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Fracture Mechanics

Fracture mechanics studies the development and spread of cracks in materials. It uses
methods of analytical solid mechanics to calculate the driving force on a crack and those
of experimental solid mechanics to characterize the material’s resistance to fracture. The
subject has relevance to the design of machines and structures in application areas
including aerospace, automobiles, power sector, chemical industry, oil industry, shipping,
atomic energy and defense.

This book presents the gradual development in the fundamental understanding of the
subject and in numerical methods that have facilitated its applications. The subject can
be studied from the viewpoint of material science and mechanics; the focus here is on the
latter.

The book, consisting of nine chapters, introduces readers to topics like linear elastic
fracture mechanics (LEFM), yielding fracture mechanics, mixed mode fracture and
computational aspects of linear elastic fracture mechanics. It also discusses the calculation
of theoretical cohesive strength of materials and the Griffith theory of brittle crack
propagation and its Irwin and Orowan modification. Explaining analytical determination
of crack tip stress field, it also provides an introduction to the airy stress function
approach of two dimensional elasticity and Kolosoff-Mukheslishvili potential formulation
based on analytic functions. In addition a chapter deals with the characteristics of fracture
in terms of crack opening displacement (COD) and ] integral and the interpretation of J as
potential energy release rate for linear elastic materials. Other relevant topics discussed in
the book include stress intensity factor (SIF); factors that affect cyclic crack growth rate
and Elber’s crack closure effect; fundamentals of elastic plastic fracture mechanics (EPFM)
and the experimental measurements of fracture toughness parameters KIC, JIC, crack
opening displacement (COD), K-resistance curve etc.

Surjya Kumar Maiti is Professor at the Department of Mechanical Engineering, Indian
Institute of Technology Bombay. He received his Ph.D. from Indian Institute of
Technology, Bombay, and he worked as post-doctoral assistant at the University of
Cambridge for two years (1981 1983). For over thirty-five years Maiti has been teaching
courses on solid mechanics, strength of materials, stress analysis and pressure vessel
design at both undergraduate and postgraduate levels. His research spans fracture
mechanics, finite and boundary element methods, structural health monitoring and stress
corrosion cracking.
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Preface

Currently, there are a large number of books available on "Fracture Mechanics’,
varying widely in coverage and levels of difficulty. After having taught the subject
for more than twenty-five years to senior undergraduate and graduate students, I
felt the need for a book that can help students supplement their understanding
after classroom exposure, and also be of use to others especially self-learners,
interested in learning the fundamentals of the subject.

The subject has become very important in design and safety analysis of critical
components of machines and structures in aerospace, space explorations,
automobiles, power plants, chemical plants, oil exploration, shipping, defense,
civil applications, and so on. Because of its wide relevance, there is a need for
large manpower with requisite knowledge of the subject and, hence, for books on
the subject to suit a variety of maturity and capability levels.

This book has been written with the intent of expounding major fundamental
concepts and their mathematical foundations from the point of view of mechanics;
that can be covered in a course of about one semester. It is designed to be helpful
to senior undergraduates, postgraduates, researchers, practising engineers, faculty
members and self-learners. The material has been presented in a fashion that helps
the reader grasp the ideas easily and see through all stages of their mathematical
development. It is envisaged as a starting text and should provide readers the
foundation to appreciate and grasp advanced books and research publications.

The book has nine chapters. In each chapter, basic ideas have been adequately
explained. Their applications have been further illustrated by solved numerical
examples. These will foster practical applications of the theoretical concepts.
Wherever possible, unsolved problems are included at the end of a chapter.

I am thankful to the reviewers for their suggestions. I am also thankful to my
colleagues Dr Dnyanesh Pawaskar, Dr Salil S Kulkarni, Dr Krishna
N. Jonnalagadda and Dr Tanmay K. Bhandakkar, each of whom has gone through
a part of the whole write-up and given useful inputs/comments.

I will feel satisfied if the readers find the book useful.






Introduction

1.1 Introduction

Fracture mechanics provides the basis for designing machine and structural
components with materials containing defects such as crack, gives rational
approach for assessing degree of safety or reliability of an in-service degraded
machine component, and helps to calculate the life of a component with crack
subjected to cyclically fluctuating load, corrosion, creep, or a combination of all
these. A crack is a discontinuity, internal or external (Figs 1.1 and 1.2), in the
material with zero tip radius. The development of the subject has been driven by
the stringent safety requirements of the aerospace industry, nuclear power plants
and other safety-critical applications. The advancement in the understanding of
the subject coupled with developments in material science, experimental
methods, and numerical techniques such as finite element, boundary element, and
meshless methods, has facilitated optimum design and minimization of material
usage for an application.

This book presents the gradual development in the fundamental understanding
of the subject and in numerical methods that have facilitated its applications.
Though the subject can be studied from the viewpoint of material science and
mechanics, the focus here is on the latter.

1.2 Linear Elastic Fracture Mechanics

Development of the subject originated with the work of Griffith (1921), who
propounded the condition of unstable extension of an existing crack in a brittle
material within the framework of global energy balance or the First Law of
Thermodynamics. The shortcomings of the approach were eliminated by Irwin
(1948), who classified the three fundamental modes of crack extension and
presented the condition of fracture in terms of a parameter associated with the
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stress—strain field in the close neighbourhood of the crack-tip. He also showed the
link between the crack-tip field parameter, the stress intensity factor (SIF), and the
energy release rate parameter introduced by Griffith. These parameters have
proved useful in characterizing the fracture of brittle materials and have helped in
practical design applications. Brittle materials fracture without showing any
plastic deformation before the onset of crack extension or during crack
propagation. This type of failure is distinguished by the fact that the fractured
parts can be put together to get the original geometry almost reconstructed
(Fig. 1.1).

Crack /¥ Crack

Crack

path Crack

path

l l

Figure 1.1 Brittle fractures of plates.

1.3 Elastic Plastic or Yielding Fracture Mechanics

Most materials that are used in engineering constructions and machine building
are metallic and show plastic deformation around the crack-tip prior to crack
extension and during crack extension (Fig. 1.2). They fracture showing features,
combined to a varying degree, of normal stress driven brittle and shear stress
driven ductile fractures. The plastic deformation preceding fracture was brought
within the scope of energy balance approach and SIF through some minor
amendments. A substantial increase in the scope was possible through an
introduction of crack-tip field characterizing parameters such as the crack opening
displacement (COD) by Wells (1961) and ] integral by Rice (1968). While the
energy release rate and the SIF concepts helped to lay the foundation of the linear
elastic fracture mechanics (LEFM), the latter two provided much of the basis for
yielding or elastic plastic fracture mechanics (YFM or EPFM).

1.4 Mixed Mode Fracture

Although Irwin classified the crack extensions into three fundamental modes,
practical problems very often involve mixed mode of crack extensions (Fig. 1.3).
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Crack
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Figure 1.2 Crack extensions attendant with elastic plastic deformation.

Independent developments have subsequently taken place which explain such
fractures within the scope of LEFM.

T
P,
‘_7\ \/\ Crack
P r P
Crack path
path r

Figure 1.3 Mixed mode crack extensions in plate and hollow shaft.

1.5 Fatigue Crack Growth

A majority of machine and structural components (Fig.1.4) are subjected to
cyclically fluctuating load (Fig. 1.5).

Window edge crack
0/ Jooooooooooo(]
Crack \
Radial , >
surface !
crack

Figure 1.4 Cracks resulting from fatigue loading at the root of the gear tooth, window corner of
an aircraft, and step of a shaft.
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Based on an experimental study, Paris (1963) showed that the cyclic crack growth
rate under fatigue loading can be characterized in terms of cyclic SIF range. This
paved the way for an estimation of cyclic life of components. Paris law was
subsequently enlarged in scope to accommodate variable and random amplitude
cyclic loading, effects of occasional overloads, and so on.

A

Stress
A

Stress

v,

Time \/ Time V

Figure 1.5 Constant amplitude fatigue loading with overload cycle and random cyclic fatigue
loading.

Gradually the scope of LEFM has enlarged to take care of crack growth under stress
corrosion, creep, and their combinations.

1.6 Computational Fracture Mechanics

The development of fracture mechanics has been driven by safety critical
applications in defence, aerospace, power plants, oil industry, transport, etc. The
applications of the principles of fracture mechanics in these areas have been
facilitated by developments in numerical methods such as finite element method
(FEM), boundary element method (BEM), and meshless method. Although many
problems can be solved analytically and practical geometries can be handled by
FEM or experimental methods, but problems of EPFM could rarely be handled by
the analytical methods; solutions were obtained only through numerical methods
such as FEM. Thus, computational methods have become part and parcel of
fracture mechanics.

1.7 Scope of the Book

The book deals with the fundamentals of LEFM, EPFM, fatigue, computational
issues, and mixed mode fracture. It also covers experimental methods and
applications of fracture mechanics in design.

Developments in computational methods and experimental techniques have
facilitated the study of fracture under impact loading conditions, high strain rates
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of deformation, large deformation processes such as metal forming, and so on. In
addition methods have been developed for the study of fracture of composites.
However these issues are beyond the scope of the book.
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Linear Elastic Fracture Mechanics

2.1 Introduction

The foundation for the understanding of brittle fracture originating from a crack
in a component was laid by Griffith (1921), who considered the phenomenon to
occur within the framework of its global energy balance. He gives the condition
for unstable crack extension in terms of a critical strain energy release rate (SERR)
per unit crack extension. The next phase of development, which is due to Irwin
(1957a and b), is based on the crack-tip local stress—strain field and its
characterization in terms of stress intensity factor (SIF). The condition of fracture
is given in terms of the SIF reaching a critical value, and the parameter is shown to
be related to the critical energy release rate given by Griffith. Later, the scope of
the SIF approach was amended to take care of small-scale plastic deformation
ahead of the crack-tip. Most of the present applications of the principles of linear
elastic fracture mechanics (LEFM) for design or safety analysis have been based
on this SIF.

This chapter presents the gradual developments that have taken place to
advance the understanding of fracture of brittle materials and other materials that
give rise to small-scale plastic deformation before the onset of crack extension.
Examples are presented to illustrate the applications of LEFM to design.

2.2 Calculation of Theoretical Strength

A fracture occurs at the atomic level when the bonds between atoms are broken
across a fracture plane, giving rise to new surfaces. This can occur by breaking the
bonds perpendicular to the fracture plane, a process called cleavage, or by shearing
bonds along a fracture plane, a process called shear. The theoretical tensile strength
of a material will therefore be associated with the cleavage phenomenon (Tetelman
and McEvily 1967; Knott 1973).
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Generally, atoms of a body at no load will be at a fixed distance apart, that is,
the equilibrium spacing ag (Fig. 2.1). When the external forces are applied to break
the atomic bonds, the required force/stress (¢) increases with distance (a or x) till
the theoretical strength o, is reached. Further displacement of the atoms can occur
under a decreasing applied stress. The variation can be represented approximately
by a sinusoidal variation as follows.

2
o= o sin—;tx (2.1)

New surfaces after fracture

(O -

()

Figure 2.1 Atomic-level modelling of cleavage fracture. (a) Schematic representation of atomic
interactions. (b) Variation of inter-atomic forces with spacing. (c) New surfaces created after
fracture.

where A is the wavelength of the load variation. The work done over half-cycle or
span A/2is given by
Z A Z a2 27mx A

W= . odx = . UcSianxZUcE (2.2)
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If a cylinder of unit cross-sectional area breaks upon the application of load
variation as shown in Fig. 2.1(b), two new surfaces of unit area each are created.
To create each of these areas, specific surface energy 7,, which is a material
property, is needed. The energy stored at the two surfaces W; is therefore given by

Ws =27, (2.3)

This energy comes from the work done W in deforming the material before the
separation. For conservation of energy W = W;. For small displacements x, stress
o can be written using Hooke’s law

oc=Ee=Ex/ag (2.4)

Egs. (2.1) and (2.4) give

27a
A= 0 (2.5)
Combining Egs. (2.2), (2.3), and (2.5)
s
E E
o= Ts or o.= s (2.6)
ap ap

E E
For many materials 7, = Wag (Knott 1973), hence, 0, = 10 Actual strength, the

ultimate strength ¢,,;;, measured during the tensile test lies in the range

1000 ©

E
100° For example, for steel, 0;,;; = 400 800 MPa and E = 200 GPa; therefore,

o, = % to % Simila];ly, for aluminum, ¢,;; = 100 500 MPa and E = 70 GPa;

E
therefore, 0, = — to —

700 140
The observed ultimate strength for most engineering metals is much below this

E
theoretical prediction 10 for o.. The observed strength is, in some cases, of the

E
order of 1000° The atomic model failed to explain the observed reduction in

strength of a material.

2.3 Gri th’s Explanation Based on Stress Concentration

Griffith(1921) attempted to explain the discrepancy between the theoretical and
the actual strengths based on stress concentration. He suggested that a material,
although apparently homogeneous, contains small defects such as cracks, which
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act as stress concentrators. The stress at the tip (A or B in Fig. 2.2) of such a crack
reaches very high value omax, which may be comparable to the theoretical strength
o, although the applied stress ¢ is low. Using Inglis’s (1913) solution, he was able
to provide some justification for the reduction in the theoretical strength.

\\ Radiusp

o

Figure 2.2 Stress concentration at the tip of crack-like defect in plate subjected to tension.

For a uniformly loaded tensile panel (Fig. 2.2), the maximum stress due to
concentration at the tip A (Timoshenko and Goodier 1970) is given by
r_
Omax =0 1+2 2 2.7)
p
where 24 is the crack size and p is the tip radius. Assuming p << g, and equating
Omax With o; of Eq. (2.6)
S
L Eyp
=- =P 2.8
2 a ag 28)

Considering ¢ = E/1000, v, = 0.01Eag, and p  ao from Eq. (2.8), 2a = 5000a,.
This means that the measured strength ¢ is two orders less than the theoretical
strength E /10 in the presence of a crack size 5000 times the inter-atomic spacing a
at no load.

Such a method of establishing the influence of defects on the theoretical
strength suffers from a drawback (Knott 1973). It is based on the correlation of
two expressions, which are valid at two different dimension levels; the atomic
bond strength model is valid at a level where the dimensions are comparable to an
inter-atomic spacing and the Inglis’s solution is valid at a macroscopic level.
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2.4 Gri th’s Theory of Brittle Fracture

Griffith(1921) provided a theory within the framework of thermodynamic energy
balance for fracture of brittle materials and to calculate the fracture strength of a
material with a crack. He assumed the material to be brittle and linearly elastic
till fracture. He argued that when a crack in a stressed body extends, there are
two forms of energy at play: the strain energy (W,) and the surface energy (W;).

Further, at the onset of crack extension, the rate of change of potential energy (7)

0 oW, W,
with crack length, where 1 = W, W, is zero, that is, a—z = M =0.

This relation can be interpreted in a different manner. The rate of relea%e of strain
energy is equal to the rate of increase of surface energy. Alternatively, the release in
strain energy per unit crack extension gets converted into the surface energy of the
newly created surfaces. The process of energy conversion is irreversible. In a sense,
‘source’ for energy supply is the strained body; ‘sink” is the newly created surfaces.
Hence, the unstable crack propagation takes place if the strain energy released rate
associated with a crack extension is more than the corresponding energy absorbed
in creating new surfaces.

Griffith followed a rigorous method of calculation for changes in strain energy
due to an internal crack symmetrically located in an infinite plate of uniform
thickness under equi-biaxial tensions (Fig. 2.3(a)) at its outer boundary using
Inglis’s solution. Here, an approximate method of calculation is presented to help
in understanding, considering a centre crack in an infinite plate of uniform
thickness subjected to uniaxial tension in the direction perpendicular to the crack

(a)

Figure 2.3 (a) Gri th crack. (b) Centre crack under uniaxial tension.



Linear elastic fracture mechanics 11

(Fig. 2.3(b)). The loading tries to open the crack edges. As the crack extends from
0 to 2a, approximately two triangular regions (ABC and ABD) of materials
immediately above and below the crack become stress-free. Hence, the reduction
in strain energy W, as the geometry changes from the plate with no crack to one
with a crack of length 2a is equal to the strain energy of the material enclosed by
ACBD approximately in the original crack-free configuration. Therefore,

o2 _ Bo?a®

W,=a2Ba °F 3 (2.9)

where E is the modulus of elasticity, thickness of the plate is taken as unity, and f is
a constant. Using the rigorous solution of Inglis, B was obtained as 7r. The increase
in surface energy W; of the plate due to the crack extension is given by

Ws = 2(2a7y,) (2.10)

where 7, is surface energy per unit area. The release of strain energy AW, for an
infinitesimal crack extension Aa is given by

2 to?a
E

AW, = Aa (2.11)

The corresponding increase AW; in the surface energy is
AW; =4y Aa (2.12)

For the unstable extension of crack, therefore, the rate of release of strain energy
per unit area of crack extension must be greater than or equal to the rate of increase
of surface energy. That is,

AW, AW, or o?ma
2Aa 2Aa ! E

21, (2.13)

Therefore, the fracture stress or critical stress in the presence of crack of size 2a is

given by
r r =
2E
o - EGe (2.14)
na na
, , . oma
where G¢ = 27, = energy required per unit area of crack extension. is the

SERR and is represented by G. The fracture condition can also be written as

G Ge. (2.15)
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Griffith observed experimentally with thin hollow glass tubes with longitudinal
crack of different sizes under internal pressure that at the onset of crack extension,
the product o 7a, where ¢ is the hoop stress and acting normal to the crack
djrection, is constant for a wide combination of ¢ and a. This clearly indicates that
o' 7a is a material paraneter and the onset of unstable extension is associated
with a critical value of ¢° 7ta or the SERR G¢. Incidentally, G¢ is considered to be
a material property and is termed as resistance to brittle fracture. In the Griffith
glass tube experiment, there was a provision for changing the axial stress, which
acts parallel to the crack. He observed that the onset of crack extension was not
affected by this stress.

Griffith theory cannot be easily applied to metals, which show ductile fracture
and are attendant with varying degree of plastic deformation at the crack-tip prior
to fracture. Furthermore, the theory poses difficulties in handling problems with
complicated boundary conditions and crack at an angle with the direction of
loading, where the direction of crack extension is an unknown. Specifically, for
such cases, deriving an expression for strain energy release W, presents analytical
difficulties. Another shortcoming of the approach is that it is based on global
energy balance and it does not attach any special importance to the stress field
near the crack-tip.

2.4.1 Irwin{Orowan Modi cation

In order to extend the application of the Griffith theory to materials that give rise
to plastic deformation around the crack-tip, Irwin (1948) and Orowan (1949, 1955)
independently proposed a modification. When the crack extension takes place in
the presence of plastic deformation at the crack-tip, a certain amount of energy is
spent in the creation of new surfaces over and above the elastic surface energy ..
If the plastic zone size is assumed not to vary significantly with crack size,
plastically deformed material will lie adjoining the crack edges (Fig. 2.4). The
energy required for plastic deformation per unit crack extension 27y, can then be
taken to be constant. Further, the size of the crack-tip plastic zone is so low
compared with the crack dimensions or the specimen thickness that the global
elastic strain energy release can still be calculated using the methods of elasticity.
Consequently, the energy balance for the unstable extension is given by

2
ézvae gzv; +2y, or, % 29, + 27, (2.16)
Since 7y, >> 7, the aforesaid relation can be written as
r
o; 2Emy (2.17)

ta
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for small-scale yielding at the crack-tip. For purely elastic situation v, >> 1, 0¢ is
given by Eq. (2.14).

Figure 2.4 Plastically deformed material adjoining crack edges.

Thus, with the help of Griffith theory, it is possible to find out the load that a given
structure will sustain when the defect size is known. Alternatively, it is possible
to determine a tolerable defect dimension when the load is specified. This is the
basis for damage-tolerant design. A problem with small-scale yielding can also be
handled by this modified theory.

2.5 Stress Intensity Factor (SIF) Approach

In the energy balance approach, no special importance is attached to the
stress—strain distribution around the crack-tip. Since the extension begins from the
crack-tip, it is quite logical to expect that the crack-tip stress—strain environment
influences this phenomenon. The importance of the crack-tip stress—strain field in
relation to fracture was first shown by Irwin (1957a,b), and this study laid the
foundation of fracture mechanics.

Irwin identified the three basic modes of crack extension (Fig. 2.5). The opening
mode, Mode I, is characterized by the displacement of the crack edges/surfaces
in the direction perpendicular to the plane of the crack. The sliding mode, Mode
II, is characterized by the displacement of the crack edges/surfaces in the plane of
the crack and perpendicular to the leading edge of the crack. In the shearing or
tearing mode, Mode III, the crack surface displacement is in the plane of the crack
and parallel to the leading edge of the crack. The superposition of the three modes
describes the most general case. Mode I type of problems occur most often, and so
this mode has been studied extensively.
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Irwin (1957a) analysed the stress-displacement field at the crack-tip and found
that for each mode of crack extension, this field has the same nature irrespective of
the loading and geometry. The actual magnitude of stresses and strains, however,
depends on the loading and geometry. The effect of loading and geometry can be
expressed through a single parameter termed as the SIF.

The stress-displacement fields in the vicinity of the crack-tip corresponding to
the three basic modes are as follows (Paris and Sih 1965; Liebowitz 1968; Sih
1973b; Parton and Morozov 1978; Broek 1986; Kanninen and Popelar 1985;
Anderson 2005):

Mode I (Fig. 2.5(a))

K 0 0 0
oy = pI: cos~ 1 sin- sin— + terms containing r°, /2,71, 13/2, .. .(2.18a)
27ty 2 2 2
K 6 .0 . 30 a0 /2 1 ,3/2
0y = P=—— cos 5 1+sin_ sin— + terms containing ", /<, r*,r>/%,...(2.18b)
27Tr 2 2 2
K 0 0
Try = {92[: sin 5 cos 5 cos 37 + terms containing 7, /201,32, (2.18¢)
r
0> = 0 for plane stress condition
= v(oy + 0y) for plane strain condition (2.19)
Tez = Tz =0
K2 0 30
u= 8711 Er (2 1) cos 2 cos > + terms containing 7, 32, ...
K2 0 0
v= 8—; ;r (2x + 1) sin 5 sin 37 + terms containing r, r3/2, ...
w = 0 for plane strain condition
K= crpﬁ (2.20)
k =3 4v for plane strain condition (2.21a)
3 v "
= for plane stress condition (2.21b)

1+v
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Mode II (Fig. 2.5(b))

K 0 0 360
oy = 192:; sin > 2 + cos 5 o5 + terms containing r°, r1/2, 1, 73/2, . (2.22a)
K 0 0 30
oy = {9% sin 5 €os 5 cos 7+ terms containing r°, /2, 71, 13/2, . (2.22b)
K 0 0 36
Txy = p% cos 5 1 sin 5 sin > + terms containing 0, r1/2, 41 1372, (2.22¢)

o, = 0 for plane stress condition

= v (0 + o) for plane strain condition (2.23)

Figure 2.5 Three modes of loading of crack. (a) Mode I, (b) Mode Il and (c) Mode IlII.



16  Fracture mechanics

w = 0 for plane strain condition (2.25)
K = rpﬁ (2.26)
k =3 4v for plane strain condition (2.27a)
3 v "
= for plane stress condition (2.27b)
1+v

Mode III (Fig. 2.5(c))

K .06 ..
Tyz = 19% sin §+ terms containing 77, r1/2, r1,13/2, .. (2.28a)

K 0 ..
Ty, = p% Cos §+ terms containing PO p1/2 p1 4372 (2.28b)

Ox =0y =07 =Ty =0

u=v=0
K 25 . 0
w=""" T gn7 | terms containing r, r3/2, ... (2.29)
U T 2
KH[ = Tpﬁ (230)

The polar coordinates (r, 0) are defined with the crack-tip as origin. The relations
given above involve three quantities K;, Ki;, and Kjj;, which are the SIFs; the
suffixes indicate the mode of crack extension or loading. These factors determine
the intensity or magnitude of the local stresses and play an extremely important
role in the mechanics of brittle fracture. The expressions for stresses contain
higher order terms involving 79, r%, and so on. These terms can be considered
negligible as » ¥ 0, that is, in the vicinity of the crack-tip. Therefore, the above
expressions, with higher order terms in r neglected, can be regarded as good
approximations, where r is small compared with other dimensions of the body
and are exactasr ¥ 0.

It is, therefore, clear that the distribution of the elastic stresses and displacements
in the close vicinity of the crack-tip is not affected by the geometry and loading data
so long as the mode of loading is the same. Both stresses and strains have a square-
root singularity at the crack-tip. The amplitude of the stress singularity is indicated
by the SIFs, K;, K1, and Kjpy, respectively, for the three modes. The SIF depends on
the applied load, the crack size, and the configuration of the component. The SIF
affects the magnitudes of stresses and displacements but not their distribution.
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2.5.1 Relationship between G and K

The release of strain energy associated with extension of a crack can be calculated
from the crack-tip stress-displacement field. Thereby, it is possible to relate G
and K.

Consider a crack of length 24 in an infinite plate (Fig. 2.6) and its extension to
length 2(a + Aa) at a particular level of loading. As soon as the extension takes
place, the crack edges open up. Just before the extension occurs, an element in
front of the crack-tip is subjected to a normal stress ¢;, which depends on its
distance ¢ from the crack-tip and the SIF K;. Immediately after the extension,
crack edges open and their displacements can be obtained from the elastic

Figure 2.6 Variation of stress 0y, ahead of tip of original crack and crack opening displacements
20 behind the tip of extended crack.

crack-tip displacement field for the extended crack, 2(a + Aa). Therefore, at
distance ¢ from the crack-tip A,

K
_ oK 231
Oy p27tg (2.31)

Further, the crack opening (2v) at the same point is given by
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1/2

rP—
(I (61 + Aﬂ)z (K + 1) % (Aa g) (232)

20 =
0 4]/[

under plane stress or strain condition and with origin at the tip of extended crack
2(a + Aa). Therefore, the energy that is released because of the extension of the
crack from length 2a to 2(a + Aa) is given by

z Aa 1
we= 5 5 (20)dF (2.33)

where dF = ¢,Bd¢ and B is specimen thickness. Irwin gave a reverse argument
and suggested that the work done W, is equal to the energy required to close the
extended crack 2(a + Aa) back to its original length 2a. If G; is the SERR then

1ZAu
GiBAa = 5 oy (20) Bdg
0
z P—— 1/2
1 "M K o m(a+ Aa) 2
C1= SAa o pﬁTz(K+l) EAC L
P— z, =
Kio 7t(a+ Aa) Ao Ag
= + .
Mamp D = (2.34)

Factor 1 comes because the crack extension is viewed as a process taking place
quasi-statically. Making a substitution & = Aasin? 6, the integral can be evaluated.
Further, assuming Az ¥ 0 and noting k = 3 4v under plane strain and E =
2u(1 + v), the following relation is obtained.

_ Kt _ 2 K
G = @(k+l) =1 A (2.35)

3
Under plane stress condition, k = g Z and the following simple form is obtained.

Ki
=1 2.
G == (2.36)
Similarly, for Mode II, using the shear stress and sliding displacements
p— and (2.37a)
27¢
TpT[ (a + Aa) 2 (Aa &)
2u= ——F—=2(k+1) (2.37b)
4y T
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and carrying out an integration of the type given by Eq. (2.33), the following results
are obtained.

KZ
Gn=(@1 1/2)% for plane strain condition (2.38a)
2
= % for plane stress condition (2.38b)

In the similar manner, for Mode III, using stress 7, and edge sliding displacement
w, the following results are obtained.

%II %II
— K — + K 2.39
GH[ - 7211 - (1 V)iE ( 3 )

Thus, the rate of release of strain energy for a particular mode of crack extension
is determined by the crack-tip SIF. So, if a crack is subjected to all the three modes
of displacements simultaneously, the strain energy release rate can be obtained by
superposition. That is,

G=Gi+ G+ G111:ﬁ+ ﬁ"' (1"'1/)@ (2.40)

E E E

assuming a plane state of stress for the first two modes and an in-plane extension
of crack.

The interrelation between G and K helps to propose an equivalent fracture
criterion. If the onset of crack extension in a particular mode is associated with a
critical SERR, it is also characterized by a critical SIF. That is, the unstable crack
extension occurs when

Gr = GIC , or K;=Kjc (241a)
Gt = Ge, or K=Ky (2.41b)
Gir = Grpie, or Ky = Kjjie (2.41¢)

for the three modes, respectively. Irwin termed G as the crack extension force.
Consequently, the fracture is characterized by a critical crack extension force in
a particular mode. Thus, for a predominantly elastic situation, the concept of a
critical local crack-tip environment is entirely equivalent to the concept of a critical
force driving the crack to extend, or to a critical SERR just sufficient to supply the
required surface energy for the fracture process.

The importance of the SIF lies in the fact that it gives a clear picture of the
stress—strain environment at the crack-tip; it has a critical value at the point of
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onset of unstable extension. The crack-tip stress field for a complex problem can
be obtained easily through superposition. The critical value of the SIF at which
crack extension begins is known as fracture toughness. The critical SIF is a
material parameter, and it can be determined experimentally. Once this critical
value is known, it is possible to establish what flaws are tolerable in a machine
component or a structural element under a given loading. Alternatively, if the
crack size in the component is known, it is possible to determine the maximum
level of load the component can sustain. In either case, it is necessary to know the
SIF in terms of crack size and loading corresponding to the geometry of the
component.

The SIFs can be determined using analytical, numerical, and experimental
techniques (Paris and Sih 1965; Liebowitz 1968; Sih 1973b). The results
corresponding to a numerous geometric and loading conditions are available in
the form of handbooks (Sih 1973a; Rooke and Cartwright 1975; Murakami 1987;
Tada, Paris and Irwin 2000) and other sources (Hellan 1985; Broek 1986; Meguid
1989; Gdoutos 1993; Minnay 1998; Kumar 2009). In general, the SIF may be
written in the form

= apﬁ Y(a/w) (2.42)

where ¢ is the applied stress, a is the crack length, w is characterizing dimension
of the component, may be width, and Y (a/w) is a case-specific calibration function
or correction factor. SIFs for a number of cases are given in Appendix 2.1.

Since the stress field equations are the same for a particular mode of loading on a
crack, the SIF for a combination of loads can be obtained simply by superposition.
In Fig. 2.7, in each case, the SIF is obtained by combining the SIFs due to the two
constituent loadings. There are two direct loads (P and ¢) in the first case; and
there is one direct load (P) and a bending moment (M) in the second case.

When the loading on a component gives rise to more than one type of crack face
displacements, the crack-tip stress field can be obtained through superposition.
Fig. 2.8 shows two examples of mixed mode loading. In the first case (Fig. 2.8(a)),
the bending moment M acting on the section AB gives rise to Mode I loading,
and shear force V acting on the section gives rise to Mode Il loading. Consequently,
the crack-tip field is given by

0y = 0y7(due to M) + oy ;(due to V)
oy = oyr(due to M) + oyrr(due to V)

Toy = Tayr(due to M) + Tyyr1(due to V) (2.43)
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(a) (b)
K; = Ky (due to P) + K;(due to o) K; = Kj(due to P) + K; (due to M), M = PL

Figure 2.7 Cracks subjected to more than one opening modes of loading.
[

lP
B
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Figure 2.8 More than one mode of loading on crack. (a) Crack in beam. (b) Angled crack in plate.

In the second case (Fig. 2.8(b)), the external loading gives rise to two types of
crack edge displacements: P; gives rise to Mode I loading and P, gives rise to
Mode II loading. Therefore, the crack-tip stress field is given by

Oy = (ij(due to Pl) +(7x11(due to Pz)
oy = oyi(due to P;) +oy1(due to P,)

Toy = Tyyr(due to P1) + Tyyr(due to P) (2.44)
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Fig. 2.9 shows a circumferential crack in a shaft involving all the three modes
of loading. Consider the vertical diametric section and the crack-tip located at B.
For an in-plane extension, crack will propagate along x direction. The crack-tip
will be subjected to opening mode due to bending moment, M = (P, + P3)a/2,
and the direct load P; acting in the y direction. Shear force, V = (P, P3)a/L, will
give rise to Mode II displacements. Torque T = P, gives rise to Mode III
displacements. Therefore, the crack-tip B stress field is given by

0y = 0yr(due to M) + oy p;(due to V)
oy = oyr(due to M) + oyrr(due to V)
Toy = Tyyr(due to M) + Tyr7(due to V),

Tyz = Tyznr(due to T), Tuz = Tyzpr(due to T) (2.45)

Figure 2.9 Three modes of loading on circumferential crack in shaft.

2.6 Concepts of Strain Energy and Potential Energy Release Rates

A practical interpretation of the SERR of Griffith was provided later by Irwin
and Kies (1952). They too provided a basis for experimental determination of the
critical SERR. This critical value is treated as a material property.

2.6.1 Crack Extension Under Load Control (Soft Loading)

If a component with a crack (Fig. 2.10(a)) made of linear elastic material is loaded,
the variation of load P with load point displacement v can be obtained (Fig. 2.11).
At any level of loading, the strain energy stored U in the component is given by
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7 DI
ok~ Hydraulic cylinder Iy
(a) (b)
Figure 2.10 (a) Soft and (b) hard loading arrangements.
1 1
U= ~Pv= =cP? 246
5 5 (2.46)

where c is compliance, the reciprocal of stiffness, and v = cP. If the crack extends
from length 2a to 2(a + Aa) under constant load P, the change in strain energy

1
AU = EPCAU' and the corresponding change in work done AW = P.Av.
1
Therefore, change in potential energy Amr = AU AW = EPCAU' Here,
0
Av=0v, ©v1 = P iAa. Note that the strain energy of the system increases but

the potential energy of the system decreases to the same extent. The change in
strain energy of the system is equal to the hatched area OAB (Fig. 2.11). The
potential energy release rate (PERR) is given by the following equation, as Aa ¥ 0

_ Am _ 1 _,dc
G, = 3BAL EPC 3 (2.47)
where B is the thickness of specimen.
If the load P. at which the crack extension occurs is known, the critical SERR

(Gc) can be calculated by using Eq. (2.47) after a substitution of the proper value

for ? Irwin and Kies suggested that a—z as a function of crack length could be

a
determined by measuring the compliance of specimens with various initial crack
lengths.

2.6.2 Crack Extension Under Displacement Control (Hard Loading)

This situation is obtainable when loading the specimen in a screw-driven machine
(Fig. 2.10(b)). As the crack extends from length 2a to 2(a+Aa), the change in strain
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Figure 2.11 Variation of load with displacement.

1
energy AU = ElePC (Fig. 2.11) and is equal to the area OAE. In this case, the

strain energy of the system reduces. The change in work done AW = 0, since there

is no displacement associated with the crack extension. The change in potential

1
energy of the system At = AU AW = EUAPC. In this case, too, the change in

strain energy is equal in magnitude with the change in potential energy. Since AP,
is negative, the strain energy reduces. Further, since v = cP and Av = 0, AP, =

P
ECAC. The PERR is given by the following equation, as Aa ¥ 0

_ 1 _,dc
= 55, (2.48)

A _ 1P2Ac
" 2BAa 4B ¢ Aa

The expression of energy release rate is the same in both the systems of loading.
If the problem involves an edge crack of size a, the denominator will consist of 2
rather than 4.

It is more appropriate to consider the crack extension to be associated with a
critical level of PERR rather than SERR. Griffith termed this energy release rate as
the SERR; the terminology is still used by many authors.

2.7 Irwin Plastic Zone Size Correction

Although the elastic stress field at the crack-tip stipulates the existence of a very
high level of stress, this does not happen in practice. Materials (especially metals)
deform plastically above a certain level of stress, and this results in a stress
relaxation at the crack-tip. Assuming the material to be elastic-perfectly-plastic
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(Fig. 2.12) and its yield point as 0y, and plane stress condition, the spread r, of the
plastic zone along the crack line (Irwin 1958, 1960) is given by

(T—pKI——U orr—ﬁ (2.49)
Y 2mtry Y ' 2mod ’

The corresponding stress distribution is shown by the curve ABC (Fig. 2.12(a)).
Because of the stress relaxation, the load represented by area A;, bounded by AB, y
axis, and singularity variation in stress GBC, becomes extra. Since this load has to
be carried through, there must be some re-adjustment of oy stresses for r  r, that
is, ahead of point B. Further, since stress 0, cannot exceed the level ¢, over BF, the
span BF is obtained by equating the area A1 with A,.

z Ty K
oy BF = P—dr o,AB (2.50)
0 27y
KZ
where specimen thickness is taken as unity. Since AB = ry = ﬁ , BF=r,. Thus,
Y

the spread of plastic zone is 27, ahead of the crack-tip.

A A

G| H o

Figure 2.12 Crack-tip plastic zone and equivalent crack size. (a) Stress eld ahead of given crack
a. (b) Tensile stress{strain property of material considered. (c) Stress eld ahead of equivalent
crack (a +ry).
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In the presence of plastic deformation at the crack-tip, edge displacements of a
given crack are higher than the corresponding elastic crack of the same physical
size. Irwin suggested that a given crack of size a can be replaced by an equivalent
larger elastic crack a + r,. Further, it can be considered that load A3 transmitted
by segment OD (Fig. 2.12(c)) is equivalently covered approximately by the extra
load A4 over span DE above BE. Consequently, the whole domajn can be treated

as elastic with a crack with tip at D and the corrected SIF, KOI =0 m(a+ry). HFI

indicates approximately the new singularity variation in ¢y. r, is known as Irwin
plastic zone correction factor.

2.8 Dugdale{Barenblatt Model for Plastic Zone Size

The plastic zone size under plane stress can also be determined from a
different consideration. This was done independently by Dugdale(1960) and
Barenblatt(1962). Dugdale model is also known as strip-yield model. The material
is again considered elastic-perfectly-plastic. The physical crack can be considered
to be extended up to a + p (Fig. 2.13) and the portion A to A; (or B to By) can be
assumed to be subjected to a constant intensity of loading, which depends on the
yield strength ¢ of the material. This loading has a tendency to close the crack.
The material ahead of the crack-tip By can be considered as elastic. The stress o, at
x = a+ p is finite. That is, there is no singularity. Hence, the SIF at location B; is
zero. The SIFs due to external loading ¢ and closure stresses ¢, acting over the
spans BB; and AA; are given respectively by

Ky = Uprcc

p-
2
K, = gf—ccos ! % (2.51)

Y T

wherec =a+p. K Ioy is negative because stresses ¢, over the spans BB and AA;
try to close the crack. Since the SIF at location B; is zero,

P 20 pE a a o
o mc= P—cos ' - or - =cos— (2.52)

T c c 20y
Asc ¥ oy, % ¥ 0, thatis,c ¥ oo. Hence, for higher load levels, yielding spreads,
as expected, over the whole ligament. For low level of loading 7 1, the

Oy



Linear elastic fracture mechanics 27

left side can be expanded binomially. The cosine term can be expanded in series.

This gives

2 _ 202 1 no *

—_

QD
+

QD
I

Q2 +to1 55—
8(7Y 24 20y

Figure 2.13 Strip-yield plastic zone.
Neglecting the third and higher order terms from both sides

n?c?a K2

— i
80’Y oy

(2.53)

(2.54)

Thus, the results due to Dugdale-Barenblatt model and Irwin’s analysis are

identical. However, for higher values of ¢/, the difference increases.

2.9 Crack-Tip Plastic Zone Shape

Plastic zone develops gradually around the crack-tip. To determine the shape of
the plastic zone, elastic plastic analysis is called for. Experimentally, the shape of
the plastic zone can be determined by etching technique (Hahn and Rosenfield
1965) and microscopy. The zone is theoretically determined approximately by
considering the material to undergo plastic deformation instantaneously. The
spread of plastic deformation along a particular ray from the crack-tip can be
determined (McClintock and Irwin 1965; Brown Jr. and Srawley 1965; Broek and
Vlieger 1974; Broek 1986) applying either the Tresca or the Mises criterion.
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According to Tresca criterion, yielding occurs when the maximum shear stress
reaches the shear stress at yield point in uniaxial tension. Similarly, according to
Mises criterion, yielding occurs when the distortion energy density reaches the
same level at yield point in uniaxial tension. These two criteria can be expressed
in the following form, respectively.

0y 03 = 0y,0r0y 0,= 0y, Or0; 0,= 0y (2.55)
2 2 2 _H 2
(0 o)+ (0, 03) + (05 07) =20% (2.56)
where 7, 0,, and 05 are the principal stresses.

2.9.1 Mode | Plastic Zone

The crack-tip stress field in Mode I in terms of the principal stresses is given by

K; 0 .0
P——=cos= 1+sm§

g, —
! 2nr 2

K; 0 .0
0, = P=—=cos; 1 sing

2tr 2 2
2K; 6 .
03 = vP=— cos ; for plane strain
2r 2
= 0 for plane stress (2.57)

The extent of plastic zone r,(f) along a radial direction as per ¢; 03 = 0y is
given by

K} 0 o
ry (0) = 271(17 2 cosy 1+ sini for plane stress
K? 0 o
ry (0) = 2mIT 2 cos5 1 2v+ sini for plane strain (2.58)

where v is Poisson’s ratio. The shape of the zone is obtained by plotting
2

K
ry (0) / > ! 5 using the above equations. This is graphically illustrated in
oy

Fig. 2.14(a), which also includes the result by Tresca criterion, o; 0, = 0y.
The spread of the plastic zone along the crack line corresponding to plane strain
condition is one-ninth of the same in plane stress for v = 1/3. The shape of the
plastic zone according to Mises criterion is as follows.
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_ K 3.
ry (0) = P 1+ 5sin § + cosf for plane stress
K 3 )
ry (0) = L Zsin?0+ (1 2v)°(1+cosf) for plane strain (2.59)
dmol 2

These shapes are illustrated in Fig. 2.14(b). The size of the plastic zone as per Tresca
criterion is larger than due to Mises criterion.

Plane stress 0,= Oy

Plane strain 0, — 0, = Oy,

Plane strain 0; — 0; = Oy

T

Y A ;3/(0)/—
Plane stress

Plane strain

Figure 2.14 Mode | crack-tip plastic zone shape according to (a) Tresca criterion and (b) Mises
criterion.
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2.9.2 Plane Strain Constraint

Along the crack line (¢ = 0), 0; = 0, = a, say. In the case of plane stress, the
plastic zone spreads up to a distance where « = ¢, according to Mises criterion.
Under plane strain condition, assuming v = 1/3, the zone is likely to spread along
the crack line up to a point [according to Eq. (2.56)], where o; = 0, = & = 30,.
This indicates that the plastic zone extends over a distance from the crack-tip to a
point where stress ¢; is three times the level in the case of plane stress. Hence, a
smaller plastic zone develops in the case of plane strain. This also means that there
is greater stress relaxation in the case of plane stress than in the case of plane strain.
In other words, there is more constraint on the growth of plastic zone in the latter
case. Based on this consideration, the constraint on the plane strain plastic zone is
taken as 3. Further, the plane strain plastic zone size is taken as one-third of the
plane stress zone size. Therefore, Irwin plastic zone correction factor for this case
Ki
6o’

is

2.9.3 Mode Il and Mode Il Plastic Zones

The shape of the plastic zones for the other two modes can be similarly obtained.
These plastic zones are illustrated in Figs. 2.15(a) and 2.15(b) for Modes II and III
[McClintock and Irwin 1965], respectively, according to Mises criterion.

Plane stress J 4
Plane strain
K
7,(0)/
5(6) 2mo}
—
— X
Y
(a) 2
2K,
9 / 117
7,(0) e

Figure 2.15 Plastic zone shape according to Mises criterion. (a) Mode Il and (b) Mode III.
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2.10 Triaxiality at Crack Front

When a tensile panel (Fig. 2.16) is loaded, stretching results in y direction and
contraction develops in z direction. Depending on the z-coordinate at a point on
the crack plane and located ahead of the crackfront, the state of stress varies
(Bluhm 1961; Knott 1975).

A D

Plane stress

-y =-====d--4
1
1
[

NN

o
I
1
I
1
1
T
v

A
o,
Stress state at Stress state at
point J and K point I

(©) (d)

Figure 2.16 Plastic zone size variation along thickness. (a) Specimen. (b) Plastic zone shape
around crack front. (c) Stress state at points J and K. (d) Stress state at point I.

For a point J or K (Fig. 2.16(a)) very close to the surface (z = B/2), the constraint in
the z direction is absent because the outer surfaces are free of any normal stress o
or 0;. On the other hand, for a point I close to the centre, tendency of contraction
is restrained; some stresses o, develop in the z direction because of the interaction
between inner and the outer layers. This constraint gradually increases from zero
at the surface to higher values at inner locations. For thicker specimens, it may
develop to the full constraint of plane strain even before the mid-thickness location
is reached. Hence, there is a triaxiality at the inner locations. The states of stress for
the two points are illustrated in Figs. 2.16(c) and 2.16(d), respectively. Thus, there
is a state of plane stress near the surfaces (z = B/2) and there is a state of plane
strain near the centre.
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Since the plastic zone size is larger in plane stress than in plane strain, the size of
the plastic zone varies along the thickness direction. The three-dimensional shape
of the plastic zone is shown in Fig. 2.16(b).

Plastic deformation can be visualized as a shearing phenomenon on the planes
of maximum shear stress. The different planes of maximum shear stress result in
different patterns of failure. The shearing on planes (AC and DE) at45 tothex y
plane is a typical of plane stress condition (Fig. 2.17). The shearing on planes at 45
tothey zplaneis a typical of plane strain condition (Hahn and Rosenfield 1965).
The central portion of the specimen, which suffers from constraint on the growth
of plastic zone, is likely to undergo flat fracture; and the surfaces undergo slant
fracture.

by

Figure 2.17 Shear planes.

The ratio of the plastic zone size to thickness is an important factor for the
determination of the state of stress. If the size of the plastic zone (2r,) is of the
order of the plate thickness (B), plane stress condition can develop throughout the
thickness. The ratio 2r,/B must be appreciably lower than unity for plane strain
condition to exist over a greater part of the thickness. Experimentally, it has been
Kic
oz’
which is approximately equal to 16 times plane stress plastic zone size, where Kjc
is plane strain fracture toughness and ¢y, is yield strength of the material.

At a given stress intensity level, the plastic zone size is proportional to K?/0%.
A material with low yield stress o, would give rise to a larger plastic zone and
greater stress relaxation. It would require a higher stress level, hence higher SIF,

observed that fracture behaviour is dominated by plane strain if B 2.5
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for fracture. Such materials will demonstrate higher fracture resistance. This also
means that a larger plate thickness will be required to maintain predominantly a
state of plane strain in a material with low yield strength (o) and high toughness
(Kic) than in a material with high yield strength and low toughness.

2.11 Thickness Dependence of Fracture Toughness K.

Since the state of stress near the crack front is dependent on the plate thickness,
the fracture behaviour, in particular, the fracture toughness and the macroscopic
nature of the fracture surface (Bluhm 1961; Isherwood and Williams 1970; Broek
and Vlieger 1974), would depend on this parameter. The thickness dependence of
fracture toughness and nature of the macroscopic fracture surface are illustrated in
Fig. 2.18.

The thickness-dependent fracture toughness is represented by K¢ and the
thickness independent fracture toughness or plane strain fracture toughness in
indicated by Kjc. There are three distinct regions. In Region I, the fracture
toughness increases with thickness, and the fracture is fully ‘slant’. The reason for
the increase in toughness in Region I is not clearly understood. At a particular
thickness, B, the toughness, attains the highest value. In Region II, the fracture
toughness gradually reduces with increase in thickness and the surface appears to
be a mixture of ‘slant” and ‘flat” zones. In Region III, the toughness is independent
of thickness and mostly a state of plane strain prevails near the whole crack front,
that is, over the full thickness.

A A

A
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- 100
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fracture

n'
)
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1
I
I
I
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1
1
I
I
I
1
1
1
I
I
I
1
1
1
I
1
I

v

N[{ ]

Full slant Mixed slant and More flat

fracture flat fracture fracture

Figure 2.18 Variation of fracture toughness and percentage at fracture with specimen thickness.
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When the thickness of the specimen is small, there is a possibility that the two
surface plastic zones will coalesce. This will result in a larger plastic zone all along
the thickness and a larger stress relaxation. Further, this gives rise to an increase in
energy requirement per unit crack extension, and hence, the fracture toughness.
With the increase in thickness plastic zone size reduces, and the energy
requirement for crack extension reduces, so does the fracture toughness. The
percentage flat fracture too increases with the thickness up to the critical thickness
Bc. Above this thickness, the fracture toughness becomes independent of

KZ
thickness. Approximately, Bc = 2.5 —IZC In view of this, the plate thickness for the
g

measurement of plane strain fracture toughness is generally taken more than Bc.

Table 2.1 lists the fracture toughness data Kjc for some materials. For more data,
readers may look into references by Hudson and his associates (1978, 1982, 1989,
1991).

2.12 Design Applications

Problem 2.1

For the C-frame (Fig. 2.19), calculate the safe load when a = 5 mm, depth / of

section AB = 40 mm, anrgl L = 150 mm. Thickness B of the section is 25 mm.
Given Kjc =59 MPa" m, o, = 1500 MPa.

Figure 2.19 C-frame.

Solution
SIFs due to direct load P and bending moment M can be calculated using the
following relations, respectively.

_ 6MP— _ PpP— _ — —
Kipm = B2 maYy, Kipp= B maYp «=a/h=5/40=0.125
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Collecting data from Appendix 2.1 (Figs. A2.1.2 and A2.1.3),
Yy =1.122 1.4a+7.33x> 13.084° + 14a*
Yp =112 0.23a+10.550% 21.72a° + 30.39a*.
Therefore, Yy = 1.0394 and Yp = 1.221.

M=P (L+h/2)=0170P

2
Check for plane strain thickness: B¢ = 2.5—12C = 3.87 mm.
og

Y
Since the frame thickness B >> B, the design equation is given by K; = Kjc.
This gives

K; = Kim +Kpp
6 0.170P P——— P | © ME—
= . 1.0394 + ——— . 1.221 = 10°
0005 0.082 T 0.005 039 0025 004 7t 0.005 59 0

P = 16979 N (Ans.).

Problem 2.2

A spherical pressure vessel (Fig. 2.20), internal diameter 3.048 m and thickness
25.4 mm, is to be made of maraging steel. The nondestructive testing technique
available can detect a through the thickness crack of minimum size 2.54 mm.
Three grades of maraging steels are available. Select a grade for maximum
internal pressure.

Grade | Yield stress o, (MPa) | Plane strain fracture toughness Kjc (MPapm)
200 1510 113.25
250 1720 95.35
300 2040 66.46

Figure 2.20 Spherical pressure vessel with crack.
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Solution
If a conventional design approach based on the yield strength is considered, the
design equation is given by: hoop stress ¢, = 0.

Since 0, = %, where p is pressure, t is vessel thickness, and r is internal radius;

therefore
2t
p= TUY; r =1524m, t = 0.0254 m.
The permissible pressure capacities are:
50.33 MPa for Grade 200, 57.33 MPa for Grade 250, and 68.0 MPa for Grade 300.

If a fracture mechanics based approach to design is taken, the design equation is
K; = Kjc.

Assuming a through the thickness crack (of size 22 = 2.54 mm) as shown, the SIF
can be obtained considering the hoop stress to be the opening stress and treating
the plate as an infinite plate. Hence, the correction factor is 1.0. Therefore

K; = ngﬁ = Kjc
2t
This gives p = P—Kjc, r = 1.524 m, t = 0.0254 m, and 2 = 0.00127 m
r o 7a

The permissible pressure capacities are:
59.76 MPa for Grade 200, 50.32 MPa for Grade 250, and 35.07 MPa for Grade 300.

From the point of view of classical design, Grade 300 is preferable. From the point
of view of fracture mechanics based design, Grade 200 is good. From the point of
view of both the approaches, either Grade 200 or Grade 250 can be used, and the
operating pressure can be maintained at 50 MPa approximately.

Problem 2.3
The records of a fracture toughness test are as follows.

Crack length a4 (mm) | Load (kN) | Load point displacement (mm)
245 100 0.3050
25.5 100 0.3075

The fracture load P, = 157.5 kN for a = 25 mm. Given B = 25 mm, E = 70 GPa
and v = 0.3.
Determine G;c and Kjc.
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Solution
Compliance at 4 = 24.5 mm, ¢; = 0.3050 10 3/10° m/N
Compliance at 4 = 25.5 mm, ¢, = 0.3075 10 3/10° m/N

Ac/Aa=(ca c¢1)/Da=25 10 8N !, noting that Aa = 1 mm.

P2 Ac _ (157.5x10%)°
Ge=-t—=x"""""7 55 10 8=12403 2
€™ 2B Aa 50x10 2 J/m

KZ
Gie=(@1 VZ)TIC. Using v = 0.3 and E = 70 GPa, Kjc = 30.88 MPaPm (Ans.).

Problem 2.4

A plate (Fig. 2.21) with a 12 mm cut-out gave rise to a small internal crack of rgize
9 mm in service. Given B = 12 mm, ¢, = 1000 MPa, and K;c = 65 MPa" m,
determine the safe load . Use a factor of safety 3.

Solution
Considering first classical design based on yield strength, the design equation is

Omax — UY/3~

Since plate width is more than 10 times the hole diameter, the stress concentration
factor at the hole edge can be taken as 3. Therefore

OUmax = 30 = 0y /3.
o =1000/9 = 111 MPa.

Considering the LEFM-based design, the design equation is
K;=Kjc/3.

The plate width is very large compared with semi-crack size; the SIF correction
factor can be taken as unity. Therefore K; = o (71a).

« + >
o 150 mm o
DAL e VUil N -
<« X 12 mm dia il 9 mm crack —

Figure 2.21 Plate with hole and crack.
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Hence K; = Up(mz) = (Tp(rt 45 10 3) =65/3 MPapm

o = 182 MPa.
The permissible load is therefore 111 MPa (Ans.).

Problem 2.5

A proving ring (Fig. 2.22) is made of 4140 steel (tempered at 482 C) with yield point
1213 MPa and plane strain fracture toughness 75 MPa" m. The ring is subjected
to a load P = 5 kN. The ring (radial) thickness is 40 mm and thickness in the
perpendicular direction is 25 mm. Determine the level of safety with a vertical
crack of depth 15 mm. Determine the maximum load that the ring can take for the
same crack size.

Solution

Average ring radius r = 250 mm; depth w = 0.040 m.
Pr _ 5000 0.25

Bending moment at the vertical section M = = = 397.8 Nm.
In the following calculation of the SIF, the effect of ring curvature is neglected.
_ a _ 0015
~ w 0.040

The SIF correction factor Y is collected from Appendix 2.1 (Fig. A.2.1.3).

=0.375

Y =1122 14a+733a> 13.084% + 14a* = 1.21487

6MP— 6 3978 pP— P
— Y = 7T

SIFKj=— ma Y= ———— 0.015 1.21487 =15.736 MPa" m.
bw 0.025 0.040

230 mm radius

Figure 2.22 A proving ring with internal crack.
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K 75
Level of safety f = % = 573
I .

The maximum load capacity of the ring, Pmax = f P = 4766 5 = 23.83 kN
(Ans.).

= 4.766.

Problem 2.6

A gear of 20 involute full-depth tooth profile (Fig. 2.23) has module 8 mm and 40
teeth. It operates at 200 rpm. After some period of operation, a crack of size 8 mm
was detected at the base of a tooth. The gear is made of 4340 steel with fracture
toughness 57 MPa" m. Calculate the safe horse power that can be transmitted at
this point. Use factor of safety 5. Face width of the gear is 80 mm.

Solution

The crack is subjected to both Mode I and Mode II loadings. Neglecting the effect
of Mode II loading and Mode I effect due to the vertical component of P, and
assuming width of the tooth at the addendum circle to be equal to the width of the
tooth at the base circle, the following calculations are done.

Pitch circle diameter D, =40 8 = 320 mm.
Base circle diameter D;, = D, cos ¢ = 320cos20 = 300.7 mm.

Tooth width along arc at the pitch circle, t, = 7tm /2, m = module.
tp = 12.5663 mm.

t
Tooth width along arc at the base circle, tob =Dy D—p +tan¢g ¢
p

= 300.7(12.5663 /320 + 0.36397  0.34906) = 16.29 mm.

Figure 2.23 Gear tooth with crack located at base location.
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Assuming chordal tooth width at the addendum circle ¢, t[; = 16.29 mm.
The tooth section at the crack level can, therefore, be taken as a rectangular
section with depth i = t;, = 16.29 mm and thickness B = 80 mm.
The relation for SIF correction factor is taken as the same as in the earlier case.
The SIF is given by
6MP—

> maY(n), Y(x)=1122 14a+733a" 13.084° +14a*, o =

K= —
'~ Bn

a

h
8

m=8mm, M= P (1.25m) = 0.01 P, Nm, «a = 16.29 =0.491, Y =1.4671.

Equating K; with K¢ of the material

6 001 P P

008 0.016292 7T 0.008 1.4671 = 657.353 P;=57 10°% P; = 86.71 kN.

The tangential load with a factor of safety 5, Pf = 17.34 kN.

' D
The horse power that can be transmitted HP = 2nn Pra
’ T 60 746

=779 (Ans.).
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APPENDIX 2.1
Stress Intensity Factors for Various Con gurations

t tco4 — = —
é iR f
| f
2a l 2a TT
b | | r
T 3o —
w w w w
(a) (b)
r r
(1) Kj= o0 ma sec% (i) Kjj=1 7ma sec%

= apﬁ for small & = Tpﬁ for small 2
w w

b>>3w,a/w 07

A4

U m

P—H 1w
(iii)) K1 = ¢ wld 41;)m [1

0.25:2 +0.06r*], r = g b 3w

Figure A2.1.1 Internal crack in finite plate. (a) Mode I and (b) Mode II. (i) and (ii)
from [Tada, Paris and Irwin 2000, pp.40-42]. (iii) from [Miannay 1998].
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i) K=o maY(@), r= % (i) K, = o ma Y(r), r = % cr 07

r<06b/w=>1 Y(r) =112 0.203r 1.197r* +1.937°

Y(r) =112 0231r+10.552 21.71s3 + 30.3824

— —_
2tan e 7 h
(i) Ki=c w m%w Y(r), (iv)K; = Up@pilf(r), Y(r) = 1.122
CcOS — 1 r
2w
3 i
Y(r)=0.752+2.02r+0.37 1 sin gr 0.561r 0.205r2+0.471°> 0.19r*
r=£,b 3w r=£,b 3w
w w

Figure A2.1.2 (a) Single and (b) double edge crack in finite plate. (i) and (ii) from
[Brown Jr. and Srawley 1965; Gdoutos 1993] for cases (a) and (b) respectively. (iii)
and (iv) from [Miannay 1998] for cases (a) and (b) respectively.

(‘é p

M M

/\a

B

6M P

Ky = ——
= Bw?

— a
Y(r), r=—, 0.6

maY(r), r o !

Y(r) =1.122 1.4r+7.33r> 13.087° + 14r*

Figure A2.1.3 Beam segment with crack under bending moment. [Brown Jr. and
Srawley 1965].

¢P

A D“’
f . f s
L

p- 2
93r + 2. —
PL 3" r[1.99 r(1 r)(215 393r+27r )], =2 , L=4w

K[ =
Bw!'® 20+2r)(1 ' w

Figure A2.1.4 Crack in beam under three point bending load. [ASTM E399-90
2000; Srawley 1976].
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’

&
a
l:l, B
S

’

O|
v, '
P a cp—
KI = ﬁ f(ﬂ(), o= % K]max(at B) = 1.126 7ta
®) = [(2+ ) (0.866 + 4.640  13.32a2 Ko (at A) = 1.127 Prc?
b c
1 z % C2 az
+14.724°  5.60)]/(1 a)'® o= 1 > sin?r] dr
0

31 mwa®

R T

® 8 8 2

Figure A2.1.5 Compact tension specimen. Figure A2.1.6 Thumbnail crack in
[ASTM E399-90 2000]. plate. [Broek 1986].

P
t the right tip, K; = p—
g x otthergnttp fr=Pom o oo

at the left tip, P = Load per unit thickness.

Figure A2.1.7 Internal crack in infinite plate under (a) pressure load and (b) point
load. [Paris and Sih 1965].
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(@) (b)

K; = Upﬁ fG6), f6) =0 A)fix)+Afas), s= ﬁ, for both cases (a)
and (b).

fis) =053 s)[1+1243(1 s)’] fi(s) = 1+02(1 s)+03(1 5)° fa(s)
f2(s) =1+ [05+0.743(1 s)°] fo(s) = 2243 2.64s+1.352s* 0.2485°

Figure A2.1.8 Crack at hole edge in infinite plate. (a) two cracks and (b) single
crack. [Tada Paris and Irwin 2000, pp.289-90]. fi(s) and f»(s) pairs given on the
left and right for cases (a) and (b) repectively.

2p P
K = Ky = 0. K1=pﬁ a? b2

P
Ki(at B) = mta (a2 + b2 2abcosb)’
Figure A2.1.9 Penny-shaped crack in infinite three-dimensional body. (a) point
load at A; (b) pressure loading on annular area » = b to r = a. [Tada, Paris and
Irwin 2000, p.344 and p.347].
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A

" M
o= L
b2
2 p— 1 0.5+ 0.1484°
KI(duetoP)=E0p7mf(oc), zx=g, f(a) = pal - s
4Ma a
:74/0(_7
(b* a) b
q

Ki(duetoMattip A) = ¢ ma(l «) g(a)

4
= I
g(a) a5 ! 0

4 3,.5 45 93, 5
= — 1405a+ a2+ = 2= a*+0.483
T 1+0.5a S(X 16(X 128“ “

Figure A2.1.10 Penny-shaped crack in shaft under tension and bending loads.
[Tada, Paris and Irwin 2000, p.397 and p.399].
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.
Kpp=t 7 a)F(a);

@‘\Q

F) = Pa g(a)

g(:x)=%asa 10

32,5 3,3 ! 5
+050+ = +
1+ 0.5« 806 16a 128 0.208«

x| W

Figure A2.1.11 Mode III SIF for circumferential crack in shaft under torsion. [Tada,
Paris and Irwin 2000, p.395].

T
N

P
fla) = % +0.5+ %oc 0.361a%> +7.33a° / 4a

Figure A2.1.12 Round bar with circumferential crack under tension. [Hellan 1985].
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Q1 05u+ 0.957a% 0.16a°
B na 1 w)
Figure A2.1.13 Crack edge loading. [Tada, Paris and Irwin 2000, p. 67].

K =

A

1.35w —

a

P
K1=ﬁf(a), N = —

w
h i
f(@) = +a)(0.76 +4.8x 11.58a% +11.43a° 4.084%)/[(1 )

Figure A2.1.14 Disc-shaped compact tension specimen. [Tada, Paris and Irwin
2000, p. 64].

Exercise

2.1 What are the limitations of Griffith stress concentration factor based model?
2.2 Why Griffith energy balance theory could not be easily applied to practice?

2.3 In the Irwin-Orowan model, the crack-tip plastic zone size was assumed not
to change with crack size. This is unrealistic. If the plastic zone size increases
with crack length, what will happen to the fracture resistance?

2.4 Do you consider the SIF approach to be more convenient than the energy
balance approach? Why?

2.5 Why plane strain plastic zone correction factor is taken as one-third of the
plane stress correction factor?

2.6 In a thick specimen with a straight crack front under Mode I loading, where
will the extension begin, at the centre or at the edges of the crack front?

2.7 For the infinite plate with a crack and loaded as shown (Fig. Q.2.7), what is
the mode of loading on the crack?
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c—> —F
Figure Q.2.7 Figure Q.2.8

2.8 A uniformly thick steel plate (Fig. Q.2.8) is attached to two rigidly fixed end
supports. The plate is uniformly cooled down by 20 C. What is the mode of
loading the crack is subjected to?

2.9 A crack in a component is subjected to loading involving all the three modes
of crack edge displacements. Would you like to give its condition of fracture
in terms of SIF or energy release rate? Give reasons for your answer.

2.10 A solid shaft of a machine transmitting constant torque has an all-round
circumferential crack. Obtain the energy release rate and the SIF.

2.11 Which of the two cases (Figs. Q.2.11(a) and (b)) will require more load ¢ to

fracture?
O O
t ¢
b b
i i
a a
b b
wla —
I

o o
< e
(@) (b)

Figure Q.2.11

2.12 Why fracture toughness is more under plane stress condition than plane
strain condition?

2.13 Give two practical examples of each of the three fracture modes.

2.14 A crack is opened by placing a wedge at the centre of an internal crack
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2.15

2.16

217

2.18

2.19
2.20

2.21

Fracture mechanics

Figure Q.2.14

(Fig. Q.2.14). Will the crack grow stably or unstably? Explain.

18Ni-Marage 200 steel has yield point and plane strain fracture toughness
1482 MPa and 140 MPa" m, respectively. Determine the specimen thickness
required for plane strain fracture toughness testing. [Ans. 22.3 mm]

What will happen to fracture load capacity if (a) there are residual
compressive stresses around the crack-tip, (b) crack-tip becomes blunt, and
(c) plastic zone size around the crack-tip reduces?

A cylindrical pressure vessel of radius 750 mm and thickness 30 mm is made
of a material (VL-1D steel, tempered at 210 C) with K¢ = 184 MPapm and
yield point 1372 MPa. Internal pressure is 50 MPa. Determine the required
sensitivity of the inspection technique considering through the thickness
longitudinal crack. [Ans. Able to detect crack size 13.8 mm)]

Suggest some methods of increasing the fracture toughness of a material.
What is the difference between K;c and K?

Solve Problem 2.5 accounting suitably for Mode I effect due to vertical
component of tooth load P.

During testing of a single edge cracked specimen, the load-deflection relation
was found to be of th?)form: u P =w;uinm, Pin N and 7 is a constant.
Given Kjc = 73 MPa’ m, specimen thickness B = 20 mm, specimen width
W = 30 mm, and yield stress o, = 1060 MPa. K;c was measured observing
crack extension Aa = 0.5 mm. u changed from 10 # m to 1.05 10 * m.
Determine #. Use E = 108 GPa and Poisson’s ratio v = 0.25.

Solution
Be = Z.SK%C / (712/ = 11.85 mm, which is less than B. Hence the given
toughness corresponds to the plane strain condition.

Zp

Area AEFB = Pdu=171nﬂ =7l
E U

1.05 10 *
ni
1.00 10 ¢4

= 0.0488 Nm
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v

O E F

Figure Q.2.21

Py =10 N, Pg=0952 10 N
Area OCA =05 OE AC = 0.0247 Nm, Area OBC = 0.02387 Nm
Area ABC=0.5 (P4 Pp) Au=0.0012y Nm.

Note that calculation of area ABC from the two areas AEFB and CEFB gives
the same answer, 0.00127 Nm.

Area OAB = work done = Aw = area (OAC + OBC + ABC) = 0.0497 Nm

Gic = AW/(BAa) = 49 10°% = (1 v?)K3./E. This gives 7 = 9.4405
(Ans.).

2.22 Determine the potential energy release rates associated with Mode I and
Mode III loading of the double cantilever beam (DCB) specimen.

A

|l

Figure Q.2.22

Hints: Calculate the crack opening 6 by treating each bar segment of length a
and cross-section B} as a cantilever beam with fixed end coinciding with
the crack front. Thereby, obtain compliance ¢ = §/P. Then calculate the



58 Fracture mechanics

energy release rate using P—z% for Mode I. For Mode III, consider the same
beam deflection parallel to the crack front. - -
p Cin = 125
2.23 Determine the safe load ¢ for thﬁ case shown (Fig. Q.2.23) using the
particulars given. Kjc = 100 MPa" m, plate thickness B = 25 mm, yield
point oy, = 1200 MPa, E = 210 GPa.
[Ans. 1015 MPa using SIF correction factor; 1030 MPa using no SIF correction
factor].

Ans. G =12

A

{
<+ 2a =5 mm 2a=3m 24 =6 mm —>
O o

Figure Q.2.23

2.24 Determine the SIF for the case (Fig. Q.2.24). Given L >> 2w and w >> 4.

P 1 P— 1

Ans. — — + p—
[Ans 2B 2w e Ta |

A A

: —" O
2w 2a
A
B
L L

Figure Q.2.24

2.25 A beam in a mockup test (Fig. Q.2.25) developed a crack after some testing
cycles. The beam central part is 15 mm thick and 40 mm deep. The beam is
made of AISI 4340 steel (tempered at 400 C) with yield strerﬁ;;th
oy = 1400 MPa and ultimate limit ¢,,;; = 1450 MPa, and Kjc = 68 MPa' m.
The beam loading can be approximated as follows: axial load R = 5 kN, and
Py = P, = P. Find the safe load the beam can carry at this stage. Comment
on the loading on the crack when P; > P,. [Ans. 3.745 kN]
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100 mm 150 mm 250 mm 100 mm

Figure Q.2.25

2.26 A long uniform rectangular bar of cross-section 40 mm 20 mm made up
of a material with fracture toughness K;c = 59 MPa' m and yield strength
oy = 1500 MPa is subjected to an axial load P. Find the load capacity P if its
central section has a

(a) a corner crack of 6 mm radius, and
(b) an elliptical edge crack of size-semi-minor axis 5 mm and major axis
12 mm. [Ans. (a) 540 kN, (b) 445 kN]

20 mm 20 mm

‘é 40 mm 40 mm

(@) (b)
Figure Q.2.26

2.27 Suggest two minor geometric changes to reduce the SIF in a problem of given
external dimensions and crack size.

2.28 What is the important limitation of the Irwin-Orowan modification of the
Griffith theory of brittle fracture?

2.29 Where does the energy for creation of new surfaces come from during crack
extension (i) under load control and (ii) under displacement control?

2.30 Refer Fig. 2.22. Determine the level of safety if the crack of the same size is
located at the external radius at D. Account for both the bending moment and

direct force on the section CD. [Hint: Bending moment M at the section CD

1
= Pr 5 Use appropriate correction factor for the direct compressive

force]. [Ans. 10.55]
2.31 Solve Problem 2.6 accounting suitably for Mode I effect due to vertical

component of tooth load P and determine % change in transmission of HP.
[Ans. 20%]
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Determination of Crack-Tip
Stress Field

3.1 Introduction

In this chapter, an introduction to the Airy stress function approach and Kolosoff —
Muskhelishvili potential formulation (1977) of two-dimensional elasticity is given.
Westergaard stress function based solution to Mode I and Mode II crack-tip stress
fields and similar solutions to all the three modes based on Williams’ (1957) eigen
function expansion approach are given.

3.2 Airy Stress Function Approach

Stresses at a point (Fig. 3.1) in two-dimensional elasticity is given by the three stress
components 0y, 0y, and Tyy, irTespective of whether the state of stress conforms to
plane stress or plane strain. In the latter case, 0, acting normal to the plane of the
body is non-zero and it is given by 0, = v(ox + 0y), where v is Poisson’s ratio. To
solve for any problem of stress analysis in two dimensions, it is necessary to solve
for the three stress components using the equilibrium equations.

00 . 0Ty _

ar 3y 0 (3.1a)
0Tyx doy,
+ —2 =0 (3.1b)
dy 9y
Tey = Tyx (3.1¢)

It is necessary to solve for the three unknown stress functions oy, oy, and Tyy USing
the first two equilibrium equations. The problem is statically indeterminate. To
overcome the indeterminacy, the compatibility condition given below is employed.
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Figure 3.1 Stresses at a point.

2
™Yy _ 0%, . o%ey

oxdy  oy>  0x2 (3.2)
Ju v ou _ Jv
h y = =, = —, = — — i
where ¢ 55 & 3y and 7,, 3y + 5 Y and v are the displacements at

a point in the two coordinate directions x and y respectively. Assuming material
to be homogeneous and linear elastic, and plane state of stress, Eq. (3.2) can be
written as follows.

% or voy N az(Uy Vo)
y? ox?

%1,
2(1+ Y= :
A+ 5o (33)
Combining the equilibrium Egs. (3.1) and the compatibility condition (3.3), it is
possible to obtain the following relation.

02 02

@"' @ oy t+ (Ty =0 (34:)

The three stresses are functions of x and y. The three functions are solved for using
the three simultaneous partial differential Eqs. (3.1a), (3.1b) and (3.4). The
displacements can then be obtained through integration of the strain relations.

0 1
£ = Fi ox  VOoy (3.5a)
v 1
3 = (0 voy) (3.5b)

where E is modulus of elasticity.
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Airy expressed the stresses in terms of a single function ¢, termed as stress
function (Timoshenko and Goodier 1970; Sadd 2005), as follows.

=00 = 8274) and Ty, = ¢ (3.6)

T T o2 T o ax oy’

The function, irrespective of its form, satisfies the equilibrium Egs. (3.1a) and
(3.1b). To determine the function, it is necessary to ensure that it satisfies the
compatibility Eq. (3.4) and the specified stress boundary conditions. After
substitution of the stress function, the compatibility condition takes the form of a
biharmonic equation.

0? 0? 02 02
+ +

aix2 aix2 @ @ (P =0 or, I"Z rch =0 (37)

Many useful solutions have been obtained by writing the stress function in terms
of x, x" 1]/, x" ZyZ, coe, xy" b y", or a combination of them involving arbitrary
constants ag, a1, a2, and so on. For example,

p=aox"+ay x" ly+apx" P+ + o,y (3.8)
It can be shown that the resultant forces F, and F, (Fig. 3.2) due to distributed
tractions over the portion of boundary A to B, and the moment Mo of these
tractions about the origin O are related to the stress function as follows
(Timoshenko and Goodier 1970).

90 B
= 9% (3.9a)

Y A

X

VA F}/

»
»
X

O

Figure 3.2 Boundary forces over span AB.
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_ 9’
R=og (3.9b)
Mo= x4, 20 4 g (3.9¢)
o — X ox Y ay A J(PJA .

3.3 Koloso {Muskhelishvili Potential Formulation

Kolosoff and Muskhelishvili (1977) showed that the Airy stress function ¢ can be
written in terms of two analytic (or regular or holomorphic) functions. These
functions have real and imaginary parts, each of which satisfies the Laplace
equations. Alternatively, these functions satisfy the Cauchy-Riemann conditions.
They showed that

¢ = Re[zF(z) + x(2)] (3.10)

oy + 0y =4Re[F(2)] (3.11)

oy 0y +2i Ty = 2[ZF(2) + x"(2)] (3.12)

u—+iv= 3 3 v F(2) ! ;V hzm + mi for plane stress (3.13a)
1+ h i

+ —
v zFY(z) + x'(z) for plane strain (3.13b)

v
3 (3 4v)F(z)

op 0 +2iT9 =24 ZF2) + X" (2) (3.14)
ug+ u, =e O(u+iv) (3.15)

where F(z) and x(z) are two analytic functions, z = x + iy, symbols (') and (?)
indicate first and second derivative of the function with respect to z and the over-
bar sign stands for complex conjugate. 0y, 0;, and T,¢ are stresses and 1y and u, are
displacements in polar coordinates.

3.4 Examples of Analytic and Stress Functions

Consider an analytic function, F(z) = a + ibz?, where a and b are real constants.
Its conjugate is given by: F(z) =a ibz*.

z, 22, 23,...,2" are all analytic/regular functions. For example, F(z) = z
(x+iy)*> = x> y*>+i2xy is an analytic function. It can be easily verified that
the real and imaginary parts, Re F(z) = (x> y?) and Im F(z) = 2xy, satisfy the
Laplace equation. That is, r? Re F(z) = 0 and r? Im F(z) = 0.

2 =
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Consider stress functions F'(z) = S/2 and x¥(z) = Sa?/z%, where S and a are
both real constants. This pair of functions indicates stresses in an infinite plate with
a centrally located circular cutout of radius a, with loading acting only at its outer
boundary. The origin is located at the centre of the cutout and z = re®®. Therefore

oy + 0y = 0p+ 0, =4Re F'(z) = 2S (3.16a)
; 2i0 = 00 2i0 0 @ a*
op 0, +2iT9=2e" ZF(2) +x (2) =2elSZ—2 =ZSr—2 (3.16b)
2
oy o+ 2iTy =2 ZF2) +xV(z) = 25 (3.16¢)
Asr ¥ oo, 00+ 0y = 25, 0y 0y = 0 and Ty, = 0. This means that o, =
0y = Sasr ¥ oo. The plate is subjected to equi-biaxial normal stress S. Further
atr = a, op+ o, = 25, oy 0, = 2S and 1,9 = 0. Therefore, radial stress

oy = 0 and tangential stress 0y = 2S5 everywhere on the hole boundary. The stress
concentration factor is 2.

Similarly, for the same plate geometry with uniaxial loading, o, = S acting in
the x direction only the two stress functions are given by

O A 617
It can be easily shown that

oy = S 1+i§ g 1+3l:;1 cos 26 (3.18a)

o = g 1 fi + g 1 4:i+3ii cos 26 (3.18b)

T = ; 1+2z§ 3;1;1 sin 26 (3.18¢)

3.5 Westergaard Stress Function Approach

Westergaard (1939) examined the problems with at least one axis of symmetry and
showed that stresses can be expressed in terms of only one analytic function. The
steps leading to such conclusion is given as follows.

From the relations (3.11) to (3.13)

0y + ity = 2 Re[F'(2)] + [2FV(2) + x"(2)] (3.19)
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h i

-~ . T~ 3 v
+ip) = 01(2) + 1V =
2u (u+iv) = xF(z) zF'(z) +x'(z) , « T

for plane stress. ~ (3.20)

For a problem (Fig. 3.3) with x axis as the axis of symmetry, 7,, = 0 along the line
y = 0. This requires

Ty = Im [2ZFU(2) + x"(z)] = 0 for y = 0. (3.21)
This can be guaranteed by taking
EF@) +x"(2)] = A (3:22)

where A is a real constant. There cannot be terms like a1x, a»x2, ..., by, b2y2, e,
or cix ! 2, ..., dwy Y dyy 2 ..., etc, where g;s, b;s, ¢;s, and d;s are real
constants, on the right hand side of Eq. (3.22) because the terms with positive
exponents will make stresses infinite at the outer boundary and the terms with
negative exponents will make the stresses infinite on the coordinate axes. Since
crack edges are traction free, 0, = 0 and 7,;, = 0 along the crack edges. As per
Eq. (3.19), it is necessary that

, 02X

2Re[F(z)] + A=0fory=0and a x a. (3.23)
If we express x'(z) as follows

X'(z) =F(z) zF'(z)+ Az (3.24)

Figure 3.3 Mode I crack under remote tension.
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and substitute x"(z) into the expression for 7y [Eq. (3.21)], we obtain
Ty = ImZF'(2) + X"(2)] = Im[z z)Fz) + Al = 2yF"(2), (3.25)

which makes 7, zero for any form of F 0(z) along the x axis.
Introducing a new representation, F(z) = 2F%(z) and F'(z) = 2F%(2),

ox+ 0y =2Re[F (z)] (3.26a)

oy ox+2iTy =2[(Z z)%PO(z) + A] (3.26b)
This gives

oy =ReF(z) yImPF(z) A (3.27a)

0y =Re F(z) +yIm F'(z) + A (3.27b)

Ty = Yy Re F(2) (3.27¢)

F(z) is the Westergaard stress function for Mode I crack. The real constant A can
be settled through the outer boundary conditions and Eq. (3.23) can be settled
through a proper selection of the form of the Westergaard stress function. For a
problem with equi-biaxial loading A = 0. For the stress field near the crack-tip, the
constant A can be neglected.

3.5.1 Mode I Crack-Tip Field

For an internal crack in an infinite body under equi-biaxial tensile loading ¢ at the
outer boundary (Fig. 3.4), the Westergaard stress function is given by

oz

F(z) = o

(3.28)

Stresses
The individual stresses are given by Eq. (3.27) with A = 0. It can be very easily
established using Eq. (3.28) thatasz ¥ o0, 0y = 0, = ¢ and 7y, = 0.

For example,

n #
Rep I o oz
0y =Rep=— yIm Pp—= p——
22 a? z2 a2 (22 a?) 22 a?
1A} #
o o

o
= Rep—— Im pP— P 3.29
1 a%2/72 Y 2 1 a2/22 z(1 az/zz)'u1 az/z? (3.29)
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Figure 3.4 Mode I crack in in nite plate under remote equi-biaxial tension o.

Asz ¥ oo, the term within the square bracket vanishes and denominator of the
tirst term becomes 1. Finally, 0, = ¢. On the crackedges, a x aandy =0,

n #
0, =Rep-Z_+ yim pl " = Rep L5
Y z2 a2 Y 22 a2 (Z2 czz)luz2 a2 x2  a?
=Rei p—r_ (3.30)
a2 x?

Since the quantity within the bracket is real, ¢y vanishes on the crack edges. Hence,
the stress function given by Eq. (3.28) satisfies all the boundary conditions. By the
uniqueness theorem of elasticity, the stress function chosen is the exact solution to

the problem.
The stresses near the crack-tip (i.e.,as 7 ¥ 0) can be obtained as follows.
" #

(3.31)

_ oz o
Ux—Repﬁ yIm pﬁ
zZ a z¢ a

(z2 a2 T2 22

For r ¥ 0, the following approximation is possible: z 4, z+a  2a. Further,
selecting crack-tip as the origin, z a = re®?,

LAl #
2
oa o a
0y =Rep—— rsinflm P—— +rsinfIm —p—  (3.32)
’ 2a ret? 2a ret? (2a relf’)HZa rei®

Asr ¥ (, the first and the last terms become dominant, and the second term tends
to 0. Therefore, near the crack-tip
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p__

Oy = Cos = . mlcosgsingsin%— cosg 1 singsinﬁ (3.33)
=P Po %Nty T BT %) % @

where K; = (Tpﬁ. It can be easily shown that

K 6 . 6 . 36
= — — =+ — - .
oy pﬁ cos 5 1+ sin 5 sin 5 (3.34)
Similarly,
_ K . 0 0 360
Tyy = pﬁ sin 5 cos 5 cos > (3.35)
Displacements

Displacements are obtained through integration of strain-stress relationship.

_ du o voy 1

M T _ 2 0
€x = 57 E 3 (1 v)ReF(z) (Q+v)ylmF(z) (3.36)
Upon integration
z z
u= E “Re  F(z)dx 1% yIm F(2)dx+ f(y)

where f(y) is an arbitrary function of y. Incidentally f(y) contributes to the rigid
body displacements; it is neglected.
For integration with respect to x or constant y, dz = dx + idy = dx, and noting

Uz
F(Z)_ ZZ a2/
h i
1 P 1+
u= EvRe o z2 a? EVyIm p% (3.37)
22 a

For the field near the crack-tip, using the approximationsz a, z+a 2a,

: +
u YRe o 2are® Y ¢ sing Im QL
2a rel?
1] r__ # " r_ #
1 v (Tpﬁ Zr COSQ + 1+v Upﬁ Zr COSQ sinzg
~E T2 E T2 2
K r? 0 1 0
_ Ky r 4 . 2
== = ~—(1+ - ¥ e
F o 955 (1+v) T4, TSNy (3.38)
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Noting that E = 2u(1+v) and x = i’ T Z for plane stress
Ky 2r 6 . 20
=1 2 coss + - 39
u yrrie= cos (x 1)+2sin 5 (3.39)

Starting from the relation for €, y displacement is obtained.

_9Jdv_ oy vox 1 0
€y = W E I [ v)ReF(z)+(1+v) yImF(2)] (3.40)
z z
v = ! 3 Y Re F(z)dy + 1% yIm F'(z)dy + g(x) (3.41)

g(x) is an arbitrary function of x. Since this contributes to rigid body mode, it is
neglected. Further, for partial integration with respect to y or constant x, dy =
i dz, considering the second term as a product of two functions, y and Im F'(z),

1 v z 1+1/Z

v= 5 Re F@)( id)+ ——1y Im F'(z) ( idz)

Z
Im( 0)F(z) ( idz)]

h P i
1+ 1+ -
=1 Y Re ( D)o 22 a? 7VyRe F(z)+7v Im(sz2 a2
E E E

1 v hp b4y 14y Np_ i

=5 Im ¢ z2 a2 7 y [Re F(z)] + Im o z2 a?
h i

2 P—! 1+

=Z-Im ¢ 22 a2 EVyRe[P(Z)]
h i

) P 1+v oz
-~ 2 2

EIm c z2 a 3 Yy Re pﬂ

2 hp____i +v oa
=_Im o 2are rsinff Re P———

E 2a ret?

K 2 6 0

I r . 2
= — — -+ — .

) 2 (1+v)cos 5 (3.42)
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Finally,

| g
Ki 25 . 6 0
0= 4—;{ ;r sing (x+1) 2 cos’y (3.43)

Equations (3.39) and (3.43) are valid for plane strain whenx =3  4v.

3.5.2 Mode Il Crack-Tip Field

Irwin extended (Tada, Paris and Irwin 2000) the Westergaard stress function
approach to Mode II (Fig. 3.5). The stress functions and the stresses for such a case
are given by

F(z) = pﬁ (3.44)
oy =2ReF(z) yImF'(z) (3.45a)
oy = yIm F'(z) (3.45b)
Ty = ImF(z) yReF'(z) (3.45¢)

Figure 3.5 Mode Il crack in in nite plate under remote shear T.

Starting from relation (3.45a)
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T 72
Y

(z2 aZ)'Jz2 a?

Tz .
=2Imp——— rsinf Re ;
z2  a?
the second term is neglected as it vanishes for » ¥ 0.
Therefore, using approximationsz a,z+a 2a,andz a = re®

7

2

oy =2 Im{al r sinf Re L —
* 2a ret® (2a ret? )HZa rei®
= 21—9% sing 179@ cosg sin — sinﬁ
27tr 2 27Tr 2 2 2
= p—Tpm sing 2+ cos Q cos ﬁ
2mr 2 2 2
Kip . 0 0 30
= — =+ — — .
p% sin 5 2+ cos 5 cos 5 (3.46)
P— .
where Kj; =7 7a. Again,
n ’ ' 2 #
iT iTz
o, =yImF(z) =yIm P—— p—— 3.47
v=Y @)=y pﬂ (z2  a?) "2 22 (3.47)
Based on the evaluation of the last term of o it can be written that
K 0 0 30
oy = pé sin = cos = cos — (3.48)

27tr 2 2 2

Ty = ImF(z) yRe F'(2)
" #
- m iTz Re iT itz
z2 g2 Y 22 a2 (22 4?) "2 a2

The second term tends to zero as r ¥ 0. Therefore, using earlier approximations
andz a=re",
T z2

D

(z2 a2 "2 a2

_ TZ
Txy—Repﬂ'i'yIm

2

Ta } Ta
= Rep——— + rsinf Im —p—
2a ret? (2a rei?) 2aret?
K 0 0 36
= pé cos= 1 sin=sin— (3.49)

2mr 2 2 2
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The displacements are again obtained starting from the expressions for strains €,
and €.

0 1 1
€ = % =clox vod= Z[2ReFE)  (L+v)yIm F()] (3.50)
Integrating
_ 2. ° +v : )
u= ERe F(z)dx £ yIm F(z)dx+ f(y) (3.51)

Neglecting the arbitrary function f(y) and noting the form of F(z)

P + j
u= ERe( it 22 a?) 1+v yIm 19L (3.52)
E E 22 22

For the crack-tip field substitution is made: z a,z+a 2aandz a=re®.

u==Im T 2are® + Y+ sinf Re l
E 2a re'
P2 92 .1 0 Ky 2 6 0
—  2r +v 2 i &r . 2
= Z sins =+ == Zsin- (k+1)+2 ~ )
T o _sing - g 085 o7 sin 5 (k+1) cos” 5 (3.53)

Similarly from the expression of €, v is obtained, neglecting the arbitrary function
of x associated with integration, as follows.

e, = a; = % o, voy = % [(1+1)yIm F'(z) 2vReF(2)] (3.54)
h P P i
7):% A+v)yImt 22 a2 (1 v)Ret 2?2 a?
K I"2 0 0
— 1 <r v . 0
= W o7 (x 1) cos 5 sin @ sin 5
K l,-2 6 360
11 r
= = Z+ il
i 7 2k 3)cos 5 Fos (3.55)

3.6 Mode Il Solution

Mode III represents a problem in three-dimension (Fig. 3.6). The solution for
crack-tip field in this case cannot be obtained through the Kolosoff-
Muskhelishvili complex formulation, which is suitable only for problems in two
dimensions. For this problem displacements u = v = 0 and the displacement in z
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Figure 3.6 Mode IIl crack in in nite plate under remote out-of-plane shear T.
coordinate direction w = w(x, y) & 0. Therefore ex = ¢, = €, = Yoy =0, and

d 0
Yz = % and Yyz = a—w This also means that 0y, = 0, = 0, = 0 and T, =

Uy = 0,and 7o, = ygz; and 7, = ‘uaazyu' These stresses will satisfy identically

the equilibrium equation in the x and y directions. The third equilibrium equation

will be satisfied provided
1

2 2
33’ ZZ’ = 0,0r rPw=0 (3.56)
X Y

Hence, w is a harmonic function. w can be written in terms of an analytic function
F(z) as follows.

1h i
w = ﬁ F(z) + F(2) (3.57)
This gives
. _odw .ow _ .,
Toz 1 Ty= ™ i @ =2F(2) (3.58)
Assuming
F(z) = (A +iB)z'*! (3.59)

where A, B and A are real constants.

Te Tz =2(A+1)(A+iB)z!
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=2(A+1)r"[AcosA® BsinAd+i (AsinA0+BcosA)]  (3.60)

The displacement field
1 h i
w = p (A+iB)zM! + (A iB)ZM!
1 h _ , i
— ﬁr/\+l (A + ZB) e (A+1)0 (A lB) e ! (A+1)6 (361)
The displacement field shows a typical behaviour in the domain depending on the
value of A. For example, at the crack-tip (r = 0), the displacements becomes
infinity if A < 1. Therefore, for finiteness of displacements in the domain
including the crack-tip, A must be greater than 1. A = 1 is not acceptable
because it makes the stresses given by Eq. (3.60) to vanish everywhere.
Since the crack faces (0 = 77) are free of any stresses, for example, 7.,
AsinArt +BcosAt =0 (3.62a)
AsinArt +BcosAm =0 (3.62b)

These two relations represent an eigenvalue problem, where A and B can be
considered as modal parameters and A as the eigenvalue. The characteristics
equation from which A can be obtained is given by

sin A7t COSATT

Sin A cos s =0 or sin2Amw =0 (3.63)

n . . 3
Hence, A = 5 where 7 is an integer. A can have values: oo,...., 1, o

..., +oo. In view of the restriction on A, it can only have values: ,

N[ —

’ 1/ Y
2
3 1 . . : . .
YA +o00. A = 5 gives rise to square-root stress singularity at the crack-tip.

—_

It is of interest at this point. Substituting this value of A in Eq. (3.62), it is observed
that A = 0 and B & 0. This gives
1. 1 0
Tyz = Br 2 sin 5 T = Br 2 cos 5 (3.64)
Adopting Irwin’s definition of stress intensity factor (SIF)

hpi 1
Ky = 1lim 27tr (Tyz)gzo (365)
ri0



80  Fracture mechanics

K
B= piL (3.66)
21
Finally, the crack-tip solution is given by
Kip . 0 Ki 0
Tz = —— sin—, T,; = P=——= COS = 3.67
Xz pﬁ 5 vz p% 5 (3.67)
"o o
= Kuo2r g8 (3.68)
U T 2

For other values of A, the solutions for stresses can be obtained. Thereby, stresses
can be written in the form of infinite series.

Tys = 15(2& sing + Ag+ ALrif (0) + Asrifa (0) + . ... .. (3.69)
7tr

K 6
Ty = p% cos 5 + By r%gl 0) + B; rlgz @ +...... (3.70)
Ty
where A; and B; are arbitrary constants to be determined from the given boundary
conditions, and f;(#) and g;(#) are known functions of 6. By has been excluded
from Eq. (3.70) because there is no contribution to Ty, corresponding to A = 0.

3.7 Williams’ Eigenfunction Expansion for Mode |

Williams too solved the Mode I and Mode II problems through the
Kolosoff Muskhelishvili potential formulation. Noting the possibility of
existence of stress singularity at the crack-tip and symmetric stress-displacement
field about the crack plane in Mode I, he assumed the two stress functions
involved in Egs. (3.11) to (3.13) in the following forms.

F(z) = Az, X)(2) = B M1 (3.71)

where A = C+iDand B = E+iF. C, D, E, F, and A are all real constants. He
considered the origin to be located at the crack-tip and x axis collinear with the
crack. Since in this case, stresses 0y and 0y are symmetric about x axis, and Ty is
anti-symmetric about the same axis, it can be easily established that D = 0 and
F = 0. From Eq. (3.11)

oy + 0y =4Re F'(z) =4(A+1)r"[C cosA8 D sin 6] (3.72)

For symmetric distribution of ¢y, + 0, about x axis, the sum must be only a cosine
function of (Af). That means D = 0. In a similar manner, starting from Eq. (3.12),
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the expression for 7, = (A +1) r* [F cos A@ + E sin Af | is obtained. Since it must
be only a sine function of (A6), it is obvious that F = 0.

From Eq. (3.13), it is noted that u and v is proportional to +**1. For finiteness
of displacements in the whole domain including the crack-tip (r = 0), A must be
greater than 1. Using F(z) = C z**! and x'(z) = E z**! using the Egs. (3.11) and
(3.12),

oy =2C(A+1)r* cos A0 + CA(A + 1) r* cos(A  2)0
+E(A+1) r} cos A0 (3.73)
Ty = CA(A+1) 7" sin(A  2)0 +E(A+1)r" sinAf (3.74)

In order to ensure 0, = 0 and Ty, = 0 for 6 = 7, the following two equations are
obtained.

C(A+2)cosAmt + EcosAmt =0 (3.75a)

CAsinAm + EsinAnr =0 (3.75b)

These equations represent an eigenvalue problem. The characteristic equation to

solve for A gives A = g, where 7 is an integer varying from oo to co. Therefore,
1 3

A can have values oo,..., 1, 5 0
1 1 3
A, it can have values: 5 0, 5 1, =

1

ARy +o0. In view of the restriction on
1 . .

ok +o0. A= 5 gives rise to square-root

stress singularity at the crack-tip. It is again of interest at this point. Substituting
this value of A in Eq. (3.75), it is observed that E = C/2. This gives

o,=Cr 2 —cos; - COS— (3.76a)

11 50 1 0
= ~sin>= - sin- 7
Ty =Cr 2 1 sin > 1 sm2 (3.76b)
Using Irwin’s definition of SIF
Ki=lim = 277 (0,)p=0 , C = Po= (3.77)
r0 2
Finally, therefore

U—p—KI §cos€ lcos% —p—KI cosQ1+sir1€sinﬁ (3.78a)
vy 4Ty 40y TR %) 272 '
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KI 1 . 560 1 .6 K[ .0 0 30
= _ - _ - = _ e - 7
Ixy 71’ sin sin ‘9772 ” sin COS 5 COS 5 (3 Sb)

From Eq. (3.72)

0 K 0
0y+ax=2Ccos§ 22921: CoS —
Y

2
K 0 . 0 . 30
Oy = pzl:m cos 5 1 sin 5 sin— (3.79)
The displacements are given by
h i
1+v" —
u+iov= 3 £ v F(z) v zF'(2) + X'(2)
3 v K 21 1+v ZKI 1(2)%4_1 K; (Z)%
E I 27T E I 2772 2 l 27T
K2 0 0
I r .o
= - —_ Z+ -
T 3 v) cosy +ising
1+v 30 . . 30 6 . .0
— + = + — — .
> cos—- +isin- cosy ising (3.80)
Hence
K2 6 0 K2 0 0
u=4—;l ;r cos 5 (k 1)+2 sinzi , v=4—; ;r sinE (k+1) 2cos? > (3.81)
The stresses corresponding to the other values of A (0, %, 1, %, etc.) can be similarly

obtained. The general form of the stress function can be written by summing up all
the eigen solutions as follows.

F(z)= Y Az, (3.82a)
m=1
X'z)= Y Buz'*! (3.82b)
m=1
wherem=1,2,3,4,...,00 (3.83a)
1.1 .3
An= 5,0,5,1,5, ... (3.83D)

It may be noted here that for A,;, = 0, 0y is constant and is independent of 6, and
0y = Ty = 0.
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3.8 Williams’ Eigenfunction Expansion for Mode Il and Mixed Mode

Proceeding in the same manner as in the case of Mode ], it is possible to obtain the
solution for this case. Since it is anti-symmetric problem about the x axis, Ty, is a
symmetric function of §, and ¢yand ¢y are anti-symmetric functions of 6. This will
lead to conclusion that the constants C and D involved in the stress functions

F(z) = C M1, (3.84a)
X'(z) =Dz (3.84b)

are purely imaginary. The general form of the stress function can be written by
summing up all the eigen solutions as follows.

(o]

Fz)= Y. iCuzM", (3.85a)
m=1
0 —_ . ; /\m+1
X(@)= ) iDyz (3.85b)
m=1

wherem =1,2,3,4,..., o, C, and D,, are all real, and

—_

1 3
Am = 5 0, 5 1, 5 (3.86)
Combining the solutions for the two modes, general stress function for any two

dimensional problem is obtained in the following form.

F(z) = i(Am i Cp)zM ™1, (3.87a)
m=1

X)) = i(Bm i Dy)z" 1 (3.87b)
m=1

From the definition of stress intensity factors, K; and Kj; are obtained in terms of
the arbitrary constants A,, and B,.

(o M

Ki iKy = lim 2" 27z F'(z) (3.88)
z 2

. P— P_—

Thatis, K; = = 2m A and K;; = 27t Cq. Therefore for an assessment of the SIFs

for a problem, it is necessary to know only the coefficient of the first term of F(z).

For a mixed crack in a finite plate (Fig. 3.7), stresses can be calculated using a
truncated series for the stress functions (Eq. (3.87)). Boundary collocation
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Figure 3.7 Mixed mode crack.

technique (e.g., Bowie 1973) can be employed to solve for the arbitrary constants
Am, By, Cu, and D,, using the specified stress boundary conditions. The SIFs are
obtained by just knowing the constants A; and C;. While applying the boundary
collocation technique care must be exercised to ensure that the coordinate axis x is
aligned with the crack (Fig. 3.7) and originates from the crack-tip.

Exercise

3.1 Determine the Mode II crack-tip stress and displacement field by the
eigenfunction approach.

3.2 Determine the stress field for a rectangular domain, length = 2/ and depth
= 2h, given by the Airy stress function ¢ = c xy, where c is a real constant
and origin is at the centre of the domain. Axis y is parallel to depth direction.

[Ans. Ty = ]

3.3 Determine the Airy stress function for the above domain if it is subjected to a
constant tensile stress oy = 07 at its edges parallel to the y axis.
[Ans. ¢ = %(royz]
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Crack Opening Displacement,
J Integral, and Resistance Curve

4.1 Introduction

The fracture mechanics based on stress intensity factor (SIF) helped to characterize
fracture in terms of the critical SIF, or fracture toughness. The application of linear
elastic fracture mechanics (LEFM) became very limited for metals, in which plastic
deformation preceded any crack extension. Wells (1961) experimented with
variety of metals. He observed that before the onset of extension, the crack-tip
blunts and there is a definite opening at the original crack-tip location. The extent
of the opening is dependent on the fracture resistance of the material. The opening
increases as the resistance of the material to fracture increases. He estimated the
crack opening displacement (COD) at the original crack-tip location and
presented the condition of fracture in terms of this parameter. This forms the basis
of COD criterion of fracture mechanics. For small-scale plastic deformation at the
tip, this condition is equivalent to the fracture condition in terms of Griffith
potential energy release rate G; for Mode I, that is, G; = Gjc, where Gjc is the
fracture resistance of the material.

In the presence of linear or nonlinear elastic deformation at the crack-tip, the
deformation field is conservative. Stress strain relation for a material showing
plastic deformation at the crack-tip, under monotonically increasing loading, is
very similar to that of a nonlinear elastic material. Provided there is no unloading
or crack extension, the material obeys the deformation theory of plasticity, that is,
the total strain at any stage is related to the total stress, and the relationship is
path independent. Rice (1968) showed that under such an elastic (linear or
non-linear) deformation of a component with a crack, there exists an integral,
called | integral, which is path independent when calculated joining any two
points on the opposite crack flanks. Further, this integral indicates the potential
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energy release rate associated with the crack extension. It can characterize the
onset of crack growth in the same fashion as the SIF, but it is valid even beyond
the linear elastic limit. The path independence of this parameter along with its
energy release rate character is shown in this chapter. Further its graphical
interpretation is also given.

It has been shown in the Chapter 2 that the fracture resistance of a material is
constant for a purely elastic material. It is also constant for high strength and low

toughness material under plane strain condition, that is, for specimen thickness
2

K
greater than the critical thickness B = 2.5—12C, where Kjc is the plane strain
o

fracture toughness of the material and ¢y, is its y{eld strength. For situations under
plane stress, the fracture resistance increases with crack extension. It may happen
under plane strain conditions too for some materials (Anderson 2005). This
increased resistance is due to the fact that the energy required for plastic
deformation at the crack-tip increases as the crack length increases. During such
crack extension, the plastic zone size continually increases. Through experiments
with different materials, it has been observed that the variation of fracture
resistance expressed in terms of Gg with crack extension Aa is independent of the
starting crack length. This type of curve is known as the resistance curve. This
curve is useful for finding out the point of instability, provided the driving force G
variation against crack size is known for a given load level. This is illustrated in
this chapter.

These three approaches for specifying the onset of unstable fracture in the
presence of small-scale plastic deformation are discussed in this chapter. COD
and | can be useful even if there is large-scale plastic deformation at the crack-tip.
Their experimental determination is presented in Chapter 9.

4.2 Crack Opening Displacement

According to the Westergaard stress function approach, the crack edge displacement
v is given [refer Eq. (3.42) in Chapter 3] by

h p i
- 1+v oz
= = 2 2
v EIm c z¢ a 5 y Re pﬂ 4.1)
Fory =0 (Fig. 4.1)
h i
2 P 20P
0="IIm ¢ 2 2=20"p2 x2,sincex a 4.2)
E E
Hence
40P
CoD=6=-0" 2 2 4.3)

E
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Blunted crack

profile y 7 T T T T o

Original crack Irwin plastic

profile

zone

el 4

Figure 4.1 Crack-tip blunting and crack opening displacement ¢ for centre crack under remote
Mode | loading.

If there is plastic deformation at the crack-tip and the virtual crack size is a+r;, then
the crack opening is given by

q____
4o
o= - (a+ r][,)2 x?2 (4.4)
Therefore, the opening at the actual crack-tip (x = a) location is approximated by
49—

Since Irwin’s plastic zone correction factor under plane stress condition is r, =

2

—1L_ and K; = Upﬁ for an infinite plate with a central crack,

270y
nota T 402a
E 477 Eg, (4.62)
_mota _w
or G= = ZO'Y(S oy (4.6b)

Therefore, if crack extension is associated with a critical potential energy release
rate G, fracture is also associated with a critical value of COD é.

According to Dugdale strip yield model (Dugdale 1960) , or Barenblatt cohesive
zone based calculations (Barenblatt 1962), COD J is given by

8o,.a
5= 2T e L
E 20'Y
n 2 4 #
_8na 1o S 1 e (4.7)
nE 2 20y 12 20y,
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For fracture occurring at small load levels, Ui 1,
Y
8oyal 2 2
5= oyal no °_ moca (4.80)
nE 2 20, Eoy
or G=o0y0 (4.8b)

In general, G = Aoy, A varies from g to 2.2. Experimental data on ¢ can be

collected through metallographic sectioning.

In the case of single edge crack specimen with bending dominated loading at
the crack-tip as in the case of compact tension (CT) specimen, or three point bend
specimen (TPB), the plastic deformation gives rise to the formation of a plastic
hinge at a point ahead of the crack-tip. The calculation of COD is then done
differently. This is discussed later in Chapters 8 and 9.

4.3 Special Integrals

In a gravitational field, if a body of weight W is moved along a closed contour ABA
(Fig. 4.2),

H
Wdy =0 (4.9)
¥ A

e yorx,

Figure 4.2 Contour for movement of W.

Similarly, in a conservative stress strain filed irrespective of whether the material
is elastic or non-linear elastic, there are certain integrals, which when evaluated
along a close contour, become zero. For example,
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I= W dy Ti?;;

ouy Uy

s = Wd Th—+T,— dS . 4.10
5 Y Tox 2 ox (410

When [ is evaluated along a close contour S (Fig. 4.3), it becomes zero, where W =

strain energy density =  0;; de;j;, T; = l;0;; = traction components at a point on S,

i=1land2,andj=1and 2, and

4

>
X OI X

Figure 4.3 Close contour for line integral in stress eld.
Ty = Lo+ bhop = Loy + by, (4.11a)
To = hoo + bhop = LTy + hoy, (4.11b)

l; = direction cosines of local normal n at a point to the contour S, A = area
bounded by S and x = x; and y = x,. It can be established that I is zero as
follows.

Z
I= Wdo Tas = Wyg .M 4g
X1 X1 ox1
Z |
1s14% ou;
= _JA P el
o d 0ij P ds
Z Z
_ T IW 0 ou; ,
= aTcl dA a—x] 7ij E dA, by Green’s formula,
Z Z Z
oW dojj du; 90 Ju;
= —dA —dA — — dA
Bxl d an 8x1 d U—l] ax]- axl d
Z Z
. o
= a—w dA 0ij i % dA, since %% 0 because of equilibrium
8x1 ax] 8x1 ax]

conditions,
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Z Z
114 oW o0 Jdu;
= —dA — — dA
8x1 8e,-j 8x1 ax]'
Z Z
_ aW aWaé'l] . _ aul‘
= aTcl dA dc; a1 dA, since €; = a—xj,
Finally, therefore
Z
BW oW
I= —dA —dA = 4.12
8x1 8x1 0 ( )

4.4 Rice’s Path-Independent Integral J

Consider a crack aligned with x axis. Taking I integral over a close contour
MNOPQ RM, which encloses an area A, we get

I—Z way 1.2 4s
MNOPQRM LA
Z Z
ou; ou;
= Wd T,—-dS + Wd T,— dS
MNO Yok oP Yook
+Z way T.2% 4s +Z way T2 4s (4.13)
PQR Yoo liox RM Yo liox '

Since dy is zero all along O to P and R to M, the first part of the second and fourth
integrals is zero. Further, since these segments are stress-free, and the tractions
components on these two segments are zero. Therefore, the second part of the
second and fourth integrals is also zero. Hence,

yA P -
A
/ /"’__ —‘\\‘\
i ,
’ ’
\
,’ ) ‘\ \\
i
O’l - . P \ ‘|
«——— -
o \ x ! r’
M \\ \\R /’ f
\ . QR /N
\ N . ’
\ - ’

Figure 4.4 Contour for | integral.
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z z

ou; ou;
Wd T,—dS + Wd T,—dS =0
MNO Yoo PQR Yo lox
This means that
Z Z
ou; ou;
Wd T,— dS Wd T,=—dS =0
MNO Yoox RQP Yo ox
z ou; z ou;
o Wdy T,— P ~dS = cop Wdy T,— P - dS = constant.

Hence, the integral taken on contour S, for example, MNO or RQP, joining two
points on the opposite crack flanks, or taken along the outer boundary of an edge
crack problem, is constant. This integral has been introduced by Rice (1968). It is
well known as Rice’s | integral. Finally
z ou;

= Wdy T,— dS 4.14
where S represents the contour. Rice showed that for a linear elastic material, |
is the same as G, the potential energy release rate. The proof is given in the next
section.

4.5 ] As Potential Energy Release Rate

Consider a rectangular plate with boundary loading (Fig. 4.5) and a crack along
x axis. +x axis is directed along the crack extension direction. Potential energy 7
of the system is given by

R
n= ,WdA T:u;dS (4.15)

PQRSTU

where A is the area of the plate. Therefore, the potential energy release rate under
constant boundary loading or T; is given by

z z z ZdW

dar d du
—_— = Tiu; dS WdA = —ds —dA 4.16
da  da pQrsTU it A PQRSTU da A da (4.16)

Shifting the origin to the crack-tip, and noting that x = x; aandy = y;

duj _ 0w duidx | duidy _ dw du
di~ 0a 9xoa dyoa da  Ox

AW _ aw oW dx aW&)y oW  JIW

i oa  axaa dy aa  a  ox (4.17)
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z z z

ar _ 1% Wia %5 Wia
da PQRSTU 04 A Oa PQRSTU ~ OX A 0X
Z Z Z Z
= Wi T.%% 45 W 1A 7.9% 45
A OX PQRSTU ~ OX A Oa PQRSTU = 04
Z Z Z Z
= W dy 7, 2% 4 W 1A T, 2% 4
PQRSTU PQRSTU ~ OX A Oa PQRSTU 04
Z Z
oW aui
= T dA+ I oy 8
I A 0a d PQRSTU % 3a as
Z Z
oW J Ju;
= - + _— ot
I A Oa dA A OXj % 3a 4A
Z Z
=] a—w dA+ 0 i % dA , since 9% 0 because of
A 0a A Bx]- da Xj
equilibrium conditions,
Z Z Z Z
ow 0 aui oW oW E)eij
= — -+ e — = R 2
I A Oa A AU” oa  Ox; dA=] a 0€jj 0 4A
as € = ?;:l Finally
j
N A\ \ Ja
T S
U |-
P X X
< a >
Q R

Figure 4.5

\\

Rectangular plate with mixed mode loading.
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Z
dm oW Z aw
= N dA + v dA =] (4.18)

Therefore | indicates the potential energy release rate.

4.6 Graphical Representation of J for Non-linear Elastic Case

Consider a plate with a crack a. The load deflection diagram for a nonlinear elastic
material is given by OA. The crack begins to extend at load P at constant
displacement u (Fig. 4.6(a)). The potential energy at A

Z u
T= Pdu Pu (4.19)
0
Therefore
Z
d d AP
j= L= % piu= Y “Au
da da o Aa u=constant
AP Area OAC
= —A = — 4.2
Z Aa " Aa (4.20)
P A P A
P A P A B
! N\ NS |
N ! AP NS
P I I I
¢ T C !
| 4 | |
p | ., | |
$|#¢ ! Au | |
Au | |
a+Aa E a+ Aa E E
. | - > o | - 1 >
u u U, u u Uy

(@ (b)
Figure 4.6 Crack extension under constant (a) displacement and (b) load.

When the crﬁck extension occurs at constant load P (Fig. 4.6(b)), Stralﬁl energy

U=Pu u dP. Therefore, potential energyat A, r=U P u = u dP.
This gives
dm d ~ 7P Au AP
J= = udP =Y A, AP _ZEM

o P=constant
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Area OAB
= /e 4.21
A (4.21)
As Aa ¥ 0, difference ABC between the two areas OAC and OAB reduces to zero.

J can be calculated from the area OAC in the two cases.

4.7 Resistance Curve

For an elastic material, the resistance to fracture in terms of energy required for
creation of unit surface area G remains constant. Therefore, variation of Gz with
crack extension Aa will be given by line DE as shown in Fig. 4.7. In general,

variation of crack driving force G with crack size for an internal crack in an

oa

infinite body depends on load level, G = , where E is material modulus of

elasticity and a = ap + Aa. Typical variations of G with a or Aa for a Griffith crack
is as shown in Fig. 4.7 by solid lines. The variation can be nonlinear (e.g., AHI in
Fig. 4.7) for an internal crack in a finite plate like geometry. AE correspond to the
variation of G with a for load level oy, AF corresponds to the variation of G with a
for load level o>, and so on. For load level o, the crack does not grow if its length
is ap. If the load level is increased to 03, the instability sets in at D, because

G dGgr
G= Gr, — —_—. 4.22
R 5a da ( )
A
O3
G)
G )
0,
03>0,>0; ,,,/’/’I
A Aa
ay

Figure 4.7 Resistance curve for brittle material.
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The second condition indicates that at point D, the rise of crack driving force G for
a further small crack extension is more than the rise of crack growth resistance Gg
corresponding to the same crack extension. At load level ¢y, instability can occur
at E if the starter crack size is a;. This type of plot Gg versus Aa is known as the
resistance curve. The same curve can be plotted considering crack resistance in
terms of Kg (or Ji).

For high strength and low toughness metals, this type of behaviour may be
seen under plane strain conditions (Anderson 2005). But for low and intermediate
strength metals under plane stress and plane strain conditions, the resistance
curve OBCFED (Fig. 4.8) shows gradually increasing resistance with crack
extensions. This is due to the fact that as the crack size increases, the plastic zone
size increases. This, in turn, increases the energy required per unit area of further
crack extensions. The crack driving force in terms of G or K shows a curve with
gradually increasing slope under a fixed load level ¢y, or 0, (Fig. 4.8), and so on.

A
Oy

O3

GR G] D

0-4 >O-3 >02 >Gl

v

A O Aa
)

Figure 4.8 Resistance curve for materials with small-scale plastic deformation at crack-tip.

If the initial crack size is slightly greater than a9 and corresponds to the span AB
on the curve of constant load level ¢y, the crack grows a little, but it does not lead
to instability because the loading curve ABD has a slope at B much lower than the
resistance curve OBCFED. As the load level increases from o7 to 03, again the
crack grows stably. When load level reaches level oy, the instability sets in. This
occurs at the point F because at this point Eq. (4.22) becomes satisfied.
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That is,

R Te - T
G=Gr 3, o

Noting that G = F under plane stress condition, the same instability condition

can be written in terms of K and Ky as follows.

_ oK  0Kg
K=Kg, 5 =+ (4.23)
o4 corresponds to the unstable fracture load. In general, the fracture resistance
is supposed to be independent of the specimen geometry, but it depends on the
specimen dimensions like thickness, the three-dimensional constraint at the crack-
tip, and nearness of the crack front to the free boundary.

By testing a specimen of particular thickness with a starter crack and recording
variation of fracture load with physical crack size during the stable crack growth,
the K-resistance curve can be generated. The procedure for the calculation of Kg
corresponding to a physical crack size is illustrated in one of the following

examples.

4.8 Stability of Crack Growth

The stability of crack growth, which is discussed in the previous section, refers to
a situation under load control. If the same test is done under displacement control,
the driving force curves will be different. These are identified as u1, up, and u3 in
Fig. 4.9. With an increase in crack length, for example at F, the crack driving force G
reduces. Hence, further crack extension can occur with an increase in displacement.
However, under load control, instability can be observed at load level oy.

The stability and instability of crack extension are not only influenced by the
stiffness of the specimen, but are also affected by the stiffness of machine or
loading system. This has been shown by Hutchinson(1979) and Hutchinson and
Paris (1979). It was shown in Chapter 2 that under load control (or soft loading),
the energy release rate for a unit crack extension is higher than the energy release
rate associated with displacement controlled loading (or hard loading). This
difference is due to the area ABE shown in Fig. 2.11. If the resistance curve of a
specimen shows increasing resistance with crack extension as shown in Fig. 4.9, a
hard loading system, as mentioned earlier, will not show instability at point F.
Such a loading system leads to stable crack extension.
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Figure 4.9 Resistance curves under load and displacement controls.

v

Problem 4.1

During a | test, load P was observed to vary with deflection u as follows: = bu +
¢ u, where the crack length is a. b and ¢ are two specimen geometry-dependent
constants. As the crack length increases by 5%, the constants b and c decrease by
2% and 1%, respectively. The specimen thickness is B. Determine | corresponding
to the given crack size a9 and displacement 1.

Solution
Area under P versus u diagram up to final displacement 1 corresponding to crack
size ao,

z

4o b 2
u, = . Pdu = Eu(z) +c gu(lﬁ.
Area U under the P versus u diagram up to final displacement u( corresponding
to the crack size 1.054y is given by

098 b
2

2
u% +099¢ gu(l)f’.

Uz =
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Therefore

0.02
2 15
AU u U 0.01b ug + 5 Clo

= = Ans.).
BAa _ BO0.05ap B 0.05 ag (Ans.)

Problem 4.2

In Problem 4.1, if the constants b and c reduce by 4.5% and 2%, respectively, when
the crack size increases from the original size ay by 10%, calculate the value of |
corresponding to the range 1.054¢ to 1.10ao.

Solution
Area Uz under the P versus u diagram corresponding to the crack size 1.10a¢ and
the same final displacement level u is given by

0.955 b

2
3 ug +0.98 ¢ gué‘S.

Therefore, using U, from the previous problem,

0.02
2 1.5
| AU U, U _ 00125bug+ —=cug (Ans)
BAa B 0.05a0 B 0.05a .
Problem 4.3

One tensile panel 15mm thick 55 mm wide of 4340 steel with an edge crack of
size 25 mm was tested for Kg measurement. The load obtained at the onset of
crack extension is 172 kN. Determine the IXalue of K. Given material properties
are: 0, = 1240 MPa and K;c = 117.5 MPa" m.

Solution

ap 25
= 20— 22— 4545
"= w55

The SIF correction factor obtained from Gdoutos (1993) is as follows.

Y(r) =1.12  0.23r+10.552 21.72¢3 +30.39* = 2.4526

. P _ 7200 @ _
Load intensity o = Bw . 0015 0055 208.48 MPa
: _ P— _ P
Therefore, approximate Kr = ¢ map Y (r) =208.48 7 0.025 2.4526

= 143.30 MPa pﬁ .
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For the material, the critical thickness for K;c measurement is 22.44 mm. Therefore,
plane stress condition is prevailing in the specimen. The effective crack size a with
plastic zone correction is as follows.

K2 14330 10°)°
a=ag+r,=25+_—K =25+ ( )2 1000
2roy 271(1240  10°)

=25+2.126 = 27.126 mm.

27.126
Corrected crack size ratior =

= 0.4932, and the SIF correction factor Y(r) =
112 0.237 +10.55r>  21.72r3 + 30.39r* = 2.765.

The corrected K-resistance Kg = (TpTao Y (r) = 208.48p7r 0.027126  2.765

= 168.30MPa pa.

This can be quoted as the K-resistance corresponding to a crack extension of
2.126 mm.

(16830  10°)°

> 1000
27(1240  10°)

With another step of iteration,a =ag + r, =25+

=25+2932 = 27.932 mm.

The new crack size ratio r =0.578, Y(r) = 2.901 and K = 179.10 MPapﬁ, which
corresponds to a crack growth of 2.932 mm. After the next eight iterations, the
convergence is observed. Thereby, Kg = 191.8 MPa' m and crack extension Aa =
3.80 mm is obtained.

Exercise

4.1 Draw the resistance curve K versus Aa and K versus Aa for a Mode I edge
crack in a finite plate of high strength low fracture resistance material.

4.2 Explain why J defined by Eq. (4.18) is valid for both non-linear and linear
elastic materials?

4.3 For Problem 4.3, the following fracture loads and the corresponding
instantaneous crack sizes were recorded. Draw the variation of K with
crack extension over the span of crack growth. The specimen is under plane
stress condition.
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Instantaneous physical | Load corresponding to onset
crack size (mm) of crack growth (kN)
22 160
23 165
24 168
24.5 170

[Ans. Values 0f6<c and Aa = 119.2 MPapFBn, 1.47 mm; 136.8 MPapﬁ, 1.938

mm; 157.5 MPa m, 2.567 mm; 172.1 MPa' m, 3.065 mm].
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Determination of Stress Intensity
Factors

5.1 Introduction

The stress intensity factor (SIF) plays the most pivotal role in the application of
linear elastic fracture mechanics (LEFM) principles to practice. It is useful in the
assessment of safety or reliability of a machine or structural component with a
crack. It enables the calculation of crack growth rate through a component under
fatigue loading, stress corrosion, etc. For the safety assessment, two things are
needed: the SIF corresponding to the loading on component and the fracture
toughness of its material. ~The latter is a material data obtained through
experiment. The former is obtainable in some situations from handbooks of SIFs
(Sih 1973a; Rooke and Cartwright 1976; Murakami et al. 1987; Tada, Paris and
Irwin 2000), while in others it has to be determined using either an analytical
method, or a numerical method, or an experimental technique. The analytical
techniques include complex stress function based approaches, boundary
collocation method, integral transform technique (Sneddon and Lowengrub
1969; Sneddon 1973), Green’s function method, weight function method, etc. The
numerical methods have been very widely employed for their versatility and
capability for handling complex geometry easily. The three important numerical
techniques are: finite element method (Wilson 1973; Atluri 1986), boundary
element method (Aliabadi, Rooke and Cartwright 1987, Cruse 1996;
Mukhopadhyay, Maiti and Kakodkar 2000; Rabczuk 2013), and meshless method
(Belytschko et al. 1996; Atluri and Zhu 1998). The experimental techniques
include strain gauge based method (Dally and Sanford 1987), photoelasticity
(Kobayashi 1975; Dally and Riley 1991; Ramesh 2000), and method of caustics
(Theocaris and Gdoutos 1976; Theocaris 1981; Rosakis and Zehnder 1985). A very
good account of the analytical and finite element based methods is given in
compilations by Sih (1973b) and Atluri (1986).
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In this chapter, some important analytical methods, numerical technique based
on finite element method, strain gauge based technique, and photoelasticity are
only discussed.

5.2 Analytical Methods

In the analytical methods, the SIFs are calculated using the following relations for
Mode I, II, and 1III, respectively, provided the crack-tip stress field is given in terms
of r and 6.

P

K; = rh!no1 2rtr 0y 4o (5.1)
P

K = rll!l’BI 27 Tay pep (5.2)

o= (5.3)

K[[] - hlm pTT[T Tyz
r10
In all these cases, origin is at the crack-tip. x axis (6 = 0) is aligned with the crack
plane and it points towards the direction of crack extension (Fig. 5.1).
If the Westergaard stress function Fi(z), i = I or II for a problem is known, the
SIF can be obtained from

q___
K; = llp”} 2rt(z  a) Fi(z), i=Torll (5.4)

The Westergaard stress functions are generally defined with centre of the crack
(size 2a) as the origin, and the crack-tip is located at z = a.

Figure 5.1 Plate with angled crack and crack-tip coordinates.
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If the stresses are given in terms of two Williams stress functions F(z) and x(z),
which are generally defined with the crack-tip as origin, Modes I and II SIFs are
given by

P
K; iK;= lip%z 2nz F'(z) (5.5)

If the stresses are given in terms of two analytic functions, with crack centre as the
origin and the crack-tip is located at z = z;, the SIFs are given (Bowie 1973) by

g
Ki Ky = lim2 2rn(z z1) F'(z) (5.6)

If conformal mapping, z = w({), is used to map the given problem to a convenient
geometry like a circle in the mapping plane ( (zeta) and the crack-tip is located at
¢ = (1, the SIFs for mixed mode problem in two dimensions are given by

. F'(Z) dF
K; iKp= lim2 2nfw w —= F@)= = 5.7
Problem 5.1
Determine K; and Kj; for the case when stresses along the x axis (Fig. 5.2) are given
(Maiti and Smith 1983) by s

P+iQ a4 P?

m(x b) x2 42 8

oy + iy =

where P and Q are specified in N/m.

Solution
Using Eq. (5.1)

Figure 5.2 Point loading on crack edges.
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P
K[B - rh!nOl 27ty (Ty 0=0

q___
= 1 2
“ tr)m!O (x a) oy o
q s
. VN P az b2
=l 2l a) w(x b) x2 a2
r r
pAd—— 1 1 P a+b
=_ 9 2 2) i = p—
T (a b)xl!rralx b x+a ma a b
P d b
+
Therefore, K;jp = pP— 4 (5.9a)
ma a b
r
Similarly, Kz = P 2 (Ans) (5.9b)
YI 1A pﬁ a+ b <) .
Further,
. ~ . q
K = rh!n(r} 27 Tay g = (xh;r)n!0 2rt(x  4) Tay 4=
S r
Q—— Q az b2 Q a+b
<ia T a) m(x b) x2 a2 pﬁ a b (5-102)
It can be shown that
Q "a b
a
Kiia = p=— Ans.). .10b
1A PE a+b(ns) (5.10b)

Problem 5.2
Westergaard stress function for uniform pressure loading on a crack of size 24 in an

infinite plate is F(z) = p p% 1 , where p is pressure. Determine the SIF.
2 a

Solution
From Eq. (5.4)

A A z P— a4
Ki=lim 2n(z a)F(z)=lm 2n(z a)p p—— 1 =p 2nPp=
z8a z¥a 72 g2 2a

= ppﬁ (Ans.).
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Problem 5.3
Given the stress functions for the case shown (Fig. 5.3) in x vy cordinates (Maiti
and Smith 1983):

Figure 5.3 Crack edge loading.

S
P(sina icosa) a® b2

h i
where 0, + 0y =2 F(z) + F(z)

h i
oy, 2Ty, =2 (Z 2)F(z) FE)+9r@) .

Determine the SIFs.

Solution

Along the crack line, thatis, y =0o0r 0 =0, 0y + i Ty = Fl(z) + ﬁo(z) ;Z =z,
S S

Psina a2 D? and T, = Pcosa  a%> b?

n(x b) x2 a%’ Y on(x b)) 2 A2

9q9—- Psina a+b
Kip= “ har)n!O 2r(x  a) oy 4oy = ﬂgﬁ " (Ans.). (5.11)
r—
9qQ— Pcosa a+b
Similarly, K= . hur)n' . 2 (x  a) Ty gy =

Therefore, o, =

— pa— (Ans.). (5.12)

Problem 5.4

Airy stress function for the infinite plate (Fig. 5.4) in the mapping plane {, where
. . a 1 .
the mapping function, z = w ({) = 5 C+ 7 is given by
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1 2100
F() = oa 42
Determine the SIFs.
Figure 5.4 Loading on edges of in nite plate.
Solution
Since the crack-tip is located at z = a, through the mapping function the
corresponding location in the (-plane is {; = 1. Further, &"(Z1) = 0 at the
crack-tip.
Using Eq. (6.7)
. F{(©)
K;  iKjp=1lim2 2w w
P = lm2 2o w@)] e
q (g1 +1)
=1lim2 2 + “el T = +h

Expanding w(Z; + h), w{(Z; + h), and F{(Z; + k) about {; by Taylor’s series, it can
be seen that
A o F@©

lim @@ w(@) g

“r #
o h2 FY(gy) + hEY(Zy) + EF() + ...
= ;111?(1) ha'(g1) + 7aJOU(gl) +.... () + (D) + %ZwOOO(Q) R

_ F(@) : Dery —
= pszﬁl noting that w” (1) =0
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_ B
K; K= 2p7‘[ p(%é:l) (513)
w" (C1)
Substituting the values
) 2 2# P—
- 1 1
K iKy=2Pr 71500 =7 ™11 cos2a) isin2a]
4 a g 3 _ 2
=01
Therefore
_ P—= .
Ky =0 ma sin” 2aq, (5.14a)
K= Upﬁ cos? 2a (Ans.). (5.14b)

5.2.1 Boundary Collocation Method

This method has been mentioned in Chapter 3 earlier. In many cases, the stresses
can be expressed in terms of two analytic functions, which can be in the form of
finite series. Particularly when Williams’ eigenfunction expansions are used, each
term satisfies the stress-free conditions at the crack edges (Fig. 5.1). To get the
coefficients of the finite series, it is just necessary to fit or collocate the stress
boundary conditions at a few selected number of stations over the remaining part
of the boundary. This is why the method is known as the collocation method. The
method does not guarantee any convergence with an increase in number of terms
of the finite series. Nevertheless, it has been exploited to get some solutions
(Hartranft and Sih 1973).

5.2.2 Green’s Function Approach

In this method, known solutions for concentrated load on the crack edges are
employed to get the solution for distributed loading on the crack edges.

For a crack loaded as shown in Fig. 5.5, the SIF can be easily determined using
the solution for the standard case shown in Fig. 5.2 as the Green function. The
Green functions [see Egs. (5.9) and (5.10)] for the two crack-tips corresponding to
Mode I (load P) and Mode II (Q) are as follows.

r r
K, = P a b Kin = P a+b
A=V a+p’ 15— Iﬁ a b
- b d b
a a -+
K11A=19Q: , KHB:pQ:
ma a+b ma a b
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Figure 5.5 Uniform pressure loading on crack edges.

For the case (Fig. 5.5), which is symmetric, the SIFs at the two tips are the same and
is given by
r—
Za 1 a x
p:
a ma a+x

pdx = ppﬁ

The above integral can be easily integrated by making a substitution x = asin? 6.
In case the loading is specified as outer boundary loading rather than explicit

crack edge loading, it is possible to obtain first the loading on the crack-line in the

corresponding crack-free configuration. The required SIF is then given by

.
Kiq = fol e x d 5.15
w= o P SO E G159
Z 1 |
a a x
Kia = pP— g(x) dx (5.16)

a ma a+x

where f(x) is the crack-line normal stress distribution, and g(x) is the crack-line
shear stress distribution.

5.2.3 Method of Superposition

If we have to find the SIF for the case (Fig. 5.6(b)), we can consider a plate
(Fig. 5.6(a)) without any crack. In this case, the SIF at A or B is zero. The two cases
(Figs. 5.6(b) and (c)) together are equivalent to the case (Fig. 5.6(a)). This means,
cases (Figs. 5.6(b) and (c)) are complementary. Therefore,

o)

KD =0=K?+ KO = kO + pP7s thatis, kK = pP7a

In case thIg loading on crack edges in the case (Fig. 5.6(b)) is in the opening mode,
o - F—
K;”=p ma.
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Figure 5.6 (a) Crack-free plate. (b) and (c) Two cases of complementary crack loadings.

5.2.4 Weight Function Method

This method makes use of the existence of a common crack edge profile in the case
of a family of crack problems (Wu and Carlsson 1991). The family may consist of
symmetrically located internal crack, or edge crack. A function of this type can be
used to calculate the SIF for an unknown problem by knowing the stresses on the
crack-line in the corresponding crack-free geometry. They were introduced by
Bueckner and were later shown to be independent of loading on the outer
boundary by Rice (1972). They can be derived as follows. The discussion is limited
to Mode I loading only.

) A

to

i

|
j P

XV

o
Figure 5.7 Edge crack under opening load.

For a plate of unit thickness, as the edge crack extends from size 0 to a (Fig. 5.7),
the work done to extend the crack is given by
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1%
W= 5 P (x,0) u dx (5.17)
0
where p(x,0) is crack-line normal stress distribution in the corresponding crack-
free body and 1 is the total crack opening at x from the origin, that is, # = 2v. The
energy release rate G as the crack opens up is given by

z
dWw _ 17 ¢ dii
C=Za =3, PO dx
Under external load ¢ on the boundary parallel to x axis, p(x,0) = o in the
corresponding crack-free body. Noting that G = K2 /E,
z, _
E di
K = — == 1
1= PO S dr 518)

For a class of problems (Rice 1972), with the same type of symmetry, the quantity
within the square brackets in Eq. (5.18) is a constant. This is known as weight
function. Hence, the SIF K for the case of a different geometry but with the same
type of symmetry under Mode I loading can be determined, provided the crack-
line opening stress p (x,0) in the corresponding crack-free geometry is known.
That is,

z

Z
a E i a

di dx=  p (x,0) m(x,a)dx
0

K, = 0) 4
1= P60 S

where m(x, a) is the weight function. An illustrative example is given
subsequently (Fig. 5.8). The opening mode displacement for the case (Fig. 5.8(b))

is given by v = T—;T a>  x2. Therefore,
40P
7= 2 2
= a4 x

E di 2a 1 @ 2
H = — — = p—= i = for th
ence, m (x, a) 2K, da %pﬁ, using K; o 7a for the case
(Fig. 5.8(b)).
Since the two cases shown in Fig. 5.8 have similar symmetry, the SIF for the case
(Fig. 5.8(a)) is given by
z z

Ki= p0)m(x,a)dx= p pza:pl— dx = ppﬁ (Ans.).
0 0 mwa g2 x2
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Figure 5.8 Internal crack with two di erent loadings but similar symmetry. (a) Uniform pressure
on crack edges. (b) Uniform tension on plate edges.

Problem 5.5

The weight function for an edge crack in finite plate of width w (Fig. 5.9) is given
by (Parker 1981)

n #
2 a x a x 2
27t(a  x) a

my = A1+ Bli’z + C11’6, my = Ap+ 321’2 + C27’6,

A

T S

v

A
4

Q R

Figure 5.9 Edge crack geometry.
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forO r 1, wherer = E.
w

A1 =0.6147 B; =17.1884 (C; = 8.7822

Ap; =0.2502 B, =3.2899 (C, = 70.0444

(a) Calculate K; for remote end loading ¢ and r = 0.45.
(b) Calculate K; for remote bending load M and » = 0.5.

Assume thickness as unity.

Solution
(a) For r =0.45, m; = 4.1682, and m, = 1.4980.
Za 2 a x a o
K[ == 0 P————— 1+ mq + my dx, since p(x, O) = 0.
0 2rt(a x)
Substituting x = z the integral can be easily integrated to give

K; = 242060 7ta (Ans.).

(b) For this case, p(x, 0) = lzuiw (a  x), assuming the beam thickness as unity.

Forr = 0.5, m; = 5.0490, and m, = 2.1671.

LA #
. Za 12M 2 a x a x ?
Y 2nt(a x)

— M
Upon integration, K; = 1.4879 O'maXpT[Ll, where may = 6w—2(Ans.).

5.3 Numerical Technique: Finite Element Method

The numerical technique like the finite element method (FEM) has been very
widely applied for the determination of the SIFs. It has been so because of its
applicability to a wide range of problems, irrespective of complexity of loading
and geometry of components.

For finite element analysis of a given domain, it is discretized into a convenient
number of elements of finite dimensions (Zienkiewicz and Taylor 2000; Cook et al.
2002). The elements are interconnected at their nodal points. Field variables (e.g.,
displacements in the case of displacement finite element formulation) are
associated with each of these nodes. A distribution, which may be linear,
quadratic, cubic, and so on, of the variables is assumed within each of the
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elements and a functional such as potential energy functional is then derived in
terms of these nodal variables. When the restrictions are imposed to make the
derivative of the functional zero with respect to each of the variables, a set of
simultaneous equations is obtained. These are nothing but the global equilibrium
equations. The solution of this set gives the displacements at the nodal points
corresponding to the specified boundary and loading conditions.

Through gradual refinements of the discretization, convergence to the exact
solution can be guaranteed, provided the assumed displacement field meets the
convergence criteria. In particular, the assumed displacement field should satisfy
the rigid body mode, the constant strain condition, and the compatibility at the
inter-element boundary.

The application of FEM to different areas involve routine steps: idealization of
the geometry, discretization, element stiffness calculation and assembly, insertion
of boundary conditions, solution of simultaneous equations, and calculation of
output data, which may include element stresses, strains, total strain energy, etc.

A large number of element choices, for example, triangular, quadrilateral,
triangle with curved boundaries, quadrilateral with curved boundaries, etc., are
available for the discretization. The choices of elements to a large extent depend
on the particular application. Generally, the geometric configurations, local high
stress gradient, if any, in the domain, accuracy required, and available
computational facilities are some of the issues, which influence the selection. In
the early stages of application of FEM to fracture mechanics, the conventional
elements like the constant strain triangles, linear strain triangles, 4-noded
quadrilaterals, 8-noded quadrilaterals, and their analogues in the three
dimensions, were widely utilized to discretize the body, and special techniques
were adopted to obtain the SIFs. Later, it was realized that for any problem
involving stress singularity, the convergence rate is dominated by the singular
nature of the solution (Tong and Pian 1973). Therefore, the convergence can be
enhanced by employing elements that can approximate the singular field
properly. Now there are a large number of special or singularity elements
available, which can be constructed at the crack-tip to facilitate a faster
convergence rate (Tracey 1971; Byskov 1970; Henshell and Shaw 1975; Barsoum
1976; Tracey and Cook 1977; Stern 1979; Dutta, Maiti and Kakodkar 1990; Maiti,
1992 a, b and c. etc.). These help to eliminate the need for a very fine crack-tip
discretization, and some formulations even permit direct and accurate
determination of SIFs (Rao, Raju and Krishna Murthy 1971; Tong and Pian 1973;
Atluri, Kobayashi and Nakagaki 1975; Atluri 1986).

Consider a problem with eight elements and nine nodes (Fig. 5.10). The
external load is acting at 8 and the plate does not move in the y direction at the
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Figure 5.10 (a) Typical FE discretization and (b) u-displacement surface.

nodes 1 and 3. Under the action of the load, all the nodes move in both x and y
directions due to deformations except the ones under constraint. If we plot the
displacement u in the vertical direction, we get a surface 13AB as shown
(Fig. 5.10(b)). This is u-surface. Similarly, we can get v-surface by plotting v
displacements. The portion of the surface above a typical element, say 4, is a
‘triangular” surface. It can be approximated by a plane. As the size of the element
reduces, the accuracy of approximation as a plane increases. Similarly, the
displacement surface v above element 4 can also be approximated by a plane.
These two surfaces can be written as follows.

U=+ axx+ azy, (5.19a)
U=oas+ asx+ agy (5.19b)

where a1 to ag are known as generalized coordinates. These coordinates can be
eliminated by noting that these surfaces pass through the nodal points. That is,

up = o+ aox;+ agy; + a0+ a5 0+ a6 0
Ui =10+ a0+ a3 0+ ay + asx; + agy;
u]':DC1+ D(zx]'+ (X3y]'+ 00+ a50+ a6 0
0 =0+ a0+ a3 0+ ay + asx; + agy;
U = a1+ apxp+ azyp+ a0+ a5 0+ a6 0

Uy =0+ ap 0+ a3 0+ ag+ asx; + XYk



116  Fracture mechanics

wherei =3, j = 6,and k = 5 for element n = 4. Alternatively,
8 . o 2 38 9

Ui 1 x; y» 0 0 O oq
%’01’ % 0 0 0 1 Xi Yi %“2%

Uuj B = 1 XjYj 00 O a3 _
%“k% 1 x y» 0 0 O §a5§
o 00 0 1 x w “a”

Therefore, fag, = [A], 1fugn
Substituting fag, in Eq. (5.19)

8 9 2 3
<u= N; 0 N] 0 N, O

_ =4 S = [N]fug, (5.21)
“v” 0 N O N]' 0 N

i
U

N, Nj, and Nj are the shape functions or interpolation functions and are given as
follows.

A = area of triangle n with vertices i, j, and k or 3, 6, and 5.
a = Xye  Xyj b=y ¥ G=x X
aj = xxYi XYk  bi=ye Yi  G=X 0 X
= Xy Xyi o bk=vyiooy, =X X (5.23)

Thus, it is possible to express an element displacement field in terms of
displacements of its nodes. The strain field within the element # is given by

Ju 1 v 1
&y = e = A [biu; + b]M] + bruy], &y = @ = A [c;v; + cjoj + Ckox]
Ju  dv 1
T =g, + o= = sxleiti + bivi + cjuj+ bjvj + cue+ b,
8 9 2 3
<& = bi 0 bj 0 b O

-1l 0 ¢ 0 ¢ 0 Sfug,, feg, = [B],fug, (5.24 aand b)
Ty Ci bl' C]' b] Ck bk
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Since b;, bj, by, c;, Cj,s and c¢j are constants for an element, the strains within the
element remain constant. That is why this element is known as constant stain
triangular (CST) element.

The stresses and strains in two dimensions are related by the following
relationship for an isotropic elastic material.

8 9 2, g0 38 9

<0Oy= E < €&y =

0y = /> QV 1 0 g - &y for plane stress condition,

A 1 2 1 v™ -

Try 00 5 Yy
2
1 v v 0 3 g £ 9
= E v 1 wv - . .,
EDI D) 9 ) 1 9 g - ;y - for plane strain condition. (5.25)
2 Y

In short, fog, = [D], feg, (5.26)

where [D], is material property matrix, and fog, is stress matrix. Substituting the
value of strain matrix in terms of element nodal displacementsfug,,

fog, = [D],[B], fug, (5.27)

Since elements of the [D],, matrix are all constants, the stresses in the element are all
constants. In general, therefore, for an element of finite dimensions, the field given
by the above relations indicates a constant stress strain field. The strain energy
stored U, in an element is given by

z

1
u o
n @2 €g

Tfog, hA,fug,

n n

Tfog, hdA = %fsg

fug’[B]![D],[B], hA.fug, = =Ffug![K] Fug, (5.28)

1
2

N =

where /1 is plate thickness, A, is area of element n and [k],, is its stiffness matrix. Its
dimension is 6 6. The element displacement field is given by three us and vs of
the three corner nodes.

The total strain energy U in the plate is obtained summing up U, over all the
eight elements in the present case. U can be written as follows.

Ne 1
u= ;un = EfugT[K] fug (5.29)
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Note that [K] is a matrix of size 18 18 and fug is a column matrix of size 18, and
1, is the total number of elements. In the present case n, = 8. The work done by
external forces

W = fug’ fPg, (5.30)

where fug is global displacement vector and fPg is global nodal load vector. The
potential energy 7t of the discretized system

t=U W= %fugT [K]fug fug’ fPg (5.31)

The deformed system is in equilibrium under the action of the external forces.
Hence, the potential energy of the system is minimum. By minimizing the
potential energy with respect to the displacements u;, i =1, 2, 3...... 18, a set of
simultaneous equations is obtained.

[K]fug = fPg (5.32)

These are the global nodal equilibrium equations. This set of equations can be
solved for after introduction of the displacement boundary conditions, u; = vy =
uz = v3 = 0, and, thereby, the displacement field of the whole plate is obtained.

If displacement variation within the element is considered to be quadratic or
cubic, the number of nodes per element will have to be increased to six or nine,
respectively. Consequently, the strain field within the element will be linear and
quadratic, respectively. The element stiffness matrix for the element will have to be
obtained through Gauss quadrature or numerical integration.

After obtaining the global displacement vector, the element stresses or Gauss
point stresses can be calculated through Eq. (5.27). Based on these displacements
and stresses, the SIFs can be calculated through the displacement method, stress
method, | integral technique, stiffness derivative procedure, crack closure integral
(CCI) technique, and so on. These are discussed subsequently.

5.3.1 Displacement and Stress-Based Methods for Extraction of SIFs

Displacement method For Mode I loading, the x and y displacements are given
by

u=K 2; (o), (5.33a)

v=K —9(6) (5.33b)
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The exact forms of i (§) and ¢ (0) are given in Chapter 3 [Egs. (3.39) and (3.43)].
Generally, values of v are more significant than # around the crack-tip in this mode.
By selecting a corner node closer to the crack-tip, hence, small » on the crack face,
or 0§ = m, the SIF K] can be obtained using the above relation for v. It is better to
avoid the first corner node, since the FE solution is not that accurate around the
crack-tip because of the high stress and strain gradients. It is possible to improve
the accuracy of the results by using the appropriate singularity element like the
quarter point singularity element (Barsoum 1976; Henshell and Shaw 1975) around
the crack-tip.

By selecting a number of nodes on the crack face, a set of K; can be obtained.
Thereby, a variation of K; with r can be plotted (Fig. 5.11). By extrapolating this
variation back to r = 0, K; can be determined (Wilson 1973). This appears to be the
most accurate value for the Mode I SIF. This graphical procedure helps to avoid the
inaccuracy in the SIF due to error in the FE solution close to the crack-tip and the
inadequacy of the first term solution of the eigen function expansion away from
the crack-tip.

The same procedure can be followed for Mode II problem. In this case, it is more
appropriate to use u displacement as the basis for the extraction of the SIF. The
extrapolation technique can be employed to enhance the accuracy of the results
further.

Stress method Stresses around the crack-tip are given by

oij = pﬁ 7ij (0) (5.34)

K, N

S~V

Figure 5.11 Extrapolation method.
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The exact form of the functions &;; (¢) is given in Chapter 2. In Mode I problems,
0y stresses are more dominant than oy.

At the end of FE computations, stresses can be determined at the element Gauss
point locations or the nodal locations. More often, the nodal stresses are obtained
through extrapolation of the Gauss point data. By selecting a Gauss point on a
radial line 6 close to, but less than 90 , and comparing o, stress, the SIF can be
extracted through the above relation. The accuracy can be improved further by
resorting to the extrapolation technique. Since the accuracy of stresses is less than
displacement in the displacement FE formulation, the results obtained by the stress
method are less accurate than the results obtained by the displacement comparison.

In a Mode II problem, T, stresses are more significant around the crack line. By
selecting 0 close to 0 and a small r, the SIF can be extracted. Again, the
extrapolation method can be employed to improve accuracy of the results.

5.3.2 Energy-based Methods for Determination of SIFs

Consider a plate with an edge crack a under Mode I loading (Fig. 5.12). Any crack
growth will therefore occur in-plane or in a self-similar manner. Under the action
of loading, it is possible to calculate the strain energy U, stored in the plate. It is
possible to calculate the strain energy U, corresponding to the same external load
and an extended crack of size a + Aa. The strain energy release rate G is given by

G= Algirr!10 % % for small Aa. (5.35)
where thickness of the plate is taken as unity. Thus, it is possible to calculate the
strain energy release rate by two finite element runs. By selecting Aa about 0.1% a
(Maiti 1990) and doing computations in extended precision, it is possible to obtain
good accuracy. The FE approximation errors in the computation of U; and U, are
of the same order of magnitude because of small Aa. This helps to obtain G, in turn,
the SIF, with very good accuracy through this method, which involves (U,  Uj).
In a sense, this accuracy is obtained at the cost of two separate FE runs.

The requirements of two separate FE runs can be avoided by resorting to the
variant of the energy method, for example, | integral method, stiffness derivative

procedure, and CCI technique.

J integral method | integral given below can be computed by selecting a contour
joining the two points lying on the opposite crack flanks.

z

J=  Wdy Ti%

. o S (5.36)



Determination of stress intensity factors 121

I
'
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SN

a a+ Aa

Figure 5.12 Shifting of crack-tip to accommodate small crack extension.

v

Since | gives the potential energy release rate associated with an in-plane crack
extension, it is possible to evaluate the SIF through its computation. It is sometimes
convenient to consider the path passing through the element Gauss points. The
integration can be carried out through numerical integration by splitting the whole
contour S into a number of small segments. The splitting can be done by noting
the locations of Gauss points, marked by * in Fig. 5.13, and assuming the values of
stresses 07j, strains ¢;;, strain energy density W, and tractions T; at a Gauss point 1 to
be valid over the sector mn. Similarly, the values at Gauss point 2 can be assumed
to be valid over the span nr. For the shown contour passing through elements 9 to
16, there are 16 segments. Therefore

J =126 W dy Ti%ds =§ WAy g Tik i + Ty % AS;, (5.37)
= 9x P ox ox
where, assuming that all elements around the crack-tip are 8-noded isoparametric
elements,
ou v

1
W= E(‘Txex +oxex + Ty Yay), Ti = Tla + T2@,

Ty = loxy + mTyy, To = Ty, + moy
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9x = U 9x 2 o 8 9’
v oN oN. oN,
a = ’01871 + ’UZTXZ + .. + ’0887)(8 (5.38)

Ay, =Yy, ym for a typical Gauss pointk, dS; = r df
I, m = direction cosines of the outer normal to the contour S at the Gauss point k

r = radius of the contour S.

A
P
Gauss point *
] J
15 |22 contour
_--Tk-eD
* N m
&/* \ikz/\g\’ *\1
% 8 ~ |/ A5 e
9*\ 1 X '_\ ¥4 ;<1_2
Z \* 7 ) /// i *S
Tk X
107
< “ LAY
vP

Figure 5.13 Crack-tip shift to accommodate small Aa and contour for | integral.

By using the appropriate relationship between | and K, the SIF can be determined.
For pure Mode I and Mode II problems, only one-half of the body can be analysed
and | can be obtained by integration over elements, for example, 9 to 12 or 13 to 16,
and by multiplying by a factor 2.

For a mixed mode problem, | gives the total potential energy release rate. There
are schemes whereby the Mode I and Mode II parts of the total energy release rate
can be separated (Kitagawa, Okamura and Ishikawa 1976).

Domain integral based evaluation of ] Rather than evaluating | through line
integral, | can be computed through domain integration (Shih, Moran and
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Nakamura 1986; Moran and Shih 1987; Nikishkov and Atluri 1987; Raju and
Shivakumar 1990). This conversion is possible using the Green’s theorem/
formula in two dimensions and the divergence theorem of Gauss in three
dimensions (Shih, Moran and Nakamura 1986, Moran and Shih 1987). The
domain integral based evaluation of | (Raju and Shivakumar 1990) through
two-dimensional finite element analysis is discussed subsequently.

When ] is calculated along the contour Sy or S; (Fig. 5.14) by Eq. (5.36), it gives
energy flow through the contour in the x direction. Similarly, the energy flow
through the contour in the y direction too can be calculated through the following
relation. 7

ou;
= Wd Ti—l ds 5.39
]y S X ay ( )

The two energy expression can be given in the form of a single relation.

z ou; z ou; z
Jx, = s Wy Tia—Xk s = s Wy aijnja—Xk as = s [Q]4dS, say. (5.40)
z z
J,=1 [QldS 0 [Qls
S1 So
z z z
=1 [Qlds +1 [QldS +1 [Q]dS
ABC co OA
z Z z
0 [QldS 0O [QldS 0 [Q]4dS (5.41)
FED OF DO

»
»

Jory

Figure 5.14 Contour for domain integration.
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Introducing a function H, which has value 1 along the contour ABC or S; and 0
along the contour FED or Sy, the above relation can be written in the following

form.
Z Z Z Z

Jx, = [QIH dS + [Qlds + [Q]4S [Q] H dS
ABC co OA FED

k
z z z z

= [Q]H dS [QIH dS + [Q1dS + [Q14dS
CBA AF co OA

z z z z
[Q] H dS [QIH dS + [Q]H dS + [Q]H dS
FED DC AF DC

z z z

= [QIH dS + [Q]dS + [Q]dS
FEDCBAF co OA

Z Z
+ [QIHdS+ [Q]HdS (5.42)
AF DC

YA
= = o O
Jx, = FEDCBAF [QIHAS + (Jyyine r Q= Wnp ojn o, (5.43)

Considering only the first part,

Z Z
[Q]H dS = WHne oyn My ds
FEDCBAF FEDCBAF oxy
Z
0 0 ou;
= — H — Ho; — A
A E)xk (W ) ax]' Yij axk d
2 3H oH  ou Z o aw 3 ou
Z Z
0H O0H ou; oW 0 Ju;
2 9H 8H  ou 2 oW deij
= We— -— 0j-— dA H-— H o;— dA (544
A Oxg  0xj 7ij 0xy A Ox T 9x; (544)

o
since, in the absence of body forces the equilibrium equation is given by a—xl] =0,
i

1 ou; | Juj . . .
+ —— . Finally, the first part of J,, is as follows.

dej= - —
an 81] 2 aX] axi
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z z

oH oH aui oW 881-]-

X = — — = A H— H o7 =—* A
]k Part] A axk ax]- Yij axk d A axk 7ij axk d
(5.45)
In matrix form
8 9 ZgwaHg 2 duy oup 32 3281{93
</n= z ox, ox; 0x1 011 012 e =
.. = § 24 5__ édA
T part 1 4 ?WaH? % % 021 022 ?E)H?
x> 0xp 0X» dxo

2g ng zi)eiméezz 38 93

z g2Hy =2 o ox ox 72N =
H
A

= W= >0'12 >z dA (546)
= = de1g dy1p dexp T - >
axz

022

axz BX2 aXQ

1 . . . .
where W = 5 [o11€11 + éfnszz + 012712] for linear elastic materials. For non-linear

elastic material W =  ¢j; de;j. Both the area/domain integrals and the line
integrals involved in |y, and ]y, can be evaluated by numerical integrations. In the
evaluation of the domain integrals, the order in integration can be kept the same
as used in the evaluation of the element stiffness matrices.

The first part of expression for integral J,, (Eq. (5.42)) consists of the domain
integral and the second part includes the line integrals. Under pure Mode I and
Mode II loading and load-free crack edges, lines integrals involved in J,, and Jy,
are 0. In the case of a general loading, this is not so. For a general mixed mode
loading, Mode I and II energy release rates are given by

o M
Jo =i+t T,= 2 Ty (5.47)

1ha q Iy 1ha q i
]]:1 ]xl ]x2+ ]x1+]x2 7 ]][:1 ]xl ]xz ]x1+]x2 (5‘48)

For evaluation of the pure Mode I and Mode II parts of | integral, it is better to
decompose displacements and stresses into symmetric and anti-symmetric parts
and compute only the domain integrals. The decomposition helps to make the line
integrals 0.

Considering two points P and P’ that are close to the crack-tip and are
symmetrically placed about the crack line (Fig. 5.15), the following relations can
be written.

u u u Uqpo u u
P _ Wis  Uias o Ms 1AS (5.49)

Uop Uos ugas ' upp Uos UzAs
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Figure 5.15 Symmetric and anti-symmetric displacements and stresses about crack plane.

These relations give the symmetric and anti-symmetric displacements of P and P’

as given below.

231
Uy S

up + upo
usp Uspt

75} 1 ulp Uuipo

2 Urp + urpe

— 1 —
2 175 AS

Similarly, the stresses too can be expressed as follows.

8 9 8 9 8 O 8 9
<011= 1 <o + opp= <= 1 <0up Oup'=
_0xn_ = 5 _Oxpptoppr_, _0n_ = 5 _O0x»p  Oppt _

o127 g Op O12pY T 0127 4 o12p + 0120 7

(5.50)

(5.51)

The symmetric and anti-symmetric displacements and stresses can be used in
Eq. (5.45) or (5.46) to evaluate the four integrals | sxy7 Jsxar JTasyr and J g, It gives
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rise to J5,, = 0and J45,, = 0 because of the symmetric and anti-symmetric nature
of the stress-displacement fields, respectively. Finally,

Jr = Jsxyr Tt = Jasy, (5.52)

For the evaluation of the domain integral, a typical zone consisting of elements 1
to 8 or 9 to 16 (Fig. 5.16) can be considered. The function H can be defined to be
unity at the inner boundary S; of the zone and 0 at the outer boundary Sy and can
be considered to have a linear variation along ¢ direction for a constant 7. While
dealing with integration over each element, the Gauss quadrature can be utilized.
The derivatives of H are given by

Bon2  2ax om 3 18om3

= =

ox1 gae:ag aE=
= , X1 = dx, =y. 5.53
oz~ Ao S souz T IMIRTY 5
oxy oy on o
P
J
15 14
z
16 N 6 A 13
— S[ SO
1 4 x * Gauss points
9 2 13 12 A
10 11 4o 7 i o3
8 >
5 & |¢
G O
) P J\ 5 1 5 2

Figure 5.16 Typical arrangement of crack-tip elements for the evaluation of domain integral and
shape of typical element in mapping plane 7.

Assuming that all elements in the discretization are 8-noded sub-parametric
elements, a typical element, for example, 5, involves eight shape functions for the
displacement interpolations and four shape functions associated only with the
four corner nodes (1 to 4) for the geometric interpolations. These geometric shape
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1

1
functions are N¥ = 1 (1+¢¢) (1 + nn;), where ¢ and 5 are the two natural
coordinates, and (§;, #;) are the coordinates of the corner nodes. Therefore,

ox

ax L oN¢
x = ZNgxl, y = ZNgyl, % L

ON?
Z ag l/ 7_1221 817

i=

Xiy

aNg aNg

(5.54)

where (x;, yi) are the coordinates of the associated corner nodes. In order to

compute the derivatives, k =1 and 2, it is necessary to express the variation

oW
Txk’
of strain energy density W in an appropriate form. For each subparametric
element a 4-point Gauss quadrature is good for the evaluation of the element
stiffness matrix and all domain integrations. The strain energy density can be
evaluated at the four Gauss points. The variation of W within the element can be
conveniently considered to be given by the interpolation of the values at the four

Gauss points as follows.

4
W= Y NW, (5.55)
i=1
where W; are the values of strain energy density at the four Gauss points
(Fig. 5.16). The same variation, when extrapolated, can also be assumed to be
valid in the remaining regions of the element beyond the Gauss point locations.
Noting that the element Gauss points are off the natural coordinate axes by F%,
the interpolation functions N; are given by

301 1 3 1 1
N =2 pe P- 1, Na=2 po+i P g,
153 Py ¢ 3 1o N=g PyFe 3
301 1
Ns=2 po+ 4
5= FF?) ¢ &3 Ui
31 1
N4—1 % 4 pg""? (5.56)

The strain energy derivatives are given as follows.

gawz 2 ox ay 3 1gaw9

ox = _g o ag X aw _ & !
oWz 4 ox dy ° ZIWS aC Z ag Wiar =L
v, opop  an

(5.57)
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The derivatives of x and y with respect to the natural coordinates ¢ and 7 are given
by Eq. (5.54). Finally,

8 9 O 28 9 8 93 1
</u= 8 4 <OQn= <Qn=
.. = Yey 4+ Sdet[JallwerlA (5.58)
where
8 9 28 aHD Zau au 3. 4 Son 23
20,2 Ewilz fuln OH =
u= _ g dx1 9x1 011 012 ox; é (559)
- Q = aH 3 8u1 auz 021 022 B oH B '
2 — —=
aX2 8x2 aX2 BXQ
8 o 2; Haw 3 8811 8712 8827_
<Q21 8x1 8x1 ax1 Ull_
= H i (5.60)
B sz ?Haﬂg @alyu@ -
axz 8x2 BXQ BXQ
2 oy ay 3
. . . o¢ a¢
det[ J.;] = Determinant of Jacobian matrix = det 9% 3 (5.61)
X oy
an A

and wgp is the weightage to be associated with Gauss pointi. Fora2 2 integration
scheme, the weightage is unity at all the four integration points.

Stiffness derivative procedure This method was proposed by Parks (1974).
Considering a crack of size a and loaded as shown in Fig. 5.13, the potential
energy of the system is given by

1
= EuTKu u'P (5.62)

where u stands for global displacement vector, K is the global stiffness matrix, and
P is the global load vector. Since

dr

G=%

assuming a situation with constant load P and noting that Ku = P,
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du” 1 duT dK du

=—P = —FKu+u'—u+ u'K—

G da 2 da we da e da

_ duT 1 +dK 1 +dK

p= E[Ku P] Eu %u— Euﬂ
2u A u (5.63)

where K; and K; are the global stiffness matrices corresponding to crack lengths a
and a + Aa, respectively. The crack length a + Aa can be very easily accommodated
by shifting the crack-tip as shown (Fig. 5.13). Aa is recommended as 0.1% a of the
initial crack size 2 (Maiti 1990). It is also recommended that the computation of the
product be done in double precision.

It has been shown (Maiti 1990) that it is not necessary to calculate the global
stiffness matrices corresponding to the two crack sizes. It is possible to calculate G
from the total strain energies of the eight elements 1 to 8 surrounding the crack-tip.
That is,

8 8
Z (ui)a Z (ui)a+A11
G= 1 A; , (5.64)

WU, = 5,0k, ),

(ui)a+Au = %(uiT)u(ki)a+Au(ui)u

where u; is displacement matrix and k; is the stiffness matrix of the element i. Note
that k; has to be evaluated separately for the two crack sizes. Since the displacement
is not going to change appreciably due to the extended crack length in the presence
of the same external load, the displacements corresponding to the extended crack
length a + Aa can be approximated by those for the original crack size a.

Crack closure integral technique Consider a simple discretization with 16
elements and crack size a (Fig. 5.17). The external load is P. The crack extends
in-plane, or ion a self-similar manner, to size a + Aa under constant load. The crack
opening is v, at the original crack-tip position 2. If the crack closure force just
before the onset of crack extension is P,,, according to Irwin, the crack closure
work is given by

1

W=z
2

Py vy, (5.65)
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Figure 5.17 Typical crack-tip discretization.

P,y can be obtained from the nodal forces of the elements 3 and 4 or 1 and 2. For
infinitesimally small crack extension Aa, vozy can be approximated by vy, (Fig. 5.17).
Therefore

1
W= 1Py, (5.66)

Thereby, the crack closure work can be calculated through a single finite element
run. The potential energy release rate is given by

— W =P2y2)1y
B Aa 2B Aa

G (5.67)
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With a fine discretization around the crack-tip and ensuring that Aa is also very
small, G can be very accurately obtained through this method. Again by using the
relation between G and Kj, the SIF can be computed.

For pure Mode II loading, closure force at node 2 in the x direction and the
corresponding sliding displacement at node 1 must be considered. That is,

(5.68)

To determine the corresponding SIF, the relationship between Gj; and Kj; can be
utilized.

When elements around the crack-tip are 8-noded quadrilaterals (Fig. 5.18(a)),
the potential energy release rate can be computed through single finite element
run using the following relationship.

W _ ng U1y + P4y U2y

C=3a- " 2B

(5.69)

As before, closure forces P3y and Py, can be obtained from the element nodal forces
of elements 3 and 4 or 1 and 2 (Fig. 5.18). An equivalent relation for Mode II can
be written replacing the forces and displacements parallel to the crack plane or x
direction.

If quarter point singularity elements (Fig. 5.18(b)) are employed around the
crack-tip (Henshell and Shaw 1975; Barsoum 1976), the crack closure forces (Ps,
and Py,) are to be obtained at the nodes 3 and 4, and the corresponding
displacements are obtained from the opening displacement at node location 1.
Computation of the opening displacement to be associated with Py, is done using

the fact that displacement along the crack edges varies as r2, where stapds for

radial distance from the crack-tip. That is, the required displacement v = 1 O

which is equal to the opening displacement at r = Z Aa.

To facilitate CCI calculations, in general, element sizes ahead and behind the
crack-tip are kept the same. The closure work can also be computed by
considering simultaneous opening of the crack over a length more than
one-element span Aa. This will involve computing the closure forces and
corresponding opening displacements at a number of nodal points.

Practical problems may involve in addition to remote loading, crack edge
pressure loading, for example, fluid pressure, thermal loading, and residual
stresses. The calculation of CCI and SIFs for such situations is given by Maiti
(1992a).
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Figure 5.18 (a) Quadratic and (b) quarter point singular elements around crack-tip.

Local smoothing for improving accuracy of CCI-based calculations Generally,
the crack closure forces and opening displacements obtained through finite
element calculations do not give rise to variations as stipulated by the crack-tip
singularity field. It is established (Krishnamurthy et al. 1985; Ramamurthy et al.
1986; Sethuraman and Maiti 1988) that by local smoothing these two quantities
utilizing the output data on nodal forces and displacements, the accuracy of
determining the strain energy release rates can be improved. Ramamurthy et al.
(1986) assumed a variation of the crack closure forces different from the variation
assume by Sethuraman and Maiti (1988). The final relations obtained by
Sethuraman and Maiti are simpler.

The derivations based on Sethuraman and Maiti (1988) are given subsequently.
In keeping with the displacement-based finite element formulations, they
assumed a variation of the crack opening displacements as dictated by the
crack-tip elements. If the crack-tip elements are quadratic, the displacements vary
quadratically; if the crack-tip elements are quarter point singularity elements, the
displacements vary directly with square-root of distance from the crack-tip; and
so on. The closure stresses are assumed to vary linearly and inversely with
square-root of distance from the crack-tip in the two cases respectively.

In the case of the quarter point singularity elements around the crack-tip, the
crack opening displacements is assumed to vary as the square-root of distance jxj
from the crack-tip 3 (Fig. 5.19a).
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v & =0, (1+¢) (5.70)

A
noting that iy S & > = Aa  x, where v, stands for y displacement of node 2,

and §0 is a natural coordinate with values 0 at node 2, 1 atnode 3, and 1 at node
1. The closure stressef)over span 345 (Fig. 5.19(a)) ahead of the crack-tip 3 are
assumed to vary as 1/ x. It can be written in the form

By

O-y(g): Bo+ (1+§)

(5.71)

where %(1 +&)? = x and ¢ is a natural coordinate with values 0 at node 4, 1
at node 3, and 1 at node 5. The arbitrary constants By and B; are obtained by
equating the work done by the distributed opening stresses 0, on y displacements
over the span 345 with the work done by nodal forces on the corresponding nodal
displacements.

z Aa
F3y v3 + Fyy vy + F5y v5 = v oy dx
0

Z4
= [N3v3+ Nyvg+Nsvs] By +
1

Figure 5.19 Crack-tip element arrangements. (a) Quarter point singularity elements.
(b) Quadratic elements.
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Note that v varies as pf along span 345. Fy, Fy,, and Fs are the closure forces in y
directions at nodes 3, 4, and 5, respectively and are given by

F 9 z 8N 2
=yE L1 == Bi A
By = N Byt - L(+Q)de (5.73)
- P5y > 1 - N5 > (:
where N3 = g(l &, Ny= 1 & and N5 = %(1 + (). Thereby, the two
arbitrary constants are obtained.
_ 3 _ 6
B, = Az (Fyy 2Fy), B = A—aFg,y (5.74)

Finally, strain energy release rate in the opening mode is obtained through

. 1 ZAa )
Cr= T A, O & dx
Z
1 Aa B1 )
= lim —— + 1+ d
A oae o Betiag w e dx
'
= lim LZM B, + pﬂ B v 1%2 pAa x dx
T A102A0 o o T2 p; SV
= W+ (157 4)F 5.75
_E[4y (1.57 )3y] (5.75)

where vy, is the total crack opening at the nodal location 2 behind the crack-tip and
Aa is assumed to be very small. Aa can be taken as 3 4% of given crack size a.
Similarly, for the shearing mode or Mode II problem,

G = = [F4x + (1 5m 4) F3x] (5-76)

where v;, indicates the total crack sliding, or crack ‘opening’, in x direction at the
nodal location 2 and F3, and Fy, are the closure forces acting in x direction at nodes
3 and 4, respectively.

The expressions due to Ramamurthy et al. (1986) are as follows.

1

GI=5pa

(C11F3y + C12F4y + C13F5y U2y + (C21F3y + C22F4y + C23F5y)271y] (5 77a)

1
G = 2Aa [(Cy1F3x + CioFyy + Ci3F5x) vox + (Cyy F3x + CopFay + CozFsy)vix] (5.77b)
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where C;; =338 52, Cp=17 215, cu=212 32, Cy=14 337,
2 4 2 8
T 7 T
C22 - 2].% E, C23 - 8 21 g.

For 8-noded quadrilaterals (Fig. 5.19(b)) v displacement varies quadratically along
321 and opening stresses vary along 345 linearly.

v=0v 1 & + Uré(l+€) (5.78)
0y = B, + By (5.79)

Following the steps as given in the case of the quarter point singularity elements,
the following results are obtained.

3
B, = AL Fyy, (5.80a)
_ 3 6
B, = > Aa Eyy Az E3y (5.80b)
G 1 (F5, v1y + Fy, v2y), G L (F3x v1x + Fyy U2x) (5.81)
1= 2 A 3y Y1y 4y 2y nm= 2 Aa 3x Vlx 4x U2x .

These results are the same as those obtained by Krishnamurthy et al. (1985).

In the case of 4-noded quadrilaterals, displacement has a linear variation along
a crack face, and the closure stress is constant along the crack line ahead of the
crack-tip. This gives

1 1

F.
G = 3y U1y, G = 5 Az

> Aa 5 F3x 01« (5.82)

where F3; and vy;, i = x or y, stands for closure force at node 3 and total opening at
nodal location 1, respectively.

Problem 5.6

A square plate 80 mm 80 mm of uniform thickness 1 mm contained a central
crack of size 8 mm. The plate boundary was maintained at 100 C and the crack
edges were at 0 C. Through FE analysis of the problem with arrangements of
elements (51 54) and nodes (177 191) around crack-tip A as shown (Fig. 5.20),
the following forces and displacements were obtained: F191y = 0.10048 10 %N,
Figey = 043123 10 2 N, v1gs = 0.011003 mm, and v199 = 0.005560 mm.
Calculate the SIF by the displacement method, CCI technique, and CCI technique
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with local smoothing. Use modulus of elasticity E = 1 MPa and Poisson’s ratio

v = 0.3. Assume plane strain condition.

100° C
80
mm Y 100°C
8 mm
B 178
A X
0°C 185
100° C = >
177 186 1914 e X
0.2 mm 0.2 mm
100° C
80 mm b)

(a)
Figure 5.20 (@) Thermo-elastic problem and (b) crack-tip discretization.

Solution
(a) Displacement method
Using v for =180 and v1gs5

| g—
0.011003 = Kp 2 1 v)
oo

Noting thatr = 0.2mm, h = 1 mm, and y = E/[2(1 +v)],E = 1MPa,and v = 0.3,

K; = 0.01694 Nmm 3/2 (Ans.)

(b) CCI technique -
P11y 0185 + Pigey 7 U185
G[ =
hAa
"3
0.0010048 0.011003 + 0.0043123 1 0.011003
= N/mm

B 0.2
=0 v*)K3}/E
This gives K;=0.01692 Nmm 3/2 (Ans.).
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(c) CCI technique with local smoothing

Using relation (5.75)
2 v190
Gr = A ! Figey + (151 4) Fio1
a
2 0.00556
=5 [0.0043123 + (1.57t  4)]0.0010048] = (1 v*)K?/E

This gives K; = 0.01752 Nmm %/2 (Ans.).

5.4 FEM-Based Calculation of G Associated with Kinking of Crack

An angled crack in a plate (Fig. 5.21) under tension does not lead to in-plane or self-
similar extension when loaded to a critical level. To understand such an extension,
it is necessary to calculate the potential/strain energy release rate with such out-
of-plane extension. It is possible to calculate this sort of energy release rate by
applying the methods, which are available for the in-plane extension (Maiti 1990).
Some of the methods are discussed below.

It is possible to calculate the strain energy U, (Fig. 5.21(a)) of the system with
the given crack 2 and loading. It is then possible to calculate the strain energy U,+;
corresponding to an extended crack a + [ with an extension [ in 6 direction. The
required energy release rate Gy is given by

Go = lim Zort_Ya = Yo
1

U,
m l i for small . (5.83)

() (b)

Figure 5.21 (a) Angled crack. (b) Discretization around tip and knee.
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assuming thickness to be unity. This procedure will require two FE runs. While
computing U,4,, it is possible to consider a branch length [ up to 4% of a.

It is also possible to calculate Gy by considering | integral procedure, stiffness
derivative method, CCI technique, and the continuation argument. As per the
continuation argument, the energy release rate associated with an out-of-plane
extension in the direction 6 is equal to the energy release rate associated with the
in-plane extension of the branch ! when the branch length I ¥ 0. This means that
it is necessary to analyse a problem with the given crack plus a branch of small
length [ in 6 direction and compute the energy release rate associated with
extension of the branch [ in its own plane. While analysing the kinked crack
geometry with crack a + I, the discretization must be done, recognizing the fact
that there is a stress singularity at the knee. The order of singularity depends on
the knee angle 0 (Williams 1957). This calls for a very refined discretization over
the span [, square-root singularity elements at the crack-tip, and variable order
singularity elements at the knee (Maiti 1992b) to take care of the variation in the
kink angle. Alternatively, it is possible to use multi corner variable order
singularity element (Dutta, Maiti and Kakodkar 1990; Maiti 1992c) between the
crack-tip and the knee, square-root singularity elements at the crack-tip, and
variable order singularity elements at the knee. The calculation of Gy can be done
by adopting the steps that are given earlier for | integral, or stiffness derivative
procedure or CCI technique for the in-plane extension (Maiti 1990).

5.5 Other Numerical Methods

Other numerical methods requiring computer-based solution include boundary
element method (BEM), extended FEM (XFEM), and meshless/meshfree methods.
In the BEM, the boundary alone is discretized and the nodal degrees of freedoms,
displacements, and tractions, associated with nodes, are interconnected by the
reciprocal theorem of elasticity. These relations can also be obtained by the
Galerkin method of weighted residuals. This step gives rise to a set of
simultaneous equations. After solving these equations, the SIFs can be obtained
through the comparison of displacements and stresses, and energy methods or
their variant like the CCI method. Since in this method, displacements and nodal
tractions are treated as independent nodal variables, the use of special singularity
elements to ensure strain singularity does not automatically guarantee the stress
singularity. This calls for use of separate shape functions for displacements and
tractions (Mukhopadhyay, Maiti and Kakodkar 2000). The methods to extract the
SIFs with good accuracy are given in references (Maiti, Mukhopadhyay and
Kakodkar 1997; Mukhopadhyay, Maiti and Kakodkar 1998).
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In the FEM, the accuracy of computed SIFs can be increased by representing the
crack-tip field over some region around the crack-tip in terms of a few of the terms
of the Williams’ eigenfunction expansion. The strain energy for this region can be
calculated in terms of the arbitrary constants associated with this expansion. The
energy for the remaining part of the body can be calculated in terms of the nodal
displacements. Thus, the strain energy for the whole body is obtained. After
obtaining the potential energy of the body, it can be minimized with respect to the
displacements and the arbitrary constants. This will give rise to a set of linear
simultaneous equations. Solving these equations, the SIFs can be obtained
directly. The details of the method can be found in references (Moés, Dolbow and
Belytschko 1999; Stazi et al. 2003; Liu, Xiao and Karihaloo 2004; Xiao and
Karihaloo 2007; Rabczuk 2013). This method is termed as XFEM.

To overcome the problems associated with discretization in the FEM and BEM,
the meshless methods have evolved (Belytschko et al. 1996; Atluri and Zhu 1998;
Rabczuk 2013). The method formulation can be based on different forms of the
classical Galerkin method. The two important forms are Petrov-Galerkin and
element-free Galerkin methods. In this case, too, the SIFs can be extracted directly
by any of the method, for example, the displacement technique, stress method,
domain integral method, CCI method (Muthu et al. 2014), and so on, as given
earlier in the case of FEM.

5.6 Experimental Methods
5.6.1 Strain Gauge Technique

The technique based on the measurement of strain can be utilized to determine
the SIF experimentally. Because of the high stress/strain gradient close to the
elastic crack-tip, reduction in the influence of the singularity term of the Williams’
stress function expansion away from the crack-tip, and finite dimension of the
strain gauge, it is difficult to obtain good accuracy unless some care is exercised in
placing the gauges. Dally and Sanford (1987) started with a crack-tip stress field
representation using truncated Williams’ eigenfunction expansions for the two
functions associated with the Airy stress function and proposed a scheme
whereby the Mode I SIF could be determined with a good accuracy using a single
strain gauge (Fig. 5.22(a)). They ingeniously selected the orientations a and radial
line positioning 65 for the gauge to reduce the number of unknown parameters in
the two truncated series. The orientation «, assuming a state of plane stress, is
given by
1 v

200 = = , 5.84
cos 2« K 15y (5.84)
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Strain gauges 1 to 6

Figure 5.22 Strain gauge arrangement for (a) Mode | and (b) mixed mode.

where v is Poisson’s ratio. The radial line orientation 65 is given by
Os
tan? = cot2a. (5.85)

The measured strain ¢, by the strain gauge (Fig. 5.22(a)) is related to the Mode I
SIF by the following relation.

K 0 1 360 1 360
2ue, = pI: K cos =  ~sin fs sin 275 cos2a + = sin fs cos 275 sin2a , (5.86)
27y 2 2 2 2 2
v

1 v
obtain a relationship valid for a state of plane strain. Sarangi, Murthy and

where p is rigidity modulus. Replacing v by in Eq. (5.84), it is possible to
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Chakraborty (2010a, 2010b, 2013) recommend that the minimum radial distance r
should be greater than half the thickness of the sheet and less than certain
maximum, depending on the geometric configuration of the specimen. A distance
greater that half the thickness is recommended to exclude the effects of crack-tip
local plasticity. They provide a methodology (Sarangi, Murthy and Chakraborty
2010b) for determining the maximum permissible distance r for the location of
strain gauge without affecting the accuracy of the SIF obtained.

The problem of mixed mode was first examined by Dally and Berger (1986). For
this case, six gauges 1 to 6 (Fig. 5.22(b)) are required. The gauges are placed
symmetrically about the crack line. Angles « and 05 are again given by Egs. (5.84)
and (5.85), respectively. The gauges are not required to be spaced equally over the
span 1 to 3 or 4 to 6. However, radial distances of the gauges 1, 2, and 3 should be
equal to the distances of gauges 4, 5, and 6, respectively. Sarangi, Murthy and
Chakraborty (2012) again recommend that minimum radial distance r should be
greater than half the thickness of the sheet and less than certain maximum. They
provide a methodology for finding the maximum permissible distance for the
furthest strain gauges (3 and 6 in Fig. 5.22(b)) from the crack-tip.

5.6.2 Photoelasticity

Photoelasticity (Dally and Riley 1991) is a well-known method for finding elastic
stress distribution. In this method, model conforming to the given geometry is
made out of birefringent material and tested in circular polariscope to obtain the
fringe pattern. The fringe pattern can be analysed to obtain the required stresses at
a point. In the case of an object with a crack, the stress data around the crack-tip
can be processed to determine the SIF. A typical fringe pattern around the crack-tip
is shown (Fig. 5.23). Each fringe indicates the locus of a point of constant shear
stress, whose magnitude is known. That is,

o 02

Tmax - 2

h i
1 1/2
= p—— (K;sinf+ 2K cos0)? + (K;rsin6)® (5.87)

2 2mr
where 07 and o7 are the principal stresses at a point. Angle 6 is measured with
respect to the crack axis x. Selecting a particular fringe, it is possible to locate
the points where the fringe intersects the x and y axes. Thereby, say, r1 and 7y,
respectively are obtained. This gives,

K11

1
Tmax — = %[K% + K%I]l/2 (588)
2ntry 2 27y
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lp
Figure 5.23 Typical isochromatic fringes around crack-tip.

Thus, both the SIFs can be determined in a mixed mode problem.

The fringes get very crowded near the crack-tip because of extremely high
stress gradient due to stress singularity. It is very difficult to identify the
individual fringes. To overcome this problem, far field fringe data in conjunction
with multi parameter approximations of the crack-tip stress field (Sanford and
Dally 1979) or the digital photoelasticity techniques (Ramesh 2000) can be
employed for an accurate determination of the SIFs.

Exercise

5.1 Solve Problem 5.6 assuming all data to correspond to plane stress condition.
[Ans. 0.01542 and 0.01614 Nmm 3/2]

5.2 Determine the SIF at the right hand crack-tip at x = a forﬂ')he loading S}BWI’I.
p represents load per unit thickness. [Ans. K; = 0.7086p" 7a, Kjy = 5 7a]

Figure Q.5.2
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5.3 Determine the level of safety for the high strength low alloy steel (HSLA)

plate (Fig. Q.5.3) with a crarsk (2a = 15 mm) at the end of a rivet hole as
shown. Given K;c = 47.7Pa’ m, 0.2% proof stress 0, = 1640 MPa, and plate
thickness = 25 mm. [Ans. 3.275]

15 MPa 5 MPa

A

15 mm
_A_i 0.1 MN
v

400 mm

Figure Q.5.3

5.4 Determine the SIFs for the case shown. Crack at each end of the hole is of size

2 mm. If you make any assumption to Eytain the solution, indlsate it.
[Ans. K; = 0.2100 MPa' m, K;; = 0.1330c MPa' m; 0 in MPa]

Figure Q.5.4

5.5 Determine the SIFs at the two crack-tips for the four cases shown. In case

Fig. Q.5.5c loading p acts over a Ban 4 around the centre of crﬁck.
[Ans. (a) Kj, right = 0.7086p  ma, Kjj, right = 0.4092p" ma. (b) Ky,

_ _ P Pp—
left = 0.4092p pna, Ky, right = 0.0908pp7m, (c) K; = ﬁ + gprm,
2000 7T
DK =p= 5 1]
ma 2
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Figure Q.5.5(a) Figure Q.5.5(b)

P = paB, B = thickness B = thickness
Figure Q.5.5(c) Figure Q.5.5(d)
5.6 Determine the SIFs at the crack-tip for the case shown (Fig. Q.5.6) when the

crack size is AB = 20 mm, 0y = 200 MPa, and crack inclination with xaxis
is45 . [Ans. K; = K;; = 25.06 MPa' m]

Figure Q.5.6
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Mixed Mode Brittle Fracture

6.1 Introduction

Griffith considered crack subjected to opening mode of loading and gave the
condition for its extension. Thereby, it was possible to determine the critical load
capacity of a component made of a brittle material containing a crack. Irwin
considered three fundamental modes of loading of a crack and prescribed the
condition of their in-plane extension. In reality, it is very difficult to assume that a
crack even under pure Mode II loading will extend in its own plane. Furthermore,
when a crack is loaded in mixed mode (Fig. 6.1), both the direction of crack
extension and the load at which crack extension begins are unknowns. Therefore
two questions arise. What governs the direction of crack extension, and what
decides the onset of the extension, in all combinations of mode mixity.

For brittle materials, more often catastrophic fracture is observed. The crack
extends over a considerable span immediately upon extension, as if the whole
course of extension is governed by the state of stress/deformation existing just at

tot ot

B T

P J \/&ack P
T

.
/

Crack

T

Figure 6.1 Cracks loaded in mixed mode.
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the point of onset of extension. If such crack paths can be predicted, it may be
possible to take some preventive measures. Even in manufacturing operation like
bar shearing, the profile of the sheared edges is dependent on the path of
propagation of tool edge cracks. In order to exercise some control on quality of the
sheared edges, the prediction of crack path can be very helpful. In rock drilling,
the propagation of cracks can help the course of drilling substantially. Any
possibility of prediction of crack path in variety of situations can be gainfully
exploited.

6.2 Theory based on Potential Energy Release Rate

Erdogan and Sih (1963) proposed that crack extends in the direction 6, (Fig. 6.2(a))
corresponding to the maximum release rate of potential/strain energy. Similar
considerations were also proposed by Palaniswamy and Knauss (1972) and
Hussain, Pu and Underwood (1974). The extension occurs when this release rate
reaches a critical value. This critical energy release rate is a material property in
the same sense as the fracture toughness Kjc in Mode I. To apply this criterion, it
is necessary to obtain the variation of G with 6 (Fig. 6.2(b)). This can not be easily
determined analytically and came in the way of application of the theory to
practice. The finite element method eased the problem to a certain extent. The
difficulty associated with the application of this theory motivated the
developments of the other theories. These are presented in this chapter.

|
@) (b)

Figure 6.2 (a) Loading. (b) Typical variation of G with 6.
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6.3 Maximum Tangential Stress Criterion

According to maximum tangential stress (MTS) criterion, the crack extends in the
radial direction from the crack-tip, corresponding to the maximum of tangential
stress on a circle of finite radius from the crack-tip. The extension occurs when
this maximum reaches a critical value, which can be treated as material constant
(Erdogan and Sih 1963; Maiti and Smith 1983a,b, 1984). The crack path can be
obtained by joining such points of MTS on circles of different radii. In fact, this
criterion is the same as the classical maximum principal stress theory of Rankine
(Timoshenko 1986; Srinath 2003). Since the stresses are infinite at the crack-tip,
these are evaluated at a finite distance from the crack-tip but given by the first
term of the eigenfunction expansion. It is possible to work without specifying this
distance.

For a two-dimensional problem, crack-tip stress field involves only Mode I and
Mode II SIFs. The stresses in polar coordinates with crack-tip as the origin
(Fig. 6.3) are given by

1 0 0 3 0
(Trzp:cosi K 1+sin2§ +§KHsin6 ZKHtanE

27y
+10 (0) +r2fp (0) + ... (6.1a)
_ 1 0 2 9 3 . 0 1
0g = P== cos = Kjcos" = =Kjsinf +r g (0)+rig()+... (6.1b)
27ty 2 2 2

Ty = 249127 cosg [K;sin+ K;(3cos®  1)]+ "y () + s () + ... (6.1¢)
7tr

O,
Oy Tg r

Figure 6.3 Stresses in polar coordinates.



Mixed mode brittle fracture 155

where f1(0), f2(0), etc., £1(0), £2(0), etc., and hy(6), ha(0), etc. are the functions
of 8. Reference may be made to Egs. (2.18) and (2.22) in Chapter 2 for exponents
of r.

The criterion indicates that 6. corresponds to

80'9 820'9

59 =0 5 <0 (6.2)

Physically, this means that the MTS is the highest tensile stress on the circle under
consideration. The crack passes through the zone dominated by tensile stress in
the tangential direction. And the critical stress ¢, or load P; correspond to

(70) max = (09), (6.3)

Considering that the tangential stress oy is given only by the singularity term

0
% = m cosf[KI sinf + K;;(3cosf 1)] (6.4)
A0y
Therefore, % = 0 corresponds to 7,y = 0. That is, the direction of crack extension

6. corresponds to a principal direction, and it is a solution of the following
equation.

[K; sinf + K;j(Bcosf 1)] =0 (6.5)

Hence, the corresponding tangential stress is a principal stress. The critical stress
or load capacity is given by

(09)max = % cos Kjcos® — i

3 .
> > EKH sinf, = o (6.6)

0¢r can be easily decided by considering a mode I problem.

Mode I

For an internal crack of size 22 in an infinite sheet with remote loading ¢, K; =
o ma and Kj; = 0. Therefore, 6. is given by sin 6 = 0. That is, 6. = 0 . At the
onset of fracture

1 0 0 K
(09)max = P=— cos = K cos? = = pé = Ocr (6.7)
27Tr 2 2 27tr

Provided the same distance r is considered for all the applications, the same o, can
be employed for the determination of o.
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Mode 11
For an iBternal crack of size 24 in an infinite sheet with remote shear loading T,
Kjp =17 maand K; = 0. Therefore, 6, is given by

3cosf 1=0 (6.8)

2
Thatis, 6. = cos 1(3) = 70.5 . Incidentally, . = 70.5 only gives 38(3729 <0.
Assuming the same distance ahead of the crack-tip as in the case of Mode I, the
failure is triggered, when

(O-Q)max = ‘p: = Ucr (69)
27tr
If it is assumed that the failure in this case is triggered when Mode II SIF reaches
the critical value Kjjc, substituting K;; and 6 in the expression of tangential stress

K 1 0 3 .
(09)max = p& =(09) = P=—— cos= =Ky sinb (6.10)
27r 27r 22 0= 705

This gives the following relationship between the two fracture toughnesses.
KIIC = 0.866 K[C (611)

This means that Kjc is not an independent material property, and all
two-dimensional fractures are governed by only one fracture resistance Kjc.

Considering a problem (Fig. 6.4(a)) with a crack of size 2a in an infinite sheet,
from Eq. (6.5), we obtain

sin’B sin@ +sinpBcosB (3cosf 1) =0 (6.12)

noting that K; = P sin? B and K;; = P sin Bcos B. For a given B, it is
possible to determine .. Using Eq. (6.6) and this critical fracture angle, it is possible
to obtain the critical load . Thereby, we get the corresponding combination of K;
and K that triggers fracture. Through this approach, it is possible to get all the
combinations of the two SIFs that lead to fracture.

A typical plot of these combinations is shown in Fig. 6.4(b). The plot is known
as failure locus. The failure locus separates the safe and unsafe zones. All the
combinations of Ky and Ky that lie on the locus and outside will lead to catastrophic
fracture.

The path of unstable extension of crack can be determined by locating the points
of MTS on circles of different radii from the crack-tip and joining these points by a
smooth curve as illustrated in Fig. 6.5.
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A

K = 0.866K,,

Unsafe zone

Safe zone Failure locus

(@ (b)

Figure 6.4 Mixed mode crack and failure locus. (a) Angled crack problem. (b) Failure locus.

Figure 6.5 Unstable crack path.

6.4 Maximum Tangential Principal Stress Criterion

As per the underlying considerations of the MTS criterion, 9 0 gives a
direction, which coincides with the direction 7,9 = 0. This happens only because
the crack-tip stress field is given by the first or singularity term of the
eigenfunction expansion. This is alright so long as r is small. It has been observed
by Williams and Ewing (1972) that better predictions for both the initial direction
of crack extension 6, and fracture load o, are possible by considering stresses at a
finite distance from the crack-tip so as to include the effects of the second and the
higher order terms of the Williams” (1972) eigenfunction expansion of the

crack-tip stress field. With the inclusion of the nonsingular terms, % = 0 does

not give rise to a direction, which corresponds to 7,p = 0. With reference to
relations (6.1b) and 6.1c)

dogisTy 3
90 == E TrQ(ST) (613)
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but

dg;ée) & hy (9), dg;(ge) &M (0), ounn.... (6.14)

where 051y and T,g(s1) represent the singular terms of 0y and T4, respectively
[Egs. (6.1b and 6.1c)]. There are two distinct locations P and Q, and directions 6.4

and 6, (Fig. 6.6) corresponding to aa(g) = 0 and 1,9 = 0, respectively. The

tangential stress at location P is the MTS, but it is not a principal stress(t,, & 0).
The tangential stress at location Q is a principal stress, but it is not the MTS

aa? 60 . In general, the two tangential stresses differ in magnitude slightly.

There are, therefore, two distinct radial directions 6.1 and 6, (Fig. 6.6). This
difference was the basis to define the MTPS criterion (Maiti 1980; Maiti and
Prasad 1980; Maiti and Smith 1983a, b, 1984).

According to the MTPS criterion, crack extends in a radial direction
corresponding to the maximum tangential principal stress (MTPS), and the
extension begins when this maximum reaches a critical value. The crack path is
given by the smooth curve passing through such points on circles of different radii
from the crack-tip.

Figure 6.6 Directions 6,1 and 6., corresponding to maximum tangential stress and maximum
tangential principal stress.
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In the angled crack problems, the difference between the MTS and MTPS criteria
increases for crack orientations  greater than 75 . It is observed that predictions
based on the MTPS criterion are more close to the experimental observations (Maiti
and Smith 1983a, b, 1984). In fact, MTPS criterion is the classical Rankine criterion.
The direction of crack growth as per MTPS criterion is not associated with any
shear stress. Hence, the crack is driven locally by Mode I type of loading and it
grows in a self similar manner.

In general, for any problem with a complex geometry, it is convenient to go in for
finite element analysis with circular arrangement of elements around the crack-tip
(Fig. 5.13). From the finite element results, it is possible to plot the variations of oy
and T, on a circle of finite radius passing through element Gauss points. Thereby,
both 6.1 and 6, can be obtained (Fig. 6.7). The permissible load capacity can be
determined by equating MTPS (cyp),,,., With o that exists at radius  in Mode I for
6 = 0 when the applied load level corresponds to K; = Kjc. r is the same radius
of circle used for plotting in both the cases. For good predictions, r can be taken up
to 5% of crack size (Maiti and Smith 1983). (¢g),, in Mode I can be approximated

v

Figure 6.7 Graphical determination of 6.1 and 0.

6.5 Strain Energy Density Criterion

This criterion has been proposed by Sih (1973). According to this criterion, crack
extends in the radial direction from the crack-tip corresponding to the minimum
of strain energy density (SED) on a circle of finite radius (Fig. 6.8) from the
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Figure 6.8 Circumferential variation of S.

crack-tip, and it extends when this minimum reaches a critical value, which is a
material parameter. The crack path is obtained by joining such points on circles of
different radii by a smooth curve (Kipp and Sih 1975). In case, there are more than
one minimum on a particular radius, Swedlow (1976) suggested that the one with
highest tensile tangential stress should be considered.

The SED is given by
1
SEDZE 0§+Uy2+ (722 % 0x0y + 0y0; + 0,0y (T +T +Tx)
_ 1 2 2 2y S
= (anKI + 2a15K1Kp + anpKy + a33Km) =7 (6.15)
where
1
a1 = 16pt ———[(3 4v cosB) (1+cosb)], app = wZ sinf[cos® (1 2v)]
1
= +(1+ = —. .
ax 16y —— 40 v)(1 cosf)+ (1+cosB)(Bcost 1)], as o (6.16)
u is modulus of rigidity and v is Poisson’s ratio.
The direction of crack extension corresponds to
%5 - 0 8275 > 0 (6.17)
0 7 062 '

and the extension begins when

Smin = Ser (6.18)
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In order to provide a physical justification, Sih (1973) opined that under fixed
loading, the total potential energy of a system is equal in magnitude with the total
strain energy, but opposite in sign. Hence, the ‘point of minimum SED’
corresponds to the “point of maximum potential energy density’. Since the state of
‘maximum potential energy’ is very unstable and dangerous, the crack is likely to
pass through such a point. In this argument, the total strain energy and total
potential energy and the respective energy densities have been treated at par!
Later Sih, suggested that, the total SED can be split into volumetric and deviatoric
components (e.g., Sih and Macdonald 1974). The crack can be considered to
propagate in the radial direction corresponding to the maximum of volumetric
energy density on a circle of finite radius from the crack-tip.

Theocaris and Andrianopoulos (1982) modified the SED criterion and stated that
a crack propagates in a radial direction from the crack-tip corresponding to the
maximum of volumetric energy density (SEDy) on a closed contour around the
crack-tip along which the distortion energy density (SEDg) is constant. It may be
stressed here that both SED, and SED4 are functions of both radius and angle 6.
He further opined that the elastic plastic boundary around the crack-tip is a very
good choice for the closed contour, because the distortion energy density on such
a curve is constant. It is often referred to as the T criterion.

While MTS and MTPS are two-dimensional criteria, SED is a three-dimensional
criterion. SED has been reported to have failed to predict the crack paths, for
example, in the case of edge cracks (Maiti 1980; Maiti and Prasad 1980) under
shear type of loading, in the case of angled crack (Fig. 6.2(a)) (Maiti and Smith
1983a,b, 1984) when B is less than 15 , and in the case of internal crack in a plate
with its edges separated by concentrated forces acting at an angle to the crack
(Maiti and Smith 1983c). Applications of the criterion to some cases are discussed
subsequently.

Mode I
For this case S = auK%, since K;; = 0. The direction of initial crack extension is
given by

8a11

50 (6.19)
Thatis, 6 =0 or6 = cos ' (1 2v). The second value is not acceptable because
it does not make S a minimum.

At the onset of crack extension K; = K¢, therefore, the corresponding Smin =

1 2
(47_[;)1@(; = Scr. Ser can be treated as a material property.
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Mode II
In this case S = ax» K%I, since K; = 0. Therefore, the direction of initial crack
extension is given by

81122 _
=g =0 (6.20)

2 1 2
This gives cosf = U, 6 = cos 1(31/). The angle depends on Poisson’s

ratio v, unlike in the case of MTS and MTPS criteria. Forv =0, 6. = 70.5 , which
is the same as the value of 6, given by the MTS criterion. For v = 0.25,0. = 80.4 .
By substituting 6, in Eq. (6.15), it is possible to calculate S, at the onset of crack
extension.

Ser = 16;;4[4(1 v)(1  cosf) + (1+cosB)(3cos® 1)]K%, for 6 =6,.

1
= o K3, for v=0and 6= 70.5 . (6.21)
This value of S, can be equated with the earlier value in terms of Kjc, which gives
Kric = 1.224 Kjc. This is very different from the value 0.866K;c obtained by the
MTS criterion. For v = 0.25,0, = 80.4 , Kjjc = 1.021K|.

Mixed mode
For an angled crack with an inclination B with the loading direction

S = anK% + 2 a1y Ky Kip +ap K%I (6.22)

The direction of crack extension is given by

aaefK% [B 4v cos0)(1+cosf)]+4K; K sinf[cosf (1 2v)]+

K340 v)(1 cosf)+ (1+cosh) (3cos® 1)]g= 0  (6.23)

Note that K; = P sin® 8 and K;; = oPra sin B cos B. For any particular B, the
direction 6, for which S is minimum can be obtained. For example, for § = 45,
the direction of crack extension . = 53.75 using the Poisson’s ratio v = 0.35.
Similarly, for B = 75 and 60 the direction of crack extensions are 25.8 and
42 , respectively, using v = 0.35.
The load capacity o, can be determined from the following relation with 6 = 0.
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5 1

.4
o-Ta Toji [sin"BF(3 4v) (cos®)(1+ cosb)g

c

+ 4 sin® Bcos Bsinf Fecosf (1 2v)g
+ sin® Bcos’fF4(1 v)(1 cosh)+ (1+cosh) (Bcosd 1) g]

_@a 2v) ,
T e (6.24)

Exercise

6.1 Calculate the direction of initial crack extension using MTS and SED criteria
for the case (Fig. Q.6.1) shown considering (i) loading due to p only, (ii)
loading due to p/2 only, and (iii) loading due to p and p/2 only. p
represents load per unit thickness. Use Poisson’s ratio v = 1/3.

[Ans. i) 43, 415 ,(i) 705, 84 ,(iii) 472, 458]

Figure Q.6.1

6.2 Obtain the load capacity ppﬁ/ Kic in each case of Q.6.1.
[Ans. (i) 1.041, 1.17, (ii) 2.117, 2.21, (iii) 0.95, 1.09]

6.3 Determine direction of initial crack extension and load capacity o (Fig. Q.6.3)
based on the MTS criterion. Crack size at each 6nd of the hole is 2 mm. The
given material is 4140 steel with Kjc =75 MPa" m and the plate thickness is
25 mm. [Ans. 506 MPa]

Figure Q.6.3
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6.4

6.5

6.6

Fracture mechanics

What is the direction of initial crack extension and load capacity using the
MTS criterion when the crack size is AB = 20 mm, oy = 200 MPa and crack
inclination with x axis ig 45 (Fig. Q.6.4)? Given that the material is Dé6ac
steel with K;c = 86 MPa' m and thickness 40 mm.

[Ans. 53.13 ,383.58 MPa]

Figure Q.6.4

Estimate the direction of crack extension by MTS and SED criteria for a
through-the-thickness crack in a thin cylinder (Fig. Q.6.5) when it is
subjected to a torque T = 50 kNm and an axial load P = 1 MN, which is
uniformly distributed over the cross-section. Cylinder has an internal radius
r = 300 mm and wall thickness t = 10 mm. Crack size 2a = 12 mm. Use
v=1/3. [Ans. 18, 17.6 ]

Figure Q.6.5

Calculate the direction of initial crack extension (Fig. Q.6.6) of CD using the
MTS and SED criteria. Determine the load capacity o, considering the load
capacity in Mode I as 1, based on the MTS criteria. If the Poisson’s ratio is
0.35, compare the load capacity with the SED criteria.

[Hint: Treat CD as an inclined crack and solve. Ans. 51.6 , 51.7 ; Load
(MTS) = 1.08, Load (SED) = 1.23, when Mode I load is 1.]
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DB =AC =2 mm

o
Figure Q.6.6

6.7 Determine the direction of initial crack extension (Fig. Q.6.7) of CD using the
MTS and SED criteria. Determine the load capacity when Kjc = 48 MPa™ m
based on the MTS criteria. If the Poisson’s ratio is 0.35, compare the load
capacity with the prediction by the SED criterion.

o

14 mm 9/{39"

p” B A x

DB =AC =3 mm

o

Figure Q.6.7

[Hint: Treat CD as an inclined crack and solve. [Ans. 6. = 16.98, 16.7 by
MTS and SED. Load capacities 271.90 MPa by MTS and 277.85 MPa by SED.]

6.8 For the problem shown (Fig. Q.6.8) P = 9 kN and axial load R = 2 kN.
Calculate the direction of the initial crack extension using thickness 15 mm
and Poisson’s ratio as 0.30. Try to solve employing both the MTS and SED
criteria. [Ans. 3.07 , 3.06 ]
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6.9

6.10

Fracture mechanics

200 mm 200 mm 200 mm

Figure Q.6.8

Determine the load P for the problem shown in Fig. Q.6.8 keeping R
constant so as to obtain a direction of initial crack extension of 10 . Use the
MTS criterion. [Ans. 381.2 N]

Refer to Problem 2.6 (Chapter 2). Calculate the horse power that can be safely
transmitted by considering it as a mixed mode problem. [Ans. 72.6 MP]
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Fatigue Crack Growth

7.1 Introduction

More than 90% components (Dieter 1988) of machines and structures are subjected
to cyclically varying loads (Figs. 7.1 and 7.2) in service and fail due to fatigue. The
cyclic variations may be due to the change in external loads (arising out of traffic
on bridges, waves hitting ships, wind gusts on aircraft, tidal waves hitting offshore
structures, pressure fluctuations in pipelines, lift off and landing of aircraft, railway
wagons moving on rails, gear tooth getting engaged and disengaged, etc.; due to
rotations of shafts of gear boxes, axles, wheels, etc.; and arising out of vibrations
of loaded components of automobile running on roads, flow-induced vibration of
pipe, etc.).

The fatigue problems can fall into two regimes of fatigue life: low and high
cycles. In the case of low cycle fatigue, the problem involves strain level more
than the yield strain of the material, and the cumulative damage is considered to
be strain controlled. In this regime, the number of cycles to failure is less than
about 10* cycles (Dieter 1988). These problems are very important for nuclear and

Stress

Stress
/\/ »

Time \/ Time \/ :

Figure 7.1 Constant amplitude fatigue loading with overload cycle and random fatigue loading.
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Figure 7.2 Di erent types of fatigue loading. (a)Time-varying loadings with well de ned cycles.
(b) Randomly time-varying load without well de ned cycles.

thermal power plants. In the case of high cycle fatigue, which is of concern in this
chapter, generally failure occurs at stress levels much below the yield stress of the
material. In the high cycle regime, the number of cycles to failure is greater than
10* cycles.

Mostly machine and structural components are initially crack-free. As time
passes, under the action of cyclic loading, damage ensues and it gradually grows
to defect like a crack (Fig. 7.3). The crack then grows slowly to a critical size,
leading to catastrophic failure. Thus, most of the fatigue crack growth occurs in
the sub-critical stage. Since the load levels are low, the crack-tip plastic
deformations are small. The growth of a crack under high cycle fatigue loading
can be studied within the framework of linear elastic fracture mechanics. A lot of
efforts have been devoted to quantify the crack growth in terms of loading and
geometry. This has finally given rise to the possibility of calculation of fatigue life
of components and machines. Most of the models to study the fatigue crack
growth rate (FCGR) are empirical.

Based on an experimental study, Paris and Erdogan (1963) showed that the
cyclic crack growth under fatigue loading can be characterized in terms of cyclic
stress intensity factor (SIF) range. This paved the way for an estimation of cyclic
life of components. This law has been subsequently enlarged in scope to
accommodate variable and random amplitude cyclic loading, effects of occasional
overloads, etc. Even the scope has been enlarged to take care of crack growth
under fatigue together with stress corrosion, or creep, or their combinations.

Varieties of cyclic loading that can come up on a component are schematically
shown in Figs. 7.1 and 7.2. A constant amplitude cyclic loading is specified by omax,



170  Fracture mechanics
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Figure 7.3 Cracks resulting from fatigue loading at the root of a gear tooth, window corner of an
aircraft fuselage, and step of a shaft.

Omin, and mean stress oy,. The loading range, AC = Omax  Omin, is an important
quantity. Sometimes, stress ratio R = Opmin/0max is employed to specify the type
of loading. For example, the bottom most loading shown in Fig. 7.2(a), R = 1,
which is completely alternating load. For the central loading in the same figure,
R > 0; it has a mean stress oy, which is greater than zero. The cyclic Bading
parameters aS: the two extreme SIFs and the range of SIF: Kimax = Omax 712 Y,

Kimin = Omin 7ma Y and AK = Kimax ~ Kimin. Y is the SIF correction factor.

7.2 Fatigue Crack Growth Rate under Constant Amplitude Loading

Paris and Erdogan (1963) did a wide range of experiments considering specimens
with crack subjected to a variety of constant amplitude cyclic loadings a?Sl plotted
the variation of crack growth rate per cycle with range of SIFs AK = Ac™ ma Y on
a log-log scale. Typical plots, which are known as sigmoidal plots, are shown in
Fig. 7.4. The experimental data generally shows a lot of scatter. The plot can be
divided into three distinct stages. Stage I is the crack initiation region and exhibits
a fatigue threshold SIF range AKy;,, below which crack does not grow under cyclic
stress fluctuations. If the SIF range is slightly higher than this level, crack grows
fast.

Stage II is the region of crack growth. In some cases, this is the most dominant
region and the crack growth can be represented by the following relation.

da _ m
N - C (AK) (7.1)
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Figure 7.4 Plot of crack growth rate with stress intensity factor range.

Table 7.1 Threshold stress intensity factors.

Material Oult (MPa) | Stress ratio R | AKy, (MPapﬁ)
Mild steel 430 1.0 6.4
0.5 4.3
0.75 3.8
Austenitic steel 685 1.0 6.0
Low alloy steel 835 1.0 6.3
680 0 6.6
18/8 Austenitic steel 685 1 6.0
665 0 6.0
Maraging steel 2010 0.67 2.7
Aluminium 77 1.0 1.0
L65 Aluminium alloy (4.5% Cu) 450 1.0 2.1
495 0 2.1

AM503 Magnesium alloy 165 0 0.99

(1.6%Mn) Titanium 540 0.6 2.2
Nickel 430 0 7.9
455 1.0 5.9

Source: Pook (1975)

This is an empirical relation and is known as Paris law. C and m are material
constants. C varies from 10 7 to 10 !2, when working in MPa and m units, and m
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is dimensionless and varies from 2 to 7. The threshold SIF AK;, and the two
constants depend on the material and stress ratio R. Some experimentally
measured values of AKy, and C and m are presented in Tables 7.1 and 7.2 (Pook
1975), respectively. Some more data on C and m is given in Table 7.3.

In Stage III, crack grows rapidly, leading to catastrophic fracture. d—a tends to

infinity when Kpnax is close to fracture toughness Kjc or K¢ of the material. To
represent the fatigue crack growth behaviour in Stages II and III, Forman proposed
the following relations.

da _ C AK™
dN (1 R) KC Kmax

(7.2)

where K¢ is plane stress fracture toughness. This model includes the effect of stress
ratio R. The constants C and m involved here have values and units different from
those of the Paris law constants (Anderson 2005).

These relations [Egs. (7.1) and (7.2)] cannot be applied to Stage I, which is
associated with a threshold range AKj;,. Experimental measurements at extremely
low levels of the SIF range are difficult, and the results can be dubious. The
growth rate in this region has been proposed by Donahue et al. (1972) in the
following form.

da _ m

N C (AK AKy) (7.3)
Like Forman, several investigators have expressed the dependence of the FCGR
in Stage II on stress ratio R and proposed relations incorporating this factor. For

example, Broek and Schijve (1963) proposed

da
N = CKaax(l R) (7.4)
where C is a material constant different from Paris law constant. Walker (1970)

proposed a relation of the type

da = C AK"K}!

AN max (75)

where C, m, and n are material constants.

None of the relations have been developed from the consideration of basic
mechanics. They do not have general applicability. Nevertheless, the Paris law
has been most widely applied.
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Table 7.2 Typical Paris law constants.
Material 0.1% Ultimate C
or 0.2% | strength | R (MPa, m m
Proof (MPa) units)
stress
(MPa)
Mild steel 230 325 0.06-0.74 | 2427 10 12 |33
Cold rolled mild steel | 655 695 0.07-0.43 | 2507 10 13 | 4.2
0.54-0.76 | 3.681 10 * |55
0-0.75 4624 10 2 |33
18/8 Austenitic steel | 195-225 | 665 0.33-0.43 | 3.326 10 2 | 3.1
Aluminium 95-125 125-155 | 0.14-0.87 | 456 10 11 |29
5% Mg~-Al alloy 180 310 0.20-0.69 | 2.811 10 12 |27
L71 Al alloy (4.5% Cu) | 415 480 0.14-0.46 |3.920 10 ! | 3.7
L73 Al alloy (4.5% Cu) | 370 435 0.50-0.88 | 3.821 10 ' | 44
DTD 687A Al alloy | 495 540 0.20-0.45 | 1.261 10 1! | 3.7
(5.5% Zn)
ZW1 Mg alloy 165 250 0 1.230 10 ? | 3.35
(0.5% Zr)
AM503 Mg alloy 107 200 0.5 3446 10 ? | 3.35
(1.5% Mn)
Cu 26-513 215-310 | 0.07-0.82 | 3.384 10 12 | 3.9
Titanium 440 555 0.08-0.94 | 6.886 10 12 | 44
5% Al-Titanium alloy | 735 835 0.17-0.86 | 9.558 10 12 | 3.8
15% Mo-Titanium 995 1160 0.28-0.71 | 2.138 10 ! | 35
alloy
0.81-0.94 | 11.666 10 12| 44

Source: Pook (1975)
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Table 7.3 Paris law constants for some more materials.

Material C (in MPa, m | m Reference
units)
Ferrite—Pearlite steel 6.8 10 12 3.0 Barsom (1971)
Martensitic steel 133 10 1° 2.25 | Barsom (1974)
Austenitic stainless steel 55 10 12 3.25 | Barsom and Rolfe (1999)
Grey CI (for R = 0.1) 298 10 11 3.71 | Biell IV and Lawrence Jr.
(1989)
Al-Si 319 (for R = 0.1) 205 10 M 3.12 | Same as above
7075 T651 Al alloy 6.8 10 U 3.89 | Zhao, Zhang and Jiang
(2008)

7.3 Factors A ecting Fatigue Crack Propagation

For the correct prediction of fatigue life, the growth rates must be available
corresponding to the conditions existing in service. Such data is not always
available. Fatigue crack propagation is affected by a number of parameters.
Amongst the significant are thickness, anisotropy, heat treatment, cold
deformation, temperature, batch-to-batch manufacturing variations, frequency,
and environment. The influence of the environment has received a considerable
attention. It is realized that the rate of crack growth in wet air can be an order of
magnitude higher than that in vacuum. There is no agreement on the influence of
environment on the rate of crack growth. Different explanations are likely to be
applicable to different materials.

It is very difficult to account precisely all these factors. The FCGR is not a
consistent material property as the tensile strength or yield strength of a material.
Further, it is influenced by so many factors that it is likely to be a less consistent
property than the fracture toughness. This is reflected in the wide scatter bands in

d
the experimental plots of 97 ersus AK.

dN

7.4 Crack Closure

When a component with crack is loaded by cyclic loading varying from zero to
some maximum amplitude, with the increase in load from the minimum O
(Fig. 7.5(a)) crack flanks open. Plastic zone around the crack also grows in size
with the increase in the tensile load. The crack opening and the size of the plastic
zone continue to increase till the maximum load C is reached. At the maximum
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Figure 7.5 Crack closure during cyclic loading. (a) Load-displacement variation. (b) Locations for
displacement monitoring. (c) Opening SIF Kop.

load, a large plastic zone develops at the crack-tip. Upon reversal of loading, as
the load reduces from the maximum, crack flanks close early at B because the
material in the neighbourhood of the crack-tip cannot regain the original size and
the zone is subjected to compressive load on its boundary (Fig. 7.6(a)). With
further reduction in load, the closing becomes complete at A, and the specimen
displays crack-free stiffness. In the next loading cycle, crack flanks begin to open
at A, and the process continues till point B. Further loading occurs with crack
‘fully open’. This process gets repeated in every cycle.

An early closure of crack is induced by crack-tip plastic deformation. Sometimes
the crack flanks close due to roughness arising out of zig-zag crack extension and
mismatch of crests and valleys (Fig. 7.6(b)) of newly formed crack edges, or debris
or metal oxides lodged in between the two flanks (Fig. 7.6(c)).

1
Il
1 .
 Plastic zone ’,VI\ 0

~ -

() T

Figure 7.6 (a) Crack-tip plastic zone. (b) Roughness-induced closure. (c) Debris or metal oxide
induced closure.
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Elber (1970) concluded that the crack extension occurs only due to the part of the
cycle from A to C. That is, the effective SIF range responsible for crack extension
is AKegt = Kmax  Kop. He quantified the crack growth rate in terms the effective
stress intensity range AK¢ in the following form.

da

— = C(AKeg)" = AK)™ .
gy = € (8Ke)” = C (UAK) (7.6)
where U = 12“57:“” Hence the cyclic crack growth rate reduces due to crack

min

closure. Based on his experimental data for 2024-T3 aluminium sheet material,
U = 05+ 04R, where R = Umm, and R varies from —1.0 to 0.7. Schijve (1981)

max

persented U for the same material differently: U = 0.55 + 0.33R + 0.12R? for R in
the range —1.0 to 0.54.

The opening load factor U, or the opening SIF K,,, can be determined
experimentally. Fleck, Smith and Smith (1983) give U = 0.74 fqr. plane stress and
0.84 for plane strain, when AK is in the range 10 to 20 MPa' m, for 4360 50B
structural steel with Paris law constants C = 1.48 10 ® (MPa, m units) and
m = 2.86.

7.5 Life Estimation Using Paris Law

Knowing FCGR as per the Paris law, it is straightforward to calculate the life
expectancy, provided the cyclic loading details and the starting and final crack
sizes are known. The starting crack size is mostly dictated by the smallest crack
size the non-destructive testing technique employed can detect. The final crack
size can be user-specified or it can be taken to correspond the maximum crack size
that the component can withstand at omax of the load cycles. For constant
amplitude fatigue loading, the steps in life calculation are as follows.
1. Select the appropriate starting crack size ao.

2. Determine the final crack size a fr if it is not specified, from the following

relation.
Omax 7t Y = Kjc or K¢, as appropriate, where Y is SIF correction factor
and a £ = ey
d
3. Select the FCGR appropriate for the material: % = C (AK)".

4. If Y remains constant over the span ag to a £ of crack size, total number of
cycles to failure or life Ny is given by integration.

z

1 m/2 1 m/2
af da Ay 4y

a C(AcY " m)"am2 C AcY R (1 B

(7.7)
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Problem 7.1

An internal crack in a finite plate (Fig. 7.7) is subjected to cyclic load varying from
0 to 130 MPa. Given h >> b, initial crack size 2ap = 10 mm, b = 20 mm. Find
the life up to final crack size 2a f = 12 mm. For the plate material, the Paris law
constants m = 3.3and C =256 10 2 (MPa, m units).

Ao

Pt 1

2a

2b

Py

Figure 7.7 Internal crack in plate of constant thickness.

Solution r

. . — a
The SIF correction factor Y in K = Upmz Y can be taken as sec—-. For a = ay,

2b

Y = 1.04038. Assuming this to remain constant over the whole domain 5-6 mm,
using Eq. (7.7) the cyclic life
N, = a]l[ m/ i ﬂ(l) m/2
= p—
fmcacyTr A )

(0.006)" % (0.005)" ©°

= — = 29495 cycles (Ans.).
256 10 12130 1.04038 7 > (1 1.65)

Problem 7.2
Solve the above problem when 24y = 10 mm and 2a¢ = 14 mm. Consider Y to vary
with a.

Solution
Since Y varies, it is better to calculate life through numerical integration.
N da Z da
= pP— + pP— + ...
f o C(AcY r-’7'c)mam/2 o C(AcY |"71)"1:1’“/2
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Z
ar da

+ ni 7-8
w C(AcY " m)"am/? @8)

For an approximate estimate, the full range of crack growth (ag to a) can be broken
into two spans, a9 to a; and a; to ay. AK can be calculated at the ends of each
span. The corresponding FCGR can also be calculated for the three crack sizes. The
average crack growth rate over a span serves as the basis to calculate the number
of cycles for each span.

The correction factor Y corresponding to the three crack sizes 5 mm, 6 mm, and
7 mm are

| QU

Y = sec%, Ys = 1.04038, Yo = 1.0594 and Y7 = 1.083

This éives AKs = Ao pﬁ Y = 180 pn 0.005Y5 = 16.95 MPapm, AKg = 18.908

MPa" m and AK; = 20.878 MPa" m.

The corresponding crack growth rate % = C (AK)" = 2914 10 8

5
m/cycle 4o 418 10 ® m/cycle, and LI 5.797 10 8 m/cycle
AR yee N, yee

The crack growth rate over each 1 mm span can be taken as the average of the two
terminal growth rates. Therefore the total cyclic life
10 3 10 °
Ny = st 8
3.547 10 49885 10

= 48238 cycles (Ans.).

7.6 Retardation of Crack Growth Due To Overloads

In a sequence of constant amplitude cyclic loading, if an overload is applied, the
cyclic FCGR gets retarded and the cyclic life extends (Wheeler 1972; Willenborg,
Engle Jr. and Wood 1971; Fleck 1985; Shin and Fleck 1987; etc.). Conversely, if an
underload cycle is applied, the cyclic crack growth rate gets accelerated (e.g., Fleck
1985). The case involving overloads is graphically illustrated in Fig. 7.8. Following
the peak of overload applied at A, the crack growth rate drops. This retardation can
be explained in terms of plasticity induced crack-tip blunting, crack closure, and
residual stresses. The extent of the retardation depends on the cyclic load range
Ao, overload cyclic range Aoy, and the span of interval between overloads and the
material.

Immediately following the application of an overload, the crack gets blunted
due to large plastic deformation. Thereby, the stress concentration at the crack-tip
reduces, and the rate of crack growth reduces. The other possibility is that after
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the overload, the closure occurs early and the crack opening SIF level increases.
Thereby, the effective SIF range reduces and so does the crack growth rate.
Incidentally, some researchers believe that immediately after the overload, the
crack gets blunted, and it increases the crack growth rate, because crack does not
close early and the effective SIF range increases. However, after a very small crack
growth, the closure begins to occur early, the opening stress increases, and the
effective SIF range reduces, which leads to a lower crack growth rate. The
reduction in crack growth rate following the application of an overload can also
be explained in terms of residual compressive stresses, which develop ahead of
the crack-tip, reducing the effective tensile stresses at the crack-tip. In the same
light, if an under-load cycle is applied in a sequence of constant amplitude
loading, the crack growth rate will increase. These issues make the life estimation
under variable amplitude loading difficult.

There are some empirical models available to estimate the crack growth rate
following an overload. Wheeler (1972) proposed one such model. According to

(a)

s

. L
Time

(b)

S >
Time

Figure 7.8 (a) Loading. (b) Retardation of crack growth immediately following application of
overload.
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this model, the FCGR gets retarded to the highest extent immediately following
the overload cycle. The retardation effect gradually reduces as the instantaneous
plastic zone approaches the overload plastic zone boundary. The retarded crack
growth rate depends on two parameters: the instantaneous plastic zone radius r;
and the distance x of the instantaneous crack-tip B (Fig. 7.9(a)) from the overload
plastic zone boundary. For R = 0,

_ AKF

2
COy

41 (79)

where ¢ = 671 for plane strain and 27 for plane stress. Explicitly, the retarded crack
growth rate is given by

da = v oda (7.10)
dN retarded x dN Ao=constant .

To

Ll‘
V|‘

4

7 .
Overload plastic zone 1 1 . Overload plastic

zone 2

Figure 7.9 (a) Overload and instantaneous plastic zones. (b) Instantaneous plastic zone touching
overload plastic zone boundary. (c) New overload plastic zone spreading beyond rst overload
plastic zone boundary.
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where p is an empirical constant and x = a, +r, a;. Wheeler specified that p =
1.43 for D,. medium carbon low alloy ultra high strength steel (with yield point
1345 MPa and ultimate limit 1572 MPa) and 3.40 for Ti-6Al-4YV titanium alloy (with
yield point 930 MPa and ultimate limit 970 MPa). Fleck and Smith (1984) give a
value of p = 0.75 for BS4360 50B structural steel for which the corresponding Paris

law relations are:% =631 10 ?(AK)**® mm/ cycle for 3 mm thick specimens

d
and % =498 10 °(AK)*? mm/ cycle for 24 mm thick specimens, when stress

ratio R is in the range 0.3 to 0.5. In their relations, AK is in MPa pﬁ.
When A is the instantaneous crack-tip corresponding to the application of
overload, the crack growth rate is the lowest immediately afterwards. As the

instantaneous crack-tip B advances from the overload crack-tip A, the FCGR

da

gradually increases. The FCGR picks up the original , when

. . dN Av=constant
(a, + 1)  (a; +r;). Thatis to say, when the instantaneous plastic zone radius r;

touches (Fig. 7.9(b)), or spreads beyond, the overload plastic zone boundary C,
the crack growth rate becomes equal to the rate corresponding to the constant
amplitude cyclic loading Ac.

In a particular situation, if the first overload occurs at crack length a; giving rise
to a plastic zone size 7,1 and before the expiry of the associated retardation effect,
a second overload cycle (Fig. 7.9(c)) occurs at crack length a;, and the
corresponding overload plastic zone size r,, spreads beyond the boundary of the
tirst overload plastic zone boundary 7,1, fresh calculation of retarded FCGR is
recommended considering the new location E of the crack-tip.

Willenborg, Engle Jr. and Wood (1971) gave an empirical model, which
considered the existence of residual stresses due to the overload cycle. The
residual stresses lead to a reduction of both instantaneous K.y ; and Kpin ; in cycle
i. When the crack-tip in the current cycle i is located at a; (Figs. 7.9(a) and 10), the
magnitude of residual stresses correspond to the SIF K5 ; = (K;  Kpax i), where

K

> =X= a4+ 1, 4 (7.11)
coy

and ¢ = 67 for plane strain and 27t for plane stress. The effective maximum and
minimum SIFs for the current cycle i are Kyaxei = Kmaxi Kresi and Kminei =
Kmini Kyesi. The effective SIF range AKesf = Kmaxei  Kmine,i and the retarded
crack growth rate are calculated using the following Forman type relation.

da C (AKeff)m Kmin e,i
— = ; Regr = . 7.12
dN (1 Reff) Kc AKeff eff Krnax e,i ( )
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Figure 7.10 Reduction of cyclic stress intensity factors due to residual stresses after overload cycle.

These schemes are useful to calculate fatigue life of components subjected to
variety of cyclic loadings with occasional overloads.

7.7 Variable Amplitude Cyclic Loading

Variable amplitude cyclic loading can be of two important varieties. In one case,
the load cycles can be well defined but they can occur randomly (Fig. 7.2(a) top).
Alternatively, it can be like in the case (Fig. 7.2(b)) where the cycles are not so well
defined. The first type of loading will be discussed here; the other case will be
discussed in the passing. In the first case, when loads of the same cyclic
amplitudes are blocked together and crack growth calculations are done without
any interaction effects, the extent of total crack growth can be different depending
on the sequence of block-occurrences. This is illustrated in Fig. 7.11. If n; cycles of
Aoy act first and then n; cycles of Ao, (Fig. 7.11(b) top), crack grows by OA;
followed by A1B; (Fig. 7.11(c)). On the other hand, if n, cycles of Ao, act first and
then n; cycles of Aoy (Fig. 7.11(b) bottom), crack grows by OA; followed by A;B»
(Fig. 7.11(c)). The total growth is less in the second case. This may not always be
the case. It depends on the two constant amplitude crack growth curves, 1
and n5.

In the case of second loading sequence, the retardation due to cyclic interactions
will come into play. This will further reduce the crack growth in the second case.

If the variation of load amplitude with frequency over the whole life of
a component conforms to Gaussian/normal distribution or Rayleigh type
distribution (Fig. 7.12(a)), root-mean-square amplitude Acyms can be determined
through the following relation.

S A
Aopme = Zi=LPIATE (7.13)
Li=1Pi
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Figure 7.11 Variable cyclic loading. (a) Actual loading. (b) Load sequencing for life calculation.
(c) Crack growth due to two loading sequences.

where p; is the number of cycles, or % occurrences, of amplitude Ac; over the span
of life (Barsom and Rolfe 1999). The crack growth life can be calculated using the
constant amplitude fatigue loading data and using stress range Ac = Aoyms.

If the load amplitude occurs repeatedly in blocks, and in each block the cyclic
amplitude increases with time (Fig. 7.12(b)), or decreases with time (Fig. 7.12(c)),
or increases first and then decreases with time (Fig. 7.12(d)), the life calculation in
a block can be done using the root-mean-square approach as in the earlier case
(Barsom and Rolfe 1999). In situations of the type shown in Figs. 7.12(c) and
7.12(d), the difference with experimental observations may come up because the
crack growth is significantly affected by the cyclic interactions or retardation/
acceleration phenomenon. To improve the position, retardation-based calculation
can be done.
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Figure 7.12 Rayleigh-type distribution of range of loading. (a) Frequency variation with stress
range. (b) Load range increasing in a block. (c) Load range decreasing in a block. (d)
Increasing{decreasing load range in a block.

Problem 7.3 (example on effect of load sequence)

For a steel, FCGR data is: C = 82762 10 '2 (in MPa, m units) and m = 2.55.
Calculate the final crack size when the starting crack size is 0.010 m and the
following cyclic load amplitudes are applied.

1. Ay = 300 MPa n; = 2000 cycles followed by Ao, = 600 MPa n, = 1000
cycles.



Fatigue crack growth 185

2. Aoy = 600 MPa n; = 1000 cycles followed by Aca = 300 MPa n, = 2000
cycles.

The SIF correction factor can be assumed as unity.

Solution
Approximate method
(i) Assuming crack grows at the same rate over 2000 cycles and the rate corresponds
to the initial crack size a;= 0.010 m, the final crack size a 1 =0.010416 m.

Similarly, assuming that the crack grows in the same fashion over the next 1000
cycles, the final crack size ay=0.011702 m (Ans.).

(ii) For the second loading, similar calculations give a5y = 0.0112189 m and 4 =
0.0117065 m.

Thus, the two sequences of loading give rise to different final crack sizes (Ans.).

More accurate method
(i) If the crack growth rate is amended after every cycle of loading, at the end of
2000 cycles of loading of amplitude 300 MPa, the crack attains size
ar; = 0.0104275 m. This can be easily done by writing a small MATLAB program.
A sample FORTRAN program is added in Appendix 7.1 at the end of the chapter
and has been used here. If the same procedure is followed for the next 1000 cycles
of amplitude 600 MPa starting from size 4y, the final crack size is 0.0118211 m
(Ans.).

(ii) For the second sequence of loading, the similar approach gives rise to as; =
0.0113198 m and a4y = 0.0118211 m. The final crack size is not affected by the
sequence in this approach.

Problem 7.4 (Example on solution by RMS stress range approach)
An edge crack of size a0 = 6 mm in a plate of width w = 120 mm was subjected to
the following variable load cycles.

Stress range (MPa) No. of cycles

50 10, 000
100 20, 000
150 30, 000
120 40, 000
40 50, 000
The plate is made of ferrite steel with Paris law constants C = 6.8 10 !2 (in MPa,

m units) and m = 3.0. The SIF correction factor Yin K; = ¢ 7ta Y can be calculated
through
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Y =112 0.23r+10.55r> 21.72r +30.39/*, 0<r <06, r= %
Calculate the final crack size.
Solution s
Yioy pi Aot
The stress range Ac = Aoims = Zkf = 101.85 MPa and total number of
i=1Pi

cycles is 1, 50, 000.
Calculating the crack growth with continuous amendment of crack size a and

ratio r = a2 through a small MATLAB program, the final crack size

w
ag, = 14.744 mm. If the correction factor Y is taken as 1.12 throughout, the final
crack size can be calculated through Eq. (7.7). This gives ay = 13.227 mm.

Problem 7.5
Solve the above problem when a9 = 12 mm and the loading details are as follows.

Stress range (MPa) No. of cycles

500 10
1000 20
1500 30
1200 40

400 50

Solution

The stress range Ao = Aoyms = 1018.5 MPa, and the final crack size af through Eq.
(7.7) is 41.40 mm. Through cycle-by-cycle integration using the MATLAB program
ar = 40.99 mm assuming Y = 1.12 throughout.

Problems involving retardation of crack growth due to overloading

Problem 7.6
There is an initial edge crack of size 8 mm in a plate (width w = 150 mm) of Ti-
6Al-4V alloy. The material data is as follows: Yield point = 930 MPa, ultimate limit
= 970 MPa, the Paris law constants C = 3.5306 10 !! (in MPa, m units), and
m = 2.80, Wheeler retardation constant p = 3.40. The plate is in a state of plane
stress.

(i) It is subjected to a constant amplitude fatigue loading Ac = 60 MPa for
1, 00, 000 cycles. Calculate the final crack size.

(ii) After the first 50, 000 cycles of Ac = 60 MPa, an overload of amplitude
100 MPa is applied. This is followed by the next 50, 000 cycles of the constant
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amplitude Ac = 60 MPa. Find out the final crack size. The SIF correction factor
can be calculated through

Y =112 023r+10552% 21.72+3+3039+% r= % 0<r<0.6

Solution

(i) Starting from initial crack size a; = 8 mm, the SIF range with the inclusion of
the correction factor Y and the cyclic crack growth can be calculated for each cycle.
Thereby, crack size at the end of the cycle can be calculated. The process can be
repeated for the full span of 1, 00, 000 cycles and the final crack size can be obtained.
The MATLAB program of Appendix 7.1 is employed to do the calculation. The final
crack size ay is obtained as 11.703 mm. It is noted that the crack size after the first
50, 000 cycles is 9.5822 mm.

(ii) In this case, the growth over the first 50, 000 cycles of amplitude 60 MPa
can be calculated in the manner as in the earlier case. The final crack size af; =
9.5822 mm. Since the next cycle is of higher amplitude, the growth of the crack
can be determined following the similar procedure. The final crack size after the
50001th cycle is af, = 9.5823 mm. During the next stages, the cyclic crack growth
gets retarded. The retardation factor can be calculated by applying the Wheeler’s
method. The retardation factor is given by li , where r; is instantaneous plastic
zone size, X = ao + 71, 4,4, = ap, and 1, (I%Cig. 7.9) is the plastic zone size due to
the SIF corresponding to the amplitude Ac = 100 MPa. The instantaneous plastic

2
zone size r; = (AK;)

2no2

amended at the end of each cycle. This procedure continues till (a, +r,) = (a; +
r;). This type of growth occurs over only 15, 256 cycles, and the crack attains a
length a 3 = 9.6285 mm at the end of 65, 257 cycles. After that, crack grows over
the remaining cycles without any retardation and it picks up the final size apy =
11.0407 mm after 1, 00, 001 cycles. Hence, the total crack growth is 3.0407 mm. It
can be noticed that the overload has led to a reduction in the final crack size, for
example, from 11.703 mm to 11.0407 mm.

. While doing this stage of calculation, crack size can be

Problem 7.7

In the earlier problem, data is changed as follows. (i) 50 MPa for 50, 000 cycles,
followed by an overload cycle of 120 MPa and constant amplitude loading of 50
MPa for 50, 000 cycles; starting crack size is 10 mm and plate width is 180 mm.
(if) 60 MPa for 50, 000 cycles, followed by an overload cycle of 90 MPa and then
a constant amplitude loading of 60 MPa for 50,000 cycles; starting crack size is 10
mm and plate width is 180 mm.

Calculate changes in the crack size at the different stages. Assume plane stress.
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Solution

(i) The method of calculations remains the same and has been done using the
program given in Appendix 7.1. The crack lengths at the end of different stages
are now obtained as follows. After first 50, 000 cycles, a 1 = 11.242 mm and after
the overload cycle, a5, = 11.242 mm. The growth during the overload cycle is less
than 10 3 mm. The crack growth is highly retarded subsequently, and it remains
the same till the end of 1, 00, 001 cycles.

(ii) In this case, after the first 50, 000 cycles, af; = 12.204 mm and after the
overload cycle ap, = 12.205 mm. The crack grows with retardation effect over
the next 5035 cycles and grows to size ar3 = 12.246 mm. That is, crack size after
55, 036 cycles is 12.246 mm. After 1, 00, 001 cycles, it grows to the final size a =
14.968 mm.

In Problem 7.7(ii), if the state of stress conforms to plane strain, after the first
50, 000 cycles, a n= 12.204 mm and after the overload cycle, a 2= 12.205 mm.
The crack grows with retardation effect over the next 1687 cycles and grows to
size ag3 = 12.219 mm. That is, crack size after 51, 688 cycles is 12.219 mm. After
1,00, 001 cycles, it grows to the final size a4y = 15.17 mm. In this case, the number
of retardation cycles reduces, but the final crack size increases slightly.

Problem 7.8

In a plate (width w = 180 mm) of Ti-6Al-4V alloy, there is an initial edge crack
of size 10 mm. The material data is the same as given earlier. (i) It is subjected to
constant amplitude loading of 60 MPa for 50, 000 cycles, followed by an overload
cycle of 100 MPa and then a constant amplitude loading of 60 MPa for 50, 000
cycles. (ii) It is subjected to constant amplitude loading of 60 MPa for 50, 000 cycles,
followed by an overload cycle of 100 MPa and then constant amplitude loading of
60 MPa for 4000 cycles. This is followed by the second overload cycle of 90 MPa,
and then constant amplitude loading of 60 MPa for 46, 000 cycles. Assume plane
strain condition and employ material data of Problem 7.6. The SIF correction factor
can be calculated through

Y =112 023r+1055/* 21.727°+30397%, r= % 0<r<0.6.
Calculate the crack sizes at different stages.
Solution
(i) The solution procedure remains the same and results are obtained using the
_ (K’

program. However, the plastic zone size is calculated using the relation r, = .
P 6mnod
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Upon solving, it is observed that after the first 50, 000 cycles, af; = 12.2048 mm
and after the overload cycle, ag, = 12.2050 mm. The crack grows with retardation
effect over the next 4368 cycles and grows to a size ay3 = 12.2248 mm. After
1, 00, 001 cycles, it grows to the final size agy = 149854 mm. Comparing the
results for this case with the same for solved problem 7.7(ii), it can be seen that
crack growth is accelerated in this case.

(ii) The crack growth calculations can be done along the similar lines as in the
case of part (i). After the first 50, 000 cycles, crack attains a size a5 = 12.2048 mm.
At the end of the first overload cycle, it grows to size ap = 12.2050 mm. Over the
next 4000 cycles, crack growth gets retarded. At the end of 54, 001 cycles, it grows
to size a 3= 12.2179 mm. After the second overload cycle, or 54, 002 cycles, it
picks up a length a; = 12.2180 mm. Over the next 1685 cycles, the crack growth
gets retarded and it grows to size ags = 12.232 mm. That is, after 55, 687 cycles
crack attains a size 12.232 mm. Finally, at the end of 1, 00, 002 cycles, its size a f6 =
14.9020 mm.

Problem 7.9

A plate 25 mm thick and width w = 250 mm made of structural steel BS4360 50B
has an initial edge crack of size ap = 10 mm. It is subjected to a constant amplitude
fatigue cycling with stress range Ac = 80 MPa for 7, 50, 000 cycles. Determine
the final crack size using the Paris law constants, C = 6.31 10 12 (MPa, m units)
and m = 2.98, and considering the crack closure effect to be given by the factor
U = 0.84. The plate is in a state of plane strain.

Solution
Assuming the SIF correction factor to remain constant and given by Y = 1.12,
Eq. (7.7) can be written for the present case as follows.
B ajl[ m/2 a(l) m/2
M= ey PR 2
o T @1 F)

(7.14)

Substituting the data

ajlr 2.98/2 (0010)1 298/2

631 10 2084 80 112" 7 2P@ 2%8)

75 10* =

After solving the above relation, the final crack size a = 45.24 mm.
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7.7.1 Rain ow Cycle Counting

When the load records do not show clearly the load cycles as in the case of
random cyclic loading, the counting methods as per, for example, American
Society for Testing Materials (ASTM E 1049-85 2005), the rainflow counting
method (Endo et al. 1974; Downing and Socie 1982), and so on, are very useful to
reduce a record of load/stress spectrum into a set of simple stress reversals. In the
rainflow method, the component loading record is placed vertically with the time
axis pointing downward (Fig. 7.13(a)). The load record looks like the Japanese
pagoda. The rainflow technique is applied to calculate each half load cycle. By
combining equal, or nearly equal, size half cycles, the complete load cycles are
identified. The rules to be followed in identifying each half cycle are as follows.

1. It is necessary to consider water flows downwards starting from each
minimum. The half cycles are counted spanning over starting and
termination. The termination occurs when either of the following takes
place.

(i) It reaches the end of time history, for example, points I and K.
(i) If it comes across a minimum of greater magnitude than its origin, for
example, points C and E.
(iii) It merges with flow that started at an earlier level, for example, flow
from H to L.

2. Similar situation is considered with flow starting from each maximum as a
source. Steps (i) to (iii) are again followed to count half cycles.

3. Next, half cycles of equal or very nearly equal magnitude but opposite sign
are combined to count complete load cycles, for example, A to Fand Fto I, C
toBand Bto C, G to Hand H to G, and so on. A few half cycles may be left
out, for example, I to ] and J to K; these two can be paired to form a cycle.

Alternatively, considering the cyclic loading in the sequence in which it is applied
on a component and the component material to display kinematic plasticity, it is
possible to count the loading cycles as shown in Fig. 7.13(b). This method is
unmanageable when the load spectrum records are quite voluminous. The
rainflow counting is then the easier way out.

The component life can be calculated through integration of cycle-by-cycle crack
growth neglecting cyclic interactions. To account for cyclic interactions, various
methods are proposed (Socie 1977; Schijve 1980; Kikukawa, Jono and Kondo 1981;
Broek 1984; Fleck and Smith 1984).
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Figure 7.13 (a) Rain ow counting from load record. (b) Cycle counting considering kinematic
hardening material properties.
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7.8 Closure

Fatigue crack growth encompasses a very vast spectrum. The coverage in this
chapter has been centred mainly on the Paris law and linear elastic fracture
mechanics (LEFM). There is no coverage of short cracks, low cycle fatigue, fatigue
interactions with other subcritical crack growth phenomena like corrosion, creep,
and so on. Readers may find the references (Smith 1983; Tanaka and Nakai 1983;
Suresh and Ritchie 1984) very useful in the case of short cracks. Reference by
Suresh(1998) will be useful in many of these areas. Reference by Larsson (1983)
deals with the initial developments concerning stress corrosion and creep.

APPENDIX 7.1
Fortran Program for Crack Growth Calculations

The program, FCGRETARD, listed below can be used for crack growth
calculations both with and without the inclusion of any retardation, or
cycle-to-cycle interaction, effects. At the end of the listing, a sample dataset for a
case study with the interaction effects is included. To carry out the calculations
without any interaction effects, replace 1 by 0 in the third line of the dataset.

PROGRAM FCGRETARD

C Date: 25 Jun 2014.

C Fatigue crack growth calculations.

For variable amplitude loading with overloads, retardation

calculation according to Wheeler model is included. This program

N 0O 0

can also be used for calculations without any cyclic interactions.
DIMENSION DELSIG (200), NFREQ (200), IOLINDX (50)

Units for input data: stress and stress range in MPa, crack size in m,
Paris law constant in (MPa, m) units,

DELSIG = Delsigma = Stress range, NFREQ = No. of cycles, IOLINDX =

n 0 0O 0

Index for overload (0 for normal cycles; 1 for overload cycles).
PI=3.14159265

OPEN (UNIT = 1, FILE = 'TAPE1’, STATUS = 'OLD’)

OPEN (UNIT = 2, FILE = 'TAPE2’, STATUS ="NEW’)
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OPEN (UNIT = 5, FILE = 'TAPE5’, STATUS = 'NEW’)
NAMPL = Number of cases of stress range.
IPLST = Index for plane stress and plane strain, 0 for
plane stress and 1 for plane strain.
READ (1, *) NAMPL, IPLST
WRITE (2, *) 'NAMPL, IPLST’, NAMPL, IPLST
READ (1, *) (DELSIG(IA), NFREQ(IA), IOLINDX(IA), IA = 1, NAMPL)
DO 90IA =1, NAMPL
WRITE (2, *) DELSIG(IA), NFREQ(IA), IOLINDX(IA)
CONTINUE
WRITE (*, *)’GIVE Paris law C & m, initial crack size a0, width w,
Yield point, Wheeler p, No.of stress ranges and AFD’
AFD Specifies final crack size up to which cycle life is are required.
Give w as 1.0E10 for using YC = 1.0
Next line lists all input variables: C, m, a0, w, Y.P,
number of stress range in the problem, specified crack
size, if any.
READ (1, *) CP, AM, AI0, W, SIGY, AP, NC, AFD
WRITE (2, *) 'C, m, ai, w, sigy, p, no.of ampl. cycles’
WRITE (2, *) CP, AM, AI0, W, SIGY, AP, NC, AFD
For AFD = 0.0, DIFF is arbitrarily set at a very high level.
IF (AFD.EQ.0.0) DIFF = 10000.0
AOL =0.0
ROL = 0.0
X0 =00
XI=0.0

Al = AI0

193
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DO601=1,NC
NFREQT = NFREQ(I)
C Crack extension calculation begins.
180 LC=NFREQT
WRITE (2, *) "AF, AFD, NC’, AF, AFD, NC
DO170JO=1,LC
C  SIF correction factor YC=1.0, when w = 1.0E10 is given as input.
IF (W.EQ.1.0E10) YC = 1.0
IF (W.NE.1.0E10) THEN
R = AI/W
YC =41.12-0.23*R + 10.55*R**2  21.72*R**3 + 30.39*R**4
ENDIF
SIFI = DELSIG(I)*SQRT(PI*AI)*YC
IF (IPLST.EQ.1) RI = SIFI**2/(6.0*PI*SIGY**2)
IF (IPLST.EQ.0) RI = SIFI**2/(2.0*PI*SIGY**2)
C IF (NCHEK.EQ.1.AND.XC.LE.0.0) THEN
IF (AOL.EQ.0.0) RAT = 1.0
IF (AOL.GT.0.0) THEN
XO = AOL + ROL
XI = AI+ RI
XB=XO AI
IF (XO.GT.XI) RAT = (RI/(XO  Al))
IF (XO.LE.XI) RAT = 1.0
WRITE (5, *) 'Cycle No., RAT, ai, aol, ri, rol =/,
1]JO, RAT Al AOL, RL, ROL
ENDIF
AINC = CP*(SIFI)*AM*(RAT)**AP
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IF (JO.EQ.1) WRITE (*, *) I, AINC’

IF (JO.LE.15) WRITE (*, *) I, SIFMX, SIFMN, AINC
AF=AI+AINC

IF (JO.EQ.1) WRITE (2, *) 1, JO, SIFI, RAT, AINC, AL, AF’
IF JO.EQ.1) WRITE (2, *) 1, JO, SIFI, RAT, AINC, Al, AF

IF (AFD.GT.0.0.AND.RAT.LE.0.9999)
1 WRITE (2, )1, JO, SIFI, RAT, AINC, AI, AF
IF (AFD.LE.0.0.AND.RAT.LE.0.9999)
1 WRITE (2, *)I, JO, SIFI, RAT, AINC, AI, AF
IF (AF.GE.AFD) WRITE (2, *) 'JO, Al, AF,, JO, Al, AF
Al = AF
IF (AFD.GT.0.0) THEN
IF (AF.GT.AFD) WRITE (2, *) 1, JO, AE, AFD/, I, JO, AF, AFD
DIFF = ABS(AFD-AF)
IF (DIFF.LE.10.0E-6) GO TO 190
ENDIF
IF (IOLINDX(I).EQ.1) THEN
AOL = AF
ROL =RI
XO = AOL + ROL
ENDIF
WRITE (2, *) JO, Al AF, AFD
CONTINUE
CONTINUE
WRITE (2, *) 1, JO, SIFI, RAT, AINC, Al AF
IF (DIFF.LE.10.0E-6) STOP

195
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60 CONTINUE

40 FORMAT (1X, 8(1X, E12.5))

C

C
C
C
C
C
C

CLOSE(2, STATUS = 'KEEP’)
CLOSE(5, STATUS = "DELETE’)
STOP
END

— SAMPLE DATASET

A typical dataset with one overload cycle is given below.

There are three stress ranges 60, 120 and 60MPa. The total

number of cycles in the three cases are 50000, 1 and 50000 respectively.

Last line gives values of C, m, initial crack size, plate width, yield point,
Wheeler retardation constant p, number of cases of stress ranges/amplitudes
and a4, the crack size for which the printing of number of cycles is needed.
30

60.0 50000 0

120011

60.0 50000 0

3.5306E-11 2.80 0.010 0.180 930.0 3.40 3 0.000

Excercise

7.1 Convert Paris law constants C and m given in ksipin—in units to MPap -m
units for the following two materials. (i) D, steel: C = 0.0022 10 © (ksi,in,
in units) and m = 2.55. (ii) Ti-6Al-4V titanium alloy: 0.00181 10 ° (ksi in,
in units) and m = 2.8.

[Ans. (i) 4.3937 10 ! (MPapm, m units) and 2.55. (ii) 3.5306 10 !
(MPa' m, m units) and 2.8].

d
7.2 Is there any dependence of % on R. How can you accommodate it?
7.3 What is the difference between opening and closing SIFs? Which is important

in relation to the Elber crack growth model?
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7.10
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What is the reason for crack closure?
Is the cyclic sequence important in fatigue crack growth? If yes, why is it so?

If the cyclic amplitude distribution does not follow the standard Gaussian
distribution, how do you plan to calculate the cyclic crack growth rate?

Why does fatigue crack growth rate reduce following an overload cycle?

Give some suggestions for extending the life of a component subjected to
fatigue loading.

In a plate of D6, steel, there is a starting crack of size 12 mm. Assuming
the SIF correction factor as 1.0, calculate the crack sizes in the following two
cases. Use material data of Q.7.1. Assume no cycle-to-cycle interaction.

(i) Aoy = 250 MPa n; = 1000 cycles followed by Ao, = 500 MPa n, = 1000
cycles.

(ii) Aoy = 500 MPa n; = 1000 cycles followed by Acy = 250 MPa n, = 1000
cycles.

[Ans. Solution through cycle-to-cycle integration: (i) a;; = 0.012918 m,
ar = 0.0205549 m. (ii) a5, = 0.018905 m, ay = 0.020555 m].

A plate (width w = 150 mm) is made of Ti-6Al-4V alloy. The material data
are as follows: Yield point = 930 MPa, ultimate limit = 970 MPa, and the
Paris law constants C = 3.5306 10 1! (in MPa, m units) and m = 2.80,
Wheeler retardation constant p = 3.4. Assume plane strain.

(i) Find out the final crack size after 10, 00, 000 cycles when it is subjected
to a constant amplitude fatigue loading Ac = 30 MPa and the starting edge
crack size is 10 mm.

(ii) Find the number of cycles when the starting and final edge crack sizes
are 15 mm and 25 mm, respectively, and the cyclic load amplitude Ao =
35 MPa.

(iii) Find the number of cycles when the starting and final edge crack sizes
are 25 mm and 40 mm, respectively, and the cyclic load amplitude Ac = 55
MPa. What difference is likely to be observed if the state of stress changes to
plane stress?

[Hint: Using the MATLAB program given in Appendix 7.1, these problems
can be solved. Ans. (i) 19.8048 mm. (ii) 3, 76, 820 cycles. (iii) 56, 334 cycles.
No change in number of cycles if the same Paris law constants are considered
to be valid.]

Solve problem Q.7.10(i) when an overload cycle of 60 MPa is applied after the
first 400, 000 cycles. Assume a plane state of strain.
[Ans. Final crack size 12.67149 mm after 10,00,001 cycles]
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7.12 In a plate (width w = 220 mm) of D6, steel, there is an initial edge crack

of size 10 mm. The material data are as follows: Yield point = 1345 MPa,
ultimate limit = 1572 MPa, the Paris law constants C = 4.3937 10 U (in
MPa, m units) and m = 2.55, and Wheeler retardation constant p = 1.43.
Assume plane strain.

The plate is subjected to a constant amplitude fatigue loading Ac = 120
MPa for 10, 000 cycles. This is followed by an overload cycle of amplitude
360 MPa. Subsequently, a constant amplitude loading of 220 MPa is applied
for 12, 000 cycles. Find the crack sizes at different stages.

[Ans. Crack sizes are 11.5935 mm after 10, 000 cycles, 11.5964 mm after
10, 001 cycles, 11.7054 mm after 10, 321 cycles, and 30.1329 mm after 22, 001
cycles.]

7.13 A three-point bend specimen (Fig. Q.7.13) with an edge crack is made of Ti-

6Al-4V alloy and has the following dimensions: starting crack size ap = 14
mm, specimen depth w = 30 mm, support span L = 120 mm, and specimen
thickness B = 15 mm. It is subjected to a cyclic load varying from 1000 N to
3500 N for 1, 00, 000 cycles. Find the final crack size. Given C = 3.5306
10 ™ (MPa' m, m units) and m = 2.8.

P P
l Time l Time l

a /\ w a/\ w

f 1 f

’ ! | e =
Figure Q.7.13 Figure Q.7.14

[Hint: Use the appropriate SIF correction factor and update crack size after
every cycle. Ans. Final crack size 16.5333 mm.]

7.14 A four-point bend specimen (Fig. Q.7.14) with an edge crack is made of Ti-

6Al-4V alloy and has the following dimensions: starting crack size ap = 10
mm, specimen depth w = 30 mm, load-support span L = 100 mm, and
specimen thickness B = 15 mm. It is subjected to a cyclic load varying from
400 N to 1400 N for 1, 00, 000 cycles. Find the final crack size. Use properties
data of Q.7.10. Assume plane strain. [Ans. Final crack size 12.2236 mm.]

7.15 Solve problem Q.7.14 when the material is D6, steel with properties data:

yield point = 1345 MPa, ultimate limit = 1572 MPa, the Paris law constants
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C =4.3937 10 ' (in MPa, m units) and m = 2.55, and Wheeler retardation
constant p = 1.43. (i) Load range is 1100 N. (ii) Load range is 1450 N. Assume
plane strain. [Ans. Final crack size: (i) 11.9249 mm, (ii) 15.6084 mm.]

7.16 A solid shaft made of Ti-6Al-4V alloy has a circumferential crack of depth

a = 4 mm. Its diameter D = 60 mm. It is subjected to a constant amplitude
axial fatigue loading of 80 MPa for 25, 000 cycles. Itis followed by an overload
cycle of amplitude 190 MPa and then constant amplitude loading of 80 MPa
for 25, 000 cycles. Find the size of the crack at the different stages. Given
C=235306 10 1! (MPapm, m units), m = 2.8, Wheeler constant p = 3.40,
and yield point = 930 MPa.
[Hint: Use the appropriate correction factor in terms of a and D. Ans. a5 =
4.7377 mm after 25, 000 cycles, ap, = 4.7381 mm after 25, 001 cycles, a3 =
4.7510 mm after 50, 001 cycles. The full span of growth over the second span
of 25000 cycles occurs with retardation.]

7.17 Solve problem Q.7.10(ii) when there is closure effect given by U=0.75. [Ans.
1.094 million cycles, assuming Y=1.12 over the whole span.]

7.18 A plate of uniform thickness made of Ti-6Al-4V alloy with an 8 mm edge
crack is subjected to a constant amplitude cyclic loading of range 60 MPa.
Given C = 55306 10 (MPapm, m units) and m = 2.8. The plate width
is 200 mm. Determine approximately the final crack size after 50, 000 cycles.
[Hint: Assume constant SIF correction factor Y and solve. Ans. 9.50 mm.]
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Elastic Plastic Fracture Mechanics

8.1 Introduction

Metals are abundantly used in machine building and civil structures. In the
presence of a crack, metals give way to plastic deformation near the crack-tip
prior to fracture. The degree of plastic deformation may be higher than the level
that can be accommodated in the linear elastic fracture mechanics (LEFM). This
has lead to development of elastic plastic fracture mechanics (EPFM) or yielding
fracture mechanics (YFM) to cater for ductile metals. In the early stages of the
development, focus was on understanding of the crack-tip field and its
characterization through parameter like the SIF in LEFM. These developments,
measurement of the parameter and application of the concept to practice are
discussed in this chapter. Before presenting these developments, some
preliminaries of plasticity of metals are given in the following section. Some
aspects of plasticity, which may have relevance in the case of fatigue, are included.

8.2 Briefs on Plasticity

During tensile test, a specimen is loaded by an external tensile load P (Fig. 8.1(a)),
and the instantaneous deformation is measured from changes in length between
the two points spaced by a gauge length [y at no load. If the instantaneous spacing
is I, the engineering strain € = (I Ip)/lp and the corresponding natural, or true,
or logarithmic strain,
Z
I

= Uopmlop gelh =In(1 +¢) (8.1)
The engineering stress ¢ is given by instantaneous load P divided by the original
cross-sectional area Ay, that is, ¢ = P/Ap. The true stress ¢, is given by
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P i ) .
oy = 1 where A is the current cross-section. If small changes in the volume due

to elastic deformation are neglected, that is, the material can be assumed
plastically incompressible, then Al = Agly.
Hence,

op=—=—=0(l+¢) (8.2)
0

In the small strain regime, which is roughly up to about yield point of a metal, the
two strains are practically the same, and the difference between the nominal and
true stresses is negligible. The natural strains offer some advantages (Mendelson
1968; Chakrabarty 1987). The natural strains are additive, but the conventional
strains are not. Again, the true stress and true strain diagrams for a material are
the same in tension and compression, but they are not the same if the
conventional engineering stress and strain measures are employed. Further, the
incompressibility conditions in the cases of engineering and natural strain
measures are as follows.

(1+e)(A+e)(l+e) 1=0, (8.3a)
€n t e tes= 0/ (83b)

where €; and €,;, i = 1,2, and 3, are the principal engineering and natural strains at
a point. The first equation reduces to €; + €, + €3 = 0 only when strains are small.

The point of instability, dP = 0, can be easily obtained from ¢;, versus €, diagram
through the following considerations.

P = Ao, (8.4)

dP =dAc, + Ado, =0 (8.5)
Therefore,

doy, _ difl

Oy A’

dl

Further, Al = Aply gives dj = T = de,.

do
Combining the two, =g,
de,

The point of instability is given by the location where the slope of the ¢, versus
€, diagram is equal to ¢;,. Such location, for example, D, is obtained by drawing a
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Figure 8.1 (a) Tensile test specimen. (b) Stress{strain plot under uniaxial tension/compression.

tangent to the ¢, versus €, diagram from I (Fig. 8.1(b)) such that the subtangent is
unity.

Beyond the proportional limit, stress strain behaviour is nonlinear. If the yield
point ¢y, of the material is roughly taken to coincide with the point A, and if the
material is loaded up to a point like G and then unloaded, the unloading occurs
along GF, a straight line parallel to OA. After full unloading, the material shows a
residual strain of magnitude OF. If the material is loaded back, it will show a linear
behaviour up to G and then stress strain variation will follow the path GB. The
yield point of the material increases from ¢, to the value corresponding to level G,
say, 0, . This is known as strain hardening or work hardening. The stress increases
with strain up to the point B, at which the instability or necking sets in. The stress
corresponding to this point is known as ultimate tensile strength. After point B,
further deformation is associated with reduction in load. The specimen breaks at
the fracture point C.

In the case of isotropic hardening materials, if it is loaded up to G and then
fully unloaded, followed by loading in compression, the yielding will occur when
the stress level reaches G! such that vertical distance from G is 20y,. With further
increase in compression load, it will show nonlinear variation of stress with strain
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along G'C’. In case the material demonstrates kinematic hardening, it will start
yielding in compression, when the stress reaches a level ] such that the vertical
distance from the point G is 20,. This type of reduction in yield strength upon
reversal of loading is known as Bauschinger effect.

The conditions for yielding are as follows, assuming the three principal stresses
satisfy the condition, o; > 0, > 03.

o, 03 =0y, 0p =0y, 0, =0y according to Tresca criterion (8.6a)
(0, 0>+ (0, 03)*>+ (03 07)* = 20%according to von Mises criterion (8.6b)

where 0y is the yield strength. In the three-dimensional stress space, according
to the von Mises criterion, the yield surface is a cylinder, whose axis is equally
inclined with the three stress axes. It is a hexagonal cylinder according to the Tresca
criterion. In the two-dimensional stress space, with o, = 0, the two yield surfaces
reduce to an ellipse and a hexagon (Fig. 8.2(a)), respectively. The yield locus in
two dimensions expands in the case of isotropic hardening (Figs. 8.2(b) and 8.3(a));
it shifts in the same space in the case of kinematic hardening, depending on the
loading path, for example, O to O, O; to O,, and O, to O3 (Fig. 8.3(b)).

When a material undergoes elastic deformation, the stresses and strains are
related by the Hooke’s law. The final stresses and strains are independent of
loading path. On the other hand, when it is subjected to elastic plastic
deformation, the elastic part of the total strain is related to the state of stress by
Hooke’s law, but the plastic part of the strain is governed by the incremental
theory of plasticity. The incremental plastic strains and the final state of strains are
loading path dependent. That is, for the same state of final stresses, the final total
strains are different. This can be illustrated by considering the loading of thin
cylinder by an axial load P and a torque T. The material is assumed to undergo

von Mises ellipse

(@

Figure 8.2 (a) Two yield loci in o7 0> plane. (b) von Mises yield locus in T ¢ plane.
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Figure 8.3 (a) Isotropic hardening. (b) Kinematic hardening.

isotropic hardening. The yield locus for the material is shown in Fig. 8.2(b). The
cylinder is loaded by the axial load gradually to bring it to initial yielding, that is,
state A. Considering the cylinder to be developed in x v plane and the axial
direction is coincident with the x direction, the axial strain can be represented by
€y and shear strain by 7. It is then loaded further in the axial direction up to
state B, which lies on the expanded yield locus. The strains at this point will
consist of some elastic normal strain €% and normal plastic strain €} and no shear
strain; that is, 'yfcy = 0 and %’iy = 0. The cylinder is then unloaded up to the point
C. At this point, the strains are: €} & 0, el &0, 'nyy =0, 'yfc’y =0,¢e = e’ = 0.5€F.
The plastic strain €} will be the same as that at B. The plastic strains in the y and z
directions are related €} because of volume consistency or incompressibilty. The
cylinder is now subjected to torque gradually to raise the stress levels to point D.
Since point D lies on the expanded yield locus, it will undergo deformation from
C to D only elastically. At D, it will have €% and €, 65 and €} the same as those at
C and shear strains 7§, & 0 and 'yfy = 0. Consider now a second loading path of
the virgin cylinder. Load the cylinder only by torque up to point E. It will have all
elastic and plastic components of strains zero except 7%, and ’y,]?y. Then the
cylinder is loaded along the path ED by adjusting the axial load and torque
continuously. At this point, the material will have €5, whose magnitude depends
on axial stress o, at D, ’)/fcy, whose magnitude depends on the torque at D, ’)ffzy is
equal to the plastic shear strain at E, and all the remaining elastic and plastic strain
components are zero. Although the state of stress at D in the two cases is the
same, the final strains are different. Thus, path dependence of plastic deformation
is established.
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8.2.1 Incremental Theories of Plasticity

There are two theories, which are employed to relate the incremental strains to
stresses. In the first, Levy Mises theory, the elastic strains are considered
negligible. The total strain increments constitute only the plastic part. The strain
increments are given by

Tt =7 =" = = = =dA (8.7)

where S, S, and S, are deviatoric stresses and Ty, T,;, and T,y are shear stresses
and dA is a material constant dependent on stress state. In the second rule,
Prandtl Reuss theory, the elastic part of the strain increments is not considered
negligible. The plastic part of the strain increments is proportional to the
corresponding deviatoric stresses. That is,

Sy Sy S, Ty Tyz Tzx

The constant of proportionality is obtained by tensile test and the following
definition of equivalent stress and equivalent plastic strain increment.

h n Oiy )

1
o= % Ox Oy o o, 0 2+ (0 o) +6 Tfy + Tyzz + 72, (8.9a)
P> h i
2 1/2
der=—" " def de] ‘v del del P+ del  de P+ 6(dell,” + del +del?)
(8.9b)
In the case of uniaxial test, ¢ = 0y = 0, 0y = 0, =0, dex = 2de; = 2de? and
def, = de}, = del, = 0. Therefore,
3de? _3del 3 de _ 3 do de _ do
AA=""_=">="" =z 77 Hozizi 1
2 T 20, 2H'T 2H'¢’ deP  dep (8.10)

The modulus of plasticity is obtained by plotting ¢ versus € noting thate? =€  €°

and e is the total uniaxial strain corresponding to stress ¢. The slope at any point

of the curve A’B'C? (Fig. 8.4) will give the instantaneous plasticity modulus H'.
Finally, the incremental plastic strains can be written as

p _ 3de”
i 20

3 do
Sij = 5 7= Sij (8.11)

de 2H'G
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Figure 8.4 Plasticity modulus H’.

In the case of proportional or radial loading, that is, if all the stresses are increasing
with time in the same ratio, the incremental theory reduces to deformation theory.

0;j = c 07, where (72. is a reference state of stress and c is a monotonically increasing

ij’
function of time. Therefore, Sij=c S% and & = co'.
Then, at any level of loading

del = =—-8% (8.12)
(o

which can be integrated to give

, _3€ o _ 3@

So the plastic strain is a function of the current state of stress and is independent
of the path of loading. Such deformations are considered to obey the total or
deformation theory of plasticity.

8.3 Crack Opening Displacement Criterion

In the presence of plastic deformation, the sharp crack-tip gets blunted and strains
increase rapidly than the stresses. Strains manifest in the form of displacements,
opening J at the locations of crack-tip ( B and C). Figure 8.5 represents the extent of
deformations. Wells (1961) experimented with different metals and found that in
many cases, the fracture resistance cannot be defined in terms of the critical SIFs.
He also observed that crack opens up considerably at the original physical crack-tip
locations, and materials over segments AB and CD get stretched before fracturing.
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2a,

Figure 8.5 Crack opening displacement.

He defined the condition for extension of crack for such materials in terms of this
opening. Since then, the crack opening displacement (COD) or crack-tip opening
displacement (CTOD) is regarded as a fracture resistance parameter. It has been
shown in Chapter 4 that this COD at the crack-tip is related to the Griffith energy
release rate through consideration of both Irwin’s plastic zone correction factor and
Dugdale Barenblatt model in the case of small-scale plastic deformation.

8.4 Mode Il Crack-Tip Field for Elastic-Perfectly-Plastic Materials

Although Wells (1961) gave the condition for Mode I fracture in terms of COD, it
was not known if there was any stress or strain singularity at the crack-tip as it was
in the case of elastic materials. The crack-tip field for perfectly plastic materials was
first obtained under Mode Ill loading by Hult and McClintock (1957). Readers may
also refer McClintock (1971). They considered the material to be perfectly plastic
with distinct shear yield strength 7, . In the presence of elastic plastic deformation,
the actual crack-tip can be replaced by an equivalent elastic crack with tip at O'.
The elastic stress-displacement field with origin O’ can be written using Eqgs. (2.28)
and (2.29) as follows.

K .0 K 0
T, — P—=sin =, T, = P—=cos - (814')
7 2 2nr 2
K % .8
w = — l sin — (815)
u 2

7 and 0 are referred to O". The stress field within the elastic-perfectly-plastic zone
satisfies the equilibrium equations and the yield conditions.



210 Fracture mechanics

Figure 8.6 (a) Mode IIl loading and coordinates. (b) Crack-tip elastic plastic eld.

Trz aTrz 1 aTGz —

19(r5,) |, 197,

r or r 00 oL T or r o0 =0 (8.16)
Tt T =T (8.17)

Assuming the deformation theory plasticity, the total strains within the plastic zone
is given by
Trz
Yy = 7 + AT, = AT, , and (8.18a)

Yor = TZZ + M Tp, = ATy, (8.18b)
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where y is rigidity modulus, A4 is plasticity constant, and A = ; + Ay. The first

part indicates the elastic strain and the second part is the plastic strain component.
The strains are given by displacement function w, which is just a function of r
and 6, by

dw Jw
Yy = 5 and ,, = 30 (8.19)

since other two displacement components u and v are zero. From the slip line field
analysis, it was shown by Hult and McClintock (1957) that 7, = 0 along the radial
lines from O and, in the tangential direction 75, = Ty, which is obtained from the
yield condition. This stress state satisfies the equilibrium Eq. (8.16). Therefore,
from Egs. (8.18a and b)

Vrz = 0' ’)/92 = ATY (820)

From Egs. (8.18) and (8.19), w is only a function of . Assuming w = f(6)

Yoz = %f(’(@) = ATy (8.21)

From Eq. (8.20), since strain vy,, is a function of 7 and 6, A is a function of r and 6.
By imposing the continuity of stress at the elastic plastic boundary;,

|
qiz > K2
T: = T, v =Ty = 7R (8.22)
Furthermore, as per the elastic field with origin at O
K'2R _7_K R
w=— "—sin- =— “—sin#f,since § =26 (8.23)
u 2 u 7
Using Egs. (8.20), (8.21), and (8.22)
2R
Yor = X cosb (8.24)

Therefore, there is a strain singularity of order 1 at the crack-tip, but there is no
stress singularity. The COD /¢ is given by

4 K?
= Wo— Wo— = - 2
0 0=m/2 0= /2 Ty 2“1/! (8 5)



212  Fracture mechanics

2
Since strain energy release rate G = o G= ZTY(S . This relation again indicates
that if fracture is governed by a critical value of G, it is also governed by a critical
value of 4. That is, fracture occurs when é = 6.

8.5 Relationship between J and COD

Considering Dugdale (1960) type strip yield zone ahead of the crack-tip under
Mode I loading, the elastic boundary ABC can be assumed to be under closure
stresses oy, where 0y is the yield strength of the material. The material is assumed
elastic-perfectly-plastic. The material is therefore elastic outside ABC; | integral
can be easily evaluated along the contour ABC. In the presence of large-scale
yielding (Fig. 8.7) at the crack-tip,

z ou; z ou;
= Wd T,—dS = Wd T,—dS
J s Y liox ABC Y
Z g z
ou; C ou;
= +
R Wdy T,— Iz ds . Wdy T,— oz ds (8.26)
Since dy is zero along AB and BC,
Z g z
ou; C ou;
= L + Tt )
i R T; 9% ds . T; e ds (8.27)
Further,
ou; ou; _ ouy duq duy dur
Tlaixl —Ul]n]aixl -_ 0'11n1§+0'12n2$ +0'21n1§+0'22n2¥ (8.28)

The direction cosines of the two outer normals on AB and BC are shown. Noting
that shear stresses are zero along the two segments, due to symmetry and self-
similar crack growth.

Zg z
_ auz C auz _
J= R azzgdx + . 228 ( dx) =oy(vg vy)+o, (v vg)
)4 7 (0,1)
Nv
—% B
A 1)

0,-1)

Figure 8.7 Mode I crack with strip yield zones.

N
—
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=0y(ve vy) =0y0 (8.29)

This relationship is valid for both small-scale and large-scale plastic deformation.
For small-scale yielding, it was shown in Chapter 4 that ] = G = ¢,/4. It must be
emphasized that | loses its significance as a energy release rate quantity, because
the part of the energy that goes into deforming material plastically is
non-recoverable.

8.6 Fracture Assessment Diagram and R-6 Curve

Based on the linkage between | and J, it has been possible to arrive at a graphical
presentation of failure region, which is very useful in the assessment of safety of
components showing plastic deformation before crack extension. These diagrams
are known as fracture assessment diagrams in USA and R-6 curve in Europe. This
is discussed subsequently.

According to Dugdale strip yield model (1960) or Barenblatt cohesive zone
model (1962), COD ¢ at the crack-tip of a Mode I internal crack in an infinite sheet,
is given by Eq. (4.7). Combining this equation with Eq. (8.29), | can be written as

_ _ 80%a o
J=o0y6= —F Insec E (8.30)
802a o . ,
At fracture | = |- = —F Insec o where 0 is fracture stress. Using €, =
Y
oy /E, Eq. (8.30) can be alternatively written as follows.
Jeo _ 8 Y 1.
——— = —Insec — for both small-scale and large-scale yielding.  (8.31)
Oy€yd T 20y
LA 2#
= % % ;T;TE for only small-scale yielding. (8.32)

These two relatan are plotted in Fig. 8.8. It shows variation of ¢ with a.
Using K¢ = m, and representing the corresponding fracture stress by o, it
is possible to write from Eq. (8.30)

1
O 8 o~ 2
Kc =0 pmz X —5 Insec —c (8.33)
o TT 20y

For small-scale yielding, the critical SIF Kssy = 0~ pﬁ. Therefore, using Eq. (8.33)
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1
K o- 8 oL 2
=X =< = == (8.34)
Kc oy T 20y
Knowing the fracture stress - during specimen testing and noting Kssy = 0, pﬁ,
it is possible to determine K¢ either from Eq. (8.33) or (8.34). If the whole ligament

. . . O .
undergoes plastic deformation, the ratio o will become 1. Thus, Eq. (8.34) can be
Y

K
used to interpolate between elastic fracture, for which =55 =1, to fully plastic

Kc
collapse, for which Z—C =1 (Fig. 8.9).

Y
Equation (8.34) can also be used to interpolate between linear elastic fracture,

of of
that is, J—C much less than 1, and large scale plastic deformation, that is, U—C close

to 1. For guch situations, the yield stress ¢y, is replaced by limit stress o; (Harrison,
Loosemoore and Milne 1976) and K¢ is represented by K;. The resulting failure
assessment curve (FAC) or R-6 curve is given by the following relation with Kssy
substituted by K, K¢ replaced by K;, o by ¢, and ¢y, replaced by o;.

1
o 8 o 2
o In sec 20, (8.35)

=~

The collapse load is obtained by limit analysis. For plate (of unit thickness and
width 2W) of elastic-perfectly-plastic material with a centre crack of size 2a

. Eqn. (8.32)

Eqn. (8.31)

v

Oy€Eya

Je

Figure 8.8 Variation of o~ with 4.
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=0, 1 — (8.36)

K K

The FAC is plotted in T g plane by all the combinations of T and g that
1 1 1

correspond to failure. A typical FAC or failure assessment diagram (FAD) is

K
shown in Fig. 8.9. Both the ratios — and z depend mostly linearly on the external
!

loading for a given crack size a. ABC indicates the failure locus; the combination

K
of the ratios z and g that lies on the curve ABC indicates failure. If a given
1 1

loading of a component with a crack a is represented by point D on the FAD, as
the load increases, the point moves along OB. At D, the component is safe and
the loading will not lead to any extension of the crack. The available factor of
safety is given by OB/OD. The FAD is the basis for R-6 curve, which is widely
considered for safety analysis. In general, the FAD varies with specimen geometry
(Kanninen and Popelar 1985), but the variation is small as compared to the
variation of uncertainties associated with failure assessment of a real structure.
The FAD concept has been extended to include the effect of thermal and residual
stresses. The concept is easy to apply, because it requires only the linear elastic SIF
for the case and the limit stress, which can be obtained easily (Kanninen and
Popelar 1985). For the determination of load for a given crack size, the limit stress
and K¢ are required. This may require iterations using Eq. (8.35). Altematively, for
a given load and crack size, by knowing the limit stress and K¢, the factor of
safety can be calculated.

A

A Unsafe zone
1.0
B
Safe zone
K Kgsy
K’ K¢
D
C
(@) »
O¢c O 1.0
oy o

Figure 8.9 Fracture assessment diagram.
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8.7 Mode | Crack-Tip Field

8.7.1 Rice Rosengren Analysis

For a material showing plastic deformation before fracture, the crack-tip field
depends on the tensile stress strain relationship of the material. The tensile
stress strain relationship can be represented by the Ramberg-Osgood type
relationship given by

f=4, 2 (8.37)

. (o . ..
where 0y is yield stress, €, = yield strain = fy, E is modulus of elasticity, « and n

are two hardening constants. At any stage of loading, the total strain will constitute
elastic and plastic strains given by
z
€ij = €+ de

1 2v 1+v Y
B Ay R

- (8.38)

where v is Poisson’s ratio, 0y, is hydrostatic stress, §;; is Kronecker’s delta, S;; is
deviatoric stress, and equivalent stress ¢ is given below.

i h
3 2 1
5SiiSij = % Ox U'y)2 + (oy ‘7'2)2 + (02 (7'x)2

P
= 3]2 = > -
1

N =

+6(T + 12 + 172

W+ (8:39)

Equivalent plastic strain increment de” is given by Eq. (8.9b). ], is the second
invariant of deviatoric stress tensor. In the face of monotonically increasing
loading till fracture, the loading is proportional, and the deformation theory of
plasticity, which is the same as nonlinear elasticity, can be employed. The plastic
strains can be related to the final state of stress.
Consequently, the stress strain relations can be written as follows.
1 2v 1+v 3¢ef

—E Om 51] + — Sl']' = S,] (8.40)

61']' = E

Neglecting the elastic part of the strains, the relation can be simplified in the form

3§S :§a€Y z nsij 3 z ! lﬁ
1

= — 8.41
20 2 Oy o 2 Oy oy ( )

61']‘ =
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Considering crack-tip to be surrounded by a plastic zone, the stress strain
variation will be governed by Eq. (8.40). The exact form of spatial variation of this
field was obtained by Hutchinson (1968a,b) and Rice and Rosengren (1968)
independently and they showed the existence of different singularities in stresses
and strains.
Considering a circular path for | integral around the crack-tip (Fig. 8.10),
z Z n ou; (r 6)

j=  way 1%as = W(r,0)cosf  Ti(r, ) 72

e rdo  (8.42)
S T

If this integral is to be path independent, the integrand must be independent of
radius r. That is, the expression within the square brackets of the right most
expression of Eq. (8.42), which is roughly proportional to the product of stress and
strain, should be equal to a function of 6 divided by r. That is

1
o o — 8.43
ij€ij & (8.43)
|
Since strain is proportional to ¢, as per the above relation, stress 0j; & — and
r
7117:—1
€ij & = . This means that there is stress singularity of order 1/(n + 1) and
r

strain singularity of order n/(n + 1). If the material is elastic-perfectly-plastic, that
is, n = oo, there is no stress singularity but there is a strain singularity of order 1,
which is similar to the case of Mode III discussed earlier.

Considering Airy stress function approach (Rice and Rosengren 1968), and
noting that stress

N_ 1
oijar N ande€;jar 1, where N =1/n,

it is possible to write a stress function

Figure 8.10 Crack-tip polar coordinates.
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(121N )’ ri £(6) (8.44)

where f(0) is an arbitrary function of 6. This function satisfies the equilibrium
equations. Therefore,

0°®
Ogp = 787’2 = rTﬁf(@) (8.45)
2
o= 00 0T = (v o) + rwﬂf“"(@) (8.46)
_ 3,190, _ 14N g,
w= 3G = 2N O (547

To ensure strain compatibility condition, the displacements were represented in the
form of another function,

P = g (o) (8.48)

where g¢(0) is another function of 6. The two displacements, radial and
circumferential, were defined by

19 _ P _1+2N

0 rv+¢Y(#), and v = Fr N+ ~Nri'" N+ ¢(6) (8.49)
This gives

1ou N vl g(0) (8.50)

€pp=—+-—— = rN%lgo(H) (8.51)

ST ORI O (5:52)

[
Q
=
QO
(s

RIS

Although the superscript p has been dropped from the above strains, they all
indicate total plastic strains. Under plane strain condition, €,; = 0, assuming z
axis is perpendicular to the plane of the body. The above strains ensure
incompressibilty condition, €, + €pp + €,z = 0. Considering a power law
hardening material expressed in the following form

1
T N

TEN o (8.53)
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where 7y is the yield stress in shear and shear yield strain 7, = T;, u = rigidity

modulus. Hence,
% = ’l’% — (8.54)

From the Mohr circle relationship, the maximum shear stress and strain are
given by

1
= 1(Urr 099)2 + T2 (8.55)
2 1 2
% = Zl(eﬂ 699)2 + % (8-56)

Substituting T and -y in Eq. (8.54) in terms of the three polar components of stresses
and strains using Eqgs. (8.55) and (8.56), the following relation is obtained.

NQ2+N)

PO+ iy NCEN) (o) "+ et AP
1 o ,4(2 + N)? " 4N? 0 (2N +1) N
b Ty @ OCT SO rp®  65)
Further, according to Levy Mises rule
%: — %22 = %:Z (8.58)
This gives,
€r+Spp = €poSrr (8.59a)
€0Srr = €rrSro (8.59b)
Noting that
1
Ozz = E(Urr + 09g), (8.60a)
Sge = %(Uee 0r) = S, (8.60b)

Eq. (8. 59b) gives
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g v S @@ 3 e+ GO 5o
After simplification
£ + a2 @) O+ s © = i OF©) 66

Rice and Rosengren (1968) obtained a fourth order differential equation in f(6)
and solved it by applying the Runge Kutta method and presented the solution in
terms of plastic zone radius as follows.

R(O) 1 R(e) ¥

Tyr 2 i £

8.63
) (363)
where R(f) = distance up to the elastic plastic boundary (Fig. 8.11). For a perfectly
plastic material (i.e., N = 0),

1
T=Ty, Y& P (8.64)
The similar stress-strain variation within the plastic zone was obtained by Hult
and McClintock (1957) for Mode III problem. The COD for Mode I was obtained

by Rice and Rosengren as 0.58 TL %
Y Y

Figure 8.11 Radial variation of plastic zone size.
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8.7.2 Hutchinson’s Analysis

Hutchinson (1968a,b) solved the problem through the eigenfunction type approach
of Williams (1957) for the linear elastic case. The material was considered to have
the same Ramberg Osgood type stress strain property [Eq. (8.37)] in tensile test.
Assuming proportional loading until initiation of crack growth, the stress strain
relations are given by

1 2w 1+v 3 1 o "
€ij = “3E U'kk(sij + TSZ‘]‘ + Eaeyg E Sij
1 2v 1+v, 31 7 "'
3E U'kkfslj E Sl] 206 E oy Sl] (8 65)
where 7 is the equivalent stress and is given under plane stress by
Tt =02 +0} o009+ 375 (8.66)
Noting that
1 1
Sy = 5(2@ 03), So = 5(2(79 0r), Sro = Trg (8.67)
The strains are given by
o vey a o "1 1
— n 1
og VO & O 1
= +—- — = .69
€p 3 E o %o 50 (8.69)
1+v 30 v "'
€ = —5 0o + 2E o, Tro (8.70)
The compatibility equation for the case has the following form.
1 92 10%, 10e, 2 0 ey
-= + 55— -—— —S=— r— =0 8.71
r or? (reo) 22 ror ror o0 ®.71)

Substituting the stresses in terms of the Airy stress function ® [see Egs. (8.45) to
(8.47)] in strain stress relations [Eqgs. (8.68) to (8.70)] and then making use of the
compatibility equation [Eq. (8.71)], the following equation is obtained.
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N 2 ( — n 1 2 2 ) — n 1
o+ 19 @ LSP 3 1@ 6 7 "7 0 140
2 ror? oy a2 or r or? r2 oy or r 96
C D C D#
Lo T " e 290 2900 10 T "1 200 %0 2%
ror oy o2 roar 12002 2902 oy ror o2 12002
(8.72)
The stress function can be assumed in the form
® = cr’d(9) (8.73)
where ®(0) is a function of 6 only and ¢ and s are real constants.
Using the stress function [Eq. (8.73)], the stresses are obtained as follows.
op =cs(s 1)1 2D(0) = cr® 2 5(h) (8.74)
o, = csr® 2(0) + cr® 2D(0) = cr® 2 5,(0) (8.75)
0d (0
T9 =c(l )’ 28((9) =cr® 21(0) (8.76)
. . R2dH)
c= fes(s 1D 2P0)g*+ csr® 2PO) +cr® 2 56 fes(s 1)
2#)
. - *d(o od(o
r* 20(0)g csr’ 2P(P) + cr® 2 aeg ) +3 (1 s)r 28((9 )
= csr® 27(0), say (8.77)

The dominant term is determined by the nonlinear part, that is, the second term
after r*®, of the governing equation [Eq. (8.72)]. Since stresses 0jj are proportional
to ° 2, strains €;; around the crack-tip region are proportional G 2 The strain
energy density near the tip (i.e., 7 ¥ 0) will dominate, provided (n +1)(s 2) <0.
That is, s < 2.

The nonlinear part of Eq. (8.72) gives rise to the eigenvalue equation in s in the
following form.
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2 2 &
(s 2) 6392 5O ! s 3)de) 2° ;;g(”
+ fn(s 2)+1gn(s 2)fF(0)g" ' s(@2s 3)P(6) 82;};9)
+ 6fn(s 2)+19(s 1);0 95;((99)]:5(9)@]”1 =0 (8.78)

This is a nonlinear equation. It has been solved numerically noting that the stress

field is symmetric about x axis (¢ = 0) and crack edges are stress-free, that is,
0d(0) _ 3D(h)

0p = Trg = 0for & = . The symmetry 1requ11resa~a 0 T o = 0 for

6 = 0, and the stress-free condition demands ®(0) = q;f(f) =0forf = 7. The
+

numerical solution gives the approximate solution s = 2n+ 11 for both the plane

stress and plane strain conditions.
1 n
The solution for s indicates that there is r ##1 singularity in stress and r =1
singularity in strain. The complete stress strain field around the crack-tip is given

by

- J
€ij = K€y A €;(6,n) (8.80)
1
I n+1
coD=o=_J_ YNl s (8.81)

oy Iy ]

where [, is a constant dependent on the state of stress and material constant 7.
Typical values are shown in Table 8.1 (Hutchinson 1968a).

The 6-dependent variation of the three dimensionless functions [fi]-(O, n),
€;i(0, n), and 9(6, n) depends on the state of stress, plane stress or plane strain
condition, and the material constant #.

Table 8.1 Dependance of I, on n and state of stress.

State of stress Values of I,
n=3 n=5 |[n=9[n=13
Plane stress 3.86 3.41 3.03 2.87
Plane strain 5.33 5.01 4.60 4.40

Source: Hutchinson (1968a)
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Furthermore,
U = ne I - r%a‘(e n) (8.82)
Y aoyey N '
1 .
o33 = E(0-11 +097), €33 =0 for plane strain (8.83a)
€33 = (€11 +€x), o33 =0 for plane stress (8.83b)
C " #
I —Zﬂ " 7 anosG L Oy U il O 1 +% sin 6
"T. o+l oy o T 90 AT
1 1. _ .
e E[aﬂur + 0,9ilg] cos 0gdo (8.84)
— n 1 F
- O]
n=m+1) = G4 5GP (8.85)
v 2
M 17" e o0 e o, s= 2D (8.86)
90 2 oy " n+1 .

According to Tracy’s (1976) definition of CTOD, ¢ is equal to the opening BC
between the two intersection points B and C of the crack profile and 45 intercepts
OB and OC from the crack-tip O (Fig. 8.12).

6 = CTOD = 2v(r, ) =2[r u(r, )] (8.87)
Noting that u; = u(r,m) and u, = o(r, ). u(r, ) and v(r, ) indicate the
displacements of a point A at a distance r behind the crack-tip.

n+1 ]

r = u(r, ) + o(r, 1) = (ae,)n [a(r) + 6(m)]

(8.88)
yIn

Figure 8.12 Crack-tip opening displacement according to Tracy (1976).
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where ii(7r) = ii(mr,n) and 9() = (7, n).

n o1
5= dnal, dy =2 ae, () +o(0)] " o(m)/ I, (8.89)
Y
For a perfectly plastic material (n = o), the strain field only exhibits a r !

singularity, which was seen in the case of Mode III as well. In this perfectly plastic
situation, the crack-tip fields can be written in the following form.

Oij = Oy 5’1‘]'(0, OO) (890)
] . 5
€ij oy Lyt 61](9/ o0) a1, r 61](9/ o0) (8.91)

)
where | = %, d = 0.8 for large n and 0.3 for n = 3.

Equations (8.79) and (8.80), and Egs. (8.90) and (8.91) are known as Hutchinson-
Rice Rosengren (HRR) singularity fields, and the associated singularity is known
as HRR singularity. Either | or J can be treated as field parameters. When HRR
field embeds the fracture process zone, the field parameters | or J are likely to
characterize the fracture process or the crack growth.

Under monotonic loading, yielding behaviour of metallic materials is the same
as given by the deformation theory till fracture. If the region of finite strain, where
void nucleation, coalescence, and crack growth, called process zone (Fig. 8.13), is
small compared to the zone where small strain formulation is valid, the initiation
of crack growth can be given in terms of | or 6. The finite strain based finite
element calculations have shown that over a distance of about 26 to 36, results
based on small strain and finite strain calculations differ. The process zone can be
taken less than 3J. Therefore, if the radius R of the HRR field is large enough
compared to this size of the process zone, | or é can serve as the fracture
characterizing parameter in elastic plastic or yielding fracture mechanics in close
parallel to K, the SIF, in the LEFM. In the case of hardening materials, under small-
or large-scale yielding, the HRR singularity dominates over a significant distance
R. This distance is always greater than four to six times 6 ahead of the crack-tip
when the uncracked ligament b is mostly subjected to primarily bending load as
in the case of single edge notched bend (SENB), or three point bend (TPB) test,
specimen. If the ligament is primarily in tension, however, as in the case of centre
cracked tension (CCT) specimen, the size R singularity zone is not that significant.
It has been established (Hutchinson 1983) that under fully yielded condition of the
ligament b, in the case of TPB specimen, acceptable size of R is guaranteed,
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P
\ Fracture process
zone ’

Figure 8.13 Near-tip fracture process zone and extent of | eld.

provided dimension b is greater than 25 UL. Similarly, in the case of CCT
Y
specimen, the similar condition is guaranteed, provided b is greater than 175 L

The size R of the region of | dominance depends on geometry of specimen and
the hardening exponent n. The geometry has a strong influence in the case of low
hardening (i.e., n ¥ oo, or perfectly plastic) material. The hardening solution for
large n does not converge to the slip-line field solution. This is because the
governing equation for the hardening material is elliptic, and the equation for a
non-hardening material is hyperbolic. In the case of non-hardening material, there
is no unique solution independent of geometry.

Stress state at the crack-tip is not unique under large-scale yielding and perfect
plasticity. Under fully yielded conditions, stress strain field and | are strong
functions of specimen boundary geometry even under plane strain condition. | is
a unique configuration-independent parameter associated with the crack-tip field
only when there is some strain hardening.

8.8 Experimental Determination of J

Begley and Landes (1972) and Landes and Begley (1972) gave a procedure for
experimental determination of J. Specimens can be prepared with different crack
sizes (Fig. 8.14(a)). By loading them gradually, variation of load with load point
displacement can be plotted (Fig. 8.14(b)). Using these data variation of strain
energy, U with crack size a up to different displacement levels (Fig. 8.14(c)) can
obtained from Fig. 8.14(b). By determining the slope of these plots for a particular

crack size a, variation of | = %%, where B is specimen thickness, with
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Figure 8.14 Experimental determination of . (a) Monitoring P and u. Plots of (b) P versus u
for constant crack sizes, (c) U versus a for constant displacements and (d) ] versus u for constant
crack sizes.

displacement (Fig. 8.14(d)) for constant crack length can be determined. By noting
the experimental displacement at the onset of crack extension corresponding to a
specified crack size 4, the fracture toughness can be determined.

8.9 Alternative Methods for Measuring J

The above procedure implies testing of a number of specimens. Later, Rice, Paris
and Merkle (1973) and Merkle and Corten (1974) have given some basis whereby
the same data can be obtained through testing of less number of specimens. In
the case of bend specimens, if the whole ligament undergoes plastic deformation
(Fig. 8.15) it is possible to write
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Figure 8.15 Bending deformation of three point bend specimen.

Considering Ramberg Osgood type of material, when the plastic deformation
dominates, the elastic part can be neglected and 6  0,;. The angle can then be
written in terms of bending moment acting on the section, €, = 0y /E, and
hardening exponent n

— M oy
O = f m/ " (8.93)
where b = w  a is the remaining ligament dimension and f is a function of the
three dimensionless variables. Noting that for a TPB specimen bending moment at
the centre of the span M = PL/4 and inverting the above relation it is possible to
write

_ 4Bb%0,, oy

p T h 0y, 7" (8.94)

where /i is a function of the three dimensionless variables. By definition

z z
4Bb?

= 19 7 puy _ 10 N oo, X0 du

B oa u=constant B oa L E u=constant
z z
4Bb? u
_19 N o0, X, n du =2 " pay (8.95)
B ob L E u=constant Bb 0
noting the form of P above [Eq. (8.94)] and b is equal to (w  a). Finally
2A

J= B (8.96)

where A is the area under the load load point displacement diagram up to the
displacement u (Fig. 8.16). Equation (8.96) has been derived considering only the
plastic part of the deformation. A similar expression can also be derived
considering the elastic part of the deformation. This gives

’ 2 2o K 2 Zo

B o Pdu B +B—b . Pdu =ﬁ+B—b . Pdu . (8.97)
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P, u)
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u

Figure 8.16 Areas involved in | calculation.

where K is the SIF and E' = E, the modulus of elasticity, under plane stress and
E' = E/(1 v?) under plane strain. Strictly Eq. (8.96) should include only the
plastic part of the displacement. This relation is accurate for crack size a/w > 0.5
for TPB specimen. According to Landes, Walker, and Clarke (1979), | can be
obtained through Eq. (8.96) considering the total of elastic and plastic
displacements.

For compact tension (CT) specimen, Eq. (8.96) is not accurate because the
specimen is subjected to both tensile and bending load on the crack plane. Merkle
and Corten (1974) suggested the following relation for the CT specimen.

z z
2 1+p " 261 28 p2° P
]_ﬁl+ﬁ2 . Pdu+ﬁi(l+ﬁ2)2 . udP (8.98)
where B is given by
B= at+4ar+2"% 2 1, r:% (8.99)

and a is crack size, and P and u are load and displacements at fracture. Indeed,
the second integral of Eq. (8.98) indicates the complementary strain energy and is
given by the area B (Fig. 8.16) between the load and load load line displacement
diagram and the load axis up to level P . When area A is large compared to area B,

Z
21 u
j=21%F

= BirE o Pdu (8.100)

The above relation is recommended for the calculation of | (Kanninen and Popelar
1985) from experimental load-displacement data. Equations (8.96) and (8.98) or
(8.100) permit determination of J through testing of single specimen.
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Problem 8.1

During TPB testing of steel, the following data was obtained: Displacement varies
linearly from 0 to 2.0 mm with a slope 25 MN/m. Further variation of load from
this displacement level to 4.0 mm is P = 0.05 10°+15 105[(u 2)10 3]z N.
The specimen dimensions are: B = a = b = 40 mm. Calculate J. if the crack
extension begins from the given crack size 40 mm.

Solution
Area A under the load displacement diagram up to 4 mm consists of both the linear
and nonlinear parts. Through integration A = 239.425 Nm.

_2A _ 2 238425

= 55— 004 004 = 0.30 MPam (Ans.).

Je
Problem 8.2
For the same crack-section dimensions, when a CT specimen of the same material
was tested, the area under the load displacement record reduced by a factor of 0.9
from that obtained by testing a TPB specimen (earlier solved example). Calculate
the fracture toughness J-.

Solution
Area under the load displacement record up the point of fracture, A = 861.3 Nm.
Using Eq. (8.99), for this case f = [4r2 +4r +2]V/2  2r 1.

Sincer = % = 1and B = 0.16227, ] - is given by
_1+B2A _
Jo = 1+ p B 0.304 MPam (Ans.).

8.10 Crack-Tip Constraints: T Stress and Q Factor

The elastic stress field in the neighbourhood of the crack-tip is influenced by the
boundary loading and component in-plane dimensions. The stress field as radius
r ¥ 0is given by the first term of the Williams’ eigenfunction expansion. The first
non-singular term contributes to the stress in the direction parallel to the crack.
This is generally referred to as T stress. The crack-tip stress field can be then
represented by

0ij = (0ij)sst + T4; (8.101)

where ((T,'j)SST is the contribution due to the stress singularity term and J;; is
Kronecker’s delta.
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(51']'=Ofori=j=2.

T stress affects the plastic zone around the crack-tip, stability of crack growth, and,
in the case of mixed mode problems, it influences the direction of crack extension.
In case there is plastic deformation around the crack-tip, the stress field consists
of the HRR field and the contributions of the non-singular terms. The field can be
represented by

oij = (0i))urr *+ () Diff (8.102)

where (0’1']') Difs is the contributions due to non-singular terms. It is shown (O’Dowd
and Shih 1991) that the difference field does not vary appreciably over the angular
span § = 45 to f = +45 irrespective of r. Further, (0x)pirr  (0y)pirf >>
(0xy)piff- Therefore, in the presence of plastic deformation around the tip, plane

strain condition, and plastic incompressibilty, (0)pifr = % (ox)pifs + (0)pirs =
(0x)pirs = (0y)pifs- Hence, the difference in each of the normal stresses is equal

to the shift in hydrostatic stress. The existence of triaxiality at the crack-tip can be
expressed by a parameter Q given by

0= ()Hrr _ 0% (0x)HERR (8.103)
oy Ty

at a finite distance from the crack-tip for 8 = 0 . This distance r can be taken as
2] /oy . This parameter Q is known as plastic constraint. It depends on the in-
plane dimensions of the specimen and its thickness. In the case of uniaxial loading,
there are two-dimensional constraints: in-plane and out-of-plane directions. The
in-plane constraint will depend on the position of the outer boundary with respect
to the crack-tip. The out-of-plane constraint will depend on the specimen thickness.
Hence, in general, the fracture toughness Jc measured using a particular specimen
configuration will vary with specimen dimensions. Thereby, it is possible to obtain
a variation of fracture toughness with Q. The parameter Q can be determined
through finite element analysis of the specimen. Q is given by

oy = (‘Ty)HRRor =0+ QUY (8104)

If Q is zero, the stresses are given by the HRR field. If Q is positive, the difference
field increases. If Q is negative, there is loss of constraint in both the in-plane and
out-of-plane directions, and the stresses fall below the level given by the HRR
field. Through modified boundary layer analysis, it has been shown that T and Q
are directly related over a wide range of hardening exponent (O’'Dowd and
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Shih 1991, 1992). However, T has relevance in predominantly elastic situations
and cases involving small-scale plasticity; Q has relevance under both small- and
large-scale plastic deformations. In general, if Q is positive, there is constraint on
the plastic deformation at the crack-tip. As Q becomes negative, the constraint
reduces, and the plastic deformation occurs on a larger scale. As a result, the
fracture toughness increases (Fig. 8.17). It has been shown by the same authors
that Q remains almost zero in the case of TPB specimen over a large span ahead of
the crack-tip. This is not so in the case of CCT specimen; Q becomes negative after
a small distance ahead of the crack-tip. Therefore, there is more constraint over a
larger span ahead of the crack-tip in the case of TPB specimen compared to the
CCT specimen. A position similar to TPB specimen exists in the case of deeply
cracked CT specimen.

The plastic constraint Q is dependent on the geometry of the specimen or the
component. Therefore, it is not possible to get a single value of ]- by testing
different specimens. Through testing specimens of different sizes and geometry, it
is possible to obtain the variation of |- with Q for the material. To apply this
material data in design, it is necessary to ensure that Jpsizn = J-, and the
constraint factor in the design example has the same value as the one associated
with J-. This is explained in Fig. 8.17. If the toughness |-~ of a material varies with
Q as given by the curve OAB (Fig. 8.17), and the loading on a component of the
same material leads to the variation of applied ] with Q along the curve OAC, the
fracture load will correspond to the point A, where both the cases have the same
Q. This shows how laboratory test data can be transferred to practice.

Anderson and Dodds Jr. (1991) have shown that to employ a microscopic
fracture model like that of Ritchie, Knott and Rice (1973), which is based on stress,

(@)
—Ve Q Q=0 +Ve

Figure 8.17 Variation of fracture toughness with constraint parameter Q.
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the similarity in volume of the material undergoing the same stress level must be
checked. That is, both the stress level and the volume of material subjected to the
same stress level in the test case and the design problem must be the same.

8.11 Crack Propagation and Crack Growth Stability

After the onset of crack growth, further propagation in an elastic plastic
material takes place with increasing load. For a growing crack, both an elastic
unloading and a non-proportional loading occur near the crack-tip (Fig. 8.18)
within the fracture process zone. None of these processes is adequately
represented by the deformation theory of plasticity. These make the determination
of crack-tip field ahead of an extending crack difficult mathematically.

Rice (1975), based on ], flow theory of plasticity, showed that for a fully plastic
material (n = c0), the incremental strains in the immediate vicinity of crack-tip are
given by

(TY da R(G)

dejj = ﬁ](G) + ,](9) (8.105)
Therefore,
de;i  1d6 R(9)
- b
da - r dﬂfl]( ) 1](9) (8-106)

where dé = increase in COD, da = increment in crack length due to extension,
R(0) is the distance of the elastic plastic boundary from the crack-tip, and f;;(6)
and g;;(0) are the functions of 6.

Zone of elastic
unloading

,
N Fracture process

’

zone e

Figure 8.18 Elastic unloading and fracture process zones embedded in | eld.
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gij(0) has value of the order of unity. The first term represents additional strain
due to crack-tip blunting if the crack did not advance during load/displacement
increments. The second term represents the additional plastic strains caused by
the advance of the stress field through the material. In many cases, the first term
dominates over a significant interval several times CTOD ¢;, except right at the

( )

in the close neighbourhood of crack- tlp are uniquely characterized by the crack-tip

opening angle Zé if do >> Ty R(G)

crack-tip, where the singularity P ln dominates. In other words, the strains

Hutchinson and Paris (1979), based on |, deformation theory of plasticity,
showed that for a fully plastic material (n = o),

1 d
de; = Y 7o)+ hlj(e) (8.107)
That is,
dGi]‘ 1 dJ 1

~fij(0) + ] ! 2hii(6) (8.108)

da 04(7 dar

where h;;(0) is the dimensionless function of 6 of magnitude about unity. This

d] J

relation indicates that the first term dominates the field if In >> =. The similarity

in the structure of the two relations [Eqgs. (8.105) and (8.107)] is notable though
they are derived based on ], flow and |, deformation theories, respectively. The
first term in Eq. (8.107) indicates proportional increments in the strain fields due to
an increase in the strength | of the HRR singularity, while the second term shows
the nonproportional strain increments due to an advance of the HRR field with
the extending crack. Therefore, if the HRR field increases in strength more rapidly

than it advances, the crack-tip opening angle ? and % describe the changes in

crack-tip environment. This means that when the fracture process zone is enclosed

Z] Egs. (8.105) and (8.107) together with the
. d— >> %, provide the basis for COD-based
and J-based resistance curve approach to stable crack growth respectively.

Similar results are obtainable through a slightly different approach. According
to the HRR solution, the strain field for a hardening material (Hutchinson and Paris
1979) is given by

by the region dominated by ;M
R |

. dé oy
constraints, — >> fl

n

+1

e =b" r e (8.109)
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where b, is a dimensionless constant and &;; = éij(Q, n). 6-variation of €;j depends
on state of stress and hardening exponent 7.

aei]- a(-?i]'
Assuming crack grows along the x axis under Mode I loading, dx = da and
aé‘i]' aei]' aei]' sin6
= 0+ A11
ox or cos 20 r (8.111)
_ n s, o N 241 _u_sin 0 9€j;
deij—bnm] dj r 1€ +by] 1 1 Ejicos O +r = 50
o d d 0€;;
Finally,
n% _n_ d n da ~
deij = by]"" v ]]n w1t 7[51‘]‘ p (8.113)

where Bij stands for the expression within () in Eq. (8.112). Since | is directly
related to the external load, the first term corresponds to the proportional part of
strain increment and proportional loading. The second part, arising from da, is
non-proportional. Since €;; and Bij are comparable, nearly proportional loading
will occur, provided

dJ da
—= >> 114
i . (8.114)
Paris et al. (1979) introduced a non-dimensional parameter
E dJg
T = ——— 8.115
me 0% da ( )

called tearing modulus. This signifies material’s resistance to crack growth. In the

d
above relationship, U is the slope of the resistance curve ], versus Aa (Fig. 8.19).

The condition for crack growth instability is given by

Ty Toe (8.116)
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v

Aa

Figure 8.19 J-resistance curve.

where T, = oifli is the slope of the loading curve or the crack driving force.
Y

During the stable crack growth, the slope of the J-loading curve ﬂ, or crack

da
. do .
opening angle aa’ remains constant and T,;, < T,..
According to Paris et al.,, during stable crack extension, Tj, remains constant

and the value of Ty, is dependent on specimen geometry, loading, etc. The tearing
modulus can also be defined in terms of J-resistance curve:

E dér

(TT%E (8.117)

Tmc((S) =

where 4or is the slope of the resistance curve dg versus a. Under J-controlled crack

extension, Shih (1981) has shown that T,,.(s) and T;, are related by a constant.
From J-resistance curve, [, versus 4a (Fig. 8.19), an approximate crack growth

D that corresponds to an increase in the fracture resistance from J- to 2] is given

by

Jc
D=—7— 8.118
i (8.118)
da 4
d
where % is approximately the slope of resistance curve at the initiation point

A. For the crack growth D to occur under | dominance, D << r << R must be
satisfied. r is the radius referred from the crack-tip and R is the radius of the ] field.
For a specimen that can ensure J- controlled crack growth, the ligament dimension
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b(= w a), where w is total width, must be much greater than R. Therefore, the

b
ratiow = D must be a very large quantity. That is,

_ bdJ,
= >>1 (8.119)

For fixing specimen dimensions, w has been recommended to be about 40.

8.12 Engineering Estimates of |

SIF handbooks facilitated application of the principles of LEFM extensively.
Similar source for the evaluation of | under the condition of elastic plastic
deformation was missing. Kumar, German, and Shih (1981) of the Electric Power
Research Institute (EPRI) first presented the solutions for its evaluation for a
number of common geometries. The basis for deriving the relation for | is
discussed subsequently.

According to Il'yushin (Kanninen and Popelar 1985), when a component made
up of a material with nonlinear stress-strain relationship is loaded gradually by a
point load, or displacement, on its boundary, the stress and strain within the body
display two important trends. The stress increases in direct proportion to the load
P, and the strain increases in proportion to P". Further, since the stresses increase
in proportion to the load, the results based on the deformation and incremental
theory of plasticity are the same. Therefore

o n

€ =€y g , (8.120)

c P € p "

—, — — 121
O'YOOPY’ GYOO Py (8 )

where Py is the reference load. Kumar, German, and Shih termed Py as the limit
load, and it is proportional to o,. Since | depends on the product of stress and
n+1

strain, it must be proportional to P—Py

The same results can also be obtained from the HRR solution for Mode I crack-
tip stresses and strains given by Eqs. (8.79) and (8.80), respectively, based on the
deformation theory of plasticity. Inverting the first equation,

n+1

0"4
]:DCGYO'YIHT 0—7” (NTZJ(Q) (n+1)
Y

(8.122)

J given by Egs. (8.96) and (8.98) or (8.100) can be considered to be due to the plastic
part of the deformation only. Since 0}; is proportional to extemal load P and oy, is
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proportional to Py, the above relation can be rewritten to give J, in the following
form.
a P n+1

h=aqwbm%?n Py (8.123)

. . . . a . .
where h; is a dimensionless function of — and 7, and b is related to the specimen

dimensions. The function h; depends or?{] the aspect ratio a/w of the crack, stress
exponent n in Ramberg Osgood relation, and the state of stress. For the CT
specimen, the plastic parts of crack mouth displacement 6, and load line
displacement )4, are given by

a P n+1

(5mthp = DCeY(l hz ;,n FY (8124)
P n+1

Onap = aeyahs %,n Py (8.125)

) a
where h;, and k3 are functions of — and n.

w
For a single edge cracked panel (SECP) under uniform remote uniform tension,
the elastic part ], of the | integral is obtained from the following relation.

K2
Jo = T (8.126)
where K = Upﬁ f fe , f % is the SIF correction factor, effective crack length
ae is calculated from (Kumar, German, and Shih 1981)
1 1 1 K °?
G =a+r,=a+ 2”+1%f47 (8.127)
1+ PLY n T Oy

E
k = 2 for plane stress and 6 for plane strain. E’ = E for plane stress and T 2 for

plane strain. For calculating a., SIF K in Eq. (8.126) can be calculated using given
crack size, that is, without the correction for plastic zone. No further iteration is
required.
For the single edge crack plate under uniform tension at the ends, the plastic
part of relative rotation 6, between the two ends of the specimen is given by
a p "

0p =aeyhs —,n

— 8.128
> B, (8.128)
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In general, the total | can be obtained by adding the elastic and plastic parts,
J] = ], + Jp. Data for the functions, hy, ha, h3, and hs, wherever appropriate, for
four specimens, CT, CCT specimen under remote loading, TPB, and SECP under
remote uniform tension, under the condition of both plane strain and plane stress,
are presented in Tables 8.2 to 8.9, respectively, at the end of this chapter. The
appropriate expressions for calculation of various quantities (J,, Omthp, and by1qp)
and the limit load Py for the four specimens are reproduced below from Kumar,
German, and Shih (1981). Note that Py stands for load per unit specimen
thickness.
CT geometry (Fig. 8.20):

a P n+1
Jp = aoype by ;,n P (8.129)
_ a p "
Omthp = w€yahy a,n Py (8.130)
This opening is associated with the outer edges of the crack.
a p "
5lldp =neya h3 a, n Fy (8131)
Py =1455n7boy, for plane strain (8.132a)
=1.071nbo, for plane stress (8.132b)
1
wherenp = 4r2+4r+2 2 (2r+1),andr =a/b. (8.133)
CCT geometry (Fig. 8.21):
b a p "t
Jp=ao0ya = hq %,n Py (8.134)
a p " . :
Omthy = a€yahy —, n  —— = crack opening at the centre line (8.135)
w Py
a p "
Ac=wneyahs 5,71 Py (8.136)

Assuming one load point fixed and the other moving, A. is the difference between
the moving load point displacements corresponding to the plate with and without
crack.

Py =4bo,/ p§ for plane strain (8.137a)
=2boy for plane stress (8.137b)
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TPB geometry (Fig. 8.22):

a P n+1
Jp = aoypey by ;,n P (8.138)
P n
Omthp = w€yahy %,n Py (8.139)
P n
Ac=waeypahy %,n Py (8.140)

Ac is equal to the difference between the displacements of the load points
corresponding to the specimen geometry with and without crack.

Py =0.728 0y, b?/L  for plane strain (8.141a)
= 0.536 0y b*/L  for plane stress (8.141b)

SECP under remote uniform tension (Fig. 8.23):

a p "!
]P - “Uyeyb* hl a,]’l FY (8.14:2)
P n
Omthp = w€yahy %,n Py (8.143)
P n
Ac =weyahy %,n Py (8.144)

Ac is equal to the difference between the displacements of the loaded edges at the
plate centreline with and without crack.

Py =1.4557nboy for plane strain (8.145a)
=1.072nboy for plane stress (8.145Db)
where 7= 1+72 : r,and r = a/b. (8.146)

a
Hereafter, hi, hy, h3 and hs, which are all functions of P and n, are written

dropping the arguements.

Problem 8.3

During testing of a component in the form of a CT specimen under plane strain,
load recorded is 0.80 MN. The specimen material is A533 B steel and test
temperature is 90 C (Kumar, German, and Shih 1981). The material parameters
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o
are: yield stress = 413.7 MPa, yield strain €, = fy = 0.002, modulus of elasticity

= 207 GPa, Poisson’s ratio v = 0.25, Ramberg Osgood material constants in

o o "

ei = o + o , &« = 1.12, and n = 9.71. The specimen details are: crack
Y Y
size a = 117.22 mm, thickness B = 101.6 mm, and width w = 203.2 mm. Calculate

total J.

Solution
To calculate the yield load Py using Eq. (8.132a), 7 parameter required is calculated
using

a_ a _ 1722
b w a 8598

The yield load Py = 1.455n7bBo, =1.455 0.1318 0.08598 0.1016 413.7

1
n= 4r*+4r+2 7> (2r+1)=0.1318,sincer = = 1.363.

= 0.694 MN, as b = 85.98mm.

Collecting appropriate formula for the SIF K; from second chapter (Fig. A2.1.5),

0.80 12315 —
pP——— = 215.112 MPapm,
0.1016 0.2032

Ki = P—f() =

p= 82 OU722 e nd

()= @+1)(0866+4.64t 13322+14728 56t%) /(1 )5 =12315.

Elastic part of | integral
KZ
J,=1 v? fl = 0.2095 MPam, since v = 0.25.
The plastic part of | integral
P n+1
Jp=waeyoybn o =1.12 0.002 4137 0.08598 0.565 1.1527°71*1
Y
= 0.2063 MPam.

hy (for a/w = 0.5768) is obtained through interpolation of data given in Table 8.2,
corresponding to n = 9.71 and a/w in the span 0.5 and 0.625.

Total | = ], + ], = 0.4158 MPam (Ans.).
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In the above calculation of ],, correction to given crack length due to crack-tip
plastic zone [Eqgs. (8.126) and (8.127)] has not been done. Upon applying the
corrections the following results pare obtained: 7, = 5 mm, 2, = 122.22 mm,
te = 0.60147, K; = 236.282 MPa’ m, and total | = 0.45915 MPam. Note that J,
remains unchanged.

Problem 8.4
A component in the form of a CT specimen, made of SS304 steel, was tested at
room temperature. The material parameters are: yield stress = 207 MPa, yield

strain €, = % = 0.001, modulus of elasticity = 207 GPa, Poisson’s ratio v = 0.25,

n
. . € o
Ramberg Osgood material constants in — = — +a — , & = 1.691 and
€y Oy Ty

n = 5.421 [Kumar, German, and Shih 1981]. The specimen details are: crack size
a = 63.5 mm, thickness B = 50.8 mm, and width w = 101.6 mm. Calculate total |

for a load 1.5 times the yield load assuming plane strain condition.

Solution
Proceeding in the same manner as in the case of earlier example,
a 63.5

n=[4r2 +4r+2]2 (2r+1)=0.113,since r = g = =g = LeeT.

The yield load Py = 1.455n7bBoy, =1.455 0.113 0.0381 0.0508 207
= 0.0658 MN, as b = 38.1 mm.
Therefore, the applied load P = 0.0987 MN.

Collecting appropriate formula for the SIF K from the end of second chapter,

0.0987 14.885 P

p -
K; = —p—f() = 20 — 9073 MPa m,
1= P50 = 0508 Pooe
a4 _ 635 _
since t = - 1016 0.625,

h i
f()= 2+1)(0.866+4.64t 13.32t> +14.72> 5.6t* /(1 t)'° =14.885.

The elastic part of | integral

K2
=1 v? fl = 0.0372 MPam, since v = 0.25.
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Note that no correction for plasticity is applied to calculate K; and J..
The plastic part of | integral

P n+1
Jp=aeyoybhy Py =1.691 0001 207 0.0381 0927 15!

= 0.167 MPam, since h; = 0.927 for a/w = 0.625 (Table 8.2).
Total ] = ], + ], = 0.204 MPam (Ans.)

Problem 8.5

A three point beam of A533B steel with the material data as given in Problem 8.3
was loaded up to | reaching a value 0.45 MPam. The specimen dimensions are:
thickness B = 50.8 mm, depth w = 2B, span length L = 4w, and crack size
a = 38.1 mm. Determine the load level (a) neglecting the elastic part of | and (b)
without neglecting it. Assume plane strain condition and v = 0.25.

Solution

Givenb=w a=101.6 38.1 =63.5mm, L =406.4 mm and 0, = 413.7 MPa.
2

Yield load Py [using Eq. (8.141a)] = 0.728 ¢, B bf = 0.1518 MN. Representing the
load by P,

K = PL 3P7 1.99 r(l )15 393r+27r) a4
I~ BWI5 20+2r)(1  r)i5 T w
P 0.4064
= 1.8511 = 0.375
0.0508 0.101615 as’
= 457.28P.
K2 (457.28P)2
=1 v¥)=L=0 025?72 =0.9470P>.
Jo=@ v)5 = ( )= 207000
P n+1
P 9.71+1
=1.12 0.002 413.7 0.0635 0.569 NG , since h; = 0.569
P 9.71.+1

(from Table 8.6). Finally ], = 0.03348 =1.96501 107 P17t

0.1518

J=1],+],=0947P2 + 196501 107 P7%,
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(a) Neglecting the elastic part of | and equating the applied | = 0.45 MPam with
Jp, P =0.1934 MN (Ans.).

(b) Without neglecting the elastic part, and solving the nonlinear equation
0.9470P* +1.96501 107 P'%7! = 0.45,
P = 0.192 MN (Ans.).

In the above calculations (b) to determine load P, correction for crack-tip plastic
zone was ignored. This can be done through the steps as follows. Based on P =
0.192kN, correction ry, to the specified physical crack length is given by

1 1 1 K 2
P
1+ P Y

where k = 6, n = 9.71, K; = 457.28P, and Py = 0.1518 MN. The effective crack
length a, = a +r, = 38.1 + 0.747 = 38.847 mm. The corresponding SIF K[, is then
given by

PL P 0.4064 pb—
K = Wf(tg) = 0.0508 0101615 1.88826 = 466.456P MPa" m.
.847
f(t.) is obtained as 1.88826 using t, = % = 3180213 e = 0.3823 in the formula used

earlier. The corrected elastic part ], of the total | is obtained as 0.9854P2. Finally
corrected load P is obtained from the equation

J=],+], =09854P* +1.96501 10’ P'"%7! = (.45 MPam,

as 0.19195 MN, which is very close to the earlier load. Hence, accurate P can be
obtained in this case without applying the correction for crack-tip plastic zone.
This has perhaps become possible because the elastic part ], of total | here is small
compared to the plastic part J,.

Problem 8.6
Solve Problem 8.5 assuming plane stress condition.

Solution )

Yield load Py [using Eq. (141b)] = 0.536 (TYBbL = 0.11176 MN.

Representing the load by P,
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= PL 3P7 1.99 r(l )15 393r+27r%) a4
I~ BW15 200 +2r)(1 r)L5 T w
P 0.4064
= 1.8511 as r = 0.375
0.0508 0.10161° ast
= 457.28P.
K? _ (457.28P)? )
= Lt =>_____ % =1.0102P
Je=F 207000 010
P n+1
Jp =wey o, by Py
P 9.71+1
=1. 002 4137 0. 31
1.12 0.00 37 00635 0318 o ,
h1 = 0.318 (from Table 8.6).
P 9.71+1 071
=0.01871 @ —— =291693 108 P°
Jp =00 0.11176

J=J.+],= 1.0102P2 +2.91693 108 plo71

(a) Neglecting the elastic part of | and equating the applied ] = 0.45 MPam with
Jp, P =0.1504 MN (Ans.).

(b) Without neglecting the elastic part, and solving the nonlinear equation
1.0102P* +2.91693 107 P'%7! = 0.45,

P = 0.1497 MN (Ans.).

8.13 Closure

The application of the principles EPFM to practice has not been possible to the
same extent as in the case of LEFM. One of the reasons for this is the
non-availability of solutions for COD or | for practical geometries and materials
with varieties of hardening characteristics. The numerical technique like the finite
element method has helped to eliminate many limitations. Simultaneously, the
research and developments related to the transfer of laboratory material data to
real life situations have increased the confidence in both design and safety
assessments. Full-scale testing has also paved the way for practical applications of
the principles of EPFM.
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Figure 8.20 Geometry associated with Tables 8.2 and 8.3.

Table 8.2 Compact tension specimen in plane strain.

n
Ml T [ 2 [ 3] 5 | 7 ] 10 ] 3] 16| 20
h | 223 205 178 148 133 126 125 132 157
V4 [h, [ 179 125 117 108 105 107 115 126 146
h, | 985 851 817 777 771 792 852 931 109
h | 205 172 139 097 0693 0443 0276 0.176 0.098
38 [h, | 126 818 652 432 297 179 110 0686 0370
h, | 794 576 464 310 214 129 0793 0494 0266
| 194 151 124 0919 0685 0461 0314 0216 0.132
12 [n, | 933 585 430 275 191 120 0788 0530 0317
h, | 641 427 316 202 141 0888 0585 0393 0236
ho| 176 145 124 0974 0752 0602 0459 0347 0248
58 [h, | 761 457 342 236 181 132 0983 0749 0485
h, | 552 343 258 179 137 100 0746 0568 0368
B | 171 142 126 1033 0864 0717 0575 0448 0345
34 (A, | 637 395 318 234 188 144 LI2 0887 0.665
h, | 486 305 246 181 145 111 0869 0686 0514
h | 157 145 135 118 108 095 085 073 063
1o [h, 539 374 3090 243 212 180 157 133 Ll4
h, | 431 299 247 195 179 144 126 107 0909

Source: Kumar, German, and Shih (1981)
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Table 8.3 Compact tension specimen in plane stress.

n
M T 2 ] 3 [ 5 ] 7 |10 3] 16 | 2
h| 161 146 128 106 0903 0729 0601 0511 0395
V4 [ [176 120 107 874 732 574 463 375 292
h| 967 800 721 594 500 395 319 259 2023
h | 155 125 105 0801 0.647 0484 0377 0284 0220
38 [, | 124 820 654 456 345 244 183 136 102
h| 780 573 462 325 248 177 133 099  0.746
h | 140 108 0901 0686 0558 0436 0356 0298 0238
12 [k, | 916 567 421 280 212 157 125 103 0814
h| 629 415 311 209 159 118 0938 0774 0.614
h | 127 103 0875 0695 0593 0494 0423 037 031
S8 [h, | 747 448 335 237 192 154 129 112 0928
| 542 338 254 180 147 118 0988 0853 071
h | 123 0977 0833 0683 0598 0506 0431 0373 0314
34 [h | 625 378 289 214 178 144 120 103 0857
h| 477 292 224 166 138 112 0936 080  0.666
B 113100 0775 068 065 062 049 047 042
I |h | 529 354 241 191 173 159 123 117 103
h | 423 283 193 152 139 127 0985 0933 0.824

Source: Kumar, German, and Shih (1981)

P, A2

=V

J P, A2

Figure 8.21 Geometry associated with Tables 8.4 and 8.5
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Table 8.4 Centre crack tension specimen under remote tension and in plane strain.

n

1 2 3| s | 7 [ w0 ]| 13 ] 16 ] 2
280 361 406 435 433 402 356 306 246
305 362 391 406 393 354 307 260 206
0303 0574 084 130 163 195 203 196 177
254 301 321 329 318 292 263 234 203
268 299 301 285 261 230 197 171 145
0.536 0911 122 164 184 185 180 164 143
234 262 265 251 228 197 171 146 119
235 239 223 188 158 128 107 089 0715
0699 106 128 144 140 123 105 0888 0719
221 229 220 197 176 152 132 116 0978
203 186 160 123 1.00 0799 0.664 0564 0.466
0.803 107 1.16 1.10 0968 079 0.665 0.565 0.469
212 196 176 143 117 0863 0628 0458 030
171 132 104 0707 0524 0358 0250 0178 0.114
0.844 0937 0879 0701 0522 0361 0251 0178 0.115
207 173 147 LIl 0895 0642 0461 0337 0216
135 0857 059 0361 0254 0167 0.114 0081 00511
0.805 070 0555 0359 0254 0.168 0.114 0.0813 0.0516
208 164 140 114 0987 0814 0688 0573 0461
0.889 0428 0287 0.181 0.139 0.105 0.0837 0.0682 0.0533

0.632 040 0291 0.182 0.140 0.106 0.0839 0.0683 0.0535
Source: Kumar, German, and Shih (1981)
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Table 8.5 Centre crack tension specimen under remote tension and in plane stress.

n
M [ 2 | 3 [ s | 7 [ 10| 13 ] 16 | 20
h |280 357 401 447 465 462 441 413 372
I8 1h 353 409 443 474 479 463 433 400 355
h, 035 0661 0997 155 205 256 283 295 292
h |254 297 314 320 311 286 265 247 220
V4 |p |310 329 330 315 293 256 229 208 181
h, 0619 101 135 183 208 219 212 201 179
h |234 253 252 235 217 195 177 161 143
38 |, |271 262 241 203 175 147 128 113 0.988
h, |0.807 120 143 159 157 143 127 113 0994
h [221 220 206 181 163 143 130 117  1.00
12 1h, 1234 201 170 130 107 0871 0757 0.666 0.557
h, [0927 119 126 1.18 1.04 0867 0.758 0.668 0.56
ho[212 191 169 141 122 1.0l 0853 0712 0.573
S8 \h, [1.97 146 113 0.785 0.617 0474 0383 0313  0.256
h, |0.975 1.05 097 0763 0.62 0478 0386 0318 0.273
h [207 171 146 121  1.08 0867 0.745 0.646 0.532
34 |h, |155 097 0.685 0452 0361 0262 0216 0.183 0.148
h, [0.929 0.802 0.642 045 0361 0263 0216 0.183 0.149
h [208 157 131 1.08 0972 0862 0778 0715 0.63
78 |h, [1.03 048 031  0.196 0.157 0.127 0.109 0.0971 0.0842
h, |073 0452 0313 0.198 0.157 0.127 0.109 0.0973 0.0842

Source: Kumar, German, and Shih (1981)

>
h i

Figure 8.22 Geometry associated with Tables 8.6 and 8.7.
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Table 8.6 1y, hy, and hs for SECP in plane strain under three point bending.

alw .
1 |2 | 3 [ s | 7 [ 10| 13 [ 16 | 20

0.936 0.869 0.805 0.687 058 0437 0329 0.245 0.165
6.97 6.77 6.29 5.29 438 324 2.40 1.78 1.19

1/8 =
, |3 22.1 20 15 11.7 8.39 6.14 4.54 3.01
|12 1.034  0.93 0.762 0.633 0.523 0396 0303 0.215
5.8 4.67 4.01 3.08 245 1.93 1.45 1.09 0.758

8

1/4

4.08 9.72 8.36 5.86 447 342 2.54 1.9 1.32
1.33 1.15 1.02 0.084 0.695 0.556 0.442 0.36 0.265
5.18 3.93 32 2.38 1.93 147 1.15 0.928  0.684
4.51 6.01 5.03 3.74 3.02 23 1.8 1.45 1.07
1.41 1.09 0922 0.675 0.495 0331 0211 0.135 0.0741
4.87 3.28 2.53 1.69 1.19  0.773 048 0.304 0.165
4.69 4.33 3.49 2.35 1.66 1.08 0.669 0424 0.23
1.46 1.07 0.896 0.631 0.436 0.255 0.142 0.084 0.0411
4.64 2.86 2.16 1.37 0.907 0.518 0.287 0.166 0.0806
4.71 3.49 2.7 1.72 1.14  0.652 0361 0.209 0.102
1.48 1.15 0974 0.693 0.5 0.348 0.223 0.14 0.0745
4.47 2.75 2.1 1.36 0936 0.618 0.388 0.239 0.127

oo

8

3/8

oo

o

1/2

oo

)

5/8

oo

3/4 2
, | 449 3.14 24 1.56 1.07 0.704 0441 0272 0.144
| LS 1.35 1.2 1.02 0.855 0.69 0.551 044 0.321
4.36 2.9 2.31 1.7 133 1 0.782 0.613  0.459

8

7/8

4.15 3.08 2.45 1.81 1.41 1.06 0.828 0.649 0.486
Source: Kumar, German, and Shih (1981)

oo
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Table 8.7 hy, hy, and h3 for SECP in plane stress under three point bending.

alw -
1| 2 [ 3 | s [ 7 | 1w 13] 16 | 2

0.676 0.6 0.548 0.459 0.383 0.297 0.238 0.192 0.148
6.84 6.30 5.66 4.53  3.64 2.72 2.12 1.67 1.26
295  20.1 14.6 12.2 9.12 6.75 5.2 4.09 3.07
0.869  0.731 0.629 0.479 0.37 0246 0.174 0.117 0.0593
5.69 4.5 3.68 2.61 1.95 1.29 0.897 0.603 0.307
4.01 8.81 7.19 4.73  3.39 2.2 1.52 1.01 0.508
0.963  0.797 0.68 0.527 0418 0.307 0.232 0.174 0.105
5.09 3.73 2.93 2.07 1.58 1.13 0.841 0.626 0.381
4.42 5.53 4.48 3.17 2.4l 1.73 1.28 0.948 0.575
1.02 0.767 0.621 0.453 0.324 0.202 0.128 0.0813 0.0298
4.77 3.12 232 1.55 1.08 0.655 041 0.259 0.0974
4.6 4.09 3.09 2.08 1.44 0.874 0.545 0344 0.129
1.05 0.786 0.649 0.494 0.357 0235 0.173 0.105 0.0471
4.55 2.83 2.12 146 1.02 0.656 0472 0.286 0.13
4.62 3.43 2.6 1.79  1.26 0.803 0.577 0349 0.158
1.07 0.786 0.643 0474 0343 0.23 0.167 0.110 0.0442
4.39 2.66 1.97 1.33 0928 0.601 0.427 0.28 0.114
4.39 3.01 2.24 1.51 1.05 0.68 0.483 0316 0.129
1.086  0.928 0.81 6.46 0538 0423 0332 0242 0.205
4.28 2.76 2.16 1.56 1.23 0.922  0.702 0.561 0.428

4.07 2.93 2.29 1.65 1.3 0.975 0.742 0.592 0452
Source: Kumar, German, and Shih (1981)
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Figure 8.23 Geometry associated with Tables 8.8 and 8.9.
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Table 8.8 1y, hy, h3 and his for SECP in plane strain under remote uniform tension.

n

ah
hl 123 s | 7 1w ]| 13 | 16 | 20
h, |495 693 857 115 135 161 181 199 212
g | |525 647 756 946 ILI 129 144 157 168
h, |266 258 252 242 236 232 232 235 237
h, |0 0558 0807 126 162 198 219 233 0
h, |434 477 464 382 306 217 155 LIl 0712
gl |476 456 428 339 264 181 125 0875 055
h, |103 764 587 37 248 15 097 0654 0404
h, |0 114 L1l 0833 0604 0375 0237 0153 0.0894
h, |388 325 263 168 106 0539 0276 0142  0.0595
g | 454 349 267 157 0946 0458 0220 0116 0.048
h, |514 299 19 0923 0515 024 0119 006 00246
h, |0 143 11 0643 038 0179 00879 0.0442  0.0181
h, |34 23 169 0928 0514 0213 00902 00385 0.0119
Uy | |445 277 189 0954 0507 0204 00854 00356 0011
h, |315 154 0912 0417 0215 0085 00358 00147  0.00448
A, o 16 L1l 0562 03 0021 00511 00213  0.00657
h, |28 18 13 0697 0378 0153 00625 00256 0.0078
g | fu 437 244 162 00806 0423 0167 00671 00272 0.00823
h, |231 108 0681 0329 0171 0067 00268 00108 0.00326
h, |0 180 121 0604 0318 026 00509 0.0207 0.00626
h, 234 161 125 0769 0477 0233 0116 0059  0.0215
vl 432 252 179 103 0619 0296 0146 00735 0.0267
h, |202 11 0765 0435 0262 0125 00617 00312 00113
h, |0 217 155 0895 0539 0258 0.127 00639 0.0232
h|191 157 137 11 0.925  0.702
g L 429 275 214 155 123 0921
h, |201 127 0988 0713 0564 0424
h, |0 2601 2203 147 116 0.875

o

Source: Kumar, German, and Shih (1981)



Elastic plastic fracture mechanics

Table 8.9 iy, hy, h3 and hs for SECP in plane stress under remote uniform tension.

alw -
h| 1 | 2| 3 5 | 7 1w ] 3] 16 | 2
h | 3.58 4.55 5.06 53 496 414 329 26 1.92

Y8 h, | 5.15 543  6.05 6.01 547 446 348 274 2.02
h, | 26.1 21.6 18 12.7 924 598 394 272 2
h, | 0296 049 0627 0.748 0.72 0586 0.45 0.345 0.255
h | 3.14 326 292 212 153 096 0.615 04 0.23

14 h, | 4.67 43 3.7 253 1.76  1.05 0.656 0419 0.237
h, | 10.1 6.49 436 219 124 0.63 0362 0224 0.123
h, | 0904 1.05 0.932 0.631 0.433 0.258 0.16 0.103 0.0583
h | 281 237 194 1.37  1.01 0.677 0474 0342 0.226
h, | 4.47 343 2.63 1.69 1.18 0.762 0.524 0.372 0.244

I h, | 5.05 265 1.6 0.812 0.525 0.328 0.223 0.157 0.102
h, | 1.73 1.4 1.1 0.72 051 0332 0229 0.164 0.108
h | 246 1.67 1.25 0.776  0.51 0.286 0.164 0.0956 0.0469

12 h, | 4.37 273 191 1.09 0.694 038 0216 0.124 0.0607
h, | 3.1 143 0871 0461 0.286 0.155 0.088 0.0506 0.0247
h, | 2.41 1.58 1.12 0.652 0.417 0.229 0.13 0.0748 0.0395
h | 2.07 141 1.105 0.755 0.551 0.363 0.248 0.172 0.107
h, | 43 255 1.84 1.16 0.816 0.523 0.353 0.242 0.15

o h, | 2.27 1.13  0.771 0478 0.336 0.215 0.146 0.1 0.0616
h, | 3.02 1.88 1.36 0.861 0.606 0.388 0.262 0.179 0.111
h | 1.7 1.14 091 0.624 0447 0.28 0.181 0.118 0.067
h, | 424 247 181 .15  0.798 049 0314 0.203 0.115

3/4 |h, | 1.98 1.09 0.784 0.494 0.344 0.211 0.136 0.0581 0.0496
h, | 3.44 2,12 1.56 0986 0.686 0.421 027 0.174 0.0987
h | 1.38 1.11 0962 0.792 0.677 0.574
h, | 422 2.68 2.08 1.54 127 1.04

7 h, | 1.97 1.25 0969 0.716 0.591 0.483
h 391 253  1.96 145 1.19 0973

o

Source: Kumar, German, and Shih (1981)
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Exercise

8.1

8.2

8.3

8.4

8.5

During compact tension testing of a specimen of thickness 40 mm made of
steel, the following data was obtained: load varies from 0 to 0.3 mm linearly
with a slope 0.8325 MN/mm. Further variation of load from this

1
displacement level to 1.0 mm is P=0.25 10°+0.70 10° (u 0.3) 10 ° 3N.
The specimen dimensions are 2 = b = 40 mm. Calculate ] if the crack
extension begins from the given crack size 40 mm. [Ans. 0.3467 MPam]

A component with a centre crack was subjected to a tensile load 2.70 MN. It
is made of SAE4340 steel with the following properties [Anand and Parks,
2004]: yield stress = 1172 MPa, modulus of elasticity h: 200 GPa, Poisson’?
n

ratio v = 0.25, Ramberg—Osgood material constants in =4 2

€y Oy Ty
« = 1.865, and n = 15 (approximated). The component dimension details:
crack size a = 40 mm b = 60 mm, thickness B = 25 mm, and semi-width
w = 100 mm. Determine | considering plane strain condition.

[Ans. 0.4627 MPam]

Determine load for Problem 8.3 corresponding to applied | = 0.40 MPam.
[Ans. 0.795 MN ignoring any correction due to r,]

Determine load for Problem 8.4 corresponding to applied | = 0.25 MPam
and state of stress is plane stress.
[Ans. 0.0805 MN ignoring any correction due to 7, ]

Determine the per cent change in load if applied | = 0.45 MPam in Problem
8.5 is (i) increased by 20 per cent and (ii) decreased by 15 per cent.
[Ans. (i) 0.19555 MN, (ii) 0.188595 MN; ignoring any correction due to r,]
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Experimental Measurement of
Fracture Toughness Data

9.1 Introduction

This chapter deals with the experimental methods related to the measurement of
fracture toughness and determination of resistance curves. All tests are done as
per certain standards. The standards are generally very exhaustive; they provide
all relevant information that may be needed about a test. Useful information in
brief about the different testing is presented in this chapter.

9.2 Measurement of Plane Strain Fracture Toughness K;c

K¢ testing is mostly done as per ASTM E399-90 (Reapproved 1997) (2000) or its
equivalent.

The standard specifies specimen geometry, procedure for preparation of
specimen, testing machine requirements, the sensitivity of measurement devices,
and testing fixtures, and gives guidelines for conducting tests and data collection,
along with methods of calculation of toughness and reporting of the experimental
data. For a rolled or forged material, there are three distinct directions of
symmetry: longitudinal (L), transverse (T), and short transverse (S). The
toughness of such a material will depend on the orientation of the crack and the
direction of loading during testing. If the loading is in the longitudinal direction
and the crack plane is in the short transverse direction, the specimen is identified
as L-S specimen,; if the loading is in the transverse direction and the crack plane is
in the short transverse direction, the specimen is identified as T-S specimen. Thus
there are six possible combinations: L-S, S-L, L-T, T-L, ST, and T-S. Three such
combinations are illustrated in Fig. 9.1.

The two most commonly used specimen geometries, compact tension (CT) and
three point bend (ITPB), are shown in Figs. 9.2 and 9.3, respectively. Arc-shaped
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Figure 9.2 Compact tension specimen.

specimens are also recommended to facilitate their preparation from pressure
vessel stock. For a measured fracture toughness K;c data to be valid according to

this standard, specimen

thickness B and crack size a must be greater than
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s

L>2w S=4B w=28

Figure 9.3 Three point bend specimen.

Ko 2
25 U—IC , where 0y, is the yield point of the material. In the absence of a distinct

Y
yield point, 0.2% proof stress can be employed. This calls for an initial estimation
of the toughness of the material. Alternatively, to fix these two parameters a table

.. . . O .
of minimum recommended values of B and a in terms of the ratio —~, where E is

the modulus of elasticity, provided by the standard can be used. Other
dimensions of the specimen are dependent mostly on the thickness of the
specimen. The specimens must be machined as per tolerances and surface finish
specified in the standard. The machined notch is finished into a chevron notch to
give rise to a crack with a straight front after fatigue pre-cracking. The fatigue
pre-cracking is done under cycle amplitude K; . to K, where K; .~ = 0 and
Ki,.. < 0.65K|c to avoid large-scale crack-tip plastic deformation.

During the testing, the load is applied through pin and clevis in the case of CT
specimen. The clevis and pin mating surfaces must be smooth so as to permit free
rotation of the specimen during loading. During the bend test, the specimen is
supported on rollers, which move freely on the surface of the fixture. The test load
is applied via a roller. The variation of applied load with the load-line
displacement (LLD) or crack opening displacement (COD) is recorded. During
testing, the specimen is loaded at a rate E)uch that the rate of increase in stress
intensity factor is within 0.55 to 2.75 MPa" m/s. The COD is measured with the
help of COD or clip gauge (Fig. 9.4). The specimen is loaded until the specimen
can sustain no further increase in load. The standard recommends recording the
maximum load from the load recorder or the dial of the testing machine. Typical
records of load-displacement are shown (Fig. 9.5). Depending on the material, one
of the three types of variations is obtainable. The British standard shows four
types of variations. The slope tan a of secant line corresponds to 95% slope of the
initial linear part of a load-displacement record.
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Figure 9.4 Crack opening displacement or clip gauge.
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v

Figure 9.5 Typical load-displacement records.

P
For the Type I record, fracture load is equal to Py, provided lr)n T < 11 If
Q

P
Ir)n & > 1.1, the test is invalid. For the Types II and 1III, fracture load is equal to Py.
Q
The 5% reduction in the slope of the linear part, or 95% secant method, in
conjunction with the above specimen dimensions ensures a crack growth of 2% a,

where a is the crack size used for the fracture toughness K;c calculation. When the
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test is completed, the specimen is broke open after heat-tinting. The actual crack
growth due to test-loading and fatigue crack growth can thereby be clearly
distinguished (Fig. 9.6). In the case of some aluminium alloys, the latter portion
shows striation or beach marks corresponding to each cycle. Their spacing
indicates the amount of crack growth per cycle. Crack size a to be associated with
fracture toughness calculations is %(al + ay + a3), where a5, a, and a3, as per old
standard, are measured at the one-third, middle, and two-thirds locations from
one of the specimens face. According to 1997 reapproved standard a; and a3 are
measured at the surfaces. Test is invalid, if difference between any two of the three

Jas 4l > (0.10. The difference

between the two surface crack length measurementsa should not differ by more
than 10% of average crack length measured. For straight through thickness starter
notch, no part of the crack front shall be closer to the machined starter notch than
2.5% w or 1.3 mm minimum, nor shall the surface crack length measurements
differ from the average by more than 15%, and the difference between these two
measurements shall not exceed 10% of the average crack length.

The tentative fracture toughness K, is calculated using the following relations.

measurements exceeds 0.10a. It is also invalid, if

Ko=P=f(), r="2 ©.1)

f(r)=[@+7)(0.866 +4.64r 1332:2+14.72° 5.6r)]/(Q 1) 9.2)
for CT specimen (ASTM 1987).
pr, 3Pr[199 A P15 393 +272)]

a
Ko = r=—, 9.3)
©7 Bu'S 21+201 NP w
Ls; = 2S = 4w for TPB specimen.
Load line of
(CT) specimen\!A a; . Crack front after growth

A

A A
5
{f
DY >
))>
D

Chevron notch )
Fatigue crack front

Figure 9.6 lllustration of crack front at di erent stages.
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Standard Checks
If both crack size a and specimen thickness B satisfy the following condition
K, 2
a, B 25 -2 | (9.4)
Ty

and crack size satisfies the checks mentioned earlier, then the tentative fracture
toughness K, is specified as the plane strain fracture toughness Kjc .

According to BS 5447 (1977), the formula for calculation of Kg is slightly
different. For the CT specimen

P a
Ko = ﬁf(’”)r "= (9.5)
f(r) =29.6:%°  1855r1° + 655.7r*°  1017r> + 638.9r*° (9.6)

and for TPB specimen

_ 3 PL, _a
f(r) =193/  3.07r° + 1453  25.11r>° + 25.80r*° (9.8)

The British Standard provides for a validity check list. Before fatigue pre-cracking,
check that the test piece dimensions and tolerances are as per the specifications.
Before the testing, it should be ensured that the surface fatigue crack length is at
least 0.45w. Further, both ends of the fatigue crack have extended at least 1.25 mm
or 2.5%w from the root of the machined notch, whichever is greater. The two
surface crack dimensions do not differ more than 5%w. The plane of the crack
does not have slope more than 10 with the notch plane. After the fracture testing,
it is necessary to ensure that multi-plane fracture is not present at the fatigue crack
front. The average of the three crack length measurements (at 25%B, 50%B, and
75%B) is such that a/w ratio lies within 0.45 to 0.55. No two of three crack length
measurements differ more than 2.5% w, and the maximum and minimum crack
lengths measured do not differ more the 5%w. During the analysis of the data, it is
necessary to check that force-displacement record has an angular disposition of
40 to 65 with respect to vertical axis. Further, the deviation from the linear
variation at the load level 0.8Pg is less than one-quarter of the deviation at the
level Pq (for Type I record only). Additionally, it is required that Pnax/Pg is less
than 1.10. Lastly, it is necessary to ensure that the specimen thickness and crack
length exceed 2.5 (Kg/ Uy)z.
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9.3 Measurement of J,-

This test is done as per the standard ASTM E1820-99a (2000). The standard E1820
deals with procedures and guidelines for the determination of fracture toughness
of metallic materials in terms of K, J, and CTOD §. Toughness can be measured in
the form of resistance curve or as a point value. This standard covers only the
opening mode (Mode I) loading. The recommended specimen geometries include
TPB or single edge (SE(B)), compact tension (CT) (Fig. 9.7), and disk-shaped
compact (DC(T)) specimens. All specimens contain notches followed by fatigue
cracks. The specimen dimensions vary depending on the fracture toughness data
to be collected. The guidelines are established through the consideration of
material toughness and yield strength and individual qualification requirements
associated with the toughness measure.

The test method requires continuous measurement of load versus LLD and
crack mouth displacement. If any stable tearing occurs, then an R-curve is
developed, and the amount of slow stable crack extension is measured. Two
alternative procedures, the basic procedure and the resistance curve procedure,
for measuring crack extension are recommended. The basic procedure is directed

@/ dia=0.188w
+ Thickness = B

0.1w

|<.>| w=2B

7y a2 B
0.75w | mw nuz:g m=0.42, n=0.2
v
a
1.2w

1O
(@)
w
Al
B
L=2.25w minimum >||< L=2.25w minimum we2B

(b)

Figure 9.7 Standard geometries for (a) compact tension and (b) three point bend specimens for
Jc testing.
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towards obtaining the value such as Kjc, J-, or éc. The basic procedure involves
physical marking of the crack advance and multiple specimens to develop a plot
from which a single point initiation toughness value can be determined. The
resistance curve procedure is based on the elastic compliance method and
multiple point data are collected from a single specimen. The basic procedure is
elaborated subsequently.

The specimen dimensions are recommended. For an evaluation of the initiation
toughness data, w/B is 2. Suggested alternative proportions for w/B are 1 to 4 for
TPB and 2 to 4 for CT specimens. The specimen is chosen keeping in mind the size
restrictions in terms of the fracture toughness and machine capacity available.
Specimens are to be made with the recommended machining tolerances. All
requirements of fixture alignments, loading rate during experiment, and
temperature stability and accuracy have to be ensured during the test. The
specimens are initially made with sharp notches and then fatigue cracked to give
a pre-crack. The pre-crack is produced by cyclically loading between 10* to
10° cycles. The fatigue load limits are

0.5Bb3
Py = 22290 %ve for TPB specimen (9.9)
f S P
0.4Bb30y,
= __° fe i 1
Pr Qw+ ) for CT specimen (9.10)

where S is the distance between the supports, and by and a¢ are the initial crack
and ligament dimensions. 0y, is effective yield stress; it is the average of the yield
stress oy, (or 0.2% yield stress) and the ultimate tensile strength of the material.
The specimens are loaded under displacement control. In the basic procedure,
each specimen is loaded to a selected level and the amount of crack growth is
determined. During the test load versus displacement variation is recorded. Both
the initial and final physical crack sizes are measured by optical methods.
Multiple specimens can also be used to evaluate | at the initiation of ductile
cracking, J;~ or d;c. The optical method of physical crack length measurement
involves heat tinting, breaking open the specimen, and measurement.
Alternatively, the specimen can be fatigue loaded after the test, and then
measurement can be done after breaking open the specimen. Use of liquid
penetrants is not recommended. The heat tinting is recommended for steels and
titanium alloys. For other materials, the fatigue loading after the test is suggested.
In the first case, the starting crack size will be clearly demarcated by the end of
fatigue region and the final crack size will be separated by the heat-tinted region.
In the second case, both will be demarcated by the starting and end fatigue



Experimental measurement of fracture toughness data 265

regions. The electrical potential drop method is also allowed for measuring the
crack sizes. Crack sizes are measured at nine equally spaced points on the starting
or end crack fronts. The points are located over a region leaving a span of 0.005w
from both the surfaces. None of the nine physical measurements of the initial
crack size should differ by more than 5% from the average ap. The similar
measurement and restrictions apply for the final crack size. From the final crack
size and the initial crack size, the extent of crack extension can be obtained. | is
calculated through the following relation.

=1+ I (0.11)

2y K2
where |, = (1 v%) N

P
K; = ﬁ f ZU—O for the CT specimen, (9.12)
K =L %0 for the bend speci 9.13
1= Wf . or the bend specimen, (9.13)

. S ap .
and ay is the initial actual crack length. f £ is taken from the handbook of stress

intensity factors (SIFs) or the standard. If side-grooved specimens are employed in
the testing to ensure plane-strain condition, then for the CT specimen

P a
Ki=  p—f — 9.14
! B Byw f w ( )

and for the bend specimen

P
Ki= P [ 2

=Prp—nt (9.15)

where By is the reduced thickness and B is the original thickness. ], is given
(Fig. 9.8) by the following relation.

_ 14y

=5 (9.16)

]pl

bo

where y = 240522 — ,by = w ag, for CT specimen, and = 2 for TPB

specimen.

The variation of | versus Aa (Fig. 9.9) is plotted. Draw a construction line with
M= 2 or some other value, which can be determined from the test data. The details
of its determination are given in the standard. Draw the exclusion line parallel to
the construction line at 0.15 mm and 1.5 mm. The limiting crack sizes and the [, .,
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Unloading curve.
(BC not papllel to AO)

v

o

C Displacement

Figure 9.8 Loading and unloading curve associated with measurement of |.
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Figure 9.9 Experimental resistance curve. [Source: ASTM E1820-99a(2000)]

b
are drawn. [, .. is equal to 2% - All data points lying within the space marked

by the axes and the Aajm;; and J; ., lines are important and qualified for further
procedure.

Draw a line parallel to the construction line passing through 0.5mm offset. It
is necessary to ensure that there is at least one data point lying between 0.15 mm
exclusion line and 0.5 mm offset line. The similar position must exist between 0.5
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mm offset line and 1.5 mm exclusion line. All the data points that lie between the
two exclusion lines are only considered for regression. Using the method of least
squares, a power law regression line of the following form passing through all the
qualified points is drawn.

InJ=InC, + cf;“ (9.17)

where p = 1. 0 mm. The intersection of the regression line with 0.2 mm offset line
defines the tentative fracture toughness ],. To confirm this tentative toughness as
the plane strain fracture toughness J;-, the following checks must be satisfied.

Thickness B = 25 ]Q /0y,

Initial ligament by > 25 ], / 0y,

The regression line slope d]/da at Aag is less than o, .

9.4 Measurement of Critical COD ¢

The COD tests are carried out following either the standard ASTM E1290-99
(2000) or BS 5762 (1979). The ASTM standard recommends the use of both CT and

TPB specimens with %O = 0.45 to 0.55. The BS standard recommends only TPB

a
specimens with 50 = 0.15 to 0.70. ag is the initial crack size after fatigue

pre-cracking and w is specimen width. The specimen geometries are given. After
getting the specimen ready through machining, they are fatigue pre-cracked with

loading rate d—tl =05 to 25 MPapE/ s. Upon pre-cracking, the specimen is

loaded gradually till the maximum load. The variation of load with crack mouth
opening displacement (CMOD) v, is recorded during the test. CMOD is usually
measured through a clip gauge.

The total COD ¢; consists of the elastic part . and the plastic component 4.
The plastic part vg of the total crack mouth opening, v, = vg + vg (Fig. 9.10),
is calculated by considering rigid body rotation of the crack flanks/edges about
point A (Fig. 9.11). This point is considered at a distance from the crack-tip, which
is equal to a certain fraction of the ligament depth (w a). That is, A is the point

where plastic hinge is formed. The two parts are given by

K

Sp= L
¢ Eo,

1 v (9.18)

N[ —

p_ r(w ag)
0p = vy
r(w ap)+ag+z

(9.19)
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v

(@)

Crack mouth opening v,

Figure 9.10 Components of total displacement.

4

-
—

Figure 9.11 Displacements associated with crack opening displacement measurement.

K is the standard SIF corresponding to the load P, initial crack size a9, and TPB
specimen geometry. r is taken as 0.4 as per the BS and 0.44 as per the ASTM E1290-
99 for the TPB specimen. CT specimen is permitted by the ASTM standard for the
COD test. In this case

1
r=04 1+2 a®+ a+05 2 2fa+059,a= ?
0

(9.20)
ag is the initial crack size, and by = w 4y, the initial ligament size.

The variations of load P with CMOD can have different forms (Fig. 9.12). To
cater for this type of situations, the standard BS 5762 indicates the following data
for collection. The critical COD §, at the onset of unstable fracture with less than
0.2 mm of stable crack growth, is relevant for the type of P-CMOD curve shown in
Fig.9.12(a). é; and ¢, are relevant for the type shown in Fig. 9.12(b). §; corresponds
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to initiation of stable crack growth, which is analogous to Kjc or [;-. 4, is the
critical COD that signals the onset of unstable fracture, which has been preceded
by more than 0.2 mm stable crack growth. J,, is the COD that corresponds to the
maximum of the load plateau (Fig. 9.12(c)). P;, Pmax, and P, may not be seen in the
same test. P; may be seen along with P, or Ppax.

A A A

RHSX
P A P Py P

CMOD CMOD CMOD
(@ (b) (0)
Figure 9.12 Three di erent forms of load versus CMOD records. (a) Load reaches level P, then
drops suddenly. (b) Load reaches slowly to highest level P, then drops suddenly. (c) Load reaches
maximum level Py, followed by slow drop and then sudden drop.

9.5 Measurement of K-Resistance Curve

Experimentally, R-curve can be determined following the ASTM E561-98 (2000)
standard. For testing centre cracked tensile panel, CT specimen and wedge loaded
specimen can be employed (Fig. 9.13). The specimen can have non-standard
dimensions. The handling of data in the case of linear elastic and elastic plastic
materials is different.

9.5.1 Linear Elastic Material

Generally, thin specimens are used for testing. This may lead to out-of-plane
buckling. For prevention of such a situation, antibuckling guide plates are
employed (Fig. 9.13(b)). To reduce friction at the contact surfaces, some lubricant
(e.g., Teflon sheets) are helpful.

In the case of non-standard specimens, the instantaneous crack size a can be
obtained using the secant line slope (Fig. 9.14) and the experimentally generated
calibration curves. In the case of standard specimens, this can be obtained using
the relationship or data provided in the standard. The corresponding resistance R
is determined through the following relation.

S a
R=K=_p—f _ (9.21)
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Finally, variation of R with crack growth Aa = a ag, where a9 is starting crack
size, can be plotted to obtain the experimental resistance curve.

Antibuckling guide

tttttt o T

__________

P Spacers

A veoden L

(2) (b)

.

()

Figure 9.13 (a) Centre-cracked tensile specimen. (b) Compact tension specimen. (c) Wedge
loaded specimen.

9.5.2 Elastic Plastic Material

The specimen and testing procedures are the same as in Section 9.5.1. The
instantaneous crack size is obtained through the determination of physical crack
size through optical method, or unloading compliance or secant compliance
(Fig. 9.15). The resistance curve is plotted against the crack growth, where the
effective crack size calculation is based on the Irwin plastic zone correction.
That is,

Aa = a5 Ao (9.22a)

1 K ?

= fmeasured T Tp ao,"p = E 0_7 (9.22b)
Y
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Figure 9.14 Typical load-displacement curve of elastic material.

Further,

P
R = K. = —
off ﬁf
A

P

Aeff
w

Unloading .- ‘ -

curves -

v

Displacement

Figure 9.15 Typical load-displacement curve of elastic plastic material.
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(9.23)

When the plastic zone is very extensive, the standard recommends the use of the
secant method for the determination of the experimental instantaneous crack size.
In the case of non-standard specimens, the instantaneous crack size a can be
obtained using the secant line slope (Fig. 9.14) and the experimentally generated
calibration curves. In the case of standard specimens, this can be obtained using
the relationship or data provided in the standard.

In the first step of calculation, a.¢ can be taken equal to the measured crack
size a, neglecting the correction due to plastic zone. This allows calculation of Keg
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using Eq. 9.23. In the next step, 4. is calculated using the plastic zone correction
factor r, through Eq. (9.22b). Fresh calculation of K. is then done. This process is
repeated till satisfactory convergence is achieved. This process has been illustrated
in Problem 4.3 of chapter 4.
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under soft loading, 22-23
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Plastic zone size, 12, 24-27, 30-32, 34, 87,

96, 181, 220



Irwin’s calculation of, 12
plastic zone correction, 26, 30, 88,
100, 270, 272
plane strain, 30,
plane strain constraint, 30
plane stress, 26
equivalent elastic crack, 26
Strip-yield model, 26
(see also Dugdale—Barenblatt model)
Plastic zone shape:
Mode I, 28-29, 220
by Mises criterion, 29
by Tresca criterion, 28
Mode II, 30
Mode I1I, 30
Instability condition using resistance
curve, 97
resistance to brittle fracture, 12
(see also Kj¢)
G calculation:
for in-plane extension, 23-24
for kinking, 138-139
Levy-Mises theory, 207
Life estimation under fatigue, 176, 183
Load control, 22, 97
Load line displacement (LLD), 229, 238, 259
Local smoothing, 133-136
Low cycle fatigue, 168, 192
Liquid penetrant, 264

Maximum principal stress theory, 154
(same as Rankine princpal stress theory)
Measurement of critical COD ¢ , 267-268
(see also ASTM E 1290-99 [2000])
(see also BS 5762 [1979])
Calculation of J¢ at
initiation, 268
instability, 269
maximum load, 269
Test procedure, 270
Measurement of fracture toughness, 257-269,
Kic, 257-262
Jic, 263-267
dc, 267-269
specimen geometry, 257-259, 263, 267-268
Meshless method, 1, 4, 102, 140
Microscopic fracture model, 232
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Ritchie-Knott—Rice model, 232-233
Mises criterion, 27-30, 205
Mixed mode fracture, 2-3
criterion of, 153-163
Mode I, 13-14, 65, 71-75, 80, 118-120,
122,125, 140, 155, 161, 216-226,
230-237, 257, 263, 267
Mode I, 13, 15, 75, 80, 83, 119, 120, 122,
132, 135-136, 152, 156, 162
Mode I1I, 16, 19, 30, 77-80, 209-212
209-210, 217, 220, 225

Non-proportional loading, 233
Numerical integration, 118, 121, 125, 177
(see Gauss quadrature)

Numerical methods, 1, 4, 102, 113-136
(see also FEM)

Overload effects on FCGR, 178

Paris law, 4, 171-174, 176, 192
Path dependence of plastic deformation, 206
Plane strain, 14-16, 18-19, 28-34, 65, 68, 75,
87,117, 141,176, 180, 181, 218, 223-224,
226,231, 238-240, 246, 248, 250, 252,
257-262, 265, 267
Plane stress, 14-16, 18-19, 28-32, 65, 68, 70,
74,88,96,117, 140, 176, 180, 221, 223-224,
238-240, 246247, 249, 251, 253
Plastic constraint Q, 231-232
Plastic deformation energy per unit crack
extension, 12-13
Plain strain constraint, 30
Plastic zone correction, 26, 30, 88, 209, 270,
272
Plasticity induced crack closure, 175, 178
Point of instability:
of crack growth, 87, 96-97, 233-236,
268-269
through elastic-plastic material, 268-269
through linear elastic material, 87, 96
Potential energy release rate G, 23-24,
120-136
(see under G evaluation)
experimental evaluation of critical, 22-24
FE based evaluation of, 120
under hard loading, 22-23, 97
under soft loading, 23, 97
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Potential energy, 10, 92

Power law hardening, 218
Ramberg—-Osgood material, 216

Prandtl-Reuss theory, 207

Process zone, 225-226, 233-234

Proportional loading, 221, 235
deformation theory of plasticity, 86, 208,

216, 233-234, 237

Q factor 230

Ramberg-Osgood relation, 216, 254
Rankine theory, 159
Region of finite strain, 225
Residual stress induced retardation, 178
Resistance curve approach for
measurement of J;c, 263
Resistance curve, 8687, 95-98, 257, 263
269-271
in terms of K, 96
in terms of |, 236
Retardation effects during fatigue cycling,
178
Retardation of crack growth, 178-182
Retarded fatigue crack growth rate:
Wheeler model, 179, 182
Willenborg et al. model, 178, 181-182
Reversal of load during fatigue cycling, 175
Bauschinger effect, 205
Roughness induced closure, 175

Short cracks, 192
Side-grooved specimens, 265
SIF K, 13-17, 48-54, 81, 83, 103-111, 119
(see under K)
Single edge crack panel (SECP), 240
Single edge notched bend (SENB), 225
Single specimen testing for [jc, 264
Singularity elements, 114, 132-133, 136, 139
Slant fracture, 33
Soft loading, 22-23
Specimen configurations for measurement of
Kic, 258-259
Jic, 263264
bc, 267-268
Stable crack extension, 236, 263

Stiffness derivative procedure, 118, 120,
129-130, 139
Strain (or potential) energy release rate, 6,
19, 22, 120, 130-136, 138
Strain singularity, 16, 211, 217, 225
Elastic material, 16
Material showing plastic deformation, 211,
217,223,225
Stress method, 119
Stress relaxation, 24, 25, 30, 32, 34
Stresses in terms of stress function, 67
Striation or beach marks, 261
Strip yield model, 26, 88, 213
Surface energy, 8, 10-12
Symmetric and anti-symmetric parts of
displacements and stresses, 126

T criterion, 161
T stress, 230
Tearing modulus, 235-236
Test procedure for measurement of:
Kic, 257-262
Jic, 263-267
dc, 267-269
K-Resistance curve:
Elastic plastic material, 270
Linear elastic material, 269
Testing fixtures, 257
Theoretical strength:
Atomic level modelling for, 6-8
Explanation based on stress concentration,
89
Thickness dependence of fracture toughness,
33-34
Three modes of crack extension:
Condition of fracture, 19
Crack-tip stress field, 14-16
Onset of crack extension in a particular
mode, 19
Three point bend (TPB) geometry, 257
Total or deformation theory of plasticity, 208
Tracy’s definition of CTOD, 224
Tresca criterion, 28-29, 205
Triaxiality at crack front, 31-33
Plastic zone shape around crack tip, 31



Unloading
during crack extension, 233
(see also non-proportional loading)
during tensile test, 204

Underload cycle, 178

Weight function method, 110-111
Williams’ eigenfunction expansion, 80, 83
Work hardening, 204
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XFEM, 139-140

Yield condition, 28, 205, 211
Yield criterion of :
Mises, 28, 205
Tresca, 28, 205
Yield surface, 205
Yielding fracture mechanics (YFM), 2, 202,
225
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