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Foreword

I take pleasure in writing this foreword for the excellent new book
entitled Fracture Mechanics of Electromagnetic Materials: Nonlinear
Field Theory and Applications, written by my former colleagues, Drs.
Xiaohong Chen and Yiu-Wing Mai, at the Hong Kong University of
Science and Technology.

Novel multifunctional materials have tremendous potential for high-
performance structural and functional applications in aeronautical,
mechanical, and civil engineering, as well as in microelectronic and
biomedical devices, due to their versatile actuating, sensing, healing, and
other functional properties. The susceptibility of such advanced materials
to cracking in service is of fundamental concern and has become a very
popular area of research. Attempts to describe the failure behavior of
these advanced materials and structures have clearly shown that linear
piezoelectric/piezomagnetic fracture mechanics does not adequately
explain the crack growth behavior under combined magnetic, electric,
thermal, and mechanical loadings. It appears that coupling and
dissipative effects play an important role in the growth and propagation
of cracks.

Significant discrepancies still exist between theoretical predictions
and experimental observations. Both new and modified theories have
been proposed to overcome the discrepancies, with only limited success.
These failures may be because there is no comprehensive guide to the
theoretical basis and application of nonlinear dynamic fracture
mechanics, especially in cases involving multiple coupled fields with
dissipation effects.
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viii Foreword

This book is the first monograph on the subject of nonlinear dynamic
field theory for piezoelectric/piezomagnetic materials. It provides an
overview of the current state of the art of fracture mechanics and some of
the authors’ recent research outcomes. In developing the theoretical
models for application to fracture characterization of materials and
structures in the presence of magneto-electro-thermo-mechanical
coupling and dissipative effects, the authors emphasize the physical
interpretation of the fundamental concepts of fracture mechanics. One of
the book’s unique contributions is the development of a nonlinear
fracture mechanics theory which rigorously treats the dynamic crack
problems involving coupled magnetic, electric, thermal, and mechanical
fields. By unifying the coupling of these fields, this book fills a gap in
the literature of fracture mechanics involving multifield interactions.
This book is a valuable resource which sheds light on the still-developing
multidisciplinary subject of multifield fracture mechanics.

The book has an extensive list of references reflecting the most recent
developments. It can be used as a textbook for graduate students as well
as a reference for researchers and engineers studying and/or applying the
concepts of advanced fracture mechanics to design and practical
applications in the presence of multifield coupling and dissipative
effects.

Pin Tong
San Diego
April, 2012
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Preface

This book covers the current status of conventional fracture mechanics
methodologies and presents a new formulation of a nonlinear field theory
of fracture mechanics for electromagnetic materials. The study of classic
fracture mechanics problems is concerned with the mechanical state of a
deformable body containing a crack or cracks. Nevertheless, recent
advances in multifunctional smart materials have created new research
frontiers due to the occurrence of magneto-electro-thermo-mechanical
coupling and dissipative effects accompanying crack propagation.

Electromagnetic materials have broad civilian and defense
applications such as infrastructure health monitoring, microelectronic
packaging, novel antenna designs, and biomedical devices owing to their
remarkable multifunctional properties. Fracture of these smart material
systems has become the subject of active research because of their
susceptibility to cracking in service. A major challenge is how to resolve
the fundamental discrepancy between theoretical predictions and
experimental observations on the fracture behaviors of piezoelectric and
piezomagnetic materials.

A highly important question in the development of a fracture
mechanics theory for electromagnetic materials is whether there is any
particular thermodynamic quantity of a cracked body that can be
interpreted as the “driving force” for crack propagation under combined
magneto-electro-thermo-mechanical loadings. The answer to this
question has been pursued for decades, but no satisfactory agreement has
yet been reached. Thus, the establishment of a physically sound fracture
criterion becomes the hallmark of an advanced fracture mechanics
treatment for electromagnetic materials.
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X Preface

As the first monograph on the subject of nonlinear field theory of
fracture mechanics for deformable electromagnetic materials, this book
offers postgraduate students, academic researchers, and engineering
specialists who are active in this challenging multidisciplinary area a
sketch of the history, an overview of the current status, and a description
of some most recent research outcomes based on our own work. It gives
first priority to physical interpretation of fundamental concepts,
development of theoretical models, and exploration of their applications
to fracture characterization in the presence of magneto-electro-thermo-
mechanical coupling and dissipative effects. A general formulation of a
nonlinear field theory of fracture mechanics and a rigorous treatment of
dynamic crack problems involving coupled magnetic, electric, thermal,
and mechanical fields fill a gap in the literature.

We would like to express our sincere appreciation and gratitude to
those who have provided helpful discussions and support to this book
project, especially Professors Pin Tong and Tongyi Zhang (Hong Kong
University of Science and Technology), Cun-Fa Gao (Nanjing University
of Aeronautics & Astronautics), Baolin Wang (Harbin Institute of
Technology), Qinghua Qin (Australian National University), and Meng
Lu (CSIRO). XHC is also heartily indebted to the late Professor Ren
Wang for his guidance and inspiration during her graduate studies in
solid mechanics at Peking University and for his care and encouragement
throughout all these years. The Centre for Advanced Materials
Technology at the University of Sydney, where XHC previously worked
and YWM was Founding Director, has provided an intellectually
stimulating environment for advanced fracture mechanics research.
Special thanks are due to Lance Sucharov, Tasha D’Cruz, Rajesh Babu,
Lindsay Robert Wilson, Gregory Lee, and Romén Reyes-Peschl from
Imperial College Press and World Scientific Publishing for their
commitments to excellence in publishing this book from proposal review
to proofreading. Permissions from professional societies and publishers
to use cited materials in the book are also gratefully acknowledged.

Xiaohong Chen & Yiu-Wing Mai
San Diego & Sydney
August, 2012
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Chapter 1

Fundamentals of Fracture Mechanics

Classic fracture mechanics is concerned with the study of the mechanical
state of a deformable body containing a crack or cracks by application of
analytical mechanics to calculate the driving force for crack propagation
and experimental mechanics to characterize the resistance of materials to
crack extension. A highly important question in the development of a
fracture mechanics theory is whether there is any particular
thermodynamic quantity of a cracked body that can be interpreted as the
“driving force” for crack propagation.

1.1 Historical Perspective

The establishment of fracture mechanics as an engineering discipline
dates back to the early work of Griffith (1921), Orowan (1948) and Irwin
(1948, 1956, 1957, 1958). In Griffith’s famous paper ‘“The phenomena of
rupture and flow in solids” (Griffith, 1921), which quantitatively relates
the flaw size to the fracture stress, he proposed an energy balance
approach for the fracture of brittle materials with the introduction of the
surface energy term by realizing that the relatively low strength and the
size dependence of strength were due to the presence of crack-like flaws
in the materials.

The Griffith energy balance leads to a critical condition for fracture of
an ideal elastic-brittle material:

dW dU _dT,

dA dA  dA

) (1.1)
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where A is the crack area, W is the work done on the cracked body by
external forces, U is the strain energy stored in the system, and I', is the
surface energy.

For a through-thickness crack with length 2a in an infinite plate under
remote tensile stress ¢ (Fig. 1.1), Griffith (1921, 1924) used the solution
of Inglis (1913) to show that the fracture stress, o, is given by

o, = 2EL (1.2)
’ wa

where E =E for plane stress and E = E/(1-v*) for plane strain, E is
Young’s modulus, v is Poisson’s ratio, and y,[=(1/2)dI", / dA] is the
specific surface energy.

[T 1T 1]

—]

2a

NN

Fig. 1.1. Griffith crack with length 2a under remote tensile stress G.

Although the Griffith energy balance approach provides excellent
agreement with experimental data for brittle materials such as glass, the
surface energy predicted by Griffith’s fracture criterion is usually
unrealistically high for ductile materials such as steel. Irwin (1948) and
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Orowan (1948) independently modified Griffith’s fracture criterion to
account for the energy dissipated by local plastic flow. Under small-scale
yielding (SSY) conditions, the plastic work required to grow the crack is
a material constant that can be added to the surface energy. The modified

expression is given by
2E (y, +
o, = | E0 ) (1.3)
’ zTa

where 7, is the plastic work dissipated during the creation of a unit area
of crack surface, which is typically orders of magnitude larger than the
specific surface energy 7, .

It is also feasible to extend the modified model to account for any
type of energy dissipation, that is,

o, =\ —, (1.4)

where R is the crack resistance, including viscoelastic or viscoplastic
effects, depending on the material type.

Subsequently, Irwin (1956, 1957, 1958) found a way to relate the
global amount of energy available for fracture to the local crack tip
parameter called the stress intensity factor. Linear elastic fracture
mechanics (LEFM) is also known as the Griffith—Irwin—Orowan theory
because of their leading roles in its establishment. When large-scale
inelastic deformation or a significant amount of crack growth occurs,
nonlinear approaches must be adopted instead. Rice (1968) developed a
path-independent line integral called the J-integral, which has dominated
the development of nonlinear fracture mechanics (NLFM) in the USA. In
the meantime, Wells (1961, 1963) advanced an alternative approach by
employing the crack opening displacement (COD) as the fracture
parameter, which has guided fracture mechanics research under general
yielding conditions in the UK and Europe.
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1.2 Stress Intensity Factors (SIF)

Irwin (1957, 1958) and Williams (1957) realized that the stresses near a
crack tip in a linear elastic solid have an inverse square-root singularity,
that is, they are inversely proportional to the square root of the distance
from the crack tip. The near-tip fields in plane elasticity problems are
associated with three basic modes, shown in Fig. 1.2. Mode I is the
opening (tensile) mode where the displacements are normal to the plane
of the crack surface, mode II is the sliding (in-plane shear) mode where
the displacements are parallel to the plane of the crack surface and
normal to the crack front, and mode III is the tearing (out-of-plane shear)
mode where the displacements are parallel to the plane of the crack
surface and parallel to the crack front.

X1 X1

(a) (b) (©

Fig. 1.2. Three fracture modes: (a) mode-I crack — opening mode, (b) mode-II crack —
sliding mode, and (c) mode-III crack — tearing mode.

The asymptotic expressions for the near-tip stress fields under mode-
L, 1L, or III fracture are given by

0, = I;’[r cos(8/2)[1—sin(@/ 2)sin(36/ 2)]
0, = I;’[r cos(@/2)[1+sin(€/2)sin(36/2)], (1.5)
K, .
o, = cos(@/2)sin(8/2)cos(36/2)
. N27r
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KII .
o,=— sin(@/2)[2+ cos(8/2)cos(36/2)]
! N27xr
o, = [2(;’” sin(@/2)cos(8/2)cos(36/2) , (1.6)
K, . .
o, = cos(@/2)[1-sin(8/2)sin(36/2)]
. N27xr
K[I[ .
o,=— sin(@/2)
. N27r 1.7
0, = icos(¢9/ 2)
2zr

where r, fare polar coordinates, K,, K, and K,, are mode-I, II, and III
stress intensity factors with units of MPa+/m .
For the classic Griffith crack, the stress intensity factor is given by

K,=ora. (1.8)

Since failure at the crack tip in a linear elastic solid is driven solely
by the stress intensity factor, a fracture criterion based on the stress
intensity factor approach can be expressed as

K=K, (1.9)

where K is the critical stress intensity factor as a measure of material
resistance to fracture, which is called the fracture toughness.

The American Society for Testing and Materials (ASTM) standards
E399 and D5045 describe the experimental procedure for measurement
of fracture toughness of metallic and plastic specimens, respectively. The
size requirement for obtaining a valid measurement of K. is given by

O-y

2
K
B,a,W—a>2.5(iJ , (1.10)

where B is the specimen thickness, a is the crack length, W is the
specimen width, and o, is the yield strength.
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1.3 Energy Release Rate (ERR)

Griffith (1921) was the first to propose the energy approach for fracture
of brittle materials, but Irwin (1948, 1956) was primarily responsible for
defining the present version of the energy release rate (also referred to as
the strain energy release rate), G,

Gz_ﬂz_(an , (1.11)

where Il is the potential energy of the system, U is the strain energy
stored in the system, and A is the load-point displacement.

Irwin (1957) showed that the energy release rate for a planar crack in
a linear elastic body subjected to mixed-mode loading is related to mode-
I, I, and III stress intensity factors by performing crack closure analysis:

1 atoa
G = lim ——=1,"* 0, (x,, 0)Au, (x, = Sa)dx
pomn zoa (1.12)

1 1+v
ZE(KIZ +K121)+TK12”,
where A denotes the jump between the upper and lower surfaces of the
crack.

Crack initiation occurs when G reaches a critical value, G,
G=¢G,. (1.13)

The energy release rate, also referred to as the crack extension force,
provides the thermodynamic driving force for fracture. The onset of
crack extension is determined by (1.13), but crack growth may be stable
or unstable depending on how the crack driving force and the crack
resistance vary with crack extension (Atkins and Mai, 1985; Cotterell
and Mai, 1996). In general, the conditions for stable crack growth can be
expressed as

G=G,, (1.14)
46 _dGy (1.15)
dA~ dA

Unstable crack growth occurs when
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daG S dG,
dA~ dA
A plot of G versus crack extension gives the crack driving force
curve, whereas a plot of G, versus crack extension gives the crack
growth resistance curve (Fig. 1.3). The transition from stable to unstable
fracture occurs when the crack driving force curve is tangent to the crack

(1.16)

growth resistance curve (R curve).

G, Gg 4

Fig. 1.3. Illustration of crack driving force and resistance curves.

1.4 J-Integral

Path-independent integrals have been extensively employed to study
bodies with defects or cracks since the pioneering work of Eshelby
(1951, 1956, 1970, 1975), Cherepanov (1967, 1968, 1979) and Rice
(1968). As indicated by Kannimen and Popelar (1985), the number of
path-independent integrals appears to be unlimited. The energy release
rate in a nonlinear elastic body containing a crack can be expressed as a
contour integral called the J-integral (Rice, 1968). The J-integral has also
been related to the crack-tip stress fields in a power-law hardening
material (Hutchinson, 1968; Rice and Rosengren, 1968). The path-
independent [-integral formulated from the complementary energy
density (Bui, 1974) can be taken as the dual of the J-integral. Further
discussions on the J-integral and other invariant integrals can be found in
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the papers by Knowles and Sternberg (1972), Kishimoto er al. (1980),
Atluri (1982), Atluri et al. (1984), Freund and Hutchinson (1985), Li et
al. (1985), Shih et al. (1986), Moran and Shih (1987a-b), and Simo and
Honein (1990), among others.

Consider a path I' in a nonlinear elastic body extended counter clock-
wise from the lower crack face to the upper crack face, as shown in Fig.
1.4. The J-integral is defined as

ou,
J= L(wdxz —ai,nja—)qu) , (1.17)

6‘l' . . .
where w = L ’ 0,d¢; is the strain energy density, o are the components

of the Cauchy stress tensor, ¢, are the components of the infinitesimal
strain tensor, n; are the components of the unit outer normal vector, y,
are the components of the displacement vector, ds is the length increment
along the path I', and the x,-direction is perpendicular to the crack line.

A X2

v

X1

Fig. 1.4. Contour for the J-integral.

Most importantly, Rice (1968) showed that, for deformation plasticity
(i.e., nonlinear elasticity), the value of the J-integral in a two-
dimensional cracked body free of body forces is independent of the path
around the crack, provided it is taken outside the fracture process zone.
The J-integral criterion for crack initiation gives

J=1,. (1.18)
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The dimensionless tearing moduli (Paris et al., 1979; Atkins and Mai,
1985; Anderson, 2005) may be introduced by

E dj
=——, 1.19
oy da (19
E dJ

T,=——%, 1.20
8 o, da ( )

where 0, is an appropriate flow stress.

The conditions for stable crack growth can be expressed as

J=J;, (1.21)
T, <T,. (1.22)

Unstable crack growth occurs when
T, >T,. (1.23)

The J-integral method has great success in nonlinear fracture
mechanics (NLFM). Nevertheless, the J-integral might lose its path
independence when there is a combination of significant plasticity and
crack growth (Kanninen and Popelar, 1985; Anderson, 2005).

1.5 Dynamic Fracture

A comprehensive overview on the development of dynamic fracture
mechanics, which is concerned with fracture problems in which either
the applied load or the crack size changes rapidly, can be found in the
monographs by Freund (1990) and Ravi-Chandar (2004). Linear
elastodynamic fracture mechanics is the dynamic version of LEFM,
incorporating inertia effects but neglecting nonlinear material behavior.
A review paper by Cox et al. (2005) focuses on modern topics and
challenges in dynamic fracture. For example, hyperelasticity may play an
important role in the dynamics of fracture where the linear elastic theory
is incapable of fully capturing all failure phenomena (Geubelle and
Knauss, 1995; Geubelle, 1995; Gao, 1996; Abraham et al., 1997,
Buehler et al., 2003; Tarantino, 2005).
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The first important dynamic crack propagation analysis was
conducted by Yoffe (1951) for the problem of a moving Griffith crack of
fixed length gliding through an otherwise unbounded solid at constant
speed with the crack opening at the leading edge and closing at the
trailing edge. This is referred to as the Yoffe problem. The next
important dynamic crack propagation solutions were contributed by
Craggs (1960) and Broberg (1960). Craggs (1960) considered the
extension of a semi-infinite crack at constant speed with the crack face
loading moving with the same speed as the crack tip. The Broberg
problem is that of self-similar expansion of a crack from zero initial
length at constant speed under uniform remote tension. While these
models were not physically realistic, they provided an indication of the
influence of the crack speed on the stress state near the moving crack tip.

In a series of papers, Freund (1972b—c, 1973, 1974a-b) provided
results for dynamic crack growth in an elastic solid subjected to general
loading. The asymptotic stress fields near a moving crack tip in linear
elastic materials still have the inverse square-root singularity and are
generally expressed as

K[ (t) K][ (t) n K[[l (t) i
Tonr \/Tﬂ'l"Zij 6,v.)+ \/27”20. 6,v.), (1.24)
where the functions ij a,v.), ijl (8,V.), and ij" (8,V.) describe
angular variation for any value of crack tip velocity V. for the cases of
mode-I, II, and III crack growth (Freund, 1990).

The mode-I and II dynamic stress intensity factors, K , and K > tend
to zero as the crack velocity approaches the Rayleigh wave speed,
whereas the mode-III dynamic stress intensity factor, K > tends to zero

o,(t)= 6.V +

as the crack velocity approaches the shear wave speed. The dependence
of dynamic propagation toughness on crack speed, loading rate and
temperature can be measured by means of photoelasticity and caustics.

Mott (1947) realized that the inertia effect on crack advance could
become significant at high crack speed and did the first energetic balance
analysis of a dynamic crack. An extension of the Griffith energy balance
approach to dynamic fracture problems with inclusion of the kinetic
energy, E*, over the cracked body leads to the following expression for
the dynamic energy release rate:
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GodW _du_dE'
dA dA dA

Consider a two-dimensional body A that contains an extending crack
(Fig. 1.5). A contour I enclosing the crack tip translates with the crack
tip moving at instantaneous speed V.. A dynamic contour integral
(Atkinson and Eshelby, 1968; Freund, 1972a, 1990) is given by

(1.25)

gy

7. :VL [ 1o, + O+ phyVen, 1T (1.26)
C

where w=£ O'ijul.’jdt' is the stress work density, pl€=puiui /2 is the
kinetic energ}ofc density, and V. = |VC| is the magnitude of the crack speed.

The dynamic contour integral given by Eq. (1.26) is generally not
path independent in elastodynamics. For quasi-static crack problems, the

dynamic contour integral is reduced to the conventional J-integral.

Fig. 1.5. A two-dimensional body A containing an extending crack with contour F,
translating with the crack tip moving at instantaneous speed V.

The dynamic energy release rate is the rate of energy flow out of the
body and into the crack tip per unit crack advance, that is,

.~ 1 ) A -
G=1J,= }{B{zj‘f[an i+ (w pk)Ven, ]dl“} , (1.27)
where the limit implies that T" is shrunk onto the crack tip.

For the special case of steady-state crack growth, the displacement
field u,(X,,X,,t) is invariant in the reference frame affixed to the crack
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t1p moving at uniform speed Vo, that is, u,(X,,X,,t) =u, (X l,X ), where
X =X, -V and X =X, . Thus, the dynamic contour integral takes
the spemal form

Jo =] lw+ pkydx, —oyn, s AT, (1.28)

A particular choice of the contour I (see Fig. 1.6) enables the
generalization of the Irwin relationship (1.12) to the dynamic case. If the
contour I is shrunk onto the crack tip by first letting 0, —0 and then
0, — 0, there is no contribution to the dynamic energy release rate from
the segments parallel to the )22 -axis. Consequently, the dynamic energy
release rate can be computed by evaluating only the first term on the
right-hand side of Eq. (1.27) along the segments parallel to the X | -axis,
that 1s,

2
G=J, =—(15m});1mj 50'2/(X1,52,t)u (X,,0,,0)dX, , (1.29)
where the factor 2 is introduced to account for the sides of the rectangle
at X, =—0J,, by symmetry.
Thus, the dynamic energy release rate can be related to the dynamic
stress intensity factors by

- .1 . S e
G:JO:E[A,(VC)Kf+A,,(VC)K,’§]Jr > ,,,(V K2, (1.30)

where A,, A,, and A, are universal functions of crack speed and
material properties (Freund, 1990).
X,
r
1 X,
25, —+—»
b
— 25—
>

Fig. 1.6. A convenient selection of the contour I".
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1.6 Viscoelastic Fracture

Increasing interest in engineering applications of polymeric materials has
consequently stimulated the study of viscoelastic fracture mechanics
which incorporates a time-dependent response. Willis (1967) first
considered anti-plane, steady-state crack propagation in an infinite
viscoelastic medium. Later, Atkinson and Popelar (1979) and Popelar
and Atkinson (1980) investigated dynamic crack propagation in a
viscoelastic strip subjected to mode-I and III loadings. Knauss (1970,
1973, 1974), McCartney (1977), and Christensen (1979, 1982) explored
the possibilities of generalizing the Griffith energy balance approach to
viscoelastic fracture problems. Discussions on viscoelastic fracture
criteria occurred between Christensen and McCartney (Christensen,
1980, 1981; McCartney, 1980, 1981; Christensen and McCartney, 1983),
leading to further studies on this subject (Nikitin, 1984). Meanwhile,
Schapery (1975a—c) developed a crack-tip model for viscoelastic
materials based on an assumption of the material behavior in the fracture
process zone. Schapery (1984) also developed correspondence principles
and a generalized J-integral for large deformation and fracture analysis
of viscoelastic media. An overview of the constitutive equations, fracture
and strength models for nonlinear viscoelastic solids can be found in
Schapery (2000).

Fracture characterization of polymers, polymer blends, and
composites in hygrothermal environments is essential for safety
assessment and life prediction for many practical applications. The major
challenge lies in the coupling among thermal, mechanical and other
physicochemical effects involved in time-dependent fracture. For
example, experimental and analytical studies have shown evidence of a
large temperature rise in the vicinity of a fast moving crack tip in metals
and polymers (Weichert and Schonert, 1978; Maugin, 1992; Kotousov,
2002). This temperature rise may participate in governing the fast-
running crack through influencing the energy release rate. Diffusion adds
another complexity to time-dependent fracture problems. High stress and
temperature gradients associated with the crack tip lead to thermally- and
mechanically-enhanced fluid transport, which, in turn, affect the energy
release rate. For polymeric materials subjected to combined mechanical
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loading and hygrothermal exposure, Chen (2007) developed a consistent
thermodynamic formulation of a coupled hygro-thermo-viscoelastic
fracture theory from the global energy balance equation and the non-
negative global dissipation requirement based on fundamental principles
of thermodynamics.

An extension of the Griffith—Irwin—Orowan theory to hygro-thermo-
viscoelastic fracture problems, with incorporation of the coupling and
dissipative effects, leads to the expression

=GA+ jv PAAV + jv pSTav
_J‘Vp(’a(f) _Ia(S))C'.(f)dV (1.31)

+Ivj(_f) _(f(f) _f‘(S) _",(f) + V“))dV,

m

where G is the generalized energy release rate serving as the
thermodynamic driving force conjugate to the crack variable A, H is the
Helmholtz free energy over the cracked body, p=p"’ + p"is the total
mass density, 0’ and p"’ are the densities of the fluid and solid phases,
A is the rate of viscous dissipation per unit mass, 7 is the absolute
temperature, § is the entropy per unit mass, 2’ and A" are the
chemical potentials of the fluid and solid phases, ¢/’ = p"”’ / p 1is the
mass fraction of the fluid phase, jfnf ' is the mass flux of the fluid phase,
£ and £ are body forces acting on the fluid and solid phases, and
v and v are the accelerations of the fluid and solid phases.

Under isothermal conditions in the absence of fluid diffusion, Eq.
(1.31) is reduced to the global energy balance approach for viscoelastic

fracture (Knauss, 1970; McCartney, 1977; Christensen, 1979, 1982):
dW dH dE'

dt dt dt

For a two-dimensional crack problem, the generalized contour
integral is related to the energy flux through the contour I" affixed to the
crack tip moving at instantaneous speed V. by

=GA+| pAdv. (1.32)

g

J :VLL[a.u. + ph+ kW, In dT", (1.33)
C
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where 4 is the Helmholtz free energy per unit mass and k is the kinetic
energy per unit mass.

The difference between the generalized contour integrals along the
paths 1~“1 and fz is caused by unsteady, viscous, thermal and
hygroscopic effects as well as the total body force, that is,

_ 1
£, Y T Vc
o7 a3 _ [ ) _ pONVAD
+J.A12psTdA J.Alzp(,u )¢ dA],

~

fAlz—(ph+pk)dA j pt - vdA + j DPAdA L

where Alz is the difference in the areas enclosed by the contours fl and
fz including the crack faces, and f= (p(f)f(f) +p(”f(”)/p is the total
body force per unit mass.

The generalized energy release rate is the rate of energy flow out of
the body and into the crack tip per unit crack advance, that is,

-0 v

G=1J —hm{ j (0,4, + P(h+k)V.S,,1n dF} (1.35)

For quasi-static and dynamic fracture characterization of elastic
materials, Eq. (1.33) is reduced to the conventional J-integral and
dynamic contour integral, respectively. Without accounting for fluid
diffusion, Schapery’s crack-tip model (Schapery, 1975) relies on a
special form of Eq. (1.35).

The generalized energy release rate method and the generalized
contour integral method should give consistent results, independent of
material systems, loading and environmental conditions. An
experimental study by Frassine and Pavan (1990) has verified that the
observed behavior of an elastomeric epoxy resin is in qualitative
agreement with the theoretical predictions by the global and local
approaches for viscoelastic fracture, which are the special cases of the
generalized energy release rate method and the generalized contour
integral method presented here. Another experimental and numerical
investigation on crack propagation in carbon/epoxy composite (Gamby
and Delaumenie, 1993; Gamby and Chaoufi, 1999) has also
demonstrated the agreement between Christensen’s model and
Schapery’s model.
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1.7 Essential Work of Fracture (EWF)

Fracture characterization for new ductile materials, such as polymeric
thin films, toughened polymers and polymer blends, has greatly
stimulated the development of fracture mechanics, which, in turn, plays
an important role in design and safety evaluation with an optimum
combination of stiffness, strength and toughness. Energy release rate and
stress intensity factor in LEFM are widely used to characterize fracture
toughness of glassy polymeric materials under brittle fracture (Atkins
and Mai, 1985). If plastic flow occurs, the energy approach becomes
more complicated. The J-integral (Rice, 1968) based upon deformation
plasticity is used as an alternative.

Nevertheless, crack advance in an elastoplastic material involves
elastic unloading and nonproportional loading around the crack tip,
neither of which can be adequately accommodated by deformation
plasticity. Hence, the J-integral theory might break down for a
combination of significant plasticity and crack growth. In addition, it is
difficult and cumbersome to use for the evaluation of impact fracture
toughness. Similarly, the J-integral testing procedure for fracture
toughness characterization of polymeric thin films is cumbersome.
Accordingly, a simple yet elegant method, i.e., the essential work of
fracture (EWF) method, was developed by Cotterell, Mai and co-workers
(Cotterell and Reddel, 1977; Mai and Cotterell, 1980, 1986; Mai et al.,
2000) from the unified theory of fracture (Broberg, 1971, 1975). It has
been adopted by many research groups for the experimental
measurement of fracture toughness for thin metal sheets, polymeric thin
films, toughened plastics, and blends. A European Structural Integrity
Society (ESIS) Test Protocol for Essential Work of Fracture has also
been established (1997). The advantage of this technique lies in its
experimental simplicity and ease of test data analysis.

The general concept of the EWF Method for toughness measurement
is demonstrated in Fig. 1.7. There exists an inner autonomous zone,
which is crucial to the fracture process, called the fracture process zone
(FPZ). As crack growth is accompanied by permanent deformation of the
surrounding material, plastic dissipation in the outer region is not directly
associated with the crucial fracture process. The total work of fracture,
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W, , can be partitioned into the essential work imported into the fracture

process zone (a material property) and the nonessential work absorbed by
the outer plastic zone (geometry-dependent), that is,

W, =W, +W,. (1.36)

Inner fracture process zone

Outer plastic zone

Fig. 1.7. A schematic of a double-edge notched tensile specimen, showing the inner
fracture process zone and the outer plastic zone.

The specific essential work of fracture can be conveniently
determined using deep-crack specimens, where the height of the outer
plastic zone may be proportional to the ligament length. Hence, the
essential work of fracture is proportional to the ligament length and the
nonessential work of fracture is proportional to the square of the
ligament length, leading to the expression

w,=w,+pBwl, (1.37)
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where w, =(W, /BI) is the specific total work of fracture, w, is the
specific essential work of fracture, w, is the specific nonessential work
of fracture, and fis a geometry-dependent plastic-zone shape factor.

On the assumption that w, is a material property and w, and f are
independent of [ in all tested specimens, there should be a linear relation
when w, is plotted against / according to Eq. (1.37). By extrapolation of
this line to zero ligament length, the intercept at the Y-axis and the slope
of the line give w, and [w,, respectively. Therefore, Eq. (1.37)
provides a sound theoretical basis for a simple yet elegant experimental
method of determining w, from the load-displacement curves for
specimens of different ligament lengths.

Mai and Cotterell (1986) also showed the following equivalence:
w,=J_, ﬁwp =(1/4)dJ / da for double-edge notched tension (DENT)
and deep center notched tension (DCNT) specimens, and
Pw,=(1/2)dJ, /da for deep single-edge notched tension (DSEN)
specimens.

1.8 Configuration Force (Material Force) Method

The notion of the Newtonian force is clarified by its role in describing
the motion of a body. By contrast, the concepts of the energy-momentum
tensor (also referred to as the Eshelby stress tensor) and the configuration
force (also referred to as the material force) are introduced in the
interpretation of the evolution of material microstructures such as defects
(Eshelby, 1951, 1956, 1970). The nature of the configuration force and
its application to fracture have been discussed by Stumpf and Le (1990),
Maugin and Trimarco (1992), Maugin and Berezovski (1999), Gurtin
(2000), Steinmann (2000), Steinmann et al. (2001), and Nguyen et al.

(2005), among others.
Eshelby (1970) recognized the use of the energy-momentum tensor in

the J-integral, that is,
J=[n-bal & =J%, (1.38)

where b=wIl—-c-uV is the energy-momentum tensor, J = _[rn~bd1" is
the configuration force (also referred to as the J, -integral vector), and
€, is the unit vector along the crack advance direction.
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For steady-state crack growth, the dynamic contour integral can be
rewritten as

J=[n-bal-e=]%, (1.39)

where b=(w+k)I-c-uV is the dynamic energy-momentum tensor,
and J = Ln -bdT is the dynamic configuration force. 5

Hence, the classic J-integral or its dynamic counterpart, the J -
integral, are the projection of the configuration force on the crack
advance direction. The material force (configuration force) method
affords a uniform treatment of complex material behaviors in inelastic
fracture, as demonstrated by Nguyen et al. (2005) for the quasi-static
case. The formulation requires only that the constitutive relations are
derived from a free energy density and that the evolution of inelastic
strain conforms to a dissipation potential.

For a simple illustration, the presentation is restricted to quasi-static
small-strain problems. An internal variable description of associative
elastoplasticity assumes the existence of a free energy density function
Y(e’,a) for an additive decomposition of the strain tensor into elastic
and plastic parts, that is,

e=¢g +¢€", (1.40)
where o is an internal strain governing the hardening behavior.

The energy-momentum tensor is defined as

b=¥Y(E,0)l-c-uV. (1.41)

Under quasi-static conditions, the resulting local balance of energy-
momentum relates the divergence of the energy-momentum tensor to two
material body force terms, each of which is the product of the gradient of
one internal strain and its thermodynamic conjugate stress, i.e.,

V-b+o6:Ve’ +q:Va=0. (1.42)

Consider a crack in an otherwise homogeneous body as shown in Fig.
1.8. In the material force framework, crack growth is treated formally as
a change in the material configuration. A contour I" with outward unit
normal N is defined to trace the external boundary of the body Q and
the crack surfaces. It is joined to a similarly defined contour I
surrounding the infinitesimal volume Qj containing the crack tip.
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Fig. 1.8. A crack in an otherwise homogeneous body. (From Nguyen et al., 2005, with
permission from Elsevier).

The global energy-momentum balance is obtained as

J.N-bds—lim [ [~(c:Ve’ +q:VayldV =lim [ N-bds. (143)

where the global material and dissipation forces are defined by

F™ = [ N-bdS —F™", (1.44)
dissip __ 1: _ . P .
F —%123 o0, (6:Ve' +q:VadV . (1.45)

The global material force corresponds to the path-domain integral
developed by Moran and Shih (1987a-b) and Simo and Honein (1990)
for elastoplasticity. For elastic problems, the global dissipation force
vanishes so that the global material force becomes path independent.

If the elastic strain energy density, U°, instead of the free energy
density, WV, is used to define the energy-momentum tensor in Eq. (1.41),
the result, in the absence of strain hardening, becomes the J , -integral
given by Kishimoto ef al. (1980):

Jo=] Wn ~noyu,;,)dS +lim szgg o,,,dV,  (146)

ik
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where SU =g, —¢&; are the components of eigenstrains (thermal strain,
plastic strain, etc.) in the formulation of Kishimoto and co-workers.

1.9 Cohesive Zone and Virtual Internal Bond Models

The cohesive zone or yielded strip models have been developed for
examining the crack-tip behavior of materials (e.g., metal, polymer, and
concrete) which may exhibit nonlinearity and viscosity by many
researchers, including Barenblatt (1959a—c, 1962), Dugdale (1960),
Irwin (1961), Knauss (1974), Schapery (1975), and Hillerborg et al.
(1976). In order to describe the inelastic behavior in the fracture process
zone ahead of a crack tip, it is assumed that the material along the crack
path obeys a specified traction-separation function in the cohesive
surface model (e.g., Tvergaard and Hutchinson, 1992; Xu and
Needleman, 1994).

2 Yielded strip or
}‘—a.{ cohesive zone
O
) 2 J

I 'l
P

Fig. 1.9. Dugdale—Barenblatt model.

As shown in Fig. 1.9, Dugdale (1960) applied this concept to the
problem of a Griffith crack in an elastic-plastic material on the
assumption that the opening of prospective crack surfaces ahead of the
crack tip be opposed by a closing stress equal to the yield strength of the
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material. The elastoplastic problem was thus turned into a simple elastic
one, which is similar to the analysis of the cohesive forces at a crack tip
by Barenblatt (1959a—c, 1962). The condition that the total stress
intensity factor for the Dugdale model must be zero for nonsingular
stresses yields

K, =0, —oWnl + 20'),\/zsin'1 (%j =0. (1.47)
) z

The extent of the cohesive zone is thus given by
d,=(-a)=a(secf-1), (1.48)

where

p=29 (1.49)
20,
If O'/ o, is small, Eq. (1.48) can be approximated as

d, =f{£] . (1.50)

8 o,

This expression can be compared with the estimation of the plastic
zone size by the Irwin approach (1961):

2
zi(ﬁj | 1.51)

Wells (1961, 1963) suggested that fracture in metals occurs when the
crack-tip opening displacement (CTOD) reaches a critical value. The
CTOD can be calculated from the elastic field (Goodier and Field, 1963)
as

80 .a
5[:( > jln(sec,b’). (1.52)
TE

Generally speaking, if the extent of the cohesive zone is small enough
compared to characteristic dimensions, regardless of the force-separation
law, the J-integral, the energy release rate, the stress intensity factor, and
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the crack-tip opening displacement are all equivalent fracture mechanics
parameters under small-scale yielding conditions, that is,

J:G:Kf/E’ :jj’ o(8)d5 . (1.53)

For limited amounts of crack extension, the tearing modulus approach
generally gives a more accurate assessment than that based only on the
critical J-integral at crack initiation. The crack-tip opening angle
(CTOA) appears to be an attractive alternative parameter in elastic-
plastic analysis of extended amounts of stable crack growth accompanied
by significant elastic unloading (Kannimen and Popelar, 1985).

Recent advances in nanotechnology have provided a strong impetus
for understanding the fracture behavior of nanoscale materials. Many
classical fracture mechanics concepts will no longer be applicable as the
characteristic dimension of a structure becomes comparable to or smaller
than the size of the cohesive zone near a crack tip. For example, no well-
defined crack front was observed in molecular dynamics simulations of
nanowire fracture (Walsh et al., 2001). Gao and Klein (1998) and Klein
and Gao (1998) developed a virtual internal bond (VIB) method with
direct incorporation of a cohesive interactive law into the constitutive
model so that crack initiation and growth become natural consequence of
the method without a presumed fracture criterion. Gao and Ji (2003)
applied the VIB method to study fracture in nanomaterials with a focus
on the features that are unique at nanoscale. They investigated the
transition of the fracture mechanism from the classical Griffith fracture
to one of homogeneous failure near the theoretical strength of the solid
with no stress concentration at the crack tip. Ji and Gao (2004) also
studied fracture mechanisms in biological nanocomposites via the VIB
method with a focus on the effects of protein and protein-mineral
interfaces. Volokh and Gao (2005) further proposed a modified VIB
(MVIB) formulation, which allows for two independent linear elastic
constants.

The VIB method was developed based on an extension of the so-
called Cauchy-Born rule for establishing continuum constitutive
equations with the use of atomic-like bond potentials. This is a multi-
scale assumption that relates the motion of atoms to continuum
deformation measures. Under this assumption, atoms in a crystal move
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according to a single mapping from the undeformed to the deformed
configurations. As the mapping is taken to be the deformation gradient F,
a link between the discrete microstructural description and the continuum
constitutive model is attained by equating the strain energy density to the
potential energy stored in a virtual network of internal cohesive bonds,

that is,
W(E,) =(UD)=(UUT+2£E,E)), (1.54)

where E,, =(C,, —J,,)/2 is the Lagrange strain tensor, also called the
Green-Lagrange strain tensor, C,, = F, F,, is the right Cauchy—Green
deformation tensor, U(/) is the bond potential, &, denotes the bond
orientation, / is the bond length, /, is the length of the unstretched bond,
and < . > is a weighted average with respect to a bond density function.

Thus, the symmetric (second) Piola—Kirchhoff stress can be obtained
from the derivative of the strain energy density function as

- <l v §,§,> (1.55)

u aEIJ
The finite-deformation form of the Jx-integral is given by
Ji =] W8y ~FT,)N,dr, (1.56)

where T, is the asymmetric (first) Piola—Kirchhoff stress tensor
satisfying the relation

I,F,=FX,F,=jo;. (1.57)

The onset of fracture predicted by the VIB model is not only
determined by the choice of the bond potential but also by the state of
deformation in the fracture process zone (Klein and Gao, 1998; Gao and
Ji, 2003; Ji and Gao, 2004). The size of the fracture localization zone h
can be evaluated via J-integral analysis by selecting a contour that lies
along the upper and lower edges of the localization zone (see Fig. 1.10):

he—o—Je (1.58)

DU (1)
The size of the fracture localization zone is correlated with the
fracture energy and the virtual bond potential of the VIB model. The
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cohesive surface models only apply the traction-separation law to the
crack plane rather than to the bulk of the material, whereas the VIB
method does not assume pre-existing weak paths and directly
incorporates the cohesive interactive law into the constitutive model on
the continuum level. A VIB-based finite element method (VIB-FEM) is
typically used to simulate the fracture process with crack nucleation and
growth represented by separation of two adjacent nodes near the crack
tip, resulting in localization of strain within one overstretched sheet of
mesh. An important difference between VIB-FEM and conventional
FEM lies in the specific physical meaning of the mesh size in VIB-FEM,
which is no longer a purely numerical concept as in conventional FEM.

Cohesive zone

Fig. 1.10. Illustration of fracture localization zone and J-integral contour. (From Gao and
Ji, 2003, with permission from Elsevier).



Chapter 2

Elements of Electrodynamics of Continua

Electrodynamics is a branch of physics which studies electric charges in
motion, whereas mechanics is the science of force and motion of matter
(Fung and Tong, 2001). Electrodynamics of continua or continuum
mechanics of electromagnetic materials is concerned with the behavior
of deformable electromagnetic materials modeled as continuous media
under combined magnetic, electric, thermal, and mechanical loadings.
The ten fundamental laws, namely (1) conservation of mass,
(2) conservation of linear momentum, (3) conservation of angular
momentum, (4) conservation of energy, (5) entropy inequality,
(6) Gauss’s law, (7) Faraday’s law, (8) Gauss’s law for magnetism,
(9) Ampere’s law, and (10) conservation of electric charges, may be
applied to material points (particles) at the continuum level. Since these
general physical laws are insufficient for formulating a deterministic
problem, it is necessary to specify the material laws, which rest upon the
axioms within the framework of continuum mechanics. In an attempt to
extend classical fracture mechanics to deformable electromagnetic
materials, we shall make a summary of the elements of electrodynamics
of continua in this chapter, including conventional terms and notations,
Maxwell equations, balance equations of mass, linear momentum,
angular momentum and energy, constitutive relations and transport laws
from the general nonlinear formulation to the simple linearized theory.
The reader who desires more information may refer to the literature,
from classical treatises (e.g., Landau and Lifshitz, 1960; Eringen, 1980;
Maugin, 1988) to recent papers (e.g., Dorfmann and Ogden, 2003-2006;
McMeeking and Landis, 2005; McMeeking et al., 2007; Vu and
Steinmann, 2007; Suo et al., 2008; Kuang, 2008; Bustamante et al.,
2009; Trimarco, 2009).

26
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2.1 Notations

In this section, physical terms and notational conventions are presented
for the statement of basic field equations and they will be used
throughout the book. Modeling a body as a continuum is a mathematical
approximation that is highly accurate when the characteristic length in
macroscopic phenomena is much larger than the atomic size. Under this
hypothesis, the atomistic structure of the body is ignored and
neighboring points remain as neighbors under any loading condition.

2.1.1 Eulerian and Lagrangian descriptions

The Eulerian (spatial) description, in terms of the spatial coordinates and
time, focuses on what is occurring at a fixed point in space as time
progresses, whereas the Lagrangian (material) description, in terms of
the material or referential coordinates and time, gives attention to
individual particles as they move through space and time. The choice of
two distinct coordinate systems (see Fig. 2.1), one for the reference
configuration at time f#, and the other for the current configuration at
time ¢, has many advantages in describing the motion and deformation of
a continuous body.

Fig. 2.1. Two coordinate systems for reference and current configurations.
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A position vector is used to characterize a particle within a deformable

body in the current configuration as
X= ixkék =Xx.€,, (2.1)
k=1

where x, are the spatial coordinates of the particle and €, are mutually
orthogonal unit base vectors in a Cartesian coordinate system for the
current configuration. The summation over the repeated index implied by
the last entry in the continued equality is adopted as a convention. An
index that is summed over is called the dummy index, and one that is not
summed over is called the free index.

This vector can be expressed as a function of the particle position in
some reference configuration; for example, the configuration at initial time,
that 1s,

X = iXKEK =X E;, (2.2)
K=l
x =%(X,1), 2.3)
with inverse
X=y¢'(x.0), 2.4)

where X, are the material coordinates of the particle and E, are
mutually orthogonal unit base vectors in a Cartesian coordinate system
for the reference configuration.

The vector joining the positions of a particle in the initial and current
configurations is called the displacement vector, that is,

u=x—-X. (2.5)
Vectors and tensors are represented by boldface and their components

are represented by means of subscripts throughout the book. The
rectangular components of a vector n and a second-order tensor A are

n,=n-¢€,ng=n-Eg, (2.6)
A;=€¢ A€, A, =E,-AE,, 2.7
where the dot denotes the inner product operator.

The inner product or the dot product of two vectors m and n is a scalar
with value
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m-n=n-m=J5,mn; =mn,, (2.8)

where 51:,- is the Kronecker delta symbol

1 fori=j
S =€ € = = 2.9)
/ 7|0 fori# j

The right or left dot product of a second-order tensor A and a vector n is
a vector with components

(An),=An,, M-A),=An,, (2.10)

The double dot product of two second-order tensors is a scalar with
value

A:B=B:A=AB,=BA,. 2.11)

The cross product of two vectors m and n is a vector 1 with components

[, =(mxn), =—(nXm), =¢&;mn;, (2.12)

where &;

;18 the permutation symbol

+1 if ijk is an even permution of 123
&; =4~ 1 if ijk is an odd permutionof 123 . (2.13)
0 otherwise

The nabla notations in the Eulerian and Lagrangian descriptions,
respectively, are given by

V=e, 9 , (2.14)
ox,
= 0
V,=E 2.15
R K aXK ( )
The deformation gradient is defined as
F=X_ % 5 oF, - X, €& ®F,, (2.16)

TOX oX,
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where the symbol ® is the dyadic product as an outer product of two
vectors and a comma is used to denote partial differentiation when
Cartesian coordinates are used. The index K after the comma denotes the
partial derivative with respect to X , , whereas the index k after the
comma denotes the partial derivative with respect to x, .

The Jacobian determinant is given by

ox, ox;, Ox
A
x X X
i =det(F) = |—2 - 2 2.17
=) = X, ax, @17
Ox; Ox;  Ox,
X, dX, dX,

The right and left Cauchy—Green deformation tensors are defined as
C=F"'F, (2.18)
b=F-F". (2.19)

The Lagrange strain tensor is defined as
E:%(C—I):%(FT-F—I). (2.20)

The material time derivative of a tensor A, denoted either by the
symbol d/dt or a superimposed dot, is defined as
A . OA
dA _ 4 9

A= 2.21
dt ot ( )

X
where X is kept constant during material time differentiation.

The velocity vector v is the material time derivative of the position
vector or the displacement vector of a particle, that is,

da_ . odu

V=——=Uu=—-

dt ot

The deformation rate tensor d is the symmetric part of the velocity
gradient, that is,

(2.22)

X

d Z%(VV+VV). (2.23)
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The vorticity vector ® is defined as

(D=%VXV. (2.24)

The convective time derivative of a vector m, denoted by a super-
imposed asterisk, is defined as

m=m-m-V)v+m(V-v). (2.25)

If a vector field m in the reference configuration is associated with a
vector field m in the current configuration by

m=jF"'-m, (2.26)

then the material time derivative of the vector field m is related to the
convective time derivative of the vector field m by

m=jF ' . (2.27)

2.1.2 Electromagnetic field

The electromagnetic field can be viewed as a combination of the electric
field and the magnetic field, which are mathematically represented as
vectors. The electric charge in a body may be positive or negative. The
motion of charged particles in a given direction is known as the electric
current. The Maxwell equations and the Lorentz force law have been
used to describe the way that charges and currents interact with the
electromagnetic field. It is known that the Maxwell equations are form-
invariant with respect to the Lorentz transformations. Since a high
velocity close to light speed is not easily achievable in solid material
media, to which this book is devoted, the Galilean approximation is
adopted hereafter instead of a relativistic treatment.

The electromagnetic field quantities in a fixed Galilean frame R, also
referred to as the laboratory frame, are denoted by P, E, D, M, B, H, j,.
where P is polarization, E is electric field, D=¢,E+P is electric
displacement, M is magnetization, B is magnetic induction, H = B/u, —M
is magnetic field, j, is total electric current, £, is vacuum permittivity, and
M, 1s vacuum permeability.

The field quantities in the co-moving frame R are introduced by
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E=E+vxB, (2.28)
M=M+vxP, (2.29)
H=H-vxD, (2.30)
Je=J.—4q,v, (2.31)

where E is electromotive intensity, j, is conduction current, and g, is
the free electric charge density.

2.1.3 Electromagnetic body force and couple

The force that the electromagnetic field exerts on electrically charged
particles is called the electromagnetic force, which is one of the
fundamental forces in nature. The other fundamental forces are the
strong interaction, the weak interaction, and the gravitational force. All
other forces are ultimately derived from these four fundamental forces.
The electromagnetic field contains electromagnetic energy with a density
proportional to the square of the field intensities. The Lorentz force law
that describes the force acting on a point charge due to the
electromagnetic field has been used to construct the expressions for the
electromagnetic body force and couple in continuous media.

The Lorentz force acting on a point charge dg“ in a microscopic
volume element (see Fig. 2.2) is

St = 5q* [e(x“) +v° xb(x“)] , (2.32)

where e(x?) and b(x“) are the microscopic electric field and the
microscopic magnetic induction at X%, respectively.

The electromagnetic force and the electromagnetic couple acting on the
microscopic volume element are given by, respectively,

fAV = og%e(x+E&%)+> g% (v +&“ +é“)xb(x +&%), (2.33)

AV => g% (x+E)xe(x+&%)
g o (2.34)
+2 0 (x+E)X(V+EY +E%)xb(x+£7)],
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where x+&% is the average position of the point charge &% and €% is
the fluctuation velocity.

Fig. 2.2. Microscopic volume element.

The macroscopic electromagnetic field quantities are introduced by

EXx)=e(x), (2.35)
B(x)=b(x), (2.36)
q;8v=%&", (2.37)
PAv =Y &°E", (2.38)
o
MAvy =%Z&1“Ef‘x&,“, (2.39)
jAV=Y&E" (2.40)
a
Thus, the expressions for the electromagnetic body force ,, f and the
electromagnetic body couple ,, ¢ are
=, E+(j, +P)xB+(P-V)E +(VB)-M, (2.41)

c=,, 1-xx,f=PxE+MXxB. (2.42)

em em
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Hence, polarization is related to the electric dipole moment,
magnetization is related to the magnetic moment, and conduction current is
related to the fluctuation velocity of charges (Mazur and Nijboer, 1953). A
material is electrically polarized if P is nonzero, whereas a material is
magnetized if M is nonzero. Materials can also be classified as conducting,
semiconducting, or insulating, based on their ability to conduct electric
current.

2.1.4 Electromagnetic stress tensor and momentum vector

There exist an electromagnetic stress tensor o, and an

em ' ij

electromagnetic momentum vector G, (Eringen, 1980; Maugin, 1988),
such that

3G,
=, 0,;— , 243
em fk em ik i 8t ( )
em Ck = 8kij em O-ij . (244)
One solution is
., 6=P®E—-B®M +(M -B)I+&E®FE
(2.45)
+B®B/uy—,,u’'l,

G=¢ExB, (2.46)

where ,, u’ =¢,E-E/2+B-B/(244,) is the energy density of the free
electromagnetic field, and I is the second-order unit tensor.
By introducing the Maxwell stress tensor involving only the free

electromagnetic field

6=, EQE+B®B/y,—, u'l, (2.47)
the electromagnetic stress tensor ,, 6 can be decomposed as
nO=F0+,,0 (2.48)
with
m0=POE-B®M+(M - -B)I. (2.49)

Therefore, the electromagnetic body force and couple can also be
expressed as
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em Je =L cFem O (2.50)

emCk = Exijem Oij s (2.51)
where f=¢g?E+j¥ xB=V.,6-0G/0t is the effective Lorentz
force, qeﬁ = qs —-V.P is the effective charge density, and
JiT=j + P+VxM is the effective current.

Hence, the electromagnetic stress tensor can be taken as an extension of
the Maxwell stress tensor in classical electrodynamics, which also involves
the contribution due to polarization and magnetization defined by Eq.
(2.49). For the special case of electrostatics or magnetostatics, we have the
electric  stress ,6=D®E—,u/T or the magnetic stress
20=B®H+M- B)I-, u’T with the corresponding energy density
denoted by ,u’ =€,E-E/2 or ,,u’ =B-B/(2u,).

2.1.5 Electromagnetic power

The electromagnetic power is the rate of work done by the
electromagnetic forces, that is,

emwAv:Z§q“(v+§“+é"‘)-e(x+§“). (2.52)

The useful equivalent expressions for the electromagnetic power density
in terms of different time derivatives are listed as follows:

emw:E-a—P—M-a—B+V-[V(E-P)]+je-E, (2.53)
ot ot
W= f-V+pE-"—M -B+j, E, (2.54)

wmWw=,f-v+_ c o+ o:d+E-P-M-B+j -E, (255)

where T=P/p is the polarization per unit mass and p is the mass
density.
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2.1.6 Poynting theorem

The Poynting vector, which represents the flux of the electromagnetic
energy, is denoted by S=EXH in the laboratory frame R; and by
S =E XH in the co-moving frame R .

The Poynting theorem in R gives the identity
H‘a—B+E~a—D=—jE~E—V‘S. (2.56)
ot ot

With use of this identity, the electromagnetic power density can be
expressed in a new form

f
emw=—aeg—?—v~[S—V(E-P)]- (2.57)

The Poynting theorem in R gives the identity
H-B+E-D=—j E-V-S. (2.58)

Using this identity, the electromagnetic power density can be expressed
in another form

d emuf
mW=—p— p +V-[(,,6+v®G) - v-S]. (2.59)

2.2 Maxwell Equations

With use of the notations in Section 2.1, the set of equations named after
James Clerk Maxwell are expressed in a fixed Galilean frame R, as

V-D=gq,, (2.60)

VXE+a—B=0, (2.61)
ot

V.-B=0, (2.62)

vxH-D _; | (2.63)
ot

Equation (2.60) is Gauss’s law that relates the divergence of the
electrical displacement to free charge density, Eq. (2.61) is Faraday’s law
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that describes how a changing magnetic field is related to the induced
electric field, Eq. (2.62) is Gauss’s law for magnetism which shows that the
magnetic induction has zero divergence, and Eq. (2.63) is Ampere’s law
which states that magnetic field can be generated either by an electrical
current or by a changing electric field. From Egs. (2.60) and (2.63), the
electric charge balance equation is obtained as

)

Ay, (2.64)
ot

In the co-moving frame R, the Maxwell equations are rewritten as

V-D=g,, (2.65)

VXE+B=0, (2.66)
V-B=0, (2.67)

VxH-D=j . (2.68)

With the 1ntr0duct10n of the correspondmg Lagrangian fields O, = jq iz
D=/F'-D, B=/F" ‘B, E=E-F, H= H-F,and J,=F " j,
the material formulations of the Maxwell equations (Lax and Nelson, 1976;
Trimarco, 2002, 2009) are given by

Ve D=0,, (2.69)
V. xE+B=0, (2.70)
V, B=0, (2.71)
V. xH-D=1J,, (2.72)

where B = jF'B and b= JF'D are used following the relation (2.27).
The material formulation of the electric charge balance equation is
obtained from Egs. (2.69) and (2.72) as

-0, =Vy-J,. (2.73)

If field quantities are discontinuous across a surface moving at a speed

v, , the Maxwell equations and the charge balance equation are replaced by
the following jump conditions in the Eulerian description (Eringen, 1980):
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n[[D]]=a,,
nx[[E+Bx(v—-v)]]=0
n-[[B]]=0,
nX[[H-Dx(v-v)]]=0

(7, +q,( m+&”w
n Je q.f v vs é_-t -

(2.74)

(2.75)
(2.76)
(2.77)

(2.78)

where [[---]] represents the jump of the field quantity inside the double
square brackets across the moving surface, 0 / ot denotes the convective
time derivative operator following the motion of the surface along its
normal, n is the unit normal to the surface, and @, is the free surface

charge density.

Interface or boundary conditions for electromagnetic field quantities in
the Eulerian description can be obtained by considering a special surface of

discontinuity moving at the speed v, = v, that is,
n[[D]]=a,,
nx[[E]]=0,
n-[[B]]=0,
nx[[H]]=0,

=0.

mn+&”
n- —
Je 3

(2.79)

(2.80)
2.81)
(2.82)

(2.83)

In the Lagrangian description, the jump conditions across a surface of
discontinuity moving at a speed V' through the material can be rewritten as

N-[[D]]=4
Nx[[E-BxV,]]1=0,
N-[[B]]=0,
Nx[[H +DxV 1]1=0,

N-[lJ, -0,V ]l+—=L =0,

(2.84)

(2.85)
(2.86)
(2.87)

(2.88)
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where V., =F' v, V=F"'.v, & =@,da/dA, N=j'n-Fda/dA is
the unit normal of the moving surface in the initial configuration, and
daldA= j\|NgCy N, is the ratio of the area elements in the current
configuration to those in the reference configuration.

Interface or boundary conditions for electromagnetic field quantities in
the Lagrangian description can be obtained as the surface of discontinuity
coincides with the interface or boundary considered, that is,

N-[D]]=, (2.89)
Nx[[E]]=0, (2.90)
N-[[B]]=0, 2.91)
Nx[[H]]=0, (2.92)
N-[[J 11+ 5?; =0. (2.93)

2.3 Balance Equations of Mass, Momentum, Moment of
Momentum, and Energy

Following the notations in Section 2.1 we use conservation laws in order
to derive the local field equations for balance of mass, momentum (linear
momentum), moment of momentum (angular momentum), and energy,
in addition to the Maxwell equations. These balance equations are valid
irrespective of material constitutive laws.

Based on the law of conservation of mass, the local mass balance
equation is given by

E = bV, (2.94)

where pis the mass density in the current configuration.
In the material formulation, the local mass balance equation can be
rewritten as

Po=Jp . (2.95)

where p, is the mass density in the initial configuration.
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Based on the law of conservation of momentum, the local linear
momentum balance equation is given by

p%zv'0+pf+emf, (2.96)

where ¢ is the Cauchy stress tensor and f is the mechanical body force
per unit mass.

Based on the law of conservation of angular momentum, the local
angular momentum balance leads to

C,+,¢, =0 (2.97)

gy em

&

Using the electromagnetic stress tensor ,,6 and the electromagnetic
momentum vector G defined in Egs. (2.45) and (2.46), Egs. (2.96) and
(2.97) become

pﬂzv-(o+emo)+pf—a—G, (2.98)
dt ot

gkij (Gij +em Gij ) =0. (299)

Thus, the total stress tensor ,6=6+,,6 is symmetric, that is,
,0;; = ,0;, although the Cauchy stress tensor or the electromagnetic stress
tensor may not be symmetric.

In the material formulation, the local linear and angular momentum

balance equations can be rewritten as
Po(V+8) =V, (,T+p,VO8) +p,f, (2.100)
gkijF;LtTLj =0, (2.101)

where g=G/p is the electromagnetic momentum per unit mass and
,T=jF'. o is the first Piola—Kirchhoff total stress tensor.

Based on the conservation law of energy, the local energy balance
equation is given by

p%z—v-jq+0:VV+pE-1't—M-B+E-je, (2.102)
t

where ¢ is the internal energy per unit mass and j, is the heat flux.

Applying Poynting’s theorem as discussed in Section 2.1.6, the local
energy balance equation (2.102) becomes
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p%(é+l€+emﬁf)=—vejq +V~[(,c+v®G)-v—S]+pfov,
(2.103)

where mﬁf =emuf / p is the energy of the free electromagnetic field per

(4

unit mass.
In the material formulation, the local energy balance equation can be
rewritten as

Lol + pok+ Py, il =-V, J,+ Ve L(T+V®E)-v-S1+p,f-v,
(2.104)
where J, = jF -j, and SA':jF_l -S.
If field quantities are discontinuous across a surface moving at a speed

v,, Egs. (2.94), (2.98), and (2.103) are replaced by the following jump
conditions:

n-[[p(v-v)ll=0, (2.105)
n-[[(v-v,)®pv—(,6+v, ®G)]] =0, (2.106)

n-[[(v—v,)(pé + ph+,,u’ ) +j, ~(,6+VOG) v+S]]=0.
(2.107)

Interface or boundary conditions for total traction and heat flux in the
Eulerian description can be obtained by considering a special surface of
discontinuity moving at speed v, = v, that is,

n-[[[,6+v®G]]=0, (2.108)
n-[[j, -(,6+v®G) v+S]]=0. (2.109)

In the Lagrangian description, the jump conditions across a surface of
discontinuity moving at a speed V through the material can be rewritten as

N-[[py(-V)11=0, (2.110)
N-[[(-V,)® py(v+8)—(T+p,V®E)=0, (2.111)

N-[[(-V)(Poé + pok + Py unit’ Y+, ~(T+V®E)- v+S811=0.
2.112)
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Interface or boundary conditions for total traction and heat flux in the
Lagrangian description can be obtained as the surface of discontinuity
coincides with the interface or boundary considered, that is,

N-[[,T+p,V®§l1=0, (2.113)
N-[[J,~(T+V®g)-v+S]]=0. (2.114)

2.4 Constitutive Relations

The Helmholtz free energy per unit mass is defined as

A

h=é-T5, (2.115)

where T is the absolute temperature and § is the entropy per unit mass.
Substituting (2.115) into (2.102) yields

ﬁ:_Lv.j +LGZVV+1E-7:C—LM-B
d  pT "% pT T pT
A (2.116)
1 1,.. 1dh
+—E-j,——5§T———.
T T T dt
The entropy production inequality is
ﬁ5£+lv.jszo, (2.117)
dat dt p

where j; is the entropy flux.
In the reference configuration, the entropy production inequality can be
rewritten as
di _ &5 1y 5 so, (2.118)
dt dt p,

where J, = jF"-j..
Substituting (2.116) into (2.118) gives

d.s 1 J 1 1 1 A
R RLES Shr e AL A~ LaL

Po Po Po A 2.119)
e L ipa-Lt gLty L1dy,

2p,T poT poT T T dt
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where ,X=jF"-,6-(F")" is the second Piola—Kirchhoff stress tensor
conjugate to the right Cauchy—Green deformation tensor C,
y06=06+, 6—,.6=,6—,6 iS symmetric, E=E-F, I=F'P,
M=M-F,B=F"B,J =F"j andJ,=F" j,.

Material laws should satisfy the restrictions imposed by the fundamental
principles of thermodynamics. As an illustration, we focus on the behavior
of a typical magneto-electro-thermo-elastic solid for which the Helmholtz
free energy h is taken to be a function of deformation, temperature,
temperature gradient, polarization, and magnetic induction in the reference
configuration V, with respect to which the deformation gradient F is

measured, that is,
h=h(C,T,V,T,11LB;X) . (2.120)
Since the entropy production inequality (2.119) should always be valid,

it is necessary and sufficient that the state equations fulfill the following
conditions:

8aTi _0. (2.121)
=2 @12
gz_g_i, (2.123)

E, :po%, (2.124)

M, :_p()%, (2.125)

5, :%Jq, (2.126)
cj;fszqu.th lTEJezo. (2.127)
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From Eq. (2.121), the Helmholtz free energy does not depend on the
temperature gradient. Since the inequality (2.127) should always be
satisfied, transport laws for coupled heat conduction and electricity
conduction can be determined accordingly.

It is proposed that the thermodynamic fluxes for heat conduction and
electricity conduction depend linearly on the corresponding thermodynamic
forces with the Onsager reciprocity relations, that is,

. 1 14,
Jq=L‘”~VR?+?L‘] -E (2.128)
J, =L ~VRl+lIZ“ E, (2.129)
T T
where the coefficient matrix
faa [ae r | R B
[ e [ ee = [ e ree | (2130)
L L L L

is positive definite. It can be seen that the generalized transport laws
(2.128) and (2.129) contain Fourier’s law and Ohm’s law as well as the
Peltier—Seebeck effect.

Thus, the coupled heat transfer equation is obtained from Eq. (2.116)
with the use of the state equations as

d{ on 1 1
4B v +—Ej. 2.131
dt( aT] oT Jg oT Je ( )

2.5 Linearized Theory

Nonlinear constitutive equations incorporating magneto-electro-thermo-
mechanical coupling effects can be formulated when the free energy is
expanded in its arguments. In the reference configuration V,, expansion
of the Helmholtz free energy with respect to strain, temperature,
polarization, and magnetization for an anisotropic magneto-electro-
thermo-elastic solid to the second-order terms gives
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Poh = pohy _p0809+EZ(I)<LEKL + Elgﬁk _Mlo(ék
+ECKLMNEKLEMN - fAZKLEkLHM - fnl;KLEKLBM
1 ~AoA 1 A A PN (2.132)
+E§KLHKHL __ZgLBKBL — A 1 By

1
_FC 92 ~ B B 60— 7’1};H 60— 7’1<B o,

where the Lagrange strain tensor E=(C—I)/2 and the temperature
change 6 =T —T, are used, x> fuxe Fuxes $es s Xkos Cos
Bii» Vi Vi are material properties, Cguy = Cynkrs Sk =ik
B _ B
ke =Xik -
Substitution of Eq. (2.132) into Egs. (2.122)—(2.125) yields anisotropic
constitutive equations in finite deformation:

A

EZKL:EZ(I)(L +CxvEuy — Fo XLy fMKL — B0, (2.133)
E :EO _flfLMELM +;KLH — A 71(9 (2.134)
M MO +fKLMELM +/1L1<H +ZKL +7K (2.135)

PoS=PoSo + P Br + 7 + 8By +T_CH0' (2.136)

0
The first terms on the right-hand sides of Eqgs. (2.133)-(2.136) stand
for the values of X, E K> M x»and p,§ in the reference state, the

second terms for mechanical contribution, the third terms for electric
contribution, the fourth terms for magnetic contribution, and the last
terms for thermal contribution.

By linearization about the initial configuration, Eqgs. (2.133)—(2.136)
become

EOu= le *+ Cimn Em —fom it P = 1, nﬁcle - 5,0, (2.137)
E, = El(cJ - fklmglm +Cu b _lszz - 715)‘9 . (2.138)
Mk:MJ?"‘fkgnglm+/7“lkPl+ZlgBl+71fe’ (2.139)

~ n 1
PoS = PoSo + Bu€u + 71:3P1< + 7£Bk +T_CH9 , (2.140)
0

where €, =(u,,, +u,, )/2 is the infinitesimal strain.

}’l m
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With the use of P=D—-¢,E and M =B/y, —H, we can rewrite Eqgs.
(2.137)—(2.140) with the strain, electric field, magnetic field, and
temperature change as independent variables:

ECU=EO0 * ComnErn — Ct Eny =M H ,, = 51,0, (2.141)

D, =D} +e, ¢, +Kk E +g,H, +0,6, (2.142)

B, = Bl? +hyEim + 8w E + 1y H ) + 14,7,6 (2.143)

~ ~ 1
PoS = PoSo + Bu€u + OE, +1,v,. H, +T_CV9' (2.144)
0

By transformation, we can also rewrite Eqs. (2.141)—(2.144) with the
stress, electric field, magnetic field and temperature change as independent
variables:

gkl = gl(c)l + Sklmn Eo-mn +d;§klEm +dr1r;1lem + (Zkle ’ (2145)
D, =D} +d},, ,0, +kJE +g H, + a0, (2.146)
B, =B} +d}, ;0,, + i E, + ugH, +1,7{ 6, (2.147)

A A 1
PoS = PoSo + 0y Oy + O E, + 1V H, +7C”0' (2.148)
0

It is obvious that the material constants in the equivalent constitutive
representations are related, which means that material constants in one
constitutive representation can be transformed to those in another
constitutive representation. Material constants are subjected to constraints
imposed by the thermodynamic requirement for stable materials (Alshits et
al., 1992). The physical meanings for commonly used material constants
are listed in Table 2.1.
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Table 2.1 Physical meanings of material constants

Symbol Physical Meaning

Ciamn = Counkl = Clionn = Ckinm elastic moduli

K= Ki dielectric permittivity

Pt = ik magnetic permeability

€kl = Coik piezoelectric coefficients
Nyt = Mot piezomagnetic coefficients
8u magnetoelectric coefficients
Wy pyroelectric coefficients

Vi pyromagnetic coefficients
Pu thermal moduli

C, specific heat

Materials with nonzero e, exhibit piezoelectricity, that is,
mechanical load can produce electric polarization or electric field (direct
effect) and, vice versa, electric load can produce deformation or stress
(inverse effect). The direct piezoelectric effect was first discovered by
Pierre Curie and Jacques Curie (1880) in some crystals such as
tourmaline and quartz. A year later, the inverse piezoelectric effect was
theoretically predicted by Lippmann (1881) and subsequently confirmed
experimentally by the Curies (1884). By analogy, materials with nonzero
h,, e€xhibit piezomagnetism, that is, mechanical load can produce
magnetization or magnetic field (direct effect) and, vice versa, magnetic
load can produce deformation or stress (inverse effect). The first
experimental observation of piezomagnetism was made by Borovik-
Romanov (1960) in the fluorides of cobalt and manganese.

Materials with nonzero @, exhibit pyroelectricity, that is, temperature
change can produce electric polarization or electric field (direct effect) and,
vice versa, electric load can produce temperature change (inverse effect).
Correspondingly, materials with nonzero y, exhibit pyromagnetism, that
is, temperature change can produce magnetization or magnetic field (direct
effect) and, vice versa, magnetic load can produce temperature change
(inverse effect).

The cross terms due to nonzero g, represent the magnetoelectric
coupling effect. The co-existence of piezoelectric, piezomagnetic and
magnetoelectric coupling is called the magneto-electro-mechanical
coupling. Advances in state-of-the-art technology have facilitated the
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formation of new monolithic materials and the synthesis of composite
materials, which, remarkably, breaks down the performance barriers
encountered with conventional materials. We refer the readers to the
Handbook of Electromagnetic Materials: Monolithic and Composite
Versions and their Applications (Neelakanta, 1995) for detailed
classification of different classes of electromagnetic materials and
characterization of various material properties.

In summary, the full set of dynamic field equations of coupled magneto-
electro-thermo-elasticity are listed as follows:

Maxwell equations:

V-D=g,, (2.149)
vxe+ B o, (2.150)
ot
V-B=0, (2.151)
VxH—a—Dsz. (2.152)
ot
Equation of continuity:
P _ .y, (2.153)
dt
Equation of motion:
dv ~ JdG
—=V. o+ pf —. 2.154
Par ot ot ( )
Heat transfer equation:
pT§=—V~jq+E~je. (2.155)
dt
Infinitesimal strain-displacement relation:
e=(Vu+uV)/2. (2.156)
Constitutive relations (linearized theory):
E O-kl = Cklmn gmn - emkl Em - hmlem - ﬁkle ’ (2 157)

Dk :eklnlglnz+KklEl+gk[H[+wk09 (2158)
By =Ny, €4, + 84 Ey + iy H ) + 14,7,6, (2.159)
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. 1
PoS =Py +OE, + 1,y H, +FCV9’ (2.160)
0
j, =k -VO+T k" E, (2.161)
j,=-Kk“VO+k“ E. (2.162)
Jump conditions:
n-[[D]]=a,, (2.163)
nXx[[E]]=0, (2.164)
n-[[B]]=0, (2.165)
nx[[H]]=0, (2.166)
_ 5w,
n-[[j, +qf(v—vs)]]+7=0, (2.167)
n-[[p(v-v)ll=0, (2.168)
n-[[(v-v,)®pv—(,6+v,®G)]]=0, (2.169)
n-[[(v—v,)(pé+ pk+,,u’ ) +j,~(,6+V®OG) - v+S]]=0.
(2.170)
Initial conditions:
|[:t0 =u,, (2.171)
|t:t0 =v,, (2.172)
T|_ =T, (2.173)
E_ =E,. (2.174)
H_ =H,. (2.175)

Boundary conditions may be obtained by letting v, =v in the jump
conditions (2.163)—(2.170). Prescribed boundary and initial conditions must
be compatible with uniqueness of solution.

In the classical linear theory of piezoelectricity (Voigt, 1910) and its
extension, all fields are small so that stress and momentum due to the
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electromagnetic effects become second-order and can be omitted in the
formulation, i.e., ,,06=0, ,0=0, G=0.

In practice, it is sometimes convenient to introduce the so-called Voigt’s
notation with the relations between the indices 11 — 1,22 — 2,33 — 3,23
— 4,31 — 5, and 12 — 6 so that constitutive equations (2.157)—(2.162)
may be expressed in matrix form as

{r,}=lc,, e, ~le,, " {E,}~[h,, 1" {H,}-{B,10., (2.176)
{D,}= [ekq]{gq}+[Kkl]{E[}+[gkl]{H[}+{a)k 16, (2.177)

(B} =y e )+ g 1 H{E ) + 1y HH } + (7,10 . (2.178)

> em

Pus =B 1€, 1+ @) (E )+ py 1) (H, ) +--C.0, (2.179)

0
{jiy=—1k{"1-{0,} + T, [k NE,}, (2.180)
(i} =1k 146, ) + ki NE, ), (2.181)

where
(7,1 ={6 C1125 O ok O350 Oy 0315 O1n ) s (2.182)
{€,}={€),.65.653.2613.265, .26, 1, (2.183)

Cn € CG3 €y Cs5 Cp
Cla Cop Cp3 Cyy Gy Cyg
tE Ci3 Co3 C33 Cx G35 Csg ’ (2.184)
Cly Coqg C3q Cyy Cy5 Cyg
Cis Cps C35 €45 Cs5 Cs

Cl6 C26 C36 Ca6 Cs6 Cop

[k 1=K, K»n Kyl (2.185)

(1= My M Hos |s (2.186)
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€ € €G3 €y €5 €

leg1=]€ exn ey ey €5 exl, (2.187)
€3 €xn €33 €3 €35 €
by hy by by hys g

(1= hyy hy hyy hyy hys By |, (2.188)
hyy hy hyy hyy s By

i 812 813
[gul=|821 8&»n &»n| (2.189)
831 8% 833
(o) ={o o o} (2.190)
Y =n »n nrh (2.191)
{ﬁq}T:{ﬂ1 ﬁz ﬂ3 :34 :85 ﬂs}’ (2.192)
ik ke
ki 1=k k3 k55 |, (2.193)
ks kY kS
kiv ki kS
kg 1=\ kiy k35 Ky |, (2.194)

ee ee ee
k13 k23 k33

kil kg ki
i 1=k =| kst k3d ks? |, (2.195)

eq eq eq
k31 k32 k33

The number of material properties required for coupled multifield
analysis depends on the material type. For a general anisotropic material,
there are a total of 21 (elastic stiffness) + 6 (dielectric permittivity) + 6
(magnetic permeability) + 18 (piezoelectric coefficients) + 18
(piezomagnetic coefficients) + 9 (magnetoelectric coefficients) + 3
(pyroelectric  coefficients) + 3 (pyromagnetic coefficients) + ©6
(thermoelastic coefficients) + 1 (specific heat) + 6 (thermal conductivity) +
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6 (electric conductivity) + 9 (thermoelectric coefficients) = 112 independent
material constants.

The material constant matrices for the special case of transverse
isotropy with the x, -axis in the poling direction become
¢y ¢o ¢35 0 0 O
¢, ¢y ¢3 00

0
0
[c,,]=|0 0 0 ¢, 0 0 . (2.196)
0
1
2

O 0 0 o0 O (c;y—c¢py)
'k, 0 0]
[k,1=| 0 &, 0|, (2.197)
10 0 &y
o 00
(,1=| 0 4, O |, (2.198)
L0 0 sy
[0 0 0 0 e5 O
[e,]=|0 0 0 e5 0 O, (2.199)
€3 €3 €3 0 0 0
0 0 0 0 Ay O
h,1=|0 0 0 hs O Of (2.200)
hyy hy hyy 00 0
811 0 0
[gul=| O g, O |, (2.201)
0 0 833
(o) =0 0 a}, (2.202)
) =0 o 7} (2.203)

BN =18 B B 0 0 O} (2.204)
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ki 00
[ki]1=| 0 ki 0 |, (2.205)
0 0 k¥
kS 0 0
k1= 0 & 0 |, (2.206)
0 0 k&
k00
ki 1=[kX1 =] 0 kT 0 | (2.207)
0 0 kU

It can be seen that the transversely isotropic material symmetry reduces
the number of independent material constants from 112 to 28, comprising 5
(elastic stiffness) + 2 (dielectric permittivity) + 2 (magnetic permeability) +
3 (piezoelectric coefficients) + 3 (piezomagnetic coefficients) + 2
(magnetoelectric  coefficients) + 1 (pyroelectric coefficient) + 1
(pyromagnetic coefficient) + 2 (thermoelastic coefficients) + 1 (specific
heat) + 2 (thermal conductivity) + 2 (electric conductivity) + 2
(thermoelectric coefficients).

In particular, for piezoelectric materials with hexagonal symmetry (class
C¢, =6mm ) in the absence of electricity conduction, the number of
independent material constants may be further reduced to 16, consisting of
5 (elastic stiffness) + 2 (dielectric permittivity) + 3 (piezoelectric
coefficients) + 1 (pyroelectric coefficient) + 2 (thermoelastic coefficients) +
1 (specific heat) + 2 (thermal conductivity).

In crystallography, a point group, also called a crystal class, is a set of
symmetry operations like rotations or reflections. There are 32 possible
combinations of symmetry operations, resulting in 32 point groups. 20 of
the 32 crystal classes exhibit piezoelectricity, which is the property of
nearly all non-centrosymmetric crystals. Only 10 of the 20 piezoelectric
crystal classes exhibit pyroelectricity, which is the property of all polar
crystals. Crystal classes are commonly represented in the Schoenflies
notation and the Hermann—Mauguin notation (Ikeda, 1990; Hahn, 2005).
C, 1s in the Schoenflies notation, where the character “C” is for cyclic,
the subscript “6” for six-fold rotation axis and “v” for vertical mirror planes
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containing the axis of rotation. 6mm is in the Hermann—-Mauguin notation,
where the first character refers to the primary symmetry direction (six-fold
rotation axis) and the second and third characters refer to the secondary and
tertiary symmetry directions (mirror planes).

The quasi-electrostatic approximation indicates that there is almost no
change in the magnetic field with time. Thus, Faraday’s law (2.150) can be
simplified to

VXE=0. (2.208)

As a result, the electric field E is related to a scalar function called the
electric potential ¢ through

E=-Vg. (2.209)

The quasi-magnetostatic approximation indicates that there is almost no
change in the electric displacement with time. Thus, Ampere’s law (2.152)
can be simplified to

VxH=j,. (2.210)

If the electric current can be ignored, the magnetic field H is related to a
scalar function called the magnetic potential ¥ through

H=-Vy. 2.211)

For some applications, both quasi-electrostatic and quasi-magnetostatic
approximations may be made without loss of accuracy. Since the basic field
equations for anisotropic magneto-electro-thermo-elastic problems have a
similar mathematical structure to those for anisotropic elastic and
thermoelastic problems, the existing solution procedures in anisotropy
elasticity as reviewed by Ting (1996, 2000) can be readily extended to
multifield analysis. Among the powerful techniques for solving two-
dimensional problems in anisotropic elastic materials, the Lekhnitskii
formalism (Lekhnitskii, 1950) starts with the stress functions and then the
compatibility equations, whereas the Stroh formalism (Stroh, 1958) starts
with the displacements and then the equilibrium equations. The solution
techniques for crack problems in electromagnetic materials will be
discussed in Chapters 4-8.



Chapter 3

Introduction to Thermoviscoelasticity

Hysteresis effects pose new challenges for the modeling of deformation
and fracture processes in time-dependent materials. In this chapter, we
will outline the basic equations of thermoelasticity, viscoelasticity and
thermoviscoelasticity as prerequisites for understanding the subject
matter in later chapters. Further information may be found in the books
by Williams (1973), Eringen (1980), Ferry (1980), Christensen (1982),
Ward (1983) and Fung and Tong (2001). The reader who is familiar with
these theories may skip this chapter.

3.1 Thermoelasticity

Consider an anisotropic thermoelastic body subjected to external forces
and heating. The reference state is taken as the initial stress-free state at
the reference absolute temperature, 7;,. The temperature change from the
reference state is

O=T-T,, 3.1)

where T is the instantaneous absolute temperature.

A transient coupled thermoelastic problem is mathematically
formulated with basic equations and appropriate boundary and initial
conditions as follows.

Equation of continuity:
P==pv,;. (3.2)
Equations of motion:

Py, =0, +pf. (3.3)

55
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Infinitesimal strain-displacement relation:

& :%(ui’j +u;,). (3.4)
Duhamel-Neumann relation:
0, =Cy€y — ;0. (3.5)
Fourier’s law for heat conduction:
Ji=—k;0 ;. (3.6)
Heat transfer equation:
PT, By +pC.o=—j.. (3.7
Initial conditions:
oy =0 (3.8)
u|l:l0 =v,, 3.9
., =0. (3.10)
Boundary conditions:
u=u, onJS,, (3.11)
n-c=t, onS_, (3.12)
6=6, on S,, (3.13)
n-j =gz onS, (3.14)

where S[] refers to a certain part of the boundary: displacement is
prescribed on S, traction on S, (the complement of §,), temperature
on S,, and heat flux on S, (the complement of S, ). Therefore, we have
S,uS, =S8 and S,US, =S . Other mixed boundary conditions may
also be possible which satisfy the existence and uniqueness theorem
(Eringen, 1980; Fung and Tong, 2001).

It is usually rather difficult to solve boundary-initial value problems
involving coupled effects under transient conditions. As discussed by
Fung and Tong (2001), uncoupled, quasi-static approximations may be
made in most engineering applications by omitting the coupling term in



Introduction to Thermoviscoelasticity 57

the heat transfer equation (3.7) and the inertia term in the equations of
motion (3.3).

3.2 Viscoelasticity

Viscoelastic materials such as polymers display the characteristics of
both elastic solids and viscous fluids. Accelerated test methods have
been developed based on the time-temperature superposition principle
(TTSP) under the approximation that at higher temperatures and shorter
time periods a polymeric material will behave the same as at lower
temperatures and longer time periods. The material behavior can be
modeled by various combinations of springs and dashpots to represent
elastic and viscous components. The simplest models of linear
viscoelasticity are the Maxwell model and the Kelvin—Voigt model
(Ward, 1983; Fung and Tong, 2001), which comprise an elastic spring
and a viscous dashpot in series or parallel (Fig. 3.1).

o c

Enm
E, My

MNm

(a) (b)

Fig. 3.1. Simplest models of linear viscoelasticity: (a) Maxwell model and (b) Kelvin—
Voigt model.
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For the Maxwell model, the spring stress is equal to the dashpot
stress, and the total strain is a sum of the spring strain and the dashpot
strain. Thus, we have

de 1d0' o

. 3.15
dr E dr n, G-15)

By integration with a specified step function for strain € =¢£,h(t), Eq.
(3.15) becomes

c()=E, e, exp(—ij , (3.16)
T

where 7=77, / E, is called the relaxation time.
The generalized Maxwell model is represented by multiple Maxwell
elements arranged in parallel, that is,

o)=Y E,| exp (——] de) 4 3.17)

T, dt

where E, and 7, are the spring constant and the relaxation time of the
n"™ Maxwell element.
The above summation can be written as a convolution integral

de(t )
dr

o= Gu- dr (3.18)
where  G(1)=G, +J.:H (v)exp(—t/7)dr is called the relaxation
function, G, is the relaxed modulus, and H(7) is the relaxation time
spectrum.

Let 0,(t) and £;(7) be the stress and strain tensors defined in the
time interval —eo <t <oo. Equation (3.18) can be extended to a three-
dimensional, anisotropic constitutive law of the relaxation type:

,0=] Gt —z)dgkf(t) , (3.19)

where G, (7) is called the tensorial relaxation function.

By contrast, for the Kelvin—Voigt model, the spring strain is equal to
the dashpot strain, and the total stress is a sum of the spring stress and the
dashpot stress. Thus, we have
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de
oc=Eec+n —. 3.20).
yE 1], o (3.20)

By integration with a specified step function for stress, o =0,h(?),

Eq. (3.20) becomes
o, t
=—1—-exp| — ||, 3.21
2ol 621

where =7 /E, is called the retardation time.
The generalized Kelvin—Voigt model is represented by multiple
Kelvin—Voigt elements arranged in series, that is,

&)= Z I {1 ex( . j:|djt(t) t, (3.22)

n

where E, and 7, are the spring constant and the retardation time of the
n"™ Kelvin—Voigt element, respectively.
The above summation can be written as a convolution integral

dO'(t )

ew=[ J@-1) (3.23)
where J(t)=J, + IO L(T)[l—exp(—t/ ”L')]df is called the creep function,
J, 1is the instantaneous compliance, and L(7) is the retardation time
spectrum.

Similarly, Eq. (3.23) can be extended to a three-dimensional,
anisotropic constitutive law of the creep type:

kl( D (3.24)

g,(t)= j Ty (£ = 1) ==
where Jy;, (7) is called the tensorial creep function.

It has been shown that the inverse of Eq. (3.19) exists and can be
written as Eq. (3.24) if G, (?) is twice differentiable and the initial value
of G, (r) at t=0 is nonzero (Gurtin and Sternberg, 1962). Discussions
on the thermodynamic restrictions on these functions and applications of
the Laplace transform to solving linear viscoelastic problems can be
found in the books by Christensen (1982) and Fung and Tong (2001).
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3.3 Coupled Theory of Thermoviscoelasticity

The fundamental principles of thermodynamics have been applied to
physical, chemical, mechanical, and biological processes in several ways
(e.g., Groot and Mazur, 1962; Eringen, 1980; Truesdell, 1984; Muller
and Ruggeri, 1993; Fung and Tong, 2001; Truesdell and Noll, 2004). As
pointed out by Schapery (2000) in an overview of constitutive, fracture,
and strength models for nonlinear viscoelastic solids, nonequilibrium
thermodynamic approaches are, essentially, of two types. In state-
variable thermodynamics, the free energy is expressed as a function of
current strain (stress), temperature, and other variables, including so-
called internal state variables (e.g., Coleman and Gurtin, 1967; Rice,
1971; Schapery, 1969, 1994, 1997, 1999; Horstemeyer and Bammann,
2010). In functional thermodynamics, the free energy is expressed as a
functional of the histories of strain (stress), temperature, etc. (e.g.,
Coleman, 1964; Crochet and Naghdi, 1969; Cost, 1973; Eringen, 1980;
Christensen, 1982; Lustig et al., 1996; Caruthers et al., 2004; Chen and
Wang, 2006). The use of “functional” as a mathematical term originates
in the calculus of variations, which is concerned with the minimization of
a functional with its arguments as functions. Here, we will summarize
the thermodynamic formulation of a coupled theory of
thermoviscoelasticity at finite deformation.

3.3.1 Fundamental principles of thermodynamics

Based on the first principle of thermodynamics, the local balance
equations of mass, momentum, moment of momentum, and energy are
given by

dp
o _pV.v, 3.25
” P (3.25)
pﬂzv-mpf, (3.26)
dt
o =0, (3.27)
de .
p—:—V‘Jq+0':vV, (3.28)
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where p is mass density, v=u is velocity, u is displacement, f is
mechanical body force per unit mass, ¢ is the Cauchy stress tensor, € is
internal energy per unit mass, and j, is heat flux.
Based on the second principle of thermodynamics, the entropy
production inequality is given by
ds _ds 1 .
——=—+—-V-j 20, (3.29)
. dt p
where § is the entropy per unit mass and j, is the entropy flux.
In the reference configuration V,, the entropy production inequality
can be rewritten as
d;s ds 1
——=—+—V,-J 20, (3.30)
d dt p,
where p, is the mass density in the reference configuration,
J, =jF'.j is the entropy flux in the reference configuration,
j=p,/ p=det(F) is the Jacobian determinant, F=0x/0X is the
deformation gradient, X is the position in the reference configuration,
and x =9 (X,?) is the position in the current configuration.

3.3.2 Formulation based on Helmholtz free energy functional

With the use of the Helmholtz free energy h=¢é—T$, the local energy
balance equation (3.28) can be rewritten in the reference configuration
Vi as

ag 1 J, 1 11 1.. 1dh

eV, ]V —+ ¥:C——§T ———,(3.31
d p, T p " fT 2pT T sz()

0

where T is absolute temperature, J = jE- J, 1s heat flux in the
reference configuration, ¥= jF'-6-F " is the second Piola—Kirchhoff
stress tensor, and C=F"-F is the right Cauchy—Green deformation
tensor.

The Lagrange strain measure and the temperature deviation are given
by

Ezé(C—I), (3.32)
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6=T-T, . (3.33)

The Helmholtz free energy is taken to be a functional of the histories
of strain and temperature. In thermodynamics of materials with memory,
the fading memory hypothesis states that the influence of long past
events should be weaker than that of recent ones in determining the
material response (Coleman and Noll, 1960; Coleman, 1964; Truesdell
and Noll, 2004). Expansion of the Helmholtz free energy functional for

materials with fading memory up to the second order yields
~ ~ t X,7
Poh = pohy +I L, (Xt~ )+)d

_J‘_wM(X . )ae(aX ,7) Ir

JE, (X
+_.[ J. G X, =7, = 9 ”(T 7 aEKLa(? g)d wd¢ (3.34)
_.[ .[ By X1~ '”_g)aEU(X T)aggzg)d td¢
— [ B aB(X 7) 90(X,{)
2T, J:MJLMCH(X’Z T.1={) o drd{,

where fzo is the value of the Helmholtz free energy in the reference state
(.., E=0, T=T)), G, X,t—7,t—={)=Gy,,, X, t={,t—7), and
C,Xt-1t-0)=C,(X,t—={,t—7).

Substituting Eqgs. (3.31) and (3.34) into (3.30) and performing

differentiation with respect to time using the Leibnitz rule, we obtain
d S 1 . X.0)
dl‘ E[Zu _L(;J _I,MGIJKL(Xvoat_g)H—gdé‘

0

+j By (X.01-5H 200

d{1E,

B, X1 (3.35)
o7

s-M"~[" B,(X.t-7,0)

dr|l

——j Cu (Xt - rO)ae(Xf)
a7

. J
+lA+iJ{ -VR1+LVR -J,-=H =0,
T s O fT p, T
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where
N a X,
poh =~ I L, (Xt - )%d

+Jq iM(X,t—T)de
— ot o7

‘l[J_LEGm(X,t— -$) aE”(X . aEKLa(? £ td{  (3.36)
]2 K- ) X T)aa(afv £ grag
_ a6’(X 7) 96(X,{)
J._mJ._matC X,t—7,t-¢) 7 drd¢.

Since the entropy production inequality (3.35) is always valid, state
equations should fulfill the following conditions:

JE,, (X, {)

2, (X0 =L (X)+ [ Gy (X,0,1 = ) FH202 7 e
96(X, é/) (3.37)
-[* B, (X0.0-0HET 7 d¢,
PSRN =M X+ [ B, (Xt-7,0) XD o7
3 o (3.38)
L 20(X,7) :
+F0I_w C[-[ X,t—7, O)Tdf’
1
Io=73, (3.39)
dS 1 q'le+A20’ (340)
dt po T T

where G, (X,0,1-¢), C,(X,t-7,0), B,X0r-¢), and
B, (X,t—7,0) are appropriate memory functions.

The first terms L, and M % on the right-hand sides of Egs. (3.37)
and (3.38) stand for the values of X, and p,s in the reference state, the
second terms for mechanical contribution, and the third terms for thermal
contribution. It is shown from (3.40) that the total dissipation is
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associated with heat conduction and time-dependent dissipation. Since
the inequality (3.40) should always be satisfied, kinetic laws for specific
irreversible processes may be determined accordingly.

The time-dependent dissipation rate per unit mass satisfies the
following inequality:

A>0. (3.41)

It is proposed that the thermodynamic flux for heat conduction
depends linearly on the corresponding thermodynamic force, that is,

R 1
J, =LV, (3.42)

where L7 =% is positive definite.
Substituting (3.38) and (3.42) into (3.31) yields the following coupled
heat transfer equation based on the Helmholtz free energy functional:

d JE, (X.7)
E[j_mﬁ,J(x,r—r,O)”a—Tdr

00(X,7) J

1 ¢t
Y [ cuX,t-7,0 7] (3.43)

1 A 1 A
=—V,- (qu ,VRQ) +Fp0/1,
0 0

where the integral involving the strain history gives rise to a coupling
between thermal and mechanical effects.

3.3.3 Formulation based on Gibbs free energy functional

With Gibbs free energy ¢ =¢—T5—X:E/p,, the local energy balance
equation (3.28) can be rewritten in the reference configuration V,, as

ds 1 J 1 1 1 . l.. 1dg

&V, L],V ——L:B-——§T-—5 . (344

da  p, T p, T p,T T T dt

The Gibbs free energy is taken to be a functional of the histories of
stress and temperature. Expansion of the Gibbs free energy functional for

materials with fading memory up to the second order yields
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o " ' X, 7
P ==prie+ | Ly(Xii=7 )M

+.|';M(X t— )—a’alg(aX 7)

3 j I JIJKL(Xt T,t— {)BZU(X T)aZKL(X ;)

%% ded{ (3.45)
‘g az,J(X 7)90(X,{)
+Loj7ma,1(x,r 7,t—{) o7 drd{
ae(x 7)90(X,{)
+—j j C.(X,t—7,0-{) 5 drd{

where g, is the value of the Gibbs free energy in the reference state (i.e.,
2=0,T=T)), J, Xt—-7t-{)=J,Xt—¢,t—7), and
C.Xt—-1,t-)=C,(X,;t—-{,t—17).

Substituting Eqs. (3.44) and (3.45) into (3.30) and performing
differentiation with respect to time using Leibnitz rule, we obtain

e By L[ T (X010 o

- j a,(X,0,1 ) 89()2 -0) d{1x,

- piT (oM~ o, (Xt —T,O)az%f’f)dr (3.46)
_Tio [ coxi-z, O)%?drﬁ
+%/A\+pLOJq-VR%+pLOVR'(J.\-—%)ZO’

where
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A= oL, (X,t=7) 0%, (X.7) ,_
e ot a7
"',[[ oM (X,t—7) d0(X, T)dT
ot otT
_I f BJUKL(XZ 7,t= ) 9%, (X, 7) 9%, (X, {)
oo o o7 o
+Jw Jw aa,,(X,t—z',t—J) ox, (X,7)00(X,{)
- ot ot o
LI I AC, (X,t—7,1 - ) 98(X,7) 06(X, )
ot or ol

drd¢ (3.47)

drd¢

drd{.

Since the entropy production inequality (3.46) is always valid, the
state equations should fulfill the following conditions:

E’J(X’Z)ZL?J(X)‘FJ.I JIJKL(X’O,I_g)aEKL(X g)dg
R % (3.48)
06(X, :
e, (x,0.0- L) ( 9z,
pof(x,f)=M°(X)+j.t au(X,t—z',O)wdT
) o (3.49)
[ 00(X,7) :
+FO.[_MCG(X’t_T’O)a—dT,
1
Jo==dg (3.50)
ds_1 1 A
d_l::;Jq‘VRrr;ZO, (3.51)
0

where  J,,(X,0,t-¢), C,Xit-7,0), ¢,X0:-{), and
o, (X,t—7,0) are appropriate memory functions.

The first terms L), and M° on the right-hand sides of Egs. (3.48)
and (3.49) stand for the values of E;, and p,s in the reference state, the
second terms for mechanical contribution, and the third terms for thermal
contribution. It is shown from (3.51) that the total dissipation is
associated with heat conduction and time-dependent dissipation. Since
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the inequality (3.51) should always be satisfied, kinetic laws for specific
irreversible processes may be determined accordingly.

The time-dependent dissipation rate associated with the hysteresis
effect satisfies the inequality

A>0. (3.52)
It is proposed that the thermodynamic flux for heat conduction
depends linearly on the corresponding thermodynamic force, that is,
- 1
J,=L"-V,—, (3.53)
T
where L =L is positive definite.
Substituting (3.49) and (3.53) into (3.44) yields the following coupled
heat transfer equation based on the Gibbs free energy functional:
X, (X,7) Jr
ot
20(X,7)

d ¢t
E[Lma,J(X,t—r,O)

1 ¢
+70 L C,(X,1—17,0) dr) (3.54)

1 A 1 -
=—V,-(£-V,8)+—pA,
0 T,
where the integral involving the stress history gives rise to a coupling

between thermal and mechanical effects.

3.4 Thermoviscoelastic Boundary-Initial Value Problems

Coupled thermoviscoelastic boundary-initial value problems can be
formulated with the balance equations of mass (3.25), linear momentum
(3.26) and angular momentum (3.27), Green strain measure (3.32),
constitutive relations (3.37) or (3.48), and heat transfer equation (3.43) or
(3.54), as well as appropriate boundary and initial conditions.

In the small-strain formulation, the basic equations of coupled
thermoviscoelasticity are summarized as follows:

Equation of continuity:

p=—pv,,. (3.55)
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Equations of motion:
pv, =0, +pf;. (3.56)
Infinitesimal strain-displacement relation:

1
& =y +u). (3.57)

Constitutive relation based on Helmholtz free energy functional:
& (x,¢ ) 4 ¢
o

¢,

o, (x,t)=L) (%) +j G (x,0, t—;)

20x.5) (3.58a)

¢

Constitutive relation based on Gibbs free energy functional:

[ Bx0-OHEE2

& (x,1)= (X)+I JW(th—g‘)Tg)dé’

dg.

sy (3.58b)

¢

Heat transfer equation based on Helmholtz free energy functional:

[ ax00-0) 22

(X T)

—[j B, (x,1— r.0) 2 %0
9(XT)

—j C, (x,t—7,0) dr] (3.59a)
:T—;V~(L""~VG)+FO/)0A.

Heat transfer equation based on Gibbs free energy functional:

d 90, (x,7)
Z[L%(x,t—r,mg—rdt

— j C,(x,1 - 7,00 220 00X 1) (3.59b)
T

:Ti;v (1 -v9)+F0p0[\.

Initial conditions are taken as
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u(x,t)=u, (t<0), (3.60)

ux,t)=v, (t=0), (3.61)

0(x,t)=0 (t<0). (3.62)

Boundary conditions are given by

u=u,(x,7) on S, (r=0), (3.63)

n-6=ty(x,r) on S, (+=0), (3.64)

0=6,(x,t) on S, (120), (3.65)

n-jq =qz(x,1) on S, (120), (3.66)

where S[] refers to a certain part of the boundary: displacement is
prescribed on S, , traction on S, (the complement of S,), temperature
on S,, and heat flux on S, (the complement of S,). Hence, we have
S,US,=S and S, US, =S. Like thermoelastic problems, other mixed
boundary conditions for thermoviscoelastic problems may also be used.

Integral transform methods provide a useful tool for solving such
problems. After an integral transform, such as the Laplace transform, is
applied to the basic equations for thermoviscoelastic boundary-initial
value problems, the transformed boundary value problems can be solved
in a manner similar to that for thermoelastic problems. The final
thermoviscoelastic solution is then obtained upon inversion of the
transformed solution. This analogy is often referred to as the
correspondence principle. For establishment of the existence and
uniqueness of solutions for linear viscoelastic and thermoviscoelstic
boundary-initial value problems, the reader may refer to the paper by
Onat and Breuer (1963) and the book by Christensen (1982).



Chapter 4

Overview on Fracture of Electromagnetic
Materials

4.1 Introduction

Electromagnetic materials have broad civilian and defense applications
such as infrastructure monitoring, electronic packaging, novel antenna
designs, and biomedical devices, due to their remarkable multifunctional
properties. Energy can be converted from one form to another due to
interactions between magnetic, electric, thermal, and mechanical effects.
However, a major concern of these materials is their susceptibility to
cracking whilst in service (Fig. 4.1). Fracture of these smart material
systems has become the subject of active research over the past few
decades because of the rapid development of these new Kkinds of
multifunctional materials for various engineering applications (for
example, see review articles or book chapters by Qin, 2001; Trimarco
and Maugin, 2001; Zhang et al., 2002; Chen and Lu, 2003; Zhang and
Gao, 2004; Chen and Hasebe, 2005; Schneider, 2007; Wang et al., 2009;
Kuna, 2010 including the references cited therein). A general consensus
is that a major challenge is how to resolve the fundamental discrepancies
between theoretical predictions and experimental results on crack
propagation in piezoelectric materials. In this chapter, a summary on
linear piezoelectric/piezomagnetic fracture mechanics is given, covering
basic field equations, general solution procedures, crack-face boundary
conditions, fracture criteria, and experimental observations. Some
nonlinear problems for which the linear theory is not sufficient will also
be discussed.

70
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Fig. 4.1. A crack in a PZT multilayer actuator. (From Kuna, 2010, with permission from
Elsevier).

4.2 Basic Field Equations

The fundamental concepts of fracture mechanics and the elements of
electrodynamics are described in Chapters 1 and 2, respectively. The
body of knowledge developed for describing the fracture behavior of
piezoelectric materials within the framework of the classical linear
theory of piezoelectricity (Voigt, 1910) is referred to as linear
piezoelectric fracture mechanics (LPFM). The extension of LPFM to
electromagnetic materials inherits the same limitations and drawbacks.

For a simple illustration, the basic field equations in the absence of
temperature change (T =0) and electricity conduction (Jo =0) under
the quasi-static approximation for the electromagnetic fields are
summarized as follows:

Oy = Cija € — € Ex — N Hy, (4.1)
B =hyéex +9;E; +u45H;, (4.3)
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&i :%(ui’j +ujyi), (4.4)

Ei=-¢, (4.5)

H o =-v;, (4.6)

Oij. i +P‘€i = plij, (4.7)

Dii=0q;, (4.8)

B, =0, 4.9)

where  Cjjq = Cyij =Cjia =Ciji»  €«ij = Exji - hkij = hkji, Kij =K, and

Hij = Hji -
J The Jboundary conditions for a cracked body are given by
n-[[Dll=@, nx[[E]l=0, n-[[B]l=0, nx[[H]]=0, (4.10)
n-[[c]]=0, (4.11)

where [[--]] represents the jump of the field quantity inside the double
square brackets across a surface of discontinuity (see Fig. 4.2), n is the
unit normal vector, and @; is the surface charge density.

The initial conditions are taken as

u|t=t0 =U,, (4.12)
ul_, =v,. (4.13)

t=to

[[F]=f"—f

Fig. 4.2. Jump of field quantity f across a surface of discontinuity between two regions.



Overview on Fracture of Electromagnetic Materials 73

4.3 General Solution Procedures

Static and dynamic crack problems may be solved by a variety of
techniques. Barnett and Lothe (1975) first extended the Stroh formalism
in anisotropic elasticity to treatment of dislocations and line charges in
anisotropic piezoelectric insulators. Shindo (1977, 1978) studied the
distribution of mechanical and magnetic fields in an infinite body with a
planar or penny-shaped crack by the integral transform following a linear
theory for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Deeg
(1980) generalized the distributed dislocation approach to piezoelectric
crack and inclusion problems. Sosa and Pak (1990) conducted an
eigenfunction analysis of a crack in a piezoelectric material. Sosa (1991)
started with stress functions and obtained solutions for plane problems in
piezoelectric media with defects based on the extended Lekhnitskii
formalism. Pak (1992) applied the dislocation approach to linear electro-
elastic fracture. Suo et al. (1992) solved crack problems in piezoelectrics
or on the interfaces between piezoelectrics and other materials based on
the extended Stroh formalism. Dunn (1994) examined the fracture of
piezoelectric solids based on the equivalent inclusion method of Eshelby
(1957). Dascalu and Maugin (1995) analyzed dynamic fracture problems
for piezoelectric materials with inertial effects using the extended Stroh
formalism. Li and Mataga (1996a-b) described the Bleustein—-Gulyaev
surface wave phenomenon for the propagation of a semi-infinite crack in
piezoelectric materials using the Laplace transform, Wiener—Hopf, and
Cagniard—de Hoop techniques. Shindo et al. (1996) and Narita and
Shindo (1998) reduced the problem of a finite crack subjected to
longitudinal waves in a dielectric medium or horizontal shear waves in a
piezoelectric medium to a Fredholm integral equation of the second kind
by means of the Fourier transform. Qin and Mai (1998) explored the
application of the thermoelectroelastic Green’s function. Meguid and
Wang (1998) and Wang and Meguid (2000) studied the dynamic
behavior of piezoelectric materials containing interacting cracks using
integral transform techniques and Chebyshev polynomial expansions.
Finite element method (FEM) and boundary element method (BEM)
have also been employed for solving complicated thermo-electro-
mechanical boundary-initial value problems (Qin, 2001; Kuna, 2010).
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These typical solution technigques can be readily extended to analysis
of magneto-electro-thermo-elastic inclusion or crack problems (e.g.,
Alshits et al., 1995; Chung and Ting, 1995; Kirchner and Alshits, 1996;
Huang et al., 1998; Li, 2000; Liu et al., 2001; Sih et al., 2003; Wang and
Mai, 2003, 2007a; Gao et al., 2004; Du et al., 2004; Hu and Li, 2005;
Zhong and Li, 2006; Hu et al., 2007; Feng et al., 2007; Zhong et al.,
2009). As one of the most commonly used techniques for a planar crack
in anisotropic magneto-electro-elastic materials (Fig. 4.3), the solution
procedure based on the extended Stroh formalism is illustrated below.

A X

Fig. 4.3. A planar crack in an anisotropic magneto-electro-elastic material.

In the shorthand notation used by Barnett and Lothe (1975), a general
solution is sought with consideration of displacement components,
electric potential, and magnetic potential:

u,=2a,f(z) (m=1.2,...,5), (4.14)

where u, = ¢, ug =y , the function f is analytic in the complex variable
Z=X,+ pX,,and p and a,, are complex numbers to be determined from
the governing equations.

In the absence of mechanical body forces, inertial effects, and free
electric charges, the basic field equations given in Section 4.2 lead to

[Q+(R+R")p+Tp?Ja=0, (4.15)

with a=(a,,a,,8,,a,,a;)" and the 5x5 matrices:
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Cljkl eljl hljl Cljkz e2j1 hzj1
T
Q= elTkl —K; — Oy yR=ley, -k, -0y |
T
hia  —On — My | My, =9 —44,
G2 €j2 h2j2
T
T=ley, —ky -0y (4.16)
T
hao =92 —H ]

Nontrivial solutions are obtained if p is a root of
det[Q+(R+R")p+Tp?]=0. (4.17)

There is a total of ten eigenvalues from Eq. (4.17) which consists of
five pairs of complex conjugates. We suppose that p, (a¢=12,---5) are
five distinct roots with positive imaginary parts and construct a 5x5
matrix A=[A,,] with columns which are the associated eigenvectors.
Then, the general solution is given by

Un = A, 1 (2)+ A, T (2,), (418

where z, = x, + p,X, and over-bars denote complex conjugates.
Hence, stress, electric displacement, and magnetic induction are
expressed as

10 == ZpaL.a f(2,)- ZpaL.a f(2,), (4.19)
G = XL fa(@) + S0, 10(2.). (4.20)
S L ATRACOED | AWENERY (4.21)
D, = YL, (2 + XL, 2(2,), (4.22)
S IIIAACHED S AF O (423)

B, = §L5a £(2,)+ 2L5a t(2.), (4.24)
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where Lna = (Rmn + paTnm)Ama = _(Qnm + P, an)Ama / P can be used
to construct a 5x5 matrix L =[L,,1, f,(z,)=df (z,)/dz, .

The analytical functions f,(z,) can be determined for a given
boundary value problem in magneto-electro-elasticity with a similar
solution structure to that in piezoelectricity.

4.4 Debates on Crack-Face Boundary Conditions

Debates exist about the selection of crack-face boundary conditions in
piezoelectric materials, as reviewed by Zhang et al. (2002). The electric
boundary conditions are considered for *insulating” or “conducting”
cracks. The former is compatible with the crack interior filled by
vacuum, air, or oil, whereas the latter is compatible with the crack
interior filled by a conducting medium. Four sets of electrical boundary
conditions on insulating crack faces have been adopted - exact,
electrically permeable, impermeable, and semi-permeable. Since the
exact boundary-initial value problems need to be solved in both the
cracked solid region and the interior vacuum region, approximations
have often been made for analyzing slit crack problems.

Parton (1976) made the first attempt to define the electric boundary
conditions over crack faces by considering both the electric displacement
and the electric potential continuous across a traction-free slit:

D, =D,, ¢ =¢", (4.25)

where the subscript “n” denotes the component normal to the crack faces
and the superscripts “+” and “—" denote the upper and lower crack faces.

However, there may be a potential drop across the piezoelectric
crack, which can be assumed to be a low-capacitance medium. Deeg
(1980), Pak (1990, 1992), and Suo et al. (1992), among others, imposed
the electrically impermeable condition on the crack faces:

D; =D; =0. (4.26)

Later, Hao and Shen (1994) provided the semi-permeable condition
across the crack faces, that is,

Dy =Dy, Dy (Uy —Uy) =—xc(4" —¢"), (4.27)
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where «, is the dielectric permittivity of the crack.
The electric boundary condition on crack faces for conducting
(electroded) crack problems is

¢t =¢ =0. (4.28)

To determine the effect of the dielectric medium inside a crack on the
electric boundary condition, McMeeking (1989), Zhang and Tong
(1996), and Zhang et al. (1998) introduced the parameter
(x™/x")(b/a) to study an elliptical, flaw-like crack in electrostrictive
and piezoelectric materials, where b/a is the flaw aspect ratio, a and b
are the semi-axes of the ellipse (a>b), and ™/« " is the ratio of the
dielectric permittivity of the surrounding material to that of the flaw
interior. Likewise, Gao et al. (2004) used two parameters
Ao =(x"™Ix")(o/a) and A, =(u™/u")(b/a) for a mode-lIl, elliptical,
flaw-like crack in a magneto-electro-elastic solid, where u™/u" is the
ratio of the magnetic permeability of the surrounding material to that of
the flaw interior. The crack is impermeable if 4, > and A, > o,
permeable if 2, — 0 and 4, — 0, and semi-permeable if A, and 1, are
nonzero finite constants.

Xu and Rajapaske (2001) discussed the influence of different electric
boundary conditions on an arbitrarily oriented crack by reducing an
elliptical void solution to a crack solution using the extended Lekhnitskii
formalism. Wang and Jiang (2004) studied the nonlinear fracture
behavior of an arbitrarily oriented crack in a piezoelectric medium
considering the deformed crack geometry. Landis (2004) proposed
energetically consistent boundary conditions for electromechanical
fracture. Haug and McMeeking (2006) also investigated cracks with
surface charge in poled ferroelectrics.

Furthermore, Wang and Mai (2007a) examined four ideal crack-face
electromagnetic boundary condition assumptions: (i) electrically and
magnetically —impermeable, (ii) electrically impermeable and
magnetically permeable, (iii) electrically permeable and magnetically
impermeable, and (iv) electrically and magnetically permeable. In
addition, Gao et al. (2008) studied the effects of applying only a
magnetic field to a magnetically permeable crack in a soft ferromagnetic
solid, including the Maxwell stresses in the boundary conditions, not
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only on the crack faces, but also at infinity. It is found that all the field
variables are uniform, which means that there is no crack-tip field
singularity when a mathematical slit crack is dealt with in this case.

In practice, the crack-face electromagnetic boundary condition may
be expressed as

D; =D, =D}, Bf =B, =B?, (4.29)

where D and B? are either prescribed for the impermeable condition or
determined through the permeable or semi-permeable condition.

4.5 Fracture Criteria

A fracture criterion can be used to determine whether or not a crack
advances by comparison of the crack driving force with the crack
resistance. The extension of classical fracture criteria to combined
magnetic, electric, and mechanical loadings is summarized below in
terms of field intensity factors, path-independent integral, mechanical
strain energy release rate, as well as global and local energy release rates.

45.1 Field intensity factors

Like linear elastic crack solutions, stress, electric displacement, and
magnetic induction at the crack tip exhibit the traditional inverse square-
root singularity (Fig. 4.4). The asymptotic near-tip fields can be
expressed in terms of the crack-tip polar coordinates (r, ) as
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B,(,6) =—~L_3!,(6) + —1_3!(g) +
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where K,, K,, K,, are the mode-lI, mode-Il, and mode-Ill stress
intensity factors, K is the electric displacement intensity factor, K is
the magnetic induction intensity factor, and the functions 2 (6) , i (6)
=i (0), = (), and I (#) prescribe angular variations (Wang and
Mai, 2003; Kuna, 2010).
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Fig. 4.4. Singular crack-tip fields.

At a distance r ahead of the crack tip along the crack plane (6=0),
the near-tip fields can be expressed as
1
(0p,04y,05,D,,B,)T =——Kk, (4.33)
21 22 23 2 2 \/ﬁ
where k = (K,,,K,,K,,, Kp,Kg)" is the field intensity factor vector.
For a conventional Griffith-type crack of length 2a, the crack-tip field
intensity factor vector is related to the remote and crack-face loadings by

kz(az—agl,ofz —agz,ag—agg,D; —DS,B;’ —BS)T\/ﬂa .(4.34)

It can be seen that, at the crack tip, the stress fields are decoupled
from the electromagnetic fields within the framework of the linear theory



80 Fracture Mechanics of Electromagnetic Materials

of piezoelectricity and its extension. It should also be noted that the
internal stress field induced by domain switching under cyclic electric
loading may cause fatigue damage in ferroelectric materials, even in the
absence of an applied mechanical load. Thus, the local stress intensity
factor based on domain switching models (e.g., Lynch et al., 1995; Zhu
and Yang, 1997, 1999; Yang and Zhu, 1998) has been used in a fracture
criterion to predict crack growth in ferroelectrics under small-scale
switching conditions, similar to small-scale yielding conditions for
metals.

4.5.2 Path-independent integral

Many efforts (e.g., Cherepanov, 1979; Pak and Hermann, 1986a-b; Pak,
1990; McMeeking, 1990; Maugin and Epstein, 1991; Suo et al., 1992;
Maugin et al.,, 1992; Dascalu and Maugin, 1994; Maugin, 1994;
Trimarco and Maugin, 2001; Wang and Mai, 2003) have been devoted to
extend the basic concepts of the energy-momentum tensor and the path-
independent integral of Eshelby (1951, 1956, 1970, 1975), Cherepanov
(1967, 1968) and Rice (1968) to linear and nonlinear electromechanical
and magneto-electro-mechanical problems. It should be noted that all the
theoretical treatments of these fracture mechanics models take the path-
independent integral constructed with use of the electric enthalpy or the
electromagnetic enthalpy as the crack extension force.

A straightforward derivation for linear magneto-electro-elastic media
(Wang and Mai, 2003) starts with the differentiation of the
electromagnetic enthalpy density f =(oy&; —D;E; —BH;)/2 with
respect to the spatial coordinate x, :

a ~
— f(u; B Hisx)
k
- - - ~ (4.35)
of of of of
=—Uy+—E+——Hi+—
ouy AR T AH M x|,

where the subscript “expl” denotes the explicit dependence of f on X, -
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With the use of the basic field equations (4.1)—(4.9) in the absence of
inertial force, mechanical body force, and free electric charge, Eq. (4.35)
can be rewritten as

of
expl
where the energy-momentum tensor b;, is defined as

If there is no discontinuity in a material, the above divergence
becomes zero. The energy-momentum tensor provides a general method
for establishing invariant integrals. For example, the J, -integral vector
for a three-dimensional body bounded by the closed surface S with the
outer unit normal vector n can be easily deduced using the divergence
theorem as

The J-integral is the first component of the Ji-integral vector. For a
generalized plane magneto-electro-elastic crack problem with the crack
line along the x;-axis, it follows that

J=jr(?n1—nja--u +n;D;E; +n;B;H,)ds, (4.39)

Jjidil
where I" is a contour surrounding the crack tip.

As a generalization of the crack closure analysis by Irwin (1957), the
path-independent J-integral constructed with the electromagnetic
enthalpy can be evaluated from the field intensity factors using the crack
closure integral, that is,

. 1 +da
J Z(QTOEE [0 (X1,0)Au; (X, — oa)

+D,(%,0)0Ad(x, — 8a) + B, (%,0) Ay (X, —da)]dx,,

where da is the virtual crack extension and A denotes the jump between
the upper and lower crack faces.
Hence, the Irwin-type relation is obtained as

(4.40)

1 i
J :Z(KII’KIYKIII’KDlKB)'H '(KII’KI’KIII’KD'KB)TI (4-41)
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where H' =2Re(iAL™?) is indefinite and sometimes referred to as the
Irwin matrix (Lothe and Barnett, 1976; Suo et al., 1992; Kuna, 2010),
i =+/—1, and the matrices A and L are given in Section 4.3.

As the magnetic field becomes zero, the above formulae are reduced
to those for piezoelectric materials. Consider a piezoelectric material
with hexagonal crystal structure (class C,, =6mm, see notations in
Section 2.5) with the x,-axis in the poling direction. Pak (1990)
evaluated the J-integral for an antiplane crack problem for which a finite
crack of length 2a is embedded in an infinite piezoelectric medium
subjected to far-field mechanical and electric loads:

2 2
2 D -c,D
Case 1: J =@{K11T°° * CisT = Cas w}; (4.42)
2 K11Cyy + €45

Case 2 J :%[04475) ~2e,E. 7. —KME;]; (4.43)
Case 3: J ZE{Ti — (K11Ca4 +6125)Ei:|; (4.42)

2 Cas

24 2 2
c e -D

Case 4° J =E|:(Kll a t15)75 oo:|’ (4.45)

2 Ky

where c,,, e, and «;, are, respectively, shear modulus, piezoelectric
constant, and dielectric constant, z_ is the far-field shear stress, y_ is
the far-field shear strain, D, is the far-field electric displacement, and
E., is the far-field electric field.

Pak (1990) noticed that the J-integral constructed with the electric
enthalpy is always negative in the absence of mechanical loading and the
electric field would impede crack propagation, regardless of its direction,
which is essentially different from the traditional role of the J-integral as
the crack extension force. The more complicated in-plane crack solution
predicted the same trend (Pak, 1992; Suo et al., 1992). However, this
theoretical prediction is contradictory to experimental evidence (e.g., Pak
and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et
al. 1995; Park and Sun, 1995a-b; Zhang et al., 2002; Chen and Lu,
2003).
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A fracture criterion based on the J-integral formulated from the
electromagnetic enthalpy indicates that the presence of an
electric/magnetic field, either positive or negative, should elevate the
critical load. Hence, an even dependence exists between the critical load
and the applied electric/magnetic field. As remarked by Chen and Lu
(2003), whether or not the J-integral thus formulated can be a candidate
for a piezoelectric fracture criterion has been a long-standing
controversial issue and some have even used chaos to describe the
contentious  situation. The fundamental discrepancy between
experimental observations and theoretical predictions has hindered the
development of the piezoelectric fracture theory, instigating numerous
attempts to resolve this controversy (e.g., Park and Sun, 1995a-b; Gao et
al., 1997; Sih and Zuo, 2000; Fulton and Gao, 2001; McMeeking, 2001,
2004; Li, 2003a—b; Landis, 2004; Zhang et al., 2005).

4.5.3 Mechanical strain energy release rate

Park and Sun (1995a-b) first pointed out that the path-independent
integral formulated from the electric enthalpy could not be directly used
as a fracture criterion for piezoelectric materials. Instead, they proposed
that the mechanical strain energy release rate (MSERR) is a dominant
parameter governing piezoelectric fracture.

By definition, the mechanical strain energy release rate is expressed
as the mechanical part of the crack closure integral:

6" - !!”l%ﬁ*%xxm)mi(xl — a)dx, . (4.46)

Thus, the mechanical strain energy release rate is related to the field
intensity factors by

1 .
c" ZZ(KH J K| ) K||| ,010)’H| ’(Kn 1 KI 1 K||| ! KD’ KB)T ' (4'47)

Consider a Griffith-type crack of length 2a in PZT-4 piezoelectric
ceramics poled along the x,-axis under remote loads o5, and D, (Fig.
4.5). The crack plane is perpendicular to the poling axis. The mechanical
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strain energy release rate and the potential energy release rate are
obtained as (Park and Sun, 1995a-b)

GM =%(1.48x10’110'§'§2 +267x10265D)),  (4.48)

G=J- ?(1.4&10‘%;;2 +2x2.67x10205D5

(4.49)
~8.56x107 D).
t t ton.os
A X (pole)
3 X1
-a a

Fig. 4.5. A Griffith-type crack perpendicular to the poling axis under remote loads.

It can be seen that the mechanical strain energy release rate G is
essentially different from the potential energy release rate G. Since GM
is an odd function of the electric displacement intensity factor, an applied
electric field may either promote or retard crack propagation, depending
on its direction. In their landmark study (Park and Sun, 1995a-b), the
MSERR criterion agreed roughly with experimental measurement of the
critical load for a crack perpendicular to the poling axis in simple tension
and three-point bend PZT-4 specimens. They argued that it may be more
suitable to take only the mechanical strain energy released during crack
extension as the fracture criterion, since fracture is a mechanical process.
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4.5.4 Global and local energy release rates

For a better understanding of the fracture mechanisms in piezoelectric
ceramics under combined mechanical and electrical loadings, Gao et al.
(1997) proposed the concept of global and local energy release rates
based on a strip saturation model, via a simplified electroelasticity
formulation. Figure 4.6 illustrates a view of multiscale singularity fields
in piezoelectric fracture. Inspired by the classic Dugdale model for

Electrically nonlinear
Mechanically singular

Piezoelectrically singular Mechanically yielded

Fig. 4.6. Multiscale singularity fields in piezoelectric fracture. (After Gao et al., 1997,
with permission from Elsevier).

bt s

4 X2 (pole)

Fig. 4.7. A Dugdale-type electrically nonlinear crack perpendicular to the poling axis
under remote loads. (After Gao et al., 1997, with permission from Elsevier).
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plastic yielding of metal sheets containing slits (Dugdale, 1960), Gao et
al. (1997) assumed that the electric polarization is saturated only in a line
segment of length r, =c—a in front of each tip of a crack of length 2a
under remote loads o, and D, (Fig. 4.7).

The boundary conditions along the electrically impermeable crack
faces and the electrically nonlinear line segments are

0, =0, D, =0, at|x,|<a, (4.50)
u; =u;, D, =Dy, ata<|x|<c, (4.51)

where D, is the saturation electric displacement.
A local energy release rate is obtained by evaluating the J-integral

along an infinitesimal local contour T, that is,

2
7a e 2
J.=—|1+—|(eE_+ 0. )", 4,52
c 2M [ MKJ( 0 oo) ( )
where the material constants M, e, and « represent, qualitatively, the
elastic, piezoelectric, and dielectric properties.

An “apparent” or global energy release rate is obtained by evaluating

the J-integral along a global contour T, , that is,

‘]a :‘]c + Ds(¢+ _¢—)|x=a

4D%a 7 (Mx +e®)E_ +eo, (4.53)
=J,———1In| sec .
K 2 MD

S

The strip saturation size is

r,=C—a=alSsec 0, -l|<<a. (4.54)
2D

S

Like the small-scale yielding condition for metals, the global energy
release rate is reduced to that of a linear piezoelectric crack under the
small-scale saturation condition r, << a , that is,

(3.)ser =%[Gi—(MK+ez)Ei]. (4.55)
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Thus, a fracture criterion based on the local energy release rate
indicates that the electric field can positively influence fracture of
piezoelectric materials, which is notably different from a fracture
criterion based on the global energy release rate. Nonetheless, the major
difficulty is that the theoretical treatments are all incomplete — for
example, ad hoc neglect the electric contribution to the energy release
rate (Park and Sun, 1995a-b) or the energy dissipation by the saturation
of the electrical polarization (Gao et al., 1997).

4.6 Experimental Observations

Despite the lack of experimental study on dynamic fracture of
piezoelectric materials, increasing work has been done over the past few
decades on experimental investigations of quasistatic crack propagation
under combined electric and mechanical loadings. As reviewed by Zhang
et al. (2002), there are discrepancies in experimental results, especially
when the applied electric and mechanical fields are comparable in
amplitude. Moreover, experimental data presented by different
researchers sometimes contradict each other. It is a very important task to
compare theoretical predictions with experimental results for various
material systems, crack geometries, and loading combinations. A brief
description is given in this section with a focus on the application of
fracture mechanics concepts for explaining experimental observations.

4.6.1 Indentation test

The indentation technique has often been used for fracture toughness
characterization of brittle materials due to its simplicity and economy
(Anstis et al., 1981; Chantikul et al., 1981). A schematic illustration of
the Vickers indentation technique is shown in Fig. 4.8. Inelastic
deformation under the indenter would give rise to residual tensile stress
at the crack front and, thus, propagates the radial crack to its final
dimension as the indenter is unloaded.

For isotropic and homogeneous materials, the toughness K. may be
expressed in terms of the indentation load P and the induced crack length
c as (Anstis et al., 1981)
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172
Y P
K = é[ﬁj C3ﬁ, (4.56)
P .
H=—=sin(a/2), (4.57)
2a

where £=0.016+0.004 is an empirically determined calibration
constant, Y is Young’s modulus, H is the hardness, a is the impression
half-diagonal, and « is the apex angle of the indenter.

2a

Fig. 4.8. Schematic illustration of the Vickers indentation technique.

Many researchers have observed that the electric field has significant
effects on the crack behavior of piezoelectric ceramics from indentation
tests. For instance, Pak and Tobin (1993) and Tobin and Pak (1993)
found from the Vickers indentation tests on PZT-8 samples that the
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cracks perpendicular to the poling direction were longer with an electric
field aligned with the poling direction and shorter with an electric field
opposite to the poling direction compared to the case without an applied
electric field (Fig. 4.9). This trend is consistent with the fracture test
results on PIC 151 (similar to PZT-5H) Vickers indentation under
electric loading by Zhang et al. (2004) and PZT-4 compact tension and
three-point bending under combined mechanical and electric loadings by
Park and Sun (1995b).
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Fig. 4.9. Influence of electric field on the indentation fracture behavior of poled PZT-8.
(From Pak and Tobin, 1993, with permission from ASME).

With precracks produced by indentation, Cao and Evens (1994),
Lynch et al. (1995), Jiang and Sun (1999), and Zhang et al. (2004)
further studied the crack growth behavior of piezoelectric ceramics under
cyclic loads. Stable crack growth perpendicular to the poling direction
has been observed for both PZT and PLZT samples under alternating
electric loading only, for which the linear piezoelectric fracture theory
predicts a negative potential energy release rate. Jiang and Sun (2001)
also derived an approximate analytical solution for a half penny-shaped
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crack (semicircular surface crack) in a piezoceramic half space and then
used it in conjunction with the mechanical strain energy release rate to
interpret the effect of the electric field on indentation crack length.

Using the wedge model, the stress intensity factor and the electric
displacement intensity factor for the semicircular surface crack in
piezoelectric materials are (Jiang and Sun, 2001)

Zf(e) 0 C 2 ©
K, =2 21p°| ~ |—q. k.c’E”|, 4.58
| ( :)3/2|: 0 (COJ aplezo E z } ( )
Ky =2E, yevelm, (4.59)

where c, is the indentation-induced crack length in the absence of the
electric field, a,, is a piezoelectric constant reduction factor, E;° is
the applied electric field, f(0)=1+0.2(1-20/7)?,
P? =(0.089/ f,)(Y /H)"?P,and f, = f(0)=1.2.

For a mode-I crack in PZT-4, the mechanical strain energy release
rate can be expressed as

G =%(1.75><1011K,2+2.21><10ZK,KD) (Nm™).  (4.60)

Sun and Park (1995) obtained the critical mechanical strain energy
release rates of 3.68 Nm™ and 4.63 Nm™ for indentation loads of 9.8 N
and 49 N, respectively. In terms of the critical mechanical strain energy
release rate and the given indentation load, the relation between the crack
length and the electric field can be determined iteratively using Eq.
(4.60). The piezoelectric constant reduction factor «,, depends on the
degree of completion of domain switching. It was found that the solution
in conjunction with the mechanical strain energy release rate was able to
explain the electric field effects on indentation crack growth.

Zhang et al. (2004) used a sphere cavity model in dielectrics to
explain the growth of indentation cracks due to cyclic electric loading. It
is found that low electric field intensity does not promote fatigue crack
growth in PIC 151 but, at high applied electric field, the indentation
cracks initially grow quickly and are then arrested. Electrostrictive strain
drives cyclic fatigue crack growth and domain switching is the main
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fatigue mechanism. These results have significant consequences for the
long-term durability of piezoceramics.

4.6.2 Compact tension test

Compact tension specimens have been used to study the fracture
behavior of piezoelectric materials, together with finite element analysis
(e.g., Park and Sun, 1995b; Kuna, 2010). An experimental setup for
compact tension specimens under combined mechanical and electric
loadings is shown in Fig. 4.10. Electrodes were coated in silver on the
top and bottom surfaces of the specimens. The procedure of testing using
compact tension specimens is to increase the tensile load applied by the
crosshead displacement control of the MTS machine under a certain
electric field generated by a D.C. power supplier until fracture occurs.
Since electric discharging between electrodes through the air was
observed when the electric field exceeded 5 kV/cm during initial
exploratory tests, the specimen was immersed in a tub filled with silicone
oil to enforce an insulated crack surface boundary condition.

—— _ D.C. Power
Supply

i
l

Fig. 4.10. Experimental setup for compact tension specimen under combined mechanical
and electrical loadings.

Park and Sun (1995b) performed compact tension tests on PZT-4
specimens poled along the axis perpendicular to the crack plane. The
material properties for poled PZT-4 in the principal material coordinate
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system (Xi, X,, X3) are listed in Table 4.1. The poling direction is along
the Xsz-axis. Figure 4.11 shows the fracture initiation loads under
different electric fields from fracture testing on PZT-4 compact tension
specimens. It appears that a positive electric field reduces the fracture
load while a negative electric field increases the fracture load. It turns out
that the mechanical strain energy release rate criterion is superior to the
total potential energy release rate criterion at predicting the effect of the
electric field on the fracture load.

Table 4.1 Material constants for poled PZT-4 in the principal material coordinate system.
(After Park and Sun, 1995b, with permission from John Wiley and Sons).

¢y (N/m?) cip (N/m?) Cya (N/mM?) Cas (N/m?) Cas (N/M?)
13.9x10% 7.78 x10%° 7.43 x10%° 11.3 x10%° 2.56x10%°
ez (C/mP) €3 (C/Im?) ey (C/m?) 1 (C/Vm) K53 (C/Vm)
-6.98 13.84 13.44 6.00x10° 5.47x10°
60 —
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Fig. 4.11. Fracture loads under applied electric fields for PZT-4 compact tension
specimens. (From Park and Sun, 1995b, with permission from John Wiley and Sons).
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4.6.3 Bending test

To further verify the validity of the mechanical strain energy release rate
as a fracture criterion, Park and Sun (1995b) also conducted fracture tests
on PZT-4 piezoelectric ceramics using three-point bending specimens
with a symmetric crack for mode-1 fracture and an asymmetric crack for
mixed-mode fracture (Fig. 4.12). The entire setup, including the indenter,
was made of Plexiglas to avoid electric discharge. The prepared
specimen was placed in the silicone oil tub that was mounted on the
MTS machine. The poling direction is parallel to the span of the bending
setup. Fracture loads versus applied electric fields were obtained for
various crack locations (Fig. 4.13).

DC Power Supply

Fig. 4.12. Experimental setup for three-point bending specimens under combined
mechanical and electrical loadings.
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Fig. 4.13. Fracture loads under applied electric fields for various crack locations in PZT
three-point bending specimens. (From Park and Sun, 1995b, with permission from John
Wiley and Sons).

It appears that the center-cracked three-point bending specimens
exhibit the same fracture behavior as the compact tension specimens.
Specifically, the fracture load has an odd dependence on the applied
electric field — positive electric field aids crack propagation, while
negative electric field impedes crack propagation. The three-point
bending specimens with an off-center crack also exhibit the same trend.

Later, Soh et al. (2003) used central crack specimens to study the
effects of an applied electric field on the fracture toughness of poled
piezoelectric ceramics and demonstrated that changing the applied
electric field from negative to positive reduced the fracture toughness of
poled PZT-5 ceramic, which is consistent with the observations by Park
and Sun (1995b).
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4.7 Nonlinear Studies

Linear piezoelectric/piezomagnetic fracture mechanics analysis is an
important first step towards understanding the fracture behavior of
electromagnetic materials. Nevertheless, experimental findings and
microstructural diagnostics give evidence that there may exist factors
beyond the scope of the linear theory of piezoelectricity and its extension
that would affect fracture such as electrostriction/magnetostriction,
polarization/magnetization saturation, domain switching, and domain
wall motion, although these activities may be confined to a small region
near the crack tip. The studies on these nonlinear effects are briefly
summarized in this section.

4.7.1 Electrostriction/magnetostriction

Electrostriction is a property of dielectric materials whose shape is
changed under an applied electric field, with the resulting strain
proportional to the square of the polarization. Since the deformation
remains unchanged with reversal of the electric field, the electrostrictive
effect is obviously different from the piezoelectric effect that is
characterized by a reversal in the direction of deformation when the
electric field is reversed. Piezomagnetism and magnetostriction can be
taken as magnetic analogues of piezoelectricity and electrostriction.

Smith and Warren (1966, 1968) studied an elliptical inclusion in an
infinite isotropic dielectric material with electrostriction in consideration
of the Maxwell stress. McMeeking (1989) investigated electrostrictive
stresses near crack-like flaws in terms of a comparison between the fields
of an elliptical flaw and a slit crack. Yang and Suo (1994) estimated the
magnitude of the stress intensity factors for the flaws around the
electrode edges in ceramic actuators caused by electrostriction under
small-scale saturation conditions.

Based on the rotationally invariant (finite-strain) quasi-magnetostatic
theory of elastic paramagnets and soft ferromagnets without magnetic
spin-ordering effects, Sabir and Maugin (1996) constructed two path-
independent integrals with the use of the magnetic enthalpy, including or
excluding the contribution of the energy of the free magnetic field, and
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yielded essentially the same results as the canonical field-theoretic
approach using the notions of Eshelby stress and material forces (Maugin
et al., 1992). The expressions obtained were applied to an antiplane crack
problem of an isotropic magnetostrictive body in an axial bias magnetic
field. In this case, the near-tip solution has the inverse square-root
singularity like those obtained by Shindo (1977) based on a linear theory
for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Sabir and
Maugin (1996) concluded that the magnetic field has a negative
contribution to the energy release rate so that its presence is beneficial
from the viewpoint of fracture toughness. However, there is no
experimental support for this conclusion.

Recently, Gao et al. (2010a-b, 2011) obtained the solutions of a
single crack and collinear cracks in an electrostrictive solid under pure
electric loads based on the complex variable method. It is found that the
total stresses exhibit the classical inverse square-root singularity at the
crack tip and the applied electric field may either enhance or retard crack
growth depending on the electric boundary conditions adopted on the
crack faces and the Maxwell stresses on the crack faces and at infinity.

4.7.2 Polarization/magnetization saturation

Polarization saturation or magnetization saturation is the state which is
reached when an increase in applied electric or magnetic field cannot
increase the polarization or magnetization of the material further. As
discussed in Section 4.5.4, Gao et al. (1997), inspired by the classical
Dugdale model for plastic yielding near the crack tip in metals (Dugdale,
1960), developed a strip saturation model for an electrically insulating
crack perpendicular or parallel to the poling axis of an infinite poled
piezoelectric medium via a simplified electroelasticity formulation. Since
the linear piezoelectric model gives singular electrical displacement
distribution near the crack tip, it is assumed by this idealized strip
saturation model that electric polarization reaches a saturation limit along
a line segment in front of the crack tip.

Subsequently, Ru (1999) examined the effect of polarization
saturation on stress intensity factors for a general piezoelectric medium.
Ru and Mao (1999) also studied conducting cracks in a poled
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ferroelectric of limited electrical polarization based on a strip saturation
model of the Dugdale type. Beom (2001) further analyzed an electrically
impermeable crack in an electrostrictive ceramic with a strip saturation
model. The strip saturation model may be applicable to magnetization
saturation due to its similarity to polarization saturation.

As remarked by McMeeking (2001), the polarization saturation
model may not correspond to the classical Dugdale model from the
energy point of view because the electric displacement behaves like
strain and the electric field behaves like stress. Zhang et al. (2005)
proposed a strip dielectric breakdown model for an electrically
impermeable crack in a piezoelectric medium with the assumption that
the electric field in a strip ahead of the crack tip is equal to the dielectric
breakdown strength, which is analogous to the classical Dugdale model
from the energy point of view. The dielectric breakdown strength is
defined as the critical electric field at which dielectric discharge occurs,
leading to dielectric breakdown. Motivated by the similarities in
electricity and magnetism, Zhao and Fan (2008) extended the strip
dielectric breakdown model to magneto-electro-elastic media.

4.7.3 Domain switching

One class of widely used piezoelectric materials exhibit the ferroelectric
effect. They possess spontaneous electric polarization that can be
reversed by the application of an external electric field, yielding a
hysteresis loop. This term is used by analogy to ferromagnetism because
of the similarity between this hysteresis process and the corresponding
process involving ferromagnetic materials. Typically, materials
demonstrate ferroelectricity only below a certain characteristic
temperature, T, called the Curie temperature. That is, spontaneous
polarization disappears above this temperature.

A ferroelectric domain, in which all dipole moments of neighboring
unit cells are oriented in the same direction, can switch its orientation to
align itself in the direction of an applied external electric field as close as
possible. This phenomenon is called “domain switching”. Consequently,
not only the local state of polarization is rotated but also the local state of
strain is changed, which is described by the polarization switch vector
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AP, and the switching strain tensor Ag;; . A sufficiently strong electric
field may rotate the polarization direction of an individual domain by
+90° or 180° that is, the new polarization can be —90° 90° or 180°
rotated from the original direction.

As reviewed by Kuna (2010), models based on domain switching for
ferroelectric materials have been developed to describe the polarization
hysteresis loop and the strain butterfly loop (see Fig. 4.14) as well as the
internal stress field induced by domain switching. For example, Hwang
et al. (1995) proposed an energetic switching criterion for combined
loadings:

E.AP, +0As; > 2P,E, . (4.61)

-
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Fig. 4.14. Ferroelectric hysteresis of polarization and deformation (P" — remanent
polarization, & — remanent strain, E. — coercive field strength). (From Kuna, 2010, with
permission from Elsevier).

It has been realized that domain switching plays an important role in
the apparent fracture toughness variation for ferroelectric materials (e.g.,
Lynch et al., 1995; Zhu and Yang, 1997, 1999; Yang and Zhu, 1998;
Fulton and Gao, 2001; Zhang et al., 2002; Beom and Atluri, 2003; Chen
and Hasebe, 2005; Schneider, 2007; Kuna, 2010). The re-orientation of
the polarization direction could significantly affect the solution for the
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corresponding boundary value problem and, consequently, the stress and
electric displacement intensity factors. With an assumption like small-
scale yielding, investigations on the nonlinear influence of domain
switching on the fracture of ferroelectric materials have been confined to
the near-tip process zone.

By analogy with the phase-transformation toughening mechanism
(McMeeking and Evans, 1982), Zhu and Yang (1997) and Yang and Zhu
(1998) studied switching toughening of ferroelectrics by adopting the
switching criterion of Hwang et al. (1995) and derived the change in
stress intensity factor AK as a result of stress redistribution induced by
90° polarization switching. In the case of small-scale switching, where
the switching zone size is considerably smaller than the specimen size,
the stress field near the switching boundary may be approximated by the
remote K-field. The near-tip stress intensity factor K, is related to the
applied stress intensity factor K, by

tip

Ko = K, +AK . (4.62)

tip
A fracture criterion may be defined in terms of the near-tip stress
intensity factor as

Ky =Ko (4.63)

tip =

Depending on the sign of AK for shielding or anti-shielding effects
caused by domain switching, the apparent fracture load measured in
experiments can be either enhanced or reduced. Based on the small-scale
domain switching model, Zhu and Yang (1999) provided a mechanistic
explanation of fatigue crack growth in ferroelectrics driven by cyclic
electric loading. Recently, Kalyanam and Sun (2009) modeled the
fracture behavior of piezoelectric materials using a gradual polarization
switching model with the internal energy density as the parameter to
estimate the amount of domain switching and the resulting gradual
change in the polarization direction.
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4,7.4 Domain wall motion

Domain switching may be regarded as a result of domain wall motion
caused by the growth of domains with low-energy orientations and the
shrinkage of domains with high-energy orientations (Zhang et al., 2002).
The domain wall may be treated either as a sharp or diffuse interface.
The configuration (material) force method has been used to study the
motion of a ferroelectric or ferromagnetic domain wall as a sharp
interface. For example, Fomethe and Maugin (1997) studied the
propagation of phase-transition fronts and domain walls in thermoelastic
ferromagnets by exploiting the notion of the material forces. Fu and
Zhang (2000) proposed a domain wall kinetic model to explain the
effects of temperature and electric field on the bending strength of PZT-
941 ceramics. Shilo et al. (2007) developed a model for large
electrostrictive actuation in ferroelectric crystals by assuming a
reasonable arrangement of domain walls and formulating equations of
motion for these walls.

By contrast, phase-field simulation provides a powerful method for
studying the evolution of ferroelectric or ferromagnetic domain structure
as a diffuse interface. The major advantage of this approach lies in that
the well-accepted Ginzburg—Landau equation is used to govern the time
dependence of a spatial inhomogeneous order parameter without any
preset transformation criterion. Phase transformation is a direct
consequence of the minimization process of the total free energy of an
entire simulated system. Wang and Zhang (2007) simulated polarization
switching-induced toughening in a ferroelectric material with the original
polarization direction perpendicular to an electrically permeable crack by
a phase field model, accounting for the domain wall energy and the long-
range mechanical and electrical interactions. Based on a local J-integral
as a fracture criterion, the result indicates that an applied uniform electric
field parallel to the original polarization direction reduces the apparent
fracture toughness while an applied uniform electric field anti-parallel to
the original polarization direction enhances it.
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4.8 Status and Prospects

The fracture mechanics approaches within the framework of the linear
theory of piezoelectricity and its extension outlined in this chapter cover
the great majority of current applications. Simplicity is generally
associated with the linear piezoelectric/piezomagnetic fracture mechanics
methodology and so it is useful for a first approach at achieving a
solution for a given crack problem. While nonlinear investigations
beyond those of linear piezoelectric/piezomagnetic fracture mechanics
are increasingly attempted, they are still confined to the small-scale
region in the vicinity of a crack tip such as small-scale saturation
conditions or small-scale switching conditions.

The major challenges in the current understanding of the complex
fracture behavior of electromagnetic materials are:

e Discrepancy between theoretical predictions and experimental
observations

e Various nonlinear effects

e Magneto-electro-thermo-mechanical coupling

e Large-scale dissipation

o Fully coupled dynamic framework

e Functionally graded materials (FGMSs)

e Damage and failure at multiscales (nano, micro, meso, and
macroscales)

At this transition between the elementary aspects and the more
advanced treatments of the subject to come, it is worth stating that a
highly important question in the development of a fracture mechanics
theory for electromagnetic materials is whether there is any particular
thermodynamic quantity of a cracked body that can be interpreted as the
“driving force” for crack propagation under combined magnetic, electric,
thermal, and mechanical loadings. The answer to this question has been
pursued for decades, but no satisfactory agreement has yet been reached.
Thus, the establishment of a physically sound fracture criterion becomes
the hallmark of an advanced fracture mechanics treatment for
electromagnetic materials. The objective of this book is to further the
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progress with development of a nonlinear field theory of fracture
mechanics for electromagnetic materials by inclusion of magneto-
electro-thermo-mechanical coupling and dissipative effects.



Chapter 5

Crack Driving Force in Electro-
Thermo-Elastodynamic Fracture

5.1 Introduction

As reviewed in Chapter 4, it is theoretically predicted that an even
dependence should exist between critical load and applied electric field
based on the path-independent integral constructed with electric enthalpy
(Pak and Hermann, 1986; Pak, 1990; Maugin and Epstein, 1991; Suo et
al., 1992; Dascalu and Maugin, 1994, 1995). On the contrary, however, it
is found experimentally that the critical load for piezoelectric fracture is
an odd function of the applied electric field (e.g., Pak and Tobin, 1993;
Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995). Hence,
a major challenge in the fracture mechanics of piezoelectric materials is
how to resolve the fundamental discrepancy between theoretical
predictions and experimental observations.

A great advance in this area is owed to Park and Sun (1995a-b) who
first pointed out that the path-independent integral thus formulated
cannot be used directly as a fracture criterion for piezoelectric materials.
Instead, they proposed that the mechanical part of the crack closure
integral, i.e., the mechanical strain energy release rate (MSERR), is the
dominant parameter governing piezoelectric fracture. In their landmark
study, the Park—Sun semi-empirical fracture criterion could be reconciled
with experimental measurement of the critical load for a crack
perpendicular to the poling axis in simple tension and three-point
bending PZT-4 specimens. Nevertheless, the difficulty is that the
theoretical treatments are incomplete, with omissions such as an ad hoc

103
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neglect of the electric contribution to the energy release rate by Park and
Sun (1995a-b).

In the sections to follow, the crack driving force in electro-thermo-
elastodynamic fracture is evaluated based on the fundamental principles
of thermodynamics within the framework of the nonlinear theory of
coupled electric, thermal, and mechanical fields (Chen, 2009a). The
presentation is restricted to the quasi-electrostatic approximation for a
simple formulation, which implies the near absence of a time-varying
magnetic field.

5.2 Fundamental Principles of Thermodynamics

As shown in Chapter 2, the physical laws in electrodynamics consist of
the conservation of mass, conservation of linear momentum,
conservation of angular momentum, conservation of energy, and entropy
production inequality, in addition to the Maxwell equations.

Using the notations in Chapter 2, the first principle of
thermodynamics leads to the local energy balance equation in electro-
thermo-elastodynamics:

p%=—v~jq+G:VV+pE-ft+E-(je—qu). (5.1

Substituting the internal energy ¢ by the Helmholtz free energy
h=¢é—Ts and using a series of transformations, Eq. (5.1) becomes

~ J .
£=_ivk._‘1+qu.VRl+LE.Je
dr p, T p, T pT

' ; (5.2)
1 ,Z:C+Lﬁ~ﬁ—lﬁf—li he<t |
2p,T poT T T dt P

= jF! thfT is the second Piola—Kirchhoff total stress tensor,
,6=06+,6 is the total stress tensor (which is the sum of the Cauchy
stress tensor 6 and the electric stress tensor 66:D®E—euf I),

where
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euf =¢,E-E/2 is the energy density of the free electric field, E=E.F,
D=/F"-D.J, = F" j,. J,=F"j,.and j, =] —q,v.

The augmented Helmholtz free energy, including the contribution of
the energy of the free electric field, is introduced by

f
U

h+ . (5.3)
P

~

h

The second principle of thermodynamics leads to the entropy
production inequality
48 _E 1y »o. (5.4)
dt dt p

In the reference configuration, the entropy production inequality can
be rewritten as
45 _ & 1y 5 0. (5.5)
d dt p,

The augmented Helmholtz free energy, including the contribution of
the energy of the free electric field, is assumed to be a function of
deformation, temperature, temperature gradient, and electric
displacement in the reference configuration V,, with respect to which
the deformation gradient F is measured, that is,

h =h(C,T,V,T,D;X). (5.6)

Since the entropy production inequality (5.5) should be always valid,
it is necessary and sufficient that the state equations fulfill the following
conditions:

oh
o7«

=0, 6.7

on
Lk =2p aC,, > (5.8)
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s__Oh 5.9
§=-=r (5.9
. oh
E.=p,—0, 5.10
K poaDK (5.10)
1
3= (5.11)
451y veli Ly o (5.12)
a  p, r pT

From Eq. (5.7), it is shown that the augmented Helmholtz free energy
does not depend on the temperature gradient.

5.3 Energy Flux and Dynamic Contour Integral

Consider a two-dimensional body B that contains an extending crack
(Fig. 5.1). The boundary of the cracked body B is denoted by 0B A
contour T’ enclosing the crack tip translates with the crack tip moving at
instantaneous speed V.. When the energy balance is written in global
form, the energy flux through I" can be expressed as

F©) = m-(6+,0)-v—n-S+(Fi+plm-VeldE
JIr
- n-(c+ 0)-V—n-S]d§—j é(%r/é)d/i
Jop ‘ B-A Ot prTL (5.13)
of  ptovaa-[  psiaA-[  LE.1.dA
JB—-A-

T B-Ap B=Ar Po

where the Poynting vector in the co-moving frame is given by

S=-Ex(vxD). (5.14)
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n
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Fig. 5.1. A contour translating with the crack tip moving at instantaneous speed V.

The dynamic contour integral is related to the energy flux integral by

= =Vijf[n-(c+ec)-v—n-s+(,5]Z+ﬁl€)n-VC]df‘, (5.15)

where V. = |VC| is the magnitude of the crack speed.
In general, the dynamic contour integral is not path independent. The
difference in the energy flux through two contours I and I is

. N 5 o
F(,)—-F(I)) =J.Ap§_(,0h +,0k)dA—J.A]2pf~VdA
i . (5.16)
+[; PSTdA+[;, LE.J,dA,
12 12 po

where 512 is the difference in the areas enclosed by the contours l:] and
[, , including the crack faces.

The energy flux integral can be extended to the three-dimensional
case. If T is interpreted as a surface in the reference configuration that
moves at speed V¢ with respect to the material particles instantaneously
on it, the energy flux through the surface [ is

F(T)=[.[n-(6+,0):v—n-S+(ph + phm-V 1dl . (5.17)
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The first term of the energy flux integral expression is the rate of
work done by the total traction acting on I", the second term represents
the contribution due to the traveling of electromagnetic waves through
I, and the third term represents the contribution due to the transport of
material through I'. It is noted that the associated energy density
includes the kinetic energy density and the augmented Helmholtz free
energy density, rather than the electric enthalpy density. As a general
expression for the energy flux through a surface translating through a
deformable solid, expression (5.17) does not depend on the existence or
absence of a moving crack. Like its counterpart in elastodynamics
(Freund, 1990), the energy flux integral expression (5.17) is valid for
large deformation applications.

5.4 Dynamic Energy Release Rate Serving as Crack Driving
Force

The dynamic energy release rate is defined as the rate of energy flow out
of the body and into the crack tip per unit crack advance, that is,

Ty = hm{Ljﬁ[n-(cnc)w—n-S +(ﬁﬁ+ﬁ/€)n.vc]df}, (5.18)
C

r-o|V

where the limit implies that " is shrunk onto the crack tip.

In view of its definition, the dynamic energy release rate provides a
unique characterization of the near-tip fields and thus plays a central role
in the fracture criteria. The quantity J o introduced here cannot be related
to mechanical energy variation alone. Instead, J, o refers to total energy
variation due to work done by total traction, traveling of electromagnetic

waves, and transport of material with its associated energy density.

5.5 Configuration Force and Energy-Momentum Tensor

For steady-state crack propagation in the absence of mechanical body
force (f =0), temperature change (7 =0), and electricity conduction
(J, =0), it can be seen from Eq. (5.16) that the dynamic contour integral
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becomes path independent as the contour including the crack faces is
chosen, that is,

T, =J,=1T,, (5.19)

where f‘g and l:, are the global and local contours.

If a field quantity is invariant in the reference frame affixed to the
crack tip moving at a uniform speed V.=V E,, the field quantity
depends on ¢ through the combination X=X —V,t only, where E, is the
unit vector along the crack advance direction. Expression (5.15) for the
dynamic contour integral takes the special form

J =fn-[~(6+,06) uV+D®E-uV —(D-E)uV +(ph + pk)Ildl - E, .
(5.20)
Using (nXE)xD =(n-D)E—(D-E)n, (5.20) becomes
f:—jfn;(o+ic)-1i§il~“-fl + [.[(nxE)xD]-uVdl -E, 520
+ [x(Ph + pk)ndl- E,.

Introducing the energy-momentum tensor
b=—(0+,0) uV+D®E-uV—(D-E)yaV+ (5 + g)I, (5.22)
expression (5.20) can be rewritten as
J=[n-bdl“E =] E, (5.23)

where jzj'fnf)df” is the configuration force (material force) on the
singularity as an extension to the notation by Eshelby (1951, 1970).
Hence, the dynamic contour integral can be taken as the projection of
the configuration force on the crack advance direction, which is
consistent with the physical interpretation of being the dynamic energy
release rate. The dynamic contour integral thus formulated is related to
the energy-momentum tensor in the same way as given by Pak and
Hermann (1986), Maugin and Epstein (1991) and Dascalu and Maugin
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(1994). Nevertheless, distinct from previous work, the dynamic contour
integral constructed with the use of the augmented Helmholtz free energy
within the framework of the nonlinear theory of coupled electric,
thermal, and mechanical fields fully satisfies the thermodynamic
requirements and hence can be used in a physically sound fracture
criterion.

5.6 Coupled Electromechanical Jump/Boundary Conditions

There are debates in the literature about the selection of the electric
boundary conditions on crack faces, as discussed in Section 4.4. Dascalu
and Maugin (1995) studied the dynamic fracture problem for
piezoelectric materials with the impermeable crack-face condition. Li
and Mataga (1996a—b) imposed electrode- and vacuum-type of electric
boundary conditions on the crack surfaces, respectively, in their analysis
of semi-infinite antiplane crack propagation in a hexagonal piezoelectric
medium. Chen and Yu (1997), Chen and Karihaloo (1999) and Wang
and Yu (2000) investigated dynamic crack problems in piezoelectric
materials subjected to mechanical and electrical impacts for two kinds of
crack-face conditions: impermeable and electrical contact. We discuss
below the application of coupled electromechanical jump/boundary
conditions for a cracked body within the framework of the nonlinear
theory of coupled electric and mechanical fields.

For an inclusion problem, the coupled electromechanical jump
conditions across the interface are given by

n-[[D]]=@,, (5.24)
nXx[[E]]=0, (5.25)
n-[[o+,0]]=0, (5.26)
[[u]]=0. (5.27)

For a slit crack problem, the crack-face boundary conditions may be
expressed as
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+ + - -
n -(6+,6)" =—n -(c+,0)
’ 0 eo 0 0 0 0T (5.28)
=—{0y+,0,,0+,05,053+,05} .

n"-D'=-n"-D =-D). (5.29)

Conditions (5.24)—(5.27) are exact, but the corresponding boundary-
initial value problem needs to be solved in both the cracked solid region
and the interior fluid (vacuum, air, etc.) region. It is noted that the total
traction should be considered in the coupled electromechanical boundary
conditions along the crack faces and the remainder surfaces of the solid.
Dg in (5.29) can be either prescribed for the impermeable crack-face
condition or determined through solving the boundary-initial value
problem with the permeable or semi-permeable crack-face condition.

5.7 Asymptotic Near-Tip Field Solution

The dynamic energy release rate serves as the crack driving force for any
electro-thermo-elastic boundary-initial value problem and can be
evaluated as long as the solution for the propagation of a crack, either
electrically insulating or conducting, is given. Different from a stationary
or quasi-static crack problem, a dynamic crack problem is concerned
with fracture phenomena for which inertia effects arising from either
rapidly applied loads or rapid crack propagation become significant. The
influence of material inertia on the distribution of near-tip fields is of
great importance because these fields represent the environment in which
the mechanisms of crack advance are operative. Since it is rare to obtain
closed-form exact solutions for this class of complicated problems,
asymptotic solutions are often sought.

It emerges from the analysis by Yang (2004) and Li and Yang (2005)
that the difference between the solutions for the fully dynamic antiplane
unelectroded crack problem of polarized ceramics and the dynamic
antiplane unelectroded crack problem based on the quasi-electrostatic
approximation is small, since the crack speed is much lower than the
speed of light. Thus, the quasi-electrostatic approximation can still be
adopted for studying dynamic crack propagation so that the electric field
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may be expressed by the gradient of a scalar function called the electric
potential.

Consider a generalized plane crack problem with the crack tip of
primary interest advancing at instantaneous speed V. along the X, -
axis. The displacement component u, (m=1,2,3) and the electric
potential ¢ are 1ndependent of X ;. To derive the asymptotic expansion,
the scaled variables X X /€ and X X /€ are introduced, where £
is a small parameter, X X =Vt, and X =X, . If £is taken to be
indefinitely small, all points in the plane (X 1,X ) except those near the
crack tip are pushed out of the field of observation in the plane (X 15 X 5 ).
Furthermore, as viewed from the scaled reference coordinate system
affixed to the moving crack tip, the crack appears to be semi-infinite
along the negative X | -axis.

As an extension of a standard solution procedure for asymptotic fields
near a moving crack tip in elastodynamic fracture mechanics (Freund,
1990), the displacement components and the electric potential are
expanded in powers of € of the form

A A A A

u, (X, X,,0) =200 (X, X,,0+ "' (X, X,,0)++++, (5.30)

X, X, ) =0V (X, X,,0+"9V (R, R,,00+-+, (5.31)
f,?) and ¢3(0) represent the dominant contribution, ﬁfrz) and &(1)
represent the first-order correction, and so on. This implies that the
exponents are ordered such that g, <g, <g, <

The above expansion is essentially an assumption that the near-tip
fields can be represented as a series of homogeneous functions of
increasing degree. The assumed form of expansion is substituted into the
governing equations and the coefficient of each power of £is set equal to
zero. The coefficient of the lowest power of € vanishes if the dominant
asymptotic solution satisfies

where #

~(0) 2(0) _ A(O)
Cljkluk Jjl +ell]¢jl - pV i1l (532)

e/kluk jz jz(/j(o) (5.33)
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Based on the Stroh-type formalism discussed extensively in Section
4.3, the solution is sought in the form

0" =a, f(2) m=123), §* =a,f(2), 2=X,+pX,, (5.34)

where the function f is analytic in the complex variable Z= X  + p)A( 5
and the complex numbers p and a,, must be determined from Eqgs. (5.32)
and (5.33).

Substituting Eq. (5.34) into Egs. (5.32) and (5.33) yields

[Q-pViU+(R+R")p+Tp*la=0, (5.35)

with a=(q, ,az,a3,a4)T , U=diag(1,1,1,0) and the 4 X4 matrices:

Q=|:Cljkl €11 } R=|:Cljk2 €1 } T=|:C2jk2 €2 } (5.36)
T ) T ’ T . .
ey — K ey —Kpp €ys  — Ky
Nontrivial solutions are obtained if p is a root of

det[Q- pV2U+(R+R")p+Tp*1=0. (5.37)

The eight roots of Eq. (5.37) depend on the crack velocity V¢, that is,
Pou=Pa(Ve). A real root p of Eq. (5.37) corresponds to a value of V¢
equal to the velocity of bulk waves propagating in the direction (1, p) in
the (X - X ,) plane. Following the treatment by Lothe and Barnett
(1976) in the study of surface waves in piezoelectric crystals, ¢; is
introduced to denote the inferior limit of such bulk wave velocities.
Then, Eq. (5.37) has no real roots for V. <c, . Since the coefficients of
Eq. (5.37) are real, the eigenvalues and the eigenvectors form two sets of
complex quantities with one set being conjugate to the other. We suppose
P, (a=1.2,34) are four distinct roots with positive imaginary parts and
construct the matrix A with columns that are the associated eigenvectors.
Then, the solution of Egs. (5.32)—(5.33) is expressed as

4

2‘,?>—ZA,,mf G+ 24,0 falia) (5.38)
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40 - i_lAw £, G+ i_lzm £, (5.39)

where Z, = X tp a)? , (@=1.2,3,4) and the over-bars denote complex
conjugates.

Hence, the total stress and electric displacement in the vicinity of the
crack tip moving at instantaneous speed V¢ are given by

4 ' A
O = g(qu) Zl(pVgAux _paLia)fa(Z(x)
o=

= o (5.40)
+&V Y (PVE A= Palia) faZa)s
a=1
(@) — Coa @) ST o a
taiZ =& ZLiafa(Za)+8 zLiafa(Za)’ (541)
a=1 a=1

4 Coa B 4 - T
Dl = _8(%_1) zpaL4afa(Za)_g(qU b zpaL4afa(Za) s (542)
a=1 a=1

4 . N4 P
D2 = g(qo—l) ZL4afa(Za) + g(% b ZL405 f(x(za) ’ (543)
a=1 a=1

where Lna = (Rmn + paTnm )Amtz = _(Qnm + paan - pVC%Unm )Amtz /ptz :
Let us introduce

f:(fl(21),fz(fz),f3(23),f4(24))T, (5-44)

h=Lf". (5.45)

The singular solution that gives bounded displacements and electric
potential is

1

87z

where K is the dynamic field intensity factor vector.
It is evident that the parameter ¢, in expressions (5.30) and (5.31)
has the value of one-half. The total stress and electric displacement have

h(%) = Kk, (5.46)
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the classical inverse square-root singularities at the crack tip.
Accordingly, at a distance r ahead of the crack tip,

(,0515, 024 023, Dy) = Kk, (5.47)

1
N 27r

where k=(K,.K,,K,;,K,)". K,, K,, K,, are mode-I, mode-II,
and mode-III dynamic total stress 1ntens1ty factors and K p 1s the
dynamic electric displacement intensity factor.

To evaluate the dynamic energy release rate, we choose the contour
Fo in the reference frame (X =X, -V, X = X,) as shown in Fig.
5.2. This is a convenient choice because n, =0 along the segments
parallel to the X ,-axis. The contour is shrunk onto the crack tip by first
letting 0, >0 and then 6, >0. As in the purely elastodynamic case
discussed in Section 1.5, there is no contribution to J~0 from the
segments parallel to the X , -axis. Furthermore, the second and third
terms on the right-hand side of Eq. (5.18) along the segments parallel to
the X ,-axis vanish. Consequently, .70 can be computed by evaluating
only the first term on the right-hand side of Eq. (5.18) along the
segments parallel to the X |-axis, that is,

Ty :—hm{hmj_ [0,,(X,,8,,0+,0,,(X,,8,,0li(X,,6,,0dX, }.

c 60 6,-0

(5.48)

Fig. 5.2. A particular choice of the contour for evaluating the dynamic energy release
rate.
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Hence, the dynamic energy release rate is equal to the following
crack closure integral:

~ 1 .5 ~ ~ ~ ~
T, = lim X0,,(X,.0,0+,0,,(X,.0,01Au,(X, - 6a,0°,1)dX, ,

(5.49)

where Au; (X, - &.0",)=u;(X, - &,0",)—u;(X, -0 ,1) is the
crack opening displacement at a distance du — X, behind the crack tip.
Consequently, the dynamic energy release rate is calculated as

~ 1 ~ ~ =~ _ R
o= (Ky.K;. Ky, 0)-H (K, K, K, K)", (5.50)

where H' =2Re(AL™) is the dynamic counterpart of the Irwin matrix
described in Section 4.5.2, which depends on material properties and
crack speed.

Remarkably, Eq. (5.50) shows that the dynamic energy release rate is
an odd function of the electric displacement intensity factor, which is in
agreement with experimental observations (Pak and Tobin, 1993; Tobin
and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995; Park and Sun,
1995a-b; Jiang and Sun, 1999, 2001; Qin, 2001; Zhang et al., 2002; Soh
et al., 2003; Chen and Lu, 2003). As explained by Dascalu and Maugin
(1995), the behavior of the dynamic Irwin matrix as a function of the
crack velocity is intimately related to the existence of surface waves on
the crack faces.

For the mode-I dynamic crack problem, the dynamic energy release
rate and the dynamic crack opening displacement intensity factor are
given by

-~ 1 =~ ~. ~ -
JO=Z(O,K,,O,O)-H’~(O,K,,O,KD)T, (5.51)

K =47, /K, =(010,00-H -(0.K,.0.K,) . (552)
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For the mode-II dynamic crack problem, the dynamic energy release
rate and the dynamic crack opening displacement intensity factor are
given by

T :%(1?,, 0,0,0)-H' - (K,;,0,0,K,)", (5.53)

K =4J,/K, =(1,00,0)-H (K, .00,K,)" . (5.54)

For the mode-III dynamic crack problem, the dynamic energy release
rate and the dynamic crack opening displacement intensity factor are

given by

L, s e s s
= (00,8, 000 00,8y Kp)" (5.55)

K% =47,/K,, =(0,01,0)-H -(00,K,,.K,)".  (5.56)

For complete evaluation of the crack driving force, total stress and
electric displacement intensity factors should be obtained from the
solution of a particular boundary-initial value problem. Quasi-static
propagation of a crack perpendicular to the poling axis under the
impermeable crack-face condition studied by Park and Sun (1995a-b)
can be taken as a special case of the mode-I dynamic crack problem as
the crack velocity tends to zero.

The antiplane dynamic crack problem studied by Dascalu and Maugin
(1995) corresponds to the mode-III dynamic crack problem with the
crack front parallel to the poling axis. With the replacement of the
Cauchy stress by the total stress in their solution, the dynamic energy
release rate and the dynamic crack opening displacement intensity factor
are

~ 1 Cic ~ ~
JO (K12[1 5 KU[ KD) ’ (557)

2apc; K

e
K’ =—— (K, +2Kp)., (5.58)
o7 T 11
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where @”=1-(V2/c;) and ¢, is the piezoelectrically stiffened bulk
shear wave speed given by

2
2 :Cﬁ(l +LJ : (5.59)
P CasKyy

5.8 Remarks

This formulation successfully captures the singularity of coupled fields,

offers the right expression for the crack driving force, and reconciles the

fundamental discrepancy between theoretical predictions and
experimental observations. The important features are summarized
below:

® The dynamic total stress intensity factors describe the inverse square-
root singularity of the near-tip total stress as the sum of the Cauchy
stress and the electric stress, and the electric displacement intensity
factor describes the inverse square-root singularity of the near-tip
electric displacement. The crack-face conditions affect dynamic crack
propagation by changing the field intensity factors.

e The definition of the dynamic contour integral originated from the
energy flux integral, which is generally path dependent. For steady-
state crack propagation in the absence of mechanical body force,
temperature change, and electricity conduction, the dynamic contour
integral becomes path independent as the contour including the crack
faces is chosen.

e The dynamic energy release rate can be evaluated by the
“mechanical” part of the crack closure integral with the replacement
of the Cauchy stress by the total stress, which is consistent with the
semi-empirical fracture criterion proposed by Park and Sun (1995a—
b). Nevertheless, the difference lies in the replacement of the Cauchy
stress tensor by the total stress tensor and the equivalence of the
crack-tip dynamic contour integral to the dynamic energy release rate
instead of the mechanical strain energy release rate.

® The dynamic energy release rate serving as the crack driving force is
an odd function of the electric displacement intensity factor, which is
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in agreement with experimental evidence (Pak and Tobin, 1993;
Tobin and Pak, 1993; Park and Sun, 1995a-b; Jiang and Sun, 2001;
Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu, 2003).
The application of a purely electric load can drive crack growth in the
absence of a mechanical load due to its contribution to the dynamic
energy release rate through the dynamic total stress and electric
displacement intensity factors, which is in agreement with the
experimental observations on fatigue crack growth under cyclic
electric loading (e.g., Cao and Evans, 1994; Lynch et al., 1995; Jiang
and Sun, 1999; Zhang et al., 2004).

In addition to the dynamic energy release rate, the dynamic crack
opening displacement intensity factor may be taken as an important
parameter to monitor electro-elastodynamic fracture.



Chapter 6

Dynamic Fracture Mechanics of
Magneto-Electro-Thermo-Elastic
Solids

6.1 Introduction

In Chapter 5, electro-thermo-elastodynamic fracture was investigated
under the quasi-electrostatic approximation, that is, the near-absence of a
time-varying magnetic field. Since the early work by Van Suchtelen
(1972), piezoelectric/piezomagnetic composites have been developed for
various engineering applications as a result of the emergence of a new
product property, i.e., magnetoelectric coupling, which is absent in
single-phase piezoelectric or piezomagnetic materials. The co-existence
of piezoelectric, piezomagnetic and magnetoelectric coupling effects
(i.e., magneto-electro-elastic coupling effects) in composite materials
consisting of piezoelectric and piezomagnetic phases introduces many
complexities to multiphysics analysis.

Research on the deformation and fracture behavior of magneto-
electro-thermo-elastic solids has drawn considerable attention (e.g.,
Harshe et al., 1993; Nan, 1994; Maugin, 1994; Alshits et al., 1995;
Kirchner and Alshits, 1996; Huang et al., 1998; Li, 2000; Trimarco and
Maugin, 2001; Liu et al., 2001; Sih et al., 2003; Song and Sih, 2003;
Wang and Mai, 2003, 2007a—b; Gao et al., 2003, 2004; Du et al., 2004;
Hu and Li, 2005; Zhong and Li, 2006; Niraula and Wang, 2006; Hu et
al., 2007; Feng, et al., 2007; Zhong et al., 2009; Wang et al., 2009)
because of the safety and reliability requirements for their service in
actuators, sensors, waveguides, electronic packaging, and biomedical
devices. Recently, Chen (2009b) studied the energy release rate and the

120
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path-independent integral in dynamic fracture of magneto-electro-
thermo-elastic solids, which is an extension of the new formation of the
crack driving force and the energy-momentum tensor in -electro-
elastodynamic fracture (Chen, 2009a).

This chapter begins with the thermodynamic formulation of a fully
coupled dynamic fracture mechanics framework for crack propagation in
nonlinear magneto-electro-thermo-elastic solids, followed by evaluation
of the dynamic energy release rate through seeking the complex variable
solution based on the Stroh-type formalism. After that, magneto-electro-
elastostatic crack problems are discussed as special cases. Finally, a
summary is given.

6.2 Thermodynamic Formulation of Fully Coupled Dynamic
Framework

The elements of the non-relativistic electrodynamics of continua have
been discussed in Chapter 2. We now focus on developing a fully
coupled dynamic framework for crack propagation in nonlinear magneto-
electro-thermo-elastic solids based on the fundamental principles of
thermodynamics. The thermodynamic formulation enables us to deal
with complex material and fracture behaviors in a unified way and
requires only that constitutive equations should be derived from an
explicitly defined free energy function and transport laws conform to the
requirement of non-negative dissipation.

6.2.1 Field equations and jump conditions

For a cracked body B under combined magnetic, electric, thermal, and
mechanical loadings, the basic field equations and associated jump
conditions are summarized below, following the localization of the
fundamental physical laws.

Gauss’s law (inE ):

V-D=g;,. (6.1)
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Gauss’s law for magnetism (in B ):

V-B=0.
Faraday’s law (inE ):
VxE+a—B =0.
ot
Ampere’s law (inE ):
VxH—a—D =j, .
ot

Conservation law of electric charges (in B ):

3,
Yt yv.j, =0.
ot

Conservation law of mass (in B ):

d—p+pV-v=0 .

dt
Conservation law of momentum (in B ):

dv .~ 0G
—=V. -
P o (0+,,0)+pf >

Conservation law of angular momentum (in B ):
&;(0;+,,0;)=0.

ij o em i

Conservation law of energy (in B ):

p—=-V-j,+6:vV+pE -t-M -B+E-j,.

Entropy production inequality (in B):

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

6.7)

(6.8)

(6.9)
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£+1V.js >0. (6.10)
dt p

Constitutive equations (in B ):

e =2p0£j—hﬂ, (6.11)
. Oh
Ky :_ﬁ’ (6.12)
Ex=py af{( : (6.13)
M :—po%’]{. (6.14)
Transport laws (inB):
J :I:"‘f-VRl+lfﬂ“-E, (6.15)
K T T
J, =L -le+lff€ E. (6.16)
T T
Jump conditions (across 9B ):
n-[[D]]l=@,, (6.17)
n-[[B]]=0, (6.18)
nXx[[E+vxB]]=0, (6.19)
nx[[H-vxD]]=0, (6.20)

) o,
n-[[Je—qu]]+7=0, (6.21)
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n-[[o+,,6+v®G]]=0, (6.22)

Il'[[jq—(G+gmG+V®G)'V+S]]=O_ (6.23)

6.2.2 Dynamic energy release rate

Consider a three-dimensional deformable electromagnetic body B
containing a propagating crack of arbitrary shape (Fig. 6.1). The X 4 -axis
is tangent to the crack front at the observation point P attached to the
reference frame translating with the crack front moving at instantaneous
speed V. along the X ,-axis. A surface r surrounding the crack front is
fixed relative to the reference frame.

Fig. 6.1. A three-dimensional deformable electromagnetic body containing a propagating
crack of arbitrary shape.

A global form of the energy balance leads to the following expression
for the energy flux integral:
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F(I)=[n-(6+,,6+V®G)-v—n-S +(pk+ ph+,,u’ n-V,|dl
=jag[n-(o+ 6+v®G)-v—n-SldS

v 9k + it v + [y o 7 -vaV (6.24)
oo LB gV -, TV
E—Vl:p e I;_‘;ﬁps y
0

where \71: is thg volume bounded by I, 9B is the boundary of the
cracked body B, and S =ExH is the Poynting vector in the co-
moving frame R .

Hence, the total energy flux is caused by work done by the total
traction, traveling of electromagnetic waves, and transport of material
with its associated energy density. It is noted that the associated energy
density includes the kinetic energy density, the Helmholtz free energy
density, and the energy density of the free electromagnetic fields.

The dynamic energy release rate is defined as the rate of energy flow
out of the body and into the crack front per unit crack advance, that is,

Ty = %i%%jf[n (0+,,6+V®G)-v—n-S+(pk + ph+,,u’n-V.1dl,
(6.25)

where the limit implies that I" is shrunk onto the crack front and A is
the crack area growth rate.

The above definition is reduced to Eq. (1.27) as the electromagnetic
fields are shut off and to Eq. (5.18) under the quasi-electrostatic
approximation.

6.2.3 Invariant integral

In view of its definition, the dynamic energy release rate serves as the
crack driving force for any boundary-initial value problem and can be
evaluated when the solution becomes available. Since it is rare to obtain
closed-form full-field solutions under combined loading conditions,
numerical techniques are often used to determine coupled magnetic,
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electric, thermal, and mechanical fields. However, it is difficult to
proceed numerically to the limit required in (6.25) for definition of the
dynamic energy release rate due to inaccuracy of numerical solutions for
points very close to the crack front where gradients are severe.
Therefore, an equivalent representation that is less sensitive to numerical
inaccuracy in the crack-front region is needed for efficient evaluation of
the dynamic energy release rate.

The relationship between the energy fluxes through two surfaces l:1
and 1';2 is obtained as

[ n-(c+,,6+v®G)-v-n-S +(pk + ph+,,u” -V, 1dl

—lim [, g

-0V, of

(Pk + pht u’ )dV + lim [, ; pf-vaV
00 "2 Ty

i P pogai—tim|. . FTdV

BN, g, &I oV~ d e, STV 620

= ;[0 (0+,,0+V®G)-v=—n-S +(pk + i+, u’ m-Vldl

— lim | i

[-0™0 ", 9r

~ ~7 f 5 . o ~a . -4
(Pk + ph+,,,u’ )dV + %:I—nmj"ﬁ 7, pf-vdv

, b oA - .

-lm|, - —E-J,dV-lim|, - psTdV.
f})%() J.Vﬁ _Vf"o pO Je f‘oaoj‘/ﬁ _Vf"o P

It can be seen that the above integral becomes invariant because of

the added domain integral terms. Consequently, the dynamic energy
release rate can be represented alternatively by

To=J
:%jf[n-(6+em6+v®G)'V—n'S+(,51€+,b7€+emuf)n-VC]dl~“
—1imlj E(~1€+ ph+,,,u’ )dV + 1imlj pf - vav

I,—0 A ‘71:_‘71:0 51‘ P P e Iy—0 A ‘71:_‘71N"0 P

—tim~f o LEgav . BTV,

1
— lim— [,
lim—f v,

6.27)
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If a field quantity is invariant in a reference frame traveling with the
crack front at a uniform speed V. = VCE , the field quantity depends on
t only through the combination X:X—Vct. Hence, for steady-state
crack propagation in the absence of mechanical body force, temperature
change, and electricity conduction, the path-domain independent J -
integral becomes path independent, that is,

J=7

1 o= 1 o an ~
=—Ejfn~(0+em0)-quF-El +Effn~(pk+ph+emuf)IdF-El

~ o~ - o~ 6.28
+%jf[(n><E)><D]-quF- E, +%jf[(n><H)><B] -uVdl'-E, (6:28)
+%jfn .v®(PxB)-uVdl-E,,

where B is the thickness along the crack front.
With the introduction of the energy-momentum tensor
b= —[o+,,0+(D-E)YI-D®E+(B-H)I-B®H
(6.29)

—v® (PxB)]-uV +(pk + ph+,, u’ I,

the J -integral can be expressed as the first component of the J K-
integral vector as an extension of the configuration force (material force)
notation (Eshelby, 1951, 1956, 1970, 1975; Maugin and Trimarco, 1992;
Gurtin, 2000), that is,
i:%jfn.ﬁdfil:jil. (6.30)
Nevertheless, the J ¢ -integral vector and the energy-momentum
tensor b derived in this formulation are different from those obtained
with use of the electromagnetic enthalpy (Maugin et al., 1992; Maugin,
1994). The physical meaning of the crack-front J -integral is the
dynamic energy release rate, which represents the rate of energy flow out
of the body and into the crack front per unit crack advance. Unlike other
path-independent integrals, the J -integral thus formulated fully satisfies
thermodynamic requirements and, hence, can be used as a physically
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sound fracture criterion. When the added domain integral terms in Eq.
(6.27) are nonzero, the J -integral becomes path dependent and, thus, the
invariant J -integral is used as an alternative representation. The
invariant J -integral method is not only generally applicable to various
material systems and loading conditions but also relatively easy for finite
element implementation due to its path-domain independency.

6.3 Stroh-Type Formalism for Steady-State Crack Propagation
under Coupled Magneto-Electro-Mechanical Jump/Boundary
Conditions

6.3.1 Generalized plane crack problem

To illustrate the application of the developed theory, consider a
conventional planar crack extending in a magneto-electro-elastic solid
(Fig. 6.2). A reference frame is affixed to the crack tip advancing at
instantaneous speed V.. The X ,-axis is along the crack front and the
crack faces are on the half-plane containing the negative X ,-axis. For a
generalized plane crack problem, the field quantities do not depend on
X , but may have components in the X 5 -direction.

T T T 0yt m0s;,D; . B,

X
A

~

125,

Tz
~
29,

v

Fig. 6.2. A conventional planar crack extending in a magneto-electro-elastic solid.
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For an elliptical cavity-like crack problem, the jump conditions across
a material surface of discontinuity are given by

n-[[c+,,06]1=0, [[u]]=0, (6.31)

n-[[D]]=@,, nx[[E]]=0, n-[[B]]=0, nx[[H]]=0. (6.32)

For a slit crack problem, the crack-face conditions may be expressed
as
+ + - -
n -(o+ o) =-n -(0+, O)

em em
_ 0Jr 0 oJr 0 oJr 0 (6.33)
=—{021% 01 021:00 %0, 022,023+, O3 s

n"-D'=-n"-D =-D),n"-B"=-n"-B =-B). (6.34)

The total traction should be considered in the coupled magneto-
electro-mechanical boundary conditions along the crack faces and the
remainder surface of the solid. The jump conditions (6.31) and (6.32) are
exact, but the corresponding boundary value problem needs to be solved
in both the solid region and the cavity region. For a slit crack problem,
Dg and Bg in (6.34) are either prescribed under the impermeable crack-
face condition or determined through solving the boundary value
problem with the permeable or semi-permeable crack-face condition.
The crack-face boundary conditions may also involve crack opening,
surface charge or discharge.

Since the basic equations in anisotropic magneto-electro-elasticity
have the same structure as those in anisotropic electroelasticity, general
solution techniques for linearized problems like the Stroh-type formalism
remain valid. As an illustration, a steady crack growth problem is dealt
with below.

6.3.2 Steady-state solution

A steady-state solution for dynamic crack propagation at constant speed
may be achieved in some limiting sense. The steady-state condition
permits further reduction of the number of independent variables from
three to two so that the analysis is considerably simplified. If a field



130 Fracture Mechanics of Electromagnetic Materials

quantity is an element of a steady-state solution, the field quantity
depends on 7 only through the combination X =X -V, that is,

f(X.X,.0)=f(X.X,), (6.35)
if(x X,.0)=-V, if(f(' X,) (6.36)
ot 1>A28) = ca)zl 122/ .
if(x X r)—if(ii X,) (6.37)
X, REF)'d peh '

J f(X,,X z)—ifo? X,) (6.38)
F) SR e ‘

where the forms of the functions on the left-hand and right-hand sides of
the equations are different, but the values of the functions represent the
same physical quantity, and so they may be represented by the same
symbol with little risk of confusion.

Under quasi-electrostatic and quasi-magnetostatic approximations,
the governing equations for an anisotropic magneto-electro-elastic solid
in the absence of mechanical body force (f' =0), electricity conduction
(J,=0), and free electric charge (g, =0) can be rewritten in the
rectangular reference coordinate system affixed to the moving crack tip
as

Conthy 1 + €@ + PV = PVEu, (6.39)
€jattiji — K@y =8 ¥ =0, (6.40)
bty — 8P — MW 3 =0, (6.41)

E =-9¢,, (6.42)

H =-y,, (6.43)
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where ¢ is electric potential, ¥ is magnetic potential, e;; , h; , and g;
are piezoelectric, piezomagnetic, and magnetoelectric coupling
i and My are elastic stiffness,
dielectric permittivity, and magnetic permeability coefficients,
respectively.

Based on the Stroh-type formalism, a general solution is sought of the

form

coefficients, respectively, ¢, K

u, = amf(z) (m = 1,2,3), (644)
¢=a,f(2), (6.45)
y=asf(2), (6.46)

where the function f is analytic in the complex variable z = X |t p)? )
and the complex numbers p and g, must be determined from Egs.
(6.39)—(6.41).

Substitution of (6.44)—(6.46) into (6.39)—(6.41) yields

[Q-pV U+(R+R")p+Tp*la=0, (6.47)
with a=(a,,a,,a;,a,,as)", U=diag(1,1,1,0,0) , and the 5X5 matrices:

Cijn1 €1 hljl

Q= elTkl —Kyn —8n | (6.48)
thkl —8n —Hi

C]jk2 e2jl thI
R=|e, -k, —gn| (6.49)
hlrkz —8n —Hp
Gk €2j2 h2j2
T=|ey, —Kn —8» (6.50)
hyy —8n —Ha

Nontrivial solutions are obtained if p is a root of
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detfQ— pV U+ (R+R")p+Tp*1=0. (6.51)

The ten roots of Eq. (6.51) depend on the crack velocity V¢, that is,
Po=Pa(Ve). A real root p of Eq. (6.51) corresponds to a value of V¢
equal to the velocity of bulk wave propagating in the direction (1, p) in
the (X | X ,) plane. Let ¢; denote the inferior limit of such bulk-wave
velocities. Then, Eq. (6.51) has no real roots for V. <c,. Since the
coefficients of Eq. (6.51) are real, the eigenvalues p, and the
eigenvectors a, form two sets of complex quantities, with one set being
conjugate to the other. We suppose p, (@ =123,4,5) are five distinct
roots with positive imaginary parts and construct the matrix A with
columns that are the associated eigenvectors. Thus, the general solution
of Egs. (6.39)—(6.41) is given by

U = XA o)+ X0 1oz (652)
0= S A oli) + S Aafuli) (6.5
V= S A fole)* S Loz, (6.54)

where z, = X |t pa}? , (@=1,2,3,45) and over-bars denote complex
conjugates.

Hence, total stress, electric displacement, and magnetic induction are
readily expressed as

5 , 5 — - ;
(O = Z(pVCZAm - paLia)fa/(Za) + Z(pvczAia - paLia)fa(Zaf) ’ (655)
a=1 a=1

5 , 5 -
zo.iz = glLiafa(Za) + glLiafa(Za) ’ (656)

5 i 5 —
Dl :_Z_:lpalﬂafa(za)_ Z_:Iﬁal‘émfa(za)’ (6.57)
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5 , 5 .
Dy = Xlyafa(za) + Zlaafa(za) (6.58)
5 i 5 _ ,
- Z_:lpaLSafa(Za) - Z_:]T’aLSa fa(za) s (659)
5 , 5 .
B, = Z_ILSafa(Za) + glLsafa(Za)y (6.60)

where Ln _(Rmn+p0tTnm)Ama an+pa nm pv U )Ama is
used to construct the matrix L. The unknown functions f, can be
determined by the boundary conditions for a given crack growth
problem.

Let us introduce

f= (f1(21)9f2(22)’f3(23)’f4(z4 )’fs(zs ))T . (6.61)
The asymptotic solution is

1 -

k. 6.62
\8mz ( )

The dynamic field intensity factor vector is defined in terms of the
total stress, electric displacement and magnetic induction at a distance r
ahead of the crack tip as

h(z)=Lf (z) =

_lrl_r)%\/_( G215 051 035Dy, By (6.63)
where Ez(l?,,,l?,,l?,,,,l?D,l?B)T K K,,, K,,, are mode-I, mode-II,
and mode-III dynamic total stress intensity factors, K p 1s the dynamic
electric displacement intensity factor, and K 5 1s the dynamic magnetic
induction intensity factor.

The jumps of the displacements, electric potential, and magnetic
potential across the crack faces at a distance r behind the crack tip are

(Auy, Auy, Auy, Ag,Ap)" = ‘/ﬁ” Kk, (6.64)
T
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where H' =2Re(JAL™) is the dynamic counterpart of the Irwin matrix
described in Section 4.5.2, which depends on material properties and
crack speed.

Hence, the dynamic field intensity factor vector in terms of the crack
opening displacement (COD), electric potential difference, and magnetic
potential difference across the crack faces at a distance » behind the crack
tip is defined as

r—0

K =1lim /%(Aul,Auz,Aus,Aqﬁ,Al/f)T, (6.65)
r

where k' =(K;. K" K" K,.K,)", K, K", Ky* are
mode-I, mode-II, and mode-III dynamlc crack opening dlsplacement
intensity factors, K » 1s the electric potential intensity factor, and K
the magnetic potential intensity factor.

As a result, the two dynamic field intensity factor vectors k" and k
are related by

kK*=H'k. (6.66)

6.3.3 Path-independent integral for steady crack growth

For steady-state propagation of a planar crack without mechanical body
force (f' =0), temperature change (7 =0) and electricity conduction
(J,=0), the dynamic energy release rate can be represented by the
path-independent dynamic contour integral as the closed contour
including the crack faces is chosen, that is,

~

To=T,=17,. (6.67)

Choose the contour as shown in Fig. 6.2. This is a convenient choice
because n, =0 along the segments parallel to the X ,-axis. The contour
is shrunk onto the crack tip by first letting d, — 0 and then 8, = 0. By
analogy to the purely elastodynamic case (Freund, 1990) there is no
contribution to J0 from the segments parallel to the X -axis and the
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segments along the crack faces. Moreover, the second, third, fourth, and
fifth terms on the right-hand side of Eq. (6. 28) along the segments
parallel to the X -axis vanish. Consequently, JO can be computed by
evaluating only the first term on the right-hand side of Eq. (6.28) along
the segments parallel to the X | -axis, that is,

u (X,.0,) -
Ty —211m{11mj [0'21(X1,5 )+em0'2,(X1,5 )]del}-

6—0 6,0 1
(6.68)

Consequently, the dynamic energy release rate is equal to the
following crack closure integral:

Jy= lim —— jo [0,,(X,.0)+,,0,,(X,.00]Au;(X, — 3,0")dX, , (6.69)

where Au . (X —u0%)=u, (X - 0+) u, (X —,07) is the crack
opening dlsplacement ata dlstance o — X behmd the crack tip.
The dynamic energy release rate is thus calculated as

1~ =~ = I
JOZZ(KH’KI’KH[aO,O)'H'(KH,K],K”,,KD,KB)T. (6.70)

Equation (6.70) shows that the dynamic energy release rate is an odd
function of the electric displacement intensity factor and the magnetic
induction intensity factor, which is consistent with experimental
evidence (Pak and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans,
1994; Lynch et al., 1995; Park and Sun, 1995a-b; Jiang and Sun, 1999,
2001; Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu,
2003). The axisymmetric dynamic crack problem under the
electromagnetically impermeable or permeable conditions studied by
Feng et al. (2007) is analogous to the mode-I dynamic crack problem
with the crack plane perpendicular to the poling direction.



136 Fracture Mechanics of Electromagnetic Materials

6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Case

As the crack velocity tends to zero, the near-tip field formulae in the
previous section are reduced to the quasi-static case discussed in Chapter
4 with the replacement of the Cauchy stress by the total stress. For a
conventional Griffith-type crack of length 2a, the crack-tip field intensity
factor vector is obtained as

E:(EII’I?I’EIII’ED’[?B)T
w 0 - 0 - 0 e 0 re onT (6.71)
=(,051=,031,,05,—,0,,053—,05,D; =D, ,B;, —B,) N,

where ,O'Z- , Dy and B are, respectively, total traction, electric
displacement, and magnetic induction components in the far field, ZO'S i
Dg and Bg are, respectively, total traction, electric displacement, and
magnetic induction components at the crack surface.

Since the total stress tensor is the sum of the Cauchy stress tensor and
the electromagnetic stress tensor, the total stress fields are coupled with
the electromagnetic fields, which is fundamentally different from the
decoupled prediction based on the linear theory of piezoelectricity and its
extension.

From Eq. (6.28), the energy release rate for a quasi-static or
stationary planar crack in the absence of mechanical body force (f=0),
temperature change (T =0), and electricity conduction (J, =0) can be
expressed by a path-independent integral constructed with the augmented
Helmholtz free energy, including the contribution of the energy of the
free electromagnetic fields, that is,

-1
T =—[pn {-[(6+,,0)+(D E)-DOE+ B -H)I 67

~B®H]-uV +(ph+,,u’ )}dl - E,.

As the electric field or the magnetic field is shut off, the above
expression becomes
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~ 1 -
J—Ejfn-{—[(o+ec)+(D-E)I—D®E]~uV 6.73)

+(Ph+,u 1}l - E,,

~ 1 -
J —Ejfn-{—[(chmc)+(B~H)I—B®H]~uV 6.74)

+(Ph+,u" I}dT"-E,.

6.5 Summary

The thermodynamic approach provides a uniform treatment of nonlinear
constitutive and fracture behaviors of deformable electromagnetic
materials involving multifield coupling effects. The elements of dynamic
fracture mechanics for nonlinear magneto-electro-thermo-elastic solids
are summarized in Table 6.1. The dynamic energy release rate
representing the rate of energy flow out of the body and into the crack
front per unit crack advance under combined magnetic, electric, thermal,
and mechanical loadings can be expressed as the crack-front J -integral
or, alternatively, the invariant J -integral. The J -integral including both
path and domain integral terms is invariant (i.e., path-domain
independent) as a whole, but in general neither path independent nor
domain independent separately. For steady-state crack propagation in the
absence of mechanical body force, temperature change, and electricity
conduction, the path-domain independent J -integral is equivalent to the
J -integral, which becomes path independent as the closed surface
including the crack faces is chosen. Unlike other invariant integrals in the
literature, the invariant J -integral thus formulated can be used as a
physically sound fracture criterion for magneto-electro-thermo-elastic
solids so as to provide guidelines for design and analysis of smart
material and structure systems. Remarkably, the dynamic energy release
rate is an odd function of the electric displacement intensity factor and
the magnetic induction intensity factor, which is consistent with
experimental observations. The crack driving force and the energy-
momentum tensor in electro-thermo-elastodynamic fracture given in
Chapter 5 can be taken as a special case. While many efforts have been
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devoted to the establishment of an advanced fracture mechanics
methodology involving multifield analysis, much remains to be done for
practical applications. The crack growth problems under combined
magnetic, electric, thermal, and mechanical loadings are certainly worthy
of more studies, especially involving surface wave phenomena and
material hysteresis effects.

Table 6.1 Summary of the elements of dynamic fracture mechanics for nonlinear
magneto-electro-thermo-elastic solids

Helmbholtz

free eneray h=é—T5=h(C,T,VgT.ILB;X)

Poynting _

vector S=ExH

Dynamic - o A n ¥ ~
energy Jo= %ILHOXL:[H (O+,,6+V®G) - v—n-S+(pk + ph+,,u’ )n-V1dl

release rate

J :%J'f[n-(c+emc+v®G)-v—n-S+(ﬁl€+ﬁﬁ+emuf)n-Vc]dl:

Invariant -1 J
— lim — 5 jk + ph+,,,u dV+hm— ot - vdV
integral -0 A '[V V (p PiEem ) -0 A IVr Vﬁ] p
1 .~
—lim — |5 5 —EJdV—hm— = pSTdV
[,—0 A IV 1"0 Po I—0 A jv p
Path- J=J-E;=(/B)[zn bdl -E,
mdependent (steady-state crack propagation in the absence of mechanical body force,
integral temperature change, and electricity conduction)
Energy- 5=—[c+emo'+(D-E)I—D®E+(B-H)I—B®H
momentum ~ A A 7
tensor - v®PxB)]-uV +(pk + ph+,,u’ )1
e 1l ~ o~ =~ e e~ o~ o
Trwin- J =2(K11»K1’K111’0»0)'H’ Ky Ky Ky Kp.Kp)'
relation

(linearized theory)




Chapter 7

Dynamic Crack Propagation in
Magneto-Electro-Elastic Solids

7.1 Introduction

The transient response of electromagnetic materials in the presence of
multifield coupling effects is essentially distinct from those found in
purely mechanical problems. For example, shear horizontal (SH) surface
waves may occur in a piezoelectric material with hexagonal symmetry
(Alshits et al., 1992; Alshits, 2002), whereas there are no antiplane-mode
surface waves in a purely elastic material of the same symmetry. Due to
the shear horizontal surface wave effects, antiplane dynamic crack
propagation in piezoelectric materials (e.g., Li and Mataga, 1996a-b; Ing
and Wang, 2004a-b; Melkumyan, 2005; Chen et al, 2007, 2008)
exhibits many features only associated with in-plane modes in the elastic
case. The magneto-electro-mechanical coupling effects introduce more
difficulties to solving transient crack growth problems analytically.

Since the previous chapter demonstrated the solution procedure for
steady-state crack propagation in magneto-electro-elastic solids, we now
focus on the techniques for analyzing transient crack growth in magneto-
electro-elastic solids. Our attention is limited to the illustration of sudden
constant-speed extension of a mode-III crack in a magneto-electro-elastic
solid, so that the model is mathematically tractable for a closed-form
analytical solution following the work by Chen (2009¢). For more
complex problems, numerical methods are often resorted to because of
mathematical difficulties. The treatment of this subject is far from
exhaustive and the reader may refer to the literature for further
information.

139
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The following section begins with a brief description of the shear
horizontal surface wave phenomenon. In Section 7.3, the boundary-
initial value problem for a sudden constant-speed extension of a semi-
infinite mode-III crack is formulated with a unified treatment of
electrically and magnetically permeable, semi-permeable, and
impermeable crack-face conditions. In Section 7.4, integral transform,
Wiener—Hopf and Cagniard—de Hoop techniques are used to solve the
boundary-initial value problem in both the cracked solid region and the
interior fluid region. In Section 7.5, the fundamental solutions for
traction loading only are attained with the inverse square-root singularity
near the crack tip. In Section 7.6, the fundamental solutions are
generalized to mixed loads, resulting in self-induced and crossover
dynamic field intensity factors. In Section 7.7, the dynamic energy
release rate is evaluated based on the near-tip field solutions
characterized by the dynamic field intensity factors. In Section 7.8, the
surface wave effect on dynamic crack propagation in magneto-electro-
elastic solids is discussed.

7.2 Shear Horizontal Surface Waves

In contrast to elastic body waves (P waves or S waves in seismology)
that move through the body of an object, Rayleigh waves are a type of
commonly known surface waves which travel along a surface and decay
exponentially away from the surface. Bleustein (1968) and Gulyaev
(1969) independently discovered the propagation of shear horizontal
waves in piezoelectric materials with hexagonal symmetry. Lothe and
Barnett (1976, 1977) further developed the theory for surface waves in
piezoelectric crystals. Alshits er al. (1992) studied the existence of
surface waves in half-infinite anisotropic elastic media with piezoelectric
and piezomagnetic properties. Alshits (2002) also reviewed the role of
anisotropy in crystal acoustics. Wang et al. (2007¢c) analyzed a magneto-
electro-elastic half-space problem. The surface wave effect is very
important for the design and analysis of high-performance devices such
as transducers and wave filters. The major solution steps for shear
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horizontal surface wave problems involving magneto-electro-elastic
coupling effects are outlined below.

Consider the propagation of shear horizontal surface waves along the
free surface of a magneto-electro-elastic solid poled in the X, -direction
(Fig. 7.1). The field equations as well as the boundary conditions for the
out-of-plane displacement component w and the electric and magnetic
potentials ¢ and ¥ are independent of X, and uncoupled from those
for the in-plane displacement components.

X3 (poled)

/
Free surface / w

[ >
Direction|of propagation

LXI

A

v
X5

Fig. 7.1 Schematic of shear horizontal wave propagation along the free surface of a
magneto-electro-elastic solid occupying the half space.

Based on the quasi-static approximation for the electromagnetic
fields, the basic field equations for the half-space solid region
QY ={X,>0,—0< X, <+} and the half-space fluid region
QY ={X, £0,-00< X, <+oo}, in the absence of mechanical body force,
electricity conduction, and free electric charge, are expressed as

dw Iw 2V, d’w 1w

+ - =0 in Q¥ 7.1

X! 9X; ¢ 9X, 0t c; o ’ 7D
2—(s) 2—(s)

90,97 ) ina®. (7.2)

T T vz
x> ox’



142 Fracture Mechanics of Electromagnetic Materials

82'/7(5) a2y7(5)

+ =0 in Q¥ 1.3
E) ) & ’ o
2 (f) 2 ()
0 q02 L9 (02 —0 in QU (7.4)
ox; = oX, ’
azl//(f) a2l/l(f)
+ =0 in QY 7.5
§O =g Gt “hs&i oo (7.6)
Kot —8n
g =y _%w in Q¥ , (7.7
1M e
_ ow ap" o .
G, =C +e +h, in Q' (7.8)
e Mox,  Pox, U oax,
. a (s) a—(s) . ;
D/E)__K‘ll aq;( —8n al/;( n 'Q(A), (7.9)
k k
v Ry S o \
B/E.) =—8n a?( —H al/)/( in Q" ) (7.10)
k k
(f)
D;f>=_;cfaa¢’7 in QY (7.11)
k
PR
B — _y in QW 7.12
e , (7.12)
()
g0 =_99" 4 qw (7.13)
X, ’
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(s)

H,E“):——aal/)/( in QO (7.14)
k
(f)

E;f):——aaf( in Q) (7.15)
k
(f)

H,ﬁf):_—aa"’)’( in Q) (7.16)
k

where k = 1,2, ¢, =(c,,/ p)l/2 is the piezoelectromagnetically stiffened
bulk  shear wave speed, p is the mass density,
Cy :C44+(6125/U11 _2elsh15gll+h125K‘11)/(K‘11/u11_g121) is the
piezoelectromagnetically stiffened elastic constant, c¢,,, &, 4, &
es, and Ak are the elastic, dielectric permittivity, magnetic
permeability, magnetoelectric, piezoelectric, and piezomagnetic
coefficients for the solid, ¥/ and ' are the dielectric permittivity and
magnetic permeability coefficients for the fluid (vacuum, air, oil, etc.),
,0,, are the total stress components, D" are the electric displacement
components, B{” are the magnetic induction components, E” are the
electric field components, H” are the magnetic field components,
where the superscript p = s stands for the solid region and p =f for the
fluid region.
The remote conditions may be taken as

;O =0, (3(.?) =0, 1/7(.?) =0, as X2 — 400, (7.17)

P =0, y'" =0, as X, - —oo. (7.18)

The boundary conditions at the free surface are given by

0,,=0, on X,=0, (7.19)

¢(_‘,) _ ¢(f) — O, D;Y) _ Déf) — O, on X2 = 0 s (720)
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" -y =0, B -B;” =0, on X, =0. (7.21)

A general solution of Egs. (7.1)—(7.5) for surface waves propagating
along the X, -direction and decaying in the X, -direction is represented
by

w=a,exp(~=&, X, )expli(E X, —w 1] | (7.22)
P =a,exp(-& X,)expli(E X, —w1)] (7.23)
7 =a,exp(=& X, )expli(E X, — @ 1)] (7.24)

P =a, exp(& X,)expli(§X, — @ 1)], (7.25)
' =a, exp(&X,)expli(E X, —@ 1)], (7.26)

. 2 2 ., . .
where i=~-1, @=c;\¢ =&, is the frequency of a time-harmonic
disturbance, & =@/ Cy, is the wave number, and ¢C,, is the shear

horizontal surface wave speed.
Application of the boundary conditions (7.19)—(7.21) leads to

cusa, +elsé:1a2 +h15§1a3 =0, (7.27)
Gsbn=Ms&i 4y g =0, (7.28)
Kby — 8
Bk s8u 4y g =0, (7.29)
Kty — 8
K‘naz"'gn%""(‘fﬂh =0, (7.30)

g,,a, + My,a, + (1 a, =0 (7.31)
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For a nontrivial solution, the determinant of the coefficients must be
zero, resulting in

& =kadi - (7.32)

where k, is the magneto-electro-mechanical coupling factor satisfying

kfm = (l—cZg /c;)”2

_ Kf[els(ﬂf +40) — 8l 1(esth, — hisgyy)
EM[(Kf + Kll)(luf +:u11)_3121](7(11:u11 _glzl)

(7.33)

,uf[hls(’(f + ’(I])_gllelj](hljl(ll _eISgII) ]
544[(Kf + Kll)(ﬂf +,u”)—g121](l('“,u” _glzl)

As K,/x" =0 and g,/4’ —0 for the electrically and
magnetically permeable crack-face condition, the limiting case of (7.33)
is

k. %\/(6125/”11_"' }1125’('11 _zelzshlsgll) ) (7.34)
Coy (K ) — 811)

As k,/k" = and g, /u’ —o for the electrically and
magnetically impermeable crack-face condition, the limiting case of
(7.33) is

k, —0. (7.35)

It can be seen that the shear horizontal surface wave speed c¢,, should
only be lower than the piezoelectromagnetically stiffened bulk shear
wave speed c, for the existence of the surface wave-type solution. As
the magneto-electro-mechanical coupling factor tends to zero (i.e.,
k, — 0), the shear horizontal surface wave speed approaches the piezo-

em

electromagnetically stiffened bulk shear wave speed (i.e., ¢,, —=>¢;).



146 Fracture Mechanics of Electromagnetic Materials

Hence, the shear horizontal surface wave may occur under the
electromagnetically permeable or semi-permeable crack-face condition,
but there is no surface wave of this type under the electromagnetically
impermeable crack-face condition. The propagation of Bleustein—
Gulyaev surface waves in hexagonally symmetric piezoelectric materials
can be taken as a special case.

7.3 Transient Mode-III Crack Growth Problem

Since the class of transient crack growth problems is rather difficult to
solve analytically, existing solutions in the literature often involve certain
assumptions. For example, Baker (1962) studied constant-speed crack
growth under stress wave loading. The imposed constant-speed condition
enables extraordinary simplification of the corresponding boundary-
initial value problem. A solution procedure for the sudden extension of a
pre-existing crack in an elastic body subjected to general time-
independent loading is summarized by Freund (1990) in his monograph
on dynamic fracture mechanics:

“The mechanical fields prior to crack growth are equilibrium fields. If the loading
is increased to a sufficiently large magnitude, then the crack will begin to extend...
The applied loads induce a traction distribution on the crack plane ahead of the
crack tip, and the process of crack growth is essentially the negation of this
traction distribution. This idea is exploited to obtain a complete solution for
general loading by means of superposition... First, the situation of crack growth
with a pair of opposed concentrated forces acting on fixed material points on the
crack faces is analyzed, giving rise to a very useful result called the fundamental
solution for the problem. Then, the corresponding field quantities for any
distribution of tractions on the crack faces can be determined directly by
superposition over this fundamental solution.”

This method can be extended to transient crack growth in the
presence of magneto-electro-elastic coupling effects. Consider a semi-
infinite crack propagating at constant speed V. in a magneto-electro-
elastic solid (Fig. 7.2) under the assumption that there is vacuum, air, or
other fluid of negligible mechanical influence inside the crack occupying
the region QY ={(X1,X2)‘—oo< X, <0,-6<X,<8). A reference
Cartesian coordinate system {}? «- K =1,2,3} attached to the moving
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crack tip is chosen, which coincides at time =0 with the fixed
Cartesian coordinate system {X,,K =1,2,3}. It is assumed that, for time
t <0, the crack tip is at X, =0 and the magneto-electro-elastic solid is
load-free and at rest everywhere. At time ¢ =0, the crack tip begins to
move at speed V. in the positive X -direction and leaves behind a pair
of mixed concentrated loads. Then, the crack tip at any time >0 is at
X, =V,.t. Analyzing the situation of crack growth with a pair of mixed
concentrated loads acting upon fixed material points on the crack faces
gives rise to the fundamental solutions, which can be used to determine
the corresponding field quantities for general mixed loading by means of
superposition.

X2
A X'z
RyS(X, +V 0 H (1) o Ve
QOS(}~(1 +V t)H (1) r
Po(X, +V.OHD) (@ l [ 125, X, X,
s | |
— 25, —|
|<

Vet

Fig. 7.2 Kernel crack growth problem with a pair of concentrated loads equal in
magnitude and opposite in sign applied to the upper and lower surfaces of a semi-infinite
mode-III crack propagating at constant speed V¢ in a magneto-electro-elastic solid. (After
Chen, 2009c, with permission from Elsevier.)

The Galilean transformation can be introduced as

X, =X, -V, X,=X,, X,=X,, i =t. (7.36)

For a transient mode-Ill crack growth problem in a transversely
isotropic magneto-electro-elastic solid with the X, -axis along the poling
direction, the out-of-plane displacement and the electric and magnetic
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potentials are independent of X , in the reference frame moving with the
crack tip, that is, w=w(X,,X,.,7), ¢“’)=¢(")()21,)22,t~),
w'” =y'”(X,,X,,f) . Here, the superscript p = s stands for the cracked
solid region and p = f stands for the interior fluid region. Based on the
quasi-static approximation for the electromagnetic fields, the governing
equations in the cracked solid region Q" and the interior fluid region
QY in the absence of mechanical body force, electricity conduction,
and free electric charge are expressed in the reference frame moving with
the crack tip as

20w w2V, w1 9w

S ——t—+ ————=0 in Q¥ 7.37
X! 0X; ¢ 0X,0f ¢ of ’ (7:37)
2—=(s) 2—=(s)
aa)(/z)z aa)(/z)z =0 in Q" (7.38)
1 2
2—(s) 2.—(s)
aa)"?’z +aa)y2/2 —0 in Q) (7.39)
1 2
2 (f) 2 (f)
aa?;z +aa§2 =0 in Q) (7.40)
1 2
20, 20
aagz +aa§2 =0 in Q) (7.41)
1 2

where s=(1-V;:/c;)"?, V. =|V,| is the crack tip velocity, and the
relations (7.6)—(7.16) are still valid.

Under the assumption that the pre-existing state is quiescent and can
be removed by superposition, the remote conditions are taken as

0,(X,,X,,[)=0, E'(X,,X,,{)=0, H"(X,,X,,{)=0,

as ‘Xz‘ S . (7.42)
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To obtain the fundamental solutions, a pair of mixed concentrated
loads equal in magnitude and opposite in sign are suddenly applied on
the upper and lower surfaces of the crack at time r=0". In the reference

frame moving with the crack tip, the corresponding boundary conditions
are imposed

0, (X,,0,.1)=—PS8(X, +V D) H (f), (7.43)

0, (X,,—0.1)=-P,6(X, +V.HH (), (7.44)
D{(X,,8,1)- D" (X,,6,1)=-Q,0(X, +V D)H(),  (7.45)
D" (X,,~6,i) - D (X,,~8,1))=—Q,0(X, +V.D)H(f), (7.46)
B(X,,0.5)-BY(X,,8,1)=—R,0(X, +V.DHH(), (147

B (X,,—6,i)- B (X,,~0,1)=—R,0(X, + V. H(7), (7.48)

P (X,,6.0) -9 (X,,8,1)=0, (7.49)
oV (X,,-0.1)— 9" (X,,-6,)=0, (7.50)
v (X,,6.0) -y (X,,6,f)=0, (7.51)
y(X,,-0.0)-y'"(X,,-8,{)=0. (7.52)

The initial conditions are
w(X,,X,,0)=0, (7.53)
Ww(X,,X,,0)=0, (7.54)

¢"(X,,X,,0)=0, (7.55)
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v (X,,X,,0)=0. (7.56)

7.4 Integral Transform, Wiener-Hopf Technique, and Cagniard-
de Hoop Method

The Wiener—Hopf technique was originally developed to solve a
particular type of integral equation and then extended to a variety of
applications (Noble, 1958). The essence of the solution process is to
determine two unknown analytical functions from one single equation
based on the theory of complex variables using the integral transforms
such as Laplace, Fourier, or Mellin transforms. This technique was
applied to the analysis of half-plane diffraction problems by de Hoop
(1958) through suppression of time dependence by the Laplace
transform. Once a solution in the transformed domain was attained, the
Cagniard—de Hoop method was used to invert the transforms to obtain a
solution in the physical domain. The reader may refer to the books by
Freund (1990) and Broberg (1999) for further details.

The one-sided Laplace transform with respect to the time variable 7
and the two-sided Laplace transform with respect to the spatial variable
X , are applied as follows:

fX Xy p) = [ F (X Xy D exp(—ph)di, (7.57)
-~ L 1 . o~ o~ -
fX XD =—=[ [ (X, Xy, p)exp(pD)dp,  (1.58)
27Ti ¥ B
F& X =] f (XX, pexp(-pS XdX,,  (1.59)

F XX === F¢ X pexp(pd X dS,  (7.60)
27i ¥ Bn

where the inversion integration is taken over the Bromwich path.
Application of the transforms to Eqs. (7.37)—(7.41) yields a set of
ordinary differential equations:
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4|l GYer go)||w g p=0
dX? 2 T2 T ’ (7.61)

VX, peQl,

dz 2 2 2 —‘Ax)* ot v (s)
y (£2=) 18 (¢.X,.p)=0, VX, p)e Q). (7.62)
dz 2( 2 2 | 2 (s) o % )
2 (g)* _ (s
-l (=)W' (£.X,.p) =0, VX, p)e Q, (7.63)
i d2 2 2 2 | (f)* v o f)
e (£2=¢7) |97 (4. X, p) =0, V({.X,.p)e QL (7.64)

d’ JUPS -
{F—Pz(é‘z—{z)}vﬂ) (£.X,,p)=0, V({.X,,p)eQ), (7.65)
2

where € — 0" is an auxiliary (positive real) perturbation parameter. The
technique of introducing an auxiliary perturbation parameter may be
viewed as the quasi-static approximation for the electromagnetic fields
since the crack speed is much lower than light speed.

Consideration of the remote conditions (7.42) leads to general
solutions of the form

WX p) =sen(X)— A exp(-pa|X,),  (7.66)

1
p
25 - ~ 1 ~

7" (g“,Xz,p)=sgn(X»?B(C)exp(—pﬁ\X2\>, (7.67)

A ~ ~ 1 ~
V(¢ X p) = sgn(X»?cmexp(—pﬂ\Xz\), (7.68)
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where () =+/(1/c2 =2V . [c2 —5*C?) and B()= lim y/(e” - {7).

Since the solution in the interior fluid region is not subjected to any
remote conditions at ‘X 2‘ — oo, the complete form of the solution should
be used:

¢<f>*<§,)?2,p>=#[D+<§)exp(p,6’f2>+D_<§)exp(—pﬁ)?2>], (7.69)

v, Xz,m=#[E+(§>exp<pﬁiz>+E.(§>exp(—pﬁ)?2>]. (7.70)

In the complex ¢ -plane, the function @ has branch points at
§=-1/(c, =V,.) and {=1/(c, +V,), and the function B has branch
points at { =—& and { =+¢. The branch of & with a positive real part
Re(a) >0 and the branch of B with a positive real part Re(f)>0
should be chosen, where the branch cuts run from the branch points
outwards along the real axis.

To apply the Wiener—Hopf technique, the traction and displacement
boundary conditions are expanded over the full range of the X | -axis,
that is,

0,(X,,0°,1)=0,(X,.[)~PS(X, +V.H(i), —eo<X <oo, (71.71)

w(X,,0, 1) =w_(X,,1)+0, —oco< X, <oo, (7.72)
with
. X,.,00,7) X, =0
o.(X,.0)= O (X, ) 2, (7.73)
0 X, <0
0 X, >0
w (X,,t)= . ! (7.74)
w(X,,0%,7) X, <0
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We first solve the case of traction loading only. To satisfy the
transformed boundary conditions (7.45)—(7.52) with 9, =0 and R, =0,
it follows that

A =U_()=p*[  w (X, pexp(-p{X)dX,. (175

exp(pBd — pad)cosh(p5J)
fufe =11 (7.76)
X (¢ f k) = oo f A,

B({)=

exp(pfo — pad)cosh(pf0)
fufe= 1 (1.77)
X (o foth = e f DA,

C=

_ _ exp(—pB9d) exp(—pad)
D,({)=-D_({) —2sinh(pﬂ5) B({)+¢ —Zsinh(pﬁ5) A(S), (7.78)
__ _ exp(—=pp9) exp(—pad)
E ({)=-E_(¢) _—2sinh(pﬂ5) C)+c, —2sinh(pﬂ§) A(), (1.79)

where f, =sinh(pfd)k;, —cosh(pBd)k/,, f, =sinh(pBd)g,,,
fﬂ = Sinh(Pﬂ§)ﬂ11 - COSh(pﬁd)ﬂlfl ¢ = (et — hlsgu)/(’(luull - glzl) >
and ¢, = (ysk;, _615g11)/(7(11.u11 - glzl) .

By letting §—0 while keeping sinh(pBd)x;,/x/,— A, and
sinh(pBO)u,, /1, — A, , Egs. (7.76) and (7.77) become

B({)=—cA(0), (7.80)

C({)=-c,A(), (7.81)
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where A and A are ~ mutually  dependent  with

Ao | A = (K 1/11f1 )/(K1f1ﬂ11) ’

¢ =K, (1= 4,)c, +ﬂ11g111ecz]/[’(11ﬂ11(1_&)(1_/Im)_/1/1;,18121]’
and

¢, =Ly, (1= 4)c, + Kugn/imcl]/[lcnﬂn(l_le)(l_ﬂm) _ﬂ’eﬂ’mglzl] .

It is noted that ¢, > ¢, as 4, >0 and ¢, > ¢, as 4, —>0.

There are four limiting conditions: (i) electrically and magnetically
permeable crack-face condition as 4, -0 and A, — 0, (ii) electrically
and magnetically impermeable crack-face condition as A4 — o and
A, —oo, (iii) electrically permeable and magnetically impermeable
crack-face condition as A4, -0 and A4, —ec, and (iv) electrically
impermeable and magnetically permeable crack-face condition as
A, —eo and A — 0. The electromagnetically semi-permeable crack-
face condition may be approximated if A, and A, are considered as
finite nonzero parameters. For simplicity, 4, and A, are assumed to be
constant in the following analysis.

The transformed total stress, electric displacement, and magnetic
induction are expressed in terms of the single unknown function U_({)
as

05(X,. X5, p) =%{E CU_(O)expl-p(aX, - {X)ld{

(7.82)
[T WU ©expl-p(BR, - (R ML

t6;3()217)z27p) =_%{I;ﬂ:ja(g)(]_(;)exp[_p(a}?z - gjl)]dg

(7.83)

i

[T WP AU ©expl-p(BR, - C XN
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ok, +6,8
27

X[ U (expl-p(BX, - (X NdC.

;ﬂ_im

DY (X,,X,,p)=
(7.84)

Gkt G680
27i

X" BOU_C)expl-p(BX, ~ (X )1d.

Dé?)*()zl , )?2’ p) —_—
(7.85)

€8 TGl
p)=———""
. 27 (7.86)
X[ U (©)expl-p(BX, - ¢ X Nd{,

§p—ico

BI(S)*()ZI’)?P

_E]gll oM,
27i

X[, BOU ©expl-p(BR, ~ (X )1d.

BES)*(XPXYPP) =
(7.87)

where k! = \/ (Ces +Ghs)/c,, is the magneto-electro-mechanical
coupling factor which depends on the permeability parameters A, and
A, through ¢ and ¢,, —1/(c, =V.)<{, <1/(c, +V,), ~e<{;<e.

Substituting Eq. (7.83) into the transformed traction boundary
condition (7.71) leads to the following Wiener—Hopf equation:

I _
EK?)*‘m—K(QUIQ, (7.88)
where
K({)=—c,la($)— (k) BN, (7.89)

£.({)=p, oK. pyexp(-p¢ X )dX,. (7.90)
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The modified form of the Bleustein—Gulyaev wave function
BG({)=a({) - (k;,)* BQ), (7.91)

has a simple structure with roots at ¢ =—1/(c,fg -V.) and
¢ =1/(c,fg +V.), where the shear horizontal surface wave speed is
defined as

- A \4
Cry = Mqr [1—(k2)'. (7.92)

P

For the electrically and magnetically permeable crack-face condition
(4, >0 and A4, —0), we have c}, >c, =cp\[I-(k),)'] and
kK =k z\/ (ces+c,hs)/c, , whereas for the electrically and
magnetically impermeable crack-face condition (A4, - and 4, — ),
we have c,fg —c¢, and k' —0. In particular, for an electrically

em

permeable mode-III crack propagating in a hexagonally symmetric
piezoelectric medium, we retrieve the electromechanical coupling factor
and the Bleustein—Gulyaev surface wave speed (Li and Mataga, 1996a;
Ing and Wang, 2004b). The equality of the shear horizontal surface wave
speed to the bulk shear wave speed in the limit of electromagnetic
impermeability indicates that there is no shear horizontal surface wave
mode under the electrically and magnetically impermeable crack-face
condition.
It is convenient to rewrite Eq. (7.89) in the following form:

K({)=-Tuls = kL) W/ (cf +Ve) = {I/ (e, =Ve) + {18, (7.93)

where an auxiliary function S({) is introduced by

A2
s GO Crpl) 70w
[s— (k2 WIL/ (e, +Ve) = SN (e =V +£ ]
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It should be noted that S({) —1 as |§' | — oo . The essence of deriving
the solution of the Wiener—Hopf equation (7.88) is to decompose S(¢)
such that

S(8)=8.(5)S_({). (7.95)

where S,({) and S () are analytical in their respective half planes
with an overlapping strip.

The primary features of the complex {-plane pertinent to the solution
of the Wiener—Hopf equation (7.88) are depicted in Fig. 7.3 with the
branch points at ¢=-1/(c, =V.), {=1/(c; +V.), {=-€, and
{ =+¢€, and the roots at (2—1/(622 —-V,.) and §=1/(c,fg +V,.). The
common strip of analyticity is between the two dashed lines, and the
overlapping half planes in which the functions labeled with subscripts (+)
and (—) are analytical and are indicated with arrows.

> (+)
() <« : '
{=-1/(c} -V i i $ =1k +Ve)
—o—e | ¢ o O
{=-1e,~Ve) —& | & =1/ +V.)  Re(d)

Fig. 7.3 The complex {~plane showing the primary features pertinent to the solution of
the Wiener—Hopf equation (7.88).

The final factorization of S(¢{) into products of two sectional
analytical functions leads to

ey, ~V)+{
S+(§>—\/1/(CT_VC)+§W+(§>, (7.96)
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U +Ve)=¢

S‘@_\/l/wr o= (797)

0.(0)= exp{lj o arctan[®(+77)]—§} (7.98)
3 2 2

) = (k) N & (7.99)

s\l (e, =V +nlll/ (¢, +V ) —m

Hence, the two unknown functions in the Wiener—Hopf equation
(7.88) are determined to be

B, [s+(k:)] 1

U [ em
(O CufVe M=) 1 1=V, I ¢,
(7.100)
L2V 2) (e +V)=(
A+Ve 1) (E =1V (cf +V) =41
P,
(g)_V(g“ 1/V,)
(7.101)
\/7(1 Ve lep) U (e =V +8 2,01V,
S =Vile, (Ui, -vo+d 2.
where
1
2.(0)= : 7.102
HOT0G 7

Once U_({) and X, ({) are obtained by the Wiener—Hopf technique,
the Cagniard—de Hoop method can be used to find the closed-form
solutions in the physical domain by employing the following inversion
paths in the complex {-plane:
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1 - V. -,
g“H(Xl,t)_W{ (Xch_ngJ

(7.103)
= .o 2V 1 - ~
+iX2\/s2t2— < Xlt——z(X§+Xf)},
Cr Cr
S 1 S o , X7+ X}
§2+(X1’I)ZW —X1t+iX2l 1-¢ % . (7.104)
1 2

7.5 Fundamental Solutions for Traction Loading Only

The closed-form fundamental solutions for traction loading only are
obtained as

W(fl,fz,f)=lflm[U_(§H(r))M} dr, (7.105)
7 ot

¢(S)(X1,X2,f)_—{clj‘ Im|:U (é‘H( ))a§1+(7)
(7.106)
- Im[U e >>a;2+(”} T},
'//(s)()zl,)zz,f)— {CZI ImI:U (é‘H(T)) ;H( )i|
(7.107)
=) Im[U (. ))ag““)} }
’6‘3()2")22’5):@{Im[ﬁﬂ_(ﬁ)a;ﬁ*}H(f—fl)
% of
(7.108)

kY Im [JHU(;H)E’;V;}H@—@)},
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,ozso?l,izih—%{ [a(gmv ¢ ag*}H(f—fl)
o (7.109)
—(kfmfIm[ﬁ@znv_(;zg?z*}mf—t;)},
Df“)()?l,)?z,f):a’(”+Ezg”
T
(7.110)
| £,0-(¢,0) %2 |G -1,
D(S)(}z )Z' E)Z_Elk.ll-i_gzgll
" Ve (7.111)
x1m[ﬁ<§2+>v_<;2+> a;*}mf—fz),
Bf"()?l,)?z,f)=z'g”+52ﬂ”
T
(7.112)
0 . -
Im|:§2+U(§2+) §;+:|H(l‘—l‘2),
Bé»v)()zl’)zz’;):_agn+Ez/~‘1|
" (7.113)

xlm[ﬂ(§2+)U () a§3+ }H(f—t}),

where 7, = [V, X, /¢ +/(X? +5°X2)/ ¢, 1/s* and 7, =&\[(X} + X2) .

The asymptotic behavior of the solutions near the moving crack tip
will be examined below. As X, — 0, both inversion contours take the

same path ¢, =¢,, =, ,ie

: (7.114)
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ai::—i. (7.115)
ot X,

Hence, the total stress, electric displacement, and magnetic induction
fields ahead of the moving crack tip are represented by

- . 1-V./ct P
rGB(Xl,O*,t):MQ(I/VC)—O 1~, (7.116)
1-V. /¢, X, Vel
PO L s PN LTIty 1) NS W LR L0
e Ty [1- (k) N A+V,e I c))
(7.117)
L2V R
NVl n X, Vi
B (X 0+ f):(glg]]-i_gzﬂll) 1 [S+(kipz)2]
e Ty [(1- (k) 1 A+Ve/ cp)
(7.118)

9.1/V,) P 1

Vele my%, e

It is evident that the near-tip total stress, electric displacement, and
magnetic induction fields possess an inverse square-root singularity,
similar to the near-tip stress field in classical elastodynamic fracture
mechanics. The dynamic total stress, electric displacement, and magnetic
induction intensity factors for mode-III crack propagation are defined as

K, = lim 27X, ,0,,(X,,0°,7), (7.119)
X,—0"
K, = lim \J27X,D,(X,,0",7), (7.120)

X, -0
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K, = lim 27X B,(X,,0",7). (7.121)

X,—=0

With normalization based on the corresponding quasi-static value, the
dimensionless dynamic field intensity factors are obtained as

RPwivy (=Vilcy)

g 2Ye) 2 (11V,)
K5V, 0) 1=V, /¢, ‘ (7.122)
:flﬂ(vc)’
ROWEV) [s + (k)] 2,/V,)
K (Ve.0) I+ K,V ef) I=VeTe, (1123
:fzﬂ(vc)’
ROWiv) [s+ (k2 )*] 2 .(1/V,)
RV, 00 D+ A 10+Ve I ef) JTI=Vole,  (7.124)
=1 (Vo).

where the superscript (7) indicates traction loading.

The functions f;* and f; are universal functions of the crack tip
velocity. As shown in Figs. 7.4 and 7.5, the functions f,i (Vo) and
£(V.) decrease monotonically with increasing crack tip velocity V...
The larger the magneto-electro-mechanical coupling factor kjm , the
lower the values of f* and f,. It is noted that the function f,*(V,.)
approaches zero but the function f, (V.) does not tend to zero as
Ve /cb’lg —1. Consequently, the dynamic total stress intensity factor
tends to zero but the dynamic electric displacement and magnetic
induction intensity factors do not vanish as the crack tip velocity V.
approaches the shear horizontal surface wave speed c,fg. The dynamic
total stress, electric displacement, and magnetic induction intensity
factors are reduced to those for the electromagnetically impermeable
crack-face condition as k*, —0.
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Fig. 7.4 Universal function f]'1 versus dimensionless crack tip velocity V. / C;:g for a
broad range of magneto-electro-mechanical coupling factors. (After Chen, 2009c, with
permission from Elsevier.)
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Fig. 7.5 Universal function fz'1 versus dimensionless crack tip velocity V. / C; for a
broad range of magneto-electro-mechanical coupling factors. (After Chen, 2009c, with
permission from Elsevier.)
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The solution for dynamic antiplane crack propagation in a purely
elastic medium (Freund, 1990; Ma and Chen, 1992) and the electrode
solution for dynamic mode-III crack propagation in a hexagonally
symmetric piezoelectric material (Li and Mataga, 1996a; Melkumyan,
2005) can be taken as special cases.

7.6 Fundamental Solutions for Mixed Loads

For a pair of mixed concentrated loads, the general solutions given by
(7.66)—(7.70) still hold but the unknown functions need to be determined
under the boundary conditions with nonzero F,, Q,, and R, . Since the
continuity conditions (7.49)—(7.52) for the electric and magnetic
potentials are kept the same, the functions D, (), D.({), E (), and
E ({) can be calculated from (7.78)—(7.79) so long as the functions
A({), B({),and C({) are attained.

Substituting the unknown functions A({), B({) and C({) back
into the transformed version of the boundary conditions (7.43)—(7.48)
yields the following integral equations:

+i

L-J.g_-m[a’(;) —(k.)* BIOIA ) exp(p¢ X ))d{
27i oot

_LHQ.R) exp(pX' j for X, <0,
cuVe Ve

—1. I{"fimA(é”)eXP(pg”Xl)dg:0, for X, >0,  (7.125)
27ip Jeie

L4 g ¢ g = @R) f PX) :
%Lﬂw B()B()exp(pd X,)dg =— v exp( v, ], for X, <0,

C

L, ;(+_im£_?(§)exp(p§)zl)d{=0,f0r X, >0, (7.126)
27Z'lp {, —ioo

[ BOTOexp(pe R = LZ(QO’RO)eXp£pX1 J <t
27 J6ei= |4 Ve

Cc
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L_ é““f"mE(;)exp(pg“)?l)dg =0, for X, >0, (7.127)
27ip Y6

where —£ <Re({.)<¢ and the functions B({), C(¢), E(R),QO,RO),
L,(Q,.R,),and L,(Q,,R,) are defined by

B($)=B()+A(), (7.128)

C(§)=C()+GAQ), (7.129)

L(P,,Q0,,R)) =P, +e,sL[,(Qy, R,) + hsL,(Qy, R, (7.130)

L(Qy, R =101, A=1/2,) = Ryg, 1/ T(1=1/ 4,)(1=1/ A, K, 14, — &1),
(7.131)

L, (0, Ry) = (R, (1=1/ 2,) =y, 1/ 1(1=1/ 2,) (1=1/ A, ) Ky sty — 87,1,

(7.132)

It is noted that the load function L, (Q,,R,) goes to zero for the
electrically permeable crack-face condition (4, —0) and the load
function EZ(QO,RO) goes to zero for the magnetically permeable crack-
face condition (4, — 0) . Thus, the total traction is the only contribution
to the load function L(P,,Q,,R,) for the electromagnetically permeable
crack-face condition (4, -0 and 4, —0).

The dual integral equation (7.125) has the same structure as the
Wiener—Hopf equation encountered for the traction loading-only case.
Thus, the solution is obtained as

L(P,,0,,R,) [s+(k})’] 1

E44\/i [1_(kjn)4] VI_VC/CT
« 2 1/V,) D) U (e +V)-¢

(A+Ve I et) (§ =11V (¢} +V)=¢T

A()=-

(7.133)
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Following the procedure outlined by Sih and Chen (1977) and Li and
Mataga (1996b), the dual integral equations (7.126) and (7.127) are
satisfied if

- - 1 1 1

B_(()—A(QO,RO)M@_UVC)H, (7.134)
1

C_(\)=L,(Q,. 0)\/7@ 1/V)\/g (7.135)

Similar to the traction loading-only case, the closed-form
fundamental solutions for the mixed loading case can be achieved by the
Cagniard—de Hoop inversion scheme, that is,

w()?l,??z,h=ljf1m[A(§H(r»M}dr, (7.136)
7o ot

¢(.&')(X1,X2,ZT)__{CII mll:A(§1+( ))a§1+(7):|

Im[A(g“2+ (o) 282 (7)} dt+L,(0,.R,) (7.137)

: 1 9¢g,.(7)
im + drty,
X.[fz {(é’ﬂ(z’) 1/Vv )m o7 :| T}

w’(fl,iz,h:l{ Jfmf a2

—c2 {A({N( ) a§2+(7)}d7+ L~2(Q0,R0) (7.138)

P 1 1 a¢,.(7)
I + d 9
XJ"_Z ml:(§2+(7)_1lvc)\/5_§2+(T) o7 :| T}
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~ ~ . C d -~
10-13(X1’X2’t):%{hn|:§1+A(§l+) ai~1+:|H(t_tl)

2 a 2+ T 7
_(kjm) Im|:§2+A(§2+)%}H(t —1,)

L sl Q. R)) + 5L, (0. Ry )

7.139
CuVe (7139
é,2+ 1 §2+

Im H( -
L;ﬂ “UV) Je=2,. o } (t t)}

0 (X, X,.1) =—Eﬁ{hn[a<4+>A<§H>a§+ sz )

V4 ot

—(kfmfIm{ﬂ(CH)A(é;)a;%}H(f—fz)

€510 R + s L, (0, Ry) (7.140)
CurlVe
V8+§2+ aé‘2+ )
(§2+ 1/V.) of '
Df‘”()?l,)?z,f):l{(czc +czg11)1m{§’2+A(§’2+ a;ﬂ
T
i (7 i)~ KuEa Cofo) £ 8L (G, ) (7.141)

NA

4,24- 1 aé,2+ _
Im |:(é«2+ ~1V) Je=¢,. 9 }H(t t)}
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D;S) (Xp Xz,f) = _%{(Cl + ngll)lml:ﬂ(§2+)A(§2+ a§~2+ :l

Kni'l(Qo’Ro)‘FguLz(Qo’Ro)
We
{\/swﬂ aﬂ ;)}

xH(f —1,)—

(7.142)

(&, —1/V,) of

- o~ d
Bl(S)(Xszvt)__{(qgn+czﬂ11)lm[§2+A(§z+ §3+:|

XH (7 —1,) - glll‘l(QO’RO)+ﬂ1]L2(Qo’Ro)

NA

Ca L 9% |gi-
xI Lgm Vo) Je-¢,, @ }H(f t)}

N d
Bés)(Xl’XZ’t):_%{(Elgll+52ﬂll)lm|:18(é/2+)A(;2+) §;+:|

XH(f —t,)— gulq(Qo’Roi/%uLz(Qo’RO) (7.144)
{ Jer il aﬂ ;)}

(7.143)

(&, —1/V,) of

The results may be generalized to mixed load distributions following
the procedure outlined by Freund (1990) for elastodynamic crack growth.
Let fo(X,-X.X,,t=X,/V.), [fo(X,—X,,X,,t—=X,/V.), and
fo(X,—X,,X,,t—X,/V,.) denote, respectively, a field quantity in the
fundamental solutions for wunit concentrated shear loads, unit
concentrated electric loads, and unit concentrated magnetic loads
appearing on the crack faces at X, = X, as the crack tip passes the point
X, at time t=X,/V,. The field quantity for the case of distributed
shear loading p(X,), distributed electric loading ¢(X,), and distributed
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magnetic loading r(X,) appearing through the crack tip is thus given by
the superposition integral

Vet ' ' ' '
FXL X0 = [ £ (X = X1, X, 0= X 1V p(X,)dX,
Vet . . . .

[ (X, = X\ X 1= X V)g(X))dX, (7.145)

Vet ) , , ,
+>|‘O fR(Xl_X17X27t_X1/VC)r(X1)dX1.

Consequently, the near-tip fields for mixed load distributions are
expressed as

0, (X,.07,7) = XD
X,
Ve /¢y, (11V,) -
1=V /¢,
e ) i (7.146)
(_VC Cbg) +( Vc) lL(OIO)I Q(X) _AR2D  ux

Vel | Wi -X,

fa-v.ictHyo aivy . 7 ,
+( o), ( C)—l L(O,O,I)IV &dxl},

| Vel | ¢ JV.i-X,

(X ) {(Elk‘“+52g“) 1
X, Cw =)'
[s+(k‘>] 2,(/V,) p(X)

(1+V /c,,)Jl V./lc, JVei =X

@K 488 ] [s+<kjm>1@+<1/vc>

Cus -k A+Ve I ep) 1=V, /¢,
q(X)

Jidxl‘ +1x,L,(1,0)+ g,,L,(1,0)]

_pX) )

Ji-x "

(1,0 O)I

DZ(Xl’OJraf) -

i 00)]

xL,(0,1,0) f
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XJ‘ch (X') dX (K, +¢,8,,) 1

o Jvi-Xx s -k

[s+(k‘)] @(I/V) r(X,)

L(0,0, 1)[ \/7

(7.147)

(1+v lef) 1=V, Ic,

K, LOD+ g, LoD r(X) Xm},

=T

v OF 7 H(X) (C1g11+cztu11) 1
B,(X,,0",7)= — -
( = 75\/7{ Cyy [1_(kjm) ]
s+ ()] 2.7V £1,0.0)[" X))
(1+v lef) 1=V, i¢c, /Vt
L@ tom) 1 s+, @+<1/vc>
Cus M=Ki) T A+Ve I i) J1-V /¢,

><L(010)j Q( 1) dx;+[g,,l}(1,0)+ﬂ“f,2(1,0)]

J'V‘ Q(X) dX‘ +(Clgll +Ez:u|1) 1
JVii - 1 Cu [1-(k2)"]
A
><[s+(km)] @+(1/VC) L( OI)J. r(X)

A+Velep) 1=V /¢, JVoi - X,

He L 0.0+, L0, L) }

Foi-x

It can be seen that the near-tip fields still exhibit the inverse square-
root singularity in the local coordinate affixed to the moving crack tip.
The self-induced and cross-over dynamic total stress, electric
displacement, and magnetic induction intensity factors can be expressed
in the form of a universal function of the crack tip velocity times the
corresponding quasi-static value, that is,

X)Ly

(7.148)
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i 1=V ] c* o - (7.151)
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T 1-V,./ 0

c!Cr \/VT—

KWV V)=kD (VKD (V7,0
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/ L(1,0,0 7.152
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><£/7+(1/VC) vi  p(X,)

W=Vele, ™ Jvi-x
KPP Vi, V)=kP (VKL (V.£,0)

\/7L(010)(C L +Gg,) 1 [s + (k2 )*]
T -k, 1A+V, /)

—dX,,

i ' , 7.153
y DIV v q(X,) X ( )

J=Vele, " \vi-x,

+le¥<l,0>+gni2<l,on 74X,
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JVi - X,




172 Fracture Mechanics of Electromagnetic Materials
o (B > B > (B g
KP Vi, V) =k (VK (V,.1,0)

\/7L(0 O 1) (Clk‘ll +C2g11) 11 7 [S+(kjm)j]
Cy [1=(k,) 1(A+V./¢cp,)

DIV v r(X,) X (7.154)
B 1

N =Vele, " \vi-x,
r(X,)

\f[quzq<01>+gulq<01>]j Ji X;,

KWV i V)=kI (VHKS (V7,0

_ 2 @eu+o) 1 Is+(k;)]
L(lOO) 10— 2/ en (7.155)
Cu [1—- k) 1A+ V, I c;)

><9)+(1/1/C) i p(X)
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dX,,

KPP (Vi V) =k (VOK (V.E,0)
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KWV, V) =k (VHKP (V.E,0)

\/7L(O 0 1) (clgll+c2:ull) 1 [S+(keﬂm)2]
Cus - (ki) 1A+ V. I cp)

em

RACAAN r(X') X, (7.157)
\/l—VC /e, 70 \/V f—
2 - . o X ,
+\/:[811L1(0’1)+ﬂ11l2(0’1)]'[(:/ N~—J,dX17
V.4 Vi-X

C

where the superscript (7) stands for traction loading, superscript (D) for
electric loading, and superscript (B) for magnetic loading.

In general, the dynamic total stress intensity factor does not tend to
zero as V, — c:g under mixed loading due to the existence of the cross-
over terms. The self-induced and cross-over dynamic total stress, electric
displacement, and magnetic induction intensity factors are reduced to
those for the electrically and magnetically permeable crack-face
condition as A4, -0 and 4, —0, the electrically and magnetically
impermeable crack-face condition as A, —c and A4, —oo, the
electrically permeable and magnetically impermeable crack-face
condition as 4, -0 and 4, — o, and the electrically impermeable and
magnetically permeable crack-face condition as 4, e and 4, —0.In
particular, it emerges that the dynamic field intensity factors are not
altered by electric displacement and magnetic induction loads on the
surfaces of an electromagnetically permeable crack because there is no
gap assumed between the top and bottom surfaces of the crack and the
electric displacement and magnetic induction loads on the upper surface
effectively cancel out those on the lower surface. This outcome is
analogous to the finding by Haug and McMeeking (2006) on a
permeable crack with surface charge in poled ferroelectrics. As the crack
propagation velocity approaches zero, the quasi-static limits of (7.149)—
(7.157) are consistent with the existing static crack solutions (e.g., Liu et
al., 2001; Gao et al., 2004; Wang and Mai, 2003, 2007a) with the
replacement of the Cauchy stress tensor with the total stress tensor. In
particular, the cross-over terms due to electric and magnetic loadings in
(7.150) and (7.151) become negligible for quasi-static crack propagation.
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7.7 Evaluation of Dynamic Energy Release Rate

The dynamic energy release rate, which is defined as the rate of energy
flow out of the body and into the crack front per unit crack advance, can
be evaluated by the definition (6.25) given in Section 6.2.2. By choosing
the contour shown in Fig. 7.2 and allowing the contour to shrink onto the
crack tip by first letting &, -0 and then &, — 0, there is no
contribution to J, from the segments parallel to the X,-axis and the
segments along the crack faces. Furthermore, this is a convenient choice
because n,=0 along the segments parallel to the X, -axis.
Consequently, the dynamic energy release rate for mode-III crack
propagation is calculated from the near-tip field solutions as

J —2111’11{111’11‘/ J.(; [0'23(X1,§2,I)W(X1,az,t)dX}

8,-0 | 6,0 (7158)
1 ~
ZK KO,

where the mode-III dynamic crack opening displacement intensity factor

is defined as
K oD — = lim |——=— AW(X 0 t) ( / 159)
" X, —07 _2XI DA .

Based on the near-tip field solutions, the mode-III dynamic total
stress and crack opening displacement intensity factors are given by

p(X))

b)
K, (ViV.)= (LGOO) i @(1/V)j Ji

/ -V /) levi qx) .
L010 — %9 (1/V.)-1 ——dX,
( )_ 1-V, /¢, - (7Ve) j /Vt_
- i 1- 4 ] Vi ,
+ /EL(O,O,l) MED a/v.oy-1 IL r(X) ——dX,,
T

1=Vl T P vi-x,

(7.160)
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hlS 11 engll K (Vt V ):|
Kty — g11

(7.161)

From Egs. (7.158) and (7.161), the dynamic energy release rate for
mode-IIl crack propagation in the presence of magneto-electro-
mechanical coupling effects has an odd dependence on the dynamic
electric displacement intensity factor and the dynamic magnetic
induction intensity factor, that is,

K, (V.i,V.)
2e,,\ 1=V /c;

pastn Tl gy 7y (7.162)
llﬂll gll

J, (Vi V)= (K, (V.,V,.)

K, — ~ ~
+h’15 11 engzll KB(VCt9vc)]'
Kby —8n

The dynamic energy release rate is reduced to that for the electrically
and magnetically permeable crack-face condition as A, —0 and
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A, —0, the electrically and magnetically impermeable crack-face
condition as A —oc and A, — oo, the electrically permeable and
magnetically impermeable crack-face condition as 4, >0 and A, — oo,
and the electrically impermeable and magnetically permeable crack-face
condition as 4, — o and A4, —0.

7.8 Influence of Shear Horizontal Surface Wave Speed and Crack
Tip Velocity

As the crack tip velocity V. tends to zero, the quasi-static case is
recovered, that is,

K, (V.i,0)= \/7L(100)I (X)) 20 gx, (7.163)

i -x;

i - LD )y

T T 1= (ko)1 v i-X|

+2\E L(©,1,0) [ 1XD ' (7.164)
T Cy

-k fvi-x
2 L0,0,) v r(X))
+2,|— —dX |,
\/;544[1—(%)2]]0 JVi - X,

J,(V.£,0) = 1K,,,(Vz 0)K (V£ ,0). (7.165)

Next, we will examine the special case of the electromagnetically

permeable crack-face condition. As 4 —0 and A, —0, we have

Cpe =Cra/l1=(ky,)'] and k), = \/(clelos +c,h%)/cy, . The dynamic total

stress intensity factor, dynamic crack opening displacement intensity

factor, and dynamic energy release rate normalized by the corresponding

quasi-static value become
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it ~ 0
wWVel Vo) _A7Vela) )y,
K,V 00 J1-V.ie, — € (7.166)
= £ Vo),
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Fig. 7.6 Universal function f30 versus dimensionless crack tip velocity V. / C[?, for a
broad range of magneto-electro-mechanical coupling factor. (After Chen, 2009c, with
permission from Elsevier).
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Like the functions f*(V,.) and f;(V,.), the function f_(V,) is a
universal function of the crack tip velocity. The dimensionless function
fL(V,.) is plotted against the dimensionless crack tip velocity V. / c;)g in
Fig. 7.6. Similar to the universal function fl’1 (V) (see Fig. 7.4), the
universal function f;(V.) has the feature that f'(V,.)=1 for
Volep, =0 and f)(V.)=0 for V./c),=1. It also decreases
monotonically with increasing dimensionless crack tip velocity and
increasing magneto-electro-mechanical coupling factor k. . Hence, as
the crack tip velocity V. approaches the shear horizontal surface wave
speed c,?g , the dynamic energy release rate tends to zero so that the shear
horizontal surface wave speed c,?g serves as a speed barrier for the
propagation of an electromagnetically permeable mode-III crack.



Chapter 8

Fracture of Functionally Graded
Materials

8.1 Introduction

Functionally graded materials (FGMs) are nonhomogeneous materials
whose properties vary continuously along one or more directions. Bones
and wood may be taken as FGMs in nature. The idea of FGMs originated
from high-temperature applications of thermal barrier coatings for
aircraft and aerospace industries in the mid-1980s. Due to the gradual
spatial variation in properties instead of a sharp jump across interfaces,
FGMs have potential advantages in reducing stress concentration and
increasing fracture toughness. Eischen (1987a-b) developed a path-
domain independent J k -integral for fracture of nonhomogeneous
materials. Honein and Herrmann (1997) studied the conservation laws in
nonhomogeneous elastostatics by means of a special version of
Noether’s theorem and proposed a path-independent J,-integral. The
near-tip stress field in a FGM possesses a classical inverse square-root
singularity like that in a homogeneous material, so that existing crack-tip
finite element modeling codes can be used to analyze structural
components made of FGMs (Erdogan, 1995). Suresh and Mortensen
(1998) and Jin (2003) provided comprehensive reviews on the
fundamentals of FGMs and the progress in fracture mechanics of FGMs.
Wang and Mai (2005, 2006) investigated a periodic array of cracks in
FGMs subjected to thermomechanical loading and transient loading.

This new concept of tailoring materials can also be extended to
piezoelectric/piezomagnetic materials to improve reliability and achieve
optimized performance in aerospace, transportation, communication,

179
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biomedical, and other applications (see for example Wu et al., 1996; Zhu
et al., 2000; Hudnut et al., 2000; Li and Weng, 2002a-b; Takagi et al.,
2002, 2003; Kwon, 2004; Chakraborty et al., 2005; Chue and Ou, 2005;
Zhou et al., 2005; Feng and Su, 2006, 2007; Ma et al., 2007; Wang and
Mai, 2007b; Sladek et al., 2007a-b; Ueda, 2005-2008; Singh et al.,
2009; Rao and Kuna, 2008, 2010; Shin and Lee, 2010; Dineva et al.,
2010). Successful applications of FGMs rely on a thorough
understanding of the fracture behavior of such materials under various
aggressive operational conditions.

This chapter is focused on the extension of fracture mechanics
methodologies to this emerging class of FGMs subjected to combined
magnetic, electric, thermal, and mechanical loadings, covering boundary-
initial value problems, typical solution methods, and fracture
characterizing parameters. While this subject is far from mature, the
formulation presented in this chapter will likely form the basis for further
advances.

8.2 Formulation of Boundary-Initial Value Problems

The boundary-initial value problems under combined magnetic, electric,
thermal, and mechanical loadings can be mathematically formulated by
the basic field equations with appropriate boundary and initial
conditions. The fundamental difference between functionally graded
materials and homogeneous materials is whether material properties vary
spatially or not. Since the quasi-static approximation for the
electromagnetic fields may be adopted in many practical engineering
applications without loss of solution accuracy, it is employed in this
formulation for simplicity.

Consider a FGM occupying the region V in the absence of mechanical
body forces, free electric charges, and electricity conduction. The
boundary of V is denoted by S. The equations to be satisfied in the region
V are listed as follows:

Constitutive relations (linearized theory):

101 = CotmnEn — ot B — Pos H = B0, (8.1
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D, =e,,&, +KyE + gy H, + 0,0, (8.2)

B, =h,&,, + 8y E, + 1y H, + 14,7,0, (8.3)
R 1

P58 =B &y + O E + 1y H, +T_Cv9 ) (8.4)
0

j,=-k¥-vVo, (8.5)

where material properties and mass density are functions of the
coordinates X , (K=1,2,3),1.e.,

Chtnm = Criamn = it = Chtmn = Cramn (X 1> X2, X3) (8.6)
ek =€ =€ (X1, X5, X3), (8.7)
o = i = Py (X1, X5, X5) (8.8)
By =By =Bu(X1,X,.X5), (8.9)
Ky =k, =k,(X,,X,,X5), (8.10)
My = My = 1y (X1, X5, X35), (8.11)

8u =8u (X, X5, X5), (8.12)
@, =0 (X, X,,X3), (8.13)
Ve =X, X5, X5), (8.14)
C,=C,(X,.X,,X5), (8.15)
k¥ =k"(X,,X,,X;), (8.16)
p=p(X..X,,X,). (8.17)

Kinematic relations:
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Epy =Wy, +u, )12, (8.18)
E,=-0,, (8.19)
H,=-y,. (8.20)
Balance equations:

V-D=0, (8.21)
V-B=0, (8.22)
ap _ —pV-v, (8.23)

dt
p%zv-,c, (8.24)
pTZ—f:—qu. (8.25)

The boundary conditions are
n-[[D]]=0 across S, (8.26)
nXx[[E]]=0 across S, (8.27)
n-[[B]]=0 across S, (8.28)
nXx[[H]]=0 across S, (8.29)
n,6=t; on S,, (8.30)
u=uzonsS, (8.31)
n~jq:qB on Sq, (8.32)

T=T; on S, (8.33)
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where n is the unit outer normal vector of the boundary S and
§=S§,US,=8,0US;. Other mixed boundary conditions may also be
employed.

The initial conditions are

|y =0 (8.34)
| =v,, (8.35)
| =T,. (8.36)

8.3 Basic Solution Techniques

Due to the difficulties and complexities of the spatial dependence of
graded properties plus multifield coupling effects involved in this class
of boundary-initial value problems, numerical methods such as finite
element method (FEM), boundary element method (BEM), or meshless
local Petrov—Galerkin method (MLPG) are often used. Analytical or
semi-analytical solutions may be obtained only for some limited
variations of graded properties such as exponential or power-law
functions of spatial coordinates. For example, Li and Weng (2002a) were
among the first to study a stationary crack problem in a strip of
functionally graded piezoelectric material (FGPM) subjected to antiplane
mechanical and in-plane electric loadings with variations of the material
properties one-dimensionally perpendicular to the crack plane, by using
the Fourier transform to reduce the problem to two pairs of dual integral
equations and then into Fredholm integral equations of the second kind.
Their results showed that the near-tip stress and electric displacement
fields in a FGPM exhibit the same inverse square-root singularity as
those in a homogeneous piezoelectric material, but the magnitudes of the
field intensity factors depend significantly on the gradient of the graded
properties. Li and Weng (2002b) further investigated the Yoffe-type
moving crack problem in a strip of FGPM subjected to antiplane
mechanical loading and in-plane electric loading using the Galilean
transformation and the Fourier transform. They found that the increase in
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the gradient of the material properties can reduce the magnitudes of the
stress and electric displacement intensity factors, which has the same
effect as the electromechanical coupling factor. Zhou et al. (2005)
studied the behavior of a «crack in functionally graded
piezoelectric/piezomagnetic materials subjected to an antiplane shear
loading with the variations of the material properties one-dimensionally
parallel to the crack, by using the Fourier transform to reduce the
problem to a pair of dual integral equations which are solved by the
Schmidt method. Feng and Su (2006, 2007) and Ma et al. (2007)
considered dynamic and static mode-IIl embedded or edge-crack
problems in a functionally graded magneto-electro-elastic strip/plate with
variations of material properties one-dimensionally parallel to the crack,
by using integral transforms and dislocation density functions to reduce
the problem to a system of singular integral equations. Wang and Mai
(2007b) analyzed a mode-III crack problem in functionally graded
magneto-electro-elastic materials with the variations of the material
properties one-dimensionally perpendicular to the crack plane by using
the Fourier transform to reduce the problem by means of the singular
integral equation technique.

The integral transform/integral equation method is illustrated below
for the Yoffe-type moving crack problem in a transversely isotropic
functionally graded magneto-electro-elastic strip subjected to antiplane
shear loading and in-plane electric and magnetic loadings (Fig. 8.1).
Following the treatment by Yoffe (1951) and Li and Weng (2002b),
consider a crack of length 2a moving at constant velocity V. while
keeping its length unchanged. A reference Cartesian coordinate system
(X - K =123} attached to the moving crack tip is chosen, which
coincides at time r=0 with the fixed Cartesian coordinate system
{X,K=1273}. The principal material axes are taken to coincide with
the reference axes with the X ;-axis in the poling direction, where the
X ,-axis is parallel to the crack front.

Thus, the Galilean transformation can be introduced as

X =X, -V, X,=X,, X;=X,,1=1. (8.37)
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Fig. 8.1 A Yoffe-type mode-III moving crack problem in a functionally graded magneto-
electro-elastic strip.

For the Yoffe-type mode-III moving crack problem, only the out-of-
plane displacement w, electric potential ¢, and magnetic potential
are non-vanishing, which are independent of X , and 7 in the reference
frame moving with the crack tip, that is,

w=w(X,,X,), 87 =9 (X .X,), vy =p'"(X,,X,), (8.38)

where the superscript p = s stands for the cracked solid region and p = f
stands for the interior fluid region filled with vacuum, air, or oil of
negligible mechanical influence.

The linearized constitutive equations are given in the Voigt notation
by



186 Fracture Mechanics of Electromagnetic Materials

oX, oX, oX,
DY =e alv a¢~(s>—g awf)
i 15 aXl 11 aXl 11 aXl ,
B =iy DY g 907, VT
i 15 aXl 11 aXl 11 aXl )
)]
D — s 997
’ X, ’
al//(f)
B = _yf OV
i H X

wherei =1, 2.

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

The graded properties are taken to vary continuously along the X 5"
axis inside the strip in the same proportion with the following

distribution:

ey (Xy) =l 1+ X,])",
v 0 v k
K (X,) =k 1+ 2%, )"
v _,,0 v k
ﬂn(Xz)—ﬂu(l"'a‘Xz‘) )
es(X,) =efs (14| X, )",
hys(X,) = hiy(1+ 2| X, )",
v _ 0 v k
an(X,) =gl 1+, )",

p(X,)=p°(+alX,),

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)



Fracture of Functionally Graded Materials 187

where k is a constant and the parameter & can be determined by the
values of the material properties at the X, =0 and X, =%h planes, i.e.,

=Kl el D ih=&xl 1k D) 1h=&ul 14’ —1)1h
=(lels/els =)/ h=Kfh1f2-DIh=Kgh g’ -D/h  (8.51)
=K/p" 1p° =1)/h.
Due to the symmetry inNgeome~try and loading, it is sufficient to
consider the problem for X, 20,X, >0 only. Since the Yoffe-type

moving crack problem is in a steady state, the governing equations with
respect to the reference frame moving with the crack tip may be rewritten

as

2 2
pIw, oW, ka ow _, (8.52)
X} oX; l+aX, dX,
82_(5) 82_(5) ka a_(s)
‘732 + "’32 y ko 99 " _ , (8.53)
oX2 X} 1+aX, 0X,
821/7@) 821/—/0) ko al//(v)
X2 X 1+0X, oX, ’ (859
1 2
2 4(f) 2 4(f)
a?iz +a¢%2:0, (8.55)
X oX:
20 2,
VLIV . (8.56)
X2 oX:
9 =9 —clw (8.57)
v =y —dw, (8.58)
where s2:1—(VC/c2)2, c44/p )* is the piezoelectro-

magnetically stiffened bulk shear wave speed at the Xz =0 plane,
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54?4 = C24 +[(€105)2,u11 zelshlsgll +(h Klol ]/[Klolﬂlol _(8101)2] is  the

piezoelectromagnetically stiffened elastic constant at the X , =0 plane,
cf = (epsit)y —hsg ) /Ky — (g7)* ], and

Cz _(hISKll elsgll)/[Kllﬂll _(8101)2]-

For an elliptical cavity-like crack, the following exact boundary
conditions are imposed:

.05 (X,,h)=P,, (8.59)

DY (X,,h)=D,, (8.60)

B (X,,h)=B,, (8.61)

0,,(X,,X,)=0, (X,/a)* +(X,/b)* =1, (8.62)

DY (X,,X,)-DY(X,,X,)=0, (X,/a)*+(X,/b)* =1, (8.63)

BY(X.X,) - B (X.X,)=0. (X,/a)’ +(X,/b)* =1, (8.64)
EX(X, X)) - EN (X, X,) =0, (X,/a)* +(X,/b)* =1, (8.65)

H®(X,X,)-H"(X,,X,)=0, (X,/a)* +(X,/b)* =1, (8.66)

1°

)?l‘ 2a, (8.67)

¢(S) v

}?1‘211, (8.68)

1°

w'(X,,0)=0,

%|2a. (8.69)
where the subscript “a” stands for the normal component and the
subscript “¢” for the tangential component on the crack surface.

With the introduction of the Fourier cosine transform to Egs. (8.52)-
(8.56), the general solutions can be found as
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~ ~ 2 ~ -
WX, Xy)=— [y (+axy) PLA DI 11+ 00X ))s¢ | 570

+ A (K 5[+ aX,)s¢ Tl }eos(EX NS +ayX .,

s = 2 - -
9! )(Xlaxz):;.[o (1+aX,) ﬁ{Bl(g)Iﬁ[(1+a’X2);/a] 8.71)

+B,(O)K 5l (1+0X,)¢  al}cos(§X)dS by X 5,

—) /v v 2 * X.)~ X
XKy = [T+ ) GO0+ ek ) a) (8.72)

+C, (K 5[(1+aX,){ @l }cos(¢X,)dS - ¢, X5,

[\S]

¢ (X, X,)==[7D,({)sinh(EX ) cos(¢X))d{, (8.73)

3

~ ~ 2 ) ~ ~
v (XX, . [ E,($)sinh(£X ) )cos({X ) )d{ (8.74)

where f=(k—-1)/2, 1 B and K 5 are the first- and second-kind modified
Bessel functions, q,, b,, and ¢, are real constants, and A1(§ ), A, (&),

B(&), By,({), Ci(), Cy(¢), Di(¢), and E\({) are unknown
functions to be determined.

Hence, the expressions for the total stress, electric displacement, and
magnetic induction are obtained as

,0'13()?1,f2)=544()?2)w’1 +6’15(§2)¢_7,1 +h15(§2)y7,1
2 oo ~ "~ ~
:_;Io §(1+00(2)7/3{644()(2)141(g)lﬂ[(1+00(2)sf/a]
+e,5(X)B (O 4[(1+ X )¢ o
+ Iy (X,)C U L+ 0K ,)E ]
+E44()?2)A2(§)K,3[(1+a&2)5§/a]
+615(X2)Bz(§)K/3[(1+00?2);/05]

+hys(X,)Co(OK s[(1+0X,){ 1ol }sin(¢X | )d¢
(8.75)
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r023()21 ’ Xz) = 544()?2)”’,2 + 6]5()22)(7,2 + }115(}?2)'/7,2
2 e - .
= _;jo {[C44(X2)A1(4,)P1(4,’ Xz)

t+e5(X,)B, ()0, (£, X))+ hs(X,)C (0, (L, X )]
+[E44(X2)A2(§)PK(§’ Xz) +615(X2)B2(§)QK(§’ Xz)
+h5(X,)C ()0, (£ X ) eos(E X, )dS

+544()22)a0 _els(fz)bo _hls(}zz)co’
(8.76)

D, (}21’)22) = élS(XZ)W,l - K‘u(}zz)a,l - gu()zz)l/jl
:_% [T¢a+aX,) (e (XA QILI0+aX,)s¢ 1 al

—k,(X,)B(OI,[(1+aX )¢/ al
-2, (X,)C(OI+aX ) 1 al
+2,5 (X)) A, (DK, [(1+aX,)s¢ 1 al
—K,(X,)B(O)K 1+ aX,)¢ | a]

_gll(iz)cz(;)l(ﬁ‘[(l +a}22)§/a]}5in(é’i1)d§’
(8.77)

D,(X,.X,)=¢(X)w, - ,(X,)®, - g,(X,)7,
2 po o~ -
==~ [ 8:XDA @R EXy)
—&,(X,)B ()0, (£, X,) — 81, (X,)C (O, (L. X )]
+Hes (X)) A (OP (L X,) — K,(X,)B, ()0, (£, X,)

—21,(X,)C, ()0 (&, X ) cos(E X ))d S

+515()22)a0 + Kll(Xz)bo + gll(XZ)CO’
(8.78)
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Bl(gl’fz):fhs(iz)w,1_811()?2)45,1_/‘11()?2)1/7,1
2 oo ~ g~ =~ ~
=——l {d+aX,) Pl (X )DA (I 41(1+aX,)s al
_gll(fz)Bl(g)Iﬁ[(l+a)?2)§/a]
_ﬂ11(§2)cl(é¢)lﬁ[(1+00?2);/0!]
+E5(£2)A2(§)Kﬁ[(l+aj(vz)34/a]
_gll(fz)BZ(;)Kﬂ[(l+aX~2)§/a]
— 1, (X,)C, (K41 + X )¢ e dsin(gX, )d,
(8.79)
Bz(Xl’Xz):I:HS(Xz)W,z_gll(}zz)q_),z_Iall()zz)'ﬁa

=2 [l (XDAOR X

~21(X)B()0, (¢, X)) = 1,(X,)C/(Q, (£ X,)]
His(X,) AP (LX) - 8, (X,) By ()0 (8. X))
—14,(X,)C5 ()0 (. X, eos( X d S
+hys(X,)ay + 8, (X,)by + thy, (X,)c,

(8.80)
where
Cu (X)) =cu(X,)+cle (X)) +ch (X)), (8.81)
Zs(X,)=e (X)) -k (X)) —cg (X)), (8.82)
(X)) =hs(X,)— g, (X)) =l (X,), (8.83)
P (£, X)) =Ba(l+aX,) " 1 5[(1+aX,)s¢ al S50

—sC(+aX )P I+ 0X,)s{
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Po($.X,) = pal+0X,) P K [(1+aX,))s al

o - (8.85)
—s¢(1+aX ) P Kyl(1+aX,))s¢ T al,
0,({. X)) =Pal+aX,) " 1,11+ aX,) 1 a] 556
—$U+aX,) P 1510+ 0X,)¢ al, '
04 (£.X,) = Pa(l+aX ) " K [(1+aX )¢ 1 al 557

— {1+ aX,) P K, 1+ aX,){ 1 al.

Application of the edge-loading conditions (8.59)—(8.61) results in
the following relations:

P, =Clia, —elsb, —hlsc,, (8.88)
D, —elsa, +K‘”b +g”c,, (8.89)
B, =hla, +glb +ulc,, (8.90)
A (§)=PyA(S), (8.91)
B,({)=0,B,({), (8.92)
C,(£)=0,C(£), (8.93)

where Py, =—P,({,h)/ Py ({,h) and Q,, =—0,({,h)/Qx({ h).

By analogy with the treatment in Chapter 7, letting b/a —0 while
keeping (bk, )/(al({;) — A, and (b, )/(a,u] 1) — A, , satisfaction of the
crack-face boundary conditions (8.62)—(8.69) leads to three pairs of dual
integral equations:

L(p,.D,.B
M X|<a, (894)

—fo SR AL )cos(EX )¢ =

C44

[ Ay cos(EX )d¢ =0, \Xl\zm (8.95)
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%J‘: §F2(;)E(§)COS(;)?1)CZ; = _Z1(D0’Bo)’ ‘f1‘< a,

ITB(Oeos(X ¢ =0, |X |2 a,

%j;“ CF (T (§)eos({X,)dS = ~L,(Dy, By), |X | <a,

Iy C(§reos(¢X pdg =0, |X |2 a,
where

A=A (D (s{ 1)+ Py Kg(sG T a],
B(O)=B (DU (1) +0,K 4L 1))+ AL),

C(O)=CON4({Ta)+0, K 5(L 1)) +E5 AL,

F(§)=

Cu | P(L0)+ PP (L0)
cud | 11+ PyKp(sS )

_ k2 L0 +0,,0, (6.0 }

15810 +Qy Ks({ )

1
F () ==
(9] ;

0,(£,0)+0,,0(£,0)
1,1+, Kyl a) |

L(P,,Dy,B,) =P, +e’L,(D,,B,)+h%L,(D,,B,),

Douy, (1-1/4,)— Byg},

L(D,,B,)= ,
P Bo) = A =12, ) 48— (g0

BoKlo1(1_1//le)_Dog?1

L, (D,,B,)= ,
N T (I TE I P PN

193

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)
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P, = Ef4a1 - elosb1 - hlosc], (8.108)

Dy = knb, +g/ic, (8.109)

B, =g\b + ¢, (8.110)

EIO= K'lolzulol(l_ﬂm)clo+/u101g101ﬂ'ecg (8.111)
K-lollulol(1_//1‘2)(1_ﬂ’m)_ﬂ’eﬂ’m(glol)2

EO _ K']O]ﬂ]O] (1_1(3 )Cg + K'lolglolﬂ'mc]o (8 112)

2 ) .

Klollulol(l_ﬂ’e )(l_ﬂm)_ﬂ’eﬁ’m(glol)z

(k2 ? _M_ (8.113)

Cay

It is noted that the magneto-electro- mechanlcal coupling factor k7,
and the shear horizontal surface wave speed cbg defined at the X =0
plane depend on the permeability parameters 4, and A, through c1 and
¢, . Like the homogeneous materials discussed in Chapter 7, there are
four limiting conditions for FGMs: (i) electrically and magnetically
permeable crack-face condition as 4, — 0 and 4, — 0, (ii) electrically
and magnetically impermeable crack-face condition as A, — oo and
A, — o, (iii) electrically permeable and magnetically impermeable
crack-face condition as A, >0 and A, — o, and (iv) electrically
impermeable and magnetically permeable crack-face condition as
A, — o0 and A, — 0. The electromagnetically semi-permeable crack-
face condition may be approximated if A, and A, are considered as
finite nonzero parameters.

The dual equations have the following solution (Copson, 1961):

ma’ L(PO,DO,B )l

A= IVE®R (&) (Ladrdé,  (8.114)

C44
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2
E(()=—%E(DO,BO>J;JE¢2(5)J0<§a§>d§, (8.115)

71'612

C(§) === LoDy, B[ 5@ () o(Gadds,  (8.116)

where J,({a&) is the zero-order Bessel function of the first kind and the
auxiliary functions ®,(£) and ®,(£) should be governed by the
standard Fredholm integral equations of the second kind:

@ (&) + [ @, ()G, (E.mdn = /¢, (8.117)
D, (&) + [, (OG, (Emdn =€, (8.118)

with the kernel function in the form
G(&m = el 5[F G 1a)-11, GO, Gmds,  (8.119)
Go(Em) = JEN 51, (51a) 11, (36T (5mds.  (8.120)

As the crack velocity V¢ tends to zero (i.e., s — 1), the quasi-static
solution is retrieved.

8.4 Fracture Characterizing Parameters

Next, we discuss the extension of classical fracture mechanics concepts
such as intensity factors, energy release rate, and path-independent
integrals to FGMs under combined magnetic, electric, thermal, and
mechanical loadings.

8.4.1 Field intensity factors

The near-tip field solutions can be derived from the asymptotic analysis
when (¢ — . The singular parts of the total stress, -electric
displacement, and magnetic induction near the right crack tip are given
by
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» 3
61y =7 S [E(P,. Dy By®, (1) 22D

C44 27

—L(P,.Dy, Bk} ) D 1y Sin6/2)
(O 0 )( em) () \/ﬁ

sin(6,/2),

V27

(8.121)

~L(0,Dy, B))®, (1)

_0 -~
Gy =1 AL (P, Dy By) s, (1) S22

C24 0 1 /—271_;:1
cos(8,/2)
27

cos(6, /2)]

\2m,

— L(Py, Dy, By)(k(,) @, (1) (8.122)

—L(0,D,.B,)®,(1)

(Cl’(n +C2811)

=N {L(P,,D,,B,) P, (1)

u oy G129
~ ~ Nl
+ (KL (Dy, By) + g Ly (D, B I®, (1)} ———=—,

V2m;

-0 , = 0
D, =\/7m{Z(P0,D0,BO)(qK“C++g“)CDL(1)
“ 6.1 (8.124)
= ~ COS
+[K)\ L (Dy, By) + 81 Ly (Dy, By, (1)} — ==

27 ’

~ = 0+— 0
=—«/7m{L(P0,DO,BO)(CIgHC+ﬂH)q)I(1)
¥ gy ©129
+[g?lzl(DO,BO)+ﬂ10]Z2(DO,BO)](I)2(1)}Sln—l’

V2m;
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- 0 ,=,0
B, =«/E[Z(PO,DO,BO)(C“5“1:—O‘:2”“)¢1(1)
“ 0.1 (8.126)
~ ~ COS
+[g L (D, By) + )y Ly (Dy, B, ()] ———,

V27

where

r=(X, —a) + X2, 6 =arctan[X, /(X, —a)],  (8.127)

7= \(X,—a) +(sX,)* , 6 =arctan[sX, (X, —a)]. (8.128)

It can be seen that the near-tip field solutions for FGMs exhibit the
inverse square-root singularity in the local coordinate system affixed to
the moving crack tip, like those for homogeneous materials. Hence, the
definition of the dynamic field intensity factors introduced in Chapter 6
can be extended to FGMs, that is,

EIII(V ) 0-23(21’0)
K,(V.) |= hm J27(X, —a)| D,(X,0) | (8.129)
K, (V) By, (X,,0)

The self-induced and cross-over dynamic total stress, electric
displacement, and magnetic induction intensity factors can be expressed
in the form of a universal function of the crack velocity times the
corresponding quasi-static value, that is,

K (Vo) =k (VoK (0)

- 8.130
=m %L(Po,o,ons (k2)21®, (1), (G150
Cyy
K Vo) =k (VOK (0)
(8.131)

—0
=7 “EL(0,Dy,0){[s — (k)2 19, (1) — @, (1)},

Cay
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B B (B
;11)(‘/ )= k;H)(VC)K;H)(O)

=%%£%Z®DJ%MB—ﬁiﬂﬁ¢xb—¢ﬂhh

Cyq
KPw)=kD VKD (0)

—=0_.0 =0 _0
c, K, +c¢ ~
Y (1“—02g“)L(P0,0,0)<I>1 ),

Caq
KPV)=kP (V)KL (0)

_J—ﬂﬁfgiﬁgmluopmm¢<n

C44

+ N [K0\ L, (Dy,0) + g0\L, (D, 0)1, (1),

KP V) =k (VK (0)

0.0 =0 _0
c kK tc¢ ~
Va8 700 B e, (1)

Cyy

+ N (KL, (0,By) + g% L, (0, By, (1),

K (Vo) =k (VK (0)

=0_0 , =0,,0
a8 EI) | p 60y, (1),

Cyq
KPP V) =k (VOK P (0)

0,0 =00
C 8y t+¢ ~
_ /m( 1811 ’ Z'UH)L(O,DO,O)CI)](I)

Cyy

+ \/%[g?jq (Dy,0) + :uloliz (Do, 0)1P, (1),

KPP V) =kP VHKL0)

<0 _0 , =0 0
c +cC ~
LBt G o e, (1)

Cyy

+ \/E[glolzl (0,B,) +,U101£2 (0,By)]P, (1),

(8.132)

(8.133)

(8.134)

(8.135)

(8.136)

(8.137)

(8.138)
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where superscripts (7), (D) and (B) indicate traction loading, electric
loading and magnetic loading, respectively.

For the special case of an electromagnetically permeable crack
(A4, =0 and 4, — 0), the near-tip fields are expressed as

K - 02 F
O3 =— 10 > ”’(‘ic)sin(el/zw (kemo) - ”’(Vc)sin(ﬁl/Z),
s—(kg,)? 277 s—(ko,)* 2,
(8.139)
K - 02 B
o= Kl g gy Ken) KnlVe) o419y,
s=(kp)® 27, s=(ken)* 2,
(8.140)
D, =—K"2(7Yrc)sin<91/2>, (8.141)
1
D, = KDZ(ZTC) cos(4,/2), (8.142)
1
B, =—K32(X:)sin(6’1/2), (8.143)
1
B, = Iif%) cos(6,/2), (8.144)
1
where
-0
=~ C
Ky (Ve) =C%[S - (kgm)z]PO\%q)] (D), (8.145)
44
K, (Vo) =-5 P\ md, (1), (8.146)

Cyy
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0
K, (VC)=h%PO\/£d>I(1), (8.147)

Cyaq

(K" )? = el()scf_"(')hloscg - (8.148)
Cyg

As the magnetic field is shut off, the electrically permeable case for
the Yoffe-type moving crack in a FGPM strip studied by Li and Weng
(2002b) is recovered. The dependence of the dynamic stress intensity
factor normalized by the quasi-static value on the crack velocity
normalized by the Bleustein—Gulyaev wave speed is shown in Fig. 8.2.

Fig. 8.2 Effect of crack velocity on stress intensity factor (k = 1, a/h = 0.5). (From Li and
Weng, 2002b, with permission from the Royal Society).
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The trend is akin to that for the propagation of a semi-infinite
permeable crack in a homogeneous electromagnetic material as discussed
in Chapter 7. It can be seen that the dynamic stress intensity factor for a
FGPM decreases monotonically with the increase of the crack velocity
and tends to zero as the crack velocity approaches the Bleustein—Gulyaev
wave speed. Similar to the increase of the electromechanical coupling
factor, the increase of the material property gradient helps to reduce the
dynamic stress intensity factor.

8.4.2 Dynamic energy release rate

The two alternative representations (6.25) and (6.27) for the dynamic
energy release rate introduced in Chapter 6 are valid for homogeneous or
nonhomogeneous, linear or nonlinear, magneto-electro-thermo-elastic
media, including FGMs, containing a propagating three-dimensional
crack of arbitrary shape, that is,

Jo=J

:%imoijfo[n.(m 6+Vv®G)-v—n-S+(pk +ph+,,u’ n-V,.1dl,

em

:%jf[n~(6+em0'+v®G)~V—n~S +(pk + ph+,,u’ n-V,.1dl

1 e,

_%}%Zj@_%i(p + Ph+,,u )dV+1:rrt—fV o pf-vav
1 5o o

_flolg%)z 77, p_OE -J,dv —lllir%)xj' A PSTdV .

(8.149)

The invariant J -integral method is more useful than the crack-front
generalized J -integral method for numerical analysis. If there exists a
steady-state solution for the propagation of a planar crack along the E -
direction in a FGM without electricity conduction, the dynamic energy
release rate can be expressed by the special form of the invariant J -
integral:
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Jy=1J

1 o P ~ =
= —Ejl:n~(6+em6)-quF~ E, +Ejfn~(pk+ph+emuf )IdT E,

+%jf[(n><E)><D]-u?a’fTE1 +%If[(n><H)xB]-u§dl~“-E

+%ffn-v®(PxB)-u§diE (8.150)

1 -
—Eglir%)jv v pf-uVav -E, + E%m})j\/ PSVTdV -E,
0

—(pk + ph dv.
Bmojvr—vn, (p + pht,, u- )expl 1%

The last term involving the explicit derivative of the total energy
density with respect to X, reflects the shielding or amplification
influence of the material property gradient on crack propagation in
FGMs.

8.4.3 Path-domain independent integral

It is known that the J-integral is generally not path independent for
nonhomogeneous materials. Significant efforts have been made to
modify the classical J-integral method to account for material
inhomogeneity. Here, we introduce the J ¢ -integral vector, the J K-
integral vector, and the energy-momentum tensor b as

A ~ 1 -~ Ou ~. oT
Je=Jp— B}lgofv v pfiBXKdV-I-B}lTOIV pSBX av
(8.151)
BF%O-‘-V V. K(ph+pk+em ) ldv’
exp!

J7IK

P =%J'l_n b .dL, (8.152)
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B:—[t6+(D-E)I—D®E+(B-H)I—B ®H

~ A A (8.153)
~v®(PxB)]-uV +(ph+ pk+,,u’ )L

It can be seen that the first component of the J ¢ -integral vector
reproduces expression (8.150) for the invariant J -integral, which is an
extension of the configuration force (material force) notation (Eshelby,
1951, 1956, 1970; Maugin and Trimarco, 1992; Gurtin, 2000). Several
variations of path-domain independent integrals proposed for
nonhomogeneous materials or graded materials (e.g., Eischen, 1987a-b;
Honein and Herrmann, 1997; Gu et al., 1999; Anlas et al., 2000; Jin and
Sun, 2007) can be retrieved as the electromagnetic fields are shut off,

e.g.,
S P, dr
T :Ejf[(PthPk)”k —1;0 ity ]

I[—>0°'T Vr[) —0°Vr To

—%hmj‘; . pflulde+ ! hmj o STV (8.154)

—E}ILI})J-V (ph+pk)k‘ av.

In contrast to homogeneous materials, the difference between the
global and local J « -integral vector for FGMs is caused by the gradient
of material properties along the crack line, in addition to mechanical
body force and temperature change. The domain integral terms in the
expression (8.151) vanish only if mechanical body force and temperature
change are negligible and the graded properties vary one-dimensionally
perpendicular to the crack plane. For this special case, the path-domain
independent J -integral becomes path independent, that is,

J=J=—[n-bdlE,. (8.155)

|~

Moreover, the dynamic energy release rate for crack propagation in a
FGM can be evaluated by the crack closure integral in the same way as
discussed in Section 6.3, that is,
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- 1,
Jo = lim =—J“™*

&%02&1 a to-2j()?l _a’O)Auj(il —Cl—&l,oi)dil ,(8156)

where  Au, (X, —a-&.0")=u,(X,—a-&,0")—u;(X, —a-&,0)
is the crack opening displacement at a distance dz+a— X, behind the
crack tip.
For the Yoffe-type mode-III moving crack in a FGM, the dynamic
energy release rate is thus calculated as
~ 1 ~ ~ ~
To=1lim == 05 (X, —a,0)Aw(X, —a — da,0%)dX,
w0 20u (8.157)
ZZEIII (VC)EICHOD Vo),

where the mode-III dynamic crack opening displacement intensity factor
at the right crack tip is given by

~ . T ~
K,C,f)D(VC):)thi /mAw(X1 —a,0%)
| —a — X

2 ~
= — [Km(Vc) (8.158)
1= (Ve /D)
0,0 _10 0 _ 0,0 _ 0,0 _
N 6105ﬂ101 hls()gllz KD(VC)—F%KB(VC) )
Kty —(811) Kty —(811)

Therefore, the prediction that the dynamic energy release rate is an
odd function of the dynamic electric displacement intensity factor and
dynamic magnetic induction intensity factor is valid for FGMs, similar to
homogeneous materials.

8.5 Remarks

Significant progress has been made in understanding the quasi-static and
dynamic fracture behaviors of FGMs under combined magnetic, electric,
thermal, and mechanical loadings, with generalization of classical
fracture mechanics concepts such as intensity factors, energy release rate
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and J-integral to FGMs. Nevertheless, fracture mechanics of FGMs is
still far from emerging as a mature engineering science discipline. Areas
that require substantial efforts include numerical simulation,
experimental characterization, mixed-mode fracture, creep-fatigue crack
growth, environmentally assisted cracking, and higher-order theory.
Multiscale modeling involving magneto-electro-thermo-mechanical
coupling and dissipative effects may find increased usage in simulating
fracture processes in FGMs. The development of efficient methods for
analyzing flawed structure components made of FGMs is greatly needed.
Correlation of theoretical prediction with experimental measurement
under combined loadings is vital for successful applications of FGMs in
various demanding areas such as aerospace, armor, and biomedical
engineering.



Chapter 9

Magneto-Thermo-Viscoelastic
Deformation and Fracture

9.1 Introduction

With increasing interests in the engineering applications of
magnetosensitive polymers and polymer composites capable of large
deformations, studies on nonlinear magneto-thermo-viscoelastic
deformation and fracture are necessary for evaluating the reliability and
durability of intelligent devices made of these advanced materials. It is
well known that fracture in metals is influenced by plastic dissipation in
the plastic zone, whereas fracture in polymers is accompanied by viscous
dissipation in the bulk material. The need to incorporate the effect of
viscous bulk dissipation on crack initiation and growth is the main
motivation for the development of magneto-thermo-viscoelastic fracture
mechanics.

As discussed in Chapter 3, nonequilibrium thermodynamics provides
an effective way of studying irreversible processes involving energy
dissipation. There are essentially two types of approaches to the
derivation of constitutive, fracture, and strength models for nonlinear
viscoelastic solids in the published literature (Schapery, 2000):
functional thermodynamics and state-variable thermodynamics. In
functional thermodynamics, the free energy is expressed as a functional
of the histories of strain (stress), temperature, etc., whereas, in state-
variable thermodynamics, the free energy is expressed as a function of
current strain (stress), temperature, and other variables including so-
called internal state variables. Recently, Chen (2009d) developed a
nonlinear magneto-thermo-viscoelastic constitutive and fracture theory,

206
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which incorporates the augmented Helmholtz free energy as a functional
of the histories of deformation, temperature, and magnetic induction in
the reference configuration. The nonequilibrium thermodynamic
approach affords a uniform treatment of complex time-dependent
constitutive and fracture behaviors in the presence of multifield coupling
and hysteresis effects.

In this chapter, we attempt to provide an insight into this rather new
and developing area on nonlinear magneto-thermo-viscoelastic
deformation and fracture. The presentation here is restricted to the quasi-
magnetostatic approximation for a simple formulation. In Section 9.2, the
local balance equations under combined magnetic, thermal and
mechanical loadings are summarized. In Section 9.3, the free energy
functional and entropy production inequality are introduced for memory-
dependent magnetosensitive materials. In Section 9.4, nonlinear
magneto-thermo-viscoelastic constitutive relations are formulated from
the energy balance equation and the entropy production inequality. In
Section 9.5, the generalized J -integral is constructed for use as a
physically sound criterion for nonlinear magneto-thermo-viscoelastic
fracture. In Section 9.6, applications to generalized plane crack problems
are discussed and the mode-III fracture of a magnetostrictive solid in a
bias magnetic field studied by Sabir and Maugin (1996) is revisited as a
special case.

9.2 Local Balance Equations for Magnetic, Thermal, and
Mechanical Field Quantities

A description of the balance laws in the continuum mechanics of
electromagnetic solids can be found in Chapter 2. In the papers by
Dorfmann and Ogden (2003, 2004), rather elegant and simple
formulations of the governing equations and the constitutive relations
were provided for the static situation of elastomer-like materials capable
of large magnetoelastic deformations, based on a modified free energy
function with the referential magnetic induction vector as the
independent magnetic variable. Here, the governing equations and the
constitutive relations are extended to nonlinear magneto-thermo-
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viscoelastic media under the quasi-magnetostatic approximation
following the work by Chen (2009d).

The local balance equations under combined magnetic, thermal, and
mechanical loadings are summarized below:

V-B=0, 9.1)
VxH=0, 9.2)
dp
i v 9.3
" pV-v 9.3)
dv A
—=V- 6+ pf, 9.4
P 0+ pt 0.4

ti i

. f .
p%(k+é+ '"; J=—V~jq+V~(tc~v—S)+pf-v, (9.6)

where the total stress tensor ,6 =6+, 6 is the sum of the Cauchy stress
tensor ¢ and the magnetic stress tensor ,6=—-B®M+B®B/y,
+(M-B—,u")I, ,u’ =B-B/2u, is the energy density of the free
magnetic field, and S =(V><B)><H is the Poynting vector in the co-
moving frame.

Like thermoviscoelastic boundary-initial value problems, discussed in
Chapter 3, these balance equations should be supplemented by
constitutive relations together with appropriate boundary and initial
conditions for proper mathematical formulation of magneto-thermo-
viscoelastic boundary-initial value problems.

The boundary conditions are given by

n-[[B]]=0 across S(t=0), 9.7)
nX[[H]]=0 across S (¢ =0), (9.8)

n,6=t,(x,r) on S, (120), 9.9)
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u=uy(x,f) on S, (t=0), (9.10)
n-jqqu(x,t) on Sq (r=0), 9.11)
T=Tyz(x,t) on S; (t=20), (9.12)

where Sy refers to a certain part of the boundary: displacement is
prescribed on §,, traction on S, (the complement of S, ), temperature
on S,, and heat flux on S, (the complement of Sy ). Therefore, we have
S, US,=S8 and S; US, =S . Other mixed boundary conditions may
also be employed.

The initial conditions are taken as

u=u, (r<0), (9.13)
u=v, (1=0), (9.14)
T=T, (t<0). (9.15)
B=B, (1<0). (9.16)

9.3 Free Energy and Entropy Production Inequality for Memory-
Dependent Magnetosensitive Materials

By introduction of the augmented Helmholtz free energy, including the
contribution of the energy of the free magnetic field, that is,

- ut
h=6-T§+2— 9.17)
Yo

the local energy balance equation (9.6) becomes
L h+78)=-V-j, +V(,0-v—5) 4+ pf 9.18)
P §)=-V j,+V(,6-v-8)+pf-v. .

In the reference configuration, V,, the local energy balance equation
can be rewritten as
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§ J
ﬁz_LvR._‘i LJ Rl.,. 1 .
dr p, T p* T 2pT
_ (9.19)
gl Ldn
poT T T dt
and the entropy production inequality is expressed as
ﬁ=£+LVR-JY20. (9.20)
dt dt p, ‘

For memory-dependent magnetosensitive materials, the augmented
Helmholtz free energy, including the contribution of the energy of the
free magnetic field, is assumed to be a functional of the histories of
deformation, temperature, temperature gradient, and magnetic induction
in the reference configuration Vj, with respect to which the deformation
gradient F is measured, that is,

h=h(C(t-1),T(t-7),VT(t-7),B(t—17);X). (9.21)

9.4 Coupled Magneto-Thermo-Viscoelastic Constitutive Relations

Since the entropy production inequality (9.20) is always valid, state
equations should fulfill the following conditions:

oh
=0, 9.22
o, 9.22)
o
tZKL = 2poﬂ, (923)
. Oh
=——, 9.24
S=or 9.24)
; oh
Hy=py——o (9.25)

B,
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A= 9.26)
ot
_1 9.27
Yo=7d ©.27)
ﬂ:LJq.leJFAZO, (9.28)
e p, T T

where A is the viscous dissipation rate, which is time-dependent.

From Eq. (9.22), the augmented Helmholtz free energy does not
depend on the temperature gradient. Energy can be converted from one
form to another due to mechanical, thermal, and magnetic coupling,
accompanied by intrinsic dissipation associated with mechanical,
thermal, and magnetic hysteresis. Since the inequality (9.28) must always
be satisfied, kinetic laws for specific irreversible processes may be
determined accordingly. Next, a special type of material behavior
pertinent to finite magneto-thermo-viscoelasticity is illustrated as an
extension of the coupled theory of thermoviscoelasticity at finite
deformation discussed in Chapter 3.

The viscous dissipation rate satisfies the inequality

A>0. (9.29)

It is proposed that the thermodynamic flux for heat conduction
depends linearly on the corresponding thermodynamic force, that is,

R 1
J, =LV, (9.30)

where [97 =14 is positive definite.

Substituting Eqgs. (9.24) and (9.30) into Eq. (9.19) yields the
following heat transfer equation based on the augmented Helmholtz free
energy functional:

_dfon)__ 1 vR.[m.le}rl[\. (9.31)
ar\ar )~ pT )T
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With the use of the Lagrange strain measure E=(C—-1I)/2, the
temperature deviation =T —T,, and the referential magnetic induction
deviation b=B- ﬁo, expansion of the augmented Helmholtz free
energy functional for materials with fading memory on an intrinsic time
scale up to the second order yields

h n . 0B, X, »
Poh = pohy +£/;LH Xy-v )%l/f
L 00X, : .
—J.K;M(X,l//—l/l)%dl// +ﬁ;N1b(X,l//—l//)
JoE,, (X JE. (X
tS .[WJ. Gy (X, — vaw-y) w ¥) ke V)
81// oy

aE[J (X7W) ae(X"‘W )dw'dl//"
oy oy
aEIJ (X’l//) abK (X"// )
oy oy
IOX.y) 96X,y )
U4 X : ]
TJ_WJ_M Ci Xy -y y—y) Sy ™

: L 0b, (X ) ooX ')
Xy -y ) LY OOXY )
174 oy

Lo v s : . 9b,(X,¥) 9b, (X,yp)
+_ X’ - b - 1 "
21_90!_0011]( v-y.w-y) " "

b Xy) .,
oy

dydy’

_ﬂ;ﬂl;ﬁu (X,I//—l//',l//—l//")

dy dy

M fh Xy -y w-y)

dydy’

dy dy,

(9.32)

where EO is the value of the augmented Helmholtz free energy in a
reference state (i.p., E=0, T=T,, ﬁ:ﬁo ), l//(t)ZI(;a(t')dt' is the
intrinsic time, a(¢) is a shift function due to the effects of temperature,
aging, etc., G]]KL(X '// v.y-y )= GKL[](X -y 7W_V/),

Cy X~y y=y)=Cy (Xp—p y—p'). and

T Xy—yw . y-y) =7, Xy-v y-y).
From Egs. (9.23)—(9.25), the constitutive equations in finite magneto-

thermo-viscoelasticity are obtained using the augmented Helmholtz free
energy functional expansion (9.32) as
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OB (X))
IZIJ :L(I)J +Ii//mGIJKL(X’0’l//_y/ )KL—..l”dW

oy
v 00X,y .
- B X0y -y )E)Tf”)dv/ (9.33)

b (X)L
Pty X0y =y P Sy

A . 0B, (X, :
poSZMO+,[L/311(X,I//_I//,O)Mdl//

oy
+LK'WCH(X,1//—1//,0)MW' (9.34)
T, 174
. b,(Xw) .
+ﬁ/w71b(X,V/_V/,O)’(—y/)dV/,
oy
" . OB, X ¥) .
HI:N?O_J.V;f;}]((xﬂ//_y/,o)%dl//
00X ),
- X0y -y )%dw (9.35)
_ L ob, (X W) .
+ [ 7L X0y -y >%W ,

where GIJKL"(X’O,V/_ l//” ), Cy (X’VV/_ V/v 0), ;_flbj X0,y — l// )s
By X0.y-y), By Xy -y 0), Fen X0y -y,
f,’;K(X,l//—l,V',O), Y/ (X, -y ,0), and ) (X,0,y—y ) are appropriate
memory functions.

The first terms L?,, M° and N ?0" on the right-hand sides of Egs.
(9.33)—(9.35) stand for the values of ,X,,, p,S, and H ; in the reference
state, the second terms for mechanical contribution, the third terms for
thermal contribution, and the fourth terms for magnetic contribution. The
dependence of the long-term property functions on aging time,
temperature, etc. may be determined from short-term experiments with
an accelerated test methodology. Physical aging refers to structural
relaxation of the glassy state toward the metastable state, accompanied
by changes in almost all physical properties (Hodge, 1995). The
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experimental observations by Maignan et al. (1998) and Dolinek and
Jaglii (2002) show that the aging phenomenon exists in the samples for
magnetization relaxation measurements and the magnetization data may
be fitted with a stretched (fractional) exponential function. The concept
of the intrinsic time (also called effective time or reduced time) is used to
describe the equivalence of aging time, time, and temperature for
polymeric materials (Struik, 1978; Ferry, 1980).

From Eq. (9.26), the viscous dissipation rate in finite magneto-
thermo-viscoelasticity is obtained using the augmented Helmholtz free
energy functional expansion (9.32) as

__J dy oL, X,y — '//)aEu(X'//) dy

< dt oy 81//
y dy M Xy —y) 06(X, l//)
< dt oy ay/
_ dy ON} (X, —y) b, (X, V/)
< dt oy ay/
lJ'i// J‘l// dy 9G X, ¥ -y Wy -y ) IE, X,y ) 0B, (X, )dl//dl//
= dt 174 178 oy
j‘l// j'l// d‘//aﬁu(x,'//_‘// Wy )aEU(X,l//)aﬁ(X,f// )dl//'dl//"
© dt 17% 1% oy
+Iwwﬁ;d_v/3f,<u(X,v/—W,l/f—W ) aEIJ(X’l//)abK(X:l// )dl/lldl//"
dt v oy dy
Ljvfwmdvf I, Xy -y .y-—y) a6’(X,'l// ) 39(X,5// )dl//'dy/"
dt '81,// o avz// 8"1//
NG I'ﬁ,dw WXy -y.y-y) b, (X.y) 00X,y )dl/f'dv/"
dt oy oy oy
jw jwwd‘//alu(x W-v.y—y") ob(X.y) b, (X, w)dl/,dl/,
dt oy oy oy
(9.36)

The coupled heat transfer equation is obtained from Eq. (9.31) as
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—WﬂwXWWOFJL—l
oy

ame>

dy

+—j”’ C, X,w—vy 0)
abl(X7l//)d

dy
(9.37)

+" rIXw-v 0

1 - 1 ~
=—V, [l -V, 0)+—p,A,
T03 R ( R ) TOpO

where the integral involving the strain history gives rise to a coupling
between thermal and mechanical effects, and the integral involving the
magnetic induction history gives rise to a coupling between thermal and
magnetic effects.

9.5 Generalized J -Integral in Nonlinear Magneto-Thermo-
Viscoelastic Fracture

Consider a three-dimensional cracked body (see Fig. 6.1) with the
surface T translating with the crack front moving at a speed V.. Using
Egs. (9.18), (9.20), (9.27), and (9.28) in nonlinear magneto-thermo-
viscoelasticity without the requirement of a constitutive nature, except
the existence of the free energy functional, the global form of energy
balance leads to the following expression for the energy flux integral:

F(l:)zj'f[n-lo'. v—n-S+ (ﬁﬁ.,.ﬁ]g)n.vc]df
=z, 6-v—n-8)dS - Jg_@%(ﬁﬁ +pk)av  (9.38)
+ [ P VAV = [ RTAV — [ o PAAV,
The generalized J -integral is related to the energy flux integral by

= _F@)
Te=—1% (9.39)

where A is the crack area growth rate.
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The rate of energy flow out of the body and into the crack front per
unit crack advance provides the driving force for crack propagation in
the presence of magneto-thermo-mechanical coupling and hysteresis
effects, that is,

J, = lim {F@o)}

[,—0 A

(9.40)

I'y—0

= lim {% ; [n-to‘-v—n-S+(ﬁﬁ+/§l€)n-VC]df}.

It can be seen that the above expression for the crack driving force
has a universal form for conservative or dissipative systems at small or
large deformations under isothermal or nonisothermal conditions.

The relation between the global and local generalized J -integrals is
obtained from Eq. (9.38) as

| o .~ .~ ~ 1 PR
J, =J,+Zjv}g_v}l—(ph+pk)dV——. R B 71 %

(9.41)

ot AVe, Vi

+%j_ _ ,5§T'd\7+%.[_  pAdv,

V- . V.
£, 7'n I, 7'

where \7g and ‘7[ are the volumes bounded by the surfaces fg and fl,
including crack faces.

Consequently, the difference between the global and local generalized
J -integrals is caused by unsteady state, mechanical body force,
temperature change, and viscous dissipation rate. Thus, the generalized
J -integral loses path independence, even for steady-state crack growth,
due to the occurrence of viscous bulk dissipation.

For the accuracy of numerical evaluation by means of finite element
analysis, an equivalent path-domain integral expression is given by
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A =f=%jf[n-,o'~v—n-s+(,Z)'l;+ﬁlg)n-VC]dl:
mlp 9
o*oA ‘7117‘7?0 5[

P | PSS
(Bh + plyaV + lim — [, pf-vaV (9.42)

.1 JUNCRIESIE | A
- 1101£n>0XJ.‘7f“7‘7ﬁ0 pSTdV _Zj‘@*‘@o pAdV

Because of the addition of the domain integral terms reflecting the
influence of unsteady state, mechanical body force, temperature change,
and viscous dissipation rate, the J -integral is invariant, that is, path-
domain independent.

For a flat, straight, through-crack, if a field quantity is invariant in a
reference frame traveling with the crack tip at a uniform speed
V. = VCE , the field quantity depends on ¢ only through the combination
X=X-V.t. Under the condition that there exists a steady-state
solution for crack propagation in a magneto-thermo-viscoelastic
homogeneous medium or FGM, the above expression for the path-
domain independent J -integral becomes

J=Tpm g QP g
expl
_% lim I\7f—\7f0 o, aa—;édﬁ +% lim fi. 7, ,b‘faa—);dV (9.43)
_ Bi/c Jr,-s, PAAV.
J}:%jfn.BdiE =J; K, (9.44)
b=—[,6+(B-H)I-BOH]-uV+(5h + kI, (9.45)

where B is the thickness along the crack front.
The domain integral term involving the explicit derivative of the total
energy density with respect to X, reflects the influence of material
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inhomogeneity on crack propagation. The generalized J -integral can be
taken as the projection of the generalized J ¢ -integral vector along the
crack advance direction. For the special case of steady-state crack
propagation under isothermal conditions in the absence of mechanical
body force, viscous bulk dissipation, and material property variation
along the crack line, the generalized J -integral becomes path
independent. With (nXxH)xB =(n-B)H-(H-B)n, the expression for
the generalized J -integral can be rewritten as

. 1 - -1 . .
Jf:—ELm,o-uV-EldF+EL[(n><H)><B]-uV-EldF
(9.46)
1 e A —
o jf (ph+ pkn-E,df".

It is noted that the generalized J -integral and the energy-momentum
tensor b constructed with the use of the augmented Helmholtz free
energy, including the contribution of the energy of the free magnetic
field, are different from those obtained with the use of the magnetic
enthalpy, including or excluding the contribution of the energy of the
free magnetic field (Sabir and Maugin, 1996).

9.6 Generalized Plane Crack Problem and Revisit of Mode-III
Fracture of a Magnetostrictive Solid in a Bias Magnetic Field

For a generalized plane crack problem in a magnetosensitive solid, we
choose the contour as shown in Fig. 9.1. A reference frame is affixed to
the crack tip advancing at instantaneous speed V.. As discussed in
previous chapters, this is a convenient choice because n, =0 along the
segments parallel to the f -axis. The contour is shrunk onto the crack
tip by first letting 6, >0 and then 0, —0. There is no contribution to
J from the segments parallel to the X -axis and the segments along the
crack faces.
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o,,+,0,,H,

f— 28,—]

Fig. 9.1 A generalized plane crack problem in a magnetosensitive material. (From Chen,
2009d, with permission from Elsevier.)

Consequently, J~0 can be computed by evaluating only the first and
second terms on the right-hand side of Eq. (9.46) along the segments
parallel to the X, -axis, that is,

- ou,(X,0%,1)
Jo= ‘2§imoflz .05, (X070 ——Z——dX

1
1

v > ou, (X,.0°.1) ~
+2]im s BZ(X1’0+’I)H1(X1,0+,I)MdX1
=0~ ! 1

ou,(X,.0°,1)

~21im jf;l B,(X,.0",0H,(X,,0%,1) dX, (9.47)
l%

1

. - - ou,(X,,0%.1) 5
“21im [’ By(%,.0" .0 Hy (X070 22 X000 g

6,—-0" 1 |

~ ~ ou(X,,07,6) ~

+21im [ By(X,.0" 1) Hy (%07, 2 X000 g

§—-0" ! BXI

Since fracture mechanics analysis incorporating nonlinear magneto-
thermo-viscoelastic material response is rather complex, numerical
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methods are necessary for solving this class of problems. There is also a
pressing need for comprehensive sets of material data, as systematic
experimental work under combined magnetic, thermal, and mechanical
loadings is not yet available. To date, most applications to
magnetosensitive materials still use conventional fracture mechanics
methodology without time dependence.

For mode-III fracture of an isotropic magnetostrictive solid placed in
a bias static magnetic field along the crack front, studied by Sabir and
Maugin (1996), that is, H’ = H 0E3, the crack-tip generalized J -integral
is calculated from Eq. (9.47) as

Ty =S MRS 4 S bHK K. (9.48)

where H® is the intensity of the bias static magnetic field, 4 is the shear
modulus, b is a magnetostriction constant, K " is the magnetic field
intensity factor, and K S is the strain intensity factor.

Hence, the crack-tip generalized J -integral is an odd function of the
magnetic field intensity factor, indicating that the magnetic field either
promotes or impedes crack propagation, depending on its direction. A
fracture criterion with use of the generalized J -integral as the
characterizing parameter overcomes the difficulties encountered by other
treatments and helps understand the fracture behaviors of both
conservative and dissipative material systems subjected to combined
magnetic, thermal, and mechanical loadings.



Chapter 10

Electro-Thermo-Viscoelastic
Deformation and Fracture

10.1 Introduction

With the growing demand of electroactive polymeric materials for
various engineering needs, such as robotic arms and adaptive control
systems (see for example, Bar-Cohen, 2002; Dorfman and Ogden, 2005—
2006; Vu and Steinmann, 2007), considerable attention has been drawn
to the time-dependent response of these smart material systems with
novel electronic structures and molecular architecture. Like the
magnetosensitive polymers and polymer composites studied in Chapter
9, proper determination of the constitutive relations and fracture criteria
is also essential for design analysis and durability assessment of
electroactive polymer actuators and sensors under aggressive operation
conditions. In addition to piezoelectric, pyroelectric, dielectric, and
electrostrictive properties, the hysteresis effect should be considered in
analyzing the deformation and fracture behavior of electronic
electroactive polymers (e.g., ferroelectric polymers, electroviscoelastic
elastomers) and ionic electroactive polymers (e.g., conductive polymers,
ionic polymer-metal composites, responsive gels), among others. Crack
initiation and growth has a pronounced effect on how such
electromechanical devices behave over time. For crack propagation in
the presence of electro-thermo-mechanical coupling and hysteresis
effects, we seek a physically meaningful quantity whose critical value
can be used in a fracture criterion. Due to its great importance for
practical applications, the subject of nonlinear electro-thermo-
viscoelastic deformation and fracture is addressed separately here.

221
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This chapter commences with the local balance equations and
associated boundary and initial conditions for electrosensitive materials
subjected to combined electric, thermal, and mechanical loadings. It is
then followed by the introduction of the free energy and entropy
production inequality for memory-dependent electrosensitive materials in
consideration of the augmented Helmholtz free energy, including the
contribution of the energy of the free electric field, as a functional of the
histories of deformation, temperature, and electric displacement in the
reference configuration. This gives rise to nonlinear electro-thermo-
viscoelastic constitutive relations, including, as a special case, finite
electro-thermo-viscoelasticity for materials with fading memory on an
intrinsic time scale. Next, the generalized J -integral is formulated as a
physically sound criterion for nonlinear electro-thermo-viscoelastic
fracture. Then, the analogy between the nonlinear magneto- and electro-
thermo-viscoelastic constitutive and fracture theories is summarized.
Finally, reduction to Dorfmann—Ogden nonlinear magneto- and electro-
elasticity is discussed.

10.2 Local Balance Equations for Electric, Thermal, and
Mechanical Field Quantities

The local balance equations for nonlinear electro-thermo-viscoelastic
media under the quasi-electrostatic approximation are summarized
below:

V-D=gq,, (10.1)
VXE=0, (10.2)
_aaitfzv.je, (10.3)
d—p:—pV-v, (10.4)
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dav A
—=V- o+ f, 10.5
” 0+ pf (10.5)

0.=. 0. (10.6)

. Y R
P%(kﬂ%e; J:—V~jq+v-(,c~v—8)+pf~v, (10.7)

where g, is the free body charge density, j, is the total electric current,
the total stress tensor ,6=6+,6 is a sum of the Cauchy stress
tensor ¢ and the electric stress tensor ,6=P®E+gE®E-u'I,

euf =¢,E-E/2 is the energy density of the free electric field, and
S =(vxD)XE is the Poynting vector in the co-moving frame.

It can be seen that the electric displacement is not divergence-free in
the presence of free body electric charges, in contrast to the magnetic
induction. The mathematical boundary-initial value problems for
nonlinear electro-thermo-viscoelastic media subjected to combined
electric, thermal, and mechanical loadings can be formulated with
Gauss’s law (10.1), Faraday’s law (10.2), the electric charge balance
equation (10.3), the mass balance equation (10.4), the linear momentum
balance equation (10.5), the angular momentum balance equation (10.6),
and the energy balance equation (10.7), together with constitutive
relations as well as appropriate boundary and initial conditions.

The boundary conditions are given by

n-[Dll=a@, (t20), (10.8)
nx[[E]]=0 (£>0), (10.9)
n-[[j, —q,v11=0 (120), (10.10)
n,6=ty(x,7) on S, (1=20), (10.11)

u=uzon S, (t=0), (10.12)
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n-j, =qzx,t)on §, (t=20), (10.13)
T =T,(x,t) on S, (t=0), (10.14)

where @, is the free surface charge density, S, US, =S, and
Sy US, =S5 . Other mixed boundary conditions may also be used.
The initial conditions are taken as

u=u, (£<0), (10.15)
a=v, (1=0), (10.16)
T=T, (t<0), (10.17)
D=D, (1<0). (10.18)

10.3 Free Energy and Entropy Production Inequality for Memory-
Dependent Electrosensitive Materials

By introducing the augmented Helmholtz free energy, including the
contribution of the energy of the free electric field, that is,

h=6-T§+<—, (10.19)

the local energy balance equation (10.7) becomes
pi(1€+E+T§):—v.jq +V(,6-v=8)+pf-v. (10.20)
dt

In the reference configuration, V,, the local energy balance equation
can be rewritten as

9 1 J 1 1 1 .
%:—— R —q-‘r—Jq R?+2 TIZ:C
Po Po of (10.21)
PRI W E-Je—lAT—l%.
pPoT Pl T T dt
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In the same reference configuration, V,, the entropy production
inequality is expressed as
ds ds
_ls_ﬂ_l_LVR.JS >0. (10.22)
d dt p,

For memory-dependent electrosensitive materials, the augmented
Helmbholtz free energy, including the contribution of the energy of the
free electric field, is assumed to be a functional of the histories of
deformation, temperature, temperature gradient, and electric
displacement in the reference configuration, V,, with respect to which
the deformation gradient F is measured, that is,

h=h(C(t-7),T(t-7)V T(t—7),D(r-7);X).  (10.23)

10.4 Coupled Electro-Thermo-Viscoelastic Constitutive Relations

Since the entropy production inequality (10.22) is always valid, the state
equations should fulfill the following conditions:

BaT}; =0, (10.24)
T = 2,00%, (10.25)
§= ‘g_};’ (10.26)

E, =p, aE)DEK , (10.27)
A= o (10.28)
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1
1, :FJ({, (10.29)
ds 1 11 A
_lsz_Jq.VR—+—E-Je+—ZO, (10.30)
dt  p, Tr p,r T

where A is viscous dissipation rate, which is time-dependent.

From Eq. (10.24), the augmented Helmholtz free energy does not
depend on the temperature gradient. Energy can be converted from one
form to another due to mechanical, thermal, and electric coupling,
accompanied by intrinsic dissipation associated with mechanical,
thermal, and electric hysteresis. Since inequality (10.30) must always be
satisfied, the kinetic laws for specific irreversible processes may be
determined accordingly. Next, finite electro-thermo-viscoelasticity is
illustrated, as was finite magneto-thermo-viscoelasticity in Chapter 9.

The viscous dissipation rate satisfies the inequality

A>0. (10.31)

In the reference configuration, V,, it is proposed that the
thermodynamic fluxes for heat conduction and electricity conduction
depend linearly on the corresponding thermodynamic forces with the
Onsager reciprocity relations, that is,

N 1 1~ =&
J =1L".V,—+—L".E, 10.32
’ Rt (1032)
Je:ff"-VRl+lI:“-E, (10.33)
T T
where the coefficient matrix
]:qq ]:qe T ]:qq I:qe
(e r ee | e ree |’ (1034)
L“ L L L

is positive definite.
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Substituting Egs. (10.26), (10.32), and (10.33) into Eq. (10.21) yields
the following heat transfer equation based on the augmented Helmholtz
free energy functional:

_d[on :_LVR. ]:qq.VRi+l£qe.ﬁ;
dt\ oT o,T T T
LR v, L L iy LA
20T T T T

(10.35)

Substituting Eq. (10.33) into Eq. (10.3) gives the coupled electric
charge balance equation:

%+VR-(IZ“LVR%+%IZ“-E)=0, (10.36)
where O, = jq,.

Using the Lagrange strain measure E=(C-1)/2, the temperature
deviation 8 =T —T,, and the referential electric displacement deviation
d=D- ﬁo , expansion of the augmented Helmholtz free energy
functional for materials with fading memory on an intrinsic time scale up
to the second order yields

Poh = Pohy +[¥. Ly (X,W—W')m”a(—y)ffde'
00Xy, ad,(X.w)
—HIMM(X,;V—I//)%W N Xy -y XV 4,
Y 174
L[ [ G Koy =y =y By X) Ea X V) oy gy
Sl I " 5
[ By Ky -y ) B XV OXY )
o oy 1%

OB, (X,y) od  (X,y)

: T Ldydy
oy 1% ydy

6. K72 VRV
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IOX,y) 00X,y )
oy oy
ad,(X,y) 00X, y")

oy oy
od,(X,w) od, (X, ¥)
oy oy

1 , " , "
—gfiﬁ;CH(X,l/’—l/’,l//—l//) dy dy
0

-1 Xy -y -y dydy

dy dy,

1 _ , "
"‘EH;E;ZZ(XJ//—V/J//—V/ )

(10.37)

where l;o is the value of the augmented Helmholtz free energy in a
reference state (ie., E=0,T=T,, D= ﬁo ), w(t)= J'(;a(t' Ydt is the
intrinsic time, a(t') is a shift function due to the effects of temperature,
aging, etc., GIIJKL (X, Y- vay-y )= G{(LIJ X, V- vy-v),
CH(X’W_W’W_W )= CH(X’l//_V/ ’V/_l//)7 and
ThXy-y w-y)=75Xy-v v-v).

From Egs. (10.25)—(10.27), the constitutive equations in finite
electro-thermo-viscoelasticity are obtained using the augmented
Helmbholtz free energy functional expansion (10.37) as

v OB, (X,¥r) , o
tZIJ :L(I)J +Il//mG1JKL(X,O,V/_l// )Ma’l/l

oy
. 00X,y
Y By (X0 -y 22V 4 (10.38)
oy
. od X,y
~ I iy X0~y )de ,
oy
. . 9B, (X,
pOs:Mo+ﬁmﬁu(x’l//_l//,0)%dl//
+_IW ¢y Xyr—y 0 22XN) Y2F dy (10.39)
Iy
ad X,
Y A Xy -y O)de,
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A . 0B, X,w
E, =N70—fifzjK(X,W—W,0)%dW
PN AAY
_I 7 (X.0.p oy dy’ (10.40)
X,
[z X0y - w)de,

where Gy, (X0.0 =y), Cu Xy -y .0), Z; X0y —y),

By X0y -y, B, Xy-y 0), fi, X0y-y),
f,‘JlK(X,l//—l//',O), 7/ (X,w -y 0),and 7/ (X,0,y—y ) are appropriate
memory functions.

The first terms, L(}J, M°, and N{°, on the right-hand sides of
Eqgs. (10.38)—(10.40) stand for the values of X, , p,§, and E, in the
reference state, the second terms for mechanical contribution, the third
terms for thermal contribution, and the fourth terms for electric
contribution. The dependence of the long-term property functions on
aging time, temperature, etc. may be determined from short-term
experiments with an accelerated test methodology. It has been reported
that piezoelectric and dielectric properties follow the stretched
exponential law (e.g., Zhang et al., 1996, 1997; Koh et al., 2006).
The number of material properties required for coupled multifield
analysis depends on the material type. For an electrosensitive material
with transverse isotropy, there are 18 independent properties: dielectric
permittivity (2), heat capacity (1), compliance (5), piezoelectric
coefficients (3), pyroelectric coefficients (1), thermal expansion
coefficients (2), thermal conductivity (2), and electrical conductivity (2).

From Eq. (10.28), the viscous dissipation rate in finite electro-
thermo-viscoelasticity is obtained with the use of the augmented
Helmbholtz free energy functional expansion (10.37) as
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= dy oL, X,y —y) OB, (X,¢) , .
A=— v 47 1J IJ : d
poh =L dt oy FY% v
+ﬁ/ ﬂaM(X’W_l//) ae(X"l// )dl//l
= dt oy oy
v ON{ X,y —y) 0b,(X.y) dy
" dt oy oy
_lj"/’ J"/’ MaGIJKL(XJ//_l//?l//_I//”) dE, (X.,¥) aEKL(X’l//H)dl//'dW”
277 dr oy oy oy’
+J"// J'v/ d_'//a,BIJ(X"//_‘//Y"//_V/H) aEIJ(X’V/Y) aﬁ(X,"l//")
T dt oy 174 oy
LAY Wiy K=y -y 9B, (Xop) i Xy
T dt oy oy oy
v AC, Xy -y . .y—y) 60(X.p) 00X,y )
= dt oy oy oy
i dy oy Xy -y .y -y ) ac?,(X,'v/) 00X,y )
T dt 174 174 174
Ly dy o Xy -y .w—-y)od,(X.y) od,(X.y)
277 d oy oy oy

dydy

dydy

1 . oy
+— dwvd
o . wdy

dy dy’

dydy .
(10.41)

The coupled heat transfer equation is obtained from Eq. (10.35) as

aEU(X‘e'//')dl//'
oy

1w 00Xy
+—[VC, Xw—vw 022y

TOJ_M q (X =y 0) " v
Cod, (X, w

+ Vi X y-vy 0) 2L XY
oy

1 1. 1o o

-V, (——1M.V 0+ —T" K

T, ol Toz ! T, :

FLE NELE ST ST LN §
0 TO TO TO

d ,
E[Iiﬂu X,y -y.0)

dy | (10.42)
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where the integral involving the strain history gives rise to a coupling
between thermal and mechanical effects, and the integral involving the
electric displacement history gives rise to a coupling between thermal
and electric effects.
The coupled electric charge balance equation is obtained from Eq.
(10.36) as
o,

1 -~ 1 2o &
=LAV (——L V. 0+—1 - E)=0. 10.43
Ve 7 WOty ) (10.43)

10.5 Generalized J -Integral in Nonlinear Electro-Thermo-
Viscoelastic Fracture

Consider a three-dimensional body B that contains an extending crack
with the surface T’ translating with the crack front moving at a speed V.
(see Fig. 6.1). Using Eqgs. (10.20), (10.22), (10.29), and (10.30) in
nonlinear electro-thermo-viscoelasticity, without the requirement of a
constitutive nature except the existence of the free energy functional, the
global form of energy balance leads to the following expression for the
energy flux integral:

F(D)=[:[n,6-v-n-S +(ph + pk)n- V. 1dl
=[z(m,0-v—n-8)dS - Lw%(% + phydv (10.44)
I ot

0

The generalized J -integral is related to the energy flux integral by

7 _F@D
L= 10.45
F= (10.45)
where A is the crack area growth rate.

The rate of energy flow out of the body and into the crack front per
unit crack advance provides the driving force for crack propagation in
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the presence of electro-thermo-mechanical coupling and hysteresis
effects, that is,

Jy= lim{%ffo[n‘,o-v—n‘S +(ﬁﬁ +ﬁl€)n~Vc]dl:}. (10.46)

I,—0

It appears that expression (10.46) for the crack driving force in
electrosensitive materials has the same universal form as expression
(9.40) for the crack driving force in magnetosensitive materials, both of
which can be taken as a generalization of the conventional J-integral
method, the dynamic contour integral method, and the crack-tip model
for viscoelastic crack initiation and growth discussed in Chapter 1.

The relationship between the global and local generalized J -integrals
is obtained from Eq. (10.44) as

| Core | . o | (10.47)
N o s ~ o~
+XJ.‘71:§ *~f-’ pSTdV +XJ.‘7K 7‘71 p—OE'JedV +Z'[‘7f—g 7"/}[ pAdV’

where \}; and \7, are the volumes bounded by the surfaces fg and 1:,,

including the crack faces.

Thus, the difference between the global and local generalized J -
integrals is caused by unsteady state, mechanical body force, temperature
change, electricity conduction, and viscous dissipation rate. The Joule
heating in conductive or semiconductive polymeric materials contributes
to the loss of path independence of the generalized J -integral.

For the accuracy of numerical evaluation by means of finite element
analysis, an equivalent invariant integral expression is given by
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Jo=J =%L~_[n-t0'~v—n~S+(ﬁf7+ﬁl€)n~VC]d1:

g(ph + pk)dV + hm —j ; ,b'f-vdV

—hm—jv ; pTdV——jBV /’;)EJdV——jV . phdv.
0

F—>O V V

(10.48)

For a flat, straight, through-crack, if a field quantity is invariant in a
reference frame traveling with the crack tip at a uniform speed
V.= VCE , the field quantity depends on ¢ only through the combination
X=X- V.t . Under the condition that there exists a steady-state solution
for crack propagation in an electro-thermo-viscoelastic homogeneous
medium or FGM, the above expression for the path-domain independent
J -integral becomes

J=J; ‘%gogfvf-vﬁ)%;lﬁé) av
expl
_% lim f; 7, g av +% lim ;o ﬁﬁi—);dﬁ (10.49)
_Bi/c E‘vfpﬁ:) ST =k g, PAAT.
T =%j~n~5dl~"-fl =J--E,, (10.50)
b=—[,6+([D EJI-D®E]-uV +(5h + pk)I. (10.51)

The domain integral term involving the explicit derivative of the total
energy density with respect to X , reflects the influence of material
inhomogeneity on crack propagation. The generalized J -integral can be
taken as the projection of the generalized J ¢ -integral vector along the
crack advance direction. It is noted the generalized J -integral is path
dependent due to the occurrence of viscous dissipation in the bulk
material, even for steady-state crack propagation under isothermal
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conditions in the absence of material property variation, mechanical body
force, and electricity conduction. The J -integral becomes invariant
because of the addition of the domain integral terms to account for the
effects of property variation, mechanical body force, temperature change,
electricity conduction, and viscous dissipation rate in the bulk material.

10.6 Analogy between Nonlinear Magneto- and Electro-Thermo-
Viscoelastic Constitutive and Fracture Theories

The nonequilibrium thermodynamic approach enables derivation of
nonlinear magneto- and -electro-thermo-viscoelastic constitutive and
fracture theories in a unified way. The analogy is summarized in Table
10.1. The referential electric displacement can be taken as the
thermodynamic dual of the referential electric field under the quasi-
electrostatic approximation, whereas the referential magnetic induction
can be taken as the thermodynamic dual of the referential magnetic field
under the quasi-magnetostatic approximation. The thermodynamic
driving force for crack propagation in electro- and magneto-sensitive
materials can be expressed as the crack-front generalized J -integral,
which has a universal form for conservative or dissipative systems at
small or large deformations under isothermal or nonisothermal
conditions. A fracture criterion based on the generalized J -integral thus
formulated, without the requirement of a constitutive nature except the
existence of the free energy functional, is a generalization of the
conventional J-integral method, the dynamic contour integral method,
the configuration force (material force) method, and the crack-tip model
for viscoelastic crack initiation and growth discussed in Chapter 1.

Both magneto-thermo-viscoelastic fracture and electro-thermo-
viscoelastic fracture are time-dependent, involving viscous bulk
dissipation which contributes to the difference between the global and
local generalized J -integrals. The fully dynamic framework for
magneto-electro-thermo-elastic fracture presented in Chapter 6 may also
be generalized with the inclusion of viscous dissipation in the bulk
material.
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Table 10.1 Analogy between nonlinear magneto- and electro-thermo-viscoelastic
constitutive and fracture theories

Nonlinear magneto-thermo-
viscoelastic constitutive and
fracture theory

Nonlinear electro-thermo-
viscoelastic constitutive
and fracture theory

Augmented
Helmholtz
free energy

h

=e—Ts+,u’ Ip
=h(C(t-1),T(t-17),B(t-7);X)

h=é-Ts+,u’ Ip
R(C(t-7),T(t-7),D(t - 7);X)

oh

oh

IZ = 2p S~ 1 E = 2p S~
KL 0 aCKL KL 0 aCKL
s O 1
I oT oT
Constitutive
equations ~ ~
N oh A oh
Hy=py— Ey=py—
0B, oD
F—l A=
ot ot
~ .1 ~ .1
Crack Jo=lim {= [z [n,6-v-n-§ Jo=lJim {=[z [n,6-v-n-S
driving I,—»0 A™0 I[,»0 A0
force +(Ph + pkyn- Ve 1dl) +(ph + pkn- Ve 1dT}
Poynting S =(vxB)xH S =(vxD)XE
vector
Energy- b=—,6-uV+B®H uV b=—,6-uV+D®E uV
momentum

tensor

—(B-HuV + (ph + pk)l

—(D-EyuV + (ph + ph)l
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10.7 Reduction to Dorfmann-Ogden Nonlinear Magneto- and
Electro-elasticity

The coupled theories of nonlinear magneto- and electro-thermo-
viscoelasticity formulated based on nonequilibrium thermodynamics can
be reduced to the refined theories of nonlinear magneto- and electro-
elastic deformations developed by Dorfmann and Ogden (2004, 2006) as
the augmented Helmholtz free energy is taken as a function of basic
variables such as deformation, magnetic induction, or electric
displacement in the reference configuration. Within this theoretical
framework, the boundary-initial value problems can be formulated in a
simple and elegant way for proper evaluation of the performance of
deformable electro- and magneto-sensitive materials. Alternative
formulations which consider the augmented Gibbs free energy to be a
function or functional of stress, magnetic field, or electric field in the
reference configuration can also be established (Dorfmann and Ogden,
2005-2006; Chen, 2010). New examples of nonlinear constitutive
equations for practical applications may be implemented as user
subroutines in commercial finite element analysis software packages
such as ABAQUS or ANSYS. Nevertheless, there is still a shortage of
systematic experimental work to obtain comprehensive sets of much-
needed data. It is hoped that the general formulation presented here may
provide fundamental guidelines for future experimental and
computational work.



Chapter 11

Nonlinear Field Theory of Fracture
Mechanics for Paramagnetic and
Ferromagnetic Materials

11.1 Introduction

From the viewpoint of global energy balance, Griffith (1921) proposed a
fracture theory of brittle materials based on the theorem of minimum
potential energy by introducing a specific surface energy on the crack
faces, marking an epoch of fracture mechanics as described in Chapter 1.
The energy-based approach is fundamental to thermodynamics and
continuum mechanics, and is not unique to crack problems.
Thermodynamics/thermomechanics has been widely used to study
thermoelasticity, electrodynamics, viscoelasticity, inelasticity, plasticity,
damage, and fracture (e.g., Schapery, 1964, 1969, 1997, 1999, 2000;
Coleman and Gurtin, 1967; Crochet and Naghdi, 1969; Rice, 1971, 1978;
Cost, 1973; Eringen, 1980; Christensen, 1982; Truesdell, 1984; Maugin,
1988, 1992; Gurney and Hunt, 1967; Gurney, 1994; Lemaitre, 1996;
Fung and Tong, 2001; Makowski and Stumpf, 2001; Truesdell and Noll,
2004; Dorfmann and Ogden, 2003-2006; Chen, 2007, 2009a—e, 2010;
Horstemeyer and Bammann, 2010). Magneto- and electro-thermo-
mechanical coupling and dissipative effects accompanying crack
propagation bring about new challenges in extending conventional
fracture mechanics approaches.

In this chapter, a nonlinear field theory of fracture mechanics, which
includes magneto-thermo-mechanical coupling and dissipative effects, is
formulated from the global energy balance equation and the non-negative
global dissipation requirement, following the work of Chen (2009e) as a

237
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generalization of the Griffith global energy balance approach. In Section
11.2, the global energy balance equation and the non-negative global
dissipation requirement are given for crack propagation under combined
magnetic, thermal, and mechanical loadings in the quasi-magnetostatic
approximation. In Section 11.3, the Hamiltonian density and the
thermodynamic requirement on constitutive laws are provided, based on
two types of nonequilibrium thermodynamic approaches: generalized
functional thermodynamics and generalized state-variable
thermodynamics. In Section 11.4, the thermodynamically consistent
time-dependent fracture criterion is expressed in terms of the generalized
energy release rate as the thermodynamic driving force conjugate to the
crack variable. In Section 11.5, the generalized energy release rate
method is proposed for crack propagation in the presence of time-
dependent or loading path/history-dependent dissipation in the bulk
material. In Section 11.6, the generalized J -integral method is proposed,
with the crack-front generalized J -integral equivalent to the generalized
energy release rate and the global generalized J -integral including
additional contributions due to unsteady, thermal, and dissipative effects.
In Section 11.7, the extended essential work of fracture method is
proposed, with the specific essential work of fracture equivalent to the
crack resistance and the nonessential work of fracture associated with
kinetic energy change, temperature change, and time or loading
path/history-dependent bulk dissipation.

11.2 Global Energy Balance Equation and Non-Negative Global
Dissipation Requirement

Consider a cracked body V, subjected to combined magnetic, thermal,

and mechanical loadings under the quasi-magnetostatic approximation.

Following the conservation law of energy, the global energy balance

equation over the cracked body V, is given by

dE" dE*
—+

=W+0Q, 11.1
dt dt © ( )
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where E' is the internal energy, E* is the kinetic energy, W is the
power applied by external forces, and Q is the heat exchange rate.

The internal energy E' and the kinetic energy E * over the cracked
body V, are defined as

t

E'=|, pedV, (11.2)
E* =| pkav , (11.3)

where ¢ is the internal energy per unit mass and k=v-v/2 is the
kinetic energy per unit mass.
The power applied by external forces is given by

W=, b, -vdS+ |, pf -vav +|, ,wav, (11.4)

where ,w=,f-v-M- B is the magnetic power density.
Using the Poynting vector § = (vxB)xH in the co-moving frame,
Eq. (11.4) leads to

W=, n-(c+,0) vdS + [, pf -vdV —[ n-SdS —%JV wu’dv. (11.5)

The heat flux j, is introduced to describe the heat exchange rate
through the boundary 9V, as

t
Q=-,n-j,ds. (11.6)

Hence, the global energy balance equation over the cracked body V,
becomes

d ~ ) PO

=[ plk+é&)dV =~ V-jdV+[ (V-c+pf+, f) vdV
dtIVf IVI 1 IVI ' (11.7)
+jV6:VVdV—jVM‘Ba’V.

By introducing the Helmholtz free energy per unit mass,
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h=é-Ts, (11.8)

Eq. (11.7) becomes

ds ) A A
fv,pTEdV ==[, V-, dV +], (V-o+pf+, ) -vdV
4 (11.9)
+], (o: vV-M-B-p@T’)dV—EjV p(k+hyav.
The entropy production is defined as
ﬂ5£+lv.jv_ (11.10)
dt dt p ‘
The non-negative global dissipation requirement is given by
d.s
chijTT;dvzo. (11.11)

Using Egs. (11.9) and (11.10), the non-negative global dissipation
requirement (11.11) becomes

ds§ L .
J,pT—=dV ==f, m-(, =T3,)dS =, j, - VTav

+jvpV~vdV+%jv jE:Cav +], jH-Bav (11.12)

f
mt ]dvzo,
P

—, p§TdV—%jv p(12+ﬁ+

where ,X£= jF~' 6F " is the second Piola—Kirchhoff total stress tensor,
,6=(0+,06) is symmetric, and C=F'F is the right Cauchy-Green
deformation tensor, H=H-F, B= jF ' -B.
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11.3 Hamiltonian Density and Thermodynamically Admissible
Conditions

11.3.1 Generalized functional thermodynamics

In generalized functional thermodynamics, the augmented Helmholtz
free energy for memory-dependent magnetosensitive materials,
h :ﬁ+mu-f /p, is assumed to be a functional of the histories of
deformation, temperature, temperature gradient, and referential magnetic
induction with the crack parameter, A, as a state variable:

h=h(C(t—1),T(t—7),V,T(t—7),B(t—-7);A,X). (11.13)
The corresponding Hamiltonian density is given by

HV,Clt—1),T(t—7),V T (1—7),B(1—17);A,X) = (L1
pE(V; A,X) + ph (C(t =), T(t—7),V, T(t—7),B(r—7);A.X).

where plg(v;A,X) is the kinetic energy density.

In order that the non-negative global dissipation requirement (11.12)
is always valid, it is necessary and sufficient that state equations fulfill
the following thermodynamically admissible conditions:

oh
=0, 11.15
ar, ( )
oh
Xk =200 — (11.16)
KL OaCKL
. oh
H, =p,—, 11.17
K poaBK ( )
§=—a—h, (11.18)
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i, =Tj,, (11.19)
d;s . 1 . ..
P = erpTEdV =erTJq -V?dV+erpAdV +GA =0, (11.20)

where the time-dependent dissipation rate, A, and the thermodynamic
force, G, conjugate to the crack variable, A, are given by

A=—— (11.21)

G=——| v . (11.22)

It can be seen that the total dissipation originates from heat
conduction, time-dependent bulk dissipation and crack propagation.
Since the non-negative global dissipation requirement (11.20) should
always be satisfied, the kinetic laws for specific irreversible processes
may be determined accordingly, that is,

@, =, Tj, -V%dV >0, (11.23)
@, =, pAdV 20, (11.24)
@, =GA20. (11.25)

It is proposed that the thermodynamic flux for heat conduction
depends linearly on the corresponding thermodynamic force, that is,

. 1
j =LV (11.26)

where L is positive definite.
Substituting Eqgs. (11.10, 11.18, 11.19, 11.26) into Eq. (11.20) yields
the coupled heat transfer equation for the cracked body as
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d{ on 1 I
T—| ——WdV=— VL V—dV+|, pAdV +GA. (11.27
P dt( ar} k, [ T) [P (11.27)

The time-dependent dissipation rate in the bulk material satisfies the
following inequality:

A>0. (11.28)

11.3.2 Generalized state-variable thermodynamics

In generalized state-variable thermodynamics, the augmented Helmholtz
free energy for magnetosensitive materials with dissipative
reconfigurations, h =ﬁ+muf /p, is taken to be a function of current
deformation, temperature, temperature gradient, referential magnetic
induction, and a set of state variables (scalar, vectorial, or tensorial) at
the micro/mesoscale, "™ (m=12,--), and at the macroscale,
A" (n=12,--):

h=h(C,T,V,T,B;a'™ A™ X) . (11.29)
The corresponding Hamiltonian density is given by

H(v,C, TV, T.B;a™ A" X) = pk(v;a™ ,A™ X)

~ A (11.30)
+ ph(C, T,V ,T.B;a" A" X).

In order that the non-negative global dissipation requirement (11.12)
is always valid, it is necessary and sufficient that the state equations
fulfill the following thermodynamically admissible conditions:

oh
=0, 11.31
T (11.31)
T :2poa—h, (11.32)
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1 afh (11.33)

B,

oh
§=— 11.34
ST (11.34)
i, =Ti, (11.35)
®=|, pTﬂdv

(11.36)

=[, T,V dV+ZjV i "(’")0(<"”dV+ZG‘”)A‘")>O

where the thermodynamic force, g (m), for configuration changes at the
micro/mesoscale and the thermodynamic force, G, for configuration
changes at the macroscale, are given by

oh

g = poa o (11.37)
é“”:—ij HdV (11.38)
QA M i* ’

The total dissipation originates from heat conduction and intrinsic
dissipative reconfigurations at different scales. For example, the
ferromagnetic domain-wall motion corresponds to the change of the
associated state variable at the microscale, resulting in the intrinsic bulk
dissipation rate. Damage evolution corresponds to the change of the
associated state variable at the mesoscale, resulting in the generalized
energy density release rate. Crack propagation corresponds to the change
of the associated state variable at the macroscale, resulting in the
generalized energy release rate. Since the non-negative global dissipation
requirement (11.36) should always be satisfied, the kinetic laws for
specific irreversible processes may be determined accordingly, that is,
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@, =| T, .V%dvzo, (11.39)
Q=3[ j'g"a"av =0, (11.40)
@, =YG"A"™ 20. (11.41)

It is proposed that the thermodynamic flux for heat conduction
depends linearly on the corresponding thermodynamic force, that is,

j, =L ~V%, (11.42)

where L is positive definite.
Substituting Eqs. (11.10, 11.34, 11.35, 11.42) into (11.36) yields the
coupled heat transfer equation for the cracked body:

d( on 1
T—| ——dV=—[ V- |L¥.V=|dV
IV,P dt[ oT IV[ [ T}

(11.43)
+ zJ‘V’ jflg(m)a-(m)dv + zé(n)A(n).

By analogy with the laws for plasticity and damage (Lemaitre, 1996),
the evolution laws for dissipative reconfigurations in the bulk material
may be derived from a dissipation potential, 2, with the normality rule
as

09

s (m) _ j
a _ﬂag“'“ ,

(11.44)

where the multiplier A>0 can be determined by the loading condition
for rate-independent or rate-dependent cases, respectively.
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11.4 Thermodynamically Consistent Time-Dependent Fracture
Criterion

In terms of the generalized energy release rate, G , defined in Eq. (11.22)
or (11.38) as the thermodynamic driving force conjugate to the crack
variable, A, crack propagation under combined magnetic, thermal, and
mechanical loadings is determined by

G=R, (11.45)

where R is the crack resistance.

The time dependence of the thermodynamically consistent fracture
criterion is reflected by the dependence of the explicitly defined free
energy functional on the histories of its arguments for magnetosensitive
materials with memory, whereas the loading path/history dependence of
the thermodynamically consistent fracture criterion is reflected by the
dependence of the explicitly defined free energy function on the
associated state variables for magnetosensitive materials with dissipative
reconfigurations.

For fatigue crack growth under cyclic loading, the crack growth rate
may be governed by

da ~
“ 11.4
m f(AG,r), ( 6)

where da/dN is the crack growth per cycle, AG=(G, -G, . ), and
r= Gmin /Gma

X *

11.5 Generalized Energy Release Rate versus Bulk Dissipation Rate

From the non-negative global dissipation requirement (11.20) or (11.36),
it can be seen that the global dissipation has three sources: heat
conduction, time or loading path/history-dependent material response,
and crack propagation. Heat conduction leads to the thermal dissipation
term. Structural relaxation or reconfiguration in the bulk material
contributes to the time or loading path/history-dependent bulk dissipation
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term. The energy released during crack growth results in the surface
dissipation term.

Substituting Eqgs. (11.2, 11.6, 11.8, 11.10, 11.19, 11.20) or Egs. (11.2,
11.6, 11.8, 11.10, 11.35, 11.36) into the global energy balance equation
(11.1) yields

- %fv, phav +%fv, pkdV +[, pSTAV + |, pAdV +GA, (11.47)

W= % [, phav +% [, pkav +[, psTav + X[, j7§" &' av +GA.

(11.48)

For stable crack growth, substituting Eq. (11.45) into Egs. (11.47) or
(11.48) yields

_aH dr*

w y pSTdV + [, pAdV + RA, (11.49)
l‘ t t
k
W= CZ: dt +], psTdv+zj g™ ™av + RA, (11.50)

where H = Iv phd V' is the Helmholtz free energy over the cracked body.

With inclusion of magneto-thermo-mechanical coupling and
dissipative effects, the generalized energy release rate method is
applicable to crack propagation in a broad class of magnetosensitive
materials with time dependence or loading path/history dependence.
Equation (11.45) with the definition of the generalized energy release
rate given by Eq. (11.22) or (11.38) can be taken as a generalization of
the strain energy release rate criterion. Equation (11.46) in terms of the
generalized energy release rate difference during a loading cycle can be
easily adopted to describe the fatigue crack growth rate in the presence of
remanent magnetization and remanent deformation under cyclic
magnetic, thermal, and mechanical loadings. Equation (11.49) or (11.50)
is a generalization of the rate-dependent criterion for viscoelastic or
viscoplastic crack growth.
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11.6 Local Generalized J -Integral versus Global Generalized

J -Integral

Consider a three—dimensional cracked body Vf bounded by a surface r
in a reference frame (X=X -V.r) traveling with the crack front at
speed V.. With the use of Eqgs. (11.2, 11.5, 11.8, 11.10, 11.19, 11.20),
the global energy balance equation (11.1) for crack propagation in
magnetosensitive materials with memory can be rewritten as

F(D)=[:n,6-v-n-S+(ph +phm- V. ldl
I o
= j‘@g(ph + pk)dV —I‘;pr -vdV +j‘7fpsTdV (11.51)
+ |, PAAV +GA
By contrast, using Eqs. (11.2, 11.5, 11.8, 11.10, 11.35, 11.36), the
global energy balance equation (11.1) for crack propagation in

magnetosensitive materials with dissipative reconfigurations is rewritten
as

F(f)zjf_[n-to v-n-$ +(,5}7+,51€)n-VC]dl:
I . ~ e~
= IVfi(ph + pk)dV — jvf/’f -vdV + jvfpsTdV (11.52)

+XJ g "Ma™mav + GA.
m L

The generalized J -integral is defined as

~ FO 1 - A -
J E%:ZJ}_[H'IG'V—H'S-F(/)]’I +pkn-V.1dl". (11.53)
From expression (11.53), the crack-front generalized J -integral is
the energy flux towards the crack front per unit crack advance, which is
equivalent to the generalized energy release rate, G , serving as the crack
driving force, that is,



Fracture Mechanics for Paramagnetic and Ferromagnetic Materials 249

J ljm{@} G. (11.54)
I'—0 A

The relationship between the global and local generalized J -
integrals is obtained as

.~ o~ 1 e~ n o~ 1 A~
Jg = J[ +X'[V —V ~ (ph +,0k)dV _XJ.";I__ _‘71:[ prdV
¢ (11.55)
+ ; . o y, S $TAV +— jv ﬁfldV,
-~ =1 d A~
Jg_11+2jvr W3, 2 (ph +pk)dV——j g, PE-vdV
¢ (11.56)

1 —_ ~
=k . PSTAV +— va 7gmamav,

m g

where V~ and V~ are the volumes bounded by the closed surfaces fg
and F, , 1nclud1ng the crack faces.

Thus, the difference between the global generalized J -integral and
the local generalized J -integral is caused by unsteady state, mechanical
body force, temperature change, and time or loading path/history-
dependent bulk dissipation rate. With the addition of the domain integral
terms to the generalized J -integral, an invariant integral representation
of the generalized energy release rate serving as the crack driving force is
obtained as

fEJ}—l.jvig(ﬁﬁ+ﬁl€)d‘7+l.jv-ﬁf-vd\7
ot ATt
1 ~ 1 A~
——[, pSTAV —=[, pAdV 11.57
<P TP (11.57)

=G,
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Jzif——jv —(ph +pk)av +— j pf -vdv

—— jv pSTdV ——z fr i7" e av (11.58)
=G.
By introducing the generalized energy-momentum tensor
b= 06 uV+BOH uV—B-H)uV+ (5 + I, (1159

the generalized J -integral for steady-state propagation of a planar crack
in the E, -direction can be expressed as

szgj n-bdl-E =J-E, (11.60)
where jf is the generalized J ¢ -integral vector.

It is noted that the generalized J -integral for magnetosensitive
materials with memory or dissipative reconfigurations has the same
form, implying that it is universally independent of the material’s

constitutive nature.

11.7 Essential Work of Fracture versus Nonessential Work of
Fracture

Integrating Eq. (11.49) or (11.50) over the time domain gives the
following expression for the total work

AW = AH +AE* + [, [, p§TdVdt + ], |, pAdVdi+] RAdr, (11.61)
AW =AH +AE* +[! |, psTavdr+[, 3, j~'§" & dvdi+ | RAdt.

(11.62)
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From Eq. (11.61) or (11.62), the total work, Wf, from the start of
loading until final fracture can be partitioned into the essential work of
fracture, W, , and the nonessential work of fracture, W, , as

ne

W, =W,+W,, (11.63)
W, = [ w,Adt = [ RAdt, (11.64)
W, =AH +AE" + ]V [, p8TdVdi+[" [, pAdVdr,  (11.65)

or

W, =AH+AE" + [V |, psTavdr+[ [, j" g™ e dvdr, (11.66)

where w, is the specific essential work of fracture.

The essential work of fracture is a material property due to its
equivalence to the crack resistance, and the nonessential work of fracture
is geometry dependent due to its association with kinetic energy change,
temperature change, and time or loading path/history-dependent bulk
dissipation. Hence, this formulation provides a fundamental basis for
extending the simple yet elegant EWF method, as described in Chapter 1,
to fracture characterization of magnetosensitive materials involving
dynamic, thermal, hysteresis, and other dissipative effects. The critical
generalized energy release rate, éc , the critical crack-front generalized
J -integral, J~C, and the specific essential work of fracture, w,, are
equivalent as a measure of fracture toughness.



Chapter 12

Nonlinear Field Theory of Fracture
Mechanics for Piezoelectric and
Ferroelectric Materials

12.1 Introduction

The preceding chapter presents a general and straightforward formulation
of a nonlinear field theory of fracture mechanics for paramagnetic and
ferromagnetic materials based on the fundamental principles of
thermodynamics. By analogy with magneto-thermo-mechanical coupling
and dissipative effects, electro-thermo-mechanical coupling and
dissipative effects also bring about new challenges in generalizing the
Griffith global energy balance approach and the conventional J-integral
method to fracture characterization of electrosensitive materials for a
wide variety of applications. For example, it has been realized that
domain switching plays an important role in the apparent fracture
toughness variation for ferroelectrics, but existing work is predominantly
limited to small-scale switching conditions, as reviewed in Chapter 4. It
becomes necessary to calculate separately the energy release rate and the
rate of bulk dissipation for the fracture of switchable ferroelectrics and
electroactive polymers when the effects of bulk dissipation exhibit
dependence on geometry and cannot be lumped into a material parameter
like the plane-strain fracture toughness.

This chapter focuses on the parallel development of a nonlinear field
theory of fracture mechanics for piezoelectric and ferroelectric materials,
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accounting for the total dissipation associated with heat conduction,
electricity conduction, time or loading path/history-dependent bulk
dissipation, and crack propagation. In Section 12.2, the nonlinear field
equations for a cracked body in the presence of electro-thermo-
mechanical coupling and dissipative effects are summarized. In Section
12.3, a thermodynamically consistent time-dependent fracture criterion
under combined electric, thermal, and mechanical loadings is obtained
from the global energy balance equation and the non-negative global
dissipation requirement. In Section 12.4, on the basis of the developed
theory, the generalized energy release rate method, the generalized J-
integral method, and the extended essential work of fracture method are
proposed for fracture characterization of piezoelectric and ferroelectric
materials, and the interrelation of these methods and their correlations
with conventional methods are discussed.

12.2 Nonlinear Field Equations

Nonlinear field equations consist of the balance equations irrespective of
material constitution and configuration as well as the constitutive laws
characterizing the material nature and configuration change.

12.2.1 Balance equations

The Maxwell equations and mass, linear momentum, and angular
momentum  balance equations under the quasi-electrostatic
approximation are summarized in Table 12.1, in comparison with those
under the quasi-magnetostatic approximation. The global energy balance
equation and the non-negative global dissipation requirement for a
cracked body V, under combined electric, thermal, and mechanical
loadings are given in Table 12.2, in comparison with their counterparts
under combined magnetic, thermal, and mechanical loadings as
described in Chapter 11.
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Table 12.1 Balance equations in quasi-electrostatic or quasi-magnetostatic approximation

Combined magnetic, thermal,
and mechanical loadings

Combined electric, thermal,
and mechanical loadings

€ij (Ojj+m 0;) =0

m

V-B=0 V-D=g;
Maxwell | V*H=0 VXE=0
equations
8qf
L _v.j
ot Je
d
_Iv pdvV =0 iJ.Vpd\/:o
Mass dr™ dt v
balance
dp dp
L = _ V . ap _ V .
a0 ar - P
d d
b vV =y - 0ds f, vV =, n-ods
Linear N .
momentum | T Iv, (pf+, H)dv +IV, (pf+,£)av
balance
dv 8 dv o
PI:V~(G+MG)+pf pE:V.(G_*.eG)_pr
d d
EJV, rXxpvdV = Iav, [rXx(n-0)ldS E'[Vr rxpvdV = Iav, [rx(n-o)ldS
Anoul +[, expf +rx, f+,0)dv +], (ex pt +rx,+,0)dv
ngular ' i
momentum
balance
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Table 12.2 Global energy balance equation and non-negative global dissipation

requirement

Combined magnetic, thermal
and mechanical loadings

Combined electric, thermal
and mechanical loadings

Global energy
balance
equation

% [, p(k+&)av ==[, v-j,av
+[, (V~c+pf+mf)-vdV
+[, 6:vVdV - [, M-BdV

%jvt plk+&)dV ==[, V-j,dv
+[, (V-0 + pf+, ) vdv

+[, 6:vVdV + |, pE-fdV
+[,E-G, —q,vav

Non-negative
global
dissipation
requirement

d;s
T ——dv
JV,p dt
=, n-G, ~T5,)d8
~ [, i, -VTaV +], piv-vav

+%Jv, it E:Cav
+f, A Bav -], psiav

!
i

d A oA
- k+h+ dV >0
dtj"fp[ ]

d.s
T ——dV
I"' P dt

=—fy, n-G, = 73,)ds
—[, i, -VTaVv + |, pv-vdV
+, E-(. —q,V)aV
+%jvrj’1,)::CdV

+1, - Dav - [y, pSTavV

I
U

dV 20
P

d A A
_Ej'vtp{k+h+

12.2.2 Constitutive laws

In generalized functional thermodynamics, the augmented Helmholtz

free energy

for memory-dependent

electrosensitive  materials,

h=h+,u’ /p, is assumed to be a functional of the histories of
deformation, temperature, temperature gradient, and referential electric
displacement, with the crack parameter, A, as a state variable:

h=h(C(t—7),T(t—7),VT(t—17),D(t—17);A,X).

(12.1)
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The corresponding Hamiltonian density is given by

H(v,C(t=17),T(t—7),V,T(t—7),D(t-7);A,X) = (12.2)
PR(VAX) + il (C(t =0T (1 =0, T(t -0 D -5AX).

In generalized state-variable thermodynamics, the augmented
Helmholtz free energy for electrosensitive materials with dissipative
reconfigurations, h= h+ u’ /p, is assumed to be a function of current
deformation, temperature, temperature gradient, referential electric
displacement, and a set of state variables (scalar, vectorial, or tensorial)
at the micro/mesoscale, o™ (m=12,---), and at the macroscale,
A" (n=12,--):

h =h(C,T,V,T.D;a™ A™ X). (12.3)
The corresponding Hamiltonian density is given by

H(v,C.T,V T, ;2™ A" X) = pk(v;a™ A", X)

N - (12.4)
+ph(C, T, VT, D;a™ ,A™ X).

The Hamiltonain density and the thermodynamically admissible
conditions for electrosensitive materials with memory or dissipative
reconfigurations are given in Table 12.3 for comparison.

12.3 Thermodynamically Consistent Time-Dependent Fracture
Criterion

By analogy with Section 11.4, in terms of the generalized energy release
rate, G , as the thermodynamic driving force conjugate to the crack
variable, A, crack propagation under combined electric, thermal, and
mechanical loadings is determined by

G=R, (12.5)

where R is the crack resistance.
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Table 12.3 Hamiltonian density and thermodynamically admissible conditions for
electrosensitive materials with memory or dissipative reconfigurations

Electrosensitive materials with
memory

Electrosensitive materials with
dissipative reconfigurations

H(V,Ct—1),T(t—7),V, T(t—7),
D(r —7); A, X) = pk(v; A, X) +

H(V,C,T,V,T.D;a"™ A™ X)
= pk(via"™ , A™ X) +

Hamiltonian ~ ’ A
density Ph(Ct—1).T(t=1).V T(t=7), | ph(C,T,V,T.D;a™ A" X)
D(r-7);A,X)
oh oh
Yo =200 —— Y =2p. —
1&kL = 2Po 9Cry 1&kL = 2Po 9y,
. ok . oh
5§ =—— §=——
oT T
wutive | 2 h 5 o
Constitutive k= Po—— « = Po—=
laws oD oD,
A:_a_h g(m) :—p a—h
ot 0 aa(m)
~ b B 3
G=-—| 3dV () _ _
aa G" = A [y, 7av
i g0 oyl Ly . a ol 1 g
J, =L - V—+—L*-E j, =L V—+—L"-E
T T T T
Transport 1 1 11
j,—q,v=L%-V—+—L*-E j,—q,v=L“.V—+—L*-E
laws Je ~ 4y T Je—4qy 7
Bulk
dissipation | A>0 T EMam >0
rate m
Crack . o
propagation | GA=0 SGMA®™ >0

n
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The time dependence of the thermodynamically consistent fracture
criterion is reflected by the dependence of the explicitly defined free
energy functional on the histories of its arguments for electrosensitive
materials with memory, whereas the loading path/history dependence of
the thermodynamically consistent fracture criterion is reflected by the
dependence of the explicitly defined free energy function on the
associated state variables for electrosensitive materials with dissipative
reconfigurations.

For fatigue crack growth under cyclic loading, the crack growth rate
may be governed by

da ~
oy - 4G, (12.6)

where da/dN is the crack growth per cycle, AG=(G. -G

- max min) ’ and
r= Gmin /Gmax .

12.4 Correlation with Conventional Fracture Mechanics
Approaches

Like magnetosensitive materials with time or loading path/history
dependence as described in Section 11.5, the global energy balance
equation for electrosensitive materials with time or loading path/history
dependence may be rewritten as

. d A d N .
14 :Ejv, phdV +Ejv, pkdV +Jv, pSTdV .
+J.VIE-(je —qfv)dV+J.V, PAdV +GA,

. d . d . .
W= jv, phav +—- jv, pkdv + jv, pSTdV
(12.8)
0 —1 ~(m) ~,(m) ~ A
+J.VIE~(J8 —qu)dV+ZJ‘VI g ma™mav + GA.

For stable crack growth, substituting Eq. (12.5) into Eq. (12.7) or
(12.8) yields
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k
W= dE +j psTdV+j E-(j, —q,v)dV
@ (12.9)
+vaf1dV+I§A,
W= C;H dE” sTdV+fE(Je q,v)dvV
t

(12.10)
+ZJ‘VI j'g"™a™dv + RA.

The generalized energy release rate serves as the thermodynamic
driving force for quasi-static and dynamic crack propagation in
homogeneous or nonhomogeneous, conservative or dissipative materials,
which is analogous to the generalized energy density release rate for
damage evolution. Hence, the thermodynamically consistent formulation
based on the global energy balance equation and the non-negative global
dissipation requirement unifies the way to handle crack propagation and
damage evolution. Equation (12.5) is a generalization of the strain energy
release rate criterion. Equation (12.6) is an extension of the fatigue crack
growth criterion under cyclic mechanical loading. Equation (12.9) or
(12.10) is a generalization of the rate-dependent criterion for viscoelastic
or viscoplastic crack growth.

Consider a three-dimensional cracked body V~ bounded by a surface
[ in a reference frame (X X —V.t) traveling w1th the crack front at
speed V.. The global energy balance equation (12.7) or (12.8) for crack
propagation in electrosensitive materials with memory or dissipative
reconfigurations can be rewritten as

F(T) = [.[n-,6-v—n-S +(ph + pkn -V, JdT
P
=jV~F§(ph +pk)dV—j‘7pr-vdV +j‘7fpsTdV (12.11)

¥ JV}%E- o a7 +[; pAV +Ga.
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F(D)=[:[n,6-v-n-S+(ph + pkn-V,ldl
= %(ﬁﬁ + pk)dV - Ji. pf-vdv + fi. PSTdV  (12.12)
5 DB g T S R aT + G

The generalized J -integral is related to the energy flux in the same
way as defined in Eq. (11.53), that is,
?:—jr n,c-v—-n- S+(ph +pk)n V.ldl. (12.13)

T

It is noted that the generalized J -integral for electro- or magneto-
sensitive materials with memory or dissipative reconfigurations has an
identical form. This formulation further extends the generalized
J -integral concept developed in Sections 9.5 and 10.5 for nonlinear
magneto- and electro-thermo-viscoelastic fracture.

As the surface I'— 0, the crack-front generalized J -integral is
related to the generalized energy release rate G by

Ty —hm{—F?} G. (12.14)

I'—-0

The relationship between the global and local generalized J -integrals
is obtained as

7 4 1 a ~7 ~ -~ l ~A ~
Jg = ‘]l +X Vfg_vf,E(ph +pk)dV _XJ.V'I:#_";]:, prdV
+;f 7, A5 STV +jV —E-(je—qfv)dv (12.15)
T p

1 A~
+X“.‘71= _‘71:1 pAdV,

8
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T, =T+ I, rlat(ph+pk)dV——jV_~ﬁf-vd\7

—jv ) TdV+j LE.(§,-q,v)dV (12.16)
" p

1
AV

—1~(m) s (m) ;7
+_'2j‘7f . I8 a™dv,
m g 1

where V~ and V~ are the volumes bounded by the closed surfaces fg
and I, mcludmg the crack faces.

Thus, the difference between the global generalized J -integral and
local generalized J -integral is caused by unsteady state, mechanical
body force, temperature change, electricity conduction, and time or
loading path/history-dependent bulk dissipation rate. As a generalization
of the conventional J-integral method, the dynamic contour integral
method, and Schapery’s crack-tip model for viscoelastic facture, as
described in Chapter 1, the generalized J -integral method is applicable
to arbitrary transient crack problems in the presence of electro-thermo-
mechanical coupling and dissipative effects.

By introducing the generalized energy-momentum tensor

b=—06-uV+D®E-uV—-(D-EnV+ph+ 501, (12.17)

the generalized J -integral for steady-state propagation of a planar crack
in the E, -direction can be expressed as

~ 1 -~ . — o~
JI:ZEJ' ‘bdl'-E, =J:-E, (12.18)
where J ~ is the generalized J x -integral vector.

Hence the special form of the generalized J -integral for steady-state
crack propagation is related to the generalized energy-momentum tensor
in the same way as the configuration force (material force) method.

With the addition of the domain integral terms to the generalized J-
integral, an invariant integral representation of the generalized energy

release rate serving as the crack driving force is obtained as
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fsz—%j gi( bl + pl)dV +—j pt-vav ——jv PSTAV
~f, %E (o —q;V)dV ——jv PAdV (12.19)

I
IDLI.

7oL =l i(ﬁi{ AV <l vV _1 =, p¥TaV

- fv Pg., —q,v)dV ——z [y g™ av (12.20)
rp
=G.

Hence, the invariant J -integral is an extension of the path-domain
independent integral method for nonhomogeneous or graded materials.
Time or loading path/history-dependent bulk dissipation rate and
electricity conduction bring about additional domain integral terms.

Integrating Eq. (12.9) or (12.10) over the time domain gives the
following expression for the total work:

AW =AH + AE* +[' [ p§Tavdt +| |, E-(j, —q,v)dVdt
L " (12.21)
+ [, [, pPAdVdr + [] RAdt,

AW =AH +AE" + ]| [, psTdVdr++], [, E-(j, —q,v)dVdr
, L (m) 5 (m) - (12.22)
+ LO va, jg™ma'™dvdt+ LO RAdLt.

From Eq. (12.21) or (12.22), the total work, W, from the start of
loading until final fracture can be partitioned into the essential work of
fracture, W, , and the nonessential work of fracture, W,, , a

W, =W, +W,

ne’

(12.23)

W, = [ wAdt = ]! RAdt, (12.24)
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W, =AH +AE* + [ [, pSTdVadr

ne

t ) (12.25)
+[/, B G =g vava+ [ |, pAdv

W,.=AH +AE  + [/ |, psTavar

. (12.26)
+1 [, -G =g vidvde+ [) f, g™ avar,

where w, is the specific essential work of fracture.

The essential work of fracture is a material property due to its
equivalence to the crack resistance, and the nonessential work of fracture
is geometry dependent due to its association with kinetic energy change,
temperature change, electricity conduction, and time or loading
path/history-dependent bulk dissipation. The separation of the total work,
Wf , from the start of loading until final fracture into the essential work
of fracture, W,, and the nonessential work of fracture, W, , allows for
the extension of the simple yet elegant EWF method to quasi-static and
impact fracture characterization of electroactive polymers, switchable
ferroelectrics, and pie}oelectric semiconductors. The critical generalized
energy release rate, G, the critical crack-front generalized J -integral,
J .» and the specific essential work of fracture, w,, are equivalent as a
measure of fracture toughness.



Chapter 13

Applications to Fracture
Characterization

13.1 Introduction

In previous chapters we have dealt with the current status of
conventional fracture mechanics and the new formulation of a nonlinear
field theory of fracture mechanics for electromagnetic materials.
Although standardized procedures for fracture toughness measurements
of metallic and plastic materials have been published by a variety of
standards organizations, such as the American Society for Testing and
Materials (ASTM), the British Standards Institution (BSI), and the
European Structural Integrity Society (ESIS), recent advances in
multifunctional smart materials have created new frontiers due to the
occurrence of magneto-electro-thermo-mechanical coupling and
dissipative effects accompanying crack propagation. In this chapter, the
generalization of fracture characterization techniques to electromagnetic
materials is examined, with explanations of concepts which are central to
the development of these techniques and discussions of areas in which
future work is needed.

13.2 Energy Release Rate Method and its Generalization

The Griffith-Irwin—Orowan theory, as reviewed in Sections 1.1 to 1.3,
lays a fundamental basis for evaluating the amount of energy required to
extend a crack per unit area, with the energy release rate given by
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U
=—— 13.1
G (BAJA’ (13.1)

where U is the strain energy stored in the system and A is the load-point
displacement.

From Irwin’s crack closure analysis (Irwin, 1957), if a crack extends
by a small amount da , the energy released in the process is equal to the
work required to close the crack to its original length, that is,

1 s
G = lim — [ 0,;(x,,0)Au, (x, — Sa)dyx, . (13.2)
sa—020a

The virtual crack closure or crack extension technique has been
implemented in finite element analysis to calculate the energy release
rate (e.g., Parks, 1974, 1977; Hellen, 1975; Rybicki and Kanninen, 1977;
deLorenzi, 1982, 1985; Jih and Sun, 1990; Krueger, 2004).

In the regime of LEFM, the energy release rate is related to mode-1, II
and IIT stress intensity factors by

1 s
G = lim—— [0, (x,,0)Au, (x, — Sa)dx,
a

(13.3)

1 1+v
:E(KIZ+K,2,)+TK,2”,

where E = E for plane stress and E = E/(1—v?) for plane strain, E is
Young’s modulus, and v is Poisson’s ratio.

Equation (13.3) allows the evaluation of the energy release rate via
the stress intensity factor method (ASTM Standard E399 and D5045,
British Standard BS5447). The specimen size requirement to obtain a
valid measurement of K,. as the critical plane-strain value at crack
initiation is given by

2
B,a,(W—-a)> 2.5[&] , (13.4)
(o

y
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where B is the specimen thickness, a is the crack length, W is the
specimen width, and o, is the yield strength.

By contrast, Eq. (13.1) may result in a simple expression of G, that
can be related to the elastic strain energy U stored in the system for
mode-I fracture (Williams, 1987):

U

- 13.
BWg¢’ (133

Ic

where B is the specimen thickness, W is the specimen width, and ¢ is a
correction factor which is determined by the specimen compliance C:

C

d(alW)

Numerical values of ¢ can be obtained for different specimen
geometries. Equation (13.5) enables the direct evaluation of G,. from
the slope of the linear relationship between U and BW¢ for a series of
specimens with different initial crack lengths. The reader may refer to the
book by Williams (1987) and the book chapter by Mai et al. (2000) for
further information.

In Chapters 11 and 12, the generalized energy release rate method
was proposed for quasi-static and dynamic fracture characterization of
conservative and dissipative magneto- or electro-sensitive materials with
the generalized energy release rate defined as

~_ 0
G=-—|, v, 13.7
BAIV' (3D

where J = plg + pE is the Hamiltonian density, p/g is the kinetic energy
density, and pi; is the augmented Helmholtz free energy density,
including the contribution of the energy of the free electromagnetic
fields.

In terms of the generalized energy release rate as the crack driving

force, the thermodynamically consistent time-dependent fracture
criterion is given by
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G=R, (13.8)
where R is the crack resistance.
As an extension of Irwin’s crack closure integral, the generalized
energy release rate can be evaluated via the following crack closure
integral:

G= ;;r_%ﬁjf” 105 (X,0,0Au (X, — a0, 0dX,, (13.9)
where tazj()?],o,t) is the total traction and Auj()?1 —&,0%,1)
= [u_/.()?l —0a,0",1) —u_/.()?1 —5a,0’,t)] is the crack opening
displacement.

It can be seen that the key difference lies in the replacement of the
Cauchy stress by the total stress in the required calculations. Thus, the
existing finite element codes with implementation of the virtual crack
closure or crack extension technique can be readily extended to
numerical evaluation of the generalized energy release rate. For example,
the work required for crack closure for finite element representation of a
crack modeled with two-dimensional four-node elements (Fig. 13.1) is
obtained as

~ 1 c c
G :E[,Fﬁ)(u{ P u)+ B —u)], (13.10)

where , F and , F,) are the total shear and normal force components

at node d, u'” and u'® are the shear displacement components at nodes

band ¢, u$” and u{” are the normal displacement components at nodes
b and c.

In linearized magneto-electro-elasticity, it was shown in Section 6.3
that the dynamic energy release rate is related to the dynamic field

intensity factors by
~ 1 ~ ~ = S o~ o
G:Z(K,,,K,,K,,,,O,O)~H (K,.K,;.K,;.K,,Kz)", (13.11)

where H' is the dynamic counterpart of the Irwin matrix.
Equation (13.11) allows the evaluation of the dynamic energy release
rate for magneto- or electro-sensitive materials via the dynamic field
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intensity factor method. It appears that the dynamic energy release rate is
an odd function of the electric displacement intensity factor and the
magnetic induction intensity factor, which is consistent with
experimental evidence (e.g., Pak and Tobin, 1993; Tobin and Pak, 1993;
Cao and Evans, 1994; Lynch et al., 1995; Park and Sun, 1995a-b; Jiang
and Sun, 1999, 2001; Zhang et al., 2002; Chen and Lu, 2003; Soh et al.,
2003; Zhang and Gao, 2004; Zhang et al., 2004; Chen and Hasebe, 2005;
Schneider, 2007; Kuna, 2010) as reviewed in Chapter 4. In addition to
small-scale yielding conditions, small-scale switching or small-scale
saturation conditions should be satisfied in order to obtain a valid
measurement of the critical values of the dynamic field intensity factors.

| I l I

Fig. 13.1 Two-dimensional four-node finite element mesh for crack closure integral.

13.3 J-R Curve Method and its Generalization

Path-independent integrals have been widely used to study bodies with
cracks and defects since the pioneering work of Eshelby (1951, 1956,
1970, 1975), Cherepanov (1967, 1968, 1979) and Rice (1968), as
reviewed in Section 1.4. In particular, Rice (1968) applied the J-integral
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concept to nonlinear fracture mechanics problems. For a two-
dimensional crack problem, the J-integral is given by

d
J = [ (wdx, - Gijnja—u’ds), (13.12)
X1

where w is the strain energy density, 0, are the components of the
Cauchy stress tensor, n; are the components of the unit outer normal
vector, u; are the components of the displacement vector, ds is the
length increment along the path I', and the x,-direction is perpendicular
to the crack line.

The J-integral criterion for crack initiation gives

J=1J,. (13.13)

Stable crack growth may be maintained if the crack driving force and
resistance curves satisfy the following conditions:

J=Jg, (13.14)

T <T,, (13.15)

app

where T, = (E/cl)d]/da and T, = (E/ 0;)dJ/da are dimensionless
tearing moduli (Paris et al., 1979; Atkins and Mai, 1985; Anderson,
2005).

While the definition of the J-integral as a path-independent contour
integral for linear or nonlinear elastic materials is very useful for fracture
mechanics analysis, the energetic interpretation of the J-integral is most
widely adopted for experimental characterization of fracture toughness
for ductile materials. Since the J-integral is equivalent to the energy
release rate for linear or nonlinear elastic materials, Begley and Landes
(1972) developed the multi-specimen J-R curve method based on the
interpretation of J as the energy release rate given by

1(oU
J=——]—. 13.16
B(aa jA ( )
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Rice et al. (1973) proposed a method for estimating J from the load-
displacement curve measured from a single specimen. ASTM Standard
E813 describes the test procedure for determining J,. as the critical
plane-strain value at crack initiation for a wide range of ductile materials.

For a deeply cracked specimen, J is determined from

_w

J=", 13.17
b (13.17)

where U is computed from the total area under the load-deflection curve,
b=(W —a) is the specimen ligament length, and B is the specimen
thickness.

The specimen dimension requirement for obtaining a valid J,. value
is given by

25J
=~

y

B,b> (13.18)

ASTM Standard E1820 further covers the procedure for J-R curve
testing. British Standard BS 7448: Part 1 is equivalent to ASTM
Standard E1820, both of which combine K, J, and CTOD testing into a
single standard.

In Chapters 5-12, the generalized J -integral method is proposed for
quasi-static and dynamic fracture characterization of conservative and
dissipative magneto- or electro-sensitive materials, with the generalized
J -integral defined as

f:%jf_[n'to"V—n-S+(ﬁE+ﬁI€)n-VC]df, (13.19)
where , O is the total stress, S is the Poynting vector in the co-moving
frame, ﬁlg is the kinetic energy density, and [5}; is the augmented
Helmholtz free energy density, including the contribution of the energy
of the free electromagnetic fields.

The physical interpretation of the crack-front generalized J -integral
is the generalized energy release rate G serving as the crack driving
force, that is,
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J,=G. (13.20)

Crack initiation occurs under combined magnetic, electric, thermal,
and mechanical loadings when T o reaches a critical value, J ie.,

Jy=17.. (13.21)

Stable crack growth may be maintained if the following conditions
are satisfied:

~

J=7,. (13.22)

<T,, (13.23)

app

where T,,, = (E/67)dJ /da and T, =(E/03)d] /da.

The invariant J -integral defined by Eqgs. (6.27), (8.149), (9.42),
(10.48), (11.57), (11.58), (12.19), or (12.20), with addition of the domain
integral terms to the generalized J -integral, is useful for numerical
evaluation of the generalized energy release rate, since the generalized
J - integral loses its path independence in the presence of unsteady state,
mechanical body force, temperature change, electricity conduction, and

time or loading path/history-dependent bulk dissipation rate.

13.4 Essential Work of Fracture Method and its Extension

The essential work of fracture (EWF) method is a simple yet elegant
experimental technique developed by the Cotterell-Mai research group at
the University of Sydney (Cotterell and Reddel, 1977; Mai and Cotterell,
1980, 1986) from the unified theory of fracture (Broberg, 1971, 1975), as
reviewed in Section 1.7. The total work of fracture for any increment of
crack growth includes both the essential work in the inner fracture
process zone and the nonessential work in the outer plastic zone. It has
become a widely accepted technique for fracture characterization of
many ductile materials, including metallic alloys, polymeric films,
toughened polymers, and their blends (Mai et al., 2000; Clutton, 2001).
Finite element simulation of the EWF method has also been attempted
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for the complete failure process of deep double-edge notched tension
(DENT), deep center notched tension (DCNT), single-edge notched
tension (SENT), and centre-lined ligament loading (CLLL) samples with
different ligament lengths (Chen et al., 2000).

Based on the ESIS-TC4 testing protocol for measurement of the EWF
established by the European Structural Integrity Society-Technical
Committee 4 (1997), the total work of fracture W, can be separated into
two components: the essential work W, performed in the fracture
process zone and the nonessential work W, performed in the outer
plastic zone, with the essential work of fracture W, proportional to the
ligament length / and the nonessential work of fracture W, proportional
to the square of the ligament length /°, that is,

W, =W, +W,, (13.24)

W, =w,B, (13.25)
_ 2

W, =pw,I’B, (13.26)

where w, is the specific essential work of fracture, w, is the specific
nonessential work of fracture, and £ is a geometry-dependent plastic-
zone shape factor.

As a result, the specific total work of fracture w, =W /Bl can be
expressed as

wr=w, +pwl. (13.27)

On the assumption that w, is a material property and w, and B are
independent of / in all testing specimens, there should exist a linear
relation when w, is plotted against [ according to Eq. (13.27). By
extrapolation of this straight line to zero ligament length, the intercept at
the y axis and the slope of the line gives w, and ﬂwp, respectively.

In Chapters 11 and 12, the extended EWF method was proposed for
quasi-static and impact fracture characterization of magnetosensitive
elastomers, electroactive polymers, piezoelectric semiconductors, and
switchable ferroelectrics or ferromagnetics, with the partition of the total
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work of fracture W, into the essential work of fracture W, and the
nonessential work of fracture W,, as

W, =W, +W,

ne?

(13.28)

W, =" w,Adt = [" RAdr, (13.29)

ly )

W, =AH +AE* + [ [, pSTavdi + [ [, E-(j, —q,v)dVdt
. (13.30)
+[ ], pAdva,

or

W, =AH +AE + [ [, pSTadVdi+ [ [, E-(j, —q,v)dVdt

o (13.31)
+[ X, Jg e dvar.

The generalized energy release rate method, the generalized J-
integral method, and the extended essential work of fracture method
should give consistent results, independent of material systems, loading
combinations, and environmental conditions.

13.5 Closure

The development of a nonlinear field theory of fracture mechanics for
evaluating the crack driving force in the presence of magneto-electro-
thermo-mechanical coupling and dissipative effects overcomes the
limitations of classical fracture mechanics theories and sets up a bridge
between damage mechanics and fracture mechanics. On the basis of the
developed theory, the generalized energy release rate method, the
generalized J -integral method, and the extended essential work of
fracture method are proposed, which are generally applicable to quasi-
static and dynamic fracture characterization of conservative and
dissipative multifunctional smart material systems. In comparison with
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conventional fracture mechanics methodologies, the main advantages of
this formulation are:

)

(ii)

(iii)

@iv)

)

It does not only afford a uniform treatment of complex
nonlinear material and fracture behaviors involving multifield
coupling and dissipated effects, but also enables damage and
fracture processes at the micro-, meso- and macroscale levels
to be managed in a unified way.

It provides a physically sound criterion for quasi-static and
dynamic crack propagation in conservative or dissipative,
homogeneous or nonhomogeneous media, including FGMs,
subjected to combined magnetic, electric, thermal, and
mechanical loadings.

It includes the strain energy release rate criterion, dynamic
energy release rate criterion, conventional J-integral method,
configuration force (material force) method, dynamic contour
integral method, path-domain independent integral method,
rate-dependent criterion for viscoelastic/viscoplastic crack
growth, and Schapery’s crack-tip model for viscoelastic
facture as special cases.

It lays the theoretical foundation for the application of the
generalized energy release rate method, the generalized J -
integral method, and the extended essential work of fracture
method to quasi-static and impact fracture characterization of
electro- and magneto-sensitive materials. The equivalence of
the critical generalized energy release rate, éc, the critical
crack-front generalized J -integral, J .» and the specific
essential work of fracture, w,, as a measure of crack
resistance warrants consistent results from application of the
generalized energy release rate and J -integral methods as
well as the extended essential work of fracture method for
fracture toughness measurement.

A key feature lies in the incorporation of the time or loading
path/history-dependent bulk dissipation in the general
formulation of the nonlinear field theory of fracture
mechanics. This large difference is akin to the difference
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between elastic fracture mechanics and inelastic fracture
mechanics.
(vi) This formulation can be readily extended to include gradient

effects in thin films and microelectromechanical systems
(MEMS).

Since the development of the nonlinear field theory of fracture
mechanics for electromagnetic materials is still in its infancy, much
remains to be done, especially on multiscale modeling of damage and
fracture involving various failure mechanisms.
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