–799
internal, 571–572
plastic (MY), 336–339, 354
principal axis, applied along, 

302–303, 795
resultant (MR), 6–8, 335, 559
resultant loads, 6–8
torsional (T), 8
ultimate, 339–340, 354
unsymmetric bending, 302–305

Multiaxial stress and strain, 508–515,
520–527, 533, 719. See also Failure

Multiple torques along a shaft, 
202–203

N
Necking, 85, 113
Neutral axis, beam cross sections, 282–284,

286–287, 305, 319
Neutral equilibrium, 659
Nominal stress or strain, 83
Noncircular shafts, 221–223, 251
Nonlinear plastic behavior, 88
Nonprismatic beams, 554, 565
Normal force (N), 8
Normal force (axial) diagram, 26, 124
Normal strain (	), 66–67, 284–287, 320, 335,

485–490, 532
determination of, 66–67
hyperbolic variation of, 320
linear distribution, 335
linear variation of, 284–287

plane-strain transformation
orientation, 485–486, 487–489, 532

principal strains, 490, 532
Normal stress (�), 23–31, 60, 182, 284–287,

442–443, 445–451, 480, 717–718
allowable (�allow), 46–47, 60
average, 23–31, 66
axially loaded bars, 23–31
compressive, 23
constant, 24–25
cross-sectional area for, 24
determination of, 23, 60
distribution of average, 25
equilibrium and, 25–26
internal loading (P), 27, 60
linear variation of, 284–287
magnitude and, 26
material properties, assumptions for,

24–25
maximum average, 26
plane-stress transformation

orientation, 442–443, 480
principal stresses (in-plane), 

445–451, 480
prismatic bars and, 24–31
procedure for analysis of, 27
strain energy and, 717–718
tensile, 23

O
Offset method for ductile materials, 87–88
Orientation, see Direction
Overhanging beams, 255

P
Parallel-axis theorem, 787–788, 792
Percent elongation, 87, 113
Percent reduction in area, 87, 113
Perfectly plastic materials, 84, 162
Permanent set of material, 91
Pin-supported columns, 660–665
Plane cross sections, 282, 312, 319
Plane strain, 485–498, 532

maximum in-plane shear, 490, 532
Mohr’s circle for, 494–498, 532
normal and shear component

orientation, 485–489, 532
principal strains, 490, 532
procedure for analysis of, 494–495
sign convention for, 486, 489
transformation equations for, 

486–493
Plane stress, 437–451, 461–467, 480–481

in-plane principal stresses, 
445–451, 480

maximum in-plane shear, 447, 480
Mohr’s circle for, 461–467, 481

normal and shear component
orientation, 442–443, 480

procedures for analysis of, 439, 443,
463–464

sign convention for, 442
state of, 437–441
transformation, 437–444

Plastic behavior, 84, 91, 113–114, 162–165,
174, 239

axial loads, 162–164, 174
cross sections for, 162–163, 174, 239
deformation, 84, 162–164, 174
elastoplastic, 162–163, 174
perfectly, 84, 162, 239
plastic torque (Tp), 239
strain hardening, 91, 114
yielding, 84, 113

Plastic moment (MY), 336–339, 354
Plastic torque (Tp), 239–240, 251
Plate girder, 542
Poisson’s ratio (�), 102–103, 115
Polar moment of inertia (J), 183–186
Power (P) transmission, 190–191
Pressure vessels, combined loadings of,

405–408, 432
Principal axis, moments applied along,

302–303
Principal strains, 490, 532
Principal stresses (in-plane), 

445–451, 480
Prismatic bars, 24–31
Prismatic beams, design of, 540–547
Product of inertia, 303, 791–793
Proportional limit (�pl), 84, 86, 104
Pure shear, 33

R
Radial stress, 322, 407
Radius of curvature, 572
Radius of gyration (r), 663
Reactions, 4–5
Redundants, 627
Reinforced concrete beams, ending

analysis of, 315–318
Relative displacement (�), 122–125, 173
Residual stress (�r), 166–168, 174, 239–241,

251, 338–339, 354
axial loadings, 166–168, 174
bending (beams), 338–339, 354
torsional loadings, 239–241, 251

Restoring spring force, 658
Resultant (R), 4, 7–8, 26, 285, 335, 559

force (FR), 4, 7–8, 285, 335
internal force (P), 7–8, 26
moment (MR), 335, 559
three-dimensional, 8

Right-hand rule, 8, 185, 202–203
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S
Saint Venant’s principle, 119–121, 173
Secant formula, 678–683, 711
Section modulus (S), 540, 554
Shafts, 179–191, 200–207, 221–223,

250–251, 558–565, 627–630,
633–637, 639–647, 653

angle of twist (�), 180–181, 200–207,
222, 226, 250

bulging, 221
circular, 179–191, 250
constant torque and, 201–202
cross sections of, 180–189, 200–202,

222, 250
deflection of, 627–630, 633–637,

639–647, 653
design, 190–191, 558–565
force method for, 639–647, 653
frequency of rotation (f ), 190
integration method for, 628–630, 653
maximum torsional (shear) stress

(�max) of, 185–186
moment diagrams for, 633–637
moment-area method for, 

633–637, 653
multiple torques along, 202–203
noncircular, 221–223, 251
polar moment of inertia (J), 183–186
power transmission by, 190–191
procedures for analysis of, 186, 204
resultant moment for, 559
shear-stress (�) distribution, 184–189,
solid, 184, 190
superposition method for, 

633–637, 653
torque diagrams for, 185, 203, 558
torsion formula for, 182–189
tortional deformation and, 179–181
tubular, 185, 190
warping, 221–222

Shanley theory of inelastic buckling, 685
Shear and moment diagrams, 255–271, 352

beams, 255–271, 352
bending and, 255–271, 352
concentrated force and moment,

regions of, 264
discontinuous functions of, 256
distributed loads, regions of, 262–264
functions of, 256
graphical method for construction of,

262–271, 352
procedures for analysis of, 

257, 265
regions of, 256, 262–264
slope (shear) of, 263, 352
sign convention for, 256, 264

Shear center (O), 392–397, 402

Shear flow (q), 224–226, 378–391, 401–402
built-up members, 378–382, 401
directional sense of, 390
linearity of, 388, 390
parallel, 387, 390
thin-walled members, 387–391, 402
thin-walled tubes, 224–226
torsional loading and, 224–226
transverse shear and, 378–391, 401–402
vertical, 387

Shear force (V), 8
Shear formula, 361–372, 401

horizontal force equilibrium, 361
limitations on use of, 364–365
procedure for analysis using, 366
shear stress (�) for, 362–363

Shear modulus (G), 104–106, 115, 510, 533
Shear strain (� ), 67, 180–182, 485–486,

487–490, 532
determination of, 67
linear variation in, 182
maximum in-plane, 490, 532
plane-strain transformation

orientation, 485–489, 532
torsional deformation and, 180–181

Shear stress (�), 23, 32–37, 46–47, 60,
104–106, 115, 182–189, 225–226,
251, 359–403, 442–443, 447,
473–477, 480–481, 718–719

absolute maximum (�max), 182–183,
185–186, 473–477, 480–481

allowable (�allow), 46–47, 60
average (�avg), 225–226, 251
average (�avg), 32–45, 60, 225–226, 251
beams, 359–403
complementary property of, 33
component orientation, 

442–443, 480
determination of, 23, 60
direct (simple) loads, 32
equilibrium and, 33
internal, 34
linear variation in, 182
maximum in-plane, 447, 480
modulus of elasticity/rigidity (G),

104–106, 115
plane-stress transformation, 442–443,

447, 473–477, 480–481
procedures for analysis of, 34
proportional limit (�pl), 104
pure, 33, 104
shaft distribution, 184–189
simple (direct) loads, 32
strain energy and, 718–719
thin-walled tubes, 225–226, 251
torsional loads and, 182–189, 

225–226, 251

transverse, 359–403
ultimate (�u), 104

Shear stress–strain diagrams, 104–106, 115
Shoulder fillets, 234
Sign convention, 8, 124, 173, 185, 202–203,

256, 264, 305, 442, 486, 489, 575,
604–605

angle of twist (�), 202–203
axial loads, 124, 173
bending, 256, 264, 305
deflection, 575, 604–605
right-hand rule for, 8, 185, 202–203
strain transformation, 486, 489
stress transformation, 442
torque (T), 185, 202–203

Simple (direct) shear loads, 32
Simply supported beams, 255, 635
Singularity functions, 595–596
Slenderness ratio (L/r), 663–664, 667
Slipping, 520–521
Slope, 263, 352, 570, 573–585, 604–612, 

652, 808
beams, 808
bending (shear), 263, 352
deflection, 570, 573–585, 604–612, 652
elastic curve, 570, 573–585
moment-area method for, 604–612

Small strain analysis, 69
Solid shafts, 184, 190
Spherical vessels, combined loadings of,

407, 432
Spring force, 658–659
Stable equilibrium, 658–659
State of strain, 68
State of stress, 23, 412–421, 432, 437–441

combined loadings and, 412–421, 432
determination of, 23
plane stress transformation, 437–441
procedures for analysis of, 412–413, 439

Statically indeterminate members,
137–142, 173, 214–217, 250

axially-loaded, 137–142, 173
beams, 627–630, 633–637, 

639–647, 653
compatibility conditions for, 628
deflection of, 627–630, 633–637,

639–647, 653
force method for, 639–647, 653
integration method for, 628–630, 653
moment diagrams for, 633–637
moment-area method for, 633–637, 653
procedures for analysis of, 

138, 215, 642
redundants, 627
shafts, 627–630, 633–637, 639–647, 653
superposition method for, 633–637, 653
torque-loaded, 214–217, 250
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Steel columns, 693
Steel sections of beams, 541
Straight members, see Beams
Strain, 65–79, 180–181, 484–535. See also

Normal strain (	); Shear strain (γ)
Cartesian components of, 68
deformation and, 65–68
engineering, 83
multiaxial, 508–515
nominal, 83
normal (	), 66–67
shear (γ), 67, 180–181
small strain analysis, 69
state of, 68
transformation, 484–535
units of, 66–67

Strain energy (U), 92–93, 114, 
715–728, 781

deformation and, 92–93, 114
density, 92
elastic, 720–728
external work and, 715–719, 781
modulus of resilience (ur), 92, 114
modulus of toughness (ut), 93, 114
multiaxial stress, 719
normal stress (�), 717–718
shear stress (�), 718–719

Strain hardening, 85, 91, 113–114
Hooke’s law and, 91, 114
permanent set of materials, 91
ultimate stress (�u), 85, 113

Strain rosettes, 504–505
Strain transformation, 484–535

absolute maximum shear strain,
502–503, 532

bulk modulus (k), 511, 533
dilatation (e), 510–511, 533
electrical-resistance strain gauge 

for, 504
equations for, 486–493
failure, theories of, 520–527, 533
Hooke’s law for, 508–509, 533
in-plane shear strain, 490, 532
material-property relationships, 508–515
Mohr’s circle, 494–498, 524–525,

532–533
normal and shear component

orientation, 485–489, 532
plane strain, 485–498, 532
principal strains, 490, 532
procedure for analysis of, 494–495
shear modulus (G) for, 510, 533
sign convention for, 486
strain rosettes, 504–505

Stress, 2–63, 83, 85, 104–106, 115, 158–161,
166–168, 174, 239–241, 251,
320–322, 406–407, 436–483,

508–515. See also Normal stress
(�); Shear stress (�)

allowable, 46–47, 60
axial, 406
axially loaded members, 24–31,

158–161, 166–168, 174
biaxial, 407
circumferential, 322, 406
compressive, 23
concentrations, 158–161, 174
curved beams, 320–322
deformable bodies, 4–22
directional sense of, 390, 406
engineering, 83
equilibrium and, 4–22, 25–26, 33, 60
factor of safety (F.S.), 46–47, 60
fracture (�f), 85
hoop, 322, 406
longitudinal, 406
material properties and, 22, 24–25
mechanics of materials, 3–4
multiaxial, 508–515
nominal, 83
normal (�), 23–31, 60, 320
prismatic bars, 24–31
procedures for analysis of, 27, 34, 48
radial, 322, 407
residual (�r), 166–168, 174, 

239–241, 251
shear (�), 23, 32–37, 60, 104–106, 115
simple connections, 47–59, 60
state of, 23
tensile, 23
thermal, 151–154, 174
transformation, 436–483
triaxial, 473
ultimate (�u), 85, 104
units of, 23

Stress concentration, 159–161, 174,
234–237, 251, 326–328, 354

axial loads, 159–161, 174
bending (beams), 326–328, 354
factor (K) graphs, 160–161, 

234–235, 326
material failure and, 160, 235
torsional loads, 234–237, 251

Stress–cycle (S–N) diagrams, 108–109
Stress–strain (�–	) diagrams, 83–96,

104–106, 113–115
brittle materials, 89, 114
conventional, 83–85
ductile materials, 87–88, 113
elastic behavior, 84, 90–91, 104,

113–114
endurance (fatigue) limit (Sel),

108–109
Hooke’s law, 90–91

necking, 85, 113
nominal (engineering) stress or 

strain, 83
offset method, 87–88
plastic behavior, 84, 91, 113–114
Poisson’s ratio ( ), 102–103, 115
proportional limit (�pl), 84, 

86, 104
shear, 104–106, 115
strain energy, 92–96, 114
strain hardening, 85, 91, 

113–114
true, 85–86
ultimate stress (�u), 85, 104
yield point (�Y), 84, 114
yielding, 84, 113

Stress trajectories, 539
Stress transformation, 436–483

absolute maximum shear stress
(�max), 473–477, 480–481

equations for, 442–444
in-plane shear stress, 447, 480
Mohr’s circle for, 461–467, 481
normal and shear component

orientation, 442–443, 480
plane stress, 437–451, 461–467,

480–481
principal stresses, 445–451, 480
procedures for analysis of, 439, 443,

463–464
sign convention for, 442
triaxial stress, 473

Structural shapes, geometric properties of,
800–807

Superposition, 136, 173, 619–623, 
633–647, 653

axial loaded members, 136, 173
deflection, method for, 619–623,

639–647, 653
force method as, 639–647
moment diagrams by, 633–637
principle of, 136, 173
procedure for analysis by, 642
statically indeterminate shafts and

beams, 633–647, 653
Support reactions, 5
Supports for columns, 660–669
Surface forces, 4

T
Tangent modulus (Et), 684–685
Tangents to elastic curve, 604–606
Tensile stress, 23
Tension test, 81–82, 113, 524
Tension, 124
Thermal (stress) displacement (�T) and,

151–154, 174

n
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Thin-walled members, 387–397, 402
axis of symmetry, 392–393
shear center (O), 392–397, 402
shear flow (q), 387–391, 402
twisting, 392–393

Thin-walled pressure vessels, combined
loadings of, 405–408, 432

Timber columns, 694
Torque (T), 8, 179–189, 200–207, 237–244,

250–251
angle of twist (�) and, 180–181,

200–207, 250
constant, 201–202
elastic-plastic, 237–238, 

240, 251
external, 179–181
inelastic torsion and, 237–239, 251
internal, 182–189, 200–207, 250
maximum elastic (TY), 237–238
multiple, 202–203
plastic (Tp), 239–240, 251
residual stress and, 239–244, 251
right-hand rule for, 185, 202–203
sign convention for, 185, 202–203
torsion formula for, 182–189
torsional moment, as, 8
ultimate (Tu), 241

Torque diagram, 185, 203, 558
Torsion, 178–253, 727–728.  See also

Torque (T)
angle of twist (�), 180–181, 200–207,

222, 226, 250
cross sections for, 180–189, 200–202,

221–222, 224–225, 250–251
deformation, 179–181
elastic strain energy (Ui), 727–728
formula for, 182–191
inelastic, 237–239, 251
modulus of rupture (�r), 240
moment as torque (T), 8
power transmission and, 

190–191, 250
procedures for analysis of, 186, 204
residual stress (�r), 239–244, 251
shafts, 179–191, 221–223, 250–251
shear strain (�) and, 180–181

shear stress (�) and, 182–189
sign conventions for, 185, 202–203
static loadings, 235
statically indeterminate members

and, 214–217, 250
stress concentration factor (K),

234–237, 251
tubes, 185, 224–229, 251
warping, 221–222, 251

Transformation, see Stress transformation;
Strain transformation

Transformation factor (n), 313–314, 353
Transformed section method, 313–314, 353
Transverse shear, 359–403, 725–726

beams and, 359–403
built-up members, 378–382, 401
elastic strain energy (Ui), 725–726
procedures for analysis of, 366
shear center (O), 392–397, 402
shear flow (q), 378–391, 401–402
shear formula for, 361–372
straight beams, 359–361
thin-walled members, 387–397, 402
warping cross-sections, 360–361

Tresca yield criterion, 521
Triaxial stress, 473, 509
True stress–strain diagrams, 85–86
Trusses, 755–759, 773–775

Castigliano’s theorem for, 773–775
procedures for analysis of, 757, 773
virtual work analysis, 751–770, 781

Tubes, 185, 190, 224–229, 251
angle of twist (�), 226
average shear stress (�avg), 

225–226, 251
cross section of, 185, 224–229, 251
power transmission by, 190
shear flow (q) in, 224–226
thin-walled, 224–229
torsion formula for, 185

Twisting, thin-walled members, 392–393.
See also Angle of twist (�)

U
Ultimate stress (�u), 85, 104
Ultimate torque (Tu), 241

Uniaxial stress, 25–26
Uniform deformation, 24–25
Units, 23, 66–67

stress, 23
strain, 66–67

Unstable equilibrium, 658–659
Unsymmetric bending, 

302–308, 353

V
Virtual forces, see Virtual work
Virtual work, 751–770, 781

beams, applied to, 762–766
internal, 753–754
principle of, 751–754
procedures for analysis using, 

757, 764
trusses, applied to, 755–759

W
Warping cross sections, 221–222, 

360–361
Weight, force as, 5
Wide-flange (W shape) properties,

800–801, 804–805
Wood (timber) columns, 694
Wood sections of beams, 541–542
Work, 92, 190, 715–728, 

751–770, 781
couple moment, 717
force (F) as, 92, 716
power (P) as, 190
external, 715–719
internal, 717–728, 753–754
strain energy, 715–728
virtual, 751–770, 781

Y
Yield strength, 87–88
Yield stress/point (�Y), 84, 114
Yielding, 84, 87–89, 113, 520–521
Young’s modulus (E), 90–91, 113–114

Z
Zero (uniaxial) stress, 25–26, 284, 

340, 437



a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value
reference books for the material should be consulted.

b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.
c Measured perpendicular to the grain.
d Measured parallel to the grain.
e Deformation measured perpendicular to the grain when the load is applied along the grain.

Specific Modulus of Modulus of Yield Strength (ksi) Ultimate Strength (ksi) Coef. of Therm.
Materials Weight Elasticity E Rigidity G % Elongation in Poisson’s Expansion 

( ) Tens. Comp.b Shear Tens. Comp.b Shear 2 in. specimen Ratio 

Metallic

Aluminum 2014-T6 0.101 10.6 3.9 60 60 25 68 68 42 10 0.35 12.8
Wrought Alloys 6061-T6 0.098 10.0 3.7 37 37 19 42 42 27 12 0.35 13.1

Cast Iron Gray ASTM 20 0.260 10.0 3.9 – – – 26 97 – 0.6 0.28 6.70
Alloys Malleable ASTM A-197 0.263 25.0 9.8 – – – 40 83 – 5 0.28 6.60

Copper Red Brass C83400 0.316 14.6 5.4 11.4 11.4 – 35 35 – 35 0.35 9.80
Alloys Bronze C86100 0.319 15.0 5.6 50 50 – 95 95 – 20 0.34 9.60

Magnesium [Am 1004-T61] 0.066 6.48 2.5 22 22 – 40 40 22 1 0.30 14.3
Alloy

Structural A36 0.284 29.0 11.0 36 36 – 58 58 – 30 0.32 6.60
Steel Stainless 304 0.284 28.0 11.0 30 30 – 75 75 – 40 0.27 9.60

Alloys
Tool L2 0.295 29.0 11.0 102 102 – 116 116 – 22 0.32 6.50

Titanium [Ti-6Al-4V] 0.160 17.4 6.4 134 134 – 145 145 – 16 0.36 5.20
Alloy

Nonmetallic

Low Strength 0.086 3.20 – – – 1.8 – – – – 0.15 6.0
Concrete

High Strength 0.086 4.20 – – – 5.5 – – – – 0.15 6.0

Plastic Kevlar 49 0.0524 19.0 – – – – 104 70 10.2 2.8 0.34 –

Reinforced 30% Glass 0.0524 10.5 – – – – 13 19 – – 0.34 –

Wood Douglas Fir 0.017 1.90 – – – – 0.30c 3.78d 0.90d – 0.29e –
Select Structural

Grade White Spruce 0.130 1.40 – – – – 0.36c 5.18d 0.97d – 0.31e –

(10-6)>°Fn(103) ksi(103) ksilb>in3
asusYg

Average Mechanical Properties of Typical Engineering Materialsa

(U.S. Customary Units)



a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value
reference books for the material should be consulted.

b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.
c Measured perpendicular to the grain.
d Measured parallel to the grain.
e Deformation measured perpendicular to the grain when the load is applied along the grain.

Modulus of Modulus of Yield Strength (MPa) Ultimate Strength (MPa) Coef. of Therm.
Materials Density Elasticity E Rigidity G % Elongation in Poisson’s Expansion 

( ) Tens. Comp.b Shear Tens. Comp.b Shear 50 mm specimen Ratio 

Metallic

Aluminum 2014-T6 2.79 73.1 27 414 414 172 469 469 290 10 0.35 23
Wrought Alloys 6061-T6 2.71 68.9 26 255 255 131 290 290 186 12 0.35 24

Cast Iron Gray ASTM 20 7.19 67.0 27 – – – 179 669 – 0.6 0.28 12
Alloys Malleable ASTM A-197 7.28 172 68 – – – 276 572 – 5 0.28 12

Copper Red Brass C83400 8.74 101 37 70.0 70.0 – 241 241 – 35 0.35 18
Alloys Bronze C86100 8.83 103 38 345 345 – 655 655 – 20 0.34 17

Magnesium [Am 1004-T61] 1.83 44.7 18 152 152 – 276 276 152 1 0.30 26
Alloy

Structural A36 7.85 200 75 250 250 – 400 400 – 30 0.32 12
Steel

Stainless 304 7.86 193 75 207 207 – 517 517 – 40 0.27 17Alloys  
Tool L2 8.16 200 75 703 703 – 800 800 – 22 0.32 12

Titanium [Ti-6Al-4V] 4.43 120 44 924 924 – 1,000 1,000 – 16 0.36 9.4
Alloy

Nonmetallic

Low Strength 2.38 22.1 – – – 12 – – – – 0.15 11
Concrete

High Strength 2.38 29.0 – – – 38 – – – – 0.15 11

Plastic Kevlar 49 1.45 131 – – – – 717 483 20.3 2.8 0.34 –

Reinforced 30% Glass 1.45 72.4 – – – – 90 131 – – 0.34 –

Wood Douglas Fir 0.47 13.1 – – – – 2.1c 26d 6.2d – 0.29e –
Select Structural

Grade White Spruce 3.60 9.65 – – – – 2.5c 36d 6.7d – 0.31e –

(10-6)>°Cn(GPa)(GPa)Mg>m3
asusYr

Average Mechanical Properties of Typical Engineering Materialsa

(SI Units)



Fundamental Equations of Mechanics of Materials
Axial Load

Normal Stress

Displacement

Torsion

Shear stress in circular shaft

where

Power

Angle of twist

Average shear stress in a thin-walled tube

Shear Flow

Bending

Normal stress

Unsymmetric bending

s = -
Mzy

Iz
+

Myz

Iy
, tan a =

Iz

Iy
  tan u

s =
My

I

q = tavgt =
T

2Am

tavg =
T

2tAm

f = © 
TL

JG

f = L
L

0
 
T1x2dx

J1x2G

P = Tv = 2pfT

J =
p

2
 1co 

4 - ci 
42 tubular cross section

J =
p

2
 c4 solid cross section

t =
Tr

J

 dT = a ¢TL

 d = © 
PL

AE

 d = L
L

0 
 
P1x2dx

A1x2E

s =
P

A

Shear

Average direct shear stress

Transverse shear stress

Shear flow

Stress in Thin-Walled Pressure Vessel

Cylinder

Sphere

Stress Transformation Equations

Principal Stress

Maximum in-plane shear stress

Absolute maximum shear stress

savg =
smax + smin

2

tabs
max

=
smax - smin

2

savg =
sx + sy

2

tmax = A a
sx - sy

2
 b2

+ t2
xy

tan 2us = -
1sx - sy2>2

txy

s1,2 =
sx + sy

2
 ; A a

sx - sy

2
b2

+ t2
xy

tan 2up =
txy

1sx - sy2>2

tx¿y¿ = -
sx - sy

2
 sin 2u + txy cos 2u

sx¿ =
sx + sy

2
 +
sx - sy

2
 cos 2u + txy sin 2u

s1 = s2 =
pr

2t

s1 =
pr

t
s2 =

pr

2t

q = tt =
VQ

I

t =
VQ

It

tavg =
V

A



Geometric Properties of Area Elements
Material Property Relations

Poisson’s ratio

Generalized Hooke’s Law

where

Relations Between w, V, M

Elastic Curve

Buckling
Critical axial load

Critical stress

Secant formula

Energy Methods
Conservation of energy

Strain energy

Ui = L
L

0
 
T2dx

2GJ
  torsional moment

Ui = L
L

0
 
fsV

2dx

2GA
  transverse shear

Ui = L
L

0
 
M2dx

EI
 bending moment

Ui =
N2L

2AE
 constant axial load

Ue = Ui

smax =
P

A
 c1 +

ec

r2  sec a L

2r
 A

P

EA
b d

scr =
p2E

1KL>r22 , r = 2I>A

Pcr =
p2EI

1KL22

EI 
d2n

dx2 = M1x2
EI 

d3n

dx3 = V1x2
EI 

d4n

dx4 = - w1x2

1
r

=
M

EI

dV

dx
= -w1x2, dM

dx
= V

G =
E

211 + n2

gxy =
1
G

 txy, gyz =
1
G

 tyz, gzx =
1
G

  tzx

Pz =
1
E

 3sz - n1sx + sy24
Py =

1
E

 3sy - n1sx + sz24
Px =

1
E

 3sx - n1sy + sz24

n = -
Plat

Plong xh

y A = bh

b

C

Rectangular area

Ix =     bh31
12

Iy =     hb31
12

Ix =     bh3xh

A =    bh

b

C

Triangular area

1
36h1

3

1
2

xh

A =    h(a + b)

b

a

C

Trapezoidal area

h1
3

2a + b
a + b

1
2

Ix =    πr4

x

y

C

Semicircular area

1
8

A = πr2

2

4r
3π

Iy =    πr41
8

r

Ix =    πr4

x

y

C

Circular area

1
4

A = πr2

Iy =    πr41
4

r

A =    ab

C

Semiparabolic area

2
3

a2
5

b3
8 a

zero slope

b

Exparabolic area

a3
4

a

b3
10

zero slope

b
C

A = ab
3
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