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| PREFACE

It is intended that this book provide the student with a clear and
thorough presentation of the theory and application of the principles of
mechanics of materials. To achieve this objective, over the years this
work has been shaped by the comments and suggestions of hundreds of
reviewers in the teaching profession, as well as many of the author’s
students. The eighth edition has been significantly enhanced from the
previous edition, and it is hoped that both the instructor and student will
benefit greatly from these improvements.

New to This Edition

* Updated Content. Some portions of the text have been rewritten
in order to enhance clarity and be more succinct. In this regard, some
new examples have been added and others have been modified to
provide more emphasis on the application of important concepts.
Also, the artwork has been improved throughout the book to support
these changes.

* New Photos. The relevance of knowing the subject matter is
reflected by the real-world applications depicted in over 44 new or
updated photos placed throughout the book. These photos generally
are used to explain how the relevant principles apply to real-world
situations and how materials behave under load.

® Fundamental Problems. These problem sets are located just
after each group of example problems. They offer students simple
applications of the concepts covered in each section and, therefore,
provide them with the chance to develop their problem-solving skills
before attempting to solve any of the standard problems that follow.
The fundamental problems may be considered as extended examples,
since the key equations and answers are all listed in the back of the
book. Additionally, when assigned, these problems offer students an
excellent means of preparing for exams, and they can be used at a later
time as a review when studying for the Fundamentals of Engineering
Exam.

® Conceptual Problems. Throughout the text, usually at the end of
each chapter, there is a set of problems that involve conceptual
situations related to the application of the principles contained in the
chapter. These analysis and design problems are intended to engage
the students in thinking through a real-life situation as depicted in a
photo. They can be assigned after the students have developed some
expertise in the subject matter and they work well either for individual
or team projects.

* New Problems. There are approximately 35%, or about 550, new
problems added to this edition, which involve applications to many
different fields of engineering. Also, this new edition now has
approximately 134 more problems than in the previous edition.
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® Problems with Hints. With the additional homework problems in
this new edition, every problem indicated with a bullet (¢) before the
problem number includes a suggestion, key equation, or additional
numerical result that is given along with the answer in the back of the
book. These problems further encourage students to solve problems on
their own by providing them with additional checks to the solution.

Contents

The subject matter is organized into 14 chapters. Chapter 1 begins with
a review of the important concepts of statics, followed by a formal
definition of both normal and shear stress, and a discussion of normal
stress in axially loaded members and average shear stress caused by
direct shear.

In Chapter 2 normal and shear strain are defined, and in Chapter 3 a
discussion of some of the important mechanical properties of materials
is given. Separate treatments of axial load, torsion, and bending are
presented in Chapters 4, 5, and 6, respectively. In each of these chapters,
both linear-elastic and plastic behavior of the material are considered.
Also, topics related to stress concentrations and residual stress are
included. Transverse shear is discussed in Chapter 7, along with a
discussion of thin-walled tubes, shear flow, and the shear center. Chapter 8
includes a discussion of thin-walled pressure vessels and provides a partial
review of the material covered in the previous chapters, such that the state
of stress results from combined loadings. In Chapter 9 the concepts for
transforming multiaxial states of stress are presented. In a similar manner,
Chapter 10 discusses the methods for strain transformation, including the
application of various theories of failure. Chapter 11 provides a means for
a further summary and review of previous material by covering design
applications of beams and shafts. In Chapter 12 various methods for
computing deflections of beams and shafts are covered. Also included is a
discussion for finding the reactions on these members if they are statically
indeterminate. Chapter 13 provides a discussion of column buckling, and
lastly, in Chapter 14 the problem of impact and the application of various
energy methods for computing deflections are considered.

Sections of the book that contain more advanced material are
indicated by a star (*). Time permitting, some of these topics may be
included in the course. Furthermore, this material provides a suitable
reference for basic principles when it is covered in other courses, and it
can be used as a basis for assigning special projects.

Alternative Method of Coverage. Some instructors prefer to
cover stress and strain transformations first, before discussing specific
applications of axial load, torsion, bending, and shear. One possible
method for doing this would be first to cover stress and its
transformation, Chapter 1 and Chapter 9, followed by strain and its
transformation, Chapter 2 and the first part of Chapter 10. The
discussion and example problems in these later chapters have been



styled so that this is possible. Also, the problem sets have been
subdivided so that this material can be covered without prior knowledge
of the intervening chapters. Chapters 3 through 8 can then be covered
with no loss in continuity.

Hallmark Elements

Organization and Approach. The contents of each chapter are
organized into well-defined sections that contain an explanation of
specific topics, illustrative example problems, and a set of homework
problems. The topics within each section are placed into subgroups
defined by titles. The purpose of this is to present a structured method
for introducing each new definition or concept and to make the book
convenient for later reference and review.

Chapter Contents. Each chapter begins with a full-page
illustration that indicates a broad-range application of the material
within the chapter. The “Chapter Objectives” are then provided to give a
general overview of the material that will be covered.

Procedures for Analysis. Found after many of the sections of the
book, this unique feature provides the student with a logical and orderly
method to follow when applying the theory. The example problems are
solved using this outlined method in order to clarify its numerical
application. It is to be understood, however, that once the relevant
principles have been mastered and enough confidence and judgment
have been obtained, the student can then develop his or her own
procedures for solving problems.

Photog ra phS. Many photographs are used throughout the book to
enhance conceptual understanding and explain how the principles of
mechanics of materials apply to real-world situations.

Important Points. This feature provides a review or summary of
the most important concepts in a section and highlights the most
significant points that should be realized when applying the theory to
solve problems.

Example Problems. All the example problems are presented in a
concise manner and in a style that is easy to understand.

Homework Problems. Numerous problems in the book depict
realistic situations encountered in engineering practice. It is hoped that
this realism will both stimulate the student’s interest in the subject and
provide a means for developing the skill to reduce any such problem
from its physical description to a model or a symbolic representation to
which principles may be applied. Throughout the book there is an
approximate balance of problems using either SI or FPS units.
Furthermore, in any set, an attempt has been made to arrange the
problems in order of increasing difficulty. The answers to all but every
fourth problem are listed in the back of the book. To alert the user to a
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problem without a reported answer, an asterisk(*) is placed before the
problem number. Answers are reported to three significant figures,
even though the data for material properties may be known with less
accuracy. Although this might appear to be a poor practice, it is done
simply to be consistent and to allow the student a better chance to
validate his or her solution. A solid square (m) is used to identify
problems that require a numerical analysis or a computer application.

Appendices. The appendices of the book provide a source for
review and a listing of tabular data. Appendix A provides information
on the centroid and the moment of inertia of an area. Appendices B and
C list tabular data for structural shapes, and the deflection and slopes of
various types of beams and shafts.

Accuracy Checking. The Eighth Edition has undergone our
rigorous Triple Accuracy Checking review. In addition to the author’s
review of all art pieces and pages, the text was checked by the following
individuals:

® Scott Hendricks, Virginia Polytechnic University

e Karim Nohra, University of South Florida

¢ Kurt Norlin, Laurel Tech Integrated Publishing Services
® Kai Beng Yap, Engineering Consultant
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encouragement and willingness to provide constructive criticism are very
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production editor for many years, and to my wife, Conny, and daughter,



Mary Ann, for their help in proofreading and typing, that was needed to
prepare the manuscript for publication.
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Resources for Instructors

® |nstructor’s Solutions Manual. An instructor’s solutions manual
was prepared by the author. The manual includes homework assignment
lists and was also checked as part of the accuracy checking program.

® Presentation Resources. All art from the text is available in
PowerPoint slide and JPEG format. These files are available for
download from the Instructor Resource Center at http://www.
pearsonhighered. com. If you are in need of a login and password for this
site, please contact your local Pearson Prentice Hall representative.

¢ Video Solutions. Developed by Professor Edward Berger,
University of Virginia, video solutions located on the Companion
Website offer step-by-step solution walkthroughs of representative
homework problems from each section of the text. Make efficient use of
class time and office hours by showing students the complete and
concise problem solving approaches that they can access anytime and
view at their own pace. The videos are designed to be a flexible resource
to be used however each instructor and student prefers. A valuable
tutorial resource, the videos are also helpful for student self-evaluation
as students can pause the videos to check their understanding and
work alongside the video. Access the videos at http://www.
pearsonhighered.com/hibbeler and follow the links for the Mechanics of
Materials text.

Resources for Students

® Companion Website—The Companion Website, located at
http://www.pearsonhighered.com/hibbeler includes opportunities for
practice and review including:

¢ Video Solutions—Complete, step-by-step solution walkthroughs
of representative homework problems from each section. Videos
offer:

® Fully Worked Solutions—Showing every step of representative
homework problems, to help students make vital connections
between concepts.

¢ Self-Paced Instruction—Students can navigate each problem
and select, play, rewind, fast-forward, stop, and jump-to-sections
within each problem’s solution.

® 24/7 Access—Help whenever students need it with over 20
hours of helpful review.

An access code for the Mechanics of Materials, Eighth Edition website
was included with this text. To redeem the code and gain access to
the site, go to http://www.pearsonhighered.com/hibbeler and follow the
directions on the access code card. Access can also be purchased directly
from the site.
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MECHANICS
OF MATERIALS



The bolts used for the connections of this steel framework are subjected to stress. In this
chapter we will discuss how engineers design these connections and their fasteners.




Stress

CHAPTER OBJECTIVES

In this chapter we will review some of the important principles of
statics and show how they are used to determine the internal resultant
loadings in a body. Afterwards the concepts of normal and shear
stress will be introduced, and specific applications of the analysis and
design of members subjected to an axial load or direct shear will be
discussed.

1.1 Introduction

Mechanics of materials is a branch of mechanics that studies the internal
effects of stress and strain in a solid body that is subjected to an external
loading. Stress is associated with the strength of the material from which
the body is made, while strain is a measure of the deformation of the
body. In addition to this, mechanics of materials includes the study of
the body’s stability when a body such as a column is subjected to
compressive loading. A thorough understanding of the fundamentals of
this subject is of vital importance because many of the formulas and rules
of design cited in engineering codes are based upon the principles of this
subject.
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Historical Development. The origin of mechanics of materials
dates back to the beginning of the seventeenth century, when Galileo
performed experiments to study the effects of loads on rods and beams
made of various materials. However, at the beginning of the eighteenth
century, experimental methods for testing materials were vastly
improved, and at that time many experimental and theoretical studies
in this subject were undertaken primarily in France, by such notables as
Saint-Venant, Poisson, Lamé, and Navier.

Over the years, after many of the fundamental problems of mechanics
of materials had been solved, it became necessary to use advanced
mathematical and computer techniques to solve more complex problems.
As aresult, this subject expanded into other areas of mechanics, such as the
theory of elasticity and the theory of plasticity. Research in these fields
is ongoing, in order to meet the demands for solving more advanced
problems in engineering.

1.2 Equilibrium of a Deformable Body

Since statics has an important role in both the development and application
of mechanics of materials, it is very important to have a good grasp of its
fundamentals. For this reason we will review some of the main principles
of statics that will be used throughout the text.

External Loads. A body is subjected to only two types of external
loads; namely, surface forces or body forces, Fig. 1-1.

Surface Forces. Surface forces are caused by the direct contact of one
body with the surface of another. In all cases these forces are distributed
over the area of contact between the bodies. If this area is small in
comparison with the total surface area of the body, then the surface force
can be idealized as a single concentrated force, which is applied to a point
on the body. For example, the force of the ground on the wheels of a
bicycle can be considered as a concentrated force. If the surface loading is
applied along a narrow strip of area, the loading can be idealized as a
linear distributed load, w(s). Here the loading is measured as having an
intensity of force/length along the strip and is represented graphically by a
series of arrows along the line s. The resultant force Fp of w(s) is
equivalent to the area under the distributed loading curve, and this
resultant acts through the centroid C or geometric center of this area. The
loading along the length of a beam is a typical example of where this
idealization is often applied.
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Body Forces. A body forceis developed when one body exerts a force on
another body without direct physical contact between the bodies. Examples
include the effects caused by the earth’s gravitation or its electromagnetic
field. Although body forces affect each of the particles composing the body,
these forces are normally represented by a single concentrated force acting
on the body. In the case of gravitation, this force is called the weight of the
body and acts through the body’s center of gravity.

Support Reactions. The surface forces that develop at the supports
or points of contact between bodies are called reactions. For two-
dimensional problems, i.e., bodies subjected to coplanar force systems,
the supports most commonly encountered are shown in Table 1-1. Note
carefully the symbol used to represent each support and the type of
reactions it exerts on its contacting member. As a general rule, if the
support prevents translation in a given direction, then a force must be
developed on the member in that direction. Likewise, if rotation is
prevented, a couple moment must be exerted on the member. For example,
the roller support only prevents translation perpendicular or normal to
the surface. Hence, the roller exerts a normal force F on the member at
its point of contact. Since the member can freely rotate about the roller,
a couple moment cannot be developed on the member.

TABLE 1-1

Many machine elements are pin connected
in order to enable free rotation at their
connections. These supports exert a force on
a member, but no moment.

Type of connection Reaction Type of connection Reaction

Cable One unknown: F External pin

Fy
F’a—&

Two unknowns: F,, F,

Roller One unknown: F Internal pin Two unknowns: F,, F,
M F,
F /ZJ: F, 4_(_1:
0
¥/g
Smooth support One unknown: F Fixed support Three unknowns: F,, F,, M
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In order to design the horizontal members
of this building frame, it is first necessary to
find the internal loadings at various points
along their length.

Equations of Equilibrium. Equilibrium of a body requires both
a balance of forces, to prevent the body from translating or having
accelerated motion along a straight or curved path, and a balance of
moments, to prevent the body from rotating. These conditions can be
expressed mathematically by two vector equations

SF=0

SMpy =0 (-1

Here, 2 F represents the sum of all the forces acting on the body, and
2 My is the sum of the moments of all the forces about any point O
either on or off the body. If an x, y, z coordinate system is established
with the origin at point O, the force and moment vectors can be resolved
into components along each coordinate axis and the above two
equations can be written in scalar form as six equations, namely,

(1-2)

Often in engineering practice the loading on a body can be represented
as a system of coplanar forces. If this is the case, and the forces lie in the
x—y plane, then the conditions for equilibrium of the body can be
specified with only three scalar equilibrium equations; that is,

SF, =0
SF, =0 (1-3)
EMO =0

Here all the moments are summed about point O and so they will be
directed along the z axis.

Successful application of the equations of equilibrium requires
complete specification of all the known and unknown forces that act on
the body, and so the best way to account for all these forces is to draw
the body’s free-body diagram.
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Internal Resultant Loadings. In mechanics of materials, statics
is primarily used to determine the resultant loadings that act within a
body. For example, consider the body shown in Fig. 1-2a, which is held in
equilibrium by the four external forces.* In order to obtain the internal
loadings acting on a specific region within the body, it is necessary to pass
an imaginary section or “cut” through the region where the internal
loadings are to be determined. The two parts of the body are then
separated, and a free-body diagram of one of the parts is drawn, Fig. 1-2b.
Notice that there is actually a distribution of internal force acting on the
“exposed” area of the section. These forces represent the effects of the
material of the top part of the body acting on the adjacent material of
the bottom part.

Although the exact distribution of this internal loading may be unknown,
we can use the equations of equilibrium to relate the external forces on the
bottom part of the body to the distribution’s resultant force and moment,
Fr and My, , at any specific point O on the sectioned area, Fig. 1-2c. It
will be shown in later portions of the text that point O is most often
chosen at the centroid of the sectioned area, and so we will always choose
this location for O, unless otherwise stated. Also, if a member is long and
slender, as in the case of a rod or beam, the section to be considered is
generally taken perpendicular to the longitudinal axis of the member.
This section is referred to as the cross section.

*The body’s weight is not shown, since it is assumed to be quite small, and therefore
negligible compared with the other loads.

Fpr
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Three Dimensions. Later in this text we will show how to relate the
resultant loadings, Fr and Mg, to the distribution of force on the
sectioned area, and thereby develop equations that can be used for
analysis and design. To do this, however, the components of Fr and My,
acting both normal and perpendicular to the sectioned area must be
considered, Fig. 1-2d. Four different types of resultant loadings can then
be defined as follows:

Normal force, N. This force acts perpendicular to the area. It is
developed whenever the external loads tend to push or pull on the two
segments of the body.

Shear force, V. The shear force lies in the plane of the area and it is
developed when the external loads tend to cause the two segments of
the body to slide over one another.

Torsional moment or torque, T. This effect is developed when the
external loads tend to twist one segment of the body with respect to
the other about an axis perpendicular to the area.

Bending moment, M. The bending moment is caused by the
external loads that tend to bend the body about an axis lying within the
plane of the area.

In this text, note that graphical representation of a moment or torque is
shown in three dimensions as a vector with an associated curl. By the right-
hand rule, the thumb gives the arrowhead sense of this vector and the
fingers or curl indicate the tendency for rotation (twisting or bending).
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F, section ¥, y Shear
F, Force
Mo Bending
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-> —X
F,
Normal
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(a)
Fig. 1-3

Coplanar Loadings. If the body is subjected to a coplanar system of
forces,Fig. 1-3a,then only normal-force, shear-force, and bending- moment
components will exist at the section, Fig. 1-3b. If we use the x, y, z
coordinate axes, as shown on the left segment, then N can be obtained by
applying 2F, = 0, and V can be obtained from X F, = 0. Finally, the
bending moment My can be determined by summing moments about
point O (the z axis), ZMy = 0, in order to eliminate the moments
caused by the unknowns N and V.

Important Points

® Mechanics of materials is a study of the relationship between the
external loads applied to a body and the stress and strain caused
by the internal loads within the body.

® External forces can be applied to a body as distributed or
concentrated surface loadings, or as body forces that act
throughout the volume of the body.

® Linear distributed loadings produce a resultant force having a
magnitude equal to the area under the load diagram, and having a
location that passes through the centroid of this area.

® A support produces a force in a particular direction on its
attached member if it prevents translation of the member in that
direction, and it produces a couple moment on the member if it
prevents rotation.

® The equations of equilibrium XF = 0 and =M = 0 must be
satisfied in order to prevent a body from translating with
accelerated motion and from rotating.

® When applying the equations of equilibrium, it is important to
first draw the free-body diagram for the body in order to account
for all the terms in the equations.

® The method of sections is used to determine the internal
resultant loadings acting on the surface of the sectioned body. In
general, these resultants consist of a normal force, shear force,
torsional moment, and bending moment.
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Procedure for Analysis

The resultant internal loadings at a point located on the section of a
body can be obtained using the method of sections. This requires
the following steps.

Support Reactions.

® First decide which segment of the body is to be considered. If the
segment has a support or connection to another body, then before
the body is sectioned, it will be necessary to determine the
reactions acting on the chosen segment. To do this draw the free-
body diagram of the entire body and then apply the necessary
equations of equilibrium to obtain these reactions.

Free-Body Diagram.

® Keep all external distributed loadings, couple moments, torques,
and forces in their exact locations, before passing an imaginary
section through the body at the point where the resultant internal
loadings are to be determined.

® Draw a free-body diagram of one of the “cut” segments and
indicate the unknown resultants N, V, M, and T at the section.
These resultants are normally placed at the point representing
the geometric center or centroid of the sectioned area.

® If the member is subjected to a coplanar system of forces, only N,
V,and M act at the centroid.

® Establish the x, y, z coordinate axes with origin at the centroid
and show the resultant internal loadings acting along the axes.

Equations of Equilibrium.

® Moments should be summed at the section, about each of the
coordinate axes where the resultants act. Doing this eliminates
the unknown forces N and V and allows a direct solution for M
(and T).

® If the solution of the equilibrium equations yields a negative
value for a resultant, the assumed directional sense of the
resultant is opposite to that shown on the free-body diagram.

The following examples illustrate this procedure numerically and also
provide a review of some of the important principles of statics.



1.2 EQUILIBRIUM OF A DEFORMABLE BODY 11

EXAMPLE [1.1 .

Determine the resultant internal loadings acting on the cross section
at C of the cantilevered beam shown in Fig. 1-4a.

270 N/m

(a)
Fig. 1-4

SOLUTION

Support Reactions. The support reactions at A do not have to be
determined if segment CB is considered. 540N

Free-Body Diagram. The free-body diagram of segment CB is shown 180 N/m l\

in Fig. 1-4b. It is important to keep the distributed loading on the Mc I S

segment until after the section is made. Only then should this loading | __—
be replaced by a single resultant force. Notice that the intensity of the Ne < E
distributed loading at C is found by proportion, i.e., from Fig. 1-4a, Ve \ 4 \
w/6m = (270 N/m)/9m, w = 180 N/m. The magnitude of the ! m !
resultant of the distributed load is equal to the area under the (®)
loading curve (triangle) and acts through the centroid of this area.
Thus, F = %(180 N/m)(6 m) = 540 N, which acts %(6 m) = 2 m from
C as shown in Fig. 1-4b.
Equations of Equilibrium. Applying the equations of equilibrium
we have
BSF, = 0; ~Ne=0

Nc=0 Ans.
+12F, =0 Ve—540N =0

Ve =50N Ans. N UN

(+Z M = 0; ~M¢ — 540N(2m) = 0 N
Mo = —1080N-m Ans. 12I5N |

~—2m

Fr==-180N/m

NOTE: The negative sign indicates that M acts in the opposite 3045 N'mQT
direction to that shown on the free-body diagram. Try solving this “Fn"‘[’
problem using segment AC, by first obtaining the support reactions at
A, which are given in Fig. 1-4c. ©
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EXAMPLE |1.2

A

~—— 0250 m —

0.025 m

(©)

ST

Ve

RESS

Determine the resultant internal loadings acting on the cross section at
C of the machine shaft shown in Fig. 1-5a. The shaft is supported by
journal bearings at A and B, which only exert vertical forces on the shaft.

— (800 N//m)(0.150 m) = 120 N

Mc

800 N /m 25N
|

y | i
| .
2 S I e ]}

| 1 | 0275 m 0.125m 0.100 m'

/ 100mm /100 mm.
Ay By
50 mm 50 mm
(a) (b)
Fig. 1-5
SOLUTION

We will solve this problem using segment AC of the shaft.

Support Reactions. The free-body diagram of the entire shaft is
shown in Fig. 1-5b. Since segment AC is to be considered, only the
reaction at A has to be determined. Why?

L+ S My = 0; —A,(0.400 m) + 120 N(0.125 m) — 225 N(0.100 m) = 0

A, = —1875N

The negative sign indicates that A, acts in the opposite sense to that
shown on the free-body diagram.

Free-Body Diagram. The free-body diagram of segment AC is
shown in Fig. 1-5c¢.

Equations of Equilibrium.

L IF =0 Ne =0 Ans.
+1=F, =0; ~1875N — 40N — V=0
Vo= —588N Ans.
(tSMc=0; Mc+ 40N(0.025m) + 18.75N(0.250 m) = 0
Mc= —569N-m Ans.

NOTE: The negative signs for V- and M indicate they act in the
opposite directions on the free-body diagram. As an exercise,
calculate the reaction at B and try to obtain the same results using
segment CBD of the shaft.
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The 500-kg engine is suspended from the crane boom in Fig. 1-6a.

Determine the resultant internal loadings acting on the cross section

of the boom at point E.

SOLUTION
Support Reactions.

1.5m

We will consider segment AE of the boom so

we must first determine the pin reactions at A. Notice that member
CD is a two-force member. The free-body diagram of the boom is
shown in Fig. 1-6b. Applying the equations of equilibrium,

L+2MA = O,
BSF, =0
+13F, = 0;

Fep(2)(2m) — [500(9.81) N](3m) = 0
Fep = 122625 N
A, — (122625 N)(}) = 0

A, = 9810 N

—A, + (12262.5 N)(2) — 500(9.81) N = 0

A, = 24525 N

Free-Body Diagram. The free-body diagram of segment AFE is

shown in Fig. 1-6¢.

Equations of Equilibrium.

BIF, = 0;
+13F, = 0;

Ng + 9810 N = 0

Np = —9810 N = —9.81 kN Ans.
~Vp— 24525 N =0

Ve = —24525 N = —245 kN Ans.
My + (24525 N)(1 m) = 0

Mg = —24525N-m = 245 kN-m  Ans.

2452.5N

Fig. 1-6
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1500 Ib

EXAMPLE |1.4

Determine the resultant internal loadings acting on the cross section
at G of the beam shown in Fig. 1-7a. Each joint is pin connected.

> Fpe = 6200 Ib

ft

L £, =62001b

FBA = 7750 1b

1500 1b

A

(2)

B
(= —> 6200 Ib

I

/ 4

Fyp = 4650 Ib
(©)
7750 1b
A
1
Ng
—)>

(d)

=2t —fy ;Mo

v

%(6 £t)(300 Ib/ft) = 900 Ib
(b)

Fig. 1-7

SOLUTION

Support Reactions. Here we will consider segment AG. The
free-body diagram of the entire structure is shown in Fig. 1-7b. Verify
the calculated reactions at £ and C. In particular, note that BC is a
two-force member since only two forces act on it. For this reason the
force at C must act along BC, which is horizontal as shown.

Since BA and BD are also two-force members, the free-body
diagram of joint B is shown in Fig. 1-7¢. Again, verify the magnitudes
of forces Fp4 and Fpp.

Free-Body Diagram. Using the result for Fp,, the free-body
diagram of segment AG is shown in Fig. 1-7d.

Equations of Equilibrium.
BIF, =0, 7750(¢) + Ng=0 Ng=—-62001b  Ans
+13F, =0; —15001b + 77501b(2) — Vi = 0

Vg =31501b Ans.

\F=Mg = 0; Mg — (77501b)(2)(2 £t) + 1500 b(2 ft) = 0
Mg = 63001b - ft Ans.
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EXAMPLE |1.5 .

Determine the resultant internal loadings acting on the cross section
at B of the pipe shown in Fig. 1-8a. The pipe has a mass of 2 kg/m and
is subjected to both a vertical force of 50 N and a couple moment of
70 N -m at its end A. It is fixed to the wall at C.

SOLUTION

The problem can be solved by considering segment AB, so we do not
need to calculate the support reactions at C.

Free-Body Diagram. The x, y, z axes are established at B and the
free-body diagram of segment AB is shown in Fig. 1-8b. The resultant
force and moment components at the section are assumed to act in
the positive coordinate directions and to pass through the centroid of
the cross-sectional area at B. The weight of each segment of pipe is
calculated as follows:

Wgp = (2kg/m)(0.5m)(9.81 N/kg) = 9.81 N

Wp = (2kg/m)(1.25m)(9.81 N/kg) = 24.525 N
These forces act through the center of gravity of each segment.

Equations of Equilibrium. Applying the six scalar equations of
equilibrium, we have*

SF, =0 (Fg), =0 Ans.
B, = 0 (Fp)y =0 Ans.
SF,=0; (Fp), — 981N —24525N — 50N =0

(Fp), = 843N Ans.

S(Mp), =0;  (Mg), + 70N-m — 50N (0.5m)
— 24.525N (0.5m) — 9.81 N (0.25m) = 0

(Mp), = —-303N-m Ans.
2(Mp), = 0; (Mp), + 24.525N (0.625m) + 50N (1.25m) = 0
(Mp), = =77.8 N-m Ans.
2(Mp), = 0; (Mp), =0 Ans.
NOTE: What do the negative signs for (M), and (M), indicate?
Note that the normal force Ng = (Fp), = 0, whereas the shear force (b)
is Vg = V(0)? + (84.3) = 84.3 N. Also, the torsional moment is Fig. 1-8

Tg=(Mp),=718N-m and the bending moment is Mp =

V/(30.3)? + (0)> = 303N -m.

*The magnitude of each moment about an axis is equal to the magnitude of each
force times the perpendicular distance from the axis to the line of action of the force.
The direction of each moment is determined using the right-hand rule, with positive
moments (thumb) directed along the positive coordinate axes.
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F1-1. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

10 kN

60 kN-m

N w0 e

F1-1

F1-2. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

100 N/m

[i}

1 1.5m 1.5m |

F1-2

F1-3. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

. . FUNDAMENTAL PROBLEMS

F1-4. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

10 kN/m

F1-4

F1-5. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

300 Ib /ft
A
A G
s
L—Bﬁ 31t 31t ‘
F1-5

F1-6. Determine the internal normal force, shear force,
and bending moment at point C in the beam.

5kN/m
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rropens

1-1. Determine the resultant internal normal force acting 1-3. Determine the resultant internal torque acting on the
on the cross section through point A in each column. In cross sections through points B and C.

(a), segment BC weighs 180 Ib/ft and segment CD weighs

250 1b/ft. In (b), the column has a mass of 200 kg/m.

4 600 Ib-ft
B
350 Ib-ft
31t
200 mm 500 Ib-fi
t -ft
6 kN it %
e
200 mm
45kN : Prob. 1-3
*1-4. A force of 80 N is supported by the bracket as
shown. Determine the resultant internal loadings acting on
A the section through point A.

(a)
Prob. 1-1

1-2. Determine the resultant internal torque acting on the
cross sections through points C and D. The support bearings
at A and B allow free turning of the shaft.

¢1-5. Determine the resultant internal loadings in the
beam at cross sections through points D and E. Point E is
just to the right of the 3-kip load.

3 kip
1.5 kip/ft

Prob. 1-2 Prob. 1-5
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1-6. Determine the normal force, shear force, and moment
at a section through point C. Take P = 8 kN.

1-7. The cable will fail when subjected to a tension of 2 kN.
Determine the largest vertical load P the frame will support
and calculate the internal normal force, shear force, and
moment at the cross section through point C for this loading.

B,
A
0.1'm 05m
| c Adq
. . @\
{07 me 075 m e 075m—

Probs. 1-6/7

*1-8. Determine the resultant internal loadings on the
cross section through point C. Assume the reactions at
the supports A and B are vertical.

¢1-9. Determine the resultant internal loadings on the
cross section through point D. Assume the reactions at
the supports A and B are vertical.

6 kN

T
|
\

1.5m ‘ 1.5m

Probs. 1-8/9

1-10. The boom DF of the jib crane and the column DE
have a uniform weight of 50 Ib/ft. If the hoist and load weigh
300 Ib, determine the resultant internal loadings in the crane
on cross sections through points A, B, and C.

D B <A | F

8 ft 3 ft

w
-

300 Ib

Prob. 1-10

1-11. The force F =801b acts on the gear tooth.
Determine the resultant internal loadings on the root of the
tooth, i.e., at the centroid point A of section a—a.

0.16 in.

Prob. 1-11

#1-12. The sky hook is used to support the cable of a
scaffold over the side of a building. If it consists of a smooth
rod that contacts the parapet of a wall at points A, B, and C,
determine the normal force, shear force, and moment on
the cross section at points D and E.

0.2m

2

18 kN

Prob. 1-12
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e1-13. 'The 800-1b load is being hoisted at a constant speed e1-17. Determine resultant internal loadings acting on
using the motor M, which has a weight of 90 1b. Determine section a—a and section b—b. Each section passes through
the resultant internal loadings acting on the cross section the centerline at point C.

through point B in the beam. The beam has a weight of
40 1b/ft and is fixed to the wall at A.

1-14. Determine the resultant internal loadings acting on
the cross section through points C and D of the beam in
Prob. 1-13.

M
k. st 32
W

A

© b c B
4 ft 4 ft—~=—3 ft 3 ft 4 ft—

g

0.25 ft 1-18. The bolt shank is subjected to a tension of 80 Ib.
Determine the resultant internal loadings acting on the
cross section at point C.

Prob. 1-17

)

Probs. 1-13/14

1-15. Determine the resultant internal loading on the
cross section through point C of the pliers. There is a pin at
A, and the jaws at B are smooth.

Prob. 1-18

*]-16. Determine the resultant internal loading on the

cross section through point D of the pliers. 1-19. Determine the resultant internal loadings acting on

the cross section through point C. Assume the reactions at
the supports A and B are vertical.

*]-20. Determine the resultant internal loadings acting
on the cross section through point D. Assume the reactions
at the supports A and B are vertical.

6 kip/ft 6 kip /ft

i ~=
3t 3 ] 6 ft |
Probs. 1-15/16 Probs. 1-19/20
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e1-21. The forged steel clamp exerts a force of F = 900 N *]1-24. The machine is moving with a constant velocity. It
on the wooden block. Determine the resultant internal has a total mass of 20 Mg, and its center of mass is located at
loadings acting on section a—a passing through point A. G, excluding the front roller. If the front roller has a mass of
5 Mg, determine the resultant internal loadings acting on
point C of each of the two side members that support the
roller. Neglect the mass of the side members. The front
roller is free to roll.

Prob. 1-24

Prob. 1-21
¢1-25. Determine the resultant internal loadings acting on

the cross section through point B of the signpost. The post is
fixed to the ground and a uniform pressure of 7 1b/ft? acts

. ) ) perpendicular to the face of the sign.
1-22. The floor crane is used to lift a 600-kg concrete pipe.

Determine the resultant internal loadings acting on the
cross section at G.

1-23. The floor crane is used to lift a 600-kg concrete pipe.
Determine the resultant internal loadings acting on the
cross section at H.

Probs. 1-22/23 Prob. 1-25



1-26. The shaft is supported at its ends by two bearings
A and B and is subjected to the forces applied to the
pulleys fixed to the shaft. Determine the resultant
internal loadings acting on the cross section located at
point C. The 300-N forces act in the —z direction and the
500-N forces act in the +x direction. The journal bearings
at A and B exert only x and z components of force on the
shaft.

Prob. 1-26

1-27. The pipe has a mass of 12 kg/m. If it is fixed to the
wall at A, determine the resultant internal loadings acting
on the cross section at B. Neglect the weight of the wrench
CD.

Prob. 1-27

1.2 EQuiLIBRIUM OF A DEFORMABLE BoDY

*]1-28. The brace and drill bit is used to drill a hole at O. If
the drill bit jams when the brace is subjected to the forces
shown, determine the resultant internal loadings acting on

the cross section of the drill bit at A.

*1-29. The curved rod has a radius r and is fixed to the
wall at B. Determine the resultant internal loadings acting
on the cross section through A which is located at an angle 6

from the horizontal.

B

Prob. 1-28

1-30. A differential element taken from a curved bar is
shown in the figure. Show that dN/d6 = V,dV/d6 = —N,

Prob. 1-29

dM/do = —T,and dT/d6 = M.

MuV

M+ dM T+dT
V+dv P
X AN+ dN

N&\dﬁ

/
%

Prob. 1-30

21
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o FR

Fig. 1-9

(a)

1.3 Stress

It was stated in Section 1.2 that the force and moment acting at a
specified point O on the sectioned area of the body, Fig. 1-9, represents
the resultant effects of the actual distribution of loading acting over the
sectioned area, Fig. 1-10a. Obtaining this distribution is of primary
importance in mechanics of materials. To solve this problem it is
necessary to establish the concept of stress.

We begin by considering the sectioned area to be subdivided into
small areas, such as AA shown in Fig. 1-10a. As we reduce AA to
a smaller and smaller size, we must make two assumptions regarding
the properties of the material. We will consider the material to be
continuous, that is, to consist of a continuum or uniform distribution of
matter having no voids. Also, the material must be cohesive, meaning
that all portions of it are connected together, without having breaks,
cracks, or separations. A typical finite yet very small force AF, acting on
A A, is shown in Fig. 1-10a. This force, like all the others, will have a
unique direction, but for further discussion we will replace it by its three
components, namely, AF,, AF,, and AF, which are taken tangent,
tangent, and normal to the area, respectively. As A A approaches zero, so
do AF and its components; however, the quotient of the force and area
will, in general, approach a finite limit. This quotient is called stress, and
as noted, it describes the intensity of the internal force acting on a specific
plane (area) passing through a point.

Fig. 1-10



Normal Stress. The intensity of the force acting normal to AA is
defined as the normal stress, o (sigma). Since AF, is normal to the area
then

l. AFZ
B Alﬂo AA

(1-4)

o,

If the normal force or stress “pulls” on AA as shown in Fig. 1-10aq, it is
referred to as tensile stress, whereas if it “pushes” on AA it is called
compressive Stress.

Shear Stress. The intensity of force acting tangent to AA is called
the shear stress, T (tau). Here we have shear stress components,

” AF,
A/I\rgo AA
AF,

7, = lim ——
DAaA—0 AA

TZX

(1-5)

Note that in this subscript notation z specifies the orientation of the
area A A, Fig. 1-11, and x and y indicate the axes along which each shear
stress acts.

General State of Stress. If the body is further sectioned by
planes parallel to the x—z plane, Fig. 1-10b, and the y—z plane, Fig. 1-10c,
we can then “cut out” a cubic volume element of material that represents
the state of stress acting around the chosen point in the body. This state
of stress is then characterized by three components acting on each face
of the element, Fig. 1-12.

Units. Since stress represents a force per unit area, in the
International Standard or SI system, the magnitudes of both normal and
shear stress are specified in the basic units of newtons per square meter
(N/m?). This unit, called a pascal (1 Pa = 1 N/m?) is rather small, and
in engineering work prefixes such as kilo- (10%), symbolized by k,
mega- (10%), symbolized by M, or giga- (10°), symbolized by G, are used
to represent larger, more realistic values of stress.* Likewise, in the
Foot-Pound-Second system of units, engineers usually express stress in
pounds per square inch (psi) or kilopounds per square inch (ksi), where
1 kilopound (kip) = 1000 Ib.

*Sometimes stress is expressed in units of N/mm?, where 1 mm = 107> m. However, in
the SI system, prefixes are not allowed in the denominator of a fraction and therefore it is
better to use the equivalent 1 N/mm? = 1 MN/m? = 1 MPa.

1.3 STRESS
z
O;
Tzx
x/ sz
Fig. 1-11
z
(44
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Region of
uniform
deformation
of bar

1.4 Average Normal Stress in an
Axially Loaded Bar

In this section we will determine the average stress distribution acting on
the cross-sectional area of an axially loaded bar such as the one shown in
Fig. 1-13a. This bar is prismatic since all cross sections are the same
throughout its length. When the load P is applied to the bar through the
centroid of its cross-sectional area, then the bar will deform uniformly
throughout the central region of its length, as shown in Fig. 1-13b,
provided the material of the bar is both homogeneous and isotropic.

Homogeneous material has the same physical and mechanical properties
throughout its volume, and isotropic material has these same properties
in all directions. Many engineering materials may be approximated as
being both homogeneous and isotropic as assumed here. Steel, for
example, contains thousands of randomly oriented crystals in each cubic
millimeter of its volume, and since most problems involving this material
have a physical size that is very much larger than a single crystal, the
above assumption regarding its material composition is quite realistic.

Note that anisotropic materials such as wood have different properties
in different directions, and although this is the case, like wood if the
anisotropy is oriented along the bar’s axis, then the bar will also deform
uniformly when subjected to the axial load P.

Average Normal Stress Distribution. If we pass a section
through the bar, and separate it into two parts, then equilibrium requires
the resultant normal force at the section to be P, Fig. 1-13c. Due to the
uniform deformation of the material, it is necessary that the cross section
be subjected to a constant normal stress distribution, Fig. 1-13d.

Z

P

Internal force

Cross-sectional
area

External force

P
(c) (d)
Fig. 1-13
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As a result, each small area AA on the cross section is subjected to a
force AF = o AA, and the sum of these forces acting over the entire
cross-sectional area must be equivalent to the internal resultant force P
at the section. If we let AA—>dA and therefore AF — dF, then,
recognizing o is constant, we have

+1 Fg, = 3F; /dF=/crdA
A
P=cA
P
== 1-6
o= (1-6)
Here

o = average normal stress at any point on the cross-sectional area

P = internal resultant normal force, which acts through the centroid of
the cross-sectional area. P is determined using the method of
sections and the equations of equilibrium

A = cross-sectional area of the bar where o is determined

Since the internal load P passes through the centroid of the cross-
section the uniform stress distribution will produce zero moments about
the x and y axes passing through this point, Fig. 1-13d. To show this, we
require the moment of P about each axis to be equal to the moment of
the stress distribution about the axes, namely,

(Mg)y=2M,; 0= /de: /yodAZ(r/ydA
A A A

(Mg)y = 2ZM,; 0=—/XdF=—/xcrdA=—0'/di
A A A

These equations are indeed satisfied, since by definition of the centroid,
JydA =0and [xdA = 0. (See Appendix A.)

Equilibrium. It should be apparent that only a normal stress exists
on any small volume element of material located at each point on
the cross section of an axially loaded bar. If we consider vertical
equilibrium of the element, Fig. 1-14, then apply the equation of
force equilibrium,

SF, =0; o(AA) — o' (AA) = 0

o =o'

-~

Fig. 1-14
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This steel tie rod is used as a hanger to
suspend a portion of a staircase, and as a
result it is subjected to tensile stress.

~v

i |
o et
i I 7

t
' T

Tension Compression
Fig. 1-15

In other words, the two normal stress components on the element must
be equal in magnitude but opposite in direction. This is referred to as
uniaxial stress.

The previous analysis applies to members subjected to either tension
or compression, as shown in Fig. 1-15. As a graphical interpretation, the
magnitude of the internal resultant force P is equivalent to the volume
under the stress diagram; that is, P = o A (volume = height X base).
Furthermore, as a consequence of the balance of moments, this resultant
passes through the centroid of this volume.

Although we have developed this analysis for prismatic bars, this
assumption can be relaxed somewhat to include bars that have a slight
taper. For example, it can be shown, using the more exact analysis of the
theory of elasticity, that for a tapered bar of rectangular cross section, for
which the angle between two adjacent sides is 15°, the average normal
stress, as calculated by o = P/ A, is only 2.2% less than its value found
from the theory of elasticity.

Maximum Average Normal Stress. In our analysis both the
internal force P and the cross-sectional area A were constant along the
longitudinal axis of the bar, and as a result the normal stress ¢ = P/A is
also constant throughout the bar’s length. Occasionally, however, the bar
may be subjected to several external loads along its axis, or a change in its
cross-sectional area may occur. As a result, the normal stress within the
bar could be different from one section to the next, and, if the maximum
average normal stress is to be determined, then it becomes important
to find the location where the ratio P/A is a maximum. To do this it is
necessary to determine the internal force P at various sections along the
bar. Here it may be helpful to show this variation by drawing an axial or
normal force diagram. Specifically, this diagram is a plot of the normal
force P versus its position x along the bar’s length. As a sign convention,
P will be positive if it causes tension in the member, and negative if it
causes compression. Once the internal loading throughout the bar is
known, the maximum ratio of P/A can then be identified.
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Important Points .

® When a body subjected to external loads is sectioned, there is a
distribution of force acting over the sectioned area which holds
each segment of the body in equilibrium. The intensity of this
internal force at a point in the body is referred to as stress.

® Stress is the limiting value of force per unit area, as the area
approaches zero. For this definition, the material is considered to
be continuous and cohesive.

® The magnitude of the stress components at a point depends upon
the type of loading acting on the body, and the orientation of the
element at the point.

® When a prismatic bar is made from homogeneous and isotropic
material, and is subjected to an axial force acting through the
centroid of the cross-sectional area, then the center region of
the bar will deform uniformly. As a result, the material will be
subjected only to normal stress. This stress is uniform or averaged
over the cross-sectional area.

Procedure for Analysis

The equation o = P/ A gives the average normal stress on the cross-
sectional area of a member when the section is subjected to an
internal resultant normal force P. For axially loaded members,
application of this equation requires the following steps.

Internal Loading.

® Section the member perpendicular to its longitudinal axis at the
point where the normal stress is to be determined and use the
necessary free-body diagram and force equation of equilibrium to
obtain the internal axial force P at the section.

Average Normal Stress.

® Determine the member’s cross-sectional area at the section and
calculate the average normal stress o = P/A.

® [tis suggested that o be shown acting on a small volume element
of the material located at a point on the section where stress is
calculated. To do this, first draw o on the face of the element
coincident with the sectioned area A. Here o acts in the same
direction as the internal force P since all the normal stresses on
the cross section develop this resultant. The normal stress o on
the other face of the element acts in the opposite direction.
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. EXAMPLE [1.6

The bar in Fig. 1-16a has a constant width of 35 mm and a thickness
of 10 mm. Determine the maximum average normal stress in the bar
when it is subjected to the loading shown.

A B 9kN C 4kN D
12kN | ~ 2kN
T 9kN 4 kKN

35 mm

(a)

12 kN% P,z =12kN
9 kN
12 kN<—@

Ll

> Py =30kN

9kN

Pep = 22kN 4—@# 22 kN

(b)

P (kN)

30 4

1 |
21—

©

SOLUTION

Internal Loading. By inspection, the internal axial forces in regions
AB, BC,and CD are all constant yet have different magnitudes. Using
the method of sections, these loadings are determined in Fig. 1-16b;
and the normal force diagram which represents these results graphically
is shown in Fig. 1-16¢. The largest loading is in region BC, where
Ppc = 30 kN. Since the cross-sectional area of the bar is constant, the
largest average normal stress also occurs within this region of the bar.

Average Normal Stress. Applying Eq. 1-6, we have

N mm)k Pxc 30(10°) N

- = = 85.7MP Ans.
F ,a 30kN TBC = T4 T (0,035 m)(0.010 m) a  Ans
35mm 5.7 MPa NOTE: The stress distribution acting on an arbitrary cross section of

@ the bar within region BC is shown in Fig. 1-16d. Graphically the volume
(or “block”) represented by this distribution of stress is equivalent to
Fig. 1-16 the load of 30 kN; that is, 30 kN = (85.7 MPa)(35 mm)(10 mm).
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EXAMPLE |1.7

The 80-kg lamp is supported by two rods AB and BC as shown in
Fig. 1-17a. If AB has a diameter of 10 mm and BC has a diameter of
8 mm, determine the average normal stress in each rod.

FBA FBC

80(9.81) = 784.8 N
(b)

Fig. 1-17

SOLUTION
Internal Loading. We must first determine the axial force in each

rod. A free-body diagram of the lamp is shown in Fig. 1-17b. Applying
the equations of force equilibrium,
L SF, =0 Fpe(f) — Fpacos60° =0
+13F, = 0; Fpe(2) + Fpasin60° — 7848 N = 0
Fpc = 3952 N, Fpq = 6324N

By Newton’s third law of action, equal but opposite reaction, these
forces subject the rods to tension throughout their length.

Average Normal Stress. Applying Eq. 1-6,

Fpe 3952 N
0' = ==
B Age  7(0.004 m)>

8.05 MPa

= 7.86 MPa Ans.  8.05MPa

F 632.4 N
opa =22 = 5 = 8.05 MPa Ans.
Ags  m(0.005 m)

NOTE: The average normal stress distribution acting over a cross
section of rod AB is shown in Fig. 1-17¢, and at a point on this cross 632.4N
section, an element of material is stressed as shown in Fig. 1-17d. (d) (0)
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EXAMPLE |1.8

STRESS

The casting shown in Fig. 1-18a is made of steel having a specific
weight of v, = 490 Ib/ft>. Determine the average compressive stress
acting at points A and B.

2.75 ft

9.36 psi
(©)

(a)

Fig. 1-18
SOLUTION

Internal Loading. A free-body diagram of the top segment of the
casting where the section passes through points A and B is shown in
Fig. 1-18b. The weight of this segment is determined from Wy = y4 V.
Thus the internal axial force P at the section is

+13F, = 0; P—-Wu=0
P — (490 Ib/ft3)(2.75 ft)[7(0.75 ft)*] = 0
P =23811b

Average Compressive Stress. The cross-sectional area at the sec-
tion is A = (0.75 ft)?, and so the average compressive stress becomes

P 2381 Ib
o=t = 20 134751/
A 7(0.75 ft)

o = 1347.5 b/t (1 ft2/144 in?) = 9.36 psi Ans.

NOTE: The stress shown on the volume element of material in
Fig. 1-18c¢ is representative of the conditions at either point A or B.
Notice that this stress acts upward on the bottom or shaded face of the
element since this face forms part of the bottom surface area of the
section, and on this surface, the resultant internal force P is pushing
upward.
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EXAMPLE |1.9 .

Member AC shown in Fig. 1-19a is subjected to a vertical force of
3 kN. Determine the position x of this force so that the average
compressive stress at the smooth support C is equal to the average
tensile stress in the tie rod AB. The rod has a cross-sectional area of

400 mm? and the contact area at C is 650 mm?>.

Fup 3 kN
A

3kN

200 mm-

Fe

(b)
Fig. 1-19
SOLUTION
Internal Loading. The forces at A and C can be related by considering
the free-body diagram for member AC, Fig. 1-19b. There are three
unknowns, namely, F 45, F¢, and x. To solve this problem we will
work in units of newtons and millimeters.
+T2Fy=0; Fap+ Fc —3000N =0 (1)
(+tEM, = 0; —3000 N(x) + Fc(200mm) =0 2)
Average Normal Stress. A necessary third equation can be written
that requires the tensile stress in the bar AB and the compressive
stress at C to be equivalent, i.e.,
_ Fuap  F¢C
0’ = =
400 mm* 650 mm?
FC = 1625FAB

Substituting this into Eq. 1, solving for F 4, then solving for F, we
obtain
FAB = 1143 N

Fc=1857N
The position of the applied load is determined from Eq. 2,
x = 124 mm Ans.

NOTE: 0 < x < 200 mm, as required.




32 CHAPTER 1 STRESS

Tavg

1.5 Average Shear Stress

Shear stress has been defined in Section 1.3 as the stress component that
acts in the plane of the sectioned area. To show how this stress can
develop, consider the effect of applying a force F to the bar in Fig. 1-20a.
If the supports are considered rigid, and F is large enough, it will cause
the material of the bar to deform and fail along the planes identified by
AB and CD. A free-body diagram of the unsupported center segment of
the bar, Fig. 1-20b, indicates that the shear force V = F/2 must be
applied at each section to hold the segment in equilibrium. The average
shear stress distributed over each sectioned area that develops this shear
force is defined by

Tavg = Z (1-7)

Here

Tag = average shear stress at the section, which is assumed to be the
same at each point located on the section
V = internal resultant shear force on the section determined from
the equations of equilibrium

A = area at the section

The distribution of average shear stress acting over the sections is
shown in Fig. 1-20c. Notice that 7,,, is in the same direction as 'V, since
the shear stress must create associated forces all of which contribute to
the internal resultant force V at the section.

The loading case discussed here is an example of simple or direct
shear, since the shear is caused by the direct action of the applied load F.
This type of shear often occurs in various types of simple connections
that use bolts, pins, welding material, etc. In all these cases, however,
application of Eq. 1-7 is only approximate. A more precise investigation
of the shear-stress distribution over the section often reveals that much
larger shear stresses occur in the material than those predicted by this
equation. Although this may be the case, application of Eq. 1-7 is
generally acceptable for many problems in engineering design and
analysis. For example, engineering codes allow its use when considering
design sizes for fasteners such as bolts and for obtaining the bonding
strength of glued joints subjected to shear loadings.



( Section plane

Pure shear

(b)

Fig. 1-21

Shear Stress Equilibrium. Figure 1-21a shows a volume element
of material taken at a point located on the surface of a sectioned area
which is subjected to a shear stress 7,,. Force and moment equilibrium
requires the shear stress acting on this face of the element to be
accompanied by shear stress acting on three other faces. To show this we
will first consider force equilibrium in the y direction. Then

force

[

stress area

SF, =0 To(Ax Ay) — 7, Ax Ay =0
Toy = Tiy

In a similar manner, force equilibrium in the z direction yields 7,, = 7.
Finally, taking moments about the x axis,

moment

force arm

stress area

M, =0 —T.(Ax Ay) Az + 7, (Ax Az) Ay =0
Ty = Tyz
so that

— ’ p— — ’ —
Ty = Tgy = Typ = Tyz = T

In other words, all four shear stresses must have equal magnitude and
be directed either toward or away from each other at opposite edges of
the element, Fig. 1-21b.This is referred to as the complementary property
of shear, and under the conditions shown in Fig. 1-21, the material is
subjected to pure shear.

1.5 AVERAGE SHEAR STRESS
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Important Points

® If two parts are thin or small when joined together, the applied
loads may cause shearing of the material with negligible bending.
If this is the case, it is generally assumed that an average shear
stress acts over the cross-sectional area.

® When shear stress 7 acts on a plane, then equilibrium of a volume
element of material at a point on the plane requires associated
shear stress of the same magnitude act on three adjacent sides of
the element.

Procedure for Analysis

The equation 7,, = V/A is used to determine the average shear
stress in the material. Application requires the following steps.

Internal Shear.

® Section the member at the point where the average shear stress is
to be determined.

® Draw the necessary free-body diagram, and calculate the internal
shear force V acting at the section that is necessary to hold the
part in equilibrium.

Average Shear Stress.

® Determine the sectioned area A, and determine the average
shear stress 7,,, = V/A.

¢ It is suggested that 7,,, be shown on a small volume element of
material located at a point on the section where it is determined.
To do this, first draw 7,,, on the face of the element, coincident
with the sectioned area A. This stress acts in the same direction
as V. The shear stresses acting on the three adjacent planes can
then be drawn in their appropriate directions following the
scheme shown in Fig. 1-21.
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EXAMPLE |1.10 .

Determine the average shear stress in the 20-mm-diameter g

pin at A and the 30-mm-diameter pin at B that support the ,:
beam in Fig. 1-224. 30 kN 5 ‘ f
SOLUTION 'b+d i

Internal Loadings. The forces on the pins can be obtained by 4
considering the equilibrium of the beam, Fig. 1-22b. L

(+SM,=0; FB<:>(6 m)—30kN(2m)=0 Fpz=12.5kN ©

3
B 3F, =0; (125 kN)<5> ~ A, =0 A,=750kN

+1SF, =0, A, + (125 kN)(i) ~30kN =0

A, =20 kN “

! | |
‘<—2m ‘ 4 m |

Thus, the resultant force acting on pin A is

Fo=VAZ2+ A2 = V(7.50kN)’ + (20kN)* = 21.36 kN (®)

The pin at A is supported by two fixed “leaves” and so the free-body
diagram of the center segment of the pin shown in Fig. 1-22¢ has two
shearing surfaces between the beam and each leaf. The force of the
beam (21.36 kN) acting on the pin is therefore supported by shear
force on each of these surfaces. This case is called double shear. Thus,

_ F4 21.36kN
2 2
In Fig. 1-224a, note that pin B is subjected to single shear, which occurs

on the section between the cable and beam, Fig. 1-224d. For this pin
segment,

Vi = 10.68 kN

Vg = Fp = 125kN

Average Shear Stress.

v, 10.68(10°)N
£ =—— * =340 MPa Ans.

(TA)avg = A, =

g(o.oz m)?

Vs 125(10°)N

(TB)e = 4 = = 17.7 MPa Ans. @

%(0.03 m)?
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. EXAMPLE |1.11

If the wood joint in Fig. 1-23a has a width of 150 mm, determine the
average shear stress developed along shear planes a—a and b-b. For
each plane, represent the state of stress on an element of the material.

—_—
6 kKN 6 kN
(b)
0.1m ' 0.125m
(a)
Fig. 1-23
SOLUTION
Internal Loadings. Referring to the free-body diagram of the
member, Fig. 1-23b,
HE3SF. =0, 6kKN-F-F=0 F =3kN
Now consider the equilibrium of segments cut across shear planes a—a
and b-b, shown in Figs. 1-23c and 1-23d.
3EN B IF, =0, V,-3kN=0 V,=3kN
-

L 3F =0; 3KN-V, =0 V,=3kN

Average Shear Stress.

Vv, 310N 200 kP )
(Tdoe = 4= 01 m) (015 m) a e
— 3kN
\h _—" (7)o = 2 () N 160 kP A
Tblavg = 4 T = a ns.
=760 kPa v blave = 4, (0.125 m)(0.15 m)
(d) The state of stress on elements located on sections a—-a and b-b is

shown in Figs. 1-23¢ and 1-23d, respectively.
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EXAMPLE [1.12 .

The inclined member in Fig. 1-24a is subjected to a compressive force
of 600 Ib. Determine the average compressive stress along the smooth
areas of contact defined by AB and BC, and the average shear stress
along the horizontal plane defined by DB.

5/|4
3

600 Ib

(a) Fig. 1-24

SOLUTION

Internal Loadings. The free-body diagram of the inclined member
is shown in Fig. 1-24b. The compressive forces acting on the areas of
contact are

HIF, =0, Fas—6001b(3) =0  Fus=3601b

+1SF,=0;  Fgc—6001b(2) =0  Fge=4801b

Also, from the free-body diagram of the top segment ABD of the
bottom member, Fig. 1-24c¢, the shear force acting on the sectioned
horizontal plane DB is

L 3F =0; V =3601b

Average Stress. The average compressive stresses along the

horizontal and vertical planes of the inclined member are
Fap 360 1b .
= = =240 Ans.
TAB = A s (Lin)(15in.) . "

Fpe 480 1b .
= = = 160 Ans.
TBC T A  (2in)(15in.) o "
These stress distributions are shown in Fig. 1-24d.
The average shear stress acting on the horizontal plane defined by

DB is

Tave = (3in.)(15 in.)
This stress is shown uniformly distributed over the sectioned area in
Fig. 1-24e.

= 80 psi Ans.
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. FUNDAMENTAL PROBLEMS

F1-7. The uniform beam is supported by two rods AB
and CD that have cross-sectional areas of 10 mm? and
15 mm?, respectively. Determine the intensity w of the
distributed load so that the average normal stress in each
rod does not exceed 300 kPa.

\ 6m |

F1-7
F1-8. Determine the average normal stress developed on
the cross section. Sketch the normal stress distribution over

the cross section.

300 kN

80 mm

100 mm

F1-8

F1-9. Determine the average normal stress developed on
the cross section. Sketch the normal stress distribution over
the cross section.

F1-9

F1-10. If the 600-kN force acts through the centroid of the
cross section, determine the location y of the centroid and
the average normal stress developed on the cross section.
Also, sketch the normal stress distribution over the cross
section.

F1-10

F1-11. Determine the average normal stress developed
at points A, B, and C. The diameter of each segment is
indicated in the figure.

1in.

F1-11

F1-12. Determine the average normal stress developed in
rod AB if the load has a mass of 50 kg. The diameter of rod
AB is 8§ mm.

F1-12
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1-31. The column is subjected to an axial force of 8 kN,
which is applied through the centroid of the cross-sectional
area. Determine the average normal stress acting at section
a-a. Show this distribution of stress acting over the area’s
cross section.

10 mm

Prob. 1-31

*1-32. The lever is held to the fixed shaft using a tapered
pin AB, which has a mean diameter of 6 mm. If a couple is
applied to the lever, determine the average shear stress in
the pin between the pin and lever.

B 12mm
A '
250 mm 250 mm T
20N 20N

Prob. 1-32

¢1-33. The bar has a cross-sectional area A and is
subjected to the axial load P. Determine the average
normal and average shear stresses acting over the shaded
section, which is oriented at 6 from the horizontal. Plot the
variation of these stresses as a function of # (0 = 6 = 90°).

th '~ :

Prob. 1-33
1-34. The built-up shaft consists of a pipe AB and solid
rod BC.The pipe has an inner diameter of 20 mm and outer
diameter of 28 mm. The rod has a diameter of 12 mm.
Determine the average normal stress at points D and E and
represent the stress on a volume element located at each of
these points.

A B 6kN
D 6kN E
Prob. 1-34

1-35. The bars of the truss each have a cross-sectional
area of 1.25in% Determine the average normal stress in
each member due to the loading P = 8 kip. State whether
the stress is tensile or compressive.

*1-36. The bars of the truss each have a cross-sectional
area of 1.25 in% If the maximum average normal stress in
any bar is not to exceed 20 ksi, determine the maximum
magnitude P of the loads that can be applied to the truss.

B C 4

Probs. 1-35/36
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e1-37. The plate has a width of 0.5 m. If the stress distri-
bution at the support varies as shown, determine the force
P applied to the plate and the distance d to where it is
applied.

4m

|P

g = (15x1/2) MPa 30 MPa

Prob. 1-37

1-38. The two members used in the construction of an
aircraft fuselage are joined together using a 30° fish-mouth
weld. Determine the average normal and average shear
stress on the plane of each weld. Assume each inclined
plane supports a horizontal force of 400 Ib.

1.5in. ,

L ‘ 30
800 b <«—\ 7 Lin. |

lin. |

30°

800 Ib

Prob. 1-38

1-39. If the block is subjected to the centrally applied
force of 600 kN, determine the average normal stress in the
material. Show the stress acting on a differential volume
element of the material.

Prob. 1-39

*1-40. The pins on the frame at B and C each have a
diameter of 0.25 in. If these pins are subjected to double
shear, determine the average shear stress in each pin.

*1-41. Solve Prob. 1-40 assuming that pins B and C are
subjected to single shear.

1-42. The pins on the frame at D and E each have a
diameter of 0.25 in. If these pins are subjected to double
shear, determine the average shear stress in each pin.

1-43. Solve Prob. 1-42 assuming that pins D and E are
subjected to single shear.

3ft | 3ft i
500 1b

Probs. 1-40/41/42/43

*1-44. A 175-1b woman stands on a vinyl floor wearing
stiletto high-heel shoes. If the heel has the dimensions
shown, determine the average normal stress she exerts on
the floor and compare it with the average normal stress
developed when a man having the same weight is wearing
flat-heeled shoes. Assume the load is applied slowly, so that
dynamic effects can be ignored. Also, assume the entire
weight is supported only by the heel of one shoe.

0.3 in./@]

—{—0.1in.

1.2 in./@]
—

Prob. 1-44
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e1-45. The truss is made from three pin-connected *1-48. The beam is supported by a pin at A and a short
members having the cross-sectional areas shown in the link BC. If P =15 kN, determine the average shear stress
figure. Determine the average normal stress developed in developed in the pins at A, B, and C. All pins are in double

each member when the truss is subjected to the load shown. shear as shown, and each has a diameter of 18 mm.
State whether the stress is tensile or compressive.

500 1b
P 4P 4P
|
& | C 31t Y 0.5m
+— (= 9 B 1m 1.5m
FT|  Apc=08in2 y y y
o ] ] ]
R=
O
S v
I &
. 2
41t g il
< Q’/
» Prob. 1-48
*1-49. The beam is supported by a pin at A and a short
1 |l link BC. Determine the maximum magnitude P of the loads
A the beam will support if the average shear stress in each pin
is not to exceed 80 MPa. All pins are in double shear as
Prob. 1-45 shown, and each has a diameter of 18 mm.

1-46. Determine the average normal stress developed
in links AB and CD of the smooth two-tine grapple that
supports the log having a mass of 3 Mg. The cross-

sectional area of each link is 400 mm?. :
1.5m v 1.5m v
1-47. Determine the average shear stress developed T T
in pins A and B of the smooth two-tine grapple that
supports the log having a mass of 3 Mg. Each pin has a
diameter of 25 mm and is subjected to double shear.
Prob. 1-49

1-50. The block is subjected to a compressive force of
2 kN. Determine the average normal and average shear
stress developed in the wood fibers that are oriented along
section a—a at 30° with the axis of the block.

50 mm
a’\

2 kN

\30*’ -

Probs. 1-46/47 Prob. 1-50
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1-51. During the tension test, the wooden specimen is
subjected to an average normal stress of 2 ksi. Determine
the axial force P applied to the specimen. Also, find the
average shear stress developed along section a-a of
the specimen.

Prob. 1-51

*1-52. If the joint is subjected to an axial force of
P = 9 kN, determine the average shear stress developed in
each of the 6-mm diameter bolts between the plates and the
members and along each of the four shaded shear planes.

*1-53. The average shear stress in each of the 6-mm diameter
bolts and along each of the four shaded shear planes is not
allowed to exceed 80 MPa and 500 kPa, respectively.
Determine the maximum axial force P that can be applied
to the joint.

100 mm
S
100 mm

>

Probs. 1-52/53

1-54. The shaft is subjected to the axial force of 40 kN.
Determine the average bearing stress acting on the collar C
and the normal stress in the shaft.

40 kN

— ~— 30 mm

40 mm

Prob. 1-54

1-55. Rods AB and BC each have a diameter of 5 mm. If
the load of P = 2 kN is applied to the ring, determine the
average normal stress in each rod if § = 60°.

*1-56. Rods AB and BC each have a diameter of 5 mm.
Determine the angle 6 of rod BC so that the average
normal stress in rod AB is 1.5 times that in rod BC. What is
the load P that will cause this to happen if the average
normal stress in each rod is not allowed to exceed 100 MPa?

Probs. 1-55/56



¢1-57. The specimen failed in a tension test at an angle of
52° when the axial load was 19.80 kip. If the diameter of the
specimen is 0.5 in., determine the average normal and
average shear stress acting on the area of the inclined
failure plane. Also, what is the average normal stress acting
on the cross section when failure occurs?

/

Prob. 1-57

1-58. The anchor bolt was pulled out of the concrete wall
and the failure surface formed part of a frustum and
cylinder. This indicates a shear failure occurred along the
cylinder BC and tension failure along the frustum AB. If
the shear and normal stresses along these surfaces have the
magnitudes shown, determine the force P that must have
been applied to the bolt.

"::45?::: B ":,45'0:,'
50 mm

3 MPa 3 MPa

P11 RG
i,; - {tasmp, 20T

b )

gl

5 mm 25 mm

Prob. 1-58
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1-59. The open square butt joint is used to transmit a
force of 50 kip from one plate to the other. Determine the
average normal and average shear stress components that
this loading creates on the face of the weld, section AB.

50 kip

Prob. 1-59

*1-60. If P = 20 kN, determine the average shear stress
developed in the pins at A and C. The pins are subjected to
double shear as shown, and each has a diameter of 18 mm.

e1-61. Determine the maximum magnitude P of the load
the beam will support if the average shear stress in each pin
is not to allowed to exceed 60 MPa. All pins are subjected
to double shear as shown, and each has a diameter of
18 mm.

ol

0TS Sy
ol -B
A‘kZm 2m 2m-—~

Probs. 1-60/61
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1-62. The crimping tool is used to crimp the end of the
wire E. If a force of 20 Ib is applied to the handles,
determine the average shear stress in the pin at A. The pin is
subjected to double shear and has a diameter of 0.2 in. Only
a vertical force is exerted on the wire.

1-63. Solve Prob. 1-62 for pin B. The pin is subjected to
double shear and has a diameter of 0.2 in.

20 1b
o e Co \\
089D "
A
Sin.
1.5in. 2in. 1in.
20 1b
Probs. 1-62/63

*1-64. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the glue can withstand a
maximum average shear stress of 800 kPa, determine the
maximum allowable clamping force F.

¢1-65. The triangular blocks are glued along each side of
the joint. A C-clamp placed between two of the blocks is
used to draw the joint tight. If the clamping force is
F =900 N, determine the average shear stress developed
in the glued shear plane.

Probs. 1-64/65

1-66. Determine the largest load P that can be a applied
to the frame without causing either the average normal
stress or the average shear stress at section a—a to exceed
o = 150 MPa and 7 = 60 MPa, respectively. Member CB
has a square cross section of 25 mm on each side.

1.5m
\ {P

Prob. 1-66

1-67. The prismatic bar has a cross-sectional area A. If it
is subjected to a distributed axial loading that increases
linearly fromw = 0 at x = 0 to w = wj at x = a, and then
decreases linearly to w = 0 at x = 2a, determine the
average normal stress in the bar as a function of x for
O0=x<a.

*1-68. The prismatic bar has a cross-sectional area A. If it
is subjected to a distributed axial loading that increases
linearly fromw = 0 atx = 0 to w = wj at x = a, and then
decreases linearly to w = 0 at x = 2a, determine the
average normal stress in the bar as a function of x for
a<x =2a.

Wo

|—>—>—>—> — —> —> >

-> > —> —>——> —> —> >
* ‘

Probs. 1-67/68



¢1-69. The tapered rod has a radius of » = (2 — x/6) in.
is subjected to the distributed loading of
w = (60 + 40x) Ib/in. Determine the average normal stress

and

at the center of the rod, B.

1-70. The pedestal supports a load P at its center. If the
material has a mass density p, determine the radial
dimension r as a function of z so that the average normal
stress in the pedestal remains constant. The cross section is

w = (60 + 40x) Ib/ in.

r:@f%)m

—_— 5

‘

3in. ‘ 3in.

Prob. 1-69

circular.

Prob. 1-70
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1-71. Determine the average normal stress at section a—a
and the average shear stress at section b—b in member AB.

The cross section is square, 0.5 in. on each side.

150 Ib /ft
19) x O) B
C 4 ft 60°
a
a
b
b
“A
Prob. 1-71

*1-72. Consider the general problem of a bar made from
m segments, each having a constant cross-sectional area A4,,
and length L,,. If there are n loads on the bar as shown,
write a computer program that can be used to determine
the average normal stress at any specified location x. Show
an application of the program using the values L; = 4 ft,
d,=2ft, P, =4001b, A, =3in% L,=2ft, d, = 6ft,
P, = —3001b, A, = 1in*

d,
dy
4,
| ﬂ
A A
P P
- Py 2 n ‘
x | |
L, L, L, \
Prob. 1-72
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CHAPTER 1

STRESS

1.6 Allowable Stress

To properly design a structural member or mechanical element it is
necessary to restrict the stress in the material to a level that will be safe.
To ensure this safety, it is therefore necessary to choose an allowable
stress that restricts the applied load to one that is /ess than the load the
member can fully support. There are many reasons for doing this. For
example, the load for which the member is designed may be different
from actual loadings placed on it. The intended measurements of a
structure or machine may not be exact, due to errors in fabrication or in
the assembly of its component parts. Unknown vibrations, impact, or
accidental loadings can occur that may not be accounted for in the
design. Atmospheric corrosion, decay, or weathering tend to cause
materials to deteriorate during service. And lastly, some materials, such
as wood, concrete, or fiber-reinforced composites, can show high
variability in mechanical properties.

One method of specifying the allowable load for a member is to use a
number called the factor of safety. The factor of safety (E.S.) is a ratio of
the failure load Fy,; to the allowable load F,,,,. Here Fy, is found from
experimental testing of the material, and the factor of safety is selected
based on experience so that the above mentioned uncertainties are
accounted for when the member is used under similar conditions of
loading and geometry. Stated mathematically,

Fraii

FS. =
Fallow

(1-8)

If the load applied to the member is linearly related to the stress
developed within the member, as in the case of using o = P/A and
Tavg = V/ A, then we can also express the factor of safety as a ratio of the
failure stress o, (Or Tr,y) to the allowable stress o 0w (OF Tajiow);* that is,

O tail

FS. = (1-9)
T allow
or
F.S. = —tail (1-10)
Tallow

*In some cases, such as columns, the applied load is not linearly related to stress and
therefore only Eq. 1-8 can be used to determine the factor of safety. See Chapter 13.
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In any of these equations, the factor of safety must be greater than 1 in
order to avoid the potential for failure. Specific values depend on the
types of materials to be used and the intended purpose of the structure
or machine. For example, the E.S. used in the design of aircraft or space-
vehicle components may be close to 1 in order to reduce the weight of
the vehicle. Or, in the case of a nuclear power plant, the factor of safety
for some of its components may be as high as 3 due to uncertainties
in loading or material behavior. In many cases, the factor of safety for a
specific case can be found in design codes and engineering handbooks.
These values are intended to form a balance of ensuring public and
environmental safety and providing a reasonable economic solution to
design.

1.7 Design of Simple Connections

By making simplifying assumptions regarding the behavior of the
material, the equations 0 = P/A and 7,,, = V//A can often be used to
analyze or design a simple connection or mechanical element. In
particular, if a member is subjected to normal force at a section, its
required area at the section is determined from

a=-"t (1-11)

T allow

On the other hand, if the section is subjected to an average shear force,
then the required area at the section is

A=V (1-12)

Tallow

As discussed in Sec. 1.6, the allowable stress used in each of these
equations is determined either by applying a factor of safety to the
material’s normal or shear failure stress or by finding these stresses
directly from an appropriate design code.

Three examples of where the above equations apply are shown in
Fig. 1-25.

Assumed uniform

shear stress
Tallow

(Ub)al]ow

Assumed uniform \
normal stress ‘

distribution
P
A=
(Gb)alluw

The area of the column base plate B is determined
from the allowable bearing stress for the concrete.

Tallow™d

The embedded length / of this rod in concrete
can be determined using the allowable shear
stress of the bonding glue.

>
N ~.,

The area of the bolt for this lap joint
is determined from the shear stress,
which is largest between the plates.

Fig. 1-25
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Important Point

® Design of a member for strength is based on selecting an
allowable stress that will enable it to safely support its intended
load. Since there are many unknown factors that can influence
the actual stress in a member, then depending upon the intended
use of the member, a factor of safety is applied to obtain the
allowable load the member can support.

Procedure for Analysis

When solving problems using the average normal and shear stress
equations, a careful consideration should first be made as to choose
the section over which the critical stress is acting. Once this section
is determined, the member must then be designed to have a
sufficient area at the section to resist the stress that acts on it. This
area is determined using the following steps.

Internal Loading.

® Section the member through the area and draw a free-body
diagram of a segment of the member. The internal resultant force at
the section is then determined using the equations of equilibrium.

Required Area.

® Provided the allowable stress is known or can be determined,
the required area needed to sustain the load at the section is then
determined from A = P/o 0w 0T A = V /T 10w

Appropriate factors of safety must be
considered when designing cranes and
cables used to transfer heavy loads.
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EXAMPLE |1.13

The control arm is subjected to the loading shown in Fig. 1-26a.
Determine to the nearest % in. the required diameter of the steel pin
at C if the allowable shear stress for the steel is 7,y = 8 ksi.

B _ . p
™ ‘“]-‘1
8in. } B
X c
\ c 7‘\‘%9 Qe a_
‘R |
) 3 <3 in.—| 2in. 4 )
3in—{ 2 in. 4 5 kip 5 kip
3 kip C, 3 kip
(a) Fig. 1-26 (b)
SOLUTION
Internal Shear Force. A free-body diagram of the arm is shown in
Fig. 1-26b. For equilibrium we have
(+SMc = 0, Fap(8in.) — 3kip (3in.) — Skip (2)(Sin.) = 0
FAB =3 klp
L 3F =0 —3kip — C, + 5kip () =0  C, = 1kip
+13F, = 0; C,—3kip —5Skip(}) =0 C, = 6kip 6.082 kip
The pin at C resists the resultant force at C, which is
Fe = V/(1kip) + (6 kip)? = 6.082 kip 3.041 kip
Since the pin is subjected to double shear, a shear force of 3.041 kip - 3-t0é1 kip
ma

acts over its cross-sectional area between the arm and each supporting
leaf for the pin, Fig. 1-26c.

We have
VvV  3.041 kip

Talow 8 kip/in2
d 2
77(2> = (.3802 in?
d = 0.696 in.

Use a pin having a diameter of
d =3 in. = 0.750 in. Ans.

Required Area.
= (0.3802 in®

©
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. EXAMPLE |1.14

The suspender rod is supported at its end by a fixed-connected circular
disk as shown in Fig. 1-27a. If the rod passes through a 40-mm-diameter
hole, determine the minimum required diameter of the rod and
the minimum thickness of the disk needed to support the 20-kN load.
The allowable normal stress for the rod is o, = 60 MPa, and the
allowable shear stress for the disk is 7., = 35 MPa.

——{40mm }——
3

Fig. 1-27

SOLUTION

Diameter of Rod. By inspection, the axial force in the rod is 20 kN.
Thus the required cross-sectional area of the rod is

G- P o 20(10°) N
Tallow 4 60(10°) N/m?
so that
d = 0.0206 m = 20.6 mm Ans.

Thickness of Disk. As shown on the free-body diagram in
Fig. 1-27b, the material at the sectioned area of the disk must resist
shear stress to prevent movement of the disk through the hole. If this
shear stress is assumed to be uniformly distributed over the sectioned
area, then, since V' = 20 kN, we have

- 20(10°) N
A= : 27(0.02 m)(¢) = W

t = 4.55(107°) m = 4.55 mm Ans.
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EXAMPLE [1.15 .

The shaft shown in Fig. 1-28a is supported by the collar at C, which is
attached to the shaft and located on the right side of the bearing at B.
Determine the largest value of P for the axial forces at £ and F so
that the bearing stress on the collar does not exceed an allowable
stress of (0 )aow = 75 MPa and the average normal stress in the shaft
does not exceed an allowable stress of (0,) 10w = 55 MPa.

60 mm B, - (=20 mm

P
ZP@EE;FKSOmm 2 p< :E‘_,g;p

(®)

(a)
Axial
Force

3P
P

Position
(O]
Fig. 1-28

SOLUTION
To solve the problem we will determine P for each possible failure
condition. Then we will choose the smallest value. Why?

Normal Stress. Using the method of sections, the axial load within
region FE of the shaft is 2P, whereas the largest axial force, 3P, occurs
within region EC, Fig. 1-28b. The variation of the internal loading is
clearly shown on the normal-force diagram, Fig. 1-28c. Since the cross-
sectional area of the entire shaft is constant, region EC is subjected to
the maximum average normal stress. Applying Eq. 1-11, we have

P 3P
A= ; 7(0.03 m)* = ————
T allow 55(10 )N/m
P = 51.8kN Ans.
Bearing Stress. As shown on the free-body diagram in Fig. 1-28d, 3P 4—%
the collar at C must resist the load of 3P, which acts over a bearing c
area of A, = [w(0.04 m)> — 7(0.03 m)?] = 2.199(103) m Thus, ()
P 3P
A= ; 2.199(107) m* = ~—————
P = 55.0kN

By comparison, the largest load that can be applied to the shaft is
P = 51.8 kN, since any load larger than this will cause the allowable
normal stress in the shaft to be exceeded.

NOTE: Here we have not considered a possible shear failure of the
collar as in Example 1.14.
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. EXAMPLE [1.16

075 m-! *Aluminum1 |

2 m }
(a)

PP
T AC

F i |
A B

k075 m-——1.25 mﬁ
Fp

(b)
Fig. 1-29

The rigid bar AB shown in Fig. 1-29a is supported by a steel rod AC
having a diameter of 20 mm and an aluminum block having a cross-
sectional area of 1800 mm?. The 18-mm-diameter pins at A and C are
subjected to single shear. If the failure stress for the steel and aluminum
is (0g )i = 680 MPa and (o) = 70 MPa, respectively, and the
failure shear stress for each pin s 7,; = 900 MPa, determine the largest
load P that can be applied to the bar. Apply a factor of safety of F.S. = 2.

SOLUTION
Using Egs. 1-9 and 1-10, the allowable stresses are

(0s)ril 680 MPa

(o-st)allow = ES. 2 = 340 MPa
(0a)ait 70 MPa
(Ual)allow = FS. = ) = 35 MPa
_ Thail 900 MPa _
Tallow — ES. = ) = 450 MPa

The free-body diagram of the bar is shown in Fig. 1-29b. There are
three unknowns. Here we will apply the moment equations of equilibrium
in order to express F 4c and Fpin terms of the applied load P. We have

(t=ZMp =0 P(125m) — Fy4c(2m) =0 (1)
(tEM 4 = 0; Fz(2m) — P(0.75m) =0 (2)
We will now determine each value of P that creates the allowable
stress in the rod, block, and pins, respectively.
Rod AC. This requires
Fac = (0g)aiow(Aac) = 340(10%) N/m? [7(0.01 m)?] = 106.8 kN

Using Eq. 1,
_ (106.8kN)(2m)

125 m = 171 kN

Block B. In this case,

Fg = (0a)aiowAg = 35(10%) N/m? [1800 mm? (10 %) m?/mm?] = 63.0 kN

Using Eq. 2,
o (630KN)Cm)
B 0.75m a

Pin A or C. Due to single shear,
Fac =V = TaowA = 450(10°) N/m? [7(0.009 m)?] = 114.5 kN

From Eq. 1,
~ 1145kN (2m)

1.25m
By comparison, as P reaches its smallest value (168 kN), the allowable
normal stress will first be developed in the aluminum block. Hence,

P = 168 kN Ans.

= 183 kN




. FUNDAMENTAL PROBLEMS .

F1-13. Rods AC and BC are used to suspend the 200-kg
mass. If each rod is made of a material for which the average
normal stress can not exceed 150 MPa, determine the
minimum required diameter of each rod to the nearest mm.

60°——60°

\
/

F1-13

F1-14. The frame supports the loading shown. The pin at
A has a diameter of 0.25 in. If it is subjected to double shear,
determine the average shear stress in the pin.

F1-14

F1-15. Determine the maximum average shear stress
developed in each 3/4-in.-diameter bolt.

eyt

S kip

10 kip

F1-15
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F1-16. If each of the three nails has a diameter of 4 mm
and can withstand an average shear stress of 60 MPa,
determine the maximum allowable force P that can be
applied to the board.

F1-16

F1-17. The strut is glued to the horizontal member at
surface AB.If the strut has a thickness of 25 mm and the glue
can withstand an average shear stress of 600 kPa, determine
the maximum force P that can be applied to the strut.

F1-17

F1-18. Determine the maximum average shear stress
developed in the 30-mm-diameter pin.

30 kN

40 kN

F1-18
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F1-19. If the eyebolt is made of a material having a yield
stress of oy = 250 MPa, determine the minimum required
diameter d of its shank. Apply a factor of safety F.S. = 1.5
against yielding.

F1-19

F1-20. If the bar assembly is made of a material having
a yield stress of oy = 50 ksi, determine the minimum
required dimensions A and 4, to the nearest 1/8 in. Apply a
factor of safety F.S. = 1.5 against yielding. Each bar has a
thickness of 0.5 in.

15 kip
i e u 30 kip
L <~— T a
C B 15kip
F1-20

F1-21. Determine the maximum force P that can be
applied to the rod if it is made of material having a yield
stress of oy = 250 MPa. Consider the possibility that failure
occurs in the rod and at section a—a. Apply a factor of safety
of F.S. = 2 against yielding.

IR
120 m]miﬁo mm

Section a-a

F1-21

F1-22. The pin is made of a material having a failure
shear stress of 7g,; = 100 MPa. Determine the minimum
required diameter of the pin to the nearest mm. Apply a
factor of safety of F.S. = 2.5 against shear failure.

T |

80 kN

F1-22

F1-23. If the bolt head and the supporting bracket are
made of the same material having a failure shear stress of
Tl = 120 MPa, determine the maximum allowable force P
that can be applied to the bolt so that it does not pull
through the plate. Apply a factor of safety of F.S. = 2.5
against shear failure.

P F1-23

F1-24. Six nails are used to hold the hanger at A against
the column. Determine the minimum required diameter of
each nail to the nearest 1/16 in. if it is made of material
having 7¢,; = 16 ksi. Apply a factor of safety of F.S. =2
against shear failure.

300 Ib /ft

9 ft F1-24
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“lrropiews

*1-73. Member B is subjected to a compressive force of
800 Ib. If A and B are both made of wood and are % in. thick,
determine to the nearest § in. the smallest dimension / of
the horizontal segment so that it does not fail in shear. The
average shear stress for the segment is 7, = 300 psi.

Prob.1-73

1-74. The lever is attached to the shaft A using a key that
has a width d and length of 25 mm. If the shaft is fixed and
a vertical force of 200 N is applied perpendicular to the
handle, determine the dimension d if the allowable shear
stress for the key is 70w = 35 MPa.

e

Prob. 1-74

1-75. The joint is fastened together using two bolts.
Determine the required diameter of the bolts if the failure
shear stress for the bolts is 7¢,; = 350 MPa. Use a factor of
safety for shear of F.S. = 2.5.

30mm_. SOKN
<

P 30 mm

Prob. 1-75

*1-76. The lapbelt assembly is to be subjected to a force
of 800 N. Determine (a) the required thickness ¢ of
the belt if the allowable tensile stress for the material
iS (0 )aow = 10 MPa, (b) the required lap length d,
if the glue can sustain an allowable shear stress of
(Tailow)g = 0.75 MPa, and (c) the required diameter d, of
the pin if the allowable shear stress for the pin is
(Tallow)p = 30 MPa.

800 N

d,

800 N

Prob. 1-76

¢1-77. The wood specimen is subjected to the pull of
10 kN in a tension testing machine. If the allowable normal
stress for the wood is (0)aow = 12MPa and the
allowable shear stress is 7., = 1.2 MPa, determine the
required dimensions b and ¢ so that the specimen reaches
these stresses simultaneously. The specimen has a width of
25 mm.

Prob. 1-77
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1-78. Member B is subjected to a compressive force of
600 1b. If A and B are both made of wood and are 1.5 in.
thick, determine to the nearest 1/8 in. the smallest dimension
a of the support so that the average shear stress along the
blue line does not exceed 70w = 50 psi. Neglect friction.

600 1b

Prob. 1-78

1-79. The joint is used to transmit a torque of
T = 3 kN-m. Determine the required minimum diameter
of the shear pin A if it is made from a material having a
shear failure stress of 7g,; = 150 MPa. Apply a factor of
safety of 3 against failure.

*1-80. Determine the maximum allowable torque T that
can be transmitted by the joint. The shear pin A has a
diameter of 25 mm, and it is made from a material having a
failure shear stress of 7,; = 150 MPa. Apply a factor of
safety of 3 against failure.

¢1-81. The tension member is fastened together using two
bolts, one on each side of the member as shown. Each bolt
has a diameter of 0.3 in. Determine the maximum load P
that can be applied to the member if the allowable shear
stress for the bolts is 7.,y = 12 ksi and the allowable
average normal stress is o, = 20 ksi.

//\600
¥ T

Prob. 1-81

1-82. The three steel wires are used to support the
load. If the wires have an allowable tensile stress of
Ta0w = 165 MPa, determine the required diameter of each
wire if the applied load is P = 6 kN.

1-83. The three steel wires are used to support the
load. If the wires have an allowable tensile stress of
Oa0w = 165 MPa, and wire AB has a diameter of 6 mm, BC
has a diameter of 5 mm, and BD has a diameter of 7 mm,
determine the greatest force P that can be applied before
one of the wires fails.

Probs. 1-79/80

Probs. 1-82/83



*1-84. The assembly consists of three disks A, B, and C
that are used to support the load of 140 kN. Determine the
smallest diameter d; of the top disk, the diameter d, within
the support space, and the diameter dz of the hole in the
bottom disk. The allowable bearing stress for the material
is (0ai0w)p = 350 MPa and allowable shear stress is
Tallow — 125 MPa.

140 kN

dl*" l ‘_7 20 mm
A_—‘ l 10 mm

C!—BH—!+i
i - P

d

Prob. 1-84

*1-85. The boom is supported by the winch cable that has
a diameter of 0.25 in. and an allowable normal stress of
Oallow = 24 ksi. Determine the greatest load that can be
supported without causing the cable to fail when 6 = 30°
and ¢ = 45°. Neglect the size of the winch.

1-86. The boom is supported by the winch cable that has
an allowable normal stress of o, = 24 ksi. If it is
required that it be able to slowly lift 5000 1b, from 6 = 20°
to 6 = 50°, determine the smallest diameter of the cable to
the nearest % in. The boom AB has a length of 20 ft.
Neglect the size of the winch. Set d = 12 ft.

20 ft =

\ d |

Probs. 1-85/86
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1-87. The 60 mm X 60 mm oak post is supported on
the pine block. If the allowable bearing stresses for
these materials are oy, = 43 MPa and o, = 25 MPa,
determine the greatest load P that can be supported. If
a rigid bearing plate is used between these materials,
determine its required area so that the maximum load P can
be supported. What is this load?

Prob. 1-87

*1-88. The frame is subjected to the load of 4 kN which
acts on member ABD at D. Determine the required
diameter of the pins at D and C if the allowable shear stress
for the material is 7,0, = 40 MPa. Pin C is subjected to
double shear, whereas pin D is subjected to single shear.

4 kN

- 1m—] 1.5m 45°
{o\
E@ C

1.5m

o) v

BN
1.5m
Aii
Prob. 1-88
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*1-89. The eye bolt is used to support the load of 5 kip.
Determine its diameter d to the nearest %in. and the
required thickness 4 to the nearest %in. of the support so
that the washer will not penetrate or shear through it. The
allowable normal stress for the bolt is o, = 21 ksi and
the allowable shear stress for the supporting material is
Tallow — 5 ksi.

‘«1 in.»‘

WEXEE | 1 2
(’.1'.' NS | RVSH »‘) h

S kip

Prob. 1-89

1-90. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load P = 1500 N,
determine the required minimum diameter of pins B and C.
Use a factor of safety of 2 against failure. The pins are made
of material having a failure shear stress of 7,; = 150 MPa,
and each pin is subjected to double shear.

1-91. The soft-ride suspension system of the mountain
bike is pinned at C and supported by the shock absorber
BD. If it is designed to support a load of P = 1500 N,
determine the factor of safety of pins B and C against
failure if they are made of a material having a shear failure
stress of 7p,; = 150 MPa. Pin B has a diameter of 7.5 mm,
and pin C has a diameter of 6.5 mm. Both pins are subjected
to double shear.

P 100 mm

300 mm

Probs. 1-90/91

*1-92. The compound wooden beam is connected together
by a bolt at B. Assuming that the connections at A, B, C, and
D exert only vertical forces on the beam, determine the
required diameter of the bolt at B and the required outer
diameter of its washers if the allowable tensile stress for the
bolt is (o) aiow = 150 MPa and the allowable bearing stress
for the wood is () aow = 28 MPa. Assume that the hole in
the washers has the same diameter as the bolt.

2kN

—

=——————D

-

*1-93. The assembly is used to support the distributed
loading of w = 500 1b/ft. Determine the factor of safety with
respect to yielding for the steel rod BC and the pins at B and
C if the yield stress for the steel in tension is o, = 36 ksi
and in shear 7, = 18 ksi. The rod has a diameter of 0.40 in.,
and the pins each have a diameter of 0.30 in.

3kN 1.5kN
~2m 2 m—»‘fl.S morlsmofs m*l‘
— e

Prob. 1-92

1-94. If the allowable shear stress for each of the 0.30-
in.-diameter steel pins at A, B, and C is T, = 12.5 ksi,
and the allowable normal stress for the 0.40-in.-diameter
rod iS o 0w = 22 ksi, determine the largest intensity w of
the uniform distributed load that can be suspended from
the beam.

Probs. 1-93/94



1-95. If the allowable bearing stress for the material
under the supports at A and B is (0})a10w = 1.5 MPa,
determine the size of square bearing plates A’ and B’
required to support the load. Dimension the plates to the
nearest mm. The reactions at the supports are vertical. Take
P = 100 kN.

*1-96. If the allowable bearing stress for the material
under the supports at A and B is (0})ai0w = 1.5 MPa,
determine the maximum load P that can be applied to the
beam. The bearing plates A’ and B’ have square cross
sections of 150 mm X 150 mm and 250 mm X 250 mm,
respectively.

40 kN/m lp

A v BJE
|

~—15m l 3m i

1.5m—

Probs. 1-95/96

*1-97. The rods AB and CD are made of steel having a
failure tensile stress of o,; = 510 MPa. Using a factor of
safety of F.S. = 1.75 for tension, determine their smallest
diameter so that they can support the load shown. The
beam is assumed to be pin connected at A and C.

6 kN
4kN
l A4 l .
A : lc
~—2 kaZ m—~—-3 mJRfﬁ m—

Prob. 1-97
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1-98. The aluminum bracket A is used to support the
centrally applied load of 8 kip. If it has a constant thickness
of 0.5 in., determine the smallest height /4 in order to
prevent a shear failure. The failure shear stress is
Trail = 23 ksi. Use a factor of safety for shear of F.S. = 2.5.

jh
—

8 kip

Prob. 1-98

1-99. The hanger is supported using the rectangular pin.
Determine the magnitude of the allowable suspended load
P if the allowable bearing stress is (0p)a0w = 220 MPa, the
allowable tensile stress is (07)a0w = 150 MPa, and the
allowable shear stress is 7o, = 130 MPa. Take t = 6 mm,
a = 5mm, and b = 25 mm.

*1-100. The hanger is supported using the rectangular
pin. Determine the required thickness ¢ of the hanger, and
dimensions a and b if the suspended load is P = 60 kN.
The allowable tensile stress iS (0 )aow = 150 MPa, the
allowable bearing stress is (op)a0w = 290 MPa, and the
allowable shear stress is 7,y = 125 MPa.

37.5 mm

Probs. 1-99/100
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. CHAPTER REVIEW

The internal loadings in a body consist
of a normal force, shear force, bending
moment, and torsional moment. They
represent the resultants of both a
normal and shear stress distribution
that acts over the cross section. To
obtain these resultants, use the method
of sections and the equations of
equilibrium.

Torsional
Moment

4

Normal
Force

Bending MA’QJJ

Moment

If a bar is made from homogeneous
isotropic material and it is subjected to
a series of external axial loads that
pass through the centroid of the cross
section, then a uniform normal stress
distribution will act over the cross
section. This average normal stress can
be determined from o = P/A, where
P is the internal axial load at the
section.

The average shear stress can be
determined using 7,, = V/A, where
V is the shear force acting on the
cross-sectional area A. This formula
is often used to find the average
shear stress in fasteners or in parts
used for connections.

Tavg = %

The design of any simple connection
requires that the average stress along
any cross section not exceed an
allowable stress of o uow OF Tajiow-
These values are reported in codes and
are considered safe on the basis of
experiments or through experience.
Sometimes a factor of safety is
reported provided the ultimate stress
is known.

2F, =0
EFy 0
2F, =0
M, =0
EMy =0
M, =0
P
o=—
A
Vv
Tavg = Z
ES. = O fail _ Ttail
T allow Tallow
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P1-1

P1-1. Here hurricane winds caused the failure of this
highway sign. Assuming the wind creates a uniform pressure
on the sign of 2 kPa, use reasonable dimensions for the sign
and determine the resultant shear and moment at the two
connections where the failure occurred.

P1-2

P1-2. The two structural tubes are connected by the pin
which passes through them. If the vertical load being
supported is 100 kN, draw a free-body diagram of the pin and
then use the method of sections to find the maximum average
shear force in the pin. If the pin has a diameter of 50 mm, what
is the maximum average shear stress in the pin?

P1-3

P1-3. The hydraulic cylinder H applies a horizontal force F on
the pin at A. Draw the free-body diagram of the pin and show
the forces acting on it. Using the method of sections, explain
why the average shear stress in the pin is largest at sections
through the gaps D and E and not at some intermediate section.

P1-4

P1-4. The vertical load on the hook is 1000 lb. Draw the
appropriate free-body diagrams and determine the maximum
average shear force on the pins at A, B, and C. Note that due
to symmetry four wheels are used to support the loading on
the railing.
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REVIEW PROBLEMS

e1-101. The 200-mm-diameter aluminum cylinder
supports a compressive load of 300 kN. Determine the
average normal and shear stress acting on section a—a.
Show the results on a differential element located on the
section.

Prob. 1-101

1-102. The long bolt passes through the 30-mm-thick
plate. If the force in the bolt shank is 8 kN, determine the
average normal stress in the shank, the average shear
stress along the cylindrical area of the plate defined by
the section lines a—a, and the average shear stress in the
bolt head along the cylindrical area defined by the section
lines b-b.

Prob. 1-102

1-103. Determine the required thickness of member BC
and the diameter of the pins at A and B if the allowable
normal stress for member BC is oo, = 29 ksi and the
allowable shear stress for the pins is 7,0 = 10 ksi.

\60"

8 ft A

2 kip/t

=

Prob. 1-103

*1-104. Determine the resultant internal loadings acting
on the cross sections located through points D and E of the
frame.

150 Ib /it

—

a

AR
=

Prob. 1-104



¢1-105. The pulley is held fixed to the 20-mm-diameter
shaft using a key that fits within a groove cut into the
pulley and shaft. If the suspended load has a mass of
50 kg, determine the average shear stress in the key along
section a—a. The key is 5 mm by 5 mm square and 12 mm

long.
a a
75 mm

Prob. 1-105

1-106. The bearing pad consists of a 150 mm by 150 mm
block of aluminum that supports a compressive load of
6 kN. Determine the average normal and shear stress acting
on the plane through section a—a. Show the results on a
differential volume element located on the plane.

6 kN
a
30°
a
150

Prob. 1-106
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1-107. The yoke-and-rod connection is subjected to a
tensile force of 5 kN. Determine the average normal stress
in each rod and the average shear stress in the pin A
between the members.

30 mm

SkN

Prob. 1-107

*1-108. The cable has a specific weight y (weight/volume)
and cross-sectional area A. If the sag s is small, so that its
length is approximately L and its weight can be distributed
uniformly along the horizontal axis, determine the average
normal stress in the cable at its lowest point C.

L2 i L2 l

Prob. 1-108



When the bolt causes compression of these two transparent plates it produces strains
in the material that shows up as a spectrum of colors when displayed under polarized
light. These strains can be related to the stress in the material.




Strain

CHAPTER OBJECTIVES

In engineering the deformation of a body is specified using the
concepts of normal and shear strain. In this chapter we will define these
quantities and show how they can be determined for various types of
problems.

2.1 Deformation

Whenever a force is applied to a body, it will tend to change the body’s
shape and size. These changes are referred to as deformation, and they
may be either highly visible or practically unnoticeable. For example, a
rubber band will undergo a very large deformation when stretched,
whereas only slight deformations of structural members occur when a
building is occupied by people walking about. Deformation of a body
can also occur when the temperature of the body is changed. A typical
example is the thermal expansion or contraction of a roof caused by the
weather.

In a general sense, the deformation of a body will not be uniform
throughout its volume, and so the change in geometry of any line
segment within the body may vary substantially along its length. Hence,
to study deformational changes in a more uniform manner, we will
consider line segments that are very short and located in the
neighborhood of a point. Realize, however, that these changes will also
depend on the orientation of the line segment at the point. For example,
a line segment may elongate if it is oriented in one direction, whereas it
may contract if it is oriented in another direction.

Note the before and after positions of three
different line segments on this rubber
membrane which is subjected to tension. The
vertical line is lengthened, the horizontal line
is shortened, and the inclined line changes
its length and rotates.

65
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2.2 Strain

In order to describe the deformation of a body by changes in length of
line segments and the changes in the angles between them, we will
develop the concept of strain. Strain is actually measured by
n experiments, and once the strain is obtained, it will be shown in the next
3 chapter how it can be related to the stress acting within the body.

As
A

Normal Strain. If we define the normal strain as the change in
length of a line per unit length, then we will not have to specify the actual
length of any particular line segment. Consider, for example, the line AB,
which is contained within the undeformed body shown in Fig. 2-1a. This
Undeformed body line lies 'along .the n axis and ha's an original length of As. After
() deformation, points A and B are displaced to A" and B’, and the line

becomes a curve having a length of As’, Fig. 2-1b. The change in length

of the line is therefore As’ — As. If we define the average normal strain

using the symbol €,,, (epsilon), then

As" — As
€avg = T As (2-1)

A
v

As point B is chosen closer and closer to point A, the length of the line
will become shorter and shorter, such that As — 0. Also, this causes B’ to

Deformed body approach A’, such that As’ — 0. Consequently, in the limit the normal
(®) strain at point A and in the direction of # is
Fig. 2-1
. As’ — A
e= lim — =% (2-2)

B— A along n As

Hence, when € (or €,,,) is positive the initial line will elongate, whereas if
€ is negative the line contracts.

Note that normal strain is a dimensionless quantity, since it is a ratio of
two lengths. Although this is the case, it is sometimes stated in terms of a
ratio of length units. If the SI system is used, then the basic unit for length
is the meter (m). Ordinarily, for most engineering applications € will be
very small, so measurements of strain are in micrometers per meter
(um/m), where 1um = 10°m. In the Foot-Pound-Second system,
strain is often stated in units of inches per inch (in./in.). Sometimes



for experimental work, strain is expressed as a percent, e.g.,
0.001 m/m = 0.1%. As an example, a normal strain of 480(107%) can be
reported as 480(107%) in./in., 480 wm/m, or 0.0480%. Also, one can state
this answer as simply 480 w (480 “micros”).

Shear Strain. Deformations not only cause line segments to
elongate or contract, but they also cause them to change direction. If we
select two line segments that are originally perpendicular to one another,
then the change in angle that occurs between these two line segments is
referred to as shear strain. This angle is denoted by y (gamma) and is
always measured in radians (rad), which are dimensionless. For example,
consider the line segments AB and AC originating from the same point
A in a body, and directed along the perpendicular » and ¢ axes, Fig. 2-2a.
After deformation, the ends of both lines are displaced, and the lines
themselves become curves, such that the angle between them at A is ¢’,
Fig. 2-2b. Hence the shear strain at point A associated with the n and ¢
axes becomes

Yy = =~ lim@’

2 B — Aalongn (2_3)
C — Aalongt

Notice that if 6’ is smaller than 7r/2 the shear strain is positive, whereas if
0’ is larger than 7/2 the shear strain is negative.

Undeformed body Deformed body
(a) (b)

Fig. 2-2

2.2 STRAIN
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STRAIN

Cartesian Strain Components. Using the definitions of normal
and shear strain, we will now show how they can be used to describe the
deformation of the body in Fig. 2-3a. To do so, imagine the body is
subdivided into small elements such as the one shown in Fig. 2-3b.
This element is rectangular, has undeformed dimensions Ax, Ay, and
Az, and is located in the neighborhood of a point in the body, Fig. 2-3a.
If the element’s dimensions are very small, then its deformed shape will
be a parallelepiped, Fig. 2-3c, since very small line segments will remain
approximately straight after the body is deformed. In order to achieve
this deformed shape, we will first consider how the normal strain
changes the lengths of the sides of the rectangular element, and then
how the shear strain changes the angles of each side. For example, Ax
elongates €,Ax, so its new length is Ax + e€,Ax. Therefore, the
approximate lengths of the three sides of the parallelepiped are

(1+ €,) Ax (1 +e€,)Ay (1+e€,) Az

And the approximate angles between these sides are

v v v

E_ny E_yyz E_sz

Notice that the normal strains cause a change in volume of the element,
whereas the shear strains cause a change in its shape. Of course, both of
these effects occur simultaneously during the deformation.

In summary, then, the state of strain at a point in a body requires
specifying three normal strains, €,, €,, €., and three shear strains, vy,,,
Yyz» Yxz- These strains completely describe the deformation of a
rectangular volume element of material located at the point and
oriented so that its sides are originally parallel to the x, y, z axes.
Provided these strains are defined at all points in the body, then the
deformed shape of the body can be determined.

T
- (2 - 'ny)
2
Az = (1+€)Az
2 g(Z - Viz)
T Ax 2
2 Ay m (1 +e)Ax
G714 e)ay
Undeformed Deformed
element element

(®) (©

Fig. 2-3
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Small Strain Analysis. Most engineering design involves
applications for which only small deformations are allowed. In this text,
therefore, we will assume that the deformations that take place within a
body are almost infinitesimal. In particular, the normal strains occurring
within the material are very small compared to 1, so that e << 1. This
assumption has wide practical application in engineering, and it is often
referred to as a small strain analysis. It can be used, for example, to
approximate sin § = 6, cos § = 1,and tan § = 6, provided 6 is very small.

The rubber bearing support under this
concrete bridge girder is subjected to
both normal and shear strain. The
normal strain is caused by the weight
and bridge loads on the girder, and the
shear strain is caused by the horizontal
movement of the girder due to
temperature changes.

Important Points

® Loads will cause all material bodies to deform and, as a result,
points in a body will undergo displacements or changes in position.

® Normal strain is a measure per unit length of the elongation or
contraction of a small line segment in the body, whereas shear strain
is a measure of the change in angle that occurs between two small
line segments that are originally perpendicular to one another.

® The state of strain at a point is characterized by six strain
components: three normal strains €,, €,, €, and three shear
Strains ¥y, ¥yz, Yx;- These components depend upon the original
orientation of the line segments and their location in the body.

¢ Strain is the geometrical quantity that is measured using
experimental techniques. Once obtained, the stress in the body
can then be determined from material property relations, as
discussed in the next chapter.

® Most engineering materials undergo very small deformations, and so
the normal strain € << 1. This assumption of “small strain analysis”
allows the calculations for normal strain to be simplified, since first-
order approximations can be made about their size.
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EXAMPLE | 2.1

The slender rod shown in Fig. 2-4 is subjected to an increase of
temperature along its axis, which creates a normal strain in the rod of
€. = 40(1073)z"/2, where z is measured in meters. Determine (a) the
displacement of the end B of the rod due to the temperature increase,
and (b) the average normal strain in the rod.
A

[\l

dz —=
f 200 mm

B

Fig. 24
SOLUTION

Part (a). Since the normal strain is reported at each point along the
rod, a differential segment dz, located at position z, Fig. 2—4, has a
deformed length that can be determined from Eq. 2-1; that is,

dz’ =dz + €,dz
dz' = [1 + 40(10)z'?] dz

The sum of these segments along the axis yields the deformed length
of the rod, i.e.,

02m
= / [1 + 40(1072)z"2] dz
0

= [z + 40(107%) 32| |g2m
= 0.20239 m
The displacement of the end of the rod is therefore
Ap=020239m — 02m = 0.00239 m = 2.39mm | Ans.

Part (b). The average normal strain in the rod is determined from
Eq. 2-1, which assumes that the rod or “line segment” has an original
length of 200 mm and a change in length of 2.39 mm. Hence,

_As" — As 239mm
Cavg As 200 mm

= 0.0119 mm/mm Ans.
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EXAMPLE |2.2

When force P is applied to the rigid lever arm ABC in Fig. 2-5a, the
arm rotates counterclockwise about pin A through an angle of 0.05°.
Determine the normal strain developed in wire BD.

Geometry. The orientation of the lever arm after it rotates about
point A is shown in Fig. 2-5b. From the geometry of this figure,

400
o1 = tan1<300$rmn) = 53.1301°

Then
¢ =90° — a + 0.05° = 90° — 53.1301° + 0.05° = 36.92°

For triangle ABD the Pythagorean theorem gives

Lap = V(300 mm)? + (400 mm)> = 500 mm

Using this result and applying the law of cosines to triangle AB'D,

Lgp = \/L%w + Lp — 2(Lap)(Lap) cos ¢
= V(500 mm)? + (400 mm)? — 2(500 mm)(400 mm) cos 36.92°
= 300.3491 mm

Normal Strain.

. _Lep— Lgp _ 3003491 mm — 300 mm
BD Lap 300 mm

= 0.00116 mm/mm  Ans.

SOLUTION I
Since the strain is small, this same result can be obtained by approximating
the elongation of wire BD as AL gp, shown in Fig. 2-5b. Here,

0.05°

ALgp = 0L 5 = [(M)(wrad)](mo mm) = 0.3491 mm

Therefore,

e = =
B Lap 300 mm

= 0.00116 mm/mm Ans.

SOLUTION | P

400 mm

(@)
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EXAMPLE |2.3

Zi il
. 2 mm
/B’ T
{
I’
250 mm| /
’II
1
1
II
|
A
(b)
y

250

Due to a loading, the plate is deformed into the dashed shape shown
in Fig. 2-6a. Determine (a) the average normal strain along the side
AB, and (b) the average shear strain in the plate at A relative to the

x and y axes.

250

SOLUTION
Line AB, coincident with the y axis, becomes line AB’ after

Part (a).
deformation, as shown in Fig. 2-6b. The length of AB' is

AB" = V(250 mm — 2mm)? + (3 mm)>? = 248.018 mm

The average normal strain for AB is therefore
AB' — AB  248.018 mm — 250 mm
250 mm

(EAB)avg = AB
Ans.

—7.93(10%) mm/mm

The negative sign indicates the strain causes a contraction of AB.
As noted in Fig. 2-6¢, the once 90° angle BAC between the

Part (b).
sides of the plate at A changes to 6" due to the displacement of B to
B'. Since vy,, = m/2 — 0', then vy, is the angle shown in the figure.

3 mm
= tan ! Ans.
Yay = tafl (250 mm — 2 mm s

Thus,
) = 0.0121 rad
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EXAMPLE |2.4

The plate shown in Fig. 2—7a is fixed connected along AB and held in
the horizontal guides at its top and bottom, AD and BC. If its right
side CD is given a uniform horizontal displacement of 2 mm,
determine (a) the average normal strain along the diagonal AC, and
(b) the shear strain at E relative to the x, y axes.

SOLUTION

Part (a). When the plate is deformed, the diagonal AC becomes
AC', Fig. 2-7b. The length of diagonals AC and AC’ can be found
from the Pythagorean theorem. We have

AC = V(0.150 m)* + (0.150 m)? = 021213 m

AC’ = V(0.150m)? + (0.152m)? = 0.21355m

Therefore the average normal strain along the diagonal is

e AC' — AC_ 021355m — 021213 m
€AC)ave AC 021213 m

= 0.00669 mm/mm Ans.

Part (b). To find the shear strain at E relative to the x and y axes, it
is first necessary to find the angle 0" after deformation, Fig. 2-7b. We

have
tan(er) _ 76 mm
2/  75mm

0" = 90.759° = (

o

; 80°>(90'759 ) = 1.58404 rad

Applying Eq. 2-3, the shear strain at E is therefore
Yy = % — 1.58404 rad = —0.0132 rad Ans.

The negative sign indicates that the angle 0’ is greater than 90°.

NOTE: If the x and y axes were horizontal and vertical at point E,
then the 90° angle between these axes would not change due to the
deformation, and so y,, = 0 at point E.

Y. X

150 mm —»\ 2 mm

(2)

7%

7 7
75 mm \\ //
\\/01\//
N4
] /J\
//E, \\
75 mm | >
l % 7
3
B (&
(b)
Fig. 2-7
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. FUNDAMENTAL PROBLEMS

F2-1. When force P is applied to the rigid arm ABC,
point B displaces vertically downward through a distance of
0.2 mm. Determine the normal strain developed in wire CD.

F2-2.

F2-1

If the applied force P causes the rigid arm ABC to

rotate clockwise about pin A through an angle of 0.02°,
determine the normal strain developed in wires BD and CE.

v

E

600 mm

F2-2

F2-3. The rectangular plate is deformed into the shape of a
rhombus shown by the dashed line. Determine the average
shear strain at corner A with respect to the x and y axes.

y

X

2 mm
D[ C
r=—=—__
I ~h
! |
[ |
I
400 mm | |
|
|
I
|
1B
Al T T -—__ 1| 4mm
H300mmq

F2-3

F2-4. The triangular plate is deformed into the shape
shown by the dashed line. Determine the normal strain
developed along edge BC and the average shear strain at
corner A with respect to the x and y axes.

y
5 mm
4 400mm4—‘<—> )
BT B 3 mm
300mm 7
- [

F2-4

F2-5. The square plate is deformed into the shape shown
by the dashed line. Determine the average normal strain
along diagonal AC and the shear strain of point E with
respect to the x and y axes.

y X
D C
N __t4mm

o I
[

[

l‘ |

300 mm, :
I

I
I

I
[

| |

< _

} 300 mm B } }

3 mm 3 mm
F2-5
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“lrropiews

2-1. An air-filled rubber ball has a diameter of 6 in. If the
air pressure within it is increased until the ball’s diameter
becomes 7 in., determine the average normal strain in the
rubber.

2-2. A thin strip of rubber has an unstretched length of
15 in. If it is stretched around a pipe having an outer diameter
of 5 in., determine the average normal strain in the strip.

2-3. The rigid beam is supported by a pin at A and wires
BD and CE. If the load P on the beam causes the end C to
be displaced 10 mm downward, determine the normal strain
developed in wires CE and BD.

} 3m } 2m } 2 m ——‘
Prob. 2-3

*2—-4. The two wires are connected together at A. If the
force P causes point A to be displaced horizontally 2 mm,
determine the normal strain developed in each wire.

Prob. 2-4

¢2-5. The rigid beam is supported by a pin at A and wires
BD and CE. If the distributed load causes the end C to be
displaced 10 mm downward, determine the normal strain
developed in wires CE and BD.

Prob. 2-5

2-6. Nylon strips are fused to glass plates. When
moderately heated the nylon will become soft while the
glass stays approximately rigid. Determine the average
shear strain in the nylon due to the load P when the
assembly deforms as indicated.

3mm | P
5 mm ; ;

3 mmif

5 mm ; \

3 mmi_ﬁ_
— X
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2-7. If the unstretched length of the bowstring is 35.5 in.,
determine the average normal strain in the string when it is

stretched to the position shown.

2-10. The corners B and D of the square plate are given
the displacements indicated. Determine the shear strains at
A and B.

2-11. The corners B and D of the square plate are given
the displacements indicated. Determine the average normal

strains along side AB and diagonal DB.

18 in.

18 in.

Prob. 2-7

*2-8. Part of a control linkage for an airplane consists of a
rigid member CBD and a flexible cable AB. If a force is
applied to the end D of the member and causes it to rotate
by 6 = 0.3°, determine the normal strain in the cable.
Originally the cable is unstretched.

¢2-9. Part of a control linkage for an airplane consists
of arigid member CBD and a flexible cable AB. If a force
is applied to the end D of the member and causes a
normal strain in the cable of 0.0035 mm/mm, determine
the displacement of point D. Originally the cable is

unstretched.

r»g—,,’
i
)

D P

300 mm

400 mm

Probs. 2-8/9

y
A
RN 16 mm

D B

— X
3mm — |< I~

2 3 mm 16 mm
16 mm 16 mm
Probs. 2-10/11

*2-12. The piece of rubber is originally rectangular.
Determine the average shear strain vy, at A if the corners B
and D are subjected to the displacements that cause the
rubber to distort as shown by the dashed lines.

¢2-13. The piece of rubber is originally rectangular and
subjected to the deformation shown by the dashed lines.
Determine the average normal strain along the diagonal

DB and side AD.

400 mm

S
Al—300 mm— B

2 mm

Probs. 2-12/13



2-14. Two bars are used to support a load. When unloaded,
AB is 5 in. long, AC is 8 in. long, and the ring at A has
coordinates (0, 0). If a load P acts on the ring at A, the
normal strain in AB becomes €, = 0.02 in./in., and the
normal strain in AC becomes €, = 0.035 in./in.
Determine the coordinate position of the ring due to the

load.

2-15. Two bars are used to support a load P. When
unloaded, AB is 5 in. long, AC is 8 in. long, and the ring at A
has coordinates (0, 0). If a load is applied to the ring at A, so
that it moves it to the coordinate position (0.25 in.,
—0.73 in.), determine the normal strain in each bar.

P
Probs. 2-14/15

*2-16. The square deforms into the position shown by the
dashed lines. Determine the average normal strain along
each diagonal, AB and CD. Side D'B’ remains horizontal.

50 mm

Prob. 2-16
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¢2-17. The three cords are attached to the ring at B. When
a force is applied to the ring it moves it to point B’, such
that the normal strain in AB is € 45 and the normal strain in
CB is €cp. Provided these strains are small, determine the
normal strain in DB. Note that AB and CB remain
horizontal and vertical, respectively, due to the roller guides

at A and C.

Prob. 2-17

2-18. The piece of plastic is originally rectangular.
Determine the shear strain vy,, at corners A and B if the
plastic distorts as shown by the dashed lines.

2-19. The piece of plastic is originally rectangular.
Determine the shear strain vy,, at corners D and C if the
plastic distorts as shown by the dashed lines.

*2-20. The piece of plastic is originally rectangular.
Determine the average normal strain that occurs along the

diagonals AC and DB.

y
5 mm,
2 mm
[ e IS B
2 mm ! 5 ]4 m
ClE ,‘
/ 1
’ 1
/ 1
300 mm|/ I‘
; |
/ 1
e 7 12mm
D . N

Probs. 2-18/19/20
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e2-21. The force applied to the handle of the rigid lever
arm causes the arm to rotate clockwise through an angle of
3° about pin A. Determine the average normal strain
developed in the wire. Originally, the wire is unstretched.

¢2-25. The guy wire AB of a building frame is originally
unstretched. Due to an earthquake, the two columns of the
frame tilt # = 2°. Determine the approximate normal
strain in the wire when the frame is in this position.
Assume the columns are rigid and rotate about their lower

supports.

er=2° WQ:T

__B
3m

A
1m 4m P
4 alls rﬁ]——ﬁﬁ

Prob. 2-21

Prob. 2-25

2-26. The material distorts into the dashed position
shown. Determine (a) the average normal strains along
sides AC and CD and the shear strain vy, at F, and (b) the
average normal strain along line BE.

2-22. A square piece of material is deformed into the
dashed position. Determine the shear strain vy, at A.

2-23. A square piece of material is deformed into the
dashed parallelogram. Determine the average normal strain

that occurs along the diagonals AC and BD. 2-27. The material distorts into the dashed position

shown. Determine the average normal strain that occurs

*2-24. A square piece of material is deformed into the
along the diagonals AD and CF.

dashed position. Determine the shear strain vy, at C.

y
y 15 mm 25 mm
fol DF
518 mm 10 mm} ' -7
Bl C | B [
! |
\ 1
| 1524 mm
| | |
F\89.7° | |
L X |
Af——15mm—D JE B N S
Al—80mm——F

[ 15.18 mm |

|
Probs. 2-22/23/24 Probs. 2-26/27



*2-28. The wire is2 subjected to a normal strain that is
defined by € = xe™*, where x is in millimeters. If the wire
has an initial length L, determine the increase in its length.

- x——

Prob. 2-28

¢2-29. The curved pipe has an original radius of 2 ft. If it is
heated nonuniformly, so that the normal strain along its
length is € = 0.05 cos 0, determine the increase in length of
the pipe.

2-30. Solve Prob.2-29if € = 0.08 sin 6.

/x

2 ft

Probs. 2-29/30

2-31. The rubber band AB has an unstretched length of
1 ft. If it is fixed at B and attached to the surface at point
A’, determine the average normal strain in the band. The
surface is defined by the function y = (x?) ft, where x is
in feet.

B—'A

[~—1 ft —

Prob. 2-31
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*2-32. The bar is originally 300 mm long when it is flat. If it
is subjected to a shear strain defined by y,, = 0.02x, where
x is in meters, determine the displacement Ay at the end of
its bottom edge. It is distorted into the shape shown, where
no elongation of the bar occurs in the x direction.

_

|

300 mm |

Prob. 2-32

¢2-33. The fiber AB has a length L and orientation 6. If its
ends A and B undergo very small displacements u 4 and v,
respectively, determine the normal strain in the fiber when
it is in position A'B’.

Prob. 2-33

2-34. If the normal strain is defined in reference to the
final length, that is,

, lim (As’ — As)
e = as — a8
"oy As’

instead of in reference to the original length, Eq. 2-2, show
that the difference in these strains is represented as a
second-order term, namely, €, — €,, = €,€),.



Horizontal ground displacements caused by an earthquake produced excessive strains
in these bridge piers until they fractured. The material properties of the concrete and
steel reinforcement must be known so that engineers can properly design this
structure and thereby avoid such failures.



Mechanical Properties
of Materials

CHAPTER OBJECTIVES

Having discussed the basic concepts of stress and strain, we will in
this chapter show how stress can be related to strain by using
experimental methods to determine the stress—strain diagram for a
specific material. The behavior described by this diagram will then
be discussed for materials that are commonly used in engineering.
Also, mechanical properties and other tests that are related to the
development of mechanics of materials will be discussed.

3.1 The Tension and Compression Test

The strength of a material depends on its ability to sustain a load
without undue deformation or failure. This property is inherent in the
material itself and must be determined by experiment. One of the most
important tests to perform in this regard is the tension or compression
test. Although several important mechanical properties of a material
can be determined from this test, it is used primarily to determine the
relationship between the average normal stress and average normal
strain in many engineering materials such as metals, ceramics, polymers,
and composites.
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Typical steel specimen with attached
strain gauge.
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To perform a tension or compression test a specimen of the material is
made into a “standard” shape and size. It has a constant circular cross
section with enlarged ends, so that failure will not occur at the grips.
Before testing, two small punch marks are placed along the specimen’s
uniform length. Measurements are taken of both the specimen’s initial
cross-sectional area, A, and the gauge-length distance L, between the
punch marks. For example, when a metal specimen is used in a tension
test it generally has an initial diameter of dy = 0.5in. (13 mm) and a
gauge length of Ly = 2 in. (50 mm), Fig. 3—1. In order to apply an axial
load with no bending of the specimen, the ends are usually seated into
ball-and-socket joints. A testing machine like the one shown in Fig. 3-2 is
then used to stretch the specimen at a very slow, constant rate until it
fails. The machine is designed to read the load required to maintain this
uniform stretching.

At frequent intervals during the test, data is recorded of the applied
load P, as read on the dial of the machine or taken from a digital readout.
Also, the elongation 6 = L — L, between the punch marks on the
specimen may be measured using either a caliper or a mechanical or
optical device called an extensometer. This value of 6 (delta) is then used
to calculate the average normal strain in the specimen. Sometimes,
however, this measurement is not taken, since it is also possible to read
the strain directly by using an electrical-resistance strain gauge, which
looks like the one shown in Fig. 3-3. The operation of this gauge is
based on the change in electrical resistance of a very thin wire or piece
of metal foil under strain. Essentially the gauge is cemented to the
specimen along its length. If the cement is very strong in comparison to
the gauge, then the gauge is in effect an integral part of the specimen,
so that when the specimen is strained in the direction of the gauge, the
wire and specimen will experience the same strain. By measuring the
electrical resistance of the wire, the gauge may be calibrated to read
values of normal strain directly.

load
dial

motor
and load
controls

Electrical-resistance
strain gauge

Fig. 3-3



3.2 THE STRESS—STRAIN DIAGRAM 83

3.2 The Stress-Strain Diagram

It is not feasible to prepare a test specimen to match the size, Ay and L,
of each structural member. Rather, the test results must be reported so
they apply to a member of any size. To achieve this, the load and
corresponding deformation data are used to calculate various values of
the stress and corresponding strain in the specimen. A plot of the results
produces a curve called the stress—strain diagram.There are two ways in
which it is normally described.

Conventional Stress-Strain Diagram. We can determine the
nominal or engineering stress by dividing the applied load P by the
specimen’s original cross-sectional area Aj. This calculation assumes that
the stress is constant over the cross section and throughout the gauge
length. We have

g = — (3-1)

Likewise, the nominal or engineering strain is found directly from the
strain gauge reading, or by dividing the change in the specimen’s gauge
length, 8, by the specimen’s original gauge length L,. Here the strain is
assumed to be constant throughout the region between the gauge points.
Thus,

€ = — (3-2)

If the corresponding values of o and € are plotted so that the vertical
axis is the stress and the horizontal axis is the strain, the resulting curve is
called a conventional stress—strain diagram. Realize, however, that two
stress—strain diagrams for a particular material will be quite similar, but
will never be exactly the same. This is because the results actually depend
on variables such as the material’s composition, microscopic
imperfections, the way it is manufactured, the rate of loading, and the
temperature during the time of the test.

We will now discuss the characteristics of the conventional stress—strain
curve as it pertains to steel/, a commonly used material for fabricating
both structural members and mechanical elements. Using the method
described above, the characteristic stress—strain diagram for a steel
specimen is shown in Fig. 3-4. From this curve we can identify four
different ways in which the material behaves, depending on the amount
of strain induced in the material.
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true fracture stress

fracture
o proportional limi)/ stress
! elastic limit
yield stres

Ty
Upl
ye €
elastic |yielding strain necking
region hardening
elastic plastic behavior
lbehavior

Conventional and true stress-strain diagrams
for ductile material (steel) (not to scale)

Fig. 3-4

Elastic Behavior. Elastic behavior of the material occurs when
the strains in the specimen are within the light orange region shown in
Fig. 3-4. Here the curve is actually a straight line throughout most of
this region, so that the stress is proportional to the strain. The material
in this region is said to be linear elastic. The upper stress limit to this
linear relationship is called the proportional limit, 0. If the stress
slightly exceeds the proportional limit, the curve tends to bend and
flatten out as shown. This continues until the stress reaches the elastic
limit. Upon reaching this point, if the load is removed the specimen
will still return back to its original shape. Normally for steel, however,
the elastic limit is seldom determined, since it is very close to the
proportional limit and therefore rather difficult to detect.

Yielding. A slight increase in stress above the elastic limit will result
in a breakdown of the material and cause it to deform permanently.
This behavior is called yielding, and it is indicated by the rectangular
dark orange region of the curve. The stress that causes yielding is called
the yield stress or yield point, oy, and the deformation that occurs
is called plastic deformation. Although not shown in Fig. 3—4, for low-
carbon steels or those that are hot rolled, the yield point is often
distinguished by two values. The upper yield point occurs first,
followed by a sudden decrease in load-carrying capacity to a lower
yield point. Notice that once the yield point is reached, then as shown
in Fig. 3-4, the specimen will continue to elongate (strain) without any
increase in load. When the material is in this state, it is often referred to
as being perfectly plastic.
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Strain Hardening. When yielding has ended, an increase in load can
be supported by the specimen, resulting in a curve that rises continuously
but becomes flatter until it reaches a maximum stress referred to as the
ultimate stress, o,. The rise in the curve in this manner is called strain
hardening, and it is identified in Fig. 34 as the region in light green.

Necking. Up to the ultimate stress, as the specimen elongates, its
cross-sectional area will decrease. This decrease is fairly uniform over the
specimen’s entire gauge length; however, just after, at the ultimate
stress, the cross-sectional area will begin to decrease in a localized
region of the specimen. As a result, a constriction or “neck” tends to
form in this region as the specimen elongates further, Fig. 3-5a. This
region of the curve due to necking is indicated in dark green in Fig. 3—4.
Here the stress—strain diagram tends to curve downward until the specimen
breaks at the fracture stress, o, Fig. 3-5D.

True Stress—Strain Diagram. Instead of always using the original
cross-sectional area and specimen length to calculate the (engineering)
stress and strain, we could have used the actual cross-sectional area and
specimen length at the instant the load is measured. The values of stress
and strain found from these measurements are called true stress and true
strain, and a plot of their values is called the true stress—strain diagram.
When this diagram is plotted it has a form shown by the light-blue
curve in Fig. 3-4. Note that the conventional and true o—e diagrams
are practically coincident when the strain is small. The differences
between the diagrams begin to appear in the strain-hardening range,
where the magnitude of strain becomes more significant. In particular,
there is a large divergence within the necking region. Here it can be
seen from the conventional o—e diagram that the specimen actually
supports a decreasing load, since A, is constant when calculating
engineering stress, o = P/A,. However, from the true o—e diagram,
the actual area A within the necking region is always decreasing until
fracture, o, and so the material actually sustains increasing stress,
since o = P/A.

mm MM W:: AN
— =

Necking Failure of a
ductile material

(a) (®)
Fig. 3-5

e

Typical necking pattern which has occurred
on this steel specimen just before fracture.

This steel specimen clearly shows the necking
that occurred just before the specimen failed.
This resulted in the formation of a “cup-cone”
shape at the fracture location, which is
characteristic of ductile materials.
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Although the true and conventional stress—strain diagrams are
different, most engineering design is done so that the material supports
a stress within the elastic range. This is because the deformation of the
material is generally not severe and the material will restore itself
when the load is removed. The true strain up to the elastic limit will
remain small enough so that the error in using the engineering values
of o and € is very small (about 0.1%) compared with their true values.
This is one of the primary reasons for using conventional stress—strain
diagrams.

The above concepts can be summarized with reference to Fig. 3-6,
which shows an actual conventional stress—strain diagram for a mild steel
specimen. In order to enhance the details, the elastic region of the curve
has been shown in light blue color using an exaggerated strain scale, also
shown in light blue. Tracing the behavior, the proportional limit is
reached at o, = 35ksi (241 MPa), where €, = 0.0012 in./in. This is
followed by an upper yield point of (oy), = 38 ksi (262 MPa), then
suddenly a lower yield point of (oy); = 36 ksi (248 MPa). The end of
yielding occurs at a strain of ey = 0.030 in./in., which is 25 times greater
than the strain at the proportional limit! Continuing, the specimen
undergoes strain hardening until it reaches the ultimate stress of
o, = 63 ksi (434 MPa), then it begins to neck down until a fracture
occurs, oy = 47 ksi (324 MPa). By comparison, the strain at failure,
€, = 0.380in./in., is 317 times greater than €,!

o(ksi)
o, =063

60 -

50 |

()= 38@J
((TY)[ =36 — 7
G'pl = 35 30 -

20

10

€ (in./in.)

| | | | |
/0.050 0.10 0.20 0.30 / 0.40
ey =0030 0.001 0.002 0.003 0.004
" €, = 0.0012 €= 0380

Stress—strain diagram for mild steel

Fig. 3-6
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3.3 Stress-Strain Behavior of Ductile
and Brittle Materials

Materials can be classified as either being ductile or brittle, depending on
their stress—strain characteristics.

Ductile Materials. Any material that can be subjected to large
strains before it fractures is called a ductile material. Mild steel, as
discussed previously, is a typical example. Engineers often choose ductile
materials for design because these materials are capable of absorbing
shock or energy, and if they become overloaded, they will usually exhibit
large deformation before failing.

One way to specify the ductility of a material is to report its percent
elongation or percent reduction in area at the time of fracture. The
percent elongation is the specimen’s fracture strain expressed as a
percent. Thus, if the specimen’s original gauge length is L, and its length
at fracture is Ly, then

Ly — Ly
Percent elongation = T(IOO%) (3-3)
0

As seen in Fig. 3-6, since €, = 0.380, this value would be 38% for a mild
steel specimen.

The percent reduction in area is another way to specify ductility. It is
defined within the region of necking as follows:

Ay — Ay
Percent reduction of area = T (100%) (34)
0

Here A is the specimen’s original cross-sectional area and Ay is the area
of the neck at fracture. Mild steel has a typical value of 60%.

Besides steel, other metals such as brass, molybdenum, and zinc may
also exhibit ductile stress—strain characteristics similar to steel, whereby
they undergo elastic stress—strain behavior, yielding at constant stress,
strain hardening, and finally necking until fracture. In most metals,
however, constant yielding will not occur beyond the elastic range. One
metal for which this is the case is aluminum. Actually, this metal often
does not have a well-defined yield point, and consequently it is standard
practice to define a yield strength using a graphical procedure called the
offset method. Normally a 0.2% strain (0.002 in./in.) is chosen, and from
this point on the € axis, a line parallel to the initial straight-line portion
of the stress—strain diagram is drawn. The point where this line
intersects the curve defines the yield strength. An example of the
construction for determining the yield strength for an aluminum alloy is
shown in Fig. 3-7. From the graph, the yield strength is oyg = 51 ksi
(352 MPa).

o (ksi)
60 -

S50 F

40

20 -

10|

0.002
(0.2% OffSCt) Yield

‘ — 5 € (in./in.)

|
— 0.005 0.01

strength for an aluminum alloy

Fig. 3-7
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o (ksi)
20F
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o—e diagram for natural rubber

Fig. 3-8

Concrete used for structural purposes must
be routinely tested in compression to be
sure it provides the necessary design
strength for this bridge deck. The concrete
cylinders shown are compression tested for
ultimate stress after curing for 30 days.

1‘0 € (in./in.)

—40
—60
-80
~100

—120

o—e diagram for gray cast iron

Fig. 3-9

Realize that the yield strength is not a physical property of the
material, since it is a stress that causes a specified permanent strain in the
material. In this text, however, we will assume that the yield strength,
yield point, elastic limit, and proportional limit all coincide unless
otherwise stated. An exception would be natural rubber, which in fact
does not even have a proportional limit, since stress and strain are not
linearly related. Instead, as shown in Fig. 3-8, this material, which is
known as a polymer, exhibits nonlinear elastic behavior.

Wood is a material that is often moderately ductile, and as a result it is
usually designed to respond only to elastic loadings. The strength
characteristics of wood vary greatly from one species to another, and for
each species they depend on the moisture content, age, and the size and
arrangement of knots in the wood. Since wood is a fibrous material, its
tensile or compressive characteristics will differ greatly when it is loaded
either parallel or perpendicular to its grain. Specifically, wood splits
easily when it is loaded in tension perpendicular to its grain, and
consequently tensile loads are almost always intended to be applied
parallel to the grain of wood members.
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Compression causes
material to bulge out

Tension failure of
a brittle material
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Fig. 3-10

o —e diagram for typical concrete mix

Brittle Materials. Materials that exhibit little or no yielding before
failure are referred to as brittle materials. Gray cast iron is an example,
having a stress—strain diagram in tension as shown by portion AB of the
curve in Fig. 3-9. Here fracture at oy = 22 ksi (152 MPa) took place
initially at an imperfection or microscopic crack and then spread rapidly
across the specimen, causing complete fracture. Since the appearance of
initial cracks in a specimen is quite random, brittle materials do not have
a well-defined tensile fracture stress. Instead the average fracture stress
from a set of observed tests is generally reported. A typical failed
specimen is shown in Fig. 3-10a.

Compared with their behavior in tension, brittle materials, such as
gray cast iron, exhibit a much higher resistance to axial compression, as
evidenced by portion AC of the curve in Fig. 3-9. For this case any cracks
or imperfections in the specimen tend to close up, and as the load
increases the material will generally bulge or become barrel shaped as
the strains become larger, Fig. 3-105b.

Like gray cast iron, concrete is classified as a brittle material, and it
also has a low strength capacity in tension. The characteristics of its
stress—strain diagram depend primarily on the mix of concrete (water,
sand, gravel, and cement) and the time and temperature of curing. A
typical example of a “complete” stress—strain diagram for concrete is
given in Fig. 3-11. By inspection, its maximum compressive strength
is almost 12.5 times greater than its tensile strength, (o.)n. = 5 ksi
(34.5 MPa) versus (07;)pax = 0.40 ksi (2.76 MPa). For this reason, concrete
is almost always reinforced with steel bars or rods whenever it is designed
to support tensile loads.

It can generally be stated that most materials exhibit both ductile and
brittle behavior. For example, steel has brittle behavior when it contains a
high carbon content, and it is ductile when the carbon content is reduced.
Also, at low temperatures materials become harder and more brittle,
whereas when the temperature rises they become softer and more
ductile. This effect is shown in Fig. 3-12 for a methacrylate plastic.

Fig. 3-11

g
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Steel rapidly loses its strength when
heated. For this reason engineers often
require main structural members to be
insulated in case of fire.

(ksi)
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160° F
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o —e diagrams for a methacrylate plastic

Fig. 3-12
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3.4 Hooke's Law

As noted in the previous section, the stress—strain diagrams for most
engineering materials exhibit a linear relationship between stress and
strain within the elastic region. Consequently, an increase in stress causes
a proportionate increase in strain. This fact was discovered by Robert
Hooke in 1676 using springs and is known as Hooke’s law. It may be
expressed mathematically as

o = Ee (3-5)

Here E represents the constant of proportionality, which is called the
modulus of elasticity or Young’s modulus, named after Thomas Young,
who published an account of it in 1807.

Equation 3-5 actually represents the equation of the initial straight-
lined portion of the stress—strain diagram up to the proportional limit.
Furthermore, the modulus of elasticity represents the slope of this line.
Since strain is dimensionless, from Eq. 3-5, E will have the same units as
stress, such as psi, ksi, or pascals. As an example of its calculation,
consider the stress—strain diagram for steel shown in Fig. 3-6. Here
oy = 35ksiand €,; = 0.0012 in./in., so that

Op 35ksi

E = =——
€y 0.0012in./in.

= 29(10%) ksi

As shown in Fig. 3-13, the proportional limit for a particular type of
steel alloy depends on its carbon content; however, most grades of steel,
from the softest rolled steel to the hardest tool steel, have about the

o (ksi)
180 - spring steel
(1% carbon)
160
140
120 b hard steel
(0.6% carbon)
100 | heat treated
80 I machine steel
(0.6% carbon)
60 - structural steel
(0.2% carbon)
40 - soft steel
(0.1% carbon)
20 |-
| | | | |

€ (in./in.)
0.002 0.004 0.006 0.008 0.01

Fig. 3-13
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same modulus of elasticity, generally accepted to be Ey = 29(10%) ksi or
200 GPa. Values of E for other commonly used engineering materials are
often tabulated in engineering codes and reference books. Representative
values are also listed on the inside back cover of this book. It should
be noted that the modulus of elasticity is a mechanical property that
indicates the stiffness of a material. Materials that are very stiff, such
as steel, have large values of E [Eg = 29(10°) ksi or 200 GPa], whereas
spongy materials such as vulcanized rubber may have low values
[E; = 0.10 ksi or 0.70 MPa].

The modulus of elasticity is one of the most important mechanical
properties used in the development of equations presented in this text. It
must always be remembered, though, that £ can be used only if a
material has linear elastic behavior. Also, if the stress in the material is
greater than the proportional limit, the stress—strain diagram ceases to be
a straight line and so Eq. 3-5 is no longer valid.

Strain Hardening. If a specimen of ductile material, such as steel, &
is loaded into the plastic region and then unloaded, elastic strain is
recovered as the material returns to its equilibrium state. The plastic clastic plastic
strain remains, however, and as a result the material is subjected to a region region
permanent set. For example, a wire when bent (plastically) will spring
back a little (elastically) when the load is removed; however, it will not B
fully return to its original position. This behavior can be illustrated on
the stress—strain diagram shown in Fig. 3-14a. Here the specimen is first
loaded beyond its yield point A to point A’. Since interatomic forces /
have to be overcome to elongate the specimen elastically, then these load
same forces pull the atoms back together when the load is removed, E/
Fig. 3-14a. Consequently, the modulus of elasticity, £, is the same, and E /mload
therefore the slope of line O’ A’ is the same as line OA.
If the load is reapplied, the atoms in the material will again be displaced 0 1ol €
until yielding occurs at or near the stress A’, and the stress—strain diagram jpermanent,  elastic
continues along the same path as before, Fig. 3-14b. It should be noted, set recovery @)
however, that this new stress—strain diagram, defined by O’ A’ B, now has o

a higher yield point (A'), a consequence of strain-hardening. In other

words, the material now has a greater elastic region; however, it has less clastic plastic

ductility, a smaller plastic region, than when it was in its original state. region region
.
A/

€
o o'
This pin was made from a hardened steel alloy, (b)

that is, one having a high carbon content. It
failed due to brittle fracture. Fig. 3-14
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—u,

€p[
Modulus of resilience u,

(a)
Fig. 3-16

3.5 Strain Energy

As a material is deformed by an external loading, it tends to store energy
internally throughout its volume. Since this energy is related to the
strains in the material, it is referred to as strain energy. To obtain this
strain energy consider a volume element of material from a tension
test specimen. It is subjected to uniaxial stress as shown in Fig. 3-15.
This stress develops a force AF = ¢ AA = o(Ax Ay) on the top and
bottom faces of the element after the element of length Az undergoes a
vertical displacement € Az. By definition, work is determined by the
product of the force and displacement in the direction of the force. Since
the force is increased uniformly from zero to its final magnitude AF
when the displacement € Az is attained, the work done on the element
by the force is equal to the average force magnitude (AF/2) times the
displacement € Az. This “external work” on the element is equivalent to
the “internal work” or strain energy stored in the element—assuming
that no energy is lost in the form of heat. Consequently, the strain energy
AU is AU = (% AF)e Az = (% o Ax Ay) € Az. Since the volume of the
elementis AV = Ax Ay Az, then AU = 1 oe AV.

For applications, it is sometimes convenient to specify the strain
energy per unit volume of material. This is called the strain-energy
density, and it can be expressed as

AU 1

u = W = 50’6 (3—6)

If the material behavior is linear elastic, then Hooke’s law applies,
o = Ee, and therefore we can express the elastic strain-energy density in
terms of the uniaxial stress as

= (3-7)

Modulus of Resilience. In particular, when the stress o reaches
the proportional limit, the strain-energy density, as calculated by Eq. 3-6
or 3-7,is referred to as the modulus of resilience, i.c.,

1 1 0?:1

=27 =3 | (-8)

uy

From the elastic region of the stress—strain diagram, Fig. 3—-16a, notice
that u, is equivalent to the shaded triangular area under the diagram.
Physically a material’s resilience represents the ability of the material to
absorb energy without any permanent damage to the material.



Modulus of Toughness. Another important property of a
material is the modulus of toughness, u,. This quantity represents the
entire area under the stress—strain diagram, Fig. 3-16b, and therefore it
indicates the strain-energy density of the material just before it fractures.
This property becomes important when designing members that may be
accidentally overloaded. Alloying metals can also change their resilience
and toughness. For example, by changing the percentage of carbon in
steel, the resulting stress—strain diagrams in Fig. 3-17 show how the
degrees of resilience and toughness can be changed.

Important Points

® A conventional stress—strain diagram is important in engineering
since it provides a means for obtaining data about a material’s
tensile or compressive strength without regard for the material’s
physical size or shape.

® Engineering stress and strain are calculated using the original
cross-sectional area and gauge length of the specimen.

® A ductile material, such as mild steel, has four distinct behaviors as
itis loaded. They are elastic behavior, yielding, strain hardening, and
necking.

® A material is linear elastic if the stress is proportional to the strain
within the elastic region. This behavior is described by Hooke's law,
o = Ee, where the modulus of elasticity E is the slope of the line.

® Important points on the stress—strain diagram are the proportional
limit, elastic limit, yield stress, ultimate stress, and fracture stress.

® The ductility of a material can be specified by the specimen’s
percent elongation or the percent reduction in area.

¢ [If a material does not have a distinct yield point, a yield strength can
be specified using a graphical procedure such as the offset method.

® Brittle materials, such as gray cast iron, have very little or no
yielding and so they can fracture suddenly.

® Strain hardening is used to establish a higher yield point for a
material. This is done by straining the material beyond the elastic
limit, then releasing the load. The modulus of elasticity remains
the same; however, the material’s ductility decreases.

® Strain energy is energy stored in a material due to its deformation.
This energy per unit volume is called strain-energy density. If
it is measured up to the proportional limit, it is referred to as
the modulus of resilience, and if it is measured up to the point
of fracture, it is called the modulus of toughness. It can be
determined from the area under the o —e diagram.

3.5 STRAIN ENERGY 93

T W

(b)
Fig. 3-16 (cont.)

hard steel

(0.6% carbon)

highest strength
structural steel
(0.2% carbon)
toughest

soft steel
(0.1% carbon)
most ductile

Fig. 3-17

This nylon specimen exhibits a high degree
of toughness as noted by the large amount
of necking that has occurred just before
fracture.

€
Modulus of toughness u, .
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EXAMPLE | 3.1

A tension test for a steel alloy results in the stress—strain diagram
shown in Fig. 3-18. Calculate the modulus of elasticity and the
yield strength based on a 0.2% offset. Identify on the graph the
ultimate stress and the fracture stress.

o (ksi)

120 -

s 1OF
7w = 108450 \
ap=90 c

80 |-
/707 A ﬂi
60 |- s
50 //
40 "

30 E E/]

20 | e
10| ~ € =023

| | | V/ | | | | | | |
O 0.02 0.94 0.06 0.98 0.10 O.‘12 0.140.16 0.18 0.20 0.22 0.24
0.0008 ‘ 0.0016 ‘ 0.0024
0.0004 0.0012  0.0020

byt
0.2%

Uys:68

€ (in./in.)

Fig. 3-18
SOLUTION

Modulus of Elasticity. We must calculate the slope of the initial
straight-line portion of the graph. Using the magnified curve and
scale shown in blue, this line extends from point O to an estimated
point A, which has coordinates of approximately (0.0016 in./in.,
50 ksi). Therefore,

_ 50ksi
~0.0016 in./in.

Note that the equation of line OA is thus o = 31.2(10%)e.

Yield Strength. For a 0.2% offset, we begin at a strain of 0.2%
or 0.0020 in./in. and graphically extend a (dashed) line parallel to
OA until it intersects the o—e curve at A’. The yield strength is
approximately

E = 31.2(10°) ksi Ans.

oys = 68 ksi Ans.
Ultimate Stress. This is defined by the peak of the o—e graph,
point B in Fig. 3-18.

o, = 108 ksi Ans.

Fracture Stress. When the specimen is strained to its maximum of
€, = 0.23in./in., it fractures at point C. Thus,

op = 90 ksi Ans.




The stress—strain diagram for an aluminum alloy that is used for
making aircraft parts is shown in Fig. 3-19. If a specimen of this
material is stressed to 600 MPa, determine the permanent strain that
remains in the specimen when the load is released. Also, find the
modulus of resilience both before and after the load application.

SOLUTION

Permanent Strain. When the specimen is subjected to the load,
it strain-hardens until point B is reached on the o—e diagram. The
strain at this point is approximately 0.023 mm/mm. When the load is
released, the material behaves by following the straight line BC,
which is parallel to line OA. Since both lines have the same slope, the
strain at point C can be determined analytically. The slope of line OA

then after the load is released these marks will be 50 mm +
(0.0150)(50 mm) = 50.75 mm apart.

Modulus of Resilience. Applying Eq. 3-8, we have™
1 1
(u,)initial = Eo-plepl = E (450 MPa)(OOO6 mm/mm)
= 135 MJ/m? Ans.

1 1
(4, ) final = ST p€pl = 5(600 MPa)(0.008 mm/mm)

2.40 MJ/m? Ans.

NOTE: By comparison, the effect of strain-hardening the material has
caused an increase in the modulus of resilience; however, note that the
modulus of toughness for the material has decreased since the area under
the original curve, OABF, s larger than the area under curve CBF.

* Work in the SI system of units is measured in joules, where 1J = 1 N-m.
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EXAMPLE | 3.2

is the modulus of elasticity, i.e., o (MPa)
450 MPa
=———=T750GP -
0.006 mm/mm a 70
From triangle CBD, we require 600 | B
BD 600(10°) Pa
E=— 75.0(10%) Pa = 800(107) Pa oy =450 —/A
¢Dh cD parallel
CD = 0.008 mm/mm 300 |-
This strain represents the amount of recovered elastic strain. The
permanent strain, €pc, is thus 150
€oc = 0.023 mm/mm — 0.008 mm/mm c D |
= 0.0150 mm/mm Ans. O| [ o.oj 0.02) 0.03 0.04
= 0.006 0.023
Note: If gauge marks on the specimen were originally 50 mm apart, iyeoc

Fig. 3-19

95

€ (mm/mm)
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EXAMPLE | 3.3

o (MPa) An aluminum rod shown in Fig. 3-20a has a circular cross section and is

subjected to an axial load of 10 kN. If a portion of the stress—strain
diagram is shown in Fig. 3-20b, determine the approximate elongation
56.600 1 of the rod when the load is applied. Take £, = 70 GPa.
50 - £
T =40 20 mm 15 mm
: . : :
b €gc = 0.0450 10 kN <€ : : - > 10 kN
I L I r
o 002 004 006 ‘ 600 mm P 400 mm *J
(b) (a)
Fig. 3-20

SOLUTION

For the analysis we will neglect the localized deformations at the point
of load application and where the rod’s cross-sectional area suddenly
changes. (These effects will be discussed in Sections 4.1 and 4.7.)
Throughout the midsection of each segment the normal stress and
deformation are uniform.

In order to find the elongation of the rod, we must first obtain the
strain. This is done by calculating the stress, then using the stress—strain
diagram. The normal stress within each segment is

P_1UNON _ . camp
= = = . a
TAET AT 7(0.01m)?
P 10(10°) N
- . _5659MPa
TECT AT 7(0.0075 m)>?

From the stress-strain diagram, the material in segment AB is
strained elastically since o 45 < oy = 40 MPa. Using Hooke’s law,

. ngB=31.83(106)Pa
AB TR, 70(10°) Pa

= 0.0004547 mm/mm

The material within segment BC is strained plastically, since
opc > oy = 40 MPa. From the graph, for ogc = 56.59 MPa, e€zc ~
0.045 mm/mm. The approximate elongation of the rod is therefore

o

YelL = 0.0004547(600 mm) + 0.0450(400 mm)
18.3 mm Ans.




. FUNDAMENTAL PROBLEMS
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F3-1. Define homogeneous material.

F3-2. Indicate the points on the stress-strain diagram
which represent the proportional limit and the ultimate
stress.

F3-2

F3-3. Define the modulus of elasticity E.

F3-4. At room temperature, mild steel is a ductile
material. True or false?

F3-5. Engineering stress and strain are calculated using
the actual cross-sectional area and length of the specimen.
True or false?

F3-6. As the temperature increases the modulus of
elasticity will increase. True or false?

F3-7. A 100-mm long rod has a diameter of 15 mm. If an
axial tensile load of 100 kN is applied, determine its change
is length. £ = 200 GPa.

F3-8. A bar has a length of 8 in. and cross-sectional
area of 12 in’. Determine the modulus of elasticity of the
material if it is subjected to an axial tensile load of 10 kip
and stretches 0.003 in. The material has linear-elastic
behavior.

F3-9. A 10-mm-diameter brass rod has a modulus of
elasticity of E = 100 GPa. If it is 4 m long and subjected to
an axial tensile load of 6 kN, determine its elongation.

F3-10. The material for the 50-mm-long specimen has the
stress—strain diagram shown. If P = 100 kN, determine the
elongation of the specimen.

F3-11. The material for the S0-mm-long specimen has the
stress—strain diagram shown. If P = 150 kN is applied and
then released, determine the permanent elongation of the
specimen.

P
o (MPa) 20 mm
500 P
450
0.00225 0.03 ¢ (mm/mm)
F3-10/11

F3-12. If the elongation of wire BC is 0.2 mm after the
force P is applied, determine the magnitude of P. The wire
is A-36 steel and has a diameter of 3 mm.
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“lrropiems

e3-1. A concrete cylinder having a diameter of 6.00 in. and
gauge length of 12 in. is tested in compression. The results of
the test are reported in the table as load versus contraction.
Draw the stress—strain diagram using scales of 1 in. = 0.5 ksi
and 1in. = 0.2(1073) in./in. From the diagram, determine
approximately the modulus of elasticity.

Load (kip) |Contraction (in.)

0 0

5.0 0.0006
9.5 0.0012
16.5 0.0020
20.5 0.0026
25.5 0.0034
30.0 0.0040
34.5 0.0045
38.5 0.0050
46.5 0.0062
50.0 0.0070
53.0 0.0075

Prob. 3-1

3-2. Data taken from a stress—strain test for a ceramic are
given in the table. The curve is linear between the origin and
the first point. Plot the diagram, and determine the modulus
of elasticity and the modulus of resilience.

3-3. Data taken from a stress—strain test for a ceramic are
given in the table. The curve is linear between the origin
and the first point. Plot the diagram, and determine
approximately the modulus of toughness. The rupture stress
is o, = 53.4 ksi.

o (ksi) | e (in./in.)
0 0
332 0.0006
45.5 0.0010
49.4 0.0014
51.5 0.0018
534 0.0022

Probs. 3-2/3

*3-4. A tension test was performed on a specimen having
an original diameter of 12.5 mm and a gauge length of
50 mm. The data are listed in the table. Plot the stress—strain
diagram, and determine approximately the modulus of
elasticity, the ultimate stress, and the fracture stress. Use a
scale of 20mm = 50 MPa and 20 mm = 0.05 mm/mm.
Redraw the linear-elastic region, using the same stress scale
but a strain scale of 20 mm = 0.001 mm/mm.

3-5. A tension test was performed on a steel specimen
having an original diameter of 12.5 mm and gauge length
of 50 mm. Using the data listed in the table, plot the
stress—strain diagram, and determine approximately the
modulus of toughness. Use a scale of 20 mm = 50 MPa and
20 mm = 0.05 mm/mm.

Load (kN) Elongation (mm)

0 0

11.1 0.0175
31.9 0.0600
37.8 0.1020
40.9 0.1650
43.6 0.2490
534 1.0160
62.3 3.0480
64.5 6.3500
62.3 8.8900
58.8 11.9380

Probs. 3-4/5

3-6. A specimen is originally 1 ft long, has a diameter of
0.5 in., and is subjected to a force of 500 Ib. When the force
is increased from 500 1b to 1800 1b, the specimen elongates
0.009 in. Determine the modulus of elasticity for the
material if it remains linear elastic.

3-7. A structural member in a nuclear reactor is made of a
zirconium alloy. If an axial load of 4 kip is to be supported
by the member, determine its required cross-sectional area.
Use a factor of safety of 3 relative to yielding. What is the
load on the member if it is 3 ft long and its elongation is
0.02 in.? E,, = 14(10%) ksi, oy = 57.5 ksi. The material has
elastic behavior.
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*3-8. The strut is supported by a pin at C and an A-36 3-10. The stress-strain diagram for a metal alloy having

steel guy wire AB. If the wire has a diameter of 0.2 in., an original diameter of 0.5 in. and a gauge length of 2 in. is

determine how much it stretches when the distributed load given in the figure. Determine approximately the modulus

acts on the strut. of elasticity for the material, the load on the specimen that
causes yielding, and the ultimate load the specimen will
support.

3-11. The stress—strain diagram for a steel alloy having an
original diameter of 0.5 in. and a gauge length of 2 in. is
given in the figure. If the specimen is loaded until it is
stressed to 90 ksi, determine the approximate amount of
elastic recovery and the increase in the gauge length after it
is unloaded.

*3-12. The stress—strain diagram for a steel alloy having
an original diameter of 0.5 in. and a gauge length of 2 in.
is given in the figure. Determine approximately the
modulus of resilience and the modulus of toughness for
the material.

o (ksi)
105
Prob. 3-8 5 ﬂk\
90 N
Mo
75 /
60 ° -
*3-9. The o-€ diagram for a collagen fiber bundle from 45
which a human tendon is composed is shown. If a segment 30
of the Achilles tendon at A has a length of 6.5 in. and an
approximate cross-sectional area of 0.229 in%, determine its 15
elongation if the foot supports a load of 125 Ib, which causes 0 e (in./in.)
ion i 0 005 0.10 0.15 0.20 0.25 0.30 0.35
a tension in the tendon of 343.75 Ib. 0 0001 0,002 0003 0:004 0.005 0.006 0.007

Probs. 3-10/11/12

o (ksi) *3-13. A bar having a length of 5 in. and cross-sectional
area of 0.7 in? is subjected to an axial force of 8000 Ib.
4.50 If the bar stretches 0.002 in., determine the modulus of
3.75 elasticity of the material. The material has linear-elastic
3.00 / behavior.
225

1.50 //
1251b
0.75 <« N J—>
in. /i 8000 Ib A : 8000 1b

0.5 o0 ©(n/in) 5in. |

Prob. 3-9 Prob. 3-13
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3-14. The rigid pipe is supported by a pin at A and an
A-36 steel guy wire BD. If the wire has a diameter of
0.25 in., determine how much it stretches when a load of
P = 600 1b acts on the pipe.

3-15. The rigid pipe is supported by a pin at A and an
A-36 guy wire BD. If the wire has a diameter of 0.25 in.,
determine the load P if the end C is displaced 0.075 in.
downward.

o TS © | c

| 3 ft | 3 ft 1

Probs. 3-14/15

*3-16. Determine the elongation of the square hollow bar
when it is subjected to the axial force P = 100 kN. If this
axial force is increased to P = 360 kN and released, find
the permanent elongation of the bar. The bar is made of a
metal alloy having a stress—strain diagram which can be
approximated as shown.

o (MPa)
500

600 mm

250 + 50 mm

0

5 mm
|
0.00125 005 € (mm/mm) ﬁ P
m

50 m 5 mm

Prob. 3-16

3-17. A tension test was performed on an aluminum
2014-T6 alloy specimen. The resulting stress—strain diagram
is shown in the figure. Estimate (a) the proportional limit,
(b) the modulus of elasticity, and (c) the yield strength
based on a 0.2% strain offset method.

3-18. A tension test was performed on an aluminum 2014-
T6 alloy specimen. The resulting stress—strain diagram is
shown in the figure. Estimate (a) the modulus of resilience;
and (b) modulus of toughness.

o (ksi)

70
60

50/

ol

30 /
20
10

]

0 002 004 006 008 ofo € (in/in)

Probs. 3-17/18

3-19. The stress—strain diagram for a bone is shown, and
can be described by the equation e = 0.45(107°%) o +
0.36(107'2) o3, where o is in kPa. Determine the yield
strength assuming a 0.3% offset.

*3-20. The stress—strain diagram for a bone is shown and
can be described by the equation e = 0.45(107°%) o +
0.36(10'2) ¢, where o is in kPa. Determine the modulus
of toughness and the amount of elongation of a 200-mm-
long region just before it fractures if failure occurs at
€ = 0.12 mm/mm.

TP

€= 0‘45(1076)0' + 0.36(10’12)0'3
€ *P

Probs. 3-19/20



e3-21. The stress—strain diagram for a polyester resin
is given in the figure. If the rigid beam is supported by a
strut AB and post CD, both made from this material, and
subjected to a load of P = 80kN, determine the angle
of tilt of the beam when the load is applied. The diameter
of the strut is 40 mm and the diameter of the post is
80 mm.

3-22. The stress—strain diagram for a polyester resin is
given in the figure. If the rigid beam is supported by a strut
AB and post CD made from this material, determine the
largest load P that can be applied to the beam before it
ruptures. The diameter of the strut is 12 mm and the
diameter of the post is 40 mm.

el
2 m
P
Al |C

f
0.75m ‘0.75 [ p’3m

o (MPa)

100
95|

g0l compression
70
60 -
S50
40 - tension
322

20+

0 € (mm/mm)
0 0.01 0.02 0.03 0.04

Probs. 3-21/22
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3-23. By adding plasticizers to polyvinyl chloride, it is
possible to reduce its stiffness. The stress—strain diagrams
for three types of this material showing this effect are given
below. Specify the type that should be used in the
manufacture of a rod having a length of 5 in. and a diameter
of 2 in., that is required to support at least an axial load of
20 kip and also be able to stretch at most % in.

o (ksi)
15
P
unplasticized
copolymer
5 flexible | o |
(plasticized)
P
0 € (in./in.
0 0.10 0.20 0.30 (in./in.)
Prob. 3-23

*3-24. The stress—strain diagram for many metal alloys
can be described analytically using the Ramberg-Osgood
three parameter equation € = o/E + ko”, where E, k, and
n are determined from measurements taken from the
diagram. Using the stress—strain diagram shown in the
figure, take E = 30(10%) ksi and determine the other two
parameters k and n and thereby obtain an analytical
expression for the curve.

o (ksi)

80

60

\

40

20

€ (10°°)
01 02 03 04 05

Prob. 3-24
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When the rubber block is compressed
(negative strain) its sides will expand
(positive strain). The ratio of these strains
remains constant.

3.6 Poisson’s Ratio

When a deformable body is subjected to an axial tensile force, not only
does it elongate but it also contracts laterally. For example, if a rubber
band is stretched, it can be noted that both the thickness and width of the
band are decreased. Likewise, a compressive force acting on a body causes
it to contract in the direction of the force and yet its sides expand laterally.

Consider a bar having an original radius r and length L and subjected
to the tensile force P in Fig. 3-21. This force elongates the bar by an
amount 6, and its radius contracts by an amount &'. Strains in the
longitudinal or axial direction and in the lateral or radial direction are,
respectively,

0
€long — z and €lat =

In the early 1800s, the French scientist S. D. Poisson realized that within the
elastic range the ratio of these strains is a constant, since the deformations
6 and &’ are proportional. This constant is referred to as Poisson’s ratio,
v (nu), and it has a numerical value that is unique for a particular material
that is both homogeneous and isotropic. Stated mathematically it is

y = —ht (3-9)

€long

The negative sign is included here since longitudinal elongation (positive
strain) causes lateral contraction (negative strain), and vice versa. Notice
that these strains are caused only by the axial or longitudinal force P;i.e.,
no force or stress acts in a lateral direction in order to strain the material
in this direction.

Poisson’s ratio is a dimensionless quantity, and for most nonporous
solids it has a value that is generally between% and % Typical values of
v for common engineering materials are listed on the inside back cover.
For an “ideal material” having no lateral deformation when it is stretched
or compressed Poisson’s ratio will be 0. Furthermore, it will be shown in
Sec. 10.6 that the maximum possible value for Poisson’s ratio is 0.5.
Therefore 0 = v = 0.5.

5/2

Fig. 3-21
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EXAMPLE | 3.4

A bar made of A-36 steel has the dimensions shown in Fig. 3-22. If an
axial force of P = 80 kN is applied to the bar, determine the change
in its length and the change in the dimensions of its cross section after
applying the load. The material behaves elastically.

P =80kN

SOLUTION
The normal stress in the bar is

P 80(10°) N
== —16.0(109 P
9= 4 = 01m)0.05m) 1600107 Fa

From the table on the inside back cover for A-36 steel £, = 200 GPa,
and so the strain in the z direction is

o, 16.0(10°) Pa »
€= = ———— = 80(10"°) mm/mm
Ey  200(10°) Pa

The axial elongation of the bar is therefore
5, = €, L, = [80(107°)](1.5m) = 120 um Ans.

Using Eq. 3-9, where v, = 0.32 as found from the inside back
cover, the lateral contraction strains in both the x and y directions are

€, = €, = —vye, = —0.32[80(10°)] = —25.6 um/m

Thus the changes in the dimensions of the cross section are
8, = e,L, = —[25.6(107%)](0.1 m) = —2.56 um Ans.

8, = e,L, = —[25.6(10°)](0.05m) = —1.28 um  Ans.
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— » Ty

-—
B ——

Yol Yu Yr

Fig. 3-24

3.7 The Shear Stress-Strain Diagram

In Sec. 1.5 it was shown that when a small element of material is
subjected to pure shear, equilibrium requires that equal shear stresses
must be developed on four faces of the element. These stresses 7, must
be directed toward or away from diagonally opposite corners of the
element, as shown in Fig. 3-23a. Furthermore, if the material is
homogeneous and isotropic, then this shear stress will distort the
element uniformly, Fig. 3-23b. As mentioned in Sec. 2.2, the shear strain
¥y measures the angular distortion of the element relative to the sides
originally along the x and y axes.

The behavior of a material subjected to pure shear can be studied in a
laboratory using specimens in the shape of thin tubes and subjecting
them to a torsional loading. If measurements are made of the applied
torque and the resulting angle of twist, then by the methods to be
explained in Chapter 5, the data can be used to determine the shear
stress and shear strain, and a shear stress—strain diagram plotted. An
example of such a diagram for a ductile material is shown in Fig. 3-24.
Like the tension test, this material when subjected to shear will exhibit
linear-elastic behavior and it will have a defined proportional limit 7.
Also, strain hardening will occur until an ultimate shear stress T, is
reached. And finally, the material will begin to lose its shear strength
until it reaches a point where it fractures, 7.

For most engineering materials, like the one just described, the elastic
behavior is linear, and so Hooke’s law for shear can be written as

T =Gy (3-10)

Here G is called the shear modulus of elasticity or the modulus of
rigidity. Its value represents the slope of the line on the 7—vy diagram,
thatis, G = 7,,/v,. Typical values for common engineering materials are
listed on the inside back cover. Notice that the units of measurement for
G will be the same as those for 7 (Pa or psi), since y is measured in
radians, a dimensionless quantity.

It will be shown in Sec. 10.6 that the three material constants, F, v, and
G are actually related by the equation

E
G = m (3—11)

Provided E and G are known, the value of v can then be determined
from this equation rather than through experimental measurement.
For example, in the case of A-36 steel, Eyq = 29(10°)ksi and
Gy = 11.0(10%) ksi, so that, from Eq. 3-11, vy, = 0.32.
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EXAMPLE | 3.5

A specimen of titanium alloy is tested in torsion and the shear stress— 7 (ksi)

strain diagram is shown in Fig. 3-254. Determine the shear modulus |
G, the proportional limit, and the ultimate shear stress. Also, gg| T«=73
determine the maximum distance d that the top of a block of this 70F 7 =52
material, shown in Fig. 3-25b, could be displaced horizontally if the gg /
material behaves elastically when acted upon by a shear force V. 4|
What is the magnitude of V necessary to cause this displacement? ;8 -
m B
SOLUTION Oy, = 0.008 =054 o737
Shear Modulus. This value represents the slope of the straight-line
portion OA of the 7—y diagram. The coordinates of point A are (a)

(0.008 rad, 52 ksi). Thus,

52 ksi

= m = 6500 ksi Ans.

The equation of line OA is therefore 7 = Gy = 6500y, which is
Hooke’s law for shear.

Proportional Limit. By inspection, the graph ceases to be linear at
point A. Thus, (b)

T = 52 ksi Ans. Fig. 3-25

Ultimate Stress. This value represents the maximum shear stress,
point B. From the graph,

7, = 73 ksi Ans.

Maximum Elastic Displacement and Shear Force. Since the
maximum elastic shear strain is 0.008 rad, a very small angle, the top
of the block in Fig. 3-25b will be displaced horizontally:

d
tan(0.008 rad) ~ 0.008 rad = ——
21in.

d = 0.016 in. Ans.

The corresponding average shear stress in the block is 7, = 52 ksi.
Thus, the shear force V needed to cause the displacement is

v v
-7 52ksi =
Tavg = 4 T Gin)(4in.)

V = 624 kip Ans.
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EXAMPLE | 3.6

165 kN An aluminum specimen shown in Fig. 3-26 has a diameter of
T dy = 25 mm and a gauge length of L, = 250 mm. If a force of 165 kN
elongates the gauge length 1.20 mm, determine the modulus of

elasticity. Also, determine by how much the force causes the diameter
of the specimen to contract. Take G, = 26 GPa and oy = 440 MPa.

SOLUTION
Modulus of Elasticity. The average normal stress in the specimen is

P 165(10°) N
o=—= 5 = 336.1 MPa
A (m/4)(0.025 m)

and the average normal strain is

6 1.20 mm
Z = m = 0.00480 mm/mm

Since o < oy = 440 MPa, the material behaves elastically. The
modulus of elasticity is therefore

o 336.1(10°) Pa

Ey=—=——————=700GPa Ans.
165 KN € 0.00480
. Contraction of Diameter. First we will determine Poisson’s ratio
Fig. 3-26 . ;
for the material using Eq. 3-11.
E
G = 2(1 + v)
0GP
26 GPa = 100 GPa
2(1 + »)
v = 0.347

Since €5y, = 0.00480 mm/mm, then by Eq. 3-9,

T
€long
€lat
0.347 =
0.00480 mm/mm

€1 = —0.00166 mm/mm

The contraction of the diameter is therefore

&' = (0.00166)(25 mm)
= 0.0416 mm Ans.
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*3.8 Failure of Materials Due to Creep
and Fatigue

The mechanical properties of a material have up to this point been
discussed only for a static or slowly applied load at constant temperature.
In some cases, however, a member may have to be used in an environment
for which loadings must be sustained over long periods of time at elevated
temperatures, or in other cases, the loading may be repeated or cycled.
We will not consider these effects in this book, although we will briefly
mention how one determines a material’s strength for these conditions,
since they are given special treatment in design.

Creep. When a material has to support a load for a very long period
of time, it may continue to deform until a sudden fracture occurs or its
usefulness is impaired. This time-dependent permanent deformation is
known as creep. Normally creep is considered when metals and ceramics
are used for structural members or mechanical parts that are subjected
to high temperatures. For some materials, however, such as polymers and
composite materials—including wood or concrete —temperature is not
an important factor, and yet creep can occur strictly from long-term load
application. As a typical example, consider the fact that a rubber
band will not return to its original shape after being released from a
stretched position in which it was held for a very long period of time.
In the general sense, therefore, both stress and/or temperature play a
significant role in the rate of creep.

For practical purposes, when creep becomes important, a member is . long-term application of the cable
usually designed to resist a specified creep strain for a given period of  Joading on this pole has caused the pole to
time. An important mechanical property that is used in this regard is deform due to creep.
called the creep strength. This value represents the highest stress the
material can withstand during a specified time without exceeding an
allowable creep strain. The creep strength will vary with temperature,
and for design, a given temperature, duration of loading, and allowable
creep strain must all be specified. For example, a creep strain of 0.1% per
year has been suggested for steel in bolts and piping. o (ksi)

Several methods exist for determining an allowable creep strength
for a particular material. One of the simplest involves testing several
specimens simultaneously at a constant temperature, but with each
subjected to a different axial stress. By measuring the length of time 30|
needed to produce either an allowable strain or the fracture strain for ,,
each specimen, a curve of stress versus time can be established.
Normally these tests are run to a maximum of 1000 hours. An example
of the results for stainless steel at a temperature of 1200°F and
prescribed creep strain of 1% is shown in Fig. 3-27. As noted, this
material has a yield strength of 40 ksi (276 MPa) at room temperature
(0.2% offset) and the creep strength at 1000 h is found to be
approximately o, = 20 ksi (138 MPa). Fig. 3-27

10

(h)

| | | | |
0 200 400 600 800 1000

o—t diagram for stainless steel
at 1200°F and creep strain at 1%
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The design of members used for amusement
park rides requires careful consideration of
cyclic loadings that can cause fatigue.

Engineers must account for possible fatigue
failure of the moving parts of this oil-

pumping rig.

In general, the creep strength will decrease for higher temperatures or
for higher applied stresses. For longer periods of time, extrapolations from
the curves must be made. To do this usually requires a certain amount of
experience with creep behavior, and some supplementary knowledge
about the creep properties of the material. Once the material’s creep
strength has been determined, however, a factor of safety is applied to
obtain an appropriate allowable stress for design.

Fatigue. When a metal is subjected to repeated cycles of stress
or strain, it causes its structure to break down, ultimately leading to
fracture. This behavior is called fatigue, and it is usually responsible
for a large percentage of failures in connecting rods and crankshafts of
engines; steam or gas turbine blades; connections or supports for bridges,
railroad wheels, and axles; and other parts subjected to cyclic loading.
In all these cases, fracture will occur at a stress that is less than the
material’s yield stress.

The nature of this failure apparently results from the fact that there
are microscopic imperfections, usually on the surface of the member,
where the localized stress becomes much greater than the average stress
acting over the cross section. As this higher stress is cycled, it leads to the
formation of minute cracks. Occurrence of these cracks causes a further
increase of stress at their tips or boundaries, which in turn causes a
further extension of the cracks into the material as the stress continues
to be cycled. Eventually the cross-sectional area of the member is
reduced to the point where the load can no longer be sustained, and as a
result sudden fracture occurs. The material, even though known to be
ductile, behaves as if it were brittle.

In order to specify a safe strength for a metallic material under
repeated loading, it is necessary to determine a limit below which no
evidence of failure can be detected after applying a load for a specified
number of cycles. This limiting stress is called the endurance or fatigue
limit. Using a testing machine for this purpose, a series of specimens are
each subjected to a specified stress and cycled to failure. The results are
plotted as a graph representing the stress S (or o) on the vertical axis
and the number of cycles-to-failure N on the horizontal axis. This graph
is called an S-N diagram or stress—cycle diagram, and most often the
values of N are plotted on a logarithmic scale since they are generally
quite large.

Examples of S—N diagrams for two common engineering metals are
shown in Fig. 3-28. The endurance limit is usually identified as the
stress for which the S—-N graph becomes horizontal or asymptotic. As
noted, it has a well-defined value of (S,)s, = 27 ksi (186 MPa) for steel.
For aluminum, however, the endurance limit is not well defined, and so
it is normally specified as the stress having a limit of 500 million cycles,
(Ser)ar = 19ksi (131 MPa). Once a particular value is obtained, it is
often assumed that for any stress below this value the fatigue life is
infinite, and therefore the number of cycles to failure is no longer given
consideration.
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S (ksi)
50 |
40 | aluminum

ok steel
(Sel)st =27

20
(Se)ar = 19

10 -

0 I I I -
0.1 1 10 100 500 1000

S—N diagram for steel and aluminum alloys
(N axis has a logarithmic scale)

N(10%)

Fig. 3-28

Important Points

® Poisson’s ratio, v, is a ratio of the lateral strain of a homogeneous
and isotropic material to its longitudinal strain. Generally these
strains are of opposite signs, that is, if one is an elongation, the
other will be a contraction.

® The shear stress—strain diagram is a plot of the shear stress
versus the shear strain. If the material is homogeneous and
isotropic, and is also linear elastic, the slope of the straight line
within the elastic region is called the modulus of rigidity or the
shear modulus, G.

® There is a mathematical relationship between G, E, and v.

® Creep is the time-dependent deformation of a material for which
stress and/or temperature play an important role. Members
are designed to resist the effects of creep based on their material
creep strength, which is the largest initial stress a material can
withstand during a specified time without exceeding a specified
creep strain.

® Fatigue occurs in metals when the stress or strain is cycled. This
phenomenon causes brittle fracture of the material. Members
are designed to resist fatigue by ensuring that the stress in the
member does not exceed its endurance or fatigue limit. This
value is determined from an S-N diagram as the maximum
stress the material can resist when subjected to a specified
number of cycles of loading.
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. FUNDAMENTAL PROBLEMS

F3-13. A 100-mm long rod has a diameter of 15 mm. If an
axial tensile load of 10 kN is applied to it, determine the
change in its diameter. E = 70 GPa, v = 0.35.

F3-14. A solid circular rod that is 600 mm long and 20 mm
in diameter is subjected to an axial force of P = 50 kN. The
elongation of the rod is 6 = 1.40 mm, and its diameter
becomes d' = 19.9837 mm. Determine the modulus of
elasticity and the modulus of rigidity of the material. Assume

that the material does not yield.

P =50kN

F3-14

F3-15. A 20-mm-wide block is firmly bonded to rigid
plates at its top and bottom. When the force P is applied the
block deforms into the shape shown by the dashed line.
Determine the magnitude of P. The block’s material has
a modulus of rigidity of G = 26 GPa. Assume that the
material does not yield and use small angle analysis.

150 mm

0.5 mm :_—‘ P

150 mm

F3-15

F3-16. A 20-mm-wide block is bonded to rigid plates at its
top and bottom. When the force P is applied the block
deforms into the shape shown by the dashed line. If ¢ = 3 mm
and P is released, determine the permanent shear strain in

the block.

7(MPa)

130

y (rad)

F3-16
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e3-25. The acrylic plastic rod is 200 mm long and 15 mm in
diameter. If an axial load of 300 N is applied to it, determine
the change in its length and the change in its diameter.
E, = 2.70 GPa, v, = 04.

-
300N ‘ 300N

‘ 200 mm |

Prob. 3-25

3-26. The short cylindrical block of 2014-T6 aluminum,
having an original diameter of 0.5 in. and a length of 1.5 in.,
is placed in the smooth jaws of a vise and squeezed until the
axial load applied is 800 Ib. Determine (a) the decrease in its
length and (b) its new diameter.

800 1b

800 1b

Prob. 3-26

3-27. The elastic portion of the stress—strain diagram for a
steel alloy is shown in the figure. The specimen from which
it was obtained had an original diameter of 13 mm and a
gauge length of 50 mm. When the applied load on the
specimen is 50 kN, the diameter is 12.99265 mm. Determine
Poisson’s ratio for the material.

o(MPa)

400

0.002 ¢(mm/mm)

Prob. 3-27

*3-28. The elastic portion of the stress—strain diagram for
a steel alloy is shown in the figure. The specimen from
which it was obtained had an original diameter of 13 mm
and a gauge length of 50 mm. If a load of P = 20 kN is
applied to the specimen, determine its diameter and gauge
length. Take v = 0.4.

o(MPa)

400

0002 e(mm/mm)

Prob. 3-28

¢3-29. The aluminum block has a rectangular cross
section and is subjected to an axial compressive force of
8 kip. If the 1.5-in. side changed its length to 1.500132 in.,
determine Poisson’s ratio and the new length of the 2-in.
side. E, = 10(10%) ksi.

1.5 in.‘
A
8 kip 2 in.
L 8 kip
<
Jin—1 -

Prob. 3-29
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3-30. The block is made of titanium Ti-6A1-4V and is
subjected to a compression of 0.06 in. along the y axis, and its
shape is given a tilt of 6 = 89.7°. Determine e,, €, and vyy,.

y

[

Prob. 3-30

3-31. The shear stress—strain diagram for a steel alloy is
shown in the figure. If a bolt having a diameter of 0.75 in.
is made of this material and used in the double lap joint,
determine the modulus of elasticity £ and the force P
required to cause the material to yield. Take » = 0.3.

=

P—
Iﬂf—’ P2
7(ksi)
60
y(rad)
0.00545

Prob. 3-31

*3-32. A shear spring is made by bonding the rubber
annulus to a rigid fixed ring and a plug. When an axial load
P is placed on the plug, show that the slope at point y in
the rubber is dy/dr = —tan y = —tan(P/(2mwhGr)). For small
angles we can write dy/dr = —P/(2mwhGr). Integrate this
expression and evaluate the constant of integration using
the condition that y = 0 at r = r,. From the result compute
the deflection y = § of the plug.

P

Prob. 3-32

¢3-33. The support consists of three rigid plates, which
are connected together using two symmetrically placed
rubber pads. If a vertical force of 5 N is applied to plate
A, determine the approximate vertical displacement of
this plate due to shear strains in the rubber. Each pad
has cross-sectional dimensions of 30 mm and 20 mm.
G, = 0.20 MPa.

SN

Prob. 3-33

3-34. A shear spring is made from two blocks of rubber,
each having a height A, width b, and thickness a. The
blocks are bonded to three plates as shown. If the plates
are rigid and the shear modulus of the rubber is G,
determine the displacement of plate A if a vertical load P is
applied to this plate. Assume that the displacement is small
sothaté = atany ~ ay.

Prob. 3-34
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One of the most important tests for material strength is the tension test. The results, found
from stretching a specimen of known size, are plotted as normal stress on the vertical axis and
normal strain on the horizontal axis.

Many engineering materials exhibit initial
linear elastic behavior, whereby stress is
proportional to strain, defined by Hooke’s
law, 0 = Ee. Here E, called the modulus
of elasticity, is the slope of this straight
line on the stress—strain diagram.

o= FEe

ductile material

When the material is stressed beyond the
yield point, permanent deformation will
occur. In particular, steel has a region of
yielding, whereby the material will exhibit
an increase in strain with no increase in
stress. The region of strain hardening
causes further yielding of the material
with a corresponding increase in stress.
Finally, at the ultimate stress, a localized
region on the specimen will begin to
constrict, forming a neck. It is after this
that the fracture occurs.

proportional limit

pl

ultimate

Stress  _fracture
stress

elastic |yielding strain necking
region hardening
elastic plastic behavior
lbehavior

Ductile materials, such as most metals,

exhibit both elastic and plastic behavior. . Ly — Ly

Wood is moderately ductile. Ductility is Percent elongation = Lo (100%)

usually specified by the permanent

elongation to failure or by the percent . Ay — Af

. . Percent reduction of area = ———(100%)
reduction in the cross-sectional area. A

0
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Brittle materials exhibit little or no

yielding before failure. Cast iron, concrete, T
and glass are typical examples.
brittle material

The yield point of a material at A can be o
increased by strain hardening. This is
accomplished by applying a load that ) )
causes the stress to be greater than the elasie D

region region

yield stress, then releasing the load. The
larger stress A’ becomes the new yield
point for the material.

)

load b;A

2 / unload

/

permanent‘ elastic ‘
T set T recovery

When a load is applied to a member,
the deformations cause strain energy to & &
be stored in the material. The strain
energy per unit volume or strain energy
density is equivalent to the area under | o,
the stress-strain curve. This area up to

the yield point is called the modulus of
resilience. The entire area under the stress—
strain diagram is called the modulus of
toughness.

—u,

Epl
Modulus of toughness

Modulus of resilience
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Poisson’s ratio » is a dimensionless
material property that relates the
lateral strain to the longitudinal strain.
Its range of valuesis 0 = v = 0.5.

_ €lat

€long

Original Shape —

Shear stress versus shear strain
diagrams can also be established for
a material. Within the elastic region,
7= Gy, where G is the shear
modulus, found from the slope of the
line. The value of » can be obtained
from the relationship that exists
between G, E and v.

C2(1 + )

When materials are in service for
long periods of time, considerations
of creep become important. Creep is
the time rate of deformation, which
occurs at high stress and/or high
temperature. Design requires that
the stress in the material not exceed
an allowable stress which is based on
the material’s creep strength.

Fatigue can occur when the material
undergoes a large number of cycles
of loading. This effect will cause
microscopic cracks to form, leading
to a brittle failure. To prevent fatigue,
the stress in the material must not
exceed a specified endurance or
fatigue limit.




116 CHAPTER 3 MECHANICAL PROPERTIES OF MATERIALS

. REVIEW PROBLEMS

3-35. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 2 in. and a
diameter of 0.5 in. When the applied load is 9 kip, the new
diameter of the specimen is 0.49935 in. Compute the shear
modulus G, for the aluminum.

*3-36. The elastic portion of the tension stress—strain
diagram for an aluminum alloy is shown in the figure. The
specimen used for the test has a gauge length of 2 in. and a
diameter of 0.5 in. If the applied load is 10 kip, determine
the new diameter of the specimen. The shear modulus is
G, = 3.8(10°) ksi.

o (ksi)

-

70—

-—

€ (in./in.)

0.00614

Probs. 3-35/36

3-37. The o—e diagram for elastic fibers that make up
human skin and muscle is shown. Determine the modulus
of elasticity of the fibers and estimate their modulus of
toughness and modulus of resilience.

o(psi)

55

e(in. /in.
1 2225 (in./in.)

Prob. 3-37

3-38. A short cylindrical block of 6061-T6 aluminum,
having an original diameter of 20 mm and a length of
75 mm, is placed in a compression machine and squeezed
until the axial load applied is 5 kN. Determine (a) the
decrease in its length and (b) its new diameter.

3-39. The rigid beam rests in the horizontal position on
two 2014-T6 aluminum cylinders having the unloaded lengths
shown. If each cylinder has a diameter of 30 mm, determine
the placement x of the applied 80-kN load so that the beam
remains horizontal. What is the new diameter of cylinder A
after the load is applied? v, = 0.35.

80 kN
- _.l
BRI B[] 1
220 mm| 2}0 mm
|
! 3m
Prob. 3-39

*3-40. The head H is connected to the cylinder of a
compressor using six steel bolts. If the clamping force in
each bolt is 800 Ib, determine the normal strain in the
bolts. Each bolt has a diameter of % in. If oy = 40 ksi and
Ey = 29(10°) ksi, what is the strain in each bolt when the
nut is unscrewed so that the clamping force is released?

Prob. 3-40



e3-41. The stone has a mass of 800 kg and center of gravity
at G.Itrests on a pad at A and a roller at B. The pad is fixed
to the ground and has a compressed height of 30 mm, a
width of 140 mm, and a length of 150 mm. If the coefficient
of static friction between the pad and the stone is u, = 0.8,
determine the approximate horizontal displacement of the
stone, caused by the shear strains in the pad, before the
stone begins to slip. Assume the normal force at A acts
1.5 m from G as shown. The pad is made from a material
having E = 4 MPa and v = 0.35.

Prob. 3-41

3-42. The bar DA is rigid and is originally held in the
horizontal position when the weight W is supported from C.
If the weight causes B to be displaced downward 0.025 in.,
determine the strain in wires DE and BC. Also, if the wires
are made of A-36 steel and have a cross-sectional area of
0.002 in?, determine the weight W.

4 ft
C
w
Prob. 3-42
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3-43. The 8-mm-diameter bolt is made of an aluminum
alloy. It fits through a magnesium sleeve that has an inner
diameter of 12 mm and an outer diameter of 20 mm. If the
original lengths of the bolt and sleeve are 80 mm and
50 mm, respectively, determine the strains in the sleeve and
the bolt if the nut on the bolt is tightened so that the tension
in the bolt is 8 kN. Assume the material at A is rigid.
E, = 70 GPa, Ey,, = 45 GPa.

50 mm

I!‘ 30 mm

|

Prob. 3-43

*3-44. The A-36 steel wire AB has a cross-sectional area
of 10 mm? and is unstretched when 6 = 45.0°. Determine
the applied load P needed to cause 6 = 44.9°.

400 mm

4

Prob. 3-44



The string of drill pipe suspended from this traveling block on an oil rig is subjected
to extremely large loadings and axial deformations.



Axial Load

CHAPTER OBJECTIVES

In Chapter 1, we developed the method for finding the normal stress
in axially loaded members. In this chapter we will discuss how to
determine the deformation of these members, and we will also develop
a method for finding the support reactions when these reactions cannot
be determined strictly from the equations of equilibrium. An analysis
of the effects of thermal stress, stress concentrations, inelastic
deformations, and residual stress will also be discussed.

4.1 Saint-Venant's Principle

In the previous chapters, we have developed the concept of stress as a
means of measuring the force distribution within a body and strain as
a means of measuring a body’s deformation. We have also shown that
the mathematical relationship between stress and strain depends on
the type of material from which the body is made. In particular, if the
material behaves in a linear elastic manner, then Hooke’s law applies,
and there is a proportional relationship between stress and strain.

119
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Load distorts lines
located near load

a
—b
—c

— Lines located away
from the load and support
remain straight

Load distorts lines
located near support

(2)
Fig. 4-1

Using this idea, consider the manner in which a rectangular bar will
deform elastically when the bar is subjected to a force P applied along its
centroidal axis, Fig. 4-1a. Here the bar is fixed connected at one end, with
the force applied through a hole at its other end. Due to the loading, the
bar deforms as indicated by the once horizontal and vertical grid lines
drawn on the bar. Notice how the localized deformation that occurs
at each end tends to even out and become uniform throughout the
midsection of the bar.

If the material remains elastic then the strains caused by this
deformation are directly related to the stress in the bar. As a result, the
stress will be distributed more uniformly throughout the cross-sectional
area when the section is taken farther and farther from the point where
any external load is applied. For example, consider a profile of the
variation of the stress distribution acting at sections a—a, b—b, and c—c,
each of which is shown in Fig. 4-1b. By comparison, the stress tends
to reach a uniform value at section c—c, which is sufficiently removed
from the end since the localized deformation caused by P vanishes.
The minimum distance from the bar’s end where this occurs can be
determined using a mathematical analysis based on the theory of
elasticity.

It has been found that this distance should at least be equal to the
largest dimension of the loaded cross section. Hence, section ¢—c should
be located at a distance at least equal to the width (not the thickness) of
the bar.*

*When section c—c is so located, the theory of elasticity predicts the maximum stress to be
Omax = 1.0207,,.
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P AP
2 2
-ﬁ‘-‘_\
\-‘I
P
- P
Tavg = ¢
A HLL] o=
section a—a section b—b section ¢—c section ¢—c
(b) (©)
Fig. 4-1 (cont.)

In the same way, the stress distribution at the support will also even
out and become uniform over the cross section located the same distance
away from the support.

The fact that stress and deformation behave in this manner is referred
to as Saint-Venant'’s principle, since it was first noticed by the French
scientist Barré de Saint-Venant in 1855. Essentially it states that the
stress and strain produced at points in a body sufficiently removed from
the region of load application will be the same as the stress and strain
produced by any applied loadings that have the same statically equivalent
resultant, and are applied to the body within the same region. For
example, if two symmetrically applied forces P/2 act on the bar,
Fig. 4-1c, the stress distribution at section c—c will be uniform and
therefore equivalent to o,,, = P/A asin Fig. 4-1b.

Notice how the lines on this rubber membrane
distort after it is stretched. The localized
distortions at the grips smooth out as stated by
Saint-Venant’s principle.
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4.2 Elastic Deformation of an Axially
Loaded Member

Using Hooke’s law and the definitions of stress and strain, we will now
develop an equation that can be used to determine the -elastic
displacement of a member subjected to axial loads. To generalize the
development, consider the bar shown in Fig. 4-2a, which has a cross-
sectional area that gradually varies along its length L. The bar is subjected
to concentrated loads at its ends and a variable external load distributed
along its length. This distributed load could, for example, represent the
weight of the bar if it does not remain horizontal, or friction forces acting
on the bar’s surface. Here we wish to find the relative displacement &
(delta) of one end of the bar with respect to the other end as caused by
this loading. We will neglect the localized deformations that occur at
points of concentrated loading and where the cross section suddenly
changes. From Saint-Venant’s principle, these effects occur within small
regions of the bar’s length and will therefore have only a slight effect on
the final result. For the most part, the bar will deform uniformly, so the
normal stress will be uniformly distributed over the cross section.

Using the method of sections, a differential element (or wafer) of length
dx and cross-sectional area A(x) is isolated from the bar at the arbitrary
position x. The free-body diagram of this element is shown in Fig. 4-2b.
The resultant internal axial force will be a function of x since the external
distributed loading will cause it to vary along the length of the bar. This
load, P(x), will deform the element into the shape indicated by the dashed
outline, and therefore the displacement of one end of the element with
respect to the other end is dé. The stress and strain in the element are

P(x dé
= () and =

- A(x) €T dx
Provided the stress does not exceed the proportional limit, we can apply
Hooke’s law; i.e.,

P(x) > P(x)

~ds
dx—| |~
(b

)
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For the entire length L of the bar, we must integrate this expression to
find &. This yields

3 Lp(x) dx
8_£A(x)E (4-1)

where

6 = displacement of one point on the bar relative to the other point
L = original length of bar
P(x) = internal axial force at the section, located a distance x from
one end
A(x) = cross-sectional area of the bar, expressed as a function of x
E = modulus of elasticity for the material

Constant Load and Cross-Sectional Area. In many cases
the bar will have a constant cross-sectional area A; and the material will
be homogeneous, so E is constant. Furthermore, if a constant external
force is applied at each end, Fig. 4-3, then the internal force P
throughout the length of the bar is also constant. As a result, Eq. 4-1 can
be integrated to yield

_PL

6_7
AE

(4+2)

If the bar is subjected to several different axial forces along its length, or
the cross-sectional area or modulus of elasticity changes abruptly from
one region of the bar to the next, the above equation can be applied
to each segment of the bar where these quantities remain constant. The
displacement of one end of the bar with respect to the other is then found
from the algebraic addition of the relative displacements of the ends of
each segment. For this general case,

PL

5=
AE

(4-3)

P<—| ——> P

Fig. 4-3

The vertical displacement at the top of these
building columns depends upon the loading
applied on the roof and to the floor attached
to their midpoint.
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= +P
-

+6

-

+6

Positive sign convention for P and &

Fig. 44

Sign Convention. In order to apply Eq. 4-3, we must develop a
sign convention for the internal axial force and the displacement of one
end of the bar with respect to the other end. To do so, we will consider
both the force and displacement to be positive if they cause tension
and elongation, respectively, Fig. 4—4; whereas a negative force and
displacement will cause compression and contraction, respectively.

For example, consider the bar shown in Fig. 4-5a. The internal axial
forces “P.,” are determined by the method of sections for each segment,
Fig. 4-5b. They are P 5 = +5kN, Pgc = —3 kN, Pcp = —7 kN. This
variation in axial load is shown on the axial or normal force diagram for
the bar, Fig. 4-5¢c. Since we now know how the internal force varies
throughout the bar’s length, the displacement of end A relative to end D
is determined from

PL  (5kN)L,p (=3kN)Lpc (=7kN)Lcp
8A/D = — - = + +
AE AE AE AE

If the other data are substituted and a positive answer is calculated, it
means that end A will move away from end D (the bar elongates),
whereas a negative result would indicate that end A moves toward
end D (the bar shortens). The double subscript notation is used to
indicate this relative displacement (84,p); however, if the displacement
is to be determined relative to a fixed point, then only a single subscript
will be used. For example, if D is located at a fixed support, then the
displacement will be denoted as simply 6 4.

SKN 8 kN 4KN N
e —
A B C D
| Lup | Lpc } Lep |
(a)
P (kN)
SKN 4
8 kN 5
4_’ —l &4— Ppc=3kN x
SKN 4 B 5]
—7 4
Pep=ThN —>{  |<——7kN
D

(©)

Fig. 4-5
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Important Points

® Saint-Venants principle states that both the localized deformation and stress which occur within the
regions of load application or at the supports tend to “even out” at a distance sufficiently removed from
these regions.

® The displacement of one end of an axially loaded member relative to the other end is determined by
relating the applied internal load to the stress using o = P/ A and relating the displacement to the strain using
€ = d&/dx. Finally these two equations are combined using Hooke’s law, & = Ee, which yields Eq. 4-1.

¢ Since Hooke’s law has been used in the development of the displacement equation, it is important that no

internal load causes yielding of the material, and that the material is homogeneous and behaves in a linear
elastic manner.

Procedure for Analysis

The relative displacement between any two points A and B on an axially loaded member can be determined
by applying Eq. 4-1 (or Eq. 4-2). Application requires the following steps.

Internal Force.

® Use the method of sections to determine the internal axial force P within the member.

® [f this force varies along the member’s length due to an external distributed loading, a section should be
made at the arbitrary location x from one end of the member and the force represented as a function of x,
i.e., P(x).

® If several constant external forces act on the member, the internal force in each segment of the member,
between any two external forces, must be determined.

® For any segment, an internal tensile force is positive and an internal compressive force is negative. For
convenience, the results of the internal loading can be shown graphically by constructing the normal-force
diagram.

Displacement.

® When the member’s cross-sectional area varies along its length, the area must be expressed as a function of
its position x, i.e., A(x).

® [f the cross-sectional area, the modulus of elasticity, or the internal loading suddenly changes, then Eq. 4-2
should be applied to each segment for which these quantities are constant.

® When substituting the data into Egs. 4-1 through 4-3, be sure to account for the proper sign for the
internal force P. Tensile loadings are positive and compressive loadings are negative. Also, use a consistent
set of units. For any segment, if the result is a positive numerical quantity, it indicates elongation; if it is
negative, it indicates a contraction.
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EXAMPLE | 4.1

The A-36 steel bar shown in Fig. 4-6a is made from two segments
having cross-sectional areas of A,z = 1in* and Agp = 2in%
Determine the vertical displacement of end A and the displacement
of B relative to C.

15 kip 15 kip 15 kip 15 kip
AL
2 ft . g . .
PR ¢ axip| | 4kip  4kip| | 4kip
i P,y = 15 kip ¢
BY AV
1.5 ft 8 ki 8 ki
8 kip 8 kip P l P
a0 [ Y o | §
C =3 Pgc=T7kip
1ft
D l
(a) (b) PCD =9 klp
SOLUTION
0 15 P (kip) Internal Force. Due to the application of the external loadings, the

internal axial forces in regions AB, BC, and CD will all be different.
These forces are obtained by applying the method of sections and the
equation of vertical force equilibrium as shown in Fig. 4-6b. This
variation is plotted in Fig. 4-6c.

2 Displacement. From the inside back cover, Ey = 29(10%) ksi.
Using the sign convention, i.e., internal tensile forces are positive and
compressive forces are negative, the vertical displacement of A
a5 relative to the fixed support D is

7 PL  [+15kip](2 f)(12in/ft)  [+7 kip](1.5 ft)(12 in./ft)
A= 2 " = o T ; -
|: AE (1in%)[29(10%) kip/in?] (2in%)[29(10) kip/in?]
-9 L 4.5

x (ft) [—9 kip](1 ft)(12 in./ft)
© (2 in?)[29(10°) kip/in?]
= + 0.0127 in. Ans.
Since the result is positive, the bar elongates and so the displacement

at A is upward.
Applying Eq. 4-2 between points B and C, we obtain,

PpcL +7 kip] (1.5 ft) (12 in./ft
Bpjc = € = [ , Zp]( 3)( _ _/ . ) _ Loom17in. Ans
ApcE  (2in?)[29(10°) kip/in?]

Here B moves away from C, since the segment elongates.

Fig. 4-6
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EXAMPLE |4.2

The assembly shown in Fig. 4-7a consists of an aluminum tube AB
having a cross-sectional area of 400 mm?. A steel rod having a diameter
of 10 mm is attached to a rigid collar and passes through the tube. If a
tensile load of 80 kN is applied to the rod, determine the displacement
of the end C of the rod. Take E, = 200 GPa, E,; = 70 GPa.

—>» 80 kN
C 80 kKN —> «— P, = 80kN
PBCZSOkN

(b)
Fig. 4-7

SOLUTION

Internal Force. The free-body diagram of the tube and rod segments
in Fig. 4-7b, shows that the rod is subjected to a tension of 80 kN and the
tube is subjected to a compression of 80 kN.

Displacement. We will first determine the displacement of end C
with respect to end B. Working in units of newtons and meters, we have

5. = TL _ [+80(10%) N](0.6 m)
/B AE  7(0.005 m)2[200(10°) N/m?]

= +0.003056 m —

The positive sign indicates that end C moves to the right relative to
end B, since the bar elongates.
The displacement of end B with respect to the fixed end A is

_PL [—80(10°) N](0.4 m)

© AE 400 mm2(10™%) m%/mm?][70(10°) N/m?]
— —0.001143 m = 0.001143 m —

op

Here the negative sign indicates that the tube shortens, and so B
moves to the right relative to A.

Since both displacements are to the right, the displacement of C
relative to the fixed end A is therefore

() 8¢ = 85 + 8c/p = 0.001143 m + 0.003056 m

= 0.00420 m = 4.20 mm — Ans.
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EXAMPLE |4.3

00 m 310 kN Rigid beam AB rests on the.two short posts shown in Fig. fl—Sa. AC is
’-—»F 400 mm—»‘ made of steel and has a diameter of 20 mm, and BD is made of
B aluminum and has a diameter of 40 mm. Determine the displacement

F of point F on AB if a vertical load of 90 kN is applied over this point.

Take E, = 200 GPa, E,; = 70 GPa.

SOLUTION

(;) - Internal Force. The compressive forces acting at the top of each
post are determined from the equilibrium of member AB, Fig. 4-8b.
These forces are equal to the internal forces in each post, Fig. 4-8c.

90 kN
200 mm
| y  ‘omm \ Displacement. The displacement of the top of each post is
—
A A Post AC:
O (b) N [—60(10°) N](0.300 m)
PycL - 300 m
Bp= e = - o = —286(10 %) m
AuscEq  7(0.010 m)?[200(10”) N/m?]
60 kN 30 kN
v ~ 0286 mm |
[l Post BD:
4 4 PapLsp  [—30(10°) NJ(0.300 m) .
Pyc=60kN Pgp =30 kN op = = > 5 5= —102(10°°) m
(0) AppEy  7(0.020 m)*[70(10”) N/m?]

0.102 mm |

A diagram showing the centerline displacements at A, B, and F on
the beam is shown in Fig. 4-8d. By proportion of the blue shaded
triangle, the displacement of point F is therefore

400
8p = 0.102 mm + (0.184 mm)( mm) = 0225mm | Ans
600 mm
600
0.102 mm A Fi m4r80 mm B
i3 S 0.10;mm
F

0.184 mm

0.286 Y

b mm

Fig. 4-8
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EXAMPLE |4.4

A member is made from a material that has a specific weight y and y

modulus of elasticity E. If it is in the form of a cone having the

dimensions shown in Fig. 4-9a, determine how far its end is displaced "o
due to gravity when it is suspended in the vertical position. — ._E N

SOLUTION

Internal Force. The internal axial force varies along the member
since it is dependent on the weight W(y) of a segment of the member
below any section, Fig. 4-9b. Hence, to calculate the displacement,
we must use Eq. 4-1. At the section located a distance y from its free L
end, the radius x of the cone as a function of y is determined by
proportion;i.e.,

X_rno T

y L L’
The volume of a cone having a base of radius x and height y is .

1, 7, (2)

VvV = g’ﬁyx = Ey

Since W = vV, the internal force at the section becomes }|’
2
YTIrg, 3
+12ZF, =0 P(y) =—5 P
T2F, =0; ) =32 Or

Displacement. The area of the cross section is also a function of

position y, Fig. 4-9b. We have W) \_l

2

mro
A(y) — ’7Tx2 — y2
X

Applying Eq. 4-1 between the limits of y = 0 and y = L yields

2 2\ .3 (b)
5 /LP(y)dy_ /L[(vwro/%)y]dy e
o AWE S [(mr/12) ] E ®
y IL,
=3E), ydy
_ e
= 6E Ans.

NOTE: As a partial check of this result, notice how the units of the
terms, when canceled, give the displacement in units of length as
expected.
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. FUNDAMENTAL PROBLEMS

F4-1. The 20-mm-diameter A-36 steel rod is subjected
to the axial forces shown. Determine the displacement of
end C with respect to the fixed support at A.

~——— 600 mm —~— 400 mm
_ 50 kN A0 KN
I (—
N —
B sokn €
F4-1

F4-2. Segments AB and CD of the assembly are solid
circular rods, and segment BC is a tube. If the assembly
is made of 6061-T6 aluminum, determine the displacement
of end D with respect to end A.

20 mm 20 mm
CC s
10kN_, M
A = —> D
10 kN 8
20 kKN
< —
10 kN 15 kN
400 mm 400 mm 400 mm |
30 mm 40 mm
Section a-a
F4-2

F4-3. The 30-mm-diameter A-36 steel rod is subjected to
the loading shown. Determine the displacement of end A
with respect to end C.

IS
3
=
2

F4-4. If the 20-mm-diameter rod is made of A-36 steel
and the stiffness of the spring is k = 50 MN/m, determine
the displacement of end A when the 60-kN force is applied.

400

400

F4-5. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the uniform distributed axial load. Determine
the displacement of end A.

30 kN/m

JlEp

}—— 900 mm %

F4-5

F4-6. The 20-mm-diameter 2014-T6 aluminum rod is
subjected to the triangular distributed axial load.
Determine the displacement of end A.

45 kN/m

Al e ——— —— «——

F 900 mm %
F4-6
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“lrropiews

*4-1. The ship is pushed through the water using an A-36
steel propeller shaft that is 8 m long, measured from the
propeller to the thrust bearing D at the engine. If it has an
outer diameter of 400 mm and a wall thickness of 50 mm,
determine the amount of axial contraction of the shaft
when the propeller exerts a force on the shaft of 5 kN. The
bearings at B and C are journal bearings.

Prob. 4-1

4-2. The copper shaft is subjected to the axial loads
shown. Determine the displacement of end A with respect
to end D. The diameters of each segment are d 5 = 3 in.,
dgc = 2in., and dcp = 1in. Take E,, = 18(10°) ksi.

50 in. 75 in. | 60 in. W
. 2 kip ‘ .
6 kip 1 kip
-~ %7—
= .
A B2 kip ¢ 3kip

Prob. 4-2

4-3. The A-36 steel rod is subjected to the loading shown.
If the cross-sectional area of the rod is 50 mm?, determine
the displacement of its end D. Neglect the size of the
couplings at B, C,and D.

*4-4, The A-36 steel rod is subjected to the loading
shown. If the cross-sectional area of the rod is 50 mm?,
determine the displacement of C. Neglect the size of the
couplings at B, C,and D.

T1 m T 1.5m—F—125 mj
= M L

A 9kN B

L
C 4kN D 2kN

Probs. 4-3/4

4-5. The assembly consists of a steel rod CB and an
aluminum rod BA, each having a diameter of 12 mm. If the rod
is subjected to the axial loadings at A and at the coupling B,
determine the displacement of the coupling B and the end
A.The unstretched length of each segment is shown in the
figure. Neglect the size of the connections at B and C, and
assume that they are rigid. E;, = 200 GPa, E,; = 70 GPa.

» 18 kN

Prob. 4-5

4-6. The bar has a cross-sectional area of 3in% and
E = 35(10%) ksi. Determine the displacement of its end A
when it is subjected to the distributed loading.

—

w = 500x'/ Ib /in.

e

4ft |

Prob. 4-6
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4-7. The load of 800 Ib is supported by the four 304 stainless
steel wires that are connected to the rigid members AB and
DC. Determine the vertical displacement of the load if the
members were horizontal before the load was applied. Each
wire has a cross-sectional area of 0.05 in”.

*4-8. The load of 800 1b is supported by the four 304 stain-
less steel wires that are connected to the rigid members AB
and DC. Determine the angle of tilt of each member after
the load is applied. The members were originally horizontal,
and each wire has a cross-sectional area of 0.05 in2.

Probs. 4-7/8

*4-9. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC. The cross-sectional area of each rod
is given in the figure. If a force of 6 kip is applied to the ring
F, determine the horizontal displacement of point £

4-10. The assembly consists of three titanium (Ti-6A1-4V)
rods and a rigid bar AC. The cross-sectional area of each rod
is given in the figure. If a force of 6 kip is applied to the ring
F, determine the angle of tilt of bar AC.

2 ft
F
gl Lt 6 kip
1ft Apr=2 in’
Aup=15in? |
B 6 ft A
Probs. 4-9/10

4-11. The load is supported by the four 304 stainless steel
wires that are connected to the rigid members AB and DC.
Determine the vertical displacement of the 500-1b load if
the members were originally horizontal when the load was
applied. Each wire has a cross-sectional area of 0.025 in’.

*4-12. The load is supported by the four 304 stainless
steel wires that are connected to the rigid members AB and
DC. Determine the angle of tilt of each member after the
500-1b load is applied. The members were originally
horizontal, and each wire has a cross-sectional area of
0.025 in?.

E F G
31t
i 51t
D |6
ST Sy —
1.8 1t
| I
A B
| 31t 1 ft
Y500 1b

Probs. 4-11/12

*4-13. The bar has a length L and cross-sectional area A.
Determine its elongation due to the force P and its own
weight. The material has a specific weight y (weight/volume)
and a modulus of elasticity E.

Prob. 4-13
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4-14. The post is made of Douglas fir and has a diameter
of 60 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance that is uniformly distributed
along its sides of w = 4 kN/m, determine the force F at its
bottom needed for equilibrium. Also, what is the displacement
of the top of the post A with respect to its bottom B?
Neglect the weight of the post.

4-15. The post is made of Douglas fir and has a diameter
of 60 mm. If it is subjected to the load of 20 kN and the soil
provides a frictional resistance that is distributed along its
length and varies linearly from w =0 at y =0 to w =
3kN/m at y = 2m, determine the force F at its bottom
needed for equilibrium. Also, what is the displacement of
the top of the post A with respect to its bottom B? Neglect
the weight of the post.

20 kN
A

e
e
i

|
.

2 m

':\
e e > >

Probs. 4-14/15

*4-16. The linkage is made of two pin-connected A-36
steel members, each having a cross-sectional area of 1.5 in’.
If a vertical force of P = 50kip is applied to point A,
determine its vertical displacement at A.

*4-17. The linkage is made of two pin-connected A-36
steel members, each having a cross-sectional area of 1.5 in%.
Determine the magnitude of the force P needed to displace
point A 0.025 in. downward.

= 1.5 ft——1.5 ft —|

Probs. 4-16/17

4-18. The assembly consists of two A-36 steel rods and a
rigid bar BD. Each rod has a diameter of 0.75 in. If a force
of 10 kip is applied to the bar as shown, determine the
vertical displacement of the load.

4-19. The assembly consists of two A-36 steel rods and a
rigid bar BD. Each rod has a diameter of 0.75 in. If a force
of 10 kip is applied to the bar, determine the angle of tilt of
the bar.

Iy

c
A
3 ft
21t
B E D
s i
FLastelg sl
(fF |
10 kip
Probs. 4-18/19

*4-20. The rigid bar is supported by the pin-connected
rod CB that has a cross-sectional area of 500 mm? and is
made of A-36 steel. Determine the vertical displacement of
the bar at B when the load is applied.

Prob. 4-20
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*4-21. A spring-supported pipe hanger consists of two
springs which are originally unstretched and have a stiffness
of k = 60 kN/m, three 304 stainless steel rods, AB and CD,
which have a diameter of 5 mm, and EF, which has a
diameter of 12 mm, and a rigid beam GH. If the pipe and
the fluid it carries have a total weight of 4 kN, determine the
displacement of the pipe when it is attached to the support.

4-22. A spring-supported pipe hanger consists of two
springs, which are originally unstretched and have a
stiffness of & = 60 kN/m, three 304 stainless steel rods, AB
and CD, which have a diameter of 5 mm, and EF, which has
a diameter of 12 mm, and a rigid beam GH. If the pipe is
displaced 82 mm when it is filled with fluid, determine the
weight of the fluid.

025m0.25 m

Probs. 4-21/22

4-23. The rod has a slight taper and length L. It is
suspended from the ceiling and supports a load P at its end.
Show that the displacement of its end due to this load is
& = PL/(wEr,ry). Neglect the weight of the material. The
modulus of elasticity is E.

r

151 N
be

Prob. 4-23

*4-24. Determine the relative displacement of one end of
the tapered plate with respect to the other end when it is
subjected to an axial load P.

AP

P —

At/ )

lp

Prob. 4-24

4-25. Determine the elongation of the A-36 steel member
when it is subjected to an axial force of 30 kN. The member
is 10 mm thick. Use the result of Prob. 4-24.

20 mm
30 kN Sl 30 kN
75 mm

| 0.5m |

Prob. 4-25

4-26. The casting is made of a material that has a specific
weight y and modulus of elasticity E. If it is formed into a
pyramid having the dimensions shown, determine how far
its end is displaced due to gravity when it is suspended in
the vertical position.

\
Prob. 4-26
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4-27. The circular bar has a variable radius of r = rype™
and is made of a material having a modulus of elasticity
of E. Determine the displacement of end A when it is
subjected to the axial force P.

r=rye*

Prob. 4-27

*4-28. The pedestal is made in a shape that has a radius
defined by the function r = 2/(2 + y'/?)ft, where y is
in feet. If the modulus of elasticity for the material is
E = 14(10%) psi, determine the displacement of its top
when it supports the 500-1b load.

@+y'?

Prob. 4-28

135

*4-29. The support is made by cutting off the two
opposite sides of a sphere that has a radius r,. If the original
height of the support is ry/2, determine how far it shortens
when it supports a load P. The modulus of elasticity is E.

Prob. 4-29

4-30. The weight of the kentledge exerts an axial force of
P = 1500 kN on the 300-mm diameter high strength
concrete bore pile. If the distribution of the resisting skin
friction developed from the interaction between the soil
and the surface of the pile is approximated as shown, and
the resisting bearing force F is required to be zero,
determine the maximum intensity py kN/m for equilibrium.
Also, find the corresponding elastic shortening of the pile.
Neglect the weight of the pile.

12m

— = g ~mini

Prob. 4-30
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4.3 Principle of Superposition

The principle of superposition is often used to determine the stress
or displacement at a point in a member when the member is subjected
to a complicated loading. By subdividing the loading into components,
the principle of superposition states that the resultant stress or
displacement at the point can be determined by algebraically summing
the stress or displacement caused by each load component applied
separately to the member.

The following two conditions must be satisfied if the principle of
superposition is to be applied.

1. The loading must be linearly related to the stress or displacement
that is to be determined. For example, the equations o = P/A and
6 = PL/AE involve a linear relationship between P and o or 6.

2. The loading must not significantly change the original geometry or
configuration of the member. If significant changes do occur, the
direction and location of the applied forces and their moment
arms will change. For example, consider the slender rod shown in
Fig. 4-10a, which is subjected to the load P. In Fig. 4-10b, P is replaced
by two of its components, P = P; + P,. If P causes the rod to deflect
a large amount, as shown, the moment of the load about its support,
Pd, will not equal the sum of the moments of its component loads,
Pd # Pd, + P,d,,because d| # d, # d.

This principle will be used throughout this text whenever we assume
Hooke’s law applies and also, the bodies that are considered will be such
that the loading will produce deformations that are so small that the
change in position and direction of the loading will be insignificant and
can be neglected.
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4.4 Statically Indeterminate Axially
Loaded Member

Consider the bar shown in Fig. 4-11a which is fixed supported at both
of its ends. From the free-body diagram, Fig. 4-11b, equilibrium requires

+1SF =0; Fg+F,—P=0

This type of problem is called statically indeterminate, since the
equilibrium equation(s) are not sufficient to determine the two reactions
on the bar.

In order to establish an additional equation needed for solution, it is
necessary to consider how points on the bar displace. Specifically, an
equation that specifies the conditions for displacement is referred to
as a compatibility or kinematic condition. In this case, a suitable
compatibility condition would require the displacement of one end of
the bar with respect to the other end to be equal to zero, since the end
supports are fixed. Hence, the compatibility condition becomes

d48=0

This equation can be expressed in terms of the applied loads by using
a load—displacement relationship, which depends on the material
behavior. For example, if linear-elastic behavior occurs, 8 = PL/AE can
be used. Realizing that the internal force in segment AC is +F 4, and in
segment CB the internal force is —F 3, Fig. 4-11c, the above equation can
be written as

FyLac  Fglcp

AE Ag

Assuming that AFE is constant, then F 4 = Fg(Lcp/Lsc), so that using
the equilibrium equation, the equations for the reactions become

LCB LAC
FA:P(L) and FB:P(L

Since both of these results are positive, the direction of the reactions is
shown correctly on the free-body diagram.

A
Lyc
Lcp
B
(a)

Fy

l FB
P
TF s F B

(®) (©)

Fig. 4-11

137
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Important Points

® The principle of superposition is sometimes used to simplify
stress and displacement problems having complicated loadings.
This is done by subdividing the loading into components, then
algebracially adding the results.

® Superposition requires that the loading be linearly related to the
stress or displacement, and the loading does not significantly
change the original geometry of the member.

® A problem is statically indeterminate if the equations of equilibrium
are not sufficient to determine all the reactions on a member.

® Compatibility conditions specify the displacement constraints
that occur at the supports or other points on a member.

Procedure for Analysis

The support reactions for statically indeterminate problems are
determined by satisfying equilibrium, compatibility, and force-
displacement requirements for the member.

Equilibrium.
® Draw a free-body diagram of the member in order to identify all
the forces that act on it.

® The problem can be classified as statically indeterminate if the
number of unknown reactions on the free-body diagram is greater
than the number of available equations of equilibrium.

® Write the equations of equilibrium for the member.

Compatibility.
Most concrete columns are reinforced with ) ) ) ) ) ) )
steel rods; and since these two materials work ® Consider drawing a displacement diagram in order to investigate
together in supporting the applied load, the the way the member will elongate or contract when subjected to
forces in each material become statically the external loads.

indeterminate. o . .
® Express the compatibility conditions in terms of the

displacements caused by the loading.

® Use a load—displacement relation, such as 6 = PL/AE, to relate
the unknown displacements to the reactions.

® Solve the equilibrium and compatibility equations for the
reactions. If any of the results has a negative numerical value, it
indicates that this force acts in the opposite sense of direction to
that indicated on the free-body diagram.
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EXAMPLE |4.5

The steel rod shown in Fig. 4-12a has a diameter of 10 mm. It is fixed
to the wall at A, and before it is loaded, there is a gap of 0.2 mm between
the wall at B' and the rod. Determine the reactions at A and B’ if the

B

rod is subjected to an axial force of P = 20 kN as shown. Neglect the
size of the collar at C. Take Ey = 200 GPa.

SOLUTION

Equilibrium. As shown on the free-body diagram, Fig. 4-12b, we
will assume that force P is large enough to cause the rod’s end B to

contact the wall at B’. The problem is statically indeterminate since - P =20 kN
th t k d onl ti f equilibrium.

ere are two unknowns and only one equation of equilibrium ¥,
BIF, =0, —F,— Fg +20(10°)N = 0 1) (b)

Compatibility. The force P causes point B to move to B’, with no
further displacement. Therefore the compatibility condition for the

rod is
Fre—{ > Fs

This displacement can be expressed in terms of the unknown (©)
reactions using the load-displacement relationship, Eq. 4-2, applied
to segments AC and CB, Fig. 4-12¢. Working in units of newtons and
meters, we have

Fig. 4-12

FuLac  Fglcg

854 = 0.0002 m =

AE AE
F 4(0.4m
00002 m = 5 005 m)éizoouzﬁ) N/m?]
F5(0.8m)
(0.005 m)?[200(10%) N/m?]
or

F4(04m) — Fy(0.8m) = 3141.59N-m )

Solving Egs. 1 and 2 yields
F,=16.0kN Fp = 4.05kN Ans.

Since the answer for F is positive, indeed end B contacts the wall at
B’ as originally assumed.

NOTE: If Fp were a negative quantity, the problem would be
statically determinate, so that 'z = 0 and F 4 = 20 kN.

9p/4 = 0.0002m Fy—p e Fp
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EXAMPLE |4.6

P =9kip

(2)

P 9 kip

\

b = 0.955 ksi

o = 0.637 ksi

(c)
Fig. 4-13

The aluminum post shown in Fig. 4-13a is reinforced with a brass

core. If this assembly supports an axial compressive load of P = 9 kip,

applied to the rigid cap, determine the average normal stress in

the aluminum and the brass. Take E, = 10(10%)ksi and
pr = 15(10°) ksi.

SOLUTION

Equilibrium. The free-body diagram of the post is shown in
Fig. 4-13b. Here the resultant axial force at the base is represented by
the unknown components carried by the aluminum, F,, and brass,
Fy;. The problem is statically indeterminate. Why?

Vertical force equilibrium requires

+12F, = 0; —9kip + Fy + Fp, =0 1)

Compatibility. The rigid cap at the top of the post causes both the
aluminum and brass to displace the same amount. Therefore,

Bal = Sy
Using the load—displacement relationships,
F,L Fy. L
AgEq  AuEnr
ru=r(532)()
Apr /\ Epy
[w[(z in.)> — (1 in.)2]:|[10(103) ksi}
Fay = Fy — T
(1 1in.) 15(10°) ksi
Fa = 2Fy, ()

Solving Egs. 1 and 2 simultaneously yields
F, = 6kip Fy, = 3 kip

Since the results are positive, indeed the stress will be compressive.
The average normal stress in the aluminum and brass is therefore

6 kip i
Oa = — 5y = 0.637 ksi Ans.
7[(2in.)” — (11in.)]
3 kip i
O = — 5 = 0.955ksi Ans.
7(11in.)

NOTE: Using these results, the stress distributions are shown in
Fig. 4-13c.
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EXAMPLE |4.7

The three A-36 steel bars shown in Fig. 4-14a are pin connected to a ,
rigid member. If the applied load on the member is 15 kN, determine 37
the force developed in each bar. Bars AB and EF each have a cross- 1
sectional area of 50 mm?, and bar CD has a cross-sectional area of

30 mm?2.

SOLUTION A \ c':.‘

Equilibrium. The free-body diagram of the rigid member is shown
in Fig. 4-14b. This problem is statically indeterminate since there are n7
three unknowns and only two available equilibrium equations. 02m(J)02m

0.4 m—

+12F, = 0; Fo+ Fc+ Fp—15kN =0 (1)
15 kN
(+tZMe=0; —F404m)+ 15kN(02m) + Fg(04m) =0 (2)
(a)

Compatibility. The applied load will cause the horizontal line ACE

shown in Fig. 4-14c to move to the inclined line A'C'E’. The F, Fc Fp
displacements of points A, C,and E can be related by similar triangles.

Thus the compatibility equation that relates these displacements is

| | |

0.4 m ‘.‘

04 — 0 _6c — ¥

=N

08m  04m 0.2mlo.2m
1 1 15kN
6(:‘ = 5614 + ESE (b)
Using the load—displacement relationship, Eq. 4-2, we have r 0.4m Hr 04m ﬁ‘
Fel _1{ FL ]+1[ Fil } ‘BEI ’\
(30mm*)Ey 2L (50 mm?)Eg (50 mm?) E 5, oc 35
Fo=03F, + 03F; ) &
Fig. 4-14
Solving Egs. 1-3 simultaneously yields
F,=952kN Ans.
Fc = 346 kN Ans.

Fp =202kN Ans.
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EXAMPLE |4.8

(2)

Final
position

0.025 in.

Initial
position
(©)
Fig. 4-15

The bolt shown in Fig. 4-15a is made of 2014-T6 aluminum alloy and is
tightened so it compresses a cylindrical tube made of Am 1004-T61
magnesium alloy. The tube has an outer radius of% in., and it is assumed
that both the inner radius of the tube and the radius of the bolt are % in.
The washers at the top and bottom of the tube are considered to be
rigid and have a negligible thickness. Initially the nut is hand tightened
snugly; then, using a wrench, the nut is further tightened one-half turn.
If the bolt has 20 threads per inch, determine the stress in the bolt.

SOLUTION

Equilibrium. The free-body diagram of a section of the bolt and the
tube, Fig. 4-15b, is considered in order to relate the force in the bolt
Fj, to that in the tube, F,. Equilibrium requires

+1=F, = 0; F,—F, =0 (1)

Compatibility. When the nut is tightened on the bolt, the tube
will shorten §,, and the bolt will elongate 6,, Fig. 4-15¢c. Since the
nut undergoes one-half turn, it advances a distance of (%)(217) in.) =
0.025 in. along the bolt. Thus, the compatibility of these displacements
requires

(+1

Taking the moduli of elasticity from the table on the inside back
cover, and applying Eq. 4-2, yields

F,(31in.)
[(0.5in.)> — (0.25 in.)?][6.48(10%) ksi] B
F,(3in.)
m(0.25 in.)?[10.6(10°) ksi]

8, = 0.025in. — &,

0.0251in. —

0.78595F, = 25 — 1.4414F, 2)
Solving Egs. 1 and 2 simultaneously, we get
F, =F,=1122kip
The stresses in the bolt and tube are therefore
F, 11.22 kip i
op=——=————>=572ksi Ans.
Ay w(0.251n.)
F, 11.22 kip )
o == ) 5y = 19.1ksi
A, @[(0.5in.)" — (0.251in.)"]

These stresses are less than the reported yield stress for each material,
(oy)a = 60 ksi and (oy)m, = 22 ksi (see the inside back cover), and
therefore this “elastic” analysis is valid.
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4.5 The Force Method of Analysis
for Axially Loaded Members

It is also possible to solve statically indeterminate problems by writing A
the compatibility equation using the principle of superposition. This
method of solution is often referred to as the flexibility or force method
of analysis. To show how it is applied, consider again the bar in
Fig. 4-16a. If we choose the support at B as “redundant” and temporarily
remove its effect on the bar, then the bar will become statically
determinate as in Fig. 4-16b. By using the principle of superposition, we
must add back the unknown redundant load Fg, as shown in Fig. 4-16c¢.

If load P causes B to be displaced downward by an amount ép, the
reaction Fz must displace end B of the bar upward by an amount ép,
such that no displacement occurs at B when the two loadings are
superimposed. Thus,

No displacement at B C 4

(@)

(+1) 0=20p—0p I

This equation represents the compatibility equation for displacements at A
point B, for which we have assumed that displacements are positive
downward.

Applying the load—displacement relationship to each case, we have
8p = PL4c/AE and 63 = FyL/AE. Consequently, Displacement at B when
redundant force at B

is removed P

PL FgL
_fLac _I's (b

AE AE

_ LAC)
FB a P( L :__'I‘SP

From the free-body diagram of the bar, Fig. 4-11b, the reaction at A
can now be determined from the equation of equilibrium,

Displacement at B when
only the redundant force at
B is applied

(c)
Lep
Fa= P(L> |

These results are the same as those obtained in Sec. 4.4, except that here TFB
we have applied the condition of compatibility to obtain one reaction
and then the equilibrium condition to obtain the other. Fig. 4-16

L
+13F, = 0; P(ZC)+FA—P=0

Since Lcg = L — Lyc, then
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Procedure for Analysis

The force method of analysis requires the following steps.
Compeatibility.

® Choose one of the supports as redundant and write the equation of compatibility. To do this, the known
displacement at the redundant support, which is usually zero, is equated to the displacement at the
support caused only by the external loads acting on the member plus (vectorially) the displacement at this
support caused only by the redundant reaction acting on the member.

® Express the external load and redundant displacements in terms of the loadings by using a load-
displacement relationship, such as § = PL/AE.

® Once established, the compatibility equation can then be solved for the magnitude of the redundant force.

Equilibrium.

® Draw a free-body diagram and write the appropriate equations of equilibrium for the member using the
calculated result for the redundant. Solve these equations for any other reactions.

EXAMPLE |4.9

The A-36 steel rod shown in Fig. 4-17a has a diameter of 10 mm. It is
fixed to the wall at A, and before it is loaded there is a gap between
the wall at B’ and the rod of 0.2 mm. Determine the reactions at A

P=20 kl\é 0.2 mmN and B'. Neglect the size of the collar at C. Take Ey = 200 GPa.
—| F SOLUTION
i 800 mm o ere . .
400 mm @ Compatibility. Here we will consider the support at B’ as
redundant. Using the principle of superposition, Fig. 4-17b, we have
P=20kN (2 mm- (5) 0.0002m = 8p — &p 1)
= * The deflections 8 and 85 are determined from Eq. 4-2.
” Irlitial\[_qa PL [20(103) N](O 4 )
=20k iti P 4m
P 20K position | B = ——2C . = 0509310 %) m
————— —— AE 7(0.005 m)“[200(10”) N/m~?]
Final FzL Fp(1.20 m)
Sy e _ I'plap _ B _ 9
position o = = = 76.3944(10 " F
| ) + _h . B AE T 7(0.005m)2[200(10°) N/m?] (107)F
B
l Substituting into Eq. 1, we get
(b) _ 3y -9
¥, . . 0.0002 m = 0.5093(107°) m — 76.3944(10 ") Fp
-— —| -~ Fg = 4.05(10°) N = 4.05kN Ans.
(c) Equilibrium. From the free-body diagram, Fig. 4-17c,

Fig. 4-17 HIF, =0, —F,+20kN —405kN=0 F,=160kN Ans.
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“lrropiews

4-31. The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 30 kip, determine the average normal
stress in the concrete and in each rod. Each rod has a
diameter of 0.75 in.

*4-32, The column is constructed from high-strength
concrete and six A-36 steel reinforcing rods. If it is subjected
to an axial force of 30 kip, determine the required diameter
of each rod so that one-fourth of the load is carried by the
concrete and three-fourths by the steel.

ft

——=  Probs. 4-31/32

*4-33. The steel pipe is filled with concrete and subjected
to a compressive force of 80 kN. Determine the average
normal stress in the concrete and the steel due to this
loading. The pipe has an outer diameter of 80 mm and an
inner diameter of 70 mm. E = 200 GPa, E. = 24 GPa.

80 kN

Prob. 4-33

4-34. The 304 stainless steel post A has a diameter of
d = 21in. and is surrounded by a red brass C83400 tube B.
Both rest on the rigid surface. If a force of 5 kip is applied
to the rigid cap, determine the average normal stress
developed in the post and the tube.

4-35. The 304 stainless steel post A is surrounded by a red
brass C83400 tube B. Both rest on the rigid surface. If a
force of 5 kip is applied to the rigid cap, determine the
required diameter d of the steel post so that the load is
shared equally between the post and tube.

5 kip

W @

8i

-

Fd—-{ w0.5 in.

Probs. 4-34/35

B

)

*4-36. The composite bar consists of a 20-mm-diameter
A-36 steel segment AB and 50-mm-diameter red brass
C83400 end segments DA and CB. Determine the average
normal stress in each segment due to the applied load.

*4-37. The composite bar consists of a 20-mm-diameter
A-36 steel segment AB and 50-mm-diameter red brass
C83400 end segments DA and CB. Determine the
displacement of A with respect to B due to the applied
load.

250 mm-—| 500 mm <250 mm-~|
50 mm 20 mm
75 kN l 100 kN

T 00N
75kN "100kN B C

Probs. 4-36/37
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4-38. The A-36 steel column, having a cross-sectional area
of 18 in%, is encased in high-strength concrete as shown. If
an axial force of 60 kip is applied to the column, determine
the average compressive stress in the concrete and in the
steel. How far does the column shorten? It has an original
length of 8 ft.

4-39. The A-36 steel column is encased in high-strength
concrete as shown. If an axial force of 60 kip is applied to
the column, determine the required area of the steel so that
the force is shared equally between the steel and concrete.
How far does the column shorten? It has an original length
of 8 ft.

60 kip

Probs. 4-38/39

*4-40. The rigid member is held in the position shown by
three A-36 steel tie rods. Each rod has an unstretched length
of 0.75 m and a cross-sectional area of 125 mm?. Determine
the forces in the rods if a turnbuckle on rod EF undergoes
one full turn. The lead of the screw is 1.5 mm. Neglect the
size of the turnbuckle and assume that it is rigid. Note: The
lead would cause the rod, when unloaded, to shorten 1.5 mm
when the turnbuckle is rotated one revolution.

e e
0.75 m

Prob. 4-40

*4-41. The concrete post is reinforced using six steel
reinforcing rods, each having a diameter of 20 mm.
Determine the stress in the concrete and the steel if the post
is subjected to an axial load of 900 kN. Ey = 200 GPa,
E. = 25 GPa.

4-42. The post is constructed from concrete and six A-36
steel reinforcing rods. If it is subjected to an axial force of
900 kN, determine the required diameter of each rod so that
one-fifth of the load is carried by the steel and four-fifths by
the concrete. E = 200 GPa, E. = 25 GPa.

900 kN

Probs. 4-41/42

4-43. The assembly consists of two red brass C83400
copper alloy rods AB and CD of diameter 30 mm, a stainless
304 steel alloy rod EF of diameter 40 mm, and a rigid cap G.
If the supports at A, C and F are rigid, determine the
average normal stress developed in rods AB, CD and EF.

Prob. 4-43
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*4-44. The two pipes are made of the same material and
are connected as shown. If the cross-sectional area of BC is
A and that of CD is 2A, determine the reactions at B and D
when a force P is applied at the junction C.

I~
DI~

Prob. 4-44

*4-45. The bolt has a diameter of 20 mm and passes
through a tube that has an inner diameter of 50 mm and an
outer diameter of 60 mm. If the bolt and tube are made of
A-36 steel, determine the normal stress in the tube and bolt
when a force of 40 kN is applied to the bolt. Assume the end
caps are rigid.

‘ 160 mm |
—
40 kKN 40 kKN
\%150 mm H
Prob. 4-45

4-46. If the gap between C and the rigid wall at D is
initially 0.15 mm, determine the support reactions at A and
D when the force P = 200 kN is applied. The assembly
is made of A36 steel.

600 mm 600 mm ﬂ L—0.15 mm
| B
- |
E > D
B 25 ¢
mm
50 mm

Prob. 4-46

4-47. Two A-36 steel wires are used to support the 650-1b
engine. Originally, AB is 32 in. long and A’'B’ is 32.008 in.
long. Determine the force supported by each wire when the
engine is suspended from them. Each wire has a cross-
sectional area of 0.01 in’.

(e

Prob. 4-47

*4-48. Rod AB has a diameter d and fits snugly between
the rigid supports at A and B when it is unloaded. The
modulus of elasticity is E. Determine the support reactions
at A and B if the rod is subjected to the linearly distributed
axial load.

Po
/W

> > —> —> —> —> —>
‘A B"
s
L
Prob. 4-48
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*4-49. The tapered member is fixed connected at its ends
A and B and is subjected to a load P = 7 kip at x = 30 in.
Determine the reactions at the supports. The material is
2 in. thick and is made from 2014-T6 aluminum.

4-50. The tapered member is fixed connected at its ends
A and B and is subjected to a load P. Determine the location
x of the load and its greatest magnitude so that the average
normal stress in the bar does not exceed oy, = 4 ksi. The
member is 2 in. thick.

L
6in. Pe——0o 13in.

60 in.

Probs. 4-49/50

4-51. The rigid bar supports the uniform distributed load
of 6 kip/ft. Determine the force in each cable if each cable
has a cross-sectional area of 0.05 in%, and E = 31(10%) ksi.

*4-52. The rigid bar is originally horizontal and is
supported by two cables each having a cross-sectional area
of 0.05in%, and E = 31(10°) ksi. Determine the slight
rotation of the bar when the uniform load is applied.

6 kip /ft

FEEEYARNENELY
v —

Probs. 4-51/52

*4-53. The press consists of two rigid heads that are held
together by the two A-36 steel %—in.-diameter rods. A 6061-
T6-solid-aluminum cylinder is placed in the press and the
screw is adjusted so that it just presses up against the
cylinder. If it is then tightened one-half turn, determine
the average normal stress in the rods and in the cylinder.
The single-threaded screw on the bolt has a lead of 0.01 in.
Note: The lead represents the distance the screw advances
along its axis for one complete turn of the screw.

4-54. The press consists of two rigid heads that are held
together by the two A-36 steel %—in.-diameter rods. A 6061-
T6-solid-aluminum cylinder is placed in the press and the
screw is adjusted so that it just presses up against the
cylinder. Determine the angle through which the screw can
be turned before the rods or the specimen begin to yield.
The single-threaded screw on the bolt has a lead of 0.01 in.
Note: The lead represents the distance the screw advances
along its axis for one complete turn of the screw.

12 in. |

10 in.
Probs. 4-53/54

4-55. The three suspender bars are made of A-36 steel
and have equal cross-sectional areas of 450 mm?.
Determine the average normal stress in each bar if the rigid
beam is subjected to the loading shown.

80 kN
2m S0 kN

Fl mﬂFl m#‘&l m »‘kl m%

Prob. 4-55
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*4-56. The rigid bar supports the 800-1b load. Determine
the normal stress in each A-36 steel cable if each cable has a
cross-sectional area of 0.04 in”.

*4-57. The rigid bar is originally horizontal and is
supported by two A-36 steel cables each having a cross-
sectional area of 0.04 in%. Determine the rotation of the bar
when the 800-1b load is applied.

Al
I

Probs. 4-56/57

4-58. The horizontal beam is assumed to be rigid and
supports the distributed load shown. Determine the vertical
reactions at the supports. Each support consists of a wooden
post having a diameter of 120 mm and an unloaded
(original) length of 1.40 m. Take E,, = 12 GPa.

4-59. The horizontal beam is assumed to be rigid and
supports the distributed load shown. Determine the angle
of tilt of the beam after the load is applied. Each support
consists of a wooden post having a diameter of 120 mm and
an unloaded (original) length of 1.40 m. Take E,, = 12 GPa.

18 kN/m

M

A B C
1.40 m
2 m }

Im —»‘
Probs. 4-58/59

*4-60. The assembly consists of two posts AD and CF
made of A-36 steel and having a cross-sectional area of
1000 mm?, and a 2014-T6 aluminum post BE having a cross-
sectional area of 1500 mm?. If a central load of 400 kN is
applied to the rigid cap, determine the normal stress in each
post. There is a small gap of 0.1 mm between the post BE
and the rigid member ABC.

400 kN
i 0.5m ) 0.5m i
A B q
0.4m
D E F
Prob. 4-60

*4-61. The distributed loading is supported by the three
suspender bars. AB and EF are made of aluminum and CD
is made of steel. If each bar has a cross-sectional area of
450 mm?, determine the maximum intensity w of the
distributed loading so that an allowable stress of (o 0w )st =
180 MPa in the steel and (ogow)a = 94 MPa in the
aluminum is not exceeded. Ey = 200 GPa, E, = 70 GPa.
Assume ACE is rigid.

Prob. 4-61
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4-62. The rigid link is supported by a pin at A, a steel wire
BC having an unstretched length of 200 mm and cross-
sectional area of 22.5 mm?, and a short aluminum block
having an unloaded length of 50 mm and cross-sectional
area of 40 mm?. If the link is subjected to the vertical load
shown, determine the average normal stress in the wire and
the block. £, = 200 GPa, E, = 70 GPa.

4-63. The rigid link is supported by a pin at A, a steel wire
BC having an unstretched length of 200 mm and cross-
sectional area of 22.5 mm?, and a short aluminum block
having an unloaded length of 50 mm and cross-sectional area
of 40 mm?. If the link is subjected to the vertical load shown,
determine the rotation of the link about the pin A. Report
the answer in radians. £ = 200 GPa, E, = 70 GPa.

200 nT1m

mm

50 mm

Probs. 4-62/63

*4-64. The center post B of the assembly has an original
length of 124.7 mm, whereas posts A and C have a length of
125 mm. If the caps on the top and bottom can be
considered rigid, determine the average normal stress in
each post. The posts are made of aluminum and have a
cross-sectional area of 400 mm?. E,; = 70 GPa.

800 kN/m
100 mm -+t 100 mm -+ {
A B C 125 ‘mm
800 kN/m

Prob. 4-64

*4-65. The assembly consists of an A-36 steel bolt and a
(83400 red brass tube. If the nut is drawn up snug against
the tube so that L = 75 mm, then turned an additional
amount so that it advances 0.02 mm on the bolt, determine
the force in the bolt and the tube. The bolt has a diameter of
7 mm and the tube has a cross-sectional area of 100 mm?

4-66. The assembly consists of an A-36 steel bolt and a
C83400 red brass tube. The nut is drawn up snug against
the tube so that L = 75 mm. Determine the maximum
additional amount of advance of the nut on the bolt so that
none of the material will yield. The bolt has a diameter of
7 mm and the tube has a cross-sectional area of 100 mm?.

| L |

Probs. 4-65/66

4-67. The three suspender bars are made of the same
material and have equal cross-sectional areas A. Determine
the average normal stress in each bar if the rigid beam ACE
is subjected to the force P.

B \e D\e F\e —
P L
A C E
g
2 2
Prob. 4-67



4.6 Thermal Stress

A change in temperature can cause a body to change its dimensions.
Generally, if the temperature increases, the body will expand, whereas if
the temperature decreases, it will contract. Ordinarily this expansion or
contraction is linearly related to the temperature increase or decrease
that occurs. If this is the case, and the material is homogeneous and
isotropic, it has been found from experiment that the displacement of a
member having a length L can be calculated using the formula

8y = a ATL (4-4)

where

a = a property of the material, referred to as the linear coefficient
of thermal expansion. The units measure strain per degree of
temperature. They are 1/°F (Fahrenheit) in the FPS system,
and 1/°C (Celsius) or 1/K (Kelvin) in the SI system. Typical
values are given on the inside back cover

AT = the algebraic change in temperature of the member
L = the original length of the member
S = the algebraic change in the length of the member

The change in length of a statically determinate member can easily be
calculated using Eq. 44, since the member is free to expand or contract
when it undergoes a temperature change. However, in a statically
indeterminate member, these thermal displacements will be constrained
by the supports, thereby producing thermal stresses that must be
considered in design. Determining these thermal stresses is possible
using the methods outlined in the previous sections. The following
examples illustrate some applications.
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Most traffic bridges are designed with
expansion joints to accommodate the
thermal movement of the deck and thus
avoid any thermal stress.

Long extensions of ducts and pipes that
carry fluids are subjected to variations in
climate that will cause them to expand
and contract. Expansion joints, such as the
one shown, are used to mitigate thermal
stress in the material.
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EXAMPLE |4.10

0.5 in.

]
- Josin.

(c)
Fig. 4-18

The A-36 steel bar shown in Fig. 4-18a is constrained to just fit
between two fixed supports when 7y = 60°F. If the temperature is
raised to 7, = 120°F, determine the average normal thermal stress
developed in the bar.

SOLUTION
Equilibrium. The free-body diagram of the bar is shown in
Fig. 4-18b. Since there is no external load, the force at A is equal but
opposite to the force at B; that is,
+T2Fy=0a FAZFBZF

The problem is statically indeterminate since this force cannot be
determined from equilibrium.

Compatibility. Since 6,5 = 0, the thermal displacement &; at A
that occurs, Fig. 4-18c, is counteracted by the force F that is required
to push the bar &y back to its original position. The compatibility
condition at A becomes

(+1) da3=0=0r —op

Applying the thermal and load-displacement relationships, we
have

FL
0 = aATL — iE
Thus, from the data on the inside back cover,
F = aATAE
= [6.60(107°)/°F](120°F — 60°F)(0.5 in.)*[29(10°) kip/in?]
= 2.871 kip

Since F also represents the internal axial force within the bar, the
average normal compressive stress is thus

= 11.5ksi Ans.

NOTE: From the magnitude of F, it should be apparent that changes
in temperature can cause large reaction forces in statically
indeterminate members.
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EXAMPLE |4.11

The rigid beam shown in Fig. 4-19a is fixed to the top of the three
posts made of A-36 steel and 2014-T6 aluminum. The posts each have
a length of 250 mm when no load is applied to the beam, and the
temperature is 7y = 20°C. Determine the force supported by each
post if the bar is subjected to a uniform distributed load of 150 kN/m
and the temperature is raised to 7, = 80°C.

SOLUTION

Equilibrium. The free-body diagram of the beam is shown in Fig.4-19b.
Moment equilibrium about the beam’s center requires the forces in the
steel posts to be equal. Summing forces on the free-body diagram,
we have

+13F, = 0;

2Fy + Fy — 90(10°) N =0 (1)

Compatibility. Due to load, geometry, and material symmetry, the

top of each post is displaced by an equal amount. Hence,

(+ \L ) 83t = Bal (2)
The final position of the top of each post is equal to its displacement

caused by the temperature increase, plus its displacement caused by

the internal axial compressive force, Fig. 4-19¢. Thus, for the steel and

aluminum post, we have

(+1)

(+1)

Applying Eq. 2 gives
—(8s)r + (8s)r = —(8a)r + (Ba)r

Using Eqgs. 4-2 and 4-4 and the material properties on the inside back

cover, we get

8st =
6al =

_(ast)T + (Sst)F
—(8a)r + (8a)rF

F (0250 m)

|-300 mm—~-300 mm—} 50 kN /m

ANy

(a)

(851) T
|

(Bal)T

r——

Initial Position |~ _|ﬁ1’ |
P!

Jvﬁaal)p

8¢ = 5y ()r

Final Position

(©)

Fig. 4-19

—[12(1076)/°C](80°C — 20°C)(0.250 m) +

= —[23(107°)/°C](80°C — 20°C)(0.250 m) + Fu(0250m)

(0.020 m)?[200(10°) N/m?]

Fy = 1216F, — 165.9(10°) (3)

To be consistent, all numerical data has been expressed in terms
of newtons, meters, and degrees Celsius. Solving Eqgs. 1 and 3
simultaneously yields

Fy=—164kN F, = 123kN Ans.

The negative value for F indicates that this force acts opposite to
that shown in Fig. 4-19b. In other words, the steel posts are in tension
and the aluminum post is in compression.

(0.030 m)?[73.1(10”) N/m?]
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EXAMPLE |4.12

Initial
position

Bs) T

n
ﬂ 150 mm
(a)
k
F; l

A 2014-T6 aluminum tube having a cross-sectional area of 600 mm? is
used as a sleeve for an A-36 steel bolt having a cross-sectional area of
400 mm?, Fig. 4-20a. When the temperature is 77 = 15°C, the nut
holds the assembly in a snug position such that the axial force in the
bolt is negligible. If the temperature increases to 7, = 80°C,
determine the force in the bolt and sleeve.

SOLUTION

Equilibrium. The free-body diagram of a top segment of the
assembly is shown in Fig. 4-20b. The forces F, and F are produced
since the sleeve has a higher coefficient of thermal expansion than the
bolt, and therefore the sleeve will expand more when the temperature
is increased. It is required that

+12F, = 0; F,=F, (1)

Compatibility. The temperature increase causes the sleeve and bolt
to expand (8;)7 and (8;)7, Fig. 4-20c. However, the redundant forces
Fj, and F elongate the bolt and shorten the sleeve. Consequently, the
end of the assembly reaches a final position, which is not the same as

YF, its initial position. Hence, the compatibility condition becomes
(b) (+1) 8 = (8p)r + (8)r = (85)r — (85)r
| Applying Egs. 4-2 and 4-4, and using the mechanical properties from
the table on the inside back cover, we have
[12(107%)/°C](80°C — 15°C)(0.150 m) +
F;(0.150 m)
(400 mm?)(10~% m?/mm?)[200(10°) N/m?]
— ) = [23(107%)/°C](80°C — 15°C)(0.150 m)
v (op)T
o
AV B F(0.150 m)
= position (600 mm?)(10~° m?>/mm?)[73.1(10°) N/m?]
@o)r Using Eq. 1 and solving gives
(c) F, = F, = 203kN Ans.
Fig. 4-20 NOTE: Since linear elastic material behavior was assumed in this

analysis, the average normal stresses should be checked to make sure
that they do not exceed the proportional limits for the material.
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“lrropiews

*4-68. A steel surveyor’s tape is to be used to measure the
length of a line. The tape has a rectangular cross section of
0.05 in. by 0.2 in. and a length of 100 ft when 7'; = 60°F and
the tension or pull on the tape is 20 1b. Determine the
true length of the line if the tape shows the reading to
be 463.25 ft when used with a pull of 351b at T, = 90°F. The
ground on which it is placed is flat. ag = 9.60(107°)/°F,
Eg = 29(10°) ksi.

Prob. 4-68

¢4-69. Three bars each made of different materials are
connected together and placed between two walls when the
temperature is 7| = 12°C. Determine the force exerted
on the (rigid) supports when the temperature becomes
T, = 18°C. The material properties and cross-sectional
area of each bar are given in the figure.

Steel Brass Copper
E4=200GPa  E, =100GPa  E, =120GPa
ay = 12(107%),°C  apy = 21(107%) °C g, = 17(107%) /°C

) Agy = 515 mm?
|Ast =200 mm? Abr = 450 mm |
| 300 mm 1 200 mmﬁLOO |
mm
Prob. 4-69

4-70. The rod is made of A-36 steel and has a diameter of
0.25 in. If the rod is 4 ft long when the springs are compressed
0.5 in. and the temperature of the rodis 7 = 40°F, determine
the force in the rod when its temperature is 7 = 160°F.

k =10001b/in.

k =10001b/in.

Prob. 4-70

4-71. A 6-ft-long steam pipe is made of A-36 steel with
oy = 40ksi. It is connected directly to two turbines A
and B as shown. The pipe has an outer diameter of 4 in.
and a wall thickness of 0.25 in. The connection was made
at Ty = 70°F. If the turbines’ points of attachment are
assumed rigid, determine the force the pipe exerts on
the turbines when the steam and thus the pipe reach a
temperature of 7, = 275°F.

*4-72. A 6-ft-long steam pipe is made of A-36 steel with
oy = 40 ksi. It is connected directly to two turbines A and
B as shown. The pipe has an outer diameter of 4 in. and a
wall thickness of 0.25 in. The connection was made at
T, ="70°F. If the turbines’ points of attachment are
assumed to have a stiffness of k = 80(10%) kip/in., determine
the force the pipe exerts on the turbines when the steam
and thus the pipe reach a temperature of 7, = 275°F.

Féfta‘

Probs. 4-71/72

*4-73. The pipe is made of A-36 steel and is connected to
the collars at A and B. When the temperature is 60° F, there
is no axial load in the pipe. If hot gas traveling through the
pipe causes its temperature to rise by AT = (40 + 15x)°F,
where x is in feet, determine the average normal stress in the
pipe. The inner diameter is 2 in., the wall thickness is 0.15 in.

4-74. The bronze C86100 pipe has an inner radius of
0.5 in. and a wall thickness of 0.2 in. If the gas flowing
through it changes the temperature of the pipe uniformly
from T 4 = 200°F at A to T = 60°F at B, determine the
axial force it exerts on the walls. The pipe was fitted between
the walls when 7" = 60°F.

‘A
I 8 ft

7]
|

Probs. 4-73/74
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4-75. The 40-ft-long A-36 steel rails on a train track are laid
with a small gap between them to allow for thermal
expansion. Determine the required gap 6 so that the rails just
touch one another when the temperature is increased from
T1 = —20°Fto T, = 90°F. Using this gap, what would be the
axial force in the rails if the temperature were to rise to
T5 = 110°F? The cross-sectional area of each rail is 5.10 in’.

A 5l

40 ft

Prob. 4-75

*4-76. The device is used to measure a change in temper-
ature. Bars AB and CD are made of A-36 steel and 2014-T6
aluminum alloy respectively. When the temperature is
at 75°F, ACE is in the horizontal position. Determine the
vertical displacement of the pointer at E when the
temperature rises to 150°F.

3in.

Prob. 4-76

¢4-77. The bar has a cross-sectional area A, length L,
modulus of elasticity E, and coefficient of thermal
expansion a. The temperature of the bar changes uniformly
along its length from 7 4 at A to T'g at B so that at any point
x along the bar T = T4 + x(Tg — T 4)/L. Determine the
force the bar exerts on the rigid walls. Initially no axial force
is in the bar and the bar has a temperature of 74.

S

T4 Ty

Prob. 4-77

4-78. The A-36 steel rod has a diameter of 50 mm and is
lightly attached to the rigid supports at A and B when
T, = 80°C. If the temperature becomes 7, = 20°C and an
axial force of P = 200 kN is applied to its center, determine
the reactions at A and B.

4-79. The A-36 steel rod has a diameter of 50 mm and is
lightly attached to the rigid supports at A and B when
T, = 50°C. Determine the force P that must be applied to
the collar at its midpoint so that, when 7, = 30°C, the
reaction at B is zero.

A _ ¢ B
0.5m | 05m
Probs. 4-78/79

*4-80. The rigid block has a weight of 80 kip and is to be
supported by posts A and B, which are made of A-36 steel,
and the post C, which is made of C83400 red brass. If all the
posts have the same original length before they are loaded,
determine the average normal stress developed in each post
when post C is heated so that its temperature is increased
by 20°F. Each post has a cross-sectional area of 8 in’.

A C B

ST

Prob. 4-80




*4-81. The three bars are made of A-36 steel and form
a pin-connected truss. If the truss is constructed when
T, = 50°F, determine the force in each bar when
T, = 110°F. Each bar has a cross-sectional area of 2 in’.

4-82. The three bars are made of A-36 steel and form
a pin-connected truss. If the truss is constructed when
T1 = 50°F, determine the vertical displacement of joint A
when T, = 150°F. Each bar has a cross-sectional area of
2in’.

Probs. 4-81/82

4-83. The wires AB and AC are made of steel, and wire
AD is made of copper. Before the 150-1b force is applied,
AB and AC are each 60 in. long and AD is 40 in. long. If
the temperature is increased by 80°F, determine the
force in each wire needed to support the load. Take
Egq =29(10% ksi, E. = 17(10°) ksi, ay = 8(107%)/°F,
ey = 9.60(107%)/°F. Each wire has a cross-sectional area of
0.0123 in”.

Prob. 4-83
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*4-84. The AM1004-T61 magnesium alloy tube AB is
capped with a rigid plate E.The gap between E and end C of
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm
when the temperature is at 30° C. Determine the normal
stress developed in the tube and the rod if the temperature
rises to 80° C. Neglect the thickness of the rigid cap.

*4-85. The AMI1004-T61 magnesium alloy tube AB is
capped with a rigid plate. The gap between E and end C of
the 6061-T6 aluminum alloy solid circular rod CD is 0.2 mm
when the temperature is at 30° C. Determine the highest
temperature to which it can be raised without causing
yielding either in the tube or the rod. Neglect the thickness
of the rigid cap.

25 mm@ZO mm

Section a-a

, E

|
i C 1
A B 25 mm

a ol
0.2 mm

~—300 mm — 450 mm

Probs. 4-84/85

4-86. The steel bolt has a diameter of 7 mm and fits
through an aluminum sleeve as shown. The sleeve has an
inner diameter of 8 mm and an outer diameter of 10 mm.
The nut at A is adjusted so that it just presses up against
the sleeve. If the assembly is originally at a temperature
of Ty = 20°C and then is heated to a temperature of
T, = 100°C, determine the average normal stress in the
bolt and the sleeve. Ey = 200 GPa, E, = 70 GPa, oy =
14(107%)/°C, ay = 23(107%)/°C.

Prob. 4-86
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This saw blade has grooves cut into it in
order to relieve both the dynamic stress that
develops within it as it rotates and the
thermal stress that develops as it heats up.
Note the small circles at the end of each
groove. These serve to reduce the stress
concentrations that develop at the end of
each groove.

4.7 Stress Concentrations

In Sec. 4.1, it was pointed out that when an axial force is applied to a
member, it creates a complex stress distribution within the localized
region of the point of load application. Not only do complex stress
distributions arise just under a concentrated loading, they can also arise
at sections where the member’s cross-sectional area changes. For
example, consider the bar in Fig. 4-21a, which is subjected to an axial
force P. Here the once horizontal and vertical grid lines deflect into an
irregular pattern around the hole centered in the bar. The maximum
normal stress in the bar occurs on section a—a, which is taken through the
bar’s smallest cross-sectional area. Provided the material behaves in a
linear-elastic manner, the stress distribution acting on this section can be
determined either from a mathematical analysis, using the theory of
elasticity, or experimentally by measuring the strain normal to section
a—a and then calculating the stress using Hooke’s law, o = FEe.
Regardless of the method used, the general shape of the stress
distribution will be like that shown in Fig. 4-21b. In a similar manner, if
the bar has a reduction in its cross section, achieved using shoulder fillets
as in Fig. 4-22a, then again the maximum normal stress in the bar will
occur at the smallest cross-sectional area, section a—a, and the stress
distribution will look like that shown in Fig. 4-22b.

1S}

N _—
] Bl ]
P(—r ‘\ :-—»P P -«— O max
2 |
] B |
Undi ? ted Actual stress distribution
ndistorte (b)
a-an
B = '--l.IIII
P <7 TH g —> P P
13 - : B
t A H >
Distorted

Average stress distribution

@ (c)



In both of these cases, force equilibrium requires the magnitude of the
resultant force developed by the stress distribution to be equal to P. In
other words,

P= /A odA (4-5)

This integral graphically represents the total volume under each of the
stress-distribution diagrams shown in Fig. 4-21b or Fig. 4-22b. The
resultant P must act through the centroid of each volume.

In engineering practice, the actual stress distributions in Fig. 4-21b and
Fig. 4-22b do not have to be determined. Instead, only the maximum
stress at these sections must be known, and the member is then designed
to resist this stress when the axial load P is applied. Specific values of this
maximum normal stress can be determined by experimental methods or
by advanced mathematical techniques using the theory of elasticity. The
results of these investigations are usually reported in graphical form using
a stress-concentration factor K. We define K as a ratio of the maximum
stress to the average normal stress acting at the cross section;i.e.,

K = Jma (4-6)

Oavg

Provided K is known, and the average normal stress has been calculated
from o,, = P/A, where A is the smallest cross-sectional area,
Figs. 4-21c and 4-22c, then the maximum normal stress at the cross
section is o, = K(P/A).
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Stress concentrations often arise at sharp
corners on heavy machinery. Engineers
can mitigate this effect by using stiffeners
welded to the corners.

Ll L]
ot I O max
P — S P
i |
1117
a Actual stress distribution
Undistorted (b)
I % |l x Tavg
P —H ] P <—
/
Distorted Average stress distribution

(a) (©)

Fig. 4-22
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P—— —>r
(a)

P -— —>r
(b)

P— —>r

Specific values of K are generally reported in handbooks related to
stress analysis.* Examples are given in Figs. 4-24 and 4-25. Note that K
is independent of the bar’s material properties; rather, it depends only
on the bar’s geometry and the type of discontinuity. As the size r of
the discontinuity is decreased, the stress concentration is increased.
For example, if a bar requires a change in cross section, it has
been determined that a sharp corner, Fig. 4-23a, produces a stress-
concentration factor greater than 3. In other words, the maximum
normal stress will be three times greater than the average normal stress
on the smallest cross section. However, this can be reduced to, say, 1.5 by
introducing a fillet, Fig. 4-23b. A further reduction can be made by
means of small grooves or holes placed at the transition, Fig. 4-23¢ and
4-23d.1n all of these cases these designs help to reduce the rigidity of the
material surrounding the corners, so that both the strain and the stress
are more evenly spread throughout the bar.

The stress-concentration factors given in Figs. 4-24 and 4-25 were
determined on the basis of a static loading, with the assumption that
the stress in the material does not exceed the proportional limit. If the
material is very brittle, the proportional limit may be at the fracture
stress, and so for this material, failure will begin at the point of stress
concentration. Essentially a crack begins to form at this point, and a
higher stress concentration will develop at the tip of this crack. This,
in turn, causes the crack to propagate over the cross section, resulting
in sudden fracture. For this reason, it is very important to use stress-
concentration factors in design when using brittle materials. On the
other hand, if the material is ductile and subjected to a static load, it is
often not necessary to use stress-concentration factors since any stress
that exceeds the proportional limit will not result in a crack. Instead,
the material will have reserve strength due to yielding and strain-
hardening. In the next section we will discuss the effects caused by this
phenomenon.

Stress concentrations are also responsible for many failures of
structural members or mechanical elements subjected to fatigue
loadings. For these cases, a stress concentration will cause the material to
crack if the stress exceeds the material’s endurance limit, whether or not
the material is ductile or brittle. Here, the material localized at the tip of
the crack remains in a brittle state, and so the crack continues to grow,
leading to a progressive fracture. As a result, one must seek ways to limit
the amount of damage that can be caused by fatigue.

*See Lipson, C. and R. C. Juvinall, Handbook of Stress and Strength, Macmillan.
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Important Points

® Stress concentrations occur at sections where the cross-sectional
area suddenly changes. The more severe the change, the larger
the stress concentration.

® For design or analysis, it is only necessary to determine the
maximum stress acting on the smallest cross-sectional area. This
is done using a stress concentration factor, K, that has been
determined through experiment and is only a function of the
geometry of the specimen.

¢ Normally the stress concentration in a ductile specimen that is
subjected to a static loading will not have to be considered in
design; however, if the material is brittle, or subjected to fatigue Failure of this steel pipe in tension occurred

loadings, then stress concentrations become important. at its smallest cross-sectional area, which is
through the hole. Notice how the material
yielded around the fractured surface.
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*4.8 Inelastic Axial Deformation

Up to this point we have only considered loadings that cause the
material of a member to behave elastically. Sometimes, however, a
member may be designed so that the loading causes the material to yield
and thereby permanently deform. Such members are often made from a
highly ductile metal such as annealed low-carbon steel having a
stress—strain diagram that is similar to that of Fig. 3-6 and for simplicity
can be modeled as shown in Fig. 4-26b. A material that exhibits this
behavior is referred to as being elastic perfectly plastic or elastoplastic.

To illustrate physically how such a material behaves, consider the bar
in Fig. 4-26a, which is subjected to the axial load P. If the load causes an
elastic stress o = o to be developed in the bar, then applying Eq. 4-5,
equilibrium requires P = f o1 dA = o{A. Furthermore, the stress o
causes the bar to strain €; as indicated on the stress—strain diagram,
Fig. 4-26b. If P is now increased to P, such that it causes yielding of the
material, that is, ¢ = oy, then again P, = fO'y dA = oyA. The load
P, is called the plastic load since it represents the maximum load that can
be supported by an elastoplastic material. For this case, the strains are
not uniquely defined. Instead, at the instant oy is attained, the bar is first
subjected to the yield strain ey, Fig. 4-26b, after which the bar will
continue to yield (or elongate) such that the strains e,, then €3, etc., are
generated. Since our “model” of the material exhibits perfectly plastic
material behavior, this elongation will continue indefinitely with no
increase in load. In reality, however, the material will, after some
yielding, actually begin to strain-harden so that the extra strength it
attains will stop any further straining. As a result, any design based on
this behavior will be safe, since strain-hardening provides the potential
for the material to support an additional load if necessary.

g1

(a) (b)
Fig. 4-26
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Consider now the case of a bar having a hole through it as shown in
Fig. 4-27a. As the magnitude of P is increased, a stress concentration
occurs in the material at the edge of the hole, on section a—a. The stress
here will reach a maximum value of, say, o, = 0y and have a
corresponding elastic strain of €, Fig. 4-27b. The stresses and
corresponding strains at other points on the cross section will be smaller,
as indicated by the stress distribution shown in Fig. 4-27¢. Equilibrium
requires P = [o dA. In other words, P is geometrically equivalent to
the “volume” contained within the stress distribution. If the load is now
increased to P’, so that o,y = oy, then the material will begin to yield
outward from the hole, until the equilibrium condition P’ = [o dA is
satisfied, Fig. 4-27d. As shown, this produces a stress distribution that has
a geometrically greater “volume” than that shown in Fig. 4-27¢c. A further
increase in load will cause the material over the entire cross section to
yield eventually. When this happens, no greater load can be sustained by
the bar. This plastic load P, is shown in Fig. 4-27e. It can be calculated
from the equilibrium condition

where A is the bar’s cross-sectional area at section a—a.

The following examples illustrate numerically how these concepts
apply to other types of problems for which the material has elastoplastic
behavior.

Oy
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€1 €y

(b)

(©) (d)

Fig. 4-27
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*4.9 Residual Stress

If an axially loaded member or group of such members forms a statically
indeterminate system that can support both tensile and compressive
loads, then excessive external loadings, which cause yielding of the
material, will create residual stresses in the members when the loads
are removed. The reason for this has to do with the elastic recovery of the
material that occurs during unloading. To show this, consider a prismatic
member made from an elastoplastic material having the stress—strain
diagram shown in Fig. 4-28. If an axial load produces a stress oy in the
material and a corresponding plastic strain €, then when the load is
removed, the material will respond elastically and follow the line CD in
order to recover some of the plastic strain. A recovery to zero stress at
point O’ will be possible only if the member is statically determinate,
since the support reactions for the member must be zero when the load is
removed. Under these circumstances the member will be permanently
deformed so that the permanent set or strain in the member is €.

If the member is statically indeterminate, however, removal of the
external load will cause the support forces to respond to the elastic
recovery CD. Since these forces will constrain the member from full
recovery, they will induce residual stresses in the member. To solve a
problem of this kind, the complete cycle of loading and then unloading
of the member can be considered as the superposition of a positive load
(loading) on a negative load (unloading). The loading, O to C, results in a
plastic stress distribution, whereas the unloading, along CD, results only
in an elastic stress distribution. Superposition requires the loads to
cancel; however, the stress distributions will not cancel, and so residual
stresses will remain.

A C
Ty B
o'
€
(e} /Eor €c
D

Fig. 4-28
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EXAMPLE |4.13

The bar in Fig. 4-29a is made of steel that is assumed to be elastic
perfectly plastic, with oy = 250 MPa. Determine (a) the maximum
value of the applied load P that can be applied without causing the
steel to yield and (b) the maximum value of P that the bar can support.
Sketch the stress distribution at the critical section for each case.

SOLUTION

Part (a). When the material behaves elastically, we must use a
stress-concentration factor determined from Fig. 4-24 that is unique
for the bar’s geometry. Here

r 4 mm
— = = 0.125
h (40 mm — 8mm)
-
%: 40 mm _ 125 P

(40 mm — 8 mm) T

From the figure K =~ 1.75. The maximum load, without causing
yielding, occurs when o, = 0oy. The average normal stress is (a)
Tag = P/A. Using Eq.4-6,we have

Py
Omax — KO'an; oy = K 7

P =
6 _ Y 3
250(10%) Pa = 1.75 [(0.002 m)(0.032 m) Py :i

Py = 9.14 kN Ans.

This load has been calculated using the smallest cross section. The

resulting stress distribution is shown in Fig. 4-29b. For equilibrium,

the “volume” contained within this distribution must equal 9.14 kN. —
q

Part (b). The maximum load sustained by the bar will cause all the
material at the smallest cross section to yield. Therefore, as P is Py
increased to the plastic load P,, it gradually changes the stress -
distribution from the elastic state shown in Fig. 4-29b to the plastic (0)
state shown in Fig. 4-29¢. We require

Fig. 4-29

~

p
Oy =

A
P

(0.002 m)(0.032 m)
8, = 16.0 kN Ans.

S

250(10°) Pa =

Here P, equals the “volume” contained within the stress distribution,
which in this case is P, = oy A.
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EXAMPLE |4.14

The rod shown in Fig. 4-30a has a radius of 5 mm and is made of
an elastic perfectly plastic material for which oy = 420 MPa, E =

;_ C P=60kN l.f | 70 GPa, Fig. 4-30c. If a force of P = 60 kN is applied to the rod and
'y B - then removed, determine the residual stress in the rod.
(a)
SOLUTION
The free-body diagram of the rod is shown in Fig. 4-30b. Application
F, _é C P=G60kN ,:5_) ¥, Of the load P will cause one of three possibilities, namely, both
’ segments AC and CB remain elastic, AC is plastic while CB is elastic,
(b) or both AC and CB are plastic.*
An elastic analysis, similar to that discussed in Sec. 4.4, will produce
Fig. 4-30 F, = 45kN and Fz = 15 kN at the supports. However, this results in
a stress of
Ouc = 77((?’5()01(51\1111)2 = 573 MPa (compression) > oy = 420 MPa
ocp = LNZ = 191 MPa (tension)
7(0.005 m)

Since the material in segment AC will yield, we will assume that AC
becomes plastic, while CB remains elastic.
For this case, the maximum possible force developed in AC is
(Fp)y = oyA = 420(10%) kN/m? [7(0.005 m)?] = 33.0 kN
and from the equilibrium of the rod, Fig. 4-315,
Fp=60kN — 33.0kN = 27.0 kN
The stress in each segment of the rod is therefore
0 4c = oy = 420 MPa (compression)

27.0 kN
= ——— = 344 MPa (tension) < 420 MPa (OK
7CB = (0.005 m)? ( ) (OK)

*The possibility of CB becoming plastic before AC will not occur because when point C
moves, the strain in AC (since it is shorter) will always be larger than the strain in CB.
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Residual Stress. In order to obtain the residual stress, it is also
necessary to know the strain in each segment due to the loading. Since
CB responds elastically,

FyLcp (27.0 kN)(0.300 m)
8¢ = = . ; - = 0.001474 m
AE  7(0.005 m)[70(10°) kN/m?]
8¢ 0.001474 m o(MPa)
€cp = = = +0.004913
" Leg 0.300m 420
N
O¢ 0.001474 m N
= = = —0.01474 - - brifc
€AC LAC 0‘100 m €qC 0.01474 0 3
i /| ecs = 0.004913
— {» —420
Here the yield strain is B'
(©)

420(10%) N/m?
€y=ﬂ=%=0.006
E 70(10°) N/m

Therefore, when P is applied, the stress—strain behavior for the
material in segment CB moves from O to A’, Fig. 4-30c, and the stress—
strain behavior for the material in segment AC moves from O to B'. If
the load P is applied in the reverse direction, in other words, the load
is removed, then an elastic response occurs and a reverse force of
F,=45kN and Fz = 15kN must be applied to each segment.
As calculated previously, these forces now produce stresses
0 4c = 573 MPa (tension) and oz = 191 MPa (compression), and as
a result the residual stress in each member is

(04c), = —420 MPa + 573 MPa = 153 MPa Ans.

(ocp), = 344 MPa — 191 MPa = 153 MPa Ans.

This residual stress is the same for both segments, which is to be
expected. Also note that the stress-strain behavior for segment AC
moves from B’ to D’ in Fig. 4-30c, while the stress—strain behavior for
the material in segment CB moves from A’ to C' when the load is
removed.

Fig. 4-30 (cont.)

e(mm/mm)
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EXAMPLE |4.15

Two steel wires are used to lift the

weight of 3 kip, Fig. 4-31a. Wire AB has

W 4 A an unstretched length of 20.00 ft and
Tﬂ wire AC has an unstretched length of

20.03 ft. If each wire has a cross-
2000t 120,03 £ sectional area of 0.05 in%, and the steel
2000 £t | | 20.03 ft can be considered elastic perfectly
plastic as shown by the o—e graph in
Fig. 4-31b, determine the force in each

Sap = 0.03 ft + 5,¢ wire and its elongation.

Initial position

B
@
ac_ SOLUTION
Finalposition 51 ce. the weight is supported by both
(d) wires, then the stress in the wires

depends on the corresponding strain.

There are three possibilities, namely, the strains in both wires are

elastic, wire AB is plastically strained while wire AC is elastically

o (ksi) strained, or both wires are plastically strained. We will assume that AC
remains elastic and AB is plastically strained.

Investigation of the free-body diagram of the suspended weight,

50 Fig. 4-31c, indicates that the problem is statically indeterminate. The
equation of equilibrium is

Since AB becomes plastically strained then it must support its
maximum load.

Ok € (in./in.)
' Tap = oyAap = 50ksi (0.05in?) = 2.50 kip Ans.
(b) Therefore, from Eq. 1,
Tas, Tac T 4c = 0.500 kip Ans.
Note that wire AC remains elastic as assumed since the stress in the
wire is o 4 = 0.500 kip/0.05 in?> = 10 ksi < 50 ksi. The corresponding
elastic strain is determined by proportion, Fig. 4-31b;i.e.,
€4c _ 0.0017
10ksi 50 ksi
3kip  (c) €4c = 0.000340
Fig. 4-31 The elongation of AC is thus
d4c = (0.000340)(20.03 ft) = 0.00681 ft Ans.

And from Fig. 4-31d, the elongation of AB is then
645 = 0.03 ft + 0.00681 ft = 0.0368 ft Ans.
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“lrropiews

4-87. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 8 kN.

*4-88. 1If the allowable normal stress for the bar is
T 0w = 120 MPa, determine the maximum axial force P
that can be applied to the bar.

5 mm
40 mm ﬁ ”/20 mm
}

P €—

Probs. 4-87/88

*4-89. The member is to be made from a steel plate that is
0.25 in. thick. If a 1-in. hole is drilled through its center, de-
termine the approximate width w of the plate so that it can
support an axial force of 3350 1b. The allowable stress is
Oallow — 22 ksi.

3350 1b

1in. ~

Prob. 4-89

4-90. The A-36 steel plate has a thickness of 12 mm. If
there are shoulder fillets at B and C, and ooy = 150 MPa,
determine the maximum axial load P that it can support.
Calculate its elongation, neglecting the effect of the fillets.

r=30 mm

60 mm
P

B
60 mm
P-
A PV 800 mm 200 mm
200 mm

Prob. 4-90

4-91. Determine the maximum axial force P that can be
applied to the bar. The bar is made from steel and has an
allowable stress of o0 = 21 ksi.

*4-92, Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 2 kip.

0.125 in.
’/1.25 in.

1.875 in.

P <€—

O

0.75 in.

r=10.251n.

Probs. 4-91/92

*4-93. Determine the maximum normal stress developed
in the bar when it is subjected to a tension of P = 8 kN.

5 mm
/’/ 30 mm

Prob. 4-93

4-94. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar. Also,
what is the stress-concentration factor for this geometry?

0.5 in.

BL H in.
3 ksi
12ksi—] St

Prob. 4-94

P .
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4-95. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar. Also,
what is the stress-concentration factor for this geometry?

0.5 in.
A

0.2 in. | &4

ek
— 6 ksi

- 36 ksi

Prob. 4-95
*4-96. The resulting stress distribution along section AB
for the bar is shown. From this distribution, determine the
approximate resultant axial force P applied to the bar. Also,
what is the stress-concentration factor for this geometry?

10 mm

/

20 mm <

~—30 MPa

Prob. 4-96

*4-97. The 300-kip weight is slowly set on the top of a post
made of 2014-T6 aluminum with an A-36 steel core. If both
materials can be considered elastic perfectly plastic,
determine the stress in each material.

Aluminum

2in.

Prob. 4-97

4-98. The bar has a cross-sectional area of 0.5 in® and is
made of a material that has a stress—strain diagram that
can be approximated by the two line segments shown.
Determine the elongation of the bar due to the applied

loading.
pA B 8kip C 5kip
L 51t b— 21t —

[
o(ksi)

40

20

€ (in./in.)

0.001 0.021

Prob. 4-98

4-99. The rigid bar is supported by a pin at A and two
steel wires, each having a diameter of 4 mm. If the yield
stress for the wires is oy = 530 MPa, and Ey = 200 GPa,
determine the intensity of the distributed load w that can
be placed on the beam and will just cause wire EB to
yield. What is the displacement of point G for this case?
For the calculation, assume that the steel is elastic
perfectly plastic.

*4-100. The rigid bar is supported by a pin at A and two
steel wires, each having a diameter of 4 mm. If the yield
stress for the wires is oy = 530 MPa, and Ey = 200 GPa,
determine (a) the intensity of the distributed load w that
can be placed on the beam that will cause only one of the
wires to start to yield and (b) the smallest intensity of
the distributed load that will cause both wires to yield. For
the calculation, assume that the steel is elastic perfectly
plastic.

250 mm ‘

|———400 mm

Probs. 4-99/100



*4-101. The rigid lever arm is supported by two A-36 steel
wires having the same diameter of 4 mm. If a force of
P = 3 kN is applied to the handle, determine the force
developed in both wires and their corresponding elongations.
Consider A-36 steel as an elastic-perfectly plastic material.

4-102. The rigid lever arm is supported by two A-36 steel
wires having the same diameter of 4 mm. Determine the
smallest force P that will cause (a) only one of the wires to
yield; (b) both wires to yield. Consider A-36 steel as an
elastic-perfectly plastic material.

300 mm
B D

Probs. 4-101/102

4-103. The three bars are pinned together and subjected
to the load P. If each bar has a cross-sectional area A, length
L, and is made from an elastic perfectly plastic material, for
which the yield stress is oy, determine the largest load
(ultimate load) that can be supported by the bars, i.e., the
load P that causes all the bars to yield. Also, what is the
horizontal displacement of point A when the load reaches
its ultimate value? The modulus of elasticity is E.
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*4-104. The rigid beam is supported by three 25-mm
diameter A-36 steel rods. If the beam supports the force of
P = 230 kN, determine the force developed in each rod.
Consider the steel to be an elastic perfectly-plastic material.

*4-105. The rigid beam is supported by three 25-mm
diameter A-36 steel rods. If the force of P = 230 kN is
applied on the beam and removed, determine the residual
stresses in each rod. Consider the steel to be an elastic
perfectly-plastic material.

600 mm

P
1A B ic

‘« 400 mm—~~400 mmJ« 400 mmJ

Probs. 4-104/105

4-106. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has a
cross-sectional area of 1.25 in” and is made from a material
having a stress—strain diagram that can be approximated by
the two line segments shown. If a load of w = 25 kip/ft is
applied to the beam, determine the stress in each bar and
the vertical displacement of the beam.

4-107. The distributed loading is applied to the rigid
beam, which is supported by the three bars. Each bar has
a cross-sectional area of 0.75 in’ and is made from a
material having a stress-strain diagram that can be
approximated by the two line segments shown. Determine
the intensity of the distributed loading w needed to cause
the beam to be displaced downward 1.5 in.

F—aft—tf—4ft—

Prob. 4-103

o(ksi) S
60

5 fit

36 A B c

H
a g =
0.0012 05 €lin/in) YYYYYVYYYYVY,
Probs. 4-106/107
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*4-108. The rigid beam is supported by the three posts A,
B, and C of equal length. Posts A and C have a diameter of
75 mm and are made of aluminum, for which £, = 70 GPa
and (oy), = 20 MPa. Post B has a diameter of 20 mm and
is made of brass, for which E, = 100 GPa and
(oy)pr = 590 MPa. Determine the smallest magnitude of P
so that (a) only rods A and C yield and (b) all the posts yield.

*4-109. The rigid beam is supported by the three posts
A, B, and C. Posts A and C have a diameter of 60 mm
and are made of aluminum, for which E£, = 70 GPa and
(oy)a = 20 MPa. Post B is made of brass, for which
Ey. = 100 GPa and (oy)y,, = 590 MPa. If P = 130 kN,
determine the largest diameter of post B so that all the
posts yield at the same time.

A B C
al ‘ br ‘ al
FZ m»FZ m{eZ m+2 m{
Probs. 4-108/109

4-110. The wire BC has a diameter of 0.125 in. and the
material has the stress—strain characteristics shown in the
figure. Determine the vertical displacement of the handle at
D if the pull at the grip is slowly increased and reaches a
magnitude of (a) P = 450 b, (b) P = 600 Ib.

C {
40 in.

A B i D

D) j —1

30 in.
P

‘ 50 in. l

o (ksi)
80
70 [
€ (in./in.)
0.007 0.12

Prob. 4-110

4-111. The bar having a diameter of 2 in. is fixed
connected at its ends and supports the axial load P. If the
material is elastic perfectly plastic as shown by the
stress—strain diagram, determine the smallest load P needed
to cause segment CB to yield. If this load is released,
determine the permanent displacement of point C.

*4-112. Determine the elongation of the bar in
Prob. 4-111 when both the load P and the supports are
removed.

P
[, s S
A C B

21t ‘ 3t
o (ksi)
20—
€ (in./in.)
0.001
Probs. 4-111/112

*4-113. A material has a stress—strain diagram that can be
described by the curve o = ce'/?. Determine the deflection
6 of the end of a rod made from this material if it has a
length L, cross-sectional area A, and a specific weight vy.

~
bN

Prob. 4-113
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When a loading is applied at a point on a body, it
tends to create a stress distribution within the body
that becomes more uniformly distributed at regions
removed from the point of application of the load.
This is called Saint-Venant’s principle.

The relative displacement at the end of an axially
loaded member relative to the other end is
determined from

s LP(x) dx
- /0 AE

If a series of concentrated external axial forces are
applied to a member and AE is also constant for
the member, then

§=2 AE
For application, it is necessary to use a sign
convention for the internal load P and displacement
8. We considered tension and elongation as positive
values. Also, the material must not yield, but rather
it must remain linear elastic.

n—|

P, =—

Superposition of load and displacement is possible
provided the material remains linear elastic and
no significant changes in the geometry of the
member occur after loading.

The reactions on a statically indeterminate bar can
be determined using the equilibrium equations
and compatibility conditions that specify the
displacement at the supports. These displacements
are related to the loads using a load—displacement
relationship such as 6 = PL/AE.
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A change in temperature can cause a member
made of homogeneous isotropic material to change
its length by

6 = «ATL

If the member is confined, this change will produce
thermal stress in the member.

Holes and sharp transitions at a cross section will
create stress concentrations. For the design of a
member made of brittle material one obtains the
stress concentration factor K from a graph, which
has been determined from experiment. This value is
then multiplied by the average stress to obtain the
maximum stress at the cross section.

Omax = Ko'avg

If the loading in a bar made of ductile material
causes the material to yield, then the stress
distribution that is produced can be determined
from the strain distribution and the stress—strain
diagram. Assuming the material is perfectly plastic,
yielding will cause the stress distribution at the
cross section of a hole or transition to even out and
become uniform.

g1

8t

If a member is constrained and an external loading
causes yielding, then when the load is released, it
will cause residual stress in the member.
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. CONCEPTUAL PROBLEMS

P4-1
P4-1. The concrete footing A was poured when this column P4-2. The row of bricks, along with mortar and an internal
was put in place. Later the rest of the foundation slab was steel reinforcing rod, was intended to serve as a lintel beam to
poured. Can you explain why the 45° cracks occurred at each support the bricks above this ventilation opening on an
corner? Can you think of a better design that would avoid exterior wall of a building. Explain what may have caused the

such cracks? bricks to fail in the manner shown.
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. REVIEW PROBLEMS

4-114. The 2014-T6 aluminum rod has a diameter of 0.5 in.
and is lightly attached to the rigid supports at A and B when
T, = 70°F. If the temperature becomes 7, = —10°F, and
an axial force of P = 161b is applied to the rigid collar as
shown, determine the reactions at A and B.

4-115. The 2014-T6 aluminum rod has a diameter of
0.5 in. and is lightly attached to the rigid supports at A
and B when T'; = 70°F. Determine the force P that must
be applied to the collar so that, when T = O0°F, the
reaction at B is zero.

A B
PL__om
P2 —>N
~— 5in.—- | 8 in.
Probs. 114/115

*4-116. The rods each have the same 25-mm diameter
and 600-mm length. If they are made of A-36 steel,
determine the forces developed in each rod when the
temperature increases to 50° C.

Prob. 4-116

*4-117. Two A-36 steel pipes, each having a cross-
sectional area of 0.32in? are screwed together using a
union at B as shown. Originally the assembly is adjusted so
that no load is on the pipe. If the union is then tightened
so that its screw, having a lead of 0.15 in., undergoes two full
turns, determine the average normal stress developed in the
pipe. Assume that the union at B and couplings at A and C
are rigid. Neglect the size of the union. Note: The lead would
cause the pipe, when unloaded, to shorten 0.15 in. when the
union is rotated one revolution.

3 ft

Prob. 4-117

4-118. The brass plug is force-fitted into the rigid casting.
The uniform normal bearing pressure on the plug is
estimated to be 15 MPa. If the coefficient of static friction
between the plug and casting is u, = 0.3, determine the
axial force P needed to pull the plug out. Also, calculate the
displacement of end B relative to end A just before the plug
starts to slip out. £, = 98 GPa.

<—100 mm——>——150 mm

20 mm
15 MPa

Prob. 4-118



4-119. The assembly consists of two bars AB and CD of
the same material having a modulus of elasticity £; and
coefficient of thermal expansion «4, and a bar EF having a
modulus of elasticity E, and coefficient of thermal
expansion «,. All the bars have the same length L and
cross-sectional area A. If the rigid beam is originally
horizontal at temperature 7', determine the angle it makes
with the horizontal when the temperature is increased
to T,.

o
@
)
~
[

|

Prob. 4-119
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*4-120. The rigid link is supported by a pin at A and two
A-36 steel wires, each having an unstretched length of 12 in.
and cross-sectional area of 0.0125 in%. Determine the force
developed in the wires when the link supports the vertical
load of 350 Ib.

12 in. |

3501b

Prob. 4-120




The torsional stress and angle of twist of this soil auger depend upon the output of
the machine turning the bit as well as the resistance of the soil in contact with the
shaft.




Torsion

CHAPTER OBJECTIVES

In this chapter we will discuss the effects of applying a torsional
loading to a long straight member such as a shaft or tube. Initially we
will consider the member to have a circular cross section. We will show
how to determine both the stress distribution within the member and
the angle of twist when the material behaves in a linear elastic manner
and also when it is inelastic. Statically indeterminate analysis of shafts
and tubes will also be discussed, along with special topics that include
those members having noncircular cross sections. Lastly, stress
concentrations and residual stress caused by torsional loadings will be
given special consideration.

5.1 Torsional Deformation
of a Circular Shaft

Torque is a moment that tends to twist a member about its longitudinal
axis. Its effect is of primary concern in the design of axles or drive shafts
used in vehicles and machinery. We can illustrate physically what
happens when a torque is applied to a circular shaft by considering
the shaft to be made of a highly deformable material such as rubber,
Fig. 5-1a. When the torque is applied, the circles and longitudinal grid
lines originally marked on the shaft tend to distort into the pattern
shown in Fig. 5-1b. Note that twisting causes the circles to remain circles,
and each longitudinal grid line deforms into a helix that intersects the
circles at equal angles. Also, the cross sections from the ends along the
shaft will remain flar—that is, they do not warp or bulge in or out—and
radial lines remain straight during the deformation, Fig. 5-1b. From these
observations we can assume that if the angle of twist is small, the length
of the shaft and its radius will remain unchanged.

179
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Circles remain
circular

CHAPTER 5 TORSION

If the shaft is fixed at one end and a torque is applied to its other end,
the dark green shaded plane in Fig. 5-2 will distort into a skewed form as
shown. Here a radial line located on the cross section at a distance x from
the fixed end of the shaft will rotate through an angle ¢(x). The angle
¢ (x), so defined, is called the angle of twist. It depends on the position x
and will vary along the shaft as shown.

In order to understand how this distortion strains the material, we will
now isolate a small element located at a radial distance p (rho) from the
axis of the shaft, Fig. 5-3. Due to the deformation as noted in Fig. 5-2, the
front and rear faces of the element will undergo a rotation—the back
face by ¢(x), and the front face by ¢(x) + Acp. As a result, the difference
in these rotations, A¢, causes the element to be subjected to a shear
strain. To calculate this strain, note that before deformation the angle
between the edges AB and AC is 90°; after deformation, however, the
edges of the element are AD and AC and the angle between them is §'.
From the definition of shear strain, Eq. 2-4, we have

Longitudinal
lines become
twisted T

Radial lines
remain straight

After deformation

(b)
Fig. 5-1

Deformed
plane

Undeformed
plane
ye
/ T
X

Notice the deformation of the rectangular The angle of twist ¢(x) increases as x increases.
element when this rubber bar is subjected

to a torque. Fig. 5-2
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This angle, v, is indicated on the element. It can be related to the length
Ax of the element and the angle A¢ between the shaded planes by
considering the length of arc BD, that is

BD = pA¢p = Axy
Therefore, if we let Ax — dx and A¢p —> do,

d
y = pj(ﬁ (5-1)

Since dx and d¢ are the same for all elements located at points on the
cross section at x, then d¢/dx is constant over the cross section, and
Eq. 5-1 states that the magnitude of the shear strain for any of these
elements varies only with its radial distance p from the axis of the shaft.
In other words, the shear strain within the shaft varies linearly along any
radial line, from zero at the axis of the shaft to a maximum v, at its
outer boundary, Fig. 5-4. Since d¢/dx = y/p = yma /¢, then

Y= (lcj)ymax (5-2)

The results obtained here are also valid for circular tubes. They
depend only on the assumptions regarding the deformations mentioned
above.

The shear strain at points on
the cross section increases linearly
with p, i.e., Y= (p/€)Ymax-

Fig. 5-4

Deformed

ndeformed
plane

Shear strain of element

Fig.5-3
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5.2 The Torsion Formula

When an external torque is applied to a shaft it creates a corresponding
internal torque within the shaft. In this section, we will develop an
equation that relates this internal torque to the shear stress distribution
on the cross section of a circular shaft or tube.

If the material is linear-elastic, then Hooke’s law applies, 7 = G, and
consequently a linear variation in shear strain, as noted in the previous
section, leads to a corresponding linear variation in shear stress along
any radial line on the cross section. Hence, 7 will vary from zero at the
shaft’s longitudinal axis to a maximum value, 7., at its outer surface.
This variation is shown in Fig. 5-5 on the front faces of a selected number
of elements, located at an intermediate radial position p and at the outer
radius c. Due to the proportionality of triangles, we can write

r= (2 (5-3)

This equation expresses the shear-stress distribution over the cross section
in terms of the radial position p of the element. Using it, we can now apply
the condition that requires the torque produced by the stress distribution
over the entire cross section to be equivalent to the resultant internal
torque T at the section, which holds the shaft in equilibrium, Fig. 5-5.

Shear stress varies linearly along
each radial line of the cross section.

Fig. 5-5



Specifically, each element of area dA, located at p, is subjected
to a force of dF = 1dA. The torque produced by this force is
dT = p(tm dA). We therefore have for the entire cross section

T = /A p(rdA) = /A p<’;'>7maxd,4 (5-4)

Since 7.,/ is constant,

T = Tma A P2 dA (5-5)

Cc

The integral depends only on the geometry of the shaft. It represents
the polar moment of inertia of the shaft’s cross-sectional area about the
shaft’s longitudinal axis. We will symbolize its value as J, and therefore
the above equation can be rearranged and written in a more compact
form, namely,

Tmax — 7 (5—6)

Here

Tmax = the maximum shear stress in the shaft, which occurs at the
outer surface

~
Il

the resultant internal torque acting at the cross section. Its value
is determined from the method of sections and the equation of
moment equilibrium applied about the shaft’s longitudinal axis

J = the polar moment of inertia of the cross-sectional area

¢ = the outer radius of the shaft

Combining Egs. 5-3 and 5-6, the shear stress at the intermediate
distance p can be determined from

T=— (5-7)

Either of the above two equations is often referred to as the torsion
Jormula. Recall that it is used only if the shaft is circular and the material
is homogeneous and behaves in a linear elastic manner, since the
derivation is based on Hooke’s law.

5.2 THE TORSION FORMULA
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dp

Fig. 5-6

Shear stress varies linearly along
each radial line of the cross section.

(b)
Fig. 5-7

Solid Shaft. If the shaft has a solid circular cross section, the polar
moment of inertia J can be determined using an area element in the form
of a differential ring or annulus having a thickness dp and circumference
2mp, Fig. 5-6. For this ring, dA = 2mp dp, and so

c c 1
J = /p2 dA = / p*(2mp dp) = 277'/ pdp = 27T<>p4
A 0 0 4

J=—c

c

0

(5-8)

Note that J is a geometric property of the circular area and is always
positive. Common units used for its measurement are mm* or in*.

The shear stress has been shown to vary linearly along each radial line
of the cross section of the shaft. However, if an element of material on
the cross section is isolated, then due to the complementary property of
shear, equal shear stresses must also act on four of its adjacent faces as
shown in Fig. 5-7a. Hence, not only does the internal torque T develop a
linear distribution of shear stress along each radial line in the plane of
the cross-sectional area, but also an associated shear-stress distribution
is developed along an axial plane, Fig. 5-7b. It is interesting to note that
because of this axial distribution of shear stress, shafts made from wood
tend to split along the axial plane when subjected to excessive torque,
Fig. 5-8. This is because wood is an anisotropic material. Its shear
resistance parallel to its grains or fibers, directed along the axis of the
shaft, is much less than its resistance perpendicular to the fibers, directed
in the plane of the cross section.

Failure of a wooden shaft due to torsion.

Fig. 5-8



Tubular Shaft. 1If a shaft has a tubular cross section, with inner radius ¢;
and outer radius c,, then from Eq. 5-8 we can determine its polar moment
of inertia by subtracting J for a shaft of radius ¢; from that determined
for a shaft of radius c,. The result is

(c5 — ) (5-9)

Like the solid shaft, the shear stress distributed over the tube’s
cross-sectional area varies linearly along any radial line, Fig. 5-9a.
Furthermore, the shear stress varies along an axial plane in this same
manner, Fig. 5-9b.

Absolute Maximum Torsional Stress. If the absolute
maximum torsional stress is to be determined, then it becomes important
to find the location where the ratio Tc¢/J is a maximum. In this regard, it
may be helpful to show the variation of the internal torque 7T at each
section along the axis of the shaft by drawing a torque diagram, which is
a plot of the internal torque 7 versus its position x along the shaft’s length.
As a sign convention, 7 will be positive if by the right-hand rule the thumb
is directed outward from the shaft when the fingers curl in the direction
of twist as caused by the torque, Fig. 5-5. Once the internal torque
throughout the shaft is determined, the maximum ratio of Tc¢/J can then
be identified.
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This tubular drive shaft for a truck
was subjected to an excessive torque,
resulting in failure caused by yielding of
the material.

Shear stress varies linearly along
each radial line of the cross section.

(a)

Fig. 5-9

(b)
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Important Points

® When a shaft having a circular cross section is subjected to a torque, the cross section remains plane while
radial lines rotate. This causes a shear strain within the material that varies linearly along any radial line,
from zero at the axis of the shaft to a maximum at its outer boundary.

® For linear elastic homogeneous material the shear stress along any radial line of the shaft also varies
linearly, from zero at its axis to a maximum at its outer boundary. This maximum shear stress must not
exceed the proportional limit.

® Due to the complementary property of shear, the linear shear stress distribution within the plane of the
cross section is also distributed along an adjacent axial plane of the shaft.

¢ The torsion formula is based on the requirement that the resultant torque on the cross section is equal to the
torque produced by the shear stress distribution about the longitudinal axis of the shaft. It is required that
the shaft or tube have a circular cross section and that it is made of homogeneous material which has
linear-elastic behavior.

Procedure for Analysis

The torsion formula can be applied using the following procedure.

Internal Loading.

® Section the shaft perpendicular to its axis at the point where the shear stress is to be determined, and use
the necessary free-body diagram and equations of equilibrium to obtain the internal torque at the section.

Section Property.

® (Calculate the polar moment of inertia of the cross-sectional area. For a solid section of radius ¢,/ = 7rc4/ 2,
and for a tube of outer radius c, and inner radius c;, J = 7(c} — ¢})/2.

Shear Stress.

® Specify the radial distance p, measured from the center of the cross section to the point where the shear
stress is to be found. Then apply the torsion formula = = Tp/J, or if the maximum shear stress is to be
determined use 7,,, = T¢/J. When substituting the data, make sure to use a consistent set of units.

® The shear stress acts on the cross section in a direction that is always perpendicular to p. The force it
creates must contribute a torque about the axis of the shaft that is in the same direction as the internal
resultant torque T acting on the section. Once this direction is established, a volume element located at the
point where 7 is determined can be isolated, and the direction of = acting on the remaining three adjacent
faces of the element can be shown.
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The solid shaft of radius ¢ is subjected to a torque T, Fig. 5-10a.
Determine the fraction of 7 that is resisted by the material contained
within the outer region of the shaft, which has an inner radius of ¢/2
and outer radius c.

SOLUTION

The stress in the shaft varies linearly, such that 7 = (p/c) 7., Eq. 5-3.
Therefore, the torque d7' on the ring (area) located within the
lighter-shaded region, Fig. 5-10b, is

dT’ = p(rdA) = p(p/c)Tmax(27p dp)

For the entire lighter-shaded area the torque is

9 c
T = 7Tan.X/ p3 dp
¢ c/2

_ 2 e 1 y|°
c 4

c/2
So that

157 3

T = 3727maxc (1)

This torque 7' can be expressed in terms of the applied torque T

by first using the torsion formula to determine the maximum stress in
the shaft. We have

Tc Tc
=
or
2T
Tmax = 3
Substituting this into Eq. 1 yields
T = 12 Ans.

NOTE: Here, approximately 94% of the torque is resisted by the
lighter-shaded region, and the remaining 6% (or %6) of T is resisted
by the inner “core” of the shaft, p = 0 to p = ¢/2. As a result, the
material located at the outer region of the shaft is highly effective in
resisting torque, which justifies the use of tubular shafts as an efficient
means for transmitting torque, and thereby saving material.
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EXAMPLE |5.2

42.5 kip-in. Thg shaft shown in Fig. 5-11a is sgpported by two bearings and is
subjected to three torques. Determine the shear stress developed at

'\
a‘@ points A and B, located at section a—a of the shaft, Fig. 5-11c.
x 30 kip-in.
S

0.75 in.

@ , 125 kipin. 42.5 kip-in.
30 kip-in.
- € Serr
A X
@
18.9 ksi

SOLUTION

}12-5 kip-in. Internal Torque. The bearing reactions on the shaft are

zero, provided the shaft’s weight is neglected. Furthermore,

@B the applied torques satisfy moment equilibrium about the
shaft’s axis.

The internal torque at section a—a will be determined from

3.77 ksi

Oélf in. x the free-body diagram of the left segment, Fig. 5-115. We have
C

XM, =0; 425kip-in. —30kip-in.—T =0 T = 12.5kip-in.
Fig. 5-11

Section Property. The polar moment of inertia for the shaft is

J= 3(0.75 in.)* = 0.497 in*

Shear Stress. Since point A isat p = ¢ = 0.75in.,

Te  (12.5kip-in.)(0.75 in.
Ty= — = ( P ?(4 ) _189ksi  Ans
J (0.497 in*)

Likewise for point B, at p = 0.15 in., we have

_ Tp (125kip-in.)(0.15in.)
BTy T (0.497 in*)

= 3.77 ksi Ans.

NOTE: The directions of these stresses on each element at A and B,
Fig. 5-11c, are established from the direction of the resultant internal
torque T, shown in Fig. 5-11b. Note carefully how the shear stress acts
on the planes of each of these elements.
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EXAMPLE |5.3

The pipe shown in Fig. 5-12a has an inner diameter of 80 mm and an
outer diameter of 100 mm. If its end is tightened against the support at
A using a torque wrench at B, determine the shear stress developed in
the material at the inner and outer walls along the central portion of
the pipe when the 80-N forces are applied to the wrench.

SOLUTION

Internal Torque. A section is taken at an intermediate location C
along the pipe’s axis, Fig. 5-12b. The only unknown at the section is
the internal torque T. We require

SM,=0; 80N (03m)+ 80N (02m)—T =0
T =40N-m

Section Property. The polar moment of inertia for the pipe’s
cross-sectional area is

w

J
2

[(0.05m)* — (0.04 m)*] = 5.796(10 %) m*

Shear Stress. For any point lying on the outside surface of the pipe, 8ON

p = ¢, = 0.05 m, we have

Tc, 40N-m (0.05m)
= = = = 0.345 MPa Ans.
J 5.796(107°) m

To

And for any point located on the inside surface, p = ¢; = 0.04 m, so
that

Tc; 40N-m (0.04 m)
T B = s 4 = 0276 MPa AnS.
J  5796(10°) m

NOTE: To show how these stresses act at representative points D D@
and E on the cross-section, we will first view the cross section from the

front of segment CA of the pipe, Fig. 5-12a. On this section, Fig. 5-12c,

the resultant internal torque is equal but opposite to that shown in ¢ = 0.276 MPa
Fig. 5-12b. The shear stresses at D and E contribute to this torque and
therefore act on the shaded faces of the elements in the directions

shown. As a consequence, notice how the shear-stress components act
on the other three faces. Furthermore, since the top face of D and the g )(
inner face of E are in stress-free regions taken from the pipe’s outer
and inner walls, no shear stress can exist on these faces or on the other (©
corresponding faces of the elements. Fig. 5-12
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The chain drive transmits the torque
developed by the electric motor to the shaft.
The stress developed in the shaft depends
upon the power transmitted by the motor
and the rate of rotation of the connecting
shaft. P = Tw.

5.3 Power Transmission

Shafts and tubes having circular cross sections are often used to transmit
power developed by a machine. When used for this purpose, they are
subjected to a torque that depends on the power generated by the
machine and the angular speed of the shaft. Power is defined as the work
performed per unit of time. Also, the work transmitted by a rotating shaft
equals the torque applied times the angle of rotation. Therefore, if during
an instant of time dt an applied torque T causes the shaft to rotate d6,
then the instantaneous power is

_Tde

dt
Since the shaft’s angular velocity is w = d6/dt, we can express the
power as

P

P=To (5-10)

In the SI system, power is expressed in watts when torque is
measured in newton-meters (N-m) and o is in radians per second
(rad/s) (1 W = 1N-m/s). In the FPS system, the basic units of power
are foot-pounds per second (ft-1b/s); however, horsepower (hp) is
often used in engineering practice, where

1hp = 550 ft-1b/s

For machinery, the frequency of a shaft’s rotation, f, is often reported.
This is a measure of the number of revolutions or cycles the shaft
makes per second and is expressed in hertz (1 Hz = 1 cycle/s). Since
1 cycle = 27 rad, then o = 27 f, and so the above equation for power
becomes

P = 2xfT (5-11)

Shaft Design. When the power transmitted by a shaft and its
frequency of rotation are known, the torque developed in the shaft can be
determined from Eq. 5-11, that is, T = P/2#f. Knowing 7 and the
allowable shear stress for the material, 7, , We can determine the size of
the shaft’s cross section using the torsion formula, provided the material
behavior is linear elastic. Specifically, the design or geometric parameter
J/c becomes

J T

c Tallow (5 12)
For a solid shaft,] = (m/2)c*, and thus, upon substitution, a unique value
for the shaft’s radius ¢ can be determined. If the shaft is tubular, so that
J = (w/2)(c} — ¢}), design permits a wide range of possibilities for the
solution. This is because an arbitrary choice can be made for either c, or
¢; and the other radius can then be determined from Eq. 5-12.
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EXAMPLE |5.4

A solid steel shaft AB shown in Fig. 5-13 is to be used to transmit
5 hp from the motor M to which it is attached. If the shaft rotates
at w = 175rpm and the steel has an allowable shear stress of
Talow = 14.5 ksi, determine the required diameter of the shaft to the
nearest % in.

Fig. 5-13

SOLUTION
The torque on the shaft is determined from Eq. 5-10, thatis, P = Tw.
Expressing P in foot-pounds per second and o in radians/second,

we have
P=5h <550ﬂ'1b/s> = 2750 ft - Ib
B T T t-Ib/s
175 rev ( 27 rad \/ 1 min
“ " min < 1rev )( 60s ) = 1833 rad/s
Thus,
P = Tw; 2750 ft-1b/s = T(18.33 rad/s)
T = 1501 ft-1b
Applying Eq. 5-12 yields
J_mct T
Cc B 2 ¢ B Tallow

T Tallow (14 500 1b/in?)
¢ = 0.429in.

< 2T )1/3 - <2(150.1 ft-lb)(lZin./ft)>1/3

Since 2¢ = 0.858 in., select a shaft having a diameter of

d= % in. = 0.875 in. Ans.




192 CHAPTER 5 TORSION

. FUNDAMENTAL PROBLEMS

F5-1. The solid circular shaft is subjected to an internal F5-4. Determine the maximum shear stress developed in
torque of T = 5 kN-m. Determine the shear stress the 40-mm diameter shaft.

developed at points A and B. Represent each state of stress
on a volume element.

F5-4

F5-1 F5-5. Determine the maximum shear stress developed in

F5-2. The hollow circular shaft is subjected to an internal the shaft at section a—a.

torque of 7 = 10kN-m. Determine the shear stress
developed at points A and B. Represent each state of stress
on a volume element.

600 N
30 mm
40 mm,
60 mm Section a—a
F5-2
. . F5-5
F5-3. The shaft is hollow from A to B and solid from B to
C. Determine the maximum shfaar stress developed in the F5-6. Determine the shear stress developed at point A on
shaft. The shaft has an outer diameter of 80 mm, and the the surface of the shaft. Represent the state of stress on
thickness of the wall of the hollow segment is 10 mm. a volume element at this point. The shaft has a radius of
40 mm.

F5-3 F5-6
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e5-1. A shaft is made of a steel alloy having an allowable
shear stress of 7, = 12 ksi. If the diameter of the shaft is
1.5 in., determine the maximum torque T that can be
transmitted. What would be the maximum torque T’ if a
1-in.-diameter hole is bored through the shaft? Sketch the
shear-stress distribution along a radial line in each case.

Prob. 5-1

5-2. The solid shaft of radius r is subjected to a torque T.
Determine the radius r’ of the inner core of the shaft that
resists one-half of the applied torque (7/2). Solve the
problem two ways: (a) by using the torsion formula, (b) by
finding the resultant of the shear-stress distribution.

Prob. 5-2

5-3. The solid shaft is fixed to the support at C and
subjected to the torsional loadings shown. Determine the
shear stress at points A and B and sketch the shear stress on
volume elements located at these points.

10 kN'm
C @75 mm
< > 4 kN-m
N
X[ 75 mm

50 mm

Prob. 5-3

*5-4. The tube is subjected to a torque of 750 N-m.
Determine the amount of this torque that is resisted by the
gray shaded section. Solve the problem two ways: (a) by
using the torsion formula, (b) by finding the resultant of the
shear-stress distribution.

Prob. 5-4

5-5. The copper pipe has an outer diameter of 40 mm and
an inner diameter of 37 mm. If it is tightly secured to the wall
at A and three torques are applied to it as shown, determine
the absolute maximum shear stress developed in the pipe.

A

( \/,/330 N-'m

80 N'm

Prob. 5-5

5-6. The solid shaft has a diameter of 0.75 in. If it is
subjected to the torques shown, determine the maximum
shear stress developed in regions BC and DE of the shaft.
The bearings at A and F allow free rotation of the shaft.

5-7. The solid shaft has a diameter of 0.75 in. If it is
subjected to the torques shown, determine the maximum
shear stress developed in regions CD and EF of the shaft.
The bearings at A and F allow free rotation of the shaft.

F

oA

20 Ib-ft
/35 b1t

Probs. 5-6/7
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#5-8. The solid 30-mm-diameter shaft is used to transmit
the torques applied to the gears. Determine the absolute
maximum shear stress on the shaft.

500 mm

Prob. 5-8

¢5-9. The shaft consists of three concentric tubes, each
made from the same material and having the inner and
outer radii shown. If a torque of 7 = 800 N - m is applied to
the rigid disk fixed to its end, determine the maximum shear
stress in the shaft.

T =800 N'm

)

r; = 32 mm
r, =38 mm

Prob. 5-9

5-10. The coupling is used to connect the two shafts
together. Assuming that the shear stress in the bolts is
uniform, determine the number of bolts necessary to make
the maximum shear stress in the shaft equal to the shear
stress in the bolts. Each bolt has a diameter d.

Prob. 5-10

5-11. The assembly consists of two sections of galvanized
steel pipe connected together using a reducing coupling at B.
The smaller pipe has an outer diameter of 0.75 in. and an
inner diameter of 0.68 in., whereas the larger pipe has an
outer diameter of 1 in. and an inner diameter of 0.86 in. If
the pipe is tightly secured to the wall at C, determine the
maximum shear stress developed in each section of the pipe
when the couple shown is applied to the handles of the
wrench.

151b

Prob. 5-11

*5-12. The motor delivers a torque of 50 N - m to the shaft
AB. This torque is transmitted to shaft CD using the gears
at £ and F. Determine the equilibrium torque T’ on shaft
CD and the maximum shear stress in each shaft. The
bearings B, C, and D allow free rotation of the shafts.

¢5-13. If the applied torque on shaft CDis7' = 75 N-m,
determine the absolute maximum shear stress in each shaft.
The bearings B, C, and D allow free rotation of the shafts,
and the motor holds the shafts fixed from rotating.

Probs. 5-12/13



5-14. The solid 50-mm-diameter shaft is used to transmit
the torques applied to the gears. Determine the absolute
maximum shear stress in the shaft.

Prob. 5-14

5-15. The solid shaft is made of material that has an
allowable shear stress of 7,,, = 10 MPa. Determine the
required diameter of the shaft to the nearest mm.

#*5-16. The solid shaft has a diameter of 40 mm.
Determine the absolute maximum shear stress in the shaft
and sketch the shear-stress distribution along a radial line
of the shaft where the shear stress is maximum.
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e5-17. The rod has a diameter of 1 in. and a weight of
10 1b/ft. Determine the maximum torsional stress in the rod
at a section located at A due to the rod’s weight.

5-18. The rod has a diameter of 1 in. and a weight of
15 Ib/ft. Determine the maximum torsional stress in the rod
at a section located at B due to the rod’s weight.

Probs. 5-17/18

5-19. Two wrenches are used to tighten the pipe. If P =
300 N is applied to each wrench, determine the maximum
torsional shear stress developed within regions AB and BC.
The pipe has an outer diameter of 25 mm and inner
diameter of 20 mm. Sketch the shear stress distribution for
both cases.

*5-20. Two wrenches are used to tighten the pipe. If the
pipe is made from a material having an allowable shear stress
of T,0w = 85 MPa, determine the allowable maximum force
P that can be applied to each wrench. The pipe has an outer
diameter of 25 mm and inner diameter of 20 mm.

Probs. 5-15/16

Probs. 5-19/20
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e5-21. The 60-mm-diameter solid shaft is subjected to the
distributed and concentrated torsional loadings shown.
Determine the absolute maximum and minimum shear
stresses on the outer surface of the shaft and specify their
locations, measured from the fixed end A.

5-22. The solid shaft is subjected to the distributed and
concentrated torsional loadings shown. Determine the
required diameter d of the shaft to the nearest mm if the
allowable shear stress for the material is 7.,y = 50 MPa.

2 kN'm/m ,

" "

1.5m

Probs. 5-21/22

5-23. Consider the general problem of a circular shaft
made from m segments each having a radius of c,,. If there
are n torques on the shaft as shown, write a computer
program that can be used to determine the maximum shear
stress at any specified location x along the shaft. Show an
application of the program using the values L; = 2 ft,
¢ =2in, L, =4ft, ¢, =1in, T; =8001b-ft, d; =0,
Tz = —6001b- ft, dz = 5ft.

d b

<
3} e

Prob. 5-23

*5-24. The copper pipe has an outer diameter of 2.50 in.
and an inner diameter of 2.30 in. If it is tightly secured to the
wall at C and a uniformly distributed torque is applied to it
as shown, determine the shear stress developed at points A
and B. These points lie on the pipe’s outer surface. Sketch
the shear stress on volume elements located at A and B.

¢5-25. The copper pipe has an outer diameter of 2.50 in.
and an inner diameter of 2.30 in. If it is tightly secured to
the wall at C and it is subjected to the uniformly distributed
torque along its entire length, determine the absolute
maximum shear stress in the pipe. Discuss the validity of
this result.

125 1b-ft /ft A&%@z 1
&
\)/12 in.

Probs. 5-24/25

5-26. A cylindrical spring consists of a rubber annulus
bonded to a rigid ring and shaft. If the ring is held fixed and
a torque T is applied to the shaft, determine the maximum
shear stress in the rubber.

Prob. 5-26



5-27. The A-36 steel shaft is supported on smooth
bearings that allow it to rotate freely. If the gears are
subjected to the torques shown, determine the maximum
shear stress developed in the segments AB and BC. The
shaft has a diameter of 40 mm.

*5-28. The A-36 steel shaft is supported on smooth
bearings that allow it to rotate freely. If the gears are
subjected to the torques shown, determine the required
diameter of the shaft to the nearest mm if 7y, = 60 MPa.

200 N'm

Probs. 5-27/28

¢5-29. When drilling a well at constant angular velocity,
the bottom end of the drill pipe encounters a torsional
resistance T 4. Also, soil along the sides of the pipe creates a
distributed frictional torque along its length, varying
uniformly from zero at the surface B to 4, at A. Determine
the minimum torque 7' that must be supplied by the drive
unit to overcome the resisting torques, and compute
the maximum shear stress in the pipe. The pipe has an outer
radius r, and an inner radius r;.

-

N

B L
Sy
I,
8
& N v
T,

Prob. 5-29

5.3 POWER TRANSMISSION 197

5-30. The shaft is subjected to a distributed torque along
its length of t = (10x?) N - m/m, where x is in meters. If the
maximum stress in the shaft is to remain constant at
80 MPa, determine the required variation of the radius ¢ of
the shaftfor 0 = x = 3 m.

Prob. 5-30

5-31. The solid steel shaft AC has a diameter of 25 mm and
is supported by smooth bearings at D and E. It is coupled to
a motor at C, which delivers 3 kW of power to the shaft
while it is turning at 50 rev/s. If gears A and B remove 1 kW
and 2 kW, respectively, determine the maximum shear stress
developed in the shaft within regions AB and BC. The shaft
is free to turn in its support bearings D and E.

Prob. 5-31

*5-32. The pump operates using the motor that has a
power of 85 W. If the impeller at B is turning at 150 rev/min,
determine the maximum shear stress developed in the
20-mm-diameter transmission shaft at A.

Prob. 5-32
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¢5-33. The gear motor can develop 2 hp when it turns at
450 rev/min. If the shaft has a diameter of 1 in., determine
the maximum shear stress developed in the shaft.

5-34. The gear motor can develop 3 hp when it turns at
150 rev/min. If the allowable shear stress for the shaft is
Tallow = 12 ksi, determine the smallest diameter of the shaft
to the nearesté in. that can be used.

Probs. 5-33/34

5-35. The 25-mm-diameter shaft on the motor is made
of a material having an allowable shear stress of
Taow = 75 MPa. If the motor is operating at its maximum
power of 5 kW, determine the minimum allowable rotation
of the shaft.

*5-36. The drive shaft of the motor is made of a material
having an allowable shear stress of 7.,y = 75 MPa. If the
outer diameter of the tubular shaft is 20 mm and the wall
thickness is 2.5 mm, determine the maximum allowable
power that can be supplied to the motor when the shaft is
operating at an angular velocity of 1500 rev/min.

Probs. 5-35/36

¢5-37. A ship has a propeller drive shaft that is turning at
1500 rev/min while developing 1800 hp. If it is 8 ft long and
has a diameter of 4 in., determine the maximum shear stress
in the shaft caused by torsion.

5-38. The motor A develops a power of 300 W and turns
its connected pulley at 90 rev/min. Determine the required
diameters of the steel shafts on the pulleys at A and B if the
allowable shear stress is 7,y = 85 MPa.

Prob. 5-38

5-39. The solid steel shaft DF has a diameter of 25 mm
and is supported by smooth bearings at D and E. It is
coupled to a motor at F, which delivers 12 kW of power to
the shaft while it is turning at 50 rev/s. If gears A, B, and C
remove 3 kW, 4 kW, and 5 kW respectively, determine the
maximum shear stress developed in the shaft within regions
CF and BC. The shaft is free to turn in its support bearings
D and E.

#5-40. Determine the absolute maximum shear stress
developed in the shaft in Prob. 5-39.

Probs. 5-39/40



e5-41. The A-36 steel tubular shaft is 2 m long and has an
outer diameter of 50 mm. When it is rotating at 40 rad/s, it
transmits 25 kW of power from the motor M to the pump
P. Determine the smallest thickness of the tube if the
allowable shear stress is 7,0 = 80 MPa.

5-42. The A-36 solid tubular steel shaft is 2 m long and has
an outer diameter of 60 mm. It is required to transmit
60 kW of power from the motor M to the pump P
Determine the smallest angular velocity the shaft can have
if the allowable shear stress is 7, = 80 MPa.

Probs. 5-41/42

5-43. A steel tube having an outer diameter of 2.5 in. is
used to transmit 35 hp when turning at 2700 rev/min.
Determine the inner diameter d of the tube to the nearest
% in. if the allowable shear stress is 7, = 10 ksi.

Prob. 5-43
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*5-44. The drive shaft AB of an automobile is made of a
steel having an allowable shear stress of 7., = 8 ksi. If the
outer diameter of the shaft is 2.5 in. and the engine delivers
200 hp to the shaft when it is turning at 1140 rev/min,
determine the minimum required thickness of the shaft’s
wall.

e5-45. The drive shaft AB of an automobile is to be
designed as a thin-walled tube. The engine delivers 150 hp
when the shaft is turning at 1500 rev/min. Determine the
minimum thickness of the shaft’s wall if the shaft’s outer
diameter is 2.5 in. The material has an allowable shear stress
of Tallow — 7 ksi.

Probs. 5-44/45

5-46. The motor delivers 15 hp to the pulley at A while
turning at a constant rate of 1800 rpm. Determine to the
nearest é in. the smallest diameter of shaft BC if the
allowable shear stress for steel is 7., = 12 ksi. The belt
does not slip on the pulley.

[15in.

Prob. 5-46
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Oil wells are commonly drilled to depths
exceeding a thousand meters. As a result, the
total angle of twist of a string of drill pipe can
be substantial and must be determined.

5.4 Angle of Twist

Occasionally the design of a shaft depends on restricting the amount of
rotation or twist that may occur when the shaft is subjected to a torque.
Furthermore, being able to compute the angle of twist for a shaft is
important when analyzing the reactions on statically indeterminate
shafts.

In this section we will develop a formula for determining the angle of
twist ¢ (phi) of one end of a shaft with respect to its other end. The shaft
is assumed to have a circular cross section that can gradually vary along
its length, Fig. 5-14a. Also, the material is assumed to be homogeneous
and to behave in a linear-elastic manner when the torque is applied.
Like the case of an axially loaded bar, we will neglect the localized
deformations that occur at points of application of the torques and
where the cross section changes abruptly. By Saint-Venant’s principle,
these effects occur within small regions of the shaft’s length and
generally they will have only a slight effect on the final result.

Using the method of sections, a differential disk of thickness dx,
located at position x, is isolated from the shaft, Fig. 5-14b. The internal
resultant torque is 7(x), since the external loading may cause it to vary
along the axis of the shaft. Due to T(x), the disk will twist, such that the
relative rotation of one of its faces with respect to the other face is d¢,
Fig. 5-14b. As a result an element of material located at an arbitrary
radius p within the disk will undergo a shear strain . The values of y and
d¢ are related by Eq. 5-1, namely,

a6 =" (5-13)

N

(b)

Fig. 5-14



Since Hooke’s law, y = 7/G, applies and the shear stress can be
expressed in terms of the applied torque using the torsion formula
7 =T(x)p/J(x),theny = T(x)p/J(x)G. Substituting this into Eq. 5-13,
the angle of twist for the disk is

T(x)
- J(x)G

dé

X

Integrating over the entire length L of the shaft, we obtain the angle of
twist for the entire shaft, namely,

3 LT(x) dx
¢ = % TG (5-14)

Here

¢ = the angle of twist of one end of the shaft with respect to the
other end, measured in radians

T(x) = the internal torque at the arbitrary position x, found from the
method of sections and the equation of moment equilibrium
applied about the shaft’s axis

J(x) = the shaft’s polar moment of inertia expressed as a function of
position x

G = the shear modulus of elasticity for the material

Constant Torque and Cross-Sectional Area. Usually in
engineering practice the material is homogeneous so that G is constant.
Also, the shaft’s cross-sectional area and the external torque are
constant along the length of the shaft, Fig. 5-15. If this is the case, the
internal torque 7'(x) = T, the polar moment of inertia J(x) = J, and
Eq. 5-14 can be integrated, which gives

TL

¢=7c

(5-15)

The similarities between the above two equations and those for an axially
loaded bar (§ = [ P(x) dx/A(x)E and 8 = PL/AE) should be noted.

Fig. 5-15
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When computing both the stress and the
angle of twist of this soil auger, it is necessary
to consider the variable torsional loading
which acts along its length.
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Torque
strain
| recorder

Turning

range head

Motor

Movable unit
on rails

Fig. 5-16

Equation 5-15 is often used to determine the shear modulus of
elasticity G of a material. To do so, a specimen of known length and
diameter is placed in a torsion testing machine like the one shown in
Fig. 5-16. The applied torque 7 and angle of twist ¢ are then measured
along the length L. Using Eq. 5-15, G = TL/J¢. Usually, to obtain a
more reliable value of G, several of these tests are performed and the
average value is used.

Multiple Torques. If the shaft is subjected to several different
torques, or the cross-sectional area or shear modulus changes abruptly
from one region of the shaft to the next, Eq. 5-15 can be applied to each
segment of the shaft where these quantities are all constant. The angle of
twist of one end of the shaft with respect to the other is then found from
the vector addition of the angles of twist of each segment. For this case,

TL
¢= 35 (5-16)

Sign Convention. In order to apply this equation, we must develop
a sign convention for both the internal torque and the angle of twist of
one end of the shaft with respect to the other end. To do this, we will use
the right-hand rule, whereby both the torque and angle will be positive,
provided the thumb is directed outward from the shaft when the fingers
curl to give the tendency for rotation, Fig. 5-17.

To illustrate the use of this sign convention, consider the shaft shown
in Fig. 5-18a. The angle of twist of end A with respect to end D is to be
determined. Three segments of the shaft must be considered, since the



Positive sign convention I
for T and ¢.

Fig. 5-17

internal torque will change at B and at C. Using the method of sections,
the internal torques are found for each segment, Fig. 5-18b. By the
right-hand rule, with positive torques directed away from the sectioned
end of the shaft, we have T 45 = +80N-m, Tpc = =70 N-m, and
Tcp = —10 N -m. These results are also shown on the forque diagram
for the shaft, Fig. 5-18c. Applying Eq. 5-16, we have

_ (+80N'm) LAB n (—70N'm) LBC n (—10N'm) LCD
Pap = JG JG JG

If the other data is substituted and the answer is found as a positive
quantity, it means that end A will rotate as indicated by the curl of the
right-hand fingers when the thumb is directed away from the shaft,
Fig. 5-18a. The double subscript notation is used to indicate this relative
angle of twist (¢ 4/p); however, if the angle of twist is to be determined
relative to a fixed support, then only a single subscript will be used. For
example, if D is a fixed support, then the angle of twist will be denoted

as g y.

10Nm
60Nm
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~

80 N'm

(V= gt

80 N-m

)

TA378ONm

)
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Tpc=70N-m

150 N-m

10 N-m

TCD =10 N'm
(®)

=70

Fig. 5-18

©

=10
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Important Point

® When applying Eq. 5-14 to determine the angle of twist, it is
important that the applied torques do not cause yielding of the
material and that the material is homogeneous and behaves in a
linear elastic manner.

Procedure for Analysis

The angle of twist of one end of a shaft or tube with respect to the
other end can be determined using the following procedure.

Internal Torque.

® The internal torque is found at a point on the axis of the shaft
by using the method of sections and the equation of moment
equilibrium, applied along the shaft’s axis.

® If the torque varies along the shaft’s length, a section should be
made at the arbitrary position x along the shaft and the internal
torque represented as a function of x, i.e., T(x).

® [f several constant external torques act on the shaft between its
ends, the internal torque in each segment of the shaft, between
any two external torques, must be determined. The results can be
represented graphically as a torque diagram.

Angle of Twist.

® When the circular cross-sectional area of the shaft varies along
the shaft’s axis, the polar moment of inertia must be expressed as
a function of its position x along the axis, J(x).

® [fthe polar moment of inertia or the internal torque suddenly changes
between the ends of the shaft, then ¢ = [(T'(x)/J(x)G) dx or
¢ = TL/JG must be applied to each segment for which J, G, and
T are continuous or constant.

® When the internal torque in each segment is determined, be
sure to use a consistent sign convention for the shaft, such as
the one discussed in Fig. 5-17. Also make sure that a consistent
set of units is used when substituting numerical data into the
equations.
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EXAMPLE |5.5

The gears attached to the fixed-end steel shaft are subjected to the
torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 GPa
and the shaft has a diameter of 14 mm, determine the displacement of

the tooth P on gear A. The shaft turns freely within the bearing at B. 40 N A

280 N-m
150 N ‘m b \
. 0 4m 150 N'm (
SOLUTION (@ ®
Internal Torque. By inspection, the torques in segments AC, CD,

and DE are different yet constant throughout each segment.
Free-body diagrams of appropriate segments of the shaft along with

the calculated internal torques are shown in Fig. 5-19b. Using the %\

Tep=130N-m

right-hand rule and the established sign convention that positive 150 N-m
torque is directed away from the sectioned end of the shaft, we have 280 N-m
Tsc = +150N- Tep = —130N- Tpg = —170N- :
AC 50 m cD 30 m DE 70 m Tpp = 170 Nom
These results are also shown on the torque diagram, Fig. 5-19c. \'\

Angle of Twist. The polar moment of inertia for the shaft is

. f A
= (0007 m)* = 3.771(10°) m* o ﬂ 70 N-m
. 280 N-m

Applying Eq. 5-16 to each segment and adding the results
algebraically, we have

T (N-m)
CTL (+150N-m)(04m) ®)
$a= 276 T 3.771(107°) m* [80(10°) N/m?] 150

N (—130N-m)(0.3 m) 0 04 07 L2, (m)

3.771(107°) m* [80(10°) N/m?)] S ——
(=170 N-m)(0.5 m)

+ 5 > = —0.2121 rad (c)

3.771(107%) m* [80(10°) N/m?)]

Since the answer is negative, by the right-hand rule the thumb is
directed foward the end E of the shaft, and therefore gear A will
rotate as shown in Fig. 5-19d.

The displacement of tooth P on gear A is

sp = ¢ur = (02121 rad)(100 mm) = 21.2 mm Ans.

NOTE: Remember that this analysis is valid only if the shear stress
does not exceed the proportional limit of the material.
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EXAMPLE |5.6

F=300N =
T=45N-
s " - 5@6.150 m
AEy 1 F, 2
E, F,
(b)
(l\+lp)z

. (Mp)

(Tp),=22.5N-m AP \\(D ’

-

¢p=0.0134 rad

The two solid steel shafts shown in Fig. 5-20a are coupled together
using the meshed gears. Determine the angle of twist of end A of shaft
AB when the torque T = 45 N -m is applied. Take G = 80 GPa. Shaft
AB is free to rotate within bearings £ and F, whereas shaft DC is fixed
at D. Each shaft has a diameter of 20 mm.

Fig. 5-20

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown
in Fig. 5-20b0 and 5-20c. Summing moments along the x axis of
shaft AB yields the tangential reaction between the gears of F =
45N -m/0.15 m = 300 N. Summing moments about the x axis of shaft
DC, this force then creates a torque of (Tp), = 300N (0.075 m) =
22.5 N -m on shaft DC.

Angle of Twist. To solve the problem, we will first calculate the
rotation of gear C due to the torque of 22.5N-m in shaft DC,
Fig. 5-20c. This angle of twist is

(+22.5N-m)(1.5m)
(7/2)(0.010 m)*[80(10”) N/m?]

_TLDC_
bc = c

= +0.0269 rad

Since the gears at the end of the shaft are in mesh, the rotation ¢¢
of gear C causes gear B to rotate ¢, Fig. 5-20b, where

$5(0.15m) = (0.0269 rad)(0.075 m)
dp = 0.0134 rad

We will now determine the angle of twist of end A with respect to
end B of shaft AB caused by the 45 N - m torque, Fig. 5-20b. We have

(+45N-m)(2 m)
(7/2)(0.010 m)*[80(10”) N/m?]

T spLas _
JG

d)A/B = = +00716 rad

The rotation of end A is therefore determined by adding ¢5 and
¢ 4/, since both angles are in the same direction, Fig. 5-20b. We have

b4 = ¢p + dap = 0.0134rad + 0.0716 rad = +0.0850 rad  Ans.
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EXAMPLE |5.7

The 2-in.-diameter solid cast-iron post shown in Fig. 5-21a is buried
24 in. in soil. If a torque is applied to its top using a rigid wrench,
determine the maximum shear stress in the post and the angle of twist
at its top. Assume that the torque is about to turn the post, and the soil
exerts a uniform torsional resistance of ¢ lIb-in./in. along its 24-in.
buried length. G = 5.5(10%) ksi.

251b

in.

SOLUTION

Internal Torque. The internal torque in segment AB of the post is
constant. From the free-body diagram, Fig. 5-21b, we have

=M, =0 T 5 =251b(121in.) = 300 Ib-in.
The magnitude of the uniform distribution of torque along the buried

segment BC can be determined from equilibrium of the entire post,
Fig. 5-21c. Here

ZM,=0 251b (12in.) — #(24in.) = 0
t = 12.51b-in./in.

Hence, from a free-body diagram of a section of the post located at
the position x, Fig. 5-21d, we have

EMZ = 0, TBC - 125x =0
Toe = 12.5x

in.

Maximum Shear Stress. The largest shear stress occurs in region (b)
AB, since the torque is largest there and J is constant for the post.
Applying the torsion formula, we have

_ Tupc  (3001b-in.)(1 in.)

= - : R B
v 7 (7/2)(1in.)* pst s

Angle of Twist. The angle of twist at the top can be determined

relative to the bottom of the post, since it is fixed and yet is about to
turn. Both segments AB and BC twist, and so in this case we have
36in.
T gL ap fuc T'pcdx & "
ba =+
JG 0 JG A
(300 Ib - in.) 36 in. . /2“ ™ 12.5x dx @ Tse e
- JG D
JG 0 -IG J}fl I\ - 24 in.
10800 Ib - in? . 12.5[(24)%/2] b - in? A ¢ = 12.5 lbvin. in,
- JG JG ©
) (d) c
14400 Ib - in’
= S = (,00167 rad Ans. Fie 521
(7/2)(1in.)*5500(10%) Ib/in &
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. FUNDAMENTAL PROBLEMS

F5-7. The 60-mm-diameter A-36 steel shaft is subjected to F5-10. A series of gears are mounted on the 40-mm-
the torques shown. Determine the angle of twist of end A diameter A-36 steel shaft. Determine the angle of twist of
with respect to C. gear B relative to gear A.

2 kN-m
F5-7
F5-8. Determine the angle of twist of wheel B with

respect to wheel A. The shaft has a diameter of 40 mm and
is made of A-36 steel. F5-10

F5-11. The 80-mm-diameter shaft is made of A-36 steel. If
it is subjected to the uniform distributed torque, determine
the angle of twist of end A with respect to B.

F5-8
F5-9. The hollow 6061-T6 aluminum shaft has an outer and F5-11
inner radius of ¢, = 40 mm and ¢; = 30 mm, respectively. F5-12. The 80-mm-diameter shaft is made of A-36 steel. If

Determine the angle of twist of end A. The flexible support at

; . it is subjected to the triangular distributed load, determine
B has a torsional stiffness of & = 90 kN - m/rad.

the angle of twist of end A with respect to C.

F5-9
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5-47. The propellers of a ship are connected to a A-36
steel shaft that is 60 m long and has an outer diameter of
340 mm and inner diameter of 260 mm. If the power output is
4.5 MW when the shaft rotates at 20 rad/s, determine the
maximum torsional stress in the shaft and its angle of twist.

*5-48. A shaft is subjected to a torque T. Compare the
effectiveness of using the tube shown in the figure with that
of a solid section of radius c. To do this, compute the percent
increase in torsional stress and angle of twist per unit length
for the tube versus the solid section.

c

Prob. 5-48

¢5-49. The A-36 steel axle is made from tubes AB and CD
and a solid section BC. It is supported on smooth bearings
that allow it to rotate freely. If the gears, fixed to its ends, are
subjected to 85-N - m torques, determine the angle of twist
of gear A relative to gear D. The tubes have an outer
diameter of 30 mm and an inner diameter of 20 mm. The
solid section has a diameter of 40 mm.

Prob. 5-49

5-50. The hydrofoil boat has an A-36 steel propeller
shaft that is 100 ft long. It is connected to an in-line diesel
engine that delivers a maximum power of 2500 hp and
causes the shaft to rotate at 1700 rpm. If the outer
diameter of the shaft is 8 in. and the wall thickness is % in.,
determine the maximum shear stress developed in the
shaft. Also, what is the “wind up,” or angle of twist in the
shaft at full power?

Prob. 5-50

5-51. The engine of the helicopter is delivering 600 hp
to the rotor shaft AB when the blade is rotating at
1200 rev/min. Determine to the nearest %in. the diameter
of the shaft AB if the allowable shear stress is T, = 8 ksi
and the vibrations limit the angle of twist of the shaft to
0.05 rad. The shaft is 2 ft long and made from L2 steel.

*#5-52. The engine of the helicopter is delivering 600 hp
to the rotor shaft AB when the blade is rotating at
1200 rev/min. Determine to the nearest% in. the diameter of
the shaft AB if the allowable shear stress is 7, = 10.5 ksi
and the vibrations limit the angle of twist of the shaft to
0.05 rad. The shaft is 2 ft long and made from L2 steel.

Probs. 5-51/52
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*5-53. The 20-mm-diameter A-36 steel shaft is subjected
to the torques shown. Determine the angle of twist of the
end B.

200 mm

30 N'm

600 mm
20 N'm
800 mm
80 N
Prob. 5-53

5-54. The assembly is made of A-36 steel and consists of a
solid rod 20 mm in diameter fixed to the inside of a tube
using a rigid disk at B. Determine the angle of twist at D.
The tube has an outer diameter of 40 mm and wall thickness
of 5 mm.

5-55. The assembly is made of A-36 steel and consists of a
solid rod 20 mm in diameter fixed to the inside of a tube
using a rigid disk at B. Determine the angle of twist at C.
The tube has an outer diameter of 40 mm and wall thickness
of 5 mm.

)
1" 60N'm

Probs. 5-54/55

*5-56. The splined ends and gears attached to the A-36
steel shaft are subjected to the torques shown. Determine
the angle of twist of end B with respect to end A. The shaft
has a diameter of 40 mm.

300N'm 500 N-m
N
DN 200 N-m
™. J &)0 N-m
300 mm D ’W
. S
400 mm B
\
500 mm
Prob. 5-56

¢5-57. The motor delivers 40 hp to the 304 stainless steel
shaft while it rotates at 20 Hz. The shaft is supported on
smooth bearings at A and B, which allow free rotation of
the shaft. The gears C and D fixed to the shaft remove 25 hp
and 15 hp, respectively. Determine the diameter of the
shaft to the nearest éin. if the allowable shear stress is
Taiow = S ksi and the allowable angle of twist of C with
respect to D is 0.20°.

5-58. The motor delivers 40 hp to the 304 stainless steel
solid shaft while it rotates at 20 Hz. The shaft has a diameter
of 1.5 in. and is supported on smooth bearings at A and B,
which allow free rotation of the shaft. The gears C and D
fixed to the shaft remove 25 hp and 15 hp, respectively.
Determine the absolute maximum stress in the shaft and
the angle of twist of gear C with respect to gear D.

Probs. 5-57/58



5-59. The shaft is made of A-36 steel. It has a diameter of
1 in. and is supported by bearings at A and D, which allow
free rotation. Determine the angle of twist of B with respect
to D.

*5-60. The shaft is made of A-36 steel. It has a diameter of
1 in. and is supported by bearings at A and D, which allow
free rotation. Determine the angle of twist of gear C with
respect to B.

Probs. 5-59/60

¢5-61. The two shafts are made of A-36 steel. Each has a
diameter of 1 in., and they are supported by bearings at A,
B, and C, which allow free rotation. If the support at D is
fixed, determine the angle of twist of end B when the
torques are applied to the assembly as shown.

5-62. The two shafts are made of A-36 steel. Each has a
diameter of 1 in., and they are supported by bearings at A,
B, and C, which allow free rotation. If the support at D is
fixed, determine the angle of twist of end A when the
torques are applied to the assembly as shown.

Probs. 5-61/62
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5-63. The device serves as a compact torsional spring. It is
made of A-36 steel and consists of a solid inner shaft CB
which is surrounded by and attached to a tube AB using a
rigid ring at B. The ring at A can also be assumed rigid
and is fixed from rotating. If a torque of 7 = 2 kip - in. is
applied to the shaft, determine the angle of twist at the end C
and the maximum shear stress in the tube and shaft.

*5-64. The device serves as a compact torsion spring. It is
made of A-36 steel and consists of a solid inner shaft CB
which is surrounded by and attached to a tube AB using a
rigid ring at B. The ring at A can also be assumed rigid and
is fixed from rotating. If the allowable shear stress for the
material is 7,y = 12 ksi and the angle of twist at C is
limited to ¢ 0w = 3°, determine the maximum torque 7
that can be applied at the end C.

12in. B

T

¢5-65. The A-36 steel assembly consists of a tube having
an outer radius of 1 in. and a wall thickness of 0.125 in. Using
a rigid plate at B, it is connected to the solid 1-in-diameter
shaft AB. Determine the rotation of the tube’s end C if a
torque of 200 1Ib - in. is applied to the tube at this end. The
end A of the shaft is fixed supported.

Probs. 5-63/64

Prob. 5-65
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5-66. The 60-mm diameter shaft ABC is supported by two
journal bearings, while the 80-mm diameter shaft EH is
fixed at £ and supported by a journal bearing at H. If
T;=2kN-m and T, = 4 kN -m, determine the angle of
twist of gears A and C. The shafts are made of A-36 steel.

5-67. The 60-mm diameter shaft ABC is supported by two
journal bearings, while the 80-mm diameter shaft EH is fixed
at E and supported by a journal bearing at H. If the angle
of twist at gears A and C is required to be 0.04 rad,
determine the magnitudes of the torques 7} and 75. The
shafts are made of A-36 steel.

Probs. 5-66/67

*5-68. The 30-mm-diameter shafts are made of L2 tool
steel and are supported on journal bearings that allow the
shaft to rotate freely. If the motor at A develops a torque of
T = 45 N -m on the shaft AB, while the turbine at E is fixed
from turning, determine the amount of rotation of gears B
and C.

¢5-69. The shafts are made of A-36 steel and each has a
diameter of 80 mm. Determine the angle of twist at end E.

5-70. The shafts are made of A-36 steel and each has a
diameter of 80 mm. Determine the angle of twist of gear D.

Probs. 5-69/70

5-71. Consider the general problem of a circular shaft
made from m segments, each having a radius of c¢,, and shear
modulus G,,. If there are n torques on the shaft as shown,
write a computer program that can be used to determine
the angle of twist of its end A. Show an application of the
program using the values L; =05m, ¢ = 0.02m,
G, =30GPa, L,=15m, ¢, =005m, G, =15GPa,
Ti=-450N-m,d; = 025m,7T, = 600N-m, d, = 0.8 m.

Prob. 5-68

Prob. 5-71



*5-72. The 80-mm diameter shaft is made of 6061-T6
aluminum alloy and subjected to the torsional loading
shown. Determine the angle of twist at end A.

0.6 m

0.6 m

N
10kN~m%>\
B

Prob. 5-72

¢5-73. The tapered shaft has a length L and a radius r at
end A and 2r at end B. If it is fixed at end B and is subjected
to a torque 7, determine the angle of twist of end A. The
shear modulus is G.

2kN'm

Prob. 5-73

5-74. The rod ABC of radius c is embedded into a medium
where the distributed torque reaction varies linearly from
zero at C to fyat B. If couple forces P are applied to the lever
arm, determine the value of ¢, for equilibrium. Also, find the
angle of twist of end A. The rod is made from material
having a shear modulus of G.

Prob. 5-74
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5-75. When drilling a well, the deep end of the drill pipe
is assumed to encounter a torsional resistance 7 4.
Furthermore, soil friction along the sides of the pipe creates
a linear distribution of torque per unit length, varying from
zero at the surface B to t; at A. Determine the necessary
torque T’ that must be supplied by the drive unit to turn
the pipe. Also, what is the relative angle of twist of one end
of the pipe with respect to the other end at the instant the
pipe is about to turn? The pipe has an outer radius r, and an
inner radius r;. The shear modulus is G.

Prob. 5-75

*5-76. A cylindrical spring consists of a rubber annulus
bonded to a rigid ring and shaft. If the ring is held fixed and
a torque 7 is applied to the rigid shaft, determine the angle
of twist of the shaft. The shear modulus of the rubber is G.
Hint: As shown in the figure, the deformation of the
element at radius r can be determined from rd6 = dry. Use
this expression along with 7 = T/(27r*h) from Prob. 5-26,
to obtain the result.

Prob. 5-76
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5.5 Statically Indeterminate
Torque-Loaded Members

A torsionally loaded shaft may be classified as statically indeterminate

if the moment equation of equilibrium, applied about the axis of the
A shaft, is not adequate to determine the unknown torques acting on
\ the shaft. An example of this situation is shown in Fig. 5-22a. As shown

on the free-body diagram, Fig. 5-22b, the reactive torques at the
supports A and B are unknown. We require that

EMXZO, T_TA_TB:O

In order to obtain a solution, we will use the method of analysis
discussed in Sec. 4.4. The necessary condition of compatibility, or the
kinematic condition, requires the angle of twist of one end of the shaft
with respect to the other end to be equal to zero, since the end supports
are fixed. Therefore,

bap=0

Provided the material is linear elastic, we can apply the load—displacement
relation ¢ = TL/JG to express the compatibility condition in terms of the
unknown torques. Realizing that the internal torque in segment ACis +7 4
and in segment CB it is —Tg, Fig. 5-22¢, we have

Talac  Tplpc _
JG JG

0

Ty
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Solving the above two equations for the reactions, realizing that
L = Lc + Lpc,we get

L L
T, = T(f) and Ty = T<£C>
Procedure for Analysis

The unknown torques in statically indeterminate shafts are determined
by satisfying equilibrium, compatibility, and torque-displacement
requirements for the shaft.

Equilibrium.

® Draw a free-body diagram of the shaft in order to identify all
the external torques that act on it. Then write the equation of
moment equilibrium about the axis of the shaft.

Compatibility.

® Write the compatibility equation between two points along the
shaft. Give consideration as to how the supports constrain the
shaft when it is twisted.

® Express the angles of twist in the compatibility condition in
terms of the torques, using a torque-displacement relation, such
as¢p =TL/JIG.

® Solve the equilibrium and compatibility equations for the
unknown reactive torques. If any of the magnitudes have a
negative numerical value, it indicates that this torque acts in
the opposite sense of direction to that shown on the free-body
diagram.

The shaft of this cutting machine is fixed at
its ends and subjected to a torque at its
center, allowing it to act as a torsional spring.
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EXAMPLE |5.8

The solid steel shaft shown in Fig. 5-23a has a diameter of 20 mm. If it
is subjected to the two torques, determine the reactions at the fixed

supports A and B.
A .
500N %

500 N~ )

D ’;} / T,
o SOO(N-m
-

(2) (b)

SOLUTION

Equilibrium. By inspection of the free-body diagram, Fig. 5-23b, it
is seen that the problem is statically indeterminate since there is
only one available equation of equilibrium and there are two
unknowns. We require

M, = 0; —Tp+80N-m —5S00N-m -7, =0 (1)
Compatibility. Since the ends of the shaft are fixed, the angle of

twist of one end of the shaft with respect to the other must be zero.
Hence, the compatibility equation becomes

ba3=0
i This condition can be expressed in terms of the unknown torques by
JQB using the load—displacement relationship, ¢ = TL/JG. Here there
@ are three regions of the shaft where the internal torque is constant.
Ty 800 — T On the free-body diagrams in Fig. 5-23c we have shown the internal
torques acting on the left segments of the shaft which are sectioned in
800 % N 300 — T} each of these regions. This way the internal torque is only a function of
@ / - (\é\ T . Using the sign convention established in Sec. 5.4, we have
Tp = —T5(0.2 m) N (800 — T'5)(1.5m) N (300 — T'5)(0.3m)
800 N-m JG JG JG
[
% so that
@ © Tp =645 N-m Ans.
C
Ts Using Eq. 1,
Fig. 5-23 To= —-345N-'m Ans.

The negative sign indicates that T acts in the opposite direction of
that shown in Fig. 5-23b.
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EXAMPLE |5.9

The shaft shown in Fig. 5-24a is made from a steel tube, which is
bonded to a brass core. If a torque of 7' = 250 1b-ft is applied at
its end, plot the shear-stress distribution along a radial line of its
cross-sectional area. Take Gy = 11.4(10%) ksi, Gy, = 5.20(10%) ksi.

SOLUTION

Equilibrium. A free-body diagram of the shaft is shown in Fig. 5-24b.
The reaction at the wall has been represented by the unknown amount
of torque resisted by the steel, T, and by the brass, T',,. Working in
units of pounds and inches, equilibrium requires

Ty — Ty + (2501b-f0)(12in/ft) = 0 (1)

Compatibility. We require the angle of twist of end A to be 05 n.

the same for both the steel and brass since they are bonded
together. Thus,

B _ Lin”y
, ¢ = = Por S T = 250 Ib-ft (a) T
Applying the load-displacement relationship, ¢ = TL/JG, L
T L >
o 4 2 4 3 ) = <= Ty
(7/2)[(11in.)* — (0.51in.)*]11.4(10°) kip/in
Ty L
(7/2)(0.5 in.)*5.20(10°) kip/in? ¢
Ty = 32.88T, 2)
Solving Egs. 1 and 2, we get
Ty = 2911.51b-in. = 242.61b- ft x
Ty, = 88.51b-in. = 7.38 Ib- ft 250 Ib-ft ®)

The shear stress in the brass core varies from zero at its center to a 1977 psi

maximum at the interface where it contacts the steel tube. Using the
torsion formula,
(88.51b+in.)(0.51n.)

(Tbr)max = (77/2)(05 in.)4 = 451 pSl

For the steel, the minimum and maximum shear stresses are

_ (2911'5 Ib- 11‘1.)(0.5 111.) = 089 pSi Shear-stress distribution

(Tst)min = (m/2)[(1in.)* = (0.5in.)*] (©)

(2911.51b-in.)(1 in.) Gt
= = si io. 5—

(Tst)max (77/2)[(1 il’l.)4 _ (05 in.)4] p Flg. 5-24
The results are plotted in Fig. 5-24c¢. Note the discontinuity of shear
stress at the brass and steel interface. This is to be expected, since the
materials have different moduli of rigidity; i.e., steel is stiffer than
brass (Gi > Gy,) and thus it carries more shear stress at the interface.
Although the shear stress is discontinuous here, the shear strain is not.
Rather, the shear strain is the same for both the brass and the steel.
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. PROBLEMS

e5-77. The A-36 steel shaft has a diameter of 50 mm and is
fixed at its ends A and B. If it is subjected to the torque,
determine the maximum shear stress in regions AC and CB
of the shaft.

Prob. 5-77

5-78. The A-36 steel shaft has a diameter of 60 mm and is
fixed atitsends A and B.Ifitis subjected to the torques shown,
determine the absolute maximum shear stress in the shaft.

200 N'm

-

1.5m

Prob. 5-78
5-79. The steel shaft is made from two segments: AC has a
diameter of 0.5 in, and CB has a diameter of 1 in. If it is
fixed at its ends A and B and subjected to a torque of

500 1b - ft, determine the maximum shear stress in the shaft.
Gy = 10.8(10°) ksi.

Prob. 5-79

*5-80. The shaft is made of A-36 steel, has a diameter of
80 mm, and is fixed at B while A is loose and can rotate
0.005 rad before becoming fixed. When the torques are
applied to C and D, determine the maximum shear stress in
regions AC and CD of the shaft.

¢5-81. The shaft is made of A-36 steel and has a diameter
of 80 mm. It is fixed at B and the support at A has a torsional
stiffness of k = 0.5 MN - m/rad. If it is subjected to the gear
torques shown, determine the absolute maximum shear stress
in the shaft.

Probs. 5-80/81

5-82. The shaft is made from a solid steel section AB and
a tubular portion made of steel and having a brass core.
If it is fixed to a rigid support at A, and a torque of
T = 501b-ft is applied to it at C, determine the angle of
twist that occurs at C and compute the maximum shear
stress and maximum shear strain in the brass and steel.
Take Gy = 11.5(10%) ksi, Gy, = 5.6(10%) ksi.

0.5 in.

T =50 Ib-ft

lin. (C

Prob. 5-82
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5-83. The motor A develops a torque at gear B of 450 1b - ft,
which is applied along the axis of the 2-in.-diameter steel shaft
CD. This torque is to be transmitted to the pinion gears at £
and F. If these gears are temporarily fixed, determine the
maximum shear stress in segments CB and BD of the shaft.
Also, what is the angle of twist of each of these segments? The
bearings at C and D only exert force reactions on the shaft
and do not resist torque. Gy, = 12(10%) ksi.

450 1b-ft

Prob. 5-83

*5-84. A portion of the A-36 steel shaft is subjected to a
linearly distributed torsional loading. If the shaft has the
dimensions shown, determine the reactions at the fixed
supports A and C. Segment AB has a diameter of 1.5 in. and
segment BC has a diameter of 0.75 in.

*5-85. Determine the rotation of joint B and the absolute
maximum shear stress in the shaft in Prob. 5-84.

300 Ib-in. /in.

Probs. 5-84/85

5-86. The two shafts are made of A-36 steel. Each has a
diameter of 25 mm and they are connected using the gears
fixed to their ends. Their other ends are attached to fixed
supports at A and B. They are also supported by journal
bearings at C and D, which allow free rotation of the shafts
along their axes. If a torque of 500 N -m is applied to the
gear at E as shown, determine the reactions at A and B.
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5-87. Determine the rotation of the gear at E in
Prob. 5-86.

=)

Frogs 2 s

50 mm ——% 0.75 m

100 mm/'\\\/
M}}N.m

Sm

=

C
1

o

Probs. 5-86/87

*5-88. The shafts are made of A-36 steel and have the
same diameter of 4 in. If a torque of 15 kip - ft is applied to
gear B, determine the absolute maximum shear stress
developed in the shaft.

*5-89. The shafts are made of A-36 steel and have the
same diameter of 4 in. If a torque of 15 kip - ft is applied to
gear B, determine the angle of twist of gear B.

2.5ft
N

Probs. 5-88/89
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5-90. The two 3-ft-long shafts are made of 2014-T6
aluminum. Each has a diameter of 1.5 in. and they are
connected using the gears fixed to their ends. Their other
ends are attached to fixed supports at A and B. They are
also supported by bearings at C and D, which allow free
rotation of the shafts along their axes. If a torque of 600 Ib - ft
is applied to the top gear as shown, determine the maximum
shear stress in each shaft.

Prob. 5-90

5-91. The A-36 steel shaft is made from two segments: AC
has a diameter of 0.5 in. and CB has a diameter of 1 in. If
the shaft is fixed at its ends A and B and subjected to a
uniform distributed torque of 60 1b-in./in. along segment
CB, determine the absolute maximum shear stress in the
shaft.

ég\@\\lgz“'/ in
20in \(\1/

Wy

Prob. 5-91

*5-92. If the shaft is subjected to a uniform distributed
torque of + = 20 kN - m/m, determine the maximum shear
stress developed in the shaft. The shaft is made of 2014-T6
aluminum alloy and is fixed at A and C.

Section a—a

Prob. 5-92

¢5-93. The tapered shaft is confined by the fixed supports
at A and B. If a torque T is applied at its mid-point,
determine the reactions at the supports.

L2
L2
Prob. 5-93

5-94. The shaft of radius c is subjected to a distributed
torque t, measured as torque/length of shaft. Determine the
reactions at the fixed supports A and B.

B

fQ@\ )
S
e S
Q A

(
2t

Prob. 5-94
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*5.6 Solid Noncircular Shafts

It was demonstrated in Sec. 5.1 that when a torque is applied to a shaft
having a circular cross section—that is, one that is axisymmetric—the
shear strains vary linearly from zero at its center to a maximum at its
outer surface. Furthermore, due to the uniformity of the shear strain at
all points on the same radius, the cross sections do not deform, but rather
remain plane after the shaft has twisted. Shafts that have a noncircular
cross section, however, are not axisymmetric, and so their cross sections
will bulge or warp when the shaft is twisted. Evidence of this can be seen
from the way grid lines deform on a shaft having a square cross section
when the shaft is twisted, Fig. 5-25. As a consequence of this deformation
the torsional analysis of noncircular shafts becomes considerably more
complicated and will not be considered in this text.

Using a mathematical analysis based on the theory of elasticity,
however, it is possible to determine the shear-stress distribution within a
shaft of square cross section. Examples of how this shear stress varies
along two radial lines of the shaft are shown in Fig. 5-26a. Because these
shear-stress distributions vary in a complex manner, the shear strains
they create will warp the cross section as shown in Fig. 5-26b. In
particular notice that the corner points of the shaft must be subjected to
zero shear stress and therefore zero shear strain. The reason for this
can be shown by considering an element of material located at one of
these points, Fig. 5-26c. One would expect the top face of this element
to be subjected to a shear stress in order to aid in resisting the applied
torque T. This, however, cannot occur since the complementary shear
stresses 7 and 7', acting on the outer surface of the shaft, must be zero.

Undeformed

\ ’ Deformed
T

SouDb NONCIRCULAR SHAFTS

Shear stress distribution
along two radial lines

(a)

Warping of
cross-sectional area

(b)

(©)

Fig. 5-26
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The drill shaft is connected to the soil
auger using a shaft having a square cross
section.

Notice the deformation of the square element when this rubber bar is subjected to a
torque.

The results of the analysis for square cross sections, along with other
results from the theory of elasticity, for shafts having triangular and
elliptical cross sections, are reported in Table 5-1. In all cases the
maximum shear stress occurs at a point on the edge of the cross section
that is closest to the center axis of the shaft. In Table 5-1 these points
are indicated as “dots” on the cross sections. Also given are formulas
for the angle of twist of each shaft. By extending these results to a shaft
having an arbitrary cross section, it can also be shown that a shaft having
a circular cross section is most efficient, since it is subjected to both
a smaller maximum shear stress and a smaller angle of twist than a
corresponding shaft having a noncircular cross section and subjected to
the same torque.

TABLE 5-1

Shape of
cross section Tmax ¢
Square
10 TL
a*G

B 481 T 7.
113
a

Equilateral triangle

ad Na 07 46TL
@ a*G
—

Ellipse
bjf 2T (@ +bHTL
EVL wab’ Ta’b’G

]




5.6 SoLID NONCIRCULAR SHAFTS 223

EXAMPLE |5.10

The 6061-T6 aluminum shaft shown in Fig. 5-27 has a cross-sectional
area in the shape of an equilateral triangle. Determine the largest
torque T that can be applied to the end of the shaft if the allowable
shear stress is 7, = 8 ksi and the angle of twist at its end is restricted
to Gaow = 0.02 rad. How much torque can be applied to a shaft of
circular cross section made from the same amount of material?

SOLUTION
By inspection, the resultant internal torque at any cross section along
the shaft’s axis is also T. Using the formulas for 7., and ¢ in
Table 5-1, we require

20T

20T
Tallow — 7; 8(103) lb/ll‘l2 =

(1.5 in.)3
T = 1350 1b-in.
Also,

46TL 46T (4 ft)(12 in./ft)

w="—"75—>3 002rad = o
ato 4G,y (1.5in.)*[3.7(10°) Ib/in’] \/ [ 60
T = 1701b-in. Ans. A

1.51in.

By comparison, the torque is limited due to the angle of twist.

Circular Cross Section. If the same amount of aluminum is to be Fig. 5-27
used in making the same length of shaft having a circular cross
section, then the radius of the cross section can be calculated. We have

1
Acirde = Auiangle; 7€ = 5(1.5 in.) (1.5 sin 60°)

¢ = 0.557 in.
The limitations of stress and angle of twist then require
T T(0.557 in.
Tallow — 76; 8(103) lb/1n2 = ( ) 4
J (7/2)(0.557 in.)
T =21701b-in.
TL T(4ft)(12 in./ft
Dallow = 755 0.02rad = ( : )(4 / Z 87
JGy (7/2)(0.557 in.)*[3.7(10°) Ib/in”]
T = 2331b-in. Ans.

Again, the angle of twist limits the applied torque.

NOTE: Comparing this result (233 Ib-in.) with that given above
(170 1b - in.), it is seen that a shaft of circular cross section can support
37% more torque than the one having a triangular cross section.
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(b)
Fig. 5-28

*5.7 Thin-Walled Tubes Having Closed
Cross Sections

Thin-walled tubes of noncircular cross section are often used to
construct light-weight frameworks such as those used in aircraft. In some
applications, they may be subjected to a torsional loading. In this section
we will analyze the effects of applying a torque to a thin-walled tube
having a closed cross section, that is, a tube that does not have any breaks
or slits along its length. Such a tube, having a constant yet arbitrary cross-
sectional shape, and variable thickness ¢, is shown in Fig. 5-28a. Since the
walls are thin, we will obtain the average shear stress by assuming that this
stress is uniformly distributed across the thickness of the tube at any given
point. Before we do this, however, we will first discuss some preliminary
concepts regarding the action of shear stress over the cross section.

Shear Flow. Shown in Figs. 5-28a and 5-28b is a small element
of the tube having a finite length s and differential width dx. At
one end the element has a thickness 74, and at the other end the
thickness is tz. Due to the internal torque T, shear stress is
developed on the front face of the element. Specifically, at end A
the shear stress is 74, and at end B it is 7. These stresses can be
related by noting that equivalent shear stresses 74 and 75 must also
act on the longitudinal sides of the element. Since these sides have
a constant width dx, the forces acting on them are dF 4 = 74(t 4 dx)
and dFp = 7p(t5 dx). Equilibrium requires these forces to be of
equal magnitude but opposite direction, so that

Tala = Tplp

This important result states that the product of the average shear stress
times the thickness of the tube is the same at each point on the tube’s
cross-sectional area. This product is called shear flow,* g, and in general
terms we can express it as

G = T (5-17)

Since g is constant over the cross section, the largest average shear stress
must occur where the tube’s thickness is the smallest.

*The terminology “flow” is used since g is analogous to water flowing through a tube of
rectangular cross section having a constant depth and variable width w. Although the
water’s velocity v at each point along the tube will be different (like 7,y,), the flow g = vw
will be constant.
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Now if a differential element having a thickness ¢, length ds, and
width dx is isolated from the tube, Fig. 5-28c, it is seen that the front
face over which the average shear stress acts is dA = t ds. Hence,
dF = 74, (t ds) = qds,or q = dF/ds. In other words, the shear flow
measures the force per unit length along the tube’s cross-sectional area.

It is important to realize that the shear-stress components shown in
Fig. 5-28¢ are the only ones acting on the tube. Components acting in
the other direction, as shown in Fig. 5-28d, cannot exist. This is
because the top and bottom faces of the element are at the inner and
outer walls of the tube, and these boundaries must be free of stress.
Instead, as noted above, the applied torque causes the shear flow and
the average stress to always be directed tangent to the wall of the tube,
such that it contributes to the resultant internal torque T.

Average Shear Stress. The average shear stress can be
related to the torque 7T by considering the torque produced
by this shear stress about a selected point O within the tube’s
boundary, Fig. 5-28e. As shown, the shear stress develops a force
dF = T,y dA = T4,(t ds) on an element of the tube. This force acts ~Stress-free boundary
tangent to the centerline of the tube’s wall, and if the moment arm is (bottom)

h, the torque is ()

dT = h(dF) = h(ray! ds)

For the entire cross section, we require

T = j[hravgt ds

Here the “line integral” indicates that integration must be performed
around the entire boundary of the area. Since the shear flow g = 7,1
is constant, it can be factored out of the integral, so that

T = Tavgt}[hds

A graphical simplification can be made for evaluating the integral
by noting that the mean area, shown by the blue colored triangle in
Fig. 5-28e,is dA,, = (1/2)h ds. Thus,

T = ZTanZ/dAm = 27t A,

Fig. 5-28 (cont.)
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Solving for 7,,,, we have

T

=_— 5-18
Tavg ZtAm ( )

Here

Tag = the average shear stress acting over a particular thickness of the

tube
T = the resultant internal torque at the cross section

t

the thickness of the tube where 7, is to be determined

A,, = the mean area enclosed within the boundary of the centerline of
the tube’s thickness. A,, is shown shaded in Fig. 5-28f

Since q = 7,,t, then the shear flow throughout the cross section
becomes

4= (5-19)

Angle of Twist. The angle of twist of a thin-walled tube of length L
can be determined using energy methods, and the development of the
necessary equation is given as a problem later in the text.* If the material
behaves in a linear elastic manner and G is the shear modulus, then this
angle ¢, given in radians, can be expressed as

TL ds
= — 5-20
¢ 4A2G )t (5-20)
Here again the integration must be performed around the entire boundary
of the tube’s cross-sectional area.

Important Points

® Shear flow g is the product of the tube’s thickness and the
average shear stress. This value is the same at all points along the
tube’s cross section. As a result, the largest average shear stress
on the cross section occurs where the thickness is smallest.

® Both shear flow and the average shear stress act tangent to the
wall of the tube at all points and in a direction so as to contribute
to the resultant internal torque.

*See Prob. 14-12.
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EXAMPLE |5.11
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Calculate the average shear stress in a thin-walled tube having a
circular cross section of mean radius r,, and thickness ¢, which is
subjected to a torque T, Fig. 5-29a. Also, what is the relative angle of
twist if the tube has a length L?

SOLUTION
Average Shear Stress. The mean area for the tube is A,, = 7r?,.
Applying Eq. 5-18 gives
T T
e T %A, 2w,

We can check the validity of this result by applying the torsion
formula. In this case, using Eq. 5-9, we have

Ans.

T
J =5(r3 —rf)
T
=S (o + ) =)
) 2
:E(ro + ri)(ro + ri)(ro - ri)

T

2 (2r§n)(2rm)t = 27T}"?nt

Sincer,, ® r, = r;andt =r, — r;, J

Win  Wim W

o 3, 2
J 2wt 2atrs,

so that s — Ans.

which agrees with the previous result.

The average shear-stress distribution acting throughout the tube’s
cross section is shown in Fig. 5-29b. Also shown is the shear-stress
distribution acting on a radial line as calculated using the torsion
formula. Notice how each 7,,, acts in a direction such that it contributes
to the resultant torque T at the section. As the tube’s thickness
decreases, the shear stress throughout the tube becomes more uniform.

Angle of Twist. Applying Eq. 5-20, we have

TL ds TL
d) = 2 - = 22 ds
4A2G) t 4w )G

The integral represents the length around the centerline boundary,
which is 27r,,. Substituting, the final result is

_TL
2713 Gt

b Ans.

Show that one obtains this same result using Eq. 5-15.

(@)

Actual shear-stress
distribution
(torsion formula)
N —;

Tmax Tavg

Tavg

Average shear-stress
distribution
(thin-wall approximation)

(b)
Fig. 5-29
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EXAMPLE |5.12

The tube is made of C86100 bronze and has a rectangular cross
section as shown in Fig. 5-30a. If it is subjected to the two torques,
determine the average shear stress in the tube at points A and B. Also,
what is the angle of twist of end C? The tube is fixed at E.

60 mm |

3 mm

40 mm (a) 60 N-m

SOLUTION

Average Shear Stress. If the tube is sectioned through points A
and B, the resulting free-body diagram is shown in Fig. 5-30b. The
internal torque is 35 N - m. As shown in Fig. 5-30d, the mean area is

A, = (0.035m)(0.057 m) = 0.00200 m>

Applying Eq. 5-18 for point A, 7, = 5 mm, so that

T 35N-
o = S —175MPa Ans
2tA,,  2(0.005 m)(0.00200 m?)

And for point B, tz = 3 mm, and therefore

T 35N-m

= — =292MPa Ans.
2tA,  2(0.003 m)(0.00200 m2)

Tp =

These results are shown on elements of material located at points A
and B, Fig. 5-30e. Note carefully how the 35-N - m torque in Fig. 5-30b
creates these stresses on the back sides of each element.
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L 4

Angle of Twist. From the free-body diagrams in Fig. 5-30b
and 5-30c, the internal torques in regions DE and CD are 35 N-:m
and 60 N - m, respectively. Following the sign convention outlined in
Sec. 5.4, these torques are both positive. Thus, Eq. 5-20 becomes

TL ds
4A2G

4(0.0022325222‘3325 s (s ) * s )|

4(0.002?)?)2;)?(;.(513 N/m?) {2(55712;11 ) i 2(33512;11 )]

6.29(107%) rad Ans.

b=

2.92 MPa

_________

57 mm

_________

1.75 MPa

(d) (e)

Fig. 5-30
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. PROBLEMS

5-95. Compare the values of the maximum elastic shear
stress and the angle of twist developed in 304 stainless steel
shafts having circular and square cross sections. Each shaft
has the same cross-sectional area of 9 in? length of 36 in.,
and is subjected to a torque of 4000 Ib - in.

1
1
o

Prob. 5-95

A

#5-96. If a =25 mm and b = 15 mm, determine the
maximum shear stress in the circular and elliptical shafts
when the applied torque is 7 =80 N-m. By what
percentage is the shaft of circular cross section more
efficient at withstanding the torque than the shaft of
elliptical cross section?

f— S —|

Ny

e
<

=

¢5-97. Itisintended to manufacture a circular bar to resist
torque; however, the bar is made elliptical in the process of
manufacturing, with one dimension smaller than the other
by a factor k as shown. Determine the factor by which the
maximum shear stress is increased.

Prob. 5-96

Prob. 5-97

5-98. The shaft is made of red brass C83400 and has an
elliptical cross section. If it is subjected to the torsional
loading shown, determine the maximum shear stress within
regions AC and BC, and the angle of twist ¢ of end B
relative to end A.

5-99. Solve Prob. 5-98 for the maximum shear stress
within regions AC and BC, and the angle of twist ¢ of end B
relative to C.

Probs. 5-98/99

*5-100. Segments AB and BC of the shaft have circular
and square cross sections, respectively. If end A is subjected
to a torque of 7 =2 kN-m, determine the absolute
maximum shear stress developed in the shaft and the angle
of twist of end A. The shaft is made from A-36 steel and is
fixed at C.

¢5-101. Segments AB and BC of the shaft have circular and
square cross sections, respectively. The shaft is made from
A-36 steel with an allowable shear stress of 7,5, = 75 MPa,
and an angle of twist at end A which is not allowed to exceed
0.02 rad. Determine the maximum allowable torque T that
can be applied at end A.The shaft is fixed at C.

Probs. 5-100/101
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5-102. The aluminum strut is fixed between the two walls
at A and B. If it has a 2 in. by 2 in. square cross section, and
it is subjected to the torque of 80 Ib - ft at C, determine the
reactions at the fixed supports. Also, what is the angle of
twist at C? G, = 3.8(10°) ksi.

A
C
A
2 ft

80 Ib-ft B

3ft

Prob. 5-102

5-103. The square shaftis used at the end of a drive cable in
order to register the rotation of the cable on a gauge. If it has
the dimensions shown and is subjected to a torque of 8 N - m,
determine the shear stress in the shaft at point A. Sketch the
shear stress on a volume element located at this point.

8 N'-m
Prob. 5-103

*5-104. The 6061-T6 aluminum bar has a square cross
section of 25 mm by 25 mm. If it is 2 m long, determine the
maximum shear stress in the bar and the rotation of one
end relative to the other end.

Prob. 5-104

¢5-105. The steel shaft is 12 in. long and is screwed into
the wall using a wrench. Determine the largest couple
forces F that can be applied to the shaft without causing the
steel to yield. 7y = 8 ksi.

5-106. The steel shaft is 12 in. long and is screwed into the
wall using a wrench. Determine the maximum shear stress
in the shaft and the amount of displacement that each
couple force undergoes if the couple forces have a
magnitude of F = 30 1b, Gy = 10.8(10%) ksi.

Probs. 5-105/106

5-107. Determine the constant thickness of the rectangular
tube if the average shear stress is not to exceed 12 ksi when a
torque of 7 = 20 kip - in. is applied to the tube. Neglect stress
concentrations at the corners. The mean dimensions of the
tube are shown.

*5-108. Determine the torque T that can be applied to the
rectangular tube if the average shear stress is not to exceed
12 ksi. Neglect stress concentrations at the corners. The
mean dimensions of the tube are shown and the tube has a
thickness of 0.125 in.

Probs. 5-107/108
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*5-109. For a given maximum shear stress, determine the
factor by which the torque carrying capacity is increased if
the half-circular section is reversed from the dashed-line
position to the section shown. The tube is 0.1 in. thick.

‘ 1.80 in. |
[ & 06in >
ay
120 in. ( |
Prob. 5-109

5-110. For a given average shear stress, determine the
factor by which the torque-carrying capacity is increased if
the half-circular sections are reversed from the dashed-line
positions to the section shown. The tube is 0.1 in. thick.

1.20 in. I L
// // \\ \ |
_ A N\ N 0.5in.
XV i W
Prob. 5-110

5-111. A torque T is applied to two tubes having the cross
sections shown. Compare the shear flow developed in each
tube.

f—=—

Prob. 5-111

*5-112. Due to a fabrication error the inner circle of the
tube is eccentric with respect to the outer circle. By what
percentage is the torsional strength reduced when the
eccentricity e is one-fourth of the difference in the radii?

Prob. 5-112

¢5-113. The mean dimensions of the cross section of an
airplane fuselage are shown. If the fuselage is made of
2014-T6 aluminum alloy having allowable shear stress of
Talow = 18 ksi,and it is subjected to a torque of 6000 kip - ft,
determine the required minimum thickness ¢ of the cross
section to the nearest 1/16 in. Also, find the corresponding
angle of twist per foot length of the fuselage.

5-114. The mean dimensions of the cross section of an
airplane fuselage are shown. If the fuselage is made from
2014-T6 aluminum alloy having an allowable shear stress of
Talow = 18 ksi and the angle of twist per foot length of
fuselage is not allowed to exceed 0.001 rad/ft, determine
the maximum allowable torque that can be sustained by the
fuselage. The thickness of the wall is ¢ = 0.25 in.

Probs. 5-113/114
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5-115. The tube is subjected to a torque of 750 N -m.
Determine the average shear stress in the tube at points A
and B.

Prob. 5-115

*5-116. The tube is made of plastic, is 5 mm thick, and has
the mean dimensions shown. Determine the average shear
stress at points A and B if it is subjected to the torque of
T = 5N-m. Show the shear stress on volume elements
located at these points.

¢5-117. The mean dimensions of the cross section of the
leading edge and torsion box of an airplane wing can be
approximated as shown. If the wing is made of 2014-T6
aluminum alloy having an allowable shear stress of
Talow = 125 MPa and the wall thickness is 10 mm,
determine the maximum allowable torque and the
corresponding angle of twist per meter length of the wing.

5-118. The mean dimensions of the cross section of the
leading edge and torsion box of an airplane wing can
be approximated as shown. If the wing is subjected to a
torque of 4.5 MN-m and the wall thickness is 10 mm,
determine the average shear stress developed in the wing
and the angle of twist per meter length of the wing. The
wing is made of 2014-T6 aluminum alloy.

10 mm
0.25m
© [025m
10 mm | 2m !

Probs. 5-117/118

5-119. The symmetric tube is made from a high-strength
steel, having the mean dimensions shown and a thickness of
5 mm. If it is subjected to a torque of 7 = 40N-m,
determine the average shear stress developed at points A
and B. Indicate the shear stress on volume elements located
at these points.

Prob. 5-116

Prob. 5-119
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(©)

Fig. 5-31

5.8 Stress Concentration

The torsion formula, 7,,, = T'c/J, cannot be applied to regions of a shaft
having a sudden change in the cross section. Here the shear-stress and
shear-strain distributions in the shaft become complex and can be
obtained only by using experimental methods or possibly by a
mathematical analysis based on the theory of elasticity. Three common
discontinuities of the cross section that occur in practice are shown in
Fig. 5-31.They are at couplings, which are used to connect two collinear
shafts together, Fig. 5-31a, keyways, used to connect gears or pulleys to a
shaft, Fig. 5-31b, and shoulder fillets, used to fabricate a single collinear
shaft from two shafts having different diameters, Fig. 5-31c. In each case
the maximum shear stress will occur at the point (dot) indicated on the
cross section.

The necessity to perform a complex stress analysis at a shaft
discontinuity to obtain the maximum shear stress can be eliminated by
using a torsional stress-concentration factor, K. As in the case of axially
loaded members, Sec. 4.7, K is usually taken from a graph based on
experimental data. An example, for the shoulder-fillet shaft, is shown
in Fig. 5-32. To use this graph, one first finds the geometric ratio D/d
to define the appropriate curve, and then once the abscissa r/d is
calculated, the value of K is found along the ordinate.
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The maximum shear stress is then determined from

Tmax = K— (5-21)

Here the torsion formula is applied to the smaller of the two connected
shafts, since 7, occurs at the base of the fillet, Fig. 5-31c.

Note from the graph that an increase in fillet radius r causes a decrease
in K. Hence the maximum shear stress in the shaft can be reduced by
increasing the fillet radius. Also, if the diameter of the larger shaft is
reduced, the D/d ratio will be lower and so the value of K and therefore
Tmax Will be lower.

Like the case of axially loaded members, torsional stress concentration
factors should always be used when designing shafts made from brittle
materials, or when designing shafts that will be subjected to fatigue or
cyclic torsional loadings. These conditions give rise to the formation
of cracks at the stress concentration, and this can often lead to a
sudden fracture. On the other hand, if large static torsional loadings are
applied to a shaft made from ductile material, then inelastic strains will
develop within the shaft. Yielding of the material will cause the stress
distribution to become more evenly distributed throughout the shaft, so
that the maximum stress will not be limited to the region of stress
concentration. This phenomenon will be discussed further in the next
section.

Important Points

® Stress concentrations in shafts occur at points of sudden
cross-sectional change, such as couplings, keyways, and at shoulder
fillets. The more severe the change in geometry, the larger the
stress concentration.

® For design or analysis, it is not necessary to know the exact
shear-stress distribution on the cross section. Instead, it is possible
to obtain the maximum shear stress using a stress concentration
factor, K, that has been determined through experiment, and is
only a function of the geometry of the shaft.

® Normally a stress concentration in a ductile shaft subjected to a
static torque will not have to be considered in design; however, if
the material is brittle, or subjected to fatigue loadings, then stress
concentrations become important.
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Stress concentrations can arise at the
coupling of these shafts, and this must
be taken into account when the shaft is
designed.
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EXAMPLE |5.13

30N-m

0
60 N-m //\ R’
([ / /
30N'm\ 3 40 mm

- 4P

=

A 20 mm

(a)

Toax = 3.10 MPa

Actual shear-stress
distribution caused
by stress concentration

Shear-stress

distribution

predicted by
torsion formula

()
Fig. 5-33

The stepped shaft shown in Fig. 5-33a is supported by bearings at A
and B. Determine the maximum stress in the shaft due to the applied
torques. The shoulder fillet at the junction of each shaft has a radius of
r = 6 mm.

T=30Nm
30 N-m

(b)

SOLUTION

Internal Torque. By inspection, moment equilibrium about the
axis of the shaft is satisfied. Since the maximum shear stress occurs at
the rooted ends of the smaller diameter shafts, the internal torque
(30 N-m) can be found there by applying the method of sections,
Fig. 5-33b.

Maximum Shear Stress. The stress-concentration factor can be
determined by using Fig. 5-32. From the shaft geometry we have

D 2(40 mm)

d 2(20mm)

r 6 mm

d ~ 2(20 mm) e

Thus, the value of K = 1.3 is obtained.
Applying Eq. 5-21, we have

Tmax — K

Tc 30 N-m (0.020 m)
Tmax — 1.

=0 < | =310MPa  Ans.
J (7/2)(0.020 m)

NOTE: From experimental evidence, the actual stress distribution
along a radial line of the cross section at the critical section looks
similar to that shown in Fig. 5-33¢. Notice how this compares with the
linear stress distribution found from the torsion formula.




*5.9 Inelastic Torsion

If the torsional loadings applied to the shaft are excessive, then the
material may yield, and, consequently, a “plastic analysis” must be
used to determine the shear-stress distribution and the angle of
twist. To perform this analysis, then as before, it is necessary to
meet the conditions of both deformation and equilibrium for the
shaft.

It was shown in Sec. 5.1 that regardless of the material behavior,
the shear strains that develop in a circular shaft will vary linearly,
from zero at the center of the shaft to a maximum at its outer
boundary, Fig. 5-34a. Also, the resultant internal torque at the section
must be equivalent to the torque caused by the entire shear-stress
distribution over the cross section. This condition can be expressed
mathematically by considering the shear stress 7 acting on an
element of area dA located a distance p from the center of the shaft,
Fig. 5-34b. The force produced by this stress is dF = 7 d A, and the
torque produced is dT = p dF = p(7 dA). For the entire shaft we
require

T = /pr dA (5-22)
A

If the area dA over which 7 acts can be defined as a differential
ring having an area of dA = 2mp dp, Fig. 5-34c, then the above
equation can be written as

T =2m / > dp (5-23)
0

These conditions of geometry and loading will now be used to
determine the shear-stress distribution in a shaft when the shaft is
subjected to two types of torque.

Elastic-Plastic Torque. Letusconsider the material in the shaft
to exhibit an elastic-perfectly plastic behavior. As shown in Fig. 5-35a,
this is characterized by a shear stress—strain diagram for which the
material undergoes an increasing amount of shear strain when the
shear stress reaches the yield point 7y.
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Severe twist of an aluminum specimen caused
by the application of a plastic torque.

Ymax

Linear shear—strain
distribution

(a)

(b)

dA =2mpdp
dp ‘

(©)

Fig. 5-34
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Yy Y

(a)

Plastic
annulus

Elastic
core

Shear-strain distribution

(b)

Shear-stress distribution
(0
Fig. 5-35

If the internal torque produces the maximum elastic shear strain yy, at
the outer boundary of the shaft, then the maximum elastic torque T’y
that produces this distribution can be found from the torsion formula,
Ty = Tyc/[(m/2)c*], so that

%TY& (5-24)

Ty =
Furthermore, the angle of twist can be determined from Eq. 5-13,
namely,

dp = y— (5-25)
p

If the applied torque increases in magnitude above Ty, it will begin to
cause yielding. First at the outer boundary of the shaft, p = ¢, and then,
as the maximum shear strain increases to, say, vy’ in Fig. 5-35a, the
yielding boundary will progress inward toward the shaft’s center,
Fig. 5-35b. As shown, this produces an elastic core, where, by proportion,
the radius of the core is py = (yy/y')c. Also, the outer portion of the
material forms a plastic annulus or ring, since the shear strains vy
within this region are greater than yy. The corresponding shear-stress
distribution along a radial line of the shaft is shown in Fig. 5-35¢. It is
established by taking successive points on the shear-strain distribution
in Fig. 5-35b and finding the corresponding value of shear stress from
the 7—vy diagram, Fig. 5-35a. For example, at p = ¢, y’ gives 7y, and at
p = py, vy also gives 7y ; etc.

Since 7 in Fig. 5-35¢ can now be expressed as a function of p, we can
apply Eq. 5-23 to determine the torque. We have

c
T = 277/ T dp
0

Py p ¢
277/ Ty— |p*dp + 277/ Typ* dp
0 Py Py

2 Py ¢
= WTy/ p>dp + 27T7'y/ p*dp
0 Py

Py
T 2

=T rvob + Lay(e = o)
Py 3

wT
= (4 = p}) (5-26)
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Plastic Torque. Further increases in T tend to shrink the radius of
the elastic core until all the material will yield, i.e., py — 0, Fig. 5-35b.
The material of the shaft will then be subjected to perfectly plastic behav- T Ty
ior and the shear-stress distribution becomes uniform, so that 7 = 7y,
Fig. 5-35d. We can now apply Eq. 5-23 to determine the plastic torque
T\, which represents the largest possible torque the shaft will support.

Fully plastic torque
c
T,= 277/ Typ* dp (d
0 Fig. 5-35 (cont.)
2
=5 (5-27)

Compared with the maximum elastic torque 7'y, Eq. 5-24, it can be seen
that

4
Tp = ETY

In other words, the plastic torque is 33% greater than the maximum
elastic torque.

Unfortunately, the angle of twist ¢ for the shear-stress distribution
cannot be uniquely defined. This is because 7 = 1y does not correspond
to any unique value of shear strain y = yy. As a result, once T, is
applied, the shaft will continue to deform or twist with no corresponding
increase in shear stress.

*5.10 Residual Stress

When a shaft is subjected to plastic shear strains caused by torsion,
removal of the torque will cause some shear stress to remain in the shaft. Tyl C

- Elastic-plastic
material behavior

This stress is referred to as residual stress, and its distribution can be B
calculated using superposition and elastic recovery. (See Sec. 4.9.) G G
For example, if T', causes the material at the outer boundary of the shaft A
to be strained to vy, shown as point C on the 7—vy curve in Fig. 5-36, the Yy 71 Y

. . Maxi lasti
release of 7, will cause a reverse shear stress, such that the material aximunn efastie
recovery is 2yy

behavior will follow the straight-lined segment CD, creating some elastic Reversed elastic
recovery of the shear strain +y;. This line is parallel to the initial straight- Ty p material behavior
lined portion AB of the 7—vy diagram, and thus both lines have a slope G as

indicated. Fig. 5-36
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Ty

Plastic torque applied
causing plastic shear strains
throughout the shaft

(a)

Tr

Plastic torque reversed
causing elastic shear strains
throughout the shaft

(b)

T, — Ty

Residual shear—stress
distribution in shaft

(©

(0 A

Since elastic recovery occurs, we can superimpose on the plastic
torque stress distribution in Fig. 5-37a a linear stress distribution caused
by applying the plastic torque T, in the opposite direction, Fig. 5-37b.
Here the maximum shear stress 7,, for this stress distribution, is called
the modulus of rupture for torsion. It is determined from the torsion
formula,* which gives

T ¢ Tpc
Trzizi

J (m/2)c*
Using Eq. 5-27,

[(2/3)7T7'yc3]c 4

T (7/2)c* 37y

Note that reversed application of T, using the linear shear-stress
distribution in Fig. 5-37b is possible here, since the maximum recovery
for the elastic shear strain is 2y, as noted in Fig. 5-37. This corresponds
to a maximum applied shear stress of 21y, which is greater than the
maximum shear stress of %TY calculated above. Hence, by superimposing
the stress distributions involving applications and then removal of the
plastic torque, we obtain the residual shear-stress distribution in the shaft
as shown in Fig. 5-37c. It should be noted from this diagram that the
shear stress at the center of the shaft, shown as 7y, must actually be zero,
since the material along the axis of the shaft is never strained. The reason
this is not zero is because we assumed that all the material of the shaft
was strained beyond the yield point in order to determine the plastic
torque, Fig. 5-37a. To be more realistic, an elastic—plastic torque should
be considered when modeling the material behavior. Doing so leads to
the superposition of the stress distribution shown in Fig. 5-374.

T,

\lTY + =

T,
Tmax — Ty
Tmax < TV
Elastic—plastic torque applied Elastic—plastic torque reversed Residual shear—stress
distribution in shaft
(d)
Fig. 5-37

*The torsion formula is valid only when the material behaves in a linear elastic manner;
however, the modulus of rupture is so named because it assumes that the material behaves
elastically and then suddenly ruptures at the proportional limit.



Ultimate Torque. In the general case, most engineering materials
will have a shear stress—strain diagram as shown in Fig. 5-38a.
Consequently, if 7 is increased so that the maximum shear strain in the
shaft becomes y = vy,, Fig. 5-38b, then, by proportion yy occurs at
py = (vy/v.)c. Likewise, the shear strains at, say, p = p; and p = p,,
can be found by proportion, i.e.,y; = (pi/c)y, and y, = (py/c)y,. If the
corresponding values of 7, 7y, 75, and 7, are taken from the r—7y diagram
and plotted, we obtain the shear-stress distribution, which acts along a
radial line on the cross section, Fig. 5-38c. The torque produced by this
stress distribution is called the ultimate torque, T ,.

The magnitude of T, can be determined by “graphically” integrating
Eq.5-23.To do this, the cross-sectional area of the shaft is segmented into
a finite number of rings, such as the one shown shaded in Fig. 5-38d. The
area of this ring, AA = 2mp Ap, is multiplied by the shear stress 7 that
acts on it, so that the force AF = 7 AA can be determined. The torque
created by this force is then AT = p AF = p(t AA). The addition of all
the torques for the entire cross section, as determined in this manner,
gives the ultimate torque 7',; that is, Eq. 5-23 becomes T, ~ 27 S7p* Ap.
If, however, the stress distribution can be expressed as an analytical
function, 7 = f(p), as in the elastic and plastic torque cases, then the
integration of Eq. 5-23 can be carried out directly.

72 Tll

Yu T, ‘
pEwl /

Ultimate shear-strain distribution Ultimate shear-stress distribution

(b) (©)

Important Points

® The shear-strain distribution along a radial line on the cross
section of a shaft is based on geometric considerations, and it is
found to always vary linearly along the radial line. Once it is
established, the shear-stress distribution can then be determined
using the shear stress—strain diagram.

® Jf the shear-stress distribution for the shaft is established, it
produces a torque about the axis of the shaft that is equivalent to
the resultant internal torque acting on the cross section.

® Perfectly plastic behavior assumes the shear-stress distribution is
constant. When it occurs, the shaft will continue to twist with no
increase in torque. This torque is called the plastic torque.
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Y1 Yy 72 Yu Y
o
AA = 2mpAp
T, 4 N ™
A
vl Ap
(d)
Fig. 5-38
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EXAMPLE |5.14

30 mm

7 (MPa)

20

y (rad)

0.286 (1073)

(a)

Elastic shear—stress distribution

0.286 (10~3) rad
0.172 (1073) rad
Elastic shear—strain distribution
(b)

Fig. 5-39

The tubular shaft in Fig. 5-39a is made of an aluminum alloy that is
assumed to have an elastic-plastic 7—7y diagram as shown. Determine
the maximum torque that can be applied to the shaft without causing
the material to yield, and the maximum torque or plastic torque that
can be applied to the shaft. Also, what should the minimum shear
strain at the outer wall be in order to develop a fully plastic torque?

SOLUTION

Maximum Elastic Torque. We require the shear stress at the outer
fiber to be 20 MPa. Using the torsion formula, we have

Ty(0.05 m)
(/2)[(0.05 m)* — (0.03 m)*]

Tyc
Ty = 7] 5

20(10%) N/m? =

Ty = 3.42kN-m Ans.

The shear-stress and shear-strain distributions for this case are
shown in Fig. 5-39b. The values at the tube’s inner wall have been
obtained by proportion.

Plastic Torque. The shear-stress distribution in this case is shown in
Fig. 5-39¢. Application of Eq. 5-23 requires 7 = 7y. We have

0.05 m 1 0.05 m
T,=12m / [20(10°) N/m?]p? dp = 125.66(10°) = p*
0.03 m 3 0.03 m
=411kN-m Ans.

For this tube T, represents a 20% increase in torque capacity
compared with the elastic torque Ty .

Outer Radius Shear Strain. The tube becomes fully plastic when
the shear strain at the inner wall becomes 0.286(10%) rad, as shown in
Fig. 5-39c¢. Since the shear strain remains linear over the cross section,
the plastic strain at the outer fibers of the tube in Fig. 5-39c¢ is
determined by proportion.

Yo 0.286(107%) rad

50 mm 30 mm

Yo = 0.477(1073) rad Ans.

20 MPa
0.477 (10~3) rad

0.286 (10%) rad

Plastic shear—stress distribution Initial plastic shear—strain distribution

(©
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EXAMPLE |5.15

A solid circular shaft has a radius of 20 mm and length of 1.5 m. The
material has an elastic—plastic 7—y diagram as shown in Fig. 5-40a.
Determine the torque needed to twist the shaft ¢ = 0.6 rad.

7 (MPa)

75

y (rad)

0.0016 0.008
(a)

SOLUTION
We will first obtain the shear-strain distribution, then establish the
shear-stress distribution. Once this is known, the applied torque can
be determined.

The maximum shear strain occurs at the surface of the shaft, p = c.
Since the angle of twist is ¢ = 0.6 rad for the entire 1.5-m length of
the shaft, then using Eq. 5-25, for the entire length we have

L Ymax(1.5 m)
= Yo 06= (0.02 m)
Ymax = 0.008 rad

The shear-strain distribution is shown in Fig. 5-40b. Note that
yielding of the material occurs since 7yp.x > vy = 0.0016 rad in
Fig. 5-40a. The radius of the elastic core, py, can be obtained by
proportion. From Fig. 5-40b,

Py 0.02 m
0.0016  0.008

py = 0.004 m = 4 mm

Based on the shear-strain distribution, the shear-stress distribution,
plotted over a radial line segment, is shown in Fig. 5-40c. The torque
can now be obtained using Eq. 5-26. Substituting in the numerical
data yields

T =" (4~ p})
w[75(10°) N/m?]

- c [4(0.02m)* — (0.004 m)?]

1.25kN-'m Ans.

vy = 0.0016 rad
Ymax = 0.008 rad

Shear-strain distribution

(®)

{ Ty = 75 MPa

Shear-stress distribution
(©
Fig. 5-40
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EXAMPLE |5.16

T
/ ¢;=1in.
c,=2in.
7 (ksi)
12
v (rad)
0.002
()
12 ksi
T
p\‘ (b)
Plastic torque applied
(©
7, = 14.93 ksi

Plastic torque reversed

N @
N
2.93 ki

Residual shear—stress distribution

Fig. 5-41

A tube in Fig. 5-41a has a length of 5 ft and the material has an elastic-
plastic T—vy diagram, also shown in Fig. 5-41a. Determine the plastic
torque 7,. What is the residual shear-stress distribution if T, is
removed just after the tube becomes fully plastic?

SOLUTION

Plastic Torque. The plastic torque T, will strain the tube such that
all the material yields. Hence the stress distribution will appear as
shown in Fig. 5-41b. Applying Eq. 5-23, we have

2
r,= 27"/ Typ’dp = ?WTY(C?; - q)
9
= 27 (12(10%) Ib/in?)[(2 in.)? — (1in.)*] = 175.9 kip - in. Ans.
3 p

When the tube just becomes fully plastic, yielding has started at the
inner wall, i.e., at ¢; = 11in., yy = 0.002 rad, Fig. 5-41a. The angle of
twist that occurs can be determined from Eq. 5-25, which for the
entire tube becomes

L (0.002)(5 ft)(12 in./ft)

$p=1v = (1in.)

= 0.120 rad

When T, is removed, or in effect reapplied in the opposite
direction, then the “fictitious” linear shear-stress distribution shown in
Fig. 5-41¢ must be superimposed on the one shown in Fig. 5-41b. In
Fig. 5-41c¢ the maximum shear stress or the modulus of rupture is
found from the torsion formula

Tyeo  (175.9Kkip-in.)(2in.)
I (@/2)[2in)* - (1in.)Y]

= 14.93 ksi

Tr
Also, at the inner wall of the tube the shear stress is

i,
7 = (1493 ksi)(2$> = 7.47 ksi Ans.

The resultant residual shear-stress distribution is shown in Fig. 5-41d.
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“lrropiews

*5-120. The steel used for the shaft has an allowable shear 5-123. The steel shaft is made from two segments: AB and
stress of 7,,w = 8 MPa. If the members are connected with BC, which are connected using a fillet weld having a radius
a fillet weld of radius r = 4 mm, determine the maximum of 2.8 mm. Determine the maximum shear stress developed
torque 7 that can be applied. in the shaft.

Prob. 5-120

Prob. 5-123

¢5-121. The built-up shaft is to be designed to rotate
at 720 rpm while transmitting 30 kW of power. Is this
possible? The allowable shear stress is 7,0 = 12 MPa.

5-122. The built-up shaft is designed to rotate at 540 rpm.
If the radius of the fillet weld connecting the shafts
is r = 720 mm, and the allowable shear stress for the
material is 7,0 = 55 MPa, determine the maximum power
the shaft can transmit.

*5-124. The steel used for the shaft has an allowable shear
stress of 7,5, = 8 MPa. If the members are connected
together with a fillet weld of radius » = 2.25 mm, determine
the maximum torque 7 that can be applied.

30 mm 30 mm

N|~]/

Probs. 5-121/122 Prob. 5-124
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e5-125. The assembly is subjected to a torque of 710 1b * in.
If the allowable shear stress for the material is 7y, = 12 ksi,
determine the radius of the smallest size fillet that can be used
to transmit the torque.

0.75 in.

710 Ib-in.

1.5 in.

710 Ib-ft

Prob. 5-125

5-126. A solid shaft is subjected to the torque 7, which
causes the material to yield. If the material is elastic plastic,
show that the torque can be expressed in terms of the angle
of twist ¢ of the shaftas T = %Ty(l — ¢’y /4¢%), where Ty
and ¢y are the torque and angle of twist when the material
begins to yield.

5-127. A solid shaft having a diameter of 2 in. is made
of elastic-plastic material having a yield stress of
7y = 16ksi and shear modulus of G = 12(10°) ksi.
Determine the torque required to develop an elastic core
in the shaft having a diameter of 1 in. Also, what is the
plastic torque?

*5-128. Determine the torque needed to twist a short
3-mm-diameter steel wire through several revolutions if it is
made from steel assumed to be elastic plastic and having a
yield stress of 7y = 80 MPa. Assume that the material
becomes fully plastic.

¢5-129. The solid shaft is made of an elastic-perfectly
plastic material as shown. Determine the torque 7 needed
to form an elastic core in the shaft having a radius of
py = 20 mm. If the shaft is 3 m long, through what angle
does one end of the shaft twist with respect to the other end?
When the torque is removed, determine the residual stress
distribution in the shaft and the permanent angle of twist.

7 (MPa)
160

v (rad)

0.004

Prob. 5-129

5-130. The shaft is subjected to a maximum shear strain
of 0.0048 rad. Determine the torque applied to the shaft
if the material has strain hardening as shown by the shear
stress—strain diagram.

7 (ksi)
12

y (rad)

0.0006 0.0048

Prob. 5-130



5-131. An 80-mm diameter solid circular shaft is made of
an elastic-perfectly plastic material having a yield shear
stress of 7y = 125MPa. Determine (a) the maximum elastic
torque T'y;and (b) the plastic torque 7,

*5-132. The hollow shaft has the cross section shown and
is made of an elastic-perfectly plastic material having a
yield shear stress of 7y. Determine the ratio of the plastic
torque T, to the maximum elastic torque Ty.

Prob. 5-132

5-133. The shaft consists of two sections that are rigidly
connected. If the material is elastic plastic as shown,
determine the largest torque 7T that can be applied to the
shaft. Also, draw the shear-stress distribution over a radial
line for each section. Neglect the effect of stress
concentration.

7 (ksi)
i) -

y (rad)

0.005

Prob. 5-133
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5-134. The hollow shaft is made of an elastic-perfectly
plastic material having a shear modulus of G and a yield
shear stress of 7y. Determine the applied torque T, when the
material of the inner surface is about to yield (plastic torque).
Also, find the corresponding angle of twist and the maximum
shear strain. The shaft has a length of L.

Prob. 5-134

5-135. The hollow shaft has inner and outer diameters of
60 mm and 80 mm, respectively. If it is made of an elastic-
perfectly plastic material, which has the 7—y diagram shown,
determine the reactions at the fixed supports A and C.

: y (rad)
0.0016

Prob. 5-135
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*5-136. The tubular shaft is made of a strain-hardening
material having a 7—+y diagram as shown. Determine the
torque 7 that must be applied to the shaft so that the
maximum shear strain is 0.01 rad.

T
(//
0.5 in\ke 2\ 1
@)
0.75 in.
7 (ksi)
15
10
d
0.005 oor 7 ad)
Prob. 5-136

¢5-137. The shear stress—strain diagram for a solid
50-mm-diameter shaft can be approximated as shown in
the figure. Determine the torque 7 required to cause a
maximum shear stress in the shaft of 125 MPa. If the shaft is
1.5 m long, what is the corresponding angle of twist?

y (rad)

0.0025  0.010

Prob. 5-137

5-138. A tube is made of elastic-perfectly plastic material,
which has the 7—vy diagram shown. If the radius of the
elastic core is py = 2.25 in.,determine the applied torque 7.
Also, find the residual shear-stress distribution in the shaft
and the permanent angle of twist of one end relative to the
other when the torque is removed.

5-139. The tube is made of elastic-perfectly plastic
material, which has the 7—vy diagram shown. Determine the
torque 7 that just causes the inner surface of the shaft to
yield. Also, find the residual shear-stress distribution in the
shaft when the torque is removed.

J v (rad)
0.004

Probs. 5-138/139

*5-140. The 2-m-long tube is made of an elastic-perfectly
plastic material as shown. Determine the applied torque T
that subjects the material at the tube’s outer edge to a shear
strain of .« = 0.006 rad. What would be the permanent
angle of twist of the tube when this torque is removed?
Sketch the residual stress distribution in the tube.

v (rad)

0.003
Prob. 5-140



e5-141. A steel alloy core is bonded firmly to the copper
alloy tube to form the shaft shown. If the materials have the
T—7 diagrams shown, determine the torque resisted by the
core and the tube.

7 (MPa)
180 + —
; v (rad)
0.0024
Steel Alloy
7 (MPa)
36 ‘
; v (rad)
0.002
Copper Alloy

Prob. 5-141
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5-142. A torque is applied to the shaft of radius r. If the
material has a shear stress—strain relation of 7 = ky'/°,
where k is a constant, determine the maximum shear stress

in the shaft.

L)

T

Prob. 5-142
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. CHAPTER REVIEW

Torque causes a shaft having a circular cross section
to twist, such that the shear strain in the shaft is
proportional to its radial distance from the center of
the shaft. Provided the material is homogeneous and
linear elastic, then the shear stress is determined from
the torsion formula,

The design of a shaft requires finding the geometric
parameter,

J T
9 Tallow
Often the power P supplied to a shaft rotating at w is

reported, in which case the torque is determined from
P =To.

The angle of twist of a circular shaft is determined from

LT(x)dx
o= /0 IG

If the internal torque and JG are constant within each
segment of the shaft then

TL
¢=275

For application, it is necessary to use a sign convention for
the internal torque and to be sure the material remains
linear elastic.

If the shaft is statically indeterminate, then the reactive
torques are determined from equilibrium, compatibility
of twist, and a torque-twist relationship, such as
¢ =TLJ/JIG.
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Solid non-circular shafts tend to warp out of plane when
subjected to a torque. Formulas are available to determine the
maximum elastic shear stress and the twist for these cases.

The average shear stress in thin-walled tubes is determined by
assuming the shear stress across each thickness ¢ of the tube is
T

constant. Its value is determined from 7,,, = A
m

Stress concentrations occur in shafts when the cross section
suddenly changes. The maximum shear stress is determined
using a stress concentration factor K, which is determined

from experiment and represented in graphical form. Once
. Tc
obtained, 7, = K 7 )

Tmax

If the applied torque causes the material to exceed the elastic
limit, then the stress distribution will not be proportional to
the radial distance from the centerline of the shaft. Instead, the
internal torque is related to the stress distribution using the
shear-stress—shear-strain diagram and equilibrium.

If a shaft is subjected to a plastic torque, which is then
released, it will cause the material to respond elastically,
thereby causing residual shear stress to be developed in the
shaft.




252 CHAPTER 5 TORSION

. REVIEW PROBLEMS

5-143. Consider a thin-walled tube of mean radius r and
thickness 7. Show that the maximum shear stress in the tube
due to an applied torque T approaches the average shear
stress computed from Eq. 5-18 as r/r — 0.

t

Prob. 5-143

*5-144. The 304 stainless steel shaft is 3 m long and has an
outer diameter of 60 mm. When it is rotating at 60 rad/s, it
transmits 30 kW of power from the engine E to the
generator G. Determine the smallest thickness of the shaft
if the allowable shear stress is 7,0 = 150 MPa and the
shaft is restricted not to twist more than 0.08 rad.

Prob. 5-144

o5-145. The A-36 steel circular tube is subjected to a
torque of 10 kN - m. Determine the shear stress at the mean
radius p = 60 mm and compute the angle of twist of the
tube if it is 4 m long and fixed at its far end. Solve the
problem using Eqs. 5-7 and 5-15 and by using Egs. 5-18

and 5-20.
P =\60 mm /\
( 4m
t=5mm /

10 kN-m

Prob. 5-145

5-146. Rod AB is made of A-36 steel with an allowable
shear stress of (Ty0w)st = 75MPa, and tube BC is made of
AM1004-T61 magnesium alloy with an allowable shear
stress of (T,j0w)mg = 45 MPa. The angle of twist of end C is
not allowed to exceed 0.05 rad. Determine the maximum
allowable torque T that can be applied to the assembly.

Section a-a

Prob. 5-146

5-147. A shaft has the cross section shown and is made of
2014-T6 aluminum alloy having an allowable shear stress of
Talow = 125 MPa. If the angle of twist per meter length is
not allowed to exceed 0.03 rad, determine the required
minimum wall thickness ¢ to the nearest millimeter when
the shaft is subjected to a torque of 7 = 15kN-m.

Prob. 5-147



*5-148. The motor A develops a torque at gear B of
500 Ib-ft, which is applied along the axis of the 2-in.-
diameter A-36 steel shaft CD. This torque is to be
transmitted to the pinion gears at E and F. If these gears are
temporarily fixed, determine the maximum shear stress in
segments CB and BD of the shaft. Also, what is the angle of
twist of each of these segments? The bearings at C and D
only exert force reactions on the shaft.

500 Ib-ft

Prob. 5-148

5-149. The coupling consists of two disks fixed to separate
shafts, each 25 mm in diameter. The shafts are supported on
journal bearings that allow free rotation. In order to limit
the torque T that can be transmitted, a “shear pin” P is used
to connect the disks together. If this pin can sustain an
average shear force of 550 N before it fails, determine the
maximum constant torque 7 that can be transmitted from
one shaft to the other. Also, what is the maximum shear
stress in each shaft when the “shear pin” is about to fail?

Prob. 5-149
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5-150. The rotating flywheel and shaft is brought to a
sudden stop at D when the bearing freezes. This causes the
flywheel to oscillate clockwise—counterclockwise, so that a
point A on the outer edge of the flywheel is displaced
through a 10-mm arc in either direction. Determine the
maximum shear stress developed in the tubular 304
stainless steel shaft due to this oscillation. The shaft has an
inner diameter of 25 mm and an outer diameter of 35 mm.
The journal bearings at B and C allow the shaft to rotate
freely.

Prob. 5-150

5-151. If the solid shaft AB to which the valve handle is
attached is made of C83400 red brass and has a diameter of
10 mm, determine the maximum couple forces F that can be
applied to the handle just before the material starts to fail.
Take 7,0w = 40 MPa. What is the angle of twist of the
handle? The shaft is fixed at A.

Prob. 5-151
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Bending

CHAPTER OBJECTIVES

Beams and shafts are important structural and mechanical elements
in engineering. In this chapter we will determine the stress in these
members caused by bending. The chapter begins with a discussion of
how to establish the shear and moment diagrams for a beam or shaft.
Like the normal-force and torque diagrams, the shear and moment
diagrams provide a useful means for determining the largest shear and
moment in a member, and they specify where these maximums occur.
Once the internal moment at a section is determined, the bending
stress can then be calculated. First we will consider members that are
straight, have a symmetric cross section, and are made of homogeneous
linear elastic material. Afterward we will discuss special cases involving
unsymmetric bending and members made of composite materials.
stress

Consideration will also be given to curved members,

concentrations, inelastic bending, and residual stresses.

6.1 Shear and Moment Diagrams

Members that are slender and support loadings that are applied
perpendicular to their longitudinal axis are called beams. In general,
beams are long, straight bars having a constant cross-sectional area.
Often they are classified as to how they are supported. For example, a
simply supported beam is pinned at one end and roller supported at the
other, Fig. 6-1, a cantilevered beam is fixed at one end and free at the
other, and an overhanging beam has one or both of its ends freely
extended over the supports. Beams are considered among the most
important of all structural elements. They are used to support the floor
of a building, the deck of a bridge, or the wing of an aircraft. Also, the
axle of an automobile, the boom of a crane, even many of the bones of
the body act as beams.

Simply supported beam

|
—

Cantilevered beam

0 —

Overhanging beam

Fig. 6-1

255
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Wo
C
7)(1 JE——
Xo |
X3
Fig. 6-2
w(x)

I

Positive external distributed load
vV Vv
Positive internal shear
M M
Positive internal moment

Beam sign convention

Fig. 6-3

Because of the applied loadings, beams develop an internal shear
force and bending moment that, in general, vary from point to point
along the axis of the beam. In order to properly design a beam it
therefore becomes necessary to determine the maximum shear and
moment in the beam. One way to do this is to express V and M as
functions of their arbitrary position x along the beam’s axis. These
shear and moment functions can then be plotted and represented by
graphs called shear and moment diagrams. The maximum values of V
and M can then be obtained from these graphs. Also, since the shear
and moment diagrams provide detailed information about the variation
of the shear and moment along the beam’s axis, they are often used by
engineers to decide where to place reinforcement materials within the
beam or how to proportion the size of the beam at various points
along its length.

In order to formulate V and M in terms of x we must choose the origin
and the positive direction for x. Although the choice is arbitrary, most
often the origin is located at the left end of the beam and the positive
direction is to the right.

In general, the internal shear and moment functions of x will be
discontinuous, or their slope will be discontinuous, at points where a
distributed load changes or where concentrated forces or couple
moments are applied. Because of this, the shear and moment functions
must be determined for each region of the beam between any two
discontinuities of loading. For example, coordinates x;, x,, and x3 will
have to be used to describe the variation of V and M throughout the
length of the beam in Fig. 6-2. These coordinates will be valid only
within the regions from A to B for x;, from B to C for x,, and from
C to D for x5.

Beam Sign Convention. Before presenting a method for
determining the shear and moment as functions of x and later plotting
these functions (shear and moment diagrams), it is first necessary to
establish a sign convention so as to define “positive” and “negative”
values for V and M. Although the choice of a sign convention is
arbitrary, here we will use the one often used in engineering practice
and shown in Fig. 6-3. The positive directions are as follows: the
distributed load acts upward on the beam; the internal shear force
causes a clockwise rotation of the beam segment on which it acts; and
the internal moment causes compression in the top fibers of the segment
such that it bends the segment so that it holds water. Loadings that are
opposite to these are considered negative.
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Important Points

® PBeams are long straight members that are subjected to loads perpendicular to their longitudinal axis. They
are classified according to the way they are supported, e.g., simply supported, cantilevered, or overhanging.

¢ In order to properly design a beam, it is important to know the variation of the internal shear and moment
along its axis in order to find the points where these values are a maximum.

® Using an established sign convention for positive shear and moment, the shear and moment in the beam
can be determined as a function of its position x on the beam, and then these functions can be plotted to
form the shear and moment diagrams.

Procedure for Analysis

The shear and moment diagrams for a beam can be constructed using the following procedure.

Support Reactions.

® Determine all the reactive forces and couple moments acting on the beam, and resolve all the forces into
components acting perpendicular and parallel to the beam’s axis.

Shear and Moment Functions.

® Specify separate coordinates x having an origin at the beam’s left end and extending to regions of the beam
between concentrated forces and/or couple moments, or where there is no discontinuity of distributed
loading.

® Section the beam at each distance x, and draw the free-body diagram of one of the segments. Be sure V
and M are shown acting in their positive sense, in accordance with the sign convention given in Fig. 6-3.

® The shear is obtained by summing forces perpendicular to the beam’s axis.

® To eliminate V, the moment is obtained directly by summing moments about the sectioned end of the
segment.

Shear and Moment Diagrams.

® Plot the shear diagram (V versus x) and the moment diagram (M versus x). If numerical values of the
functions describing V and M are positive, the values are plotted above the x axis, whereas negative values
are plotted below the axis.

® Generally it is convenient to show the shear and moment diagrams below the free-body diagram of the beam.
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EXAMPLE | 6.1

Draw the shear and moment diagrams for the beam shown in Fig. 6—4a.

HlHHHHHHH SOLUTION

— upport Reactions. The support reactions are shown in Fig. 6-4c.

Shear and Moment Functions. A free-body diagram of the left
segment of the beam is shown in Fig. 6—4b. The distributed loading on
this segment, wx, is represented by its resultant force only after the
segment is isolated as a free-body diagram. This force acts through the
centroid of the area comprising the distributed loading, a distance of
X x/2 from the right end. Applying the two equations of equilibrium
2 yields

A‘F‘ )M wL
+13F, = 0; 7—wx—V=0

1 L |

wL
2 (b V= w(é = x) (1)

e (Berenls) oo

M= Ylix - ) )

Shear and Moment Diagrams. The shear and moment diagrams
Mﬁ shown in Fig. 6-4c¢ are obtained by plotting Egs. 1 and 2. The point of
Wi L wi zero shear can be found from Eq. 1:

2 12
L
4 V=w<2—x>=0

&% X = =

— 1 o~ 2

NOTE: From the moment diagram, this value of x represents the

M M. —wL? point on the beam where the maximum moment occurs, since by
™8 Eq. 6-2 (see Sec. 6.2) the slope V = dM/dx = 0. From Eq. 2, we
have
x 2
IL w L L
o &, M =2 ZZ2) ==
! w=3(5)- (5]
Fig. 6-4 .

8
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EXAMPLE | 6.2

Draw the shear and moment diagrams for the beam shown in Fig. 6-5a.

woL

2 -
|

woL? | %L |
(b)

Wo

SOLUTION
Support Reactions. The distributed load is replaced by its resultant 1 wox
force and the reactions have been determined as shown in Fig. 6-5b. E(T)xw _ wox
wol 4 L
Shear and Moment Functions. A free-body diagram of a beam 2 //,//’* Iy
segment of length x is shown in Fig. 6-5¢. Note that the intensity of QT” l}
the triangular load at the section is found by proportion, that is, S FI 5
w/x = wo/L or w = wyx/L. With the load intensity known, the % 3]
resultant of the distributed loading is determined from the area under x
the diagram. Thus, (c)
woL 1 [ wox
4 — 0 S (Rl P 7o
T1SF, =0; 5 2<L>x V=0
Wo
W02 2 L
o wol? _wol o 1(wox) (1 ,
(+t=M = 0; 3 > (x)+2<L)x<3x>+M—O w03L2 )

WO
M = ( 2L3 3L2x x3) (2) _x
X

These results can be checked by applying Egs. 61 and 6-2 of Sec. 6.2,

that is,
_av _wo o _ _Wor X
w=——= 2L(O 2x) = 7 OK
adM wo 5 2 wo , 5 5 )
1% I 6L(O 3L 3x%) 2L(L x°) OK _w03

(d)
Shear and Moment Diagrams. The graphs of Egs. 1 and 2 are

shown in Fig. 6-5d. Fig. 6-5
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EXAMPLE | 6.3

-

18 ft
(2)

36 kip 36 kip

o Ly
. vV } 2 kip/ft
l
A
MY
121t
18 ft
30 kip 42 kip
(b)
1 X
2 7 (4)(g)*
- X 0
}4(§) Kip/ft
} 2 kip/ft
V)
1%
(©)
6 kip/ft

l ‘TJ
30 kip 42 kip
V(kip)
30
x(ft)
——9.735 ft
. 42
M (kip-ft) M pax = 163 Kip-ft
x(ft)

(d)
Fig. 6-6

Draw the shear and moment diagrams for the beam shown in Fig. 6—6a.

6 kip /ft

SOLUTION

Support Reactions. The distributed load is divided into triangular
and rectangular component loadings and these loadings are then
replaced by their resultant forces. The reactions have been
determined as shown on the beam’s free-body diagram, Fig. 6-6b.

Shear and Moment Functions. A free-body diagram of the left
segment is shown in Fig. 6-6¢. As above, the trapezoidal loading is
replaced by rectangular and triangular distributions. Note that the
intensity of the triangular load at the section is found by proportion.
The resultant force and the location of each distributed loading are
also shown. Applying the equilibrium equations, we have

1
+15F, = 0; 30kip — (2kip/ft)x — (4 kip/ft)(x)x —V=0

18 ft
2
V= <30—2x—’;>kip
(t=ZM =0

—30kip(x) + (2 kip/ft)x<)2‘) + %(4 kip/ft)(lgﬁ)x(;‘> +M=0

1)

3
M = <30x - ;) kip - ft )

Equation 2 may be checked by noting that dM/dx = V, thatis, Eq. 1.

Also, w = dV/dx = =2 — %x. This equation checks, since when
x = 0, w = =2 Xkip/ft, and when x = 18 ft, w = —6 kip/ft, Fig. 6-6a.

Shear and Moment Diagrams. Equations 1 and 2 are plotted
in Fig. 6-6d. Since the point of maximum moment occurs when
dM/dx =V = 0 (Eq.6-2), then, from Eq. 1,

2

V=0=30—-2x——

9

Choosing the positive root,
x = 9.735 ft

Thus, from Eq. 2,

(9.735)°
27

M s = 30(9.735) — (9.735)% —
= 163 kip - ft
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EXAMPLE | 6.4

Draw the shear and moment diagrams for the beam shown in Fig. 6-7a.
15 kN Sk
N .
90 KN'm /m 80 kN-m
A(— C A
_p_ B —— X1 *" %
} 5m 5m l 5.75 kN
(a) (b)
SOLUTION 15kN 5(x, — 5)
Support Reactions. The reactions at the supports have been  ggiN-m 1
determined and are shown on the free-body diagram of the beam, (’ v v | M
Fig. 6-7d. L ‘ l)
5 |4
Shear and Moment Functions. Since there is a discontinuity of " ‘)‘2_;5‘)‘2_2_5
distributed load and also a concentrated load at the beam’s center, X
two regions of x must be considered in order to describe the shear and  575kN
moment functions for the entire beam. (©)
0 = x; < 5m, Fig. 6-7b: 15kN
5kN/m
+13F, = 0; S75kN -V =0 80 kN'm VIVTLTL
V =575kN () (Eﬁ c
(t=EM = 0; —80kN-m — 575kNx; + M =0 AR s B s
m m
M = (5.75x; + 80) kN-m 2)
. 5.75 kN 3425kN
Sm < x; = 10 m, Fig. 6-7c: V (kN)
+12F,=0; 575kN — 15kN — 5kN/m(x, —5m) =V =0
V = (15.75 — 5x,) kN (3) B x(m)
(+tEZM =0; —80kN-m — 5.75kN x, + 15kN(x, — 5m) 925
=5
+ 5 kN/m(x, — 5m)<x22m> +M=0
bl (L) ~3425
M = (—2.5x22 + 1575X2 + 925) kN -m (4) 108.75
These results can be checked in part by noting that w = dV/dx ¢,
and V = dM/dx. Also, when x; =0, Egs. 1 and 2 give
V =5.75kN and M = 80 kN -m; when x, = 10 m, Egs. 3 and 4
give V = —3425kN and M = 0. These values check with the x(m)
support reactions shown on the free-body diagram, Fig. 6-7d. @
Shear and Moment Diagrams. Equations 1 through 4 are plotted .
R Fig. 6-7
in Fig. 6-7d.
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Failure of this table occurred at the brace
support on its right side. If drawn, the
bending moment diagram for the table
loading would indicate this to be the point
of maximum internal moment.

6.2 Graphical Method for Constructing
Shear and Moment Diagrams

In cases where a beam is subjected to several different loadings,
determining V and M as functions of x and then plotting these equations
can become quite tedious. In this section a simpler method for
constructing the shear and moment diagrams is discussed—a method
based on two differential relations, one that exists between distributed
load and shear, and the other between shear and moment.

Regions of Distributed Load. For purposes of generality,
consider the beam shown in Fig. 6-8a, which is subjected to an arbitrary
loading. A free-body diagram for a small segment Ax of the beam is
shown in Fig. 6-8b. Since this segment has been chosen at a position x
where there is no concentrated force or couple moment, the results to be
obtained will not apply at these points of concentrated loading.

Notice that all the loadings shown on the segment act in their positive
directions according to the established sign convention, Fig. 6-3. Also,
both the internal resultant shear and moment, acting on the right face of
the segment, must be changed by a small amount in order to keep the
segment in equilibrium. The distributed load has been replaced by a
resultant force w(x) Ax that acts at a fractional distance k(Ax) from
the right side, where 0 < k < 1 [for example, if w(x) is uniform, k = %].
Applying the equations of equilibrium to the segment, we have

(a)

“w(x)Ax
w(x)r -
| TT
| |
| |
| l
w(x) i — r— k(Ax)
] v
: M
= ( >M +AM
R O
V+ AV

1
Free-body diagram
of segment Ax

(b)
Fig. 6-8
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+13F, = 0; V+wkx)Ax — (V+AV) =0
AV = w(x) Ax
(+tEZMp=0; —VAx - M — w(x)Ax[k(Ax)] + (M + AM) =0

AM =V Ax + w(x) k(Ax)?

Dividing by Ax and taking the limit as Ax — 0, the above two equations
become

av
ax "W
slope of distributed (6-1)
shear diagram = load intensity
at each point at each point
M
— =V
dx
slope of shear (6-2)
moment diagram = at each
at each point point

These two equations provide a convenient means for quickly
obtaining the shear and moment diagrams for a beam. Equation 6-1
states that at a point the slope of the shear diagram equals the intensity
of the distributed loading. For example, consider the beam in Fig. 6-9a.
The distributed loading is negative and increases from zero to wg.
Therefore, the shear diagram will be a curve that has a negative slope,
increasing from zero to —wg. Specific slopes wy = 0, —we, —wp, and
—wp are shown in Fig. 6-9b.

In a similar manner, Eq. 6-2 states that at a point the slope of the
moment diagram is equal to the shear. Notice that the shear diagram in
Fig. 6-9b starts at +V 4, decreases to zero, and then becomes negative
and decreases to —V 5. The moment diagram will then have an initial
slope of +V 4 which decreases to zero, then the slope becomes negative
and decreases to —V'g. Specific slopes V4, Ve, Vp, 0, and —V g are
shown in Fig. 6-9c.

(a)

(b)

263

w=w(x) VB

Vv
0

w = negative increasing
slope = negative increasing

S

Va

V = positive decreasing
slope = positive decreasing

e

C

Fig. 6-9
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AMl _——

()

C D

Fig. 6-9 (cont.)

Vv
M | M+ AM

eAr VAV

(a)

<

M M+ AM
‘-0
M,

‘kAx{V-J-AV

(b)
Fig. 6-10

Equations 61 and 6-2 may also be rewritten in the form dV = w(x) dx
and dM = V dx. Noting that w(x) dx and V dx represent differential
areas under the distributed loading and shear diagram, respectively, we
can integrate these areas between any two points C and D on the beam,
Fig. 6-9d, and write

AV = /w(x) dx

6-3
change in _ area under (6-3)
shear  distributed loading
AM = / V(x)dx
(6-4)

change in _ area under
moment  shear diagram

Equation 6-3 states that the change in shear between C and D is equal to
the area under the distributed-loading curve between these two points,
Fig. 6-9d. In this case the change is negative since the distributed load
acts downward. Similarly, from Eq. 64, the change in moment between
C and D, Fig. 6-9f, is equal to the area under the shear diagram within
the region from C to D. Here the change is positive.

Since the above equations do not apply at points where a concentrated
force or couple moment acts, we will now consider each of these cases.

Regions of Concentrated Force and Moment. A free-
body diagram of a small segment of the beam in Fig. 6-10a taken from
under the force is shown in Fig. 6-10a. Here it can be seen that force
equilibrium requires
+15F, = 0; V+F—(V+AV)=0

AV = F (6-5)
Thus, when F acts upward on the beam, AV is positive so the shear will
“jump” upward. Likewise, if F acts downward, the jump (AV') will be
downward.

When the beam segment includes the couple moment M, Fig. 6-10b,
then moment equilibrium requires the change in moment to be

(+t=ZMy = 0; M+ AM - My—VAx—-M=0
Letting Ax — 0, we get
AM = M, (6-6)

In this case, if My is applied clockwise, AM is positive so the moment
diagram will “jump” upward. Likewise, when My, acts counterclockwise,
the jump (AM) will be downward.
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Procedure for Analysis

The following procedure provides a method for constructing the
shear and moment diagrams for a beam based on the relations
among distributed load, shear, and moment.

Support Reactions.

® Determine the support reactions and resolve the forces acting on
the beam into components that are perpendicular and parallel to
the beam’s axis.

Shear Diagram.

® Establish the V and x axes and plot the known values of the shear
at the two ends of the beam.

® Notice how the values of the distributed load vary along the
beam, and realize that each of these values indicates the way the
shear diagram will slope (dV/dx = w). Here w is positive when it
acts upward.

® [f a numerical value of the shear is to be determined at a point, one
can find this value either by using the method of sections and the
equation of force equilibrium, or by using AV = [w(x) dx, which
states that the change in the shear between any two points is equal
to the area under the load diagram between the two points.

Moment Diagram.

® FEstablish the M and x axes and plot the known values of the
moment at the ends of the beam.

® Notice how the values of the shear diagram vary along the beam,
and realize that each of these values indicates the way the
moment diagram will slope (dM/dx = V).

® At the point where the shear is zero, dM/dx = 0, and therefore
this would be a point of maximum or minimum moment.

® If a numerical value of the moment is to be determined at the
point, one can find this value either by using the method of
sections and the equation of moment equilibrium, or by using
AM = [V(x)dx, which states that the change in moment
between any two points is equal to the area under the shear
diagram between the two points.

® Since w(x) must be integrated to obtain AV, and V(x) is
integrated to obtain M(x), then if w(x) is a curve of degree n, V' (x)
will be a curve of degree n + 1 and M(x) will be a curve of degree
n + 2. For example, if w(x) is uniform, V(x) will be linear and
M (x) will be parabolic.
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EXAMPLE | 6.5

Draw the shear and moment diagrams for the beam shown in Fig. 6-11a.

SOLUTION

P P
l l Support Reactions. The reaction at the fixed support is shown on
l the free-body diagram, Fig. 6-11b.
Shear Diagram. The shear at each end of the beam is plotted first,
L | L 1 Fig. 6-11c. Since there is no distributed loading on the beam, the slope
of the shear diagram is zero as indicated. Note how the force P at the
(@) center of the beam causes the shear diagram to jump downward an
amount P, since this force acts downward.

Moment Diagram. The moments at the ends of the beam are
plotted, Fig. 6-11d. Here the moment diagram consists of two sloping
lines, one with a slope of +2P and the other with a slope of +P.

The value of the moment in the center of the beam can be
determined by the method of sections, or from the area under the
shear diagram. If we choose the left half of the shear diagram,

M|x=L = M|x=0 + AM

M|,—;, = —3PL + (2P)(L) = —PL

[\e]
~
€«— T
l—— T

3PL T
w=0 (b)
slope = 0
14 downward force P

downward jump P

2P
‘—/—w”
X
\ (c)

V = positive constant

M slope = positive constant
| .
=/FL
=3PL
(@)

Fig. 6-11
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EXAMPLE | 6.6

Draw the shear and moment diagrams for the beam shown in
Fig. 6-12a.

M,
B
2B, =

| | |
| L | L \

SOLUTION

Support Reactions. The reactions are shown on the free-body
diagram in Fig. 6-12b.

Shear Diagram. The shear at each end is plotted first, Fig. 6-12c.
Since there is no distributed load on the beam, the shear diagram has
zero slope and is therefore a horizontal line.

Moment Diagram. The moment is zero at each end, Fig. 6-12d. The
moment diagram has a constant negative slope of —M;/2L since this
is the shear in the beam at each point. Note that the couple moment
M causes a jump in the moment diagram at the beam’s center, but it
does not affect the shear diagram at this point.

My
v L \ | L 1
M,y/2L (b) M,y/2L
|4
w=20
slope =0
1 °
_Mo/zL (C)

clockwise moment M,
M | positive jump M,
V = negative constant

slope = negative constant
My /2 p g

-My/2
(d)

Fig. 6-12
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EXAMPLE | 6.7

Draw the shear and moment diagrams for each of the beams shown in
Figs. 6-13a and 6-14a.

SOLUTION

Support Reactions. The reactions at the fixed support are shown
on each free-body diagram, Figs. 6-13b and Fig. 6-14b.

Shear Diagram. The shear at each end point is plotted first, Figs. 6-13c
and 6-14c. The distributed loading on each beam indicates the slope
of the shear diagram and thus produces the shapes shown.

Moment Diagram. The moment at each end point is plotted first,
Figs. 6-13d and 6-14d. Various values of the shear at each point on the
beam indicate the slope of the moment diagram at the point. Notice
how this variation produces the curves shown.

NOTE: Observe how the degree of the curves from w to V to M
increases exponentially due to the integration of dV = w dx and
dM = Vdx. For example, in Fig. 6-14, the linear distributed load
produces a parabolic shear diagram and cubic moment diagram.

wo

ERRARRRNY ;_;;m
| i |

® | ©

Wo

1 5, m\
ﬁllMHHH (ZT ; |

e \ ®) W06L2 ) \ (b)

: w = negative constant (—wy) wol w = negative decreasing
slope = negative constant (—w) 2 slope = negative decreasing

V = positive decreasmg
slope = positive decreasing

S

X

(©)

V = positive decreasing
slope = positive decreasing

|

wo L2
2

J
W

Fig. 6-13

X

Wy L2

(d)
Fig. 6-14
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EXAMPLE | 6.8

Draw the shear and moment diagrams for the cantilever beam
in Fig. 6-15a.

2kN

1.5kN/m

(a)

SOLUTION

Support Reactions. The support reactions at the fixed support
B are shown in Fig. 6-15b.

Shear Diagram. The shear at end A is —2 kN. This value is
plotted at x = 0, Fig. 6-15¢. Notice how the shear diagram is
constructed by following the slopes defined by the loading w.
The shear at x = 4 m is —5 kN, the reaction on the beam. This
value can be verified by finding the area under the distributed
loading, Eq. 6-3.

Vl]ieam = V]y=om + AV = —2kN — (1.5kN/m)(2 m) = =5 kN

Moment Diagram. The moment of zero at x = 0 is plotted in
Fig. 6-15d. Notice how the moment diagram is constructed based
on knowing its slope, which is equal to the shear at each point.
The change of moment from x = 0 to x = 2 m is determined
from the area under the shear diagram. Hence, the moment at
X =2mis

M|i—ym = M|,—g+ AM =0+ [-2kN(2m)] = —4kN-m
This same value can be determined from the method of sections,
Fig. 6-15e.

slope = negative constant

My =11kN-m
l 1.5kN/m

w=0
slope = 0

w = negative constant
slope = negative constant

V (kN)

2

‘ : x (m)
L] /
\\ ©
V = negative constant

= negative increasing
slope = negative increasing

M (kN-m)
0 \‘\% X(m)
V= 2kN
M=4kN~m

Zm%

Fig. 6-15
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EXAMPLE | 6.9

Draw the shear and moment diagrams for the overhang beam in

CHAPTER 6 BENDING

L

g

(©

V = negative constant
slope = negative constant

M (kKN-m)

V = negative decreasing
slope = negative decreasing

slope = 0
)0

(d)

0\/7“@

-8

4kN/m

(@)

SOLUTION

Support Reactions.
Fig. 6-16b.

Shear Diagram. The shear of —2 kN at end A of the beam
is plotted at x = 0, Fig. 6-16¢. The slopes are determined
from the loading and from this the shear diagram is
constructed, as indicated in the figure. In particular, notice
the positive jump of 10 kN at x = 4 m due to the force B, as
indicated in the figure.

Fig. 6-16a.
4kN/m
A
A
4m 2m
b
A, =2kN \ () By=l()kN/
slope =
w = negative constant
V (kN) slope = negative constant

The support reactions are shown in

Moment Diagram. The moment of zero at x 0 is
plotted, Fig. 6-16d. Then following the behavior of the slope
found from the shear diagram, the moment diagram is
constructed. The moment at x = 4 m is found from the area
under the shear diagram.

M|sm = M|y—g + AM=0 + [-2kN(@4 m)]=—8kN-m

We can also obtain this value by using the method of sections,
as shown in Fig. 6-16e.

V =2kN

AgT s
e |
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EXAMPLE | 6.10

The shaft in Fig. 6-17a is supported by a thrust bearing at A and a 120 1b /ft
journal bearing at B. Draw the shear and moment diagrams.
120 Ib/ft
Al 1B
A \ A
A e 12 ft
(b)
A,=2401b o :
| 12 ft ‘ w= negatlve; increasing B = 480 Ib
V (Ib) slope = negative increasing
(a)
240
SOLUTION 693

Support Reactions. The support reactions are shown in 0 \ x (f)

Shear Diagram. As shown in Fig. 6-17c, the shear at x = 0is v — positive decreasing
+240. Following the slope defined by the loading, the shear slope = positive decreasing — 480
diagram is constructed, where at B its value is —480 Ib. Since the V' = negative increasing
shear changes sign, the point where V' = 0 must be located. Todo  m (1b-ft) oy = e Hering
this we will use the method of sections. The free-body diagram of slo‘p/)e::()o\‘
the left segment of the shaft, sectioned at an arbitrary position x, is
shown in Fig. 6-17e. Notice that the intensity of the distributed
load at x is w = 10x, which has been found by proportional
triangles, i.e., 120/12 = w/x.

Thus, for V = 0, 0 603 —— x (ft)

+13F, = 0; 2401b — 3(10x)x = 0 )
X = 6.93 ft

is no moment at A; then it is constructed based on the slope as
determined from the shear diagram. The maximum moment
occurs at x = 6.93 ft, where the shear is equal to zero, since A
dM/dx =V = 0, Fig. 6-17d,

(+t=M =0; A, =2401b
M o + 3[(10)(6.93)] 6.93(3(6.93)) — 240(6.93) = 0 ©

M e = 1109 1b - ft Fig. 6-17

X
Moment Diagram. The moment diagram starts at 0 since there l‘%

Finally, notice how integration, first of the loading w which is linear,
produces a shear diagram which is parabolic, and then a moment
diagram which is cubic.

NOTE: Having studied these examples, test yourself by covering
over the shear and moment diagrams in Examples 61 through 64
and see if you can construct them using the concepts discussed here.
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. FUNDAMENTAL PROBLEMS

F6-1. Express the shear and moment functions in terms
of x, and then draw the shear and moment diagrams for the
cantilever beam.

9kN

l

X

F6-2. Express the shear and moment functions in terms
of x, and then draw the shear and moment diagrams for the
cantilever beam.

2 kip/ft

I

18 kip-ft (

F6-3. Express the shear and moment functions in terms
of x, and then draw the shear and moment diagrams for the
cantilever beam.

12 kN/m

—

F6-3

F6-4. Express the shear and moment functions in terms of x,
where 0 < x < 1.5mand 1.5 m < x < 3 m, and then draw
the shear and moment diagrams for the cantilever beam.

4kN-m (

9kN

l

x% ‘

1.5m ‘ 1.5m |

Fo-4

F6-5. Express the shear and moment functions in terms
of x, and then draw the shear and moment diagrams for the
simply supported beam.

F6-6. Express the shear and moment functions in terms
of x, and then draw the shear and moment diagrams for the
simply supported beam.

50 kN'm 20 kN-m

(—
.

F6-6
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F6-7. Draw the shear and moment diagrams for the simply F6-11. Draw the shear and moment diagrams for the
supported beam. double-overhang beam.
24 kN-m
4kN/m 4kN/m
A
C B
l 4m 1 2m } '
F6-7 LI.S m 3m 1.5 m—
F6-11

F6-8. Draw the shear and moment diagrams for the

cantilever beam. F6-12. Draw the shear and moment diagrams for the simply
supported beam.

6 kN
10 kN /m 10 kN/m
l 12 kN'm
A B B
‘ C o ¢ :
F6-8 F6-12 .
) F6-13. Draw the shear and moment diagrams for the simply
F6-9. Draw the shear and moment diagrams for the double supported beam.
overhang beam.
600 1b
200 Ib /ft
6 kN-m 18 kN-m
(r ‘\ .
A‘ B | C ‘ D
15m ——3m - 15m— | 6 ft 3t 3t
F6-9 F6-13

F6-14. Draw the shear and moment diagrams for the
F6-10. Draw the shear and moment diagrams for the simply overhang beam.

supported beam.

20 kN
20 kN/m

Fo-14
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“lrropiews

6-1. Draw the shear and moment diagrams for the shaft.
The bearings at A and B exert only vertical reactions on the
shaft.

l 250 mm 800 mm—————

24 kN

Prob. 6-1

6-2. Draw the shear and moment diagrams for the simply
supported beam.

4 kN

P 2m 2m

Prob. 6-2
6-3. The engine crane is used to support the engine,
which has a weight of 1200 1b. Draw the shear and moment

diagrams of the boom ABC when it is in the horizontal
position shown.

Sft

Prob. 6-3

*6-4. Draw the shear and moment diagrams for the
cantilever beam.

2 kN/m

‘ 2 m

Prob. 64

6-5. Draw the shear and moment diagrams for the beam.

10kN S KN

Prob. 6-5

6-6. Draw the shear and moment diagrams for the overhang
beam.

8 kN/m

l 4m l 2mJ

Prob. 6-6

6-7. Draw the shear and moment diagrams for the
compound beam which is pin connected at B.

6 kip 8 kip
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*6-8. Draw the shear and moment diagrams for the
simply supported beam.

150 Ib /ft

— iOO Ib-ft
s
ﬂ ——

1 12 ft 1

Prob. 6-8

6-9. Draw the shear and moment diagrams for the beam.
Hint: The 20-kip load must be replaced by equivalent
loadings at point C on the axis of the beam.

15 kip
l H‘—W 20 kip
Al ? Q
- ‘ C B
l 4 ft ‘ 4 ft ‘ 4 ft ‘

Prob. 6-9

6-10. Members ABC and BD of the counter chair are
rigidly connected at B and the smooth collar at D is allowed
to move freely along the vertical slot. Draw the shear and
moment diagrams for member ABC.

P =1501b

Prob. 6-10

6-11. The overhanging beam has been fabricated with
a projected arm BD on it. Draw the shear and moment
diagrams for the beam ABC if it supports a load of 800 Ib.
Hint: The loading in the supporting strut D E must be replaced
by equivalent loads at point B on the axis of the beam.

“

6 ft

Prob. 6-11

*6-12. A reinforced concrete pier is used to support the
stringers for a bridge deck. Draw the shear and moment
diagrams for the pier when it is subjected to the stringer
loads shown. Assume the columns at A and B exert only
vertical reactions on the pier.

60kN  35yN 35kN 35kN  OOKN
Im Im|l5S5m|15m|1lm,1m

<

/ \ 4

Y Y Y
|
A
[— -__..-

Prob. 6-12

6-13. Draw the shear and moment diagrams for the
compound beam. Itis supported by a smooth plate at A which
slides within the groove and so it cannot support a vertical
force, although it can support a moment and axial load.

Il

—
=

: ,‘
[
ES
=

275
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6-14. The industrial robot is held in the stationary
position shown. Draw the shear and moment diagrams of
the arm ABC if it is pin connected at A and connected to a
hydraulic cylinder (two-force member) BD. Assume the
arm and grip have a uniform weight of 1.5 Ib/in. and
support the load of 40 Ib at C.

Prob. 6-14
6-15. Consider the general problem of the beam subjected
to n concentrated loads. Write a computer program that
can be used to determine the internal shear and moment
at any specified location x along the beam, and plot the
shear and moment diagrams for the beam. Show an
application of the program using the values P; = 500 Ib,
dy = 5ft,P, =8001b,d, = 15ft, L, = 10ft, L = 15ft.

P P, P,

Ll

Prob. 6-15

*6-16. Draw the shear and moment diagrams for the shaft
and determine the shear and moment throughout the shaft
as a function of x. The bearings at A and B exert only
vertical reactions on the shaft.

500 Ib
800 1b

A B
AE e
‘OSﬁ

= |
!> 3 ft F—2ft —=~——~ 0.5ft Prob.6-16

¢6-17. Draw the shear and moment diagrams for the
cantilevered beam.

3001b 200 Ib /ft

Prob. 6-17

6-18. Draw the shear and moment diagrams for the beam,
and determine the shear and moment throughout the beam
as functions of x.

‘Zx J >

6 ft 41t |

2 kip/ft

y y Y

Prob. 6-18

6-19. Draw the shear and moment diagrams for the beam.

2 kip/ft

30 kip-ft

0
[T B

St 5t ! 5t !
Prob. 6-19

#6-20. Draw the shear and moment diagrams for the
simply supported beam.

10 kN

10 kN/m

Prob. 6-20
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¢0-21. The beam is subjected to the uniform distributed
load shown. Draw the shear and moment diagrams for the
beam.

Prob. 6-21

6-22. Draw the shear and moment diagrams for the
overhang beam.

Prob. 6-22

6-23. Draw the shear and moment diagrams for the beam.
It is supported by a smooth plate at A which slides within
the groove and so it cannot support a vertical force, although
it can support a moment and axial load.

4= y

: 1
i

[

Prob. 6-23

*6-24. Determine the placement distance a of the roller
support so that the largest absolute value of the moment is
a minimum. Draw the shear and moment diagrams for this
condition.

Prob. 6-24

6-25. The beam is subjected to the uniformly distributed
moment m (moment/length). Draw the shear and moment
diagrams for the beam.

Prob. 6-25

6-26. Consider the general problem of a cantilevered
beam subjected to n concentrated loads and a constant
distributed loading w. Write a computer program that can
be used to determine the internal shear and moment at
any specified location x along the beam, and plot the shear
and moment diagrams for the beam. Show an application
of the program using the values P; = 4kN,d; = 2 m,
w =800N/m,a; =2m,a, =4m,L =4m.

ap
ay
Pl 1:2 Pn
w
.
d,
L
Prob. 6-26
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6-27. Draw the shear and moment diagrams for the beam. 6-31. Draw the shear and moment diagrams for the beam

o and determine the shear and moment in the beam as
functions of x.

Wo
A
L | 2L A B
\ 3 \ 3
N
L L
Prob. 6-27 5 5 |
*6-28. Draw the shear and moment diagrams for the beam. Prob. 6=31

*6-32. The smooth pin is supported by two leaves A and
W B and subjected to a compressive load of 0.4 kN/m caused

\l\h\ by bar C. Determine the intensity of the distributed load wy,

l of the leaves on the pin and draw the shear and moment
L 9 diagram for the pin.
A fﬂB
20

L
3

W~

W~

0.4 kN/m

Prob. 6-28 -~ T

¢0-29. Draw the shear and moment diagrams for the
beam.

o "o
\ \

20 mm 60 mm 20 mm

Prob. 6-32

*6-33. The ski supports the 180-1b weight of the man. If
the snow loading on its bottom surface is trapezoidal as

| 45m ! 45m—

\ shown, determine the intensity w, and then draw the shear
and moment diagrams for the ski.
Prob. 6-29
6-30. Draw the shear and moment diagrams for the 1801b
compound beam. 3 ft
)
A B C
| ! !
6 ft ‘ 3ft—r 1.5 ft —| 31t 151t

Prob. 6-30 Prob. 6-33
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6-34. Draw the shear and moment diagrams for the
compound beam.

SkN
3kN/m
bibdy il
Afo — c ‘ 5
3m—3m ‘1.5m‘15ml
Prob. 6-34
6-35. Draw the shear and moment diagrams for the beam

and determine the shear and moment as functions of x.

400 N/m

Prob. 6-35

*6-36. Draw the shear and moment diagrams for the
overhang beam.

s M = 10 kN
= ‘m
}—me*JRZm—-‘HZm

Prob. 6-36

6-37. Draw the shear and moment diagrams for the beam.

50 kN/m 50 kN/m

Prob. 6-37

279

6-38. The dead-weight loading along the centerline of the
airplane wing is shown. If the wing is fixed to the fuselage at
A, determine the reactions at A, and then draw the shear
and moment diagram for the wing.

3000 Ib
250 Ib /ft

400 Ib /ft

8 ft 2 ft~f—3 ft —

15000 Ib
Prob. 6-38

6-39. The compound beam consists of two segments that
are pinned together at B. Draw the shear and moment
diagrams if it supports the distributed loading shown.

Prob. 6-39

*6-40. Draw the shear and moment diagrams for the
simply supported beam.

10 kN

10 kN

Prob. 6-40
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6-41. Draw the shear and moment diagrams for the
compound beam. The three segments are connected by pins
at Band E.

3kN 0.8 KN /m 3kN
l B E

| 1 p o] P
A0 e — 0O O

| o |

—2m "Mm "1m Zm Im ' 1m 2m—]

Prob. 6—41

6-42. Draw the shear and moment diagrams for the

compound beam.

5kN/m
\ y y 3 y y
L. A B =% C \D
1 2m 1m 1m—
Prob. 642

6-43. Draw the shear and moment diagrams for the beam.
The two segments are joined together at B.

8 kip

l

3 ft 51t 8 ft

3 kip /ft

Prob. 6-43

*6—44. Draw the shear and moment diagrams for the beam.

8 kip/ft

Prob. 6-44

*6-45. Draw the shear and moment diagrams for the
beam.

| L }

Prob. 6—45

6-46. Draw the shear and moment diagrams for the beam.

i o w=w, sin(%x)
X
A
L \ L
2 2
Prob. 646
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6.3 Bending Deformation
of a Straight Member

In this section, we will discuss the deformations that occur when a Axis of
straight prismatic beam, made of homogeneous material, is subjected to symmetry y
bending. The discussion will be limited to beams having a cross-sectional
area that is symmetrical with respect to an axis, and the bending moment
is applied about an axis perpendicular to this axis of symmetry as z
shown in Fig. 6-18. The behavior of members that have unsymmetrical
cross sections, or are made from several different materials, is based on
similar observations and will be discussed separately in later sections of [ ,psitudinal
this chapter. axis

By using a highly deformable material such as rubber, we can illustrate
what happens when a straight prismatic member is subjected to a bending
moment. Consider, for example, the undeformed bar in Fig. 6-19a, which
has a square cross section and is marked with longitudinal and transverse
grid lines. When a bending moment is applied, it tends to distort these
lines into the pattern shown in Fig. 6-19b. Notice that the longitudinal
lines become curved and the vertical transverse lines remain straight and
yet undergo a rotation.

The bending moment causes the material within the bottom portion of
the bar to strefch and the material within the fop portion to compress.
Consequently, between these two regions there must be a surface, called
the neutral surface, in which longitudinal fibers of the material will not
undergo a change in length, Fig. 6-18.

Neutral
surface

Fig. 6-18

Horizontal lines
become curved

Vertical lines remain
straight, yet rotate

Before deformation

After deformation

(a) (b)
Fig. 6-19
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Note the distortion of the lines due to
bending of this rubber bar. The top line
stretches, the bottom line compresses, and
the center line remains the same length.
Furthermore the vertical lines rotate and yet
remain straight.

longitudinal
axis
X

neutral

From these observations we will make the following three
assumptions regarding the way the stress deforms the material. First, the
longitudinal axis x, which lies within the neutral surface, Fig. 6-20a, does
not experience any change in length. Rather the moment will tend to
deform the beam so that this line becomes a curve that lies in the x—y
plane of symmetry, Fig. 6-20b. Second, all cross sections of the beam
remain plane and perpendicular to the longitudinal axis during the
deformation. And third, any deformation of the cross section within its
own plane, as noticed in Fig. 6-19b, will be neglected. In particular, the
z axis, lying in the plane of the cross section and about which the cross
section rotates, is called the neutral axis, Fig. 6-20b.

In order to show how this distortion will strain the material, we will
isolate a small segment of the beam located a distance x along the beam’s
length and having an undeformed thickness Ax, Fig. 6-20a. This element,
taken from the beam, is shown in profile view in the undeformed and

axis

neutral
surface

(b)
Fig. 6-20
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o'

As = Ax longitu_dinal
- axis
longitudinal Y [ Ax
axis Ax
Ax
Undeformed element Deformed element

(a) (b)
Fig. 6-21

deformed positions in Fig. 6-21. Notice that any line segment Ax, located
on the neutral surface, does not change its length, whereas any line
segment As, located at the arbitrary distance y above the neutral surface,
will contract and become As’ after deformation. By definition, the
normal strain along As is determined from Eq. 2-2, namely,
~ As" — As
€7 A% As

We will now represent this strain in terms of the location y of the
segment and the radius of curvature p of the longitudinal axis of the
element. Before deformation, As = Ax, Fig. 6-21a. After deformation
Ax has a radius of curvature p, with center of curvature at point O’,
Fig. 6-21b. Since A# defines the angle between the sides of the element,
Ax = As = pA6. In the same manner, the deformed length of As
becomes As’ = (p — y)A6. Substituting into the above equation, we get

(p — y)AO — pAb

€ Al(}rilo pA6
or
Y
€ = —"— 6-7
P (6-7)

This important result indicates that the longitudinal normal strain of
any element within the beam depends on its location y on the cross

283
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o
m
|
|
N\
al<
—
m
g8
Z

ail
—JAxt—
Normal strain distribution

Fig. 6-22

section and the radius of curvature of the beam’s longitudinal axis at the
point. In other words, for any specific cross section, the longitudinal
normal strain will vary linearly with y from the neutral axis. A
contraction (—e) will occur in fibers located above the neutral axis
(+y), whereas elongation (+e€) will occur in fibers located below the
axis (—y). This variation in strain over the cross section is shown in Fig.
6-22. Here the maximum strain occurs at the outermost fiber, located a
distance of y = ¢ from the neutral axis. Using Eq. 6-7, since €,,,x = ¢/p,

then by division,
()
€max c/p

e = —(’Z)emx (6-8)

This normal strain depends only on the assumptions made with regards
to the deformation. When a moment is applied to the beam, therefore, it
will only cause a normal stress in the longitudinal or x direction. All the
other components of normal and shear stress will be zero. It is this
uniaxial state of stress that causes the material to have the longitudinal
normal strain component €,, defined by Eq. 6-8. Furthermore, by
Poisson’s ratio, there must also be associated strain components
€, = —ve,and €, = —ve,, which deform the plane of the cross-sectional
area, although here we have neglected these deformations. Such
deformations will, however, cause the cross-sectional dimensions to
become smaller below the neutral axis and larger above the neutral axis.
For example, if the beam has a square cross section, it will actually
deform as shown in Fig. 6-23.

So that



6.4 The Flexure Formula

In this section, we will develop an equation that relates the stress
distribution in a beam to the internal resultant bending moment acting
on the beam’s cross section. To do this we will assume that the material
behaves in a linear-elastic manner and therefore a linear variation of
normal strain, Fig. 6-24a, must then be the result of a linear variation in
normal stress, Fig. 6-24b. Hence, like the normal strain variation, o will
vary from zero at the member’s neutral axis to a maximum value, oy, a
distance c farthest from the neutral axis. Because of the proportionality
of triangles, Fig. 6-23b, or by using Hooke’s law,c = Ee, and Eq. 6-8, we
can write

7= ~(2 ) (6-9)

This equation describes the stress distribution over the cross-sectional
area. The sign convention established here is significant. For positive
M, which acts in the +z direction, positive values of y give negative
values for o, that is, a compressive stress since it acts in the negative x
direction. Similarly, negative y values will give positive or tensile
values for o. If a volume element of material is selected at a specific
point on the cross section, only these tensile or compressive normal
stresses will act on it. For example, the element located at +y is
shown in Fig. 6-24c.

We can locate the position of the neutral axis on the cross section by
satisfying the condition that the resultant force produced by the stress
distribution over the cross-sectional area must be equal to zero. Noting
that the force dF = o d A acts on the arbitrary element dA in Fig. 6-24c,
we require

FR:EFX; 0

/dF = /o’ dA
A A
[
A C
_Umax/ dA
C Ay
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Normal strain variation
(profile view)

Bending stress variation
(profile view)

(b)
Fig. 6-24

This wood specimen failed in bending due
to its fibers being crushed at its top and torn
apart at its bottom.
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Bending stress variation
(©
Fig. 6-24 (cont.)

Since o,/ is not equal to zero, then
/ ydA =0 (6-10)
A

In other words, the first moment of the member’s cross-sectional area
about the neutral axis must be zero. This condition can only be satisfied if
the neutral axis is also the horizontal centroidal axis for the cross section.*
Consequently, once the centroid for the member’s cross-sectional area is
determined, the location of the neutral axis is known

We can determine the stress in the beam from the requirement that
the resultant internal moment M must be equal to the moment produced
by the stress distribution about the neutral axis. The moment of dF in
Fig. 6-24c about the neutral axisis dM = y dF. Since dF = o dA, using
Eq. 6-9, we have for the entire cross section,

(Mg), = EM.;; M= /y dF = /y(a dA) = /y<yomax> dA
A A A \C

or

M= ‘T‘;‘a*AyZ dA (6-11)

*Recall that the location y for the centroid of the cross-sectional area is defined from
the equation y = [ydA/ [dA.1f [ydA = 0,then y = 0, and so the centroid lies on the
reference (neutral) axis. See Appendix A.



The integral represents the moment of inertia of the cross-sectional area
about the neutral axis. We will symbolize its value as I. Hence, Eq. 6-11
can be solved for o, and written as

Omax = ~ 7 (6_12)

Here

Omax = the maximum normal stress in the member, which occurs at
a point on the cross-sectional area farthest away from the
neutral axis

M = the resultant internal moment, determined from the method
of sections and the equations of equilibrium, and calculated
about the neutral axis of the cross section

¢ = the perpendicular distance from the neutral axis to a point
farthest away from the neutral axis. This is where o, acts

I = the moment of inertia of the cross-sectional area about the
neutral axis

Since o .x/c = —o/y, Eq. 6-9, the normal stress at the intermediate
distance y can be determined from an equation similar to Eq. 6-12.
We have

My

: (6-13)

o =

Note that the negative sign is necessary since it agrees with the
established x, y, z axes. By the right-hand rule, M is positive along the
+z axis, yis positive upward, and o therefore must be negative
(compressive) since it acts in the negative x direction, Fig. 6-24c.

Either of the above two equations is often referred to as the flexure
Jormula. 1t is used to determine the normal stress in a straight member,
having a cross section that is symmetrical with respect to an axis, and the
moment is applied perpendicular to this axis. Although we have assumed
that the member is prismatic, we can in most cases of engineering design
also use the flexure formula to determine the normal stress in members
that have a slight taper. For example, using a mathematical analysis based
on the theory of elasticity, a member having a rectangular cross section
and a length that is tapered 15° will have an actual maximum normal
stress that is about 5.4% less than that calculated using the flexure
formula.

6.4  THE FLEXURE FORMULA
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Important Points

® The cross section of a straight beam remains plane when the beam deforms due to bending. This causes
tensile stress on one portion of the cross section and compressive stress on the other portion. In between
these portions, there exists the neutral axis which is subjected to zero stress.

® Due to the deformation, the longitudinal strain varies linearly from zero at the neutral axis to a maximum
at the outer fibers of the beam. Provided the material is homogeneous and linear elastic, then the stress
also varies in a /inear fashion over the cross section.

¢ The neutral axis passes through the centroid of the cross-sectional area. This result is based on the fact that
the resultant normal force acting on the cross section must be zero.

¢ The flexure formula is based on the requirement that the resultant internal moment on the cross section is
equal to the moment produced by the normal stress distribution about the neutral axis.

Procedure for Analysis

In order to apply the flexure formula, the following procedure is suggested.

Internal Moment.

® Section the member at the point where the bending or normal stress is to be determined, and obtain the
internal moment M at the section. The centroidal or neutral axis for the cross section must be known, since
M must be calculated about this axis.

® [f the absolute maximum bending stress is to be determined, then draw the moment diagram in order to
determine the maximum moment in the member.

Section Property.

® Determine the moment of inertia of the cross-sectional area about the neutral axis. Methods used for its
calculation are discussed in Appendix A, and a table listing values of / for several common shapes is given
on the inside front cover.

Normal Stress.

® Specify the distance y, measured perpendicular to the neutral axis to the point where the normal stress
is to be determined. Then apply the equation o = —My/I, or if the maximum bending stress is to be
calculated, use o, = Mc/I. When substituting the data, make sure the units are consistent.

® The stress acts in a direction such that the force it creates at the point contributes a moment about the
neutral axis that is in the same direction as the internal moment M, Fig. 6-24c. In this manner the stress
distribution acting over the entire cross section can be sketched, or a volume element of the material can
be isolated and used to graphically represent the normal stress acting at the point.
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EXAMPLE | 6.11

A beam has a rectangular cross section and is subjected to the stress
distribution shown in Fig. 6-25a. Determine the internal moment M at
the section caused by the stress distribution (a) using the flexure
formula, (b) by finding the resultant of the stress distribution using
basic principles.

SOLUTION

Part (a). The flexure formula is o, = Mc/I. From Fig. 6-25a,
¢ = 61in. and o, = 2 ksi. The neutral axis is defined as line NA,
because the stress is zero along this line. Since the cross section has a
rectangular shape, the moment of inertia for the area about NA is
determined from the formula for a rectangle given on the inside front
cover;i.e.,

e N -4
1= 12bh =10 (6in.)(12in.)” = 864 in
Therefore,
Mc M(6in.)
max =~ 2kip/in* = ———-~
7 I p/ 864 in*
M = 288 kip -in. = 24 kip - ft Ans.

Part (b). The resultant force for each of the two triangular stress
distributions in Fig. 6-25b is graphically equivalent to the volume
contained within each stress distribution. Thus, each volume is

F = %(6 in.)(2 kip/in?)(6 in.) = 36 kip

These forces, which form a couple, act in the same direction as the
stresses within each distribution, Fig. 6-25b. Furthermore, they act
through the centroid of each volume, i.e., %(6in.) = 4in. from the
neutral axis of the beam. Hence the distance between them is 8 in. as
shown. The moment of the couple is therefore

M = 36 kip(8in.) = 288 kip-in. = 24 kip - ft Ans.
NOTE: This result can also be obtained by choosing a horizontal

strip of area dA = (6 in.) dy and using integration by applying
Eq.6-11.
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EXAMPLE | 6.12

The simply supported beam in Fig. 6-26a has the cross-sectional area
shown in Fig. 6-26b. Determine the absolute maximum bending stress
in the beam and draw the stress distribution over the cross section at
this location.

5kN/m
IR
—— 25
£ L 2 a_
‘ | x (m)
3
| 6m |
@ (0)
SOLUTION
Maximum Internal Moment. The maximum internal moment in
20 mmTi —r the beam, M = 22.5 kN - m, occurs at the center.
B
j{ € 150¢mm Section Property. By reasons of symmetry, the neutral axis passes
N ” ¥ A through the centroid C at the midheight of the beam, Fig. 6-26b. The
T omm area is subdivided into the three parts shown, and the moment of
. mm¢ y inertia of each part is calculated about the neutral axis using the
o parallel-axis theorem. (See Eq. A-5 of Appendix A.) Choosing to
250 work in meters, we have
e mm—=|
I =31+ Ad%)

= 2{ 112 (0.25m)(0.020 m)* + (0.25 m)(0.020 m)(0.160 m)>

1
+ {12 (0.020 m)(0.300 m)?

= 301.3(107%) m*
Mc 22.5(10%) N -m(0.170 m)
Tmac = Ty Tmax T 50131070 m?
A three-dimensional view of the stress distribution is shown in
12.7MPa Fig. 6-26d. Notice how the stress at points B and D on the cross
section develops a force that contributes a moment about the

neutral axis that has the same direction as M. Specifically, at point B,
(d) yp = 150 mm, and so

= 12.7MPa Ans.

Fig. 6-26 _ Myg ~ 225(10°) N-m(0.150 m)
BT TET 301.3(10°%) m*

= —11.2 MPa
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EXAMPLE | 6.13

The beam shown in Fig. 6-27a has a cross-sectional area in the shape  2.6kN
of a channel, Fig. 6-27b. Determine the maximum bending stress that 13/,
occurs in the beam at section a—a. 5

SOLUTION £ I
Internal Moment. Here the beam’s support reactions do not have ! 2m 1 mJ
to be determined. Instead, by the method of sections, the segment to the (@)

left of section a—a can be used, Fig. 6-27c. In particular, note that

the resultant internal axial force N passes through the centroid of the ‘FZSO mm

cross section. Also, realize that the resultant internal moment must be y = 59.09 Iﬁr—_l%mm

calculated about the beam’s neutral axis at section a—a. N *«H C 00 mm

To find the location of the neutral axis, the cross-sectional area is
subdivided into three composite parts as shown in Fig. 6-27b. Using
Eq. A-2 of Appendix A, we have (b)

_ 3yA _ 2[0.100 m](0.200 m)(0.015 m) + [0.010 m](0.02 m)(0.250 m)
YT sa T 2(0.200 m)(0.015 m) + 0.020 m(0.250 m)

= (0.05909 m = 59.09 mm

15 mm 15 mm

This dimension is shown in Fig. 6-27c. 2.4 kN
Applying the moment equation of equilibrium about the neutral l LOKN  0.05909 m v .
axis, we have | — \ :774\ N
(+tEMy, =0, 24kN(2m) + 1.0kN(0.05909m) — M =0 ! - c' |‘)
M = 4859 kN -m (©
Section Property. The moment of inertia about the neutral axis is Fig, 6-27

determined using the parallel-axis theorem applied to each of the three
composite parts of the cross-sectional area. Working in meters, we have

1
I= [12(0.250 m)(0.020 m)® + (0.250 m)(0.020 m)(0.05909 m — 0.010 m)z}

+2

1
15 (0.015m)(0.200 m)* + (0.015 m)(0.200 m)(0.100 m — 0.05909 m)2]
= 42.26(10°%) m*

Maximum Bending Stress. The maximum bending stress occurs at
points farthest away from the neutral axis. This is at the bottom of the
beam, ¢ = 0.200 m — 0.05909 m = 0.1409 m. Thus,
Mc  4.859(10°) N - m(0.1409 m)

Tmax = 42.26(10°°) m?*
Show that at the top of the beam the bending stress is o’ = 6.79 MPa.

NOTE: The normalforce of N = 1 kN and shear force V' = 2.4 kN will
also contribute additional stress on the cross section. The superposition
of all these effects will be discussed in Chapter 8.

=162 MPa Ans.
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EXAMPLE | 6.14

The member having a rectangular cross section, Fig. 6-28a, is designed
to resist a moment of 40 N -m. In order to increase its strength and
rigidity, it is proposed that two small ribs be added at its bottom,
Fig. 6-28b. Determine the maximum normal stress in the member for
both cases.

SOLUTION
Without Ribs. Clearly the neutral axis is at the center of the cross
section, Fig. 6-28a,s0y = ¢ = 15 mm = 0.015 m. Thus,

1 1
I = —bh* = —(0.060 m)(0.030 m)*> = 0.135(10°°) m*
12 12
Therefore the maximum normal stress is

Mc  (40N-m)(0.015m
Ty = . = ( )(_6 - ) jaaMPa Ans
i 0.135(10°) m

With Ribs. From Fig. 6-28b,segmenting the area into the large main
rectangle and the bottom two rectangles (ribs), the location y of the
centroid and the neutral axis is determined as follows:

. 2ZyA
Y7 sa
[0.015 m](0.030 m)(0.060 m) + 2[0.0325 m](0.005 m)(0.010 m)
(0.03 m)(0.060 m) + 2(0.005 m)(0.010 m)
= 0.01592 m
This value does not represent c. Instead
¢ = 0.035m — 0.01592 m = 0.01908 m

Using the parallel-axis theorem, the moment of inertia about the
neutral axis is

1
I = [12(0.060 m)(0.030 m)* + (0.060 m)(0.030 m)(0.01592 m — 0.015 m)z}

1
+ 2[12(0.010 m)(0.005 m)® + (0.010 m)(0.005 m)(0.0325 m — 0.01592 m)Z]

= 0.1642(10 %) m*
Therefore, the maximum normal stress is
Mc 40N-m(0.01908 m)

Omax = = o1 = 4.65MPa Ans.
1 0.1642(107°) m

NOTE: This surprising result indicates that the addition of the ribs
to the cross section will increase the normal stress rather than decrease
it, and for this reason they should be omitted.
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. FUNDAMENTAL PROBLEMS

F6-15. If the beam is subjected to a bending moment of F6-18. If the beam is subjected to a bending moment of
M = 20 kN -m, determine the maximum bending stress in M = 10kN-m, determine the maximum bending stress in
the beam. the beam.

\ 30 mm

50 mm

150 mm

F6-16. If the beam is subjected to a bending moment of 120 mm

M = 50 kN - m, sketch the bending stress distribution over
the beam’s cross section.

50 mm

F6-18

F6-19. If the beam is subjected to a bending moment of
M = 5kN-m, determine the bending stress developed at
point A.

V F6-16

F6-17. If the beam is subjected to a bending moment of
M = 50 kN - m, determine the maximum bending stress in
the beam.

50 mm

0 mm

mm 0 mm

50 mm

F6-17 Fo6-19
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“lrropiews

6-47. A member having the dimensions shown is used
to resist an internal bending moment of M = 90 kN -m.
Determine the maximum stress in the member if the
moment is applied (a) about the z axis (as shown) (b) about
the y axis. Sketch the stress distribution for each case.

Prob. 6-47

*6—48. Determine the moment M that will produce a
maximum stress of 10 ksi on the cross section.

¢0—49. Determine the maximum tensile and compressive
bending stress in the beam if it is subjected to a moment of
M = 4Xkip-ft.

~ o S
K05ino - Jine{ [-0.5in.
. B

D

L osin

Probs. 6-48/49

6-50. The channel strut is used as a guide rail for a trolley.
If the maximum moment in the strut is M = 30 N-m,
determine the bending stress at points A, B, and C.

6-51. The channel strut is used as a guide rail for a trolley.
If the allowable bending stress for the material is
Talow = 175 MPa, determine the maximum bending moment
the strut will resist.

5 mm

5 mm

30 mm

?mm

[
|1 \‘ \_5mm

Smm 7 mm | {10 mm7 mm

&h Fh

Probs. 6-50/51

*6-52. The beam is subjected to a moment M. Determine
the percentage of this moment that is resisted by the
stresses acting on both the top and bottom boards, A and B,
of the beam.

¢6-53. Determine the moment M that should be applied
to the beam in order to create a compressive stress at point
D of op = 30MPa. Also sketch the stress distribution
acting over the cross section and compute the maximum
stress developed in the beam.




6-54. The beam is made from three boards nailed together
as shown. If the moment acting on the cross section is
M = 600 N - m, determine the maximum bending stress in
the beam. Sketch a three-dimensional view of the stress
distribution acting over the cross section.

6-55. The beam is made from three boards nailed together
as shown. If the moment acting on the cross section is
M = 600 N - m, determine the resultant force the bending
stress produces on the top board.

Probs. 6-54/55

*6—56. The aluminum strut has a cross-sectional area in
the form of a cross. If it is subjected to the moment
M = 8 kN -m, determine the bending stress acting at points
A and B, and show the results acting on volume elements
located at these points.

¢0-57. The aluminum strut has a cross-sectional area in
the form of a cross. If it is subjected to the moment
M = 8 kN -m, determine the maximum bending stress in
the beam, and sketch a three-dimensional view of the stress
distribution acting over the entire cross-sectional area.

=

50 mm

Probs. 6-56/57
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6-58. If the beam is subjected to an internal moment of
M = 100 kip - ft, determine the maximum tensile and
compressive bending stress in the beam.

6-59. If the beam is made of material having an allowable

tensile and compressive stress of (ouw); = 24 ksi and
(T aow)e = 22 ksi, respectively, determine the maximum
allowable internal moment M that can be applied to the
beam.

2 in.

Probs. 6-58/59

*#6—60. The beam is constructed from four boards as
shown. If it is subjected to a moment of M, = 16 kip - ft,
determine the stress at points A and B. Sketch a
three-dimensional view of the stress distribution.

*6-61. The beam is constructed from four boards as
shown. If it is subjected to a moment of M, = 16 kip - ft,
determine the resultant force the stress produces on the top
board C.

Probs. 6-60/61
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6-62. A box beam is constructed from four pieces of
wood, glued together as shown. If the moment acting on the
cross section is 10 kN - m, determine the stress at points A and
B and show the results acting on volume elements located at
these points.

M = 10kN-m Prob. 6-62

6-63. Determine the dimension a of a beam having a
square cross section in terms of the radius r of a beam with
a circular cross section if both beams are subjected to the
same internal moment which results in the same maximum
bending stress.

\a

gl
o B

Prob. 6-63

*6—64. The steel rod having a diameter of 1 in. is subjected
to an internal moment of M = 300 1b-ft. Determine the
stress created at points A and B. Also, sketch a three-
dimensional view of the stress distribution acting over the
cross section.

3 M =300 1b-ft

Prob. 6—64

¢6-65. If the moment acting on the cross section of the
beam is M = 4 kip - ft, determine the maximum bending
stress in the beam. Sketch a three-dimensional view of the
stress distribution acting over the cross section.

6-66. If M = 4kip-ft, determine the resultant force the
bending stress produces on the top board A of the beam.

Probs. 6-65/66

6-67. The rod is supported by smooth journal bearings
at A and B that only exert vertical reactions on the shaft. If
d = 90 mm, determine the absolute maximum bending
stress in the beam, and sketch the stress distribution acting
over the cross section.

*6-68. The rod is supported by smooth journal bearings at
A and B that only exert vertical reactions on the shaft.
Determine its smallest diameter d if the allowable bending
stress is 0w = 180 MPa.

12 kN/m
L,
7 1 3m ! 7 1.5mJ
Probs. 6-67/68



¢0-69. Two designs for a beam are to be considered.
Determine which one will support a moment of M =
150 kN - m with the least amount of bending stress. What is
that stress?

200 mm—] |

[T N

200 mm— s
15 mm [0l

(T

300 mm

Prob. 6-69

6-70. The simply supported truss is subjected to the
central distributed load. Neglect the effect of the diagonal
lacing and determine the absolute maximum bending stress
in the truss. The top member is a pipe having an outer diameter
of 1 in. and thickness of 13? in.,and the bottom member is a
solid rod having a diameter of % in.

100 Ib/ft 575in.fj?
|

| 6 ft 1 6 ft 1 6 ft !
Prob. 6-70

6-71. The axle of the freight car is subjected to wheel
loadings of 20 kip. If it is supported by two journal bearings at
C and D, determine the maximum bending stress developed
at the center of the axle, where the diameter is 5.5 in.

‘ 60 in.

10 in.
20 kip

Pomﬂ
20 kip

Prob. 6-71
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*6—72. The steel beam has the cross-sectional area shown.
Determine the largest intensity of distributed load w that it
can support so that the maximum bending stress in the
beam does not exceed o, = 22 ksi.

¢6-73. The steel beam has the cross-sectional area shown.
If wy = 0.5 kip/ft, determine the maximum bending stress
in the beam.

wo

i 0.30 in.
0.3 in{Ilo in.
0.30 in.
Probs. 6-72/73 T

6-74. The boat has a weight of 2300 1b and a center of
gravity at G. If it rests on the trailer at the smooth contact A
and can be considered pinned at B, determine the absolute
maximum bending stress developed in the main strut of
the trailer. Consider the strut to be a box-beam having the
dimensions shown and pinned at C.

Prob. 6-74

1.51n.

6-75. The shaft is supported by a smooth thrust bearing at
A and smooth journal bearing at D. If the shaft has the cross
section shown, determine the absolute maximum bending
stress in the shaft.

A

40 mm
25 mm
C ED

0.75 m i 1.5m i 0.75 m
3 kN 3 kN

Prob. 6-75
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*6-76. Determine the moment M that must be applied to
the beam in order to create a maximum stress of 80 MPa.
Also sketch the stress distribution acting over the cross
section.

L

‘/ 30 mm

20 mm 30/r‘nt 30 mm

Prob. 6-76

¢6-77. The steel beam has the cross-sectional area shown.
Determine the largest intensity of distributed load w that it
can support so that the bending stress does not exceed
Omax = 22 ksi.

6-78. The steel beam has the cross-sectional area shown.
If w = 5 kip/ft, determine the absolute maximum bending
stress in the beam.

w w
A
o | | I
| 8 ft 8t | 8 ft |
8in.

F—
i 0.30 in.
0.3 in.EIlo in.
——0.30in.
f
Probs. 6-77/78

6-79. If the beam ACB in Prob. 6-9 has a square cross
section, 6 in. by 6 in., determine the absolute maximum
bending stress in the beam.

*6-80. If the crane boom ABC in Prob. 6-3 has a
rectangular cross section with a base of 2.5 in., determine its
required height 4 to the nearest% in. if the allowable bending
Stress is oo = 24 ksi.

¢6-81. If the reaction of the ballast on the railway tie can be
assumed uniformly distributed over its length as shown,
determine the maximum bending stress developed in the tie.
The tie has the rectangular cross section with thickness
t = 6in.

6-82. The reaction of the ballast on the railway tie can be
assumed uniformly distributed over its length as shown.
If the wood has an allowable bending stress of 0w =
1.5 ksi, determine the required minimum thickness ¢ of the
rectangular cross sectional area of the tie to the nearest é in.

15 kip 15 kip

F.S ft | 5 ft
i3

| 1.5 ft—

Probs. 6-81/82

6-83. Determine the absolute maximum bending stress
in the tubular shaft if d; = 160 mm and d, = 200 mm.

*6—-84. The tubular shaft is to have a cross section such
that its inner diameter and outer diameter are related by
d; = 0.8d,. Determine these required dimensions if the
allowable bending stress is o0 = 155 MPa.

15 kN/m
60 kN - m d; d,
i (] |) /@(
A B
1 3m L 1 m—
Probs. 6-83/84

6-85. The wood beam has a rectangular cross section in
the proportion shown. Determine its required d