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Preface

The aim of this book is to study some important results obtained in the last
50 years in the function theory of several complex variables that are mainly
concerned with the extension of holomorphic functions from submanifolds
of pseudoconvex domains and estimates for solutions of the ∂̄ problem in
pseudoconvex domains.

This book is divided into five chapters.
In Chapter 1 we recall the elementary theory of functions of several

complex variables. We prove that every domain of holomorphy is a pseudo-
convex open set. Moreover, we give the proof of the Hartogs theorem which
means that a separately analytic function is analytic.

In Chapter 2 we deal with L2 estimates for the ∂̄ problem in pseudo-
convex domains in Cn due to Hörmander. As an application, we give the
affirmative answer for the Levi problem. Moreover, we prove the Ohsawa-
Takegoshi extension theorem by following the method of Jarnicki-Pflug.

In Chapter 3 we construct integral formulas for differential forms on
bounded domains in Cn with smooth boundary, that is, the Bochner-
Martinelli formula, the Koppelman formula, the Leray formula and the
Koppelman-Leray formula are derived. Using the integral formula, we prove
Hölder estimates for the ∂̄ problem in strictly pseudoconvex domains with
smooth boundary. Moreover, we prove bounded and continuous extensions
of holomorphic functions from submanifolds of strictly pseudoconvex do-
mains with smooth boundary which were proved by Henkin in 1972. We
also prove Hp and Ck extensions. Finally, we prove Fefferman’s mapping
theorem by following the method of Range.

In Chapter 4 we discuss the Berndtsson-Andersson formula and the
Berndtsson formula. As an application of the Berndtsson-Andersson for-
mula, we give Lp estimates for solutions of the ∂̄ problem in strictly pseudo-

vii
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convex domains in Cn with smooth boundary. Using the Berndtsson for-
mula, we give counterexamples of Lp (p > 2) extensions of holomorphic
functions. Finally, we introduce an integral formula which was used by
Diederich-Mazzilli to prove bounded extensions of holomorphic functions
from affine linear submanifolds of a smooth convex domain of finite type.

Chapter 5 is devoted to the study of classical fundamental theorems in
the function theory of several complex variables some of which are used to
prove theorems in the previous chapters.

Appendix A is concerned with the compact operator theory in Banach
spaces which is used to prove Fefferman’s mapping theorem.

In Appendix B we give solutions to the Exercises.
I am grateful to Saburou Saitoh who suggested to me the publication of

this book. I am also grateful to Heinrich GW Begehr who suggested that
World Scientific might be interested in publishing this book.

I would like to express my sincere gratitude to Joji Kajiwara, Professor
Emeritus at the Kyushu University, who introduced me to the function
theory of several complex variables when I was a student at the Kyushu
University, and to Morisuke Hasumi, Professor Emeritus at the Ibaraki
University, who introduced me to the theory of function algebras when I
was studying at the Ibaraki University.

Finally, I want to express my thanks to Ms Zhang Ji, Ms Kwong Lai Fun
and the staff of World Scientific for their help and cooperation.

Kenzo Adachi
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Chapter 1

Pseudoconvexity and
Plurisubharmonicity

In this chapter we study the properties of holomorphic functions of several
complex variables and plurisubharmonic functions. We define the domain
of holomorphy and the pseudoconvex open set, and we prove that every
domain of holomorphy is pseudoconvex, but the converse (Levi’s problem)
is left to 2.2.

1.1 The Hartogs Theorem

Definition 1.1 Let f = u+ iv : Ω→ C be a C1 function in an open set
Ω ⊂ Cn. For zj = xj + iyj, j = 1, · · · , n, define

∂f

∂zj
=

1
2

(
∂f

∂xj
+

1
i

∂f

∂yj

)
=

1
2

(
∂u

∂xj
+
∂v

∂yj

)
+
i

2

(
∂v

∂xj
− ∂u

∂yj

)
and

∂f

∂z̄j
=

1
2

(
∂f

∂xj
− 1
i

∂f

∂yj

)
=

1
2

(
∂u

∂xj
− ∂v

∂yj

)
+
i

2

(
∂v

∂xj
+
∂u

∂yj

)
.

By definition

∂f

∂zj
=
∂f̄

∂z̄j
,

∂f

∂z̄j
=
∂f̄

∂zj
.

Lemma 1.1 Let Ω ⊂ Cn and G ⊂ Cm be open sets and let f : Ω → G

and g : G→ C be of class Ck for k = 0, 1, · · · ,∞. Then, g ◦ f : Ω→ C is

1
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of class Ck. Moreover, if we write f(z) = (f1(z), · · · , fm(z)), then

∂

∂zj
(g ◦ f)(z) =

m∑
k=1

{
∂g

∂wk
(f(z))

∂fk
∂zj

(z) +
∂g

∂w̄k
(f(z))

∂f̄k
∂zj

(z)
}

(1.1)

and

∂

∂z̄j
(g ◦ f)(z) =

m∑
k=1

{
∂g

∂wk
(f(z))

∂fk
∂z̄j

(z) +
∂g

∂w̄k
(f(z))

∂f̄k
∂z̄j

(z)
}
. (1.2)

Proof. We prove (1.1) in case n = m = k = 1. Let f(z) = α(x, y) +
iβ(x, y) and w = u+ iv. Then we have

∂

∂z
(g ◦ f)(z) =

1
2

(
∂

∂x
− i ∂
∂y

)
g(α(x, y), β(x, y))

=
1
2

(
∂g

∂u

∂α

∂x
+
∂g

∂v

∂β

∂x

)
+

1
2i

(
∂g

∂u

∂α

∂y
+
∂g

∂v

∂β

∂y

)
.

Then (1.1) follows from the equalities

∂

∂x
=
∂

∂z
+
∂

∂z̄
,

∂

∂y
= i
(
∂

∂z
− ∂

∂z̄

)
,

∂

∂u
=
∂

∂w
+
∂

∂w̄
,

∂

∂v
= i
(
∂

∂w
− ∂

∂w̄

)
.

(1.2) is proved similarly. �

Theorem 1.1 Let Ω be a bounded open set in C and let ∂Ω consist of
finite C1 Jordan curves. For u ∈ C1(Ω) and z ∈ Ω, we have

u(z) =
1

2πi

{∫
∂Ω

u(ζ)
ζ − z dζ +

∫∫
Ω

∂u
∂z̄ (ζ)
ζ − z dζ ∧ dζ̄

}
.

Proof. We fix z ∈ Ω. For ζ ∈ Ω̄\{z} we have

dζ

[
u(ζ)dζ
ζ − z

]
=
∂̄u(ζ) ∧ dζ
ζ − z .

For any sufficiently small ε > 0, we set Ωε = {ζ ∈ Ω | |ζ − z| > ε}. It
follows from Stokes’ theorem that

1
2πi

∫
|ζ−z|=ε

u(ζ)dζ
ζ − z =

1
2πi

∫
ζ∈∂Ω

u(ζ)dζ
ζ − z −

1
2πi

∫∫
Ωε

∂̄u(ζ) ∧ dζ
ζ − z .

We have the desired equality by letting ε→ 0. �
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Definition 1.2 Let Ω be an open set in Rn. We denote by D(Ω) (or
C∞c (Ω)) the set of all C∞ functions f in Ω whose support supp(f) is a
compact subset of Ω.

Theorem 1.2 Let Ω be a bounded open set in the complex plane and let
K ⊂ Ω be compact. Then for any open set ω in Ω satisfying K ⊂ ω, there
exist constants Cj , j = 0, 1, · · · , such that

sup
z∈K

|f (j)(z)| ≤ Cj‖f‖L1(ω)

for every holomorphic function f in Ω.

Proof. Let K ′ be a compact set such that K ⊂ K ′◦ ⊂ K ′ ⊂ ω. Choose
a function ψ ∈ C∞c (ω) with the properties that ψ = 1 in K ′. By Theorem
1.1, we have

(ψf)(z) =
1

2πi

∫∫
ω

∂(ψf)
∂ζ̄

(ζ)
1

ζ − z dζ ∧ dζ̄

=
1

2πi

∫∫
ω

∂ψ

∂ζ̄
(ζ)

f(ζ)
ζ − z dζ ∧ dζ̄.

Since ∂ψ

∂ζ̄
= 0 in K ′, we have

f(z) =
1

2πi

∫∫
ω\K′

∂ψ

∂ζ̄
(ζ)

f(ζ)
ζ − z dζ ∧ dζ̄

for z ∈ K. By differentiating j times with respect to z, we obtain

f (j)(z) =
j!
2πi

∫∫
ω\K′

∂ψ

∂ζ̄
(ζ)

f(ζ)
(ζ − z)k+1 dζ ∧ dζ̄.

If z ∈ K, ζ ∈ ω\K ′, then there exists a constant C > 0 such that |z−ζ| ≥ C.
Hence there exists a constantC1 > 0 such that

|f (j)(z)| ≤ C1
∫∫

ω\K′
|f(ζ)|dxdy (ζ = x+ iy),

which gives the desired inequality. �

Definition 1.3 Let Ω be an open set in C. Then u : Ω→ R ∪ {−∞} is
called subharmonic in Ω if

(1) u is upper semicontinuous in Ω, that is, {z ∈ Ω | u(z) < s} is an open
set for any real number s.
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(2) For any compact set K ⊂ Ω and any continuous function h on K which
is harmonic in the interior of K, u satisfies the following properties:

u(z) ≤ h(z) (z ∈ ∂K) =⇒ u(z) ≤ h(z) (z ∈ K).

Definition 1.4 Let u : Ω → R be a C2 function in an open set Ω ⊂ C.
We say that u is strictly subharmonic in Ω if

∂2u

∂z∂z̄
(z) > 0 (z ∈ Ω).

Theorem 1.3 Let Ω be an open set in C. Then a real-valued function
u ∈ C2(Ω) is subharmonic in Ω if and only if

∂2u

∂z∂z̄
(z) ≥ 0 (z ∈ Ω).

Proof. Let a = α+ iβ ∈ Ω. For r with 0 < r < dist(a, ∂Ω), define

A(r) =
1
2π

∫ 2π

0

u(a+ reiθ)dθ.

Then we have

dA(r)
dr

=
1
2π

∫ 2π

0

d

dr
u(a+ reiθ)dθ

=
1
2π

∫ 2π

0

{
∂u

∂x
(α+ r cos θ, β + r sin θ) cos θ

+
∂u

∂y
(α + r cos θ, β + r sin θ) sin θ

}
dθ

=
1

2πr

∫
|z−a|=r

(
∂u

∂x
dy − ∂u

∂y
dx

)
=

1
2πr

∫∫
|z−a|≤r

(
∂2u

∂x2
+
∂2u

∂y2

)
dxdy

=
2
πr

∫∫
|z−a|≤r

∂2u

∂z∂z̄
dxdy.

If ∂2u
∂z∂z̄ (z) ≥ 0, then dA(r)

dr ≥ 0. Hence A(r) is monotonically increasing.
Therefore, we obtain

u(a) = A(0) ≤ A(r) =
1
2π

∫ 2π

0

u(a+ reiθ)dθ,
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which means that u is subharmonic. Conversely, suppose u is subharmonic.
Suppose there exists a point a satisfying ∂2u

∂z∂z̄ (a) < 0. For any sufficiently
small r > 0, if |z − a| ≤ r, then ∂2u

∂z∂z̄ (z) < 0, which implies that

dA(r)
dr

=
2
πr

∫∫
|z−a|≤r

∂2u

∂z∂z̄
dxdy < 0.

Since A(r) is strictly monotonically decreasing, we have

u(a) >
1
2π

∫ 2π

0

u(a+ reiθ)dθ,

which is a contradiction. Thus, we have ∂2u
∂z∂z̄ (z) ≥ 0. �

Definition 1.5 For a ∈ C and r > 0, define

B(a, r) := {z ∈ C | |z − a| < r}.

The closure of B(a, r) is denoted by B(a, r).

Theorem 1.4 Let u be a continuous real-valued function on ∂B(0, R).
For z = reiθ ∈ B(0, R), define

U(z) =
1
2π

∫ 2π

0

u(Reiϕ)
R2 − r2

R2 − 2Rr cos(ϕ− θ) + r2
dϕ. (1.3)

Then U is harmonic in B(0, R). Moreover, if we define U(z) = u(z) for
z ∈ ∂B(0, R), then U is continuous in B(0, R). The right side of (1.3) is
called the Poisson integral.

Proof. For |z| < R, define

f(z) =
1
2π

∫ 2π

0

u(Reiϕ)
Reiϕ + z
Reiϕ − z dϕ.

For ζ = Reiϕ, we have

Reiϕ + z
Reiϕ − z = 1 + 2

∞∑
n=1

(
z

ζ

)n

.

Since the right side of the above equality converges uniformly on |ζ| = R,
we obtain

f(z) =
1
2π

∫ 2π

0

u(Reiϕ)dϕ+
1
π

∞∑
n=1

{∫ 2π

0

u(Reiϕ)
(Reiϕ)n

dϕ

}
zn.
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Therefore, f is holomorphic in B(0, R). On the other hand we have

Re f(z) =
1
2π

∫ 2π

0

u(Reiϕ)Re
(
Reiϕ + z
Reiϕ − z

)
dϕ

=
1
2π

∫ 2π

0

u(Reiϕ)
R2 − r2

R2 − 2Rr cos(ϕ− θ) + r2
dϕ

= U(z).

Hence, U is harmonic in B(0, R). Next we fix a point ζ0 = Reiϕ0 . For
ε > 0, there exists δ > 0 such that if ζ = Reϕ, |ϕ− ϕ0| < δ, then

|u(ζ)− u(ζ0)| < ε.

We can choose ρ > 0 so small that if |z| < R and |z − ζ0| < ρ, then
there exists a constant c > 0 such that

R2 − r2 < εδ2, |Reiϕ − z| > cδ (ϕ0 + δ ≤ ϕ ≤ ϕ0 − δ + 2π).

We set

M = max
|z|=R

|u(z)|.

Then we have

|U(z)− U(ζ0)| = |U(z)− u(ζ0)|

=
∣∣∣∣ 1
2π

∫ 2π

0

(u(Reiϕ)− u(ζ0))Re
(
Reiϕ + z
Reiϕ − z

)
dϕ

∣∣∣∣
=
∣∣∣∣ 1
2π

∫ 2π

0

(u(Reiϕ)− u(ζ0))
R2 − r2
|Reiϕ − z|2 dϕ

∣∣∣∣
≤
∣∣∣∣∣ 1
2π

∫ ϕ0+δ

ϕ0−δ

(u(Reiϕ)− u(ζ0))
R2 − r2
|Reiϕ − z|2dϕ

∣∣∣∣∣
+

∣∣∣∣∣ 1
2π

∫ ϕ0−δ+2π

ϕ0+δ

(u(Reiϕ)− u(ζ0))
R2 − r2
|Reiϕ − z|2 dϕ

∣∣∣∣∣
≤ 1

2π

∫ ϕ0+δ

ϕ0−δ

ε
R2 − r2
|Reiϕ − z|2dϕ+

M

π

∫ ϕ0−δ+2π

ϕ0+δ

εδ2

(cδ)2
dϕ

≤ ε+
2Mε
c2

= ε
(

1 +
2M
c2

)
.

Hence, U is continuous in B(0, R). �
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Lemma 1.2 Let Ω ⊂ C be an open set and let u be a continuous subhar-
monic function in Ω, a ∈ Ω. For r with 0 < r < dist(a, ∂Ω), define

A(r) =
1
2π

∫ 2π

0

u(a+ reiθ)dθ.

Then A(r) satisfies the following:

0 < r1 < r2 < dist(a, ∂Ω) =⇒ A(r1) ≤ A(r2).

Proof. Let 0 < r < dist(a, ∂Ω). We denote by ϕr the Poisson integral of
u. Then

ϕr(z) =
1
2π

∫ 2π

0

r2 − |z − a|2
|(z − a)− reiθ|2 u(a+ reiθ)dθ.

Moreover, ϕr is harmonic in B(a, r), continuous in B(a, r) and ϕr = u

on ∂B(a, r). Then u(z) − ϕr(z) is subharmonic in B(a, r), and equals 0
on ∂B(a, r). By the maximum principle, u(z) ≤ ϕr(z) for z ∈ B(a, r).
Therefore we have

1
2π

∫ 2π

0

u(a+ r1eiθ)dθ ≤
1
2π

∫ 2π

0

ϕr2(a+ r1eiθ)dθ

=
1
2π

∫ 2π

0

ϕr2(a+ r2eiθ)dθ

=
1
2π

∫ 2π

0

u(a+ r2eiθ)dθ.
�

Theorem 1.5 Let u : Ω→ R be a continuous real-valued function in an
open set Ω ⊂ C. Then the following statements are equivalent:

(a) u is harmonic in Ω.
(b) For any a ∈ Ω and any r with 0 < r < dist(a, ∂Ω), one has

u(a) ≤ 1
2π

∫ 2π

0

u(a+ reiθ)dθ.

(c) For any a ∈ Ω, there exists ε (0 < ε < dist(a, ∂Ω)) such that for any r
with 0 < r < ε one has

u(a) ≤ 1
2π

∫ 2π

0

u(a+ reiθ)dθ.
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(d) For any a ∈ Ω and any r with 0 < r < dist(a, ∂Ω), if h is continuous in
|ζ − a| ≤ r, and harmonic in |ζ − a| < r, then u satisfies the following
properties:

u(ζ) ≤ h(ζ) for |ζ − a| = r =⇒ u(ζ) ≤ h(ζ) for |ζ − a| ≤ r.

Proof. (b)=⇒(c) and (a)=⇒(d) are trivial. We show that (d)=⇒(b).
For a ∈ Ω, we choose r > 0 such that B(a, r) ⊂ Ω. We denote by U the
Poisson integral of u for B(a, r). Then U is harmonic in B(a, r), continuous
in B(a, r), and U(z) = u(z) for z ∈ ∂B(a, r). Since u ≤ U in B(a, r), we
have

u(a) ≤ U(a) =
1
2π

∫ 2π

0

U(a+ reiθ)dθ =
1
2π

∫ 2π

0

u(a+ reiθ)dθ.

This proves (b). Next we show that (c)=⇒(a). Let K ⊂ Ω be a compact
set. Suppose h is harmonic in the interior of K that is continuous on K,
and satisfies u ≤ h on ∂K. We set

c = max
z∈K

(u(z)− h(z)).

Suppose c > 0. We set

Kc = {z ∈ K | u(z)− h(z) = c}.

Then Kc is compact. We denote by a the nearest point of Kc to ∂K. If we
choose r > 0 sufficiently small, then we have

1
2π

∫ 2π

0

{u(a+ reiθ)− h(a+ reiθ)}dθ < 1
2π

∫ 2π

0

cdθ = c.

On the other hand, if we choose r > 0 sufficiently small, then it follows
from (c) that

c = u(a)− h(a) ≤ 1
2π

∫ 2π

0

{u(a+ reiθ)− h(a+ reiθ)}dθ,

which is a contradiction. Thus we have c = 0, which implies that u ≤ h on
K. This proves (a). �

In order to prove the Hartogs theorem we need the following lemma (see
Krantz [KR2]).

Lemma 1.3 Let Ω ⊂ C be an open set and let f : Ω → R ∪ {−∞}
be upper semicontinuous and bounded above. Then there exists a sequence



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Pseudoconvexity and Plurisubharmonicity 9

{fj} of real-valued continuous functions in Ω which are bounded above on
Ω such that

f1 ≥ f2 ≥ · · · , fj → f.

Proof. In the case when f(x) ≡ −∞, we may set fn(x) = −n. Thus we
may assume that f(x) �≡ −∞. For x ∈ Ω, we set

fj(x) = sup
y∈Ω
{f(y)− j|x− y|}.

Then f1(x) ≥ f2(x) ≥ · · · ≥ f(x). For ε > 0, if x1, x2 ∈ Ω, |x1 − x2| < ε/j,
then

f(y)− j|x1 − y| < f(y)− j|x2 − y|+ ε (y ∈ Ω).

Therefore we have fj(x1) ≤ fj(x2) + ε. By interchanging x1 and x2 we
have |fj(x1)− fj(x2)| ≤ ε. Thus each fj is continuous in Ω. We set

sup
x∈Ω

f(x) =M, f(x) = α (α �= −∞).

For ε > 0, there exists δ > 0 such that if |x−y| < δ, then f(y) < α−ε since
f is upper semicontinuous. If |y− x| > δ, j > M/δ, then f(y)− j|x− y| ≤
M −M = 0. Thus we have

α = f(x) ≤ fj(x) = sup
|y−x|≤δ

{f(y)− j|x− y|} < α+ ε
(
j >

M

δ

)
,

which shows that fj(x)→ f(x). Suppose α = −∞. For N > 0, there exists
δ1 > 0 such that f(y) < −N whenever |x− y| < δ1 . Hence we have

fj(x) = max

[
sup

|x−y|<δ1

{f(y)− j|x− y|}, sup
|x−y|≥δ1

{f(y)− j|x− y|}
]

≤ max{−N, M − jδ1}.

If we choose j sufficiently large, then jδ1 > N +M . Thus fj(x)→ −∞ =
f(x). �

Corollary 1.1 For an upper semicontinuous function u in an open set
Ω ⊂ C, Theorem 1.5 also holds.

Proof. We show that (d)=⇒(b). Let a ∈ Ω and 0 < r < r′ < dist(a, ∂Ω).
By Lemma 1.3, there exists a sequence {uj} of continuous functions in
B(a, r′) such that

u1 ≥ u2 ≥ · · · , uj → u.
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We denote by Uj the Poisson integral of uj for B(a, r). Then Uj is harmonic

in B(a, r), continuous in B(a, r), and satisfies Uj = uj on ∂B(a, r). Thus

we have u(z) ≤ Uj(z) for z ∈ B(a, r). Therefore we obtain

u(a) ≤ Uj(a) =
1

2π

∫ 2π

0

Uj(a+ reiθ)dθ =
1

2π

∫ 2π

0

uj(a+ reiθ)dθ.

By letting j → ∞, (b) follows from the Fatou lemma. The proof of

(c)=⇒(a) is proved in the same way. �

Definition 1.6 For rj > 0 (j = 1, · · · , n), we set r = (r1, · · · , rn). For

a ∈ Cn, define

P (a, r) = {z = (z1, · · · , zn) | |zj − aj | < rj , j = 1, · · · , n}.

If we set

Pj = {zj ∈ C | |zj − aj | < rj},

then

P (a, r) = P1 × · · · × Pn.

P (a, r) is called a polydisc. When n = 1, we have P (a, r) = B(a, r).

Definition 1.7 A power series of n variables is denoted by∑
ν

cν(z − a)ν =
∞∑

ν1=0,··· ,νn=0

cν1,··· ,νn
(z1 − a1)

ν1 · · · (zn − an)
νn . (1.4)

The domain of convergence of the power series (1.4) is the interior of the

set of points z ∈ Cn for which (1.4) converges.

Theorem 1.6 Every power series converges uniformly on every compact

subset of its domain of convergence.

Proof. Let Ω be the domain of convergence of (1.4). For simplicity, we

may assume that a = (a1, · · · , an) = 0. Let w ∈ Ω. Then we have

sup
ν

|cνwν | = M <∞.

We set r = (|w1|, · · · , |wn|). Let K ⊂ P (0, r) be a compact set. Then there

exists 0 < λ < 1 such that K ⊂ P (0, λr). If z ∈ P (0, λr), then we have

|cνzν | = |cνzν11 · · · zνn
n | ≤ |cν |(λr1)ν1 · · · (λrn)νn = |cνwν |λ|ν| ≤Mλ|ν|.
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On the other hand we have∑
ν

λ|ν| =
(

1
1− λ

)n

<∞.

Thus
∑

ν cνz
ν converges uniformly on K. Let E be any compact subset

of Ω. Then there exists w1, · · · , wk ∈ Ω such that for each wj , compact
subsets Kj of polydiscs P (0, λrj) constructed above satisfy

E ⊂
k
∪
j=1
Kj .

Since (1.4) converges uniformly on each Kj, (1.4) converges uniformly on
E. �

Definition 1.8 Let Ω ⊂ Cn be an open set. G ⊂⊂ Ω means that the
closure of G in Cn is a compact subset of Ω. In this case, G is called
relatively compact in Ω.

Definition 1.9 Let Ω ⊂ Cn be an open set. A function f : Ω → C
is called holomorphic in Ω if f is continuous in Ω, and for each a =
(a1, · · · , an) ∈ Ω, if we set ϕ(zj) = f(a1, · · · , zj, · · · , an), then ϕ(zj) is
holomorphic at aj . The set of all holomorphic functions in Ω is denoted by
O(Ω).

Theorem 1.7 For a function f : Ω → C on an open set Ω ⊂ Cn, the
following statements are equivalent:

(a) f is holomorphic in Ω.
(b) Suppose f is continuous in Ω and P = P1 × · · · × Pn ⊂⊂ Ω. Then

f(z) =
1

(2πi)n

∫
∂P1

· · ·
∫
∂Pn

f(ζ)dζ1 · · ·dζn
(ζ1 − z1) · · · (ζn − zn)

(1.5)

for z ∈ P .
(c) For any ξ ∈ Ω, there exists a neighborhood W of ξ such that

f(z) =
∞∑

k1=0,··· ,kn=0

ak1,··· ,kn(z1 − ξ1)k1 · · · (zn − ξn)kn (1.6)

for z ∈W .
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Proof. (a)=⇒(b). By iterating the Cauchy integral formula, for z ∈ P

f(z) =
1

2πi

∫
∂P1

f(ζ1, z2, · · · , zn)
ζ1 − z1

dζ1

=
1

2πi

∫
∂P1

{
1

ζ1 − z1
1

2πi

∫
∂P2

f(ζ1, ζ2, z3 · · · , zn)
ζ2 − z2

dζ2

}
dζ1

=
1

(2πi)n

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn

f(ζ1, · · · , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζ1dζ2 · · ·dζn.

(b) =⇒ (c). Let ξ ∈ Ω. We choose r = (r1, · · · , rn) such that

P = P (ξ, r) = P1 × · · · × Pn = {z | |zj − ξj | < rj (j = 1, · · · , n)} ⊂⊂ Ω.

For ζ = (ζ1, · · · , ζn) ∈ ∂P1 × · · · × ∂Pn, since

1
ζ1 − z1

=
1

(ζ1 − ξ1)(1− z1−ξ1
ζ1−ξ1

)
=

∞∑
k=0

(z1 − ξ1)k
(ζ1 − ξ1)k+1

,

we obtain

1
(ζ1 − z1) · · · (ζn − zn)

=
∞∑

k1,···kn=0

(z1 − ξ1)k1 · · · (zn − ξn)kn

(ζ1 − ξ1)k1+1 · · · (ζn − ξn)kn+1
.

Since the power series of the right side of the above equality converges
uniformly with respect to ζ, substituting into (1.5) and integrating, we
obtain

f(z) =
∞∑

k1,··· ,kn=0

1
(2πi)n

∫
∂P1×···×∂Pn

f(ζ1, · · · , ζn)
(ζ1 − ξ1)k1+1 · · · (ζn − ξn)kn+1

×dζ1 · · · dζn · (z1 − ξ1)k1 · · · (zn − ξn)kn .

We set

ak1,··· ,kn =
1

(2πi)n

∫
∂P1×···×∂Pn

f(ζ1, · · · , ζn)
(ζ1 − ξ1)k1+1 · · · (ζn − ξn)kn+1

dζ1 · · · dζn.

Then f is expressed by

f(z) =
∞∑

k1,··· ,kn=0

ak1,··· ,kn(z1 − ξ1)k1 · · · (zn − ξn)kn .

This proves (c).
(c)=⇒(a). We choose r > 0 such that

{z | |zj − ξj | ≤ r, j = 1, · · · , n} ⊂W.
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By Theorem 1.6, the right side of (1.6) converges uniformly on P (ξ, r).
Therefore f is continuous in P (ξ, r). On the other hand, the finite sum

N1∑
k1=0

· · ·
Nn∑

kn=0

ak1,··· ,kn(z1 − ξ1)k1 · · · (zn − ξn)kn

is holomorphic in each variable zj and f is the uniform limit of the above
finite sum when Nj → ∞. Thus f is holomorphic in P (ξ, r) with respect
to each variable zj. Since ξ ∈ Ω is arbitrary, f is holomorphic in Ω. �

Definition 1.10 Let Ω ⊂ Cn be an open set and let f be holomorphic
in Ω. For a multi-index α = (α1, · · · , αn), where each αj is a nonnegative
integer, define

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!,

∂αf(z) =
∂|α|f

∂zα1
1 · · · ∂zαn

n
(z) (z ∈ Ω).

Corollary 1.2 (Cauchy inequality) Let f be a holomorphic function
in a polydisc P (0, r) = {z ∈ Cn | |zj | < rj , j = 1, · · · , n}. Suppose there
exists a constant M > 0 such that |f(z)| ≤M for z ∈ P (0, r). Then

|∂αf(0)| ≤ α!r−αM

for any multi-index α = (α1, · · · , αn), where we define

rα = rα1
1 · · · rαn

n .

Proof. By Theorem 1.7 f is expressed by f(z) =
∑

α aαz
α. Then it

follows from (1.6) that

aα =
∂αf(0)
α!

.

On the other hand, by applying the proof of Theorem 1.7, for 0 < sj < rj ,
j = 1, · · · , n, we have

aα =
1

(2πi)n

∫
{|z1|=s1}×···×{|zn|=sn}

f(ζ1, · · · , ζn)
ζ1

α1+1 · · · ζnαn+1
dζ1 · · · dζn.

Thus we obtain

|∂αf(0)| ≤ α!s−αM.
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The above inequality holds for any s > 0 which satisfies sj < rj for j =
1, · · · , n. �

Corollary 1.3 Let Ω ⊂ Cn be an open set and let K ⊂ Ω be a compact
set. For any open subset ω of Ω with K ⊂ ω, there exists a constant Cα

such that

sup
z∈K

|∂αf(z)| ≤ Cα‖u‖L1(ω) (f ∈ O(Ω)).

Proof. In the case when ω is a polydisc, Corollary 1.3 follows from Theo-
rem 1.2. In the general case, K is contained in the finite union of polydiscs
which are contained in ω. Corollary 1.3 follows from Theorem 1.2. �

Lemma 1.4 (Baire’s theorem) Let X be a complete metric space.
Then a countable intersection of open dense subsets of X is dense in X.

Proof. Suppose {Vn} is a sequence of open dense subsets of X and W is
an open nonempty subset of X . It is sufficient to show that ∩∞n=1 Vn ∩W
is not empty. Let d(x, y) be the metric in X . We set

B(x, r) = {y ∈ X | d(x, y) < r}.

Since V1 ∩W �= φ, there exist x1 and r1 such that

B(x1, r1) ⊂W ∩ V1, 0 < r1 < 1.

Since V2 ∩B(x1, r1) is not empty, there exist x2 and r2 such that

B(x2, r2) ⊂ V2 ∩B(x1, r1), 0 < r2 <
1
2
.

Repeating this process, there exist xn and rn such that

B(xn, rn) ⊂ Vn ∩B(xn−1, rn−1), 0 < rn <
1
n
.

Let i > n, j > n. Then xi, xj ∈ B(xn, rn), so that d(xi, xj) < 2rn < 2/n,
which implies that {xn} is a Cauchy sequence. Since X is complete, {xn}
converges. Therefore, there exists x ∈ X such that x = limn→∞ xn. Since
xi ∈ B(xn, rn) (i > n) for each n, x ∈ B(xn, rn) ⊂ Vn. Thus we have
x ∈ ∩∞n=1 Vn. On the other hand, x ∈ B(x1, r1) ⊂ W , which shows that
∩∞n=1 Vn is dense in X . �

Lemma 1.5 Suppose {vk} is a sequence of subharmonic functions in Ω.
Assume that vk, k = 1, 2, · · · , are uniformly bounded from above on every
compact subset of Ω and that there exists a constant C such that for any
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z ∈ Ω, limk→∞ vk(z) ≤ C. Then for any ε > 0 and any compact subset K
of Ω there exists a positive integer N such that for k > N

vk(z) ≤ C + ε (z ∈ K).

Proof. We choose a compact set K1 with the properties that K ⊂ K◦1 ⊂
K1 ⊂ Ω. Since {vk} is uniformly bounded from above on K◦1 , we may
assume that {vk} is uniformly bounded from above on Ω. Moreover, when
vk(z) ≤ M for z ∈ Ω and M ≤ 0, we can treat vk −M instead of vk, so
we may assume that vk(z) ≤ 0 for z ∈ Ω. We choose r > 0 such that
K ⊂ {z ∈ Ω | dist(z, ∂Ω) > 3r}. By Corollary 1.1, for z ∈ K, 0 < ρ ≤ r,
we have

2πvk(z) ≤
∫ 2π

0

vk(z + ρeiθ)dθ. (1.7)

If we multiply by ρ in (1.7) and integrate with respect to ρ from 0 to r,
then we obtain

πr2vk(z) ≤
∫∫
|z−z′|<r

vk(z′)dx′dy′ (z′ = x′ + iy′). (1.8)

It follows from Fatou’s lemma that

lim
k→∞

∫∫
|z−z′|<r

vk(z′)dx′dy′ ≤
∫∫
|z−z′|<r

lim
k→∞

vk(z′)dx′dy′ ≤ πCr2.

If we choose k0 sufficiently large, then∫∫
|z−z′|<r

vk(z′)dx′dy′ < π
(
C +

ε

2

)
r2 (k > k0).

Since vk ≤ 0 for 0 < δ < r and |z − w| < δ, it follows from (1.8) that

π(r + δ)2vk(w) ≤
∫∫
|z′−w|<r+δ

vk(z′)dx′dy′ ≤
∫∫
|z−z′|<r

vk(z′)dx′dy′.

Hence we have

π(r + δ)2vk(w) ≤ π
(
C +

ε

2

)
r2.

If we choose δ sufficiently small, then

vk(w) < C + ε (k > k0, |w − z| < δ).

Since K is compact, vk(z) < C + ε for z ∈ K provided we choose k0
sufficiently large. �
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Lemma 1.6 Let f be a holomorphic function in B(0, r) such that |f(z)| ≤
M for some constant M > 0. Then

|f(z1)− f(z2)| ≤ 2Mr
|z2 − z1|
|r2 − z̄1z2|

(1.9)

for z1, z2 ∈ B(0, r).

Proof. We may assume that f is not constant. Then by the maximum
principle (see Exercise 1.3), |f(z)| < M . We set w1 = f(z1), w2 = f(z2).
We define Φ : B(0, r)→ B(0, 1) and Ψ : B(0,M)→ B(0, 1) by

Φ(z) =
r(z − z1)
r2 − z̄1z

, Ψ(w) =
M(w − w1)
M2 − w̄1w

.

Since Ψ ◦ f ◦Φ−1 : B(0, 1)→ B(0, 1) maps 0 to 0, it follows from Schwarz’s
lemma (see Exercise 1.7) that

|Ψ ◦ f ◦ Φ−1(z)| ≤ |z|.

We set z = Φ(z2). Then |Ψ(w2)| ≤ |Φ(z2)|, which implies (1.9). �

Lemma 1.7 If a bounded function f : Ω → C on an open set Ω ⊂ Cn

is holomorphic with respect to each variable zj (j = 1, · · · , n), then f is
continuous in Ω (hence, f is holomorphic in Ω).

Proof. Let M be a constant such that |f(z)| ≤ M . Since the problem
is local, we may assume that Ω = {z ∈ Cn | |zj | < rj , j = 1, · · · , n}. By
Lemma 1.6 we have

|f(z)− f(ζ)|

=

∣∣∣∣∣∣
n∑

j=1

{f(ζ1, · · · , ζj−1, zj, · · · , zn)− f(ζ1, · · · , ζj , zj+1, · · · , zn)}

∣∣∣∣∣∣
≤

n∑
j=1

2M
rj |zj − ζj |
|r2j − ζ̄z|

.

Thus f(z)→ f(ζ) as z → ζ. Hence f is continuous in Ω. �

Theorem 1.8 (Hartogs theorem) Let Ω ⊂ Cn be an open set. If f
is holomorphic with respect to each variable zj for j = 1, · · · , n, when the
other variables are fixed, then f is holomorphic in Ω.
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Proof. When n = 1, Theorem 1.8 is trivial. Assume that Theorem 1.8

has already been proved for n− 1 variables.

Under this assumption we prove the following Lemma 1.8 and Lemma

1.9.

Lemma 1.8 Suppose f is holomorphic in an open set Ω ⊂ Cn with

respect to each variable zj for j = 1, · · · , n. Let P = P1 × · · · × Pn be

a nonempty polydisc such that P̄ ⊂ Ω. Then, there exist discs P ′
j ⊂ Pj ,

j = 1, · · · , n, such that Pn = P ′
n and f is bounded on P ′ = P ′

1 × · · · × P ′
n.

Hence f is holomorphic in P ′.

Proof. Define

EM = {z′ ∈ P̄1 × · · · × P̄n−1 | |f(z′, zn)| ≤M zn ∈ P̄n}
= ∩zn∈P̄n

{z′ ∈ P̄1 × · · · × P̄n−1 | |f(z′, zn)| ≤M}.

Since Theorem 1.8 is true for functions of n− 1 variables, f(z′, zn) is con-

tinuous when zn is fixed. Hence EM is closed. Further, we have

∞∪
M=1

EM = P̄1 × · · · × P̄n−1.

By applying the Baire theorem, if we choose M sufficiently large, then EM
has nonempty interior. If we choose a polydisc P ′ such that P̄ ′ ⊂ EM × P̄n,
P ′
n = Pn, then f is holomorphic in P ′. �

Lemma 1.9 Let f be defined on a polydisc P (z0, R) ⊂ Cn. Suppose

that for fixed zn, f is holomorphic with respect to z′ = (z1, · · · , zn−1) and

that there exists r > 0 such that f is holomorphic and bounded on P ′ =

{z | |zj − z0
j | < r, j = 1, · · · , n− 1, |zn− z0

n| < R} . Then f is holomorphic

in P .

Proof. We may assume that z0 = 0. We choose R1, R2 such that 0 <

R1 < R2 < R. Since f(z′, zn) is holomorphic with respect to z′, f is

expressed by

f(z) =
∑
α

aα(zn)z
′α (z ∈ P ), (1.10)

where α = (α1, · · · , αn−1) and each αj is nonnegative integer. It follows

from Theorem 1.7 that

aα(zn) = ∂αf(0, zn)/α!.
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For polydiscs Qj , j = 1, · · · , n − 1, with centers 0 and sufficiently small

radii, by applying Theorem 1.7 we have

∂αf(0, zn) =
α!

(2πi)n−1

∫
∂Q1×···×∂Qn−1

f(ζ1, · · · , ζn−1, zn)

ζ1
α1+1 · · · ζn−1

αn−1+1 dζ1 · · · dζn−1.

Thus ∂aα(zn)/∂z̄n = 0. Thus aα(zn) is holomorphic with respect to zn.

Since f(z′, zn) is holomorphic with respect to z′ ∈ {z′ | |zj | < R}, by

Corollary 1.3 we have

|∂αf(0, zn)| ≤ α!R′−|α|
sup

z∈P (0,R′)

|f(z)|

for R2 < R′ < R. Hence we have for fixed zn

|aα(zn)|R|α|
2 → 0 (|α| → ∞, |zn| < R).

On the other hand, if |f(z)| ≤M for z ∈ P ′, then by the Cauchy inequality

|aα(zn)|r|α| ≤M.

For two multi-indices α = (α1, · · · , αn) and α′ = (α′
1, · · · , α′

n) we introduce

the order such that

α < α′

if only if there exist i, 1 ≤ i ≤ n, such that

α1 = α′
1, · · · , αi−1 = α′

i−1, αi < α′
i.

For α = (α1, · · · , αn), we define

ϕα(zn) =
1

|α| log |aα(zn)|.

Then ϕα is subharmonic. Let {vk} be the arrangement of {ϕα} according

to the order of the multi-indices. Thus, k → ∞ is equivalent to |α| → ∞.

Since

1

|α| log |aα(zn)| ≤ − log r +
1

|α| logM (|zn| < R),

{vk} is uniformly bounded on |zn| < R. On the other hand, for fixed zn,

if we choose |α| sufficiently large, then we have |aα(zn)|R|α|
2 < 1. Thus for

sufficiently large |α| we have

log |aα(zn)|
|α| < log

1

R2
.
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Thus we obtain

lim
k→∞

vk(zn) ≤ log
1
R2
.

It follows from Lemma 1.5 that we have for some sufficiently large k

vk(zn) ≤ log
1
R1

(|zn| < R1),

which means that for any sufficiently large |α|

|aα(zn)|R|α|1 ≤ 1 (|zn| < R1).

Since the above inequality holds for every R1 satisfying 0 < R1 < R,
(1.10) converges uniformly on every compact subset of P (0, R). Hence f is
continuous in P (0, R). Thus f is holomorphic in P (0, R). �

Proof of Theorem 1.8 Let ζ ∈ Ω. We choose R > 0 with the properties
that a polydisc {z | |zj − ζj | ≤ 2R} is a subset of Ω. We take P = P (ζ, R)
in Lemma 1.8. Then there exist r > 0 and z0 such that maxj |z0j − ζj | < R,
ζn = z0n, and f is bounded on P ′ = {z | |zj − z0j | < r , j = 1, · · · , n − 1,
|zn − z0n| < R}(⊂ P (ζ, R)). Since f is holomorphic in P (z0, R) by Lemma
1.9, f is holomorphic at ζ. �

1.2 Characterizations of Pseudoconvexity

We prove that every domain of holomorphy is a pseudoconvex open set.
In 2.2 (Corollary 2.4) we prove that an open set in Cn is a domain of
holomorphy if and only if it is pseudoconvex.

Definition 1.11 Let Ω ⊂ Cn be an open set.

(1) A real-valued upper semicontinuous function ϕ in Ω is called plurisub-
harmonic if for any v, w ∈ Cn, h(ζ) = ϕ(v + ζw) is subharmonic in
U = {ζ ∈ C | v + ζw ∈ Ω}. The set of all plurisubharmonic functions
in Ω is denoted by PS(Ω).

(2) A real-valued C2 function ϕ in Ω is called strictly plurisubharmonic in
Ω if for any v, w ∈ Cn (w �= 0), h(ζ) = ϕ(v+ζw) is strictly subharmonic
in U = {ζ ∈ C | v + ζw ∈ Ω}.

Theorem 1.9 Let Ω ⊂ Cn be an open set.

(a) If f ∈ O(Ω), then |f | ∈ PS(Ω).
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(b) If f is a holomorphic function in Ω and ρ is a C2 subharmonic function
in f(Ω), then ρ ◦ f ∈ PS(Ω).

(c) Suppose {ρj}j∈J is a family of plurisubharmonic functions in Ω and
ρ = supj∈J ρj. If ρ is finite and upper semicontinuos in Ω, then ρ ∈
PS(Ω).

Proof. (a) For v, w ∈ Cn, we set U = {ζ ∈ C | v + ζw ∈ Ω}. For ζ ∈ U ,
we set ϕ(ζ) = f(v + ζw). We fix a ∈ U . We choose r > 0 such that
r < dist(a, ∂U). Since ϕ is holomorphic in U , it follows from the Cauchy
integral formula that

ϕ(a) =
1

2πi

∫
|ζ−a|=r

ϕ(ζ)
ζ − adζ.

Then we have

|ϕ(a)| ≤ 1
2π

∫ 2π

0

|ϕ(a+ reiθ)|dθ.

Hence |ϕ| is subharmonic. Thus |f | is plurisubharmonic in Ω.
(b) For v, w ∈ Cn, we set U = {ζ ∈ C | v+ ζw ∈ Ω}. For ζ ∈ U , we set

ϕ(ζ) = ρ ◦ f(v + ζw). Then we have

∂2ϕ

∂ζ∂ζ̄
(ζ) =

∂2ρ

∂w∂w̄
(f(v + ζw))

∣∣∣∣ ∂∂ζ (f(v + ζw))
∣∣∣∣2 ≥ 0,

which means that ϕ is subharmonic in U . Thus ρ ◦ f ∈ PS(Ω).
(c) For v, w ∈ Cn, we set U = {ζ ∈ C | v + ζw ∈ Ω}. For ζ ∈ U , we set

ϕj(ζ) = ρj(v+ ζw) for j ∈ J . Since ϕj is subharmonic in U , it follows that

ϕj(a) ≤
1
2π

∫ 2π

0

ϕj(a+ reiθ)dθ

for a ∈ U and r with 0 < r < dist(a, ∂U). We set ϕ(ζ) = ρ(v + ζw). Then

sup
j∈J

ϕj(ζ) = sup
j∈J

ρj(v + ζw) = ρ(v + ζw) = ϕ(ζ).

For ε > 0, there exists j0 such that ϕ(a)− ε < ϕj0(a). Therefore we obtain

ϕ(a) < ϕj0(a) + ε ≤ 1
2π

∫ 2π

0

ϕj0(a+ reiθ)dθ + ε,

≤ 1
2π

∫ 2π

0

ϕ(a+ reiθ)dθ + ε.
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Since ε > 0 is arbitrary, we obtain

ϕ(a) ≤ 1
2π

∫ 2π

0

ϕ(a+ reiθ)dθ.

Thus ϕ is subharmonic in U , which implies that ρ ∈ PS(Ω). �

Theorem 1.10 Let ρ be a real-valued C2 function in an open set Ω ⊂ Cn.

(a) ρ is plurisubharmonic in Ω if and only if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k ≥ 0

for z ∈ Ω, w = (w1, · · · , wn) ∈ Cn.
(b) ρ is strictly plurisubharmonic in Ω if and only if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k > 0

for z ∈ Ω, 0 �= w = (w1, · · · , wn) ∈ Cn.

Proof. For v, w ∈ Cn, we set

ρ̃(ζ) = ρ(v + ζw) = ρ(v1 + ζw1, · · · , vn + ζwn).

Then Theorem 1.10 follows from the equality

∂2ρ̃

∂ζ∂ζ̄
(ζ) =

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(v + ζw)wj w̄k.

�

Corollary 1.4 Let Ω be an open set in Cn and let K be a compact subset
of Ω. Suppose ρ is a strictly plurisubharmonic function in Ω. Then there
exists a constant C = C(K) > 0 such that

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k ≥ C|w|2

for z ∈ K, w = (w1, · · · , wn) ∈ Cn.

Proof. For z ∈ K, w ∈ Cn, we set

f(z, w) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k.
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Since f(z, w) takes the minimum value C > 0 on K × {w | |w| = 1|}, we
have for z ∈ K and w �= 0

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)
wjw̄k

|w|2 ≥ C.

�

Definition 1.12 Let Ω be an open subset of Cn and let Ω �= Cn. For
z ∈ Cn, define

dist(z, ∂Ω) = inf{|z − ζ| | ζ ∈ ∂Ω},

where dist(z, ∂Ω) denotes the distance from z to ∂Ω.

Lemma 1.10 Let Ω ⊂ Cn be an open set such that Ω �= Cn. For z ∈ Ω,
define ϕ(z) = dist(z, ∂Ω). Then ϕ is continuous in Ω.

Proof. Fix z0 ∈ Ω. Then there exists ξ0 ∈ ∂Ω such that ϕ(z0) = |z0−ξ0|.
For z ∈ Ω there exists ξ(z) ∈ ∂Ω such that ϕ(z) = |z− ξ(z)|. Then we have

ϕ(z) = |z − ξ(z)| ≤ |z − ξ0| ≤ |z − z0|+ |z0 − ξ0| = |z − z0|+ ϕ(z0).

Thus we have

ϕ(z)− ϕ(z0) ≤ |z − z0|.

Similarly, we have

ϕ(z0) = |z0 − ξ0| ≤ |z0 − ξ(z)| ≤ |z0 − z|+ ϕ(z).

Hence we obtain

|ϕ(z)− ϕ(z0)| ≤ |z − z0|,

which means that ϕ is continuous at z = z0. �

Definition 1.13 Let Ω be an open subset in Cn. We say that Ω is a
domain of holomorphy if there exists at least one holomorphic function in
Ω that cannot be extended as a holomorphic function through any boundary
point of Ω.

Remark 1.1 We do not assume that the domain of holomorphy is con-
nected.
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Definition 1.14 Suppose Ω ⊂ Cn is an open set and K is a compact
subset of Ω. Define

K̂OΩ = {z ∈ Ω | |f(z)| ≤ sup
ζ∈K

|f(ζ)|, f ∈ O(Ω)}.

K̂OΩ is called a holomorphically convex hull of K (or O-hull of K). By
definition, K ⊂ K̂OΩ . In case K = K̂OΩ , K is called O(Ω)-convex.

Definition 1.15 An open set Ω ⊂ Cn is called holomorphically convex if
for any compact subset K, K̂OΩ ⊂⊂ Ω. (Equivalently, Ω is holomorphically
convex if and only if K̂OΩ is compact for every compact subset K of Ω.)

Lemma 1.11 Let Ω ⊂ Cn be an open set. Then

(a) If K and L are compact subsets of Ω with K ⊂ L, then K̂OΩ ⊂ L̂OΩ .
(b) We set N = K̂OΩ . If N is compact, then

N̂OΩ = N.

Proof. (a) Let z ∈ K̂OΩ . Then for any f ∈ O(Ω) we have

|f(z)| ≤ sup
ζ∈K

|f(ζ)| ≤ sup
ζ∈L
|f(ζ)|.

Hence f ∈ L̂OΩ . This proves (a).
(b) By definition we have N ⊂ N̂OΩ . If z ∈ N̂OΩ , then

|f(z)| ≤ sup
ζ∈K̂O

Ω

|f(ζ)| ≤ sup
ζ∈K

|f(ζ)|.

Hence we have N̂OΩ ⊂ K̂OΩ = N . This proves (b). �

Lemma 1.12 Let K ⊂ Cn be compact. We denote by K̃ the smallest
convex set which contains K (K̃ is called the convex hull of K). Then we
have K̂OCn ⊂ K̃.

Proof. Suppose w �∈ K̃. Then there exists a hyperplane through w l :∑2n
j=1 ajxj = b which does not intersect K̃. When zj = xj + ixn+j ∈ K,

we assume that
∑2n

j=1 ajxj < b. If wj = uj + iun+j , then
∑2n

j=1 ajuj = b.
If we set

αj = aj + ian+j, f(z) = exp

 n∑
j=1

ᾱjzj − b

 ,



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

24 Several Complex Variables and Integral Formulas

then f ∈ O(Cn). Using the equality

Re
n∑

j=1

ᾱjzj =
2n∑
j=1

ajxj ,

we have

|f(z)| = exp

 2n∑
j=1

ajxj − b

 < 1 (z ∈ K),

|f(w)| = exp

 2n∑
j=1

ajuj − b

 = 1.

Thus we have

sup
z∈K

|f(z)| < 1 = |f(w)|.

Hence w �∈ K̃OCn . Thus we obtain K̂OCn ⊂ K̃. �

Lemma 1.13 Suppose Ω ⊂ Cn is an open set and K is a compact subset
of Ω. Then K̂OΩ is bounded.

Proof. We denote by K̃ the convex hull of K. From Lemma 1.12 and
the definition of holomorphically convex hull, we have K̂OΩ ⊂ K̂OCn ⊂ K̃.
Since K̃ is bounded, K̂OΩ is bounded. �

Definition 1.16 For r = (r1, · · · , rn), rj > 0, j = 1, · · · , n, a ∈ Cn and
λ > 0, define

P (a, λr) = {z | |zj − aj | < λrj j = 1, · · · , n}.

For a ∈ Ω ⊂ Cn, we define

δ
(r)
Ω (a) = sup{λ | λ > 0, P (a, λr) ⊂ Ω}.

By definition, λ ≤ δ(r)Ω (a) if and only if P (a, λr) ⊂ Ω.

Lemma 1.14 Let Ω �= Cn be an open set. Then

dist(a, ∂Ω) = inf{δ(r)Ω (a) | |r| = 1} (a ∈ Ω).
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Proof. We set

δ = dist(a, ∂Ω), η = inf{δ(r)Ω (a) | |r| = 1}.

If |r| = 1 and |zi − ai| < λri for i = 1, · · · , n, then |z − a| < λ, and hence
P (a, λr) ⊂ B(a, λ). Thus we have P (a, δr) ⊂ Ω. Therefore, if |r| = 1, then
δ ≤ δ(r)Ω (a), which implies that δ ≤ η. Next we show that δ ≥ η. For any
ε > 0, we choose λ such that δ < λ < δ + ε. Then B(a, λ) �⊂ Ω, which
implies that there exists w such that w �∈ Ω, |w − a| < λ. We set

|wi − ai| = ti, t = (t1, · · · , tn), ri =
ti
|t| , r = (r1, · · · , rn).

Then |r| = 1, |wi − ai| < riλ for i = 1, · · · , n. Hence w ∈ P (a, λr).
Therefore P (a, λr) �⊂ Ω, which means that δ(r)Ω (a) < λ. Thus we have
η ≤ δ(r)Ω (a) < λ < δ + ε. Since ε > 0 is arbitrary, we have η ≤ δ. �

Theorem 1.11 Suppose Ω ⊂ Cn is an open set and K is a compact
subset of Ω. Let r = (r1, · · · , rn) and ri > 0 for i = 1, · · · , n. Assume
that η > 0 satisfies δ(r)Ω (z) ≥ η for all z ∈ K. Then for any a ∈ K̂OΩ and
f ∈ O(Ω), f is holomorphic in P (a, ηr).

Proof. We fix f ∈ O(Ω). We choose η′ such that η′ < η. We set

Q = ∪
a∈K

P (a, η′r).

Then Q is a compact subset of Ω. We set M = supz∈Q |f(z)|. By applying
the Cauchy inequality for P (a, η′r), we have for α ∈ Nn

sup
z∈K

|∂αf(z)| ≤ α!M
(η′r)α

.

Thus for a ∈ K̂OΩ , we obtain

|∂αf(a)| ≤ sup
z∈K

|∂αf(z)| ≤ α!M
(η′r)α

.

Hence for z ∈ P (a, η′r), we have∑
α

∣∣∣∣∂αf(a)α!
(z − a)α

∣∣∣∣ ≤∑
k

M

(
|z − a|
η′r

)α

<∞.

Thus
∑

α
∂αf(a)

α! (z − a)α converges in P (a, η′r). If we set

ϕ(z) =
∑
α

∂αf(a)
α!

(z − a)α,



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

26 Several Complex Variables and Integral Formulas

then ϕ is holomorphic in P (a, η′r). Since a ∈ Ω, we have ϕ = f in a
neighborhood of a. Therefore f is holomorphic in P (a, η′r). Since η is
arbitrary so far as η′ < η, f is holomorhic in P (a, ηr). �

Corollary 1.5 If Ω ⊂ Cn is a domain of holomorphy, then

dist(K, ∂Ω) = dist(K̂OΩ , ∂Ω)

for every compact subset K of Ω.

Proof. Since K ⊂ K̂OΩ , we have dist(K, ∂Ω) ≥ dist(K̂OΩ , ∂Ω). We set
η = dist(K, ∂Ω). Let η > dist(K̂OΩ , ∂Ω). We choose a ∈ K̂OΩ such that
dist(a, ∂Ω) < η. It follows from Lemma 1.14 that there exists r such that
|r| = 1 and δ(r)Ω (a) < η. Therefore we have P (a, ηr) �⊂ Ω. On the other
hand, when |r| = 1 and z ∈ K, we have η ≤ dist(z, ∂Ω) ≤ δ

(r)
Ω (z). By

Theorem 1.11, all f ∈ O(Ω) are holomorphic in P (a, ηr). Therefore f is
holomorphic in a neighborhood of some boundary point of Ω. This contra-
dicts that Ω is a domain of holomorphy. �

Next we state some properties of the infinite product which we will use
in the proof of Theorem 1.12.

Definition 1.17 Let {zn} be a sequence of complex numbers. We set

Pn = (1 + z1)(1 + z2) · · · (1 + zn).

If limn→∞ Pn = P exist, then we define

P =
∞∏
n=1

(1 + zn). (1.11)

The right side of (1.11) is called the infinite product.

Lemma 1.15 Define

PN =
N∏

n=1

(1 + zn), P ∗N =
N∏

n=1

(1 + |zn|).

Then

(a) P ∗N ≤ exp(|z1|+ · · ·+ |zN |).
(b) |PN − 1| ≤ P ∗N − 1.

Proof. Using the inequality

1 + |zi| ≤ e|zi|,
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we have

P ∗N =
N∏

n=1

(1 + |zn|) ≤ e|z1|+···+|zN |.

This proves (a).
We prove (b) by induction on N . When N = 1, it is trivial. Suppose

(b) holds for N = k. Since

Pk+1 − 1 = Pk(1 + zk+1)− 1 = (Pk − 1)(1 + zk+1) + zk+1,

we have

|Pk+1 − 1| ≤ |Pk − 1| |1 + zk+1|+ |zk+1|
≤ (P ∗k − 1)(1 + |zk+1|) + |zk+1|
= P ∗k+1 − 1.

Thus (b) holds for N = k + 1. �

Lemma 1.16 Suppose {fk} is a sequence of bounded functions defined
on a set E ⊂ Cn and

∑∞
j=1 |fj(z)| converges uniformly on E. Then

(a) Π∞j=1(1 + fj(z)) converges uniformly on E.
(b) Let f = Π∞j=1(1 + fj) and z0 ∈ E. Then f(z0) = 0 if and only if there

exists n such that fn(z0) = −1.
(c) Let {k1, k2, · · · } be a permutation of {1, 2, · · · }. Then

∞∏
j=1

(1 + fj) =
∞∏
j=1

(1 + fkj ).

Proof. Since fk is bounded on E, there exists a constant ck such that
|fk(z)| ≤ ck for z ∈ E. We set

h(z) =
∞∑
j=1

|fj(z)|, hm(z) =
m∑
j=1

|fj(z)|.

Since {hm} converges to h uniformly on E, there exists a positive integer
n0 such that for m ≥ n0

|h(z)− hm(z)| < 1 (z ∈ E).
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Hence for z ∈ E, we have

|h(z)| ≤ |hn0(z)|+ 1 =
n0∑
j=1

|fj(z)|+ 1 ≤
n0∑
j=1

cj + 1 =: c̃.

By Lemma 1.15, if we set

Pm(z) =
m∏
j=1

(1 + fj(z)), P ∗m(z) =
m∏
j=1

(1 + |fj(z)|),

then we have

|Pm(z)| ≤ |P ∗m(z)| ≤ exp(|f1(z)|+ · · ·+ |fm(z)|) = ehm(z) ≤ eh(z) ≤ ec̃ =: c.

Let 0 < ε < 1/2. Then there exists a positive integer t0 such that

|ht0(z)− h(z)| =
∞∑

k=t0+1

|fk(z)| < ε.

Let N ≥ t0. Since {k1, k2, · · · } is a permutation of {1, 2, · · · }, we have for
some sufficiently large integer M

{1, 2, · · · , N} ⊂ {k1, k2, · · · , kM}.

We set

qM (z) =
M∏
j=1

(1 + fkj (z)).

We set F = {k1, k2, · · · , kM} − {1, 2, · · · , N}. Then we have

qM (z)− PN (z) =
M∏
j=1

(1 + fkj (z))−
N∏
j=1

(1 + fj(z))

= PN (z)

{∏
i∈F

(1 + fi(z))− 1

}
.

By Lemma 1.15 we obtain∣∣∣∣∣∏
i∈F

(1 + fi(z))− 1

∣∣∣∣∣ ≤∏
i∈F

(1 + |fi(z)|)− 1 ≤ exp

(∑
i∈F
|fi(z)|

)
− 1.
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For z ∈ E, we have

|qM (z)− PN (z)| ≤ |PN (z)|
{

exp

( ∞∑
i=t0+1

|fi(z)|
)
− 1

}
≤ |PN (z)|(eε − 1)

= |PN (z)|(ε+
ε2

2!
+ · · · )

≤ ε|PN (z)|(1 +
1
2

+
1
22

+ · · · )

= 2ε|PN(z)| ≤ 2εc.

Thus for N with N ≥ t0 and some sufficiently large M we have

|qM (z)− PN (z)| ≤ 2ε|PN(z)| ≤ 2εc (z ∈ E). (1.12)

In particular, when kj = j we have qM = PM . It follows from (1.12) that

|PM (z)− PN (z)| < 2εc (z ∈ E).

Thus {PN} converges uniformly on E. This proves (a). Let kj = j. Then
for some sufficiently large M it follows from (1.12) that

|PM (z)− Pt0(z)| ≤ 2ε|Pt0(z)|.

Thus we obtain

|Pt0(z)|(1− 2ε) ≤ |PM (z)|.

Letting M →∞ we have

|Pt0(z)|(1− 2ε) ≤ |f(z)|.

Since 1 − 2ε > 0, f(z0) = 0 implies Pt0(z0) = 0. Thus there exists k
such that fk(z0) = −1. This proves (c). From (a), {Pj(z)} converges to
f uniformly on E. Therefore, taking N sufficiently large with N ≥ t0, if
necessary, we have

|f(z)− PN (z)| < ε (z ∈ E).

For some sufficiently large M , we have

|qM (z)− f(z)| ≤ |qM (z)− PN (z)|+ |PN (z)− f(z)| < 2εc+ ε = ε(1 + 2c).

Thus we have limM→∞ qM (z) = f(z). �
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Theorem 1.12 For an open set Ω ⊂ Cn, the following statements are
equivalent:

(a) Ω is a domain of holomorphy.
(b) For any compact set K ⊂ Ω, K̂OΩ is compact.
(c) For any compact set K ⊂ Ω, dist(K, ∂Ω) = dist(K̂OΩ , ∂Ω).
(d) If X ⊂ Ω is a discrete infinite subset of Ω, then there exists f ∈ O(Ω)

such that f is unbounded on X.

Proof. (a) =⇒ (c) follows from Theorem 1.11.
(c)=⇒(b). Since K is compact, we have

dist(K̂OΩ , ∂Ω) ≥ dist(K, ∂Ω) > 0.

Since K̂OΩ is closed in Ω, K̂OΩ is compact.
(b)=⇒(a). Let {Kn} be a sequence of compact sets such that Ω =

∪∞n=1Kn with Kn ⊂ Kn+1
◦, where Kn

◦ denotes the interior of Kn. It
follows from Lemma 1.11 that (K̂n)OΩ ⊂ (K̂n+1)OΩ . If we set Tn = (K̂n)OΩ ,
then by the assumption, Tn is compact and Ω = ∪∞n=1 Tn. It follows from
Lemma 1.11 that Tn ⊂ Tn+1, (T̂n)OΩ = Tn. We may assume that Tn ⊂
Tn+1

◦. Suppose X ⊂ Ω is a countable set and X = Ω. Let X = {ξm}∞m=1.
We denote by Bm the largest open ball with center ξm and contained in Ω.
Let ηm ∈ Bm − Tm. Since η �∈ Tm, there exists fm ∈ D such that

|fm(ηm)| > sup
ζ∈Tm

|fm(ζ)|.

We set

gm(z) =
fm(z)
fm(ηm)

.

Then gm ∈ O(Ω) and gm(ηm) = 1, supζ∈Tm
|gm(ζ)| < 1. For some suffi-

ciently large integer km

sup
ζ∈Tm

|gkm
m (ζ)| < 1

m2m
, gkm

m (ηm) = 1.

Set ϕm = gkm
m . Then ϕm ∈ O(Ω), ϕm(ηm) = 1 and supζ∈Tm

|ϕm(ζ)| <
(m2m)−1. We set

ϕ(z) =
∞∏
j=1

(1− ϕj(z))j = (1− ϕ1(z))(1− ϕ2(z))(1− ϕ2(z))(1− ϕ3(z)) · · · .
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Then for z ∈ Tm

m|ϕm(z)|+ (m+ 1)|ϕm+1(z)|+ · · · ≤
1

2m
+

1
2m+1

+ · · · .

Therefore, for any positive integerm,
∑∞

j=1 j|ϕj(z)| converges uniformly on
Tm. Thus,

∏∞
j=1(1 − ϕj(z))j converges uniformly on every Tm. Thus, ϕ is

holomorphic in Ω. Since |ϕm(z)| < 1 for z ∈ T1, ϕ(z) �= 0 for z ∈ T1. Thus
ϕ(z) �≡ 0. Suppose that there exists a domain V such that φ �= Ω ∩ V �= V
and that ϕ is holomorphic in Ω∪V . We set V ∩Ω =W . Let ζ ∈ ∂W∩∂Ω∩V .
Since X ∩ W is dense in W , We can choose a subsequence {ξmj} of X
which converges to ζ. If we choose j sufficiently large, then Bmj ⊂ W .
Since ηmj ∈ Bmj − Tmj , we have ηmj → ζ. In case k = (k1, · · · , kn) with
|k| = k1 + · · ·+ kn < mj , we have

∂|k|ϕ

∂zk
(z) =

∂|k|

∂zk


 ∏

m �=mj

(1− ϕm(z))m

 (1− ϕmj (z))
mj

 .
Hence we have

∂kϕ

∂zk1
1 · · · ∂zkn

n

(ηmj ) = 0 (k < mj , k = k1 + · · ·+ kn).

Since ζ ∈ V and ϕ is holomorphic in V , we obtain

0 =
∂kϕ

∂zk1
1 · · · ∂zkn

n

(ζ).

Thus ϕ(z) ≡ 0 in Ω ∪ V . This is a contradiction.
(d)=⇒(b). Suppose (b) is not true. There exists a compact set K ⊂ Ω

such that K̂OΩ is not compact. Since K̂OΩ is a closed subset of Ω with respect
to the relative topology, there exist ξk ∈ K̂OΩ , k = 1, 2, · · · , such that {ξk}
converges to a boundary point of Ω. Then we have for any f ∈ O(Ω)

|f(ξk)| ≤ sup
z∈K

|f(z)| <∞.

Since X = {ξi} is a discrete infinite subset in Ω and f is bounded in X , (d)
does not hold.

(b)=⇒(d). We choose a sequence {Kn} of compact subsets of Ω such

that Ω = ∪∞m=1Km, Km ⊂ Km+1. By the assumption , Tm = (K̂m)
O
Ω are

compact and satisfy Ω = ∪∞m=1 Tm, Tm ⊂ Tm+1. We may assume that
Tm ⊂ (Tm+1)◦. Suppose X ⊂ Ω is a discrete infinite set. Let X = {ξm}.
We choose a subsequence {Tmj} of {Tn} and a subsequence {ξνj} of {ξm}
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such that ξνj ∈ Tmj+1 − Tmj . For simplicity, we rewrite ξνj by ξj and Tmj

by Tj . Hence ξj ∈ Tj+1 − Tj. Since (T̂j)OΩ = Tj �� ξj , there exist fj ∈ O(Ω)
such that

|fj(ξj)| > sup
ζ∈Tj

|fj(ζ)|.

Choose αj such that

|fj(ξj)| > αj > sup
ζ∈Tj

|fj(ζ)|.

We set hj = fj/αj. Then we have |hj(ξj)| > 1, supζ∈Tj
|hj(ζ)| < 1. For

any sufficiently large integer kj , We set ϕj = hkj

j . Then we have ϕj ∈ O(Ω)
and

sup
ζ∈Tj

|ϕj(ζ)| <
1
2j
, |ϕj(ξj)| > j + 1 +

j−1∑
k=1

|ϕk(ξj)| (j = 1, 2, · · · ).

If we set ϕ =
∑∞

k=1 ϕk, then ϕ ∈ O(Ω). Hence we obtain

|ϕ(ξj)| =
∣∣∣∣∣
∞∑
k=1

ϕk(ξj)

∣∣∣∣∣ ≥ |ϕj(ξj)| −

∣∣∣∣∣∣
∑
k �=j

ϕk(ξj)

∣∣∣∣∣∣
≥ j + 1 +

j−1∑
k=1

|ϕk(ξj)| −
∑
k �=j

|ϕk(ξk)|

= j + 1−
∑
k>j

|ϕk(ξj)|.

Since ξj ∈ Tj+1, we have ξj ∈ Tk for k ≥ j + 1. Thus, we have

|ϕk(ξj)| ≤ sup
ζ∈Tk

|ϕk(ζ)| <
1
2k
,

for k ≥ j + 1, which means that∑
k>j

|ϕk(ξj)| ≤
∑
k>j

1
2k
< 1.

Since |ϕ(ξj)| ≥ j, we have limj→∞ |ϕ(ξj)| = ∞. Thus ϕ is unbounded on
X . �

Definition 1.18 (1) Let Ω ⊂ Cn be an open set such that Ω �= Cn. Ω is
called a pseudoconvex open set if − log dist (z, ∂Ω) is plurisubharmonic in
Ω. In particular, we define Cn to be pseudoconvex.
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(2) Let Ω be a bounded open set inCn. Ω is called strictly pseudoconvex
if there exist a neighborhood W of ∂Ω and a strictly plurisubharmonic
function ρ in W such that Ω ∩W = {z ∈W | ρ(z) < 0}.

Lemma 1.17 (a) Let Ω ⊂ Cn and G ⊂ Cm. Suppose Ω and G are
pseudoconvex open sets. Then Ω×G is a pseudoconvex open set in Cn+m.

(b) Let {Ωj}j∈J be a family of pseudoconvex open sets in Cn. Then the
interior (∩j∈J Ωj)◦ of ∩j∈J Ωj is a pseudoconvex open set.

Proof. (a) We have

∂(Ω×G) = (∂Ω×G) ∪ (Ω× ∂G).

Hence for (z, w) ∈ Ω×G, we have

dist((z, w), ∂(Ω×G)) = min{dist(z, ∂Ω), dist(w, ∂G)}.

Consequently,

− log dist((z, w), ∂(Ω×G)) = − inf{log dist(z, ∂Ω), log dist(w, ∂G)}.

Then− log dist((z, w), ∂(Ω×G)) is plurisubharmonic in Ω×G, which implies
that Ω×G is pseudoconvex.

(b) We set Ω = (∩j∈J Ωj)
◦. For z ∈ Ω, we have dist(z, ∂Ω) =

infj∈J dist(z, ∂Ωj). Hence we obtain

− log dist(z, ∂Ω) = sup
j∈J
{− log dist(z, ∂Ωj)}.

Then − log dist(z, ∂Ω) is plurisubharmonic in Ω. �

Definition 1.19 Suppose Ω ⊂ Cn is an open set and K ⊂ Ω is compact.
Define

K̂P
Ω = {z ∈ Ω | ρ(z) ≤ max

ζ∈K
ρ(ζ), ρ ∈ PS(Ω)}.

By definition, K̂P
Ω is a closed subset in Ω and K ⊂ K̂P

Ω . In case K = K̂P
Ω ,

we say that K is PS(Ω)-convex.

Lemma 1.18 Suppose Ω ⊂ Cn is an open set and K ⊂ Ω is compact.
Then

K̂P
Ω ⊂ K̂OΩ .

Proof. By Theorem 1.9, if f ∈ O(Ω), then |f | ∈ PS(Ω), which completes
the proof of Lemma 1.18. �



January 9, 2007 12:0 WSPC/Book Trim Size for 9in x 6in ws-book9x6

34 Several Complex Variables and Integral Formulas

Theorem 1.13 Suppose Ω is an open set in Cn. Then the following

statements are equivalent:

(a) Ω is pseudoconvex.

(b) If K ⊂ Ω is compact, then K̂P
Ω is compact.

(c) There exists ρ ∈ PS(Ω) such that for any real number α, the closure

in Ω of the set

Ωα := {z ∈ Ω | ρ(z) < α}

is compact.

Proof. (a) In case Ω 6= Cn.

(a)=⇒(c). We set

ρ(z) = max{|z|2,− log dist(z, ∂Ω)}.

Then ρ ∈ PS(Ω). Let ρ(z) < α. Then we have

|z|2 < α, − log dist(z, ∂Ω) < α.

Thus we have dist(z, ∂Ω) > e−α, which means that Ωα ⊂⊂ Ω.

(c)=⇒(b). Suppose there exists ρ1 ∈ PS(Ω) such that {z ∈ Ω | ρ1(z) <

α} ⊂⊂ Ω for any real α. Let K ⊂ Ω be compact. If we choose α such that

α = supζ∈K ρ1(ζ) + 1, then

K̂P
Ω ⊂ {z ∈ Ω | ρ1(z) ≤ sup

ζ∈K
ρ1(ζ)} ⊂⊂ Ω,

which implies that K̂P
Ω is a compact subset of Ω.

(b)=⇒(a). We set ϕ(z) = − log dist(z, ∂Ω). We show that ϕ(z) is

plurisubharmonic in Ω. For v, w ∈ Cn and w 6= 0, we set

U = {λ ∈ Cn | v + λw ∈ Ω}.

We set g(λ) = ϕ(v + λw). It is sufficient to show that g(λ) is subharmonic

in U . For λ0 ∈ U , it is sufficient to show that g(λ) is subharmonic in a

neighborhood of λ0. We set a = v + λ0w. Then a ∈ Ω. Since a + λw =

v +w(λ+ λ0), if we set ψ(λ) = ϕ(a+ λw), then ψ(λ) = g(λ+ λ0). So it is

sufficient to show that ψ(λ) is subharmonic in a neighborhood of 0. There

exists r > 0 such that {a + λw | |λ| ≤ r} ⊂ Ω. Let h be harmonic in a

neighborhood of |λ| ≤ r. It is sufficient to show that if h(λ) ≥ ψ(λ) on

|λ| = r, then h(λ) ≥ ψ(λ) on |λ| ≤ r. There exists a harmonic function h∗
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in |λ| ≤ r such that f = h + ih∗ is holomorphic in |λ| ≤ r. We have for

|λ| = r

eh(λ) ≥ eψ(λ) = e− log dist(a+λw,∂Ω) =
1

dist(a+ λw, ∂Ω)
.

Thus on |λ| = r we have

dist(a+ λw, ∂Ω) ≥ e−h(λ) = |e−f(λ)|.

Therefore, if |λ| = r, |ζ| < 1, then a + λw + ζe−f(λ) ∈ Ω. We fix ζ with

|ζ| < 1. For 0 ≤ t ≤ 1, we set

Γt = {a+ λw + tζe−f(λ) | |λ| ≤ r}.

Then we have

Γ0 = {a+ λw | |λ| ≤ r} ⊂ Ω.

We set

T = {t ∈ [0, 1] | Γt ⊂ Ω}.

Then T ⊂ [0, 1], 0 ∈ T . If T is closed and open in [0, 1], then T = [0, 1],

and hence 1 ∈ T . Then for |ζ| < 1 we have

Γ1 = {a+ λw + ζe−f(λ) | |λ| ≤ r} ⊂ Ω.

Thus, for |λ| ≤ r, we obtain

dist(a+ λw, ∂Ω) ≥ |e−f(λ)| = e−h(λ),

which implies that

ψ(λ) ≤ h(λ) (|λ| ≤ r).

Hence ψ(λ) is subharmonic. Finally, we show that T is closed and open

in [0, 1]. Let t0 ∈ T . Then Γt0 ⊂ Ω. Since Ω is open, Γt ⊂ Ω for any

sufficiently closed point t to t0. Thus t ∈ T , and hence T is open. Next we

show that T is closed. We set

K = {a+ λw + tζe−f(λ) | |λ| = r, 0 ≤ t ≤ 1}.

Then K is compact and K ⊂ Ω. By the assumption, K̂P
Ω is compact. Let

t ∈ T . We set g(λ) = a + λw + tζe−f(λ). Since Γt ⊂ Ω, g(λ) ∈ Ω for

|λ| ≤ r. Hence g(λ) is holomorphic in |λ| ≤ r. Let ρ ∈ PS(Ω). Then
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ρ ◦ g(λ) is subharmonic in |λ| ≤ r. By applying the maximum principle for
subharmonic functions, we have for |λ| ≤ r

ρ ◦ g(λ) ≤ sup
|λ|=r

ρ ◦ g(λ) = sup
|λ|=r

ρ(a+ λw + ζe−f(λ)) ≤ sup
z∈K

ρ(z).

Thus we have g(λ) ∈ K̂P
Ω . Hence for t ∈ T we obtain

Γt = {g(λ) | |λ| ≤ r} ⊂ K̂P
Ω .

Let tν ∈ T and tν → t0. Then Γtν ⊂ K̂P
Ω . Since K̂P

Ω is compact, we have
Γt0 ⊂ K̂P

Ω ⊂ Ω, and hence t0 ∈ T . Thus T is closed. Hence T is closed and
open in [0, 1], which shows that (b)=⇒(a).

(b) In case Ω = Cn. By definition, Ω is pseudoconvex. If K ⊂ Cn is
compact, then by Lemma 1.13 K̂OΩ is bounded. Since K̂P

Ω ⊂ K̂OΩ , K̂P
Ω is

compact. We set ρ(z) = |z|2. Then ρ ∈ PS(Ω) and Ωα = {z ∈ Cn | ρ(z) <
α} ⊂⊂ Cn. �

Corollary 1.6 Let Ω ⊂ Cn be an open set. If Ω is a domain of holomor-
phy, then Ω is pseudoconvex.

Proof. Let K ⊂ Ω be compact. It follows from Theorem 1.12 that K̂OΩ
is compact. Since K̂P

Ω ⊂ K̂OΩ , K̂P
Ω is compact. By Theorem 1.13, Ω is

pseudoconvex. �

Lemma 1.19 (Dini’s theorem) Suppose K is a compact subset in Cn

and that {fn} is a sequence of real-valued continuous functions on K that
converges to f monotonically on K. Then {fn} converges to f uniformly
on K.

Proof. Suppose

f1(x) ≥ f2(x) ≥ · · · , fn(x)→ f(x).

We set gn(x) = fn(x) − f(x). We denote by αn the maximum of gn in K.
Then αn is monotonically decreasing. Let limn→∞ αn = α. It is sufficient
to show that α = 0. Suppose α > 0. Let xn ∈ K be a point such that
αn = gn(xn). We can choose a convergent subsequence {xkn} of {xn}.
Define limn→∞ xkn = x0. Then we have gkn(x0) → 0 as n → ∞. If we
choose N sufficiently large, then we obtain

n ≥ N =⇒ gkn(x0) <
α

2
.
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On the other hand we have for m ≥ n

gkn(xkm) ≥ gkm(xkm) = αkm ≥ α,

which implies that gkn(x0) ≥ α. This is a contradiction. �

Theorem 1.14 Suppose a real-valued function λ ∈ D(Cn) satisfies the
following properties:

(1) If λ ≥ 0 and |z| > 1, then λ(z) = 0.
(2) λ depends only on |z1|, · · · , |zn|.
(3)

∫
Cn λ(z)dV (z) = 1, where dV denotes the Lebesgue measure on Cn.

Let Ω be an open set in Cn and let u be a plurisubharmonic function in Ω.
For ε > 0, we set

Ωε = {z ∈ Ω | dist(z, ∂Ω) > ε}

and

uε(z) =
∫
|ζ|<1

u(z − εζ)λ(ζ)dV (ζ) (z ∈ Ωε).

Then uε is plurisubharmonic in Ωε and uε ∈ C∞(Ωε). Moreover, we have
uε ↓ u as ε ↓ 0.

Proof. From the condition (2), we have

uε(z) =
∫
|ζ|<1

[
1
2π

∫ 2π

0

u(z − eitεζ)dt
]
λ(ζ)dV (ζ).

We set h(w) = u(z+w(−ζ)). Since h is subharmonic in a neighborhood of
0, it follows from Lemma 1.2 that

0 < ε1 < ε2 ⇒
1
2π

∫ 2π

0

h(ε1eit)dt ≤
1
2π

∫ 2π

0

h(ε2eit)dt.

Thus , uε ↓ u as ε ↓ 0. On the other hand, uε is expressed by

uε(z) =
∫
u(ζ)λ

(
z − ζ
ε

)
ε−2ndV (ζ),

which implies that uε ∈ C∞(Ωε). Let a ∈ Ωε and w ∈ Cn. In order that uε
is plurisubharmonic in Ωε, it is sufficient to prove that h(η) = uε(a+ηw) is
subharmonic in a neighborhood of 0. Since u(a− εζ + ηw) is subharmonic
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with respect to η in a neighborhood of 0, we have for any sufficiently small
r > 0

1
2π

∫ 2π

0

uε(a+ reiθw)dθ

=
∫
|ζ|<1

[
1
2π

∫ 2π

0

u(a+ reiθw − εζ)dθ
]
λ(ζ)dV (ζ)

≥
∫
|ζ|<1

u(a− εζ)λ(ζ)dV (ζ) = uε(a).
�

Theorem 1.15 Let Ω be a pseudoconvex domain in Cn. Then there
exists a C∞ strictly plurisubharmonic function u in Ω such that for any
real number C the closure of {z ∈ Ω | u(z) < C} in Ω is compact.

Proof. We set δ(z) = dist(z, ∂Ω). Then − log δ(z) is plurisubharmonic
in Ω. Define

Φ(z) = − log δ(z) + |z|2

and

ΩC = {z ∈ Ω | Φ(z) < C}.

Then ΩC is a relatively compact subset of Ω. For any sufficiently small
ε > 0, define

Φj(z) =
∫
Ωj+1

Φ(ζ)λ
(
z − ζ
ε

)
ε−2ndV (ζ) + ε|z|2,

where λ is the function defined in Theorem 1.14. By definition, we have
Φj ∈ C∞(Cn). Let z ∈ Ωj . We set (z − ζ)/ε = w. For |w| ≤ 1 and any
sufficiently small ε we have ζ = z − εw ∈ Ωj+1. Hence Φj can be written

Φj(z) =
∫
|w|<1

Φ(z − εw)λ(w)dV (w) + ε|z|2.

By Theorem 1.14, if ε ↓ 0, then Φj ↓ Φ in Ωj and Φj is strictly plurisubhar-
monic in a neighborhood of Ωj . It follows from the Dini theorem (Lemma
1.19) that Φj < Φ + 1 on Ωj . Let χ ∈ C∞(R) satisfy χ(t) = 0 if t ≤ 0,
χ(t) > 0 if t > 0, χ′(t) > 0, χ′′(t) > 0 (for example, χ(t) = te−

1
t (t > 0), 0

(t ≤ 0)). Define

Ψj = χ(Φj + 2− j).
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Then Ψj is strictly plurisubharmonic in a neighborhood of Ωj\Ωj−1 and
Ψj > 0. Φ0 is strictly plurisubharmonic and Φ0 ≥ Φ in a neighborhood of
Ω0 . Since Ψ1 is strictly plurisubharmonic and Ψ1 > 0 in a neighborhood
of Ω1\Ω0, Φ0 + a1Ψ1 > Φ in a neighborhood of Ω1\Ω0 if a1 > 0. Further,
by Corollary 1.4 there exists a constant C > 0 such that

n∑
i,j=1

∂2Ψ1
∂zi∂z̄j

(z)wiw̄j ≥ C|w|2.

Similarly, there exists a constant C1 > 0 such that∣∣∣∣∣∣
n∑

i,j=1

∂2Φ0
∂zi∂z̄j

(z)wiw̄j

∣∣∣∣∣∣ ≤ C1|w|2.
Hence for any sufficiently large a1 > 0, we have

n∑
i,j=1

∂2Φ0
∂zi∂z̄j

(z)wiw̄j + a1
n∑

i,j=1

∂2Ψ1
∂zi∂z̄j

(z)wiw̄j ≥ a1C|w|2 − C1|w|2 > 0.

Hence u1 = Φ0 + a1Ψ1 is strictly plurisubharmonic in a neighborhood of
Ω1\Ω0. Since Φ0 is strictly plurisubharmonic, Φ0 ≥ Φ in a neighborhood
of Ω0 and Ψ1 ≥ 0 in a neighborhood of Ω1, u1 is strictly plurisubharmonic
and u1 > Φ in a neighborhood of Ω1. Repeating this process, there exist
positive numbers a1, · · · , am such that

um = Φ0 +
m∑
j=1

ajΨj

is strictly plurisubharmonic and um > Φ in a neighborhood of Ωm. If
k ≥ j+3, then Ψk = 0 on Ωj . Thus there exists u = limm→∞um such that
u is strictly plurisubharmonic, u ∈ C∞(Ω) and u ≥ Φ in Ω. �

Lemma 1.20 Let f be differentiable at x = a and let f(a) = 0. Let h
be continuous at x = a. Then fh is differentiable at x = a. Moreover, we
have

{f(x)h(x)}′x=a = h(a)f ′(a).

Proof. By the definition of differentiation, we have

lim
x→a

h(x)f(x) − h(a)f(a)
x− a = lim

x→a

h(x)(f(x) − f(a))
x− a = h(a)f ′(a).

�
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Definition 1.20 Let Ω ⊂ Rn be an open set. We say that Ω has a Ck

(k ≥ 1) boundary if there exist a neighborhood U of ∂Ω and a Ck function
ρ in U such that

(1) Ω ∩ U = {x ∈ U | ρ(x) < 0}.
(2) dρ �= 0 on ∂Ω, where

dρ(x) =
n∑

j=1

∂ρ

∂xj
(x)dxj .

Lemma 1.21 Let Ω = {x | ρ(x) < 0} ⊂ Rn be a bounded domain with
Ck (k ≥ 1) boundary and let f be a Ck function in a neighborhood of
Ω. Assume that f(x) = 0 for all x ∈ ∂Ω. Then for P ∈ ∂Ω there exist a
neighborhood U of P and a Ck−1 function h in U such that f(x) = ρ(x)h(x)
for x ∈ U .
Proof. Without loss of generality, we may assume that P = 0. Since
dρ �= 0 on ∂Ω, we may assume that there exists a neighborhood U of P
such that if x = (x′, xn) (x′ = (x1, · · · , xn−1)) forms a coordinate system
in U . Then we have ρ(x) = xn for x ∈ U . Since f(x′, 0) = 0, we have

f(x′, xn) = f(x′, xn)− f(x′, 0) =
∫ 1

0

d

dt
{f(x′, txn)}dt

= xn

∫ 1

0

∂f

∂xn
(x′, txn)dt.

Define

h(x′, xn) =
∫ 1

0

∂f

∂xn
(x′, txn)dt.

Then h(x′, xn) is of class Ck−1 in U and f(x) = ρ(x)h(x) for x ∈ U . �
Theorem 1.16 Let Ω ⊂ Cn be an open set with C2 boundary. Let Ω =
{z ∈ Ω̃ | ρ(z) < 0}, where ρ is a C2 function in a neighborhood Ω̃ of Ω and
satisfies dρ �= 0 on ∂Ω. Then Ω is pseudoconvex if and only if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k ≥ 0 (1.13)

for all z and w = (w1, · · · , wn) satisfying

z ∈ ∂Ω,
n∑

j=1

∂ρ

∂zj
(z)wj = 0.
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Proof. Suppose ρ1 is a C2 defining function for Ω. By Lemma 1.21 there
exists a C1 function h in a neighborhood V of ∂Ω such that ρ1 = hρ. Since
dρ1 = hdρ on ∂Ω, we have h > 0 in V . For z and w satisfying z ∈ ∂Ω and∑n

j=1
∂ρ1
∂zj

(z)wj = 0, we have

n∑
j=1

∂ρ

∂zj
(z)wj = 0.

By Lemma 1.20, we obtain

n∑
j,k=1

∂2ρ1
∂zj∂z̄k

(z)wjw̄k = h(z)
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k ≥ 0.

Thus the condition (1.13) is independent of the choice of the defining func-
tion ρ. Suppose Ω is pseudoconvex. Define

ρ̃(z) =
{
−dist(z, ∂Ω) (z ∈ Ω)
dist(z, ∂Ω) (z ∈ Ωc).

Then ρ̃ is a C2 function in a neighborhood of ∂Ω and satisfies dρ̃ �= 0 on
∂Ω (see Krantz-Parks [KRP]). If z ∈ Ω is sufficiently close to ∂Ω, then for
δ(z) := dist(z, ∂Ω), − log δ(z) is plurisubharmonic. By Theorem 1.10, we
have

n∑
j,k=1

∂̃2

∂zj∂z̄k
(− log δ(z))wjw̄k

= −1
δ

n∑
j,k=1

∂2δ

∂zj∂z̄k
(z)wjw̄k +

1
δ(z)2

∣∣∣∣∣∣
n∑

j=1

∂δ

∂zj
(z)wj

∣∣∣∣∣∣
2

≥ 0.

Thus if z ∈ Ω is sufficiently close to ∂Ω, then

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(z)wjw̄k +

1
δ(z)

∣∣∣∣∣∣
n∑

j=1

∂δ

∂zj
(z)wj

∣∣∣∣∣∣
2

≥ 0. (1.14)

Suppose that z ∈ ∂Ω,
∑n

j=1
∂ρ̃
∂zj

(z)wj = 0. We choose sequences {z(i)} and

{w(i)} satisfying

z(i) ∈ Ω, z(i) → z, w(i) → w,

n∑
j=1

∂ρ̃

∂zj
(z(i))w(i)j = 0.
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By (1.14) we have

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(z(i))w

(i)
j w̄

(i)
k ≥ 0.

Letting i→ ∞ we have (1.13).

Conversely we assume that (1.13) holds. We set ϕ(τ) = log δ(z + τw).

It is sufficient to show that −ϕ(τ) is subharmonic. Assume that

∂2ϕ

∂τ∂τ̄
(0) = c > 0.

Using Taylor’s formula, we obtain

ϕ(τ) = ϕ(0) + 2Re

(
∂ϕ

∂τ
(0)τ

)
+ Re

(
∂2ϕ

∂τ2
(0)τ2

)
+

∂2ϕ

∂τ∂τ̄
(0)|τ |2 + o(|τ |2).

We set

A = 2
∂ϕ

∂τ
(0), B =

∂2ϕ

∂τ2
(0).

Then

ϕ(τ) = log δ(z) + Re(Aτ +Bτ2) + c|τ |2 + o(|τ |2).

Suppose z0 ∈ ∂Ω satisfies δ(z) = |z − z0|. For 0 < s ≤ 1, define

ψs(τ) = z + τw + s(z0 − z)eAτ+Bτ
2
.

Then

δ(ψs(τ)) = δ(z + τw + s(z0 − z)eAτ+Bτ
2
)

≥ δ(z + τw) − s|z − z0||eAτ+Bτ
2|.

On the other hand, we have

δ(z + τw) = eϕ(τ) = δ(z)|eAτ+Bτ2|ec|τ |2+o(|τ |2),

which implies that

δ(ψs(τ)) ≥ δ(z)|eAτ+Bτ2|ec|τ |2/2 − sδ(z)|eAτ+Bτ2|

= δ(z)|eAτ+Bτ2|(ec|τ |2/2 − s).

For s with 0 < s < 1 we have ψs(0) = z+s(z0−z) ∈ Ω. Hence for 0 < s < 1

and any sufficiently small |τ |, we have ψs(τ) ∈ Ω, and hence ψ1(τ) ∈ Ω. If
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we set f(τ) = δ(ψ1(τ)), then f(0) = 0. So we have for any sufficiently small

|τ |

f(τ) ≥ c

4
δ(z)|eAτ+Bτ2||τ |2. (1.15)

Thus f(τ) takes a local minimum at τ = 0, and hence ∂f
∂τ (0) = 0. Further,

by (1.15), the case that ∂2f
∂τ2 (0) = ∂2f

∂τ∂τ̄ (0) = 0 does not occur. By Taylor’s

formula, we have

f(τ) = Re

(
∂2f

∂τ2
(0)τ2

)
+

∂2f

∂τ∂τ̄
(0)|τ |2 + o(|τ |2).

In the above equation we set τ = eitλ, where t and λ are real numbers.

Then in case ∂2f
∂τ∂τ̄ (0) ≤ 0, f(τ) is negative for some t, which implies that

∂2f
∂τ∂τ̄ (0) > 0. For any sufficiently small |τ |, we have ψ1(τ) ∈ Ω, and hence

ρ̃(ψ(τ)) = −δ(ψ(τ)) = −f(τ). Thus if we set ψ1(τ) = λ(τ), then

n∑
j=1

∂ρ̃

∂zj
(z0)λ

′
j(0) = 0

and

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(z0)λ

′
j(0)λ′j(0) < 0.

This contradicts (1.13). �

Definition 1.21 Let Ω ⊂⊂ Cn be an open set. Ω is called an analytic

polyhedron if there exist a neighborhood U of Ω and a finite number of

functions f1, · · · , fk ∈ O(U) such that

Ω = {z ∈ U | |f1(z)| < 1, · · · , |fk(z)| < 1}.

The collection of functions f1, · · · , fk is called a frame for Ω.

Theorem 1.17 Every analytic polyhedron is holomorphically convex.

Proof. Let Ω = {z ∈ U | |f1(z)| < 1, · · · , |fk(z)| < 1}, where U is a

neighborhood of Ω and f1, · · · , fk ∈ O(U). Let K ⊂ Ω be compact. We set

rj = supK |fj |. Then rj < 1. Now we have

K̂O
Ω ⊂ {z ∈ U | |f1(z)| ≤ r1, · · · , |fk(z)| ≤ rk} ⊂⊂ Ω,

which implies that Ω is holomorphically convex. �
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Theorem 1.18 Let Ω ⊂ Cn be an open set and let K be a compact
subset of Ω. Suppose K is O(Ω)-convex. Then K has a neighborhood basis
consisting of analytic polyhedra defined by frames of functions holomorphic
in Ω.

Proof. Let U ⊂⊂ Ω be a neighborhood of K. Since K = K̂OΩ , K̂OΩ ∩ ∂U
is empty. Let a ∈ ∂U . Then there exists fa ∈ O(Ω) such that |fa(a)| >
supz∈K |fa(z)|. We choose r such that |fa(a)| > r > supz∈K |fa(z)|, and
set ga = fa/r, then we have |ga(a)| > 1, supz∈K |ga(z)| < 1. Thus there
exists a neighborhood Wa of a such that for z ∈ Wa, |ga(z)| > 1. By the
argument of compactness, there exist open sets W1, · · · ,Wk and functions
g1, · · · , gk ∈ O(Ω) such that

∂U ⊂
k
∪
j=1
Wj , |gj(z)| > 1 (z ∈Wj).

We set Ω = {z ∈ U | |fj(z)| < 1, j = 1, · · · , k}. Then K ⊂ Ω ⊂⊂ U , which
completes the proof of Theorem 1.18. �

Exercises

1.1 Let f be a C1 function defined on a domain in C. Show that the
following equalities hold.

∂f

∂z
=
∂f̄

∂z̄
,

∂f

∂z̄
=
∂f̄

∂z
.

1.2 Let Ω ⊂ Cn be an open set. Show that a real-valued function u on
Ω is upper semicontinuous if and only if

lim sup
Ω�z→a

u(z) ≤ u(a) (a ∈ Ω),

where we define

lim sup
Ω�z→a

u(z) = lim
δ→0+

{
sup

z∈Ω∩B(a,δ)
u(z)

}
.

1.3 (Maximum principle) Let Ω ⊂ Cn be a domain and let f be a
holomorphic function in Ω. Suppose there exists a point ξ ∈ Ω such
that |f(z)| ≤ |f(ξ)| for all z ∈ Ω. Show that f is constant.

1.4 Let Ω ⊂ Cn be an open set and let {fj} be a sequence of holomor-
phic functions in Ω. Suppose {fj} converges uniformly to f on every
compact subset of Ω. Show that f is holomorphic in Ω.
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1.5 Let f be a holomorphic function in a domain Ω ⊂ Cn. Suppose there

exists a point ξ ∈ Ω such that for all multi-indices α = (α1, · · · , αn),

(∂αf)(ξ) :=
∂|α|f

∂zα1
1 · · ·∂zαn

n
(ξ) = 0,

where each αj is a nonnegative integer and |α| = α1 + · · · + αn. Show

that f = 0.

1.6 Construct the function λ in Theorem 1.14.

1.7 (Schwarz lemma) Let f be a holomorphic function in the unit disc

B(0, 1) ⊂ C. Assume that f(0) = 0 and |f(z)| ≤ 1 for z ∈ B(0, 1).

Prove that

|f(z) ≤ |z|, |f ′(0)| ≤ 1.

If either |f(z)| = |z| for some z 6= 0 or if |f ′(0)| = 1, prove that f is

expressed by f(z) = αz for some complex constant α of unit modulus.

1.8 (Schwarz-Pick lemma) Let f : B(0, 1) → B(0, 1) be a holomorphic

function in the unit disc B(0, 1) ⊂ C. Assume that f(z1) = w1 and

f(z2) = w2 for some z1, z2 ∈ B(0, 1). Show that∣∣∣∣ w1 − w2

1 − w1w̄2

∣∣∣∣ ≤ ∣∣∣∣ z1 − z2
1 − z1z̄2

∣∣∣∣
and

|f ′(z1)| ≤
1 − |w1|2
1 − |z1|2

.

If the equality holds one of the above inequalities, prove that f :

B(0, 1) → B(0, 1) is a one-to-one onto mapping.

1.9 Let f : Ω → C and g : Ω → C be holomorphic functions in an open

set Ω ⊂ C and let a ∈ Ω. If f(a) = g(a) = 0 and g′(a) 6= 0, prove that

lim
z→a

f(z)

g(z)
= lim

z→a

f ′(z)

g′(z)
.

1.10 (Uniqueness theorem) Let f : Ω → C be a holomorphic function

in a domain Ω ⊂ C. If there exist a point a ∈ Ω and a sequence {zn}
in Ω which converges a such that zn 6= a and f(zn) = 0 for all n, then

f = 0.
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1.11 (Open mapping theorem) Let f : Ω→ C be a non-constant holo-
morphic function in an open set Ω ⊂ C. Prove that f(Ω) is an open
set.

1.12 Let f be a holomorphic function in a simply connected domain Ω ⊂
C. Assume that f never vanishes. Prove the following:

(1) For a natural number m, there exists a holomorphic function g in Ω
such that f = gm.

(2) There exists a holomorphic function h in Ω such that f = eh.

1.13 Prove the following:
Let f : Ω → C be a holomorphic function in an open set Ω ⊂ C. If f
is one-to-one, then f ′(z) �= 0 for all z ∈ Ω.

1.14 Prove the following:
Let f : Ω → C be a holomorphic function in a domain Ω ⊂ C. If
f is one-to-one, then f−1 : f(Ω) → Ω is holomorphic. Moreover,
(f−1)′(w) = {f ′(f−1(w))}−1.
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Chapter 2

The ∂̄ Problem in Pseudoconvex
Domains

In this chapter we give the proof of L2 estimates for the ∂̄ problem in
pseudoconvex domains in Cn due to Hörmander [HR2]. The assertion that
Ω pseudoconvex implies Ω is a domain of holomorphy is known as the
Levi problem. The Levi problem was first solved affirmatively in C2 by
Oka [OkA1] in 1942, and in Cn it was solved independently by Oka [OkA3],
Bremermann [BRE] and Norguet [NOR] in the early 1950s. In 2.2 we give
the proof of the Levi problem by the method of Hörmander [HR2]. In
2.3 we prove L2 extensions of holomorphic functions from submanifolds of
bounded pseudoconvex domains in Cn which was first proved by Ohsawa
and Takegoshi [OHT].

2.1 The Weighted L2 Space

For the preparation of the next section, we study the weighted L2 space
whose element consists of differential forms. Moreover, we prove Green’s
theorem which is useful for the proof of the Ohsawa-Takegoshi extension
theorem.

Definition 2.1 Let Ω ⊂⊂ Rn be a domain with C1 boundary and let
ρ be a defining funtion for Ω, that is, ρ is a real-valued C1 function in a
neighborhood G of Ω and satisfies

Ω = {x ∈ G | ρ(x) < 0}, dρ(x) :=
n∑

j=1

∂ρ

∂xj
(x)dxj �= 0 (x ∈ ∂Ω).

47
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Define the surface element dS by

dS =
n∑

j=1

(−1)j−1νjdx1 ∧ · · · ∧ [dxj ] ∧ · · · ∧ dxn, (2.1)

where, [dxj ] means that dxj is omitted, and ν = (ν1, · · · , νn) is the unit
outward normal vector for the boundary ∂Ω.

If we set

|dρ| =

√(
∂ρ

∂x1

)2
+ · · ·+

(
∂ρ

∂xn

)2
,

then ν can be written

ν =
1
|dρ|

(
∂ρ

∂x1
, · · · , ∂ρ

∂xn

)
.

Now we prove Green’s theorem.

Theorem 2.1 (Green’s theorem) Let u be a C1 function on Ω. Then∫
∂Ω

∂ρ

∂xj
u
dS

|dρ| =
∫
Ω

∂u

∂xj
dV,

where dV is the Lebesgue measure in Rn.

Proof. We set

d[x]k = dx1 ∧ · · · ∧ [dxk] ∧ · · · ∧ dxn.

Then by (2.1) we obtain∫
∂Ω

∂ρ

∂xj
u
dS

|dρ| =
∫
∂Ω

∂ρ

∂xj
u

1
|dρ|2

n∑
k=1

(−1)k−1
∂ρ

∂xk
d[x]k

=
∫
∂Ω

∂ρ

∂xj
u

1
|dρ|2

∑
k �=j

(−1)k−1
∂ρ

∂xk
d[x]k

+
∫
∂Ω

∂ρ

∂xj
u

1
|dρ|2 (−1)j−1

∂ρ

∂xj
d[x]j .

Since ρ = 0 on ∂Ω, we have

∂ρ

∂xj
dxj = −

∑
i�=j

∂ρ

∂xi
dxi.
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Consequently,∫
∂Ω

∂ρ

∂xj
u
dS

|dρ| =
∫
∂Ω

u(−1)j−1d[x]j =
∫
Ω

∂u

∂xj
dV,

which completes the proof of Theorem 2.1. �

Definition 2.2 Let Ω ⊂ Cn be an open set and let ϕ ∈ C∞(Ω) be a
real-valued function. We denote by L2(Ω, ϕ) the space of L2 integrable
functions with respect to the measure e−ϕdV , where dV is the Lebesgue
measure in Cn. Let p and q be integers with 0 ≤ p, q ≤ n. For multi-
indices α = (i1, · · · , ip) and β = (j1, · · · , jq), where i1, · · · , ip, j1, · · · , jq
are integers between 1 and n, define |α| = p, |β| = q and

dzα = dzi1 ∧ · · · ∧ dzip , dz̄β = dz̄j1 ∧ · · · ∧ dz̄jq .

We also denote by L2(p,q)(Ω, ϕ) the space of all (p, q) forms f on Ω whose
coefficients fα,β belong to L2(Ω, ϕ).

Definition 2.3 Let f be a (p, q) form in Ω. Then f is expressed by

f =
∑
|α|=p

|β|=q

′fα,βdz
α ∧ dz̄β ,

where
∑′ implies that the summation is performed only over strictly in-

creasing multi-indices. Further, we set

|f |2 =
∑
α,β

′|fα,β|2.

By definition, f ∈ L2(p,q)(Ω, ϕ) means that

‖f‖2ϕ :=
∫
Ω

|f |2e−ϕdV <∞.

We denote by L2(p,q)(Ω, loc) the space of all (p, q) forms f on Ω whose
coefficients fα,β are L2 functions on every compact subset of Ω. For f , g
∈ L2(p,q)(Ω, ϕ) with

f =
∑
α,β

′fα,βdz
α ∧ dz̄β , g =

∑
α,β

′gα,βdz
α ∧ dz̄β,
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we define the inner product of f and g by

(f, g) =
∑
α,β

′
∫
Ω

fα,βgα,βe
−ϕdV.

Then L2(p,q)(Ω, ϕ) is a Hilbert space.

Definition 2.4 For g ∈ C1(Ω), define

δjg = eϕ
∂

∂zj
(ge−ϕ) =

∂g

∂zj
− g ∂ϕ

∂zj
.

In order to prove Theorem 2.2 we need the following lemma.

Lemma 2.1 Let Ω be a bounded open set in Cn with C1 boundary and
let ρ be a defining function for Ω. For

f =
∑
I,J

′
fI,Jdz

Idz̄J ∈ C1(p,q)(Ω), u =
∑
I,K

′
uI.Kdz

Idz̄K ∈ C1(p,q−1)(Ω),

we have

(∂̄u, f) = (−1)p
∫
Ω

∑
I,K

′ n∑
j=1

∂uI,K
∂z̄j

fI,jKe
−ϕdV

= (−1)p−1
∫
Ω

∑
I,K

′ n∑
j=1

uI,KδjfI,jKe
−ϕdV

+(−1)p
∫
∂Ω

∑
I,K

′
uI,K

n∑
j=1

fI,jK
∂ρ

∂zj
e−ϕ dS

|dρ| .

Proof. We prove Lemma 2.1 in case p = 0, q = 1. The other cases will be
left to the reader. We set zj = x2j−1 + ix2j . Then it follows from Green’s
theorem that ∫

Ω

∂u

∂xj
=
∫
∂Ω

u
∂ρ

∂xj

dS

|dρ| .

If w is a C1 function on Ω, then we obtain∫
∂Ω

∂ρ

∂z̄j
uw̄e−ϕ dS

|dρ| =
∫
Ω

∂

∂z̄j
(uw̄e−ϕ)dV

=
∫
Ω

∂u

∂z̄j
w̄e−ϕdV +

∫
Ω

uδjwe
−ϕdV.

By setting w = fj and adding with respect to j, we obtain the desired
equality. �
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Definition 2.5 For f =
∑′

I,JfI,Jdz
I ∧ dz̄J ∈ C1(p,q)(Ω), define

∂̄∗f = (−1)p−1
∑
I,K

′ n∑
j=1

δjfI,jKdz
I ∧ dz̄K .

f ∈ Def (∂̄∗) means that

n∑
j=1

fI,jK
∂ρ

∂zj
= 0 on ∂Ω.

for every multi-index I and K.

For f ∈ Def (∂̄∗), it follows from Lemma 2.1 that

(∂̄u, f) = (u, ∂̄∗f).

The following theorem was proved by Hörmander [HR1].

Theorem 2.2 Let Ω ⊂⊂ Cn be an open set with C2 boundary and let
ρ be a defining function for Ω. Let α =

∑′
I,JαI,Jdz

I ∧ dz̄J be a C2(p, q)
form on Ω and let α ∈ Def (∂̄∗), ϕ a C2 function on Ω. Then

‖∂̄∗α‖+ ‖∂̄α‖2 =
∑
I,K

′ n∑
j,k=1

∫
Ω

αI,jKαI,kK
∂2ϕ

∂zj∂z̄k
e−ϕdV

+
∑
I,J

′ n∑
j=1

∫
Ω

∣∣∣∣∂αI,J∂z̄j

∣∣∣∣2 e−ϕdV

+
∑
I,K

′ n∑
j,k=1

∫
∂Ω

αI,jKαI,kK
∂2ρ

∂zj∂z̄k
e−ϕ dS

|dρ| .

Proof. We prove Theorem 2.2 in case p = 0, q = 1 and the other cases
will be left to the reader. Let w be a C2 function on Ω. Then we have

(
δk
∂

∂z̄j
− ∂

∂z̄j
δk

)
w = w

∂2ϕ

∂zk∂z̄j
.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

52 Several Complex Variables and Integral Formulas

Thus for C2 functions v and w, we have∫
Ω

δjvδkwe
−ϕdV −

∫
Ω

∂v

∂z̄k

∂w

∂z̄j
e−ϕdV

=
∫
Ω

vw̄
∂2ϕ

∂zk∂z̄j
e−ϕdV +

∫
∂Ω

∂ρ

∂zj
vδkwe

−ϕ dS

|dρ|

−
∫
∂Ω

∂ρ

∂z̄k
v
∂w

∂z̄j
e−ϕ dS

|dρ| .

On the other hand we have

∂̄α =
n∑

j,k=1

∂αj
∂z̄k

dz̄k ∧ dz̄j =
∑
j>k

(
∂αj
∂z̄k

− ∂αk
∂z̄j

)
dz̄k ∧ dz̄j,

∣∣∣∣∂αj∂z̄k
− ∂αk
∂z̄j

∣∣∣∣2 =
∣∣∣∣∂αk∂z̄j

∣∣∣∣2 +
∣∣∣∣∂αj∂z̄k

∣∣∣∣2 − ∂αk∂z̄j

∂αj
∂z̄k

− ∂αj
∂z̄k

∂αk
∂z̄j

.

Therefore we have

‖∂̄∗α‖2 + ‖∂̄α‖2 =
n∑

j,k=1

∫
Ω

δjαjδkαke
−ϕdV

−
n∑

j,k=1

∫
Ω

∂αj
∂z̄k

∂αk
∂z̄j

e−ϕdV

+
n∑

j,k=1

∫
Ω

∣∣∣∣∂αk∂z̄j

∣∣∣∣2 e−ϕdV.

Taking account of the boundary condition, we have

‖∂̄∗α‖2 + ‖∂̄α‖2

=
n∑

j,k=1

∫
Ω

∣∣∣∣∂αk∂z̄j

∣∣∣∣2 e−ϕdV +
n∑

j,k=1

∫
Ω

αjαk
∂2ϕ

∂zj∂z̄k
e−ϕdV

−
n∑

j,k=1

∫
∂Ω

αj
∂ρ

∂z̄k

∂αk
∂z̄j

e−ϕ dS

|dρ| .

By Lemma 1.21, there exists a C1 function λ such that

n∑
k=1

αk
∂ρ

∂zk
= λρ.
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Hence we have on ∂Ω
n∑

k=1

(
∂αk
∂z̄j

∂ρ

∂zk
+ αk

∂2ρ

∂z̄j∂zk

)
= λ

∂ρ

∂z̄j
.

If we multiply by αj and add with respect to j, we obtain on ∂Ω using the
boundary condition

n∑
j,k=1

(
αj
∂αk
∂z̄j

∂ρ

∂zk
+ αjαk

∂2ρ

∂z̄j∂zk

)
= 0,

which completes the proof of Theorem 2.2. �

2.2 L2 Estimates in Pseudoconvex Domains

In this section we study L2 estimates for the ∂̄ problem in pseudoconvex
domains in Cn by following Hörmander [HR2]. In Chapter 1 we proved that
every domain of holomorphy is a pseudoconvex domain. Here, we prove
that every pseudoconvex domain is a domain of holomorphy by applying
L2 estimates for solutions of the ∂̄ problem.

Let H1 and H2 be Hilbert spaces. We denote the inner product of
H1 by (x, y)1 for x, y ∈ H1, and the inner product of H2 by (x, y)2 for
x, y ∈ H2. Let D ⊂ H1 be a dense subset of H1 and let T : D → H2 be a
linear operator. Then we set D = DT , T (D) = RT .

Definition 2.6 Let T : D → H2 be a linear operator. Define

GT := {(x, Tx) | x ∈ DT } ⊂ H1 ×H2.

We say that T is a closed operator if its graph GT is a closed subspace of
H1 ×H2.

Definition 2.7 Let y ∈ H2. We say that y ∈ DT∗ if there exists a
constant c = c(y) > 0 such that

|(Tx, y)2| ≤ c‖x‖1

for all x ∈ DT . By definition DT∗ is a subspace of H2.

Lemma 2.2 For y ∈ DT∗ there exists a unique z ∈ H1 such that

(x, z)1 = (Tx, y)2
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for all x ∈ DT . We set z = T ∗y. Then T ∗ : DT∗ → H1 is a linear operator
and satisfies

(x, T ∗y)1 = (Tx, y)2 (2.2)

for all x ∈ DT , y ∈ DT∗ .

Proof. For y ∈ DT∗ , x ∈ DT , define

ϕ(x) = (Tx, y)2.

Then ϕ is a linear functional on DT and satisfies |ϕ(x)| ≤ c‖x‖1 for some
constant c. Hence ϕ is bounded. Since DT is dense in H1, for x ∈ H1 there
exists xν ∈ DT such that xν → x. We have

|ϕ(xν)− ϕ(xµ)| ≤ c‖xν − xµ‖ → 0 (ν, µ→∞).

Hence {ϕ(xν)} converges. If we define ϕ(x) := limν→∞ ϕ(xν), then ϕ is
a bounded linear functional on H1. By the Riesz representation theorem,
there exists a unique z ∈ H1 such that

ϕ(x) = (x, z)1

for all x ∈ H1. Thus we have

(x, z)1 = (Tx, y)2 (x ∈ DT , y ∈ DT∗).

Next we show that T ∗ is linear. For y1, y2 ∈ DT∗ and x ∈ DT , we have

(x, T ∗(y1 + y2))1 = (Tx, y1 + y2)2 = (x, T ∗y1 + T ∗y2)1.

Since DT is dense in H1, we have T ∗(y1+ y2) = T ∗y1+T ∗y2. Similarly, we
have T ∗(αy) = αT ∗y for α ∈ C, y ∈ DT∗ , which means that T ∗ is a linear
operator. �

Lemma 2.3 T ∗ : DT∗ → H1 is a closed operator.

Proof. It is sufficient to show that

GT∗ = {(y, T ∗y) | y ∈ DT∗} ⊂ H2 ×H1

is closed. Suppose

(yn, zn) ∈ GT∗ , (yn, zn)→ (y0, z0).
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Then yn ∈ DT∗ and zn = T ∗yn. Since {zn} is bounded, there exists a
constant M > 0 such that ‖zn‖ < M for all n. For x ∈ DT , we have

|(Tx, yn)2| = |(x, zn)1| ≤ ‖x‖ ‖zn‖ ≤M‖x‖1.

Letting n→∞, we have

|(Tx, y0)2| ≤M‖x‖1,

which means that y0 ∈ DT∗ . On the other hand, we have

|(x, T ∗yn)1 − (x, T ∗y0)1| = |(Tx, yn − y0)2| ≤ ‖Tx‖2 ‖yn − y0‖2 → 0.

Then (x, zn)1 → (x, T ∗y0)1. Hence we have

(x, z0)1 = (x, T ∗y0)1 (x ∈ DT ).

Thus we have z0 = T ∗y0, and hence (y0, z0) ∈ GT∗ , which means that GT∗

is closed. �

Lemma 2.4 Suppose DT∗ is dense in H2. Then we have

DT∗∗ ⊃ DT , T ∗∗|DT = T.

Proof. For x ∈ DT and y ∈ DT∗ , we have

|(x, T ∗y)1| = |(Tx, y)2| ≤ ‖Tx‖2 ‖y‖2,

which means that x ∈ DT∗∗ . Thus DT ⊂ DT∗∗ . On the other hand we have

(Tx, y)2 = (x, T ∗y)1 = (T ∗y, x)1 = (y, T ∗∗x)2 = (T ∗∗x, y)2.

Since DT∗ is dense in H2, we obtain Tx = T ∗∗x for x ∈ DT , and hence
T ∗∗|DT = T . �

Lemma 2.5 Let T : DT → H2 be a closed operator. Then DT∗ is dense
in H2 and T ∗∗ = T .

Proof. Define H = H1 ×H2. Let (x, y) ∈ H and (u, v) ∈ H. We define
the inner product <,> in H by

< (x, y), (u, v) >:= (x, u)1 + (y, v)2.

Then H is a Hilbert space. Further, define J : H → H by J(x, y) = (−x, y).
We define GT and G∗T by

GT := {(x, Tx) | x ∈ DT } ⊂ H
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and

G∗T := {(T ∗y, y) | y ∈ DT∗} ⊂ H.

Then for y ∈ H1, z ∈ H2 we have

< (−x, Tx), (y, z) >= 0 (x ∈ DT )

⇐⇒ (x, y)1 = (Tx, z)2 (x ∈ DT )

⇐⇒ z ∈ DT∗ , y = T ∗z.

Hence we obtain

(y, z)⊥JGT ⇐⇒ (y, z) ∈ G∗T ,

which means that (JGT )⊥ = G∗T . Since T is closed, GT is closed, and
hence JGT is closed. Thus we have JGT = (G∗T )⊥. Similarly, we have
GT = (JG∗T )⊥. Let u ∈ H2. Suppose (u, v) = 0 for all v ∈ DT∗ . Since
< (0, u), (T ∗v, v) >= 0, we have (0, u) ∈ (G∗T )⊥. Hence (0, u) ∈ JGT . Thus
there exists x ∈ DT such that (0, u) = (−x, Tx), which implies that u = 0.
Therefore if (u, v)2 = 0 for every v ∈ DT∗ , then u = 0. If ϕ is a bounded
linear functional on H2, then by the Riesz representation theorem, there
exists z ∈ H2 such that

ϕ(v) = (v, z)2 (v ∈ H2).

If ϕ = 0 on DT∗ , then z = 0, which means that ϕ = 0 on H2. By applying
the Hahn-Banach theorem, DT∗ is dense in H2. Thus T ∗∗ : DT∗∗ → H2 is
defined. We set

G∗∗T = {(z, T ∗∗z) | z ∈ DT∗∗} ⊂ H.

Since T ∗ is closed, by using the same method as above we have

(JG∗T )⊥ = G∗∗T .

On the other hand, taking account of the equality (JG∗T )⊥ = GT , we have
GT = G∗∗T , which means that DT = DT∗∗ . It follows from Lemma 2.4 that
T = T ∗∗. �

Theorem 2.3 (Banach-Steinhaus theorem) Suppose X is a Banach
space, Y is a normed linear space, and {Tα}α∈A is a collection of bounded
linear operators of X into Y . Then either (1) or (2) holds:
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(1) There exists a constant M > 0 such that

‖Tα‖ ≤M

for every α ∈ A.
(2) There exists a dense subset E of X such that

sup
α∈A

‖Tα(x)‖ =∞

for every x ∈ E.

Proof. We set

ϕ(x) = sup
α∈A

‖Tα(x)‖ (x ∈ X)

and

Vn = {x | ϕ(x) > n}.

If we set fα(x) = ‖Tα(x)‖, then fα(x) is continuous, and hence Vn is an
open set. Suppose VN is not dense in X . Then there exist x0 ∈ X and
r > 0 such that if ‖x‖ ≤ r, then x0 + x �∈ VN . Thus ϕ(x0 + x) ≤ N . Hence
we have

‖Tα(x0 + x)‖ ≤ N (α ∈ A, ‖x‖ ≤ r),

which means that

‖Tα(x)‖ ≤ ‖Tα(x0 + x)‖ + ‖Tα(x0)‖ ≤ 2N.

Then we obtain

‖Tα‖ = sup
‖x‖=1

‖Tα(x)‖ = sup
‖x‖=1

1
r
‖Tα(rx)‖ ≤ 2N

r
.

In case that all Vn are dense subset of X , by the Baire theorem, ∩∞n=1 Vn
is dense in X , and for x ∈ ∩∞n=1 Vn we have ϕ(x) =∞. �

Theorem 2.4 Suppose D is a dense subspace in H1 and T : D → H2 is
a closed operator. Let F be a closed subspace of H2 and let F ⊃ RT . Then
the following statements are equivalent:

(a) F = RT .
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(b) There exists a constant c > 0 such that

‖y‖2 ≤ c‖T ∗y‖1

for all y ∈ F ∩ DT∗ .

Proof. (a) =⇒ (b). Suppose F = RT . Every element z ∈ H2 is uniquely
expressed by

z = z1 + z2 (z1 ∈ F, z2 ∈ F⊥).

Since z1 = Tx for x ∈ DT , we have for y ∈ F ∩ DT∗

|(y, z)2| = |(y, z1)2| = |(y, Tx)2| = |(x, T ∗y)1| ≤ ‖x‖1 ‖T ∗y‖1. (2.3)

We set

K = {y | T ∗y �= 0, y ∈ DT∗} ∩ F.

Further, we set for y ∈ K

ϕy(z) =
(y, z)2
‖T ∗y‖1

.

Then by the Banach-Steinhaus theorem, either there exists a constant c > 0
such that

‖ϕy‖ < c (2.4)

for every y ∈ K, or there exists a dense subset E of H2 such that

∞ = sup
y∈K

|ϕy(z)| (2.5)

for every z ∈ E. By (2.3), (2.5) does not hold. Thus we have

|(y, z)2|
‖T ∗y‖1

< c (2.6)

for all y ∈ K. Substituting z = y/‖y‖2 into (2.6), we have

‖y‖2 < c‖T ∗y‖1

for all y ∈ K. In case T ∗y = 0, we have y = 0 by (2.3). This proves (b).
(b) =⇒ (a). Fix z ∈ F . Suppose the equality

‖y‖2 ≤ c‖T ∗y‖1 (y ∈ F ∩ DT∗) (2.7)
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holds. If w ∈ T ∗(F ∩ DT∗), then we have w = T ∗y for y ∈ F ∩ DT∗ .
We define a linear functional ϕ on T ∗(F ∩ DT∗) by ϕ(w) = (y, z)2. If
w = T ∗y1 = T ∗y2, then by (2.7), we have y1 = y2. Therefore ϕ is well
defined. Since

|ϕ(w)| ≤ ‖y‖2 ‖z‖2 ≤ c‖w‖1 ‖z‖2,

ϕ is a bounded linear functional on T ∗(F ∩ DT∗). By the Hahn-Banach
theorem, ϕ can be extended to a bounded linear functional on H1. By the
Riesz representation theorem, there exists x0 ∈ H1 such that

ϕ(w) = (w, x0)1 (w ∈ H1).

Hence we have

(y, z)2 = (T ∗y, x0)1

for all y ∈ F ∩ DT∗ . If y ∈ F⊥ ∩ DT∗ , then RT ⊂ F , which implies that

(T ∗y, x)1 = (y, Tx)2 = 0

for all x ∈ DT . Thus we have T ∗y = 0. Hence, for y ∈ DT∗ , if we set
y = y1 + y2 (y1 ∈ F ∩ DT∗ , y2 ∈ F⊥ ∩ DT∗), then

(y, z)2 = (y1, z)2 + (y2, z)2 = (y1, z)2 = (T ∗y1, x0)1 = (T ∗y, x0)1

and

|(T ∗y, x0)1| ≤ ‖y‖2 ‖z‖2 (y ∈ DT∗).

Thus we have x0 ∈ DT∗∗ = DT . Consequently,

(y, z)2 = (T ∗y, x0)1 = (y, Tx0)

for y ∈ DT∗ . Hence z = Tx0 ∈ RT , which implies that F ⊂ RT . �

Lemma 2.6 Let D be a dense subspace of H1 and let T : D → H2 be a
closed operator. If RT is closed, then RT∗ is closed.

Proof. We set F = RT in Theorem 2.4. Then

‖f‖2 ≤ c‖T ∗f‖1 (f ∈ F ∩DT∗).

Let f ∈ DT∗ . Then f is uniquely expressed by

f = f1 + f2 (f1 ∈ F ∩ DT∗ , f2 ∈ F⊥ ∩ DT∗).
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Since Tϕ ∈ F for ϕ ∈ DT , we obtain

(ϕ, T ∗f2)1 = (Tϕ, f2)2 = 0.

Thus T ∗f2 = 0, and hence T ∗f = T ∗f1, which means that T ∗(DT∗) =
T ∗(F ∩ DT∗). Suppose T ∗(F ∩ DT∗) � T ∗fν , T ∗fν → g. Then

‖fν − fµ‖2 ≤ c‖T ∗(fν − fµ)‖1 → 0 (ν, µ→∞).

Hence there exists f0 ∈ H2 such that fν → f0, and hence (T ∗fν , fν) →
(g, f0). Since T ∗ is a closed operator, we have f0 ∈ DT∗ , g = T ∗f0, and
hence, g ∈ T ∗(DT∗). Thus T ∗(DT∗) = RT∗ is a closed subset. �

Definition 2.8 Let T : DT → H2 be a linear operator. Define

KerT := {x ∈ DT | Tx = 0}.

KerT is called a kernel (or a null space) of T .

Lemma 2.7 Let T : DT → H2 be a closed operator. Then KerT is a
closed subspace. Moreover, we have

(RT )⊥ = KerT ∗, RT∗ = (KerT )⊥.

Proof. Let Tuν = 0, uν → u. Since (uν , Tuν) → (u, 0) and T is closed,
we have 0 = Tu, and hence u ∈ KerT . Hence KerT is a closed subset. Let
y ∈ (RT )⊥. For x ∈ DT , we have

|(Tx, y)2| = 0 ≤ ‖x‖1,

which implies that y ∈ DT∗ . Since

0 = (Tx, y)2 = (x, T ∗y)1 (x ∈ DT ),

T ∗y = 0, and hence y ∈ KerT ∗. Thus we have (RT )⊥ ⊂ KerT ∗. On the
other hand, for g ∈ KerT ∗, f ∈ DT ,

(Tf, g)2 = (f, T ∗g)1 = 0.

Hence we have g ∈ (RT )⊥ which implies that KerT ∗ ⊂ (RT )⊥. Thus we
obtain (RT )⊥ = KerT ∗. Taking account of the equality (KerT ∗)⊥ = RT ,
replacing T by T ∗ we have RT∗ = (KerT )⊥. �

Lemma 2.8 If f ∈ L2(p,q)(Ω, ϕ), then f ∈ L2(p,q)(Ω, loc).
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Proof. For any compact subset K of Ω, there exist constants c1 > 0 and
c2 > 0 such that

c1 ≤ e−ϕ(x) ≤ c2 (x ∈ K).

Then ∫
K

|f |2dV ≤ 1
c1

∫
K

|f |2e−ϕ(x)dV <∞,

which implies that f ∈ L2(p,q)(Ω, loc). �

Lemma 2.9 If f ∈ L2(p,q)(Ω, loc), then there exists ϕ ∈ C∞(Ω) such that
f ∈ L2(p,q)(Ω, ϕ).

Proof. Suppose {Kn} is a sequence of compact subsets of Ω and that

Kn ⊂⊂
◦
Kn+1 ⊂ Ω,

∞
∪

n=1
Kn = Ω.

We set ∫
Kn

|f |2dV = cn.

We choose functions an ∈ C∞c (Cn) with the properties

0 ≤ an(z) ≤ 1 (z ∈ Cn), an(z) =
{

1 (z ∈ Kn −Kn−1)
0 (z �= Kn+1 −Kn−2)

.

For z ∈ Ω, define

ϕ(z) =
∞∑
n=1

(log n2(cn + 1))an(z).

Then ϕ ∈ C∞(Ω), and, ϕ(z) ≥ logn2(cn + 1) (z ∈ Kn −Kn−1). Hence we
have ∫

Ω

|f |2e−ϕdV =
∫
K1

|f |2e−ϕdV +
∞∑
n=2

∫
Kn\Kn−1

|f |2e−ϕdV

≤ c1 +
∞∑
n=2

∫
Kn\Kn−1

|f |2e− log n
2(cn+1)dV

= c1 +
∞∑
n=2

1
n2(cn + 1)

cn

≤ c1 +
∞∑
n=2

1
n2
<∞,
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which implies that f ∈ L2(p,q)(Ω, ϕ). �

Definition 2.9 For f ∈ L2(p,q)(Ω, ϕ), define

∂̄f =
∑
|α|=p

|β|=q

′
n∑

k=1

∂fα,β
∂z̄k

dz̄k ∧ dzα ∧ dz̄β.

Then by Lemma 2.8, ∂̄f exists in the sense of distributions.

Definition 2.10 We denote by D(p,q)(Ω) the set of all C∞ (p, q) forms
in Ω whose supports are compact subsets of Ω. Further, we set D(Ω) =
D(0,0)(Ω).

Theorem 2.5 D(p,q)(Ω) is dense in L2(p,q)(Ω, ϕ1). Further, if we set T =
∂̄, then

T : DT → L2(p,q+1)(Ω, ϕ2)

is a closed operator.

Proof. Since D(p,q)(Ω) is dense in L2(p,q)(Ω, ϕ1), DT is dense in
L2(p,q)(Ω, ϕ1). We set GT = {(f, T f) | f ∈ DT }. Suppose (fn, ∂̄fn)→ (f, g).
We set gn = ∂̄fn and

fn =
∑
α,β

′fnα,βdz
α ∧ dz̄β , gn =

∑
α,γ

′gnα,γdz
α ∧ dz̄γ ,

f =
∑
α,β

′fα,βdz
α ∧ dz̄β , g =

∑
α,γ

′gα,γdz
α ∧ dz̄γ .

Then we have

gnα,γ = (−1)p
∑

′

{j}∪β=γ

εjβγ
∂fnα,β
∂z̄j

,

where εjβγ means that if the permutation ρ which maps jβ to γ is even,
then εjβγ equals 1, and εjβγ equals −1 if ρ is odd. For ψ ∈ D(Ω) we have∫

Ω

gnα,γψdV = (−1)p−1
∑

′

{j}∪β=γ

εjβγ

∫
Ω

fnα,β
∂ψ

∂z̄j
dV. (2.8)

Since fn → f and gn → g, we have∫
Ω

fnα,β
∂ψ

∂z̄j
dV →

∫
Ω

fα,β
∂ψ

∂z̄j
dV
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∫
Ω

gnα,γψdV →
∫
Ω

gα,γψdV.

Letting n→∞ in (2.8) we have∫
Ω

gα,γψdV = (−1)p−1
∑

′

{j}∪β=γ

εjβγ

∫
Ω

fα,β
∂ψ

∂z̄j
dV,

which means in the sense of distributions that

gα,γ = (−1)p
∑

′

{j}∪β=γ

εjβγ
∂fα,β
∂z̄j

= (∂̄f)α,γ .

Thus we have g = ∂̄f , and hence T is a closed operator. �

We set

H1 = L2(p,q)(Ω, ϕ1), H2 = L2(p,q+1)(Ω, ϕ2), H3 = L2(p,q+2)(Ω, ϕ3).

Further, we set

D1 = {f ∈ H1 | ∂̄f ∈ H2}, D2 = {f ∈ H2 | ∂̄f ∈ H3},

∂̄|D1 = T, ∂̄|D2 = S.

Then

DT = D1, DS = D2.

Lemma 2.10 η ∈ D(Ω), f ∈ DS =⇒ ηf ∈ DS.

Proof. We have

∂̄(ηf) = η∂̄f + ∂̄η ∧ f. (2.9)

Since the right side of (2.9) belongs to DS , we have ηf ∈ DS . �

Lemma 2.11 f ∈ DT∗ , η ∈ D(Ω) =⇒ ηf ∈ DT∗ .

Proof. Let u ∈ DT . Using the equality

(ηf, Tu)2 = (f, η̄Tu)2 = (f, T (η̄u))2 − (f, ∂̄η̄ ∧ u)2
= (T ∗f, η̄u)1 − (f, ∂̄η̄ ∧ u)2,

we have

|(ηf, Tu)2| ≤ ‖ηT ∗f‖1 ‖u‖1 + ‖f‖2 ‖∂̄η̄ ∧ u‖2.
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On the other hand, since supp(η) is compact, there exists a constant c > 0
such that

‖∂̄η̄ ∧ u‖22 =
∫
Ω

|∂̄η̄ ∧ u|2e−ϕ1eϕ1−ϕ2dV ≤ c
∫
Ω

|u|2e−ϕ1dV = c‖u‖21.

Hence we have

|(ηf, Tu)2| ≤ (‖ηT ∗f‖1 +
√
c‖f‖2)‖u‖1.

Thus ηf ∈ DT∗ . �

Lemma 2.12 Let Ω ⊂ Cn be an open set and let f be a nonnegative
function in Ω. Suppose f is bounded on every compact subset of Ω. Then
there exists a function ϕ ∈ C∞(Ω) such that f(z) ≤ ϕ(z) for z ∈ Ω.

Proof. Let A = {Uν | ν = 1, 2, · · · } and B = {Vν | ν = 1, 2, · · · } be
locally finite open covers of Ω such that Uν ⊂⊂ Vν ⊂⊂ Ω. Choose aν ∈
D(Ω) such that aν = 1 on Uν , supp(aν) ⊂ Vν and 0 ≤ aν ≤ 1. We set
supz∈Vν

f(z) =Mν . Define

ϕ(z) =
∞∑
ν=1

Mνaν(z).

Then ϕ satisfies the desired properties. �

Lemma 2.13 Let Ω ⊂ Cn be an open set. Let {Kj}∞j=0 be a sequence of
compact subsets of Ω such that

Kj−1 ⊂⊂ (Kj)◦,
∞
∪
j=0
Kj = Ω,

where (Kj)◦ denotes the interior of Kj. Let ηj ∈ D(Ω) be functions such
that ηj = 1 on Kj−1, supp(ηj) ⊂ Kj

◦ and 0 ≤ ηj ≤ 1. Then there exists a
function ψ ∈ C∞(Ω) such that

n∑
k=1

∣∣∣∣∂ηj∂z̄k

∣∣∣∣2 ≤ eψ (j = 1, 2, · · · ).

Proof. Define

f(z) =

{∑n
k=1

∣∣∣ ∂ηj

∂z̄k

∣∣∣2 (z ∈ Kj −Kj−1, j = 1, 2, · · · )
0 (z ∈ K0)

.
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Then f is bounded on every compact subset of Ω and satisfies

f(z) ≥
n∑

k=1

∣∣∣∣∂ηj∂z̄k

∣∣∣∣2 (j = 1, 2, · · · ).

By Lemma 2.12, there exists a function ψ ∈ C∞(Ω) such that f ≤ ψ in Ω.
Since eψ(z) ≥ ψ(z), ψ satisfies the desired properties. �

Definition 2.11 Let ψ be the function in Lemma 2.13. For ψ ∈ C∞(Ω),
we set

ϕ1 = ϕ− 2ψ, ϕ2 = ϕ− ψ, ϕ3 = ϕ.

We assume ϕ ∈ C2(Ω). ϕ will be determined later. Then by Lemma
2.13 we have

e−ϕ3 |∂̄ηj |2 ≤ e−ϕ2 , e−ϕ2|∂̄ηj |2 ≤ e−ϕ1 (j = 1, 2, · · · ).

Lemma 2.14 Let ηj, j = 1, 2, · · · , be functions in Lemma 2.13 and let
f ∈ DS. Then S(ηjf)− ηjS(f)→ 0 in H3 as j →∞.

Proof. From the Schwarz inequality, there exists a constant c > 0 such
that

|S(ηjf)− ηjS(f)|2e−ϕ3 = |∂̄ηj ∧ f |2e−ϕ3 ≤ c|∂̄ηj |2|f |2e−ϕ3 ≤ c|f |2e−ϕ2 .

On the other hand, |S(ηjf)− ηjS(f)|2e−ϕ3 → 0 as j → ∞. Hence by the
Lebesgue dominated convergence theorem, ‖S(ηjf)− ηjS(f)‖3 → 0. �

Lemma 2.15 Suppose

f =
∑

′

|α|=p

|β|=q+1

fα,βdz
α ∧ dz̄β ∈ DT∗ .

Then we have

T ∗f = (−1)p−1
∑

′

|α|=p

|γ|=q

n∑
k=1

eϕ1

{
∂

∂zk

(
e−ϕ2fα,kγ

)}
dzα ∧ dz̄γ ,

where we set for γ = (j1, · · · , jq)

fα,kγ =
{

0 (one of j1, · · · , jq equals to k)
(−1)rfα,δ (δ = (j1, · · · , jr, k, jr+1, · · · , jq))

.
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Proof. We set

u =
∑

′

|α|=p

|γ|=q

uα,γdz
α ∧ dz̄γ ∈ D(p,q)(Ω).

Then we have

Tu =
∑

′

|α|=p

|γ|=q

n∑
k=1

∂uα,γ
∂z̄k

dz̄k ∧ dzα ∧ dz̄γ

= (−1)p
∑

′

|α|=p

|L|=q+1

∑
′

{k}∪K=L

εkKL
∂uα,K
∂z̄k

dzα ∧ dz̄L.

Since fα,J is defined to be skew-symmetric with respect to J , we have
fα,L = εkKL fα,kK . Hence we have∫

Ω

∑
′

|α|=p

|γ|=q

(T ∗f)α,γuα,γe−ϕ1dV = (T ∗f, u)1 = (f, Tu)2

= (−1)p
∫
Ω

∑
′

|α|=p

|L|=q+1

Σ′
{k}∪K=L

εkKL
∂ūα,K
∂zk

fα,Le
−ϕ2dV

= (−1)p
∫
Ω

∑
′

|α|=p

|L|=q+1

∑
′

{k}∪K=L

∂ūα,K
∂zk

fα,kKe
−ϕ2dV

= (−1)p
∑

′

|α|=p

|K|=q

n∑
k=1

∫
Ω

∂ūα,K
∂zk

fα,kKe
−ϕ2dV

= (−1)p−1
∑

′

|α|=p

|K|=q

n∑
k=1

∫
Ω

eϕ1
∂

∂zk

(
fα,kKe

−ϕ2
)
ūα,Ke

−ϕ1dV,

which implies that

(T ∗f)α,γ = (−1)p−1
n∑

k=1

eϕ1

{
∂

∂zk

(
e−ϕ2fα,kγ

)}
.

�

Lemma 2.16 Let ηj, j = 1, 2, · · · , be functions in Lemma 2.13. Let
f ∈ DT∗ . Then

‖T ∗(ηjf)− ηjT ∗f‖1 → 0 (j → 0).
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Proof. Suppose

f =
∑

′
|α|=p

|β|=q+1
fα,βdz

α ∧ dz̄β

and

T ∗(ηjf)− ηjT ∗f =
∑

′
|α|=p

|γ|=q
gjα,γdz

α ∧ dz̄γ .

It follows from Lemma 2.15 that

gjα,γ = (−1)p−1
n∑

k=1

eϕ1

{
∂

∂zk

(
e−ϕ2ηjfα,kγ

)}

−(−1)p−1ηj
n∑

k=1

eϕ1

{
∂

∂zk

(
e−ϕ2fα,kγ

)}

= (−1)p−1
n∑

k=1

eϕ1
∂ηj
∂zk

e−ϕ2fα,kγ .

By Lemma 2.13 and the Schwarz inequality we have

|gjα,γ |2 ≤ e2(ϕ1−ϕ2)

(
n∑

k=1

∣∣∣∣∂ηj∂zk

∣∣∣∣2
)(

n∑
k=1

|fα,kγ |2
)

≤ eϕ1−ϕ2

(
n∑

k=1

|fα,kγ |2
)
.

Consequently,

|T ∗(ηjf)− ηjT ∗f |2e−ϕ1 =
∑

′

|α|=p

|γ|=q

|gjα,γ |2e−ϕ1

≤
∑

′

|α|=p

|γ|=q

n∑
k=1

|fα,kγ |2e−ϕ2

= (q + 1)
∑

′

|α|=p

|β|=q+1

|fα,β|2e−ϕ2

= (q + 1)|f |2e−ϕ2 .

On the other hand, since |T ∗(ηjf) − ηjT ∗f |2e−ϕ1 converges to 0 almost
everywhere, it follows from the Lebesgue dominated convergence theorem
that ‖T ∗(ηjf)− ηjT ∗f‖1 → 0 as j → 0. �
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Definition 2.12 For f ∈ DT∗ ∩ DS , we define

‖f‖G := ‖f‖2 + ‖T ∗f‖1 + ‖Sf‖3.

Lemma 2.17 Let ηj , j = 1, 2, · · · , be functions in Lemma 2.13. Then
for f ∈ DT∗ ∩ DS

‖ηjf − f‖G → 0 (j →∞).

Proof. Since |ηjf − f | ≤ |f |, it follows from the Lebesgue dominated
convergence theorem that ‖ηjf − f‖2 → 0. Similarly, we have ‖ηjT ∗f −
T ∗f‖1 → 0. It follows from Lemma 2.16 that

‖T ∗(ηjf − f)‖1 = ‖T ∗(ηjf)− ηjT ∗(f)‖1 + ‖ηjT ∗f − T ∗f‖1 → 0

as j →∞. Similarly, ‖S(ηjf − f)‖3 → 0, and hence ‖ηjf − f‖G → 0. �

Lemma 2.18 Let f ∈ DS and supp(f) ⊂⊂ Ω. Then for 0 < δ < 1, there
exist fδ ∈ D(p,q+1)(Ω) such that

‖fδ − f‖2 → 0, ‖S(fδ)− S(f)‖3 → 0

as δ → 0.

Proof. Choose a function Φ ∈ D(Cn) such that∫
Cn

ΦdV = 1, supp(Φ) ⊂⊂ B(0, 1).

We set Φδ(z) = δ−2nΦ(z/δ). For a differential form

f =
∑

′

α,β

fα,βdz
α ∧ ds̄β ,

define

fδ =
∑

′

α,β

(fα,β ∗ Φδ)dzα ∧ dz̄β,

where

fα,β ∗ Φδ(z) =
∫
Cn

fα,β(z − ζ)Φδ(ζ)dζ.
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Then we have fδ ∈ D(p,q+1)(Ω) and ‖fδ − f‖2 → 0. On the other hand we
have

S(fδ) =
∑

′

α,β

(
∂fα,β
∂z̄k

∗ Φδ

)
dz̄k ∧ dzα ∧ dz̄β

= (−1)p
∑

′

|α|=p

|L|=q+2

 ∑
′

{k}∪K=L

εkKL
∂fα,K
∂z̄k

 ∗ Φδdz
α ∧ dz̄L,

which implies that ‖S(fδ)− S(f)‖3 → 0. �

Lemma 2.19 Let f ∈ DT∗ and supp(f) ⊂⊂ Ω. Then there exist fδ ∈
D(p,q+1)(Ω) such that ‖T ∗(fδ)− T ∗(f)‖1 → 0 as δ → 0.

Proof. Since functions

n∑
j=1

eϕ1

{
∂

∂zj
(e−ϕ2fα,jγ)

}
= eϕ1−ϕ2

n∑
j=1

(
∂fα,jγ
∂zj

− ∂ϕ2
∂zj

fα,jγ

)

are L2 functions and supp(f) is a compact subset of Ω,

gα,γ =
n∑

j=1

(
∂fα,jγ
∂zj

− ∂ϕ2
∂zj

fα,jγ

)

are L2 functions. Thus, ‖gα,γ ∗ Φδ − gα,γ‖L2 → 0. On the other hand we
have

gα,γ = (−1)p−1eϕ2−ϕ1(T∗f)α,γ .

Therefore we obtain

(−1)p−1eϕ2−ϕ1T ∗(fδ)

=
∑

′

α,γ

n∑
j=1

{
∂fα,jγ
∂zj

∗ Φδ −
∂ϕ2
∂zj

(fα,jγ ∗ Φδ)
}
dzα ∧ dz̄γ

:=
∑

′

α,γ

ψδ
α,γdz

α ∧ dz̄γ .
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Then

‖ψδ
α,γ − gα,γ ∗ Φδ‖L2(Ω)

=

∥∥∥∥∥∥
n∑

j=1

(
∂ϕ2
∂zj

fα,jγ

)
∗ Φδ −

n∑
j=1

∂ϕ2
∂zj

(fα,jγ ∗ Φδ)

∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥
n∑

j=1

{(
∂ϕ2
∂zj

fα,jγ

)
∗ Φδ −

∂ϕ2
∂zj

fα,jγ

}∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
n∑

j=1

{
∂ϕ2
∂zj

(fα,jγ − fα,jγ ∗ Φδ)
}∥∥∥∥∥∥

L2(Ω)

.

Consequently,

‖ψδ
α,γ − gα,γ‖L2(Ω) ≤ ‖ψδ

α,γ − gα,γ ∗Φδ‖L2(Ω)+ ‖gα,γ ∗Φδ − gα,γ‖L2(Ω) → 0,

which implies that ‖T ∗(fδ)− T ∗(f)‖1 → 0. �

Theorem 2.6 For f ∈ DT∗ ∩ DS, there exist fj ∈ D(p,q+1)(Ω), j =
1, 2, · · · , such that ‖fj − f‖G → 0 as j →∞.

Proof. For ε > 0, by Lemma 2.17 there exists j0 such that

‖ηj0f − f‖G <
ε

2
.

Since supp(ηj0f) ⊂⊂ Ω, it follows from Lemma 2.18 and Lemma 2.19 that

‖(ηj0f)δ0 − ηj0f‖G <
ε

2

for some δ0 > 0. Therefore we have ‖(ηj0f)δ0 − f‖G < ε. Since (ηj0f)δ0 ∈
D(p,q+1)(Ω), Theorem 2.6 is proved. �

Lemma 2.20 Let

f =
∑

′

|α|=p

|β|=q+1

fα,βdz
α ∧ dz̄β ∈ D(p,q+1)(Ω).

Then

|∂̄f |2 =
∑

′

α,β

n∑
j=1

∣∣∣∣∂fα,β∂z̄j

∣∣∣∣2 −∑ ′

α,γ

n∑
j,k=1

(
∂fα,jγ
∂z̄k

)(
∂fα,kγ
∂zj

)
.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

The ∂̄ Problem in Pseudoconvex Domains 71

Proof. Since

∂̄f = (−1)p
∑

′

|α|=p

|L|=q+2

∑
′

{k}∪K=L

εkKL
∂fα,K
∂z̄k

dzα ∧ dz̄L,

we have

|∂̄f |2 =
∑

′

|α|=p

|L|=q+2

 ∑
′

{j}∪J=L

εjJL
∂fα,J
∂z̄j

 ∑
′

{k}∪K=L

εkKL
∂fα,K
∂zk


=
∑

′

|α|=p

∑
′

|J|=q+1
|K|=q+1

n∑
j,k=1

∂fα,J
∂z̄j

∂fα,K
∂zk

=
∑

′

α,J,K

∑
j=k

∂fα,J
∂z̄j

∂fα,K
∂zk

+
∑

′

α,J,K

∑
j �=k

∂fα,J
∂z̄j

∂fα,K
∂zk

:= A+B.

When j = k, we have J = K and j �∈ J . Hence we have

A =
∑

′

α,J

∑
j �∈J

∣∣∣∣∂fα,J∂z̄j

∣∣∣∣2 .
When k �= j, we have k ∈ J and j ∈ K. Thus if we set J−{k} = K−{j} =
ξ, then we have εjJkK = −εJkξε

jξ
K , fα,J = εJkξfα,kξ, fα,K = εjξKfα,jξ. Thus we

obtain

B = −
∑

′

α,ξ

∑
j �=k

∂fα,kξ
∂z̄j

∂fα,jξ
∂zk

.

Consequently, ∑
′

α,J

∑
j∈J

∣∣∣∣∂fα,J∂z̄j

∣∣∣∣2 =
∑

′

α,ξ

n∑
j=1

∣∣∣∣∂fα,jξ∂z̄j

∣∣∣∣2 ,
which gives the desired equality. �

Lemma 2.21 Let f be a nonnegative function on R which is bounded on
every bounded interval. Assume that there exists t0 such that f(t) = 0 for
t ≤ t0. Then there exists a convex increasing function χ ∈ C∞(R) such
that

χ(t) ≥ f(t), χ′(t) ≥ f(t) (t ∈ R).
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Proof. For an integer n, choose a function an ∈ C∞(R) such that 0 ≤
an(t) ≤ 1 for t ∈ R, and

an(t) =
{

1 (t ∈ [n− 2, n])
0 (t �∈ [n− 3, n+ 1])

.

Define

sup
t∈[n−2,n]

f(t) =Mn

and

ϕ(t) =
∞∑

n=−∞
Mnan(t).

Then ϕ(t) ≥ f(t) for every t ∈ R. For n− 1 ≤ x ≤ n, we have∫ x

−∞
ϕ(x)dx ≥

∫ n−1

n−2
Mndx =Mn ≥ f(x).

We set

χ1(x) =
∫ x

−∞
ϕ(t)dt.

Then χ1 ∈ C∞(R), and

χ′1(x) = ϕ(x) ≥ f(x), χ1(x) ≥ f(x) (x ∈ R).

Choose a function θ ∈ C∞(R) such that χ′′1 ≤ θ, θ ≥ 0 and supp(θ) ⊂
[t0,∞). If we set

χ(x) =
∫ x

−∞

{∫ t

−∞
θ(y)dy

}
dt,

then

χ′(x) =
∫ x

−∞
θ(y)dy ≥

∫ x

−∞
χ′′1 (y)dy = χ′1(x) ≥ f(x),

χ(x) ≥
∫ x

−∞

{∫ t

−∞
χ′′1(y)dy

}
dt = χ1(x) ≥ f(x),

χ′′(x) = θ(x) ≥ 0.

Thus χ is a desired function. �
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Theorem 2.7 Let Ω ⊂ Cn be a pseuoconvex domain and let ρ ∈ C∞(Ω).
Then there exists a function ϕ ∈ C∞(Ω) such that

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
wjw̄k ≥ 2(|∂̄ψ|2 + eψ)

n∑
j=1

|wj |2 (w ∈ Cn),

ϕ(z) ≥ ρ(z) (z ∈ Ω),

where ψ is the function in Lemma 2.13.

Proof. By Theorem 1.15, there exists a plurisubharmonic C∞ function
Φ in Ω such that for any real number t

Ωt = {z ∈ Ω | Φ(z) < t} ⊂⊂ Ω.

Since Φ is strictly plurisubharmonic in Ω, there exists a continuous function
m(z) > 0 in Ω such that for z ∈ Ω and w ∈ Cn

n∑
j,k=1

∂2Φ
∂zj∂z̄k

(z)wjw̄k ≥ m(z)|w|2.

Define

g(t) = max
z∈Ωt

ρ(z)

and

h(t) = max
z∈Ωt

{
2(|∂̄ψ(z)|2 + eψ(z))

m(z)

}
.

By Lemma 2.21 there exists a convex increasing function χ ∈ C∞(R) such
that χ(t) ≥ g(t), χ′(t) ≥ h(t). We set ϕ(z) = χ ◦ Φ(z). Then we have

χ(Φ(z)) ≥ g(Φ(z)) = max
w∈ΩΦ(z)

ρ(w) ≥ ρ(z)
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and

n∑
j,k=1

∂2ϕ

∂zj∂z̄k
(z)wjw̄k = χ′′(Φ(z))

∣∣∣∣∣∣
n∑

j=1

∂Φ
∂zj

(z)wj

∣∣∣∣∣∣
2

+χ′(Φ(z))
n∑

j,k=1

∂2Φ
∂zj∂z̄k

(z)wjw̄k

≥ h(Φ(z))m(z)|w|2

≥ 2(|∂̄ψ(z)|2 + eψ(z))|w|2,

which completes the proof of Theorem 2.7. �

Remark 2.1 We are going to prove the inequality

‖f‖22 ≤ ‖T ∗f‖21 + ‖Sf‖23 (f ∈ DT∗ ∩ .DS). (2.10)

If (2.10) holds, then we have for f ∈ F := KerS

‖f‖2 ≤ ‖T ∗f‖1 (f ∈ DT∗ ∩ DS).

Since RT ⊂ F ⊂ DS, we obtain

‖f‖2 ≤ ‖T ∗f‖1 (f ∈ DT∗ ∩ F ).

By Theorem 2.4, we have F = RT , which implies that if ∂̄f = 0, then there
exists u ∈ L2(p,q)(Ω, ϕ1) such that ∂̄u = f .

Definition 2.13 For g ∈ C1(Ω), define

δjg = eϕ
∂

∂zj
(ge−ϕ) =

∂g

∂zj
− g ∂ϕ

∂zj
.

Then for f ∈ C2(Ω) we obtain[
δj ,

∂

∂z̄k

]
f := δj

∂f

∂z̄k
− ∂

∂z̄k
(δjf) = f

∂2ϕ

∂z̄k∂zj
.

Theorem 2.8 Let Ω ⊂ Cn be a pseudoconvex domain and let ϕ ∈ C∞(Ω)
be the function in Theorem 2.7. If we set ϕ1 = ϕ − 2ψ, ϕ2 = ϕ − ψ and
ϕ3 = ϕ, then

‖f‖22 ≤ ‖T ∗f‖21 + ‖Sf‖23

for f ∈ D(p,q+1)(Ω).
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Proof. For f ∈ D(p,q+1)(Ω), we have

T ∗f = (−1)p−1
∑

′

|α|=p

|γ|=q

n∑
j=1

eϕ−2ψ
{
∂

∂zj
(e−ϕ+ψfα,jγ)

}
dzα ∧ dz̄γ

= (−1)p−1e−ψ
∑

′

|α|=p

|γ|=q

n∑
j=1

δjfα,jγdz
α ∧ dz̄γ

+(−1)p−1e−ψ
∑

′

|α|=p

|γ|=q

n∑
j=1

fα,jγ
∂ψ

∂zj
dzα ∧ dz̄γ

:= A+B.

Then

‖A‖21 =
∫
Ω

∑
′

α,γ

n∑
j,k=1

δjfα,jγδkfα,kγe
−ϕdV

=
∫
Ω

∑
′

α,γ

n∑
j,k=1

δjfα,jγ
∂

∂z̄k

(
fα,kγe

−ϕ
)
dV

= −
∫
Ω

∑
′

α,γ

n∑
j,k=1

∂

∂z̄k
(δjfα,jγ)fα,kγe−ϕdV.

Consequently,

∑
′

α,γ

∣∣∣∣∣∣
n∑

j=1

fα,jγ
∂ψ

∂zj

∣∣∣∣∣∣
2

≤
∑

′

α,γ

 n∑
j=1

|fα,jγ |2
 n∑

j=1

∣∣∣∣ ∂ψ∂zj
∣∣∣∣2


= |∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 .

Hence we obtain

2‖T ∗f‖21 ≥ ‖A‖21 − 2‖B‖21

= −
∫
Ω

∑
′

α,γ

n∑
j,k=1

∂

∂z̄k
(δjfα,jγ)fα,kγe−ϕdV

−2
∫
Ω

|∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕdV.
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On the other hand we have

‖Sf‖23 =
∫
Ω

∑
′

α,β

n∑
j=1

∣∣∣∣∂fα,β∂z̄j

∣∣∣∣2 e−ϕdV

−
∫
Ω

∑
′

α,γ

n∑
j,k=1

(
∂fα,jγ
∂z̄k

)(
∂fα,kγ
∂zj

)
e−ϕdV.

Using the equalities

∫
Ω

(
δj
∂

∂z̄k
fα,jγ

)
fα,kγe

−ϕdV =
∫
Ω

∂

∂zj

(
∂fα,jγ
∂z̄k

e−ϕ

)
fα,kγdV

= −
∫
Ω

∂fα,jγ
∂z̄k

e−ϕ ∂fα,kγ
∂zj

dV,

we have

‖Sf‖23 =
∫
Ω

∑
′

α,β

n∑
j=1

∣∣∣∣∂fα,β∂z̄j

∣∣∣∣2 e−ϕdV

+
∫
Ω

∑
′

α,γ

n∑
j,k=1

(
δj
∂

∂z̄k
fα,jγ

)
fα,kγe

−ϕdV.

Consequently,

2‖T ∗f‖21 + ‖Sf‖23 ≥
∫
Ω

∑
′

α,γ

n∑
j,k=1

{(
δj
∂

∂z̄k
− ∂

∂z̄k
δj

)
fα,jγ

}
fα,kγe

−ϕdV

−2
∫
Ω

|∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕdV

=
∫
Ω

∑
′

α,γ

n∑
j,k=1

{
∂2ϕ

∂zj∂z̄k

}
fα,jγfα,kγe

−ϕdV

−2
∫
Ω

|∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕdV.
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It follows from Theorem 2.7 that

2‖T ∗f‖21 + ‖Sf‖23 ≥
∫
Ω

∑
′

α,γ

2(|∂ψ|2 + eψ)
n∑

j=1

|fα,jγ |2e−ϕdV

−2
∫
Ω

|∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕdV

≥
∫
Ω

∑
′

α,γ

n∑
j=1

2|fα,jγ |2eψ−ϕdV ≥ 2‖f‖22.

�

Corollary 2.1 For f ∈ DT∗ ∩ DS, we have

‖f‖22 ≤ ‖T ∗f‖21 + ‖Sf‖23.

Proof. For f ∈ DT∗ ∩ DS , by Theorem 2.6 there exist fj ∈ D(p,q+1)(Ω)
such that ‖fj − f‖G → 0. On the other hand, by Theorem 2.8,

‖fj‖22 ≤ ‖T ∗(fj)‖21 + ‖S(fj)‖23.

Hence letting j →∞, we have

‖f‖22 ≤ ‖T ∗(f)‖21 + ‖S(f)‖23.
�

Theorem 2.9 Suppose f ∈ L2(p,q+1)(Ω, loc) satisfies ∂̄f = 0. Then there
exists u ∈ L2(p,q)(Ω, loc) such that ∂̄u = f .

Proof. Let {Kj} be a sequence of compact subsets of Ω with the following
properties:

Kj ⊂⊂ (Kj+1)◦,
∞
∪
j=1
Kj = Ω. (j = 1, 2, · · · ).

We set ∫
Kj

|f |2dV =Mj (j = 1, 2, · · · ).

Let K0 = φ. Choose a function ϕ̃ ∈ C∞(Ω) such that

e−ϕ̃(z) <
1

2jMj
(z ∈ Kj −Kj−1).



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

78 Several Complex Variables and Integral Formulas

Then ∫
Ω

|f |2e−ϕ̃dV =
∞∑
j=1

∫
Kj−Kj−1

|f |2e−ϕ̃dV

≤
∞∑
j=1

∫
Kj−Kj−1

|f |2 1
2jMj

dV ≤
∞∑
j=1

1
2j

= 1.

Hence we have f ∈ L2(p,q+1)(Ω, ϕ̃). Suppose ϕ satisfies the condition of
Theorem 2.7 for ρ = ψ + ϕ̃. Since∫

Ω

|f |2e−ϕ2dV ≤
∫
Ω

|f |2e−ϕ̃dV <∞,

we obtain f ∈ L2(p,q+1)(Ω, ϕ2). Thus by Remark 2.1, there exists u ∈
L2(p,q)(Ω, ϕ1) such that ∂̄u = f . It follows from Lemma 2.8 that u ∈
L2(p,q)(Ω, loc). �

Lemma 2.22 Let f ∈ D(RN ). Then

|f(x)| ≤
∫
RN

∣∣∣∣ ∂Nf

∂t1 · · · ∂tN
(t)
∣∣∣∣ dV (t)

for every x ∈ RN .

Proof. For x = (x1, · · · , xN ) ∈ Rn, we have

|f(x)| =
∣∣∣∣∫ x1

−∞
· · ·
∫ xN

−∞

∂N

∂t1 · · · ∂tN
f(t1, · · · , tN )dtN · · · dt1

∣∣∣∣
≤
∫
RN

∣∣∣∣ ∂N

∂t1 · · · ∂tN
f(t)
∣∣∣∣ dV (t).

�

Definition 2.14 Let f be a locally integrable function in RN . For a
multi-index α = (α1, · · · , αN ), where each αj is a nonnegative integer,
define

|α| = α1 + · · ·+ αN

and (
∂

∂x

)α

f =
∂|α|f

∂xα1
1 · · · ∂xαN

N

.



January 9, 2007 12:0 WSPC/Book Trim Size for 9in x 6in ws-book9x6

The ∂̄ Problem in Pseudoconvex Domains 79

Lemma 2.23 Let f be a locally integrable function in RN with compact

support. Suppose (
∂

∂x

)α
f ∈ L2(RN)

for all multi-indices α with |α| ≤ N + 1. Then f is continuous almost

everywhere.

Proof. Choose a function Φ ∈ D(RN ) such that∫
RN

ΦdV = 1, supp(Φ) ⊂⊂ {x ∈ RN | |x| < 1}.

We define

Φδ(x) = δ−NΦ(x/δ), fε = f ∗ Φε.

Then we have ∥∥∥∥( ∂

∂x

)α
fε

∥∥∥∥
L2

=

∥∥∥∥∂αf∂xα
∗ Φε

∥∥∥∥
L2

≤
∥∥∥∥∂αf∂xα

∥∥∥∥
L2

.

Hence there exist positive constants c1 and c2 such that∣∣∣∣ ∂∂xj fε(x)
∣∣∣∣ ≤ ∫

RN

∣∣∣∣∣ ∂N+1fε(x)

∂x1 · · ·∂x2
j · · · ∂xN

∣∣∣∣∣ dx
≤ c1

∥∥∥∥∥ ∂N+1f

∂x1 · · · ∂x2
j · · · ∂xN

∥∥∥∥∥
L2

≤ c2.

Consequently, there exists a constant c3 > 0 such that

|fε(x) − fε(y)| =

∣∣∣∣∣∣
N∑
j=1

∂fε
∂xj

(x+ θy)(xj − yj)

∣∣∣∣∣∣ ≤ c3‖x− y‖,

which means that {fε} is equicontinuous. On the other hand, there exists

a constant c4 > 0 such that

|fε(x)| ≤
∫
Rn

∣∣∣∣ ∂N

∂x1 · · ·∂xN
fε(x)

∣∣∣∣ dV (x) ≤ c4

∥∥∥∥ ∂Nf

∂x1 · · · ∂xN

∥∥∥∥
L2

.

Hence {fε} are uniformly bounded. Using the Ascoli-Arzela theorem, one

can choose a subsequence {fεj
} of {fε} which converges uniformly to f̃

on every compact subset of Ω. Thus we have ‖fεj
− f̃‖L2 → 0. Since
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‖fεj − f‖L2 → 0, we have f = f̃ almost everywhere. Since f̃ is continuous,
f is continuous almost everywhere. �

Theorem 2.10 Let f be a locally integrable function in RN with compact
support. Suppose (

∂

∂x

)α

f ∈ L2(RN)

for all multi-indices α with |α| ≤ N + k + 1. Then there exists a function
h ∈ Ck(RN ) such that f = h almost everywhere.

Proof. We prove Theorem 2.10 by induction on k. In case k = 0, The-
orem 2.10 follows from Lemma 2.23. We assume that k ≥ 1 and Theorem
2.10 has already been proved for k − 1. For 1 ≤ j ≤ N , we have

∂α

∂xα

(
∂f

∂xj

)
∈ L2(RN ) (|α| ≤ N + k).

Hence by the inductive hypothesis, there exists f̃j ∈ Ck−1(RN ) such that
∂f
∂xj

= f̃j almost everywhere. On the other hand, by Lemma 2.23 there
exists a continuous function h such that f = h almost everwhere. Hence in
the sense of distributions, we obtain f̃j = ∂f

∂xj
= ∂h

∂xj
. Thus h is partially

differentiable and satisfies ∂h
∂xj

= f̃j for 1 ≤ j ≤ N , which means that
h ∈ Ck(RN ). �

Corollary 2.2 Let Ω ⊂ RN be an open set. Suppose that f is a locally
integrable function in Ω and that(

∂

∂x

)α

f ∈ L2loc(Ω) (|α| = 0, 1, 2, · · · ).

Then there exists a function f̃ ∈ C∞(Ω) such that f = f̃ almost everywhere.

Proof. Fix a function η ∈ D(Ω). We set ηf = h. Then we have(
∂

∂x

)α

h ∈ L2(RN ) (|α| = 0, 1, 2, · · · ).

It follows from Theorem 2.10 that there exists h̃ ∈ C(RN ) such that h = h̃
almost everywhere. It follows from Theorem 2.10 that for every k there
exists ϕ ∈ Ck(RN ) such that h = ϕ almost everywhere. Thus, in the
sense of distributions, we have ∂h̃

∂xj
= ∂ϕ

∂xj
, which means that h̃ is partially

differentiable and satisfies ∂h̃
∂xj

= ∂ϕ
∂xj

. Thus we have h̃ ∈ Ck(RN ). Since
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k is arbitrary, h̃ ∈ C∞(RN ). If we choose a sequence {Kn} of compact

subsets of Ω such that Kn ⊂
◦
Kn+1,

∞
∪

n=1
Kn = Ω, then f is of class C∞ in

Kn−An, where each set An is of Lebesgue measure 0. Since A = ∪∞n=1An,
f is of class C∞ almost everywhere. �

Lemma 2.24 Let ϕ and ψ be as in Theorem 2.7. We set ϕ1 = ϕ − 2ψ,
ϕ2 = ϕ − ψ. If f ∈ L2(p,q+1)(Ω, ϕ2) satisfies ∂̄f = 0, then there exists a
unique u which satisfies

Tu = f, u ∈ (KerT )⊥, u ∈ L2(p,q)(Ω, ϕ1).

Proof. First we show that KerT is a closed subset. Let Tuν = 0, uν → 0.
Then (uν , Tuν) → (u, 0). By Theorem 2.5, T is a closed operator and
satisfies u ∈ DT , (u, 0) = (u, Tu). Hence Tu = 0, which means that
u ∈ KerT . Consequently, KerT is closed. Since KerS = RT , there exists
α ∈ L2(p,q)(Ω, ϕ1) such that ∂̄α = f . Since KerT is closed, α can be written

α = α1 + α2 (α1 ∈ KerT, α2 ∈ (KerT )⊥).

Define

Pα = α1, α− Pα = u.

Then u ∈ (KerT )⊥ and ∂̄u = ∂̄α = f , which shows that u is the desired
solution. Next we asuume u∗ also satisfies the conditions of the lemma.
Then u − u∗ ∈ (KerT )⊥, and T (u − u∗) = 0, which means that u − u∗ ∈
KerT . Thus u = u∗. �

Definition 2.15 Let Ω ⊂ Cn be an open set. For a nonnegative integer
s, define the Sobolev space W s(Ω) of order s by

W s(Ω) =
{
f |
(
∂

∂z

)µ(
∂

∂z̄

)η

f ∈ L2(Ω), |µ|+ |η| ≤ s
}
.

Further, we define for f ∈ W s
(p,q)(Ω)

‖f‖2W s(Ω) =
∑

′

|α|=p

|β|=q

∑
|µ|+|η|≤s

∥∥∥∥( ∂∂z
)µ(

∂

∂z̄

)η

fα,β

∥∥∥∥2
L2(Ω)

.

Lemma 2.25 For f ∈ D(Cn), we have∥∥∥∥ ∂f∂zj
∥∥∥∥
L2

=
∥∥∥∥ ∂f∂z̄j

∥∥∥∥
L2

(j = 1, 2, · · · , n).
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Proof. Using the integration by parts we have∫
Cn

∣∣∣∣ ∂f∂z̄j
∣∣∣∣2 dV =

∫
Cn

∂f

∂z̄j

∂f̄

∂zj
dV = −

∫
Cn

f
∂

∂z̄j

(
∂f̄

∂zj

)
dV

= −
∫
Cn

f
∂

∂zj

(
∂f̄

∂z̄j

)
dV =

∫
Cn

∂f

∂zj

∂f̄

∂z̄j
dV

=
∫
Cn

∣∣∣∣ ∂f∂zj
∣∣∣∣2 dV.

�

Lemma 2.26 Suppose that f ∈ L2(Cn) has a compact support and that

∂f

∂z̄j
∈ L2(Cn) (j = 1, · · · , n).

Then f ∈W 1(Cn). Moreover, we have∥∥∥∥ ∂f∂zj
∥∥∥∥
L2

=
∥∥∥∥ ∂f∂z̄j

∥∥∥∥
L2

(j = 1, 2, · · · , n).

Proof. For ε > 0, we set fε = f ∗ Φε. Then fε ∈ D(Cn). In L2(Cn)

∂fε
∂z̄j

=
∂f

∂z̄j
∗ Φε →

∂f

∂z̄j
(ε→ 0).

It follows from Lemma 2.25 that∥∥∥∥∂fε∂zj
− ∂fδ
∂zj

∥∥∥∥
L2

=
∥∥∥∥∂fε∂z̄j

− ∂fδ
∂z̄j

∥∥∥∥
L2

→ 0.

Hence {∂fε/∂zj} is a Cauchy sequence. Thus there exists g ∈ L2(Cn) such
that

∂fε
∂zj

→ g

as ε→ 0. For ψ ∈ D(Cn)(
∂fε
∂zj

, ψ

)
= −

(
fε,

∂ψ

∂zj

)
→ −

(
f,
∂ψ

∂zj

)
=
(
∂f

∂zj
, ψ

)
,

which means that ∂f/∂zj = g. Hence we have ∂f/∂zj ∈ L2(Cn), and by
Lemma 2.25 ∥∥∥∥∂fε∂z̄j

∥∥∥∥
L2

=
∥∥∥∥∂fε∂zj

∥∥∥∥
L2

.
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Letting ε→ 0, we obtain ∥∥∥∥ ∂f∂z̄j
∥∥∥∥
L2

=
∥∥∥∥ ∂f∂zj

∥∥∥∥
L2

.

�

Definition 2.16 For f ∈ L2(p,q+1)(Ω) with f =
∑ ′

α,β fα,βdz
α ∧ dz̄β,

define

T ∗f := (−1)p−1
∑

′

α,γ

n∑
j=1

∂fα,jγ
∂zj

dzα ∧ dz̄γ .

Lemma 2.27 Suppose that f is a differential form in L2(p,q+1)(Ω) with
compact support and that ∂̄f ∈ L2(p,q+2)(Ω) and T ∗f ∈ L2(p,q)(Ω). Then
f ∈W 1

(p,q+1)(Ω).

Proof. In case f ∈ D(p,q+1)(Ω), we set ψ = 0 and ϕ = 0 in the proof of
Theorem 2.8 . Then∫

Ω

∑
′

α,β

n∑
j=1

∣∣∣∣∂fα,β∂z̄j

∣∣∣∣2 dV ≤ 2‖T ∗f‖2 + ‖∂̄f‖2. (2.11)

In the general case, setting f ∗ Φδ = fδ and applying (2.11) to fδ − fε, we
obtain

‖T ∗fδ − T ∗fε‖2 + ‖∂̄fδ − ∂̄fε‖2 → 0

as ε, δ → 0. Consequently,∑
′

α,β

∫
Ω

n∑
j=1

∣∣∣∣∂(fα,β ∗ Φδ)
∂z̄j

− ∂(fα,β ∗ Φε)
∂z̄j

∣∣∣∣2 dV → 0

as ε, δ → 0. Then there exists λα,β ∈ L2(Ω) such that in L2(Ω),

∂(fα,β ∗ Φδ)
∂z̄j

→ λα,β

as δ → 0. Hence we have ∂fα,β/∂z̄j = λα,β in the sense of distributions,
and hence ∂fα,β/∂z̄j ∈ L2(Ω). By Lemma 2.26, ∂fα,β/∂zj ∈ L2(Ω), and
hence f ∈ W 1

(p,q+1)(Ω). �

Theorem 2.11 Let Ω ⊂ Cn be a pseudoconvex open set, and let 0 ≤ s ≤
∞. If f ∈ W s

(p,q+1)(Ω, loc) and ∂̄f = 0, then there exists a solution u of
∂̄u = f such that u ∈ W s

(p,q)(Ω, loc).
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Proof. In case q = 0. By Theorem 2.9, there exists a solution u =∑′
α uαdz

α of ∂̄u = f such that u ∈ L2(p,q)(Ω, loc). Hence we have

∂uα
∂z̄j

= fα,j ∈W s(Ω, loc).

Suppose that u ∈ W θ
(p,0)(Ω, loc) for some θ with 0 ≤ θ ≤ s (if θ = 0, then

u ∈W θ
(p,0)(Ω, loc)). For η ∈ D(Ω) we have

∂(ηuα)
∂z̄j

= ηfα,j +
∂η

∂z̄j
uα ∈ W θ.

For |µ|+ |ν| ≤ θ,

∂

∂z̄j

{(
∂

∂zj

)µ(
∂

∂z̄j

)ν

(ηuα)
}

=
(
∂

∂zj

)µ(
∂

∂z̄j

)ν (
∂

∂z̄j
(ηuα)

)
∈ L2.

By Lemma 2.26, ηuα ∈ W θ+1. By the inductive hypothesis on θ, we have
ηuα ∈ W s+1. Thus we have u ∈W s+1(Ω, loc).

In case q ≥ 1. Since f ∈ L2(p,q+1)(Ω, loc), by Lemma 2.9 there exists
λ ∈ C∞(Ω) such that f ∈ L2(p,q+1)(Ω, λ). Suppose ϕ satisfies the condition
of Theorem 2.7 for ρ(z) = ψ+λ. Then for ϕ1 = ϕ−2ψ and ϕ2 = ϕ−ψ, f ∈
L2(p,q+1)(Ω, ϕ2), and hence by Lemma 2.24, there exists u ∈ L2(p,q)(Ω, ϕ1)
such that ∂̄u = f , u ∈ (KerT )⊥. Since RT = KerS, RT is closed. By
Lemma 2.6, RT∗ is closed. By Lemma 2.7,

u ∈ (KerT )⊥ = RT∗ = RT∗ ,

which means that u = T ∗v (v ∈ L2(p,q+1)(Ω, ϕ2)). For v = Σ′
α,β
vα,βdz

α∧dz̄β,
we set

δv = (−1)p−1T ∗v =
∑

′

α,γ

n∑
j=1

∂fα,jγ
∂zj

dzα ∧ dz̄γ .

Since e−ϕ1u = (−1)p−1δ(e−ϕ2v), we obtain

δ(e−ϕ1u) = (−1)p−1
∑

′

α,L

n∑
k=1

n∑
j=1

∂(vα,jkLe−ϕ2)
∂zk∂zj

dzα ∧ dz̄L = 0.
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Consequently,

0 =
∑

′

α,γ

n∑
j=1

∂(e−ϕ1uα,jγ)
∂zj

dzα ∧ dz̄γ

=
∑

′

α,γ

n∑
j=1

∂uα,jγ
∂zj

dzα ∧ dz̄γ −
∑

′

α,γ

n∑
j=1

∂ϕ1
∂zj

uα,jγdz
α ∧ dz̄γ .

Let 0 ≤ θ ≤ s. Suppose u ∈ W θ
(p,q)(Ω, loc). When θ = 0, it is true. Fix

η ∈ D(Ω). Then

∂̄(ηu) = η̄ ∧ u+ ηf ∈W θ
(p,q+1)(Ω).

On the other hand we have

(−1)p−1T ∗(ηu)

=
∑

′

α,γ

n∑
j=1

∂(ηuα,jγ)
∂zj

dzα ∧ dz̄γ

= η
∑

′

α,γ

n∑
j=1

∂ϕ1
∂zj

uα,jγdz
α ∧ dz̄γ +

∑
′

α,γ

n∑
j=1

∂η

∂zj
uα,jγdz

α ∧ dz̄γ ,

which implies that

T ∗(ηu) ∈W θ
(p,q−1)(Ω).

Suppose |µ|+ |ν| ≤ θ. Then

∂̄

((
∂

∂z

)µ (
∂

∂z̄

)ν

(ηu)
)

=
∑

′

α,γ

(
∂

∂z

)µ (
∂

∂z̄

)ν

(∂̄(ηu))α,γdzα ∧ dz̄γ ∈ L2(p,q+1)(Ω).

Similarly,

T ∗
((

∂

∂z

)µ(
∂

∂z̄

)ν

(ηu)
)
∈ L2(p,q−1)(Ω).

By Lemma 2.27 we have(
∂

∂z

)µ(
∂

∂z̄

)ν

(ηu) ∈W 1
(p,q)(Ω),
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which implies that ηu ∈ W θ+1
(p,q)(Ω). By the inductive hypothesis on θ,

ηu ∈W s+1
(p,q)(Ω), and hence u ∈W s+1

(p,q)(Ω, loc). �
Corollary 2.3 Let Ω ⊂ Cn be a pseudoconvex domain. Suppose f is a
C∞(p, q + 1) form in Ω with ∂̄f = 0. Then there exists a C∞(p, q) form u

in Ω such that ∂̄u = f .

Proof. Since C∞(Ω) ⊂ W∞
loc(Ω), we have f ∈ W∞

(p,q+1)(Ω, loc). Then
by Theorem 2.11, there exists u ∈ W∞

(p,q)(Ω, loc) such that ∂̄u = f . By
Corollary 2.2, there exists a C∞ (p, q) form ũ on Ω such that u = ũ almost
everywhere. Thus we have ∂̄ũ = f . �
Definition 2.17 A metric space is called separable if it has a countable
everywhere dense subset.

Definition 2.18 Let H be a Hilbert space. We say that a sequence {xn}
in H converges weakly to x ∈ H if

(xn, y)→ (x, y)

for every y ∈ H .

Lemma 2.28 Every bounded sequence in a separable Hilbert space con-
tains a weakly convergent subsequence.

Proof. Suppose {xn} is a bounded sequence in a separable Hilbert space
H . Then there exists a constant M such that ‖xn‖ ≤M for all n. Since H
is separable, there is a countable dense subset {zn}. We have

|(xn, z1)| ≤ ‖xn‖‖z1‖ ≤M‖z1‖.

Thus {(xn, z1)} is bounded. Using Bolzano-Weierstrass theorem, there is a
subsequence {x(1)n } of {xn} such that {(x(1)n , z1)} converges. Since

|(x(1)n , z2)| ≤ ‖x(1)n ‖‖z2‖ ≤M‖z2‖,

there exists a subsequence {x(2)n } of {x(1)n } such that {(x(2)n , x2)} converges.
Repeating this process, we have sequences {x(k)n } such that

(1) {x(k+1)n } is a subsequence of {x(k)n }.
(2) {(x(k)n , zj)} converge for j = 1, · · · , k.

Thus {(x(n)n , z)} converge for z = z1, z2, · · · . We set yn = x
(n)
n , and for

ε > 0, we set δ = min{ε/(3M), ε/3}. If w1, w2 ∈ H , ‖w1 − w2‖ < δ, then

|(yn, w1)− (yn.w2)| ≤ ‖yn‖‖w1 − w2‖ <
ε

3
.
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Since for any z ∈ H , there exists zn0 such that ‖z − zn0‖ < δ. Hence we
have

|(ym, z)− (yn, z)| ≤ |(ym, z)− (ym, zn0)|+ |(ym, zn0)− (yn, zn0)|
+|(yn, zn0)− (yn, z)|

≤ ε

3
+ |(ym, zn0)− (yn, zn0)|+

ε

3
.

Since {(yn, zn0)} converges, there exists a positive integer N such that if
m,n ≥ N , then

|(ym, zn0)− (yn, zn0)| <
ε

3
.

Hence if m,n ≥ N , then

|(ym, z)− (yn, z)| < ε,

which implies that {(yn, z)} converges. Define ϕ(z) = limn→∞(z, yn). Then
ϕ is a bounded linear functional on H . It is evident that ϕ is linear. There
exists a positive integer N1 such that if n ≥ N1, then

|ϕ(z)− (yn, z)| < 1 (z ∈ H),

which implies that

|ϕ(z)| < 1 +M (z ∈ H, ‖z‖ = 1).

Hence ϕ is bounded. Using the Riesz representation theorem, there exists
y ∈ H such that

ϕ(z) = (z, y) (z ∈ H).

Then we have

(y, z)− (yn, z) = ϕ(z)− (z, yn)→ 0 (n→∞),

which implies that {yn} converges weakly to y. �

Theorem 2.12 Let Ω ⊂ Cn be a pseudoconvex open set. Suppose that
ϕ ∈ C2(Ω) is a real-valued function and that there exists a continuous
positive function c in Ω such that

c(z)
n∑

j=1

|wj |2 ≤
n∑

j,k=1

∂2ϕ

∂zj∂z̄k
(z)wjw̄k (z ∈ Ω, w ∈ Cn).
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If g ∈ L2(p,q+1)(Ω, ϕ) satisfies ∂̄g = 0, then there exists u ∈ L2(p,q)(Ω, ϕ) such
that ∂̄u = g, and ∫

Ω

|u|2e−ϕdV ≤ 2
∫
Ω

|g|2
c
e−ϕdV, (2.12)

provided that the right side is finite.

Proof. There exists a C∞ strictly plurisubharmonic function ρ in Ω such
that for any real number a,

Ωa = {z ∈ Ω | ρ(z) < a} ⊂⊂ Ω.

Fix a. We choose a sequence {Kj}∞j=0 of compact subsets of Ω with the
following properties:

Ωa+1 ⊂ K0, Kj ⊂ K◦j+1,
∞
∪
j=1
Kj = Ω.

Let ηj ∈ C∞c (Ω) be functions such that ηj = 1 on Kj−1, supp(ηj) ⊂ Kj .
Define

ψ(z) =

{∑n
k=1

∣∣∣ ∂ηj

∂z̄k

∣∣∣2 (z ∈ Kj −Kj−1)

0 (z ∈ K0)
.

Then ψ ∈ C∞(Ω). Moreover, we have ψ(z) = 0 for z ∈ Ωa+1, and

eψ(z) ≥ ψ(z) =
n∑

k=1

∣∣∣∣∂ηj∂z̄k

∣∣∣∣2 (j = 1, 2, · · · ).

Since ρ is strictly plurisubharmonic in Ω, there exists a positive continuous
function m in Ω such that

∞∑
j,k=1

∂2ρ

∂zj∂z̄k
wjw̄k ≥ m(z)|w|2.

By Lemma 2.21, there exists a convex increasing function χ in R such that
χ(t) = 0 for −∞ < t < a, and

χ(ρ(z)) ≥ 2ψ(z), χ′(ρ(z)) ≥ 2|∂ψ|2
m(z)

.

for all z ∈ Ω. We set

ϕ′ = ϕ+ χ ◦ ρ, ϕj = ϕ′ + (j − 3)ψ (j = 1, 2, 3).
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Then

ϕ2 − ϕ ≥ ψ ≥ 0, 2ϕ2 − ϕ− ϕ′ = χ ◦ ρ− 2ψ ≥ 0.

Repeating the proof of Theorem 2.7, we obtain

n∑
j,k=1

∂2ϕ′

∂zj∂z̄k
wjw̄k =

∞∑
j,k=1

∂2ϕ

∂zj∂z̄k
wjw̄k + χ′′(ρ(z))

∣∣∣∣∣∣
n∑

j=1

∂ρ

∂zj
(z)wj

∣∣∣∣∣∣
2

+χ′(ρ(z))
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k

≥ (2|∂ψ|2 + c)|w|2.

By applying the proof of Theorem 2.8, we have for f ∈ D(p,q+1)(Ω)

2‖T ∗f‖21 + ‖Sf‖23

=
∫
Ω

∑
′

α,γ

n∑
j,k=1

{
∂2ϕ′

∂zj∂z̄k

}
fα,jγfα,kγe

−ϕ′
dV

−2
∫
Ω

|∂ψ|2
∑ ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕ′

dV

≥
∫
Ω

∑
′

α,γ

(2|∂ψ|2 + c)
n∑

j=1

|fα,jγ |2e−ϕ′
dV

−2
∫
Ω

|∂ψ|2
Σ′

α,γ

n∑
j=1

|fα,jγ |2
 e−ϕ′

dV

≥
∫
Ω

∑
′

α,γ

n∑
j=1

c|fα,jγ |2e−ϕ′
dV ≥

∫
Ω

c|f |2e−ϕ′
dV.

Consequently,∫
Ω

c|f |2e−ϕ′ ≤ 2‖T ∗f‖21 + ‖Sf‖23 (f ∈ DT∗ ∩ DS).

We set ∫
Ω

|g|2
c
e−ϕdV = A2.
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Then using the Schwarz inequality, we have for f ∈ DT∗ ∩ DS

|(g, f)2|2 ≤
(∫

Ω

|g|2
c
e−ϕdV

)(∫
Ω

c|f |2eϕ−2ϕ2dV

)
≤ A2

∫
Ω

c|f |2e−ϕ′
dV ≤ A2

(
2‖T ∗f‖21 + ‖Sf‖23

)
.

Now we show that

|(g, f)2| ≤
√

2A‖T ∗f‖1 (f ∈ DT∗). (2.13)

If Sf = 0, then (2.13) is trivial. Suppose f ∈ (KerS)⊥. Since S ◦ T = 0,
we have RT ⊂ KerS, and hence f ∈ (RT )⊥. Then by Lemma 2.7 we have
T ∗f = 0. Hence we have∫

Ω

|g|2e−ϕ2dV ≤
∫
Ω

|g|2e−ϕdV <∞,

which implies that g ∈ L2(p,q+1)(Ω, ϕ2). Since ∂̄g = 0, we obtain g ∈ KerS,
and hence (g, f)2 = 0. Let f ∈ DT∗ . Then f can be uniquely expressed by

f = f1 + f2 (f1 ∈ KerS, f2 ∈ (KerS)⊥).

Then

|(g, f)2| = |(g, f1)2| ≤
√

2A‖T ∗f1‖ =
√

2A‖T ∗f‖,

which implies that (2.13) holds. Now we define a linear functional Φ on
RT∗ by Φ(T ∗f) = (f, g)2. If T ∗f = T ∗f ′, then (2.13) implies that f = f ′.
Thus Φ is well defined. Applying the Hahn-Banach theorem, Φ can be
extended to a bounded linear functional on L2(p,q)(Ω, ϕ1). Using the Riesz
representation theorem, there exists ua ∈ L2(p,q)(Ω, ϕ1) such that

(f, g)2 = Φ(T ∗f) = (T ∗f, ua)1, ‖Φ‖ = ‖ua‖1.

It follows from (2.13) that

‖Φ‖ = sup
f∈DT∗

|(f, g)2|
‖T ∗f‖ ≤

√
2A,

which implies that ∫
Ω

|ua|2e−ϕ1dV ≤ 2A2.
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Further we have

|(T ∗f, ua)1| ≤ ‖g‖2‖f‖2,

which implies that by Lemma 2.5 ua ∈ D(T∗)∗ = DT . Hence we have

(f, g)2 = (T ∗f, ua) = (f, Tua) (f ∈ DT∗).

Thus we obtain Tua = g. Let {uaj} be a subsequence of {ua} such
that aj → ∞. By Lemma 2.28, we can choose a subsequence of {uaj}
which converges weakly in L2(p,q)(Ω, ϕ1). Hence we may assume that {uaj}
converges weakly. For any real number α, {uaj} converges weakly in
Hα = L2(p,q)(Ωα, ϕ). We set limj→∞ uaj = u. If aj > α, then ϕ = ϕ1
on Ωα. Hence we have ∫

Ωα

|uaj |2e−ϕdV ≤ 2A2.

Using the equality

(uaj , u)Hα = (uaj − u, u)Hα + (u, u)Hα ,

we obtain

‖u‖2Hα
≤
√

2A‖u‖Hα + |(uaj − u, u)Hα |,

which implies that ‖u‖Hα ≤
√

2A. Namely, for any α,∫
Ωα

|u|2e−ϕdV ≤ 2A2.

For f ∈ DT∗ , we have

(g, f)2 = (Tuaj , f)2 = (uaj , T
∗f)→ (u, T ∗f) = (Tu, f),

which implies that Tu = g. �

Now we are going to prove L2 estimates for the ∂̄ problem in pseudo-
convex domains obtained by Hörmander [HR2].

Theorem 2.13 (L2 estimates) Let Ω ⊂ Cn be a pseudoconvex open set
and let ϕ be a plurisubharmonic function in Ω. If g ∈ L2(p,q+1)(Ω, ϕ) satisfies
∂̄g = 0, then there exists a solution u ∈ L2(p,q)(Ω, loc) of the equation ∂̄u = g
such that ∫

Ω

|u|2e−ϕ(1 + |z|2)−2dV ≤
∫
Ω

|g|2e−ϕdV. (2.14)
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Proof. First we assume that ϕ ∈ C2(Ω). We set ϕ′ = ϕ+2 log(1 + |z|2).
Then

n∑
j,k=1

∂2ϕ′

∂zj∂z̄k
wjw̄k ≥ 2

n∑
j,k=1

∂2

∂zj∂z̄k
{log(1 + |z|2)}wjw̄k

=
2

(1 + |z|2)2

|w|2(1 + |z|2)− |
n∑

j=1

z̄jwj |2


≥ 2(1 + |z|2)−2|w|2.

Then (2.14) follows from Theorem 2.12. In the general case, there exists a
C∞ strictly plurisubharmonic function ρ in Ω such that for any real number
a

Ωa = {z ∈ Ω | ρ(z) < a} ⊂⊂ Ω.

Suppose that Φ ∈ D(Cn) is a function depending only on |z1|, · · · , |zn| and
that Φ = 0 on |z| ≥ 1, 0 ≤ Φ and

∫
ΦdV = 1. Define

ϕε(z) =
∫
Ω

ϕ(z − εζ)Φ(ζ)dV (ζ).

Then ϕε is a C∞ plurisubharmonic function in {z ∈ Cn | d(z,Ωc) > ε},
and ϕε ↓ ϕ if ε ↓ 0. We choose a(ε) with the properties that a(ε) → ∞
if ε → 0, and that ϕε is a C∞ plurisubharmonic function in Ωa(ε). By
using the result of the C2 case, there exists uε ∈ L2(p,q)(Ωa(ε), ϕε) such that
∂̄uε = g in Ωa(ε), and∫

Ωa(ε)

|uε|2e−ϕε(1 + |z|2)−2dV ≤
∫
Ωa(ε)

|g|2e−ϕεdV ≤
∫
Ω

|g|2e−ϕdV.

Fix a real number α. We choose δ > 0 such that a(δ) > α. Then there
exists a constant c1 > 0 such that

c1 ≤ e−ϕδ(1 + |z|2)−2 (z ∈ Ωα),

which implies that for ε > δ,∫
Ωα

|uε|2dV ≤
1
c1

∫
Ω

|g|2e−ϕdV.

Hence we can choose a subsequence {uεj} of {uε} which converges weakly
in L2(p,q)(Ωα). Let {αk} be a sequence such that αk → ∞. Since we can
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choose a subsequence {uj,k} of {uεj} which converges weakly in {Ωαk
},

{uk,k} converges weakly to u in L2(p,q)(Ω, loc). Hence we have for ε > δ,∫
Ωα

|u|2e−ϕε(1 + |z|2)−2dV ≤
∫
Ω

|g|2e−ϕdV.

Letting ε→ 0 we have∫
Ωα

|u|2e−ϕ(1 + |z|2)−2dV ≤
∫
Ω

|g|2e−ϕdV.

Since ∂̄u = g, and α is arbitrary, we have (2.14). �

Theorem 2.14 Let Ω ⊂ Cn be a pseudoconvex open set. Define

ω = Ω ∩ {zn = 0}.

Suppose f : ω → C is holomorphic in ω̃, where

ω̃ = {(z1, · · · , zn−1) ∈ Cn−1 | (z1, · · · , zn−1, 0) ∈ ω}.

Then there exists a holomorphic function F : Ω→ C such that F |ω = f .

Proof. Let π : Cn → Cn−1 be the projection such that

π(z1 · · · , zn) = (z1 · · · , zn−1).

If B = {z ∈ Ω | π(z) �∈ ω̃}, then, ω and B are closed subset of Ω, and
ω ∩ B = φ. Then there exists a function ψ ∈ C∞(Ω) such that ψ = 1 on
an open subset of Ω which contains ω, and ψ = 0 on an open subset of Ω
which contains B. Define

F (z) = ψ(z)f(π(z), 0) + znv(z),

where v is a C∞ function in Ω. We will determine v later to satisfy ∂̄F = 0.
Then F is a C∞ function on Ω and

∂̄F (z) = ∂̄ψ(z)f(π(z), 0) + zn∂̄v(z).

If v satisfies

∂̄v(z) =
(−∂̄ψ(z))f(π(z), 0)

zn
, (2.15)

then 0 = ∂̄F . Since ∂̄ψ(z) = 0 in a neighborhood of ω, the right side of
(2.15) is of class C∞ in Ω. Further, the right side of (2.15) is ∂̄ closed.
Therefore, by Corollary 2.3 there exists v ∈ C∞(Ω) which satisfies (2.15).
Thus F is holomorphic in Ω. Since F |ω = f , F is the desired function. �
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Theorem 2.15 Let Ω ⊂ Cn be an open set. Suppose that for every
f ∈ C∞(0,q+1) ( 0 ≤ q ≤ n− 2) with ∂̄f = 0, there exists u ∈ C∞(0,q)(Ω) such
that ∂̄u = f . Then Ω is a domain of holomorphy.

Proof. We prove Theorem 2.15 by induction on n. If n = 1, then the
theorem is true since every open set is a domain of holomorphy. Assume
that the theorem has already been proved for n−1 dimensions. In order to
prove that the domain Ω ⊂ Cn is a domain of holomorphy, it is sufficient to
show that for every open convex set D ⊂ Ω such that some boundary point
z0 of D is on ∂Ω, there is a holomorphic function in Ω which cannot be
continued holomorphically to a neighboorhood of z0. (For, if a holomorphic
function in Ω can be extended holomorphically to a neighborhood G of w ∈
∂Ω, then there exists r > 0 such that B(w, 2r) ⊂ G. For z1 ∈ B(w, r) ∩ Ω,
there exists δ(0 < δ ≤ r) such that B(z1, δ) ⊂ Ω, ∂B(z1, δ)∩∂Ω �= φ. Then
every holomorphic function on Ω can be extended to a neighborhood of
∂B(z1, δ) ∩ ∂Ω, which is a contradiction.) We choose a coordinate system
such that z0 = 0 and D0 = {zn = 0} ∩ D is not empty. Since D is
convex, 0 is a boundary point of D0, and hence a boundary point of ω =
{z | z ∈ Ω, zn = 0}. Suppose f ∈ C∞(0,q+1)(ω) and ∂̄f = 0. For ω, let
ψ is the function in the proof of Theorem 2.14. Let i : ω → Ω be the
inclusion mapping. Let π(z1, · · · , zn) = (z1, · · · , zn−1). For z ∈ Ω and
v ∈ C∞(0,q+1)(Ω), we set

F (z) = ψ(z)π∗f(z)− znv(z).

Then F ∈ C∞(0,q+1)(Ω). We have

∂̄F = ∂̄ψ ∧ π∗f − zn∂̄v.

Hence, if we choose v such that

∂̄v =
∂̄ψ ∧ π∗f
zn

, (2.16)

then ∂̄F = 0. Since the right side of (2.16) belongs to C∞(0,q+1)(Ω), and
∂̄ closed, by the assumption, there exists v ∈ C∞(0,q)(Ω) satisfying (2.16).
Thus there exists F ∈ C∞(0,q+1)(Ω) such that ∂̄F = 0 and i∗F = f . By
the assumption, there exists U ∈ C∞(0,q)(Ω) such that ∂̄U = F . If we set
u = i∗U , then u ∈ C(0,q)(ω), and

∂̄u = ∂̄i∗U = i∗∂̄U = i∗u = f.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

The ∂̄ Problem in Pseudoconvex Domains 95

By the inductive hypothesis, ω is a domain of holomorphy. Hence there
exists a holomorphic function h in ω which cannot be extended holomor-
phically to a neighborhood of π(z0). On the other hand, by Theorem 2.14
there exists a holomorphic function H on Ω such that H |ω = h. Since H
cannot be extended holomorphically in a neighborhood of z0, Ω is a domain
of holomorphy. Hence Theorem 2.15 holds for n. �

Corollary 2.4 (Levi’s problem) Let Ω ⊂ Cn be an open set. Then Ω
is pseudoconvex if and only if Ω is a domain of holomorphy.

Proof. Corollary 2.4 follows from Corollary 1.6, Corollary 2.3 and The-
orem 2.15. �

Lemma 2.29 Suppose that p is a C∞ strictly plurisubharmonic function
in Ω and that for every c ∈ R

Kc = {z ∈ Ω | p(z) ≤ c} ⊂⊂ Ω.

Then every holomorphic function in a neighborhood of K0 can be approxi-
mated in L2 norm on K0 by functions in O(Ω).

Proof. Let u be a holomorphic function in a neighborhood of K0. By
the Hahn-Banach theorem, it is sufficient to show that if ϕ is a bounded
linear functional on L2(K0) which vanishes on O(Ω), then ϕ(u) = 0. By
the Riesz representation theorem, there exists v ∈ L2(K0) such that

ϕ(x) = (x, v) =
∫
K0

xv̄dV.

Hence it is sufficient to show that∫
K0

f v̄dV = 0 (f ∈ O(Ω)) =⇒
∫
K0

uv̄dV = 0.

By setting v = 0 outside of K0, we extend v to the function on Ω. If f
satisfies the equation ∂̄f = 0 on Ω, then f is holomorphic in Ω. Hence, by
the assumption,

(f, veϕ1)1 =
∫
K0

f v̄eϕ1e−ϕ1dV =
∫
K0

f v̄dV = 0,

which means that veϕ1 ∈ (KerT )⊥. Suppose RT = KerS. Then KerS is
closed, and hence RT is closed. By Lemma 2.6, RT∗ is closed. By Lemma
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2.7, we have (KerT )⊥ = RT∗ , and hence veϕ1 ∈ RT∗ = T ∗(DT∗). By
Theorem 2.4, we have

‖f‖2 ≤ c‖T ∗f‖1 (f ∈ RT ∩ DT∗).

Next we show that T ∗(RT ∩ DT∗) = T ∗(DT∗). Let u ∈ DT∗ . Then u can
be uniquely expressed by

u = u1 + u2 (u1 ∈ RT ∩DT∗ , u2 ∈ (RT )⊥ ∩ DT∗).

Since (RT )⊥ = KerT ∗, we obtain

T ∗(u) = T ∗(u1 + u2) = T ∗u1.

Hence we have T ∗(RT ∩ DT∗) = T ∗(DT∗), which means that there exists
f ∈ RT ∩ DT∗ such that

veϕ1 = T ∗f, ‖f‖2 ≤ c‖T ∗f‖1,

that is, if f =
∑n

j=1 fjdz̄j , then we have

veϕ1 = −eϕ1

n∑
j=1

∂(e−ϕ2fj)
∂zj

.

We set g = fe−ϕ2. Then we have

(1) v = −
n∑

j=1

∂gj
∂zj

(2)
∫
Ω

n∑
j=1

|gj|2eϕ2dV ≤ c2
∫
Ω

|v|2eϕ1dV .

Define

ρν(t) =

{
νe−1/t

2
(t > 0)

0 (t ≤ 0)
, λν(t) =

∫ t

−∞
ρν(t)dt.

Let χ be the function in the proof of Theorem 2.7. Define

χν = χ+ λν ,

and

ϕ1 = χν ◦ p− 2ψ, ϕ2 = χν ◦ p− ψ, ϕ3 = χν ◦ p,

where ψ is the function defined in Lemma 2.13. By Corollary 2.1, KerS =
RT . Hence for ϕi (i = 1, 2, 3) we can construct gν satisfying (1), (2). χν
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satisfies that χν(t) = χ(t) for t ≤ 0, and χν(t) ↑ ∞ (ν → ∞) for t > 0.
Using (2), we have∫

Ω

n∑
j=1

|gνj |2exp(χν ◦ p− ψ)dV ≤ c2
∫
Ω

|v|2exp(χν ◦ p− 2ψ)dV

= c2
∫
K0

|v|2exp(χ ◦ p− 2ψ)dV

≤ C1.

Thus we obtain ∫
Ω

n∑
j=1

|gνj |2exp(χ1 ◦ p− ψ)dV ≤ C1,

which means that {gν} is a bounded sequence in L(0,1)(Ω, ψ−χ1◦p). Hence
we can choose a subsequence {gνk} of {gν} which converges weakly. Let
gνk → g. For s2 > s1 > 0, we set

M = max
x∈Ks2

ψ(x).

Since exp(χν ◦ p− ψ) ≥ exp(χν(s1)−M) on Ks2 −Ks1 , we have∫
Ks2−Ks1

n∑
j=1

|gνj |2dV ≤ C1exp(M − χν(s1))→ 0 (ν →∞).

Thus {gνj } converges 0 in L2(Ks2 −Ks1), which means that {gνj } converges
to 0 in Ω−K0 in the sense of distributions. Hence, g = 0 on Ω−K0. v is
written in the following form

v = −
n∑

j=1

∂gνj
∂zj

.

Letting ν →∞ we have in the sense of distributions

v = −
n∑

j=1

∂gj
∂zj

.

Hence we have for u ∈ D(Ω)∫
Ω

uv̄dV = −
∫
Ω

n∑
j=1

u
∂ḡj
∂z̄j

dV =
∫
Ω

n∑
j=1

∂u

∂z̄j
ḡjdV.
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Since g = 0 outside of K0, we have for every holomorphic function in a
neighborhood of K0 ∫

Ω

uv̄dV =
∫
K0

n∑
j=1

∂u

∂z̄j
ḡjdV = 0,

which completes the proof of Lemma 2.29. �

Theorem 2.16 Let Ω ⊂ Cn be a pseudoconvex open set and let K be a
compact subset of Ω, ω a neighborhood of K̂P

Ω . Then there exists a function
u ∈ C∞(Ω) such that

(a) u is strictly plurisubharmonic in Ω.
(b) u < 0 in K, u > 0 in Ω ∩ ωc.
(c) {z ∈ Ω | u(z) < c} ⊂⊂ Ω for every c ∈ R.

Proof. By Theorem 1.15, there exists a C∞ strictly plurisubharmonic
function u0 on Ω such that for every real number c,

{z ∈ Ω | u0(z) < c} ⊂⊂ Ω.

Without loss of generality, we may assume that u0 < 0 in K. Define

K ′ = {z ∈ Ω | u0(z) ≤ 2}, L = {z | z ∈ Ω ∩ ωc, u0(z) ≤ 0}.

Then L ⊂ K ′, and K ′ and L are compact. Since z �∈ K̂P
Ω for each z ∈ L,

there exists g ∈ P (Ω) such that

|g(z)| > sup
K
‖g‖.

Let d be such that |g(z)| > d > supK ‖g‖. We set g̃ = g−d. Then g̃(z) > 0,
g̃ < 0 in K. There exists a C∞ plurisubharmonic function gε(z) defined
in an open set W with K ′ ⊂ W ⊂ Ω such that gε ↓ g̃ (ε → 0). For
any sufficiently small ε > 0, gε > 0 in some neighborhood of z, gε < 0 in
K. Since L is compact, by the Heine-Borel theorem, there exist finitely
many C∞ strictly plurisubharmonic functions ϕ1, · · · , ϕk in W such that if
we define ϕ = max(ϕ1, · · · , ϕk), then ϕ is a continuous plurisubharmonic
function in W , ϕ > 0 in some neighborhood of L and ϕ < 0 in K. We set

c = sup
K′
ϕ > 0.

Define

v(z) =
{

sup(ϕ(z), cu0(z)) (u0(z) < 2)
cu0(z) (u0(z) > 1)

.
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If 1 < u0(z) < 2, then z ∈ K ′, and hence ϕ(z) ≤ c < cu0(z). Then

sup(ϕ(z), cu0(z)) = cu0(z),

which implies that v is a continuous plurisubharmonic function in Ω. Fur-
ther, v < 0 in K. If u0(z) ≤ 0 for z ∈ Ω ∩ ωc, then z ∈ L, and hence
v(z) = ϕ(z) > 0. If u0(z) > 0, then v(z) ≥ cu0(z) > 0, which implies that
v(z) > 0 for z ∈ Ω ∩ ωc. Thus v is a continuous plurisubharmonic function
in Ω satisfying (b) and (c). We set

Ωc = {z ∈ Ω | v(z) < c},

and

vj(z) =
∫
Ωj+1

v(ζ)λ((z − ζ)/ε)
ε2n

dV (ζ) + ε|z|2,

where λ is the function defined in Theorem 1.14. If we choose ε > 0
sufficiently small, then vj ∈ C∞(Cn). Further, vj > v, and vj is strictly
plurisubharmonic in a neighborhood of Ω̄j . Choosing ε sufficiently small,
we may assume that in K, v0 < 0 and v1 < 0. Further, vj < v + 1 in Ωj

(j = 1, 2, · · · ). We choose a convex function χ ∈ C∞(R) such that χ(t) = 0
for t < 0, χ′(t) > 0 for t > 0. Then χ(vj+1−j) is strictly plurisubharmonic
in a neighborhood of Ωj\Ωj−1. We choose aj (j = 1, 2, · · · ) such that if we
set

um = v0 +
m∑
j=1

ajχ(vj + 1− j),

then um is strictly plurisubharmonic in a neighborhood of Ω, and um > v.
If i > j, k > j, then uk = ui in Ωj , which implies that u = limi→∞ ui
exists. Since u is a C∞ plurisubharmonic function in Ω, u = v0 < 0 in K
and u > v in Ω, u satisfies (a), (b) and (c). �

Theorem 2.17 Let Ω ⊂ Cn be a pseudoconvex open set and K a com-
pact subset of Ω with K = K̂P

Ω . Then every holomorphic function in a
neighborhood of K can be approximated uniformly on K by functions in
O(Ω). (Since K̂P

Ω ⊂ K̂OΩ , Theorem 2.17 holds for every compact set K with
K = K̂OΩ .)

Proof. Let u be holomorphic in a neighborhood ω of K. By Theorem
2.16, there exists a C∞ strictly plurisubharmonic function p in Ω such that p
satisfies the assumption in Lemma 2.29, and if we set Kc = {z ∈ Ω | p(z) <
c}, p satisfies K ⊂ K◦0 ⊂ K0 ⊂ ω. By Lemma 2.29, there exist uj ∈ O(Ω)
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such that uj → u in L2(K0). Using Corollary 1.3, uj − u converges to 0

uniformly on K. �

2.3 The Ohsawa-Takegoshi Extension Theorem

Let Ω ⊂⊂ Cn be a pseudoconvex domain and let H = {z ∈ Cn | zn =

0}. Then Ohsawa and Takegoshi [OHT] proved that every L2 holomorphic

function in H ∩ Ω can be extended to an L2 holomorphic function in Ω.

The proof given here is based on the proof of Jarnicki-Pflug [JP].

Let Hj , j = 0, 1, 2, be Hilbert spaces. Let Dj be dense subsets of Hj ,

j = 0, 1, respectively. Let

T : D0 → H1, S : D1 → H2

be closed linear operators such that ST = 0. Let L : H1 → H1 be a linear

bijection satisfying

(Lx, x)1 ≥ 0 (x ∈ H1). (2.17)

Then we have the following lemma.

Lemma 2.30 Suppose

|(Lv, v)1| ≤ ‖T ∗v‖2
0 + ‖Sv‖2

2,

for every v ∈ DT∗ ∩ DS . Then for g ∈ KerS, there exists u ∈ DT with the

following properties:

Tu = g, ‖u‖2
0 ≤ |(L−1g, g)1|.

Proof. It follows from (2.17) that

(L(x+ y), x+ y)1 = (x+ y, L(x+ y))1,

(L(x+ iy), x+ iy)1 = (x+ iy, L(x+ iy))1,

which implies that

(Lx, y)1 + (Ly, x)1 = (x, Ly)1 + (y, Lx)1,

−(Lx, y)1 + (Ly, x)1 = −(x, Ly)1 + (y, Lx)1.
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Thus we obtain

(Lx, y)1 = (x, Ly)1 (x, y ∈ H1).

It follows from (2.17) that for t ∈ C we obtain

(L(x+ ty)1, x+ ty)1 ≥ 0.

Hence for every real number t,

(L(x+ (Lx, y)1ty)1, x+ (Lx, y)1ty)1 ≥ 0,

which implies that for every real number t,

(Lx, x)1 + 2|(Lx, y)1|2t+ |(Lx, y)1|2(Ly, y)1t2 ≥ 0.

Hence we have

|(Lx, y)1|2 ≤ (Lx, x)1(Ly, y)1 (x, y ∈ H1).

Since L is bijective, there exists g̃ ∈ H1 such that Lg̃ = g. Thus for

v ∈ DT∗ ∩ KerS, we have

|(v, g)1|2 = |(v, Lg̃)1|2 ≤ (Lv, v)1(Lg̃, g̃)1

≤ (Lg̃, g̃)1(‖T ∗v‖2
0 + ‖Sv‖2

2) = (Lg̃, g̃)1‖T ∗v‖2.

Since (v, g)1 = 0 for v ∈ DT∗ ∩ (KerS)⊥, we have for v ∈ DT∗ ,

|(v, g)1|2 ≤ (Lg̃, g̃)1‖T ∗v‖2
0. (2.18)

Hence if we define a bounded linear functional ϕ : RT∗ → C by ϕ(T ∗v) =

(v, g)1, then by the Hahn-Banach theorem, ϕ is extended to a bounded

linear functional on H0. By the Riesz representaion theorem, there exists

u0 ∈ H0 such that

ϕ(w) = (w, u0)0, ‖ϕ‖ = ‖u0‖0 (w ∈ H0).

It follows from (2.18) that

|ϕ(T ∗v)| = |(g, v)1| ≤
√

(Lg̃, g̃)1‖T ∗v‖0,

which implies that ‖ϕ‖2 ≤ (Lg̃, g̃)1. Consequently,

‖u0‖2
0 ≤ (Lg̃, g̃)1.
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On the other hand we have

ϕ(T ∗v) = (T ∗v, u0)0 = (v, g)1 (v ∈ DT∗). (2.19)

Hence by (2.19) we have |(T ∗v, u0)0| ≤ ‖v‖1 ‖g‖1 for v ∈ DT∗ , which implies
that u0 ∈ DT∗∗ = DT . By (2.19), (v, g)1 = (v, Tu0) for v ∈ DT∗ , which
implies that Tu0 = g. �

Let Ω ⊂ Cn be a bounded pseudoconvex domain with C2 boundary.
Then there exist a neighborhood U of ∂Ω and a C2 plurisubharmonic func-
tion ρ in U such that

U ∩ Ω = {z ∈ U | ρ(z) < 0}.

We assume that |dρ(z)| = 1 for z ∈ ∂Ω. Further, we assume that ϕ is a C2

plurisubharmonic function in a neighborhood Ω̃ of Ω. For l ∈ (0, 1), define
χ̃ ∈ C∞(R) such that (see Exercise 2.4)

χ̃(t) =
{

1 (t ≤ l)
0 (t ≥ 1)

, |χ̃′| ≤ 2
1− l

.

For 0 < ε < 1
2 , define

χε(z) = χ̃
(
|zn|2
ε2

)
.

Further, for f ∈ O(Ω̃), define

gε(z) = ∂̄
(
χε(z)f(z)

zn

)
.

Then gε is a ∂̄ closed C∞ (0, 1) form on Ω̃. We have∫
Ω

|gε(z)|2e−ϕ(z)dV (z) =
1
ε4

∫
Ωε

|f(z)|2
∣∣∣∣χ̃′( |zn|2ε2

)∣∣∣∣2 e−ϕ(z)dV (z),

where

Ωε = {z ∈ Ω | lε2 ≤ |zn|2 ≤ ε2},

and dV is the Lebesgue measure in Cn. We choose A > 1 such that
Ω ⊂ Cn−1 × {zn | |zn| < A/2}. Define

γε(z) =
1

ε2 + |zn|2
, ηε(z) = log(A2γε(z)).
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Then z ∈ Ω, and for ε ∈ (0, 1/2), ηε(z) ≥ log 2. Define

σ(z) =
|z|2
log 2

, ψ = ϕ+ σ.

Then we have

ηε(z)
n∑

j,k=1

∂2σ

∂zj∂z̄k
(z)wjw̄k = ηε(z)

|w|2
log 2

≥ |w|2

for z ∈ Ω, w ∈ Cn, ε ∈ (0, 1/2). Consequently,

ηε(z)
n∑

j,k=1

∂2ψ

∂zj∂z̄k
(z)wjw̄k ≥ |w|2 (z ∈ Ω, w ∈ Cn). (2.20)

For 0 ≤ ε < 1/2, define

αε =
{

1 (ε = 0)
ηε + γε (ε > 0)

.

We set

H0 = L2(0,0)(Ω, ψ), H1 = L2(0,1)(Ω, ψ), H2 = L2(0,2)(Ω, ψ),

and

Tε(u) = ∂̄(
√
αεu), Sε =

√
αε∂̄, T = T0, S = S0.

Then we have

DTε = DT , DSε = DS , DT∗
ε

= DT∗ .

Now we define a linear operator Lε : H1 → H1 by

Lε

n−1∑
j=1

vjdz̄j + vndz̄j

 =
n−1∑
j=1

vjdz̄j +
ε2

(ε2 + |zn|2)2
vndz̄n.

Then Lε : H1 → H1 is bijective and satisfies

(Lε(x), x)1 ≥ 0,

for every x ∈ H1.
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Lemma 2.31 Let v =
n∑

j=1

vjdz̄j ∈ C2(0,1)(Ω̃). Then v ∈ DT∗
ε
if and only

if

n∑
j=1

vj(z)
∂ρ

∂zj
(z) = 0 (z ∈ ∂Ω).

Proof. Suppose v =
n∑

j=1

vjdz̄j ∈ C2(0,1)(Ω̃) ∩ DT∗
ε
. Then

(u, T ∗v)0 = (Tu, v)1 (u ∈ DT ),

which means that

T ∗v = −
n∑

j=1

eψ
∂

∂zj
(vje−ψ).

We set

ṽ(z) =
n∑

j=1

vj(z)
∂ρ

∂zj
(z).

Suppose there exists z0 ∈ ∂Ω such that ṽ(z0) �= 0. We may assume that
Re ṽ > 0 in some neighborhoodW of z0. We choose a function ũ ∈ C∞c (Cn)
with the properties that ũ ≥ 0, ũ(z0) > 0, supp (ũ) ⊂W . Since ũ ∈ DT , it
follows from Green’s theorem (Theorem 2.1) that

(ũ, T ∗v)1 = (T ũ, v)2 =
∫
Ω

n∑
j=1

∂ũ

∂z̄j
vje

−ψdV

= −
∫
Ω

ũ
n∑

j=1

eψ
∂(vje−ψ)
∂z̄j

e−ψdV +
∫
∂Ω

n∑
j=1

∂ρ

∂z̄j
ũvje

−ψdS

= (ũ, T ∗v)1 +
∫
∂Ω

ũṽe−ψdS,

which implies that ∫
∂Ω

ũṽe−ψdS = 0.

This contradicts the choice of ṽ and ũ. Thus we have ṽ|∂Ω = 0. Similarly
we can prove the sufficiency. �
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For u ∈ DT∗ and v ∈ DT , we have

(v, T ∗ε u)0 = (Tεv, u)1 = (∂̄(
√
αεv), u)1 = (v,

√
αεT

∗u)0,

which implies that T ∗ε u =
√
αεT

∗u. Hence, for u =
n∑

k=1

ukdz̄k ∈ C2(0,1)(Ω̃) ∩

DT∗
ε
,

T ∗ε u = −√αεeψ
n∑

j=1

∂

∂zj
(uje−ψ).

Theorem 2.18 For 0 < ε < 1/2 and u ∈ C2(0,1)(Ω̃) ∩ DT∗
ε
, we have

(Lεu, u) ≤ ‖T ∗ε u‖20 + ‖Sεu‖22.

Proof. Using Green’s theorem (Theorem 2.1), we have

‖T ∗ε u‖20 + ‖Sεu‖22
= (αεT ∗u, T ∗u)0 + (αεSu, Su)2
= (γεT ∗u, T ∗u)0 + (γεSu, Su)2 + (∂̄(ηεT ∗u), u)1

+
∫
Ω

ηε
∑
j<k

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
e−ψdV

= (γεT ∗u, T ∗u)0 + (γεSu, Su)2 + (∂̄(ηεT ∗u), u)1

+
∫
Ω

ηε

n∑
j,k=1

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
∂uk
∂z̄j

e−ψdV

= (γεT ∗u, T ∗u)0 + (γεSu, Su)2 + (∂̄(ηεT ∗u), u)1

−
∫
Ω

n∑
j,k=1

∂

∂zj

{
ηε

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
e−ψ

}
ūkdV

+
∫
∂Ω

ηε

n∑
j,k=1

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
∂ρ

∂zj
ūke

−ψdS.

Since
n∑

j=1

uj
∂ρ

∂zj
= 0 on ∂Ω, there exists a C1 function Θ in a neighborhood

of ∂Ω such that
n∑

j=1

uj
∂ρ

∂zj
= Θρ. (2.21)
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Differentiating (2.21) with respect to z̄k, we have on ∂Ω
n∑

j=1

(
∂uj
∂z̄k

∂ρ

∂zj
+ uj

∂2ρ

∂z̄k∂zj

)
= ρ

∂Θ
∂z̄k

+ Θ
∂ρ

∂z̄k
= Θ

∂ρ

∂z̄k
. (2.22)

If we multiply by ūk and add, we obtain on ∂Ω

n∑
j,k=1

ūk

(
∂uj
∂z̄k

∂ρ

∂zj
+ uj

∂2ρ

∂z̄k∂zj

)
= Θ

n∑
k=1

∂ρ

∂zk
uk = 0.

Consequently,∫
∂Ω

ηε

n∑
j,k=1

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
∂ρ

∂zj
ūke

−ψdS

=
∫
∂Ω

ηε

n∑
j,k=1

∂uk
∂z̄j

∂ρ

∂zj
ūke

−ψdS +
∫
∂Ω

n∑
j,k=1

ηεūkuj
∂2ρ

∂zj∂z̄k
e−ψdS

≥
∫
∂Ω

ηε

n∑
j,k=1

∂uk
∂z̄j

∂ρ

∂zj
ūke

−ψdS

=
∫
Ω

n∑
j,k=1

ηε
∂uk
∂z̄j

∂uk
∂z̄j

e−ψdV +
∫
Ω

n∑
j,k=1

ūk
∂

∂zj

(
ηε
∂uk
∂z̄j

e−ψ

)
dV

≥
∫
Ω

n∑
j,k=1

ūk
∂

∂zj

(
ηε
∂uk
∂z̄j

e−ψ

)
dV.

Thus if we use a representation

‖T ∗ε u‖20 + ‖Sεu‖22 = (γεT ∗u, T ∗u)0 + (γεSu, Su)2 + (∗),

then

(∗) ≥ (ηεTT ∗u, u)1 +
∫
Ω

n∑
j=1

∂ηε
∂z̄j

T ∗(u)ūje−ψdV

−
∫
Ω

n∑
j,k=1

∂ηε
∂zj

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
e−ψūkdV

−
∫
Ω

n∑
j,k=1

ηε
∂

∂zj

{(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
e−ψ

}
ūkdV

+
∫
Ω

n∑
j,k=1

ūk
∂

∂zj

(
ηε
∂uk
∂z̄j

e−ψ

)
dV.
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Taking into account that

(ηεTT ∗u, u)1 =
∫
Ω

n∑
k=1

ηε
∂

∂z̄k
(T ∗u)ūke−ψdV

=
∫
Ω

ηε

n∑
j,k=1

(
∂2ψ

∂zj∂z̄k
uj −

∂2uj
∂zj∂z̄k

+
∂ψ

∂zj

∂uj
∂z̄k

)
ūke

−ψdV,

we obtain

(∗) ≥
∫
Ω

n∑
j=1

∂ηε
∂z̄j

T ∗(u)ūje−ψdV −
∫
Ω

n∑
j,k=1

∂ηε
∂zj

(
∂uk
∂z̄j

− ∂uj
∂z̄k

)
e−ψūkdV

+
∫
Ω

n∑
j,k=1

(
ηεuj ūk

∂2ψ

∂zj∂z̄k
+
∂ηε
∂zj

∂uk
∂z̄j

ūk

)
e−ψdV

=
∫
Ω

n∑
j=1

∂ηε
∂z̄j

T ∗(u)ūje−ψdV

+
∫
Ω

n∑
j,k=1

(
ηεuj

∂2ψ

∂zj∂z̄k
+
∂ηε
∂zj

∂uj
∂z̄k

)
ūke

−ψdV.

Since u ∈ DT∗ , we have

∫
Ω

n∑
j,k=1

∂ηε
∂zj

∂uj
∂z̄k

ūke
−ψdV

= −
∫
Ω

n∑
j,k=1

(
∂2ηε
∂zj∂z̄k

ujūke
−ψ +

∂ηε
∂zj

uj
∂

∂z̄k
(ūke−ψ)

)
dV

+
∫
∂Ω

n∑
j,k=1

∂ηε
∂zj

∂ρ

∂z̄k
uj ūke

−ψdS

= −
∫
Ω

n∑
j,k=1

(
∂2ηε
∂zj∂z̄k

ujūke
−ψ +

∂ηε
∂zj

uj
∂

∂z̄k
(ūke−ψ)

)
dV.
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Consequently,

(∗) ≥
∫
Ω

n∑
j=1

∂ηε
∂z̄j

T ∗(u)ūje−ψdV +
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
ujūke

−ψdV

−
∫
Ω

n∑
j,k=1

(
∂2ηε
∂zj∂z̄k

ujūke
−ψ +

∂ηε
∂zj

uj
∂

∂z̄k
(ūke−ψ)

)
dV

=
∫
Ω

n∑
j=1

∂ηε
∂z̄j

T ∗(u)ūje−ψdV +
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
ujūke

−ψdV

−
∫
Ω

n∑
j,k=1

∂2ηε
∂zj∂z̄k

ujūke
−ψdV +

∫
Ω

n∑
j=1

∂ηε
∂zj

T ∗(u)uje−ψdV

=
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
uj ūke

−ψdV −
∫
Ω

n∑
j,k=1

∂2ηε
∂zj∂z̄k

ujūke
−ψdV

+2Re
∫
Ω

n∑
j=1

∂ηε
∂zj

T ∗(u)uje−ψdV.

Using the inequality

∣∣∣∣∣∣
n∑

j=1

∂ηε
∂zj

ujT ∗(u)

∣∣∣∣∣∣ =
∣∣∣∣− z̄n
ε2 + |zn|2

unT ∗(u)
∣∣∣∣ ≤ |zn|2|un|2 + |T ∗(u)|2

2(ε2 + |zn|2)
,

we obtain

(∗) ≥
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
uj ūke

−ψdV −
∫
Ω

n∑
j,k=1

∂2ηε
∂zj∂z̄k

ujūke
−ψdV

−
∫
Ω

|zn|2|un|2
ε2 + |zn|2

e−ψdV −
∫
Ω

|T ∗(u)|2
ε2 + |zn|2

e−ψdV.
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Consequently,

‖T ∗ε u‖20 + ‖Sεu‖22
≥
∫
Ω

γε(|T ∗u|2 + |Sεu|2)e−ψdV

+
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
uj ūke

−ψdV

−
∫
Ω

n∑
j,k=1

∂2ηε
∂zj∂z̄k

uj ūke
−ψdV

−
∫
Ω

|zn|2|un|2
ε2 + |zn|2

e−ψdV −
∫
Ω

|T ∗(u)|2
ε2 + |zn|2

e−ψdV.

It follows from (2.20) that

‖T ∗ε u‖20 + ‖Sεu‖22

≥
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
ujūke

−ψdV

−
∫
Ω

n∑
j,k=1

∂2ηε
∂zj∂z̄k

uj ūke
−ψdV

−
∫
Ω

|zn|2|un|2
ε2 + |zn|2

e−ψdV

=
∫
Ω

n∑
j,k=1

ηε
∂2ψ

∂zj∂z̄k
ujūke

−ψdV

+
∫
Ω

γε|un|2(ε2γε − |zn|2)e−ψdV

≥
∫
Ω

n−1∑
j=1

u2j +
ε2|un|2

(ε2 + |zn|2)2

 e−ψdV

= (Lεu, u)1,

which completes the proof of Theorem 2.18. �

The following theorem was proved by Hörmander [HR1]. We omit the
proof.

Theorem 2.19 For f =
∑n

j=1 fjdz̄j ∈ DT∗ ∩DS, there exists a sequence
{fν} with the following properties:
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(a) fν ∈ L2(0,1)(Ω, ψ).
(b) If fν =

∑n
ν=1 fν,jdz̄j, then fν,j ∈ C2(Ω).

(c)
∑n

j=1 fν,j
∂ρ
∂zj
|∂Ω = 0, that is, fν ∈ DT∗ .

(d) ‖f − fν‖1 + ‖Sfν − Sf‖2 + ‖T ∗fν − T ∗f‖0 → 0 (ν →∞).

Corollary 2.5 For gε = ∂̄(χεf/zn), there exists uε ∈ H1 such that
Tεuε = gε, and∫

Ω

|uε|2e−ψdV ≤ 4
(1− l)2ε6

∫
Ωε

(ε2 + |zn|2)2|f |2e−ψdV.

Proof. Using Theorem 2.18 and Theorem 2.19, for 0 < ε < 1/2 and
u ∈ DSε ∩DT∗

ε
, we have

(Lεu, u)1 ≤ ‖T ∗ε u‖20 + ‖Sεu‖22.

By Lemma 2.30, there exists uε ∈ DT such that

Tεuε = gε, ‖uε‖0 ≤ |(L−1ε gε, gε)1|.

On the other hand we have

L−1ε gε =
(ε2 + |zn|2)2

ε2
∂χε
∂z̄n

f

zn
dz̄n,

which implies that

|(L−1ε gε, gε)1| ≤
∫
Ω

(ε2 + |zn|2)2
ε2

∣∣∣∣χ̃′( |zn|2ε2
)∣∣∣∣2( |zn|ε2

)2 ∣∣∣∣ fzn
∣∣∣∣2 e−ψdV

≤ 4
(1− l)2

∫
Ωε

(ε2 + |zn|2)2
ε6

|f |2e−ψdV.

�

We set

Fε = χεf −
√
αεznuε.

Since ∂̄Fε = 0, Fε is holomorphic in Ω. Moreover we have Fε|H∩Ω = f . We
set Ω̂ε = {z ∈ Ω | |zn| ≤ ε}. Then it follows from Minkowski’s inequality
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that

‖Fε‖0 :=
(∫

Ω

|Fε|2e−ψdV

)1/2
≤
(∫

Ω̂ε

|χε|2|f |2e−ψdV

) 1
2

+
(∫

Ω

|zn|2|αε||uε|2e−ψdV

) 1
2

≤
(∫

Ω̂ε

|χε|2|f |2e−ψdV

) 1
2

+ sup
z∈Ω

|zn|
√
|αε|

(∫
Ω

|uε|2e−ψdV

) 1
2

.

Since there exists a constant B > 0, such that

|zn|
√
|αε| ≤

√
|zn|2 log

(
A2

ε2 + |zn|2

)
+ 1 ≤ B.

It follows from Corollary 2.5 that(∫
Ω

|Fε|2e−ψdV

)1/2
≤
(∫

Ω̂ε

|χε|2|f |2e−ψdV

) 1
2

(2.23)

+
2B

(1− l)ε3

(∫
Ωε

(ε2 + |zn|2)2|f |2e−ψdV

) 1
2

.

The first term in the right side of (2.23) converges to 0 as ε→ 0. In order to
investigate the second term in the right side of (2.23), we need the following
lemma.

Lemma 2.32 For ϕ ∈ C∞(Ω), we have

lim
ε→0+

∫
Ωε

ϕ(z)
(|zn|2 + ε)2

dV (z) = (1 − l)π
∫
{zn=0}∩Ω

ϕ(z)dVn−1(z),

where dV and dVn−1 are the Lebesgue measures in Cn and Cn−1, respec-
tively.

Proof. Let 0 < ε ≤ 1/2. If we choose ε sufficiently small, then there exist
a constant α > 0 and compact sets E(ε), F (ε) ⊂ Cn−1 with the following
properties:

E(ε) × {
√
lε ≤ |zn| ≤ ε} ⊂ Ωε ⊂ F (ε) × {

√
lε ≤ |zn| ≤ ε} (2.24)

and

µ(F (ε) − E(ε)) ≤ αε, (2.25)
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where µ is the Lebesgue measure in Cn−1. We set z′ = (z1, · · · , zn−1),
z = (z′, zn). We define τ by τ(z) = ϕ(z) − ϕ(z′, 0). Then there exists a
constant C > 0 such that |τ(z)| ≤ C|zn|. On the other hand we have∫

√
lε≤|zn|≤ε

dxndyn
(|zn|2 + ε)2

= 2π
∫ ε

√
lε

rdr

(r2 + ε)2

=
(1− l)π

(lε+ 1)(ε+ 1)
→ (1 − l)π,

as ε→ 0. Hence we obtain

lim
ε→0+

∫
Ωε

ϕ(z)
(|zn|2 + ε)2

dV (z) = lim
ε→0+

∫
Ωε

ϕ(z′, 0)
(|zn|2 + ε)2

dV (z)

= lim
ε→0+

(1 − l)π
∫
E(ε)

ϕ(z′, 0)dVn−1(z′)

= (1− l)π
∫
{zn=0}∩Ω

ϕ(z′, 0)dVn−1(z′),

which completes the proof of Lemma 2.32. �

Since ε2 ≥ (ε2 + |zn|2)/2 and ε ≥ (ε + |zn|2)/2 in Dε, it follows from
Lemma 2.32 that

1
ε6

∫
Ωε

(ε2 + |zn|2)2|f |2e−ψdV

≤ 16
∫
Ωε

|f |2e−ψ

(ε+ |zn|2)2
dV

→ 16(1− l)π
∫
H∩Ω

|f(z′, 0)|2e−ψ(z′,0)dVn−1

≤ 16(1− l)π sup
z∈H∩Ω

e−σ(z)

∫
H∩Ω

|f(z′, 0)|2e−ψ(z′,0)dVn−1.

Consequently,

lim sup
ε→0

∫
Ω

|Fε|2e−ψdV ≤ C
∫
H∩Ω

|f(z′, 0)|2e−ψ(z′,0)dVn−1, (2.26)

where C = (64B2π)/(1− l) supz∈H∩Ω e
−σ(z).

The following lemma is well known. So we omit the proof (See Excercise
2.3).

Lemma 2.33 (Montel’s theorem) Let {uk} be a sequence of holomor-
phic functions in Ω which are uniformly bounded on every compact subset
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of Ω. Then there exists a subsequence {ukj} of {uk} which converges uni-
formly on every compact subset of Ω.

Lemma 2.34 Let Ω be a bounded pseudoconvex domain in Cn with C2

boundary whose defining function ρ satisfies |dρ| = 1 on ∂Ω. Then there
exists a constant C > 0 such that for every holomorphic function f in H∩Ω,
there exists a holomorphic function F in Ω which satisfies F |H∩Ω = f and∫

Ω

|F |2e−ψdV ≤ C
∫
H∩Ω

|f(z′, 0)|2e−ψ(z′,0)dVn−1.

Proof. Lemma 2.34 follows from Lemma 2.33 and (2.26). �

In order to prove the Ohsawa-Takegoshi extension theorem we need the
following lemma.

Lemma 2.35 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C3

boundary. Then there exist a neighborhood U of ∂Ω and a C2 strictly
plurisubharmonic function ρ̃ in U such that

U ∩ Ω = {z ∈ U | ρ̃(z) < 0}, |dρ̃(z)| = 1 (z ∈ ∂Ω).

Proof. By the definition of the strictly pseudoconvex domain, there exist
a neighborhood V of ∂Ω and a strictly plurisubharmonic function ρ in V
such that

V ∩ Ω = {z ∈ V | ρ(z) < 0}, dρ(z) �= 0 (z ∈ ∂Ω).

We may assume that dρ(z) �= 0 in V . If we set ρ1(z) = ρ(z)/|dρ(z)|, then
for z ∈ ∂Ω, w ∈ Cn − {0} with

∑n
j=1

∂ρ1
∂zj

(z)wj = 0, we have

n∑
j,k=1

∂2ρ1
∂zj∂z̄k

(z)wjwk > 0.

For A > 0, we set

ρ̃(z) = ρ1(z)eAρ1(z),

where we will determine A later. Then we have |dρ̃| = 1 on ∂Ω. Let
P ∈ ∂Ω. Then we obtain

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(P )wjw̄k =

∂2ρ1
∂zj∂z̄k

(P )wjw̄k +

∣∣∣∣∣∣
n∑

j=1

∂ρ1
∂zj

(P )wj

∣∣∣∣∣∣
2

(A+A2).
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Define

X = {w | |w| = 1,
n∑

j,k=1

∂2ρ1
∂zj∂z̄k

(P )wjw̄k ≤ 0}.

Then X is compact, and

X ⊂ {w | |w| = 1,
n∑

j=1

∂ρ1
∂zj

(P )wj �= 0}.

Hence |
∑n

j=1
∂ρ1
∂zj

(P )wj | has the minimum m > 0 in X . We set

A =
−minw∈X

∑n
j,k=1

∂2ρ1
∂zj∂z̄k

(P )wjw̄k

m2
+ 1.

Then for w ∈ X ,
n∑

j,k=1

∂2ρ̃

∂zj∂z̄k
(P )wjw̄k ≥ m2 > 0.

In case |w| = 1 and w �∈ X , we have

∂2ρ1
∂zj∂z̄k

(P )wjw̄k > 0.

Hence for |w| = 1, we obtain

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(P )wjw̄k > 0. (2.27)

For each P ∈ ∂Ω, there exists A = A(P ) > 0 and a neighborhood W (P ) of
P such that (2.27) holds for z ∈ W (P ). Thus there exist a constant A and
a neighborhood U (U ⊂ V ) of ∂Ω such that for z ∈ U and |w| = 1,

n∑
j,k=1

∂2ρ̃

∂zj∂z̄k
(z)wjw̄k > 0,

which implies that ρ̃ is strictly plurisubharmonic in U . �

Now we are going to prove the Ohsawa-Takegoshi extension theorem.

Theorem 2.20 (Ohsawa-Takegoshi extension theorem [OHT]) Let
Ω ⊂ Cn be a bounded pseudoconvex domain and let H = {z ∈ Cn | zn =
0}. Suppose ϕ is plurisubharmonic in Ω. Then there exists a constant
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C > 0 such that for every holomorphic function f in H ∩ Ω, there exists a
holomorphic function F in Ω which satisfies F |H∩Ω = f and∫

Ω

|F |2e−ϕdV ≤ C
∫
H∩Ω

|f |2e−ϕdVn−1.

Proof. We choose an increasing sequence {Ωj} of strictly pseudoconvex
domains in Cn with C∞ boundary such that Ωj are compact subsets of Ω
and ∪∞j=1 Ωj = Ω. By Lemma 2.35, we can choose the defining functions ρj
for Ωj with the properties that |dρj | = 1 on ∂Ωj for j = 1, 2, · · · . Let {ϕj}
be a sequence of C∞ plurisubharmonic functions on Ωj with ϕj ↓ ϕ (Such
a sequence {ϕj} exists by Theorem 1.15 and Theorem 2.16). By Theorem
2.14, we may assume that f is holomorphic in Ω. Suppose∫

H∩Ω
|f |2e−ϕdVn−1 =M <∞.

It follows from Lemma 2.34 that there exist holomorphic functions Fj in
Ωj such that Fj |H∩Ωj = f and∫

Ωj

|Fj |2e−ϕjdV ≤ C
∫
H∩Ωj

|f(z′, 0)|2e−ϕj(z
′,0)dV (z′) ≤ CM.

Let K ⊂ Ω be a compact set. Then there exists a positive integer N such
that K ⊂ Ωj for j ≥ N . If we set LN = minΩN

e−ϕN , then it follows from
Corollary 1.3 that

CM ≥
∫
Ωj

|Fj |2e−ϕjdV ≥ LN

∫
ΩN

|Fj |2dV ≥ LN C̃ sup
K
|Fj |

for j ≥ N . Hence {Fj} is uniformly bounded on every compact subset
of Ω, and hence by the Montel theorem (Lemma 2.33), we can choose a
subsequence {Fkj} of {Fj} which converges uniformly on every compact
subset of Ω. We set limj→∞ Fkj = F . Then F is holomorphic in Ω and
F |H∩Ω = f . Moreover we have∫

K

|F |2e−ϕdV = lim
j→∞

∫
K

|Fkj |2e−ϕkj dV

≤ lim
j→∞

∫
Ωkj

|Fkj |2e−ϕkj dV ≤ CM.
�

Berndtsson [BR2] improved Ohsawa-Takegoshi extension theorem as fol-
lows. We omit the proof.
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Theorem 2.21 Let Ω be a bounded pseudoconvex domain in Cn and let
ϕ be plurisubharmonic in Ω. Let M = {z ∈ Ω | h(z) = 0} be a hypersurface
defined by a holomorphic function bounded by 1 in Ω. Then, for any holo-
morphic function, f , on M there is a holomorphic function F in Ω such
that F = f on M and∫

Ω

|F |2e−ϕdV ≤ 4π
∫
M

|f |2 e
−ϕ

|∂h|2 dVM ,

where dVM is the surface measure on M .

Remark 2.2 Siu [SI2] proved that the constant C in Theorem 2.20 can
be chosen to be 64

9 π
(
1 + 1

4e

)1/2, provided Ω ⊂ {z ∈ Cn | |zn| ≤ 1}.

Exercises

2.1 Prove Theorem 2.2 for any (p, q).

2.2 Show that if a family F = {fλ | λ ∈ Λ} of holomorphic functions in
a domain Ω ⊂ Cn is uniformly bounded in Ω, then it is equicontinuous
on every compact subset of Ω.

2.3 Prove Lemma 2.33.

2.4 Let a > 0 and c > 1. Construct a function f which satisfies the
following conditions:

(a) f ∈ C∞(R), 0 ≤ f(x) ≤ 1 (x ∈ R).
(b) f(x) = 1 (x ≤ 0), f(x) = 0 (x ≥ a).
(c) |f ′(x)| ≤ c

a .
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Chapter 3

Integral Formulas for Strictly
Pseudoconvex Domains

In this chapter we study integral formulas for differential forms on bounded
domains in Cn with smooth boundary. Using integral formulas, we prove
Hölder estimates for the ∂̄ problem in strictly pseudoconvex domains with
smooth boundary. Moreover, by following Henkin-Leiterer [HER] and
Henkin [HEN3] we prove bounded and continuous extensions of holomor-
phic functions from submanifolds in general position of strictly pseudocon-
vex domains inCn with smooth boundary. We also studyHp and Ck exten-
sions of holomorphic functions from submanifolds of strictly pseudoconvex
domains in Cn with smooth boundary. Next we prove Fefferman’s map-
ping theorem [FEF] concerning biholomorphic mappings between strictly
pseudoconvex domains with smooth boundary. The proof of Fefferman’s
mapping theorem given here is based on integral formulas for strictly pseu-
doconvex domains obtained by Henkin-Leiterer [HER] and the method de-
veloped by Range [RAN2].

3.1 The Homotopy Formula

Let Ω ⊂ Rn be an open set and let f be a differential form with degree s
on Ω. Then f is expressed by

f(x) =
∑

1≤i1<···<is≤n

fi1···is(x)dxi1 ∧ · · · ∧ dxis (x ∈ Ω).

Definition 3.1 Define

|f(x)| =

 ∑
1≤i1<···<is≤n

|fi1···is(x)|2


1
2

(x ∈ Ω).

117
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Let z1, · · · , zn be the coordinate system in Cn. Then a (p, q) form f in Ω
is expressed by

f =
∑

′
|I|=p

|J|=q

fI,Jdz
I ∧ dz̄J ,

where fI,J are functions on Ω, and I = (i1, · · · , ip), J = (j1, · · · , jq) are
multi-indices with 1 ≤ iν , jµ ≤ n, and that

dzI = dzi1 ∧ · · · ∧ dzip , dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq .

Further,
∑′ means that the summation is performed only over strictly

increasing multi-indices such that i1 < · · · < ip, j1 < · · · < jq. For a
continuous function f in Ω, we define

∂f =
n∑

j=1

∂f

∂zj
dzj , ∂̄f =

n∑
j=1

∂f

∂z̄j
dz̄j ,

df = ∂f + ∂̄f,

where the differentiation of functions is in the sense of distributions. For a
differential form f =

∑′
I,J fI,Jdz

I ∧ dz̄J , define

∂f =
∑

′
I,J∂fI,J ∧ dzI ∧ dz̄J ,

∂̄f =
∑

′
I,J ∂̄fI,J ∧ dzI ∧ dz̄J ,

df = ∂f + ∂̄f.

If f is a (p, q) form, then ∂f is a (p + 1, q) form and ∂̄f is a (p, q + 1)
form.

We can prove easily the following lemma. We omit the poof.

Lemma 3.1 ∂2f = ∂̄2f = 0.

Definition 3.2 Let D ⊂ Cn and G ⊂ Cm be open sets and let h =
(h1, · · · , hm) : D → Cm be a holomorphic mapping, and h(D) ⊂ G. Then
for a differential form f = Σ′

I,J
fI,Jdz

I ∧ dz̄J on G, the pullback h∗f of f

with respect to h is defined by

h∗f = Σ′
I,J

(fI,J ◦ h)dhI ∧ dh̄J ,
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where for I = (i1, · · · , ip) and J = (j1, · · · , jq), we define

dhI = dhi1 ∧ · · · ∧ dhip , dh̄J = dh̄j1 ∧ · · · ∧ dh̄jq .

Since dhj = ∂hj and dh̄j = ∂̄h̄j , h∗f is a (p, q) form in D if f is (p, q)
form in G. Further, we have

∂h∗f = h∗∂f, ∂̄h∗f = h∗∂̄f.

Definition 3.3 Let X be a real C1 manifold of dimension n and let
u : X → Cn and v : X → Cn be C1 mappings. Define

ω(u) = du1 ∧ · · · ∧ dun

ω′(v) =
n∑

j=1

(−1)j+1vjdv1 ∧ · · · ĵ · · · ∧ dvn,

where u = (u1, · · · , un), v = (v1, · · · , vn), and ĵ means that dvj is omitted.
Further, we define

< v, u >:=
n∑

j=1

vjuj.

Lemma 3.2 Let X be a C∞ real manifold and let u : X → Cn and
v : X → Cn be C1 mappings. Then we have

d

(
ω′(v) ∧ ω(u)
< u, v >n

)
= 0,

provided < u(x), v(x) > �= 0 for x ∈ X.

Proof. Since dω(u) = 0, we have

d

(
ω′(v) ∧ ω(u)
< u, v >n

)
=
dω′(v) ∧ ω(u)
< v, u >n

− d(< v, u >
n) ∧ ω′(v) ∧ ω(u)

< v, u >2n
.

Moreover, we have dω′(v) = nω(v), and

d < v, u >n ∧ω′(v) ∧ ω(u)

= n < v, u >n−1
n∑

j=1

(vjduj + ujdvj) ∧ ω′(v) ∧ ω(u)

= n < v, u >n ω(v) ∧ ω(u).
�
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Lemma 3.3 Let ζj = xj + ixj+n for j = 1, · · · , n and let z ∈ Cn. Then

dζ(ω′(ζ̄ − z̄) ∧ ω(ζ)) = n(2i)ndx1 ∧ · · · ∧ dx2n.

Proof. Since

dζ̄j ∧ dζj = (dxj − idxj+n) ∧ (dxj + idxj+n) = 2idxj ∧ dxj+n,

we obtain

dζ

 n∑
j=1

(−1)j+1(ζ̄j − z̄j) ∧
k �=j

dζ̄k
n
∧
s=1

dζs

 = n
n
∧

k=1
dζ̄k

n
∧
s=1
dζs

= n(2i)n
n
∧
j=1
dxj .

�

Definition 3.4 Let A be an algebra whose elements are functions or
a differential forms. Let A = (aij)ni,j=1 be an n × n matrix with entries
aij ∈ A. Define

detA =
∑
σ

sgn(σ)aσ(1),1 · · ·aσ(n),n,

where
∑

σ means that the summation is performed over all permutations
σ of {1, · · · , n}.

Definition 3.5 Define

Z = {a ∈ A | a ∧ b = b ∧ a for all b ∈ A}.

Then Z is the subalgebra of A which consists of functions and differential
forms of even degree.

Lemma 3.4 Suppose zi ∈ Z for i = 1, 2, · · · , n. Then we have∣∣∣∣∣∣∣∣∣
a11 · · · z1 ∧ bk · · · z1 ∧ bs · · · a1n
a21 · · · z2 ∧ bk · · · z2 ∧ bs · · · a2n
...

...
...

...
an1 · · · zn ∧ bk · · · zn ∧ bs · · · ann

∣∣∣∣∣∣∣∣∣ = 0, (3.1)

where bk ∈ A is contained in the k-th column, and bs is contained in the
s-th column.
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Proof. We denote by detA the determinant in (3.1). For a permutation
τ = (ks), we obtain

detA =
∑
σ

sgn(σ)aσ(1)1 · · · zσ(k)bk · · · zσ(s)bs · · ·aσ(n)n

=
∑
σ

sgn(σ)aσ(1)1 · · · zσ(s)bk · · · zσ(k)bs · · ·aσ(n)n

= sgn(τ)
∑
σ

sgn(στ)aστ(1)1 · · · zστ(k)bk · · · zστ(s)bs · · ·aστ(n)n

= −
∑
σ

sgn(σ)aσ(1)1 · · · zσ(k)bk · · · zσ(s)bs · · · aσ(n)n = −detA,

which means that detA = 0. �

Lemma 3.5 For a C1 function ψ on X,

ω′(ψv) = ψnω′(v).

Proof. ω′(v) can be written

ω′(v) =
1

(n− 1)!

∣∣∣∣∣∣∣
v1 dv1 · · · dv1
...

...
...

vn dvn · · · dvn

∣∣∣∣∣∣∣ .
Since v1, · · · , vn ∈ Z, it follows from Lemma 3.4 that

ω′(ψv) = det(ψv, d(ψv), · · · , d(ψv))
= det(ψv, ψdv + vdψ, · · · , ψdv + vdψ)

= det(ψv, ψdv, · · · , ψdv)
= ψndet(v, dv, · · · , dv) = ψnω′(v).

�

Let Ω ⊂ Cn be a bounded domain and let f be a bounded (0, 1) form
in Ω. For z ∈ Ω, define

(BΩf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈Ω

f(ζ) ∧
ω′ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z|2n , (3.2)

where

ω(ζ) := dζ1 ∧ · · · ∧ dζn, ω′ζ(ζ̄ − z̄) :=
n∑

j=1

(−1)j+1(ζ̄j − z̄j) ∧
k �=j

dζ̄k.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

122 Several Complex Variables and Integral Formulas

Let Ω ⊂ Cn be a bounded domain with C1 boundary, and let f be a
bounded function on ∂Ω. For z ∈ Ω, define

(B∂Ωf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈∂Ω

f(ζ)
ω′ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z|2n . (3.3)

For (z, ζ) ∈ Cn ×Cn, define

ωz,ζ(ζ̄ − z̄) ∧ ω(ζ)
|ζ − z|2n :=

n∑
j=1

(−1)j+1
ζ̄j − z̄j
|ζ − z|2n ∧

k �=j
(dζ̄k − dz̄k) ∧ ω(ζ).

Let f be a bounded differential form in Ω. Define

(BΩf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈Ω

f(ζ) ∧
ω′z,ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z|2n . (3.4)

If f is a (0, 1) form, then (3.4) coincides with (3.2). Further, if f is a
function, then f(ζ)ω′z,ζ(ζ̄ − z̄) ∧ ω(ζ) is at most of degree 2n − 1 with
respect to ζ, and hence BΩf = 0.

Let Ω ⊂ Cn be a bounded domain with C1 boundary, and let f be a
bounded differential form on ∂Ω. Define

(B∂Ωf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈∂Ω

f(ζ)
ω′z,ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z|2n . (3.5)

If f is a function, then (3.5) coincides with (3.3).

Definition 3.6 Let Ω ⊂ Rn be an open set and let α = (α1, · · · , αn) be
a multi-index, where each αj is a nonnegative integer. Define

|α| = α1 + · · ·+ αn,

∂α =
∂|α|

∂xα1
1 · · · ∂xαn

n
.

For f ∈ Ck(Ω), define the Ck-norm |f |k,Ω of f in Ω by

|f |k,Ω =
∑
|α|≤k

sup
x∈Ω

|∂αf(x)|.

|f |0,Ω is denoted by |f |Ω. Then {f ∈ Ck(Ω) | |f |k,Ω < ∞} is a Banach
space with respect to this norm. For f ∈ C(Ω) and 0 < α < 1, define the
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α-Lipschitz norm (or the α-Hölder norm) |f |α,Ω by

|f |α,Ω = |f |0,Ω + sup
z,ζ∈Ω,z �=ζ

|f(z)− f(ζ)|
|ζ − z|α .

We set

Λα(Ω) = {f ∈ C(Ω) | |f |α,Ω <∞}.

We call Λα(Ω) the Lipschitz space (or the Hölder space) of order α. A
function f ∈ Λα(Ω) is bounded and uniformly continuous in Ω.

Lemma 3.6 Let Ω ⊂ Rn be an open set. Then

(a) For 0 < α < 1, Λα(Ω) is a Banach space.
(b) If f ∈ Λα(Ω) then f is continuous on Ω.

Proof. (a) Choose a sequence {fn} such that fn ∈ Λα(Ω), |fn−fm|α,Ω →
0. Since

sup
x∈Ω

|fn(x) − fm(x)| → 0 (n,m→∞),

there exists f ∈ C(Ω) such that limn→∞ fn(x) = f(x). On the other hand,
for ε > 0, there exists a positive integer N such that if n,m ≥ N , then

|fn(x) − fm(x)| < ε

2

for all x ∈ Ω, and

|fn(x) − fm(x)− (fn(y)− fm(y))|
|x− y|α <

ε

2

for x �= y. Letting m→∞, we have

|fn − f |α,Ω ≤ ε.

Consequently,

|f |α,Ω ≤ ε+ |fn|α,Ω <∞.

Thus f ∈ Λα(Ω) and fn → f . Hence Λα(Ω) is a Banach space.
(b) Suppose a ∈ ∂Ω and zn ∈ Ω such that zn → a. Then {f(zn)}

converges. Let limn→∞ f(zn) := f(a). Then for any sequence {wn} with
wn ∈ Ω, wn → a, we have f(wn)→ f(a). Next suppose zn ∈ Ω and zn → a,
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a ∈ ∂Ω. Then there exists {wn} ⊂ Ω such that f(zn) − f(wn) → 0 and
wn → a. Then

|f(zn)− f(a)| ≤ |f(zn)− f(wn)|+ |f(wn)− f(a)| → 0,

which implies that f is continuous on Ω. �

Lemma 3.7 Let Ω ⊂ Cn be a bounded domain. Then For a bounded
differential form f in Ω, BΩf ∈ Λα(Ω) for every 0 < α < 1. In particular,
BΩf is continuous on Ω. Moreover, there exists a constant Cα > 0 such
that for every bounded function f in Ω, ‖BΩf‖α,Ω ≤ Cα‖f‖0,Ω.

Proof. By the definition of BΩf , there exists a constant C1 > 0 such
that for z, ξ ∈ Ω

‖BΩf(z)−BΩf(ξ)‖ ≤ C1|f |0,Ω
n∑

j=1

∫
ζ∈Ω

∣∣∣∣ ζ̄j − z̄j|ζ − z|2n −
ζ̄j − ξ̄j
|ζ − ξ|2n

∣∣∣∣ dV (ζ).

Thus it is sufficient to show that there exists a constant C2 > 0 and R > 0
such that for t, s ∈ Rn with |t|, |s| ≤ R,∫

x∈Rn,|x|<R

∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣ dV (x) ≤ C2|t− s|| log |t− s||.

Now we have ∫
|x−t|≤|t−s|/2

∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣ dV (x)

≤
∫
|x−t|≤|t−s|/2

|x− t|1−ndVn(x)

+
∫
|x−t|≤|t−s|/2

∣∣∣∣ x1 − s1|x− s|n

∣∣∣∣ dV (x).

If |x− t| ≤ |t− s|/2, then

|x1 − s1| ≤ |x− t|+ |t− s| ≤
3
2
|t− s|, |x− s| ≥ 1

2
|t− s|.

Hence there exists a constant C3 > 0 such that∫
|x−t|≤|t−s|/2

∣∣∣∣ x1 − s1|x− s|n

∣∣∣∣ dV (x) ≤ C3|t− s|1−n

∫
|x−t|≤|t−s|/2

dV (x).

Using the polar coordinate system, there exists a constant C4 > 0 such that∫
|x−t|≤|t−s|/2

∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣ dVn(x) ≤ C4|t− s|.
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Similarly, there exists a constant C5 > 0 such that∫
|x−s|≤|t−s|/2

∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣ dVn(x) ≤ C5|t− s|.

On the other hand, we have∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣
=

(x1 − t1)|x− s|n − (x1 − s1)|x− t|n
|x− t|n|x− s|n

=
(x1 − t1)(|x− s|n − |x− t|n)− (t1 − s1)|x− t|n

|x− t|n|x− s|n

≤ ||x− s| − |x− t||
n−1∑
ν=0

|x− s|ν |x− t|n−ν

|x− s|n|x− t|n +
|t− s|
|x− s|n

≤ n|t− s|
(

max
{

1
|x− s|n ,

1
|x− t|n

}
+

1
|x− s|n

)
≤ 2n|t− s|

(
1

|x− s|n +
1

|x− t|n

)
.

We set

A = {x ∈ Rn | |x− t| ≥ |t− s|
2

, |x− s| ≥ |t− s|
2

, |x| < R}.

Then there exist constants C6, C7 and C8 such that∫
A

∣∣∣∣ x1 − t1|x− t|n −
x1 − s1
|x− s|n

∣∣∣∣ dV (x) ≤ C6
∫
|t−s|/2≤|y|≤2R

dV (y)
|y|n

≤ C7|t− s|
∫ 2R

|t−s|/2

dr

r

≤ C8|t− s|| log |t− s||,

which completes the proof of Lemma 3.7. �

Theorem 3.1 (Bochner-Martinelli formula) Let Ω ⊂ Cn be a
bounded domain with C1 boundary and let f be a continuous function on
Ω such that ∂̄f is continuous on Ω, where the differentiation means in the
sense of distributions. Then

f(z) = (B∂Ωf)(z)− (BΩ∂̄f)(z) (z ∈ Ω).
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Proof. For z ∈ Ω, we set

ϕ(ζ) =
(n− 1)!
(2πi)n

ω′ζ(ζ̄ − z̄) ∧ ω(ζ)
|ζ − z|2n .

By Lemma 3.2, we have dϕ(ζ) = 0 for ζ ∈ Ω− {z}. Then we have

d(f(ζ)ϕ(ζ)) = ∂̄f(ζ) ∧ ϕ(ζ)

for ζ ∈ Ω − {z}. For any sufficiently small ε > 0, we set Ωε = {ζ ∈
Ω | |ζ − z| > ε}. It follows from Stokes’ theorem that∫

|ζ−z|=ε

f(ζ)ϕ(ζ) =
∫
∂Ω

f(ζ)ϕ(ζ) −
∫
Ωε

∂̄f(ζ) ∧ ϕ(ζ). (3.6)

The left side in (3.6) can be rewritten as∫
|ζ−z|=ε

f(ζ)ϕ(ζ) = f(z)
∫
|ζ−z|=ε

ϕ(ζ) +
∫
|ζ−z|=ε

(f(ζ)− f(z))ϕ(ζ).

It follows from Stokes’ theorem that∫
|ζ−z|=ε

ϕ(ζ) =
(n− 1)!
(2πi)n

∫
|ζ−z|=ε

ω′ζ(ζ̄ − z̄) ∧ ω(ζ)
ε2n

=
(n− 1)!
(2πi)n

1
ε2n

∫
|ζ−z|<ε

d(ω′ζ(ζ̄ − z̄) ∧ ω(ζ))

=
n!

ε2nπn

∫
|ζ−z|<ε

dx1 ∧ · · · ∧ dx2n = 1.

On the other hand we have∫
|ζ−z|=ε

(f(ζ)− f(z))χ(ζ)

=
(n− 1)!

(2πi)nε2n−1

∫
|ζ−z|=ε

(f(ζ) − f(z))
ω′ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z| .

Since (ω′ζ(ζ̄ − z̄) ∧ ω(ζ))/|ζ − z| is bounded on Ω, there exists a constant
C > 0 such that∣∣∣∣∣
∫
|ζ−z|=ε

(f(ζ)− f(z))ϕ(ζ)

∣∣∣∣∣ ≤ C max
|ζ−z|=ε

|f(ζ) − f(z)| → 0 (ε→ 0).

Letting ε→ 0 in (3.6), we obtain the desired formula. �
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Corollary 3.1 Let Ω ⊂ Cn be a bounded domain with C1 boundary and
let f be continuous on Ω and holomorphic in Ω. Then

f(z) = (B∂Ωf)(z) (z ∈ Ω).

Proof. Corollary 3.1 follows easily from Theorem 3.1. �

Next we prove the Koppelman formula which is a generalization of the
Bochner-Martinelli formula to differential forms.

Theorem 3.2 (Koppelman formula) Let Ω ⊂ Cn be a bounded domain
with C2 boundary and let f be a continuous (0, q) form on Ω, 0 ≤ q ≤ n,
such that ∂̄f is continuous on Ω. Then

(−1)qf(z) = (B∂Ωf)(z)− (BΩ∂̄f)(z) + (∂̄BΩf)(z) (z ∈ Ω). (3.7)

Proof. If q = 0, then BΩf = 0. Hence (3.7) is the Bochner-Martinelli
formula. Let 1 ≤ q ≤ n. By Lemma 3.7, BΩf , BΩ∂̄f and B∂Ωf are all
continuous in Ω. Hence if we can prove the equation

∂̄BΩf = (−1)qf −B∂Ωf +BΩ∂̄f

in the sense of distributions, then ∂̄BΩf is continuous in Ω, which means
(3.7). Since (BΩf)(z) is a (0, q − 1) form, we have

∂̄(BΩf ∧ v) = ∂̄BΩf ∧ v + (−1)q−1BΩf ∧ ∂̄v

for every (n, n− q) form v in Ω. Hence it is sufficient to show that

(−1)q
∫
Ω

BΩf ∧ ∂̄v = (−1)q
∫
Ω

f ∧ v −
∫
Ω

B∂Ωf ∧ v +
∫
Ω

BΩ∂̄f ∧ v (3.8)

for v ∈ D(n,n−q)(Ω). We set

ϕ(z, ζ) =
(n− 1)!
(2πi)n

ω′z,ζ(ζ̄ − z̄) ∧ ω(ζ)
|ζ − z|2n .

Then it follows from (3.8) that

(−1)q
∫
ζ,z)∈Ω×Ω

f(ζ) ∧ ϕ(z, ζ) ∧ ∂̄v(z) = (−1)q
∫
Ω

f(z) ∧ v(z)

−
∫
(ζ,z)∈∂Ω×Ω

f(ζ) ∧ ϕ(z, ζ) ∧ v(z) +
∫
Ω×Ω

∂̄f(ζ) ∧ ϕ(z, ζ) ∧ v(z).
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We set

Φ(z, ζ) =
(n− 1)!
(2πi)n

ω′z,ζ(ζ̄ − z̄) ∧ ωz,ζ(ζ − z)
|ζ − z|2n ,

where

ωz,ζ(ζ − z) =
n
∧
j=1

(dζj − dzj).

By Lemma 3.2, we have dz,ζΦ(z, ζ) = 0 (z �= ζ). Since Φ(z, ζ) − ϕ(z, ζ)
contains one of dz1, · · · , dzn, we have

(Φ(z, ζ)− ϕ(z, ζ)) ∧ v(z) = 0.

Hence we obtain

dz,ζ(ϕ(z, ζ) ∧ v(z)) = dz,ζ(Φ(z, ζ) ∧ v(z)) = (−1)2n−1Φ(z, ζ) ∧ dv(z)
= −ϕ(z, ζ) ∧ ∂̄v(z).

Consequently,

dz,ζ(f(ζ)∧ϕ(z, ζ)∧v(z)) = ∂̄f(ζ)∧ϕ(z, ζ)∧v(z)−(−1)qf(ζ)∧ϕ(z, ζ)∧∂̄v(z).

For ε > 0, we set

Uε = {(ζ, z) ∈ Cn ×Cn | |ζ − z| < ε}.

Since supp(v) ⊂⊂ Ω, we have for any sufficiently small ε > 0,

∂(Ω× Ω\Uε) ∩ (Cn × supp(v)) = (∂Ω× Ω ∪ ∂Uε) ∩ (Cn × supp(v)).

It follows from Stokes’ theorem that∫
∂Ω×Ω

f(ζ) ∧ ϕ(z, ζ) ∧ v(z)−
∫
∂Uε

f(ζ) ∧ ϕ(z, ζ) ∧ v(z)

=
∫
Ω×Ω\Uε

∂̄f(ζ) ∧ ϕ(z, ζ) ∧ v(z)

−(−1)q
∫
Ω×Ω\Uε

f(ζ) ∧ ϕ(z, ζ) ∧ ∂̄v(z).

Hence, if we prove the equality

lim
ε→0

∫
∂Uε

f(ζ) ∧ ϕ(z, ζ) ∧ v(z) = (−1)q
∫
Ω

f(z) ∧ v(z),
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then we have (3.8). We define a holomorphic mapping T : Cn × Cn →
Cn ×Cn by T (ξ, z) = (z + ξ, z). If we set Sε = {ξ ∈ Cn | |ξ| = ε}, then
T (Sε ×Cn) = ∂Uε. Since ωz,ξ(z + ξ) ∧ v(z) = ω(ξ) ∧ v(z), we obtain

T ∗(f(ζ)∧ϕ(z, ζ)∧v(z)) =
∑
I

fI(z+ξ)d(z̄+ ξ̄)I
(n− 1)!
(2πi)n

ω′(ξ̄) ∧ ω(ξ)
|ξ|2n ∧v(z).

Since Sε is real 2n− 1 dimensional, we have on Sε

d(z̄ + ξ̄)I ∧ ω′(ξ̄) ∧ ω(ξ) = dz̄I ∧ ω′(ξ̄) ∧ ω(ξ).

Further, using the equation dz̄I ∧ ω′(ξ̄) ∧ ω(ξ) = (−1)qω′(ξ̄) ∧ ω(ξ) ∧ dz̄I ,
we have∫

∂Uε

f(ζ) ∧ ϕ(z, ζ) ∧ v(z)

= (−1)q
∫
z∈Cn

∑
I

[
(n− 1)!
(2πi)n

∫
ξ∈Sε

fI(z + ξ)
ω′(ξ̄) ∧ ω(ξ)
|ξ|2n

]
dz̄I ∧ v(z).

By the Bochner-Martinelli formula, the term in brackets is equal to

fI(z) +
(n− 1)!
(2πi)n

∫
ξ∈Sε

(fI(z + ξ)− fI(z))
ω′(ξ̄) ∧ (ξ)
|ξ|2n . (3.9)

Using the same method as the proof of Theorem 3.1, (3.9) converges to fI ,
which completes the proof of Theorem 3.2. �

Definition 3.7 (Leray map) Let Ω ⊂ Cn be a bounded open set. A
C1 mapping w : Ω× ∂Ω→ Cn is called a Leray map for Ω if

< w(z, ζ), ζ − z > �= 0

for all (z, ζ) ∈ Ω× ∂Ω.

Let w(z, ζ) be a Leray map for Ω and let Ω have a C1 boundary. Define

η(z, ζ, λ) = (1− λ) w(z, ζ)
< w(z, ζ), ζ − z > + λ

ζ̄ − z̄
|ζ − z|2 , (3.10)

for z ∈ Ω, 1 ≤ λ ≤ 1 and ζ ∈ ∂Ω. Further, we define

ω′ζ(w(z, ζ)) :=
n∑

j=1

(−1)j+1wj(z, ζ) ∧
k �=j

∂̄ζwk(z, ζ)
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and

ω′ζ,λ(η(z, ζ, λ)) :=
n∑

j=1

(−1)j+1ηj(z, ζ, λ) ∧
k �=j

dζ,ληk(z, ζ, λ),

where

η(z, ζ, λ) = (η1(z, ζ, λ), · · · , ηn(z, ζ, λ)), dζ,λ = dζ + dλ.

For a bounded function f on ∂Ω, define

(L∂Ωf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈∂Ω

f(ζ)
ω′ζ(w(z, ζ)) ∧ ω(ζ)
< w(z, ζ), ζ − z >n

(z ∈ Ω). (3.11)

For a bounded (0, 1) form f on ∂Ω and z ∈ Ω, define

(R∂Ωf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈∂Ω
0≤λ≤1

f(ζ) ∧ ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ). (3.12)

Remark 3.1 If w(z, ζ) = ζ̄− z̄, then L∂Ω = B∂Ω and η(z, ζ, λ) = w(z, ζ),
which implies that dληk(z, ζ, λ) = 0, and hence R∂Ω = 0.

Definition 3.8 Let Ω ⊂ Cn be a bounded domain with C1 boundary
and let w(z, ζ) be a Leray map for Ω. For (z, ζ, λ) ∈ Ω× ∂Ω× [0, 1], define

ω′z,ζ(w(z, ζ)) :=
n∑

j=1

(−1)j+1wj(z, ζ) ∧
k �=j

∂̄z,ζwk(z, ζ)

and

ω′z,ζ,λ(η(z, ζ, λ)) =
n∑

j=1

(−1)j+1ηj(z, ζ, λ) ∧
k �=j

(∂̄z,ζ + dλ)ηk(z, ζ, λ),

where ∂̄z,ζ = ∂̄z + ∂̄ζ .
For a bounded differential form f on ∂Ω and z ∈ Ω, define

(L∂Ωf)(z) :=
(n− 1)!
(2πi)n

∫
ζ∈∂Ω

f(ζ) ∧
ω′z,ζ(w(z, ζ)) ∧ ω(ζ)
< w(z, ζ), ζ − z >n

(3.13)

and

(R∂Ωf)(z) =
(n− 1)!
(2πi)n

∫
ζ∈∂Ω
0≤λ≤1

f(ζ) ∧ ω′z,ζ,λ(η(z, ζ, λ)) ∧ ω(ζ). (3.14)

If f is a function, then (3.13) coincides with (3.11). Further, if f is a (0, 1)
form, (3.14) coincides with (3.12).
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Remark 3.2 If w(z, ζ) = ζ̄ − z̄, then L∂Ω = B∂Ω, R∂Ω = 0.

Theorem 3.3 (Leray formula) Let Ω ⊂ Cn be a bounded domain with
C1 boundary. If f is a continuous function on Ω such that ∂̄f is continuous
on Ω, then

f(z) = (L∂Ωf)(z)− (R∂Ω∂̄f)(z)− (BΩ∂̄f)(z) (z ∈ Ω).

Proof. Fix z ∈ Ω. Since

< η(z, ζ, λ), ζ − z >= 1 (ζ ∈ ∂Ω, λ ∈ [0, 1]),

it follows from Lemma 3.2 that dζ,λ[ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ)] = 0. Hence we
have

dζ,λ[f(ζ)ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ)] = ∂̄f(ζ) ∧ ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ).

By applying Stokes’ theorem to the equation f(ζ)ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ) on
∂Ω× [0, 1], we have∫

∂(∂Ω×[0,1])
f(ζ)ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ)

=
∫
∂Ω×[0,1]

∂̄f(ζ)ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ).

On the other hand we have

∂(∂Ω× [0, 1]) = ∂Ω× {1} − ∂Ω× {0}.

Since we have equalities

ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ)|(ζ,λ)∈∂Ω×{0} =
ω′ζ(w(z, ζ)) ∧ ω(ζ)
< w(z, ζ), ζ − z >n

and

ω′ζ,λ(η(z, ζ, λ)) ∧ ω(ζ)|(ζ,λ)∈∂Ω×{1} =
ω′ζ(ζ̄ − z̄) ∧ ω(ζ)

|ζ − z|2n ,

we obtain R∂Ω∂̄f = L∂Ωf − B∂Ωf . Together with the Bochner-Martinelli
formula, we have the desired formula. �

Corollary 3.2 Let Ω ⊂ Cn be a bounded domain with C1 boundary and
let w(z, ζ) be a Leray map for Ω. If f is continuous on Ω and holomorphic
in Ω, then

f(z) = (L∂Ωf)(z) (z ∈ Ω). (3.15)
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Proof. Corollary 3.2 follows easily from Theorem 3.3. �

Definition 3.9 (3.15) is called the Cauchy-Fantappiè formula.

Now we are going to prove the Koppelman-Leray formula. The
Koppelman-Leray formula is a generalization of the Leray formula to differ-
ential forms. The Koppelman formula and Koppelman-Leray formula are
called the homotopy formula (see Lieb-Michel [LIM] and Range [RAN2]).

Theorem 3.4 (Koppelman-Leray formula) Let Ω ⊂ Cn be a bounded
domain with C1 boundary and let w(z, ζ) be a C2 Leray map for Ω. Suppose
f is a continuous (0, q) (0 ≤ q ≤ n) form on Ω such that ∂̄f is also
continuous on Ω. Then

(−1)qf = L∂Ωf − (R∂Ω +BΩ)∂̄f + ∂̄(R∂Ω +BΩ)f. (3.16)

In particular, if q = 0, then by degree reasons R∂Ωf = BΩf = 0, and hence
f = L∂Ωf − (R∂Ω +BΩ)∂̄f .

Proof. By definition, L∂Ωf and R∂Ωf are continuous in Ω. Further, by
Lemma 3.7 and Theorem 3.3, BΩf , BΩ∂̄f and ∂̄BΩf are all continuous in
Ω. ∂̄R∂Ωf is also continuous in Ω since we can perform the differentiation
under the integral sign. By the Koppelman formula, it is sufficient to show
that

∂̄R∂Ωf = B∂Ωf − L∂Ωf +R∂Ω∂̄f.

If q = 0, then (3.16) is the Leray formula. Let 1 ≤ q ≤ n. It is sufficient to
show that∫

Ω

(∂̄R∂Ωf)(z) ∧ v(z) =
∫
Ω

(B∂Ωf)(z) ∧ v(z)−
∫
Ω

(L∂Ωf)(z) ∧ v(z)

+
∫
Ω

(R∂Ω∂̄f)(z) ∧ v(z)

for v ∈ D(n,n−q)(Ω). For simplicity, we set ω = ω(ζ), ω̃ = ωz,ζ(ζ − z).
Define

θ =
(n− 1)!
(2πi)n

n∑
j=1

(−1)j+1ηj(z, ζ, λ) ∧
k �=j

dz,ζ,ληk(z, ζ, λ)

and

θ̃ =
(n− 1)!
(2πi)n

n∑
j=1

(−1)j+1ηj(z, ζ, λ) ∧
k �=j

(∂̄z,ζ + dλ)ηk(z, ζ, λ).
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Since < η(z, ζ, λ), ζ−z >= 1, it follows from Lemma 3.2 that dz,ζ,λ(θ∧ω̃) =
0. Consequently,

dz,ζ,λ(θ ∧ ω) ∧ v(z) = dz,ζ,λ(θ ∧ ω̃) ∧ v(z) = 0.

Since ∂ζ(θ ∧ ω) = 0, we have (∂̄z,ζ + dλ + ∂z)(θ ∧ ω) ∧ v(z) = 0. Hence we
obtain

[(∂̄z,ζ + dλ)(θ̃ ∧ ω) + ∂z(θ̃ ∧ ω) + (∂̄z,ζ + dλ + ∂z)((θ − θ̃) ∧ ω)] ∧ v(z) = 0.

Since the second and the third terms in the bracket contain one of dz1, · · · ,
dzn, we obtain

(∂̄z,ζ + dλ)(θ̃ ∧ ω) ∧ v(z) = 0.

Hence we have

(∂̄ζ + dλ)(θ̃ ∧ ω) ∧ v(z) = −∂̄z(θ̃ ∧ ω) ∧ v(z).

Consequently,

dζ,λ(f ∧ θ̃ ∧ ω) ∧ v(z) = (∂̄ζ + dλ)(f ∧ θ̃ ∧ ω) ∧ v(z)
= {∂̄f ∧ θ̃ ∧ ω − ∂̄z(f ∧ θ̃ ∧ ω)} ∧ v(z).

It follows from Stokes’ theorem that∫
z∈Ω

{∫
(ζ,λ)∈∂(∂Ω×[0,1])

f ∧ θ̃ ∧ ω
}
∧ v(z)

=
∫
z∈Ω

{∫
(ζ,λ)∈∂Ω×[0,1]

∂̄f ∧ θ̃ ∧ ω − ∂̄z
∫
(ζ,λ)∈∂Ω×[0,1]

f ∧ θ̃ ∧ ω
}
∧ v

=
∫
Ω

(R∂Ω∂̄f)(z) ∧ v(z)−
∫
Ω

(∂̄zR∂Ωf)(z) ∧ v(z).

On the other hand we have

∂(∂Ω× [0, 1]) = (−1)2n−1∂Ω× ∂[0, 1] = −∂Ω× {1}+ ∂Ω× {0},

θ̃ ∧ ω|λ=0 =
(n− 1)!
(2πi)n

ω′(w(z, ζ)) ∧ ω
< w(z, ζ), ζ − z >n

and

θ̃ ∧ ω|λ=1 =
(n− 1)!
(2πi)n

ω′(ζ̄ − z̄) ∧ ω
|ζ − z|2n .
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Consequently, ∫
z∈Ω

{∫
(ζ,λ)∈∂(∂Ω×[0,1])

f ∧ θ̃ ∧ ω
}
∧ v(z)

=
∫
Ω

(L∂Ωf)(z) ∧ v(z)−
∫
Ω

(B∂Ωf)(z) ∧ v(z),

which completes the proof of Theorem 3.4. �
Corollary 3.3 Let Ω ⊂ Cn be a bounded domain with C1 boundary and
let w(z, ζ) be a Leray map for Ω such that w(·, ζ) is holomorphic in Ω for
fixed ζ. Define for 1 ≤ q ≤ n

Tq = (−1)q(R∂Ω +BΩ).

Let f be a continuous (0, q) form on Ω such that ∂̄f is also continuous on
Ω. Then

f = ∂̄Tqf + Tq+1∂̄f.

Moreover, if ∂̄f = 0, then u = Tqf is a continuous solution of the equation
∂̄u = f in Ω.

Proof. By definition, we have

(L∂Ωf)(z)

=
(n− 1)!
(2πi)n

∫
∂Ω

f(ζ)
n∑

j=1

(−1)j+1
wj(z, ζ)

< w(z, ζ), ζ − z >n

× ∧
k �=j

∂̄z,ζwk(z, ζ) ∧ ω(ζ).

If q ≥ 1, then one of ∂̄zwk(z, ζ), k = 1, · · · , n, is contained in each term
in the right side of the above equality. Hence L∂Ωf(z) = 0. By Theorem
3.4, we have f = ∂̄Tqf + Tq+1∂̄f . It is trivial that R∂Ωf is C∞ in Ω. By
Lemma 3.7, BΩf is Cα in Ω. �

Next we will construct a Leray map for a strictly convex domain with
C2 boundary.

Definition 3.10 Let Ω ⊂⊂ Rn be a domain such that Ω = {x | ρ(x) <
0}, where ρ is a C2 defining function for Ω defined in a neighborhood of Ω.
We say that Ω is strictly convex if

n∑
j,k=1

∂2ρ

∂xj∂xk
(p)wjwk > 0
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for every p and 0 �= w = (w1, · · · , wn) ∈ Rn satisfying

p ∈ ∂Ω,
n∑

j=1

∂ρ

∂xj
(p)wj = 0.

We can prove the following lemma by using the same method as the
proof of Corollary 1.4. We omit the proof.

Lemma 3.8 Let Ω ⊂⊂ Rn be a strictly convex domain. Then there exists
a defining function ρ for Ω such that

n∑
j,k=1

∂2ρ

∂xj∂xk
(p)wjwk ≥ C|w|2 (p ∈ ∂Ω, w ∈ Rn). (3.17)

Lemma 3.9 Every strictly convex domain is a strictly pseudoconvex do-
main.

Proof. Let Ω be a strictly convex domain. Then Ω = {z ∈ Cn | ρ(z) <
0}, where ρ satisfies (3.17). Let p ∈ ∂Ω. Using Taylor’s formula, we have
for t = (t1, · · · , tn) ∈ Cn

ρ(p+ t) = ρ(p) + 2Re

 n∑
j=1

∂ρ

∂ζj
(p)tj +

1
2

n∑
j,k=1

∂2ρ

∂ζj∂ζk
(p)tjtk


+

n∑
j,k=1

∂2ρ

∂ζj∂ζ̄k
(p)tj t̄k + o(|t|2).

We set

Qp(t) =
1
2

n∑
j,k=1

∂2ρ

∂ζj∂ζk
(p)tjtk

Lp(t) =
n∑

j,k=1

∂2ρ

∂ζj∂ζ̄k
(p)tj t̄k.

Then for tj = xj + ixn+j ,

1
2

n∑
j,k=1

∂2ρ

∂xj∂xk
(p)xjxk = 2ReQp(t) + Lp(t).

Since Ω is strictly convex, we obtain

2ReQp(t) + Lp(t) > 0 (0 �= t ∈ Cn).
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Since

Qp(it) = −Qp(t), Lp(it) = Lp(t),

we obtain

−2ReQp(t) + Lp(t) > 0 (0 �= t ∈ Cn).

Hence Lp(t) > 0 for t �= 0, which means that Ω is strictly pseudoconvex.�

Definition 3.11 Let Ω1,Ω2 ⊂ Cn be open sets. A holomorphic mapping
f : Ω1 → Ω2 is called biholomorphic if f : Ω1 → Ω2 is bijective and
f−1 : Ω2 → Ω1 is a holomorphic mapping. (It follows from Corollary 5.4
that if a holomorphic mapping f : Ω1 → Ω2 is bijective, then f : Ω1 → Ω2
is biholomorphic.)

Lemma 3.10 (Narashimhan’s lemma) Suppose Ω ⊂⊂ Cn is a strictly
pseudoconvex domain with C2 boundary and p ∈ ∂Ω. Then there exist a
neighborhood U of p and a biholomorphic mapping ϕ in U such that ϕ(U∩Ω)
is a strictly convex domain.

Proof. There are a neighborhood W of ∂Ω and a strictly plurisubhar-
monic function ρ inW such that Ω∩W = {z ∈W | ρ(z) < 0}. By Corollary
1.4, there exists a constant C > 0 such that

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k ≥ C|w|2 (w ∈ Cn).

We choose a coordinate system such that

p = 0,
(
∂ρ

∂z1
(p), · · · , ∂ρ

∂zn
(p)
)

= (1, 0, · · · , 0).

Using Taylor’s formula, we have

ρ(w) = 2Re

 n∑
j=1

∂ρ

∂zj
(p)wj +

1
2

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk


+

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)wjw̄k + o(|w|2).
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We set

w′1 = w1 +
1
2

n∑
j,k=1

∂2ρ

∂zj∂zk
(p)wjwk

w′j = wj (j = 2, · · · , n).

Then w′ = ϕ(w) is a biholomorphic mapping in a neighborhood of 0 (see
Corollary 5.3). Further, we have

ρ ◦ ϕ−1(w′) = 2Rew′1 +
1
2

n∑
j,k=1

∂2ρ ◦ ϕ−1
∂zj∂z̄k

(0)w′jw̄
′
k + o(|w′|2).

Thus there exists a neighborhood U of p such that ρ◦ϕ−1 is strictly convex
in U . Hence ϕ(U ∩ Ω) is strictly convex. �

Lemma 3.11 Let Ω ⊂⊂ Rn be a strictly convex domain with a C2 defin-
ing function ρ. Then Ω has a C2 boundary, that is, ρ satisfies dρ(x) �= 0
for all x ∈ ∂Ω.

Proof. Suppose there exists a point p = (a1, · · · , an) ∈ ∂Ω such that
dρ(p) = ρ(p) = 0. Using Taylor’s formula we obtain

ρ(x) =
n∑

j,k=1

∂2ρ(p)
∂xj∂xk

(xj − aj)(xk − ak) + o(|x− p|2)

≥ α|x − p|2 − o(|x − p|2).

Hence there exists r > 0 such that ρ(x) > 0 for 0 < |x − p| < r, which
contradicts that p is a boundary point of Ω. �

Lemma 3.12 Suppose Ω ⊂⊂ Rn is a strictly convex domain with C2

boundary. Then Ω is geometrically convex, that is, if P1, P2 ∈ Ω and 0 ≤
λ ≤ 1, then λP1 + (1 − λ)P2 ∈ Ω. Moreover, if P1, P2 ∈ Ω , P1 �= P2 and
0 < λ < 1, then λP1 + (1− λ)P2 ∈ Ω.

Proof. Suppose Lemma 3.12 does not hold. Then there exist λ0 with
0 < λ0 < 1 and P1, P2 ∈ Ω such that λP1 + (1 − λ)P2 ∈ Ω for 0 ≤ λ ≤ 1,
P = λ0P1+(1−λ0)P2 ∈ ∂Ω and P1−P2 is contained in the tangent space
to ∂Ω at P . We set ϕ(λ) = ρ(λP1 + (1 − λ)P2). Then we have ϕ(λ0) =
ρ(P ) = 0, ϕ′(λ0) = 0, We set P1 = (a1, · · · , an) and P2 = (b1, · · · , bn). By
Taylor’s formula,

ϕ(λ) =
n∑

j,k=1

∂2ρ

∂xj∂xk
(P )(aj − bj)(ak − bk)(λ − λ0)2 + o(|λ − λ0|2)



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

138 Several Complex Variables and Integral Formulas

≥ α|P1 − P2|2(λ− λ0)2 + o(|λ− λ0|2).

Thus there exists r > 0 such that if 0 < |λ− λ0| ≤ r, then ϕ(λ) > 0, which
is a contradiction. One can prove the latter half similarly. �

Lemma 3.13 Let Ω ⊂⊂ Rn be a domain with C2 boundary and let ρ be
a defining function for Ω. Then Ω is geometrically convex if and only if

n∑
j,k=1

∂2ρ

∂xj∂xk
(P )wjwk ≥ 0 (3.18)

for all P ∈ ∂Ω and w = (w1, · · · , wn) ∈ Rn with
∑n

j=1
∂ρ
∂xj

(P )wj = 0.

Proof. Let Ω be geometrically convex. Suppose (3.18) does not hold.
Then there exist points P ∈ ∂Ω and w ∈ Rn such that

n∑
j=1

∂ρ

∂xj
(P )wj = 0,

and
n∑

j,k=1

∂2ρ

∂xj∂xk
(P )wjwk = −2k < 0.

We may assume that P = 0, gradρ(P ) = (0, · · · , 0.1). We set Q = tw +
ε(0, · · · , 0, 1), where ε > 0 and t ∈ R will be determined later. Using
Taylor’s formula we have

ρ(Q) = ρ(0) +
n∑

j=1

∂ρ

∂xj
(0)Qj +

1
2

n∑
j,k=1

∂2ρ

∂xj∂xk
(0)QjQk + o(|Q|2)

= ε+
t2

2

n∑
j,k=1

n∑
j,k=1

∂2ρ

∂xj∂xk
(0)wjwk +O(ε2) +O(εt) + o(t2; ε2)

= ε− kt2 +R(ε, t),

where R(ε, t) satisfies |R(ε, t)| ≤ ct2 + Cε2, and we can make c sufficiently
small if C is sufficiently large. We choose ε so small that ε >> ε2. If
t = 0, then ρ(Q) > 0. On the other hand, if |t| >

√
2ε/k, then ρ(Q) < 0.

For t with |t| >
√

2ε/k, we set Q1 = tw + ε(0, · · · , 0, 1) and Q2 = −tw +
ε(0, · · · , 0, 1). Then Q1, Q2 ∈ Ω and (Q1+Q2)/2 = ε(0, · · · , 0, 1) �∈ Ω. This
contradicts that Ω is geometrically convex.

Conversely, assume that (3.18) holds. Suppose 0 ∈ Ω. For ε > 0 and a
positive integer M , we set ρε(x) = ρ(x)+ ε|x|2M/M , Ωε = {x | ρε(x) < 0}.
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Then Ω = ∪ε>0Ωε. If ε > 0 is sufficiently small, then Ωε is strictly convex,
and hence geometrically convex. Hence Ω is geometrically convex. �

Lemma 3.14 Let Ω ⊂⊂ Cn be a strictly convex domain. Then there
exist a neighborhood U of ∂Ω and constants ε > 0 and β > 0 such that for
ζ ∈ U and z ∈ Cn with |ζ − z| ≤ ε, we have

2Re < ∂ρ(ζ), ζ − z >≥ ρ(ζ)− ρ(z) + β|ζ − z|2,

where

∂ρ(ζ) =
(
∂ρ(ζ)
∂ζ1

, · · · , ∂ρ(ζ)
∂ζn

)
.

Proof. For ζj = ξj + iξj+n and zj = xj + ixj+n,

2Re < ∂ρ(ζ), ζ − z >=
2n∑
j=1

∂ρ

∂xj
(ζ)(ξj − xj).

Hence by Taylor’s formula, we have

ρ(z) = ρ(ζ)− 2Re < ∂ρ(ζ), ζ − z >

+
1
2

2n∑
j,k=1

∂2ρ

∂xj∂xk
(ζ)(ξj − xj)(ξk − xk) + o(|ζ − z|2).

Consequently, if we choose ε > 0 sufficiently small, then we have for ζ ∈ ∂Ω
with |z − ζ| ≤ ε

2Re < ∂ρ(ζ), ζ − z >≥ ρ(ζ) − ρ(z) +
α

4
|ζ − z|2.

�

Theorem 3.5 Let Ω ⊂⊂ Cn be a strictly convex domain with C2 bound-
ary. Then 2∂ρ(ζ) is a Leray map for Ω.

Proof. Let z ∈ Ω and ζ ∈ ∂Ω. By Lemma 3.14, there exists ε > 0 such
that

Re < 2∂ρ(ζ), ζ − z >≥ −ρ(z) > 0,

provided |ζ − z| ≤ ε. Let |ζ − z| > ε. If we set

zε =
(

1− ε

|ζ − z|

)
ζ +

ε

|ζ − z|z.
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Then by Lemma 3.12, zε ∈ Ω. Since |ζ − zε| = ε, we have

Re < 2ρ(ζ), ζ − z >= 2Re
|ζ − z|
ε

< ∂ρ(ζ), ζ − zε >> 0,

which implies that

< 2ρ(ζ), ζ − z > �= 0 ((z, ζ) ∈ Ω× ∂Ω).

Hence 2∂ρ(ζ) is a Leray map for Ω. �

Corollary 3.4 Let Ω ⊂⊂ Cn be a strictly convex domain with C2 bound-
ary and let f be a continuous (0, q) form, 1 ≤ q ≤ n, on Ω such that ∂̄f = 0
in Ω. Let w(z, ζ) = 2∂ρ(ζ) be a Leray map, where ρ is a defining function
for Ω. Then

u = (−1)q(R∂Ωf +BΩf)

is a continuous solution of the equation ∂̄u = f .

Proof. Corollary 3.4 follows from Theorem 3.5 and Corollary 3.3. �

Let Ω ⊂⊂ Ω be a strictly pseudoconvex domain with C∞ boundary. In
3.2, we will construct a Leray map w(z, ζ) for Ω which is of class C∞ in
a neighborhood of Ω × ∂Ω depending holomorphically on z for ζ fixed. In
order to show that w(z, ζ) is of class C∞ on Ω× ∂Ω, we need the following
Theorem 3.6 and Theorem 3.7. We begin with Lemma 3.15.

Lemma 3.15 Let Ω ⊂ Cn be a pseudoconvex open set. Define

Mk = {z ∈ Cn | z1 = · · · = zk = 0}

for 1 ≤ k ≤ n. If f is holomorphic in Ω, and f(z) = 0 for z ∈ Mk ∩ Ω,
then there exist holomorphic functions f1, · · · fk in Ω such that

f(z) =
k∑

j=1

zjfj(z) (z ∈ Ω).

Proof. We prove the lemma by induction on k. When k = 1, we set
f1(z) = f(z)/z1. Assume that Lemma 3.15 has already been proved for
k − 1. Suppose f is holomorphic in Ω and f(z) = 0 for z ∈Mk ∩ Ω. Since
Ω∩M1 is a pseudoconvex open set inM1, by the inductive hypothesis there
exist holomorphic functions f̃2, · · · , f̃k in Ω ∩M1 such that

f(z) =
k∑

j=2

zj f̃j(z2, · · · , zn) (z ∈ Ω ∩M1).
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By Theorem 2.14, there exist holomorphic functions fj (j = 2, · · · , k) in Ω
such that fj(z) = f̃j(z2, · · · , zn) in Ω ∩M1. If we set

f1(z) :=
1
z1

(f(z)−
k∑

j=2

zjfj(z)) (z ∈ Ω),

then f1 is holomorphic in Ω, which completes the proof of Lemma 3.15. �

Lemma 3.16 Let Ω ⊂ Cn be a pseudoconvex open set and let f be a holo-
morphic function in Ω. Then there exist holomorphic functions f1, · · · , fn
in Ω× Ω such that

f(w) − f(z) =
n∑

j=1

(wj − zj)fj(w, z)

for (w, z) ∈ Ω× Ω.

Proof. We set g(w, z) = f(w) − f(z). Then g is holomorphic in Ω × Ω.
By a change of variables z∗i = wi − zi, z∗n+i = zi for i = 1, · · · , n, we have
g(w, z) = 0 in Mn = {(w, z) ∈ Ω × Ω | w = z}. We set z∗ = (z∗1 , · · · , z∗2n)
and h(z∗) = g(w, z). By Lemma 3.15, there exist holomorphic functions
h1, · · · , hn in Ω× Ω such that

h(z∗) =
n∑

j=1

z∗jhj(z
∗).

We set fj(w, z) = hj(w1 − z1, · · · , wn − zn, z1, · · · , zn). Then fj, j =
1, · · · , n, are holomorphic in Ω× Ω and satisfy the equality

f(w)− f(z) =
n∑

j=1

(wj − zj)fj(w, z).
�

The following two theorems were proved by Range [RAN2] and used to
show the smoothness of the Leray map for strictly pseudoconvex domains.

Theorem 3.6 Let Ω ⊂⊂ Cn be a pseudoconvex domain and let K ⊂⊂ Ω
be compact. Then there exist neighborhoods V0 and V of K, and a C∞

function Φ(z, ζ) in V0 × ∂V with the following properties:

(a) V0 ⊂⊂ V ⊂⊂ Ω.
(b) V has C∞ boundary.
(c) Φ(z, ζ) is holomorphic with respect to z for fixed ζ.
(d) Φ(z, ζ) �= 0 for every (z, ζ) ∈ V0 × ∂V .
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(e) There exist C∞ functions wj(z, ζ), j = 1, · · · , n, in V0 × ∂V such that
wj(z, ζ) are holomorphic with respect to z and satisfy

Φ(z, ζ) =
n∑

j=1

wj(z, ζ)(ζj − zj).

Proof. We may assume that K = K̂OΩ . Let ω ⊂⊂ Ω be a neighborhood
of K. By Theorem 1.18, there exist hk ∈ O(Ω), 1 ≤ k ≤ N , such that if

A = {z ∈ ω | |hk(z)| < 1, k = 1, · · · , N},

then K ⊂ A ⊂⊂ ω. Let ∆N be the unit polydisc in CN and H =
(h1, · · · , hN) : Ω → ∆N . Since H(K) is a compact subset of ∆N , there
exists a convex neighborhood U of H(K) such that ∂U is C∞ boundary of
U and U ⊂⊂ ∆N . Let U = {t ∈ ∆N | ρ(t) < 0}. Then we have

< ∂ρ(η), η − t > �= 0 ((t, η) ∈ U × ∂U).

If we define Φ : A×A→ C by

Φ(z, ζ) =
N∑

k=1

∂ρ

∂ηk
(H(ζ))(hk(ζ)− hk(z)),

then ζ ∈ (H |A)−1(∂U) and Φ(z, ζ) �= 0 for z ∈ K. By the continuity, there
exists a neighborhood V of K such that V0 ⊂⊂ V ⊂⊂ A, V has a C∞

boundary and

Φ(z, ζ) �= 0 ((z, ζ) ∈ V0 × ∂V ).

By Lemma 3.16, there exist Qj,k ∈ O(G×G) such that

hk(ζ) − hk(z) =
n∑

j=1

Qjk(z, ζ)(ζj − zj).

We set

wj(z, ζ) =
N∑

k=1

∂ρ

∂ηk
(H(ζ))Qjk(z, ζ).

for j = 1, · · · , n. Then we obtain

Φ(z, ζ) =
n∑

j=1

wj(z, ζ)(ζj − zj),

which completes the proof of Theorem 3.6. �



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Integral Formulas for Strictly Pseudoconvex Domains 143

Theorem 3.7 Let Ω ⊂⊂ Cn be a pseudoconvex domain and let K be
a compact subset of Ω. Then there exist neighborhoods V0 and V of K
with V0 ⊂⊂ V ⊂⊂ Ω, and a continuous linear operator Tq : C(0,q)(V ) →
C(0,q−1)(V0) (1 ≤ q ≤ n) with the following properties:

(a) for k = 0, 1, 2, · · · , Tqf ∈ Ck
(0,q−1)(V0) if f ∈ Ck

(0,q)(V ).
(b) If ∂̄f = 0 on V , then ∂̄Tqf = f on V0.

Proof. For f ∈ Ck
(0,q)(V ) and z ∈ V0, we set

(R∂V f)(z) =
(n− 1)!
(2πi)n

∫
ζ∈∂V

0≤λ≤1
f(ζ) ∧ ω′z,ζ,λ(η(z, ζ, λ)) ∧ ω(ζ),

where η(z, ζ, λ) is defined by using w(z, ζ) and Φ(z, ζ) in Theorem 3.6.
Define

Tq = (−1)q(R∂V +BV ).

Then it follows from theorem 3.4 that

f(z) = (∂̄Tqf)(z) + (Tq+1∂̄f)(z) (z ∈ V0),

which completes the proof of Theorem 3.7. �

3.2 Hölder Estimates for the ∂̄ Problem

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞ boundary. Then
there exist a neighborhood U of ∂Ω and a strictly plurisubharmonic C∞

function ρ in U such that

U ∩ Ω = {z ∈ U | ρ(z) < 0}, dρ(z) �= 0 (z ∈ ∂Ω).

Results in 3.2, 3.3 and 3.4 are still valid under the assumption that the
boundary ∂Ω is of class C2. However, because of Fefferman’s mapping
theorem, we assume that the boundary ∂Ω is of class C∞.

Definition 3.12 For ζ ∈ U and z ∈ Cn, we define the Levi polynomial
F (z, ζ) by

F (z, ζ) = 2
n∑

j=1

∂ρ

∂ζj
(ζ)(ζj − zj)−

n∑
j,k=1

∂2ρ

∂ζj∂ζk
(ζ)(ζj − zj)(ζk − zk).
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F (z, ζ) is a C∞ function in Cn × U and holomorphic with respect to z.
By Taylor’s formula, there exist a constant β > 0 and ε > 0 such that for
ζ ∈ U with |z − ζ| ≤ 2ε,

ReF (z, ζ) ≥ ρ(ζ)− ρ(z) + β|ζ − z|2. (3.19)

If we choose ε > 0 sufficiently small, then for ζ ∈ ∂Ω, we have

{z ∈ Cn | |ζ − z| ≤ 3ε} ⊂ U.

If ε ≤ |ζ − z| ≤ 2ε, then by (3.19) we have

ReF (z, ζ) ≥ ρ(ζ)− ρ(z) + βε2 (ζ, z ∈ U).

We choose a neighborhood U1 ⊂ U of ∂Ω such that |ρ(ζ)| ≤ βε2/3 for
ζ ∈ U1, and {z | |z − ζ| ≤ 2ε} ⊂ U for ζ ∈ U1. We set VΩ = Ω ∪ U1. Then
for (z, ζ) ∈ VΩ × U1 with |z − ζ| ≤ 2ε, we have z, ζ ∈ U , and

ReF (z, ζ) ≥ βε
2

3
.

Hence we can define logF (z, ζ) for ε ≤ |ζ − z| ≤ 2ε, (z, ζ) ∈ VΩ × U1.
Choose a function χ ∈ C∞(Cn ×Cn) with the properties that 0 ≤ χ ≤ 1,
and

χ(z, ζ) =
{

1 (|ζ − z| ≤ 5ε/4)
0 (|ζ − z| ≥ 7ε/4)

.

For (z, ζ) ∈ VΩ × U1, define

f(z, ζ) =
{
∂̄z [χ(ζ − z) logF (z, ζ)] (ε ≤ |ζ − z| ≤ 2ε)

0 (otherwise)
.

Then we have f ∈ C∞(0,1)(VΩ × U1) and ∂̄zf = 0. By Theorem 3.7,
there exists a neighborhood U2 of ∂Ω with U2 ⊂⊂ U1 such that if we
set UΩ = Ω ∪ U2, then UΩ ⊂⊂ VΩ. It follows from Theorem 3.7 that there
exists a continuous linear operator T1 : C∞(0,1)(VΩ) → C∞(UΩ) such that
∂̄zT1(f(·, ζ))(z) = f(z, ζ) for z ∈ UΩ. Define u(z, ζ) = T1(f(·, ζ))(z). Then
u ∈ C∞(UΩ × U2) and ∂̄zu = f . For (z, ζ) ∈ UΩ × U2, we define

M(z, ζ) := e−u(z,ζ),

Φ(z, ζ) :=
{

F (z, ζ)M(z, ζ) (|ζ − z| ≤ ε)
exp[χ(ζ − z) logF (z, ζ)− u(z, ζ)] (|ζ − z| ≥ ε) .

Then we have the following theorem.
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Theorem 3.8 Φ(z, ζ) satisfies the following:

(a) Φ(z, ζ) is a C∞ function in UΩ × U2.
(b) Φ(z, ζ) is holomorphic with respect to z ∈ UΩ.
(c) Φ(z, ζ) �= 0 for (z, ζ) ∈ UΩ × U2 with |ζ − z| ≥ ε.
(d) There exists a C∞ function M(z, ζ) �= 0 in UΩ × U2 such that

Φ(z, ζ) = F (z, ζ)M(z, ζ) ((z, ζ) ∈ UΩ × U2, |ζ − z| ≤ ε).

Proof. (a) holds since u(z, ζ) is C∞ in UΩ × U2. If |z − ζ| ≤ ε, then

∂̄zΦ(z, ζ) = F (z, ζ)e−u∂̄z(−u) = −F (z, ζ)e−uf = 0.

If ε ≤ |z − ζ| ≤ 2ε, then

∂̄zΦ = exp[χ logF (z, ζ)− u(z, ζ)]∂̄z{χ(ζ − z) logF (z, ζ)− u(z, ζ)} = 0.

If 2ε ≤ |z − ζ|, then

∂̄zΦ(z, ζ) = e−u∂̄z(−u(z, ζ)) = −e−uf = 0,

which implies that Φ(z, ζ) is holomorphic with respect to z. This proves
(b). (c) and (d) follow from the definition of Φ(z, ζ). �

It follows from (3.19) that for (z, ζ) ∈ UΩ × U1 with ε ≤ |ζ − z| ≤ 2ε,
we have

ReF (z, ζ)− 2ρ(ζ) ≥ −ρ(ζ)− ρ(z) + β|ζ − z|2 ≥ βε
2

3
.

Hence we can define log(F (z, ζ) − 2ρ(ζ)) for (z, ζ) ∈ UΩ × U2 with ε ≤
|ζ − z| ≤ 2ε, . For (z, ζ) ∈ UΩ × U2, define

f̃(z, ζ) =
{
∂̄z [χ(ζ − z) log(F (z, ζ)− 2ρ(ζ))] (ε ≤ |ζ − z| ≤ 2ε)

0 (otherwise)
.

Then ∂̄z f̃ = 0. It follows from Theorem 3.7 that there exists a C∞ function
ũ(z, ζ) in UΩ × U2 such that ∂̄zũ = f̃ . In particular, if ζ ∈ ∂Ω, then
f̃(z, ζ) = f(z, ζ). Hence we obtain that ũ(z, ζ) = u(z, ζ) for ζ ∈ ∂Ω. Define

M̃(z, ζ) = e−ũ(z,ζ),

Φ̃(z, ζ) =

{
(F (z, ζ)− 2ρ(ζ))M̃ (z, ζ) (|ζ − z| ≤ ε)

exp(χ log(F (z, ζ)− 2ρ(ζ)) − ũ(z, ζ)) (|ζ − z| ≥ ε) .

Then we have the following theorem which is proved in the same way as
the proof of Theorem 3.8. So we omit the proof.
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Theorem 3.9 Φ̃(z, ζ) satisfies the following:

(a) Φ̃(z, ζ) is a C∞ function in UΩ × U2.
(b) Φ̃(z, ζ) is holomorphic with respect to z ∈ UΩ.
(c) Φ̃(z, ζ) �= 0 for (z, ζ) ∈ UΩ × U2 with |ζ − z| ≥ ε.
(d) There exists a C∞ function M̃(z, ζ) �= 0 in UΩ × U2 such that

Φ̃(z, ζ) = (F (z, ζ)− 2ρ(ζ))M̃(z, ζ) ((z, ζ) ∈ UΩ × U2, |ζ − z| ≤ ε).

(e) Φ̃(z, ζ) = Φ(z, ζ) for ζ ∈ ∂Ω.

In particular, it follows from (c) and (d) that Φ̃(z, ζ) �= 0 for (z, ζ) ∈
Ω× Ω\(∂Ω× ∂Ω).

Lemma 3.17 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let W = {zn = 0} ∩ UΩ. Let a function f ∈ C∞(W × U2)
satisfy f(·, ζ) ∈ O(W ). Then there exist an open set V0 with Ω ⊂ V0 ⊂ UΩ
and a function F ∈ C∞(V0 × U2) such that F (·, ζ) ∈ O(V0) (ζ ∈ U2), and

F ((z′, 0), ζ) = f((z′, 0), ζ) ((z′, 0) ∈ {zn = 0} ∩ V0, ζ ∈ U2).

Proof. We define a mapping π : Cn → Cn by π(z′, zn) = (z′, 0). SinceW
and UΩ − π−1(W ) are closed disjoint subsets of UΩ, there exists a function
χ ∈ C∞(UΩ) with the properties that χ = 1 in an open subset of UΩ
containingW , and χ = 0 in an open subset of UΩ containing UΩ−π−1(W ).
We set

α(z, ζ) =
∂̄z{χ(z)f(π(z), ζ)}

zn
.

It follows from the definition of χ that α ∈ C∞(0,1)(UΩ × U2). By Theorem
3.7, there exist an open set V , V0 (Ω ⊂ V0 ⊂⊂ V ⊂ UΩ), and a continuous
linear operator T1 : C∞(0,1)(V )→ C∞(V0) such that ∂̄T1(α(·, ζ))(z) = α(z, ζ)
for z ∈ V0. Define g(z, ζ) = T1(α(·, ζ))(z). Then g ∈ C∞(V0 × U2). If we
set F (z, ζ) = χ(z)f(π(z), ζ) − zng(z, ζ), then F (·, ζ) is holomorphic in V0.
F ∈ C∞(V0 × U2) and F (π(z), ζ) = f(π(z), ζ), which completes the proof
of Lemma 3.17. �

The following lemma is the parametrized version of Lemma 3.15.

Lemma 3.18 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary. Define

Mk = {z ∈ Cn | z1 = · · · = zk = 0}
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for 1 ≤ k ≤ n. If f(z, ζ) is of class C∞ in UΩ × U2 and holomorphic
with respect to z ∈ UΩ for ζ ∈ U2 fixed, and f(z, ζ) = 0 for z ∈ Mk ∩
UΩ, then there exist an open set V0 (Ω ⊂ V0 ⊂ UΩ) and C∞ functions
f1(z, ζ), · · · fk(z, ζ) in V0×U2 which are holomorphic with respect to z ∈ Ω
for ζ fixed such that

f(z, ζ) =
k∑

j=1

zjfj(z, ζ) ((z, ζ) ∈ V0 × U2).

Proof. Lemma 3.18 follows from Lemma 3.17 and the proof of Lemma
3.15. �

Lemma 3.19 Let Ω ⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let f(z, ζ) be of class C∞ in UΩ × U2 and holomorphic with
respect to z ∈ UΩ for ζ ∈ U2 fixed. Then there exist an open set V0
(Ω ⊂ V0 ⊂ UΩ) and C∞ functions f1, · · · , fn in V0 × V0 × U2 which are
holomorphic with respect to (z, w) ∈ V0 × V0 for ζ ∈ U2 fixed such that

f(w, ζ) − f(z, ζ) =
n∑

j=1

(wj − zj)fj(w, z, ζ)

for (w, z, ζ) ∈ V0 × V0 × U2.

Proof. Lemma 3.19 follows from Lemma 3.18 and the proof of Lemma
3.16. �

Theorem 3.10 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary. Then there exist a neighborhood V0 of Ω and C∞ functions
wj(z, ζ) for j = 1, · · · , n in V0 × U2 such that

Φ(z, ζ) =
n∑

j=1

(zj − ζj)wj(z, ζ) ((z, ζ) ∈ V0 × U2) .

Moreover, wj(z, ζ), j = 1, · · · , n, are holomorphic with respect to z ∈ V0
for ζ fixed.

Proof. By Lemma 3.19 there exist a neighborhood V0 and functions fj ∈
C∞(V0 × V0 × U2) such that fj(z, w, ζ) are holomorphic with respect to
(z, w) ∈ V0 × V0 for ζ fixed and

Φ(z, ζ)− Φ(w, ζ) =
n∑

j=1

(zj − wj)fj(z, w, ζ).
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We set w = ζ. Because of Φ(ζ, ζ) = 0, we have

Φ(z, ζ) =
n∑

j=1

(zj − ζj)fj(z, ζ, ζ).

If we set wj(z, ζ) = fj(z, ζ, ζ), then each wj(z, ζ) satisfies the desired con-
ditions. �

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞ boundary
and w(z, ζ) be the Leray map for Ω. For any f ∈ O(Ω) which is continuous
on Ω, the Cauchy-Fantappié formula (3.15) is expressed by

f(z) = (L∂Ωf)(z) =
(n− 1)!
(2πi)n

∫
ζ∈∂Ω

f(ζ)
ω′ζ(w(z, ζ)) ∧ ω(ζ)
< w(z, ζ), ζ − z >n

. (3.20)

Definition 3.13 Let Ω be a strictly pseudoconvex domain in Cn with
C∞ boundary. The kernel of the Cauchy-Fantappié formula (3.20) is called
the Henkin-Ramirez kernel.

We need the following lemma in order to prove 1
2 -Hölder estimate for

the ∂̄ problem in Ω. We omit the proof (see Exercise 3.1).

Lemma 3.20 Let Ω be a bounded domain in Rn with C1 boundary. Sup-
pose f ∈ C1(Ω) and that for some 0 < α < 1 there exists a constant C > 0
such that ‖df(x)‖ ≤ C[dist(x, ∂Ω)]α−1] for all x ∈ Ω. Then f ∈ Λα(Ω).

Now we are going to prove the 1
2 -Hölder estimate for the ∂̄ problem in

strictly pseudoconvex domains with smooth boundary.

Theorem 3.11 Let Ω be a strictly pseudoconvex domain in Cn with C∞

boundary. Let w be a Leray map defined in Theorem 3.10. Then for any
bounded differential form f on ∂Ω

‖R∂Ωf‖1/2,Ω ≤ C‖f‖0,Ω.

Proof. By definition R∂Ω is expressed by

(R∂Ω)(z)

=
∫
∂Ω×[0,1]

f ∧
n−2∑
s=0

psdet1,1,n−s−2,s

(
w

Φ
,
ζ̄ − z̄
|ζ − z|2 ,

∂̄ζw

Φ
,
dζ̄ − dz̄
|ζ − z|2

)
∧dλ ∧ ω(ζ).
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Hence the coefficients of the form R∂Ωf are linear combinations of the
integrals of the following type

E(z) =
∫
∂Ω

ψ

Φn−s−1|ζ − z|2s+2 ∧
j �=m

dζ̄j ∧ ω(ζ),

where ψ satisfies

|ψ| ≤ C|ζ − z|.

By Lemma 3.20, it is sufficient to prove that, for j = 1, · · · , n,∣∣∣∣∂E(z)
∂zj

∣∣∣∣ , ∣∣∣∣∂E(z)
∂z̄j

∣∣∣∣ ≤ C‖f‖0,Ω|ρ(z)|−1/2.
Therefore it is sufficient to show that for every ξ ∈ ∂Ω, there are a neigh-
borhood U and a constant C > 0 such that∫

∂Ω∩U

dσ2n−1
|Φ(z, ζ)|n−s−1|ζ − z|2s+2 ≤ C|ρ(z)|

−1/2

and ∫
∂Ω∩U

dσ2n−1
|Φ(z, ζ)|n−s|ζ − z|2s+1 ≤ C|ρ(z)|

−1/2,

where dσ2n−1 is the surface measure on ∂Ω. We can choose a local coor-
dinate system t = (t1, · · · , t2n−1) in U ∩ ∂Ω such that t1 = ImΦ(z, ζ) and
|t| ≈ |z − ζ|. It follows from (3.19) that∫

∂Ω∩U

dσ2n−1
|Φ(z, ζ)|n−s|ζ − z|2s+1 ≤ C

∫
|t|<R

dt1 · · · dt2n−1
(|t1|+ |t|2 + |ρ(z)|)n−s|t|2s+1 ,

where R is some positive constant. We set t′ = (t2, · · · , t2n−1). Then∫
∂Ω∩U

dσ2n−1
|Φ(z, ζ)|n−s|ζ − z|2s+1 ≤

∫
|t′|<R

dt2 · · ·dt2n−1
(|t′|2 + |ρ(z)|)n−s−1|t′|2s+1

≤ C
∫ R

0

r2n−3dr

(r2 + |ρ(z)|)n−s−1r2s+1

≤ C|ρ(z)|−1/2.

In the same way we obtain∫
∂Ω∩U

dσ2n−1
|Φ(z, ζ)|n−s−1|ζ − z|2s+2 ≤ C|ρ(z)|

−1/2.

�
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Corollary 3.5 Let Ω be a strictly pseudoconvex domain in Cn with
smooth boundary. For every continuous (0, q)-form f on D such that ∂̄f = 0
in Ω, 1 ≤ q ≤ n,

u = (−1)q(R∂Ωf +BΩf)

is a continuous solution of ∂̄u = f such that ‖u‖1/2,Ω ≤ C‖f‖0,Ω.

Proof. Corollary 3.5 follows from Lemma 3.7, Corollary 3.3 and Theorem
3.11. �

Example 3.1 (E. M. Stein) For α > 1
2 , there exist a strictly pseudo-

convex domain Ω and a continuous function f on Ω such that the equation
∂̄u = f does not have any solution satisfying u ∈ Λα(Ω).

Proof. Let Ω = {(z1, z2) ∈ Cn | |z1|2 + |z2|2 < 1}. We set

f(z1, z2) =

{
dz̄2

log(z1−1) ((z1, z2) ∈ Ω\{(1, 0)})
0 ((z1, z2) = (1, 0))

.

Then f is a C∞ (0, 1) form in Ω\{(1, 0)}. Since log(z1−1)→∞ as z1 →∞,
f is continuous on Ω. Further, ∂̄f = 0 in Ω. Suppose there exists u ∈ Λα(Ω)
such that ∂̄u = f for α > 1/2. Then (u− z̄2)/ log(z1− 1) is holomorphic in
Ω. Let ε be such that 0 < 2ε < 1. We set

C1 = {(z1, z2) ∈ C2 | z1 = 1− ε, |z2| =
√
ε},

C2 = {(z1, z2) ∈ C2 | z1 = 1− 2ε, |z2| =
√
ε}.

Then C1, C2 ⊂ Ω. By the Cauchy integral formula we have∫
|z2|=

√
ε

u(1− ε, z2)dz2 =
∫
|z2|=

√
ε

z̄2dz2
log(−ε) =

2πi
log(−ε) .

∫
|z2|=

√
ε

u(1− 2ε, z2)dz2 =
2πi

log(−2ε)
.

Since u ∈ Λα(Ω), there exists a constant C > 0 such that for every 0 <
2ε < 1, we have ∣∣∣∣ 1

log(−ε) −
1

log(−2ε)

∣∣∣∣ ≤ Cεα−1/2.
Consequently, for any 0 < 2ε < 1 we have

log 2 = | log(−2ε)− log(−ε)| ≤ Cεα−1/2| log(−ε) log(−2ε)|,
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which is a contradiction. �

As an application of Theorem 3.11, we have the following lemma.

Lemma 3.21 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let f be a holomorphic function in Ω that is continuous on
Ω. Then f can be approximated uniformly on Ω by functions holomorphic
in a neighborhood of Ω.

Proof. Let U = {Ui | i = 1, · · · , N} be a finite open cover of Ω. Choose
χj ∈ C∞c (Uj) such that

∑N
j=1 χj = 1 on Ω. Define

fj = L∂Ω(χjf),

where w is the Leray map defined in Theorem 3.10. By Corollary 3.2 we
have

f =
N∑
j=1

fj

and each fj is holomorphic in some neighborhood of Ω\(∂Ω ∩ Uj). By
Theorem 3.3 we have

fj = χjf +R∂Ω(f∂̄χj) +BΩ(f∂̄χj).

It follows from Lemma 3.7 that BΩ(f∂̄χj) is continuous on Ω. By Theorem
3.11 we have

‖R∂Ωf‖1/2,Ω ≤ C‖f‖0,Ω.

Hence Rw
∂Ωf is continuous on Ω. Hence each fj is continuous on Ω. It

is sufficient to show that each fj can be approximated uniformly on Ω by
functions holomorphic in a neighborhood of Ω. The required approximation
can be obtained by a shift in the direction of the normal vector of ∂Ω at
some point in ∂Ω ∩ Uj. �

Remark 3.3 Lemma 3.21 was first proved by Lieb [LI1]. The above proof
is due to Henkin-Leiterer [HER].

Suppose f is a continuous (0, q) form on Ω such that ∂̄f = 0. We
set Tq = (−1)q(R∂Ω + BΩ). By (3.16) or by Corollary 3.3 we have
f = ∂̄Tqf , which means that Tqf is a solution of the ∂̄ problem. Using
Tqf , Henkin [HEN2], Grauert-Lieb [GRL], Lieb [LI2; LI3], Kerzman [KER],
Ovrelid [OV], Henkin-Romanov [HEV] and Krantz [KR1] obtained Lp and
Hölder estimates for the ∂̄ problem in strictly pseudoconvex domains with
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smooth boundary. We proved 1
2 -Hölder estimate for the ∂̄ problem in

strictly pseudoconvex domains with smooth boundary in Corollary 3.5. In
4.2 we will prove Lp estimates for the ∂̄ problem in strictly pseudoconvex
domains with smooth boundary by applying the Berndtsson-Andersson for-
mula. Bruna and Burgués [BRG] obtained 1

2 -Hölder and Lp estimates for
the ∂̄ problem in strictly pseudoconvex domains with nonsmooth boundary
using the Berndtsson-Andersson formula. Siu [SI1] and Lieb-Range [LIR]
studied the differentiability for solutions of the ∂̄ problem in strictly pseu-
doconvex domains with smooth boundary. Moreover, in the finite intersec-
tion of strictly pseudoconvex domains with smooth boundary, Michel [MIC]
and Michel-Perotti [MIP] obtained Ck estimates, and Range-Siu [RAS]
and Menini [MEN] obtained Lp and Hölder estimates for the ∂̄ problem.
Menini used the Bendtsson-Andersson formula. Range [RAN1], Diederich-
Fornaess-Wiegerinck [DIK] and Chen-Krantz-Ma [CHK] obtained Hölder
and Lp estimates for the ∂̄ problem in real or complex ellipsoids. Bruna-
Castillo [BRJ], Polking [POL] and Range [RAN4] obtained Hölder and Lp

estimates for the ∂̄ problem in some convex domains. S.C. Chen [CH]
and Z. Chen [CHE] investigated the real analyticity for solutions of the
∂̄ problem in certain convex domains. Fischer-Lieb [FIL], Ho [Ho1],
Schmalz [SCH] and Ma [MA] investigated the ∂̄ problem in q-convex do-
mains. Fleron [FLE], Ho [Ho2] and Verdera [VER] obtained Hölder and
uniform estimates for the ∂̄ problem in some domains. On the other hand,
Kohn [KON] proved the global regurality for solutions of the ∂̄ problem
in pseudoconvex domains in Cn with smooth boundary, that is, if Ω is a
pseudoconvex domain in Cn with C∞ boundary and f is a C∞ (0, 1) form
on Ω with ∂̄f = 0, then there exists a C∞ function u on Ω such that ∂̄u = f
(see D’Angelo [DA]). Fefferman-Kohn [FEK] studied Hölder estimates for
the ∂̄ problem in pseudoconvex domains of finite type in C2 with smooth
boundary. Range [RAN3] also investigated the ∂̄ problem in pseudoconvex
domains of finite type in C2 with smooth boundary using the homotopy
formula.

3.3 Bounded and Continuous Extensions

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with smooth boundary
and let X be a submanifold in a neighborhood of Ω which intersects ∂Ω
transversally. In 1972, Henkin [HEN3] proved that every bounded holomor-
phic function in V = X∩Ω can be extended to a bounded holomorphic func-
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tion in Ω. Moreover, Henkin [HEN3] proved that if f is holomorphic in V

that is continuous on V , then f can be extended to a holomorphic function

in Ω that is continuous on Ω. In 1984, Henkin and Leiterer [HER] extended

Henkin’s results to strictly pseudoconvex domains with non-smooth bound-

ary in a Stein manifold without assuming the transversality. In 3.3 and 3.4,

we only treat the smooth domain and assume the transversality. We prove

first the bounded extension from complex hypersurfaces by following the

method of Henkin-Leiterer [HER], and then the continuous and bounded

extensions from submanifolds by following the method of Henkin [HEN3].

Let Ω be a strictly pseudoconvex domain in Cn with C∞ boundary.

Then there exists a neighborhood U of ∂Ω and a strictly plurisubharmonic

C∞ function ρ in U such that

U ∩ Ω = {z ∈ U | ρ(z) < 0}, dρ(z) 6= 0 (z ∈ ∂Ω).

Let U2 be the open set in Theorem 3.8. We choose ε0 > 0 such that

{ζ ∈ U | |ρ(ζ)| < 2ε0} ⊂⊂ U2. Let χ ∈ D(Cn) be a function with the

following properties:

(a) 0 ≤ χ ≤ 1.

(b) χ(ζ) = 1 for ζ ∈ U with ρ(ζ) ≥ −ε0.
(c) χ(ζ) = 0 for ζ ∈ (Ω − U) ∪ {ζ ∈ U | ρ(ζ) ≤ −2ε0}.

Define

ωζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
=

n
∧
j=1

dζ

(
χ(ζ)wj(z, ζ)

Φ̃(z, ζ)

)
. (3.21)

By Theorem 3.9 (d), the differential form in (3.21) is continuous with re-

spect to (z, ζ) ∈ Ω × Ω.

Definition 3.14 For an L1 function f in Ω, define

LΩf(z) :=
n!

(2πi)n

∫
Ω

f(ζ)ωζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ) (z ∈ Ω).

Since w(z, ζ) and Φ̃(z, ζ) are holomorphic with respect to z, LΩf is holo-

morphic in Ω.

Definition 3.15 For 0 ≤ λ ≤ 1, define

η̃j(z, ζ, λ) := (1 − λ)
χ(ζ)wj(z, ζ)

Φ̃(z, ζ)
+ λ

ζ̄j − z̄j
|ζ − z|2 , η̃ = (η̃1, · · · , η̃n),
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and

ω(η̃(z, ζ, λ)) :=
n
∧
j=1

(∂̄z,ζ + dλ)η̃j(z, ζ, λ).

Definition 3.16 For an L1 function f in Ω, define

RΩf(z) :=
n!

(2πi)n

∫
(ζ,λ)∈Ω×[0,1]

f(ζ) ∧ ω(η̃(z, ζ, λ)) ∧ ω(ζ) (z ∈ Ω).

Then RΩf(z) is continuous in Ω. If f is a (0, q) form, then RΩf is a (0, q−1)
form. In particular, if f is a function, then RΩf = 0.

Theorem 3.12 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary.

(a) Suppose f is an L1 function in Ω such that ∂̄f is an L1 form in Ω.
Then

f(z) = LΩf(z) +RΩ∂̄f(z) (z ∈ Ω).

(b) Suppose f is an L1(0, q) (1 ≤ q ≤ n) form in Ω such that ∂̄f is an L1

form in Ω. Then

f(z) = ∂̄RΩf(z) +RΩ∂̄f(z) (z ∈ Ω).

Proof. Let 0 ≤ q ≤ n. Suppose f is a continuous (0, q) form on Ω such
that ∂̄f is continuous on Ω. For z ∈ Ω, ζ ∈ Ω\{z} and 0 ≤ λ ≤ 1, define

ω′z,ζ,λ(η̃(z, ζ, λ)) :=
n∑

j=1

(−1)j+1η̃j(z, ζ, λ) ∧
k �=j

(∂̄z,ζ + dλ)η̃k(z, ζ, λ).

Then ωz,ζ,λ(η̃(z, ζ, λ)) is continuous for (z, ζ, λ) with z ∈ Ω, ζ ∈ Ω\{z}, 0 ≤
λ ≤ 1. Since Φ̃(z, ζ) �= 0 for (z, ζ) ∈ Ω × Ω, each term of ωz,ζ,λ(η̃(z, ζ, λ))
involving dλ is equal to O(|ζ − z|−(2n−2)). Hence∫

(ζ,λ)∈Ω×[0,1]
f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ), (z ∈ Ω)

is differentiable with respect to z ∈ Ω. Differentiating under the integral
sign and taking into account that dimR(Ω× [0, 1]) is odd, we have

∂̄z

∫
Ω×[0,1]

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

= −
∫
Ω×[0,1]

∂̄z[f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)],
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and

(∂z,ζ + dλ)ω′z,ζ,λ(η̃(z, ζ, λ)) = nω(η̃(z, ζ, λ)).

Consequently,

dζ,λ[f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)]

= ∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

+(−1)qnf(ζ) ∧ ω(η̃(z, ζ, λ)) ∧ ω(ζ)

−∂̄z[f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)].

Since

∂(Ω× [0, 1]) = ∂Ω× [0, 1] + (−1)dimRΩ × ∂([0, 1])
= ∂Ω× [0, 1]− Ω× {0}+ Ω× {1},

it follows from Stokes’ theorem that∫
Ω×[0,1]

∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ) + (−1)q
(2πi)n

(n− 1)!
RΩf(z)

−
∫
Ω×[0,1]

∂̄z[f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)]

=
∫
∂Ω×[0,1]

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

−
∫
Ω×{0}

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

+
∫
Ω×{1}

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ).

If ζ ∈ ∂Ω, then χ(ζ) = 1, and hence η̃(z, ζ, λ) = η(z, ζ, λ). Thus we obtain∫
∂Ω×[0,1]

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ) =
(2πi)n

(n− 1)!
R∂Ωf(z).

On the other hand we have∫
Ω×{1}

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ) =
(2πi)n

(n− 1)!
BΩf(z).
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Since η(z, ζ, 0) = χ(ζ)w(z, ζ)/Φ̃(z, ζ) is holomorphic with respect to z, we
have∫
Ω×{0}

f(ζ)∧ω′z,ζ,λ(η̃(z, ζ, λ))∧ω(ζ) =
∫
Ω

f(ζ)∧ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ω(ζ).

We set Tq = (−1)q(R∂Ω +BΩ). For z ∈ Ω, we have

RΩf(z) = Tqf(z)

+(−1)q+1
(n− 1)!
(2πi)n

[
∂̄z

∫
Ω×[0,1]

f(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

+
∫
Ω

f(ζ) ∧ ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ)

+
∫
Ω×[0,1]

∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

]
.

In the above equality, if we replace f by ∂̄f , then we have

RΩ∂̄f(z) = Tq+1∂̄f(z) + (−1)q
(n− 1)!
(2πi)n

×

[
∂̄z

∫
Ω×[0,1]

∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ)

+
∫
Ω

∂̄ζf(ζ) ∧ ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ)

]
(3.22)

for z ∈ Ω. By degree reasons we have for q ≥ 1∫
Ω

f(ζ) ∧ ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ) = 0. (3.23)

Since w(z, ζ) and Φ̃(z, ζ) are holomorphic with respect to z, we have

∂̄z

∫
Ω

f(ζ) ∧ ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ) = 0. (3.24)

It follows from (3.22), (3.23) and (3.24) that

∂̄RΩf(z) = ∂̄Tqf(z)
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+(−1)q+1
(n− 1)!
(2πi)n

∂̄z

∫
Ω×[0,1]

∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ). (3.25)

First we prove (b). Suppose q ≥ 1. Since the last integral in the right
side of (3.22) equals 0 by degree reasons, it follows from (3.22) and (3.25)
that

RΩ∂̄f + ∂̄RΩf = ∂̄Tqf + Tq+1∂̄f.

By Corollary 3.3, we have f = ∂̄Tqf + Tq+1∂̄f , which proves (b).
Next we prove (a). By Theorem 3.4, we have

f = L∂Ωf + T1∂̄f.

Since Φ̃(z, ζ) = Φ(z, ζ) for ζ ∈ ∂Ω, we have

L∂Ωf(z) =
(n− 1)!
(2πi)n

∫
∂Ω

f(ζ)ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ).

Since

dζω
′
ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
= nωζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
,

it follows from Stokes’ theorem that

L∂Ωf(z) =
(n− 1)!
(2πi)n

[∫
Ω

∂̄ζf(ζ)ω′ζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ)

]
+ LΩf(z).

(3.26)
Since q = 0, we obtain by degree reasons∫

Ω×[0,1]
∂̄ζf(ζ) ∧ ω′z,ζ,λ(η̃(z, ζ, λ)) ∧ ω(ζ) = 0.

Hence we have together with (3.22) and (3.26)

RΩ∂̄f(z) = T1∂̄f(z) + L∂Ωf(z)− LΩf(z).

This proves (a). In the general case, Theorem 3.12 is proved using the fact
that f and ∂̄f can be approximated in L1 norm by continuous functions
with compact support. �

Definition 3.17 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary. Define

X := {z ∈ Cn | zn = 0}.
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For ζ = (ζ1, · · · , ζn) ∈ Cn, define ζ′ = (ζ1, · · · , ζn−1). Further, we define

∂ζ′ :=
n−1∑
j=1

∂

∂ζj
dζj , ∂̄ζ′ :=

n−1∑
j=1

∂

∂ζ̄j
dζ̄j ,

dζ′ := ∂̄ζ′ + ∂ζ′ , ωζ′(ζ) = dζ1 ∧ · · · ∧ dζn−1,

and

(w′(z, ζ)) := (w1(z, ζ), · · · , wn−1(z, ζ)),

where w(z, ζ) = (w1(z, ζ), · · · , wn(z, ζ)) is the Leray map defined in Theo-
rem 3.10. Define

ωζ′

(
χ(ζ)(w(z, ζ))′

Φ̃(z, ζ)

)
:=

n−1
∧
j=1

∂̄ζ′

(
χ(ζ)wj(z, ζ)

Φ̃(z, ζ)

)
.

By Theorem 3.9, there exists a neighborhood U∂Ω\X of ∂Ω\X such that

Φ̃(z, ζ) �= 0 (ζ ∈ X ∩ Ω, z ∈ Ω ∪ U∂Ω\X).

We set V = X ∩ Ω. For f ∈ O(V ) ∩ L1(V ) and z ∈ Ω ∪ U∂Ω\V , define

Ef(z) :=
(n− 1)!
(2πi)n−1

∫
V

f(ζ)ωζ′

(
χ(ζ)(w(z, ζ))′

Φ̃(z, ζ)

)
∧ ωζ′(ζ). (3.27)

The following theorem follows from Theorem 3.12.

Theorem 3.13 Let f ∈ O(V ) ∩ L1(V ). Then Ef is holomorphic in
Ω ∪ U∂Ω\V and satisfies

Ef(z) = f(z) (z ∈ V ).

Definition 3.18 Let Ω ⊂⊂ Cn be a domain with C∞ boundary. Suppose
there exist a neighborhood Ω̃ of Ω and a C∞ function ρ in Ω̃ such that
Ω = {z ∈ Ω̃ | ρ(z) < 0}. Let X be a k dimensional complex submanifold
in a neighborhood of Ω. We set V = X ∩Ω. Let P ∈ ∂V . Then there exist
a neighborhood U (P ) of P and a holomorphic coordinate system f

(P )
1 , · · · ,

f
(P )
n in U (P )such that

U (P ) ∩X = {z ∈ U (P ) | f (P )1 (z) = · · · = f (P )n−k(z) = 0}.

We say that X intersects ∂Ω transversally if

df
(P )
1 (P ) ∧ · · · ∧ df (P )n−k(P ) ∧ dρ(P ) �= 0
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for every point P ∈ ∂Ω ∩X . Moreover, in this case we say that the sub-
manifold X ∩ Ω of Ω is a submanifold in general position of Ω.

In what follows we assume that X intersects ∂Ω transversally.

Definition 3.19 Let U2 be the neighborhood of ∂Ω in Theorem 3.8. For
(z, ζ) ∈ Ω× U2, define

Φ∗(z, ζ) = Φ(ζ, z), ∗w(z, ζ) = −w(ζ, z),

∗w′(z, ζ) = (∗w1(z, ζ), · · · , ∗wn−1(z, ζ)).

The following lemma was proved by Henkin-Leiterer [HER]. In their
proof the transversality is not assumed. For simplicity, we assume that X
intersects ∂Ω transversally in the following lemma.

Lemma 3.22 If f is a bounded holomorphic function in V = X∩Ω, then

Ef(z)

= zn
(−1)n−1

(2πi)n−1

∫
X∩Ω

f(ζ)det1,n−1

(
∗w(z, ζ)
Φ∗(z, ζ)

, ∂̄ζ′
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ωζ′(ζ)

for z ∈ ∂Ω\V .

Proof. By applying the expansion formula of the determinant to the n-th
column, we have

(−1)ndet1,n−1

(∗w
Φ∗
, ∂̄ζ′

χw

Φ̃

)

= (−1)n

∣∣∣∣∣∣∣∣∣
∗w1
Φ∗

∗w2
Φ∗ · · ·

∗wn

Φ∗

∂̄ζ′ χw1

Φ̃
∂̄ζ′ χw2

Φ̃
· · · ∂̄ζ′ χwn

Φ̃

· · · · · · · · · · · ·
∂̄ζ′ χw1

Φ̃
∂̄ζ′ χw2

Φ̃
· · · ∂̄ζ′ χwn

Φ̃

∣∣∣∣∣∣∣∣∣
= −

∗wn

Φ∗
detn−1

(
∂̄ζ′
χw′

Φ̃

)
+(n− 1)∂̄ζ′

χwn

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
.

We have by the definition of the determinant

detn−1

(
∂̄ζ′
χw′

Φ̃

)
= (n− 1)!

n−1
∧
j=1

∂̄ζ′
χw′j

Φ̃
= (n− 1)!ωζ′

(
χw′

Φ̃

)
. (3.28)
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For ζ ∈ V we have

n∑
j=1

∗wj(z, ζ)(ζj − zj)
Φ∗(z, ζ)

= −1.

Consequently,

−zn
∗wn

Φ∗
= −1−

n−1∑
j=1

(ζj − zj)
∗wj

Φ∗
. (3.29)

Since

n∑
j=1

χwj(ζj − zj)
Φ̃

+
χΦ

Φ̃
= 0,

it follows that for ζ ∈ V

zn∂̄ζ′
χwn

Φ̃
=

n−1∑
j=1

(ζj − zj)∂̄ζ′
χwj

Φ̃
+ ∂̄ζ′

χΦ

Φ̃
.

Therefore, together with (3.28) and (3.29), we obtain for ζ ∈ V ,

zn(−1)ndet1,n−1

(∗w
Φ∗
, ∂̄ζ′

χw

Φ̃

)

=

−1−
n−1∑
j=1

(ζj − zj)
∗wj

Φ∗

 (n− 1)!ωζ′

(
χw′

Φ̃

)

+(n− 1)
n−1∑
j=1

(ζj − zj)∂̄ζ′
χwj

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)

+(n− 1)∂̄ζ′
χΦ

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
.

On the other hand we have

∂̄ζ′
χwj

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
= ∂̄ζ′

χwj

Φ̃
∧
∑

σ(1)=j

sgn(σ)
∗wσ(1)

Φ∗
∂̄ζ′
χwσ(2)

Φ̃
∧ · · · ∧ ∂̄ζ′

χwσ(n−1)

Φ̃
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= (n− 2)!
∗wj

Φ∗
∂̄ζ′
χw1

Φ̃
∧ · · · ∧ ∂̄ζ′

χwn−1

Φ̃

= (n− 2)!
∗wj

Φ∗
ωζ′

(
χw′

Φ̃

)
.

Hence we have for ζ ∈ V

zn(−1)ndet1,n−1

(
∗w(z, ζ)
Φ∗(z, ζ)

, ∂̄ζ′
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)

= −(n− 1)!ωζ′

(
χw′

Φ̃

)
+(n− 1)∂̄ζ′

χΦ

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
.

Now we set

I(z) =
∫
V

f(ζ)∂̄ζ′
χΦ

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
∧ ωζ′(ζ).

Since ∗w(z, ζ), Φ∗(z, ζ) and f(ζ) are holomorphic with respect to ζ, it
follows from Stokes’ theorem that

I(z) =
∫
V

∂̄ζ′

{
f(ζ)

χΦ

Φ̃
∧ det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)}
∧ ωζ′(ζ)

=
∫
∂V

f(ζ)
χΦ

Φ̃
det1,n−2

(∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)
∧ ωζ′(ζ).

Since Φ(z, ζ) = Φ̃(z, ζ) and χ(ζ) = 1 for ζ ∈ ∂Ω, it follows from Stokes’
theorem that

I(z) =
∫
V

∂̄ζ′

{
f(ζ)det1,n−2

( ∗w′
Φ∗
, ∂̄ζ′

χw′

Φ̃

)}
∧ ωζ′(ζ) = 0,

which completes the proof of Lemma 3.22. �

Lemma 3.23 There exists a constant C > 0 such that for all z ∈ ∂Ω\V
the following estimates hold:

(a) ∫
ζ∈V

dVn−1(ζ)
|ζ − z|2n−1 ≤

C

|zn|
.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

162 Several Complex Variables and Integral Formulas

(b) ∫
ζ∈V ∩U2

dVn−1(ζ)

|Φ̃(z, ζ)| |Φ∗(z, ζ)||ζ − z|2n−4
≤ C

|zn|
.

(c) ∫
ζ∈V ∩U2

dVn−1(ζ)

|Φ̃(z, ζ)|2|Φ∗(z, ζ)||ζ − z|2n−5
≤ C

|zn|
,

where dVn−1 denotes the Lebesgue measure on Cn−1.

Proof. In what follows we denote by C any constant which depends only
on Ω and V .

(a) we have∫
ζ∈V

dVn−1(ζ)
|ζ − z|2n−1 ≤

∫
V

dVn−1(ζ)
(|zn|2 + |ζ′ − z′|2)2|ζ′ − z′|2n−5 .

We set ζj − zj = tj + itj+n−1 for j = 1, · · · , n− 1. Then∫
ζ∈V

dVn−1(ζ)
|ζ − z|2n−1 ≤

∫
|t|≤C

dt1 · · · dt2n−2
(|zn|2 + |t|2)2|t|2n−5

≤
∫
r≤C

r2n−3dr

(|zn|2 + r2)2r2n−5
≤ C

|zn|
.

This proves (a).
(b) We set ζ′ = (ζ1, · · · , ζn−1) and z′ = (z1, · · · , zn−1). Let z0 ∈ ∂V .

We may assume that (∂ρ/∂z1)(z0) �= 0. Let U be a neighborhood of z0

such that (∂ρ/∂z1)(z) �= 0 for z ∈ U . For z, ζ ∈ U , define

t2j−1(ζ) = Re (ζj − zj), t2j(ζ) = Im (ζj − zj) j = 2, · · · , n− 1,

t1(ζ) = ρ(ζ) − ρ(z), t2(ζ) = ImΦ(z, ζ).

Then

∂t2
∂x2j

(z) = −1
2

∂ρ

∂x2j−1
(z),

∂t2
∂x2j−1

(z) =
1
2
∂ρ

∂x2j
(z).

Consequently,

∂(t1, · · · , t2n−2)
∂(x1, · · · , x2n−2)

= 2
∣∣∣∣ ∂ρ∂ζ1

∣∣∣∣2 �= 0

Hence t1, · · · , t2n−2 form a local coordinate system in U .
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Since ρ(z) = 0, it follows from (3.19) that

|Φ∗(z, ζ)| ≥ |Φ(ζ, z)| ≥ C|F (ζ, z)| ≥ C(|t1|+ |ζ − z|2),

|Φ̃(z, ζ)| ≥ C(|t1|+ |ζ − z|2).

Hence we have ∫
ζ∈X∩Ω∩U2

dVn−1(ζ)

|Φ̃(z, ζ)| |Φ∗(z, ζ)||ζ − z|2n−4

≤
∫
|t|≤C

dt1 · · · dt2n−2
(|zn|2 + |t1|+ |t|2)2|t|2n−4

.

We set t′ = (t2, · · · , t2n−2). Then∫
|t|≤C

dt1 · · · dt2n−2
(|zn|2 + |t1|+ |t|2)2|t|2n−4

≤
∫
|t′|≤C

dt2 · · · dt2n−2
(|zn|2 + |t′|2)|t′|2n−4

≤ C

|zn|

∫ ∞
0

dy

1 + y2
≤ C

|zn|
.

This proves (b).
(c) We have

|Φ∗(z, ζ)| = |Φ(ζ, z)| ≥ C(|t1|+ |t2|+ |ζ − z|2),

|Φ̃(z, ζ)| ≥ C(|t1|+ |t2|+ |ζ − z|2).

We set t′′ = (t3, · · · , t2n−2). Then we have∫
ζ∈V ∩U2

dVn−1(ζ)

|Φ̃(z, ζ)|2|Φ∗(z, ζ)||ζ − z|2n−5

≤
∫
|t|≤C

dt1 · · · dt2n−2
(|zn|2 + |t1|+ |t2|+ |t|2)3|t|2n−5

≤
∫
|t′′|≤C

dt3 · · ·dt2n−2
(|zn|2 + |t′′|2)3|t′′|2n−5

≤ C

|zn|
.

This proves (c). �

Theorem 3.14 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary and let X = {z ∈ Cn | zn = 0}, V = Ω∩X. Assume that X
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intersects ∂Ω transversally. If f is a bounded holomorphic function in V ,
then there exists a constant C > 0 such that

|Ef(z)| ≤ C sup
ζ∈V

|f(ζ)|

for z ∈ ∂Ω\V .

Proof. We set U3 = {z ∈ U | |ρ(z)| < ε0}. Since χ = 1 in U3, we have

det1,n−1

(∗w
Φ∗
, ∂̄ζ′

χw

Φ̃

)
= det1,n−1

(
∗w

Φ∗
,
∂̄ζ′w

Φ̃
− w∂̄ζ

′Φ̃

Φ̃2

)
.

It follows from Lemma 3.4 that any determinant which contains w ∂̄ζ′ Φ̃
Φ̃2 in

two columns equals 0. Hence we have

det1,n−1

(∗w
Φ∗
, ∂̄ζ′

χw

Φ̃

)
= c1det1,n−1

(∗w
Φ∗
,
∂̄ζ′w

Φ̃

)
+ c2det1,1,n−2

(
∗w

Φ∗
, w
∂̄ζ′Φ̃

Φ̃2
,
∂̄ζ′w

Φ̃

)
.

Since

∗w(z, ζ) + w(z, ζ) = −w(ζ, z) + w(z, ζ) = O(|ζ − z|),

we have

det1,1,n−2

(
∗w

Φ∗
, w
∂̄ζ′ Φ̃

Φ̃2
,
∂̄ζ′w

Φ̃

)

= det1,1,n−2

(
O(|ζ − z|)

Φ∗
, w
∂̄ζ′Φ̃

Φ̃2
,
∂̄ζ′w

Φ̃

)
.

It follows from (3.19) that

|Φ̃(z, ζ)| ≥ α|ζ − z|2, |Φ∗(z, ζ)| ≥ α|ζ − z|2.

Hence we obtain∣∣∣∣det1,n−1

(∗w
Φ∗
,
∂̄ζ′w

Φ̃

)∣∣∣∣ ≤ C

|Φ∗| |Φ̃|n−1
≤ C

|Φ∗| |Φ̃| |ζ − z|2n−4
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and ∣∣∣∣∣det1,1,n−2

(
O(|ζ − z|)

Φ∗ , w
∂̄ζ′ Φ̃

Φ̃2
,
∂̄ζ′w

Φ̃

)∣∣∣∣∣
≤ C|ζ − z|

|Φ∗| |Φ̃|n
≤ C

|Φ∗| |Φ̃|2|ζ − z|2n−5
.

Using Lemma 3.23, we have the desired inequality. �
Theorem 3.15 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with

C∞ boundary and let X = {z ∈ Cn | zn = 0}, V = Ω∩X. Assume that X

intersects ∂Ω transversally. If f is a bounded holomorphic function in V ,

then Ef is a bounded holomorphic function in Ω satisfying Ef = f on V .

Moreover, there exists a constant C > 0 such that

sup
z∈Ω

|F (z)| ≤ C sup
z∈V

|f(z)|.

Proof. By Theorem 3.13, Ef is holomorphic in Ω ∪ U∂Ω\X . Let Xa =

{z ∈ Cn | zn = a}. If a 6= 0, then Ef is holomorphic in the closure of Ω∩Xa.

Hence by the maximum principle, |Ef | has the maximum in ∂(Ω∩Xa). It

follows from Theorem 3.14 that |Ef(z)| ≤ C‖f‖V for z ∈ ∂(Ω∩Xa), which

means that |Ef(z)| ≤ C‖f‖V for z ∈ Ω\X . Since Ef is holomorphic in Ω,

|Ef(z)| ≤ C‖f‖V for z ∈ Ω\(∂Ω ∩X). Hence Ef is bounded in Ω. �
Next we prove bounded and continuous extensions of holomorphic func-

tions from submanifolds in general position of strictly pseudoconvex do-

mains in Cn with smooth boundary by the method of Henkin [HEN3]. For

simplicity, we assume that the codimension of submanifolds is one. The

general case can be proved in the same way.

Definition 3.20 Let D be an open set in a complex manifold. We denote

by H∞(D) the Banach space of all bounded holomorphic functions in D.

We also denote by A(D) the Banach space of all continuous functions on

D that are holomorphic in D.

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞ boundary and

let H be a holomorphic function in a neighborhood Ω̃ of Ω. We set X =

{z ∈ Ω̃ | H(z) = 0} and V = X ∩ Ω. Assume that X intersects ∂Ω

transversally. By Lemma 3.16, there are holomorphic functions h1, · · · , hn
in a neighborhood of Ω × Ω such that for z, ζ ∈ Ω

H(z) −H(ζ) =

n∑
i=1

(zi − ζi)hi(z, ζ).
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By Theorem 3.10 there exist C∞ functions w1(z, ζ), · · · , wn(z, ζ) in a neigh-

borhood of Ω × ∂Ω holomorphic with respect to z such that

Φ(z, ζ) =

n∑
j=1

wj(z, ζ)(zj − ζj),

where Φ(z, ζ) is the function defined in Theorem 3.8. Define

α(z, ζ) = −(−1)n(n+1)/2det(wj , hj,

n−2︷ ︸︸ ︷
∂̄ζwj , · · · , ∂̄ζwj),

β(ζ) =

 n∑
j=1

∣∣∣∣∂H∂ζj (ζ)

∣∣∣∣2
−2

det

∂H
∂ζj

(ζ),

n−1︷ ︸︸ ︷
dζj , · · · , dζj

 .

Define

K(z, ζ) = α(z, ζ) ∧ β(ζ).

Then Stout [STO] and Hatziafratis [HAT1] proved the following theorem.

We omit the proof.

Theorem 3.16 Let f ∈ A(V ). Then

f(z) =

∫
∂V

f(ζ)
K(z, ζ)

Φ(z, ζ)n−1

for all z ∈ V .

Remark 3.4 Stout [STO] obtained the integral formula on submanifolds

of one codimension, and then Hatziafratis [HAT1] extended the integral for-

mula obtained by Stout to the formula on submanifolds of any codimension.

In what follows, we prove bounded and continuous extensions by following

Henkin [HEN3]. Let Ω = {z | ρ(z) < 0} be a strictly convex domain in

Cn with C∞ boundary and let X = {zn = 0}, V = X ∩ Ω. Assume that

X intersects ∂Ω transversally. We may assume that 0 ∈ Ω. Let f be a

bounded holomorphic function in V . It follows from Fatou’s theorem (see

Stein [STE]) that there is a bounded measurable function f∗ on ∂V such

that

f∗(ζ) = lim
θ↑1

f(θζ)

for almost all ζ ∈ ∂V . Then we have the following lemma.
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Lemma 3.24 For z ∈ V , we have

f(z) =
∫
ζ∈∂V

f∗(ζ)
K(z, ζ)

Φ(z, ζ)n−1
.

Proof. Let 0 < θ < 1. We set F (z) = f(θz) for z ∈ V . Then F is
holomorphic in a neighborhood of V . We fix z0 ∈ V . It follows from
Theorem 3.16 that

F (z0) =
∫
ζ∈∂V

F (ζ)
K(z0, ζ)

Φ(z0, ζ)n−1
.

Consequently,

f(
z0
θ

) =
∫
ζ∈∂V

f(θζ)
K(z0, ζ)

Φ(z0, ζ)n−1
.

By Lebesgue’s dominated convergence theorem, we may pass the limit un-
der the integral sign as θ → 1 in the above equality. �

Definition 3.21 Let f be a bounded holomorphic function in V and let
f∗ be the boundary value of f on ∂V . For z ∈ Ω, define

E1f(z) =
∫
∂V

f∗(ζ)
K(z, ζ)

Φ(z, ζ)n−1
. (3.30)

Then E1f is holomorphic in a neighborhood of Ω\∂V and E1f |V = f . If
f ∈ A(V ), then f |∂V = f∗.

Let Ω = {z | ρ(z) < 0} be a strictly convex domain in Cn with C∞

boundary and let X = {zn = 0}, V = X ∩ Ω. Assume that X intersects
∂Ω transversally. We fix a point z∗ ∈ ∂V . Suppose

∂ρ

∂z1
(z∗) �= 0.

Then there exists a constant σ1 > 0 such that ∂ρ
∂z1

(z) �= 0 for all z ∈
B(z∗, σ1).

In this setting, we prove Lemma 3.25, Lemma 3.26, Lemma 3.27, The-
orem 3.17 and Theorem 3.18.

Lemma 3.25 For z ∈ B(z∗, σ1), we consider a system of equations for
ζ∗ = (ζ∗1 , · · · , ζ∗n) of the following form:

n∑
i=1

∂ρ

∂ζi
(ζ∗)(ζ∗i − zi) = 0, (3.31)
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ζ∗i = zi (i = 2, · · · , n− 1), ζ∗n = 0. (3.32)

Then there exist positive constants σ2, γ1 and γ2 depending only on Ω and
V , such that for any z ∈ B(z∗, σ2) there exists a unique solution ζ∗ =
ζ∗(z) of the system of equations (3.31) and (3.32) which belongs to the set
B(z∗, σ2) ∩X. Moreover, the point ζ∗ has the following properties:

|z − ζ∗|2 ≤ 1
γ1
{ρ(z)− ρ(ζ∗)},

|z − ζ∗|2 ≥ |zn|2 ≥ γ2{ρ(z)− ρ(ζ∗)},

ζ∗ = z for z ∈ B(z∗, σ2) ∩X.

Proof. (3.31) can be written

ζ∗1 = z1 +
∂ρ

∂zn
(ζ∗)

(
∂ρ

∂z1
(ζ∗)
)−1

zn.

Define

g(ζ) =
∂ρ

∂zn
(ζ)
(
∂

∂z1
(ζ)
)−1

.

We choose σ2 > 0 so small that |dg(ζ)||zn| ≤ 1/2 for z, ζ ∈ B(z∗, σ2).
Define {ζ(j)} by recurrence such that

ζ
(1)
1 = z1,

ζ(j) = (ζ(j)1 , z2, · · · , zn−1, 0),
ζ
(j+1)
1 = z1 + g(ζ(j))zn.

Then |ζ(j)1 − ζ(j−1)1 | ≤ 1
2 |ζ

(j−1)
1 − ζ(j−2)1 |, and hence {ζ(j)} converges. Let

limj→∞ ζ
(j) = ζ∗. Then ζ∗ satisfies (3.31) and (3.32). The strict convexity

of ρ yields for some positive constants γ1 and C1

ρ(ζ∗)− ρ(z) + γ1|ζ∗ − z|2 ≤ 2Re
n∑

j=1

∂ρ

∂ζj
(ζ∗)(ζ∗j − zj) = 0

ρ(ζ∗)− ρ(z) + C1|ζ∗ − z|2 ≥ 2Re
n∑

j=1

∂ρ

∂ζj
(ζ∗)(ζ∗j − zj) = 0.
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Since ζ∗1 = z1 + g(ζ∗)zn, there exists a constant C2 such that |ζ∗1 − z1| ≤
C2|zn|. Hence ζ∗ satisfies the desired inequalities. If there are two solutions
ζ∗ and ζ̃∗. Then we have

|ζ∗1 − ζ̃∗1 | ≤ ‖dg‖|ζ∗1 − ζ̃∗1 ||zn| ≤ 1/2|ζ∗1 − ζ̃∗1 |,

which implies that ζ∗ = ζ̃∗. �

Lemma 3.26 For any z∗ ∈ ∂V and any z ∈ (∂Ω\∂V ) ∩ B(z∗, σ2) we
have ∣∣∣∣ d(E1f)(ζ∗ + λ(z − ζ∗))

dλ

∣∣∣∣
λ=1

∣∣∣∣ ≤ C sup
ζ∈V

|f(ζ)|

where ζ∗ = ζ∗(z) and σ2 are from Lemma 3.25 and the constant C depends
only on Ω and V .

Proof. Since
n∑

j=1

∂ρ

∂ζi
(ζ∗)(ζ∗i − zi) = 0

and
∂Φ
∂zi

(z, ζ∗) = −2
∂ρ

∂ζi
(ζ∗) +O(|ζ∗ − z|),

we have∣∣∣∣∣
n∑

i=1

∂Φ
∂zi

(z, ζ)(ζ∗i − zi)
∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(
∂Φ
∂zi

(z, ζ) + 2
∂ρ

∂ζi
(ζ∗)
)

(ζ∗i − zi)
∣∣∣∣∣

≤
∣∣∣∣∣

n∑
i=1

(
∂Φ
∂zi

(z, ζ)− ∂Φ
∂zi

(z, ζ∗) +O(|ζ∗ − z|)
)

(ζ∗i − zi)
∣∣∣∣∣

≤ Cε(|ζ − z|+ ε),

where ε = |zn|. Then we have∣∣∣∣ d(E1f)(ζ∗ + λ(z − ζ∗))
dλ

∣∣∣∣
λ=1

∣∣∣∣ = ∣∣∣∣ d(E1f)(z + λ(z − ζ∗))
dλ

∣∣∣∣
λ=0

∣∣∣∣
≤ C

∫
∂V ∩B(z∗,σ2)

|f∗(ζ)||z − ζ∗|
|Φ(z, ζ)|n dσ2n−3(ζ)

+C
∫
∂V ∩B(z∗,σ2)

|f∗(ζ)|ε(|ζ − z|+ ε)
|Φ(z, ζ)|n dσ2n−3(ζ).
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We choose a local coordinate system (t1, t2, · · · , t2n) in B(z∗, σ2) such that
t1 + it2 = ρ(ζ) − ρ(z) + iImΦ(z, ζ). Then we obtain∣∣∣∣ d(E1f)(ζ∗ + λ(z − ζ∗))

dλ

∣∣∣∣
λ=1

∣∣∣∣ ≤ C sup
ζ∈V

|f(ζ)|.
�

Theorem 3.17 If f ∈ H∞(V ), then E1f ∈ H∞(Ω). Moreover, E1 :
H∞(V )→ H∞(Ω) defines a bounded linear operator.

Proof. Let σ > 0. Let f be a bounded holomorphic function in V . Since
E1f is holomorphic in Ω\∂V , it is sufficient to prove that

sup
z∈∂Ω\∂V

|E1f(z)| ≤ C sup
ζ∈V

|f(ζ)|.

It is easily proved that supz∈∂Ω\(∂V )σ |E1f(z)| ≤ C supζ∈V |f(ζ)|, where
(∂V )σ is the σ-neighborhood of ∂V . Therefore, it is sufficient to show that

sup
z∈{(∂V )σ\∂V }∩∂Ω

|E1f(z)| ≤ C sup
ζ∈V

|f(ζ)|.

Let z ∈ {(∂V )σ\∂V } ∩ ∂Ω. We set

∆ = {λ ∈ C | z(λ) = ζ∗ + λ(z − ζ∗) ∈ Ω}.

Then ∆ is a convex domain containing λ = 0 since Ω is convex. Since
ρ(z) = 0, we have by Lemma 3.25

ε2

γ1
≤ −ρ(ζ∗) ≤ ε2

γ2
.

If λ ∈ ∂∆, then z(λ) ∈ ∂Ω, and hence ρ(z(λ)) = 0. Then

|z(λ)− ζ∗| ≤ 1
√
γ1

√
ρ(z)− ρ(ζ∗) ≤ ε

√
γ1γ2

for λ ∈ ∂∆. Consequently,

|z(λ)− z∗| ≤ |z(λ)− ζ∗|+ |ζ∗ − z∗|

≤ σ
√
γ1γ2

+
σ2
4
.

We impose the further assumption that the constant σ < σ2
√
γ1γ2/4. Then

|z(λ)−z∗| < σ2/2. Then ζ∗ = ζ∗(z) satisfies (3.31) and (3.32) for z(λ) with
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λ ∈ ∂∆, and hence ζ(z(λ)) = ζ∗(z) for any λ ∈ ∂∆. Moreover, it follows
from Lemma 3.25 that

ε
√
γ1γ2

|λ|ε ≥ |λ|
√
γ1

√
ρ(z)− ρ(ζ∗) ≥ |λ||z − ζ∗| = |z(λ)− ζ∗| ≥ ε

for λ ∈ ∂∆. Consequently,

|λ| ≥ √γ1γ2 for any λ ∈ ∂∆.

Since

d(E1f)(ζ∗ + t(z(λ)− ζ∗))
dt

∣∣∣∣
t=1

=
d(E1f)(ζ∗ + λ(z − ζ∗))

dλ
λ,

we obtain for some constant C1 > 0 and C2 > 0,∣∣∣∣d(E1f)(ζ∗ + λ(z − ζ∗))
dλ

∣∣∣∣ ≤ C1|λ| sup
ζ∈V

|f(ζ)| ≤ C2 sup
ζ∈V

|f(ζ)|

for every λ ∈ ∂∆. Since the function d(E1f)(ζ∗ + λ(z − ζ∗))/dλ is holo-
morphic for all λ ∈ ∆, we have for some constant C3 > 0

sup
λ∈∆

∣∣∣∣d(E1f)(ζ∗ + λ(z − ζ∗))
dλ

∣∣∣∣ ≤ C3 sup
ζ∈V

|f(ζ)|.

Consequently, there exists a constant C4 > 0 such that

|E1f(z)− E1f(ζ∗)| =
∣∣∣∣∫ 1

0

d

dλ
E1f(ζ∗ + λ(z − ζ∗))dλ

∣∣∣∣ ≤ C4 sup
ζ∈V

|f(ζ)|.

Since ζ∗ ∈ V , we have E1f(ζ∗) = f(ζ∗). Hence there exists a constant
C5 > 0 such that

sup
z∈{(∂V )σ\∂V }∩∂Ω

|E1f(z)| ≤ C5 sup
ζ∈V

|f(ζ)|,

which completes the proof of Theorem 3.17. �

Lemma 3.27 Let V ′ be a domain with smooth boundary in X such that
V ⊂ V ′. We denote by C any positive constant which depends only on Ω,
V and V ′. Then for z ∈ Ω and ε = |zn|,

(a) ∫
V ′\V

1
|Φ(z, ζ)|n dVn−1(ζ) ≤ C| log ε|.
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(b) ∫
V ′\V

|z − ζ|
|Φ(z, ζ)|n+1

dVn−1(ζ) ≤ C
1

ε
.

(c) ∫
V ′\V

|z − ζ|2
|Φ(z, ζ)|n+1

dVn−1(ζ) ≤ C| log ε|.

Proof. We may assume that |z − ζ| < ε, where ε is the constant in

Theorem 3.8. By contracting V ′ if necessary, it follows from (3.19) that

2ReΦ(z, ζ) ≥ ρ(ζ) − ρ(z) + β|ζ − z|2

for (z, ζ) ∈ {Ω × (V ′\V )} ∩ {(z, ζ) | |ζ − z| < ε}. We can choose a local

coordinate system t = (t1, · · · , t2n−2) such that ρ(ζ) = t1, ImΦ(z, ζ) = t2.

We set t′ = (t3, · · · , t2n−2). Then

(a)∫
V ′\V

1

|Φ(z, ζ)|n dVn−1(ζ) ≤ C

∫
|t|≤R

dt1 · · ·dt2n−2

(|t′|2 + ε2 + |t1| + |t2|)n

≤ C

∫
|t′|≤R

dt3 · · ·dt2n−2

(|t′|2 + ε2)n−2

≤ C

∫ R

0

r2n−5

(r2 + ε2)n−2
dr

≤ C| log ε|.

(b) ∫
V ′\V

|z − ζ|
|Φ(z, ζ)|n+1

dVn−1(ζ)

≤ C

∫
V ′\V

1

(|z − ζ|2 + |ImΦ(z, ζ)| + |ρ(ζ)|)n+(1/2)
dVn−1(ζ)

≤ C

∫
|t′|≤R

dt3 · · · dt2n−2

(|t′|2 + ε2)n−(3/2)
≤ C

1

ε
.

(c) ∫
V ′\V

|z − ζ|2
|Φ(z, ζ)|n+1

dVn−1(ζ) ≤ C

∫
|t′|≤R

dt3 · · ·dt2n−2

(|t′|2 + ε2)n−2
≤ C| log ε|.

�
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Theorem 3.18 If f ∈ A(V ), then E1f ∈ A(Ω). Moreover, E1f :
A(V )→ A(Ω) defines a bounded linear operator.

Proof. Let z∗ ∈ ∂V and let z ∈ (Ω\V )∩B(z∗, σ2). Let ζ∗ be the solution
for the system of equations (3.31) and (3.32). We set z(θ) = ζ∗ + θ(z − ζ∗)
for 0 ≤ θ ≤ 1. Then z(θ)n = θzn. Further, ζ∗ = ζ∗(z) also satisfies
the system of equations (3.31) and (3.32) for z(θ) instead of z. By the
uniqueness of the solution, we have ζ∗(z) = ζ∗(z(θ)). Let V ′ be a domain
with smooth boundary in X such that V ⊂ V ′. Then

E1f(z) =
∫
∂V

f(ζ)K(z, ζ)
Φ(z, ζ)n−1

=
∫
∂V ′

f(ζ)K(z, ζ)
Φ(z, ζ)n−1

−
∫
V ′\V

f(ζ)∂̄ζ

(
K(z, ζ)

Φ(z, ζ)n−1

)
.

Define

F1(z) =
∫
(V ′\V )∩B(z∗,σ2)

f(ζ)∂̄ζ

(
K(z, ζ)

Φ(z, ζ)n−1

)
.

By Theorem 3.8, we may assume that Φ(z, ζ) = F (z, ζ)M(z, ζ) on
B(z∗, σ2) × B(z∗, σ2), where F (z, ζ) is the Levi polynomial. Then F1 is
expressed by

F1(z) =
∫
(V ′\V )∩B(z∗,σ)

f(ζ)
A(z, ζ)

Φ(z, ζ)n−1

+
∫
(V ′\V )∩B(z∗,σ)

f(ζ)

∑n
j=1(ζj − zj)Bj(z, ζ)

Φ(z, ζ)n
,

where A(z, ζ) and Bj(z, ζ), 1 ≤ j ≤ n, are C∞ (2n − 2) forms on Ω × V .
Then it follows from Lemma 3.27 that there exist constants C1, C2 and C3
such that∣∣∣∣dF1(ζ∗ + λ(z − ζ∗))

dλ
|λ=1

∣∣∣∣ ≤ C1|f |V ∫
(V ′\V )∩B(z∗,σ)

ε

|Φ(z, ζ)|n dVn−1(ζ)

+C2|f |V
∫
(V ′\V )∩B(z∗,σ)

ε|ζ − z|(|ζ − z|+ ε)
|Φ(z, ζ)|n+1 dVn−1(ζ) ≤ C3ε| log ε|f |V ,

for any point z∗ ∈ ∂V ,z ∈ (Ω\∂V ) ∩B(z∗, σ2), where ε = |zn|.
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Then

|F1(z)− F1(ζ∗)| =
∣∣∣∣∫ 1

0

d

dθ
F1(ζ∗ + θ(z − ζ∗))dθ

∣∣∣∣
=
∣∣∣∣∫ 1

0

dF1(ζ∗ + λθ(z − ζ∗)
dλ

|λ=1dθ
∣∣∣∣

=
∣∣∣∣∫ 1

0

1
θ

dF1(ζ∗ + λ(z(θ)− ζ∗))
dλ

∣∣∣∣
λ=1

dθ

∣∣∣∣
≤ C4

∫ 1

0

ε| log εθ|dθ sup
ζ∈V

|f(ζ)|.

Hence we obtain

|E1f(z)− E1f(ζ∗)| ≤ C5σ2| log σ2| sup
ζ∈V

|f(ζ)|

We may assume that f ∈ C1(V ). Since ζ∗ ∈ V , we obtain

|E1f(z)− E1f(z∗)| = |E1f(z)− E1f(ζ∗)|+ |f(ζ∗)− f(z∗)|
≤ |E1f(z)− E1f(ζ∗)|+ C6{|ζ∗ − z|+ |z − z∗|}
≤ C7σ2| log σ2| sup

ζ∈V
|f(ζ)|.

Consequently, limz→z∗ E1f(z) = f(z∗). �

Lemma 3.28 Let Ω be a strictly pseudoconvex domain with C∞ boundary
in Cn and let X be a closed submanifold of codimension one in a neighbor-
hood Ω̃ of Ω. Let Ω′ be a pseudoconvex domaim such that Ω ⊂ Ω′ ⊂ Ω

′ ⊂ Ω̃.
We set V = Ω ∩X and V ′ = Ω′ ∩X.

Assume that X intersects ∂Ω transversally. Let ζ ∈ ∂V . It follows
from Theorem 5.20 (a) (Cartan theorem A) that there exist σ > 0 and
holomorphic functions F1, · · · , Fq ∈ Γ(Ω′,FV ′) such that FV ′ is generated
by F1, · · · , Fq in B(ζ, σ). Then there exist constants σ > σ1 > δ > 0 with
the following properties:

(a) For some integer q1 with 1 ≤ q1 ≤ q and some integers m1, · · · ,mn−2
from the set {1, · · · , n} the mapping

ϕ(z) = (zm1 − ζm1 , · · · , zmn−2 − ζmn−2 , F (z, ζ), Fq1(z))

is a biholomorphic mapping of the ball B(ζ, σ1) ⊂ Ω′ onto a neighbor-
hood Wζ of 0, where F (z, ζ) is the Levi polynomial defined in Definition
3.12.
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(b) There exists a strictly convex domain Uζ ⊂⊂Wζ such that

Ω ∩B(ζ, δ) ⊂ ϕ−1(Uζ) ⊂ Ω,

where Uζ = {w ∈Wζ | ρζ(w) < 0}, and ρζ is a real-valued C2 function
in the domain Wζ that is strictly convex in a neighborhood of U ζ .

Proof. There exists q1 (1 ≤ q1 ≤ q) such that the equation

m∑
j=1

∂Fq1
∂zj

(ζ)(zj − ζj) = 0

defines a (n − 1) dimensional analytic plane tangent to V ′ at the point
z = ζ. Since X and ∂Ω intersect transversally, the equations

m∑
j=1

∂Fq1
∂zj

(ζ)(zj − ζj) = 0,

n∑
j=1

∂F

∂zj
(ζ, ζ)(zj − ζj) = 2

n∑
j=1

∂ρ

∂zj
(ζ)(zj − ζj) = 0

define a (n − 2) dimensional analytic plane if ζ ∈ ∂V . Therefore we can
choose numbers m1, · · · ,mn−2 so that

ϕ(z) = {zm1 − ζm1 , · · · , zmn−2 − ζmn−2 , F (z, ζ), Fq1(z))

has a non-zero Jacobian at the point z = ζ. By the implicit function
theorem there exists σ > 0 such that the mapping ϕ of the ball B(ζ, σ) onto
some domain Wζ containing 0 has the inverse mapping ϕ−1 (see Corollary
5.3). Define ρ̃ζ(w) = ρ(ϕ−1(w)). By Taylor’s formula we have

ρ(z) = Re

2
n∑

j=1

∂ρ

∂zj
(ζ)(zj − ζj) +

n∑
j,k=1

∂2ρ

∂zj∂zk
(ζ)(zj − ζj)(zk − ζk)


+

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(ζ)(zj − ζj)(z̄k − ζ̄k) + o(|z − ζ|2).

Since F (z, ζ) = wn−1 and

zi − ζi = zi(w)− zi(0) =
n∑

ν=1

∂zi
∂wν

(0)wν + o(|w|),
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we obtain

ρ̃ζ(w) = Rewn−1 +
n∑

i,j=1

∂2ρ

∂zi∂z̄j
(ζ)

(
n∑

ν=1

∂zi
∂wν

(0)wν

)

×
(

n∑
ν=1

∂z̄j
∂w̄ν

(0)w̄ν

)
+ o(|w|2).

ρ̃ζ is strictly convex in a neighborhood U1(⊂ U0) of w = 0. Define

tζ(w) = Re
n∑

i=1

∂ρ̃ζ
∂wi

(0)wi.

The equation tζ(w) = 0 defines the real tangent plane to the boundary
of the convex domain U2 := {w ∈ U1 | ρ̃ζ(w) < 0} at the point w = 0.
Since U2 is strictly convex near 0, there exists ε > 0 such that if we define
U3 = {w ∈ U1 | ρ̃ζ(w) < 0, tζ(w) > −ε}, then U3 ⊂⊂ U1. Define

χ(t) =
{

0 (t ≥ − ε
2 )

(t+ ε
2 )
4 (t ≤ − ε

2 )
.

Then χ is of class C2 in R. We choose a constant A > 0 in such a way that

sup
ζ∂V

sup
w∈U1

|ρ̃ζ(w)| < Aχ(−ε).

Define

ρζ(w) = ρ̃ζ(w) +Aχ(tζ(w)).

Since

2n∑
j,k=1

∂2

∂uj∂uk
[χ(tζ(w))]ujuk =

1
4
χ′′(tζ(w))

 2n∑
j=1

∂ρ̃ζ
∂uj

(0)uj

2 ≥ 0,

ρζ(w) is strictly convex in U1. Then Uζ = {w ∈ U1 | ρζ(w) < 0} is a strictly
convex domain in U1 with Uζ ⊂⊂ U1. Define Gζ = {z ∈ B(ζ, σ) | ϕ(z) ∈
Uζ}. If we choose δ > 0 sufficiently small, then we obtain Ω ∩ B(ζ, δ) ⊂
Gζ ⊂ Ω. �

Lemma 3.29 Let LΩ and RΩ be the integral operators defined in Defini-
tion 3.14 and Definition 3.16, respectively.

(a) If f is a bounded function in Ω, then RΩf is continuous on Ω.
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(b) If f is a bounded holomorphic function in Ω and if ϕ is a C1 function
in Cn, then LΩ(fϕ) is bounded in Ω.

Proof. (a) We write RΩf in the following form

RΩf(z) =
∫
Ω

f(ζ)H(z, ζ)dV (ζ),

where dV (ζ) is the Lebesgue measure on Ω. Then

|H(z, ζ)| ≤ C

∣∣∣∣∣
∫ 1

0

∣∣∣∣∣ω
(

1− λχ(ζ)w(z, ζ)

Φ̃(z, ζ)
+ λ

ζ̄ − z̄
|z − ζ|2

)∣∣∣∣∣ dλ
∣∣∣∣∣

≤ C
(

1

|Φ̃|2|ζ − z|2n−3
+

1

|Φ̃||ζ − z|2n−2
+

1
|ζ − z|2n−1

)
.

For ε > 0, there exists δ > 0 such that for any w ∈ Ω∫
B(w,3δ)∩Ω

|H(w, ζ)|dV (ζ) < ε.

Let

Kδ = {(w, ζ) ∈ Ω× ∂Ω | |w − ζ| ≥ δ}.

Since H(w, ζ) is continuous on the compact set Kδ, we can choose δ > δ1 >
0 such that for any point w with |z − w| < δ1,

|H(z, ζ)−H(w, ζ)| < ε

for all ζ satisfying |ζ − z| ≥ 2δ. For |z − w| < δ1, we have

|RΩf(z)−RΩf(w)| =
∣∣∣∣∫
Ω

f(ζ)(H(z, ζ)−H(w, ζ))dV (ζ)
∣∣∣∣

≤
∣∣∣∣∣
∫
Ω\B(z,2δ)

(H(z, ζ)−H(w, ζ))dV (ζ)

∣∣∣∣∣
+
∫
Ω∩B(z,2δ)

|f(ζ)||H(z, ζ)|dV (ζ)

+
∫
Ω∩B(w,3δ)

|f(ζ)||H(w, ζ)|dV (ζ)
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≤ ε
∫
Ω\B(z,2δ)

|fζ)|dV (ζ) + ε‖f‖+ ε‖f‖ < Cε.

Hence RΩf is continuous on Ω.
(b) Since ∂̄(fϕ) = f∂̄ϕ, ∂̄(fϕ) is bounded in Ω. It follows from Theorem

3.12 that

ϕf = LΩ(ϕf) +RΩ(∂̄(ϕf)),

which means that LΩ(ϕf) is bounded in Ω. �

Lemma 3.30 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let Uj ⊂ Cn (j = 1, · · · , N) be open sets such that Ω ⊂
∪Nj=1Uj. Then any f ∈ H∞(Ω) admits a decomposition f =

∑N
j=1 fj, where

every fj is bounded and holomorphic in some neighborhood of Ω\(∂Ω∩Uj).
In addition, if f is continuous on Ω, then every fj is continuous on Ω.

Proof. Choose C∞ functions χj in Cn such that
∑N

j=1 χj = 1 on Ω
and supp(χj) ⊂ Uj. Define fj = LΩ(χjf). Since χj = 0 on Cn\Uj, fj
is bounded and holomorphic in some neighborhood of Ω\(∂Ω ∩ Uj). By
Theorem 3.12

f = LΩf =
N∑
j=1

LΩ(χjf) =
N∑
j=1

fj.

Suppose f is continuous on Ω. By Theorem 3.12 we have

fj = χjf −RΩ(f∂̄χj).

By Lemma 3.29 RΩ(f∂̄χj) is continuous on Ω. Hence fj is continuous on
Ω. �

The following theorem was proved by Henkin [HEN3] which is a gener-
alization of Lemma 3.30 to submanifolds of strictly pseudoconvex domains
in Cn with smooth boundary.

Theorem 3.19 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary and let X be a closed submanifold in a neighborhood Ω̃ of
Ω, V = Ω ∩ X. Assume that X intersects ∂Ω transversally. Let Uj ⊂ X
(j = 1, · · · , N) be open sets in X such that V ⊂ ∪Nj=1Uj. Then any f ∈
H∞(V ) admits a decomposition f =

∑N
j=1 fj, where every fj is bounded

and holomorphic in some neighborhood of V \(∂V ∩ Uj). In addition, if f
is continuous on V , then every fj is also continuous on V .
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Proof. Let Ω′ be a strictly psuedoconvex domain such that Ω ⊂⊂ Ω′ ⊂⊂
Ω̃. We set V ′ = Ω′ ∩X . Let ε > 0 be given. Let χi, i = 1, · · · , N , be real-
valued, nonnegative C∞ functions such that

∑N
i=1 χi = 1 in a neighborhood

of V
′
and the diameter of each set supp(χi) is less that ε/3. Define

χ1ν =
∑

{i | supp(χi)∩supp(χν) �=φ}
χi,

χ̃ν =
∑

{i | supp(χi)∩supp(χ1
ν)=φ}

χi.

We consider domains for ν = 1, · · · , N ,

Ων = {z ∈ Ω′ | ρ(z)−
ν∑

i=1

λiχi(z) < 0},

Ω̃ν = {z ∈ Ω′ | ρ(z)−
ν−1∑
i=1

λiχi(z)− λχ̃ν(z) < 0}.

We set Ω0 = Ω, Vν = V ′ ∩ Ων and Ṽν = V ′ ∩ Ω̃ν for ν = 0, 1, · · · , N . In
order to prove Theorem 3.19 we need the following lemma.

Lemma 3.31 For sufficiently small λ1, · · · , λN > 0 and for any ν =
1, · · · , N , there exist bounded operators L0ν : H∞(Vv−1) → H∞(Vν) and
L1ν : H∞(Vν−1)→ H∞(Ṽν) with the following properties:

(a) f(z) = (L0νf)(z) + (L1νf)(z) for any f ∈ H∞(Vν−1) and any z ∈ Vν−1.
(b) L0νf ∈ A(Vν) and L1νf ∈ A(Ṽν) if f ∈ A(Vν−1).

Proof of Lemma 3.31. Suppose that constants λ1, · · · , λν−1 satis-
fying the conditions of the lemma have already been chosen. We set
Uν = supp(χ1ν). We may assume that Uν ∩ ∂Vν−1 �= φ. We fix a point
ζ∗ ∈ Uν ∩ ∂Vν−1. By Lemma 3.28, there exists a biholomorphic mapping
ϕ of the ball B(ζ∗, (3/4)σ) onto a neighborhood Wζ∗ of 0 such that

Ων−1 ∩B(ζ∗, (3/4)δ) ⊂ Gζ∗ = {z ∈ B(ζ∗, (3/4)δ) | ρζ∗(ϕ(z)) < 0},

where ρζ∗(w) is strictly convex in a neighborhood of the set Eζ∗ = {w ∈
Wζ∗ | ρζ∗(w) ≤ 0}. We set Iζ∗ = Eζ∗ ∩ ϕ(Vν−1 ∩ Gζ∗). For any function
f ∈ H∞(Vν−1) and any z ∈ Gζ∗ ∩ Vν−1, it follows from (3.30) that

f(z) = f(ϕ−1(w)) =
∫
ζ∈∂Iζ∗

f(ϕ−1(ζ))
K(w, ζ)

Φ(w, ζ)n−1
.
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We set

χ0ν = 1− χ1ν

and

Rα
ν f(z) =

∫
ζ∈∂Iζ∗

f(ϕ−1(ζ))χαν (ϕ−1(ζ))
K(ϕ(z), ζ)

Φ(ϕ(z), ζ)n−1

for α = 1, 2 and f ∈ H∞(Vν−1). Then we have

f(z) = (Rα
ν f)(z) + (R1νf)(z) (z ∈ Gζ∗ ∩ Vν−1).

We choose λν < λ0 sufficiently small. We set

V ′′ = {z ∈ V ′ | ρ(z)−
ν−1∑
i=1

λiχi(z) < λ0} = V ′′0 ∪ V ′′1 ,

where V ′′0 = V ′′ ∩ B(ζ∗, (3/4)δ) and V ′′1 = V ′′\B(ζ∗, (1/2)δ) . Then we
have a representation

Rα
ν f(z) =

∫
ζ∈∂Iζ∗

f(ϕ−1(ζ))χαν (ϕ−1(ζ))
K(ϕ(z), ζ)

Φ(ϕ(z), ζ)n−1

= χαν (z)f(z) +
∫
ζ∈∂Iζ∗

f(ϕ−1(ζ)){χαν (ϕ−1(ζ)) − χαν (z)} K(ϕ(z), ζ)
Φ(ϕ(z), ζ)n−1

.

We set

Aα
ν (z) =

∫
ζ∈∂Iζ∗

f(ϕ−1(ζ)){χαν (ϕ−1(ζ)) − χαν (z)} K(ϕ(z), ζ)
Φ(ϕ(z), ζ)n−1

.

Then we can prove that A0ν is a bounded operator from H∞(Vν−1) to
A(Vν ∩ B(ζ∗, (3/4)δ), and A1ν is a bounded operator from H∞(Vν−1) to
A(Ṽν ∩ B(ζ∗, (3/4)δ) using the same method as the proof of Lemma 3.29
(a). Therefore, we can prove that R0ν is a bounded operator fromH∞(Vν−1)
to H∞(Vν ∩ B(ζ∗, (3/4)δ). On the other hand R1ν is a bounded operator
from H∞(Vν−1) to H∞(Ṽν ∩ B(ζ∗, (3/4)δ). If we choose 0 < χν < χ0
sufficiently small, then χ1ν = 0 in a neighborhhood of V ′′0 ∩ V ′′1 . Hence R1ν
is a bounded operator from H∞(Vν−1) to A(V ′′0 ∩ V ′′1 ). If f ∈ A(Vν−1),
then

R0νf ∈ A(Vν ∩B(ζ∗, (3/4)δ)) and R1νf ∈ A(Ṽν ∩B(ζ∗, (3/4)δ)).
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It follows from Theorem 5.26 that for f ∈ O(V ′′
0 ∩V ′′

1 ) there exist mappings

Tαν : O(V ′′
0 ∩ V ′′

1 ) → O(V ′′
α ) such that

f = T 0
ν f + T 1

ν f.

For z ∈ Vν−1 ∩ V ′′
0 ∩ V ′′

1 , we have

f(z) = R0
νf(z) +R1

νf(z) = R0
νf(z) + T 0

ν (R1
νf)(z) + T 1

ν (R1
νf)(z).

We set

(L0
νf)(z) =

{
(R0

νf)(z) + (T oν ◦R1
νf)(z) (z ∈ Vν ∩B(ζ∗, (3/4)δ))

f(z) − (T 1
ν ◦R1

νf)(z) (z ∈ Vν\B(ζ∗, (1/2)δ))
,

(L1
νf)(z) =

{
(R1

νf)(z) + (T oν ◦R1
νf)(z) (z ∈ Ṽν ∩B(ζ∗, (3/4)δ))

(T 1
ν ◦R1

νf)(z) (z ∈ Ṽν\B(ζ∗, (1/2)δ))
,

Then L0
ν and L1

ν satisfy conditions (a) and (b), which completes the proof

of Lemma 3.31.

End of the proof of Theorem 3.19. We set Li = L1
i ◦ L0

i−1 ◦ · · · ◦ L0
1

for i = 1, · · · , N − 1, and LN = L0
N−1 ◦L0

N−2 ◦ · · ·L0
1. If f ∈ H∞(V ), then

Lif ∈ H∞(Ṽi) for i = 1, 2, · · · , N−1, and LNf ∈ H∞(VN−1). If f ∈ A(V ),

then Lif ∈ A(Ṽi) for i = 1, 2, · · · , N − 1, and LNf ∈ A(VN−1). Moreover,

if f ∈ H∞(V ) and z ∈ V , then

f(z) =

N∑
i=1

Lif(z).

The diameter of the set V \ṼN−1 is less than ε, and the diameter of the set

V \VN−1 is less than ε/3. Theorem 3.19 is proved. �

Now we are going to prove bounded and continuous extensions of holomor-

phic functions from submanifolds in general position of a strictly pseudo-

convex domain in Cn with C∞ boundary.

Corollary 3.6 Let Ω be a strictly pseudoconvex domain in Cn with C∞

boundary and let X be a closed submanifold in a neighborhood of Ω. Let

V = Ω ∩ X. Assume that X intersects ∂Ω transversally. Then for any

f ∈ H∞(V ) there exists g ∈ H∞(Ω) such that g = f on V . Moreover, if

f ∈ A(V ), then there exists g ∈ A(Ω) such that g = f on V .
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Proof. Let f be a bounded holomorphic function in V . Since V is com-
pact, there is a biholomorphic mapping hξ : B(ξ, δ) → Cn such that
hξ(X ∩ B(ξ, δ)) is the intersection of hξ(B(ξ, δ)) with a complex hyper-
plane in Cn. By Theorem 3.19, it is sufficient to prove the theorem for the
case when f has the following property:

There is a point ξ ∈ ∂V and a strictly pseudoconvex open set Ω0 ⊂ Cn

such that

Ω\ (∂Ω ∩B (ξ, δ/3)) ⊂ Ω0

and f is bounded holomorphic in X ∩ Ω0.
We can choose a strictly pseudoconvex open set Ωξ ⊂ Cn such that

B (ξ, δ/3) ∩Ωξ ⊂ B (ξ, δ/2) ∩ Ω0.

Then we have

Ω ⊂ Ω0 ∪B (ξ, δ/3) .

Therefore, we can choose a strictly pseudoconvex open set Ω1 such that

Ω ⊂⊂ Ω1 ⊂⊂ Ω0 ∪B (ξ, δ/3) .

We set

Uξ := B (ξ, δ/3) ∩ Ω1, U0 := Ω0 ∩Ω1.

Then {U0, Uξ} forms an open covering of Ω1. By choosing δ sufficiently
small, we may assume that X ∩ B(ξ, δ) is a complex hypersurface. It fol-
lows from Theorem 3.15 (or Theorem 3.17) that there exists a bounded
holomorphic function fξ on Ωξ such that fξ = f on X ∩ Ωξ. Since Ω0
is a pseudoconvex domain, there exists a holomorphic function f0 in Ω0
such that f0 = f on X ∩ Ω0. Then f0 − fξ is holomorphic in Ωξ ∩ Ω0 and
f0 − fξ = 0 on X ∩ Ωξ ∩ Ω0. Since Uξ ∩ U0 ⊂ Ωξ ∩ Ω1 ∩ Ω0, it follows
from Theorem 5.22 that there exist f̃ξ ∈ Γ(Uξ,FV ) and f̃0 ∈ Γ(U0,FV )
such that f0 − fξ = f̃0 − f̃ξ on Uξ ∩ U0. We set g := f0 − f̃0 in U0 and
g := fξ − f̃ξ in Uξ ∩ Ωξ. Then g is holomorphic in U0 ∪ (Uξ ∩ Ωξ) and
equals fξ − f̃ξ in Uξ ∩ Ωξ Therefore, g is bounded and holomorphic in Ω
and satisfies g|V = f . If f ∈ A(V ), then we can prove similarly that there
exists g ∈ A(Ω) such that g|V = f . �

More generally, Henkin-Leiterer [HER] proved bounded and contin-
uous extensions in the case when Ω is a strictly pseudoconvex open
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set (with not necessarily smooth boundary) in a Stein manifold with-
out assuming that X intersects ∂Ω transversally. Amar [AMA2] also ob-
tained bounded extensions of holomorphic functions from submanifolds of
strictly pseudoconvex domains without assuming the transversality. Us-
ing the integral formula obtained by Hatziafratis, Hatziafratis [HAT2]
proved the bounded extension of holomorphic functions from submanifolds
in general position of strictly convex domains. Fornaess [FOR] investi-
gated the integral formula by embedding strictly pseudoconvex domains
into strictly convex domains. Adachi [ADA2; ADA3] proved bounded
and continuous extensions from a submanifold V in general position of
a weakly pseudoconvex domain Ω under the assumption that ∂V con-
sists of strictly pseudoconvex boundary points of Ω. Using the method
of Kerzman-Stein [KES] and the integral formula obtained by Hatzi-
afratis [HAT1], Adachi-Kajimoto [ADK] obtained the holomorphic exten-
sion of Lipschitz functions from the boundary. Further, Jakóbczak [JK1;
JK2] studied extensions of holomorphic functions in various function spaces.

3.4 Hp and Ck Extensions

In this section we study Hp (1 ≤ p <∞) and Ck (k = 1, 2, · · · ,∞) exten-
sions of holomorphic functions from submanifolds in general position of a
strictly pseudoconvex domain Ω in Cn with C∞ boundary by following the
methods of Beatrous [BEA] and Ahern-Schneider [AHS2], respectively.

Let X be a closed submanifold in a neighborhood of Ω and let V =
Ω ∩ X . Assume that X intersects ∂Ω transversally. We may assume that
X = {zn = 0}. For f ∈ O(V ) ∩ Lp(V ) (1 ≤ p <∞) and z ∈ Ω, we define

Ef(z) =
(n− 1)!
(2πi)n−1

∫
V

f(ζ)ωζ′

(
χ(ζ)(w(z, ζ))′

Φ̃(z, ζ)

)
∧ ωζ′(ζ).

By Theorem 3.13, Ef is holomorphic in Ω and Ef(z) = f(z) for z ∈ V .
There exists a C∞ (n− 1, n− 1) form η0(z, ζ) on Ω× Ω with respect to ζ
such that

Ef(z) =
∫
V

f(ζ)η0(z, ζ)

Φ̃(z, ζ)n
.

Then we obtain the following lemma.

Lemma 3.32 There exists a C∞ (n − 1, n − 1) form η(z, ζ) on Ω × Ω
with respect to ζ with the following properties:



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

184 Several Complex Variables and Integral Formulas

(a) η(·, ζ) is holomorphic in Ω for each ζ ∈ V fixed.
(b) For f ∈ O(V ) ∩ L1(V )

Ef(z) =
∫
V

f(ζ)ρ(ζ)η(z, ζ)

Φ̃(z, ζ)n+1
.

Proof. We choose a function ϕ ∈ C∞(R) with the following properties:

0 ≤ ϕ(t) ≤ 1 (t ∈ R), ϕ(t) =
{

1 (|t| ≤ 1)
0 (|t| ≥ 2)

.

For ε > 0, we set

ϕε(z) = ϕ
(
ρ(z)
ε

)
.

Then ϕε(z) = 1 if |ρ(z)| ≤ ε and ϕε(z) = 0 if |ρ(z)| ≥ 2ε. We choose C∞

functions ψj , j = 1, · · · , N , in U2 with the properties that 1 =
∑N

j=1 ψj(z)
for z ∈ U2 and there exists a constant c > 0 such that if z ∈ supp(ψj), then

there exists a positive integer k = k(j) with
∣∣∣ ∂ρ∂ζk

(z)
∣∣∣ > c. Then we have

Ef(z) =
N∑
j=1

∫
V

f(ζ)
η0(z, ζ)ψj(ζ)

Φ̃(z, ζ)n
.

Since

dζ̄1 ∧ · · · ∧ dζ̄k−1 ∧ ∂̄ρ ∧ dζ̄k+1 ∧ · · · ∧ dζ̄n−1 =
∂ρ

∂ζ̄k
dζ̄1 ∧ · · · ∧ dζ̄n−1

on supp(ψi), we obtain

Ef(z) =
∫
V

f(ζ)
∂̄ρ(ζ) ∧ ω(z, ζ)

Φ̃(z, ζ)n
,

where ω(z, ζ) is a C∞ (n− 1, n− 2) form on Ω× V , and holomorphic with
respect to z ∈ Ω for each fixed ζ ∈ V . Now we have∫

V

f(ζ)
∂̄ρ(ζ) ∧ ω(z, ζ)

Φ̃(z, ζ)n
=
∫
V

f(ζ)
∂̄ρ(ζ)ϕε(ζ) ∧ ω(z, ζ)

Φ̃(z, ζ)n

+
∫
V

f(ζ)
∂̄ρ(ζ)(1 − ϕε(ζ)) ∧ ω(z, ζ)

Φ̃(z, ζ)n

:= Iε1 + Iε2 .
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Then lim
ε→0

Iε1 = 0. On the other hand, 1−ϕε = 0 on ∂V , which implies that

Iε2 =
∫
V

∂̄

{
f(ζ)ρ(ζ)(1 − ϕε) ∧ ω(z, ζ)

Φ̃(z, ζ)n

}

−
∫
V

f(ζ)ρ(ζ)∂̄

{
(1− ϕε) ∧ ω(z, ζ)

Φ̃(z, ζ)n

}

= −
∫
V

f(ζ)ρ(ζ)
[−Φ̃∂̄ϕε ∧ ω + Φ̃(1− ϕε)∂̄ω − n(1− ϕε)∂̄ζΦ̃ ∧ ω]

Φ̃n+1
.

We obtain ∣∣∣∣∫
V

f(ζ)ρ(ζ)Φ̃∂̄ϕε ∧ ω
∣∣∣∣

=
∣∣∣∣∫

V

f(ζ)ρ(ζ)ϕ′
(
ρ(ζ)
ε

)
1
ε
Φ̃∂̄ρ ∧ ω

∣∣∣∣
≤ C

∫
X∩{−2ε≤ρ≤−ε}

|f(ζ)||ρ(ζ)|
ε

dVn−1(ζ)

≤ C
∫
X∩{−2ε≤ρ≤−ε}

|f(ζ)|dVn−1(ζ).

Consequently,

lim
ε→0

∫
V

f(ζ)ρ(ζ)Φ̃∂̄ϕε ∧ ω = 0.

Thus we have

Ef(z) = lim
ε→0

Iε2 =
∫
V

f(ζ)ρ(ζ)(Φ̃∂̄ω − nω ∧ ∂̄ζΦ̃)

Φ̃n+1
.

We set

η(z, ζ) = Φ̃(z, ζ)∂̄ζω(z, ζ)− nω(z, ζ) ∧ ∂̄ζΦ̃(z, ζ).

Then we have

Ef(z) =
∫
V

f(ζ)ρ(ζ)η(z, ζ)

Φ̃(z, ζ)n+1
(z ∈ Ω).

�

Definition 3.22 For z ∈ Ω, we denote by δX(z) the distance from z to
X .

Lemma 3.33 For 0 < ε < 1 we have
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(a)
∫
∂Ω

δX(z)−2ε

|Φ̃(z, ζ)|n
dσ2n−1(z) ≤ Cε|ρ(ζ)|−ε.

(b)
∫
∂Ω

dσ2n−1(z)

|Φ̃(z, ζ)|n+ε
≤ Cε|ρ(ζ)|−ε.

Proof. We set τ(z, ζ) = ImF (z, ζ), where F (z, ζ) is the Levi polynomial.
We prove Lemma 3.33 in case n ≥ 3. We have∫

∂Ω

δX(z)−2ε

Φ̃(z, ζ)n
dσ2n−1(z)

≤ C
∫
C

∫
Cn−2

∫ ∞
0

(|ρ(ζ)| + τ(z, ζ) + |w′|2 + |w′′|2)−n|w′′|−2ε

×dτdw′dw′′.

By the change of variables

τ(z, ζ) = |ρ(ζ)|x1, w′ =
√
|ρ(ζ)|x′, w′′ =

√
|ρ(ζ)|x′′,

we obtain∫
∂Ω

δX(z)−2ε

Φ̃(z, ζ)n
dσ2n−1(z)

≤ C
∫
C

∫
Cn−2

∫ ∞
0

(1 + x1 + |x′|2 + |x′′|2)−n|(
√
|ρ(ζ)|)−2ε|x′′|−2ε

×dx1dx′dx′′

≤ C|ρ(ζ)|−ε

∫
C

∫
Cn−2

(1 + |x′|2 + |x′′|2)−n+1|x′′|−2εdx′dx′′

≤ C|ρ(ζ)|−ε

∫ ∞
0

∫ ∞
0

(1 + r21 + r22)
−n+1r2n−51 r−2ε2 r2dr1dr2.

Now we set r = λ cos θ, r2 = λ sin θ. Then

≤ C|ρ(ζ)|−ε

∫ ∞
0

∫ π
2

0

(1 + λ2)−n+1λ2n−3−2ε(sin θ)1−2εdλdθ

≤ Cε|ρ(ζ)|−ε

∫ ∞
0

(1 + λ2)−n+1λ2n−3−2εdλ

≤ Cε|ρ(ζ)|−ε

∫ ∞
1

dλ

λ1+ε
≤ Cε|ρ(ζ)|−ε.
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This proves (a). By the same method as the proof of (a), we have∫
∂Ω

dσ2n−1(z)

|Φ̃(z, ζ)|n+ε
≤ Cδ(ζ)−ε

∫
C

∫
Cn−2

dx′dx′′

(1 + |x′|2 + |x′′|2)n−1+ε

≤ Cεδ(ζ)−ε

∫ ∞
1

dλ

λ1+ε

≤ Cεδ(ζ)−ε.

This proves (b). �

Lemma 3.34 For 0 < ε < 1, we have∫
V

|ρ(ζ)|−ε

|Φ̃(z, ζ)|n
dVn−1(ζ) ≤ Cε(|ρ(z)|+ δX(z)2)−ε.

Proof. We set δ(ζ) = |ρ(ζ)| and ζ′ = (ζ1, · · · , ζn−2). We may assume
that (ρ(ζ), τ(z, ζ), ζ′) forms a real coordinate system in a neighborhood of
∂Ω. Hence we have∫

V

δ(ζ)−ε

|Φ̃(z, ζ)|n
dVn−1(ζ)

≤ C
∫
Cn−2

∫ ∞
0

∫ ∞
0

(δ(z) + δX(z)2 + δ(ζ) + τ(z, ζ) + |ζ′|2)−nδ(ζ)−ε

×dδdτdζ ′.

By a change of variables δ(ζ) = (δ(z) + δX(z)2)x1, τ(z, ζ) = (δ(z) +
δX(z)2)x2 and ζ′ =

√
(δ(z) + δX(z)2x′, we obtain

∫
V

δ(ζ)−ε

|Φ̃(z, ζ)|n
dVn−1(ζ)

≤ C(δ(z) + δX(z)2)−ε

∫
Cn−2

∫ ∞
0

∫ ∞
0

(1 + x1 + x2 + |x′|2)−nx−ε
1

×dx1dx2dx′

≤ C(δ(z) + δX(z)2)−ε

∫
Cn−2

∫ ∞
0

(1 + x1 + |x′|2)−n+1x−ε
1

×dx1dx′

≤ C(δ(z) + δX(z)2)−ε

∫ ∞
0

∫ ∞
0

(1 + x1 + r2)−n+1x−ε
1 r

2n−5dx1dr.
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We set x1 = y21 . Then∫
V

δ(ζ)−ε

|Φ̃(z, ζ)|n
dVn−1(ζ)

≤ C(δ(z) + δX(z)2)−ε

∫ ∞
0

∫ ∞
0

(1 + y21 + r2)−n+1y1−2ε1 r2n−5dy1dr.

We set y1 = λ cos θ, r = λ sin θ. Then we obtain∫
V

δ(ζ)−ε

|Φ̃(z, ζ)|n
dVn−1(ζ)

≤ C(δ(z) + δX(z)2)−ε

∫ π
2

0

∫ ∞
0

(1 + λ2)−n+1λ2n−3−2ε(cos θ)1−2εdλdθ

≤ Cε(δ(z) + δX(z)2)−ε

∫ ∞
0

(1 + λ2)−n+1λ2n−3−2εdλ

≤ Cε(δ(z) + δX(z)2)−ε

∫ ∞
1

dλ

λ1+2ε

≤ Cε(δ(z) + δX(z)2)−ε.
�

Now we are going to prove Hp extensions of Lp holomorphic functions
in V .

Theorem 3.20 Let Ω be a strictly pseudoconvex domain in Cn with
smooth boundary and let X be a submanifold in a neighborhood of Ω which
intersects ∂Ω transversally. Let V = X ∩Ω and 1 ≤ p <∞. If f ∈ Lp(V ),
then Ef ∈ Hp(Ω). Moreover, E : Lp(V ) → Hp(Ω) is a continuous linear
operator.

Proof. We may assume that V = Ω ∩X , where X = {zn = 0}. First we
assume that 1 < p <∞. Let q > 1 satisfy 1

p + 1
q = 1. We set δ(z) = |ρ(z)|.

For any sufficiently small ε > 0 , by applying the Hölder inequality and
Lemma 3.34, we have

|Ef(z)| ≤ C
∫
V

|f(ζ)|δ(ζ)εδ(ζ)−ε

|Φ̃(z, ζ)|n
dVn−1(ζ)

≤
(∫

V

|f(ζ)|pδ(ζ)εp

|Φ̃(z, ζ)|n
dVn−1(ζ)

) 1
p
(∫

V

δ(ζ)−εq

|Φ̃(z, ζ)|n
dVn−1(ζ)

) 1
q

≤ CεδX(z)−2ε
(∫

V

|f(ζ)|pδ(ζ)εp

|Φ̃(z, ζ)|n
dVn−1(ζ)

) 1
p

.



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Integral Formulas for Strictly Pseudoconvex Domains 189

Hence we obtain

|Ef(z)|p ≤ CεδX(z)−2εp
(∫

V

|f(ζ)|pδ(ζ)εp

|Φ̃(z, ζ)|n
dVn−1(ζ)

)
.

Using Fubini’s theorem and Lemma 3.33, we have∫
∂Ω

|Ef(z)|pdσ2n−1(z)

≤ Cε

∫
V

|f(ζ)|pδ(ζ)εp
(∫

∂Ω

δX(z)−2εp

|Φ̃(z, ζ)|n
dσ2n−1(z)

)
dVn−1(ζ)

≤ Cε

∫
V

|f(ζ)|pδ(ζ)εpδ(ζ)−εpdVn−1(ζ)

= Cε

∫
V

|f(ζ)|pdVn−1(ζ).

Thus Theorem 3.20 is proved in case 1 < p <∞. Next we prove Theorem
3.20 for p = 1. By Lemma 3.32 we have

Ef(z) =
∫
V

f(ζ)ρ(ζ)η(z, ζ)

Φ̃(z, ζ)n+1
dVn−1(ζ),

where η(z, ζ) is a C∞ function on Ω× Ω. Let 0 < ε < 1. Then we have

|Ef(z)| ≤ C
∫
V

|f(ζ)| δ(ζ)

|Φ̃(z, ζ)|n+1
dVn−1X(ζ) ≤ Cε

∫
V

|f(ζ)|δ(ζ)ε

|Φ̃(z, ζ)|n+ε
dVn−1(ζ).

By Lemma 3.33, we obtain∫
∂Ω

|Ef(z)|dσ2n−1(z) ≤ Cε

∫
V

{
|f(ζ)|δ(ζ)ε

∫
∂Ω

dσ2n−1(z)

|Φ̃(z, ζ)|n+ε

}
dVn−1(ζ)

≤ Cε

∫
V

|f(ζ)|δ(ζ)εδ(ζ)−εdVn−1(ζ)

≤ Cε

∫
V

|f(ζ)|dVn−1(ζ).
�

Next we prove Ck, k = 1, 2, · · · ,∞, extensions of holomorphic functions
from submanifolds in general position of strictly pseudoconvex domains
with C∞ boundary.

Lemma 3.35 Let Ω and V be the same notations as in Lemma 3.32.
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(a) For z ∈ Ω, there exists a constant C > 0 such that∫
∂V

1
|Φ(z, ζ)|n−1 dσ2n−3(ζ) ≤ C| log |ρ(z)||.

(b) For z ∈ Ω and δ > 0, there exists a constant C > 0 such that∫
∂V ∩B(z,δ)

|ζ − z|
|Φ(z, ζ)|n−1 dσ2n−3(ζ) ≤ Cδ| log δ|.

Proof. (a) Suppose δ > 0 is sufficiently small. Then we can choose
a local coordinate system t = (t1, · · · , t2n−3) on ∂V ∩ B(z, δ) such that
t1 = ImΦ(z, ζ). We set t′ = (t2, · · · , t2n−3). Then∫

∂V ∩B(z,δ)

1
|Φ(z, ζ)|n−1 dσ2n−3(ζ) ≤ C

∫
|t|≤R

dt1 · · ·dt2n−3
(|ρ(z)|+ t1 + |t|2)n−1

≤ C
∫
|t′|≤R

dt2 · · · dt2n−3
(|ρ(z)|+ |t′|2)n−2

≤ C
∫ R

0

r2n−5

(|ρ(z)|+ r2)n−2 dr

≤ C| log |ρ(z)||.

This proves (a).
(b) By (a) we have∫

∂V ∩B(z,δ)

|ζ − z|
|Φ(z, ζ)|n−1 dσ2n−3(ζ) ≤ Cδ

∫
∂V ∩B(z,δ)

1
|Φ(z, ζ)|n−1 dσ2n−3(ζ)

≤ Cδ| log δ||.
�

Now we prove that every strictly pseudoconvex domain with C2 boundary
has a peak function by following Range [RAN2].

Lemma 3.36 Let Ω be a strictly pseudoconvex domain with C2 boundary
and let ζ ∈ ∂Ω. Then there exists a function f ∈ A(Ω) such that f(ζ) = 1
and |f(z)| < 1 for z ∈ Ω\{ζ}.

Proof. There exists a neighborhood U of ∂Ω and a C2 strictly plurisub-
harmonic function ρ in U such that Ω∩U = {z ∈ U | ρ(z) < 0}. Let F (z, ζ)
be the Levi polynomial. It follows from (3.19) that there exists ε > 0 such
that

ReF (z, ζ) ≥ ρ(ζ)− ρ(z) + C|ζ − z|2
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for ζ ∈ U , |z − ζ| ≤ ε. Choose ϕ ∈ C∞(Cn ×Cn) such that 0 ≤ ϕ ≤ 1 and

ϕ(z, ζ) =
{

1 (|ζ − z| ≤ ε
2 )

0 (|ζ − z| ≥ ε) .

Fix ζ ∈ ∂Ω. Define

λ(z) = ϕ(z, ζ)F (z, ζ) + (1− ϕ(z, ζ))|ζ − z|2.

Then

Reλ(z) > 0 for z ∈ Ω\{ζ}.

Then there exists a neighborhood W of Ω\{ζ} such that Reλ(z) > 0 for
z ∈ W . We set u(z) = 1/λ(z) for z ∈ W . Since ∂̄u = 0 on W ∩ B(ζ, ε/2),
∂̄u extends as a C∞ (0,1)-form to a neighborhood of Ω. By Corollary 2.3
there exists a function v ∈ C∞(Ω) such that ∂̄u = ∂̄v in a neighborhood of
Ω. Define g = (u− v+ |v|Ω)−1. Then Re g > 0 on Ω\{ζ} and ∂̄g = 0 in W.
Hence g is holomorphic in W . Define h = e−g. Since limz→ζ h(z) = 1, h is
continuous on Ω and |h(z)| < 1 for z ∈ Ω\{ζ}. �

Definition 3.23 Let K(z, ζ) be the (2n− 3) form in Theorem 3.16. We
write K(z, ζ) in the following form

K(z, ζ) = K̃(z, ζ)dσ2n−3(ζ),

where dσ2n−3 is the surface measure on ∂V . Then K̃ : Ω × ∂V → C is a
C∞ function on Ω× ∂V and K̃(·, ζ) is holomorphic in Ω.

The following lemma is due to Ahern-Schneider [AHS1].

Lemma 3.37 Let Ω and V be the same notations as in Lemma 3.32.
Then K̃(ζ, ζ) �= 0 for all ζ ∈ ∂V .

Proof. Assume that K̃(ζ0, ζ0) = 0 for some ζ0 ∈ ∂V . We show that

f(ζ0) =
∫
∂V

f(ζ)
K̃(ζ0, ζ)

Φ(ζ0, ζ)n−1
dσ2n−3(ζ) (3.33)
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for f ∈ A(V ). Let z ∈ V . By Theorem 3.16 we have

f(z)−
∫
∂V

f(ζ)
K̃(ζ0, ζ)

Φ(ζ0, ζ)n−1
dσ2n−3(ζ)

=
∫
∂V \B(ζ0,δ)

f(ζ)

[
K̃(z, ζ)

Φ(z, ζ)n−1
− K̃(ζ0, ζ)

Φ(ζ0, ζ)n−1

]
dσ2n−3(ζ)

+
∫
∂V ∩B(ζ0,δ)

f(ζ)

[
K̃(z, ζ)

Φ(z, ζ)n−1
− K̃(ζ0, ζ)

Φ(ζ0, ζ)n−1

]
dσ2n−3(ζ)

:= J1(z) + J2(z).

It follows from Lebesgue’s dominated convergence theorem that
limz→ζ0 J1(z) = 0. On the other hand we have

J2(z) ≤
∫
∂V ∩B(ζ0,δ)

|f(ζ)| |K̃(ζ0, ζ)|
|Φ(ζ0, ζ)|n−1

dσ2n−3(ζ)

+
∫
∂V ∩B(ζ0,δ)

|f(ζ)| |K̃(z, ζ)|
|Φ(z, ζ)|n−1 dσ2n−3(ζ)

:= J ′2(ζ0) + J ′2(z).

By Lemma 3.35 (b) we have |J2(ζ0)| ≤ C|f |V δ| log δ|. To estimate J ′2(z), we
let z approach ζ0 along the inward normal to ∂V . Then we have |z − ζ0| ≤
C|z − ζ| and |ζ − ζ0| ≤ C|z − ζ|. Consequently,

|K̃(z, ζ)| ≤ |K̃(z, ζ)− K̃(z, ζ0)|+ |K̃(z, ζ0)− K̃(ζ0, ζ0)|

≤ C(|ζ − ζ0|+ |z − ζ0|) ≤ C|ζ − z|.

If |z − ζ0| < δ, then

J ′2(z) ≤ C|f |V
∫
∂V ∩B(ζ0,δ)

|z − ζ|
|Φ(z, ζ)|n−1 dσ2n−3(ζ)

≤ C|f |V
∫
∂V ∩B(z,2δ)

|z − ζ|
|Φ(z, ζ)|n−1 dσ2n−3(ζ)

≤ C|f |V δ| log δ|.

By letting z approach ζ0 along the inward normal, we have (3.33). By
Lemma 3.36 there exists f ∈ A(Ω) such that f(ζ0) = 1 and |f(z)| < 1 for
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z ∈ Ω\{ζ0}. Then

f(ζ0)N =
∫
∂V

f(ζ)N
K̃(ζ0, ζ)

Φ(ζ0, ζ)n−1
dσ2n−3(ζ).

By Lebesgue’s dominated convergence theorem, the right side of the above
equality tends to 0 as N →∞. This is a contradiction. �

Theorem 3.21 Let Ω be a strictly pseudoconvex domain with C∞ bound-
ary and let X = {zn = 0}, V = X ∩Ω. Suppose X intersects ∂Ω transver-
sally. If f ∈ O(V ) ∩Ck(V ), k = 0, 1, · · · ,∞, then E1f ∈ O(Ω) ∩Ck(Ω).

Proof. We prove by induction on k that

G(z) =
∫
∂V

f(ζ)λ(z, ζ)K̃(z, ζ)
Φ(z, ζ)n−1

dσ2n−3(ζ)

belongs to Ck(Ω) if f ∈ O(V ) ∩ Ck(V ) and λ ∈ Ck+1(Ω × ∂V ). Suppose
k = 0. Then

G(z) = λ(z, z)
∫
∂V

f(ζ)k(z, ζ)
Φ(z, ζ)n−1

dσ2n−3(ζ)

+
∫
∂V

f(ζ)k(z, ζ)(λ(z, ζ) − λ(z, z))
Φ(z, ζ)n−1

dσ2n−3(ζ)

:= G1(z) +G2(z).

G1 is continuous on Ω by Theorem 3.18. On the other hand, we obtain

∂G2
∂zj

(z) =
∫
∂V

λ1(z, ζ)dσ2n−3(ζ)
Φ(z, ζ)n−1

+
∫
∂V

λ2(z, ζ)O(|z − ζ|)dσ2n−3(ζ)
Φ(z, ζ)n

,

where λ1 and λ2 are continuous functions on Ω×V . There exists a constant
C > 0 such that∣∣∣∣∫

∂V

λ2(z, ζ)O(|z − ζ|)dσ2n−3(ζ)
Φ(z, ζ)n

∣∣∣∣ ≤ C√|ρ(z)|| log |ρ(z)||.
It follows from Lemma 3.20 that G2 ∈ Λα(Ω) for any 0 < α < 1/2. Hence
G2 is continuous on Ω. Assume that the assertion has already been proved
for k − 1. Let f ∈ O(V ) ∩ Ck(V ) and λ ∈ Ck+1(Ω× ∂V ).

If Ω = {z | ρ(z) < 0}, then dρ �= 0 on ∂Ω. Let z0 ∈ ∂V . We may
assume that there exist constants σ1 > 0 and γ1 > 0 such that∣∣∣∣ ∂ρ∂ζ1 (ζ)

∣∣∣∣ > γ1 for ζ ∈ B(z0, σ1).
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In order to prove the assertion it is sufficient to show that

G̃(z) =
∫
∂V ∩B(z0,σ1)

f(ζ)λ(z, ζ)K̃(z, ζ)
Φ(z, ζ)n−1

dσ2n−3(ζ)

belongs to Ck(Ω). We may assume that (see Theorem 3.8)

Φ(z, ζ) = F (z, ζ)M(z, ζ) for (z, ζ) ∈ B(z0, σ1)×B(z0, σ1),

where F (z, ζ) is the Levi polynomial and

M(z, ζ) �= 0 for ((z, ζ) ∈ B(z0, σ1)×B(z0, σ1).

Then we obtain

∂Φ
∂ζ1

(z0, z0) =
∂M

∂ζ1
(z0, z0)F (z0, z0) +M(z0, z0)

∂F

∂ζ1
(z0, z0)

= 2M(z0, z0)
∂ρ

∂ζ1
(z0) �= 0,

∂Φ
∂ζ̄1

(z0, z0) =
∂M

∂ζ̄1
(z0, z0)F (z0, z0) +M(z0, z0)

∂F

∂ζ̄1
(z0, z0) = 0.

There exists γ2 > 0 such that∣∣∣∣∣ ∂Φ∂ζ1 − ∂ρ

∂ζ1

(
∂ρ

∂ζ̄1

)−1
∂Φ
∂ζ̄1

∣∣∣∣∣ > γ2 on B(z0, σ1)×B(z0, σ1).

We define

dζ = dζ1 ∧ · · · ∧ dζn−1,

[dζ]1 = dζ2 ∧ · · · ∧ dζn−1, [dζ̄]1 = dζ̄2 ∧ · · · ∧ dζ̄n−1.

Then we have

d{Φ−n−1[dζ]1 ∧ [dζ̄]1} = −mΦ−n

{
∂Φ
∂ζ1

− ∂ρ

∂ζ1

(
∂ρ

∂ζ̄1

)−1
∂Φ
∂ζ̄1

}
dζ ∧ [dζ̄]1
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on ∂V ∩B(z0, σ1). In view of Lemma 3.37 we may assume that K(z, ζ) �= 0
for (z, ζ) ∈ B(z0, σ1)×B(z0, σ1). Then we obtain a representation

∂G̃

∂zj
(z) =

∫
∂V ∩B(z0,σ1)

f(ζ)λ1(z, ζ)K̃(z, ζ)
Φ(z, ζ)n−1

dσ2n−3(ζ)

+
∫
∂V ∩B(z0,σ1)

f(ζ)λ2(z, ζ)K̃(z, ζ)
Φ(z, ζ)n

dσ2n−3(ζ)

:= G̃1(z) + G̃2(z),

where λ1 ∈ Ck(Ω×∂V ) and λ2 ∈ Ck+1(Ω×∂V ). It follows from the induc-
tive hypothesis that G̃1 ∈ Ck−1(Ω). On the other hand, G̃2 is expressed
by

G̃2(z) =
∫
∂V ∩B(z0,σ1)

f(ζ)λ3(z, ζ)K̃(z, ζ)
Φ(z, ζ)n

dζ ∧ [dζ̄]1

=
∫
∂V ∩B(z0,σ1)

f(ζ)λ4(z, ζ)K̃(z, ζ)d{Φ−(n−1)[dζ]1 ∧ [dζ̄]1}.

Let ϕ(z, ζ) be a C∞ function onCn×Cn satisfying ϕ = 0 on |z−ζ| > σ1/2,
ϕ = 1 on |z − ζ| < σ1/4. Then

G̃2(z)

=
∫
∂V ∩B(z0,σ1)

f(ζ)λ4(z, ζ)K̃(z, ζ)ϕ(z, ζ)d{Φ−(n−1)[dζ]1 ∧ [dζ̄]1}

+
∫
∂V ∩B(z0,σ1)

f(ζ)λ4(z, ζ)K̃(z, ζ)(1− ϕ(z, ζ))d{Φ−(n−1)[dζ]1 ∧ [dζ̄]1}

:= G̃3(z) + G̃4(z).

Clearly, G̃4 ∈ Ck−1(Ω). Using Stokes’ theorem, we have

G̃3(z) =
∫
∂V

f(ζ)λ4(z, ζ)K̃(z, ζ)ϕ(z, ζ)d{Φ−(n−1)[dζ]1 ∧ [dζ̄]1}

= −
∫
∂V

d{f(ζ)λ4(z, ζ)K̃(z, ζ)ϕ(z, ζ)}Φ−(n−1)[dζ]1 ∧ [dζ̄]1.

It follows from the inductive hypothesis that G̃3 ∈ Ck−1(Ω). Hence ∂G̃
∂zj
∈

Ck−1(Ω). Similarly, we have ∂G̃
∂z̄j
∈ Ck−1(Ω), which means that G̃ ∈ Ck(Ω).

Hence G ∈ Ck(Ω). Thus we have proved that E1f ∈ O(Ω) ∩ Ck(Ω) if
f ∈ O(V ) ∩ Ck(V ). �
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Theorem 3.20 was first proved by Cumenge [CUM]. Adachi [ADA1]
and Elgueta [ELG] proved Theorem 3.21 in the case when k =∞, indepen-
dently. Jakobczak [JK1] also proved Theorem 3.21. The proof of Theorem
3.21 given here is an application of the method of Ahern-Schneider [AHS2].
Amar [AMA2] proved C∞ extensions of holomorphic functions from sub-
manifold of certain weakly pseudoconvex domains. In case 1 ≤ p < ∞,
Adachi [ADA4] obtained Lp extensions of Lp holomorphic functions from
submanifolds of strictly pseudoconvex domains with non-smooth boundary.
Theorem 3.21 is still open when Ω is a strictly pseudoconvex domain with
non-smooth boundary.

3.5 The Bergman Kernel

For the preparation of the next section, we study the Bergman kernel. We
begin with an orthonormal system in a Hilbert space.

Lemma 3.38 (Gram-Schmidt orthonormalization process) Sup-
pose H is a Hilbert space. For a sequence {xn} of linearly independent
vectors in H, we set

e1 =
x1
‖x1‖

,

y2 = x2 − (x2, e1)e1, e2 =
y2
‖y2‖

,

· · ·

yn = xn −
n−1∑
k=1

(xn, ek)ek, en =
yn
‖yn‖

,

· · · .

Then {en} is an orthonormal system.

Proof. We prove Lemma 3.38 by induction on n. When n = 1, the proof
is trivial. Assume that the assertion is true when n = m−1. Let 1 ≤ k < m.
Then

(em, ek) =
1

‖ym‖
(ym, ek) =

1
‖ym‖

(xm, ek)−
m−1∑
j=1

(xm, ej)(ej , ek)


=

1
‖ym‖

{(xm, ek)− (xm, ek)(ek, ek)} = 0.

Since (em, em) = 1, {e1, · · · , en} is an orthonormal system. �
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Lemma 3.39 (Bessel’s inequality) Let H be a Hilbert space and let

{x1, · · · , xn} be an orthonormal system in H. Then

n∑
k=1

|(x, xk)|2 ≤ ‖x‖2

for all x ∈ H.

Proof. For any complex numbers α1, · · · , αn, it follows from Lemma 3.39

that ∥∥∥∥∥
n∑
k=1

αkxk

∥∥∥∥∥
2

=

n∑
k=1

‖αkxk‖2 =

n∑
k=1

|αk|2.

Consequently,∥∥∥∥∥x−
n∑
k=1

αkxk

∥∥∥∥∥
2

=

(
x−

n∑
k=1

αkxk, x−
n∑
k=1

αkxk

)

= ‖x‖2 −
(
x,

n∑
k=1

αkxk

)
−
(

n∑
k=1

αkxk, x

)
+

n∑
k=1

|αk|2

= ‖x‖2 −
n∑
k=1

αk(x, xk) −
n∑
k=1

αk(x, xk) +

n∑
k=1

αkαk

= ‖x‖2 −
n∑
k=1

|(x, xk)|2 +

n∑
k=1

|(x, xk) − αk|2.

If we set αk = (x, xk), then

0 ≤ ‖x‖2 −
n∑
k=1

|(x, xk)|2.
�

Lemma 3.40 Let H be a Hilbert space. Suppose {xn} is an orthonormal

system in H and {αn} is a sequence of complex numbers. Then
∑∞

n=1 αnxn
converges if and only if

∞∑
n=1

|αn|2 <∞. (3.34)

Proof. For positive integers m, k with m > k > 0, we have∥∥∥∥∥
m∑
n=k

αnxn

∥∥∥∥∥
2

=

m∑
n=k

|αn|2.
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We set sm =
∑m

n=1 αnxn. Then

‖sm − sk‖2 =
m∑

n=k

|αn|2. (3.35)

If (3.34) holds, then by (3.35) {sm} is a Cauchy sequence, and hence {sn}
converges. Conversely, if {sn} converges, then {sn} is a Cauchy sequence,
and hence (3.34) follows from (3.35). �

Definition 3.24 Let H be a Hilbert space. An orthonormal system {xn}
in H is said to be complete if

x =
∞∑
n=1

(x, xn)xn

for every x ∈ H .

Lemma 3.41 Let H be a Hilbert space and let {xn} be an orthonormal
system in H. Then {xn} is complete if and only if the following holds:

(x, xn) = 0 (n = 1, 2, · · · ) =⇒ x = 0. (3.36)

Proof. Let {xn} be complete. Then for any x ∈ H we have

x =
∞∑
n=1

(x, xn)xn.

Hence (3.36) holds. Conversely, assume that (3.36) holds. It follows from
the Bessel inequality that

∞∑
k=1

|(x, xk)|2 ≤ ‖x‖2.

By Lemma 3.40,
∑∞

n=1(x, xn)xn converges. We set y =
∑∞

n=1(x, xn)xn.
Then we have

(x − y, xn) = (x, xn)−
( ∞∑

k=1

(x, xk)xk, xn

)

= (x, xn)−
∞∑
k=1

(x, xk)(xk, xn)

= (x, xn)− (x, xn) = 0.
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Hence, by the assumption we have x− y = 0. Therefore we have

x =
∞∑
n=1

(x, xn)xn.

Hence {xn} is complete. �

Lemma 3.42 (Parseval’s equality) Let H be a Hilbert space and let
{xn} be an orthonormal system in H. Then {xn} is complete if and only if

‖x‖2 =
∞∑
n=1

|(x, xn)|2 (3.37)

for all x ∈ H.

Proof. Let x ∈ H . For a positive integer n we have∥∥∥∥∥x−
n∑

k=1

(x, xk)xk

∥∥∥∥∥
2

= ‖x‖2 −
n∑

k=1

|(x, xk)|2.

Suppose {xn} is complete. Then the left side of the above equality converges
to 0 as n→∞. Hence (3.37) holds. Conversely, assume that (3.37) holds.
Then we have

x =
∞∑
n=1

(x, xn)xn,

which implies that {xn} is complete. �

Lemma 3.43 (Riesz-Fischer theorem) Let H be a Hilbert space and
let {uj} be a complete orthonormal system in H. Then

(a) For x ∈ H, we set αj = (x, uj). Then
∑N

j=1 αjuj converges to x as

N →∞. Further, we have ‖x‖2 =
∞∑
j=1

|αj |2.

(b) If
∑∞

j=1 |βj |2 < ∞, then there exists x ∈ H such that (x, uj) = βj for
all j, and

‖x‖2 =
∞∑
j=1

|βj |2, x =
∞∑
j=1

βjuj.
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Proof. We have already proved (a). Suppose
∑∞

j=1 |βj |2 <∞. We set

xn =
n∑

j=1

βjuj.

For n ≥ m > 0, we have

‖xn − xm‖2 =

∥∥∥∥∥∥
n∑

j=m+1

βjuj

∥∥∥∥∥∥
2

=
n∑

j=m+1

|βj |2 → 0 (m,n→∞).

Hence {xn} is a Cauchy sequence. Since H is a Hilbert space, {xn} con-
verges. Let limn→∞ xn = x. Then we have

x =
∞∑
j=1

βjuj .

Since ‖xn‖2 → ‖x‖2, we have

‖x‖2 =
∞∑
j=1

|βj |2.

This proves (b). �

Lemma 3.44 Define

l2 =

α = {aj}

∣∣∣∣∣∣
∞∑
j=1

|aj |2 <∞, aj ∈ C

 .
For α = {aj}, β = {bj} ∈ l2, we define an inner product by

(α, β) =
∞∑
j=1

ajbj .

Then l2 is a Hilbert space. Further we have

‖β‖l2 =

 ∞∑
j=1

|bj |2
1/2 = sup

α∈l2

‖α‖≤1

|(α, β)|.

Proof. For ‖α‖ ≤ 1, we have

|(α, β)| ≤ ‖α‖‖β‖ ≤ ‖β‖.
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On the other hand, if we set

cj =
bj
‖β‖ , γ = {cj},

then ‖γ‖ = 1. Moreover we have

|(γ, β)| = ‖β‖.
�

Lemma 3.45 Let H be a Hilbert space. Then the following statements

are equivalent:

(a) H is separable.

(b) H contains a complete orthonormal system which is at most countable.

Proof. (a) =⇒ (b). Suppose H is separable. Let E = {xn | n =

1, 2, · · · } ⊂ H , E = H . If xn is a linear combination of x1, · · · , xn−1,

then we omit xn from E. Let {yn} be a subsequence of {xn} obtained

by this process. Since {yn} is linearly independent, by the Schmidt or-

thonormalization process we have an orthonormal system {en}. The set of

all linear combinations of elements in {en} is equal to the set of all linear

combinations of elements in {xn}. Hence {en} is dense in H . Let x ∈ H .

For any ε > 0, there exists positive integer N such that∥∥∥∥∥x−
N∑
n=1

cnxn

∥∥∥∥∥ < ε.

Since ∥∥∥∥∥x−
N∑
n=1

cnxn

∥∥∥∥∥
2

≥ ‖x−
N∑
n=1

(x, en)en‖2 = ‖x‖2 −
N∑
n=1

|(x, en)|2,

we have

‖x‖2 ≤
∞∑
n=1

|(x, en)|2 + ε2.

Since ε > 0 is arbitrary, we have

‖x‖2 ≤
∞∑
n=1

|(x, en)|2.
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It follows from the Bessel inequality that

‖x‖2 =
∞∑
n=1

|(x, en)|2.

Hence {en} is a complete orthonormal system.
(b) =⇒ (a). Suppose H contains a complete orthonormal system {en}

which is at most countable. We set

A =

{
k∑

n=1

αnen | αn = an + ibn ∈ Q+ iQ, k ∈ N
}
.

Then A is a countable set. For any x ∈ H we have

x =
∞∑
n=1

(x, en)en.

Hence we have ∥∥∥∥∥x−
N∑

n=1

(x, en)en

∥∥∥∥∥→ 0 (N →∞).

Then A = H , and hence H is separable. �

Definition 3.25 Let Ω ⊂ Cn be an open set. We denote by A2(Ω) the
set of all holomorphic functions f in Ω satisfying∫

Ω

|f(ζ)|2dV (ζ) <∞.

A2(Ω) is called the Bergman space.

Lemma 3.46 A2(Ω) is a closed subspace of L2(Ω).

Proof. For simplicity, we prove Lemma 3.46 in case n = 1. The proof
of the general case will be left to the reader. Let K ⊂ Ω be compact. We
choose r > 0 such that B(w, r) ⊂ Ω for every w ∈ K. Let w ∈ K and
h ∈ A2(Ω). It follows from the Cauchy integral formula that

h(w) =
1

2iπ

∫
|z−w|=ρ

h(z)
z − wdz =

1
2π

∫ 2π

0

h(w + ρeiθ)dθ (3.38)
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for 0 < ρ ≤ r. If we multiply by ρ and integrate from 0 to r, then we have

r2

2
h(w) =

∫ r

0

(
1
2π

∫ 2π

0

h(w + ρeiθ)dθ
)
ρdρ

=
1
2π

∫ ∫
|z−w|≤r

h(z)ρdρdθ

=
1
2π

∫ ∫
|z−w|≤r

h(z)dxdy.

By the Hölder inequality we obtain

|h(w)| ≤ 1
πr2

∫
|z−w|≤r

|h(z)|dxdy

≤ 1
πr2

(∫
|z−w|≤r

|h(z)|2dxdy
)1/2(∫

|z−w|≤r

dxdy

)1/2

≤ 1
πr2

(∫
Ω

|h(z)|2dxdy
)1/2√

πr

=
1√
πr
‖h‖.

Suppose fj ∈ A2(Ω) for j = 1, 2, · · · , f ∈ L2(Ω) and fj → f . For ε > 0, if
we choose N sufficiently large, then for j, k ≥ N , we have

‖fj − fk‖ < ε
√
πr.

Therefore, we obtain

|fj(w)− fk(w)| ≤ 1√
πr
‖fj − fk‖ < ε

for w ∈ K, which implies that {fj} converges to a holomorphic function f
uniformly on every compact subset of Ω. Now we show that f ∈ A2(Ω).
Since {fj} is a Cauchy sequence, there exists positive number M such that
‖fj‖ ≤M for all j. On the other hand, for any compact subset K ⊂ Ω∫

K

|fj(z)|2dxdy ≤
∫
Ω

|fj(z)|2dxdy = ‖fj‖2 ≤M2.

Hence we obtain ∫
K

|f(z)|2dxdy ≤M2.
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Since K is independent of M , we have∫
Ω

|f(z)|2dxdy ≤M2.

Thus f ∈ A2(Ω). Hence A2(Ω) is a closed subspace of L2(Ω). �

Theorem 3.22 A2(Ω) has a countable complete orthonormal system.

Proof. Since A2(Ω) is a separable Hilbert space (see Adams [ADM]),
Theorem 3.22 follows from Lemma 3.45. �

Lemma 3.47 Let {ϕj} be a complete orthonormal sequence in A2(Ω).
Then

∞∑
j=1

|ϕj(z)|2 = sup
f∈A2(Ω)
‖f‖≤1

|f(z)|2 <∞

for all z ∈ Ω.

Proof. Let K be a compact subset of Ω and let z ∈ K. By the Riesz-
Fischer theorem we have

∞∑
j=1

|ϕj(z)|2 = sup
{aj}∈l2

‖{aj}‖l2≤1

∣∣∣∣∣∣
∞∑
j=1

ajϕj(z)

∣∣∣∣∣∣
2

= sup
f∈A2(Ω)
‖f‖≤1

|f(z)|2.

Consequently,

∞∑
j=1

|ϕj(z)|2 ≤ sup
f∈A2(Ω)
‖f‖≤1

cK‖f‖2 ≤ cK <∞,

where cK is a constant depending only on K. �

Lemma 3.48 Let Ω ⊂ Cn be an open set. For a ∈ Ω, define τa : A2(Ω)→
C by τa(f) = f(a). Then τa is a bounded linear functional on A2(Ω).

Proof. It is clear that τa is a linear functional. We choose rj > 0 for
j = 1, · · · , n such that

{(z1, · · · , zn) | |zj − aj | ≤ rj , j = 1, · · · , n} ⊂ Ω.
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It follows from the proof of Lemma 3.46 that

f(a) =
1
πr21

∫
|z1−a1|≤r1

f(z1, a2, · · · , an)dx1dy1

=
1

πnr21 · · · r2n

∫
|z1−a1|≤r1

· · ·
∫
|zn−an|≤rn

f(z1, · · · , zn)dV.

It follows from the Hölder inequality that there exists a constant Ca > 0
such that

|τa(f)| = |f(a)| ≤ Ca‖f‖L2.

Thus τa is bounded. �

Definition 3.26 By Lemma 3.48 and the Riesz representation theorem,
there exists g ∈ A2(Ω) such that

τa(f) = (f, g) (f ∈ A2(Ω)).

We define g(z) = KΩ(z, a). We say that KΩ : Ω× Ω → C is the Bergman
kernel for Ω.

By definition we obtain

f(z) =
∫
Ω

f(ζ)KΩ(ζ, z)dV (ζ) (f ∈ A2(Ω)). (3.39)

Lemma 3.49 For any z, ζ ∈ Ω, KΩ(ζ, z) = KΩ(z, ζ).

Proof. For z ∈ Ω fixed, we have KΩ(·, z) ∈ A2(Ω). If we set f(ζ) =
KΩ(ζ, z), then (3.39) shows that

KΩ(ζ, z) = f(ζ) =
∫
Ω

f(w)KΩ(w, ζ)dV (w)

=
∫
Ω

KΩ(w, z)KΩ(w, ζ)dV (w)

=
∫
Ω

KΩ(w, z)KΩ(w, ζ)dV (w)

= KΩ(z, ζ).
�

It follows from Lemma 3.49 and (3.39) that

f(z) =
∫
Ω

f(ζ)KΩ(z, ζ)dV (ζ) (f ∈ A2(Ω), z ∈ Ω). (3.40)
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Lemma 3.50 There exists a constant C > 0 such that

‖KΩ(·, a)‖L2 ≤ Cδ−n
Ω (a) (a ∈ Ω),

where δΩ(a) = dist(a, ∂Ω).

Proof. We choose r such that r < δΩ(a)/
√
n. Then {z | |zi − ai| ≤ r} ⊂

Ω. Using the same method as the proof of Lemma 3.46, we have

f(a) =
1

πnr2n

∫
|z1−a1|≤r

· · ·
∫
|zn−an|≤r

f(z1, · · · , zn)dV.

By Hölder’s inequality,

|f(a)| ≤ ‖f‖L2

(
√
π)nrn

.

Letting r → δΩ(a)/
√
n, we have

|f(a)| ≤
(√

n

π

)n

(δΩ(a))−n‖f‖L2. (3.41)

On the other hand, by the Riesz representation theorem we obtain

‖τa‖ = ‖KΩ(·, a)‖L2 .

It follows from (3.41) that

‖τa‖ = sup
‖f‖L2=1

|τa(f)| = sup
‖f‖L2=1

|f(a)| ≤
(√

n

π

)n

(δΩ(a))−n.

We set

C =
(√

n

π

)n

.

Then we have the desired inequality. �

Lemma 3.51 Let K be a compact subset of Ω, Then there exists a con-
stant CK > 0 such that for every complete orthonormal sequence {ϕj} in
A2(Ω),

sup
z∈K

∞∑
j=1

|ϕj(z)|2 ≤ CK .
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Proof. For z ∈ K, we have δΩ(z) ≥ dist(K, ∂Ω). It follows from Lemma
3.50 that

‖KΩ(·, z)‖L2 ≤ C(dist(K, ∂Ω)−n = CK (z ∈ K).

Since KΩ(·, z) ∈ A2(Ω), we have

KΩ(ζ, z) =
∞∑
j=1

(KΩ(·, z), ϕj)ϕj(ζ). (3.42)

By Lemma 3.42 we obtain

∞∑
j=1

|(KΩ(·, z), ϕj)|2 = ‖KΩ(·, z)‖2L2.

It follows from (3.40) that

ϕj(z) =
∫
Ω

ϕj(ζ)KΩ(z, ζ)dV (ζ) = (ϕj ,KΩ(·, z)). (3.43)

Hence we have
∞∑
j=1

|ϕj(z)|2 = ‖KΩ(·, z)‖2L2 ≤ CK .

�

Theorem 3.23 Let {ϕj} be a complete orthonormal sequence in A2(Ω).
Then

KΩ(ζ, z) =
∞∑
j=1

ϕj(ζ)ϕj(z) ((ζ, z) ∈ Ω× Ω). (3.44)

Moreover, the infinite series in the right side of (3.44) converges uniformly
on every compact subset of Ω× Ω.

Proof. If we substitute (3.43) into (3.42), then we obtain (3.44). Suppose
K ⊂ Ω is compact. It is sufficient to show that the infinite series in the
right side of (3.44) converges uniformly on K ×K. It follows from Lemma
3.51 that

∞∑
j=1

|ϕj(ζ)||ϕj(z)| ≤

 ∞∑
j=1

|ϕj(ζ)|2
1/2 ∞∑

j=1

|ϕj(z)|2
1/2 ≤ CK
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for ζ, z ∈ K. We set

gn(z, ζ) =
n∑

j=1

|ϕj(ζ)||ϕj(z)|.

Then {gn} converges monotonically on K. In view of Lemma 1.19 {gn}
converges uniformly on K ×K. Hence the infinite series in the right side
of (3.44) converges uniformly on every compact subset of Ω× Ω. �

Corollary 3.7 KΩ ∈ C∞(Ω× Ω).

Proof. By Theorem 3.23, KΩ(ζ, z) is continuous in Ω×Ω. Since KΩ(ζ, z)
is holomorphic with respect to (ζ, z̄), KΩ(ζ, z) is expressed by the Cauchy
integral. Differentiating under the integral sign, derivatives of KΩ(ζ, z) of
any order are continuous in Ω×Ω, which completes the proof of Corollary
3.7. �

Lemma 3.52 Suppose a function K̃Ω : Ω×Ω→ C satisfies the following
properties:

(1) K̃Ω(z, ·) ∈ A2(Ω) for every fixed z ∈ Ω.

(2) f(z) =
∫
Ω

f(ζ)K̃Ω(z, ζ)dV (ζ) for every f ∈ A2(Ω).

Then

K̃Ω = KΩ.

Proof. For z ∈ Ω, define kz(ζ) = KΩ(z, ζ). Since kz ∈ A2(Ω), we obtain

KΩ(w, z) = KΩ(z, w) = kz(w) =
∫
Ω

kz(ζ)K̃Ω(w, ζ)dV (ζ)

=
∫
Ω

kz(ζ)K̃Ω(w, ζ)dV (ζ)

=
∫
Ω

K̃Ω(w, ζ)KΩ(z, ζ)dV (ζ)

= K̃Ω(w, z).
�

Definition 3.27 Let Ω be a domain in Cn. For a C1 mapping

F = (f1, · · · , fn) : Ω→ Cn,
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define

F ′(z) =


∂f1
∂z1

(z) · · · ∂f1
∂zn

(z)
...

...
...

∂fn

∂z1
(z) · · · ∂fn

∂zn
(z)

 .
Theorem 3.24 Let Ωj, j = 1, 2, be bounded domains in Cn and let
F : Ω1 → Ω2 be a biholomorphic mapping. Then

KΩ1(ζ, z) = detF ′(ζ)KΩ2 (F (ζ), F (z))detF ′(z) (ζ, z ∈ Ω1).

Proof. We set

H(z, w) = detF ′(ζ)KΩ2(F (ζ), F (z))detF ′(z).

Then for a fixed point z ∈ Ω1, H(z, ·) is holomorphic in Ω1. Differentiating
z = F−1(F (z)), we have

1 = det(F−1)′(F (z))detF ′(z).

We set z̃ = F (z). Then using the Cauchy-Riemann equation, the Jacobian
of F is equal to |detF ′|2. Hence we have∫

Ω1

|H(z, w)|2dV (z)

=
∫
Ω1

|detF ′(z)|2|KΩ2(F (z), F (w))|2|detF ′(w)|2dV (z)

=
∫
Ω2

|detF ′(F−1(z̃))|2|KΩ2(z̃, F (w))|2|detF ′(w)|2|det(F−1)′(z̃)|2dV

= |detF ′(w)|2
∫
Ω2

|KΩ2(z̃, F (w))|2|dV (z̃) <∞.

Since H(z, w) = H(w, z), we have∫
Ω1

|H(z, w)|2dV (w) <∞,

which means that H(z, ·) ∈ A2(Ω). Next we show that H(z, w) is the
reproducing kernel for Ω1. Let f ∈ A2(Ω1). If we set ζ̃ = F (ζ), then we
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have ∫
Ω1

f(ζ)H(z, ζ)dV (ζ)

=
∫
Ω1

f(ζ)detF ′(z)KΩ2(F (z), F (ζ))detF ′(ζ)dV (ζ)

= detF ′(z)
∫
Ω2

f(F−1(ζ̃))det(F−1)′(ζ̃)KΩ2(F (z), ζ̃)dV (ζ̃).

We set

g(ζ̃) = f(F−1(ζ̃))det(F−1)′(ζ̃).

Then g is holomorphic in Ω2. Moreover, we have∫
Ω1

|f(ζ)|2dV (ζ) =
∫
Ω2

|g(ζ̃)|2dV (ζ̃),

which implies that g ∈ A2(Ω2). Thus we obtain∫
Ω1

f(ζ)H(z, ζ)dV (ζ) = detF ′(z)
∫
Ω2

g(ζ̃)KΩ2(F (z), ζ̃)dV (ζ̃)

= detF ′(z)g(F (z)) = f(z).

By Lemma 3.52, we have H(z, w) = KΩ1(z, w) �

3.6 Fefferman’s Mapping Theorem

We prove Fefferman’s mapping theorem [FEF] which says that every biholo-
morphic mapping between two strictly pseudoconvex domains with C∞

boundary can be extended to a C∞ mapping up to the boundary. Bell-
Ligocka [BEL] gave a simple proof of Fefferman’s mapping theorem. In
what follows we give the proof of Fefferman’s mapping theorem by follow-
ing the methods of Range [RAN2]. Range obtained Ck extensions up to the
boundary under the assumption that ∂Ω is of class C2k+4 (1 ≤ k ≤ ∞). For
simplicity, we assume that ∂Ω is of class C∞. In order to prove Fefferman’s
mapping theorem we use the homotopy formula for strictly pseudoconvex
domains constructed in 3.2.

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞ boundary.
Suppose the neighborhood U of ∂Ω, the functions ϕ, w and Φ̃ are as in 3.2.
We will adopt the convention of denoting by C any positive constant which
does not depend on the relevant parameters in the estimates.
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If f is an L1 holomorphic function in Ω, then it follows from Theorem
3.12 that

f(z) = LΩf(z) =
n!

(2πi)n

∫
Ω

f(ζ)ωζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ)

for z ∈ Ω.
Define

dV (ζ) = dx1 ∧ dx2 ∧ · · · ∧ dx2n

for ζj = xj + ixj+n and j = 1, · · · , n. Then there exists a C∞ function
G(z, ζ) in Ω× Ω which is holomorphic in z ∈ Ω for fixed ζ ∈ Ω such that

n!
(2πi)n

ωζ

(
χ(ζ)w(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ) = G(z, ζ)dV (ζ).

Then we have

f(z) =
∫
Ω

f(ζ)G(z, ζ)dV (ζ) (z ∈ Ω). (3.45)

For ζ ∈ U and −ε0 < ρ(ζ), we have χ(ζ) = 1. Hence for ζ ∈ U and
−ε0 < ρ(ζ), we have

G(z, ζ)dV (ζ) =
n!

(2πi)n
n
∧
j=1
∂̄ζ

(
wj(z, ζ)

Φ̃(z, ζ)

)
∧ ω(ζ).

If we choose ε > 0 (0 < ε < ε0) sufficiently small, then it follows from
Theorem 3.8 and Theorem 3.9 that

Φ(z, ζ) = F (z, ζ)M(z, ζ) =
n∑

j=1

wj(z, ζ)(zj − ζj)

for |z − ζ| ≤ ε. Differentiating the above equality with respect to ζj we
have

wj(z, ζ) =
∂F

∂ζj
(z, ζ)M(z, ζ) +O(|ζ − z|)

= 2M(z, ζ)
∂ρ(ζ)
∂ζj

+O(|ζ − z|),

Φ̃(z, ζ) = (F (z, ζ)− 2ρ(ζ))M̃(z, ζ),
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∂̄ζΦ̃(z, ζ) = (∂̄ζF (z, ζ)− 2∂̄ρ(ζ))M̃(z, ζ) + (F (z, ζ)− 2ρ(ζ))∂̄ζM̃(z, ζ).

LetV∂Ω be a neighborhood of ∂Ω. If we denote by N(z, ζ) any C∞ form in
V∂Ω × V∂Ω, then we have

G(z, ζ)dV (ζ) =
n!

(2πi)n
n
∧
j=1

(
∂̄ζwj

Φ̃
+
wj ∂̄ζΦ̃

Φ̃2

)
∧ ω(ζ)

=
n!

(2πi)n

n∑
j=1

(−1)j−1
wj ∧k �=j ∂̄ζwk

Φ̃n+1
∧ ∂̄ζΦ̃ ∧ ω(ζ) +

N

Φ̃n

=
n!

(2πi)n
ω′(w(z, ζ)) ∧ (∂̄ζF − 2∂̄ρ(ζ))M̃

Φ̃(z, ζ)n+1
∧ ω(ζ) +

N

Φ̃n
.

We set

P = (P1, · · · , Pn) =
(
∂ρ

∂ζ1
, · · · , ∂ρ

∂ζn

)
.

Then we have

G(z, ζ)dV (ζ)

=
n!

(2πi)n
ω′(P (ζ))(2M)nM̃(∂̄ζF − 2∂̄ρ(ζ))

Φ̃n+1
∧ ω(ζ) +

O(|z − ζ|)
Φ̃n+1

+
N

Φ̃n

=
n!

(2πi)n
ω′(P (ζ)) ∧ (−2∂̄ρ(ζ))2nMn

(F (z, ζ)− 2ρ(ζ))n+1M̃n
∧ ω(ζ) +

O(|z − ζ|)
Φ̃n+1

+
N

Φ̃n
.

On the other hand, for ζ0 ∈ ∂Ω with |ζ − ζ0| = dist(ζ, ∂Ω), we have
M(z, ζ0) = M̃(z, ζ0). Hence we have

M(z, ζ)n

M̃(z, ζ)n
=
M(ζ, ζ)n

M̃(ζ, ζ)n
+O(|ζ − z|) = 1 +O(|ζ − ζ0|) +O(|ζ − z|).

Consequently, for ζ ∈ Ω we obtain

M(z, ζ)n

M̃(z, ζ)nΦ̃(z, ζ)
=

1

Φ̃(z, ζ)
+
O(|ζ − z|)
Φ̃(z, ζ)

.

Further we have

∂̄ρ(ζ) ∧ ω′(P (ζ)) ∧ ω(ζ) = ∂̄ρ(ζ) ∧ ∂ρ(ζ) ∧ (∂̄∂ρ(ζ))n−1.

We set

H(ζ) = (2πi)−n∂̄ρ(ζ) ∧ ∂ρ(ζ) ∧ (∂̄∂ρ(ζ))n−1.
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Then we have H(ζ) = H(ζ). Therefore, if we write H(ζ) = h(ζ)dV (ζ),
then h is a real-valued function. Hence we have the following lemma.

Lemma 3.53 For (z, ζ) ∈ Ω × Ω with −ε < ρ(ζ) and |z − ζ| < ε, there
exists a real-valued function a(ζ) such that

G(z, ζ) =
a(ζ)

(F (z, ζ)− 2ρ(ζ))n+1
+
O(|ζ − z|)
Φ̃(z, ζ)n+1

+
N(z, ζ)

Φ̃(z, ζ)n
.

Lemma 3.54 Let δΩ(z) = dist(z, ∂Ω). For z ∈ Ω, define

Iα :=
∫
Ω

dV (ζ)

|Φ̃(z, ζ)|n+1+α
.

Then there exists a constant C > 0 such that

(a) If α < 0, then Iα < C.
(b) If α = 0, then Iα ≤ C| log δΩ(z)|.
(c) If α > 0, then Iα ≤ C(δΩ(z))−α.

Proof. We may assume that ρ(ζ) > −ε and |z − ζ| ≤ ε. There exists a
constant β > 0 such that

Re Φ̃(z, ζ) ≥ −ρ(ζ)− ρ(z) + β|ζ − z|2.

We choose a coordinate system t = (t1, · · · , t2n) such that t1 = Im Φ̃(z, ζ),
t2 = ρ(ζ). We set t′ = (t3, · · · , t2n). Then we have

Iα ≤ C
∫
|t|≤M

dt

(|t1|+ |t2|+ |ρ(z)|+ |t|2)n+1+α

≤ C
∫
|t′|≤M

dt′

(|ρ(z)|+ |t′|2)n−1+α

≤ C
∫ M

0

r2n−3

(|ρ(z)|+ r2)n−1+α
dr.

In case α < 0, we have

Iα ≤ C
∫ M

0

1
r1+α

dr ≤ C.
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In case α ≥ 0, if we set r = λ
√
|ρ(z)|, then

Iα ≤ C
∫ M/

√
|ρ(z)|

0

λ2n−3

|ρ(z)|α(1 + λ2)n−1+α
dλ

≤ C

|ρ(z)|α
∫ M/

√
|ρ(z)|

1

dλ

λ1+2α
.

In case α = 0, we have

I0 ≤ C
∫ M/

√
|ρ(z)|

1

dλ

λ
≤ C| log |ρ(z)|| ≤ C| log δΩ(z)|.

In case α > 0, we have

Iα ≤
C

|ρ(z)|α
∫ ∞
1

dλ

λ1+2α
≤ C(δΩ(z))−α.

�

Definition 3.28 For z, ζ ∈ Ω, we define

F̃ (z, ζ) = F (z, ζ)− 2ρ(ζ), F̃ ∗(z, ζ) = F̃ (ζ, z).

Lemma 3.55 We have

(a) F̃ (z, ζ)− F̃ ∗(z, ζ) = O(|ζ − z|3).
(b) If ζ, z ∈ Ω are sufficiently close to ∂Ω, then we have |F̃ ∗| ≥ C|F̃ |.

Proof. (a) It follows from Taylor’s formula that

∂ρ

∂ζj
(ζ) =

∂ρ

∂ζj
(z) +

n∑
k=1

∂2ρ

∂ζj∂ζk
(z)(ζk − zk)

+
n∑

k=1

∂2ρ

∂ζj∂ζ̄k
(z)(ζ̄k − z̄k) +O(|ζ − z|2), (3.46)

∂2ρ

∂ζj∂ζk
(ζ) =

∂2ρ

∂ζj∂ζk
(z) +O(|ζ − z|), (3.47)

∂2ρ

∂ζj∂ζ̄k
(z) =

∂2ρ

∂ζj∂ζ̄k
(ζ) +O(|ζ − z|). (3.48)
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By definition, we have

F (z, ζ) = 2
n∑

j=1

∂ρ

∂ζj
(ζ)(ζj − zj)−

n∑
j,k=1

∂2ρ

∂ζj∂ζk
(ζ)(ζj − zj)(ζk − zk). (3.49)

Substituting (3,46), (3.47) and (3.48) into (3.49), we obtain

F (z, ζ) = −F (ζ, z)+2
n∑

j,k=1

∂2ρ

∂ζj∂ζ̄k
(ζ)(ζj−zj)(ζ̄k−z̄k)+O(|ζ−z|3). (3.50)

On the other hand, it follows from Taylor’s formula that

ρ(z) = ρ(ζ)− 1
2
F (z, ζ)− 1

2
F (z, ζ)

+
n∑

j,k=1

∂2ρ

∂ζj∂ζ̄k
(ζ)(ζj − zj)(ζ̄k − z̄k) +O(|ζ − z|3).

Substituting (3.50) into the above equality we obtain

ρ(z) = ρ(ζ)− 1
2
F (z, ζ) +

1
2
F (ζ, z) +O(|ζ − z|3).

This proves (a).
(b) We may assume that |z − ζ| is sufficiently small. Then there exist

positive constants C1 and C2 such that

|F̃ ∗| ≥ |F̃ | − |F̃ ∗ − F̃ | ≥ 1
2
|F̃ |+ C1|ζ − z|2 − C2|ζ − z|3 ≥

1
2
|F̃ |.

This proves (b). �

Definition 3.29 For (z, ζ) ∈ Ω× Ω, define

G∗(z, ζ) := G(ζ, z)

and

B(z, ζ) := G(z, ζ)−G∗(z, ζ).

By definition, we have B(ζ, z) = −B(z, ζ).

Theorem 3.25 Let s < (2n+ 2)/(2n+ 1). Then there exists a constant
C > 0 such that ∫

Ω

|B(z, ζ)|sdV (ζ) < C (z ∈ Ω)
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and ∫
Ω

|B(z, ζ)|sdV (z) < C (ζ ∈ Ω).

Proof. Define

C(z, ζ) :=
a(ζ)

F̃ (z, ζ)n+1
− a(z)

F̃ ∗(z, ζ)n+1
.

If we prove the inequality

|C(z, ζ)| ≤ C 1

|Φ̃(z, ζ)|n+ 1
2
, (3.51)

then it follows from Lemma 3.53 that |B(z, ζ)| ≤ |Φ̃(z, ζ)|n+(1/2). There-
fore, it is sufficient to show (3.51). Since a(ζ) is a real-valued C∞ function,
we obtain

a(ζ)

F̃ (z, ζ)n+1
− a(z)

F̃ ∗(z, ζ)n+1
= a(ζ)

{
1

F̃ (z, ζ)n+1
− 1

F̃ ∗(z, ζ)n+1

}

+
O(|ζ − z|)
F̃ ∗(z, ζ)n+1

.

Since

|F̃ (z, ζ)| ≥ C|ζ − z|2 (ζ, z ∈ Ω),

it follows from Lemma 3.55 that∣∣∣∣∣ 1

F̃ (z, ζ)n+1
− 1

F̃ ∗(z, ζ)n+1

∣∣∣∣∣
=

∣∣∣∣∣(F̃ ∗ − F̃ )
n∑

ν=0

1

F̃ (z, ζ)
n+1−ν

1

F̃ ∗(z, ζ)
ν+1

∣∣∣∣∣
≤ C|ζ − z|3 1

|F̃ (z, ζ)|n+2
≤ C 1

|F̃ (z, ζ)|n+1/2

≤ C 1

|Φ̃(z, ζ)|n+1/2
.

This proves (3.51). Thus we obtain

|B(z, ζ)|s ≤ C|Φ̃(z, ζ)|−(2n+1)s/2.
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By Lemma 3.55, |B(z, ζ)|s is integrable, provided s < (2n + 2)/(2n + 1).
The second inequality follows from the equality B(z, ζ) = −B(ζ, z). �

Definition 3.30 A C∞ function A(z, ζ) in Ω× Ω is called a simple ad-
missible kernel of order λ = 2n+ j − 2t+2 if for any P ∈ ∂Ω, there exist a
neighborhood U of P and C∞ functions Ej(z, ζ) in U ×U such that A(z, ζ)
has a representation

A(z, ζ) =
Ej(z, ζ)
Φ̃(z, ζ)t

or A(z, ζ) =
Ej(z, ζ)
Φ̃∗(z, ζ)t

,

where j and t are positive integers with t ≥ 2, and Ej(z, ζ) satisfy the
inequalities

|Ej(z, ζ)| ≤ C|ζ − z|j ((z, ζ) ∈ U × U).

Definition 3.31 A C∞ function A(z, ζ) in Ω×Ω is called an admissible
kernel of order λ if for any positive integer N there exist simple admissible
kernels A(0), · · · , A(N−1) of order ≥ λ such that

A =
N−1∑
s=0

A(s) +R(N),

where R(N) satisfies that for any nonnegative integer k, if we choose N
sufficiently large, then∣∣∣∣∫

Ω

f(ζ)R(N)(·, ζ)dV (ζ)
∣∣∣∣
k,Ω

≤ Ck‖f‖L2 (f ∈ L2(Ω)).

Lemma 3.56 We denote by Aλ a simple admissible kernel of order λ.
Then

∫
Ω

|Aλ(z, ζ)|dV (ζ) ≤ C


1 (λ > 0)

| log δΩ(z)| (λ = 0)
(δΩ(z))λ/2 (λ < 0)

.

Proof. We choose a local coordinate system u1, · · · , u2n such that

ρ(ζ) = u1, Im Φ̃(z, ζ) = u2, |u| ≈ |ζ − z|.
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We set u = (u1, · · · , u2n), u′ = (u3, · · · , u2n). Then we have∫
Ω

|A(z, ζ)|dV (ζ) =
∫
Ω

∣∣∣∣∣ Ej(z, ζ)Φ̃(z, ζ)t

∣∣∣∣∣ dV (ζ)

≤ C
∫
|u|≤M

|u|j
(|u1|+ |u2|+ |ρ(z)|+ |u|2)t

du

≤ C
∫
|u|≤M

du

(|u1|+ |u2|+ |ρ(z)|+ |u|2)t−j/2

≤
∫
|u′|≤M

du′

(|ρ(z)|+ |u′|2)t−2−j/2

≤ C
∫ M

0

r2n−3

(|ρ(z)|+ r2)t−2−j/2
dr.

In case λ = 2n+ j − 2t+ 2 > 0, we have∫
Ω

|A(z, ζ)|dV (ζ) ≤ C
∫ M

0

r2n−2t+j+1dr = C
∫ M

0

rλ−1dr ≤ C.

In case λ = 2n+ j − 2t+ 2 ≤ 0, if we set r =
√
|ρ(z)|s, then∫

Ω

|A(z, ζ)|dV (ζ) ≤ C|ρ(z)|λ/2
∫ M/

√
|ρ(z)|

0

s2n−3

(1 + s2)t−2−(j/2)
ds

≤ C|ρ(z)|λ/2
∫ M/

√
|ρ(z)|

1

ds

s1−λ
.

�

Lemma 3.57 Let Ej(z, ζ) be a C∞ function on Ω × Ω such that
|Ej(z, ζ)| ≤ |ζ − z|j. For positive integers t1, t2, we set

A(z, ζ) =
Ej(z, ζ)

F̃ (z, ζ)t1 F̃ ∗(z, ζ)t2
. (3.52)

Then A(z, ζ) is an admissible kernel of order λ = 2n+ j − 2(t1 + t2) + 2.

Proof. We have

1

(F̃ ∗)t2
=

1

(F̃ )t2
+ (F̃ − F̃ ∗)

t2−1∑
ν=0

1

F̃ t2−ν(F̃ ∗)ν+1
. (3.53)

Substituting (3.51) into (3.50), we obtain

A =
Ej

F̃ t1 F̃ t2
+
Ej
F̃ t1

(F̃ − F̃ ∗)
t2−1∑
ν=0

1

F̃ t2−ν(F̃ ∗)ν+1
. (3.54)
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If we replace t2 by ν + 1 in (3.53) and substitute it into the right side of
(3.54), we obtain

A =
Ej

F̃ t1F̃ t2
+
Ej(F̃ − F̃ ∗)
F̃ t1+t2+1

+
Ej(F̃ − F̃ ∗)2

F̃ t1

t2−1∑
µ=0

1

F̃ t2+1−µ(F̃ ∗)µ+1
.

Repeating this process, we have

A =
N−1∑
s=0

Ej(F̃ − F̃ ∗)s

F̃ t1+t2+s
+ (F̃ − F̃ ∗)N

t2−1∑
ν=0

Ej
F̃ t1+t2+N−1−ν(F̃ ∗)ν+1

. (3.55)

Each term of the first sum in the right side of (3.55) is a simple admissible
kernel of degree ≥ λ. We denote the second sum in the right side of (3.55)
by R(N). It follows from Lemma 3.55 that

(F̃ − F̃ ∗)NEj = O(|ζ − z|3N+j).

Hence the absolute values of k-th order derivatives of R(N) are bounded by
the sum of

C
|ζ − z|j+3N−µ

|F̃ (z, ζ)|t1+t2+N+k−µ
(0 ≤ µ ≤ k). (3.56)

Since

|ζ − z|j+3N−µ

|F̃ (z, ζ)|t1+t2+N+k−µ
≤ C|ζ − z|j+N−2(t1+t2+k)

for N with N ≥ 2(t1+t2+k), derivatives ofR(N) of order ≤ k are bounded.
Thus A(z, ζ) is an admissible kernel of order λ. �
Theorem 3.26 B(z, ζ) = G(z, ζ) − G∗(z, ζ) is an admissible kernel of
order 1.

Proof. By Lemma 3.53, there exists a real-valued C∞ function a(ζ) such
that

G(z, ζ) =
a(ζ)

F̃ (z, ζ)n+1
+
O(|ζ − z|)
Φ̃(z, ζ)n+1

+
N(z, ζ)

Φ̃(z, ζ)n
.

Thus we have a representation

B(z, ζ) = a(ζ)

[
1

F̃ (z, ζ)n+1
− 1

F̃ ∗(z, ζ)n+1

]
+A1,
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where A1 is an admissible kernel of order 1. Since

1

F̃n+1
− 1

(F̃ ∗)n+1
= (F̃ ∗ − F̃ )

n∑
ν=0

1

F̃n+1−ν(F̃ ∗)ν+1
,

by Lemma 3.57 1/F̃n+1 − 1/(F̃ ∗)n+1 is an admissible kernel of order 2n+
3− 2(n+ 2) + 2 = 1. �

Definition 3.32 A vector field L on Ω is said to be a tangent vector field
for ∂Ω if Lρ = 0 on ∂Ω for any defining function ρ for Ω.

Lemma 3.58 Let Ω ⊂ Rn be a bounded domain with C∞ boundary and
let L be a tangent vector field of class C∞ for ∂Ω. Then there exists a first
order partial differential operator L∗ on Ω of class C∞ such that

(f, Lg)Ω = (L∗f, g)Ω

for all f, g ∈ C∞(Ω).

Proof. Assume that there exists an open set U such that supp(L) ⊂⊂ U ,
U ∩ ∂Ω �= φ and such that if we set ρ(ζ) = x1, then x1, · · · , xn form a
coordinate system in U . We set x′ = (x2, · · · , xn), and

L =
n∑

j=1

aj
∂

∂xj
(aj ∈ C∞c (U)).

Then we have Lr(0, x′) = a1(0, x′) = 0. The volume element dV =
γ(x)dx1 ∧ · · · ∧ dxn satisfies γ(x) > 0 for x ∈ U . If f, g ∈ C∞(U), then we
have

(f, Lg)Ω∩U =
n∑

j=1

∫
x∈U,x1≤0

fāj
∂ḡ

∂xj
γ(x)dx1 · · ·dxn

= −
n∑

j=1

∫
x∈U,x1≤0

∂

∂xj
(fājγ)ḡdx1 · · · dxn

+
∫
x∈U,x1=0

fā1γḡdx2 · · · dxn

= −
n∑

j=1

∫
x∈U,x1≤0

∂

∂xj
(fājγ)ḡdx1 · · · dxn

= −
n∑

j=1

∫
x∈U,x1≤0

[
āj
∂f

∂xj
+ γ−1

∂

∂xj
(ājγ)f

]
ḡdV (x).
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Hence if we define

L∗ := −
n∑

j=1

āj
∂

∂xj
− γ−1

n∑
j=1

∂

∂xj
(ājγ),

then we have

(f, Lg)Ω = (f, Lg)Ω∩U =
∫
Ω∩U

L∗f ḡdV (ζ) = (L∗f, g)Ω.

In the general case, we can prove Lemma 3.58 using a partition of unity
argument. �

Lemma 3.59 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let ρ be a defining function for Ω. Then the vector field

Y =
n∑

j=1

∂ρ

∂ζ̄j

∂

∂ζj
−

n∑
j=1

∂ρ

∂ζj

∂

∂ζ̄j

is a tangent vector field for ∂Ω of class C∞ and satisfies (Y Φ̃)(ζ, ζ) �= 0
for ζ ∈ ∂Ω.

Proof. Let ρ̃ be a defining function for Ω. Then there exist a C∞ function
γ(z) > 0 such that ρ̃(ζ) = γ(ζ)ρ(ζ) (see Lemma 1.21). Hence we have
Y ρ(ζ) = 0 for ζ ∈ ∂Ω. Thus Y is a tangent vector field for ∂Ω. We obtain
for ζ ∈ ∂Ω

(Y Φ̃)(ζ, ζ) = Y (F̃ M̃)(ζ, ζ) = Y {(F − 2ρ)M̃}(ζ, ζ) = (Y F )(ζ, ζ)M̃ (ζ, ζ).

But we have M̃(ζ, ζ) �= 0 for ζ ∈ ∂Ω and

Y F (ζ, ζ) = 2
n∑

j=1

∣∣∣∣ ∂ρ∂ζj (ζ)
∣∣∣∣2 �= 0 (ζ ∈ ∂Ω),

which means that (Y Φ̃)(ζ, ζ) �= 0 for ζ ∈ ∂Ω. �

Lemma 3.60 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let Aλ denote an arbitrary admissible kernel of order λ, where
λ is equal to 0 or 1. Suppose V (z) is a vector field with respect to z of class
C∞ on Ω. Then

V (z)
∫
Ω

f(ζ)Aλ(z, ζ)dV (ζ) =
∫
Ω

(Y ∗f)(ζ)Aλ(z, ζ)dV (ζ)

+
∫
Ω

f(ζ)Aλ(z, ζ)dV (ζ).
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Proof. We set ∆∂Ω = {(ζ, ζ) ∈ C2n | ζ ∈ ∂Ω}. LetW be a neighborhood
of ∆∂Ω such that (Y Φ̃)(z, ζ) �= 0 for (z, ζ) ∈ W . We choose ψ ∈ C∞c (W )
with the properties that 0 ≤ ψ ≤ 1, and ψ = 1 in a neighborhood W ′(⊂⊂
W ) of ∆∂Ω. ψAλ is expressed by

ψAλ =
Ej
Φ̃t
,

where λ = 2n+ j − 2t+ 2. Then we have

ψAλ = ψ
Ej
Φ̃t

= ψ
[
− 1
t− 1

Y

(
Ej

Φ̃t−1

)
1

Y Φ̃

]
+ ψ

1
t− 1

Y Ej
Φ̃t−1

1

Y Φ̃

= ψ1Y

(
Ej

Φ̃t−1

)
+
Ej−1
Φ̃t−1

= ψ1YAλ+2 + ψ2Aλ+1,

where ψ1 and ψ2 are C∞ functions with compact supports in W . Conse-
quently,

V (z)
∫
Ω

f(ζ)Aλ(z, ζ)dV (ζ) =
∫
Ω

f(ζ)V (z)Aλ(z, ζ)dV (ζ)

=
∫
Ω

f(ζ)Aλ−2(z, ζ)dV (ζ)

=
∫
Ω

f {ψAλ−2 + (1− ψ)Aλ−2} dV (ζ).

(1− ψ)Aλ−2 is of class C∞ on Ω× Ω. On the other hand, we have∫
Ω

fψAλ−2dV (ζ) =
∫
Ω

f(ψ1YAλ + ψ2Aλ−1)dV (ζ)

=
∫
Ω

Y ∗(fψ1)AλdV (ζ)

+
∫
Ω

f(ψ3YAλ+1 + ψ4Aλ)dV (ζ)

=
∫
Ω

(Y ∗f)AλdV (ζ) +
∫
Ω

fAλdV (ζ),

which completes the proof of Lemma 3.60. �

Lemma 3.61 Define

Aλf(z) =
∫
Ω

f(ζ)Aλ(z, ζ)dV (ζ).

Then
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(a) A0 is a bounded operator from Λα(Ω) to Λα/2(Ω) for every 0 < α < 1.
(b) A1 is a bounded operator from L∞(Ω) to Λ1/2(Ω).

Proof. First we prove (b). It is sufficient to prove the inequality (see
Lemma 3.20)

|dzA1f(z)| ≤ C|f |ΩδΩ(z)−1/2 (z ∈ Ω). (3.57)

By Lemma 3.56, we have

|dzA1f(z)| =
∣∣∣∣∫
Ω

f(ζ)A−1(z, ζ)dV (ζ)
∣∣∣∣

≤ |f |Ω
∫
Ω

|A−1(z, ζ)|dV (ζ)

≤ CδΩ(z)−1/2.

This proves (3.57).
Next we prove (a). It is sufficient to show that

|dz(A0f)(z)| ≤ C|f |α,ΩδΩ(z)−1+α/2 (z ∈ Ω). (3.58)

Let V (z) denote either ∂
∂zj

or ∂
∂z̄j

. Then we have

V (z)(A0f) =
∫
Ω

f(ζ)A−2(z, ζ)dV (ζ)

=
∫
Ω

(f(ζ) − f(z))A−2(z, ζ)dV (ζ)

+f(z)
∫
Ω

A−2(z, ζ)dV (ζ).

Since |Φ̃| ≥ C|ζ − z|2, it follows from Lemma 3.54 and the definition of the
degree of the admissible kernel that∫

Ω

|(f(ζ)− f(z))A−2(z, ζ)|dV (ζ) ≤
∫
Ω

C|f |α
|ζ − z|α+j

|Φ̃|n+2+(j/2)
dV (ζ)

≤
∫
Ω

C|f |α|Φ̃|−(n+1+1−(α/2))dV (ζ)

≤ C|f |αδΩ(z)−1+α/2.

On the other hand, using the same method as the proof of Lemma 3.60, we
obtain

ψA−2 = ψ1YA0 + ψ1A−1.
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Hence we have∫
Ω

ψA−2(z, ζ)dV (ζ) =

∫
Ω

Y ∗ψ1A0dV (ζ) +

∫
Ω

ψ1A−1dV (ζ)

=

∫
Ω

A−1dV (ζ).

By Lemma 3.56, we obtain∣∣∣∣∫
Ω

ψA−2(z, ζ)dV (ζ)

∣∣∣∣ ≤ ∫
Ω

|A−1| dV (ζ) ≤ δΩ(z)−1/2 ≤ CδΩ(z)−1+(α/2),

which completes the proof of Lemma 3.61. �

Definition 3.33 For multi-indices α = (α1, · · · , αn) and β =

(β1, · · · , βn), where αj , βj are nonnegative integers, define

∂αβ̄z =
∂|α|+|β|

∂zα1
1 · · · ∂zαn

n ∂z̄β1
1 · · ·∂z̄βn

n

.

Definition 3.34 For f ∈ L1(Ω), define

Gf(z) :=

∫
Ω

f(ζ)G(z, ζ)dV (ζ) (z ∈ Ω),

G∗f(z) :=

∫
Ω

f(ζ)G∗(z, ζ)dV (ζ) (z ∈ Ω),

Bf(z) :=

∫
Ω

f(ζ)B(z, ζ)dV (ζ) (z ∈ Ω).

Theorem 3.27 Let k be a nonnegative integer. Then operators G, G∗

and B have the following properties:

(a) G and G∗ are bounded operators from Ck+α(Ω) to Ck+(α/2)(Ω) for

every 0 < α < 1.

(b) B is a bounded operator from Ck(Ω) to Ck+(1/2)(Ω).

Proof. Let |α| + |β| = j ≤ k. Since G(z, ζ) is an admissible kernel of



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Integral Formulas for Strictly Pseudoconvex Domains 225

order 0, it follows from Lemma 3.60 that

∂αβ̄z (Gf)(z) =
∫
Ω

f(ζ)∂αβ̄z G(z, ζ)dV (ζ)

=
∫
Ω

f(ζ)∂αβ̄z A0(z, ζ)dV (ζ)

=
j∑

ν=0

∫
Ω

((Y ∗)νf)A(ν)0 (z, ζ)dV (ζ).

By Lemma 3.61, we obtain

|∂αβ̄(Gf |α ≤ C
j∑

ν=0

|(Y ∗)νf |α/2.

Therefore, we have |Gf |k+α ≤ C|f |k+(α/2). Similarly, we can prove the
desired properties for G∗ and B. �

Lemma 3.62 Let p > 0, q > 0 and r > 0 be such that

1
p

+
1
q

+
1
r

= 1.

Then

fgh ∈ L1(Ω), ‖fgh‖1 ≤ ‖f‖p‖g‖q‖h‖r

for f ∈ Lp(Ω), g ∈ Lq(Ω) and h ∈ Lr(Ω).

Proof. Let s > 0 be such that

1
s

=
1
p

+
1
q
.

Using the Hölder inequality we have∫
Ω

|fg|sdV =
∫
Ω

(|f |p)s/p(|g|q)s/qdV

≤
(∫

Ω

|f |pdV
)s/p (∫

Ω

|g|qdV
)s/q

.

Hence we have

fg ∈ Ls(Ω), ‖fg‖s ≤ ‖f‖p‖g‖q.

On the other hand, we have

1
s

+
1
r

= 1.
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By applying the Hölder inequality to fg ∈ Ls(Ω) and h ∈ Lr(Ω), we obtain

‖fgh‖1 ≤ ‖fg‖s‖h‖r ≤ ‖f‖p‖g‖q‖h‖r. �

Theorem 3.28 Let K(z, ζ) be a measurable function on Ω×Ω. Suppose
there exist constants M > 0 and s ≥ 1 such that

(a)
∫
Ω

|K(z, ζ)|sdV (ζ) ≤M s (z ∈ Ω).

(b)
∫
Ω

|K(z, ζ)|sdV (z) ≤M s (ζ ∈ Ω).

Define

Kf(z) =
∫
Ω

f(ζ)K(z, ζ)dV (ζ).

Then K is a bounded operator from Lp(Ω) to Lq(Ω) with ‖K‖ ≤M for all
p and q satisfying 1 ≤ p, q ≤ ∞ and

1
q

=
1
p

+
1
s
− 1.

Proof. We prove the theorem in case 1 ≤ q < ∞, 1 < p, s < ∞. The
case s = 1 will be left to the reader. Let f ∈ Lp(Ω). Since

1
q

+
p− 1
p

+
s− 1
s

= 1

and

|Kf(z)| ≤
∫
Ω

(|K|s|f |p)1/q |K|1−(s/q)|f |1−(p/q)dV (ζ),

it follows from Lemma 3.62 that

|Kf(z)| ≤
(∫

Ω

|K(z, ζ)|s|f(ζ)|pdV (ζ)|
)1/q

×(∫
Ω

|K(z, ζ)|sdV (ζ)
)(p−1)/p(∫

Ω

|f |pdV
)(s−1)/s

.

Consequently we have∫
Ω

|Kf(z)|qdV (z) ≤
∫
Ω

(∫
Ω

|K(z, ζ)|s|f(ζ)|pdV (ζ)
)
dV (z)×

M sq(p−1)/p‖f‖pq(s−1)/s.
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It follows from the condition (b) that

‖Kf‖qLq ≤M s‖f‖pLpM
sq(p−1)/p‖f‖pq(s−1)/sLp =M q‖f‖qLp. �

Theorem 3.29 Let B∗ be the adjoint operator of B. Then operators B
and B∗ have the following properties:

(a) B is a bounded operator from Lp(Ω) to Lq(Ω) for 1 ≤ p, q ≤ ∞ and
1
q >

1
p −

1
2n+2 .

(b) B : L2(Ω)→ L2(Ω) is a compact operator.
(c) The kernel of B∗ is B∗(ζ, z) = B(z, ζ).
(d) B∗ = −B.

Proof. (a) follows from Theorem 3.25 and Theorem 3.28.
(b) follows from Theorem 3.25 (s = 1) and Proposition A.13 in Ap-

pendix A.
(c) Define

E∗f(z) =
∫
Ω

f(ζ)B∗(z, ζ)dV (ζ).

Using Fubini’s theorem we obtain for f, g ∈ D(Ω)

(E∗f, g) =
∫
Ω

E∗f(z)g(z)dV (z)

=
∫
Ω

(∫
Ω

f(ζ)B∗(z, ζ)dV (ζ)
)
g(z)dV (z)

=
∫
Ω

f(ζ)
{∫

Ω

g(z)B(ζ, z)dV (z)
}
dV (ζ)

=
∫
Ω

f(ζ)(Bg)(ζ)dV (ζ)

= (f,Bg).

Hence E∗ = B∗

(d) Since B(ζ, z) = −B(z, ζ), we obtain

B∗f(z) =
∫
Ω

f(ζ)B∗(z, ζ)dV (ζ) = −
∫
Ω

f(ζ)B(z, ζ)dV (ζ) = −Bf(z).

Hence B∗ = −B. �

Definition 3.35 For f ∈ L2(Ω), we have a unique decomposition

f = f1 + f2 (f1 ∈ A2(Ω), f2 ∈ (A2(Ω))⊥).
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We define PΩ : L2(Ω) → A2(Ω) by PΩf = f1. PΩ is said to be
the Bergman projection. By definition we have ‖PΩf‖ = ‖f1‖ ≤ ‖f‖,
(PΩf, g) = (f,PΩg).

For a ∈ Ω, (3.45) shows that

PΩf(a) =
∫
Ω

PΩf(ζ)G(a, ζ)dV (ζ)

= (PΩf, G(a, ·))
= (PΩf, G∗(a, ·) +B(a, ·))
= (PΩf, G(·, a)) + (PΩf, B(a, ·))
= (f, PΩG(·, a)) + (PΩf, B(a, ·)).

For fixed a, G(z, a) is holomorphic in Ω, and continuous on Ω, which implies
that G(·, a) ∈ A2(Ω). Hence we have PΩG(·, a) = G(·, a). Therefore we
obtain

PΩf(a) = (f, G∗(a, ·)) + (PΩf, B(a, ·)). (3.59)

Theorem 3.30 G, G∗ are bounded operators from L2(Ω) to L2(Ω).
Moreover, I −B : L2(Ω)→ L2(Ω) is an invertible operator and satisfies

PΩ = (I −B)−1 ◦G∗. (3.60)

Proof. It follows from (3.59) that PΩ = G∗ +B ◦PΩ. Hence we have

G∗ = PΩ −B ◦PΩ = (I −B) ◦PΩ,

which means that G∗ is bounded. We set T = I −B. If T (f) = 0, then by
theorem 3.29

−(f, f) = (−Bf, f) = (B∗f, f) = (f,Bf) = (f, f),

which implies that f = 0. Therefore KerT = {0}, and hence from Propo-
sition A.10 in Appendix A, T : L2(Ω)→ L2(Ω) is invertible. Hence (3.60)
holds. �

In order to prove Theorem 3.31, we need the following two lemmas.

Lemma 3.63 Let Ω ⊂⊂ Rn be an open set and let 0 < α < β < 1. Then
the inclusion mapping ι : Cβ(Ω) → Cα(Ω) is a compact operator, where
Cα(Ω) is the Lipschitz space of order α ( Cα(Ω) is also denoted by Λα(Ω)).
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Proof. Let {fn} be a bounded sequence in Cβ(Ω). Then there exists a

constant M > 0 such that |fn|β,Ω ≤ M . Let ε > 0. Then any x ∈ Ω has a

neighborhood Vx which satisfies the following:

|fn(x) − fn(y)|
|x− y|α < ε (y ∈ Vx).

By the Ascoli-Arzela theorem (see Proposition A.1 in Appendix A), there

exists a convergent subsequence {hn} of {fn}. Let x, y ∈ Ω, x 6= y. For a

positive integer k, there exist x′, y′ ∈ F such that

|hn(x) − hn(x
′)|

|x− x′|α <
1

k
, |x− x′| ≤ |x− y|,

|hn(y) − hn(y
′)|

|y − y′|α <
1

k
, |y − y′| ≤ |x− y|.

If we choose n,m sufficiently large, then

|hn(x′) − hm(x′)| < |x− y|α
k

, |hn(y′) − hm(y′)| < |x− y|α
k

.

Consequently we have

|hn(x) − hm(x) − (hn(y) − hm(y))|
|x− y|α ≤ |hn(x) − hn(x

′)|
|x− x′|α

+
|hn(x′) − hm(x′)|

|x− y|α +
|hm(x′) − hm(x)|

|x− x′|α +
|hn(y) − hn(y

′)|
|y − y′|α

+
|hn(y′) − hm(y′)|

|x− y|α +
|hm(y′) − hm(y)|

|y − y′|α

≤ 6

k
.

Therefore, |hn − hm|α,Ω → 0 as n,m → ∞, and hence {hn} is a Cauchy

sequence. Since Cα(Ω) is complete (see Lemma 3.6), {hn} converges, which

means that ι is a compact operator. �

Lemma 3.64 Let E, F and G be Banach spaces. Let A : E → F be a

bounded operator and B : F → G a compact operator. Then B ◦A : E → G

is a compact operator.

Proof. Let {xn} ⊂ E be a bounded sequence. Then {A(xn)} is a

bounded sequence in F . Since B is compact, we can choose a convergent

subsequence of {B(A(xn))}. �
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Theorem 3.31 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C∞

boundary and let k be a nonnegative integer. Then the Bergman projection
PΩ is a bounded operator from Ck+α(Ω) to Ck+(α/2)(Ω) for every 0 < α <
1.

Proof. B is a bounded operator from Ck(Ω) to Ck+(1/2)(Ω) by Theorem
3.27. Hence for 0 < α < 1/2, B is a bounded operator from Ck+α(Ω) to
Ck+(1/2)(Ω). By Lemma 3.63 and Lemma 3.64, B is a compact operator
from Ck+α(Ω) to Ck+α(Ω) for 0 < α < 1/2. By Theorem 3.30, we have
Ker (I − B) = {0}, which means that I − B : Ck+α(Ω) → Ck+α(Ω) is
invertible. Since PΩ = (I − B)−1 ◦ G∗ and by Theorem 3.27 G∗ is a
bounded operator from Ck+α(Ω) to Ck+(α/2)(Ω), PΩ is a bounded operator
from Ck+α(Ω) to Ck+(α/2)(Ω). �

Definition 3.36 Let Ω ⊂⊂ Cn be a domain. For a positive integer k, we
say that Ω satisfies the condition (Rk) if there exists a positive integer mk

such that Bergman projection PΩ : L2(Ω)→ A2(Ω) is a bounded operator
from Cmk(Ω) to Ck(Ω), that is, PΩ satisfies the following properties:

(a) If f ∈ Cmk(Ω), then PΩf ∈ Ck(Ω).
(b) There exists a constant ck > 0 such that

|PΩf |k,Ω ≤ ck|f |mk,Ω (f ∈ Cmk(Ω)).

Definition 3.37 Let Ω ⊂⊂ Cn be a domain. We say that Ω satisfies the
condition (R) if Ω satisfies the condition (Rk) for every positive integer k.

The following theorem follows from Theorem 3.31.

Theorem 3.32 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with
C∞ boundary. Then Ω satisfies the condition (R).

Theorem 3.33 Let PΩ : L2(Ω) → A2(Ω) be the Bergman projection.
Then

(PΩf)(z) =
∫
Ω

f(ζ)KΩ(z, ζ)dV (ζ)

for all f ∈ L2(Ω).

Proof. For f ∈ A2(Ω), we have PΩf = f . Hence we obtain

(PΩf)(z) = (PΩf,KΩ(·, z)) = (f,PΩKΩ(·, z)) = (f,KΩ(·, z)).

Since KΩ(z, ζ) = KΩ(ζ, z), we have the desired equality. �
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Corollary 3.8 Let Ωj, j = 1, 2, be bounded domains in Cn and let F :
Ω1 → Ω2 be a biholomorphic mapping. Then

PΩ1((f ◦ F )detF ′) = (detF ′)PΩ2 (f) ◦ F

for all f ∈ L2(Ω2).
Proof. For f ∈ L2(Ω2), we define TF f = (f ◦ F )detF ′. It follows that∫

Ω2

|f(w)|2dV (w) =
∫
Ω1

|TF f(ζ)|2dV (ζ),

which implies that TF f ∈ L2(Ω1). Hence it follows from Lemma 3.64 and
Theorem 3.24 that

PΩ1(TF f)(z) =
∫
Ω1

(TF f)(ζ)KΩ1(z, ζ)dV (ζ)

=
∫
Ω1

(TF f)(ζ)detF ′(z)KΩ2(F (z), F (ζ))detF ′(ζ)dV (ζ)

= detF ′(z)
∫
Ω1

f ◦ F (ζ)|detF ′(ζ)|2KΩ2(F (z), F (ζ))dV (ζ)

= detF ′(z)
∫
Ω2

f(ζ̃)KΩ2(F (z), ζ̃)dV (ζ̃)

= detF ′(z)PΩ2f(F (z)). �
Lemma 3.65 Let Ω be a bounded domain in Cn. For a ∈ Ω, we choose
a function ϕa ∈ D(Ω) such that ϕa depends only on |z − a| and satisfies∫
ϕadV = 1. Then

KΩ(·, a) = PΩϕ̄a.

Proof. We may assume that supp(ϕa) ⊂ B(a, ε) ⊂⊂ Ω. If f is holomor-
phic in Ω, then it follows from the mean value theorem that

f(a)
∫
∂B(a,ρ)

dS =
∫
∂B(a,ρ)

fdS (0 < ρ ≤ ε).

Since ϕa is constant in ∂B(a, ρ), we have

f(a)
∫
∂B(a,ρ)

ϕadS =
∫
∂B(a,ρ)

fϕadS. (3.61)

Integrating from 0 to ε in (3.61), we obtain

f(a)
∫
B(a,ρ)

ϕadV =
∫
B(a,ρ)

fϕadV.
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Therefore, we have

f(a) = (f, ϕa)

for any holomorphic function f in Ω. Suppose f ∈ A2(Ω). Since PΩf = f ,
we have

f(a) = (f, ϕa) = (PΩf, ϕa) = (f,PΩϕa).

Since PΩϕ̄a ∈ A2(Ω), it follows from Lemma 3.52 that PΩϕa = KΩ(a, ·).
Hence we obtain PΩϕa = KΩ(a, ·) = KΩ(·, a). �

Theorem 3.34 Let Ω ⊂⊂ Cn satisfy the condition (Rk). Then for a ∈
Ω,

KΩ(·, a) ∈ Ck(Ω).

Proof. Since the function ϕa in Lemma 3.65 belongs to C∞(Ω), we have
ϕ̄a ∈ Cmk(Ω). Hence we have KΩ(·, a) = PΩϕ̄a ∈ Ck(Ω). �

Lemma 3.66 Let Ω ⊂⊂ Rn be a domain with Ck boundary, k ≥ 1. For
a ∈ Ω, we denote by ϕa any function which depends only on |z − a| and
satisfies ϕa ∈ C∞c (Ω),

∫
ϕadV = 1. We set

R(Ω) = {α | α is a finite linear combination of ϕa}.

If f ∈ Ck(Ω) satisfies the conditions

(∂αf)(x) = 0 (x ∈ ∂Ω, |α| ≤ k),

then f is a limit of functions in R(Ω) in the Ck(Ω) norm.

Proof. First we show that f is a limit of functions in D(Ω) in the Ck(Ω)
norm. Using a partition of unity argument, there exists a neighborhood U
of P ∈ ∂Ω such that if we denote n the unit inward normal vector at P ,
then supp(f) ⊂ U and f(x− τn) has a compact support in Ω ∩ U for any
sufficiently small τ > 0. We define f̃ such that f̃(x) = f(x) for x ∈ Ω ∩ U ,
f̃(x) = 0 for x ∈ U − Ω. Then by the assumption, f̃ ∈ Ck

c (U). If we set
f̃τ (x) = f̃(x− τn), then |f − f̃τ |k,Ω∩U → 0 as τ → 0. Thus we may assume
that f ∈ Ck

c (Ω). Suppose ϕ ∈ D(B(0, 1)) depends only on |z| and satisfies∫
ϕdV = 1. We set ϕj(x) = jnϕ(jx), j = 1, 2, · · · , and

fj(x) =
∫
Rn

f(y)ϕj(x− y)dV (y) =
∫
Rn

f(x− y)ϕj(y)dV (y).
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Then fj ∈ D(Ω) for any sufficiently large j . Moreover, we have

∂αfj(x) =
∫
Rn

f(y)∂αxϕj(x − y)dV (y) =
∫
Rn

(∂αf)(y)ϕj(x− y)dV (y),

which implies that

|f − fj |k,Ω → 0 (j →∞).

Each ∂αfj(x) is a limit of Riemann sums

N∑
ν=1

cνf(ην)∂αxϕj(x− ην), (3.62)

where cν are positive constants. There exists a constant M > 0 such that

|cνf(ην)∂αxϕj(x− ην)| ≤Mcν |f(ην)|.

Since
∑N

ν=1 cν |f(ην)| are Riemann sums of
∫
|f |dV , and hence converge.

Hence (3.62) converge to fj uniformly on Ω. Therefore, if we set

gN(x) =
N∑

ν=1

cνf(ην)ϕj(x− ην),

then |fj − gN |k,Ω → 0 as N →∞, and hence gN ∈ R(Ω). �

Now we prove the following lemma (see Bell-Ligocka [BEL]).

Lemma 3.67 (Bell’s density lemma) Let Ω be a bounded domain in
Cn with C∞ boundary. Let Ω satisfy the condition (R0). Then given
u ∈ Ck+1(Ω), there exists a function g ∈ Ck(Ω) with PΩg = 0 and such
that

∂αβ̄(u− g)|∂Ω = 0 (|α|+ |β| ≤ k).

Proof. Let ρ be a defining function for Ω. There exist a constant C > 0,
Pj ∈ ∂Ω, j = 1, · · · , N , and neighborhoods Uj of Pj with the following
properties:

(1) ∂Ω ⊂
N
∪
i=1
Ui

(2) For each i (1 ≤ i ≤ N), there exists integer j with 1 ≤ j ≤ n such that∣∣∣∣ ∂ρ∂zj (z)
∣∣∣∣ > C (z ∈ Ui).
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Let {αj}Nj=1 be a partition of unity subordinate to {Uj}Nj=1, that is,
{αj}Nj=1 satisfies the following properties:

(a) αj ∈ C∞(Cn).
(b) supp(αj) ⊂⊂ Uj.
(c) There exists a neighborhood U of ∂Ω such that

∑N
j=1 αj(z) = 1 for

z ∈ U .

It is sufficient to show that Lemma 3.67 holds for αiu instead of u. So we
rewrite αiu by u. Thus we have

supp(u) ⊂ {w ∈ Ω | ∂ρ
∂z1

(w) �= 0}.

Define

w1(z) =
u(z)ρ(z)

∂ρ
∂z1

(z)
, v1(z) =

∂w1
∂z1

(z).

Then we have

v1(z) = u(z) + ρ(z)
∂

∂z

{
u(z)
∂ρ
∂z1

(z)

}
,

and hence v1 − u = 0 on ∂Ω. Using the fact that w1|∂Ω = 0, KΩ(·, z) is
holomorphic in Ω and KΩ(·, z) ∈ C(Ω), we obtain

PΩv1(z) =
∫
Ω

v1(ζ)KΩ(ζ, z)dV (ζ) = −
∫
Ω

w1(ζ)
KΩ(ζ, z)
∂ζ̄j

dV (ζ) = 0.

Hence Lemma 3.67 holds in case k = 0. We assume that wk−1 and vk−1 =
∂wk−1
∂z1

have already been constructed and that vk−1 is equal to u on ∂Ω up
to derivatives of order k− 2 and satisfies PΩvk−1 = 0. Define a differential
operator D on Ω by

D(ϕ)(z) =

∑2n
ν=1

∂ρ
∂xν

(z) ∂ϕ
∂xν

(z)
|∇ρ(z)|2 .

Define wk and vk by

wk = wk−1 + θkρk, vk =
∂wk

∂z1
,

where θk is defined by

θk =
Dk−1(u− vk−1)

k!∂ρ∂z
.
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Since

vk = vk−1 +
∂

∂z
(θkρk),

we obtain

Dk−1(u− vk) = Dk−1(u− vk−1)−Dk−1
(
∂

∂z
(θkρk)

)
. (3.63)

Further, we devide the second term of the right side in (3.63) into a term
which involves ρ and a term which does not involve ρ. Then we have a
representation

Dk−1
(
∂

∂z
(θkρk)

)
= θk

∂ρ

∂z1
k! + (the term involving ρ).

Consequently,

Dk−1(u − vk) = Dk−1(u− vk−1)− θk
∂ρ

∂z
k! + (the term involving ρ).

By the definition of θk, we have

Dk−1(u − vk)|∂Ω = 0.

Next we choose vector fields τ1, · · · , τ2n−1 at P ∈ ∂Ω such that {τ1, · · · ,
τ2n−1, D} are orthogonal basis at P . Every vector field at P ∈ ∂Ω is denoted
by a linear combination of D and τi, i = 1, · · · , 2n− 1. For simplicity, we
denote all τi, i = 1, · · · , 2n−1, by τ . Then, in order that vk and u coincide
on ∂Ω up to derivatives of order k − 1, it is sufficient to show that if
s+ t ≤ k − 1, then

τsDt(u− vk)|∂Ω = 0.

In case s+ t < k − 1, by the inductive hypothesis we have

τsDt(u− vk)|∂Ω = τs
{
Dt(u − vk−1) +Dt

(
∂

∂z
(θkρk)

)}∣∣∣∣
∂Ω

= 0.

In case s = 0, t = k − 1, we have already proved. In case s + t = k − 1,
s ≥ 1, we have

τsDt(u− vk)|∂Ω = 0.

By Lemma 1.21, there exists a C∞ function h in a neighborhood of P ∈ ∂Ω
such that

τs−1Dt(u − vk) = ρh.
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If τ has a representation in a neighborhood U of P

τ =

2n∑
j=1

aj(z)
∂

∂xj
,

then we obtain

τ(ρ(z)h(z))|∂Ω∩U =

2n∑
j=1

aj(z)
∂ρ

∂xj
(z)h(z)|∂Ω∩U = 0,

which means that vk and u coincide on ∂Ω up to derivatives of order k− 1.

By the definition of wk, we have wk = γρ (γ is of class C∞ on Ω), and

hence PΩvk = 0. Lemma 3.67 is proved. �

Theorem 3.35 Let Ω be a bounded domain in Cn with C∞ boundary and

satisfy the condition (R1). Suppose f is a holomorphic function in Ω with

f ∈ C∞(Ω). Then f is a limit of a sequence of finite linear combinations

of the elements in {KΩ(·, a) | a ∈ Ω} in C1(Ω) norm.

Proof. Let f be holomorphic in Ω and f ∈ C∞(Ω). Then we have f =

PΩf . By Bell’s density theorem (Lemma 3.67), there exists g ∈ Cm1(Ω)

such that f −g is equal to 0 on ∂Ω up to derivatives of order m1. Moreover

we have f = PΩ(f − g). By Lemma 3.66 there exist gk ∈ Cc(Ω), k =

1, 2, · · · , such that

gk(z) =

Nk∑
j=1

α
(k)
j ϕ

(k)

ak
j

,

and f−g is the limit of {gk} in Cm1(Ω) norm, where ϕ
(k)

ak
j

∈ C∞
c (Ω) depend

only on |z − aak
j
| and satisfy

∫
ϕ

(k)

ak
j

dV = 1. By Lemma 3.65, we obtain

PΩgk =

Nk∑
j=1

α
(k)
j PΩϕ

(k)

ak
j

(z) =

Nk∑
j=1

α
(k)
j KΩ(z, akj ).

By the condition (R1), we have

|PΩ(f − g − gk)|1,Ω ≤ c1|f − g − gk|m1,Ω,

which implies that

|f −
Nk∑
j=1

α
(k)
j KΩ(z, akj )|1,Ω ≤ c1|f − g − gk|m1,Ω.

�
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Definition 3.38 Let Ω be a domain in Cn. We say that Ω satisfies the
condition (Bk) if

(a) For any a ∈ Ω, KΩ(·, a) ∈ Ck(Ω).
(b) For any P ∈ Ω, there exist a0, a1, · · · , an ∈ Ω such that

KΩ(P, a0) �= 0, (3.64)

and ∣∣∣∣∣∣∣∣∣∣
KΩ(P, a0) · · · KΩ(P, an)
∂KΩ
∂z1

(P, a0) · · · ∂KΩ
∂z1

(P, an)
...

...
...

∂KΩ
∂zn

(P, a0) · · · ∂KΩ
∂zn

(P, an)

∣∣∣∣∣∣∣∣∣∣
�= 0, (3.65)

where the derivatives in (3.65) are taken with respect to the first vari-
able in KΩ(·, aj).

Theorem 3.36 Let Ω ⊂⊂ Cn be a domain with C∞ boundary. If Ω
satisfies the condition (Rk), then Ω satisfies the condition (Bk).

Proof. The condition (Bk) (a) follows from Theorem 3.34. We will show
(Bk) (b). We fix P ∈ Ω. Suppose (3.65) is equal to 0 for all (a0, a1, · · · , an)
∈ Ωn+1. For any g0, g1, · · · , gn ∈ O(Ω)∩C∞(Ω) and any ε > 0, by Theorem
3.35, there exist akj ∈ Ω, j = 1, · · · , Nk, and constants bkj , j = 1, · · · , Nk,
such that

|gk −
Nk∑
j=1

bkjKΩ(·, akj )|1,Ω < ε.

We set

αk(z) =
Nk∑
j=1

bkjKΩ(z, akj ).

Then by the assumption we have∣∣∣∣∣∣∣∣∣∣
α0 · · · αn
∂α0
∂z1

· · · ∂αn

∂z1
...

...
...

∂α0
∂zn

· · · ∂αn

∂zn

∣∣∣∣∣∣∣∣∣∣
= 0.
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On the other hand we have∣∣∣∣∣∣∣∣∣∣
g0 · · · gn
∂g0
∂z1

· · · ∂gn

∂z1
...

...
...

∂g0
∂zn

· · · ∂gn

∂zn

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
α0 · · · αn
∂α0
∂z1

· · · ∂αn

∂z1
...

...
...

∂α0
∂zn

· · · ∂αn

∂zn

∣∣∣∣∣∣∣∣∣∣
= O(ε).

Since ε > 0 is arbitrary, we have for any g0, g1, · · · , gn ∈ O(Ω) ∩C∞(Ω)∣∣∣∣∣∣∣∣∣∣
g0 · · · gn
∂g0
∂z1

· · · ∂gn

∂z1
...

...
...

∂g0
∂zn

· · · ∂gn

∂zn

∣∣∣∣∣∣∣∣∣∣
= 0.

If we set g0 = 1, gk(z) = zk for k = 1, · · · , n, then the left side of the
above equality is 1, which is a contradiction. This proves (Bk) (b), which
completes the proof of Theorem 3.36. �

Corollary 3.9 Let Ω ⊂⊂ Cn be a domain with C∞ boundary and satisfy
the condition (Bk). Then for any P ∈ ∂Ω there exist a neighborhood W of
P and a0, a1, · · · , an ∈ Ω such that if we set

uj(z) =
KΩ(z, aj)
KΩ(z, a0)

, u = (u1, · · · , un),

then uj ∈ O(W ∩Ω) ∩ Ck(W ∩ Ω), and

det u′(P ) �= 0. (3.66)

Moreover, each component of the inverse mapping u−1 : u(W ∩Ω)→W ∩Ω
belongs to O(u(W ∩ Ω)) ∩Ck(u(W ∩ Ω)).

Proof. We fix P ∈ ∂Ω. Since Ω satisfies the condition (Bk), by Theorem
3.36 there exist a0, a1, · · · , an ∈ Ω which satisfy (3.64) and (3.65). Hence
there exists a neighborhoodW of P such that KΩ(z, a0) �= 0 for z ∈ W ∩Ω,
which implies that uj ∈ O(W ∩ Ω) ∩ Ck(W ∩ Ω). Since

∂uj
∂zk

(P ) = KΩ(P, a0)−1
∂KΩ
∂zk

(P, aj)−
∂KΩ
∂zk

(P, a0)KΩ(P, a0)−2KΩ(P, aj),
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we have∣∣∣∣∣∣∣∣∣∣
KΩ(P, a0) · · · KΩ(P, an)
∂KΩ
∂z1

(P, a0) · · · ∂KΩ
∂z1

(P, an)
...

...
...

∂KΩ
∂zn

(P, a0) · · · ∂KΩ
∂zn

(P, an)

∣∣∣∣∣∣∣∣∣∣
= K(P, a0)n

∣∣∣∣∣∣∣∣∣∣
KΩ(P, a0) KΩ(P, a0) KΩ(P, a0) · · · KΩ(P, an)

0 ∂u1
∂z1

· · · ∂un

∂z1
...

...
...

...
0 ∂u1

∂zn
· · · ∂un

∂zn

∣∣∣∣∣∣∣∣∣∣
= K(P, a0)n+1

∣∣∣∣∣∣∣
∂u1
∂z1

· · · ∂un

∂z1
...

...
...

∂u1
∂zn

· · · ∂un

∂zn

∣∣∣∣∣∣∣ .
This proves (3.66). Since uj is holomorphic in W ∩ Ω, we have

∂uj
∂z̄j

(P ) = 0.

Thus the Jacobian of u at P Ju(P ) = |detu′(P )|2 �= 0. Since uj can be
extended to Ck functions in W , by contracting W if necessary, u : W →
u(W ) is a Ck diffeomorphism. Since u :W∩Ω→ u(W∩Ω) is a holomorphic
mapping, u−1 : u(W ∩ Ω)→W ∩ Ω is a holomorphic mapping. �

Theorem 3.37 Let Ω1 and Ω2 be bounded domains in Cn and satisfy the
condition (Bk) for k ≥ 1. Then every holomorphic mapping F : Ω1 → Ω2
belongs to Ck(Ω1).

Proof. The proof involves three steps.
[1] There exist constants c1, c2 such that 0 < c1 ≤ |detF ′(z)| ≤ c2 for

all z ∈ Ω1.
(Proof of [1]) We assume that there does not exist c1 which satisfies

0 < c1 ≤ |detF ′(z)| for all z ∈ Ω1. Then there exists a sequence {pν} ⊂ Ω1
such that detF ′(pν) → 0 as ν → 0. Taking the subsequence of {pν}, we
may assume that {pν} converges. We set limν→∞ pν = P . Then P ∈ ∂Ω1.
By Theorem 3.24, for a ∈ Ω1 we have

KΩ1(pν , a) = detF ′(pν)KΩ2(F (pν), F (a))detF ′(a). (3.67)

From the condition (Bk), KΩ1(·, a) and KΩ2(·, F (a)) are continuous on Ω1
and Ω2, respectively, and hence KΩ1(P, a) = 0 for a ∈ Ω1. This contradicts
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the condition (Bk). By adopting the same argument to F−1, there exists
c > 0 such that |det (F−1)′(w)| ≥ c for w ∈ Ω2. Hence we have |detF ′(z)| ≤
1/c for z ∈ Ω1.

[2] F ∈ C(Ω1).
(Proof of [2]) It is sufficient to show that ∂fj

∂zi
, i, j = 1, · · · , n, are

bounded in Ω1. Suppose there exists {pν} ⊂ Ω1 such that

max
j,i

∣∣∣∣∂fj∂zi (pν)
∣∣∣∣→∞ (ν →∞). (3.68)

We set qν = F (pν). Taking subsequences, we may assume that {pν} and
{qν} converge. We set limν→∞ pν = P (P ∈ ∂Ω1), limν→∞ qν = Q. Then
Q ∈ ∂Ω2. For Q ∈ ∂Ω2, we choose b0, b1, · · · , bn ∈ Ω2 satisfying the
condition (Bk). Then we have KΩ2(Q, b0) �= 0. We define v = (v1, · · · , vn)
by

vj(w) =
KΩ2(w, bj)
KΩ2(w, b0)

(j = 1, · · · , n).

By Corollary 3.9 we have det v′(Q) �= 0 and there exists a neighborhood
W1 of Q such that each component of v−1 belongs to Ck(W1 ∩ Ω1). If we
set aj = F−1(bj) for j = 0, 1, · · · , n, then KΩ1(P, a0) �= 0 by substituting
a = a0 into (3.67). Thus there exists a neighborhood W2 of P such that if
we set

uj(z) =
KΩ1(z, aj)
KΩ1(z, a0)

,

then we have uj ∈ O(W1 ∩ Ω1) ∩ Ck(W1 ∩ Ω1). For a sufficiently large ν0,
we have pν ∈W1 ∩ Ω1, qν ∈W2 ∩ Ω2. By Theorem 3.24 and the definition
of uj and vj , we obtain

uj(z) = vj(F (z))λj (z ∈ W1 ∩ Ω1, F (z) ∈ W2 ∩ Ω2), (3.69)

where we define

λj =
(

detF ′(aj)
detF ′(a0)

)
.
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We set

Λ =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · λn

 .
It follows from (3.69) that

u(z) = Λv(F (z)). (3.70)

By the chain rule we have

u′(pν) = Λv′(F (pν))F ′(pν),

which implies that

F ′(pν) = v′(qν)−1Λ−1u′(pν).

Since v′ is a coordinate system in a neighborhood of Q, each component
of v′(qν)−1 is bounded. Further, each component of u′ is bounded in a
neighborhood of P . Hence each component of F ′(pν) remains bounded as
ν →∞, which contradicts (3.68).

[3] F ∈ Ck(Ω1).
(Proof of [3]) It follows from (3.70) that for z ∈ W1 ∩ Ω1, we have

F (z) = v−1(Λ−1(u(z))), which means that F ∈ Ck(W1 ∩ Ω1). �

Corollary 3.10 (Fefferman’s mapping theorem) Let Ω1 and Ω2 are
strictly pseudoconvex domains in Cn with C∞ boundary. Then every bi-
holomorphic mapping F : Ω1 → Ω2 belongs to C∞(Ω1).

Proof. Since Ω1 and Ω2 satisfy the condition (Rk) for any positive integer
k by Theorem 3.33, Ω satisfies the condition (Bk). Hence it follows from
Theorem 3.37 that F ∈ Ck(Ω1). �

Exercises

3.1 Prove the following:
Let δ > 0 and

Γδ = {(x1, x′) ∈ RN | 0 < x1 < δ, |x′| < δ},

and suppose g ∈ C1(Γδ) satisfies

|dg(x)| ≤ Kxα−11
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for x ∈ Γδ. Then there is a constant C depending only on α and δ such
that

|g(x)− g(y)| ≤ CK|x− y|α

for x, y ∈ Γδ/2 with |x− y| ≤ δ/2.
3.2 Let Ω be a convex domain inCn and let F1 : Ω→ C be a C1 function

in Ω. For w, z ∈ Ω and 1 < θ, λ ≤ 1,

dF1(z + λθ(w − z))
dλ

∣∣∣∣λ=1 = θ
dF1(z + θ(w − z))

dθ
.

3.3 Let H be a Hilbert space and let ϕ be a continuous linear functional
on H . Define M = {x ∈ H | ϕ(x) = 0}. Show that if M �= H , then
M⊥ is one dimensional.

3.4 Let Ω = {z ∈ C | |z| < 1}. Define

ϕn(z) =
√
π√

n+ 1
zn.

Prove that {ϕn} is a complete orthonormal sequence in A2(Ω).

3.5 Let Ω = {z ∈ C | |z| < 1}. Prove that the Bergman kernel KΩ(z, ζ)
for Ω is given by

KΩ(z, ζ) =
1
π

1
(1− zζ̄)2

.

3.6 Let Ω ⊂⊂ Cn be a domain. We set kΩ(z) = KΩ(z, z). Show that

(a)
(
f(z),

∂KΩ(z, ζ)
∂ζ̄ν

)
=
∂f

∂ζν
(ζ) ( f ∈ A2(Ω), ζ ∈ Ω).

(b) kΩ(z) > 0 (z ∈ Ω).
(c) log kΩ(z) is strictly plurisubharmonic in Ω.

3.7 (Bergman metric) Let Ω ⊂⊂ Cn. The Hermitian metric for Ω is
defined by

gij(z) =
∂2 log kΩ
∂zj∂z̄k

(z).
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Let γ : [0, 1] → Ω be a C1 curve. The length of γ with respect to the
Bergman metric |γ|B(Ω) is defined by

|γ|B(Ω) =
∫ 1

0

 n∑
i,j=1

gij(γ(t))γ′i(t)γj(t)

1/2 dt.
For z1, z2 ∈ Ω, we define the distance of z1, z2 with respect to the
Bergman metric by

δB(Ω)(z1, z2) = inf
γ
|γ|B(Ω),

where the infimum is taken for all C1 curves in Ω which connect z1 and
z2.
Prove that if f : Ω1 → Ω2 is a biholomorphic mapping, then

δB(Ω1)(z1, z2) = δB(Ω2)(f(z1), f(z2)).
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Chapter 4

Integral Formulas with Weight
Factors

In this chapter we study the Berndtsson-Andersson formula on bounded
domains in Cn with smooth boundary and the Berndtsson formula on
submanifolds in general position of bounded domains in Cn with smooth
boundary. By applying the Berndtsson-Andersson formula, we prove Lp

estimates for the ∂̄ problem in strictly pseudoconvex domains in Cn with
smooth boundary. Moreover, using the Berndtsson formula we give two
counterexamples of Lp (2 < p ≤ ∞) extensions of bounded holomorphic
functions from submanifolds of complex ellipsoids due to Mazzilli [MAZ1]
and Diederich-Mazzilli [DIM1]. Finally, we give the alternative proof of the
bounded extension of holomorphic functions from affine linear submanifolds
of strictly convex domains using the method of Diederich-Mazzilli [DIM2].

4.1 The Berndtsson-Andersson Formula

In this section we study the integral formula obtained by Berndtsson-
Andersson [BRA].

Let

µ =< ξ, η >−n ω′(ξ) ∧ ω(η)

be a differential form in Cn ×Cn = {(ξ, η) | ξ ∈ Cn, η ∈ Cn}, where we
define

ω′(ξ) :=
n∑

j=1

(−1)j−1ξj ∧
i�=j
dξi, ω(η) := dη1 ∧ · · · ∧ dηn,

245
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< ξ, η >:=
n∑

j=1

ξjηj .

By Lemma 3.2, if < ξ, µ > �= 0, then dµ = 0. Let Ω be a bounded domain in
Cn with smooth boundary. Assume that a C1 mapping s = (s1, · · · , sn) :
Ω× Ω→ Cn satisfies the following conditions:

(A) If ζ �= z, then < s(z, ζ), ζ − z > �= 0.
(B) For any compact set K ⊂ Ω, there exist constants C1 = C1(K) > 0,

C2 = C2(K) > 0 such that

|s(z, ζ)| ≤ C1|ζ − z|, | < s(z, ζ), ζ − z > | ≥ C2|ζ − z|2

for ζ ∈ Ω and z ∈ K.

In what follows we assume that s satisfies the above conditions (A)
and (B). Define ψ : Ω × Ω\∆ → E to be ψ(z, ζ) = (s(z, ζ), ζ − z), where
∆ = {(z, z) | z ∈ Cn}. Let K be the pullback of µ by ψ. Then

K = ψ∗µ =
1

< s, ζ − z >n
ω′(s) ∧ ω(ζ − z)

=
1

< s, ζ − z >n

n∑
j=1

(−1)j−1sj ∧
i�=j
dz,ζsi

∧(dζ1 − dz1) ∧ · · · ∧ (dζn − dzn).

We denote byKp,q the component ofK which is of degree (p, q) with respect
to z and of degree (n − p, n− q − 1) with respect to ζ. Then we have the
following theorem.

Theorem 4.1 For f ∈ C1(p,q)(Ω), one has
(a) For q > 0,

f = C
{∫

∂Ω

f ∧Kp,q + (−1)p+q+1

(∫
Ω

∂̄f ∧Kp,q − ∂̄z
∫
Ω

f ∧Kp,q−1

)}
,

where C = Cp,q,n is a numerical constant depending only on p, q, n.
(b) For q = 0,

f = C
{∫

∂Ω

f ∧Kp,0 + (−1)p+1
∫
Ω

∂̄f ∧Kp,0

}
,

where C = Cp,n is a numerical constant depending only on p, n.
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Proof. Let ϕ be a C∞(n − p, n − q) form in Ω with compact support.
For ε > 0, we set

Uε = {(ζ, z) ∈ Ω× Ω | |ζ − z| < ε}

Ωε = Ω× Ω− Uε.

If we choose ε sufficiently small in comparison with the distance between
supp(ϕ) and ∂Ω, then

∂Ωε ∩ (Cn × supp(ϕ)) = {(∂Ω× Ω) ∪ ∂Uε} ∩ (Cn × supp(ϕ)).

It follows from Stokes’ theorem that∫
Ωε

dz,ζ(ϕ(z) ∧ f(ζ) ∧K(z, ζ)) =
∫
∂Ωε

ϕ ∧ f ∧K

=
∫
∂Ω×Ω

ϕ ∧ f ∧K −
∫
∂Uε

ϕ ∧ f ∧K.

Since dK = ψ∗dµ = 0, we obtain∫
Ωε

dϕ∧f ∧K+(−1)p+q

∫
Ωε

ϕ∧df ∧K =
∫
∂Ω×Ω

ϕ∧f ∧K−
∫
∂Uε

ϕ∧f ∧K.

(4.1)
Since

K = O
(

|s|
| < s, ζ − z > |n

)
= O(|ζ − z|1−2n),

the two integrals in the left side of (4.1) converges as ε → 0. Next we
investigate the second integral in the right side of (4.1). We obtain

lim
ε→0

∫
∂Uε

ϕ ∧ f ∧K = lim
ε→0

∫
∂Uε

ϕ ∧ f ∧ ω
′(s) ∧ ω(ζ − z)
< s, ζ − z >n

. (4.2)

Lemma 3.5 implies that ω′(s) ∧ ω(ζ − z) < s, ζ − z >−n is invariant when
we replace s by s <s,ζ−z>

|<s,ζ−z>| . Hence we may assume that < s, ζ − z >> 0 for
ζ �= z. Define

b = ζ̄ − z̄, sλ = λs+ (1− λ)b (0 < λ < 1).

Further we define h : Ω× Ω× [0, 1]→ Cn ×Cn by

h(z, ζ, λ) = (sλ(z, ζ), ζ − z).
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If we set H = h∗µ, then we obtain

H(z, ζ, λ) =< λs+ (1− λ)b, ζ − z >−n ω′(λs+ (1− λ)b) ∧ ω(ζ − z).

We set

Iε =
∫
∂({|ζ−z|=ε}×[0,1])

ϕ(z) ∧ f(ζ) ∧H(z, ζ, λ).

Since dH = h∗dµ = 0, it follows from Stokes’ theorem that

Iε =
∫
{|ζ−z|=ε}×[0,1]

d(ϕ ∧ f) ∧H.

Since supp(ϕ) is compact, ϕ = 0 on ∂{|ζ−z| = ε} for any sufficiently small
ε > 0. Hence we obtain

Iε =
∫
|ζ−z|=ε

ϕ ∧ f ∧H(z, ζ, 1)−
∫
|ζ−z|=ε

ϕ ∧ f ∧H(z, ζ, 0). (4.3)

We denote by H ′ the component of H which involves dλ. Then

|H ′| ≤ C
(

|sλ|(|s|+ |b|)
λ < s, ζ − z > +(1− λ)|ζ − z|2)n

)
= O(|ζ − z|2−2n).

Consequently we have limε→0 Iε = 0. It follows from (4.2) and (4.3) that

lim
ε→0

∫
∂Uε

ϕ ∧ f ∧K = lim
ε→0

∫
∂Uε

ϕ(z) ∧ f(ζ) ∧H(z, ζ, 0). (4.4)

By the same method as the proof of Theorem 3.3, the right side of (4.4) is
equal to Cp,q,n

∫
Ω ϕ ∧ f . Letting ε→ 0 in (4.1) we obtain∫

Ω×Ω
dϕ∧f∧K+(−1)p+q

∫
Ω×Ω

ϕ∧df∧K =
∫
∂Ω×Ω

ϕ∧f∧K−Cp,q,n

∫
Ω

ϕ∧f

(4.5)
and ∫

Ω×Ω
dϕ(z) ∧ f(ζ) ∧K(z, ζ)

=
∫
z∈Ω

dϕ(z) ∧
∫
ζ∈Ω

f(ζ) ∧K(z, ζ)

= (−1)p+q+1

∫
z∈Ω

ϕ(z) ∧ dz
∫
ζ∈Ω

f(ζ) ∧K(z, ζ).
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Since ϕ(z)∧ f(ζ) is of degree n with respect to dζ and dz and that K(z, ζ)
is of degree ≥ n with respect to dζ and dz, we have∫
Ω×Ω

dϕ(z)∧f(ζ)∧K(z, ζ) = (−1)p+q+1

∫
z∈Ω

ϕ(z)∧ ∂̄z
∫
ζ∈Ω

f(ζ)∧K(z, ζ).

Thus by (4.5), we obtain∫
Ω

ϕ ∧
∫
∂Ω

f ∧K = (−1)p+q

∫
Ω

ϕ ∧
{∫

Ω

∂̄f ∧K − ∂̄z
∫
Ω

f ∧K
}

+Cp,q,n

∫
Ω

ϕ ∧ f.

This proves (a). In case q = 0, ∂̄z
∫
Ω f ∧K is of degree ≥ 1 with respect to

dz̄, which implies that∫
Ω

ϕ ∧
∫
∂Ω

f ∧K = (−1)p
∫
Ω

ϕ ∧
∫
Ω

∂̄f ∧K + Cp,n

∫
Ω

ϕ ∧ f.

This proves (b). �
Corollary 4.1 Assume that in addition to the conditions (A) and (B),
s : Ω× Ω→ Cn satisfies the conditon:

(C) For ζ ∈ ∂Ω, s(z, ζ) is holomorphic with respect to z ∈ Ω.
Then

u(z) = (−1)p+qCp,q,n

∫
Ω

f(ζ) ∧Kp,q−1(z, ζ)

is a solution of the equation ∂̄u = f for f ∈ C1(p,q)(Ω) (q > 0) with ∂̄f = 0.

Proof. It follows from the condition (C) that K(z, ζ) is of degree 0 with
respect to dz̄ for ζ ∈ ∂Ω, and hence Kp,q = 0. Therefore, Corollary 4.1
follows from Theorem 4.1 (a). �

Next we study the differential form

A = exp < ξ, η > ω(ξ) ∧ ω(η)

in Cn ×Cn. Suppose a C1 mapping Q(z, ζ) : Ω× Ω→ Cn is holomorphic
in z ∈ Ω for ζ fixed. Let Q = (Q1, · · · , Qn). We define ψ : (Ω × Ω\∆) ×
(0,∞)→ Cn ×Cn by

ψ(z, ζ, t) = (Q(z, ζ) + ts(z, ζ), ζ − z).

We set N = ψ∗A. Then N can be written

N = exp < Q+ ts, ζ− z > d(Q1+ ts1)∧· · · ∧d(Qn + tsn)∧ω(ζ − z). (4.6)
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We write N = Nt + N ′, where Nt is the component of N which contains
dt, and N ′ is the the component of N which does not contain dt. Then

Nt = −exp < Q, ζ − z > exp{t < s, ζ − z >}×

{tn−1ω′(s) ∧ ω(ζ − z) ∧ dt+
n−2∑
k=0

tkak ∧ dt},

where ak are differential forms which do not contain t. Since dA = 0, we
have dN = ψ∗dA = 0. Consequently,

0 = dζ,z,tN = dζ,zNt + dtN ′ + dζ,zN ′. (4.7)

Since the last term in the right side of (4.7) does not contain dt, we obtain

dζ,zNt = −dtN ′. (4.8)

In the moment we assume that Re < s, ζ − z >< 0 for ζ �= z. Later we
show that this assumption is not necessary. It follows from (4.8) that

dζ,zK =
∫ ∞
0

dζ,zNt = −
∫ ∞
0

dtN
′ = N ′|t=0

= exp < Q, ζ − z > ω(Q) ∧ ω(ζ − z).

We set

P = exp < Q, ζ − z > ω(Q) ∧ ω(ζ − z).

Then we have

dζ,zK = P. (4.9)

Since Q is holomorphic in z, dQ does not contain dz̄j , and hence P does
not contain dz̄j . By the integration by parts, we obtain∫ ∞

0

et<s,ζ−z>tn−1dt =
[
et<s,ζ−z>

< s, ζ − z >t
n−1
]∞
0

−
∫ ∞
0

et<s,ζ−z>

< s, ζ − z > (n− 1)tn−2dt

= · · · = (−1)n(n− 1)!
1

< s, ζ − z >n
.
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Hence K is expressed by

K = (−1)n−1(n− 1)!exp < Q, ζ − z > ω′(s) ∧ ω(ζ − z)
< s, ζ − z >n

(4.10)

+
n−2∑
k=0

O(< s, ζ − z >−(k+1)).

Theorem 4.2 For f ∈ C1(p,q)(Ω), one has
(a) In case q > 0,

f = C
{∫

∂Ω

f ∧Kp,q + (−1)p+q+1

(∫
Ω

∂̄f ∧Kp,q − ∂̄z
∫
Ω

f ∧Kp,q−1

)}
,

where Kp,q are components of K which are (p, q) forms with respect to z
and (n− p, n− q − 1) forms with respect to ζ.

(b) In case q = 0,

f = C
{∫

∂Ω

f ∧Kp,0 + (−1)p+1
∫
Ω

∂̄f ∧Kp,0 −
∫
Ω

f ∧ Pp,0
}
.

Proof. Let Ωε, Uε and ϕ be the same notations as in the proof of Theorem
4.1. It follows from Stokes’ theorem that∫

Ωε

dz,ζ(ϕ(z) ∧ f(ζ) ∧K(z, ζ)) =
∫
∂Ωε

ϕ ∧ f ∧K

=
∫
∂Ω×Ω

ϕ ∧ f ∧K −
∫
∂Uε

ϕ ∧ f ∧K.

By (4.9) we obtain∫
Ωε

dϕ ∧ f ∧K + (−1)p+q

∫
Ωε

ϕ ∧ df ∧K +
∫
Ωε

ϕ ∧ f ∧ P (4.11)

=
∫
∂Ω×Ω

ϕ ∧ f ∧K −
∫
∂Uε

ϕ ∧ f ∧K.

On the other hand, we have

K = O
(

|s|
| < s, ζ − z > |n

)
= O(|ζ − z|1−2n),

which means that the three integrals in the left side of (4.11) converge as
ε → 0. Next we investigate the second integral in the right side of (4.11).
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It follows from (4.10) that

K = −(n− 1)!(exp < Q, ζ − z >)
ω′(s) ∧ ω(ζ − z)
< s, z − ζ >n

+ T1,

where T1 = O(|ζ − z|2−2n). Since

exp < Q, ζ − z >= 1+ < Q, ζ − z > +
< Q, ζ − z >2

2!
+ · · · ,

K can be written

K = −(n− 1)!
ω′(s) ∧ ω(ζ − z)
< s, z − ζ >n

+ T2,

where T2 = O(|ζ − z|2−2n). Consequently, using the same method as in the
proof of Theorem 4.1 we obtain

lim
ε→0

∫
∂Uε

ϕ ∧ f ∧K

= (−1)n−1(n− 1)! lim
ε→0

∫
∂Uε

ϕ ∧ f ∧ ω
′(s) ∧ ω(ζ − z)
< s, ζ − z >n

= Cp,q,n

∫
Ω

ϕ ∧ f,

where Cp,q,n are numerical constants depending only on p, q, n. Letting
ε→ 0 in (4.11) we obtain∫

Ω×Ω
dϕ ∧ f ∧K + (−1)p+q

∫
Ω×Ω

ϕ ∧ df ∧K +
∫
Ω×Ω

ϕ ∧ f ∧ P (4.12)

=
∫
∂Ω×Ω

ϕ ∧ f ∧K − Cp,q,n

∫
Ω

ϕ ∧ f.

Consequently,∫
Ω×Ω

dϕ(z) ∧ f(ζ) ∧K(z, ζ)

=
∫
z∈Ω

dϕ(z) ∧
∫
ζ∈Ω

f(ζ) ∧K(z, ζ)

= (−1)p+q+1

∫
z∈Ω

ϕ(z) ∧ dz
∫
ζ∈Ω

f(ζ) ∧K(z, ζ).
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Using the fact that ϕ(z)∧f(ζ) is of degree n with respect to dζ and dz and

that K(z, ζ) is of degree ≥ n with respect to dζ and dz, we have∫
Ω×Ω

dϕ(z)∧f(ζ)∧K(z, ζ) = (−1)p+q+1

∫
z∈Ω

ϕ(z)∧ ∂̄z
∫
ζ∈Ω

f(ζ)∧K(z, ζ).

It follows from (4.12) that∫
Ω

ϕ ∧
∫
∂Ω

f ∧K = (−1)p+q
∫

Ω

ϕ ∧
{∫

Ω

∂̄f ∧K − ∂̄z

∫
Ω

f ∧K
}

+

∫
Ω

ϕ ∧
∫

Ω

f ∧ P + Cp,q,n

∫
Ω

ϕ ∧ f.

Since Q(z, ζ) is holomorphic in z ∈ Ω, ω(Q) is of degree 0 with respect to

dz̄, which implies that Pp,q = 0 if q > 0. This proves (a). If q = 0, then

ϕ(z) is of degree n with respect to dz̄, which means that

ϕ(z) ∧ ∂̄z
∫

Ω

f(ζ) ∧K(z, ζ) = 0.

This proves (b). �

Theorem 4.3 Let s : Ω × Ω → Cn satisfy the conditions (A), (B) and

(C), and q > 0. If f ∈ C1
(p,q)(Ω) satisfies the equation ∂̄f = 0, then

u(z) = (−1)p+qCp,q,n

∫
Ω

f(ζ) ∧Kp,q−1(z, ζ)

is a solution of the equation ∂̄u = f .

Proof. The condition (C) implies that ∂̄zsj = 0 for j = 1, · · · , n and

ζ ∈ ∂Ω, and hence ∂̄zQj = 0 for j = 1, · · · , n and ζ ∈ Ω. Since Qj are

of class C1 in Ω × Ω, we have ∂̄zQj = 0 for j = 1, · · · , n and ζ ∈ ∂Ω. It

follows from the condition (C) that N is of degree 0 with respect to dz̄ for

ζ ∈ ∂Ω, which means that Kp,q = 0 for q > 0 by (4.10). Then Theorem 4.3

follows from Theorem 4.2 (a). �

Definition 4.1 For a = (a1, · · · , an) ∈ Cn, define

ω′(a, ξ) =

n∑
j=1

(−1)j−1aj ∧
i6=j

dξj .

We have the following lemma. We omit the proof.
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Lemma 4.1

ω′(a, ξ) ∧ ω(η) = Cn

n∑
k=1

akdηk ∧

 n∑
j=1

dξj ∧ dηj

n−1

,

where Cn = (−1)n(n−1)/2/(n− 1)!.

Definition 4.2 For s = (s1, · · · , sn), Q = (Q1, · · · , Qn), define

s =

n∑
j=1

sj(dζj − dzj), Q =

n∑
j=1

Qj(dζj − dzj).

Notice that we use notations which have two meanings.

By Lemma 4.1 we have

Nt = exp(< Q, ζ − z > +t < s, ζ − z >)dt ∧ ω′(s,Q+ ts) ∧ ω(ζ − z)

= Cnexp(< Q, ζ − z > +t < s, ζ − z >)dt ∧ s ∧ (dQ+ tds)n−1

= Cnexp(< Q, ζ − z > +t < s, ζ − z >)dt ∧ s ∧
n−1∑
k=0

(
n− 1

k

)
(dQ)k ∧ (ds)n−1−ktn−k−1.

It follows from the definition of K that

K = Cn(−1)nexp < Q, ζ − z >

n−1∑
k=0

(−1)k
(n− 1)!

k!

s ∧ (dQ)k ∧ (ds)n−1−k

< s, ζ − z >n−k

(4.13)

and

P =
(−1)n(n−1)/2

n!
exp < Q, ζ − z > (dQ)n. (4.14)

For a C1 function ψ : Ω × Ω → C\{0}, we have

ψs ∧ (d(ψs))j = ψs ∧ (dψ ∧ s+ ψds)j = ψj+1s ∧ (ds)j .

Hence we may assume in (4.13) that Re < s, ζ − z >< 0.

Theorem 4.4 (Berndtsson-Andersson formula) Assume that s sat-

isfies the conditions A and B. Let a function G be holomorphic in a simply

connected domain which contains {< Q(z, ζ), z − ζ > +1 | (ζ, z) ∈ Ω × Ω}
and G(1) = 1. Define

K̃ = Cn(−1)n
n−1∑
k=0

(n− 1)!

k!
G(k)(< Q, z − ζ > +1)

s ∧ (dQ)k ∧ (ds)n−1−k

< s, ζ − z >n−k
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and

P̃ =
(−1)n(n−1)/2

n!
G(n)(< Q, z − ζ > +1)(dQ)n.

Then for f ∈ C1(p,q)(Ω) one has
(a) In case q > 0,

f = C
{∫

∂Ω

f ∧ K̃p,q + (−1)p+q+1

(∫
Ω

∂̄f ∧ K̃p,q − ∂̄z
∫
Ω

f ∧ K̃p,q−1

)}
,

where K̃p,q are components of K̃ which are (p, q) forms with respect to z
and (n− p, n− q − 1) forms with respect to ζ.

(b) In case q = 0,

f = C
{∫

∂Ω

f ∧ K̃p,0 + (−1)p+1
∫
Ω

∂̄f ∧ K̃p,0 −
∫
Ω

f ∧ P̃p,0
}
.

Proof. First we prove Theorem 4.4 in the case when G is a polynomial.
Let

G(α) =
N∑
j=0

ajα
j , g =

N∑
j=0

aj
djδ

dλj
,

where δ is the Dirac delta function. We denote by K(λ) instead of K when
we replace in (4.13) Q by λQ. Similarly, we denote by P (λ) instead of P
when we replace in (4.14) Q by λQ. After replacing in (4.13) and (4.14),
if we multiply by e−λ and operate g, then we obtain the desired equalities,
where we have used the equations

g(e−λ) =
N∑
j=0

aj
djδ

dλj
(e−λ) =

N∑
j=0

aj = G(1) = 1,

G(α) = g(e−αλ), G(k)(< Q, z − ζ > +1) = g((−λ)ke−λ(<Q,z−ζ>+1)).

In the general case, G is approximated uniformly in {< Q(z, ζ), z− ζ > +1
| (ζ, z) ∈ Ω× Ω} by a sequence of polynomials. �

4.2 Lp Estimates for the ∂̄ Problem

Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C2 boundary. In
this section we prove Lp estimates for the ∂̄ problem in Ω. Lp estimates for
the ∂̄ problem in Ω were first proved by Ovrelid [OV] and Kerzman [KER]
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using the homotopy formula discussed in Chapter 3. The proof given here is
due to Bruna-Cufi-Verdera [BRV] using the Berndtsson-Andersson formula.

Let ρ be a C2 function in a neighborhood U of Ω such that Ω = {z ∈
U | ρ(z) < 0}, dρ(z) �= 0 for z ∈ ∂Ω. For ε and δ > 0, define

Vδ = {z ∈ U | |ρ(z)| < δ}, Ωδ = {z ∈ U | ρ(z) < δ},

Uε,δ = {(z, ζ) ∈ Ωδ × Vδ | |ζ − z| < ε}.

We choose δ > 0 sufficiently small such that Vδ ⊂⊂ U . There exist β > 0
and ajk ∈ C1(V δ) such that

inf
ζ∈V δ

n∑
j,k=1

∂2ρ(ζ)
∂ζj∂ζ̄k

ξj ξ̄k ≥ 3β|ξ|2 (0 �= ξ ∈ Cn),

sup
ζ∈V δ

∣∣∣∣ ∂2ρ(ζ)∂ζj∂ζk
− ajk(ζ)

∣∣∣∣ < β

n2
.

For any sufficiently small ε > 0, if we set ζj = xj+ixn+j for j = 1, · · · , n,
then we have∣∣∣∣ ∂2ρ(ζ)∂xj∂xk

− ∂2ρ(z)
∂xj∂xk

∣∣∣∣ < β

2n2
(ζ, z ∈ V δ, |ζ − z| < 2ε).

Instead of the Levi polynomial, we define F (z, ζ) by

F (z, ζ) =
n∑

j=1

∂ρ(ζ)
∂ζj

(ζj − zj)−
1
2

n∑
j,k=1

ajk(ζ)(ζj − zj)(ζk − zk).

Using Taylor’s theorem, we have

2ReF (z, ζ) ≥ ρ(ζ)− ρ(z) + β|ζ − z|2 (4.15)

for ζ, z ∈ V δ and |ζ − z| < 2ε. Moreover, using the same method as the
proof of Theorem 3.8, we obtain the following lemma.

Lemma 4.2 There exist constants ε, δ, c > 0 and functions Φ ∈ C1(Ωδ×
Vδ), G ∈ C1(Uε,δ) with the following properties:

(a) Φ(z, ζ) and G(z, ζ) are holomorphic in z for fixed ζ.
(b) Φ = FG in Uε,δ.
(c) |G| > c in Uε,δ, |Φ| > c in Ωδ × Vδ\Uε,δ.
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(d) There exist wj ∈ C1(Ωδ × Vδ) for j = 1, · · · , n such that

Φ(z, ζ) =
n∑

j=1

wj(z, ζ)(ζj − zj).

Moreover, wj(z, ζ), 1 ≤ j ≤ n, are holomorphic with respect to z.

We set w(z, ζ) = (w1(z, ζ), . . . , wn(z, ζ)). Let ϕ ∈ C∞(Cn) be a func-
tion with the properties that 0 ≤ ϕ ≤ 1, ϕ = 1 in a neighborhood of ∂Ω,
ϕ = 0 outside of Vδ. Define

u(z, ζ) = −ρ(ζ)(ζ̄ − z̄) + w(z, ζ)Φ(z, ζ)ϕ(ζ) ((z, ζ) ∈ Ωδ × Ωδ).

Since u(z, ζ) = w(z, ζ)Φ(z, ζ) for ζ ∈ ∂Ω, u is the product of w and a
function. Hence u satisfies the condition (C) in Corollary 4.1. For (z, ζ) ∈
Ω× Ω we have

< u(z, ζ), ζ − z >= −ρ(ζ)|ζ − z|2 + |Φ(z, ζ)|2ϕ(ζ).

Hence for ζ ∈ Ω with ζ �= z, we have

< u(z, ζ), ζ − z >≥ −ρ(ζ)|ζ − z|2 > 0.

For ζ ∈ ∂Ω with ζ �= z and |ζ − z| < ε, (4.15) shows that there exists
c0 > 0 such that |Φ(z, ζ)| ≥ c0. For ζ ∈ ∂Ω with |ζ − z| < ε, (c) shows that
|Φ(z, ζ)| ≥ c. Since ϕ(ζ) = 1 for ζ ∈ ∂Ω, u satisfies the condition (A) in
Theorem 4.1. Let K ⊂ Ω be a compact set. For z ∈ K with |ζ − z| ≤ 2ε,
if ζ is contained in a small neighborhood B of ∂Ω, then ϕ(ζ) = 1 and
ρ(ζ) − ρ(z) > 0. Then (4.15) shows that 2ReF (z, ζ) > β|ζ − z|2. Hence
there exists c > 0 such that |Φ(z, ζ)| > c|ζ − z|2. Therefore, for ζ ∈ Ω ∩B
and |ζ − z| ≤ ε, there exists c′ > 0 such that

< u(z, ζ), ζ − z >≥ −ρ(ζ)|ζ − z|2 + c′|ζ − z|2 ≥ c′|ζ − z|2.

For ζ ∈ Ω\B and |ζ − z| ≤ ε, there exists c1 > 0 such that −ρ(ζ) > c1 > 0,
and hence < u(z, ζ), ζ−z >≥ c1|ζ−z|2. If |ζ−z| ≥ ε and ζ ∈ Ω, then there
exists c′1 > 0 such that |Φ(z, ζ)| > c′1. Hence for ζ ∈ Ω and z ∈ K, there
exists c′′1 > 0 such that < u(z, ζ), ζ − z >≥ c′′1 |ζ − z|2. Thus, u satisfies the
condition (B) in Theorem 4.1. Next we modify u near the diagonal ∆ of
∂Ω× ∂Ω. Define

Vε,δ := {(ζ, z) | |ρ(z)| < δ, |ρ(ζ)| < δ, |ζ − z| < ε}, Wε,δ := Vε,δ ∩ (Ω×Ω),

a(z, ζ) := −ρ(ζ) + F (z, ζ), a∗(z, ζ) := a(ζ, z).
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Further, for (z, ζ) ∈ V2ε,δ we define

v(z, ζ) := ρ(ζ)
w(ζ, z)
G(ζ, z)

+ a∗(z, ζ)
w(z, ζ)
G(z, ζ)

.

Since v(ζ, ζ) = 0, we have |v(z, ζ)| ≤ C|z − ζ|. On the other hand, we
obtain

< v, ζ − z >= −ρ(ζ)F (ζ, z) + +a∗(z, ζ)F (z, ζ) = a(z, ζ)a∗(z, ζ)− ρ(ζ)ρ(z).

It follows from (4.15) that

2Re a(z, ζ) ≥ −ρ(ζ)− ρ(z) + β|ζ − z|2 (|ζ − z| < 2ε). (4.16)

Consequently, for (z, ζ) ∈ W2ε,δ, there exists a constant c2 > 0 such that

| < v, ζ − z > | ≥ |a||a∗| − ρ(ζ)ρ(z)
≥ |Re a||Re a∗|+ |Im a||Im a∗| − ρ(ζ)ρ(z)
≥ c2{(ρ(ζ)− ρ(z))2 + |ζ − z|4 + (−ρ(ζ) − ρ(z))|ζ − z|2

+|ReF (z, ζ)||ReF (ζ, z)|}.

Hence if (z, ζ) ∈W2ε,δ, then | < v, ζ− z > | ≥ (−ρ(ζ)−ρ(z))|ζ− z|2, which
implies that v satisfies (B). Since < v, ζ − z > �= 0 for ζ �= z, multiplying
by < v, ζ − z >/| < v, ζ − z > |, we may assume that < v, ζ − z >> 0 in
W2ε,δ\∆. Let λ ∈ C∞(Cn ×Cn) be a function such that 0 ≤ λ ≤ 1, λ = 1
in Vε,δ′ , where δ′ < δ, λ = 0 outside of V2ε,δ. Define

s = λv + (1− λ)u.

Then s : Ωδ × Ωδ → Cn is of class C1, < u, ζ − z >> 0 for ζ �= z, and
hence < s, ζ − z >> 0 for ζ �= z. Therefore s satisfies (A). For ζ ∈ ∂Ω,
s is a product of w(z, ζ) and a function. Thus s satisfies (C). Clearly s
satisfies (B). By Theorem 4.2, if we set ψ = (s, ζ − z), K = ψ∗µ, then for
f ∈ C1(p,q)(Ω) with ∂̄f = 0,

Tf(z) = Cp,q,n

∫
Ω

f(ζ) ∧Kp,q−1(z, ζ)

satisfies ∂̄(Tf) = f . For ψ̃ = (v, ζ − z), we set K(v) = ψ̃∗µ. Define

Fj(z, ζ) =
Pj(z, ζ)
G(z, ζ)

(j = 1, · · · , n)
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and

α(z, ζ) =
n∑

j=1

Fj(z, ζ)(dζj − dzj), β(z, ζ) =
n∑

j=1

Fj(ζ, z)(dζj − dzj).

Then we have

v =
n∑

j=1

vj(dζj − dzj) = ρ(ζ)β(z, ζ) + a∗(z, ζ)α(z, ζ).

Consequently,

dv = dρ ∧ β + ρdβ + da∗ ∧ α+ a∗dα.

Since we can adopt the binomial theorem for 2-forms, it follows from Lemma
4.1 that

k(v) =
Cp,q,n

< v, ζ − z >n

n∑
j=1

(−1)j−1vj ∧
i�=j
dvi ∧ ω(ζ − z)

=
(−1)n(n−1)/2Cp,q,n

(n− 1)!
v ∧ (dv)n−1

< v, ζ − z >n

= Cn < v, ζ − z >−n (ρβ + a∗α) ∧
{
(ρdβ + a∗dα)n−1

+(n− 1)(ρdβ + a∗dα)n−2 ∧ ((−ρ)da∗ + a∗dρ) ∧ β ∧ α
}
,

where Cn is a constant such that

Cn =
(−1)n(n−1)/2Cp,q,n

(n− 1)!
.

It follows from (4.16) that

−ρ(ζ) ≤ 2|a∗(z, ζ)| ((z, ζ) ∈ Wε,δ).

Since

ρ(ζ)β + a∗α =
n∑

j=1

{ρ(ζ)Fj(ζ, z)− ρ(z)Fj(z, ζ) +F (ζ, z)Fj(z, ζ)}(dζj − dzj)

and

β ∧ α =
∑
j<k

(Fj(ζ, z)Fk(z, ζ)− Fk(ζ, z)Fj(z, ζ))(dζj − dzj) ∧ (dζk − dzk),

we have

β ∧ α = O(|ζ − z|), ρ(ζ)β + a∗α = O(|ζ − z|).
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Consequently,

|Kp,q(v)(ζ, z)| ≤ C
|a∗(z, ζ)|n−1|ζ − z|
| < v, ζ − z > |n ((z, ζ) ∈Wε,δ).

For (z, ζ) ∈ Vε,δ, define

T (z, ζ) = |F (z, ζ)|+ |F (ζ, z)|.

Then we have the following lemma.

Lemma 4.3 Let (z, ζ) ∈Wε,δ. Then

(a) a(z, ζ) ≈ a∗(z, ζ) ≈ −ρ(ζ)− ρ(z) + |ζ − z|2 + |ImF (z, ζ)|,
(b) T (z, ζ) ≈ |ρ(ζ)− ρ(z)|+ |ζ − z|2 + |ImF (z, ζ)|,
(c) | < v, ζ − z > | ≥ C{T (z, ζ)2 + (−ρ(ζ)− ρ(z))|ζ − z|2},
(d) |ζ − z|2|a∗(z, ζ)| ≤ C| < v, ζ − z > | ≤ |a∗(z, ζ)|2,
(e) | < v, ζ − z > | ≤ C|ζ − z||a∗(z, ζ)|,

where C is a constant which is independent of ζ and z.

Proof. It follows from Taylor’s formula that

ρ(z) = ρ(ζ)

+Re

2
n∑

j=1

∂ρ

∂zj
(ζ)(zj − ζj) +

n∑
j,k=1

∂2ρ

∂zj∂zk
(ζ)(zj − ζj)(zk − ζk)


+

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(ζ)(zj − ζj)(z̄k − ζ̄k) +O(|ζ − z|3)

= ρ(ζ)− 2ReF (z, ζ)

+
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(ζ)(zj − ζj)(z̄k − ζ̄k) +O(|ζ − z|3).

Consequently,

2ReF (z, ζ) ≤ ρ(ζ) − ρ(z) + C|ζ − z|2.

Hence together with (4.16) we obtain

a(z, ζ) ≈ −ρ(ζ)− ρ(z) + |ζ − z|2 + |ImF (z, ζ)|.

Since

|F (z, ζ) + F (ζ, z)| = O(|ζ − z|2),
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we have

a∗(z, ζ) ≈ −ρ(z)− ρ(ζ) + |ζ − z|2 + |ImF (ζ, z)|
≤ C(−ρ(z)− ρ(ζ) + |ζ − z|2 + |ImF (z, ζ)|) ≈ a(z, ζ).

This proves (a). If ρ(ζ) ≥ ρ(z), then

|F (z, ζ)|+ |F (ζ, z)|
≈ |ReF (z, ζ)|+ |ImF (z, ζ)|+ |ReF (ζ, z)|+ |ImF (ζ, z)|
≥ |ReF (z, ζ)|+ |ImF (z, ζ)|
≥ C(|ρ(ζ) − ρ(z)|+ |ζ − z|2 + |ImF (z, ζ)|).

We can also prove the above inequality in case ρ(ζ) ≤ ρ(z). Since

|F (z, ζ) + F (ζ, z)| = O(|ζ − z|2),

we obtain

|F (z, ζ)|+ |F (ζ, z)| ≤ 2|F (z, ζ)|+O(|ζ − z|2)
≤ C(|ρ(ζ) − ρ(z)|+ |ζ − z|2 + |ImF (z, ζ)|).

This proves (b). If |ImF (ζ, z)| ≥ |ImF (z, ζ)|, then

| < v, ζ − z > |
≥ C{(ρ(ζ)− ρ(z))2

+|ζ − z|4 + |ImF (z, ζ)|2 + (−ρ(ζ) − ρ(z))|ζ − z|2}
≥ C{T (z, ζ)2 + (−ρ(ζ) − ρ(z))|ζ − z|2}.

We can also prove the above inequality in case |ImF (ζ, z)| ≤ |ImF (z, ζ)|.
This proves (c). From the definition of a∗ and T we have

|a∗| ≤ −ρ(z) + |F | ≤ −ρ(z) + T.

By (b) and (c) we have

|ζ − z|2|a∗| ≤ −ρ(z)|ζ − z|2 + |ζ − z|2T
≤ |ζ − z|2(−ρ(z)− ρ(ζ)) + CT 2

≤ C| < v, ζ − z > |.

It follows from (a) that

| < v, ζ − z > | = |aa∗ − ρ(ζ)ρ(z)| ≤ C|a∗|2.
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This proves (d). We obtain

| < v, ζ − z > | = |aa∗ − ρ(z)ρ(ζ)|
= |aa∗ + ρ(ζ)a∗ − ρ(ζ)a∗ − ρ(z)ρ(ζ)|
≤ |a+ ρ(ζ)||a∗| − ρ(ζ)|a∗ + ρ(z)|
≤ C(|a+ ρ(ζ)||a∗|+ |a∗||a∗ + ρ(z)|)
= C(|F (z, ζ)||a∗|+ |a∗||F (ζ, z))

≤ C|ζ − z||a∗|.

This proves (e). �

Lemma 4.4 There exists a constant C > 0 such that∫
B(z,r)∩Ω

|Kp,q(z, ζ)|dV (ζ) ≤ Cr (z ∈ Ω, r > 0).

Proof. It is sufficient to prove the lemma under the assumption that
r > 0 is sufficiently small and z is sufficiently close to ∂Ω. For (z, ζ) ∈Wε,δ,
we obtain K = K(v). By the definition of a∗ and T and using (c) we have

|Kp,q(z, ζ)| ≤ C
{
|a∗(z, ζ)|n−1|ζ − z|
| < v, ζ − z > |n

}
≤ C

{
(|ρ(z)|n−1 + |F (z, ζ)|n−1)|ζ − z|

[T (z, ζ)2 + (−ρ(ζ)− ρ(z))|ζ − z|2]n

}
≤ C

{
|ζ − z|

T (z, ζ)n+1
+

|ρ(z)|n−1|ζ − z|
[T (z, ζ)2 + |ρ(z)||ζ − z|2]n

}
.

We choose a coordinate system η1(ζ), · · · , ηn(ζ) in a neighborhood of z such
that

η1(ζ) = ρ(ζ) − ρ(z) + iImF (z, ζ), η(z) = 0, |η(ζ)| ≈ |ζ − z|.

We set ηj = t2j−1 + it2j . Then we have

|T | ≈ |t1|+ |t2|+ |t|2, |ζ − z| ≈ |t|.

In order to prove Lemma 4.4, it is sufficient to show that

I1 =
∫
|t|≤r

|t|
[|t1|+ |t2|+ |t|2]n+1

dt1 · · · dt2n ≤ Cr (4.17)

and

I2 =
∫
|t|≤r

|ρ(z)|n−1|t|
[t21 + t22 + |ρ(z)||t|2]n dt1 · · ·dt2n ≤ Cr. (4.18)
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We set t′ = (t3, · · · , t2n). Then we obtain

I1 ≤
∫
|t|≤r

dt1 · · ·dt2n
[|t1|+ |t2|+ |t|2]n+(1/2)

≤ C
∫
|t′|≤r

dt′

|t′|2n−3

≤ C
∫ r

0

ds = Cr.

This proves (4.17). We set m = |ρ(z)|. Then we have

I2 ≤
∫
|t|≤r

mn−(3/2)

[t21 + t22 +m|t|2]n−(1/2) dt1 · · · dt2n

≤ Cmn−(3/2)
∫
|t′|≤r

∫ r

0

ds

[s+m|t′|2]n−(1/2) dt
′

≤ Cmn−(3/2)
∫ r

0

λ2n−3

[mλ2]n−(3/2)
dλ

= C

∫ r

0

dλ = Cr.

This proves (4.18). �

Now we are going to prove Lp estimates for the ∂̄ problem in a strictly
pseudoconvex domain Ω in Cn with smooth boundary.

Theorem 4.5 For f ∈ C1(p,q)(Ω), define

Tf(z) = Cp,q,n

∫
Ω

f(ζ) ∧Kp,q−1(z, ζ).

Then T satisfies the following:

(a) If ∂̄f = 0, then ∂̄(Tf) = f .
(b) If f ∈ Lr

(p,q)(Ω) and 1 ≤ r ≤ ∞, then Tf ∈ Lr
(p,q)(Ω).

Proof. Since every Lp function in Ω can be approximated uniformly on
every compact subset of Ω by functions in C1(Ω), we may assume that
f ∈ C1(Ω). (a) follows from Corollary 4.1. (b) follows from Lemma 4.4
and Theorem 3.26. �

Bruna-Cufi-Verdera [BRV] proved the following theorem. We omit the
proof.
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Theorem 4.6 Let Ω ⊂⊂ Cn be a strictly pseudoconvex domain with C3

boundary. Then each function f ∈ C(D) satisfying

∂̄i∂̄jf = 0 (1 ≤ i, j ≤ n) (4.19)

in Ω, can be approximated on Ω by functions satisfying (4.19) in a neigh-
borhood of Ω.

4.3 The Berndtsson Formula

We study the integral formula on submanifolds of bounded domains with
smooth boundary obtained by Berndtsson [BR1].

Let Ω be a bounded domain in Cn with C2 boundary. Let Ω =
{z | ρ(z) < 0}, where ρ is a C2 function in a neighborhood of Ω and
dρ �= 0 on ∂Ω. Let h1, · · · , hm be holomorphic functions in a neighborhood
Ω̃ of Ω satisfying

∂h1 ∧ · · · ∧ ∂hm ∧ ∂ρ �= 0 (4.20)

on ∂Ω. Suppose there exist holomorphic functions gji (z, ζ) in Ω × Ω such
that

hj(z)− hj(ζ) =
n∑

i=1

gji (z, ζ)(zi − ζi) (j = 1, · · · ,m). (4.21)

We set

X = {z ∈ Ω̃ | h1(z) = · · · = hm(z) = 0},

V = X ∩ Ω,

h = (h1, · · · , hm),

gj =
n∑

i=1

gji dζi, (4.22)

µ =
g1 ∧ · · · ∧ gm ∧ ∂h1 ∧ · · · ∧ ∂hm

‖∂h‖2 dVn−1, (4.23)
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where dVn−1 is the surface measure on V . Let s = (s1, · · · , sn), Q =
(Q1, · · · , Qn) and G denote the same notations as in Theorem 4.4. More-
over, we use the abbreviation

s =
n∑

j=1

sjdζj , Q =
n∑

j=1

Qjdζj .

We set

K =
n−m−1∑
k=0

(n− 1)!
m!k!

G(k)(< Q, z − ζ > +1)
s ∧ (∂̄s)n−m−1−k ∧ (∂̄Q)k ∧ µ

< s, ζ − z >n−m−k
,

and

P =
1

m!(n−m)!
G(n−m)(< Q, z − ζ > +1)(∂̄Q)n−m ∧ µ.

Then we have the following theorem.

Theorem 4.7 (Berndtsson formula) Let u be a C1 (0, q) form on V .
For z ∈ V one has

(a) In case q > 0,

u(z) = C
{∫

∂V

u ∧Kq + (−1)q+1
(∫

V

∂̄u ∧Kq − ∂̄z
∫
V

u ∧Kq

)}
,

where Kq is a component of K which is of degree (0, q) with respect to
z and of degree (n−m,n−m− q − 1) with respect to ζ and C = Cq,n

is a constant depending only on q, n.
(b) In case q = 0,

u(z) = Cn

(∫
∂V

uK0 −
∫
V

∂̄u ∧K0 −
∫
V

uP0

)
.

Proof. We prove Theorem 4.7 in case m = 1. Let h1 = h, g1 = g.
Suppose Q1(z, ζ) and Q2(z, ζ) are of class C1 in Ω × Ω, and holomorphic
in z ∈ Ω. In (4.14) we replace Q by λ1Q1 + λ2Q2 and P by Pλ. Then we
have

Pλ =
(−1)n(n−2)/2

n!
eλ1<Q1,ζ−z>eλ2<Q2,ζ−z>(λ1dQ1 + λ2dQ2)n

= (−1)n(n−1)/2eλ1<Q1,ζ−z>eλ2<Q2,ζ−z>

×
∑

α1+α2=n

λα1
1 λ

α2
2

α1!α2!
(dQ1)α1(dQ2)α2 .
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Suppose ψ1, ψ2 are distributions. We set

P̃ =
∫ ∞
0

∫ ∞
0

Pλe−λ1e−λ2ψ1(λ1)ψ2(λ2)dλ1dλ2.

Further we set

G1(α) =
∫ ∞
0

e−αλ1ψ1(λ1)dλ1, G2(α) =
∫ ∞
0

e−αλ2ψ2(λ2)dλ2.

Then we have

G
(α1)
1 (< Q1, z − ζ > +1) =

∫ ∞
0

(−λ1)α1e−λ1(<Q1,z−ζ>+1)ψ1(λ1)dλ1

and

G
(α2)
2 (< Q2, z − ζ > +1) =

∫ ∞
0

(−λ2)α2e−λ2(<Q2,z−ζ>+1)ψ2(λ2)dλ2.

Consequently,

P̃ = (−1)n(−1)n(n−1)/2
∑

α1+α2=n

1
α1!α2!

G
(α1)
1 G

(α2)
2 (∂̄Q1)α1 ∧ (∂̄Q2)α2 ,

where G(αj)
j = G

(αj)
j (< Qj, z − ζ > +1). Since u is a (0, q) form, we have

only to consider the terms in dQ1 and dQ2 which do not contain dzj , and
hence we may replace dQ1 and dQ2 by ∂̄Q1 and ∂̄Q2, respectively. In (4.13)
we replace Q by λ1Q1 + λ2Q2 and K by Kλ. We set

K̃ =
∫ ∞
0

∫ ∞
0

Kλe−λ1e−λ2ψ1(λ1)ψ2(λ2)dλ1dλ2.

Then we have

K̃ = Cn(−1)n ×∑
α0+α1+α2=n−1

(n− 1)!
α1!α2!

G
(α1)
1 G

(α2)
2

s ∧ (∂̄s)α0 ∧ (∂̄Q1)α1 ∧ (∂̄Q2)α2

< s, ζ − z >α0+1
.

We choose distributions ψ1, ψ2 such that G1(1) = G2(1) = 1. Using the
same method as the proof of Theorem 4.4, we may assume that Gj are
holomorphic in some simply connected domain containing {< Qj, z − ζ >
+1 | (z, ζ) ∈ Ω× Ω}. Let g = (g1, · · · , gn). We set

Q2ε =
h(ζ)g

|h(ζ)|2 + ε
.
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It follows from (4.21) that

< Q2ε, z − ζ > +1 =
n∑

j=1

h(ζ)gj(zj − ζj)
|h|2 + ε

+ 1

=
h(ζ)(h(z)− h(ζ))

|h|2 + ε
+ 1

=
h(ζ)h(z) + ε
|h|2 + ε

.

On the other hand we have

Q2ε =
n∑

j=1

h(ζ)gj(z, ζ)
|h|2 + ε

dζj .

Consequently,

∂̄Q2ε =
n∑

j=1

n∑
k=1

∂

∂ζ̄k

(
h(ζ)gj
|h|2 + ε

)
dζ̄k ∧ dζj =

ε∂h ∧ g
(|h|2 + ε)2

,

where g =
∑n

j=1 gjdζj . Therefore we have

(∂̄Q2ε)
p = 0 (p > 1).

For simplicity, we assume h(z) = z1. Then we have the following lemma.
The proof is the same as the proof of Lemma 2.32. So we omit the proof.

Lemma 4.5 Let z = (z1, z′). For ϕ ∈ C1(Ω) we have

lim
ε→0+

∫
Ω

ε

(|z1|2 + ε)2
ϕ(z)dV (z) = π

∫
{z1=0}∩Ω

ϕ(z)dVn−1(z′), (4.24)

lim
ε→0+

∫
∂Ω

ε

(|z1|2 + ε)2
ϕ(z)dσ2n−1(z) = π

∫
{z1=0}∩∂Ω

ϕ(z)dσ2n−3(z′),

(4.25)
where dσ2n−1 and dσ2n−3 are surface measures on ∂Ω and {zn = 0} ∩ ∂Ω,
respectively.

We set G2(α) = α. Then

K̃ = (−1)nCn

∑
α0+α1+α2=n−1

(n− 1)!
α1!α2!

G
(α1)
1

(
h(ζ)h(z) + ε
|h|2 + ε

)1−α2

(4.26)
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×s ∧ (∂̄s)α0 ∧ (∂̄Q1)α1 ∧ (∂̄Q2
ε)
α2

< s, ζ − z >α0+1

and

P̃ = (−1)n(n+1)/2
∑

α1+α2=n

1

α1!α2!
G

(α1)
1

(
h(ζ)h(z) + ε

|h|2 + ε

)1−α2

(4.27)

×(∂̄Q1)α1 ∧ (∂̄Q2)α2 .

Let α2 = 1. Then coefficients of K̃ and P̃ are bounded by integrable

functions which are independent of ε. Let α2 = 0. Then we have

|h(ζ)h(z) + ε|
|h|2 + ε

‖s‖
| < s, ζ − z > |n ≤ C

{
1 +

|h(ζ)||ζ − z|
|h|2 + ε

}
1

|ζ − z|2n−1
.

(4.28)

In case |ζ − z| ≤ |h(ζ)|, the right side of (4.28) is bounded by |ζ − z|−2n+1.

In case |ζ − z| ≥ |h(ζ)|, if 0 < δ < 1
2 , ζ′ = (ζ2, · · · , ζn), then there exist

positive constants C1, C2 and C3 such that∫
Ω

|h(ζ)||ζ − z|
|h|2 + ε

‖s‖
| < s, ζ − z > |n dV (ζ)

≤ C1

∫
Ω

|h(ζ)|δ |ζ − z|1+δ
(|h|2 + ε)|ζ − z|2n−1

dV (ζ)

≤ C2

∫
|ζ1|<C2

dV (ζ1)

|ζ1|2−δ
∫
|ζ′|<C3

dVn−1(ζ
′)

|ζ′ − z′|2n−2−δ .

Hence the right side of (4.28) is bounded by an integrable function which is

independent of ε. Next we investigate the integral on ∂Ω. Since ∂h∧∂ρ 6= 0

on V ∩ ∂Ω, there exist positive constants C4, C5 and C6 such that∫
∂Ω

|h(ζ)h(z) + ε|
|h|2 + ε

dV (ζ) ≤ C4

∫
|ζ1|<C5

dV1(ζ1)

|ζ1|
≤ C6

for fixed z ∈ Ω. Let z ∈ V . Then h(z) = 0, which implies that in (4.26) and

(4.27) each term in which α2 = 0 converges to 0 as ε → 0. By Lebesgue’s

dominated convergence theorem the integral of each term converges to 0.

In case α2 = 1, integrals on Ω converge to integrals on V and integrals on

∂Ω converge to integrals on ∂V as ε → 0 by Lemma 4.5, which completes

the proof of Theorem 4.7. �
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Theorem 4.8 Let Ω = {z | ρ(z) < 0} be a bounded convex domain with
C2 boundary and let f be holomorphic in V and of class C1 on V , N a
positive integer. Then for z ∈ V

f(z) = C
∫
V

f(ζ)
(

ρ(ζ)
< ∂ρ(ζ), z − ζ > +ρ(ζ)

)N+n−m(
∂̄

(
Q

ρ

))n−m

∧ µ,
(4.29)

where µ is defined by (4.23),

Q =
n∑

j=1

∂ρ

∂ζj
dζj

and C = Cn,m is a constant depending only on n and m.

Proof. Since the function ρ is convex, we have

2n∑
j,k=1

∂2ρ

∂xj∂xk
(z)ujuk ≥ 0 (z ∈ Ω, (u1, · · · , u2n) ∈ R2n). (4.30)

It follows from Taylor’s formula that

ρ(z)− ρ(ζ) ≥ 2Re
n∑

j=1

∂ρ

∂ζj
(ζ)(zj − ζj). (4.31)

For ε > 0, we set

Qj(z, ζ) =
1

ρ(ζ)− ε
∂ρ

∂ζj
(ζ).

Then we obtain

< Q(z, ζ), z − ζ > +1 =
< ∂ρ(ζ), z − ζ > +ρ(ζ)− ε

ρ(ζ) − ε ,

It follows from (4.31) that

Re(< Q, z − ζ > +1) ≥ ρ(z) + ρ(ζ)− 2ε
2(ρ(ζ)− ε) > 0

for (z, ζ) ∈ Ω×Ω. We set G(α) = α−N for N ≥ 1. Since G(α) is holomor-
phic in Reα > 0, G satisfies the hypothesis in Theorem 4.7. If we let ε ↓ 0,
then by Theorem 4.7 we have for some constant γk,

K =
n−m−1∑
k=0

γk

(
ρ

< ∂ρ, z − ζ > +ρ

)N+k
s ∧ (∂̄s)n−m−1−k ∧ (∂̄Q)k ∧ µ

< s, ζ − z >n−m−k
,

(4.32)
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P = Cn,m

(
ρ(ζ)

< ∂ρ(ζ), z − ζ > +ρ(ζ)

)N+n−m

(∂̄Q)n−m ∧ µ. (4.33)

Since

∂̄Q =
1
ρ
∂̄

 n∑
j=1

∂ρ

∂ζj
(ζ)dζj

− 1
ρ2
∂̄ρ ∧

n∑
j=1

∂ρ

∂ζj
(ζ)dζj ,

we obtain (∂̄Q)k = O(|ρ|−k−1). On the other hand we have

2(Re < ∂ρ, z − ζ > +ρ(ζ)) < ρ(z) + ρ(ζ) ≤ ρ(z) (z ∈ Ω, ζ ∈ Ω),

which implies that the integral of K on Ω exists. Since dρ = 0 on ∂Ω, we
have

∂̄Q =
1
ρ
∂̄

 n∑
j=1

∂ρ

∂ζj
dζj

 ,
and hence (∂̄Q)k = O(|ρ|−k). Since N ≥ 1, the integral of K on ∂Ω is
equal to 0. Thus by Theorem 4.7 (b) we obtain (4.29). �

Remark 4.1 In the case when Ω is an analytic polyhedron, Lp and Hp ex-
tensions of holomorphic functions from submanifolds of Ω were investigated
by Adachi-Andersson-Cho [ADC] using the Berndtsson integral formula.

4.4 Counterexamples for Lp (p > 2) Extensions

We give counterexamples for Lp (p > 2) extensions of holomorphic func-
tions from submanifolds in complex ellipsoids due to Mazzilli [MAZ1] and
Diederich-Mazzilli [DIM1]. From these examples one can see that the
Ohsawa-Takegoshi extension theorem is the best possible.

Let Ω be a complex ellipsoid in Cn. Then there exist positive integers
q1, · · · , qn such that

Ω = {z ∈ Cn | ρ(z) =
n∑

j=1

|zj |2qj − 1 < 0}.

We set

k = sup
1≤j≤n

{qj},
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and

Q(z, ζ) =
(
∂ρ

∂ζ1
(ζ), · · · , ∂ρ

∂ζn
(ζ)
)
.

The following two lemmas have been proved by Range [RAN1].

Lemma 4.6 For a positive integer m , we set g(z) = |z|2m. Then there
exists a constant C > 0 such that

g(z + w)− g(z)− 2Re
(
∂g

∂z
(z)w

)
≥ C|w|2m.

Proof. We set

f(z, w) = g(z + w)− g(z)− 2Re
(
∂g

∂z
(z)w

)
.

By Taylor’s formula, if we set z = x + iy, w = u + iv, then there exists θ
with 0 < θ < 1 such that

f(z, w) =
1
2

(
∂2g

∂x2
(x+ θu, y + θv)u2 + 2

∂2g

∂x∂y
(x + θu, y + θv)uv

+
∂2g

∂y2
(x+ θu, y + θv)v2

)
.

We set ψ(t) = tm. Then we have g(z) = ψ(x2 + y2). We set X = x + θu,
Y = y + θv. Then

f(z, w) = 2ψ′′(X2 + Y 2)(Xu+ Y v)2 + ψ′(X2 + Y 2)(u2 + v2). (4.34)

Suppose (X,Y ) = (0, 0) for |w| = 1. Since z = −θw, we have |z| = θ.
Consequently,

f(z, w) = (1 − θ)2m − θ2m + 2mθ2m−1 = (1 − θ)2m + θ2m−1(2m− θ) > 0.

From (4.34) we have f(z, w) = 0, which is a contradiction. Hence we have
(X,Y ) �= 0, which means that f(z, w) > 0 for |w| = 1. In case |w| = 1 and
|z| ≤ 2, f(z, w) has a minimum value c1 > 0. In case |w| = 1 and |z| ≥ 2,
by (4.34) we have

f(z, w) ≥ ψ′(X2 + Y 2) = m(|z + θw|2)m−1 ≥ m(|z| − 1)2m−2 ≥ m.

Hence if |w| = 1, then f(z, w) ≥ min(c1,m) := c. Since

f

(
z

|w| ,
w

|w|

)
=

1
|w|2m f(z, w) ≥ c,
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we obtain f(z, w) ≥ c|w|2m. �
Lemma 4.7 For (ζ, z) ∈ Ω× Ω, there exists a constant C > 0 such that

Re(< Q, ζ − z > −ρ(ζ)) ≥ C(−ρ(ζ)− ρ(z) +
n∑

j=1

|ζj |2qj−2|zj − ζj |2

+|zj − ζj |2qj ).

Proof. We set g(z) = |z|2m, ϕ(t) = g(z + tw) for t ∈ R. Then we have

ϕ(s)(t) =
(
w
∂

∂z
+ w̄

∂

∂z̄

)s

g.

In case 2m ≥ s,

ϕ(s)(t) =
n∑

j=0

s!
j!(s− j)!

(
w
∂

∂z

)j (
w̄
∂

∂z̄

)s−j

g

=
∑

j+k=s

s!
j!k!

∂ng

∂zj∂z̄k
wjw̄k.

In case 2m < s, we have ϕ(s)(t) = 0. Hence we have

f(z, w) =
2m∑
s=2

ϕ(s)(0)
s!

=
∑

2≤j+k≤2m

1
j!k!

∂sg

∂zj∂z̄k
wjw̄k.

We obtain∑
j+k=2

1
j!k!

∂sg

∂zj∂z̄k
wjw̄k

= m2|z|2m−2|w|2 + Re(m(m− 1)zm−2z̄mw2)

≥ m2|z|2m−2|w|2 −m(m− 1)|z|2m−2|w|2 = m|z|2m−2|w|2.

On the other hand, if j + k ≥ 3, then for a with 0 < a < 1 and |w| ≤ a|z|,
there exists a constant C > 0 such that∣∣∣∣∣
(
∂

∂z

)j (
∂

∂z̄

)k

g(z)wjw̄k

∣∣∣∣∣
= |m(m− 1) · · · (m− j + 1)zm−jm(m− 1) · · · (m− k + 1)z̄m−kwjw̄k|
≤ Ca|z|2m−2|w|2,

which means that for any sufficiently small a,

f(z, w) ≥ m|z|2m−2|w|2 − Ca|z|2m2 |w|2 ≥ C|z|2m−2|w|2.
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If |w| > a|z|, then |w|2m > a2m−2|z|2m−2|w|2, and hence by Lemma 4.6 we
have

f(z, w) ≥ C|w|2m ≥ C|z|2m−2|w|2.

Consequently, we obtain

f(z, w) ≥ C(|z|2m−2|w|2 + |w|2m). (4.35)

We set gj(zj) = |zj |2qj . It follows from (4.35) that

n∑
j=1

gj(zj)−
n∑

j=1

gj(ζj)− 2Re

 n∑
j=1

∂gj
∂ζj

(ζj)(zj − ζj)


≥ C

 n∑
j=1

|ζj |2qj−2|zj − ζj |2 +
n∑

j=1

|zj − ζj |2mj

 .
Then

2Re <
∂ρ

∂ζ
(ζ), ζ − z > ≥ −ρ(z) + ρ(ζ) + C(

n∑
j=1

|ζj |2qj−2|zj − ζj |2

+
n∑

j=1

|zj − ζj |2mj ).

�
Definition 4.3 For k > 0, define

Bk(Ω) = {f ∈ C(Ω) | sup
z∈Ω

(|f(z)|dist(z, ∂Ω)k) <∞}.

Now we give a counterexample for bounded extensions of holomorphic
functions from submanifolds of complex ellipsoids due to Mazzilli [MAZ1].

Theorem 4.9 For p ≥ 1 and any sufficiently small ε > 0, there exist
a complex ellipsoid Ω in C2p+1, a submanifold X in a neighborhood of Ω
which intersects ∂Ω transversally, and a bounded holomorphic function f in
V = X∩Ω such that if g is a holomorphic function in Ω with g|V = f , then
g �∈ B p

2−ε(Ω). Therefore, f cannot be extended to a bounded holomorphic
function in Ω.

Proof. Define fj(z) = znj + zp+j for j = 1, · · · , p. Define Ω ⊂ C2p+1 and
a submanifold M of Ω as follows.

Ω = {z ∈ C2p+1 |
p∑

j=1

|zj|2
n+1

+
2p+1∑
j=p+1

|zj|2 − 1 = ρ(z) < 0},
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V = {z ∈ Ω | f1(z) = · · · = fp(z) = 0}.

In Lemma 4.7, we set ζ = (0, · · · , 0, 1). Then for z ∈ Ω we have

Re (1− z2p+1) ≥ C

|ρ(z)|+ |z2p+1 − 1|2 +
p∑

j=1

|zj |2
n+1

+
2p∑

j=p+1

|zj |2
 ,

(4.36)
which implies that if z ∈ Ω, then Re (1− z2p+1) > 0. Hence if we define for
z ∈ Ω

f(z) =
zn−11 · · · zn−1p

(1 − z2p+1)
p(n−1)

2n

,

then f is holomorphic in Ω. It follows from (4.36) that

|f(z)| ≤
|zn−11 · · · zn−1p |
|1− z2p+1|

p(n−1)
2n

≤ |zp+1|
n−1

n · · · |z2p|
n−1

n

(
∑2p

j=p+1 |zj |2)
p(n−1)

2n

≤ C

for z ∈ V , which means that f is bounded on V . It follows from (4.36) that

|zj|2
n+1

|1− z2p+1|
≤ C (j = 1, · · · , p)

for z ∈ Ω. Consequently,

|f(z)| =
(
|z1|2

n+1

|1− z2p+1|

) n−1
2n+1

· · ·
(
|zp|2

n+1

|1− z2p+1|

) n−1
2n+1

×|1− z2p+1|
p(n−1)
2n+1 −

p(n−1)
2n

≤ C|ρ(z)|
p(n−1)
2n+1 −

p(n−1)
2n .

Suppose there exists a holomorphic function g in Ω with the following prop-
erties:

(a) For z ∈ V , g(z) = f(z).

(b) There exists δ > 0 such that |g(z)| ≤ C|ρ(z)|−
p(n−1)

2n + p(n−1)
2n+1 +δ.

Since g − f is a holomorphic function in Ω such that g − f = 0 on V , it
follows from Corollary 5.7 that there exist holomorphic functions ak for
k = 1, · · · , p in Ω such that

g(z) =
1

(1− z2p+1)
p(n−1)

2n

(
zn−11 · · · zn−1p +

p∑
k=1

(znk + zp+k)ak(z)

)
. (4.37)
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For any sufficiently small ε > 0 and θk ∈ [0, 2π] for k = 1, · · · , p, we set
zk = ε

1
2n+1 eiθk (1 ≤ k ≤ p)

zk = 0 (p+ 1 ≤ k ≤ 2p)
z2p+1 = 1− pε

.

Then we have ρ(z) = pε(pε− 1) < 0, which means that |ρ(z)| = (1− pε)pε
for z ∈ Ω. It follows from (b) and (4.37) that

1

(pε)
p(n−1)

2n

∣∣∣∣∣∣ 1
z1 · · · zp

+
p∑

k=1

ak(z)∏p
j=1
j �=k

znj

∣∣∣∣∣∣ ≤ Cn|ρ(z)|−
p(n−1)

2n + p(n−1)
2n+1 +δ 1

|zn1 · · · znp |
.

Since |ρ(z)| ≈ ε, we obtain∣∣∣∣∣∣ 1
z1 · · · zp

+
p∑

k=1

ak(z)∏p
j=1
j �=k

znj

∣∣∣∣∣∣ ≤ Cnε
δ− p

2n+1 .

We set

γ = {z ∈ C | |z| = ε
1

2n+1 },

Γ = γ × · · · × γ︸ ︷︷ ︸
p

.

Then we have ∫
Γ

p∑
k=1

ak(z)∏p
j=1
j �=k

znj
dz1 ∧ · · · ∧ dzp = 0.

Consequently,

∫
Γ

1
z1 · · · zp

dz1 ∧ · · · ∧ dzp =
∫
Γ

 1
z1 · · · zp

+
p∑

k=1

ak(z)∏p
j=1
j �=k

znj

 dz1 ∧ · · · ∧ dzp.
The left side of the above equality is equal to (2πi)p and the right side
is equal to O(εδ), which is a contradiction for any sufficiently small ε.
Therefore there is no g which satisfies (a) and (b). Suppose for an extension
g of f there exists ε > 0 such that

|g(z)||ρ(z)|
p
2−ε < C (z ∈ Ω).
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If we choose n sufficiently large, then we have

p

2n
+
p(n− 1)

2n+1
<
ε

2
.

Consequently,

|g(z)| ≤ C|ρ(z)|−
p
2+ε ≤ C|ρ(z)|−

p(n−1)
2n + p(n−1)

2n+1 +
ε
2 ,

which means that g satisfies (a) and (b). This is a contradiction. �

Definition 4.4 Suppose d(z, ∂Ω) denotes the distance from z to ∂Ω and
that dVΩ and dVn−1 are Lebesgue measures on Ω and V , respectively.

(1) For a measurable function f in Ω, f ∈ Lq(d(z, ∂Ω)s, dVΩ) means that∫
Ω

|f(z)|pd(z, ∂Ω)sdVΩ <∞.

(2) For a measurable function f in V , f ∈ Lq(d(z, ∂Ω)s, dVn−1)) means
that ∫

V

|f(z)|pd(z, ∂Ω)sdVn−1 <∞.

Lemma 4.8 Let n and p be positive integers with n ≥ 2p + 1. For a
positive integer N ≥ 2, define

Ω = {z ∈ Cn |
p∑

j=1

|zj |2
N+1

+
n∑

j=p+1

|zj|2 − 1 = ρ(z) < 0}.

Let q ≥ 2, s ≥ 0. Then there exists a constant CN > 0 such that for a
holomorphic function f in Ω with f ∈ Lq(d(z, ∂Ω)s, dVΩ), θj ∈ [0, 2π] and
any sufficiently small ε > 0, if we set

z = (ε
1

2N+1 eiθ1 , · · · , ε
1

2N+1 eiθp , 0, · · · , 0, 1− pε),

then we obtain

|f(z)| ≤ CN‖f‖Lq(d(z,∂Ω)s,dVΩ)d(z, ∂Ω)−
n−p+1

q − s
q−

p

2N q .

Proof. We set

P (z, ζ) =
(

ρ(ζ)
< ∂ρ(ζ), z − ζ > +ρ(ζ)

)1+ s
q+n(

∂∂̄ log
(
− 1
ρ(ζ)

))n

∧ µ,
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where µ is defined by (4.23). It follows from Theorem 4.4 that for f ∈
O(Ω) ∩ Lq(d(z, ∂Ω)s, dVΩ)

f(z) =
∫
Ω

f(ζ)P (z, ζ).

By the Hölder inequality we obtain

|f(z)|

≤
(∫

Ω

|f(ζ)|q|ρ(ζ)|sdVΩ(ζ)
) 1

q
(∫

Ω

(|ρ(ζ)|−
s
q |P (z, ζ)|)

q
q−1 dVΩ(ζ)

) q−1
q

.

Further we have(
∂̄

(
∂ρ

ρ

))n

=
(∂̄∂ρ)n

ρn
− n (∂̄∂ρ)n−1 ∧ ∂ρ ∧ ∂̄ρ

ρn+1
.

Consequently,

|ρ(ζ)|− s
q |P (z, ζ)| ≤ C ‖(∂̄∂ρ(ζ))

n−1 ∧ ∂ρ(ζ) ∧ ∂̄ρ(ζ)‖
| < ∂ρ(ζ), z − ζ > +ρ(ζ)|1+ s

q+n
.

It follows from Lemma 4.7 that

Re < ∂ρ(ζ), ζ − z > −ρ(ζ)

≥ C(|ρ(ζ)| + |ρ(z)|+
p∑

j=1

|zj − ζj |2
N+1

+
n∑

j=p+1

|zj − ζj |2).

We set

P1(z, ζ) = ρ(ζ)−
s
qP (z, ζ)

and

un = ρ(ζ) + iIm < ∂ρ(ζ), z − ζ > .

Then we have

|P1(z, ζ)| ≤ C
∏p

j=1 |ζj |2
N+1−2

(|ρ(z)|+
∑p

j=1 |ζj − zj |2
N+1 +

∑n−1
j=p+1 |ζj |2 + |un|)n+1+

s
q

.

Since

z = (ε
1

2N+1 eiθ1 , · · · , ε
1

2N+1 eiθp , 0, · · · , 0, 1− pε),
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we obtain

|ρ(z)| = 1−
p∑

j=1

|zj|2
N+1

− |zn|2 = pε(1− pε),

which implies that |ρ(z)| ≈ |zj|2
N+1

for j = 1, · · · , p. On the other hand
we have

p∏
j=1

|ζj |2
N+1−2 ≤ C

p∏
j=1

(|ζj − zj |2
N+1−2 + |zj|2

N+1−2)

and

|ζj − zj|2
N+1−2 = (|ζj − zj|2

N+1
)1−

1
2N ,

which means that

|P1(z, ζ)|

≤ C 1

(|ρ(z)|+
∑p

j=1 |ζj − zj|2
N+1 +

∑n−1
j=p+1 |ζj |2 + |un|)n+1−p+ s

q+
p

2N

.

We set

α = − q

q − 1
(n− p+ 1 +

s

q
+
p

2N
)

and

u = (u1, · · · , un), u′ = (u1, · · · , un−1), u′′ = (u1, · · · , up).

Define uj = ζj − zj for j = 1, · · · , n− 1. Then we have∫
Ω

|P1(z, ζ)|
q

q−1 dλΩ(ζ)

≤ C
∫

du′

(|ρ(z)|+
∑p

j=1 |uj |2
N+1 +

∑n−1
j=p+1 |uj|2)−α−2

≤ C
∫

du′′

(|ρ(z)| 12 +
∑p

j=1 |uj |2
N )−2α−4−2(n−p−1)

≤ C
∫

du′′

(|ρ(z)|
1

2N +
∑p

j=1 |uj |2)−2
N (α+n−p+1)

≤ C
∫ R

0

r2p−1dr

(|ρ(z)|
1

2N + r2)−2N (α+n−p+1)

≤ C|ρ(z)|
p

2N +α+n−p+1.
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Consequently,(∫
Ω

|P1(z, ζ)|
q

q−1 dλΩ(ζ)
) q−1

q

≤ C(|ρ(z)|
p

2N +α+n−p+1)
q−1

q

= C|ρ(z)|−
p

2N q
−n−p+1

q − s
q . �

Lemma 4.9 Let p and N be positive integers with N ≥ 2. Define

Ω = {z ∈ Cn |
p∑

j=1

|zj |2
N+1

+
2p+1∑
j=p+1

|zj|2 − 1 = ρ(z) < 0}.

Then there exist a constant CN > 0 such that for any holomorphic function
f in Ω with f ∈ Lq(Ω) (q ≥ 2), any sufficiently small ε > 0 and θj ∈ [0, 2π],
if we define

z = (ε
1

2N+1 eiθ1 , · · · , ε
1

2N+1 eiθp , 0, · · · , 0, 1− pε),

then we obtain

|f(z)| ≤ CN‖f‖Lq(Ω)d(z, ∂Ω)−
n+2

q − p

2N q .

Proof. In Lemma 4.8 we set n = 2p+1, s = 0. Then we have the desired
inequality. �

Diederich-Mazzilli [DIM1] obtained a counterexample for the Lp (p > 2)
extension of holomorphic functions from submanifolds of complex ellipsoids.

Theorem 4.10 Given ε > 0, there exist a positive integer p, a com-
plex ellipsoid Ω ⊂ C2p+1, a submanifold X of C2p+1 which intersects ∂Ω
transversally and a bounded holomorphic function f in V = X ∩ Ω such
that if g is a holomorphic function in Ω which satisfies g = f in V , then
g �∈ L2+ε(Ω).

Proof. Let N be a positive integer. Define

V = {z ∈ Ω | zN1 + zp+1 = · · · = zNp + z2p = 0}

and

f(z) =
zN−11 · · · zN−1p

(1 − zn)
p(N−1)

2N + 2
q

.

It follows from the proof of Theorem 4.9 that f is bounded on V . We set

z = (ε
1

2N+1 eiθ1 , · · · , ε
1

2N+1 eiθp , 0, · · · , 0, 1− pε).
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Using the same method as the proof of Theorem 4.9, for δ > 0 any holo-
morphic extension g of f to Ω cannot satisfy the inequality

|g(z)| ≤ C|ρ(z)|
p(N−1)
2N+1 −

p(N−1)
2N +δ.

On the other hand, by Lemma 4.9 if g ∈ Lq(Ω), then we have

|g(z)| ≤ C‖g‖Lq(Ω)d(z, ∂Ω)−
p+2

q − p

2N q ,

which means that

−p+ 2
q

− p

2Nq
≤ p(N − 1)

2N+1
− p(N − 1)

2N
.

Then q must satisfy the inequality

q ≤
2 + 4

p + 1
2N−1

1− 1
N −

N−1
2N

.

Consequently, there is no holomorphic extension g of f which satisfies con-
ditions

g ∈ Lq(Ω), q >
2 + 4

p + 1
2N−1

1− 1
N −

N−1
2N

.

If we choose p and N sufficiently large, then

2 + ε >
2 + 4

p + 1
2N−1

1− 1
N −

N−1
2N

,

which implies that there is no holomorphic function g in Ω which satisfies
g ∈ L2+ε(Ω) and g|V = f . �

Mazzilli [MAZ2] investigated Lp extensions of holomorphic functions
from submanifolds of complex ellipsoids. Cho [CHO] also obtained a coun-
terexample for the Lp (p > 2) extension of holomorphic functions from sub-
manifolds of some pseudoconvex domain. Tsuji [TSU] gave a counterexam-
ple for the bounded extension of holomorphic functions from submanifolds
of certain unbounded pseudoconvex domain in C2.
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4.5 Bounded Extensions by Means of the Berndtsson For-
mula

In this section we study the bounded extension of holomorphic functions
from complex affine linear hypersurfaces in strictly convex domains. The
result has already been proved in 3.3. The aim of the proof is to intro-
duce the method of Diederich-Mazzilli [DIM2] which was used to prove the
bounded extension of holomorphic functions from the intersection of a com-
plex affine linear hypersurface with a convex domain of finite type. It is also
interesting to compare the method of Henkin-Leiterer (Lemma 3.22) with
the method of Diederich-Mazzilli (Theorem 4.12) concerning the integral
representation on submanifolds.

Let Ω ⊂⊂ Cn be a convex domain with C∞ boundary. Then there
exists a C∞ function ρ in Cn such that Ω = {z ∈ Cn | ρ(z) < 0}. Let h
be a holomorphic function in a neighborhood Ω̃ of Ω. We set X = {z ∈
Ω̃ | h(z) = 0}, V = Ω ∩ X . Since Ω is convex, there exist holomorphic
functions gj, j = 1, · · · , n, in Ω× Ω such that

h(z)− h(ζ) =
n∑

j=1

gj(z, ζ)(zj − ζj).

Suppose dh �= 0 on X . We set

Q1(z, ζ) =
1
ρ(ζ)

n∑
i=1

∂ρ

∂ζi
(ζ)dζi.

Then by (4.29) we have the following theorem.

Theorem 4.11 Let f be a bounded holomorphic function in V . We define

Ef(z) := Cn

∫
V

f(ζ)
(

ρ(ζ)
< ∂ρ(ζ), z − ζ > +ρ(ζ)

)N+n−1
(∂̄Q1)n−1

∧
∂h(ζ) ∧ (

∑n
j=1 gj(z, ζ)dζj)
‖∂h‖2 dVn−1(ζ)

for z ∈ Ω, where Cn is a numerical constant depending only on n, and
dVn−1 is the Lebesgue measure on V . Then Ef is holomorphic in Ω and
satisfies Ef |V = f .

Remark 4.2 The integral in the right side of the above equality means
to integrate coefficients of forms of degree (n, n) with respect to ζ on V .
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From now on we assume h(z) = zn. For a > 0, we set

La = {z | |zn| ≤ a|ρ(z)|, (z1, · · · , zn−1, 0) ∈ V }.

Since Ω is convex, we have La ⊂ Ω for any sufficiently small a. Let f
be a bounded holomorphic function in V . Now we extend f to a C∞

function in Ω as follows. Let (πγ)γ≥0 be a family of C∞ functions in R
such that πγ ≡ 1 on {x ≤ γ

2 }, πγ ≡ 0 on {x ≥ γ}. For z ∈ La, we set
f(z1, · · · , zn) = f(z1, · · · , zn−1, 0). Then f is holomorphic in La. Define

ψγ(f)(z) = πγ

(
|zn|2
ρ(z)2

)
f(z).

Then for any sufficiently small γ, we have ψγ(f) ∈ L∞(Ω) ∩C∞(Ω). Since

∂̄(ψγ(f)) = π′γ

(
|zn|2
ρ(z)2

)
f(z)∂̄

(
|zn|2
ρ(z)2

)
,

we obtain

‖∂̄(ψγ(f))‖ ≤
Cγ

|ρ| ,

where Cγ is a constant depending on γ such that Cγ →∞ as γ → 0.

Lemma 4.10 Let X = {z | h(z) = 0}, h(z) = zn. Let N be an integer
such that N ≥ 2. Suppose s(z, ζ) satisfies the conditions (A) and (B) in
Theorem 4.1. Define

Q2ε =
n∑

j=1

h(ζ)gj(z, ζ)
|h|2 + ε

dζj =
ζ̄n

|ζn|2 + ε
dζn

P (z, ζ) = A1n(< Q
1, z − ζ > +1)−N−n znζ̄n + ε

|ζn|2 + ε
(∂̄Q1)n

+A2n(< Q
1, z − ζ > +1)−N−n+1(∂̄Q1)n−1 ∧ ∂̄Q2ε

=: P0(z, ζ) + P1(z, ζ)
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K(z, ζ)

= B1n
n−1∑
k=0

(< Q1, z − ζ > +1)−N−k znζ̄n + ε
|ζn|2 + ε

(∂̄Q1)k ∧ s ∧ (∂̄s)n−1−k

< s, ζ − z >n−k

+B2n
n−2∑
k=0

(< Q1, z − ζ > +1)−N−k(∂̄Q1)k

∧ s ∧ (∂̄s)n−2−k

< s, ζ − z >n−k−1 ∧ ∂̄Q
2
ε

=:
n−1∑
k=0

Kk
0 (z, ζ) +

n−2∑
k=0

Kk
1 (z, ζ).

Then we can choose constants Ai
n, B

i
n for i = 1, 2 such that

ψγ(f)(z) =
∫
Ω

ψγ(f)(ζ)P (z, ζ) +
∫
Ω

∂̄(ψγ(f))(ζ) ∧K(z, ζ) (z ∈ Ω).

Proof. In the proof of Theorem 4.7, we set

G1(α) = α−N (N ≥ 2), G2(α) = α.

Then we have

K̃ = An

∑
α0+α1+α2=n−1

1
(< Q1, z − ζ > +1)N+α1

(
h(ζ)h(z) + ε
|h(ζ)|2 + ε

)1−α2

×

×s ∧ (∂̄s)α0 ∧ (∂̄Q1)α1 ∧ (∂̄Q2ε)
α2

< s, ζ − z >α0+1
, (4.38)

P̃ = Bn

∑
α1+α2=n

1
(< Q1, z − ζ > +1)N+α1

(
h(ζ)h(z) + ε
|h(ζ)|2 + ε

)1−α2

×

×(∂̄Q1)α1 ∧ (∂̄Q2ε)
α2 . (4.39)

α2 takes only 0 or 1. By the definition of Q1, the integral on ∂Ω is equal
to 0. �

Next we assume that Ω ⊂⊂ Cn is a strictly convex domain with C∞

boundary. Since ρ is strictly convex, it follows from Taylor’s theorem that

2Re
n∑

j=1

∂ρ

∂ζj
(ζ)(ζj − zj) ≥ ρ(ζ)− ρ(z) + C|ζ − z|2 (z, ζ ∈ Ω).
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Define

Φ(z, ζ) =
n∑

j=1

∂ρ

∂ζj
(ζ)(ζj − zj).

Then we have

2ReΦ(z, ζ) ≥ ρ(ζ)− ρ(z) + C|ζ − z|2 (z, ζ ∈ Ω).

Consequently,

2|Φ(z, ζ)− ρ(ζ)| ≥ |ρ(ζ)|+ |ρ(z)|+ |ImΦ(z, ζ)|+ C|ζ − z|2 (4.40)

for z, ζ ∈ Ω. We take s(z, ζ) as follows:

s(z, ζ) = −ρ(z)
n∑

i=1

(ζ̄i − z̄i)dζi − Φ(ζ, z)
n∑

i=1

∂ρ

∂ζi
(z)dζi.

For z ∈ ∂Ω\X , ζ ∈ Ω, we have

s(z, ζ) = −Φ(ζ, z)
n∑

j=1

∂ρ

∂ζj
(z)dζi,

2ReΦ(ζ, z) ≥ −ρ(ζ) + C|ζ − z|2

and

s ∧ ∂̄ζs = 0.

Hence for z ∈ ∂Ω\X , if we choose γ sufficiently small, then ψγ(f)(z) = 0,
and hence there is no singular point except ζ = z. For z ∈ ∂Ω\X , we
obtain

ψγ(f)(z) =
∫
Ω

ψγ(f)(ζ)P (z, ζ) (4.41)

+
∫
Ω

∂̄(ψγ(f))(ζ) ∧ (Kn−1
0 (z, ζ) +Kn−2

1 (z, ζ)).
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Since ∂̄(ψγ(f)) = 0 on V , by Lemma 4.5 we have

lim
ε→0

∫
Ω

∂̄(ψγ(f))(ζ) ∧Kn−2
1 (z, ζ)

=
∫
V

∂̄(ψγ(f)(ζ))πB2n(< Q1, z − ζ > +1)−N−n+2(∂̄Q1)n−2

∧ s

< s, ζ − z >dVn−1 = 0.

On the other hand, by Lebesgue’s dominated convergence theorem we have

lim
γ→0

∫
Ω

ψγ(f) ∧ P (z, ζ) = 0.

By Lemma 4.5 we have

lim
ε→0

∫
Ω

ψγ(f)P1(z, ζ)

=
∫
V

ψγ(f)πA2n(< Q1, z − ζ > +1)−N−n+1(∂̄Q1)n−1dVn−1

= CnEf(z).

Thus in (4.41) after letting ε→ 0, we let γ → 0. Then we obtain

0 = CnEf(z) + lim
γ→0

∫
Ω

∂̄(ψγ(f))(ζ)K̃n−1
0 (z, ζ),

where

K̃n−1
0 (z, ζ) = B1n(< Q

1, z − ζ > +1)−N−n+1 zn
ζn

(∂̄Q1)n−1 ∧ s

< s, ζ − z >.
(4.42)

In this setting, we have the following theorem.

Theorem 4.12 For z ∈ ∂Ω\X one has

Ef(z) = Cn

∫
V

znf(ζ)dζ̄n ∧
1

(< Q1, z − ζ > +1)N+n−1 (∂̄Q
1)n−1

× s

< s, ζ − z >dVn−1.

Proof. By (4.42), K̃n−1
0 (z, ζ) is expressed by

K̃n−1
0 (z, ζ) =

zn
ζn
T n−1(z, ζ) = lim

ε→0

znζ̄n
|ζn|2 + ε

T n−1(z, ζ).
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It follows from Stokes’ theorem that

0 =
∫
∂Ω

znζ̄n
|ζn|2 + ε

ψγ(f)(ζ)T n−1(z, ζ)

=
∫
Ω

ψγ(f)(ζ)∂̄
(

znζ̄n
|ζn|2 + ε

)
∧ T n−1(z, ζ)

+
∫
Ω

znζ̄n
|ζn|2 + ε

∂̄(ψγ(f))(ζ) ∧ T n−1(z, ζ)

+
∫
Ω

znζ̄n
|ζn|2 + ε

ψγ(f)(ζ)∂̄(T n−1(z, ζ)).

If γ is sufficiently small, then there exists δ > 0 such that ψγ(f) = 0 in
B(z, δ). Since limγ→0 ψγ(f)(ζ) = 0 for ζ �∈ V , by Lebesgue’s dominated
convergence theorem we obtain

lim
γ→0

∫
Ω

znζ̄n
|ζn|2 + ε

ψγ(f)(ζ)∂̄(T n−1(z, ζ))

= lim
γ→0

∫
Ω\B(z,δ)

znζ̄n
|ζn|2 + ε

ψγ(f)(ζ)∂̄(T n−1(z, ζ))

= 0.

Consequently,

lim
γ→0

∫
Ω

∂̄(ψγ(f))(ζ)K̃n−1
0 (z, ζ)

= Cn

∫
V

znf(ζ)dζ̄n ∧ T n−1(z, ζ)dVn−1

= Cn

∫
V

znf(ζ)dζ̄n ∧
1

(< Q1, z − ζ > +1)N+n−1 (∂̄Q
1)n−1

× s

< s, ζ − z >dVn−1. �

The following theorem was proved in 3.3 in more general situation.
However, we prove theorem 4.13 using the integral formula in Theorem
4.12.

Theorem 4.13 Let Ω ⊂⊂ Cn be a strictly convex domain with C∞

boundary and let X = {z ∈ Cn | zn = 0}, V = Ω ∩ X. Then every
bounded holomorphic function in V can be extended to a bounded holomor-
phic function in Ω.
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Proof. Let f be a bounded holomorphic function in V . It is sufficient to
show that supz∈∂Ω\X |Ef(z)| ≤ C‖f‖∞ (see the proof of Theorem 3.15).
By Theorem 4.12, if z ∈ ∂Ω\X , then we have

Ef(z) = Cn

∫
V

znf(ζ)dζ̄n ∧
ρ(ζ)N+n−1

(−Φ(z, ζ) + ρ(ζ))N+n−1 (∂̄Q
1)n−1

×
∑n

j=1
∂ρ
∂ζj

(z)dζj
Φ(ζ, z)

dVn−1.

Taking into account that

(∂̄Q1)n−1 =
(
∂̄

(
∂ρ

ρ

))n−1
=

(∂̄∂ρ)n−1

ρn−1
− (n− 1)

(∂̄∂ρ)n−2 ∧ ∂ρ ∧ ∂̄ρ
ρn

and

∂ρ(ζ) ∧ ∂̄ρ(ζ) ∧ ∂ρ(z) = (∂ρ(ζ)− ∂ρ(z)) ∧ ∂̄ρ(ζ) ∧ ∂ρ(z) = O(|ζ − z|),

it is sufficient to estimate the following two integrals:

I1 =
∫
V

|ζ − z|
(|ρ(ζ)|+ |Φ(z, ζ)|)n|Φ(ζ, z)|dVn−1(ζ)

and

I2 =
∫
V

1
(|ρ(ζ)|+ |Φ(z, ζ)|)n−1|Φ(ζ, z)|dVn−1(ζ).

By Lemma 3.43 we have

Φ(ζ, z) = Φ(z, ζ)− ρ(ζ) +O(|ζ − z|3).

It follows from (4.40) that

I1 ≤ C
∫
V

dVn−1
(|ρ(ζ)| + |ImΦ(z, ζ)|+ |ζ − z|2)3|ζ − z|2n−5 .

We choose a coordinate system t1, t2, · · · , t2n−2 such that t1 = ρ(ζ)− ρ(z),
t2 = ImΦ(z, ζ) and |t| ≈ |ζ− z|. We set t′ = (t3, · · · , t2n−2). Then we have

I1 ≤ C
∫
|t|≤R

dt

(|t1|+ |t2|+ |zn|2 + |t′|2)3|t′|2n−5

≤ C
∫
|t′|<R

dt3 · · ·dt2n−2
(|zn|2 + |t′|2)|t′|2n−5

≤ C
∫ R

0

dr

|zn|2 + r2
≤ C

|zn|
.
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Similarly we have I2 ≤ C/|zn|. �

The following theorem was proved by Diederich-Mazzilli [DIM2]. We
omit the proof.

Theorem 4.14 Let Ω be a smooth convex domain of finite type m and
X a complex affine linear subspace of Cn with V = Ω ∩X. Then there is
a bounded linear extension operator E : H∞(V ) → H∞(Ω), where H∞(·)
denotes the Banach space of bounded holomorphic functions in the corre-
sponding domain.

Exercises

4.1 We define the n dimensional polar coordinate transformation

Φn : (r, θ1, · · · , θn−1)→ (x1, · · · , xn)

by

x1 = r sin θ1 sin θ2 · · · sin θn−3 sin θn−2 sin θn−1
x2 = r sin θ1 sin θ2 · · · sin θn−3 sin θn−2 cos θn−1

· · ·
xn−1 = r sin θ1 cos θ2
xn = r cos θ1

(r ≥ 0, 0 ≤ θk ≤ π (1 ≤ k ≤ n− 2), 0 ≤ θn−1 ≤ 2π).

Show that the Jacobian Jn of Φn is given by

Jn = ±rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin2 θn−3 sin θn−2.

4.2 Let R be a positive constant and j a nonnegative integer. For A > 0,
q ≥ 1 and z = x+ iy, prove that∫

|z|<R

|z + w|jdxdy
(A+ |z + w|j |z|2)q =

{
O(A1−q) (q > 1)
O(logA) (q = 1).

4.3 Let Ω be a complex ellipsoid in Cn, that is, Ω is given by

Ω = {z ∈ Cn | ρ(z) < 0}, ρ(z) =
n∑

j=1

|zi|2mj − 1.
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We set

M = max{2mj}, α =
1
M
.

Show that for f ∈ C1(0,q)(Ω), 1 ≤ q ≤ n, with ∂̄f = 0, there exists
u ∈ Λα,(0,q−1)(Ω) such that ∂̄u = f .

4.4 Let p be a positive integer.

(1) Prove that for every t, τ ∈ R

2pτ2p−1(t− τ) + τ2p ≤ t2p.

(2) Prove that there exists δ > 0 such that for t, τ ∈ R

t2p − τ2p − 2pτ2p−1(t− τ) ≥ δ{τ2p−2(t− τ)2 + (t− τ)2p}

4.5 Letm be a positive integer. For σ > 0, define Γσ = {z = x+iy | |y| <
σ|x|}. Prove that there exist σ > 0 and ε > 0 such that

Re(z2m) ≥ ε|z|2m

on Γσ.

4.6 Prove the following:
(a) For q ≥ 1, l = 0 or 1, j = l , l + 1, · · · , and A positive close to 0∫

|z|<R

|t+ x|j−l |x|ldxdy
(A+ |t+ x|j(x2 + y2))q

=
{
O(A1−q) (q > 1)
O(logA) (q = 1)

,

independent of t ∈ (−R,R).
(b) For q ≥ 1, j ≥ 1, and A positive, close to 0∫

|z|<R

|t+ x|j−1|y|dxdy
(A+ |t+ x|jr2 + rj+2)q

=
{
O(A1−q) (q > 1)
O(logA) (q = 1)

,

independent of t ∈ (−R,R).

4.7 For zk = xk + iyk (k = 1, · · · , N), define

ρ(z) =
N∑

k=1

{
x2nk

k + y2mk

k

}
− 1, Ω = {z ∈ Cn | ρ(z) < 0},

where nk and mk are positive integers with mk ≤ nk. For ζ = ξ+ iη ∈
∂Ω, z ∈ Ω and γ > 0, define

Pj(z, ζ) =
∂ρ

∂zj
(ζ) − γ[(η2mj−2

j − ξ2nj−2
j )(zj − ζj) + (zj − ζj)2mj−1]
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and

Φ(z, ζ) =
N∑
j=1

Pj(z, ζ)(zj − ζj).

Prove the following (1) and (2).

(1) If we choose γ > 0 sufficiently small, then there exists ε > 0 such
that

2ReΦ(z, ζ) ≤ ρ(z)− ε
N∑
k=1

{(ξ2nk−2
k + η2mk−2

k )|zk − ζk|2

+|zk − ζk|2mk}

for (z, ζ) ∈ Ω× ∂Ω.
(2) Let q = maxj min{2nj, 2mj}. Then there exists a constant C > 0

such that for every bounded, ∂̄ closed (0, 1) form f on Ω, there
exists a 1/q-Hölder continuous function u in Ω such that ∂̄u = f (in
the sense of distributions) and ‖u‖1/q ≤ C‖f‖0,Ω. (See Diederich-
Fornaess-Wiegerinck [DIK]).
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Chapter 5

The Classical Theory in Several
Complex Variables

In this chapter we first prove the Poincaré theorem, and then we investigate
the Weierstrass preparation theorem, the properties of the coherent analytic
sheaf and the Cousin problem. Some of theorems in Chapter 5 were used
to prove the theorems in the previous chapters.

5.1 The Poincaré Theorem

In this section we study the Poincaré theorem which says that there is no
biholomorphic mapping from a ball to a polydisc in Cn (n ≥ 2). Here we
give the proof due to Krantz [KR3].

Definition 5.1 Let B be the unit disc in the complex plane. Let Ω be a
domain in C or C2. For P ∈ Ω, define

(B,Ω)P := {f : Ω→ B | f is holomorphic, f(P ) = 0}

and

(Ω, B)P := {f : B → Ω | f is holomorphic, f(0) = P}.

Moreover, we define for Ω ⊂ C2 and f ∈ (B,Ω)P

JacCf(P ) =
(
∂f

∂z1
(P ),

∂f

∂z2
(P )
)
.

Definition 5.2 (a) For P ∈ Ω ⊂ C2, ξ ∈ C2, we define the Carathéodory
metric FΩC (P, ξ) of ξ at P by

FΩC (P, ξ) = sup{|JacCf(P )ξ| | f ∈ (B,Ω)P }.

291
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(b) For P ∈ Ω ⊂ C, ξ ∈ C, we define the Carathéodory metric FΩC (P, ξ)
of ξ at P by

FΩC (P, ξ) = sup{|f ′(P )ξ| | f ∈ (B,Ω)P }.

Definition 5.3 (a) Let Ω ⊂ C2 be a domain. For P ∈ Ω, ξ ∈ C2, we
define the Kobayashi metric FΩK(P, ξ) of ξ at P by

FΩK(P, ξ)

= inf
{
|ξ|
|g′(0)| | g ∈ (Ω, B)P , there exists λ such that g′(0) = λ

}
.

(b) Let Ω ⊂ C be a domain. For P ∈ Ω, ξ ∈ C, we define the Kobayashi
metric FΩK(P, ξ) of ξ at P by

FΩK(P, ξ) = inf
{
|ξ|
|g′(0)| | g ∈ (Ω, B)P

}
.

Theorem 5.1 Let Ω1 ⊂ C2 and Ω2 ⊂ Cn, 1 ≤ n ≤ 2, be domains and
let f : Ω1 → Ω2 be a holomorphic mapping. For P ∈ Ω1 and ξ ∈ C2, define

f∗(P )ξ = JacCf(P )ξ.

Then we have

FΩ1
C (P, ξ) ≥ FΩ2

C (f(P ), f∗(P )ξ) (5.1)

and

FΩ1
K (P, ξ) ≥ FΩ2

K (f(P ), f∗(P )ξ). (5.2)

Proof. Let n = 2. Let ϕ ∈ (B,Ω2)f(P ). Then ϕ ◦ f ∈ (B,Ω1)P . We
obtain

FΩ1
C (P, ξ) ≥ JacC(ϕ ◦ f)(P )ξ

=
∣∣∣∣(∂(ϕ ◦ f)∂z1

(P ),
∂(ϕ ◦ f)
∂z2

(P )
)(

ξ1
ξ2

)∣∣∣∣
=
∣∣∣∣( ∂ϕ∂w1 (f(P )),

∂ϕ

∂w2
(f(P ))

)
f∗(P )ξ

∣∣∣∣
= |JacCϕ(f(P ))f∗(P )ξ| .

Since ϕ ∈ (B,Ω2)f(P ) is arbitrary, we have (5.1). When n = 1 we can
prove (5.1) similarly. Next we prove (5.2). Let n = 2. Let g ∈ (Ω1, B)P
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and g′(0) = λξ. Then f ◦ g ∈ (Ω2, B)f(P ). We set g = (g1, g2). Then we
have

(f ◦ g)′(0)

=
(
∂f1
∂z1

(P )g′1(0) +
∂f1
∂z2

(P )g′2(0),
∂f2
∂z1

(P )g′1(0) +
∂f2
∂z2

(P )g′2(0)
)

= λf∗(P )ξ.

Consequently,

FΩ2
K (f(P ), f∗(P )ξ) =

{
|f∗(P )ξ|
|h′(0)| | h ∈ (Ω2, B)f(P ), h′(0) = µf∗(P )ξ

}
≤ |f∗(P )ξ|
|(f ◦ g)′(0)| =

1
|λ| =

|ξ|
|g′(0)| .

Since g is arbitrary, we have (5.2). When n = 1, we can prove (5.2) in the
same way. �

Corollary 5.1 Let Ω1 and Ω2 be domains in C2 and let f : Ω1 → Ω2 be
a biholomorphic mapping. Then

FΩ1
C (P, ξ) = FΩ2

C (f(P ), f∗(P )ξ)

and

FΩ1
K (P, ξ) = FΩ2

K (f(P ), f∗(P )ξ)

for P ∈ Ω1 and ξ ∈ C2.

Proof. For f−1 : Ω2 → Ω1, f(P ) ∈ Ω2 and η ∈ C2, we apply Theorem
5.1. Then we have

FΩ2
C (f(P ), η) ≥ FΩ1

C (f−1(f(P )), (f−1)∗(f(P ))η)

and

FΩ2
K (f(P ), η) ≥ FΩ1

K (f−1(f(P )), (f−1)∗(f(P ))η).

If we set η = f∗(P )ξ, then we have

FΩ2
C (f(P ), f∗(P )ξ) ≥ FΩ1

C (P, ξ)

and

FΩ2
K (f(P ), f∗(P )ξ) ≥ FΩ1

K (P, ξ).

Together with (5.1) and (5.2) we have the desired equalities. �
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Definition 5.4 Let Ω ⊂ C2 be a domain. We define the length of a
C1 curve γ : [a, b] → Ω with respect to the Carathéodory metric and the
Kobayashi metric by

lC(γ) =
∫ b

a

FΩC (γ(t), γ′(t))dt

and

lK(γ) =
∫ b

a

FΩK(γ(t), γ′(t))dt,

respectively.

Corollary 5.2 Let f : Ω1 → Ω2 be a holomorphic mapping. Then

lC(f ◦ γ) ≤ lC(γ), lK(f ◦ γ) ≤ lK(γ)

for every C1 curve γ : [a, b]→ Ω1.

Proof. Let f = (f1, f2). Then we have

(f ◦ γ)′(t) = ((f1 ◦ γ)′(t), (f2 ◦ γ)′(t)) = f∗(γ(t))γ′(t).

By Theorem 5.1 we obtain

lK(f ◦ γ) =
∫ b

a

FΩ2
K (f ◦ γ(t), (f ◦ γ)′(t))dt

=
∫ b

a

FΩ2
K (f(γ(t)), f∗(γ(t))γ′(t)dt

≤
∫ b

a

FΩ1
K (γ(t), γ′(t))dt = lK(γ).

We can prove lC(f ◦ γ) ≤ lC(γ) similarly. �

Definition 5.5 Let Ω ⊂ C2 be a domain. For P ∈ Ω, define

iCP (Ω) = {ξ ∈ C2 | FΩC (P, ξ) < 1}

and

iKP (Ω) = {η ∈ C2 | FΩK(P, η) < 1}.

Theorem 5.2 Let Ω1 and Ω2 be domains in C2 and let f : Ω1 → Ω2
be a biholomorphic mapping. For P ∈ Ω1, we set Q = f(P ). Then linear
mappings

JacCf(P ) : iCP (Ω1)→ iCQ(Ω2)
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and

JacCf(P ) : iKP (Ω1)→ iKQ (Ω2)

are bijective.

Proof. We set g(ξ) = JacCf(P )ξ. It follows from Corollary 5.1 that for
ξ ∈ iCP (Ω1)

FΩ2
C (Q, g(ξ)) = FΩ2

C (f(P ), f∗(P )ξ) = FΩ1
C (P, ξ) < 1,

which implies that g(ξ) ∈ iCQ(Ω2). Clearly g is linear. For η ∈ iCQ(Ω2) we
set h(η) = JacCf−1(Q)η. Then we have

FΩ1
C (P, h(η)) = FΩ1

C (f−1(Q), JacCf−1(Q)η) = FΩ2
C (Q, η) < 1,

which means that h(η) ∈ iCP (Ω1). Differentiating f ◦ f−1(w) = w with
respect to w1 and w2, we have JacCf(P )JacCf−1(Q) = E (E is the unit
matrix). Similarly, we have JacCf−1(Q)JacCf(P ) = E. Consequently, we
have g ◦ h(η) = η, h ◦ g(ξ) = ξ. Hence g : iCP (Ω1) → iCQ(Ω2) is bijective.
Similarly, JacCf(P ) : iKP (Ω1)→ iKQ (Ω2) is bijective. �

Lemma 5.1 Let a and b be complex numbers such that

|az1 + bz2| ≤ 1

for any complex numbers z1, z2 with |z1|2 + |z2|2 = 1. Then

|a|2 + |b|2 ≤ 1.

Proof. Let a = r1e
iθ1 , b = r2e

iθ2 . For z1 = t1e
−iθ1 , z2 = t2e

−iθ2 with
t21 + t22 = 1, we set t1 = cos θ, t2 = sin θ. Then we have

1 ≥ |az1 + bz2| = t1r1 + t2r2 = r1 cos θ + r2 sin θ

= (r21 + r22)
(

r1
r21 + r22

cos θ +
r2

r21 + r22
sin θ

)
= (r21 + r22) sin(θ + α).

We can choose t1 and t2 in such a way that θ + α = π
2 , which means that

r21 + r22 ≤ 1. �

Theorem 5.3 Let B(0, 1) = {z ∈ C2 | |z| < 1}. Then iK0 (B(0, 1)) =
B(0, 1).
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Proof. Let B = {z ∈ C | |z| < 1} and let ϕ ∈ (B(0, 1), B)0. For η ∈ C2
with |η| = 1, define

h(ζ) = ϕ(ζ) · η (ζ ∈ B).

Then h : B → B satisfies ϕ(0) = 0. It follows from the Schwarz lemma
that

|h′(0)| ≤ 1.

Since η is arbitrary so far as |η| = 1, it follows from Lemma 5.1 that
|ϕ′(0)| ≤ 1. Consequently,

F
B(0,1)
K (0, ξ) = inf

{
|ξ|

|ϕ′(0)| | ϕ ∈ (B(0, 1), B)0

}
≥ |ξ|.

for every ξ ∈ C2. On the other hand, for ξ �= 0 we set

ϕ0(ζ) =
ζ

|ξ|ξ (ζ ∈ B).

Then ϕ0 ∈ (B(0, 1), B)0, which implies that

F
B(0,1)
K (0, ξ) ≤ |ξ|

|ϕ′0(0)|
= |ξ|.

Hence we have FB(0,1)
K (0, ξ) = |ξ|, and hence iK0 (B(0, 1)) = B(0, 1). �

Theorem 5.4 Define P (0, 1) = {z ∈ C2 | |z1| < 1, |z2| < 1}. Then

iK0 (P (0, 1)) = P (0, 1).

Proof. Define mappings π1 : P (0, 1)→ B and π2 : P (0, 1)→ B by

π1(z1, z2) = z1, π2(z1, z2) = z2.

For η = (η1, η2) ∈ C2, it follows from Theorem 5.1 that

F
P (0,1)
K (0, η) ≥ FB

K (π1(0), (π1)∗η) = FB
K (0, η1).

By the Schwarz lemma, for a holomorphic mapping ϕ : B → B with ϕ(0) =
0, we have |ϕ′(0)| ≤ 1. Moreover, if we define ϕ0 : B → B by ϕ0(ζ) = ζ,
then we have ϕ′(0) = 1. Hence we have

FB
K (0, η1) =

{
|η1|
|ϕ′(0)| | ϕ ∈ (B,B)0

}
= |η1|.
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Consequently,

F
P (0,1)
K (0, η) ≥ |η1|

and

F
P (0,1)
K (0, η) ≥ |η2|.

Therefore we obtain

F
P (0,1)
K (0, η) ≥ max{|η1|, |η2|},

which means that iK0 (P (0, 1)) ⊂ P (0, 1). Next, for 0 �= η ∈ C2, we set

ψ(ζ) =
(

ζη1
max{|η1|, |η2|}

,
ζη2

max{|η1|, |η2|}

)
.

Then ψ ∈ (P (0, 1), B)0 and we have ψ′(0) = µη (µ > 0). Consequently,

F
P (0,1)
K (0, η) ≤ |η|

|ψ′(0)| = max{|η1|, |η2|},

which means that iK0 (P (0, 1)) ⊃ P (0, 1). �

Theorem 5.5 (Poincaré theorem) There is no biholomorphic mapping
from the unit polydisc P (0, 1) in C2 onto the unit ball B(0, 1) in C2.

Proof. Suppose there is a biholomorphic mapping Φ : P (0, 1)→ B(0, 1).
We set Φ−1(0) = α. Then α ∈ P (0, 1). Let α = (α1, α2). Then α1 ∈ B,
α2 ∈ B. For z ∈ B, we set

ϕ1(z) =
z − α1
1− ᾱ1z

, ϕ2(z) =
z − α2
1− ᾱ2z

and

ϕ(ζ) = (ϕ1(ζ1), ϕ2(ζ2)).

Then ϕ : P (0, 1) → P (0, 1) is holomorphic and bijective. Further we have
ϕ(α) = 0. Define g = Φ ◦ϕ−1. Then g : P (0, 1)→ B(0, 1) is biholomorphic
and g(0) = 0. Next we show that g does not exist. By Theorem 5.2,
JacCg(0) is a bijective linear mapping from iK0 (P (0, 1)) onto iK0 (P (0, 1)).
By Theorem 5.3 and Theorem 5.4, JacCg(0) is a bijective linear mapping
from P (0, 1) ontoB(0, 1). We set h = JacCg(0). Since h : P (0, 1)→ B(0, 1)
is biholomorphic, h maps ∂P (0, 1) to ∂B(0, 1). Therefore a segment A =
{(t, 1) | 0 ≤ t ≤ 1} ⊂ ∂P (0, 1) is mapped by h to ∂B(0, 1). Since h is
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linear, h(A) is also a segment. Since B is strictly convex, ∂B(0, 1) cannot

contain a segment (see Lemma 3.12), which is a contradiction. Hence a

biholomorphic mapping Φ does not exist. �

5.2 The Weierstrass Preparation Theorem

We prove the Weierstrass preparation theorem using the Cauchy integral

formula. Further we prove the implicit function theorem for holomorphic

functions.

Definition 5.6 Let f be a holomorphic function in a neighborhood of

a ∈ Cn, and let f(a) = 0. We set a = (a′, an). We say that f is regular

of order k in zn at the point a if f(a′, zn), considered as a holomorphic

function of the single variable zn, has a zero of order k at the point zn = an.

Equivalently, the condition can be stated as follows:

g(an) = g′(an) = · · · = g(k−1)(an) = 0, g(k)(an) 6= 0,

where g(zn) = f(a′, zn).

Lemma 5.2 Let f be a holomorphic function in B(a, ε) and let f(a) = 0,

f(z) 6≡ 0. Then after a suitable complex linear change of coordinates in Cn,

the function will be regular of order k, k ≥ 1, in zn at the point a.

Proof. There exists p ∈ B(a, ε), p 6= a, such that f(p) 6= 0. There exist

constants bij such that the linear change of coordinates

zi = (pi − ai)(ζn − an) +
n−1∑
j=1

bij(ζj − aj) + ai (i = 1, · · · , n)

is nonsingular. We set g(ζ) = f(z(ζ)). Then

g(a1, · · · , an−1, 1 + an) = f(p1, · · · , pn) 6= 0,

g(a1, · · · , an−1, an) = f(a1, · · · , an) = 0.

we set h(ζn) = g(a1, · · · , an−1, ζn). Then by the identity theorem, h(ζn)

has a zero of order k at the point ζn = an for some positive integer k. Hence

g is regular of order k in ζn at a. �

Lemma 5.3 Let f be a holomorphic function in a neighborhood of 0 and

let f(0) = 0. Let f be regular of order k in zn at 0, k ≥ 1. Then for

each sufficiently small δn > 0 there is δ′ = (δ1, · · · , δn−1), such that for
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each fixed z′ ∈ P (0′, δ′), the equation f(z′, zn) = 0 has precisely k solutions
(counted with multiplicities) in the disc {|zn| < δn}.

Proof. We set g(zn) = f(0′, zn). By the assumption g(zn) has a zero of
order k at the point 0. Since the zero set of any non-constant holomorphic
function in one variable is discrete, there exists δn > 0 such that g(zn)
is holomorphic and nowhere vanishing in {0 < |zn| ≤ δn}. We set m =
min|zn|=δn

|g(zn)|. If we choose δ′ = (δ1, · · · , δn−1) sufficiently small, then
for z′ ∈ P (0′, δ′), |zn| ≤ δn, using the uniform continuity we have

|f(0′, zn)− f(z′, zn)| < m.

Hence for |zn| = δn we obtain

|g(zn)| ≥ m > |g(zn)− f(z′, zn)|.

By the Rouché theorem, the number of zeros of g(zn) in {|zn| < δn} count-
ing multiplicities equals the number of zeros of f(z′, zn) in {|zn| < δn}
counting multiplicities. Since g(zn) has a zero of order k in 0 and does not
vanish except 0, f(z′, zn) has k zeros in {|zn| < δn}. �

Let f be a holomorphic function in a neighborhood of 0 ∈ Cn and let
f(0) = 0. Suppose f is regular of order k in zn (k ≥ 1) at 0. By Lemma
5.3, there exists δ = (δ1, · · · , δn) such that for any z′ ∈ P (0′, δ′) f(z′, ·) has
k zeros ϕ1(z′), · · · , ϕk(z′) in {|zn| < δn} counting multiplicities. We set

ω(z′, zn) = (zn−ϕ1(z′)) · · · (zn−ϕk(z′)) = zkn+ak−1(z′)zk−1n + · · ·+a0(z′).

Then the number of zeros of f(z′, ·) in {|zn| < δn} counting multiplicities
equals the number of zeros of ω(z′, ·) in {|zn| < δn} counting multiplicities.
Hence there exists a nonvanishing function u in P (0, δ) such that f = ωu.
The Weierstrass preparation theorem says that we can choose ω and u to
be holomorphic. Moreover, since |ϕj(z′)| < δn, we have ω(z′, zn) �= 0 for
z′ ∈ P (0′, δ′), |zn| = δn.

Definition 5.7 A function

ω(z′.zn) = zkn + ak−1(z′)zk−1n + · · ·+ a0(z′)

is called a Weierstrass polynomial at 0 if aj(z′) for j = 0, · · · , k−1 are holo-
morphic in a neighborhood of 0′ and satisfies aj(0′) = 0 for j = 0, · · · , k−1.

Theorem 5.6 (Weierstrass preparation theorem) Let f be a holo-
morphic function in a neighborhood of 0 ∈ Cn and let f(0) = 0. Suppose f



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

300 Several Complex Variables and Integral Formulas

is regular of order k, k ≥ 1, in zn at 0. Then there exists δ = (δ1, · · · , δn)
such that for z ∈ P (0, δ) we have a unique factorization

f(z) = ω(z)u(z),

where ω(z) = zkn + ak−1(z′)zk−1n + · · ·+ a0(z′) is a Weierstrass polynomial
at 0 and u is a nowhere vanishing holomorphic function in P (0, δ).

Proof. The uniqueness is obvious. By Lemma 5.3 there exist δ = (δ′, δn)
such that for any fixed z′ ∈ P (0, δ′), f(z′, ·) has k zeros ϕ1(z′), · · · , ϕk(z′)
in {|zn| < δn}. By the argument principle, we have for z′ ∈ P (0, δ′)

Sm(z′) ≡
k∑

j=1

ϕm
j (z′) =

1
2πi

∫
|ζ|=δn

ζm ∂f
∂ζ (z′, ζ)

f(z′, ζ)
dζ.

Hence Sm(z′) is holomorphic as a function in z′. Moreover, a0, · · · , ak are
holomorphic since they are polynomials of S0, · · · , Sk−1. Since f(0′, zn) =
zkng(zn) and g(0) �= 0, we have ϕ1(0′) = · · · = ϕk(0′) = 0. Hence a0(0′) =
· · · = ak−1(0′) = 0, which means that ω(z) = zkn + ak−1(z′)zk−1n + · · · +
a0(z′) is a Weierstrass polynomial at 0. We set u = f/ω. Since u(z′, ·) is
holomorphic in {|zn| ≤ δn} for fixed z′, we obtain

u(z′, zn) =
1

2πi

∫
|ζ|=δn

(f/ω)(z′, ζ)
ζ − zn

dζ.

Since ω(z′, zn) �= 0 for |zn| = δn, u is holomorphic in P (0, δ). �

Theorem 5.7 (Weierstrass division theorem) Let ω be a Weierstrass
polynomial of degree k at 0, and let f be holomorphic in a neighborhood of
0 ∈ Cn. Then there is a unique factorization in some sufficiently small
neighborhood of 0

f = ωq + r,

where q and r are holomorphic in a neighborhood of 0 and r is a polynomial
in zn of degree less than k with coefficients that are holomorphic functions
of z1, · · · , zn−1.

Proof. As we mentioned in the remark before Theorem 5.6, there exists
δ = (δ1, · · · , δn) = (δ′, δn) such that if z′ ∈ P (0′, δ′), |zn| = δn, then
ω(z′, zn) �= 0. We set

q(z′, zn) =
1

2πi

∫
|ζ|=δn

f(z′, ζ)
ω(z′, ζ)(ζ − zn)

dζ.
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Then q is holomorphic in P (0, δ). Define

r = f − qω.

Then r is holomorphic in P (0, δ). Consequently, we have

r(z) =
1

2πi

∫
|ζ|=δn

{
f(z′, ζ)− ω(z′, zn)

f(z′, ζ)
ω(z′, ζ)

}
dζ

ζ − zn

=
1

2πi

∫
|ζ|=δn

f(z′, ζ)
ω(z′, ζ)

(
ω(z′, ζ)− ω(z′, zn)

ζ − zn

)
dζ.

Taking into account that

ω(z′, ζ)− ω(z′, zn)
ζ − zn

=
(ζk − zkn) +

∑k−1
j=0 aj(z

′)(ζj − zjn)
ζ − zn

,

r is a polynomial in zn of degree less than k. Next we show the uniqueness.
Suppose we have two factorizations

q1ω + r1 = q2ω + r2 = f.

In the equation

r1 − r2 = (q2 − q1)ω,

the left side is a polynomial in zn of degree less than k and the right side
has k zeros in zn, which means that r1 ≡ r2. Hence we have q1 = q2. �

Theorem 5.8 Let f be a holomorphic function in a polydisc P (w, r) ⊂
Cn with the following properties:

(a) f(w) = 0.
(b) ∂f

∂zn
(w) = 1.

Let w = (w′, wn). Then there exist δ = (δ1, · · · , δn) = (δ′, δn) and a
holomorphic function ϕ(z1, · · · , zn−1) in a polydisc P (w′, δ′) such that in
P (w, δ), f(z1, · · · , zn) = 0 is equivalent to zn = ϕ(z1, · · · , zn−1).

Proof. We set

f = u+ iv, zj = xj + ixn+j (j = 1, · · · , n),

x = (x1, · · · , x2n), x′ = (x1, · · · , xn−1, xn+1, · · · , x2n).
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Then by the Cauchy-Riemann equations we have∣∣∣∣ ∂f∂zn (w)

∣∣∣∣2 =

∣∣∣∣ ∂(u, v)

∂(xn, x2n)
(w)

∣∣∣∣ .
By the implicit function theorem in real variables, there exist C∞ functions

g(x′), h(x′) in a neighborhood of w′ such that u(x) = 0, v(x) = 0 are

equivalent to xn = g(x′), x2n = h(x′). We set ϕ(z′) = g(x′) + ih(x′). Then

in a neighborhood of w, f(z) = 0 is equivalent to zn = ϕ(z′), which implies

that f(z1, · · · , zn−1, ϕ(z′)) = 0. By the condition (b) and Lemma 5.3, there

exists δ = (δ1, · · · , δn) such that for z′ = (z1, · · · , zn−1) ∈ P (w′, δ′), f(z′, ·)
has only zero ϕ(z′) of order 1 in |wn−zn| < δn. By the argument principle,

we have

ϕ(z′) =
1

2πi

∫
|ζn−wn|=δn

ζn
∂f(z′,ζn)
∂ζn

f(z′, ζn)
dζn.

Therefore ϕ(z′) is holomorphic in P (w′, δ′). �

Next we prove the implicit function theorem for holomorphic functions.

Theorem 5.9 (Implicit function theorem) Let 1 ≤ k ≤ n. Let fk+1,

· · · , fn be holomorphic functions in a polydisc P (w, r) ⊂ Cn satisfying the

following properties:

(a) fj(w) = 0 (j = k + 1, · · · , n).

(b)
∂fj

∂zi
(w) = δji (i, j = k + 1, · · · , n).

Let w = (w′′, wk+1, · · · , wn). Then there exist δ = (δ′′, δk+1, · · · , δn) and

holomorphic functions ϕj(z1, · · · , zk) for j = k + 1, · · · , n in a polydisc

P (w′′, δ′′) such that in a neighborhood of w, equations fj(z1, · · · , zn) = 0

for j = k + 1, · · · , n are equivalent to equations zj = ϕj(z1, · · · , zk) for

j = k + 1, · · · , n.

Proof. We prove Theorem 5.9 by induction on m = n − k. In case

m = 1, Theorem 5.9 follows from Theorem 5.8. Assume that Theorem 5.9

has already been proved for m− 1. Suppose fk+1, · · · , fn are holomorphic

in P (w, r) and satisfy conditions (a) and (b). We set z = (z′, zn), w =

(w′, wn). We apply Theorem 5.8 to fn(z). Then there exist η = (η′, ηn)

and a holomorphic function ϕ(z′) in P (w′, η′) such that in P (w, η), an

equation f(z′, zn) = 0 is equivalent to zn = ϕ(z′). We set

gj(z
′) = fj(z

′, ϕ(z′)) (j = k + 1, · · · , n− 1).
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Then fj(z) = 0, j = k + 1, · · · , n, are equivalent to

gj(z
′) = 0 (j = k + 1, · · · , n− 1),

zn = ϕ(z′).

Consequently, we have gj(w
′) = 0, j = k+ 1, · · · , n− 1. For i = k+ 1, · · · ,

n− 1 we have

∂gj
∂zi

(w′) =
∂fj
∂zi

(w) +
∂fj
∂zn

(w)
∂ϕ

∂zi
(w′) = δji .

By the inductive hypothesis, there are δ′ = (δ′′, δk+1, · · · , δn−1) and holo-

morphic functions ϕk+1(z
′′), · · · , ϕn−1(z

′′) in P (w′′, δ′′) such that equa-

tions gj(z
′) = 0, j = k + 1, · · · , n − 1, are equivalent to equations

zj = ϕj(z
′′), j = k + 1, · · · , n− 1 in P (w′, δ′). We set

ϕn(z′′) = ϕ(z′′, ϕk+1(z
′′), · · · , ϕn−1(z

′′)).

Then equations fj(z) = 0, j = k + 1, · · · , n, are equivalent to equations

zj = ϕj(z
′′), j = k + 1, · · · , n. �

Definition 5.8 Let Ω be a domain in Cn, and let F = (f1, · · · , fm) :

Ω → Cm be a holomorphic mapping. Define

F ′(z) =

(
∂fi
∂zj

(z)

)
.

F ′(z) is called the Jacobian matrix of F at z ∈ Ω. We say that F is

nonsingular at z if the rank of F ′(z) equals min(m,n).

Theorem 5.10 Let Ω ⊂ Cn be a domain with 0 ∈ Ω. Let n ≥ m. Sup-

pose F : Ω → Cm is a nonsingular holomorphic mapping and F (0) = 0.

Then there exist a linear change of variables wi =
∑n

j=1 aijzj for i =

1, . . . , n, δ = (δ′, δn−m+1, · · · , δn) where δ′ = (δ1, · · · , δn−m) and holomor-

phic functions ϕj(w1, · · · , wn−m) for j = n−m+ 1, · · · , n in P (0.δ′) such

that in P (0, δ), equations F (w1, · · · , wn) = 0 are equivalent to equations

wj = ϕj(w1, · · · , wn−m), j = n−m+ 1, · · · , n.

Proof. Let F = (fn−m+1, · · · , fn). By the hypothesis there exist an

(m×m) matrix B and an (n× n) matrix A such that

BF ′(0)A−1 = (0, I),
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where I is an (m×m) unit matrix. We set

B = (bij) (n−m+ 1 ≤ i, j ≤ n),

A = (aij), A−1 = (a′ij) (1 ≤ i, j ≤ n),

gi =
n∑

j=n−m+1

bijfj (i = n−m+ 1, · · · , n),

wi =
n∑

j=1

aijzj (i = 1, · · · , n).

Further we set G = (gn−m+1, · · · , gn). Then F (z) = 0 is equivalent to
G(z) = 0. Taking into account that

∂gi
∂wj

=
n∑

k=n−m+1

bik
∂fk
∂wj

=
n∑

k=n−m+1

bik

n∑
s=1

∂fk
∂zs

a′sj ,

we obtain

∂gi
∂wj

(0) = δij .

Theorem 5.10 follows from Theorem 5.9. �

Corollary 5.3 (Inverse mapping theorem) Let F be a nonsingular
holomorphic mapping from a neighborhood of z ∈ Cn into Cn and let
F (z) = w. Then there exist a neighborhood U (U ⊂ W ) of z and a neigh-
borhood V of w such that F : U → V has the holomorphic inverse mapping
F−1 : V → U .

Proof. We assume that z = w = 0. We denote by J(0) the Jacobian
matrix of F at 0. Without loss of generality we may assume that J(0) is
the unit matrix. We set H(z, w) = w − F (z). By Theorem 5.10, there
exist ε > 0, a polydisc P (0, ε) in Cn and a holomorphic mapping G in
P (0, ε) such that the equation H(z, w) = 0 is equivalent to the equation
z = G(w). Therefore we have w = F ◦G(w), z = G ◦ F (z), which implies
that G = F−1. �

Theorem 5.11 Let Ω ⊂ Cn be an open set. If a holomorphic mapping
F : Ω→ Cn is injective, then detF ′(z) �= 0 for z ∈ Ω.
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Proof. We prove Theorem 5.11 by induction on n. When n = 1, Theorem
5.11 is true. Assume that Theorem 5.11 has already been proved for n− 1.

Now we prove the following lemma:

Lemma 5.4 Let Ω ⊂ Cn be an open set. Suppose a holomorphic mapping
F : Ω→ Cn is injective. If F ′(a) �= 0 for a ∈ Ω, then detF ′(a) �= 0.

Proof of Lemma 5.4 Without loss of generality, we may assume that
F = (f1, · · · , fn), ∂fn

∂zn
(a) �= 0. We set w(z) = (z1, · · · , zn−1, fn(z)). Then

det
(
∂wk

∂zj

)
(a) �= 0. By Corollary 5.3, w−1 is a holomorphic mapping in a

neighborhood of a. We set F̃ = F ◦ w−1. Then we have

F̃ (w) = (g1(w), · · · , gn−1(w), wn),

where g1, · · · , gn−1 are holomorphic at b = w(a). Set w′ = (w1, · · · , wn−1)
and G(w′) = (g1(w′, bn), · · · , gn−1(w′, bn)). Then G is injective in a
neighborhood of b′ = (b1, · · · , bn−1). By the inductive hypothesis, we
have detG′(b′) �= 0, which implies that detF̃ ′(b) �= 0. Hence we have
detF ′(a) �= 0, which completes the proof of Lemma 5.4.

We continue the proof of Theorem 5.11. We set h = detF ′ ∈ O(Ω).
Suppose Z(h) = {z ∈ Ω | h(z) = 0} �= φ. Then Z(h) contains a n − 1
dimensional submanifold M . By Lemma 5.4, we have F ′(z) = 0 for z ∈
Z(h), and hence F ′(z) = 0 for z ∈ M . Consequently, F is locally constant
in M . Since dimCM = n− 1 > 0, this contradicts that F is injective. �
Corollary 5.4 Let Ω ⊂ Cn be an open set. If a holomorphic mapping
F : Ω→ Cn is injective, then F (Ω) is an open set and F−1 : F (Ω)→ Ω is
holomorphic.

Proof. By Theorem 5.11, we have detF ′(z) �= 0 for z ∈ Ω. Hence F (Ω)
is open. By Corollary 5.3, F−1 : F (Ω)→ Ω is holomorphic. �
Theorem 5.12 Let Ω be a pseudoconvex domain in Cn and let m be a
positive integer with m ≤ n. Suppose that f1, · · · , fm are holomorphic
functions in Ω and that F = (f1, · · · , fm) is nonsingular in Ω. We set

M = {z ∈ Ω | f1(z) = · · · = fm(z) = 0}.

Let a ∈ Ω. If f is holomorphic in Ω and vanishes everywhere on M , then
there exist a neighborhood U of a and holomorphic functions g1, · · · , gm in
U such that

f(z) =
m∑
j=1

fj(z)gj(z) (z ∈ U).
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Proof. By Theorem 5.10 using a complex linear change of variables there
exist a neighborhood U of a = (a′, an−m+1, · · · , an) and holomorphic func-
tions ϕj(w1, · · · , wn−m), n −m + 1 ≤ j ≤ n, in a neighborhood U ′ of a′

such that

M ∩ U = {w ∈ U | wj = ϕj(w1, · · · , wn−m), n−m+ 1 ≤ j ≤ n}.

If we set

ζ1 = wn−m+1 − ϕn−m+1(w1, · · · , wn−m)

· · ·
ζm = wn − ϕn(w1, · · · , wn−m)

ζm+1 = w1

· · ·
ζn = wn−m,

then U ∩M is expressed by

U ∩M = {ζ ∈ U | ζ1 = · · · = ζm = 0}.

In case m = 1, we set

f(ζ)
ζ1

= ψ1(ζ).

Then ψ1 is holomorphic in a neighborhood of 0 and satisfies

f(ζ) = ζ1ψ1(ζ).

This proves Theorem 5.12 in case m = 1. Assume that we have already
proved Theorem 5.12 form−1. Since f is holomorphic in Ω1 = {ζ1 = 0}∩Ω
and vanishes in Ω1 ∩ {ζ2 = · · · ζm = 0}, by the inductive hypothesis, there
exist holomorphic functions g̃j(ζ2, · · · , ζn) (2 ≤ j ≤ m) in a neighborhood
of 0 ∈ Cn−1 such that

f(ζ) =
m∑
j=2

ζj g̃j(ζ).
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By Theorem 2.14 there exist holomorphic functions gj in a neighborhood

W of 0 such that gj = g̃j in {ζ1 = 0} ∩W . We set

g1(ζ) =
1

ζ1

f(ζ) −
m∑
j=2

ζjgj(ζ)

 .

Then we have the desired equality. �

5.3 Oka’s Fundamental Theorem

We give a proof of Oka’s fundamental theorem [OkA2] which is the proto-

type of the sheaf theory. Moreover, we state the Cartan theorems A and B

without giving proofs.

Definition 5.9 Let a ∈ Cn. For a neighborhood U of a and f : U → C,

we say that (f, U) is a function element at a. We say that two function

elements (f, U) and (g, V ) at a are equivalent if there exists a neighborhood

W ⊂ U ∩ V of a such that f |W = g|W . The equivalence class of a function

element (f, U) at a is called a germ of functions at a and is denoted by

fa or γa(f). Further, we denote by Fa the set of all germs at a. The set

of all germs fa such that fa has a representative (f, U) with f ∈ C(U)

(f ∈ Ck(U), f ∈ O(U)) is denoted by Ca ( Cka , Oa).

By definition we have

Oa ⊂ C∞
a ⊂ Cka ⊂ Ca ⊂ Fa,

where k is an integer with 1 ≤ k <∞. Let (f, U) and (g, V ) be representa-

tives of fa and ga, respectively. We define fa+ga and faga by an equivalent

class of (f + g, U ∩ V ) and (fg, U ∩ V ), respectively. Then Fa , Cka and Oa

become commutative rings.

Definition 5.10 For the set Oa of all germs of holomorphic functions at

a ∈ Cn, define

O = OCn = ∪
a∈Cn

Oa.

We introduce the basis of all open sets in O as follows:

For an open set U in Cn and a holomorphic function f in U , define

Uf = {fz | z ∈ U}.
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We define the basis in O to be the set of all Uf . Define π : O → Cn by
π(fa) = a. Let fa ∈ Oa and let (f, U) be a representative of fa. Then Uf

is a neighborhood of fa and π : Uf → U is bijective, continuous and open
mapping, which means that π is a local homeomorphism.

Definition 5.11 Let X be a topological space. We say that a topological
space S is a sheaf over X if there is a surjective local homeomorphism
π : S → X . Hence π is an open mapping. For x ∈ X , Sx = π−1(x) is called
a stalk.

Definition 5.12 Let S be a sheaf over X and Y ⊂ X . We say that a
continuous mapping s : Y → S is a section of S over Y if π ◦ s(x) = x for
all x ∈ Y . We denote by Γ(Y,S) the collection of all sections of S over Y .

Definition 5.13 We say that a sheaf S over X is a sheaf of Abelian
groups over X if each Sx (x ∈ X) carries the structure of an Abelian
group, so that if Y ⊂ X , s1, s2 ∈ Γ(Y,S), then s1 − s2 : Y → S, being
defined by

(s1 − s2)(x) = s1(x) − s2(x) (x ∈ Y ),

is continuous. The sheaf of rings over X is defined similarly.

Definition 5.14 Let R be a sheaf of rings over X and let S be a sheaf of
Abelian groups over X . We say that S is a sheaf of modules over R (or a
sheaf of R-modules), if Sx is a Rx-module, and the product of a section of
R and a section of S is a section of S. We say that S is an analytic sheaf
if X is a complex manifold and R is a sheaf O of germs of holomorphic
functions.

Definition 5.15 We say that S′ ⊂ S is a subsheaf of S if π|S′ : S′ → X

is a sheaf. Hence S′ is a subsheaf of S if and only if S′ is an open subset of
S and π(S′) = X . If S is a sheaf of Abelian groups, we assume that S′x is a
subgroup of Sx. Suppose S′ and S are sheaves of Aberian groups over X .
We say that a continuous mapping ϕ : S′ → S is a sheaf homomorphism if
ϕ(S′x) ⊂ Sx and ϕx = ϕ|S′

x
: S′x → Sx is a group homomorphism for each

x ∈ X .

Definition 5.16 Let ϕ : S′ → S be a sheaf homomorphism. Define

Kerϕ = ∪
x∈X

Kerϕx, Imϕ = ∪
x∈X

Imϕx.
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Then Kerϕ is a subsheaf of S′ and Imϕ is a subsheaf of S. We have
the exact sequence

0→ Kerϕ ι→ S′ ϕ→ Imϕ→ 0.

Definition 5.17 Let S be a sheaf of Abelian groups and let S′ be a
subsheaf of S. Define

S/S′ = ∪
x∈X

Sx/S′x.

We define the quotient sheaf S/S′ as the union of all the quotient groups
Sx/S′x for x ∈ X , equipped with the quotient topology, that is, the finest
topology which makes the stalkwise defined quotient mapping q : S →
S/S′ continuous. Then q is a sheaf homomorphism and we have the exact
sequence

0→ S′ ι→ S q→ S/S′ → 0.

Lemma 5.5 If s1, s2 ∈ Γ(Y,S) satisfy s1(x0) = s2(x0), then there exists
a neighborhood W of x0 such that s1(x) = s2(x) for all x ∈ W .

Proof. We set s1(x0) = s2(x0) = z0. Then there exists a neighborhood U
of z0 such that π : U → π(U) is a homeomorphism. We set W = s−11 (U) ∩
s−12 (U). Then W is a neighborhood of x0 and π ◦ s1|W = π ◦ s2|W = IW ,
which implies that s1 = s2 = π−1|W . �
Lemma 5.6 Let Ω ⊂ Cn be an open set. For a holomorphic function f
in Ω, define sf : Ω → O by sf (a) = fa for a ∈ Ω. Then sf is continuous.
Moreover, f ∈ O(Ω)→ sf ∈ Γ(Ω,O) is bijective.

Proof. Let a ∈ Ω. For a neighborhood of a, we set Uf = {fz | z ∈ U}.
Then we have s−1f (Uf ) = U , and hence sf is continuous. Since π◦s|Ω = IΩ,
we have sf ∈ Γ(Ω,O). If f1 �= f2, then there exist z ∈ Ω such that sf1(z) �=
sf2(z), which means that sf1 �= sf2 . Next, assume that s ∈ Γ(Ω,O). For
a ∈ Ω, we have s(a) = fa. Let (f, U) be a representative of fa. Since s
is continuous, there exists a neighborhood W of a such that s(z) = fz for
z ∈ W . Hence there exists f ∈ O(Ω) such that s = sf . �
Definition 5.18 We say that a commutative ring A with unit is Noethe-
rian if every ideal I ⊂ A is finitely generated, that is, if there exist elements
f1, · · · , fj ∈ I so that every f ∈ I can be written

f =
j∑

i=1

aifi
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for some a1, · · · , aj ∈ A.

Theorem 5.13 O0 is a Noetherian ring.

Proof. In case n = 1, Theorem 5.13 is trivial since every ideal in O0

is generated by a power of z using the Taylor expansion. Assume that

Theorem 5.13 has already been proved for the ring O0(C
n−1). Suppose I

is an ideal in O0 which contains some non-zero element. Let f ∈ I be a

non-zero element. Then by a change of coordinates we may assume that f

is regular of order k in zn. For g ∈ I, by the Weierstrass division theorem

we have a representation

g = qf + r,

where r is a polynomial in zn of degree less than k. Let M be a set g ∈ I

such that g is a polynomial in zn of degree less than k. Then M is regarded

a submodule in O0(C
n−1)p. By the inductive hypothesis, O0(C

n−1) is a

Noetherian ring, and hence M is finitely generated. If f1, · · · , fr is the

generators for M , then f1, · · · , fr, f generate I. Consequently, O0 is a

Noetherian ring. �

Lemma 5.7 Let f , g and ω be holomorphic functions in a neighborhood of

0 ∈ Cn. Suppose ω is a Weierstrass polynomial in zn and f is a polynomial

in zn. If

f = gω,

then g is a polynomial in zn.

Proof. Since the coefficient of the term of ω of the maximal degree in zn
equals 1, f is expressed by

f = qω + r,

where q and r are polynomials in zn and the degree of r is less than the

degree of ω. By the uniqueness of the Weierstrass division theorem we have

r = 0, q = g. �

In order to prove Oka’s fundamental theorem, we need the following

lemma.

Lemma 5.8 Let {fλ} be a sequence of at most countable non-zero holo-

morphic functions in a neighborhood U of 0 ∈ Cn. Then there exists an
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invertible linear change of variables

zj =
n∑

k=1

αjkz
∗
k (j = 1, · · · , n)

such that for all λ, f∗λ(z∗) = fλ(z) satisfy the following properties:

f∗λ(z∗1 , 0, · · · , 0) �≡ 0, f∗λ(0, z∗2 , 0, · · · , 0) �≡ 0, · · · , f∗λ(0, · · · , 0, z∗n) �≡ 0.
(5.3)

Proof. In the power series expansion of fλ

fλ(z1, · · · , zn) =
∞∑

ν1···νn=0

a
(λ)
ν1···νnz

ν1
1 · · · zνn

n ,

we rewrite the right side of the above equality by the series of homogeneous
polynomials so that sλ is the least homogeneous degree. Since

f∗λ(0, · · · , 0, z∗k, 0, · · · , 0) =
∞∑

ν1···νn=0

a
(λ)
ν1,··· ,νn(α1kz∗k)

ν1 · · · (αnkz∗k)νn ,

it is sufficient to choose αjk (j, k = 1, · · · , n) with the following properties:∑
ν1+···+νn=sλ

a
(λ)
ν1,··· ,νn(α1k)ν1 · · · (αnk)νn �= 0 (k = 1, · · · , n),

det(αjk) �= 0.

By the Baire theorem (Lemma 1.4), there exist αjk (j, k = 1, · · · , n) which
satisfy the above properties. �

Theorem 5.14 (Oka’s fundamental theorem) Suppose Ω is an open
set in Cn. For z ∈ Ω and F1, · · · , Fq ∈ O(Ω)p, define a submodule
Rz(F1, · · · , Fq) of Oq

z as follows:

Rz(F1, · · · , Fq) = {G = (g1, · · · , gq) ∈ Oq
z |

q∑
j=1

gjγz(Fj) = 0}.

Given z0 ∈ Ω, one can then find a neighborhood ω ⊂ Ω of z0 and
finitely many elements G1, · · · , Gr ∈ O(ω)q such that for any z ∈ ω,
Rz(F1, · · · , Fq) is generated by γz(G1), · · · , γz(Gr).
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Proof. We assume z0 = 0.
(a) Suppose that p > 1. Assume that the theorem has already been

proved for p− 1. Let Fj = (F 1j , · · · , F
p
j ). Evidently we have

Rz(F1, · · · , Fq) ⊂ Rz(F 11 , · · · , F 1q ).

By the inductive hypothesis, there exist a neighborhood ω′ of 0 and
H1, · · · , Hr ∈ O(ω′)q such that for any z ∈ ω′, Rz(F 11 , · · · , F 1q ) is generated
by γz(H1), · · · , γz(Hr). Consequently, we have

Rz(F1, · · · , Fq) ⊂


r∑

j=1

cjγz(Hj) | cj ∈ Oz

 (z ∈ ω′).

Let Hj = (H1j , · · · , H
q
j ). Then

∑r
j=1 c

jγz(Hj) ∈ Rz(F1, · · · , Fq) if and only
if

q∑
k=1

r∑
j=1

cjγz(Hk
j )γz(Fk) = 0. (5.4)

(5.4) is equivalent to the following equations.

q∑
k=1

r∑
j=1

cjγz(Hk
j F

i
k) = 0 (i = 1, · · · , p). (5.5)

Since γz(H1), · · · , γz(Hr) ∈ Rz(F 11 , · · · , F 1q ), we obtain

q∑
k=1

γz(Hk
j )γz(F 1k ) =

q∑
k=1

γz(Hk
j F

1
k ) = 0 (j = 1, · · · , r).

Hence (5.5) holds when i = 1. We set

Lj =

(
q∑

k=1

Hk
j F

2
k , · · · ,

q∑
k=1

Hk
j F

p
k

)
.

It follows from (5.5) that
∑r

j=1 c
jγz(Lj) = 0. By the inductive hypothesis,

there exist a neighborhood ω of 0 and K1, · · · ,Ks ∈ O(ω)rsuch that for
z ∈ ω, (c1, · · · , cr) is generated by γz(K1), · · · , γz(Ks). Hence there exist
αk ∈ Oz for k = 1, · · · , s such that

cj =
s∑

k=1

αsγz(K
j
k).
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Therefore every element of Rz(F1, · · · , Fq) has a representation

r∑
j=1

cjγz(Hj) =
r∑

j=1

s∑
k=1

αkγz(K
j
k)γz(Hj),

which implies that if we set

Gk =
r∑

j=1

Kj
kHj (k = 1, · · · , s),

then for z ∈ ω, Rz(F1, · · · , Fq) is generated by γz(G1), · · · , γz(Gs).
(b) When n = 0, the theorem holds for every p. Assume that the

theorem has already been proved for n− 1 dimension and for all p. We will
prove the theorem for n dimension and for all p. In (a) we have proved that
if the theorem is true for p− 1, then the theorem is true for p when p > 1.
Hence it is sufficient to prove the theorem when p = 1. By Lemma 5.8,
without loss of generality we may assume that F1, · · · , Fq are Weierstrass
polynomials in zn at 0. We denote by µ the maximum of degrees in zn
of F1, · · · , Fq. We assume that µ is the degree in zn of Fq. We prove the
following lemma.

Lemma 5.9 Let ζ = (ζ′, ζn) ∈ Cn. Then Rζ(F1, · · · , Fq) is gener-
ated by finitely many elements whose components are gems of functions
in n−1Oζ′ [zn] with a degree in zn which does not exceed µ.

Proof of Lemma 5.9 By the Weierstrass preparation theorem we have

γζ(Fq) = F ′F ′′,

where F ′ is a germ of a Weierstrass polynomial in z − ζ and F ′′ is a germ
of holomorphic functions which do not vanish at ζ. Since

Fq = zµn + aµ−1(z′)zµ−1n + · · ·+ a0(z′),

Fq is a polynomial in zn − ζn. By Lemma 5.7, F ′′ is a polynomial in
zn − ζn, and hence a polynomial in zn with leading coefficient equal to 1.
We denote degrees of F ′ and F ′′ in zn by µ′ and µ′′, respectively. Let
(c1, · · · , cq) ∈ Rζ(F1, · · · , Fq). Then by the Weierstrass division theorem
we have

ci = t′iF ′ + ri = γζ(Fq)ti + ri (i = 1, · · · , q − 1),
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where t′i, ti, ri ∈ Oζ and each ri is a polynomial in zn with the degree less
than µ′. We set

rq = cq −
q−1∑
i=1

γζ(Fi)ti.

Then we obtain

(c1, · · · , cq) = γζ(Fq , 0, · · · , 0,−F1)t1 + γζ(0, Fq, 0, · · · , 0,−F2)t2 (5.6)

+ · · ·+ γζ(0, · · · , 0, Fq,−Fq−1)tq−1 + (r1, · · · , rq).

Consequently we have (r1, · · · , rq) ∈ Rζ(F1, · · · , Fq). Hence we have

q∑
i=1

riγζ(Fi) =
q−1∑
i=1

riγζ(Fi) + (rqF ′′)F ′ = 0.

Since the degree of
∑q−1

i=1 r
iγζ(Fi) in zn is less than µ+ µ′, by Lemma 5.7

the degree of rqF ′′ in zn is less than µ. In the equality

(r1, · · · , rq) =
1
F ′′

(F ′′r1, · · · , F ′′rq),

the degrees of F ′′rj (j = 1, · · · , q) in zn are less than µ. Hence Lemma 5.9
follows from (5.6), which completes the proof of Lemma 5.9.

End of the proof of (b) Let (c1, · · · , cq) be one of the elements in
Rζ(F1, · · · , Fq) described in Lemma 5.9. Then we have

cj =
µ∑

k=0

cjkγζ(zkn) cjk ∈ Oζ′ .

Since (c1, · · · , cq) ∈ Rζ(F1, · · · , Fq), we have
q∑

j=1

µ∑
k=0

cjkγζ(zkn)γζ(Fj) = 0.

Consequently, we have
µ∑

k=0

(c1kγζ(F1) + · · ·+ cqkγζ(Fq))γζ(zkn) = 0. (5.7)

Let

Fj(z) = ajµ(z′)zµ + ajµ−1(z′)zµ−1 + · · ·+ aj0(z′).
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Since coefficients in zkn for k = 0, · · · , 2µ in (5.7) are 0, the coefficient of zµn
in (5.7) is equal to 0. Hence we have

c10a1µ + · · ·+ cq0aqµ + c11a1µ−1 + · · ·

+cq1aqµ−1 + · · ·+ c1µa1,0 + · · ·+ cqµaq0 = 0.

By the inductive hypothesis, there exist a neighborhood ω′ of 0 ∈ Cn−1 and
C1k, · · · , Crkk ∈ O(ω′)q, k = 0, · · · , µ, such that (c1k, · · · , cqk) is generated
by C1k, · · · , Crkk. Since

(c1, · · · , cq) =
µ∑

k=0

(c1k, · · · , cqk)γζ(zkn),

Rζ(F1, · · · , Fq) is generated by germs of C1kzkn, · · · , Crkkz
k
n (k = 0, · · · , µ)

for ζ = (ζ′, ζn) with ζ′ ∈ ω′. This proves (b). �

Definition 5.19 An analytic sheaf S on the complex manifold Ω is said
to be locally finitely generated if for every z ∈ Ω there exists a neighborhood
ω of z and a finite number of sections f1, · · · , fq ∈ Γ(ω,S) such that Sζ is
generated by γζ(f1), · · · , γζ(fq) as an Oζ module for every ζ ∈ ω.

Lemma 5.10 Suppose that an analytic sheaf S is locally finitely gen-
erated. Let f1, · · · , fq be sections of S in a neighborhood of z such that
γz(f1), · · · , γz(fq) generate Sz. Then γζ(f1), · · · , γζ(fq) generate Sζ for
every ζ in a neighborhood of z.

Proof. Since S is locally finitely generated, there exist a neighborhood
ω of z and g1, · · · , gr ∈ Γ(ω,S) such that for any ζ ∈ ω, γζ(g1), · · · , γζ(gr)
generate Sζ . On the other hand, by the hypothesis we have

γz(gi) =
q∑

j=1

γz(cij)γz(fj) (i = 1, · · · , r).

By Lemma 5.5 there exists a neighborhood W of z such that for ζ ∈ W ,

γζ(gi) =
q∑

j=1

γζ(cij)γζ(fj) (i = 1, · · · , r).
�

Definition 5.20 Let S be an analytic sheaf on the complex manifold Ω
and let ω be an open subset of Ω. For f1, · · · , fq ∈ Γ(ω,S), define the sheaf
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homomorphism h : Oq → S by

Oq ⊃ Oq
z � (g1, · · · , gq) h−→

q∑
j=1

gjγz(fj) ∈ Sz ⊂ S.

The subsheaf R(f1, · · · , fq) of Oq is defined by

R(f1, · · · , fq) = ∪
z∈ω
{(g1, · · · , gq) ∈ Oz | h(g1, · · · , gq) = 0},

and is called the sheaf of relations between f1, · · · , fq.

Definition 5.21 Let S be an analytic sheaf on the complex manifold Ω.
S is called coherent if

(1) S is locally finitely generated.
(2) If ω is an open subset of Ω and f1, · · · , fq ∈ Γ(ω,S), then the sheaf of

relations R(f1, · · · , fq) is locally finitely generated.

Theorem 5.15 Every locally finitely generated subsheaf of Op is coher-
ent.

Proof. We show (2) in the definition of the coherent sheaf. Since
f1, · · · , fq ∈ O(ω)p, by Oka’s fundamental theorem (Theorem 5.14) the
sheaf of relations R(f1, · · · , fq) is locally finitely generated. �

Theorem 5.16 Let S be a coherent sheaf on the complex manifold Ω and
let ω be an open subset of Ω. If f1, · · · , fq ∈ Γ(ω,S), then the sheaf of
relations R(f1, · · · , fq) is also coherent.

Proof. Since S is coherent, R(f1, · · · , fq) is locally finitely generated.
Theorem 5.16 follows from Theorem 5.15 and the fact that R(f1, · · · , fq)
is a subsheaf of Oq. �

Example 5.1 There is a subsheaf of O which is not coherent.

Proof. Suppose that ω and Ω are open sets in C with φ �= ω ⊂ Ω, ω �= Ω.
Define

Sz =
{
Oz (z ∈ ω)
0 (z ∈ Ω\ω)

.

Then S is a subsheaf of O. Every section of S over a connected open set
which intersects Ω\ω must be 0 (see Exercise 1.5). Hence if S is finitely
generated in some connected neighborhood of a boundary point of ω, then
we have Sz = 0 in the neighborhood, which is a contradiction. �
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Definition 5.22 Let X be a paracompact Hausdorff space and let S
be a sheaf of Abelian groups in X . Let U = {Uj | j ∈ J} be an open
cover of X and let q be a nonnegative integer. We say that c is a q-
cochain for U with coefficients in S if c is a mapping which assigns to each
(q + 1) tuple (j0, j1, · · · , jq) ∈ Jq+1 with Uj0 ∩ · · · ∩ Ujq �= φ a section
cj0,j1,··· ,jq ∈ Γ(Uj0 ∩ · · · ∩Ujq ,S). Define cj0,··· ,jq = εci0,··· ,iq , where ε = ±1
is a sign of the permutation(

j0, j1, · · · , jq
i0, i1, · · · , iq

)
.

We denote by Cq(U ,S) the set of all q-cochains. A coboundary mapping
δq : Cq(U ,S)→ Cq+1(U ,S) is defined as follows:

(δqc)j0···jq+1 =
q+1∑
k=0

(−1)kcj0···ĵk···jq+1
,

where j0 · · · ĵk · · · jq+1 means that jk is omitted. By definition we have

δq+1 ◦ δq = 0 (q ≥ 0). (5.8)

Define

Zq(U ,S) = {c ∈ Cq(U ,S) | δqc = 0} (q ≥ 0)

and

Bq(U ,S) = {δq−1c | c ∈ Cq−1(U ,S)} (q ≥ 1).

An element Zq(U ,S) is called a q-cocycle and an element of Bq(U ,S) is
called a q-coboundary. Define B0(U ,S) = 0. It follows from (5.8) that
Bq(U ,S) ⊂ Zq(U ,S). Define

Hq(U ,S) := Zq(U ,S)/Bq(U ,S).

Hq(U ,S) is called a q-th C̆ech cohomology group of U with coefficients in
S.

Definition 5.23 Let V = {Vi | i ∈ I} be a refinement of U , that is, there
exists a mapping τ : I → J such that Vi ⊂ Uτ(i) for i ∈ I. Define

τ∗q : Cq(U ,S)→ Cq(V ,S) (q ≥ 0)

by

(τ∗q (c))i0···iq = cτ(i0)···τ(iq)|Vi0∩···∩Viq
.
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Since τ∗q+1 ◦ δq = δq ◦ τ∗q , we define

ρUVq : Hq(U ,S)→ Hq(V ,S)

by

ρUVq ([c]) = [τ∗q c].

We have the following lemma. We omit the proof.

Lemma 5.11 ρUVq is independent of the choice of τ .

Definition 5.24 For two open covers U , W of X , we say that [c] ∈
Hq(U ,S) and [d] ∈ Hq(W ,S) are equivalent if there exists a refinement V
of U and W such that

ρUVq ([c]) = ρWVq ([d]).

We denote by Hq(X,S) the set of all equivalent classes by this equivalent
relation. Hq(X,S) is an Abelian group. Hq(X,S) is called the q-th C̆ech
cohomology group of X with coefficients in S.

By definition we have the following lemma.

Lemma 5.12 For an open cover U of X, we have

H0(X,S) = H0(U ,S) = Z0(U ,S) = Γ(X,S).

Definition 5.25 Let ϕ : S′ → S be a sheaf homomorphism and U an
open cover of X . Define ϕ : Cq(U ,S′)→ Cq(U ,S′) by

ϕ(c) = ϕ ◦ c.

Moreover, we define ϕq
U and ϕq using ϕ such that

ϕq
U : Hq(U ,S′)→ Hq(U ,S)

and

ϕq : Hq(X,S′)→ Hq(X,S).

Then we have the following theorem.

Theorem 5.17 Suppose

0→ S′ ϕ→ S ψ→ S′′ → 0
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is an exact sequence of sheaf homomorphisms over X and H1(X,S′) = 0.
Then

ψ0 : Γ(X,S)→ Γ(X,S′′)

is surjective.

Proof. Let s′′ ∈ Γ(X,S′′). For x ∈ X , we have s′′(x) ∈ S′′x . Since ψ
is surjective, there exists sx ∈ Sx such that ψ(sx) = s′′(x). There exist
a neighborhood W of x and a section ŝx ∈ Γ(W,S) such that ŝx(x) = sx
(see Exercise 5.2). Consequently, we have ψ ◦ ŝx(x) = s′′(x). By Lemma
5.5 there exists a neighborhood Ux ⊂ W of x such that ψ ◦ ŝx = s′′ in
Ux. We set U = {Ux | x ∈ X}. Then we have ŝ = {sx} ∈ C0(U ,S).
Since ψ ◦ (δ0ŝ) = δ0(ψ ◦ ŝ) = δ0s

′′ = 0, we have δ0ŝ ∈ B(U ,Kerψ). Since
Imϕ = Kerψ, there exist a refinement V = {Vx | x ∈ X} (Vx ⊂ Ux) of U
and s′ ∈ C1(V ,S′) such that

ϕ ◦ s′ = δ0ŝ.

Consequently,

ϕ ◦ (δ1s′) = δ1(ϕ ◦ s′) = δ1(δ0ŝ) = 0.

Since ϕ is injective, we have δ1s′ = 0, which implies that s′ ∈ Z1(V ,S′).
Since H1(X,S′) = 0, taking a refinement of V if necessary, we may assume
that s′ ∈ B1(V ,S′). Hence there exists g ∈ C0(V ,S′) such that s′ = δ0g.
Thus we have

δ0ŝ = ϕ ◦ s′ = ϕ ◦ (δ0g) = δ0(ϕ ◦ g).

If we set s = ŝ − ϕ ◦ g, then we have δ0s = 0, and hence s ∈ Γ(X,S).
Moreover, we have

ψ ◦ s = ψ ◦ ŝ− ψ ◦ ϕ ◦ g = s′′,

which means that ψ0(s) = s′′. Hence ψ0 is surjective. �

Definition 5.26 A σ compact complex manifold Ω is said to be a Stein
manifold if

(a) Ω is holomorphically convex, that is, for any compact subset K of Ω,

K̂OΩ = {z ∈ Ω | |f(z)| ≤ sup
K
|f | for all f ∈ O(Ω)}

is compact.
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(b) For z1, z2 ∈ Ω z1 �= z2, there exists f ∈ O(Ω) such that f(z1) �= f(z2).
(c) For every z ∈ Ω, one can find n functions f1, · · · , fn ∈ O(Ω) which

form a coordinate system at z.

Remark 5.1 Every pseudoconvex domain in Cn satisfies (a), (b) and
(c), and hence it is a Stein manifold.

Theorem 5.18 Every submanifold of a Stein manifold is a Stein mani-
fold.

Proof. Let V be a submanifold of a Stein manifold Ω. Since O(Ω) ⊂
O(V ), we have K̂OV ⊂ K̂OΩ . Hence V is holomorphically convex. This
proves (a). (b) is trivial. Let v ∈ V . Then there exist a neighborhood ω of
v and a local coordinate system z1, · · · , zn in ω such that

ω ∩ V = {w ∈ ω | zm+1(w) = · · · = zn(w) = 0}.

Let f1, · · · , fn ∈ O(Ω) be a coordinate system at v. Then at z(v) we have

det
(
∂fi
∂zj

)
�= 0 (i, j = 1, · · · , n).

Hence we can choose i1, · · · , im such that

det
(
∂fiµ
∂zj

)
�= 0 (µ, j = 1, · · · ,m).

Thus the restrictions of fi1 , · · · , fim to V form a local coordinate system at
v. �

Definition 5.27 We say that a subset A of a Stein manifold Ω is an
analytic subset if A is a closed subset of Ω and for any p ∈ A there exist
a neighborhood Up of p and holomorphic functions h1, · · · , hkp in Up such
that

Up ∩A = {z ∈ Up | h1(z) = · · · = hkp(z) = 0}.

Definition 5.28 Let A be an analytic subset of a Stein manifold Ω. A
continuous function f : A → C is said to be holomorphic in A if for any
a ∈ A there exist a neighborhood Ua of a in Ω and a holomorphic function
ha in Ua such that f(z) = ha(z) for all z ∈ A ∩ Ua.

Definition 5.29 Let A be an analytic subset of a Stein manifold Ω. We
define a subsheaf FA of O in such a way that (FA)z = Oz for z �∈ A , and
(FA)z = {fz ∈ Oz | f |A = 0} for z ∈ A. FA is called the sheaf of ideals of
the analytic subset A.
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We have the following theorem. The proof is omitted (see Gunning-
Rossi [GUR]).

Theorem 5.19 Every sheaf of ideals I of an analytic subset of a Stein
manifold is coherent.

We omit the proof of the following lemma (see Gunning-Rossi [GUR]).

Lemma 5.13 If in an exact sequence of sheaves

0→ S′ → S → S′′ → 0

any two of the sheaves S′, S, S′′ are coherent sheaves, then the third is also
coherent.

The following theorem is known as Theorem A and Theorem B of Car-
tan. We omit the proof (see Hörmander [HR2], Gunning-Rossi [GUR]).

Theorem 5.20 Let Ω be a Stein manifold and A a coherent sheaf over
Ω. Then

(a) (Cartan theorem A) Let z ∈ Ω. For any s ∈ Az there exist
f1, · · · , fk ∈ Γ(Ω,A) and s1, · · · , sk ∈ Oz such that

s =
k∑

j=1

sj(fj)z.

(b) (Cartan theorem B) Hq(Ω,A) = 0 (q ≥ 1).

Corollary 5.5 Let Ω be a Stein manifold and let A be an analytic subset
of Ω. Then for any z �∈ A there exists f ∈ O(Ω) such that f(z) �= 0,
f |A = 0.

Proof. Let z �∈ A. Then there exist a neighborhood U of z and a holo-
morphic function s in U such that s(z) �= 0, s|A = 0. Let FA be the sheaf
of ideals of A. By the Cartan theorem A, there exist holomorphic functions
s1, · · · , sk in a neighborhood of z and f1, · · · , fk ∈ Γ(Ω,FA) such that

s =
k∑

j=1

sj(fj)z.

Hence there exists j0 with 1 ≤ j0 ≤ k such that fj0(z) �= 0. �
Corollary 5.6 Let Ω be a Stein manifold and let A be an analytic subset
of Ω. Then every holomorphic function in A can be extended to a holomor-
phic function in Ω.
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Proof. We denote by FA the sheaf of ideals of A. Γ(Ω,O(Ω)/FA) can be
regarded as the set of all holomorphic functions in A. Since FA is coherent,
we have H1(Ω,FA) = 0. By the exact sequence of sheaves

0→ FA → O(Ω)→ O(Ω)/FA → 0,

Γ(Ω,O(Ω)) → Γ(Ω,O(Ω)/FA) is surjective, which means that for a holo-
morphic function f in A there exists F ∈ Γ(Ω,O(Ω)) with F |A = f . �

Definition 5.30 Let X be a complex manifold. An open cover U =
{Ui}i∈I of X is said to be a Stein cover if U is a locally finite cover and
each Ui is a Stein open set.

The following theorem holds. We omit the proof (see Grauert and Rem-
mert [GRR]).

Theorem 5.21 Let X be a complex manifold and let U be a Stein cover
of X, S a coherent sheaf over X. Then

Hq(U ,S) = Hq(X,S) (q ≥ 0).

The following theorem follows from Theorem 5.19, Theorem 5.20 and
Theorem 5.21.

Theorem 5.22 Let Ω ⊂ Cn be a pseudoconvex domain. Let A be an
analytic subset of Ω and let FA be the sheaf of ideals of A, {Uj}j∈I a Stein
cover of Ω. Suppose fij ∈ Γ(Ui ∩ Uj ,FA) satisfy the equalities

fij(z) + fjk(z) + fki(z) = 0 (z ∈ Ui ∩ Uj ∩ Uk, i, j, k ∈ I).

Then there exist fj ∈ Γ(Uj ,FA) such that

fij(z) = fi(z)− fj(z) (z ∈ Ui ∩ Uj, i, j ∈ I).

Theorem 5.23 Let A be a coherent analytic sheaf over a Stein manifold
Ω and let S be a subsheaf of A. Let s1, · · · , sk ∈ Γ(Ω,A). Suppose that
s1, · · · , sk generate Sz over Oz for each z ∈ Ω. Then for s ∈ Γ(Ω,S), there
exist f1, · · · , fk ∈ Γ(Ω,O) such that

s =
k∑

j=1

fjsj .
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Proof. Define ϕ : O(Ω)k → A by

ϕ(b1, · · · , bk) =
k∑

j=1

bjsj ((b1, · · · , bk) ∈ Ok
z , z ∈ Ω).

By Theorem 5.16 Kerϕ is coherent. By the Cartan theorem B, we have

H1(Ω,Kerϕ) = 0.

By applying Theorem 5.18 to the exact sequence of sheaves

0→ Kerϕ→ O(Ω)k
ϕ→ S → 0

we have that ϕ0 : Γ(Ω,O(Ω)k) → Γ(Ω,S) is surjective. Consequently, for
s ∈ Γ(Ω,S), there exist (f1, · · · , fk) ∈ Γ(Ω,O(Ω)k) such that

s =
k∑

j=1

fjsj .

�

Corollary 5.7 Let Ω be a pseudoconvex domain in Cn and let A be an
analytic subset of Ω. Suppose that there exist holomorphic functions s1(z),
· · · , sk(z), k ≤ n, in Ω such that

A = {z ∈ Ω | s1(z) = · · · = sk(z) = 0}

and F = (s1, · · · , sk) is nonsingular in Ω. If g is a holomorphic function
in Ω with g|A = 0, then there exist holomorphic functions f1, · · · , fk in Ω
such that

g(z) =
k∑

j=1

fj(z)sj(z) (z ∈ Ω).

Proof. Let I be the sheaf of ideals of A. We apply Theorem 5.23 by
setting A = O(Ω), S = I. We have g ∈ Γ(Ω, I). By Theorem 5.12
(s1, · · · , sk) satisfies the hypothesis of Theorem 5.23. �

Theorem 5.24 Let Ω be a Stein manifold and let K be a compact subset
of Ω, ω a neighborhood of K̂. Then there exists ϕ ∈ C∞(Ω) with the
following properties:

(a) ϕ is a strictly plurisubharmonic function in Ω.
(b) ϕ < 0 in K and ϕ > 0 in Ω\ω.
(c) For every c ∈ R, {z ∈ Ω | ϕ(z) < c} ⊂⊂ Ω.
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Proof. For simplicity, we adopt the notation K̂ instead K̂O
Ω . Since Ω is

σ compact, there exists a sequence {Kj} of compact sets such that Ω =

∪∞
j=1Kj , Kj ⊂ Kj+1. Hence we have Ω = ∪∞

j=1K̂j, K̂j ⊂ K̂j+1. By

replacing Kj by K̂j , we can obtain a sequence {Kj} of compact subsets of

Ω such that

K1 = K̂, Kj ⊂ K◦
j+1, K̂j = Kj, Ω =

∞
∪
j=1

Kj .

We choose open sets ωj with the properties that Kj ⊂ ωj ⊂ Kj+1, ω1 ⊂ ω.

Let a ∈ Kj+2 − ωj . Since a 6∈ Kj, there exists fja ∈ O(Ω) such that

|fja(a)| > sup
Kj

|fja|.

We choose αja such that

|fja(a)| > αja > sup
Kj

|fja|.

We set gja = fja/αja. Then we have

|gja(a)| > 1, sup
Kj

|gja| < 1.

Since Kj+2−ωj is a compact set, there exist an open set Wjk and functions

gjk ∈ O(Ω), k = 1, · · · , kj , such that

Kj+2 − ωj ⊂
kj

∪
k=1

Wjk, sup
Kj

|gjk| < 1, |gjk(z)| > 1 (z ∈Wjk).

Consequently, we have

sup
Kj

|gjk| < 1 (k = 1, · · · , kj), max
k

|gjk(z)| > 1 (z ∈ Kj+2 − ωj).

Replacing gjk by gmjk (m is sufficiently large), we obtain

kj∑
k=1

|gjk(z)|2 <
1

2j
(z ∈ Kj) (5.9)

and

kj∑
k=1

|gjk(z)|2 > j (z ∈ Kj+2 − ωj). (5.10)
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Further we may assume that gjk, k = 1, · · · , kj , contains n functions which
form the coordinate system at any point in Kj. Define

ϕ(z) =
∞∑
j=1

kj∑
k=1

|fjk(z)|2 − 1. (5.11)

By (5.9) the series in the right side of (5.11) converges. By (5.10) we have
ϕ > j − 1 in ωc

j . Therefore we have ϕ > 0 in ωc. By (5.9) we have
ϕ <

∑∞
j=1 2−j = 1 in K. On the other hand

∞∑
j=1

kj∑
k=1

fjk(z)fjk(ζ)

converges uniformly on every compact subset of Ω×Ω and is holomorphic
in (z, ζ̄), and hence can be expanded to a power series. Hence we obtain

n∑
s,t=1

∂2ϕ

∂zs∂z̄t
(z)wsw̄t =

∞∑
j=1

kj∑
k=1

∣∣∣∣∣
n∑

s=1

∂fjk
∂zs

(z)ws

∣∣∣∣∣
2

.

Assume that for all j, k
n∑

s=1

∂fjk
∂zs

(z)ws = 0.

Since fjk (k = 1, · · · , kj) contain n functions which form a coordinate
system at z, we have w = 0. Hence ϕ is strictly plurisubharmonic. (c) is
trivial, which completes the proof of Theorem 5.24. �

Lemma 5.14 Let Ω be a Stein manifold and let K be a compact subset
of Ω with K = K̂OΩ . Let ω be a neighborhood of K. Then there exists an
analytic polyhedron P such that K ⊂ P ⊂⊂ ω.

Proof. We may assume that ω ⊂⊂ Ω. Let z ∈ ∂ω. Since z �∈ K̂OΩ , there
exists f ∈ O(Ω) such that

|f(z)| > sup
K
|f |.

We choose α such that |f(z)| > α > supK |f |. We set g = f/α. Then |g| < 1
in K, |g(z)| > 1. By the Heine-Borel theorem, there exist f1, · · · , fN ∈
O(Ω) such that if we set

P ′ = {z ∈ Ω | |gj(z)| < 1 (j = 1, · · · , N)},
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then K ⊂ P ′, ∂ω ∩ P ′ = φ. Let P = ω ∩ P ′. Then P is an analytic
polyhedron we seek. �

5.4 The Cousin Problem

We study the Cousin problem using the L2 estimate for solutions of the ∂̄
problem on Stein manifolds due to Hörmander [HR2].

Hörmander [HR2] proved the following theorem. We omit the proof.

Theorem 5.25 Let Ω be a Stein manifold. Then for f ∈ C∞(p,q+1)(Ω)
with ∂̄f = 0, there exists u ∈ C∞(p,q)(Ω) such that ∂̄u = f .

Theorem 5.26 (First Cousin problem) Let Ω be a Stein manifold and
let {ωj} be a sequence of open subsets of Ω with Ω = ∪∞j=1ωj. Suppose that
gjk ∈ O(ωj ∩ ωk), j, k = 1, 2, · · · , satisfy the following conditions:

(a) gjk = −gkj.
(b) gij + gjk + gki = 0 in ωi ∩ ωj ∩ ωk.

Then there exist gj ∈ O(ωj) such that

gjk = gk − gj

in ωj ∩ ωk

Proof. Let {ϕν} be a partition of unity subordinate to {ωj}. Then we
have ϕν ∈ C∞c (ωiν ). Further, for any compact subset K of Ω, ϕν equals
identically zero on K except for a finite number of ν and

∞∑
ν=1

ϕν = 1.

Suppose that gjk is expressed by gjk = gk−gj in ωj ∩ωk. Let j = iν . Then
we have

giνk = gk − giν .

If we multiply by ϕν and add with respect to ν, then we obtain

∞∑
ν=1

ϕνgiνk = gk −
∞∑
ν=1

ϕνgiν .
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Define

hk =
∞∑
ν=1

ϕνgiνk.

Then we have hk ∈ C∞(ωk). Moreover we have

hk − hj =
∞∑
ν=1

ϕν(giνk − giνj) =
∞∑
ν=1

ϕνgjk = gjk

in ωj ∩ ωk. If we set ψ = ∂̄hk in ωk, then ψ ∈ C∞(0,1)(Ω) and ∂̄ψ = 0.
By Theorem 5.25, there exist u ∈ C∞(Ω) such that ∂̄u = −ψ. We set
gk = hk + u. Then gk are solutions we seek. �

Lemma 5.15 Let Ω ⊂ RN be a simply connected domain. Suppose
f : Ω → C is continuous and nowhere vanishing. Then there exists a
continuous function g in Ω such that f = eg.

Proof. Let P ∈ Ω. Without loss of generality we may assume that
Re f(P ) > 0. Then there exists a neighborhood UP of P such that f(UP ) ⊂
{z | Rez > 0}. Hence we can define a continuous function log f in UP . Fix
P0 ∈ Ω. Let γ : [0, 1] → Ω be a smooth Jordan closed curve such that
γ(0) = γ(1) = P0. For each P on γ we can choose a neighborhood Up of
P having the property mentioned above. Then we can define a function
log f(γ(t)) for 0 ≤ t < 1. Assume that log f ◦ γ(0) �= limt→1− log f◦γ(t).
Since Ω is simply connected, there exists a continuous function u(s, t) on
[0, 1]× [0, 1] such that

u(0, t) = γ(t) (0 ≤ t ≤ 1),

u(s, 0) = u(s, 1) = P0 (0 ≤ s ≤ 1),

u(1, t) = P0 (0 ≤ t ≤ 1).

If we set

ρ(s) =
1

2πi
{ lim
t→1−

log f(u(s, t))− log f(u(s, 0))},

then ρ(s) is an integer valued continuous function and equals 0 when s is
close to 1. Then ρ(0) �= 0, which is a contradiction. Hence we can define
log f(γ(t)) for 0 ≤ t ≤ 1. Since γ is an arbitrary closed Jordan curve, we
can define log f in Ω. We set g = log f . Then f = eg. �
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Lemma 5.16 Let Ω ⊂ Cn be a simply connected domain and let f : Ω→
C be holomorphic and nowhere vanishing. Then there exists a holomorphic
function g in Ω such that f = eg.

Proof. By Lemma 5.15 there exists a continuous function g in Ω such
that f = eg. Then we have in the sense of distributions

0 =
∂f

∂z̄j
= eg

∂g

∂z̄j
,

and hence
∂g

∂z̄j
= 0.

Hence g is holomorphic. �

Definition 5.31 We denote by O∗(Ω) the set of all nowhere vanishing
holomorphic functions in a complex manifold Ω. We also denote by C∗(Ω)
the set of all nowhere vanishing continuous functions on a complex manifold
Ω.

Theorem 5.27 (Second Cousin problem) Let Ω be a Stein manifold
and let {ωj} be a sequence of open subsets of Ω with Ω = ∪∞j=1ωj. Suppose
that gjk ∈ O∗(ω ∩ ωk), j, k = 1, 2, · · · , satisfy the following properties:

(a) gjkgkj = 1.
(b) gijgjkgki = 1 in ωi ∩ ωj ∩ ωk.

Moreover, suppose there exist cj ∈ C∗(ωj) with the properties

gjk = ckc−1j

in ωj ∩ ωk. Then there exist gj ∈ O∗(ωj) such that

gjk = gkg−1j

in ωj ∩ ωk.

Proof. By the assumption there exist cj ∈ C∗(ωj) such that

gjk = ckc−1j

in ωj ∩ ωk. First we assume that ωj is simply connected. By Lemma 5.16
there exist bj ∈ C(Ω) such that cj = ebj . We set hjk = bk − bj . Then we
have

gjk = ckc−1j = ehjk .
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Using the same method as in the proof of Lemma 5.16, hjk is holomorphic
in ωj ∩ ωk. Evidently we have

hij = −hji, hij + hjk + hki = 0.

By Theorem 5.26 there exist hk ∈ O(ωk) such that

hjk = hk − hj

in ωj ∩ ωk. We set gk = ehk . Then

gkg
−1
j = gjk.

Next we prove the general case. Let {ω′ν} be a refinement of {ωj} whose
elements are simply connected open subsets of Ω. Then for any ν, there
exists iν such that ω′ν ⊂ ωiν . Define

g′νµ = giνiµ

in ω′ν ∩ ω′µ. Then from the proof of the first half, there exist g′µ ∈ O∗(ω′µ)
such that

g′νµ = g′µg
′
ν
−1
.

in ω′ν ∩ ω′µ. Consequently, we obtain

g′µg
′
ν
−1
giµigiiν = 1

in ωi∩ω′ν∩ω′µ ⊂ ωi∩ωiν∩ωiµ . Hence we have g′µgiµi = g′νgiν i in ωi∩ω′ν∩ω′µ.
If we define gi = g′νgiν i in ωi ∩ ω′ν , then gi ∈ O∗(ωi). Therefore we obtain

gkg
−1
j = g′νgiνk(g

′
νgiνj)

−1 = giνkgjiν = gjk

in ω′ν ∩ ωj ∩ ωk. �

Exercises

5.1 (Poincaré theorem) Define

∆ = {z ∈ C | |z| < 1}, B = {w ∈ C2 | |w| < 1}.
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Show that there is no biholomorphic mapping F = (f1, f2) : ∆×∆→ B

by proving the following:

(a) For w ∈ ∆, define a holomorphic mapping Fw : ∆→ B by

Fw(z) =
(
∂f1
∂w

(z, w),
∂f2
∂w

(z, w)
)
.

Then for any z0 ∈ ∂∆ we have

lim
z→z0

Fw(z) = 0.

(b) F (z, w) is constant with respect to w.

5.2 Let (S, π,X) be a sheaf over X . Show that if sx ∈ Sx, then there
exists a neighborhood U of x and s ∈ Γ(U,S) such that s(x) = sx.

5.3 Suppose C1 curve ϕ : [0, 2π]→ C\{0} satisfies ϕ(0) = ϕ(2π). Show
that

N(ϕ) =
1

2πi

∫ 2π

0

ϕ′(θ)
ϕ(θ)

dθ

is an integer.

5.4 Suppose g is a C1 function in {z ∈ C | |z| ≤ 1} and nowhere vanish-
ing. Prove that if we set ϕ(θ) = g(eiθ), then N(ϕ) = 0.

5.5 (Oka’s counterexample) Define

Ω = {(z1, z2) ∈ C2 | 34 < |zj | <
5
4 , j = 1, 2}.

Then Ω is a domain of holomorphy. Define

A = {z ∈ Ω | z2 − z1 + 1 = 0},

ω1 = A ∩ {z ∈ Ω | Im z1 < 0}, ω2 = A ∩ {z ∈ Ω | Im z1 > 0}

and

U1 = Ω− ω1, U2 = Ω− ω2.

Show that

(a) A ∩ {z ∈ Ω | Im z1 = 0} = φ, A = ω1 ∪ ω2, Ω = U1 ∪ U2.
(b) Define f1 = z2 − z1 + 1 in U1, f2 = 1 in U2. Then f2f−11 ∈ O∗(U1 ∩

U2).

(c) There is no f ∈ O(Ω) which satisfies f/f2 ∈ O∗(U2), f/f1 ∈ O∗(U1).
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Compact Operators

In Appendix A we prove Proposition A.10 and Proposition A.13 concerning
compact operators which are needed to prove Theorem 3.30 and Theorem
3.29, respectively. For the proofs we refer to Berezansky-Sheftel-Us [BES].

Let E1 and E2 be normed spaces and let A : E1 → E2 be a bounded
operator. Define A∗ : E′2 → E′1 by

(A∗f)(x) = f(Ax) (f ∈ E′2, x ∈ E1). (A.1)

A∗ is called a conjugate operator of A.
For a bounded linear operator A : E1 → E2, A∗ : E′2 → E′1 is a bounded

linear operator. Moreover, we have ‖A∗‖ = ‖A‖.
Let X and Y be normed spaces.
(1) We denote by B(X,Y ) the set of all bounded linear operators T :

X → Y . Moreover, we denote B(X,X) by B(X).
(2) A linear operator T : X → Y is called a compact operator if for any

bounded sequence {xn} of X , there exists a subsequence{xni} of {xn} such
that {T (xni)} converges to a point in Y .

(3) We say that T ∈ B(X,Y ) is invertible if there exists S ∈ B(Y,X)
such that

ST = IX , TS = IY ,

where IX is the identity mapping from X onto X and IY is the identity
mapping from Y onto Y . In this case we write S = T−1.

Proposition A.1 (Ascoli-Arzela theorem) Let X be a compact topo-
logical space and let C(X) be a Banach space consisting of all continuous
functions on X. That is, if we define the metric for f, g ∈ C(X) by

d(f, g) = ‖f − g‖ = sup{|f(x)− g(x)| | x ∈ X},

331
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then C(X) is a complete metric space). Suppose Φ ⊂ C(X) satisfies the
following properties:

(a) sup{|f(x)| | x ∈ X, f ∈ Φ} =M <∞.
(b) For any ε > 0 and any x ∈ X there exist a neighborhood V such that

|f(y)− f(x)| < ε (y ∈ V, f ∈ Φ).

Then every sequence {fn} in Φ contains a convergent subsequence.

Proof. Since X is compact, for any positive integer k, it follows from (b)
that there exist a finite subset Fk of X and a neighborhood V k

y of y ∈ Fk
such that

X = ∪
y∈Fk

V k
y

and

|f(x)− f(y)| < 1
k

(f ∈ Φ, x ∈ V k
y ).

We set F =
∞
∪

k=1
Fk. Then F is at most countable. Suppose F is countable,

say F = {x1, x2, · · · }. Since |fn(x1)| ≤M , there exists a subsequence {g1n}
of {fn} such that{g1n(x1)} converges. Since |g1n(x2)| ≤ M , there exists a
subsequence {g2n} of {g1n} such that {g2n(x2)}. Repeating this process, there
exist {gin}, i = 1, 2, · · · , satisfying the following properties:

(a) {g1n} is a subsequence of {fn}.
(b) Each {gi+1n } (i = 1, 2, · · · ) is a subsequence of {gin}.
(c) lim

n→∞
gin(xj) (j = 1, · · · , i) exist.

We set hn = gnn . Then {hn} is a subsequence of {fn} and lim
n→∞

hn(xi),

i = 1, 2, · · · , exist. Next we show that {hn} is a Cauchy sequence in C(X).
We fix k. For y ∈ F , there exists a positive integer n0 such that

|hn(y)− hm(y)| < 1
k

for n,m ≥ n0. For x ∈ X there exists y ∈ Fk such that x ∈ Vy. Hence

|hn(x) − hm(x)| ≤ |hn(x) − hn(y)|+ |hn(y)− hm(y)|
+|hm(y)− hm(x)|

<
1
k

+
1
k

+
1
k

=
3
k
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for n,m ≥ n0. Consequently,

‖hn − hm‖ ≤ 3

k
(n,m ≥ n0),

which means that {hn} is a Cauchy sequence, and hence {hn} converges.

�

Proposition A.2 Let E be a Banach space. If a bounded operator A :

E → E is compact, then A∗: E′ → E′ is compact.

Proof. Let A be a compact operator. Suppose fn ∈ E′ and {fn} is

bounded. We set

S1(0) = {y ∈ E | ‖y‖ = 1}, Q = A(S1(0)).

Then

‖A∗(fn)‖ = sup{|(A∗(fn))(y) | ‖y‖ = 1}
= sup{|fn(A(y))| | ‖y‖ = 1}
= sup{|fn(z)| | z ∈ A(S1(0))}.

Hence Q is a compact set. We set

c = sup{‖fn‖ | n = 1, 2, · · · }, c1 = sup{‖z‖ | z ∈ Q}.

Then we have |fn(z)| ≤ ‖fn‖ ‖z‖ ≤ cc1, which implies that {fn} is uni-

formly bounded on Q. Moreover we have

|fn(z1) − fn(z2)| ≤ c‖z1 − z2‖ (z1, z2 ∈ Q),

which means that {fn} is equicontinuous on Q. By the Ascoli-Arzela the-

orem, there exists a convergent subsequence {fnk
} of {fn}. Taking into

account that

‖fnk
− fnm

‖ = max{|fnk
(z) − fnm

(z)| | z ∈ Q} → 0 (k,m→ ∞),

we have ‖A∗(fnk
) − A∗(fnm

)‖ → 0. Since E′ is complete, {A∗(fnk
)} con-

verges, which means that A∗ is a compact operator. �

Proposition A.3 Let E be a normed space and let V be a closed subspace

of E. For y ∈ E, y 6∈ V , define

V ∗ = {x+ λy | x ∈ V, λ ∈ F}.

Then V ∗ is a closed subspace of E, where F is the set of all scalars.
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Proof. Suppose z ∈ E, zn ∈ V ∗, z = lim
n→∞

zn. Then we have a represen-

tation zn = xn + λny with xn ∈ V, λn ∈ F . Since {xn + λny} is a bounded
sequence, there exists M > 0 such that ‖xn + λny‖ < M for all n. Assume
that |λn| → ∞. Then we have∥∥∥∥xnλn + y

∥∥∥∥ < M

|λn|
→ 0,

which means that lim
n→∞

λ−1n xn = −y. Since V is a closed set, we have
−y ∈ V , which contradicts that y �∈ V . Therefore there exists N > 0 such
that there are infinitely many n with |λn| ≤ N . Hence we can choose a
convergent subsequence {λkn} of {λn}. We set lim

n→∞
λkn = λ. Taking into

account that

‖xkn − (z − λy)‖ ≤ ‖xkn + λkny − z‖+ ‖λkny − λy‖ → 0,

we have lim
n→∞

xkn = z − λy. If we set lim
n→∞

xkn = x, then x ∈ V and
x = z − λy, and hence z ∈ V ∗. Hence V ∗ is closed. �

Proposition A.4 Let E be a normed space and let G be a closed subspace
of E with E �= G. Then for any ε > 0 there exists yε �∈ G such that

‖yε‖ = 1, ‖yε − x‖ > 1− ε (x ∈ G).

Proof. Let z �∈ G. Since G is closed, δ = ρ(z,G) = inf{‖z − x‖ |x ∈
G} > 0. By the definition of the infimum, for any η > 0 there exists xη ∈ G
such that

δ ≤ ‖z − xη‖ < δ + η.

We choose η such that ε = η(δ + η)−1 and set yε = ‖z − xη‖−1(z − xη).
We show that yε satisfies the desired properties. Clearly we have yε �∈ G,
‖yε‖ = 1. Let x ∈ G. Then we have

‖yε − x‖ = ‖z − xη‖−1‖z − (xη + x‖z − xη‖)‖.

Taking into account that xη + x‖z − xη‖ ∈ G, we obtain

‖yε − x‖ ≥ ‖z − xη‖−1δ >
δ

δ + η
= 1− η

δ + η
= 1− ε.

�

Proposition A.5 Let E be a normed space. If every bounded sequence in
E contains a convergent subsequence, then E is a finite dimensional space.
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Proof. Suppose E is an infinite dimensional space. Let x1 ∈ E be such

that ‖x1‖ = 1. We set G1 = {λx1 | λ ∈ F}, where F is the set of all scalars.

It follows from Theorem A3 that there exists x2 6∈ G1 such that

‖x1‖ = 1, ‖x2 − x‖ > 1

2
(x ∈ G1).

In particular, we have ‖x2 − x1‖ > 1
2 . Let G2 be a vector space generated

by x1, x2 . By Theorem A3 there exists x3 6∈ G2 such that

‖x3‖ = 1 ‖x3 − x‖ > 1

2
(x ∈ G2).

In particular, we have

‖x3 − x2‖ >
1

2
, ‖x3 − x1‖ >

1

2
.

Repeating this process, there exists a sequence {xn} such that ‖xn‖ = 1,

‖xn−xm‖ > 1
2 for m 6= n. Then {xn} does not contain any convergent sub-

sequence, which contradicts the hypothesis. Hence E is a finite dimensional

space. �

Proposition A.6 Let E be a Banach space and let A : E → E be a

compact operator, T = A − I, where I: E → E is the identity mapping.

Then KerT = {x ∈ E |Tx = 0} is a finite dimensional space.

Proof. Let {xn} be a bounded sequence in KerT . Since A(xn) = xn,

{xn} contains a convergent subsequence. By Theorem A4, KerT is a finite

dimensional space. �

Proposition A.7 Let E be a Banach space and let A : E → E be a

compact operator, T = A− I. Then T (E) is a closed subspace of E.

Proof. T (E) is a vector space. We show that T (E) is a closed subset of

E. First we show that there is a constant c > 0 depending only on T such

that for y ∈ T (E) there exists x with

Tx = y, ‖x‖ ≤ c‖y‖. (A.2)

Suppose x0 satisfies Tx0 = y. Then any solution x of the equation Tx = y

can be written x = x0 + z, where z is a solution of Tz = 0. Hence we have

d := inf{‖x‖ | Tx = y} = inf{‖x0 + z‖ | z ∈ KerT }.

Then there exists a sequence {zn} ⊂ KerT such that ‖x0 + zn‖ → d.

Consequently, {zn} is bounded. Since KerT is a finite dimensional space in
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view of Proposition A.6, we have a representation zn = an1x1 + · · · + ankxk,

where {x1, · · · , xk} is a basis of KerT . Suppose {an1} is not bounded. Then

there exists a subsequence {ani

1 } of {an1} such that lim
i→∞

ani

1 = ∞. We set

αnj =
anj√∑k
i=1(a

n
i )

2

.

Then |αnj | ≤ 1. We can choose a convergent subsequence {αmi

j } of {αni

j }.
Since we have

zmi
=

{
k∑
i=1

(ami

i )2

}1/2

(αmi

1 x1 + · · · + αmi

k xk),

which implies that lim
i→∞

‖zmi
‖ = ∞. This contradicts the hypothesis. Hence

{an1} is bounded, and hence {an1} contains a convergent subsequence, which

means that {zn} contains a convergent subsequence {znk
}. We set

z0 = lim
k→∞

znk
.

Then we have

‖x0 + z0‖ = lim
k→∞

‖x0 + znk
‖ = d.

We set x̂ = x0 + z0. Then T (x̂) = y. Now we show that x̂ satisfies

(A.2). Suppose (A.2) does not hold. For any positive integer n there exists

yn ∈ T (E) such that

‖x̂n‖ > n‖yn‖, T (x̂n) = yn. (A.3)

We set

ξ̂n = ‖x̂n‖−1x̂n, ηn = ‖x̂n‖−1yn.

If Tξ = ηn, then ‖ξ‖ ≥ 1. Hence ξ̂n has the smallest norm among solutions

of the equation Tξ = ηn. Since {ξ̂n} is bounded, {Aξ̂n} contains a conver-

gent subsequence {A(ξ̂nk
)}. We set ξ0 = lim

k→∞
A(ξ̂nk

). By (A.3) we have

lim
n→∞

ηn = 0. Taking into account that A(ξ̂nk
) − ξ̂nk

= ηnk
, we have

ξ0 = lim
k→∞

ξ̂nk
.

Since A is continuous, we have

A(ξ0) = lim
k→∞

A(ξ̂nk
).
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We obtain A(ξ0) = ξ0, and hence ξ0 ∈ KerT . Thus we have T (ξ̂nk
− ξ0) =

ηnk
, which implies that ‖ξ̂nk

− ξ0‖ ≥ 1. This is a contradiction. This
proves (A.2). Suppose yn ∈ T (E), y ∈ E, yn → y. Taking a subsequence,
if necessary, we may assume that

‖yn − y‖ < 2−n−1, ‖yn+1 − yn‖ < 2−n.

Choose x̂0 such that

T (x̂0) = y1, ‖x̂0‖ ≤ c‖y1‖.

Choose x̂n, n ≥ 1, such that

T (x̂n) = yn+1 − yn, ‖x̂n‖ ≤ c‖yn+1 − yn‖.

We set

x̂ =
∞∑
k=0

x̂k.

Then we have

T (x̂) = T

(
lim
n→∞

n∑
k=0

x̂k

)
= lim

n→∞

n∑
k=0

T (x̂k)

= lim
n→∞

[
y1 +

n∑
k=1

(yk+1 − yk)
]

= lim
n→∞

yn+1 = y,

which means that y ∈ T (E). Hence T (E) is closed. �

Proposition A.8 Let E be a Banach space and let A : E → E be a
compact operator, T = A − I. Then the equation Tx = y has solutions if
and only if for any solution f ∈ E′ of the equation T ∗(f) = 0, one has
f(y) = 0. That is, T (E) = E if and only if KerT ∗ = {0}.

Proof. (Necessity) Let x ∈ E be a solution of Tx = y. Then f(y) =
f(Tx) = (T ∗f)(x) = 0.

(Sufficiency) Suppose y ∈ E satisfies f(y) = 0 for any solution f of
the equation T ∗(f) = 0. If Tx = y does not have solutions, then y �∈
T (E). By Proposition A7, T (E) is a closed subspace. By the Hahn-Banach
theorem, there exists h ∈ E′ such that h = 0 in T (E), h(y) �= 0. Thus
we have (T ∗h)(x) = h(Tx) = 0, and hence T ∗h = 0. This contradicts the
assumption. �



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

338 Several Complex Variables and Integral Formulas

Proposition A.9 Let E be a Banach and let A : E → E be a compact
operator, T = A − I. Then the equation T ∗(f) = g has solutions if and
only if g(x) = 0 for any x ∈ KerT . That is, T ∗(E′) = E′ if and only if
KerT = {0}.

Proof. (Necessity) Let f ∈ E′ satisfy T ∗(f) = g and let x ∈ KerT . Then
we have g(x) = (T ∗(f))(x) = f(Tx) = f(0) = 0.

(Sufficiency) Suppose g ∈ E′ satisfies g(x) = 0 for any x ∈ KerT .
Define a linear functional f0 on T (E) byf0(y) = g(x) for y ∈ T (E), where
x is one of the solutions of the equation T (x) = y. If T (x1) = T (x2) = y,
then T (x1 − x2) = 0, which means that g(x1) = g(x2 + (x1 − x2)) = g(x2).
Hence f0 is well defined. f0 is linear since g is linear. Now we show that
f0 is bounded. By (A.2) there exists a solution x̂ of the equation Tx = y

such that ‖x̂‖ ≤ c‖y‖. Hence we have

|f0(y)| = |g(x̂)| ≤ ‖g‖ ‖x̂‖ ≤ c‖g‖ ‖y‖.

Hence f0 is bounded. By the Hahn-Banach theorem, f0 is extended to a
bounded linear functional F on E. Then for x ∈ E we have

(T ∗(F ))(x) = F (Tx) = f0(Tx) = g(x).

Hence we have T ∗(F ) = g. �

Proposition A.10 Let E be a Banach space and let A : E → E be a
compact operator, T = A− I. Then T (E) = E if and only if KerT = {0}.
In this case T : E → E is surjective and invertible.

Proof. (Necessity) Let Gn = KerT n. Then Gn is a closed subspace of
E and Gn ⊂ Gn+1. Suppose T (E) = E. Assume that there exist x1 �= 0
such that T (x1) = 0. We set T (x2) = x1. Repeating this process, we have
T k−1(xk) = x1 �= 0. Since T k(xk) = T (x1) = 0, we have xk ∈ Gk\Gk−1.
By Proposition A4 there exists yk ∈ Gk such that ‖yk‖ = 1, ‖yk − x‖ ≥
1
2 (x ∈ Gk−1). Since {yk} is bounded, {A(yk)} contains a convergent
subsequence. On the other hand, if n > m, then we have

T n−1(ym + T (yn)− T (ym)) = T n−1(ym) + T n(yn)− T n(ym) = 0,

which implies that ym + T (yn)− T (ym) ∈ Gn−1. Consequently we have

‖A(yn)−A(ym)‖ = ‖yn − (ym + T (yn)− T (ym))‖ ≥ 1
2
,

which contradicts {A(yk)} contains a convergent subsequence. Hence we
have KerT = {0}.
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(Sufficiency) Suppose KerT = {0}. By Proposition A.9, we have
T ∗(E′) = E′. A∗ is a compact operator and T ∗ = A∗ − I. Using the
same method as the proof of the first half, we have KerT ∗ = {0}. By
Proposition A8, we obtain T (E) = E. Finally we show that T is invertible.
Since T :E → E is surjective, there is an inverse mapping T−1 : E → E.
For Tx = y, x satisfies (A.2), ‖T−1y‖ ≤ c‖y‖, which means that T−1 is
bounded. Hence T is invertible. �

Proposition A.11 Let X and Y be Banach spaces. Then

(a) Every compact operator T : X → Y is bounded.
(b) Let T ∈ B(X,Y ) and let T (X) be a finite dimensional subspace of Y .

Then T is a compact operator.
(c) The set of all compact operators from X to Y is a closed subset of

B(X,Y ).

Proof. (a) Suppose the compact operator T : X → Y is not bounded.
Then there exists {xn} such that ‖xn‖ = 1, ‖T (xn)‖ → ∞. Since {T (xn)}
does not contain any convergent subsequence, which contradicts that T is
compact.

(b) We denote the basis of T (X) by {e1, · · · , ek}. Let {xn} be a bounded
sequence in X . Then we have a representation

T (xn) = a1ne1 + · · ·+ aknek,

where {ajn}, j = 1, · · · , k, are bounded sequences. Then {a1n} contains
a convergent subsequence {a1jn

}. Similarly, {a2jn
} contains a convergent

subsequence {a2sn
}. Repeating this process, {T (xn)} contains a convergent

subsequence {T (xtn)}. Hence T is compact.
(c) Let Tn : X → Y , n = 1, 2, · · · , be a compact operators and let

T ∈ B(X,Y ), ‖Tn − T ‖ → 0. Suppose {xn} is a bounded sequence in
X . Then there exists c > 0 such that ‖xn‖ ≤ c. Since T1 is a compact
operator, {T1(xn)} contains a convergent subsequence {T1(xn1)}. Similarly,
{T2(xn1)} contains a convergent subsequence {T2(xn2)}. Repeating this
process, {Tk(xnn)} converges for any k. On the other hand, we have

‖T (xmm)− T (xnn)‖
≤ ‖T (xmm)− Tk(xmm)‖
+‖Tk(xmm)− Tk(xnn)‖+ ‖T (xnn)− Tk(xnn)‖
≤ ‖T − Tk‖(‖xmm‖+ ‖xnn‖) + ‖Tk(xnn)− Tk(xmm)‖
≤ 2c‖T − Tk‖+ ‖Tk(xnn)− Tk(xmm)‖,
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which means that {T (xnn)} is a Cauchy sequence, and hence {T (xnn)}
converges. Hence T is a compact operator. �

Proposition A.12 Let {Kn(x, y)} be a sequence of measurable functions
in Ω× Ω which satisfies the following properties:

(1) There exists M > 0 such that |Kn(x, y)| ≤M (x, y ∈ Ω).
(2) lim

n→∞
Kn(x, y) = 0 (x, y ∈ Ω).

For 1 ≤ p <∞, define a linear operator Kn : Lp(Ω)→ Lp(Ω) by

Knf(y) =
∫
Ω

Kn(x, y)f(x)dV (x).

Then

lim
n→∞

‖Kn‖p = 0.

Proof. By the Hölder inequality we have

|Knf(y)| ≤
[∫
Ω

|Kn(x, y)|dV (x)
]1/q [∫

Ω

|Kn(x, y)||f(x)|pdV (x)
]1/p

.

Consequently we have

‖Knf‖pLp ≤M‖f‖pLp

∫
Ω

[∫
Ω

|Kn(x, y)|dV (x)
]p/q

dV (y).

Therefore we have limn→∞ ‖Kn‖p = 0. �

Proposition A.13 Let Ω ⊂ Rn be a bounded open set and let K(x, y)
be a measurable function in Ω × Ω. Suppose there exists C > 0 with the
properties that

(1)
∫
Ω

|K(x, y)|dV (x) ≤ C (y ∈ Ω).

(2)
∫
Ω

|K(x, y)|dV (y) ≤ C (x ∈ Ω).

For 1 ≤ p <∞, we define a linear operator K : Lp(Ω)→ Lp(Ω) by

Kf(y) =
∫
Ω

K(x, y)f(x)dV (x).

Then K is a compact operator.
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Proof. First we assume thatK(x, y) is bounded. Then there exists C > 0
such that |K(x, y)| ≤ C. Since K is expressed by

K(x, y) = K1(x, y)+ +K1(x, y)− + i(K2(x, y)+ +K2(x, y)−),

where K±i (x, y) ≥ 0, there exists a sequence {Kn(x, y)} of simple functions
which are finite linear combinations of characteristic funtions of product
sets in Ω× Ω such that |Kn(x, y)| ≤ 2C and Kn(x, y)→ K(k, y) in Ω× Ω
almost everywhere. Since∫

Ω

χA×B(x, y)f(x)dV (x) =
∫
Ω

χA(x)f(x)dV (x)χB(y),

the range of Kn : Lp(Ω) → Lp(Ω) is a finite dimensional space. Hence By
Proposition A.11 (b),Kn is compact. By Proposition A.12, ‖K−Kn‖p → 0.
By Proposition A.11 (c), K is compact. In the general case, we set

K(j)(x, y) =
{
K(x, y) (|K(x, y)| ≤ j)
0 (|K(x, y)| > j) .

Then K(j)(x, y) is bounded, and hence compact on Lp(D) by the first part
of the proof. It follows from (2) that∫

Ω

[∫
Ω

|K(x, y)−K(j)(x, y)||f(x)|pdV (x)
]
dV (y)

≤ 2
∫
Ω

|K(x, y)|dV (y)
∫
Ω

|f(x)|pdV (x)

≤ 2C‖f‖p,

which implies that

‖(K−K(j))f‖pLp ≤ 2C‖f‖pLp

∫
Ω

[∫
Ω

|K −K(j)|dV (x)
]p/q

dV (y).

We set

gj(y) =
∫
Ω

|K(x, y)−K(j)(x, y)|dV (x).

It follows from (1) that |gj(y)| ≤ 2C and gj(y) → 0 (pointwise). By the
Lebesgue dominated convergence theorem∫

Ω

[∫
Ω

|K −K(j)|dV (x)
]p/q

dV (y)→ 0 (j →∞).

By Proposition A.11 (c), K is compact. �
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Appendix B

Solutions to the Exercises

1.2 Suppose u is upper semicontinuous in Ω, that is, for any real number
c, {z | u(z) < c} is an open set. For ε > 0, {z | u(z) < u(a) + ε} is an
open set containing a. Hence for sufficiently small δ > 0, if |z − a| < δ,
then u(z) < u(a) + ε. Consequently we have sup|z−a|<δ u(z) ≤ u(a) + ε,
and hence

limsup
z→a

u(z) = lim
δ→0

(
sup

|z−a|<δ

u(z)

)
≤ u(a) + ε.

Since ε > 0 is arbitrary, we obtain limsupz→a u(z) ≤ u(a).
1.3 Suppose |f | attains the maximum at a ∈ Ω. We choose r =

(r1, · · · , rn) with rj > 0 such that P (a, r) ⊂ Ω. It follows from Theorem
1.7 that

f(a) =
1

(2πi)n

∫
∂P1

· · ·
∫
∂Pn

f(ζ)dζ1 · · · dζn
(ζ1 − a1) · · · (ζn − an)

.

Consequently,

|f(a)| ≤ 1
(2π)n

∫ 2π

0

· · ·
∫ 2π

0

|f(a1 + r1eiθ1 , · · · , an + rneiθn)|dθ1 · · · dθn

≤ |f(a)|.

Hence we have∫ 2π

0

· · ·
∫ 2π

0

{
|f(a)| − |f(a1 + r1eiθ1 , · · · , an + rneiθn)|

}
dθ1 · · ·dθn = 0.

Thus we have

|f(a)| = |f(a1 + r1eiθ1 , · · · , an + rneiθn)| (0 ≤ θj ≤ 2π, j = 1, · · · , n),

343
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which means that |f(z)| = |f(a)| for z ∈ P (a, r). Hence |f | is constant.
Since f is holomorphic in each variable, f is constant.

1.4 Since f is the limit of continuous functions which converges uni-
formly on every compact subset of Ω, f is continuous in Ω. Let a ∈ Ω. We
choose r > 0 such that P (a, r) ⊂ Ω. It follows from Theorem 1.7 that for
z ∈ P (a, r)

fj(z) =
1

(2πi)n

∫
∂P1

· · ·
∫
∂Pn

fj(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

. (B.1)

Letting j →∞ in (B.1) we have

f(z) =
1

(2πi)n

∫
∂P1

· · ·
∫
∂Pn

f(ζ)dζ1 · · · dζn
(ζ1 − z1) · · · (ζn − zn)

. (B.2)

The right side of (B.2) can be expanded to a power series with center a (or
from (B.2) one can prove ∂f/∂z̄j = 0), which implies that f is holomorphic
in P (a, r).

1.5 We choose r = (r1, · · · , rn) such that P (ξ, r) ⊂ Ω. It follows from
Theorem 1.7 that for z ∈ P (ξ, r) f is expressed by

f(z) =
∑

k1,··· ,kn

ak1,··· ,kn(z1 − ξ1)k1 · · · (zn − ξn)kn ,

where

ak1,··· ,kn =
∂αf(ξ)
α!

(α = (k1, · · · , kn)).

Hence we have f(z) = 0 for z ∈ P (ξ, r). Since Ω is connected, we have
f = 0.

1.6 Let 0 < r < 1. Define for t with −∞ < t <∞

g(t) =

{
e−(t−r)−1

e−(1−t)−1
(r < t < 1)

0 (otherwise)
.

Then g is a C∞ function in R. We set

A =
∫
Cn

g
(√
|z1|2 + · · ·+ |zn|2

)
dV (z),

λ(z) = A−1g
(√
|z1|2 + · · ·+ |zn|2

)
.

Then λ satisfies the following properties:

(a) λ ∈ C∞(Cn).



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Solutions to the Exercises 345

(b) λ(z) = 0 for |z| ≥ 1.
(c)
∫
Cn λ(z)dV (z) = 1.

(d) λ depends only on |z1|, · · · , |zn|.

1.7 Define g such that g(z) = f(z)/z for z �= 0 and g(0) = f ′(0) for
z = 0. Then g is holomorphic in B(0, 1). By the maximum principle, we
have |g(z)| ≤ 1.

1.8 Define Φ(z) = (z + z1)/(1 + z̄1z) and Ψ(z) = (z − w1)/(1− w̄1z).
Then the mapping Ψ ◦ f ◦Φ : B(0, 1)→ B(0, 1) is one-to-one and onto and
satisfies Ψ ◦ f ◦ Φ(0) = 0. Apply Schwarz’s lemma.

1.9 By Taylor’s formula, there exist holomorphic functions ϕ and ψ
at a such that f(z) = (z − a)ϕ(z), g(z) = (z − a)ψ(z), ψ(a) �= 0 Use
ϕ(a) = f ′(a) and ψ(a) = g′(a).

1.10 Since f(a) = 0, there exists a holomorphic function g in an open
neighborhood W of a such that f(z) = (z − a)g(z) (z ∈ W ) and g(a) �= 0.
By the continuity, there exists an open neighborhood U ⊂W of a such that
g(z) �= 0 for all z ∈ U . On the other hand, there exists a natural number
N such that zn ∈ U whenever n ≥ N . Then 0 = f(zn) = (zn − a)g(zn)
whenever n ≥ N , which is a contradiction.

1.11 Let w0 ∈ f(Ω). It is sufficient to show that f(Ω) contains an
open neighborhood of w0. There exists z0 ∈ Ω such that w0 = f(z0). We
may assume that w0 = z0 = 0. By the uniqueness theorem (Exercise 1.10),
we can choose δ > 0 such that {z | |z| ≤ δ} ⊂ Ω and f(z) �= 0 for |z| = δ.
We set d = min|z|=δ |f(z)|. Then d > 0. Suppose there exists w such that
w �∈ f(Ω) and |w| < d. Since ϕ(z) = (f(z) − w)−1 is holomorphic in Ω,
it follows from the maximum principle that 1/|w| ≤ 1/((d − |w|), which
implies that {w | |w| < d/2} ⊂ f(Ω).

1.12 a ∈ Ω. Since f ′/f is holomorphic in a simply connected domain
Ω, we can define a holomorphic function ϕ in Ω such that

ϕ(z) =
∫ z

a

f ′(ζ)
f(ζ)

dζ.

We set ψ = eϕ. Then a simple calculation yields

d

dz

(
f(z)
ψ(z)

)
= 0.

There is a constant C such that f(z) = Ceϕ(z). Let α be an n-th root of
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C. Then g(z) = αe(ψ(z)/m) satisfies f = gm. Let β satisfy C = eβ . Then
h = ψ + β satisfies f = eh.

1.13 Suppose there exists a ∈ Ω such that f ′(a) = 0. By the unique-
ness theorem, there exists a positive integer m (m ≥ 2) such that

0 = f ′(a) = · · · f (m−1)(a) = 0, f (m)(a) �= 0.

Using Taylor expansion, there exists a holomorphic function g in a neigh-
borhood of a such that

f(z) = f(a) + (z − a)mg(z), g(a) �= 0.

By continuity, there exists δ > 0 such that g(z) �= 0 for z ∈ B(a, δ). By
Exercise 1.12, there exists a holomorphic function h in B(a, δ) such that
g(z) = h(z)m for z ∈ B(a, δ). Define ϕ(z) = (z − a)h(z). Then

f(z) = f(a) + ϕ(z)m (z ∈ B(a, δ)), ϕ(a) = 0.

Since ϕ(B(a, δ)) is an open set containing 0 by Exercise 1.11, there is ε > 0
such that {w | |w| = ε} ⊂ ϕ(B(a, δ)). Let ϕ(z0) = w0 and |w0| = ε.
We denote by w0, w1, · · · , wm−1, the m-th roots of wm

0 . Then there exist
z0, z1, · · · , zm−1 ∈ B(a, δ) such that ϕ(zi) = wi (0 ≤ i ≤ m−1). Therefore,
f(zi) = f(a)+wm

0 for i = 0, 1, · · · ,m−1, which contradicts f is a one-to-one
mapping.

1.14 First we show that f−1 is continuous. Suppose wn, w0 ∈ f(Ω)
and wn → w0. We set f−1(wn) = zn and f−1(w0) = z0. Since Ω is open,
there exists r > 0 such that B(z0, r) ⊂ Ω. For any ε > 0 with 0 < ε < r,
F (B(z0, ε)) is an open set containing w0 by Exercise 1.11. There exists
an integer N such that wn ∈ f(B(z0, ε)) whenever n ≥ N , and hence
zn ∈ B(z0, ε) whenever n ≥ N . Thus we have limn→∞ f

−1(wn) = f−1(w0).
Hence f−1 is continuous. We set f(z) = w, f(z0) = w0. Then if w → w0,
then z → z0, Consequently,

lim
w→w0

f−1(w)− f−1(w0)
w − w0

= lim
z→z0

z − z0
f(z)− f(z0)

=
1

f ′(z0)
.

By Exercise 1.13, we have f ′(z0) �= 0. Hence f−1 is holomorphic.

2.2 Let K be a compact subset of Ω. For z ∈ K there exists ε(z) > 0
such that

B(z, ε(z)) = {w ∈ Cn | |w − z| < ε(z)} ⊂ Ω.
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Since K is compact, by the Heine-Borel theorem there exist zi ∈ K (i =

1, · · · , p) such that

K ⊂
p
∪
i=1

B(zi, ε(zi)).

We set L = ∪pi=1B(zi, ε(zi)). Let d be the distance between K and the

boundary of L. Choose ρ such that 0 < ρ < d/(3n). For z′, z′′ ∈ K,

|z′− z′′| < ρ, we set Γ = {w | |wj − z′j| = 2ρ}. Then by the Cauchy integral

formula we have

fλ(z
′) − fλ(z

′′) =
1

(2πi)n

∫
Γ

fλ(ζ1, · · · , ζn)
(ζ1 − z′1) · · · (ζn − z′n)

dζ1 · · · dζn

− 1

(2πi)n

∫
Γ

fλ(ζ1, · · · , ζn)

(ζ1 − z′′1 ) · · · (ζn − z′′n)
dζ1 · · · dζn.

Since F is uniformly bounded, there exists a constant M > 0 such that

|fλ(ζ)| < M (λ ∈ Λ, ζ ∈ Ω).

Hence there exists a constant C > 0 such that

|fλ(z′) − fλ(z
′′)| ≤ CM |z′ − z′′|

ρ2n
.

Thus for any ε > 0, if we set δ = ρ2nε(CM)−1 , then

z′, z′′ ∈ K, |z′ − z′′| < δ ⇒ |fλ(z′) − fλ(z
′′)| < ε,

which means that F is equicontinuous on K.

2.3 Let {Kj} be a sequence of compact subsets of Ω which satisfies

Kj ⊂ (Kj+1)
◦,

∞
∪
j=1

Kj = Ω.

We choose a countable set E ⊂ Ω such that each E ∩ Kj is dense in Kj .

Let E = {wi}. Since {um(w1)} is a bounded sequence, {um} contains a

subsequence {um,1} which converges at w1. By the same reason, {um,1}
contains a subsequence {um,2} which converges at w2. Repeating this pro-

cess, there exists a subsequence {um,m} of {um} which converges pointwise

in E. It follows from Exercise 2.2 that {um} is equicontinuous in Kj, which

means that for ε > 0, there exists δj such that

z′, z′′ ∈ Kj , |z′ − z′′| < δj ⇒ |um,m(z′) − um,m(z′′)| < ε (j = 1, 2, · · · ).
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Let Kj ∩E = {ai}. Since Kj ∩ E is dense in Kj, we have

Kj ⊂
∞
∪
i=1
B(ai, δj).

Since Kj is compact, there exists a positive integer p such that

Kj ⊂
p
∪
i=1
B(ai, δj). (B.3)

Since {um,m} converges in Kj ∩ E, there exists a positive integer n0 such
that if r, s > n0, then

|ur,r(ai)− us,s(ai)| < ε (i = 1, · · · , p).

Suppose z ∈ Kj. It follows from (B.3) that there exists i (1 ≤ i ≤ p) such
that |z − ai| < δj . Hence, if r, s > n0, then

|ur,r(z)− us,s(z)| ≤ |ur,r(z)− ur,r(ai)|+ |ur,r(ai)− us,s(ai)|

+|us,s(ai)− us,s(z)| < 3ε,

which implies that {um,m(z)} converges uniformly on Kj. Let K be an
arbitrary compact subsets of Ω. Then there exists Kj such that K ⊂ Kj .
Hence {um,m} converges uniformly on every compact subset of Ω.

2.4 Let b > 0. Define for x with −∞ < x <∞

gb(x) =

{
e−

b
x e−

b
a−x (0 < x < a)

0 (otherwise)
.

Then gb ∈ C∞(R). We set

fb(x) =

∫ a
x
gb(t)dt∫ a

0
gb(t)dt

.

Then we have fb(x) = 1 (x ≤ 0), fb(x) = 0 (x ≥ a), fb ∈ C∞(R),
0 ≤ fb(x) ≤ 1. Since lim

b→0
gb(x) = 1 (0 < x < a),∫ a

0

gb(x)dx→ a as b→ 0.

Hence if we choose b > 0 sufficiently small, then

|f ′b(x)| =
|gb(x)|∫ a
0
gb(t)dt

<
c

a
.

fb satisfies (a), (b) and (c).
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3.1 Let x, y ∈ Γδ/2 and d = |x− y| ≤ δ/2. Then

|g(x1, x′)− g(x1 + d, x′)| ≤
∫ x1+d

x1

∣∣∣∣ ∂g∂x1 (t, x′)
∣∣∣∣ dt ≤ C1Kdα.

By the mean value theorem, there exists θ such that

|g(x1 + d, x′)− g(y1 + d, y′)| ≤ Kθα−1d,

where θ is a point between x1 + d and y1 + d. Since θ > d, we have

|g(x1 + d, x′)− g(y1 + d, y′)| ≤ Kdα.

Then

|g(x)− g(y)| ≤ |g(x1, x′)− g(x1 + d, x′)|
+|g(x1 + d, x′)− g(y1 + d, y′)|
+|g(y1 + d, y′)− g(y1, y′)|

≤ C2Kdα.

3.2

dF1(z + λθ(w − z))
dλ

|λ=1

=
n∑

j=1

{
∂F1
∂zj

(z + λθw)θwj +
∂F1
∂z̄j

(z + λθw)θw̄j

}∣∣∣∣
λ=1

= θ
dF1(z + θ(w − z))

dθ
.

3.3 By the Riesz representation theorem, there exists y ∈ H such that

ϕ(x) = (x, y) (x ∈ H).

For x ∈M , we have

0 = ϕ(x) = (x, y),

which implies that y ∈ M⊥. Suppose there exists x ∈ M⊥ such that x, y
are linearly independent. We set

e1 =
y

‖y‖ , y1 = x− (x, e1)e1, e2 =
y1
‖y1‖

.

Since {e1, e2} is an orthonormal system, (e1, e2) = 0. Hence (y1, y) = 0,
and hence ϕ(y1) = 0. Thus y1 ∈ M . Since y1 is a linear combination of
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x and y, y1 ∈ M⊥. Since M ∩M⊥ = {0}, we have y1 = 0. Hence x and
y are linearly dependent, which contradicts our assumption. Hence M⊥ is
one dimensional.

3.4 When j �= k, we have

(zj , zk) =
∫
Ω

zj z̄kdxdy =
∫ 1

0

∫ 2π

0

rj+keiθ(j−k)rdrdθ = 0,

‖zn‖ =
√
π√

n+ 1
.

Hence {ϕn(z)} is an orthonormal sequence in A2(Ω). We define ψj :
A2(Ω)→ C by

ψj(f) =
(
∂

∂z

)j

f(0)(= f (j)(0)).

Let 0 < r1 ≤ ρ ≤ r2 < 1. By the Cauchy integral formula

f (j)(0) =
j!
2πi

∫
|z|=ρ

f(z)
zj+1

dz =
j!
2π

∫ 2π

0

f(ρeiθ)
(ρeiθ)j

dθ.

If we multiply by ρ and integrate from r1 to r2, then we obtain

(r2 − r1)2
2

f (j)(0) =
j!
2π

∫
r1≤|z|≤r2

f(z)
zj
dxdy.

Consequently, we have for some constant C > 0

|f (j)(0)| ≤ j!
π(r2 − r1)2rj1

∫
r1≤|z|≤r2

|f(z)|dxdy

≤ C‖f‖.

Hence ψj is a continuous linear functional. We set

Mj = {f ∈ A2(Ω) | ψj(f) = 0}.

For f ∈Mj , we have a representation

f(z) =
∞∑
k=0

akz
k (ak =

f (k)(0)
k!

, |z| ≤ R < 1).
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Since aj = 0, we have∫
B(0,R)

ϕj(z)f(z)dxdy =
∫ R

0

∫ 2π

0

ϕj(z)f(reiθ)rdrdθ

=
∞∑
k=0

∫ R

0

∫ 2π

0

rjei(j−k)θakr
k+1drdθ = 0.

Since R < 1 is arbitrary, (f, ϕj) = 0, and hence ϕj ∈M⊥
j . SinceM⊥

j is one
dimensional, M⊥

j = {cϕj |c ∈ C}. By the Riesz representation theorem,
there exists xj ∈ A2(Ω) such that

ψj(f) = (f, xj) (f ∈ A2(Ω)).

We set

xj = x′j + x′′j , (x′j ∈Mj , x
′′
j ∈M⊥

j ).

Then we have x′′j = cjϕj . If we set f = f1 + f2 (f1 ∈Mj, f2 ∈M⊥
j ), then

ψj(f) = (f2, x′′j ) = (f, cjϕj),

which means that

(f, ϕj) = 0 for all j =⇒ aj = 0 for all j =⇒ f = 0.

Hence {ϕn} is complete.

3.5 It follows from Exercise 3.4 that

KΩ(z, ζ) =
∞∑
j=0

√
j + 1√
π
zj
√
j + 1√
π
ζ̄j =

1
π

∞∑
j=0

(j + 1)(zζ̄)j

=
1
π

1
(1− zζ̄)2

.

3.6 Assume that n = 1. (a) Let ζ ∈ Ω. For f ∈ A2(Ω), define

ψ(f) =
∂f

∂z
(ζ).

Then ψ is a continuous linear functional on A2(Ω). By the Riesz represen-
tation theorem, there exists a function u(z, ζ) ∈ A2(Ω) such that

ψ(f) = (f, u(z, ζ)) (f ∈ A2(Ω)).
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Then

u(z0, ζ) = (u(z, ζ), KΩ(z, z0)) = (KΩ(z, z0), u(z, ζ))

= ψ(KΩ(·, z0)) =
∂KΩ(ζ, z0)

∂ζ
=
∂KΩ(z0, ζ)

∂ζ̄
,

which implies that

∂f

∂z
(ζ) =

(
f(z),

∂KΩ(z, ζ)

∂ζ̄

)
.

(b) We have a representation

KΩ(z, z) =

∞∑
n=1

|ϕn(z)|2,

where {ϕj(z)} is a complete orthonormal system in A2(Ω). If K(z, z) = 0,

then for any f ∈ A2(Ω) we have f(z) = 0. Thus KΩ(z, z) > 0.

(c) We have

KΩ(ζ, ζ)
∂2 logKΩ(ζ, ζ)

∂ζ∂ζ
=
∂2KΩ(ζ, ζ)

∂ζ∂ζ

− 1

KΩ(ζ, ζ)

∂KΩ(ζ, ζ)

∂ζ

∂KΩ(ζ, ζ)

∂ζ
.

We fix ζ ∈ Ω. We set

L(z) =
∂KΩ(z, ζ)

∂ζ
.

Then L ∈ A2(Ω). We set

H0 = {f ∈ A2(Ω) | (f,KΩ(·, ζ)) = 0}.

Then by the property of the Bergman kernel, H0 = {f ∈ A2(Ω) | f(ζ) = 0}.
Moreover we have

‖KΩ(·, ζ)‖2 = (KΩ(·, ζ),KΩ(·, ζ)) =

∫
Ω

KΩ(z, ζ)KΩ(z, ζ)dxdy

=

∫
Ω

KΩ(z, ζ)KΩ(ζ, z)dxdy = KΩ(ζ, ζ).

Now we have

L(·) − αKΩ(·, ζ) ∈ H0



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Solutions to the Exercises 353

⇐⇒

0 = (L− αKΩ(·, ζ),KΩ(·, ζ)) = (L,KΩ(·, ζ)) − αKΩ(ζ, ζ)

⇐⇒

α =
(L,KΩ(·, ζ))
KΩ(ζ, ζ)

.

We choose α = (L,KΩ(·, ζ))/KΩ(ζ, ζ). Then we have

‖L− αKΩ(·, ζ)‖2 = (L− αKΩ(·, ζ), L − αKΩ(·, ζ))

= ‖L‖2 − α(KΩ(·, ζ), L)− ᾱ(L,KΩ(·, ζ)) + |α|2‖KΩ(·, ζ)‖2

=
(
∂KΩ(·, ζ)
∂ζ

,
∂KΩ(·, ζ)
∂ζ

)
− |(L,KΩ(·, ζ))|

2

KΩ(ζ, ζ)

=
∂2KΩ(ζ, ζ)
∂ζ∂ζ

− 1
KΩ(ζ, ζ)

∂KΩ(ζ, ζ)
∂ζ

∂KΩ(ζ, ζ)
∂ζ

.

Hence we obtain

∂2 logKΩ(ζ, ζ)
∂ζ∂ζ

≥ 0.

Suppose there exists ζ ∈ Ω such that ∂2 logKΩ(ζ, ζ)/∂ζ∂ζ = 0. Then
L− αKΩ(·, ζ) = 0. For f ∈ H0 we have

0 = (f, L− αKΩ(·, ζ)) = (f, L) =
(
f,
∂KΩ(·, ζ)
∂ζ

)
=
∂f

∂ζ
(ζ).

We set f(z) = z − ζ. Since Ω is bounded, f ∈ A2(Ω) and f(ζ) = 0 which
implies that f ∈ H0. Further we have ∂f

∂ζ (ζ) = 1, which is a contradiction.
Hence we have ∂2 logKΩ(ζ, ζ)/∂ζ∂ζ > 0.

3.7 It follows from Theorem 3.24 that

gΩ1
ij (z) =

∂2

∂zi∂z̄j
logKΩ1(z, z)

=
∂2

∂zi∂z̄j
log{|detf ′(z)|2KΩ2(f(z), f(z))}

=
∂2

∂zi∂z̄j
logKΩ2(f(z), f(z)).
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4.1 By the expansion formula of the determinant we have

Jn =

∣∣∣∣∣∣∣∣∣∣

∂x1
∂r

∂x1
∂θ1

∂x1
∂θ2

· · · ∂x1
∂θn−1

...
...

...
...

...
∂xn−1
∂r

∂xn−1
∂θ1

∂xn−1
∂θ2

· · · ∂xn−1
∂θn−1

cos θ1 −r sin θ1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
= (−1)n+1 cos θ1

∣∣∣∣∣∣∣∣
∂x1
∂θ1

· · · ∂x1
∂θn−1

...
...

...
∂xn−1
∂θ1

· · · ∂xn−1
∂θn−1

∣∣∣∣∣∣∣∣
+(−1)n+2(−r sin θ1)

∣∣∣∣∣∣∣∣
∂x1
∂r

∂x1
∂θ2

· · · ∂x1
∂θn−1

...
...

...
...

∂xn−1
∂r

∂xn−1
∂θ2

· · · ∂xn−1
∂θn−1

∣∣∣∣∣∣∣∣ .

We set

y1 = sin θ2 · · · sin θn−3 sin θn−2 sin θn−1

y2 = sin θ2 · · · sin θn−3 sin θn−2 cos θn−1

y3 = sin θ2 · · · sin θn−3 sin θn−3 cos θn−2

· · ·
yn−1 = cos θ2.

Then we have

= (−1)n+1r

∣∣∣∣∣∣∣∣
y1

∂x1
∂θ2

· · · ∂x1
∂θn−1

...
...

...
...

yn−1
∂xn−1
∂θ2

· · · ∂xn−1
∂θn−1

∣∣∣∣∣∣∣∣
= · · ·
= (−1)n+1rn−1 sinn−2 θ1(−1)n sinn−3 θ2 · · · (−1)5 sin2 θn−3

×
∣∣∣∣ sin θn−1 sin θn−2 cos θn−1

cos θn−1 − sin θn−2 sin θn−1

∣∣∣∣
= ±rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin2 θn−3 sin θn−2.
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4.2 Divide the domain of integration into three parts

{z | |z| < R} = {z | |z| < R, |z| < |w|/2}
∪ {z | |z| < R, |z| ≥ |w|/2, |z + w| < |w|/2}
∪ {z ||z| < R, |z| ≥ |w|/2, |z + w| ≥ |w|/2},

and use the polar coordinate system.

4.3 We set

ρj(z) =
∂ρ

∂zj
(z), Φ(z, ζ) =

m∑
j=1

ρj(ζ)(zj − ζj)

Then by Lemma 4.6, we have

|Φ(z, ζ)| ≥ C(|ImΦ(z, ζ)|+ |ρ(z)|+
n∑

j=1

|ζj |2mj−2|zj − ζj |2 + |z − ζ|M ).

For z with ρn(z) �= 0, define

t(ζ) = ρ(ζ) + |ρ(z)|, y(ζ) = ImΦ(z, ζ),

x2j−1(ζ) = Re(zj − ζj), x2j(ζ) = Im (zj − ζj), j = 1, · · · , n− 1.

Then t, y, x1, · · · , x2n−2 form a coordinate system in a neighborhood of z.
Then apply the method in the proof of Theorem 3.11 and Exercise 4.2.

4.4 (1) Use the strict convexity of t2p. (2) Apply (1).

4.5 By the binomial theorem, there exist positive integers α1, · · · , αm
such that

Re(z2m) = x2m + α1x2m−2(iy)2 + · · ·+ αm(iy)2m

Then on Γσ,

Re(z2m) ≥ x2m − α1x2m−2y2 − α · · ·α−my2m

≥ x2m − α1σ2x2m − · · · − αmσ2mx2m ≥ x2m/2

for sufficiently small σ > 0. On the other hand if we choose ε > 0 sufficiently
small, then ε|z|2m ≤ Re(z2m) on Γσ.
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4.6 Divide the domain of integration into 3 parts:

{z | |z| < R} = {z | |z| < R, |x| < |t|/2}
∪ {z | |z| < R, |x+ t| < |t|/2, |x| > |t|/2}
∪ {z | |z| < R, |x| > |t|/2, |x+ t| > |t|/2}.

4.7 (1) Apply Exercise 4.4 (2) to the equation

2ReΦ(z, ζ) =
N∑

k=1

{2nkξ2nk−1
k (xk − ξk) + 2mkη

2mk−1
k (yk − ηk)}

−γ
N∑

k=1

{(η2mk−2
k − ξ2nk−2

k )((xk − ξk)2 − (yk − ηk)2) + Re ((zk − ζk)2mk)}

= ρ(z) +
N∑

k=1

{ξ2nk

k − x2nk

k + 2nkξ2nk−1
k (xk − ξk)

+η2mk

k − y2mk

k + 2mkη
2mk−1
k (yk − ηk)}

−γ
N∑

k=1

{(η2mk−2
k − ξ2nk−2

k )((xk − ξk)2 − (yk − ηk)2) + Re ((zk − ζk)2mk)}.

Then there exists δ > 0 such that

2ReΦ(z, ζ) ≤ ρ(z)−
N∑

k=1

{ξ2nk−2
k ((δ − γ)(xk − ξk)2 + γ(yk − ηk)2)

+η2mk−2
k ((δ − γ)(yk − ηk)2 + γ(xk − ξk)2)}

−
N∑
k=1

{δ(yk − ηk)2mk + γRe ((zk − ζk)2mk)}

If 0 < γ < δ, α = min{γ, δ − γ}, then

2ReΦ(z, ζ) ≤ ρ(z)− α
N∑

k=1

(ξ2nk−2
k − η2mk−2

k )|zk − ζk|2

−
N∑
k=1

{δ(yk − ηk)2mk + γRe ((zk − ζk)2mk)}.

By Exercise 4.5, if we choose γ > 0 small enough, then there exists β > 0
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such that

N∑
k=1

{δ(yk − ηk)2mk + γRe ((zk − ζk)2mk)} ≥ β|zk − ζk|2mk .

(2) Use (1) and Exercise 4.6.

5.1 Let {zν} ⊂ ∆ be a sequence such that zν → z0. If we set ϕj
ν(w) =

fj(zν , w) for j = 1, 2, then ϕj
ν : ∆ → ∆ are holomorphic. By the Montel

theorem, {ϕj
ν} contains a subsequence {ϕj

νk
} which converges uniformly

on every compact subset of Ω. Let limk→∞ ϕ
j
νk

= ϕj . Since F (z, w) is
a biholomorphic mapping, F (zνk

, w) = (ϕ1νk
(w), ϕ2νk

(w)) converges to a
point in ∂B. Hence (ϕ1(w), ϕ2(w)) ∈ ∂B which means that |ϕ1(w)|2 +
|ϕ2(w)|2 = 1. Operating ∂2/∂w̄∂w we have |ϕ′1(w)|2+ |ϕ′2(w)|2 = 0, Hence
we have ϕ′1 = ϕ′2 = 0 in ∆. Consequently we have limk→∞ Fw(zνk

, w) =
(ϕ′1(w), ϕ′2(w)) = 0. Suppose that limz→z0 Fw(z) = 0 does not hold. Then
there exists a sequence {zn} and δ > 0 such that zn → z0, |Fw(zn)| ≥ δ,
which is a contradiction. This proves (a). For fixed w ∈ ∆, define Fw(z) = 0
(z ∈ ∂∆). Then by (a), Fw is continuous on ∆, holomorphic in ∆ and
equals 0 on ∂∆. By the maximum principle, Fw = 0, and hence f1(z, w)
and f2(z, w) are constant with respect to w. This proves (b). It follows
from (b) that F is not one-to-one, which is a contradiction.

5.2 By the definition of the sheaf, π : S → X is a local homeo-
morphism. Hence there exists a neighborhood W of sx ∈ π−1(x) such
that π : W → π(W ) = U is a homeomorphism. Hence we have
π−1(x) ∩ W = {sx}. Define s = (π|W )−1. Then we have π ◦ s(y) = y

(y ∈ U), which implies that s is a section over U . Since s(x) ∈ π−1(x)∩W ,
we have s(x) = sx.

5.3 We set

h(s) = ϕ(s)exp
[
−
∫ s

0

ϕ′(θ)
ϕ(θ)

dθ

]
.

Then h′(s) = 0, and hence h is constant. Thus h(2π) = h(0) = ϕ(0). Since

h(2π) = ϕ(2π)exp(−2πiN(ϕ)) = ϕ(0)exp(−2πiN(ϕ)),

exp(−2πiN(ϕ)) = 1. Therefore N(ϕ) is an integer.

5.4 Let I = [0, 1]. For t ∈ I, we set ϕt(θ) = g(teiθ). Then
ϕt : [0, 2π] → C\{0} is a C1 curve. By exercise 5.3 N(ϕt) is an inte-
ger. Moreover ϕt(θ) and ϕ′t(θ) are continuous on [0, 2π]× I. Hence N(ϕt)
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is continuous with respect to t, which means that N(ϕ1) = N(ϕ0) = 0.

5.5 (a) Since Im z1 = Im z2 in A, we have for z ∈ A∩{z ∈ Ω | Im z1 =
0}, x2 − x1 + 1 = 0, 3/4 < |x1| < 5/4, 3/4 < |x2| < 5/4, which is a
contradiction. (b) follows from U1 ∩ U2 = Ω\A. (c) Since f1(1, eiθ) = eiθ,
f1(−1, eiθ) = eiθ + 2, we have

N(f1(1, eiθ)) =
1

2πi

∫ 2π

0

ieiθ

eiθ
dθ = 1

and

N(f1(−1, eiθ)) =
1

2πi

∫ 2π

0

ieiθ

eiθ + 2
dθ = − 1

2π

∫
|z|=1

dz

z + 2
= 0.

Consequently,

N(f1(−1, eiθ)) = 0 �= 1 = N(f1(1, eiθ)). (B.4)

Suppose that f ∈ O(Ω) satisfies f/f2 ∈ O∗(U2), h = f/f1 ∈ O∗(U1). We
set ϕt(θ) = f(eit, eiθ) (0 ≤ θ ≤ 2π,−π ≤ t ≤ 0). Then f = f/f2 does not
vanish in U2, by the continuity of N(ϕt) with respect to t

N(f(−1, eiθ)) = N(ϕ−π) = N(ϕ0) = N(f(1, eiθ)).

Similarly, taking into account that h(eit, eiθ) �= 0 (0 ≤ θ ≤ 2π, 0 ≤ t ≤ π),
we have

N(h(−1, eiθ)) = N(h(1, eiθ)).

Since f = hf1 in U1, we obtain

N(f(ζ, eiθ)) = N(h(ζ, eiθ)) +N(f1(ζ, eiθ)) (ζ = ±1).

Hence we have N(f1(−1, eiθ)) = N(f1(1, eiθ)), which contradicts (B.4).
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Birkhäuser.

359



December 19, 2006 18:26 WSPC/Book Trim Size for 9in x 6in ws-book9x6

360 Several Complex Variables and Integral Formulas

[BR1] Berndtsson, B. (1983). A formula for interpolation and division in Cn,
Math. Ann. 263, pp. 399–418.

[BR2] Berndtsson, B. (1996). The extension theorem of Ohsawa-Takegoshi and
the theorem of Donnelly-Fefferman, Ann. Inst. Fourier 46, pp. 1083-1094.

[BRA] Berndtsson, B. and Andersson, M. (1982). Henkin-Ramirez formulas with
weight factors, Ann. Inst. Fourier 32, pp. 91–110.
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Koppelman formula, 127

Koppelman-Leray formula, 132

Leray formula, 131

Leray map, 129

Levi polynomial, 143
Levi’s problem, 95

Lipschitz space, 123

locally finitely generated, 315

maximum principle, 44

Montel’s theorem, 112

Narashimhan’s lemma, 136

Noetherian ring, 309
nonsingular mapping, 303

null space, 60

Ohsawa-Takegoshi theorem, 114

Oka’s counterexample, 330

Oka’s fundamental theorem, 311

open mapping theorem, 46
outward normal vector, 48

Parseval’s equality, 199
peak function, 190

plurisubharmonic, 19

Poincaré theorem, 297, 329

Poisson integral, 5
pseudoconvex open set, 32
pullback, 118

regular of order k, 298
relatively compact, 11
Riesz representation theorem, 56
Riesz-Fischer theorem, 199

Schwarz lemma, 45
Schwarz-Pick lemma, 45
second Cousin problem, 328
section, 308
separable, 86
sheaf, 308
sheaf homomorphism, 308
sheaf of Abelian groups, 308
sheaf of ideals, 320
sheaf of modules, 308
sheaf of relations, 316
sheaf of rings, 308
simple admissible kernel, 217
Sobolev space, 81
stalk, 308
Stein cover, 322
Stein manifold, 319
strictly plurisubharmonic, 19
strictly pseudoconvex domain, 33
strictly subharmonic, 4
subharmonic, 3
submanifold in general position, 159
subsheaf, 308
surface element, 48
surface measure, 149

uniqueness theorem, 45
upper semicontinuous, 3

weak convergence, 86
Weierstrass division theorem, 300
Weierstrass polynomial, 299
Weierstrass preparation theorem, 299
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