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Foreword 

I take pleasure in writing this foreword for the excellent new book 

entitled Fracture Mechanics of Electromagnetic Materials: Nonlinear 

Field Theory and Applications, written by my former colleagues, Drs. 

Xiaohong Chen and Yiu-Wing Mai, at the Hong Kong University of 

Science and Technology.  

Novel multifunctional materials have tremendous potential for high-

performance structural and functional applications in aeronautical, 

mechanical, and civil engineering, as well as in microelectronic and 

biomedical devices, due to their versatile actuating, sensing, healing, and 

other functional properties. The susceptibility of such advanced materials 

to cracking in service is of fundamental concern and has become a very 

popular area of research. Attempts to describe the failure behavior of 

these advanced materials and structures have clearly shown that linear 

piezoelectric/piezomagnetic fracture mechanics does not adequately 

explain the crack growth behavior under combined magnetic, electric, 

thermal, and mechanical loadings. It appears that coupling and 

dissipative effects play an important role in the growth and propagation 

of cracks. 

Significant discrepancies still exist between theoretical predictions 

and experimental observations. Both new and modified theories have 

been proposed to overcome the discrepancies, with only limited success. 

These failures may be because there is no comprehensive guide to the 

theoretical basis and application of nonlinear dynamic fracture 

mechanics, especially in cases involving multiple coupled fields with 

dissipation effects. 
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viii Foreword 

This book is the first monograph on the subject of nonlinear dynamic 

field theory for piezoelectric/piezomagnetic materials. It provides an 

overview of the current state of the art of fracture mechanics and some of 

the authors’ recent research outcomes. In developing the theoretical 

models for application to fracture characterization of materials and 

structures in the presence of magneto-electro-thermo-mechanical 

coupling and dissipative effects, the authors emphasize the physical 

interpretation of the fundamental concepts of fracture mechanics. One of 

the book’s unique contributions is the development of a nonlinear 

fracture mechanics theory which rigorously treats the dynamic crack 

problems involving coupled magnetic, electric, thermal, and mechanical 

fields. By unifying the coupling of these fields, this book fills a gap in 

the literature of fracture mechanics involving multifield interactions. 

This book is a valuable resource which sheds light on the still-developing 

multidisciplinary subject of multifield fracture mechanics.  

The book has an extensive list of references reflecting the most recent 

developments. It can be used as a textbook for graduate students as well 

as a reference for researchers and engineers studying and/or applying the 

concepts of advanced fracture mechanics to design and practical 

applications in the presence of multifield coupling and dissipative 

effects.  

 

 

       Pin Tong 

       San Diego 

  April, 2012 
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Preface 

This book covers the current status of conventional fracture mechanics 

methodologies and presents a new formulation of a nonlinear field theory 

of fracture mechanics for electromagnetic materials. The study of classic 

fracture mechanics problems is concerned with the mechanical state of a 

deformable body containing a crack or cracks. Nevertheless, recent 

advances in multifunctional smart materials have created new research 

frontiers due to the occurrence of magneto-electro-thermo-mechanical 

coupling and dissipative effects accompanying crack propagation.  

Electromagnetic materials have broad civilian and defense 

applications such as infrastructure health monitoring, microelectronic 

packaging, novel antenna designs, and biomedical devices owing to their 

remarkable multifunctional properties. Fracture of these smart material 

systems has become the subject of active research because of their 

susceptibility to cracking in service. A major challenge is how to resolve 

the fundamental discrepancy between theoretical predictions and 

experimental observations on the fracture behaviors of piezoelectric and 

piezomagnetic materials.  

A highly important question in the development of a fracture 

mechanics theory for electromagnetic materials is whether there is any 

particular thermodynamic quantity of a cracked body that can be 

interpreted as the “driving force” for crack propagation under combined 

magneto-electro-thermo-mechanical loadings. The answer to this 

question has been pursued for decades, but no satisfactory agreement has 

yet been reached. Thus, the establishment of a physically sound fracture 

criterion becomes the hallmark of an advanced fracture mechanics 

treatment for electromagnetic materials.  



x Preface 

As the first monograph on the subject of nonlinear field theory of 

fracture mechanics for deformable electromagnetic materials, this book 

offers postgraduate students, academic researchers, and engineering 

specialists who are active in this challenging multidisciplinary area a 

sketch of the history, an overview of the current status, and a description 

of some most recent research outcomes based on our own work. It gives 

first priority to physical interpretation of fundamental concepts, 

development of theoretical models, and exploration of their applications 

to fracture characterization in the presence of magneto-electro-thermo-

mechanical coupling and dissipative effects. A general formulation of a 

nonlinear field theory of fracture mechanics and a rigorous treatment of 

dynamic crack problems involving coupled magnetic, electric, thermal, 

and mechanical fields fill a gap in the literature. 

We would like to express our sincere appreciation and gratitude to 

those who have provided helpful discussions and support to this book 

project, especially Professors Pin Tong and Tongyi Zhang (Hong Kong 

University of Science and Technology), Cun-Fa Gao (Nanjing University 

of Aeronautics & Astronautics), Baolin Wang (Harbin Institute of 

Technology), Qinghua Qin (Australian National University), and Meng 

Lu (CSIRO). XHC is also heartily indebted to the late Professor Ren 

Wang for his guidance and inspiration during her graduate studies in 

solid mechanics at Peking University and for his care and encouragement 

throughout all these years. The Centre for Advanced Materials 

Technology at the University of Sydney, where XHC previously worked 

and YWM was Founding Director, has provided an intellectually 

stimulating environment for advanced fracture mechanics research. 

Special thanks are due to Lance Sucharov, Tasha D’Cruz, Rajesh Babu, 

Lindsay Robert Wilson, Gregory Lee, and Romén Reyes-Peschl from 

Imperial College Press and World Scientific Publishing for their 

commitments to excellence in publishing this book from proposal review 

to proofreading. Permissions from professional societies and publishers 

to use cited materials in the book are also gratefully acknowledged.  

 

Xiaohong Chen & Yiu-Wing Mai 

San Diego & Sydney 

August, 2012 
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Chapter 1 

Fundamentals of Fracture Mechanics 

Classic fracture mechanics is concerned with the study of the mechanical 

state of a deformable body containing a crack or cracks by application of 

analytical mechanics to calculate the driving force for crack propagation 

and experimental mechanics to characterize the resistance of materials to 

crack extension. A highly important question in the development of a 

fracture mechanics theory is whether there is any particular 

thermodynamic quantity of a cracked body that can be interpreted as the 

“driving force” for crack propagation.  

1.1   Historical Perspective 

The establishment of fracture mechanics as an engineering discipline 

dates back to the early work of Griffith (1921), Orowan (1948) and Irwin 

(1948, 1956, 1957, 1958). In Griffith’s famous paper “The phenomena of 

rupture and flow in solids” (Griffith, 1921), which quantitatively relates 

the flaw size to the fracture stress, he proposed an energy balance 

approach for the fracture of brittle materials with the introduction of the 

surface energy term by realizing that the relatively low strength and the 

size dependence of strength were due to the presence of crack-like flaws 

in the materials.  

The Griffith energy balance leads to a critical condition for fracture of 

an ideal elastic-brittle material:  

 s
ddW dU

dA dA dA

Γ
− = , (1.1) 



Fracture Mechanics of Electromagnetic Materials 

 
2

where A is the crack area, W is the work done on the cracked body by 

external forces, U is the strain energy stored in the system, and s
Γ

 
is the 

surface energy. 

For a through-thickness crack with length 2a in an infinite plate under 

remote tensile stress σ (Fig. 1.1), Griffith (1921, 1924) used the solution 

of Inglis (1913) to show that the fracture stress, fσ , is given by  

 
'2 s

f

E

a

γ
σ

π
= , (1.2) 

where 'E E=  for plane stress and 
' 2

/ (1 )E E ν= −  for plane strain, E is 

Young’s modulus, ν is Poisson’s ratio, and [ (1 / 2) / ]
s s

d dAγ = Γ  is the 

specific surface energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.1. Griffith crack with length 2a under remote tensile stress σ. 

 

Although the Griffith energy balance approach provides excellent 

agreement with experimental data for brittle materials such as glass, the 

surface energy predicted by Griffith’s fracture criterion is usually 

unrealistically high for ductile materials such as steel. Irwin (1948) and 

σ 

2a 
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Orowan (1948) independently modified Griffith’s fracture criterion to 

account for the energy dissipated by local plastic flow. Under small-scale 

yielding (SSY) conditions, the plastic work required to grow the crack is 

a material constant that can be added to the surface energy. The modified 

expression is given by 

 

'
2 ( )s p

f

E

a

γ γ
σ

π

+
= , (1.3) 

where pγ  is the plastic work dissipated during the creation of a unit area 

of crack surface, which is typically orders of magnitude larger than the 

specific surface energy s
γ . 

It is also feasible to extend the modified model to account for any 

type of energy dissipation, that is, 

 
'

f

E R

a
σ

π
= , (1.4) 

where R is the crack resistance, including viscoelastic or viscoplastic 

effects, depending on the material type. 

Subsequently, Irwin (1956, 1957, 1958) found a way to relate the 

global amount of energy available for fracture to the local crack tip 

parameter called the stress intensity factor. Linear elastic fracture 

mechanics (LEFM) is also known as the Griffith–Irwin–Orowan theory 

because of their leading roles in its establishment. When large-scale 

inelastic deformation or a significant amount of crack growth occurs, 

nonlinear approaches must be adopted instead. Rice (1968) developed a 

path-independent line integral called the J-integral, which has dominated 

the development of nonlinear fracture mechanics (NLFM) in the USA. In 

the meantime, Wells (1961, 1963) advanced an alternative approach by 

employing the crack opening displacement (COD) as the fracture 

parameter, which has guided fracture mechanics research under general 

yielding conditions in the UK and Europe. 
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1.2 Stress Intensity Factors (SIF) 

Irwin (1957, 1958) and Williams (1957) realized that the stresses near a 

crack tip in a linear elastic solid have an inverse square-root singularity, 

that is, they are inversely proportional to the square root of the distance 

from the crack tip. The near-tip fields in plane elasticity problems are 

associated with three basic modes, shown in Fig. 1.2. Mode I is the 

opening (tensile) mode where the displacements are normal to the plane 

of the crack surface, mode II is the sliding (in-plane shear) mode where 

the displacements are parallel to the plane of the crack surface and 

normal to the crack front, and mode III is the tearing (out-of-plane shear) 

mode where the displacements are parallel to the plane of the crack 

surface and parallel to the crack front.  

 

 

 

 

 

 

 

 

 

            (a)                               (b)                                  (c) 

 
Fig. 1.2. Three fracture modes: (a) mode-I crack – opening mode, (b) mode-II crack – 

sliding mode, and (c) mode-III crack – tearing mode. 

 

The asymptotic expressions for the near-tip stress fields under mode-

I, II, or III fracture are given by 
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where r, θ are polar coordinates, 
I

K , 
II

K  and 
III

K  are mode-I, II, and III 

stress intensity factors with units of MPa m .  

For the classic Griffith crack, the stress intensity factor is given by 

 
IK aσ π= . (1.8) 

Since failure at the crack tip in a linear elastic solid is driven solely 

by the stress intensity factor, a fracture criterion based on the stress 

intensity factor approach can be expressed as 

 c
K K= , (1.9) 

where 
c

K  is the critical stress intensity factor as a measure of material 

resistance to fracture, which is called the fracture toughness. 

The American Society for Testing and Materials (ASTM) standards 

E399 and D5045 describe the experimental procedure for measurement 

of fracture toughness of metallic and plastic specimens, respectively. The 

size requirement for obtaining a valid measurement of
IC

K  is given by 

 

2

, , 2.5 IC

y

K
B a W a

σ

 
− >   

 
, (1.10) 

where B is the specimen thickness, a is the crack length, W is the 

specimen width, and yσ  is the yield strength. 
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1.3 Energy Release Rate (ERR) 

Griffith (1921) was the first to propose the energy approach for fracture 

of brittle materials, but Irwin (1948, 1956) was primarily responsible for 

defining the present version of the energy release rate (also referred to as 

the strain energy release rate), G, 

 
d U

G
dA A ∆

Π ∂ 
= − = − 

∂ 
, (1.11) 

where Π  is the potential energy of the system, U is the strain energy 

stored in the system, and ∆ is the load-point displacement. 

Irwin (1957) showed that the energy release rate for a planar crack in 

a linear elastic body subjected to mixed-mode loading is related to mode-

I, II, and III stress intensity factors by performing crack closure analysis: 

 
2 1 1 1

0

2 2 2

'

1
( ,0) ( )lim

2

1 1
( ) ,

a a

i ia
a

I II III

G x u x a dx
a

K K K
E E

δ

δ
σ δ

δ
ν

+

→

= ∆ −∫

+
= + +

 (1.12) 

where ∆ denotes the jump between the upper and lower surfaces of the 

crack. 

Crack initiation occurs when G reaches a critical value, c
G , 

 
c

G G= . (1.13) 

The energy release rate, also referred to as the crack extension force, 

provides the thermodynamic driving force for fracture. The onset of 

crack extension is determined by (1.13), but crack growth may be stable 

or unstable depending on how the crack driving force and the crack 

resistance vary with crack extension (Atkins and Mai, 1985; Cotterell 

and Mai, 1996). In general, the conditions for stable crack growth can be 

expressed as  

 
R

G G= , (1.14) 

 R
dGdG

dA dA
≤ . (1.15) 

Unstable crack growth occurs when 
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 R
dGdG

dA dA
> . (1.16) 

A plot of G versus crack extension gives the crack driving force 

curve, whereas a plot of 
R

G  versus crack extension gives the crack 

growth resistance curve (Fig. 1.3). The transition from stable to unstable 

fracture occurs when the crack driving force curve is tangent to the crack 

growth resistance curve (R curve). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.3. Illustration of crack driving force and resistance curves. 

1.4 J-Integral 

Path-independent integrals have been extensively employed to study 

bodies with defects or cracks since the pioneering work of Eshelby 

(1951, 1956, 1970, 1975), Cherepanov (1967, 1968, 1979) and Rice 

(1968). As indicated by Kannimen and Popelar (1985), the number of 

path-independent integrals appears to be unlimited. The energy release 

rate in a nonlinear elastic body containing a crack can be expressed as a 

contour integral called the J-integral (Rice, 1968). The J-integral has also 

been related to the crack-tip stress fields in a power-law hardening 

material (Hutchinson, 1968; Rice and Rosengren, 1968). The path-

independent I-integral formulated from the complementary energy 

density (Bui, 1974) can be taken as the dual of the J-integral. Further 

discussions on the J-integral and other invariant integrals can be found in 

Instability 

∆a 

G, GR 

GR 

G 
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the papers by Knowles and Sternberg (1972), Kishimoto et al. (1980), 

Atluri (1982), Atluri et al. (1984), Freund and Hutchinson (1985), Li et 

al. (1985), Shih et al. (1986), Moran and Shih (1987a–b), and Simo and 

Honein (1990), among others. 

Consider a path Γ in a nonlinear elastic body extended counter clock-

wise from the lower crack face to the upper crack face, as shown in Fig. 

1.4. The J-integral is defined as 

 
2

1

( )i

ij j

u
J wdx n ds

x
σ

Γ

∂
= −

∂∫ , (1.17) 

where 
0

ij

ij ijw d
ε

σ ε= ∫  is the strain energy density, ijσ  are the components  

of the Cauchy stress tensor, ijε  are the components of the infinitesimal 

strain tensor, jn  are the components of the unit outer normal vector, 
i

u  

are the components of the displacement vector, ds is the length increment 

along the path Γ, and the x2-direction is perpendicular to the crack line. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.4. Contour for the J-integral. 

 

Most importantly, Rice (1968) showed that, for deformation plasticity 

(i.e., nonlinear elasticity), the value of the J-integral in a two-

dimensional cracked body free of body forces is independent of the path 

around the crack, provided it is taken outside the fracture process zone. 

The J-integral criterion for crack initiation gives 

 c
J J= . (1.18) 

x1 

x2 

Γ

n 
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The dimensionless tearing moduli (Paris et al., 1979; Atkins and Mai, 

1985; Anderson, 2005) may be introduced by 

 
2

0

app

E dJ
T

daσ
= , (1.19) 

 
2

0

R
R

dJE
T

daσ
= , (1.20) 

where 0
σ  is an appropriate flow stress. 

The conditions for stable crack growth can be expressed as  

 
RJ J= , (1.21) 

 app RT T≤ . (1.22) 

Unstable crack growth occurs when 

 app RT T> . (1.23) 

The J-integral method has great success in nonlinear fracture 

mechanics (NLFM). Nevertheless, the J-integral might lose its path 

independence when there is a combination of significant plasticity and 

crack growth (Kanninen and Popelar, 1985; Anderson, 2005).  

1.5 Dynamic Fracture 

A comprehensive overview on the development of dynamic fracture 

mechanics, which is concerned with fracture problems in which either 

the applied load or the crack size changes rapidly, can be found in the 

monographs by Freund (1990) and Ravi-Chandar (2004). Linear 

elastodynamic fracture mechanics is the dynamic version of LEFM, 

incorporating inertia effects but neglecting nonlinear material behavior. 

A review paper by Cox et al. (2005) focuses on modern topics and 

challenges in dynamic fracture. For example, hyperelasticity may play an 

important role in the dynamics of fracture where the linear elastic theory 

is incapable of fully capturing all failure phenomena (Geubelle and 

Knauss, 1995; Geubelle, 1995; Gao, 1996; Abraham et al., 1997; 

Buehler et al., 2003; Tarantino, 2005). 
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The first important dynamic crack propagation analysis was 

conducted by Yoffe (1951) for the problem of a moving Griffith crack of 

fixed length gliding through an otherwise unbounded solid at constant 

speed with the crack opening at the leading edge and closing at the 

trailing edge. This is referred to as the Yoffe problem. The next 

important dynamic crack propagation solutions were contributed by 

Craggs (1960) and Broberg (1960). Craggs (1960) considered the 

extension of a semi-infinite crack at constant speed with the crack face 

loading moving with the same speed as the crack tip. The Broberg 

problem is that of self-similar expansion of a crack from zero initial 

length at constant speed under uniform remote tension. While these 

models were not physically realistic, they provided an indication of the 

influence of the crack speed on the stress state near the moving crack tip.  

In a series of papers, Freund (1972b–c, 1973, 1974a–b) provided 

results for dynamic crack growth in an elastic solid subjected to general 

loading. The asymptotic stress fields near a moving crack tip in linear 

elastic materials still have the inverse square-root singularity and are 

generally expressed as 

      
( ) ( ) ( )

( ) ( , ) ( , ) ( , )
2 2 2

I II IIII II III

ij ij C ij C ij C

K t K t K t
t V V V

r r r
σ θ θ θ

π π π
= Σ + Σ + Σ
� � �

, (1.24) 

where the functions ( , )I

ij C
VθΣ , ( , )II

ij C
VθΣ , and ( , )III

ij C
VθΣ  describe 

angular variation for any value of crack tip velocity 
C

V  for the cases of 

mode-I, II, and III crack growth (Freund, 1990).  

The mode-I and II dynamic stress intensity factors, IK�  and IIK� , tend 

to zero as the crack velocity approaches the Rayleigh wave speed, 

whereas the mode-III dynamic stress intensity factor, III
K� , tends to zero 

as the crack velocity approaches the shear wave speed. The dependence 

of dynamic propagation toughness on crack speed, loading rate and 

temperature can be measured by means of photoelasticity and caustics. 

Mott (1947) realized that the inertia effect on crack advance could 

become significant at high crack speed and did the first energetic balance 

analysis of a dynamic crack. An extension of the Griffith energy balance 

approach to dynamic fracture problems with inclusion of the kinetic 

energy, k
E , over the cracked body leads to the following expression for 

the dynamic energy release rate: 
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k

dW dU dE
G

dA dA dA
= − −� . (1.25) 

Consider a two-dimensional body A�  that contains an extending crack 

(Fig. 1.5). A contour Γ�  enclosing the crack tip translates with the crack 

tip moving at instantaneous speed C
V . A dynamic contour integral 

(Atkinson and Eshelby, 1968; Freund, 1972a, 1990) is given by 

 
1

1 ˆ[ ( ) ]
ij j i C

C

J n u w k V n d
V

σ ρ
Γ Γ

= + + Γ∫�
�

� �� , (1.26) 

where 
'

,

t

ij i jw u dtσ
−∞

= ∫ �  is the stress work density, ˆ / 2
i ik u uρ ρ= � �  is the 

kinetic energy density, and 
C C

V = V is the magnitude of the crack speed. 

The dynamic contour integral given by Eq. (1.26) is generally not 

path independent in elastodynamics. For quasi-static crack problems, the 

dynamic contour integral is reduced to the conventional J-integral. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5. A two-dimensional body A�  containing an extending crack with contour Γ� , 

translating with the crack tip moving at instantaneous speed VC. 

 

The dynamic energy release rate is the rate of energy flow out of the 

body and into the crack tip per unit crack advance, that is, 

 0 1
0

1 ˆlim [ ( ) ]ij j i C

C

G J n u w k V n d
V

σ ρ
ΓΓ→

 
= = + + Γ 

 
∫��

� � �� , (1.27) 

where the limit implies that Γ�  is shrunk onto the crack tip. 

For the special case of steady-state crack growth, the displacement 

field 1 2( , , )
i

u X X t  is invariant in the reference frame affixed to the crack 

1

~
X
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~
X

VC 

A
~
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tip moving at uniform speed VC, that is, 1 2 1 2( , , ) ( , )i iu X X t u X X= � � , where 

1 1 C
X X V t= −�  and 2 2X X=� . Thus, the dynamic contour integral takes 

the special form 

 2

1

ˆ[( ) ]i

ij j

u
J w k dX n d

X
ρ σ

Γ Γ

∂
= + − Γ

∂∫�
�

� � �
�

. (1.28) 

A particular choice of the contour Γ�  (see Fig. 1.6) enables the 

generalization of the Irwin relationship (1.12) to the dynamic case. If the 

contour Γ�  is shrunk onto the crack tip by first letting 2
0δ →  and then

1 0δ → , there is no contribution to the dynamic energy release rate from 

the segments parallel to the 2X� -axis. Consequently, the dynamic energy 

release rate can be computed by evaluating only the first term on the 

right-hand side of Eq. (1.27) along the segments parallel to the 1X� -axis, 

that is, 

 1

1
1 2

0 2 1 2 1 2 1
0 0

2
( , , ) ( , , )lim lim j j

C

G J X t u X t dX
V

δ

δ
δ δ

σ δ δ
−

→ →

= = ∫� � � � �� , (1.29) 

where the factor 2 is introduced to account for the sides of the rectangle 

at 
2 2X δ= −� , by symmetry. 

Thus, the dynamic energy release rate can be related to the dynamic 

stress intensity factors by 

 
2 2 2

0 '

1 1
[ ( ) ( ) ] ( )

I C I II C II III C III
G J A V K A V K A V K

E E

ν+
= = + +� � � � � , (1.30) 

where IA , IIA , and IIIA  are universal functions of crack speed and 

material properties (Freund, 1990).  

 

 

 

 

 

 

 

 

 

Fig. 1.6. A convenient selection of the contour Γ� . 
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1.6 Viscoelastic Fracture 

Increasing interest in engineering applications of polymeric materials has 

consequently stimulated the study of viscoelastic fracture mechanics 

which incorporates a time-dependent response. Willis (1967) first 

considered anti-plane, steady-state crack propagation in an infinite 

viscoelastic medium. Later, Atkinson and Popelar (1979) and Popelar 

and Atkinson (1980) investigated dynamic crack propagation in a 

viscoelastic strip subjected to mode-I and III loadings. Knauss (1970, 

1973, 1974), McCartney (1977), and Christensen (1979, 1982) explored 

the possibilities of generalizing the Griffith energy balance approach to 

viscoelastic fracture problems. Discussions on viscoelastic fracture 

criteria occurred between Christensen and McCartney (Christensen, 

1980, 1981; McCartney, 1980, 1981; Christensen and McCartney, 1983), 

leading to further studies on this subject (Nikitin, 1984). Meanwhile, 

Schapery (1975a–c) developed a crack-tip model for viscoelastic 

materials based on an assumption of the material behavior in the fracture 

process zone. Schapery (1984) also developed correspondence principles 

and a generalized J-integral for large deformation and fracture analysis 

of viscoelastic media. An overview of the constitutive equations, fracture 

and strength models for nonlinear viscoelastic solids can be found in 

Schapery (2000). 

Fracture characterization of polymers, polymer blends, and 

composites in hygrothermal environments is essential for safety 

assessment and life prediction for many practical applications. The major 

challenge lies in the coupling among thermal, mechanical and other 

physicochemical effects involved in time-dependent fracture. For 

example, experimental and analytical studies have shown evidence of a 

large temperature rise in the vicinity of a fast moving crack tip in metals 

and polymers (Weichert and Schonert, 1978; Maugin, 1992; Kotousov, 

2002). This temperature rise may participate in governing the fast-

running crack through influencing the energy release rate. Diffusion adds 

another complexity to time-dependent fracture problems. High stress and 

temperature gradients associated with the crack tip lead to thermally- and 

mechanically-enhanced fluid transport, which, in turn, affect the energy 

release rate. For polymeric materials subjected to combined mechanical 
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loading and hygrothermal exposure, Chen (2007) developed a consistent 

thermodynamic formulation of a coupled hygro-thermo-viscoelastic 

fracture theory from the global energy balance equation and the non-

negative global dissipation requirement based on fundamental principles 

of thermodynamics.  

An extension of the Griffith–Irwin–Orowan theory to hygro-thermo-

viscoelastic fracture problems, with incorporation of the coupling and 

dissipative effects, leads to the expression 

 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ ˆ

ˆ ˆ( )

ˆ ˆ( ) ,

k

V V

f s f

V

f f s f s

m
V

dW dH dE
GA dV sTdV

dt dt dt

c dV

dV

ρ ρ

ρ µ µ

− − = + Λ +

− −

+ ⋅ − − +

∫ ∫

∫

∫ j f f v v

� � �

�

� �

 (1.31) 

where G�  is the generalized energy release rate serving as the 

thermodynamic driving force conjugate to the crack variable A, H is the 

Helmholtz free energy over the cracked body, 
( ) ( )f sρ ρ ρ= + is the total 

mass density, 
( )fρ  and 

( )sρ are the densities of the fluid and solid phases, 

Λ̂  is the rate of viscous dissipation per unit mass, T is the absolute 

temperature, ŝ  is the entropy per unit mass, 
( )ˆ fµ  and 

( )ˆ sµ  are the 

chemical potentials of the fluid and solid phases, 
( ) ( )f f

c ρ ρ=  is the 

mass fraction of the fluid phase, 
( )f

m
j  is the mass flux of the fluid phase, 

( )ˆ ff  and 
( )ˆ sf  are body forces acting on the fluid and solid phases, and 

( )fv�  and 
( )sv�  are the accelerations of the fluid and solid phases. 

Under isothermal conditions in the absence of fluid diffusion, Eq. 

(1.31) is reduced to the global energy balance approach for viscoelastic 

fracture (Knauss, 1970; McCartney, 1977; Christensen, 1979, 1982): 

 ˆ
k

V

dW dH dE
GA dV

dt dt dt
ρ− − = + Λ∫� � . (1.32) 

For a two-dimensional crack problem, the generalized contour 

integral is related to the energy flux through the contour Γ�  affixed to the 

crack tip moving at instantaneous speed 
C

V  by 

 
1

1 ˆ ˆ[ ( ) ]
ij i C j j

C

J u h k V n d
V

σ ρ δ
Γ Γ

= + + Γ∫�
�

� ��� , (1.33) 
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where ĥ  is the Helmholtz free energy per unit mass and k̂  is the kinetic 

energy per unit mass. 

The difference between the generalized contour integrals along the 

paths 1Γ�  and 2Γ�  is caused by unsteady, viscous, thermal and 

hygroscopic effects as well as the total body force, that is,  

 
2 1

12 12 12

12 12
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1 ˆ ˆ ˆ ˆ[ ( )

ˆ ˆ ˆ( ) ],

A A A
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f s f

A A

J J h k dA ρ dA dA
V t

sTdA c dA

ρ ρ ρ

ρ ρ µ µ

Γ Γ

∂
− = + − ⋅ + Λ

∂
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∫ ∫ ∫

∫ ∫

f v
� �
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� �

�
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(1.34) 

where 12A�  is the difference in the areas enclosed by the contours 1
Γ�  and 

2
Γ�  including the crack faces, and ( ) ( ) ( ) ( )ˆ ˆ ˆ( ) /f f s sρ ρ ρ= +f f f  is the total 

body force per unit mass. 

The generalized energy release rate is the rate of energy flow out of 

the body and into the crack tip per unit crack advance, that is, 

 0 1
0

1 ˆ ˆlim [ ( ) ]ij i C j j

C

G J u h k V n d
V

σ ρ δ
ΓΓ→

 
= = + + Γ 

 
∫��

� � ��� . (1.35) 

For quasi-static and dynamic fracture characterization of elastic 

materials, Eq. (1.33) is reduced to the conventional J-integral and 

dynamic contour integral, respectively. Without accounting for fluid 

diffusion, Schapery’s crack-tip model (Schapery, 1975) relies on a 

special form of Eq. (1.35). 

The generalized energy release rate method and the generalized 

contour integral method should give consistent results, independent of 

material systems, loading and environmental conditions. An 

experimental study by Frassine and Pavan (1990) has verified that the 

observed behavior of an elastomeric epoxy resin is in qualitative 

agreement with the theoretical predictions by the global and local 

approaches for viscoelastic fracture, which are the special cases of the 

generalized energy release rate method and the generalized contour 

integral method presented here. Another experimental and numerical 

investigation on crack propagation in carbon/epoxy composite (Gamby 

and Delaumenie, 1993; Gamby and Chaoufi, 1999) has also 

demonstrated the agreement between Christensen’s model and 

Schapery’s model.  
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1.7 Essential Work of Fracture (EWF) 

Fracture characterization for new ductile materials, such as polymeric 

thin films, toughened polymers and polymer blends, has greatly 

stimulated the development of fracture mechanics, which, in turn, plays 

an important role in design and safety evaluation with an optimum 

combination of stiffness, strength and toughness. Energy release rate and 

stress intensity factor in LEFM are widely used to characterize fracture 

toughness of glassy polymeric materials under brittle fracture (Atkins 

and Mai, 1985). If plastic flow occurs, the energy approach becomes 

more complicated. The J-integral (Rice, 1968) based upon deformation 

plasticity is used as an alternative. 

Nevertheless, crack advance in an elastoplastic material involves 

elastic unloading and nonproportional loading around the crack tip, 

neither of which can be adequately accommodated by deformation 

plasticity. Hence, the J-integral theory might break down for a 

combination of significant plasticity and crack growth. In addition, it is 

difficult and cumbersome to use for the evaluation of impact fracture 

toughness. Similarly, the J-integral testing procedure for fracture 

toughness characterization of polymeric thin films is cumbersome. 

Accordingly, a simple yet elegant method, i.e., the essential work of 

fracture (EWF) method, was developed by Cotterell, Mai and co-workers 

(Cotterell and Reddel, 1977; Mai and Cotterell, 1980, 1986; Mai et al., 

2000) from the unified theory of fracture (Broberg, 1971, 1975). It has 

been adopted by many research groups for the experimental 

measurement of fracture toughness for thin metal sheets, polymeric thin 

films, toughened plastics, and blends. A European Structural Integrity 

Society (ESIS) Test Protocol for Essential Work of Fracture has also 

been established (1997). The advantage of this technique lies in its 

experimental simplicity and ease of test data analysis. 

The general concept of the EWF Method for toughness measurement 

is demonstrated in Fig. 1.7. There exists an inner autonomous zone, 

which is crucial to the fracture process, called the fracture process zone 

(FPZ). As crack growth is accompanied by permanent deformation of the 

surrounding material, plastic dissipation in the outer region is not directly 

associated with the crucial fracture process. The total work of fracture, 



Fundamentals of Fracture Mechanics 

 
17

fW , can be partitioned into the essential work imported into the fracture 

process zone (a material property) and the nonessential work absorbed by 

the outer plastic zone (geometry-dependent), that is,  

 f e pW W W= + . (1.36) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.7. A schematic of a double-edge notched tensile specimen, showing the inner 

fracture process zone and the outer plastic zone. 

 

The specific essential work of fracture can be conveniently 

determined using deep-crack specimens, where the height of the outer 

plastic zone may be proportional to the ligament length. Hence, the 

essential work of fracture is proportional to the ligament length and the 

nonessential work of fracture is proportional to the square of the 

ligament length, leading to the expression 

 f e pw w w lβ= + , (1.37) 

Inner fracture process zone 

Outer plastic zone 
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where ( / )f fw W Bl=  is the specific total work of fracture, ew  is the 

specific essential work of fracture, pw  is the specific nonessential work 

of fracture, and β is a geometry-dependent plastic-zone shape factor.  

On the assumption that ew  is a material property and pw  and β are 

independent of l in all tested specimens, there should be a linear relation 

when fw  is plotted against l according to Eq. (1.37). By extrapolation of 

this line to zero ligament length, the intercept at the Y-axis and the slope 

of the line give 
e

w  and pwβ , respectively. Therefore, Eq. (1.37) 

provides a sound theoretical basis for a simple yet elegant experimental 

method of determining ew  from the load-displacement curves for 

specimens of different ligament lengths. 

Mai and Cotterell (1986) also showed the following equivalence: 

e cw J= , (1 / 4) /p Rw dJ daβ =  for double-edge notched tension (DENT) 

and deep center notched tension (DCNT) specimens, and 

(1 / 2) /
p R

w dJ daβ =  for deep single-edge notched tension (DSEN) 

specimens. 

1.8 Configuration Force (Material Force) Method 

The notion of the Newtonian force is clarified by its role in describing 

the motion of a body. By contrast, the concepts of the energy-momentum 

tensor (also referred to as the Eshelby stress tensor) and the configuration 

force (also referred to as the material force) are introduced in the 

interpretation of the evolution of material microstructures such as defects 

(Eshelby, 1951, 1956, 1970). The nature of the configuration force and 

its application to fracture have been discussed by Stumpf and Le (1990), 

Maugin and Trimarco (1992), Maugin and Berezovski (1999), Gurtin 

(2000), Steinmann (2000), Steinmann et al. (2001), and Nguyen et al. 

(2005), among others. 

Eshelby (1970) recognized the use of the energy-momentum tensor in 

the J-integral, that is, 

 
1 1J d

Γ
= ⋅ Γ ⋅ = ⋅∫ n b e J e , (1.38) 

where w= − ⋅ ∇b I uσσσσ  is the energy-momentum tensor, d
Γ

= ⋅ Γ∫J n b  is 

the configuration force (also referred to as the 
k

J -integral vector), and 

1
e  is the unit vector along the crack advance direction. 



Fundamentals of Fracture Mechanics 

 
19

For steady-state crack growth, the dynamic contour integral can be 

rewritten as 

 1 1J d
Γ

= ⋅ Γ ⋅ = ⋅∫ n b e J e
�

� � �� , (1.39) 

where ( )w k= + − ⋅ ∇b I u� σσσσ  is the dynamic energy-momentum tensor, 

and d
Γ

= ⋅ Γ∫J n b� �  is the dynamic configuration force. 

Hence, the classic J-integral or its dynamic counterpart, the J� -

integral, are the projection of the configuration force on the crack 

advance direction. The material force (configuration force) method 

affords a uniform treatment of complex material behaviors in inelastic 

fracture, as demonstrated by Nguyen et al. (2005) for the quasi-static 

case. The formulation requires only that the constitutive relations are 

derived from a free energy density and that the evolution of inelastic 

strain conforms to a dissipation potential.  

For a simple illustration, the presentation is restricted to quasi-static 

small-strain problems. An internal variable description of associative 

elastoplasticity assumes the existence of a free energy density function 

( , )
eΨ ε αε αε αε α  for an additive decomposition of the strain tensor into elastic 

and plastic parts, that is, 

 
e p= +ε ε εε ε εε ε εε ε ε , (1.40) 

where αααα  is an internal strain governing the hardening behavior. 

The energy-momentum tensor is defined as 

 ( , )e≡ Ψ − ⋅ ∇b uε α Ι σε α Ι σε α Ι σε α Ι σ . (1.41) 

Under quasi-static conditions, the resulting local balance of energy-

momentum relates the divergence of the energy-momentum tensor to two 

material body force terms, each of which is the product of the gradient of 

one internal strain and its thermodynamic conjugate stress, i.e., 

 : 0p∇ ⋅ + ∇ + ∇ =b qσ : ε ασ : ε ασ : ε ασ : ε α . (1.42) 

Consider a crack in an otherwise homogeneous body as shown in Fig. 

1.8. In the material force framework, crack growth is treated formally as 

a change in the material configuration. A contour Γ  with outward unit 

normal N is defined to trace the external boundary of the body Ω  and 

the crack surfaces. It is joined to a similarly defined contour δΓ  

surrounding the infinitesimal volume δΩ  containing the crack tip.  
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Fig. 1.8. A crack in an otherwise homogeneous body. (From Nguyen et al., 2005, with 

permission from Elsevier). 

 

The global energy-momentum balance is obtained as 

       
0 0

lim [ ( : : )] limpdS dV dS
δ δδ δΓ Ω−Ω Γ→ →

⋅ − − ∇ + ∇ = ⋅∫ ∫ ∫N b q N bσ ε ασ ε ασ ε ασ ε α ,  (1.43) 

where the global material and dissipation forces are defined by 

 
mat dissip

dS
Γ

= ⋅ −∫F N b F , (1.44) 

 dissip

0
lim ( : : )p dV

δδ Ω−Ω→
= − ∇ + ∇∫F qσ ε ασ ε ασ ε ασ ε α . (1.45) 

The global material force corresponds to the path-domain integral 

developed by Moran and Shih (1987a–b) and Simo and Honein (1990) 

for elastoplasticity. For elastic problems, the global dissipation force 

vanishes so that the global material force becomes path independent. 

If the elastic strain energy density, 
e

U , instead of the free energy 

density, Ψ , is used to define the energy-momentum tensor in Eq. (1.41), 

the result, in the absence of strain hardening, becomes the ˆ
kJ -integral 

given by Kishimoto et al. (1980): 

 
*

, ,
0

ˆ ( ) lim
e

k k i ij j k ij ij kJ U n n u dS dV
δδ

σ σ ε
Γ Ω−Ω→

= − +∫ ∫ , (1.46) 

Ω 
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where 
* e

ij ij ij
ε ε ε= −  are the components of eigenstrains (thermal strain, 

plastic strain, etc.) in the formulation of Kishimoto and co-workers. 

1.9 Cohesive Zone and Virtual Internal Bond Models 

The cohesive zone or yielded strip models have been developed for 

examining the crack-tip behavior of materials (e.g., metal, polymer, and 

concrete) which may exhibit nonlinearity and viscosity by many 

researchers, including Barenblatt (1959a–c, 1962), Dugdale (1960), 

Irwin (1961), Knauss (1974), Schapery (1975), and Hillerborg et al. 

(1976). In order to describe the inelastic behavior in the fracture process 

zone ahead of a crack tip, it is assumed that the material along the crack 

path obeys a specified traction-separation function in the cohesive 

surface model (e.g., Tvergaard and Hutchinson, 1992; Xu and 

Needleman, 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.9. Dugdale–Barenblatt model. 

 

As shown in Fig. 1.9, Dugdale (1960) applied this concept to the 

problem of a Griffith crack in an elastic-plastic material on the 

assumption that the opening of prospective crack surfaces ahead of the 

crack tip be opposed by a closing stress equal to the yield strength of the 

σt 

Yielded strip or 

cohesive zone 
2a 

2l 

δt 
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material. The elastoplastic problem was thus turned into a simple elastic 

one, which is similar to the analysis of the cohesive forces at a crack tip 

by Barenblatt (1959a–c, 1962). The condition that the total stress 

intensity factor for the Dugdale model must be zero for nonsingular 

stresses yields 

 
1( ) 2 sin 0

I y y

l a
K l

l
σ σ π σ

π
−  

= − − + = 
 

. (1.47) 

The extent of the cohesive zone is thus given by 

 ( ) (sec 1)pd l a a β= − = − , (1.48) 

where  

  
2 y

π σ
β

σ
= . (1.49) 

If yσ σ  is small, Eq. (1.48) can be approximated as 

  

2

8

I

p

y

K
d

π

σ

 
=   

 
. (1.50) 

This expression can be compared with the estimation of the plastic 

zone size by the Irwin approach (1961): 

 

2

1
2 I

p y

y

K
r r

π σ

 
= =   

 
. (1.51) 

Wells (1961, 1963) suggested that fracture in metals occurs when the 

crack-tip opening displacement (CTOD) reaches a critical value. The 

CTOD can be calculated from the elastic field (Goodier and Field, 1963) 

as 

 
8

ln(sec )
y

t

a

E

σ
δ β

π

 
=  
 

. (1.52) 

Generally speaking, if the extent of the cohesive zone is small enough 

compared to characteristic dimensions, regardless of the force-separation 

law, the J-integral, the energy release rate, the stress intensity factor, and 
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the crack-tip opening displacement are all equivalent fracture mechanics 

parameters under small-scale yielding conditions, that is, 

 2 '

0
( )

t

I
J G K E d

δ

σ δ δ= = = ∫ . (1.53) 

For limited amounts of crack extension, the tearing modulus approach 

generally gives a more accurate assessment than that based only on the 

critical J-integral at crack initiation. The crack-tip opening angle 

(CTOA) appears to be an attractive alternative parameter in elastic-

plastic analysis of extended amounts of stable crack growth accompanied 

by significant elastic unloading (Kannimen and Popelar, 1985). 

Recent advances in nanotechnology have provided a strong impetus 

for understanding the fracture behavior of nanoscale materials. Many 

classical fracture mechanics concepts will no longer be applicable as the 

characteristic dimension of a structure becomes comparable to or smaller 

than the size of the cohesive zone near a crack tip. For example, no well-

defined crack front was observed in molecular dynamics simulations of 

nanowire fracture (Walsh et al., 2001). Gao and Klein (1998) and Klein 

and Gao (1998) developed a virtual internal bond (VIB) method with 

direct incorporation of a cohesive interactive law into the constitutive 

model so that crack initiation and growth become natural consequence of 

the method without a presumed fracture criterion. Gao and Ji (2003) 

applied the VIB method to study fracture in nanomaterials with a focus 

on the features that are unique at nanoscale. They investigated the 

transition of the fracture mechanism from the classical Griffith fracture 

to one of homogeneous failure near the theoretical strength of the solid 

with no stress concentration at the crack tip. Ji and Gao (2004) also 

studied fracture mechanisms in biological nanocomposites via the VIB 

method with a focus on the effects of protein and protein-mineral 

interfaces. Volokh and Gao (2005) further proposed a modified VIB 

(MVIB) formulation, which allows for two independent linear elastic 

constants. 

The VIB method was developed based on an extension of the so-

called Cauchy–Born rule for establishing continuum constitutive 

equations with the use of atomic-like bond potentials. This is a multi-

scale assumption that relates the motion of atoms to continuum 

deformation measures. Under this assumption, atoms in a crystal move 
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according to a single mapping from the undeformed to the deformed 

configurations. As the mapping is taken to be the deformation gradient F, 

a link between the discrete microstructural description and the continuum 

constitutive model is attained by equating the strain energy density to the 

potential energy stored in a virtual network of internal cohesive bonds, 

that is, 

 
0

( ) ( ) ( 1 2 )
IJ I IJ J

w U l U l ξ ξΕ = = + Ε , (1.54) 

where ( ) / 2
IJ IJ IJ

C δΕ = −  is the Lagrange strain tensor, also called the 

Green–Lagrange strain tensor, IJ kI kJ
C F F=  is the right Cauchy–Green 

deformation tensor, ( )U l  is the bond potential, Iξ  denotes the bond 

orientation, l is the bond length, 0
l  is the length of the unstretched bond, 

and �  is a weighted average with respect to a bond density function. 

Thus, the symmetric (second) Piola–Kirchhoff stress can be obtained 

from the derivative of the strain energy density function as 

 
2 '

0 ( )
IJ I J

IJ

l U lw

l
ξ ξ

∂
Σ = =

∂Ε
. (1.55) 

The finite-deformation form of the JK-integral is given by 

 ( )
K KJ iK iJ J

J w F T N dδ
Γ

= − Γ∫ , (1.56) 

where 
iJ

T  is the asymmetric (first) Piola–Kirchhoff stress tensor 

satisfying the relation 

 iJ jJ iI IJ jJ ijT F F F jσ= Σ = . (1.57) 

The onset of fracture predicted by the VIB model is not only 

determined by the choice of the bond potential but also by the state of 

deformation in the fracture process zone (Klein and Gao, 1998; Gao and 

Ji, 2003; Ji and Gao, 2004). The size of the fracture localization zone h 

can be evaluated via J-integral analysis by selecting a contour that lies 

along the upper and lower edges of the localization zone (see Fig. 1.10):  

 
*

0 0( )

cJ
h

D U lπ
= − . (1.58) 

The size of the fracture localization zone is correlated with the 

fracture energy and the virtual bond potential of the VIB model. The 
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cohesive surface models only apply the traction-separation law to the 

crack plane rather than to the bulk of the material, whereas the VIB 

method does not assume pre-existing weak paths and directly 

incorporates the cohesive interactive law into the constitutive model on 

the continuum level. A VIB-based finite element method (VIB-FEM) is 

typically used to simulate the fracture process with crack nucleation and 

growth represented by separation of two adjacent nodes near the crack 

tip, resulting in localization of strain within one overstretched sheet of 

mesh. An important difference between VIB-FEM and conventional 

FEM lies in the specific physical meaning of the mesh size in VIB-FEM, 

which is no longer a purely numerical concept as in conventional FEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.10. Illustration of fracture localization zone and J-integral contour. (From Gao and 

Ji, 2003, with permission from Elsevier).  

Cohesive zone 
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Chapter 2 

Elements of Electrodynamics of Continua 

Electrodynamics is a branch of physics which studies electric charges in 

motion, whereas mechanics is the science of force and motion of matter 

(Fung and Tong, 2001). Electrodynamics of continua or continuum 

mechanics of electromagnetic materials is concerned with the behavior 

of deformable electromagnetic materials modeled as continuous media 

under combined magnetic, electric, thermal, and mechanical loadings. 

The ten fundamental laws, namely (1) conservation of mass,  

(2) conservation of linear momentum, (3) conservation of angular 

momentum, (4) conservation of energy, (5) entropy inequality,  

(6) Gauss’s law,  (7) Faraday’s law,  (8) Gauss’s law for magnetism,  

(9) Ampere’s law, and (10) conservation of electric charges, may be 

applied to material points (particles) at the continuum level. Since these 

general physical laws are insufficient for formulating a deterministic 

problem, it is necessary to specify the material laws, which rest upon the 

axioms within the framework of continuum mechanics. In an attempt to 

extend classical fracture mechanics to deformable electromagnetic 

materials, we shall make a summary of the elements of electrodynamics 

of continua in this chapter, including conventional terms and notations, 

Maxwell equations, balance equations of mass, linear momentum, 

angular momentum and energy, constitutive relations and transport laws 

from the general nonlinear formulation to the simple linearized theory. 

The reader who desires more information may refer to the literature, 

from classical treatises (e.g., Landau and Lifshitz, 1960; Eringen, 1980; 

Maugin, 1988) to recent papers (e.g., Dorfmann and Ogden, 2003–2006; 

McMeeking and Landis, 2005; McMeeking et al., 2007; Vu and 

Steinmann, 2007; Suo et al., 2008; Kuang, 2008; Bustamante et al., 

2009; Trimarco, 2009). 
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2.1   Notations 

In this section, physical terms and notational conventions are presented 

for the statement of basic field equations and they will be used 

throughout the book. Modeling a body as a continuum is a mathematical 

approximation that is highly accurate when the characteristic length in 

macroscopic phenomena is much larger than the atomic size. Under this 

hypothesis, the atomistic structure of the body is ignored and 

neighboring points remain as neighbors under any loading condition.  

2.1.1   Eulerian and Lagrangian descriptions 

The Eulerian (spatial) description, in terms of the spatial coordinates and 

time, focuses on what is occurring at a fixed point in space as time 

progresses, whereas the Lagrangian (material) description, in terms of 

the material or referential coordinates and time, gives attention to 

individual particles as they move through space and time. The choice of 

two distinct coordinate systems (see Fig. 2.1), one for the reference 

configuration at time 0t  and the other for the current configuration at 

time t, has many advantages in describing the motion and deformation of 

a continuous body. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1.  Two coordinate systems for reference and current configurations. 
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A position vector is used to characterize a particle within a deformable 

body in the current configuration as 

 kk
k

kk xx eex == ∑
=

3

1

, (2.1) 

where kx  are the spatial coordinates of the particle and ke  are mutually 

orthogonal unit base vectors in a Cartesian coordinate system for the 

current configuration. The summation over the repeated index implied by 

the last entry in the continued equality is adopted as a convention. An 

index that is summed over is called the dummy index, and one that is not 

summed over is called the free index. 

This vector can be expressed as a function of the particle position in 

some reference configuration; for example, the configuration at initial time, 

that is, 

 KK
K

KK XX EEX == ∑
=

3

1

, (2.2) 

 ),( tXx χχχχ= , (2.3) 

with inverse 

 
1( , )t−=X xχχχχ , (2.4) 

where KX  are the material coordinates of the particle and KE  are 

mutually orthogonal unit base vectors in a Cartesian coordinate system 

for the reference configuration. 

The vector joining the positions of a particle in the initial and current 

configurations is called the displacement vector, that is,  

 Xxu −= . (2.5) 

Vectors and tensors are represented by boldface and their components 

are represented by means of subscripts throughout the book. The 

rectangular components of a vector n and a second-order tensor A are 

 kkn en ⋅= , ,KKn En ⋅=  (2.6) 

 jiijA eAe ⋅⋅= , ,JIIJA EAE ⋅⋅=  (2.7) 

where the dot denotes the inner product operator. 

The inner product or the dot product of two vectors m and n is a scalar 

with value 
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 iijiij nmnm ==⋅=⋅ δmnnm , (2.8) 

where ijδ  is the Kronecker delta symbol 

 




≠

=
=⋅=

ji

ji
jiij

for   0

for   1
eeδ . (2.9) 

The right or left dot product of a second-order tensor A and a vector n is 

a vector with components 

 jiji nA=⋅ )( nA ,  jjii nA=⋅ )( An . (2.10) 

The double dot product of two second-order tensors is a scalar with 

value 

 jiijjiij ABBA === ABBA :: . (2.11) 

The cross product of two vectors m and n is a vector l with components 

 jiijkkkk nml ε=×−=×= )()( mnnm , (2.12) 

where ijkε  is the permutation symbol 

 






−
+

=
otherwise    0

123 of permution odd an is  if  1

123 of permution even an is  if  1

ijk

ijk

ijkε . (2.13) 

The nabla notations in the Eulerian and Lagrangian descriptions, 

respectively, are given by 

 
k

k
x∂

∂
=∇ e , (2.14) 

 
K

KR
X∂

∂
=∇ E . (2.15) 

The deformation gradient is defined as 

 
KiKiKi

K

i x
X

x
EeEe

X

x
F ⊗=⊗

∂

∂
=

∂

∂
= ,

, (2.16) 
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where the symbol ⊗ is the dyadic product as an outer product of two 

vectors and a comma is used to denote partial differentiation when 

Cartesian coordinates are used. The index K after the comma denotes the 

partial derivative with respect to KX , whereas the index k after the 

comma denotes the partial derivative with respect to kx . 

The Jacobian determinant is given by 

 

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

)det(

X

x

X

x

X

x

X

x

X

x

X

x

X

x

X

x

X

x

j

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

== F . (2.17) 

The right and left Cauchy–Green deformation tensors are defined as 

 T= ⋅C F F , (2.18) 

 TFFb ⋅= . (2.19) 

The Lagrange strain tensor is defined as 

 )(
2

1
)(

2

1
IFFIC −⋅=−= TΕΕΕΕ . (2.20) 

The material time derivative of a tensor A, denoted either by the 

symbol dtd /  or a superimposed dot, is defined as 

 
X

A
A

A

tdt

d

∂

∂
== � , (2.21) 

where X is kept constant during material time differentiation. 

The velocity vector v is the material time derivative of the position 

vector or the displacement vector of a particle, that is, 

 
d

dt t

∂
= = =

∂ X

u u
v u� . (2.22) 

The deformation rate tensor d is the symmetric part of the velocity 

gradient, that is, 

 )(
2

1
vvd ∇+∇= . (2.23) 
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The vorticity vector ωωωω  is defined as 

 v×∇=
2

1
ωωωω . (2.24) 

The convective time derivative of a vector m, denoted by a super-

imposed asterisk, is defined as 

 * ( ) ( )= − ⋅∇ + ∇ ⋅m m m v m v� . (2.25) 

If a vector field m̂  in the reference configuration is associated with a 

vector field m  in the current configuration by 

 
1ˆ j

−= ⋅m F m,  (2.26) 

then the material time derivative of the vector field m̂  is related to the 

convective time derivative of the vector field m  by 

 
1 *ˆ .j −= ⋅m F m�  (2.27) 

2.1.2   Electromagnetic field 

The electromagnetic field can be viewed as a combination of the electric 

field and the magnetic field, which are mathematically represented as 

vectors. The electric charge in a body may be positive or negative. The 

motion of charged particles in a given direction is known as the electric 

current. The Maxwell equations and the Lorentz force law have been 

used to describe the way that charges and currents interact with the 

electromagnetic field. It is known that the Maxwell equations are form-

invariant with respect to the Lorentz transformations. Since a high 

velocity close to light speed is not easily achievable in solid material 

media, to which this book is devoted, the Galilean approximation is 

adopted hereafter instead of a relativistic treatment.  

The electromagnetic field quantities in a fixed Galilean frame GR , also 

referred to as the laboratory frame, are denoted by P, E, D, M, B, H, ej , 

where P is polarization, E is electric field, PED += 0ε  is electric 

displacement, M is magnetization, B is magnetic induction, MB/H −= 0µ  

is magnetic field, ej  is total electric current, 0ε  is vacuum permittivity, and 

0µ  is vacuum permeability.  

The field quantities in the co-moving frame CR  are introduced by 
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 BvE ×+=E , (2.28) 

 PvM ×+=M , (2.29) 

 DvH ×−=H , (2.30) 

 vj fee q−=j , (2.31) 

where E  is electromotive intensity, ej  is conduction current, and fq  is 

the free electric charge density. 

2.1.3   Electromagnetic body force and couple 

The force that the electromagnetic field exerts on electrically charged 

particles is called the electromagnetic force, which is one of the 

fundamental forces in nature. The other fundamental forces are the 

strong interaction, the weak interaction, and the gravitational force. All 

other forces are ultimately derived from these four fundamental forces. 

The electromagnetic field contains electromagnetic energy with a density 

proportional to the square of the field intensities. The Lorentz force law 

that describes the force acting on a point charge due to the 

electromagnetic field has been used to construct the expressions for the 

electromagnetic body force and couple in continuous media.  

The Lorentz force acting on a point charge 
αδq  in a microscopic 

volume element (see Fig. 2.2) is  

 ( ) ( )q
α α α α αδ δ  = + × f e x v b x , (2.32) 

where )( α
xe  and )( α

xb  are the microscopic electric field and the 

microscopic magnetic induction at 
αx , respectively. 

The electromagnetic force and the electromagnetic couple acting on the 

microscopic volume element are given by, respectively, 

 )()ˆ()( ααα

α

α

α

αα δδ ξξξξξξξξξξξξξξξξ +×++++=∆ ∑∑ xbvxef
��qqvem , (2.33) 

 
)],()ˆ[()(

)()(
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α

ααα

δ

δ
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+×++×++
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xbvx

xexl

��q

qvem

 (2.34) 
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where 
αξξξξ+x  is the average position of the point charge 

αδq  and 
αξξξξ
�ˆ  is 

the fluctuation velocity. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2. Microscopic volume element. 

 

The macroscopic electromagnetic field quantities are introduced by 

 )()( xexE = , (2.35) 

 ( ) ( )=B x b x , (2.36) 

 ∑=∆
α

αδqvq f , (2.37) 

 ∑=∆
α

ααδ ξξξξqvP , (2.38) 

 ∑ ×=∆
α

αααδ ξξξξξξξξ �qv
2

1
M , (2.39) 

 ∑=∆
α

ααδ ξξξξ
�ˆqvej . (2.40) 

Thus, the expressions for the electromagnetic body force fem  and the 

electromagnetic body couple cem  are 

 
*

( ) ( ) ( )
em f e

q= + + × + ⋅∇ + ∇ ⋅f P B P BE j E M , (2.41) 

 BPfxlc ×+×=×−= MEememem . (2.42) 
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Hence, polarization is related to the electric dipole moment, 

magnetization is related to the magnetic moment, and conduction current is 

related to the fluctuation velocity of charges (Mazur and Nijboer, 1953). A 

material is electrically polarized if P is nonzero, whereas a material is 

magnetized if M is nonzero. Materials can also be classified as conducting, 

semiconducting, or insulating, based on their ability to conduct electric 

current.  

2.1.4   Electromagnetic stress tensor and momentum vector 

There exist an electromagnetic stress tensor ijemσ  and an 

electromagnetic momentum vector kG  (Eringen, 1980; Maugin, 1988), 

such that 

 
t

G
f k

iikemkem
∂

∂
−= ,σ , (2.43) 

 ijemkijkem c σε= . (2.44) 

One solution is 

 
,

)(

0

0

IB/B

EEIBBPσ

f
em

em

u−⊗+

⊗+⋅+⊗−⊗=

µ

εMME
 (2.45) 

 BEG ×= 0ε , (2.46) 

where )2(2 00 µε BBEE ⋅+⋅=f

em u  is the energy density of the free 

electromagnetic field, and I is the second-order unit tensor. 

By introducing the Maxwell stress tensor involving only the free 

electromagnetic field 

 IBBEEσ
f

emF u−⊗+⊗= 00 / µε , (2.47) 

the electromagnetic stress tensor σem  can be decomposed as 

 σσσ emFem += , (2.48) 

with 

 IBBPσ )( ⋅+⊗−⊗= MMEem . (2.49) 

Therefore, the electromagnetic body force and couple can also be 

expressed as 
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 iikemkLkem ff ,σ+= , (2.50) 

 ijemkijkem c σε= , (2.51) 

where tq F
eff
e

eff
L ∂∂−∇⋅=×+= GBf σσσσjE  is the effective Lorentz 

force, P⋅∇−= f
eff qq  is the effective charge density, and 

*eff

e e
= + + ∇ ×Pj j M  is the effective current. 

Hence, the electromagnetic stress tensor can be taken as an extension of 

the Maxwell stress tensor in classical electrodynamics, which also involves 

the contribution due to polarization and magnetization defined by Eq. 

(2.49). For the special case of electrostatics or magnetostatics, we have the 

electric stress IED
f

ee u−⊗=σσσσ  or the magnetic stress 

IIBMHB
f

mm u−⋅+⊗= )(σσσσ  with the corresponding energy density 

denoted by 20 EE ⋅= εf
e u  or )2( 0µBB ⋅=f

m u . 

2.1.5   Electromagnetic power 

The electromagnetic power is the rate of work done by the 

electromagnetic forces, that is, 

 ∑ +⋅++=∆
α

ααααδ )()ˆ( ξξξξξξξξξξξξ xev
��qvwem . (2.52) 

The useful equivalent expressions for the electromagnetic power density 

in terms of different time derivatives are listed as follows: 

 EjPEv
B

M
P

E ⋅+⋅⋅∇+
∂

∂
⋅−

∂

∂
⋅= eem

tt
w )]([ , (2.53) 

 EjME ⋅+⋅−⋅+⋅= eemem w Bvf ��ππππρ , (2.54) 

 
* *

:em em em em ew = ⋅ + ⋅ + + ⋅ − ⋅ + ⋅f v c d P BE M j Eω σω σω σω σ , (2.55) 

where ρ/P=ππππ  is the polarization per unit mass and ρ is the mass 

density. 
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2.1.6   Poynting theorem 

The Poynting vector, which represents the flux of the electromagnetic 

energy, is denoted by = ×S E H  in the laboratory frame GR  and by 

HES ×=  in the co-moving frame CR .  

The Poynting theorem in GR  gives the identity 

 SEj
D

E
B

H ⋅∇−⋅−=
∂

∂
⋅+

∂

∂
⋅ e

tt
. (2.56) 

With use of this identity, the electromagnetic power density can be 

expressed in a new form 

 )]([ PEvS ⋅−⋅∇−
∂

∂
−=

t

u
w

f
em

em . (2.57) 

The Poynting theorem in CR  gives the identity 

 
* *

e
⋅ + ⋅ = − ⋅ − ∇ ⋅B DH E j E S . (2.58) 

Using this identity, the electromagnetic power density can be expressed 

in another form 

 ])[( S−⋅⊗+⋅∇+









−= vGvσσσσem

f
em

em

u

dt

d
w

ρ
ρ . (2.59) 

2.2   Maxwell Equations 

With use of the notations in Section 2.1, the set of equations named after 

James Clerk Maxwell are expressed in a fixed Galilean frame GR  as 

 fq=⋅∇ D , (2.60) 

 0=
∂

∂
+×∇

t

B
E , (2.61) 

 0=⋅∇ B , (2.62) 

 e
t

j
D

H =
∂

∂
−×∇ . (2.63) 

Equation (2.60) is Gauss’s law that relates the divergence of the 

electrical displacement to free charge density, Eq. (2.61) is Faraday’s law 
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that describes how a changing magnetic field is related to the induced 

electric field, Eq. (2.62) is Gauss’s law for magnetism which shows that the 

magnetic induction has zero divergence, and Eq. (2.63) is Ampere’s law 

which states that magnetic field can be generated either by an electrical 

current or by a changing electric field. From Eqs. (2.60) and (2.63), the 

electric charge balance equation is obtained as 

 e

f

t

q
j⋅∇=

∂

∂
− . (2.64) 

In the co-moving frame CR , the Maxwell equations are rewritten as 

 fq=⋅∇ D , (2.65) 

 
*

0∇ × + =BE , (2.66) 

 0=⋅∇ B , (2.67) 

 
*

e∇ × − =DH j . (2.68) 

With the introduction of the corresponding Lagrangian fields ff jqQ = , 

DFD ⋅= −1ˆ j , BFΒ ⋅= −1ˆ j , F⋅= EÊ , F⋅= HĤ , and ee j jJ ⋅= −1
F , 

the material formulations of the Maxwell equations (Lax and Nelson, 1976; 

Trimarco, 2002, 2009) are given by 

 fR Q=⋅∇ D̂ , (2.69) 

 0ˆˆ =+×∇ B
�

ER , (2.70) 

 0ˆ =⋅∇ BR , (2.71) 

 eR JH =−×∇ D
�ˆˆ , (2.72) 

where 
*1ˆ j

−=B F B
�

 and 
*1ˆ j

−=D F D
�

 are used following the relation (2.27). 

The material formulation of the electric charge balance equation is 

obtained from Eqs. (2.69) and (2.72) as 

 eRfQ J⋅∇=− � . (2.73) 

If field quantities are discontinuous across a surface moving at a speed 

sv , the Maxwell equations and the charge balance equation are replaced by 

the following jump conditions in the Eulerian description (Eringen, 1980): 
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  fϖ=⋅ ]][[Dn , (2.74) 

 0)]]([[ =−×+× svE vBn , (2.75) 

 0]][[ =⋅ Bn , (2.76) 

 0)]]([[ =−×−× svH vDn , (2.77) 

 0)]]([[ =+−+⋅
t

vj
e δ

ϖδ f

sfq vn , (2.78) 

where ]][[�  represents the jump of the field quantity inside the double 

square brackets across the moving surface, tδδ  denotes the convective 

time derivative operator following the motion of the surface along its 

normal, n is the unit normal to the surface, and fϖ  is the free surface 

charge density. 

Interface or boundary conditions for electromagnetic field quantities in 

the Eulerian description can be obtained by considering a special surface of 

discontinuity moving at the speed v=sv , that is, 

 fϖ=⋅ ]][[Dn , (2.79) 

 0]][[ =× En , (2.80) 

 0]][[ =⋅ Bn , (2.81) 

 0]][[ =× Hn , (2.82) 

 0]][[ =+⋅
t

j
e

δ

ϖδ f
n . (2.83) 

In the Lagrangian description, the jump conditions across a surface of 

discontinuity moving at a speed sV̂  through the material can be rewritten as 

 ˆ ˆ[[ ]]
f

ϖ⋅ =N D , (2.84) 

 0]]ˆˆˆ[[ =×−× sVE BN , (2.85) 

 0]]ˆ[[ =⋅ BN , (2.86) 

 0]]ˆˆˆ[[ =×+× sVH DN , (2.87) 

 
ˆ

ˆ[[ ]] 0
f

e f s
Q

t

δ ϖ

δ
⋅ − + =N J V , (2.88) 
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where s
-

s vV ⋅= 1F , vFV ⋅= 1- , ˆ /
ff
da dAϖ ϖ= , da/dAj FnN ⋅= −1

 is 

the unit normal of the moving surface in the initial configuration, and 

LKLK NCNjdAda =/  is the ratio of the area elements in the current 

configuration to those in the reference configuration. 

Interface or boundary conditions for electromagnetic field quantities in 

the Lagrangian description can be obtained as the surface of discontinuity 

coincides with the interface or boundary considered, that is, 

 ˆ ˆ[[ ]]
f

ϖ⋅ =N D , (2.89) 

 0]]ˆ[[ =× EN , (2.90) 

 0]]ˆ[[ =⋅ BN , (2.91) 

 0]]ˆ[[ =× HN , (2.92) 

 
ˆ

[[ ]] 0
f

e
t

δ ϖ

δ
⋅ + =N J . (2.93) 

2.3    Balance Equations of Mass, Momentum, Moment of 

Momentum, and Energy 

Following the notations in Section 2.1 we use conservation laws in order 

to derive the local field equations for balance of mass, momentum (linear 

momentum), moment of momentum (angular momentum), and energy, 

in addition to the Maxwell equations. These balance equations are valid 

irrespective of material constitutive laws.  

Based on the law of conservation of mass, the local mass balance 

equation is given by 

 v⋅∇−= ρ
ρ

dt

d
, (2.94) 

where ρ is the mass density in the current configuration. 

In the material formulation, the local mass balance equation can be 

rewritten as 

   ρρ j=0 , (2.95) 

where 0ρ  is the mass density in the initial configuration. 
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Based on the law of conservation of momentum, the local linear 

momentum balance equation is given by 

 ff
v

em
dt

d
++⋅∇= ˆρρ σσσσ , (2.96) 

where σσσσ  is the Cauchy stress tensor and f̂  is the mechanical body force 

per unit mass. 

Based on the law of conservation of angular momentum, the local 

angular momentum balance leads to  

 0=+ kemijkij cσε . (2.97) 

Using the electromagnetic stress tensor σem  and the electromagnetic 

momentum vector G defined in Eqs. (2.45) and (2.46), Eqs. (2.96) and 

(2.97) become 

 
tdt

d
em

∂

∂
−++⋅∇=

G
f

v ˆ)( ρρ σσσσσσσσ , (2.98) 

 0)( =+ ijemijkij σσε . (2.99) 

Thus, the total stress tensor σσσ emt +=  is symmetric, that is, 

,t ij t jiσ σ=  although the Cauchy stress tensor or the electromagnetic stress 

tensor may not be symmetric. 

In the material formulation, the local linear and angular momentum 

balance equations can be rewritten as 

 fgVgv ˆ)ˆ()ˆ( 000 ρρρ +⊗+⋅∇=+ ΤΤΤΤtR
�� , (2.100) 

 0=LjtiLkij TFε , (2.101) 

where ρG/g =ˆ  is the electromagnetic momentum per unit mass and
 

σσσσtt j ⋅= −1FT  is the first Piola–Kirchhoff total stress tensor.  

Based on the conservation law of energy, the local energy balance 

equation is given by 

 eq
dt

ed
jEME ⋅+⋅−⋅+∇+⋅−∇= Bvj ��ππππσσσσ ρρ :

ˆ
, (2.102) 

where ê  is the internal energy per unit mass and qj  is the heat flux. 

Applying Poynting’s theorem as discussed in Section 2.1.6, the local 

energy balance equation (2.102) becomes 
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 ,ˆ])[()ˆˆˆ( vfvGvj ⋅+−⋅⊗+⋅∇+⋅−∇=++ ρρ Sσσσσtq
f

em uke
dt

d

 

 
 (2.103) 

where ρ/ˆ f
em

f
em uu =  is the energy of the free electromagnetic field per 

unit mass. 

In the material formulation, the local energy balance equation can be 

rewritten as 

 ,ˆ]ˆ)ˆ[(ˆˆˆ 0000 vfvgVTJ ⋅+−⋅⊗+⋅∇+⋅−∇=++ ρρρρ StRqR
f

em uke ���

 

 
 (2.104) 

where qq j jFJ ⋅= −1
 and SS ⋅= −1ˆ Fj . 

If field quantities are discontinuous across a surface moving at a speed 

sv , Eqs. (2.94), (2.98), and (2.103) are replaced by the following jump 

conditions: 

 0)]]([[ =−⋅ svvn ρ , (2.105) 

 0)]]()[[( =⊗+−⊗−⋅ Gvvn sts vv σσσσρ , (2.106) 

 .0]])()ˆˆ)([[( =+⋅⊗+−+++−⋅ Sv vGvjvn σσσσtq
f

ems uke ρρ   

  (2.107) 

Interface or boundary conditions for total traction and heat flux in the 

Eulerian description can be obtained by considering a special surface of 

discontinuity moving at speed v=sv , that is, 

 0]][[ =⊗+⋅ Gvn σσσσt , (2.108) 

 0]])([[ =+⋅⊗+−⋅ SvGvjn σσσσtq . (2.109) 

In the Lagrangian description, the jump conditions across a surface of 

discontinuity moving at a speed sV̂  through the material can be rewritten as 

 0)]]ˆ([[ 0 =−⋅ sVρN , (2.110) 

 0)]]ˆ()ˆ()ˆ[[( 00 =⊗+−+⊗−⋅ gVTgvN ρρ tsV , (2.111) 

 .0]]ˆ)ˆ()ˆˆˆ)(ˆ[[( 000 =+⋅⊗+−+++−⋅ SV vgVTJN tq
f

ems uke ρρρ   

  (2.112) 
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Interface or boundary conditions for total traction and heat flux in the 

Lagrangian description can be obtained as the surface of discontinuity 

coincides with the interface or boundary considered, that is, 

 0]]ˆ[[ 0 =⊗+⋅ gVTN ρt , (2.113) 

 .0]]ˆ)ˆ([[ =+⋅⊗+−⋅ SvgVTJN tq  (2.114) 

2.4   Constitutive Relations 

The Helmholtz free energy per unit mass is defined as  

 sTeh ˆˆˆ −≡ , (2.115) 

where T is the absolute temperature and ŝ  is the entropy per unit mass. 

Substituting (2.115) into (2.102) yields 

 

.
ˆ1

ˆ
11

11
:

11ˆ

dt

hd

T
Ts

TT

TTTTdt

sd

e

q

−−⋅+

⋅−⋅+∇+⋅∇−=

�

��

jE

ME

ρ

ρρρ
Bπvj σσσσ

 (2.116) 

The entropy production inequality is  

 0
1ˆˆ

≥⋅∇+≡ s
i

dt

sd

dt

sd
j

ρ
, (2.117) 

where sj  is the entropy flux. 

In the reference configuration, the entropy production inequality can be 

rewritten as 

 0
1ˆˆ

0

≥⋅∇+= sR
i

dt

sd

dt

sd
J

ρ
, (2.118) 

where ss j jFJ ⋅= −1
.  

Substituting (2.116) into (2.118) gives 

 

,0
ˆ1

ˆ
1ˆˆ1ˆˆ1

:
2

1

ˆ111
)(

1ˆ

000

000

≥−−⋅−⋅++

⋅+∇⋅+−⋅∇=

dt

hd

T
Ts

TTTT

TTTdt

sd

E

eRq

q

sR
i

���� ΒC

J
J

J

ME

JE

ρρρ

ρρρ

ΠΠΠΠΣΣΣΣ

 (2.119) 
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where 
T

EE j )( 11 −− ⋅⋅= FσFΣ  is the second Piola–Kirchhoff stress tensor 

conjugate to the right Cauchy–Green deformation tensor C, 

σσσσσσ FtFemE −=−+=  is symmetric, F⋅= EÊ , PF ⋅= −1ˆ jΠΠΠΠ , 

F⋅= MM̂ , BFΒ ⋅= −1ˆ j , qq j jFJ ⋅= −1
, and ee j jJ ⋅= −1F . 

Material laws should satisfy the restrictions imposed by the fundamental 

principles of thermodynamics. As an illustration, we focus on the behavior 

of a typical magneto-electro-thermo-elastic solid for which the Helmholtz 

free energy ĥ  is taken to be a function of deformation, temperature, 

temperature gradient, polarization, and magnetic induction in the reference 

configuration RV  with respect to which the deformation gradient F  is 

measured, that is, 

 );ˆ,ˆ,,,(ˆˆ XΒC ΠΠΠΠTThh R∇= . (2.120) 

Since the entropy production inequality (2.119) should always be valid, 

it is necessary and sufficient that the state equations fulfill the following 

conditions: 

 0
ˆ

,

=
∂

∂

KT

h
, (2.121) 

 
KL

KLE
C

h

∂

∂
=Σ

ˆ
2 0ρ , (2.122) 

 
T

h
s

∂

∂
−=

ˆ
ˆ , (2.123) 

 
Κ

ρ
Π∂

∂
=

ˆ

ˆ
ˆ

0

h
EK , (2.124) 

 
Κ

ρ
Β

h
M K ˆ

ˆ
ˆ

0
∂

∂
−= , (2.125) 

 qs
T

JJ
1

= , (2.126) 

 0ˆ111ˆ

00

≥⋅+∇⋅= eRq
i

TTdt

sd
JE

ρρ
J . (2.127) 
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From Eq. (2.121), the Helmholtz free energy does not depend on the 

temperature gradient. Since the inequality (2.127) should always be 

satisfied, transport laws for coupled heat conduction and electricity 

conduction can be determined accordingly. 

It is proposed that the thermodynamic fluxes for heat conduction and 

electricity conduction depend linearly on the corresponding thermodynamic 

forces with the Onsager reciprocity relations, that is, 

 Êˆ11ˆ ⋅+∇⋅= qe
R

qq
q

TT
LLJ , (2.128) 

 EJ ˆˆ11ˆ ⋅+∇⋅= ee
R

eq
e

TT
LL , (2.129) 

where the coefficient matrix 

 







=








eeeq

qeqq
T

eeeq

qeqq

LL

LL

LL

LL

ˆˆ

ˆˆ

ˆˆ

ˆˆ
, (2.130) 

is positive definite. It can be seen that the generalized transport laws 

(2.128) and (2.129) contain Fourier’s law and Ohm’s law as well as the 

Peltier–Seebeck effect. 

Thus, the coupled heat transfer equation is obtained from Eq. (2.116) 

with the use of the state equations as 

 eq
TTT

h

dt

d
jE ⋅+⋅∇−=











∂

∂
−

ρρ

11ˆ
j . (2.131) 

2.5   Linearized Theory  

Nonlinear constitutive equations incorporating magneto-electro-thermo-

mechanical coupling effects can be formulated when the free energy is 

expanded in its arguments. In the reference configuration RV , expansion 

of the Helmholtz free energy with respect to strain, temperature, 

polarization, and magnetization for an anisotropic magneto-electro-

thermo-elastic solid to the second-order terms gives 
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,ˆˆ
2

1

ˆˆˆˆ
2

1ˆˆ
2

1

ˆˆ
2

1

ˆˆˆˆˆˆ

2

0

000
00000

θγθγθβθ

λχζ

θρρρ

K
B
KK

P
KKLKLH

LKKLLK
B
KLLKKL

MKL
B

MKLMKL
P

MKLMNKLKLMN

KKKKKLKLE

BC
T

BBB

Bffc

BMEshh

−Π−Ε−−

Π−−ΠΠ+

Ε−ΠΕ−ΕΕ+

−Π+ΕΣ+−=

 (2.132) 

where the Lagrange strain tensor 2/)( IC−=ΕΕΕΕ  and the temperature 

change 0TT −=θ  are used, KLMNc , 
P

MKLf ,
 

B
MKLf , KLζ ,

 KLλ , 
B
KLχ , HC , 

KLβ , 
P
Kγ , 

B
Kγ  are material properties, MNKLKLMN cc = , LKKL ζζ = ,

B
LK

B
KL χχ = . 

Substitution of Eq. (2.132) into Eqs. (2.122)–(2.125) yields anisotropic 

constitutive equations in finite deformation: 

 θβKLM
B

MKLM
P

MKLMNKLMNKLEKLE Bffc −−Π−Ε+Σ=Σ ˆˆ0
, (2.133) 

 θγλζ P
KLKLLKLLM

P
KLMKK BfEE −−Π+Ε−= ˆˆˆˆ 0

, (2.134) 

 θγχλ B
KL

B
KLLLKLM

B
KLMKK BfMM ++Π+Ε+= ˆˆˆˆ 0

, (2.135) 

 θγγβρρ HK
B
KK

P
KKLKL C

T
Bss

0

000

1ˆˆˆˆ ++Π+Ε+= . (2.136) 

The first terms on the right-hand sides of Eqs. (2.133)–(2.136) stand 

for the values of KLE Σ , KÊ , KM̂ , and ŝ0ρ  in the reference state, the 

second terms for mechanical contribution, the third terms for electric 

contribution, the fourth terms for magnetic contribution, and the last 

terms for thermal contribution.  

By linearization about the initial configuration, Eqs. (2.133)–(2.136) 

become 

 θβεσσ klm
B

mklm
P

mklmnklmnklEklE BfPfc −−−+= 0 , (2.137) 

 θγλζε P
klkllkllm

P
klmkk BPfEE −−+−= 0 , (2.138) 

 θγχλε B
kl

B
klllklm

B
klmkk BPfMM ++++= 0 , (2.139) 

 θγγεβρρ Hk
B
kk

P
kklkl C

T
BPss

0

000

1
ˆˆ ++++= , (2.140) 

where 2/)( ,, mnnmmn uu +=ε  is the infinitesimal strain.                      
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With the use of EDP 0ε−=  and HB/M −= 0µ , we can rewrite Eqs. 

(2.137)–(2.140) with the strain, electric field, magnetic field, and 

temperature change as independent variables: 

 θβεσσ klmmklmmklmnklmnklEklE HhEec −−−+= 0 , (2.141) 

 θωκε klkllkllmklmkk HgEeDD ++++= 0 , (2.142) 

 θγµµε klklllklmklmkk HEghBB 0
0 ++++= , (2.143) 

 θγµωεβρρ vkkkkklkl C
T

HEss
0

0000

1
ˆˆ ++++= . (2.144) 

By transformation, we can also rewrite Eqs. (2.141)–(2.144) with the 

stress, electric field, magnetic field and temperature change as independent 

variables: 

 θασεε klm
H
mklm

E
mklmnEklmnklkl HdEds ++++= 0 , (2.145) 

 θωκσ σσσ
klkllkllmE

E
klmkk HgEdDD ++++= 0 , (2.146) 

 θγµµσ σσσ
klklllklmE

H
klmkk HEgdBB 0

0 ++++= , (2.147) 

 θγµωσαρρ σσ
pkkkkklEkl C

T
HEss

0

0000

1
ˆˆ ++++= . (2.148) 

It is obvious that the material constants in the equivalent constitutive 

representations are related, which means that material constants in one 

constitutive representation can be transformed to those in another 

constitutive representation. Material constants are subjected to constraints 

imposed by the thermodynamic requirement for stable materials (Alshits et 

al., 1992). The physical meanings for commonly used material constants 

are listed in Table 2.1. 
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Table 2.1 Physical meanings of material constants 

Symbol Physical Meaning 

cklmn =  cmnkl =  clkmn =  cklnm elastic moduli
 

κkl = κlk dielectric permittivity
 

 µkl = µlk magnetic permeability
 

 emkl = emlk   piezoelectric coefficients
 

 hmkl = hmlk piezomagnetic coefficients
 

 gkl  magnetoelectric coefficients
 

 ωk pyroelectric coefficients
 

 γk pyromagnetic coefficients
 

βkl thermal moduli
 

 Cv specific heat
 

Materials with nonzero mkle  exhibit piezoelectricity, that is, 

mechanical load can produce electric polarization or electric field (direct 

effect) and, vice versa, electric load can produce deformation or stress 

(inverse effect). The direct piezoelectric effect was first discovered by 

Pierre Curie and Jacques Curie (1880) in some crystals such as 

tourmaline and quartz. A year later, the inverse piezoelectric effect was 

theoretically predicted by Lippmann (1881) and subsequently confirmed 

experimentally by the Curies (1884). By analogy, materials with nonzero 

mklh  exhibit piezomagnetism, that is, mechanical load can produce 

magnetization or magnetic field (direct effect) and, vice versa, magnetic 

load can produce deformation or stress (inverse effect). The first 

experimental observation of piezomagnetism was made by Borovik-

Romanov (1960) in the fluorides of cobalt and manganese.  

Materials with nonzero kω  exhibit pyroelectricity, that is, temperature 

change can produce electric polarization or electric field (direct effect) and, 

vice versa, electric load can produce temperature change (inverse effect). 

Correspondingly, materials with nonzero kγ  exhibit pyromagnetism, that 

is, temperature change can produce magnetization or magnetic field (direct 

effect) and, vice versa, magnetic load can produce temperature change 

(inverse effect).  

The cross terms due to nonzero klg  represent the magnetoelectric 

coupling effect. The co-existence of piezoelectric, piezomagnetic and 

magnetoelectric coupling is called the magneto-electro-mechanical 

coupling. Advances in state-of-the-art technology have facilitated the 
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formation of new monolithic materials and the synthesis of composite 

materials, which, remarkably, breaks down the performance barriers 

encountered with conventional materials. We refer the readers to the 

Handbook of Electromagnetic Materials: Monolithic and Composite 

Versions and their Applications (Neelakanta, 1995) for detailed 

classification of different classes of electromagnetic materials and 

characterization of various material properties. 

In summary, the full set of dynamic field equations of coupled magneto-

electro-thermo-elasticity are listed as follows: 

Maxwell equations: 

 fq=⋅∇ D , (2.149) 

 0=
∂

∂
+×∇

t

B
E , (2.150) 

 0=⋅∇ B , (2.151) 

 e
t

j
D

H =
∂

∂
−×∇ . (2.152) 

Equation of continuity: 

 v⋅∇−= ρ
ρ

dt

d
. (2.153) 

Equation of motion: 

 
tdt

d
t

∂

∂
−+∇⋅=

G
f

v ˆρρ σσσσ . (2.154) 

Heat transfer equation: 

 eq
dt

sd
T jE ⋅+⋅−∇= j

ˆ
ρ . (2.155) 

Infinitesimal strain-displacement relation:  

 2/)( ∇+∇= uuεεεε . (2.156) 

Constitutive relations (linearized theory): 

 θβεσ klmmklmmklmnklmnklE HhEec −−−= , (2.157) 

 θωκε klkllkllmklmk HgEeD +++= , (2.158) 

 θγµµε klklllklmklmk HEghB 0+++= , (2.159) 
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 θγµωεβρ vkkkkklkl C
T

HEs
0

00

1
ˆ +++= , (2.160) 

 E⋅+∇⋅−= qeqq
q T kkj 0θ , (2.161) 

 Ej ⋅+∇⋅−= eeeq
e kk θ . (2.162) 

Jump conditions: 

 fϖ=⋅ ]][[Dn , (2.163) 

 0]][[ =× En , (2.164) 

 0]][[ =⋅ Bn , (2.165) 

 0]][[ =× Hn , (2.166) 

 0)]]([[ =+−+⋅
t

vj
e

δ

ϖδ f

sfq vn , (2.167) 

 0)]]([[ =−⋅ svvn ρ , (2.168) 

 0)]]()[[( =⊗+−⊗−⋅ Gvvn sts vv σσσσρ , (2.169) 

 .0]])()ˆˆ)([[( =+⋅⊗+−+++−⋅ Sv vGvjvn σσσσtq
f

ems uke ρρ   

  (2.170) 

Initial conditions: 

 0
0

uu =
=tt

, (2.171) 

 0
0

vu =
=tt
� , (2.172) 

 0
0

TT
tt

=
=

, (2.173) 

 0
0

EE =
=tt

, (2.174) 

 0
0

HH =
=tt

. (2.175) 

Boundary conditions may be obtained by letting v=sv  in the jump 

conditions (2.163)–(2.170). Prescribed boundary and initial conditions must 

be compatible with uniqueness of solution. 

In the classical linear theory of piezoelectricity (Voigt, 1910) and its 

extension, all fields are small so that stress and momentum due to the 
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electromagnetic effects become second-order and can be omitted in the 

formulation, i.e., 0≈σσσσem , 0≈σσσσF , 0≈G .  

In practice, it is sometimes convenient to introduce the so-called Voigt’s 

notation with the relations between the indices 11 → 1, 22 → 2, 33 → 3, 23 

→ 4, 31 → 5, and 12 → 6 so that constitutive equations (2.157)–(2.162) 

may be expressed in matrix form as 

 θβετ }{}{][}{][}]{[}{ pm
T

mpm
T

mpqpqp HhEec −−−= , (2.176) 

 θωκε }{}]{[}]{[}]{[}{ klkllklqkqk HgEeD +++= , (2.177) 

 θγµµε }{}]{[}{][}]{[}{ 0 klkll
T

lkqkqk HEghB +++= , (2.178) 

 θγµωεβρ vk
T

kk
T

kq
T

q C
T

HEs
0

00

1
}{}{}{}{}{}{ˆ +++= , (2.179) 

 }{[}{[}{ 0, l
qe
kll

qq
kl

q
k EkTkj ]] +⋅−= θ , (2.180) 

 }{[}{[}{ , l
ee
kll

eq
kl

e
k Ekkj ]] +⋅−= θ , (2.181) 

where 

 T
EEEEEEp },,,,,{}{ 123123332211 σσσσσστ = , (2.182) 

 T
p }2,2,2,,,{}{ 123123332211 εεεεεεε = , (2.183) 

 























=

665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

][

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

c pq , (2.184) 
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


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


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332313
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131211

][

κκκ
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κκκ

κ kl , (2.185) 

 













=

332313

232212

131211

][

µµµ
µµµ
µµµ

µkl , (2.186) 
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



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
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=

363534333231

262524232221

161514131211
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eeeeee

eeeeee

eeeeee

ekq , (2.187) 
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hhhhhh

hhhhhh

hhhhhh

hkq , (2.188) 
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333231

232221

131211

][
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ggg

gkl , (2.189) 

 { }321}{ ωωωω =T
k , (2.190) 

 { }321}{ γγγγ =T
k , (2.191) 

 { }654321}{ βββββββ =T
q

, (2.192) 
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][ , (2.194) 

 










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



==
eqeqeq

eqeqeq

eqeqeq
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kl

eq
kl
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333231

232221

131211

][][ . (2.195) 

The number of material properties required for coupled multifield 

analysis depends on the material type. For a general anisotropic material, 

there are a total of 21 (elastic stiffness) + 6 (dielectric permittivity) + 6 

(magnetic permeability) + 18 (piezoelectric coefficients) + 18 

(piezomagnetic coefficients) + 9 (magnetoelectric coefficients) + 3 

(pyroelectric coefficients) + 3 (pyromagnetic coefficients) + 6 

(thermoelastic coefficients) + 1 (specific heat) + 6 (thermal conductivity) + 
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6 (electric conductivity) + 9 (thermoelectric coefficients) = 112 independent 

material constants.  

The material constant matrices for the special case of transverse 

isotropy with the 3x -axis in the poling direction become 
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 { }300}{ ωω =T
k , (2.202) 

 { }300}{ γγ =T
k , (2.203) 

 { }000}{ 311 ββββ =T
q

, (2.204) 
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It can be seen that the transversely isotropic material symmetry reduces 

the number of independent material constants from 112 to 28, comprising 5 

(elastic stiffness) + 2 (dielectric permittivity) + 2 (magnetic permeability) + 

3 (piezoelectric coefficients) + 3 (piezomagnetic coefficients) + 2 

(magnetoelectric coefficients) + 1 (pyroelectric coefficient) + 1 

(pyromagnetic coefficient) + 2 (thermoelastic coefficients) + 1 (specific 

heat) + 2 (thermal conductivity) + 2 (electric conductivity) + 2 

(thermoelectric coefficients).  

In particular, for piezoelectric materials with hexagonal symmetry (class 

mm66 =vC ) in the absence of electricity conduction, the number of 

independent material constants may be further reduced to 16, consisting of 

5 (elastic stiffness) + 2 (dielectric permittivity) + 3 (piezoelectric 

coefficients) + 1 (pyroelectric coefficient) + 2 (thermoelastic coefficients) + 

1 (specific heat) + 2 (thermal conductivity).  

In crystallography, a point group, also called a crystal class, is a set of 

symmetry operations like rotations or reflections. There are 32 possible 

combinations of symmetry operations, resulting in 32 point groups. 20 of 

the 32 crystal classes exhibit piezoelectricity, which is the property of 

nearly all non-centrosymmetric crystals. Only 10 of the 20 piezoelectric 

crystal classes exhibit pyroelectricity, which is the property of all polar 

crystals. Crystal classes are commonly represented in the Schoenflies 

notation and the Hermann–Mauguin notation (Ikeda, 1990; Hahn, 2005). 

vC6  is in the Schoenflies notation, where the character “C ” is for cyclic, 

the subscript “6” for six-fold rotation axis and “v” for vertical mirror planes 
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containing the axis of rotation. 6mm is in the Hermann–Mauguin notation, 

where the first character refers to the primary symmetry direction (six-fold 

rotation axis) and the second and third characters refer to the secondary and 

tertiary symmetry directions (mirror planes). 

The quasi-electrostatic approximation indicates that there is almost no 

change in the magnetic field with time. Thus, Faraday’s law (2.150) can be 

simplified to 

 0=×∇ E . (2.208) 

As a result, the electric field E is related to a scalar function called the 

electric potential φ through 

 φ−∇=E . (2.209) 

The quasi-magnetostatic approximation indicates that there is almost no 

change in the electric displacement with time. Thus, Ampere’s law (2.152) 

can be simplified to 

 ejH =×∇ . (2.210) 

If the electric current can be ignored, the magnetic field H is related to a 

scalar function called the magnetic potential ψ
 
through 

 ψ−∇=H . (2.211) 

For some applications, both quasi-electrostatic and quasi-magnetostatic 

approximations may be made without loss of accuracy. Since the basic field 

equations for anisotropic magneto-electro-thermo-elastic problems have a 

similar mathematical structure to those for anisotropic elastic and 

thermoelastic problems, the existing solution procedures in anisotropy 

elasticity as reviewed by Ting (1996, 2000) can be readily extended to 

multifield analysis. Among the powerful techniques for solving two-

dimensional problems in anisotropic elastic materials, the Lekhnitskii 

formalism (Lekhnitskii, 1950) starts with the stress functions and then the 

compatibility equations, whereas the Stroh formalism (Stroh, 1958) starts 

with the displacements and then the equilibrium equations. The solution 

techniques for crack problems in electromagnetic materials will be 

discussed in Chapters 4–8. 
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Chapter 3 

Introduction to Thermoviscoelasticity 

Hysteresis effects pose new challenges for the modeling of deformation 

and fracture processes in time-dependent materials. In this chapter, we 

will outline the basic equations of thermoelasticity, viscoelasticity and 

thermoviscoelasticity as prerequisites for understanding the subject 

matter in later chapters. Further information may be found in the books 

by Williams (1973), Eringen (1980), Ferry (1980), Christensen (1982), 

Ward (1983) and Fung and Tong (2001). The reader who is familiar with 

these theories may skip this chapter.  

3.1 Thermoelasticity 

Consider an anisotropic thermoelastic body subjected to external forces 

and heating. The reference state is taken as the initial stress-free state at 

the reference absolute temperature, 0T . The temperature change from the 

reference state is 

 0T Tθ = − , (3.1) 

where T is the instantaneous absolute temperature. 

A transient coupled thermoelastic problem is mathematically 

formulated with basic equations and appropriate boundary and initial 

conditions as follows. 

Equation of continuity: 

 ,i ivρ ρ= −� . (3.2) 

Equations of motion: 

 
,

ˆ
i ij j iv fρ σ ρ= +� . (3.3) 
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Infinitesimal strain-displacement relation:  

 , ,

1
( )

2
ij i j j iu uε = + . (3.4) 

Duhamel–Neumann relation: 

 ij ijkl kl ijcσ ε β θ= − . (3.5) 

Fourier’s law for heat conduction: 

 ,

q

i ij jj k θ= − . (3.6) 

Heat transfer equation: 

 0 ,

q

kl kl v i i
T C jρ β ε ρ θ+ = −�� . (3.7) 

Initial conditions: 

 
0

0t t=
=u u , (3.8) 

 
0

0t t=
=u v� , (3.9) 

 
0

0
t t

θ
=

= . (3.10) 

Boundary conditions: 

 B=u u   on uS , (3.11) 

 B⋅ =n tσσσσ   on Sσ , (3.12) 

 Bθ θ=   on Sθ , (3.13) 

 q Bq⋅ =n j   on qS , (3.14) 

where [ ]S  refers to a certain part of the boundary: displacement is 

prescribed on uS , traction on 
σ

S  (the complement of uS ), temperature 

on Sθ , and heat flux on qS  (the complement of Sθ ). Therefore, we have 

uS S Sσ∪ =  and qS S Sθ ∪ = . Other mixed boundary conditions may 

also be possible which satisfy the existence and uniqueness theorem 

(Eringen, 1980; Fung and Tong, 2001).  

It is usually rather difficult to solve boundary-initial value problems 

involving coupled effects under transient conditions. As discussed by 

Fung and Tong (2001), uncoupled, quasi-static approximations may be 

made in most engineering applications by omitting the coupling term in 
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the heat transfer equation (3.7) and the inertia term in the equations of 

motion (3.3). 

3.2 Viscoelasticity 

Viscoelastic materials such as polymers display the characteristics of 

both elastic solids and viscous fluids. Accelerated test methods have 

been developed based on the time-temperature superposition principle 

(TTSP) under the approximation that at higher temperatures and shorter 

time periods a polymeric material will behave the same as at lower 

temperatures and longer time periods. The material behavior can be 

modeled by various combinations of springs and dashpots to represent 

elastic and viscous components. The simplest models of linear 

viscoelasticity are the Maxwell model and the Kelvin–Voigt model  

(Ward, 1983; Fung and Tong, 2001), which comprise an elastic spring 

and a viscous dashpot in series or parallel (Fig. 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    (a)                                                  (b) 

 
Fig. 3.1. Simplest models of linear viscoelasticity: (a) Maxwell model and (b) Kelvin–

Voigt model. 
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For the Maxwell model, the spring stress is equal to the dashpot 

stress, and the total strain is a sum of the spring strain and the dashpot 

strain. Thus, we have 

 
1

m m

d d

dt E dt

ε σ σ

η
= + . (3.15) 

By integration with a specified step function for strain 0 ( )h tε ε= , Eq. 

(3.15) becomes 

 0( ) expm

t
t Eσ ε

τ

 
= − 

 
, (3.16) 

where /m mEτ η=  is called the relaxation time. 

The generalized Maxwell model is represented by multiple Maxwell 

elements arranged in parallel, that is, 

 
' '

'

'

( )
( ) exp

t

n

n n

t t d t
t E dt

dt

ε
σ

τ−∞

 −
= − 

 
∑ ∫ , (3.17) 

where nE  and nτ  are the spring constant and the relaxation time of the 

n
th
 Maxwell element.  

The above summation can be written as a convolution integral 

 
'

' '

'

( )
( ) ( )

t d t
t G t t dt

dt

ε
σ

−∞
= −∫ , (3.18) 

where ( )
0

( ) ( )exp /
r

G t G H t dτ τ τ
∞

= + −∫  is called the relaxation 

function, rG  is the relaxed modulus, and ( )H τ  is the relaxation time 

spectrum. 

Let ( )ij tσ  and ( )ij tε  be the stress and strain tensors defined in the 

time interval t−∞ < < ∞ . Equation (3.18) can be extended to a three-

dimensional, anisotropic constitutive law of the relaxation type: 

 
'

' '

'

( )
( ) ( )

t
kl

ij ijkl

d t
t G t t dt

dt

ε
σ

−∞
= −∫ , (3.19) 

where ( )ijklG t  is called the tensorial relaxation function. 

By contrast, for the Kelvin–Voigt model, the spring strain is equal to 

the dashpot strain, and the total stress is a sum of the spring stress and the 

dashpot stress. Thus, we have 
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 .v v

d
E

dt

ε
σ ε η= +  (3.20). 

By integration with a specified step function for stress, 0 ( )h tσ σ= , 

Eq. (3.20) becomes 

 0 1 exp
v

t

E

σ
ε

τ

  
= − −  

  
, (3.21) 

where /v vEτ η=  is called the retardation time. 

The generalized Kelvin–Voigt model is represented by multiple 

Kelvin–Voigt elements arranged in series, that is, 

 
' '

'

'

1 ( )
( ) 1 exp ,

t

n n n

t t d t
t dt

E dt

σ
ε

τ−∞

  −
= − −  

   
∑ ∫  (3.22) 

where nE  and nτ  are the spring constant and the retardation time of the 

n
th
 Kelvin–Voigt element, respectively. 

The above summation can be written as a convolution integral 

 
'

' '

'

( )
( ) ( ) ,

t d t
t J t t dt

dt

σ
ε

−∞
= −∫  (3.23) 

where ( )
0

( ) ( )[1 exp / ]
u

J t J L t dτ τ τ
∞

= + − −∫  is called the creep function, 

uJ  is the instantaneous compliance, and ( )L τ  is the retardation time 

spectrum. 

Similarly, Eq. (3.23) can be extended to a three-dimensional, 

anisotropic constitutive law of the creep type: 

 
'

' '

'

( )
( ) ( ) ,

t
kl

ij ijkl

d t
t J t t dt

dt

σ
ε

−∞
= −∫  (3.24) 

where ( )ijklJ t  is called the tensorial creep function. 

It has been shown that the inverse of Eq. (3.19) exists and can be 

written as Eq. (3.24) if ( )ijklG t  is twice differentiable and the initial value 

of ( )ijklG t  at 0t =  is nonzero (Gurtin and Sternberg, 1962). Discussions 

on the thermodynamic restrictions on these functions and applications of 

the Laplace transform to solving linear viscoelastic problems can be 

found in the books by Christensen (1982) and Fung and Tong (2001). 
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3.3 Coupled Theory of Thermoviscoelasticity 

The fundamental principles of thermodynamics have been applied to 

physical, chemical, mechanical, and biological processes in several ways 

(e.g., Groot and Mazur, 1962; Eringen, 1980; Truesdell, 1984; Muller 

and Ruggeri, 1993; Fung and Tong, 2001; Truesdell and Noll, 2004). As 

pointed out by Schapery (2000) in an overview of constitutive, fracture, 

and strength models for nonlinear viscoelastic solids, nonequilibrium 

thermodynamic approaches are, essentially, of two types. In state-

variable thermodynamics, the free energy is expressed as a function of 

current strain (stress), temperature, and other variables, including so-

called internal state variables (e.g., Coleman and Gurtin, 1967; Rice, 

1971; Schapery, 1969, 1994, 1997, 1999; Horstemeyer and Bammann, 

2010). In functional thermodynamics, the free energy is expressed as a 

functional of the histories of strain (stress), temperature, etc. (e.g., 

Coleman, 1964; Crochet and Naghdi, 1969; Cost, 1973; Eringen, 1980; 

Christensen, 1982; Lustig et al., 1996; Caruthers et al., 2004; Chen and 

Wang, 2006). The use of “functional” as a mathematical term originates 

in the calculus of variations, which is concerned with the minimization of 

a functional with its arguments as functions. Here, we will summarize 

the thermodynamic formulation of a coupled theory of 

thermoviscoelasticity at finite deformation. 

3.3.1   Fundamental principles of thermodynamics 

Based on the first principle of thermodynamics, the local balance 

equations of mass, momentum, moment of momentum, and energy are 

given by 

 
d

dt

ρ
ρ= − ∇ ⋅ v , (3.25) 

 ˆd

dt
ρ ρ= ∇ ⋅ +

v
fσσσσ , (3.26) 

 T =σ σσ σσ σσ σ , (3.27) 

 
ˆ

:q

de

dt
ρ = −∇ ⋅ + ∇j vσσσσ , (3.28) 
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where ρ  is mass density, =v u�  is velocity, u is displacement, f̂  is 

mechanical body force per unit mass, σ  is the Cauchy stress tensor, ê  is 

internal energy per unit mass, and qj  is heat flux. 

Based on the second principle of thermodynamics, the entropy 

production inequality is given by  

 
ˆ ˆ 1

0i

s

d s ds

dt dt ρ
≡ + ∇ ⋅ ≥j , (3.29) 

where ŝ  is the entropy per unit mass and sj  is the entropy flux. 

In the reference configuration RV , the entropy production inequality 

can be rewritten as 

 
0

ˆ ˆ 1
0i

R s

d s ds

dt dt ρ
= + ∇ ⋅ ≥J , (3.30) 

where 0ρ  is the mass density in the reference configuration, 
1

s s
j

−= ⋅J F j  is the entropy flux in the reference configuration, 

0 / det( )j ρ ρ= = F  is the Jacobian determinant, /= ∂ ∂F x X  is the  

deformation gradient, X is the position in the reference configuration, 

and ( , )t=x Xχχχχ  is the position in the current configuration. 

3.3.2   Formulation based on Helmholtz free energy functional 

With the use of the Helmholtz free energy ˆ ˆ ˆh e Ts= − , the local energy 

balance equation (3.28) can be rewritten in the reference configuration 

RV  as 

 
0 0 0

ˆˆ 1 1 1 1 1 1
ˆ:

2

q

R q R

ds dh
sT

dt T T T T T dtρ ρ ρ
= − ∇ ⋅ + ⋅∇ + − −

J
J C� �ΣΣΣΣ , (3.31) 

where T is absolute temperature, 1

q qj
−= ⋅J F j  is heat flux in the 

reference configuration, 1 T
j

− −= ⋅ ⋅Σ F σ F  is the second Piola–Kirchhoff 

stress tensor, and T= ⋅C F F  is the right Cauchy–Green deformation 

tensor. 

The Lagrange strain measure and the temperature deviation are given 

by 

 
1

( )
2

= −C IΕΕΕΕ , (3.32) 
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 0T Tθ = −  . (3.33) 

The Helmholtz free energy is taken to be a functional of the histories 

of strain and temperature. In thermodynamics of materials with memory, 

the fading memory hypothesis states that the influence of long past 

events should be weaker than that of recent ones in determining the 

material response (Coleman and Noll, 1960; Coleman, 1964; Truesdell 

and Noll, 2004). Expansion of the Helmholtz free energy functional for 

materials with fading memory up to the second order yields 
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t t

dζ
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 (3.34) 

where 0ĥ  is the value of the Helmholtz free energy in the reference state 

(i.e., 0=ΕΕΕΕ , 0T T= ), ( , , ) ( , , )IJKL KLIJG t t G t tτ ζ ζ τ− − = − −X X , and  

( , , ) ( , , )H HC t t C t tτ ζ ζ τ− − = − −X X .  

Substituting Eqs. (3.31) and (3.34) into (3.30) and performing 

differentiation with respect to time using the Leibnitz rule, we obtain 
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 (3.35) 
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where 
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 (3.36) 

Since the entropy production inequality (3.35) is always valid, state 

equations should fulfill the following conditions: 
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0
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0

( , )
ˆ( , ) ( ) ( , ,0)

1 ( , )
( , ,0) ,
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IJ

IJ
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 (3.38) 

 
1

s q
T

=J J , (3.39) 

 
0

ˆˆ 1 1
0i

q R

d s

dt T Tρ

Λ
= ⋅∇ + ≥J , (3.40) 

where ( ,0, )IJKLG t ζ−X , ( , ,0)HC t τ−X , ( ,0, )IJ tβ ζ−X , and 

( , ,0)IJ tβ τ−X  are appropriate memory functions. 

The first terms 0

IJL  and 
0

M  on the right-hand sides of Eqs. (3.37) 

and (3.38) stand for the values of IJΣ  and 0ŝρ  in the reference state, the 

second terms for mechanical contribution, and the third terms for thermal 

contribution. It is shown from (3.40) that the total dissipation is 
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associated with heat conduction and time-dependent dissipation. Since 

the inequality (3.40) should always be satisfied, kinetic laws for specific 

irreversible processes may be determined accordingly.  

The time-dependent dissipation rate per unit mass satisfies the 

following inequality: 

 ˆ 0Λ ≥ . (3.41) 

It is proposed that the thermodynamic flux for heat conduction 

depends linearly on the corresponding thermodynamic force, that is, 

 
1ˆqq

q R
T

= ⋅∇J L , (3.42) 

where ˆ ˆqqT qq=L L  is positive definite. 

Substituting (3.38) and (3.42) into (3.31) yields the following coupled 

heat transfer equation based on the Helmholtz free energy functional: 
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X
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L

 (3.43) 

where the integral involving the strain history gives rise to a coupling 

between thermal and mechanical effects. 

3.3.3   Formulation based on Gibbs free energy functional 

With Gibbs free energy 0
ˆ ˆ ˆ :g e Ts ρ= − − Σ ΕΣ ΕΣ ΕΣ Ε , the local energy balance 

equation (3.28) can be rewritten in the reference configuration RV  as 

     
0 0 0

ˆ ˆ1 1 1 1 1 1
ˆ:

q

R q R

ds dg
sT

dt T T T T T dtρ ρ ρ
= − ∇ ⋅ + ⋅∇ − − − −

J
J ��Σ ΕΣ ΕΣ ΕΣ Ε . (3.44) 

The Gibbs free energy is taken to be a functional of the histories of 

stress and temperature. Expansion of the Gibbs free energy functional for 

materials with fading memory up to the second order yields 
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 (3.45) 

where 0ĝ  is the value of the Gibbs free energy in the reference state (i.e., 

0=ΣΣΣΣ , 0T T= ), ( , , ) ( , , )IJKL KLIJJ t t J t tτ ζ ζ τ− − = − −X X , and 

( , , ) ( , , )G GC t t C t tτ ζ ζ τ− − = − −X X .  

Substituting Eqs. (3.44) and (3.45) into (3.30) and performing 

differentiation with respect to time using Leibnitz rule, we obtain 
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where 



Fracture Mechanics of Electromagnetic Materials 

 
66

          

0

0

( , ) ( , )ˆ

( , ) ( , )

( , , ) ( , ) ( , )1

2

( , , ) ( , ) ( , )

( , , )1 ( , )

2

t
IJ IJ

t

t t
IJKL IJ KL

t t
IJ IJ

G

L t
d

t

M t
d

t

J t t
d d

t

t t
d d

t

C t t

T t

τ τ
ρ τ

τ

τ θ τ
τ

τ

τ ζ τ ζ
τ ζ

τ ζ

α τ ζ τ θ ζ
τ ζ

τ ζ

τ ζ θ τ θ

τ

−∞

−∞

−∞ −∞

−∞ −∞

∂ − ∂Σ
Λ =

∂ ∂

∂ − ∂
+

∂ ∂

∂ − − ∂Σ ∂Σ
+

∂ ∂ ∂

∂ − − ∂Σ ∂
+

∂ ∂ ∂

∂ − − ∂ ∂
+

∂ ∂

∫

∫

∫ ∫

∫ ∫

X X

X X

X X X

X X X

X X ( , )
.

t t

d d
ζ

τ ζ
ζ−∞ −∞ ∂∫ ∫
X

 (3.47) 

Since the entropy production inequality (3.46) is always valid, the 

state equations should fulfill the following conditions: 
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1

s q
T

=J J , (3.50) 

 
0

ˆˆ 1 1
0i

q R

d s

dt T Tρ

Λ
= ⋅∇ + ≥J , (3.51) 

where ( ,0, )IJKLJ t ζ−X , ( , ,0)GC t τ−X , ( ,0, )IJ tα ζ−X , and 

( , ,0)IJ tα τ−X  are appropriate memory functions. 

The first terms 0

IJ
L  and 

0
M  on the right-hand sides of Eqs. (3.48) 

and (3.49) stand for the values of IJΕ  and 0ŝρ  in the reference state, the 

second terms for mechanical contribution, and the third terms for thermal 

contribution. It is shown from (3.51) that the total dissipation is 

associated with heat conduction and time-dependent dissipation. Since 
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the inequality (3.51) should always be satisfied, kinetic laws for specific 

irreversible processes may be determined accordingly.  

The time-dependent dissipation rate associated with the hysteresis 

effect satisfies the inequality 

 ˆ 0Λ ≥ . (3.52) 

It is proposed that the thermodynamic flux for heat conduction 

depends linearly on the corresponding thermodynamic force, that is, 

 
1ˆqq

q R
T

= ⋅∇J L , (3.53) 

where 
qqT qq=L L  is positive definite. 

Substituting (3.49) and (3.53) into (3.44) yields the following coupled 

heat transfer equation based on the Gibbs free energy functional: 
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 (3.54) 

where the integral involving the stress history gives rise to a coupling 

between thermal and mechanical effects. 

3.4 Thermoviscoelastic Boundary-Initial Value Problems 

Coupled thermoviscoelastic boundary-initial value problems can be 

formulated with the balance equations of mass (3.25), linear momentum 

(3.26) and angular momentum (3.27), Green strain measure (3.32), 

constitutive relations (3.37) or (3.48), and heat transfer equation (3.43) or 

(3.54), as well as appropriate boundary and initial conditions. 

In the small-strain formulation, the basic equations of coupled 

thermoviscoelasticity are summarized as follows: 

Equation of continuity: 

 ,i ivρ ρ= −� . (3.55) 
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Equations of motion: 

 
,

ˆ
i ij j iv fρ σ ρ= +� . (3.56) 

Infinitesimal strain-displacement relation:  

 , ,

1
( )

2
ij i j j iu uε = + . (3.57) 

Constitutive relation based on Helmholtz free energy functional: 
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Constitutive relation based on Gibbs free energy functional: 
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Heat transfer equation based on Helmholtz free energy functional: 
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Heat transfer equation based on Gibbs free energy functional: 
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Initial conditions are taken as 
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 0( , )t =u x u  ( 0t < ), (3.60) 

 0( , )t =u x v�  ( 0t = ), (3.61) 

 ( , ) 0tθ =x  ( 0t < ). (3.62) 

Boundary conditions are given by 

 ( , )B t=u u x  on uS  ( 0t ≥ ), (3.63) 

 ( , )B t⋅ =n t xσσσσ  
on 

σ
S

 
( 0t ≥ ), (3.64) 

 ( , )B tθ θ= x  on Sθ  
( 0t ≥ ) , (3.65) 

 ( , )q Bq t⋅ =n j x  on qS
 
( 0t ≥ ) , (3.66) 

where [ ]S  refers to a certain part of the boundary: displacement is 

prescribed on uS , traction on 
σ

S  (the complement of uS ), temperature 

on Sθ , and heat flux on qS  (the complement of Sθ ). Hence, we have 

uS S Sσ∪ =  and qS S Sθ ∪ = . Like thermoelastic problems, other mixed 

boundary conditions for thermoviscoelastic problems may also be used.  

Integral transform methods provide a useful tool for solving such 

problems. After an integral transform, such as the Laplace transform, is 

applied to the basic equations for thermoviscoelastic boundary-initial 

value problems, the transformed boundary value problems can be solved 

in a manner similar to that for thermoelastic problems. The final 

thermoviscoelastic solution is then obtained upon inversion of the 

transformed solution. This analogy is often referred to as the 

correspondence principle. For establishment of the existence and 

uniqueness of solutions for linear viscoelastic and thermoviscoelstic 

boundary-initial value problems, the reader may refer to the paper by 

Onat and Breuer (1963) and the book by Christensen (1982). 
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Chapter 4 

Overview on Fracture of Electromagnetic 
Materials 

4.1   Introduction 

Electromagnetic materials have broad civilian and defense applications 
such as infrastructure monitoring, electronic packaging, novel antenna 
designs, and biomedical devices, due to their remarkable multifunctional 
properties. Energy can be converted from one form to another due to 
interactions between magnetic, electric, thermal, and mechanical effects. 
However, a major concern of these materials is their susceptibility to 
cracking whilst in service (Fig. 4.1). Fracture of these smart material 
systems has become the subject of active research over the past few 
decades because of the rapid development of these new kinds of 
multifunctional materials for various engineering applications (for 
example, see review articles or book chapters by Qin, 2001; Trimarco 
and Maugin, 2001; Zhang et al., 2002; Chen and Lu, 2003; Zhang and 
Gao, 2004; Chen and Hasebe, 2005; Schneider, 2007; Wang et al., 2009; 
Kuna, 2010 including the references cited therein). A general consensus 
is that a major challenge is how to resolve the fundamental discrepancies 
between theoretical predictions and experimental results on crack 
propagation in piezoelectric materials. In this chapter, a summary on 
linear piezoelectric/piezomagnetic fracture mechanics is given, covering 
basic field equations, general solution procedures, crack-face boundary 
conditions, fracture criteria, and experimental observations. Some 
nonlinear problems for which the linear theory is not sufficient will also 
be discussed. 



Overview on Fracture of Electromagnetic Materials 71 

 

 
Fig. 4.1. A crack in a PZT multilayer actuator. (From Kuna, 2010, with permission from 
Elsevier). 

4.2   Basic Field Equations 

The fundamental concepts of fracture mechanics and the elements of 
electrodynamics are described in Chapters 1 and 2, respectively. The 
body of knowledge developed for describing the fracture behavior of 
piezoelectric materials within the framework of the classical linear 
theory of piezoelectricity (Voigt, 1910) is referred to as linear 
piezoelectric fracture mechanics (LPFM). The extension of LPFM to 
electromagnetic materials inherits the same limitations and drawbacks.  

For a simple illustration, the basic field equations in the absence of 
temperature change ( 0T ) and electricity conduction ( 0ej ) under 
the quasi-static approximation for the electromagnetic fields are 
summarized as follows: 

 kkijkkijklijklij HhEec   , (4.1) 

 jijjijjkijki HgEeD   , (4.2) 

 jijjjijkijki HEghB   , (4.3) 
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 )(
2

1
,, ijjiij uu  , (4.4) 

 iiE , , (4.5) 

 iiH , , (4.6) 

 iijij uf   ˆ
, , (4.7) 

 fii qD , , (4.8) 

 0, iiB , (4.9) 

where ijlkjiklklijijkl cccc  , kjikij ee  , kjikij hh  , jiij   , and 

jiij   . 
The boundary conditions for a cracked body are given by 

 f ]][[Dn ,  0]][[  En ,  0]][[  Bn ,  0]][[  Hn , (4.10) 

 0]][[  n ,  (4.11) 

where ]][[  represents the jump of the field quantity inside the double 
square brackets across a surface of discontinuity (see Fig. 4.2), n is the 
unit normal vector, and f  is the surface charge density. 

The initial conditions are taken as 

 0
0

uu 
tt

, (4.12) 

 0
0

vu 
tt

 . (4.13) 

 
 
 
 
 
 
 
 
 
 

Fig. 4.2. Jump of field quantity f across a surface of discontinuity between two regions. 
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4.3   General Solution Procedures 

Static and dynamic crack problems may be solved by a variety of 
techniques. Barnett and Lothe (1975) first extended the Stroh formalism 
in anisotropic elasticity to treatment of dislocations and line charges in 
anisotropic piezoelectric insulators. Shindo (1977, 1978) studied the 
distribution of mechanical and magnetic fields in an infinite body with a 
planar or penny-shaped crack by the integral transform following a linear 
theory for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Deeg 
(1980) generalized the distributed dislocation approach to piezoelectric 
crack and inclusion problems. Sosa and Pak (1990) conducted an 
eigenfunction analysis of a crack in a piezoelectric material. Sosa (1991) 
started with stress functions and obtained solutions for plane problems in 
piezoelectric media with defects based on the extended Lekhnitskii 
formalism. Pak (1992) applied the dislocation approach to linear electro-
elastic fracture. Suo et al. (1992) solved crack problems in piezoelectrics 
or on the interfaces between piezoelectrics and other materials based on 
the extended Stroh formalism. Dunn (1994) examined the fracture of 
piezoelectric solids based on the equivalent inclusion method of Eshelby 
(1957). Dascalu and Maugin (1995) analyzed dynamic fracture problems 
for piezoelectric materials with inertial effects using the extended Stroh 
formalism. Li and Mataga (1996a–b) described the Bleustein–Gulyaev 
surface wave phenomenon for the propagation of a semi-infinite crack in 
piezoelectric materials using the Laplace transform, Wiener–Hopf, and 
Cagniard–de Hoop techniques. Shindo et al. (1996) and Narita and 
Shindo (1998) reduced the problem of a finite crack subjected to 
longitudinal waves in a dielectric medium or horizontal shear waves in a 
piezoelectric medium to a Fredholm integral equation of the second kind 
by means of the Fourier transform. Qin and Mai (1998) explored the 
application of the thermoelectroelastic Green’s function. Meguid and 
Wang (1998) and Wang and Meguid (2000) studied the dynamic 
behavior of piezoelectric materials containing interacting cracks using 
integral transform techniques and Chebyshev polynomial expansions. 
Finite element method (FEM) and boundary element method (BEM) 
have also been employed for solving complicated thermo-electro-
mechanical boundary-initial value problems (Qin, 2001; Kuna, 2010).  
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These typical solution techniques can be readily extended to analysis 
of magneto-electro-thermo-elastic inclusion or crack problems (e.g., 
Alshits et al., 1995; Chung and Ting, 1995; Kirchner and Alshits, 1996; 
Huang et al., 1998; Li, 2000; Liu et al., 2001; Sih et al., 2003; Wang and 
Mai, 2003, 2007a; Gao et al., 2004; Du et al., 2004; Hu and Li, 2005; 
Zhong and Li, 2006; Hu et al., 2007; Feng et al., 2007; Zhong et al., 
2009). As one of the most commonly used techniques for a planar crack 
in anisotropic magneto-electro-elastic materials (Fig. 4.3), the solution 
procedure based on the extended Stroh formalism is illustrated below.  

 
 
 
 
 
 
 
 
 
 

Fig. 4.3. A planar crack in an anisotropic magneto-electro-elastic material. 

 
In the shorthand notation used by Barnett and Lothe (1975), a general 

solution is sought with consideration of displacement components, 
electric potential, and magnetic potential: 

 )(zfau mm   (m = 1,2,…,5),  (4.14) 

where 4u , 5u , the function f is analytic in the complex variable 

21 pxxz  , and p and ma  are complex numbers to be determined from 
the governing equations. 

In the absence of mechanical body forces, inertial effects, and free 
electric charges, the basic field equations given in Section 4.2 lead to 

 0])([ 2  aTRRQ ppT , (4.15) 

with Taaaaa ),,,,( 54321a  and the 55 matrices: 

 

r 

x1 

x2 
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Nontrivial solutions are obtained if p is a root of 

 0])(det[ 2  ppT TRRQ . (4.17) 

There is a total of ten eigenvalues from Eq. (4.17) which consists of 
five pairs of complex conjugates. We suppose that p  ( 5,,2,1  ) are 
five distinct roots with positive imaginary parts and construct a 55 
matrix ][ mAA  with columns which are the associated eigenvectors. 
Then, the general solution is given by 

 


5

1

5

1
)()(





 zfAzfAu mmm , (4.18) 

where 21 xpxz    and over-bars denote complex conjugates. 
Hence, stress, electric displacement, and magnetic induction are 

expressed as 
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where  pARpQATpRL mnmnmmnmmnn /)()(   can be used 
to construct a 55 matrix ][ nLL ,  dzzdfzf )()('  . 

The analytical functions )(  zf  can be determined for a given 
boundary value problem in magneto-electro-elasticity with a similar 
solution structure to that in piezoelectricity.    

4.4   Debates on Crack-Face Boundary Conditions 

Debates exist about the selection of crack-face boundary conditions in 
piezoelectric materials, as reviewed by Zhang et al. (2002). The electric 
boundary conditions are considered for “insulating” or “conducting” 
cracks. The former is compatible with the crack interior filled by 
vacuum, air, or oil, whereas the latter is compatible with the crack 
interior filled by a conducting medium. Four sets of electrical boundary 
conditions on insulating crack faces have been adopted – exact, 
electrically permeable, impermeable, and semi-permeable. Since the 
exact boundary-initial value problems need to be solved in both the 
cracked solid region and the interior vacuum region, approximations 
have often been made for analyzing slit crack problems. 

Parton (1976) made the first attempt to define the electric boundary 
conditions over crack faces by considering both the electric displacement 
and the electric potential continuous across a traction-free slit: 

   nn DD ,    , (4.25) 

where the subscript “n” denotes the component normal to the crack faces  
and the superscripts “+” and “” denote the upper and lower crack faces. 

However, there may be a potential drop across the piezoelectric 
crack, which can be assumed to be a low-capacitance medium. Deeg 
(1980), Pak (1990, 1992), and Suo et al. (1992), among others, imposed 
the electrically impermeable condition on the crack faces:  

 0 
nn DD . (4.26) 

Later, Hao and Shen (1994) provided the semi-permeable condition 
across the crack faces, that is, 

   nn DD ,  )()(   cnnn uuD , (4.27) 
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where c  is the dielectric permittivity of the crack.  
The electric boundary condition on crack faces for conducting 

(electroded) crack problems is 

 0   . (4.28) 

To determine the effect of the dielectric medium inside a crack on the 
electric boundary condition, McMeeking (1989), Zhang and Tong 
(1996), and Zhang et al. (1998) introduced the parameter 

)/)(/( abfm   to study an elliptical, flaw-like crack in electrostrictive 
and piezoelectric materials, where ab /  is the flaw aspect ratio, a and b 
are the semi-axes of the ellipse (a>b), and fm  /  is the ratio of the 
dielectric permittivity of the surrounding material to that of the flaw 
interior. Likewise, Gao et al. (2004) used two parameters 

)/)(/( abfm
e    and )/)(/( abfm

m    for a mode-III, elliptical, 
flaw-like crack in a magneto-electro-elastic solid, where fm  /  is the 
ratio of the magnetic permeability of the surrounding material to that of 
the flaw interior. The crack is impermeable if e  and m , 
permeable if 0e  and 0m , and semi-permeable if e  and m  are 
nonzero finite constants. 

Xu and Rajapaske (2001) discussed the influence of different electric 
boundary conditions on an arbitrarily oriented crack by reducing an 
elliptical void solution to a crack solution using the extended Lekhnitskii 
formalism. Wang and Jiang (2004) studied the nonlinear fracture 
behavior of an arbitrarily oriented crack in a piezoelectric medium 
considering the deformed crack geometry. Landis (2004) proposed 
energetically consistent boundary conditions for electromechanical 
fracture. Haug and McMeeking (2006) also investigated cracks with 
surface charge in poled ferroelectrics.  

Furthermore, Wang and Mai (2007a) examined four ideal crack-face 
electromagnetic boundary condition assumptions: (i) electrically and 
magnetically impermeable, (ii) electrically impermeable and 
magnetically permeable, (iii) electrically permeable and magnetically 
impermeable, and (iv) electrically and magnetically permeable. In 
addition, Gao et al. (2008) studied the effects of applying only a 
magnetic field to a magnetically permeable crack in a soft ferromagnetic 
solid, including the Maxwell stresses in the boundary conditions, not 
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only on the crack faces, but also at infinity. It is found that all the field 
variables are uniform, which means that there is no crack-tip field 
singularity when a mathematical slit crack is dealt with in this case. 

In practice, the crack-face electromagnetic boundary condition may 
be expressed as 

 0
nnn DDD   , 0

nnn BBB   , (4.29) 

where 0
nD  and 0

nB  are either prescribed for the impermeable condition or 
determined through the permeable or semi-permeable condition.  

4.5 Fracture Criteria 

A fracture criterion can be used to determine whether or not a crack 
advances by comparison of the crack driving force with the crack 
resistance. The extension of classical fracture criteria to combined 
magnetic, electric, and mechanical loadings is summarized below in 
terms of field intensity factors, path-independent integral, mechanical 
strain energy release rate, as well as global and local energy release rates. 

4.5.1   Field intensity factors 

Like linear elastic crack solutions, stress, electric displacement, and 
magnetic induction at the crack tip exhibit the traditional inverse square- 
root singularity (Fig. 4.4). The asymptotic near-tip fields can be 
expressed in terms of the crack-tip polar coordinates (r, ) as 
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where IK , IIK , IIIK  are the mode-I, mode-II, and mode-III stress 
intensity factors, DK  is the electric displacement intensity factor, BK  is 
the magnetic induction intensity factor, and the functions )(I

ij , )(II
ij  

)(III
ij , )(IV

ij , and )(V
ij  prescribe angular variations (Wang and 

Mai, 2003; Kuna, 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.4. Singular crack-tip fields. 

 
At a distance r ahead of the crack tip along the crack plane ( 0 ), 

the near-tip fields can be expressed as 

 k
r

BD T




2

1
),,,,( 22232221  , (4.33) 

where T
BDIIIIII KKKKK ), ,,,(k  is the field intensity factor vector. 

For a conventional Griffith-type crack of length 2a, the crack-tip field 
intensity factor vector is related to the remote and crack-face loadings by 

 aBBDD T  ),,,,( 0
22

0
22

0
2323

0
2222

0
2121  k .(4.34) 

It can be seen that, at the crack tip, the stress fields are decoupled 
from the electromagnetic fields within the framework of the linear theory 
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of piezoelectricity and its extension. It should also be noted that the 
internal stress field induced by domain switching under cyclic electric 
loading may cause fatigue damage in ferroelectric materials, even in the 
absence of an applied mechanical load. Thus, the local stress intensity 
factor based on domain switching models (e.g., Lynch et al., 1995; Zhu 
and Yang, 1997, 1999; Yang and Zhu, 1998) has been used in a fracture 
criterion to predict crack growth in ferroelectrics under small-scale 
switching conditions, similar to small-scale yielding conditions for 
metals. 

4.5.2   Path-independent integral 

Many efforts (e.g., Cherepanov, 1979; Pak and Hermann, 1986a–b; Pak, 
1990; McMeeking, 1990; Maugin and Epstein, 1991; Suo et al., 1992; 
Maugin et al., 1992; Dascalu and Maugin, 1994; Maugin, 1994; 
Trimarco and Maugin, 2001; Wang and Mai, 2003) have been devoted to 
extend the basic concepts of the energy-momentum tensor and the path-
independent integral of Eshelby (1951, 1956, 1970, 1975), Cherepanov 
(1967, 1968) and Rice (1968) to linear and nonlinear electromechanical 
and magneto-electro-mechanical problems. It should be noted that all the 
theoretical treatments of these fracture mechanics models take the path-
independent integral constructed with use of the electric enthalpy or the 
electromagnetic enthalpy as the crack extension force.  

A straightforward derivation for linear magneto-electro-elastic media 
(Wang and Mai, 2003) starts with the differentiation of the 
electromagnetic enthalpy density 2/)(

~
iiiiijij HBEDf    with 

respect to the spatial coordinate kx : 
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where the subscript “expl” denotes the explicit dependence of f
~

 on kx . 



Overview on Fracture of Electromagnetic Materials 81 

With the use of the basic field equations (4.1)–(4.9) in the absence of 
inertial force, mechanical body force, and free electric charge, Eq. (4.35) 
can be rewritten as 

 jjk
k

b
x

f
,

expl

~





, (4.36) 

where the energy-momentum tensor jkb  is defined as 

 kjkjkijijkjk HBEDufb  ,

~  . (4.37) 

If there is no discontinuity in a material, the above divergence 
becomes zero. The energy-momentum tensor provides a general method 
for establishing invariant integrals. For example, the kJ -integral vector 
for a three-dimensional body bounded by the closed surface S with the 
outer unit normal vector n can be easily deduced using the divergence 
theorem as 

  
S jkjkjkijijkk dSnHBEDufJ )

~
( , . (4.38) 

The J-integral is the first component of the Jk-integral vector. For a 
generalized plane magneto-electro-elastic crack problem with the crack 
line along the x1-axis, it follows that 

   dsHBnEDnunnfJ jjjjijij )
~

( 111,1  , (4.39) 

where  is a contour surrounding the crack tip. 
As a generalization of the crack closure analysis by Irwin (1957), the 

path-independent J-integral constructed with the electromagnetic 
enthalpy can be evaluated from the field intensity factors using the crack 
closure integral, that is, 
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where a  is the virtual crack extension and  denotes the jump between 
the upper and lower crack faces. 

Hence, the Irwin-type relation is obtained as 
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where )Re(2 1 ALH ii  is indefinite and sometimes referred to as the 
Irwin matrix (Lothe and Barnett, 1976; Suo et al., 1992; Kuna, 2010),  

1i , and the matrices A and L are given in Section 4.3. 
As the magnetic field becomes zero, the above formulae are reduced 

to those for piezoelectric materials. Consider a piezoelectric material 
with hexagonal crystal structure (class mm66 vC , see notations in 
Section 2.5) with the 3x -axis in the poling direction. Pak (1990) 
evaluated the J-integral for an antiplane crack problem for which a finite 
crack of length 2a is embedded in an infinite piezoelectric medium 
subjected to far-field mechanical and electric loads: 
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where 44c , 15e , and 11  are, respectively, shear modulus, piezoelectric 
constant, and dielectric constant,   is the far-field shear stress,   is 
the far-field shear strain, D  is the far-field electric displacement, and 

E  is the far-field electric field. 
Pak (1990) noticed that the J-integral constructed with the electric 

enthalpy is always negative in the absence of mechanical loading and the 
electric field would impede crack propagation, regardless of its direction, 
which is essentially different from the traditional role of the J-integral as 
the crack extension force. The more complicated in-plane crack solution 
predicted the same trend (Pak, 1992; Suo et al., 1992). However, this 
theoretical prediction is contradictory to experimental evidence (e.g., Pak 
and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et 
al. 1995; Park and Sun, 1995a–b; Zhang et al., 2002; Chen and Lu, 
2003).  
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A fracture criterion based on the J-integral formulated from the 
electromagnetic enthalpy indicates that the presence of an 
electric/magnetic field, either positive or negative, should elevate the 
critical load. Hence, an even dependence exists between the critical load 
and the applied electric/magnetic field. As remarked by Chen and Lu 
(2003), whether or not the J-integral thus formulated can be a candidate 
for a piezoelectric fracture criterion has been a long-standing 
controversial issue and some have even used chaos to describe the 
contentious situation. The fundamental discrepancy between 
experimental observations and theoretical predictions has hindered the 
development of the piezoelectric fracture theory, instigating numerous 
attempts to resolve this controversy (e.g., Park and Sun, 1995a–b; Gao et 
al., 1997; Sih and Zuo, 2000; Fulton and Gao, 2001; McMeeking, 2001, 
2004; Li, 2003a–b; Landis, 2004; Zhang et al., 2005).  

4.5.3   Mechanical strain energy release rate 

Park and Sun (1995a–b) first pointed out that the path-independent 
integral formulated from the electric enthalpy could not be directly used 
as a fracture criterion for piezoelectric materials. Instead, they proposed 
that the mechanical strain energy release rate (MSERR) is a dominant 
parameter governing piezoelectric fracture.  

By definition, the mechanical strain energy release rate is expressed 
as the mechanical part of the crack closure integral:  
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Thus, the mechanical strain energy release rate is related to the field 
intensity factors by 
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Consider a Griffith-type crack of length 2a in PZT-4 piezoelectric 
ceramics poled along the x2-axis under remote loads 

22  and 
2D  (Fig. 

4.5). The crack plane is perpendicular to the poling axis. The mechanical 
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strain energy release rate and the potential energy release rate are 
obtained as (Park and Sun, 1995a–b) 
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Fig. 4.5. A Griffith-type crack perpendicular to the poling axis under remote loads. 

 
It can be seen that the mechanical strain energy release rate MG  is 

essentially different from the potential energy release rate G. Since MG  
is an odd function of the electric displacement intensity factor, an applied 
electric field may either promote or retard crack propagation, depending 
on its direction. In their landmark study (Park and Sun, 1995a–b), the 
MSERR criterion agreed roughly with experimental measurement of the 
critical load for a crack perpendicular to the poling axis in simple tension 
and three-point bend PZT-4 specimens. They argued that it may be more 
suitable to take only the mechanical strain energy released during crack 
extension as the fracture criterion, since fracture is a mechanical process.  
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4.5.4   Global and local energy release rates 

For a better understanding of the fracture mechanisms in piezoelectric 
ceramics under combined mechanical and electrical loadings, Gao et al. 
(1997) proposed the concept of global and local energy release rates 
based on a strip saturation model, via a simplified electroelasticity 
formulation. Figure 4.6 illustrates a view of multiscale singularity fields 
in piezoelectric fracture. Inspired by the classic Dugdale model for 
 

 
 
 
 
 
 
 
 
 

Fig. 4.6. Multiscale singularity fields in piezoelectric fracture. (After Gao et al., 1997, 
with permission from Elsevier). 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.7. A Dugdale-type electrically nonlinear crack perpendicular to the poling axis 
under remote loads. (After Gao et al., 1997, with permission from Elsevier). 
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plastic yielding of metal sheets containing slits (Dugdale, 1960), Gao et 
al. (1997) assumed that the electric polarization is saturated only in a line 
segment of length acrs   in front of each tip of a crack of length 2a 
under remote loads 

22  and 
2D  (Fig. 4.7).  

The boundary conditions along the electrically impermeable crack 
faces and the electrically nonlinear line segments are  

 axD  1222 at   ,0  ,0 ,   (4.50) 

 cxaDDuu s  
1222  at   ,  , ,   (4.51) 

where sD  is the saturation electric displacement. 
A local energy release rate is obtained by evaluating the J-integral 

along an infinitesimal local contour c , that is, 

 2
2

)(1
2  








 




eE
M

e

M

a
J c ,   (4.52) 

where the material constants M, e, and  represent, qualitatively, the 
elastic, piezoelectric, and dielectric properties. 

An “apparent” or global energy release rate is obtained by evaluating 
the J-integral along a global contour a , that is,  
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The strip saturation size is 
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Like the small-scale yielding condition for metals, the global energy 
release rate is reduced to that of a linear piezoelectric crack under the 
small-scale saturation condition ars  , that is, 
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Thus, a fracture criterion based on the local energy release rate 
indicates that the electric field can positively influence fracture of 
piezoelectric materials, which is notably different from a fracture 
criterion based on the global energy release rate. Nonetheless, the major 
difficulty is that the theoretical treatments are all incomplete – for 
example, ad hoc neglect the electric contribution to the energy release 
rate (Park and Sun, 1995a–b) or the energy dissipation by the saturation 
of the electrical polarization (Gao et al., 1997). 

4.6 Experimental Observations 

Despite the lack of experimental study on dynamic fracture of 
piezoelectric materials, increasing work has been done over the past few 
decades on experimental investigations of quasistatic crack propagation 
under combined electric and mechanical loadings. As reviewed by Zhang 
et al. (2002), there are discrepancies in experimental results, especially 
when the applied electric and mechanical fields are comparable in 
amplitude. Moreover, experimental data presented by different 
researchers sometimes contradict each other. It is a very important task to 
compare theoretical predictions with experimental results for various 
material systems, crack geometries, and loading combinations. A brief 
description is given in this section with a focus on the application of 
fracture mechanics concepts for explaining experimental observations.  

4.6.1   Indentation test 

The indentation technique has often been used for fracture toughness 
characterization of brittle materials due to its simplicity and economy 
(Anstis et al., 1981; Chantikul et al., 1981). A schematic illustration of 
the Vickers indentation technique is shown in Fig. 4.8. Inelastic 
deformation under the indenter would give rise to residual tensile stress 
at the crack front and, thus, propagates the radial crack to its final 
dimension as the indenter is unloaded.  

For isotropic and homogeneous materials, the toughness Kc may be 
expressed in terms of the indentation load P and the induced crack length 
c as (Anstis et al., 1981) 
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where 004.0016.0   is an empirically determined calibration 
constant, Y is Young’s modulus, H is the hardness, a is the impression 
half-diagonal, and  is the apex angle of the indenter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.8. Schematic illustration of the Vickers indentation technique. 
 

Many researchers have observed that the electric field has significant 
effects on the crack behavior of piezoelectric ceramics from indentation 
tests. For instance, Pak and Tobin (1993) and Tobin and Pak (1993) 
found from the Vickers indentation tests on PZT-8 samples that the 



2c 

2a 
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cracks perpendicular to the poling direction were longer with an electric 
field aligned with the poling direction and shorter with an electric field 
opposite to the poling direction compared to the case without an applied 
electric field (Fig. 4.9). This trend is consistent with the fracture test 
results on PIC 151 (similar to PZT-5H) Vickers indentation under 
electric loading by Zhang et al. (2004) and PZT-4 compact tension and 
three-point bending under combined mechanical and electric loadings by 
Park and Sun (1995b).  

 

Fig. 4.9. Influence of electric field on the indentation fracture behavior of poled PZT-8. 
(From Pak and Tobin, 1993, with permission from ASME). 

 
With precracks produced by indentation, Cao and Evens (1994), 

Lynch et al. (1995), Jiang and Sun (1999), and Zhang et al. (2004) 
further studied the crack growth behavior of piezoelectric ceramics under 
cyclic loads. Stable crack growth perpendicular to the poling direction 
has been observed for both PZT and PLZT samples under alternating 
electric loading only, for which the linear piezoelectric fracture theory 
predicts a negative potential energy release rate. Jiang and Sun (2001) 
also derived an approximate analytical solution for a half penny-shaped 
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crack (semicircular surface crack) in a piezoceramic half space and then 
used it in conjunction with the mechanical strain energy release rate to 
interpret the effect of the electric field on indentation crack length. 

Using the wedge model, the stress intensity factor and the electric 
displacement intensity factor for the semicircular surface crack in 
piezoelectric materials are (Jiang and Sun, 2001) 
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where 0c  is the indentation-induced crack length in the absence of the 
electric field, piezo  is a piezoelectric constant reduction factor, 

zE  is 
the applied electric field, 2)/21(2.01)(  f , 

PHYfPo 2/1
00 )/)(/089.0( , and 2.1)0(0  ff . 

For a mode-I crack in PZT-4, the mechanical strain energy release 
rate can be expressed as  

 )1021.21075.1(
2

1 2211
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M
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Sun and Park (1995) obtained the critical mechanical strain energy 
release rates of 3.68 Nm-1 and 4.63 Nm-1 for indentation loads of 9.8 N 
and 49 N, respectively. In terms of the critical mechanical strain energy 
release rate and the given indentation load, the relation between the crack 
length and the electric field can be determined iteratively using Eq. 
(4.60). The piezoelectric constant reduction factor piezo  depends on the 
degree of completion of domain switching. It was found that the solution 
in conjunction with the mechanical strain energy release rate was able to 
explain the electric field effects on indentation crack growth. 

Zhang et al. (2004) used a sphere cavity model in dielectrics to 
explain the growth of indentation cracks due to cyclic electric loading. It 
is found that low electric field intensity does not promote fatigue crack 
growth in PIC 151 but, at high applied electric field, the indentation 
cracks initially grow quickly and are then arrested. Electrostrictive strain 
drives cyclic fatigue crack growth and domain switching is the main 
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fatigue mechanism. These results have significant consequences for the 
long-term durability of piezoceramics.  

4.6.2   Compact tension test 

Compact tension specimens have been used to study the fracture 
behavior of piezoelectric materials, together with finite element analysis 
(e.g., Park and Sun, 1995b; Kuna, 2010). An experimental setup for 
compact tension specimens under combined mechanical and electric 
loadings is shown in Fig. 4.10. Electrodes were coated in silver on the 
top and bottom surfaces of the specimens. The procedure of testing using 
compact tension specimens is to increase the tensile load applied by the 
crosshead displacement control of the MTS machine under a certain 
electric field generated by a D.C. power supplier until fracture occurs. 
Since electric discharging between electrodes through the air was 
observed when the electric field exceeded 5 kV/cm during initial 
exploratory tests, the specimen was immersed in a tub filled with silicone 
oil to enforce an insulated crack surface boundary condition. 
 
  
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.10. Experimental setup for compact tension specimen under combined mechanical 
and electrical loadings. 
 

Park and Sun (1995b) performed compact tension tests on PZT-4 
specimens poled along the axis perpendicular to the crack plane. The 
material properties for poled PZT-4 in the principal material coordinate 

D.C. Power 
Supply 
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system (X1, X2, X3) are listed in Table 4.1. The poling direction is along 
the X3-axis. Figure 4.11 shows the fracture initiation loads under 
different electric fields from fracture testing on PZT-4 compact tension 
specimens. It appears that a positive electric field reduces the fracture 
load while a negative electric field increases the fracture load. It turns out 
that the mechanical strain energy release rate criterion is superior to the 
total potential energy release rate criterion at predicting the effect of the 
electric field on the fracture load. 

Table 4.1 Material constants for poled PZT-4 in the principal material coordinate system. 
(After Park and Sun, 1995b, with permission from John Wiley and Sons). 

c11 (N/m2) c12 (N/m2) c13 (N/m2) c33 (N/m2) c44 (N/m2) 
13.91010 7.78 1010 7.43 1010 11.3 1010 2.561010 
e31 (C/m2) e33 (C/m2) e15 (C/m2) 11 (C/Vm) 33 (C/Vm) 
6.98 13.84 13.44 6.0010-9 5.4710-9 

 

 

Fig. 4.11. Fracture loads under applied electric fields for PZT-4 compact tension 
specimens. (From Park and Sun, 1995b, with permission from John Wiley and Sons). 
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4.6.3   Bending test 

To further verify the validity of the mechanical strain energy release rate 
as a fracture criterion, Park and Sun (1995b) also conducted fracture tests 
on PZT-4 piezoelectric ceramics using three-point bending specimens 
with a symmetric crack for mode-I fracture and an asymmetric crack for 
mixed-mode fracture (Fig. 4.12). The entire setup, including the indenter, 
was made of Plexiglas to avoid electric discharge. The prepared 
specimen was placed in the silicone oil tub that was mounted on the 
MTS machine. The poling direction is parallel to the span of the bending 
setup. Fracture loads versus applied electric fields were obtained for 
various crack locations (Fig. 4.13).  
 

 

 
Fig. 4.12. Experimental setup for three-point bending specimens under combined 
mechanical and electrical loadings. 
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Fig. 4.13. Fracture loads under applied electric fields for various crack locations in PZT 
three-point bending specimens. (From Park and Sun, 1995b, with permission from John 
Wiley and Sons). 

 
It appears that the center-cracked three-point bending specimens 

exhibit the same fracture behavior as the compact tension specimens. 
Specifically, the fracture load has an odd dependence on the applied 
electric field – positive electric field aids crack propagation, while 
negative electric field impedes crack propagation. The three-point 
bending specimens with an off-center crack also exhibit the same trend.  

Later, Soh et al. (2003) used central crack specimens to study the 
effects of an applied electric field on the fracture toughness of poled 
piezoelectric ceramics and demonstrated that changing the applied 
electric field from negative to positive reduced the fracture toughness of 
poled PZT-5 ceramic, which is consistent with the observations by Park 
and Sun (1995b).  
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4.7 Nonlinear Studies 

Linear piezoelectric/piezomagnetic fracture mechanics analysis is an 
important first step towards understanding the fracture behavior of 
electromagnetic materials. Nevertheless, experimental findings and 
microstructural diagnostics give evidence that there may exist factors 
beyond the scope of the linear theory of piezoelectricity and its extension 
that would affect fracture such as electrostriction/magnetostriction, 
polarization/magnetization saturation, domain switching, and domain 
wall motion, although these activities may be confined to a small region 
near the crack tip. The studies on these nonlinear effects are briefly 
summarized in this section. 

4.7.1   Electrostriction/magnetostriction 

Electrostriction is a property of dielectric materials whose shape is 
changed under an applied electric field, with the resulting strain 
proportional to the square of the polarization. Since the deformation 
remains unchanged with reversal of the electric field, the electrostrictive 
effect is obviously different from the piezoelectric effect that is 
characterized by a reversal in the direction of deformation when the 
electric field is reversed. Piezomagnetism and magnetostriction can be 
taken as magnetic analogues of piezoelectricity and electrostriction. 

Smith and Warren (1966, 1968) studied an elliptical inclusion in an 
infinite isotropic dielectric material with electrostriction in consideration 
of the Maxwell stress. McMeeking (1989) investigated electrostrictive 
stresses near crack-like flaws in terms of a comparison between the fields 
of an elliptical flaw and a slit crack. Yang and Suo (1994) estimated the 
magnitude of the stress intensity factors for the flaws around the 
electrode edges in ceramic actuators caused by electrostriction under 
small-scale saturation conditions.  

Based on the rotationally invariant (finite-strain) quasi-magnetostatic 
theory of elastic paramagnets and soft ferromagnets without magnetic 
spin-ordering effects, Sabir and Maugin (1996) constructed two path-
independent integrals with the use of the magnetic enthalpy, including or 
excluding the contribution of the energy of the free magnetic field, and 
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yielded essentially the same results as the canonical field-theoretic 
approach using the notions of Eshelby stress and material forces (Maugin 
et al., 1992). The expressions obtained were applied to an antiplane crack 
problem of an isotropic magnetostrictive body in an axial bias magnetic 
field. In this case, the near-tip solution has the inverse square-root 
singularity like those obtained by Shindo (1977) based on a linear theory 
for soft ferromagnetic elastic materials (Pao and Yeh, 1973). Sabir and 
Maugin (1996) concluded that the magnetic field has a negative 
contribution to the energy release rate so that its presence is beneficial 
from the viewpoint of fracture toughness. However, there is no 
experimental support for this conclusion.  

Recently, Gao et al. (2010a–b, 2011) obtained the solutions of a 
single crack and collinear cracks in an electrostrictive solid under pure 
electric loads based on the complex variable method. It is found that the 
total stresses exhibit the classical inverse square-root singularity at the 
crack tip and the applied electric field may either enhance or retard crack 
growth depending on the electric boundary conditions adopted on the 
crack faces and the Maxwell stresses on the crack faces and at infinity. 

4.7.2   Polarization/magnetization saturation 

Polarization saturation or magnetization saturation is the state which is 
reached when an increase in applied electric or magnetic field cannot 
increase the polarization or magnetization of the material further. As 
discussed in Section 4.5.4, Gao et al. (1997), inspired by the classical 
Dugdale model for plastic yielding near the crack tip in metals (Dugdale, 
1960), developed a strip saturation model for an electrically insulating 
crack perpendicular or parallel to the poling axis of an infinite poled 
piezoelectric medium via a simplified electroelasticity formulation. Since 
the linear piezoelectric model gives singular electrical displacement 
distribution near the crack tip, it is assumed by this idealized strip 
saturation model that electric polarization reaches a saturation limit along 
a line segment in front of the crack tip.  

Subsequently, Ru (1999) examined the effect of polarization 
saturation on stress intensity factors for a general piezoelectric medium. 
Ru and Mao (1999) also studied conducting cracks in a poled 
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ferroelectric of limited electrical polarization based on a strip saturation 
model of the Dugdale type. Beom (2001) further analyzed an electrically 
impermeable crack in an electrostrictive ceramic with a strip saturation 
model. The strip saturation model may be applicable to magnetization 
saturation due to its similarity to polarization saturation. 

As remarked by McMeeking (2001), the polarization saturation 
model may not correspond to the classical Dugdale model from the 
energy point of view because the electric displacement behaves like 
strain and the electric field behaves like stress. Zhang et al. (2005) 
proposed a strip dielectric breakdown model for an electrically 
impermeable crack in a piezoelectric medium with the assumption that 
the electric field in a strip ahead of the crack tip is equal to the dielectric 
breakdown strength, which is analogous to the classical Dugdale model 
from the energy point of view. The dielectric breakdown strength is 
defined as the critical electric field at which dielectric discharge occurs, 
leading to dielectric breakdown. Motivated by the similarities in 
electricity and magnetism, Zhao and Fan (2008) extended the strip 
dielectric breakdown model to magneto-electro-elastic media. 

4.7.3   Domain switching 

One class of widely used piezoelectric materials exhibit the ferroelectric 
effect. They possess spontaneous electric polarization that can be 
reversed by the application of an external electric field, yielding a 
hysteresis loop. This term is used by analogy to ferromagnetism because 
of the similarity between this hysteresis process and the corresponding 
process involving ferromagnetic materials. Typically, materials 
demonstrate ferroelectricity only below a certain characteristic 
temperature, Tc, called the Curie temperature. That is, spontaneous 
polarization disappears above this temperature.  

A ferroelectric domain, in which all dipole moments of neighboring 
unit cells are oriented in the same direction, can switch its orientation to 
align itself in the direction of an applied external electric field as close as 
possible. This phenomenon is called “domain switching”. Consequently, 
not only the local state of polarization is rotated but also the local state of 
strain is changed, which is described by the polarization switch vector 
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iP  and the switching strain tensor ij . A sufficiently strong electric 
field may rotate the polarization direction of an individual domain by 
90o or 180o, that is, the new polarization can be 90o, 90o or 180o 
rotated from the original direction. 

As reviewed by Kuna (2010), models based on domain switching for 
ferroelectric materials have been developed to describe the polarization 
hysteresis loop and the strain butterfly loop (see Fig. 4.14) as well as the 
internal stress field induced by domain switching. For example, Hwang 
et al. (1995) proposed an energetic switching criterion for combined 
loadings: 

 csijijii EPPE 2  . (4.61) 

 

Fig. 4.14. Ferroelectric hysteresis of polarization and deformation (Pr – remanent 
polarization, r – remanent strain, Ec – coercive field strength). (From Kuna, 2010, with 
permission from Elsevier). 

 
It has been realized that domain switching plays an important role in 

the apparent fracture toughness variation for ferroelectric materials (e.g., 
Lynch et al., 1995; Zhu and Yang, 1997, 1999; Yang and Zhu, 1998; 
Fulton and Gao, 2001; Zhang et al., 2002; Beom and Atluri, 2003; Chen 
and Hasebe, 2005; Schneider, 2007; Kuna, 2010). The re-orientation of 
the polarization direction could significantly affect the solution for the 
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corresponding boundary value problem and, consequently, the stress and 
electric displacement intensity factors. With an assumption like small-
scale yielding, investigations on the nonlinear influence of domain 
switching on the fracture of ferroelectric materials have been confined to 
the near-tip process zone. 

By analogy with the phase-transformation toughening mechanism 
(McMeeking and Evans, 1982), Zhu and Yang (1997) and Yang and Zhu 
(1998) studied switching toughening of ferroelectrics by adopting the 
switching criterion of Hwang et al. (1995) and derived the change in 
stress intensity factor K  as a result of stress redistribution induced by 
90o polarization switching. In the case of small-scale switching, where 
the switching zone size is considerably smaller than the specimen size, 
the stress field near the switching boundary may be approximated by the 
remote K-field. The near-tip stress intensity factor tipK  is related to the 
applied stress intensity factor aK  by 

 KKK atip  . (4.62) 

A fracture criterion may be defined in terms of the near-tip stress 
intensity factor as 

 ICtip KK  . (4.63) 

Depending on the sign of K  for shielding or anti-shielding effects 
caused by domain switching, the apparent fracture load measured in 
experiments can be either enhanced or reduced. Based on the small-scale 
domain switching model, Zhu and Yang (1999) provided a mechanistic 
explanation of fatigue crack growth in ferroelectrics driven by cyclic 
electric loading. Recently, Kalyanam and Sun (2009) modeled the 
fracture behavior of piezoelectric materials using a gradual polarization 
switching model with the internal energy density as the parameter to 
estimate the amount of domain switching and the resulting gradual 
change in the polarization direction. 
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4.7.4   Domain wall motion 

Domain switching may be regarded as a result of domain wall motion 
caused by the growth of domains with low-energy orientations and the 
shrinkage of domains with high-energy orientations (Zhang et al., 2002). 
The domain wall may be treated either as a sharp or diffuse interface. 
The configuration (material) force method has been used to study the 
motion of a ferroelectric or ferromagnetic domain wall as a sharp 
interface. For example, Fomethe and Maugin (1997) studied the 
propagation of phase-transition fronts and domain walls in thermoelastic 
ferromagnets by exploiting the notion of the material forces. Fu and 
Zhang (2000) proposed a domain wall kinetic model to explain the 
effects of temperature and electric field on the bending strength of PZT-
941 ceramics. Shilo et al. (2007) developed a model for large 
electrostrictive actuation in ferroelectric crystals by assuming a 
reasonable arrangement of domain walls and formulating equations of 
motion for these walls. 

By contrast, phase-field simulation provides a powerful method for 
studying the evolution of ferroelectric or ferromagnetic domain structure 
as a diffuse interface. The major advantage of this approach lies in that 
the well-accepted Ginzburg–Landau equation is used to govern the time 
dependence of a spatial inhomogeneous order parameter without any 
preset transformation criterion. Phase transformation is a direct 
consequence of the minimization process of the total free energy of an 
entire simulated system. Wang and Zhang (2007) simulated polarization 
switching-induced toughening in a ferroelectric material with the original 
polarization direction perpendicular to an electrically permeable crack by 
a phase field model, accounting for the domain wall energy and the long-
range mechanical and electrical interactions. Based on a local J-integral 
as a fracture criterion, the result indicates that an applied uniform electric 
field parallel to the original polarization direction reduces the apparent 
fracture toughness while an applied uniform electric field anti-parallel to 
the original polarization direction enhances it. 
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4.8   Status and Prospects 

The fracture mechanics approaches within the framework of the linear 
theory of piezoelectricity and its extension outlined in this chapter cover 
the great majority of current applications. Simplicity is generally 
associated with the linear piezoelectric/piezomagnetic fracture mechanics 
methodology and so it is useful for a first approach at achieving a 
solution for a given crack problem. While nonlinear investigations 
beyond those of linear piezoelectric/piezomagnetic fracture mechanics 
are increasingly attempted, they are still confined to the small-scale 
region in the vicinity of a crack tip such as small-scale saturation 
conditions or small-scale switching conditions.  

The major challenges in the current understanding of the complex 
fracture behavior of electromagnetic materials are: 

 
 Discrepancy between theoretical predictions and experimental  

observations 
 Various nonlinear effects 
 Magneto-electro-thermo-mechanical coupling 
 Large-scale dissipation 
 Fully coupled dynamic framework 
 Functionally graded materials (FGMs) 
 Damage and failure at multiscales (nano, micro, meso, and 

macroscales) 
 
At this transition between the elementary aspects and the more 

advanced treatments of the subject to come, it is worth stating that a 
highly important question in the development of a fracture mechanics 
theory for electromagnetic materials is whether there is any particular 
thermodynamic quantity of a cracked body that can be interpreted as the 
“driving force” for crack propagation under combined magnetic, electric, 
thermal, and mechanical loadings. The answer to this question has been 
pursued for decades, but no satisfactory agreement has yet been reached. 
Thus, the establishment of a physically sound fracture criterion becomes 
the hallmark of an advanced fracture mechanics treatment for 
electromagnetic materials. The objective of this book is to further the 
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progress with development of a nonlinear field theory of fracture 
mechanics for electromagnetic materials by inclusion of magneto-
electro-thermo-mechanical coupling and dissipative effects. 
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Chapter 5 

Crack Driving Force in Electro-

Thermo-Elastodynamic Fracture 

5.1   Introduction 

As reviewed in Chapter 4, it is theoretically predicted that an even 

dependence should exist between critical load and applied electric field 

based on the path-independent integral constructed with electric enthalpy 

(Pak and Hermann, 1986; Pak, 1990; Maugin and Epstein, 1991; Suo et 

al., 1992; Dascalu and Maugin, 1994, 1995). On the contrary, however, it 

is found experimentally that the critical load for piezoelectric fracture is 

an odd function of the applied electric field (e.g., Pak and Tobin, 1993; 

Tobin and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995). Hence, 

a major challenge in the fracture mechanics of piezoelectric materials is 

how to resolve the fundamental discrepancy between theoretical 

predictions and experimental observations. 

A great advance in this area is owed to Park and Sun (1995a–b) who 

first pointed out that the path-independent integral thus formulated 

cannot be used directly as a fracture criterion for piezoelectric materials. 

Instead, they proposed that the mechanical part of the crack closure 

integral, i.e., the mechanical strain energy release rate (MSERR), is the 

dominant parameter governing piezoelectric fracture. In their landmark 

study, the Park–Sun semi-empirical fracture criterion could be reconciled 

with experimental measurement of the critical load for a crack 

perpendicular to the poling axis in simple tension and three-point 

bending PZT-4 specimens. Nevertheless, the difficulty is that the 

theoretical treatments are incomplete, with omissions such as an ad hoc 
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neglect of the electric contribution to the energy release rate by Park and 

Sun (1995a–b). 

In the sections to follow, the crack driving force in electro-thermo-

elastodynamic fracture is evaluated based on the fundamental principles 

of thermodynamics within the framework of the nonlinear theory of 

coupled electric, thermal, and mechanical fields (Chen, 2009a). The 

presentation is restricted to the quasi-electrostatic approximation for a 

simple formulation, which implies the near absence of a time-varying 

magnetic field. 

5.2   Fundamental Principles of Thermodynamics 

As shown in Chapter 2, the physical laws in electrodynamics consist of 

the conservation of mass, conservation of linear momentum, 

conservation of angular momentum, conservation of energy, and entropy 

production inequality, in addition to the Maxwell equations.  

Using the notations in Chapter 2, the first principle of 

thermodynamics leads to the local energy balance equation in electro-

thermo-elastodynamics: 

 )(:
ˆ

vjEEvj feq q
dt

ed
−⋅+⋅+∇+⋅−∇= ππππσσσσ �ρρ . (5.1) 

Substituting the internal energy ê  by the Helmholtz free energy 

sTeh ˆˆˆ −=  and using a series of transformations, Eq. (5.1) becomes 
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where 
T

tt j
−−= σFFΣ

1
 is the second Piola–Kirchhoff total stress tensor, 

σσσ et +=  is the total stress tensor (which is the sum of the Cauchy 

stress tensor σ  and the electric stress tensor IEDσ
f

ee u−⊗= ), 
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2/0 EE ⋅= εu
f

e  is the energy density of the free electric field, FEE ⋅=ˆ , 

DFD ⋅= −1ˆ j , qq j jFJ ⋅= −1 , ee j jJ ⋅= −1F , and vj fee q−=j . 

The augmented Helmholtz free energy, including the contribution of 

the energy of the free electric field, is introduced by  

 
ρ

f
e u

hh +≡ ˆ~
. (5.3) 

The second principle of thermodynamics leads to the entropy 

production inequality 

 0
1ˆˆ

≥⋅∇+≡ s
i

dt

sd

dt

sd
j

ρ
. (5.4) 

In the reference configuration, the entropy production inequality can 

be rewritten as 

 0
1ˆˆ

0

≥⋅∇+= sR
i

dt

sd

dt

sd
J

ρ
. (5.5) 

The augmented Helmholtz free energy, including the contribution of 

the energy of the free electric field, is assumed to be a function of 

deformation, temperature, temperature gradient, and electric 

displacement in the reference configuration RV , with respect to which 

the deformation gradient F  is measured, that is, 

 );ˆ,,,(
~~

XDC TThh R∇= . (5.6) 

Since the entropy production inequality (5.5) should be always valid, 

it is necessary and sufficient that the state equations fulfill the following 

conditions: 
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From Eq. (5.7), it is shown that the augmented Helmholtz free energy 

does not depend on the temperature gradient.  

5.3 Energy Flux and Dynamic Contour Integral 

Consider a two-dimensional body B
~

 that contains an extending crack 

(Fig. 5.1). The boundary of the cracked body B
~

 is denoted by B
~

∂ . A 

contour Γ
~

 enclosing the crack tip translates with the crack tip moving at 

instantaneous speed CV . When the energy balance is written in global 

form, the energy flux through Γ
~

 can be expressed as 
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where the Poynting vector in the co-moving frame is given by 

 )( DvE ××−=S . (5.14) 
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Fig. 5.1. A contour translating with the crack tip moving at instantaneous speed VC. 

 

The dynamic contour integral is related to the energy flux integral by 
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where CCV V=  is the magnitude of the crack speed. 

In general, the dynamic contour integral is not path independent. The 

difference in the energy flux through two contours 1

~
Γ  and 2

~
Γ  is 
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 (5.16) 

where 12

~
A  is the difference in the areas enclosed by the contours 1

~
Γ  and 

2

~
Γ , including the crack faces. 

The energy flux integral can be extended to the three-dimensional 

case. If Γ
~

 is interpreted as a surface in the reference configuration that 

moves at speed VC with respect to the material particles instantaneously 

on it, the energy flux through the surface Γ
~

 is 
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The first term of the energy flux integral expression is the rate of 

work done by the total traction acting on Γ
~

, the second term represents 

the contribution due to the traveling of electromagnetic waves through 

,
~
Γ  and the third term represents the contribution due to the transport of 

material through Γ
~

. It is noted that the associated energy density 

includes the kinetic energy density and the augmented Helmholtz free 

energy density, rather than the electric enthalpy density. As a general 

expression for the energy flux through a surface translating through a 

deformable solid, expression (5.17) does not depend on the existence or 

absence of a moving crack. Like its counterpart in elastodynamics 

(Freund, 1990), the energy flux integral expression (5.17) is valid for 

large deformation applications.  

5.4 Dynamic Energy Release Rate Serving as Crack Driving 

Force 

The dynamic energy release rate is defined as the rate of energy flow out 

of the body and into the crack tip per unit crack advance, that is, 
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1
lim
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dkh

V
J Ce

C

VS nnvn ρρσσσσσσσσ , (5.18) 

where the limit implies that Γ
~

 is shrunk onto the crack tip. 

In view of its definition, the dynamic energy release rate provides a 

unique characterization of the near-tip fields and thus plays a central role 

in the fracture criteria. The quantity 0

~
J  introduced here cannot be related 

to mechanical energy variation alone. Instead, 0

~
J  refers to total energy 

variation due to work done by total traction, traveling of electromagnetic 

waves, and transport of material with its associated energy density. 

5.5 Configuration Force and Energy-Momentum Tensor 

For steady-state crack propagation in the absence of mechanical body 

force ( 0ˆ =f ), temperature change ( 0=T� ), and electricity conduction 

)0( =eJ , it can be seen from Eq. (5.16) that the dynamic contour integral 
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becomes path independent as the contour including the crack faces is 

chosen, that is, 

 0

~~~
JJJ lg == , (5.19) 

where gΓ
~

 and lΓ
~

 are the global and local contours. 

If a field quantity is invariant in the reference frame affixed to the 

crack tip moving at a uniform speed 1ECC V=V , the field quantity 

depends on t through the combination tCV−= XX
~

 only, where 1E  is the 

unit vector along the crack advance direction. Expression (5.15) for the 

dynamic contour integral takes the special form 
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Using nEDEDnDEn )()()( ⋅−⋅=×× , (5.20) becomes 
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Introducing the energy-momentum tensor 

 IuEDuEDub )ˆ~~~(
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)(
~~

)(
~

khe ρρ ++∇⋅−∇⋅⊗+∇⋅+−≡ σσσσσσσσ , (5.22) 

expression (5.20) can be rewritten as 

 11~
~~~~

EJEbn ⋅=⋅Γ⋅= ∫Γ dJ , (5.23) 

where ∫Γ Γ⋅= ~
~~~

dbnJ  is the configuration force (material force) on the 

singularity as an extension to the notation by Eshelby (1951, 1970).  

Hence, the dynamic contour integral can be taken as the projection of 

the configuration force on the crack advance direction, which is 

consistent with the physical interpretation of being the dynamic energy 

release rate. The dynamic contour integral thus formulated is related to 

the energy-momentum tensor in the same way as given by Pak and 

Hermann (1986), Maugin and Epstein (1991) and Dascalu and Maugin 
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(1994). Nevertheless, distinct from previous work, the dynamic contour 

integral constructed with the use of the augmented Helmholtz free energy 

within the framework of the nonlinear theory of coupled electric, 

thermal, and mechanical fields fully satisfies the thermodynamic 

requirements and hence can be used in a physically sound fracture 

criterion. 

5.6 Coupled Electromechanical Jump/Boundary Conditions 

There are debates in the literature about the selection of the electric 

boundary conditions on crack faces, as discussed in Section 4.4. Dascalu 

and Maugin (1995) studied the dynamic fracture problem for 

piezoelectric materials with the impermeable crack-face condition. Li 

and Mataga (1996a–b) imposed electrode- and vacuum-type of electric 

boundary conditions on the crack surfaces, respectively, in their analysis 

of semi-infinite antiplane crack propagation in a hexagonal piezoelectric 

medium. Chen and Yu (1997), Chen and Karihaloo (1999) and Wang 

and Yu (2000) investigated dynamic crack problems in piezoelectric 

materials subjected to mechanical and electrical impacts for two kinds of 

crack-face conditions: impermeable and electrical contact. We discuss 

below the application of coupled electromechanical jump/boundary 

conditions for a cracked body within the framework of the nonlinear 

theory of coupled electric and mechanical fields. 

For an inclusion problem, the coupled electromechanical jump 

conditions across the interface are given by 

 fϖ=⋅ ]][[Dn , (5.24) 

 0]][[ =× En , (5.25) 

 0]][[ =+⋅ σσσσσσσσ en , (5.26) 

 0]][[ =u . (5.27) 

For a slit crack problem, the crack-face boundary conditions may be 

expressed as 
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Conditions (5.24)–(5.27) are exact, but the corresponding boundary-

initial value problem needs to be solved in both the cracked solid region 

and the interior fluid (vacuum, air, etc.) region. It is noted that the total 

traction should be considered in the coupled electromechanical boundary 

conditions along the crack faces and the remainder surfaces of the solid. 
0
2D  in (5.29) can be either prescribed for the impermeable crack-face 

condition or determined through solving the boundary-initial value 

problem with the permeable or semi-permeable crack-face condition. 

5.7 Asymptotic Near-Tip Field Solution 

The dynamic energy release rate serves as the crack driving force for any 

electro-thermo-elastic boundary-initial value problem and can be 

evaluated as long as the solution for the propagation of a crack, either 

electrically insulating or conducting, is given. Different from a stationary 

or quasi-static crack problem, a dynamic crack problem is concerned 

with fracture phenomena for which inertia effects arising from either 

rapidly applied loads or rapid crack propagation become significant. The 

influence of material inertia on the distribution of near-tip fields is of 

great importance because these fields represent the environment in which 

the mechanisms of crack advance are operative. Since it is rare to obtain 

closed-form exact solutions for this class of complicated problems, 

asymptotic solutions are often sought.   

It emerges from the analysis by Yang (2004) and Li and Yang (2005) 

that the difference between the solutions for the fully dynamic antiplane 

unelectroded crack problem of polarized ceramics and the dynamic 

antiplane unelectroded crack problem based on the quasi-electrostatic 

approximation is small, since the crack speed is much lower than the 

speed of light. Thus, the quasi-electrostatic approximation can still be 

adopted for studying dynamic crack propagation so that the electric field 
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may be expressed by the gradient of a scalar function called the electric 

potential. 

Consider a generalized plane crack problem with the crack tip of 

primary interest advancing at instantaneous speed CV  along the 1X -

axis. The displacement component mu  (m=1,2,3) and the electric 

potential φ  are independent of 3X . To derive the asymptotic expansion, 

the scaled variables ε/
~ˆ

11 XX =  and ε/
~ˆ

22 XX =  are introduced, where ε 

is a small parameter, tVXX C−= 11

~
, and 22

~
XX = . If ε is taken to be 

indefinitely small, all points in the plane ( 21

~
,

~
XX ) except those near the 

crack tip are pushed out of the field of observation in the plane ( 21
ˆ,ˆ XX ). 

Furthermore, as viewed from the scaled reference coordinate system 

affixed to the moving crack tip, the crack appears to be semi-infinite 

along the negative 1X̂ -axis. 

As an extension of a standard solution procedure for asymptotic fields 

near a moving crack tip in elastodynamic fracture mechanics (Freund, 

1990), the displacement components and the electric potential are 

expanded in powers of ε of the form 
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where 
)0(ˆ

mu  and 
)0(φ̂  represent the dominant contribution, 

)1(ˆ
mu  and 

)1(φ̂  

represent the first-order correction, and so on. This implies that the 

exponents are ordered such that �<<< 210 qqq . 

The above expansion is essentially an assumption that the near-tip 

fields can be represented as a series of homogeneous functions of 

increasing degree. The assumed form of expansion is substituted into the 

governing equations and the coefficient of each power of ε is set equal to 

zero. The coefficient of the lowest power of ε vanishes if the dominant 

asymptotic solution satisfies  
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Based on the Stroh-type formalism discussed extensively in Section 

4.3, the solution is sought in the form 

 )ˆ(ˆ )0(
zfau mm =  (m=1,2,3), )ˆ(ˆ

4
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zfa=φ ,  21
ˆˆˆ XpXz += , (5.34) 

where the function f is analytic in the complex variable 21
ˆˆˆ XpXz +=  

and the complex numbers p and ma  must be determined from Eqs. (5.32) 

and (5.33). 

Substituting Eq. (5.34) into Eqs. (5.32) and (5.33) yields 
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Nontrivial solutions are obtained if p is a root of 

 0])(det[ 22 =+++− ppV
T

C TRRUQ ρ . (5.37) 

The eight roots of Eq. (5.37) depend on the crack velocity VC, that is, 

)( CVpp αα = . A real root p of Eq. (5.37) corresponds to a value of VC 

equal to the velocity of bulk waves propagating in the direction (1, p) in 

the ( 1X̂ , 2X̂ ) plane. Following the treatment by Lothe and Barnett 

(1976) in the study of surface waves in piezoelectric crystals, Lc  is 

introduced to denote the inferior limit of such bulk wave velocities. 

Then, Eq. (5.37) has no real roots for LC cV < . Since the coefficients of 

Eq. (5.37) are real, the eigenvalues and the eigenvectors form two sets of 

complex quantities with one set being conjugate to the other. We suppose 

αp  ( 4,3,2,1=α ) are four distinct roots with positive imaginary parts and 

construct the matrix A with columns that are the associated eigenvectors. 

Then, the solution of Eqs. (5.32)–(5.33) is expressed as 
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where 21
ˆˆˆ XpXz αα +=  ( 4,3,2,1=α ) and the over-bars denote complex 

conjugates. 

Hence, the total stress and electric displacement in the vicinity of the 

crack tip moving at instantaneous speed VC are given by 
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where αααααα ρ pAUVRpQATpRL mnmCnmnmmnmmnn /)()( 2−+−=+= .  

Let us introduce  
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The singular solution that gives bounded displacements and electric 

potential is  

 kh
~

ˆ8

1
)ˆ(

zπ
z = , (5.46) 

where k
~

 is the dynamic field intensity factor vector. 

It is evident that the parameter 0q  in expressions (5.30) and (5.31) 

has the value of one-half. The total stress and electric displacement have 
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the classical inverse square-root singularities at the crack tip. 

Accordingly, at a distance r ahead of the crack tip, 
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, IIIK
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 are mode-I, mode-II, 

and mode-III dynamic total stress intensity factors and DK
~

 is the 

dynamic electric displacement intensity factor. 

To evaluate the dynamic energy release rate, we choose the contour 

0

~
Γ  in the reference frame ( tVXX C−= 11

~
, 22

~
XX = ) as shown in Fig. 

5.2. This is a convenient choice because 01 =n  along the segments 

parallel to the 1

~
X -axis. The contour is shrunk onto the crack tip by first 

letting 02 →δ  and then 01 →δ . As in the purely elastodynamic case 

discussed in Section 1.5, there is no contribution to 0

~
J  from the 

segments parallel to the 2

~
X -axis. Furthermore, the second and third 

terms on the right-hand side of Eq. (5.18) along the segments parallel to 

the 1

~
X -axis vanish. Consequently, 0

~
J  can be computed by evaluating 

only the first term on the right-hand side of Eq. (5.18) along the 

segments parallel to the 1

~
X -axis, that is, 
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Fig. 5.2. A particular choice of the contour for evaluating the dynamic energy release 

rate. 
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Hence, the dynamic energy release rate is equal to the following 

crack closure integral: 

 ∫ −∆+= ±

→

a

jjej
a

XdtaXutXtX
a

J
δ

δ
δσσ

δ 0 111212
0

0

~
),0,

~
()],0,

~
(),0,

~
([

2

1~
lim , 

  (5.49) 

where ),0,
~

(),0,
~

(),0,
~

( 111 taXutaXutaXu jjj
−+± −−−=−∆ δδδ  is the 

crack opening displacement at a distance 1

~
Xa −δ  behind the crack tip. 

Consequently, the dynamic energy release rate is calculated as 

 T
DIIIIII

i
IIIIII KKKKKKKJ )

~
,

~
,

~
,

~
(

~
)0 ,

~
,

~
,

~
(

4

1~
0 ⋅⋅= H , (5.50) 

where )Re(2
~ 1−= ALH i

i
 is the dynamic counterpart of the Irwin matrix 

described in Section 4.5.2, which depends on material properties and 

crack speed.  

Remarkably, Eq. (5.50) shows that the dynamic energy release rate is 

an odd function of the electric displacement intensity factor, which is in 

agreement with experimental observations (Pak and Tobin, 1993; Tobin 

and Pak, 1993; Cao and Evans, 1994; Lynch et al., 1995; Park and Sun, 

1995a–b; Jiang and Sun, 1999, 2001; Qin, 2001; Zhang et al., 2002; Soh 

et al., 2003; Chen and Lu, 2003). As explained by Dascalu and Maugin 

(1995), the behavior of the dynamic Irwin matrix as a function of the 

crack velocity is intimately related to the existence of surface waves on 

the crack faces. 

For the mode-I dynamic crack problem, the dynamic energy release 

rate and the dynamic crack opening displacement intensity factor are 

given by 

 T
DI

i
I KKKJ )

~
,0,

~
,0(

~
)0 ,0,

~
,0(

4

1~
0 ⋅⋅= H , (5.51) 
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4

~
0 ⋅⋅== H . (5.52) 
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For the mode-II dynamic crack problem, the dynamic energy release 

rate and the dynamic crack opening displacement intensity factor are 

given by 

 T
DII

i
II KKKJ )

~
,0,0,

~
(

~
)0 ,0,0,

~
(

4

1~
0 ⋅⋅= H , (5.53) 
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~
4

~
0 ⋅⋅== H . (5.54) 

For the mode-III dynamic crack problem, the dynamic energy release 

rate and the dynamic crack opening displacement intensity factor are 

given by 

 T
DIII

i
III KKKJ )
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0 ⋅⋅= H , (5.55) 
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~
4

~
0 ⋅⋅== H . (5.56) 

For complete evaluation of the crack driving force, total stress and 

electric displacement intensity factors should be obtained from the 

solution of a particular boundary-initial value problem. Quasi-static 

propagation of a crack perpendicular to the poling axis under the 

impermeable crack-face condition studied by Park and Sun (1995a–b) 

can be taken as a special case of the mode-I dynamic crack problem as 

the crack velocity tends to zero.  

The antiplane dynamic crack problem studied by Dascalu and Maugin 

(1995) corresponds to the mode-III dynamic crack problem with the 

crack front parallel to the poling axis. With the replacement of the 

Cauchy stress by the total stress in their solution, the dynamic energy 

release rate and the dynamic crack opening displacement intensity factor 

are 

 )
~~~

(
2

1~

11

152

20 DIIIIII
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KK
e
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where )/(1 222
TC cV−=α  and Tc  is the piezoelectrically stiffened bulk 

shear wave speed given by 

 









+=

1144

2
15442 1
κρ c

ec
cT . (5.59) 

5.8 Remarks 

This formulation successfully captures the singularity of coupled fields, 

offers the right expression for the crack driving force, and reconciles the 

fundamental discrepancy between theoretical predictions and 

experimental observations. The important features are summarized 

below: 

• The dynamic total stress intensity factors describe the inverse square-

root singularity of the near-tip total stress as the sum of the Cauchy 

stress and the electric stress, and the electric displacement intensity 

factor describes the inverse square-root singularity of the near-tip 

electric displacement. The crack-face conditions affect dynamic crack 

propagation by changing the field intensity factors.  

• The definition of the dynamic contour integral originated from the 

energy flux integral, which is generally path dependent. For steady-

state crack propagation in the absence of mechanical body force, 

temperature change, and electricity conduction, the dynamic contour 

integral becomes path independent as the contour including the crack 

faces is chosen.  

• The dynamic energy release rate can be evaluated by the 

“mechanical” part of the crack closure integral with the replacement 

of the Cauchy stress by the total stress, which is consistent with the 

semi-empirical fracture criterion proposed by Park and Sun (1995a–

b). Nevertheless, the difference lies in the replacement of the Cauchy 

stress tensor by the total stress tensor and the equivalence of the 

crack-tip dynamic contour integral to the dynamic energy release rate 

instead of the mechanical strain energy release rate. 

• The dynamic energy release rate serving as the crack driving force is 

an odd function of the electric displacement intensity factor, which is 
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in agreement with experimental evidence (Pak and Tobin, 1993; 

Tobin and Pak, 1993; Park and Sun, 1995a–b; Jiang and Sun, 2001; 

Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu, 2003).  

• The application of a purely electric load can drive crack growth in the 

absence of a mechanical load due to its contribution to the dynamic 

energy release rate through the dynamic total stress and electric 

displacement intensity factors, which is in agreement with the 

experimental observations on fatigue crack growth under cyclic 

electric loading (e.g., Cao and Evans, 1994; Lynch et al., 1995; Jiang 

and Sun, 1999; Zhang et al., 2004).  

• In addition to the dynamic energy release rate, the dynamic crack 

opening displacement intensity factor may be taken as an important 

parameter to monitor electro-elastodynamic fracture. 
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Chapter 6 

Dynamic Fracture Mechanics of 

Magneto-Electro-Thermo-Elastic 

Solids 

6.1   Introduction 

In Chapter 5, electro-thermo-elastodynamic fracture was investigated 

under the quasi-electrostatic approximation, that is, the near-absence of a 

time-varying magnetic field. Since the early work by Van Suchtelen 

(1972), piezoelectric/piezomagnetic composites have been developed for 

various engineering applications as a result of the emergence of a new 

product property, i.e., magnetoelectric coupling, which is absent in 

single-phase piezoelectric or piezomagnetic materials. The co-existence 

of piezoelectric, piezomagnetic and magnetoelectric coupling effects 

(i.e., magneto-electro-elastic coupling effects) in composite materials 

consisting of piezoelectric and piezomagnetic phases introduces many 

complexities to multiphysics analysis. 

Research on the deformation and fracture behavior of magneto-

electro-thermo-elastic solids has drawn considerable attention (e.g., 

Harshe et al., 1993; Nan, 1994; Maugin, 1994; Alshits et al., 1995; 

Kirchner and Alshits, 1996; Huang et al., 1998; Li, 2000; Trimarco and 

Maugin, 2001; Liu et al., 2001; Sih et al., 2003; Song and Sih, 2003; 

Wang and Mai, 2003, 2007a–b; Gao et al., 2003, 2004; Du et al., 2004; 

Hu and Li, 2005; Zhong and Li, 2006; Niraula and Wang, 2006; Hu et 

al., 2007; Feng, et al., 2007; Zhong et al., 2009; Wang et al., 2009) 

because of the safety and reliability requirements for their service in 

actuators, sensors, waveguides, electronic packaging, and biomedical 

devices. Recently, Chen (2009b) studied the energy release rate and the 
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path-independent integral in dynamic fracture of magneto-electro-

thermo-elastic solids, which is an extension of the new formation of the 

crack driving force and the energy-momentum tensor in electro-

elastodynamic fracture (Chen, 2009a). 

This chapter begins with the thermodynamic formulation of a fully 

coupled dynamic fracture mechanics framework for crack propagation in 

nonlinear magneto-electro-thermo-elastic solids, followed by evaluation 

of the dynamic energy release rate through seeking the complex variable 

solution based on the Stroh-type formalism. After that, magneto-electro-

elastostatic crack problems are discussed as special cases. Finally, a 

summary is given. 

6.2 Thermodynamic Formulation of Fully Coupled Dynamic 

Framework 

The elements of the non-relativistic electrodynamics of continua have 

been discussed in Chapter 2. We now focus on developing a fully 

coupled dynamic framework for crack propagation in nonlinear magneto-

electro-thermo-elastic solids based on the fundamental principles of 

thermodynamics. The thermodynamic formulation enables us to deal 

with complex material and fracture behaviors in a unified way and 

requires only that constitutive equations should be derived from an 

explicitly defined free energy function and transport laws conform to the 

requirement of non-negative dissipation.  

6.2.1   Field equations and jump conditions 

For a cracked body B
~

 under combined magnetic, electric, thermal, and 

mechanical loadings, the basic field equations and associated jump 

conditions are summarized below, following the localization of the 

fundamental physical laws. 

Gauss’s law (in B
~

): 

 fq=⋅∇ D .  (6.1) 
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Gauss’s law for magnetism (in B
~

): 

 0=⋅∇ B . (6.2) 

Faraday’s law (in B
~

): 

 0=
∂

∂
+×∇

t

B
E . (6.3) 

Ampere’s law (in B
~

): 

 e
t

j
D

H =
∂

∂
−×∇  . (6.4) 

Conservation law of electric charges (in B
~

): 

 0=⋅∇+
∂

∂
e

f

t

q
j . (6.5) 

Conservation law of mass (in B
~

): 

 0=⋅∇+ vρ
ρ

dt

d
 . (6.6) 

Conservation law of momentum (in B
~

): 

 
tdt

d
em

∂

∂
−++⋅∇=

G
f

v ˆ)( ρρ σσσσσσσσ  . (6.7) 

Conservation law of angular momentum (in B
~

): 

 0)( =+ ijemijkij σσε . (6.8) 

Conservation law of energy (in B
~

): 

 eq
dt

ed
jEME ⋅+⋅−⋅+∇+⋅−∇= Bvj ��ππππσσσσ ρρ :

ˆ
. (6.9) 

Entropy production inequality (in B
~

): 



 Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solids  123 

 

 0
1ˆ

≥⋅∇+ s
dt

sd
j

ρ
. (6.10) 

Constitutive equations (in B
~

): 

 
KL

KLE
C

h

∂

∂
=Σ

ˆ
2 0ρ , (6.11) 

 
T

h
s

∂

∂
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ˆ
ˆ , (6.12) 

 
Κ

ρ
Π∂

∂
=

ˆ

ˆ
ˆ

0

h
EK , (6.13) 

 
Κ

ρ
Β

h
M K ˆ

ˆ
ˆ

0
∂

∂
−= . (6.14) 

Transport laws (in B
~

): 

 Êˆ11ˆ ⋅+∇⋅= qe
R

qq
q

TT
LLJ , (6.15) 

 EJ ˆˆ11ˆ ⋅+∇⋅= ee
R

eq
e

TT
LL . (6.16) 

Jump conditions (across B
~

∂ ): 

 fϖ=⋅ ]][[Dn , (6.17) 

 0]][[ =⋅ Bn , (6.18) 

 0]][[ =×+× BvEn , (6.19) 

 0]][[ =×−× DvHn , (6.20) 

 0]][[ =+−⋅
t

e
δ

ϖδ f

fq vjn , (6.21) 
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 0]][[ =⊗++⋅ Gvn σσσσσσσσ em , (6.22) 

 0]])([[ =+⋅⊗++−⋅ SvGvjn σσσσσσσσ emq . (6.23) 

6.2.2   Dynamic energy release rate 

Consider a three-dimensional deformable electromagnetic body B
~

 
containing a propagating crack of arbitrary shape (Fig. 6.1). The 3

~
X -axis 

is tangent to the crack front at the observation point P attached to the 

reference frame translating with the crack front moving at instantaneous 

speed CV  along the 1

~
X -axis. A surface Γ

~
 surrounding the crack front is 

fixed relative to the reference frame.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1. A three-dimensional deformable electromagnetic body containing a propagating 

crack of arbitrary shape. 

 

 

A global form of the energy balance leads to the following expression 

for the energy flux integral:  
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(6.24) 

where 
Γ
~

~
V  is the volume bounded by Γ

~
, B

~
∂  is the boundary of the 

cracked body B
~

, and HES ×=  is the Poynting vector in the co-

moving frame CR . 

Hence, the total energy flux is caused by work done by the total 

traction, traveling of electromagnetic waves, and transport of material 

with its associated energy density. It is noted that the associated energy 

density includes the kinetic energy density, the Helmholtz free energy 

density, and the energy density of the free electromagnetic fields. 

The dynamic energy release rate is defined as the rate of energy flow 

out of the body and into the crack front per unit crack advance, that is, 

,
~

])ˆ~ˆ~()([
1

lim
~

~
0

~0 ∫Γ→Γ
Γ⋅+++⋅−⋅⊗++⋅= duhk

A
J C

f
emem VS nnvGvn ρρσσσσσσσσ

�

  (6.25) 

where the limit implies that Γ
~

 is shrunk onto the crack front and A�  is 

the crack area growth rate. 

The above definition is reduced to Eq. (1.27) as the electromagnetic 

fields are shut off and to Eq. (5.18) under the quasi-electrostatic 

approximation. 

6.2.3   Invariant integral 

In view of its definition, the dynamic energy release rate serves as the 

crack driving force for any boundary-initial value problem and can be 

evaluated when the solution becomes available. Since it is rare to obtain 

closed-form full-field solutions under combined loading conditions, 

numerical techniques are often used to determine coupled magnetic, 
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electric, thermal, and mechanical fields. However, it is difficult to 

proceed numerically to the limit required in (6.25) for definition of the 

dynamic energy release rate due to inaccuracy of numerical solutions for 

points very close to the crack front where gradients are severe. 

Therefore, an equivalent representation that is less sensitive to numerical 

inaccuracy in the crack-front region is needed for efficient evaluation of 

the dynamic energy release rate.  

The relationship between the energy fluxes through two surfaces 1

~
Γ  

and 2

~
Γ  is obtained as 
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 (6.26) 

It can be seen that the above integral becomes invariant because of 

the added domain integral terms. Consequently, the dynamic energy 

release rate can be represented alternatively by 
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  (6.27) 
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If a field quantity is invariant in a reference frame traveling with the 

crack front at a uniform speed 1ECC V=V , the field quantity depends on 

t only through the combination tCV−= XX
~

. Hence, for steady-state 

crack propagation in the absence of mechanical body force, temperature 

change, and electricity conduction, the path-domain independent Ĵ -

integral becomes path independent, that is,  
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 (6.28) 

where B is the thickness along the crack front. 

With the introduction of the energy-momentum tensor 
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ρρ

σσσσσσσσ
 (6.29) 

the J
~

-integral can be expressed as the first component of the KJ
~

-

integral vector as an extension of the configuration force (material force) 

notation (Eshelby, 1951, 1956, 1970, 1975; Maugin and Trimarco, 1992; 

Gurtin, 2000), that is,  

 11~
~~~1~

EJEbn ⋅=⋅Γ⋅= ∫Γ d
B

J . (6.30) 

Nevertheless, the KJ
~

-integral vector and the energy-momentum 

tensor b
~

 derived in this formulation are different from those obtained 

with use of the electromagnetic enthalpy (Maugin et al., 1992; Maugin, 

1994). The physical meaning of the crack-front J
~

-integral is the 

dynamic energy release rate, which represents the rate of energy flow out 

of the body and into the crack front per unit crack advance. Unlike other 

path-independent integrals, the J
~

-integral thus formulated fully satisfies 

thermodynamic requirements and, hence, can be used as a physically 
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sound fracture criterion. When the added domain integral terms in Eq. 

(6.27) are nonzero, the J
~

-integral becomes path dependent and, thus, the 

invariant Ĵ -integral is used as an alternative representation. The 

invariant Ĵ -integral method is not only generally applicable to various 

material systems and loading conditions but also relatively easy for finite 

element implementation due to its path-domain independency. 

6.3    Stroh-Type Formalism for Steady-State Crack Propagation 

under Coupled Magneto-Electro-Mechanical Jump/Boundary 

Conditions 

6.3.1   Generalized plane crack problem 

To illustrate the application of the developed theory, consider a 

conventional planar crack extending in a magneto-electro-elastic solid 

(Fig. 6.2). A reference frame is affixed to the crack tip advancing at 

instantaneous speed CV . The 3

~
X -axis is along the crack front and the 

crack faces are on the half-plane containing the negative 1

~
X -axis. For a 

generalized plane crack problem, the field quantities do not depend on 

3

~
X  but may have components in the 3

~
X -direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.2. A conventional planar crack extending in a magneto-electro-elastic solid. 
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For an elliptical cavity-like crack problem, the jump conditions across 

a material surface of discontinuity are given by 

 0]][[ =+⋅ σσσσσσσσ emn , 0]][[ =u , (6.31) 

 fϖ=⋅ ]][[Dn , 0]][[ =× En , 0]][[ =⋅ Bn , 0]][[ =× Hn . (6.32) 

For a slit crack problem, the crack-face conditions may be expressed 

as 

 
},,,{

)()(

0
23

0
23

0
22

0
22

0
21

0
21 σσσσσσ ememem

emem

+++−=

+⋅−=+⋅ −−++ σσσσσσσσσσσσσσσσ nn
 (6.33) 

 
0
2D−=⋅−=⋅ −−++ DnDn , 

0
2B−=⋅−=⋅ −−++ BnBn . (6.34) 

The total traction should be considered in the coupled magneto-

electro-mechanical boundary conditions along the crack faces and the 

remainder surface of the solid. The jump conditions (6.31) and (6.32) are 

exact, but the corresponding boundary value problem needs to be solved 

in both the solid region and the cavity region. For a slit crack problem, 
0
2D  and 

0
2B  in (6.34) are either prescribed under the impermeable crack-

face condition or determined through solving the boundary value 

problem with the permeable or semi-permeable crack-face condition. 

The crack-face boundary conditions may also involve crack opening, 

surface charge or discharge. 

Since the basic equations in anisotropic magneto-electro-elasticity 

have the same structure as those in anisotropic electroelasticity, general 

solution techniques for linearized problems like the Stroh-type formalism 

remain valid. As an illustration, a steady crack growth problem is dealt 

with below. 

6.3.2   Steady-state solution 

A steady-state solution for dynamic crack propagation at constant speed 

may be achieved in some limiting sense. The steady-state condition 

permits further reduction of the number of independent variables from 

three to two so that the analysis is considerably simplified. If a field 
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quantity is an element of a steady-state solution, the field quantity 

depends on t only through the combination tCV−= XX
~

, that is, 
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where the forms of the functions on the left-hand and right-hand sides of 

the equations are different, but the values of the functions represent the 

same physical quantity, and so they may be represented by the same 

symbol with little risk of confusion. 

Under quasi-electrostatic and quasi-magnetostatic approximations, 

the governing equations for an anisotropic magneto-electro-elastic solid 

in the absence of mechanical body force ( 0ˆ =f ), electricity conduction 

)0( =ej , and free electric charge ( 0=fq ) can be rewritten in the 

rectangular reference coordinate system affixed to the moving crack tip 

as 

 11,
2

,,, iCjllijjllijjlkijkl uVheuc ρψφ =++ , (6.39) 

 0,,, =−− jljljljljlkjkl gue ψφκ , (6.40) 

 , , , 0
jkl k jl lj jl jl jlh u g ϕ µ ψ− − = , (6.41) 

 iiE ,φ−= , (6.42) 

 iiH ,ψ−= , (6.43) 
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where φ  is electric potential, ψ  is magnetic potential, ijke , ijkh , and ijg  

are piezoelectric, piezomagnetic, and magnetoelectric coupling 

coefficients, respectively, ijklc , ijκ , and ijµ  are elastic stiffness, 

dielectric permittivity, and magnetic permeability coefficients, 

respectively. 

Based on the Stroh-type formalism, a general solution is sought of the 

form 

 )(zfau mm =  (m = 1,2,3),  (6.44) 

 )(4 zfa=φ , (6.45) 

  )(5 zfa=ψ , (6.46) 

where the function f is analytic in the complex variable 21

~~
XpXz +=  

and the complex numbers p and ma  must be determined from Eqs. 

(6.39)–(6.41). 

Substitution of (6.44)–(6.46) into (6.39)–(6.41) yields 
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with 
T

aaaaa ),,,,( 54321=a , )0,0,1,1,1(diag=U , and the 5 ×5 matrices: 
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Nontrivial solutions are obtained if p is a root of 
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 0])(det[ 22 =+++− ppV
T

C TRRUQ ρ . (6.51) 

The ten roots of Eq. (6.51) depend on the crack velocity VC, that is, 

)( CVpp αα = . A real root p of Eq. (6.51) corresponds to a value of VC 

equal to the velocity of bulk wave propagating in the direction (1, p) in 

the ( 1

~
X , 2

~
X ) plane. Let Lc  denote the inferior limit of such bulk-wave 

velocities. Then, Eq. (6.51) has no real roots for LC cV < . Since the 

coefficients of Eq. (6.51) are real, the eigenvalues αp  and the 

eigenvectors αa  form two sets of complex quantities, with one set being 

conjugate to the other. We suppose αp  ( 5,4,3,2,1=α ) are five distinct 

roots with positive imaginary parts and construct the matrix A with 

columns that are the associated eigenvectors. Thus, the general solution 

of Eqs. (6.39)–(6.41) is given by 
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where 21

~~
XpXz αα +=  ( 5,4,3,2,1=α ) and over-bars denote complex 

conjugates. 

Hence, total stress, electric displacement, and magnetic induction are 

readily expressed as 
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where αααααα ρ pAUVRpQATpRL mnmCnmnmmnmmnn /)()( 2−+−=+=  is 

used to construct the matrix L. The unknown functions αf  can be 

determined by the boundary conditions for a given crack growth 

problem.  

Let us introduce  
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zfzfzfzfzf ))(),(),(),(),(( 5544332211=f . (6.61) 

The asymptotic solution is 
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The dynamic field intensity factor vector is defined in terms of the 

total stress, electric displacement and magnetic induction at a distance r 

ahead of the crack tip as 

  T
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=k , IK
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, IIK
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, IIIK
~

 are mode-I, mode-II, 

and mode-III dynamic total stress intensity factors, DK
~

 is the dynamic 

electric displacement intensity factor, and BK
~

 is the dynamic magnetic 

induction intensity factor. 

The jumps of the displacements, electric potential, and magnetic 

potential across the crack faces at a distance r behind the crack tip are 
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where )Re(2
~ 1−= ALH i

i
 is the dynamic counterpart of the Irwin matrix 

described in Section 4.5.2, which depends on material properties and 

crack speed. 

Hence, the dynamic field intensity factor vector in terms of the crack 

opening displacement (COD), electric potential difference, and magnetic 

potential difference across the crack faces at a distance r behind the crack 

tip is defined as 
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IIK
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COD
IIIK

~
 are 

mode-I, mode-II, and mode-III dynamic crack opening displacement 

intensity factors, φK
~

 is the electric potential intensity factor, and ψK
~

 is 

the magnetic potential intensity factor. 

As a result, the two dynamic field intensity factor vectors *k
~

 and k
~

 

are related by 

 .
~~~
kHk* ⋅= i  (6.66) 

6.3.3   Path-independent integral for steady crack growth 

For steady-state propagation of a planar crack without mechanical body 

force ( 0ˆ =f ), temperature change ( 0=T� ) and electricity conduction 

)0( =eJ , the dynamic energy release rate can be represented by the 

path-independent dynamic contour integral as the closed contour 

including the crack faces is chosen, that is, 

 lg JJJ
~~~

0 == . (6.67) 

Choose the contour as shown in Fig. 6.2. This is a convenient choice 

because 01 =n  along the segments parallel to the 1

~
X -axis. The contour 

is shrunk onto the crack tip by first letting 02 →δ  and then 01 →δ . By 

analogy to the purely elastodynamic case (Freund, 1990), there is no 

contribution to 0

~
J  from the segments parallel to the 2

~
X -axis and the  
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segments along the crack faces. Moreover, the second, third, fourth, and 

fifth terms on the right-hand side of Eq. (6.28) along the segments 

parallel to the 1

~
X -axis vanish. Consequently, 0

~
J  can be computed by 

evaluating only the first term on the right-hand side of Eq. (6.28) along 

the segments parallel to the 1

~
X -axis, that is, 
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Consequently, the dynamic energy release rate is equal to the 

following crack closure integral: 
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where )0,
~

()0,
~

()0,
~

( 111
−+± −−−=−∆ aXuaXuaXu jjj δδδ  is the crack 

opening displacement at a distance 1

~
Xa −δ  behind the crack tip. 

The dynamic energy release rate is thus calculated as 
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Equation (6.70) shows that the dynamic energy release rate is an odd 

function of the electric displacement intensity factor and the magnetic 

induction intensity factor, which is consistent with experimental 

evidence (Pak and Tobin, 1993; Tobin and Pak, 1993; Cao and Evans, 

1994; Lynch et al., 1995; Park and Sun, 1995a–b; Jiang and Sun, 1999, 

2001; Qin, 2001; Zhang et al., 2002; Soh et al., 2003; Chen and Lu, 

2003). The axisymmetric dynamic crack problem under the 

electromagnetically impermeable or permeable conditions studied by 

Feng et al. (2007) is analogous to the mode-I dynamic crack problem 

with the crack plane perpendicular to the poling direction. 
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6.4   Magneto-Electro-Elastostatic Crack Problem as a Special Case 

As the crack velocity tends to zero, the near-tip field formulae in the 

previous section are reduced to the quasi-static case discussed in Chapter 

4 with the replacement of the Cauchy stress by the total stress. For a 

conventional Griffith-type crack of length 2a, the crack-tip field intensity 

factor vector is obtained as 
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where 
∞

jt 2σ , 
∞
2D  and 

∞
2B  are, respectively, total traction, electric 

displacement, and magnetic induction components in the far field, 
0
2 jtσ , 

0
2D  and 

0
2B  are, respectively, total traction, electric displacement, and 

magnetic induction components at the crack surface.  

Since the total stress tensor is the sum of the Cauchy stress tensor and 

the electromagnetic stress tensor, the total stress fields are coupled with 

the electromagnetic fields, which is fundamentally different from the 

decoupled prediction based on the linear theory of piezoelectricity and its 

extension.  

From Eq. (6.28), the energy release rate for a quasi-static or 

stationary planar crack in the absence of mechanical body force ( 0ˆ =f ), 

temperature change ( 0=T� ), and electricity conduction ( 0=eJ ) can be 

expressed by a path-independent integral constructed with the augmented 

Helmholtz free energy, including the contribution of the energy of the 

free electromagnetic fields, that is, 
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As the electric field or the magnetic field is shut off, the above 

expression becomes 
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6.5   Summary 

The thermodynamic approach provides a uniform treatment of nonlinear 

constitutive and fracture behaviors of deformable electromagnetic 

materials involving multifield coupling effects. The elements of dynamic 

fracture mechanics for nonlinear magneto-electro-thermo-elastic solids 

are summarized in Table 6.1. The dynamic energy release rate 

representing the rate of energy flow out of the body and into the crack 

front per unit crack advance under combined magnetic, electric, thermal, 

and mechanical loadings can be expressed as the crack-front J
~

-integral 

or, alternatively, the invariant Ĵ -integral. The Ĵ -integral including both 

path and domain integral terms is invariant (i.e., path-domain 

independent) as a whole, but in general neither path independent nor 

domain independent separately. For steady-state crack propagation in the 

absence of mechanical body force, temperature change, and electricity 

conduction, the path-domain independent Ĵ -integral is equivalent to the 

J
~

-integral, which becomes path independent as the closed surface 

including the crack faces is chosen. Unlike other invariant integrals in the 

literature, the invariant Ĵ -integral thus formulated can be used as a 

physically sound fracture criterion for magneto-electro-thermo-elastic 

solids so as to provide guidelines for design and analysis of smart 

material and structure systems. Remarkably, the dynamic energy release 

rate is an odd function of the electric displacement intensity factor and 

the magnetic induction intensity factor, which is consistent with 

experimental observations. The crack driving force and the energy-

momentum tensor in electro-thermo-elastodynamic fracture given in 

Chapter 5 can be taken as a special case. While many efforts have been 
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devoted to the establishment of an advanced fracture mechanics 

methodology involving multifield analysis, much remains to be done for 

practical applications. The crack growth problems under combined 

magnetic, electric, thermal, and mechanical loadings are certainly worthy 

of more studies, especially involving surface wave phenomena and 

material hysteresis effects. 

Table 6.1 Summary of the elements of dynamic fracture mechanics for nonlinear 

magneto-electro-thermo-elastic solids 
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Chapter 7 

Dynamic Crack Propagation in 

Magneto-Electro-Elastic Solids 

7.1   Introduction 

The transient response of electromagnetic materials in the presence of 

multifield coupling effects is essentially distinct from those found in 

purely mechanical problems. For example, shear horizontal (SH) surface 

waves may occur in a piezoelectric material with hexagonal symmetry 

(Alshits et al., 1992; Alshits, 2002), whereas there are no antiplane-mode 

surface waves in a purely elastic material of the same symmetry. Due to 

the shear horizontal surface wave effects, antiplane dynamic crack 

propagation in piezoelectric materials (e.g., Li and Mataga, 1996a–b; Ing 

and Wang, 2004a–b; Melkumyan, 2005; Chen et al., 2007, 2008) 

exhibits many features only associated with in-plane modes in the elastic 

case. The magneto-electro-mechanical coupling effects introduce more 

difficulties to solving transient crack growth problems analytically.  

Since the previous chapter demonstrated the solution procedure for 

steady-state crack propagation in magneto-electro-elastic solids, we now 

focus on the techniques for analyzing transient crack growth in magneto-

electro-elastic solids. Our attention is limited to the illustration of sudden 

constant-speed extension of a mode-III crack in a magneto-electro-elastic 

solid, so that the model is mathematically tractable for a closed-form 

analytical solution following the work by Chen (2009c). For more 

complex problems, numerical methods are often resorted to because of 

mathematical difficulties. The treatment of this subject is far from 

exhaustive and the reader may refer to the literature for further 

information.  
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The following section begins with a brief description of the shear 

horizontal surface wave phenomenon. In Section 7.3, the boundary-

initial value problem for a sudden constant-speed extension of a semi-

infinite mode-III crack is formulated with a unified treatment of 

electrically and magnetically permeable, semi-permeable, and 

impermeable crack-face conditions. In Section 7.4, integral transform, 

Wiener–Hopf and Cagniard–de Hoop techniques are used to solve the 

boundary-initial value problem in both the cracked solid region and the 

interior fluid region. In Section 7.5, the fundamental solutions for 

traction loading only are attained with the inverse square-root singularity 

near the crack tip. In Section 7.6, the fundamental solutions are 

generalized to mixed loads, resulting in self-induced and crossover 

dynamic field intensity factors. In Section 7.7, the dynamic energy 

release rate is evaluated based on the near-tip field solutions 

characterized by the dynamic field intensity factors. In Section 7.8, the 

surface wave effect on dynamic crack propagation in magneto-electro-

elastic solids is discussed. 

7.2   Shear Horizontal Surface Waves 

In contrast to elastic body waves (P waves or S waves in seismology) 

that move through the body of an object, Rayleigh waves are a type of 

commonly known surface waves which travel along a surface and decay 

exponentially away from the surface. Bleustein (1968) and Gulyaev 

(1969) independently discovered the propagation of shear horizontal 

waves in piezoelectric materials with hexagonal symmetry. Lothe and 

Barnett (1976, 1977) further developed the theory for surface waves in 

piezoelectric crystals. Alshits et al. (1992) studied the existence of 

surface waves in half-infinite anisotropic elastic media with piezoelectric 

and piezomagnetic properties. Alshits (2002) also reviewed the role of 

anisotropy in crystal acoustics. Wang et al. (2007c) analyzed a magneto-

electro-elastic half-space problem. The surface wave effect is very 

important for the design and analysis of high-performance devices such 

as transducers and wave filters. The major solution steps for shear 
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horizontal surface wave problems involving magneto-electro-elastic 

coupling effects are outlined below. 

Consider the propagation of shear horizontal surface waves along the 

free surface of a magneto-electro-elastic solid poled in the 3
X -direction 

(Fig. 7.1). The field equations as well as the boundary conditions for the 

out-of-plane displacement component w and the electric and magnetic 

potentials ϕ
 
and ψ  are independent of 3

X  and uncoupled from those 

for the in-plane displacement components.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.1 Schematic of shear horizontal wave propagation along the free surface of a 

magneto-electro-elastic solid occupying the half space. 

 

Based on the quasi-static approximation for the electromagnetic 

fields, the basic field equations for the half-space solid region 
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X XΩ = ≥ −∞ < < +∞  and the half-space fluid region 

( )

2 1{ 0, }f
X XΩ = ≤ −∞ < < +∞ , in the absence of mechanical body force, 

electricity conduction, and free electric charge, are expressed as 
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X

ψ
µ

∂
= −

∂
  in ( )fΩ , (7.12) 

 
( )

( )
s

s

k

k

E
X

ϕ∂
= −

∂
  in ( )sΩ , (7.13) 
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( )

( )
s

s

k

k

H
X

ψ∂
= −

∂
  in ( )sΩ , (7.14) 

 
( )

( )
f

f

k

k

E
X

ϕ∂
= −

∂
  in 

( )fΩ , (7.15) 

 
( )

( )
f

f

k

k

H
X

ψ∂
= −

∂
  in ( )fΩ , (7.16) 

where k = 1,2, ( )
1/2

44Tc c ρ=  is the piezoelectromagnetically stiffened 

bulk shear wave speed, ρ is the mass density,
 

2 2 2

44 44 15 11 15 15 11 15 11 11 11 11( 2 ) ( )c c e e h g h gµ κ κ µ= + − + −  is the 

piezoelectromagnetically stiffened elastic constant, 44
c , 11

κ , 11
µ , 11g , 

15e , and 15h  are the elastic, dielectric permittivity, magnetic 

permeability, magnetoelectric, piezoelectric, and piezomagnetic 

coefficients for the solid, fκ  and fµ  are the dielectric permittivity and 

magnetic permeability coefficients for the fluid (vacuum, air, oil, etc.), 

3t kσ  are the total stress components, ( )p

kD  are the electric displacement 

components, ( )p

kB  are the magnetic induction components, ( )p

kE  are the 

electric field components, ( )p

kH  are the magnetic field components, 

where the superscript p = s stands for the solid region and p = f for the 

fluid region. 

The remote conditions may be taken as 

 
( ) ( )

23 0,   0,   0s s

tσ ϕ ψ= = = ,   as 
2

X → +∞ , (7.17) 

 
( ) ( )

0,   0
f fϕ ψ= = ,   as 

2
X → −∞ . (7.18) 

The boundary conditions at the free surface are given by  

 
23 0,tσ =   

on 
2 0X = , (7.19) 

 ( ) ( ) 0,
s fϕ ϕ− =

 
( ) ( )

2 2 0,
s f

D D− =
 
 on 

2
0X = , (7.20) 
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 ( ) ( ) 0,s fψ ψ− =
 

( ) ( )

2 2 0,s f
B B− =  on 

2
0.X =  (7.21) 

A general solution of Eqs. (7.1)–(7.5) for surface waves propagating 

along the 1
X -direction and decaying in the 2

X -direction is represented 

by        

 
1 2 2 1 1
exp( )exp[ (  )]w a X i X tξ ξ ω= − − , (7.22) 

 ( )

2 1 2 1 1exp( )exp[ (  )]s
a X i X tϕ ξ ξ ω= − − , (7.23) 

 ( )

3 1 2 1 1exp( )exp[ (  )]s
a X i X tψ ξ ξ ω= − − , (7.24) 

 ( )

4 1 2 1 1exp( )exp[ (  )]f
a X i X tϕ ξ ξ ω= − , (7.25) 

 ( )

5 1 2 1 1exp( )exp[ (  )]f
a X i X tψ ξ ξ ω= − , (7.26) 

where 1i = − , 
2 2

1 2Tcω ξ ξ= −

 
is the frequency of a time-harmonic 

disturbance, 1 /
bq

cξ ω=  is the wave number, and bq
c  is the shear 

horizontal surface wave speed. 

Application of the boundary conditions (7.19)–(7.21) leads to 

 44 2 1 15 1 2 15 1 3 0c a e a h aξ ξ ξ+ + = , (7.27) 

 15 11 15 11
1 2 42

11 11 11

0
e h g

a a a
g

µ

κ µ

−
+ − =

−
, (7.28) 

 

15 11 15 11
1 3 52

11 11 11

0
h e g

a a a
g

κ

κ µ

−
+ − =

−
, (7.29) 

 
11 2 11 3 4 0f

a g a aκ κ+ + = , (7.30) 

 
11 2 11 3 5 0f

g a a aµ µ+ + = . (7.31) 
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For a nontrivial solution, the determinant of the coefficients must be 

zero, resulting in 

 2

2 1emkξ ξ= , (7.32) 

where emk  is the magneto-electro-mechanical coupling factor satisfying 

 

2 2 2 1/2

15 11 11 15 15 11 15 11

2 2

44 11 11 11 11 11 11

15 11 11 15 15 11 15 11

2 2

44 11 11 11 11 11 11

(1 / )

[ ( ) ]( )

[( )( ) ]( )

[ ( ) ]( )
.

[( )( ) ]( )

em bg T

f f

f f

f f

f f

k c c

e g h e h g

c g g

h g e h e g

c g g

κ µ µ µ

κ κ µ µ κ µ

µ κ κ κ

κ κ µ µ κ µ

= −

+ − −
=

+ + − −

+ − −
+

+ + − −

 (7.33) 

As 
11 / 0fκ κ →  and 

11 / 0fµ µ →  for the electrically and 

magnetically permeable crack-face condition, the limiting case of (7.33) 

is  

 
2 2

15 11 15 11 15 15 11

2

44 11 11 11

( 2 )

( )
em

e h e h g
k

c g

µ κ

κ µ

+ −
→

−
. (7.34) 

As 11 / fκ κ → ∞  and 
11 / fµ µ → ∞  for the electrically and 

magnetically impermeable crack-face condition, the limiting case of 

(7.33) is 

 0emk → . (7.35) 

It can be seen that the shear horizontal surface wave speed bg
c  should 

only be lower than the piezoelectromagnetically stiffened bulk shear 

wave speed 
T

c  for the existence of the surface wave-type solution. As 

the magneto-electro-mechanical coupling factor tends to zero (i.e.,

0emk → ), the shear horizontal surface wave speed approaches the piezo-

electromagnetically stiffened bulk shear wave speed (i.e., bg T
c c→ ). 
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Hence, the shear horizontal surface wave may occur under the 

electromagnetically permeable or semi-permeable crack-face condition, 

but there is no surface wave of this type under the electromagnetically 

impermeable crack-face condition. The propagation of Bleustein–

Gulyaev surface waves in hexagonally symmetric piezoelectric materials 

can be taken as a special case. 

7.3   Transient Mode-III Crack Growth Problem 

Since the class of transient crack growth problems is rather difficult to 

solve analytically, existing solutions in the literature often involve certain 

assumptions. For example, Baker (1962) studied constant-speed crack 

growth under stress wave loading. The imposed constant-speed condition 

enables extraordinary simplification of the corresponding boundary-

initial value problem. A solution procedure for the sudden extension of a 

pre-existing crack in an elastic body subjected to general time-

independent loading is summarized by Freund (1990) in his monograph 

on dynamic fracture mechanics:  

“The mechanical fields prior to crack growth are equilibrium fields. If the loading 

is increased to a sufficiently large magnitude, then the crack will begin to extend… 

The applied loads induce a traction distribution on the crack plane ahead of the 

crack tip, and the process of crack growth is essentially the negation of this 

traction distribution. This idea is exploited to obtain a complete solution for 

general loading by means of superposition… First, the situation of crack growth 

with a pair of opposed concentrated forces acting on fixed material points on the 

crack faces is analyzed, giving rise to a very useful result called the fundamental 

solution for the problem. Then, the corresponding field quantities for any 

distribution of tractions on the crack faces can be determined directly by 

superposition over this fundamental solution.” 

This method can be extended to transient crack growth in the 

presence of magneto-electro-elastic coupling effects. Consider a semi-

infinite crack propagating at constant speed CV  in a magneto-electro-

elastic solid (Fig. 7.2) under the assumption that there is vacuum, air, or 

other fluid of negligible mechanical influence inside the crack occupying 

the region 
( )

1 2 1 2{( , ) 0, }
f

X X X Xδ δΩ = −∞ < < − < <� � � � . A reference 

Cartesian coordinate system { , 1,2,3}KX K =�  attached to the moving 
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crack tip is chosen, which coincides at time 0t =  with the fixed 

Cartesian coordinate system { , 1,2,3}
K

X K = . It is assumed that, for time 

0t < , the crack tip is at 
1

0X =  and the magneto-electro-elastic solid is 

load-free and at rest everywhere. At time 0t = , the crack tip begins to 

move at speed 
C

V  in the positive 1
X -direction and leaves behind a pair 

of mixed concentrated loads. Then, the crack tip at any time 0t >  is at 

1 C
X V t= . Analyzing the situation of crack growth with a pair of mixed 

concentrated loads acting upon fixed material points on the crack faces 

gives rise to the fundamental solutions, which can be used to determine 

the corresponding field quantities for general mixed loading by means of 

superposition.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 Kernel crack growth problem with a pair of concentrated loads equal in 

magnitude and opposite in sign applied to the upper and lower surfaces of a semi-infinite 

mode-III crack propagating at constant speed VC in a magneto-electro-elastic solid. (After 

Chen, 2009c, with permission from Elsevier.) 

 

The Galilean transformation can be introduced as 

 
1 1 CX X V t= −� , 2 2X X=� , 3 3X X=� , t t=� . (7.36) 

For a transient mode-III crack growth problem in a transversely 

isotropic magneto-electro-elastic solid with the 3X� -axis along the poling 

direction, the out-of-plane displacement and the electric and magnetic 
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potentials are independent of 3X�  in the reference frame moving with the 

crack tip, that is, 
1 2( , , )w w X X t= � � � , ( ) ( )

1 2( , , )p p
X X tϕ ϕ= � � � , 

( ) ( )

1 2( , , )p p
X X tψ ψ= � � � . Here, the superscript p = s stands for the cracked 

solid region and p = f stands for the interior fluid region. Based on the 

quasi-static approximation for the electromagnetic fields, the governing 

equations in the cracked solid region 
( )sΩ  and the interior fluid region 

( )fΩ  in the absence of mechanical body force, electricity conduction, 

and free electric charge are expressed in the reference frame moving with 

the crack tip as 

 
2 2 2 2

2

2 2 22 2

1 2 1

2 1
0C

T T

Vw w w w
s

c c tX X X t

∂ ∂ ∂ ∂
+ + − =

∂∂ ∂ ∂ ∂� � � ��
  in 

( )sΩ , (7.37) 

 
2 ( ) 2 ( )

2 2

1 2

0
s s

X X

ϕ ϕ∂ ∂
+ =

∂ ∂� �
  in 

( )sΩ , (7.38) 

 
2 ( ) 2 ( )

2 2

1 2

0
s s

X X

ψ ψ∂ ∂
+ =

∂ ∂� �
  in ( )sΩ , (7.39) 

 
2 ( ) 2 ( )

2 2

1 2

0
f f

X X

ϕ ϕ∂ ∂
+ =

∂ ∂� �
  in 

( )fΩ , (7.40) 

 
2 ( ) 2 ( )

2 2

1 2

0
f f

X X

ψ ψ∂ ∂
+ =

∂ ∂� �
  in 

( )fΩ , (7.41) 

where 2 2 1/2(1 )C Ts V c= − , C C
V = V  is the crack tip velocity, and the 

relations (7.6)–(7.16) are still valid. 

Under the assumption that the pre-existing state is quiescent and can 

be removed by superposition, the remote conditions are taken as 

 
23 1 2( , , ) 0t X X tσ =� � � , ( )

2 1 2( , , ) 0s
E X X t =� � � , ( )

2 1 2( , , ) 0,s
H X X t =� � �   

 as 
2X → ∞�  . (7.42) 



 Dynamic Crack Propagation in Magneto-Electro-Elastic Solids 149 

 

To obtain the fundamental solutions, a pair of mixed concentrated 

loads equal in magnitude and opposite in sign are suddenly applied on 

the upper and lower surfaces of the crack at time 0t
+= . In the reference 

frame moving with the crack tip, the corresponding boundary conditions 

are imposed 

 
23 1 0 1( , , ) ( ) ( ),t CX t P X V t H tσ δ δ= − +� �� � �  (7.43) 

 
23 1 0 1( , , ) ( ) ( ),t CX t P X V t H tσ δ δ− = − +� �� � �  (7.44) 

 ( ) ( )

2 1 2 1 0 1( , , ) ( , , ) ( ) ( ),s f

CD X t D X t Q X V t H tδ δ δ− = − +� � �� � � �  (7.45) 

 ( ) ( )

2 1 2 1 0 1( , , ) ( , , ) ( ) ( ),s f

CD X t D X t Q X V t H tδ δ δ− − − = − +� � �� � � �  (7.46) 

 ( ) ( )

2 1 2 1 0 1( , , ) ( , , ) ( ) ( ),s f

CB X t B X t R X V t H tδ δ δ− = − +� � �� � � �  (7.47) 

 ( ) ( )

2 1 2 1 0 1( , , ) ( , , ) ( ) ( ),s f

CB X t B X t R X V t H tδ δ δ− − − = − +� � �� � � �  (7.48) 

 ( ) ( )

1 1( , , ) ( , , ) 0,s f
X t X tϕ δ ϕ δ− =� �� �  (7.49) 

 ( ) ( )

1 1( , , ) ( , , ) 0,s f
X t X tϕ δ ϕ δ− − − =� �� �  (7.50) 

 ( ) ( )

1 1( , , ) ( , , ) 0,s f
X t X tψ δ ψ δ− =� �� �  (7.51) 

 ( ) ( )

1 1( , , ) ( , , ) 0.
s f

X t X tψ δ ψ δ− − − =� �� �  (7.52) 

The initial conditions are 

 
1 2( , ,0) 0,w X X =� �  (7.53) 

 
1 2( , ,0) 0,w X X =� ��  (7.54) 

 ( )

1 2( , ,0) 0,p
X Xϕ =� �  (7.55) 
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 ( )

1 2( , ,0) 0.p
X Xψ =� �  (7.56) 

7.4    Integral Transform, Wiener–Hopf Technique, and Cagniard–

de Hoop Method 

The Wiener–Hopf technique was originally developed to solve a 

particular type of integral equation and then extended to a variety of 

applications (Noble, 1958). The essence of the solution process is to 

determine two unknown analytical functions from one single equation 

based on the theory of complex variables using the integral transforms 

such as Laplace, Fourier, or Mellin transforms. This technique was 

applied to the analysis of half-plane diffraction problems by de Hoop 

(1958) through suppression of time dependence by the Laplace 

transform. Once a solution in the transformed domain was attained, the 

Cagniard–de Hoop method was used to invert the transforms to obtain a 

solution in the physical domain. The reader may refer to the books by 

Freund (1990) and Broberg (1999) for further details. 

The one-sided Laplace transform with respect to the time variable t�  

and the two-sided Laplace transform with respect to the spatial variable 

1X�  are applied as follows: 

 *

1 2 1 2
0

( , , ) ( , , )exp( ) ,f X X p f X X t pt dt
∞

= −∫� � � � � � �  (7.57) 

 
1

*

1 2 1 2

1
( , , ) ( , , )exp( ) ,

2 Br
f X X t f X X p pt dp

iπ
= ∫� � � �� �  (7.58) 

 * *

2 1 2 1 1
ˆ ( , , ) ( , , )exp( ) ,f X p f X X p p X dXζ ζ

∞

−∞
= −∫� � � � �  (7.59) 

 
2

* *

1 2 2 1
ˆ( , , ) ( , , )exp( ) ,

2 Br

p
f X X p f X p p X d

i
ζ ζ ζ

π
= ∫� � � �  (7.60) 

where the inversion integration is taken over the Bromwich path. 

Application of the transforms to Eqs. (7.37)–(7.41) yields a set of 

ordinary differential equations: 



 Dynamic Crack Propagation in Magneto-Electro-Elastic Solids 151 

 

 

2
2 2 2 *

22 22

2

( )

2

1
ˆ2 ( , , ) 0,  

( , , ) ,

C

T T

s

p

Vd
p s w X p

c cdX

ζ X p

ζ ζ ζ
  

− − − =  
  

∀ ∈Ω

�
�

�

 (7.61) 

 

( )
2

2 2 2 ( )* ( )

2 22

2

ˆ ( , , ) 0,  ( , , ) ,
s s

p

d
p X p ζ X p

dX
ε ζ ϕ ζ

 
− − = ∀ ∈Ω 

 

� �
�

 (7.62) 

 ( )
2

2 2 2 ( )* ( )

2 22

2

ˆ ( , , ) 0,  ( , , ) ,s s

p

d
p X p ζ X p

dX
ε ζ ψ ζ

 
− − = ∀ ∈Ω 

 

� �
�

 (7.63) 

 

( )
2

2 2 2 ( )* ( )

2 22

2

ˆ ( , , ) 0,  ( , , ) ,f f

p

d
p X p ζ X p

dX
ε ζ ϕ ζ

 
− − = ∀ ∈Ω 

 

� �
�

 (7.64) 

 

( )
2

2 2 2 ( )* ( )

2 22

2

ˆ ( , , ) 0,  ( , , ) ,f f

p

d
p X p ζ X p

dX
ε ζ ψ ζ

 
− − = ∀ ∈Ω 

 

� �
�

 (7.65) 

where 0ε +→  is an auxiliary (positive real) perturbation parameter. The 

technique of introducing an auxiliary perturbation parameter may be 

viewed as the quasi-static approximation for the electromagnetic fields 

since the crack speed is much lower than light speed. 

Consideration of the remote conditions (7.42) leads to general 

solutions of the form 

 *

2 2 22

1
ˆ ( , , ) sgn( ) ( )exp( ),w X p X A p X

p
ζ ζ α= −� � �  (7.66) 

 ( )*

2 2 22

1ˆ ( , , ) sgn( ) ( )exp( ),s
X p X B p X

p
ϕ ζ ζ β= −� � �  (7.67) 

 ( )*

2 2 22

1ˆ ( , , ) sgn( ) ( )exp( ),s
X p X C p X

p
ψ ζ ζ β= −� � �  (7.68) 
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where 
2 2 2 2( ) (1 2 )
T C Tc V c sα ζ ζ ζ= − −  and 2 2

0
( ) lim ( ).

ε
β ζ ε ζ

+→
= −    

Since the solution in the interior fluid region is not subjected to any 

remote conditions at 
2X → ∞� , the complete form of the solution should 

be used: 

 ( )*

2 2 22

1
ˆ ( , , ) [ ( )exp( ) ( )exp( )],f

X p D p X D p X
p

ϕ ζ ζ β ζ β+ −= + −� � �  (7.69) 

 ( )*

2 2 22

1
ˆ ( , , ) [ ( )exp( ) ( )exp( )].f

X p E p X E p X
p

ψ ζ ζ β ζ β+ −= + −� � �  (7.70) 

In the complex ζ -plane, the function α  has branch points at

1 / ( )
T C

c Vζ = − −  and 1 / ( )
T C

c Vζ = + , and the function β  has branch 

points at ζ ε= −  and ζ ε= + . The branch of α  with a positive real part 

Re( ) 0α >  and the branch of β  with a positive real part Re( ) 0β >  

should be chosen, where the branch cuts run from the branch points 

outwards along the real axis. 

To apply the Wiener–Hopf technique, the traction and displacement 

boundary conditions are expanded over the full range of the 1X� -axis, 

that is, 

  
23 1 1 0 1 1( ,0 , ) ( , ) ( ) ( ),   ,t CX t X t P X V t H t Xσ σ δ+

+= − + − ∞ < < ∞� � � �� � � �  (7.71) 

 
1 1 1( ,0 , ) ( , ) 0,    ,w X t w X t X

+

−= + − ∞ < < ∞� � �� �  (7.72) 

with 

 23 1 1

1

1

( ,0 , )     0
( , ) ,

0                          0

t
X t X

X t
X

σ
σ

+

+

 ≥
= 

<

� ��
� �

�
 (7.73) 

 1

1

1 1

0                          0
( , ) .

( ,0 , )         0

X
w X t

w X t X
− +

 ≥
= 

<

�
� �

� ��
 (7.74) 
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We first solve the case of traction loading only. To satisfy the 

transformed boundary conditions (7.45)–(7.52) with 
0

0Q =  and 
0

0R = , 

it follows that 

 
0

2 *

1 1 1( ) ( ) ( , )exp( ) ,A U p w X p p X dXζ ζ ζ− −
−∞

= = −∫ � � �  (7.75) 

 
2

1 11 2 11

exp( )cosh( )
( )

( ) ( ),

g

f f

g

p p p
B

f f f

c f c f A

µ κ

µ

βδ αδ βδ
ζ

κ µ ζ

−
=

−

× −

 (7.76) 

 
2

2 11 1 11

exp( )cosh( )
( )

( ) ( ),

g

f f

g

p p p
C

f f f

c f c f A

µ κ

κ

βδ αδ βδ
ζ

µ κ ζ

−
=

−

× −

 (7.77) 

 1

exp( ) exp( )
( ) ( ) ( ) ( ),

2sinh( ) 2sinh( )

p p
D D B c A

p p

βδ αδ
ζ ζ ζ ζ

βδ βδ
+ −

− −
= − = +  (7.78) 

 2

exp( ) exp( )
( ) ( ) ( ) ( ),

2sinh( ) 2sinh( )

p p
E E C c A

p p

βδ αδ
ζ ζ ζ ζ

βδ βδ
+ −

− −
= − = +  (7.79) 

where
11 11sinh( ) cosh( ) f

f p pκ βδ κ βδ κ= − , 11sinh( )gf p gβδ= ,  

11 11sinh( ) cosh( ) ff p pµ βδ µ βδ µ= − , 2

1 15 11 15 11 11 11 11( ) ( )c e h g gµ κ µ= − − , 

and
 

2

2 15 11 15 11 11 11 11( ) ( )c h e g gκ κ µ= − − . 

By letting 0δ →  while keeping 
11 11sinh( ) f

epβδ κ κ λ→  and

11 11sinh( )
f

mpβδ µ µ λ→ , Eqs. (7.76) and (7.77) become 

 1
( ) ( )B c Aζ ζ= − , (7.80) 

 2( ) ( )C c Aζ ζ= − , (7.81) 
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where e
λ  and 

m
λ  are mutually dependent with 

)()( 11111111 µκµκλλ ff
me =

, 

2

1 11 11 1 11 11 2 11 11 11[ (1 ) ] [ (1 )(1 ) ]
m e e m e m

c c g c gκ µ λ µ λ κ µ λ λ λ λ= − + − − − ,  

and 

2

2 11 11 2 11 11 1 11 11 11[ (1 ) ] [ (1 )(1 ) ]
e m e m e m

c c g c gκ µ λ κ λ κ µ λ λ λ λ= − + − − − . 

It is noted that 1 1
c c→  as 0

e
λ →  and 2 2

c c→  as 0
m

λ → . 

There are four limiting conditions: (i) electrically and magnetically 

permeable crack-face condition as 0
e

λ →  and 0
m

λ → , (ii) electrically 

and magnetically impermeable crack-face condition as 
e

λ → ∞  and 

mλ → ∞ , (iii) electrically permeable and magnetically impermeable 

crack-face condition as 0
e

λ →  and 
m

λ → ∞ , and (iv) electrically 

impermeable and magnetically permeable crack-face condition as 

eλ → ∞  and 0
mλ → . The electromagnetically semi-permeable crack-

face condition may be approximated if 
e

λ  and 
m

λ  are considered as 

finite nonzero parameters. For simplicity, 
e

λ  and 
m

λ  are assumed to be 

constant in the following analysis.  

The transformed total stress, electric displacement, and magnetic 

induction are expressed in terms of the single unknown function ( )U ζ−

as 
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where 1 15 2 15 44( )em
k c e c h cλ = +  is the magneto-electro-mechanical 

coupling factor which depends on the permeability parameters 
eλ  and 

m
λ  through 

1c  and 
2c ,  1 ( ) 1 ( )

T C T C
c V c Vαζ− − < < + , βε ζ ε− < < . 

Substituting Eq. (7.83) into the transformed traction boundary 

condition (7.71) leads to the following Wiener–Hopf equation: 

 0( ) ( ) ( ),
( 1 / )

C C

P
K U

V V
ζ ζ ζ

ζ
+ −Σ + =

−
 (7.88) 

where 

 2

44( ) [ ( ) ( ) ( )],emK c k
λζ α ζ β ζ= − −  (7.89) 
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1 1 1
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( ) ( , )exp( ) .p X p p X dXζ σ ζ
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The modified form of the Bleustein–Gulyaev wave function 

 2( ) ( ) ( ) ( ),
emBG k
λζ α ζ β ζ= −  (7.91) 

has a simple structure with roots at 1/ ( )
bg C

c Vλζ = − −  and 

1/ ( )
bg C

c Vλζ = + , where the shear horizontal surface wave speed is 

defined as 

 
 4

 444[1 ( ) ]
[1 ( ) ]em

bg T em

c k
c c k

λ
λ λ

ρ

−
= = − . (7.92) 

For the electrically and magnetically permeable crack-face condition 

( 0
eλ →  and 0

mλ → ), we have 
0 0 4

[1 ( ) ]bg bg T emc c c k
λ → = −  and 

0

1 15 2 15 44( )em emk k c e c h c
λ → = + , whereas for the electrically and 

magnetically impermeable crack-face condition (
e

λ → ∞  and )
m

λ → ∞ , 

we have bg T
c cλ →

 
and

 0emk
λ → . In particular, for an electrically 

permeable mode-III crack propagating in a hexagonally symmetric 

piezoelectric medium, we retrieve the electromechanical coupling factor 

and the Bleustein–Gulyaev surface wave speed (Li and Mataga, 1996a; 

Ing and Wang, 2004b). The equality of the shear horizontal surface wave 

speed to the bulk shear wave speed in the limit of electromagnetic 

impermeability indicates that there is no shear horizontal surface wave 

mode under the electrically and magnetically impermeable crack-face 

condition.  

It is convenient to rewrite Eq. (7.89) in the following form: 

2

44( ) [ ( ) ] [1 / ( ) ][1 / ( ) ] ( ),em bg C bg CK c s k c V c V S
λ λ λζ ζ ζ ζ= − − + − − +

 
(7.93) 

where an auxiliary function ( )S ζ  is introduced by 

 
2
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λ λ λ

α ζ β ζ
ζ

ζ ζ

−
=

− + − − +
 (7.94) 
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It should be noted that ( ) 1S ζ →  as ζ → ∞ . The essence of deriving 

the solution of the Wiener–Hopf equation (7.88) is to decompose ( )S ζ  

such that 

 ( ) ( ) ( ),S S Sζ ζ ζ+ −=  (7.95) 

where ( )S ζ+  and ( )S ζ−  are analytical in their respective half planes 

with an overlapping strip. 

The primary features of the complex ζ-plane pertinent to the solution 

of the Wiener–Hopf equation (7.88) are depicted in Fig. 7.3 with the 

branch points at 1 / ( )T Cc Vζ = − − , 1 / ( )T Cc Vζ = + , ζ ε= − , and 

ζ ε= + , and the roots at 1/ ( )bg Cc Vλζ = − −  and 1/ ( )bg Cc Vλζ = + . The 

common strip of analyticity is between the two dashed lines, and the 

overlapping half planes in which the functions labeled with subscripts (+) 

and (−) are analytical and are indicated with arrows. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.3 The complex ζ-plane showing the primary features pertinent to the solution of 

the Wiener–Hopf equation (7.88). 

 

The final factorization of ( )S ζ  into products of two sectional 

analytical functions leads to 
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ε −ε 
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Hence, the two unknown functions in the Wiener–Hopf equation 

(7.88) are determined to be 
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where 

 
1

( )
( )

ζ
φ ζ

±

±

=D . (7.102) 

Once ( )U ζ−  and ( )ζ+Σ  are obtained by the Wiener–Hopf technique, 

the Cagniard–de Hoop method can be used to find the closed-form 

solutions in the physical domain by employing the following inversion 

paths in the complex ζ-plane: 
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7.5   Fundamental Solutions for Traction Loading Only 

The closed-form fundamental solutions for traction loading only are 

obtained as 
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where 2 2 2 2 2

1 1 1 2[ / ( ) / ]C T Tt V X c X s X c s= + +� � ��  and 2 2

2 1 2( )t X Xε= +� �� . 

The asymptotic behavior of the solutions near the moving crack tip 

will be examined below. As 
2 0X →� , both inversion contours take the 

same path 
1 2

ζ ζ ζ+ + += = , i.e., 

 
1

t

X
ζ + = −

�

�
, (7.114) 
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Hence, the total stress, electric displacement, and magnetic induction 

fields ahead of the moving crack tip are represented by 
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It is evident that the near-tip total stress, electric displacement, and 

magnetic induction fields possess an inverse square-root singularity, 

similar to the near-tip stress field in classical elastodynamic fracture 

mechanics. The dynamic total stress, electric displacement, and magnetic 

induction intensity factors for mode-III crack propagation are defined as 
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With normalization based on the corresponding quasi-static value, the 

dimensionless dynamic field intensity factors are obtained as 
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where the superscript (T) indicates traction loading. 

The functions 
1f
λ  and 2f

λ  are universal functions of the crack tip 

velocity. As shown in Figs. 7.4 and 7.5, the functions 
1 ( )Cf V
λ  and 

2 ( )Cf V
λ  decrease monotonically with increasing crack tip velocity 

C
V . 

The larger the magneto-electro-mechanical coupling factor 
emk
λ , the 

lower the values of 1f
λ  and 2f

λ . It is noted that the function 
1 ( )Cf V
λ

 
approaches zero but the function 

2 ( )Cf V
λ  does not tend to zero as 

/ 1
C bg

V cλ → . Consequently, the dynamic total stress intensity factor 

tends to zero but the dynamic electric displacement and magnetic 

induction intensity factors do not vanish as the crack tip velocity 
C

V
 

approaches the shear horizontal surface wave speed bg
cλ

. The dynamic 

total stress, electric displacement, and magnetic induction intensity 

factors are reduced to those for the electromagnetically impermeable 

crack-face condition as 0emk
λ → .   
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Fig. 7.4 Universal function 1f
λ

 versus dimensionless crack tip velocity /
C bg

V cλ
 for a 

broad range of magneto-electro-mechanical coupling factors. (After Chen, 2009c, with 

permission from Elsevier.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5 Universal function 
2f
λ

 versus dimensionless crack tip velocity /
C bg

V cλ
 for a 

broad range of magneto-electro-mechanical coupling factors. (After Chen, 2009c, with 

permission from Elsevier.) 
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The solution for dynamic antiplane crack propagation in a purely 

elastic medium (Freund, 1990; Ma and Chen, 1992) and the electrode 

solution for dynamic mode-III crack propagation in a hexagonally 

symmetric piezoelectric material (Li and Mataga, 1996a; Melkumyan, 

2005) can be taken as special cases.  

7.6   Fundamental Solutions for Mixed Loads 

For a pair of mixed concentrated loads, the general solutions given by 

(7.66)–(7.70) still hold but the unknown functions need to be determined 

under the boundary conditions with nonzero 0P , 0Q , and 0R . Since the 

continuity conditions (7.49)–(7.52) for the electric and magnetic 

potentials are kept the same, the functions ( )D ζ+ , ( )D ζ− , ( )E ζ+ , and 

( )E ζ−  can be calculated from (7.78)–(7.79) so long as the functions 

( )A ζ , ( )B ζ , and ( )C ζ  are attained.  

Substituting the unknown functions ( )A ζ , ( )B ζ  and ( )C ζ  back 

into the transformed version of the boundary conditions (7.43)–(7.48) 

yields the following integral equations: 
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where Re( )
c

ε ζ ε− < <  and the functions ( )B ζ , ( )C ζ , 0 0 0( , , )L P Q R� , 

1 0 0( , )L Q R� , and 2 0 0( , )L Q R�  are defined by 

 1( ) ( ) ( )B B c Aζ ζ ζ= + , (7.128) 

 2( ) ( ) ( )C C c Aζ ζ ζ= + , (7.129) 

 0 0 0 0 15 1 0 0 15 2 0 0( , , ) ( , ) ( , ),L P Q R P e L Q R h L Q R= + +� � �  (7.130) 
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  (7.132) 

It is noted that the load function 1 0 0( , )L Q R�  goes to zero for the 

electrically permeable crack-face condition ( 0
e

λ → ) and the load 

function 2 0 0( , )L Q R�  goes to zero for the magnetically permeable crack-

face condition ( 0)
m

λ → . Thus, the total traction is the only contribution 

to the load function 0 0 0( , , )L P Q R�  for the electromagnetically permeable 

crack-face condition ( 0
e

λ →  and 0)
m

λ → . 

The dual integral equation (7.125) has the same structure as the 

Wiener–Hopf equation encountered for the traction loading-only case. 

Thus, the solution is obtained as 
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Following the procedure outlined by Sih and Chen (1977) and Li and 

Mataga (1996b), the dual integral equations (7.126) and (7.127) are 

satisfied if  
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�  (7.135) 

Similar to the traction loading-only case, the closed-form 

fundamental solutions for the mixed loading case can be achieved by the 

Cagniard–de Hoop inversion scheme, that is, 
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The results may be generalized to mixed load distributions following 

the procedure outlined by Freund (1990) for elastodynamic crack growth. 

Let ' '

1 1 2 1( , , / )P Cf X X X t X V− − , 
' '

1 1 2 1
( , , / )

Q C
f X X X t X V− − ¸ and 

' '

1 1 2 1( , , / )R Cf X X X t X V− −  denote, respectively, a field quantity in the 

fundamental solutions for unit concentrated shear loads, unit 

concentrated electric loads, and unit concentrated magnetic loads 

appearing on the crack faces at '

1 1X X=  as the crack tip passes the point 
'

1X  at time '

1 / Ct X V= . The field quantity for the case of distributed 

shear loading '

1( )p X , distributed electric loading '

1( )q X , and distributed 
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magnetic loading '

1( )r X  appearing through the crack tip is thus given by 

the superposition integral  
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Consequently, the near-tip fields for mixed load distributions are 

expressed as 
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It can be seen that the near-tip fields still exhibit the inverse square-

root singularity in the local coordinate affixed to the moving crack tip. 

The self-induced and cross-over dynamic total stress, electric 

displacement, and magnetic induction intensity factors can be expressed 

in the form of a universal function of the crack tip velocity times the 

corresponding quasi-static value, that is, 
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where the superscript (T) stands for traction loading, superscript (D) for 

electric loading, and superscript (B) for magnetic loading. 

In general, the dynamic total stress intensity factor does not tend to 

zero as C bg
V cλ→  under mixed loading due to the existence of the cross-

over terms. The self-induced and cross-over dynamic total stress, electric 

displacement, and magnetic induction intensity factors are reduced to 

those for the electrically and magnetically permeable crack-face 

condition as 0
eλ →  and 0

mλ → , the electrically and magnetically 

impermeable crack-face condition as 
e

λ → ∞  and ,
m

λ → ∞  the 

electrically permeable and magnetically impermeable crack-face 

condition as 0
eλ →  and 

m
λ → ∞ , and the electrically impermeable and 

magnetically permeable crack-face condition as 
e

λ → ∞  and 0
m

λ → . In 

particular, it emerges that the dynamic field intensity factors are not 

altered by electric displacement and magnetic induction loads on the 

surfaces of an electromagnetically permeable crack because there is no 

gap assumed between the top and bottom surfaces of the crack and the 

electric displacement and magnetic induction loads on the upper surface 

effectively cancel out those on the lower surface. This outcome is 

analogous to the finding by Haug and McMeeking (2006) on a 

permeable crack with surface charge in poled ferroelectrics. As the crack 

propagation velocity approaches zero, the quasi-static limits of (7.149)–

(7.157) are consistent with the existing static crack solutions (e.g., Liu et 

al., 2001; Gao et al., 2004; Wang and Mai, 2003, 2007a) with the 

replacement of the Cauchy stress tensor with the total stress tensor. In 

particular, the cross-over terms due to electric and magnetic loadings in 

(7.150) and (7.151) become negligible for quasi-static crack propagation. 
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7.7   Evaluation of Dynamic Energy Release Rate 

The dynamic energy release rate, which is defined as the rate of energy 

flow out of the body and into the crack front per unit crack advance, can 

be evaluated by the definition (6.25) given in Section 6.2.2.  By choosing 

the contour shown in Fig. 7.2 and allowing the contour to shrink onto the 

crack tip by first letting 
2 0δ →  and then 

1
0δ → , there is no 

contribution to 0J�  from the segments parallel to the 2X� -axis and the 

segments along the crack faces. Furthermore, this is a convenient choice 

because 
1

0n =  along the segments parallel to the 1X� -axis. 

Consequently, the dynamic energy release rate for mode-III crack 

propagation is calculated from the near-tip field solutions as 
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where the mode-III dynamic crack opening displacement intensity factor 

is defined as 

 
1

1
0

1

lim ( ,0 , ).
2

COD

III
X

K w X t
X

π
−

±

→
= ∆

−�

� � �
�

 (7.159) 

Based on the near-tip field solutions, the mode-III dynamic total 

stress and crack opening displacement intensity factors are given by 
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From Eqs. (7.158) and (7.161), the dynamic energy release rate for 

mode-III crack propagation in the presence of magneto-electro-

mechanical coupling effects has an odd dependence on the dynamic 

electric displacement intensity factor and the dynamic magnetic 

induction intensity factor, that is,  
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The dynamic energy release rate is reduced to that for the electrically 

and magnetically permeable crack-face condition as 0
e

λ →  and 
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0,
m

λ →  the electrically and magnetically impermeable crack-face 

condition as 
e

λ → ∞  and ,
m

λ → ∞  the electrically permeable and 

magnetically impermeable crack-face condition as 0
eλ →  and ,

mλ → ∞  

and the electrically impermeable and magnetically permeable crack-face 

condition as 
e

λ → ∞  and 0
m

λ → . 

7.8    Influence of Shear Horizontal Surface Wave Speed and Crack 

Tip Velocity 

As the crack tip velocity 
C

V  tends to zero, the quasi-static case is 

recovered, that is,  

 
'

'1
1

0 '

1

( )2
( ,0) (1,0,0) ,

CV t

III C

C

p X
K V t L dX

V t Xπ
=

−
∫

�

� ��

�
 (7.163) 

 

'
'1

12 0 '
44 1

'
'1
12 0 '

44 1

'
'1
12 0 '

44 1

( )2 (1,0,0)
( ,0) 2

[1 ( ) ]

( )2 (0,1,0)
2

[1 ( ) ]

( )2 (0,0,1)
2 ,

[1 ( ) ]

C

C

C

V t
COD

III C

em C

V t

em C

V t

em C

p XL
K V t dX

c k V t X

q XL
dX

c k V t X

r XL
dX

c k V t X

λ

λ

λ

π

π

π

=
− −

+
− −

+
− −

∫

∫

∫

�

�

�

�
� �

�

�

�

�

�

 (7.164) 

 0

1
( ,0) ( ,0) ( ,0).

4

COD

C III C III C
J V t K V t K V t=� � �� � �  (7.165) 

Next, we will examine the special case of the electromagnetically 

permeable crack-face condition. As 0
e

λ →
 

and 0
m

λ → , we have 
0 0 4[1 ( ) ]bg T emc c k= −  and 0 0 0 0

1 15 2 15 44( )emk c e c h c= + . The dynamic total 

stress intensity factor, dynamic crack opening displacement intensity 

factor, and dynamic energy release rate normalized by the corresponding 

quasi-static value become
 



 Dynamic Crack Propagation in Magneto-Electro-Elastic Solids 177 

 

 

0

0

1

(1 / )( , )
(1 / )

( ,0) 1 /

( ),

C bgIII C C

C

III C C T

C

V cK V t V
V

K V t V c

f V

+

−
=

−

=

� �

� �
D

 (7.166) 

 

0 2

0 2 0

0

2

( , ) [ ( ) ] (1 / )

[1 ( ) ](1 / )( ,0) 1 /

( ),

COD

III C C em C

COD

em C bgIII C C T

C

K V t V s k V

k V cK V t V c

f V

++
=

+ + −

=

� �

� �

D

 (7.167) 

 

0 2 0 2

0

0 2 0

0

0

3

[ ( ) ](1 / )[ (1 / )]( , )

[1 ( ) ](1 / )(1 / )( ,0)

( ).

em C bg CC C

em C bg C TC

C

s k V c VJ V t V

k V c V cJ V t

f V

++ −
=

+ + −

=

� �

� �

D

 (7.168) 

 
 

Fig. 7.6 Universal function 
0

3f  versus dimensionless crack tip velocity 
0/

C bg
V c  for a 

broad range of magneto-electro-mechanical coupling factor. (After Chen, 2009c, with 

permission from Elsevier). 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kem=0

kem=0.3

kem=0.6

kem=0.9

kem=0.99

0
/ bgC cV

)
(

0 3
C

V
f

99.0

9.0

6.0

3.0

0

0

0

0

0

0

=

=

=

=

=

em

em

em

em

em

k

k

k

k

k



178 Fracture Mechanics of Electromagnetic Materials 

 

Like the functions 
1 ( )Cf V
λ  and 

2 ( )Cf V
λ , the function 0

3 ( )Cf V  is a 

universal function of the crack tip velocity. The dimensionless function 
0

3 ( )Cf V  is plotted against the dimensionless crack tip velocity 
0/

C bg
V c  in 

Fig. 7.6. Similar to the universal function 
1 ( )Cf V
λ  (see Fig. 7.4), the 

universal function 0

3 ( )Cf V  has the feature that 0

3 ( ) 1
Cf V =  for 

0/ 0
C bg

V c =  and 0

3 ( ) 0Cf V =  for 
0/ 1

C bg
V c = . It also decreases 

monotonically with increasing dimensionless crack tip velocity and 

increasing magneto-electro-mechanical coupling factor 0

emk . Hence, as 

the crack tip velocity CV  approaches the shear horizontal surface wave 

speed 
0

bg
c , the dynamic energy release rate tends to zero so that the shear 

horizontal surface wave speed 
0

bg
c  serves as a speed barrier for the 

propagation of an electromagnetically permeable mode-III crack. 
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Chapter 8 

Fracture of Functionally Graded 

Materials 

8.1   Introduction 

Functionally graded materials (FGMs) are nonhomogeneous materials 

whose properties vary continuously along one or more directions. Bones 

and wood may be taken as FGMs in nature. The idea of FGMs originated 

from high-temperature applications of thermal barrier coatings for 

aircraft and aerospace industries in the mid-1980s. Due to the gradual 

spatial variation in properties instead of a sharp jump across interfaces, 

FGMs have potential advantages in reducing stress concentration and 

increasing fracture toughness. Eischen (1987a–b) developed a path-

domain independent 
*
kJ -integral for fracture of nonhomogeneous 

materials. Honein and Herrmann (1997) studied the conservation laws in 

nonhomogeneous elastostatics by means of a special version of 

Noether’s theorem and proposed a path-independent eJ -integral. The 

near-tip stress field in a FGM possesses a classical inverse square-root 

singularity like that in a homogeneous material, so that existing crack-tip 

finite element modeling codes can be used to analyze structural 

components made of FGMs (Erdogan, 1995). Suresh and Mortensen 

(1998) and Jin (2003) provided comprehensive reviews on the 

fundamentals of FGMs and the progress in fracture mechanics of FGMs. 

Wang and Mai (2005, 2006) investigated a periodic array of cracks in 

FGMs subjected to thermomechanical loading and transient loading. 

This new concept of tailoring materials can also be extended to 

piezoelectric/piezomagnetic materials to improve reliability and achieve 

optimized performance in aerospace, transportation, communication, 
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biomedical, and other applications (see for example Wu et al., 1996; Zhu 

et al., 2000; Hudnut et al., 2000; Li and Weng, 2002a–b; Takagi et al., 

2002, 2003; Kwon, 2004; Chakraborty et al., 2005; Chue and Ou, 2005; 

Zhou et al., 2005; Feng and Su, 2006, 2007; Ma et al., 2007; Wang and 

Mai, 2007b; Sladek et al., 2007a–b; Ueda, 2005–2008; Singh et al., 

2009; Rao and Kuna, 2008, 2010; Shin and Lee, 2010; Dineva et al., 

2010). Successful applications of FGMs rely on a thorough 

understanding of the fracture behavior of such materials under various 

aggressive operational conditions.  

This chapter is focused on the extension of fracture mechanics 

methodologies to this emerging class of FGMs subjected to combined 

magnetic, electric, thermal, and mechanical loadings, covering boundary-

initial value problems, typical solution methods, and fracture 

characterizing parameters. While this subject is far from mature, the 

formulation presented in this chapter will likely form the basis for further 

advances. 

8.2   Formulation of Boundary-Initial Value Problems 

The boundary-initial value problems under combined magnetic, electric, 

thermal, and mechanical loadings can be mathematically formulated by 

the basic field equations with appropriate boundary and initial 

conditions. The fundamental difference between functionally graded 

materials and homogeneous materials is whether material properties vary 

spatially or not. Since the quasi-static approximation for the 

electromagnetic fields may be adopted in many practical engineering 

applications without loss of solution accuracy, it is employed in this 

formulation for simplicity. 

Consider a FGM occupying the region V in the absence of mechanical 

body forces, free electric charges, and electricity conduction. The 

boundary of V is denoted by S. The equations to be satisfied in the region 

V are listed as follows: 

Constitutive relations (linearized theory): 

 θβεσ klmmklmmklmnklmnklt HhEec −−−= , (8.1) 
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 θωκε klkllkllmklmk HgEeD +++= , (8.2) 

 θγµµε klklllklmklmk HEghB 0+++= , (8.3) 

 θγµωεβρ vkkkkklkl C
T

HEs
0

0

1
ˆ +++= , (8.4) 

 θ∇⋅−= qq
q kj , (8.5) 

where material properties and mass density are functions of the 

coordinates KX  (K=1,2,3), i.e.,   

 ),,( 321 XXXccccc klmnklmnmnkllkmnklnm ==== ,  (8.6) 

 ),,( 321 XXXeee mklmklmlk == ,  (8.7) 

 ),,( 321 XXXhhh mklmklmlk == ,  (8.8) 

 ),,( 321 XXXklkllk βββ == ,  (8.9) 

 ),,( 321 XXXklkllk κκκ == ,  (8.10) 

 ),,( 321 XXXklkllk µµµ == ,  (8.11) 

 ),,( 321 XXXgg klkl = ,  (8.12) 

 ),,( 321 XXXkk ωω = ,  (8.13) 

 ),,( 321 XXXkk γγ = ,  (8.14) 

 ),,( 321 XXXCC vv = ,  (8.15) 

 ),,( 321 XXX
qqqq kk = , (8.16) 

 ),,( 321 XXXρρ = . (8.17) 

Kinematic relations:  
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 2/)( ,, mnnmmn uu +=ε ,  (8.18) 

 mmE ,φ−= ,  (8.19) 

 mmH ,ψ−= .  (8.20) 

Balance equations:  

 0=⋅∇ D , (8.21) 

 0=⋅∇ B , (8.22) 

 v⋅∇−= ρ
ρ

dt

d
, (8.23) 

 σσσσt
dt

d
∇⋅=

v
ρ , (8.24) 

 q
dt

sd
T j⋅−∇=

ˆ
ρ . (8.25) 

The boundary conditions are 

 0]][[ =⋅ Dn  across S , (8.26) 

 0]][[ =× En
 
across S , (8.27) 

 0]][[ =⋅ Bn  across S , (8.28) 

 0]][[ =× Hn
 
across S , (8.29) 

 Bt tn =⋅ σσσσ  on σS , (8.30) 

 Buu =  on uS , (8.31) 

 Bq q=⋅ jn  on qS , (8.32) 

 BTT =  on TS , (8.33) 
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where n is the unit outer normal vector of the boundary S and 

Tqu SSSSS ∪=∪= σ . Other mixed boundary conditions may also be 

employed. 

The initial conditions are 

 0
0

uu =
=tt

, (8.34) 

 0
0

vu =
=tt
� , (8.35) 

 0
0

TT
tt

=
=

. (8.36) 

8.3   Basic Solution Techniques 

Due to the difficulties and complexities of the spatial dependence of 

graded properties plus multifield coupling effects involved in this class 

of boundary-initial value problems, numerical methods such as finite 

element method (FEM), boundary element method (BEM), or meshless 

local Petrov–Galerkin method (MLPG) are often used. Analytical or 

semi-analytical solutions may be obtained only for some limited 

variations of graded properties such as exponential or power-law 

functions of spatial coordinates. For example, Li and Weng (2002a) were 

among the first to study a stationary crack problem in a strip of 

functionally graded piezoelectric material (FGPM) subjected to antiplane 

mechanical and in-plane electric loadings with variations of the material 

properties one-dimensionally perpendicular to the crack plane, by using 

the Fourier transform to reduce the problem to two pairs of dual integral 

equations and then into Fredholm integral equations of the second kind. 

Their results showed that the near-tip stress and electric displacement 

fields in a FGPM exhibit the same inverse square-root singularity as 

those in a homogeneous piezoelectric material, but the magnitudes of the 

field intensity factors depend significantly on the gradient of the graded 

properties. Li and Weng (2002b) further investigated the Yoffe-type 

moving crack problem in a strip of FGPM subjected to antiplane 

mechanical loading and in-plane electric loading using the Galilean 

transformation and the Fourier transform. They found that the increase in 
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the gradient of the material properties can reduce the magnitudes of the 

stress and electric displacement intensity factors, which has the same 

effect as the electromechanical coupling factor. Zhou et al. (2005) 

studied the behavior of a crack in functionally graded 

piezoelectric/piezomagnetic materials subjected to an antiplane shear 

loading with the variations of the material properties one-dimensionally 

parallel to the crack, by using the Fourier transform to reduce the 

problem to a pair of dual integral equations which are solved by the 

Schmidt method. Feng and Su (2006, 2007) and Ma et al. (2007) 

considered dynamic and static mode-III embedded or edge-crack 

problems in a functionally graded magneto-electro-elastic strip/plate with 

variations of material properties one-dimensionally parallel to the crack, 

by using integral transforms and dislocation density functions to reduce 

the problem to a system of singular integral equations. Wang and Mai 

(2007b) analyzed a mode-III crack problem in functionally graded 

magneto-electro-elastic materials with the variations of the material 

properties one-dimensionally perpendicular to the crack plane by using 

the Fourier transform to reduce the problem by means of the singular 

integral equation technique.  

The integral transform/integral equation method is illustrated below 

for the Yoffe-type moving crack problem in a transversely isotropic 

functionally graded magneto-electro-elastic strip subjected to antiplane 

shear loading and in-plane electric and magnetic loadings (Fig. 8.1). 

Following the treatment by Yoffe (1951) and Li and Weng (2002b), 

consider a crack of length 2a moving at constant velocity CV  while 

keeping its length unchanged. A reference Cartesian coordinate system 

}3,2,1,
~

{ =KX K  attached to the moving crack tip is chosen, which 

coincides at time 0=t  with the fixed Cartesian coordinate system

}3,2,1,{ =KX K . The principal material axes are taken to coincide with 

the reference axes with the 3

~
X -axis in the poling direction, where the 

3

~
X -axis is parallel to the crack front.  

Thus, the Galilean transformation can be introduced as 

 tVXX C−= 11

~
, 22

~
XX = , 33

~
XX = , tt =

~
. (8.37) 
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Fig. 8.1 A Yoffe-type mode-III moving crack problem in a functionally graded magneto-

electro-elastic strip. 

 

 

For the Yoffe-type mode-III moving crack problem, only the out-of-

plane displacement w , electric potential φ ,
 
and magnetic potential ψ  

are non-vanishing, which are independent of 3

~
X  and t

~
 in the reference 

frame moving with the crack tip, that is, 

 )
~

,
~

( 21 XXww = , )
~

,
~

( 21
)()(

XX
pp φφ = , )

~
,

~
( 21

)()(
XX

pp ψψ = , (8.38) 

where the superscript p = s stands for the cracked solid region and p = f 

stands for the interior fluid region filled with vacuum, air, or oil of 

negligible mechanical influence. 

The linearized constitutive equations are given in the Voigt notation 

by 

hh BD ,

hP

CV
CV
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where i = 1, 2. 

The graded properties are taken to vary continuously along the 2

~
X -

axis inside the strip in the same proportion with the following 

distribution: 
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where k is a constant and the parameter α can be determined by the 

values of the material properties at the 0
~

2 =X  and hX ±=2

~
 planes, i.e., 
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Due to the symmetry in geometry and loading, it is sufficient to 

consider the problem for 0
~

,0
~

21 ≥≥ XX
 

only. Since the Yoffe-type 

moving crack problem is in a steady state, the governing equations with 

respect to the reference frame moving with the crack tip may be rewritten 

as 
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where 
202 )(1 TC cVs −= , 

2/100
44

0 )( ρccT =  is the piezoelectro-

magnetically stiffened bulk shear wave speed at the 0
~

2 =X  plane, 
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For an elliptical cavity-like crack, the following exact boundary 

conditions are imposed: 
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where the subscript “n” stands for the normal component and the 

subscript “t” for the tangential component on the crack surface. 

With the introduction of the Fourier cosine transform to Eqs. (8.52)–

(8.56), the general solutions can be found as  
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where 2/)1( −= kβ , βI  and βK  are the first- and second-kind modified 

Bessel functions, 0a , 0b , and 0c  are real constants, and ),(1 ζA  )(2 ζA , 

)(1 ζB , )(2 ζB , )(1 ζC , )(2 ζC , )(1 ζD , and )(1 ζE  are unknown 

functions to be determined. 

Hence, the expressions for the total stress, electric displacement, and 

magnetic induction are obtained as 
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Application of the edge-loading conditions (8.59)–(8.61) results in 

the following relations: 
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It is noted that the magneto-electro-mechanical coupling factor 
λ
emk

 
and the shear horizontal surface wave speed 

λ
bgc  defined at the 0

~
2 =X  

plane depend on the permeability parameters eλ  and mλ  through 
0

1c  and 
0
2c . Like the homogeneous materials discussed in Chapter 7, there are 

four limiting conditions for FGMs: (i) electrically and magnetically 

permeable crack-face condition as 0→eλ  and 0→mλ , (ii) electrically 

and magnetically impermeable crack-face condition as ∞→eλ  and 

∞→mλ , (iii) electrically permeable and magnetically impermeable 

crack-face condition as 0→eλ  and ∞→mλ , and (iv) electrically 

impermeable and magnetically permeable crack-face condition as 

∞→eλ  and 0→mλ . The electromagnetically semi-permeable crack-

face condition may be approximated if eλ  and mλ  are considered as 

finite nonzero parameters. 

The dual equations have the following solution (Copson, 1961): 
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where )(0 ξζaJ  is the zero-order Bessel function of the first kind  and the 

auxiliary functions )(1 ξΦ  and )(2 ξΦ  should be governed by the 

standard Fredholm integral equations of the second kind: 
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with the kernel function in the form 
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−= sdsJsJasFsG ηξξηηξ  (8.120) 

As the crack velocity VC tends to zero (i.e., 1→s ), the quasi-static 

solution is retrieved. 

8.4   Fracture Characterizing Parameters 

Next, we discuss the extension of classical fracture mechanics concepts 

such as intensity factors, energy release rate, and path-independent 

integrals to FGMs under combined magnetic, electric, thermal, and 

mechanical loadings.  

8.4.1   Field intensity factors 

The near-tip field solutions can be derived from the asymptotic analysis 

when ∞→ζ . The singular parts of the total stress, electric 

displacement, and magnetic induction near the right crack tip are given 

by 
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where 
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It can be seen that the near-tip field solutions for FGMs exhibit the 

inverse square-root singularity in the local coordinate system affixed to 

the moving crack tip, like those for homogeneous materials. Hence, the 

definition of the dynamic field intensity factors introduced in Chapter 6 

can be extended to FGMs, that is, 
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The self-induced and cross-over dynamic total stress, electric 

displacement, and magnetic induction intensity factors can be expressed 

in the form of a universal function of the crack velocity times the 

corresponding quasi-static value, that is, 
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where superscripts (T), (D) and (B) indicate traction loading, electric 

loading and magnetic loading, respectively. 

For the special case of an electromagnetically permeable crack 

0( →eλ  and 0→mλ ), the near-tip fields are expressed as 
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As the magnetic field is shut off, the electrically permeable case for 

the Yoffe-type moving crack in a FGPM strip studied by Li and Weng 

(2002b) is recovered. The dependence of the dynamic stress intensity 

factor normalized by the quasi-static value on the crack velocity 

normalized by the Bleustein–Gulyaev wave speed is shown in Fig. 8.2.  

 

 

 

Fig. 8.2 Effect of crack velocity on stress intensity factor (k = 1, a/h = 0.5). (From Li and 

Weng, 2002b, with permission from the Royal Society).  
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The trend is akin to that for the propagation of a semi-infinite 

permeable crack in a homogeneous electromagnetic material as discussed 

in Chapter 7. It can be seen that the dynamic stress intensity factor for a 

FGPM decreases monotonically with the increase of the crack velocity 

and tends to zero as the crack velocity approaches the Bleustein–Gulyaev 

wave speed. Similar to the increase of the electromechanical coupling 

factor, the increase of the material property gradient helps to reduce the 

dynamic stress intensity factor. 

8.4.2   Dynamic energy release rate 

The two alternative representations (6.25) and (6.27) for the dynamic 

energy release rate introduced in Chapter 6 are valid for homogeneous or 

nonhomogeneous, linear or nonlinear, magneto-electro-thermo-elastic 

media, including FGMs, containing a propagating three-dimensional 

crack of arbitrary shape, that is, 
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The invariant Ĵ -integral method is more useful than the crack-front 

generalized J
~

-integral method for numerical analysis. If there exists a 

steady-state solution for the propagation of a planar crack along the 1E -

direction in a FGM without electricity conduction, the dynamic energy 

release rate can be expressed by the special form of the invariant Ĵ -

integral: 



202  Fracture Mechanics of Electromagnetic Materials 

 

.
~

)ˆ~ˆ~(~lim
1

~~
ˆ~lim

1~~ˆ~lim
1

~~
)(

1

~~
])[(

1~~
])[(

1

~
)ˆ~ˆ~(

1~~
)(

1

ˆ~

0
~~

0

0
~~

00
~~

0

~~

expl1
0

~

1~~
0

~~~ 1
0

~

1~

1~1~

1~1~

0

∫

∫∫

∫

∫∫

∫∫

ΓΓ

ΓΓΓΓ

−→Γ

−→Γ−→Γ

Γ

ΓΓ

ΓΓ

++
∂

∂
−

⋅∇+⋅∇⋅−

⋅Γ∇⋅×⊗⋅+

⋅Γ∇⋅××+⋅Γ∇⋅××+

⋅Γ++⋅+⋅Γ∇⋅+⋅−=

=

VV

f
em

VVVV

f
emem

Vduhk
XB

VTds
B

Vdρ
B

d
B

d
B

d
B

duhk
B

d
B

JJ

ρρ

ρ

ρρ

EEuf

EuBPvn

EuBHnEuDEn

EInEun σσσσσσσσ

(8.150) 

The last term involving the explicit derivative of the total energy 

density with respect to 1

~
X  reflects the shielding or amplification 

influence of the material property gradient on crack propagation in 

FGMs.  

8.4.3   Path-domain independent integral 

It is known that the J-integral is generally not path independent for 

nonhomogeneous materials. Significant efforts have been made to 

modify the classical J-integral method to account for material 

inhomogeneity. Here, we introduce the KĴ -integral vector, the KJ
~

-

integral vector, and the energy-momentum tensor b
~

 as 

 

     

,
~

)ˆ~ˆ~(~lim
1

~
~ˆ~lim

1~
~

ˆ~lim
1~ˆ

0
~~

0

0
~~

00
~~

0

~~

expl
0

~

~~
0

~~~
0

~

∫

∫∫

ΓΓ

ΓΓΓΓ

−→Γ

−→Γ−→Γ

++
∂

∂
−

∂

∂
+

∂

∂
−=

VV

f
em

K

VV
K

VV
K

i
iKK

Vdukh
XB

Vd
X

T
s

B
Vd

X

u
fρ

B
JJ

ρρ

ρ

 (8.151) 

 ,
~1~

~∫Γ Γ= dbn
B

J jKjK  (8.152) 



 Fracture of Functionally Graded Materials  203 

 

 
.)ˆ~ˆ~(

~
)](

)()([
~

IuBPv

HBIHBEDIEDb

f
em

t

ukh +++∇⋅×⊗−

⊗−⋅+⊗−⋅+−=

ρρ

σσσσ
 (8.153) 

It can be seen that the first component of the KĴ -integral vector 

reproduces expression (8.150) for the invariant Ĵ -integral, which is an 

extension of the configuration force (material force) notation (Eshelby, 

1951, 1956, 1970; Maugin and Trimarco, 1992; Gurtin, 2000). Several 

variations of path-domain independent integrals proposed for 

nonhomogeneous materials or graded materials (e.g., Eischen, 1987a–b; 

Honein and Herrmann, 1997; Gu et al., 1999; Anlas et al., 2000; Jin and 

Sun, 2007) can be retrieved as the electromagnetic fields are shut off, 

e.g., 
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In contrast to homogeneous materials, the difference between the 

global and local KJ
~

-integral vector for FGMs is caused by the gradient 

of material properties along the crack line, in addition to mechanical 

body force and temperature change. The domain integral terms in the 

expression (8.151) vanish only if mechanical body force and temperature 

change are negligible and the graded properties vary one-dimensionally 

perpendicular to the crack plane. For this special case, the path-domain 

independent Ĵ -integral becomes path independent, that is, 

 1~
~~1~ˆ Ebn ⋅Γ⋅== ∫Γ d

B
JJ . (8.155) 

Moreover, the dynamic energy release rate for crack propagation in a 

FGM can be evaluated by the crack closure integral in the same way as 

discussed in Section 6.3, that is, 
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where )0,
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is the crack opening displacement at a distance 1
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crack tip. 

For the Yoffe-type mode-III moving crack in a FGM, the dynamic 

energy release rate is thus calculated as 
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where the mode-III dynamic crack opening displacement intensity factor 

at the right crack tip is given by 
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Therefore, the prediction that the dynamic energy release rate is an 

odd function of the dynamic electric displacement intensity factor and 

dynamic magnetic induction intensity factor is valid for FGMs, similar to 

homogeneous materials.  

8.5   Remarks 

Significant progress has been made in understanding the quasi-static and 

dynamic fracture behaviors of FGMs under combined magnetic, electric, 

thermal, and mechanical loadings, with generalization of classical 

fracture mechanics concepts such as intensity factors, energy release rate 
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and J-integral to FGMs. Nevertheless, fracture mechanics of FGMs is 

still far from emerging as a mature engineering science discipline. Areas 

that require substantial efforts include numerical simulation, 

experimental characterization, mixed-mode fracture, creep-fatigue crack 

growth, environmentally assisted cracking, and higher-order theory. 

Multiscale modeling involving magneto-electro-thermo-mechanical 

coupling and dissipative effects may find increased usage in simulating 

fracture processes in FGMs. The development of efficient methods for 

analyzing flawed structure components made of FGMs is greatly needed. 

Correlation of theoretical prediction with experimental measurement 

under combined loadings is vital for successful applications of FGMs in 

various demanding areas such as aerospace, armor, and biomedical 

engineering.  
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Chapter 9 

Magneto-Thermo-Viscoelastic 

Deformation and Fracture 

9.1   Introduction 

With increasing interests in the engineering applications of 

magnetosensitive polymers and polymer composites capable of large 

deformations, studies on nonlinear magneto-thermo-viscoelastic 

deformation and fracture are necessary for evaluating the reliability and 

durability of intelligent devices made of these advanced materials. It is 

well known that fracture in metals is influenced by plastic dissipation in 

the plastic zone, whereas fracture in polymers is accompanied by viscous 

dissipation in the bulk material. The need to incorporate the effect of 

viscous bulk dissipation on crack initiation and growth is the main 

motivation for the development of magneto-thermo-viscoelastic fracture 

mechanics.  

As discussed in Chapter 3, nonequilibrium thermodynamics provides 

an effective way of studying irreversible processes involving energy 

dissipation. There are essentially two types of approaches to the 

derivation of constitutive, fracture, and strength models for nonlinear 

viscoelastic solids in the published literature (Schapery, 2000): 

functional thermodynamics and state-variable thermodynamics. In 

functional thermodynamics, the free energy is expressed as a functional 

of the histories of strain (stress), temperature, etc., whereas, in state-

variable thermodynamics, the free energy is expressed as a function of 

current strain (stress), temperature, and other variables including so-

called internal state variables. Recently, Chen (2009d) developed a 

nonlinear magneto-thermo-viscoelastic constitutive and fracture theory, 
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which incorporates the augmented Helmholtz free energy as a functional 

of the histories of deformation, temperature, and magnetic induction in 

the reference configuration. The nonequilibrium thermodynamic 

approach affords a uniform treatment of complex time-dependent 

constitutive and fracture behaviors in the presence of multifield coupling 

and hysteresis effects.  

In this chapter, we attempt to provide an insight into this rather new 

and developing area on nonlinear magneto-thermo-viscoelastic 

deformation and fracture. The presentation here is restricted to the quasi-

magnetostatic approximation for a simple formulation. In Section 9.2, the 

local balance equations under combined magnetic, thermal and 

mechanical loadings are summarized. In Section 9.3, the free energy 

functional and entropy production inequality are introduced for memory-

dependent magnetosensitive materials. In Section 9.4, nonlinear 

magneto-thermo-viscoelastic constitutive relations are formulated from 

the energy balance equation and the entropy production inequality. In 

Section 9.5, the generalized J
~

-integral is constructed for use as a 

physically sound criterion for nonlinear magneto-thermo-viscoelastic 

fracture. In Section 9.6, applications to generalized plane crack problems 

are discussed and the mode-III fracture of a magnetostrictive solid in a 

bias magnetic field studied by Sabir and Maugin (1996) is revisited as a 

special case.  

9.2    Local Balance Equations for Magnetic, Thermal, and 

Mechanical Field Quantities 

A description of the balance laws in the continuum mechanics of 

electromagnetic solids can be found in Chapter 2. In the papers by 

Dorfmann and Ogden (2003, 2004), rather elegant and simple 

formulations of the governing equations and the constitutive relations 

were provided for the static situation of elastomer-like materials capable 

of large magnetoelastic deformations, based on a modified free energy 

function with the referential magnetic induction vector as the 

independent magnetic variable. Here, the governing equations and the 

constitutive relations are extended to nonlinear magneto-thermo-
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viscoelastic media under the quasi-magnetostatic approximation 

following the work by Chen (2009d).  

The local balance equations under combined magnetic, thermal, and 

mechanical loadings are summarized below: 

 0=⋅∇ B , (9.1) 

 0=×∇ H , (9.2) 

 v⋅∇−= ρ
ρ

dt

d
, (9.3) 

 f
v ˆρρ +∇⋅= σσσσt

dt

d
, (9.4) 

 jitijt σσ = , (9.5) 

 vfvj ⋅+−⋅⋅∇+⋅−∇=









++ ˆ)(ˆˆ ρ

u
ek

dt

d
tq

f
m

Sσσσσ
ρ

ρ , (9.6) 

where the total stress tensor σσσ mt +=  is the sum of the Cauchy stress 

tensor σ  and the magnetic stress tensor 0µBBMBσ ⊗+⊗−=m

IBM )( f

mu−⋅+ , 02µBB ⋅=f

m u  is the energy density of the free 

magnetic field, and ( ) HBv ××=S  is the Poynting vector in the co-

moving frame. 

Like thermoviscoelastic boundary-initial value problems, discussed in 

Chapter 3, these balance equations should be supplemented by 

constitutive relations together with appropriate boundary and initial 

conditions for proper mathematical formulation of magneto-thermo-

viscoelastic boundary-initial value problems. 

The boundary conditions are given by 

 0]][[ =⋅ Bn  across S ( 0≥t ), (9.7) 

 0]][[ =× Hn
 
across S ( 0≥t ), (9.8) 

 ),( tBt xtn =⋅ σσσσ  on σS
 
( 0≥t ), (9.9) 
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 ),( tB xuu =  on uS
 
( 0≥t ), (9.10) 

 ),( tqBq xjn =⋅  on qS
 
( 0≥t ), (9.11) 

 ),( tTT B x=  on TS
 
( 0≥t ), (9.12) 

where [ ]S  refers to a certain part of the boundary: displacement is 

prescribed on uS , traction on σS  (the complement of uS ), temperature 

on θS , and heat flux on qS  (the complement of θS ). Therefore, we have 

SSSu =∪ σ  and SSS qT =∪ . Other mixed boundary conditions may 

also be employed. 

The initial conditions are taken as 

 0uu =  ( 0<t ), (9.13) 

 0vu =�  ( 0=t ), (9.14) 

 0TT =  ( 0<t ). (9.15) 

 0BB =  ( 0<t ). (9.16) 

9.3    Free Energy and Entropy Production Inequality for Memory-

Dependent Magnetosensitive Materials 

By introduction of the augmented Helmholtz free energy, including the 

contribution of the energy of the free magnetic field, that is,  

 
ρ

f
m u

sTeh +−= ˆˆ
~

,  (9.17) 

the local energy balance equation (9.6) becomes 

 ( ) vfvj ⋅+−⋅⋅∇+⋅−∇=++ ˆ)(ˆ
~ˆ ρsThk

dt

d
tq Sσσσσρ . (9.18) 

In the reference configuration, RV , the local energy balance equation 

can be rewritten as 
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0 0 0

0

ˆ 1 1 1 1
:

2

1 1 1ˆ ˆ ˆ

q

R q R t

ds

dt T T T

dh
sT

T T T dt

ρ ρ ρ

ρ

= − ∇ ⋅ + ⋅∇ +

+ ⋅ − −

J
J C

H B

�

�
� �

ΣΣΣΣ

 (9.19) 

and the entropy production inequality is expressed as 

 0
1ˆˆ

0

≥⋅∇+= sR
i

dt

sd

dt

sd
J

ρ
. (9.20) 

For memory-dependent magnetosensitive materials, the augmented 

Helmholtz free energy, including the contribution of the energy of the 

free magnetic field, is assumed to be a functional of the histories of 

deformation, temperature, temperature gradient, and magnetic induction 

in the reference configuration RV , with respect to which the deformation 

gradient F  is measured, that is, 

 ));(ˆ),(),(),((
~~

XBC ττττ −−∇−−= ttTtTthh R . (9.21) 

9.4    Coupled Magneto-Thermo-Viscoelastic Constitutive Relations 

Since the entropy production inequality (9.20) is always valid, state 

equations should fulfill the following conditions: 

 

0

~

,

=
∂

∂

KT

h
, (9.22) 

 
KL

KLt
C

h

∂

∂
=Σ

~

2 0ρ , (9.23) 

 
T

h
s

∂

∂
−=

~

ˆ , (9.24) 

 
Κ

ρ
B

h
H K ˆ

~
ˆ

0
∂

∂
= , (9.25) 



 Magneto-Thermo-Viscoelastic Deformation and Fracture 211 

 

 
t

h

∂

∂
−=Λ

~
ˆ , (9.26) 

 
qs

T
JJ

1
= , (9.27) 

 0
ˆ11ˆ

0

≥
Λ

+∇⋅=
TTdt

sd
Rq

i J
ρ

, (9.28) 

where Λ̂  is the viscous dissipation rate, which is time-dependent.  

From Eq. (9.22), the augmented Helmholtz free energy does not 

depend on the temperature gradient. Energy can be converted from one 

form to another due to mechanical, thermal, and magnetic coupling, 

accompanied by intrinsic dissipation associated with mechanical, 

thermal, and magnetic hysteresis. Since the inequality (9.28) must always 

be satisfied, kinetic laws for specific irreversible processes may be 

determined accordingly. Next, a special type of material behavior 

pertinent to finite magneto-thermo-viscoelasticity is illustrated as an 

extension of the coupled theory of thermoviscoelasticity at finite 

deformation discussed in Chapter 3. 

The viscous dissipation rate satisfies the inequality 

 0ˆ ≥Λ . (9.29) 

It is proposed that the thermodynamic flux for heat conduction 

depends linearly on the corresponding thermodynamic force, that is, 

 
T

R
qq

q

1ˆ ∇⋅= LJ , (9.30) 

where qqTqq LL ˆˆ =  is positive definite. 

Substituting Eqs. (9.24) and (9.30) into Eq. (9.19) yields the 

following heat transfer equation based on the augmented Helmholtz free 

energy functional: 

 Λ+







∇⋅⋅∇−=











∂

∂
− ˆ11ˆ1

~

0 TTTT

h

dt

d
R

qq
R L

ρ
. (9.31) 
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With the use of the Lagrange strain measure 2/)( IC −=ΕΕΕΕ , the 

temperature deviation 0TT −=θ , and the referential magnetic induction 

deviation 0
ˆˆˆ BBb −= , expansion of the augmented Helmholtz free 

energy functional for materials with fading memory on an intrinsic time 

scale up to the second order yields 
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  (9.32) 

where 0

~
h  is the value of the augmented Helmholtz free energy in a 

reference state (i.e., 0=ΕΕΕΕ , 0TT = , 0
ˆˆ BB = ), ∫=

t
dttat

0

'' )()(ψ  is the 

intrinsic time, )( 'ta  is a shift function due to the effects of temperature, 

aging, etc., ),,,(),,( '""' ψψψψψψψψ −−=−− XX KLIJIJKL GG   

),,,(),,( '""' ψψψψψψψψ −−=−− XX HH CC  and 

),,(),,( '""' ψψψψχψψψψχ −−=−− XX b
JI

b
IJ . 

From Eqs. (9.23)–(9.25), the constitutive equations in finite magneto-

thermo-viscoelasticity are obtained using the augmented Helmholtz free 

energy functional expansion (9.32) as 
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where ),0,( "ψψ −XIJKLG , )0,,( 'ψψ −XHC , ),0,( "ψψχ −Xb
IJ , 

),0,( "ψψβ −XIJ , )0,,( 'ψψβ −XIJ , ),0,( "ψψ −Xb
KIJf , 

),0,,( 'ψψ −X
b

IJKf
 

)0,,( 'ψψγ −X
b
I , and ),0,( "ψψγ −X

b
I  

are appropriate 

memory functions.  

The first terms 
0
IJL , 

0M  and 
0b

IN  on the right-hand sides of Eqs. 

(9.33)–(9.35) stand for the values of IJt Σ , ŝ0ρ , and IĤ  in the reference 

state, the second terms for mechanical contribution, the third terms for 

thermal contribution, and the fourth terms for magnetic contribution. The 

dependence of the long-term property functions on aging time, 

temperature, etc. may be determined from short-term experiments with 

an accelerated test methodology. Physical aging refers to structural 

relaxation of the glassy state toward the metastable state, accompanied 

by changes in almost all physical properties (Hodge, 1995). The 
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experimental observations by Maignan et al. (1998) and Dolinek and 

Jaglii (2002) show that the aging phenomenon exists in the samples for 

magnetization relaxation measurements and the magnetization data may 

be fitted with a stretched (fractional) exponential function. The concept 

of the intrinsic time (also called effective time or reduced time) is used to 

describe the equivalence of aging time, time, and temperature for 

polymeric materials (Struik, 1978; Ferry, 1980).  

From Eq. (9.26), the viscous dissipation rate in finite magneto-

thermo-viscoelasticity is obtained using the augmented Helmholtz free 

energy functional expansion (9.32) as 
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  (9.36) 

The coupled heat transfer equation is obtained from Eq. (9.31) as 
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where the integral involving the strain history gives rise to a coupling 

between thermal and mechanical effects, and the integral involving the 

magnetic induction history gives rise to a coupling between thermal and 

magnetic effects. 

9.5    Generalized J
~

-Integral in Nonlinear Magneto-Thermo-

Viscoelastic Fracture 

Consider a three-dimensional cracked body (see Fig. 6.1) with the 

surface Γ
~

 translating with the crack front moving at a speed CV . Using 

Eqs. (9.18), (9.20), (9.27), and (9.28) in nonlinear magneto-thermo-

viscoelasticity without the requirement of a constitutive nature, except 

the existence of the free energy functional, the global form of energy 

balance leads to the following expression for the energy flux integral: 
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 (9.38) 

The generalized J
~

-integral is related to the energy flux integral by 

 
A

F
J

�

)
~

(~
~

Γ
=

Γ
, (9.39) 

where A�  is the crack area growth rate. 
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The rate of energy flow out of the body and into the crack front per 

unit crack advance provides the driving force for crack propagation in 

the presence of magneto-thermo-mechanical coupling and hysteresis 

effects, that is, 
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It can be seen that the above expression for the crack driving force 

has a universal form for conservative or dissipative systems at small or 

large deformations under isothermal or nonisothermal conditions.  

The relation between the global and local generalized J
~

-integrals is 

obtained from Eq. (9.38) as 
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 (9.41) 

where gV
~

 and lV
~

 are the volumes bounded by the surfaces gΓ
~

 and lΓ
~

, 

including crack faces. 

Consequently, the difference between the global and local generalized 

J
~

-integrals is caused by unsteady state, mechanical body force, 

temperature change, and viscous dissipation rate. Thus, the generalized 

J
~

-integral loses path independence, even for steady-state crack growth, 

due to the occurrence of viscous bulk dissipation. 

For the accuracy of numerical evaluation by means of finite element 

analysis, an equivalent path-domain integral expression is given by 
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Because of the addition of the domain integral terms reflecting the 

influence of unsteady state, mechanical body force, temperature change, 

and viscous dissipation rate, the Ĵ -integral is invariant, that is, path-

domain independent.  

For a flat, straight, through-crack, if a field quantity is invariant in a 

reference frame traveling with the crack tip at a uniform speed 

1EV CC V= , the field quantity depends on t only through the combination 

tCVXX −=
~

. Under the condition that there exists a steady-state 

solution for crack propagation in a magneto-thermo-viscoelastic 

homogeneous medium or FGM, the above expression for the path-

domain independent Ĵ -integral becomes  
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ΓΓΓ ∫ d
B

J , (9.44) 

 ,)ˆ~~~(
~

])([
~

IuHBIHBb kht ρρ ++∇⋅⊗−⋅+−= σσσσ  (9.45) 

where B is the thickness along the crack front. 

The domain integral term involving the explicit derivative of the total 

energy density with respect to 1

~
X  reflects the influence of material 
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inhomogeneity on crack propagation. The generalized J
~

-integral can be 

taken as the projection of the generalized KJ
~

-integral vector along the 

crack advance direction. For the special case of steady-state crack 

propagation under isothermal conditions in the absence of mechanical 

body force, viscous bulk dissipation, and material property variation 

along the crack line, the generalized J
~

-integral becomes path 

independent. With nBHHBnBHn )()()( ⋅−⋅=×× , the expression for 

the generalized J
~

-integral can be rewritten as 

 

1 1
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1 1
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J d d
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h k d
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∫ ∫

∫
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n E

�
� �

�
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� �� �

σσσσ

 (9.46) 

It is noted that the generalized J
~

-integral and the energy-momentum 

tensor b
~

 constructed with the use of the augmented Helmholtz free 

energy, including the contribution of the energy of the free magnetic 

field, are different from those obtained with the use of the magnetic 

enthalpy, including or excluding the contribution of the energy of the 

free magnetic field (Sabir and Maugin, 1996).  

9.6    Generalized Plane Crack Problem and Revisit of Mode-III 

Fracture of a Magnetostrictive Solid in a Bias Magnetic Field 

For a generalized plane crack problem in a magnetosensitive solid, we 

choose the contour as shown in Fig. 9.1. A reference frame is affixed to 

the crack tip advancing at instantaneous speed VC. As discussed in 

previous chapters, this is a convenient choice because 01 =n  along the 

segments parallel to the 1

~
X -axis. The contour is shrunk onto the crack 

tip by first letting 02 →δ  and then 01 →δ . There is no contribution to 

0

~
J  from the segments parallel to the 2

~
X -axis and the segments along the 

crack faces. 
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Fig. 9.1 A generalized plane crack problem in a magnetosensitive material. (From Chen, 

2009d, with permission from Elsevier.) 

Consequently, 0

~
J  can be computed by evaluating only the first and 

second terms on the right-hand side of Eq. (9.46) along the segments 

parallel to the 1

~
X -axis, that is, 
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 (9.47) 

Since fracture mechanics analysis incorporating nonlinear magneto-

thermo-viscoelastic material response is rather complex, numerical  
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methods are necessary for solving this class of problems. There is also a 

pressing need for comprehensive sets of material data, as systematic 

experimental work under combined magnetic, thermal, and mechanical 

loadings is not yet available. To date, most applications to 

magnetosensitive materials still use conventional fracture mechanics 

methodology without time dependence.  

For mode-III fracture of an isotropic magnetostrictive solid placed in 

a bias static magnetic field along the crack front, studied by Sabir and 

Maugin (1996), that is, 3
00 EH H= , the crack-tip generalized J

~
-integral 

is calculated from Eq. (9.47) as 

 SH02S
0

2

1
)(

2

1~
KKbHKJ += µ , (9.48) 

where 
0H  is the intensity of the bias static magnetic field, µ  is the shear 

modulus, b is a magnetostriction constant, 
HK  is the magnetic field 

intensity factor, and 
SK  is the strain intensity factor. 

Hence, the crack-tip generalized J
~

-integral is an odd function of the 

magnetic field intensity factor, indicating that the magnetic field either 

promotes or impedes crack propagation, depending on its direction. A 

fracture criterion with use of the generalized J
~

-integral as the 

characterizing parameter overcomes the difficulties encountered by other 

treatments and helps understand the fracture behaviors of both 

conservative and dissipative material systems subjected to combined 

magnetic, thermal, and mechanical loadings. 
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Chapter 10 

Electro-Thermo-Viscoelastic 

Deformation and Fracture 

10.1   Introduction 

With the growing demand of electroactive polymeric materials for 

various engineering needs, such as robotic arms and adaptive control 

systems (see for example, Bar-Cohen, 2002; Dorfman and Ogden, 2005–

2006; Vu and Steinmann, 2007), considerable attention has been drawn 

to the time-dependent response of these smart material systems with 

novel electronic structures and molecular architecture. Like the 

magnetosensitive polymers and polymer composites studied in Chapter 

9, proper determination of the constitutive relations and fracture criteria 

is also essential for design analysis and durability assessment of 

electroactive polymer actuators and sensors under aggressive operation 

conditions. In addition to piezoelectric, pyroelectric, dielectric, and 

electrostrictive properties, the hysteresis effect should be considered in 

analyzing the deformation and fracture behavior of electronic 

electroactive polymers (e.g., ferroelectric polymers, electroviscoelastic 

elastomers) and ionic electroactive polymers (e.g., conductive polymers, 

ionic polymer-metal composites, responsive gels), among others. Crack 

initiation and growth has a pronounced effect on how such 

electromechanical devices behave over time. For crack propagation in 

the presence of electro-thermo-mechanical coupling and hysteresis 

effects, we seek a physically meaningful quantity whose critical value 

can be used in a fracture criterion. Due to its great importance for 

practical applications, the subject of nonlinear electro-thermo-

viscoelastic deformation and fracture is addressed separately here.  
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This chapter commences with the local balance equations and 

associated boundary and initial conditions for electrosensitive materials 

subjected to combined electric, thermal, and mechanical loadings. It is 

then followed by the introduction of the free energy and entropy 

production inequality for memory-dependent electrosensitive materials in 

consideration of the augmented Helmholtz free energy, including the 

contribution of the energy of the free electric field, as a functional of the 

histories of deformation, temperature, and electric displacement in the 

reference configuration. This gives rise to nonlinear electro-thermo-

viscoelastic constitutive relations, including, as a special case, finite 

electro-thermo-viscoelasticity for materials with fading memory on an 

intrinsic time scale. Next, the generalized J
~

-integral is formulated as a 

physically sound criterion for nonlinear electro-thermo-viscoelastic 

fracture. Then, the analogy between the nonlinear magneto- and electro-

thermo-viscoelastic constitutive and fracture theories is summarized. 

Finally, reduction to Dorfmann–Ogden nonlinear magneto- and electro-

elasticity is discussed. 

10.2    Local Balance Equations for Electric, Thermal, and 

Mechanical Field Quantities 

The local balance equations for nonlinear electro-thermo-viscoelastic 

media under the quasi-electrostatic approximation are summarized 

below: 

 fq=⋅∇ D , (10.1) 

 0=×∇ E , (10.2) 

 e

f

t

q
j⋅∇=

∂

∂
− , (10.3) 

 v⋅∇−= ρ
ρ

dt

d
, (10.4) 
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 f
v ˆρρ +∇⋅= σσσσt

dt

d
, (10.5) 

 jitijt σσ = , (10.6) 

 vfvj ⋅+−⋅⋅∇+⋅−∇=









++ ˆ)(ˆˆ ρ

u
ek

dt

d
tq

f
e

Sσσσσ
ρ

ρ , (10.7) 

where fq  is the free body charge density, ej  is the total electric current, 

the total stress tensor σσσ et +=  is a sum of the Cauchy stress  

tensor σ  and the electric stress tensor IEEEPσ
f

ee u−⊗+⊗= 0ε , 

20 E/E ⋅= εu
f

e  is the energy density of the free electric field, and 

EDv ××= )(S  is the Poynting vector in the co-moving frame. 

It can be seen that the electric displacement is not divergence-free in 

the presence of free body electric charges, in contrast to the magnetic 

induction. The mathematical boundary-initial value problems for 

nonlinear electro-thermo-viscoelastic media subjected to combined 

electric, thermal, and mechanical loadings can be formulated with 

Gauss’s law (10.1), Faraday’s law (10.2), the electric charge balance 

equation (10.3), the mass balance equation (10.4), the linear momentum 

balance equation (10.5), the angular momentum balance equation (10.6), 

and the energy balance equation (10.7), together with constitutive 

relations as well as appropriate boundary and initial conditions.  

The boundary conditions are given by 

 fϖ=⋅ ]][[Dn
 
( 0≥t ), (10.8) 

 0]][[ =× En
 
( 0≥t ), (10.9) 

 0]][[ =−⋅ vjn fe q
 
( 0≥t ), (10.10) 

 ),( tBt xtn =⋅ σσσσ  on σS  
( 0≥t ), (10.11) 

 Buu =  on uS  
( 0≥t ), (10.12) 
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 ),( tqBq xjn =⋅ on qS
 
( 0≥t ), (10.13) 

 ),( tTT B x=  on TS  
( 0≥t ), (10.14) 

where fϖ  is the free surface charge density, SSSu =∪ σ , and

SSS qT =∪ . Other mixed boundary conditions may also be used. 

The initial conditions are taken as 

 0uu =  ( 0<t ), (10.15) 

 0vu =�  ( 0=t ), (10.16) 

 0TT =  ( 0<t ), (10.17) 

 0DD =  ( 0<t ). (10.18) 

10.3   Free Energy and Entropy Production Inequality for Memory-

Dependent Electrosensitive Materials 

By introducing the augmented Helmholtz free energy, including the 

contribution of the energy of the free electric field, that is, 

 
ρ

f
e u

sTeh +−= ˆˆ
~

, (10.19) 

the local energy balance equation (10.7) becomes 

 ( ) vfvj ⋅+−⋅⋅∇+⋅−∇=++ ˆ)(ˆ
~ˆ ρsThk

dt

d
tq Sσσσσρ . (10.20) 

In the reference configuration, RV , the local energy balance equation 

can be rewritten as 
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 (10.21) 
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In the same reference configuration, 
RV , the entropy production 

inequality is expressed as 

 .0
1ˆˆ

0

≥⋅∇+= sR
i

dt

sd

dt

sd
J

ρ
 (10.22) 

For memory-dependent electrosensitive materials, the augmented 

Helmholtz free energy, including the contribution of the energy of the 

free electric field, is assumed to be a functional of the histories of 

deformation, temperature, temperature gradient, and electric 

displacement in the reference configuration, RV , with respect to which 

the deformation gradient F  is measured, that is, 

 ));(ˆ),(),(),((
~~

XDC ττττ −−∇−−= ttTtTthh R . (10.23) 

10.4   Coupled Electro-Thermo-Viscoelastic Constitutive Relations 

Since the entropy production inequality (10.22) is always valid, the state 

equations should fulfill the following conditions: 
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∂
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, (10.24) 
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 qs
T

JJ
1

= , (10.29) 

 0
ˆ

ˆ111ˆ

00

≥
Λ

+⋅+∇⋅=
TTTdt

sd
eRq

i
JEJ

ρρ
, (10.30) 

where Λ̂  is viscous dissipation rate, which is time-dependent.  

From Eq. (10.24), the augmented Helmholtz free energy does not 

depend on the temperature gradient. Energy can be converted from one 

form to another due to mechanical, thermal, and electric coupling, 

accompanied by intrinsic dissipation associated with mechanical, 

thermal, and electric hysteresis. Since inequality (10.30) must always be 

satisfied, the kinetic laws for specific irreversible processes may be 

determined accordingly. Next, finite electro-thermo-viscoelasticity is 

illustrated, as was finite magneto-thermo-viscoelasticity in Chapter 9. 

The viscous dissipation rate satisfies the inequality 

 0ˆ ≥Λ . (10.31) 

In the reference configuration, RV , it is proposed that the 

thermodynamic fluxes for heat conduction and electricity conduction 

depend linearly on the corresponding thermodynamic forces with the 

Onsager reciprocity relations, that is, 

 ELLJ ˆˆ11ˆ ⋅+∇⋅= qe
R

qq
q

TT
, (10.32) 

 ELL ˆˆ11ˆ ⋅+∇⋅= ee
R

eq
e

TT
J , (10.33) 

where the coefficient matrix 
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
eeeq
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T
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qeqq
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ˆˆ

ˆˆ
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ˆˆ
, (10.34) 

is positive definite.  
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Substituting Eqs. (10.26), (10.32), and (10.33) into Eq. (10.21) yields 

the following heat transfer equation based on the augmented Helmholtz 

free energy functional: 
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ρ

ρ
 (10.35) 

Substituting Eq. (10.33) into Eq. (10.3) gives the coupled electric 

charge balance equation: 

 0)ˆˆ11ˆ( =⋅+∇⋅⋅∇+ ELL ee
R

eq
R

f

TTdt

dQ
, (10.36) 

where ff jqQ = . 

Using the Lagrange strain measure 2/)( IC −=ΕΕΕΕ , the temperature 

deviation 0TT −=θ , and the referential electric displacement deviation 

0
ˆˆˆ DDd −= , expansion of the augmented Helmholtz free energy 

functional for materials with fading memory on an intrinsic time scale up 

to the second order yields 
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  (10.37) 

where 0

~
h  is the value of the augmented Helmholtz free energy in a 

reference state (i.e., 0=ΕΕΕΕ , 0TT = , 0
ˆˆ DD = ), ∫=

t
dttat

0

'' )()(ψ  is the 

intrinsic time, )(
'

ta  is a shift function due to the effects of temperature, 

aging, etc., ),,,(),,(
'""' ψψψψψψψψ −−=−− XX KLIJIJKL GG

  
),,,(),,(

'""' ψψψψψψψψ −−=−− XX HH CC
 
and 

),,(),,(
'""' ψψψψχψψψψχ −−=−− XX

d
JI

d
IJ . 

From Eqs. (10.25)–(10.27), the constitutive equations in finite 

electro-thermo-viscoelasticity are obtained using the augmented 

Helmholtz free energy functional expansion (10.37) as 
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where ),0,(
"ψψ −XIJKLG , )0,,( 'ψψ −XHC , ),0,( "ψψχ −X

d
IJ , 

),0,(
"ψψβ −XIJ , )0,,(

'ψψβ −XIJ , ),0,(
"ψψ −X

d
KIJf , 

),0,,(
'ψψ −X

d
IJKf  )0,,( 'ψψγ −X

d
I , and ),0,( "ψψγ −X

d
I  are appropriate 

memory functions. 

The first terms, 0
IJL , 0M , and 

0d
IN , on the right-hand sides of  

Eqs. (10.38)–(10.40) stand for the values of IJt Σ , ŝ0ρ , and IÊ  in the 

reference state, the second terms for mechanical contribution, the third 

terms for thermal contribution, and the fourth terms for electric 

contribution. The dependence of the long-term property functions on 

aging time, temperature, etc. may be determined from short-term 

experiments with an accelerated test methodology. It has been reported 

that piezoelectric and dielectric properties follow the stretched 

exponential law (e.g., Zhang et al., 1996, 1997; Koh et al., 2006).  

The number of material properties required for coupled multifield 

analysis depends on the material type. For an electrosensitive material 

with transverse isotropy, there are 18 independent properties: dielectric 

permittivity (2), heat capacity (1), compliance (5), piezoelectric 

coefficients (3), pyroelectric coefficients (1), thermal expansion 

coefficients (2), thermal conductivity (2), and electrical conductivity (2). 

From Eq. (10.28), the viscous dissipation rate in finite electro-

thermo-viscoelasticity is obtained with the use of the augmented 

Helmholtz free energy functional expansion (10.37) as 
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The coupled heat transfer equation is obtained from Eq. (10.35) as 
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where the integral involving the strain history gives rise to a coupling 

between thermal and mechanical effects, and the integral involving the 

electric displacement history gives rise to a coupling between thermal 

and electric effects. 

The coupled electric charge balance equation is obtained from Eq. 

(10.36) as 

 0)ˆˆ1ˆ1
(

0
2

0

=⋅+∇⋅−⋅∇+ ELL ee
R

eq
R

f

TTdt

dQ
θ . (10.43) 

10.5    Generalized J
~

-Integral in Nonlinear Electro-Thermo-

Viscoelastic Fracture 

Consider a three-dimensional body B
~

 that contains an extending crack 

with the surface Γ
~

 translating with the crack front moving at a speed CV  

(see Fig. 6.1). Using Eqs. (10.20), (10.22), (10.29), and (10.30) in 

nonlinear electro-thermo-viscoelasticity, without the requirement of a 

constitutive nature except the existence of the free energy functional, the 

global form of energy balance leads to the following expression for the 

energy flux integral: 
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The generalized J
~

-integral is related to the energy flux integral by 

 
A

F
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, (10.45) 

where A�  is the crack area growth rate. 

The rate of energy flow out of the body and into the crack front per 

unit crack advance provides the driving force for crack propagation in 
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the presence of electro-thermo-mechanical coupling and hysteresis 

effects, that is, 
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It appears that expression (10.46) for the crack driving force in 

electrosensitive materials has the same universal form as expression 

(9.40) for the crack driving force in magnetosensitive materials, both of 

which can be taken as a generalization of the conventional J-integral 

method, the dynamic contour integral method, and the crack-tip model 

for viscoelastic crack initiation and growth discussed in Chapter 1.  

The relationship between the global and local generalized J
~

-integrals 

is obtained from Eq. (10.44) as 
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(10.47) 

 

where gV
~

 and lV
~

 are the volumes bounded by the surfaces gΓ
~

 and lΓ
~

, 

including the crack faces. 

Thus, the difference between the global and local generalized J
~

-

integrals is caused by unsteady state, mechanical body force, temperature 

change, electricity conduction, and viscous dissipation rate. The Joule 

heating in conductive or semiconductive polymeric materials contributes 

to the loss of path independence of the generalized J
~

-integral. 

For the accuracy of numerical evaluation by means of finite element 

analysis, an equivalent invariant integral expression is given by 
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For a flat, straight, through-crack, if a field quantity is invariant in a 

reference frame traveling with the crack tip at a uniform speed 

1EV CC V= , the field quantity depends on t only through the combination 

tCVXX −=
~

. Under the condition that there exists a steady-state solution 

for crack propagation in an electro-thermo-viscoelastic homogeneous 

medium or FGM, the above expression for the path-domain independent 

Ĵ -integral becomes 
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The domain integral term involving the explicit derivative of the total 

energy density with respect to 1

~
X  reflects the influence of material 

inhomogeneity on crack propagation. The generalized J
~

-integral can be 

taken as the projection of the generalized KJ
~

-integral vector along the 

crack advance direction. It is noted the generalized J
~

-integral is path 

dependent due to the occurrence of viscous dissipation in the bulk 

material, even for steady-state crack propagation under isothermal 
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conditions in the absence of material property variation, mechanical body 

force, and electricity conduction. The Ĵ -integral becomes invariant 

because of the addition of the domain integral terms to account for the 

effects of property variation, mechanical body force, temperature change, 

electricity conduction, and viscous dissipation rate in the bulk material. 

10.6    Analogy between Nonlinear Magneto- and Electro-Thermo-

Viscoelastic Constitutive and Fracture Theories 

The nonequilibrium thermodynamic approach enables derivation of 

nonlinear magneto- and electro-thermo-viscoelastic constitutive and 

fracture theories in a unified way. The analogy is summarized in Table 

10.1. The referential electric displacement can be taken as the 

thermodynamic dual of the referential electric field under the quasi-

electrostatic approximation, whereas the referential magnetic induction 

can be taken as the thermodynamic dual of the referential magnetic field 

under the quasi-magnetostatic approximation. The thermodynamic 

driving force for crack propagation in electro- and magneto-sensitive 

materials can be expressed as the crack-front generalized J
~

-integral, 

which has a universal form for conservative or dissipative systems at 

small or large deformations under isothermal or nonisothermal 

conditions. A fracture criterion based on the generalized J
~

-integral thus 

formulated, without the requirement of a constitutive nature except the 

existence of the free energy functional, is a generalization of the 

conventional J-integral method, the dynamic contour integral method, 

the configuration force (material force) method, and the crack-tip model 

for viscoelastic crack initiation and growth discussed in Chapter 1.  

Both magneto-thermo-viscoelastic fracture and electro-thermo-

viscoelastic fracture are time-dependent, involving viscous bulk 

dissipation which contributes to the difference between the global and 

local generalized J
~

-integrals. The fully dynamic framework for 

magneto-electro-thermo-elastic fracture presented in Chapter 6 may also 

be generalized with the inclusion of viscous dissipation in the bulk 

material. 
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Table 10.1 Analogy between nonlinear magneto- and electro-thermo-viscoelastic 

constitutive and fracture theories 

 Nonlinear magneto-thermo-

viscoelastic constitutive and 
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10.7    Reduction to Dorfmann–Ogden Nonlinear Magneto- and 

Electro-elasticity 

The coupled theories of nonlinear magneto- and electro-thermo-

viscoelasticity formulated based on nonequilibrium thermodynamics can 

be reduced to the refined theories of nonlinear magneto- and electro-

elastic deformations developed by Dorfmann and Ogden (2004, 2006) as 

the augmented Helmholtz free energy is taken as a function of basic 

variables such as deformation, magnetic induction, or electric 

displacement in the reference configuration. Within this theoretical 

framework, the boundary-initial value problems can be formulated in a 

simple and elegant way for proper evaluation of the performance of 

deformable electro- and magneto-sensitive materials. Alternative 

formulations which consider the augmented Gibbs free energy to be a 

function or functional of stress, magnetic field, or electric field in the 

reference configuration can also be established (Dorfmann and Ogden, 

2005–2006; Chen, 2010). New examples of nonlinear constitutive 

equations for practical applications may be implemented as user 

subroutines in commercial finite element analysis software packages 

such as ABAQUS or ANSYS. Nevertheless, there is still a shortage of 

systematic experimental work to obtain comprehensive sets of much-

needed data. It is hoped that the general formulation presented here may 

provide fundamental guidelines for future experimental and 

computational work. 
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Chapter 11 

Nonlinear Field Theory of Fracture 

Mechanics for Paramagnetic and 

Ferromagnetic Materials 

11.1   Introduction 

From the viewpoint of global energy balance, Griffith (1921) proposed a 

fracture theory of brittle materials based on the theorem of minimum 

potential energy by introducing a specific surface energy on the crack 

faces, marking an epoch of fracture mechanics as described in Chapter 1. 

The energy-based approach is fundamental to thermodynamics and 

continuum mechanics, and is not unique to crack problems. 

Thermodynamics/thermomechanics has been widely used to study 

thermoelasticity, electrodynamics, viscoelasticity, inelasticity, plasticity, 

damage, and fracture (e.g., Schapery, 1964, 1969, 1997, 1999, 2000; 

Coleman and Gurtin, 1967; Crochet and Naghdi, 1969; Rice, 1971, 1978; 

Cost, 1973; Eringen, 1980; Christensen, 1982; Truesdell, 1984; Maugin, 

1988, 1992; Gurney and Hunt, 1967; Gurney, 1994; Lemaitre, 1996; 

Fung and Tong, 2001; Makowski and Stumpf, 2001; Truesdell and Noll, 

2004; Dorfmann and Ogden, 2003–2006; Chen, 2007, 2009a–e, 2010; 

Horstemeyer and Bammann, 2010). Magneto- and electro-thermo-

mechanical coupling and dissipative effects accompanying crack 

propagation bring about new challenges in extending conventional 

fracture mechanics approaches.  

In this chapter, a nonlinear field theory of fracture mechanics, which 

includes magneto-thermo-mechanical coupling and dissipative effects, is 

formulated from the global energy balance equation and the non-negative 

global dissipation requirement, following the work of Chen (2009e) as a 
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generalization of the Griffith global energy balance approach. In Section 

11.2, the global energy balance equation and the non-negative global 

dissipation requirement are given for crack propagation under combined 

magnetic, thermal, and mechanical loadings in the quasi-magnetostatic 

approximation. In Section 11.3, the Hamiltonian density and the 

thermodynamic requirement on constitutive laws are provided, based on 

two types of nonequilibrium thermodynamic approaches: generalized 

functional thermodynamics and generalized state-variable 

thermodynamics. In Section 11.4, the thermodynamically consistent 

time-dependent fracture criterion is expressed in terms of the generalized 

energy release rate as the thermodynamic driving force conjugate to the 

crack variable. In Section 11.5, the generalized energy release rate 

method is proposed for crack propagation in the presence of time-

dependent or loading path/history-dependent dissipation in the bulk 

material. In Section 11.6, the generalized J
~

-integral method is proposed, 

with the crack-front generalized J
~

-integral equivalent to the generalized 

energy release rate and the global generalized J
~

-integral including 

additional contributions due to unsteady, thermal, and dissipative effects. 

In Section 11.7, the extended essential work of fracture method is 

proposed, with the specific essential work of fracture equivalent to the 

crack resistance and the nonessential work of fracture associated with 

kinetic energy change, temperature change, and time or loading 

path/history-dependent bulk dissipation. 

11.2   Global Energy Balance Equation and Non-Negative Global 

Dissipation Requirement 

Consider a cracked body tV  subjected to combined magnetic, thermal, 

and mechanical loadings under the quasi-magnetostatic approximation. 

Following the conservation law of energy, the global energy balance 

equation over the cracked body tV  is given by 

 QW
dt

dE

dt

dΕ ki

�� +=+ , (11.1) 
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where 
iE  is the internal energy, 

kE  is the kinetic energy, W�  is the 

power applied by external forces, and Q�  is the heat exchange rate.  

The internal energy 
iE  and the kinetic energy 

kE  over the cracked 

body tV  are defined as 

 ∫≡
tV

i
dVeE ˆρ , (11.2) 

 ∫≡
tV

k
dVkE ˆρ , (11.3) 

where ê  is the internal energy per unit mass and 2/ˆ vv ⋅=k  is the 

kinetic energy per unit mass. 

The power applied by external forces is given by 

 ∫∫∫ +⋅+⋅=
∂ ttt V mVV n wdVdVρdSW vfvt ˆ

)(
� , (11.4) 

where BMvf �⋅−⋅=mm w  is the magnetic power density. 

Using the Poynting vector ( ) HBv ××=S  in the co-moving frame, 

Eq. (11.4) leads to 
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dt

d
dSdVρdSW Snvfvn σσσσσσσσ�  (11.5) 

The heat flux qj  is introduced to describe the heat exchange rate 

through the boundary tV∂  as 

 ∫∂ ⋅−=
tV qdSQ jn� . (11.6) 

Hence, the global energy balance equation over the cracked body tV  

becomes 
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By introducing the Helmholtz free energy per unit mass,  
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 sTeh ˆˆˆ −≡ , (11.8) 

Eq. (11.7) becomes 
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The entropy production is defined as  

 .
1ˆˆ

s
i

dt
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sd
j⋅∇+≡

ρ
 (11.10) 

The non-negative global dissipation requirement is given by 

 0
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≥≡Φ ∫
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i dV
dt
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Tρ . (11.11) 

Using Eqs. (11.9) and (11.10), the non-negative global dissipation 

requirement (11.11) becomes 
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where 
T

tt j
−−= σFFΣ

1
 is the second Piola–Kirchhoff total stress tensor, 

)( σσσ mt +=  is symmetric, and FFC
T=  is the right Cauchy–Green 

deformation tensor, FHH ⋅=ˆ , BFB ⋅= −1ˆ j .  
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11.3    Hamiltonian Density and Thermodynamically Admissible 

Conditions 

11.3.1   Generalized functional thermodynamics 

In generalized functional thermodynamics, the augmented Helmholtz 

free energy for memory-dependent magnetosensitive materials, 

,/ˆ~
ρf

muhh +=  is assumed to be a functional of the histories of 

deformation, temperature, temperature gradient, and referential magnetic 

induction with the crack parameter, A, as a state variable: 
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The corresponding Hamiltonian density is given by 
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where ),;(ˆ Xv Akρ  is the kinetic energy density. 

In order that the non-negative global dissipation requirement (11.12) 

is always valid, it is necessary and sufficient that state equations fulfill 

the following thermodynamically admissible conditions: 
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 ,sq Tjj =  (11.19) 
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where the time-dependent dissipation rate, Λ̂ , and the thermodynamic 

force, G
~

, conjugate to the crack variable, A, are given by 
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It can be seen that the total dissipation originates from heat 

conduction, time-dependent bulk dissipation and crack propagation. 

Since the non-negative global dissipation requirement (11.20) should 

always be satisfied, the kinetic laws for specific irreversible processes 

may be determined accordingly, that is, 

 ,0
1
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tV qT dV

T
Tj  (11.23) 
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 .0
~
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It is proposed that the thermodynamic flux for heat conduction 

depends linearly on the corresponding thermodynamic force, that is, 

 
T

qq

q

1
∇⋅= Lj , (11.26) 

where 
qqL  is positive definite. 

Substituting Eqs. (11.10, 11.18, 11.19, 11.26) into Eq. (11.20) yields 

the coupled heat transfer equation for the cracked body as 
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The time-dependent dissipation rate in the bulk material satisfies the 

following inequality: 

 0ˆ ≥Λ . (11.28) 

11.3.2   Generalized state-variable thermodynamics 

In generalized state-variable thermodynamics, the augmented Helmholtz 

free energy for magnetosensitive materials with dissipative 

reconfigurations, ρ/ˆ~ f
muhh += , is taken to be a function of current 

deformation, temperature, temperature gradient, referential magnetic 

induction, and a set of state variables (scalar, vectorial, or tensorial) at 

the micro/mesoscale, )21( )(
�,,m

m =α , and at the macroscale, 

),2,1( )(
�=Α n

n
: 
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The corresponding Hamiltonian density is given by 
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In order that the non-negative global dissipation requirement (11.12) 

is always valid, it is necessary and sufficient that the state equations 

fulfill the following thermodynamically admissible conditions: 
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where the thermodynamic force, 
)(~ m

g , for configuration changes at the 

micro/mesoscale and the thermodynamic force, 
)(~ n

G , for configuration 

changes at the macroscale, are given by 
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The total dissipation originates from heat conduction and intrinsic 

dissipative reconfigurations at different scales. For example, the 

ferromagnetic domain-wall motion corresponds to the change of the 

associated state variable at the microscale, resulting in the intrinsic bulk 

dissipation rate. Damage evolution corresponds to the change of the 

associated state variable at the mesoscale, resulting in the generalized 

energy density release rate. Crack propagation corresponds to the change 

of the associated state variable at the macroscale, resulting in the 

generalized energy release rate. Since the non-negative global dissipation 

requirement (11.36) should always be satisfied, the kinetic laws for 

specific irreversible processes may be determined accordingly, that is,  
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It is proposed that the thermodynamic flux for heat conduction 

depends linearly on the corresponding thermodynamic force, that is, 
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qq
q

1
∇⋅= Lj , (11.42) 

where 
qqL  is positive definite. 

Substituting Eqs. (11.10, 11.34, 11.35, 11.42) into (11.36) yields the 

coupled heat transfer equation for the cracked body: 
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By analogy with the laws for plasticity and damage (Lemaitre, 1996), 

the evolution laws for dissipative reconfigurations in the bulk material 

may be derived from a dissipation potential, D , with the normality rule 

as 

 
)(

)(

~ m

m

g∂

∂
=

D
λα �� , (11.44) 

where the multiplier 0>λ�  can be determined by the loading condition 

for rate-independent or rate-dependent cases, respectively. 
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11.4   Thermodynamically Consistent Time-Dependent Fracture 

Criterion 

In terms of the generalized energy release rate,G
~

, defined in Eq. (11.22) 

or (11.38) as the thermodynamic driving force conjugate to the crack 

variable, A, crack propagation under combined magnetic, thermal, and 

mechanical loadings is determined by 

 RG
~~

= , (11.45) 

where R
~

 is the crack resistance. 

The time dependence of the thermodynamically consistent fracture 

criterion is reflected by the dependence of the explicitly defined free 

energy functional on the histories of its arguments for magnetosensitive 

materials with memory, whereas the loading path/history dependence of 

the thermodynamically consistent fracture criterion is reflected by the 

dependence of the explicitly defined free energy function on the 

associated state variables for magnetosensitive materials with dissipative 

reconfigurations. 

For fatigue crack growth under cyclic loading, the crack growth rate 

may be governed by 

 ( , )
da

f G r
dN

= ∆ � , (11.46) 

where dNda /  is the crack growth per cycle, )
~~

(
~

minmax GGG −=∆ , and

maxmin

~
/

~
GGr = . 

11.5   Generalized Energy Release Rate versus Bulk Dissipation Rate 

From the non-negative global dissipation requirement (11.20) or (11.36), 

it can be seen that the global dissipation has three sources: heat 

conduction, time or loading path/history-dependent material response, 

and crack propagation. Heat conduction leads to the thermal dissipation 

term. Structural relaxation or reconfiguration in the bulk material 

contributes to the time or loading path/history-dependent bulk dissipation 
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term. The energy released during crack growth results in the surface 

dissipation term.  

Substituting Eqs. (11.2, 11.6, 11.8, 11.10, 11.19, 11.20) or Eqs. (11.2, 

11.6, 11.8, 11.10, 11.35, 11.36) into the global energy balance equation 

(11.1) yields 
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For stable crack growth, substituting Eq. (11.45) into Eqs. (11.47) or 

(11.48) yields 
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where ∫≡
tV

dVĥρΗ  is the Helmholtz free energy over the cracked body. 

With inclusion of magneto-thermo-mechanical coupling and 

dissipative effects, the generalized energy release rate method is 

applicable to crack propagation in a broad class of magnetosensitive 

materials with time dependence or loading path/history dependence. 

Equation (11.45) with the definition of the generalized energy release 

rate given by Eq. (11.22) or (11.38) can be taken as a generalization of 

the strain energy release rate criterion. Equation (11.46) in terms of the 

generalized energy release rate difference during a loading cycle can be 

easily adopted to describe the fatigue crack growth rate in the presence of 

remanent magnetization and remanent deformation under cyclic 

magnetic, thermal, and mechanical loadings. Equation (11.49) or (11.50) 

is a generalization of the rate-dependent criterion for viscoelastic or 

viscoplastic crack growth. 
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11.6    Local Generalized �J -Integral versus Global Generalized  
�J -Integral 

Consider a three-dimensional cracked body 
Γ
~

~
V  bounded by a surface Γ

~
 

in a reference frame ( tCVXX −=
~

) traveling with the crack front at 

speed CV . With the use of Eqs. (11.2, 11.5, 11.8, 11.10, 11.19, 11.20), 

the global energy balance equation (11.1) for crack propagation in 

magnetosensitive materials with memory can be rewritten as 
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By contrast, using Eqs. (11.2, 11.5, 11.8, 11.10, 11.35, 11.36), the 

global energy balance equation (11.1) for crack propagation in 

magnetosensitive materials with dissipative reconfigurations is rewritten 

as 
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The generalized J
~

-integral is defined as 
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From expression (11.53), the crack-front generalized J
~

-integral is 

the energy flux towards the crack front per unit crack advance, which is 

equivalent to the generalized energy release rate, G
~

, serving as the crack 

driving force, that is, 
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The relationship between the global and local generalized J
~

-

integrals is obtained as 
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where 
g

V
Γ
~

~
 and 

l

V
Γ
~

~
 are the volumes bounded by the closed surfaces gΓ

~
 

and lΓ
~

, including the crack faces. 

Thus, the difference between the global generalized J
~

-integral and 

the local generalized J
~

-integral is caused by unsteady state, mechanical 

body force, temperature change, and time or loading path/history-

dependent bulk dissipation rate. With the addition of the domain integral 

terms to the generalized J
~

-integral, an invariant integral representation 

of the generalized energy release rate serving as the crack driving force is 

obtained as 
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By introducing the generalized energy-momentum tensor 
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the generalized J
~

-integral for steady-state propagation of a planar crack 

in the 1E -direction can be expressed as 
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where 
Γ
~

~
J  is the generalized KJ

~
-integral vector. 

It is noted that the generalized J
~

-integral for magnetosensitive 

materials with memory or dissipative reconfigurations has the same 

form, implying that it is universally independent of the material’s 

constitutive nature.  

11.7    Essential Work of Fracture versus Nonessential Work of 

Fracture 

Integrating Eq. (11.49) or (11.50) over the time domain gives the 

following expression for the total work 
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From Eq. (11.61) or (11.62), the total work, fW , from the start of 

loading until final fracture can be partitioned into the essential work of 

fracture, eW , and the nonessential work of fracture, neW , as 

 ,neef WWW +=  (11.63) 
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where ew  is the specific essential work of fracture.  

The essential work of fracture is a material property due to its 

equivalence to the crack resistance, and the nonessential work of fracture 

is geometry dependent due to its association with kinetic energy change, 

temperature change, and time or loading path/history-dependent bulk 

dissipation. Hence, this formulation provides a fundamental basis for 

extending the simple yet elegant EWF method, as described in Chapter 1, 

to fracture characterization of magnetosensitive materials involving 

dynamic, thermal, hysteresis, and other dissipative effects. The critical 

generalized energy release rate, cG
~

, the critical crack-front generalized 

J
~

-integral, cJ
~

, and the specific essential work of fracture, ew , are 

equivalent as a measure of fracture toughness. 
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Chapter 12 

Nonlinear Field Theory of Fracture 

Mechanics for Piezoelectric and 

Ferroelectric Materials 

12.1   Introduction 

The preceding chapter presents a general and straightforward formulation 

of a nonlinear field theory of fracture mechanics for paramagnetic and 

ferromagnetic materials based on the fundamental principles of 

thermodynamics. By analogy with magneto-thermo-mechanical coupling 

and dissipative effects, electro-thermo-mechanical coupling and 

dissipative effects also bring about new challenges in generalizing the 

Griffith global energy balance approach and the conventional J-integral 

method to fracture characterization of electrosensitive materials for a 

wide variety of applications. For example, it has been realized that 

domain switching plays an important role in the apparent fracture 

toughness variation for ferroelectrics, but existing work is predominantly 

limited to small-scale switching conditions, as reviewed in Chapter 4. It 

becomes necessary to calculate separately the energy release rate and the 

rate of bulk dissipation for the fracture of switchable ferroelectrics and 

electroactive polymers when the effects of bulk dissipation exhibit 

dependence on geometry and cannot be lumped into a material parameter 

like the plane-strain fracture toughness. 

This chapter focuses on the parallel development of a nonlinear field 

theory of fracture mechanics for piezoelectric and ferroelectric materials,  
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accounting for the total dissipation associated with heat conduction, 

electricity conduction, time or loading path/history-dependent bulk 

dissipation, and crack propagation. In Section 12.2, the nonlinear field 

equations for a cracked body in the presence of electro-thermo-

mechanical coupling and dissipative effects are summarized. In Section 

12.3, a thermodynamically consistent time-dependent fracture criterion 

under combined electric, thermal, and mechanical loadings is obtained 

from the global energy balance equation and the non-negative global 

dissipation requirement. In Section 12.4, on the basis of the developed 

theory, the generalized energy release rate method, the generalized J
~

-

integral method, and the extended essential work of fracture method are 

proposed for fracture characterization of piezoelectric and ferroelectric 

materials, and the interrelation of these methods and their correlations 

with conventional methods are discussed.  

12.2    Nonlinear Field Equations 

Nonlinear field equations consist of the balance equations irrespective of 

material constitution and configuration as well as the constitutive laws 

characterizing the material nature and configuration change. 

12.2.1   Balance equations 

The Maxwell equations and mass, linear momentum, and angular 

momentum balance equations under the quasi-electrostatic 

approximation are summarized in Table 12.1, in comparison with those 

under the quasi-magnetostatic approximation. The global energy balance 

equation and the non-negative global dissipation requirement for a 

cracked body tV  under combined electric, thermal, and mechanical 

loadings are given in Table 12.2, in comparison with their counterparts 

under combined magnetic, thermal, and mechanical loadings as 

described in Chapter 11. 
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Table 12.1 Balance equations in quasi-electrostatic or quasi-magnetostatic approximation 

 Combined magnetic, thermal,  

and mechanical loadings 

Combined electric, thermal,  

and mechanical loadings 
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Table 12.2 Global energy balance equation and non-negative global dissipation 

requirement 

 Combined magnetic, thermal  

and mechanical loadings 

Combined electric, thermal  

and mechanical loadings 
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12.2.2   Constitutive laws 

In generalized functional thermodynamics, the augmented Helmholtz 

free energy for memory-dependent electrosensitive materials, 

ρ/ˆ~ f
euhh += , is assumed to be a functional of the histories of 

deformation, temperature, temperature gradient, and referential electric 

displacement, with the crack parameter, A, as a state variable: 

 ),);(ˆ),(),(),((
~~

XDC AttTtTthh R ττττ −−∇−−= . (12.1) 
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The corresponding Hamiltonian density is given by 
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In generalized state-variable thermodynamics, the augmented 

Helmholtz free energy for electrosensitive materials with dissipative 

reconfigurations, ρ/ˆ~ f
euhh += , is assumed to be a function of current 

deformation, temperature, temperature gradient, referential electric 

displacement, and a set of state variables (scalar, vectorial, or tensorial) 

at the micro/mesoscale, )21( )(
�,,m

m =α , and at the macroscale, 

),2,1( )(
�=Α n

n
: 

 ),,;ˆ,,,(
~~ )()( XDC nm

RTThh Α∇= α . (12.3) 

The corresponding Hamiltonian density is given by 
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The Hamiltonain density and the thermodynamically admissible 

conditions for electrosensitive materials with memory or dissipative 

reconfigurations are given in Table 12.3 for comparison. 

12.3   Thermodynamically Consistent Time-Dependent Fracture 

Criterion 

By analogy with Section 11.4, in terms of the generalized energy release 

rate, G
~

, as the thermodynamic driving force conjugate to the crack 

variable, A, crack propagation under combined electric, thermal, and 

mechanical loadings is determined by 

 RG
~~

= , (12.5) 

where R
~

 is the crack resistance. 
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Table 12.3 Hamiltonian density and thermodynamically admissible conditions for 

electrosensitive materials with memory or dissipative reconfigurations 

 Electrosensitive materials with 

memory 

Electrosensitive materials with 

dissipative reconfigurations 

Hamiltonian 

density 

),);(ˆ

),(),(),((
~

),;(ˆ),);(ˆ

),(),(),(,(

XD

C

XvXD

Cv

At

tTtTth

AkAt

tTtTt

R

R

τ

τττρ

ρτ

τττ

−

−∇−−

+=−

−∇−−H

 

),,;ˆ,,,(
~

),,;(ˆ

),,;ˆ,,,,(

)()(

)()(

)()(

XDC

Xv

XDCv

nm
R

nm

nm
R

TTh

k

TT

Α∇

+Α=

Α∇

αρ

αρ

αH

 

Constitutive 

laws 

KL

KLt
C

h

∂

∂
=Σ

~

2 0ρ  

T

h
s

∂

∂
−=

~

ˆ  

Κ

ρ
D

h
EK ˆ

~
ˆ

0
∂

∂
=  

t

h

∂

∂
−=Λ

~
ˆ  

∫
∂

∂
−=

tV
dV

A
G H
~  

KL

KLt
C

h

∂

∂
=Σ

~

2 0ρ  

T

h
s

∂

∂
−=

~

ˆ  

Κ

ρ
D

h
EK ˆ

~
ˆ

0
∂

∂
=  

)(0
)(

~
~

m

m h
g

α
ρ

∂

∂
−=  

∫
Α∂

∂
−=

tVn

n dVG H
)(

)(~
 

Transport 

laws 

ELLj ⋅+∇⋅= qeqq
q

TT

11
 

ELLvj ⋅+∇⋅=− eeeq
fe

TT
q

11
 

ELLj ⋅+∇⋅= qeqq
q

TT

11
 

ELLvj ⋅+∇⋅=− eeeq
fe

TT
q

11

 

Bulk 

dissipation 

rate 
0ˆ ≥Λ  0~ )()( ≥∑

m

mm
g α�  

Crack 

propagation 0
~

≥AG �  0
~ )()( ≥Α∑

n

nn
G �  

 



258  Fracture Mechanics of Electromagnetic Materials 

 

The time dependence of the thermodynamically consistent fracture 

criterion is reflected by the dependence of the explicitly defined free 

energy functional on the histories of its arguments for electrosensitive 

materials with memory, whereas the loading path/history dependence of 

the thermodynamically consistent fracture criterion is reflected by the 

dependence of the explicitly defined free energy function on the 

associated state variables for electrosensitive materials with dissipative 

reconfigurations. 

For fatigue crack growth under cyclic loading, the crack growth rate 

may be governed by 

 ),
~

( rGf
dN

da
∆= , (12.6) 

where dNda /  is the crack growth per cycle, )
~~

(
~

minmax GGG −=∆ , and

maxmin

~
/

~
GGr = .  

12.4    Correlation with Conventional Fracture Mechanics 

Approaches 

Like magnetosensitive materials with time or loading path/history 

dependence as described in Section 11.5, the global energy balance 

equation for electrosensitive materials with time or loading path/history 

dependence may be rewritten as 

  

ˆ ˆ ˆ

ˆ( ) ,

t t t

t t

V V V

e f
V V

d d
W hdV kdV sTdV

dt dt

q dV dV GA

ρ ρ ρ

ρΛ

= + +

+ ⋅ − + +

∫ ∫ ∫

∫ ∫E j v

� �

� �

 (12.7) 

 
1 ( ) ( )

ˆ ˆ ˆ

( ) .

t t t

t t

V V V

m m

e f
V V

m

d d
W hdV kdV sTdV

dt dt

q dV j g dV GA

ρ ρ ρ

α−

= + +

+ ⋅ − + +

∫ ∫ ∫

∑∫ ∫E j v

� �

� ���

 (12.8) 

For stable crack growth, substituting Eq. (12.5) into Eq. (12.7) or 

(12.8) yields 
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The generalized energy release rate serves as the thermodynamic 

driving force for quasi-static and dynamic crack propagation in 

homogeneous or nonhomogeneous, conservative or dissipative materials, 

which is analogous to the generalized energy density release rate for 

damage evolution. Hence, the thermodynamically consistent formulation 

based on the global energy balance equation and the non-negative global 

dissipation requirement unifies the way to handle crack propagation and 

damage evolution. Equation (12.5) is a generalization of the strain energy 

release rate criterion. Equation (12.6) is an extension of the fatigue crack 

growth criterion under cyclic mechanical loading. Equation (12.9) or 

(12.10) is a generalization of the rate-dependent criterion for viscoelastic 

or viscoplastic crack growth.  

Consider a three-dimensional cracked body 
Γ
~

~
V  bounded by a surface 

Γ
~

 in a reference frame ( tCVXX −=
~

) traveling with the crack front at 

speed CV . The global energy balance equation (12.7) or (12.8) for crack 

propagation in electrosensitive materials with memory or dissipative 

reconfigurations can be rewritten as 
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The generalized J
~

-integral is related to the energy flux in the same 

way as defined in Eq. (11.53), that is, 
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It is noted that the generalized J
~

-integral for electro- or magneto-

sensitive materials with memory or dissipative reconfigurations has an 

identical form. This formulation further extends the generalized  

J
~

-integral concept developed in Sections 9.5 and 10.5 for nonlinear 

magneto- and electro-thermo-viscoelastic fracture. 

As the surface 0
~

→Γ , the crack-front generalized J
~

-integral is 

related to the generalized energy release rate G
~

 by 
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The relationship between the global and local generalized J
~

-integrals 

is obtained as 
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where 
g

V
Γ
~

~
 and 

l

V
Γ
~

~
 are the volumes bounded by the closed surfaces gΓ

~
 

and lΓ
~

, including the crack faces. 

Thus, the difference between the global generalized J
~

-integral and 

local generalized J
~

-integral is caused by unsteady state, mechanical 

body force, temperature change, electricity conduction, and time or 

loading path/history-dependent bulk dissipation rate. As a generalization 

of the conventional J-integral method, the dynamic contour integral 

method, and Schapery’s crack-tip model for viscoelastic facture, as 

described in Chapter 1, the generalized J
~

-integral method is applicable 

to arbitrary transient crack problems in the presence of electro-thermo-

mechanical coupling and dissipative effects.  

By introducing the generalized energy-momentum tensor 

 IuEDuEDub )ˆ~~~(
~

)(
~~~

kht ρρ ++∇⋅−∇⋅⊗+∇⋅≡− σσσσ , (12.17) 

the generalized J
~

-integral for steady-state propagation of a planar crack 

in the 1E -direction can be expressed as 

 1~1~~
~~~1~

EJEbn ⋅=⋅Γ⋅=
ΓΓΓ ∫ d

B
J , (12.18) 

 

where 
Γ
~

~
J  is the generalized KJ

~
-integral vector. 

Hence, the special form of the generalized J
~

-integral for steady-state 

crack propagation is related to the generalized energy-momentum tensor 

in the same way as the configuration force (material force) method.  

With the addition of the domain integral terms to the generalized J
~

-

integral, an invariant integral representation of the generalized energy 

release rate serving as the crack driving force is obtained as 
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Hence, the invariant Ĵ -integral is an extension of the path-domain 

independent integral method for nonhomogeneous or graded materials. 

Time or loading path/history-dependent bulk dissipation rate and 

electricity conduction bring about additional domain integral terms. 

Integrating Eq. (12.9) or (12.10) over the time domain gives the 

following expression for the total work: 
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 (12.22) 

From Eq. (12.21) or (12.22), the total work, fW , from the start of 

loading until final fracture can be partitioned into the essential work of 

fracture, eW , and the nonessential work of fracture, neW , as 

 ,neef WWW +=  (12.23) 
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where ew  is the specific essential work of fracture.  

The essential work of fracture is a material property due to its 

equivalence to the crack resistance, and the nonessential work of fracture 

is geometry dependent due to its association with kinetic energy change, 

temperature change, electricity conduction, and time or loading 

path/history-dependent bulk dissipation. The separation of the total work, 

fW , from the start of loading until final fracture into the essential work 

of fracture, eW , and the nonessential work of fracture, neW , allows for 

the extension of the simple yet elegant EWF method to quasi-static and 

impact fracture characterization of electroactive polymers, switchable 

ferroelectrics, and piezoelectric semiconductors. The critical generalized 

energy release rate, cG
~

, the critical crack-front generalized J
~

-integral, 

cJ
~

, and the specific essential work of fracture, ew , are equivalent as a 

measure of fracture toughness. 
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Chapter 13 

Applications to Fracture 

Characterization 

13.1   Introduction 

In previous chapters we have dealt with the current status of 

conventional fracture mechanics and the new formulation of a nonlinear 

field theory of fracture mechanics for electromagnetic materials. 

Although standardized procedures for fracture toughness measurements 

of metallic and plastic materials have been published by a variety of 

standards organizations, such as the American Society for Testing and 

Materials (ASTM), the British Standards Institution (BSI), and the 

European Structural Integrity Society (ESIS), recent advances in 

multifunctional smart materials have created new frontiers due to the 

occurrence of magneto-electro-thermo-mechanical coupling and 

dissipative effects accompanying crack propagation. In this chapter, the 

generalization of fracture characterization techniques to electromagnetic 

materials is examined, with explanations of concepts which are central to 

the development of these techniques and discussions of areas in which 

future work is needed. 

13.2   Energy Release Rate Method and its Generalization 

The Griffith–Irwin–Orowan theory, as reviewed in Sections 1.1 to 1.3, 

lays a fundamental basis for evaluating the amount of energy required to 

extend a crack per unit area, with the energy release rate given by 
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where U is the strain energy stored in the system and ∆ is the load-point 

displacement.  

From Irwin’s crack closure analysis (Irwin, 1957), if a crack extends 

by a small amount aδ , the energy released in the process is equal to the 

work required to close the crack to its original length, that is, 
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The virtual crack closure or crack extension technique has been 

implemented in finite element analysis to calculate the energy release 

rate (e.g., Parks, 1974, 1977; Hellen, 1975; Rybicki and Kanninen, 1977; 

deLorenzi, 1982, 1985; Jih and Sun, 1990; Krueger, 2004).  

In the regime of LEFM, the energy release rate is related to mode-I, II 

and III stress intensity factors by 
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where EE ='
 for plane stress and )1/( 2' ν−= EE  for plane strain, E is 

Young’s modulus, and ν is Poisson’s ratio. 

Equation (13.3) allows the evaluation of the energy release rate via 

the stress intensity factor method (ASTM Standard E399 and D5045, 

British Standard BS5447). The specimen size requirement to obtain a 

valid measurement of ICK  as the critical plane-strain value at crack 

initiation is given by 
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where B is the specimen thickness, a is the crack length, W is the 

specimen width, and yσ  is the yield strength.  

By contrast, Eq. (13.1) may result in a simple expression of ICG  that 

can be related to the elastic strain energy U  stored in the system for 

mode-I fracture (Williams, 1987): 

 ,
φBW

U
GIC =  (13.5) 

where B is the specimen thickness, W is the specimen width, and φ  is a 

correction factor which is determined by the specimen compliance C: 

 .

)/( Wad

dC

C
=φ  (13.6) 

Numerical values of φ  can be obtained for different specimen 

geometries. Equation (13.5) enables the direct evaluation of ICG
 
from 

the slope of the linear relationship between U  and φBW  for a series of 

specimens with different initial crack lengths. The reader may refer to the 

book by Williams (1987) and the book chapter by Mai et al. (2000) for 

further information.  

In Chapters 11 and 12, the generalized energy release rate method 

was proposed for quasi-static and dynamic fracture characterization of 

conservative and dissipative magneto- or electro-sensitive materials with 

the generalized energy release rate defined as 

 ∫
∂

∂
−=

tV
dV

A
G H
~

, (13.7) 

where hk
~ˆ ρρ +=H  is the Hamiltonian density, k̂ρ  is the kinetic energy 

density, and h
~

ρ  is the augmented Helmholtz free energy density, 

including the contribution of the energy of the free electromagnetic 

fields. 

In terms of the generalized energy release rate as the crack driving 

force, the thermodynamically consistent time-dependent fracture 

criterion is given by 
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where R
~

 is the crack resistance. 

As an extension of Irwin’s crack closure integral, the generalized 

energy release rate can be evaluated via the following crack closure 

integral: 
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( 12 tXjt σ  is the total traction and ),0,
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� �  is the crack opening 

displacement.  

It can be seen that the key difference lies in the replacement of the 

Cauchy stress by the total stress in the required calculations. Thus, the 

existing finite element codes with implementation of the virtual crack 

closure or crack extension technique can be readily extended to 

numerical evaluation of the generalized energy release rate. For example, 

the work required for crack closure for finite element representation of a 

crack modeled with two-dimensional four-node elements (Fig. 13.1) is 

obtained as 

  )]()([
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where 
)(

1
d

t F  and 
)(

2
d

t F  are the total shear and normal force components 

at node d, 
)(

1
b

u  and 
)(

1
c

u  are the shear displacement components at nodes 

b and c, 
)(

2
b

u  and 
)(

2
c

u  are the normal displacement components at nodes 

b and c. 

In linearized magneto-electro-elasticity, it was shown in Section 6.3 

that the dynamic energy release rate is related to the dynamic field 

intensity factors by 
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⋅⋅= H , (13.11) 

where 
i

H
~

 is the dynamic counterpart of the Irwin matrix. 

Equation (13.11) allows the evaluation of the dynamic energy release 

rate for magneto- or electro-sensitive materials via the dynamic field 
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intensity factor method. It appears that the dynamic energy release rate is 

an odd function of the electric displacement intensity factor and the 

magnetic induction intensity factor, which is consistent with 

experimental evidence (e.g., Pak and Tobin, 1993; Tobin and Pak, 1993; 

Cao and Evans, 1994; Lynch et al., 1995; Park and Sun, 1995a–b; Jiang 

and Sun, 1999, 2001; Zhang et al., 2002; Chen and Lu, 2003; Soh et al., 

2003; Zhang and Gao, 2004; Zhang et al., 2004; Chen and Hasebe, 2005; 

Schneider, 2007; Kuna, 2010) as reviewed in Chapter 4. In addition to 

small-scale yielding conditions, small-scale switching or small-scale 

saturation conditions should be satisfied in order to obtain a valid 

measurement of the critical values of the dynamic field intensity factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13.1 Two-dimensional four-node finite element mesh for crack closure integral. 

13.3   J-R Curve Method and its Generalization 

Path-independent integrals have been widely used to study bodies with 

cracks and defects since the pioneering work of Eshelby (1951, 1956, 

1970, 1975), Cherepanov (1967, 1968, 1979) and Rice (1968), as 

reviewed in Section 1.4. In particular, Rice (1968) applied the J-integral 

11,
~

uX

22 ,
~

uX

d c 

b 

aδ  



 Applications to Fracture Characterization  269 

 

concept to nonlinear fracture mechanics problems. For a two-

dimensional crack problem, the J-integral is given by 

 ∫Γ ∂

∂
−= )(

1

2 ds
x

u
nwdxJ i

jijσ , (13.12) 

where w  is the strain energy density, ijσ  are the components of the 

Cauchy stress tensor, jn  are the components of the unit outer normal 

vector, iu  are the components of the displacement vector, ds is the 

length increment along the path Γ, and the x2-direction is perpendicular 

to the crack line. 

The J-integral criterion for crack initiation gives 

 cJJ = . (13.13) 

Stable crack growth may be maintained if the crack driving force and 

resistance curves satisfy the following conditions: 

 RJJ = , (13.14) 

 Rapp TT ≤ , (13.15) 

where dadJETapp )(
2
0σ=  and dadJET RR )( 2

0σ=  are dimensionless 

tearing moduli (Paris et al., 1979; Atkins and Mai, 1985; Anderson, 

2005). 

While the definition of the J-integral as a path-independent contour 

integral for linear or nonlinear elastic materials is very useful for fracture 

mechanics analysis, the energetic interpretation of the J-integral is most 

widely adopted for experimental characterization of fracture toughness 

for ductile materials. Since the J-integral is equivalent to the energy 

release rate for linear or nonlinear elastic materials, Begley and Landes 

(1972) developed the multi-specimen J-R curve method based on the 

interpretation of J as the energy release rate given by 

  .
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U

B
J  (13.16) 
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Rice et al. (1973) proposed a method for estimating J from the load-

displacement curve measured from a single specimen. ASTM Standard 

E813 describes the test procedure for determining ICJ  as the critical 

plane-strain value at crack initiation for a wide range of ductile materials.  

For a deeply cracked specimen, J is determined from 

 ,
2

Bb

U
J =  (13.17) 

where U is computed from the total area under the load-deflection curve, 

)( aWb −=  is the specimen ligament length, and B is the specimen 

thickness. 

The specimen dimension requirement for obtaining a valid ICJ  value 

is given by 

 
y

ICJ
bB

σ

25
, > . (13.18) 

ASTM Standard E1820 further covers the procedure for J-R curve 

testing. British Standard BS 7448: Part 1 is equivalent to ASTM 

Standard E1820, both of which combine K, J, and CTOD testing into a 

single standard.  

In Chapters 5–12, the generalized J
~

-integral method is proposed for 

quasi-static and dynamic fracture characterization of conservative and 

dissipative magneto- or electro-sensitive materials, with the generalized 

J
~

-integral defined as 

 ,
~

])ˆ~~~([
1~

~∫Γ Γ⋅++⋅−⋅⋅= dkh
A

J Ct Vnnvn ρρSσσσσ
�

 (13.19) 

where σσσσt  is the total stress, S  is the Poynting vector in the co-moving 

frame, k̂~ρ  is the kinetic energy density, and h
~~ρ  is the augmented 

Helmholtz free energy density, including the contribution of the energy 

of the free electromagnetic fields. 

The physical interpretation of the crack-front generalized J
~

-integral 

is the generalized energy release rate G
~

 serving as the crack driving 

force, that is, 
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 .
~~

0 GJ =  (13.20) 

Crack initiation occurs under combined magnetic, electric, thermal, 

and mechanical loadings when 0

~
J  reaches a critical value, cJ

~
, i.e., 

 cJJ
~~

0 = . (13.21) 

Stable crack growth may be maintained if the following conditions 

are satisfied: 

 RJJ
~~

= , (13.22) 

 Rapp TT
~~

≤ , (13.23) 

where daJdETapp

~
)(

~ 2
0σ=  and daJdET RR

~
)(

~ 2
0σ= . 

The invariant Ĵ -integral defined by Eqs. (6.27), (8.149), (9.42), 

(10.48), (11.57), (11.58), (12.19), or (12.20), with addition of the domain 

integral terms to the generalized J
~

-integral, is useful for numerical 

evaluation of the generalized energy release rate, since the generalized 

-
~
J integral loses its path independence in the presence of unsteady state, 

mechanical body force, temperature change, electricity conduction, and 

time or loading path/history-dependent bulk dissipation rate. 

13.4   Essential Work of Fracture Method and its Extension 

The essential work of fracture (EWF) method is a simple yet elegant 

experimental technique developed by the Cotterell–Mai research group at 

the University of Sydney (Cotterell and Reddel, 1977; Mai and Cotterell, 

1980, 1986) from the unified theory of fracture (Broberg, 1971, 1975), as 

reviewed in Section 1.7. The total work of fracture for any increment of 

crack growth includes both the essential work in the inner fracture 

process zone and the nonessential work in the outer plastic zone. It has 

become a widely accepted technique for fracture characterization of 

many ductile materials, including metallic alloys, polymeric films, 

toughened polymers, and their blends (Mai et al., 2000; Clutton, 2001). 

Finite element simulation of the EWF method has also been attempted 
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for the complete failure process of deep double-edge notched tension 

(DENT), deep center notched tension (DCNT), single-edge notched 

tension (SENT), and centre-lined ligament loading (CLLL) samples with 

different ligament lengths (Chen et al., 2000).  

Based on the ESIS-TC4 testing protocol for measurement of the EWF 

established by the European Structural Integrity Society-Technical 

Committee 4 (1997), the total work of fracture fW  can be separated into 

two components: the  essential work eW
 

performed in the fracture 

process zone and the nonessential work pW
 

performed in the outer 

plastic zone, with the essential work of fracture eW
 
proportional to the 

ligament length l and the nonessential work of fracture pW
 
proportional 

to the square of the ligament length l
2
, that is, 

 pef WWW += , (13.24) 

 lBwW ee = , (13.25) 

 BlwW pp
2β= , (13.26) 

where ew  is the specific essential work of fracture, pw  is the specific 

nonessential work of fracture, and β is a geometry-dependent plastic-

zone shape factor. 

As a result, the specific total work of fracture BlWw ff /=
 
can be 

expressed as 

 lwww pef β+= . (13.27) 

On the assumption that we  is a material property and wp  and β are 

independent of l in all testing specimens, there should exist a linear 

relation when w f  is plotted against l according to Eq. (13.27). By 

extrapolation of this straight line to zero ligament length, the intercept at 

the y axis and the slope of the line gives we  and pwβ , respectively.  

In Chapters 11 and 12, the extended EWF method was proposed for 

quasi-static and impact fracture characterization of magnetosensitive 

elastomers, electroactive polymers, piezoelectric semiconductors, and 

switchable ferroelectrics or ferromagnetics, with the partition of the total 
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work of fracture fW
 
into the essential work of fracture eW

 
and the 

nonessential work of fracture neW
 
as  

 ,neef WWW +=  (13.28) 
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or 

 
.~

)(ˆ

0

00

)()(1
∫ ∑∫

∫ ∫∫ ∫

−+

−⋅++∆+∆=

f

t

f

t

f

t

t

t
m

V

mm

t

t V fe

t

t V

k
ne

dtdVgj

dtdVqdtdVTsEHW

α

ρ

�

� vjE

(13.31) 

The generalized energy release rate method, the generalized J
~

-

integral method, and the extended essential work of fracture method 

should give consistent results, independent of material systems, loading 

combinations, and environmental conditions. 

13.5   Closure 

The development of a nonlinear field theory of fracture mechanics for 

evaluating the crack driving force in the presence of magneto-electro-

thermo-mechanical coupling and dissipative effects overcomes the 

limitations of classical fracture mechanics theories and sets up a bridge 

between damage mechanics and fracture mechanics. On the basis of the 

developed theory, the generalized energy release rate method, the 

generalized J
~

-integral method, and the extended essential work of 

fracture method are proposed, which are generally applicable to quasi-

static and dynamic fracture characterization of conservative and 

dissipative multifunctional smart material systems. In comparison with 
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conventional fracture mechanics methodologies, the main advantages of 

this formulation are: 

(i) It does not only afford a uniform treatment of complex 

nonlinear material and fracture behaviors involving multifield 

coupling and dissipated effects, but also enables damage and 

fracture processes at the micro-, meso- and macroscale levels 

to be managed in a unified way.  

(ii) It provides a physically sound criterion for quasi-static and 

dynamic crack propagation in conservative or dissipative, 

homogeneous or nonhomogeneous media, including FGMs, 

subjected to combined magnetic, electric, thermal, and 

mechanical loadings. 

(iii) It includes the strain energy release rate criterion, dynamic 

energy release rate criterion, conventional J-integral method, 

configuration force (material force) method, dynamic contour 

integral method, path-domain independent integral method, 

rate-dependent criterion for viscoelastic/viscoplastic crack 

growth, and Schapery’s crack-tip model for viscoelastic 

facture as special cases.  

(iv) It lays the theoretical foundation for the application of the 

generalized energy release rate method, the generalized J
~

-

integral method, and the extended essential work of fracture 

method to quasi-static and impact fracture characterization of 

electro- and magneto-sensitive materials. The equivalence of 

the critical generalized energy release rate, cG
~

, the critical 

crack-front generalized J
~

-integral, cJ
~

, and the specific 

essential work of fracture, ew , as a measure of crack 

resistance warrants consistent results from application of the 

generalized energy release rate and J
~

-integral methods as 

well as the extended essential work of fracture method for 

fracture toughness measurement. 

(v) A key feature lies in the incorporation of the time or loading 

path/history-dependent bulk dissipation in the general 

formulation of the nonlinear field theory of fracture 

mechanics. This large difference is akin to the difference 
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between elastic fracture mechanics and inelastic fracture 

mechanics. 

(vi) This formulation can be readily extended to include gradient 

effects in thin films and microelectromechanical systems 

(MEMS). 

Since the development of the nonlinear field theory of fracture 

mechanics for electromagnetic materials is still in its infancy, much 

remains to be done, especially on multiscale modeling of damage and 

fracture involving various failure mechanisms. 
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