Several Complex
Variables and
Integral Formulas

Kenzo Adachi







Several Complex
Variables and
Integral Formulas



This page intentionally left blank



Several Complex
Vartables and
Integral Formulas

Kenzo Adachi

Nagasaki University, Japan

\\3 World Scientific

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

SEVERAL COMPLEX VARIABLES AND INTEGRAL FORMULAS
Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-270-574-7
ISBN-10 981-270-574-0

Printed in Singapore.



To my family
Machiko,
Hidehiko and Yuko



This page intentionally left blank



Preface

The aim of this book is to study some important results obtained in the last
50 years in the function theory of several complex variables that are mainly
concerned with the extension of holomorphic functions from submanifolds
of pseudoconvex domains and estimates for solutions of the 9 problem in
pseudoconvex domains.

This book is divided into five chapters.

In Chapter 1 we recall the elementary theory of functions of several
complex variables. We prove that every domain of holomorphy is a pseudo-
convex open set. Moreover, we give the proof of the Hartogs theorem which
means that a separately analytic function is analytic.

In Chapter 2 we deal with L? estimates for the 0 problem in pseudo-
convex domains in C" due to Hormander. As an application, we give the
affirmative answer for the Levi problem. Moreover, we prove the Ohsawa-
Takegoshi extension theorem by following the method of Jarnicki-Pflug.

In Chapter 3 we construct integral formulas for differential forms on
bounded domains in C™ with smooth boundary, that is, the Bochner-
Martinelli formula, the Koppelman formula, the Leray formula and the
Koppelman-Leray formula are derived. Using the integral formula, we prove
Hélder estimates for the @ problem in strictly pseudoconvex domains with
smooth boundary. Moreover, we prove bounded and continuous extensions
of holomorphic functions from submanifolds of strictly pseudoconvex do-
mains with smooth boundary which were proved by Henkin in 1972. We
also prove HP and C* extensions. Finally, we prove Fefferman’s mapping
theorem by following the method of Range.

In Chapter 4 we discuss the Berndtsson-Andersson formula and the
Berndtsson formula. As an application of the Berndtsson-Andersson for-
mula, we give LP estimates for solutions of the 9 problem in strictly pseudo-
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convex domains in C" with smooth boundary. Using the Berndtsson for-
mula, we give counterexamples of LP (p > 2) extensions of holomorphic
functions. Finally, we introduce an integral formula which was used by
Diederich-Mazzilli to prove bounded extensions of holomorphic functions
from affine linear submanifolds of a smooth convex domain of finite type.

Chapter 5 is devoted to the study of classical fundamental theorems in
the function theory of several complex variables some of which are used to
prove theorems in the previous chapters.

Appendix A is concerned with the compact operator theory in Banach
spaces which is used to prove Fefferman’s mapping theorem.

In Appendix B we give solutions to the Exercises.

I am grateful to Saburou Saitoh who suggested to me the publication of
this book. T am also grateful to Heinrich GW Begehr who suggested that
World Scientific might be interested in publishing this book.

I would like to express my sincere gratitude to Joji Kajiwara, Professor
Emeritus at the Kyushu University, who introduced me to the function
theory of several complex variables when I was a student at the Kyushu
University, and to Morisuke Hasumi, Professor Emeritus at the Ibaraki
University, who introduced me to the theory of function algebras when I
was studying at the Ibaraki University.

Finally, I want to express my thanks to Ms Zhang Ji, Ms Kwong Lai Fun
and the staff of World Scientific for their help and cooperation.

Kenzo Adachi
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Chapter 1

Pseudoconvexity and
Plurisubharmonicity

In this chapter we study the properties of holomorphic functions of several
complex variables and plurisubharmonic functions. We define the domain
of holomorphy and the pseudoconvex open set, and we prove that every
domain of holomorphy is pseudoconvex, but the converse (Levi’s problem)

is left to 2.2.

1.1 The Hartogs Theorem

Definition 1.1 Let f = u+iv: Q — C be a C! function in an open set

QcCC" Forzj =x; +1iy;, j =1,--- ,n, define

o _1(or 1or

8zj_2 Oz; i Oy
_L(Ouw ovy ifOv Ou
_2 5‘xj 8yj 2 8mj 8y]

and

of _1(of 10f

0z; 2 \0x; idy;
Y AR
2\ 0z;  Oy; 2\ 0x; Oy

By definition
of _of 9f _of

8zj N 82]‘7 82]» n aZj.
Lemma 1.1 Let Q C C" and G C C™ be open sets and let f : Q — G
and g : G — C be of class C* for k=0,1,--- ,00. Then, go f:Q — C is
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of class C*. Moreover, if we write f(z) = (f1(2),---, fm(2)), then

200N = L { e+ el

ow ow
— k k

and

0 RN % Ofr

75021 = { G NG + g uEngE@) a2)
Proof. We prove (1.1) in case n = m = k = 1. Let f(z) = a(z,y) +
if8(x,y) and w = u + iv. Then we have

(82 _ Z(%) gla(z,y), B(z,y))

dgda 0995\ | 1 (990a 990
Oudxr Ovox i \Oudy Ovoy/)’

0 1
&(Qof)( )_5
1
)

Then (1.1) follows from the equalities

9 0. 0 o (0 0
dr 0z 0z Oy 0z 0z

9 0,0 8 (0 o
ou " ow o0 v \ow ow)
(1.2) is proved similarly. O

Theorem 1.1 Let  be a bounded open set in C and let 02 consist of
finite C* Jordan curves. For u € C*(Q) and z € Q, we have

u(z)=ﬁ{/m C“(_Ozngr//Q ?_;_(CZ)dC/\dC}.

Proof. We fix z € Q. For ¢ € Q\{z} we have
. [u@)dc]  Bu(¢) A d¢
‘l¢c=z] (=2

For any sufficiently small ¢ > 0, we set Q. = {( € Q| [( — 2] > ¢}. Tt
follows from Stokes’ theorem that

1 u(¢)d¢ _ 1 ou(¢) A dC
20 Jje—z=e C—2 2mi /CedQ C—z 2w //

We have the desired equality by letting ¢ — O. g
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Definition 1.2 Let Q be an open set in R™. We denote by D(Q2) (or
C(9)) the set of all C* functions f in € whose support supp(f) is a
compact subset of €.

Theorem 1.2 Let Q be a bounded open set in the complex plane and let
K C Q be compact. Then for any open set w in Q satisfying K C w, there
exist constants Cj, j =0,1,---, such that

sup |9 (2)] < Cjll fllp1w)
zeEK

for every holomorphic function f in .

Proof. Let K’ be a compact set such that K C K’° ¢ K’ C w. Choose
a function 1 € C°(w) with the properties that ¢ = 1 in K’. By Theorem

1.1, we have
W) =5 | / OFmdc N

- // T8 4 nac

Since ‘3—? =0 in K’, we have

=5 //W\K/ )dgAdg

for z € K. By differentiating j times with respect to z, we obtain

1) () = f(©) >
) =L //ww 5 (O 7 e A e

If z € K, ¢ € w\K’, then there exists a constant C' > 0 such that |z—(| > C.
Hence there exists a constantC7 > 0 such that

F9 ()] < // Oldedy (¢ = +iy),
w\ K’

which gives the desired inequality. O

Definition 1.3 Let  be an open set in C. Then v : Q@ — R U {—o0} is
called subharmonic in 2 if

(1) w is upper semicontinuous in €2, that is, {z € Q | u(z) < s} is an open
set for any real number s.
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(2) For any compact set K C € and any continuous function h on K which
is harmonic in the interior of K, u satisfies the following properties:

u(z) <h(z) (z€0K) = u(z) <h(z) (z€K).

Definition 1.4 Let u: Q — R be a C? function in an open set 2 C C.
We say that u is strictly subharmonic in € if
0%u
020z

(z) >0 (z € Q).

Theorem 1.3 Let Q be an open set in C. Then a real-valued function
u € C?(Q) is subharmonic in ) if and only if

0%y
> .
8282(2) >0 (z € Q)

Proof. Leta=a+if € Q. Forr with 0 < r < dist(a,99), define

2T
A(r) = i/ u(a + re'?)df.
0

2T
Then we have

dA(r) 1 [*d
di):% ; ﬂu(a—i—re )do

1 2 8U X
=5 {%(a—krcose,ﬁ—i—rsm@)cose

+g—Z(a+rcost9,ﬁ+rsin9)sin9} do
2
" 27 //Iz al<r (3952 g;ﬁ) tody
- //|z al<r 3232dxdy.

If 59225‘2 (z) > 0, then d’:l?(f) > 0. Hence A(r) is monotonically increasing.

Therefore, we obtain
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which means that u is subharmonic. Conversely, suppose u is subharmonic.
2
Suppose there exists a point a satisfying ,az 5= (a) < 0. For any sufficiently

small r > 0, if |z — a| <7, then 88228“5 (z) < 0, which implies that

dA(r) 2 0%u
dr — 7r //|z—a|§r 8282dxdy <0

Since A(r) is strictly monotonically decreasing, we have

1

2
> %/0 u(a + re')ds,

u(a)

which is a contradiction. Thus, we have 8‘9225‘5 (z) > 0. O
Definition 1.5 For a € C and r > 0, define

B(a,r) :={z€C ||z —a|] <r}.
The closure of B(a,r) is denoted by B(a,r).

Theorem 1.4 Let u be a continuous real-valued function on 0B(0, R).
For z =re" € B(0, R), define

1 [ , R2 — 2
= v de. 1.
U() 27 /0 u(Re )RQ — 2Rrcos(¢o — 0) + 12 7 (13)

Then U is harmonic in B(0,R). Moreover, if we define U(z) = u(z) for
z € 0B(0, R), then U is continuous in B(0, R). The right side of (1.8) is
called the Poisson integral.

Proof. For |z| < R, define
12 o R 4z
= — P 7(1
/) 277/0 u(Re )Re“P —

For ( = Re'#, we have
Re'? + 2 = (z\"
— =142 -] .
Re™ — z + ;<C)

Since the right side of the above equality converges uniformly on |(| = R,
we obtain

1 2

e i 25 )

0
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Therefore, f is holomorphic in B(0, R). On the other hand we have

1 [ i Re' + 2
Re f(Z) = % u(Re ‘P)Re (m)
1 ; R%* —r?
_ = ip
C2n u(Re )R2 — 2Rrcos(p — 0) + 12 d¢
=U(z).

Hence, U is harmonic in B(0, R). Next we fix a point (; = Re®°. For
e > 0, there exists 6 > 0 such that if ( = Re?, |¢ — ¢o| < d, then

() —u(Co)| <e.

We can choose p > 0 so small that if |z] < R and |z — {o| < p, then
there exists a constant ¢ > 0 such that

R* —r? <6 |Re™ —z|>cd (po+6 << po—0+2m).
We set

M =
lrzrlla);%w( z)|.

Then we have

U(2) = U(Co)| = [U(2) = u(Co)]

%/% (Re™?) — u((o))R (%) dgo‘
= [ e uiey e
< QL joj( (Rew)—U(Co))%d@
+ % [Pji;6+2w(u(Rei¢) — U(CO))%CM

1 wo+d R2 — 2 M po—0+2m €62
< — e———dp+ —/ dy
o /W(; |Ret# — z|? T Joots (ch)?

2Me 2M
<e+ ) =& 1+—2 .
C C

Hence, U is continuous in B(0, R). O
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Lemma 1.2 Let Q C C be an open set and let u be a continuous subhar-
monic function in Q, a € Q. For r with 0 < r < dist(a,0Q), define

27
A(r) = %/0 u(a + re'?)db.

Then A(r) satisfies the following:
0<ry <ry<dist(a,002) = A(r1) < A(rg).

Proof. Let 0 < r < dist(a,09). We denote by ¢, the Poisson integral of
u. Then

1 [ 2 |z — al? 0
= — T —T *“Nde.
er(2) 27‘(‘/0 |(Z_a)_r619|2u(a+re )

Moreover, ¢, is harmonic in B(a,r), continuous in B(a,r) and ¢, = u
on 0B(a,r). Then u(z) — ¢r(z) is subharmonic in B(a,r), and equals 0
on 0B(a,r). By the maximum principle, u(z) < ¢,(z) for z € B(a,r).
Therefore we have
1 27 0 1 27 0

u(a +rme?)dd < — Ory (a4 r1€")db
21 0

1 2 ]
= — ©r, (a + 12€)d

2 0
1 " u(a + roe?)do
- 21 0 2 '

27 Jo

O

Theorem 1.5 Let u: Q — R be a continuous real-valued function in an
open set  C C. Then the following statements are equivalent:

(a) w is harmonic in €.
(b) For any a € Q and any r with 0 < r < dist(a, 0), one has

1 2w )
u(a) < %/0 u(a + ret?)ds.
(c) For any a € Q, there exists ¢ (0 < € < dist(a,0N)) such that for any r
with 0 < r < & one has

2
u(a) < %/0 u(a + ret?)ds.
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(d) For any a € Q and any r with 0 < r < dist(a, 0Q), if h is continuous in
|¢ — a| <r, and harmonic in | — a| < r, then u satisfies the following
properties:

u(€) <h() for [C—al=r=u(() <h() for |(—al<r

Proof. (b)==(c) and (a)==-(d) are trivial. We show that (d)=(b).
For a € Q, we choose > 0 such that B(a,r) C Q. We denote by U the
Poisson integral of u for B(a,r). Then U is harmonic in B(a,r), continuous
in B(a,r), and U(z) = u(z) for 2 € dB(a,r). Since u < U in B(a,r), we
have

w(a) < Ula) = —

= :%

2 ) 1 27 ]
/ Ula+re'?)dd = — / u(a + re'?)do.
0 21 Jo

This proves (b). Next we show that (¢c)=(a). Let K C £ be a compact
set. Suppose h is harmonic in the interior of K that is continuous on K,
and satisfies u < h on OK. We set

c= %%((u(z) — h(2)).

Suppose ¢ > 0. We set
K.={z€ K | u(z) — h(z) =c}.

Then K, is compact. We denote by a the nearest point of K. to K. If we
choose r > 0 sufficiently small, then we have

1 2 . . 1 27

), {u(a +re?) — hia +re?)}d < o /0 cdf = c.

On the other hand, if we choose r > 0 sufficiently small, then it follows
from (c) that

1 2 ) )
c=u(a) — h(a) < py. {u(a+re?®) — ha +re?)}db,
™ Jo
which is a contradiction. Thus we have ¢ = 0, which implies that « < h on
K. This proves (a). a

In order to prove the Hartogs theorem we need the following lemma (see
Krantz [KR2]).

Lemma 1.3 Let Q C C be an open set and let f : @ — R U {—o0}
be upper semicontinuous and bounded above. Then there exists a sequence
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{f;} of real-valued continuous functions in Q which are bounded above on
Q such that

h=>faz fi—Ff

Proof. 1In the case when f(z) = —oo, we may set f,(z) = —n. Thus we
may assume that f(z) #Z —oo. For x € ), we set

fi(x) = sup{f(y) —jlz —yl}.
yeN

Then fi(x) > fa(x) > -+ > f(x). Fore > 0, if 1,29 € Q, |21 — 22| < /7,
then
fy) —jler —yl < fy) —jlza —yl+e  (y€Q).

Therefore we have f;(z1) < fj(z2) + . By interchanging x1 and xs we
have |f;(xz1) — fj(z2)| < e. Thus each f; is continuous in . We set

sup f() = M, f(z)=a (a#—o0).
e

For € > 0, there exists § > 0 such that if |z —y| < 0, then f(y) < a—e since
f is upper semicontinuous. If |y — x| > 4§, j > M/§, then f(y) — jlz —y| <
M — M = 0. Thus we have
. .M
a=f(r) < fi(@)= sup {f(y)—jlz—yl} <a+e i>=)

ly—z|<6

which shows that f;(z) — f(z). Suppose @ = —co. For N > 0, there exists
41 > 0 such that f(y) < —N whenever |x — y| < 1 . Hence we have

fi(r) = max | sup {f(y)—jlﬂc—ylh| sup {f(y)—jlw—yl}]

lz—y[<d1 z—y|>d
< max{—N, M — jé }.
If we choose j sufficiently large, then jéo; > N + M. Thus f;(z) — —oo =
f(z). 0

Corollary 1.1 For an upper semicontinuous function u in an open set
Q C C, Theorem 1.5 also holds.

Proof. We show that (d)==(b). Let a € Q and 0 < r < ' < dist(a, 09).
By Lemma 1.3, there exists a sequence {u;} of continuous functions in
B(a,r") such that

Uy > Uz = -0, Uj— U
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We denote by U; the Poisson integral of u; for B(a,r). Then Uj is harmonic
in B(a,r), continuous in B(a,r), and satisfies U; = u; on dB(a,r). Thus
we have u(z) < Uj(z) for z € B(a,r). Therefore we obtain

1 2 . 1 27 .
u(a) < Uj(a) = —/ Uj(a+re)do = —/ uj(a+re')do.
27T 0 27T 0
By letting j — oo, (b) follows from the Fatou lemma. The proof of
(¢)==(a) is proved in the same way. O
Definition 1.6 Forr; >0 (j =1,---,n), we set r = (r1,---,ry). For
a € C™, define
Pla,r)={z= (21, ,2n) | lzj —aj| <rj,j=1,--- ,n}.
If we set

Pj={z € C|lz —aj| <rj},
then
P(a,r) =Py x -+ x P,.
P(a,r) is called a polydisc. When n = 1, we have P(a,r) = B(a,r).

Definition 1.7 A power series of n variables is denoted by

oo

ch,(z —a) = Z Cog e (21 — 1) - (20, —an)™. (1.4)

v1=0,-+,vn=0

The domain of convergence of the power series (1.4) is the interior of the
set of points z € C™ for which (1.4) converges.

Theorem 1.6 FEvery power series converges uniformly on every compact
subset of its domain of convergence.

Proof. Let Q be the domain of convergence of (1.4). For simplicity, we
may assume that a = (a1, -+ ,a,) = 0. Let w € Q. Then we have

sup |e,w”| = M < oo.
v

We set r = (w1, -, |wy|). Let K C P(0,r) be a compact set. Then there
exists 0 < A < 1 such that K C P(0,Ar). If z € P(0,Ar), then we have

ley2?| = e, 2d - 200 | < ey (M)t - (Arn)7 = |e,w” AT < ML



Pseudoconvezity and Plurisubharmonicity 11

On the other hand we have
1 n
E 12 Y
a A <1 — /\) < 00.

Thus > c¢,z” converges uniformly on K. Let E be any compact subset
of Q. Then there exists w',--- ,w* € Q such that for each w’, compact
subsets K; of polydiscs P(0, Ar?) constructed above satisfy

k
Ec U

K.
J

1

Since (1.4) converges uniformly on each K, (1.4) converges uniformly on
E. O

Definition 1.8 Let 2 C C" be an open set. G CC () means that the
closure of G in C" is a compact subset of . In this case, G is called
relatively compact in 2.

Definition 1.9 Let Q@ C C" be an open set. A function f :  — C
is called holomorphic in Q if f is continuous in 2, and for each a =
(a1, -+ ,an) € Q, if we set ¢(z;) = flar, -+ ,25, -+ ,an), then p(z;) is
holomorphic at a;. The set of all holomorphic functions in 2 is denoted by

0(9).

Theorem 1.7 For a function f : Q2 — C on an open set Q C C", the
following statements are equivalent:

(a) f is holomorphic in Q.
(b) Suppose f is continuous in Q and P =Py X --- x P, CC Q. Then

R Q)G -d
f<z>‘<2m‘)n/apl /apn G-2) Gz D

for z € P.
(c) For any & € Q, there exists a neighborhood W of & such that

= Y anes (=€) (=) (16)
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Proof. (a)=(b). By iterating the Cauchy integral formula, for z € P
1 f(ChZQv"';Zn)

M mifon ™ ama
_i 1 L f(C17C2;Z3"'7Zn)
- 2mi P {Cl — 2127 Jop, G2 — 22 d@} a1
Cla"' aé'n)
= d¢idCs - - - dé,,.
P, 8P2 OP, (C1—21) - (Co — 2n) GudGa ¢

(b) = (c) Let &€ € Q. We choose r = (rq,- - ,7,) such that
P=PEr)=Pix---xP,={z||z;-¢&|<r; §=1,---,n)} CC Q.
For ¢ = (¢1, - ,(n) € OPy X -+ X OP,, since

oo

1 1
Q-2 (G-&)1-2=2) Z 51 k+1’

§1 k=

we obtain

1 S VO
Q=20 G—z) | G (GG (G = &)t
Since the power series of the right side of the above equality converges
uniformly with respect to ¢, substituting into (1.5) and integrating, we
obtain

_ = 1 f(gl;;gn)
f(Z) B kuzk: (27Ti)n /8P1><~~~><8P,,, (Cl - fl)lirl T (Cn - fn)k"LJrl

n=0

XdCy - dCp - (21 — &) - (2 — En)Fm.

We set

! (G, Gn)
Bk = (o) /aplx...xap,, (G = &)t (G = &)

Then f is expressed by

kn+1 dCl o an

FR) = >0 ke ka(z = )R (2 — Ga)F

This proves (c).
(¢c)==(a). We choose r > 0 such that

{z]lz; —=&|<r,j=1,--- ,n}CW.
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By Theorem 1.6, the right side of (1.6) converges uniformly on P(,r).
Therefore f is continuous in P(£,7). On the other hand, the finite sum

Ny

Nn
Z T Z Ay ook (21 — gl)kl e (Zn _ gn)k"

k1=0 kn=0

is holomorphic in each variable z; and f is the uniform limit of the above
finite sum when N; — co. Thus f is holomorphic in P(,r) with respect
to each variable z;. Since £ € €2 is arbitrary, f is holomorphic in 2. |

Definition 1.10 Let 2 C C" be an open set and let f be holomorphic
in Q. For a multi-index a = (a1, - - - , &), where each «; is a nonnegative
integer, define

ol =a1 4+ +an, al=al-a,l,

|
0 f(z) = o]

1 n

Corollary 1.2 (Cauchy inequality) Let f be a holomorphic function
in a polydisc P(0,7) = {2z € C" | |z;| <rj,j=1,---,n}. Suppose there
exists a constant M > 0 such that |f(z)| < M for z € P(0,r). Then

[0%f(0)| < alr™*M

for any multi-index o = (an, - -+ , ), where we define

(e%

r :ri’(l ceopQn

Proof. By Theorem 1.7 f is expressed by f(z) = > aaz®. Then it
follows from (1.6) that

0 f(0)

al

G =
On the other hand, by applying the proof of Theorem 1.7, for 0 < s; < r;,

j=1,---,n, we have

| o) iy,
(27TZ)" {21|=s1} X o5 {|2n] =5 } 4-10’14-1 . Cn(yn—',-l

Thus we obtain

|0 f(0)] < als™ M.
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The above inequality holds for any s > 0 which satisfies s; < r; for j =
1,---,n. a

Corollary 1.3 Let Q C C" be an open set and let K C ) be a compact
set. For any open subset w of Q0 with K C w, there exists a constant Cy
such that

sup |09 f(2)| < Callullprwy — (f € OQ)).
zeEK

Proof. In the case when w is a polydisc, Corollary 1.3 follows from Theo-
rem 1.2. In the general case, K is contained in the finite union of polydiscs
which are contained in w. Corollary 1.3 follows from Theorem 1.2. O

Lemma 1.4 (Baire’s theorem) Let X be a complete metric space.
Then a countable intersection of open dense subsets of X is dense in X.

Proof. Suppose {V,,} is a sequence of open dense subsets of X and W is
an open nonempty subset of X. It is sufficient to show that N5, V,, N W
is not empty. Let d(x,y) be the metric in X. We set

B(z,r) ={y € X | d(x,y) <r}.

Since V1 N W # ¢, there exist x; and 71 such that

B(x1,m1) CWNV, 0<r <l

Since Vo N B(z1,7r1) is not empty, there exist x5 and 2 such that

1
B(:L'Q,TQ)C‘/QQB(xl,Tl), 0<ry < 5

Repeating this process, there exist x,, and r, such that

1
B(xp,rn) C VN B(xp—1,mn-1), 0<r, < s

Let i > n, j > n. Then z;,x; € B(zp, ), so that d(z;,z;) < 2r, < 2/n,
which implies that {z,} is a Cauchy sequence. Since X is complete, {x,}
converges. Therefore, there exists x € X such that x = lim,,_, o =,. Since
z; € B(zy,r,) (i > n) for each n, x € B(xn,7,) C Vi, Thus we have
r € N2, V,. On the other hand, x € B(zy,r1) C W, which shows that
N2y Vi is dense in X. O

Lemma 1.5 Suppose {vi} is a sequence of subharmonic functions in Q.
Assume that vi, k = 1,2,---, are uniformly bounded from above on every
compact subset of Q and that there exists a constant C such that for any
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z € Q, limg_o0 vi(2) < C. Then for any € > 0 and any compact subset K
of Q) there exists a positive integer N such that for k > N

ve(z) <C+e  (z€K).

Proof. We choose a compact set K; with the properties that K C K7 C
K, C Q. Since {vx} is uniformly bounded from above on K7, we may
assume that {vy} is uniformly bounded from above on Q. Moreover, when
ve(z) < M for z € Q and M < 0, we can treat vy — M instead of vy, so
we may assume that vi(z) < 0 for z € Q. We choose > 0 such that
K C {z € Q| dist(z,09) > 3r}. By Corollary 1.1, for z € K, 0 < p <r,
we have

2w
2k (2) < / vg(z + pe'?)do. (1.7)
0

If we multiply by p in (1.7) and integrate with respect to p from 0 to r,
then we obtain

ariu(z // Ndx'dy' (2 =2 +iy). (1.8)
|z— z’\<r

It follows from Fatou’s lemma that

lim // Ndx'dy' < // lim vy (2')da'dy’ < wCr?.
k—oo |z— z’|<r |z—z'|<r k—oo

If we choose ky sufficiently large, then

// we(2)dz'dy’ < (c + f) 12 (k> ko).
|z—z'|<r 2

Since vy, < 0 for 0 < § < r and |z — w| < 4, it follows from (1.8) that

m(r +6)%v // 2"dx' dy’ <// 2"dx' dy'.
|z — w|<r+6 |z— z/\<r

Hence we have
3
7(r+0)%vp(w) < 7 (C’ + 5) r?
If we choose § sufficiently small, then
vp(w) < C+e¢ (k> ko, |lw—z| <9).

Since K is compact, vx(2) < C + ¢ for z € K provided we choose ko
sufficiently large. a
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Lemma 1.6 Let f be a holomorphic function in B(0,r) such that |f(z)] <
M for some constant M > 0. Then

|22 — 21|

|f(z1) = f(z2)| < 2Mr—5

(1.9)

|7“ — 512’2|

for z1,2z0 € B(0,r).

Proof. We may assume that f is not constant. Then by the maximum
principle (see Exercise 1.3), |f(2)] < M. We set w1 = f(z1), we = f(z2).
We define ® : B(0,r) — B(0,1) and ¥ : B(0, M) — B(0,1) by

r(z—z1)

; U (w) = M(w —wi)

P(2) = .
(Z) — Z12 ’ M2 —ww

Since Wo fo®~1: B(0,1) — B(0,1) maps 0 to 0, it follows from Schwarz’s
lemma (see Exercise 1.7) that

o fod ()] < |2l
We set z = ®(z3). Then |¥(ws)| < |®(z2)], which implies (1.9). O

Lemma 1.7 If a bounded function f : Q — C on an open set Q C C™
is holomorphic with respect to each variable z; (j = 1,---,n), then f is
continuous in  (hence, f is holomorphic in Q).

Proof. Let M be a constant such that |f(z)] < M. Since the problem
is local, we may assume that Q = {z € C" | |z;] <r;, j=1,---,n}. By
Lemma 1.6 we have

[f(z) = £(O)
= Z{f(CD 7ijlvzj7"' 7zn)_f(<1a"' 5<'jﬂzj+17"' ;Zn)}

Z TJ|ZJ |
= r2 —Cz|

Thus f(z) — f({) as z — (. Hence f is continuous in (2. O

Theorem 1.8 (Hartogs theorem) Let Q C C™ be an open set. If f
is holomorphic with respect to each variable z; for j = 1,--- ,n, when the
other variables are fixed, then f is holomorphic in §2.
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Proof. When n = 1, Theorem 1.8 is trivial. Assume that Theorem 1.8
has already been proved for n — 1 variables.

Under this assumption we prove the following Lemma 1.8 and Lemma
1.9.

Lemma 1.8 Suppose f is holomorphic in an open set Q@ C C™ with
respect to each variable z; for j = 1,---,n. Let P = Py x --- x P, be
a nonempty polydisc such that P C Q. Then, there exist discs PJ{ C b,
j=1,-+-,n, such that P, = P/ and f is bounded on P' = P/ x --- x P/ .
Hence f is holomorphic in P’.

Proof. Define

Ey={¢ecP x--xP, 1 ||f(Z,2)| <M 2z, € P,}
= ﬂznepn{zl S Pl X oo X Pn—l | |f(2/72n)| < M}

Since Theorem 1.8 is true for functions of n — 1 variables, f(2/,z,) is con-
tinuous when z,, is fixed. Hence FE); is closed. Further, we have

[ee) _
U Ey=P x---xP,_1.
M=1

By applying the Baire theorem, if we choose M sufficiently large, then Ey,
has nonempty interior. If we choose a polydisc P’ such that P’ C Ey; x Py,
P! = P,, then f is holomorphic in P’. O

Lemma 1.9 Let f be defined on a polydisc P(z°,R) C C™. Suppose
that for fized z, f is holomorphic with respect to z' = (21, ,2n—1) and
that there exists v > 0 such that f is holomorphic and bounded on P’ =
{z]lzi =29 <r, j=1,---,n—1, |z, —z)| < R} . Then f is holomorphic
in P.

Proof. We may assume that zg = 0. We choose R;, Ry such that 0 <
Ry < Ry < R. Since f(z',2,) is holomorphic with respect to 2/, f is
expressed by

f(z) = aa(zn)?"  (z€P), (1.10)

where oo = (a1, ,n—1) and each a; is nonnegative integer. It follows
from Theorem 1.7 that

ao(zn) = 0°f(0, zn) /.
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For polydiscs Q;, j = 1,--- ,n — 1, with centers 0 and sufficiently small
radii, by applying Theorem 1.7 we have

al / f(Clu"'aCn—laZn)
1%}

—_— dcl e d< 1.
27)" 1 Jog, sex0Qu_y LT Gy @ "

0°f(0,2n) =

Thus daq(2n)/0Z, = 0. Thus as(2,) is holomorphic with respect to z,.
Since f(#’, #,) is holomorphic with respect to z’ € {z' | |z;] < R}, by
Corollary 1.3 we have

07 F(0,20)] < alRT sup | f(2)]
2eP(0,R’)

for Ry < R’ < R. Hence we have for fixed z,
[aa(z0) [R5 =0 (la| = 00, |zu] < R).
On the other hand, if |f(z)| < M for z € P’, then by the Cauchy inequality

|aa(zn)|r‘o‘| < M.

For two multi-indices o = (a1, -+ , ) and o = (o, -+ -, &’ ) we introduce
) ) 1» [t 0

the order such that
a<d
if only if there exist ¢, 1 < ¢ < n, such that
— A/ ! /
ap =y, o, Qo1 =0, 0 < Q.

FOI‘ o = (05 P ,an), we deﬁne
Soa(zn) ]~Og|aa(5”)|
|[K| '

Then ¢, is subharmonic. Let {v;} be the arrangement of {¢,} according
to the order of the multi-indices. Thus, k — oo is equivalent to |a] — .
Since

1

log M (|zn| < R),
|ov|

1
—loglan(zn)| < —logr +
|
{vk} is uniformly bounded on |z,| < R. On the other hand, for fixed z,,
if we choose |« sufficiently large, then we have |aq (zn)|R|2a‘ < 1. Thus for
sufficiently large || we have

log |aa(zn)| 1
—S el < log —.
o] ® R



Pseudoconvezity and Plurisubharmonicity 19

Thus we obtain

— 1
li n) < log —-.
Qg o) < log

It follows from Lemma 1.5 that we have for some sufficiently large k
1
vg(2zn) < logR— (lzn] < R1),
1

which means that for any sufficiently large ||
Jaa(z) [ R <1 (Jz] < Ra).

Since the above inequality holds for every R; satisfying 0 < R; < R,
(1.10) converges uniformly on every compact subset of P(0, R). Hence f is
continuous in P(0, R). Thus f is holomorphic in P(0, R). O

Proof of Theorem 1.8 Let ¢ € 2. We choose R > 0 with the properties
that a polydisc {z | |z; — ;| < 2R} is a subset of ). We take P = P((, R)
in Lemma 1.8. Then there exist 7 > 0 and 2° such that max; |29 — ;| < R,

Co = 20, and f is bounded on P’ = {z | |zj—z;-)| <r,j=1,---,n—1,
|z, — 29| < R}(C P(¢, R)). Since f is holomorphic in P(zg, R) by Lemma
1.9, f is holomorphic at (. a

1.2 Characterizations of Pseudoconvexity

We prove that every domain of holomorphy is a pseudoconvex open set.
In 2.2 (Corollary 2.4) we prove that an open set in C™ is a domain of
holomorphy if and only if it is pseudoconvex.

Definition 1.11 Let Q C C™ be an open set.

(1) A real-valued upper semicontinuous function ¢ in 2 is called plurisub-
harmonic if for any v,w € C", h({) = ¢(v + (w) is subharmonic in
U={(e€C|v+Cwe Q}. The set of all plurisubharmonic functions
in 2 is denoted by PS(€2).

(2) A real-valued C? function ¢ in (2 is called strictly plurisubharmonic in
Qif for any v, w € C™ (w # 0), h({) = ¢(v+Cw) is strictly subharmonic
mU={(eC|v+{weQ}

Theorem 1.9 Let Q C C™ be an open set.

(a) If f € O(Q), then |f] € PS().
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(b) If f is a holomorphic function in Q and p is a C? subharmonic function
in f(Q), then po f € PS(Q).

(c¢) Suppose {p;}ics is a family of plurisubharmonic functions in Q and
p = sup;c;pj. If p is finite and upper semicontinuos in Q, then p €

PS(Q).

Proof. (a) Forv,we C™" weset U={Ce€C |v+Cwe}. For(eU,
we set ©(¢) = f(v+ (w). We fix a € U. We choose r > 0 such that
r < dist(a,dU). Since ¢ is holomorphic in U, it follows from the Cauchy
integral formula that

1 ©(¢)
- RASYip/e)
pla) = 5~ ar C—a ¢
Then we have
1 2 ]
(@l < 55 [ letatre®)ids
™ Jo

Hence || is subharmonic. Thus |f]| is plurisubharmonic in .
(b) For v,w € C", weset U ={( € C'| v+ Cw € Q}. For ( € U, we set
©(¢) = po f(v+ C(w). Then we have

2

2 2
0%p 0°p >0

agaé(o ~ Jwow
which means that ¢ is subharmonic in U. Thus po f € PS(Q).

(c) For v,w e C™, weset U ={C€C|v+C(w e N}. For € U, we set
©;(¢) = pj(v+Cw) for j € J. Since ¢; is subharmonic in U, it follows that

(f(v + Cw)) a%(f(wcw))

?

1 27 0
(a) < — : ) 4o
pjla) < 27r/0 w;(a+re”)

for ¢ € U and r with 0 < r < dist(a, 0U). We set ©(¢) = p(v + (w). Then
sup ¢;(¢) = sup p; (v + (w) = p(v + Cw) = ¢(().
JjeJ Jj€J
For € > 0, there exists jo such that p(a) —e < @j,(a). Therefore we obtain
2m

o(0) <pin(@) +e < o [ wiglatre)d +e,
0

1 2

gg ; ola+re)df + ¢.
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Since € > 0 is arbitrary, we obtain

1 27 )
< - 9)d.
pla) < 5- / p(a+ rei®)do

Thus ¢ is subharmonic in U, which implies that p € PS(Q). O
Theorem 1.10  Let p be a real-valued C? function in an open set Q C C™.

(a) p is plurisubharmonic in Q if and only if

forz € Q w=(wy, - ,w,) € C".
(b) p is strictly plurisubharmonic in Q) if and only if

forz€Q,0#w=(wy, - ,w,) € C".
Proof. For v,w € C", we set
p(C) = p(v + Cw) = p(v1 + (w1, -+, vy + Cwy).
Then Theorem 1.10 follows from the equality

0?p 0%
a¢ 3C 8,2:] 0z,

(v + Cw)w; wy,.
O
Corollary 1.4  Let Q be an open set in C™ and let K be a compact subset

of Q2. Suppose p is a strictly plurisubharmonic function in . Then there
exists a constant C = C(K) > 0 such that

n

82
Z 2)w;wy, > Clwl?
jk=1

for z€ K, w=(wy,-- ,w,) € C™.

Proof. For ze K, we C”, we set
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Since f(z,w) takes the minimum value C' > 0 on K x {w||w| = 1|}, we
have for z € K and w # 0

O

Definition 1.12 Let Q be an open subset of C” and let 2 # C™. For
z € C", define

dist(z,09Q) = inf{|z — | | ¢ € 00},
where dist(z,9Q) denotes the distance from z to 9.

Lemma 1.10 Let Q C C" be an open set such that Q) # C™. For z € ),
define ¢(z) = dist(z,08). Then ¢ is continuous in €.

Proof. Fix zp € Q. Then there exists & € 09 such that ¢(z9) = |z0 —&ol.
For z € 2 there exists £(z) € 99 such that p(z) = |z —&(2)|. Then we have

p(z) = [z = £(2)| < |z = &l < |z = 20 + 20 — ol = |z = 20[ + ¢(20)-

Thus we have

o(2) = ¢(20) < |z — 2.
Similarly, we have

p(20) = |20 = S0l < |20 = £(2)| < [20 — 2] + ¢(2)-

Hence we obtain

le(2) = ¢(20)] < |2 — 20,
which means that ¢ is continuous at z = zj. O

Definition 1.13 Let Q be an open subset in C". We say that Q is a
domain of holomorphy if there exists at least one holomorphic function in
2 that cannot be extended as a holomorphic function through any boundary
point of Q.

Remark 1.1  We do not assume that the domain of holomorphy is con-
nected.
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Definition 1.14 Suppose 2 C C™ is an open set and K is a compact
subset of 2. Define

K§ ={zeQ|f(=) < sw|f(Q)] feO®)}.
CEK
I/(\'g is called a holomorphically convex hull of K (or O-hull of K). By
definition, K € K§. In case K = K§, K is called O()-convex.

Definition 1.15 An open set 2 C C" is called holomorphically convex if
for any compact subset K, Kg CC 0. (Equivalently, §2 is holomorphically
convex if and only if K§ is compact for every compact subset K of Q.)

Lemma 1.11 Let Q2 C C" be an open set. Then
(a) If K and L are compact subsets of Q with K C L, then I?g C Eg
(b) We set N = IA(g If N is compact, then
NS = N.
Proof. (a)Let z € I/(\'g Then for any f € O(€2) we have

£ (2)] < sup | F(¢)] < sup [f(C)]-
CeEK CeL

Hence f € Lg. This proves (a).
(b) By definition we have N C N§. If z € N§, then

[f(2)] < sup [f(Q)] < sup [£(O)]-
CEK

CEKE
Hence we have ]/\}8 c K§ = N. This proves (b). O

Lemma 1.12 Let K C C" Qe compact. We denote by K the smallest
convex set which contains K (K is called the convex hull of K ). Then we
have KS.. C K.

Proof. Suppose w ¢ K. Then there exists a hyperplane through w [ :
Z?Zl ajr; = b which does not intersect K. When z; = x; + iz,4; € K,
we assume that E?Zl ajz; < b. If wj = uj + iupyj, then Z?Zl aju; =b.
If we set

n
aj =a; +ianyj, f(z)=exp Zc‘ujzj -bl,
j=1
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then f € O(C™). Using the equality

n 2n
Re E ajz; = E a;;,
j=1 j=1
we have

2n
|f(2)] = exp Zajxj—b <1 (z € K),
j=1

2n
|f(w)] = exp Zajuj—b =1.
j=1

Thus we have

sup |f(2)] < 1= [f(w)].
zeEK

Hence w ¢ I?g Thus we obtain I/(\'g CK. 0

Lemma 1.13 Suppose Q C C" is an open set and K is a compact subset
of Q. Then K§ is bounded.

Proof. We denote by K the convex hull of K. From Lemma 1.12 arid
the deﬁnition of holomorphically convex hull, we have K§ C K, 8 C K.
Since K is bounded, Kg is bounded. O

Definition 1.16 For r = (r,--- ,ry), 7; > 0,7 =1,--- ,n, a € C" and
A > 0, define

Pla, Ar) ={z | |zj —aj| < Arjj=1,--- ,n}.
For a € Q C C", we define
5g)(a) =sup{\ | A >0, P(a,Ar) C }.
By definition, A < 5g)(a) if and only if P(a, Ar) C .
Lemma 1.14 Let Q) #£ C” be an open set. Then

dist(a,00) = inf{6{(a) | || =1}  (a € Q).



Pseudoconvezity and Plurisubharmonicity 25

Proof. We set
§ = dist(a,89), n=inf{6(a) | |r| = 1}.

If |r| = 1 and |2 — a;] < Ar; for i = 1,--- ,n, then |z — a| < A, and hence
P(a, Ar) C B(a, ). Thus we have P(a, dr) C Q. Therefore, if |r| = 1, then
0 < 5g)(a), which implies that § < . Next we show that § > . For any
e > 0, we choose A such that § < A < 6 + . Then B(a,\) ¢ 0, which
implies that there exists w such that w & Q, |w —a| < A. We set

t.
lwi —a;| =t;, t=(t1,---,tn), 1= ﬁ7 r=(r1, )
Then |r| = 1, |w; —a;| < A for ¢ = 1,---,n. Hence w € P(a,Ar).
Therefore P(a,Ar) ¢ €, which means that 5g)(a) < A. Thus we have
n < 5g)(a) < A< d+e. Since € > 0 is arbitrary, we have n < 4. O

Theorem 1.11  Suppose Q C C" is an open set and K is a compact
subset of Q. Letr = (r1,---,ry) and r; > 0 fori =1,--- ,n. Assume
that n > 0 satisfies 5g)(z) >n for all z € K. Then for any a € I/(\'g and
f€0(), f is holomorphic in P(a,nr).

Proof. We fix f € O(Q). We choose i’ such that ' < . We set
= P r).
Q= U Pla,r)

Then @ is a compact subset of Q. We set M = sup,.q |f(2)|. By applying

the Cauchy inequality for P(a,n'r), we have for « € N™
oM
sup |[0%f(2)| < ———.
z€K| ( )| (77'7")0‘

Thus for a € IA(g, we obtain

IN

0% f(a)| < sup [0°f(2)]
zeEK

Hence for z € P(a,n'r), we have

> 'aaf!m) _

(67

[z —al\"
< M|——] <o
<y (FRt) <o
k
Thus >, W(z — a)® converges in P(a,n'r). If we set

o(2) = LD (e

al
«
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then ¢ is holomorphic in P(a,n’r). Since a € 2, we have ¢ = f in a
neighborhood of a. Therefore f is holomorphic in P(a,n'r). Since 7 is
arbitrary so far as ' <7, f is holomorhic in P(a,nr). O

Corollary 1.5 If Q C C" is a domain of holomorphy, then
dist(K, 00) = dist(KS , 09)
for every compact subset K of €.

Proof. Since K C I?g, we have dist(K, 0Q) > dist(f/(\'g,é‘ﬂ). We set
n = dist(K,00). Let n > dist(f/(\'g,aﬂ). We choose a € I?g such that
dist(a, 92) < n. It follows from Lemma 1.14 that there exists r such that
|r] =1 and 5g)(a) < 7. Therefore we have P(a,nr) ¢ €. On the other
hand, when |r| = 1 and z € K, we have n < dist(z,09) < (55({)(2). By
Theorem 1.11, all f € O(Q) are holomorphic in P(a,nr). Therefore f is
holomorphic in a neighborhood of some boundary point of 2. This contra-
dicts that 2 is a domain of holomorphy. O

Next we state some properties of the infinite product which we will use
in the proof of Theorem 1.12.

Definition 1.17 Let {z,} be a sequence of complex numbers. We set
P,=(14z1)14+22) - (1+zy).

If lim,, .o P, = P exist, then we define

P= ﬁ(l—f—zn). (1.11)

The right side of (1.11) is called the infinite product.
Lemma 1.15 Define

N N

Py =[]0 +z), Pi=][0+]z.

n=1 n=1

Then

(a) Py < exp([za] + - + |zn])-
(b) |Py —1] < Pf — 1.

Proof. Using the inequality

1 + |Z1,| é e|2i|;
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we have

N
Py = [T+ [za]) < elmllon,

n=1

This proves (a).
We prove (b) by induction on N. When N = 1, it is trivial. Suppose
(b) holds for N = k. Since

Pii1 = 1= Pe(1+ 2p41) — 1= (Pe = D)(1 + 2p41) + 2k41,

we have
[Petr = 1] < [Pe = |1+ 2e41] + [2r41]
< (B = D+ |21 ]) + |24
=P, -1
Thus (b) holds for N =k + 1. O

Lemma 1.16  Suppose {fi} is a sequence of bounded functions defined
on a set E C C" and Z]Oil |f;(2)] converges uniformly on E. Then

(a) 52, (1 + fj(2)) converges uniformly on E.

(b) Let f=T1152,(1 + f;) and z0 € E. Then f(20) = 0 if and only if there
exists n such that f,(z0) = —1.

(c) Let {k1,ka,---} be a permutation of {1,2,---}. Then

H 1+ ;) :H 1+fk
j=1 j=1

Proof. Since fi is bounded on F, there exists a constant c; such that
|fx(2)] < ¢ for z € E. We set

:Zlfj(z)lv hm(2)22|fj(2)

Since {h,,} converges to h uniformly on E, there exists a positive integer
ng such that for m > ng

h(2) — hm(2)| <1 (2 € B).
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Hence for z € FE, we have

()] < [hno (2 |+1fZ|fg |+1<ch+1*

7j=1
By Lemma 1.15, if we set
Pu(z) = [T+ £5(2)), (L +1f;(z
j=1 j=1

then we have
|P(2)] < [P (2)] < exp(|fi(2)[ 4+ [ fm(2)]) = ") <) < e = e

Let 0 < ¢ < 1/2. Then there exists a positive integer ¢y such that

lhio (2) = h(2)| = Z |fr(2)] <e.

k=to+1

Let N > tg. Since {k1,ko,---} is a permutation of {1,2,---}, we have for
some sufficiently large integer M

{172a"' 7N}C{k1;k2a"' 7kM}

We set

M
H 1+fk

We set F' = {ki,ko, - ,kar} —{1,2,---, N}. Then we have

M N
qm(z) — Pn(z) = H(1+fkj(2)) H(H‘fa( )
_PN(Z){H(1+fi(Z))_1}'
i€F

By Lemma 1.15 we obtain

<J[a+1fz)) -1 <exp (Z Ifi<2>|> -

ieF el

[T+ fiGz) -1

i€l
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For z € E, we have

lgm(2) = Pr(2)] < [Pn(2)] {exp< > Ifi(2)|> - 1}

i=to+1
< [Pn(2)[(e” = 1)
&2
= 1Px (e + 5 + )
<e|P, (z)|(1+l+i+ )
Lt 2 92
= 2¢|Pn(2)] < 2ec.
Thus for N with N > ¢y and some sufficiently large M we have
lgar(2) — Pn(2)| < 2¢|Pn(z)] < 2ec (z € E). (1.12)
In particular, when k; = j we have qp = Pyy. It follows from (1.12) that
|Pr(2) — Py (2)| < 2ec (z € E).

Thus {Px} converges uniformly on E. This proves (a). Let k; = j. Then
for some sufficiently large M it follows from (1.12) that

|Par(2) = Pro (2)] < 2¢] Py, (2)]-
Thus we obtain
|Pr (2)I(1 = 2¢) < [Py (2)]-
Letting M — oo we have
|[Pro (2)I(1 = 2¢) < |£(2)].

Since 1 — 2¢ > 0, f(z9) = 0 implies P, (z0) = 0. Thus there exists k
such that fx(z9) = —1. This proves (c). From (a), {P;(z)} converges to
f uniformly on E. Therefore, taking N sufficiently large with N > g, if
necessary, we have

[f(z) = Pn(2) <e  (2€E).
For some sufficiently large M, we have
laae(2) = f(2)] < lam(2) — Py (2)| + |Pn(2) — f(2)] < 2ec+e = e(1 4 2¢).

Thus we have limp; .00 gpr(2) = f(2). O
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Theorem 1.12  For an open set Q C C", the following statements are
equivalent:

(a) Q is a domain of holomorphy.

(b) For any compact set K C €, KQ s compact.

(c) For any compact set K C Q, dist(K,08) = dzst(f(g, o0N).

(d) If X C Q is a discrete infinite subset of Q, then there exists f € O(Q)
such that f is unbounded on X.

Proof. (a) = (c) follows from Theorem 1.11.
(¢)=(b). Since K is compact, we have

dist(KS,00) > dist(K, 09) > 0

Since IA(g is closed in £, IA(g is compact.
(b)=(a). Let {K,} be a sequence of compact sets such that Q =
>, K, with K,, C K,41°, where K,° denotes the interior of K,. It
follows from Lemma 1.11 that (I?n)g C (I?n_H)O If we set T,, = (I?n)g,
then by the assumption, T}, is compact and 2 = US2; T),. It follows from
Lemma 1.11 that T3, C Thp41, (fn)g = T,. We may assume that T,, C
T11°. Suppose X C € is a countable set and X = Q. Let X = {£,,}°°_,.
We denote by B,, the largest open ball with center £,, and contained in 2.
Let 0, € By, — Thy. Since 1 &€ Ty, there exists f,, € D such that

[fm(m)| > sup [ fm(C)]-

CETm
We set

fm(2)
fm(ner)

Then g, € O(Q) and g (nm) = 1, supcer,, [9m(¢)] < 1. For some suffi-
ciently large integer k,,

gm(2) =

B () = 1.
Sup g (O] < s 9 (1)
Set @, = gFm. Then ¢, € O(Q), Ym(nm) = 1 and supcer,, lom(Q)] <
(m2™)~1. We set
(1—pj(2)) =1 —¢1(2))(1 = p2(2)) (1 = p2(2))(1 — p3(2)) - -

Jj=1
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Then for z € T,,

1 1
mlpm ()] + (m+ Dlgmia (] + - < 5o+ oy

- om am+1

Therefore, for any positive integer m, Z]Oil Jle;(z)| converges uniformly on
T,. Thus, H;’;l(l — ¢;j(2))? converges uniformly on every T,,,. Thus, ¢ is
holomorphic in €. Since | (2)] < 1 for z € T1, ¢(z) # 0 for z € T;. Thus
©(z) # 0. Suppose that there exists a domain V such that ¢ ZQNV #V
and that ¢ is holomorphic in QUV. We set VNQ = W. Let ¢ € dWNINNV.
Since X N W is dense in W, We can choose a subsequence {,,} of X
which converges to ¢. If we choose j sufficiently large, then B,,, C W.
Since Nm; € Bm; — Trm;, we have n,,, — (. In case k = (k1,--- , k,) with
|k| = k1 + - - + k,, < mj, we have

|| ||
S = U T g™ | (=g (2™

m#mg;

Hence we have
o

—— Mm,) =0 k<m-, k=k+---+ k).
82{61---825"(7’ J) ( J 1 )

Since ¢ € V and ¢ is holomorphic in V', we obtain
__ 9%
D2 Dz

Thus ¢(z) =0 in QU V. This is a contradiction.

(d)==(b). Suppose (b) is not true. There exists a compact set K C Q
such that K, § is not compact. Since K, § is a closed subset of Q with respect
to the relative topology, there exist & € I/(\'g, k=1,2,---, such that {&}
converges to a boundary point of 2. Then we have for any f € O(Q)

|f(&R)| < sup |f(2)] < .
zeK

0 (©)-

Since X = {¢;} is a discrete infinite subset in 2 and f is bounded in X, (d)
does not hold.

(b)=(d). We choose a sequence {K,} of compact subsets of Q2 such
that Q = U°_; Ky, Ky, C Kppy1. By the assumption , T, = (I/(\'m)g are
compact and satisfy Q = UX_, T,,,, T, C Typp1. We may assume that
T C (Th41)°. Suppose X C Q is a discrete infinite set. Let X = {&n}.
We choose a subsequence {7y, } of {T,,} and a subsequence {,,} of {&}
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such that &, € Ty, ,, — Tpn,. For simplicity, we rewrite §,, by §; and T,
by Tj. Hence &; € Tj1 — Tj. Since (T3)§ = T # &;, there exist f; € O(Q)
such that

|£5(&5) > sup | f;(C)]-
CET;
Choose «; such that
|fi(§5)] > o > sup [ f;(C)]-
CET;

We set hj = f;/a;. Then we have |h;(§;)] > 1, supcer, [h;(¢)| < 1. For
any sufficiently large integer k;, We set ¢; = hfj . Then we have p; € O(2)
and

j—1

1
sup [0 () < 57 lwi(&)l > +1 +Y) o€ G=1,2,--).
CET) k=1

If we set ¢ = Y77, ¢k, then ¢ € O(Q). Hence we obtain

(&) = D er(€)] = 1o (€)= D enl&y)
k=1 e

>5+1+ > lerE)l =D lonr)l
k=1

ki

=j+1-> len(&)l.

k>j

Since &; € Tj41, we have §; € Ty, for k > j + 1. Thus, we have

1
ok (&5)] < sup (O] < o,
CETy, 2

for k£ > j + 1, which means that
1
> len()] < 227 <L
k>j k>j

Since |¢(&;)] > j, we have lim;_,o |@(§;)| = co. Thus ¢ is unbounded on
X. O

Definition 1.18 (1) Let 2 C C™ be an open set such that {2 # C™. Q is
called a pseudoconvex open set if —logdist (z,9) is plurisubharmonic in
Q. In particular, we define C™ to be pseudoconvex.
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(2) Let © be a bounded open set in C™. € is called strictly pseudoconvex
if there exist a neighborhood W of 02 and a strictly plurisubharmonic
function p in W such that QNW ={z € W | p(z) < 0}.

Lemma 1.17 (a) Let Q@ C C" and G C C™. Suppose Q and G are
pseudoconvex open sets. Then Q2 x G is a pseudoconvex open set in C*T™.

(b) Let {Q;};es be a family of pseudoconvex open sets in C™. Then the
interior (Njes 25)° of Njes 1 is a pseudoconvex open set.

Proof. (a) We have
QA x G) = (092 x G)U (Q x 9G).
Hence for (z,w) € Q x G, we have
dist((z,w), 0(2 x G)) = min{dist(z, 9N), dist(w, 0G)}.
Consequently,
—log dist((z, w), (2 x G)) = — inf{log dist(z, 002), logdist(w,dG)}.

Then — log dist((z, w), d(2xG)) is plurisubharmonic in 2x G, which implies
that ) x G is pseudoconvex.

(b) We set Q = (NjesQ;)°. For 2 € Q, we have dist(z,00) =
inf e s dist(z, 0€2;). Hence we obtain

— log dist(z, 0§) = sup{— logdist(z, 9€;)}.
JjEJ

Then — logdist(z, 992) is plurisubharmonic in 2. a

Definition 1.19 Suppose 2 C C" is an open set and K C 2 is compact.
Define

Ky = {2 € Q] p(z) < maxp(Q), p € PS(Q)}.
By definition, IA(SI; is a closed subset in  and K C I?g In case K = I?g,
we say that K is PS(Q)-convex.

Lemma 1.18 Suppose Q C C" is an open set and K C € is compact.
Then

K c KS.
Proof. By Theorem 1.9, if f € O(Q), then |f| € PS(Q2), which completes
the proof of Lemma 1.18. g
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Theorem 1.13 Suppose ) is an open set in C". Then the following
statements are equivalent:

(a) Q2 is pseudoconvet.

(b) If K C Q is compact, then IA{g s compact.

(c) There exists p € PS(Q2) such that for any real number «, the closure
in Q of the set

Qo ={2€Q]p() <a}
is compact.

Proof. (a)In case Q # C™.
(a)=(c). We set

p(z) = max{|z|?, — logdist(z, 0Q)}.
Then p € PS(Q). Let p(z) < . Then we have
|2 < a, —logdist(z,09) < .

Thus we have dist(z, 9Q) > e, which means that Q, CC Q.

(c)=>(b). Suppose there exists p; € PS(Q2) such that {z € Q| p1(2) <
a} CC Q for any real a. Let K C  be compact. If we choose « such that
@ = sup¢c p1(C¢) + 1, then

KEc{ze|plz) < sup p1(()} €C 2.
S

which implies that K L is a compact subset of Q.
(b)=(a). We set p(z) = —logdist(z,0). We show that ¢(z) is
plurisubharmonic in Q. For v,w € C™ and w # 0, we set

U={AeC"|v+weQ}

We set g(A) = (v + Aw). Tt is sufficient to show that g()) is subharmonic
in U. For Ay € U, it is sufficient to show that g(\) is subharmonic in a
neighborhood of Ag. We set a = v + Apw. Then a € . Since a + Aw =
v+ w(A+ Ao), if we set (A) = ¢(a+ Aw), then (X)) = g(A+ Ag). So it is
sufficient to show that () is subharmonic in a neighborhood of 0. There
exists 7 > 0 such that {a + Aw | |A\| < r} C Q. Let h be harmonic in a
neighborhood of |A| < r. It is sufficient to show that if A(\) > ¥(A) on
[A| = 7, then h(M\) > ¢(\) on [A| < r. There exists a harmonic function h*
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in |A] < r such that f = h 4 ¢h* is holomorphic in |[A\| < r. We have for
Al =r

i 1
h(X) > P(A) — ,—log dist(a+Aw,0Q) _ '
co= ‘ dist(a + Aw, 0€2)

Thus on |A| = r we have
dist(a + Mw, 0Q) > e "N = |V,

Therefore, if |A| = 7, |¢| < 1, then a + Aw + e~/ € Q. We fix ¢ with
I¢] < 1. For 0 <t <1, we set

Dy = {a+  w+tCe 5™ ||\ < r}.
Then we have
To={a+w ||\ <r}cCQ.
We set
T={te|0,1] | T: C Q}.

Then T C [0,1], 0 € T. If T is closed and open in [0, 1], then T' = [0, 1],
and hence 1 € T. Then for || < 1 we have

I ={a+ w+Ce V| |\ <r}co.
Thus, for |A| < r, we obtain
dist(a 4+ Aw, Q) > e V| = ¢7HN)
which implies that
P <h () (Al < 7).

Hence ¥(\) is subharmonic. Finally, we show that T is closed and open
in [0,1]. Let to € T. Then Iy, C Q. Since Q is open, Iy C Q for any
sufficiently closed point ¢ to tg. Thus ¢ € T, and hence T is open. Next we
show that T is closed. We set

K={a+ w+te M| N =r0<t<1}).

Then K is compact and K C ). By the assumption, IA(SI; is compact. Let
t€T. Weset g(A) = a+  w+t(e 7M. Since I'y € Q, g(\) € Q for
|A] < r. Hence g(\) is holomorphic in [A| < r. Let p € PS(2). Then
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pog(A) is subharmonic in || < r. By applying the maximum principle for
subharmonic functions, we have for |A| < r

pog(X) < sup pog(A) = sup p(a+ dw+ (e /M) < sup p(z).
[X|=r [X|=r z€K

Thus we have g(\) € IA(g Hence for t € T we obtain
Po={g0) | N <7} © RE.

Let t, € T and t, — t9. Then I'y, C IA(g Since I?g is compact, we have
Iy, C IA(SI; C Q, and hence tg € T. Thus T is closed. Hence T is closed and
open in [0, 1], which shows that (b)=(a).

(b) In case 2 = C™. By definition, § is pseudoconvex. If K C C™ is
compact, then by Lemma 1.13 I?g is bounded. Since IA(SI; C I?g, I?g is
compact. We set p(z) = |z|?. Then p € PS(Q) and Q, = {2 € C" | p(2) <
a} cC C™ O

Corollary 1.6 Let 2 C C™ be an open set. If 2 is a domain of holomor-
phy, then Q is pseudoconvez.

Proof. Let K C Q be compact. It follows from Theorem 1.12 that I?g
is compact. Since K{; C Kg, Kg is compact. By Theorem 1.13, Q is
pseudoconvex. O

Lemma 1.19 (Dini’s theorem) Suppose K is a compact subset in C™
and that {fn} is a sequence of real-valued continuous functions on K that
converges to [ monotonically on K. Then {f,} converges to f uniformly
on K.

Proof. Suppose

@) = fale) = falz) = f(2).

We set gn(x) = fn(x) — f(x). We denote by a,, the maximum of g,, in K.
Then «,, is monotonically decreasing. Let lim, .o, a,, = «. It is sufficient
to show that & = 0. Suppose a > 0. Let z,, € K be a point such that
apn = gn(x,). We can choose a convergent subsequence {z,} of {z,}.
Define limy_,00 Tk, = zo. Then we have gi, (zo) — 0 as n — oo. If we
choose N sufficiently large, then we obtain

n>N= g, (SC()) <

(] e}
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On the other hand we have for m > n

G (Th) 2 Ghe (Th) = Qb > 0,
which implies that g, (o) > «. This is a contradiction. O

Theorem 1.14  Suppose a real-valued function A € D(C™) satisfies the
following properties:

(1) If X > 0 and |z| > 1, then A\(z) = 0.
(2) X depends only on |z1],- - ,|zn].
(3) Jon A2)dV (2) = 1, where dV denotes the Lebesgue measure on C™.

Let Q be an open set in C™ and let u be a plurisubharmonic function in §2.
For e >0, we set

Q. ={z € Q| dist(z,00) > e}

and
ule) = [ ulz= QMO Q) (€ D),
I<I<1

Then ue is plurisubharmonic in Q. and u, € C*°(Q.). Moreover, we have
ue | uase]0.

Proof. From the condition (2), we have
2

ue(z) = /|<|<1 [ ! /0 27ru(z—e”e()dt} MOV (©).

We set h(w) = u(z +w(—¢)). Since h is subharmonic in a neighborhood of
0, it follows from Lemma 1.2 that

1 2T ) 1 27 .
0<el<er= %/0 h(gre™)dt < %/0 h(gqe™)dt.

Thus , ue | v as € | 0. On the other hand, u. is expressed by

wo) = [uon (24) e mavio),

which implies that u. € C*(Q.). Let a € . and w € C™. In order that u.
is plurisubharmonic in 2., it is sufficient to prove that h(n) = u.(a+nw) is
subharmonic in a neighborhood of 0. Since u(a — ¢ + nw) is subharmonic
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with respect to 1 in a neighborhood of 0, we have for any sufficiently small
r>0

1 2

i0
— . do
57 /. ue(a + re’w)

1 2 ;
:/<<1 [%/0 u(a+rew —e¢)dd| M(¢)dV ()
> / w(a — cOMO)AV () = ue(a).
I¢I<1 O

Theorem 1.15 Let Q be a pseudoconvexr domain in C™. Then there
exists a C strictly plurisubharmonic function u in ) such that for any
real number C the closure of {z € Q | u(z) < C} in Q is compact.

Proof. We set §(z) = dist(z,092). Then —logd(z) is plurisubharmonic
in Q. Define

() = —logd(z) + |2|?
and
Qe={z€Q| 0(z) <C}.

Then Q¢ is a relatively compact subset of 2. For any sufficiently small
€ > 0, define

2,0 = [ 9N (FE) e mavi +ekt

where A is the function defined in Theorem 1.14. By definition, we have
®; € C°(C"). Let z € Q;. We set (2 —()/e = w. For |w| < 1 and any
sufficiently small € we have ( = 2z — ew € ;4. Hence ®; can be written

B, () = /w<1<1>(z — cw)\w)dV (w) + e|2[2.

By Theorem 1.14, if ¢ | 0, then ®; | ® in ﬁj and ®; is strictly plurisubhar-
monic in a neighborhood of Q;. It follows from the Dini theorem (Lemma
1.19) that ®; < ® + 1 on Q;. Let x € C®(R) satisfy x(t) = 0 if ¢t <0,
x(t) > 0if t >0, \'(t) > 0, X" (t) > 0 (for example, x(t) = te~+ (£ > 0), 0
(t <0)). Define

U= x(®; +2—j).
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Then W¥; is strictly plurisubharmonic in a neighborhood of ﬁj\Qj,l and
U, > 0. ® is strictly plurisubharmonic and ®; > ® in a neighborhood of
Qq . Since ¥, is strictly plurisubharmonic and ¥; > 0 in a neighborhood
of Q1\Qo, ®¢ + a1¥; > @ in a neighborhood of Q1\Qy if a; > 0. Further,
by Corollary 1.4 there exists a constant C' > 0 such that

" 92 \1/1 _ )
Z 8215‘_ 2)w;w; > Clw

3,j=1

Similarly, there exists a constant C7 > 0 such that

"L 9%
| 821'82]'

(2)w;w;| < C1|w|2.

ij=

Hence for any sufficiently large a1 > 0, we have

= 82\111 _ ) )
Z 821823 2)w;W; + aq Z 821823 (2)w;w; > a1 Clw|* — Crw|” > 0.

Hence u; = ®g + a1V, is strictly plurisubharmonic in a neighborhood of
Q1\Qp. Since @ is strictly plurisubharmonic, ®y > ® in a neighborhood
of Qo and ¥, > 0 in a neighborhood of Qy, u; is strictly plurisubharmonic
and u; > ® in a neighborhood of €;. Repeating this process, there exist
positive numbers ay, - - - , a,, such that

m
U = Do + Z a; ¥
J=1

is strictly plurisubharmonic and w,, > ® in a neighborhood of Q,,. If
k> j+3, then ¥, = 0 on ;. Thus there exists u = lim,;,— oot such that
w is strictly plurisubharmonic, u € C*°(Q2) and u > ® in Q. O

Lemma 1.20 Let f be differentiable at * = a and let f(a) = 0. Let h
be continuous at x = a. Then fh is differentiable at x = a. Moreover, we
have

{f(@)h(2)}o—a = D(a) f'(a).
Proof. By the definition of differentiation, we have
i @I = h@)f (@) @) = @)

r—a Tr—a r—a Tr—aQa D
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Definition 1.20 Let Q C R"™ be an open set. We say that  has a C*
(k > 1) boundary if there exist a neighborhood U of 92 and a C* function
p in U such that

1) QNU ={z €U | p(z) <0}.
(2) dp # 0 on 99, where

zj:a—p x)dx;.

Lemma 1.21 Let Q = {z | p(x) < 0} C R™ be a bounded domain with
C*k (k > 1) boundary and let f be a C* function in a neighborhood of
Q. Assume that f(x) = 0 for all z € 0Q. Then for P € 0N there erist a
neighborhood U of P and a C*~ function h in U such that f(x) = p(z)h(x)
forxelU.

Proof. Without loss of generality, we may assume that P = 0. Since
dp # 0 on 0f), we may assume that there exists a neighborhood U of P
such that if z = (2/,z,) (' = (x1, -+ ,2n—1)) forms a coordinate system
in U. Then we have p(z) = z,, for x € U. Since f(2’,0) = 0, we have

1

P ) = F& ) — F@,0) = [ S LR )t
0

Loaf
=z, s —— (2, txy,)dt.
Define
Lof
/ _
h(z',xy) = ; axn(x , ey, )dt.

Then h(z’,x,) is of class C*~1 in U and f(z) = p(z)h(x) for x € U. O
Theorem 1.16  Let Q C C" be an open set with C? boundary. Let Q=
{2 € Q| p(z) < 0}, where p is a C? function in a neighborhood Q of Q and
satisfies dp # 0 on 0. Then Q is pseudoconvez if and only if

82’j85k

(2)w;wr > 0 (1.13)

jk=1

for all z and w = (w1, -+ ,wy) satisfying

z € 09, Z@z
J
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Proof. Suppose p; is a C? defining function for 2. By Lemma 1.21 there
exists a C! function h in a neighborhood V' of 99 such that p; = hp. Since
dp1 = hdp on 082, we have h > 0 in V. For z and w satisfying z € 92 and
> g—g;(z)wj =0, we have

Thus the condition (1.13) is independent of the choice of the defining func-
tion p. Suppose 2 is pseudoconvex. Define

L [ —dist(2,00) (2 €Q)
pl2) = { dist(z,09Q) (z € Q°).

Then p is a C? function in a neighborhood of 9 and satisfies dp # 0 on
00 (see Krantz-Parks [KRP]). If z € Q is sufficiently close to 91, then for
§(z) = dist(z,00), —logd(z) is plurisubharmonic. By Theorem 1.10, we
have

Z 8z]c3‘zk —log d(z))w;wg

Z ap_ ijk+5(12) Za&i( 2w;| > 0. (1.14)

Suppose that z € 09, Z; 1 aZJ £ (z)w; = 0. We choose sequences {z()} and
{w®} satisfying

. ) . " 95 . ;
XDeq, 205z w® -, jz::l 8—2(2(’))105-) =0.
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By (1.14) we have

=Dy, 05
; 0% z w; Wy > 0.

Letting ¢ — oo we have (1.13).
Conversely we assume that (1.13) holds. We set ¢(7) = logd(z + Tw).
It is sufficient to show that —¢(7) is subharmonic. Assume that

P
oroT

Using Taylor’s formula, we obtain

(0) =c>0.

2 2
o(7) = ¢(0) + 2Re (%(0)7‘) + Re (%(0)72) + %( Y72+ o(|7]?).

We set
dp 0%

Then
o(1) =log d(2) + Re(AT + B7?) + c|7]* + o(|7]?).
Suppose zp € 0N satisfies 0(z) = |z — z¢]. For 0 < s < 1, define
Ys(T) = 2+ 7w + s(z0 — z)eAT+BT2.
Then

3(1s(1)) = 0(z + 7w + s(z0 — z)eAT+BT2)

> 6(z + Tw) — sz — 20|

On the other hand, we have
5(2 + T’LU) — eap(‘r) _ 5(Z)|6AT+B~,-2|ec\7\2+o(|~r|2),
which implies that

8(1s(7)) > 8(2)]eATHET el I2 55z eATHET
= 5(Z)|€AT+B"'2|(60\T\2/2 . S)

For s with 0 < s < 1 we have ¢4(0) = z+s(20—2) € Q. Hencefor 0 < s < 1
and any sufficiently small |7, we have 9(7) € Q, and hence 91 (7) € Q. If
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we set f(7) = §(1(7)), then f(0) = 0. So we have for any sufficiently small
7]

F(r) = 76(:)[e 57 72, (1.15)

Thus f(7) takes a local minimum at 7 = 0, and hence gj (0) = 0. Further,

by (1.15), the case that gTJ; (0) = ;Tg% (0) = 0 does not occur. By Taylor’s
formula, we have

1) = Re (G5 O12) + 5o O + ol

In the above equation we set 7 = e\, where ¢t and \ are real numbers.
2

le)len in case %(0) <0, f(r) is negative for some ¢, Which_implies that

687_8'7; (0) > 0. For any sufficiently small |7|, we have ¢, (7) € €, and hence

() = ~5(6(r)) = ~F(r). Thus if we set (1) = A(r), then
> 52 (aly(0) =0

and

Zn: f’ (20) N, (0)X;(0) < 0

k=1
This contradicts (1.13). O

Definition 1.21 Let Q2 CC C” be an open set. 2 is called an analytic
polyhedron if there exist a neighborhood U of Q and a finite number of
functions f1,---, fr € O(U) such that

Q={zeU| A <1, |filz)] <1}
The collection of functions f1,--- , fr is called a frame for 2.

Theorem 1.17  FEvery analytic polyhedron is holomorphically conver.

Proof. Let Q ={zec U| |fi(z)] <1,---,|fu(2)] < 1}, where U is a
neighborhood of Q and f1,--- , fx € O(U). Let K C Q be compact. We set
rj = supg | f;j|. Then r; < 1. Now we have

K§ c{zeU||fi()] <ri, | fu(z) <} cC

which implies that €2 is holomorphically convex. O
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Theorem 1.18 Let Q C C™ be an open set and let K be a compact
subset of Q. Suppose K is O(Q)-convexr. Then K has a neighborhood basis
consisting of analytic polyhedra defined by frames of functions holomorphic
in €.

Proof. Let U CC Q be a neighborhood of K. Since K = I?g, I?g N ou
is empty. Let a € OU. Then there exists f, € O(Q) such that |f,(a)| >
sup.cx |fa(2)]. We choose r such that |fq(a)| > r > sup,cg |fa(2)], and
set go = fao/r, then we have |gq(a)| > 1, sup,cx [ga(2)] < 1. Thus there
exists a neighborhood W, of a such that for z € W, |ga(2)] > 1. By the
argument of compactness, there exist open sets Wy, --- , Wy and functions
g1, , gk € O(Q) such that

k
U C U Wi, gj(2)] > 1 (2 € Wj).
j:

Weset Q={z€U||fj(2)]<1,j=1,---,k}. Then K C Q CC U, which
completes the proof of Theorem 1.18. g

Exercises

1.1  Let f be a C! function defined on a domain in C. Show that the
following equalities hold.

o _of A _of
dz 0z 0z 0z
1.2 Let © C C™ be an open set. Show that a real-valued function u on
Q is upper semicontinuous if and only if

lim supu(z) < u(a) (a € ),
Q3z—a

where we define

lim supu(z) = lim sup  u(z) ;.
Q3z—a 6—0+ z€QNB(a,d)

1.3 (Maximum principle) Let Q@ C C™ be a domain and let f be a
holomorphic function in 2. Suppose there exists a point £ € Q) such
that |f(z)] < |f(§)| for all z € Q. Show that f is constant.

1.4 Let Q C C” be an open set and let {f;} be a sequence of holomor-
phic functions in Q. Suppose {f;} converges uniformly to f on every
compact subset of 2. Show that f is holomorphic in Q.



1.5

1.6
1.7

1.8

1.9

1.10
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Let f be a holomorphic function in a domain 2 C C™. Suppose there
exists a point & € Q such that for all multi-indices o = (a1, -+ , ),

req]
0 = =L (&) =0,

00z
where each «; is a nonnegative integer and || = aq + -+ - + ay,. Show
that f = 0.
Construct the function A in Theorem 1.14.

(Schwarz lemma) Let f be a holomorphic function in the unit disc
B(0,1) € C. Assume that f(0) = 0 and |f(z)] < 1 for z € B(0,1).
Prove that

If(z) <zl 1F(0) <1,

If either |f(z)| = |z| for some z # 0 or if |f'(0)] = 1, prove that f is
expressed by f(z) = az for some complex constant « of unit modulus.
(Schwarz-Pick lemma) Let f: B(0,1) — B(0,1) be a holomorphic
function in the unit disc B(0,1) C C. Assume that f(z;) = w; and
f(z2) = wy for some 21, 2z, € B(0,1). Show that

w1 — w2 < zZ1 — 22
1—wiwe| = |1 — 2122
and
1— ||
’
<
|f (Zl)|— 1_|Zl|2

If the equality holds one of the above inequalities, prove that f :
B(0,1) — B(0,1) is a one-to-one onto mapping.

Let f: Q2 — C and g : 2 — C be holomorphic functions in an open
set Q@ C Candlet a € Q. If f(a) = g(a) = 0 and ¢'(a) # 0, prove that

lim /(z) = lim I'(z)

agz) e g(e)”

(Uniqueness theorem) Let f: Q) — C be a holomorphic function
in a domain 2 C C. If there exist a point a €  and a sequence {z,}
in Q which converges a such that z, # a and f(z,) = 0 for all n, then

f=0.
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1.11 (Open mapping theorem) Let f:Q — C be a non-constant holo-
morphic function in an open set Q@ C C. Prove that f(Q2) is an open
set.

1.12 Let f be a holomorphic function in a simply connected domain {2 C
C. Assume that f never vanishes. Prove the following:

(1) For a natural number m, there exists a holomorphic function g in
such that f = ¢g™.
(2) There exists a holomorphic function A in  such that f = e".

1.13  Prove the following:
Let f : @ — C be a holomorphic function in an open set 2 C C. If f
is one-to-one, then f’(z) # 0 for all z € .

1.14  Prove the following:
Let f : Q@ — C be a holomorphic function in a domain Q2 C C. If
f is one-to-one, then f~! : f(2) — Q is holomorphic. Moreover,

(f=H () ={f'(fHw))}



Chapter 2

The & Problem in Pseudoconvex
Domains

In this chapter we give the proof of L? estimates for the 0 problem in
pseudoconvex domains in C™ due to Héormander [HR2]. The assertion that
Q) pseudoconvex implies {2 is a domain of holomorphy is known as the
Levi problem. The Levi problem was first solved affirmatively in C? by
Oka [OkA1] in 1942, and in C™ it was solved independently by Oka [OkA3],
Bremermann [BRE] and Norguet [NOR] in the early 1950s. In 2.2 we give
the proof of the Levi problem by the method of Hérmander [HR2]. In
2.3 we prove L? extensions of holomorphic functions from submanifolds of
bounded pseudoconvex domains in C™ which was first proved by Ohsawa
and Takegoshi [OHT].

2.1 The Weighted L? Space

For the preparation of the next section, we study the weighted L? space
whose element consists of differential forms. Moreover, we prove Green’s
theorem which is useful for the proof of the Ohsawa-Takegoshi extension
theorem.

Definition 2.1 Let Q cC R” be a domain with C' boundary and let
p be a defining funtion for Q, that is, p is a real-valued C' function in a
neighborhood G of Q and satisfies

n

Q={zeG|p(x)<0}, dp(x):=)_ g—xpj(x)dxj 40 (z€dn).

Jj=1

47
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Define the surface element dS by
n
dS =Y (=1) 'y Ao Ada] A Ada, (2.1)

where, [dz;] means that dz; is omitted, and v = (v1,--- ,vy,) is the unit
outward normal vector for the boundary 9f2.

_ ap \* Idp
ldpl = \/<8m1) o <8a:n
then v can be written
L (0p  Op
|dp| dxy’ Oz,

Now we prove Green’s theorem.

If we set

Theorem 2.1 (Green’s theorem) Let u be a C' function on Q. Then

8p ds ou
— —dV,
o0 0z “ldol ~ Ja Ox;

where dV is the Lebesque measure in R™.

Proof. We set
dz]y, = dxy A--- Aldzg) A+ A dey,.

Then by (2.1) we obtain

8p ds 8p 1 k1 Op
BLE N
o0 0; “Taol = Joo ox; “lpP? ,;( ) Oxy, i
9p 1 k-1 9p
- [ 2 )1 2Py
o0 01y dpP? g;j( ) Dk =l

Op 1 j—1 9p ‘
+ ] me i Y gl

Since p = 0 on 0f2, we have

dp dp
——dx; = dx;.
Oz Ti= Z ox; v
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Consequently,
d .
shuie = [ w1y i, = [ Sy,
a0 855] |dp| o0 o 0z;
which completes the proof of Theorem 2.1. a

Definition 2.2 Let 2 C C™ be an open set and let ¢ € C*(Q) be a
real-valued function. We denote by L?(£2, ) the space of L? integrable
functions with respect to the measure e~%dV, where dV is the Lebesgue
measure in C". Let p and ¢ be integers with 0 < p,q < n. For multi-
indices & = (i1, ,ip) and 8 = (j1,--- ,Jq), Where i1, ,ip, J1, -+ ,Jq
are integers between 1 and n, define |a| = p, || = ¢ and

dz® = dzi, Ao Ndzg,, dZ° =dz;, Ao NdE,.

We also denote by L%p’q) (Q, ¢) the space of all (p,q) forms f on Q whose
coefficients f, 5 belong to L2(£, ).

Definition 2.3 Let f be a (p,q) form in Q. Then f is expressed by

F=""fapdz® NdZ",
|a|=p

|Bl=q

where 3" implies that the summation is performed only over strictly in-
creasing multi-indices. Further, we set

2= sl
o,

By definition, f € L(p q)(Q ) means that

IW@:AUW”W<w-

We denote by L ( q)(Q,loc) the space of all (p,q) forms f on Q whose
coefficients f, g are L? functions on every compact subset of 2. For f, g
€ L%p o (4, ) with
f= Z fapdz® NdZP, g = Z'gaﬁgdz“ AdzP,
a,B a,B
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we define the inner product of f and g by

:Z,/ fOL’Bga’BeitpdV.
o, Q

Then L(p (&%, ) is a Hilbert space.

Definition 2.4 For g € C(Q), define

8g &p

0
g — P —— -
6.7 g € ] (ge ) azj aZ]

0z
In order to prove Theorem 2.2 we need the following lemma.

Lemma 2.1 Let Q be a bounded open set in C™ with C' boundary and
let p be a defining function for Q2. For

/ — / —
f=Y frsdtdz’ € Cl, (), u=> upxd'dz" € Cl, , (),
1,0 I,K

we have

QK j=1

@uf) = (17 [ 3 Y BT e ey
J

/ S
= (—1)p71/ Z u[’K(sjijKef‘pdV
Q ,

I,K j=1
o / - op _,dS
+(=1) / Izl:{ UI,K]Z::l fI,jKa |dp|

Proof. We prove Lemma 2.1 in case p = 0, ¢ = 1. The other cases will be
left to the reader. We set z; = x2;_1 + ix2;. Then it follows from Green’s

theorem that
/ ou _ / W20 45
o 0z;  Jaq Oxjldp|’

If w is a C' function on §, then we obtain

8p o / —e)
(uwe %
20 8,2] |dp| 0z

/—we_de—l—/uéj—we_‘PdV.
azj Q

By setting w = f; and adding with respect to j, we obtain the desired
equality. O
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Definition 2.5 For f =Y 111, gdz" NdzT € C(p q)( ), define

1)p712/ Z 5jf[’jKdZI A dzE

I,K j=1

f € Def (0*) means that
ZfI’JK . —0 on 89

for every multi-index I and K.
For f € Def (9%), it follows from Lemma 2.1 that
(Qu, f) = (u,0"f).
The following theorem was proved by Hérmander [HR1].
Theorem 2.2 Let Q CC C" be an open set with C? boundary and let

p be a defining function for Q. Let a = ZII’JOKI,JdZI A dz”7 be a C2(p,q)
form on Q and let o € Def(9*), ¢ a C? function on Q. Then

o
o + 130 = 3 3 / LKL kK e PV

I,K ]k 1
80&[] e dV
I,J j=1
9?%p o dS
+Z Z/ I GKOLkK 5= € T
= 0z; 8zk |dp

Proof. We prove Theorem 2.2 in case p = 0, ¢ = 1 and the other cases
will be left to the reader. Let w be a C? function on Q. Then we have

52— 25 P
k(‘)zj 0Z; ¥ 8zk8z3
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Thus for C? functions v and w, we have

S ov Ow
; —Pdy — | e dV
/Q‘sm’“we / 07 07,

0% Op , dS
= [ vw —e PdV + v5 we~
/ 92,0%; 00 02 |dﬂ|

[ e
o0 02, 0z ldp|’

On the other hand we have

Do = Z gajdzk/\dzj 3 (%—%) dzi A dz;,

7,k=1 >k

2 8ak 8aj 8aj 8ak

0z; 0z, Oz 0z

2 2
o 8ak
853‘

804]‘ 8ak

0z, 82j

0oy
0z,

Therefore we have

8%l + [Bal? = 3 /6a]6kake eqy

7,k=1
80@ 804;€ o
— av
(%‘k e V.
7,k=1

Taking account of the boundary condition, we have

Hé"OZII2 + HSOZII2

80%

= e~ %
W Z /a]akazga Zk v

B Z / 8p day, - dsS
o0 8zk (92 |dﬂ|

k=1

By Lemma 1.21, there exists a C! function A such that
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Hence we have on 09
zn: Doy 8;) Pp \ \ Ip.
—\ 0z oo T % 05,0m) "oz,

If we multiply by @; and add with respect to j, we obtain on 02 using the
boundary condition

" [ day Op  _ p \
2 <O‘J 0z, 0or T T 95,05 ) =0

Jik=1

which completes the proof of Theorem 2.2. a

2.2 L2 Estimates in Pseudoconvex Domains

In this section we study L? estimates for the 0 problem in pseudoconvex
domains in C™ by following Hérmander [HR2]. In Chapter 1 we proved that
every domain of holomorphy is a pseudoconvex domain. Here, we prove
that every pseudoconvex domain is a domain of holomorphy by applying
L? estimates for solutions of the @ problem.

Let H' and H? be Hilbert spaces. We denote the inner product of
H' by (x,y); for z,y € H', and the inner product of H? by (z,y)s for
x,y € H2. Let D C H' be a dense subset of H! and let T: D — H? be a
linear operator. Then we set D = Dr, T'(D) = Rr.

Definition 2.6 Let T : D — H? be a linear operator. Define
Gr = {(x,Tz) | x € Dr} C H' x H?.

We say that T is a closed operator if its graph Gr is a closed subspace of
H' x H?.

Definition 2.7 Let y € H?. We say that y € Dy« if there exists a
constant ¢ = ¢(y) > 0 such that

|(Tz,y)2| < cllzs
for all x € Dp. By definition Dy~ is a subspace of H?2.

Lemma 2.2 For y € Dy~ there exists a unique z € H' such that

(z,2)1 = (Tz,y)2
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for all x € Dr. We set z =T*y. Then T* : Dy« — H' is a linear operator
and satisfies

(2, T*y)1 = (T, )s (2:2)
for allx € Dy, y € Dp-~.
Proof. Fory € Dp«, x € D, define
o(2) = (T, y)a.

Then ¢ is a linear functional on Dr and satisfies |¢(x)| < ¢||x||; for some
constant c. Hence ¢ is bounded. Since Dy is dense in H*, for x € H' there
exists z, € Dy such that z, — x. We have

o(z) = ()] < clley —zull =0 (v, — o0).

Hence {p(z,)} converges. If we define p(z) := lim,_,o ¢(x,), then ¢ is
a bounded linear functional on H'. By the Riesz representation theorem,
there exists a unique z € H! such that

p(x) = (z,2)1
for all z € H'. Thus we have
(z,2)1 = (Tz,y)2 (x € Dy, y € Dp+).
Next we show that T is linear. For y;,y2 € Dp+ and x € Dr, we have
(@, T (y1 + y2))1 = (Tx,y1 + y2)2 = (2, T"y1 + Ty2)1-

Since Dr is dense in H!, we have T*(y1 +y2) = T*y1 +T*yo. Similarly, we
have T*(ay) = aT*y for a € C, y € Dp«, which means that T* is a linear
operator. O

Lemma 2.3 T*:Dr- — H' is a closed operator.

Proof. 1t is sufficient to show that
Gr- ={(y,T*y) | y € Dr~} C H*> x H'
is closed. Suppose

(Yn»2n) € Grey  (Yn, 2n) — (Yo, 20)-
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Then y, € Dr- and z, = T*y,. Since {z,} is bounded, there exists a
constant M > 0 such that ||z,|| < M for all n. For « € Dr, we have
[T, yn)2| = (@, 20)1| < [|lz]| |2n]] < M]|2[]:.

Letting n — oo, we have

(Tz,y0)2| < M|z,
which means that yg € Dr«. On the other hand, we have
(@, T"yn)1 — (2, T"yo)1| = (T, yn — yo)2| < [T[12[lyn — yoll2 — 0.
Then (z,2,)1 — (z,T*yo)1. Hence we have
(x,20)1 = (2, T"yo)1 (x € D).

Thus we have zg = T*yo, and hence (yo, 20) € Gr+, which means that Gp-
is closed. O

Lemma 2.4 Suppose Dr- is dense in H?. Then we have
Drp«s D Dp, T"|p,.=T.
Proof. For x € Dr and y € D+, we have
(@, T Y| = [Tz, y)2| < [[T[|2 [lyll2,

which means that x € Dp««. Thus Dy C Dr«+. On the other hand we have

(Txay)Q = (xaT*y)l = (T*yax)l = (yaT**x)Q = (T**xay)Z

Since Dr- is dense in H?, we obtain Tz = T**x for x € Dy, and hence
T*|p, =T. O

Lemma 2.5 Let T : Dy — H? be a closed operator. Then Dy« is dense
in H? and T** =T.

Proof. Define H = H' x H?. Let (z,y) € H and (u,v) € H. We define
the inner product <, > in H by

< (z,9), (u,v) >:= (v,u); + (yﬂ))g.

Then H is a Hilbert space. Further, define J : H — H by J(z,y) = (—z,y).
We define Gr and G} by

Gr ={(z,Tz) |r€Dr} CH
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and
or:={(T"y,y) |y € Dr-} CH.
Then for y € H!, z € H? we have

< (-z,Tz),(y,2) >=0 (z € Dr)
= (z,y)1 = (Txz,2)2 (x € Dr)
< 2€Dp., y=T"z.

Hence we obtain
(ya Z)J*JgT <~ (ya Z) S g;’v

which means that (JG7)* = Gr. Since T is closed, Gr is closed, and
hence JGr is closed. Thus we have JGr = (g;)# Similarly, we have
Gr = (JGi)t. Let u € H2 Suppose (u,v) = 0 for all v € Dr«. Since
< (0,u), (T*v,v) >= 0, we have (0,u) € (G)*. Hence (0,u) € JGr. Thus
there exists x € Dr such that (0,u) = (—z, T'z), which implies that u = 0.
Therefore if (u,v)2 = 0 for every v € Dy+, then u = 0. If ¢ is a bounded
linear functional on H?, then by the Riesz representation theorem, there
exists z € H? such that

o) = (v,2)2 (ve H2).

If ¢ = 0 on Dr-, then z = 0, which means that ¢ = 0 on H2. By applying
the Hahn-Banach theorem, Dr- is dense in H?. Thus T** : Dy« — H? is
defined. We set

7 ={(2,T"2) | z € Dy} CH.
Since T is closed, by using the same method as above we have
(JG7)* =G5

On the other hand, taking account of the equality (.J g})l = Gr, we have
Gr = G1*, which means that Dy = Dr--. It follows from Lemma 2.4 that
T =T**. O

Theorem 2.3 (Banach-Steinhaus theorem) Suppose X is a Banach
space, Y is a normed linear space, and {Ty}aca is a collection of bounded
linear operators of X into Y. Then either (1) or (2) holds:
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(1) There exists a constant M > 0 such that
[Tall < M

for every a € A.
(2) There exists a dense subset E of X such that

sup || T (z)] = oo
a€cA

for every x € E.

Proof. We set

p(x) = sup [[To(z)| (v € X)

acA
and
Vo ={z | p(x) > n}.
If we set fo(z) = || Ta(x)||, then fo(z) is continuous, and hence V,, is an

open set. Suppose Vi is not dense in X. Then there exist o € X and
r > 0 such that if ||z|| < r, then o + 2 ¢ V. Thus ¢(z¢ + ) < N. Hence
we have

[Ta(zo +2)[ <N (a€ Az <r),
which means that
|Ta(@)[| < 1Ta(zo + 2)[| + | Talzo)| < 2N.

Then we obtain

1 2N
[Tall = sup [[Ta(z)| = sup —||Ta(rz)]| < —.
o =1 lzfl=1 7 r

In case that all V;, are dense subset of X, by the Baire theorem, N7, V;,
is dense in X, and for z € N2, V,, we have ¢(x) = co. O

Theorem 2.4 Suppose D is a dense subspace in H' and T : D — H? is
a closed operator. Let F be a closed subspace of H? and let F D Ry. Then
the following statements are equivalent:

(a) F:RT
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(b) There exists a constant ¢ > 0 such that
lyll2 < el Tyl
for ally € F N Drp«.

Proof. (a) = (b). Suppose F' = Rr. Every element z € H? is uniquely
expressed by

z2=21+ 22 (ZlEF,ZQEFl).
Since z; = Tz for x € Dy, we have for y € F N Dy
Iy, 2)2] = [(y, 21)2| = [(y, Tw)2| = |(z, T"yY)a| < |zl [Tyl (2.3)
We set
K={y|Ty#0,y € Dr+} N F.
Further, we set for y € K

_ (ya Z)2
e =

Then by the Banach-Steinhaus theorem, either there exists a constant ¢ > 0
such that

eyl < ¢ (2.4)

for every y € K, or there exists a dense subset E of H? such that

50 = sup [y (2)| (2.5)
yeK

for every z € E. By (2.3), (2.5) does not hold. Thus we have

(9, 2)2]
<c 2.6
= (2:6)

for all y € K. Substituting z = y/||y||2 into (2.6), we have

[yll2 < el Tyl

for all y € K. In case T"y = 0, we have y = 0 by (2.3). This proves (b).
(b) = (a). Fix z € F. Suppose the equality

lylla < clT*yll  (y € FNDr-) (2.7)
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holds. If w € T*(F N Dp«), then we have w = T*y for y € F N Dr-.
We define a linear functional ¢ on T*(F N Dp+) by p(w) = (y,2)2. If
w = T*y; = T*ys, then by (2.7), we have y; = ys. Therefore ¢ is well
defined. Since

lp(w)l < llyll2 lI2ll2 < ellwll fI2]l2,

¢ is a bounded linear functional on T*(F N Dr«). By the Hahn-Banach
theorem, ¢ can be extended to a bounded linear functional on H'. By the
Riesz representation theorem, there exists g € H' such that

o(w) = (w,x0)1 (we HY).
Hence we have
(Y, 2)2 = (T"y, 201
for all y € FNDrp-. If y € F+ N Dy, then Ry C F, which implies that
(T"y, )1 = (y, Tx)2 =0

for all x € Dp. Thus we have T*y = 0. Hence, for y € Dp«, if we set
y=wy1+y2 (y1 € FNDr-, y € F-NDy-), then

(y,2)2 = (y1,2)2 + (Y2, 2)2 = (y1, 2)2 = (T"y1,20)1 = (T"y, 20 )1
and
[Ty, zo)al < lyll2llzll2 (¥ € Dr-).
Thus we have xg € Dy« = Dp. Consequently,
(y;2)2 = (T"y, x0)1 = (y, Txo)
for y € Dp«. Hence z = T'xzy € Ry, which implies that FF C Ry. O

Lemma 2.6 Let D be a dense subspace of H' and let T : D — H? be a
closed operator. If Ry is closed, then Ry« is closed.

Proof. We set F' =Ry in Theorem 2.4. Then
Ifllz <clT*flln  (f € FNDr-).
Let f € Dp«. Then f is uniquely expressed by

f=h+fr (LeFNDr, fye€F-NDr).
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Since T'p € F for ¢ € Dy, we obtain

(0, T* f2)1 = (Tp, f2)2 = 0.

Thus T*f; = 0, and hence T*f = T*f;, which means that T*(Dp+) =
T*(F NDyp+). Suppose T*(FNDp+)>T*f,, T*f, — g. Then

1y = fulle < el T*(fy = fu)llh = 0 (v, 0 — 00).

Hence there exists fo € H? such that f, — fo, and hence (T*f,, f,) —
(g, fo)- Since T* is a closed operator, we have fo € Dp«, g = T* fo, and
hence, g € T*(Dr~+). Thus T*(Dp«) = Ry« is a closed subset. O

Definition 2.8 Let T : Dy — H? be a linear operator. Define
KerT :={x € Dr | Tx = 0}.
KerT is called a kernel (or a null space) of T

Lemma 2.7 Let T : Dy — H? be a closed operator. Then KerT is a
closed subspace. Moreover, we have

(Rr)* = KerT*, R~ = (KerT)™:.

Proof. Let Tu, =0, u, — u. Since (u,,Tu,) — (u,0) and T is closed,
we have 0 = T'u, and hence u € KerT'. Hence Ker T is a closed subset. Let
y € (Rr)*. For x € Dr, we have

|(Tz,y)2| = 0 < [z,
which implies that y € Dp«. Since
0= (Txay)Q - (%T*yh (fE S 1)'11)7

T*y = 0, and hence y € Ker T*. Thus we have (Rr)~ C KerT*. On the
other hand, for g € KerT*, f € Dr,

(Tf.g)2=(fT"g)1 =0.

Hence we have g € (Rr)* which implies that Ker T* C (Rr)*. Thus we
obtain (Rr)+ = Ker T*. Taking account of the equality (Ker T*)+ = Ry,
replacing T' by T* we have Ry~ = (Ker T)>. O

Lemma 2.8 If f ¢ L%pm(Q,go), then f € L%pm(Q, loc).
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Proof. For any compact subset K of 2, there exist constants ¢; > 0 and
co > 0 such that
e < e @) <oy (x € K).

Then
1
Jureav < = [ e oay <,
1 JK

(p.q) (8, 1oc). O
(Q,loc), then there exists ¢ € C™(Q) such that

which implies that f € L?

Lemma 2.9 If fcL?
fe L(p q)(Q 25
Proof. Suppose {K,} is a sequence of compact subsets of { and that

(p,q)

K, CcC Io(n.H C Q, Cle K, = Q.
We set
/ F2dV = e,
Ky

We choose functions a,, € C°(C™) with the properties
1 (Z e K, — anl)
0<an(2)<1(2€C™), an(z)= .
Sanle) <1 ) ) {0(27éKn+1—Kn2)
For z € ), define

(log n%(cn + 1))an(2).

hE

p(z) =

n=1

Then ¢ € C*(Q), and, ¢(z)
have

Y

logn?(c, +1) (2 € K, — K,,—1). Hence we

/|f|26_‘PdV=/ |f|26_‘PdV+Z/ f2e—2dV
Q = KNK,

< 61+Z/ |f|26710gn2(6"+1)dv

n\Kn—1

fcl‘f‘z Cn+1 Cn

o0
§01+Zﬁ<oo
n=2
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which implies that f € L(p o 0). O

Definition 2.9 For f € L? ©), define

) (%

of = > ’iafalfd Zr Adzg A dZg.

Then by Lemma 2.8, 9f exists in the sense of distributions.

Definition 2.10 We denote by D, ,y(£2) the set of all C* (p, q) forms
in 2 whose supports are compact subsets of Q. Further, we set D(Q) =

D(0,0)(£2).

Theorem 2.5 D, (Q) is dense in L?
0, then

o, q)(Q, ©1). Further, if we set T =

T:Dr = Ly 1) (R 62)
is a closed operator.

Proof. Since D, ) () is dense in L(p o ¢1), Dr is dense in

L%p q)(Q7<P1)- We set G = {(f,Tf) | f € Dr}. Suppose (fn,dfn) — (f,9)-
We set g, = 0f, and

Fo= ' fapdz® N2, gn =3 gn dz% NdZ,
a,3 a,y

F=Y""fapdz* NdZ, g =" ""ga~dz" NdZ.
a,B o,y

Then we have
Ofu s
D DU
{jtuB=~ J

where elf means that if the permutation p which maps j to « is even,
then ejvﬂ equals 1, and elf equals —1 if p is odd. For ¢ € D(Q) we have

[ aiav = a2 [ 2t (28)

{7}up=~

Since f, — f and g,, — g, we have

| szageav = [ googeav
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/ ge pdV — / GarrtbdV.
Q Q

Letting n — oo in (2.8) we have
4 0
/ Gy todV = (=171 S ejf/ foui oV
@ {iyup=y @ J
which means in the sense of distributions that
O _
Jay = (=1)7 ZI df—(y’? = (0f)a-
{3yup=y
Thus we have g = df, and hence T is a closed operator. O

We set

HY =12, (1), H2=L% (), H®=L2, . (0 ¢s).
Further, we set

Dy ={feH'|0f c H*}, Dy={fec H?|0f € H*},

Blp, =T, Blp, = S.
Then
Dy =D,, Dg="Ds.
Lemma 2.10 n€D(Q), f € Ds = nf € Ds.
Proof. We have
A(nf) =ndf +onAf. (2.9)
Since the right side of (2.9) belongs to Dg, we have nf € Dg. O
Lemma 2.11 [ € Dy, n € D(Q) = nf € Dr-.
Proof. Let u € Dp. Using the equality

(nf, Tu)y = (f,7Tu)e = (f, T(qu))2 — (f, 07 Au)s
= (T*fa ﬁu)l - (fv 57_’ A U)Qa

we have

|0, Tual < T fllx lllly + [1£ 1121197 A .
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On the other hand, since supp(n) is compact, there exists a constant ¢ > 0
such that

157 A ul|2 = / 157 A uf2e=#1e1—92qV < c/ lu2e=1dV = efjul|2.
Q Q
Hence we have

((nf, Tw)e| < (InT" fllx + Vel fll2) ull1-
Thus nf € Drp-. O

Lemma 2.12 Let Q C C™ be an open set and let f be a monnegative
function in Q. Suppose f is bounded on every compact subset of Q). Then
there exists a function ¢ € C*(Q) such that f(z) < p(z) for z € Q.

Proof. Let A={U, |v=1,2,--}and B=A{V, | v =1,2,---} be
locally finite open covers of 2 such that U, cC V,, cC Q. Choose a, €
D(Q) such that a, = 1 on U,, supp(a,) C V, and 0 < a, < 1. We set
sup,cy, f(2) = M,. Define

o(z) = Z Mya,(z).

Then ¢ satisfies the desired properties. O

Lemma 2.13 Let Q2 C C" be an open set. Let {Kj}?io be a sequence of
compact subsets of Q0 such that

(oo}
Kj1cc(K)®, U K=,
i=

where (K;)° denotes the interior of K;. Let n; € D(Q) be functions such
that n; =1 on K;_1, supp(n;) C K;° and 0 < n; < 1. Then there ezists a
function ¢ € C(Q) such that

n

D

k=1

2

Ol <o (=12,

0z

Proof. Define

p 2
siy= { T <K= =12 .
0 (ZEKQ)
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Then f is bounded on every compact subset of 2 and satisfies

n

923

By Lemma 2.12, there exists a function ¢ € C*°(£2) such that f < in Q.
Since e¥(?) > 1)(z), ¢ satisfies the desired properties. O

8771

i=1,2,-..).
A (j=12,--)

Definition 2.11 Let ¢ be the function in Lemma 2.13. For ¢ € C*°(),
we set

P1L=9 =2, pa=0—1, @3=0¢.

We assume ¢ € C?(Q). ¢ will be determined later. Then by Lemma
2.13 we have

e ‘P3|877 |2 e ¥, e ‘P2|877 |2 e~ ¥t (j=1,2,--+).

Lemma 2.14 Let n;, j = 1,2,---, be functions in Lemma 2.13 and let
[ € Ds. Then S(n;f) —n;S(f) — 0 in H? as j — oo.

Proof. From the Schwarz inequality, there exists a constant ¢ > 0 such
that

1S(n; f) =i S(F)[Pe™#* = [an; A fPe™ % < c|on; P f?e™#* < c|f?e™ %=
On the other hand, [S(n; f) — n;S(f)|?e~%* — 0 as j — oco. Hence by the
Lebesgue dominated convergence theorem, ||S(n; f) —n;S(f)|ls — 0. O

Lemma 2.15 Suppose
f=>"" fapdz*ndz® € Dr..
|a|=p
|B|=q+1
Then we have
T = (Y Z{ (e wfm)}dmdzv,
la|=p k=1

[v|=q

where we set for v = (41, -+, Jq)

f _ { 0 (one ofj1,- -, jq equals tok)
ok (_1)7"']('0“6 (6 = (jlv e 7j7‘; k?jT+17 te ajq)) .



66 Several Complex Variables and Integral Formulas

Proof. We set

u= Z "Ua,ydz% NdZY € Dy q)(Q).

la|=p
[v|=q

Then we have

n
0
Tu = Z’Z;Ti’:dzk/\dz"/\dEV
|al=p k=1

[v]=q
poyoN Ka““Kd @A dzh.

lal=p {k}UK=L
|L|=g+1

Since fq,s is defined to be skew-symmetric with respect to J, we have
fa,L = EIZKfQ_kK. Hence we have

/Z (T* flanGa e P2dV = (T f,u)1 = (f,Tu)2

|a|=p

lvI=q

Dty _
/ Z {k}ul/( L 2 Kf“Le T

laf=
IL|= q+1

o [ S T ey

lal=p {k}uK L

|L|=g+
ou

Y [ B g e

|a|=p k=1

|K|=q

20303 [ e g (Fakace™) o e v,

lal=p k=1
[K|=q

which implies that
* RS 9 (-
(T Do = (P S { G (o) |-
k=1 0

Lemma 2.16 Let n;, j = 1,2,---, be functions in Lemma 2.13. Let
f €Dp«. Then

1T f) =0 T"fllh =0 (G —0).
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Proof. Suppose
_Z lal=p faﬁdz A dz”
|Bl=a+

and

T*(nif) =T f = ’l‘a“:pgiﬁdz“ Adz7.

¥l=q

It follows from Lemma 2.15 that

) n b

Goy = (=17 Ze‘“ {3—% (6_“’2njfa,m)}
—(=1)P~ 77]26"’1{ ewfam)}
= (—=1)P~ lzew 77] €2 fo k-

By Lemma 2.13 and the Schwarz inequality we have

) B " o, |2 n
|gé7’y|2 < e2(p1—p2) <Z 8—72:7] ) (Z |fa’k“/|2>
=117k k=1
n
< ef17¥2 (Z |f0’,k'y|2> )

k=1

Consequently,

T (n; ) = T f1Pe 2 =D ' gl [P
la|=1
WIZZ

n
< Z ! Z |foz,k'y|2€_¢2

la|=p k=1
lv|=q

=(g+1) Y ' |faplfe

|a]=p
|B|=q+1

= (¢ +D)If]Pe7=.

On the other hand, since |T*(n;f) — n;T* f|>e~#* converges to 0 almost
everywhere, it follows from the Lebesgue dominated convergence theorem
that [[T(n; f) —n; T* fll — 0 as j — 0. O
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Definition 2.12 For f € Dy« N Dg, we define

[ fllg = [[flle + 1T fll + [[S f]ls-

Lemma 2.17 Letn;, j = 1,2,---, be functions in Lemma 2.13. Then
for f € Dy« N Dg

In;f = fllg =0  (§ — oc0).

Proof. Since |n;f — f| < |f|, it follows from the Lebesgue dominated
convergence theorem that ||n;f — f|l2 — 0. Similarly, we have ||n;T*f —
T*f|l1 — 0. It follows from Lemma 2.16 that

1T i f = Dl = 1T £) =T (Dl + T f =T flly = 0
as j — oo. Similarly, ||S(n;f — f)lls — 0, and hence ||n;f — fllg = 0. O

Lemma 2.18 Let f € Dg and supp(f) CC Q. Then for 0 < § < 1, there
exist f5 € Dy q4+1)(2) such that

Ifs = fll2 =0, [[S(fs) = S(f)lls — 0

as 6 — 0.

Proof. Choose a function ® € D(C") such that
/ ®dV =1, supp(®) cc B(0,1).

We set @5(2) = §-2"®(z/6). For a differential form

f=Y"" fapdz* Nds",
o,

define

fs = Z’(faﬁ 5« Bs)dz A dzP,
a,B

where

Japx®s5(2) = | fap(z —)Ps(¢)dC.

Cn
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Then we have f5 € Dy 41)(R2) and || fs — fll2 — 0. On the other hand we
have

S(fs)=>_" ( f”*@,;)dzkAdz“Adzﬁ
a,B
__(_1\P / / kKafa,K a _L
= (=17 Y Do TR )k @pdz® A dz"
lal=p  \{kJUK=L %k
|L|=q+2

which implies that ||S(fs) — S(f)lls — 0. O

Lemma 2.19 Let f € Dy« and supp(f) CC Q. Then there exist f5s €
D(p,q+1)(2) such that | T*(fs) — T*(f)||1 — 0 as 6 — 0.

Proof. Since functions

n n
9 _ — O fajvy dip2
Zewl {82] (e tpzfouj’v)} =erTee Z ( 0z - 9z a,jy
Jj=1 J=1
are L? functions and supp(f) is a compact subset of €2,
~ (0faiy _ Op2
i =Y (e S22
j=1 J J

are L? functions. Thus, ||ga, * ®5 — ga,y|lr2 — 0. On the other hand we
have

Gy = (=P 71?7 (T f oy
Therefore we obtain
(—1P e T (fy)
Y C AN S PR

a,y j=1

= Il dz A dE.
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Then
||w2¢,'y — Yoy * (I>5||L2(Q)
dip2 — dip2
= Z ( ~fa, J’Y) * &5 — 8 (fajny * ®s)
=t =t L2(9)
- 2 _ Ops
< Z{(a—fadv) * P 9z, - fain
—, Zj
! £2(9)
+ { 2. (fan = fayn * (I)é)}
=12 12(0)
Consequently,
199, = G llL2@) < 190 = gy * ®sllL2(0) + 9oy * Ps — gayllL2(2) = O,

which implies that | T*(fs) — T*(f)||1 — O.

Theorem 2.6 For f € Dr- N Dg, there exist f; € Dy g41)(2), j

1,2,---, such that || f; — fllg = 0 as j — oo.

Proof. For e > 0, by Lemma 2.17 there exists jg such that

e
Hnjof - ng < 5

O

Since supp(n;, f) CC €, it follows from Lemma 2.18 and Lemma 2.19 that

||(njof)5o - njong <

for some dp > 0. Therefore we have ||(n;, f)s,
D(p,q+1)(£2), Theorem 2.6 is proved.

Lemma 2.20 Let

2

— fllg < e. Since (mj,f)s,

f= ZI foz,ﬂdz(y AdZP e 'D(p’qul) (Q)

|o|=p

|B]=q+1

Then
afa,ﬁ

(o

Yy g,k=1

ofF =" Z

a,Bf j=1

afa,jv afa,k7
0z 8Zj ’

€
g
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Proof. Since

Z Z kKafaKd o pdsh,

lal=p {k}UK=L

|L|=q+2
we have
A 70 a0 ; kk Ofax
S Y (D A N
lal=p  \{j}UJ=L 0z; (k}UK=L Oz

|L|=g+2

8.fon8fo¢K
Z Z Z 0z; Oz

la|=p |J|=q+1 j,k=1
|=q+1

|K|=q
8fo¢JafozK 8fo¢J8fo¢K
=2 > +2'> 55,
Sk 0z; Oz Sk 0z; Oz
= A+ B.

When j =k, we have J = K and j ¢ J. Hence we have

amy [
a,J j&J
When k # j, we have k € J andj € K. Thus if we set J — {k‘} K—{j}=
¢, then we have sk‘;( = —€k§€K, fa,g = €k§fa kes fo, K = €Kfa je. Thus we
obtain
-3 Ofamg Ofanje.
ot jik 8zj azk
Consequently,
8f J 2 n 8f ¢ 2
/ o | _ / @,
D2 X
a,J jeJ J a,é j=1 J
which gives the desired equality. |

Lemma 2.21 Let f be a nonnegative function on R which is bounded on
every bounded interval. Assume that there exists ty such that f(t) =0 for

t < tg. Then there exists a convex increasing function y € C*(R) such
that

x(t) = ft), X' =f(t) (teR)
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Proof. For an integer n, choose a function a, € C*°(R) such that 0 <
an(t) <1 for t € R, and

1 (te[n-2,n])
“"(t){o(tgz[n—?),nﬂ]) '

Define

sup  f(t) = M,

te[n—2,n]

and

o(t) = Z Myan(t).

n=-—oo

Then ¢(t) > f(t) for every t € R. For n — 1 < x < n, we have

x n—1
/ o(x)dr > /72 M,dx = M, > f(z).

—00

We set

Then x; € C*°(R), and

Xi(z) = ¢(x) > f(z), xi(x) > f(z) (z€R).
Choose a function § € C*°(R) such that x{ < 6, § > 0 and supp() C

[to, 00). If we set
x(@) = /g; {/; 9(y)dy} dt,

@ = [ oway> [ =i 2 1),

then

x@ﬂZ/x{/ixﬂw@}ﬁ=xﬂwzf@%

— 00 —00

Thus x is a desired function. O
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Theorem 2.7 Let Q) C C™ be a pseuoconver domain and let p € C*°(Q).
Then there exists a function p € C*(Q) such that

n
wwk>2ww2+ﬁ’§]wm (we ),

n
p(z) 2 p(z) (2€9),
where 1 is the function in Lemma 2.183.

Proof. By Theorem 1.15, there exists a plurisubharmonic C*° function
® in Q such that for any real number ¢

Q={z€Q|0(z) <t}cc.

Since @ is strictly plurisubharmonic in €2, there exists a continuous function
m(z) > 0 in 2 such that for z € Q and w € C"

" 0%
Z aza— (Z)U)JU)k 2m(2)|U)|2
Gk=1 "9
Define
g(t) = max p(z)
z2€8Q
and
H 2 P(z)
h(t) _max{2(|aw(z)| re )}
zeﬁt m(z)

By Lemma 2.21 there exists a convex increasing function xy € C*°(R) such
that x(t) > g(t), x'(t) > h(t). We set ¢(z) = x o ®(z). Then we have

X(®() 2 9(2() = max p(w) > p(2)
w PD(z)
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and
2
" 9% " 0P
- (Gwyie = (@) |3 S (2w
j%z:l 02,0z, ; 0z
. 0%®
/ @ _
) 3 5,
> h(®(z))m(z)|w|”
> 2(|109(2)]? + e )|wl?,
which completes the proof of Theorem 2.7. g

Remark 2.1  We are going to prove the inequality
IF1 < IT*fIF+ISFIE (f € Dr- N .Ds). (2.10)
If (2.10) holds, then we have for f € F := KerS
[flle <IT*fll (f € Dr- NDs).
Since Rt C F C Dg, we obtain
[flle < NT*fllx (f € Dre N F).

By Theorem 2.4, we have F = Ry, which implies that if Of = 0, then there
exists u € L%p’q) (9, 1) such that Ou = f.

Definition 2.13 For g € C1(Q), define

dg &p
— e ey = 29

5]9 € a (ge ) azj aZ]
Then for f € C?(£2) we obtain

o1, .of 9 ... . 9
{53’8_%} '*538@ 82k(63 )= 0z,0z;

Theorem 2.8 Let Q C C™ be a pseudoconver domain and let p € C> ()
be the function in Theorem 2.7. If we set o1 = ¢ — 29, w2 = p — Y and
w3 = @, then

I£13 < 1T*£1IF + 1S £13
for f € D(p7q+1)(Q).
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Proof. For f € D, q41)(2), we have

Tf = (— ’”ZZ@M’{ 5 e*“"faﬂ)}dzaAsz
J

la|=p j=1
[vI=q
= (=P e > 6 faydz® AdZY
al=p j=1
I‘v\‘—qj
Pt _w;p;‘f&’”a dz" Ndz"
[vI=q
= A+ B.
Then
||A||1 */Z Z d; fa,]'y(skfa ky€ 1%
o,y gk 1
/Z Z §fa,]'ya fak'ye W)
a,y j,k=1
/Z Z 5 fa,j'y fak'ye “dv.
a,y j,k= 1
Consequently,
Z Zfa;]’Ya ' Z|fa,j'y|2 Z
oy |j=1 oy \j=1

= |a¢|2 /Z|fam|2)

a,y j=1
Hence we obtain

2|7 fI1F = [1Al1T - 2HBII?

/Z Z 82: 5fa,j'y fak'ye 1%

o,y j,k=1

—2/ |0 (Z > fasl? ) e~ ?dV.

a,y j=1

75
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On the other hand we have

afa,ﬁ —
|Sf||3/%:ﬁ ]Zl 5 e~PdV
32 (o) ()
o,y j,k=1 J

Using the equalities

0 - o (0f _
Y e ® _ v 047 ¢
/Q (51 EEA fa,J’Y> Jaye PdV / 0z, ( 0%k ) fa Ky dV

afa,]v e~ ® afa kv dV

o 0%z 0z;
we have
3fa _
Issg= [ 3 o[ Yol ey
a,B j=1
0 -— _
/Z Z ( az f(y7j'y> fﬂ’7k'Ye ¢dV
oy k=1 k
Consequently,

n

AT 241518 = [ 5505 { (55 = 528 ) fos T 2av

o,y j,k=1

{
—2/ vl ( 'ilfamf) e vdv
- {5

} fa,jvfa,kwe_wdv

'Z | Foviy| ) e PdV.
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It follows from Theorem 2.7 that

2T 2 + |1SF|2 > / SO2(00 + )Y [fouss Pe PV
o,y Jj=1

= /Q 00 [ 3203 [fal? | e2av

oy j=1

> / S 2 sy P EdV > 2 £

oy j=1

Corollary 2.1 For f € Dp- N Dg, we have

IF1E < IT*£1IF + 1S 113

Proof. For f € Dr- N Dg, by Theorem 2.6 there exist f; € D, 441)(2)
such that || f; — f|lg — 0. On the other hand, by Theorem 2.8,

13115 < 1T (IR + IS (IS

Hence letting j — oo, we have

IF113 < IT*(HIT + 1S (A3 .

Theorem 2.9 Suppose [ € L%p’qﬂ)(Q, loc) satisfies Of = 0. Then there

exists u € pryq) (Q, loc) such that Ou = f.

Proof. Let {K;} be asequence of compact subsets of 2 with the following
properties:

Kjcc (Kin), U K= (j=12-)
We set

/|f|2dVZMJ (j:172a"')'

J

Let Ky = ¢. Choose a function ¢ € C*(2) such that

e*@(z) <

2ij (Z€Kj—Kj,1).
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Then
fPe ?dv = / fPe=?av
I o
S BNl e
= 2y DM, T

Hence we have f € L(p q+1)(9795)' Suppose ¢ satisfies the condition of
Theorem 2.7 for p =¥ + ¢. Since

/ \f[2e=¢2dV g/ If[2e~%dV < oo,
Q Q

we obtain f € L(p (H_l)(Q,goQ). Thus by Remark 2.1, there exists u €
L% (2, ¢1) such that ou = f. It follows from Lemma 2.8 that u €

(p o (2, loc). O

Lemma 2.22 Let f € D(RY). Then

@< [ |t w|ao
~ Jrn~ |0ty Oty
for every x € RN
Proof. For z = (x1, - ,xn) € R™, we have
= ty, -, tn)dty - - dt
$)| }/ / 8t1 f( 1, ) N) N 1
< _— avt
7/1:;N 8t1"'8th()' ()
O
Definition 2.14 Let f be a locally integrable function in R". For a
multi-index o = (a1,---,an), where each o is a nonnegative integer,
define

|a|:a1+...+aN

ooy
Oz © 0t 0N

and
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Lemma 2.23 Let f be a locally integrable function in RN with compact
support. Suppose

(2) 7ermy)

for all multi-indices o with || < N + 1. Then f is continuous almost
everywhere.

Proof. Choose a function ® € D(R”) such that
/ BAV =1, supp(®) CC {w € RN | 2] < 1}.
RN

We define

Bs5(z) =6 N®(2/0), f.=f*..

(&) ",

Hence there exist positive constants ¢; and co such that

Then we have

<3“_f
T 0z || 12

H (%ca

N+1
2 f ) _/ 0" @ __ |4,
Oz RN 8:61---8:Cj---6:vN
aNJrlf
< < co.
=a 81‘1...81‘?...81‘1\[ L2_C2

Consequently, there exists a constant c3 > 0 such that

N

|fo(x) = fo(y Z

(z +0y)(x; —yj)| < csllz -yl

which means that {f.} is equicontinuous. On the other hand, there exists
a constant ¢4 > 0 such that

N
i< [ |5

8$1 e 8$N
Hence {f.} are uniformly bounded. Using the Ascoli-Arzela theorem, one
can choose a subsequence {f.;} of {f:} which converges uniformly to f
on every compact subset of Q. Thus we have ||f;; — f|lz2= — 0. Since

aN f

L2
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lfe; = fllz2 — 0, we have f = f almost everywhere. Since f is continuous,
f is continuous almost everywhere. O

Theorem 2.10 Let f be a locally integrable function in RN with compact
support. Suppose

(a%) fe L*RY)

for all multi-indices o with || < N 4+ k+ 1. Then there exists a function
h € C*(RN) such that f = h almost everywhere.

Proof. We prove Theorem 2.10 by induction on k. In case k = 0, The-
orem 2.10 follows from Lemma 2.23. We assume that k¥ > 1 and Theorem
2.10 has already been proved for k — 1. For 1 < j < N, we have

o* (of 2 _ N
— | =) e L*(R < N + k).
5 (52) e PRY) (el <N+

Hence by the inductive hypothesis, there exists fj € C*1(RN) such that

a9f — ~J almost everywhere. On the other hand, by Lemma 2.23 there

g)zijsts a continuous function h such that f = h almost everwhere. Hence in
the sense of distributions, we obtain fj = ngj = ad_;i Thus h is partially
differentiable and satisfies 887}; = f~] for 1 < j < N, which means that
h € CERN). O

Corollary 2.2 Let Q C RN be an open set. Suppose that f is a locally
integrable function in Q and that

8 «
(%) feli, Q)  (la|=01,2--).

Then there exists a function f € C>*(Q) such that f = f almost everywhere.
Proof. Fix a function n € D(Q). We set nf = h. Then we have

(g)ahELQ(RN) (lo] =0,1,2,--).

It follows from Theorem 2.10 that there exists & € C(RN) such that h = h
almost everywhere. It follows from Theorem 2.10 that for every k there
exists ¢ € CF*(RY) such that h = ¢ almost everywhere. Thus, in the

sense of distributions, we have % = %ﬂ, which means that h is partially
J J

differentiable and satisfies % = %@. Thus we have h € C¥(RYN). Since
J J
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k is arbitrary, h € C(RN). If we choose a sequence {K,} of compact

subsets of  such that K,, C [%nﬂ, OLCJJlKn =, then f is of class C'*° in
n=

K,, — A,,, where each set A, is of Lebesgue measure 0. Since A = U2, A,,

f is of class C'*° almost everywhere. a

Lemma 2.24 Let ¢ and ¢ be as in Theorem 2.7. We set p1 = ¢ — 21,
po =@ —1. If f € L(p q_H)(Q,gog) satisfies Of = 0, then there exists a
unique u which satisfies

Tu=f, wue(KerT):, ue L(me(ﬂ, ©1).

Proof. First we show that KerT is a closed subset. Let Tu,, = 0, u, — 0.
Then (u,,Tu,) — (u,0). By Theorem 2.5, T is a closed operator and
satisfies u € Drp, (u,0) = (u,Tu). Hence Tu = 0, which means that
u € KerT. Consequently, KerT is closed. Since Ker S = Ry, there exists
o€ L%@q)(ﬂ, 1) such that da = f. Since Ker T is closed, o can be written

a=a;+ a (v €KerT, as € (KerT)4).
Define
Pa=a;, a—Pa=u.

Then u € (KerT)* and du = da = f, which shows that u is the desired
solution. Next we asuume u* also satisfies the conditions of the lemma.
Then u — u* € (KerT)*, and T'(u — u*) = 0, which means that u — u* €
KerT. Thus u = u*. O

Definition 2.15 Let 2 C C" be an open set. For a nonnegative integer
s, define the Sobolev space W#(2) of order s by

Wi = {51 (&) (52) 7 eL@. I+l <s}.

Further, we define for f € W§, ()
oN" o\
() () o

ey =22 >
Lemma 2.25 For f € D(C"™), we have

2

lal=p |ul+|n|<s L2()
|8l=q

(j=1,2,---,n).

H 0% || g2 H 0z;

L2
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Proof. Using the integration by parts we have

off> . [ of of o (of
/c 0z v = on 07 0z v = cnfazj dzj v
_ O (O, [ OfOF
B /nfﬁzj <8zj) v = cn 0z 0%; v
_ [ |or)
*/n o dv.

O

Lemma 2.26  Suppose that f € L?(C") has a compact support and that

ofr

2 n ) — DR
7z e L*(C") (j=1,---,n).

Then f € WY(C"). Moreover, we have

il 110712

Proof. Fore >0, weset fo = f*®.. Then f. € D(C"). In L?(C")

of-  of af

=——xd, — — 0).

32]‘ 32]‘ * aZ] (E )
It follows from Lemma 2.25 that

ofe  0fs of:  Ofs

- = — 0.
82’3 82] 12 82]' 853‘ 12

Hence {0f./0z;} is a Cauchy sequence. Thus there exists g € L?(C") such
that

of.

82’]‘ g

as ¢ — 0. For ¢y € D(C™)

()=~ () =~ (r35) = (),

which means that df/0z; = g. Hence we have 8f/dz; € L*(C"), and by
Lemma 2.25

ofe
82]'

Ofe
82]'

L2 ‘ L2
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Letting € — 0, we obtain

H 0%j || g2 H 0z;

L2 . O
Definition 2.16 For f € L(p q+1)(Q) with f = Z’aﬂ fapdz® A dZP,
define
T*f P 12 Z 8fa’”dz CANdZT.
a7y j=1

Lemma 2.27 Suppose that f is a differential form in L(p q+1)(Q) with
compact support and that Of € L(p g2 () and T*f € L(p o). Then

f €Wy qin) ()

Proof. Incase f € D, q441)(Q2), we set ¢» = 0 and ¢ = 0 in the proof of
Theorem 2.8 . Then

[y

a,B j=1

8f<y‘5 av < 2|Tf|* + | of|*. (2.11)

In the general case, setting f * ®5 = fs and applying (2.11) to f5 — fe, we
obtain

1T fs = T*fll” + 10fs = fe|” — O
as €,6 — 0. Consequently,

fa,ﬁ * @5 (fa,ﬁ * q)e) 2

d
0%, V-0

as £,0 — 0. Then there exists A\, 5 € L*(Q2) such that in L?(12),

0 * O
(faéﬁz 5) Nt
J
as 6 — 0. Hence we have 0fn 3/0Z; = Ao, in the sense of distributions,
and hence 5‘fa 3/0z; € L*(Q). By Lemma 2.26, 0f, 3/0z; € L?(), and

hence f € W, q+1)(Q) O

Theorem 2.11  Let Q C C" be a pseudoconvez open set, and let 0 < s <
co. If feW o, q+1)(Q’ loc) and Of = 0, then there exists a solution u of
Ou = f such that u € W, o (€2, loc).
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Proof. 1In case ¢ = 0. By Theorem 2.9, there exists a solution u =

S uadz® of Qu = f such that u € L? . (Q,loc). Hence we have

(p,q)

Oug

8—% = fa,j € WS(Q,IOC).

Suppose that u € W(Gp_o)(ﬂ, loc) for some 6 with 0 < 6 < s (if # = 0, then

u € W(p 0y (£, loc)). For 1 € D(Q2) we have
9(nua) o o
oz, =Nfa;+ oz, —uy € WY,

For |u| + |v| <0,

) ) - () (B () ov

By Lemma 2.26, nu, € W9t1. By the inductive hypothesis on 6, we have
Nue € WL Thus we have u € W*+1(Q, loc).

In case ¢ > 1. Since f € L(p qul)(Q,loc), by Lemma 2.9 there exists
A € C*(Q) such that f € L(p a1y (). Suppose ¢ satisfies the condition
of Theorem 2.7 for p(z) = ¥+ \. Then for 1 = p—2¢ and g3 = p—1), f €
L%p (H_l)(Q,gOQ) and hence by Lemma 2.24, there exists u € L(p o€ p1)

such that du = f, u € (KerT)*. Since Ry = Ker S, Ry is closed. By
Lemma 2.6, Ry~ is closed. By Lemma 2.7,

€ (KerT)* = R+ = Rop-,

which means that u = T*v (v € L? (Q,¢2)). Forv = E;va,gdza ANdZP,

(p,q+1)
we set

o= (=P Tro=>"" Z af‘*’”d *Ndz.
ay j=1
Since e~?1u = (—1)P~1§(e~*2v), we obtain

Sy = (-1 133y v%i';%i Mookt €7) oy gzt — .

a,L k=1j=1
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Consequently,
0=Y" Z “a’” dz* A dz
a,y g=1
=3 Z ’”d ndz =3 Za%uaﬂdz Adz,
@y g=1 ay j=1

Let 0 < 6 < s. Suppose u € W(‘gp’q) (©,loc). When 6 = 0, it is true. Fix
n € D(2). Then

Onu) = Au+nf € W, 11)(Q).
On the other hand we have
(-1 )p_lT*(W)

=3 Z ”““J”d Adz

,711

&'Olu(y dz® NdzZ" + ua dz% NdzZ7,
Z Z JY 8 3

a,y j=1 oy j=1

which implies that
T"(nu) € W(ep’qfl)(Q).

Suppose |u| + |v] < 6. Then

o((2) (2) )
(8 (2 s s

T ((%)” (%)V (nu)) € L2 (%),

By Lemma 2.27 we have

<%)M (%)V (17u) € Wi, (),

Similarly,
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which implies that nu € W&"’ql)(Q). By the inductive hypothesis on 6,

nu € W&;”ql)( ), and hence u € W(?:;) (Q,1oc). O
Corollary 2.3 Let Q C C™ be a pseudoconvexr domain. Suppose f is a
C>=(p,q+ 1) form in Q with Of = 0. Then there exists a C>(p,q) form u

in Q such that Ou = f.

Proof. Since C*(Q) C WI%OC(Q), we have f € qu+1)(Q,loc). Then
by Theorem 2.11, there exists u € W(pﬂ) (©,loc) such that du = f. By
Corollary 2.2, there exists a C* (p, q) form @ on 2 such that u = @ almost
everywhere. Thus we have 01 = f. g

Definition 2.17 A metric space is called separable if it has a countable
everywhere dense subset.

Definition 2.18 Let H be a Hilbert space. We say that a sequence {x,, }
in H converges weakly to z € H if

(@n,y) = (2,9)
for every y € H.

Lemma 2.28 FEvery bounded sequence in a separable Hilbert space con-
tains a weakly convergent subsequence.

Proof. Suppose {z,} is a bounded sequence in a separable Hilbert space
H. Then there exists a constant M such that ||z, | < M for all n. Since H
is separable, there is a countable dense subset {z,}. We have

(@, 20)| < [lzallllz2]] < M[z1]-

Thus {(xn, z1)} i 1s bounded. Using Bolzano Weierstrass theorem, there is a
subsequence {a:n } of {x,} such that {(a:n ,21)} converges. Since

(2, 2z2)] < Nl 22l < M|z,

there exists a subsequence {:cn } of {x )} such that {(a:n ,T2)} converges.
Repeating this process, we have sequences {z, '} such that

(1) {x(k+ )} is a subsequence of {:C }
(2) {(x; ),z])} converge for j =1,--- k.

Thus {(a:n ,z)} converge for z = z1,29,---. We set y,, = a:%n), and for
e >0, we set 6 = min{e/(83M),e/3}. If wy,ws € H, ||w1 — wz]| < J, then

5
|y w1) = (yn-w2)| < lymllllwy — w2l <3
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Since for any z € H, there exists z,, such that ||z — zp,|| < . Hence we
have

|(ymaz) - (ynvz)| < |(ymvz) - (ymazno)| + |(ymvzno) - (ynazn0)|
+|(yna Zno) - (ym Z)'
€ 3
<3+ |(ymazno) - (ynvzno)l + 3
3 3
Since {(yn, zn,)} converges, there exists a positive integer N such that if
m,n > N, then

9
|(yM7zn0) - (yn,zn0)| < g

Hence if m,n > N, then
|(ym, 2) = (yn, 2)| <,

which implies that {(yy, 2)} converges. Define p(z) = limy, 00 (2, yn). Then
© is a bounded linear functional on H. It is evident that ¢ is linear. There
exists a positive integer N7 such that if n > Ny, then

lp(z) = (yn,2) <1 (2 € H),
which implies that
lp(z) <1+M  (z€H,|z]=1).

Hence ¢ is bounded. Using the Riesz representation theorem, there exists
y € H such that

o(z) =(zy) (z€H).
Then we have
(y:2) = (yn, 2) = 9(2) = (2,9) = 0 (n — 00),
which implies that {y,} converges weakly to y. a

Theorem 2.12 Let Q C C™ be a pseudoconver open set. Suppose that
© € C%(Q) is a real-valued function and that there exists a continuous
positive function c in Q such that

n n 82 B .,
C(Z)Z lw;|? < Z 8Zjas’;k (2)w;wg (z€Q, weC").
j=1 j,k=1
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Ifg € L%p,qﬂ)(Q, @) satisfies Og = 0, then there exists u € L%p’q) (Q, ) such

that Ou = g, and

2
/ lul2e=?dV < 2/ ﬂe*@dv, (2.12)
Q o ¢
provided that the right side is finite.

Proof. There exists a C'* strictly plurisubharmonic function p in € such
that for any real number a,

Q,={2€Q]|p(z) <a} cc.

Fix a. We choose a sequence {K;}32, of compact subsets of {2 with the
following properties:

oo
Qa-',-l C Ky, Kj C K;+17 jy

Let n; € C2°(€2) be functions such that n; = 1 on K;_1, supp(n;) C K;.
Define

2

b(z) = {ZZ:l STT-]i (€ Kj — Kj-1) .
0 (Z S KQ)

Then ¢ € C*°(€2). Moreover, we have ¥(z) = 0 for z € Qg41, and

n

! > () =)

k=1

2
on;

0z

Since p is strictly plurisubharmonic in €, there exists a positive continuous
function m in Q such that

o 82/)

By Lemma 2.21, there exists a convex increasing function y in R such that
x(t) =0 for —oo < t < a, and

2|09

x(p(2)) 2 26(2), X' (6(2)) 2 775

for all z € Q. We set

o =p+xop, ¢i=¢+(G-3)0 (j=1,23).
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Then

Po—>1h >0, 203—p—¢ =xop—2¢>0.

Repeating the proof of Theorem 2.7, we obtain

k=1 jh=1 =177
+X'(p(2)) (2)w;wr
j;l 0z;0% !

> (209 + c)|w].
By applying the proof of Theorem 2.8, we have for f € D, 441)(2)

2T 117 + IS £II3

:/Z’Xn: ﬂ f -fkef‘p’dV
Q 8zj82k I EY

o,y j.k=1

_2/Q|8w|2 ST N fagn P | e av

o,y j=1

= / Y IOV + )Y faglPe e av
Qo j=1

‘2/ 002 | 2 S | faal? | e=¢'av
Q 047’Yj=1

= /QZ’chfWFe*@’dvz /Q clf[Pedv.

oy j=1

Consequently,
/ clfPe™® <2|T*fIF +IISfIE  (f € Dr-NDs).
Q
We set

2
ﬂe“”dv = A%
Q C
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Then using the Schwarz inequality, we have for f € Dy« N Dg

0. < ([ Lemear) ([ dsper=sear)

< A2 / clfPPe#'dv < A% ()T FI2 + IS 13)
Q
Now we show that

(9. )2 < V2AIT* flli  (f € Dr+). (2.13)

If Sf =0, then (2.13) is trivial. Suppose f € (KerS)t. Since SoT = 0,
we have R C Ker S, and hence f € (Rr)*. Then by Lemma 2.7 we have
T*f = 0. Hence we have

/ lg|2e=¥2dV S/ lgl>e™?dV < oo,
Q Q

which implies that g € L%@qﬂ)(ﬂ, ©2). Since dg = 0, we obtain g € Ker S,
and hence (g, f)2 = 0. Let f € Dp-. Then f can be uniquely expressed by

f=f+fr (fieKerS, foe (KerS)™h).
Then
(g, )2l = I(g, fr)2] < VAT fi]| = V2A|T* ],

which implies that (2.13) holds. Now we define a linear functional ® on
Ry« by ®(T*f) = (f,g)2. Y T*f =T*f', then (2.13) implies that f = f’.
Thus @ is well defined. Applying the Hahn-Banach theorem, ® can be
extended to a bounded linear functional on L%p’q) (2, ¢1). Using the Riesz

representation theorem, there exists u, € L%p_ o (9, ¢1) such that

(f,9)2 = (T"f) = (T" f,ua)r, ([ @ = [ualls-

It follows from (2.13) that

o= sup W22l <y,
remy. T/

which implies that

/ lug|?e”?1dV < 242
Q
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Further we have

(T fyua)i] < llgll2ll fll2,

which implies that by Lemma 2.5 u, € D(7+)« = Dr. Hence we have

(f;9)2 = (T"frua) = (f, Tua) — (f € Dr+).

Thus we obtain Tu, = g. Let {us} be a subsequence of {uq} such

that a; — oo. By Lemma 2.28, we can choose a subsequence of {u,,}
2

(P.q)
converges weakly. For any real number a, {u,,} converges weakly in
H, = L(2p7q)(Q(y,ga). We set limj oo uq; = u. If aj > «, then ¢ = ¢

on ,. Hence we have

which converges weakly in L7, (€2, ¢1). Hence we may assume that {u,, }

/ |uq, [Pe™?dV < 2A%.

e

Using the equality
(Uays W, = (Ua; — W) m, + (U, 0)m,,
we obtain
lullZ, < V2A]ul

which implies that |lu| g, < v/2A. Namely, for any a,

H, T+ |(uaj - u’u)Hu|’

/ lu|?e~?dV < 242
Qo

For f € Dp«, we have
(ga f)2 = (Tuaja f)2 = (uajaT*f) - (U,T*f) = (TU, f)v
which implies that Tu = g. U

Now we are going to prove L? estimates for the 0 problem in pseudo-
convex domains obtained by Hérmander [HR2).

Theorem 2.13 (L? estimates) Let Q C C" be a pseudoconver open set

and let ¢ be a plurisubharmonic function in Q. Ifg € L%p a+1) (Q, ¢) satisfies
0g = 0, then there exists a solution u € L%p q)(Q, loc) of the equation Ou = g

such that

/ lul?e™%(1 + |2|?)2dV §/ lg|?e~%dV. (2.14)
Q Q
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Proof. First we assume that ¢ € C%(Q). We set ¢’ = ¢ +2log(1 + |2|?).
Then

2

8Zj82k

n 8230/ n )

Z R PR >2 Z {log(1 + [2]°) }w; W
J,k=1
= (R ) - 1
CENFRE 25

> 2(1+ |2*) 72 |w].
Then (2.14) follows from Theorem 2.12. In the general case, there exists a
C® strictly plurisubharmonic function p in €2 such that for any real number
a

Q. ={2€Q]p(z) <a} ccq.

Suppose that ® € D(C") is a function depending only on |z1|,- -, |z,| and
that ® =0on |z| > 1,0 < ® and [ ®dV = 1. Define

oel2) = /Q oz — BV (O).

Then ¢, is a C*° plurisubharmonic function in {z € C™ | d(z,Q°) > €},
and ¢. | ¢ if € | 0. We choose a(e) with the properties that a(e) — oo
if ¢ — 0, and that ¢ is a C*° plurisubharmonic function in ). By
using the result of the C? case, there exists u. € L%p’q) (Qa(e), pe) such that
Ju. = g in Qq(e), and

/ e Pe=% (1 + |2[2)2dV < / lgPe=#=av < / g Pe=2av.
Qa(a) Qa(E) Q
Fix a real number a. We choose § > 0 such that a(d) > «. Then there
exists a constant ¢; > 0 such that

c1 <e P14 2372 (z € Qu),

which implies that for ¢ > ¢,

1
/ |u€|2dV§—/ lg|2e%dV.
Qa C1 Ja

Hence we can choose a subsequence {u.;} of {u.} which converges weakly

in L%p_q) (Q4). Let {ag} be a sequence such that aj — oo. Since we can



The & Problem in Pseudoconver Domains 93

choose a subsequence {u;} of {u.;} which converges weakly in {Q, },

{uk,x} converges weakly to u in L%p o (§2,1oc). Hence we have for € > 9,

/ e (1 + |2?) 2V < / lg[2eav.
Q

a

Letting e — 0 we have

|tk ) 2av < [ fgPeeay,
Q

a

Since Ju = g, and « is arbitrary, we have (2.14). a
Theorem 2.14 Let Q2 C C™ be a pseudoconvex open set. Define
w=0QN{z, = 0}.
Suppose f:w — C is holomorphic in ©, where
O={(21,"" ,2n-1) €C" 1| (21, , 2n_1,0) € w}.
Then there exists a holomorphic function F : Q — C such that F|, = f.
Proof. Let m:C" — C"~! be the projection such that
7-(-(2;1 72;”) = (Zl 72;”_1).

If B={z¢€ Q| n(z) € &}, then, w and B are closed subset of Q, and
w N B = ¢. Then there exists a function » € C*°(£2) such that ¢» = 1 on
an open subset of  which contains w, and ¢ = 0 on an open subset of
which contains B. Define

F(Z) = Z/J(Z)f(ﬁ(z)a 0) + va(z)a

where v is a O function in 2. We will determine v later to satisfy OF = 0.
Then F is a C* function on 2 and

OF (2) = 0Y(2) f(7(2),0) + 2,00(z).

If v satisfies

So(2) (—0¥(2)) f(7(2),0) (2.15)

then 0 = OF. Since 0¢(z) = 0 in a neighborhood of w, the right side of
(2.15) is of class C*> in . Further, the right side of (2.15) is 0 closed.
Therefore, by Corollary 2.3 there exists v € C*°(€2) which satisfies (2.15).
Thus F' is holomorphic in 2. Since F|, = f, F is the desired function. O
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Theorem 2.15 Let Q C C" be an open set. Suppose that for every
fe C(Oq+1) (0<q<n-—2)with df =0, there exists u € C . (Q) such
that Ou = f. Then Q is a domain of holomorphy.

(0,9)

Proof. We prove Theorem 2.15 by induction on n. If n = 1, then the
theorem is true since every open set is a domain of holomorphy. Assume
that the theorem has already been proved for n — 1 dimensions. In order to
prove that the domain 2 C C™ is a domain of holomorphy, it is sufficient to
show that for every open convex set D C 2 such that some boundary point
29 of D is on 01, there is a holomorphic function in € which cannot be
continued holomorphically to a neighboorhood of z°. (For, if a holomorphic
function in  can be extended holomorphically to a neighborhood G of w €
08, then there exists r > 0 such that B(w,2r) C G. For z; € B(w,r) N,
there exists 6(0 < § < r) such that B(z1,d) C Q, 0B(z1,5) NN # ¢. Then
every holomorphic function on € can be extended to a neighborhood of
0B(z1,0) N 09, which is a contradiction.) We choose a coordinate system
such that zop = 0 and Dy = {z, = 0} N D is not empty. Since D is
convex, 0 is a boundary point of Dy, and hence a boundary point of w =
{z |z € Q, 2z, =0} Suppose f € C% ()andéf:O. For w, let

(0,g+1)
1 is the function in the proof of Theorem 2.14. Let ¢ : w — Q be the
inclusion mapping. Let m(z1, - ,2,) = (21,"+* ,2n-1). For z € Q and
v € CF 111)(82), we set
F(z) = (2)7" f(2) — znv(2).
Then F' € CF ,11)(€2). We have

OF = 0 A1* f — 2,00.
Hence, if we choose v such that

ov = M, (2.16)
Zn
then OF = 0. Since the right side of (2.16) belongs to Cg° (0.q+1)(§2), and
0 closed, by the assumption, there exists v € C(o )( ) satlsfymg (2.16).
Thus there exists F' € CF . (Q) such that OF = 0 and *F = f. By
the assumption, there exists U € C’&iq)(ﬁ) such that OU = F. If we set
u =13*U, then u € C(g,q)(w), and

Ou=0i*U = i*0U = i*u = f.
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By the inductive hypothesis, w is a domain of holomorphy. Hence there
exists a holomorphic function A in w which cannot be extended holomor-
phically to a neighborhood of m(zp). On the other hand, by Theorem 2.14
there exists a holomorphic function H on € such that H|, = h. Since H
cannot be extended holomorphically in a neighborhood of zg, €2 is a domain
of holomorphy. Hence Theorem 2.15 holds for n. g

Corollary 2.4 (Levi’s problem) Let  C C™ be an open set. Then
is pseudoconvez if and only if Q is a domain of holomorphy.

Proof. Corollary 2.4 follows from Corollary 1.6, Corollary 2.3 and The-
orem 2.15. O

Lemma 2.29  Suppose that p is a C™ strictly plurisubharmonic function
in Q and that for every c € R

K.={2€Q|p(z) <c}ccq.

Then every holomorphic function in a neighborhood of Ky can be approxi-
mated in L? norm on Ko by functions in O(1).

Proof. Let u be a holomorphic function in a neighborhood of Ky. By
the Hahn-Banach theorem, it is sufficient to show that if ¢ is a bounded
linear functional on L?(Kj) which vanishes on O(), then ¢(u) = 0. By
the Riesz representation theorem, there exists v € L?(Kp) such that

o(z) = (z,v) = /KO xodV.

Hence it is sufficient to show that

fodV=0 (feO) = uvdV = 0.
Ky Ko

By setting v = 0 outside of Kj, we extend v to the function on Q. If f
satisfies the equation Of = 0 on €, then f is holomorphic in Q. Hence, by
the assumption,

(f,ve¥)y :/ foefre”¥1dV :/ fodV =0,
Ko KO

which means that ve¥' € (KerT)*. Suppose Ry = KerS. Then Ker S is
closed, and hence Ry is closed. By Lemma 2.6, Rr~ is closed. By Lemma
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2.7, we have (KerT)* = Rr-, and hence ve¥' € Ry« = T*(Dr-). By
Theorem 2.4, we have

Iflle <elT*flli  (f € ReNDr-).

Next we show that T*(Ry N Dr~) = T*(Dr~). Let u € Dp«. Then u can
be uniquely expressed by

U= uy + uz (ul€’RTQDT*,U2€(RT)J‘QDT*).
Since (Rr)+ = Ker T*, we obtain
T*(u) =T (ur + u2) = T us.

Hence we have T*(Rr N Dy«) = T*(Dr+), which means that there exists
f € Ry N'Dp« such that

ve?t =T7f, |[flle < ellT" fl,

that is, if f = Z?Zl fjdz;, then we have

n —p2 £,
vefl = —e¥l Z M

= 8Zj
We set g = fe~¥2. Then we have
n
9y
1) v=— !
1) v=-3 52
j=1
(2) / > lgiPer2av < 02/ [v|?ef1dV.
Qi3 Q

Define

e Y S LG

Let x be the function in the proof of Theorem 2.7. Define
Xv =X+ Au,
and
PrL=XvoP—2¢Y, @a=xp0p—Y, PY3=XvOP,

where ¢ is the function defined in Lemma 2.13. By Corollary 2.1, Ker S =
Rr. Hence for ¢; (i = 1,2,3) we can construct g, satisfying (1), (2). x.
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satisfies that x,(t) = x(t) for t < 0, and x,(¢) T o0 (¥ — o) for ¢ > 0.
Using (2), we have

/QZ g% Pexp(xu 0 p — ¢)dV < CQ/Q [v[*exp(x, o p — 2¢)dV
j=1

e / lof2exp(x o p — 20)dV
Ko
< (.

Thus we obtain
n
/ > " lg¥1Pexp(x1 op — ¢)dV < Ci,
Qi3

which means that {g”} is a bounded sequence in L 1)(€2,% —x10p). Hence
we can choose a subsequence {g"*} of {g”} which converges weakly. Let
g’* — g. For sy > s; > 0, we set

M = xrg}zg; U(x).

Since exp(xy, op — ¥) > exp(xu(s1) — M) on K,, — K,,, we have
/ > 1gh PV < Crexp(M — xu(51)) = 0 (v — o).
K627K51 7j=1

Thus {g¥} converges 0 in L?(K,, — K, ), which means that {g¥} converges
to 0 in 2 — Ky in the sense of distributions. Hence, g = 0 on 2 — Ky. v is
written in the following form

Letting ¥ — oo we have in the sense of distributions

n

_ 9g;
v——y
j=1
Hence we have for u € D(Q)

" 07, " Ou
/Q Q ; 9z; Q ; 0z
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Since g = 0 outside of Ky, we have for every holomorphic function in a
neighborhood of Ky

n
ou
/Q Ko ; 8zj J
which completes the proof of Lemma 2.29. O

Theorem 2.16 Let Q C C” be a pseudoconvex open set and let K be a
compact subset of Q, w a neighborhood of KE. Then there exists a function
u € C*(Q) such that

(a) u is strictly plurisubharmonic in ).
(b) u<0in K, u>0in QNwe.
(c) {z€ Q| u(z) <c} CCQ for every c € R.

Proof. By Theorem 1.15, there exists a C* strictly plurisubharmonic
function ug on €2 such that for every real number c,

{z€ Q] up(z) <c} CcC
Without loss of generality, we may assume that ug < 0 in K. Define
K ={2€Quy(z) <2}, L={z]z€QnNnw up(z) <0}.
Then L € K’, and K’ and L are compact. Since z & Kg for each z € L,
there exists g € P(2) such that
l9()| > sup ]|
K

Let d be such that |g(z)] > d > supy ||g]|. We set g = g—d. Then g(z) > 0,
g < 0in K. There exists a C* plurisubharmonic function g.(z) defined
in an open set W with K/ ¢ W C Q such that g. | § (¢ — 0). For
any sufficiently small ¢ > 0, g. > 0 in some neighborhood of z, g. < 0 in
K. Since L is compact, by the Heine-Borel theorem, there exist finitely
many C° strictly plurisubharmonic functions 1, - - , g in W such that if
we define ¢ = max(p1,---,¢k), then ¢ is a continuous plurisubharmonic
function in W, ¢ > 0 in some neighborhood of L and ¢ < 0 in K. We set

c=supp > 0.
K
Define
o(z) = {sup(go(z),cuo(z)) (uo(z) < 2)

N cug(z) (up(z) > 1) °
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If 1 < up(z) < 2, then z € K, and hence ¢(z) < ¢ < cug(z). Then

sup(i2(2), cuo(2)) = cuo(2),

which implies that v is a continuous plurisubharmonic function in €. Fur-
ther, v < 0 in K. If up(z) < 0 for z € Q Nwe, then z € L, and hence
v(z) = p(z) > 0. If ug(z) > 0, then v(z) > cug(z) > 0, which implies that
v(z) > 0 for z € QNw®. Thus v is a continuous plurisubharmonic function
in 2 satisfying (b) and (c). We set

Q. ={z€0]v(z) <c},
and

ui = [ MOy 4 el

EQn

where A is the function defined in Theorem 1.14. If we choose ¢ > 0
sufficiently small, then v; € C*°(C™). Further, v; > v, and v; is strictly
plurisubharmonic in a neighborhood of Q;. Choosing e sufficiently small,
we may assume that in K, vo < 0 and vy < 0. Further, v; < v+ 1 in §;
(j =1,2,---). We choose a convex function y € C*°(R) such that x(t) =0
fort <0, x'(t) > 0 for ¢ > 0. Then x(v; +1—j) is strictly plurisubharmonic
in a neighborhood of Q;\Q;_1. We choose a; (j = 1,2,---) such that if we
set

m
Um = Vg + Z%’X(Uj +1-17),
j=1
then w,, is strictly plurisubharmonic in a neighborhood of Q, and u,, > v.
If ¢ > 3, k > j, then up = u; in Q;, which implies that v = lim;_o u;
exists. Since u is a C'*° plurisubharmonic function in Q, u = vy < 0 in K
and v > v in Q, v satisfies (a), (b) and (c). O

Theorem 2.17 Let Q C C" be a pseudoconver open set and K a com-
pact subset of Q with K = kg Then every holomorphic function in a
neighborhood of K can be approrimated uniformly on K by functions in
O(Q). (Since kg C kg, Theorem 2.17 holds for every compact set K with
K =KS.)

Proof. Let u be holomorphic in a neighborhood w of K. By Theorem
2.16, there exists a C'*° strictly plurisubharmonic function p in 2 such that p
satisfies the assumption in Lemma 2.29, and if we set K. = {z € Q | p(») <
c}, p satisfies K C K§ C Ko C w. By Lemma 2.29, there exist u; € O(Q)
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such that u; — u in L?*(Kj). Using Corollary 1.3, u; — u converges to 0
uniformly on K. O

2.3 The Ohsawa-Takegoshi Extension Theorem

Let © CcC C™ be a pseudoconvex domain and let H = {z € C" | z, =
0}. Then Ohsawa and Takegoshi [OHT] proved that every L? holomorphic
function in H N Q can be extended to an L? holomorphic function in .
The proof given here is based on the proof of Jarnicki-Pflug [JP].

Let H7, j = 0,1,2, be Hilbert spaces. Let D; be dense subsets of HI,
7 = 0,1, respectively. Let

T:Dy— H', S:Dy— H?

be closed linear operators such that ST = 0. Let L : H' — H' be a linear
bijection satisfying

(Lz,z); >0  (z € H). (2.17)
Then we have the following lemma.
Lemma 2.30 Suppose
(Lo, vn| < 1Tl + [|Sv]i3,

for every v € Dp« N Dg. Then for g € KerS, there exists u € Dy with the
following properties:

Tu=g, [ullf<|(L™"g,9)l
Proof. Tt follows from (2.17) that

(L(x +y),z+y)h = (x+y, Lxz+y)),

(L(z +iy),x +iy)1 = (z + iy, L(z +iy))1,
which implies that

(Lw7y)1 + (Lyvx)l = (vay)l + (vax)lu

_(Lx7y)1 + (Lyvx)l = _(vay)l + (vax)l-
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Thus we obtain
(Lz,y)r = (z,Ly)1  (z,y € H).
It follows from (2.17) that for ¢t € C we obtain
(L(z + ty)1,z + ty); > 0.
Hence for every real number ¢,
(L(z + (Lz,y)ity)1, x + (L, y)ity)r > 0,
which implies that for every real number ¢,
(L, @)y + 2 (Las 2t + (L, )1 2 (Ly, y)ut? = 0.
Hence we have
(La,yhl? < (La,a)i(Ly,yh (zy € HY).

Since L is bijective, there exists § € H' such that Lj = g. Thus for
v € Dp« NKer S, we have

(v, 91 ]* = [(v, LG [* < (Lv,v)1(Lg, §)1

< (Lg: 9 (IT0[lg + 1SvI3) = (L3, 91 [T v]*.
Since (v, g)1 = 0 for v € Dr« N (Ker S)+, we have for v € Dp-,
(v, 9)11* < (Lg, PnlIT™]. (2.18)

Hence if we define a bounded linear functional ¢ : Ry« — C by ¢(T*v) =
(v,g)1, then by the Hahn-Banach theorem, ¢ is extended to a bounded
linear functional on H°. By the Riesz representaion theorem, there exists
ug € HO such that

p(w) = (w,u0)o, ¢l = lluolo  (we H).
It follows from (2.18) that
lo(T*0)| = (g, v)1] < V/(Lg, 9)1 1T v]lo,
which implies that ||¢||? < (Lg, §)1. Consequently,

luoll§ < (Lg 91
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On the other hand we have
o(T*v) = (T*v,u0)0 = (v, 9)1 (v € Dpx). (2.19)

Hence by (2.19) we have [(T*v, uo)o| < ||v||1 |lg|l1 for v € Dp«, which implies
that ug € Dr+« = Dp. By (2.19), (v,9)1 = (v,Tug) for v € Dp~, which
implies that Tug = g. U

Let © C C" be a bounded pseudoconvex domain with C? boundary.
Then there exist a neighborhood U of 92 and a C? plurisubharmonic func-
tion p in U such that

UnQ={zeU|p(z) <0}.

We assume that |dp(z)| = 1 for z € 9Q. Further, we assume that ¢ is a C?
plurisubharmonic function in a neighborhood € of Q. For [ € (0, 1), define
X € C*(R) such that (see Exercise 2.4)

_ 1<) 2
w={o0s). Wi

For 0 <e < %, define

v -3 (=),

Further, for f € O(€), define

Then g. is a d closed C* (0,1) form on 2. We have
~ |Zn|2
X ( =

Q. ={2€Q|1? < |z,|? <%,

2
e*“”(z)dV(z),

2)|2e#(2) z :i 2)|?
[ le-ree@ave) = 5 [ i)

where

and dV is the Lebesgue measure in C". We choose A > 1 such that
QC C" ! x {2, | |2a] < A/2}. Define

1

T ) =l

Ye(z) =
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Then z € Q, and for € € (0,1/2), n.(z) > log2. Define

|22

a(2)

= log2’ Yv=p+o.

Then we have

n
8o |w|2 2
Dy — >
e (2) j%z:l 0z;0zy, (2)wj 0y = ne(2) log2 ~— [l
for z € Q, w e C", e € (0,1/2). Consequently,
n 82w
ne(z)%::l WA (wymy > w2 (2 € Quwe C™). (2.20)

We set
H = L%o,o)(Qﬂ/’)a H' = L%O,l)(Qaw)a H? = L%o,z) (Q,9),
and
T.(u) = 5( azu), Se= \/a_gé, T=Ty, S=25.
Then we have
Dr, =Dy, Ds, =Ds, Dr:=Dr-.

Now we define a linear operator L. : H' — H' by

n—1 n—1 2

€
L v;dZ; + vpdz; | = vidZ; + —————=UndZy,.
€ ]z:; VAsiad) nt<j jz:; Vastad'} (€2+|Zn|2)2 nten

Then L. : H' — H"' is bijective and satisfies
(Ls(x)vx)l > Oa

for every x € H'.
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Lemma 2.31 Letv = Zvjdzj € C(Qo’l)(ﬁ), Then v € Dr» if and only
j=1
if

ZUJ azj =0 (2€09).

Proof. Suppose v = Zvj dz; € C(o 1)( ) N Drx. Then
7j=1

(u, T*v)o = (Tu,v)1 (u € D),

which means that

We set
. - )
2= v(x) 2
j=1

Suppose there exists z° € 99 such that §(z°) # 0. We may assume that
Re® > 0 in some neighborhood W of 2. We choose a function @ € C°(C™)
with the properties that @ > 0, @(z°) > 0, supp (@) C W. Since @ € Dr, it
follows from Green’s theorem (Theorem 2.1) that

U - ~ 0u
(@, T*v); = (T'a,v)2 —/Qza—zjvje vav

j=1 J j=1

(ﬂ,T*v)l—i—/ ave~VdsS,
o0

which implies that

/ ave *dS = 0.
o0

This contradicts the choice of ¢ and 4. Thus we have 9|pp = 0. Similarly
we can prove the sufficiency. O
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For v € Dy« and v € Dr, we have

(v, T*u)o = (Tev,u)1 = (O(y/azv),u)1 = (v, \/azT*u)o,

which implies that Tu = \/a:T*u. Hence, for u = Zukdzk € C(QOJ)((NZ) N
k=1
DT; )

—~ 0
Ko ¥ oW
TXu = ace ]2:1 22 (uje™").

Theorem 2.18 For0<e<1/2 andu € C(o 1)( ) N Dz, we have
(Lew, w) < || TZullg + [|S-ul3.
Proof. Using Green’s theorem (Theorem 2.1), we have

I TZullg + || Seull3
= (T u, T*u)g + (e Su, Su)s
= (veT*u, T*u)o + (vSu, Su)2 + (A(neT*u), u):

Oup  Ouy\ (Qup  duy\ _,
+/Q"€j<zk <azj 8zk> <azj 8zk) v

= ('YET*U T*u )0 + (’)/ES’U,, Su)2 + (é(neT*U)a u)l

/ng 3 (% _ %) [rp———

i 8zj 0z 8zj

= (%T*u T*u)o + (veSu, Su)s + (d(nT*u), u)1

aUk 5‘u — =
/Q Z 02 {”5 <azj azk> ‘ }“’“‘W
Our,  0u;\ Op o~
/ 1Ie Z (82?] 8zk> 82:3 e "dS.

dp
Since Zu] 9z = 0 on 05, there exists a C! function © in a neighborhood

j=1
of 09 such that

dp
Zuja—zj =0p. (2.21)
j=1
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Differentiating (2.21) with respect to Zj, we have on 9%
n
ou; 8p 0%p 8@ ap ap
i | = O—=0—. 2.22
; (8zk 8zj (%kazj 8zk + azk 0z ( )

If we multiply by @ and add, we obtain on 92

n

_ (Ouj Op 8 B
Zu(83k82]+ azaz) Zla

Jik=1

Consequently,

"L [ Ouy an> o
e —— — 5= | ke VdS
/BQ L ‘;1 < 0z; 0z ) 0z

7

_ ~ Ouk Op /”—.32P—w
— /aQ Ne %:: 0z, 8ZjUke ds + - %;1 NeUkUj 8z382k6 dsS
7, Js
Oouy 0

/ Z ﬂ(??ﬂ—k et ds

o0 k= 7

/ Z 8uk 8Uk ‘de—k/ Z Uk (neauk —1/1) v

Q 7,k=1 az]

8uk _ )
Z Ne s av.
/Jk | 82] ( 0z

Thus if we use a representation

ITZullg + |Sculls = (T u, T*u)o + (= Su, Su)a + (*),
then

(*) > TT™u,u)y +/ Z 8776 (w)aje YdV

/ Z Ine %_% e*d)ﬂkdv
0z; \0z; Oz
=1 9% J

0 aUk 8u] — | =
[ g { (5 52 ) e ma
"9 5‘uk B
+/Q 2 oz, (775 9z, ¢ >dV
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Taking into account that
NeTT*u,u); = Ne =— (T"u)ure A%
( ; ; 8 = )u
n
({)Qw 82’(1,]' 8’(# 811,]) "
= U; — — —= | uge” ¥dV,
/9776 = (8zj82k J 8zj82k aZj 0z, k
we obtain
/ Z O e (wyayevayv 01 (% _ Oy ) e VupdV
82'] @ 42 0z; \ 0Z; 0%
92
0* one Ouy, _ ) —
NeUjUk 3—F=" e YdVv
/];1< 02,0z, 0z 8zj
R —
/ Z ('9,2] w)tie”vdV
0% On: Ou; \
/ Z (775“3 95,05 T 0z, 05, ) eV

J,k=1

Since u € Dr~«, we have

[, 2 g G av
Q =y 95 OFk
- 0%, Ly, O 0 —y
_ o 9 d
/QZ (azjazkujuke 52, W gz, ke )> v
In: Op
—|—/ —u e YdS
o0 ];1 0z 0z
- 0%y on
- _ 7o €0 e Y ) d
/ng:l (32332ku]uk€ * 0z, 02, (e )> v
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Consequently,

one *(u)u - -
/Zaij )ije dV+/ Z neazj u;ure” *dV

_ 87) 0 _
E P €0 (7 AR
/Q <82382kujuk6 +8zjuj82k(uke )) v
e tar [ 57 ey e
/Q} 824T(u)uje av + QE nsaz'azku]uke av
j 3 jk=1 J

=1

0%y " " O ——

— " e ?d Ze s e~V

/Q E 2,028 ujtge” YdV —1—/9 E 72; I*(u)uje”¥dV
J,k=1 j=1

n 2 n 2
:/ E 7}588 ;)/}* ujﬂke_wdv—/ E 88 i u e A%
Qj,kil Z] Zk Qj,k 1 Z] Zk

ey
+2Re/ﬂjz=:1 aij (w)u;e”vdV.

Using the inequality

oMe ‘ Zn |20 2 un|® 4+ |T* (u)[?
u;T*(u)| = |——————=u, T*(u)| <
D e Al = e el e
we obtain

—~  n.
- -9
/Q g 5‘zj u]uke av — /Q g FEGEN ujuge” YdV

Jrk=1
2 2 * 2
i / R
q €24 |zn|? 0 €2+ |z,|?
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Consequently,
ITZullg + [1Seull3
= / V(I T*ul® + [Scul*)eVdV

/ Z 82 u]uke vdv

Jk* J

k=1
n2 n2 T* 2
_/ |2 | |u |267de— |2 (u)| 267wd‘/.
Q€+ |zl €%+ |zl

It follows from (2.20) that

HT*UH% + 15 UI@

n 2
:/Q Zlne%ujuke_wd‘/
+/Q%|un|2(62% e )etav
>/ TSuMM vV
= Jo \ & i T €2 |2a]?)2

= (Leu; u)la

which completes the proof of Theorem 2.18.
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O

The following theorem was proved by Hérmander [HR1]. We omit the

proof.

Theorem 2.19 For f = Z?:l f;dz; € Dp- NDg, there exists a sequence

{f.} with the following properties:
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(@) o € 12, (20).

() If f,=3"_, fo;dz;, then f,; € C*(Q).

(c) Z;LZI fy7j§—£|39 =0, that is, f, € Dr-.

() If = Folln +1Sf0 = SFla + 1T fo =T fllo =0 (v — 00).

Corollary 2.5 For g. = 0(xcf/#n), there exists u. € H' such that
Teue = ge, and

4

2 — 2 2\2| £12 ,—

Proof. Using Theorem 2.18 and Theorem 2.19, for 0 < ¢ < 1/2 and
u € Ds, N Drx, we have

(Lew, u)y < [|TZullg + [1Scull3.
By Lemma 2.30, there exists u. € D such that
T ue = Je, HU'EHO < |(L;195,95)1|-

On the other hand we have

(24 [2al?)? e S

L_lg =
e Je g2 OZp Zn

dznv

which implies that

2 2
: €+ 1ol | (Ll\ [ ()| L)
@ gegon < [ S e (D) (B 1L evay
4 (52 + |Zn|2)2 2
< .
<o |, ey
U

We set

I = Xsf — VOecZpUe.

Since OF. = 0, F. is holomorphic in 2. Moreover we have Fluna=f. We
set Q. = {z € Q| |z,| < e}. Then it follows from Minkowski’s inequality
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that

[ Fllo :

1/2
(/ |F€|2€_de)
Q
</ |X€|2|f|2ede) + (/ |zn|2|a€||u€|zede)
. Q

1 1
2 2
< < /Q |x6|2|f|2ede) +sgg|zn|¢|a€|< /Q |ug|2ede) .

Since there exists a constant B > 0, such that

A2
Vil < oo () 125

It follows from Corollary 2.5 that
12 3
</ |F5|2ewdv> < (/ |X€|2|f|26de> (2.23)
Q Qe

B 3
e ( [ Izn|2>2|f|2e-wdv) .

The first term in the right side of (2.23) converges to 0 as € — 0. In order to
investigate the second term in the right side of (2.23), we need the following

IN

lemma.

Lemma 2.32 For p € C™(Q), we have

i 790(2) 2)=(1—-Dm z z
Eli%ﬂ_/gs (|Zn|2+€)2dV( )=(1-1) /{z,LO}ﬁQ ©(2)dVy—1(2),

where dV and dVi,,_1 are the Lebesgue measures in C™ and C" !, respec-
tively.

Proof. Let0 < e <1/2. If we choose ¢ sufficiently small, then there exist
a constant o > 0 and compact sets E(), F(£) ¢ C"~! with the following
properties:

E®) x {Vie <|zy| <e} € Q. € FO x {Vie < |z,] < &} (2.24)
and

w(FE — B < e, (2.25)
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where y is the Lebesgue measure in C"~ 1. We set 2z’ = (21, -+, 2n_1),
z = (#',2n). We define 7 by 7(2) = ¢(2) — ¢(z/,0). Then there exists a
constant C' > 0 such that |7(2)| < C|z,|. On the other hand we have

/ dandyn 5 /6 rdr
_TnYn o _ordr
Vie<|zal<e (|2n]? +€)? Vie (2 +e)?

B (1=0Dm
= —(lg—l— E+1) — (1= D,

as € — 0. Hence we obtain

/

0
lim %dV(g’) = lim %
=0+ Jo. (|zn|* +¢) =0+ Jo. (|zn|* +¢)

= lim (1 - l)w/ o(2',0)dVy—1(2")
B©

e—0+

dV(z)

—-hr [0V (),
{z,=0}N2

which completes the proof of Lemma 2.32. O

Since €2 > (€2 + [2,]?)/2 and € > (¢ + |2,,|%)/2 in Dy, it follows from
Lemma 2.32 that

1 _
5 [ @+l PRy

2.~
< 16/ ey
. (e+|za]?)?

1601 — l)7r/ F(2,0)[2e ¥ 0qv,
HNQ

<16(1 —l)m sup e_"(z)/ 1£(z,0) e 0y, .
HNQ

z€HNS
Consequently,
lim sup/ |F.|?e™vdV < C 1£(2',0)]2e~ 0 qy, (2.26)
e—0 Q HNQ

where C' = (64B%7)/(1 — 1) SUP.c gno e—o(2)
The following lemma is well known. So we omit the proof (See Excercise
2.3).

Lemma 2.33 (Montel’s theorem) Let {ur} be a sequence of holomor-
phic functions in Q which are uniformly bounded on every compact subset
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of Q. Then there exists a subsequence {ug;} of {ur} which converges uni-
formly on every compact subset of §2.

Lemma 2.34 Let Q be a bounded pseudoconvex domain in C™ with C?
boundary whose defining function p satisfies |dp| = 1 on OQ2. Then there
exists a constant C > 0 such that for every holomorphic function f in HN,
there exists a holomorphic function F in Q which satisfies F|pgna = f and

/ |F|2e=¥av < c/ (2, 0)]2e ¥ 0 gy, _

Proof. Lemma 2.34 follows from Lemma 2.33 and (2.26). O

In order to prove the Ohsawa-Takegoshi extension theorem we need the
following lemma.

Lemma 2.35 Let  CC C" be a strictly pseudoconvex domain with C3
boundary. Then there exist a neighborhood U of 0 and a C? strictly
plurisubharmonic function p in U such that

UNQ={zeU|pz) <0}, |dp(z)| =1 (=€ 0Q).

Proof. By the definition of the strictly pseudoconvex domain, there exist
a neighborhood V' of 902 and a strictly plurisubharmonic function p in V'
such that

VNQ={zeV|p(z) <0}, dp(z)#0 (z€090).

We may assume that dp(z) # 0 in V. If we set p1(2) = p(2)/|dp(2)], then
for z € 0Q, w € C™ — {0} with Z] 1 ggl( z)w; = 0, we have

For A > 0, we set

p(z) = pr(2)e ),

where we will determine A later. Then we have |dp] = 1 on 09Q. Let
P € 09. Then we obtain

AT I S ) B+ 15228 Py 2
Z 8zk Witk = 02;0Z (P)uo; i+ Z Pz (A+A4%.
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Define

X =A{w| |w] = Z

k: j

P)w;w;, < 0}.
Then X is compact, and
_ aﬂl
X c{w||w = 12 w;j # 0}.
Hence |37, ggl( Jw;| has the minimum m > 0 in X. We set

. 82 _
— MNy,ex ZZ}CZI ngk(P)wak

A= — +1.
Then for w € X,
n ~
9%p
Z — (P)w;wy > m?* >0
= 0z;0Zy,
In case jw| =1 and w &€ X, we have
82P1
Plw; 0
8zj82k( )w]wk >
Hence for |w| = 1, we obtain
n 82 ~
82 8zk w]‘ﬁ)k > 0. (227)
J

For each P € 01, there exists A = A(P) > 0 and a neighborhood W (P) of
P such that (2.27) holds for z € W(P). Thus there exist a constant A and
a neighborhood U (U C V) of 0 such that for z € U and |w| = 1,

n 82._
Z azk z)wjwy, > 0,

which implies that p is strictly plurisubharmonic in U. g
Now we are going to prove the Ohsawa-Takegoshi extension theorem.

Theorem 2.20 (Ohsawa-Takegoshi extension theorem [OHT/) Let
Q C C™ be a bounded pseudoconvexr domain and let H = {z € C" | z, =
0}. Suppose ¢ is plurisubharmonic in Q. Then there exists a constant
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C > 0 such that for every holomorphic function f in H NS, there exists a
holomorphic function F in Q which satisfies F|gna = f and

/ |Fl2e=*dV < c/ f[2e=¢dV,, 1.
Q HNQ

Proof. We choose an increasing sequence {{2;} of strictly pseudoconvex
domains in C™ with C° boundary such that Q; are compact subsets of
and U372, €; = (2. By Lemma 2.35, we can choose the defining functions p;
for ; with the properties that |dp;| = 1 on 09, for j =1,2,---. Let {¢;}
be a sequence of C* plurisubharmonic functions on Q; with ¢; | ¢ (Such
a sequence {¢;} exists by Theorem 1.15 and Theorem 2.16). By Theorem
2.14, we may assume that f is holomorphic in 2. Suppose

/ 1f|2e™%dV,_1 = M < oo.
HNQ

It follows from Lemma 2.34 that there exist holomorphic functions Fj in
Q; such that Fj|gna; = f and

/ |Fy2e%1dV < C F(2/,0) 2% 0y (') < CM.
Q; HNQ;

Let K C Q be a compact set. Then there exists a positive integer N such
that K C €2 for j > N. If we set Ly = ming e ¥V, then it follows from
Corollary 1.3 that

CcM 2/ |Fj|2e7dV > LN/

|Fj|?dV > LyxC sup | Fj|
Q; QN K

for j > N. Hence {F;} is uniformly bounded on every compact subset
of Q, and hence by the Montel theorem (Lemma 2.33), we can choose a
subsequence {F},} of {F;} which converges uniformly on every compact
subset of 2. We set lim; o Fi; = F. Then F'is holomorphic in € and
F|una = f. Moreover we have

/|F|Qe_“’dV: _lim/ |, [Pe™#% dV
K Jmo Kk

< lim |Fy,, |2e™ ¥ dV < CM.
I JOy . ’
’ O
Berndtsson [BR2] improved Ohsawa-Takegoshi extension theorem as fol-
lows. We omit the proof.
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Theorem 2.21  Let € be a bounded pseudoconver domain in C™ and let
¢ be plurisubharmonic in Q. Let M = {z € Q | h(z) = 0} be a hypersurface
defined by a holomorphic function bounded by 1 in Q). Then, for any holo-
morphic function, f, on M there is a holomorphic function F in Q such
that F = f on M and
e_‘P

/ |F|2e~?dV < 477/ | Pz dVir,
0 m " |Oh]

where dVyy is the surface measure on M.

Remark 2.2  Siu [SI2] proved that the constant C in Theorem 2.20 can
be chosen to be %—477 (1+ 4—16)1/2, provided Q C {z € C™ | |z,] < 1}.

Exercises

2.1  Prove Theorem 2.2 for any (p, q).
2.2 Show that if a family F = {fx | A € A} of holomorphic functions in

a domain 2 C C" is uniformly bounded in 2, then it is equicontinuous
on every compact subset of 2.

2.3 Prove Lemma 2.33.
2.4 Let a > 0 and ¢ > 1. Construct a function f which satisfies the

following conditions:

(a) feC®R), 0< f(x)<1(zeR).
(b) flx) =1(zx<0), f(z)=0(z=a)
(©) [f'(@)] < 2.



Chapter 3

Integral Formulas for Strictly
Pseudoconvex Domains

In this chapter we study integral formulas for differential forms on bounded
domains in C" with smooth boundary. Using integral formulas, we prove
Hoélder estimates for the 9 problem in strictly pseudoconvex domains with
smooth boundary. Moreover, by following Henkin-Leiterer [HER] and
Henkin [HEN3] we prove bounded and continuous extensions of holomor-
phic functions from submanifolds in general position of strictly pseudocon-
vex domains in C" with smooth boundary. We also study H? and C* exten-
sions of holomorphic functions from submanifolds of strictly pseudoconvex
domains in C™ with smooth boundary. Next we prove Fefferman’s map-
ping theorem [FEF] concerning biholomorphic mappings between strictly
pseudoconvex domains with smooth boundary. The proof of Fefferman’s
mapping theorem given here is based on integral formulas for strictly pseu-
doconvex domains obtained by Henkin-Leiterer [HER] and the method de-
veloped by Range [RAN2].

3.1 The Homotopy Formula

Let Q C R"™ be an open set and let f be a differential form with degree s
on 2. Then f is expressed by

fz) = Z figewig (@)daiy A~ N day, (x € Q).

1<i1 < <is<n

Definition 3.1 Define

[

[f(2)] = Yo fuea @) (z € Q).

1<ii < <is<n

117
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Let z1,- -, 2z, be the coordinate system in C™. Then a (p,q) form f in Q
is expressed by

f= ZI\I\=P fI,JdZI N dZJ,
[7]=q
where fr ; are functions on Q, and I = (i1, - ,ip), J = (j1,---,Jq) are
multi-indices with 1 <14, j, < n, and that
de’ =dzy, N Ndzy, dz? =dz, Ao Ndz,.

Further, E/ means that the summation is performed only over strictly
increasing multi-indices such that i; < --- < ip, j1 < --- < jg. For a
continuous function f in 2, we define

Ny o g
8f—zazjdz], 8f—zazjdzj,
j=1 j=1

df = df +df,

where the differentiation of functions is in the sense of distributions. For a
differential form f = Z'IJ fr.ydz" A dz7; define

of => 7 ,0fr.s Adz' ndz,
gf = Z/I,Jéff,c/ Adzt A dZJ,

df = af + df.

If fis a (p,q) form, then df is a (p + 1,q) form and df is a (p,q+ 1)
form.
We can prove easily the following lemma. We omit the poof.

Lemma 3.1 0%f =0%f =0.

Definition 3.2 Let D € C™ and G C C™ be open sets and let h =
(h1, -+ ,hm) : D — C™ be a holomorphic mapping, and h(D) C G. Then
for a differential form f = IX:;fI’JdZI A dz? on G, the pullback h*f of f

with respect to h is defined by

B f = (fr,0 0 hydh! A dh?,
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where for I = (i1, -+ ,ip) and J = (j1,- -+ ,jq), we define
dh' = dhi, A+ Ndhg,, dh’ =dhj, A+ Adhj,.

Since dhj = Oh; and dhj = Ohj, h*f is a (p,q) form in D if f is (p,q)
form in G. Further, we have

Oh*f = h*0f, Oh*f =h*df.

Definition 3.3 Let X be a real C! manifold of dimension n and let
u:X — C"andv:X — C" be C' mappings. Define

w(u) =duy A+ Aduy,

Jj=1

where u = (u1, -+ ,upn), v = (v1, - ,vp), and 5 means that dv; is omitted.
Further, we define

n
<v,u >:i= E VjUy.
Jj=1

Lemma 3.2 Let X be a C* real manifold and let w : X — C™ and
v:X — C" be C! mappings. Then we have

d <w’(v) A w(U)) o,

<u,v>"
provided < u(z),v(r) >#0 forz € X.
Proof. Since dw(u) =0, we have

d <w’(v) /\w(u)) _ dw'(v) Nw(u) d(<v,u>") AW (v) /\w(u).

<u,v>" <wv,u>" < wv,u >2n
Moreover, we have dw'(v) = nw(v), and
d<v,u>"Aw'(v) Aw(u)

=n<v,u>""" Z(vjduj +ujdv;) Aw'(v) A w(u)
j=1
=n<v,u>"wv)Aw(u).
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Lemma 3.3 Let (;j =x; +iTjtpn for j=1,---,n and let z € C". Then
de(W'(¢ = 2) Aw(Q)) = n(20)"dxr A -+ A dway,.
Proof. Since
d¢; Nd¢; = (dz; —idzjin) A (dzj + idzjn) = 2idr; A dTjin,

we obtain

o yLE s o —n A dCe A
de 231( I AN(E Zj)k/;jd@s/z\ld@ nk/:\1d<ks/=\1dC5
=
= n(2i)" A da;.

! 0

Definition 3.4 Let A be an algebra whose elements are functions or
a differential forms. Let A = (ai;)7;_; be an n x n matrix with entries
a;; € A. Define

detA = Z Sgn(g)aa(l),l * Qo (n),n

where )" means that the summation is performed over all permutations
ogof {1,---,n}.
Definition 3.5 Define

Z={acAlaNb=bAaforall be A}.

Then Z is the subalgebra of A which consists of functions and differential
forms of even degree.

Lemma 3.4 Suppose z; € Z fori=1,2,--- ,n. Then we have
a‘ll"'Zl/\bk‘"'zl/\bs"'aln
a/21"'ZQ/\bk;"'ZQ/\bS"'GQn

=0, (3.1)
anl...zn/\bk...zn/\bS...ann

where by, € A is contained in the k-th column, and bs is contained in the
s-th column.
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Proof. We denote by detA the determinant in (3.1). For a permutation
7 = (ks), we obtain

detA = Z segn(o ag(l (k)bk . -ZU(S)bS © Qo (n)n

Z sen(0) Ao (1)1 " Zo(s)bk "+ Zo(k)bs ** * Ao(n)n

= Sgn Z Sgn oT aa‘r(l)l t ZUT(k)bk t Zo"r(s)bs * Qo (n)n

- ngn T)ag(1)1 " Zo(k)bk = Zo(s)bs * * * Qo(nyn = —detA,
which means that detA = 0. a
Lemma 3.5 For a C' function v on X,

W' (¢hv) = Y W' (v).

Proof. w'(v) can be written

vy dvy -+ duy
1
/ —
w'(v) ]
Up, dvy, -+ dug,
Since vy, -+ ,v, € Z, it follows from Lemma 3.4 that

W ($v) = det(v, d(wv), - (1))
= det(¢v, Ypdv +vdy), - - -, pdv 4+ vdi))
= det(¢v, Pdv, - - 1pdv)
= ¢"det(v,dv, -+ ,dv) = P" W' (v). -

Let Q@ C C” be a bounded domain and let f be a bounded (0, 1) form
in Q. For z € Q, define

(n—1)! we (€ — 2) Aw(C)
@) Jeeo N T T

(Baf)(z) = ; (3-2)

where

n

W(Q) = dG A NGy W (C=2) = D (F1YTHG = 7)) G

Jj=1
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Let Q C C™ be a bounded domain with C!' boundary, and let f be a
bounded function on 9. For z € 2, define

 (n—1) we (¢ —2) Aw(Q)
B = G f O e O
For (z,() € C™ x C", define
wc((=2) Aw(@) ¢ 1 G~ o
e ;(—1)3“ |C]_ z|§” A, (dGk = dzi) A w(©).
Let f be a bounded differential form in €. Define
 (n—1) Wl (C=2) Aw(()
(Bof(e) = T | 108 = (34)

If fis a (0,1) form, then (3.4) coincides with (3.2). Further, if f is a
function, then f(()w;’c(f — Z) Aw(C) is at most of degree 2n — 1 with
respect to ¢, and hence Bqf = 0.

Let Q C C™ be a bounded domain with C' boundary, and let f be a
bounded differential form on 9f2. Define

(n—l)!/ W (¢ = 2) Aw(C)

Baa f)(z) = . f(O)— 3.5
( )(2) @) Jeeon (©) = (3.5)
If f is a function, then (3.5) coincides with (3.3).

Definition 3.6 Let 2 C R™ be an open set and let a = (aq, -+ , &) be

a multi-index, where each «; is a nonnegative integer. Define
|a| :a1+...+an,

glel

L
T Oy orn

For f € C*(Q), define the C*-norm |f|r.q of f in Q by

o= supl0°f(2)]

\a|§km€ﬂ

|flo.o is denoted by |f|q. Then {f € C*(Q) | |flr.o < oo} is a Banach
space with respect to this norm. For f € C(2) and 0 < « < 1, define the



Integral Formulas for Strictly Pseudoconvexr Domains 123

a-Lipschitz norm (or the a-Hélder norm) |fla.0 by

|fla,0 = |flo,o+ sup M
scenezc € —2[®

We set
Aa(Q) ={f € C(Q) | |flan < oo}

We call A,(Q) the Lipschitz space (or the Holder space) of order a. A
function f € A, () is bounded and uniformly continuous in €.

Lemma 3.6 Let Q C R™ be an open set. Then

(a) For 0 < a <1, Ay(2) is a Banach space.
(b) If f € Ao () then f is continuous on Q.

Proof. (a) Choose a sequence { f, } such that f, € Ao (Q), |fr— fmla.0 —
0. Since

sup [ fn(z) = fm(2)] = 0 (n,m — 00),
e

there exists f € C(2) such that lim,, .o fn(x) = f(x). On the other hand,
for € > 0, there exists a positive integer N such that if n,m > N, then

€
|fn(x) - fm(x” < 5
for all x € Q, and

[fn(2) = fm(@) = (fu(y) = fm(¥))]

|z — y[>

<

| ™

for  # y. Letting m — oo, we have
[fn = flao <e.
Consequently,
[fla,o < e+ |fulan < oc.

Thus f € Ao(2) and f,, — f. Hence A,(f2) is a Banach space.

(b) Suppose a € 9 and z, € Q such that z, — a. Then {f(z,)}
converges. Let lim,,_,o f(2,) := f(a). Then for any sequence {w,} with
wy, € Q, w, — a, we have f(w,) — f(a). Next suppose z, € Q and 2z, — a,
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a € 9Q. Then there exists {w,} C Q such that f(z,) — f(w,) — 0 and
wy, — a. Then

[f(zn) = fa)] < [f(zn) = f(wn)] + [f(wn) = f(a)] = 0

which implies that f is continuous on . O

Lemma 3.7 Let Q C C" be a bounded domain. Then For a bounded
differential form f in Q, Baof € Ao(Q) for every 0 < a < 1. In particular,
Baf is continuous on Q. Moreover, there exists a constant Cp > 0 such
that for every bounded function f in Q, || Baflla,o < Callflloq-

Proof. By the definition of Bgf, there exists a constant C; > 0 such
that for z,£ € Q

G—=%  G=& |,
o ‘ C—2pr e —gpr |7V

Thus it is sufficient to show that there exists a constant Co > 0 and R > 0
such that for ¢,s € R™ with [¢], |s| < R,

/xeR",z<R

Now we have

Baf(:) - Baf(©l < Cilfloa Y. [
j=17¢¢€

1 — 1 r1 — S

1
e =" |z — s

/Ix—tét—S/Q
< / [ — 17" aV, (x)
Jo—t|<[t—s|/2

+/ dV(x).
ot <[t—s]/2

If |z —¢| < |t — s|/2, then

dV(z) < Calt — s||log|t — s|.

:cl—tl r1 — 81
jz =" fo— sl

dv(z)

Tr1 — S1

|z — s["

3 1
|x1—sl|§|fc—t|+|t—s|§§|t—s|, |x—s|2§|t—s|.

Hence there exists a constant C3 > 0 such that

/;¢3Fsm

Using the polar coordinate system, there exists a constant Cy > 0 such that

/;¢3Fsm

xr1 — S1

qu)gcgu—sﬁfn/‘ dV(z).

le—t|<[t—s]/2

|z — s["

l‘l—tl xr1 — S1
[z =t fo—s"

AV (x) < Cylt — s).
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Similarly, there exists a constant Cs > 0 such that

-Lﬂgwwz

On the other hand, we have

J?l—lfl r1 — S1
|z =t [z —s|"

AV, (x) < Cs|t — s|.

r1— 1t r1 — 81

=t Jo—s|"
(1 —t1)|x —s|™ — (21 — s1)]x — t|"
|z —t["|z — s|”
_ (@ —t)(e =" — |z — ") = (b — s1) |z — t|"
|z =tz — s|"

_ S le—sfla -t jt—sf
Sl —sl=le—dl X o g o=
v=0

<t —s| 1 1 n 1
nlt — s| | max
- lx—s|* e =t o — s

< 1 1
< 2nlt — s| |a:—s|"+ T )

We set
t— t—
A={zeR" ||z —t| > %, |z —s| > | 25|, |z| < R}.
Then there exist constants Cg, C7 and Cg such that
—t — dv
/ T i_m s; dV(x)SC’G/ #
Allz =t |z — s] lt—s|/2<|y|<2Rr |Vl
2R
d
< Ot — s &
lt—s|/2 T

< Cylt — sl og |t — sl
which completes the proof of Lemma 3.7. g

Theorem 3.1 (Bochner-Martinelli formula) Let @ C C" be a
bounded domain with C* boundary and let f be a continuous function on
Q such that Of is continuous on Q, where the differentiation means in the
sense of distributions. Then

f(z) = (Boaf)(2) = (Badf)(z) (2 €Q).
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Proof. For z € ), we set

(n = D=2 Awle)

Oy e

By Lemma 3.2, we have do(¢) =0 for ¢ € Q — {z}. Then we have

d(f(€)p(€)) = 9f () Np(C)

for ¢ € @ — {z}. For any sufficiently small ¢ > 0, we set Q. = {¢ €
Q| |¢—z| > ¢e}. It follows from Stokes’ theorem that

/ FQOeQ) = [ 1O0l) - / BIOAC).  (36)
|¢—z|=¢ o0 Q.

The left side in (3.6) can be rewritten as

[ r0e@=sa[ w0+ [ U010

It follows from Stokes’ theorem that

I R T L)
/czew(g)_ (2mi)m /<ZE g2n

= G [, A= 9 Aw(0)

T (2mi)n e2n

n!
e [(—z|<e

On the other hand we have
/|<- RO
ey VR el
[(—z|=¢

@riye?n c—=l

Since (wé(C_ —Z) Aw(())/|¢ — #| is bounded on €, there exists a constant
C > 0 such that

< Cﬁzig'f@ - fZ))—=0 (¢—0).

JRCGECIEE

Letting € — 0 in (3.6), we obtain the desired formula. O
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Corollary 3.1 Let Q C C" be a bounded domain with C* boundary and
let f be continuous on Q0 and holomorphic in . Then

f(z) = (Boaf)(z)  (z€Q).
Proof. Corollary 3.1 follows easily from Theorem 3.1. |

Next we prove the Koppelman formula which is a generalization of the
Bochner-Martinelli formula to differential forms.

Theorem 3.2 (Koppelman formula) Let Q C C™ be a bounded domain
with C? boundary and let f be a continuous (0,q) form on Q, 0 < q < n,
such that Of is continuous on Q. Then

(=D)f(2) = (Boaf)(2) — (Badf)(2) + (0Baf)(2)  (2€9Q). (3.7)

Proof. 1If ¢ = 0, then Bqf = 0. Hence (3.7) is the Bochner-Martinelli
formula. Let 1 < ¢ < n. By Lemma 3.7, Bof, Badf and Bpqf are all
continuous in 2. Hence if we can prove the equation

dBaf = (—1)1f — Baaf + Bodf

in the sense of distributions, then 0Bq f is continuous in €, which means
(3.7). Since (Baf)(z) is a (0,¢g — 1) form, we have

d(Baf Av) = 0Bof Av+ (=1)7 Bqf A dv

for every (n,n — ¢) form v in Q. Hence it is sufficient to show that

(_1)q/QBQf/\5U=(—1)q/ﬂf/\v—/QBagf/\v—i—/QBgéf/\v (3.8)

for v € D(y,,5,—q)(2). We set

(n—DIw, (C—2) Aw(C)
(2mi)" ¢ — z[?n

©(2,¢) =

Then it follows from (3.8) that

(~1)7 /C’Z)Emf@)w(z,m / £(2) Alz
—/ f<<>w<z,om<>+/ BI(C) A pl2:C) Au(z).
(¢,2)€00xQ

QxQ
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We set

(n— DI, (€= 2) Aws (¢ — 2)

YRS T e

where
n
wec(C—2) = A (d — dz;).

By Lemma 3.2, we have d, ¢®(2,{) = 0 (¢ # (). Since ®(z,{) — ¢(z,()
contains one of dzy,- - ,dz,, we have

(®(z,¢) —¢(z,0)) Av(z) = 0.

Hence we obtain

dz ¢ (9(2,0) Av(2)) = da o (B(2,0) Av(2)) = (=1)*"71D(2,0) A du(2)

Consequently,

d: ¢ (f(ONp(2, ONv(z)) = OF (O)Ap(z, Q) Av(2) = (=1)? F(O)Ap(z, () ADu(2).
For € > 0, we set
U. = {(¢2) €C" x C" | ¢ — 2| < e},
Since supp(v) CC 2, we have for any sufficiently small € > 0,
(2 x Q\U.) N (C" x supp(v)) = (992 x QU AU,) N (C" x supp(v)).

It follows from Stokes’ theorem that

/ FOApEO M) = [ (O Ap(z0) Av(z)
oNxQ

oU.
— [ a0 A0 )
QxQ\U.
S0t [ O Nl A Bu(a)
QxQ\U.
Hence, if we prove the equality

lim [ £(0) A (20 Av(z) = (~1)7 / £(2) Aol2),

e—0 U
€



Integral Formulas for Strictly Pseudoconvexr Domains 129

then we have (3.8). We define a holomorphic mapping 7' : C” x C" —
C"xC"by T(&z)=(2+&z). If weset Sc ={¢ € C"| ¢ =e}, then
T(S. x C™) = 9U,. Since w, ¢(z + &) Av(z) = w(€) Av(z), we obtain

(0= DNW'(€) Aw(E)
(mi)e g

T*(f(Q)Ap(z, C) Av(z Zf[ (z+&)d(z+8)" Av(z2).

Since S; is real 2n — 1 dimensional, we have on S,

A+ A (€) AwlE) = d2! AW (€) Awl(©).

Further, using the equation dz! A w'(£) Aw(€) = (=1)9w'(§) Aw(€) A dZT,
we have

O Ne(z,¢) No(z)

oU.
n—1)! WEY A w
—e0 [ D G [ e e

By the Bochner-Martinelli formula, the term in brackets is equal to

oEn [ e - e ™)

fr(z) +

Using the same method as the proof of Theorem 3.1, (3.9) converges to fr,
which completes the proof of Theorem 3.2. O

Definition 3.7 (Leray map) Let  C C™ be a bounded open set. A
C' mapping w :  x 9Q — C" is called a Leray map for € if

<w(ZaC)7C—Z>7é0
for all (z,¢) € 2 x 9.

Let w(z,¢) be a Leray map for Q and let £ have a C! boundary. Define

_ o U)(Z,C) C__Z
e N =N g e P

for € Q2,1 <A <1and ¢ € 09Q. Further, we define

(3.10)

n

wi(w(z,0)) = (=1)w;(z,0) oy dewp(z,¢)

Jj=1
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and

n

W/(,A(U(Za Cv )‘)) = Z(_l)j+1ﬂj (Za Cv >‘) k/;zj d(,)\nk (Za Cv >‘)a

j=1
where
77(27@, )‘) = (nl(za<7>‘)a e ann(za<7>‘))a d(,)\ = dC + d)\'

For a bounded function f on 0f2, define

@) <w(z0.(—z>"

o)== [ 7 welwls VA0 o) (3.1
ceon

For a bounded (0,1) form f on 92 and z € Q, define

(Ronf)(z) == 2= D! eson 1O At N A0 (312)

2ri)™ JoS<

Remark 3.1 Ifw(z,() = (—Z2, then Lo = Baq andn(z,(,\) = w(z, (),
which implies that dxni(z,(,A) =0, and hence Rpq = 0.

Definition 3.8 Let 2 C C” be a bounded domain with C' boundary
and let w(z, ¢) be a Leray map for . For (z,{,\) € Q x 00 x [0, 1], define

Lo _
W, Z ]Jr €) k/;zj 0z, cwi(z,C)

j=1
and
W, A0 =2 (D60 A A (Beg Ak (2, G, A),
j=1

where 5Z7< =0, + 54.
For a bounded differential form f on 992 and z € €, define

o (o (= C) Aw(Q)
Lonl)e) = G [ ON o G e B
and

(Ron$)(:) = Gl [ FONGLeA G 00 G10)

If f is a function, then (3.13) coincides with (3.11). Further, if f is a (0,1)
form, (3.14) coincides with (3.12).
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Remark 3.2 If w(z,¢) = — 2, then Lpq = Baa, Roo = 0.

Theorem 3.3 (Leray formula) Let Q C C" be a bounded domain with
C' boundary. If f is a continuous function on Q such that Of is continuous
on Q, then

f(z) = (Loaf)(2) = (Roadf)(2) = (Badf)(z) (2 € Q).
Proof. Fix z € Q. Since
<n(z,(N),(—z>=1 (C €09, Xxe0,1]),

it follows from Lemma 3.2 that d¢a[w; (n(2, ¢, A)) Aw(()] = 0. Hence we
have

de A (Qwe A(n(z, ¢, 2) Aw(Q)] = 0F(C) Awi A(n(2,C, ) Aw(C)-

By applying Stokes’ theorem to the equation f(¢)w; y(n(2,(,A)) Aw(() on
08 x [0, 1], we have

/‘ FOWEA(M(2: 6 ) Aw(O)
(00x[0,1])

:/’ FF(Qwlr(n(2, ¢ ) Aw(C):
00 x[0,1]

On the other hand we have
000 x [0,1]) = 092 x {1} — 9Q x {0}.
Since we have equalities

we(w(z,¢)) Aw(C)
<w(z,(), —z>"

we (2, A) Aw(Qle,neoaxioy =

and

wt(C = 2) Aw(C)

we (2,6 A) Aw(Qleneanx iy = T =

we obtain Rpa0f = Laaf — Baof. Together with the Bochner-Martinelli
formula, we have the desired formula. O

Corollary 3.2 Let Q C C™ be a bounded domain with C* boundary and
let w(z,¢) be a Leray map for Q. If f is continuous on  and holomorphic
in ), then

f(z2) = (Loaf)(z)  (2€9). (3.15)
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Proof. Corollary 3.2 follows easily from Theorem 3.3. O
Definition 3.9 (3.15) is called the Cauchy-Fantappié formula.

Now we are going to prove the Koppelman-Leray formula. The
Koppelman-Leray formula is a generalization of the Leray formula to differ-
ential forms. The Koppelman formula and Koppelman-Leray formula are
called the homotopy formula (see Lieb-Michel [LIM] and Range [RAN2]).

Theorem 3.4 (Koppelman-Leray formula) Let Q C C™ be a bounded
domain with C* boundary and let w(z,¢) be a C? Leray map for 2. Suppose
f is a continuous (0,q) (0 < q < n) form on Q such that Of is also
continuous on Q. Then

(—1)2f = Loaf — (Raq + Ba)0f 4+ 0(Raq + Ba)f. (3.16)

In particular, if g = 0, then by degree reasons Roq f = Bof =0, and hence
[ =Loaf — (Raa + Ba)Of.

Proof. By definition, Lyqf and Raqf are continuous in 2. Further, by
Lemma 3.7 and Theorem 3.3, B f, Bodf and 0Bqf are all continuous in
Q. ORapqf is also continuous in  since we can perform the differentiation
under the integral sign. By the Koppelman formula, it is sufficient to show
that

ORsaf = Boaf — Loaf + Roadf.
If ¢ = 0, then (3.16) is the Leray formula. Let 1 < ¢ < n. It is sufficient to
show that
[ @ronn@) no) = [ Bonf)e) o) - [ (Lan)) A
Q Q Q
+/(Rag(§f)(z) /\v(z)
Q

for v € Dy —q)(Q). For simplicity, we set w = w((), W = w. (¢ — 2).
Define

— 1IN <& ,
g (1 '1). S (=1 (2,6, 0) 0y A (2,C, )

(2mi)™ =

and
D&

)YL ]:1

™
H

17+ ZCA) (3z<+d/\)77k( NEPIE
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Since < 1(z,(, A),{—z >= 1, it follows from Lemma 3.2 that d, ¢ »(0AD) =
0. Consequently,
doecx(OAW)Av(z) =d, e A(BAD) Av(z) =0.
Since O¢ (0 A w) = 0, we have (0, +dx +9,)(0 Aw) Av(z) = 0. Hence we
obtain

[(Dec +dN)(OAW) + 00 Aw) + (D¢ +dy +0.)((0 — 0) Aw)] Av(z) = 0.

Since the second and the third terms in the bracket contain one of dzq, - - -,
dzn, we obtain

(D0 +dx)(0 Aw) Av(z) = 0.

Hence we have

(O 4+ dx) (0 Aw) Av(z) = —8.(0 Aw) Av(z).
Consequently,

dex(FAONW) Av(2) = (D +da)(f AOAwW) Av(z)
={0fANOANw—D(f NOAW}Av(2).

It follows from Stokes’ theorem that

/ / A OAwp A v(2)
2€Q (¢;N)€a(002x(0,1])

:/ {/ If NOAw— B, f/\é/\w}/\v
z€Q (¢,A\)ea0x[0,1] (¢,A)ea0x[0,1]
— [ (Ronds)() A o)~ [ (@Ronf)(:) A o(e)
Q Q
On the other hand we have

909 x [0,1]) = (—1)2"710Q x 9[0,1] = -9 x {1} + 89 x {0},

(n—=1)! w(w(z,{))Aw
(27-”)71 < w(Z,C),é' —z>n

é/\whzo =

and

m=—w'((—2)Aw
@mi)m | — 2>

9~/\w|,\:1 =
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Consequently,

/ / FAOANW Y Av(2)
z€Q (¢,N\)€a(002%x10,1])

— [(LonhE o)~ [ (Bonh)() Av(o)
Q Q
which completes the proof of Theorem 3.4. g

Corollary 3.3 Let Q C C" be a bounded domain with C* boundary and
let w(z,¢) be a Leray map for Q such that w(-,{) is holomorphic in Q for
fixed . Define for1 <qg<n

T, = (—=1)(Roq + Ba).

Let f be a continuous (0,q) form on Q such that 0f is also continuous on
Q. Then

f=0T,f + Ty10f.

Moreover, if Of =0, then u = T,f is a continuous solution of the equation
ou=f inQ.

Proof. By definition, we have
(Loaf)(2)

_ (n_ 1)! . j+1 j(zaC)
= 0L ST
yuy 8:,cw (2, ¢) Aw(C).

If ¢ > 1, then one of d,wi(z,¢), k = 1,--- ,n, is contained in each term
in the right side of the above equality. Hence Lsqf(z) = 0. By Theorem
3.4, we have f = 0T, f + T,410f. Tt is trivial that Raqf is C* in Q. By
Lemma 3.7, Bqf is C* in (. O

Next we will construct a Leray map for a strictly convex domain with
C? boundary.

Definition 3.10 Let Q& CC R” be a domain such that Q = {z | p(z) <
0}, where p is a C? defining function for Q defined in a neighborhood of Q.
We say that 2 is strictly convex if

n

plw;wg >0
%:1 83:]83: 7k
7,
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for every p and 0 # w = (w1, -+ ,w,) € R™ satisfying

p € 09, Zax
J

We can prove the following lemma by using the same method as the
proof of Corollary 1.4. We omit the proof.

Lemma 3.8 Let Q CC R" be a strictly convex domain. Then there exists
a defining function p for Q such that

Z 8x 5‘x p)wjwy, > Clw|? (p € 0, w e R™). (3.17)
j

Lemma 3.9 FEvery strictly conver domain is a strictly pseudoconvexr do-
main.

Proof. Let 2 be a strictly convex domain. Then Q = {z € C" | p(z) <
0}, where p satisfies (3.17). Let p € 99Q. Using Taylor’s formula, we have
for t = (ty,- - ,t,) € C"

1
+t p) + 2Re - p)tit
plp+1) = ZaC] +5 2 CjaCk K
~ 9% T 2
+ — L (p)t;t + o([t]?).
3 ez Wt +olif)
=
We set
1 & 9%
Qp(t) = 5 (p)t;t
T2 N; 960G,
n 82p _
Ly(t) = (p)t;te
8 2 960Gk ’

1 & 9%

- (p)zjzr = 2ReQp(t) + Lp(t).

Since 2 is strictly convex, we obtain

2ReQ,(t) + Ly(t) >0 (0 #£te C).
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Since
Qp(it) = =Qp(t),  Lyp(it) = Ly(t),
we obtain
—2Re@p(t) + Ly(t) >0 (0#teCn).
Hence L,(t) > 0 for ¢ # 0, which means that (2 is strictly pseudoconvex.

Definition 3.11 Let Q1,5 C C” be open sets. A holomorphic mapping
f : Q1 — Qg is called biholomorphic if f : ©; — € is bijective and
f71:Qy — O is a holomorphic mapping. (It follows from Corollary 5.4
that if a holomorphic mapping f : 21 — s is bijective, then f: Q; — Qo
is biholomorphic.)

Lemma 3.10 (Narashimhan’s lemma) Suppose 2 CC C™ is a strictly
pseudoconvex domain with C? boundary and p € 0Q. Then there exist a
neighborhood U of p and a biholomorphic mapping ¢ in U such that o(UNQ)
is a strictly convexr domain.

Proof. There are a neighborhood W of 02 and a strictly plurisubhar-
monic function p in W such that QNW = {z € W | p(z) < 0}. By Corollary
1.4, there exists a constant C' > 0 such that

n

p)w;wy, > Clw|? (w e C™).

We choose a coordinate system such that

=0 (20 3 w) = (1.0.0)

Using Taylor’s formula, we have

= 2Re Z a i+ = Z azjaZk W Wi

8Zj85

+

. (p)w;wy, + o(|w]?).
jk=1
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We set

wh = = w1y —|— E w W
! 82'3 8zk !
] k=1

wi=w;  (j=2,--,n)

Then w’ = ¢(w) is a biholomorphic mapping in a neighborhood of 0 (see
Corollary 5.3). Further, we have

82/)090 1

w-zI/ o(|w'?).
T O]k +ollu'P)

pow t(w') = 2Rew; + = Z
k=1

—1

Thus there exists a neighborhood U of p such that poy™" is strictly convex

in U. Hence (U N Q) is strictly convex. O

Lemma 3.11 Let Q cC R" be a strictly convex domain with a C? defin-

ing function p. Then Q has a C? boundary, that is, p satisfies dp(z) # 0
for all x € 09).

Proof. Suppose there exists a point p = (a1, -+ ,a,) € 9 such that
dp(p) = p(p) = 0. Using Taylor’s formula we obtain

Zax](m aj)(ax — ar) + ol — pP’)

J,k=1

> alz = pl* = o(lz — p]).

Hence there exists r > 0 such that p(z) > 0 for 0 < |z — p| < r, which
contradicts that p is a boundary point of Q. a

Lemma 3.12 Suppose Q CC R™ is a strictly convexr domain with C?
boundary. Then Q) is geometrically convex, that is, if Py, P, € © and 0 <
A< 1, then APy + (1 — A\)P> € Q. Moreover, if P1,P, € Q, P, # P, and
0< A<, then AP+ (1 —X\)P2 € Q.

Proof. Suppose Lemma 3.12 does not hold. Then there exist Ay with
0< X <1and P,P, € Qsuch that AP, + (1 = \)P, € Qfor 0 < )\ <1,
P=XP+(1—Xo)P2 € 00 and P, — P> is contained in the tangent space
to 0Q at P. We set ¢(\) = p(AP1 + (1 — A\)P,). Then we have ¢(X\) =
p(P) =0, ¢'(Ao) =0, We set P, = (a1, ,a,) and P» = (b1, ,b,). By
Taylor’s formula,

p(N) = P)(a; = bj)(ar = br) (X = Xo)* + o(|A = Aof*)
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> alPy — Po2 (A — Xo)2 + o(JX — Xo[?).

Thus there exists 7 > 0 such that if 0 < |\ — Ag| < r, then ¢(A) > 0, which
is a contradiction. One can prove the latter half similarly. O

Lemma 3.13 Let Q CC R" be a domain with C? boundary and let p be
a defining function for Q. Then Q is geometrically convex if and only if

n
awyg, >0 3.18
23 xjamk Puwjwy, > (3.18)

for all P € 02 and w = (w1, -+ ,w,) € R™ wzthzj 189c L(P)w; =0.

Proof. Let  be geometrically convex. Suppose (3.18) does not hold.
Then there exist points P € 92 and w € R™ such that

and

We may assume that P = 0, grad p(P) = (0,---,0.1). We set Q = tw +
€(0,---,0,1), where ¢ > 0 and t € R will be determined later. Using
Taylor’s formula we have

Q) = 50) + Y 7200 Z 8% L 0)2,@ + ol|QP)

. (0)wjwy + O(?) + O(et) + o(t?;€?)

= ¢ — kt* + R(e,t),

where R(e,t) satisfies |R(g,t)| < ct? + Ce?, and we can make ¢ sufficiently
small if C is sufficiently large. We choose € so small that ¢ >> 2. If
t = 0, then p(Q) > 0. On the other hand, if |t| > 1/2¢/k, then p(Q) < 0.
For ¢ with |t| > \/2e/k, we set Q1 = tw +€(0,---,0,1) and Q2 = —tw +
g(0,--+,0,1). Then Q1,Q2 € Qand (Q1+Q2)/2=¢(0,---,0,1) & Q. This
contradicts that €2 is geometrically convex.

Conversely, assume that (3.18) holds. Suppose 0 € Q. For € > 0 and a
positive integer M, we set p.(z) = p(z) +e|z|*M /M, Q. = {z | p-(x) < 0}.



Integral Formulas for Strictly Pseudoconvexr Domains 139
Then Q = Ug~09e. If € > 0 is sufficiently small, then €2 is strictly convex,
and hence geometrically convex. Hence () is geometrically convex. O

Lemma 3.14 Let Q CC C" be a strictly convexr domain. Then there
exist a neighborhood U of 02 and constants € > 0 and B > 0 such that for
CeU and z € C" with | — z| < &, we have

2Re < 9p(C),¢ — 2 >> p(¢) — p(z) + BIC — 2|,

where

9p(C) = <3P(C) 3ﬂ(<)>.

G T 7 9,

Proof. For (; =& +i&1n and 2; = T + T4,
2Re < 9p(¢),( —z>= ) —(Q)(§ — 7;).

Hence by Taylor’s formula, we have

p(z) = p(C) —2Re < 3p(C) (—2z>

+ Z 8%8% ) (6~ 1) + oI — =),

Consequently, if we choose € > 0 sufficiently small, then we have for { € 02
with |z — (| <e

2Re < 9p(C),¢ — 2 >= pl(€) — pl=) + ¢ — =l .

Theorem 3.5 Let Q CC C" be a strictly convex domain with C? bound-
ary. Then 20p(¢) is a Leray map for €.

Proof. Let z € Q and ¢ € 092. By Lemma 3.14, there exists € > 0 such
that

Re < 20p(C),¢ — 2z >> —p(z) > 0,

provided | — z| < e. Let |( — z| > e. If we set

13 &
2= (1‘ |¢—z|>“|<—z|z'




140 Several Complex Variables and Integral Formulas

Then by Lemma 3.12, z. € Q. Since |( — z.| = &, we have

Re < 2p(¢),( —z >= ZReQ < 9p((),¢ — ze >> 0,

which implies that

Hence 20p(() is a Leray map for Q. O

Corollary 3.4 Let Q CcC C" be a strictly convexr domain with C? bound-
ary and let f be a continuous (0,q) form, 1 < q < n, on Q such that df =0
in Q. Let w(z,() = 20p(C) be a Leray map, where p is a defining function
for Q. Then

u= (=1)"(Raoaf + Baf)
is a continuous solution of the equation Ou = f.
Proof. Corollary 3.4 follows from Theorem 3.5 and Corollary 3.3. g

Let Q CC Q be a strictly pseudoconvex domain with C'*° boundary. In
3.2, we will construct a Leray map w(z, () for € which is of class C* in
a neighborhood of Q x 9 depending holomorphically on z for ¢ fixed. In
order to show that w(z, () is of class C* on Q x 9, we need the following
Theorem 3.6 and Theorem 3.7. We begin with Lemma 3.15.

Lemma 3.15 Let Q C C" be a pseudoconvexr open set. Define
Mk:{Z€Cn|21:"':Zk:O}

for 1 < k <n. If f is holomorphic in Q, and f(z) =0 for z € My N,
then there exist holomorphic functions f1,--- fi in Q such that

k
f(z) = szfj(z) (z € Q).

Proof. We prove the lemma by induction on k. When k = 1, we set
fi(z) = f(2)/z1. Assume that Lemma 3.15 has already been proved for
k — 1. Suppose f is holomorphic in  and f(z) = 0 for z € M, N Q. Since
QN M is a pseudoconvex open set in M7, by the inductive hypothesis there
exist holomorphic functions fa, - - - , fr in © N M; such that

k
)= zifi(za, -+ 2) (2 €QNM).
Jj=2
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By Theorem 2.14, there exist holomorphic functions f; (j =2,--- ,k) in Q
such that f;(z) = f;(2z2, -+ ,2n) in QN M. If we set

k
)= S (@) =Y uhle)  e9),

then f; is holomorphic in €2, which completes the proof of Lemma 3.15. [J

Lemma 3.16 Let Q) C C" be a pseudoconvex open set and let f be a holo-
morphic function in Q). Then there exist holomorphic functions fi, -+, fn
in Q x Q such that

Flw) = f(z) = (w; = 2) f(w, 2)

for (w,z) € Q x €.

Proof. We set g(w,z) = f(w) — f(2). Then g is holomorphic in € x Q.
By a change of variables 2} = w; — z;, 2, ,; = 2; for i = 1,--- ,n, we have
g(w,z) =0in M,, = {(w,2) € A x Q| w=2z}. Weset z* = (2, - ,23,)
and h(z*) = g(w, z). By Lemma 3.15, there exist holomorphic functions
hi, -+ ,hy in Q x © such that

= Zz;hj(z
j=1

We set fj(w,z) = hj(wr — 21, ,Wn — Zn, 21, ,2n). Then f;, j =
1,--+ ,n, are holomorphic in £ x  and satisfy the equality

Z zi) fi(w, 2).

j=1 O

The following two theorems were proved by Range [RAN2] and used to
show the smoothness of the Leray map for strictly pseudoconvex domains.

Theorem 3.6 Let Q CC C" be a pseudoconver domain and let K CC
be compact. Then there exist neighborhoods Vo and V of K, and a C*
function ®(z,¢) in Vo x OV with the following properties:

(a) Vo CcCV CcC Q.

(b) V has C* boundary.

(c) ®(z,() is holomorphic with respect to z for fized ¢.
(d) ®(z,¢) # 0 for every (z,¢) € Vo x V.
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(e) There exist C*° functions w;(z,¢), j =1,---,n, in Vo x OV such that
w;(z, ) are holomorphic with respect to z and satisfy

n

O(2,0) = > w;(2 (G — 2)-

j=1

Proof. We may assume that K = I/(\'g Let w CC Q be a neighborhood
of K. By Theorem 1.18, there exist hy € O(Q2), 1 < k < N, such that if

A={zew| |h(z)|<l,k=1,--- N},

then K ¢ A CC w. Let AN be the unit polydisc in CV and H =
(hy,--- ,hy) : Q@ — AN, Since H(K) is a compact subset of AN, there
exists a convex neighborhood U of H(K) such that OU is C*° boundary of
Uand U cC AN, Let U = {t € AN | p(t) < 0}. Then we have

<adp(n),n—t>#0  ((t,n) €U x V).
If we define ®: A x A — C by

N
=3 SE(HEN Q) ~ ()
k=1
then ¢ € (H|a)~1(0U) and ®(z,() # 0 for 2 € K. By the continuity, there

exists a neighborhood V of K such that Vj CcC V CC A, V has a C*
boundary and

@(Z,C:)?éo ((Z,C:) €W ><8V)
By Lemma 3.16, there exist Q;r € O(G x G) such that

hi(C) — hi(z) = Zij(Z,C)(Cj - 25).
j=1
We set
N
Za_p 0))Qjk (2 ¢)-
k=1
for j=1,---,n. Then we obtain

ij _Zj)v

which completes the proof of Theorem 3.6. g
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Theorem 3.7 Let Q CC C™ be a pseudoconvex domain and let K be
a compact subset of Q. Then there exist neighborhoods Vi and V of K
with Vo CC V. CC Q, and a continuous linear operator Ty : C(o,q) (V) —
Co,q-1)(Vo) (1 < q < n) with the following properties:

(a) fork=0,1,2,-- TfeC(Oq (Vo) szGC(Oq)(V)
(b) If 0f =0 on V, then T, f = f on V.

Proof. For feCFk (0.9) (V) and z € Vj, we set

(Rov f)(z) = L= L) Jisor 7O R catuz. 6 M) Aw(O)

(2mi)™ JoSR<a

where n(z,(,\) is defined by using w(z,() and ®(z,¢) in Theorem 3.6.
Define

T, = (-1)Y(Rav + By ).
Then it follows from theorem 3.4 that

F(2) = (0T, f)(2) + (Tg10f)(2) (2 € Vo),

which completes the proof of Theorem 3.7. O

3.2 Holder Estimates for the 8 Problem

Let © CC C™ be a strictly pseudoconvex domain with C*° boundary. Then
there exist a neighborhood U of 02 and a strictly plurisubharmonic C'*°
function p in U such that

UNnQ={zeU|p(z) <0}, dp(z)#0 (z €00).

Results in 3.2, 3.3 and 3.4 are still valid under the assumption that the
boundary 09 is of class C2. However, because of Fefferman’s mapping
theorem, we assume that the boundary 02 is of class C'*°.

Definition 3.12 For ( € U and z € C™, we define the Levi polynomial
F(z,¢) by

n

P =230 520 X3 S (06 = 5)(G =),

j=1 =1
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F(z,¢) is a C* function in C" x U and holomorphic with respect to z.
By Taylor’s formula, there exist a constant 8 > 0 and € > 0 such that for
¢ € U with |z — (| < 2¢,

Re F(z,€) 2 p(C) = p(2) + BIC — 2. (3.19)
If we choose € > 0 sufficiently small, then for ¢ € 02, we have
{zeC"||¢(—2 <3} CU.
If e < |¢ — 2| < 2¢, then by (3.19) we have
ReF(z,0) > p(¢) — p(2) + f*  (¢,2€U).

We choose a neighborhood Uy C U of 9 such that [p(¢)| < B¢2?/3 for
¢eUp,and {z | |z —(| <2} C U for ( € Uy. We set Vg =QUU;. Then
for (z,¢) € Vg x Uy with |z — (| < 2¢, we have z,{ € U, and
2

Re F(z,¢) > %
Hence we can define log F'(z,() for ¢ < |[( — 2| < 2¢, (2,() € Vg x Us.
Choose a function x € C*°(C™ x C™) with the properties that 0 < x < 1,
and

{1 2] < 5e/4)
X@‘){oqc—az7w®'

For (2,() € Vi x Uy, define

_ [ 0:x(¢ = 2)log F(2,0)] (¢ < |¢ — 2] < 2¢)
flad) = { 0 (otherwise)

Then we have f € C(O(‘)”l)(vﬁ x Uy) and 0.f = 0. By Theorem 3.7,
there exists a neighborhood Us; of 992 with Us CC U; such that if we
set Ug = QU Uy, then Ug CC V4. It follows from Theorem 3.7 that there
exists a continuous linear operator Ty : CF | (V) — C*°(Ug) such that

0:Ta(f(-,0))(2) = f(2,€) for z € Ug. Define u(z,¢) = Ty(f(,())(2). Then
u € C®(Ug x Us) and O,u = f. For (2,() € Ug x Uz, we define

M(z,¢) = e =9,

®(2,¢) = F(z OM(z,¢) (-2 <o)

{eXp[x(C —2)log F(z,¢) —u(z, Q] (I¢ —2[ =€) -

Then we have the following theorem.
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Theorem 3.8 ®(z,() satisfies the following:

(a) ®(2,¢) is a C™ function in Ug x Us.

(b) ®(z,¢) is holomorphic with respect to z € Ug.

(c) ®(z,() #0 for (2,() € Ug x Uz with |{ — z| > ¢.

(d) There exists a C™ function M(z,() # 0 in Ug x Us such that

®(z,0) = F(z,()M(2,¢)  ((2,¢) € Ugx U, [( —2[ <o)
Proof. (a) holds since u(z,() is C*° in Ug x Us. If |z — (| < ¢, then
9:9(2,() = F(z,¢)e"d:(~u) = —F(2,()e"f = 0.
If e < |z — (| < 2, then
9.® = expx log F(2,¢) — u(z,{)]d-{x(¢ — 2)log F(z,¢) — u(z,{)} = 0.
If 26 < |z — (], then
0:®(2,¢) = e "0:(~u(2,¢)) = —e " f =0,

which implies that ®(z,¢) is holomorphic with respect to z. This proves
(b). (c) and (d) follow from the definition of ®(z, (). O

It follows from (3.19) that for (z,{) € Ug x Uy with € < [( — 2| < 2e,
we have

Re F(2,¢) = 2p(¢) > —p(¢) — p(2) + BI¢ — 2 >

Hence we can define log(F(z,¢) — 2p(¢)) for (z,¢) € Ug x Uz with € <
|¢ — 2| < 2¢, . For (2,() € Ug x Uy, define

i o = [ O:Ix(C = 2)log(F(2,¢) — 2p(Q))] (e < [ — 2| < 2e)
Hz0) = { 0 (otherwise)

pe?
—.

Then 8, f = 0. It follows from Theorem 3.7 that there exists a C°° function
i(z,¢) in Ug x Uz such that 0,4 = f. In particular, if ¢ € 99, then
f(z,¢) = f(z,¢). Hence we obtain that @(z,{) = u(z, () for ¢ € 9. Define

M(z,¢) = e =9,

B(,¢) = (F(2.0) = 2p(0)) M (2,¢) (IC-2l<e)
’ exp(x1og(F (z,¢) — 2p(0)) — (z,0)) (¢ — 2| > )

Then we have the following theorem which is proved in the same way as
the proof of Theorem 3.8. So we omit the proof.
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Theorem 3.9 &)(z, ) satisfies the following:

(a) ®(z,¢) is a C> function in Ug x Us.

(b) ®(z,C) is holomorphic with respect to z € Ug.

(¢) ®(2,¢) #0 for (z,¢) € Ug x Us with | — z| > ¢.

(d) There exists a C* function M(z,() # 0 in Ug x Uz such that

B(z,0) = (F(=,0) = 20(Q))M(2,0)  ((2,0) € Ugx Us, [ —2| <o),
(¢) ®(2,¢) = @(z,() for ¢ € 0.
In particular, it follows from (c¢) and (d) that Cf(z,g) # 0 for (2,() €
Q x Q\(9Q x 99).
Lemma 3.17 Let Q CC C" be a strictly pseudoconver domain with C'*°
boundary and let W = {z, = 0} NUg. Let a function f € C*(W x Us)

satisfy f(-,¢) € O(W). Then there exist an open set Vo with Q C Vy C Ug
and a function F € C*(Vy x Us) such that F(-,¢) € O(Vy) (¢ € Uz), and

F((z,0),0) = f((z',0),0)  ((z,0) € {zn =0} N Vh, ¢ € Ua).

Proof. We define a mapping 7 : C™ — C" by 7(2’, z,) = (2/,0). Since W
and Ug — 7~ }(W) are closed disjoint subsets of Ug, there exists a function
x € C>®(Ug) with the properties that x = 1 in an open subset of Uy
containing W, and x = 0 in an open subset of Ug containing Ug — 71 (W).
We set

0. {x(:)f (x(2). O}

Zn

Oé(Z,C:) =

It follows from the definition of x that a € C&"dl)(Uﬁ x Usz). By Theorem
3.7, there exist an open set V., Vo (Q C Vy CC V C Ug), and a continuous
linear operator 77 : Cf‘dl)(V) — C°(Vp) such that T4 (a(+,¢))(2) = a(z,()
for z € V. Define g(z,¢) = Ti(a(-,{))(z). Then g € C*(Vy x Us). If we
set F(z,0) = x(2)f(n(2),() — zng(z, (), then F(-,¢) is holomorphic in V;.
F € C*(Vy x Us) and F(n(z),¢) = f(n(2),(), which completes the proof
of Lemma 3.17. O

The following lemma is the parametrized version of Lemma 3.15.

Lemma 3.18 Let Q CC C" be a strictly pseudoconver domain with C'*°
boundary. Define

My={2€C" | z1=--=2,=0}
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for 1 < k < n. If f(2,() is of class C* in Ug x Uz and holomorphic
with respect to z € Ug for ¢ € Uy fized, and f(2,() = 0 for z € My N
Ug, then there exist an open set Vo (2 C Vo C Ug) and C* functions
f1(2,Q), -+ fr(2,¢) in Vo x Uy which are holomorphic with respect to z € §2
for C fized such that

k
%0 =Y zfi(0 (20 € Vo x Ua).
j=1

Proof. Lemma 3.18 follows from Lemma 3.17 and the proof of Lemma
3.15. ]

Lemma 3.19 Let Q C C™ be a strictly pseudoconvexr domain with C*°
boundary and let f(z,{) be of class C™ in Ug x Us and holomorphic with
respect to z € Ug for ( € Us fized. Then there exist an open set Vj
QcVc Ug) and C*° functions fi,---, fn in Vo x Vo x Us which are
holomorphic with respect to (z,w) € Vo x Vg for ¢ € Us fized such that

fw,¢) - =Z ;= 2) fi(w,z,Q)

for (w,z,¢) € Vo x Vo x Us.

Proof. Lemma 3.19 follows from Lemma 3.18 and the proof of Lemma
3.16. N

Theorem 3.10 Let Q) CC C" be a strictly pseudoconvexr domain with
C> boundary. Then there exist a neighborhood Vo of Q and C> functions
w;(2,¢) for j=1,--- ,n in Vo x Us such that

n

=Yz = Guwi(%0) (2.0 € Vo x Ua).

Jj=1

Moreover, w;j(z,¢), j = 1,---,n, are holomorphic with respect to z € Vp

for € fized.

Proof. By Lemma 3.19 there exist a neighborhood V; and functions f; €
C*>*(Vp x Vo x Us) such that f;(z,w,() are holomorphic with respect to
(z,w) € Vo x Vp for ¢ fixed and

n

®(z,Q) = D(w, ) = D (25 — wy) f(z,w, Q).

Jj=1
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We set w = (. Because of ®((, () =0, we have

n

Jj=1

If we set w;j(z,¢) = f;(z,(,¢), then each w;(z, () satisfies the desired con-
ditions. 0

Let 2 CC C™ be a strictly pseudoconvex domain with C°° boundary
and w(z, ¢) be the Leray map for Q. For any f € O(Q) which is continuous
on Q, the Cauchy-Fantappié formula (3.15) is expressed by

f(z) = (Loaf)(2) =

Ry E I CLILETC R
Ceon

(2mi)n <w(z,0),( —z>n"

Definition 3.13 Let 2 be a strictly pseudoconvex domain in C™ with
C* boundary. The kernel of the Cauchy-Fantappié formula (3.20) is called
the Henkin-Ramirez kernel.

We need the following lemma in order to prove %—Hélder estimate for
the d problem in . We omit the proof (see Exercise 3.1).

Lemma 3.20 Let Q be a bounded domain in R™ with C' boundary. Sup-
pose f € CH(Q) and that for some 0 < o < 1 there exists a constant C > 0
such that ||df (z)|| < C[dist(x,0N)]*] for all z € Q. Then f € Ay(Q).

Now we are going to prove the %—Hélder estimate for the 0 problem in

strictly pseudoconvex domains with smooth boundary.

Theorem 3.11  Let Q be a strictly pseudoconvex domain in C™ with C'*°
boundary. Let w be a Leray map defined in Theorem 8.10. Then for any
bounded differential form f on 0S

|Roafll1/2,0 < Cl fllo,-
Proof. By definition Raq is expressed by

(Roa)(2)

n—2 s _ = = _
w (—Z%2 Ocw d¢—dz

= f/\ psdet ,I,n—s—2,s <_a y T X
/mx[o,l] 2 pudetiin-s-zs 3 (=2 @ "1¢— 2P

s=0

AdA A w(C).
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Hence the coefficients of the form Ryqf are linear combinations of the
integrals of the following type

E(z) = / L4 A dE; A w(©),

20 (I)nfsflk‘ _ Z|2s+2 j#m
where 1) satisfies
Y| < C|¢ — 2]
By Lemma 3.20, it is sufficient to prove that, for j =1, - | n,

O0E(z)
8zj

O0E(z)
|0z

< Ol fllo.clo(z)| 2.

Therefore it is sufficient to show that for every £ € 912, there are a neigh-
borhood U and a constant C' > 0 such that

doon—1 10
< Clp(z)|Y
/89F‘|U |®(z, C)[P—5—1]¢ — z|25+2 p(2)]

and

doon—1 ~1/2
< Clp(2)|71/2,
fov B s < Cote)
where dos,_1 is the surface measure on 9Q2. We can choose a local coor-
dinate system ¢t = (¢1,- - ,t2,—1) in U N IN such that t; = Im (2, () and
[t| = |z — ¢|. Tt follows from (3.19) that

/ doon—1 <C dty---dton—1
oanu |2(2, Q5[¢ — 22T = 7 Jiycr ([fal + 2 + |p(2) )= [t2s17
where R is some positive constant. We set ¢’ = (ta, -+ ,t2,—1). Then

/ doan—1 < / dty - -dta,—1
oonu [@(2, Q" 5|¢ = 22 7 Jipjcr (2 + [p(2)[ ) st [P+t

< C/R r2n=3dr
SO e

< Clo(z)| 2.

In the same way we obtain

doan—1 —1/2
< Clp(z)| 712,
v BT -
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Corollary 3.5 Let Q be a strictly pseudoconvex domain in C" with
smooth boundary. For every continuous (0,q)-form f on D such that 0f =0
inQ,1<q<n,

u=(-1)"(Roaf + Baf)
is a continuous solution of du = f such that ||ull1/2.0 < C|/fllo.q-

Proof. Corollary 3.5 follows from Lemma 3.7, Corollary 3.3 and Theorem
3.11. O

Example 3.1 (E. M. Stein) For a > %, there exist a strictly pseudo-
convex domain 2 and a continuous function f on Q such that the equation
Ou = f does not have any solution satisfying u € A, ().

Proof.  Let Q = {(z1,22) € C" | |z1|> + |22|> < 1}. We set

L{ ((2172’2) S ﬁ\{(170)})
o o) = og(z1—1) :
f(z1,22) {1 0 (1) = (L,0))

Then fis a C* (0,1) form in Q\{(1,0)}. Since log(z; —1) — 0o as z; — oo,
f is continuous on Q. Further, df = 01in €. Suppose there exists u € A, (Q)
such that Qu = f for a > 1/2. Then (u — %)/ log(z1 — 1) is holomorphic in
Q. Let € be such that 0 < 2e < 1. We set

Cr={(21,22) € C* | 21 =1 — &, | 22| = VE},

Cy = {(21,2:2) S C2 | z1=1-—2¢, |22| = \/E}

Then Cy,Csy C Q. By the Cauchy integral formula we have

o d o
/ u(l — €, 29)dze = / 20z ™o
|22|=V/& 2a]=vz 10g(—€)  log(—¢)

21
u(l — 2¢, 29)dzg = ————.
/Z2=¢5 log(—2¢)

Since u € Ao (), there exists a constant C' > 0 such that for every 0 <
2e < 1, we have

1 1
log(—e)  log(—2¢)
Consequently, for any 0 < 2¢ < 1 we have

< Cg(’(—l/Q,

log 2 = |log(—2¢) — log(—¢)| < Ce® /2| log(—e) log(—2¢)|,
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which is a contradiction. O
As an application of Theorem 3.11, we have the following lemma.

Lemma 3.21 Let Q CC C" be a strictly pseudoconvex domain with C*°
boundary and let f be a holomorphic function in § that is continuous on
Q. Then f can be approzimated uniformly on Q by functions holomorphic
in a neighborhood of €.

Proof. LetU ={U;|i=1,---,N} be a finite open cover of Q2. Choose
X; € C°(U;) such that E;VZI x; = 1 on Q. Define

fi = Laa(x; f),

where w is the Leray map defined in Theorem 3.10. By Corollary 3.2 we
have

N
F=>1
j=1

and each f; is holomorphic in some neighborhood of Q\(92 N U;). By
Theorem 3.3 we have

fi = x;f + Roa(fOx;) + BalfOx;).

It follows from Lemma 3.7 that B (fd;) is continuous on Q. By Theorem
3.11 we have

|Roafll1/2,0 < Cl fllo,e-

Hence Ry, f is continuous on Q. Hence each f; is continuous on . It
is sufficient to show that each f; can be approximated uniformly on Q by
functions holomorphic in a neighborhood of . The required approximation
can be obtained by a shift in the direction of the normal vector of 9 at
some point in 0Q N U;. O

Remark 3.3 Lemma 3.21 was first proved by Lieb [LI1]. The above proof
is due to Henkin-Leiterer [HER].

Suppose f is a continuous (0,q) form on Q such that df = 0. We
set T, = (—1)¥(Roa + Bqa). By (3.16) or by Corollary 3.3 we have
f = OT,f, which means that T,f is a solution of the d problem. Using
T,f, Henkin [HEN2], Grauert-Lieb [GRL], Lieb [LI2; LI3], Kerzman [KER],
Ovrelid [OV], Henkin-Romanov [HEV] and Krantz [KR1] obtained L? and
Hélder estimates for the @ problem in strictly pseudoconvex domains with
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smooth boundary. We proved %—Hélder estimate for the O problem in
strictly pseudoconvex domains with smooth boundary in Corollary 3.5. In
4.2 we will prove LP estimates for the 0 problem in strictly pseudoconvex
domains with smooth boundary by applying the Berndtsson- Andersson for-
mula. Bruna and Burgués [BRG] obtained %—Hélder and L?P estimates for
the 0 problem in strictly pseudoconvex domains with nonsmooth boundary
using the Berndtsson-Andersson formula. Siu [SI1] and Lieb-Range [LIR]
studied the differentiability for solutions of the  problem in strictly pseu-
doconvex domains with smooth boundary. Moreover, in the finite intersec-
tion of strictly pseudoconvex domains with smooth boundary, Michel [MIC]
and Michel-Perotti [MIP] obtained C* estimates, and Range-Siu [RAS]
and Menini [MEN] obtained LP and Hélder estimates for the 0 problem.
Menini used the Bendtsson-Andersson formula. Range [RAN1], Diederich-
Fornaess-Wiegerinck [DIK] and Chen-Krantz-Ma [CHK]| obtained Holder
and LP estimates for the 0 problem in real or complex ellipsoids. Bruna-
Castillo [BRJ], Polking [POL] and Range [RAN4] obtained Holder and L?
estimates for the 9 problem in some convex domains. S.C. Chen [CH]
and Z. Chen [CHE] investigated the real analyticity for solutions of the
0 problem in certain convex domains. Fischer-Lieb [FIL], Ho [Hol],
Schmalz [SCH] and Ma [MA] investigated the 0 problem in g-convex do-
mains. Fleron [FLE], Ho [Ho2] and Verdera [VER] obtained Hélder and
uniform estimates for the 9 problem in some domains. On the other hand,
Kohn [KON] proved the global regurality for solutions of the 9 problem
in pseudoconvex domains in C™ with smooth boundary, that is, if ) is a
pseudoconvex domain in C™ with C*° boundary and f is a C* (0,1) form
on  with Of = 0, then there exists a C> function u on € such that Ju = f
(see D’Angelo [DA]). Fefferman-Kohn [FEK] studied Hélder estimates for
the 0 problem in pseudoconvex domains of finite type in C? with smooth
boundary. Range [RAN3] also investigated the 9 problem in pseudoconvex
domains of finite type in C? with smooth boundary using the homotopy
formula.

3.3 Bounded and Continuous Extensions

Let Q CC C™ be a strictly pseudoconvex domain with smooth boundary
and let X be a submanifold in a neighborhood of Q which intersects 0
transversally. In 1972, Henkin [HEN3] proved that every bounded holomor-
phic function in V"= XN can be extended to a bounded holomorphic func-
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tion in . Moreover, Henkin [HEN3] proved that if f is holomorphic in V
that is continuous on V, then f can be extended to a holomorphic function
in Q that is continuous on Q. In 1984, Henkin and Leiterer [HER] extended
Henkin’s results to strictly pseudoconvex domains with non-smooth bound-
ary in a Stein manifold without assuming the transversality. In 3.3 and 3.4,
we only treat the smooth domain and assume the transversality. We prove
first the bounded extension from complex hypersurfaces by following the
method of Henkin-Leiterer [HER], and then the continuous and bounded
extensions from submanifolds by following the method of Henkin [HEN3].

Let Q be a strictly pseudoconvex domain in C” with C'* boundary.
Then there exists a neighborhood U of 02 and a strictly plurisubharmonic
C®® function p in U such that

UNnQ={zeU|p(z) <0}, dp(z)#0 (z€00).

Let Us be the open set in Theorem 3.8. We choose €9 > 0 such that
{C e U| |p(Q)] < 269} CcC Us. Let x € D(C™) be a function with the
following properties:

(a) 0<x <1
(b) x(¢) =1 for ¢ € U with p(¢) = —eo.
(c) x(()=0for (e (Q-U)U{CeU |p(() < —2e0}.
de (M) . (3.21)

Define
o (M) _
®(2,() J ®(2,()

By Theorem 3.9 (d), the differential form in (3.21) is continuous with re-
spect to (2,¢) € Q x Q.

>3

Definition 3.14 For an L! function f in €, define

T CUSTIES ) D
Laf(z) = (2mi)" /Qf(C) c( 5.0 >/\ Q) (2€9Q).

Since w(z, () and &)(z, ¢) are holomorphic with respect to z, Lo f is holo-
morphic in €.

Definition 3.15 For 0 < A < 1, define

X(Qu;(z.6) G-7% _

ﬁj(za<7)‘) ::(1_)‘) &)(Z,C) /\lc_zlgv 77:(7717"',7771),
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and
w(ii(z, ¢, A)) =

Definition 3.16 For an L' function f in Q, define

.
|| >3

(82 ¢+ d/\)nj( ,C,)\).

n!

Rof(:) = oo | O AW AWQ) (€ Q).
(2mi)"™ Jc neaxo)

Then Rgq f(2) is continuous in Q. If f is a (0, g) form, then R f is a (0,q—1)
form. In particular, if f is a function, then Rqf = 0.

Theorem 3.12 Let 2 CC C" be a strictly pseudoconver domain with
C* boundary.

(a) Suppose f is an L' function in Q such that Of is an L' form in €.
Then

f(2) = Laf(2) + Radf(z) (z € Q).
(b) Suppose f is an L*(0,q) (1 < q < n) form in Q such that Of is an L'
form in Q. Then
f(2) = ORq f(2) + Radf(2) (z € Q).

Proof. Let 0 < q < n. Suppose f is a continuous (0, ¢) form on Q such
that df is continuous on Q. For z € Q, ¢ € Q\{z} and 0 < X < 1, define

n

wl, (7 =D (=) (2,60 A A (Bec A )iik(2, G A).

Jj=1

Then w. ¢ A(7(2, ¢, A)) is continuous for (z,(, A) with z € Q, ( € O\{z},0
A < 1. Since ®(z,¢) # 0 for (z,¢) € Q x Q, each term of w, ¢ x(7(z, ¢, )\))
involving d\ is equal to O(|¢ — z|~(?»~2)). Hence

/ FO AL A=) Aw(@), (2 €9)
(¢,N)enx]0,1]

is differentiable with respect to z € €. Differentiating under the integral
sign and taking into account that dimg (2 x [0,1]) is odd, we have

@meﬂOA%u((CM) w(¢)

:_/ B11(Q) Al e A=, 6, X)) Aw(Q)],
Qx[0,1]
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and
(0z,¢ + da)wl A (1(2,C,N) = nw(1i(z, ¢, A))

Consequently,

de AL (Q) Aw? ¢ A(71(2, ¢, A)) A w(C)]

= 5Cf( ) N w;,(,/\(ﬁ(27 C? /\)) A w(g)

(=1 f(Q) ANw(i(z,¢A) Aw(C)

_52 [f(C) A w; (,/\(ﬁ(zv C? /\)) A w((:)]
Since

A(Q % [0,1]) = 9 x [0,1] + (—1)Hm=2  5([0, 1))
=00 x[0,1] —Q x {0} + Q x {1},

it follows from Stokes’ theorem that

BT R f(2)

[ 00 Ak a6 M) Al) + (-1 2T
Qx[0,1] (n—1)!

—/ BLF () Al e (1(2: ¢ N) Aw(Q)]
Qx[0,1]

=/’ FO) Al A2, ¢ A) Aw(Q)

o02x[0,1]

—/ F(O) AW e (12,6 N) Aw(C)
Qx{0}

+L“”ﬂOA%gﬂ(CAD w(0).

If ¢ € 99, then x(¢) = 1, and hence 7(z,{, A) = n(2,(, A). Thus we obtain

j/ FIO A a2, X)) Aw(Q) = om0 R (2).
20x[0,1] (n—1)!

On the other hand we have

(2m)"

=1 Ba f(2)-

/ F(O) AW (72, 6 V) Aw(Q) = 22D
Qx{1}
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Since 7(z, ¢, 0) = x(Qw(z, O/CT)(Z, () is holomorphic with respect to z, we
have

) w(z, ()
/Qx{o} FO AW, (2 /f < 0 )/\w(@).
We set Ty = (—1)?(Rpq + Bq). For z € Q, we have
Rof(z) =T4f(2)

el [ ) A (722G A) A ()
Qx[0,1]

x(Q)w(z, ()
/f ( Y ) w(Q)

+ /Qx[o,1] I f(Q) AN e A (1(2,6,A) A w(o] )

J\,\

In the above equality, if we replace f by 0f, then we have

(n—l)!><

Radf(:) = Tpadf (2) + ()"

+ [ oo ne (%) Aw(@)] (3.22)

for z € Q. By degree reasons we have for ¢ > 1

w(z,¢) — 0. 3.23
/f ( o) w(¢) (3.23)

Since w(z, () and <I> ,¢) are holomorphic with respect to z, we have

8. /f ) A << (C)C)>Aw(g)—o. (3.24)

It follows from (3.22), (3.23) and (3.24) that
ORqf(z) = 0T, f(z)
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+<—1>q+l%az / oy FO AL X N0 (325

First we prove (b). Suppose ¢ > 1. Since the last integral in the right
side of (3.22) equals 0 by degree reasons, it follows from (3.22) and (3.25)
that

Rng + 5RQf = 5qu + Tq+1(§f.

By Corollary 3.3, we have f = 0T, f + T,+10f, which proves (b).
Next we prove (a). By Theorem 3.4, we have

f=Loaf +Th0f.
Since &)(z,o = ®(z,() for ¢ € 99, we have

Quw(z,¢)
@0 (M0 o)

i (x(@w(z,o) o <x<9w(z, >>
“\ e o(z0) )

it follows from Stokes’ theorem that

AQu(z,0)
0 w
V cf(C ( oo )A ©)

Since ¢ = 0, we obtain by degree reasons

| Q) A (226, ) Al6) =0,
Qx[0,1]

Loof(z

Since

Laaf(z)

+ Laf(z).

(3.26)

Hence we have together with (3.22) and (3.26)
RQéf(Z) = Tléf(z) + Loaf(z) — Laf(z).

This proves (a). In the general case, Theorem 3.12 is proved using the fact
that f and Of can be approximated in L' norm by continuous functions
with compact support. O

Definition 3.17 Let 2 CC C™ be a strictly pseudoconvex domain with
C® boundary. Define

X ={z€C" |z, =0}
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For ¢ = ((1,+ -+ ,¢n) € C™, define ¢’ = ((1,-++ ,(n—1). Further, we define

n—1

n—1
0 5 0
84/ = _d<7 5‘4/ = dC 5
2 aq1 N 2gg

der = 5</ + 8</, WC/(C) =d(i AN---ANdCr—1,

and

(w/(37C)) = (’U}l(Z,C:), T 7wn—1(27C));

where w(z, () = (w1(z,(), -+ ,wn(z,()) is the Leray map defined in Theo-
rem 3.10. Define

e (x(Q(M%C))’) oy (x(@wj<z,<>> |
®(z,¢) ®(z,¢)
By Theorem 3.9, there exists a neighborhood Upqy x of 92\ X such that
3(2,0)£0  (C€XNQ, 2€QUUpqg x)-
Weset V=XNQ For fe OV)NLY (V) and z € QU Upa\v» define
(n—1) Qw(z Q)
E = ’ . 2
16)i= ey [ 10w ( o) hee@n 32D
The following theorem follows from Theorem 3.12.

Theorem 3.13 Let f € O(V) N LY (V). Then Ef is holomorphic in
QuU UBQ\V and satisfies

Ef(z)=f(z) (2€V).

Definition 3.18 Let Q CC C™ be a domain with C*° boundary. Suppose
there exist a neighborhood Q of Q and a C* function p in Q such that

={z€ Q| p(z) <0}. Let X be a k dimensional complex submanifold
in a neighborhood of Q. We set V = X NQ. Let P € 9V. Then there exist
a neighborhood U¥) of P and a holomorphic coordinate system fl(P), s
fr(lp) in U®)such that

We say that X intersects 02 transversally if
df{" Py A+ NdfST (P) A dp(P) # 0
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for every point P € 02 N X. Moreover, in this case we say that the sub-
manifold X N of 2 is a submanifold in general position of 2.

In what follows we assume that X intersects 02 transversally.

Definition 3.19 Let Us be the neighborhood of 992 in Theorem 3.8. For
(2,0) € Q x Us, define

@*(Z,C) = (I)(Caz)a *w(z,C) = —’U)(C,Z),

*wl(za C) = (*wl (Za C)v e a*wnfl(za C))

The following lemma was proved by Henkin-Leiterer [HER]. In their
proof the transversality is not assumed. For simplicity, we assume that X
intersects OS2 transversally in the following lemma.

Lemma 3.22 If f is a bounded holomorphic function in V = XN, then

for z € OQ\V.

Proof. By applying the expansion formula of the determinant to the n-th
column, we have

i
5 , XW1 5‘ , XW2 6 , XWn
_ (_1)n ¢ ¢ 3 ¢
5<,X<}§1 50% 5</Xgn
* /
. Wy, = Xw
= 3 det,_1 (8(/ % )

~ wy, W' - yw
+n—18/ = /\det n— (—a/T)
( )¢ z 1n—2 ‘5

We have by the definition of the determinant

n XW; /

) =0 0 (%)
detp, 1 (Oc=—=—)=n—-1) N Op—=>=(n—Dlw [ = ]. (3.28
(025 = = 0 K = (- e (5 529

J




160 Several Complex Variables and Integral Formulas

For ¢ € V' we have

zn: wj )_ zj) - _1

j=

[

Consequently,
*w e *w;
~tngr = 1 - ;(gj — %) 5 (3.29)
Since

z": xwil =) X2 _
=K B

it follows that for ( € V'

n—1
5 XWn 5, XWi <I>
2n 00 m=— = i — 2;)0¢ +a,
< 3 ;(CJ 30 3 3
Therefore, together with (3.28) and (3.29), we obtain for ¢ € V,

s 1)dets o (0,00 )

n—1 *

= -1-> (G- %) ;ij (n = D (Xg)

j=1

n—1

+(n—1)Y (¢ — 2)0c Xg]

J=1

x® w o~ yw
—l—( )8(/ ;I; A detq n—2 ( 8(/ %) .
On the other hand we have

*wl _ XU)/
(Fa@?)

5 XWj o(1) XWq(2) 5 XWo(n—-1)
= 0o === A sgn(o 8—/\---/\8/f
¢ U(%:j gn(o ) o z %
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Xwn 1

WA 80

0. — XYW
= (n—2)1-2 5., X&
(n —2)1-="0c (I)

Ny Xw/
=(n—-2)—w | 2= ).
(n—2) T ( S )

Hence we have for { € V

_ 1\ e *w('zvg) _/X(C)w(Z;C)
Zn(—1)"dety p_1 ((I)*(Z’O,ag = )

()

_ xP ! Xw/)
+n—18/7/\det n— (—,a/T .
(n —1)0 S nz | O T

Now we set

_ 3., X2 M
Z)—Af(()acl EI; /\detlyn,g <(I)* ,5‘4/ &,) )/\WCI(C)

Since *w(z, (), ®*(z,¢) and f(¢) are holomorphic with respect to ¢, it
follows from Stokes’ theorem that

I(Z) = / éC’ {f(g)% /\detl,n72 <%,5@%>} /\wC/(C)

= f(C)X(I) dety n_2 <;ﬂ*75¢%> A wer(€)-

oV

Since ®(z,¢) = Cf(z,g) and x(¢) = 1 for ¢ € 09, it follows from Stokes’
theorem that

1) = | e { sterets 2 (0025 ) b rwct =

which completes the proof of Lemma 3.22. O

Lemma 3.23 There exists a constant C > 0 such that for all z € OQ\V
the following estimates hold:

(¢)
¢

ev IC— 271 7 fznl
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(b)
[ — e
cevaus |B(z,O)] [®* (2, Q)¢ — z[2n=4 ~ 2]

(c)
[ — _C
sevavs [8(z QP19 (2, C)lI¢ - 2P = Tl

where dV,,_1 denotes the Lebesque measure on C*~ L,

Proof. In what follows we denote by C any constant which depends only
on Q and V.
(a) we have

[ 0 Vo 1(Q)
cev C=2PT = Jy GanP + 10 = PRI = 7P

We set (j — 2z =t +itjyn—1 for j=1,--- ,n—1. Then
/ dV,—1(Q) </ dty---dtan—2
cev [C=2P"71 7 Jiy<e (lznl® + [22)2[E 2

</ r2n=3dr C
= Ji<e (lznl? +72)2r2m=5 = 2|

IN

This proves (a).

(b) We set ¢ = (C1,-++ ,Cn—1) and 2’ = (21, ,2n-1). Let 20 € V.
We may assume that (9p/921)(z°) # 0. Let U be a neighborhood of z°
such that (9p/0z1)(z) # 0 for z € U. For z,( € U, define

t2j—1(Q) = Re (¢ — 25), t2;(Q) =Im (¢ —2;) Jj=2,---,n—1,

Then
Ot _ _1 Jdp ; Ot (2) _1 dp (2)
8x2j o 2 ({911,'2]‘,1 ’ ({911,'2]‘,1 o 2 8x2j '
Consequently,
8(t15 e 7t2n—2) ‘ 80 2
=2 |— 0
B, aama) |G| T

Hence tq,--- ,to,_o form a local coordinate system in U.
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Since p(z) = 0, it follows from (3.19) that

2% (2,0)| > |(C, 2)] = CIF(C, 2)| = C(jta] + ¢ = =),

|B(2,¢)| > C(|ta] +1¢ — 2[*).
Hence we have

/ _ an—l(o
cexnonts |®(z, Q)] |P*(2,Q)[|¢ — 2[?—4

</ dty---dton—o
= Ji<e (zal? + [ta] + [¢2)2 [t

We set t = (t2, -+ ,ton—2). Then

/ d dton_o </ d dtan—2
<c (Iznl? + [t + 2212 = Jivi<e (|Zn|2 + |75'|2)|7f’|2"_4

- Iznl/ 1+y Iznl

This proves (b).
(¢) We have

2% (2,0)] = [2(C, 2)| = C(Ita] + [ta] +1C = =),

(2, 0)| > C([ta] + |t2] + ¢ — 2[%).
We set t = (t3,- -+ ,tan—2). Then we have

/ _ anfl(C)
¢cevnUs |(I)(Z, C)|2|q)*(zv C)”C - Z|2n75

< / d dton—o
= Jice (znl® + [tal + [t2] + [¢[2)2[¢[>7—5
dts - dto,_o
/lt”|§C (IznZ + [t ]2)3]t" 275
C

This proves (c). O

IN

IA

Theorem 3.14 Let  CC C" be a strictly pseudoconver domain with
C*™ boundary and let X ={z€ C" | z, =0}, V=QNX. Assume that X
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intersects OS) transversally. If f is a bounded holomorphic function in V,
then there exists a constant C > 0 such that

|[Ef(2)| < Csup |f(C)]
cev

for z € OQ\V.

Proof. Weset Us={z€ U | |p(z)| <eo}. Since x =1 in Us, we have

A CAN w dow _ O®
detlyn,l <(I>*’ 84/ EI,) ) = detlynfl ((b*, EI,) w &,)2 .

It follows from Lemma 3.4 that any determinant which contains wa&‘;—f in

two columns equals 0. Hence we have
w2 xw
detl,nfl (57 aC/ &,) >

*w Opw *w 0o ®  Oprw
= cidety pn—1 <§, %) ) + cadety 1 n_2 <@7 w%a %) ) .

Since

we have

TR T

— 3) /% %) 7
= detLl’n,Q (O(l(: Zl), waﬁ y 8&11)) .

*w 0o ®  Oprw
detq,1,n—2 < < CT)

o+ P2 [0
It follows from (3.19) that
B(2,0)| > al¢ — 22, @ (2,0)| > al¢ — 2|

Hence we obtain

det (*w c%w)‘ < C < C
=1\« & - «| |Hln—1 — *| 1P n—
R |Q*[ @[t [@*[[@][¢ — 2[>*
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and
O(|¢ — e ® e
dety1,n—2 < (e Z|)7 w—s 5 <~w>‘
w o+ o2 P
< C[¢ —~Z| < _ C '
[+ @[ [@*[[R[2[C — 2[*5
Using Lemma 3.23, we have the desired inequality. O

Theorem 3.15 Let  CC C" be a strictly pseudoconver domain with
C*™ boundary and let X = {z € C" | z, =0}, V=QNX. Assume that X
intersects 0S) transversally. If f is a bounded holomorphic function in V,
then Ef is a bounded holomorphic function in Q satisfying Ef = f on V.
Moreover, there exists a constant C' > 0 such that

sup [F(z)] < Csup [f(2)]-

z€Q z€V
Proof. By Theorem 3.13, Ef is holomorphic in Q U Upg\ x. Let X, =
{z € C"| 2z, = a}. If a # 0, then Ef is holomorphic in the closure of QNX,,.
Hence by the maximum principle, |Ef| has the maximum in 9(Q N X,). It
follows from Theorem 3.14 that |Ef(z)| < C||f||v for z € (2N X,), which
means that |Ef(2)| < C|/f||v for z € Q\X. Since Ef is holomorphic in (2,
|Ef(2)] < O||f|lv for z € Q\(02N X). Hence Ef is bounded in Q. O

Next we prove bounded and continuous extensions of holomorphic func-
tions from submanifolds in general position of strictly pseudoconvex do-
mains in C™ with smooth boundary by the method of Henkin [HEN3]. For
simplicity, we assume that the codimension of submanifolds is one. The
general case can be proved in the same way.

Definition 3.20 Let D be an open set in a complex manifold. We denote
by H*°(D) the Banach space of all bounded holomorphic functions in D.
We also denote by A(D) the Banach space of all continuous functions on
D that are holomorphic in D.

Let © CC C™ be a strictly pseudoconvex domain with C*° boundary and
let H be a holomorphic function in a neighborhood Q of 0. We set X =
{z € Q| Hk) =0} and V = X N Q. Assume that X intersects 9
transversally. By Lemma 3.16, there are holomorphic functions hq, - -, h,
in a neighborhood of Q x Q such that for z,¢ € Q

n

H(z) = H(C) =Y (2 — C:)hi(2,C).

i=1
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By Theorem 3.10 there exist C*° functions w1 (z, (), - - -, wy (2, ) in a neigh-
borhood of Q x 9Q holomorphic with respect to z such that

®(2,() = ij(ZvO(zj -G

where ®(z, () is the function defined in Theorem 3.8. Define

n—2
—_—
a(z, C) = _(_1)n(n+l)/2det(wjv hjv anjv T 76(“’]')?

—2 e
2 OH /—’;
det %(éh)udg]v 7d<j
J

Define

K(27<) = O‘(ZaC) A 6(()

Then Stout [STO] and Hatziafratis [HAT1] proved the following theorem.
We omit the proof.

Theorem 3.16 Let f € A(V). Then

_ K.
6= [ 105055

forallz e V.

Remark 3.4 Stout [STO] obtained the integral formula on submanifolds
of one codimension, and then Hatziafratis [HAT1] extended the integral for-
mula obtained by Stout to the formula on submanifolds of any codimension.

In what follows, we prove bounded and continuous extensions by following
Henkin [HEN3]. Let Q = {z | p(z) < 0} be a strictly convex domain in
C" with C* boundary and let X = {z, = 0}, V = X N Q. Assume that
X intersects 0f) transversally. We may assume that 0 € Q. Let f be a
bounded holomorphic function in V. It follows from Fatou’s theorem (see
Stein [STE]) that there is a bounded measurable function f* on OV such
that
f7(¢) = lim f(6¢)

011

for almost all ¢ € V. Then we have the following lemma.
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Lemma 3.24 For z € V, we have

10 = [ 7 Oge g

Proof. Let 0 < 6 < 1. We set F(z) = f(fz) for = € V. Then F is
holomorphic in a neighborhood of V. We fix zp € V. It follows from
Theorem 3.16 that

_ K(ZmC)
Flao) = /geav F(©) (2, Q)"

Consequently,

20y _ K (20,0)
1= F0050

By Lebesgue’s dominated convergence theorem, we may pass the limit un-
der the integral sign as # — 1 in the above equality. O

Definition 3.21 Let f be a bounded holomorphic function in V' and let
f* be the boundary value of f on V. For z € €, define

[ o KO
B = [ rOge s (3.30)

Then E; f is holomorphic in a neighborhood of Q\OV and E; f|y = f. If
f € AV), then floy = f*.

Let Q = {z | p(z) < 0} be a strictly convex domain in C" with C*°
boundary and let X = {z, = 0}, V = X N . Assume that X intersects
0N transversally. We fix a point z* € dV. Suppose

dp

8_21(2*) # 0.

Then there exists a constant o; > 0 such that 88—2”1(2) # 0 for all z €

B(Z*, 0'1).
In this setting, we prove Lemma 3.25, Lemma 3.26, Lemma 3.27, The-
orem 3.17 and Theorem 3.18.

Lemma 3.25 For z € B(z*,01), we consider a system of equations for
C* = (¢, -+, ¢ of the following form:

> gg ()G = 2) =0, (3.31)
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=2z (i=2,---,n=-1), (¢ =0. (3.32)

Then there exist positive constants o2, y1 and 2 depending only on Q and
V', such that for any z € B(z*,02) there exists a unique solution (* =
C*(2) of the system of equations (3.31) and (3.32) which belongs to the set
B(z*,02) N X. Moreover, the point (* has the following properties:

r P < %{Mz) o),

2 = ¢ = |2nl® = 72{p(2) — p(¢)},
"=z for ze€ B(z",09)NX.
Proof. (3.31) can be written
) 9 -
G =n+ 2@ (F2)
Define
_p B -t
90 = 520 (@)

We choose o3 > 0 so small that |dg({)||zn] < 1/2 for z,{ € B(z*,02).
Define {¢(9)} by recurrence such that

Then |§£j) - dj_l)| < %|dj_1) - ij_2)|, and hence {¢9)} converges. Let
lim; o (V) = ¢*. Then ¢* satisfies (3.31) and (3.32). The strict convexity
of p yields for some positive constants ; and Cy

p(C") = p(2) +ml¢” —z|2<2ReZ8€ NG —2)=0

p(¢) - (>+Cl|<—z|2>2ReZ% )G =) =0.
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Since (F = z1 + g(¢*)zn, there exists a constant Cy such that |(F — z1] <
C3lzn|. Hence ¢* satisfies the desired inequalities. If there are two solutions
¢* and ¢*. Then we have

IG5 = G < Mldgllleh = Gllzal < 172165 = GG,

which implies that ¢* = ¢*. U
Lemma 3.26 For any z* € OV and any z € (0Q\0V) N B(z*,02) we
have
d(E *+ Az -
A=1 cev

where (* = (*(z) and o2 are from Lemma 8.25 and the constant C' depends
only on Q and V.

Proof. Since

>SN ) =0
and
0P o 8p
22 (e¢) = 222 + O(¢" =)
we have
0 & o0 ap _
> e 06 =20 = 3 (G0 + 252 6 =2
< 2(3—3 Q- See >+0<|<*—z|>> & - =)
< Ce(lc — 2| +2),

where € = |z,|. Then we have

‘ A(ELf)(C + Mz = ()
X

‘ d(Erf)(z + Mz = ¢))
dX

A=1 A=0

£ (Ollz = ¢*|
<C = doo,_
= JovaBeres 122, 72n-3(¢)

QI =2l +2)
|

I (=, 0"

OVNB(z*,02)
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We choose a local coordinate system (ty,ta, -+ ,ta,) in B(2*,02) such that
t1 +ite = p(¢) — p(z) +iIm ®(z,¢). Then we obtain

d(ELf)(C + Mz —=¢))
d\

< Csup | f(Q)].

A=1 Cev

O

Theorem 3.17 If f € H®(V), then E1f € H>®(Q). Moreover, E; :
H>(V) — H>(Q) defines a bounded linear operator.

Proof. Let o > 0. Let f be a bounded holomorphic function in V. Since
E1 f is holomorphic in Q\dV, it is sufficient to prove that

sup |Eyf(z)] < Csup|f(C)l.
2€0Q\0V cev

It is easily proved that sup.coo\(av), [E1f(2)] < Csupeey |f(C)], where
(0V), is the o-neighborhood of 9V. Therefore, it is sufficient to show that

sup |E1f(2)] < Csup [ f(Q)].
2e{(0V)4\OV }INOQ cev

Let z € {(OV),\OV} N 0N. We set
A={AeC|zN)=C+Xz—-(")eQ}.

Then A is a convex domain containing A = 0 since 2 is convex. Since
p(z) =0, we have by Lemma 3.25

2

[ V)

5 €

%S_p(C)<V_
If A € OA, then z()) € 99, andhencep(())—O. Then
5
|2(A) = ¢ < \/— ()—P(C)ém

for A € OA. Consequently,
[2(A) = 27| < [2(A) = ¢+ [¢F — 27

(o g9
+ —=.

<
Yiv2 4

We impose the further assumption that the constant o < o2,/7172/4. Then
|2(A) —2*| < 02/2. Then (* = (*(z) satisfies (3.31) and (3.32) for z(\) with
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A € 0A, and hence ((z()\)) = ¢*(z) for any A € JA. Moreover, it follows
from Lemma 3.25 that

) > Az =" =z *|>e
\/W v [All | =[2(A) = 7
for A € OA. Consequently,

[A| > /7172 forany A€ 0A.
Since

d(ELf) (¢ +t(z(N) = ¢7))

BN N0
dt

dX ’

t=1

we obtain for some constant Cy > 0 and Cs > 0,

‘d(Elf)(C* +Az-¢) ‘

Ch
- <—sup|f( )| < Cysup [£()]
¢ev

Al ce

for every A € OA. Since the function d(E1 f)(¢* + A(z — ¢*))/dA is holo-
morphic for all A € A, we have for some constant C3 > 0

d(ELf)(C + Mz = ¢Y))
dX

‘ < Gy sup | ().
eV

AEA

Consequently, there exists a constant Cy > 0 such that

Evf(2) - Euf(C |—\ / 2 g +A(z—€))dA‘SC4§1€15|f(C)I-

Since ¢* € V, we have E;1f(¢*) = f(¢*). Hence there exists a constant
C5 > 0 such that

sup |E1f(2)] < Cssup [f(C)];
z€{(8V)s\OV}NOQ CeV

which completes the proof of Theorem 3.17. O

Lemma 3.27 Let V' be a domain with smooth boundary in X such that

V C V'. We denote by C any positive constant which depends only on ,
V and V'. Then for z € Q and € = |z,],

(a)

1
——dV,_ < |1 .
/v/\v |®(2, Q)" 1(6) = Cfloge]
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(b)

|z =< .
/w\v B o O =0

(c)

/ ﬂdv (¢) < C|loge]
vy 8z, QT e = 0SS

Proof. We may assume that |z — (| < ¢, where ¢ is the constant in
Theorem 3.8. By contracting V' if necessary, it follows from (3.19) that

2Re®(z,¢) > p(¢) — p(2) + BI¢ — 2|

for (2,¢) € {Q x (VAV)}n{(2,¢) | |¢ — 2| < e}. We can choose a local
coordinate system t = (t1,- - ,tan—2) such that p(¢) = t1, Im ®(z, () = to.
We set t' = (t3, -+ ,tan—2). Then

()

IN

1 dty---dtan_o
=———dV;,_1(Q) C/
/V’\V @ (2, Q)[" it<r (12 +e2 + [ta] + [t2])"

dts - -dton 2
<c / dts - dtyn
wi<r (|t|? +&2)n2
2n 5
C/ (12 + e2)n— s dr
< Clloge]|.
(b)
|z = ¢]
S AT WVe-1(Q)
/V’\V [@(z, )" +!
1
vy (2= CE + Tim G, O + e W1 (©)
dts -~ dton 2 1
<C <O-.
- ~/;’|<R (|t/|2 —+ 52)717(3/2) - £
(c)
|Z B <|2 / dtg dtzn 2
B oynst Vn- <C ———— < Clloge
/v’\v |® (2, Q)" 1(¢) i<k (U +e2)n=2 |logel.
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Theorem 3.18 If f € A(V), then E1f € A(R2). Moreover, Eif :
A(V) — A(Q) defines a bounded linear operator.

Proof. Let z* € OV and let z € (Q\V)NB(2*,02). Let ¢* be the solution
for the system of equations (3.31) and (3.32). We set z(0) = ¢* +0(z — ()
for 0 < @ < 1. Then 2(0), = 0z,. Further, (* = (*(z) also satisfies
the system of equations (3.31) and (3.32) for z(f) instead of z. By the
uniqueness of the solution, we have (*(z) = (*(z(0)). Let V' be a domain
with smooth boundary in X such that V' C V’. Then

K(z,
- A8
[ HOK(=Q
ov’ (I)(ng)nil
a K(Z,é')
o 100 (stecsr)

Define

Rz = /(V’\V)HB(z*,az) 105 (égf?ﬁ)l) .

By Theorem 3.8, we may assume that ®(z,() = F(z,{)M(z,{) on
B(z*,09) x B(z*,02), where F(z,() is the Levi polynomial. Then F} is
expressed by

Az, ()
R = [ Q) gazs)
! (VAV)NB(z*,0) O(z, ()t
i1 (G = 2)Bj(2,€)
+ f - :
(VAV)NB(z*,0) (2, ()
where A(z,¢) and B;(z,¢), 1 < j < n, are C* (2n — 2) forms on Q x V.
Then it follows from Lemma 3.27 that there exist constants Cy, Co and C3
such that

‘dFl(C* +AEz=¢)

g
<C f—/ ————dV,,_1(C)
i/l (VAV)NB(z+,0) |P(2, )" !

X =1

el¢ —2|(I¢ — 2| +¢)
+C f—/
2lflv (VAV)NB(2*,0) |®(z, Q)"+

for any point z* € OV ,z € (Q\OV) N B(z*, 02), where & = |2,].

dV,—1(¢) < Csellogel fly,
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Then
'd
F —F((M)) = — (¢ +60(z—("))do
R - RE) = | [ R +0G -
_ | [T AR(C +20(2 = ¢)
*/0 N |>\1d0'
_ /1 LAR(C MO =ON]
1) 0 d\ 1

—

<a / c|1og <610 sup | £(C)].
0 CeV

Hence we obtain

|E1f(2) = E1 f(CT)| < Cs0alog oa| sup [ f(C)]
Cev

We may assume that f € C*(V). Since ¢* € V, we obtain

|EVf(2) = Evf(25)] = [Evf(2) — Exf(CH)] +|F(C7) = f(z7)]
< B f(2) = Exf(C) + Ce{l¢" — 2 + [z — 2"[}
< Crozllogoa|sup [ f(¢)].
CeV
Consequently, lim,_, .« FEy f(z) = f(2%). O

Lemma 3.28 Let Q2 be a strictly pseudoconver domain with C*° boundary
i C™ and let X be a closed submanifold of codimension one in a neighbor-
hood Q of Q. Let Q' be a pseudoconvex domaim such that @ C Q' C 0 cQ.
Weset V=QNX and V' =Q' NX.

Assume that X intersects OQ transversally. Let ¢ € V. It follows
from Theorem 5.20 (a) (Cartan theorem A) that there exist o > 0 and
holomorphic functions Fy,--- ,F, € T(Y, Fyr) such that Fy: is generated
by F1,--- ,Fy in B((,0). Then there exist constants ¢ > o1 > § > 0 with
the following properties:

(a) For some integer ¢ with 1 < g1 < q and some integers my,--- ,My_2
from the set {1,--- ,n} the mapping

@(z) = (Zml —Gmas "y Bmpy — Cmn—wF(Zv C)a FQ1 (Z))

is a biholomorphic mapping of the ball B(¢,01) C ' onto a neighbor-
hood W of 0, where F(z,() is the Levi polynomial defined in Definition
3.12.
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(b) There exists a strictly convex domain Us CC W¢ such that
QN B(C,8) C o (Ug) € 9,

where Ue = {w € W¢ | pc(w) < 0}, and p¢ is a real-valued C? function
in the domain W that is strictly convex in a neighborhood of UC'

Proof. There exists ¢1 (1 < ¢1 < ¢) such that the equation

> 83};(;1 Oz = ¢) =

j=

_

defines a (n — 1) dimensional analytic plane tangent to V' at the point
z = (. Since X and 0f) intersect transversally, the equations

OFy
Z 5., Oz =) =0
=1 7%
<c< ~¢) = Za—p 5 —G) =

Jj= 1

define a (n — 2) dimensional analytic plane if ( € 9V. Therefore we can

choose numbers my, -+, m,_o so that
SO(Z) = {Zml - Cmu s B T Cmn727F(Zﬂ ()7 Fth (z))
has a non-zero Jacobian at the point z = (. By the implicit function

theorem there exists o > 0 such that the mapping ¢ of the ball B(¢, o) onto
some domain W¢ containing 0 has the inverse mapping o~ ! (see Corollary
5.3). Define p¢(w) = p(p~!(w)). By Taylor’s formula we have

ple) = Re |23 L0 - ) +3 az]az 5= ek~ G

n 2
+ 3 2200 - G — G+ ollz — CP).

G- G=m(w)  2(0) = Y oot 0w + offw),

v=1
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we obtain

PC( w) = Rew, - 1"‘2

82’1
82182 <Z 8wl, )
i,j=1 J

x ( SZJ (O)wu> +olwl?).

pe¢ is strictly convex in a neighborhood Ui (C Up) of w = 0. Define
3/)4
= Re
Z@W
The equation t¢(w) = 0 defines the real tangent plane to the boundary
of the convex domain Uy := {w € Uy | p¢(w) < 0} at the point w = 0.

Since Uy is strictly convex near 0, there exists € > 0 such that if we define
Us ={w e Ui | pc(w) <0, te(w) > —e}, then Us CC Uy. Define

0 =3
X(t){ %4t§ %

Then Y is of class C? in R. We choose a constant A > 0 in such a way that

sup sup |p¢c(w)| < Ax(—e¢).

COV wel,
Define

pe(w) = pe(w) + Ax(te(w)).
Since

2
3p<
. — >
Z 8u]8uk (e (w))Juju = Z 8u] =0,

p¢(w) is strictly convex in Uy. Then Ue = {w € Uy | pc(w) < 0} is a strictly
convex domain in Uy with Us CC Uy. Define G¢ = {z € B((,0) | p(z) €
Uc}. If we choose § > 0 sufficiently small, then we obtain QN B(¢,d) C
G( c Q. 0

Lemma 3.29 Let Lo and Rq be the integral operators defined in Defini-
tion 3.14 and Definition 3.16, respectively.

(a) If f is a bounded function in 2, then Rof is continuous on Q.
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(b) If f is a bounded holomorphic function in Q and if ¢ is a C* function
in C", then Lo(fy) is bounded in Q.

Proof. (a) We write Rqf in the following form

A%ﬂd=4f©H@QWK%

where dV'(¢) is the Lebesgue measure on 2. Then

[Ho(1-axete  co
0 ®(z,¢) |z = ¢J?
1 1 1
C P & .
= <|‘1)|2|C — z[2n=3 * |D||¢ — z[2n-2 * IC— z|2n1>

For € > 0, there exists § > 0 such that for any w € Q

X

|H(z,¢)] < C

/ﬁ H (w,Q)[dV (¢) < e.
B(w,36)NQ2
Let

Ks = {(w,0) €0 x99 | |w— (| > 3).

Since H(w, () is continuous on the compact set K, we can choose § > §; >
0 such that for any point w with |z — w| < d1,

[H(z,¢) — H(w, ()| <

for all ¢ satisfying | — z| > 2. For |z — w| < d1, we have

|Raf(z) — Raf(w)| =

AﬂmH@o—Hm@mwﬂ

<

‘/ (H(z.¢) — H(w,O))dV (C)

Q\B(z,20)

+/ FOIHE OV Q)
QNB(z,26)

+ FOIH (w, )|V (0)
QN B(w,35)
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<: / FOIAV(C) + el £l + el £l < Ce.
Q\B(z,26)

Hence Rgq f is continuous on Q.
(b) Since d(f) = fOp, I(f) is bounded in €. It follows from Theorem
3.12 that

of = La(ef) + Ra(9(ef)),
which means that Lo (¢f) is bounded in Q. O

Lemma 3.30 Let Q CC C" be a strictly pseudoconvex domain with C'*°
boundary and let U; C C™ (j = 1,---,N) be open sets such that Q C
U§V=1Uj. Then any f € H*(Q)) admits a decomposition f = Eﬁ:l fj, where
every f; is bounded and holomorphic in some neighborhood of Q\(0Q2NU;).
In addition, if f is continuous on Q, then every f; is continuous on Q.

Proof. Choose C* functions x; in C" such that Z;V:1 x; = 1 onQ
and supp(x;) C Uj. Define f; = La(x;f). Since x; = 0 on C™"\Uj, f;
is bounded and holomorphic in some neighborhood of Q\(92 N U;). By
Theorem 3.12

N N
f=Laof= ZLQ(Xjf) = ij-
j=1

j=1
Suppose f is continuous on 2. By Theorem 3.12 we have

fi = x;F — Ra(fox;).

By Lemma 3.29 Rq(f0x;) is continuous on Q. Hence f; is continuous on
Q. O

The following theorem was proved by Henkin [HEN3] which is a gener-
alization of Lemma 3.30 to submanifolds of strictly pseudoconvex domains
in C” with smooth boundary.

Theorem 3.19 Let  CC C" be a strictly pseudoconver domain with
C* boundary and let X be a closed submanifold in a neighborhood Q of
Q, V =QnX. Assume that X intersects OQ transversally. Let U,cX
(j =1,---,N) be open sets in X such that V C U;-\’:lUj, Then any f €
H> (V) admits a decomposition [ = Z;vzl fj, where every f; is bounded
and holomorphic in some neighborhood of V\(OV NU;). In addition, if f
18 continuous on V, then every f; is also continuous on V.
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Proof. Let Q' be a strictly psuedoconvex domain such that Q@ cC Q' CcC
Q. Weset V/'=Q'NX. Let e >0 be given. Let x;, ¢ =1,--- , N, be real-
valued, nonnegative C'*° functions such that Zf\il x: = 1 in a neighborhood
of V' and the diameter of each set supp(x;) is less that /3. Define

{i | SUpp(x:)NSuUpp(x.)#¢}
5&/ = Z Xi-
{i | sSupp(x:)NSupp(x;,)=¢}

We consider domains for v =1,--- | N,

Q={zeQ|p(z) Z)"X’ ) < 0},

O, ={zeQ|p(z Z&xz — AV (2) < O}.

Weset Qo =Q, V, =V N and V, =V'NQ, forv=0,1,---,N. In
order to prove Theorem 3.19 we need the following lemma.

Lemma 3.31 For sufficiently small \1,--- , Ay > 0 and for any v =
1,--- N, there exist bounded operators LY . H*®(V,_1) — H>(V,) and
LL:H>®(V,_1) — H>(V,) with the following properties:

(a) f(z) = (Lof)(2)+ (L, f)(2) for any f € H>(V,-1) and any z € V,_1.
(b) LOf € A(V,) and LLf € A(V,) if f € A(V,—1).

Proof of Lemma 3.31. Suppose that constants Aj,---,A,_1 satis-
fying the conditions of the lemma have already been chosen. We set
U, = supp(x.). We may assume that U, N9V, # ¢. We fix a point
¢* e U,NdV,_1. By Lemma 3.28, there exists a biholomorphic mapping
¢ of the ball B(¢*, (3/4)0) onto a neighborhood We« of 0 such that

2,1 N B((",(3/4)8) C G- = {z € B(C, (3/4)9) | pe-(p(2)) < 0},
where p¢«(w) is strictly convex in a neighborhood of the set E¢« = {w €

Wee | pes(w) < 0} We set Iex = E¢« N (V-1 N Gex). For any function
f e H®(V,_1) and any z € G¢- NV, _1, it follows from (3.30) that
K(w, ()

= “(w)) = -1 —_—.
ra=set = [ 16T O, G
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We set
Xy =1-x,

and
RI& = [ I On e Ogaa s
: ceor- Y D(p(2), )t
for o =1,2 and f € H*(V,_1). Then we have

f) = (Ryf)(2) + (Ryf)(z) (2 € Ge=NVi).

We choose A\, < Ag sufficiently small. We set
v—1
V/={zeV' | p(z) = > Xixi(z) < Xo} = Vj UV,
i=1

where V' = V" N B(¢*, (3/4)6) and V{" = V"\B(¢*,(1/2)6) . Then we
have a representation

QL) = —1 a —1 )a
R = [ O O e

— )+ |

CEDI e

We set

)’
((2), )

Then we can prove that AY is a bounded operator from H*(V,_1) to
A(V, N B(¢*,(3/4)8), and Al is a bounded operator from H>(V,_1) to
A(V,, N B(C*,(3/4)8) using the same method as the proof of Lemma 3.29
(a). Therefore, we can prove that RY is a bounded operator from H>(V,_1)
to H>(V,, N B(¢*,(3/4)5). On the other hand R} is a bounded operator
from H>(V,_1) to H®(V, N B(¢*,(3/4)8). If we choose 0 < xu < Xo
sufficiently small, then y. = 0 in a neighborhhood of V' N V}’. Hence R},
is a bounded operator from H>*(V,_1) to A(Vy' NnV{"). If f € A(V,_1),
then

= [ ST ORET O )

ROf € A(V, N B(C*,(3/4)8)) and RLf € A(V, NB(C*, (3/4)9)).
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It follows from Theorem 5.26 that for f € O(Vy'NV}") there exist mappings
T O(Vy' nV") — O(V)) such that

f=T)f+T,f.
For z € V,_1 NVy' NV{’, we have

f(2) = R)f(2) + Ryf(2) = R)f(2) + T)(Ry ) (2) + T, (R, f)(2)-
We set

+(I7 0 R, f)(2) (2 €V, N B(C*, (3/4)9))
f(Z) ( JORif)(Z) (z € VI\B(C, (1/2)9))

(L1 f)(2) = (RLF)(2) + (T2 0 RLF)(2) (2 € Vi, N B(C*, (3/4)5))
’ (T) o R, f)(2) (z € V,\B(C*, (1/2)5))

Then LY and L. satisfy conditions (a) and (b), which completes the proof
of Lemma 3.31.

End of the proof of Theorem 3.19. We set L; = L} o LY ; 0---0 LY
fori=1,---,N—1,and Ly = LY_, 0 LS_,o0--- LY. If f € H®(V), then
LfEHOO( i) fori=1,2,--- ,N—1,and Ly f € H*(Vn_1). If f € A(V),
then L;f € A(V;) fori =1,2,--- ,N —1,and Ly f € A(Vy_1). Moreover,
if fe H*(V) and z € V, then

N

f(z)=> Lif(2).

i=1

The diameter of the set V\‘N/N,l is less than ¢, and the diameter of the set
V\Vy_1 is less than /3. Theorem 3.19 is proved. O

Now we are going to prove bounded and continuous extensions of holomor-
phic functions from submanifolds in general position of a strictly pseudo-
convex domain in C™ with C* boundary.

Corollary 3.6 Let Q be a strictly pseudoconvex domain in C™ with C'*°
boundary and let X be a closed submanifold in a neighborhood of Q. Let
V =QnX. Assume that X intersects 02 transversally. Then for any
f € H>®(V) there exists g € H*(Q)) such that g = f on V. Moreover, if
f e A(V), then there exists g € A(Y) such that g = f on V.
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Proof. Let f be a bounded holomorphic function in V. Since V is com-
pact, there is a biholomorphic mapping he : B(§,8) — C™ such that
he(X N B(¢,6)) is the intersection of he(B(&,6)) with a complex hyper-
plane in C". By Theorem 3.19, it is sufficient to prove the theorem for the
case when f has the following property:

There is a point £ € 0V and a strictly pseudoconvex open set g C C™
such that

Q\ (92N B(€,5/3)) € Qo

and f is bounded holomorphic in X N .
We can choose a strictly pseudoconvex open set £2¢ C C" such that

B(£,46/3)NQe C B(£,0/2)N Q.
Then we have
QCQUBI(£,6/3).
Therefore, we can choose a strictly pseudoconvex open set 21 such that
NCcCch CcCQUBI(E/3).
We set
Ue:=B(,6/3)NQ, Up:=QNQ.

Then {Uy, U} forms an open covering of ;. By choosing § sufficiently
small, we may assume that X N B(§,0) is a complex hypersurface. It fol-
lows from Theorem 3.15 (or Theorem 3.17) that there exists a bounded
holomorphic function fz on ¢ such that f = f on X NQ¢. Since Qo
is a pseudoconvex domain, there exists a holomorphic function fy in Qg
such that fo = f on X N Q. Then fo — f¢ is holomorphic in Q¢ N g and
fo—fce =0o0on X NQ:N Q. Since Us N Uy C Qe Ny N o, it follows
from Theorem 5.22 that there exist fe € T(Ug, Fv) and fo € T'(Uo, Fv')

such that fo — fe = fo — fe on Us NUy. We set g := fo — fo in Uy and
g = fe — ff in Us N Q¢. Then g is holomorphic in Uy U (Ug N §2¢) and
equals fe — fg in Ue N ¢ Therefore, g is bounded and holomorphic in €2
and satisfies g|ly = f. If f € A(V), then we can prove similarly that there

exists g € A(Q) such that g|y = f. O

More generally, Henkin-Leiterer [HER] proved bounded and contin-
uous extensions in the case when ) is a strictly pseudoconvex open
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set (with not necessarily smooth boundary) in a Stein manifold with-
out assuming that X intersects O transversally. Amar [AMAZ2] also ob-
tained bounded extensions of holomorphic functions from submanifolds of
strictly pseudoconvex domains without assuming the transversality. Us-
ing the integral formula obtained by Hatziafratis, Hatziafratis [HAT2]
proved the bounded extension of holomorphic functions from submanifolds
in general position of strictly convex domains. Fornaess [FOR] investi-
gated the integral formula by embedding strictly pseudoconvex domains
into strictly convex domains. Adachi [ADA2; ADA3] proved bounded
and continuous extensions from a submanifold V' in general position of
a weakly pseudoconvex domain €2 under the assumption that OV con-
sists of strictly pseudoconvex boundary points of 2. Using the method
of Kerzman-Stein [KES] and the integral formula obtained by Hatzi-
afratis [HAT1], Adachi-Kajimoto [ADK] obtained the holomorphic exten-
sion of Lipschitz functions from the boundary. Further, Jakébczak [JKI;
JK2]| studied extensions of holomorphic functions in various function spaces.

3.4 HP and C* Extensions

In this section we study H? (1 < p < co) and C* (k= 1,2,---,00) exten-
sions of holomorphic functions from submanifolds in general position of a
strictly pseudoconvex domain €2 in C™ with C*° boundary by following the
methods of Beatrous [BEA] and Ahern-Schneider [AHS2], respectively.
Let X be a closed submanifold in a neighborhood of Q and let V =
QN X. Assume that X intersects 0f) transversally. We may assume that
X ={2,=0}. For fe O(V)NLP(V) (1 <p<o0)and z € 2, we define

(n—1) Az Q)
BIE) = Gy l/f ( B(z,Q) )MJ"(Q'

By Theorem 3.13, Ef is holomorphic in ©Q and Ef(z) = f(z) for z € V.
There exists a C* (n — 1,n — 1) form 19(z,¢) on Q x Q with respect to ¢

such that
IR I(STERS
)*/v B(z,0)"

Then we obtain the following lemma.

Lemma 3.32 There exists a C® (n — 1,n — 1) form n(z,¢) on Q x Q
with respect to ¢ with the following properties:
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(a) 1(-,¢) is holomorphic in Q for each ¢ €V fized.
(b) For f € O(V)NLYV)
)= [ 1m0
n+1

Proof. We choose a function ¢ € C°°(R) with the following properties:

0<o(t)<1(teR), ot)=

Pe(2) = ¢ <@>

Then @.(z) = 1if |p(2)] < € and ¢.(z) = 0 if |p(z)| > 2e. We choose C*
functions v, j = 1,--- , N, in Uy with the properties that 1 = Zjvzl ¥;(2)
for z € U, and there exists a constant ¢ > 0 such that if z € supp(¢;), then

For € > 0, we set

there exists a positive integer k = k(j) with }aa—gc(z)} > ¢. Then we have

N
2) = Mo (z, )15 (¢)
>2;Aﬂo .
Since

) ) L ap )
dCi A+ NdCe1 ANOP N dCrpr A+ ANdCp—1 = %dgl “AdCu—1
k

on supp(v;), we obtain

N Ip(§) Aw(2,¢)
)= [ 1 T

where w(z,() is a C™ (n —1,n — 2) form on Q x V, and holomorphic with
respect to z € Q for each fixed ¢ € V. Now we have

/f /f g C)Snw(zvo
Nw(z,
/f Ip(¢)(1 (27(31 (2,¢)

= Il +I2
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Then 1iIr(1)I16 = 0. On the other hand, 1 — ¢, = 0 on JV, which implies that
E—

[ 5] fQp(Q = pe) ANw(z,()
I _/Va{ - }

3 (1_506)/\w(za<)
- 0 s
/V F(Op(0) { e }

- [ 1000 =20 Aw+ B0 = @) —n(l — )5 B Aw]

(I)nJrl
We obtain
(C);I;g@e A w‘
Al () Zo0p 1
o [SIGIP.
XN{—2e<p<—e} €
<C | F(OldVa-1(C).
Xn{-2e<p<—c}
Consequently,

iy [ HOpOBIp nw =0,

e—0 Jy/

Thus we have

e—0

= lim I§ = / 1< (I)iw; nw A O P )

We set

Then we have

F(©Qp(Q)n(z, )
/ - ( n+1 (z € Q).

Definition 3.22 For z € Q, we denote by dx(z) the distance from z to
X.

Lemma 3.33 For 0 <e <1 we have



186 Several Complex Variables and Integral Formulas

X&), -
(@ m@@@|d%ﬂ>§@mm

(b)/ doon—1(z

o W < Ce|P(O|_E

Proof. We set 7(z,¢) = ImF(z,(), where F(z,() is the Levi polynomial.
We prove Lemma 3.33 in case n > 3. We have

6X( )726 .
/zm <I> do2n-1(2)

<c//ﬁ 000 7 P )
Ccn—2

xdrdw'dw” .

By the change of variables

7(2.Q) = lp(Qlz1,  w' =VI]p(Ql', w" = +/Ip(Q)]2",

we obtain
—2¢e
/ den 1 (2)
o P(z
<C// / (L a1+ [P + 2" )" [(V]p()D) 72" %
Cn 2
x dx1dz’ dz”’

S C|p(C)|_E/ / (1 + |J)/|2 4 |$”|2)_n+1|J)N|_25d$ld$”
< Clp(C) / / (1473 4 r2) " 2 =5p 2 e dry diry.
Now we set 7 = Acosf, ro = Asinf. Then
< Clp(¢) / / (14 M) HEN2n 3728 (5in 9) 122 d\dB
< Celp(C)l_E/ (1 T )\2)—n+1/\2n—3—25d)\
0

dA
<ColOI [ F5 < o)l
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This proves (a). By the same method as the proof of (a), we have

/ dO’gn 1( / / dx' dx"
o0 [z, )I"*E - 2 (L [2/]2 + [ [2)n—1+e
o [T dx
<co [
< Ceo(0)7°
This proves (b). 0

Lemma 3.34 For0<e <1, we have

PO ks (a2
/V@(Z’C)denl(o < Callp(=)] +x(2))

Proof. We set 6(¢) = |p(¢)| and ¢’ = (¢1,- - ,(n—2). We may assume
that (p(¢), 7(z,(¢),¢’) forms a real coordinate system in a neighborhood of
0f). Hence we have

5(¢)¢
/V B @

112\—n —€
<c/CM/ / 2) 4 0x(2)2 +8(C) +7(2,0) + [¢'17)7"3(0)
xdsdrd(’.

By a change of variables §(¢) = (0(z) + 6x(2)?)z1, 7(2,() = (0(z) +
Sx(2)?)xg and ¢’ = /(0(z) + 0x(2)2a’, we obtain

/ ﬁdvn—l (C)

v [®(z, Q)"

< C(6(2) + 0x (= / / / (1 + a1 + @z + [ *) "y
xdxydroda’

< C(8(z) +6x(2 / 72/ (1421 + |2')%) "oy e
xdxdx’

< C(6(2) + 0x (2 / / (141 +r2) " Har=r?Sds dr.



188 Several Complex Variables and Integral Formulas

We set 21 = y7. Then

OO 4y
/. Feop

<C(6(2) 4+ ox(z / / 1+y +7?)” "Hy1 28205 dyy dr.

We set y; = Acosf, r = Asinf. Then we obtain

/ 'vé(ci an—l (C)

v [®(z, Q)
< C(6(z) +ox(z / / (1 4+ A2) " H1AZI=3-22 (005 )12 A dY
o Jo
< C:(6(2) + 0x(z / (14 \2)~mHi)2n=3-2z
0
°dA
< C.(0(2) + 0x(2 T

1

<C(5()+5X() . -

Now we are going to prove HP extensions of LP holomorphic functions
inV.

Theorem 3.20 Let Q be a strictly pseudoconvexr domain in C™ with
smooth boundary and let X be a submanifold in a neighborhood of Q which
intersects O transversally. Let V=XNQ and 1 <p < oo. If f € LP(V),
then Ef € HP(Q2). Moreover, E : LP(V) — HP(Q) is a continuous linear
operator.

Proof. We may assume that V = QN X, where X = {z,, = 0}. First we
assume that 1 < p < co. Let ¢ > 1 satisfy % + é = 1. We set d(2) = |p(2)].
For any sufficiently small ¢ > 0 , by applying the Holder inequality and
Lemma 3.34, we have

Ef(2)] < c/v |f(C|)(|£(f)Z(5io_€an—l(C)

(/ |f|<1> |:54 )| Vnot ) </ 1B(= 4 "‘1(€)>q
< C.bx(z (/ |f Z,C n—l(C))
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Hence we obtain

Bf)P < Cubx ()2 ( / %dm(o) .

Using Fubini’s theorem and Lemma 3.33, we have
| 1@ drs )
[5}9]

<c. /V FOPSE)™ ( /d ) %dam_uz)) V1 (0)

<c. /V FOPS(Q)PS(C) " PdVir ()
¢ /V FOPAVL_1 Q).

Thus Theorem 3.20 is proved in case 1 < p < oo. Next we prove Theorem
3.20 for p = 1. By Lemma 3.32 we have

_ [ £©pOn(zC)
BiG) = [ HEERE v, )

where 7(z,¢) is a C°° function on Q x Q. Let 0 < ¢ < 1. Then we have

Ef(z)] < C /V |f<<>|@(5<0 v x() <. [ QPO

_— e = dVy, — .
2, Q) ST

By Lemma 3.33, we obtain

€ dUQn_l(Z)
| 1B <. [ {|f<<>|6<o /| IS C)|n+€}czvn_1<o

<c /V F(QI6(C)76(C) = dVa_1(C)

<c /V F(QIdVar (€).
O

Next we prove C*, k = 1,2, - , 00, extensions of holomorphic functions
from submanifolds in general position of strictly pseudoconvex domains
with C'* boundary.

Lemma 3.35 Let Q and V be the same notations as in Lemma 3.32.
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(a) For z € Q, there exists a constant C > 0 such that
| e ardom-a(O < Cliogo(2)]
——————doan—3(¢) < C|log|p(2)]||.
ov [@(z, Q=1
(b) For z € Q and & > 0, there exists a constant C > 0 such that

¢ — 2|
= do2n—3(¢) < Cdllog d|.
/?3VﬂBz6 [®(z, Q)17 3(C) |log d|

Proof. (a) Suppose 6 > 0 is sufficiently small. Then we can choose
a local coordinate system ¢ = (t1,--- ,tap—3) on OV N B(z,d) such that
t1 =Im®(z,(). Weset t’ = (to, -+ ,ton—3). Then
1 dti---dtan—3
=7 do2n—3(¢) < C
/ava(z,a) |©(z, ¢) | <r (p(2)] +to + [¢2)" 1
d dth 3
w<r (Ip(z )|+|t’| )

2n 5
<C d
/ (o) + 22

<C

< Cllog|p(2)||.
This proves (a).
(b) By (a) we have
¢ — =| / 1
————do2, C <06 — dog,_ C
Jrpios im0 [ ol
< Céllogd||.

O

Now we prove that every strictly pseudoconvex domain with C? boundary
has a peak function by following Range [RAN2)].

Lemma 3.36 Let Q be a strictly pseudoconver domain with C? boundary
and let ¢ € Q. Then there exists a function f € A(Q) such that f(¢) =1

and |f(2)] < 1 for z € Q\{¢}.

Proof. There exists a neighborhood U of 9 and a C? strictly plurisub-
harmonic function p in U such that QNU = {z € U | p(z) < 0}. Let F(z,()
be the Levi polynomial. Tt follows from (3.19) that there exists € > 0 such
that

Re F(z,¢) 2 p(¢) = p(2) + Cl¢ — 2|



Integral Formulas for Strictly Pseudoconvexr Domains 191

for ( € U, |z — (| < e. Choose p € C°(C™ x C™) such that 0 < ¢ <1 and

(1A <9)
*”(Z’O‘{o IS EEE

Fix ¢ € 092. Define

Then
ReA(z) >0 for ze Q\{¢}.

Then there exists a neighborhood W of Q\{¢} such that ReA(z) > 0 for
z € W. We set u(z) = 1/A(z) for z € W. Since du =0 on W N B((,¢/2),
Ou extends as a C°° (0,1)-form to a neighborhood of Q. By Corollary 2.3
there exists a function v € C°°(Q) such that du = Jv in a neighborhood of
Q. Define g = (u— v+ |v|g)~!. Then Reg > 0 on Q\{¢} and dg = 0 in W.
Hence g is holomorphic in W. Define h = e™9. Since lim,_,¢ h(z) =1, h is
continuous on Q and |h(z)| < 1 for z € Q\{¢}. O

Definition 3.23 Let K(z,() be the (2n — 3) form in Theorem 3.16. We
write K(z,() in the following form

K(2,¢) = K(2,¢)doan—3(C),

where dos,_3 is the surface measure on OV. Then K : Q x 0V — C is a
C* function on Q x 9V and K(-,¢) is holomorphic in Q.

The following lemma is due to Ahern-Schneider [AHS1].

Lemm~a 3.37 Let Q and V be the same notations as in Lemma 3.32.
Then K(¢,¢) # 0 for all { € OV.

Proof. Assume that f(((o, ¢o) = 0 for some ¢y € IV. We show that

B K(Co, <) .
1) = [ 10505k dras (0 (33
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for f € A(V). Let z € V. By Theorem 3.16 we have

f() / f(C)Mdazns(C)

® C07 C)n
/ K0  K(9
OV\B((o,0
oV NB(¢o,9)

- _1] dogn—3(C)
— T(2) + Ja(2).

(z, )t (G0, )"

K¢ K¢
50T <I>(C07C)"1] A72n-3(C)

_l_

It follows from Lebesgue’s dominated convergence theorem that

lim,_,¢, J1(#) = 0. On the other hand we have

1K (G0, 0]
B L 0O GG

i /8VmB(gO75) £ |®(z, )1 doan—3(¢)

1= J5(Co) + Ja(2).

By Lemma 3.35 (b) we have |J2(¢o)| < C|f]y-6|logd|. To estimate J5(z), we
let z approach ¢y along the inward normal to V. Then we have |z — (o| <

Clz —¢] and |¢ — (o| < Cfz — ¢|. Consequently,

|I?(Z7C)| < |I?(Za(:) - I?(ZaCO)l + |I?(Za<:0) - I?(CO;CO)l

C(I¢ = ol + 12 = Gol) < CJ¢ = 2.
If [z — Go| < 4, then

7/ |z = (|
V Jovan(co.s) 120z, 0)" 1
|z — ¢l

<C 7/ ==l
|f ovnB(z20) |2(2, Q)" 2n—3(C)
< C|fly6|logd|.

J5(2) < Clf| do2n—3(C)

By letting z approach (yp along the inward normal, we have (3.33).

By

Lemma 3.36 there exists f € A(Q) such that f({y) =1 and |f(2)| < 1 for
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z € Q\{¢}. Then

K(¢,¢)
N N 5
= —————doa,—3(().
f(CO) oy f(C) (I>(CO7 C)n_l 2 3(C)
By Lebesgue’s dominated convergence theorem, the right side of the above
equality tends to 0 as N — oo. This is a contradiction. g

Theorem 3.21  Let Q) be a strictly pseudoconver domain with C°° bound-
ary and let X = {z, =0}, V. = X NQ. Suppose X intersects O transver-
sally. If f e O(V)NCK(V), k=0,1,--- ,00, then B f € O(Q) N C*(Q).

Proof. We prove by induction on k that

_ FOAMz QK (2,¢)
=) = B% ®(z,¢)n 1

belongs to C*(Q) if f € O(V)NCk(V) and A € C**1(Q x 9V). Suppose
k = 0. Then

doan—3(¢)

o [ FOREO
G(Z) - >\( ) ) (Z C)" 1d 2n— 3(C)
( ) (2, Oz ¢ ) Az 2))
" ov ®(z, ()" do2n—3(C)

= Gl(z) + GQ( )
G is continuous on Q by Theorem 3.18. On the other hand, we obtain

9Gy | _ Ai(z,¢)do2n—3(C) A2(z,Q)O(|z = ¢|)doan—3(¢)
0z; ( /dV O(z, ()t * /dV ®(z, )" ’

where )\ and g are continuous functions on Q x V. There exists a constant
C > 0 such that

A2(2,0)O(|z — ¢|)doan—:
| 22O QO] < o/ og o)
It follows from Lemma 3.20 that Gy € A, () for any 0 < oo < 1/2. Hence
G is continuous on €. Assume that the assertion has already been proved
for k—1. Let f € O(V)NC*(V) and A € C*1(Q x 9V).

If @ = {z | p(z) < 0}, then dp # 0 on 9. Let 2° € V. We may
assume that there exist constants o7 > 0 and ; > 0 such that

\g—g@\ o for Ce B o).
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In order to prove the assertion it is sufficient to show that

a - FOAz,QOK(z,¢) .
G(2) —/WQB(ZOM) B(z,C)n 1 doan-3(C)

belongs to C*(Q). We may assume that (see Theorem 3.8)
®(z,¢) = F(2,O)M(2,¢) for (z,¢) € B(z°,01) x B(z°, o),
where F'(z,() is the Levi polynomial and
M(z,¢) #0 for ((2,¢) € B(z°,01) x B(z°,01).

Then we obtain

g—z(zo,zo) = %(ZO,ZO)F(Zovzo) + M(Zoazo)g_g(zo’zo)
- 0 0y9P 0
2M(2°, 2 )3C1(Z ) # 0,
g—z( 0,2%) = %(ZO,ZO)F(ZOJO) _’_M(ZO’ZO);)_Z‘(ZO’ZO) =0

There exists 72 > 0 such that

w2 (2p)" 00

G oG \ac) oG

We define

d¢ =dGu N -+ NdGpa,

[dC]ldeQ/\'-'/\an_l, [d&]lzdgg/\"-/\d(fn_l.

Then we have

Y S N 0 AR P
d{(I) [dCh/\[dC]l}— me {8{1 aCl <8C1) §Cl}dc/\[dd1
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on VN B(z°% 01). In view of Lemma 3.37 we may assume that K(z,¢) # 0
for (2,¢) € B(2°,01) x B(2°,01). Then we obtain a representation

oG FOMGEOR (O,
0z; 7 (2) = /mmB(zO o) (2, )1 doan—3(¢)
F(ON(z,O)K () [
+ /ava(Zo o1) D(z,O)" doan—3(C)

= G (2) + Ga(2),

where \; € CF(Q x dV) and Ap € Ck+1(Q x V). It follows from the induc-
tive hypothesis that G, € CF 1(Q). On the other hand, Gy is expressed
by

Ga(2) = /8 s R e A ad),

- / FOM (2, OR (2, )d{~ = V[ac]; A [dl):}-
OVNB(z°,01)

Let ¢(z, () be a C* function on C" x C" satisfying ¢ = 0 on |z—(| > 01/2,
p=1on |z — (| <o1/4. Then

Ga(z2)
- / FOM (2 OR (2, Ol Od{d " D(d], A [dd) )
OVNB(2%,01)

4 / FOM (2 OR (2,01 - p(z, O)d{@~"V[dc]; A [dCl:}
OVNB(29,01)
= Gs(2) + Ga(2).

Clearly, G4 € C¥1(Q). Using Stokes’ theorem, we have

Gs(2) = [ FOM( QK (2,O)p(z, Q)d{@~ " V[d¢) A [d):}

oV

. /8 AL OM( R Ol O} ach A [

It follows from the inductive hypothesis that G5 € C*=1(Q). Hence g—g €

Ck=1(Q). Similarly, we have dG_ € C*=1(Q), which means that G € C*(Q).

Hence G € C*(Q). Thus we have proved that Eif € O(Q) N C*Q) if
feoWV)nckyv). O
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Theorem 3.20 was first proved by Cumenge [CUM]. Adachi [ADA1]
and Elgueta [ELG] proved Theorem 3.21 in the case when k = oo, indepen-
dently. Jakobczak [JK1] also proved Theorem 3.21. The proof of Theorem
3.21 given here is an application of the method of Ahern-Schneider [AHS2].
Amar [AMAZ2] proved C* extensions of holomorphic functions from sub-
manifold of certain weakly pseudoconvex domains. In case 1 < p < o0,
Adachi [ADA4] obtained LP extensions of LP holomorphic functions from
submanifolds of strictly pseudoconvex domains with non-smooth boundary.
Theorem 3.21 is still open when € is a strictly pseudoconvex domain with
non-smooth boundary.

3.5 The Bergman Kernel

For the preparation of the next section, we study the Bergman kernel. We
begin with an orthonormal system in a Hilbert space.

Lemma 3.38 (Gram-Schmidt orthonormalization process) Sup-
pose H is a Hilbert space. For a sequence {x,} of linearly independent
vectors in H, we set

1
€1 = 7>
(21
Y2
y2 = w2 — (x2,€1)e1, €3 = Mool
n—1 y
Yn = xn_Z(xn;ek)ek; en:H—nHv
k=1 Yn

Then {en} is an orthonormal system.

Proof. We prove Lemma 3.38 by induction on n. When n = 1, the proof
is trivial. Assume that the assertion is true whenn = m—1. Let 1 < k < m.
Then

m—1
1 1
(emvek) = —(ymvek) = T (xmvek)_ Z(xm;ej)(ejvek)
llym I (Il =

1
— m{(xmvek) - (xm,ek)(ek’ek)} =0.

Since (e, em) =1, {e1,-+- ,en} is an orthonormal system. O
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Lemma 3.39 (Bessel’s inequality) Let H be a Hilbert space and let
{z1, -+, xn} be an orthonormal system in H. Then

n
Dol z)P < Jalf?
k=1

forallx € H.
Proof. For any complex numbers a, - - - , a, it follows from Lemma 3.39
that
n 2 n n
gl =D lawaxl® =D faxl*.
k=1 k=1 k=1
Consequently,

2 n n
= (:E — Zakxk,x — Zakxk>
k=1 k=1
n n n
= ||z||* — <$=Zak$k> - <Z ak$k,$> +Z |ovg |2
k=1
n
= H$||2 - Za_k(xvxk) Z I Ik + Zakak
k=1

k=1
n n
= llzl® =Y I, @)l + Y (@, 2n) -l
k=1 k=1

If we set oy, = (x, z), then
0< [z = > [(x,20)?
k=1

Lemma 3.40 Let H be a Hilbert space. Suppose {x,} is an orthonormal
system in H and {«,} is a sequence of complex numbers. Then Z —1 0Ty
converges if and only if

n
xr — E ATk
k=1

O

> Janl? < oo (3.34)
n=1

Proof. For positive integers m, k with m > k > 0, we have

m 2 m
ST [0 SWE
n=k n=~k
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We set $pm = Y n; @nZy. Then
m
sm = skll* =D o[, (3.35)
n=~k

If (3.34) holds, then by (3.35) {sm} is a Cauchy sequence, and hence {s,}
converges. Conversely, if {s,} converges, then {s,} is a Cauchy sequence,
and hence (3.34) follows from (3.35). O

Definition 3.24 Let H be a Hilbert space. An orthonormal system {x,, }
in H is said to be complete if

o0
Y
n=1

for every z € H.

Lemma 3.41 Let H be a Hilbert space and let {x,} be an orthonormal
system in H. Then {x,} is complete if and only if the following holds:

(x,zp) =0 (n=12,---) = =z=0. (3.36)

Proof. Let {x,} be complete. Then for any x € H we have

oo
g:cxn

Hence (3.36) holds. Conversely, assume that (3.36) holds. It follows from
the Bessel inequality that

oo
DIz < .
k=1

By Lemma 3.40, > 7 | (z,2,)z, converges. We set y = >~

e (@, n) T

Then we have

0o
(x_yvxn) CL‘ xn - <§ X, Tk xk;xn>
k=1

= (@, @n) = >_ (@, 21) @k, Tp)
k=1

= (xvxn) - (xvxn) =0.



Integral Formulas for Strictly Pseudoconvexr Domains 199

Hence, by the assumption we have x — y = 0. Therefore we have

00
(E(En n-

n=1
Hence {z,} is complete. O

Lemma 3.42 (Parseval’s equality) Let H be a Hilbert space and let
{zn} be an orthonormal system in H. Then {xy,} is complete if and only if

|z||* = Z| T, )| (3.37)

forallx € H.

Proof. Let x € H. For a positive integer n we have

n

T — Z(m, Tk )Tk

k=1

2 n
= [lz)® = |, @)l
k=1

Suppose {z,,} is complete. Then the left side of the above equality converges
to 0 as n — oo. Hence (3.37) holds. Conversely, assume that (3.37) holds.
Then we have

oo
g (E xn L,

which implies that {x,} is complete. O

Lemma 3.43 (Riesz-Fischer theorem) Let H be a Hilbert space and
let {u;} be a complete orthonormal system in H. Then

(a) For x € H, we set a; = (x,u;j). Then Z;vzl a;u; converges to T as
o0

N — oo. Further, we have ||z|* = Z ;2.
j=1
(b) If Ejoil |3;]1? < oo, then there exists x € H such that (x,uj) = B; for
all j, and

l]1* = Z:Iﬂgl2 z=Y B
j=1
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Proof. We have already proved (a). Suppose Z;‘;l |3;]? < co. We set

n
Tp = Z Biu;.
j=1

For n > m > 0, we have

2
n

n
o —amll® = || > Biugl| = D 16 —=0 (m,n— o).

j=m+1 Jj=m+1

Hence {z,} is a Cauchy sequence. Since H is a Hilbert space, {x,} con-
verges. Let lim,_,o ©, = x. Then we have

o0
T = Zﬁjuj.
j=1
Since ||,]|? — ||z||?, we have
oo
1> = 1851
j=1

This proves (b). O
Lemma 3.44 Define

P=<{a=1{a;} Z|aj|2<oo, a; € C

j=1

For a = {a;},3 = {b;} € 1%, we define an inner product by
(avﬂ) = Za‘jb_j'
j=1

Then 12 is a Hilbert space. Further we have

1/2
9
18l = | D117 ] = sup |(a,B)].
=1 aci?
llefl<1

Proof. For |ja|| <1, we have

(@, B < [lefllIBIF < 115]]-
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On the other hand, if we set

v ={¢},

b
¢j =,
el
then ||| = 1. Moreover we have

(v, B)] = 113]]-
O

Lemma 3.45 Let H be a Hilbert space. Then the following statements
are equivalent:

(a) H is separable.
(b) H contains a complete orthonormal system which is at most countable.

Proof. (a) = (b). Suppose H is separable. Let E = {z, | n =

2,---} C H  E = H. If z, is a linear combination of x1, -+, 2, 1,
then we omit x,, from E. Let {y,} be a subsequence of {z,} obtained
by this process. Since {y,} is linearly independent, by the Schmidt or-
thonormalization process we have an orthonormal system {e,}. The set of
all linear combinations of elements in {e,} is equal to the set of all linear
combinations of elements in {x,}. Hence {e,} is dense in H. Let z € H.
For any € > 0, there exists positive integer NV such that

N
E CnTn

Since
N 2 N N
=Y enma| =z =D (@ enenl? =zl =D @ en)l,
n=1 n=1 n=1
we have

oo
lz]]* < Z w,en)|” +€”.

Since € > 0 is arbitrary, we have

o0
el < 3 s, c0)
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It follows from the Bessel inequality that

lz]|* = ZI (z,en)]

Hence {e,} is a complete orthonormal system.
(b) = (a). Suppose H contains a complete orthonormal system {e;,}
which is at most countable. We set

k
A—{Zanen|an—an+ibn6Q+iQ, keN}.
n=1

Then A is a countable set. For any € H we have

1' en n-
n=1
Hence we have
N
- Z(m,en)e —0 (N — oc0).
n=1
Then A = H, and hence H is separable. O

Definition 3.25 Let 2 C C" be an open set. We denote by A%(£2) the
set of all holomorphic functions f in 2 satisfying

/ FOPRAV(C) < oo
Q

A2(Q) is called the Bergman space.
Lemma 3.46 A%(Q) is a closed subspace of L?*(2).

Proof. For simplicity, we prove Lemma 3.46 in case n = 1. The proof
of the general case will be left to the reader. Let K C Q be compact. We
choose r > 0 such that B(w,r) C Q for every w € K. Let w € K and
h € A2(). Tt follows from the Cauchy integral formula that

hw) = — / M2 g e L [ s g0 (3.38)
lz—w|=p 0

2 _z—w 21
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for 0 < p < r. If we multiply by p and integrate from 0 to r, then we have
" hw) = / L7 b+ pe®)a0) pa
g = \ag ), MTPe pap
-/
= — h(z)pdpdf
2r) J Ja—wl<r

1
= — h(z)dxdy.
27T//zw<r (Z) e

By the Holder inequality we obtain

1
h(w S—/ h(z)|dxd
< g [ ey

1 1/2 1/2
< — h(2)|?dzd / dxd
— ( [ e y> ( - y>

L ([ e v

Suppose f; € A%(Q) for j =1,2,---, f € L*(Q) and f; — f. For e > 0, if
we choose N sufficiently large, then for j,k > N, we have

If5 = fill < ev/mr.

[17]]-

Therefore, we obtain
1
[fi(w) = fr(w)] < Wﬂfj —fill <e
for w € K, which implies that {f;} converges to a holomorphic function f
uniformly on every compact subset of Q. Now we show that f € A%(Q).

Since {f;} is a Cauchy sequence, there exists positive number M such that
[I£ill < M for all j. On the other hand, for any compact subset K C

/ |f3(2)|Pdady < / |fi(2)|Pdady = || f;]|> < M>.
K Q
Hence we obtain

/ |f(z)|2dxdy < M?.
K
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Since K is independent of M, we have
/ |f(2)|?dxdy < M?>.
Q

Thus f € A%(Q). Hence A%(Q) is a closed subspace of L?(12). O
Theorem 3.22 A%(Q) has a countable complete orthonormal system.

Proof. Since A%(Q) is a separable Hilbert space (see Adams [ADM]),
Theorem 3.22 follows from Lemma 3.45. O

Lemma 3.47 Let {¢;} be a complete orthonormal sequence in A%(Q).
Then

D lei(z)P = sup [f(2)]* < o0
j=1 feA2()
IFl<1
for all z € Q.

Proof. Let K be a compact subset of Q and let z € K. By the Riesz-
Fischer theorem we have

o0 o0 2
DoleiP = sup | ajpi(2)] = sup |f(z)
j=1 {aj}yei? =1 FeA2(Q)
[{a;}2<1 lFlI<1
Consequently,
o0
Dolei()P < sup ekl fIP < ex < oo,
j=1 feAZ(Q)
lFl<1
where cg is a constant depending only on K. a

Lemma 3.48 Let Q) C C" be an open set. Fora € §), define 7, : A%(Q) —
C by 7.(f) = f(a). Then 74 is a bounded linear functional on A%(£2).

Proof. It is clear that 7, is a linear functional. We choose ; > 0 for
7 =1,--- ,n such that

{(Zla"'azn) | |Zj_aj|§rjaj:]-v"'an}CQ'
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It follows from the proof of Lemma 3.46 that

fla) = . f(z1,az,- -, ap)derdy

2
Ty J|z1—a1|<r
1

J E— fz1,, 2)dV.
Thry e
1 n J|z1—a1|<r [zn—an|<ry

It follows from the Hoélder inequality that there exists a constant C, > 0
such that

[T () = |f(a)] < Call fll 2
Thus 7, is bounded. O

Definition 3.26 By Lemma 3.48 and the Riesz representation theorem,
there exists g € A%(Q) such that

(f)=(f9)  (f€A*(Q).

We define g(z) = Kq(z,a). We say that Kq :  x @ — C is the Bergman
kernel for €.

By definition we obtain

f(2) = /Q FORRC V() (f € A%(). (3.39)

Lemma 3.49 For any z,{ € Q, Kq((, 2z) = Kq(z,().

Proof. For z € Q fixed, we have Kq(,2) € A%(Q). If we set f(¢) =
Kq((, z), then (3.39) shows that

Ko(C.2) = /() = / £ () R, Q)dV (w)

= /Q Ko(w, Z)de(W)

_ /Q Ko(w, 2)Ko(w, ()dV (w)

It follows from Lemma 3.49 and (3.39) that

f(2) = / FOKa(QdV(Q)  (feAX(Q),z€9).  (340)
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Lemma 3.50 There exists a constant C > 0 such that
[Ka(,a)llrz < Cog"(a)  (a€Q),
where dq(a) = dist(a, 09Q).

Proof. We choose r such that r < do(a)/y/n. Then {z | |z; —a;| <r} C
Q. Using the same method as the proof of Lemma 3.46, we have

1
m .« . f(zl, PEEEEY 5 Zn)dV.
(e |z1—a1|<r |zn—an|<r

By Hoélder’s inequality,

fla) =

1 /1]z>

o) <

Letting r — dq(a)/y/n, we have

@) < (@) (60(@) " £l - (3.41)

On the other hand, by the Riesz representation theorem we obtain
I7all = [ Ka(, a) L2

It follows from (3.41) that

Il = sup Ira(f)l = sup |f<a>|<<\/§>n<<sg<a>>".

£l 2=1 171l 2=1
We set
n n
- ( _> .
T
Then we have the desired inequality. O

Lemma 3.51 Let K be a compact subset of ), Then there exists a con-
stant Cx > 0 such that for every complete orthonormal sequence {¢;} in
A%(),
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Proof. For z € K, we have dq(z) > dist(K,09). It follows from Lemma
3.50 that

1Ka(-,2)||L2 < C(dist(K,00)™" = Ck (z € K).
Since Kq(-,z) € A%(2), we have
Z ), 03)¢5(C)- (3.42)
j=1

By Lemma 3.42 we obtain

DKol 2), 05017 = [ Kal 2)l[72-
j=1
It follows from (3.40) that

03(2) = / o1 (OKa(z,QdV(Q) = (0. Kal(2)).  (343)

Hence we have

3 lei(2) = | Ka(, 2)[13: < Cxk.
]

Theorem 3.23  Let {¢;} be a complete orthonormal sequence in A%(Q).
Then

z) = Z%(OW ((¢,2) € 2 x Q). (3.44)

Moreover, the infinite series in the right side of (3.44) converges uniformly
on every compact subset of Q x Q.

Proof. If we substitute (3.43) into (3.42), then we obtain (3.44). Suppose
K C Q is compact. It is sufficient to show that the infinite series in the
right side of (3.44) converges uniformly on K x K. It follows from Lemma
3.51 that

1/2 1/2

ZI% i < [ D les Q) Do leiP | <0k
j=1 j=1 j=1
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for ¢,z € K. We set

Z 05 (Olle; (2

Then {g,} converges monotonically on K. In view of Lemma 1.19 {g,}
converges uniformly on K x K. Hence the infinite series in the right side
of (3.44) converges uniformly on every compact subset of {2 x . O

Corollary 3.7 Kq € C®(Q x Q).

Proof. By Theorem 3.23, Kq((, z) is continuous in 2 x . Since Kq((, z)
is holomorphic with respect to ({, z), Kq((, z) is expressed by the Cauchy
integral. Differentiating under the integral sign, derivatives of Kq((, z) of

any order are continuous in € x 2, which completes the proof of Corollary
3.7. O

Lemma 3.52  Suppose a function Ko:QxQ—C satisfies the following
properties:

(1) Ko(z,-) € A2(Q) for every fized z € Q.
(2) f(z) = | J(O)Kalz.QdV(Q) for every | € A*(9).

Ko = Kg.

Proof. For z € Q, define k,({) = Kq(z,(). Since k, € A%(f2), we obtain

Ko(w,2) = Ra(z0) = ka(w) = /Q - (O) R (w, C)dv (€)

_ /Q k= (O) Ko (w, ) dV (€)

_ /Q Ko(w, ) Ka(z,¢)dV ()

= I?Q(’LU, Z)

Definition 3.27 Let Q be a domain in C". For a C'' mapping

F:(flv"'afn):Q_)Cna



Integral Formulas for Strictly Pseudoconvexr Domains 209

define

9 9
() 30

F'(z) =

o (z) v Gl2(2)

Theorem 3.24 Let Q;, 7 = 1,2, be bounded domains in C" and let
F:Qy — Qy be a biholomorphic mapping. Then

KQl (C:,Z) - detF/(C)K92 (F(C)vF(Z))detF/(Z) (Ca S Ql)

Proof. We set

H(z,w) = detF () Ko, (F(C), F(2))detF'(2).

Then for a fixed point z € 1, H(z, ) is holomorphic in ;. Differentiating
2z = F71(F(z)), we have

1 =det(F~ Y (F(2))detF’(z).

We set Z = F(z). Then using the Cauchy-Riemann equation, the Jacobian
of F is equal to |detF’|?. Hence we have

|H(z,w)[*dV (2)
(951

:/Q |detF(2)]? | Koy, (F(2), F(w))[? et F' (w) *dV (2)

=, |det B (F~1(2))? | Kay, (2, F(w))*|det F (w) *|det(F 1)’ (2)[dV

= |detF’(w)|2/ |Ka, (2, F(w))|?|dV (%) < oo.

2

Since H(z,w) = H(w, z), we have

|H (2, w)[?dV (w) < oo,
(951

which means that H(z,-) € A?(Q). Next we show that H(z,w) is the
reproducing kernel for ;. Let f € A2(;). If we set ( = F((), then we
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have
| OHEQaV(Q)
=/ F(C)detF () Kq, (F(2), F(¢))detF"(()dV ()
= detf'(z) | FEHO)det(F) (Ko, (F(2), (v (Q).
We set

9(Q) = FFEHO)det(F ) (0).

Then g is holomorphic in €5. Moreover, we have

/ FOPRPAV(C) = / 9()2av(d),
Q1 Qg

which implies that g € A%(Q2). Thus we obtain

[ 10 (©) = dar'(2) /Q 9(O)Kay(F(2),H)av (O)
— detF'(2)g(F(2)) = f(2).

By Lemma 3.52, we have H(z,w) = Kq, (z,w) O

3.6 Fefferman’s Mapping Theorem

We prove Fefferman’s mapping theorem [FEF] which says that every biholo-
morphic mapping between two strictly pseudoconvex domains with C*°
boundary can be extended to a C'°° mapping up to the boundary. Bell-
Ligocka [BEL] gave a simple proof of Fefferman’s mapping theorem. In
what follows we give the proof of Fefferman’s mapping theorem by follow-
ing the methods of Range [RAN2]. Range obtained C* extensions up to the
boundary under the assumption that 9 is of class C2¢+4 (1 <k < o0). For
simplicity, we assume that 92 is of class C*°. In order to prove Fefferman’s
mapping theorem we use the homotopy formula for strictly pseudoconvex
domains constructed in 3.2.

Let © CC C™ be a strictly pseudoconvex domain with C*° boundary.
Suppose the neighborhood U of 01, the functions ¢, w and ® are as in 3.2.
We will adopt the convention of denoting by C' any positive constant which
does not depend on the relevant parameters in the estimates.
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If f is an L' holomorphic function in €, then it follows from Theorem
3.12 that

1) = Lof () = oo [ 7w ( (z’)o>w<o

for z € Q.
Define
dV(C) =dxy Ndxa N -+ ANdxay,
for (; = z; + izj4n and j = 1,--- ,n. Then there exists a C*° function

G(z,¢) in ©Q x Q which is holomorphic in z € Q for fixed ¢ € Q such that

nt(xQuz 0N A o
(2mi)n < B(z,0) )A (€) = G(z,Q)aV (¢)-

Then we have

— / FOGE V) (zeq). (3.45)

For ¢ € U and —¢¢ < p(¢), we have x(¢) = 1. Hence for ¢ € U and

—eo < p(C), we have
O <7¢((227§C))> A w(Q).

If we choose € > 0 (0 < & < gg) sufficiently small, then it follows from
Theorem 3.8 and Theorem 3.9 that

n!

G V(O = G

>3

D(z,¢) = F(2,O)M(z,¢) = ij (2,0)(z5 — )

for |z — ¢| < e. Differentiating the above equality with respect to (; we
have

w;(z ) = g—g<z,<>M<z,o +O(l¢ — )
B dp(¢)

B(2,0) = (F(2,¢) — 2p(¢))M(%, ),
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0c®(2.0) = (OcF (2.€) = 20p(0) M (2,) + (F(2.€) = 20(0)) 0 M2, ¢).
LetVyq be a neighborhood of 99Q. If we denote by N(z, () any C* form in

Vaa X Vaa, then we have
~nl n 5‘411)]- wj(@c(f)
15 Mty O e® A w(C) + N

n! = -
~ @m)" ;(_W il on
_ ol W(w(z0) A (OF — 20p(Q)M N
- (2mi)m &)(Z’OnJrl Aw(C) + o
We set
—(p.....py= (2 .. 9
P_(Pla aPn)_<aC17 7a<n>

Then we have

Gz OV (C) N

__nl W(PQIRM) MACF ~20p(0)) O(z=¢) | N

(2mi)m™ o+l P+l on
nl_W(P(O) A (2002 | O(z=C) | N
(I)nJrl Q)n

") (F(2,0) — 20(Q)) M
On the other hand, for (; € 9% with |[( — (o = dist(¢,012), we have
M (z,{p) = M(z,¢p). Hence we have

%Eg - %Egg £ 0(1¢  21) = 1+ 0(¢ - Gol) + O(l¢ 2.
Consequently, for ¢ € Q we obtain
1 Ol — =)

NM(Z’Qn == + — )
M(z,Q)"®(2,¢)  2(2,¢) (2,0

Further we have

Ip(¢) Aw'(P(C)) Aw(C) = dp(€) A p(C) A (90p(¢))" .

We set
H(C) = (2mi)~"p(¢) A dp(C) A (98p(¢))" .
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Then we have H(¢) = H((¢). Therefore, if we write H(() = h({)dV ({),
then h is a real-valued function. Hence we have the following lemma.

Lemma 3.53 For (2,() € Q x Q with — < p(¢) and |z — ¢| < ¢, there
exists a real-valued function a(C) such that

a)) L O(¢=:) , N
(G0 = 20007 3z, B(a0)

G(z,¢) =

Lemma 3.54 Let dq(z) = dist(z,0Q). For z € Q, define

By .
@ [B(z, Q)T+

Then there exists a constant C > 0 such that

(a) If « <0, then I, < C.
(b) If a =0, then I, < C|logda(z)|.
(c) If > 0, then I, < C(da(z))" .

Proof. We may assume that p(¢) > —e and |z — (| < . There exists a
constant 3 > 0 such that

Re®(2,¢) > —p(¢) — p(2) + BI¢ — 2>

We choose a coordinate system ¢ = (1, - - - ,t3,) such that t; = Im ®(z, (),
to = p(¢). We set t' = (t3, - ,t2n). Then we have

dt
< (bl + [t2] + [p(2)] + [[2)n e
dt’
i< (Ip(2)| + [t/[2)n =t

2n 3

In case a < 0, we have

I, <C

<C

dr<C

I<c/
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In case a > 0, if we set = Ay/|p(z)], then

M/+\/|p(2)] \2n—3
I, <
C/ P+ 2)iTe
C /M/\/|P(Z)| d\

< — —.
= ez Ly Al 2e

In case a = 0, we have

i

M/ 1p()] g\
10<c/ S < Clloglp(=)]] < Cllogdaz)]

In case a > 0, we have

< e . i < Gl

Definition 3.28 For z,( € Q, we define

F(2,¢) = F(2,0) = 2p(C), F*(2,¢) = F(C,2).

Lemma 3.55 We have

(a) F(z,0) = F*(2,¢) = O(I¢ — 2*). B -
(b) If ¢,z € Q are sufficiently close to ONY, then we have |F*| > C|F]|.

Proof. (a) It follows from Taylor’s formula that

ap - B
a9 = acj Zacjack G = 21)

n

2

+;%(«Z)(&c — z) + O(I¢ — 2[%), (3.46)
9%p
9¢;0C

9?p
9GOk

€)= (2) + O(I¢ - 2)), (3.47)

0%p (2) = 0%p
9GO 9¢OG,

(€) +0O(I¢ = =). (3.48)
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By definition, we have

F(z,¢) = QZ 8@ ; %8@ G —2) (G — zk)- (3.49)
Substituting (3,46), (3.47) and (3.48) into (3.49), we obtain
_ - &p N7 3 3
PG = G242 3 0 (016 =5) G 2 +0(S ). (350

On the other hand, it follows from Taylor’s formula that

plz) = p(¢) - §F<z,g> _ %7F(z,g)
; a@agk = 2)(Ge = 2k) + O(I¢ = 2).

Substituting (3.50) into the above equality we obtain

p(2) = p(0) = 3F(2,0) + 3 F(C 5) + O¢ ~ =),

This proves (a).
(b) We may assume that |z — (| is sufficiently small. Then there exist
positive constants C'y and Cy such that

~ ~ ~ o~ 1~
[F| > |F| = [F* = F| > S|F| + C1|¢ = 2[* = Cal¢ = 2 >

N}Ir—\

This proves (b). O

Definition 3.29 For (z,() € Q x £, define

G*(2,¢) == G((, 2)

and
B(Za C) = G(Z7 C) - G*(Za C)
By definition, we have B((, z) = —B(z,().

Theorem 3.25 Let s < (2n+2)/(2n+1). Then there exists a constant
C > 0 such that

/Q B OPAV(O) <C ()
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and
/|B OPFdV(z)<C  (Ceq).

Proof. Define

If we prove the inequality

1

c ’ S C~71)
1C(z,0)] B

(3.51)
then it follows from Lemma 3.53 that |B(z,¢)| < |®(z,¢)["t(1/2). There-
fore, it is sufficient to show (3.51). Since a(() is a real-valued C*° function,
we obtain

a9 az) :a@{~ L }
Fz,0mt Fr(z,0m Pz, Fe(z0m
O(l¢ ~ =)
Fe(z, Q)+t

Since
|ﬁ(Z7C)|EC|C_Z|2 (C7Z€ﬁ)a

it follows from Lemma 3.55 that

1 _ 1
F(z,Q)m+1  Fr(z,()nt
~ 1 1
= (F* _F) ~ n -V ~ v
;)F@,o T R
<Cl¢-2P !

= <C—
[F(z, Q2 F(z, Q12
1

S C~7.
(2, Q)" +1/2

This proves (3.51). Thus we obtain

|B(z,0)|° < C|®(z,¢)|~@ntDs/2,
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By Lemma 3.55, |B(z,()|® is integrable, provided s < (2n + 2)/(2n + 1).
The second inequality follows from the equality B(z,() = —B((, 2). a

Definition 3.30 A C* function A(z,¢) in  x  is called a simple ad-
missible kernel of order A = 2n + j — 2t + 2 if for any P € 02, there exist a
neighborhood U of P and C* functions &;(z, () in U x U such that A(z, ()
has a representation

&i(2,¢)
)t

where j and ¢ are positive integers with ¢ > 2, and &;(z,() satisfy the

A(z,¢) = ‘5(2’ O or A(z,() = ;I;*(z .

)

inequalities
Ei(2, Ol < ClC =2 ((2,() €U x ).

Definition 3.31 A C* function A(z, () in © x Q is called an admissible
kernel of order A if for any positive integer N there exist simple admissible

kernels A©) ... AN=1 of order > X such that
N—1

A=) AW 4RI,
s=0

where R(N) satisfies that for any nonnegative integer k, if we choose N
sufficiently large, then

< Cllflle (f € L(Q)).
k,Q

;QdV ()

Lemma 3.56 We denote by Ay a simple admissible kernel of order .
Then

1 (A>0)
/ [Ax(z,0)|dV () < C < |logda(z)| (A=0) .
(62 (2))* (A < 0)

Proof. We choose a local coordinate system uy, - - - , ua, such that

p(Q) =ur, Im®(z,¢) =ua, |u|=][C— 2|
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We set u = (u1,- - ,u2n), v = (us, -+, us,). Then we have
Alz, OldV (¢ :/ SES) gy (¢
[0 © s v
|ul?
<C du
T Jjen (ual 4 fuzf + [p(2)] + [uf?)!
du
<C -
j<nr ([ua] + uz| + [p(2)| + |ul?)t=9/2
du’
< 2\i—2—7/2
wi<m (|p(2)] + |u'[?) I
2n 3

C/ (Ip(2) |+T2t23/2d

In case A =2n+j — 2t + 2 > 0, we have

/|A O)]av (¢ <c/ = 2t+]+1dr—0/ P tdr < C.

In case A =2n+j — 2t + 2 <0, if we set r = /|p(2)|s, then

M/+/1p(2)] g2n—3
/ 1+ s2)—2-0/? ds
M/ g
< Clp(z) )‘/2/ —_— .
P [ .

| 1AG.0av(o < o)

Lemma 3.57 Let £;(2,() be a C™ function on Q x Q such that

|Ei(2,¢)| <|¢ — 2. For positive integers t1,t2, we set
Al () = — G20 (3.52)
F(z, QR F*(2,()t

¢) is an admissible kernel of order A = 2n + j — 2(t1 + t2) + 2.

Then A(z,
Proof. We have
to—1
1 1 ~ =~ 1
—— =+ (F-F")Y =———=——. (3.53)
(F*)t2 (F)tz = th—l/(F*)l/—i-l
Substituting (3.51) into (3.50), we obtain
to—1
1
(3.54)

E; & Z
Ftl th Ftl fy—rs th*l/ (F*)V+1
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If we replace t2 by v + 1 in (3.53) and substitute it into the right side of
(3.54), we obtain

& &(F - F*)
FtiFte Ftitta+1
~ >0 ta—1
+<€]»(F~—F )2 S _ 1~ .
It 10 Ft2+17u(F*)p,+1

A:

Repeating this process, we have

9 _ _ to—1 8
o *\ N J
A= Z Ft1+t2+€ +(F - F) ;Oﬁt1+t2+N—1—u(ﬁ*)u+1' (3.55)

Each term of the first sum in the right side of (3.55) is a simple admissible
kernel of degree > A. We denote the second sum in the right side of (3.55)
by R(N). Tt follows from Lemma 3.55 that

(F = F)NE = 0(I¢ — 2[*N*9).

Hence the absolute values of k-th order derivatives of RY) are bounded by
the sum of

(¢ = sf+aN

|F(z, ()|t ttatN+k—p O<p<k). (8:56)
Since

j+3N —
¢ — 2" a = Z|j+Nf2(t1+t2+k)

Bz, Qv =
for N with N > 2(t; +t2+k), derivatives of R™N) of order < k are bounded.
Thus A(z, () is an admissible kernel of order . O

Theorem 3.26 B(z,() = G(2,() — G*(2,() is an admissible kernel of
order 1.

Proof. By Lemma 3.53, there exists a real-valued C*° function a(¢) such
that

_alQ) , O¢-z) | NEQ
Fe, 0t (0 8(x,0)

Thus we have a representation

G(Z,C:) =
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where A; is an admissible kernel of order 1. Since

1_~1:(ﬁ*_ﬁ)z":~ 1

[+l (F*)n+1 — Fn+1—y(ﬁ*)u+1’

by Lemma 3.57 1/F"+t — 1/(F*)"*! is an admissible kernel of order 2n +
3-2n+2)+2=1. O

Definition 3.32 A vector field L on Q is said to be a tangent vector field
for 00 if Lp = 0 on 0N for any defining function p for Q.

Lemma 3.58 Let Q C R"™ be a bounded domain with C* boundary and
let L be a tangent vector field of class C*° for O). Then there exists a first
order partial differential operator L* on Q of class C* such that

for all f,g € C>=(Q).

Proof. Assume that there exists an open set U such that supp(L) CC U,
UNoQ # ¢ and such that if we set p(¢) = x1, then zq, - ,z, form a
coordinate system in U. We set 2’ = (z2, -,z ), and

"9
L= Zaj% (a; € C(U)).
=1 ’

Then we have Lr(0,z') = a1(0,2') = 0. The volume element dV =
v(x)dxy A - A dxy, satisfies y(z) > 0 for x € U. If f,g € C°(U), then we
have

n

dg
a;——~(x)dxq - - dz,
Z/xm@fjaxﬂ() 1

j=1

_Z/ O (a,)gdar - da,

j=1/x€U,z1<0 Ox;

+/ faiygdzy - - - dxy
zeU,z1=0

(fa Lg)QﬁU

=— (fa;jv)gdzy - - - dxy,
Z/zcEUx1<0 8% !

0
- + (@) f | gdV ().
Z/:celeq)[ 7o i 3xj(aj’7)f gdV (x)
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Hence if we define
Y=Y
= — a; — Cl ')/
iAo j
= Ox; = Ox
then we have

(. Loy = (. Lg)any = / L* fgdV(C) = (L* [, g)a.

QNU

In the general case, we can prove Lemma 3.58 using a partition of unity
argument. O

Lemma 3.59 Let Q CC C" be a strictly pseudoconvex domain with C*°
boundary and let p be a defining function for Q). Then the vector field

dp 0 Op 0
y — op 9
Z 84; a¢; Z * 9G; aCJ
is a tangent vector field for 02 of class C*° and satisfies (Y‘i)((,g) #0

for ¢ € 092

Proof. Let p be a defining function for €2. Then there exist a C*° function
~v(z) > 0 such that p(¢) = v({)p(¢) (see Lemma 1.21). Hence we have
Yp({) =0 for ¢ € 90. Thus Y is a tangent vector field for 9Q2. We obtain
for ¢ € 9N

(Y®)((,¢) = Y(FM)((,¢) = Y{(F - 20)M}((. ) = (YF)(C, QMK Q).
But we have M(C ¢) # 0 for ¢ € 990 and

#0  (C€09),

3@

which means that (Y@)(C,C) # 0 for ¢ € 00 O

Lemma 3.60 Let Q CC C" be a strictly pseudoconver domain with C'*°
boundary and let Ay denote an arbitrary admissible kernel of order A, where

X is equal to 0 or 1. Suppose V*) is a vector field with respect to z of class
C*® on Q. Then

v /Q (O AN (=, AV (Q) = /Q (V" )(O)Ar (2 OV ()
4 / FOA(z OV Q).
Q
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Proof. Weset Agq = {(¢,¢) € C?" | ¢ € 9Q}. Let W be a neighborhood
of Apg such that (Y®)(z,¢) # 0 for (z,¢) € W. We choose ¢ € C2°(W)
with the properties that 0 <t < 1, and ¢ = 1 in a neighborhood W'(CC
W) of Apq. 1Ay is expressed by

&
wA)\ - ga
where A = 2n + j — 2t 4+ 2. Then we have

wAkzwf—izw[—Ly(f{l)é] pytXE L

t—1 \ gt Yo t—13t-1Yd

_ & Ej-1
=Y <(I)t 1) + Ht—1

= 1Y Axyo + Yo Ary,

where 17 and ¥y are C'*° functions with compact supports in W. Conse-
quently,

/ F(OAN(z / FOVE A (2, )V (Q)
— /Q FOAr—a (2, Q)dV(C)
— /Q FL0As > + (1 ) Ar o} dV(Q).
(1 —1p)Ax_2 is of class C™ on Q x Q. On the other hand, we have
/ FoAr_sdV(C) = / FUY Ay + b2 Ar_1)dV Q)
Q Q
- /Q Y*(fi1) ArdV (Q)
+/ F(W3Y Axp1 + 14 Ax)dV (Q)
Q
- / (Y* ) AV (C) + / FANV(©),
Q Q

which completes the proof of Lemma 3.60. O
Lemma 3.61 Define

Arf(z / FOAN (2, OdV (O).

Then
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(a) Ao is a bounded operator from Ao (Q2) to Ay 2(Q2) for every 0 < a < 1.
(b) Ai is a bounded operator from L>(S2) to Ay /5(€2).

Proof. First we prove (b). It is sufficient to prove the inequality (see
Lemma 3.20)

|d:ALf (2)] < Clfladal(z)"? (2 € Q). (3.57)

By Lemma 3.56, we have

AT (2)] = \ [ f0a 0

< |fla / A 1(2 OV (©)
< O (z)~ 12

This proves (3.57).
Next we prove (a). It is sufficient to show that

|4 (Ao f)(2)] < Clflas0dalz) 2 (2 € Q). (3.58)

Let V() denote either 7 or 82 . Then we have

VE (Aof) = /f z,0)dv(Q)
- / (F(Q) = F(2)Aa(z )dV ()

Ty

Since |®| > C|¢ — 2|2, it follows from Lemma 3.54 and the definition of the
degree of the admissible kernel that

[ 100 = F stz lavo) < [ elflat = =2 o)
Q

|Q)|n+2+(]/2
< / O f[a]B|~ 141/ gy ()
Q
< O|faba(z)~ 172,

On the other hand, using the same method as the proof of Lemma 3.60, we
obtain

YAy =YY Ao + 1. A_1.
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Hence we have

/1/)-/4—2(2,05”/(0:/Y*¢1A0dv(<)+/¢1-f4—1dv(<)
Q Q Q
- / ALV (©).
Q

By Lemma 3.56, we obtain

¢A—2(27C)dV(C)’ < / [A_1]dV () < ba(2)”1? < Cdq(2) 17,
) Q

which completes the proof of Lemma 3.61. 0
Definition 3.33 For multi-indices o« = (a1, - ,q,) and § =
(B, -+, Bn), where o, B; are nonnegative integers, define
_ al+
9o _ lal+18]

i — —.
Oz7t - -822‘"62161 -0z

Definition 3.34 For f € L*(Q), define

Gf(z):= [ F(QOG(QdV(()  (2€9),

Q

G*f(2) = | fF(OG(2,QdV(()  (2€Q),

Q

Bf(:) = /Q FOBEOIV(E)  (ze9).

Theorem 3.27 Let k be a nonnegative integer. Then operators G, G*
and B have the following properties:

(a) G and G* are bounded operators from C*t*(Q) to C*+(@/2(Q) for
every 0 < o < 1.
(b) B is a bounded operator from C*(Q) to C*+(1/2)(Q).

Proof. Let |a| +|8] = j < k. Since G(z,() is an admissible kernel of
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order 0, it follows from Lemma 3.60 that
oG = [ 10076 Qav (o)
- / F(Q)92° Ao(z, )V ()

- Z / (2, )V (©).

By Lemma 3.61, we obtain

0°F(Gfla < CZI )" flase:

v=0

Therefore, we have |G fli1a < C|flit(ay2). Similarly, we can prove the
desired properties for G* and B. O
Lemma 3.62 Letp>0,q>0 andr >0 be such that

1 1 1

S+ —+-=1

rp q T
Then

fgh e LNQ), |fghlly < [I£pllgllqllnll:
for f € LP(Q), g € LLN) and h € L"(2).
Proof. Let s > 0 be such that
1

+

1
s P

| =

Using the Holder inequality we have

[ 1salav = [ (510 gltyirav
Q Q

< ([ 1pav) " ([ 1stav) "

fge L*(Q), fglls < I fllpllgllg-
On the other hand, we have

Hence we have
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By applying the Holder inequality to fg € L*(2) and h € L"(2), we obtain

[£ghlle < I Fgllslnll- < [[fllpllgllallBll- -

Theorem 3.28 Let K(z,() be a measurable function on Q x Q. Suppose
there exist constants M > 0 and s > 1 such that

(a)/|K OPFdV(e) < M* (2 € Q).

(b)/|K O)PdV (z) < M? (Ceq).

2) = / FOK (2, QdV(©).

Then K is a bounded operator from LP(Q) to L1(Q) with | K| < M for all
p and q satisfying 1 < p,q < oo and

Define

qa p S

Proof. We prove the theorem in case 1 < ¢ < 0o, 1 < p,s < co. The
case s = 1 will be left to the reader. Let f € L?(2). Since

1 p—1 s-—1
__’_I)—_’_
¢ p 5

and
KIE < [ (KPP R/ emave),
Q

it follows from Lemma 3.62 that

sl ([ eorsoraon)

(/) <Zv<)ISdV<<)> o ([ 1srav) G

Consequently we have

[rorave < [ ([ reorsora©) e «

Msalp— 1)/p||f||pq s—1)/
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It follows from the condition (b) that

”KfHLq < MS”f”zszsq p— 1)/p||f||pq s—1)/s Y

q
|f||Lp 0
Theorem 3.29 Let B* be the adjoint operator of B. Then operators B
and B* have the following properties:

(a) B is a bounded operator from LP(Q) to L1(Q) for 1 < p,q < oo and
> 5 - 2n1+2'

(b) B L?(Q) — L*(Q) is a compact operator.

(c) The kernel of B* is B*((, z) = B(z,().

(d) B* = —B.

Proof. (a) follows from Theorem 3.25 and Theorem 3.28.

(b) follows from Theorem 3.25 (s = 1) and Proposition A.13 in Ap-
pendix A.

(c) Define

E*f (2 / £ av (o).

Using Fubini’s theorem we obtain for f,g € D(Q)

(B*f.g) = / B f(=)g(2)dV (2)

/(/f (5, V(¢ ))Tz)dV(z)
= [10{ [ sermc. v favio

- /Q FOBQAV(Q)
= (f,Byg).
Hence E* = B*
(d) Since B(¢, z) = —B(z,(), we obtain
/ FOB (0 (0) = - [ FQOBE OV () = -Bf ().
Q
Hence B* = O

Definition 3.35 For f € L?(f2), we have a unique decomposition

f=h+f (f1 € A%(Q), fo € (A2(Q)1).
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We define Po : L2(Q2) — A%(Q) by Pof = fi. Pgq is said to be
the Bergman projection. By definition we have ||Pof] = |If1ll < IIfl,

For a € Q, (3.45) shows that

Po/(a) = / Po/(C)G(a, Q)dV(C)

= (Paf, G(a,))

= (Paf, G*(a,") + B(a,"))
= (Paf, G(-,a)) + (Paf, B(a,"))
= (f, PoG(,a)) + (Paf, B(a,")).

For fixed a, G(z, a) is holomorphic in 2, and continuous on Q, which implies
that G(-,a) € A?(Q2). Hence we have PoG(-,a) = G(-,a). Therefore we
obtain

Pqof(a) = (f, G*(a,-)) + (Paf, Bla,-)). (3.59)

Theorem 3.30 G, G* are bounded operators from L*(Q) to L?(f2).
Moreover, I — B : L2(2) — L?(Q) is an invertible operator and satisfies

Po=(I-B)loG". (3.60)
Proof. Tt follows from (3.59) that P = G* 4+ B o Pq,. Hence we have
G* :PQ —BOPQ = (I—:B)OPQ7

which means that G* is bounded. We set T =1 — B. If T(f) = 0, then by
theorem 3.29

_(f7f):(_B.ﬁf):(B*.ﬁf):(fan):(faf)7

which implies that f = 0. Therefore KerT = {0}, and hence from Propo-
sition A.10 in Appendix A, T : L*(Q2) — L*(2) is invertible. Hence (3.60)
holds. g

In order to prove Theorem 3.31, we need the following two lemmas.

Lemma 3.63 Let Q) CC R"™ be an open set and let 0 < a < 8 < 1. Then
the inclusion mapping 1 : CP(Q) — C%(Q) is a compact operator, where
C(Q) is the Lipschitz space of order a ( C%(Q) is also denoted by A, (R)).
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Proof. Let {f.} be a bounded sequence in C?(Q2). Then there exists a
constant M > 0 such that |f,|sq < M. Let ¢ > 0. Then any z € Q has a
neighborhood V,, which satisfies the following:

[fn(x) = fn(y)]

<e€ ye V).
|z —yl* ( )

By the Ascoli-Arzela theorem (see Proposition A.1 in Appendix A), there
exists a convergent subsequence {h,} of {f,}. Let 2,y € Q, z # y. For a
positive integer k, there exist 2,3’ € F such that

|hn(2) — hn(2')] 1
Teowe S wovlskod

|hn(y) — hn(y/)l < l
ly =y k’

If we choose n, m sufficiently large, then

ly—9y| <l|z—yl

|z —y|*

hae!) — Bna)] < 20 ) — ) <

k

Consequently we have

[fon (@) = hn (@) = (hn(y) = hm@)] _ [hn(z) = ha(2"))]

|z — y| - | — a! |
|hn(2') = hin(2')] n [P () — By ()] n 1P (y) = ha(y')]
« /| /o
|z —yl |z — o] ly — /|
|ha(y') = b ()] | [hin (') = han(y)]
|z —yl|* ly —y'|~
6
< -
B

Therefore, |hy, — hm|a.o — 0 as n,m — oo, and hence {h,} is a Cauchy
sequence. Since C®((2) is complete (see Lemma 3.6), {h,,} converges, which
means that ¢ is a compact operator. O

Lemma 3.64 Let E, F' and G be Banach spaces. Let A : E — F be a
bounded operator and B : F — G a compact operator. Then BoA: E — G
is a compact operator.

Proof. Let {x,} C E be a bounded sequence. Then {A(z,)} is a
bounded sequence in F. Since B is compact, we can choose a convergent
subsequence of {B(A(x,))}. O
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Theorem 3.31 Let ) CC C™ be a strictly pseudoconvex domain with C'*°
boundary and let k be a nonnegative integer. Then the Bergman projection
Pq, is a bounded operator from C*+@(Q) to C*+(@/2)(Q) for every 0 < a <
1.

Proof. B is a bounded operator from C*(Q) to C*+(1/2)(Q) by Theorem
3.27. Hence for 0 < o < 1/2, B is a bounded operator from C*+*(Q) to
C*+(1/2)(Q)). By Lemma 3.63 and Lemma 3.64, B is a compact operator
from Ck+(Q) to C*+2(Q) for 0 < a < 1/2. By Theorem 3.30, we have
Ker (I — B) = {0}, which means that I — B : Ck**(Q) — Ckr*(Q) is
invertible. Since Pg = (I — B)™! o G* and by Theorem 3.27 G* is a
bounded operator from C*+*(Q) to C**+(*/2)(Q), Pg is a bounded operator
from CFt*(Q) to CFH(/2)(Q). a

Definition 3.36 Let 2 CC C" be a domain. For a positive integer k, we
say that () satisfies the condition (Ry) if there exists a positive integer my
such that Bergman projection Pg : L2(2) — A%(Q) is a bounded operator
from C™*(Q) to C*(Q), that is, Pq satisfies the following properties:

(a) If f € C™(Q), then Pof € C*(Q).
(b) There exists a constant ¢; > 0 such that

Pofle.a < cklflm..0 (f € C™ ().

Definition 3.37 Let Q2 CC C” be a domain. We say that €2 satisfies the
condition (R) if Q satisfies the condition (Ry) for every positive integer k.

The following theorem follows from Theorem 3.31.

Theorem 3.32 Let Q CC C" be a strictly pseudoconvexr domain with
C® boundary. Then § satisfies the condition (R).

Theorem 3.33 Let Pq : L%(Q) — A%(Q) be the Bergman projection.
Then

Paf)(:) = [ HOKa(0aV(Q)
for all f € L*(Q2).
Proof. For f e A%(Q), we have P f = f. Hence we obtain

(Paf)(z) = (Paf, Kal(,2) = (f,PaKa(-, 2)) = (f, Kal(:, 2)).
Since Kq(z,() = Kq((, z), we have the desired equality. O
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Corollary 3.8 Let Q;, j = 1,2, be bounded domains in C" and let F :
Q1 — Qs be a biholomorphic mapping. Then

Po,((f o F)detF') = (detF")Pq,(f)o F
for all f € L*(Q2).
Proof. For f € L?(Q2), we define Trf = (f o F)detF’. It follows that

| (w) 2V (w) = / ITr F(OPAV(C),
Qo (oA

which implies that Tpf € L?(;). Hence it follows from Lemma 3.64 and
Theorem 3.24 that

P, (T f)(2) = / (Tr F)(O)Kay (2, O)dV Q)

(951

:/Q (Tr f)(Q)detF' (2) Ka, (F(2), F(C))det F' (C)dV ()

= detF'(2) [ 0 F(Q)Idet (O K, (F(2), F(C)aV(Q)

= detF’'(2) A F(OKa,(F(2),0)dV (C)

= detF'(2)Pq, f(F(2)). O

Lemma 3.65 Let 2 be a bounded domain in C™. For a € ), we choose
a function @, € D(Q) such that ¢, depends only on |z — a| and satisfies
J ¢adV =1. Then

KQ('7 a) = PQ@&-

Proof. We may assume that supp(¢,) C B(a,e) CC Q. If f is holomor-
phic in €, then it follows from the mean value theorem that

f(a)/ ds = fdS  (0<p<e).
dB(a,p) 0B(a,p)
Since ¢, is constant in 9B(a, p), we have

f(a) / padS — FpudS. (3.61)
8B(a,p) 0B(a,p)

Integrating from 0 to € in (3.61), we obtain

f(a)/ o dV = feadV.
B(a,p) B(a,p)
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Therefore, we have

fla) = (f,%a)

for any holomorphic function f in Q. Suppose f € A4%(Q). Since Pof = f,
we have

f(a) = (f7%) = (PQfa@) = (f7 PQ%)

Since Po@, € A%(Q), it follows from Lemma 3.52 that Pop, = Kq(a,-).
Hence we obtain Pop, = Ka(a, ) = Kq(-,a). O

Theorem 3.34 Let Q CC C" satisfy the condition (Ry). Then for a €
Q

Kq(,a) € C*Q).

Proof. Since the function ¢, in Lemma 3.65 belongs to C°>°(Q), we have
o € C™(Q). Hence we have Kq(-,a) = Pop, € C*(Q). O

Lemma 3.66 Let Q CC R"™ be a domain with C* boundary, k > 1. For
a € Q, we denote by v, any function which depends only on |z — a| and
satisfies pq € C°(Q), [@adV =1. We set

R(Q) = {a | a is a finite linear combination of @, }.
If f € C*(Q) satisfies the conditions

0 f)(x) =0 (€0, |af <k),
then f is a limit of functions in R(Q) in the C*(Q) norm.

Proof. First we show that f is a limit of functions in D(£2) in the C*(Q)
norm. Using a partition of unity argument, there exists a neighborhood U
of P € 99 such that if we denote n the unit inward normal vector at P,
then supp(f) C U and f(z — 7n) has a compact support in Q N U for any
sufﬁ(:lently small 7 > 0. We define f such that f(z) = f(z) for z € QN U,
f( ) =0 for € U — Q. Then by the assumption, f € C*(U). If we set
fr(z) = f(x — ), then |f — fr|p.0nv — 0 as 7 — 0. Thus we may assume
that f € C*(Q). Suppose ¢ € D(B(0,1)) depends only on |z| and satisfies
[ @dV =1. We set ¢j(x) = j"¢(jz), j =1,2,---, and

fi(z) = fW)pi(x —y)dV(y) = fl@—y)e;(y)dV(y).

Rn Rn
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Then f; € D(2) for any sufficiently large j . Moreover, we have
1@ = [ oo —navi) = [ @ N -nav)

which implies that

|f = filka =0  (j — 00).

Each 0° fj(z) is a limit of Riemann sums

N
> el ()0 es(@ —m), (3.62)

v=1

where ¢, are positive constants. There exists a constant M > 0 such that

lew f ()05 pj (@ — )| < Mey|f ()]

Since ZIJ,V=1 ¢v|f(n)| are Riemann sums of [ |f|dV, and hence converge.
Hence (3.62) converge to f; uniformly on Q2. Therefore, if we set

N
gn(x) = ZCVf(UV)SOj(x — ),

then |f; — gn|k,0 — 0 as N — oo, and hence gy € R(). O
Now we prove the following lemma (see Bell-Ligocka [BEL)).

Lemma 3.67 (Bell’s density lemma) Let Q be a bounded domain in
C™ with C*° boundary. Let Q satisfy the condition (Rg). Then given
u € CHH(Q), there exists a function g € C*(Q) with Pag = 0 and such
that

0 (w—g)loa =0 (lo| + 8] < k).

Proof. Let p be a defining function for 2. There exist a constant C' > 0,
P; € 09, j =1,---,N, and neighborhoods U; of P; with the following
properties:

N
(1) 99 C lei
(2) For each i (1 <1i < N), there exists integer j with 1 < j < n such that

o

7z (z)‘ >C (z € U;).
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Let {a;}7C, be a partition of unity subordinate to {U;}}L,, that is,

{a; }j\;l satisfies the following properties:

(a) a; € C=(C").

(b) supp(a;) °C Uj.

(¢) There exists a neighborhood U of 0} such that E;\;l aj(z) =1 for
zeU.

It is sufficient to show that Lemma 3.67 holds for a;u instead of u. So we
rewrite o;u by u. Thus we have

supp(u)  {w € | 22 (w) £ 0},

Define

_u2)p(2) _ O
wi(z) = %a vi(z) = 8—21(2)'

Then we have

v1<z>=u<z>+p<z>%{ e }

o (2)
and hence v; —u = 0 on 9. Using the fact that wi|oq = 0, Kq(:, z) is
holomorphic in © and Kq(-, 2) € C(Q), we obtain

—_ Kaol((, 2
Paun() = [ n(ORalG V() = - [ i@ FDEDav(e) <o
Q Q 9¢;
Hence Lemma 3.67 holds in case k = 0. We assume that wi_1 and vi_1 =
dg_? have already been constructed and that v;_1 is equal to u on 92 up
to derivatives of order k — 2 and satisfies Povip_1 = 0. Define a differential
operator D on Q by

2 o le]
Zuil axpu (2) 8;0,/ (2)

D(p)(2) =

[Vp(2)[?
Define wy, and v by
0
W = wp—1 + O0pp", v = %7
21

where 6, is defined by
Dkil(u — kal)
O = ——5,—

L18e

‘0z



Integral Formulas for Strictly Pseudoconvexr Domains 235

Since

0
Vg = Vg1 + &(Hkpk%

we obtain

DF Y (u—vy) =DF Yu— ) — DF ! <%(9kpk)) : (3.63)

Further, we devide the second term of the right side in (3.63) into a term
which involves p and a term which does not involve p. Then we have a

representation
0 0
pk-1 (a(ﬁkpk)> = gk(‘)_,ik! + (the term involving p).
Consequently,

DF Yy —vp) =D Hu —vp_1) — Ok?k! + (the term involving p).
z
By the definition of 6y, we have
'Dkil(’u, — ’Uk)|39 =0.

Next we choose vector fields 71, ,79,-1 at P € 98 such that {ry, ---,
Ton—1, D} are orthogonal basis at P. Every vector field at P € 02 is denoted
by a linear combination of D and 7;, i = 1,---,2n — 1. For simplicity, we
denote all 7;, ¢ =1,---,2n—1, by 7. Then, in order that vy and u coincide
on 0N up to derivatives of order k — 1, it is sufficient to show that if
s+t <k—1, then

TSDt(u — Uk)|aQ = 0.

In case s +t < k — 1, by the inductive hypothesis we have

= 0.
o9

75D (u — vg)|on = T° {Dt(u —vp—1) + D' (%(%ﬂﬂ) }

In case s = 0, t = k — 1, we have already proved. In case s+t =k — 1,
s > 1, we have

D' (u — vi)|aq = 0.

By Lemma 1.21, there exists a C'*° function h in a neighborhood of P € 92
such that

757D (0 — vy) = ph.
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If 7 has a representation in a neighborhood U of P

0
T=> ai(z)5
j=1
then we obtain
2n
Ip
7(p(2)h(2))loanv = Zaj('z)ax‘ (2)h(2)|oenu =0
j=1 J

which means that v, and u coincide on 92 up to derivatives of order k — 1.
By the definition of wy,, we have wy = vp (7 is of class C* on Q), and
hence Pqur = 0. Lemma 3.67 is proved. ]

Theorem 3.35 Let 2 be a bounded domain in C™ with C*° boundary and
satisfy the condition (Ry). Suppose f is a holomorphic function in Q with
f € C>®(Q). Then f is a limit of a sequence of finite linear combinations
of the elements in {Kq(-,a) | a € Q} in C*(Q) norm.

Proof. Let f be holomorphic in  and f € C*°(Q). Then we have f =
Pof. By Bell’s density theorem (Lemma 3.67), there exists g € C™(Q)
such that f — g is equal to 0 on 92 up to derivatives of order m;. Moreover
we have f = Pq(f — g). By Lemma 3.66 there exist g, € C.(), k =
1,2, .-, such that

Ny
= e
=1

and f — g is the limit of {g)} in C™ () norm, where cpgfc) € C°(Q2) depend
i

only on |z — a,x| and satisfy [ 90(],2) dV = 1. By Lemma 3.65, we obtain
i a;

Pﬂgk—za PQSDk Za Ko(z

Jj=1

By the condition (Ry), we have

Po(f—g—gr)lie <clf —9— gklm.o

which implies that

|f Za )KQ |IQ<CI|f g — gk'ml,
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Definition 3.38 Let 2 be a domain in C". We say that () satisfies the
condition (By) if

(a) For any a € 0, Kq(-,a) € C*(Q).
(b) For any P € Q, there exist ag, a1, - ,a, € { such that

Ka(P, ap) # 0, (3.64)

and

KQ(P ao) KQ(P an)
BKQ(Pa ) dKS](P an)

= £0, (3.65)

%I;'iz (]37 aO) .. afz(iz (P an)

where the derivatives in (3.65) are taken with respect to the first vari-
able in Kq(-,a;).

Theorem 3.36 Let 2 CC C" be a domain with C* boundary. If Q
satisfies the condition (Ry), then Q satisfies the condition (By).

Proof. The condition (Bj) (a) follows from Theorem 3.34. We will show
(By) (b). We fix P € Q. Suppose (3.65) is equal to 0 for all (ag, a1, -+ ,an)
€ Q"1 For any go, g1, -+ ,gn € O(Q)NC>®(Q) and any € > 0, by Theorem
3.35, there exist a? €Q, j=1,---,Ng, and constants b?, j=1,---, Ng,
such that

|gk—Zb Ka(df)a <e.

7j=1
We set
Ny,
a(z) = Z beQ(z, a?)
j=1

Then by the assumption we have

aO DR an
dag ... Oan
0z1 0z1
. .| =0.
dag day,

0z Ozn
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On the other hand we have

990 ... 9gn dag ., dan
0z1 0z1 0z1 0z1
. = | =0(e).
990 ... Ogn dag ., Oay
Ozn Ozn Ozn 0zn

Since € > 0 is arbitrary, we have for any go, g1, ,gn € O(2) N C>=(Q)

go - Gn
g0 ... Ogn
82:1 82:1
. .| =0.
990 ... Ogn
Ozn Ozn

If we set g9 = 1, gr(z) = 2 for k = 1,--- ,n, then the left side of the
above equality is 1, which is a contradiction. This proves (By) (b), which
completes the proof of Theorem 3.36. g

Corollary 3.9 Let Q CC C" be a domain with C* boundary and satisfy
the condition (By). Then for any P € O there exist a neighborhood W of
P and ag,a1,--- ,a, € Q such that if we set

_ Ko(z,q5) _
Uj (Z) - KQ(Z,CE())’ u = (ulv aun)a

then uj € OW NQ)NC*W NQ), and
detu’(P) # 0. (3.66)

Moreover, each component of the inverse mapping u=' : u(WNQ) — WNQ
belongs to O(u(W N Q) NCF(u(W NQ)).

Proof. We fix P € 9. Since (2 satisfies the condition (By), by Theorem
3.36 there exist ag, a1, - ,an € Q which satisfy (3.64) and (3.65). Hence
there exists a neighborhood W of P such that Kq(z,ag) # 0 for z € WNQ,
which implies that u; € O(W N Q) N C*(W N Q). Since

Ou;
8Zk

0K, 0K,
1222 (Pay) — 2 (Pag) Ka(P, ao) 2 Ka(P, a;),
8Zk 0

(P) = Ka(P,a0) -
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we have

KQ(P ao) KQ(P,an)

852 (P,ag) --- 952 <P, an)

dhe (P ag) - ' yh (P an)
KQ(P ao) KQ(P ao) KQ(P ao) KQ(P, an)

O Sul Oup
021 0z1
= K(P,ap)" . .
Quy - Oun
0 Ozn, Ozn
Ouy .. Oun
821 82:1
= K(Pag)"™| @ &
Ouy ... Oun
Ozn Ozn

This proves (3.66). Since u; is holomorphic in W N Q, we have
8’U,j
82]'
Thus the Jacobian of u at P Ju(P) = |detu/(P)|* # 0. Since u; can be
extended to C* functions in W, by contracting W if necessary, v : W —

uw(W) is a C* diffeomorphism. Since u : WNQ — u(WNQ) is a holomorphic
mapping, v~ : w(W N Q) — W NQ is a holomorphic mapping. a

(P) = 0.

Theorem 3.37 Let 0y and Q9 be bounded domains in C™ and satisfy the
condition (By) for k > 1. Then every holomorphic mapping F : Q1 — Qg
belongs to C*(€).

Proof. The proof involves three steps.

[1] There exist constants ¢, ¢z such that 0 < ¢; < |det F’(2)| < ¢ for
all z € Q.

(Proof of [1]) We assume that there does not exist ¢; which satisfies
0 < ¢1 < |det F'(z)| for all z € ;. Then there exists a sequence {p,} C
such that det F'(p,) — 0 as v — 0. Taking the subsequence of {p,}, we
may assume that {p,} converges. We set lim,_,, p, = P. Then P € 0.
By Theorem 3.24, for a € 27 we have

Kaq, (pv, a) = det F'(p,) Ko, (F(p), F(a))det F'(a). (3.67)

From the condition (B},), Ko, (-,a) and Kq,(-, F(a)) are continuous on €
and Qy, respectively, and hence Ko, (P,a) = 0 for a € Q. This contradicts
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the condition (Bj). By adopting the same argument to F'~!, there exists
¢ > 0 such that |[det (F~1)/(w)| > ¢ for w € Qs. Hence we have |det F'(z)| <
1/c for z € Q.

[2] F € C(Q).

(Proof of [2]) It is sufficient to show that Z—Q, i,j = 1,---,n, are

bounded in ;. Suppose there exists {p,} C 2 such that

max ZJ;Z (p)| —m o0 (v — ). (3.68)

We set g, = F(p,). Taking subsequences, we may assume that {p,} and
{q,} converge. We set lim, oo p, = P (P € 9Q), lim, o ¢, = Q. Then
Q € 090y. For Q € 090y, we choose bgy,by,--- ,b, € Qo satisfying the
condition (Bg). Then we have Kq,(Q,bo) # 0. We define v = (vy, -+ ,vn)
by

Ko, (w, b)) -
vi(w) = =22 =1,---,n).
J( ) KQZ(TU,bO) (j )
By Corollary 3.9 we have detv'(Q) # 0 and there exists a neighborhood
W1 of @ such that each component of v~ belongs to C*(W; N Q). If we
set aj = F71(b;) for j = 0,1,--- ,n, then Kq, (P, ag) # 0 by substituting
a = ag into (3.67). Thus there exists a neighborhood Wa of P such that if
we set

Ko, (2,45)
uj(Z) B KQ1(Zaa0),

then we have u; € O(W7 N Q) N Ck(W, N Q). For a sufficiently large vg,

we have p, € W1 N Qy, q € Wa N Qy. By Theorem 3.24 and the definition
of u; and v;, we obtain

uj(z) = v;(F(2))A; (z€eW1NQy, F(z) € WanNQy), (3.69)
where we define
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We set
MO - 0
A 0 Ao
-0
0 - An
It follows from (3.69) that
u(z) = Av(F(z)). (3.70)

By the chain rule we have

u'(py) = AV (F(po))F' (),

which implies that
F,(pu) = v/(QV)ilAilu/(pu)'

Since v’ is a coordinate system in a neighborhood of @, each component
of v'(q,)~! is bounded. Further, each component of u' is bounded in a
neighborhood of P. Hence each component of F(p,) remains bounded as
v — 0o, which contradicts (3.68).

(Proof of [3]) It follows from (3.70) that for z € Wi N Qq, we have
F(z) = v~ *(A~!(u(2))), which means that F € C*(W; N Q). O

Corollary 3.10 (Fefferman’s mapping theorem) Let Q; and Qo are
strictly pseudoconver domains in C™ with C*° boundary. Then every bi-
holomorphic mapping F : Q1 — Qo belongs to C™(Qy).

Proof. Since Q7 and Qs satisfy the condition (Ry,) for any positive integer
k by Theorem 3.33, ) satisfies the condition (By). Hence it follows from
Theorem 3.37 that F' € C*(Qy). O

Exercises

3.1  Prove the following:
Let 6 > 0 and

D5 = {(z1,2") e RN | 0 < 21 <6, |2/| <6},
and suppose g € C1(Ts) satisfies
|dg(2)] < Kap™!
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for € T's. Then there is a constant C' depending only on o and § such
that

lg(z) — g(y)| < OK|x —y[*

for z,y € T'sjo with |z —y[ < §/2.

3.2 Let Q be a convex domain in C” and let F} : Q — C be a C' function
in Q. Forw,ze€ Qand1<0,\<1,

dFy(z + M(w — 2))

dFy(z 4+ 0(w — 2))
dX '

de

a=1=10

3.3 Let H be a Hilbert space and let ¢ be a continuous linear functional
on H. Define M = {z € H | ¢(x) = 0}. Show that if M # H, then
M+ is one dimensional.

3.4 Let Q= {z€C||z| <1}. Define

Prove that {¢,} is a complete orthonormal sequence in A%(Q).

3.5 Let Q={z¢e C||z| <1}. Prove that the Bergman kernel Kq(z,()
for Q is given by

Kals:0) = g

3.6 Let Q CC C" be a domain. We set kq(z) = Kq(z,2). Show that

0Ka(z,¢)\ _ of
(a) (f(z), T) = a_Cu
(b) ka(z) >0 (z € Q).
(c) logkq(z) is strictly plurisubharmonic in .

©) (feA*(Q), e

3.7 (Bergman metric) Let  CC C". The Hermitian metric for €2 is
defined by

(2) = 0% logkq B
91 82’j82k ’
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Let v : [0,1] — Q be a C! curve. The length of v with respect to the
Bergman metric |y|pq) is defined by

1/2

B = /0 > (W)t | dt.

ij=1

For 21,29 € Q, we define the distance of z1, 29 with respect to the
Bergman metric by

dp(a)(21,22) = igf VB

where the infimum is taken for all C* curves in Q which connect z; and
zZ9.
Prove that if f: Q; — 5 is a biholomorphic mapping, then

OBy (21, 22) = Op(ay) (f(21), f(22)).
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Chapter 4

Integral Formulas with Weight
Factors

In this chapter we study the Berndtsson-Andersson formula on bounded
domains in C" with smooth boundary and the Berndtsson formula on
submanifolds in general position of bounded domains in C" with smooth
boundary. By applying the Berndtsson-Andersson formula, we prove LP
estimates for the 0 problem in strictly pseudoconvex domains in C™ with
smooth boundary. Moreover, using the Berndtsson formula we give two
counterexamples of L? (2 < p < o0) extensions of bounded holomorphic
functions from submanifolds of complex ellipsoids due to Mazzilli [MAZ1]
and Diederich-Mazzilli [DIM1]. Finally, we give the alternative proof of the
bounded extension of holomorphic functions from affine linear submanifolds
of strictly convex domains using the method of Diederich-Mazzilli [DIM2].

4.1 The Berndtsson-Andersson Formula

In this section we study the integral formula obtained by Berndtsson-
Andersson [BRA].
Let

p=<&n>""W(€) Aw(n)

be a differential form in C" x C™ = {(&,n) | £ € C*, n € C"}, where we
define

n

W(€) =3 (=171 A iy w(n) = dim A A,

J=1

245
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<Em>=) &y
j=1

By Lemma 3.2, if < &, u ># 0, then dp = 0. Let € be a bounded domain in
C" with smooth boundary. Assume that a C' mapping s = (s1,--+ ,8p) :
Q x Q — C" satisfies the following conditions:

(A) If ¢ # z, then < s(2,(),( —z >#0.
(B) For any compact set K C €, there exist constants C, = C1(K) > 0,
Cy = C3(K) > 0 such that

1s(z, Q)| < Chl¢ — 2], [ <s(2,0),—2>]>Cal¢— 2
for (€ Qand z € K.

In what follows we assume that s satisfies the above conditions (A)
and (B). Define ¢ : © x Q\A — E to be ¥(z,¢) = (s(2,(),( — z), where
A ={(z,2) | z€ C"}. Let K be the pullback of x by 1. Then

N 1
1 = :
E —1)-1 A d )
<S,C—Z>n;( ) S]i;ﬁj Z7<S’L

We denote by K, ; the component of K which is of degree (p, ¢) with respect
to z and of degree (n —p,n — ¢ — 1) with respect to (. Then we have the
following theorem.

Theorem 4.1 For f € C(, (), one has
(a) For g >0,

f:C{/BQfAK,quL(—l)p*q“ </QafAK,,7q—8z/QfAKp7q_1>},

where C = Cp 4., 15 a numerical constant depending only on p, q, n.
(b) For ¢ =0,

_ _1\p+1 3
fC{/anAK,mL( 1) /Qaf/\K,o},

where C = Cp ,, is a numerical constant depending only on p, n.
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Proof. Let ¢ be a C®(n — p,n — q) form in Q with compact support.
For € > 0, we set

={((2) € QxQ[[¢ -2 <&}

Q. =0xQ—T..

If we choose ¢ sufficiently small in comparison with the distance between
supp(y) and 992, then

00 N (C" x supp(y)) = {(IN x Q) U AU} N (C™ x supp(p)).

It follows from Stokes’ theorem that

/ dec(p(2) A F(O) A K (2,0)) = / oNfAK
Qe 00,

:/ ga/\f/\K—/ oNfAK.
QX0 auU.
Since dK = ¢*du = 0, we obtain

oOxQ

/dga/\f/\K—i—(—l)p"'q/ ONdf NK = go/\f/\K—/ OANfAK.
Q. Q. oU.

(4.1)
Since

K—O<¢) 0(1¢ — =12,

|<57C_Z>|n

the two integrals in the left side of (4.1) converges as ¢ — 0. Next we
investigate the second integral in the right side of (4.1). We obtain

: o w'(s) ANw(C — 2)
Lemma 3.5 implies that w'(s) Aw({ — 2z) < 8, —z >~ is invariant when

<s,(—z>
[<s,(—z>|"

we replace s by s Hence we may assume that < s, —z >> 0 for

¢ # z. Define
b=C—2, sx=Xs+(1-XNb (0<A<]1).
Further we define b : Q x Q x [0,1] — C" x C™ by

h(za<7>‘) = (SA(Z,C),< - Z)
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If we set H = h*u, then we obtain
H(z,(,A) =< Xs+ (1 =MNb,¢—2z>""w(As+ (1 = A)b) Aw(C — 2).

We set
I = / o(2) A F(CO) A (2,6, 0.
I({|¢—=|=€}x[0,1])

Since dH = h*du = 0, it follows from Stokes’ theorem that

Isz/ dle N f)NH.
{I¢—=|=e}x[0,1]

Since supp(y) is compact, ¢ = 0 on d{|¢ — z| = &} for any sufficiently small
€ > 0. Hence we obtain

I = AfAH(zC1) — AfAH(zC,0). 4.3
[ _entrueen= [ enpreco. @)

We denote by H' the component of H which involves d\. Then

[sal(s| + [bl)
A<s,C—z>4+(1=N)|C—2z]2)"

m<c ) =00 -2,

Consequently we have lim._,g I. = 0. It follows from (4.2) and (4.3) that

lim N fAK=Ilim w(z) A f(C) ANH(2,¢,0). (4.4)
e—0 UL e—0 U,

By the same method as the proof of Theorem 3.3, the right side of (4.4) is
equal to Cpgn [ ¢ A f. Letting e — 0 in (4.1) we obtain

/ de/\f/\K—i—(—l)p'HI/ ONdfAK = ga/\f/\K—Cp,q,n/ oNf
QxQ QxQ N xQ Q
(4.5)

and

/ do(z) A F(0) A K (2,0)
QxQ

=/idw@A/ FO) MK (2,0
ZEQ CeQ
:44V““/Q¢wA@ £(O) A K (2,0).

CeN
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Since ¢(z) A f(C) is of degree n with respect to d¢ and dz and that K (z,()
is of degree > n with respect to d¢ and dz, we have

/ deMKMK®£k44W”“/ o [ FONK (0.
QxQ

1Y) CeQ

Thus by (4.5), we obtain

/an/\ aﬂf/\K—(—1)p+q/ﬂap/\{/95‘f/\K—5z/Qf/\K}
HCpan [ s

This proves (a). In case ¢ = 0, 0. fQ f A K is of degree > 1 with respect to
dz, which implies that

/ga/\ f/\KZ(—l)p/<p/\/5f/\K+C'p7n/<p/\f.
Q o0 Q Q Q
This proves (b). O

Corollary 4.1  Assume that in addition to the conditions (A) and (B),
5:Q x Q — C" satisfies the conditon:

(C) For ¢ € 99, s(z,() is holomorphic with respect to z € Q.

Then

w@=en“%mm4f@AKm4@o

is a solution of the equation Ou = f for f € C(lp_q) (Q) (g >0) with f = 0.

Proof. 1t follows from the condition (C) that K(z, () is of degree 0 with
respect to dz for ( € 052, and hence K, , = 0. Therefore, Corollary 4.1
follows from Theorem 4.1 (a). O

Next we study the differential form
A =exp <&n>wE) Aw(n)

in C™ x C™. Suppose a C' mapping Q(z,¢) : Q2 x Q — C” is holomorphic
in z € Q for ¢ fixed. Let Q = (Q1,---,Q,). We define ¢ : (Q x Q\A) x
(0,00) — C™ x C™ by

1/)(3, gvt) = (Q(za <) + tS(Z, g)v C - Z)
We set N = ¢*A. Then N can be written

N=exp<Q+ts,(—z>d(Q1+1ts1)N---ANd(Qn +tsn) Aw(¢ —2). (4.6)
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We write N = N; + N’, where N; is the component of N which contains
dt, and N’ is the the component of N which does not contain dt. Then

Ny =—exp<Q,(—z>exp{t<s,{—z>}x

n—2
{t" W (s) Aw(C — 2) Adt + Y tFay Adt},
k=0

where ay, are differential forms which do not contain t. Since dA = 0, we
have dN = ¢*dA = 0. Consequently,

0=d¢. N =d¢.Ny+d N +de.N'. (4.7
Since the last term in the right side of (4.7) does not contain dt, we obtain
dC,ZNt == —dtN,. (48)

In the moment we assume that Re < s,{ — z >< 0 for ( # 2. Later we
show that this assumption is not necessary. It follows from (4.8) that

de K = /00 de Ny = — /OO diN'" = N'|;—o
= e)(ip <Q,(—z >Z}(Q)/\w(g—z).
We set
P=exp<Q,(—2z>w@Q) ANw((—2).
Then we have
de K =P. (4.9)

Since @ is holomorphic in z, d@) does not contain dz;, and hence P does
not contain dz;. By the integration by parts, we obtain

0o et<s,(fz> 0
/ et<s,sz>tn71dt _ |: tn1:|
0 0

<s,(—z>
o] et<s,(—z>
- /  (n—-1)" %t
0 < S,é’ —Z >
1
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Hence K is expressed by
W (5) Aw(C — 2)

K=" n-1)lexp<Q,(—2z> s 75" (4.10)
n—2
+3 0(< 5,¢— 2>~ k),
k=0

Theorem 4.2 For f € C(p q)( ), one has
(a) In case ¢ > 0,

fzC’{/BQJC/\Kp,q"'(_1)1)4_(1—|r1 (/98f/\Kp7q_8Z/Qf/\Kp,q—l>}7

where K, 4 are components of K which are (p,q) forms with respect to z
and (n —p,n —q — 1) forms with respect to (.
(b) In case ¢ =0,

f= c{/ FAKpo+ (= "“/afAK,,O /f/\Ppo}

Proof. Let ., U and ¢ be the same notations as in the proof of Theorem
4.1. Tt follows from Stokes’ theorem that

/ dsc(p(2) A F(Q) AK(2,0)) = / oNFAK
Qe 00
:/ oNFAK— [ oAfAK.
oNxQ oU.
By (4.9) we obtain

/dgp/\f/\K—l—(—l)p'HI/ go/\df/\K—l—/ ONfAP (4.11)
Q. Q

€ Qe

:/ eNfANK — o NfAK.
Q%0 aU.
On the other hand, we have

o |5| _ _ 1-2n
w=0 (gt otk -4,

which means that the three integrals in the left side of (4.11) converge as
¢ — 0. Next we investigate the second integral in the right side of (4.11).
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It follows from (4.10) that

W'(s) ANw(C —2)

T,
< s,z—(>n 4

K=—-(n—-1l(exp<Q,{—2z>)

where T} = O(|¢ — 2|?>72"). Since

<Q,(—2z>2
LSQC—z>?

exp< Q,(—z>=1+<Q,(—2z> 51

+...7

K can be written

W'(s) ANw(C — 2)

K=—-(n-1)!
(n—1) < s,z — (>0

+ Ty,

where Ty = O(|¢ — 2|?>72"). Consequently, using the same method as in the
proof of Theorem 4.1 we obtain

lim OeNfANK
e—0 U,

_ (_1\n—1 o : w/(s)/\w(C_Z)
=0 e e n 2

:Cp,q,n/w/\fv
Q

where C, , , are numerical constants depending only on p, ¢, n. Letting
€ — 01in (4.11) we obtain

/ dgaAfAK+(—1)P+q/ ga/\df/\K—i—/ OANfAP (4.12)
QxQ QxQ QxQ

:/ <p/\f/\K—Cp7q7n/ga/\f.
o0xQ Q

Consequently,

/ do(z) A F(0) A K (2,0)
QxQ

- / dio(z) A / FO) MK (2,0
ZEQ CeQ
= (~1yprett / A [ FO KGO

CeN
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Using the fact that ¢(z) A f(¢) is of degree n with respect to d¢ and dz and
that K(z,() is of degree > n with respect to d¢ and dz, we have

/ dp(2) A F(Q) MK (2,C) = (~1)pFatt / o0, [ FONK(0).
Qx0

z€Q CeN

It follows from (4.12) that

/go/\ fAK =(~1 P+q/<pA{ Of NK — 0, f/\K}
Q o0 Q Q Q

+/<p/\/f/\P+Cp7q7n/<p/\f.
Q Q Q

Since Q(z,¢) is holomorphic in z € Q, w(Q) is of degree 0 with respect to
dZz, which implies that P, , = 0 if ¢ > 0. This proves (a). If ¢ = 0, then
©(z) is of degree n with respect to dz, which means that

(2) N O Qf(C) A K(z,¢) = 0.

This proves (b). O

Theorem 4.3 Let s : Q x Q — C" satisfy the conditions (A), (B) and
(C), and ¢ > 0. If f € C'(lp 2 (Q) satisfies the equation Of = 0, then

u(z) = (- p+qcpqn/f /\qu 1(2,¢)

is a solution of the equation Ou = f.

Proof. The condition (C) implies that 0,s; = 0 for j = 1,---,n and
¢ € 09, and hence 9.Q; = 0 for j = 1,--- ,n and ¢ € Q. Since Q; are
of class C! in Q x Q, we have 0,Q; = 0 for j = 1,--- ,n and ¢ € 9Q. It
follows from the condition (C) that N is of degree 0 with respect to dz for
¢ € 09, which means that K, ; = 0 for ¢ > 0 by (4.10). Then Theorem 4.3
follows from Theorem 4.2 (a). O

Definition 4.1 For a = (a1, - ,a,) € C", define

n

aﬁzz - aJ/\dfj

1
= #J

We have the following lemma. We omit the proof.
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Lemma 4.1

n—1

W(a, &) Aw(n) =Cn Y apdi A | D d&; Adn; ,
k=1 j=1
where C,, = (—1)M=1/2 /(n — 1)1
Definition 4.2 For s = (81, ,8,), @ = (Q1, - ,Qn), define

n

si(d —dz;), Q=Y Q;(d¢; — dz).

1 j=1

S =
J

Notice that we use notations which have two meanings.
By Lemma 4.1 we have
Ny=exp(< Q,( — 2>+t <s,(—2z>)dt ANw'(s,Q +ts) ANw(C — 2)
= Crexp(< Q,¢ — 2>+t < 5,( —2>)dt As A (dQ + tds)" ™
=Chexp(< Q,( — 2>+t < s,{—2>)dt AsA
n—1
Z (”; 1) (dQ)k A (d/s)n—l—ktn—k—l'
k=0
It follows from the definition of K that
n—1)!s A (dQ)F A (ds)m—1=F
k! <8, —z>nk
(4.13)

n—1
K = Co(=1)exp < Q¢ — 2> 3 (~1)
k=0

and

(_l)n(nfl)/2
P <@ (-z> (dQ)". (4.14)

For a C! function 1 : Q x © — C\{0}, we have
Ys A (d(1s))? = hs A (dip A s +pds)) =il s A (ds).

P:

Hence we may assume in (4.13) that Re < s,{ — 2z >< 0.

Theorem 4.4 (Berndtsson-Andersson formula) Assume that s sat-
isfies the conditions A and B. Let a function G be holomorphic in a simply
connected domain which contains {< Q(2,¢),z —( > +1 1] (¢,2) € Q x Q}
and G(1) = 1. Define

s A (dQ)F A (ds)n—1—k
<8, (—z>nk

n—1
K=Cu(-1)") %GWK Q,z— (> +1)
k=0 ’
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and

. (_1)n(n71)/2

P= G (< Q,z—¢>+1)(dQ)".

Then for f € C(lp’q) (Q) one has
(a) In case g > 0,

f:C{/mf/\I?pﬂ—i—(—l)erq“ (/QafAf?,m—az/QfAl?,,,q_l)},

where I?p,q are components of K which are (p,q) forms with respect to z
and (n —p,n —q — 1) forms with respect to (.
(b) In case ¢ =0,

f= c{/ FAR, o+ (— pH/afAKpo—/fAP,}

Proof. First we prove Theorem 4.4 in the case when G is a polynomial.
Let
N N 4
- d’o
SO SRR o
§=0 §=0
where ¢ is the Dirac delta function. We denote by KM instead of K when
we replace in (4.13) @ by AQ. Similarly, we denote by P instead of P
when we replace in (4.14) Q by AQ. After replacing in (4.13) and (4.14),
if we multiply by e~* and operate g, then we obtain the desired equalities,
where we have used the equations

N

dis
V=30 (e = Y =6 =1

Gla) = gle), GM(< @z — ¢ > +1) = g((~A)e N <Q==C>1D),

In the general case, G is approximated uniformly in {< Q(z,(),z—( > +1
| (¢,2) € Q x Q) by a sequence of polynomials. a

4.2 LP Estimates for the 8 Problem

Let 2 CcC C™ be a strictly pseudoconvex domain with C? boundary. In
this section we prove LP estimates for the @ problem in . LP estimates for
the @ problem in Q were first proved by Ovrelid [OV] and Kerzman [KER]
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using the homotopy formula discussed in Chapter 3. The proof given here is
due to Bruna-Cufi-Verdera [BRV] using the Berndtsson-Andersson formula.

Let p be a C? function in a neighborhood U of 2 such that Q = {z €
U | p(z) < 0}, dp(z) # 0 for z € 9Q. For € and § > 0, define

Vs={2€U|lp(z)l <d}, Qs ={2€U]p(z) <},

Ues = {(2,0) € Qs x V5 | |( = 2| <&}

We choose § > 0 sufficiently small such that Vs CC U. There exist 8 > 0
and a;, € C1(Vs) such that

o N e

&iék > 301¢° 0+#¢eCh),
CEV5 e acjac J | | ( )
*p(¢) ‘ g
sup —aj < —.
Vs aCJaCk Jk((:) n2
For any sufficiently small e > 0, if we set (; = zj+ix,4;forj=1,--- ,n,
then we have
p

o2 ¢,z € Vs, |¢— 2] < 2e).

9°p(¢) _ 9?p(2)
O0zj0x,,  Ox;0xy

Instead of the Levi polynomial, we define F(z, () by

Z G —z) % > ()G — 2) (G — 2).

J=1 j,k=1

Using Taylor’s theorem, we have

2Re F(2,¢) 2 p(¢) — plz) + BIC — 2/ (4.15)

for ¢,z € Vs and |¢ — z| < 2. Moreover, using the same method as the
proof of Theorem 3.8, we obtain the following lemma.

Lemma 4.2  There exist constants ¢, §, ¢ > 0 and functions ® € C* (s x
Vs), G € CY(U. ) with the following properties:

(a) ®(2,¢) and G(z,() are holomorphic in z for fixed C.
(b) ®=FG in U.s.
(c) |G| >cinUgs, || > cin Q5 x Vs\Ues.
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(d) There exist w; € C*(Qs x Vs) for j =1, ,n such that
n
O(2,0) = > w;(2,0)(G — 2)-
j=1

Moreover, w;j(z,¢), 1 < j <mn, are holomorphic with respect to z.

We set w(z,() = (wi(z,0),...,wn(z,()). Let ¢ € C>*(C") be a func-
tion with the properties that 0 < ¢ < 1, ¢ = 1 in a neighborhood of 0%,
© = 0 outside of V;. Define

u(z,¢) = =p(Q)(¢ = 2) + w(z, (2, Op(C)  ((2,0) € Qs x Q).
Since u(z,¢) = w(z,{)®(z,¢) for ¢ € 09, w is the product of w and a
function. Hence u satisfies the condition (C) in Corollary 4.1. For (z,() €
Q x Q we have

<u(z,0),¢ =2 >= —p(Q)I¢ — 2> + (2, O (0).
Hence for ¢ € Q with ¢ # z, we have

<u(z,¢),¢ — 2 >= —p(Q)[¢ — 2> > 0.

For ¢ € 092 with { # z and |¢ — z| < ¢, (4.15) shows that there exists
¢o > 0 such that |®(z, ()| > cp. For ¢ € 90 with |( — 2| < e, (c) shows that
|®(2,¢)| > c. Since ¢(¢) = 1 for ¢ € 9N, u satisfies the condition (A) in
Theorem 4.1. Let K C ) be a compact set. For z € K with |( — z| < 2¢,
if ¢ is contained in a small neighborhood B of 012, then ¢(¢) = 1 and
p(¢) — p(z) > 0. Then (4.15) shows that 2ReF(z,¢) > B|¢ — z|?. Hence
there exists ¢ > 0 such that |®(z,()| > ¢|¢ — z|2. Therefore, for ( € QN B
and |¢ — z| < e, there exists ¢/ > 0 such that

<u(z,0),( —2>> —p(Q)I¢ — 2P+ ¢ — 2> > ¢ — 2%

For ¢ € Q\B and |¢ — 2| < ¢, there exists ¢; > 0 such that —p(¢) > ¢; > 0,
and hence < u(2,¢),{—2 >> c1|¢—z|% If | — 2| > e and ¢ € €, then there
exists ¢; > 0 such that |®(z,¢)| > ¢}. Hence for ¢ € Q and z € K, there
exists ¢f > 0 such that < u(z,¢),{ — 2 >> ¢/|¢ — 2|?. Thus, u satisfies the
condition (B) in Theorem 4.1. Next we modify u near the diagonal A of
00 x 09). Define

Ves = {(6.2) | 1p(2)] <8, 10(Q)] < 6,1¢ — 2| <€}, W = Veg N (@ x ),

a(z,¢) == —=p(Q) + F(2,0), a’(z,¢) = a((,2).
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Further, for (z,() € Va5 we define

w(¢, z)
G(¢ 2)

Since v(¢,¢) = 0, we have |v(z,()| < C|z — ¢|]. On the other hand, we
obtain

+ a*(z,C)igEj%.

v(z,¢) = p(C)

< UaC_ z >= —p(C)F(C,Z) + +a*(27C)F(Za<) = a(z,C)a*(z,C) - p(C)p(Z)

It follows from (4.15) that

2Rea(z,() = —p(C) — p(2) + BIC — 2> (|¢ — 2| < 2e). (4.16)

Consequently, for (z,() € Wa. 5, there exists a constant co > 0 such that

| <wv,¢—z>|=lalla”| = p(C)p(2)
> [Real|Rea™| + [Im af[Im a™[ = p(C)p(2)
> e2{(p(¢) = p(2))* +1¢ = 2|* + (=p(C) = p())I¢ = 2I?
+[Re F(z, ()|[Re F(C, 2)[}.

Hence if (z,() € Wae s, then | < v, —z > | > (—p(¢) — p(2))|¢ — 2|?, which
implies that v satisfies (B). Since < v,{ — z ># 0 for ¢ # 2, multiplying
by <v,{ —z>/] <v,{ —z > |, we may assume that < v,{ — 2z >> 0 in
Wae s\A. Let A € C*°(C™ x C") be a function such that 0 <A <1, A =1
in V; 5, where ¢’ < §, A = 0 outside of Vo, 5. Define

s=xv+ (1-Au.

Then s : Q5 x Qs — C™ is of class C', < u,{ — z >> 0 for { # z, and
hence < s,{ — z >> 0 for { # z. Therefore s satisfies (A). For ¢ € 99,
s is a product of w(z,() and a function. Thus s satisfies (C). Clearly s
satisfies (B). By Theorem 4.2, if we set ¢ = (s,{ — 2z), K = ¢*pu, then for
fechy (Q) with df =0,

Ti(2) = Cpon / O A Kpg1(2,0)

satisfies (T f) = f. For = (v, —z), we set K(v) = ¢*p. Define
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and

n n

a(z,0) =Y Fi(z0WdG —dz), B(z,¢) =D Fi(¢2)(d¢ — dz;).

j=1 j=1

Then we have

n

v="Y (¢ — dz;) = p(Q)B(,C) + a* (2, Oz, ).

j=1
Consequently,
dv=dp AL+ pdB+da* N+ a"da.

Since we can adopt the binomial theorem for 2-forms, it follows from Lemma
4.1 that

n
CP#L"

_ _1Y)i—1,,. . _
k(v) = PV ];( 1) v]indvaw(g 2)

(=)D, v A (do)n
(n—1)! <v,(—z>"
=C, <v,(—2>"" (pB+a*a) A{(pdB + a*da)"!
+(n—1)(pdB + a*da)""* A ((—p)da” + a*dp) A B A},

where C), is a constant such that

(_1)n(n71)/20p’q’n .

Cn = (n—1)!

It follows from (4.16) that
—p(Q) <20’ (2,0 ((2,0) € Wey).

Since

plOB+a%a =3 {p(QOF;(C2) = p(2)Fy(2,0) + F(C 2)Fy (2, O — dz)

and
BAa=> (Fi(¢,2)F(2,C) = Fr((, 2)Fj(2,0))(d¢ — dzj) A (dGe — dz),
i<k
we have

BAha=0(¢—-z2]), pQ)B+a"a=0(C—z|).
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Consequently,
|a* (2, Q"¢ — 2]

|<’[),<—Z>|n

1Kpq(v)(C,2)| <C
For (z,(¢) € V.5, define
T(z,¢) = |F (2,0 + [F(¢, 2)]-

Then we have the following lemma.

((Z, C:) S Waa).

Lemma 4.3 Let (2,() € W. 5. Then

(a) a(z,Q) = a*(z,¢) & —p(C) — p(2) + ¢ — 2> + [Im F (=, )],
(b) T(2,0) = [p(C) — p(2)| + ¢ — 2> + [Im F (2, O)],

(c) | <v,(—z>[>C{T(z,0)*+ (—p(C) — p(2))IC — 2},
(d) 1€ = z[|a*(2,Q)l < Cl <v,¢ — 2> | < |a* (2,0,

(e) | <v,¢=2z>[<CIC—zlla”(z,0)],

where C' is a constant which is independent of ¢ and z.

Proof. It follows from Taylor’s formula that

p(z) = p(Q)
+Re (2 ; g—z Z 8zk = G) 2k — Ck))

J.k=

n 82 ) -
+MZ 5o (O = G)E =G+ Ol = 2P)

# 30 o (O G~ 6+ 0 )
Consequently,
2Re F(2,¢) < p(¢) — p(2) + CIC — 2.
Hence together with (4.16) we obtain
0(2.0) = =p(0) = p() + ¢ — o+ [ F (=, Q)
Since
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we have

a*(2,¢) & —p(2) = p(¢) + |¢ = 2 + [ImF (¢, 2)|

< C(=p(2) = p(¢) +1¢ = 2> + ImF (2, Q)]) ~ a(z, Q).
This proves (a). If p(¢) > p(z), then
[F(z, Ol +[F(¢,2)|
~ |Re F(z,¢)| + |Im F(2,¢)| + [Re F(¢, 2)| + [Im F (¢, 2)|
> [Re F(z, Q)| + [Im F(z, )
> C(Ip(Q) = p(2)] +1¢ = 2 + [ImF (2, O))).

We can also prove the above inequality in case p(¢) < p(z). Since
we obtain

|F(2, Q)| + [F(¢, 2)| < 2|F(2, Ol + O(I¢ — 2*)
< C(Ip(¢) = p(2)| + |¢ = 27 + [ImF (2, ¢)]).
This proves (b). If |Im F({, z)| > |Im F'(z,()|, then
| < UvC —z> |
> C{(p(Q) = p(2))?
+HC =2t + I F (2, Q)1 + (=p(Q) = p(2))I¢ = 2[*}
> C{T(2,0)* + (=p(¢) = p(2))I¢ — =[*}.

We can also prove the above inequality in case |Im F(¢, z)| < |Im F'(z, ().
This proves (c¢). From the definition of a* and T' we have

|| < =p(2) + |F| < =p(2) + T
By (b) and (c) we have
€= 2Pla”] < =p(2)|¢ = 2 +[¢ = 2T

< ¢ = 2P (=p(2) = p(0) + CT?
<Cl<v,(—z>|

It follows from (a) that

| <v,¢—z>|=laa* — p(¢)p(2)| < Cla*|.
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This proves (d). We obtain

| <v,¢=2>]=laa” = p(z)p(C)]
= laa”™ + p(Q)a” — p(Q)a” — p(2)p(C)]
< la+p(Qlla™| = p(Q)la” + p(2)|
< C(la+ p(Qlla”] + |a”|la™ + p(2)])
= C(IF (2, Olla™] + |a*||F (¢, 2))
< CI¢ = z[[a”]-
This proves (e). O

Lemma 4.4 There exists a constant C' > 0 such that
[ Kaeolavioer el r>o0)
B(z,r)NQ

Proof. It is sufficient to prove the lemma under the assumption that
r > 0 is sufficiently small and z is sufficiently close to 9€2. For (z,() € W5,
we obtain K = K (v). By the definition of a* and T" and using (c) we have

|a* (2, Q"¢ —Zl}

| <v,(—2>|"

Kl < 0 {

(o) + [F (e QP))¢ — 2]
¢ { (2,0 (—(0) — pNIC — 2P }

IN

¢ — 2| p(2)|"1I¢ — 2| }
<C + .
{T(z,ﬁ)”“ [T(2,€)* + |p(2)IC = 2[*]"
We choose a coordinate system 71 (¢), - - - , 7, (¢) in a neighborhood of z such
that

m(C) = p(C) — p(2) +ilm F(2,¢), n(z) =0, [n(¢)] =1~z
We set n; = ta;_1 + it2;. Then we have
|T| ~ [t] + [t + [t ¢ — 2| = |¢].

In order to prove Lemma 4.4, it is sufficient to show that

"
I = dty -+ -dto, < Cr 4.17
: /| [l Toa] -+ ey 20t (4.17)

and

()1
IQ = / dtl N 'dtgn S Cr. (4.18
o BT B+ )T )
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We set t' = (t3,--- ,t2,). Then we obtain

I1</ dtl"'dtgn
= Jjer (Il + [t2] + [¢[2mtC/2)

dt’
<C —
v|<r |t/|2n—3
< C/ ds = Cr.
0

This proves (4.17). We set m = |p(z)|. Then we have

I, < m" 6 dty---d
t1 - - dtoy,
2/%@%+%+WWWM@ po

comeon [ [t
- wi<r Jo s +m|t/]2n=(1/2

comn-G) [ AT
= o [mAZ—G2)
= C/ d\ = Cr.

0

This proves (4.18). O

’
)dt

Now we are going to prove LP estimates for the 0 problem in a strictly
pseudoconvex domain 2 in C™ with smooth boundary.

Theorem 4.5 For f € C! (Q), define

(p,q)

T4() = Cpan [ £ N Epgoa(2:0).
Then T satisfies the following:
(a) If Of =0, then O(Tf) = f
r

(b) If f € L, () and 1 <7 < oo, then T'f € Ly, ().

= (»,9)

Proof. Since every LP function in {2 can be approximated uniformly on
every compact subset of Q by functions in C'(Q2), we may assume that
f € CY(Q). (a) follows from Corollary 4.1. (b) follows from Lemma 4.4

and Theorem 3.26. O

Bruna-Cufi-Verdera [BRV] proved the following theorem. We omit the
proof.
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Theorem 4.6 Let 2 CC C™ be a strictly pseudoconvexr domain with C3
boundary. Then each function f € C(D) satisfying

2.0;f =0  (1<i,j<n) (4.19)

in Q, can be approzimated on Q by functions satisfying (4.19) in a neigh-
borhood of Q.

4.3 The Berndtsson Formula

We study the integral formula on submanifolds of bounded domains with
smooth boundary obtained by Berndtsson [BR1].

Let Q be a bounded domain in C" with C? boundary. Let Q =
{z | p(z) < 0}, where p is a C? function in a neighborhood of Q and
dp # 0 on 09). Let hy,- -+, hy, be holomorphic functions in a neighborhood
QofQ satisfying

Ohi A+ ABhm Adp#0 (4.20)

on 0. Suppose there exist holomorphic functions gf (2,¢) in Q x Q such
that

h](z) - h]((:) = 295(270(21 - C’L) (.7 =1, am)' (4'21)

We set

X ={2€Q|h(2) == hm(z) = 0},
V=Xna,
h:(hla"' 7hm)7

g =) gldG, (4.22)
=1

1 DR m Ah, DY
M:g AN Ng |Aa}?|l|z2m A&hm,dvn_h (4.23)
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where dV,,_1 is the surface measure on V. Let s = (s1,-+,8p), Q@ =
(Q1, -+ ,Qn) and G denote the same notations as in Theorem 4.4. More-
over, we use the abbreviation

5= Zsjdgj, Q= Zdegj.
j=1 j=1

We set
n—m—1 I~ I~
- (n=1)! B sA(0s)" IR A (OQ)F A p
K= 2:: mlk! GH(<@z=C>+1) <8, —z>n—mk ’
and
1 _
—_ = (n-m) . n—m
P m!(n—m)!G (<Q,z—(>+1)(0Q) A p.

Then we have the following theorem.

Theorem 4.7 (Berndtsson formula) Let u be a C* (0,q) form on V.
For z € V one has

(a) In case ¢ >0,

u(z)—C{/avu/\Kqu(—l)q+1 (/VéuAKq—éz/vuAKq>},

where Kq is a component of K which is of degree (0,q) with respect to
z and of degree (n —m,n —m — q — 1) with respect to ¢ and C = Cy ,,
is a constant depending only on q, n.

(b) In case ¢ =0,

u(z) =Cyp (/avuKo—/vau/\Ko—/vuPo).

Proof. We prove Theorem 4.7 in case m = 1. Let hy = h, g' = g.

Suppose Q'(z,¢) and Q?(z,() are of class C! in Q x €, and holomorphic

in z € Q. In (4.14) we replace Q by \1Q' + \2Q? and P by P*. Then we

have

P = (—1nn—2)/2 AL<Ql 2> Aa<Q? (2> 1 2\

= ’ e ’ (A1dQ" 4+ X2dQ?)
_ (_1)n(n—1)/26/\1<Q1,(—z>eA2<Q2,(—z>

<Y A g gy,

al!agl

altaz=n
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Suppose 1, 1o are distributions. We set

P= /OOO /OOO Pre Me 2 24h1 (A )ha (A2)dArds.
Further we set
Gi(a) = /OOO e~ My (A\)dNy, Go(a) = /OOO e 20hy (Ag)d g,

Then we have

G« QY2 —¢>+1) = /OOO(—/\l)ale’\1(<Q1’24>“)w1(/\1)d)\1
and

GY (< @z —(>+1) = / T (AT E@ D g ().
Consequently,

_ 1

P = (_1)n(_1)n(n—1)/2 Z

a1taz=n

GGy (0QN) ™ A (9Q7)™

aqlas!
where Ggaj) = G;aj)(< @7,z — (¢ > +1). Since u is a (0,q) form, we have
only to consider the terms in dQ' and dQ? which do not contain dz;, and

hence we may replace dQ' and dQ? by Q' and 0Q?, respectively. In (4.13)
we replace Q by \Q' + X\2Q? and K by K*. We set

I? = / / Kke_kle_)le(Al)wQ()\Q)dAld)\Q,
0 0

Then we have

K =Cp(-1)" x
) (n—1)! Gl gl s A (9s)* A (DQ1)™ A (0Q?)*>
aplas! < 5,( —z >+

agtait+az=n—1

We choose distributions 1, ¥ such that G1(1) = G2(1) = 1. Using the
same method as the proof of Theorem 4.4, we may assume that G; are
holomorphic in some simply connected domain containing {< Q7,2 — ¢ >
+11](2,0) € QxQ}. Let g = (g1, - ,gn). We set
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It follows from (4.21) that

<Q§,z—§>+1:j§::1 ez +1
_ h(Q(h(z) = h(Q))
mEee Tl
~ WQh(z) + €
|h)2 4+ e

On the other hand we have

Consequently,

9 gOh A g
oz = leac <|h|2 )dc’““@ﬂmue)w

Jj=

where g = E?Zl g;d¢;. Therefore we have

0Q2) =0 (p>1).

For simplicity, we assume h(z) = z;. Then we have the following lemma.
The proof is the same as the proof of Lemma 2.32. So we omit the proof.

Lemma 4.5 Let z = (21,2'). For ¢ € CY(Q) we have

€
lim — —0(2)dV(z) = 7r/ 2)dVp_1(2"), 4.24
=0+ Jq (|Z1|2+6)2¢( )V (z) o —oyn0 p(z) 1(2) (4.24)

€
lim / ——————(2)doan_1(2) :w/ p(2)doan_3(7),
=0+ Joq (J21|* +¢)? ! {z1=0}NdQ
(4.25)

where dogn,—1 and doa,—3 are surface measures on Q2 and {z, = 0} N O,
respectively.

We set G2(a) = . Then

. 1—as
o (_1\n (n - 1)' (1) h(g)h(z) +e
Koo 2 amat O\ Tlip e (426)
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s A (9s)* A (9Q1)*1 A (9Q2)*

X
<8, —z>xtl

and

o1-tas=n 041!012! |h|2 +e€

- l—ao
p— (_1)n(n+l)/2 Z 1 Ggal) (h(C)h(Z) + 5) (4.27)

<(BQ1)™ A (3Q2)°.

Let ag = 1. Then coefficients of K and P are bounded by integrable
functions which are independent of €. Let ay = 0. Then we have

Ih(Qh(z) + €| 5]l < C{l 4 Ole ~ Z|} 1
hP+e  |<s¢—z>" h[?+e  J =zt
(4.28)
In case |¢ — z| < |h(C)], the right side of (4.28) is bounded by |¢ — z| 271,
In case |[( —z| > |h(¢)], if 0 < 6 < &, ¢ = (C2,++ ,(n), then there exist
positive constants Cy, Cy and C3 such that

O =2 sl
o P+ T<sc—zsp

QPG — 21+
Scﬂé<mw+am—ﬂ%4dv“>

SOQ/C dV_(Cl)/C _dVaa(¢)

1|<Cz |<1|2_6 /|<C3 |</ — Z/|2n—2—5'

Hence the right side of (4.28) is bounded by an integrable function which is
independent of €. Next we investigate the integral on 9. Since OhAJp # 0
on V N OS, there exist positive constants Cy, C5 and Cg such that

BOR(:) + <] i)
A2|W+5dwoggﬁm@ =

for fixed z € Q. Let z € V. Then h(z) = 0, which implies that in (4.26) and
(4.27) each term in which s = 0 converges to 0 as ¢ — 0. By Lebesgue’s
dominated convergence theorem the integral of each term converges to 0.
In case ag = 1, integrals on ) converge to integrals on V and integrals on
0f) converge to integrals on 0V as € — 0 by Lemma 4.5, which completes
the proof of Theorem 4.7. O
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Theorem 4.8 Let Q ={z | p(z) < 0} be a bounded convexr domain with
C? boundary and let f be holomorphic in V and of class C* on V, N a
positive integer. Then for z € V

G0 10 (e tisma) | @(5)
(4.29)

where 1 is defined by (4.23),

QZ ~dG;

and C = Cy, , is a constant depending only on n and m.

Proof. Since the function p is convex, we have

2n
82

(2)ujur >0 (2€9Q, (ur, - ,u2,) € R*™). (4.30)
It follows from Taylor’s formula that
p(z) — :>2Re§: —¢). (4.31)
8@

For ¢ > 0, we set
Lo
p(¢) —€0G;

Qj(z,¢) = (€)-

Then we obtain

< 9p((),z = (> +p(¢) —

<Q(Z7C)az_c>+1: p(c)_e ’

It follows from (4.31) that
p(2) + p(C) — 2
2(p(¢) —2)

for (z,¢) € 2 x Q. We set G(a) = a~" for N > 1. Since G(a) is holomor-
phic in Rea > 0, G satisfies the hypothesis in Theorem 4.7. If we let € | 0,
then by Theorem 4.7 we have for some constant g,

S (552 )N“f S (B9)" 1 A (0Q)F A

Re(< Q,z—(¢ > +1) > >0

P <9Op,z—C>+p < 8,(—z>n—m-k ’

(4.32)
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( p(¢)
"N< )z —C>+p

N+4+n—m _
P=0C, ( C)) BO)"™ Ap.  (4.33)

Since

-9 Z (©)de¢; | - a /\ZaC] )d¢;,

1
N 1

we obtain (0Q)* = O(|p|7*~'). On the other hand we have

2(Re < 9p, 2z — ¢ > +p(Q)) < p(2) +p(¢) < p(2) (2 € QD)
which implies that the integral of K on 2 exists. Since dp = 0 on 9f2, we
have

n

d Zapdgj ,

j=1

1
p

and hence (0Q)¥ = O(|p|~F). Since N > 1, the integral of K on 0 is
equal to 0. Thus by Theorem 4.7 (b) we obtain (4.29). O

Remark 4.1 In the case when 2 is an analytic polyhedron, LP and HP ex-
tensions of holomorphic functions from submanifolds of Q2 were investigated
by Adachi-Andersson-Cho [ADC] using the Berndtsson integral formula.

4.4 Counterexamples for LP (p > 2) Extensions

We give counterexamples for LP (p > 2) extensions of holomorphic func-
tions from submanifolds in complex ellipsoids due to Mazzilli [MAZ1] and
Diederich-Mazzilli [DIM1]. From these examples one can see that the
Ohsawa-Takegoshi extension theorem is the best possible.

Let 2 be a complex ellipsoid in C™. Then there exist positive integers
q1, - ,qn such that

D={ze€C"|p(z) Z|z]|2‘b—1<0}
j=1

We set

k= sup {g;},
1<j<n



Integral Formulas with Weight Factors 271

and
dp

dp

The following two lemmas have been proved by Range [RAN1].

Q0= (52

Lemma 4.6 For a positive integer m , we set g(z) = |z|*™. Then there
exists a constant C > 0 such that

g(z+w) —g(z) —2Re <%(z)w) > Clw|*™.

Proof. We set

o) =g+ ) = g(2) — 2Re (GG

By Taylor’s formula, if we set z = « + iy, w = u + iv, then there exists 6
with 0 < 6 < 1 such that

d%g d%g
flz,w) = <8 > ( + Ou, Y+ 0v)u? +28 8y(x+9u,y+9v)uv

2
+ g—yg(x + Ou,y + 91))1)2) .
We set () = t™. Then we have g(z) = ¥(2? + y?). We set X = x + 6u,
Y =y + 60v. Then
flzyw) = 20" (X2 + V) (Xu+Yv)2 + ' (X2 +Y?)(u® +0%).  (4.34)

Suppose (X,Y) = (0,0) for |[w| = 1. Since z = —fw, we have |z| = 6.
Consequently,

flz,w) = (1 —0)*™ — 0> £ 2me?™ 1 = (1 —0)*" + 6?1 (2m — ) > 0.

From (4.34) we have f(z,w) = 0, which is a contradiction. Hence we have
(X,Y) # 0, which means that f(z,w) > 0 for |w| = 1. In case |w| = 1 and
|z| <2, f(z,w) has a minimum value ¢; > 0. In case |w| = 1 and |z| > 2,
by (4.34) we have

flz,w) > (X2 4+ Y3 =m(lz 4+ 0w>)™ ' > m(|z| — 1)>""2 > m.

Hence if |w| =1, then f(z,w) > min(cq,m) := c. Since

f <i,ﬂ> =L fewze

jw| " |w] ] fw]?™
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we obtain f(z,w) > clw|*™. O

Lemma 4.7 For (¢,z) € Q x Q, there exists a constant C > 0 such that

Re(< Q,¢— 2> —p(C) = C(—p(¢) — p(2) + D 1¢1*9 72|z — G

j=1
+zg = ¢I7Y).
Proof. We set g(2) = |2]?™, ¢(t) = g(z + tw) for t € R. Then we have
0 2\°
)y =(w=—+w==) g.
o) (waz +“’az) g
In case 2m > s,

0= 3 st (o) (o) s

=0
sl o"g .

_ o J ok

=2 K azigzk Y

J+k=s
In case 2m < s, we have ¢(®) () = 0. Hence we have

2m (s) s
©'*)(0) 1 d°g i —k
few) =) == > PR
s=2

2<j+k<2m

We obtain
1 0 4
2w R
jtk=27""
= m?|2|*"2|w|? + Re(m(m — 1)2™2z™w?)
> m?|2[* 2 |w]? — m(m — 1)[z[*" 7 w]* = m|2 "2 w]?.

On the other hand, if j + k& > 3, then for a with 0 < a < 1 and |w| < alz|,
there exists a constant C > 0 such that

(2) () wowe

=|mim—1)---(m—7+ 12" m(m—1)---(m -k + 1)z" Fw/o*

< Calz] 2wl

which means that for any sufficiently small a,

F(zw) = mlzPm 2 fwf? = Calz ™ [wl? > Oz 2 w]?.
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If |w| > alz], then |w|?™ > a?™~2|2|?™~2|w|?, and hence by Lemma 4.6 we
have

fz,w) = CluP™ > Ol 2 |w]?.
Consequently, we obtain

fz,w) = CP" " Jwl + [w*™). (4.35)
We set g;(zj) = |2j]?%. It follows from (4.35) that

n

Zgj(zj) — Y g(¢;) — 2Re Z Z—Z(Cj)(%‘ - §)

n n
DGR 2 2 = G+ D1z — PP

=1 j=1
Then

8 n
2Re < a—C@) C—2> 2> —p(2) + p(Q) + CO_ 1G9 21z — I
j=1

n
+> 1z =GP,
j=1

Definition 4.3 For k > 0, define
Bip(QY) ={feC(9) | sug(|f(z)|dist(z,8ﬂ)k) < 00}
z€

Now we give a counterexample for bounded extensions of holomorphic
functions from submanifolds of complex ellipsoids due to Mazzilli [MAZ1].

Theorem 4.9 For p > 1 and any sufficiently small € > 0, there exist
a complex ellipsoid Q in C?P*1 q submanifold X in a neighborhood of
which intersects ) transversally, and a bounded holomorphic function f in
V = XN such that if g is a holomorphic function in Q with gly = f, then
gé Bg_E(Q). Therefore, f cannot be extended to a bounded holomorphic
function in Q.

Proof. Define f;(2) = 2} + zp4j for j =1,--- ,p. Define Q C C?+1 and
a submanifold M of  as follows.

Q={zeC?| ZI 2

2p+1

n+1
2 +Z|ZJ|2_1_P()<O}a

Jj=p+1
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V={z€Q]| filz)=---= fp(z) =0}.
In Lemma 4.7, we set ¢ = (0,---,0,1). Then for z € Q we have

P 2p
n+1
Re (1 —z20p11) = C [ |p(2)] + |22psr = 12+ D 1517 + > 1517 ],
=1 i=pt1

(4.36)
which implies that if z € Q, then Re (1 — z2p41) > 0. Hence if we define for
z €}

n—1 n—1
Z DR Z
f(Z) = : 2(77/—1) )
(1 = zop41) 2"

then f is holomorphic in . It follows from (4.36) that

—1 —1 n—1 n—1
()| < R < lzpt1] ™ - lzapl
)= Pl 2 IO
|1 — 22p41| " 2m (Zj=p+1 |2j[2) "=
for z € V, which means that f is bounded on V. It follows from (4.36) that
n+1
2512 :

for z € . Consequently,

n—1 n—1
gntl Tl gnt1 STl
zZ1 z
1f(2)] = 1|7 o
11— 22p41] 11— 22p41]

p(n—=1) p(n-—1)
><|]_ _ 22p+1| ont1 2n
p(n—=1) p(n-—1)

< C’|p(z)| on+1 2n

Suppose there exists a holomorphic function g in  with the following prop-
erties:

(a) For z € V, g(z) = f(2).
p(n—1) , p(n—1
(b) There exists § > 0 such that |g(z)| < C|p(2)|” G+ BRe s

Since g — f is a holomorphic function in € such that g — f = 0 on V, it
follows from Corollary 5.7 that there exist holomorphic functions aj for
k=1,--- pin Q such that

1 n— n— - n
g9(z) = T (zl Lo "z Ly Z(zk + zp+k)ak(z)> . (4.37)

(1= 22p10) "5
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For any sufficiently small € > 0 and 6, € [0,27] for k =1,--- ,p, we set
2k = T itk (1<Ek<p)
2k =0 p+1<k<2p).

zopy1 = 1 —pe

Then we have p(z) = pe(pe — 1) < 0, which means that |p(z)| = (1 — pe)pe
for z € Q. Tt follows from (b) and (4.37) that

pn=D) 4 p(n—1) 4 5 1

1
pICES) Z o < Calp(z)|” 2 T il

(pe)~=n Zp Z; |27 - 2

Since |p(z)| = €, we obtain

We set

={z€C||zs| =er1},

F=yx---x7.
———
p
Then we have

/ dzl/\ “Ndzp, =0.
D=1 J

Consequently,

1 1 PLan(2)
dzl/\---/\dz:/ + dzi N - ANdz,p.
/1“21"'2;0 p r Zl"'zp kz—l p Zn P
- Jj#

j=1 7
k

The left side of the above equality is equal to (27i)P and the right side
is equal to O(e?), which is a contradiction for any sufficiently small ¢.
Therefore there is no g which satisfies (a) and (b). Suppose for an extension
g of f there exists € > 0 such that

9lp(z)2 < C (2 €9).
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If we choose n sufficiently large, then we have

p  pn-=1) ¢
— <z
on T gnit 2

Consequently,

_bp _pn=1)  p(n=1) | ¢
lg(2)] < Clp(2)] 2te < Clp(z)|” == el +27

which means that g satisfies (a) and (b). This is a contradiction. O

Definition 4.4 Suppose d(z,01) denotes the distance from z to 92 and
that dVq and dV,,_; are Lebesgue measures on ) and V', respectively.

(1) For a measurable function f in Q, f € L9(d(z,00)°, dVy) means that
/ |f(2)|Pd(z,00)°dVq < oo.
Q

(2) For a measurable function f in V, f € Li(d(z,08)%,dV,_1)) means
that

/ |f(Z)|pd(Z,8Q)ngn_1 < 0.
\%4

Lemma 4.8 Let n and p be positive integers with n > 2p + 1. For a
positive integer N > 2, define

p n
n N+1
Q={zeC" | Y |15+ 2[5l —1=p(z) <0}
j=1 j=p+1

Let ¢ > 2, s > 0. Then there exists a constant Cn > 0 such that for a
holomorphic function f in Q with f € Li(d(z,00)%,dVa), 0; € [0,27] and
any sufficiently small € > 0, if we set

z = (eﬁewl, - ,Eﬁewp,o, +++,0,1 = pe),
then we obtain
1£(2)| < CNIfllaacz.00)s aviyd(z,09)" @ @ 3,

Proof. We set

T e +p<<>>1ﬁ+n (09108 <‘$)> M
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where p is defined by (4.23). It follows from Theorem 4.4 that for f €
O(Q) N LY(d(z,00)*%,dVq)
- [ rore
Q

By the Holder inequality we obtain

1F(2)l

< ( / |f<c>|Q|p<c>|deQ<o)

Further we have

<— <3P>>" (00p)"  (99p)" "' NOp A Dp.
a e = el n—+1
p p p

Consequently,

[(80p(¢))" =1 A dp() A Ip(Q)|l

“a|P(z,0)| < C
AP | <0p(¢),z— ¢ > +p(Q)Fat

It follows from Lemma 4.7 that
Re < 9p((), ¢ — 2z > —p(¢)

> C(pQ) + pI+ Y 1z =GP+ 3 1z = GP.

j=1 j=p+1

We set

and
tn = p(C) +ilm < Fp(C), 2 — C > .

Then we have

|2N+1—2

C e
T+ S~ + B TGP

[Pi(z, Q)| <

Since

1 1
z = (€2N+161917"' 762N+1€Z€pa07"' ;0,1 _p€)7
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we obtain
P N+1
A=1->|z" " —|zl* = pe(1 - p2),
j_

which implies that |p(2)] =~ |zj|2N+1 for j = 1,---,p. On the other hand
we have

P p

N+1_ N+1_ N+1_
[[1GP 2<cfds -2 2+l )
j=1 j=1

and

N+1 N+4+1 1__1_
|2 - = (I¢; _Z]|2 ) 2,

GG —

which means that

P12, )]
1

<C Py 5 o p——————
(o) + Yo 1¢G = 22+ 30 1G1P + [unl) 'z
We set

q

=— 1
a 1(n p+1+- +2N)
and
u:(ula"'vun)v u':(u1,~~,un,1), uN:(ula"'vup)'
Define uj = (; — z; for j =1,--- ,n — 1. Then we have

/Q 1Py (2,075 dra()
<c/ A
(P + 20y s+ 2k fugl?) o=

du//
<c / :
(Ip(2)]7 + 325, Juy|?")—2e4=20=p=1)

du//

<of——
(Ip(2)]2™ + Zé}:l |uj|2)—2N (atn—p+1)

R 2r=1dy
<c| — i

0 (|p(2)|3 4 r2)=2"(atnptD)
< Clp(z)[FFFotnpil,
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Consequently,

q—1

PO dA(0)) | < Clp(e) B Fornpy
( )

Lemma 4.9 Let p and N be positive integers with N > 2. Define

2p+1
n N1
Q={zeC"| z:lzgl2 + Y |yl —1=p(z) <0}
j=p+1
Then there exist a constant Cry > 0 such that for any holomorphic function
fin Qwith f € L) (¢ > 2), any sufficiently smalle > 0 and 0; € [0,27],
if we define

1 . 1 .
z = (52N+161917... 752N+1619P,07... ,0,1 _pg)7

then we obtain

e

1£(2)] < CN Il fllpaoyd(z,00) @ N,

Proof. In Lemma 4.8 weset n =2p+1, s =0. Then we have the desired
inequality. |

Diederich-Mazzilli [DIM1] obtained a counterexample for the L (p > 2)
extension of holomorphic functions from submanifolds of complex ellipsoids.

Theorem 4.10 Given € > 0, there exist a positive integer p, a com-
plex ellipsoid Q C C?PT1, o submanifold X of C**! which intersects 05
transversally and a bounded holomorphic function f in' V. = X N Q such
that if g is a holomorphic function in Q which satisfies g = f in V', then
g & L**(Q).

Proof. Let N be a positive integer. Define

V:{zeﬂ|z{v+zp+1:-~:zz",v+zgp:0}
and
N-1 .  ,N-1
Zl e
f(z)z p(Npl) 2
(1—2z, )TJr

It follows from the proof of Theorem 4.9 that f is bounded on V. We set

1 . 1 .
z = (62N+16191,'~' 7€2N+1e7'9p’07,,, ,0,1 —pf—:).
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Using the same method as the proof of Theorem 4.9, for 6 > 0 any holo-
morphic extension g of f to €2 cannot satisfy the inequality

(N-1) (N—-1)
? =7 2N +6

l9(2)] < Clp(z)] =¥+

On the other hand, by Lemma 4.9 if g € L9(Q)), then we have

v

_pt2_ _p
9(2)] < CllgllLa@d(z,09Q) = =V,

which means that

pt2 p _p(N-1) pN-1)
q 2Ng — 2N+1 2N

Then ¢ must satisfy the inequality

2t
1= 1T _ N1
N 2N

Consequently, there is no holomorphic extension g of f which satisfies con-
ditions

l\D

é
2+5>%
l-%

which implies that there is no holomorphic function ¢ in €2 which satisfies
g € L*>T¢(Q) and g|y = f. O

Mazzilli [MAZ2] investigated LP extensions of holomorphic functions
from submanifolds of complex ellipsoids. Cho [CHO] also obtained a coun-
terexample for the LP (p > 2) extension of holomorphic functions from sub-
manifolds of some pseudoconvex domain. Tsuji [TSU] gave a counterexam-
ple for the bounded extension of holomorphic functions from submanifolds
of certain unbounded pseudoconvex domain in C2.
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4.5 Bounded Extensions by Means of the Berndtsson For-
mula

In this section we study the bounded extension of holomorphic functions
from complex affine linear hypersurfaces in strictly convex domains. The
result has already been proved in 3.3. The aim of the proof is to intro-
duce the method of Diederich-Mazzilli [DIM2] which was used to prove the
bounded extension of holomorphic functions from the intersection of a com-
plex affine linear hypersurface with a convex domain of finite type. It is also
interesting to compare the method of Henkin-Leiterer (Lemma 3.22) with
the method of Diederich-Mazzilli (Theorem 4.12) concerning the integral
representation on submanifolds.

Let Q CC C™ be a convex domain with C'*° boundary. Then there
exists a C'*° function p in C™ such that Q = {z € C" | p(z) < 0}. Let h
be a holomorphic function in a neighborhood Q of Q. We set X = {z €
Q| h(z) =0}, V= QN X. Since  is convex, there exist holomorphic
functions g;, j =1, ,n, in Q x Q such that

h(z) = h(Q) = 3 93(2: (25 = G-

Suppose dh # 0 on X. We set

oy = L9 e

Then by (4.29) we have the following theorem.
Theorem 4.11  Let f be a bounded holomorphic function in V. We define

P(C) Nn=t 1\n—1
<00 +p<o) 6

Bf)=Cn | f(o(

Oh(Q) A (X5 (2, Q)dG;)
[|OR||?

for z € Q, where C), is a numerical constant depending only on n, and

A

an7 1 (C)

dVy,—1 is the Lebesgue measure on V. Then Ef is holomorphic in Q and
satisfies Ef|y = f.

Remark 4.2  The integral in the right side of the above equality means
to integrate coefficients of forms of degree (n,n) with respect to ¢ on V.
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From now on we assume h(z) = z,. For a > 0, we set
Lo ={z| |zl < alp(z)], (21, ,20-1,0) €V}

Since 2 is convex, we have L, C  for any sufficiently small a. Let f
be a bounded holomorphic function in V. Now we extend f to a C*
function in Q as follows. Let (m4),>0 be a family of C*° functions in R
such that 7, = 1 on {z < 3}, 7y = 0 on {z > ~}. For z € L,, we set
f(z1,--+,2zn) = f(z1,--+ ,2n—1,0). Then f is holomorphic in L,. Define

60 = (D) 5o,

Then for any sufficiently small 7, we have ¢, (f) € L>(2) N C*>(§). Since

oer (1) =, (21 s (221,

we obtain

_ C’7
19 (NI < 727

where C,, is a constant depending on «y such that C,, — oo as v — 0.

Lemma 4.10 Let X = {z | h(z) = 0}, h(z) = z,. Let N be an integer
such that N > 2. Suppose s(z,() satisfies the conditions (A) and (B) in
Theorem 4.1. Define

- h j (< _n

—N-n ann +€ .5

1\n
e 0@)
FA2(< QY2 — ¢ > 4+1) V) A DQ?
=: Py(2,¢) + Pi(z,()

P(2,¢) = A, (< QY2 — (> +1)
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K(z,¢)
=B (<Q'z—-(¢>+1)"N"
a
+BQZ<Q1 Z_C>+1) N— k(aQ)

k=0

Ju

wZnln FE = 1 SA(Ds)PT1k
ICn|2+s(aQ) N — ik

[}

Then we can choose constants Al , Bl fori=1,2 such that

- / by (F)QP (=) + / By (MO NE(2C) (2 €9).
Q Q

Proof. In the proof of Theorem 4.7, we set
Gi(a)=a N (N>2), Gala)=a.
Then we have

_ 1 O +2)
K=d 2 (<@1,z—<>+1>N+m<|h<<>|2+e> )

agtartaz=n—1

A (98)0 A (OQY) A (0Q?)*2

< 8,0 —z >+l

_ 1—as
5 1 h(Q)h(z) + &
P=B. ) g cs v ( |h<¢)|2+s> "

a1tags=n

—
,.4;
w
oo

=

x(9QN)™ A (9Q2). (4.39)

ag takes only 0 or 1. By the definition of @1, the integral on 9 is equal
to 0. O

Next we assume that 0 CC C" is a strictly convex domain with C'*°
boundary. Since p is strictly convex, it follows from Taylor’s theorem that

2Re Zagj G=2) 2 p(Q) = p() +CIC =22 (s,¢€D).
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Define
n
p
-3 206 -5
Then we have
2Re®(2,() 2 p(¢) — p(2) + Cl¢ — 2> (2.¢€Q).

Consequently,

2|(2,¢) = p(Q)] = p(Q)] + [p(2)] + [Im®(2,¢)| + CI¢ — 2> (4.40)

for z,¢ € Q. We take s(z,() as follows:

n

5(:6) = =p(2) 3G - 3~ DAY FE ()i

i=1

For z € 0O\ X, ¢ € 2, we have

s(2.0) = 28—” 2)dG,
=1

2Re®(¢, 2) = —p(¢) + C|¢ — 2|
and
sA 545 =0.
Hence for z € 00\ X, if we choose v sufficiently small, then . (f)(z) =0,

and hence there is no singular point except ¢ = z. For z € 9O\ X, we
obtain

2) = / By (FOP(2:0) (4.41)

+ / Bt (F)(Q) A G (2,C) + K7~2(2,0)).
Q
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Since O(1(f)) = 0 on V, by Lemma 4.5 we have

lm [ 9y () () AKT%(2,0)

e—0

Q
- /V B, (F)(O)TBE(< QL2 — ¢ > +1)-N-m+2(Qty—2
A S

—dV,-1 =0.
<s,(—z> " !

On the other hand, by Lebesgue’s dominated convergence theorem we have

lim /Q Uy (F) A P(2,C) = 0.

7—0

By Lemma 4.5 we have

e—=0 Jo

= / Uy (f)mAZ(< QY 2 — ¢ > +1) VT (9Q) "1 dV,, 1
\%4

=Cp,Ef(2).

Thus in (4.41) after letting € — 0, we let ¥ — 0. Then we obtain

0= CuBf(:) + Jimy [ D (DOKS™(2:0).
where

K37 20 = BA< Q12 = ¢ 1)V 200! A

In this setting, we have the following theorem.

Theorem 4.12  For z € 9Q\X one has

1 _ .
(<Qlz— (> 41)N+n-1 Q")

dVy—1.

Ef(z) = C, / 2n f(C)dCn A
\%4
S
><<s,(—z>

Proof. By (4.42), I?g_l(z, () is expressed by

Ry 10 = 272, 0) = i e

I " H(z,0).
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It follows from Stokes’ theorem that

_ Zn(fn n—1
0_/897|Cn|2+6%(f)(€)7’ (2.0)

= /Q ¥, () (w%) AT H(z0)

2nln = n—1
+ /Q 2 A (DO AT (2:0)

zn&n 3 1
4 / Fnln (T (2,¢)).
[ R (DO 2.0
If v is sufficiently small, then there exists 6 > 0 such that ¢, (f) = 0 in
B(z,4). Since lim,—o1¢~(f)({) = 0 for ( ¢ V, by Lebesgue’s dominated
convergence theorem we obtain

lim [PSRT R
=0 Jq |Cn| +e

Uy ()T (2,0))

s ann a/rn—1
N ’%’ll% Q\B(z,9) |Cn|2 + €wv(f)(g)a(T (2:0)
=0.

Consequently,

lim | 8 (f))(QOKY (2,

7—0 Jq

e /V enf (O, AT 1z, )V

—C /z F(O)dCn A ! Q)"
n v n n (<Q1,Z_C>+1)N+n_1

S

Xx——dV,_1.
<s5,(—z> !

O

The following theorem was proved in 3.3 in more general situation.
However, we prove theorem 4.13 using the integral formula in Theorem
4.12.

Theorem 4.13 Let Q CC C" be a strictly convexr domain with C*
boundary and let X = {z € C" | z, = 0}, V. = QN X. Then every
bounded holomorphic function in V' can be extended to a bounded holomor-
phic function in §).
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Proof. Let f be a bounded holomorphic function in V. It is sufficient to
show that sup,coo\ x |Ef(2)] < C/fls (see the proof of Theorem 3.15).
By Theorem 4.12, if z € 90\ X, then we have

P(C)Nﬂkl 5A1\n—1
Ca(z,0) + ()1 0 )

Bf(:) = Cu | 2nf (G A
V -
ST 22 (2)dg
(. 2) T
Taking into account that

(anwflzz(a(§§))”_1:EQ%?;:i_(n__m<88mn—1:apAap

and

p(¢) N 0p(C) A 9p(2) = (9p(C) — Dp(2)) A Ip(C) A Dp(z) = O(I¢ — 2]),

it is sufficient to estimate the following two integrals:

_ ¢ — 2|
i~ f, e O
and
1
I, —
? /v (Ip(O] + 12(z, Q)" HD(C, 2))
By Lemma 3.43 we have
D(¢,2) = ®(2,¢) — p(¢) + O(I¢ = 2I*).
It follows from (4.40) that

dVi—1 ().

an—l
L <C - .
L= /v(lp(C)l + Mm@ (z, Q)] + |¢ = 2[*)3I¢ — 2[*"—5

We choose a coordinate system ¢1,ta, - -, ta,—2 such that t; = p(¢) — p(2),
to =Im®(z,¢) and |t| =~ | — z|. Weset t’ = (t3,- - ,t2,—2). Then we have

dt
L <C -
ii<r (t1] + [t2] + |zn]? + [t'[2)3[¢/ 275
<cC dts - dto,—o

wi<r (|2nl® + [E'P)|E]2"—5
R

coft O
o lzml*+r | 2]



288 Several Complex Variables and Integral Formulas

Similarly we have Iy < C/|zy]. O

The following theorem was proved by Diederich-Mazzilli [DIM2]. We
omit the proof.

Theorem 4.14 Let Q) be a smooth conver domain of finite type m and
X a complex affine linear subspace of C™ with V.= QN X. Then there is
a bounded linear extension operator E : H® (V) — H* (), where H>(-)
denotes the Banach space of bounded holomorphic functions in the corre-
sponding domain.

Exercises
4.1  We define the n dimensional polar coordinate transformation
Dy, (1,01, 0p—1) — (21, ,Tp)
by

x1 = rsinf;sinfsy---sind,,_3sinf,,_2sinb,,_1

To9 = rsinfysinfsy ---sind,_3sinf,,_ocos,_1

Tp—1 = rsinfq cos by
T, = rcosbf
(r>0,0<0,<m(1<k<n-—2),0<60,_1<2r).
Show that the Jacobian J,, of ®,, is given by

Jp = £r" " tsin® 26 sin™ 30y - - -sin? 6,,_3 sin O, _o.

4.2 Let R be a positive constant and j a nonnegative integer. For A > 0,
q > 1 and z = x + 1y, prove that

/ |z + w) dzdy {O(Alq) (g >1)
|z|[<R (

Atz + w7~ | O(logA) (¢ =1).

4.3 Let 2 be a complex ellipsoid in C”, that is, €2 is given by

n

Q={:eC" | pz) <0},  plz) = |af*™ —1.
j=1



Integral Formulas with Weight Factors 289

We set
M = max{2m;) -
= max ; =—.
ax{2m,}, a=4r
Show that for f € C(10 q)(ﬁ), 1 < q < n, with 0f = 0, there exists

u € Mg (0,g—1)(2) such that ou=f.
4.4  Let p be a positive integer.
(1) Prove that for every t,7 € R

2p7’2p—1(t —7)+ 2P < 2P,
(2) Prove that there exists 6 > 0 such that for t,7 € R
2 2 2p7’2p71(t —7) > 5{7’2”72(15 - 7')2 +(t— T)2p}
4.5  Let m be a positive integer. For 0 > 0, define 'y, = {z = z+iy | |y| <
o|z|}. Prove that there exist ¢ > 0 and € > 0 such that
Re(22™) > g|z|*™
onI',.

4.6  Prove the following:
(a) Forg>1,l=0o0r1,j=101+1,---, and A positive close to 0

/ [t + 27~ x| dzdy _ {O(Al_q) (¢g>1)
s<r (A+]t+zP(@®+y2)e | O(ogA) (¢=1)"

independent of t € (=R, R).
(b) For ¢ > 1, j > 1, and A positive, close to 0

/ [t + x|/ yldedy {O(Alq) (g>1)
sl<r (At [t +aPr2+ri+2)a — | OlogA) (g=1)

independent of t € (—R, R).
4.7  For zy =z + iy, (k=1,---,N), define

N
p(z) =Y {zi™ +yi™ -1, Q={zeC"|p(z) <0},
k=1

where nj and my are positive integers with my < nj. For ( =& +in €
09, z € Q and v > 0, define
Ip

Py(,0) = g (€ =Al05™ ™ = 6™ )z = ) + (2 = )™
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and

O(2,0) =Y Pi(2,0)(z — ¢)-

j=1

Prove the following (1) and (2).

(1)

If we choose v > 0 sufficiently small, then there exists € > 0 such
that
N

2Re®(2,() < p(2) —e Y {(E" 72+ ™ ) e — Gl
k=1

+zk — >}

for (z,¢) € Q x 9.

Let ¢ = max; min{2n;,2m;}. Then there exists a constant C' > 0
such that for every bounded, d closed (0,1) form f on €, there
exists a 1/¢-Hélder continuous function u in 2 such that du = f (in
the sense of distributions) and |lul|;/; < CJ|fllo,o. (See Diederich-
Fornaess-Wiegerinck [DIK]).



Chapter 5

The Classical Theory in Several
Complex Variables

In this chapter we first prove the Poincaré theorem, and then we investigate
the Weierstrass preparation theorem, the properties of the coherent analytic
sheaf and the Cousin problem. Some of theorems in Chapter 5 were used
to prove the theorems in the previous chapters.

5.1 The Poincaré Theorem

In this section we study the Poincaré theorem which says that there is no
biholomorphic mapping from a ball to a polydisc in C™ (n > 2). Here we
give the proof due to Krantz [KR3].

Definition 5.1 Let B be the unit disc in the complex plane. Let € be a
domain in C or C2. For P € , define

(B,Y)p :={f:Q— B f is holomorphic, f(P) =0}
and

(Q,B)p:={f:B— Q] f is holomorphic, f(0)= P}.
Moreover, we define for Q@ € C? and f € (B,Q)p

Jaco f(P) = (§—£<P>, g—iw)) |

Definition 5.2 (a) For P € Q C C?, ¢ € C?, we define the Carathéodory
metric FZ(P,€) of € at P by

FE(P,€) = sup{|Jaccf(P)¢| | f € (B,Q)p}.

291
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(b) For P € Q C C, ¢ € C, we define the Carathéodory metric FZ2(P, €)
of £ at P by

FE(P,€) = sup{|f'(P)¢| | f € (B,Q)p}.

Definition 5.3 (a) Let Q2 C C? be a domain. For P € €, £ € C?, we
define the Kobayashi metric F2(P, &) of € at P by

FR(P,¢)

= inf { | lﬂm | g € (Q, B)p, there exists A such that ¢'(0) = )\} .
g

(b) Let 2 C C be a domain. For P € Q, £ € C, we define the Kobayashi
metric Fi2(P,€) of € at P by

[4
lg(0)]

Theorem 5.1 Let Q; C C?2 and Qs C C", 1 < n < 2, be domains and
let f: Q1 — Qo be a holomorphic mapping. For P € 0y and ¢ € C2, define

f+(P)§ = Jacc f(P)E.

FP9 =int { 8 g€ @) ).

Then we have

FEU(P,&) = F2 (f(P), f+(P)E) (5.1)

and

FU(P,&) = F2(£(P), fo(P)§). (5.2)

Proof. Letn = 2. Let ¢ € (B,Q2)¢py. Then po f € (B,Q)p. We
obtain

F3(P¢) > Jaco(p o f)(P)E
| (52 25 e) (2)

~| (52t ge ) £0)

8’(1}1 ’ 8’[1)2

= [Jaccp(f(P)) f«(P)E].

Since ¢ € (B,{2)s(p) is arbitrary, we have (5.1). When n = 1 we can
prove (5.1) similarly. Next we prove (5.2). Let n = 2. Let g € (1, B)p
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and ¢'(0) = X§. Then fog € (2, B)sp). We set g = (g1,92). Then we
have

(fo9)(0)
0 0 0 0
— (i) + a0, FE o+ L Ps0)
= A« (P)f
Consequently,
FRP) 1P = { L e () ey, 110) =t (P}
EPE 1
T (Feg) O N 190
Since g is arbitrary, we have (5.2). When n = 1, we can prove (5.2) in the
same way. O

Corollary 5.1 Let Q; and Qs be domains in C? and let f : Q1 — Qo be
a biholomorphic mapping. Then

FEY(P,&) = FE*(f(P), f.(P)§)
and

FH(P,&) = F2 (f(P), f+(P)€)
for P € Qy and ¢ € C2.

Proof. For f=1:Qy — Qy, f(P) € Q2 and n € C2%, we apply Theorem
5.1. Then we have

EG2(f(P),m) = F& (f 1 (F(P), ()£ (P))m)
and
F2(f(P).n) 2 F (f7H(F(P), (£ (P
If we set n = f.(P)¢, then we have
FE* (f(P), [.(P)§) = F&' (P,€)
and
Fi2(f(P), f.(P)E) = FR(P.6).
Together with (5.1) and (5.2) we have the desired equalities. O
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Definition 5.4 Let Q C C? be a domain. We define the length of a
C! curve v : [a,b] — Q with respect to the Carathéodory metric and the
Kobayashi metric by

b
mw:/zﬁmmvww

and

b
() = [ PR 0
respectively.
Corollary 5.2 Let f: Q1 — Qo be a holomorphic mapping. Then
le(foy) <le(v), Ik(feov)<lIk(y)
for every C* curve v : [a,b] — Q.
Proof. Let f = (f1,f2). Then we have
(f o) () = ((fro) (), (f209)'(®) = fuly ()Y (®).

By Theorem 5.1 we obtain
b

be(F o) = [ FR(7or(®).(f o) (@)
b
= [ FRG 0. 2007 @

< [ PR . 0 = o)
We can prove lo(f o) < lo(y) similarly. O
Definition 5.5 Let Q2 C C? be a domain. For P € Q, define
ip(Q) ={¢ € C* | FA(P¢) <1}
and
i5 () = {ne C? | Fg(Pn) < 1}.

Theorem 5.2 Let O and Qs be domains in C? and let f : Q1 — Qo
be a biholomorphic mapping. For P € Qq, we set Q = f(P). Then linear
mappings

Jacc f(P) 1i5(Q1) — i5(Q2)
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and
Jacc f(P) i (1) — i (Q2)
are bijective.

Proof. We set g(§) = Jacc f(P)E. It follows from Corollary 5.1 that for
€ €ip(th)

F22(Q, g(6)) = FE2(f(P), f.(P)€) = F (P,€) < 1,

which implies that g(§) € ig(Qg). Clearly g is linear. For n € ig(Qg) we
set h(n) = Jaccf~1(Q)n. Then we have

FE(P h(n) = FE(FHQ), Jace f~H(Q)n) = FE2(Q,n) < 1,

which means that h(n) € i%(Q). Differentiating f o f~!(w) = w with
respect to w; and wg, we have Jaccf(P)Jaccf 1 (Q) = E (E is the unit
matrix). Similarly, we have Jaccf~(Q)Jaccf(P) = E. Consequently, we
have go h(n) = n, hog(¢) = & Hence g : i8(Q) — ig(Qg) is bijective.
Similarly, Jacc f(P) : il (1) — ig(Qg) is bijective. O

Lemma 5.1 Let a and b be complex numbers such that
|azr + bzo| <1

for any complex numbers z1, zo with |21|? + |z2|*> = 1. Then
a2 + b < 1.

i01

Proof. Let a = rlewl, b = reei?2. For z; = tie” , 2o = toe" 2 with

t2 + 12 =1, we set t; = cosf, to = sinf. Then we have

1> |azy + bza| = t1r1 + tare = r1cos + rosind
2 2 1 ) .
=(riy+r ———~cosf + ——=sinf
ot (g rEg o)
= (r? +r2)sin(0 + a).
We can choose t; and t2 in such a way that 6 + o = 7, which means that
r% +r§ <1. O

Theorem 5.3 Let B(0,1) = {z € C? | |z| < 1}. Then if(B(0,1)) =
B(0,1).
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Proof. Let B={z€ C||z] <1} and let ¢ € (B(0,1), B)y. For n € C?
with |n| = 1, define
h(§) =¢()-n (e B).

Then h : B — B satisfies ¢(0) = 0. It follows from the Schwarz lemma
that

W(0)] < 1.

Since 7 is arbitrary so far as |n| = 1, it follows from Lemma 5.1 that
|©'(0)| < 1. Consequently,

[4
|’ (0)]

for every € € C2. On the other hand, for £ # 0 we set

_ &
€]

Then ¢g € (B(0,1), B)g, which implies that

F}?(O’D(M) = mf{ | ¢ € (B(0, 1),B)o} > €]

®0(¢) (¢ € B).

FB(O,I) 07§) S |€| — g
w09 = oy~
Hence we have Ff(o’l)(o,f) = [¢], and hence X (B(0,1)) = B(0,1). O

Theorem 5.4 Define P(0,1) = {2z € C? | |z1| < 1, |22| < 1}. Then
i’ (P(0,1)) = P(0,1).
Proof. Define mappings 71 : P(0,1) — B and 75 : P(0,1) — B by
m1(z1,22) = 21, ma(z1,22) = 22.
For n = (n1,m2) € C?, it follows from Theorem 5.1 that
P

F D (0.0) = FR(m1(0), (m1)um) = FR(0.m).

By the Schwarz lemma, for a holomorphic mapping ¢ : B — B with ¢(0) =
0, we have |¢’(0)| < 1. Moreover, if we define po : B — B by ¢o(¢) = ¢,
then we have ¢’(0) = 1. Hence we have
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Consequently,
E " (0.9) >
and
Ei " (0.0) > [,
Therefore we obtain
FiD(0,m) 2 max{ ] |},

which means that il (P(0,1)) C P(0,1). Next, for 0 # n € C?, we set
¢m 2
v = ( , .
max{|nl, n2(} " max{[m], |2}
Then ¢ € (P(0,1), B)o and we have ¢’'(0) = un (u > 0). Consequently,

P(0,1 |n]
P00 < gy

which means that il (P(0,1)) D P(0,1). O

= max{|m|, [n2]},

Theorem 5.5 (Poincaré theorem) There is no biholomorphic mapping
from the unit polydisc P(0,1) in C? onto the unit ball B(0,1) in C2.

Proof. Suppose there is a biholomorphic mapping ® : P(0,1) — B(0,1).
We set ®71(0) = a. Then a € P(0,1). Let @ = (a1,az2). Then ay € B,
ag € B. For z € B, we set

z— Q1

wl(Z): 1—@12” 902(2): 1—asz

zZ— Q9

and

©(€) = (p1(C1), p2(C2))-

Then ¢ : P(0,1) — P(0,1) is holomorphic and bijective. Further we have
¢(a) = 0. Define g = ®op~!. Then g: P(0,1) — B(0,1) is biholomorphic
and ¢g(0) = 0. Next we show that g does not exist. By Theorem 5.2,
Jaccg(0) is a bijective linear mapping from iX (P(0, 1)) onto iX (P(0,1)).
By Theorem 5.3 and Theorem 5.4, Jaccg(0) is a bijective linear mapping
from P(0, 1) onto B(0,1). We set h = Jaccg(0). Since h : P(0,1) — B(0,1)
is biholomorphic, h maps dP(0,1) to dB(0,1). Therefore a segment A =
{(t,1) | 0 <t < 1} C 9P(0,1) is mapped by h to 0B(0,1). Since h is
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linear, h(A) is also a segment. Since B is strictly convex, 0B(0, 1) cannot
contain a segment (see Lemma 3.12), which is a contradiction. Hence a
biholomorphic mapping ® does not exist. 0

5.2 The Weierstrass Preparation Theorem

We prove the Weierstrass preparation theorem using the Cauchy integral
formula. Further we prove the implicit function theorem for holomorphic
functions.

Definition 5.6 Let f be a holomorphic function in a neighborhood of
a € C", and let f(a) = 0. We set a = (¢/,a,). We say that f is regular
of order k in z, at the point a if f(a’,z,), considered as a holomorphic
function of the single variable z,,, has a zero of order k at the point z,, = a,,.
Equivalently, the condition can be stated as follows:

g(an) =g'(an) =+ = g(k_l)(an) =0, ¢® (an) # 0,
where g(z,) = f(d, z,).

Lemma 5.2  Let f be a holomorphic function in B(a,€) and let f(a) =0,
f(2) £0. Then after a suitable complex linear change of coordinates in C™,
the function will be regular of order k, k > 1, in z, at the point a.

Proof. There exists p € B(a,¢), p # a, such that f(p) # 0. There exist
constants b;; such that the linear change of coordinates

n—1

Ri = (pi - Qz)((n —an) + Zb”(CJ —aj) + a; (Z =1,--- ,TL)

j=1

is nonsingular. We set g(¢) = f(2(¢)). Then

g(ala"' 7an—171+a’n) = f(plu 7pn) 7& 07

g(alu"' 7an—17an) = f(a17"' 7an) =0.

we set h((,) = g(a1, -+ ,an—1,¢,). Then by the identity theorem, h((,)
has a zero of order k at the point (,, = a,, for some positive integer k. Hence
g is regular of order k in (, at a. O

Lemma 5.3 Let f be a holomorphic function in a neighborhood of 0 and
let f(0) = 0. Let f be regular of order k in z, at 0, k > 1. Then for
each sufficiently small 6, > 0 there is §' = (81, ,0n—1), such that for
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each fized 2’ € P(0',8"), the equation f(2',z,) = 0 has precisely k solutions
(counted with multiplicities) in the disc {|zn| < dp}.

Proof. We set g(z,) = f(0', z,,). By the assumption g(z,) has a zero of
order k at the point 0. Since the zero set of any non-constant holomorphic
function in one variable is discrete, there exists d, > 0 such that g(z,)
is holomorphic and nowhere vanishing in {0 < |z,| < d,}. We set m =
min,,, s, [g9(zn)|. If we choose ¢’ = (d1,---,d,—1) sufficiently small, then
for 2/ € P(0/,4"), |zn| < dp, using the uniform continuity we have

[£(0', 2) = f(2', 20)| < .

Hence for |z,| = d,, we obtain

|g(zn)| >m > |g(zn) - f(zlazn)|

By the Rouché theorem, the number of zeros of g(z,) in {|2z,| < d,} count-
ing multiplicities equals the number of zeros of f(2',z,) in {|z,| < d,}
counting multiplicities. Since g(z,) has a zero of order & in 0 and does not
vanish except 0, f(2', z,) has k zeros in {|z,| < dp}. O

Let f be a holomorphic function in a neighborhood of 0 € C™ and let
f(0) = 0. Suppose f is regular of order k in z, (k > 1) at 0. By Lemma
5.3, there exists § = (1, - -, d,) such that for any 2’ € P(0,¢") f(2/,-) has
k zeros w1(%'), -+, pr(Z’) in {|zn| < dp} counting multiplicities. We set

w(Z',zn) = (20— 1(2) - (20 =1 (2") = 2 +ar—1 () zn "+ Fao(2).

Then the number of zeros of f(2/,-) in {|z,| < ,} counting multiplicities
equals the number of zeros of w(2’,+) in {|z,| < d,} counting multiplicities.
Hence there exists a nonvanishing function w in P(0,d) such that f = wu.
The Weierstrass preparation theorem says that we can choose w and u to
be holomorphic. Moreover, since |¢;(2)| < d,, we have w(2’,z,) # 0 for
2z e P(0,d), |zn| = On.

Definition 5.7 A function
Wz zp) =28 Fap_1(2)2F 1+ a2

is called a Weierstrass polynomial at 0 if a;(2’) for j = 0,--- , k—1 are holo-
morphic in a neighborhood of 0" and satisfies a;(0) = 0 for j = 0,--- ,k—1.

Theorem 5.6 (Weierstrass preparation theorem) Let f be a holo-
morphic function in a neighborhood of 0 € C™ and let f(0) = 0. Suppose f
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is reqular of order k, k > 1, in z, at 0. Then there exists § = (01, ,dn)
such that for z € P(0,0) we have a unique factorization

f(2) = w(z)u(2),

where w(z) = zF + ap_1(2)zE"1 + -+ 4+ ag(2') is a Weierstrass polynomial
at 0 and u is a nowhere vanishing holomorphic function in P(0, ).

Proof. The uniqueness is obvious. By Lemma 5.3 there exist § = (§',6,,)
such that for any fixed 2’ € P(0,d"), f(#',-) has k zeros p1(2'), -, pr(z)
in {|zn| < 6, }. By the argument principle, we have for z’ € P(0,d’)

NN oy L "5t (0)
Sm(2") = ;gpj (=) = 27 /|<|:5n Wdc

Hence Sy, (2') is holomorphic as a function in 2. Moreover, ag, - - , aj are
holomorphic since they are polynomials of Sp, -+, Sk—1. Since f(0',z,) =
2Fg(2,) and g(0) # 0, we have ¢1(0') = -+ = 5 (0') = 0. Hence ag(0') =

- = ag_1(0") = 0, which means that w(z) = zF +ap_1(2")zE" 1+ +
ap(z’) is a Weierstrass polynomial at 0. We set u = f/w. Since u(z’,-) is
holomorphic in {|z,| < §,,} for fixed z’, we obtain

! (f/w) (', )
uw(2',zy) = —/ 22 dC.
( ) 21 [¢|=6n C — Zn C
Since w(z', z,) # 0 for |z,| = dp, u is holomorphic in P(0, ). O

Theorem 5.7 (Weierstrass division theorem) Let w be a Weierstrass
polynomial of degree k at 0, and let f be holomorphic in a neighborhood of
0 € C™. Then there is a unique factorization in some sufficiently small
neighborhood of O

f=wq+r,

where q and r are holomorphic in a neighborhood of 0 and r is a polynomial
in z, of degree less than k with coefficients that are holomorphic functions
szh Tty Zn—1-

Proof. As we mentioned in the remark before Theorem 5.6, there exists
§d = (01, ,0,) = (8,9,) such that if 2/ € P(0,¢"), |zn] = dpn, then
w(z',2) # 0. We set

N __ IO
q(2' zn) = 5— /|<|=5n w(z, O)(C — Zn)dC.
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Then ¢ is holomorphic in P(0,d). Define

r=f—qu.

Then r is holomorphic in P(0,0). Consequently, we have

1 by 2 TERO T dC
T(Z) = o oy {f(z vC) w(z ’zn)w(z’, C)} C— 2zn
L[ B (e ety
27 [¢|=6n LU(Z/,C) C_Zn .

Taking into account that

w(z' Q) —w(e,z) (S =28+ Y50) a;(2)(¢7 — 24)

C—Zn C_Zn ’

r is a polynomial in z, of degree less than k. Next we show the uniqueness.
Suppose we have two factorizations

Qw + 11 =quw+ry = f.
In the equation
=12 = (g2 — q1)w,

the left side is a polynomial in z, of degree less than k& and the right side
has k zeros in z,, which means that r; = r5. Hence we have ¢; = ¢». O

Theorem 5.8 Let f be a holomorphic function in a polydisc P(w,r) C
C™ with the following properties:

(a) f(w)=0.
(b) 2L(w)=1.

Let w = (w',wy). Then there exist 6 = (61, - ,0n) = (¢',n) and a
holomorphic function ¢(z1,-+- ,2n—1) in a polydisc P(w',d§") such that in
P(w,d), f(z1, -+, 2n) = 0 is equivalent to z, = @(z1,** ,2n—1).

Proof. We set

f:U+i1), Zj:xj+ixn+j (j:]-a"'vn)a

T = (xla' T 7x2n); = (xla' oy Tp—1,Tnt1, 7x2n)~
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Then by the Cauchy-Riemann equations we have

af

2
| O(u,v)
0zp, (w ‘

= [stray )]

By the implicit function theorem in real variables, there exist C'*° functions
g(z’), h(z') in a neighborhood of w’ such that u(x) = 0, v(z) = 0 are
equivalent to x, = g(z'), 2, = h(z'). We set p(z') = g(z’) +ih(z’). Then
in a neighborhood of w, f(z) = 0 is equivalent to z, = ¢(z’), which implies
that f(z1, - ,2n—1,¢(2")) = 0. By the condition (b) and Lemma 5.3, there
exists & = (01, - ,0p) such that for 2/ = (21, -+, 2p-1) € P(w',0"), f(2',")
has only zero ¢(z’) of order 1 in |wy,, — z,| < 0. By the argument principle,
we have

1 Cn afgcl 16n)
!/ n
p(z') = — / ———d(,.
() 27 Ji¢ —wn|=s, f(2'5Cn)
Therefore ¢(z’) is holomorphic in P(w’,d"). O
Next we prove the implicit function theorem for holomorphic functions.

Theorem 5.9 (Implicit function theorem) Let 1 < k < n. Let fit1,
-+, fn be holomorphic functions in a polydisc P(w,r) C C™ satisfying the
following properties:

(0) fw)=0 — (G=k+1--n).
) SLw)y =6 Gj=k+1,--n).

Let w = (W', wgq1,- -+ ,wy). Then there exist § = (8”,0k+1, - ,0n) and
holomorphic functions ¢;(z1,---,2x) for j = k+1,---,n in a polydisc
P(w",6") such that in a neighborhood of w, equations f;j(z1,--+,zn) =0
for j = k+1,---,n are equivalent to equations z; = ;(z1, -, 2x) for

j=k+1,--,n.

Proof. We prove Theorem 5.9 by induction on m = n — k. In case
m = 1, Theorem 5.9 follows from Theorem 5.8. Assume that Theorem 5.9
has already been proved for m — 1. Suppose frx41,- -, fn are holomorphic
in P(w,r) and satisfy conditions (a) and (b). We set z = (2, z,), w =
(w',wy,). We apply Theorem 5.8 to f,(z). Then there exist n = (n,7,)
and a holomorphic function ¢(z’) in P(w’,n’) such that in P(w,n), an
equation f(z',2,) = 0 is equivalent to z, = p(z’). We set

gj(Z/):fj(Z/,SD(ZI)) (]:k+17 7n_1)'
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Then fj(z) =0, j=k+1,--- ,n, are equivalent to

gij(z') =0 G=k+1,--- ,n—1),

Consequently, we have g;(w') =0, j=k+1,--- ,n—1. Fori=k+1, ---,
n — 1 we have

dg; (w) = af; Af;j | 0p

ARV

3

By the inductive hypothesis, there are §' = (6", dx+1, -+ ,dn—1) and holo-
morphic functions ¢g41(2”), -+, Yn—1(2") in P(w”,0"”) such that equa-
tions g¢;(2) = 0, j = k+1,---,n — 1, are equivalent to equations
zj=¢;(z"),j=k+1,--- ,n—11in P(w',d"). We set

on(2") = p(2", or1(2"), - on1(2")).

Then equations f;(z) = 0, j = k+ 1,--- ,n, are equivalent to equations
Zj:(pj('z”)vj:k'i_lv"'vn' O

Definition 5.8 Let Q be a domain in C", and let F = (f1, -+, fm) :
) — C™ be a holomorphic mapping. Define

)= (526).

F’(z) is called the Jacobian matrix of F' at z € Q. We say that F is
nonsingular at z if the rank of F’(z) equals min(m,n).

Theorem 5.10 Let Q2 C C" be a domain with 0 € Q. Let n > m. Sup-
pose F': Q — C™ 4s a nonsingular holomorphic mapping and F(0) = 0.
Then there exist a linear change of variables w; = E?Zl ai;z; for i =
1,...,n, 0 = (0, 0n—m+1, " ,0n) where 8" = (61, -+ ,0n—m) and holomor-
phic functions @;(wi, -+, Wp—m) for j=n—m+1,--- ,n in P(0.5") such
that in P(0,0), equations F(w1, - ,w,) = 0 are equivalent to equations
w; =@j(w1, - ,Wpem), j=n—m+1,--- n.

Proof. Let F = (fun—m+1, ", fn). By the hypothesis there exist an
(m x m) matrix B and an (n x n) matrix A such that

BF'(0)A™!' = (0,1),
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where I is an (m X m) unit matrix. We set

B = (b;j) (n—m+1<i,5<n),

A= (aij)a At = (a'/ij) (1 <i,j< ’I’L),

n

9i = Z bljfj (Z:n_m+17an)7

j=n—m-+1

n
wi:Zaijzj (i=1,---,n).
j=1

Further we set G = (gn—m+1, - ,9n). Then F(z) = 0 is equivalent to
G(z) = 0. Taking into account that

dg; - of 3 -~ Of
(’95)]-: Z bika—w];: Z bikza—zlzalsja

k=n—m+1 k=n—m+1 s=1
we obtain
dg; i
—(0) = &%.
8wj( ) J
Theorem 5.10 follows from Theorem 5.9. ]

Corollary 5.3 (Inverse mapping theorem) Let F' be a nonsingular
holomorphic mapping from a neighborhood of z € C™ into C™ and let
F(z) = w. Then there exist a neighborhood U (U C W) of z and a neigh-
borhood V' of w such that F' : U — V has the holomorphic inverse mapping
F~1.V-U.

Proof. We assume that z = w = 0. We denote by J(0) the Jacobian
matrix of F' at 0. Without loss of generality we may assume that J(0) is
the unit matrix. We set H(z,w) = w — F(z). By Theorem 5.10, there
exist € > 0, a polydisc P(0,¢) in C™ and a holomorphic mapping G in
P(0,¢) such that the equation H(z,w) = 0 is equivalent to the equation
z = G(w). Therefore we have w = F o G(w), z = G o F(z), which implies
that G = F~ 1. O

Theorem 5.11 Let Q C C" be an open set. If a holomorphic mapping
F:Q — C" is injective, then detF'(z) # 0 for z € Q.
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Proof. We prove Theorem 5.11 by induction on n. When n = 1, Theorem
5.11 is true. Assume that Theorem 5.11 has already been proved for n — 1.
Now we prove the following lemma:

Lemma 5.4 Let Q C C" be an open set. Suppose a holomorphic mapping
F:Q — C" is injective. If F'(a) # 0 for a € Q, then detF'(a) # 0.
Proof of Lemma 5.4 Without loss of generality, we may assume that
F=(f1, ", fn) ng:(a) # 0. We set w(z) = (21, , 2n—1, fn(2)). Then
det (%”“;’J") (a) # 0. By Corollary 5.3, w™! is a holomorphic mapping in a
neighborhood of a. We set F' = F ow~!. Then we have

F(w) = (g1(w), -+, gn-1(w), wn),
where g1, , gn—1 are holomorphic at b = w(a). Set w' = (wy, -+ ,wp_1)
and G(w') = (g1(w',bn), -+ ,gn—1(w',b,)). Then G is injective in a
neighborhood of ¥ = (b1, -+ ,b,—1). By the inductive hypothesis, we
have detG’ () # 0, which implies that detF’(b) # 0. Hence we have
detF’(a) # 0, which completes the proof of Lemma 5.4.

We continue the proof of Theorem 5.11. We set h = detF’ € O(Q).
Suppose Z(h) = {z € Q| h(z) = 0} # ¢. Then Z(h) contains a n — 1
dimensional submanifold M. By Lemma 5.4, we have F'(z) = 0 for z €
Z(h), and hence F'(z) = 0 for z € M. Consequently, F is locally constant
in M. Since dimcM = n — 1 > 0, this contradicts that F' is injective. [

Corollary 5.4 Let Q C C™ be an open set. If a holomorphic mapping
F :Q — C" is injective, then F(Q) is an open set and F~1: F(Q) — Q is
holomorphic.

Proof. By Theorem 5.11, we have detF’(z) # 0 for z € Q. Hence F(2)

is open. By Corollary 5.3, F~1 : F(Q) — Q is holomorphic. O
Theorem 5.12 Let Q be a pseudoconver domain in C™ and let m be a
positive integer with m < m. Suppose that fi, ---, fm are holomorphic
functions in Q and that F = (f1, -, fm) is nonsingular in Q. We set
M={z€Q| fi(z) == fm(z) =0}

Let a € Q. If f is holomorphic in Q and vanishes everywhere on M, then
there exist a neighborhood U of a and holomorphic functions g1, - - , Gm in
U such that

F(2)=) fi(2)gi(z)  (z€U).
j=1
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Proof. By Theorem 5.10 using a complex linear change of variables there

exist a neighborhood U of a = (a’, ap—m+1, - ,an) and holomorphic func-
tions @; (w1, -+, Wn—m), n —m +1 < j < n, in a neighborhood U’ of a’
such that

MNU={welU|w;j=gpjw, - wp-m), n—m+1<j<nj.

If we set
Cl = Wn—m+1 — Sonferl(wl; e 7wn7m)
Cm = Wn — Qpn(wla e ;wnfm)
Cm+1 = w1

Cn = Wn—m,

then U N M is expressed by
UQM:{CEU|C1:...:Cm:O}.

In case m = 1, we set

fQ)
o = 1(¢).

Then 17 is holomorphic in a neighborhood of 0 and satisfies

J(€) = G (Q).

This proves Theorem 5.12 in case m = 1. Assume that we have already
proved Theorem 5.12 for m—1. Since f is holomorphic in Q1 = {¢; = 0}NQ
and vanishes in 1 N {2 = - -+ {, = 0}, by the inductive hypothesis, there
exist holomorphic functions §;({z2, - ,¢x) (2 < j < m) in a neighborhood
of 0 € C™* ! such that

FO =G0
j=2
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By Theorem 2.14 there exist holomorphic functions g; in a neighborhood
W of 0 such that g; = g; in {(1 =0} NW. We set

1 m
7n(Q) == [ F(O) =D ¢gi(©)
G i=2
Then we have the desired equality. O

5.3 Oka’s Fundamental Theorem

We give a proof of Oka’s fundamental theorem [OkA2| which is the proto-
type of the sheaf theory. Moreover, we state the Cartan theorems A and B
without giving proofs.

Definition 5.9 Let a € C". For a neighborhood U of a and f : U — C,
we say that (f,U) is a function element at a. We say that two function
elements (f,U) and (g, V) at a are equivalent if there exists a neighborhood
W CcUNV of a such that f|w = g|lw. The equivalence class of a function
element (f,U) at a is called a germ of functions at a and is denoted by
f, or v,(f). Further, we denote by F, the set of all germs at a. The set
of all germs f, such that f, has a representative (f,U) with f € C(U)
(f € CF(U), f € O(U)) is denoted by C, ( CE, O,).

By definition we have
O, ccxcckce,cF,

where k is an integer with 1 < k < co. Let (f,U) and (g, V') be representa-
tives of f, and g,, respectively. We define f, + g, and f,g, by an equivalent

class of (f +g,UNV) and (fg,U NV), respectively. Then F, , C¥ and O,
become commutative rings.

Definition 5.10 For the set O, of all germs of holomorphic functions at
a € C™, define

0=0cn= U O

We introduce the basis of all open sets in O as follows:
For an open set U in C™ and a holomorphic function f in U, define

Us={f. | ze U}
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We define the basis in O to be the set of all Uf. Define 7 : O — C" by
7(fy) = a. Let f, € O, and let (f,U) be a representative of f,. Then Uy
is a neighborhood of f, and 7 : Uy — U is bijective, continuous and open
mapping, which means that 7 is a local homeomorphism.

Definition 5.11 Let X be a topological space. We say that a topological
space S is a sheaf over X if there is a surjective local homeomorphism
7: S — X. Hence 7 is an open mapping. For x € X, S, = 7~ !(z) is called
a stalk.

Definition 5.12 Let S be a sheaf over X and Y C X. We say that a
continuous mapping s : Y — S is a section of S over YV if 7 o s(z) = « for
all z € Y. We denote by I'(Y,S) the collection of all sections of S over Y.

Definition 5.13 We say that a sheaf S over X is a sheaf of Abelian
groups over X if each S, (x € X) carries the structure of an Abelian
group, so that if Y C X, s1,s2 € T'(Y,S), then s1 —s2 : Y — S, being
defined by

(51— s2)(x) = s1(x) — s2(zx) (€Y,
is continuous. The sheaf of rings over X is defined similarly.

Definition 5.14 Let R be a sheaf of rings over X and let S be a sheaf of
Abelian groups over X. We say that S is a sheaf of modules over R (or a
sheaf of R-modules), if S, is a R,-module, and the product of a section of
R and a section of S is a section of S. We say that S is an analytic sheaf
if X is a complex manifold and R is a sheaf O of germs of holomorphic
functions.

Definition 5.15 We say that S’ C S is a subsheaf of S if 7|s/ : &' — X
is a sheaf. Hence &’ is a subsheaf of S if and only if S’ is an open subset of
S and 7(8’) = X. If § is a sheaf of Abelian groups, we assume that S, is a
subgroup of S,. Suppose &’ and S are sheaves of Aberian groups over X.
We say that a continuous mapping ¢ : &’ — S is a sheaf homomorphism if
©(S,) € Sy and @, = ¢ls: : S, — S, is a group homomorphism for each
zeX.

Definition 5.16 Let ¢ : 8’ — S be a sheaf homomorphism. Define

Keryp = ngKerapx, Imp = ngImgom.
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Then Ker ¢ is a subsheaf of & and Im ¢ is a subsheaf of S. We have
the exact sequence

0— Kergp -8 % Imp — 0.

Definition 5.17 Let S be a sheaf of Abelian groups and let S’ be a
subsheaf of S. Define

’ !
§/8'= U 8:/S..

We define the quotient sheaf /S’ as the union of all the quotient groups
S /S, for © € X, equipped with the quotient topology, that is, the finest
topology which makes the stalkwise defined quotient mapping ¢ : S —
S§/S8’ continuous. Then g is a sheaf homomorphism and we have the exact
sequence

0-858L8/8 0.

Lemma 5.5 If s1,s2 € T'(Y,S) satisfy s1(zo) = s2(xo), then there exists
a neighborhood W of xo such that si(x) = sa(x) for all x € W.

Proof. Weset s1(zo) = s2(xg) = zo. Then there exists a neighborhood U
of zg such that 7 : U — 7(U) is a homeomorphism. We set W = s71(U) N
55 1(U). Then W is a neighborhood of xg and 7 o s1|w = 7o so|w = I,

which implies that s; = sa = 71| . O

Lemma 5.6 Let Q C C™ be an open set. For a holomorphic function f
in Q, define sy : Q — O by sg(a) =1£, for a € Q. Then sy is continuous.
Moreover, f € O(Q) — sy € T'(Q,0) is bijective.

Proof. Let a € Q. For a neighborhood of a, we set Uy = {f. | z € U}.
Then we have s?l(Uf) = U, and hence sy is continuous. Since mos|q = I,
we have sy € T'(Q2,0). If f1 # fa, then there exist z € ) such that sy, (2) #
sf, (%), which means that sy, # sy,. Next, assume that s € I'(Q, O0). For
a € Q, we have s(a) = f,. Let (f,U) be a representative of f,. Since s
is continuous, there exists a neighborhood W of a such that s(z) = £, for
z € W. Hence there exists f € O(Q2) such that s = sy. O

Definition 5.18 We say that a commutative ring A with unit is Noethe-
rian if every ideal I C A is finitely generated, that is, if there exist elements
fi,-++, f; €1 so that every f € I can be written

J
F=> aifi
i=1
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for some ay,--- ,a; € A.
Theorem 5.13 Oy is a Noetherian ring.

Proof. 1In case n = 1, Theorem 5.13 is trivial since every ideal in Oy
is generated by a power of z using the Taylor expansion. Assume that
Theorem 5.13 has already been proved for the ring Oy(C"~1). Suppose I
is an ideal in Oy which contains some non-zero element. Let f € I be a
non-zero element. Then by a change of coordinates we may assume that f
is regular of order k in z,. For g € I, by the Weierstrass division theorem
we have a representation

g=qf +r,

where 7 is a polynomial in z, of degree less than k. Let M be aset g € I
such that g is a polynomial in z,, of degree less than k. Then M is regarded
a submodule in Op(C"~1)P. By the inductive hypothesis, Og(C"™1) is a

Noetherian ring, and hence M is finitely generated. If fi,---, f; is the
generators for M, then fi,---, f,, f generate I. Consequently, Oy is a
Noetherian ring. 0

Lemma 5.7 Let f, g and w be holomorphic functions in a neighborhood of
0 € C". Suppose w is a Weierstrass polynomial in z, and f is a polynomial
in zn. If

f=gw,
then g is a polynomial in z,.

Proof. Since the coefficient of the term of w of the maximal degree in z,
equals 1, f is expressed by

f=qu+r,

where ¢ and r are polynomials in z,, and the degree of r is less than the
degree of w. By the uniqueness of the Weierstrass division theorem we have
r=0,q=g. g

In order to prove Oka’s fundamental theorem, we need the following
lemma.

Lemma 5.8 Let {fy} be a sequence of at most countable non-zero holo-
morphic functions in a neighborhood U of 0 € C™. Then there exists an
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invertible linear change of variables
n
zi=> ajpzi (j=1,---,n)
k=1

such that for all A, fx(2*) = fa(z) satisfy the following properties:

f;(ZI,O,,O)q_éO, f;(O,ZS,O,,O)iéO, Ty f)\*(oaaovz:z)7_é0
(5.3)
Proof. In the power series expansion of f)
oo
f)\(zla"' ,Zn) = Z afli\-)--l/nzi/l "'Zzna
vy V=0

we rewrite the right side of the above equality by the series of homogeneous
polynomials so that sy is the least homogeneous degree. Since

oo
* * A * *
f)\(07"' 507Zk507"' 50) = Z a/(ul,)~~~,l/7,,(alkzk)yl "'(ankzk)yna
V1 un =0
it is sufficient to choose o (j,k =1,---,n) with the following properties:

S aYe @) (@) A0 (k=1 n),

vitetvn=sy

det(ajx) # 0.

By the Baire theorem (Lemma 1.4), there exist o (j,k = 1,--- ,n) which
satisfy the above properties. O

Theorem 5.14 (Oka’s fundamental theorem) Suppose Q is an open
set in C™. For z € Q and Fy,--- ,F, € O(Q)?, define a submodule
R.(F1, -, Fy) of O as follows:

q
RZ(Fla"' ﬂFq):{G: (glv"' 7gq) €Og | ZQJVZ(FJ):O}
j=1

Given zy € ), one can then find a neighborhood w C Q of zy and
finitely many elements Gy,--- ,G, € O(w)? such that for any z € w,
RZ(FI; e ;Fq) is generated by 'Yz(Gl)a e a’Vz(Gr)'
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Proof. We assume zg = 0.
(a) Suppose that p > 1. Assume that the theorem has already been
proved for p — 1. Let Fj = (F},--- , F}). Evidently we have

R.(Fy, - ,F,) C R,(F},--- ,F}).

q

By the inductive hypothesis, there exist a neighborhood w’ of 0 and
Hy,--- ,H, € O(w')? such that for any z € ', R.(F{,--- , F) is generated
by v.(H1), -+, v.(H,). Consequently, we have

R.(Fy, -, F, Zc”yz )| deo, (z € ).

Let Hj = (Hj,--- ,HJ). Then }"_, ¢/v.(H;) € R.(Fy,--- , F,) if and only
if
Z Z Ay (HF ). (Fr) = 0. (5.4)
k=1 j=1
(5.4) is equivalent to the following equations.

q

DY v (HIF) =0 (i=1,---,p). (5.5)

k=1 j=1

Since v.(H1), -+ ,7:(Hy) € R.(F},--- ,F}), we obtain

q q
Z'YZ(H]]?)'YZ(FI%):Z’Yz(HJkal):O (=1, ,7).
k=1 k=1

Hence (5.5) holds when i = 1. We set

q q
- k2 k pp
Lj_<ZHij,---,ZHij>.
k=1

k=1

It follows from (5.5) that 22:1 ¢v,(L;j) = 0. By the inductive hypothesis,
there exist a neighborhood w of 0 and K, -+, K; € O(w)"such that for
z € w, (c1,++,¢r) is generated by 7, (K1), - ,'yz(K ). Hence there exist
ap € O, for k=1,---,s such that

= EOKSVZ(K)
k=1
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Therefore every element of R,(Fi,--- , F,) has a representation

chvz(Hj) =33 oy (K])y=(Hj),

j=1k=1

which implies that if we set

Gk:ZK]‘zH] (k:17"'58)5

j=1

then for z € w, R,(F,--- , F,) is generated by 7.(G1),- -+ ,72(G5s).

(b) When n = 0, the theorem holds for every p. Assume that the
theorem has already been proved for n — 1 dimension and for all p. We will
prove the theorem for n dimension and for all p. In (a) we have proved that
if the theorem is true for p — 1, then the theorem is true for p when p > 1.
Hence it is sufficient to prove the theorem when p = 1. By Lemma 5.8,
without loss of generality we may assume that F,--- , F, are Weierstrass
polynomials in z, at 0. We denote by p the maximum of degrees in z,
of Fy,---,F;. We assume that p is the degree in z, of Fj,. We prove the
following lemma.

Lemma 5.9 Let ( = (¢',¢,) € C". Then R¢(Fi,---,Fy) is gener-
ated by finitely many elements whose components are gems of functions
in n—10¢[2n] with o degree in z, which does not exceed fi.

Proof of Lemma 5.9 By the Weierstrass preparation theorem we have
W (Fy) = F'F,

where F” is a germ of a Weierstrass polynomial in z — ¢ and F” is a germ
of holomorphic functions which do not vanish at ¢. Since

Fy=z+ a1 ()27 + -+ ao(2),

F, is a polynomial in z, — ¢,. By Lemma 5.7, F" is a polynomial in
zn — Cn, and hence a polynomial in z, with leading coefficient equal to 1.
We denote degrees of F/ and F” in z, by u' and p”, respectively. Let
(c1,-+-,c%) € Re(Fu, -, Fy). Then by the Weierstrass division theorem
we have

E=t"F 4t =y (F)E 47 (=1, ,q—1),
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where ¢/ i, t',r" € O¢ and each r; is a polynomial in z, with the degree less
than u'. We set

q—1
rd =1 — Z'yC(F t*
i=1
Then we obtain

(617"' 7Cq) :rYC(F(pOa 507_F1)t1+')/((07an07"' 507_F2)t2 (56)

_|_..._|_7<(0,... ,O,Fq,—Fq_l)t‘Fl + (7“1,--- 7Tq).

Consequently we have (r!,--- r9) € R¢(Fy,--- , F,). Hence we have

Zr e (F, Zr e (Fy) + (r'F")F' = 0.

Since the degree of Zz L rive(Fy) in 2y, is less than p+ ¢/, by Lemma 5.7
the degree of r?F" in z, is less than u. In the equality

1
(7,,17”_774]) F,/(F” ! "'aFHTq)7
the degrees of F”'r7 (j =1,---,q) in 2, are less than . Hence Lemma 5.9

follows from (5.6), which completes the proof of Lemma 5.9.

End of the proof of (b) Let (¢!, - ,c?) be one of the elements in
R¢(Fi,--- , Fy) described in Lemma 5.9. Then we have

o
d = chk'yg(sz) IF e 0.

Since (c',---,c?) € Re(Fh,- -+, F,), we have

j2

M=

(Fy) = 0.
j=1 k=0
Consequently, we have
n
D (e (Fr) o+ e () (28) = 0. (5.7)
k=0

Let

Fi(z) = aju(z 22+ Ajp— 1(2/)2“71 Rl ajO(Z/)~
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Since coefficients in z¥ for k =0,--- ,2u in (5.7) are 0, the coefficient of z*
in (5.7) is equal to 0. Hence we have

10 0 11
Mar, + -+ cPag, + cMayg +

1 1
+clagu—1+---+ctaro+ -+ cagn =0.

By the inductive hypothesis, there exist a neighborhood w’ of 0 € C*~! and
Cigy s Cr € O(W)4, k=0,---, u, such that (c*¥,---  ¢?) is generated
by Cik,---,Cr,.k. Since

o
(Cla e acq) = Z(Clk7 T aCQk)’YC(Z»Z)a

k=0

Re(Fy, -, F,) is generated by germs of Cyj2¥, -+, Cropzk (K =0, , u)
for ¢ = (', ¢,) with ¢’ € w’. This proves (b). |

Definition 5.19 An analytic sheaf S on the complex manifold {2 is said
to be locally finitely generated if for every z € 2 there exists a neighborhood
w of z and a finite number of sections fi,---, f; € I'(w, S) such that S; is
generated by v¢(f1), -+ ,7¢(fq) as an O¢ module for every ¢ € w.

Lemma 5.10 Suppose that an analytic sheaf S is locally finitely gen-
erated. Let fi,---, fq be sections of S in a neighborhood of z such that

V2(f1), - v:=(fq) generate S.. Then v¢(f1), - ,vc(fq) generate S for
every ¢ in a neighborhood of z.

Proof. Since S is locally finitely generated, there exist a neighborhood
wof zand g1, -+ ,gr € I'(w,S) such that for any ¢ € w, v¢(g1), - v (9r)
generate S¢. On the other hand, by the hypothesis we have

M-

'Yz(gi): 'Yz(cij)')/z(fj) (i: Lyr).

<
Il
—

By Lemma 5.5 there exists a neighborhood W of z such that for { € W,

M-

Yelgi) = D velei)ve(fs)  (E=1,---,7).

<
Il
—

O

Definition 5.20 Let S be an analytic sheaf on the complex manifold (2
and let w be an open subset of 2. For f1, ---, f; € I'(w,S), define the sheaf
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homomorphism h : 07 — S by

q
015075 (g' g7 Y gla(f) eS. C 8.

j=1
The subsheaf R(f1,-- -, fq) of O7 is defined by

R(fla T afq) = Zgw{(glv e 79q) € Oz | h(gl, T 7gq) - O}a
and is called the sheaf of relations between fi,---, fq.

Definition 5.21 Let S be an analytic sheaf on the complex manifold €.
S is called coherent if

(1) S is locally finitely generated.
(2) If w is an open subset of Q and fi, -, fy € I'(w,S), then the sheaf of
relations R(f1,--- , fq) is locally finitely generated.

Theorem 5.15  FEvery locally finitely generated subsheaf of OP is coher-
ent.

Proof. We show (2) in the definition of the coherent sheaf. Since
fi,--+, fq € O(w)P, by Oka’s fundamental theorem (Theorem 5.14) the
sheaf of relations R(f1,- -, fq) is locally finitely generated. O

Theorem 5.16 Let S be a coherent sheaf on the complexr manifold Q and
let w be an open subset of Q. If f1,---,f; € T'(w,S), then the sheaf of
relations R(f1,--- , fq) is also coherent.

Proof. Since S is coherent, R(f1, -, fy) is locally finitely generated.
Theorem 5.16 follows from Theorem 5.15 and the fact that R(f1,--- , fq)
is a subsheaf of O4. O

Example 5.1 There is a subsheaf of O which is not coherent.

Proof. Suppose that w and €2 are open sets in C with ¢ # w C Q, w # Q.
Define

[0, (zew)
SZ{ 0 (zeQw) "

Then § is a subsheaf of O. Every section of S over a connected open set
which intersects Q\w must be 0 (see Exercise 1.5). Hence if S is finitely
generated in some connected neighborhood of a boundary point of w, then
we have S, = 0 in the neighborhood, which is a contradiction. O
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Definition 5.22 Let X be a paracompact Hausdorff space and let S
be a sheaf of Abelian groups in X. Let U = {U; | j € J} be an open
cover of X and let ¢ be a nonnegative integer. We say that c is a ¢-
cochain for ¢ with coeflicients in S if ¢ is a mapping which assigns to each
(¢ + 1) tuple (jo,j1,-- ,Jq) € JU with Uj, n---NU,, # ¢ a section
Ciogirjq €L (UjeN---NUj,,S). Define cj, ... j, = €ciy,... i,, Where e = &1
is a sign of the permutation
<J’o,j1, ,jq)
i0y 01, - 5 ig

We denote by C4(U, S) the set of all g-cochains. A coboundary mapping
§q: CUU,S) — CT1(U,S) is defined as follows:

g+1

(640 jodarr = D (1) 0 5o
k=0
where jo - Ji - - - Jq+1 means that jj is omitted. By definition we have
dg+1004 =0 (g > 0). (5.8)
Define
ZYU,S) ={ceClU,S) | b4¢c =0} (¢ >0)
and

BUU,8) = {dg-1c| c€ CTIU.S)}  (¢=1).

An element Z9(U,S) is called a g-cocycle and an element of BZ(U,S) is
called a g-coboundary. Define B*(U,S) = 0. It follows from (5.8) that
B1(U,S) C Z1(U,S). Define

HYU,S) = 29U, S)/BIU, S).

H1(U,S) is called a ¢-th Cech cohomology group of U with coefficients in
S.

Definition 5.23 Let V = {V; | i € I} be a refinement of U, that is, there
exists a mapping 7 : I — J such that V; C U, ;) for ¢ € I. Define

T, CUU,8) - CI(V,S)  (¢=0)
by

(T;(C))iomiq = Cr(io)~~~7(iq) Vioﬁ---ﬁViq'
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Since 7,1 04 = 4 0 7, we define
MY HUU,S) — Hy(V,S)
by
Y ([e]) = [rycl.
We have the following lemma. We omit the proof.
Lemma 5.11 pz(;“) 1s independent of the choice of 7.

Definition 5.24 For two open covers U, W of X, we say that [¢] €
HY(U,S) and [d] € HI(W,S) are equivalent if there exists a refinement V
of U and W such that

Y ([e]) = pyY ([d))-

We denote by H?(X,S) the set of all equivalent classes by this equivalent
relation. H4(X,S) is an Abelian group. H?(X,S) is called the ¢-th Cech
cohomology group of X with coefficients in S.

By definition we have the following lemma.

Lemma 5.12  For an open cover U of X, we have
HY(X,8)=H'U,S)=2°WU,S) =T(X,S).

Definition 5.25 Let ¢ : & — S be a sheaf homomorphism and U an
open cover of X. Define p : C1(U,S’) — C1(U,S’) by

o(c) = poc.
Moreover, we define ¢}, and ¢? using ¢ such that
ol HOU,S') — HU,S)
and
0! H(X,S") — HY(X,S).
Then we have the following theorem.

Theorem 5.17 Suppose

082848 =0



The Classical Theory in Several Complex Variables 319

is an evact sequence of sheaf homomorphisms over X and H'(X,S') = 0.
Then

Y0 T(X,S) - I'(X,8")
18 surjective.

Proof. Let s € T'(X,S8"). For x € X, we have s”(z) € SJ. Since ¢
is surjective, there exists s, € S, such that 1(s;) = s”(z). There exist
a neighborhood W of x and a section §, € I'(W,S) such that §,(z) = s,
(see Exercise 5.2). Consequently, we have 9 o s;(z) = s”(z). By Lemma
5.5 there exists a neighborhood U, C W of z such that ) o s, = s” in
U, WesetU = {U, | x € X}. Then we have § = {s,} € C°(U,S).
Since 1 o (6p8) = do(¢ 0 §) = dps” = 0, we have §p§ € B(U,Kery)). Since
Im ¢ = Ker, there exist a refinement V ={V, | v € X} (V, C U,) of U
and s’ € C*(V,8’) such that

pos =dys.
Consequently,
o (618") =d1(pos’)=061(6p8) = 0.

Since ¢ is injective, we have d;s’ = 0, which implies that s’ € Z1(V,8").
Since H'(X,S8’) = 0, taking a refinement of V if necessary, we may assume
that s’ € B1(V,8’). Hence there exists g € C°(V,S’) such that s’ = dog.
Thus we have

§os = pos = o (dog) =do(pog).

If we set s = § — ¢ o g, then we have dps = 0, and hence s € T'(X,S).
Moreover, we have

bos=1os—popog=s",
which means that ¢°(s) = s”. Hence ¢ is surjective. O

Definition 5.26 A o compact complex manifold Q is said to be a Stein
manifold if

(a) Q is holomorphically convex, that is, for any compact subset K of €,

K§ ={2€ Q| |f(2)| <sup|f| for all f e O(Q)}
K

is compact.



320 Several Complex Variables and Integral Formulas

(b) For z1,29 € Q 21 # 22, there exists f € O(Q) such that f(z1) # f(z2).
(c) For every z € Q, one can find n functions fi,---, f, € O(Q) which
form a coordinate system at z.

Remark 5.1 Every pseudoconver domain in C™ satisfies (a), (b) and
(¢), and hence it is a Stein manifold.

Theorem 5.18  FEvery submanifold of a Stein manifold is a Stein mani-

fold.

Proof. Let V be a submanifold of a Stein manifold Q. Since O(Q) C
O(V), we have K@ ¢ K§. Hence V is holomorphically convex. This
proves (a). (b) is trivial. Let v € V. Then there exist a neighborhood w of
v and a local coordinate system z1,--- , z, in w such that

wNV ={wew| zZmt1(w) =+ = z,(w) = 0}.

Let f1, -+, fn € O(R) be a coordinate system at v. Then at z(v) we have
0
det( f’) £0 (i,7=1,---,n).

Hence we can choose 1, - , i, such that

det( f“‘) 40  (j=1,---,m).

Thus the restrictions of f;,,---, fi., to V form a local coordinate system at
. U

Definition 5.27 We say that a subset A of a Stein manifold Q) is an
analytic subset if A is a closed subset of 2 and for any p € A there exist
a neighborhood U, of p and holomorphic functions hy,- -, hy, in U, such
that

UyNA={z€U,|hi(z) = = hy,(2) = 0}.

Definition 5.28 Let A be an analytic subset of a Stein manifold Q. A
continuous function f : A — C is said to be holomorphic in A if for any
a € A there exist a neighborhood U, of a in © and a holomorphic function
he in U, such that f(z) = he(2) for all z € ANU,.

Definition 5.29 Let A be an analytic subset of a Stein manifold 2. We
define a subsheaf F4 of O in such a way that (Fa), = O, for z ¢ A, and
(Fa), ={f, € O, | fla =0} for z € A. Fy4 is called the sheaf of ideals of
the analytic subset A.
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We have the following theorem. The proof is omitted (see Gunning-
Rossi [GUR)).

Theorem 5.19  Fvery sheaf of ideals T of an analytic subset of a Stein
manifold is coherent.

We omit the proof of the following lemma (see Gunning-Rossi [GUR]).

Lemma 5.13 If in an ezxact sequence of sheaves
0-8—-8—-8" -0

any two of the sheaves S', S, 8" are coherent sheaves, then the third is also
coherent.

The following theorem is known as Theorem A and Theorem B of Car-
tan. We omit the proof (see Hormander [HR2], Gunning-Rossi [GUR]).

Theorem 5.20 Let Q be a Stein manifold and A a coherent sheaf over
Q. Then

(a) (Cartan theorem A) Let z € Q. For any s € A, there exist
fioo e €D(Q,A) and s1,- -+, sk € O, such that

= Zsj(fj)z-

j=1
(b) (Cartan theorem B) H?(Q2, A) =0 (g >1).

Corollary 5.5 Let Q be a Stein manifold and let A be an analytic subset
of Q. Then for any z ¢ A there exists f € O(Q) such that f(z) # 0,
fla=0.

Proof. Let z ¢ A. Then there exist a neighborhood U of z and a holo-
morphic function s in U such that s(z) # 0, s|4 = 0. Let F4 be the sheaf

of ideals of A. By the Cartan theorem A, there exist holomorphic functions
$1,++, 8k in a neighborhood of z and f1,---, fr € T'(R2, Fa) such that

s=>_ 8i(fi)

j=1
Hence there exists jo with 1 < jo < k such that f;,(z) # 0. O

Corollary 5.6 Let Q be a Stein manifold and let A be an analytic subset
of Q. Then every holomorphic function in A can be extended to a holomor-
phic function in S).
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Proof. We denote by F4 the sheaf of ideals of A. T'(Q2, O(Q)/F4) can be
regarded as the set of all holomorphic functions in A. Since F 4 is coherent,
we have H(Q2, F4) = 0. By the exact sequence of sheaves

0—Fa—08)—0Q)/Fa—0,

I'(Q,0(0)) — I'(Q,0(02)/Fa) is surjective, which means that for a holo-
morphic function f in A there exists F' € T'(Q,O(Q)) with F|4 = f. O

Definition 5.30 Let X be a complex manifold. An open cover U =
{Ui}ier of X is said to be a Stein cover if U is a locally finite cover and
each U; is a Stein open set.

The following theorem holds. We omit the proof (see Grauert and Rem-
mert [GRR]).

Theorem 5.21 Let X be a complex manifold and let U be a Stein cover
of X, S a coherent sheaf over X. Then

HYU,S)=HYX,S) (g >0).

The following theorem follows from Theorem 5.19, Theorem 5.20 and
Theorem 5.21.

Theorem 5.22 Let 2 C C™ be a pseudoconvex domain. Let A be an
analytic subset of Q and let Fa be the sheaf of ideals of A, {U;}jer a Stein
cover of Q. Suppose fi; € T(U; NU;, Fa) satisfy the equalities

fii(2) + fie(2) + fri(z) =0 (2 € U;NU; N Uy, 4,5,k € I).
Then there exist f; € I'(U;, Fa) such that
fij(z) = fi(z) = fi(z) (€ UinUj, i,j €1l).

Theorem 5.23 Let A be a coherent analytic sheaf over a Stein manifold
Q and let S be a subsheaf of A. Let s1,---,s, € T'(Q,A). Suppose that
S1,++ , 8k generate S, over O, for each z € Q. Then for s € T'(Q, S), there
exist f1,--- , fr € [(Q, O) such that

k
s = Z ijj.
j=1
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Proof. Define p: O(Q)* — A by
k
So(bla"'abk)zzbjsj ((b1,~'~,bk)€O§,Z€Q).
j=1

By Theorem 5.16 Ker ¢ is coherent. By the Cartan theorem B, we have
H(Q,Kerp) = 0.
By applying Theorem 5.18 to the exact sequence of sheaves
0— Kerp — OQ)F 58 —-0

we have that ¢¥ : T'(Q,O(Q)*) — I'(Q,S) is surjective. Consequently, for
s € T(Q,S), there exist (f1,---, fx) € D(Q,O(2)¥) such that

k
5= Z fis;.
Jj=1 O
Corollary 5.7 Let ) be a pseudoconvex domain in C™ and let A be an

analytic subset of Q). Suppose that there exist holomorphic functions s1(z),
<+, 8k(2), k< n, in Q such that

A={z€Q|s1(z) = =s,(z) =0}
and F = (s1,--+,8k) is nonsingular in Q. If g is a holomorphic function
in Q with g|la = 0, then there exist holomorphic functions f1, -+, fi in Q

such that
k
9(2) =Y _fi(2)si(z) (2 €9).
j=1

Proof. Let T be the sheaf of ideals of A. We apply Theorem 5.23 by
setting A = O(Q), § = Z. We have g € T'(Q,Z). By Theorem 5.12
(s1,--- , sk) satisfies the hypothesis of Theorem 5.23. O

Theorem 5.24  Let § be a Stein manifold and let K be a compact subset
of Q, w a neighborhood of K. Then there ewists ¢ € C>(Q) with the
following properties:

(a) ¢ is a strictly plurisubharmonic function in .
(b) p<0in K and ¢ >0 in Q\w.
(c) For everyce R, {z€ Q| p(z) <c} CC
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Proof. For simplicity, we adopt the notation K instead Kg . Since (2 is
o compact, there exists a sequence {K;} of compact sets such that 2 =
U?‘;IKJ‘, Kj C IA(jJrl. Hence we have Q = U(J?ilKja Kj C KjJrl. By
replacing K; by K, we can obtain a sequence {K;} of compact subsets of
Q) such that

K, :K, Kj CK;Jrl, Kj:Kj, Q= _(L)JOIKJ'.
j=

We choose open sets w; with the properties that K; C w; C K41, w1 Cw.
Let a € K2 —wj. Since a € K, there exists f;, € O(Q) such that

|fja(a)| > Sup |fja|'

J

We choose a, such that

|fiala)| > ajo > sup | fial-

J

We set gjo = fja/ja. Then we have

lgja(a)] > 1, suplgja| < 1.

J

Since K2 —wj is a compact set, there exist an open set W}, and functions
gik € O(), k=1,---  k;, such that

k .
Kjir—w; € U Wi, suplgul <1, |gu(2)] > 1 (z € W)
= p

Consequently, we have

suplgju| <1 (k=1,--- k), max|gp(2)| >1 (2 € Kjs2 —wj).
K’.

J

Replacing g;i by g7}, (m is sufficiently large), we obtain

kj

Sl < = (e K (5.9)
27

k=1

and

kj
Z g% (2)[> > j (z € Kjyo —wj). (5.10)
k=1
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Further we may assume that g;i, k =1,--- , k;, contains n functions which
form the coordinate system at any point in K;. Define

oo kf7

2)=> > |flx) - 1L (5.11)
j=1k=1

By (5.9) the series in the right side of (5.11) converges. By (5.10) we have

¢ > j —1in wj. Therefore we have ¢ > 0 in w®. By (5.9) we have

¢ <>72,277=11in K. On the other hand

=

SN i) Q)

1

E
I

Jj=1

converges uniformly on every compact subset of 2 x Q and is holomorphic
in (z,(), and hence can be expanded to a power series. Hence we obtain

" 9% 5‘ka
Z 8zg82t wty = ZZ Z 82@ Ws

s,t= Jj=1k=1|s=1

2

Assume that for all j, k

Z %J;]k (z)ws = 0.

s=1
Since fjr (k = 1,---,k;) contain n functions which form a coordinate
system at z, we have w = 0. Hence ¢ is strictly plurisubharmonic. (c) is
trivial, which completes the proof of Theorem 5.24. g

Lemma 5.14 Let Q be a Stein manifold and let K be a compact subset
of Q with K = K§. Let w be a neighborhood of K. Then there exists an
analytic polyhedron P such that K C P CC w.

Proof. We may assume that w CC Q. Let z € Jw. Since z ¢ K’g, there
exists f € O(f2) such that

|f(2)] > sup [f].
K

We choose « such that |f(2)] > a > supg | f|- Weset g = f/a. Then |g| <1
in K, |g(z)| > 1. By the Heine-Borel theorem, there exist fi,---, fn €
O(9) such that if we set

P/:{Z€Q||gj(z)|<1(]:1a7N)}a
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then K € P/, 0wNP = ¢. Let P = wN P’. Then P is an analytic
polyhedron we seek. O

5.4 The Cousin Problem

We study the Cousin problem using the L? estimate for solutions of the 0
problem on Stein manifolds due to Hérmander [HR2).
Hérmander [HR2] proved the following theorem. We omit the proof.

Theorem 5.25 Let Q be a Stein manifold. Then for f € C(C’;’qH)(Q)
with Of = 0, there exists u € C&fq) (Q) such that Ou = f.

Theorem 5.26 (First Cousin problem) Let Q be a Stein manifold and
let {w;} be a sequence of open subsets of Q) with Q = U2 w;. Suppose that
gik € O(w; Nwy), 4,k =1,2,---, satisfy the following conditions:

(a) gjk = —gu;-
(b) gij + gjk + gri = 0 in w; Nw; N wg.

Then there exist gj € O(w;) such that
9ik = Gk — 9j
m w; N wg

Proof. Let {¢,} be a partition of unity subordinate to {w;}. Then we
have ¢, € C°(w;,). Further, for any compact subset K of €2, ¢, equals
identically zero on K except for a finite number of v and

Suppose that g;i is expressed by g;x = gr —g; in wjNwy. Let j =4,. Then
we have

9i,k = Gk — Gi,, -

If we multiply by ¢, and add with respect to v, then we obtain

oo oo
Z Pvik = Gk — Z Pvi, -
v=1 v=1
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Define

oo
hi, = Z PrYi, k-
v=1

Then we have hy, € C°°(wy). Moreover we have
oo oo
hie—hy = 0u(Givk = 9ivi) = Y Pudik = Gk
v=1 v=1

in w;j Nwg. If we set 1 = Ohy in wy, then ¢ € C(Ogl) Q) and 9y = 0.
By Theorem 5.25, there exist u € C°°(2) such that du = —1). We set
gk = hi + u. Then gy are solutions we seek. O

Lemma 5.15 Let Q C RN be a simply connected domain. Suppose
f:Q — C is continuous and nowhere vanishing. Then there exists a
continuous function g in Q such that f = e9.

Proof. Let P € . Without loss of generality we may assume that
Re f(P) > 0. Then there exists a neighborhood Up of P such that f(Up) C
{z | Rez > 0}. Hence we can define a continuous function log f in Up. Fix
Py € Q. Let v : [0,1] — Q be a smooth Jordan closed curve such that
~v(0) = v(1) = Py. For each P on v we can choose a neighborhood U, of
P having the property mentioned above. Then we can define a function
log f(y(¢)) for 0 < ¢ < 1. Assume that log f o v(0) # lim;—,1_ log fory(t).
Since Q is simply connected, there exists a continuous function u(s,t) on
[0,1] x [0, 1] such that

u(0, ) =~(t)  (0<t<1),

If we set

lim log f(u(s,t)) —log f(u(s,0))},

P(S) = 9 L

then p(s) is an integer valued continuous function and equals 0 when s is
close to 1. Then p(0) # 0, which is a contradiction. Hence we can define
log f(y(t)) for 0 <t < 1. Since 7 is an arbitrary closed Jordan curve, we
can define log f in Q. We set g =log f. Then f = e9. g
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Lemma 5.16 Let Q C C" be a simply connected domain and let f : ) —
C be holomorphic and nowhere vanishing. Then there exists a holomorphic
function g in Q such that f = e9.

Proof. By Lemma 5.15 there exists a continuous function g in € such
that f = e9. Then we have in the sense of distributions

_9f _ 49

0= — 927
32]‘ € a%’
and hence
0
24 ~o.
82’]‘
Hence g is holomorphic. O

Definition 5.31 We denote by O*(Q2) the set of all nowhere vanishing
holomorphic functions in a complex manifold 2. We also denote by C*(2)

the set of all nowhere vanishing continuous functions on a complex manifold
Q.

Theorem 5.27 (Second Cousin problem) Let Q be a Stein manifold
and let {w;} be a sequence of open subsets of Q) with Q = U2, w;. Suppose
that g;x € O*(wyNws), 4,k =1,2,---, satisfy the following properties:

(a) gjkgrj = 1.
(b) 9ijGikgr: =1 in w; Nwj Nwy.
Moreover, suppose there exist c; € C*(w;) with the properties

_ —1
9jk = CkC;

in wj Nwy. Then there exist g; € O*(w;) such that
gjk = 9kg; |
m wj N wg.
Proof. By the assumption there exist ¢; € C*(w;) such that

ik = Ckcj_l
in wj Nwg. First we assume that w; is simply connected. By Lemma 5.16
there exist b; € C(Q) such that ¢; = e%. We set hjp = by, — b;. Then we
have

gjk = ckcj_1 = elir,
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Using the same method as in the proof of Lemma 5.16, hj; is holomorphic
in wj Nwy. Evidently we have
hij = —hji,  hig + hji + hg; = 0.
By Theorem 5.26 there exist hy € O(wy) such that
hjk = hi, — h;

in wj Nwy. We set gi = e’ Then

gk9;1 = Gjk-

Next we prove the general case. Let {w]} be a refinement of {w;} whose
elements are simply connected open subsets of 2. Then for any v, there
exists i, such that w!, C w;,. Define

/ e . .
Gup = Giviy

in w,, Nw,,. Then from the proof of the first half, there exist g, € O*(w},)
such that

~1
Gou = 990
in w;, Nw;,. Consequently, we obtain
r o1 —1 o
9.9,  9i,i%i, =1

inw;Nw!, ﬁu)/’i C wiNw;, Nw;, . Hence we have g/'igiu,i = ¢)gi,i in w;Nw, ﬂwL.
If we define g; = g.,gi,; in w; Nw,,, then g; € O*(w;). Therefore we obtain

9k9; " = 909i,0(9090,5) " = GikGsi, = Gk

in w, Nw;j Nwg. O

Exercises

5.1 (Poincaré theorem) Define

A={zeC||z|<1}, B={weC?||wl <1}.
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Show that there is no biholomorphic mapping F = (f1, f2) : AXA — B
by proving the following:

(a) For w € A, define a holomorphic mapping F, : A — B by

_(0h fa
Fue) = (G2 ). G2 o))
Then for any 2z € A we have

lim F,(z) =0.

zZ—Zz0
(b) F(z,w) is constant with respect to w.
5.2 Let (S, 7, X) be a sheaf over X. Show that if s, € S;, then there
exists a neighborhood U of z and s € I'(U, S) such that s(x) = s;.
5.3  Suppose C! curve ¢ : [0,27] — C\{0} satisfies p(0) = ¢(27). Show

that
B 1 27 501(0)
N =5 |, S

is an integer.

5.4  Suppose g is a C! function in {z € C | |z| < 1} and nowhere vanish-
ing. Prove that if we set ¢(6) = g(e'?), then N(p) = 0.

5.5 (Oka’s counterexample) Define
Q={(z1,22) €C? | 3 < |z| < 5,j =12}
Then 2 is a domain of holomorphy. Define
A={z€Q |2 —2z+1=0},

w=AN{z€Q|Imz; <0}, wa=AN{ze€Q|Imz >0}
and
Up=Q—wy, Us=Q—uws.
Show that
(a) AN{zeQ|Imz =0} =¢, A=w1Uwy, Q=U;UU,.

(b) Define f1 = z0 — 21 + 1 in Uy, fo =1 in Us. Then fgffl e O*(U1 N
Us).

(c¢) Thereisno f € O(Q2) which satisfies f/fo € O*(Ua), f/f1 € O*(Uy).



Appendix A

Compact Operators

In Appendix A we prove Proposition A.10 and Proposition A.13 concerning
compact operators which are needed to prove Theorem 3.30 and Theorem
3.29, respectively. For the proofs we refer to Berezansky-Sheftel-Us [BES].

Let E4 and E5 be normed spaces and let A : E; — FE5 be a bounded
operator. Define A* : Eff — E{ by

(A" f)(x) = f(Ax)  (f € By, x € En). (A1)

A* is called a conjugate operator of A.

For a bounded linear operator A : E1 — FEy, A* : E}, — Ej is a bounded
linear operator. Moreover, we have ||A*|| = || 4]|.

Let X and Y be normed spaces.

(1) We denote by B(X,Y) the set of all bounded linear operators T :
X — Y. Moreover, we denote B(X, X) by B(X).

(2) A linear operator T : X — Y is called a compact operator if for any
bounded sequence {x,,} of X, there exists a subsequence{x,, } of {x,,} such
that {T'(x,,)} converges to a point in Y.

(3) We say that T' € B(X,Y) is invertible if there exists S € B(Y, X)
such that

ST =1Iy, TS=Iy,

where Ix is the identity mapping from X onto X and Iy is the identity
mapping from Y onto Y. In this case we write S = T—!.

Proposition A.1 (Ascoli-Arzela theorem) Let X be a compact topo-
logical space and let C(X) be a Banach space consisting of all continuous
functions on X. That is, if we define the metric for f,g € C(X) by

d(f,9) = IIf = gll = sup{|f(z) — g(z)| | = € X},

331
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then C(X) is a complete metric space). Suppose ® C C(X) satisfies the
following properties:

(a) sup{|f ()] | = € X, [ € B} = M < .
(b) For any e >0 and any x € X there exist a neighborhood V' such that

If(y) = f(@)l<e (yeV,fed).
Then every sequence {fn} in ® contains a convergent subsequence.

Proof. Since X is compact, for any positive integer k, it follows from (b)
that there exist a finite subset Fj of X and a neighborhood Vyk of y € F,
such that

X= UV
yEFy

and
U@ - fwl < Tedzev))

We set F' = koleFk. Then F' is at most countable. Suppose F' is countable,

say F' = {1, 22, -+ }. Since |f,(z1)] < M, there exists a subsequence {g}}
of {f.} such that{gl(z1)} converges. Since |g}(x2)] < M, there exists a
subsequence {g2} of {gL} such that {g2(z2)}. Repeating this process, there
exist {g’}, i = 1,2, -, satisfying the following properties:

(a) {gl} is a subsequence of {f,}.
(b) Each {gi*'} (i =1,2,---) is a subsequence of {g’}.

(c) lim g (z;) (j =1,---,i) exist.
n—oo

We set h, = ¢g7. Then {h,} is a subsequence of {f,} and lim h,(z;),
n—oo

1=1,2,---, exist. Next we show that {h,} is a Cauchy sequence in C'(X).
We fix k. For y € F', there exists a positive integer ng such that

1

|hn(y) - hm(y)| < E

for n,m > ng. For € X there exists y € F}, such that z € V. Hence

(@) = hm (2)] < [hn(2) = B (Y)] + A (y) = P (y)]
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for n,m > ny. Consequently,

hn — B < (n,m > ny),

> w

which means that {h,} is a Cauchy sequence, and hence {h,,} converges.
|

Proposition A.2 Let E be a Banach space. If a bounded operator A :
E — FE is compact, then A*: E' — E’ is compact.

Proof. Let A be a compact operator. Suppose f, € E’' and {f,} is
bounded. We set

5100)={y € E[lly[ =1}, Q= A(51(0)).
Then
[A*(f)ll = sup{|(A"(fn)) () | [lyll = 1}

= sup{|fn(A@W)I | llyll = 1}
= sup{|fn(2)| | 2 € A(51(0))}.

Hence @ is a compact set. We set

c=sup{[[full [n=1,2,---}, e =sup{|lz] | z € Q}.

Then we have |f,(2)] < [|follllz]] < cc1, which implies that {f,} is uni-
formly bounded on ). Moreover we have

[fn(z1) = fa(z2)] S cllzr — 22| (21,22 € Q),

which means that {f,} is equicontinuous on Q. By the Ascoli-Arzela the-
orem, there exists a convergent subsequence {f,, } of {f,}. Taking into
account that

[ fre = fr |l = max{| fn, (2) = fn,, (2)| | € Q} = 0 (k,m — o00),

we have [|A*(fn,) — A*(fn,.)|| — 0. Since E’ is complete, {A*(fn,)} con-
verges, which means that A* is a compact operator. g

Proposition A.3 Let E be a normed space and let V' be a closed subspace
of E. Forye E, y&V, define

Vi={z+Xy|xzeV, Ae F}.

Then V* is a closed subspace of E, where F is the set of all scalars.
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Proof. Suppose z € E, z, € V* z = lim z,. Then we have a represen-
n—oo

tation z, = @, + Ay with x,, € V, \,, € F'. Since {z,, + Ay} is a bounded
sequence, there exists M > 0 such that ||z, + A, y|| < M for all n. Assume
that |A,| — co. Then we have

Tn

Ao

+ H< My
Mo
P

which means that lim \,'z, = —y. Since V is a closed set, we have

n—oo
—y € V, which contradicts that y & V. Therefore there exists N > 0 such
that there are infinitely many n with |A,| < N. Hence we can choose a
convergent subsequence {A, } of {\,}. We set lim Ay, = A. Taking into
n—oo

account that

Iz, = (2 = 2| < llen, + A,y = 2l + Mo,y = Myl = 0,

we have lim xp, = z — Ay. If we set lim 23, = z, then 2 € V and
n—oo n—00
x =z — Ay, and hence z € V*. Hence V* is closed. g

Proposition A.4 Let E be a normed space and let G be a closed subspace
of E with E # G. Then for any ¢ > 0 there exists y. € G such that

lgell =1 Nye =2l >1 - (z€G).

Proof. Let z ¢ G. Since G is closed, § = p(z,G) = inf{|z — z| |z €
G} > 0. By the definition of the infimum, for any > 0 there exists z,, € G
such that

§<|lz—zyl| <6 +n.

We choose 1 such that e = 5(6 +n)~! and set y. = ||z — x| 71 (z — ).
We show that y. satisfies the desired properties. Clearly we have y. € G,
|lye]] = 1. Let = € G. Then we have

lye = all = llz = 2yl 72 = (2 + @llz — 24 ]I

Taking into account that x, + z||z — x,|| € G, we obtain

1) n
e—x|| > |lz—x 15> =1- =1-—c¢.

Proposition A.5 Let E be a normed space. If every bounded sequence in
E contains a convergent subsequence, then E is a finite dimensional space.
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Proof. Suppose F is an infinite dimensional space. Let z; € E be such
that ||z1|| = 1. We set G1 = {\x1 | A € F'}, where F is the set of all scalars.
It follows from Theorem A3 that there exists zo € G1 such that

1
lall =1, fwa =zl > 5  (z€G)

In particular, we have ||zo — 21| > % Let G2 be a vector space generated
by x1,22 . By Theorem A3 there exists x3 € G5 such that

1
sl =1 flog —all > 5 (z€Ga).

In particular, we have

x X x x .
3 2 92 ’ 3 1 2
Repeating this process, there exists a sequence {.In} such that H.InH = 1,

€ —&m|| > 1 for m # n. Then {x,,} does not contain any convergent sub-
sequence, which contradicts the hypothesis. Hence F is a finite dimensional
space. O

Proposition A.6 Let E be a Banach space and let A : E — E be a
compact operator, T = A — I, where I: E — E is the identity mapping.
Then KerT = {x € E|Tx =0} is a finite dimensional space.

Proof. Let {x,} be a bounded sequence in KerT. Since A(z,) = zn,
{z,} contains a convergent subsequence. By Theorem A4, Ker T is a finite
dimensional space. g

Proposition A.7 Let E be a Banach space and let A : E — E be a
compact operator, T = A — 1. Then T(E) is a closed subspace of E.

Proof. T(E) is a vector space. We show that T'(E) is a closed subset of
E. First we show that there is a constant ¢ > 0 depending only on 7" such
that for y € T'(F) there exists  with

Te=y, || <clyll (A.2)

Suppose z¢ satisfies Txy = y. Then any solution x of the equation Tx =y
can be written © = xy + z, where z is a solution of Tz = 0. Hence we have

d:=inf{||z|| | Tx =y} = inf{||xzo + z|| | z € Ker T}.

Then there exists a sequence {z,} C KerT such that ||z + z,|| — d.
Consequently, {z, } is bounded. Since Ker T is a finite dimensional space in
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view of Proposition A.6, we have a representation z, = afx1 + - - + apxy,
where {x1,--- , 2} is a basis of KerT'. Suppose {a} is not bounded. Then
there exists a subsequence {a}*} of {a]} such that hm ay’ = oco. We set

n
aj

Zf:1(a?)2'

Then [a}| < 1. We can choose a convergent subsequence {a}*'} of {a]"}.
Since we have

. 1/2
e {Z(“Tiy} (ai" @1+ + o ay),

i=1

<3

which implies that lim ||z, || = co. This contradicts the hypothesis. Hence
11— 00

{a}} is bounded, and hence {a} contains a convergent subsequence, which
means that {z,} contains a convergent subsequence {z,, }. We set

zo = lim zp,.
k—oo
Then we have
|zo + 2ol = Um ||zo + 2n, ]| = d.
k—oo

We set & = x9 + z9. Then T(%) = y. Now we show that & satisfies
(A.2). Suppose (A.2) does not hold. For any positive integer n there exists
yn € T(F) such that

[Znll > nllynll, T(2n) = yn. (A.3)
We set
§n = Hjn|‘71£m N = |Znll ™ Yn

If T¢ = 1y, then ||£]| > 1. Hence én has the smallest norm among solutions
of the equation T'¢ = 7,. Since {€,} is bounded, {Afn} contains a conver-
gent subsequence {A(&,,)}. We set & = hm A({nk) By (A.3) we have

lim 7, = 0. Taking into account that A(fnk) — £ny. = 1n,., we have

n—oo
& = lim &,,.
k—oo
Since A is continuous, we have

Al&o) = lim A(&y,)-

— 00
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We obtain A(&) = &, and hence & € KerT. Thus we have T(énk —&) =
Ty, which implies that ||€,, — &l > 1. This is a contradiction. This
proves (A.2). Suppose y, € T(E), y € E, y, — y. Taking a subsequence,
if necessary, we may assume that

lyn =yl <2775 lynsr —wall <277

Choose g such that

T(zo) =y, ol < cllyall-

Choose &,, n > 1, such that

T(#n) = ynt1 = Yn, &l < cllynsr = ynll

We set
B=) .
k=0
Then we have
T@) =T (nllrrgo kz_oa:k> = nh_)rréo kZ_OT(mk)

n
v+ > (Yer1 — yk)] = lm ypi1 =y,
k=1

= lim
n—oo

which means that y € T'(E). Hence T'(E) is closed. O

Proposition A.8 Let E be a Banach space and let A : E — E be a
compact operator, T = A — I. Then the equation Tx = y has solutions if
and only if for any solution f € E' of the equation T*(f) = 0, one has
f(y) =0. That is, T(E) = E if and only if KerT* = {0}.

Proof. (Necessity) Let z € E be a solution of Tx = y. Then f(y) =
F(Tz) = (T* f)(x) = 0.

(Sufficiency) Suppose y € F satisfies f(y) = 0 for any solution f of
the equation T*(f) = 0. If Tx = y does not have solutions, then y &
T(FE). By Proposition A7, T(E) is a closed subspace. By the Hahn-Banach
theorem, there exists h € E’ such that h = 0 in T'(E), h(y) # 0. Thus
we have (T*h)(z) = h(Tx) = 0, and hence T*h = 0. This contradicts the
assumption. O
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Proposition A.9 Let E be a Banach and let A : E — E be a compact
operator, T = A — 1. Then the equation T*(f) = g has solutions if and
only if g(x) = 0 for any x € KerT. That is, T*(E') = E' if and only if
KerT = {0}.

Proof. (Necessity) Let f € E’ satisfy T*(f) = g and let © € KerT. Then
we have g(z) = (T*(f))(z) = £(T=) = £(0) = 0.

(Sufficiency) Suppose g € FE’ satisfies g(z) = 0 for any = € KerT.
Define a linear functional fo on T'(E) by fo(y) = g(x) for y € T'(E), where
x is one of the solutions of the equation T'(z) = y. If T'(z1) = T(x2) = y,
then T'(z1 — x2) = 0, which means that g(x1) = g(v2 + (21 — 22)) = g(x2).
Hence fy is well defined. fj is linear since g is linear. Now we show that
fo is bounded. By (A.2) there exists a solution & of the equation Tz = y
such that ||Z|| < ¢|ly||. Hence we have

[fow)l = lg(@) < llgll 2]l < cllg]l llyll-

Hence fy is bounded. By the Hahn-Banach theorem, fy is extended to a
bounded linear functional F’ on E. Then for x € F we have

(T*(F)(z) = F(Tx) = fo(Tz) = g(x).
Hence we have T*(F) = g. O

Proposition A.10 Let E be a Banach space and let A : E — FE be a
compact operator, T = A— 1. Then T(E) = E if and only if KerT = {0}.
In this case T : E — FE is surjective and invertible.

Proof. (Necessity) Let G, = KerT™. Then G,, is a closed subspace of
E and G,, C Gy41. Suppose T(E) = E. Assume that there exist 21 # 0
such that T'(z1) = 0. We set T'(z2) = x1. Repeating this process, we have
Tr=Y(xy) = 21 # 0. Since T*(zy) = T(x1) = 0, we have x, € G\Gr—1.
By Proposition A4 there exists yi € Gy such that |yx|| = 1, |lyx — z|| >
2 (z € Gp-1). Since {yx} is bounded, {A(yx)} contains a convergent

subsequence. On the other hand, if n > m, then we have
T Hym + T(yn) = T(ym)) = T" " (ym) + T"(yn) = T"(ym) = 0,

which implies that ¥, + T(yn) — T(Ym) € Gn—1. Consequently we have

N | =

1A(Yn) — Alym)ll = yn — Ym + T(yn) — T(ym))|| >

Y

which contradicts {A(yx)} contains a convergent subsequence. Hence we
have KerT = {0}.
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(Sufficiency) Suppose KerT = {0}. By Proposition A.9, we have
T*(E') = E'. A* is a compact operator and T* = A* — I. Using the
same method as the proof of the first half, we have KerT* = {0}. By
Proposition A8, we obtain T'(F) = E. Finally we show that T is invertible.
Since T:E — E is surjective, there is an inverse mapping T-! : E — E.
For Tz = y, x satisfies (A.2), ||T'y|| < c||ly|, which means that 7! is
bounded. Hence T is invertible. a

Proposition A.11 Let X and Y be Banach spaces. Then

(a) Every compact operator T : X — Y is bounded.

(b) Let T € B(X,Y) and let T(X) be a finite dimensional subspace of Y.
Then T is a compact operator.

(¢) The set of all compact operators from X to Y is a closed subset of
B(X,Y).

Proof. (a) Suppose the compact operator T': X — Y is not bounded.
Then there exists {x,,} such that |z,| =1, ||T(zn)|| — co. Since {T'(z,)}
does not contain any convergent subsequence, which contradicts that T is
compact.

(b) We denote the basis of T'(X) by {e1,-- - , ex}. Let {z,} be a bounded
sequence in X. Then we have a representation

T(x,) =ale; +--- +arey,

where {al}, j = 1,---,k, are bounded sequences. Then {al} contains
a convergent subsequence {ajl} Similarly, {af} contains a convergent
subsequence {a? }. Repeating this process, {T'(z,)} contains a convergent
subsequence {T'(x¢,)}. Hence T is compact.

(¢c) Let T, : X — Y, n =1,2,---, be a compact operators and let
T € B(X,Y), |T, —T|| — 0. Suppose {z,} is a bounded sequence in
X. Then there exists ¢ > 0 such that ||z,| < ¢. Since T; is a compact
operator, {T1(z,)} contains a convergent subsequence {74 (x,1)}. Similarly,
{T2(xn1)} contains a convergent subsequence {T»(x,2)}. Repeating this
process, {Tk(xnn)} converges for any k. On the other hand, we have

1T (@mm) = T(znn) |

ST (@mm) = Ti(zmm) |

Tk (@mm) = Ti(@nn) | + 1T (@nn) — Ti(@nn) ||

< T = Tell(zmm | + lznnll) + 1Tk (@nn) = Ti(zmm )|
< 2e||T = T || + | Tk (znn) — Th(@mm)|l,



340 Several Complex Variables and Integral Formulas

which means that {T(z,,)} is a Cauchy sequence, and hence {T(zn,)}
converges. Hence T is a compact operator. 0

Proposition A.12 Let {K, (z,y)} be a sequence of measurable functions
i Q x Q which satisfies the following properties:

(1) There exists M > 0 such that | K, (x,y)| < M (z,y € Q).
(2) lim K,(z,y) =0 (xz,y € Q).
n—oo

For 1 < p < oo, define a linear operator K,, : LP(Q2) — LP(Q) by
/ K, (z,y)f(z)dV (x).
Then
Tim_ (K], =0.

Proof. By the Holder inequality we have

1/q 1/p
K S0 < | [ aelav@] | [ g ls@rae)
Consequently we have
p/q
Kt < M1 [ | [ 1Katemiav] avi,
Therefore we have lim, .o ||K,|, = 0. O

Proposition A.13 Let Q C R"™ be a bounded open set and let K(z,y)
be a measurable function in  x Q. Suppose there exists C > 0 with the
properties that

(1) /Q K@y)ldV(z) <C  (yeq).
(2) / K@.y)ldV(y) <C (@)

For 1 < p < oo, we define a linear operator K : LP(Q2) — LP(Q) by

/ny x)dV (z).

Then K is a compact operator.
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Proof. First we assume that K (z,y) is bounded. Then there exists C' > 0
such that |K(x,y)| < C. Since K is expressed by
K(J,‘, y) = Kl(xa y)+ + Kl(x7 y)_ + Z(KQ(J:) y)+ + KQ(£7 y)_)7

where Kli (x,y) > 0, there exists a sequence { K, (z,y)} of simple functions
which are finite linear combinations of characteristic funtions of product
sets in 2 x  such that |K,(z,y)| < 2C and K, (z,y) — K(k,y) in Q x Q
almost everywhere. Since

/ X y) f(2)dV (z) = / XA @) F@)dV () x5 (y),
Q Q

the range of K,, : LP(2) — LP(Q) is a finite dimensional space. Hence By
Proposition A.11 (b), K,, is compact. By Proposition A.12, |[K—-K,||, — 0.
By Proposition A.11 (c), K is compact. In the general case, we set

J _ K(J?,y) (|K(Z‘,y)| Sj)
K (wy) = {o (K@) > )

Then K U)(z,y) is bounded, and hence compact on LP(D) by the first part
of the proof. It follows from (2) that

/Q UQ K (2, y) - K(j)(a?,y)llf(w)l”dV(:c)] v (y)

<9 /Q K (2, )|dV (3) /Q @ PV ()
<a2c| 1P,

which implies that
) ] r/q
I =K, < 2011 | [ [~ K<J>|dv<x>} av (y).
We set
0;(y) = / K (2,y) — K9 (2, 9)|dV ().

It follows from (1) that |g;(y)| < 2C and g;(y) — 0 (pointwise). By the
Lebesgue dominated convergence theorem

/Q [/Q |K — K<j)|dv(:c)]p/q dV(y) =0 (j — o).

By Proposition A.11 (¢), K is compact. O
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Appendix B

Solutions to the Exercises

1.2 Suppose u is upper semicontinuous in €2, that is, for any real number
¢, {z | u(z) < ¢} is an open set. For e > 0, {z | u(z) < u(a) + ¢} is an
open set containing a. Hence for sufficiently small 6 > 0, if |z — a| < 4,
then u(z) < u(a) +¢e. Consequently we have sup|,_,osu(z) < u(a) +¢,
and hence

limsup u(z) = hm < sup u(z)) < u(a) +e.

z—a |z—a|<d

Since € > 0 is arbitrary, we obtain limsup,_,, u(z) < u(a).

1.3 Suppose |f| attains the maximum at a € Q. We choose r =

(r1,---,ry) with r; > 0 such that P(a,r) C Q. It follows from Theorem
1.7 that
Qdé -+ - déyn
aP, op, (1 —ai) (G —an)
Consequently,
27 271'
|f(a)] < flag + 7€, an +rye) -db,
S
Hence we have
27 27
/ | AIf@)] = | f(ar + e an 4 )|} dby - df, = 0.
0 0

Thus we have

|f(a’)| = |f(a1 + rleiela R rneiﬂ”)
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which means that |f(z)| = |f(a)| for z € P(a,r). Hence |f| is constant.
Since f is holomorphic in each variable, f is constant.

1.4 Since f is the limit of continuous functions which converges uni-
formly on every compact subset of 2, f is continuous in 2. Let a € Q. We
choose r > 0 such that P(a,r) C Q. It follows from Theorem 1.7 that for
z € P(a,r)

, dC1 ~dn
Ji(z) 27” /aP1 /aP Cl —21) - (Cn — Zn)’ (B

Letting j — oo in (B.1) we have

[ F(Qdé - - dga
&= (2mi)" /BP1 /apn (G —21) (G —2n) (B2)

The right side of (B.2) can be expanded to a power series with center a (or

from (B.2) one can prove df/0z; = 0), which implies that f is holomorphic
in P(a,r).

1.5 We choose r = (ry,- -+ ,ry,) such that P(¢,r) C Q. It follows from
Theorem 1.7 that for z € P(£,r) f is expressed by

Z Ay - fl) ’ (Zn - gn)k"a

where

aklv"'vkn = (Oé = (kl’ e 7kn))

Hence we have f(z) = 0 for z € P(§,r). Since Q is connected, we have
f=0.

1.6 Let 0 < r < 1. Define for ¢t with —oo <t < o0

) = et =07 (r <t < 1)
9= 0 (otherwise) -

Then g is a C* function in R. We set

A= [ g(VEET—FTaP) av(e)
Az) = A7 (VP -+ 2aP)
Then A satisfies the following properties:
(a) Ae C=(C™).
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(b) A(z) =0 for |z| > 1.
(©) Jan A(2)dV(z) = 1.

(d) A depends only on |z1],- -, |zn]|.

1.7 Define g such that g(z) = f(z)/z for z # 0 and g(0) = f'(0) for
z = 0. Then g is holomorphic in B(0,1). By the maximum principle, we
have |g(2)| < 1.

1.8 Define ®(z) = (z+ 21)/(1 + z12) and ¥(z) = (z —w1)/(1 — w1 2).
Then the mapping Wo fod : B(0,1) — B(0, 1) is one-to-one and onto and
satisfies U o f o ®(0) = 0. Apply Schwarz’s lemma.

1.9 By Taylor’s formula, there exist holomorphic functions ¢ and ¥
at a such that f(z) = (z — a)p(z), ¢(z) = (z — a)¥(z), ¥(a) # 0 Use
p(a) = f'(a) and ¥(a) = g'(a).

1.10 Since f(a) = 0, there exists a holomorphic function g in an open
neighborhood W of a such that f(z) = (z — a)g(z) (2 € W) and g(a) # 0.
By the continuity, there exists an open neighborhood U C W of a such that
g(z) # 0 for all z € U. On the other hand, there exists a natural number
N such that z, € U whenever n > N. Then 0 = f(z,) = (20 — a)g(zn)
whenever n > N, which is a contradiction.

1.11 Let wo € f(€2). It is sufficient to show that f({2) contains an
open neighborhood of wy. There exists zg € Q such that wg = f(zg). We
may assume that wog = zp = 0. By the uniqueness theorem (Exercise 1.10),
we can choose 6 > 0 such that {z | |z|] <} C Q and f(z) # 0 for |z| = ¢.
We set d = min|;|—s|f(2)|. Then d > 0. Suppose there exists w such that
w & f() and |w| < d. Since ¢(z) = (f(z) — w)~! is holomorphic in Q,
it follows from the maximum principle that 1/|w| < 1/((d — |w]|), which
implies that {w | |w| < d/2} C f(2).

1.12 a € Q. Since f'/f is holomorphic in a simply connected domain
Q, we can define a holomorphic function ¢ in €2 such that

R
- [ e

We set ¢ = e¥. Then a simple calculation yields

(i) -

There is a constant C such that f(z) = Ce?*). Let a be an n-th root of
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C. Then g(z) = ae¥®)/™) gatisfies f = g™. Let 3 satisfy C' = ¢?. Then
h = + 3 satisfies f = e".

1.13 Suppose there exists a € Q such that f'(a) = 0. By the unique-
ness theorem, there exists a positive integer m (m > 2) such that

0=f(a)=-f""a)=0, f"(a)#0.

Using Taylor expansion, there exists a holomorphic function g in a neigh-
borhood of a such that

f(z) = fla) + (z —a)"g(2), g(a) #0.

By continuity, there exists § > 0 such that g(z) # 0 for z € B(a,d). By
Exercise 1.12, there exists a holomorphic function h in B(a,d) such that
g(z) = h(z)™ for z € B(a, ). Define ¢(z) = (2 — a)h(z). Then

f(z2) = fla) +(z)" (2 € B(a,9), ¢(a)=0.

Since ¢(B(a,d)) is an open set containing 0 by Exercise 1.11, there ise > 0
such that {w | |w| = €} C p(B(a,0)). Let p(z0) = wp and |wo| = e.

We denote by wo,ws, -+, Wm—1, the m-th roots of w{*. Then there exist
20,71, ", Zm—1 € B(a,d) such that p(z;) = w; (0 <4 < m—1). Therefore,
f(zi) = fla)+wf fori=0,1,--- ,m—1, which contradicts f is a one-to-one
mapping.

1.14 First we show that f~! is continuous. Suppose wy,,wo € f(Q2)
and w,, — wo. We set f~1(w,) = 2z, and f~(wg) = zo. Since Q is open,
there exists 7 > 0 such that B(zg,r) C Q. For any ¢ > 0 with 0 < ¢ < 7,
F(B(z0,€)) is an open set containing wg by Exercise 1.11. There exists
an integer N such that w, € f(B(zo,¢)) whenever n > N, and hence
zn € B(20,¢€) whenever n > N. Thus we have lim,, o f~(wy,) = f~1(wo).
Hence f~! is continuous. We set f(z) = w, f(z0) = wo. Then if w — wo,
then z — zp, Consequently,

M w) = f N wo) z—z 1
lim = lim = .
w—wo w — wo z=z0 f(2) = f(20)  ['(20)
By Exercise 1.13, we have f'(z9) # 0. Hence f~! is holomorphic.

2.2 Let K be a compact subset of Q. For z € K there exists ¢(z) > 0
such that

B(z,e(z)) ={w e C" | |lw—z| < e(z)} C
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Since K is compact, by the Heine-Borel theorem there exist z; € K (i =
1,--+,p) such that

K C ‘EleB(zi,s(zi)).

We set L = UY_| B(z;,e(z)). Let d be the distance between K and the
boundary of L. Choose p such that 0 < p < d/(3n). For 2/,2" € K,
|2 = 2"| < p, weset I' = {w | [wj — 2;| = 2p}. Then by the Cauchy integral
formula we have

@) = ") =

1 fA(Cl,H"C")
T T e

_ 1 Fa(Cryee Cn)
(2mi)" /p G —20) (G — 20) dGy -+ dGn.

Since F is uniformly bounded, there exists a constant M > 0 such that

IAQI<M  (AeA, (eQ).

Hence there exists a constant C' > 0 such that
CM|z — 2"
Ifa(z") = a2 < %
Thus for any & > 0, if we set § = p?"e(CM)~! | then

22 e K, |Z =2 <= () - H(Z)] <k,

which means that F is equicontinuous on K.

2.3 Let {K;} be a sequence of compact subsets of {2 which satisfies
K; C (Kj11)°, jL:Jl K; =Q.

We choose a countable set £ C ) such that each £ N Kj; is dense in Kj.
Let E = {w;}. Since {un,(w1)} is a bounded sequence, {u,,} contains a
subsequence {u,, 1} which converges at w;. By the same reason, {um, 1}
contains a subsequence {un, 2} which converges at wy. Repeating this pro-
cess, there exists a subsequence {um, m} of {u.,} which converges pointwise
in E. It follows from Exercise 2.2 that {u,,} is equicontinuous in K, which
means that for e > 0, there exists ¢; such that

22" e Ky, |2 = 2" < 85 = Jumm (') — umm(z")| < e (j=1,2,--).
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Let K; N E = {a;}. Since K; N E is dense in K, we have
o0
Kj C .UlB(ai, (5])
=
Since K; is compact, there exists a positive integer p such that
P
K; C .UlB(ai,éj). (B.3)
1=

Since {um,m} converges in K; N E, there exists a positive integer ny such
that if r, s > ng, then

[urr(ai) — uss(a;)| <e (i=1,---,p).

Suppose z € K. It follows from (B.3) that there exists ¢ (1 <4 < p) such
that |z — a;| < ;. Hence, if r, s > ng, then

|tr,r(2) = Us,s(2)] < [urr(2) = wrr(ai)| + |urr(a;) — us,s(as)|

tus,s(ai) — us,s(2)| < 3¢,

which implies that {wm m(2)} converges uniformly on K;. Let K be an
arbitrary compact subsets of 2. Then there exists K; such that K C Kj.
Hence {t, m} converges uniformly on every compact subset of Q.

2.4 Let b > 0. Define for z with —co < z < c©

“te"as (0<z<a)
e ze a= r<a
9(@) = { 0 (otherwise)

Then g, € C*(R). We set

s g(t)at
fb(m) - foagb(t)dt'

Then we have fp(x) = 1 (z < 0), fo(z) = 0 (x > a), fr € C°(R),
0 < fp(z) < 1. Since %ir%gb(m) =10<z<a),

/ gp(z)dr — a as b — 0.
0

Hence if we choose b > 0 sufficiently small, then

oy @l e
R

/v satisfies (a), (b) and (c).
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3.1 Letx,y €T/ andd= |z —y|<J/2. Then

x1+d
9(@1,2) — g(z1 + d, )| < / it < O\ Kde.

Z1

89 /
8—x1(t’x)

By the mean value theorem, there exists # such that
l9(a1 +d,2") = g(y1 +d.y')| < K6°1d,
where 6 is a point between x; + d and y; + d. Since 0 > d, we have

lg(z1+d,z") — g(yr + d,y')| < Kd*.

Then
lg(x) —g(y)| < lg(z1,2") — g(a1 +d,2")|
+lg(z1 +d,2") — g(y1 + d,y')|
+lg(yr +d,y') = g(y1,y')]
< OyKd®.
3.2
dFy(z + M(w — 2)) |
X A=t
= Z %(2 + Mw)ow; + a—]fl(z + Aw)6w;
; 9z; 9z; A=1
Jj=1 =

dFy(z 4+ 0(w — z))

=0 o

3.3 By the Riesz representation theorem, there exists y € H such that

o(r) = (z,y)  (re€H).

For x € M, we have

0= 90(1') = (xay)v
which implies that y € M. Suppose there exists z € M+ such that z,y
are linearly independent. We set

_ Y1
[yl

e = i, 1=z — (r,e1)er, es
Iyl

Since {e1,e2} is an orthonormal system, (e1,e2) = 0. Hence (y1,y) = 0,
and hence ¢(y;) = 0. Thus y; € M. Since y; is a linear combination of
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rand y, y1 € M+. Since M N M+ = {0}, we have y; = 0. Hence z and
y are linearly dependent, which contradicts our assumption. Hence M is
one dimensional.

3.4 When j # k, we have

1 2
(27, 2%) = / 22 dxdy = / / rITRe0G=k) rdrdg = 0,
Q o Jo

"=
n+1

Hence {¢,(z)} is an orthonormal sequence in A%(). We define v; :
A2(9) — C by

Iz

wi(h = (52) 10X= 190,

Let 0 <71 < p <rg < 1. By the Cauchy integral formula

[2|=p

270 1T o o (pei®)i =

If we multiply by p and integrate from r; to ry, then we obtain

(ro —11)? FD(0) = j_'/ Lz,)dxdy.
r1<]z|<r2

2 2T 2

Consequently, we have for some constant C' > 0

, !
PO [ |f(e)ldndy
™ Jri<|z|<r2

w(re —ry)
< CIIf-
Hence 1, is a continuous linear functional. We set

M; = {f € A(Q) | ¢;(f) = 0}.

For f € M;, we have a representation

> (k)
f(z) = ;akzk (ar = ! k!(0)7 |z| < R < 1).
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Since a; = 0, we have
R 2 ‘
/ ©i(2)f(2)daxdy = / / ©i(2)f(re?®)rdrdo
B(0,R) o Jo
o0 R 27 o
= Z/ / iR gkt drd = 0.
k=070 O

Since R < 1 is arbitrary, (f, ;) = 0, and hence ¢; € M]»L. Since MJl is one
dimensional, M;" = {cp;lc € C}. By the Riesz representation theorem,
there exists x; € A%(Q) such that

bi(f) = (fz5) (f € A%(Q)).
We set
x; =) +al, (¢ € Mj ] €M)

Then we have 27/ = c;p;. If we set f = f1 + fo (f1 € My, f2 € M]»L), then
Vi (f) = (fo,2f) = (f, cs95),
which means that
(fipj)=0forall j = a;=0forall j = f=0.

Hence {¢y,} is complete.

3.5 It follows from Exercise 3.4 that

3.6 Assume that n = 1. (a) Let ¢ € Q. For f € A%(Q), define

v(H) =22,

Then 1) is a continuous linear functional on A%(Q). By the Riesz represen-
tation theorem, there exists a function u(z,¢) € A%(Q2) such that

U(f) = (fulz,0)  (f € A2(Q).
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Then

U(ZO,C) = (U(Z,C), KQ(szO)) = (KQ(ZaZO)a U(Z,C))

m 0Kq(20,()
¢ a7

= (Ka(-, 20)) =
which implies that

of
2= (s

8K%(Cz,§)>'

(b) We have a representation

2,2)= ) len(2)P,

where {p;(z)} is a complete orthonormal system in A4%(Q). If K(z,z) =0,
then for any f € A%(Q) we have f(z) = 0. Thus Kq(z,z) > 0.
(c¢) We have

9% log Ka(¢, () _ 9*Kq(¢, Q)
d¢OC 9¢o¢
1 0Kg(¢, ¢ 9Ka(¢: Q)
Ko((, () 9 ac

KQ(C? C)

We fix ¢ € Q. We set

8KQ(Z, C)
o

L(z) =
Then L € A%(Q). We set

Ho = {f € A*(Q) | (f,Ka(-,()) = 0}.

Then by the property of the Bergman kernel, Hy = {f € A%(Q) | f(¢) = 0}.
Moreover we have

1Ka( O)lI? = (Kal-, / Koz, O Koz, Odudy

/ Koz, O Ka(C, 2)dady = Ka(C, ).
Now we have

L(-) — aKq(-,¢) € Hy
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<~
0= (L - aKQ(vC)aKQ(vg)) = (LvKQ(aC)) - aKQ(C;()
—

We choose a = (L, Kq(+,())/Ka(¢,¢). Then we have
IL = aKa( QI = (L — aKa(- (), L — aKo(())

= |L|]* = (Ka(-¢), L) — &(L, Ka(+ Q) + |a?||Ka(- O

_ <8KQ(~,<> aKQ(~,<>> @ Ko Q)P
a Ka((,C)

_PKaGQ) 1 0Ka(¢,Q) 0Ka(6,)
aCoC Kao((,¢) o ac

Hence we obtain

PloKo(.Q)
a¢o¢ B
Suppose there exists ¢ € Q such that 9%log Kq(¢,¢)/0¢0{ = 0. Then
L — aKq(-,¢) =0. For f € Hy we have

0= (L= akn(,0) = (1.) = (1,22 ) 9

We set f(z) = z — (. Since Q is bounded, f € A%(Q) and f(¢) = 0 which
implies that f € Hy. Further we have g—é(() = 1, which is a contradiction.
Hence we have 9% log Kq(¢,¢)/9¢o¢ > 0.

3.7 It follows from Theorem 3.24 that
2
- 5‘zi82j

2

= ajazj log{|detf'(2)|*Kq,(f(2), f(2))}

2

- 821'823‘

g?jl (Z) 10gKQ1 (Z7Z)

log Ko, (f(2), f(2))-
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4.1 By the expansion formula of the determinant we have

(e (L5 Qx| _Om
or 00, 004 00n,—1
" OTpn_1 OTn_1 OTn_1 . OTn_1
or 00, 004 00n—1
cosy —rsinfy 0 --- O
aml - 8:61
001 00,1
= (=1)"" cost, : :
Otn—1  OTn_1
001 00,1
Oxy  Omy | _Ozy
or 002 00,1
(1) 2(—rsingy) . .
O0Tn_1 Oxpn_1 - OTn_1
or 002 00,1

We set

y1 = sinfs - --sinf,_3sinb, _osinf, 1
Yo = sinfs - -sinf,_3sinb,,_5cosb,_1
ys = sinfy - - -sinf,_3sinb,_3cosb,_o

Yn—1 = cosbBs.

Then we have

8:61 V. aml
Y1 Be, 90,1
= (-1 .
Orn—1  OTn_1
Yn—1 —ag, 90, _1

= (=)™l gin™ 20, (—1)"sin" 30y - - - (—1)sin? 6,3
sinf,,_1 sinf,_scosf,_1
cosb,—1 —sinb,,_osinb,,_1

= 4+r" " 1gin® 20, sin” 305 ---sin26,,_3sin6,_s.
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4.2 Divide the domain of integration into three parts

{z |zl <R} ={z | |2] < R, 2] < Jw[/2}
U {z | 2] < R, [2] = [w]/2, |2z + w| < |w]/2}
U {z ||z < B, [2] = [w]/2, ]z + w| = |w]|/2},

and use the polar coordinate system.

4.3 We set
dp -
pj(z) = 8—2],(2)7 O(2,0) = pi(Oz — )
j=1
Then by Lemma 4.6, we have
(2, Q)1 > C(Tm (=, Q) + |p(2)| + 1§17 721z = G + 12 = ™).
j=1
For z with p,(z) # 0, define

t(¢) = p(Q) +1p(2)l, () =Im®(2, (),

22j-1(C) = Re(zj — ¢5),  22;(¢Q) =Im(z; - (), j=1,-,n—1L
Then t,y,x1, - ,Top—2 form a coordinate system in a neighborhood of z.
Then apply the method in the proof of Theorem 3.11 and Exercise 4.2.
4.4 (1) Use the strict convexity of t?P. (2) Apply (1).

4.5 By the binomial theorem, there exist positive integers a, - - -, qm
such that

Re(ZQm) — me + alem—Q(iy)Q et am(iy)Qm

Then on T',,

o a1x2m72y2 — - aimyZm

Re(ZQm) 2 x2m
Z x2m _ O510_2332777, L amo_meQm Z me/z

for sufficiently small ¢ > 0. On the other hand if we choose € > 0 sufficiently
small, then £|z|?™ < Re(2?™) on I',.
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4.6 Divide the domain of integration into 3 parts:

{z 1zl <R} =A{z | |z[ < R, |a| < [t]/2}
Uiz | [zl <R, o+t <[t]/2, [«] > [t]/2}
U {z | |z[ <R, [a] > [t]/2, [z + ] > [t]/2}.

4.7 (1) Apply Exercise 4.4 (2) to the equation

N
2Re ®(z,() = Z{an§2”" Yaw — &)+ 2mam™  (yr — me)}
k=1
N
=Y AR = M) (= &) = (g —me)?) + Re (21 — Go)*™)}
k=1

)+ Z{f%k 2 2 (g — &)
+n2mk mk + 2mkn2mk71(yk _ Uk)}

—WZ{ aEE A (o — &) = (e — me)®) + Re (2 — G)™)}-

Then there exists > 0 such that

2Re ®(z2, Z{gQ”’“ 2((6 =) (wr — )% + (k. —me)”)

A0 (0 — ) (e — 77k) +v(ze — &)%)}
N

— 3 {8y — )™ + ARe (21 — Go)*™)}
k=1

If 0 < <d, « =min{v,d — v}, then

N
2Re ®(z, ozz L U P i
k=1

N

= {0y — m)?™* +yRe (2 — G)?™)}-

k=1

By Exercise 4.5, if we choose v > 0 small enough, then there exists g > 0
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such that

N
> {6y — m)>™ 4 yRe (2 — G2} > Blai — Gel*™

k=1
(2) Use (1) and Exercise 4.6.

5.1 Let {2,} C A be a sequence such that z, — 2q. If we set pJ(w) =
fi(zv,w) for j = 1,2, then ¢} : A — A are holomorphic. By the Montel
theorem, {¢J} contains a subsequence {¢J, } which converges uniformly
on every compact subset of . Let limg_, ga{;k = ;. Since F(z,w) is
a biholomorphic mapping, F(z,,,w) = (¢}, (w), @2, (w)) converges to a
point in dB. Hence (p1(w),p2(w)) € OB which means that |p;(w)|? +
|p2(w)|? = 1. Operating 92 /0wdw we have |} (w)|* + |¢h(w)]?
we have ¢} = ¢5 = 0 in A. Consequently we have limy_.c Fiy(2,,,w) =
(¢} (w), ¥5(w)) = 0. Suppose that lim,_,,, Fi,(2) = 0 does not hold. Then
there exists a sequence {z,} and § > 0 such that z, — zo, |Fyw(2n)| > 9,
which is a contradiction. This proves (a). For fixed w € A, define Fi,(z) =0
(z € OA). Then by (a), F, is continuous on A, holomorphic in A and
equals 0 on OA. By the maximum principle, F, = 0, and hence f;(z,w)
and fo(z,w) are constant with respect to w. This proves (b). It follows
from (b) that F' is not one-to-one, which is a contradiction.

= 0, Hence

5.2 By the definition of the sheaf, 7 : § — X is a local homeo-
morphism. Hence there exists a neighborhood W of s, € 7~ !(x) such
that 7 : W — @(W) = U is a homeomorphism. Hence we have
7 Yz) N W = {s;}. Define s = (7|w)~!. Then we have 7 o s(y) = y
(y € U), which implies that s is a section over U. Since s(z) € 7~ 1(z)NW,
we have s(x) = s,.

5.3 We set

= [ 2800

Then h'(s) = 0, and hence h is constant. Thus h(27) = h(0) = ¢(0). Since
h(2m) = (2m)exp(=27iN (p)) = ¢(0)exp(=2miN (),

exp(—27miN(¢)) = 1. Therefore N(yp) is an integer.

54 Let I = [0,1]. For t € I, we set () = g(te’’). Then
¢t ¢ [0,27] — C\{0} is a C! curve. By exercise 5.3 N(yp;) is an inte-
ger. Moreover ¢;(6) and ¢}(6) are continuous on [0,27] x I. Hence N(p;)
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is continuous with respect to ¢, which means that N(p1) = N(¢g) = 0.

5.5 (a) Since Imz; =Imzz in A, we have for z € AN{z€ Q| Imz =
0}, e —x1 +1 =0, 3/4 < |z1] < 5/4, 3/4 < |x2| < 5/4, which is a
contradiction. (b) follows from U; N Uz = Q\A. (c) Since fi(1,e?) = €%,
fi(—1,e") = e + 2 we have

2w . i
N(ae) =5 [ =1
0

~ omi et
and
, L[ et 1 d
N(fi(=1,€)) = —,/ e — c _)
2mi Jo e +2 27 J)pj=1 2+ 2
Consequently,

N(fi(~1,e) = 0 # 1= N(fi(1,¢")). (B.4)

Suppose that f € O(Q) satisfies f/f2 € O*(Us), h = f/f1 € O*(Uy). We
set oy (0) = f(e,e?) (0 <0 < 2m,—7 <t <0). Then f = f/f> does not
vanish in Us, by the continuity of N(¢;) with respect to ¢

N(f(_]-v eie)) = N(prw) = N(SOO) = N(f(]-v ew))'

Similarly, taking into account that h(e®,e®) # 0 (0 <0 < 27,0 <t < 7),
we have

N(h(=1,e?)) = N(h(1,¢")).
Since f = hf; in Uy, we obtain
N(f(¢,e?) = N(h(C,e”)) + N(fi(¢,e) (¢ ==+1).
Hence we have N(fi(—1,¢e%)) = N(f1(1,€)), which contradicts (B.4).
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