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Preface

This book is intended for technicians, engineers, designers, students, and
teachers working in the fields of engineering and vocational education. Our main
objective is to provide an assessment of indicators of quality and reliability to aid in
decision-making. To this end, we recommend an intuitive and practical approach,
based on mathematical rigor.

The first part of this book shows the fundamental basis of data analysis in both
quality control and in studying the mechanical reliability of materials and structures.
Laboratory and workshop results are discussed in accordance with the technological
procedures inherent to the subject matter. We also discuss and interpret the
standardization of manufacturing processes as a causal link with geometric and
dimensional specifications (GPS, or Geometrical Product Specification). This is
moreover the educational novelty of this work, in comparison here with consulted
praiseworthy publications.

We discuss many laboratory examples, thereby covering a new, industrial
organization of work. We also use mechanical components from our own real
mechanisms, which we built and designed at our production labs. Finite element
modification is thus relevant to real machined pieces, controlled and soldered in a
dimensional metrology laboratory.

We also discuss mechanical component reliability. Since statistics are common
to both this field and quality control, we will simply mention reliability indices in
the context of using the structure for which we are performing the calculations.

Scientists from specialized schools and corporations often take an interest in the
quality of measurement, and thus in the measurement of uncertainties. The so-called
cutting-edge endeavors such as aeronautics, automotive, and nuclear industries, to
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mention but a few, put an increasing emphasis on the just measurement. This text’s
educational content stands out due to the following:

1) The rigor of the probabilistic methods which support statistical–mathematical
treatments of experimental or simulated data.

2) The presentation of varied lab models which are to come at the end of each of
the following chapters: this should help the student to better understand how to:

- define and justify a quality and reliability control target;

- identify the appropriate tools to quantify reliability with respect to
capabilities;

- interpret quality (capability) and reliability (reliability indices) indicators;

- choose the adequation test for the distribution (whether justified or used a
priori);

- identify how trials can be accelerated and their limits;

- analyze the quality and reliability of materials and structures;

- size and tolerance (GPS) design structures and materials.

– What about uncertainty calculations in applied reliability?

The fracture behavior of structures is often characterized (in linear mechanics)
by a local variation of the material’s elastic properties. This inevitably leads to
sizing calculations which seek to secure the structures derived from the materials.
Much work has been, and still is, conducted in a wide range of disciplines from civil
engineering to the different variants of mechanics. Here, we do not consider
continuum mechanics, but rather probabilistic laws for cracking. Certain laws of
statistical distributions are systematically repeated to better approach reliability.

Less severe adequation tests would confirm the fissure propagation hypothesis.
In fields where safety is a priority, such as medicine (surgery and biomechanics),
aviation and nuclear power plants, to mention but three, theorizing unverifiable
concepts would be unacceptable. The relevant reliability calculations must therefore
be as rigorous as possible.

Defining safety coefficients would be an important (or even major) element of
structure sizing. This definition is costly, and does not really offer any real guarantee
on safety previsions (unlike security previsions). Today, the interpretation and
philosophy of these coefficients is reinforced by increasingly accurate probabilistic
calculations. Well-developed computer tools largely contribute to the time and effort
of calculations. Thus, we will use software commonly found in various schools
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(Auto Desk Inventor Pro and ANSYS in modelization and design; MathCAD,
GUM, and COSMOS in quality control, metrology, and uncertainty calculations).

Much work has been done to rationalize the concept of applied reliability;
however, no “unified method” between the mechanical and statistical interpretations
of rupture has yet been defined. Some of the many factors for this non-consensus are
unpredictable events which randomly create the fault, its propagation, and the
ensuing damage. Many researchers have worked on various random probabilistic
and deterministic methods. This resulted in many simulation methods, the most
common being the Monte Carlo simulation.

In this book, we present some documented applied cases to help teachers
succinctly present probabilistic problems (reliability and/or degradation). The
intuitive approach takes on an important part in our problem-solving methods, and
among various points, the main goal of this book is to give this humble contribution.
Many commendable works and books have talked about reliability, quality control,
and uncertainty perfectly well, but as separate entities. However, our task here is to
verify measurements and ensure that the measurand is well-taught. As Lord Kelvin
said, “if you cannot measure it, you cannot improve it”. Indeed, measuring identified
quantities is an unavoidable part of laboratory life. Theoretical confirmation of
physical phenomena must go through measurement reliability and its effects on the
function are attributed to the material and/or structure, among other things.

Mechanical models (rupture criteria) of continuum mechanics discussed in
Chapter 10 make up a reference pool of work used here and there in our case studies,
such as the Paris–Erdogan law, the Manson–Coffin law, S-N curves (Wöhler
curves), Weibull law (solid mechanics), etc. We could probably (and justly) wonder
in what way is this chapter appropriate in works dedicated to reliability. The reason
is that these criteria are deliberately targeted. We used them here to avoid the reader
having to “digress” into specialized books.

Establishing confidence in our results is critical. Measuring a characteristic does
not simply mean finding the value of the characteristic. We must also give it an
uncertainty so as to show the measurement’s quality. In this book, we will show
educational laboratory examples of uncertainty (GUM: Guide to the Expression of
Uncertainty in Measurement).

– Why then publish another book dedicated to quality control, uncertainties, and
reliability?

Firstly, why publish a book which covers two seemingly distinct topics (quality
control and reliability including uncertainties)? Because both these fields rely on
probabilities, statistics, and a similar method in describing their hypothesis. In
quality control, the process is often already known or appears to be under control
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beforehand, hence the intervention of capability indices (SPC: statistical process
control). Furthermore, the goal is sometimes the competitiveness between
manufactured products. Security is shown in secondary terms. Indeed, it is in terms
of maintainability and durability that quality control joins reliability as a means to
guarantee the functions attributed to a mechanism, component, or even the entire
system.

When considering the mechanical reliability of materials and structures, the
reliability index is inherently a safety indicator. It is often very costly in terms of
computation time and very serious in matters of consequence. The common aspect
between both fields is still the probabilistic approach. Probabilities and statistical–
mathematical tools are necessary to supply theoretical justifications for the
computational methods. Again, this book intends to be pragmatic and leaves
reasonable room for the intuitive approach of the hypotheses stated here and there.

Finally, we provide a succinct glossary to smooth the understanding of
dimensional analysis (IMV: International Metrology Vocabulary) and structural
mechanical reliability. This educational method allows us to “agree” on the
international language used to define the mesurand, reliability index, or a succinct
definition of the capability indicators largely used in quality control.

In terms of safety, component reliability (for both materials and structures) is
absolutely essential in the field of safety and performance.

The field of reliability is used in many fields of engineering, from civil engineering
to mechanical and electrical engineering: it is thus manifold. It often aims at the
estimation of the functions at various phases of the lifecycle of components, subject to
study. Reliability users increasingly depend on reproducible software, though they
struggle to determine whether the component is active or passive, the size of the
experience return and its imperative validation, the phenomena which tend to decrease
the likelihood of failure or the reliability index, etc.

This book uses some methods provided here and there to estimate operational or
target reliabilities. The apparent controversy between frequential and Bayesian
probabilistic approaches are irrelevant in our humble opinion if we know how to set
the problem a priori. Setting boundaries for the likelihood of rupture (failure or even
degradation) is worth doing. As for us, we prefer calculating rupture through the
damage indicator integral, made explicit by Madsen’s work.

Just as estimating reliability can allow us to understand the history to better
anticipate the future, we must show pragmatism in measuring the factors responsible
for the likely rupture. Since the measurement is always inherently flawed and
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uncertain, we must include uncertainty calculations in our reliability methods.
Without such calculations, our results would lead to doubtfulness.

First, vocabulary: reliability has its own, specific terminology (see glossary)
which, like for metrology, affects the decision’s terms. Thus, we will abide by the
EN 13306 standard (see Table A.45 of the Appendix of Volume 3). The definitions
for reliability, durability, failure, and degradation can be found in the appendix and
glossary.

Reliability data is necessary to:

– prioritize between components→ occurrence rate of each mode (AMDEC);

– identify the degradation mechanism for a clear experience feedback;

– optimize preventative and corrective maintenance;

– gather data efficient for, and necessary to, the correct calculation of reliability
parameters and especially their uncertainties.

Analysis and validation are done by analyzing the experience feedback with
respect to critical failure criteria, such as failure modes, the mean time between
failures (MTBF), probability of failure on demand (Ps) and its reliability index
according to a “selected criterion”, the repair and/or material unavailability time, the
confidence intervals, or even the sample size.

We note that reliability is usually taken into account from design, based on the
specifications. It is calculated and compared to the allocated reliability (reliability
demand). It includes all phases of life (design, manufacture, and development trials).

During exploitation (operation), the planned reliability is calculated and compared
to a threshold (e.g. rate of failure) such as physical calculations, with the intention to
extend it beyond the lifespan (cycle) planned during design.

Reliability is mostly measured, therefore making its metrology a serious business;
hence, the calculation of its uncertainties including instrument and measurement
equipment calibration.

Among the diverse difficulties which are imperative upon the reliability function,
we hold, among others, the type of component (repairable or not repairable,
redundant active or passive) and even some controversial methods or model
(frequencial/Bayesian).

The component can be active:

– various degradation mechanisms with different modes of failure,



xvi Fracture Mechanics 2

– unknown or even complex physical modelization,

– classic reliability and Bayesian reliability (if) so sometimes adapted to the
study case,

– incomplete or even truncated data,

– modelization using a Gaussian distribution, an exponential law, a two- or
three-parameter Weibull law or especially a Birnbaum–Sanders law (as is often
the case in cracking rupture: wear and tear in zone II of the Ritchie curve – see
Figures 1.2 and 1.17).

The component can be active and passive:

– few degradation mechanisms;

– degradation type: slow or progressive;

– few failures (if any);

– physical modelization of degradation: fissure initiation and propagation;

– numerical methods (energetic methods, integral calculations, and finite
elements);

– Bayesian approach for available failure data.

As we are a physicist, practical mathematician-statistician or engineer,
sometimes, in many schools of thought, “controversies” appear in the method or
model (ex. frequency/Bayesian) used. In our book, we will try to remain pragmatic
and synthetize our opinions.

From a physicist’s perspective, the experimental conditions of data-gathering are
known, and their uncertainties well-bound. Its so-called frequential analysis is based
only on objective data, because they were measured correctly. We know that
measurements are costly and time-consuming. If the data from “our physicist’s”
experiments are insufficient and if the process turns out to be non-repetitive or the
number of parameters to estimate is high, the frequential approach falsely introduces
confirmation bias in the analysis. The paradox is that the calculations are correct, but
they only answer to a logically mathematical demand. In other words, the
mathematics are correct but are superficially stuck on an inappropriate case, hence a
rejection of the solution and the birth of controversy…

The engineering approach is attractive due to its “applied arts and crafts” aspect
(i.e. learning). Its analysis includes the knowledge that we must apply an “a priori”
law, which must by definition be biased. Without rejecting the Bayesian approach,
this is where we favor the engineering approach because it uses decision-making
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tools for which preferences are clearly expressed. At the end of this approach, the
uncertainty function greatly helps make the decision…

Finally, it is important to specify and frame the problem well: its context,
hypotheses, available data, etc. Simulations (using software) are a helpful
educational tool, but they should not be treated as replacements for real experiments.
Relying on real data from the experiment feedback of the collection conditions is
more suitable. Indeed, experiments and “real” data are a strategic necessity in case
of preemptive validation.

In this book, we show (see Chapters 1 and 2) the qualitative analysis elements
preceding quantitative, deterministic, and probabilistic analysis. The laws and tests
shown in the first two chapters of Volume 1 are required reading for any
probabilistic study of physical phenomena, and it falls to us to be pragmatic.

Regardless of the approach used, we must analyze the sensibility of factors and
always apply common sense. Among many other methods of analysis, reliability is a
tool for understanding the past. For example, many failures, degradations, and
ruptures or ruin (damage) cannot be explained by deterministic models such as
aging, mechanisms of degradation, models and laws (see Chapter 1, “Fracture
mechanisms by fatigue”), etc. Studying reliability allows us to find the components
and subcomponents to critique, the important variables (initial faults, factor of
intensity of constraint f.i.c., etc.) for which uncertainties should be reduced, and so
on through a sound knowledge of physical phenomena.

Reliability anticipates and prepares for the future in order to improve
performance and safety by optimizing exploitation strategies.

However, reliability alone cannot replace an experimental understanding of
physical phenomena.

A. GROUS
November 2012



Glossary

Abrasion resistance

Hard materials also show good abrasion resistance; in other words, they are not
easily worn down by friction. In practice they are harder to grind down.

Acceptable risk

“Acceptable risk” describes the structural and non-structural measures
to be put in place to reduce probable damage to a reference level. A risk
scale is often associated with dangers in order to classify them in order of
seriousness.

Availability

Is a (dimensionless) attribute of dependability. It is the capacity of a system to
properly deliver the service (quality) when the user has need of it. Availability is a
unitless measurement; it corresponds to the ratio of uptime to total execution time of
the system.

Chance

Imaginary cause of something that occurs for no apparent or explicable reason
(dictionary definition).

Conditional probability

(Bayesian) probability of a consequence when the causal event will
definitely occur. If we suppose that a fracture has reached the limit suggested
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by a pre-established hypothesis, the probability of cracking is a conditional
probability.

Corrective maintenance or restoration to a state of proper function

Maintenance performed when a breakdown is detected, aimed at restoring a
product to a state where it can fulfill its required function.

Corrosion resistance

This denotes the ability of a material to withstand damage from the effects of the
chemical reaction of oxygen with the metal. A ferrous metal which is resistant to
corrosion does not rust.

Degradation

Irreversible evolution of one or more characteristics of a product related to time,
to the duration of use or to an external cause – alteration of function, constant
phenomenon, physical aging

Dependability

The property which enables users to justifiably place their faith in the service
provided to them: reliability, availability, safety, maintainability, security.

Dilation and contraction

When a material is heated, it expands slightly; this is called dilation. Conversely,
if it shrinks (clue to cold), this is a contraction. The level of dilation and contraction
of a metal affects its weldability. The more the metal is expanded or contracted, the
greater the risk of cracks or deformations appearing.

Distribution function

Integral function of the probability density (or cumulative probability function),
calculated in order of ascending values of the random variable. It expresses the
probability of the random variable assuming a value less than or equal to a given
value.
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Ductility

Represents the ability of a metal to be deformed without breaking. It can be
stretched, elongated, or subjected to torsion forces. Ductile materials are difficult to
break because the cracks or defects created by a deformation do not easily
propagate.

Durability

The ability of a product to perform its required function, in given conditions of
use and maintenance, until a critical state is reached.

Elasticity

Ability of a material to return to its original form after a deformation.

Failure

Alteration or suspension of the ability of a system to perform its required
function(s) to the levels of performance defined in the technical specifications.

Fault (error) resistance

Fault resistance is implemented to detect and handle errors.

Fault tree

Logical diagram using a tree structure to represent the causes of failures and their
combinations leading to a feared state (Bayes). Fault trees enable us to calculate the
unavailability or the reliability of the system model.

FMECA – risk analysis

A method for systematic risk analysis of the causes and effects of failures that
might affect the components of a system. FMECA analyzes the seriousness of each
type of failure. It enables us to evaluate the impact of such failures on the reliability
and safety of the system.
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Frailty

Frailty describes the characteristic of a metal that breaks easily on impact or
from a deformation. It deforms little or not at all, and is easily broken.

Hardness

The ability of a body to resist penetration by another body harder than it. It is
also characterized by its scratch resistance.

Hazard

Describes any event, unpredictable phenomenon, or human activity which would
result in the loss of human lives, or damages to commodities or the environment.

Heat-affected zone (HAZ)

The HAZ represents the heat affected region of the base metal that was not
melted during welding process. Metallurgists define usually the HAZ as the area of
base material which has had its microstructure and properties altered by welding or
heat.

Maintainability

One of the aspects of dependability. The maintainability of a system expresses
its capacity for repair and evolution, with maintenance supposedly completed under
certain conditions with prescribed procedures and means.

Malleability

A characteristic which permits the metal to be molded. It is the relative
resistance of a metal subjected to compression forces. The malleability of a material
increases with increasing temperature.

Markov chains

Used to evaluate the dependability of systems in a quantitative manner, this
technique is based on the hypothesis that failure and repair rates are constant and
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that the stochastic process modeling its behavior is Markovian (a memoryless
process). When the space of the potential states of the system is a discreet set, the
Markovian process is called a Markov chain.

Materialized measure

The measuring instrument which replicates or permanently provides different
types of values during use, each with an assigned value.

Metrology

The science of measurements and its different applications, which encompasses
all theoretical and practical aspects of measuring, regardless of the uncertainty of the
measurement or the domain to which it relates.

Measurand

A value to be measured.

Measuring accuracy

Proximity between a measured value and the true value of a measurand.

NOTE:

The measurement of accuracy does not produce a value and is not expressed
numerically. A measurement is sometimes considered accurate if it offers a smaller
uncertainty.

Although linked to the concepts of correctness and fidelity, it is better not to use
the term “measuring accuracy” for measuring correctness or the term measuring
fidelity for measuring accuracy.

Measuring accuracy is occasionally associated with the proximity between the
measured values attributed to the measurand.
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Measuring instrument, measuring apparatus

Usually a device used for making measurements, on its own or possibly in
conjunction with other devices.

Measuring repeatability

This is the measuring fidelity according to a set of repeatable conditions.

Measuring reproducibility1

This is the measuring fidelity according to a set of reproducibility conditions.

Measuring uncertainty

Non-negative parameter which characterizes the dispersion of values attributed
to a measurand, arising from information used according to the method (e.g. A or B
of the GUM).

NOTE:

Measuring uncertainty includes elements caused by systematic effects
(associated with the corrections and the assigned benchmark values) as well as
definitional uncertainty. Estimated systematic effects are not always corrected.
Elements associated with uncertainty would be added. The parameter is often the
standard uncertainty (from the standard deviation, σ) or the half range (U/2) of an
interval with a determined coverage probability (e.g. k = 2 for 95% confidence).
Certain elements are evaluated with the type-A GUM from the statistical distribution
of measured values characterized by standard deviations. The evaluation using the
type-B GUM is characterized by standard deviations of probability density functions
based on experience, among other things.

Preliminary hazard analysis (PHA)

Method for identifying and evaluating hazards, their causes, their consequences
and the seriousness of these consequences. The aim of this analysis is to determine

1 For statistical terminology refer to ISO 5725-1:1994 and ISO 5725-2:1994.
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the appropriate methods and corrective actions to eliminate or control dangerous
situations or potential accidents.

Preventive maintenance

To avoid loss of function; thus, it is a probabilistic notion, one of anticipation
and prediction. Such maintenance is performed at predetermined intervals, in
accordance with prescribed criteria, intended to reduce the probability of failure or
degradation of the function of a product.

Probability

Statistical concept which can either express a degree of confidence or a
measurement of uncertainty (subjective probability) or be taken as the limit of a
relative frequency in an infinite series (statistical probability).

Probability density (or distribution function)

This is a function describing the relative likelihood of a random variable
assuming a particular value. It assigns a probability to each value of a random
variable.

Random

Process in which the result varies even if the input data set remains identical (a
protocol leads to different results).

Reliability

The reliability of a system (work) is its aptitude to meet its design objectives
over a specified period of time, in the environmental conditions to which it is
subject. It is based on the probabilities used to evaluate it.

Reliability is one of the aspects of dependability. It corresponds to the continuity
of service that the system must provide to its users, with the system being
considered as irreparable. Any accidental failure is taken into account, regardless of
its severity. Reliability measures the rate of failure, the inverse of the MTTF (mean
time to failure).
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Risk

Risk is “a more or less predictable potential danger”, or in other words a
drawback which is more or less probable to which we are exposed. The scientific
definition of risk involves an aspect of hazard and an aspect of loss, both expressed
as probabilities.

Risk analysis

System inevitably contains design errors, regardless of the amount of validation
work done. The “zero error” criterion is not a realistic goal, in view of the
development costs this would entail. Thus, it is important for so-called critical
systems to evaluate the risks for the users of the following systems:

FMECA: failure mode, effects, and criticality analysis.

SEEA: software error effects analysis.

PHA: preliminary hazard analysis.

Risk assessment

Procedure to determine the probability of a hazard occurring and its possible
consequences.

Safety case

This approach is mainly used in the oil, nuclear, and rail transport sectors. In
practice, this procedure facilitates the monitoring of studies.

Security

We distinguish between safety and security. Thus:

Safety guards against catastrophic failures, for which the consequences are
unacceptable in relation to the risk.

Security relates to the prevention of unauthorized access to information.
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Software reliability

Software inevitably contains design errors, no matter how strict the rules of
design and validation. The ability of a software suite to provide acceptable service in
spite of its residual errors defines its reliability.

Stress intensity factor (s.i.f., ΔΔK)

s.i.f (ΔK) is a function of the stress, crack size and crack shape. Stress intensity
factors do not have variability. They have uncertainty and modeling errors. The
crack shape may be unknown and be approximated by a semicircle.

In Mode 1 (during a fatigue cycle, in mechanics of rupture) (s.i.f = ΔK) is a
measure of the stress-field intensity near the tip of an ideal crack in a linear-elastic
solid when the crack surfaces are displaced in the opening mode. Stress-intensity
factor range (ΔK) in fatigue crack growth rate is the variation in a cycle, that is,
Kmax – Kmin.

Tenacity

The ability of materials to resist shock without breaking or chipping.

Trend test

Trend tests are used in reliability to obtain indicators of reliability, from data on
failures, and determine fluctuations in reliability over time.

Undesirable event

An event that should not occur or which should be improbable in view of the
objectives in terms of dependability.

Unit (measuring)

Real scalar value defined and adopted by convention, to which we can compare
any other similar value to express the ratio between the two values as a number.
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Value

Property of a phenomenon, (body, length, weight) expressed quantitatively by a
number and a reference.

Abbreviations

CITAC Cooperation on International Traceability in Analytical Chemistry

CSA Canadian Standardisation Association

EA European Cooperation for Accreditation

Eurachem Focus for Analytical Chemistry in Europe

EUROLAB European Federation of National Associations of Measurements,
Testing and Analytical Laboratories

GUM Guide to the expression of Uncertainty in Measurement (the
reference document recognized by the CSA, EUROLAB, Eurachem,
and EA)

IEC International Electrotechnical Commission

ILAC International Laboratory Accreditation Cooperation

ISO International Organization for Standardization

S (or σ) Standard deviation

SAS Le Service d’Accréditation Suisse (Swiss Accreditation Service)

U Uncertainty

VIM International Vocabulary of basic and general terms in Metrology



Chapter 1

Fracture Mechanisms by Fatigue

1.1. Introduction

In the not so distant past, we often built not from precise calculations, but by
intuition. Carpenters did not question the resistance of the wood they used to build
their ships. However, there is no doubt that it is necessary to calculate beforehand, if
we are to combine safety with economy in our works of art and professional
projects. That is not to say that we can be one hundred percent sure about
calculations, because they merely turn out to be the product of the transformation of
figures that we put in. The figures themselves can also be marred by diverse
mistakes, or not correspond with reality. Moreover, if we forget to calculate a
particular part of the problem, there is no automatic mechanism which signals this
omission. Therefore, we must go by calculations to obtain a satisfactory level of
safety, bearing in mind the imprecision of figures, the irregularities of behavior in
constructions, and even the defects of theoretical hypotheses.

The main problem, then, is to study how the construction of stability is modified
by the random characteristics of the variables that govern it. We will first attempt to
point out the importance of proper usage of materials and their propensity to crack. In
this chapter, several important points concerning the analysis of the factors of
cracking will be presented. Examples are based on a law renowned for being
“simple”, but which is representative of crack propagation in zone II (see
Figure 1.18). For a greater understanding of behaviors during diverse fracture
mechanisms, we will refer to works specialized in continuum mechanics. The reasons
governing our choice of welded structures can be explained by their practical
importance in metallic works and installations (offshore, building, cars, and other
devices assembled by welding). Also, welded structures show a considerable amount



2 Fracture Mechanics 2

of sensitivity in terms of failure (damage), due to fatigue of the notch stemming from
potential penetration lacunae (L), located at the root of the weld bead.

Fatigue, like a succession of mechanisms, constitutes a process (distortions,
loading), which modifies the properties of a material. This causes cracks that, over
time, tend toward the fracturing of a material and/or of the structure. Although the
range of stress is smaller than the resistance of the traction, the fact remains that it
has a considerable influence on the reliability of the structure. There are stages
which occur over time, ranging from activation, slow propagation to final fracture,
used to predict the behavior of the structure. These phases are taken into
consideration by most of the models concerned with cracking. This is, in fact, the
reason we thought this chapter would be useful in a work dedicated to reliability and
quality control. In fatigue, damage occurs in zones where the alternating stress is at
its most intense: diverse cavities, notches, blowholes once they have been welded,
strong heterogeneity of the material, etc.

Moreover, from microscopic examination of facture, it is clear that typical facies
are parallel to the crack propagation, followed by a tear, which is the final fracture.
The most significant life expectancy (slow to moderate speed of crack propagation)
corresponds to the activation of the crack. Life expectancy is relatively low. The
problem lies with activation. In this phase, the material is subjected to damage,
which cannot be detected by the naked eye. However, since the structure is not
constantly under the microscope, it is beneficial to predict these phenomena using
reliability calculations. It is this link between cause and effect which justifies
reliability calculations. The stress intensity factor (s.i.f., ΔK) starts at the foot of the
weld bead [MAD 71, WAT 73, LAS 92]. The structure remains sensitive in terms of
its resistance, presenting a high risk in fatigue.

1.2. Principal physical mechanisms of cracking by fatigue

1.2.1. Fracture mechanics

This section is intended to support the calculations of reliability indexes.
Experimentally, it has been demonstrated that the presence of a crack in a part
(structure) considerably modifies its resistance [GRO 98, LAS 92]. Additionally, we
know that a crack could become unstable during loading. This crack could be
propagated in increasing measures, before a brutal fracture occurs. To evaluate the
residual strength of a cracked compound, fracture mechanics should be employed.
The calculations of cracked solids are based on the crack (sometimes microscopic)
in terms of a tributary surface discontinuity with forced decohesion between the
neighboring atoms. Among the numerous studies on the topic, the work of Griffith
[GRI 21], who pioneered the model on the crack resistance, is the most important.
This original paper concerned fragile materials (e.g. glass). Irwin et al., in 1948,
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applied Griffith’s work to solid components (structures). The following chart
provides a short overview of the work on cracked components.

Figure 1.1. Simplified illustration of fragile fracture in mechanics

Estimates of the longevity of fatigue are based on rigorous calculations, hence the
method employed for finite elements (Figure 1.4). Of course, there are other
analytical methods for simple cases (boundary integral equations, photoelasticity, or
extensometers), as experimental approaches. With the aim of determining the number
of da/dN cycles per fracture, many laboratory tests were carried out on smooth test
pieces during periodic loading. The literature confirms that during traction, at each
one-fourth of a cycle, testing for traction gives a result which correlates to the
maximum stress. Wöhler’s curve can then be used to find the link between the
alternating stress and the number of cycles per fracture, from which the relation of
load (R) indicates the quotient between the minimum stress and the maximum stress.

Resistance to fatigue is often modified by a host of factors, such as concentration
of stress, temperature, loading, the topography of the surface (rugosity), and random
phenomena (wind, ice, waves, etc.). This inevitably leads us to additive considerations
of conventional and classic calculations for the resistance of materials. It now
becomes even more necessary to consider the statistical aspect of the test results for
fatigue. For example:

i) During classic fatigue, dispersion is greater than during low-cycle fatigue.

ii) The minimal endurance limit equates to about half of the endurance limit.

iii) In the low-cycle domain, longevity is defined according to a realistic interval
of [μ − 3σ; μ + 3σ] in the reputedly controlled domains (aeronautics or “building”).

At first glance, the problem of the depth of the initial crack (a0) is simple. It
becomes complicated when the variable representing the initial crack not only
remains random but is also dependent on other parameters of the crack law:

Probable
maxi-load

(a0/T: length of the
crack or time)

Initiation of
the crack a0

α β

ω

Certain
fracture

Probable fracture

Nominal resistance

Load
service

Time T or NCycles
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or μinch)

Δσ
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( )mda
C K

dN
= × Δ [1.1]

where:

da dN is the geometric ratio of the number of cycles (mm/cycles);

C and m are intrinsic parameters of the material (adimensional);

ΔK is the s.i.f. ( 1 2MPa× (m) ≈ tenacity).

( )K a aσ π ξΔ = Δ × ⋅ × [1.2]

where:

Δσ is the stress amplitude in the normal direction of the crack (MPa);

a (or a0/T) is the crack size (mm);

( )aξ is the indication of corrected geometry (form factor).

The questions we ask, the traditional objectives of fracture mechanics, can be
summarized as follows:

– What will be the residual resistance of a cracked component (structure)?

– What critical crack (a0/T) dimension would be tolerated (see Fig.1.19) by a
given loading?

– How long does is take (see Fig.8.42, Chapter 8) for a microscopic crack to
reach a critical length?

– Is there an effective experiment (recording gauges) to compare to the reliability
model (a priori distribution law)?

– How frequently should a component and/or a structure be inspected?

– Which metrology is implemented for detection (non-destructive control, of
course)?

1.2.2. Criteria of fracture (plasticity) in mechanics

It is easy to want to stay in the comfort zone of elastics (E), because the domain
is so well-researched. Though, of course, this is not always the case. If a part is
plastically deformed or remains unchanged during a given loading, there are always
criteria to explain the nature of, what is called, plastic flow. The two most well-
known criteria are TRESCA [TRE 81] and von Mises’ (1913) criteria. It is customary
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to represent the elastic limit as Re, which appears after the limit of a plastic
deformation, in the case of traction according to a single axis (xx). The stress is
written as σxx and is inferior to Re. Once modified by the safety factor (s), the stress
becomes σxx ≤ Re/s. This is the acceptable limit. Once applied to materials and to
structures, this relation will take into account the diverse variations (forms, notches,
and fillets) which are essentially the origin of concentrations of stress, hence the
relation [1.2].

When the elastic limit is exceeded, plastic deformation occurs. It can therefore
be shown by σxx ≥ Re. These cases are encountered in the manufacturing process,
during folding, stamping, laminating, or forging. The explanation for this resides in
plastic deformation, which is shearing because the atoms slide and cause what is
known as scission. The latter is maximal if the sliding angle (λ) is at 45° relative to
the traction axis (xx).

Figure 1.2. Simplified illustration of fracture criteria for mechanical plasticity
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For a material that is stressed during loading, which has a known critical value
(KIC or GIC), in mode I the graph takes into account external factors such as the rate of
loading and temperature, to name but two examples. These factors are not tributary to
the geometry of the solid component. In reality, for a crack component, the tenacity
KIC depends on the degree of biaxiality (see Figure 1.2 (top)), and even on the degree
of triaxiality and of the stress of the cfr (crack front). In fact, this depends on the
capacity of the solid component to endure plastic deformation in the cfr.

1.2.2.1. Tresca’s elastic limit criteria (1864)

The elastic and plastic domains are separated by a hypersurface with five
dimensions (isostatic system). The principal stresses are represented by [σ1, σ2, σ3].
The hypersurface takes the form f (σ1, σ2, σ3) = 0. Since plastic deformation occurs
during shearing, Mohr’s circle would normally be used to explain that for planar
stress, the condition of elastic deformation being Re ≥ ⏐σ1 − σ2⏐. In three dimensions,
the stresses are shown as follows: {Re ≥ ⏐σ1 − σ2⏐; Re ≥⏐σ1 − σ3⏐; Re ≥ ⏐σ2 − σ3⏐}.

1.2.2.2. von Mises’ elastic limit criteria (1913)

von Mises’ criteria translates the energy of elastic deformation U = (σ · ε)/2 into
traction–compression. During shearing, ( ) 2U τ γ×= is used. Considering we often
want to remain in the elastic domain, the energy must not exceed a maximum limit
which can be formulated as follows: 2 2

1 1 1 2eR σ σ σ σ≥ + + .

This expresses the ellipse equation, hence the use of Mohr’s circle. This topic
could be developed further; however, it does not fall within the scope of this
work. Therefore, the manuals concerned with the resistance of materials will be
considered. To summarize, the literature proposes the following effective stresses:

– Tresca’s stress: { }1 2 1 3 2 3max ; ;e e eR Rσ σ σ σ σ σ σ= − ≥ − ≥ −

– von Mises’ stress: ( ) ( ) ( )2 221
1 2 2 3 3 12eσ σ σ σ σ σ σ= − − −+ +

For planar bidirectional stress:

– Tresca’s stress: 2 24eσ σ τ= +

– von Mises’ stress: 2 23eσ σ τ= +

– The surface that determines the plastic domain of the elastic: e eσ R=

– Tresca’s stress: e eσ R≺ ; von Mises’ stress: e eσ R;
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Finite element modeling (see Figure 1.3) represents the equivalent field of stress
with a color chart. The metallic parts which are subjected to repeated or alternating
efforts can break, even if the maximum effort is inferior to the elastic limit. The life
span of these parts far exceeds that of the lowest effort (Wöhler or S–N curves).

Fatigue tests are carried out by subjecting a metallic test piece to traction/
compression or alternating bending efforts. For most steels there is a critical effort,
below which the fracture appears only after a considerable amount of time. This
effort is the fatigue limit of steel.

The rupture originates from a minuscule crack which progressively expands
until a brutal fracture occurs. We calculate the metallic parts subjected to repeated
efforts, so that at no point the effort, by a square millimeter, exceeds the fatigue
limit. This requires the parts of different sections to be connected to a fillet with a
large radius of curvature and the state of the surface to be cared for.

For each cycle of the law of cracking, it is possible to say whether the structure
has broken or not. This leads to separating the space into two distinct regions, as is
shown in the following figures of models by finite elements (software ANSYS).
In conditions of speed, deformation, and temperature, materials show plastic
deformation at the tip of the crack, which is sufficiently small to be handled with
linear elastic theory.

Paris’ law takes into account the stage of slow crack propagation by fatigue
(activation stage of the crack in propagation phase). The crack is likely to propagate
in three directions, which are linked to the applied efforts. Three modes of
deformation can be distinguished as shown in Figure 1.3. According to the mode of
crack propagation, three s.i.f. K can be defined. In the singular zone, the stress field
shows a singularity in ( )1 r at the tip of the crack.

1.3. Modes of fracture

It is generally accepted that the crack propagates due to a combination of
stresses, according to the three following modes:

Mode I or opening: The normal traction stress is applied to the plane of the
crack. In mode I, KI corresponds to the s.i.f. in the mode of opening of the crack
edges (this fracture is extremely dangerous).

Mode II or straight slip: The shearing stress works in parallel to the plane of the
crack and is perpendicular to the front of the crack. In mode II, KII corresponds to the
s.i.f. in the mode of shearing on the plane of the crack edges.



8 Fracture Mechanics 2

Mode III or screw slip: The shearing stress works in parallel to the plane of the
crack and in parallel to the front of the crack. In mode III, KIII corresponds to the
s.i.f. in the mode outside the plane of the crack edges.

Figure 1.3. Modes of deformation of a cracked body

Factor KI varies according to the nominal stress σn applied to a part which is half
the length (a) of the crack. In the case of an infinite elastic medium, we use:

I NK aσ π= × [1.3]

For parts with finite dimensions, it has been demonstrated that:

( )I NK a aσ π ξ= × × [1.4]

Opening in mode I Fracture in mode II, longitudinal shearing

Fracture in mode III, transversal shearing

X1

X2

X3
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where ξ(a) is a corrected coefficient of the geometry that allows KI to take the
following corrected KIC values:

– ordinary steel: KIC ≈ 10 at 250 MPa 1 2m ;

– steel with very high resistance: KIC ≈ 30 at 100 MPa 1 2m .

Using Irwin’s theory of elasticity, we present, in deformation or in planar stress,
displacements ui and stresses σij, in the singular zone, according to the mode
considered.

Mode I is a mode of opening the crack, where the displacements are parallel to
the direction of propagation. The following equations can be used:

( ) ( )
( ) ( )
1 1

1 1

, ,

, ,

U x y U x y

V x y V x y

= −

= − −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

→
( ) ( )

( ) ( )

1

1 1

1
, ,

2

1
, , ; 012

U U x y U x y

V V x y V x y W

= + −

= − − =

⎧ ⎫
⎡ ⎤⎪ ⎪⎣ ⎦⎪ ⎪

⎨ ⎬
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

[1.5]

Mode II is a mode of opening the shearing on the plane, where the displacements
of the crack are parallel to the direction of propagation. We use:

( ) ( )
( ) ( )
2 2

2 2

, ,

, ,

U x y U x y

V x y V x y

= − −

= −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

→
( ) ( )

( ) ( )

2

1 1 2

1
, ,

2

1
, , 0

2

U U x y U x y

V V x y V x y and W

= − −

= + − =

⎧ ⎫
⎡ ⎤⎪ ⎪⎣ ⎦⎪ ⎪

⎨ ⎬
⎪ ⎪⎡ ⎤⎣ ⎦⎪ ⎪⎩ ⎭

[1.6]

Mode III is a mode of opening the anti-planar (outside-planar) shear, where the
displacements of the crack are defined by Ui, Vi, Wi, where i is the index indicating
the elementary mode of fracture, that is, i = I, II, or III, for example:

{ }2 2 20; 0; 0U U W= = = [1.7]

Fracture can be mixed. In this case, we proceed to the additivity of the
displacements. The combination of modes I and II gives, for example:

( ) ( ){ }1 2 1 2, and ,U U U U x y V V V V x y= + = = + = [1.8]
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The mathematical equations of displacements Ui and the stresses σij, in Irwin’s
sense, are written as follows:

( ) ( )

( ) ( )

1

2

cos sin cos 2
2 2 2 2 2 2

sin cos sin cos 2
2 2 2 2 2 2

I II

I II

K Kr rU cos

K Kr rU

θ θκ θ κ θ
μ π μ π

θ θκ θ κ θ
μ π μ π

⎧ ⎫⎛ ⎞ ⎛ ⎞= − + + +⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪

⎨ ⎬
⎪ ⎪⎛ ⎞ ⎛ ⎞= − − + −⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

[1.9]

The stress equations, according to Irwin, are written as follows:

30 30
1 sin sin sin 2 cos cos11 2 2 2 2 2 2 22 2

30 30
sin cos cos 1 sin sin12 2 2 2 2 2 22 2

22 22

K K rI IIcos
r r

K KI IIcos
r r

KI cos
r

θ θ θ θ
σ

ππ π

θ θ θ θ
σ

π π

θ
σ

π

= − − +

= + −

=

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛
⎜
⎝

30 30
1 sin sin sin cos

2 2 2 2 22

KII cos
r

θ θ θ

π
− +

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎪⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

[1.10]

with ( ) ( )3 3κ ν ν= − + in planar deformation and ( ) ( )3 3κ ν ν= − + in planar stress.
The shearing modulus is therefore

( )= 2 1Eμ ν+ .

where:

r and θ are the radius and the angle, respectively, in polar coordinates;

ν and E are Poisson’s coefficient and Young’s modulus, respectively.

It is worth pointing out that in the case of anti-planar loading, the only
displacement component remains U3. The respective expressions of displacements
and stresses are therefore the following:

3 13 23
2 2 2

; ;
2 2 2 22 2

III III IIIK K Kr
U

r r
Sin Sin Cosθ θ θ

σ σ
μ π π π

= ⋅ = − = −
⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩ ⎭

[1.11]

The s.i.f. (KI, KII, and KIII) remain independent of r and θ. They are distribution
functions of external efforts and crack geometry. Griffith’s theory was the first
energetic approach on a cracked body. Moreover, there are other means of
characterizing the singularity of the stress field in the neighborhood of the crack
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front (n.c.f.) or of studying the contour integral, which is Rice’s [RIC 68] integral.
The aforementioned concepts are only useful for isotropic materials, which
have an elastic behavior. Factors KI, KII, and KIII characterize both the detail of the
geometry and of the crack, as well as the nature of the stress. Preventing fracture by
fatigue means mastering parameters such as:

– conception of the part (materials and structure);

– some knowledge of loading;

– mastering residual stresses and the elaboration process of a material;

– accurately predicting life expectancy through inspections;

– appropriate dimensioning, periodic checks, and validating hypotheses.

By means of an example, for offshore structures, it is worth emphasizing fatigue
inherent to waves, winds, and corrosion.

– For bridges and roads, it is advisable to keep a strict eye on Miner’s damage
when dimensioning the roads.

– Ensure that the calculations take into account the stressed materials.

– In aeronautics, cyclic stresses (vibrations and variations of temperature) are at
the root of mechanic’s particular interest in fracture.

1.3.1. Directed works

In this section we calculate the principal maximum and minimum stresses,
as well as the normal stress and the shearing stress along the plane (δ = determined
by ef).

– normal stress on the x-axis: σx = 100 × 103 Pa

– normal stress on the x-axis: σx = 417 × 103 Pa

– shearing stress on xy: τxy = −47 × 103 Pa

– angle of planar stress: θ = 100 × 103 Pa

1.3.1.1. Conditions and questions

– The normal stress on x- and y-axes are σx and σy.

– The shearing stresses are τxy and τxy.

– What are the principal stresses, σmax and σmin, as well as the shearing stresses
on the plane determined by AB?
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Schematization of the problem:

Figure 1.4. Calculation of stresses

Solution:

In accordance with the fundamental principles of mechanics of solid materials,
we consider the following.

For planar stress, the normal stress is written as

i) Shearing stress on (xy)

( ) ( ) ( ) ( ) 52 2 ; 1.490 10
2

y x
n xy nSin Cos therfore Pa

σ σ
τ θ θ τ θ τ θ

−
= − × = ×

ii) Maximum principal stress

2
2 5; 4.242 10

2 2
y x y x

major xy majortherfore Pa
σ σ σ σ

σ τ σ
+ −⎛ ⎞

= + + = ×⎜ ⎟⎜ ⎟
⎝ ⎠

iii) Maximum principal stress

2
2 5; 1.098 10minor minor2 2

y x y x therfore Paxy
σ σ σ σ

σ τ σ
+ −⎛ ⎞

⎜ ⎟= − + = ×
⎜ ⎟
⎝ ⎠
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( ) ( ) ( ) ( ) 52 2 ; 3.171 10
2 2

y x y x
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σ σ σ σ
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iv) Maximum and minimum shearing stress

Major minor 5 5
max min max1.572 10 ; 1.572 10

2
Pa and Pa

σ σ
τ τ τ

−
= = × = − = − ×

The relation between the stresses and the tilt angle of the plane is demonstrated
in the following graph, with an angle range of 0° to 360°. The range (R) of the
angles θ = 0°, 1°, …, 360°.

Figure 1.5. Graph showing principal stresses

Figure 1.6. Graph showing the maximum and minimum shearing stresses

1.4. Fatigue of metals: analytical expressions used in reliability

What we call fatigue or damage by fatigue is the modification of materials due to
the application of effort cycles, which, through repetition, lead to the fracture of
component parts. As soon as there is an applied effort over time, what we call
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fatigue occurs. Fractures can, therefore, appear for stresses which are often lower
than the fracture limit of the material, and even the elasticity limit. Damage is
accompanied with no apparent modification of form or the aspect of the part.

The origin of the fracture is due to a progressive crack which stretches until the
remaining transversal section can no longer support the applied effort. When we
subject test pieces to the cycles of periodic stress, to maximum amplitude (s) of
constant frequency, for every fracture, we call N the number of cycles. (N, σ,)–
Stress number of cycles (endurance curve). The three domains that have been
previously detailed can be distinguished here.

1.4.1.Wöhler’s law

It is believed by numerous authors that Wöhler’s law (1860) is the oldest
[WÖH 1860]. It allows a good representation that is completed by the middle part of
the S–N curve. This can be explained by the fact that most curves have a low
inflexion point in the neighborhood to which they are rectilinear. The general speed
of the S–N diagram is described by the equiprobability curves of fracture, for which
this is the expression:

( )-LogN a b σ= × [1.12]

where:

N is the number of cycles;

a and b are two constants;

σ is the amplitude of the applied stress.

Wöhler’s curves are established with experiments. They depend on numerous
factors, such as the given maximum state, the loading, the environment, and the
nature of the material. The S–N curve does not, in reality, represent a sharp “bend”,
but is a progressive curve connecting to the horizontal branch. Calculating the
structures gives each cycle an average stress and an alternating stress, which are
often calculated in elasticity. The inherent S–N curves are taken into consideration
for each value attributable to the load ratio (R) where α and β are the characteristics
of the material under average stress in a controlled temperature. In the laboratory the
expression [1.3], taken from the literature, is:

( ) ( ) ( ) ( ); SR
DN R R S when S Rβ

α α ακ − ×= × × ; [1.13]
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where:

SαD is the endurance limit;

K is a load factor;

R is the load ratio, or ( )min max .R σ σ=

In Chapter 8, which wholly dedicated to the valuation of Monte Carlo’s (MC)
method, a case study will be presented. However, it is worth concentrating on
Wöhler’s curve (S–N), because in terms of probability, it is true that the model we
are looking to make more reliable is the one that results in Wöhler’s famous curve.
The objective of the probabilization of this model is, therefore, to obtain a network
of pS–N curves, digitally generated by MC simulation. This causes uncertainties,
which in turn contribute toward the variability of the curve S–N. This essentially
depends upon:

– the state of the local stress σ, in MPa;

– the applied loading S(t);

– the intrinsic parameters of the materials;

– the criteria of fatigue;

– rugosity (state of the surface), etc.

In our experimental opinion, metallurgy plays an important role in the variability
of the S–N curves. It is advisable to bear this in mind in the spreading of
uncertainties (see Chapter 3, volume 1).

1.4.2. Basquin’s law (1910)

Basquin’s equation represents a hyperbolic form from which a branch
asymptotically links to the axis N (loading), as follows:

- og( )LogN a b L c= × [1.14]

This type of curve, like Wöhler’s, cannot provide a fatigue limit. With a, b, and δ
being constant, it can also be written as:

1when A = e and =aac
N b

δ

δ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[1.15]
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1.4.3. Stromayer’s law (1914)

Stromayer proposes another relation for greater precision. His law represents the
logarithm of the number of cycles in a function of logarithms of applied stress,
which however does not have a value to render endurance. It is presented as follows:

( ) ( )- og eLog N a b L c ρ= × − [1.16]

where:

ρe represents the endurance limit;

N is the number of cycles;

a and b are constants;

c is the amplitude of the applied stress.

The curve that is obtained is identical to Basquin’s curve. It shows, in addition, a
horizontal asymptote of ordinates ρe, often not confused with the life expectancy
axis. Specialists often believe that Stromayer’s law is more realistic than Wöhler or
Basquin’s law. Nevertheless, it causes several difficulties of adjustment.

1.4.4. Palmgren’s law

To avoid adjustment problems, Palmgren (1924) introduced the following:

when A = eae
AC

N B
ρ ⎛ ⎞= + ⎜ ⎟+⎝ ⎠

[1.17]

where:

ρe represents the endurance limit;

N is the number of cycles;

B is the constant parameter;

C is the amplitude of applied stress.

For some authors, this law is realistic because it allows us to adjust the quality
for a given data. The law can be written in two forms. The first is similar to
Palmgren’s law:

( )( ) - og eLog N B a b L c ρ+ = × − [1.18]
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The classic way of tackling the problem of variable amplitude loading, by
Palmgren and Miner, consists of using damage accumulation laws. Palmgren
assumes that the total damage of a structure is the sum of damages sustained during
each of the loading levels of aptitude.

1.4.5. Corson’s law (1949)

Corson [COR 49] tackled the damage accumulation problem. His relation is
based on experiments, summarized in the following equation:

( ) ( )S E
AN

S E d −
=

− ×
[1.19]

where:

S is the stress representing the endurance limit;

N is the number of cycles;

E, A, and d are constants.

By using c = Log(d), equation [10.19] becomes:

( )

( )
exp C S EAN
S E

− −×
=

−
[1.20]

This law, though more recent than Palmgren’s, deals with the problem by linking
the number of cycles to stresses. The coefficients it integrates means that the
unknown factors are added to the calculations, resulting in imprecisions. It is
therefore rarely used.

1.4.6. Bastenaire’s law

In the 1960s, Bastenaire [BAS 60] proposed a formula, which seems the most
precise:

( )eB C

e

AN Exp
C

ρ

ρ
− −⎛ ⎞

= ×⎜ ⎟
−⎝ ⎠

[1.21]
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where:

ρe represents the endurance limit;

N is the number of cycles;

A and B are constant parameters;

C is the amplitude of the applied stress.

In terms of a critique, this law does not differ much in its formulation from the
other laws that have been described here. Its credit lies in its being a relatively recent
law; however, it brings very little new to the table. In fact, it integrates the same
parameters (C and ρe).

1.4.7.Weibull’s law

Weibull’s law [WEI 55] does not provide any more explanation than Palmgren’s.
For reference, it is written as follows:

( ) ( )
( )

e

e

a b S
Log N B

R
ρ

ρ
− −

+ =
−

[1.22]

where:

ρe represents the endurance limit (constant);

N is the number of cycles;

R is the resistance to the traction of the material.

a, b, and B are constant parameters, which take into account the form, the
position, and the scale of the probability density functions curve.

Weibull’s law is often used in statistics to represent the life expectancy of
structures whose rate of fracture depends on the parameter β. It will be studied in
greater detail in Chapter 1, statistics and reliability.

1.4.8. Henry’s law

This law expresses the damage for a level of stress and is written as follows:

1 and =
1 1

e

e

nD
nN
N

ρ
α

σ ρα

⎛ ⎞⎛ ⎞= × ⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠ ⎝ ⎠+ −⎜ ⎟
⎝ ⎠

[1.23]
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where:

ρe represents the fatigue limit (endurance);

n is the constant parameter.

α takes into account the fact that the speed of damage is faster for greater efforts
and due to increasing the number of imposed cycles N to the level of stress (σ).

1.4.9. Corten and Dolen’s law

In this law, damage is seen to result from the germination of pores, which have
developed from cracking. It is written as follows:

1

32
1 2 3

1 1 1
...

g
n

n

NN
C CC d d d

C C C
α α α α

=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ × + × + + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[1.24]

where:

Ng represents the number of stress cycles leading to fracture, for the
chronological increase in stress amplitude;

N1 is the number of cycles at the highest level of stress before fracture;

α1, α2, and αn are the ratios of the number of cycles applied to the level of stress
for the total number of applied cycles;

C1 > C2 > Cn are different levels of alternating stress (applied amplitude);

d is the reverse of Wöhler’s linear sloping partition.

Analytical expressions from the domain of low-cycle fatigue and other random
aspects of the phenomena of fatigue consider that metal can become harder,
soften, or remain stable under cyclic stress (plastic domain). From the evolution
in mechanics of hysteresis loops, a strain-hardening curve has been determined
[LIE 73, LIE 82], which is given by the following expression:

' '
2aC K nρεΔ⎛ ⎞

= × ×⎜ ⎟
⎝ ⎠

[1.25]

where:

Ca represents the rational alternating stress (Cr) and K′ is the coefficient;

Δερ is the amplitude of rational plastic deformation (εr);

(n′) is the coefficient for cyclic strain-hardening.
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1.4.10.Manson–Coffin’s law

Characterized by considerable deformation and a relatively low life expectancy,
that is less than 10,000 cycles, Manson–Coffin’s law is used in low-cycle fatigue.
The facies of the fracture surfaces are drawn more closely together from those
obtained during a static fracture, than from the facies of a fracture surface by fatigue.
This means that this law is rarely used. The mechanisms which operate the
phenomenon of facies differ to those governing ordinary fatigue. In fact, the
amplitude of the deformation is considered, rather than the stress amplitude.
Manson–Coffin’s law assumes that the alternating number to fracture Nf is linked to
the amplitude of the plastic deformation Δερ.

( ) ( )fNα
ρε βΔ × = [1.26]

where:

α represents the coefficient between 0.5 and 0.7.

β is the constant linked to real deformation while the fracture is in traction, and it
can also be expressed as follows:

( )1 02 Log
S
S

αβ − ⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
[1.27]

where S and S0 are the initial damage sections for a traction test.

Manson–Coffin’s law is generally proven when the amplitude of plastic
deformation is greater than 1/100. This sensitivity limits its use. The life expectancy
expressed in number of cycles leading to fracture is therefore provided by the
Manson–Coffin relation in plastic deformation. For total deformation, another
relation called Morrow’s relation is employed:

( )' 2
2

c
fN in plastic deformationρ

ρ
ε

ε
−Δ

= Δ × [1.28]

Morrow’s relation, for total deformation, is expressed as follows:

( ) ( )
'

' 2 + 2
2

c bft
f f

C
N N

Eρ
ε

ε
− ⎛ ⎞Δ ⎜ ⎟= Δ × ×

⎜ ⎟
⎝ ⎠

[1.29]

where:

E is Young’s modulus;

Nf is the number of cycles leading to fracture;
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Δεt is the amplitude of the total deformation;

ε′t is the coefficient of ductility in fatigue;

C′f is the coefficient of resistance to fatigue.

Morrow’s relations demonstrate that ductile materials which have high coefficients
show a good resistance to large deformations. The two essential factors for
resistance to fatigue will lead us to introduce the probabilistic concepts for both
fatigue and resistance. The main reasons for this being:

– stress fluctuations of a part during service;

– the dispersion of resistance characteristics in fatigue.

The causes of fatigue can originate from external factors and are due to the
implementation of the material (thermal treatments, strain-hardening, etc.). The
parameters affecting the resistance to fatigue of a material amount to the endurance
limit. According to Shigley, the resistance of any part can be expressed as follows:

( )'e a b c d e f eK K K K K Kρ ρ= × × × × × × [1.30]

where:

ρ′e is the endurance limit on a smooth test piece in rotary bending;

Ka represents the scale effect;

Kb represents the surface effect;

Kc represents the temperature effect;

Kd represents the reliability effect;

Ke represents the notch effect;

Kf represents other effects.

The scale effect Ka allows the endurance of machine parts and the endurance of
test pieces to be compared. The majority of fractures by fatigue Kb begin at the
surface, hence the result machines fracture. According to Shigley, the temperature
effect is written as:

( )620 460 , 160cK T when T Fahrenheit= + D; [1.31]

When the temperature rises, the elasticity limit and the resistance to traction are
reduced. The same is true of ρe. For example, on one of Wöhler’s classic curves, the
endurance limit corresponds to a fracture probability of ½. When the endurance limit
corresponds to a survival probability greater than ½, the number of standard deviations
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must be subtracted from the endurance limit. Working from the hypothesis that
standard deviation on ρe≈80%, we consider:

{ }1 0.08 , withd DK D diameter in mm or inches= − × [1.32]

Factor Kd is expressed by means of stress concentrations, caused by changes in
the section (holes, porosities, heterogeneities, notches, etc.). For welded structures, it
is advisable to take the weld bead and the superficial or dense faults situated at the
foot of the weld bead (micro-geometry) into consideration. According to the authors
I.F.C. Smith and R.A. Smith [SMI 83], the sensitivity of the notch is calculated by
the following relation:

( ) ( )1 1u tq K K= − + [1.33]

To calculate Kt, Peterson proposes the following relation:

2
1 1

1 t t
t

t t

K K
K K

K Kτ ν ν
⎛ ⎞ ⎛ ⎞− −

= × − × + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[1.34]

Where Kt is the stress concentration factor.

The mathematical theory of elasticity provides many valuable solutions
involving the stress distributions in bodies of simple geometries and loadings.
A common use of these solutions is the determination of stress concentration factors
(Kt) resulting from discontinuities or other localized disturbances in the stress field
of the solid body.

ν is Poisson’s coefficient;

Ku is the ratio of endurance limits on smooth test pieces and notched test pieces,
in which;

Ku < Kt on account of the possibility of the material adapting;

Ku → Kt for materials with very high elastic limits.

1.5. Reliability models commonly used in fracture mechanics by fatigue

Eyring’s models of stress acceleration are simple. They tend to be used in the
domains of applied chemistry and quantum mechanics, because stresses are heavily
involved in the process. His model has several characteristics:

– a theoretical basis of chemistry and of quantum mechanics;

– a chemical process (diffusion, corrosion, migrations, etc.) is the cause of
degradation which leads to damage due to varying rates of degradation with stress;
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– a temperature that influences relevant stresses: similar case to Arrhenius’
relation which is an empirical model (activation energy necessary to cross an energy
barrier and to start a reaction).

1
H CAT Exp B Sf T T

ατ
κ

⎧ ⎫Δ ⎛ ⎞= + + ×⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

[1.35]

S1 is a function of current–voltage, and the parameters α, H, B, and C serve to
determine the acceleration between the combination of stresses. As in Arrhenius’
model, κ is Boltzmann’s constant and ΔT is Kelvin’s variation of degrees of
temperature. Arrhenius’ model predicts failure by increasing (acceleration) the
temperature. One of the early models of acceleration predicts the variation of
temperature as in the following formula:

HExpf T
τ γ

κ
Δ⎧ ⎫= × ⎨ ⎬

⎩ ⎭
[1.36]

With temperature T in Kelvin (+273.16°C) at the moment, the fracture occurs
and κ as Boltzmann’s constant (8.617 × 10−5 in eV/K). The constant γ is a scale
factor which takes into account the calculation of acceleration factors, and ΔH
designating activation energy, which is the critical parameter in this model. Indeed
in this model, Arrhenius’ activation energy, ΔH, is the factor that must be known to
calculate the acceleration of temperature. ΔH generally varies between 0.3 and 1.5
and depends upon the fracture mechanism and the materials involved. The
acceleration factors between the two temperatures exponentially increase with the
rate of increase of ΔH. The acceleration factor between a higher temperature T2 and
a lower temperature T1 is given by:

1 2

1 1
acc

Hf Exp
T Tκ

⎧ ⎫⎛ ⎞Δ⎪ ⎪= +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

[1.37]

By substitution the value for Boltzmann’s constant κ, the expression of AF is
written as a function of T in °C as follows:

1 2

1 111605
273.16 273.16accf Exp H

T T
⎧ ⎫⎛ ⎞⎪ ⎪= Δ × × +⎨ ⎬⎜ ⎟+ +⎪ ⎪⎝ ⎠⎩ ⎭

[1.38]

Arrhenius’ model is normally used to model the life expectancies of cases
when the failing mechanisms depend upon chemical reactions, diffusion processes,
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or a migration process (metallurgy). By adding a term to the stress (non-thermal),
Eyring’s model becomes:

1 2f
H C EAT Exp B S B S
T T T

ατ
κ

⎧ ⎫Δ ⎛ ⎞ ⎛ ⎞= + + × + + ×⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

[1.39]

Figure 1.7. Acceleration factor of Eyring’s model in function of ΔH

Most of the models used in mechanics do not comprise interaction terms. As
well as temperature interactions, Eyring’s model takes the stress into account. In the
models without interaction, the acceleration factors for each stress can be calculated.
Eyring’s model is often complicated to use in its most general form, and must
be simplified for every mechanism of a particular failure. It turns out to be
disadvantageous on account of the numerous parameters it includes. Even with just
two stresses, there are five parameters to estimate. Each additional stress adds
another two unknown parameters. Certain parameters have a secondary effect. For
example, when α = 0, the model works quite well since the temperature term brings
us closer to Arrhenius’s model. Moreover, the constants C and E are only necessary
if there is an interaction effect of temperature, with respect to other stress factors.

1.5.1. Coffin–Manson’s model for the analysis of crack propagation

Coffin–Manson’s model is suitable for the evaluation of crack propagation in
fatigue of materials. A model of this type, known as Coffin–Manson’s model, has
been successfully used for crack propagation in metals assembled by welding. The
model takes the following form:

( )max
-β

f accN f T Gα τ−= ×Δ × [1.40]
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where:

Nf is the number of cycles to fracture;

f is the cycle frequency;

ΔT is the temperature during a cycle;

G (τmax) is a factor valued at the maximum temperature reached each cycle.

The typical values for the exponent of cycle frequency (α) and the exponent of
temperature range (β) vary between −1/3 and 2.

ΔH is the term of activation energy when G(τmax) is about 1.25.

Arrhenius’s model defines damage as a result of acceleration due to an increase
in temperature. The early model of acceleration is more successful in predicting the
time of fracture (time-to-fail) which varies according to temperature.

EXAMPLE.– G(τmax) = 1.25; f = 50 Hz, ΔT = 20 to 50 °C, α = −1/3 and β = 2,
facc = 1(acceleration factor), the curve of the number of cycles in function of
temperature is found and traced with a unit acceleration factor (=1).

Figure 1.8. Number of cycles to fracture in function of the variation of temperature
and the acceleration factor in Arrhenius’ model

1.5.2. Neuber’s relation (1958)

The classic methods of analysis are based either on Neuber’s [NEU 58]
coefficient, or on the local amplitude of deformation. The relations [1.41], [1.42],
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and [1.3] are applied for sharp notches, where r is the radius of the notches and ρ′ is
a characteristic of the material.

'1 1 1u tK K
r
ρ⎛ ⎞

= + × +⎜ ⎟⎜ ⎟
⎝ ⎠

[1.41]

The number of cycles at initiation Ni is expressed by the following relation:

( ) ( )1.2969 0.1602u iLog K Log N= + × [1.42]

where Ku is Neuber’s coefficient as a result of relation [1.41].

Neuber found that ρ′ = 0.48 mm as agreed in bending tests. That the relation
agrees with its values is also confirmed by Markovin and Moore [SMI 82, SMI 85]
on fatigue tests for steel: SAE 1035, SAE 1010 and SAE 1038 (Canada and USA).

1
1

'1

t
u

K
K

r
π ρ

π ω

−
= +

⎛ ⎞⎛ ⎞+ ×⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

[1.43]

where Ku is the Neuber’s coefficient which takes into account the opening angle
of the notch (ω). The formulas [1.40] and [1.43] therefore allow Ky to be calculated
by the notch effect which is partially due to the state of the combined stress,
existing at the bottom of the notch. By combining von Mises’ criteria and Neuber’s
theory in relation to the distribution of notch stress, we obtain a theoretical
coefficient of notch effect Ku. Kt can therefore be deduced from Heydoo’s relation,
which is written as follows:

1t

u

K M
K n r

⎛ ⎞ ⎛ ⎞
− =⎜ ⎟ ⎜ ⎟

×⎝ ⎠⎝ ⎠
[1.44]

where

n is the function coefficient of the notch type;

M is the constant of the material.

To find M and n, special manuals on the relevant topic will be used. Finally,
Neuber and Heydoo explain the relation between Kt and Ku by a single parameter (r)
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for a given material and a given notch type. The notch effect is given by the
following relation:

1K Ke u= [1.45]

It essentially depends upon:

cavitation, and/or aging;

corrosion and contact corrosion;

residual stresses;

radiations and other aggressions.

Neuber also presented a method founded on the s.i.f. (= ΔK) for a sharp notch
(ρ < 2/10 mm) on a soft steel plate, more than 20 mm in length and 5 mm in thickness.
The number of cycles Ni necessary for initiation of a crack measuring 1/10 mm is as
follows:

( )8 42.90 10 ;iN K K in MPa m= × Δ Δ [1.46]

In general, caution must be paid to the formulations linking Ni and ΔK (intrinsic
parameters of material C and m). It would seem that the initiation of a fatigue crack
would make considerably more parameters intervene than those shown here and in
technical literature. In our opinion, intensively using the electronic microscope
should allow us to be more specific about these parameters and their actions on the
safety of structures. However, mathematical simulations, as sophisticated as they
may be, do not replace material observation of resistance phenomena in fracture
mechanics by fatigue.

Coffin–Manson’s model is not suitable for the use of Eyring’s models for crack
propagation by fatigue. The explanation of this model is as follows.

Coffin–Manson’s model is one which takes into account crack propagation in
stage 1 of Ritchie’s representation (see Figure 1.18). It therefore takes into account
the phenomena of deformation of materials by fatigue where Irving’s theory (see
[1.47]) is not applicable. Therefore, Coffin–Manson’s model is extremely useful to
study the stresses of cycles and the frequency of use with variable temperatures.
This is a crucial point, since other models sometimes do not integrate the
temperature in a significant way, which is the most important parameter in welded
structures. The expression is written as follows:

( )- -
maxrN A f T G Tα β= × ×Δ × [1.47]
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where:

Nr is the number of cycles to fracture;

f is the cycle frequency;

ΔT is the variation of the temperature during the cycle;

G(Tmax) is one of Arrhenius’ terms, valued at the maximum T °C reached during
each cycle;

The typical values for each cycle frequency (α) and the temperature range (β) are
α = −1/3 and β = 2, respectively.

By reducing the cycle frequency, the number of cycles to fracture also reduces.
Literature states that activation energy ΔH represented by G(Tmax) is around 1¼.

1.5.3. Arrhenius’ model

Arrhenius’ model is an important model which is used particularly in its capacity
to predict the acceleration of failures (damage) due to an increase in temperature.
This early model of acceleration predicts the time to fracture (time-to-fail) as a
function of the temperature. Arrhenius’ empirical equation is written as:

r
HT Exp

K T
α Δ⎛ ⎞= × ⎜ ⎟×⎝ ⎠

[1.48]

where:

T is the temperature measured in Kelvin (+273.16 °C) at the point of fracture.

α is the constant which represents the scale factor, initiated with acceleration
factors ΔH expressing the activation energy (the latter is a critical parameter of
Arrhenius’ model).

ΔH incorporates the range of values (0.3 or 0.4 reaching 1.5 or more). It depends
upon the damage mechanism and on the materials, and the acceleration factors
between two temperatures exponentially increase as ΔH increases.).

K is the Stephan–Boltzmann’s constant (= 8.617 × 10−5 in ev/K).

The acceleration factor (Fa), for T2 (high temperature) and T1 (low temperature)
is expressed as:

1 2

1 1
a

HF Exp
K T T

⎛ ⎞⎛ ⎞Δ
= × −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

[1.49]
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Activation energy ΔH is the only factor needed to calculate the acceleration of
temperature. Using value K (in Kelvin) in degree Celsius, we obtain:

1 2

1 111605
273.16 273.16aF Exp H

T T
⎛ ⎞⎛ ⎞

= Δ × × −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
[1.50]

As has been previously stated, ΔH is unknown. Arrhenius’ model has been
successfully used to study the damage mechanisms which depend on corrosion (offshore
structures assembled by welding and/or bolts), diffusion processes, or migration
processes, to name but a few examples. This model is also widely used in the domain of
electronic equipment. This work focuses principally on continuummechanics.

Digital application: Let us calculate the acceleration factor Fa for T1 = 20 °C and
T2= 100 °C if ΔH varies between [½ and 1] with an increment of 0.05. Therefore, Fa.

Figure 1.9. Evolution of the acceleration factor as a function of activation energy ΔH

1.5.4.Miner’s law (1954)

With respect to the physical description of damage, the reliability approach
means the following problems can be resolved: oversizing, resistance to different
stresses, appropriate geometry, and metrology of parts or of metallic assembly
[LIN 65]. Statistical analysis takes into account the reliability treatments of
dispersion causes, which imply that life expectancy on Wöhler’s curve cannot be
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represented by a point, but by the distribution of Ncycles. Np and Nc indicate that the
stressed part by σp has a probability p to break (see Figure 1.7) after Np-cycles. The
notion of damage assumes two distinct aspects, one aspect being physical and the
other descriptive. It corresponds with variations of the physical properties of
materials subjected to different stresses. It also corresponds to a quantitative
description of the endurance of materials subjected to different stresses. Miner
[MIN 54] proposed a simple damage law. The hypothesis is as follows.

ni the number of cycles at the level of stresses C1 (or σp) for which the average
number of cycles to fracture is Ni which drives an increase in damage equal to
(ni/Ni). The fracture occurs when:

( )= 1
1

k
D n Ni ii

D for damage= ∑
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

[1.51]

If the fraction (ni/Ni) of life expectancy is carried out at a certain level of stress
Ci, the remaining endurance at another level Cz will be (nZ/Nz = 1 − Z). Miner’s law
is not very precise, but it is very simple. It takes into account what is called
understressing and overstressing.

Figure 1.10. Simplified diagram of damage in function of the ratio (ni/Ni)

For example, Wöhler’s law cannot be applied to the study on reservoirs under
pressure. We must, therefore, study the phenomenon of cracking causing leakages
(in the case of spacecrafts). The main criticism of Miner’s law is that it ignores the
order in which the levels of loading occur. Indeed, experiments demonstrate that the
cracking rate depends not only on the amplitude of loading at the moment it is
considered, but also on the amplitudes during the precedent cycles. The phenomenon
of anterior memory must therefore be considered.

In the uniaxial case, the load ratio R, at the bottom of the notch, tends toward −1
for an average of N = 1000 cycles. In the case of deformation imposed on smooth
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test pieces under a lower number of cycles (N), there is a relaxation of the average
stress σav and R therefore tends toward (−1). This is called structural damage in low-
cycle fatigue. It is in conventional fatigue that the imposed tests are most suitable for
the stability of R (not of the variation observed in tests). Miner provided a
conventional form of damage created by Ncycles, as represented in [1.51]. This can be
written in detail as follows:

( )
( )

1

= 1
k

Ri
i i

i

n
D n N S

R
β
ακ=

= × =∑ [1.52]

The effective stress for cycle (N) of fatigue is taken into consideration by
the Smith–Watson–Topper (SWT) criteria. The SWT criteria take into account three
important factors: alternating deformation (εalternating, MPa), maximum stress (σmax,
MPa), and the elasticity modulus (E, MPa):

maxeffective alterating E in MPaσ ε σ= × × [1.53]

Without considering the fracture ratio (R), the number of cycles will be shown as
follows:

1 12 ; 2 ; 0
1 1D D

N S when S S S
R Rα α

κ

α ακ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ × ⎟ = × ≠⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
[1.54]

1.6. Main common laws retained by fracture mechanics

Fracture mechanics helps us to quantitatively study the stages of slow
propagation and brutal crack propagation. It helps us to calculate the characteristic
parameters of local distribution of cracks and the deformations in the neighborhood
of a crack, and also the critical lengths (ac) of cracks, leading to a fracture for a
given load.

For very acute cracks, G.R. Irwin [IRW 64] links the cracking rate (deformation)
to the s.i.f. K as defined in Figure 1.18 representing Ritchie [RIT 79]. If K reaches
Kcr, the crack brutally propagates. By knowing Kcr, we can find the critical length
of the initial crack which leads to brutal fracture. Taking into consideration these
effects, Henry established a formula which expresses the damage for level C of the
previous relation. Of course, there are several formulas that take various levels of
damage into account, Monson, Corten, and Dolen’s theories are a few examples.
Although less precise, Miner and Henry’s formulas are often used because of their
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simplicity. They allow us to predict the residual life expectancy of a part after a
program of varied loads, and sometimes provide a sufficient approximation.

Welding techniques have not only developed, but improved over the years. They
have certain advantages; however, they can also be the cause of specific problems.
These problems can be very serious. The factors influencing the failures of welded
assemblies are as follows:

– factors associated with the execution of welding;

– factors associated with metallurgical alteration due to welding;

– factors associated with the dimensioning of weld beads (geometry);

These three main factors are of a metallurgical, mechanical, and technological
order respectively.

Faults can appear according to the way in which welding is carried out. These
faults affect the mechanical behavior of the joint. The International Institute of
Welding (IIW) has proposed a classification of these faults.

The alterations due to the thermal cycle of the welding operation cause local
modifications of the mechanical properties that, in turn, constitute the causes of
failure. The main factors are quenching, aging, overheating, and the softening of the
solidification structure.

With respect to mechanical factors, the errors are of a conceptual order and not
concerned with the execution. The severity of these factors is linked to the stress
concentration they create. Methods of finite element analysis have stressed the
importance of the shape of the weld bead.

In the domain of fracture by fatigue, good results have been obtained with the
help of cracking laws based on fracture mechanics and in particular on Paris’ law.
Other laws are also commonly used, such as Fost and Digdale’s law and MacEvily’s
law. There are other laws which are used in a different ways; however, this chapter
will limit itself to Paris’ law. Experience shows that the life expectancy of a welded
structure strongly depends upon the size of the initial crack (a0). For instance,
according to Lawrence’s calculations [LAW 73], the life expectancy quadruples
when a0 changes from 5 to 0.5 mm. When the weld shows no sign of a penetration
fault, a0 must be estimated, that is the half-small axis of the half-ellipse acting as a
model, which is generally less than 0.5 mm. The fatigue of metals is tackled in four
different ways:

– the reading of Wöhler’s curves;

– Coffin’s methods;
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– the study of cyclic strain-hardening;

– measuring crack speed (da/dN).

The first method is the most used because it determines the endurance limit,
which if maintained, low, protects from brutal fractures. The determination of
Wöhler’s curve allows us to make qualitative judgments with respect to the choice
of materials for solid parts. Modeling the cracking phenomenon by fatigue integrates
the following main notations:

– a, the crack length;

– N, the number of applied cycles;

– Nr, the number of cycles to fracture;

– σ, the nominal stress;

– K, the s.i.f.;

– C and m, the intrinsic parameters of the material.

From the crack length measurements on test pieces subjected to fatigue, different
formulas have been proposed to calculate the propagation rate. The following are the
most frequently used expressions:

1.6.1. Fost and Dugdale’s law

Fost and Dugdale showed in 1960 that the diameter of the plastic zone (a) is
proportional to one (diameter) obtained from ductile fracture in plasticity by
integration of:

{ }3da A
dN

α σ= × × [1.55]

where:

α is the multiplier coefficient which depends on the state of the stress;

A is the constant, which depends on the material and on the stress;

σ is the amplitude of the stress.

To be precise, the plastic zone depends on the strain-hardening coefficient and
on the mode of stress. For plastic deformation, there is an increase, in the peripheral
zone, in the density of dislocations and of dislocation residues. So, when the crack
opens during each cycle, there is a final rearrangement of the dislocations to
accommodate the slip at the bottom of the crack. When the crack is closed, the
rearrangement becomes definitive. We will therefore consider McEvily’s law.
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1.6.2.McEvily’s law (1979)

This law is a function of the s.i.f. and the stress, which is written as follows:

( ),tda dN f K σ= [1.56]

where Kt is the stress concentration coefficient and σ is the nominal stress.

Both Fost–Dugdale and McEvily’s laws take inter-inclusionary fractures into
consideration, which occur according to a process of low-cycle fatigue. They are
associated with Manson–Coffin’s damage law at the bottom of the crack, which is
presented as follows:

( )
1

4 1
Cp

f
N

ε
ε

⎛ ⎞
×Δ × =⎜ ⎟⎜ ⎟

⎝ ⎠
[1.57]

where:

C is the exponent from Manson–Coffin’s law;

εp is deformation at plastic limit;

εp is deformation at fracture;

ΔN is the range of the number of cycles.

For the study of cracking, we consider the detailed expression of McEvily’s law:

( )2 2 1

1

s

c

da C KK K
KdN E K
R

⎛ ⎞
⎜ ⎟Δ⎛ ⎞ ⎜ ⎟= × Δ −Δ × +⎜ ⎟ ⎜ ⎟Δ⎛ ⎞⎝ ⎠ − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

[1.58]

In 1979, McEvily proposed a relation applicable to alloys with low resilience,
which is written as follows:

( )
'

2 1

1

s

c

da C KK K
KdN E K
R

⎛ ⎞
⎜ ⎟⎛ ⎞ Δ⎜ ⎟= × Δ − Δ × +⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎛ ⎞⎝ ⎠ − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

[1.59]



Fracture Mechanisms by Fatigue 35

where:

C and C′ are the intrinsic factors of the material;

R is the load ratio (or the s.i.f.);

KC is the critical s.i.f. which corresponds to brutal fracture;

ΔKs is the s.i.f. threshold (see Figure 1.18, Ritchie later);

ΔK is the variation of s.i.f.

1.6.3. Paris’s law

The study of the behavior of structures, in linear elasticity, often uses this law
(1960). Fracture calculations gives the correlation between the intrinsic factors of
the material (C and m), because tenacity is dependent upon it, through the means of
the s.i.f. The crack propagation law gives the following equation:

( ) ( )when ΔK 0mda dN C K= × Δ ; [1.60]

where C and m are intrinsic parameters of the material and da/dN expresses the
crack propagation ratio. Linearizing expression [1.59] allows:

( ) ( ) ( )Log da dN Log C m Log K= + × Δ [1.61]

Vicker’s tests have shown that the zone affected by heat is localized at the foot
of the weld bead for the four methods of welding1. The expression of the s.i.f. (or
tenacity) is written as follows:

( )K a aσ ξ πΔ = Δ × × × [1.62]

The tenacity represents the resistance to deformations and to fracture. It is
characterized by the elasticity limit Re, resistance to fracture Rm, and the hardness
HB, HRC, or HV for resistance to deformations. Work on welded cross-joints
[GRO 94, GRO 95, LAS 92] for four different methods of welding has shown that
fracture occurs at the foot of the weld bead. By replacing ΔK (ISO 12737: 1996)
with its expression in [1.62], the following is obtained:

1 SAW, submerged-cored arc welding; FCAW, flux cored arc welding; SMAW 57 and
SMAW 75, submerged metal arc welding.
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[1.63]

where:

N is the number of cycles (by load);

a is the length of the crack in mm (or in μm);

T is the thickness of the stressed metal plate in mm.

The average of the intrinsic parameters of the material (C, m) for the four
methods of welding is:

8
26,069 10 w 0,963

24,64averageC MPa m hen R
m

−×
= × =

×
[1.64]

The following photo shows resilience test piece of a welded cross-joint [LAS 92].

Figure 1.11. Resilience test piece of a welded cross-joint
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In other instances, we can only go by previous experience or the correlations
between the characteristics of materials and fracture behavior [GRO 94] of components
(valuation from ISO 2553).

Figure 1.12. Average relation of the intrinsic parameters of the material

The procedure for measuring the dimensions of the weld bead (figure 1.11) is
based on a procedure used in dentistry. Figure 1.12 illustrates the results from the
four methods of welding. To measure the geometry of the weld bead, it was rolled in
a dental paste. The imprint left by the bead was then measured. Thereby, the
evolution of the geometry g(a/T) used to calculate fracture parameters was deduced
[GUR 78].

Figure 1.13. Evolution of the correction factor of geometry by welding methods
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1.6.3.1. Stress concentration factors

The elements of stress concentration play a predominant role in RDM on
machine elements, materials, and structures. Solids under stress load will present
stress fields of low- to medium-levels with high gradient zones. At this level,
shearing stresses reach dangerous levels. This is called the seat of crack by
plasticizing. It leads to fracture by fatigue. Three cases illustrating a stepped shaft
are shown in the following:

Figure 1.14. Stress concentration factors for three figures: simple step shaft

The respective relations to calculate stress concentration factors, for a stepped
shaft, are shown in the following. In traction–flexion–torsion (TFT), the criteria are
as follows:
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[1.65]

The respective relations to calculate stress concentration factors, for one with
semi-circular bottom groove, are shown in Figure 1.15.
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Figure 1.15. Stress concentration factors for three figures: shaft
with semi-circular bottom groove

Observation: It is worth pointing out that for the remaining cases, such as plates
with symmetrical steps, reference should be made to manuals concerned with the
resistance of materials for more detail.
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[1.66]

1.6.4. G.R. Sih’s law

Paris’ law is useful only for simple mode crack propagation. Only one load
parameter is involved (stress amplitude) and is only useful in mode I; simple
propagation. G.R. Sih [SIH 79] proposes replacing the s.i.f. (ΔK) amplitude of Paris’
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law with the amplitude of minimum deformation energy density ΔSmin. Sih’s law is
based on the concept of deformation energy density.

( )min
mda C S

dN
= × Δ [1.67]

where:

C and m are the intrinsic factors of the material;

ΔSmin is the minimum energy density;

da/dN is the crack propagation rate.

An approach to fatigue by linear fracture mechanics will now be illustrated. It
also involves a host of mathematical expressions. Yamada and Albrecht’s [YAM 77]
model will be used to calculate the variation of the s.i.f. and Gurney’s [CUR 78]
model for the geometric correction g(a/T).

1.7. Stress intensity factors in fracture mechanics

Dimensioning structures which are stressed in different ways leads to an even
greater control of fatigue behavior in welded joints. To calculate the crack
propagation, numerous works have recognized the link between the logarithm of the
variation of the s.i.f. and the logarithm of propagation rate. Certainly, this is relative
to stage II of Ritchie’s [RIT 79] chart (see Figure 1.18), for which Paris proposed a
law where the s.i.f. is expressed by relation [1.62], where Δσ is the stress amplitude
and ξ(a) is the geometry of the crack.

1.7.1.Maddox’s model

This model was originally intended for welded cross-joints without penetration
fault. Maddox [MAD 75] assumes that the surface fault is a semi-elliptic of half-
axes a and c. Therefore, he suggests calculating the s.i.f. by the following relation:

0

s t kM M M
K aσ π

⎛ ⎞× ×
= × × ×⎜ ⎟

Φ⎝ ⎠
[1.68]

where:

σ is the nominal stress (in MPa);

a is the crack length (in mm or inch);
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Ms is the correction of the free surface (crack surface);

Mt is the correction of finite thickness;

Mk is the correction due to the stress concentration introduced by the geometry of
the weld bead;

Ф0 is the form factor = 1 for (a/c) = 0 crack length.

For welded cross-joints, Maddox proposes a connection angle θ = 0 and for Ф0 = 1:

2 3 4
1.122 0.23 10.55 21.7 33.19

a a a a
K a

T T T T
σ π= − + − +

⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
[1.69]

where T is the thickness of the welded sheet metal (in mm or inches). This
expression has been applied several times. As early as 1965, B. Gross and J. E.
Srawley [GRO 65] proposed a model which draws conclusions about the s.i.f.

1.7.2. Gross and Srawley’s model

The proposed equation [1.70] is empirical and shows a model for a ratio of (a/W)
ranging from 0.1 to 0.35.

2 32 2 2
2

2 =139 - 221 783K B W a a aY
W W WM

× × ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[1.70]

where:

Y2 is a dimensional quantity which is exclusively the function of a/W;

M2 is the square of the bending moment (M = P · l/2);

K is the s.i.f. in mode I crack opening;

B and W are the width and the thickness of the stressed test piece by M,
respectively.

1.7.3. Lawrence’s model

For butt joints, Lawrence [LAW 73] proposed a model from linear elastic
mechanics. It comprises three distinct steps:

Step 1: Finite elements are used to determine, the stress field existing in a joint,
along the crack. For triangular meshing, in planar deformation, we deduce the stress
ratio (σ/S) along the crack.
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Step 2: The curves are adjusted (σ/S) by the following polynomial function:

2 3 4

0 1 2 3 4
a a a ab b b b b

S t t t t
σ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
[1.71]

where:

t is the thickness of the sheet metal;

bi are constants dependent on the geometry of the weld bead;

a is the crack length;

σ/S is the stress ratio.

Step 3: Consists of calculating the s.i.f. by the following relation:

0

1.1
t

a dK a f dt
t dt

σπ σ
⎧ ⎫⎛ ⎞⎪ ⎪= × −⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
∫ [1.72]

The function of a semi-finite crack subjected to a non-uniform load σ(a/t) is
written as:

2 11.18
60.8 0.04 3.62 10

a
ta a af Exp

t t t

⎛ ⎞
⎜ ⎟− ⎝ ⎠⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + × ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
[1.73]

The advantage of this model is that it replaces calculation using finite elements
with calculation by the polynomial function which is dependent on the geometry of
the weld bead. Lawrence’s method, for martensitic steel, is used to study faults
that are smaller than 0.025 mm. However, his method is hardly convincing with
respect to estimating life expectancy. For this, it is advisable to refer to T.R. Gurney’s
[GUR 78] approach.

1.7.4.Martin and Bousseau’s model

Martin and Bousseau’s [MAR 76] method is linked to other methods in that it
employs finite elements. It suggests determining the stress variation along the crack
plane and, for a given type of joint, deducing the s.i.f. (Kt) at the foot of the weld
bead, beside the crack activation. This method is expressed as follows:

( )1.1
m

Nda dN C a Kτσ π= × × × × [1.74]
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where:

C, m are intrinsic parameters of the material;

da/dN is the crack rate (life expectancy);

a is the crack length;

σN is the nominal stress;

Kτ is the nominal stress.

Employing this function leads to a markedly lower number of propagation cycles
than those obtained by Lawrence’s model.

1.7.5. Gurney’s model

Gurney’s model, in relation to the figure, proposes the following:

( )sec
2
aK a
b

πσ π ⎛ ⎞Δ = Δ × ⎜ ⎟
⎝ ⎠

[1.75]

For Figure 1.13 in zone I of Figure 1.18 we have:
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[1.76]

where:

ΔK is the variation of the s.i.f.;

Δσ is the variation of the nominal stress;

a/W is the relative crack length (2B =W);

B is the thickness of the sheet metal.

1.7.6. Engesvik’s model

Knut Engesvik’s [ENG 82] model is based on Yamada and Albrecht’s approach,
from which the following can be written:

( ) ( )when s T E GK a f a f a f f f fσ πΔ = Δ × × = × × × [1.77]
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where:

fs is the correction factor of the free surface;

FT is the correction factor of the finite thickness;

FE is the correction factor of the shape at fracture;

FG is the correction factor of geometry;

Δσ is the variation of nominal stress.

f(a) coincides with g(a/T). From Yamada and Albrecht’s model we use:

( )
2 2

0

2
1.12
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x xf g dx
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σ
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∫ [1.78]

Using Lawrence’s model as a base, we use the correction of geometry expression
as follows:

2
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[1.79]

1.7.7. Yamada and Albrecht’s model

This famous model [YAM 78] allows us to calculate ΔK in the case of a semi-
elliptical fault of half-axis (a), given as follows:

1.12 tanG
K

W aK f a
E a W

πσ π
π

⎛ ⎞Δ = × ×Δ × × ⎜ ⎟
⎝ ⎠

[1.80]

where:

Δσ is the variation of nominal stress;

EK is the elasticity modulus;

W = 2B is the relative crack lengthW=2B = a/T (See Figure 1.13);

a is the crack size;

fG is the correction factor of the stress concentration effect (s.i.f.) due to the
geometry of the weld bead.
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Finally, to take into account the influence of short cracks subjected to a field of
plastic deformation, El Haddad et al.’s [HAD 78, 80] model suggests using an
elastoplastic solution. The relation is given:

0( )K E l lε πΔ = ×Δ × + [1.81]

where:

Δε is a local deformation in plastic regime that is obtained by using the finite
element method;

E is the elasticity modulus;

l = is the crack length;

l0 = is the constant of the material.

Neuber’s [NEU 58] rule means that the solution can be approached using the
following relation:

equivalentK Eσ σ ε×Δ = Δ ×Δ × [1.82]

where:

Δε and Δσ are the deformation and the local stress at the tip of the crack,
respectively.

Kequivalent is an equivalent stress concentration coefficient, which is written as
follows:

0

k S t
equivalent

M M M
K

× ×
=

Φ
[1.83]

where Mk, MS, and Mt are correction factors explained in Maddox’s model (a) (see
also relation [1.66]).

1.7.8. Tomkins and Scott’s model

Tomkins et al.’s [TOM 78] model is applied to analyze surface cracking around
the intersection of a knot, using the following integral:

2 2
0

2
C

S R
CK dx Y Y a

C x
σ

σ σ π
π

= × = × × ×
−

∫ [1.84]
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where:

σ is the stress which considers the evolution of the initial s.i.f.

Yσ is a factor which considers the evolution of the stress field;

YS is a factor which considers geometric effects;

σR is the radial stress at the hot spot;

x and C are the large and small axes of an ellipse (geometry), respectively;

a is the crack length.

1.7.9. Harrison’s model

Harrison’s [HAR 78] model is applied in the case of cracking due to welding
faults (lack of penetration). It is written as follows:

tanW aK a
a W

πσ π
π

⎛ ⎞ ⎛ ⎞Δ = Δ × × ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[1.85]

For the same application, Lawrence and Munse present the following relation for
butt joints:

aK a Cos
W
πσ π ⎛ ⎞Δ = Δ × ⎜ ⎟

⎝ ⎠
[1.86]

where:

Δσ is the variation of nominal stress;

ΔK is the variation of the s.i.f.

W is the thickness of the sheet metal;

a is the crack length.

There are many models related to calculating s.i.f. according to the design,
materials, the environment, and geometry. Some models have been shown here
which are necessary for reliability calculations; but reference can also be made to
literature on the topic for a deeper understanding of the subject.

1.8. Intrinsic parameters of the material (C and m)

There are a number of “relations between C and m” used to calculate the fatigue
of welded structures (Paris’ law –See Figure 1.12). For example, Japanese law WES
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2805 [JWES]. Tanaka [TAN 81] and Kanazawa et al. [KAN 79] describe this
standards using concepts from fracture mechanics of welded assemblies, where
Rm = 100 Mpa. The norm proposes an average value equal to 2 for m. C is expressed
by the linear regression of da/dN (mm/cycles) and ΔK by kP/mm3/2. Their relation is
given as follows:

( )
55.53 10 JWES

59.2m
C

−×
= [1.87]

There is also a Nordic regulation DnV for the construction of offshore steel
platforms. In mode II (see Figure 1.18) for stable crack propagation in fatigue, the
increase in m and the simultaneous decrease in C is often observed, when the
elasticity limit increases. Therefore, several authors have proposed relations in m
and Log(C). In our works [GRO 92, GRO 94], based on a large experimental project
lead by Professor Tom Lassen [LAS 82, 92], we proposed four types of relations
between C and m, stemming from mathematical regression. The results accompanied
with their correlation coefficients are as follows:
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[1.88]

The average relation of the four methods of welding is written as follows:

{ }5 26.069 10 24.64 ; =0.963 units MPa; mmC R−= × [1.89]

We used a simple regression on the semi-Log scale for the experimental values
represented by Paris’ relation.

COMMENTS.– In stress concentration, zones efforts can cause cracks. Nevertheless,
in this domain, a fault (lacuna) or a crack, sometimes extremely small, can be the
cause of a fracture. On reflection, it seems that normal calculations from continuum
mechanics cannot predict fractures since they do not assume the presence of a fault.
It is therefore necessary, before adopting a reliability approach, to accurately
calculate the:

– distinct s.i.f. (ΔK) for each method of welding used;

– initial crack lengths (a0);



48 Fracture Mechanics 2

– correction factors of geometry g(a/T) or ξ(a);

– intrinsic parameters of the material, graded correctly (c and m).

1.9. Fracture mechanics elements used in reliability

This summary explains the behavior of existing cracks within the material, by
estimating their evolution of the limiting conditions and the qualities required by the
base material and the filler material. A fault is perceived at a given moment and we
observe its slow propagation under a load effect, until the size of the fault becomes
critical. Defined by fracture mechanics, the characteristics of stress distribution and
deformations in the neighborhood of the crack front (n.c.f.) allow us to quantify the
phenomenon of cracking. Fatigue itself is characterized by a large range of stress
variation, which is inferior to resistance to traction of the stressed material. The
main steps of fatigue are crack activation until final fracture (a0 to af).

To predict the behavior of fatigue we use, in addition to the number of cycles,
the amplitude of the stress, loading or imposed deformation Δσ in MPa, the surface
state (its finish), as well as the medium where the material (or the structure) evolves.
The behavior of structures is influenced by different parameters, including
geometric characteristics of the structure and weld beads, loading, and the limiting
conditions.

In the case of a crack with sharp initiated notches, Irwin [IRW 58, 64] decided
that Neuber’s classic calculations were outdated. He therefore proposed a calculus
that allows us to obtain the stress state at the crack at a point n.c.f. (crack front).

2
xy

xy
f

K
r

σ
π

⎛ ⎞
= ×⎜ ⎟⎜ ⎟⋅⎝ ⎠

[1.90]

where:

fxy = g(a/T) is a function of correction of geometry;

σy is the applied nominal stress;

r and θ are the radius and the angle in polar coordinates, respectively.

The s.i.f. (K) defines the stress state of the component, by taking into account the
global and local geometry of the crack. When K reaches a value of Kcr, there is a
brutal fracture of the part, as illustrated in Figure 1.14. Usually, the notion of brutal
fracture is associated with the presence of an initial fault existing in the weld or in
the structure. It is therefore worth reiterating the existence of a potential crack
propagation from an initial fault (a0).
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Figure 1.16. Schematization of the fracture zone and the mechanical field

Fracture can occur during a static load or after the propagation of a fault, under
different stresses and until it reaches a critical dimension acr. Since Griffith [GRI 20]
proposed his fracture theory, Rice [RIC 68] carried out more polished analyses than
Griffith’s, though his fundamental principles remained the same. In our case of
singular structures, for example, we have applied Paris’ crack law. Theories which
are applicable to numerous materials and which authorize the use of critical fracture
stress expressions can be expressed in the following relation:

( )cE G aσ π= ⋅ [1.91]

where Gc is the rate of releasing energy so that the crack propagates in a unitary
length. To characterize the s.i.f. K, we consider the following relation:

( )K a g a Tσ π= × × [1.92]

This equation is applied when the test piece is thin with very large lateral
dimensions, in other words, when the crack length (2a) is very small in relation to its
dimensions. As simple as it may be, the load reached in Paris’ law allows us to have
a significant influence on the crack length. In 1870, A. Wöhler [WÖH 70] focused
on the study of premature fractures of rail car axles. In light of his conclusions, the
behavior of materials subjected to fatigue can be determined. To do so, laboratory
test pieces which are subjected to simple efforts of rotary flexion are used. There are
different amplitude levels of stresses σa. Then, the number of cycles required to
fracture the test piece is measured.

Bearing in mind the statistical character of fracture theory in linear elasticity, to
study the reaction of the material subjected to fatigue the test should be repeated
several times with different stress amplitudes. On a semi-log scale, a curve σa = f(Ncycles)
is then plotted as shown in Figure 1.17.
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Figure 1.17. Theoretical curves of equiprobability (p) of fracture (Wöhler)

When a structure is subjected to a load of varying intensity, it is subjected
to a phenomenon of fatigue which leads to its fracture, even though the charge
remains constantly below its static resistance. This phenomenon is linked to crack
propagation from a fault within the part itself, that is, a set of conditions favorable to
a local decohesion of the material, because of a high stress concentration. Generally
three steps in the life of a structure can be distinguished: crack initiation, slow crack
propagation by fatigue, and finally fracture, as demonstrated in Figure 1.18 [RIT 79].

The three stages previously schematized are defined as follows:

Zone I: low-cycle fatigue zone under strong stress amplitudes where life
expectancy is short (Ncycles < 104 cycles). Before fracture there is a plastic
deformation.

Zone II: fatigue zone or limited endurance zone where fracture occurs after a
number of cycles, which increases when the stress decreases (104 < Ncycles < 106
cycles).

Zone III: unlimited endurance zone, also known as safety zone, under weak
stress amplitudes. Fracture does not occur, even after a high number of cycles
(Ncycles< 107).

Fatigue cracks originate from the surface of parts, where there are numerous
faults. Moreover, the surface is subjected to aggression of the environment.
Dislocations are also as mobile at the surface as they are at the core. The number of
cycles necessary for fatigue crack initiation essentially depends on the sharpness of

σa

Ncycle

p =

p =

p =
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the fault where it originates. In the case of welded cross-structures, it is often said
that the crack originates at the foot of the weld bead.

Figure 1.18. Illustration of the propagation rate da/dN in function of the s.i.f. (Ritchie)

1.10. Crack rate (life expectancy) and s.i.f. (Kσ)

Materials contain inclusions, fabrication faults, heterogeneity, etc. Components
show signs of section changes or surface states, which are more or less perfect.
Insofar as these conditions favor the apparition of stress concentrations and
consequently fatigue cracks under cyclic-load, not only the possibility of crack
activation but also their propagation must be borne in mind. This explains why
engineers spend a long time calculating when they need to design structures with
cyclic loads. The structures must not only anticipate the possibility of cracks
forming, but also evaluate their propagation rates, to be sure that these cracks will
not reach a critical length and result in brutal fracture.

In the 1960s, P. Paris and F. Erdogan [PAR 63] proposed a relation for the
evolution of a fatigue crack, through the measure of propagation, represented by
da/dN and the s.i.f. (parameter that characterizes the fault) which is determined

Zone I Zone II Zone III

Lo ΔΔK MPa.m1/2
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ΔΔK threshold
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m
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- Thickness
- Diluted environment

Discontinuous mechanisms

Strong influence from:

- Microstructure
- σ average
- Thickness
- Environment-

Paris-Erdogan’s law
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analytically or by finite elements (see Figure 1.1) When a crack is formed, its length
increases with increase in the number of load cycles.

Knowing that ( )max minK K KΔ = − in a simple case when the stress amplitude is
constant, the growth of the crack length (a) drives a rise in the value of the s.i.f.
Indeed if the opposite varies, so does the s.i.f. In fact, when we represent the
variation of crack rate (da/dN) as a function of s.i.f. (ΔK) in a logarithmic scale, the
curve (see Figure 1.19) represents a linear part in accordance with Paris’ equation,
used for its simplicity and success in corroborating many experiment results. The
test conditions, for metallic materials tested in an ambient atmosphere, are such that
the value of the exponent (m) of Paris’ law is generally between 2 and 4. We will
attempt to demonstrate this in our case study later in this chapter. Many works have
already proposed a number of convincing relations between C and m, the results
published by [KAN 71, ENG 82, GRO 98].

Experimental curve: crack depth as a function of the number of applied cycles.

C has often been linked to the characteristics of the material (elasticity limit,
resistance to traction, strain-hardening coefficient, lengthening to fracture). These
correlations are not satisfactory. In 1971, for ΔK in N. mm3/2 and a in mm, Kitagawa
and Missumi [KIT] proposed the following:

( )
410

2 55m
C

−

=
×

[1.93]
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Figure 1.19. Variation of the crack length (a/T) as a function of the number of cycles

This relation is useful for a large number of steels, in particular for metals with
central cubic structures. For austenitic steels and non-ferrous metals, however, the
relation is less useful. In many cases, the data obtained from experiments are too
dispersed to be able to determine in the exact values of C and m, which are included
among the influencing factors for the behavior of solid structures in fatigue. Several
typical values are presented in the following:

Grade of the material M C (SI)
Martensitic steels with 500 MPa < Sy < 2000 Mpa 1.35 × 10−10 2.25
Steels with a ferritic-pearlitic structure 6.90 × 10−12 3.00
Austenitic steels (stainless) 5.60 × 10−12 3.25

Table 1.1. Ideal values of the intrinsic parameters of the materials (without corrosion)
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Many factors influence the behavior of solids in fatigue, such as:

– the intrinsic parameters of the material, C and m;

– the variation of the s.i.f. (ΔK) and the stress σ;

– the function of the correction of geometry g(a/T).

In a bid to correct the imperfections involved in calculating s.i.f., factor g(a/T)
has often been introduced, which in turn is dependent on several factors [GUR 78,
GRO 98]. It is also important to remember that every modification of the
microstructure of the base material or of the weld leads to variations in the principal
mechanical properties, such as the elasticity limit, the resistance to traction, ductility,
and tenacity.

1.10.1. Simplified version of Taylor’s law for machining

Taylor has established a relation which gives the life expectancy of a tool in
function of the machining parameters. For example, the intrinsic parameters of the
material appear in a simplified version of Taylor’s law for machining.

( )nv cuttingT C VΔ = × [1.94]

where:

ΔT is the life expectancy of a cutting tool in min;

Cv is a Taylor constant, intrinsic value of the material;

Vc is the cutting rate (m/min or in ft/min);

n is a (negative) value, depending on the type of operation.

Example of application: A carbide tool GC 4015 for which the manufacturer
recommends Vc = 315 m/min and f = 0.4 mm/min for a life expectancy of 15 min.
The machining type, carbide turning of a steel gives n = −8.

If we plot, on bi-log paper, the life expectancy of a tool as a function of the
cutting speed, we obtain the slope of the straight line n. For instance, calculating the
life expectancy of a tool under the following cutting conditions, n and C are the
intrinsic parameters of the material, e.g. coefficients provided by the manufacturer
of cutting tools.



Fracture Mechanisms by Fatigue 55

Figure 1.20. Life expectancy of a tool (pellet) in function of the cutting speed Vc

1.11. Elements of stress (S) and resistance theory (R)

In the following section, we are going to present another method known
as stress/resistance (S/R). This will be accompanied by our own research results
[GRO 94, GRO 95]. When fissures appear at the foot of the weld bead of a welded
cross-assembly [GRO 98] and are random, they can be described by a probability
distribution of initial cracks (variable or non-variable in function of the longevity of
the assembly) that the parameters of Paris’s law are themselves random, owing to
the variability of the base material (as well as the filler metal for welding), of the
dimensional variability, of that of treatments, etc. These can be described
by a distribution of the probabilities of the intrinsic parameters of the material
(m, C). The reliability of the assembly can be calculated in function of the life
expectancy.

1.11.1. Case study, part 2 – suspension bridge (Cirta)

NOTE.– This case study is undertaken with a mechanical (static) approach. It will be
referred to later for reliability calculations (Cornell and de Hosofer–Lind’s reliability
index).
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PROBLEM.– We are looking for the “correct” environmental factors of the cable to
support the tension and the deflection, supporting a uniform load. Secondary effects
(wind) will be disregarded. The length of cable L and the deflection (f) must support
a uniform load Q. Let us find, then, the expression and the value of this deflection,
environmental factors H, and tension T.

Figure 1.21. Example of calculations for a suspension bridge (Cirta Bridge)

– Uniform load: Q = 0.01 (lbf/ft).

– Stretch of the length is the total length of the cable L = 100 ft.

– f: deflection f = 2.738 in. (mm).

– l is the length in mm (or inch).

– τ is the tension in N (or in lbf).

SOLUTION.– The following equations come from the literature (RDM) dedicated
to calculating cable design (in the case of suspension bridges with a parabolic shape)
in static. The total length of the suspension cable is calculated by:

( )
2 4 68 32 2561

3 5 7
f f fL in ft or m

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

A
A A A

[1.95]

The deflection (f) of the suspension cable is calculated by:

( )
21

8
Qf in ft or m

⎛ ⎞×
= ×⎜ ⎟⎜ ⎟

⎝ ⎠

A
τ

[1.96]

L=Total length of the suspended cable

(Cirta Bridge)

Towards
the hospital
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Q (In N or lbf)
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The cable tension is expressed as follows:

( )
2

2
1 1 or
2 16

T Q in N lb
f

= × × × +
×
AA [1.97]

In the case of l = 90%×L (design of the horizontal range). Length l is written as
follows:

2 4 68 32 2561 119.854
3 5 7

f f fL ft
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × + − + → =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
A A

A A A

From [1.96], the tension of the environment (τ) is deduced as follows:

21 14.028
8

Q lbf
f

τ
⎛ ⎞×

= × =⎜ ⎟⎜ ⎟
⎝ ⎠

A
[1.98]

The cable tension (T) is therefore calculated by [1.97]:

[ ]
2

2
1 1 14.079
2 16

T Q lbf
f

= × × + =
AA

The range of (x) values is calculated as follows. The shape of y(x) parabola is
given by the following equation:

( ) ( )
2

2 1; ...
2 2 2 10 2 2

y x f x when x ⎛ ⎞ ⎛ ⎞⎛ ⎞= × = − − − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A A A AA [1.99]

1.11.2. Case study: failure surface of geotechnical materials

PROBLEM.– This case study establishes the factor of safety (FS) so that the fracture
of the knot (A) of the slope circle can be managed or even avoided. The classic
method, called the layer method, is used to this end (see Figure 1.23):
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Figure 1.22. Suspension cable with a parabolic shape for a bridge

Figure 1.23. Safety factor for a failure surface in geotechniques
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Initial data: What is the factor of safety (FS) to counter the fracture of the
tilt slope, shown in Figure 1.23? The tilt angle is β = 45° and the tilted height is
H = 18 m. The circle has a radius of R = 25 m and the center has the coordinates
A (Xc, Yc). The ground has a density of ρ = 17.56 × 103 N/m3. The ground grip
represented by the cohesion stress is Cohesion = 18 × 103 Pa = N/m2 and a friction
angle of φ = 18°.

– Density of the ground: ρ = 17.56 × 103 N/m3.

– Cohesion: Cohesion = 18 × 103 Pa (N/m2).

– Friction angle: φ = 18°.

– Tilt angle of the slope: β = 45°.

– Height of the slope: H = 18 m.

– Radius of the circle: R = 25 m.

– Coordinates of the center: A [Xc = 7.56 m and Yc = 25 m].

– Number of slices: n = 117.

Statements

– To express with a matrix the expression of the slope.

– To find, with linear interpolation, the relation which renders yslope(x) and yfracture
(x) in function of (x).

– To find the maximum distance XMaxi(x, xc; yc, and R) which is expressed in
function of the circle equation.

– To plot the fracture circle, the slope, and the central point of the circle.

– To find the factor of safety FS for the 77 layers, that is n = 1 to 77.

– To find the weighted slice Wi, the (lowest) angle αi of the tilted slice, and the
friction length by slice ΔLi.

– For layers 1 to 77, to explain with a graph the behavior of the structure, by
emphasizing the FS.

– According to results from calculations, at what number layer can a singularity,
that is a change of sign from (+) to (−), be observed?
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Solutions

We will use the 2D function to develop an image of the failure surface and the
slope. The 3 × 2 matrix is used to define the coordinates of key points along the
slope. The defined points form the knot at the highest point on the slope (A).

( ) ( )

( )

0 0 0 0
, 18 18

tan
27 18

3
2 tan

H H
Hslope H H m

H H

β
β

β

⎡ ⎤
⎢ ⎥

× ×⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥×⎢ ⎥
⎢ ⎥×⎣ ⎦

[1.100]

The function of linear interpolation, which renders the expression of the slope, is
given as follows:

( ) 0 1linterp , ,y x slope slope xslope
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

[1.101]

We use a circle equation to express the function of fracture:

( ) ( )22y x y R x xfracture c c= − − − [1.102]

We must define a series of x coordinates to plot the graph (see Figure 1.23). The
maximum distance, Xmax, required to plot the graph is the point where the fracture
circle crosses the highest point of the slope, which is determined trignometrically as
follows:

( ) ( )22, , , 31.56c cx H R x y x R x H mmax c c= + − − = [1.103]

Once the variables of the first series are known, the x values can be calculated by
iteration. The range is known by the hypothesis (from 1 to 77) or:

Range of variables of: i = [1, 2, …, n]

( )Distance max
x iix x xim n

⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

[1.104]
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Digital calculations

In this final analysis, the slope and the fracture circle are presented in the
following graph:

Figure 1.24. Graph showing the slope and the fracture circle (and its precise center)
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Calculating the factor of safety FS by the classic method (slices) leads us to
using the following equation. The derivative of the equation complies with
geotechnical references.

( ) ( )( )

( )( )
1

1

tan
FS

n

i i i
i

n

i i
i

Cohesion L Cos

Sin

ω α φ

ω α

=

=

×Δ + Δ × ×

=

×

∑

∑
[1.105]

where the weighted slice ωi is given by the following expression:

( ) ( )max
i slope i fracture i

x
y x y x

n
ω ρ⎡ ⎤= × − ×⎣ ⎦ [1.106]

The (lowest) angle of the tilted slice is expressed with:

( ) ( )
( )

arctan i c
i

c fracture i

x x
y y x

α
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
[1.107]

The length of friction by slice is written as follows:

( )max
i i

xL Cos
n

α⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

[1.108]

Digital calculations

Digital calculation of the factor of safety: from [1.105], we consider the
following equation:

( ) ( ) ( )
1 1

FS tan 1.085
n n

i i i i i
i i

Cohesion L Cos Sinω α φ ω α
= =

= ×Δ + Δ × × × =∑ ∑

The calculation takes into account changes in safety, such as change in the
number of layers (slices) used for the calculation which is changed. This can easily
be visualized by redefining the FS in terms of n and plotting (determinant) FS (n) for
a series of values from 1 to 77, and results are as follows:
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Figure 1.25. Factor of safety in function of number of slices
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Behavior can be explained by plotting the numerator and the denominator on a
graph:

( ) ( ) ( ) ( )

( ) ( )

1

1

Numerator tan

and denominator

n

i i i
i

n

i i
i

n cohesion L Cos

n Sin

ω α φ

ω α

=

=

⎧ ⎫
= ×Δ × × ×⎪ ⎪

⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪

= ×⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑
[1.109]

At n = 40, there is a singularity of the FS (n) owing to the denominator which
passes below zero.

After calculations, the following result is obtained:

Figure 1.26. Expressions of the denominator and the numerator in function of (n)

COMMENTS.– Grapho-analytic proof: at the 40th layer, that is n = 40, there is a
singularity = (−0.012).
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1.12. Conclusion

It should be borne in mind that this chapter has been purposefully developed
here, even though the main focus of this work is reliability and quality control
(volume 3). The reasons are as follows. First the case studies that follow are based
on models of fracture mechanics, among others. Second, a high number of mechanical
models exist, which are applied differently to materials and to structures. We
therefore thought it useful to add this additional chapter, without which the readers
would have had to do their own supplementary research. The present chapter has
also included practical examples of reliability and uncertainties.
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Chapter 2

Analysis Elements for Determining the
Probability of Rupture by Simple Bounds

2.1. Introduction

This chapter is dedicated to determining reliability by bounds. The failure
probability Pf of a system presents approximations developed to quickly obtain
estimations. From the technical literature, we know that approximations involve
lengthy calculations and that their implementation offers results well below the
simulation methods. By means of an example, for the two modes of failure (i) and
(j) of occurrence system (case) [εi ∩ εj], bounds are derived from Poincaré’s
methods. His well-known formula is written as follows:
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1 2
1 2
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We distinguish first-order bounds, known as simple bounds, for assembly
systems in series or in parallel. These bounds only include failure mode
probabilities:
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2.1.1. First-order bounds or simple bounds: systems in series

The expression on the left-hand side corresponds to the case of a perfect
correlation between events (fracture modes). The term on the right-hand side is an
inherent approximation to statistically independent failure modes. It demonstrates
that the failure probability of a system in series increases with the number of failure
modes. This probability is strongly conditioned by the weakest elements. This is the
principle of the weakest link.

2.1.2. First-order bounds or simple bounds: systems in parallel

The failure probability of a system in parallel is therefore outlined by:
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As stated earlier, the term on the right-hand side expresses a good correlation
between the failure modes of a system of components. The term on the left-hand
side corresponds to statistically independent failure modes. In practice, these bounds
are rather too far apart to be useful, as demonstrated by equations [2.2] and [2.3].
Ditlevsen’s [DIT 79] bounds will now be introduced.

2.2. Second-order bounds or Ditlevsen’s bounds

These bounds are defined by retaining the probability of intersections of two
events P{Gi [X] < 0 ∩ Gj [X] < 0}. A simple schematization is as follows:

By developing equation [2.1], it can be seen that alternating signs are used in the
terms. Ditlevsen retained this characteristic to propose the following lower bound:
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He also proposed the following upper bound:
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Figure 2.1. Schematization of simple bounds: base system with two RV

2.2.1. Evaluating the probability of the intersection of two events

The disadvantage of using Ditlevsen’s bounds resides in evaluating joint
probabilities P{Gi [X] ∩ Gj[X]}. It is therefore possible to use approximation
methods, Form and Sorm, as previously described. Figure 2.2 illustrates the
Gaussian terms of intersection [MEL 99], such as domain D1, obtained by limit state
functions Gi [X] = 0 with i = 1, 2, 3.

Evaluating joint probabilities is generally carried out by linearizing, first, the
limit states around their design points expressed according to the equation of failure
probability Pf = ≈ Φ (−β). Second, joint probability of the mean of binomial
distribution ϕ2 [y1, y2, ρ12] is calculated, where y1 and y2 are two standard normal
random variables with a correlation coefficient ρ12. It should be noted that the
hyperplanes from the Form calculations are represented as follows:
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In such a case, the joint failure probability can be deduced as follows:
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Figure 2.2. Linearization of limit state function in space

2.2.1.1. Estimation of the first order of a system in series or in parallel

To construct approximations of this order, the limit state surfaces (M) of
structure system elements are linearized in Gaussian space at their respective design
points. For an assembly first in series [DIT 81a] and then in parallel, the first-order
approximation is presented as follows:
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where:

ϕM (·) is the probability density function of the multinomial law.

β is the vector composed on M reliability index (βHD). It is Hasofer–Lind’s
reliability index.

[ρ] is the size correlation matrix [m × m] between the different linearized
performance functions. This matrix comes from the coefficients of the tangent
hyperplanes.

To evaluate the probability of failure for implicit limit states, structures can
present complexities, that is hyperstaticity or even pronounced nonlinearity. Writing
the limit state function (M) becomes problematic because Form and Sorm moments
are no longer applicable. The MC simulation method, however, remains applicable,
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but requires more time for calculation and is therefore expensive. This bears
testament to the development of other techniques. Estimating multinomial
distribution with a relation such as [2.9] poses numerous problems. This distribution
can be presented as follows:
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For systems in series, we often resort to determining the probability of damage
by upper and lower bounds. This is the case, for example, in relation [2.9].
Ditlevsen’s simple bounds are expressed as follows:

{ }1, 1

m

i Fs i
l m i

MaxP P P
ε =

≤ ≤∑ [2.10]

This schematization is a simple and immediate demonstration to aid
comprehension:

Figure 2.3. Schematization of simple bounds, known as Ditlevsen’s bounds

PFs corresponds to the space where the three surfaces overlap. It is clearly
smaller than the sum of the three elementary surfaces (which are equal if the
overlapping ↔ correlation = 1). Let us remember that Ditlevsen’s bounds only call
on binomial distribution, that is the following expression:
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2.2.2. Estimating multinomial distribution–normal distribution

The previous expression demonstrates that estimating the reliability of structures
relies, in a large part, on calculating multinomial distribution ф(m). The analysis of
complex structures requires fast and effective digital tools, because the consumption
sources in machine time are complicated. For example:

– the standardization of base variables, U;

– the iterative calculation of the security index (βHL) for a large number of
elements;

– reactualizing the rigidity matrix [ρ];

– calculating the equivalent safety margins (M), etc.

From this point on, we should not resort to digital integration techniques to
calculate the values of ф(m). The following section will set out the most well-known
and easy-to-use approximation techniques. They are concerned with the distribution
of a standard normal random variable which is presented, a priori, in this simple
classic form:
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2.2.3. Binomial distribution

The expression of binomial distribution is given by relation ф2.
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It is worth noting that φ2(R, S, ρ) takes the following forms:
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The integral can be calculated by using a development of φ2(R, S, ρ), based on
Hermite polynomials. For example:
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The first Hermite polynomials are as follows:
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In probability, Hermite’s polynomial (more precise that Lagrange’s) constitutes a
sequence of polynomials defined as follows:

2 2
( ) ( 1) Exp

ndn x xH xn ndx
Exp= − [2.17]

The two definitions are linked by the following scale property:
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It can be demonstrated that in HP, coefficients with the same parity as (p − 1) are
zero and that coefficients of order (P) and (P − 2) are worth 1 and [–(P (p − 1)/2],
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respectively. In relation [2.18], x takes the values of R or S and we can deduce the
following:
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In practice, the development of order 20 will be used. We have plotted the results
of Hermite’s polynomial in a graph:

Figure 2.4. Graph of Hermite’s polynomial

2.2.4. Approximation of ф2 (for m ≥≥ 3)

The expression of the normal law is given by the following relation:
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and [ ]ρ is a correlation matrix of ix .
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The equicorrelated variables are represented in the case of the following matrix:

[ ]

[ ]( ) ( )
1

1 ...
1 ...

...1

,
1

m
i

m
i

When it can be shown that

x U
x U dU

ρ ρ
ρ ρ ρ

ρ ρ

ρ
ρ ϕ

ρ

+∞

=−∞

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥=⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎨ ⎬
⎪ ⎪

⎛ ⎞− ⋅⎪ ⎪Φ = × Φ⎜ ⎟⎪ ⎪⎜ ⎟−⎝ ⎠⎪ ⎪⎩ ⎭
∏∫

G

[2.21]

Relation [2.21] can be integrated without difficulty. The result will be used to get
closer to the general case by replacing the correlation matrix [ρ] with the matrix [φ]
as follows:

( ) , 1

1 ...
11 ...
1

...1

m

ij
i j
i j

where
n n

ρ ρ

ρ ρ ρ ρ ρ

ρ ρ =
≠

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤= = ×⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ [2.22]

ρ⎡ ⎤⎣ ⎦ is the average correlation coefficient. The approximation is obtained by
relation [2.20]. The majority of the cases amount to the following expression:

[ ]{ } { },m mx xρ ρ⎡ ⎤Φ ≤ Φ ⎣ ⎦
G G

[2.23]

As has been previously presented [2.8], by the determining of reliability by
Ditlevsen’s upper and lower bounds, relation [2.23] can be generalized in the case of
the following matrix:

[ ]
1 2 1

1 2 2

1 2

1 ...
1 ...

...1

n

n

n n

λ λ λ λ
ρ λ λ λ λ

λ λ λ λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

[2.24]

In this case, we will have the following:

[ ]( ) ( )
2

1

,
1

m
i i

m
i i

x
x u du

λ
ρ ϕ

λ

+∞

=−∞

⎛ ⎞−⎜ ⎟Φ = × Φ
⎜ ⎟−⎝ ⎠

∏∫ [2.25]
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On the other hand, it can be demonstrated that:

[ ]( ) [ ]( ), ' ,n nx xρ ρΦ ≤ Φ [2.26]

For each matrix [ ]'ρ as { }' ; , 1,ij ij i j mρ ρ= ∀ ∈ [2.27]

From this result and by using equation [2.9], we can obtain an upper bound of
[ ]( ), 'n xΦ ρ by choosing λi as:

iji j
Maxiiλ ρ
≠

⎡ ⎤= ⎣ ⎦ [2.28]

A lower bound of [ ]( ), 'n xΦ ρ can be obtained by choosing (λi) as:

i iji j
Miniλ ρ
≠

⎡ ⎤= ⎣ ⎦ [2.29]

2.3. Hohenbichler’s method

The Hohenbichler’s method [HOH 84, BRE 84, HOH 87a, HOH 87b], though
relatively difficult to implement, does give excellent results. A brief overview of the
method is given in the following.

By definition:

[ ]( ) 1 1
1

,
m

m i i
i

x P X x X xρ
=

⎧ ⎫⎪ ⎪Φ = ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭
∩ [2.30]

where Xi are the standard normal random variables of correlation matrices [ρ]. This
identity can also be written in the following form:

[ ]( ) ( ) 1 1
1

,
m

m i i i i
i

x P X x P X x X xρ
=

⎧ ⎫⎪ ⎪Φ = ≤ × ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭
∩ [2.31]

By using Cholesky’s factorization algorithm, a lower triangular matrix such as
the following can be found:

[ ] [ ] [ ]Tα α α= × [2.32]
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If we consider:

1 11

1 21 22 2

1 1 2 2 ...

i

i

m i m mm m

X U

X U U

X U U U

α

α α

α α α

=⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪

= +⎪ ⎪⎩ ⎭

[2.33]

we can easily verify that the [Ui] are standard and independent normal random
variables. Moreover, α11 = 1. Equation [2.31] can be rendered in the [Ui] space to
obtain the following:

[ ]( ) ( )
1

112

,
m

ij j i
m i i

iji

U x
x P X x P

U x
α

ρ
==

⎧ ⎫⎡ ⎤≤⎪ ⎪⎢ ⎥Φ = ≤ × ⎨ ⎬
≤⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑∩ [2.34]

In each linear combination
1

1
ij j i

j

U xα
=

⎛ ⎞
⎜ ⎟≤
⎜ ⎟
⎝ ⎠
∑ , only the first term [αi1xU1] is

affected by the condition 1 ≤ x1 because the Ui are independent. The conditional
distribution functions of the Ui are therefore written as follows:

( ) ( ) ( )
( )1 1 1

1

u
F u P U x

x
⎛ ⎞Φ

= ≤ = ⎜ ⎟⎜ ⎟Φ⎝ ⎠
[2.35]

The condition can therefore be eliminated by replacing the variable 1
1

1

U x
U
⎛ ⎞

≤⎜ ⎟
⎝ ⎠

with the following variable:

( )( ) ( ) { }-1
1 1 1uU x U or even F F= Φ Φ ×Φ =�� [2.36]

Equation [2.26] can therefore be written as follows:

[ ]( ) ( ) ( ) ( )

( ) ( )

1
-1

1 1 1 1
12

1
2

,

=

m

m i ij j i
ji

m

i i
i

x x P x P U x U x

x P G u x

ρ α
==

=

⎧ ⎫⎪ ⎪⎡ ⎤Φ = Φ × Φ Φ × + ≤⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

⎡ ⎤
Φ × ≤⎢ ⎥

⎢ ⎥⎣ ⎦

∑∩

∩
[2.37]
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By linearization, as understood by Hasofer–Lind’s [HAS 74] reliability index,
we obtain the following:

[ ]( ) ( ) { }1, 0m ix x P MρΦ = Φ × ≤ [2.38]

With 1iγ = , we obtain the following:

[ ]( ) ( ) ( )
1

2
1 1

12

, 1
m

m ij j i
ji

x x P U x withρ γ γ
==

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟Φ = Φ × × ≤ =⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑∩ [2.39]

Therefore, let

[ ]( ) ( ) ( )( ) ( ){ }2 2
1 1,m mx x xρ ρ−

⎡ ⎤Φ = Φ ×Φ × ⎢ ⎥⎣ ⎦
[2.40]

( ) ( ) ( )2 T
i iWith ρ γ γ⎡ ⎤ ⎡ ⎤= ×⎢ ⎥ ⎣ ⎦⎣ ⎦

[2.41]

This algorithm can lower the rank, by one degree, of the multinomial distribution
to be estimated by recurrence. It therefore becomes easy to calculate [ ]( ),n x ρΦ .

[ ]( ) { } [ ]
1 ...

, , , ... 1 ...
...1

F nP when and
ρ ρ

β ρ β β β β ρ ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥= Φ = = ⎢ ⎥
⎢ ⎥⎣ ⎦

G
[2.42]

Schematizing M. Hohenbichler’s method is also precise for cases when the
analytical expression of фm is known. The components for formulations can be read
in literature by H. Hohenbichler and R. Rackwitz [HOH 87].

COMMENT.– We are going to present a hypothesis test of a Gaussian with two
extremes (of unknown variance). What follows is a continuity of the analysis
elements of reliability and of quality control, already developed in Chapters 1 and 2
of Volume 1.

2.4. Hypothesis test, through the example of a normal average with unknown
variance

By forging, during the manufacturing process, we designed connecting rods by
hot swaging. We then manufactured them by machining on an aluminum alloy 6061



Determining the Probability of Rupture by Simple Bounds 81

(see the following definition drawing). According to the functional specifications
document, 50 connecting rods must weigh 2 lb each.

In metrology, during measuring (weighing), we recorded the weights indicated in
Table 2.1. It is not enough to determine the reliability by simple bounds, rather it is
required to find the mean and the standard deviation, σ, at the threshold of
significance a = 0.1 around the mean μ0 = 2 lb to analyze the distribution of the
connecting rods within these 2 lb.

Figure 2.5. Real mechanism designed in mechanical design laboratory (connecting rod)

Table 2.1. Data vector (weight of connecting rod in lb)

Connecting rod =

0 1 2 3 4

0
1

2

3

4

5

6

7

8

9

2.35 2.12 2.12 2.56 2.00
2.00 1.95 1.89 3.25 2.00

3.45 2.33 1.45 1.53 3.00

2.21 2.54 2.54 2.00 1.91

3.35 1.51 2.54 2.15 3.00

2.00 1.58 2.54 2.95 2.52

1.75 2.35 2.16 2.50 3.58

1.25 2.15 2.33 3.00 3.35

3.15 1.56 3.00 2.65 1.69

2.52 2.00 2.58 3.71 1.88

Pb = Weight of each connecting rod
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Classifying the connecting rods into categories is not easy. For example, in
which category should a connecting rod weighing 1.95 lb be classified and another
weighing 3.25 lb?

First, this gap, which has been deliberately exaggerated to demonstrate the
uncertainty, is intended for the limits of each weight category. We are going to study
the characteristics of Gauss’ curve, by following the central part of the curve quite
closely: we are interested in the diagram of the dispersion of weights.

– Total number of weighed connecting rods, n = length (Pb) = 50 connecting
rods.

– Let the value of the average to be tested be: μ0 = 2 lb.

– At significance level, α = 0.15.

2.4.1. Development and calculations

– Standard deviation: ( )VAR 0.667;
1

n Pb
n

σ ⎛ ⎞= × =⎜ ⎟−⎝ ⎠

– Test statistic:
( ) 0 3.645

mean Pb
Weight

n
μ

σ

−
= = ;

– Calculation for the degrees of freedom: dof = df = [n − 1] = [50 − 1 ] = 49
connecting rods.

Three distinct case studies are presented in terms of the hypothesis tests:

CASE 1: Hypothesis test with two extremes: H0 andH1→

–H0: for μ = μ0 and H1when μ ≠ μ0

–Calculation for the critical value: 1 , 1.462
2t ft qt dα⎧ ⎫= − =⎨ ⎬

⎩ ⎭

– If 1 does not exclude H0→Test H0 in function of p values:

{ }, 1 0
2 2

pt Weight dfα α⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≺ ≺

– If 1 does not exclude H0→Test H0 in function of q values: 0Weight tt =≺
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Graphically the test for q = [−5, −4.9, … +5], and k = [0, … 1] is presented as
follows:

Figure 2.6. Graph illustrating Case 1 test (49 connecting rods)

CASE 2: Hypothesis test for a left extreme: H0 andH1→

–H0: for μ ≥ μ0 and H1

– Calculation for the critical value: { }, 1.048L ft qt dα= = −

– If 1 does not exclude H0→Test H0 in function of p values:

{ } ( ), 1pt Weight df α =;

– If 1 does not exclude H0→Test H0 in function of q values: 1LWeight t =≺

Graphically the test for q = [−5, −4.9, …, +5], and k = [0, …, 1] for μ < μ0, is
presented as follows:

Figure 2.7. Graph illustrating Case 2 test (49 connecting rods)
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CASE 3: Hypothesis test at a right extreme: H0 and H1→

–H0: for μ ≤ μ0 and H1 for μ > μ0

– Calculation for the critical value: { }1 , 1.048R ft qt dα= − = +

– If 1 does not exclude H0→Test H0 in function of p values:

{ } ( ), 1 0pt dfWeight α− =≺

– If 1 does not exclude H0→Test H0 in function of q values: 0RWeight t =≺

Graphically the test, for q = [−5, −4.9, …, +5] and k = [0, …, 1], is presented as
follows:

Figure 2.8. Graph illustrating Case 3 test (49 connecting rods)

We have just seen that two hypotheses H0 and H1 oppose one another. The
decision on the behavior of the 50 connecting rods is based on real experimental
data. The statistical hypothesis remains a quantitative statement relative to a
characteristic (weights of the connecting rods). We sought to determine whether the
process is still centered at μ0 or whether there is a sliding (displacement) of the
central tendency in (±). The decision depends on whether we accept or reject the
hypothesis at the confidence threshold, at the risk of the error (α: 1st type error).

2.5. Confidence interval for estimating a normal mean: unknown variance

A case study for calculating the upper and lower bounds by confidence interval
is presented as follows. The same experimental data have been used, as shown in
Table 2.1.

–4 –2 0 2 4
0

0.1

0.2

0.3
dt q df,( )

0

dt tR df,( ) k

Weight

q tR,

Curve T law
Student (T)

Upper Limit
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SOLUTION.– To simply determine the probability of the confidence interval at
significance level (α = 0.15), let: 1 − α = 85%.

Standard deviation (S) of the sample: ( ) 0.567
1

nS VAR Pb
n

⎛ ⎞= × =⎜ ⎟−⎝ ⎠

Degrees of freedom (dof)→ df= n − 1 = 50 − 1 = 49

Calculation of the critical value of the bounds (limit):

01 1 , 1.462
2

t qt dfα⎧ ⎫= − =⎨ ⎬
⎩ ⎭

Bounds

( )

( )

0

0

Upper limit 1 2.409

Lower limit 1 2.175

SU LS mean Pb t
n

SLI mean Pb t
n

⎧ ⎫⇒ = = + × =⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪⇒ = − × =⎪ ⎪⎩ ⎭

2.6. Conclusion

This chapter having been dedicated to determining the probabilities by simple
bounds, the importance of the method for systems of components assembled
in series is clear. Specialized literature on the topic [DIT 73, DIT 79, DIT 81a,
DIT 81b, DIT 86a, DIT 86b, HOH 84, BRE 84, HOH 87a, HOH 87b] offers many
case studies. Presenting more studies here would be of little use.

The final two examples constitute the classical statistical approach to calculating
confidence intervals for estimating the mean of a Gaussian which has an unknown
variance. By this very fact, applied statistics remain a key tool for both reliability
and quality control.
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Chapter 3

Analysis of the Reliability of Materials and
Structures by the Bayesian Approach

3.1. Introduction to the Bayesian method used to evaluate reliability

In reliability, Bayesian analysis considers the parameters of the population of
random variables (RV) to be non-fixed. Subjective judgment is sometimes used to
determine the a priori distribution of the parameters of the population being studied.
Numerous personal decisions are taken intuitively, that is, based on our experience
and our judgments which are tainted with subjectivity. Mainstream statistical
analysis aims at objectivity by generally restricting the information used for
analysis, which is taken from a body of relevant data. Prior knowledge is not used,
except to suggest the particular choice of a population model, which is then adapted
to the data. An adequacy test later verifies that the characteristics of the data are
reasonable. For the reliability of materials and structures, the life expectancy and the
distribution of the components have one or several unknown parameters. The classic
statistical approach considers these parameters to be fixed. These are unknown
constants to be estimated, with the help of random samples taken from the
population of the observed data.

In practice, few distribution models for life expectancy are successful. In
literature, the population models of failure (ruin) times, stemming from fracture
mechanisms, are treated under strict conditions based on probabilistic arguments on
the mode of fracture (physical). The latter tend to justify the choice of a probability
model. The model is used, in these cases, because of its empirical success in
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adjusting the real data from the ruin of materials and/or of structures. Usually,
around seven models are used. For example, one or two models are listed as follows:

1) Weibull (with two and/or three parameters).

2) Gamma (Erlang).

3) Birbaum–Saunders.

4) Exponential.

5) Extreme value (Gumbel).

6) Log-normal (Galton).

7) Proportional risks.

The Bayesian approach treats the parameters of the population model as random,
non-fixed quantities. We base this on the history of the data, or on an a priori
subjective judgment to construct an a priori distribution model. The model in
question expresses the start evaluation, according to the probability of the unknown
parameters. Then with the help of the Bayes formula, the previous evaluation is
revised to arrive at the posterior distribution model for the population of the
parameters of the model. The estimation of the average confidence interval’s
parameters is calculated from the posterior distribution.

Confidence intervals determine the probability of ruin from unknown parameters,
since they are considered random and are not fixed (e.g. crack propagation). It is
improbable, for most applications, to validate a distribution model, which has been
previously selected. Bayesian parametric models are chosen for their adaptability
and mathematical convenience. In particular, a priori conjugate models are a
supposedly natural choice of a Bayesian distribution model, a priori.

3.2. Posterior distribution and conjugate models

Bayes formula combines prior knowledge of the physical phenomenon with
actual (observed) data to produce a posterior distribution. Bayes method expresses
the conditional probability of an event (A) which has occurred, given that event (B)
has taken place. The following is noted: P(A|B). In terms of unconditional
probabilities, it can be understood that the probability that event (B) would have
occurred because (A) also occurred. The formula is therefore written as:

( ) ( )
( )

( ) ( )
( )

,P A B P A P B A
P A B

P B P B
⋅

= = [3.1]
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P(B) is developed with the help of total probability:

( ) ( ) ( )
1

n

ii
i

P B P B A P A
=

= ⋅∑ [3.2]

Events Aj being mutually exclusive have exhausted all possibilities, notably
event (a) of Ai. The same formula, written in terms of probability density function
models, takes the following form:

( )
( ) ( )

( ) ( )
0

f g
g

f g d

τ τλλ τ
τ λ λλ

∞

⋅
=

⋅∫
[3.3]

f(τ/λ) is the probability function of the observed data (x), from the unknown
parameter (λ). g(λ) is the a priori distribution model for (λ). g(λ|τ) is therefore the
posterior distribution model for (λ) for the observed data (x). When g(λ|x) and g(λ)
belong to the same distribution family, g(λ) and f(τ|λ) are therefore called
distribution conjugates and g(λ) is the a priori conjugate for f(τ|λ). Beta distribution
(see Chapter 1 of this volume) is a preliminary condition for the proportion of
success (p) of the conjugate when the samples have a binomial distribution.

The Gamma model is an a priori conjugate for the rate of ruin (λ) when the time
to fail or repair comes from an exponential population. These conjugate laws, that is
gamma law and exponent law, are largely used in reliability with the help of a
Bayesian system.

This is how Bayes analysis is used in the evaluation of reliability:

a) Classic paradigm to evaluate system reliability:

- Mean time before failures (MTBF) is a fixed and unknown value. No
“probability” is associated with it.

- The data for failure during a test or observation period allow us to draw
conclusions, with respect to the value of the true unknown MTBF.

- With the exception of what has previously been said, no other data are used,
nor “judgment” made: the procedure is an objective based solely on the test data,
and the homogeneous Poisson process (HPP) model is presumed to be valid.

b) Bayesian paradigm to evaluate system reliability:

- MTBF is a random quantity with a probability distribution.

- The test component “chooses” an MTBF from the distribution of failure data
which follow an HPP model with this MTBF.



90 Fracture Mechanics 2

- MTBF is based on prior test data or a consensus stemming from engineering
judgment (design).

Using Bayes’ analysis methods in reliability is justified by the cost of time and
of the material of the test. Adding to these grounds are the following:

Advantages of the Bayes’ approach Disadvantages of the Bayes’ approach
Uses “logical” preliminary information Preliminary information is not accurate
If the preliminary information is
encouraging, fewer new tests are needed to
confirm an MTBF with a given confidence

The mode of collecting prior information
cannot be correct, because chosen a priori

The confidence intervals are intervals for
the MTBF (random) – sometimes called
“credible intervals”

The validity of previous data or judgments
of the designers (engineering) are not, de
facto, accepted

There are few applications coming from
literature on continuum mechanics

A “correct way” of collecting preliminary
information does not exist. Different
approaches give different results

It is worth making sure that the results are
not strictly confined to theoretical
mathematical manipulations (many
experiences must be made)

Results cannot always be guaranteed

Table 3.1. Advantages and disadvantages of the Bayes’ method

Sometimes we want to know the probability of a given event (E1), not as a
singular event but relative to another event (E2) (or events), which has already
occurred. Event (E1) is conditioned by the preliminary performance of event (E2).
Definition space is a noted sample space (Ω). Therefore, the definition of the
conditional probability of E1 in relation to E2 in this space (Ω) can be shown as
follows:

( ) ( )
( ) ( ) ( )

( )
1 2 1 2

1 2 2 1
2 1

P E E P E E
P E E just as P E E

P E P E
∩ ∩

= = [3.4]

By analogy if an event E3 was added, we will say that the latter will be carried
out when we know that E1 and E2 will have been already carried out. Let:

( )
( )

( )
[ ]
( ) ( )3 1 2 3 1 2

3 1 2 1 2
1 2 1 2

0
P E E E P E E E

P E E E with P E E
P E E P E E
∩ ∩⎡ ⎤ ∩ ∩⎣ ⎦∩ = = ∩ ≠

∩ ∩

[3.5]
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Multiplication is a direct consequence of the definition of conditional probability.
The following rule allows us to find the intersection:

( ) ( ) ( )
[ ] ( ) [ ]

( ) ( ) [ ]

1 2 1 1 2

1 2 3 1 2 3 1 2

1 2 1 3 1 2

P E E P E P E E

P E E E P E E P E E E

P E P E E P E E E

⎧ ⎫∩ = ×
⎪ ⎪

∩ ∩ = ∩ × ∩⎨ ⎬
⎪ ⎪= × × ∩⎩ ⎭

[3.6]

The generalization of relation [3.6] takes the following form:

{ } ( ) ( ) [ ]
[ ]{ }

1 2 3 1 2 1 3 1 2

1 2 3 1

...

... ...
i

i i

P E E E E P E P E E P E E E

P E E E E E −

⎧ ⎫∩ ∩ ∩ ∩ = × × ∩ ×⎪ ⎪
⎨ ⎬

× × ∩ ∩ ∩ ∩⎪ ⎪⎩ ⎭
[3.7]

3.2.1. Independent events

Sometimes events are independent, meaning that the failure of a structure is not
influenced by the failure of the other. It can therefore be understood that events E1
and E2 are not dependent and that their respective probabilities are not conditioned in
relation to the other. The sine qua non condition reads: event E1 is independent of
event E2 if and only if:

( ) ( ) ( ) ( )1 2 1 2 1 2P E E P E just as P E E P E= = [3.8]

If we replace 1 2P E E⎛ ⎞
⎜ ⎟
⎝ ⎠

with ( ) ( )1 2 2P E E / P E∩ we will have 1P E⎛ ⎞
⎜ ⎟
⎝ ⎠

or

1 1 22P E E = P E ×P E⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∩ .

In the reliability of components and structures, this formulation provides us with
the independent verification criteria, where our intuition fails. A generalization of
the independence definition is as follows:

{ } ( ) ( ) ( ) ( ){ } ( )1 2 3 1 2 3
1

... ... =
i

i i k
k

P E E E E P E P E P E P E P E
=

∩ ∩ ∩ ∩ = × × × × ∏
[3.9]

Practical application 1 in reliability of structures

Let P(S1) = 1/10, the probability that a singular structure is failing, and another
similar structure P(S2) = 1/15. Let us suppose that the two structures are independently
stressed. We need to determine:
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1) the probability that the two structures are failing simultaneously;

2) the probability that no structure will ruin;

3) the probability that any of the structure will ruin.

Solution

1. The expression that considers the simultaneity of ruin is written as follows:

{ } ( ) ( ){ }1 2 1 2
1 1 1: 0.0005
40 50 2000

Let P S S P S P S ⎛ ⎞ ⎛ ⎞∩ = × = × = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2. The expression for the probability that no structure will ruin is written as follows:

{ } ( ) ( ){ } ( ) ( )' ' ' '
1 2 1 2 1 2: 1 1

39 49 19110.995
40 50 2000

Let P S S P S P S P S P S∩ = × = − × −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞= × = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3. The expression probability that any of the structure will ruin is written as follows:

{ } ( ) ( ) [ ]

( ) ( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2
89= 0.045
2000

P S S P S P S P S S

P S P S P S P S

∪ = + − ∩ =⎡ ⎤⎣ ⎦

+ − × = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Practical application 2 in reliability of structures

Another typical case in the reliability of materials and structures is the following.
Let the structure system of four (04) welded cross-structures with an arc be
schematized as follows:

Figure 3.1. Welded cross-structure
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To have a reputed normal operation, the probability of acceptable operation
conforms to the hypothesis that p = [0.52 → 0.85].

[ ] [ ]{ } ( ) [ ] [ ]{ }1 2 3 4 1 2 3 4S S S S therefore P P S S S SΦ = ∩ ∪ ∩ Φ = ∩ ∪ ∩

[ ] [ ] [ ]1 1 2 2 3 4 ,; ... .i k i kLet S S S S etc S Sε ε ε= ∩ = ∩ = ∩

Let us apply the union rule: ( ) { }1 2P P ε εΦ = ∪

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4P P S P S P S P S P S P S P S P SΦ = × + × − × × ×

Given that (Sk) = p with k = 1, 2, 3, …, n (here n = 4), the following can be
deduced:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 4 2 22P p p p p p p p p p p p p pΦ = × + × − × × × = × × = × −

The system will operate well, in accordance with the hypothesis that between p =
[0.52 → 0.85], each singular structure will not fail.

Using the probability approach to study the reliability of structures is simple
when the hypothesis is well chosen and clearly demonstrated. Among many cases,
certain cases can be summarized in an explanatory calculation, as previously shown.
It would be tedious to devote ourselves to theories which are as complex as they are
vague to intuitively resolve a problem with a Bayesian approach.

Events can be independent as well as incompatible. Since it is often easy in
mathematics to represent incompatible events in a graph, we are often inclined to
adopt the same approach for independent events. A priori, we believe that these two
notions (independence and incompatibility) oppose each another. We have rarely
come across simultaneity. For two independent and incompatible events, it would be
advisable that one of the two events have a probability of zero (= 0). The
mathematical formula for our hypothesis is as follows:

( ) ( )
( ) ( )1 2

1 2 1
2

P E E
P E E P E

P E
∩

= = [3.10]

Moreover, E1 and E2 are incompatible. Therefore, let E1∩ E2 = Ø and P (E1∩ E2),
hence the independent condition will be:

( ) ( ){ } ( ) ( )1 2 2 1 10 , logically 0P E E P E P E P E= = =

When would we have independent events in mechanical reliability?
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Figure 3.2. Probability of good operation for four independent structures

Let us express relation [3.10] using the empirical definition of probability of
frequencies by this definition:

We know that:

( ) 1
1

Number of structure elements for
Number of structure elements for total

EP E
N

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

Therefore:

( )1 2
1 2Number of structure elements for

Number of structure elements for
E E

P E E
Ntotal

∩
=
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

[3.11]

Expression [3.11] is now written as:

( ) ( ) 1 2 1
1 2 1

2

Number of elements for Number of elements for
hence

Number of elements for
E E E

P E E P E
E N Ntotal total

∩
= =

[3.12]

In this way, the proportion of elements represented by event (E1) in event (E2)
relative to the number of elements of structures represented by (E2) is identical to
that of all the elements of E1 relative to the total of the entire structure represented

P p( )
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by the reference (Ω). In this case, it would be difficult to prove a priori that two
events would be independent by intuition. Do we really need to do all this reasoning
to be able to state that the independence of the structure’s elements is physically
indefensible on account of the bonds of the entire structure (e.g. offshore)? There
are, however, confusions that must be cleared up. Here are three main definitions:

( )
( ) ( )
( )

1 2 1 2

1 2 1 2 1 1

1 2 1 2 2

, 0

,

,

Incompatible events E and E where E E et P

Incompatible events E and E where P E E P E P E

Incompatible events E and E where P E E P E

→ ∩ =∅ ∅ =

→ ∩ = ×

→ ≠

⎧ ⎫
⎪ ⎪⎪ ⎪⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪

⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

[3.13]

3.2.2. Counting diagram

There are cases when counting is desirable. Let us take an example. Consider a
bolted structure for transporting electrical energy produced by Hydro-Quebec that is
composed of several levels. Welded cross-assemblies maintain the joints between
components (Figure 3.1).

Problem of structures assembled by bolting

We noted that we could estimate the chances of ensuring a reliability represented
by event E1 to be 75%. If this can be verified and ensured then the chances are two
(2 chances) against one (1 chance), for the reliability of the entire structure. This
event is therefore represented by E2. However, if the first hypothesis is not ensured,
then the reliability of the whole structure cannot be guaranteed (contract not ensured
from functional specifications document). In the end, we would estimate the chances
of the bolted structure remaining reliable to be 56%. What is the probability that the
pylon completely breaks down and that there will be many harmful consequences?

Solution

According to the following diagram, there are four possible incompatibilities.

1 2

1 2 1 2

1 2 1 2

1

1.
'2.

'3.

4.

The two cases ensure reliability we note E E

Case E ensures reliability but not E we note E E

Case E does not ensure reliability but E does we note E E

None of case E ensur

→ ∩

→ ∩

→ ∩

1 2
' 'es reliability we therefore note E E→ ∩

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

The probability that does not ensure reliability is written as follows:

( ) ( ) ( ) ( ) ( )' ' ' ' '
1 2 1 2 1 0.25 0.44 0.11 11 100P E E P E P E E⎡ ⎤∩ = × = × = =⎣ ⎦
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Let us first plot the counting diagram as follows:

Figure 3.3. Tree diagram of counting (a)

The logic behind reasoning through counting is as follows:

In order for the reliability of two cases to be ensured, the probability is (1 – 0.11)
= 89%. According to this counting diagram, there is an 89% chance that Hydro-
Quebec’s pylon will remain safe.

– Probabilities P(E1) and P(E′1) are marginal. The performance of (E1) is not
conditioned by other events.

– Probabilities P(E2/E1), P(E′2/E1), and P(E′2/E′1) are conditional probabilities.

– Probabilities P(E1 ∩ E2); P(E1 ∩ E′2), P(E′1 ∩ E2), P(E′1 ∩ E′2), are joint
probabilities.

We could also proceed with rules of elimination:

The performance of an event is often conditioned by the performance of another
event. If a section is ruined (unbolted pylon) during an event, it is only logical that
what follows will be conditioned by this weakness (welded cracking seat and
dangerous section due to the ruined link by sudden unbolting). In the opposite case,
the structure continues to ensure that energy is transported to the Cheyennes.

P(E1) = 0.75

P(E1) = 0.25

P(E2/E1) = 2/3

P(E'2/E1) = 1/3

Safety not ensured

P(E'2/E'1) = 0.44

P(E2/E'1' ) = 0.56

Safety ensured

P(E1 E’2) = P(E1)xP(E’2/E1)

= (0.25) × (0.56) = 0.14

= (0.25)x0.44) = 0.11

E1

E'1

E1

E'2

E'2

E'2

Verification

(0.5 + 0.25 + 0.14 + 0.11) = 1

= (0.75) × (1/3) = 0.25

= (0.75) × (2/3) = 0.5

Safety ensured

Safety not ensured

Safety ensured

P(E’1 E2) = P(E’1)xP(E2/E’1)

P(E’1 E’2) = P(E’1)xP(E’2/E’1)

P(E1 E2) = P(E1)xP(E2/E1)

Safety not ensured
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Problem

During design, we always assemble mechanical components. For example, of six
(06) assembled parts, two (02) components turn out not to conform to mechanical
bonding. Two components are therefore faulty. After the hypothetical assembly has
taken place, the mechanism is verified component-by-component, until the two
faulty components have been identified in the mechanism. Let us calculate the
probability that verifications stops at the second test or at the third test? If the
first component is reliable (not faulty), what is the probability that the following
verifications stop at the third test?

Solution

Let us logically plot a tree diagram, shown in the following, which relates to
what has been stated earlier:

Figure 3.4. Tree diagram of counting (b)

P(R1) = 2/6

S = Safety = reliability

R = Ruin or failure

P(S1) = 4/6

S1

R1

Test at level 1

Test at level 2

Test at level 3

P(R2/S1)= 2/5

P(S2/R1)=4/5

P(R2/R1)= 1/5

P(S3/S1∩S2) = 2/4

P(R3/S1∩S2) = 2/4

P(S3/S1∩S2) = 3/4

P(R3/S1∩R2) = 1/4

P(S3/R1∩S2) = 3/4

P(R3/R1∩S2) = 1/4

P(S3/R1∩R2) = 1

P(S2/S1)= 3/5

S2

R2

S2

R2

S3

R3

S3

R3

R3

S3

R3
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1) The verification principle would be stopped at the second test if the two
ruined components were pulled. Let us therefore identify this event by Ω when:

( ) ( ) ( )1 2 1 2 2
2 1P 0.067
6 5

R R and P R P R R ⎛ ⎞ ⎛ ⎞Ω = ∩ Ω = × = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2) The verification principle is stopped at the third test and the event is shown
according to the following duality:

1 2 3 1 2 3S R R et R R R∩ ∩ ∩ ∩ → , therefore Ω will be written as follows:

[ ] [ ]1 2 3 1 2 3S R R R S RΩ = ∩ ∩ ∪ ∩∩ , which permits

( ) [ ] [ ]1 2 3 1 2 3P P S R R P R S RΩ = ∩ ∩ + ∩ ∩

Multiplication leads to the following relation:

[ ] ( ) ( ) ( ) ( )1 2 3 1 2 1 3 1 2

4 2 1 0.067
6 5 4

P S R R P S P R R P S P S R∩ ∩ = × × ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Similarly:

[ ] ( ) ( ) ( ) ( )1 2 3 1 2 1 3 1 2

2 4 1 0.067
6 5 4

P S R R P S P R R P S P S R∩ ∩ = × × ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

It can be concluded as follows: ( ) ( ) ( )0.067 0.067 0.133.P Ω = + =

3) The principle of verification is stopped at the third test, when the first
component is reliable. This fact corresponds to Ω/S1 when Ω has been previously
defined in response 1). The corresponding probability is therefore written as follows:

( ) ( )
( )

[ ]
( )

1 2 31
1

1 1

0.067 10.101
4 6 10

P S R RP S
P S

P S P S
∩ ∩Ω∩ ⎛ ⎞ ⎛ ⎞Ω = = = = ≅⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

The above problem is a simple example of probability in mechanical design. It is
worth pointing out that many case studies on probability have been carried out.

With respect to pedagogy, we would like users (technical schools) to make use of
probability approaches alongside concrete cases during their studies. Unfortunately
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some classes on probability and statistics are often confined to abstract theories
which are off-putting, since they are not followed up with an application by means
of explanation. And then the time comes for concrete projects and initiation to
design and production.

3.3. Conditional probability or Bayes’ law

In the 19th Century (in Scotland), Reverend Thomas Bayes gave a definition of
conditional probability which allows us to express the rules of multiplication and
elimination. This theorem now has different applications in engineering sciences.
Several case studies will be presented here in an attempt to popularize, in the most
concise way possible, Bayes’ law. Formulating the behavior of the welded cross-
structure by classic laws of fracture mechanics has allowed us to link the essential
dependence parameters of the Paris–Erdogan law, specifically c and m. If we
designate the number of cycles to fracture by N and the relation between nominal
stress S (Δσ) and the number of cycles to fracture (N) by a law on fatigue [BAS 60],
this relation is naturally expressed as follows:

mN K S= Δ × [3.14]

where:

m = 3 is an intrinsic coefficient of the material, adimensional;

ΔK is the stress intensity factor (s.i.f.) in MPa m3/2;

S(N) corresponds to the nominal stress in Mpa.

Figure 3.5. S-N curve (or Wöhler’s curve)
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Taking into account the dispersion of experimental points, we will make
reference to statistical methods, including the following. Through experience we
have deduced that for an insufficient number of experimental data, we end up with a
Galton distribution (log-normal, see Chapter 1, Volume 1), naturally in the domain
of limited endurance of fractures at level σa. The law becomes Gaussian (normal)
when N varies. This is a normal phenomenon of cumulative wear.

In 1972, Jack and Price [JAC 72] showed that for a sheet of width ≥20 mm and
of thickness >5 mm, the number of activation cycles is a simple dependent function
of the s.i.f. For example, for mild-steel these authors parameterized the relation as
follows:

( )

8

4
2.9 10

aN
K
×

=
Δ

[3.15]

We retrieved this relation from literature to check the way our simulated plot
looked and then to be able to compare it to these authors’ results. At our last
observation, we found an excellent similarity. This allows us to continue the
development as follows:

Figure 3.6. Evolution of the s.i.f. in function of Ncycles for activation Na

Under a given stress (S = σmax = 200 MPa), we subject a series of test pieces to
stress cycles. The number N of cycles required to provoke the fracture of the test
piece (N = Nf) is then measured. The test is repeated at different stress amplitudes
σapplied. The plot on the semi-log scale, from the curve S = σa = f(N), is as shown in
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the following figure (mild-steel). Wöhler’s curve shows the resistance of a material
in accordance with the mode of stress. It is an experimental relation between the
maximum stress S = σmax and the number of cycles N. Wöhler’s curve corresponds to
the median value of N (50% survival at a given stress).

The method of obtaining results is as follows:

Figure 3.5 shows the results (Si, Ni), i = 1, 2 … r, for each typical experiment.
The results are often represented by transforming (x,y) in (LogS, LogN). Let
x = Ln(S) and y = Ln(N). The model of normal regression and linear regression with
a constant variance is formulated for the independent variable x and the dependent
variable y. The value of Y, which can be read as X = xi , is written as follows:

( ) [ ]i i iY X x x Uα β μ σ= = − − + × [3.16]

Ui is a standard normal variable, written as follows: Ui ∈ N [0, 1]. The average
values and the variance of Yi/Xi = xi are written as follows:

1

2

1_

i
i i

i
i

i

Y
Mean E x x

X
Y

Mathematical variance VAR x
X

Average of x values x
i

α β μ

σ

κ

κ

=

=

= = − −

= =

= × ∑
=

⎧ ⎫⎛ ⎞
⎡ ⎤⎪ ⎪⎜ ⎟ ⎣ ⎦

⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞
⎪ ⎪⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

[3.17]

For the limited number of statistical tests, parameters α, β, and σ cannot be
determined with any degree of certainty. Moreover, they can be considered as
random variables of parameters A, B, and Σ. The respective laws of A, B, and Σ are
obtained once the statistical tests are known. The respective distributions are
obtained by a Bayesian theorem developed by D.V. Lindley [LIN 65] in 1965. It can
be summarized as follows:

( )
( ) ( )

( )
( ) ( )

1

1
,...,

1 1 1

, , ,...
, ,

,..., ; ,... ,..., , , ,AB ABY Y
y y

C f f
x x y y x xκ

κ

κ κ κ

α β σ
α β σ

α β σΣ Σ= × × [3.18]

The left-hand side represents the probability density function, according to the
Lindley–Bayes’ law. It is proportional to the product of the most probable function
and the first probability density function. The constant C is proportional to a
normalized factor. Random variables Ui are considered to be mutually independent
and each corresponds to their respective statistical test. The probable function is
therefore written by the following relations:
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Let us calculate this similarity and let:
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When ϕ(·) is the standard normal random variable of the probability density
function, which is proportional to the averages, then ∝ is similar. The constants a, b,
and Sxx, as well as D are determined by their respective expressions which are
written as follows:
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Many propositions have been made to represent the iso-probability curve of
fracture. The plot of Wöhler’s curve (Europe), which is the equivalent to S-N curves
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in Canada and the USA, requires an experimental program, which is sometimes very
costly. Some S–N curves can be found, however, that are dedicated to certain
materials.

Expression Suggested equation Parametersa

Wöhler (1870) ( ) ( )Log N a b S= − × a and b

Basquin (1910) ( ) ( ){ }Log N a b Log S= − × a and b

Strohmeyer (1914) ( ) ( ){ }eLog N a b Log S S= − × − a and b

Palmgren (1924) ( ) ( ){ }eLog N B a b Log S S+ = − × − a, b, and B

Corson (1955)

( ) ( )eS S
e

AN
S S d −

=
− ×

a and d

Weibull (≈1955)
( ) ( )

( )
e

u e

b Log S S
Log N B a

S S
⎧ ⎫× −⎪ ⎪+ = − ⎨ ⎬

−⎪ ⎪⎩ ⎭

a, b, and B

Etc. See Chapter 1, Volume 2
aConstants adjusted to each material considered.

Table 3.2. Some important equations for the iso-probability of fracture

3.4. Anterior and posterior distributions

The probability density function, stated earlier by H.O. Madsen’s [MAD 84],
corresponds for A, B, Σ to the mutually independent parameters in the following
proportions:

( ) ( ) ( ) ( ), ,AB A Bf f f fα β σ α β σΣ Σ= × × [3.23]

According to H.O. Madsen, selecting the anterior density function is bound by a
representation of the knowledge of it and the desire to have a simple density
function, said in turn to be posterior, which is in fact a joint probability density
function. The latter completes the conjugate distribution function. Knowing anterior
parameters (A, B, Σ) concerns, in particular, offshore structures with cross welding,
assembled in series.

Most information is still related to parameter A. Consequently, it is sufficient to
limit ourselves to it. The value of parameter B is not completely known in advance,
but can be generally determined by Ditlevsen’s [DIT 79, 81] bound theory, among
others, if the choice of anterior value A remains inconclusive. At the end of
statistical calculations, it is worth carefully checking the chosen hypothesis by a
conformity statistical test, using for example Pearson’s confidence interval {m1, m2}
or (KS) Kolmogorov–Smirnov’s confidence interval (see Chapter 2, Volume 1).
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Standard deviation (Σ) is always positive. When numerous tests in series can be
polarized around the average of S, we can sometimes consider them known, for
which a theoretical demonstration is as follows.

f (A, B, Σ), the anterior probability density function can be known as follows:

( ) 1 1
1, , 0ABf with and m mα β σ σ β
σΣ
⎛ ⎞∝ ≤ ≤⎜ ⎟
⎝ ⎠

; [3.24]

When (1/σ) represents the asymptotic limit of the density form of the anterior
sequences of (A, Σ), which are approached by uniform probability densities (α, Lnσ)
planar. The posterior distribution function is therefore written as follows:

( )
( )

( ) ( )

1 1 1
1 1

222
1

, , 10
,..., , ,...,

1
2

AB

xx

With and m m f
x x y y

Exp D a S b

κ
κ κ

κ

α β σ
σ β

σ

κ α β
σ

Σ +

+

⎧ ⎫
≤ ≤ → ∝ ×⎪ ⎪

⎪ ⎪
⎨ ⎬

⎧ ⎫⎪ ⎪⎡ ⎤× − + − + −⎨ ⎬⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭

;
[3.25]

The joint posterior distribution is often complicated to find. The simplified
version of this problem will be done by introducing the random variables (T1, T2,
and T3) which in turn will be calculated as follows:

( ) ( )
2

1 2 3; xxS DT A a T B b and Tκ⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎛ ⎞= × − = × + =⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟Σ Σ Σ⎝ ⎠⎪ ⎝ ⎠ ⎪⎝ ⎠⎩ ⎭
[3.26]

By introducing variables (T1, T2, and T3), the posterior distribution function will
take the form:

( )
1 2 3

2
2 2 2

1 2 3 1 2 3 3

3 1 3 2
1 3 2

1 1 1
2 2 2

( ) ( )
; 0 ;

TT T

xx xx

f t t t Exp t Exp t t Exp t with

S t m b S t m b
t t t

D D

κ −⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∝ − × − × × −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎨ ⎬
⎪ ⎪⋅ × + ⋅ × +
−∞ +∞ ≤ ≤ +∞⎪ ⎪⎩ ⎭
≺ ≺ ≺ ≺

[3.27]

From equation [3.26] it appears that T1 is independent of T2 and T3 with:

[ ] ( )1 1
20,1 1T N and T χ κ∈ ∈
−

→ This is Pearson’s adequacy test χ2.
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This equation expresses Pearson’s test at (κ − 2) degrees of freedom (dof).
The conditional probability density function of T2 on T3 is a normal truncated
distribution, presented as follows:

( ) ( )
2

2
2 3

3 2 3 1

3 1 3 2
2

( ) ( )

( ) ( )

T
xx xx

xx xx

t
f t t

S t m b S t m b
D D

S t m b S t m b
with t

D D

⎧ Φ ⎫
=⎪ ⎪⎛ ⎞ ⎛ ⎞× + × +⎪ ⎪Φ −Φ⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎨ ⎬
⎪ ⎪⎛ ⎞ ⎛ ⎞× + × +⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
≺ ≺

[3.28]

If the “anterior” distribution of (B) is widespread, that is to say that m1 = −∞ and
m2 = +∞, knowing that T2 and T3 are independent and T2 has a standard normal
distribution (tabulated reading), the value of (B) is fixed for m1 = m2 = m and T1 has
a standard normal distribution which is independent of T3, which is defined as
follows:

( )

2
21

3 12

DT κχ −= ∈
Σ

[3.29]

where the constant D1will be defined by the following relation:

( )22 2
1 xxD D S b m= + + [3.30]

The dependent parameters of the materials, for example the m coefficients of
Paris–Erdogan’s behavior law of fatigue and the stress intensity factor (ΔK), can be
expressed through Bayesian theory [MAD 84] using the relations:

2

3xx

D Tm B b
S T

⎛ ⎞×
= = − + ⎜ ⎟⎜ ⎟⋅⎝ ⎠

[3.31]

( ) 2 2

3 3 3xx

DT DT DUK Exp A Bx U Exp a b x
T S T Tκ

⎛ ⎞⎛ ⎞
⎜ ⎟Δ = + + Σ = + + − + +⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠⎝ ⎠

[3.32]

T2 = 0 and D will therefore be replaced by D1 if the value of B is fixed. U is
initially considered a standard normal distribution and therefore a tabulated value.
The number of cycles to fracture is expressed by the following relation:

1 2

3 3 3
cycles

xx

DT DT DUN Exp a b x
T S T Tκ

⎛ ⎞⎛ ⎞
⎜ ⎟= + + − + +⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠⎝ ⎠

[3.33]
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T1 and U are standard normal variable functions, independent of T2 and T3. T3

follows one of the Pearson’s laws χ2 defined by relation [3.29] with (κ − 2) = 6 − 2 =
4 dof, because we have hypothesized two parameters, specifically T2 and T3. T2

follows a normal truncated law.

3.5. Reliability analysis by moments methods, FORM/SORM

We have, until now, designated reliability by the probability of ruin PF or
sometimes by its reliability index βF, which is expressed by βF = ф−1(PF) and which
remains random. Reliability is therefore expressed by the distribution function of the
Ncycles as follows:

{ } ( )1F NP P N n F n= = −; [3.34]

when n is the number of cycles applied to the welded cross-structure. In terms of S,
U, T1, T2, and T3, fracture is expressed by the following relation:

( ) ( )1 2
1 2 3

3 3 3

, , , , - 0
xx

DT DT DUg S U T T T a b x LnS Ln
T S T Tκ

⎛ ⎞⎛ ⎞
= + − + − + ≤⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

[3.35]

when the logarithm of the Ncycles is taken into account by relation [3.38], function g
is a state limit function and (S, U, T1, T2, and T3) are base variables which express
the behavior law. Reliability is taken into account by the first- or second-order
moment, traditionally known as FORM and SORM, respectively. The first order
consists of transforming, step-by-step, the base variables S, U, T1, T2, and T3 across
five important stages in standard normal variables U1, U2, U3, U4, and U5.
Rosenblatt’s [ROS 52] transformation was introduced by Hohenbichler and
Rackwitz [HOH 82, 87a, 87b] with the following mode:

( ){ }

( )

1

3 3

2 2

1 1 1 1
1 2 3 1

1 13
4 3

1

1 12 2
5

1 3 3

; = U ; =
,

= ;
, ,

=
, , ,

s u T

T T

T T

TUU F S U F U F T
S S U

T
U F F T

S U T

T TU F F
S U T T T

− −

− −

− −

⎧ ⎫⎧ ⎫⎧ ⎫ ⎛ ⎞⎛ ⎞⎪ ⎪= Φ = Φ = Φ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭ ⎩ ⎭

⎪ ⎪
⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪= Φ Φ⎨ ⎨ ⎬ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

⎪ ⎪⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎪ ⎪= Φ Φ⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭⎩ ⎭

[3.36]
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3.6. Control margins from the results of fracture mechanics

There are two types of fracture control to consider:

( ) ( ){ }, 1, 2, , , 1, 2, ,a N A i r et a N A i si di j j≤ = … = = … [3.37]

In the first case, there is no fracture at control after Ni number of cycles to
fracture, which results in a crack size so small and detectable with Adi. The term Adi
is generally random, because of the fact that the fracture is detectable with a certain
dependent probability of the crack size by the method of control used. The results
[KIR 88, MAD 87] and models of direct control are only effective if we calculate
“as we should” the statistical distributions of variables and parameters of the
behavior law and also if we respect the conditions of the physical and chemical
environment. Their papers [KIR 88, MAD 87] emphasize the diagrams at sea (in the
North sea), the transfer functions, and the relating s.i.f.

Weibull’s distribution of two parameters, represented by β and η, is used to
model specific events. Therefore, let:

( ) ( )
( )

P F U
P F U

P U
∩

= [3.38]

where U is an event of any case and P(F/U) a conditional probability when case F is
known. For example, if F is a reliability component of the structure and U the
control event, we will write the fracture probability by the sum of the control cases
P(F/U). If events F and U are independent, P = F ∩ U, which is the product of the
probability of events F and U.

In this case, P(F/U) = P(F). Furthermore if events F and U are dependent,
estimating the probability of fractures will be given by the control event U and
P(F/U) remain different to probability P(F) outside of inspection. The result of
control is therefore given by relations [3.47], in accordance with the previously
stated hypotheses.

The distribution of the Aji is a distribution where we could detect effective
cracks, that is visible cracks which can be measured immediately by metrology. It is
known by its statistical distribution law, during the inspection method, according to
Madsen’s theory [MAD 87].

In the second case of relation [3.47], the crack size Aj (or a0) is visible after Nj
number of cycles to fracture. It is generally random owing to the errors or unknown
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factors due to uncertainties in measuring the size, or even of the signal emitted by
the crack (mark in the form of spectrum if it is an ultrasound recording). In the same
vein of analysis, it is also worth considering the event Mi as a similar margin to a
safety margin which is written as follows:

( )0

1 0 1,2,...,
diA

m
i i mma

m dxM C N A i r
B Y xπ

⎛ ⎞= × × ×Γ + − ≤ =⎜ ⎟
⎝ ⎠ × ⋅

∫ [3.39]

According to the first relation of [3.38], Mi is considered negative and for
measuring the event as defined by the second relation of [3.38], Mj is also compared
to a safety margin which takes the following form:

( )0

1 0 1,2,...,
jA

m
j jmma

dx mM C N A j s
BY xπ

⎛ ⎞= − × × ×Γ + = =⎜ ⎟
⎝ ⎠× ⋅

∫ [3.40]

These safety margins are zero, as the second relation of [3.40] indicates. In this
case, the crack is still not detected in R inspections. Probability PFU is therefore
calculated by the following relation:

{ }2 210 0 0 ... 0U
FP P M M M M= ≤ ≤ ∩ ≤ ∩ ∩ ≤ [3.41]

This expression can be resolved for a reliability problem where the structure is
assembled in a parallel system with other structures. It is discussed theoretically in
this section. Expression [3.41] is used by a reliability system in the form of [3.42]
where the numerator and the denominator are two terms for the indicative ratio for
the probability of fracture (ruin).

{ }
{ }

1

1

0 0 ... 0
0 ... 0

rU
F

r

P M M M
P

P M M
≤ ∩ ≤ ∩ ∩ ≤

=
≤ ∩ ∩ ≤

[3.42]

This situation is considered when the crack is not detected at first inspection. At
the moment when the crack is detected at the (r + 1)th inspection and its size can be
measured by conventional metrology, and so on until (s − 1) inspections. The
probability of a new fracture is therefore shown as follows:

{ }110 0 0 ... 0U
F r r r sP P M M M M M+ += ≤ ≤ ∩ ≤ ∩ ∩ = [3.43]

These reliability techniques [MAD 87] are easy and “neat” in application;
however, they are still useful in the case of systems in parallel and in series, as
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developed by Ditlevsen [DIT 79, 81]. In addition to the inspection methods
explained here, it is important to remember that new probabilities of ruin can occur
PFU. When repair is carried out at time Nr (number of cycles to fracture) the length
of the crack ar is measured. The event margin Mr is therefore defined by the
following expression:

( )0

1 0
ra

m
r rmma

dx mM C N A
BY xπ

⎛ ⎞= − × × ×Γ + =⎜ ⎟
⎝ ⎠× ⋅

∫ [3.44]

The size of the crack after repair and final inspection is expressed with a new
random variable a0nv. The intrinsic properties of the materials from the Paris–
Erdogan law after repair will be represented by mnv and Cnv. These variables can be
considered original if physical influence and, therefore, mathematical statistics are
not very consistent. They can also change, as for example in the case of continuum
mechanics (fatigue) in offshore. Consequently, it is worth reconsidering the original
hypothesis of calculations by fracture mechanics by fatigue. In any case, the new
safety margin will be calculated by the new expression:

( )
( )

0,

1 0
critical

nv

nvnv
nv

a
m nv

nv nv fracturemma

mdxM C N N A
BY xπ

⎛ ⎞= − × − × ×Γ + =⎜ ⎟
⎝ ⎠× ⋅

∫ [3.45]

The updated failure probability after repair will be calculated by the following
relation:

{ }0 0U
F new repairedP P M M= ≤ = [3.46]

This expression is exactly identical to the fracture probability calculated by the
Bayesian theory of conditional probabilities (see also [3.43]), presented at the
beginning of this chapter. The reliability index (β) could therefore be calculated by
the expression we have already seen. Here is a reminder:

( ) ( )1 *0 ;R F F RP and P P M also with Uβ β β β−= −Φ = ≤ ≈ = →∞

The generalization of this solution to parallel systems is written as follows:

[ ]1 *;R et Uβ β ρ−= −Φ ⋅Φ − →∞ [3.47]
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3.7. Bayesian model by exponential gamma distribution

On account of its constant failure rate, exponential distribution is an excellent
“intrinsic failure” model, relative to the long and flat part of the bath curve (see
Figure 3.6). Since most components and systems pass most of their lifetime in this
part of the bath curve, using exponential distribution is justified (in a case of early
failure).

Figure 3.7. Bath curve (classic reliability)

To approach a curve in segments of straight lines, it is often useful to estimate a
curve by its failure rate. Period after period, the failure rate remains constant. In this
way, we can estimate any exponential distribution model by segments (pieces) that
are stuck together. The exponential mode, with a single unknown parameter, is
the most simple of all lifetime distribution models. The equations on exponential
distributions have been presented at length in Chapter 1. As a reminder, the
following are the main points:

– Average : 1μ
λ

= ;Median: ln 2 0.693μ
λ λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠
� ; Variance: 2

1 .VAR
λ

=

1Standard deviation ,VARσ
λ

= = = and failure rate: ( ) :h Csteτ λ= =

– Probability density function F(τ)→ ( ) 1 exp ;F λττ −= −

– Distribution function f(τ)→ ( ) exp ;f λττ λ −= ×

– Reliability R(τ)→ ( ) exp .R λττ −=

λ

Intrinsic
Failure Period

Early
Failure Period

Wearout
Failure Period

Time in h

h(t), Lifetime in h

Bath curve

t t+t1 Time used
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Exponential distribution is the only distribution to have a constant failure rate
h(τ) = (λ). It is also worth pointing out that the average of this law represents the
mean time to fail MTTF = 1/λ.

Figure 3.8. Distribution functions f(τ) and probability density F(τ)

Exponential models (flat part of the bath curve) represent a large part of
the lifetime of systems. The reliability functions R(τ) and the failure rate h(τ)
are represented below. The risk function represents the integral of the failure rate
H(t) = (λ)τ. The relative graphs are as follows:

Figure 3.9. Reliability functions R(τ) and failure rate h(τ)
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Figure 3.10. Reliability functions: MTTF(τ) and risk Risk(τ)

3.8. Homogeneous Poisson process and rate of occurrence of failure

This model is used for independent breakdowns with a failure rate λ. Function
F(t) = 1 − Exp [−λτ] is the probability function of inter-arrival time between
failures. N(T) are the accumulated failures between 0 and the time T. The probability
is written as follows:

( ){ } ( ) { }.
!

T
P N Exp T

κλ
τ κ λ

κ

×
= = × − [3.48]

M(T) = (λT) is the number of expected failures after the time (T).

M′(T) = m(τ) = λ is therefore the repair rate by units of time or by rate of
occurrence of failure (τ) (ROCOF) at time (τ). The MTBF (mean time before
failures) or the average time of good operation is MTBF = 1/λ. Estimating the
MTBF can be determined by using upper and lower confidence limits. Most of the
systems spend their useful lifetimes at the flat part of the bath curve. It is quite easy
to plan tests and to calculate the confidence intervals of an exponential model.
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3.9. Estimating the maximum likelihood

The method of maximum likelihood is a powerful method used for large
samples. Estimation of the maximum likelihood is based on the likelihood function
of the sample data. The probability of a group of data is the probability of obtaining
this particular group of data. This expression contains the unknown parameters of
the model. The values of these parameters, which maximize the likelihood of the
sample, are known as the maximum likelihood estimates (MLE). The estimation of
the maximum likelihood is an completely analytical maximization procedure. It is
applied to all data, censored or multicensored.

Examples of the likelihood function for reliability data: Let f(τ) be the
distribution function and F(τ) the probability density from the distribution model
chosen to represent lifetime. They are functions of τ and the unknown parameters of
the model. The likelihood function is as follows:

( ) ( )
1

1
r n r

i
i

L C f F Tτ
−

=

= × × −⎡ ⎤⎣ ⎦∏ [3.49]

where C is a constant. Without censor, probability is reduced to the product of
densities, each evaluated at a failure time. For type II censored data, replacing T by
τr is sufficient. The likelihood function is written as follows:

( )( ) ( )( ) 11
1

1i i
i

r n r
i i

i
L C F T F T F T

κκ

=

−
−

=

⎛ ⎞ ∑= − × −⎜ ⎟
⎝ ⎠
∏ , when F(T0) is defined at 0.

3.9.1. Type I censored exponential model

( ) ( )
1

rrL C Exp Exp n r Tii
λ λ τ λ= × × − × − −∑

=
⎛ ⎞ ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

( )ln ln lnL C r n r Tλ λ= + − −

( )
1

ln 0
r

i
i

L r n r Tτ
λ λ =

∂
= − + − =

∂ ∑ hence→
( )

1

ˆ
r

i
i

r

n r T
λ

τ
=

=
−∑

[3.50]

3.9.2. Estimating the MTBF (or rate of repair/rate of failure)

The best estimation of the MTBF is the “total time”, divided by total “failures”.

ˆTotal time of operations Total number of failuresMTBF
Total number of failures Total time of operations

λ
⎛ ⎞ ⎛ ⎞

= → =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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3.9.3.MTBF and confidence interval

Reading Tables 3.3 through to 3.5 from literature [POR 98], [TOB] is useful to
estimate the MTBF with the help of confidence intervals. The multiplying factors of
the confidence interval for the estimation of the MTBF are presented as follows:

Failure
number, r

60% 80%
LI_ MTBF LS_ MTBF LI_ MTBF LS_ MTBF

0 0.6213 – 0.4343 –
1 0.3340 4.4814 0.2571 9.4912
2 0.4674 2.4260 0.3758 3.7607
3 0.5440 1.9543 0.4490 2.7222
4 0.5952 1.7416 0.5004 2.2926
5 0.6324 1.6184 0.5391 2.0554
6 0.6611 1.5370 0.5697 1.9036
7 0.6841 1.4788 0.5947 1.7974
8 0.7030 1.4347 0.6156 1.7182
9 0.7189 1.4000 0.6335 1.6567
10 0.7326 1.3719 0.6491 1.6074
11 0.7444 1.3485 0.6627 1.5668
12 0.7548 1.3288 0.6749 1.5327
13 0.7641 1.3118 0.6857 1.5036
14 0.7724 1.2970 0.6955 1.4784
15 0.7799 1.2840 0.7045 1.4564
20 0.8088 1.2367 0.7395 1.3769
25 0.8288 1.2063 0.7643 1.3267
30 0.8436 1.1848 0.7830 1.2915
35 0.8552 1.1687 0.7978 1.2652
40 0.8645 1.1560 0.8099 1.2446
45 0.8722 1.1456 0.8200 1.2280
50 0.8788 1.1371 0.8286 1.2142
75 0.9012 1.1090 0.8585 1.1694
100 0.9145 1.0929 0.8766 1.1439
500 0.9614 1.0401 0.9436 1.0603

Source: http://www.itl.nist.gov/div898/handbook

Table 3.3. Multiplying factors of the confidence interval (estimation MTBF)
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Multiplying factors of the confidence interval for the estimation of the MTBF:

Failure
number, r

90% 95%
LI_ MTBF LS_ MTBF LI_ MTBF LS_ MTBF

0 0.3338 – 0.2711 –
1 0.2108 19.4958 0.1795 39.4978
2 0.3177 5.6281 0.2768 8.2573
3 0.3869 3.6689 0.3422 4.8491
4 0.4370 2.9276 0.3906 3.6702
5 0.4756 2.5379 0.4285 3.0798
6 0.5067 2.2962 0.4594 2.7249
7 0.5324 2.1307 0.4853 2.4872
8 0.5542 2.0096 0.5075 2.3163
9 0.5731 1.9168 0.5268 2.1869
10 0.5895 1.8432 0.5438 2.0853
11 0.6041 1.7831 0.5589 2.0032
12 0.6172 1.7330 0.5725 1.9353
13 0.6290 1.6906 0.5848 1.8781
14 0.6397 1.6541 0.5960 1.8291
15 0.6494 1.6223 0.6063 1.7867
20 0.6882 1.5089 0.6475 1.6371
25 0.7160 1.4383 0.6774 1.5452
30 0.7373 1.3893 0.7005 1.4822
35 0.7542 1.3529 0.7190 1.4357
40 0.7682 1.3247 0.7344 1.3997
45 0.7800 1.3020 0.7473 1.3710
50 0.7901 1.2832 0.7585 1.3473
75 0.8252 1.2226 0.7978 1.2714
100 0.8469 1.1885 0.8222 1.2290
500 0.9287 1.0781 0.9161 1.0938

Source: http://www.itl.nist.gov/div898/handbook

Table 3.4. Multiplying factors of the confidence interval (estimation MTBF)

The formula used to calculate the confidence intervals is the following:

( ) ( )
{ }2 2

1;2 1 ;22 2

2 2 1
r r

MTBF r MTBF rP True MTBF
α α

α
χ χ −+

⎧ ⎫
× ×⎪ ⎪≤ ≤ ≥ −⎨ ⎬

⎪ ⎪⎩ ⎭

[3.51]
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( )
2
1 ;22 r

χ α− is a value of χ2 when (2r) dll is larger than with a probability of

[1 − α/2]. The right tail of the distribution has a probability of [1 − α/2]. A simpler
version of this formula is written by using the total time T of the test:

( ) ( )
{ }2 2

1;2 1 ;22 2

2 2 1
r r

MTBF MTBFP True MTBF
α α

α
χ χ −+

⎧ ⎫
× ×⎪ ⎪≤ ≤ ≥ −⎨ ⎬

⎪ ⎪⎩ ⎭

[3.52]

These bounds are accurate in the case of one or several reparable systems or for a
fixed duration. When a new component is installed in a mechanism, it is strictly
monitored for a considerable period of time. If the new part does not present notable
failures during this period, the equipment passes the reliability acceptance test,
called a qualification test or production reliability acceptance test (PRAT). This is
linked to satisfying the costumer’s MTBF requirement, at a specified level of
confidence.

For how long should a part of equipment or a system be tested to ensure a
specified MTBF at a given confidence?We start with a given MTBF objective, at a
confidence level, for example 100 × (1 − α).

The recommended procedure consists of making iterations on r, which is the
acceptable failure number. For example, to confirm an objective of 200 h of MTBF
at a confidence of 90%, which permits up to four failures on the test, the test
duration must be of 200 × 7.99 = 1598 h. If this does not suffice, only three failures
will be authorized for a test duration of (200 × 6.68) = 1336 h. The shortest test that
would not permit the failure (200 × 2.3) = last 460 h. All these tests guarantee an
MTBF of 200 h at the confidence threshold of 90%, when the equipment passes the
test. The following table allows us to read the length of the test, to determine the
useful time when testing the component (equipment). The following is the guide for
the length test:

EXAMPLE.– A part must satisfy an MTBF requirement of 400 h at the confidence
threshold of 80%. We are giving ourselves up to two months to decide whether the
part satisfies the mission and if the test is acceptable. Two months of operation, with
several days rest for maintenance and repairs, reaches a maximum of ≈1300 h.
The confidence threshold of 80% for r = 1 is 2.99 (see Table 3.5) therefore a test of
(400 × 2.99) = ≈1200 h is the best that can be done by accepting one failure.
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Acceptable
failure
number

Level factor of a given confidence

R 50% 60% 75% 80% 90% 95%
0 0.693 0.916 1.39 1.61 2.30 3.00
1 1.68 2.02 2.69 2.99 3.89 4.74
2 2.67 3.11 3.92 4.28 5.32 6.30
3 3.67 4.18 5.11 5.52 6.68 7.75
4 4.67 5.24 6.27 6.72 7.99 9.15
5 5.67 6.29 7.42 7.90 9.28 10.51
6 6.67 7.35 8.56 9.07 10.53 11.84
7 7.67 8.38 9.68 10.23 11.77 13.15
8 8.67 9.43 10.80 11.38 13.00 14.43
9 9.67 1048 11.91 12.52 14.21 15.70
10 10.67 11.52 13.02 13.65 15.40 16.96
15 15.67 16.69 18.48 19.23 21.29 23.10
20 20.68 21.84 23.88 24.73 27.05 29.06

Source: http://www.itl.nist.gov/div898/handbook

Table 3.5. Length test

3.10. Repair rate or ROCOF

Repair rate models are based on counting the number of accumulated failures
over time. This approach is used to model the accident rate that occurs during
failures of a repairable system. These rates are called repair rates, which should not
be confused with the length of time for repair. The failures occur at different time
spaces (ages) in the lifetime of a system, components, or structures. The frequency
of repair (weld joints, riveting, bolting, etc.) varies at a relatively constant rate.

Let N(t) be a counting function which allows us to follow the accumulated
number of failures of a given system from zero time at (τ). N(t) is a step function
which skips a count each time a failure occurs and then returns to normal until the
next level, and so on until the next failure. M(τ) is the expected number (average
number) of accumulated failures by the time (τ) of the system. The derivative of
M(τ), written as m(τ), is defined as being the repair rate or the rate of occurrence of
failure at time (τ) or ROCOF.

( ) { }expm τ α βτ= + [3.53]

It is said that the model follows an exponential law or that the model is log-
linear. This is called the Cox–Lewis model. A system whose repair rate follows this
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flexible model is to be improved, if β < 0 and the deterioration is β > 0. When β = 0,
the exponential law is reduced to a homogeneous poisson process (HPP) for constant
speed repair.

3.10.1. Power law: non-homogeneous Poisson process

For a power law, the repair rate (non-homogeneous poisson process, NHPP) is
approached as follows:

( ) ; 0 0bM a for a and bτ τ= × ; ; [3.54]

It is a flexible model which has proved itself in many industrial environments to
study the expected failures at the first time (τ):

( ) 1. . . ; 0 1bm ab for andβτ τ α τ α β− −= = ; ≺ [3.55]

The HPP model has a constant repair rate (λ). By substituting an arbitrary
function λ(τ) by (λ), an NHPP is obtained with an intensity function (λ). If, say,
( ) ( )m βλ τ τ ατ −= = , there will be an NHPP with a power function. The probability

of failure for the NHPP is calculated by one of Poisson’s laws, expressed as follows:

( ){ } ( ) ( ){ }
!

M T Exp M T
P N T

κ

κ
κ

× −
= = [3.56]

For the model of a power law, let

( ){ }
( ) ( ) ( ) ( )exp exp

! !

b bb aT b aTaT a T
P N T

κ κ κ

κ
κ κ

− −× ×
= = = [3.57]

This power law is also called the Duane model or the ASMAA model (in the
1970s in the USA this acronym stood for the United States Army Materials System
Analysis Activity). This process is sometimes called the Weibull process, because for
a power law the form parameter a = α characterizes the lifetime (see Chapter 1,
Volume 1). For every NHPP with an intensity function m(τ), of distribution FT(τ) to
express the rate of occurrence of failure at time T, is written as follows:

( ) ( ){ }0
1 expF m T dT

τ
τ τ τ= − − +∫ [3.58]
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To calculate the expected time before the next failure the following relation is
used:

( ) ( )( ){ }1 exp b bF a T TT τ τ= − − + − [3.59]

3.10.2. Distribution law – gamma (reminder)

There are two ways of writing (parameterizing) gamma distribution. Below,
we present the gamma law with a = (α) = (γ), is the “form” parameter and the scale
parameter is b = 1/β. The first choice of parameters (a, b) will be the most
convenient for the later applications of the gamma law (below is a reminder of the
formulas).

Average: ( ) ( )a or or
b

μ α β γ β⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

Variance: 2 2 2. .VAR a b or orα β γ β= and standard deviation σ β α=

Distribution function: f(τ)

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

1 1

1

1
, , exp

1
, ,

a b a
ab

f a b Exp
a

or even f Exp

τ

γ
γ

τ τ ταβ α

τ γ β τ
β γ

τ
β

τ
β

− − −

−

= × × = × ×
Γ Γ

= × ×
Γ

⎛ ⎞⎛ ⎞ ⎧ ⎫
−⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎩ ⎭⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎧ ⎫
−⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎩ ⎭⎝ ⎠

[3.60]

Probability density F(τ): ( ) ( )
0

F f d
τ

τ τ τ= ∫

Reliability R(τ): ( ) ( )1R Fτ τ= −

Failure rate: ( ) ( )
( )
f

h
R
τ

τ
τ

=

These formulas have already been discussed at length in Chapter 1 of volume 1.

Exponential distribution is a specific case of gamma law. For a = 1, gamma
law is reduced to an exponential distribution when b = (λ). Another well-known
statistic distribution is the chi-square law (see Chapter 1, volume 1), which is also a
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specific case of gamma law (see Chapter 1). Distribution χ2 with n degrees of
freedom is the same for a gamma law with a = n/2 and b = 0.5 (or β = 2). We will
present the way the main functions of a gamma law look. We calculated the latter
with the help of MathCAD for different (λ).

Figures 3.11. Given gamma forms for λ1= 0.1; λ2= 0.1; λ3= 0.1

Values of random numbers (picked at random), distributed according to a gamma
law.
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Figures 3.12. Forms of the failure rate curve for the gamma law,
for λ1= 0.1; λ2= 0.1; λ3= 0.1

The statistical law of distribution, gamma, is used to model standby systems, as
well as for a Bayesian analysis of reliability. The gamma law is a flexible model for
the distribution of lifetimes. The data on the failures can be well-adjusted. However,
it is not well adapted to distribution models whose failure mechanism’s lifetime is
cumulative (accumulated wear of the components).
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If there are (n − 1) backup devices and all backup systems have a lifetime that is
exponential to parameter λ, then the total lifetime follows a gamma distribution with
a = n and b. λ as has been already demonstrated in Chapter 1. For a, a positive
integer, gamma law is said to be of Erlang distribution (see Chapter 1). The latter
distribution (Erlang) is frequently used for queuing theory (by Bell, Canada and USA).

In the mechanical reliability of materials and structures, the current use of the
model from gamma law is concerned with Bayesian cases. When a system follows
an HPP with a constant repair rate (λ), it is preferable, beforehand, to make a priori
a practical choice, relative to the failure rate (λ). This has already been covered in
Chapter 2, with the help of a Poisson distribution (binomial).

3.10.3. Bayesian model of a priori gamma distribution

How can a Bayesian test be planned to confirm that a system responds to its
objective, that is, the averages of good operation (MTBF)? We will start at the
moment when gamma law parameters (a and b) have already been determined. Let
us suppose that we have a given MTBF objective, for example M, and a desired
confidence threshold, for example 100 × (1 − α).

We are looking to confirm that the system will have a minimum MTBF M of
confidence threshold 100 × (1 − α). We accept that there will be a certain number of
failures, r, which will be allowed during the test. We need a specific test time T so
that we can observe until r fails but still “passes” the test. If the duration of the
test is too long (or too short), we can cover the process with a different choice of r.
When the test ends, the posterior gamma distribution will have (in the worst case –
supposing exactly r failures) new parameters of:

{ } { }' 'a a r and b b T= + = + [3.61]

The test signifies that the failure rate λ1−α of the upper part 100 × (1 − α)
percentile for the posterior gamma law must be equal to the target failure rate of
1/M. But this centile is, by definition, G−1 (1 − α; a', b'), when G−1 designates
inverse gamma distribution of parameters (a', b'). We can find the value of T which
satisfies G−1(1−α; a', b') = 1/M by trial and error, or by using a target value in Excel.
However, on the basis of gamma distribution properties, it turns out that we can
calculate T directly with:

( )( ){ } ( )1 10.5 1 ; 2 '; 0.5 ;T M G a b G is inverse gamma lawα− −= × − −
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At the time (T) of the Bayesian test, using the Excel expression for the
duration of the Bayesian test, which is required to confirm an objective of M at
100 × (1 – α)% confidence, which permits r failures and by supposing that the
gamma parameters before a and b is written as:

( ) ( )( )( )0.5 . . 1 , ,2M INVERSEGAMMALAW a r bα= × × − + −

there is a very simple way to calculate the required Bayesian test time, when a = 1.
Table 3.6 can be used to calculate the duration of the classic test. Let Tc. The
Bayesian test is carried out by (T = Tc − b). If parameter b has been fixed at (ln2) ×
MTBF50 (whenMTBF50 is the accepted choice), let:

( ) 50ln 2cT T MTBF= − × [3.62]

This shows that when α is used, the duration of the Bayesian test is still lower
than the duration of the corresponding classic test. This is the reason for this
technique being so simple. In general, the time of the Bayesian test can be shorter, or
longer, than the corresponding times of a classic test, according to the choice of
anterior parameters. However, the Bayesian time will always be shorter when the
parameter is lower or equal to 1.

Calculation example of a Bayesian test time, with the help of Excel: An
equipment component must respond to the requirement of an MTBF of 500 h at a
confidence level of 80%. We decided to use a Bayesian gamma law a priori. We
believe that 600 h correspond to a probable MTBF by remaining “confident” that the
MTBF will exceed the 250 h. Gamma law parameters, a priori, are a = 2.863 and
b = 1522.46.

We want to determine a suitable test time so that we can confirm an MTBF of
500 h at a confidence threshold of at least 80%, provided that there are no more
than two failures. With the help of an Excel spreadsheet, let → = 0.5*500*
INVERSE.GAMMA.LAW (0.8, ((a + r)), 2) − 1522.46. The result is quick and quite
amusing→ 1756 h.

Excel:= 0.5*500* INVERSE.GAMMA.LAW (0.8;4.863;2)-1522.46 = 1756.1172 hrs

To compare this result to the classic test for time needed, we use the table of the
length test (see Table 3.6). The factor from the table is 4.28, meaning that the
necessary test time is 500 × 4.28 = 2140 h for a non-Bayesian test. The Bayesian test
allows around ≈384 h to be saved, or a gain in efficiency of 18%. If the test is
executed for 1756 h, with no more than two failures, then an MTBF of at least 500 h
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will have been confirmed at a confidence level of 80%. If, conversely, we had
decided to use one a priori with an MTBF50 of 600 h, the duration of the required
test would have been 2140 – (600 − 2) = ln 1724 h.

3.10.4. Distribution tests for exponential life (or HPP model)

Tests using exponential law are common in industry to check that components or
systems respond to their reliability requirement. The principal indicator of this is the
MTBF. According to the hypothesis, a system that has a constant failure rate (or
repair rate) is the inverse of the MTBF. The expected time between two breakdowns
follows the exponential distribution model. A typical test situation consists of
monitoring a component subjected to the real stresses of normal operation. After a
period of several months, if the component does not break (is without failure) during
this period, the equipment “passes” the reliability acceptance test. This type of
reliability test is often called a qualification test, or a product reliability acceptation
test (PRAT).

How much time should the test take for a part or a system to ensure a specified
MTBF at a given confidence threshold?

Let M represent a given MTBF objective at a confidence level of [100 × (1 − α)].
Let us consider a mechanical part (a mechanical component) system, needed to
determine the length of the test.

The recommended procedure consists of making iterations on r and observing
the acceptable failure number up to a larger r. An unacceptable length of test would
be needed. For every case of r, the length of the corresponding test is calculated by
multiplying M (the objective) by the factor found in Table 3.6 which corresponds to
the rth row and to the column corresponding to the desired confidence level.
For example, to confirm an objective of 200-h MTBF at a confidence threshold
of 90%, which permits up to four failures in the test, the test length must be
(200 × 7.99) = 1598 h. If this is not long enough, just three failures will be
authorized for a test duration of (200 × 6.68) = 1336 h. The shortest test does not
permit failure and is (200 × 2.3) = 460 h. All these tests guarantee an MTBF of
200 h at a confidence threshold of 90%, when the equipment “passes” the test.
However, the shortest test length turns out to be far less “fair” for the supplier in the
sense that there is a good chance that the test will be classed marginally acceptable
to the system as a whole.
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Guide for the length of test table

Accepted
failure
number

Level factor of a given confidence

r 50% 60% 75% 80% 90% 95%
0 0.693 0.916 1.39 1.61 2.30 3.00
1 1.68 2.02 2.69 2.99 3.89 4.74
2 2.67 3.11 3.92 4.28 5.32 6.30
3 3.67 4.18 5.11 5.52 6.68 7.75
4 4.67 5.24 6.27 6.72 7.99 9.15
5 5.67 6.29 7.42 7.90 9.28 10.51
6 6.67 7.35 8.56 9.07 10.53 11.84
7 7.67 8.38 9.68 10.23 11.77 13.15
8 8.67 9.43 10.80 11.38 13.00 14.43
9 9.67 10.48 11.91 12.52 14.21 15.70
10 10.67 11.52 13.02 13.65 15.40 16.96
15 15.67 16.69 18.48 19.23 21.29 23.10
20 20.68 21.84 23.88 24.73 27.05 29.06

Source: http://www.itl.nist.gov/div898/handbook

Table 3.6. Guide for the test length

The formula to calculate the factors of the table is the following: The comparison

of ( ) ( )
2 22;2 1 ;2 1withχ χα γ α γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ + demonstrates that the upper limit 100 × (1 − α)

percentile of Pearson’s chi-two distribution test with 2(r + 1) degrees of freedom to
calculate the test length factors.

Application example: A part (connecting rod, pump, or other) must satisfy an
MTBF requirement of 400 h at a confidence level of 80%. We give ourselves up to
two months (or 52 working days) with an interval of three operations to decide
whether the part is acceptable. Two months of operation, with several days for rest,
maintenance, and repairs, will amount to a maximum of ≈1300 h. The confidence
factor of 80% for r = 1 is 2.99 (Table 3.6) therefore a test of (400 × 2.99) = ≈1200 h
(with a maximum of one failure test is not authorized).

How to shorten the time of the required test, by testing more than one system:
The test times of the exponential law can be considerably shortened if several
similar tools can be tested at the same time. The duration of the test signifies that the



126 Fracture Mechanics 2

“test hours” for a part operating for 1000 h is equivalent (for an exponential mode)
to two parts being used for 500 h each, or 10 parts being used for 100 h each. It is
sufficient to count all the failures and to count all the parts and the sum of the test
hours. The Bayesian paradigm was the focus of a previous discussion, where
the advantages and disadvantages of this approach in reliability of materials and
structures have been outlined. The underlying hypotheses of the gamma law will be
described here, as well as the exponential model, known as the Bayesian model. We
have also seen how to use the model from the Bayesian system to calculate the
required test time to confirm (or invalidate) an MTBF of a system at a given
confidence level.

3.10.5. Bayesian procedure for the exponential system model

The objective of Bayesian reliability procedures is to obtain the most precise
a posteriori distribution as possible and then use this distribution to calculate the
failure rate (or MTBF) of confidence intervals estimates (called Bayesian credibile
intervals). For a graph, it is worth referring to Figure 3.8.

3.10.5.1. Gamma law (Erlang), probability density function F(τ, λ)

Figure 3.13. Model of the system from Erlang’s law
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3.10.5.2. Probability density from Erlang’s law (specific gamma)

Figure 3.14. Probability density from Erlang’s law (specificity of gamma)

3.10.5.3. Reliability of Erlang’s law (gamma)

Figure 3.15. Reliability of Erlang’s law (gamma)
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3.10.5.4. Probability density of an exponential law applied in reliability

Figure 3.16. Probability density of an exponential law applied in reliability

3.10.5.5. Estimation of the MTBF (determining bounds) on the basis of gamma
distribution, a posteriori

Once the test has been performed and r failures have been recorded, the posterior
parameters of gamma law (see [3.61]) are the following:

{ } { }' 'a a r et b b T= + = +

By using an Excel spreadsheet, an estimation of the median value of the MTBF
is calculated quite simply as follows: ( )GAMMAINV=1 0.5, a', 1 b .

The inverse of the average a posteriori distribution can also be used to estimate
the MTBF. Here the average represents the mean square error (MSE), which is an
estimator of (λ). It is, however, recommended to use the inverse of the average to
estimate the MTBF. At a confidence level of 80%, which is considered “weak”, the
MTBF is obtained from the Excel spreadsheet by: = 1/GAMMAINV (0,8, a', (1/b'))
and, in general, lower than 100 × (1 − α)% like the lower limit given by this
equation: = 1/GAMMAINV ((1 - α), a', (1/b')).

Also, let a confidence interval (credible) in %, that is 100 × (1 − α), for the
MTBF, be written as follows:

[{=1/GAMMAINV((1,α/2), a ',(1/b '))},{=1/GAMMAINV ((α/2), a ',(1/b '))}]
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Finally, the equation = GAMMA.LAW ((1/M), a', (1/b'), VRAI) calculates the
probability of the MTBF which is higher than M.

Here is a Bayesian example using Excel to estimate the MTBF to calculate
probability by upper and lower limits.

Consider a system which has come to the end of the reliability test, which aims
to confirm an MTBF of 600 h at a confidence level of 80%. Before the test, there is
a gamma distribution. A priori, when a = 2 and b = 1400, as agreed from tests. The
model is considered to be Bayesian to plan the tests, permiting up to two new
failures, with the need of another test of a duration of 1909 h. When the latter test
has been carried out, two failures were indeed recorded.

What can be said about the Bayes test system?

A posterior gamma law is plotted with parameters a' = 4 and b' = 3309. The curve
below shows the values on the y-axis, plotted as a function of (1/λ) and the MTBF
on the x-axis. Probability, on the y-axis, according to the curve represents the
MTBF. Any of the percentile points of the MTBF can be read here. A simple Excel
spreadsheet (see below) will give the percentile MTBF values, as seen in this graph:

Probabilities (Excel) formula of MTBF in hours MTBF (h)
1 = 1/GAMMAINV (1.0, 4, (1/3309)) 113.5014735
0.9 = 1/GAMMAINV (0.9, 4, (1/3309)) 495.3012193
0.8 = 1/GAMMAINV (0.8, 4, (1/3309)) 599.9950265
0.7 = 1/GAMMAINV (0.7, 4, (1/3309)) 694.8426740
0.6 = 1/GAMMAINV (0.6, 4, (1/3309)) 792.5249764
0.5 = 1/GAMMAINV (0.5, 4, (1/3309)) 901.1288667
0.4 = 1/GAMMAINV (0.4, 4, (1/3309)) 1030.416492
0.3 = 1/GAMMAINV (0.3, 4, (1/3309)) 1197.303160
0.2 = 1/GAMMAINV (0.2, 4, (1/3309)) 1440.708370
0.1 = 1/GAMMAINV (0.1, 4, (1/3309)) 1896.525514

Table 3.7. Table of the Results calculations from an Excel spreadsheet

The values of the MTBF are presented below, with the help of an Excel spreadsheet.

The test confirmed an MTBF = 600 h at a confidence level of 80%, an
MTBF = 495 h at a confidence level of 90% ,and 495.1897) is a confidence interval
of 90% for the MTBF. A single number (point) of the estimation of the MTBF of the
system is equal to 901 h. Alternatively, the inverse of the average of the a posteriori
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distribution b′/a″ = 3309/4 = 827 h can be used as an estimation. The reciprocal
average is in this case 57% lower, as shown here: = GAMMADIST ((4/3309), 4,
(1/3309), True).

Figure 3.17. Graph of the probabilities exceeding the fixed objectives a priori,
of the MTBF, of a Bayesian model with the help of Gamma distribution, a priori

DISCUSSION.– The classic reliability approach does not contain enough details about
the failure rate of components which constitute a batch. It therefore presents
“lacunae” during the testing of models. As has previously been said, the Bayesian
approach proposes that each component of the batch is characterized by its own
capacity to resist stress. It is, moreover, this modeling that postulates the existence
of a singular failure rate (λ) which is attached to each component of the mechanism
and therefore to the statistical distribution known as the λ of the batch.

In this section, we considered an “a priori” distribution law; a Bayesian
treatment therefore serves reliability modeling. A formalism of the unconditional
failure rate (breakdown or ruin) follows, which reflects the failures of the batch as a
whole, if the veracity of the parameters can be demonstrated. By choosing an “a
priori” distribution law (gamma, exponential, Erlang, Poisson, or even binomial), a
Bayesian treatment is implemented, from which we get the formalization of an
unconditional failure rate (mechanical ruin of the fracture). Since the previously
plotted laws justify a gamma type law, using both practical and theoretical
considerations, it has been concisely demonstrated that the unconditional breakdown
rate hyperbolically decreases as a function of time. This has a considerable impact
on the famous “bath curve” which no longer presents a horizontal bearing but rather
a slight tilt.
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3.11. Bayesian case study applied in fracture mechanics

General argument: Bayesian modeling of the failure rate in the reliability of
materials and of structures. Usually in classic reliability, the link between the failure
rate (λ) of all components that constitute the total structure (batch), which is
considered homogeneous, and the HPP (homogeneous Poisson process) is rarely
referenced. From the point of view of the reliability of the materials and the
structures, the failure rate (ruin) λ = λ(τ) is strictly linked to the survival of the
mechanism. Furthermore, by designating R(τ) by its reliability (otherwise called its
survival probability) at the moment (τ) and by (dR) elementary probability of the
damages of the mechanism (component) to count (τ) at (τ + dτ), the failure rate λ(τ)
is presented as follows:

( ) 1
( )

dR
R d

λ τ
τ τ

⎛ ⎞ ⎛ ⎞= − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

[3.64]

In literature, the famous bath curve is often used as a point of reference to
explain the three life-stages of a component or of a mechanism. From the intuitive
point of view this remains true; however, it is worth nuancing approaches as before.

In the domain confined to fractures by cracking (fatigue) we noted the same
results as Ritchie’s diagram (Chapter 7), in mode II when the Paris–Erdogan law is
largely justified. The strengthened meaning of λ(τ) is not as simple as certain texts
claim it to be. Must each component be attributed an identical failure rate even when
the batch presents a physical heterogeneity? In the slight tilt zone of the bath curve,
the “useful life” considerations of components are brought together.

If we start from the fact (not established) that the bearing is not tilted, it can be
intuitively presumed that there is no accumulated wear (to justify a constant of the
failure rate). Indeed, it is inconceivable to disregard the phenomenon of wear even
when it would complicate calculating lifetime probabilities. Certainly the rate is
likely to be very weak, explaining its supposedly “true” constancy.

Mathematically, the failure rate λ(τ) is considered to represent the relatively
important capacity of a component or of a structure to successfully resist the stresses
from the environment which are imposed on it. From a Bayesian perspective, the
failure rate considers that the analyzed component (structure) comes from the batch
from the same chain of design; for example, the same structures assembled by
welding with the same filler metal, in the same assembly conditions [GRO 94].

Let i be each component from the batch of welded crosses of a metal structure
(see Chapter 7). Let us allocate a resistance capacity ri,(κ) to the stress spectrum,
represented by (κ). This leads us to declare the existence of a statistical distribution
g{ri, (κ)} of all quantities {ri, (κ)}. The ruin rate λi (for cracking we will use ruin
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rather than failure) of the first component of the structure represents a certain
mathematical quantity, directly correlated to the resistance to stress {ri, (κ)} relative
to this component. In other words, it means that every function {ri, (κ)}, has a
univocal corresponding value g(λi).

g{ ri, (κ)}→ univocal g(λi) [3.65]

From a reliability perspective of the classic Bayes approach, the quantity (λi) is
an “objective” value (see Figure 3.7). In what follows, we will attempt to simplify
the writing of g(λi) in g(λ). The latter writing is employed in fracture mechanics. It
represents the physical distribution of quantities to be determined (failure rate of
ruin of the components of the structure – batches).

Let f(τ/λ) be the instantaneous probability density of the “breakdown” of a
component of the structure, represented by its failure rate (λ). Also, let f(τ) be the
unconditional distribution at the moment of breakdown, expressing the whole of the
structure under analysis (calculations). The relation of unconditional probability f(τ)
is established in accordance with Bayes method to represent a marginal probability
at the moment of breakdown which affects the entirety of the (λ). This is where the
preferred term “a priori” stems from. Therefore, f(τ) is written as follows:

( ) ( )
0

f f g dττ λ λ
λ

∞ ⎛ ⎞= ×⎜ ⎟
⎝ ⎠∫ [3.66]

The representation of unconditional probability is therefore plotted [GRO 11,
GRO 94, GRO 98] at the moment of breakdown for the entirety of structures
assembled by welding.

Figure 3.18. Graph showing unconditional distribution at the moment of breakdown
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In the Bayesian approach, the “thorny” issue is the choice of a priori
distribution, which dictates the rest of the model. On this subject, at the moment “0”
has g0(λ), which must express at best the dispersion of the (λ) of the components of
the structure at the start of active life.

( )
( )0 1 1

Exp
g

α

α

λ λ
β

λ
β α+

⎧ ⎫
− ×⎨ ⎬
⎩ ⎭=
×Γ +

[3.67]

If a maximum uncertainty occurs [GRO 11], it would be preferable to opt for a
uniform law, such as an a priori law. If the dispersion is not badly known, the
reputed laws in cracking mechanics, such as Weibull, Galton, or particularly
Birnbaum–Saunder (see Chapter 1), are largely representative. In the case of our
present analysis, we will favor a gamma law (Erlang) with two parameters α and β.
The reasons guiding our choice of a priori law are as follows:

i) Gamma law (Erlang is a specific case of gamma) f(τ/λ) constitutes the
“natural” Bayesian conjugate of exponential law. This is the reason we deliberately
presented this law as exponential before.

ii) Also, the capacity of the gamma law with two parameters to adapt (flexibly)
to the Bayesian natural process.

Bearing this in mind, let:

( )
( )0 1 1

Exp
g

α

α

λ λ
β

λ
β α+

⎛ ⎞
− ×⎜ ⎟
⎝ ⎠=
×Γ +

[3.68]

where ( )1αΓ + is the incomplete gamma function (see Chapter 1) for (α + 1) of the
variable under analysis (e.g. the crack size, etc.). Our ruin process is inherent to a
power law (exponential). Indeed, in fracture mechanics by fatigue (cracking) the
crack size is born (microscopic) well before the moment “0”. It progressively
propagates according to a Paris–Erdogan-type law. In relation to this hypothesis of
exponential law, let:

expf λττ λ
λ

−⎛ ⎞ = ×⎜ ⎟
⎝ ⎠

[3.69]

It can be clearly seen that the failure rate (λ) is intrinsic to the component under
analysis (calculation). Unconditional distribution at the moment of breakdown,
relative to the total structure, is therefore written as:
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( )
{ }

( )1
0 1

Exp Exp
f d

α

α

λλ λτ λ
β

τ λ
β α

∞

+

⎧ ⎫
× − × − ×⎨ ⎬

⎩ ⎭=
×Γ +∫ [3.70]

Integration by part leads to the following:

( ) ( )
( ) 2

1

1 .
f α

α β
τ

β τ +

⎛ ⎞+ ×
⎜ ⎟=
⎜ ⎟+⎝ ⎠

[3.71]

We have already represented instantaneous reliability by R(τ) which is written as
follows:

( ) ( ) ( )
( ) ( )

1

2
0

1 11
1 .1 .

R f u du du
u

ατ

α
τ

α β
τ

β τβ

+∞

+

⎛ ⎞+ ×
= − = = ⎜ ⎟⎜ ⎟++ ⎝ ⎠

∫ ∫ [3.72]

By ( )τΨ we designate an unconditional failure rate at time (τ):

( ) ( )
( )
f
R
τ

τ
τ

Ψ =

and the combination of [3.71] and [3.72] obtains:

( ) ( )1
. 1

β α
τ

β τ
× +⎛ ⎞

Ψ = ⎜ ⎟
+⎝ ⎠

[3.73]

Here is the proof of the hyperbolic plot, based on our calculations:

Figure 3.19. Unconditional failure rate at the moment (τ)
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The previous expression shows that from a Bayesian point of view, on an
a priori law of a gamma type, the unconditional failure rate decreases with the time
the structure serves. This expression is valid in the limit of the useful lifetime of
the component. It is worth underscoring that the plotted curve, in Figure 3.19, on the
phenomenon of aging (not the subject of our present study) must be distinguished.

The resistance to stress (stress of 150 MPa = constant in our case) [GRO 94,
GRO 98], is represented by ri(j). Considering aging would impose a corrected and
general model for each t of the unconditional failure rate, which is written according
to literature [RIN 81] as follows:

( ) ( ) .1
exp

. 1
γ τβ α

ψ τ
β τ
× +⎛ ⎞

= ×⎜ ⎟
+⎝ ⎠

[3.74]

It is clear that the distribution of the failure rates of components still in service at
time (τ) takes the following form:

( )

( )

( )

( )

1

0
1

.
0

0

expexp g
g

g exp d exp d

λ
λ τ

β αβ

λ τλ τ β α

τ

λλλ
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λ λ λ λ

⎛ ⎞
− +⎜ ⎟−
⎝ ⎠

∞ ⎛ ⎞∞ − +⎜ ⎟−
⎝ ⎠

××⎛ ⎞ = =⎜ ⎟
⎝ ⎠

× ×∫ ∫
[3.75]

It is not difficult to see that the law is a gamma type of scale parameter (α′) of
position and (β′) (see Chapter 1, Volume 1).

'
'

1 1andα α τ
β β

⎧ ⎫⎛ ⎞
= + =⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
[3.76]

Therefore, the average of the new distribution represents the failure rate at the
moment (τ) and is therefore written as follows:

( ) ( ){ } ( ) ( )0' ' ' 1
1

. 1 . 1
m

m
β α α

λ β α
β τ β τ
× +⎛ ⎞ ⎛ ⎞

= × + = =⎜ ⎟ ⎜ ⎟
+ +⎝ ⎠ ⎝ ⎠

[3.77]

m0(λ) is nothing but the average of initial distribution g0(λ), which has already
been explained. To the left of the distribution g0(λ/τ), related to time (τ) is “valued”
– even quantified – by the quantity (β · t + 1). The latter represents the relationship
between g0(λ/τ) and g0(λ). We will now try to understand where a certain standard
deviation will be situated. Gradually, the service of the structure (component) moves
away from a cetain quantity, represented by the standard deviation σ′(λ) of the
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distribution at time (τ). We will therefore write the expression of this deviation
quantity (standard deviation) as:

( ) { } ( ) ( )'
' ' 1

. 1
σ λβσ λ β α σ λ

β β τ
⎛ ⎞

= × + = = ⎜ ⎟
+⎝ ⎠

[3.78]

Therefore, σ(λ) is the standard deviation of the distribution at time g(λ/τ)
characterized by this quantity (βxt + 1) as has been previously explained.

DISCUSSION.– It has been shown that the Bayesian approach relative to the
failure rate of components influences the shape of the famous “bath curve”, which is
hardly an unchanging point. The term “bath curve” should not, in our opinion, be
guaranteed owing to the horizontality (light slope) of the zone in the middle where
the majority of components and structures remain.

Digital application: We simulated an application with the data from table τi,
which were made to correspond to the instantaneous failure rates (this was a simple
simulation and not an experimental result). We then plotted the straight line
evolution of 510ˆ1 hoursλ⎛ ⎞

⎜ ⎟
⎝ ⎠

× .

The medium time is calculated by 1 2 2mτ τ τ= + and the inverse of the estimator
of the instantaneous failure rate as follows:

1 2 1 ˆ
ˆ

2 1

n ChenceC n

τ τ
λ

τ τλ

⎛ ⎞⎜ ⎟
⎝ ⎠

⎛ ⎞⎜ ⎟
⎝ ⎠

× −
= → =

× −

where:

C is the number of failing components;

N is the number of surviving components.

From expression [3.73] the inverse of the unconditional breakdown rate is as
follows:

( ) ( ) ( ) ( )1 1 ....
1 1

τ ψ τ
ψ τ α β α

⎛ ⎞ ⎛ ⎞
= + → =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ × +⎝ ⎠ ⎝ ⎠

( ) ( ) ...... ;At time xhours xh At time yhours yhh hτ ψ τ ψ= → = = → = , etc.
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This brings us back to reading the expression of an increasing linear straight line
as a function of time with an ordinate at the origin (a) and as a slope (b).

( ) ( )
1 1;

1 1
a b

β α α
⎧ ⎫⎪ ⎪= =⎨ ⎬

× + +⎪ ⎪⎩ ⎭
[3.79]

Experimentally, the coordinate (a) and the slope (b), in an aging test for
components and structures, would allow us to write the respective estimators a and b
as follows:

1 ˆˆ ;b b
b a

α β−⎧ ⎫= =⎨ ⎬
⎩ ⎭

[3.80]

This allows us to plot the straight line of the following figure:

Figure 3.20. Evolution of the inverse failure rate as a function of time

The obtained straight line must be adjusted, at best with experimental points,
with the help of the regression method (least squares, see Chapter 2, Volume 1).

COMMENT.– We have not included an experiment in this section. This allowed us to
comment in more depth on the straight line from the simulation. The latter seemed
amply sufficient to support this chapter.

3.12. Conclusion

Throughout this chapter it has been pointed out that the Bayes method is an
excellent approach for evaluating the risk probabilities of materials and structures. It
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is a method “without temporal memory” and can be applied well to the moment the
event (failure) occurs, without necessarily referring to what happened earleir.

Of course, it is worth being vigilant with repect to the application of the Bayes
method in all continuum mechanics cases, including “memory” which has an
unavoidable effect on the fracture process.
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Chapter 4

Elements of Analysis for the Reliability
of Components by Markov Chains

4.1. Introduction

The methods of studying random processes examined in the previous chapters of
fracture mechanics by fatigue and the probabilization of mechanical assemblies
[GRO 94] requires knowledge of at least the first moment of the random function
first order reliability method (FORM) and in some cases even the second moment
second order reliability method (SORM). Random function theory only considers
the two first moments of values with a random function, specifically the depth of
initial cracks (a0), known as correlation theory. Unfortunately, practical problems are
far from agreeing on a solution by simple correlation theory.

For example, in the analysis of crack propagation, the problem of determining
probability so that the value of the random function oversteps the given limits often
arises. To this end, we used a statistical approach through Weibull’s law with two
parameters (β and η). It can, therefore, be understood that correlation theory allows
us to obtain the probability characteristics of the differential equation solution with
separable variables, that is to say, Paris–Erdogan’s behavior law. On the other hand,
correlation theory would not allow us to resolve the problem caused by crack
modeling, because the Paris–Erdogan behavior law is a nonlinear differential
equation. The solution to this equation can be obtained through Markov processes,
which are characterized completely and solely by the knowledge of two-dimensional
distribution laws (see Chapter 5).
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In the theory of Markov processes, it is assumed that the distribution law of
the ordinate of the process at any future instant Ti (or even at the number of cycles
Ni cyles) depends solely on the value of the ordinate at the instant Ti−1 (or even Ni−1
cyles) and not on function values from the past. In other words, the additional
knowledge of random function values for T < Ti−1 (or even (N < Ni−1 cyles) does not
modify the distribution characters of the ordinates of the function for T ≥ Ti (or even
N ≥ Ni−1 cycles). Physically, this specificity of Markovian random processes is
equivalent to processes without consequences. By this, we mean consequences
which do not depend on previous history. For this reason, they are known as
“memoryless processes”. For Markov processes, any multidimensional distribution
law can be expressed from a bi-dimensional law (see Chapter 5, Monte-Carlo (MC)
double integral) as used by some authors [MAD 86, 87].

Ultimately, initial crack modeling (a0) by the theory of Markov chains was
proposed and applied by certain authors, such as Kozin [KOZ 83] and Bogdanov
and Kozin [BOG 85].

4.2. Applying Markov chains to a fatigue model

In fracture mechanics by fatigue, modeling the crack size is sometimes analyzed
by the Markov chain process on discrete values. The discretization of the random
parameters of the process (a0) or even X(τ) cannot occur in a Markovian space,
unless there was a relation [4.1] between the conditional probability of formalized
functions as follows:

{ } { }0 , is analogical to ,n n
a af a m X
T T

τ⎛ ⎞ ⎛ ⎞= = Τ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

[4.1]

Expression [4.1] is in fact presented as follows:

1 1 0 0 1
1 1

, , ,..., ; , , ,n n
n n n n

n n
X X X X

X X
τ τ

τ τ τ− −
− −

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪Τ = Τ⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

[4.2]

with 1 1 0...n nτ τ τ τ−; ; ; ; analogical to 1 1 0,...n n final cracka a a a−; ; ; ;

Expression [4.2] is an equation of probability states for a random process where
X(τ) (or even X(a)) takes value Xn at time τn, provided that the sum of the values at
time τn is known and depends solely on recent values X(τ) = Xn−1 at time τ = τn−1.
This relation is therefore written because of the term OSM, or the “One Step



Reliability of Components by Markov Chains 143

Memory” of the random process, where it is clear that the Markov chain process
does not have a memory.

The conditional probability function appears on the right-hand side terms of
relation [4.2]. It is known by the transition of the probability function Pτ in the
Markov process X(τ). The latter is discrete and entirely defined in a probability
space by the first probability function T(X, τ) and the probability transition function
Tτ. Consequently, the discrete vector of the Markov process is X(τ). It takes the
following form:

( ) ( ) ( ) ( ) ( )1 2 3, , ,...,
T

nX X X X Xτ τ τ τ τ⎡ ⎤= ⎣ ⎦ [4.3]

This relation is defined by the initial probability vector T(X, τ0) and by its matrix
of transition probabilities Tτ.

The stochastic Markovian process for the depth of cracks (a0) due to fatigue will
only be used if the independence condition of the amplitude of the applied load (Δσ)
is ensured with no effects on the history or the memory of the mechanical
phenomenon of fracture mechanics by fatigue.

COMMENT.– In this work, the method of Markov processes will be developed on
teaching grounds. It has not been proven that load amplitude is exempt from the
dependence of the initial crack (see Chapter 7). All we can do is suppose this
exemption from independence. In any case, it seems plausible because the load
starts its physical effect as soon as the stresses start to act, that is, at time τ1 where
history starts (load recording). If and only if this assumption became physically true,
would it also become true in the stochastic sense. Ultimately, we could proceed to
probability modeling to estimate the probability of ruin, at the safety index or at a
margin of this “reputed” safety.

If history, in the Markovian meaning of the term (load memory), suggests some
influence and if we were to apply Markov theory to these events, it could be
assumed that the first condition, as expressed above, takes on independent
probabilities.

Given the “veracity” of the applicability of Markovian theory for initial cracks a0
and the various supporting statements from Hohenbichler et al. [HOH 81], as well as
Schuëller et al. [SCH 85, SCH 87], we can consider an approach where the crack
length vector is discretized in (b + 1) intervals ai, where the states of the crack
lengths are taken into consideration. The a0 express the crack lengths of the states of
fracture (ruin). Beyond these load limits, the average initial crack is equal to or
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larger than a crack supposed to be initial. For example, let us suppose [GRO 94,
GRO 98] an initial crack a0, when initiated smaller than ~0.1 mm. By using these
experimental data [LAS 92], we could demonstrate that they started at ~0.0019 mm,
on a welded cross-structure by four distinct methods of welding, under a load
Δσ = 150 MPa. The transition probabilities are expressed by the following matrix Tτ:

0,0 0,1 0,

1,1 1,

1,

0
... ... ...
0 0
0 0 1

T T T
T T

T
T

β

β

τ

β β−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

[4.4]

Here the transition probabilities Ti, κ of the state κ are defined by the following:

( ) ( ) ( ) ( ), ,
1

1 = = with 1i i i i
j i

aT T a a T
a

κ
κ

κ κτ τ τ
τ =

⎡ ⎤= + =⎣ ⎦ ∑ [4.5]

which is also written in the following analogical form:

( ),
1 1Probability
2 2i iT i a i aκ τ κ ζ κ

⎧ ⎫⎛ ⎞ ⎛ ⎞= − − Δ − + Δ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

≺ ≺ [4.6]

where ζi is an increment in the crack due to the load event induced by the ith level.
To simplify the index ζi, expression [4.7] has deliberately been omitted:
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1
2

,
1
2

i a

i

i a

T f d
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⎛ ⎞− + Δ⎜ ⎟
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⎝ ⎠

= ∫ [4.7]

The increment ( )iζ is random. It is framed by the limits in relation [4.6]. It is
determined by using the Paris–Erdogan type behavior law which is, in turn, based on
random parameters. The discrete distribution of crack lengths after (j) ith load event
(Δσ) = constant, for which the probability in state κ = 1, 2, 3, …, β) and at the jth
event, we propose the following expression which uses vectors:

( ) ( ) ( ) ( ) ( ), 1 2 3, , ...,
T

iT T j T j T j T jκ βτ ⎡ ⎤= ⎣ ⎦ [4.8]
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This corresponds, in Markov theory, to homogeneous chains which are expressed
by the following relation:

( ) ( ) ( ){ }0 ,T j T T jτ τ= [4.9]

where T(0) is a discrete distribution of the crack length of level 0 and and Pj will be
the jth row of the matrix of transition probabilities. For a more detailed
understanding of the theoretical expressions of statistical characteristics (average,
variance, standard deviation, etc.), resulting from a Markovian analysis of the
welded cross-structure, we will refer to the results presented by Professor Lassen in
his scientific report [LAS 92]. Moreover, for comparison we can also use the direct
calculations of the crack lengths by the following simple relation:

( ) ( )0
1

+
j

i

a j a iζ
=

= ∑ [4.10]

where the length of the initial crack, the random increment ζ(i), and the results of the
(j) crack lengths after the j load event are random. Expression [4.10] will follow a
normal distribution (Gaussian) – or we assume so, at least, the explanation given by
MC simulation – because the analytical solution versus the Markov chains process
turns out to be quite difficult and even, we would say, unreliable. For this reason
prioritizing MC simulation is advised.

Finally, let us mention the case of a corrosive environment [API 87, CSA 11,
DNV 99] where it becomes necessary to correct the intrinsic factor of the material,
specifically C. According to calculation codes, we propose the following expression
which takes into account corrosion (offshore) in the Paris-type behavior law.

0
0

0 0

*1C ; 6.5

am
a

corrosion a a

da C K With C and m
dN

C C and m a m

ξ ξ

ξ λ
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⎪ ⎪
⎨ ⎬

⎛ ⎞⎪ ⎪= × = + =⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

[4.11]

where a* is invariable, but the average ma0 will be reduced from 12.5 to 6.5 mm
according to current codes [API 87, CSA 11, DNV 99].

4.3. Case study with the help of Markov chains for a fatigue model

Let there be a physical system of n possible states. At any moment, the system
would find itself in one and only one of its n states. Also, during the κth period of a
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period of observations, the probability that the system is in a particular state depends
solely on its status at the period (κ − 1). It is the typical system of a Markov chain,
sometimes called a Markovian process. We will present an example to aid
understanding of this important process in random cracking.

4.3.1. Position of the problem

Let there be a mechanical structure with three ramifications, as schematized in
Figure 4.1, stressed, respectively, at 30%, 30%, and 40%, where α, β, and η are the
central, right, and left elements, respectively

Figure 4.1. Triply loaded structure (α, β, η)

– The central element (α) is stressed at 30%.

– The element on the right (β) is stressed at 30%.

– The element on the left (η) is stressed at 40%.

In turn, according to the purely random direction of the wind and/or the waves
(on an offshore structure), the following was observed:

a) recordings of loads at the center of the structure, that is α, → 30% propagates
to the right (β) and 40% to the left, that is η.

b) recordings of loads to the right of the structure, that is β,→ 40% propagates to
the center (α) and 40% to the right (the same branch), that is β, and 20% end up
under the load of the left branch, that is (η).

c) recordings of loads to the left of the structure, that is η,→ 50% propagates to
the center (α) and 20% to the left (the same branch), that is η, and 30% end up under
the load of the right branch, that is β.

α central
element,
stressed at 30%

η element on
the left,
stressed
at 40%

β element on
the right,
stressed at 30%

Mechanical structure
with triple ramification
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We installed catchment gauges (recordings) of the stresses to be able to finally
state the following: The load “slides” toward the branch next to it (taking into
account the resistance of the material at all levels). Therefore, the stress at moment
(τ) is solely dependent on its previous location. On this specific basis of observation,
we write the transition matrix of the system, represented by M = M(τ). This matrix
models the instantaneous position of the Markovian process of our case structure,
which is prone to cracking.

Previously, a state was represented by a specific random load in the structure
system at time (τ). The arrival εji of matrix M below represents the transition
probability of the state corresponding to i at the state corresponding to j. For
example, the state corresponding to β = 2 and at η = 3.

For simplicity, we will start from the plausible “fact” that the time taken to reach
a critical stress (acceptable stress) for each branch is 15 min from one branch to
another. According to the accumulated observations in the “year 101 of solitude”,
the stresses were initiated at branch α. Therefore, 30% of stresses are still at α
because it is the starting point (inking) of recordings by physical gauges. Then 30%
will be at β and 40% at η.

It is worth remembering that the structure being considered is trivial. The
singular probability of (even extremely transient) stress is one-to-one in the three
branches p = 1. This justifies our use of value (1) in each column of the transition
matrix as presented earlier. In the field of probability, each entry is 0 and 1
inclusively.

Question:What justifies the Markovian process in cracking?

Response: The known fact that the stress chain depends exclusively on the
current load, that is at moment (τ) and no other loads.

It is only in this case that the Markov chain is justified for use with cracking,
without which it is but pure “probability contortion” deprived of effective use. It is

← α

M

0.3

0.3

0.4

0.4

0.4

0.2

0.5

0.3

0.2

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= therefore M2
0.41

0.33

0.26

0.38

0.34

0.28

0.37

0.33

0.30

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

= ← β

← η
↑ ↑ ↑
α β η
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certain that the probability matrix will not change in the observation time of the
stress. For fracture mechanics this is true; however, it is worth emphasizing in
particular the extremely transient time of the observation of crack propagation. This
is also how we justify the use of recording gauges for the stresses in the branches.

a) An example of a sudden case is as follows: What would happen to the
probability of being at branch β if the stress was initiated at branch η after two
consecutive recordings?

b) How would we reach β? We can imagine, for example, a propagation from
η → η and then from η to β. Just as we can imagine a propagation from η to β and
then from β to β.

c) Can we also consider a propagation from η to α and then from α to β?

Let P(ηβ) = P(η → β) be the probability of the propagation of η toward β after a
duly recorded stress.

From the probability theory, we already know that if two (or more) independent
events occur simultaneously, probability multiples. The case of additions to
probabilities is reserved for distinct events occurring at the same time. In accordance
with what has previously been said, the probability of going from P(η → β) η → β
after two stresses is formulated as follows:

{ } { } { } { } { }P P P P Pη α α β η β η η η β× × × + × × × × × [4.12]

Digital application of probability:

{ } { } { } { } { } { }0.5 0.3 0.3 0.4 0.2 0.3 0.333× + × × × =

The result shows that if the stress (and hence the crack) is initiated at sector η
there is a 33% chance of ending at sector β after two recorded stresses. Let us see
what would give us another combination (pair): if the stress is initiated at sector β,
and what is the probability of being at β after two stresses? The probability of going
from sector β to sector β in two stresses is:

{ } { } { } { } { } { }P P P P P Pβ α α β β β β β β η η β× × × + × × × + × × × [4.13]

Digital application of probability:

{ } { } { } { } { } { }4 0.3 0.4 0.4 2 0.3 34.00× + × × × =
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We now know exactly where “the stresses momentarily end”. What will happen
after (σ = 5) five stresses? This is exactly where the Markovian process is extremely
useful.

4.3.2. Discussion

– The oriented stress [η → β] in accordance with two stresses is equivalent to the
product of two scalars (line 2 and column 3) of matrix M.

– Going from [β → β] in two stresses is the equivalent to considering the scalar
product of line 2 and of column 2 of matrix M.

– The product of matrix M by itself (M × M) = M2 allows us to obtain the same
responses as before after the two stresses.

It is demonstrated as follows:

The sum of the elements in each column is continually equal to 1. Each element
is therefore located between 0 and 1, inclusively. Moreover, it is this validation
condition of the process of a Markov chain. This matrix indicates the probabilities of
going from place i to place j in two stresses. Once you know the constitution of the
base matrix, it is simple to know the value of crack propagation (a0) after three
stresses. Let p(αβ) be the probability of going from [α → β] in two stresses.

We will therefore find the probability of going from [η → β] in three stresses:

{ } { } { } { } { } { }P P P P P Pη α α β η β β β η η η β× × × + × × × + × × × [4.14]

Digital application: { } { } { } { } { } { }37 0.3 33 0.4 3 0.3 333.0× + × × × =

4.3.3. Explanatory information

This probability is the scalar product of line 2 of M2 and of column 3 of M. If we
multiply the matrix vector M2 by M, we will obtain the probability matrix for the
three stresses as follows:

← α

M2
0.410

0.330

0.260

0.380

0.340

0.280

0.370

0.330

0.300

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

= ← β

← η
↑ ↑ ↑
α β η
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Subsequently, we know exactly how to proceed with the matrix of probabilities
for four or more parts (according to the mechanical structure under stress). Let us
remember that the elements on each column are always added at 1. It is, however,
important not to round off numbers. Maintaining accuracy and using as many
decimal places as possible is strongly recommended. Here is the rest of the Markov
process approach, applied to structures subjected to random stress.

First M4 and M5

Then M6 and M7

etc.

The more the branches are stressed, the more the numbers in each line seem to
converge toward a particular number. In the long term, this means that after a high

← α

M3
0.385

0.333

0.282

0.39

0.334

0.276

0.393

0.333

0.274

⎛
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⎝
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⎟
⎟
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← η
↑ ↑ ↑
α β η

← α ← α
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0.3333

0.2770

0.3886

0.3334
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0.3333

0.2786

⎛
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← η ← η
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0.388878
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0.333333

0.277810
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⎟
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= ← β M7
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0.3333334
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0.3333333
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← η ← η
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← α

M15
0.3888889

0.3333333

0.2777778

0.3888889

0.3333333

0.2777778

0.3888889

0.3333333

0.2777778
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number of stresses, no importance is directed at where the structure was initiated. In
terms of recordings (period to be defined by reliability maintenance) we have a
38.88% chance of being at sector α, a 33.33% chance of being at sector β and a
27.7% chance of being at sector η. Often this convergence occurs in the majority of
transition matrices considered. If all the arrivals of the transition matrix are between
0 and 1, exclusively, then convergence is guaranteed. Convergence can occur when 0
and 1 are in the transition matrix.

Let us now consider matrix [α] as:

0 1
1 0

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Matrix [α] can be written as Aκ. Let us look closely at why κ in the matrix [α]
oscillates with the increase of κ. The vector represented below by [τ0] of the initial
distributions (stresses) indicates the fraction (ratio) of stresses that are initiated in
each sector. If we start with a uniform distribution, one-third of our stresses in each
sector will be represented by [τ0], such as:

0

1 3
1 3
1 3

τ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

[τ0] is the vector of initial distributions. After one stress, the distribution will be
40% of the total stresses in region α, 33.33% in β, and 26.6% in region η. By
multiplying the initial distributions matrix by the transition matrix, we find vector
[τ1]:

1

0.3 0.3 0.4 0.5 0.360
0.3 0.3 0.4 0.3 0.300
0.3 0.4 0.2 0.2 0.240

τ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

[4.15]

During the middle of the month, the fractions converge into some specific
numbers, meaning that the starting sector is no longer important. After numerous
stresses, the same right-hand side will be the same regardless of the initial
distribution, from which the first stress is initiated. For example:

0.38 0.38 0.38 0.3 0.34 0.38 0.38 0.38 0.2 0.38
0.33 0.33 0.33 0.3 0.30 0.33 0.33 0.33 0.2 0.33
0.27 0.27 0.27 0.3 0.24 0.27 0.27 0.27 0.6 0.27

and× = × =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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After observing these results, it can be seen that the right-hand side is identical to
one of the lines of our transition matrix after numerous stresses. This is exactly what
we predicted in our hypotheses, that is to say that 38.8% of stresses will be in sector
α after numerous stresses, without consideration for the percentage of stresses which
were in sector α according to initial distribution.

We show in the following how this fact can be verified with numerous initial
distributions of Ncyles or even a0. If initial distribution indicates the real number of
items (branches) in the system, the following equation represents our system after a
recording (with onsite gauges):

0.3 0.4 0.5 18 21.60
0.3 0.4 0.3 18 18.00
0.4 0.2 0.2 18 14.40

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟× =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.

We now have a rational number of components in sectors α and η after a stress
(we rounded off the responses). We know that this cannot occur, but it gives us a
good idea of approximately how many cases of stresses will happen in each sector
(branches of the welded cross-structure). After numerous stresses, the right-hand
side of this identity will also be very close to a specific vector, as proven by the
following:

0.38 0.38 0.38 18 20.52 21
0.33 0.33 0.33 18 17.82 18
0.27 0.27 0.27 18 14.58 15

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.

The specific vector toward which the product converges is the total number of
items in the system (54 in this case) multiplied by any column of matrix Aκ toward
which the matrix converges as κ increases.

0.38 20.52 21
54 0.33 17.82 18

0.27 14.58 15

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟× = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.

This was an explicit case of the Markov chain process. However, it is always
worth explaining in detail the application of Markov chains to the phenomenon of
cracking. Referring simply to Markov chains is not enough and the applicability of
this theory to fracture mechanics by fatigue must be monitored. The general
concepts of Markov chains are as follows.
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For a Markov chain with n states, the state vector is a vector, the column of which
the ith component represents the probability of the system in this state i at time τ.
The sum of all inputs to a state vector is 1. For example, vectors T0 and T1 in the
following example are state vectors. If pij is the transition probability from state j to
state i, then matrix T = [pij] and is called the transition matrix of the Markov chain.

The following theorem gives the relation between two consecutive state vectors:

If Xn+1 and Xn are two consecutive state vectors of a Markov chain with a
transition matrix T, then Xn+1= T.Xn.

For a Markov chain, we are usually perplexed by the long-term behavior of a
general state vector Xn. In other words, we would like to find the limit of Xn when
n → ∞. It is possible that this limit does not exist. For example:

Let the matrix
0 1
1 0

a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

and the matrix vector 0
1
0

X
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,

therefore
1 0 2 1 3 2

4 3 5 4 6 5

0 1 0
; ;

1 0 1

1 0 1
; ;

0 1 0

X a X X a X X a X

X a X X a X X a X

= × = = × = = × =

= × = = × = = × =

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪
⎨ ⎬

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

, etc.

Vector Xn oscillates between vectors [0.1] and [1.0] and therefore does not
approach a fixed vector. The question therefore is: what makes a vector Xn approach
a limited vector when n → ∞. The following theorem will answer this question.
A transition matrix T is regular if the inputs of the matrix Tr are positive for a given
whole number (0 is not considered positive). For example, matrix:

0.5 0.5 0.0
0.5 0.0 1.0
0.0 0.5 0.0

ρ =
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

is regular because of the fact that 5
0.4375 0.3125 0.5000
0.3125 0.6250 0.1250
0.2500 0.0625 0.3750

ρ =
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

From the literature, we know that a Markov chain process is called regular if its
transition matrix is regular. The main theorem of the Markov chains theory is as
follows:

– If T is a regular transition matrix, then if n tends toward infinity, Tn → ρ,
where ρ is a matrix of the form [v, v,…,v] with v as a constant vector.
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– If T is a regular transition matrix of a Markov chain process and if X is any
state vector, then if n tends toward infinity, Tn.X → p, where p is a fixed probability
vector (the sum of its arrivals is 1) with all inputs being positive.

Let us consider a Markov chain with a regular transition matrix T, and let ρ be
the limit of Tn when n approaches infinity, therefore Tn.X → ρ · X = p and the system
tends toward a fixed state vector p, known as the balanced vector of the system.
Since Tn+1 = T.Tn and Tn+ and Tn approach ρ we have (ρ) =T · (ρ). Any column of
this equation of matrixes gives T ·p = p. Therefore, the balanced vector of a regular
Markov chain with a transition matrix T is the only probability vector p satisfying
Tp = p.

Is there a way of calculating the balanced vector of a regular Markov chain
without using the notion of limit? Here is a popularized approach?

Let there be a squared matrix (ξ). Let λ be an eigenvalue of ξ if there is a vector
≠ [0, X] satisfying [ξxX] = [λxX].

Therefore, we say that X is an eigenvalue of ξ corresponding to the eigenvalue λ.
It is now clear that a balanced vector of a regular Markov chain is an eigenvalue for
the transition matrix corresponding to the eigenvalue 1. The eigenvalues of an ξ
matrix are the solutions to the equation { }det 0A Iλ− × = , where I is the identity
matrix which is the same size as ξ. If λ is an eigenvalue of C, then an eigenvalue
corresponding to λ is a solution of the homogeneous system, { } 0I Xξ λ− × × = .
Consequently, there is an infinite number of eigenvalues corresponding to a
particular eigenvalue.

4.3.4. Directed Works

Let us suppose that there is an offshore platform whose structure is constituted of
a welded cross-assembly. A series of observations (support contact gauges) in open
sea, demonstrated that it is practically impossible:

1) To have two consecutive weeks when the waves (or the winds) do not move in
the same direction.

2) If the sea is calm, there is the same probability of having a rough sea the
following week.

3) If the sea is rough or the winds strong, there is an equal chance of having the
same probability the week after the storm.

4) There is a change of storm or icy winds only half of the time where we
witness a lull at open sea.
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4.3.5. Approach for solving the problem

1) Writing the transition matrix which models this system.

2) If it is not windy (calm, good weather), what is the probability that 3) the sea
will be calm in a week?

3) To understand the behavior of the weather in the long term in open sea.

Solution 1: Since tomorrow’s weather depends solely on today’s, it is a Markov
process. The transition matrix of this system is written as follows:

C, W, S indicates that in open sea it is C = calm→W = windy→ S = stormy.

Solution 2: If the weather is good today, then the initial state vector ξ is written
as follows:

1
0
0

C calm
V Windy
T Stormy

ξ
← =

= ← =
← =

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

After seven days (a week) for n = 7, the state vector Y will be:

← C

Υ

0

0.5

0.5

0.25

0.5

0.25

0.25

0.25

0.5

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= ← V

← T

↑ ↑ ↑
C V T

n 7:=
← C

Υ

0

0.5

0.5

0.25

0.5

0.25

0.25

0.25

0.5

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= ← V ξ

1

0

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= Π Υ
n
ξ⋅:= therefore Π

0.1999512

0.4000244

0.4000244

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=

← T

↑ ↑ ↑
C V T

← C

For U

0.1999511

0.4000244

0.4000244

0.2000122

0.4000244

0.3999633

0.2000122

0.3999633

0.4000244

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= ← V We will have the
following:

← T
↑ ↑ ↑
C V T
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Therefore, there is a 20% chance of having one calm day a week.

Solution 3: We are dealing with a regular Markov chain since the transition
matrix is regular. We are therefore sure that the balanced vector exists. To find it, we
will resolve the homogeneous system [T − I]xX = 0 of coefficients:

1 0.25 0.25
0.5 0.5 0.5
0.5 0.5 0.5

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

of a reduced row echelon form:

11 0 2
0 1 1
0 0 0

⎛ ⎞−
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎝ ⎠

The general solution of system { } 0T I X− × = is
0.5

with
τ

τ τ
τ

⎛ ⎞
⎜ ⎟ ∈ℜ⎜ ⎟
⎜ ⎟
⎝ ⎠

4.3.6.Which solution should we choose?

A balanced vector is specifically a probability vector that is to say that the sum
of its components is 1. We can therefore understand that [0.5τ + τ + τ] = 1 which
gives τ = 4/10. Therefore, the balanced vector is written as follows:

0.2
0.4
0.4

p
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

In the long term, there is a 20% probability of the day being calm, 40% of it
being windy, and 40% of there being a storm.

The above example does not resolve the problem of crack propagation of the
welded cross-structure. Rathers it provides information about the natural climate
out in open sea. Moreover, it does not provide information about the direction of the
waves or the winds. No theory, however imaginative, proposes “stopped” solutions
over time. The safety of the structures shows the effects of it. In our opinion, the
theory of Markov chains is a good tool, but it is unsatisfactory for obtaining credible

Knowing ξ

1

0

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= and Χ Un ξ⋅:= therefore Χ

0.1999999

0.3999997

0.3999997

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

=



Reliability of Components by Markov Chains 157

statistics in continuum mechanics. That said, these statistics are, without a shadow
of a doubt, useful for compiling a database.

4.4. Conclusion

There is reason to state that the theory of Markov chains is questionable in terms
of studying the reliability of a singular structure on memoryless parameters.
Nevertheless, the probability approach by the Markov chains process is recommended
for structures assembled in series and/or in parallel. Certainly, this approach has
relatively few applications in comparison to the method of determining using
Ditlevsen’s bounds, classic MC simulation, or other integral methods. It is worth
remembering that correlation theory does not allow us to obtain solutions to the
problem, which were posed by the Paris–Erdogan-type cracking law. Being non-
linear, the latter’s solution can be obtained by, among others, Markov chain
processes which are solely characterized by the knowledge of the two-dimensional
distribution laws. Therefore, we advocate the use of the classic MC simulation
method even though it is costly in terms of time spent calculating.
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Chapter 5

Reliability Indices

5.1. Introduction

In recent years, models for the theory of probability and applied statistics have
been characterized by a sharp development. The scope for studying the predictions
or replacements of traditional safety coefficients is detrimental toward both
calculation laws and the economics of the project. In terms of the approach to
fatigue by fracture mechanics, laboratory and construction practices create a whole
realm of problems for which the use of probability and statistical methods is proving
successful and even indispensable. The developments in the theory of probability
and of applied statistics, the abundance of new data, and some unforeseen
catastrophes have caused safety issues to be examined more closely, but at times
with an acute economical and technical concern. This has led to the abundant
introduction of reliability analysis methods.

Numerous research studies focus on probability mechanics with the aim of
predicting the behavior of components to establish a decision support system (expert
systems). This work exists as part of the criteria of fracture mechanics used to
predict, assess, analyze, and simulate the reliability of mechanical components. The
reliability of structural components is dependent on mathematics, which estimate the
probability of a component (structure) reaching a certain state of predictive failure.
This is carried out using the probability of resistant elements feature of a structure,
along with a load that is applied to it.

As opposed to the classical regulatory approach, a risk is estimated at the same
time as being aware that any rule, no matter how conservative, can never guarantee
perfect safety. Users of reliability techniques have to define the failure rate of a
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structure or a component. If in some cases this effectively corresponds to the
formation of a failure mechanism, for many components and structures, a failure
criterion will be adopted to a certain level of the so-called damage.

The important parameters, either the resistance (R) of the structure or the stresses
(S) that are applied to it, can no longer be uniquely defined in terms of nominal or
weighted values but instead in terms of unpredictable variables characterized by
their mathematical expectations, variances/co-variances, and laws of distribution.
The true estimation of the reliability of a structure (components) can only generally
be tackled with the help of a relatively simplified model. The analysis of this model
will be carried out with the help of mathematical algorithms, which often present
themselves as approximation techniques where rigorous calculation can sometimes
lead to a time-consuming process.

To evaluate weak failure probabilities of components, a standard technique is to
proceed with a random integration of probability density function on the area of
failure, i.e. via simulation techniques. The advantage of these techniques is that they
necessitate the location of an explicit form in the area of failure. The downside is the
weakness of the convergence speed, added to an increased cost in calculation time.
Numerous distribution laws have been used to simulate the reliability of components
and structures. These laws did not appear with reliability but instead with fundamental
research from various fields. We will now introduce a few of them.

Choosing a probability model in which the experimental data is appropriate to
the theoretical justifications imposed by the distribution law is not always easy.
Evidence for this is the exaggeration surrounding a Gauss law, which is incorporated
into nearly all theories. Distribution models for lifecycles are chosen according to:

– the physical factor of a failure mechanism which corresponds to a model of
lifecycle distribution;

– the model which has already successfully been used by a similar failure
mechanism;

– the model which ensures a theory/practice adequacy applicable to all failure
data.

Whatever the recommended method for choosing a significant probability
model, it is a good idea to justify it properly. For example, it would not be
appropriate to choose a model with a consistent failure rate by an exponential law,
as this law is more suited to breakdowns where the failure mechanism is accidental.
Some Galton (log-normal) and Weibull models are very flexible and accommodate
breakdown modes even for weak experimental data, particularly when they are
projected by means of acceleration models once used in conditions that are far
removed from the test data. These two models are incredibly useful in terms of
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preventing breakdown rates of differing magnitudes. This fact is unusual in directed
university research, which prefers to find some theoretical justification for using a
particular distribution.

Introducing reliability as an essential tool for the quality of a component starts at
the design stage. It is undeniable that reliability imposes itself as a discipline that
rigorously analyses weaknesses because it is based on experimental data. Because
reliability is tightly linked to quality, the laws of distribution that are used are often
the same or related. Intuition tells us that components are numerous and complex in
a mechanism (structures). Consequently, reliability calculations become less evident
because of, among other things, restricting hypotheses.

5.2. Design of material and structure reliability

Reliability does not just mean “quality”. These two distinct disciplines have
statistical–mathematical tools in common but lead to different conclusions.
Reliability serves to provide a safety (or reliability) index and quality serves to
provide capabilities (Cp, Cpk, Cm, and Cmk) which are in fact indicators of quality.
Both disciplines aid decision making. Reliability aims for the probability of smooth
functioning during a well-controlled given time (τ). In other words, it is an
attribution of agreed confidence in a component, a piece of equipment or a
mechanism to render the service succinctly composed in the specifications from the
onset. The word “confidence” is used because a failure or a weakness in this trust
could prove to be enormously substantial (airplanes, nuclear stations, etc.). This is
the principal reason that the reliability function is carried out from the beginnings of
the project’s conception, to:

– ensure feasibility in terms of reliability “contracts”;

– guide reliability objectives through various sub-systems;

– predict means of control and maintenance at the time of use;

– define (physical, economical) stresses so that the system is well adapted to its
clearly intended task, according to precise criteria.

In industrial automation, it is strongly advised to ensure an intrinsic reliability of
the designed mechanism. To do this, it is highly recommended to proceed during or
at the end of the manufacturing process with some reliability trials. Conceptual
studies cannot in general reproduce real functioning conditions. Simulation remains
the “weak laboratory” experience. It is also for this reason that simulation
techniques are often proposed in the literature as being technical and scientific. The
following diagram summarizes the principal tasks of components’ reliability.
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Figure 5.1. Diagram showing principal tasks of components’ reliability

5.2.1. Reliability of materials and structures

The sizing of structures is normally based on deterministic analyses. Loading,
and variability in physical properties of materials, uncertainties, and imperfections
of analysis models, to cite just a few factors, contribute differently, along with
making materials put up a resistance that is difficult to predict and makes it hard to
calculate with certainty. We have to reflect here on a defined probability as an
indicator of weakness in the case of a system or an operation of failure. In the past,
safety coefficients constituted a more or less “reassuring” response, but did not
completely erase the risk of failure. The introduction of safety coefficients is
expensive but does not always carry the best response. Sometimes it is even the
contrary that would occur if the load is strengthened even more. The duality of
load/geometry is an extremely particular compromise. Reliability is thus defined by
various calculations and is considered as the additional probability of fracture. It
constitutes a means of measuring the degree of safety at work.

As calculation models result from probability analyses, the reliability that
follows is therefore based on sensitivity analyses and uncertainties that affect
variables. Proposing a quantified measure by reliability stemming from different
calculation methods makes reliability a decisive factor of safety. An equally
important demand can also come from optimization. There are no methods exempt
from uncertainties and therefore not tainted with errors. Faced with the serious
problem of safety, numerous authors have proposed solutions for controlling
probability, through limits and acceptable thresholds. This led to a more or less
specific notion of threshold probability, to mark out certainty and thus to avoid
failure from subsistence probability.

In our modest opinion, it seems convincing to speak of threshold probability and
to generalize it to the whole structure. The structure is often complex and difficult,
not to say costly, to put into action if simplistic hypotheses for the distribution of
random variables are not carried out. It is in fact a constituent element from the
overlapping design, having a maximal admissible value of failure probability Pf.
From this assessment, we can pose the following questions:
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SECURITY INDICES

STRESS AND
PERFORMANCES

CONCEPTION
Reliability models

Optimization of
components and

structures

MANUFACTURING
QUALITY CONTROL

Capabilities Reliability tests

USE
Conditions of use

of components and
their

Maintenance



Reliability Indices 163

– In what reliability index, no matter how well calculated, is the representative of
an overlapping design ever singular?

– Is the issue of heterogeneity never managed by the variability of choice of
materials which obey other specification requirements?

– Is the systematic generalization of a model somewhat penalizing?

The probability approach remains significant for calibrating semi-probability
codes to determine partial safety coefficients so that the code ensures a target
reliability level with the maximum possible homogeneity. In Europe, the level of
threshold probability is akin to [10E−9 to 10E−6] in a deemed period. In Canada, the
code is controlled by principal rules, codes, and technical standards (see Table A.12
in the appendix). The necessity for a failure criteria being limit state criteria is
apparent. In the Eurocodes, probability is expressed by a reliability index of 3.8 for
the so-called ultimate limit states, valid for a service duration of 50 years. To do this,
it is agreed to take action on the following analysis process:

1) To succinctly establish a reliability objective.

2) To clearly identify the modes of failure.

3) To formulate a criterion of failure (limit state function).

4) To identify dominant random variables and parameters.

5) To specify the probability distributions (and their appropriate criteria).

6) To calculate the reliability (according to the failure mode).

7) To evaluate the sufficiency of the estimated reliability.

8) To put together necessary modifications (if necessary).

Reliability methods can be distinguished by the following distinct levels:

– Level I: corresponds to specific values (resistance/charge) where each random
variable is represented by its average value μ(τ).

– Level II: random variables are characterized by their average value μ(τ) and
their variance RV (τ).

– Level III: the distribution law is formulated to be linked to all random
variables. The aim is to obtain a reliability index and a breaking probability, and
thus the quantified measure of security.

– Level IV: a level of reliability is attributed in function with various economic
parameters from the revised specifications (costs of upkeep and repair, etc.).
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From experience, level I methods are dedicated to studying the reliability of
simple structures. Level II is valid for all reliability methods. The evaluation of the
reliability of offshore platforms is traditionally dedicated to level III. The methods in
level IV are normally employed for the analysis of very high design (Reliability
Assessment) where we can mention the Advanced Level II Method. In Chapter 8,
we have attached a study relevant to failure criteria from the point of view of
fracture mechanics. The modes of failure are mentioned from the perspective of
experimental mechanics. We have distinctly set a criterion which allows the
separation of the following two zones:

– security zone, S;

– failure zone, F.

These two zones define the analyzed element failure mode of the structure. This
could act as an applied stress, exceeding the so-called acceptable stress with
reference to the material: shift of a spire, etc. This is the same definition as a limit
state, as the failure mode expresses itself in terms of distance between a realization
of a mechanical state of the component and a realization of an ultimate state of
resistance (see mechanical liaisons, Resistance of Material, design, etc.).

Figure 5.2. Graph to show boundaries of failure and security

Usually the choice of failure mode allows us to establish the equation of the limit
state surface (or of failure) which is located in the boundary between the zone of
security (S) and the zone of failure (F) (see Figure 5.2 where the boundary limits can
be observed). At the same time, we express our modest opinion again on the
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FORM–SORM that we do not favor with regard to their limiting restrictions, which
can themselves be subject to caution.

5.3. First-order reliability method

This hypothesis is created so that the curves are negligible and the area of failure
can be linearized. The probability of failure is thus written as follows:

{ } ( )Y S β℘ = Φ −; [5.1]

The cost of this method, in the algorithmic sense, is entirely carried by the
research from design point u* (see Figure 5.2). Usually, other calculations do not
necessitate the additional evaluation of Pf.

5.4. Second-order reliability method

In design, the zone of failure is represented by a paraboloid. The calculation for
failure probability is thus more complex, and is limited to the result proposed by
K.W. Breitung’s method [BRE 84], whose algorithmic cost is relatively higher than
in the case of FORM approximation. It is therefore necessary to calculate the curves
κi, and thus the hessian of Pf into u*.We select a margin of security (M) for
designing the breaking criteria and thus propose:

{ } { }1 2 1 2, ,..., , ,...,n nM r s R z z z S z z z= − = − [5.2]

S(z) represents the stress (load) and R(z) the resistance opposed to this load.

1 2 3, , , ..., T
nz z z z z= ⎡ ⎤⎣ ⎦ represents the vector of random variables, thus describing

the element, its load, and its failure model. The margin of security (M) is considered
a random variable as well as resistance (R) and solicitation S(z). Conventionally,
M > 0 represents the structure in the zone of security. WhenM < 0, it is placed in the
zone of failure, and M = 0 corresponds to the set of realizations of z1 (for a null
margin) where the named surface is defined the limit state surface. For a formulation
of the failure surface, we can define a function g(z) as representing values taken by
the margin of security. This function is called the limit state function.
Conventionally, it verifies the following criteria:

1) g(z) > 0, which corresponds to the so-called zone of security (ZS).

2) g(z) < 0, which corresponds to the so-called zone of failure (ZF).

3) g(z) = 0, which corresponds to the zone of failure (limited) (ZL).
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The limit state function usually comes from a deterministic analysis. This leads
us to consider the reliability methods from level III, which provide an estimation of
the probability Pf (probability of failure). This shows that the structure is located in
the zone of failure and that it is time to act.

( ) { }1 2 1
( )

( ) 0 , ,..., ...f z n n
F

P P g z p z z z dz dz= ≤ = ∫ [5.3]

where pz (z) is the linked distribution law of random variables z1, z2, z3, …, zn.

As integration presents highly complex mathematics, we have to make do with
integration through Monte Carlo (MC) simulations. This moves the problem of
convergence toward a stable result (a little dispersed with the smallest confidence
interval). The reliability index is proposed in the literature to be a measure of
reliability. Once the reliability index is known, and in particular the most probable
point (ultra precise zone) of failure, the estimation of Pf by MC simulations becomes
more simple. The measure of reliability by a reliability index is largely held in the
structures’ relevant Eurocodes.

During the last two decades, “index mania” in the field of reliability has spread
widely in engineering schools: the Cornell index, the Hasofer–Lind index, the
Madsen integral indicator of damage, etc. The function g(z) plays a decisive role in
terms of risk. It is thus notably important that it possesses regularity properties in
terms of continuity and derivability. In fact, we are taking a rigorous mathematical
step, which makes us cautious when using algorithms. We present here two indices,
for educational purposes. We will not spend too much time on this subject, which
has already been dealt with in depth in works such as [MAD 86, DIT 86].

5.5. Cornell’s reliability index

Cornell’s reliability index is defined as the ratio between the average value E(M)
and the standard deviation ( )RV M , by the following equation:

( )
( )cornell

E M

RV M
β =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

[5.4]

In the one-dimensional case, the failure surface is represented by the point
M = 0. The idea expressed by this definition of the reliability index is that the
distance from the average value E(M) to the failure surface (expressed in number of
intervals) provides an acceptable measure of reliability. If the limit state function
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g(z) is linear, then E(M) and ( )RV M will be calculated in function with base
variable characteristics. In the case where g(z) is not linear, Cornell’s method
suggests approaching it by its Taylor series from 1 to the average point. This
evaluation of βcornell only demands the awareness of the first moments of the random
variables. Also, we can resort to the MC simulations for non-explicit forms of g(z).

To calculate E(M) and ( )RV M , an example of statistical application is as
follows.

Let a matrix of data (X, Y) be analyzed where (x-coordinates are the first column,
y-coordinates the second column):

1 1.25
2 1.65
3 1.55
4 1.25

Conventional statistics5 1.26
0 16 3.00 ;

7 3.25 ( ); 14
8 3.89 Standard deviatio
9 2.54
10 3.11
11 2.00
12 2.11
13 2.33
14 2.00

X data Y data
n rows data ndata
SD

〈 〉 〈 〉= =
= ==
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

( )

n

( )
1

n
SD X stdev x

n
= ×

−

Statistics X-coordinates Y-coordinates
Mean Mean (X) = 9.357 Mean (Y) = 2.228
Median Median (X) = 9.000 Median (Y) = 2.055
Standard deviation (SD) Standard deviation (X) = 5.930 Standard deviation

(Y) = 0.834
Variance RV Variance (X) = 35.17 Variance (Y) = 0.696

Regression statistics
Interception b0= intercept (X,Y) = 1.72
Slope b1= slope (X,Y) = 0.054
Correlation coefficient Con(X,Y) = 0.386
R2 Con(X,Y)2 = 0.149
Covariance CVAR(X,Y) = 0.774
Standard error Stdent(X,Y) = 0.801
Scale plotting r(x) = b0 + b1x

( )Scale max 1.1r x Y= − ×
JJJJJJJJJG
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Cornell’s reliability index (ββCornell) is calculated, in this case, as follows:

( ) ( ) ( ) ( ) ( )
( )

2
2 3.2cornell

mean Y
Let SD Y RV M and E M mean Y

SD Y
β= = → = =

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

Figure 5.3. Regression method (least squares)

5.6. Hasofer–Lind’s reliability index

The reliability index is based on a geometrical interpretation of βcornell. The
Hasofer–Lind index βHL represents the smallest distance (in the Euclidian sense)
from the origin to the failure surface in the space of normal, centered, reduced, and
independent variables (standard space). The corresponding point to βHL in the
standard space is the most probable point of failure, the so-called functioning point,
written as P* (see Figure 5.1). This is the point on the failure surface for which the
linked variables density is the highest.

min ( ) 0HL OP u with g uβ ∗= = = [5.5]

where u is the transformed vector of z in the change in space (passage of variables
from physical space to standard space). Let:

{ } { }1 2 1 2, ,..., , , ,...,T
n nz z z z u u u u= ⎯⎯→ = [5.6]

This transformation, according to Rosenblatt, is only linear for physically
Gaussian variables. In general, if Zi is the random base variable taking the value zi,
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and the distribution law Pzi, the random normal, centered, and reduced correspondent
Ui, taking the value ui, results in the following:

( ) ( ) ( ) ( )1
i zi i i i zi iu P z let u T z P z−Φ = = = Φ [5.7]

where Φ(·) is the distribution function of a Gaussian centered reduced variable. The
previous relation is thus only applicable when the variables Zi are independent. In
this case, the conditional distribution laws must be established, and the result of the
Rosenblatt transformation depends on the order in which the variables are
transformed. If, for example, X follows a normal law N(μz, σz) or even for a log-
normal distribution LN(μz, σz), the transformation is explicit and presents itself in
the following form:

ln( )
( ) ( )Lxz

z Lx

xzu Normal or u Galton
μμ

σ σ

⎧ ⎫⎛ ⎞⎛ ⎞ −−⎪ ⎪= = ⎜ ⎟⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

[5.8]

In fact, the Rosenblatt transformation carries a vector X of any law to a vector
U of the same dimension but with independent, Gaussian, centered, and reduced
components. This transformation takes place in the following two stages:

{ }

( )

1 11,..., 1

1

1 : ,...,

2 : =

i i ii i

i i

Stage z F X X X

Stage U Z

−−

−

⎧ ⎫=
⎪ ⎪
⎨ ⎬
⎪ ⎪Φ⎩ ⎭

[5.9]

– The first stage of this transformation is similar to the general sampling method,
where Zi are variables iid of law U ([0; 1]) and the function 1,..., 1Fi i− represents the

distribution function of variable ,...,1 1X X Xi i− .

– The second stage consists of a choice of an obligatory Gaussian variable as it is
the only spherical law for independent components.

The reliability indices βcornell and βHL meet when the failure surface is linear. In
the case of the failure surface not being linear, it will be (as already noted)
approached by Taylor’s theorem from 1 to the point P*.

It has been succinctly observed that the difficult part of reliability methods
consists of finding the functioning point, which is, in fact, the result of a
minimization procedure under stress. The Rackwitz–Fiessler [RAC 79] algorithm,
based on the projected gradient method, provides a simple response to this problem.
Leaving any point in the standard space, and being part of the failure surface, we can
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determine the following point u(k+1) by projecting the former at the end of the origin,
parallel to the gradient of the limit state function ( )g u∇ and directed toward the
zone of failure (see Figure 5.1). This projection is displaced with the aim of taking
into consideration the initial point situated outside the failure surface. By correctly
applying this algorithm, we can obtain a succession of points, defined in the
literature as follows:

{ } { } { }
{ }( )
{ }( ) { } { }

{ }( )
{ }( )1

T
g u g u

u u with
g u g u

κ κ
κ κ κ κ κ

κ κ

α α α+

⎛ ⎞ ⎛ ⎞∇⎜ ⎟ ⎜ ⎟
= + = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟∇ ∇
⎝ ⎠ ⎝ ⎠

[5.10]

The Rackwitz–Fiessler algorithm [RAC 79] takes into account the numerical
precision of the physical model for choosing a calculation increment used at the time
of estimating the partial derivatives of the limit state function (finite differences).
The procedure used in this algorithm allows us to correctly estimate gradient
vectors. It also allows us to economize limit state function calculations. In this book,
we do not see the worth in adding to an already expendable literature [RAC 79]. The
educational aim of this work is not to go into depth on these algorithms but instead
to explain their simple and appropriate use.

In addition, the advanced level II reliability methods can be applied when they
are known at the time, the distributions of base variables, and the limit state surface
g(z). The measure of reliability is given by probability on subsistence, thus the
expression:

{ } ( )
( )

1 2( ) 0 1 , ,...,s f z n n
S

P P g z P P z z z dz= = − = ∫; [5.11]

This integral cannot be calculated analytically. We find ourselves confronted by
the same methods as for level III. Hence, we favor the option of reliability indices to
be able to better approximate Pf. When the base variables follow a normal linked
distribution law, and the fracture surface is a hyperplane [g(z) linear], the breaking
probability can be calculated by the following simple equation:

( )f CornellP β= Φ − [5.12]

In the case where the failure surface is not a hyperplane as shown in Figure 5.1,
but the base variables are of normal law, we can often obtain a good approximation
of the failure probability with the help of the Hasofer–Lind reliability index βHL:
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( )f HLP β= Φ − [5.13]

This approximation brings us back to the previous case in approaching the
fracture surface, near the functioning point (or the most probable breaking point), by
a hyperplane. In practice, nothing can prove that the variables are normal or that the
failure surface is linear. However, the two previous cases have shown that we can
easily calculate the breaking probability from the respective reliability index.
Having determined the index βHL, we can linearize the failure surface to the
functioning point P* to obtain g(u) as follows:

( ) ( )
1

0
n

HL i i
i

g u L u uβ α
=

≈ = + =∑ [5.14]

The failure probability is thus given by the following FORM:

( ){ } ( )0f HLP P g u β= ≤ = Φ − [5.15]

5.7. Reliability of material and structure components

At a conceptual level, i.e. “calculations and design”, mathematics of reliability is
measured by the evaluation of probability so that the entity realizes its task, in the
given conditions, in a specified time. Hence, the reliability of a material at the time τ
is the probability that the non-negative random variable, X, representing the lifecycle
of the component, is greater than τ. We therefore suppose the expression of reliability
as follows:

{ } { } ( )( ) 1 1P X P x Fτ τ τ τℜ = = − ≤ = −; [5.16]

where F(·) is the cumulative distribution function known by the usual statistical
name of the probability distribution function. The conditional probability of
subsistence of a component or a system, beyond time τ, allows the definition of the
failure rate of this entity:

( )
( )( )

1
f dtd
F
τλ τ τ

τ
=

−
[5.17]

where f(·) is the probability density function of F(·). Reliability mathematically
stems from an integration technique, which links the two previous principal
functions of probability. Hence, let:
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( ){ }
0

1 ( )Log F x dx
τ

τ λ− = −∫ [5.18]

From [5.16], we can deduce the reliability function by:

{ } { } ( )
0

( ) 1 1 ( )P X P x F Exp x dx
τ

τ τ τ τ λ⎧ ⎫ℜ = = − ≤ = − = ⎨ ⎬
⎩ ⎭∫; [5.19]

In electrical components, the failure rate λ(τ) is consistent with time τ.
Expression [5.18] expresses an exponential function, hence the overuse of this law
in electronics, in automatism, and even in the mechanics of offshore structures
assembled in a series. The reliability thus reduces its expression to the following:

{ }( ) .Expτ λ τℜ = [5.20]

From [5.19] and the preceding equations, we can understand that the probability
of failure is proved random. Consequently, we cannot “establish” a precise
maintenance frequency. It is for this reason that we instead speak of the instantaneous
failure rate λ(τ) of a component. This rate can be understood between τ and τ + Δτ.
As at the time τ = 0 failure would not be an issue, we propose:

0

( ) ( ) ( ) 1 ( ) ( )( ) lim
( ) ( )

dF dLog f
d d dτ

τ τ τ τ τ τλ τ
τ τ τ τ τ τΔ →

⎛ ⎞ℜ −ℜ + Δ ℜ
= = = − =⎜ ⎟Δ ×ℜ ℜ⎝ ⎠

[5.21]

5.8. Reliability of systems in parallels and series

Assembly systems of irreparable materials are often grouped in parallels and
sometimes in series. When they are failing, their reliability laws in function with the
elementary material reliability are evaluated differently, depending on whether they
are redundant or sequential.

5.8.1. Parallel system

The probability of this failure system of components (Cn) at the time τ is
proportional to the probability of all the elements in the system breaking down at τ.
The reliability of the global system is written as follows:

( ) { }1 2 31 , , ,...,system nP C C C Cτ τ τ τ τℜ = − ≤ ≤ ≤ ≤ [5.22]
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For independent events, we propose the following:

{ }
1

( ) 1 1 ( )
n

system i
i

τ τ
=

ℜ = − −ℜ∏ [5.23]

The failures expressed by exponential distributions appear as follows:

( ) { }
1 1

( ) 1 1 1 1 .
n m

system i
i i

r Expτ λτ
= =

⎡ ⎤ℜ = − − = − − −⎣ ⎦∏ ∏ [5.24]

5.8.2. Parallel system (m/n)

Sometimes, an assembly allows the system to function even if at least m
materials among the n components are still functioning. The number of materials in
use thus follows a binomial law of parameters r and n, and the system’s reliability is
written as follows:

( ) { }1
m m

i i
m i A i A

τ
∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ℜ = ℜ × −ℜ
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∏ ∏ [5.25]

Am represents the minimum boundary (from 1 to m). This arrangement consists
of at least κ components in use. If all the components are identical, with a basic
reliability r, we can suppose:

( )( ) 1
n

n
n

m

C r r κκ κ

κ

τ −

=

ℜ = × −∑ [5.26]

5.8.3. Serial assembly system

At the time τ, a system (a mechanism, parts, etc.) Ω must have a probability of ri
for it to function. Each material component Ωi of the mechanism will be functional
at the time τ. If Ωi corresponds to the component event Mi, functioning at the time τ,
its reliability ( )τℜ takes the following form:

( ) { } { }1 2 3; ; ;...; nP Pτ τ τ τ τ τℜ = Ω = Ω Ω Ω Ω; ; ; ; ; [5.27]
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When the events are independent, we can suppose:

1 1

( ) ( )
n n

i i
i i

rτ τ
= =

ℜ = ℜ =∏ ∏ [5.28]

Subsequently, the failure rate of the serial system is written as:

( ) 1

1

( )( ) ( )
n

i nsys i i
system

i

dLogdLog dLog
d d d

ττ τ
λ τ

τ τ τ
=

=

ℜ∏ℜ ℜ
= − = − = −∑

⎛ ⎞
⎜ ⎟
⎝ ⎠

[5.29]

As previously noted, the exponential law is almost omnipresent and is therefore
responsible for the distributions of probabilities:

As ( ) ( )
1

n

i system
i

λ τ λ τ
=

=∑ then
1

( ) exp
n

system i
i

τ τ λ
=

⎧ ⎫⎪ ⎪ℜ = − ×⎨ ⎬
⎪ ⎪⎩ ⎭

∑ [5.30]

In the design stage of mechanical engineering techniques, it is clear that
components are assembled with respect to their functional valuation. Geometrical
Products Specifications (GPS) standards help to determine sizing (valuation).
Assemblies are only dependent on the functional layout of the mechanism’s parts,
defined in a finished product outline. It is fairly simple to calculate and assess these
components’ reliability. In civil engineering structures and constructions in general,
the issue is completely different and new in the mathematical and physical world.

Until recently (toward the end of the 19th Century), constructions were designed
and executed in part intuitively (empirically), as in ancient castles, bridges,
pyramids, etc. Metallurgy, informatics (calculating with finite elements), new
materials, and, above all, the concern for safety have all led to principles of
calculation based on the resistance of materials. Since then, the need for guaranteed
safety has been understood and adopted. The notion of acceptable stress [σ, in MPa]
in resistance of material is fully quantifiable and justified. Design, while remaining
an “art”, is becoming more and more a geometrically controlled “art”.

The classic safety ratio S ≤ [RMax_Effort/RMaterial] served to reassure designers that
the maximum effect in the so-called critical zone (an intuitive concept) remained
smaller than an acceptable stress, which experience has proved correct. Through
time, safety coefficients have, therefore, provided a so-called clumsily quantitative
measure (often costly) that we can qualify as the probability of fracture. This term is
largely justified, as the resistant effects of materials constitute random variables
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(effects of power, wind, water, load, fatigue, etc.). Their influences justify the
probabilistic approach to what is conventionally called failure or fracture.

The engineering approach has evolved, thanks to probabilities. The very
definition of a construction’s safety, deemed safe, linked to its probability of
breaking, is now less important than an anticipated fixed value which is dependent
on numerous factors, including the lifecycle. It would be too simplistic to assume
that the breaking factors have already been assessed. The economics of keeping the
structure in use is absolutely dependent on the quality of materials, the ingenuity of
the construction, and hazards of the nature of use (fatigue, everyday use, etc.).

It is generally agreed that imposing a single, costly, safety coefficient on the
resistance of materials is not sufficient. The reliability index β as a quantitative
measure for the probability of failure (fracture) has been accepted by scientists from
across the world. This current work, dedicated to reliability, attempts to justify the
use of this reliability index to make constructions safe. We will first introduce the
theoretical approach, which has already proved its worth in terms of reliability. Then
we will comment on the assumptions which favor or do not favor the calculation
results.

PROBLEM.– Imagine any structure whose safety we will check by scalar dimensions.
The effects of stress (represented by S) meet resistance R, acceptable by two random
independent variables, presumed Gaussian, with the respective averages and standard
deviations of μS, μR and σS, σR. The relative distance is written as follows:

{ }R SΖ = − [5.31]

As a solution to be guaranteed, Z is strictly ≥0.

{ }R SΖ = − is a RV which follows an average Gaussian { }Z R Sμ μ μ= − and

standard deviation 2 2
Z R Sσ σ σ= − . With this in mind, the probability of failure Pf of

the structure is the result of the integral representing Gaussian law as follows:

( )
2

2
0

2 21 10 exp exp
2 2

Z

Z Z

Z

x u
Z

f
ZZ

P P Z dx du

μ
μ σ
σ μ

σπ σ π

−

−∞ −∞

⎛ ⎞
= ≤ = = = Φ −⎜ ⎟

× ⎝ ⎠∫ ∫ [5.32]

where Ф(·) is a tabulated function from the normal law. Recall that this hypothesis is
only valid if we assume that the distribution law is Gaussian. Therefore, the
reliability (or safety) index β becomes the result of a simple tabulated reading from a
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changing variable of the classical Gaussian law. We thus suppose the following
expression of the β index:

2 2
R SZ

Z R S

μ μμ
β

σ σ σ

−
= =

−
[5.33]

Figure 5.4 shows the relationship between the probability of failure and the
reliability index β. This reliability index β, by carrying [5.33] in the last expression
of [5.32], provides the famous expression of the construction’s failure probability:

( )Z
f

Z
P μ

β
σ

⎛ ⎞
= Φ − = Φ −⎜ ⎟

⎝ ⎠
[5.34]

Figure 5.4. Relationship between the reliability index β
and the probability of failure Pf

Equation [5.34] is true for multiple RV functions, which are independent of one
another. Imagine R to be the resistance and S the stress of a real structure. The
expression of this generalization appears as follows:

{ } { }1 2 3 1 2 3, , ,..., , , , ...,R m S m m m nR g X X X X and S g X X X X+ + += = [5.35]

The purpose of this operation is to find what is conventionally known as a limit
state function, which accounts for all RV. Hence, the limit state function will present
itself in terms of the representativeness of all the RV:

{ } { }1 2 3, , , ,..., nZ R S g X X X X= [5.36]
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Going back to the expression of probability of failure according to the safety
index, the structure’s probability will be:

{ } ( ) { }0 ( ) 0Z
f

Z
P P Z P g Zμ

β
σ

⎛ ⎞
= ≤ = Φ − = Φ − = ≤⎜ ⎟

⎝ ⎠
[5.37]

This is in fact the limit state function. If this function does not display linearity,
it is advisable to linearize it in proximity of the most probable point of coordinates
(μ1, μ2, …, μn), taking into account only the first derivatives. If the limit state
function is non-linear, it should be linearized in proximity of the point which
represents the probable state, ignoring secondary derivatives. This gives the
expression of Z as follows:

( ) { }
1

i

n

Z i X
ii

gZ g X
X

μ μ
=

∂
≅ + −

∂∑ [5.38]

To simplify integral calculations with at times “cumbersome” and even
“irritating” remnants for precision purposes, we can employ the standard space. This
corresponds to the RV(X*) from the X variables by the following transformation:

i i
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i

XX μ
σ
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⎝ ⎠

[5.39]

By the simple transformation into RV from centered and reduced Gaussian
variables around the (“real”) average, and based on the fact that these RV are
ordinary and more importantly always independent, we can thus suppose:
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= = Φ⎜ ⎟
⎝ ⎠

[5.40]

We can clearly see that Fi(·) is the distribution function of Xi. This space is none
other than the system of reduced coordinates from a common Gaussian law.

Imagine a corresponding point C [Xi = μi] which represents the probable state of
the structure. Z = g(X*) constitutes the space (surface) of the normal functional
structure, i.e. without weakness or failure. Through the orthogonal projection (P)
from C on the surface, we can call the functioning point of the structure a probable
point of weakness which would be the closest possible point of failure. By analogy,
this is the point that represents a point of stress before reaching the most acceptable
stress, as in classic resistance of material. The reliability index β is, therefore,
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defined as the distance between the origin and the functioning point of the structure.
In other words, it is the minimum distance between the probable state and the limit
state surface, which is the Euclidian distance. The case of two independent Gaussian
RVs confirms the following relation:

{ }p CX X β α∗ ∗= − × [5.41]

where *
pX and *

CX are respective vectors of the coordinates from point P and point

C, and α represents a common vector called the vector of influence. Limit State
Functions, the coordinates Z = g(X*) are provided by linearization which is
expressed as follows:
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[5.42]

During our various design projects, we have never come across the functioning
point of a structure at the time (τ). Through simulation, we are getting closer, but it
is impossible to predict this point with great precision. There are some specialized
route algorithms that can calculate the reliability index. In the subsequent case
studies, we will provide an example to fully back up our assertions. The following
points summarize the reliability approach in the mechanics of materials and
structures:

1) It defines the equation of limit state Z = g(X).

2) It transforms random base variables into reduced centered RV.

3) It postulates the initial position of the functioning point (P). Typically, this
initial point may be identical to the point of possible state *

pX = *
CX .

4) It evaluates partial derivatives and the vector of influence (α) to point P.

5) It resolves β by means of [5.33] and [5.34] in the limit state equation
{ } { }1 2 3( ) , , ,..., ,ng x g X X X X Z R S= = .

6) It re-evaluates the functioning point with the acquired reliability index β.

7) It repeats steps 4 to 6 until the convergence of β.
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5.9. Conclusion

Indicators of safety are based on reliability indices, which are often detrimental
in terms of calculation costs, and are not completely “reassuring” in terms of the
methods, stability, or robustness. The omnipresence of statistical distribution laws
reinforces the importance of the probabilistic approach. It is important to not choose
a distribution law a priori, but instead to properly determine its appropriateness for
the predicted case.
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Chapter 6

Fracture Criteria Reliability Methods through
an Integral Damage Indicator

6.1. Introduction

In this chapter, we will be using random variables from the cracking law, in this
case {a0, ac, (C, m), and N}, to calculate the failure probability of a structure joined
in a cruciform by four distinct joining processes: SAW, FCAW, SMAW 56, and
SMAW 76. The latter were the object of a commendable experimental campaign
[MEL 83, COR 67a. COR 67b, LIN 73, FRE 47, JOH 53, BAS 60, LAS 92,
GRO 94, GUM 08, WAT 70, KOZ 83, WÖH 60, YAM 77]. The development of
reliability theory in structures dates back to the 1920s. Back then, people relied on
material choice and assembly process choice. At that time, there were dazzling
developments in physical metallurgy, which can account for this approach.
Nowadays, however, we rely on numerous method applications based on probability
and statistics. With safety considerations in mind, these essential methods have
largely developed and established themselves with their apparently random data,
which until now was obligingly considered deterministic. For example, how can we
consider the intrinsic parameters of material (C and m) in Paris’s law to be
deterministic, when we don’t know the degree to which the material is consistent?
And how can we suppose that the stress intensity factor (s.i.f, ΔK) compared to
tenacity is deterministic, when we don’t know in advance that the load is in itself
variable. In several cases, it is unpredictable (wind, ice, aging, saline erosion on
offshore structures, etc.).

In 1926, Mayer and subsequently in 1960 E. Basler et al. [BAS 60] proposed an
estimation for a safety margin, which was then continued in 1967 by C.A. Cornell
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[COR 67a, COR 67b], who formulated the reliability index βc. The Cornell
formulation was not greatly implemented because of the unknown factors which it
implicated. Already numerous authors, including C. Forssel, had worked on the
same idea, not just confined to this period, but it was later on (1967) that the idea
was developed by Cornell with a qualified success. Optimization of constructions
became difficult toward the 1950s. For economic reasons, in 1953 A.I. Johnson
[JOH 53] proposed a comprehensive formulation of the safety margin theory, by
introducing the statistical theory developed by W. Weibull in 1939. This statistical
approach is so universal that we felt it necessary to include it in the present work, to
statistically simulate initial cracking (a0) in a cross-joined structure. In 1947, the
author A.M. Freudenthal [FRE 47] presented the fundamental problems of structural
safety measures. It was the first time in the history of structural safety that unknown
factors were treated as defects. This is one of the reasons that we felt it would be
useful in this work to tackle the metrology approach of errors and uncertainties in
measuring.

In the 1970s, there was an initial transition period where probability theory
became almost inescapable in the analysis of crack spreading in components and
other structures. It is worth adding that informatics has played a key role in terms of
the powerful programs which support complex calculation models. The same
reflection can be made for the role which informatics has played in the simulation of
structures using finite elements. In fact, toward 1970 many research papers on
material and structural reliability began to appear again, among which was one by
Ferry-Borges and Castanheta [FER 71]. There are many conflicting opinions on the
use of safety margin methods. The titles of these papers are at times eye-catching,
but not necessarily conclusive. This state of affairs is essentially due to the
systematic and unjustified application of statistical distribution laws or uncertainty.
The latter has often been put aside, taking for granted that complex calculations
from powerful computers would not be questioned. And yet, the error is sometimes
at this level. It is not the statistical laws which are erroneous.

Among the notable works on approximation methods for safety from the 1960s,
it is worth referring again to N.C. Lind et al. [LIN 64]. There were also some
commendable works from 1973 to 1983 by authors such as M.K. Ravindra and
N.C. Lind [RAV 83] on the optimization of calculation methods for structural
safety, which allowed a reliable calculation code to be proposed. Through the 1970s
and 1980s, other works emerged, aiming for a better simulation of reliability indices
in terms of random multi-variables. Independently from one another, O. Ditlevsen
[DIT 73] and N.C. Lind [LIN 73] proposed a method to resolve the problem of
invariance in the reliability index. They argue that the Cornell index (βc) [COR 67]
is not constant. This poses yet more problems linked to structural mechanics as well
as to the statistical methods inherent in model processing.
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To resolve the problem of index invariance, A.M. Hasofer and N.C. Lind
[HAS 74] attempted to clarify the notion of invariance limitation in the reliability
index. This index was made popular by the so-called first-order reliability method
(FORM). To do this, they suggested a new calculation method which would allow
the calculation of the safety index for a law of correlated and uncorrelated random
variables. Whilst on the subject, we can refer to the critical idea formulated in the
same year (1974) by D. Veneziano [VEN 74]. She presented a scientific report
(R74-33) to the Department of Civil Engineering at Massachusetts Institute of
Technology (USA). This report rested on its “Contributions to Second Moment
Reliability Theory”. Numerous papers have been revised on the basis of a Canadian
calculation code CSA [CSA 81] and also the English CIRIA [CIR 81], where the
limit state function (M) is based on the probabilistic approach.

We know that human error can be the cause of insecurity in structures and other
components, which at times causes failure. With this in mind, some serious works
have been carried out. We can refer to the research papers of R.E. Melchers and
M.V. Harrington [MEL 83], not forgetting the commendable scientific contributions
resulting from the works of H.O. Madsen, S. Krenk, and N.C. Lind [MAD 86] et al.
The work that particularly springs to mind is that of Professor Knut M. Engesvik
[ENG 82].

This current work has already entered the domain of uncertainties in fracture
mechanics through fatigue. In our experience, this book is one of the rare works,
along with Danielle Veneziano [VEN 75], which emphasizes the uncertainties in the
subject. The works of Professor K.M. Engesvik have not been used enough outside
of the Scandinavia. However, we can pay homage here to their contributions, whose
educational benefits no longer need to be proved. Our inspiration to include a
chapter dedicated to errors and uncertainties comes from what we have just
mentioned. We can also add the recent techniques [GUM 08] from the Guide to the
Expression of Uncertainty in Measurement.

Within the domain of applied science, there is no such notion called absolutely
exact measures, because measures are always tainted by errors which can be
attributed to various causes, both human and material. Qualifying an error to then
quantify an uncertainty proves that we doubt the validity of a measuring result.
Therefore, evaluating uncertainties on measures stemming from errors can
sometimes be quite a complex task. To mark the influencing factors on which the
kind of measure depends on, we will first develop some mathematical principles.

The development of measuring uncertainty from the so-called classic or true
value approach toward an uncertainty approach has led to the reconsideration
of certain concepts. This comes from the fact that instruments and measurements
do not provide this true value. We can therefore realize that it is possible to
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distinguish two categories of errors. It is advisable to treat them differently in the
spreading of errors. However, no justified rule is given to combine systematic and
random errors adding to a total error thus characterizing the measuring result.
It is, however, possible to estimate an upper limit of the total error, clumsily named
uncertainty.

The components of measurement uncertainty are conventionally grouped into
two categories. The first, type A, is estimated by statistical methods. Type B is
estimated by other methods based on laws founded a priori. It is in fact the user who
must evaluate the sources of error. The manufacturer provides some data such as
the class of device, the standard, the resolution, etc. In addition, a well-founded
knowledge based on experience is needed. By combining the two categories A and
B, we can obtain composite uncertainties, marked Uc(y). In the case of the type B
approach, the Guide to the Expression of Uncertainty in Measurement of 1993
(revised in 1995) provides a description of the uncertainty approach. The emphasis
is placed in the mathematical treatment of uncertainty, with the help of an explicit
measuring model where the measurand is characterized by a value of a unique
nature. The aim of measuring in the uncertainty approach is not to determine a true
value. It is necessary to draw up an assessment of errors. In 2008, the VIM 3
increased the accuracy of the terminology used in metrology. In other areas of
engineering science, the focus was on reliability indices.

On the basis of what has just been said, the aim of measuring is to establish the
probability that the measured values are compatible with the definition of
measurand, measure, measuring, true value, etc. These are not terms to be tampered
with. The terms given in the 3rd edition of the VIM, along with their formats, are in
keeping with ISO 704, ISO 1087-1, and ISO 10241. For example, the terms
“measure” and “measuring” have several meanings. This is the reason that the word
“measuring” was introduced to qualify the action to measure. The word “measure”
occurs in many instances in the VIM. Measuring instrument, measuring device,
measuring unit, and measuring method are also noted. The source factors of
uncertainties can generally be of three types as follows:

– human: manipulation, maintenance of trial installation, etc.;

– technical: trial method, properties of tested material, calibration, etc.;

– environmental: trial environment and random components.

In metrology, measure is an experimental operation which aims to determine
the value of a physical size. To realize this, a measuring method is used. This
necessitates the use of devices and measuring instruments which in many cases can
reveal the source of errors. This allows us to easily see that metrology heavily rests
on concepts of uncertainty. Uncertainty takes account of the way in which size has
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been measured. It therefore expresses the confidence that we can give to a result. It
is well known that measuring requires the use of instruments. This implicates
calibrations and manipulations, thus creating appropriate procedures and calculations.
It is for these motives that systems of calculation and measuring have been introduced.

6.2. Literature review of the integral damage indicator method

Before presenting the results from probabilistic processes of random variables a0,
m, and Ncycles from the cracking law on a cross-joined structure [LAS 92, GRO 94,
GRO 95, GRO 98] using an integral damage indicator method, it is highly useful to
first present the hypothesis which supports metrological measuring of experimental
data. We had calculated, through the Monte Carlo (MC) simulation of random
variables from the cracking law, F{a0, m, and Ncycles}, a limit state function for four
joining processes [LAS 92]. This task has allowed us to find the failure probability
and the safety index by joining processes. We will revisit these results in their
entirety in [GRO 94]. In the following, we will present another approach, introduced
by Madsen et al. [MAD 86] to calculate:

a) a limit state function M = g(z);

b) a failure probability Pf;

c) a safety index βc.

This method is succinctly laid out in the work of Madsen et al. [MAD 86]. Other
authors have applied it in commendable works, such as the paper by F. Kirkemo
[KIR 88]. The general problem in the reliability of joined structures is the
unavoidable unknown factors that the probabilistic approach takes into account. The
issue of uncertainties [VEN 75, ENG 82] remains prominent. The methods which
are used in structural reliability problems are not scientifically agreed upon. These
methods are subject to caution when the hypothesis and the parameters which make
up the probabilistic formulation of the true value are not clearly presented.

In 1987, H.O. Madsen argued that reliability was still vital. Of course, Madsen,
like Lassen, came from Northern Europe where offshore platforms had spread. The
lifecycle predictions for solid structures (if laboratory trials are carried out) are
generally analyzed by a probabilistic-statistical approach, which takes the following
functions into account:

– probability density f (x) and the distribution function F(x);

– failure rate λ (MTBF: time before failure, cf. Chapter 1);

– auto-correlation function;
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– reliability index β;

– spectrum of probability density, the transfer function, etc.

In addition, material dynamics and geometry pose a serious problem which
causes important dependents to be put into a differential equation by the Paris law.
Predictions of lifecycle remain randomly dependent on the physical parameters
that the cracking law permits. The general problem realized by D. Veneziano
[VEN 75], M.K. Engeskik [ENG 82], Madsen [MAD 85], and Ditleysen [DIT 86],
to name just a few, comes from the statistical uncertainties in mechanical structure
reliability. It helps to understand that a singular structure would not forcibly impose
a calculation by the first-order reliability method/second-order reliability method
(FORM/SORM).

The Cornell reliability index [COR 67b] from the FORM has been proven
sufficient to provide a concise idea of the safety index (β). The works of Madsen in
our opinion are still incredibly relevant. His method of an integral damage indicator
is favored for its simplicity of execution.

6.2.1. Brief recap of the FORM/SORM method

Failure probability is represented by PF. The reliability index βc can then be
calculated, as previously shown:

{ } { } { }1 1 1c R F R FP P where P Pβ − −= Φ × = Φ × = − [6.1]

where:

PR is the subsistence probability known under the general term of reliability (R).

PF is the fracture probability known under the general term of failure probability.

The limit state function g(z) = M, in the space U, is represented in Figure 5.1. M
divides the U-space into two distinct zones: the zone of failure, represented by F or
R, and the zone of security, represented by S. In the FORM approach, the analysis of
the limit state function is estimated by a hyperplane tangent to the Euclidian plane
U*. The latter is the point where the limit state function surface is stopped at origin,
i.e. the point where the zone of failure is located in a large area of probability
density.

In the SORM approach (see Chapter 5), the analysis of the limit state function is
estimated by a hyperboloid rotation surface, tangent to the same hyperplane and
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curves to the Euclidian point U*. This corresponds to reliability by the analytical
expression.

6.2.1.1. FORM

( )Failure F cP P β= =Φ − [6.2]

where:

Pf is the failure probability;

βc is the reliability index.

6.2.1.2. SORM
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[6.3]

where:

Β is the length between the U* point and κj to the curve points in the Euclidian
space [U*], where κ is the number of base variables;

i is the imaginary part (imaginary unit of a complex);

RE{·} is the true part of a complex.

This method has experienced numerous applications, in this case the
applicationone used by Tvedt [TVE 83]. He is cautious to differentiate between the
FORM and the index βc. Relation [6.2] just allows us to see that it is possible to
calculate the index βc by the FORM.

6.2.2. Recap of the Hasofer–Lind index method

The Hasofer–Lind index [HAS 74], βHL, allows us to see the distribution laws
for random variables and to be invariant for the formulation of a same limit state. It
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causes the transformation of base variables into Gaussian variables Zi, and then into
reduced centered Gaussian variables Ui, by the simple classical relationship:

( )
( )

i i
i

i

Z Z
U

Z
μ

σ
⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

[6.4]

where µ(Zi) and σ(Zi) are the average and standard deviation of the considered RV,
respectively.

In the 1970s, this formulation had a considerable success. The area of failure is
constructed in a system of coordinates linked to reduced centered variables. The
curves of equal probability density are therefore centered hyper-spheres at origin
(see Chapter 5). The representation of the Hasofer–Lind index is thus expressed as
follows:
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where D(Ui) is the area of failure in the system of reduced random variables Ui. The
calculation of βHL requires the use of repeated methods when the zone of failure is
not linear.

6.3. Literature review of the probabilistic approach of cracking law parameters
in region II of the Paris law

In the following, we will present the results in terms of probabilistic calculations
of initial cracking (a0). The aim is that the initial crack is an indicator of the
evolution of the distribution laws. The initial crack a0 is the focus of numerous
theoretical disagreements. A reliability calculation with the help of the PROBAN
software has been found by Professor Lassen et al. [LAS 92], on experimental data
from a cross-joined structure, whose results are shown in Table 6.1.

Our calculations [GRO 94, 95, 98], on a deducted sample from the same
experimental data, have allowed us to determine an average crack of 0.0019 mm.
The distribution of average cracks follows a Weibull law of two parameters, with a
tendency toward an exponential law. The distribution model presented in the report
by T. Lassen considered a development of initial cracks between 0.35 mm and
0.5 mm. Whatever the method used to obtain the safety margin of a structure, its
reliability index β, or inherent failure probabilities, it is advisable to note the
following:
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– simulation through fracture mechanics must strictly observe the appropriate
material choice for the structure, to aid assembly;

– precise calculation of intrinsic material parameters (C and m);

– the strict correction of global and local geometry g(a/T) [GUR 78];

– an adequate statistical simulation of the parameters (a0, C, m, and Ncyles).

P
{N

(x
)≤

n}

Number of
cycles, n

FORM SORM SIM Truncated
exponential
function (1)

For a0 = 0.35 mm
140.000 8.84 × 10−2 6.64 × 10−2 (664 ± 2) × 10−4 8.07 × 10−2

180.000 0.379 0.351 (23504 ± 2) × 10−4 0.422
220.000 0.636 0.626 (6186 ± 2) × 10−4 0.637
260.000 0.798 0.796 (7876 ± 2) × 10−4 0.771

For a0 = 5.00 mm
200.000 4.88 × 10−2 2.77 × 10−4 (2.75 ± 0.13) × 10−4 (*) Rem.
300.000 6.84 × 10-2 5.18 × 10−2 (5.20 ±± 0.04) × 10−2

SAW, submerged-arc welding; FCAW, flux-cored arc welding; SMAW 57, SMAW 76,
shielded metal-arc welding.
Source: T. Lassen [LAS 92].

Table 6.1. Cross-joined structure, by four different joining processes

On the basis of the experimental results from Professor T. Lassen, we have
presented the results [GRO 94, GRO 98] for a cross-joined structure of 25 mm in
thickness, where the initial average crack is a0 = 0.0019 mm, from a dichotomy
calculation. In 1982, J.H. Rogerson and W.K. Wong [ROG 82] presented some very
precise results on tubular nodes mounted in the North Sea, with the help of magnetic
recording methods (MPI) under permanent inspection by ultrasound on a welded
joint 1000-m long. In 1981, the authors Bokalrud and Karlsen measured cracks
appearing on plaques of 10 to 25 mm in thickness. On the tubular nodes mounted in
the North Sea, these authors presented results on 827 selected measuring points, and
502 measurements were without screw threads. The leads of the screw threads were
reproduced in scrubbed silicone.

In this study, 325 positions follow an exponential distribution with an average
measurement of 0.11 mm taken on a histogram and measured with screw threads.
The majority of screw threads are 0.5 mm and the results are represented by the
summarized relationship: P(a0) = 9xExp(9xa0).

Other authors such as Burdekin and Townend [BUR 81] have presented data
conducted under real conditions (without melting) on defects due to the lack of
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penetration in tubes at 90° and 45° on manually produced joints welded in an arch in
which the grade was BS 4360: steel grade 50D. Defects were found by ultrasound
on 440 welded joints [BUR 81]. They present an average crack as [0.03 ≤ a0 ≤ 0.25]
with an average of 0.095 and a standard deviation of 0.046 for joints welded in a
cross form.

In 1976, O.I. Eide [EID 76] presented his thesis on cracks on screw threads from
0.025 to 0.25 mm with an average of 0.095 mm and a standard deviation of 0.046.
Authors such as F. Watkinson et al. [WAT 70] found that in a manual metal arc
welding with screw threads, the average initial crack did not exceed 0.4 mm. In
1967, authors such as E.G. Signes et al. [SIG 67] proposed that initial effective
cracks varied between 0.1 and 0.5 mm with an average of 0.15 mm.

6.4. Crack spreading by a classical fatigue model

In fracture mechanics through fatigue, the statistical model which explains the
behavior of the structure or mechanical component is often marked with multiple
uncertainties. This assessment is carried out for many reasons, including:

– the empiricism of the behavior law of the structure, e.g. Paris–Erdogan law;

– the depth of the initial calculated crack a0 (dichotomy in our case);

– uncertainties due to calculations of relationships between intrinsic material
parameters (C, m) in the Paris–Erdogan law;

– the uncertainties from geometrical correction factors (a0/T);

– the calculation methods for the variation in the stress intensity factor (ΔK);

– the potential variation of the nominal load Δσ;

– physical–chemical aggressions (offshore structures, for example), etc.

The physical cracking mechanisms through fatigue (see Chapter 7), in region II
of the Ritchie diagram, are taken into consideration by a Paris law:

( )mda C K
dN

= × Δ [6.6]

where:

ΔK the f.i.c. is the stress intensity factor, in MPa ·m−3/2;

da/dN expresses the lifecycle in mm/cycle, (da/dN) > 10−6;

C and m are intrinsic material parameters.
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The linearization of [6.6] allows us to easily express C and m:

( ) ( )ΔdaLog Log C m Log K
dN

⎛ ⎞ = + ×⎜ ⎟
⎝ ⎠

[6.7]

The expression [YAM 77] from the f.i.c. is written as:

Δ Δ aK g a
T

σ π⎛ ⎞= × × ×⎜ ⎟
⎝ ⎠

[6.8]

By replacing ΔK (ISO 12737: 1996) by its expression in [6.7] we get:

( )Δ
m mmda ag C a

dN T
σ π⎛ ⎞= × × × ×⎜ ⎟

⎝ ⎠
[6.9]

where:

N is the number of cycles (per load) ;

a is the length of the crack in mm (or in inches) ;

T is the thickness of the metal sheet in mm.

The final result of the average between C and m, the intrinsic material
parameters for the four joining processes [GRO 94], is as follows:

8
26,069 10 0,963

24,64averageC MPa m with a correlation R
m

−×
= × =

×
[6.10]

The number of cycles is expressed by the integral of cracking as follows:

0

1
21 fam

m T
a m
T

ad
TN T

C aa g
T

σ

π

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠= × ×Δ

⎡ ⎤⎛ ⎞× ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∫ [6.11]

where g(a/T) is a factor of geometrical correction [GUR 78, ENG 82]. It is a vector
of random parameters. Extending expression [6.8] we can suppose:

( ) ( )
m

m m

daC dN
a Y a

σ
π

×Δ × =
×

[6.12]
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D.A. Virkler et al. [VIR 79] carried out a vast experimental campaign to plot
a = f (N). The following graphic representation shows the spread of cracking with
respect to the number of cycles.

Figure 6.1. The Crack Growth with respect to the number of cycles (N)

Among the more conclusive stochastic models on the subject of the simulation of
initial crack spreading, we can refer to the Markov’s theory, which has been used by
Ortiz et al. [ORT 84, 88, KOZ 83] and Lin-Yang [LIN 83]. The average intrinsic
material parameter C is expressed as:

( ) ( )
1

2

CC C a
C a

= = [6.13]

where:

C1 is a random variable which describes the probable variations between average
values for each joining process.

C2(a) is an average positive value from the random process along the spreading
crack for each joining process.
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Hence for a constant loading amplitude (150 MPa in our case), the lifecycle, by
means of the Paris–Erdogan law, takes the following form:

( )mm mda Y C S a
dN

π= × × × ⋅ [6.14]

where Sm (Δσ) is a nominal stress. The variables can thus be separated as follows:

( )
m

mm

da C S dN
Y aπ

= × ×
× ⋅

[6.15]

The integration of relationship [6.15] then allows us to write:

( ) ( )0m
ca C S N NΨ = × × − [6.16]

where the cumulated integral damage indicator Ψ(ac) is written as:

( )
( )0

Na
c ma m

daa
Y aπ

Ψ =
× ⋅

∫ [6.17]

Expression [6.16] shows the integral damage indicator accumulated by crack
spreading, displayed on the marked history of initial cracks which is represented by
the so-called final cracks Ψ(a0) (stopped physically during experiments) Ψ(ac). The
sequential order of loading has an unavoidable influence on crack spreading. For
example, we cited the problems of delayed spread or potential leaps in acceleration.

These phenomena are purely physical and well mastered by material science.
Treating the physical morphology of materials with disdain to concentrate on
mathematical developments, no matter how commendable, is in our opinion an
infringement on the truth. To pragmatically establish our demonstrations,
deductions, and reliability results, it would be wise to control them using a
complementary uncertainty calculation of the measurands around the true value.
Numerous models have been proposed on the phenomenon of slowing or
acceleration of crack spreading, which is more physical than theoretical. Here we
can mention the works of Willenborg et al., Elber, and de Wheeler. In 1984, Fleck
and Smith had already studied the same phenomenon under variable loads. This led
them to propose the following relation:

( )mm m
i ia Y a C SπΔ = × ⋅ × × [6.18]
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The increment Ψ(a) takes the following form:

m
i iC SΔΨ = × [6.19]

The value of Ψ(a) after N cycles is written as follows:

( )
1

N
m

N i
i

a C S
=

Ψ = ×∑ [6.20]

Based on the fact that stress intensity is a random process, its variables ΣSmi are
equally random. When the number of cycles is high, the uncertainty in the sum dN
may be neglected. This sum can be replaced by the expression ΣSmi. Some authors
[MAD 87] find that the distribution of the S-stresses variable follows a Weibull law
with two parameters, formalized as follows:

( ) ( )1 =A and =Bs
sF S Exp with

β

α β
α

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

[6.21]

We can now present a tabulated function Γ(a) and reformulate the relationship
[6.20] of ψ(aN) under the following form, which is in fact the expression of damage:

( ) 01m
N

ma C Nα
β

⎛ ⎞
Ψ = × ×Γ + −⎜ ⎟

⎝ ⎠
[6.22]

where Γ(a) is a reduction factor, defined as 0 ≤ Γ(a) ≤ 1.

Γ(a), in our case, can be calculated using equation [6.23]. This expression was
introduced in 1987 by Wirshing et al. [WIR 87], where the usefulness of the
theoretical f.i.c. (ΔKth) was particularly emphasized. Authors such as Madsen et al.
[MAD 87] completed this expression by adding the function Γ(·) or sometimes
Γ(· ; ·). We find this idea ingeniously well utilized to the benefit of applied
mathematical simulation in fracture mechanics.

( ) ( )
1 ; 1thKm ma

Y a

β

β βα π

⎧ ⎫⎛ ⎞⎛ ⎞ Δ ⎛ ⎞⎪ ⎪⎜ ⎟Γ = Γ + Γ +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

[6.23]

If the observed process is truly Gaussian and stationary, a good estimation of
accumulated damage is analyzed by replacing this process with an equivalent
process. The latter is just a spectral density function whose spectrums are
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represented by υ0 and υi. The average values of Sim are therefore expressed as
follows:

( ) ( ) ( )202 2 1
m mm

i
mSε υ
β

⎛ ⎞
= × ×Γ +⎜ ⎟

⎝ ⎠
[6.24]

The average number of cycles (NT) in a period [0, T] provides the following
form:

0
0

1 T
2

i
TN T

υ
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π υ
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= × = × ×⎜ ⎟⎜ ⎟

⎝ ⎠
[6.25]

At the time (T), the result expressed by [6.22], ψ(aT), will be:

( ) ( ) ( )20
0

1 2 2 1
2

m mi
T

ma C T
i

υ
υ

π υ

⎛ ⎞ ⎛ ⎞Ψ = × = × × × ×Γ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
[6.26]

By introducing the initial crack to the ith spectral frequency υi and to the period
T0, expression [6.26] will become:

( ) ( ) ( ) ( )20 0
0

1 2 2 1
2

m mi
T

ma C T T
i

υ
υ

π υ

⎛ ⎞ ⎛ ⎞Ψ = × − = × × × ×Γ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
[6.27]

A number of uncertainties already existed in mechanical reliability. These
still persist mainly in offshore structures. One could mention, for example, other
commendable scientific contributions in the spirit of the works of J.D. Sørensen
et al. [SØR 85], P. Thoft Christensen and J. Baker [CHR 82]. In reliability, as
already mentioned, the problems of crack spreading through fatigue could be limited
to the margins of safety. It is enough that spreading is restricted when the problem
occurs.

( ) ( )( ){ }10 0c c c applied Na a and K K a− ≤ − ≤ [6.28]

These two types of fracture criteria separation, among others, have been
considered by ASCe (Committee on Fatigue and Fracture Reliability, 1982). The
traditional approach, such as that developed in the previous chapter, means that the
limit state function (M) is written as:

( ) 0M R S= − ≺ [6.29]
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In this precise case, the limit state function is expressed, according to
Madsen by:

( ) ( ){ } 0c NM a a= Ψ − Ψ ≺ [6.30]

In the first case, the critical crack represented by ac is chosen beforehand. The
size of the crack could be based on service considerations. Within the context of this
work, this first factor is restricted to approximately ac ≤ 15 mm. It often appears
when the spreading of the crack becomes unstable with other reliability occurrences.
Starting from the fact that the damage function ψ(a0) is a monotonous and increasing
function of a0, the occurrence of a fracture from damage therefore requires the
spreading of a crack of critical size ψ(ac), which exceeds through the accumulation
of the loading effect, thus:

1

N
m N
N i

i

C S C S
=

× = ×∑ [6.31]

The result of the fracture criterion, as much for a constant nominal stress as for
this variable, is written as follows:
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∫

∑∫

[6.32]

The final expression of safety M, for a variable a0 and an amplitude of constant
load, is written according to Madsen et al. [MAD 85, MAD 86] as shown in [6.32].
Fracture probability, i.e. the probability that the crack exceeds critical size, to the
number of cycles Ni in the period (T) is written as:

{ }0FP P M= ≤ [6.33]

This approach represents a damage indictor which has already been formalized
by some authors such as Virkler et al. [VIR 79].

( )
( )
N

domage
c

a
D

a
⎧ ⎫Ψ⎪ ⎪= ⎨ ⎬

Ψ⎪ ⎪⎩ ⎭
[6.34]
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If we echo this in terms of f.i.c., the limit state function appears as follows:

( ) ( ){ } 1 1-
2 ( )IC ag z K Y a N S

a N
σ

π
⎛ ⎞= × + ⋅ ×⎜ ⎟ ⋅⎝ ⎠

[6.35]

where σa is the nominal stress and a(N) is obtained through the solution in
expression [6.31]. The first expression [6.32] will not be the object of calculations in
the present work because our experimental data arises from a constant stress.

6.5. Reliability calculations using the integral damage indicator method

Before tackling failure probability calculations by the integral damage indicator
method [MAD 76], it would be useful to summarize what we have already
mentioned: let ψ(ac) be a damage indicator function caused by a critical crack which
is known or will be known, and let ψ(aN) be a damage indicator function caused
by a crack due to fatigue, i.e. after the application of Ncycles in accordance with
A. Wöhler’s theory [WÖH 60] (S-N curves). Consider a limit state function (M < 0)
which integrates the difference of these two previous functions and we get equation
[6.30]. The failure probability [6.33] will be known, once the limit state function M
is calculated.

By virtue of what has just been said, we will now present our results on a
singular cross-joined structure by four different welding processes. With traditional
safety coefficients, there is normally a certain amount of subjectivity in the authors’
specifications. It could be thought that reinforcing a structure would free it from
failure or at least delay its effects. This intuition, which is incidentally unaesthetic,
is costly because it leads to reinforcement through safeguarding. Time and
circumstance have shown us the inverse of this absurd intuition. To break free from
this subjectivity, we are basing our calculations on proven precise methods which
are based on probabilistic calculations. Do the following for this:

1) Calculate the number of cycles by choosing appropriate parameters: Δσ, a0
and af = acritical. This first step allows us to calculate a damage indicator function
ψ(ac) under constant Δσ, according to the critical size of the crack.

2) Establish the product [6.22], {C.Δσ.m.N} = ψ(aN) to calculate a crack
indicator function after applying Ncycles under constant amplitude Δσ.

3) Establish the relationship of the functions previously found in 1and 2 allowing
the two damage indicator functions to convey this safety margin [6.30] as follows:
M = {ψ(ac) − ψ(aN)}.
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4) Calculate the failure probability of the structure by the relationship
PF = P (M < 0) and then plot the corresponding graph PF = f(βc) knowing that
βc= −Φ−1(PF).

Application: To evaluate the failure probability PF and to deduce the safety
margin (M) of this structure by an appropriate method.

Hypothesis and definition outline of the cross-joined structure:

– joining processes: SAW, FCAW, SMAW 57, and SMAW 76;

– thickness of metal sheet to weld, T = 25 mm;

– constant stress, Δσ = 150 MPa.

Source of photograph: T. Lassen [LAS 92]

Figure 6.2. Valuation according to ISO 2553 of the test on
four joints welded into a cross form
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Solution: In accordance with [6.30], we can express the safety margin as follows:

( ) ( ){ } 0 and 0c N FM a a P M= Ψ − Ψ = ≤≺

The safety margin (M) is the difference of the two indicative functions of
damage, expressed in the number of cumulative cycles (N) and by the critical size of
the length of the crack (a0). From relationship [6.32] we get:

( ) ( ){ }
( )0

0 for Δσ = cst
ca m

c N ma m

daM a a C S N
Y aπ

⎧ ⎫
⎪ ⎪= Ψ −Ψ = − × × ≤⎨ ⎬
⎪ ⎪× ⋅⎩ ⎭
∫

The failure probability is calculated from where the crack is greater than a
critical size (ac) to the Nth number of cycles, or even the period Tc. For a constant
Δσ (150 MPa) and a corrected geometry g(a/T) in relation to the thickness of the
sheet metal assembled by welding, the safety margin can be expressed as:
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∫

The expression of Ncyles takes the form:
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∫
[6.36]

6.6. Conclusion

The sustained belief, in tests on propagating fissures, is still important in several
accounts, because probability theories and laws on behavior are empirical in their
turn. The works by Virkler et al. [VIR 79] explained this succinctly and stressed the
heterogeneousness of materials from which their questionable intrinsic coefficients
are derived. This is also true for the choice of classic modules of elasticity.
In welded joints, the propagation of cracks occurs, because of metallic inclusions
and the influence of the size of the crack, in the heat-affected zone (HAZ) and in
the metal. Based on these considerations and the probabilistic theories essentially
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used by numerous authors, it can be observed that the fundamental problem lies
in the appropriateness between the parameters of the behavior law of components,
such as:

– m and C are deterministic.

– m is deterministic and C random.

– C is deterministic and m random.

– m and C are random and correlated.

– m and C are random and not correlated.

Without consisdering the various cases, the cracking law remains dependent on a
chiefly random subordination:

N = f{a0, a, (c, m), Δσ, ΔK and implicitly g(a/T)}

Among the models proposed here to describe the relations between the random
variables C and m, the most important model [GRO 92, GRO 95, GRO 98, ENG 82]
will be used. Some authors, such as A.B. Lidiard [LID 79], considered C to be a
random variable and m deterministic. What is deserving of sustained attention is the
work of authors such as S. Tanaka, M. Ishikwaw, and S. Akita [TAN 81] who
proposed an effective and correlated relationship between C and m even permitting
for slight differences of identical materials. According to the works published by
Madsen, the fundamental problem of relationships between C and m is not just
physical. It is also inherent in the techniques of randomization of these coefficients.

Besides this, if we refer to such things as the DnV standards of northern Europe
[DnV 82], the Canadian standards [CSA 81], or the CIRIA [CIR 81] in the UK, the
necessary recommendations are there. Since the parameter a0 is responsible for its
longevity, it is strongly recommended we pay close attention to the properties of the
base materials and to those of the welding electrodes. To emphasize the point, it is
imperative to determine the size of the initial fault a0 to the period (T0) or to the
cycle N0. The factor a0 is often deductible through a statistical approach, when it is
not measurable.

The problem of the m and C relationship is also resolved either by the secant
method, or by the least squared regression method [TAN 81]. The limitations, in
terms of reliability models, could sometimes turn out to be questionable with repect
to the precisions offered by other methods. For example, the SIM method (MC
simulation), although costly in terms of calculation time, permits for an estimate of
the safety margins for each of the four previously presented welding procedures
(SAW, FCAW, SMAW 57, and SMAW 76). The calculation for the safety margins
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varies depending on whether the structure is singular or constructed in parallel or in
series with other similar structures. The following indications will guide our choice
of the most effective method for a potentially accurate calculation:

– Particular features of singular structures: The Monte Carlo simulation
method is applied to calculate the safety margin corresponding to the reliability
index (β) as well as its failure probability PF.The MC simulation is reliable but time-
consuming in terms of calculation.

– Particular features of structures in parallel: The so-called Ditlevsen’s
bounds’ method [DIT 81] is applied, as it is simple and precise compared to that of
M. Hohenbichler and M. Rackwitz [HOH 87] which requires a relatively sustained
mathematical adaptation aptitude.

– Particular features of structures in series: The so-called Madsen et al.’s
[MAD 86] method is applied, which, similar to the Monte Carlo simulation, proves
to be simple, pragmatic, and elegant. Some statistical dispersions are in danger of
being accentuated, and so it is imperative to correct the geometry g(a/T) by known
methods [GUR 78]. The most appropriate method in this case of studying a singular
structure was the subject of a study by K. Yamada and P. Albrecht [YAM 77].

We will find a wide range of references in the bibliography. We are inspired by
them. The work which has retained our particular attention is first and foremost the
wealth of experimental data by Professor Lassen, who generously allowed us to use
them for our own calculations. Of course, the work of H.O. Madsen et al. guided us
through the theoretical approach, from which the results exploited here are derived.
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Chapter 7

Monte Carlo Simulation

7.1. Introduction

During recent decades, probability theory models for mathematical simulations
(particularly that of Monte Carlo (MC)) have developed intensely. The domains for
studying safety coefficients have become disadvantageous. In the last two decades,
more than 3,000 published articles [RUB 81] have dealt with variable simulation
using the Monte Carlo (MC) method. With the help of informatics, the use of this
often time consuming method, in terms of calculation time, was encouraged. The
first applications of the MC method were carried out on the analysis results of
Stefan–Boltzmann’s equation. In 1908, the statistician student was already using this
method to estimate the correlation of coefficients using his famous test of Student’s
law. We will now clarify some of the terminology that characterizes simulation
methods.

7.1.1. From the origin of the Monte Carlo method!

The method, contrary to popular belief, does not come from a person named
Monte Carlo, but instead from the name of the town Monte Carlo, in the principality
of Monaco (mid-France). It was not von Neumann who invented it, but instead von
Neumann and Ulam [NEU 51] who introduced the concept, during the Second
World War. The motif was not linked to gambling games from the Monte Carlo
casinos. It was instead a secret war code from an American scientific work which
was preparing for the atomic bomb in Los Alamos (USA). The problem lay in using
the method to simulate random variables relating to material behavior (neutrons),
leading to diffusion with difficulty. During that period (without the current power
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of computers), the complex and multidimensional evaluation of integrals led
researchers to resolve integral equations by means of an analytical solution, using
the so-called MC method. It would now seem restrictive to believe that this method
only applies to purely random phenomena. It is also used in stochastic solutions to
rational deterministic problems.

The simulation of variable analysis was defined as an efficient technique to
analyze the experiences of singular or structural models. The true definition,
according to R.Y. Rubenstein [RUB 81], is not often completely linked to the MC
method. When we integrate random variables, apart from their statistical law
distributions, we can precisely see MC simulation. Consider that random variables
are independent (in our case a0 and m), and uniformly distributed on the interval
[0, 1]. The generation of random numbers between 0 and 9 is approximated with
equal probability.

7.1.2. The terminology

We indicate here the academic (yet largely simple) confusion surrounding the
method: the simulation of analyzed variables, whether correlated or not, is not
always an MC simulation. It may be a simple combination of variables, certainly
similar to the MC method, but not quite the method itself. For example, to simulate
random variables which are differently distributed and not correlated, a random
average run can be carried out or indeed the Kolmogorov–Smimov method can be
conducted to qualify the number of runs. This is an MC simulation method of
random variables.

Numerous authors [SCH 85, SCH 87, FOG 82] have worked on MC simulation.
Of course, not all used the same procedures but the final interpretation was often the
same. We believe that this is essentially due to the calculation time that each author
attempted to reduce. The problem of convergence of stability and failure probability
is omnipresent. This can seriously jeopardize a simulation of the MC type.

1) In MC simulation, observations are made on random independent variables.

2) MC simulation is a method which provides answers from simple stochastic
model functions, by introducing random variables chosen at random in the
respective distribution functions.

3) MC simulation is complicated for a multidimensional model because the
calculation time is excessively costly, independent from software efficiency.

The essential problem lies in studying how the safety (stability) of constructions
is affected by the alteration of unfamiliar conditions (which are likely to intervene)
when these conditions depart from the norm. The variables which characterize these
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various elements have a random character. We can therefore state that safety is a
function of random variables and its study should be carried out by probabilities. If a
structure is made with the purpose of being very unlikely to “fail”, it is necessary to
know the abnormal factors which it is exposed to, before we can decide on a degree
of safety (or of failure).

Constructions, in general, and welded structures, in particular, are designed with
the aim of responding to various needs with the implicit understanding of a certain
level of safety or probable failure. Given that the probability which guarantees
failure, i.e. the probability that a structure reaches failure level, is not a physically
palpable entity, it is instead mathematically estimated based on physical and/or
unknown data. We could say that this probability is “justifiably” calculated, as it
rests on the large assurance of reputed safety [FRE 47, FRE 66].

In the case studies outlined in this work, we suppose that the parameters of
resistance (R), stress (S), geometry g(a/T), coefficients (ρ, θ) respective to local
geometrical correction (taking into account the radius and angle of the joint at the
foot of the welding band) and intrinsic material coefficients (C, m) are all correctly
estimated. Yet they are nearly all variable, added to the issue of random external
factors such as wind, waves, corrosion, fatigue, etc.

There are many codes and rules [CSA 81, CSA 11, LIN 73, CIR 77, 81, AME 87,
API 87, SIG 67, HOH 84, DIT 79, DIT 86a, DIT86b, GRO 98, AME 84, DNV 82,
CIR 81] which suggest to the user the limits to which they are authorized to consider
proportional hypotheses to ensure sufficient construction safety. Nowadays, modern
rules use the best knowledge that the designer could possibly have in the dynamics
of materials. Sometimes we can see the so-called safety coefficients used in a purely
academic way. This is a great danger when we consider that it is not only materials
which evolve and develop, but also their dynamics. How then can we trust a Young’s
coefficient or an admissible stress selected from a manual?

As serious as it is, the recommended manual [COR 69, COR 67, CIR 81]
remains erroneous in the values that it proposes if it is not continually updated. As
an example, the Canadian and European rules for metallic construction suppose that
the probabilities of reaching a limit state are 10−5 in limit state, and 5 × 10−5 in
service limit state.

As we have already mentioned, cross-joined structures have a limit state of
fatigue that fracture mechanics takes into account, through the Paris–Erdogan law.
These structures are often governed by a very rigorous design, especially at the foot
of the welding band. The causes of uncertainty are often linked to physical
phenomena: hydrodynamic loads, particularly aggressive environments, stress
intensity factors, tenacity, empiricism of behavior laws, etc. Fatigue cracking in
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metals is a multidisciplinary phenomenon which remains the object of many
scientific debates [SIG 67]. Fatigue cracking often leads to unknown mechanical
structures being analyzed using probabilistic theories with multiple correlations
developed by Markov’s chain theory, among others.

Faced with convergence problems, some authors such as Hohenbichler [HOH 84]
have preferred to settle on a linear approximation of the limit state surface near the
“design point”. This calculation is carried out beforehand by optimizing the area of
true failure or on a quadratic approximation of this area.

For example, a linear approximation of the limit state surface provides the huge
advantage of allowing a numerical integration of probability densities in the area of
failure. It is entirely sufficient with regard to the highly possible distortion on the
true surface. This surface is of course strengthened by the hyperplane surface. The
results from level II are sometimes similar to those arising from level III [SEL 93].
Long before the 1990s, an interesting study carried out by Schuëller et al. [SCH 79]
dealt with this issue. It is well worth consulting.

With calculation systems, the inherent risks to engineering science essentially
result from what we do not know with sufficient accuracy. Intuition plays a large
part in the field of reliability [PRO 87]. When in doubt, “you cannot doubt badly”.
The data relevant to projects involve materials, their geometric dimensions, and their
diverse faculties of “aging”. Many physical parameters are marked with uncertainty,
leading to their random and unknown character. We cannot calculate with certainty
what has already existed. Starting new design projects can also lead toward
mitigation, and even the opposite of the expected development of parameters which
constitute the mathematical skeleton of models.

The project becomes less disadvantageous when we consider a hypothesis where
sufficient information is collected to establish a quantitative estimation of risk.
Statistical tools rationalize the measuring of uncertainties to try and make structures
reliable. We will limit ourselves here to just present the necessary statistical tools for
the probabilistic approach in the domain of dimensional metrology. Their use aims
to estimate parameters of probability laws, which have been chosen a priori and/or
on the basis of conformity tests.

To emphasize this point, the statistical approach, in many other areas (science
and equipment in medicine), is very risky and even hazardous. One simple way to
properly understand the effect of unknown uncertainties affecting material and
structural behavior is to place them in conditions where they are subjected to
simulated uncertainties. It is then possible to estimate mathematical expectations and
the variance in variables necessary for the understanding of many phenomena
(stresses, resistances, displacement, safety margins). We can also treat simulated
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samples as a group of observations and apply an appropriate statistical treatment to
them. The making of the atomic bomb (at Los Alamos, USA) is an example of the
use of the MC simulation method. The principle of MC simulations is to generate a
group of pseudo-random realizations from a random variable or random field. To
obtain a realization x from the variable X obtained from the distribution function
PX(·), we simulate a number z uniformly distributed on [0,1], and then apply a
formula of the following type:

( )1
xx P z−= [7.1]

Many simulation algorithms on a uniformly distributed number [0,1] are based
on linear congruence, as follows:

( ) ( ){ }1 mod /n nZ Z m mα β+ = × + [7.2]

In this congruence relationship, it is necessary to define an initial value z0 of Z.
The quality of generation is linked to the period of return for the same realizations of
Z, as well as the dispersion of these realizations. The choice of α, β, and m depends
on this quality. As an example, we can mention an effective choice arising from the
literature such as the “Mersenne Twister” from Matsumoto and Nishimura:

– {α, β, m} = {1664525, 1013904223, 232} suggested by Knuth and Lewis;

– {α, β, m} = {69069,0, 232} suggested by Marsaglia;

– {α, β, m} = {3116728,1, 248} suggested by Lavaux and Jenssens;

In the present work, we have used the software MathCAD to generate a group of
pseudo-random variables of a RV.

7.2. Simulation of a singular variable of a Gaussian

According to the Box and Muller method, if z1 and z2 are two numbers uniformly
distributed on [0,1], the number u defined by 1 2sin(2 ) 2 ln( )u z zπ= − is a reduced
centered Gaussian variable.

– To simulate the Gaussian variable with mathematical expectations of μx and of
variance 2

xσ we apply: x u x xσ μ= × + .

– To simulate a log-normal variable with mathematical expectations of μx and of
variance 2

xσ we apply ( )x Exp u Lx Lxσ μ= × + where Lxμ and 2
Lxσ are the average

and the variance of ln(x).
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7.2.1. Simulation of non-Gaussian variable

In this case we can use the general relationship ( )1
xx P z−= . Note that for the

majority of laws of exponential type (Weibull), the inversion of the distribution
function does not create a problem. For other laws, a numeric inversion would often
prove necessary (see beta law).

7.2.2. Simulation of correlated variables

The vector X of correlated variables is characterized by its expected
mathematical vector μx, its variance–covariance matrix Σx, and the group of marginal
distribution functions PX1, …, PXn. The awareness of the latter is often more obvious
than that of linked probability density.

7.2.3. Simulation of correlated Gaussian variables

Starting from the simulation of a vector U to independent reduced centered
Gaussian components, we can build a construction of Gaussian X by:

. xx C u μ= + [7.3]

Σx = [C] × [C]T, where [C] is an inferior triangular matrix, obtained by a Choleski
transformation.

7.2.4. Simulation of correlated non-Gaussian variables

To do this, we must use the so-called Rosenblatt transformations. By simply
knowing the marginal probability densities of X1 and X2, it is possible to express
their linked density by the following relationship:

( ) ( ) ( ) ( )
( ) ( )

1 1 2 2
1, 2 1 2 2 1 2 0,12

2 1 2 2
, , , x x

x x
p x p x

P x x y y
y y

ρ= Φ =
Φ Φ

[7.4]

where:

Y1 and Y2 are two reduced centered Gaussian variables with the so-called
fictitious correlation ρ0,12;

Φ2(·) is the reduced centered binominal density.
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With the correlation ρ12 already known between X1 and X2, the following
relation is expressed as:

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2 1 1 2 2
12 2 1 2 0,12 1 2

1 2
, ,x x x x

x x

x x p x p x
y y dx dx

y y
μ μ

ρ ρ
σ σ

+∞ +∞

−∞ −∞

⎛ ⎞⎛ ⎞− −
⎜ ⎟⎜ ⎟= Φ
⎜ ⎟⎜ ⎟ Φ Φ⎝ ⎠⎝ ⎠

∫ ∫ [7.5]

This is a relationship from which we can extract the fictitious correlation value
ρ0,12. In the literature, some approximate expressions of ρ0,12 have been proposed by
Professor Der Kiureghian and Liu [KIU 85, LIU 86, LIU 91] for different marginal
probability laws. These suggestions are subject to restrictions on coefficients of
variations of variables X1 and X2 and on the value range of their correlation,
according to marginal laws.

For example, note that for two log-normal variables, ρ0,12 is expressed exactly as
follows:

1 2

1 2

1 2

1

12

0,12 2 2

12
2

ln 1

ln 1 ln 1

x x

x x

x x

x x

σ σ
ρ

μ μ
ρ

σ σ
ρ

μ μ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎜ ⎟ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

[7.6]

The simulation procedure of an X construction therefore consists of determining
the fictitious covariance matrix Σy and then simulating Y by C xx u μ⎡ ⎤⎣ ⎦= × + with
μy = 0 to finally end up at x1,…,xn by the following:

( )( )
( )( )

( )( )

1 1
1 1 1

1 1
1 1 1

1 1

... ......................

x

x

n xn n

x P y

x P y

x P y

− −

− −

− −

⎧ ⎫= Φ
⎪ ⎪
⎪ ⎪
⎪ ⎪= Φ⎪ ⎪
⎨ ⎬
⎪ ⎪=
⎪ ⎪
⎪ ⎪

= Φ⎪ ⎪⎩ ⎭

[7.7]

In the present work, we limit ourselves to an MC simulation for basic applications
arising from mechanical engineering techniques.
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7.3. Determining safety indices using Monte Carlo simulation

7.3.1. General tools and problem outline

The considered variables in this chapter are random. They have been simulated
[GRO 94] by their respective distribution laws, i.e. Weibull law for initial cracking
(a0), log-normal (Galton) law for m-coefficients and normal (Gaussian) law for the
number of cycles Ncycles.

– S is the resistance that the cross-joined structure can oppose to the load
(e.g. Δσ = 150 MPa) to remain in (and ensure) service.

– R is the resistance that the structure puts up against the constant load Δσ.

Beforehand, it is considered that failure is possible. This eventuality is therefore
more or less probable. The degree of failure will be characterized by the probability
when the equality (R − S) < 0 is verified. Therefore, let this probability PF be
expressed as:

{ } { }0 0FP R S or even R S M= − − =≺ ≺ [7.8]

where:

M is the safety margin;

PF is the probability of fracture (failure).

The model considered presents uncertainties which are essentially due to
unknown factors brought about by initial cracking (a0) by material properties. It is
vital to pay attention to the choice of conditions which risk being considered as a
normal distribution. The limit state function g(z) as a mode of reliability is
formulated in finite (n) terms. In general, one or more non-random base variables
correspond to the limit state function presented by a safety margin M. This is
defined by the following expression:

( ) ( )1 2, ,..., ng Z M g z z z= = [7.9]

where Z represents (n) vectors of random base variables (a0 and m).

These random base variables can be dependent (or independent). The failure
probability which results when M < 0 is represented by PF and is written as follows:

( )( ) 0P f Z dzg zF z= ∫ ≤ [7.10]
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F(z) is the probability density function of (z1, z2, …, zn). This allows the
reliability index to be calculated, with the help of the expression:

( ) ( )1 1c F F RP and P Pβ −= Φ = − [7.11]

where Φ(·) is the function of the reduced centered random variable from normal law.

The relationship between the reliability index βc and the failure probability PF
takes the graphical form as presented in Chapter 5. De Moivre’s law, reported by
Laplace and then by Gauss (lending to the habitual name of Gaussian law or normal
law), is largely utilized, which at times erroneously causes certain adequacy tests to
be used in manipulations. The use of Gaussian law is often justified, if not
indispensable, but in many problems fundamentally incorrect, if not absurd. It does
not seem inappropriate here for us to comment on these observations of the abusive
use of the normal law.

In our case study, we will be considering three distinct laws to simulate our
parameters of cracking. The increment of (100 × a0) is made on the probability
density function of Weibull law with two parameters. The m coefficient is also
random and is chosen in the same way as the a0 but on a probability density function
of Galton (log-normal) law.

After having read and calculated the parameters which will allow us to find the
numbers of corresponding cycles and will integrate the simulated random variables
a0 and m, we can then proceed to a mathematical statistical simulation of the results
of Ni found by this classic variable simulation. Note that the random variables of the
distribution function FN(n) are calculated as being close to 7.5 × 10−8.

We will also calculate the parameters a0 and m using the direct safety margin
method with the help of the integral damage indicator. The safety margin calculation
often arises when double integrals need to be calculated. To simplify this problem,
we can employ the MC simulation method.

Designed by O. Ditlevsen and P. Bjerager [DIT 86] as the method of Gaussian
safety margins, it is often used to resolve problems of mechanical reliability in
structures and components. It is also used to design the geometrical configuration of
Gaussian distributions. According to O. Ditlevsen [DIT 79, DIT 81], all structures
can use a reliability application through boundary theory, especially when the
system is redundant (and/or in a series). Sometimes, boundary theory can be hugely
complex in terms of application.

The reliability index β can also be calculated using the Hasofer–Lind theory
(βHL) [HAS 74], which is the smallest Euclidian distance from the origin of the
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failure surface (see Figure 5.2) in a reduced space of non-correlated, reduced,
centered, normal variables. This is very relevant in our scenario of treating a0 and m
a priori as two parameters from which we cannot presume a correlation. In the last
instance, the MC simulation method does not require any particular remarks. It is, as
a matter of course, the most appropriate reliability model for a singular structure
[DIT 86]. Also, it is simple in terms of application. The advantages and
disadvantages of the MC method are as follows.

Advantages:

– very precise results;

– simplicity of graphical reading;

– merit of its direct application on singular structures.

Disadvantages:

– long (but efficient) calculation time;

– inelegant method with regard to generating random data;

– often disadvantageous convergence issues.

In reality, the problem with this method rests with the “calculation time” factor
and the complexity of the procedure generalization concern, for all types of
structural problems, i.e. the capacity to treat multiple cases of reliability (aeronautic,
maritime structures, buildings, and other industrial equipment). Numerous authors
have analyzed and studied MC simulation techniques to try and free it from its
inability to resolve problems with double integrals to attain failure probability. We
class these methods into the following three types:

– Simulation, in a small number, coupled with a simulation of random variable
distributions or of the random variable of limit state.

– Direct simulation of all implicated variables in the behavior model and counting
the simulations which lead to a failed structure. Professor K.M. Engesvik [ENG 82]
(Trondheim, Norway, 1982) conducted a commendable study on a cross-joined
structure. The results of his laborious work merit particular academic attention.

– Simulation by separating variables or by conditioning techniques.

7.3.2. Presentation and discussion of our experimental results

The results from the probabilistic treatment of a number of cycles from previous
simulations of random variables allows us to see the importance of the engineering



Monte Carlo Simulation 215

risk of fracture in the singular cross-joined structure. After having listed what we
have just mentioned, we will attempt to show the efficiency of MC simulation in
calculating the failure probability of a structure. Remember that the constant
parameters of the behavior law are T, Δσ, acr, with the metal sheet thickness (25 mm),
the nominal stress (150 MPa), and the critical crack (mm, arbitrarily fixed).

– Consider the relationships between C and m where the correlation R2 is
deemed perfect.

– Choose at random 100 values of initial cracks a0.

– Choose at random 100 values of m-coefficients intrinsic to the material.

We can also remark that the random choice of these parameters is carried out on
probability density functions which have already been plotted. We are choosing an
increment of 10−5 which will allow us to sort the 10 randomly chosen values among
the a0 and m of the respective probability density functions. The 100 chosen values
among the a0 and m are grouped into the following table:

Welding processa a0_1st to a0_100th m_1st to m_100th

SAW 0.0027 to 0.0119 2.1821 to 3.3335

FCAW 0.0027 to 0.0180 2.1563 to 3.0648

SMAW 57 0.0013 to 0.0134 2.5590 to 3.0580

SMAW 76 0.0027 to 0.0196 2.4285 to 3.0392
aThe experiments were carried out by Professor T. Lassen (Norway).
With his kind and generous permission we have recovered the data to
conduct a thesis study [GRO 94, GRO 98].

Table 7.1. Results of MC simulations on four welding processes

7.3.3. Use of the randomly selected numbers table

To select an n number from the group {0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9} we set a rule
for ourselves from the table of random numbers. For example, we choose the
number in the left corner and then the number below each of the N first blocks,
which gives N = 5, 5, 8, 1, 5. Other techniques permit a direct reading from the table
of random numbers. In our case, the result is simple. For n = 5 × 5, an N at random
will be 68645.

2
uKN N
D

⎧ ⎫⎛ ⎞⎪ ⎪≥⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

[7.12]
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The problem studied here is simple and based on a necessary drawing from the
Kolmogorov–Smirnov (KS) test. For example, by trying to limit the uncertainty to ±
1%, i.e. the uncertainty D = 0.01 on the simulation of probability density function,
we choose a level of confidence 99.9%, i.e. α = 0.01 and we obtain N ≥ 2.657 × 104
draws. Ku is a coefficient read in the following table:

Determining the number of necessary draws
2KuN N

D

⎧ ⎫⎛ ⎞⎪ ⎪
≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

Level of confidence (1 − α) 0.80 0.85 0.90 0.95 0.99

Risk u 0.20 0.15 0.10 0.05 0.01

Coefficient Ku 1.07 1.14 1.22 1.36 1.63
Source: J. Cadiou [CAD 84] Techniques of the Engineer, pp. T-4 301–4.

Table 7.2. Determination of the number of necessary draws in MC SIM

2 2
41.63 2.657 10 27000

0.01
KuN N draws
D

≥ = = × ≈
⎧ ⎫⎪ ⎪⎛ ⎞ ⎛ ⎞
⎨ ⎬ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

The problem of drawing at random is variously realized. We have already
mentioned the drawing technique based on the KS test. Having judged this test
as being well adapted to our simulation variables, we will now apply it in this
study. Now we will use the MC simulation of random variables from a Weibull
law with two parameters. The random drawing process is carried out in the
following stages:

First stage: Obtain five random draws from the a0i in Weibull’s distribution of
parameter β with scale η. Call Ui a random uniform number and we get the
Weibull’s distribution of

( ) 1 i
i i

X
U F X Exp

β

η
⎛ ⎞

= = − −⎜ ⎟
⎝ ⎠

[7.13]

In the Eularian law Γ (see table A.1. in the Appendix). We can recover the values
of β and η, and thus for each joining process we will have Xi, a random steady
variable:



Monte Carlo Simulation 217

( )
1

ln 1i iX U βη ⎡ ⎤= − −⎣ ⎦ →

{ } ( )
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{ } ( )
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[7.14]

We have used the software MathCAD for Ui = 100. The results are as follows:

Calculation results of distribution functions for welding processes
Xi F(Xi) Fp(Xi) = 1 − F(Xi)

5.38624 × 10−3 5.554 × 10−3 0.7446
1.04272 × 10−3 9.554 × 10−3 0.9904
3.27640 × 10−3 9.6064 × 10−3 0.9039
6.17600 × 10−3 9.606 × 10−3 0.9039

Etc. Etc. Etc.

Table 7.3. Results of statistical distribution functions for Ui = 100

In this way we can steady the random variables Xi for the Weibull law with two
parameters and thus calculate the distribution function and probability densities for
each random draw, with the help of the Kolmogorov–Smirnov approach.

Second stage: The work set out in the first stage is resumed to calculate the
number of cycles, relative to each of the four welding processes. We will thus carry
out a statistical study to imitate the number of cycles found through the simulation
of random variables a0 and m. Recall that the distribution laws for each random
variable which intervene in probability failure density calculations all obey the
following laws:

Distribution laws by welding processes
Random variables Xi Statistical law Fp(Xi) = 1 − F(Xi)
Initial cracks, a0 Weibull law with two parameters
Paris coefficients, m Log-normal law (Galton)
Number of cycles N Normal law (Laplace–Gauss)

Table 7.4. Statistical distribution laws applied to the
four welding processes [LAS 92, GRO 94]
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We will now calculate the reduced, centered, normal law with an accuracy of
(7.5 × 10−8) for a reduced, centered, random variable u by the following relationship:

1 0
1 0.2316419

u with N
N

⎧ ⎫= ⎨ ⎬
+ ×⎩ ⎭

; [7.15]

The results from the distribution function program permit a “setting” of random
variables from the function F(Xi). As the latter is defined in R2 on the interval [0,1],
we are freed from 10−5, i.e. instead of considering the true value of Ncycles, we have
suggested (N × 10+5) because (10−5/10+5) = 1 allows us to program the distribution
function in the interval [0,1], as follows:

*********** NORMAL LAW PROGRAMWITH RV SETTING *************
IMPLICIT NONE

CHARACTER*24 DOCNAME
REAL*8 FX(100), X91000, X1(100)

+ U(100)
+ A1, A2, A3, A4, A5
+ PI, AVG, STDV

INTEGER N, I, CHOICE, CHOICE1
PI=4DO*ATAN91.D0)

A1 = +0.319815300
A2 = −0.356563782
A3 = +1.781477937
A4 = −1.821255978
A5 = +1.330274429

C ********************* INTRODUCTION OF DATA *********************
WRITE (6,*) ‘WOULD YOU LIKE TO EXPORT DATA INTO A DOCUMENT?’
WRITE (6,*) ‘(1) → YES (0) → NO‘
READ (5,*) CHOICE
IF (CHOICE.EQ.1) THEN

WRITE (6,*) ‘INSERT NAME OF DOCUMENT‘
READ (5, ‘(A)‘ DOCNAME
OPEN (86, FILE = DOCNAME, STATUS = ‘UNKNOWN‘)

ENDIF
15 WRITE (6, *) ‘INSERT AVERAGE AND STANDARD DEVIATION‘

READ (5, *) AVG, STDV
WRITE (6, *) ‘INSERT NUMBER OF VARIABLES‘
READ (5, *) N
DO I = 1, N
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WRITE (6, *) ‘XREAL (‘I, ‘) = ‘
READ (6, *) X1 (I)‘
END DO

C ******************* CALCULATION OF F(X) AND U(X) *******************
IF (CHOICE.EQ.1) THEN

WRITE (86, 5)
ELSE
WRITE (6, 5)
ENDIF
05 FORMAT (6X, ‘ X ‘, 12X‘ U(X) ‘, 12X, ‘ F(X) ‘)

DO I = 1, N
X(1) = X1 (I) – AVG)/STDV
U(I) = 1/(1+0.2316419*X(I)
F(X) = 1−1/(SQRT92*PI)*EXP(− X(I)**2/2)*(A1*U(I) + A2*U(I) **2 + A3*U(I)**3 +

A4*U(I)**4+ A5*U(i)**5 +
IF (CHOICE.EQ.1) THEN

WRITE (86, 10) X(I), U(I), FX(I)
ELSE

WRITE (6, 10) X I), U(I), FX(I)
ENDIF
ENDDO
10 FORMAT (2X, 3 (E14, 6, 2X))
WRITE (6,*) ‘ (1) → YES (0) → NO‘

READ (5, *) CHOICE1
IF (CHOICE1EQ.1) GO TO 15

IF (CHOICE1EQ.1) CLOSE (86)
STOP
END

X u(X) f(X)
0.116327 E + 02 0.270665 E + 00 0.100000 E + 01
−0.121076 E + 01 0.138978 E + 01 0.110584 E + 01
−0.146302 E + 01 0.151262 E + 01 0.652430 E − 01
−0.576923 E + 00 0.115425 E + 01 0.281909 E + 00

Table 7.5. Results: X, u(X) and f(X): statistical distribution laws

We have conducted ten simulations (n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
by considering random variables a0 and m by their respective distributions.
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Figure 7.1. Convergence of MC simulation

We can clearly see the convergence of MC simulation. We feared beforehand
that there would be convergence difficulties, because we knew from the literature
that one of the problems with SM was the convergence of simulated variable
probability results on randomly drawn N (100 in our case).

We will now present another mathematical technique used to generate random
numbers and succinctly show how we are able to approach them with our four
statistical distribution laws: uniform, exponential, Gauss, and Weibull. To do this,
this time we require a model programmed with the help of the MathCAD software.

7.4. Applied mathematical techniques to generate random numbers by MC
simulation on four principle statistical laws

This mathematical approach is used to create a vector of random numbers from
three laws on a given interval: a uniform law, a normal law, and an exponential law.
This mathematical technique includes two programs which allow us to control the
initial value used to generate random numbers.

7.4.1. Uniform law

First, it is advisable to enter the number of random centered variables and to
limit (set) them by their highest and lowest extremities, as follows:
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Enter highest and lowest extremities: l0 = 2hi = 2

Enter the number of groups for the histogram: ens_hist = 20

Vector of random centered variables: N = runif(n, lo, hi)

Frequency distribution: Lower = floor(min(N))

upper = ceil(max(N))

n = 1x103

( )

, 0.. _ int .
_

int, int int .0.5

j
upper lowerhr j ens hist and lower hr j
ens hist

f hist N and hr

⎧ ⎫⎛ ⎞−
= = = +⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎨ ⎬

⎪ ⎪
= = +⎪ ⎪⎩ ⎭

Figure 7.2. Frequency distribution of uniform law using MC simulation

7.4.2. Laplace–Gauss (normal) law

Enter the number of random centered variables: n = 1 × 103

Enter the average and standard deviation: μ = 0 and σ = 2

Vector of random centered variables: N = norm(n, μ, σ)

Frequency distribution: Lower = floor(min(N))

upper = ceil(max(N))/2

( )
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1int . int, int int .
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Normal adjustment function: F(x) = n.hr.dnorm(n, μ, σ)

Figure 7.3. Frequency distribution of Gaussian law using MC simulation

7.4.3. Exponential law

Enter the number of random centered variables: n = 1 × 103

Enter the rate a: α = 0.5

Enter the number of groups for the histogram: ens_hist = 20

Vector of random centered variables: N = rexp (n, α)

Frequency distribution: Lower = floor (min (N))

upper = ceil (max (N))/2

( )

, 0.. _
_

1int . int, int int .
2j
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Exponential adjustment function: F(x) = n. hr. dexp(x,α)

7.4.4. Initial value control

The following program allows us to generate the same set of random numbers
following a normal law at each iteration, by resetting the initial value. Let the
number of iterations n = 103 with an average μ = 0 and standard deviation σ = 2.

1 2 3 4
0

50

100

150

f

F int( )

int
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Figure 7.4. Frequency distribution of exponential law using MC simulation

Table 7.6. Generation of random numbers following a Gaussian at each iteration (n) by
resetting and controlling the initial value

0 3.25 6.5 9.75 13
0

65

130

195

260

f

F int( )

int

n 1 103×= SameNormal n μ, σi,( )

Seed 1( )

nums rnorm n μ, σ,( )←

M i〈 〉 nums←

i 0 5..∈for

M

:=

μ 2.5462=

σ 0.5462=

DiffNormal n μ, σ,( )

0 1 2 3 4
0
1
2
3
4
5
6
7
8
9
10

2.3064 2.4892 2.7219 2.7856 2.8017
2.1751 1.5986 2.1684 1.5953 2.1618
2.2877 2.2405 2.2362 2.3375 2.2146
2.0265 2.7612 1.9111 2.2290 2.1115
1.6255 1.8906 2.8920 2.3726 2.5833
2.5700 2.2959 1.8797 2.4988 2.3458
2.4803 2.6512 1.4234 2.4392 2.9030
2.8501 2.7230 2.8549 2.7788 1.7354
3.7434 2.9679 2.1433 2.2413 3.0181
2.9879 2.2165 2.7377 3.3617 2.3326
3.0843 2.5140 1.9468 2.4471 ...

=
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Note that the exact same set of random numbers is generated each time; each
column includes the same numbers in the same order. In the same vein, this program
allows us to control and to repeat the generation process with a new set of random
numbers from a given initial value.

M = DiffNormal(n, μ, σ)→ ( )
( )

0..7

( 1)
, ,

, ,

for i

Seed i
DiffNormal n

M nums nnorm n

iM nums

μ σ
μ σ

∈

+
=

←

←

Table 7.7. Generation of random numbers following a Gaussian at each iteration (n)
by resetting and controlling the initial value

We can also represent the columns graphically to clearly observe the effects.
With the help of the software MathCAD, the selection technique is as follows:

DiffNormal n μ, σ,( )

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7
8
9
10

2.306 2.489 2.722 2.786 2.802 1.592 3.377 1.589
2.175 1.599 2.168 1.595 2.162 2.172 2.155 1.576
2.288 2.241 2.236 2.338 2.215 2.431 2.384 2.590
2.027 2.761 1.911 2.229 2.112 3.665 2.455 2.166
1.625 1.891 2.892 2.373 2.583 3.465 3.015 2.937
2.570 2.296 1.880 2.499 2.346 2.973 1.715 3.303
2.480 2.651 1.423 2.439 2.903 2.457 2.577 2.538
2.850 2.723 2.855 2.779 1.735 3.470 1.911 2.705
3.743 2.968 2.143 2.241 3.018 3.310 2.951 1.863
2.988 2.217 2.738 3.362 2.333 2.788 2.475 2.907
3.084 2.514 1.947 2.447 2.426 3.099 3.045 ...

=

lower floor min M sel 1−〈 〉( )( )= upper ceil max M sel 1−〈 〉( )( )=

intj lower hr j⋅+( )= int int 0.5 hr⋅+( )=

hr
upper lower−

ens_hist
⎛
⎜
⎝

⎞
⎟
⎠

= j 0 ens_hist..:=

Adjust x( ) n hr⋅ dnorm x μ, σ,( )⋅= Q hist int M sel 1−〈 〉
,( )=



Monte Carlo Simulation 225

Using MathCAD software, it is possible to graphically represent these columns
to observe the effects of the Gaussian curves plotted in the following for four cases
of simulation:

The graphic results are presented as follows.

On this basis, we can now plot the histograms and inherent laws:

Figure 7.5. Adjustment of normal law frequencies using MC simulation

The following uses random number generators to explain how important
sampling methods can estimate probabilities of quantities with unknown distributions.
The estimation of an average in a logistical distribution sample is used for educational
purposes.
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PROBLEM.– We will demonstrate in an empirical manner that the average in the
sample (based on a sample size, SSize = 100) of a logistical distribution with the
parameters L and S, is located in the interval [a, b].

– Define the parameters of the problem: L = 1; S = 0.5; a = 0.9; and b = 1.1.

– Define the sample parameters of MC D; let

- NSamples = 1 × 104, the number of samples to collect, and then;

- SSize = 100, the number of points of data per sample.

– Carry out the sample and collect statistics on this sample:

I = 0. NSamples – 1 and Meansi= mean (rlogis (SSize, L, S))

– Estimate the desired probability by the following expression:

( )1
1

NSample

i
i

Success a Means b−
=

= ≤ ≤∑ therefore Prob 0.731Success
NSamplees

= =

We will shortly present the results of the MC simulation through drawing
random variables a0 and m at chance. We will calculate the failure probabilities of
the structure, through welding processes, on the results from 100 drawn values. We
can establish a good stability of convergence toward the 40th drawn values (see
Figure 7.2).

The next stage will provide a calculated interpretation of averages and standard
deviations, which we can calculate the reliability index by using a limit state
function, as clarified: M = (R − S) < 0.

Third stage: The results from the MC simulation calculations, which have
already been used to plot distribution functions, can be grouped by average and
standard deviation.

Welding processes μ Average
Ncycles

σ Standard
deviation Ncycles

Law for
Ncycles

Law for a0 Law for m

SAW 7.15E + 5 2.45E + 4 Gauss Weibull Galton
FCAW 1.54E + 6 4.46E + 5 Gauss Weibull Galton

SMAW 57 1.91E + 6 6.62E + 5 Gauss Weibull Galton
SMAW 76 1.18E + 6 3.12E + 5 Gauss Weibull Galton

Table 7.8. Average and standard deviations from MC simulation of variables
on the number of theoretical cycles to imitate parameters a0 and m
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After having carried out a “setting” of functions from random variables (a0, m,
and N), we can apply the method of load-stress to calculate the failure probability PF
and the safety index. Our results must be similar to the following theoretical graph:

We will now attempt to answer the following question: With what probability of
PF would there be certain failure, if we know its capacity R to resist load S, and what
would its probable safety index βc be?

Figure 7.6. Simplification of failure probability PF according to a Gaussian distribution

To objectively answer this question we follow the following stages:

a) First stage

According to Figure 7.6, we can clearly see that it is necessary to first calculate
and statistically simulate the number of cycles, by welding processes. This is what
we have done until now through the simulation of random variables. Then, we can
consider that the simulated Ncycles correspond to R and the “added” simulated Ncycles
correspond to S.

b) Second stage

This stage involves choosing, based on an industrial demand (functional
specifications), a load S which allows us to verify whether the structure will resist or
break, by adding a supplementary load to the one designed at hypothesis stage. In our
precise case, there is good reason to calculate a limit state function M < 0, a failure
probability PF, and a safety index βc. In accordance with what has been said in this
chapter so far, it would seem wise to consider a hypothesis with S > 1.5R, according
to which we could calculate the failure probability PF and its safety index βc.

To do this, we must calculate and plot the probability density functions of the
Ncycles, i.e. R, and on the same graph add the results from the probability density
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functions of load S. Graphically, the intersection of the two curves allows us to
locate the failure probability as shown in Figure 7.6. Recall that analytically, the
failure probability is evaluated across the limit state function M, as shown in the
relationships [7.1] and [7.4]. After having defined the foundations of the random
variable calculations (a0, m, and N), we will present the results of these parameters
from MC simulation as follows:

Statistical characteristics SAW
process

FCAW
process

SMAW 57
process

SMAW 76
process

Average of μR 7.15E + 5 1.54E + 6 1.91E + 6 1.18E + 6
Average of μS 1.07E + 6 2.13E + 6 2.87E + 6 1.77E + 6
Standard deviation of σR 2.45E + 5 4.46E + 5 6.22E + 5 3.12E + 5
Standard deviation of σS 3.68E + 5 6.69E + 5 9.33E + 5 4.68E + 5
μR – μS 3.55E + 5 5.90E + 5 9.60E + 5 5.90E + 5

R Sσ σ− 4.42E + 5 8.04E + 5 1.12E + 6 5.62E + 5

Table 7.9. Calculation results for the theory of resistance and stress (R − S) < 0

The graphical results which follow indeed correspond to the theoretical plot in
Figure 7.6.

i) Welding process: SAW

Figure 7.7. Graphical results of failure probability PF calculations,
simulated according to a Gaussian distribution using MC simulation

and an arbitrary choice by the engineer
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ii) Welding process: FCAW

Figure 7.8. Graphical results of failure probability PF calculations,
simulated according to a Gaussian distribution using MC simulation

and an arbitrary choice by the engineer

iii) Welding process: SMAW 57

Figure 7.9. Graphical results of failure probability PF calculations,
simulated according to a Gaussian distribution using MC simulation

and an arbitrary choice by the engineer
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iv) Welding process: SMAW 76

Figure 7.10. Graphical results of failure probability PF calculations,
simulated according to a Gaussian distribution using MC simulation

and an arbitrary choice by the engineer

c) Third stage: graphical interpretation of probability densities arising from
MC simulation (resistance/stress (R − S) < 0)

Figure 7.11. Graphical results of the safety index (β) by joining processes
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We can establish on inspection of the two probability density functions that the
structure will not be able to withstand the load that is imposed on it.

This process is more economic compared to traditional safety coefficient
calculations, which take material physics into consideration in a direct method. This
method does not have the pretence of being perfect, but it does have the merit of
considering three random variables from the crack growth law [a0, (C and/or m) and
N]. In terms of these results, we have calculated, by exponential regression, an
average relationship which allows us to read the failure probability according to the
safety index (βc) with a good correlation (R2 = 0.91).

7.5. Conclusion

We have presented the MC simulation method, which has allowed us to obtain
very weak probabilities, in the region of 10−6. This method is relatively well adapted
to singular structures because first it allows us to determine the safety index βc,
which is used to design structures and constructions. Also, with very few additional
calculations and without a restrictive hypothesis, it completes the independence
between resistance R and load S. By knowing the Hasofer–Lind or the Cornell
index, this method allows us to attain a so-called level III precision, with a few
supplementary calculations. On the other hand, this method remains dependent on
the random drawing of random variables a0 and m. This is what we have done
throughout the examples shown in this chapter.

We are equally convinced that for 27,000 draws from the KS model, we have a
convergence of failure probability. However, we note the complexity of the MC
simulation method. Structural reliability analysis requires the control of structural
and material behavior. It needs ample advanced knowledge in probabilistic
simulation to reach a correct imitation of the random variables which intervene in
the problem, in this case a0, m, and N. It also requires highly evolved mathematical
techniques to carry out multidimensional integrations from probability densities and
zones of failure (M < 0).

The method of using pseudo-random simulations has clearly spread to the
study of safety in numerous fields. The most commonly used technique in civil
engineering is the MC simulations technique. This very general technique is simple
to put into place: in this chapter we have provided its principal features. The issue
that these techniques raise (which is dealt with in the following chapter) is their
convergence rate toward a stable and faintly variant result, when this result is a
failure probability, and therefore very weak. Technical literature (informatics
programs) on numerous pseudo-random algorithms provides uniformly distributed
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values. A very widespread class of generators uses a linear congruence. For our
part, we have used programs from the software MathCAD rather than the Fibonacci
suite.
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Chapter 8

Case Studies

8.1. Introduction

In this chapter, we present practical cases that are taken from our own
laboratories and workshops. First, the aim of this research is to confirm good
theoretical–practical compatibility, and second to present educational tools with the
aim of drawing up purely formative supervised works.

8.2. Reliability indicators (λ) and MTBF

8.2.1.Model of parallel assembly

A system with four parallel components (K) can tolerate the failure of half of its
elements. Reliability calculation is presented in the following, which supports our
reasoning:

( ) ( )!
1

! !

n n n iiR R
i n ii m

R −
= × −∑

× −=

⎧ ⎫⎛ ⎞⎪ ⎪
⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

[8.1]

where:

R is the reliability of the components; for R = 0, 0.1, …, 1.

n is the number of components; n = 4 components.

m is the minimum number of components in use; m = 2.



236 Fracture Mechanics 2

Figure 8.1. Assembly (arrangement) of parallel components

Figure 8.2. Failure curve for a system of parallel components

8.2.2.Model of serial assembly

The model of serial assembly supposes that the system does not reach the final
stage of its task if the first component breaks down. This assembly system only
applies to irreplaceable components. Let κ be the failure modes of (n) components in
an assembly system, then

a) Each component functions or fails independently of all other component, at
least until the failure of the first component.

b) The system fails when the first component fails.
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c) For each n (possibly different) the system’s components have a lifecycle
known by the distribution model Fi(τ).

Reliability, in the case of serial assembly, is written as:

( ) ( ) ( ) ( ){ } ( ) ( )
1 11

; 1 1 ;
n

s i
i

n n
R R h hs i s iii

F Fτ τ τ ττ τ
=

∑∏= =
==

= − −∏ [8.2]

where:

Rs(τ) is the reliability.

Fs(τ) is the distribution function.

hs(τ) is the failure rate.

The index (s) refers to the whole system and the index (i) refers to the ith
component. The whole system has (n) serial components as shown in Figure 8.3.

Figure 8.3. Arrangement of serial components

8.3. Parallel or redundant model

In the case of a parallel system, we suppose that all the (n) components that
make up the system function in an independent way, and that the system continues
to function as long as one component is still functioning. This is in fact the opposite
of a serial system, in which the failure of the first component results in the failure of
the system.

In a parallel model, all the components should have failed for the system to break
down. If there are (n) components, all (n − 1) will be redundant to the remaining

R1(τ) R2(τ) R3(τ) R4(τ) Rn(τ)

This serial system is equivalent to a component hence the following
equation:

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 ...
n

s niR R R R R R Rτ τ τ τ τ τ τ= = × × × × ×∏
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component (if all components are different). Once the system is started up, all the
components function until they fail. The system reaches failure point when the last
component fails.

1) All components function independently of one another.

2) The system functions as long as at least one component is still functioning.
The system fails when the last component fails.

3) The distribution function for each component is shown in equation [8.3].

Figure 8.4a. Parallel system

( ) ( )
1

n

s i
i

F Fτ τ
=

=∏ [8.3]

EXAMPLE.– Imagine a model composed of (n) components. We would say that a
composite system survives when at least (r) components continue to function,
whatever the (r). We call this an “r on n” system, which is in fact a system
combining a serial assembly and a parallel assembly. The system has (n)
components, which function independently from the others. As long as at least (r) of
these components (∀ r) are functioning, so too will the system. The failure of the

F4(τ)

Fn(τ)

This system is equivalent to a component,
hence the following equation :

( ) ( )

( ) ( ) ( ) ( ) ( )
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1 2 3 4 ...

n
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F F

F F F F F

τ τ

τ τ τ τ τ

=

= =

= × × × × ×
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system occurs when the (n − 1)th component fails r. Two scenarios are given as
follows:

–When r = n, the model “r on n” is reduced to a serial model.

– When r = 1, the model “r on n” is a parallel model.

In the following, we present the case where all components are identical.

1) All components have an identical reliability function R(τ).

2) All components function independently from one another (failure).

The system’s reliability is given by adding the survival probability of (r)
components, at the time (τ). The total of these probabilities is in fact the probability
of a binominal law with p = R(τ), so the system’s reliability is written as follows:

( ) ( ) ( )( ) 1
1

n nn i
R R Rs ii r

τ τ τ
−

= × × −∑
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

and [8.4]
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[8.5]

If not all the components are identical, then Rs(τ) is the sum of evaluated
probabilities for all the possible terms, formed by choosing at least (r) surviving
components and their corresponding failures. The probability for each term is
evaluated as being a product of R(τ). For example, if n = 4 and r = 2, the system’s
reliability would be:
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[8.6]

8.4. Reliability and structural redundancy: systems without distribution

8.4.1. Serial model

It is clear that in such an assembly of components, just one failing component
causes the failure of the whole system. For a system including components of
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different types (i = 1, 2, …, κ), the respective reliability for each component is
written as R1(τ), R2(τ), …, Rκ(τ). The reliability of the whole system can thus be
written as:

1 2
1

...series i
i

R R R R R
κ

κ
=

= × × × =∏ [8.7]

Figure 8.4b. Tree diagram of serial components failure

If the reliabilities are near unity (≈1), we can, instead, use expression 1i iQ R= − ,
which represents the failure probability. Expression [8.8] is written as follows:

1
1series i

i
R Q

κ

=
− ∑� [8.8]

We accept an error of:

2

1

2i
i

Error Q
κ

=

⎛ ⎞
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⎝ ⎠
∑≺ [8.9]

It is worth mentioning that the reliability of a system composed of a serial
assembly presents a smaller reliability than the weakest component presents. But, if
all the components are identical and present a reliability of (r), we can suppose the
following:

( ){ }1n
seriesR r n r= − ×� [8.10]

We accept an error of:

( )2 2Error n r×≺ [8.11]

8.5. Rate of constant failure

If λ represents a constant failure rate and if the system is composed of pieces
organized in a series with a constant λ, we can suppose that for an ith component:

β1 β2 β3 βn



Case Studies 241

( ) { }i iR Expτ λτ= − [8.12]

The system’s reliability is written as:

( ) { }i sR Expτ λ τ= − × [8.13]

With s i
i

λ λ=∑ the system presents a mean time before failure (MTBF):

1s sθ λ= [8.14]

By analogy, the MTBF: smallest
s component

θ θ≺

The reliability is written as:

( ) { }seriesR Exp nτ λτ= − [8.15]

For ( )s i nλ λ λ≅ = ×∑ which is quite weak

We suppose:

( ) ( ){ }1series sR τ κ τ− ×� [8.16]

We accept an error of:

( )2 2sError λ τ×≺ [8.17]

It is common for the system’s components not to present a constant failure rate.
As an example, consider a system where Zi(τ) is the failure rate of a component (i):

( ) ( ) ( ) ( )
0 0

iseries i i
ii i

R R Exp Z u du Exp Z u du
τ τ

ττ
⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑∏ ∏ ∫ ∫ [8.18]

The system’s failure rate, as a whole, is simply written as:

( ) ( )
1

series i
i

Z Z
κ

τ τ
=

= ∑ [8.19]
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The cumulated risk therefore becomes:

( ) ( ) ( )
0 0

1 1
series i i

i i

Z u du Z u du
κ κτ τ

τ =

= =

⎛ ⎞
Ψ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∫ ∫ [8.20]

Drawing on the relationships we have just mentioned and those which we
developed in Chapter 1, we will now present a case study applied to material and
structural reliability. Here is the initial hypothesis. Imagine a system of five
components assembled in a series:

– Component 1 has a constant failure rate, i.e. λ1 = Constant.

– Component 2 presents a distributed lifecycle according to Weibull law with
two parameters (η and β, see Chapter 1), its failure rate is λ2.

– Component 3 presents a distributed lifecycle according to Gamma law of
parameters (λ3 and k = 1.75, see Chapter 1, Part 1).

We can add two other components, i.e.:

– Component 4 presents a distributed lifecycle according to Galton (Log-
Normal) law of parameters (λ4 and k = 1.75, see Chapter 1).

– Component 5 presents a distributed lifecycle according to Saunders
(Birnbaum–Saunders) law of parameters (λ4 and k = 1.75, see Chapter 1).

ISSUES.–

1) Writing the reliability expressions of this system, i.e. Zs(τ), Hs(τ), and Rs(τ).

2) Writing the same respective functions after a task initiated after a period of
time (T, age of components), i.e. Zs(τ/T), Hs(τ/T), and Rs(τ/T).

3) Conducting a numerical calculation for the most appropriate law for fracture
mechanics through fatigue, supported by inherent graph plotting.

SOLUTION.– Following the mathematical relationships already presented in
Chapter 1, we suppose the following:

Failure rate Z(ττ):

( )
1

3
1 3

31seriesZ
β

λ τβ τ
τ λ λ

η η λ τ

−
×

= + × + ×
+ ×

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
[8.21]
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Failure rate ψψ(ττ):

( ) ( )1 3 3ln 1series

β
τ

τ λ τ λ τ λ τ
η

Ψ = × + + × − × + ×
⎛ ⎞
⎜ ⎟
⎝ ⎠

[8.22]

Reliability of system R(ττ):
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[8.23]

After a certain age (T), we suppose the corresponding expressions as follows:
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[8.26]

All calculations from the previous relationships are carried out after the age (T).

8.5.1. Reliability of systems without repairing: parallel model

In this example, to reach total failure, all the components must break down.

Figure 8.5. Tree diagram of parallel components failure

β1

β2

β3

βn
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It is clear that in such an assembly, one sole failing component causes the failure
of the whole system. In a system which includes (κ) components of different types
(i = 1, 2, …, κ), the reliability of the whole system is:

( ) ( ) ( )1 1 1 1Parallel i i i iR R Q because Q Rτ = − − = − = −∏ ∏ [8.27]

QParallel represents the failure probability of the whole system, and is written as
( )p iQ Qτ = ∏ . We can express the development of the reliability R1, R2, …, Rp for

structures S1, S2, …, Sn when they are assembled in parallel as:
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1 2 ... 1 ... 1 n
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Note that the reliability of a parallel system is greater than the reliability of the
component with the highest reliability. Also, it is important to remember that if the
components’ failures are not independent, it is highly advisable to use the Bayes
approach (conditional probabilities, see Chapter 3). Components with constant
failure rates are thus expressed as in the following:

Each component will have a reliability expressed as: ( ) { }i iR Expτ λ τ= − × and
the reliability of the whole system will be expressed as:

( ) { }1 1p iR Expτ λ τ= − − − ×∏ ⎡ ⎤⎣ ⎦ [8.30]

As previously developed, we also have the following expression for a variable
failure rate:

( ) ( ) ( )1 1
1 2 3 4 ... 1 ... 1 n

p nR S S S S S Sκ
κτ + += − + − + + − + + − [8.31]

( ) ( )( )

( )( )

1
1 2

,

3
, ,

; ;

; , ...

i j

i j i

i i j

n
i j

S Exp S Exp with i j

S Exp i j etc S Expκ

λ λ τλ τ

λ λ λ τ τ λ

κ

κ

− + ×− ×

− + + × −

⎧ ⎫
= = ≠⎪ ⎪

⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪

= ≠ ≠ =⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑ ∑

∑
[8.32]



Case Studies 245

Numerical application: Imagine three components which make up a parallel system
whose failure rate is λ = 0.5. After a certain longevity T = 1 relative to a task of
τ = (0.1, 0.2, …, 10), checking the system shows that the two components are able
(fine), and we will therefore get a reliability of R(τ) = ?

( ) ( )2parallelR Exp Expλ τ λ ττ − × − ×= × − [8.33]

Summarized solution: If λ = 0.5 and τ = (0.1, 0.2, …, 10) we get:

Figure 8.6. Reliability, at the time (τ) of a parallel assembly system

If the system is not checked after the age = (0.75), we get R(τ/T):

( )
( )

2 0.75 :
2

parallel
ExpR Exp if we get
Exp

λ ττ λ τ
λ

⎛ ⎞− × + Τ
−⎛ ⎞ − × ⎜ ⎟= × Τ =⎜ ⎟ ⎜ ⎟− × ΤΤ⎝ ⎠ ⎜ ⎟−⎝ ⎠

( )1 2
31:
2PFor λ λ θ λ ⎛ ⎞= = = ⎜ ⎟⎝ ⎠

Rp1 τ( )

0.951

0.905

0.861

0.819

0.779

0.741

0.705

0.67

...

=

For 2 components Rp2 τ( ) e
λ− τ× 2 e

λ− τ×−( )×:= then Rp2 τ( )

0.998

0.991

0.981

0.967

0.951

0.933

0.913

0.891

...

=

For 1 component Rp1 τ( ) e
λ− τ×:= then

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Rp1 τ( )

Rp2 τ( )

τ etc. ...

Τ



246 Fracture Mechanics 2

The MTBF is thus found as:

( )(2)
1 2 1 2

1 1 1+ -parallelθ λ
λ λ λ λ

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

[8.34]

Figure 8.7. Reliability of a system of parallel components after the age (T)

This is in fact the combination of the previous expression of Rp(τ), giving the
following:
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[8.35]

Specific example: In the reliability expression Ri, at the specific times (τ), Ri(τ), we
substitute the Ri(τ) with Ri to eventually lead to Rp(τ). The latter corresponds to the
average time until failure from Rp(τ).

Attention: These relationships are valid for a first task, in the case of original (new)
components. If the task started at a great age, i.e. after a certain lifecycle (of
functioning), there is a good reason to use the following relationships:
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( )
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Here is an applied example for educational purposes: At the time τ = 0.2 and
T = 1, we present a case of two components whose statistics are simulated by
Weibull law with two parameters, as follows:

Case 1→ (λ1 = 1 and β1 = 3/2) and Case 2→ (λ2 = 2 and β2 = 2).

Parallel system. For two components, we will get the following:

a) First task according to time (ττ):

τ = 0.1, 0.5, …, 5 for η1 = 0.5658, β1 = 0.5658 and for η2 = 2.5654, β2 = 3.5654

Figure 8.8. Evolution of Weibull’s reliability for a parallel system
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b) First task after the age (T, functioning lifecycle, Weibull):

Figure 8.9. Evolution of reliability for a parallel system after age (T)

c) Second task at age T = 0.75:

If λ1 = 1.5654 and λ2 = 1.5658, the MTBF ( )2pθ λ will therefore be written as:
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8.6. Reliability applications in cases of redundant systems

There are various cases of redundancy. We present here the essential cases.
When we make more components work than there is need, we say that there is
redundancy. Redundancy is deemed active when the components are permanently in
use. Redundancy is sequential or backup if only certain components are activated,
according to need. In the case of structural redundancy, a structure is deemed
redundant when a local damage is not fatal for the global safety. Such a behavior is
often encountered in experiments and can be explained, at least partially, by the
following reasons:
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1) An overabundance of components’ safety, because of sizing, is not strongly
optimized with regard to normal conditions of service (e.g. availability and supply
constraints). If the sizing codes do not sufficiently take account of uncertainties
(global safety coefficients) this gives rise to heterogeneous levels of reliability in the
global structure.

2) At the time of damage (failure of a rod), the whole structure is mobilized
to redistribute its efforts and resist it (e.g. the geometric hyperstaticity of the
system).

Figure 8.10. Evolution of reliability for a parallel system after age (T)

Conventional codes do not essentially apply to the local level. They do not take
into account the geometric hyperstaticity of the system. However, reliability methods
offer more precision and coherence in terms of structural safety, because they take
account of structural redundancy. The reliability framework of failure modes
such as plasticization, buckling, or fatigue allows us to standardize the design and
maintenance of structures.

The probability that any first element on the platform breaks is PAFF (Probability
of Any-First member-Failure event). To calculate this probability, we combine all
individual failure events. The system’s failure probability is represented by PSF
(Probability of System Failure). The PSF is calculated by exploring the fault tree. It
is calculated by substituting a certain number of predominant mechanisms in a
series. The probability of a mechanism is calculated by substituting a sequence of
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individual successive failures in a parallel assembly. This sequence gives rise
to a global failure. As a measure of the system’s effect, the literature [BAR 65],
[JOH 64], [KOV 97], [GRA 66] suggests using the following probabilities relation:

{ }0 SF AFFR P SF AFF P P= = [8.38]

R0 represents the conditional probability of the system failing, knowing that a
first element has already broken. We suggest using the following index as a
probabilistic measure of redundancy:

{ } { }01 1pR R P SF AFF= − = − [8.39]

Rp represents the conditional probability of the system surviving, knowing
that at least one element has already broken. R0 is its inverse measure. Rp is
more natural, i.e. (Rp = 0) means that the structure is not redundant (no survival
probability if a first element is broken). For this condition, 0 < R

p
< 1 means

that the structure is redundant. A structure possesses a great number of failure
mechanisms.

For example, a hyperstatic structure of S degrees, presenting (κ) plastic joints,
will have [κ(κ − 1) × (κ − 2), …, (κ − s)] failure mechanisms, just taking into
account the failure mode. As it is seemingly impossible to determine a list of all
failure mechanisms, it would appear wise to adopt a method that allows us to
determine dominant mechanisms.

To do this, we can resort to the so-called Branch Bound method, to identify
failure mechanisms in descending order according to their probability of occurrence.
Then we must construct two incomplete representations of the structure, which
frame the smallest and highest boundaries of the system’s failure probability Pfs or of
the reliability index βs. To construct the fault tree, we proceed in stages, as shown in
Figure 8.11.

1) Class the failure elements in ascending order according to their reliability
index. The strongest failure probability corresponds to the weakest reliability index,
and it is therefore this index that will be kept for the future tree diagram.

2) Then consider the failure element of the reliability index (βn), and calculate
the new reliability indices of the elements remaining on the structure. Continue in
this way, constructing this tree using the previously selected element of failure.
Here is an outline of the schematization, shown in Figure 8.11:
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Figure 8.11. Primary fault tree

Figure 8.12. Primary and secondary fault tree

Prospecting the fault tree only involves components subject to the structure’s
failure. The trick (or the cleverness) consists in aiming at an upper limit of the
prospecting index from which we could deliberately liberate ourselves from
inspecting routes to failure (or ruin). An initial point corresponding to the first
branch of the fault tree is chosen on the element whose reliability index (βweak) is the
weakest. In reality, this element presents a post-failure behavior. Then, we can
redefine the new prospection indices for the remaining elements.

By classing the indices obtained in this way, we can select a new element that
will represent the extremity of the previous branch and the departing branch point.
By repeating these different stages each time and by considering the post-failure
behavior of selected elements (calculation of new indices), we can then define a first
branch of the fault tree with the following form:
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Figure 8.13. First branch of the fault tree

Faults (routes to failure) of superior elements only intervene if the inferior
elements have followed a post-failure behavior. This is conditional failure. The
difficulty lies in prospecting the other branches of the fault tree. In effect, the
behavior of elements involving the first branch, in particular the failure criterion,
must not restrict the prospection of the other branches.

8.6.1. Total active redundancy

The system has failed only when the last component breaks. R is the reliability
of a component of the structure. For (n) components prone to redundancy, we
suppose:

( ){ } ( ) ( ) ( )1

1

1 ... 1
1 1 1

!

n
n i i i i

n n n
i

n n n i
R R C R and the C

i
+

=

− − +
= − − = − × × =∑ [8.40]

Figure 8.14. Fault tree branch for a structure with four components

Following the binominal law (see Chapters 1 and 2, volume 1), we suppose:

( )( )

1

1
n

n ii i
n n

i

R C R R −

=

= × × −∑ [8.41]

Numerical application: Imagine a structure with four components (κ) in parallel,
which allows the failure of half its elements:

Decisionβ1 β2 β3 βn Etc.
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β3 >β4
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– R is the reliability of components with R = 0, 0.1, …, 1.

– n is the number of components, n = (4, 2, and 3).

– κ is the number of minimum components, κ = 2.

Figure 8.15. Reliability of a structure with four components (total active redundancy)
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We can clearly see the evolution of (R) according to (R) if n = 2, 3, and 4. For
the first task, with a constant failure rate (λ = Constant), we get:
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8.6.2. Partial active redundancy

The null backup failure rate is considered, and then a non-null backup failure
rate followed by practical applications on the components with constant failure rates.
Imagine (n) unfailed components. The structural system functions and allows (n ≤ κ)
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breakages. The system as a whole allows (n − κ) breakages. Using the binominal
distribution, we suppose:

( ) ( )
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R 1 =1 R 1
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n i n ii i i i
n n

n i i

R R C R C R
κ

κ
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=
− −

= =
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We apply the recursive reasoning method to get Rκ/n:

( ) ( ) { }1 1 ;n n
n n

n nn
R R C R R R R n components in a seriesκκ κ
κ κ

−
+= + × × − ≡ [8.44]

Figure 8.16. Reliability of a structure with four components
(partial active redundancy)

We can see clearly the evolution of (R) according to (R) when n = m = 1, 2, and
3. If (m = 1 and κ = 1), we can establish a straight line. This corresponds to the
so-called total active redundancy. For the first task, with a constant failure rate
(λ = Constant) we get:
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Imagine another case in which a structure has five components assembled in
parallel.
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Figure 8.17. Parallel arrangement (the so-called total active redundancy)

A brief reading is taken where the signal from the entire structure represents the
total signals. Let the reliability of a single component Rc = 1 and the reliability
R = ½. Thus if n = 3, the reliability decision RS = Rsystem is expressed as:
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In summary, for the majority of redundancy, the reliability of a system
corresponds to the reliability of the partially active redundant system (Rκ/n) by the
reliability of the decision system. Here κ is a first integer greater than (n/2).

EXAMPLE.– Sequential redundancy practice: Imagine a component in use with a
given failure rate (λ). We have already mentioned reliability and statistical laws
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(see Chapter 1, volume 1). Suppose that the system is approached by a Gamma type
law, with (n) number of components. The reliability of this gamma law is written as:

( ) ( ) ( )
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If it was a question of partial sequential redundancy, i.e. that the system
necessitates κ components assembled in a series, with n > κ components, we express
the system’s reliability as follows:
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Numerical application: Imagine a mechanism that expresses a power law model
(Weibull, exponential, etc.). As an example in practice consider the pin of a milling
machine, which has a failure rate of λ = 10−3 RPM. The belt of the motor involves a
partial sequential redundancy of 4, i.e. κ = 4 and n = 10 components. Calculate and
plot the evolution of the system’s reliability Rsystem when the pin rotates between 300
and 3200 RPM, supposing that the milling machine does not break down for any
component’s failure.

Solution: We have programmed the function Rsys(τ) and the results are given as
follows:

Now imagine components with a constant failure rate (i.e. a failure rate
different to 0 backup). Let λ0 be the backup failure rate and λ1 the failure rate
in use. If n = 2 components, we suppose, for example, the following reliability
expression:
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Figure 8.18. Reliability of a structure with 10 components (partial active redundancy)

The MTBF (θ) is written as:
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If n = 3 components, the reliability is expressed as:
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and the MTBF (θ) is therefore written as:
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8.7. Reliability and availability of repairable systems

A redundant system with (n) components at the moment (τ) in one of the ith
states (m + 1) εi is characterized by the number ith of components in use. We can
represent the state where all components are in use without failure with εm. By
contrast, ε0 expresses the state where all components are out of service (total
breakdown = failure). It is customary to present the evolution of a system using
Figure 8.19:

Figure 8.19. Graphical illustrations showing states of transition

The cylinders represent the state and the arrows express the transition from one
state to another. We can now do the mathematical reading:

In probability terms, at the time (τ) in the state εi, the probability will be Pi(τ).
Thus the differential of the probability will be Pi(τ)dτ. There is a good reason to take
from the probability (reliability) Ri that the system is passing from a nominative state
εi to ε(i−1) between the allotted times of the process, i.e. τ and (τ + dτ). It is on this
level that we can see the failure of a given component. By analogy, there is reason to
believe that between τ and (τ + dτ), thus the state εi and the state ε(i−1), there is
component repair. For the simplicity of probabilistic understanding, it is advisable
not to consider the two terms to express the inherent probability in the state εi at the
time (τ + dτ), as follows:
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This is schematized as shown in Figure 8.20:

Figure 8.20. Graphical illustration showing states (m) of transition
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( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )1 1 1 1
Pi
d

P d d P d R P Ri i i i i i i
τ
τ

τ τ τ τ τ τ τ τ
∂

= − + +
+ + − − [8.56]

In limited conditions, (i.e. 0 and m) we suppose:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0
0

1 1 0

1 1

In state (0)

In state ( )m

P
d

Pm
m m md

P d d P R

P d d P R m

τ
τ

τ
τ

τ τ τ τ τ

τ τ τ τ τ

∂
←

∂
←− −

= −

= − +

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

[8.57]

To properly apply these equations to material and structural reliability, it is worth
laying down limited conditions (a starting hypothesis). At the start of a new design
(the equation in case 1), we start from the principle that no component is faulty. But,
if we start from the idea that just (κ) components are functional, we can consider the
equation in (case 2).

( ) ( ) ( )

( ) ( ) ( )

1 0 1 ; 0 0 ; (0)

2 0 1 ; 0 0 ; ( )

In state

In state

case P P i mn i

case P P i ti κ κκ

⇒ = = ∀ ≠ ←

⇒ = = ∀ ≠ ←

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

[8.58]

Normally, before calculating the reliability of the system, it is advisable to find
and clearly note the state (εindice > 0) of the upper index, i.e. the probabilistic indicator
that would cause system failure. We call this an “absorbent state,” and we write its
reliability as:

εεm+1 εε i

εεm-1
di+1(τ)dτ

Ri(τ)dτ

di(τ)dτ

Ri-1(τ)dτ
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( ) ( ) ( ) ( ){ }
1 0

1 ; 0 ,
m d

i i i j
i d i

R P P Associated with Rτ τ τ τ κ
= + =

= = − = ∀ ≤∑ ∑ [8.59]

The general matrix is written as follows:
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( ) ( )
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0 0 0 0 0 0 0 1

m
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[8.60]

In continuum mechanics through fatigue, we have stated a hypothesis where the
system’s components failure rate is variable. In our case study, we prefer to use the
Laplace transformation that presents the matrix in equation [8.60] as follows:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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P
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⎪ ⎪=⎪ ⎪
⎪ ⎪
∂⎪ ⎪

⎪ ⎪∂⎩ ⎭

[8.61]
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If m = 2 components, the equation system is presented as follows:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2
1

1
2 1

0
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2 -

m m
P
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⎪ ⎪∂⎪ ⎪
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Or even as the matrix form:

( ) ( )
( ) ( )( )

( )
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( )
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2 2

1 1

0 0

1 2 0
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0 1
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[8.62]

First of all, here is a simple example of the Laplace transformation:

( ) 21 2 Laplace
S
λ τλ τ × ×Δ

− × ×Δ → − , ( )Laplace
S

λ τμ τ ×Δ
Δ → , etc.

( ) ( ) ( ) 02 1; ;2 1 0
PP Pd d d
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d s d s d s

τ τ τ
τ τ τ

→ → →
⎧ ⎫

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎩ ⎭

We have chosen the Laplacian operator (Laplace transformation) because if
P2(0) = 1 it is convenient to resolve the equations system:
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Figures 8.21. Graphical illustration showing states of transition (when m = 2)

Thus if P2(0) = 1, we get the equations system (transformed by Laplace):

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 1

1 2 1

0 1

1 2

2

S S S S

S S S S

S S S

λ μ
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λ
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⎪ ⎪℘ = ×℘⎩ ⎭

[8.63]

This system is easy to resolve: As ( ) ( )1 1S S sλ λ×℘ → × ×℘ the Laplacian

( )0 S℘ takes the following form:

( )
( )( )

2

0 2 2

2
3 2

S
S S S

λ

λ μ λ

×
℘ =

+ × + × + ×
[8.64]

(λ1 and λ2) represent the respective roots of this equation.

( ) ( ) 2 2
1 2

1, 3 6
2

λ λ λ μ λ μ λ μ= × − + ± + + × [8.65]

Because the reliability expression is written as: R(τ) = 1 − P0(τ), we can
therefore suppose:

( ) ( ) ( )2 1
0 1 2

1 2

11R P Exp Expλ τ λ ττ τ λ λ
λ λ

× ×⎛ ⎞
= − = × × − ×⎜ ⎟−⎝ ⎠

[8.66]
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The MTBF θSystem is presented as follows:

2
3 3
2 2system

λ μ θ τθ θ
τλ

+ + ×⎛ ⎞ ⎛ ⎞= × =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
[8.67]

Sometimes we are made to calculate an average repair time for a given system.
To do this, consider a concrete example: Imagine a system composed of (m) pieces,
which are all different from one another. λi represents the failure rate of the (ith)
components to the (mth) component. The average time taken to repair a given
component, for example the (ith) component, is expressed by τi. To estimate an
average time to repair the system, we can postulate the expression (τavg = τμ).

1

1

1

m

i i m
i

im
i

i
i

ifμ

λ τ
τ λ λ

λ

=

=

=

⎛ ⎞
×⎜ ⎟

⎜ ⎟
= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

∑
[8.68]

The MTBF (θ) can be written as:

1 1

1

m

i i m
i

i i
i

MTBF μ

λ τ
θ λ τ θ λ τ

λ
− =

=

×

= → = = × ×
∑

∑ [8.69]

Numerical application:We can now deal with the calculation of the average failure
rate. The results shown in the following figure confirm the speed of the failure rate
in a Weibull law, as shown in Chapter 1 (volume 1).This exactly corresponds to a
repair rate from a Weibull law, thus showing that the failure rates in fracture
mechanics are not constant. For the last reliability analysis, we will present a
predicted design project and trials. In mechanical reliability (of fracture), it is
important to clearly distribute the stresses applied on each component. This is
incidentally the conceptual aim at the time of distributing reliability constraints.

Well carried out experiments create history even from previous results
(laboratories). Some trials are necessary to evaluate the reliability of components
and of the system in its whole complexity. To do this, we must place the
components in quasi-real conditions (or even better, in real conditions), aiming to
respond to solicitations to make an appropriate decision on results.
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Figure 8.22. Average failure rate

8.8. Quality assurance in reliability

It is essential not to confuse quality with quality assurance. Declaring quality
assurance goes beyond conventional fixed limits of product quality. Quality control
is often defined by capability indicators (SPC) (see Chapters 2 and 3 of volume 3).
Although reliability is related to quality control, using both mathematical and
statistical tools, it is not safe to confuse the results and make them show what they
do not necessarily show. Ultimately, the aims of mechanical reliability are:

1) to approve and measure the quality of components;

2) to qualify the means of production: manufacturing processes, tools of
manufacture, and metrology;

3) to conduct essays of trials to requalify components and to validate previously
held solutions.

8.8.1. Projected analysis of reliability

An existing system has a reliability R, which is dependent on the reliabilities of
its components (in parallel, in a series, or a combination of the two).

Let Rsystem and Rcomponent(1), Rcomponent(2), …, Rcomponent(m) such that:

{ }1 2Reliability Reliability Reliability, ,...,system component component componentmR f= [8.70]
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As indicated in the aims of reliability, it is always beneficial to aim to improve
systems by their components and their design. It therefore goes without saying that
new improved reliabilities must verify the condition:

{ }
{ }

1 2
Reliability Reliability Reliability, ,...,

...

component component component m

system system

improved improved improved

improved reliability improved reliabilityor even

f

R R

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪≥⎪ ⎪⎩ ⎭

;

;
[8.71]

With the aim of achieving this, it is advisable to consider the archetypal
reliability indicator, which is the failure rate (weakness or fracture, λ). Thus, for a
system designed in a series, we can suppose:

{ }1 2 m
...

component component component

improved improved improved improvedreliability
updated systemf λ λ λ λ+ + + ≤ [8.72]

The distribution of failure rate constraints is carried out technically by various
mathematical approaches, including the weighting (weight) method. After
mechanical design, we are more familiar with the MTBF (θi) of the designed system
and therefore the failure rates (λ = Σλi). According to the agreed safety importance
for the new system, we allocate a weighting (weight) Pi.

i updated system specified

improved reliability failure ratei
i i

system
P P with P

λ
λ

λ
⎛ ⎞

= = Λ = ×⎜ ⎟
⎝ ⎠

[8.73]

Numerical application: With a total time of normal functioning equivalent to
62,000 hours, we can deduct the following:

Number of
components
assembled in a
series

Piece
1

Piece
2

Piece
3

Piece
4

Piece
5

Piece
6

Piece
7

Total

Fracture time 68 56 54 35 25 15 5 258
hours

Table 8.1. Data showing fracture time by individual pieces

Solution

– [ ]68 56 54 35 25 15 5 ;nT =

– TTPF = Total Time of Proper Functioning n = 1, 2, ..., 7;
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– TTBF = Total time of fracture, when n = 7 components;

– TTBF = 62,000 hours (recorded data).

258.0000 ; MTBF 240.3101New
n n

n

TTBF
T TTR T hours hoursn n

Tn
= = = =∑ ∑ ∑

31.161 10
n n

n n
current

T T
then hours

TTBF TTBF
λ −= = ×

∑ ∑

168 0.0147new new new
new

then Failure rate hoursθ λ
θ

= = = =

Summary table of calculation formulae

Lifecycle or Time (hours) of
functioning, MTBF

Current rate
of failure, λ

(read)

New MTBF
θnew

(improved)

New rate of
failure, λ

Current lifecycle Current rate
of failure,
λ→λ =
258/62,000
hours =4.161
× 10−3
(hours)

Data Formula
MTBF system

Lifecycle
Fracture cycle

θ= =

=

θcurrentSys = 62,000/258 =
240.3101 (hours)

θnew = 68 hours 1

1

new
newsystem
system

new
systemMTBF

λ
θ

=

=

λ = 1/68 = 0.0147
hours

Table 8.2. Summary of calculation formulae

If an MTBFcumulated = 62,000 hours, we can propose a table of new allocations, as
follows:

Current ratePi Sum of current rates
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

[8.74]

1
PiRate allocated
θ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

[8.75]



Case Studies 267

1
allocated

allocated
MTBF

Rate
= [8.76]

Part Fractures Current rate Weight Allocated
MTBF Allocated rate Allocated

MTBF

n ni n/MTBFCum Pi = 1/Theta =
1/68

Weight × 1/θ =
1/68

1/Allocated
rate

Part 1 68 0.00110 0.2636 0.014705882 3.8760E-03 2.5800E+02
Part 2 56 0.00090 0.2171 0.014705882 3.1920E-03 3.1329E+02
Part 3 54 0.00087 0.2093 0.014705882 3.0780E-03 3.2489E+02
Part 3 35 0.00056 0.1357 0.014705882 1.9950E-03 5.0126E+02
Part 4 25 0.00040 0.0969 0.014705882 1.4250E-03 7.0176E+02
Part 5 15 0.00024 0.0581 0.014705882 8.5499E-04 1.1696E+03
Part 6 5 0.00008 0.0194 0.014705882 2.8500E-04 3.5088E+03

ni ΣΣ = 258 ΣΣ =
0,00416 Formula 1 0,014705882 Formula 2 Formula 3

Table 8.3. Calculation results: MTBF according to failures

DISCUSSION.– Note that by improving the allocated MTBF, we have smaller rates of
failure. This is the advantage of using the weighting (Weight) method.

Figure 8.23. Evolution of failing components before and after improvements
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In fracture mechanics through fatigue, fractures are often unexpected and
sudden. Failures are characterized by catalectics. Their failure rates are variable
because of impromptu deviations. From design to use, there is good reason to
always properly consider the manufacturing quality, keeping in consideration the
materials, environment, vibrations, temperature, etc.

Many laboratories collect exhaustive data with the aim of evaluating the failure
rates of materials and structures based on behavioral knowledge. The cited example
is the American military Standard, MIL-HDBK-217C, just to mention one. The
deviation, which causes the failure (fracture) of a component, as we have often seen in
this book, is characterized by a probability distribution (Weibull, Erlang, Birnbaum–
Saunders, etc.). The parameters from every law are dependent on age. For example,
the stress on a component is sometimes constant and sometimes variable.

The aim is always to try to keep this stress smaller or the same as the material’s
resistance. It is for this reason that calculating probability is nothing more than the
reliability of the component at a certain “age”. We will now present a simple applied
example.

8.9. Birnbaum–Saunders distribution in crack spreading

Justification: We have chosen the Birnbaum–Saunders law because it fits in with
reliability models for materials and structures prone to fatigue through cracking.

Starting hypothesis: Imagine the application of Birnbaum–Saunders on four
mechanical components:

If τ = 0, 0.1, …, 300; η = 10; γ1 = 1; γ2 = 2; γ3 = 1.25, and γ4 = 3, we will now
simulate and plot the curves of the necessary principle functions to calculate
reliability.

( )
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η τ
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( )
2 2

2 2 2
3 3

1 1 2
2
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η τ
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η τ
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8.9.1. Probability density and distribution function (Birnbaum–Saunders cumulative
distribution through cracking)
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:= Φ pnorm τ μ2, γ2,( )

H τ( ) Φ
1
γ3

⎛⎜
⎝

⎞⎟
⎠

τ

η

η

τ
+⎛⎜

⎝
⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

:= Φ pnorm τ μ3, γ3,( )

J τ( ) Φ
1
γ4

⎛⎜
⎝

⎞⎟
⎠

τ

η

η

τ
+⎛⎜

⎝
⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

:= Φ pnorm τ μ4, γ4,( )
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8.9.2. Graph plots for the four probability density functions and distribution
functions

Figure 8.24. Graphs to show the four probability density
functions and distribution functions

8.10. Reliability calculation for ages (ττ) in hours of service, Ri(ττ) = ?

Note that the appearance of the curve is very similar to a Gaussian. This leads us
to write the following:

( )
( )

( )
( )

( )
( )
( )

3
1 1

31
10

10

Fatigue Fatigue
part partR
R R

τ
μ τ μ τ μ τ τ

σ τ σ τ σ τ τ
= −Φ = Φ = Φ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫− − − ×⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬

− ×⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎩ ⎭
[8.77]

Averages
(τi) in
MPa

Service
age (τi)

Standard
deviation
(τi) in MPa

Time in
hours

( )
( )

3

3

10

10
U

μ τ τ

σ τ τ

− ×
=

− ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ri(τ) = Φ(U) =
standard normal
law (U)

1.1666 0.001 0.15 4000 0.735948052 0.769118844

2.3332 0.001 0.25 3600 0.378149254 0.64734014

1.4582 0.001 0.45 5600 0.80423301 0.789368791

3.4998 0.001 0.75 10000 0.702724324 0.758886217

Table 8.4. Statistical calculation results

pnorm τ μ1, γ1,( )

0.122

0.143

0.167

0.193

0.222

0.253

0.285

0.32

0.357

0.395

0.434

...

= If τ 0 0.1, 300..:=

pnorm τ μ2, γ2,( )

0.122

0.132

0.143

0.155

0.167

0.18

0.193

0.207

0.222

0.237

0.253

...

= = = = ==η 10 γ1 1 γ2 2 γ3 1.25 γ4 3

0 1.429 2.857 4.286 5.714 7.143 8.571 10
0

0.143

0.286

0.429

0.571

0.714

0.857

1

pnorm τ μ1, γ1,( )

dnorm τ μ1, γ1,( )

pnorm τ μ2, γ2,( )

dnorm τ μ2, γ2,( )

pnorm τ μ3, γ3,( )

dnorm τ μ3, γ3,( )

pnorm τ μ4, γ4,( )

dnorm τ μ4, γ4,( )

τ

pnorm τ μ3, γ3,( )

0.122

0.139

0.157

0.177

0.199

0.222

0.246

0.272

0.299

0.328

0.357

...

=

pnorm τ μ4, γ4,( )

0.122

0.129

0.136

0.143

0.151

0.159

0.167

0.175

0.184

0.193

0.202

...
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This distribution law is characterized by its average μi(τi) and its standard
deviation σi(τi) in MPa (refer to Table 8.4 data and calculations). We must pay
particular attention to the truthfulness of the distribution law. When distribution laws
follow a Gaussian, resemble that of Gaussian, or can be returned to it, then it is easy
to carry out reliability calculations on components, as previously shown.

We deemed that the Birnbaum–Saunders law presents a similar form to a
Gaussian. In the opposite case, i.e. where laws are not normal and a reading Φ(U)
cannot be taken, the calculations become a little more complex. We can therefore
use the moments method, which we will now briefly recap. Imagine a mechanical
assembly where the principal characteristic is dependent on xp1, xp2, …, xpm of (m)
pieces. The equation takes the following form:

( ) ( ) ( )1 2 1 2, , ... , , , ... ,part part partm mF p f p p p f p p p= = [8.78]

These statistics are measured, among others, by the averages of factors μp1, μp2,
μp3, …, μpm and their respective standard deviations σp1, σp2, σp3, …, σpm.

( ) ( )1 2 3
1

, , , ... ,
m m

m

p p p p p
i

p fμ μ μ μ μ μ
=

= =∑ [8.79]

The standard deviation is presented as:

( ) ( ) ( )
1

2
2 2 ,

m m
COVARIANCE

i i j j

f f f
p p p pi jip p pi i

σ σ
=

∂ ∂ ∂
= × + ×∑ ∑

∂ ∂ ∂

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠≺

[8.80]

Two distinct cases appear:

i) pi and pj are independent;

ii) pi and pj are not independent.

In the first case (i), the parameters are independent and we consider the
characteristic (pi) normal (or almost normal). If the functioning of the mechanical
elements assembly is correct when this characteristic is between p1 and p2, the
reliability is expressed as:

( ) ( ) ( ) ( )

( )
1 1 2 1

or even by reading the standard normal law

P p F p P p F P p F P p

U

⎧ ⎫= ≤ = ≤ − ≤⎪ ⎪
⎨ ⎬

Φ⎪ ⎪⎩ ⎭

≺
[8.81]
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i.e. 2 1

STANDARD.NORMAL.LAW

p p

p p

R p pμ μ
σ σ

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎛ ⎞ ⎛ ⎞⎨ ⎬− −
Φ −Φ⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

[8.82]

In the second case (ii), the parameters are not independent and we consider the
characteristic (pi) normal. If the functioning of the mechanical elements assembly is
correct for pi and pj, the standard deviation is expressed as:

( ) ( )
2

2

1
i

m

ii

fp p
p

σ σ
=

⎛ ⎞∂
= ×⎜ ⎟

∂⎝ ⎠
∑ [8.83]

The reliability is read in the same way as for case (i).

Figure 8.25. Reliability of a crank-rod system

Numerical application on a crank rod system: Imagine a classic crank rod system
(C and R assembled in a series). The expressed force is:
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[ ],
2Crank rod
dC f f Nmm⎛ ⎞= × = ×⎜ ⎟

⎝ ⎠
A [8.84]

The rod has an average stress value r = 7 MPa and a standard deviation
σb = 1.25 MPa. The crank has an average stress value c = 4 MPa and a standard
deviation σm = 1 MPa, which can be summarized as:

7 ; 1.25 ; 4 ; 1.00rod rod crank crankb x m xσ σ= = = = = =

By considering the “independent dispersion” between the rod and the crank, in
terms of fatigue, we get the reliability Rsystem for a time interval [τ1 = 1 minute and
τ2 = 15 minutes].

Total average of the two components = Constant of time, in minutes

7 4 28.00minx x xrod crankτ = × = × =

We can now calculate the total standard deviation, from the expression presented
above:

2 2 2
2 2 2

1
crank

m

rod m
i rod cranki

f f f
b mτ τσ σ σ σ

τ=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= × = × + ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ [8.85]

2 2 2 2 2 2 2 2: 4 1.25 7 1 9.621
rod crankb mAN m bτσ σ σ= × + × = × + × =

From τ1 = 11 minutes to τ2 = 45 minutes, we suppose that for a Gaussian
distribution (fatigue and cumulative use) the calculation and reading of the crank rod
system’s reliability is shown in the equation [8.86] (Inventor).

/ 2 1
2 1; 45 minutes 11 minutesrod crank

system
x x if andτ τ

τ τ

τ τ
τ τ

σ σ
⎛ ⎞ ⎛ ⎞− −

ℜ = Φ −Φ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) ( )

/ 2 1 45 28 11 28
9.621 9.621

1.76698 1.76698 0.9759345 0.0240655 0.951869

rod crank
system

x xτ τ

τ τ

τ τ
σ σ

⎛ ⎞ ⎛ ⎞− − − −⎛ ⎞ ⎛ ⎞→ℜ = Φ −Φ = Φ −Φ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= Φ −Φ − = − =
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– GIVEN = STANDARD.NORMAL.LAW (1.97621) = 0.9759345 (Excel).

– AND = STANDARD.NORMAL.LAW (−1.97621) = 0.0240655 (Excel).

Verification is carried out on the above-mentioned mechanism, for a random
recording between 11 and 45 minutes (sampling via fixed measures) during normal
functioning. Ultimately, we can conclude that for cracking through fatigue, the crank
rod system is reliable to ≈95%, according to the expressed hypothesis, i.e.:

– Independent statistical parameters of the crank and rod;

– Normal distribution (fatigue) or apparently normal (this happens because of
cumulative use and material fatigue.

DISCUSSION.– Structural reliability currently constitutes a theoretical, methodological,
and applied area of study, covering numerous needs in terms of quantitative
estimation of risk for civil engineering structures. Structural reliability must be used
alongside qualitative approaches to risk, supported by systematic analysis, which
enlighten us and help us to choose the appropriate limit states to simulate.

This chapter only briefly discusses the huge variety of available approaches in
structural reliability. The indicated references should allow the reader to satisfy a
more sharpened curiosity.

Quantitative tools for estimating risk aim to evaluate the probabilities of harmful
events occurring in civil engineering structures. These tools can be used when a
structure’s failure has been sufficiently described, for example through qualitative
tools, which describe failures and their sequences. These allow us to express the
failure in terms of limit state equations, by making physical sizes intervene. Then,
once the probability laws for random variables in the limit state equation have been
described on the basis of statistical inferences, we can obtain the sought after
probabilities, using structural reliability methods. These are of course dependent on
numerous hypotheses to do with probability laws and structural models: the
probabilities are therefore conventional and do not express nor anticipate statistics of
structural failures, which are fortunately infrequent. The information that we take
from these probabilities helps in the process of decision making.

The principal local failure modes considered in oil platforms are: plasticization,
buckling, physical fracture, deformation, speed of crack spreading, use, corrosion,
erosion, invasion of water, and reversal for floating structures or structures in the
process of floating for marine operations
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8.11. Simulation methods in mechanical reliability of structures and materials:
the Monte Carlo simulation method

This method was the object of a brief introduction in Chapter 7. We will now
recap the essence of the method using calculations aimed at workshops and other
supervised works. Consider y = f(τ1, τ2,…, τn) the characteristic of an assembly or
machine (gear clusters, hydraulic pump mechanisms, or structures assembled by
welding, riveting, or bolting, and so on). This is in fact a value function τ1, τ2, …, τn
of n random parameters T1, T2, …, Tn.

If we randomly draw a value in each n population, let τ1,1, τ2,1, …, τn1, we will
obtain a value y1= f(τ1,1, τ2,1, …, τn,1) randomly drawn from the Y population. If we
then repeat this operation N times, we will end up with a simulated sample of N
values from the random variable Y. After this, it will be possible to determine the
form and the parameters for the Y distribution.

To use the Monte Carlo (MC) simulation method, we must know how many
random draws are necessary and how to do them in the T1, T2, …, Tn populations.
The problem aims to determine the number of necessary draws, with a level of
confidence to choose the number of observations necessary to represent the
simulated distribution function with a given uncertainty.

By referring to the theory of conformity tests such as the (KS) Kolmogorov–
Smirnov test (see Chapter 3), we can check the following expression:

( ) ( ) ( ){ } { }, 1simulated real NMaxi F x F x D α α℘ − = −≺ [8.86]

– D(N,α) = Level (threshold) of chosen confidence;

– (1 − α) = maximum uncertainty on N draws.

We have already presented this theory in Chapter 3, but we will summarize the
essential content here:

( ) ( ) ( )2,D N N DN henceα αα = Κ ≥ Κ [8.87]

If, for example, we want to limit the uncertainty to ±1% (D = 0.001) in the
distribution function simulation, and if we chose a 99% level of confidence
(α = 0.001), there will need to be at least N = (1.63/0.001)2 = 1.63 × 104 draws.
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By applying the values from Table 8.5, we can calculate N, the number of random
draws:

( )
2

2 41.63 1% 2.657 10N
D
αΚ≥ = = ×

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

, at least.

Controlled
characteristics

Number ( )2N Dα≥ Κ of draws, MC

(1 − α) 0.80 0.85 0.90 0.95 0.99

Risk α 0.20 0.15 0.10 0.05 0.01

Kα 1.07 1.14 1.22 1.36 1.63

Table 8.5. Determining the number of necessary draws using the MC method

We will now explain the manner in which the draws are generated. We have
already shown in Chapters 2, 3, and 7 how to randomly draw values of pi in a given
statistical distribution law. On an interval p ∈ [0, 1] we can deduce the randomly
drawn values τi whose distribution function is written as F(τ). It is sufficient to
randomly draw one value pi, in a law on p∈[0, 1]. Then we make it correspond to a
value τi so that, F(τi) = pi. Finally, we can see that the problem is simple and we can
continue with randomly drawing values of pi.

Imagine, for example, an operation that aims to randomly draw the (τi) in a
Weibull distribution law with two parameters (then in a hypergeometric law and
then in a Gamma (or Erlang) law and log–normal). The Weibull law has a form
parameter of β = 2.5 and a scale parameter of η = 56, so we consider a uniform
random number pi, and suppose:

( )

( ) ( )( )

1 ;

1 5
2ln 1 56 ln 1

iF Exp p hencei i

p p pi i i

τ
τ β

μ

η β

⎧ ⎫⎛ ⎞⎪ ⎪= − − × =⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎞
⎜ ⎟= − − = × − −⎜ ⎟⎜ ⎟
⎝ ⎠

[8.88]

We can also use the software MathCAD to carry out the same operations, as
shown in the following sections.
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8.11.1.Weibull law

Figure 8.26. Density and distribution functions (Results of Weibull calculations)

Figure 8.27. Inverse distribution function (results from Weibull calculations)

pWeibull τ β,( )

0

5.608·10
–3

0.026

0.064

0.119

0.19

0.272

0.361

0.454

0.546

0.632

0.71

0.778

...

= dWeibull τ β,( )

0.000

0.126

0.293

0.467

0.630

0.767

0.866

0.920

0.929

0.896

0.828

0.734

0.626

...

=

Distribution of Weibull with two parameters (β,η)
dWeibull distribution function

and pWeibull (τ,β) cumulative distribution function

For β 2.25= τ 0 0.1, 2..:=

0 0.333 0.667 1 1.333 1.667 2
0

0.167

0.333

0.5

0.667

0.833

1

dWeibull τ β,( )

pWeibull τ β,( )

τetc. ...

0 0.167 0.333 0.5 0.667 0.833 1
0

0.417

0.833

1.25

1.667

2.083

2.5

qWeibull p β,( )

p

rWeibull m β,( )

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1.247

0.758

1.021

0.484

1.282

0.621

1.081

1.474

1.335

0.138

1.399

1.993

0.815

0.740

1.297

0.904

1.596

0.534

0.828

0.407

= Return the inverse cumulative probability
distribution for probability p. For m > 0; m is an
integer always greater than 0
Considering the random variables, when m > 0, and
thus when m = 20 draws, we get the random table
shown opposite: rWeibull (m, β)
Inverse function of the distribution function, when
p is included between (0 and 1)
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8.11.2. Log-normal Law (of Galton)

Figure 8.28. Density and distribution functions (results from Galton calculations)

8.11.3. Exponential law

Figure 8.29. Probability density and distribution functions (exponential)

dlnorm τ μ, σ,( )

–82.43×10
–72.024×10
–61.234×10
–65.851×10
–52.256×10
–57.321×10
–42.056×10
–45.102×10
–31.139×10
-32.321×10
–34.366×10
–37.659×10

...

=
plnorm τ μ, σ,( )

–10
9.866×10

–99.617×10
–86.795×10
–73.7×10
–61.627×10
–65.985×10
–51.894×10
–55.277×10
–41.317×10
–42.989×10
–46.246×10

...

= = =

1.5 2.6 3.7 4.8 5.9 7
0

0.2

0.4

0.6

0.8

1

dlnorm τ μ, σ,( )

plnorm τ μ, σ,( )

τ

μ 1.5 σ 0.25 τ 1 1.1, 7..:=

τ 0.1 0.2, 10..: = m 15= λ 0.56: = rexp m λ,( )

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

11.911

2.935

0.957

1.873

0.348

3.121

0.61

2.126

4.272

3.42

0.021

3.8

8.427

1.128

0.907

=
dexp λ τ,( )

0.095

0.179

0.254

0.320

0.378

0.429

0.473

0.511

0.544

0.571

0.594

0.613

0.628

0.639

...

=
pexp λ τ,( )

0.054

0.106

0.155

0.201

0.244

0.285

0.324

0.361

0.396

0.429

0.46

0.489

0.517

0.543

...

=

Returns the cumulative probability
distribution for value t, for m = 15 draws

Returns the probability density of the
exponential law for value t

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

dexp λ τ,( )

pexp λ τ,( )

τ
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8.11.4. Generation of random numbers

Generation of random numbers can be done in different ways. We will now
present a directed exercise (DE) based on a different approach to the previous ones.
This DE can be used to create a vector of random numbers, which follows a uniform
law, a normal law, or an exponential law on a given interval. This DE also includes
two programs, which allow us to control the initial value to generate random
numbers.

8.11.4.1. Uniform law

As was developed in Chapter 7, we will continue to present the numerical results
for some common distribution laws.

– Let n, the number of random centered variables →n = 1.56 × 103.

– Let l0, the upper and lower extremities →l0 = 0.

– Let ens_hist, the number of groups for the histogram → ens_hist = 33.

– Let N, vector of random centered variables →N = runif (n, lo, hi).

We are using the MathCAD software, but here is the conventional way of
writing the frequency distribution, from our program:

hr: = j

lower: = floor(min(N)) upper: = ceil(max(N))
upper lower j: = 0..ens_hint int : = lower hr j
ens_hist

1f: = hist(int, N) int : = int hr
2

−
+ ⋅

+ ⋅

Figure 8.30. Histogram showing a uniform law (through MC simulation)
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j
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8.11.4.2. Normal law

– Let n, the number of random centered variables →n = 1 × 103.

– Let μ, the upper and lower extremities →μ = 2.5462.

– Let σ, the upper and lower extremities →σ = 0.5462.

– Let ens_hist, the number of groups for the histogram → ens_hist = 33.

– Let N, vector of random centered variables →N = rnorm (n, μ, σ).

Figure 8.31. Histogram showing normal law (using MC simulation)

8.11.4.3. Exponential law

– Let n, the number of random centered variables →n = 1.56 × 103.

– Let α, the rate →α = 2.5462.

Enter the number of groups for the histogram : ens_hist 33=
Vectors of random centred variables : N rnorm n μ, σ,( )=

Frequency distribution: lower floor min N( )( )= upper ceil max N( )( )=

hr
upper lower−
ens_hist

= intj lower hr j⋅+=

j 0 ens_hist..:= f hist int N,( )= int int
1
2
hr⋅+=

Normal adjustment function :F x( ) n hr⋅ dnorm x μ, σ,( )⋅=

1 2 3 4
0

50

100
n

ens_hist
4⋅

0

f

F int( )

μ 3 σ⋅+μ 3 σ⋅− int
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– Let ens_hist, the number of groups for the histogram → ens_hist = 33.

– Let N, vector of random centered variables →N = rexp (n, α).

Figure 8.32. Histogram showing exponential law (using MC simulation)

8.11.4.4. Control of initial value

The following program allows us to generate the same set of random numbers
following a normal law at each iteration by resetting the initial value.

Exponential adjustment function: F x( ) n hr⋅ dexp x α,( )⋅=

lower floor min N( )( )= upper
ceil max N( )( )

2
= f hist int N,( )= hr

upper lower−
ens_hist

=

Frequency distribution intj lower hr j⋅+= int int 0.5 hr⋅+= j 0 ens_hist..: =

0 2.75 5.5 8.25 11
0

48.75

97.5

146.25

195

f

F int( )

int

SameNormal n μ, σi,( )

Seed 1( )

nums rnorm n μ, σ,( )←

M i〈 〉 nums←

i 0 8..∈for

M

:=

n 1 103×=

μ 2.5462=

σ 0.5462=
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The exact same set of random numbers will be generated each time: Each
column includes the same numbers in the same order. Also, this program allows us
to control and repeat the generation process of a new set of random numbers from a
given initial value. In Chapter 7 (MC simulation), we presented the theoretical
content of this.

Table 8.6. Random numbers generated according to a Gaussian

lower floor min M sel 1−〈 〉( )( )= upper ceil max M sel 1−〈 〉( )( )=

hr
upper lower−

ens_hist
= j 0 ens_hist..:=

intj lower hr j⋅+= int int 1 hr⋅+=

Ajust x( ) n hr⋅ dnorm x μ, σ,( )⋅= Q hist int M sel 1−〈 〉
,( )=

SameNormal n μ, σ,( )

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306
2.175 2.175 2.175 2.175 2.175 2.175 2.175 2.175 2.175
2.288 2.288 2.288 2.288 2.288 2.288 2.288 2.288 2.288
2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027 2.027
1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625 1.625
2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57
2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48
2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85
3.743 3.743 3.743 3.743 3.743 3.743 3.743 3.743 3.743
2.988 2.988 2.988 2.988 2.988 2.988 2.988 2.988 2.988
3.084 3.084 3.084 3.084 3.084 3.084 3.084 3.084 3.084
3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.017 3.017
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Figure 8.33. Histogram showing normal law (MC simulation at the fifth draw)

8.11.4.5. Estimating Monte Carlo probability

This DE uses random number generators from the software MathCAD to
estimate quantity probabilities with unknown distributions.

Question: Demonstrate in an empirical manner that the average of a logistical
distribution 133 sized sample with parameters L and S is located on the interval
[a, b].

L = 1; S = 0.33; and the interval [a, b] = [0.90, 1.2535] c.-to-d. a = 0.90 and
b = 1.2535

We define the MC sampling parameters as follows:

– Number of samples to collect; N Samples = 1.54 × 103.

– Number of points of data per sample; S Size = 133.

We carry out the sample and collect the sample statistics:

When i:=0, …, (N Samples − 1) we will get Mean si = mean(rlogis(S Size, L, S))

Then estimate the desired probability

{ }
1

1

1

Prob 0.971 1

Samples
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N

i

N

i Samples

iSuccess a Means b then

Success
N

=

=

−
⎧ ⎫

= ≤ ≤∑⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪⇒ = = ≅∑⎪ ⎪
⎩ ⎭
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8.12. Elements of safety via the couple: resistance and stress (R, S)

We have seen in Chapter 1 that when the load imposed on a component of a
mechanism is unknown, it is represented by a stress distribution that is either
variable or constant through time (according to the lifecycle). The resistance
opposing this load is therefore unknown. This is explained by the variability of
intrinsic materials, the sizing (rating), and other thermal and environmental factors.
The phenomenon (R, S) can be described by a resistance probability distribution,
which is itself variable according to the lifecycle. We are then in a position to
calculate (estimate) the reliability of the piece (mechanism and/or structure) in
connection with the lifecycle (longevity). The probability of a piece having at the
very most an equal stress σ (MPa) is written as:

( ) ( )P g d
τ

σ τ σ σ
−∞

=≤ ∫ [8.90]

The probability that the piece resists is written as:

( ) ( )P R d f dτ τ τ τ τ=≤ ≤ + [8.91]

The basic probability is therefore written as:

( ) ( )dR f d g d
τ

τ τ σ σ
−∞

= × ∫ [8.92]

If we proceed to the sum of the two probabilities (R, S), the explanation is
justified by the fact that the piece must resist the load for all values of (τ). Therefore:

( ) ( )R f g d d
τ

τ σ σ τ
+∞

−∞ −∞

⎛ ⎞= ×⎜ ⎟
⎝ ⎠∫ ∫ [8.93]

It is equally possible to present the resistance equation (R) as follows:

( ) ( )R g f d d
τ

τ σ ρ τ
+∞ ∞

−∞

⎛ ⎞= ×⎜ ⎟
⎝ ⎠∫ ∫ [8.94]

Here is the classic illustration of the above:
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Figure 8.34. Probability distribution of resistances f(ρ) and stresses g(σ)

The literature proposes some expressions dedicated to calculating the reliability
of components according to the applied stress and its resistance. The following are
some examples of common distributions:

Normal law: R = Resistance and S = Stress:

( )
2 2
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Average Average
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Galton law (log–normal): R = Resistance and S = Stress:

( )
2 2

Standard deviation Standard deviation

Average Average

x x
R when

R x S x
and

R S

ρ σ

ρ σ

ρ σ

ρ σ

τ
σ σ

σ σ

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= Φ⎪ ⎪⎜ ⎟⎜ ⎟+⎪ ⎪⎝ ⎠⎨ ⎬
⎪ ⎪→ =⎧ ⎫ → =⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪→ = → =⎪ ⎪ ⎩ ⎭⎩ ⎭⎩ ⎭

[8.96]

Exponential law with an average μμ: R = Resistance and S = Stress:

( )

{ }

2

2

Standard deviation

1
2

Average
Average

xR Exp when

R x
and S

R

στ
μ μ

μ
σ

⎧ ⎫⎛ ⎞
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⎨ ⎬
⎪ ⎪→ =⎧ ⎫
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[8.97]

Exponential law with an average μμc: R = Resistance and S = Stress:

( )

{ } { }

1
c

cAverage Average

R Exp when

R and S

ρ

ρ

ρ

μ
τ

μ μ

μ μ

⎧ ⎫⎛ ⎞
⎪ ⎪= − ⎜ ⎟⎜ ⎟⎪ ⎪+⎝ ⎠⎨ ⎬
⎪ ⎪

→ = → =⎪ ⎪⎩ ⎭

[8.98]

We can use the Mellin transformation either numerically or graphically.

8.13. Reliability trials

– Testing hypothesis trials;

– Determination trials (precise estimation or through intervals).

Determination trials try to find the statistical distribution form. The estimation
can be precise or by intervals (see Chapters 2 and 3, Volume 1). Hypothesis test
trials allow us to refuse or accept an established hypothesis with the risk (or
probability) of wrongly rejecting the established hypothesis. These trials are
generally designed for quality control (see Chapter 2 and 3, Volume 3). The
hypothesis is normally quite simple: it allows us to confirm or invalidate if
the measuring results, relative to the lifecycle, let us conclude that the average
lifecycle exceeds the previously imposed value.
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The hypothesis is sometimes double. In other words, the test is designed to
accept a portion of material with a high probability when the MTBF is large enough,
and to reject the portion with a strong probability when the MTBF is sufficiently
weak. This is generally done once we accept a portion of components with a
probability equivalent to ( 1 α = 0.95). This is simply understood by using the
following example: If the hypothesis HI has a satisfied MTBF = θI = 36,000 hours it
will be accepted, and will be rejected with a probability (1 β = 0.90) when the
hypothesis HII has a satisfied MTBF = θII = 3,600 hours. We have already
approached this subject in the chapter in Volume 3 dedicated to quality control.

HI is the null hypothesis, α is a type-one or supplier’s risk and θI is the Level of
Acceptable Quality (LAQ). All are used as a level of reputed classic quality.

REMARK.– Works are essentially dedicated to quality control and reliability. We
have already mentioned that these two disciplines share their statistical–mathematical
tools, but each interpretation is slightly different. Statistical distribution laws remain
the same, however. By using the examples presented here, we are able to prove the
truthfulness of this fact again.

HII represents the alternative hypothesis where β is the type II risk or the user’s
risk. ΘII indicates the LAQ or the level of reliability, which will be accepted. We
have mentioned the difference in interpretation between the results of the two major
disciplines involved in risk: reliability and quality control.

As with quality control, the type of reliability trial is classified according to the
type of trail. To do this, beforehand we must fix the sample size, i.e. the number of
components we want to test (quality control). The same thing is done for reliability
trials, the lifecycle or the number of imposed fractures before the end of the trial. We
can use a truncated trial when the lifecycle is required, and a censored trial when
the number of fractures is required.

Occasionally we wait for the trial’s submitted sample plan to fail before ending
the trial. This happens in cases where damage occurs (catastrophes, destructive
trials, etc.). Progressive trials are integral in double hypothesis tests. The sample size
is not fixed, hence sequential decision-making following weaknesses (fractures or
partial failure). Often, the decision is to do with the continuation of the trial, its
closure (often the categorical refusal of the portion of components), or even the
stopping of the trial to accept the portion. We will discuss this in Chapters 2 and 3 in
Volume 3 on quality control, but now we will present a similar work with a
reliability perspective and finally end with educational examples.
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8.13.1. Controlling risks and efficiency in mechanical reliability

Following trial plans in simple sampling, and by obeying a power distribution
law (Weibull, exponential, Poisson, binominal, Gamma, Erlang, Birnbaum–Saunders,
etc.), we can use a classic exponential law for our calculations. We can then take an
enlightened decision by judging the MTBF(θ) of the pieces in use.

Hypothesis I: Imagine an MTBF(θ) = 1,810 hours. The cumulated duration trial is
represented by τ = 3,600 hours. Following Poisson’s law (law of power) we can
postulate the expression of the average number of fractures, which will appear
through physical use.

3600( ) 1.99
1810

fAverage
τ

μ κ
θ

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
[8.99]

If κ = (1, 2, 3, …, 10) and m = 10 we can calculate:

{ } { }3600 11.99 ; 0.503 ; ,
1810 !
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κλθ λ λ κ λ

θ κ
⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = = × −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Figure 8.35. Probability density and distribution function from Poisson’s law
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The rpois(m, λ) function sends back random values according to which
Poisson’s law can be justified to simulate the process. The functions dpois(κ, λ) and
ppois(κ, λ) are functions of probability density and distribution when κ = 0 to 10
and l = 0.503 = 0.5.

For an exponential distribution law, we normally derive the following:

Null hypothesis→ true hypothesis HI Alternative hypothesis→ true hypothesis HII
α is a risk from I→ therefore (1 − α) β is a risk from II→ therefore β

α (1 − β)
⇓ DECISION ⇓

Accept HI Refuse HII

Table 8.7. Accepting and rejecting plans

Let HI be a null hypothesis in which θ = 360 hours. Let another alternative
hypothesis HII of MTBF θ2 = 180 hours. τcum is the cumulated duration of the trial.
The acceleration zone of the trial is located between [0, 2] in line with the observed
characteristic, in this case the number of fractures (κ). We can therefore suppose:
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Numerical application according to exponential law:
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Figure 8.36. Exponential law – accepting or rejecting plan

In a total time of service τ = 460 hours and for an MTBF θ evolving between 10
and 620 hours, we calculate the acceptance probability of the plan, which is in fact
simply the curve of efficiency Eff(θ). The efficiency curve Eff(θ) is presented as
follows:

( )
21=10,..., 620 hours; = 460 hours Eff 1

2
Exp τ τ τθ τ θ

θ θ θ

⎡ ⎤⎧ ⎫ ⎛ ⎞ ⎛ ⎞→ = − × + +⎢ ⎥⎨ ⎬ ⎜ ⎟ ⎜ ⎟
⎩ ⎭ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

Figure 8.37. Efficiency curve of a sampling plan in reliability
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Comments: As there are four possibilities to consider, first we will present those
involving plan acceptances:

1 2
1 1 1 1If 1: 300 hours 1: 460 hours Eff ( 1) e 1

2 1 1

τ
θ τ τθ τ θ

θ θ

− ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

If a risk (α) α = 20%→Eff(θ1) = (1 − α) then the hypothesis H1 will be accepted
at (1 − α ) = 0.8.

1 2
1 1 2 2If 2: 562 hours 2: 460 hours Eff ( 2) e 1

2 2 2

τ
θ τ τθ τ θ

θ θ

− ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⋅ + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

If a risk (β) → β = Eff(θ2) → as = Eff(θ2) = 0.950 then β the hypothesis H1 will
be accepted at (β) = 0.95.

The two other possibilities reject the plan (refer Table 8.7):

– We refuse the plan at the risk (α, type I risk, = 20%) in hypothesis HI.

– We refuse the plan at the risk (1 − β, type II result, = 5%) in hypothesis HI.

Finally, there is a ratio (δ) of discrimination in the plan which is expressed as
( ) ( )2 1δ θ θ θ= . Also, θ0 corresponds to the acceptance probability ( )Prob 1 2accep =

with a balancing point of the plan = 0.5.

8.13.2. Truncated trials

A trial is said to be truncated if we stop a trial after a trial period (τ) and in this
trial we have not had to resort to component replacements. The cumulated duration
is presented as:

( ) ( );
1

n n With replacementscum i cum
i

κ
τ τ κ τ τ τ= × − + = ×∑

=
[8.101]
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8.13.3. Censored trials

If the trial needs its defective components replaced, the trial’s lifecycle will be
calculated by the relationship shown in [8.102]. This is a censored trial, with or
without replacement. The respective expressions are presented as:

( )
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1
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If τ = 100 hours, n = 7, r = 5, i = 1, …, 10, the cumulated time τcum will be:
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8.13.4. Trial plan

To show a trial plan, without regard to the type of trial, it is worth making two
principle hypotheses:

HI for an MTBF θ = θI and HII for an MTBF θ = θII

Then we can associate respective acceptation probabilities to them:

Prob(θI) = (1 − α) and Prob(θII) = β

Finally, the plan is defined by the solution from the Pearson test.

( )

( )
( ) ( )

2 2
12 ; 1 2 ;1 1

2
2 22 ; 2

MTBF and Eff
MTBF

κ β κ α

κ α

χ θ χθ
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[8.103]

When κ = the number of fractures Eff(θ), the cumulated trial duration and

( )
2
2 ;κ αχ is the Chi-squared test variable (K Pearson) with 2κ degrees of freedom,

whose distribution function is (α). To summarize, we suppose the following:

– Censored trial: r = κ fractures, the acceptation criterion is τacc≥ Eff(θ).

– Truncated trial: the cumulated duration τcum = Eff(θ), the acceptation criterion
τacc = κ − 1.

Numerical application: Imagine a plan characterized by θ1 = 3,001 hours,
θ2 = 301 hours, α = 0.05, and β = 0.95. Calculate the acceleration factor of the trial
and check the hypothesis by justifying it with the Pearson test.
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We therefore suppose: ( )
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If
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For (κ) fractures and a cumulated trial duration Eff(θ) we can calculate, using the
Pearson test, χ2 to 2κ df (degrees of freedom) of function (α) to finally end up with
the following corresponding condition:

( ) ( )
2
2 ;

1 9859
2

Eff hours
κ αχ

θ θ= �

As we have sufficiently presented this in quality control (see Chapters 2 and 3
volume 3), we will now move on to an example of progressive trial plans, involving
the power distribution law (Exponential Law). Imagine the parameters that
characterize the plan, i.e. the MTBF θ1 and θ2, the risks α and β. The aim is that for
each fracture (κ) of noted reliability, we will calculate the cumulated trial duration
τcumaccept(κ). This will allow us to take an enlightened decision: accept the portion
and the cumulated trial duration τcumreject (κ) allowing the justified decision to reject
the portion. Thus for the κth fracture we will reason out as follows:

– If the cumulated trial duration is τcumF(κ) ≥ τcumaccept(κ), we will stop the trial to
eventually accept the portion.

– If the cumulated trial duration is τcumF(κ) < τcumrejet(κ), we will stop the trial to
eventually reject the portion.

– If the cumulated trial duration is τcumrejet(κ) ≤ τcumF(κ) < τcumaccept(κ), we will
continue the trial.
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In Chapters 1 and 2 of volume 3, we have developed trial plans for quality
control. We will use the same methodology to show that trial durations τcumaccept(κ),
τcumF(κ), and τcumrejet develop in a linear way according to the number of fractures
(κ).
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We can now see how h1, h2, and s are proportional to the MTBF θ1. This allows
us to establish universal plans exclusively according to α, β, and f, whose critical
durations are written as follows:

Coefficients (a), (b), α, and β from a progressive plan Coeff. f and S′
β% α % 1 2 5 10 20 f S′
1 a −4.595 −4.585 −4.554 −4.500 −4.382 1.1 0.953

b 4.595 3.902 2.986 2.293 1.599 1.2 0.912
2 a −3.902 −3.892 −3.861 −3.807 −3.689 1.5 0.811

b 4.585 3.892 2.976 2.282 1.589 2.0 0.693
5 a −2.986 −2.976 −2.944 −2.890 −2.773 2.5 0.611

b 4.554 3.861 2.944 2.251 1.558 3.0 0.549
10 a −2.293 −2.282 −2.251 −2.251 −2.079 4.0 0.462

b 4.500 3.807 2.890 2.197 1.504 5.0 0.402
20 a −1.599 −1.589 −1.558 −1.504 −1.386 6.0 0.358

b 4.382 3.689 2.079 2.079 1.386 7.0 0.324

Table 8.8. Coefficients (a), (b), α, and β; f and S′ from a progressive plan
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[8.108]

Example of numerical application in mechanical reliability:

Let: (α) = 2%, (β) = 5%, f = 3, and an MTBF = θ1 = 3

The principle calculation formulae are:
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Solutions (numerical, graphical, and tabulated): Following the previous
formulae, we can calculate the plan’s coefficients, which are discussed in the
following sections.

8.13.5. Coefficients for the trial’s acceptance plan
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For the failures (weaknesses) of pieces 1 to 7, i.e. κ = (1, 2, …,7), the cumulated
acceptance duration with Taccep(κ) = τ′accep(κ) will be calculated as:

( ) ( ) ( )' '

1

ln
1 1

accept
accept accept

a f and
f f

τ κ
τ κ κ τ κ

θ
=

⎧ ⎫⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪− + =⎨ ⎬ ⎨ ⎬⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭ ⎩ ⎭
[8.109]

Figure 8.38. Trial’s acceptance plan

8.13.6. Trial’s rejection plan (in the same conditions)

By analogy of the above, for the failures κ = (1 to 7), we will have the cumulated
duration of rejection, with Treject(κ) = τ′reject(κ), as follows:

( ) ( ) ( )'
' 'ln

1 1
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reject reject
b f and
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τ κ κ τ κ

θ
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[8.110]

Figure 8.39. Trial’s rejection plan
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By referring to Table 8.8 it is easy to proceed with the same calculations and
graphs. For our part, we prefer numerical calculations to avoid precision errors.

Graphical summary of a progressive plan in reliability:

Figure 8.40. Experiment summary of a progressive trial plan

In the case of rejection, the minimum trial duration is never negative.
Consequently, the decision to reject the plan is only taken after the number of
fractures does not equal the first value (whole positive number > 0) or even equal to
the ratio ( )lnb f of the cumulated duration, as shown in the following equation:

( ) 1
ln1
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f f

θτ =
⎛ ⎞
− +⎜ ⎟− −⎝ ⎠

[8.111]

In the case of acceptance, the minimum trial duration is expressed as follows:
First, a cumulated duration equal to the first fracture (weakness) must be reached.
Then we can decide on acceptance where the minimum cumulated trial duration
(before definitive acceptance) is written as follows:

( ) 1
ln1

1 1
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accept
a fvalue
f f

θτ =
⎛ ⎞
− +⎜ ⎟− −⎝ ⎠

[8.112]

In mechanical reliability (electromagnetic, hydraulic, and electronic, to name just
a few of the many areas of engineering) the components (portion of material) are
often tested for an average MTBF in the interval of [θ1 to θ2]. We then suspect that
the trial duration can be “self-perpetuating” and become quite costly in terms of
calculation time. To proceed according to a time that corresponds to the MTBF(θ),
we recommend the following:
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( ) ( )' '
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Following what we have just said, it is worth predicting the halt of the trial. This
is conventionally known as truncation. Normally, we conduct a trial truncation after
three times the number of fractures. As a matter of course, it would be wise to
proceed according to the simple sampling plan. This is advantageous because we
can stop the trial as soon as a cumulated duration Eff(θ) in connection with the
number of fractures ≥(ν = κ − 1) has been reached.

For the first (κ = 1) and f = 5, (θ1 = 3) when α = 2% and β = 5%

( )' ln1ln 2.9755; ln 3.8607; ln 0.5493
1 1

f
a b S

f
β β
α α

⎛ ⎞−⎛ ⎞ ⎛ ⎞= = − = = = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( ) ( )

( ) ( )

ln
1 3.4387 3 1.14621 1 11 1

ln
1 6.2929 3 2.09761 1 11 1

a f
Siaccept f f

f f
sireject f f

otherwise

otherwise

τ κ θ θ θ

τ κ θ θ θ

= = − + = ← = =
− −

= = − + = − ← = = −
− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( )
3.8607 3.8607 ; 2.39884428974400398

ln ln 5 1.6094reject reject
b
f

κ κ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞≥ = = →⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

Carry over κ = 3in which: ( ) 1 1
ln1 2.0976

1 1reject
f f
f f

θτ κ θ=
⎛ ⎞

= − + = − ×⎜ ⎟− −⎝ ⎠

This is also verified by the Pearson test discussed in section 8.12.7. The plan in
simple sampling that corresponds to this test is discussed in the following.

8.13.7. Trial plan in reliability and K Pearson test χχ2
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Lifecycle calculations are the basis for the majority of reliability calculations.
The methods are varied and targeted depending on the case being studied. We do not
apply an exponential distribution model to cumulative use phenomena because this
law is hardly relevant. In addition, precision reliability is costly in terms of
calculation time, for example in offshore structures. Data collection is time-
consuming and sometimes it may take decades for the sample to have a
representative significance of reality. For a constant failure rate of 100 components,
more than 100,000 hours will be necessary for 10 components (welded structures for
example) to fail. Without calculations, this is the equivalent of more than 10 years.

– What should we do to confront with this situation?

– Make do with simulations or carry out often costly experiments?

For educational purposes, the problem does not have consequential
responsibilities. For industrial needs, we must obtain true experimental data for a
significant true reliability model. To overcome the problem of slow trials, it is a
pragmatic idea to carry out accelerated trials. In this case, it is advisable to correctly
pose the reliability problem, i.e. the applied stresses. We will attempt to go beyond
the standard stresses caused by normal use. Because of this, we will break the
normal rules of material resistance (RDM). This is the same case in terms of
carrying out accelerated trials to reduce lifecycles. This is possible as long as we do
not push too far on increasing the applied stresses. We will study (or present) three
distinct cases relevant to engineering techniques to support what we have just said.

Accelerated trials are one of the most common approaches for obtaining a
reliability law or the failure rate of systems or components. These trials reduce the
lifecycles of components by accelerating the damage at the origin of weakness.
Thus, the stress levels felt by the component are of notable severity and provide a
rapid large quantity of data. Apart from in the electronic domain, there are very few
case studies dedicated to accelerated trials in mechanics. However, the technical
literature is becoming increasingly focused on accelerated trials in continued
witnessed environments.

8.14. Reliability application on speed reducers (gears)

The lifecycle Log(N) of a cluster of gear wheels is composed of dp1 and
dp2 respective to the initial ∅ of entry and exit. (l) is the width of teeth in (mm),
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M2 = Mexit is the couple of forces (moments or torque in Nm) measured at the exit of
movement. The angle of pressure α = 20° (according to ISO) or α = 14.5°
(according to AGMA-USA). Q (doesn’t deliberately appear in the function 8.114) is
a function of the reduction relationship dependent on the initial ∅ of the cluster. The
factors ρ and ϕ are parameters intrinsic to the materials used in solid gears (steel)
where the lifecycle is expressed by:
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Consider the case of the gear cluster comprising of teeth with a width l1 led by a
moment M1. By analogy, we have the characteristics of the exit pinion with width L2

led by a moment M2, and we can then suppose the acceleration factor ξacc:
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[8.116]

Imagine a material SAE1020 (USA) of factor ρ ≅ 7. The moment M1 = 64.16794
lbf.in (7.25 Nm) and the width l1 = 0.492126 inch (1.25 cm), which leads another
pinion (exit) with moment M2 = 73.90376 lbf.in (8.35 Nm) and with width
l2 = 0.492126 inch (1.25 cm). Then:

Calculate the acceleration factor of the reliability trial and plot the graphical
evolution according to the material.

Solution: Let: l1 = l2 = 0.492126 inch (=1.25 cm); M1= 64.16794 lbf.in (= 7.25 Nm)
M2 = 73.90376 lbf.in (8.35 Nm); ρ ≅ 7 and ϕ ≅ 3.18 (according to material
dynamics SAE standard steel 1020, c-to-d. 0.20% carbon). The angle of pressure
α = 14.5° according to AGMA USA (or 20° according to ISO, USA). Following the
acceleration factor ξacc(ρ) we postulate:
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Figure 8.41. Reliability case study of gears

The expression for the calculation of the “lifecycle” of the gear cluster (pinions
with exterior contact) is presented as follows by the literature on machine elements
(speed reducers):
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Figure 8.42. Acceleration factor of trial, evolution according to material
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8.14.1. Applied example on hydraulic motors

Imagine an oil pressure hydraulic motor, the lifecycle of which (in normal
functioning) is presented as follows:

( ) ( ) [ ];lifecyclef P n hours or life cycleα βτ ξ= × × [8.118]

where:

ξ is a factor (adimensional) which takes account of the material;

P is the oil pressure of the motor (entry, c.-to-d. before use) in MPa (Psi);

n is the RPM of the motor in turns/minute;

α and β are factors given by the motor’s manufacturer.

In this expression, from the literature, (α = −3.2535) and (β = −1.0945) are
deliberately chosen negative factors to emphasize the effect of acceleration in
reliability trials. The respective pressures and rotation speed are of the following
type.

The normal and habitual parameters used for the motor are P1= 18 MPa with an
RPM, n1 = 1,360 tr/min. However, to estimate the duration of the lifecycle in
reliability, we have tested the motor with deliberately “exaggerated” parameters:
P2 = 36 MPa with an RPM, n2 = 3,200 tr/min. The aim of the research is to avoid
an experiment with “true” functioning conditions. We will now estimate an
acceleration factor of the trial. In hydraulic reliability, the acceleration factor Facc is
expressed by the relationship of speeds or stresses. Therefore, we maintain:

( )
3.2535 1.0945

1 1

2 2

18 1360 24.3293
36 3200acc

P RPMF trial
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α β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= × = × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

By increasing the RPM2 from 1,360 to 3,200 we can observe the evolution of the
trial’s acceleration factor, with the log–log scale:

( ) 11

2 2

Const
acc

accelerated

RPMPF Accelerated trial
P RPM

βα
⎛ ⎞⎛ ⎞

= ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

[8.119]
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Figure 8.43. Acceleration factor in mechanical reliability

8.14.1.1. Lifecycle of the bearing

Imagine a number of machines with motors. Each motor turns at an RPM n =
constant (rotations/min). Normally, we intervene in the bearings after about 6,000
hours of use in the motors (if the bearings are correctly assembled and well
maintained). We have unfortunately noticed a malfunctioning, so the following rule
is adopted: “change the bearings after the theoretical lifecycle” F(τ), expressed by:

( ) ( )618 10F n in hours of normal useτ = × [8.120]

We know the type of accelerated trial to use for a reliability plan. To optimize
the interventions at a workshop level, we have predicted an accelerated plan running
from 960 to 3,600 tr/min, to be able to observe the maintenance of the bearings
without dismantling them. Calculate the acceleration factor Facc and plot the
appropriate curve.

8.14.1.2. Numerical and graphical solutions

When RPMentry = 960 tr/min; α = 106

( )
6

41018 18 1.875 10
960accF trial

RPM
α ⎛ ⎞⎛ ⎞= × = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

As previously explained, we vary the RPM (accelerate) of the trial from 960 to
3,200 tr/min and we observe the acceleration factor (using a semi-log scale):
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[8.121]

Figure 8.44. Acceleration factor (bearings)

8.14.1.3. Comments

Whether we are dealing with a speed reducer, a pneumatic motor, hydraulics, a
transistor, mechanical components, electric, or others, the reliability calculation is
based on data collected from the experiment. Yet it has already been discussed that
this collection is costly in time and means. Thus to try to present significant results
in the limits of reduced time we have to resort to accelerated trials. The danger of
this type of trial for the industry is that the true representativeness of the experiment
is questionable. Because of this, we distort the truthfulness of the data from the
reliability calculation, and thus of safety.

8.15. Reliability case study in columns under stress of buckling

Problem outline from an RDM and reliability perspective: Imagine a column
submitted to buckling according to specifications from the AISC norms.

The fixed ends x and y are axes of deviated flexion (buckling) under the load (P).
Buckling according to [8.45] is written:

Buckling = x x

x

K L
r
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(fig. 8.45-1) and backling = y y

y

K L
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(fig. 8.45-2) [8.122]

Facc RPM2acc( )

72.55×10
72.63×10
72.70×10
72.78×10
72.85×10
72.92×10
73.00×10
73.08×10
73.15×10

...

=

0 1 10
3× 2 10

3× 3 10
3× 4 10

3×
1 107×

1 108×

2.55×10
7

6×10
7

Facc RPMacce( )

960 3200

RPMacceetc. ...
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Figure 8.45. Reliability of columns submitted to buckling

Calculation parameters RDM and reliability:

RDM data
Parameters
Factors

Denomination ISO units in SI Imperial
measurements

K Factor of effective length of
column (adimensional)

1 1

Lx according
to X–X

Distance from the fixed end to the
middle of the column according to
x–x (see Figure 8.45)

7.62 m or 7,620
mm

25 ft

Ly according
to Y–Y

Distance from the fixed end to the
middle of the column according to
y–y (see Figure 8.45)

3.078 m or 3,048
mm

10 inch

P Load applied 533,786.6 N 120 × E3 lb.f
Fy Failure threshold 827.3709 MPa =

8.273709E8 Pa
32 × 103 in Psi

E Elasticity modulus 68,947.57 MPa =
6.894757E10 Pa

10 × 106 in Psi

NORMAL STATISTICS: PROBABILISTIC DATA FOR n = 25
μ Arithmetic average
σ Standard deviation

Table 8.9. Initial data for the buckling column case study

Lx

P

P

Effects of
loading
according to
X-X axis

Buckling for
m for
relationship
(1)

P

P

Effects of
loading
according to
Y-Y axis

Potential shape of
buckling for
relationship (2)

Ly

Ly
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8.15.1. RDM solution

a) According to AISC standards, the load (see tables) according to the weak
control supervision. We can read the load value P and calculate Kx Ly:

– If P = 1.2 × 105 lbf (or 533,786.6 N), we calculate Kx Ly = 10 ft =3.078 m =
3,048 mm.

– The area of section A = 11.5 inch2 = 7,419.34 mm2.

– Radius of gyration according to axis Y–Y = ry = 1.98 inch = 50,292 mm.

– Radius of gyration relationship according to the axis Y–Y and X–X→ Rrx ry =
1.16.

– Radius of gyration according to axis X–X = rx = → Rrx ry (ry) = 4.277 inch =
108.6358 mm.

b) Calculation for the slenderness relationship of the column: Ccolumn

22 78.54c
y

EC
F

π ×
= =

c) We can use the technical literature to suppose that for a fracture threshold we
calculate local buckling Fa_local and elastic buckling Fa_elastic as follows:

( ) ( )
2

2
_ , , 12 23a Elastic

K LF K L r E
r

π ×⎛ ⎞= × × ×⎜ ⎟
⎝ ⎠

[8.123]

( )

2
22

22
3

3
5

33 8 8

, , ,_

K LCc r Fy
Cc

K L K L
r r
Cc Cc

F X K L r Cca local

×⎛ ⎞× −⎜ ⎟
⎝ ⎠ ×
×

× ×⎛ ⎞ ⎛ ⎞×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+ −
× ×

= [8.124]

Numerical applications in the two principle units

( ) 4 7
_ , , 1.047 10 psi 7.218811 10 72.18811 Mpaa ElasticF X K L r Pa= × = × =

( ) 4 7
_ , , , 1.006 10 6.936126 10 69.36126 Mpaa local cF X K L r C X psi Pa= × = × =
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The series of columns used to determine whether we should opt for a local or
elastic fitting allows us to better control the intensity of the stress constraint FaxisX
along axis X–X.

{ }'' ''; '' ''alocXAccording to X if F local elastic According to X local= =≺

{ } 4'' '', , 1.006 10aX alocX elaX aXF if According to X local F F F psi= = → = ×

d) Calculation: of the local and elastic buckling constraint FalocY and FaelaY
according to the axis Y–Y:

( ) 4: , , 1.184 10aelaY aela y y aelaYElastic buckling F F K L r F psi= → = ×

( ) 4: , , , 1.184 10alocY aloc y y c aelaYLocal buckling F F K L r C F psi= → = ×

The series of columns used to determine whether we should opt for a local or
elastic fitting allows us to better control the intensity of the stress constraint FaxisX
along axis Y–Y.

{ },'' '','' '' '' ''alocY aelaYAccording to Y if F F local elastic According to Y local= =≺

{ } 4'' '', , 1.184 10aY alocY aelaY aYF if According to Y local F F F psi= = → = ×

e) Determining the failure threshold Fa by using the smallest stress (fracture
threshold) according to axes: X–X and Y–Y.

{ } 4; , 1.006 10a aX aY aX aY aF if F F F F therefore F psi= → = ×≺

f) Calculation of “true stress” (Pascalian model of simple elasticity): fa

( ) 4 7
_ , , 1.043 10 71.91232 7.191232 10a elastic

PF K L r psi MPa Pa
A

= = × = = ×

Comment:We retain the solution Fa from the series of columns to either confirm or
reject the selection. We must bear in mind that the true stress intensity is smaller
than the admissible stress (choice of material).

Here is our conditioned reasoning:

{ },'' '','' '' '' ''a aselection if F f OK NG or even selection NG= =;



Case Studies 309

– The percentage value of acceptance (upper) is expressed with the sign (+).

– The percentage value of refusal (lower) is expressed with the sign (−).

Our result: ( ) ( )% ? 3.747%a a

a

F f
F

⎛ ⎞−
= ± = = −⎜ ⎟

⎝ ⎠

Conclusion: If the selection of the column is not acceptable or if the column is
significantly over-designed, we proceed with a re-conceptualization starting from
step (a), by repeating all calculations.

8.15.2. Problem outline and probabilistic solution (reliability and error)

Beforehand, we suppose that the distribution law in about 30 experiments is
“Gaussian”. We do not have any proof but we base this judgment on the equality of
the averages from the experiments grouped in Table 8.10. To create this table, enter
two vectors of data (15 values of stress constraint) to analyze Felastic and Flocal.

Statistics

Table 8.10. Statistics of the problem

Felastic

0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

70.010
71.750
72.150
70.250
70.000
72.000
70.000
71.500
70.600
72.188
72.189
70.000
72.000
72.188
71.000

= Flocal

0
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

69.362
69.850
72.560
69.850
71.750
70.515
71.954
70.956
71.857
72.456
69.956
71.950
72.358
72.455
69.985

= PROBLEM: Reject or accept:
Null hypothesis H0:

Enter (a) a significant threshold

α 0.01= n1 15= and n2 15=

Averages: m1 and m2

m1 mean Felastic( )= 71.188MPa=

m2 mean Flocal( )= 71.188MPa=

Standard deviations: s1 and s2

s1 stdev Felastic( )
n1

n1 1−
⋅= 0.946=

s2 stdev Local( )
n2

n2 1−
⋅= 1.158=

Degrees of freedom: Df

Df ν n1 n2+ 2−= 28=( )=
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8.15.2.1. Standard error of distance, estimated s

( ) ( )2 2
1 1 2 2

1 2

1 1 1 1 0.386
n s n s

s therefore s
n nν

− × + − × ⎛ ⎞
= × + → =⎜ ⎟

⎝ ⎠
[8.125]

8.15.2.2. Statistical test, t_statistic

31 2
1 1 1.899 10

m mt therefore t
s

−−⎛ ⎞= → = ×⎜ ⎟
⎝ ⎠

{ } { }( )1: 2 1 , 0.998P T t P pt t therefore Pν→ = × − =; [8.126]

At the threshold of [α/2], the percentage point T is written as:

, 2.763
2

T qt therefore Tα ν⎛ ⎞= → =⎜ ⎟
⎝ ⎠

[8.127]

8.15.2.3. Rejecting the null hypothesis if |t| > T

As t1 = 1.899 × 10−3 and T = 2.763 then = |t1| < T. Therefore, the normal
hypothesis of Gaussian distribution is not strongly rejected. Having demonstrated
the normality of the distribution, we can justifiably apply Cornell’s theory to
calculate the reliability index and the fracture probability of the buckling column.
Cornell’s reliability index (βCornell) is in this case calculated following relationship
[5.4] (see Chapter 5) as follows:

2 2= 79.464 53.064
F FF Felastic localelastic local

Cornell Cornell
F Felastic local

M M
andβ β

σ σ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

[8.128]

Following relationship [5.12] (see Chapter 5) we get [8.129]:

( ) ( )F Felastic local
Cornell Cornell

F Felastic local
Cornell Cornellf fP and Pβ β=Φ − = =Φ − [8.129]

Numerical calculations:

3
1

2
1

10
0.079464Cornell elastic

mP
S

−

−

⎧ ⎫×⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭
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{ } 0.4683316234fracture elastic Cornell elasticP β− −= Φ − =

3
2

2
2

10
0.053064Cornell local

m
S

β
−

−
⎧ ⎫×⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

{ } 0.4788404574local fracture Cornell localP β −= Φ − =

The failure rate λ(τ) is written according to the relationship [5.21] shown below
in [8.130]:

0

( ) ( ) ( ) 1 ( ) ( )( ) lim
( ) ( )

dF dLog f
d d dτ

τ τ τ τ τ τλ τ
τ τ τ τ τ τΔ →

⎛ ⎞ℜ −ℜ +Δ ℜ
= = = − =⎜ ⎟Δ ×ℜ ℜ⎝ ⎠

[8.130]

8.16. Adjustment of least squared for nonlinear functions

8.16.1. Specific case study 1: a Weibull law with two parameters

Particular attention:As mentioned in Chapter 2, volume 1, and due to convergence
issues, we now present a case study relevant to the Weibull law using the Minerr
method to adjust the least squared (LS) for nonlinear functions. The Minerr method
of course returns the last values calculated when the maximum number of iterations
to a solution have been reached without which convergence is achieved.

Problem outline: Imagine a Weibull distribution law with two parameters relative
to the data on the roughness of a plate manufactured in 6061 steel (see volume 1,
Chapter 2, Figure 2.6 and Table 2.2). Imagine the two vectors A and B respectively
face A and face B of the manufactured plate by down milling in opposition
(see volume 1, Chapter 2). The data from the Weibull law with two parameters
express the roughness of the piece in 6061. Calculate the parameters that optimize
the Weibull law with two parameters (η, β) and plot the Weibull curve by
demonstrating the curve speed.

Solution: The Weibull law with two parameters is thus written as:

( ) { }1, ,Weibull A A Exp Aβ βη β η β η−= × × × − × [8.131]

We estimate the initial value of the respective parameters (η, β) = (0.85, 1.15)
hence Weibull (A, η, β) = 0.415 (according to our calculation results). With the
help of the Levenberg–Marquardt method (a program on MathCAD), we can
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considerably reduce the steps involved in the calculations of the problem. This
method allows us to calculate the sum of residual value squares [SSE(η,β)]. The
equation to reduce the resolution group usingMinerr method is written as follows:

( ) ( ) ( ), , , 0 = resid ,resid B Weibull A Givenη β η β η β= −
JJJJJJJJJJJJJJJJJJG

[8.132]

Table 8.11. Experimental data from roughness measures

The parameters used to optimize adjustment are thus calculated:

( )1 1

1 1

0.423
,

2.110
Minerr therefore

η η
η β

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

[8.133]

The sum of squares [SSE = Sum Squared Error] is implicitly reduced by this
method:

( ) ( )2, , 0.807SSE residη β η β= =∑ [8.134]

If (γ = 0, 0.1, …, 5), we can plot the graph from the results obtained using
Levenberg–Marquardt optimization method.

A

0

0
1

2

3

4

5

6

7

8

9

10

11

0.1453
0.3691

0.9582

0.7018

0.8917

1.1546

1.2719

1.4609

1.6571

1.8390

2.0290

2.2190

= B

0

0
1

2

3

4

5

6

7

8

9

10

11

0.1546
0.1178

0.5435

0.5064

0.6063

0.6228

0.5690

0.4536

0.4382

0.3164

0.2925

0.1955

=

Correspondence of the
function (Weibull law
density with two
unknown parameters):

This law is considered a
priori

n length B( ) 1−:=

i 1 n, ...,:=

n is the number of sampling
measures from the roughness
of two faces of a plate (6061)
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Figure 8.46. Adaptation of Weibull law with two parameters

The sum squared error (zero if a true solution existed) is written as:

( )1 1 3,
4.933605 10

2
SSE

n
η β −= ×
−

[8.135]

The same number is reduced by the solver by checking the internal error
variable, ERR (from the MathCAD software). In the case of Levenberg–Marquardt,
ERR represents the square root of SSE, the calculation of which can be written as:

2
34.933605 10

2
ERR
n

−⎛ ⎞
= ×⎜ ⎟⎜ ⎟−⎝ ⎠

[8.136]

We can also directly perform a reduction with the help of the SSE equation and
theMinimize function from the MathCAD software, whose (combined gradient):

( ) { }2

2
Minimize , , = ?SSE

η
η β

β
⎛ ⎞

=⎜ ⎟
⎝ ⎠

[8.137]

The so-called Quasi-Newton methods with a combined gradient (MathCAD)
generate similar results:

( )9
2 22 1 3

9
2 1

,1.774 10
4.933605 10

24.876 10

SSE
alors cqfd

n
η βη η

β β

−
−

−

⎛ ⎞ ⎧ ⎫− − ×⎛ ⎞ ⎪ ⎪= = ×⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟− −− × ⎪ ⎪⎝ ⎠ ⎩ ⎭⎝ ⎠

Weibull γ η1, β1,( )

0

0

1

2

3

4

5

6

7

8

9

10

0

0.069

0.147

0.227

0.303

0.375

0.438

0.492

0.535

0.566

...

= Data A-B and best adaptation of Weibull law

0 0.667 1.333 2 2.6673.333 4
0

0.133

0.267

0.4

0.533

0.667

0.8

Weibull γ η1, β1,( )

Bi

γ Ai,

etc. ...
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Assessment of perfect compatibility:

( ) ( )2 2 1 13 3, ,
4.933605 10 4.933605 10

2 2
SSE SSE

n n
η β η β− −⎧ ⎫⎪ ⎪= × ≡ = ×⎨ ⎬
− −⎪ ⎪⎩ ⎭

Comment:We notice that there is a perfect adequacy in our results. We recommend
optimization through this approach. Previously in 1995, we presented a paper
[GRO 95] on 44 measures of crack length (Ncycles to fracture through cracking) on
a cross-joined structure, with the aim of finding the minimal error. The results
concluded a Weibull distribution with the following two parameters:

( )
442 2

theoritical cycles experimental cycles
1

l
2 iMin

ERR N N
n

ε
=

⎛ ⎞
= = −⎜ ⎟⎜ ⎟−⎝ ⎠

∑ [8.138]

8.17. Conclusion

The collection and analysis of results in reliability hardly ever come from simple
simulations when it involves true safety. The decision to proceed according to any
particular method must be based on the exactness of an event, such as the date and
precise reason for fracture, the implicated materials, etc. Physical characteristics
(e.g. length of crack) must never be an obstacle in terms of true measurement
(microscopy, gauge, ultrasound, etc.).

The existing reliability models do not pose any problem. The major issue lies in
the accuracy of the model used to calculate reliability indicators. In this work, we
have presented many methods. It is advisable to remain prudent on the adaptability
of each method involved in experiments subject to analysis.
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Appendix

NOTE.– Freely available software (including spreadsheet packages – e.g. Excel)
offer access to the common statistical tables and distribution laws. Hence, it would
be pointless to give these tables, on paper, here.

Euler’s Gamma function as a (β) Weibull function:

Law Γ(x) is a second-order Euler Gamma function:

1 2 12a=Γ 1+ and b = Γ 1+ -Γ 1+
β β β

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

Table of values (a) and (b) of the Eulerian function as a Weibull f(β) are shown
in Table A.1.

β a b β a b
0.20 120.00 1901 1.20 0.941 0.780
0.25 24.000 199.0 1.40 0.911 0.660
0.30 9.2600 56.60 1.60 0.897 0.574
0.40 3.3233 10.50 1.80 0.889 0.511
0.50 2.0000 4.470 2.00 0.886 0.463
0.60 1.5000 2.650 2.50 0.887 0.380
0.70 1.266 1.850 3.00 0.893 0.324
0.80 1.133 1.430 0.35 0.900 0.285
0.90 1.052 1.180 4.00 0.906 0.255
1.00 1.000 1.000 5.00 0.918 0.210

Table A.1. Values of the coefficients of the Eulerian Gamma function (a and b)
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Kolmogorov–Smirnov (KS) test:

(N) Size of the
sample

Significance level α for
D = maximum [f0(x) − sn(x)]

.20 .15 .10 .05 .01

1 .900 .925 .950 .975 .995

2 .684 .726 .776 .842 .929

3 .565 .597 .642 .708 .828

4 .494 .525 .564 .624 .733

5 .446 .474 .510 .565 .669

6 .410 .436 .470 .521 .618

7 .381 .405 .438 .486 .577

8 .358 .381 .411 .457 .543

9 .339 .360 .388 .432 .514

10 .322 .342 .368 .410 .490

11 .307 .326 .352 .391 .468

12 .295 .313 .338 .375 .450

13 .284 .302 .325 .361 .433

14 .274 .292 .314 .349 .418

15 .266 .283 .304 .338 .404

16 .258 .274 .295 .328 .392

17 .250 .266 .286 .318 .381

18 .244 .259 .278 .309 .371

19 .237 .252 .272 .301 .363

20 .231 .246 .264 .294 .356

25 .210 .220 .240 .270 .320

30 .190 .200 .220 .240 .290

35 .180 .190 .210 .230 .270

>35 1.07 1.22 1.22 1.36 1.63

Table A.2. Values of (Dn.α) in the Kolmogorov–Smirnov Test
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Student’s t-distribution table:

Uppermost critical values of the distribution t with ν degrees of freedom
(DoF) at the reliability threshold of α/2 = 5%

ν ( )2ατ ν ν ( )2ατ ν ν ( )2ατ ν ν ( )2ατ ν

1 12.706 26 2.056 51 2.008 76 1.992

2 4.303 27 2.052 52 2.007 77 1.991

3 3.182 28 2.048 53 2.006 78 1.991

4 2.776 29 2.045 54 2.005 79 1.990

5 2.571 30 2.042 55 2.004 80 1.990

6 2.447 31 2.040 56 2.003 81 1.990

7 2.365 32 2.037 57 2.002 82 1.989

8 2.306 33 2.035 58 2.002 83 1.989

9 2.262 34 2.032 59 2.001 84 1.989

10 2.228 35 2.030 60 2.000 85 1.988

11 2.201 36 2.028 61 2.000 86 1.988

12 2.179 37 2.026 62 1.999 87 1.988

13 2.160 38 2.024 63 1.998 88 1.987

14 2.145 39 2.023 64 1.998 89 1.987

15 2.131 40 2.021 65 1.997 90 1.987

16 2.120 41 2.020 66 1.997 91 1.986

17 2.110 42 2.018 67 1.996 92 1.986

18 2.101 43 2.017 68 1.995 93 1.986

19 2.093 44 2.015 69 1.995 94 1.986

20 2.086 45 2.014 70 1.994 95 1.985

21 2.080 46 2.013 71 1.994 96 1.985

22 2.074 47 2.012 72 1.993 97 1.985

23 2.069 48 2.011 73 1.993 98 1.984

24 2.064 49 2.010 74 1.993 99 1.984

25 2.060 50 2.009 75 1.992 100 1.984

Table A.3. Student’s t-distribution table



320 Fracture Mechanics 2

Binomial distribution:
Significance level for one-direction test

df .10 .05 .025 .01 .005 .000
1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.598
3 1.638 2.353 3.182 4.541 5.841 12.941
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.859
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.405
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781
10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460
120 1.289 1.658 1.980 2.358 2.617 3.373
X 1.282 1.645 1.960 2.326 2.576 3.291

Table A.4. Binomial distribution table

Normal distribution table:
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Distribution function P of the reduced centered normal law (u). Probability of
finding a value less than at (u)→ P(−u) = 1 − P(u). Example: For Ф(1.73) = 0.95818,
we choose the row 1.7 and the column 0.03, and read→ (1.7 + 0.03 = 1.73)

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

Table A.5. Gaussian normal law table
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Values of probabilities associated with Z in a normal law:

The probability in a direction rejects the null hypothesis (HO) if the value is less than that
given by the value of the RCRV, Z (reduced centered random variable). Second column
(Z↓) for the first decimal. The row (Z→) provides the second decimal to be added to the
first one

↓↓ Z→→ .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 2.810 .2776
.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 2.483 .2451
.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0038 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

Table A.6. Probability values associated with Z in a normal law

Karl Pearson or χ2 law:
Based on the number of degrees of freedom (which we can read in the first

column) and the risk of error (α) (on the first row), we find the value of the difference
χ2 that is likely to be surpassed. The value of χ2 for which the probability of a value
less than χ2 depending on the number n of degrees of freedom is α = Fn (χ2).
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n\α 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 0.990 0.995
1 0.0000 0.0002 0.0010 0.0039 0.0158 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88
2 0.0100 0.0201 0.0506 0.103 0.211 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.6
3 0.0717 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8
4 0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9
5 0.412 0.554 0.831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7
6 0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5
7 0.989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6
10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2
11 2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8
14 4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8
16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 32.0 33.4 35.7
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6
20 7.43 8.26 9.56 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0
21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8
23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2
24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6
25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9
26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.1 35.6 38.9 41.9 45.6 48.3
27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6
28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7
40 20.7 22.2 24.4 26.5 29.1 33.7 39.3 45.6 51.8 55.8 59.3 63.7 66.8
50 28.0 29.7 32.4 34.8 37.7 42.9 49.3 56.3 63.2 67.5 71.4 76.2 79.5
60 35.5 37.5 40.5 43.2 46.5 52.3 59.3 67.0 74.4 79.1 83.3 88.4 92.0
70 43.3 45.4 48.8 51.7 55.3 61.7 69.3 77.6 85.5 90.5 95.0 100.4 104.2
80 51.2 53.5 57.2 60.4 64.3 71.1 79.3 88.1 96.6 101.9 106.6 112.4 116.3
90 59.2 61.8 65.6 69.1 73.3 80.6 89.3 98.6 107.6 113.1 118.1 124.1 128.3
100 67.3 70.1 74.2 77.9 82.4 90.1 99.3 109.1 118.5 124.3 129.6 135.8 140.2

Table A.7. χ2 law

For large values of n, the law of probability of χ2 tends toward a normal law of
average n and variance 2n. If n is sufficiently large, the random variable

( )22 2 1nχ
⎧ ⎫⎛ ⎞⎪ ⎪− −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

more-or-less obeys a reduced centered normal law. If the calculated

value of χ2 is greater than the value shown at the predetermined confidence
threshold, we reject the null hypothesis H0.
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df .99 .98 .95 .90 .80 .70 .50 .30 .20 .10 .05 .02 .01 .001
1 .00016 .00063 .0039 .016 .064 .15 .46 1.07 1.64 2.71 3.84 5.41 6.64 10.83
2 .02 .04 .10 .21 .45 .71 1.39 2.41 3.22 4.60 5.99 7.82 9.21 13.82
3 .12 .18 .35 .58 1.00 1.42 2.37 3.66 4.64 6.25 7.82 9.84 11.34 16.27
4 .30 .43 .71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 11.67 13.28 18.46
5 .55 .75 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 13.39 15.09 20.52
6 .87 1.13 1.64 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 15.03 16.81 22.46
7 1.24 1.56 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 16.62 18.48 24.32
8 1.65 2.03 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 18.17 20.09 26.12
9 2.09 2.53 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 19.68 21.67 27.88
10 2.56 3.06 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 21.16 23.21 29.59
11 3.05 3.61 4.58 5.58 6.99 8.15 10.34 12.90 14.63 17.28 19.68 22.62 24.72 31.26
12 3.57 4.18 5.23 6.30 7.81 9.03 11.34 14.01 15.81 18.55 21.03 24.05 26.22 32.91
13 4.11 4.76 5.89 7.04 8.63 9.93 12.34 15.12 16.98 19.81 22.36 25.47 27.69 34.53
14 4.66 5.37 6.57 7.79 9.47 10.82 13.34 16.22 18.15 21.06 23.68 26.87 29.14 36.12
15 5.23 5.98 7.26 8.55 10.31 11.72 14.34 17.32 19.31 22.31 25.00 28.26 30.58 37.70
16 5.81 6.61 7.96 9.31 11.15 12.62 15.34 18.42 20.46 23.54 26.30 29.63 32.00 39.29
17 6.41 7.26 8.67 10.08 12.00 13.53 16.34 19.51 21.62 24.77 27.59 31.00 33.41 40.75
18 7.02 7.91 9.39 10.86 12.86 14.44 17.34 20.60 22.76 25.99 28.87 32.35 34.80 42.31
19 7.63 8.57 10.12 11.65 13.72 15.35 18.34 21.69 23.90 27.20 30.14 33.69 36.19 43.82
20 8.26 9.24 10.85 12.44 14.58 16.27 19.34 22.78 25.04 28.41 31.41 35.02 37.57 45.32
21 8.90 9.92 11.59 13.24 15.44 17.18 20.34 23.86 26.17 29.62 32.67 36.34 38.93 46.80
22 9.54 10.60 12.34 14.04 16.31 18.10 21.24 24.94 27.30 30.81 33.92 37.66 40.29 48.27
23 10.20 11.29 13.09 14.85 17.19 19.02 22.34 26.02 28.43 32.01 35.17 38.97 41.64 49.73
24 10.86 11.99 13.85 15.66 18.06 19.94 23.34 27.10 29.55 33.20 36.42 40.27 42.98 51.18
25 11.52 12.70 14.61 16.47 18.94 20.87 24.34 28.17 30.68 34.38 37.65 41.57 44.31 52.62
26 12.20 13.41 15.38 17.29 19.82 21.79 25.34 29.25 31.80 35.56 38.88 42.86 45.64 54.05
27 12.88 14.12 16.15 18.11 20.70 22.72 26.34 30.32 32.91 36.74 40.11 44.14 46.96 55.48
28 13.56 14.85 16.93 18.94 21.59 23.65 27.34 31.39 34.03 37.92 41.34 45.42 48.28 56.89
29 14.26 15.57 17.71 19.77 22.48 24.58 28.34 32.46 35.14 39.09 42.56 46.69 49.59 58.30
30 14.95 16.31 18.49 20.60 23.36 25.51 29.34 33.53 36.25 40.26 43.77 47.96 50.89 59.70

Table A.8. Pearson’s χ2 table: probability below H0 such that χ2 ≥ Chi squared

The critical value for the chi-square χ2 distribution is found at the intersection of
a column, corresponding to a given probability, and a row, corresponding to the
degrees of freedom. For instance, the critical value of χ² with four degrees of
freedom for the probability 0.25 is equal to 5.38527. This means that the surface
under the density curve of χ² with four degrees of freedom on the left of the value
5.38527 is equal to 0.25 (to 25% of the surface).
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Graphs

There are many ways to graphically represent the distribution laws – in our case,
the exponential law and the log–normal law. The graph for the Weibull distribution
with two and three parameters is shown as follows:

Figure A.1. Graph of 3-parameter Weibull distribution

1 10

1

2

3

4

5

6

7

8

9

10

0.60

0.70

0.80

0.90

0.99

0.10

0.20

0.30

0.40

0.50

0.01



Appendix 327

Figure A.2. Allan plait graph of 2-parameter Weibull distribution

Reliability

The diagrammatic representation of M. Hohenbichler method demonstrates a
high degree of precision in certain cases where the analytical expression of фm is
known. The basics on the formulations are to be found in the book written
by H. Hohenbichler and R. Rackwitz [HOH 87]. Comparison of the FORM method
and the exact solutions of the multi-normal integral for equiprobable and
equicorrelated components of the various β and ρ are usually in the figure from the
paper by M. Hohenbichler and R. Rackwitz, which can easily be found in reference
[HOH 82].

Main regulations, codes, and technical norms:

Rabaska Study Project of the impact on the environment (Rabaska Project:
Environmental impact study). Volumes 2 and 3 (see English version)

CANADA-USA-EUROPE. (Appendix K 18, January 2006)

The Rabaska deepwater terminal is designed in accordance with the regulations,
codes, and norms of Quebec and Canada, and with the American and International
norms and recommendations listed below.
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Reference/Acronym Title Origin
CSA
ACNOR

Canadian Standards Association
Association Canadienne de Normalisation

Canada (E)
Canada (F)

CNRC Conseil national de recherches Canada
(Canadian National Research Council)

Canada

BNQ Bureau de normalisation du Québec
(Quebec Standards Bureau)

Canada-Québec

CISC Institut canadien de la construction en acier
(Canadian Institute for Steel Construction)

Canada

CGA (ACG, French) Association canadienne du gaz
(Canadian Gas Association)

Canada

ACI American Concrete Institute USA
AGA American Gas Association USA
ANSI American National Standards Institute USA
API American Petroleum Institute USA
ASCE American Society of Civil Engineers USA
ASME American Society of Mechanical Engineers USA
ASTM American Society for Testing Materials USA

BS British Standards UK
AFNOR Association Française de Normalisation

(French Standards Association)
France

Table A.10. References/Acronyms

Earthquake resistance

The terminal’s anti-earthquake design also conforms to the prescriptions of
Canada’s national building code: based on one earthquake which does not disrupt
normal service (Operating Basis Earthquake) and another which provokes a safe
shutdown of the terminal. The following table presents the various norms regarding
how these two reference earthquakes are to be quantified.
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Norm-Ref Operating basis earthquake Safe shutdown earthquake

CSA
Z276-01

SSN (Séisme de service normal) =
Operating Basis Earthquake
Earthquake with a 10% probability
of being exceeded in 50 years,
equating to a recurrence period of
475 years.

SAS (Séisme d’arrêt sécuritaire) =
Safe shutdown earthquake
Earthquake with a probability of being
exceeded no greater than 0.1% per year,
equating to a recurrence period of 1,000
years.

NFPA
59A-2001

OBE (Operating Basis Earthquake)
Earthquake with a 10% probability
of being exceeded in 50 years,
equating to a recurrence period of
475 years.

SSE (Safe Shutdown Earthquake)
Earthquake with a probability of being
exceeded not greater than 1% per 50
years, equating to a recurrence period of
4,975 years.

EN
1473:1997

OBE (Operating Basis Earthquake)
Earthquakes with a recurrence
period equal to 475 years.

SSE (Safe Shutdown Earthquake)
Earthquakes with a recurrence period
equal to 10,000 years.

Rabaska Application of the 3 norms.
Recurrence period of 475 years

Application of the European norm.
Recurrence period of 10,000 years

Emergency shutdown system

CSA
Z276

The Canadian standard prescribes:
– An emergency shutdown system (ESS) to isolate or close off sources of
flammable liquids and shut down machinery that would prolong or aggravate
the emergency situation. The control may be manual or automatic.
– That the installation be put in safety mode in case of a failure in the
electricity or air supply.

NFPA
59A

Idem CSA.

EN 1473
Europe

The norm describes the control systems and defines the role of emergency shut
down (ESD).
The presence of an emergency electrogenic group is required.

Rabaska Application of the prescriptions of all 3 norms.

Table A.11. Relevant international norms (Canada and elsewhere)
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Regulations, codes, and norms (Canada, Quebec, and USA):

Title Edition Reference
Normes: Ouvrages routiers: Tome III – Ouvrage d’art et
Tome VIII – Matériaux

Ministère des
Transports du Québec

Règlement sur les mécaniciens de machines fixes 2004 M-6, r.1
Handbook of Steel Construction (8th Ed) 2004 CISC
Code national du bâtiment du Canada, (modifié pour le
Québec)

2005 CNBC

Code national de la plomberie du Canada 1995 CNRC-NRC
Galvanisation à chaud des objets de forme irrégulière 2003 CAN/CSA-G164-

FM92
Règles de calcul des charpentes en bois 2001 CAN/CSA-O86-F01
Règles de calcul aux états limites des charpentes en acier 2001 CAN/CSA-S16-F01
Code canadien sur le calcul des ponts routiers 2005 CAN/CSA-S6-00
Commentary on CAN/CSA-S6-00 Canadian Highway
Bridge – Design Code

2000 CSA-S6.1-00

Règles de calculs aux états limites des charpentes en acier 1994 CSA S16.1
Strength design in aluminium 2005 CAN3-S157-05
Béton: constituants et exécution des travaux/Essais
concernant le béton

2000 CSA A23.1-F00/
A23.2-F00

Calcul des ouvrages en béton 2004 CSA A23.3-04
Acier de construction 2004 CSA G40.21- F004
Métaux d’apport et matériaux associés pour le soudage à
l’arc

2001 CSA W48 - F01

Construction soudée en acier (soudage à l’arc) 2003 CSA W59-F03
Exigences générales, critères de calcul, conditions
environnementales et charges.

2004 CSA S471-F04

Barres d’acier en billettes pour l’armature du béton 2002 CSA-G30.18-M92
Metric Building Code Requirement for Structural
Concrete

2002 ACI 318M

Guide for the design and construction of fixed offshore
concrete structures.

1984 ACI 357 R-84

State-of-the-art report on concrete structures for the
Arctic.

1997 ACI 375.1R91

Planning and Designing and Constructing Fixed Offshore
Structures in Ice Environments.

1982 API Bulletin 2N

Welding of Pipe Lines and Related Facilities (19th ed)
and Errata

1999
2001

API 1104

Flanged Safety Relief Valves (5th Ed) 2002 API 526

Table A.12. Regulations, codes, and norms (Canada, USA, and Europe)
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Title Edition Reference
Steel Gate Valves – Flanged and Butt Welding Ends
(11th ed)

2001 API 600

Corrosion Resistant, Bolted Bonnet Gate Valves –
Flanged and Butt-Welding Ends (6th ed)

2001 API 603

Minimum Design Loads for Buildings & Other Structures 2002 ASCE 7
Unified Inch Screw threads (UN and UNR Thread Form) 1989

R2001
ASME B1.1

Pipe Threads, General Purpose (inch) 1983
R2001

ASME B1.20.1

Safety Standard for Mechanical Power Transmission
Apparatus

2000 ASME B15.1

Forged Fittings, socket-welding and Threaded 2001 ASME B16.11
Butt welding Ends 1997 ASME B16.25
Surface Texture, Surface Roughness, Waviness, and Lay 2002 ASME B46.1
NDT Procedures Latest ASME Section 5
Quality Control Standard for Control Valve Seat Leakage 2003 ASME/FCI-70-2
Appropriate Materials Standards Latest ASTM
Rules for the design, construction and inspection of
offshore structures. Det norske Veritas, Hovik, Norway

1977 Det norske Veritas

Systèmes de management de la qualité – Exigences 2000 ISO 9001
Systèmes de management de la qualité – Principes
essentiels et vocabulaire

ISO 9000

Unités SI et recommandations pour l’emploi de leurs
multiples et de certaines autres unités

2000 ISO 1000

Table A.12 (continued). Regulations, codes, and norms (Canada, USA, and Europe)
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A, B
Arrhenius, 23
Basquin, 103
Bastenaire, 17
Bayesian method, 87-88
Bayesian model, 110-112, 122-124,
130, 131

binomial distribution, 74-76
Birbaum-Saunders, 88

C
capabilities, 161
capability indicator, 264
Carson, 103
Cornell’s reliability index, 166-168
Corten and Dolen, 31

D, E
decision, 250-252
discrimination ratio, 295
Ditlevsen’s bounds, 70-78
Engesvik, 43

F
fatigue model, 142-157, 190
FORM/SORM, 141

G
Gaussian variable, 168, 169, 177,
188, 209

Gross and Srawley, 41
Gurney, 40

H
Harrison, 46
Hasofer-Lind’s reliability index, 168-171
Henry, 31
Henry’s law, 18-19
histogram, 189, 221, 222, 225, 279,
280, 281, 283

Hohenbichler’s method, 78-80
hypergeometric law, 276

K, L
Kolmogorov-Smirnov, 103, 216, 217,
275

Laplace-Gauss, 217
Lawrence, 41
log-normal, 88

M, N
Maddox, 40
maintenance, 116, 125, 151, 161,
172, 184, 249, 304
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managing calibration, 185
Manson-Coffin, 20
manufacturing processes, 264
Markov chains, 141-157
Martin and Bousseau, 42
maximum likelihood, 113-117
McEvily, 34
measurement, 33, 183, 184, 189
metrological measuring, 185
Miner, 30
Monte Carlo, 15
MTBF, 89
non-Gaussian variable, 210

P, Q
Palmgren, 103
parallel assembly, 235-236
parallel system, 172-173
Paris, 51
plasticity, 4-7, 33
Poisson process, 89
Poisson, 118-119
production reliability acceptance
test (PRAT), 116

progressive plan, 295, 298
quality control, 2, 80, 264, 286,
287, 294, 295

R
RDM, 56, 300
reliability acceptance test, 116, 124
reliability indices, 159-178
ROCOF, 112
roughness, 311, 312

S
serial assembly, 173-178
Sih, 39
simple binomial distribution, 74-76
simple bounds, 69-85
statistical process control (SPC), 264
Stromayer, 103
structure reliability, 161-162, 186

T
Taylor’s law, 54,55
Tomkins and Scott, 45
type B uncertainty, 184

W, Y
Weibull, 103
Wöhler, 103
Yamada and Albrecht, 43
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