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Preface to the Series

The past two decades have seen econometrics grow into a vast discipline. Many different
branches of the subject now happily coexist with one another. These branches interweave
econometric theory and empirical applications, and bring econometric method to bear on
a myriad of economic issues. Against this background, a guided treatment of the modern
subject of econometrics in a of volumes of worked econometric exercises seemed a natural
and rather challenging idea.

The present Series, Econometric Exercises, was conceived in 1995 with this challenge in
mind. Now, almost a decade later it has become an exciting reality with the publication of
the first installment of a series of volumes of worked econometric exercises. How can these
volumes work as a tool of learning that adds value to the many existing textbooks of econo-
metrics? What readers do we have in mind as benefiting from this Series? What format
best suits the objective of helping these readers learn, practice, and teach econometrics?
These questions we now address, starting with our overall goals for the Series.

Econometric Exercises is published as an organized set of volumes. Each volume in the
Series provides a coherent sequence of exercises in a specific field or subfield of econo-
metrics. Solved exercises are assembled together in a structured and logical pedagogical
framework that seeks to develop the subject matter of the field from its foundations through
to its empirical applications and advanced reaches. As the Schaum Series has done so suc-
cessfully for mathematics, the overall goal of Econometric Exercises is to develop the sub-
ject matter of econometrics through solved exercises, providing a coverage of the subject
that begins at an introductory level and moves through to more advanced undergraduate
and graduate level material.

Problem solving and worked exercises play a major role in every scientific subject. They
are particularly important in a subject like econometrics where there is a rapidly grow-
ing literature of statistical and mathematical technique and an ever-expanding core to the
discipline. As students, instructors, and researchers, we all benefit by seeing carefully
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worked-out solutions to problems that develop the subject and illustrate its methods and
workings. Regular exercises and problem sets consolidate learning and reveal applications
of textbook material. Clearly laid out solutions, paradigm answers, and alternate routes
to solution all develop problem-solving skills. Exercises train students in clear analytical
thinking and help them in preparing for tests, and exams. Teachers, as well as students,
find solved exercises useful in their classroom preparation and in designing problem sets,
tests, and examinations. Worked problems and illustrative empirical applications appeal to
researchers and professional economists wanting to learn about specific econometric tech-
niques. Our intention for the Econometric Exercises Series is to appeal to this wide range
of potential users.

Each volume of the Series follows the same general template. Chapters begin with a
short outline that emphasizes the main ideas and overviews the most relevant theorems and
results. The introductions are followed by a sequential development of the material by
solved examples and applications, and computer exercises where these are appropriate. All
problems are solved and they are graduated in difficulty with solution techniques evolving
in a logical, sequential fashion. Problems are asterisked when they require more creative
solutions or reach higher levels of technical difficulty. Each volume is self-contained. There
is some commonality in material across volumes in the Series in order to reinforce learning
and to make each volume accessible to students and others who are working largely, or
even completely, on their own.

Content is structured so that solutions follow immediately after the exercise is posed.
This makes the text more readable and avoids repetition of the statement of the exercise
when it is being solved. More importantly, posing the right question at the right moment
in the development of a subject helps to anticipate and address future learning issues that
students face. Furthermore, the methods developed in a solution and the precision and
insights of the answers are often more important than the questions being posed. In effect,
the inner workings of a good solution frequently provide benefit beyond what is relevant to
the specific exercise.

Exercise titles are listed at the start of each volume, following the Table of Contents, so
that readers may see the overall structure of the book and its more detailed contents. This
organization reveals the exercise progression, how the exercises relate to one another, and
where the material is heading. It should also tantalize readers with the exciting prospect of
advanced material and intriguing applications.

The Series is intended for a readership that includes undergraduate students of economet-
rics with an introductory knowledge of statistics, first and second year graduate students of
econometrics, as well as students and instructors from neighboring disciplines (like statis-
tics, psychology, or political science) with interests in econometric methods. The volumes
generally increase in difficulty as the topics become more specialized.

The early volumes in the Series (particularly those covering matrix algebra, statistics,
econometric models, and empirical applications) provide a foundation to the study of
econometrics. These volumes will be especially useful to students who are following the
first year econometrics course sequence in North American graduate schools and need to



Preface to the Series xxvii

prepare for graduate comprehensive examinations in econometrics and to write an applied
econometrics paper. The early volumes will equally be of value to advanced undergraduates
studying econometrics in Europe, to advanced undergraduates and honors students in the
Australasian system, and to masters and doctoral students in general. Subsequent volumes
will be of interest to professional economists, applied workers, and econometricians who
are working with techniques in those areas, as well as students who are taking an advanced
course sequence in econometrics and statisticians with interests in those topics.

The Econometric Exercises Series is intended to offer an independent learning-by-doing
program in econometrics and it provides a useful reference source for anyone wanting to
learn more about econometric methods and applications. The individual volumes can be
used in classroom teaching and examining in a variety of ways. For instance, instructors
can work through some of the problems in class to demonstrate methods as they are in-
troduced, they can illustrate theoretical material with some of the solved examples, and
they can show real data applications of the methods by drawing on some of the empirical
examples. For examining purposes, instructors may draw freely from the solved exercises
in test preparation. The systematic development of the subject in individual volumes will
make the material easily accessible both for students in revision and for instructors in test
preparation.

In using the volumes, students and instructors may work through the material sequen-
tially as part of a complete learning program, or they may dip directly into material where
they are experiencing difficulty, in order to learn from solved exercises and illustrations. To
promote intensive study, an instructor might announce to a class in advance of a test that
some questions in the test will be selected from a certain chapter of one of the volumes.
This approach encourages students to work through most of the exercises in a particular
chapter by way of test preparation, thereby reinforcing classroom instruction.

Further details and updated information about individual volumes can be obtained from
the Econometric Exercises website,

http://us.cambridge.org/economics/ee/econometricexercises.htm

The website also contains the basic notation for the Series, which can be downloaded along
with the LATEX style files.

As Series Editors, we welcome comments, criticisms, suggestions, and, of course, cor-
rections from all our readers on each of the volumes in the Series as well as on the Series
itself. We bid you as much happy reading and problem solving as we have had in writing
and preparing this Series.

York, Tilburg, New Haven Karim M. Abadir
July 2004 Jan R. Magnus

Peter C. B. Phillips





Preface

This volume on matrix algebra and its companion volume on statistics are the first two
volumes of the Econometric Exercises Series. The two books contain exercises in matrix
algebra, probability, and statistics, relating to course material that students are expected to
know while enrolled in an (advanced) undergraduate or a postgraduate course in economet-
rics.

When we started writing this volume, our aim was to provide a collection of interesting
exercises with complete and rigorous solutions. In fact, we wrote the book that we —
as students — would have liked to have had. Our intention was not to write a textbook,
but to supply material that could be used together with a textbook. But when the volume
developed we discovered that we did in fact write a textbook, be it one organized in a
completely different manner. Thus, we do provide and prove theorems in this volume,
because continually referring to other texts seemed undesirable. The volume can thus be
used either as a self-contained course in matrix algebra or as a supplementary text.

We have attempted to develop new ideas slowly and carefully. The important ideas are
introduced algebraically and sometimes geometrically, but also through examples. It is
our experience that most students find it easier to assimilate the material through examples
rather than by the theoretical development only.

In proving the more difficult theorems, we have always divided them up in smaller ques-
tions, so that the student is encouraged to understand the structure of the proof, and also
will be able to answer at least some of the questions, even if he/she can not prove the whole
theorem. A more difficult exercise is marked with an asterisk (∗).

One approach to presenting the material is to prove a general result and then obtain a
number of special cases. For the student, however, we believe it is more useful (and also
closer to scientific development) to first prove a simple case, then a more difficult case,
and finally the general result. This means that we sometimes prove the same result two or
three times, in increasing complexity, but nevertheless essentially the same. This gives the
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student who could not solve the simple case a second chance in trying to solve the more
general case, after having studied the solution of the simple case.

We have chosen to take real matrices as our unit of operation, although almost all results
are equally valid for complex matrices. It was tempting — and possibly would have been
more logical and aesthetic — to work with complex matrices throughout. We have resisted
this temptation, solely for educational reasons. We emphasize from time to time that results
are also valid for complex matrices. Of course, we explicitly need complex matrices in
some important cases, most notably in decomposition theorems involving eigenvalues.

Occasionally we have illustrated matrix ideas in a statistical or econometric context,
realizing that the student may not yet have studied these concepts. These exercises may be
skipped at the first reading.

In contrast to statistics (in particular, probability theory), there only exist a few books of
worked exercises in matrix algebra. First, there is Schaum’s Outline Series with four vol-
umes: Matrices by Ayres (1962), Theory and Problems of Matrix Operations by Bronson
(1989), 3000 Solved Problems in Linear Algebra by Lipschutz (1989), and Theory and
Problems of Linear Algebra by Lipschutz and Lipson (2001). The only other examples
of worked exercises in matrix algebra, as far as we are aware, are Proskuryakov (1978),
Prasolov (1994), Zhang (1996, 1999), and Harville (2001).

Matrix algebra is by now an established field. Most of the results in this volume of
exercises have been known for decades or longer. Readers wishing to go deeper into the
material are advised to consult Mirsky (1955), Gantmacher (1959), Bellman (1970), Hadley
(1961), Horn and Johnson (1985, 1991), Magnus (1988), or Magnus and Neudecker (1999),
among many other excellent texts.

We are grateful to Josette Janssen at Tilburg University for expert and cheerful typing
in LATEX, to Jozef Pijnenburg for constant advice on difficult LATEX questions, to Andrey
Vasnev for help with the figures, to Sanne Zwart for editorial assistance, to Bertrand
Melenberg, William Mikhail, Maxim Nazarov, Paolo Paruolo, Peter Phillips, Gabriel
Talmain, undergraduates at Exeter University, PhD students at the NAKE program in
Utrecht and at the European University Institute in Florence, and two anonymous referees,
for their constructive comments, and to Scott Parris and his staff at Cambridge University
Press for his patience and encouragement. The final version of this book was completed
while Jan spent six months as a Jean Monnet fellow at the European University Institute in
Florence.

Updates and corrections of this volume can be obtained from the Econometric Exercises
website,

http://us.cambridge.org/economics/ee/econometricexercises.htm

Of course, we welcome comments from our readers.

York, Tilburg Karim M. Abadir
July 2004 Jan R. Magnus



1

Vectors

The set of (finite) real numbers (the one-dimensional Euclidean space) is denoted by R.
The m-dimensional Euclidean space Rm is the Cartesian product of m sets equal to R:

Rm := R× R× · · · × R (m times).

A particular element in Rm, say

x :=


x1

x2
...

xm


is called a (real) vector (or column vector). The quantities xi are called the components
(or elements) of x, while m is called the order of x. An m-component vector x is thus
an ordered m-tuple of (real) numbers. Vectors will be denoted by lowercase bold-italic
symbols such as a, x, ω or f . Vectors of order 1 are called scalars. These are the usual
one-dimensional variables. The m-tuple of zeros is called the null vector (of order m), and
is denoted by 0 or 0m. The m-tuple of ones is called the sum vector (of order m), and is
denoted by ı or ım; the name “sum vector” is explained in Exercise 1.16.

Vector analysis can be treated algebraically or geometrically. Both viewpoints are im-
portant. If xi denotes the income of the i-th family in a particular year in a particular
country, then the vector x is best thought of as a point in Rm. If, however, we think of
quantities such as force and velocity, that is, quantities that possess both magnitude and
direction, then these are best represented by arrows, emanating from some given reference
point 0 (the origin). The first viewpoint is algebraic, the second is geometric.

Two vectors x and y of the same order are said to be equal, written x = y, if xi = yi

for i = 1, . . . , m. If xi > yi for all i, we write x > y or y < x. Similarly, if xi ≥ yi

for all i, we write x ≥ y or y ≤ x. The two basic operations associated with vectors

1



2 1 Vectors

are vector addition and scalar multiplication. The sum of two vectors x and y of the same
order, written as x + y, is defined to be the vector

x + y :=


x1 + y1

x2 + y2
...

xm + ym

 .

Multiplication of a vector x by a scalar λ is defined by means of the relation

λx :=


λx1

λx2
...

λxm

 ,

which can also be written is xλ. The geometric counterpart to these algebraic definitions
is clarified in Figure 1.1. The sum x + y is obtained as the diagonal of the parallelogram

y
x + y

(y1, y2, y3)

(x1 + y1, x2 + y2, x3 + y3)

x
x

λx

(x1, x2, x3)
(x1, x2, x3)

(λx1, λx2, λx3)

OO

Figure 1.1 — Vector addition and scalar multiplication in R3.

formed by x, y and the origin. The product λx is obtained by multiplying the magnitude
of x by λ and retaining the same direction if λ > 0 or the opposite direction if λ < 0. We
say that two vectors x and y are collinear if either x = 0 or y = 0 or y = λx for some
scalar λ. In Figure 1.1, x and y are not collinear, while x and λx are collinear.

An important scalar function of two real vectors x and y of the same order is the inner
product (also called scalar product),

〈x, y〉 :=
m∑

i=1

xiyi,

which leads directly to the norm,

‖x‖ := 〈x, x〉1/2.
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The norm ‖x‖ represents the geometric idea of “length” of the vector x. A vector x for
which ‖x‖ = 1 is said to be normalized (its norm equals 1). The famous Cauchy-Schwarz
inequality (Exercise 1.9) asserts that

|〈x, y〉|1/2 ≤ ‖x‖ · ‖y‖.
Two vectors x and y for which 〈x, y〉 = 0 are said to be orthogonal, and we write

x ⊥ y. If, in addition, ‖x‖ = ‖y‖ = 1, the two vectors are said to be orthonormal. In
m-dimensional Euclidean space, the unit vectors (or elementary vectors, hence the notation
ei)

e1 :=


1
0
0
...
0

 , e2 :=


0
1
0
...
0

 , . . . , em :=


0
0
0
...
1


are orthonormal. In the three-dimensional space of Figure 1.1, the vectors e1, e2, and e3

represent points at 1 on each of the three axes.
To define the angle between two nonzero vectors x and y, consider the triangle OAB in

Figure 1.2. The vectors x and y are indicated by arrows emanating from the origin. We

B

A

O

y

x

x− y

−y

θ

Figure 1.2 — Angle between x and y.

construct the vector −y and the vector x − y = x + (−y). The length of x − y is equal
to the length of AB. Hence, by the cosine rule,

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ · ‖y‖ cos θ.

After simplifying, this becomes

〈x, y〉 = ‖x‖ · ‖y‖ cos θ,
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and thus suggests the following definition of the angle θ between x and y,

cos θ :=
〈x, y〉
‖x‖ · ‖y‖ (0 ≤ θ ≤ π).

We briefly review complex numbers; these will play a small but important role in this
book. Appendix A contains further details. A complex number, say u, is denoted by
u := a+ib, where a and b are real numbers and i is the imaginary unit defined by i2 := −1.
We write Re(u) := a and Im(u) := b. If u := a + ib and v := c + id are two complex
numbers, then they are said to be equal, written u = v, if a = c and b = d. The sum is
defined as

u + v := (a + c) + i(b + d)
and the product by

uv := (ac− bd) + i(ad + bc).
It follows from the definition that uv = vu and u + v = v + u. The complex conjugate of
u is defined by u∗ := a− ib. We then see that u · u∗ = a2 + b2, a nonnegative real number.
We now define the modulus by |u| := (u · u∗)1/2, where we take the nonnegative value of
the square root only. Thus, the modulus of a complex number is a nonnegative real number.
Then, u · u∗ = |u|2 and hence, when u �= 0,

1
u

=
u∗

|u|2 =
a

a2 + b2
− i

b

a2 + b2
.

The set of all m-tuples of complex numbers is denoted by Cm and is called the m-
dimensional complex space. Just as in the real case, elements of C are called scalars and
elements of Cm are called vectors. Addition and scalar multiplication are defined in exactly
the same way as in the real case. However, the inner product of u and v is now defined as
the complex number

〈u, v〉 :=
m∑

i=1

uiv
∗
i .

The norm of a complex vector is the nonnegative real number ‖u‖ := 〈u, u〉1/2.

1.1 Real vectors

Exercise 1.1 (Vector equality)
(a) If x = 0 and y = 0, does it follow that x = y?
(b) Find x, y, z such that (x + y, x + z, z − 1) = (2, 2, 0).

Solution
(a) Only if x and y are of the same order.
(b) We need to solve the three equations in three unknowns,

x + y = 2, x + z = 2, z − 1 = 0.

The solution is x = y = z = 1.
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Exercise 1.2 (Vector addition, numbers) Let

x =

 1
2
−3

 and y =

 7
−1
2

 .

Compute x + y, 3x, −y, and 5x− 2y.

Solution

x + y =

 8
1
−1

 , 3x =

 3
6
−9

 , −y =

−7
1
−2

 , 5x− 2y =

 −9
12
−19

 .

Exercise 1.3 (Null vector) Show that the null vector 0 is similar to the scalar 0 in that,
for any x, we have x + 0 = x.

Solution
We have

x + 0 =


x1 + 0
x2 + 0

...
xm + 0

 =


x1

x2
...

xm

 = x.

Exercise 1.4 (Vector addition) Let x, y, and z be vectors of the same order.
(a) Show that x + y = y + x (commutativity).
(b) Show that (x + y) + z = x + (y + z) (associativity).
(c) Hence, show that x + y + z is an unambiguous vector.

Solution
Let xi, yi, zi denote the i-th components of the vectors x, y, z, respectively. It is sufficient
to show that the corresponding components on each side of the vector equations are equal.
The results follow since (a) xi + yi = yi + xi, (b) = (xi + yi) + zi = xi + (yi + zi), and
(c) xi + yi + zi is unambiguously defined.

Exercise 1.5 (Scalar multiplication)
(a) For vectors x and y of the same order, and scalars λ and µ, show that (λ+µ)(x+y) =
λx + λy + µx + µy.
(b) Show that the null vector is uniquely determined by the condition that λ0 = 0 for all
finite scalars λ.
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Solution
(a) The i-th component on the left side of the equation is (λ + µ)(xi + yi); the i-th com-
ponent on the right side is λxi + λyi + µxi + µyi. The equality of these two expressions
follows from scalar arithmetic.
(b) Consider the equation λx = x. Since, for i = 1, . . . , m, the i-th component on both
sides must be equal, we obtain λxi = xi, that is, (λ − 1)xi = 0. Hence, λ = 1 or xi = 0.
Since the equation holds for all λ, it follows that xi = 0 for all i. Hence, x = 0.

Exercise 1.6 (Proportion of a line) Let 0 ≤ λ ≤ 1. Prove that the point z :=
(1− λ)x + λy divides the line segment joining x and y in the proportion λ : (1− λ).

Solution
A line passing through the points x and y is the set of points {(1 − λ)x + λy, λ ∈ R}.
The line segment joining x and y is defined as L(x, y) := {(1− λ)x + λy, 0 ≤ λ ≤ 1}.
The point z lies on the line segment L(x, y), and

‖z − x‖ = ‖(1− λ)x + λy − x‖ = ‖λ(y − x)‖ = λ‖y − x‖,

‖y − z‖ = ‖y − (1− λ)x− λy‖ = ‖(1− λ)(y − x)‖ = (1− λ)‖y − x‖.
Hence, z divides L(x, y) in the proportion λ : (1 − λ). Notice that the proportion is the
other way round than the coordinates.

Exercise 1.7 (Inner product) Recall that the inner product of two real vectors x and
y in Rm is defined as 〈x, y〉 :=

∑m
i=1 xiyi. Prove that:

(a) 〈x, y〉 = 〈y, x〉;
(b) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉;
(c) 〈λx, y〉 = λ〈x, y〉;
(d) 〈x, x〉 ≥ 0, with 〈x, x〉 = 0 ⇐⇒ x = 0.

Solution
(a) 〈x, y〉 =

∑
i xiyi =

∑
i yixi = 〈y, x〉.

(b) 〈x, y + z〉 =
∑

i xi(yi + zi) =
∑

i xiyi +
∑

i xizi = 〈x, y〉+ 〈x, z〉.
(c) 〈λx, y〉 =

∑
i λxiyi = λ

∑
i xiyi = λ〈x, y〉.

(d) 〈x, x〉 =
∑

i x
2
i ≥ 0, and

〈x, x〉 = 0 ⇐⇒
m∑

i=1

x2
i = 0 ⇐⇒ xi = 0 for all i ⇐⇒ x = 0.

Exercise 1.8 (Inner product, numbers) Let

x =

 1
2
−3

 , y =

 4
−5
1

 , z =

1
1
1

 , w =

3
α

1

 .

Compute 〈x, y〉, 〈x, z〉, and 〈y, z〉, and find α such that 〈y, w〉 = 0.
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Solution
Direct multiplication gives

〈x, y〉 = 1× 4 + 2× (−5) + (−3)× 1 = −9,

〈x, z〉 = 1× 1 + 2× 1 + (−3)× 1 = 0,

〈y, z〉 = 4× 1 + (−5)× 1 + 1× 1 = 0,

and

〈y, w〉 = 4× 3 + (−5)× α + 1× 1 = 13− 5α.

Hence, 〈y, w〉 = 0 when α = 13/5.

Exercise 1.9 (Cauchy-Schwarz inequality)
(a) For any x, y in Rm and any scalar λ, show that

0 ≤ 〈x− λy, x− λy〉 = 〈x, x〉 − 2λ〈x, y〉+ λ2〈y, y〉.
(b) Hence, prove that

〈x, y〉2 ≤ 〈x, x〉〈y, y〉,
with equality if and only if x and y are collinear (Cauchy-Schwarz).

Solution
(a) This is obtained by direct multiplication, using the properties of the inner product.
(b) If y = 0 then the result holds. Let y �= 0. Then, for any scalar λ, (a) holds. Setting
λ := 〈x, y〉/〈y, y〉, the inequality becomes

0 ≤ 〈x, x〉 − 〈x, y〉2
〈y, y〉 ,

from which the Cauchy-Schwarz inequality follows. Next we consider when equality
occurs. If y = 0, then equality holds. If y �= 0, then equality occurs if and only if
〈x− λy, x− λy〉 = 0, that is, if and only if x = λy.

Exercise 1.10 (Triangle inequality) For any vector x in Rm the norm is defined as
the scalar function ‖x‖ := 〈x, x〉1/2. Show that:
(a) ‖λx‖ = |λ| · ‖x‖ for every scalar λ;
(b) ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0;
(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for every x, y ∈ Rm, with equality if and only if x and y are
collinear (triangle inequality).

Solution
(a) ‖λx‖ = 〈λx, λx〉1/2 = |λ|〈x, x〉1/2 = |λ| · ‖x‖.
(b) ‖x‖ = 〈x, x〉1/2 ≥ 0, with ‖x‖ = 0⇐⇒ 〈x, x〉 = 0⇐⇒ x = 0.
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(c) The Cauchy-Schwarz inequality (Exercise 1.9) gives 〈x, y〉2 ≤ ‖x‖2‖y‖2. Hence,

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉

≤ ‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.
Taking the square root of both sides yields the triangle inequality. Equality occurs if and
only if 〈x, y〉 = ‖x‖ · ‖y‖, that is, if and only if x and y are collinear (Cauchy-Schwarz).
The geometric interpretation of the inequality is that in any triangle, the sum of the lengths
of two sides must exceed the length of the third side. In other words, that a straight line is
the shortest distance between two points; see Figure 1.1.

Exercise 1.11 (Normalization) A vector x for which ‖x‖ = 1 is said to be normal-
ized (its norm equals 1). Any nonzero vector x can be normalized by

x◦ :=
1
‖x‖x.

(a) Show that ‖x◦‖ = 1.
(b) Determine the norm of

a =
(

1
2

)
, b =

(
1
0

)
, c =

(
3
4

)
.

(c) Normalize a, b, and c.
(d) Show that x and λx have the same normalized vector for any λ > 0.

Solution
(a) We have

‖x◦‖ = ‖ x

‖x‖‖ =
1
‖x‖‖x‖ = 1.

(b) We have ‖a‖ =
√

12 + 22 =
√

5, ‖b‖ = 1, and ‖c‖ = 5.
(c) Normalizing gives

a◦ =
a

‖a‖ =
1√
5

(
1
2

)
, b◦ =

(
1
0

)
, c◦ =

1
5

(
3
4

)
.

(d) Let w := λx. Then ‖w‖ = |λ| · ‖x‖, and

w◦ =
λ

|λ| ·
x

‖x‖ .

Hence, w◦ = x◦ if λ > 0, and w◦ = −x◦ if λ < 0.

Exercise 1.12 (Orthogonal vectors) Two vectors x and y for which 〈x, y〉 = 0 are
said to be orthogonal, and we write x ⊥ y. Let

a =
(

1
2

)
and b =

(
1
0

)
.
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(a) Determine all vectors that are orthogonal to a.
(b) Determine all vectors that are orthogonal to b.
(c) If x ⊥ y, prove that ‖x + y‖2 = ‖x‖2 + ‖y‖2 (Pythagoras).

Solution
(a) All vectors x := (x1, x2)′ orthogonal to a satisfy 〈x, a〉 = 0, that is, x1 + 2x2 = 0.
Hence,

x = λ

(
2
−1

)
(λ ∈ R) .

(b) Any vector x ⊥ b must satisfy 〈x, b〉 = 0, that is, x1 = 0. Hence,

x = λ

(
0
1

)
(λ ∈ R) .

(c) If x ⊥ y, then 〈x, y〉 = 0 and hence,

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉

= 〈x, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2.

Exercise 1.13 (Orthonormal vectors) Two orthogonal vectors x and y that are nor-
malized such that ‖x‖ = ‖y‖ = 1 are said to be orthonormal.
(a) Show that the unit vectors ei are orthonormal.
(b) If x :=

∑m
i=1 ciei, determine the values of the ci.

(c) Discuss the geometric meaning of this result.

Solution
(a) This follows from the fact that 〈ei, ei〉 = 1 and 〈ei, ej〉 = 0 (i �= j).
(b) We have

x = c1e1 + c2e2 + · · ·+ cmem =


c1

0
...
0

+


0
c2
...
0

+ · · ·+


0
0
...

cm

 =


c1

c2
...

cm

 .

Hence, ci = xi. The ci thus are the “rectangular coordinates” of x.
(c) This simple result is of great importance, because it implies that every vector can be
decomposed as a sum of orthogonal (“independent”) vectors represented by perpendicular
axes, as in Figure 1.1.

Exercise 1.14 (Orthogonality is not transitive) Demonstrate that x ⊥ y and y ⊥ z

need not imply that x ⊥ z.



10 1 Vectors

Solution
Take z := x. Then x ⊥ y and y ⊥ x, but it is clearly not true that x ⊥ x unless x = 0.
Another counterexample is provided by Exercise 1.8, where x ⊥ z and z ⊥ y, but x is not
orthogonal to y.

Exercise 1.15 (Angle) The angle θ between two nonzero vectors x and y is defined
by

cos θ :=
〈x, y〉
‖x‖ · ‖y‖ (0 ≤ θ ≤ π).

(a) Show that

−1 ≤ 〈x, y〉
‖x‖ · ‖y‖ ≤ 1.

(b) Show that the angle between a vector and itself is zero.
(c) Show that the angle between x and −x is π.
(d) What is the angle between two orthogonal vectors?

Solution
(a) This follows from the Cauchy-Schwarz inequality (Exercise 1.9).
(b) Let θ (0 ≤ θ ≤ π) be the angle. Then,

cos θ =
〈x, x〉
‖x‖ · ‖x‖ = 1,

implying θ = 0.
(c) Here,

cos θ =
〈x,−x〉

‖x‖ · ‖ − x‖ = −1,

implying that θ = π.
(d) Finally, if x and y are orthogonal, then

cos θ =
〈x, y〉
‖x‖ · ‖y‖ = 0,

and hence θ = π/2.

Exercise 1.16 (Sum vector) The sum vector is defined as the vector consisting entirely
of ones:

ı :=


1
1
...
1

 .
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(a) Consider 〈ı, x〉 and explain the name sum vector.
(b) What is ‖ı‖?

Solution
(a) The fact that 〈ı, x〉 =

∑
i xi explains the name.

(b) If ı is a vector of order m, then ‖ı‖ =
√

m.

1.2 Complex vectors
Exercise 1.17 (Complex numbers) For complex numbers, u := a + ib and v := c + id,
where a, b, c, d are real numbers, and i denotes the imaginary unit defined by i2 := −1,
show that:
(a) λu = (λa) + i(λb) for any real scalar λ;
(b) uv = vu and u + v = v + u;
(c) the ratio of u and v is

u

v
=

ac + bd

c2 + d2
− i

ad− bc

c2 + d2
,

when v �= 0.

Solution
(a) This follows directly from the definition.
(b)

uv = (ac− bd) + i(ad + bc) = (ca− db) + i(cb + da) = vu

and

u + v = (a + c) + i(b + d) = (c + a) + i(d + b) = v + u.

(c)

u

v
=

a + ib
c + id

=
(a + ib)(c− id)
(c + id)(c− id)

=
(ac + bd)− i(ad− bc)

c2 + d2
.

Exercise 1.18 (Complex conjugates) If u := a + ib is a complex number, then the
complex conjugate of u is defined as u∗ := a− ib. Show that:
(a) (u∗)∗ = u;
(b) (u + v)∗ = u∗ + v∗;
(c) (uv)∗ = u∗v∗;
(d) uv∗ �= u∗v unless uv∗ is a real number.
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Solution
(a) Since u∗ = a− ib, we have (u∗)∗ = a− i(−b) = a + ib = u.
(b) Let v := c + id. Then

(u + v)∗ = ((a + c) + i(b + d))∗ = (a + c)− i(b + d)

= (a− ib) + (c− id) = u∗ + v∗.

(c) Since uv = (ac− bd) + i(ad + bc), we find

(uv)∗ = (ac− bd)− i(ad + bc) = (a− ib)(c− id) = u∗v∗.

(d) Since

uv∗ = (ac + bd)− i(ad− bc) and u∗v = (ac + bd) + i(ad− bc),

we see that uv∗ and u∗v are each other’s complex conjugate. Hence, they are equal if and
only if ad− bc = 0, in which case both are real.

*Exercise 1.19 (Modulus)
(a) Show that |uv| = |u||v|.
(b) Show that |u + v| ≤ |u|+ |v| (triangle inequality).

Solution
(a) Let u := a + ib and v := c + id. Then,

|uv| =
√

(ac− bd)2 + (ad + bc)2 =
√

(a2 + b2)(c2 + d2) = |u||v|.
(b) Write x := (Re(u), Im(u))′ and y := (Re(v), Im(v))′. The triangle inequality (Exer-
cise 1.10(c)) then implies that

|u + v| = ‖x + y‖ ≤ ‖x‖+ ‖y‖ = |u|+ |v|.

Exercise 1.20 (Inner product in Cm) The inner product between two complex vec-
tors u and v is the complex number 〈u, v〉 :=

∑m
i=1 uiv

∗
i and the norm is the real number

‖u‖ := 〈u, u〉1/2 = (
∑m

i=1 uiu
∗
i )

1/2. Show that for any vectors u, v, w in Cm and any
scalar λ in C:
(a) 〈u, v〉 = 〈v, u〉∗;
(b) 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉;
(c) 〈λu, v〉 = λ〈u, v〉;
(d) 〈u, u〉 ≥ 0, with 〈u, u〉 = 0⇐⇒ u = 0.

Solution
(a) 〈u, v〉 =

∑
i uiv

∗
i =
∑

i (viu
∗
i )

∗ = 〈v, u〉∗.
(b) We have

〈u, v + w〉 =
∑

i

ui(vi + wi)
∗ =
∑

i

ui(v∗i + w∗
i )

=
∑

i

uiv
∗
i +
∑

i

uiw
∗
i = 〈u, v〉+ 〈u, w〉.
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(c) 〈λu, v〉 =
∑

i λuiv
∗
i = λ

∑
i uiv

∗
i = λ〈u, v〉.

(d) 〈u, u〉 =
∑

i uiu
∗
i = ‖u‖2 ≥ 0, and ‖u‖ = 0 if and only if u = 0.

Exercise 1.21 (Complex inequalities) Show for any two vectors u and v in Cm that:
(a) 〈u, λv〉 = λ∗〈u, v〉;
(b) |〈u, v〉| ≤ ‖u‖ · ‖v‖, with equality if and only if u and v are collinear (Cauchy-
Schwarz);
(c) ‖u + v‖ ≤ ‖u‖ + ‖v‖, with equality if and only if u and v are collinear (triangle
inequality).

Solution
(a) We have

〈u, λv〉 =
∑

i

ui(λvi)
∗ =
∑

i

uiλ
∗v∗i = λ∗

∑
i

uiv
∗
i = λ∗〈u, v〉.

(b) The proof is almost identical to the proof in the real case (Exercise 1.9). We have

0 ≤ 〈u− λv, u− λv〉 = 〈u, u〉 − λ〈v, u〉 − λ∗〈u, v〉+ |λ|2〈v, v〉.
Setting λ := 〈u, v〉/〈v, v〉, the result follows as in the real case. Notice that λ〈v, u〉 and
λ∗〈u, v〉 are complex conjugates.
(c) Again, the proof is almost identical to the proof of Exercise 1.10(c):

‖u + v‖2 = 〈u + v, u + v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

≤ ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2,
using the Cauchy-Schwarz inequality. Taking the positive square root of both sides yields
the result.

Notes

There are many good introductory texts, see for example Hadley (1961), Bellman (1970),
and Bretscher (1997). The reader interested in the origins of matrix theory should consult
MacDuffee (1946) or Bretscher (1997).

The famous Cauchy-Schwarz inequality (Exercises 1.9 and 1.21) is named after the
mathematicians Augustin-Louis Cauchy (1789–1857) from France and Hermann Aman-
dus Schwarz (1843–1921) from Germany. It is sometimes called Schwarz’s inequality, and
in the Russian literature it is known as Bunyakovskii’s inequality.
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Matrices

An m× n matrix A is a rectangular array of scalar (real or complex) numbers,

A :=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 .

The displayed matrix has m rows and n columns, and is called an m by n matrix or a
matrix of order m × n. Matrices will be denoted by uppercase symbols in bold-italic:
A, B, . . . ,Z. They can also be denoted by Greek uppercase letters in bold-italic, such as
Γ or Θ. We sometimes write A = (aij). The quantities aij are called the elements of A.
Notice that aij is the element in row i and column j. When useful we may also write aij as
(A)ij . If we remove all but m1 rows and all but n1 columns of an m × n matrix A, then
the resulting m1 × n1 matrix is called a submatrix of A. For example, if

A =
(

1 2 3
4 5 6

)
,

then both (
1
4

)
and

(
1 3
4 6

)
are submatrices of A.

The transpose of an m × n matrix A = (aij) is the n × m matrix A′ := (aji). The
rows of A′ are the columns of A and the rows of A are the columns of A′. We write the n

15
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columns of A as a.1, a.2, . . . ,a.n, and the m rows as a′
1., a′

2., . . . ,a′
m.. Hence,

A = (a.1, a.2, . . . ,a.n) =


a′

1.
a′

2.
...

a′
m.

 .

With this notation, ai. and a.j are both (column) vectors. Their transposes a′
i. and a′.j are

called row vectors. In practice, when there is no possibility of confusion, we often write aj

instead of a.j , so that A = (a1, a2, . . . ,an), also written as A = (a1 : a2 : · · · : an).
Two matrices A and B are called equal, written A = B, if and only if their correspond-

ing elements are equal. The sum of two matrices A and B of the same order is defined
as

A + B := (aij) + (bij) := (aij + bij),

and the product of a matrix by a scalar λ is

λA := Aλ := (λaij).

For example, we have(
1 2
3 4

)
+
(

5 6
7 8

)
=
(

6 8
10 12

)
= 2
(

3 4
5 6

)
.

Matrices whose elements are all real numbers are called real matrices, and we write A ∈
Rm×n. Matrices (some of) whose elements are complex numbers are called complex
matrices, and we write A ∈ Cm×n to indicate that A is a complex matrix of order
m× n.

A matrix whose elements are all zero is called a null matrix, and is denoted by O. If we
wish to stress the dimensions we write Omn or Om,n, if the order is m× n.

If A is an m× n matrix and B a p× q matrix, then we define the product of A and B

as

AB :=

 n∑
j=1

aijbjk

 ,

provided n = p, so that A has the same number of columns as B has rows. Thus, AB

is an m × q matrix and its ik-th element is
∑n

j=1 aijbjk. Notice carefully the sequence of
indices ijjk in the sum defining the ik-th element. For example,(

1 2
3 4

)(
5 6
7 8

)
=
(

5 + 14 6 + 16
15 + 28 18 + 32

)
=
(

19 22
43 50

)
and (

5 6
7 8

)(
1 2
3 4

)
=
(

5 + 18 10 + 24
7 + 24 14 + 32

)
=
(

23 34
31 46

)
.
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When the orders of A and B are such that AB is defined, we say that A and B are
conformable. More generally we shall say that matrices (and vectors) are conformable
when their orders are such that the implied matrix operations (such as multiplication and
addition) can be carried out. Notice that the product BA is given by

BA =

(
m∑

i=1

briaij

)
,

provided q = m. Thus, BA is a p× n matrix and its rj-th element is
∑m

i=1 briaij . In the
product AB we say that B is premultiplied by A and that A is postmultiplied by B. The
above example shows that, in general, AB �= BA. Two matrices for which AB = BA

are said to commute.
The main property of the transpose is that (AB)′ = B′A′ for any two matrices A and

B for which AB is defined.
A matrix A = (aij) is said to be square if it has as many rows as it has columns. An

n × n square matrix is said to be of order n. A square matrix of particular importance is
the diagonal matrix whose elements outside the diagonal are all zero, that is, aij = 0 for
all i �= j. For any square matrix A, not necessarily diagonal, we define the matrix function
dg A or dg(A) as

dg(A) :=


a11 0 . . . 0
0 a22 . . . 0
...

...
...

0 0 . . . ann

 .

For any set of numbers (a1, a2, . . . , an), we define diag(a1, a2, . . . , an) as the diagonal
n× n matrix containing a1, a2, . . . , an on the diagonal. Thus,

dg(A) = diag(a11, a22, . . . , ann).

A diagonal matrix of special importance is the identity matrix,

I :=


1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

 .

If the identity matrix is of order n, we often write In to emphasize this. Any matrix of the
form λIn is called a scalar matrix. A square matrix A for which aij = 0 for j > i is said
to be lower triangular: all elements above the diagonal are zero. Similarly, when aij = 0
for i > j, the matrix is said to be upper triangular. A (lower, upper) triangular matrix is
strictly (lower, upper) triangular if its diagonal elements are zero, and unit (lower, upper)
triangular if its diagonal elements are one.

A square real matrix A is symmetric if A = A′. Symmetric matrices have attractive
properties that are often not shared by nonsymmetric matrices. A square real matrix A is
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skew-symmetric if A′ = −A. Every square matrix A can be written as

A =
A + A′

2
+

A−A′

2
,

that is, as the sum of a symmetric and a skew-symmetric matrix, if A is real.
If a and x are real vectors of the same order, then the scalar function a′x is called

a linear form in x. If A is a real matrix and x a conformable real vector, then the scalar
function x′Ax is called a quadratic form in x. In a quadratic form the matrix A can always
be taken to be symmetric, because

x′Ax = x′
(

A + A′

2

)
x.

For example,

(x1, x2)
(

1 2
3 4

)(
x1

x2

)
= (x1, x2)

(
1 2.5

2.5 4

)(
x1

x2

)
= x2

1 + 5x1x2 + 4x2
2.

The trace of a square matrix A is the sum of its diagonal elements, and is written as tr A or
tr(A). The trace is a linear operator, tr(A+B) = tr(A)+tr(B) and tr(λA) = λ tr(A),
and it has two principal properties:

tr(A′) = tr(A) and tr(AB) = tr(BA),

where A must be square in the first equation (in which case A′ is also square), and AB

must be square in the second equation (in which case BA is also square, though not nec-
essarily of the same order).

For any real square A, we say that A is orthogonal if A′A = AA′ = I; that A is a
permutation matrix if each row and each column of A contains a single element 1, and the
remaining elements are zero; that A is normal if A′A = AA′. For any square matrix A,
real or complex, we say that A is idempotent if AA = A. The powers of a square matrix
A are defined as A2 := AA, A3 := A2A, and so on. By convention, A0 = I .

For two real matrices A and B of the same order we define the inner product as

〈A, B〉 :=
∑

i

∑
j

aijbij = trA′B,

and the norm as

‖A‖ := 〈A, A〉1/2 =
√∑

i

∑
j

a2
ij =

√
tr A′A.

Finally, a complex matrix U is a matrix whose elements are complex numbers. Recall
that if u := a + ib is a complex number, then u∗ := a − ib is its conjugate. Similarly, if
U := A + iB is a complex matrix (A and B are real matrices), then U∗ := A′ − iB′ is
the conjugate transpose of U . (Note carefully that the matrix generalization of u∗ = a− ib
is not U∗ = A− iB.) A square matrix U is said to be Hermitian if U∗ = U (the complex
analogue of a symmetric matrix); skew-Hermitian if U∗ = −U (the complex analogue of
a skew-symmetric matrix); unitary if U∗U = UU∗ = I (the complex analogue of an
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orthogonal matrix); and normal if U∗U = UU∗ (the complex analogue of a real normal
matrix). For any complex-valued vector x, the function u∗x is called a linear form, as in
the real case. However, the scalar function x∗Ux is called a Hermitian form, and not a
quadratic form.

Remarks on the definitions: Many definitions, even of central concepts such as symmetry
and orthogonality, are not standardized in the literature on matrix algebra. We believe that
the most natural way is to take the definitions of the complex matrices (on which there
is no controversy) as the starting point. Thus, the four concepts of a Hermitian matrix, a
unitary matrix, a skew-Hermitian matrix, and a Hermitian form specialize in the real case to
a symmetric matrix, an orthogonal matrix, a skew-symmetric matrix, and a quadratic form.
For example, a symmetric matrix is simply a shorter name for a real Hermitian matrix, and
all properties of Hermitian matrices apply to symmetric matrices. This is how we do it.

When reading other literature on matrix algebra, the reader should be aware that some
authors define a symmetric matrix to be one that satisfies A′ = A, where A may be
real or complex, and similarly with the other three concepts. Only the properties of real
symmetric matrices then follow from those of Hermitian matrices. Complex-symmetric
matrices (that is, square complex matrices satisfying A′ = A) and, similarly, complex-
orthogonal matrices (that is, square complex matrices satisfying A′A = I) do not share
the attractive properties of their real counterparts (see Exercises 7.23, 7.41, and 7.72) —
they play a marginal role in matrix theory.

We also emphasize that an idempotent matrix is not necessarily symmetric, while a
positive (semi)definite matrix (introduced in Chapter 8) is necessarily symmetric.

Finally, caution is required with the word “orthogonal”. Of course, an orthogonal matrix
should be named “orthonormal” instead, as many authors have already remarked, but the
word seems too embedded in matrix language to change it now. Also, a sentence like “A
and B are orthogonal” can mean that both matrices are orthogonal, but it can also mean
that they are orthogonal to each other, that is, that A′B = O. If the latter meaning is
intended we write “A and B are orthogonal to each other” or “A is orthogonal to B” or
“B is orthogonal to A” — the three statements are equivalent.

2.1 Real matrices

Exercise 2.1 (Matrix equality)
(a) For two matrices A and B, when is A = B?
(b) If A = O and B = O, is A = B?
(c) When is it true that ab′ = ba′?

Solution
(a) A and B must be of the same order, and have the same elements, aij = bij .
(b) Only if A and B are of the same order.
(c) First, a and b must be of the same order, say n. Then, ab′ = ba′ holds if and only if
aibj = ajbi for all i, j = 1, . . . , n. If b = 0 the relationship holds. If b �= 0, then there
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exists an integer j such that bj �= 0. For this value of j we have bja = ajb and hence
a = λb for some λ. We conclude that ab′ = ba′ if and only if a and b are collinear.

Exercise 2.2 (Matrix equality, numbers) Find a, b, c, d such that(
a− b 3c + d

a + b c− d

)
=
(

2 6
4 2

)
.

Solution
We solve four equations in four unknowns,

a− b = 2, 3c + d = 6, a + b = 4, c− d = 2,

and find a = 3, b = 1, c = 2, d = 0.

Exercise 2.3 (Matrix addition)
(a) Show that there exists a unique matrix O such that A + O = A.
(b) Show that A + B = B + A.
(c) Show that (A + B) + C = A + (B + C).

Solution
(a) If A + X = A, then aij + xij = aij for all i, j. This implies xij = 0 for all i, j, and
hence X = O.
(b) A + B = (aij + bij) = (bij + aij) = B + A.
(c) (A + B) + C = ((aij + bij) + cij) = (aij + (bij + cij)) = A + (B + C).

Exercise 2.4 (Transpose and inner product) Consider the matrices

A =
(

1 2
2 1

)
and B =

(
1 2 3
2 1 5

)
.

(a) Obtain A′ and B′.
(b) Prove that (X ′)′ = X for any matrix X and verify this on the matrices A and B.
(c) What is the transpose of the row vector b′ = (1, 2, 3)?
(d) Show that (A + B)′ = A′ + B′ for any two matrices A and B of the same order.
(e) For two real vectors a and b, show that the inner product 〈a, b〉 = a′b.

Solution
(a) Transposing gives

A′ =
(

1 2
2 1

)
and B′ =

1 2
2 1
3 5

 .

Notice that A = A′, but that B �= B′. Indeed, B and B′ have different orders.
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(b) We see that (A′)′ = A and (B′)′ = B. In general, if X := (xij) is an m× n matrix,
then X ′ = (xji) is an n × m matrix, and (X ′)′ = (xij) is an m × n matrix. Hence,
(X ′)′ = X .
(c) The transpose of the 1× 3 matrix (row vector) b′ is the 3× 1 matrix (vector)

b =

1
2
3

 .

(d) (A + B)′ = (aji + bji) = (aji) + (bji) = A′ + B′.
(e) By definition, 〈a, b〉 =

∑
i aibi. Hence, 〈a, b〉 = a′b.

Exercise 2.5 (Multiplication, 1) Let

A =
(

1 2 3
4 5 6

)
and B =

(
4 5 6
1 2 3

)
.

(a) Compute AB′, BA′, A′B, and B′A.
(b) Show that I2A = A and I2B = B.

Solution
(a) We have

AB′ =
(

1 2 3
4 5 6

)4 1
5 2
6 3

 =
(

32 14
77 32

)
,

BA′ =
(

4 5 6
1 2 3

)1 4
2 5
3 6

 =
(

32 77
14 32

)
,

A′B =

1 4
2 5
3 6

(4 5 6
1 2 3

)
=

 8 13 18
13 20 27
18 27 36

 ,

and

B′A =

4 1
5 2
6 3

(1 2 3
4 5 6

)
=

 8 13 18
13 20 27
18 27 36

 .

Notice that A′B is symmetric, but that AB′ is not symmetric. Of course, the matrix A′B
is only symmetric in this special case. However, the fact that the sum of the diagonal
elements in each of the four products is the same (namely 64) is not a coincidence; see
Exercise 2.26(a).
(b) This is shown by direct calculation. The identity matrix plays the role of the number 1.
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Exercise 2.6 (Multiplication, 2) Let

A =

4 0 1
0 1 0
4 0 1

 , B =

1 0 0
0 1 0
0 0 1

 , a =

 3
−1
5

 , b =

1
2
3

 .

(a) Compute Aa, Bb, b5.
(b) Find a′a, a′b, and ab′.

Solution
(a)

Aa =

17
−1
17

 , Bb = b, b5 =

 5
10
15

 .

(b)

a′a = (3,−1, 5)

 3
−1
5

 = 35, a′b = (3,−1, 5)

1
2
3

 = 16,

and

ab′ =

 3
−1
5

 (1, 2, 3) =

 3 6 9
−1 −2 −3
5 10 15

 .

Exercise 2.7 (True or false) Which of the following statements are true, and why?
(a) (A + B)2 = (B + A)2;
(b) (A + B)2 = A2 + 2AB + B2;
(c) (A + B)2 = A(A + B) + B(A + B);
(d) (A + B)2 = (A + B)(B + A);
(e) (A + B)2 = A2 + AB + BA + B2.

Solution
(a) True, because A + B = B + A.
(b) False, because AB �= BA in general.
(c) True, because A(A + B) + B(A + B) = (A + B)(A + B).
(d) True, because B + A = A + B.
(e) True, by direct multiplication.

Exercise 2.8 (Matrix multiplication versus scalar multiplication) Give examples of
real 2× 2 matrices such that:
(a) A2 = −I;
(b) B2 = O (B �= O);
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(c) CD = −DC (CD �= O);
(d) EF = O (no elements of E or F are zero).

Solution
These four statements show that matrix multiplication is essentially different from scalar
multiplication.
(a) For example, there is no real scalar a such that a2 = −1. However, the real matrix

A =
(

0 1
−1 0

)
satisfies A2 = −I . This is an orthogonal matrix which, by premultiplying any point (x, y)′,
rotates the point clockwise along a circle, centered at the origin, by an angle of 90◦, to give
(y,−x)′.
(b) The matrix

B =
(

0 1
0 0

)
satisfies B2 = O. Any matrix B satisfying Bk−1 �= O and Bk = O is said to be nilpotent
of index k. Hence, the displayed matrix is nilpotent of index 2.
(c) The matrices

C =
(

1 1
1 −1

)
and D =

(
1 −1
−1 −1

)
satisfy the requirement. Both are symmetric and CD is skew-symmetric.
(d) The matrices

E =
(

1 1
1 1

)
and F =

(
1 1
−1 −1

)
satisfy EF = O.

Exercise 2.9 (Noncommutativity)
(a) Show that BA need not be defined, even if AB is.
(b) Show that, even if AB and BA are both defined, they are in general not equal.
(c) Find an example of two matrices A and B such that AB = BA. (Two matrices with
this property are said to commute.)

Solution
(a) Let A be an m × n matrix and let B be a p × q matrix. Assuming that neither A nor
B is a scalar (that is, it is not the case that m = n = 1 or p = q = 1), the product AB is
defined only if n = p, whereas the product BA is defined only if m = q. For example, if
A has order 2× 3 and B has order 3× 4, then AB is defined but BA is not.
(b) If AB and BA are both defined, that is, if n = p and m = q, they may not be of
the same order. For example, if A has order 2 × 3 and B has order 3 × 2 then AB has



24 2 Matrices

order 2× 2 and BA has order 3× 3. If AB and BA are both defined and are of the same
order, then both must be square. Even in that case AB �= BA is general. For example, the
matrices

A =
(

0 1
1 0

)
and B =

(
0 1
−1 0

)
do not commute. The matrix A swaps the rows of B when it premultiplies it, while swap-
ping the columns of B when it postmultiplies it.
(c) However, the matrices

A =
(

1 0
0 1

)
and B =

(
1 0
0 −1

)
do commute.

Exercise 2.10 (Noncommutativity and reshuffle) Consider two shuffling operations
on an ordered sequence (a1, a2, a3): S reverses the order and T wraps around the last ele-
ment to the first position. Show that ST �= T S, once with and once without matrices.

Solution
The operation S produces (a3, a2, a1) and hence T S produces (a1, a3, a2). The operation
T produces (a3, a1, a2) and hence ST produces (a2, a1, a3). Using matrix algebra, we
define the matrices

S =

0 0 1
0 1 0
1 0 0

 and T =

0 0 1
1 0 0
0 1 0

 .

Then S and T correspond to the operations S and T , as can be verified by postmulti-
plying these matrices by the vector (a1, a2, a3)′. Multiplying the two matrices shows that
ST �= TS.

Exercise 2.11 (Row scaling and column scaling) Consider the matrices

A :=
(

a1 0
0 a2

)
and B :=

(
b11 b12

b21 b22

)
.

(a) Calculate and interpret AB and BA.
(b) What does AB = BA imply?

Solution
(a) We find

AB =
(

a1b11 a1b12

a2b21 a2b22

)
and BA =

(
a1b11 a2b12

a1b21 a2b22

)
.

Hence, AB scales the rows of B, while BA scales the columns of B.
(b) If AB = BA, then b12(a1 − a2) = 0 and b21(a1 − a2) = 0. Hence, a1 = a2 or
b12 = b21 = 0, that is, either A is a scalar matrix or B is diagonal (or both).
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Exercise 2.12 (Order of matrix) What are the orders of the matrices that guarantee that
ABC is defined?

Solution
Let A (m× n), B (p× q), and C (r × s). Then ABC is defined when n = p and q = r,
but also when m = n = 1 and q = r, when p = q = 1 and n = r, or when r = s = 1 and
n = p. It is also defined when any two of A, B, C are scalars.

*Exercise 2.13 (Generalization of x2 = 0 ⇐⇒ x = 0) For real matrices A, B and
C, show that:
(a) A′A = O if and only if A = O;
(b) AB = O if and only if A′AB = O;
(c) AB = AC if and only if A′AB = A′AC.
(d) Why do we require the matrices to be real?

Solution
(a) Clearly, A = O implies A′A = O. Conversely, assume A′A = O. Then, for all j, the
j-th diagonal element of A′A is zero, that is,

∑
i a

2
ij = 0. This implies that aij = 0 for all

i and j, and hence that A = O. Contrast this result with Exercise 2.8(b).
(b) Clearly, AB = O implies A′AB = O. Conversely, if A′AB = O, then

(AB)′(AB) = B′A′AB = O

and hence AB = O, by (a).
(c) This follows by replacing B by B −C in (b).
(d) Consider a = (1 + i, 1− i)′. Then a′a = (1 + i)2 + (1− i)2 = 0, even though a �= 0.
Hence, the above statements are, in general, not true for complex matrices. However, they
are true if we replace ′ by ∗.

Exercise 2.14 (Multiplication, 3)
(a) Show that (AB)C = A(BC) for conformable A, B, C.
(b) Show that A(B + C) = AB + AC for conformable A, B, C.

Solution
(a) Let D := AB and E := BC. Then,

(DC)ik =
∑

j

dijcjk =
∑

j

(∑
h

aihbhj

)
cjk

=
∑

h

aih

∑
j

bhjcjk

 =
∑

h

aihehk = (AE)ik.
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Hence, DC = AE.
(b) Let D := B + C. Then,

(AD)ij =
∑

h

aihdhj =
∑

h

aih (bhj + chj)

=
∑

h

aihbhj +
∑

h

aihchj = (AB)ij + (AC)ij .

Exercise 2.15 (Transpose and products)
(a) Show that (AB)′ = B′A′.
(b) Show that (ABC)′ = C ′B′A′.
(c) Under what condition is (AB)′ = A′B′?

Solution
(a) We have

(B′A′)ij =
∑

h

(B′)ih(A′)hj =
∑

h

(B)hi(A)jh

=
∑

h

(A)jh(B)hi = (AB)ji.

(b) Let D := BC. Then, using (a),

(ABC)′ = (AD)′ = D′A′ = (BC)′A′ = C ′B′A′.

(c) This occurs if and only if AB = BA, that is, if and only if A and B commute.

Exercise 2.16 (Partitioned matrix) Let A and B be 3× 5 matrices, partitioned as

A =

 1 3 −2 1 2
6 8 0 −1 6
0 0 1 4 1

 , B =

 1 −3 −2 4 1
6 2 6 2 0
1 0 2 0 1

 ,

and let C be a 5× 4 matrix, partitioned as

C =


1 0 5 1
0 2 0 0
−1 0 3 1
3 5 0 2
2 −1 3 1

 .

Denoting the submatrices by

A =
(

A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
,
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show that

A + B =
(

A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
,

AC =
(

A11C11 + A12C21 A11C12 + A12C22

A21C11 + A22C21 A21C12 + A22C22

)
,

and

A′ =
(

A′
11 A′

21

A′
12 A′

22

)
.

Solution

A + B =

 (1 + 1) (3− 3) (−2− 2) (1 + 4) (2 + 1)
(6 + 6) (8 + 2) (0 + 6) (−1 + 2) (6 + 0)
(0 + 1) (0 + 0) (1 + 2) (4 + 0) (1 + 1)



=

 2 0 −4 5 3
12 10 6 1 6
1 0 3 4 2

 =
(

A11 + B11 A12 + B12

A21 + B21 A22 + B22

)
,

AC =

 1 3 −2 1 2
6 8 0 −1 6
0 0 1 4 1




1 0 5 1
0 2 0 0
−1 0 3 1
3 5 0 2
2 −1 3 1



=

 10 9 5 3
15 5 48 10
13 19 6 10

 =
(

A11C11 + A12C21 A11C12 + A12C22

A21C11 + A22C21 A21C12 + A22C22

)
,

and

A′ =


1 6 0
3 8 0
−2 0 1
1 −1 4
2 6 1

 =
(

A′
11 A′

21

A′
12 A′

22

)
.

Exercise 2.17 (Sum of outer products) Let A := (a1, a2, . . . ,an) be an m× n matrix.
(a) Show that AA′ =

∑
i aia

′
i.

(b) Show that A′A = (a′
iaj).
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Solution
We write

AA′ = (a1, a2, . . . ,an)


a′

1

a′
2
...

a′
n

 , A′A =


a′

1

a′
2
...

a′
n

 (a1, a2, . . . ,an),

and the results follow.

*Exercise 2.18 (Identity matrix)
(a) Show that Ix = x for all x, and that this relation uniquely determines I .
(b) Show that IA = AI = A for any matrix A, and specify the orders of the identity
matrices.

Solution
(a) If A = I , then Ax = x holds for all x. Conversely, if Ax = x holds for all x,
then it holds in particular for the unit vectors x = ej . This gives Aej = ej , so that
aij = e′

iAej = e′
iej , which is zero when i �= j and one when i = j. Hence, A = I .

(b) Let A be an m× n matrix, and let a1, a2, . . . ,an denote its columns. Then,

ImA = (Ima1, Ima2, . . . , Iman) = (a1, a2, . . . ,an) = A,

using (a). Since ImA = A for every A, it follows that InA′ = A′ for every A, and hence
that AIn = A.

Exercise 2.19 (Diagonal matrix, permutation)
(a) Is the 3× 3 matrix

A :=

0 0 a

0 b 0
c 0 0


a diagonal matrix?
(b) With A defined in (a), show that AA′ and A′A are diagonal matrices.

Solution
(a) Although one might argue that a square matrix has two diagonals, only the diagonal
(a11, a22, . . . , ann) is called the diagonal. So, the matrix A is not a diagonal matrix, unless
a = c = 0.
(b) We have

AA′ =

0 0 a

0 b 0
c 0 0

0 0 c

0 b 0
a 0 0

 =

a2 0 0
0 b2 0
0 0 c2

 ,
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and, similarly,

A′A =

c2 0 0
0 b2 0
0 0 a2

 .

Exercise 2.20 (Diagonal matrices, commutation) Let A and B be diagonal matri-
ces. Show that AB is also diagonal and that AB = BA.

Solution
Let A := diag(a1, a2, . . . , an) and B := diag(b1, b2, . . . , bn). Then,

AB = diag(a1b1, . . . , anbn) = diag(b1a1, . . . , bnan) = BA.

A diagonal matrix is the simplest generalization of a scalar, and essentially all properties of
scalars also hold for diagonal matrices.

Exercise 2.21 (Triangular matrix)
(a) Consider the lower triangular matrices

A =

1 0 0
1 1 0
0 0 1

 and B =

1 0 0
0 1 0
0 −2 1

 .

Show that AB and BA are lower triangular, but that AB �= BA.
(b) Show that the product of two lower triangular matrices is always lower triangular.

Solution
(a) We have

AB =

1 0 0
1 1 0
0 −2 1

 and BA =

 1 0 0
1 1 0
−2 −2 1

 .

(b) Let A = (aij) and B = (bij) be lower triangular n × n matrices. Consider the ij-th
element of AB. We will show that (AB)ij = 0 for i < j. Now,

(AB)ij =
n∑

k=1

aikbkj =
i∑

k=1

aikbkj +
n∑

k=i+1

aikbkj .

In the first sum, bkj = 0 for all k ≤ i < j; in the second sum, aik = 0 for all k > i. Hence,
(AB)ij = 0 for i < j, that is, AB is lower triangular.

Exercise 2.22 (Symmetry) Let A be a square real matrix.
(a) Show that A + A′ is symmetric, even if A is not symmetric.
(b) Show that AB is not necessarily symmetric if A and B are.
(c) Show that A′BA is symmetric if B is symmetric, but that the converse need not be true.
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Solution
(a) Since (A + B)′ = A′ + B′, we have (A + A′)′ = A′ + (A′)′ = A′ + A = A + A′.
Hence, A + A′ is symmetric.
(b) For example,

A =
(

1 1
1 0

)
and B =

(
0 1
1 1

)
.

(c) We have (A′BA)′ = A′B′(A′)′ = A′BA. To prove that the converse is not neces-
sarily true, let ei and ej be unit vectors and define A := eie

′
j . Then, for any matrix B,

A′BA = eje
′
iBeie

′
j = biieje

′
j , which is symmetric.

Exercise 2.23 (Skew-symmetry) Let A be a square real matrix.
(a) Show that A−A′ is skew-symmetric.
(b) Hence, show that A can be decomposed as the sum of a symmetric and a skew-
symmetric matrix.
(c) If A is skew-symmetric, show that its diagonal elements are all zero.

Solution
(a) We have (A−A′)′ = A′ −A = −(A−A′).
(b) We write

A =
A + A′

2
+

A−A′

2
.

The first matrix on the right-hand side is symmetric; the second is skew-symmetric.
(c) Since the diagonal elements of A′ are the diagonal elements of A, the defining equation
A′ = −A implies that aii = −aii for all i. Hence, aii = 0 for all i.

Exercise 2.24 (Trace as linear operator) The trace of a square matrix A is the sum
of its diagonal elements, and is written as tr(A) or tr A. Let A and B be square matrices
of the same order, and let λ and µ be scalars. Show that:
(a) tr(A + B) = tr(A) + tr(B);
(b) tr(λA + µB) = λ tr(A) + µ tr(B);
(c) tr(A′) = tr(A);
(d) tr(AA′) = tr(A′A) =

∑
ij a2

ij ;
(e) tr(aa′) = a′a =

∑
i a

2
i for any vector a.

Solution
(a)–(b) This follows by direct verification or by noting that the trace is a linear operator.
(c) In the trace operation only diagonal elements are involved; what happens outside the
diagonal is irrelevant.
(d) We have

tr AA′ =
∑

i

(AA′)ii =
∑

i

∑
j

a2
ij =
∑

j

∑
i

a2
ij =
∑

j

(A′A)jj = tr A′A.

(e) This follows from (d) because tr a′a = a′a, since a′a is a scalar.
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Exercise 2.25 (Trace of A′A) For any real matrix A, show that tr A′A ≥ 0, with
tr A′A = 0 if and only if A = O.

Solution
Since tr A′A =

∑
ij a2

ij and A is real, the result follows.

Exercise 2.26 (Trace, cyclical property)
(a) Let A and B be m× n matrices. Prove that

tr(A′B) = tr(BA′) = tr(AB′) = tr(B′A).

(b) Show that tr(Aaa′) = a′Aa for any square A and conformable a.
(c) Show that tr(ABC) = tr(CAB) = tr(BCA) and specify the restrictions on the
orders of A, B, and C.
(d) Is it also true that tr(ABC) = tr(ACB)?

Solution
(a) In view of Exercise 2.24(c) it is sufficient to prove tr(A′B) = tr(BA′). We have

tr(A′B) =
∑

j

(A′B)jj =
∑

j

∑
i

aijbij =
∑

i

∑
j

bijaij =
∑

i

(BA′)ii = tr(BA′).

(b) This follows from (a).
(c) Let A (m× n), B (n× p), and C (p×m), so that ABC is defined and square. Then,
using (a),

tr(ABC) = tr((AB)C) = tr(C(AB)) = tr(CAB),

and similarly for the second equality.
(d) No, this is not true. The expression ACB is not even defined in general.

Exercise 2.27 (Trace and sum vector) Show that

ı′Aı = ı′(dg A)ı + tr
(
(ıı′ − In)A

)
for any n× n matrix A.

Solution
We write

tr
(
(ıı′ − In)A

)
= tr(ıı′A)− tr(InA) = tr(ı′Aı)− tr(A) = ı′Aı− ı′(dg A)ı.

Exercise 2.28 (Orthogonal matrix, representation) A real square matrix A is orthogo-
nal if A′A = AA′ = I .
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(a) Show that every orthogonal 2× 2 matrix takes one of the two forms

A1 :=
(

cos θ − sin θ

sin θ cos θ

)
or A2 :=

(
cos θ − sin θ

− sin θ − cos θ

)
,

and describe its effect on a 2× 1 vector x.
(b) Show that, if a matrix A is orthogonal, its rows form an orthonormal set.
(c) Show that, if a matrix A is orthogonal, its columns also form an orthonormal set.

Solution
(a) This is essentially a generalization of the fact that any normalized real 2 × 1 vector x

has a representation x = (cos θ, sin θ)′. Let

A :=
(

a b

c d

)
.

The equations A′A = AA′ = I yield

a2 + b2 = 1, a2 + c2 = 1, b2 + d2 = 1, c2 + d2 = 1,

and

ab + cd = 0, ac + bd = 0,

implying

a2 = d2, b2 = c2, a2 + b2 = 1, ab + cd = 0.

This gives

a = cos θ, b = − sin θ, c = ± sin θ, d = ± cos θ.

The matrix A1 rotates any vector x := (x, y)′ by an angle θ in the positive (counterclock-
wise) direction. For example, when θ = π/2,

A1x =
(

cos π/2 − sinπ/2
sinπ/2 cos π/2

)(
x

y

)
=
(

0 −1
1 0

)(
x

y

)
=
(
−y

x

)
.

The matrix A2 satisfies

A2x =
(

1 0
0 −1

)
A1x,

so that x is rotated counterclockwise by an angle θ, and then reflected across the x-axis.
(b) Let a′

1., . . . ,a′
n. denote the rows of A. From AA′ = In it follows that a′

i.ai. = 1 and
a′

i.aj. = 0 (i �= j). Hence, the rows form an orthonormal set.
(c) Let a.1, . . . ,a.n denote the columns of A. Then, from A′A = In it follows that
a′.ia.i = 1 and a′.ia.j = 0 (i �= j). Hence, the columns also form an orthonormal set.

Exercise 2.29 (Permutation matrix) A square matrix A is called a permutation ma-
trix if each row and each column of A contains a single element 1, and the remaining
elements are zero.
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(a) Show that there exist 2 permutation matrices of order 2.
(b) Show that there exist 6 permutation matrices of order 3, and determine which of these
transforms the matrix A of Exercise 2.19(a) into diag(a, b, c).
(c) Show that there exist n! permutation matrices of order n.
(d) Show that every permutation matrix is orthogonal.

Solution
(a) The permutation matrices of order 2 are(

1 0
0 1

)
and

(
0 1
1 0

)
.

The latter matrix permutes (or swaps) the axes by premultiplication, since(
0 1
1 0

)(
x1

x2

)
=
(

x2

x1

)
.

(b) The permutation matrices of order 3 are1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 .

To write the matrix A of Exercise 2.19 as diag(a, b, c), we need to swap the first and third
columns. This is achieved by postmultiplying A by the last of the six displayed matrices;
premultiplying would have swapped the rows instead.
(c) We proceed by induction. Suppose there are (n − 1)! permutation matrices of order
n− 1. For each (n− 1)× (n− 1) permutation matrix there are precisely n ways to form
an n× n permutation matrix. Hence, there exist n! permutation matrices of order n.
(d) Each row p′

i. of the permutation matrix P contains one 1 and (n − 1) zeros. Hence,
p′

i.pi. = 1. Another row, say p′
j., also contains only one 1, but in a different place. Hence,

p′
i.pj. = 0 (i �= j). Thus P is orthogonal.

Exercise 2.30 (Normal matrix) A real square matrix A is normal if A′A = AA′.
(a) Show that every symmetric matrix is normal.
(b) Show that every orthogonal matrix is normal.
(c) Let A be a normal 2× 2 matrix. Show that A is either symmetric or has the form

A = λ

(
α 1
−1 α

)
(λ �= 0).

Solution
(a) If A = A′ then A′A = AA = AA′.
(b) If A′A = AA′ = I , then clearly A′A = AA′.
(c) Let

A :=
(

a b

c d

)
.
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The definition A′A = AA′ implies that(
a2 + c2 ab + cd

ab + cd b2 + d2

)
=
(

a2 + b2 ac + bd

ac + bd c2 + d2

)
and hence that b2 = c2 and (a − d)(b − c) = 0. This gives either b = c (symmetry) or
b = −c �= 0 and a = d.

Exercise 2.31 (Commuting matrices) Consider the matrix

A =
(

1 2
3 4

)
.

Show that the class of matrices B satisfying AB = BA is given by

B = α

(
1 0
0 1

)
+ β

(
0 2
3 3

)
.

Solution
Let

B :=
(

a b

c d

)
.

Then the equation AB = BA gives(
a + 2c b + 2d

3a + 4c 3b + 4d

)
=
(

a + 3b 2a + 4b

c + 3d 2c + 4d

)
,

which leads to

3b− 2c = 0, 2a + 3b− 2d = 0, a + c− d = 0.

Hence,

c = (3/2)b and d = a + (3/2)b,

and the result follows.

Exercise 2.32 (Powers, quadratic’s solution) Consider a real square matrix A of or-
der 2.
(a) Show that A2 = O has a unique symmetric solution, namely A = O.
(b) Show that, in general, A2 = O has an infinite number of solutions, given by A = pq′

with p′q = 0.

Solution
(a) Again, let

A :=
(

a b

c d

)
.
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The equation A2 = O can then be written as(
a2 + bc b(a + d)
c(a + d) bc + d2

)
=
(

0 0
0 0

)
with general solution a = −d, a2 + bc = 0. If A is symmetric, then b = c, and hence all
elements are zero. (This also follows from Exercise 2.13.)
(b) If A is not symmetric, then the solution is given by a = −d, a2 + bc = 0, b �= c. If
a = 0, the solutions are

A =
(

0 b

0 0

)
=
(

1
0

)(
0 b

)
and A =

(
0 0
c 0

)
=
(

0
1

)(
c 0

)
.

If a �= 0, then all elements of A are nonzero and

A =
(

a b

−a2/b −a

)
=
(

1
−a/b

)(
a b

)
.

All three cases are of the form A = pq′ with p′q = 0. Conversely, if A = pq′ then
A2 = pq′pq′ = p(q′p)q′ = O, whenever p′q = 0.

Exercise 2.33 (Powers of a symmetric matrix) Show that Ap is symmetric when A

is symmetric.

Solution
We have

(Ap)′ = (AA . . .A)′ = A′A′ . . .A′ = AA . . .A = Ap.

Exercise 2.34 (Powers of the triangle) Consider an n × n triangular matrix A. Show
that the powers of A are also triangular and that the diagonal elements of Ap are given by
ap

ii for i = 1, . . . , n.

Solution
Assume that A is lower triangular. It suffices to prove the result for p = 2. Exercise 2.21(b)
shows that the product of two lower triangular matrices is again lower triangular. Let
B := A2. Then its i-th diagonal element is given by bii =

∑
k aikaki = a2

ii, since ei-
ther aki = 0 or aik = 0 when k �= i.

Exercise 2.35 (Fibonacci sequence) Consider the 2× 2 matrix

A =
(

1 1
1 0

)
.

Show that

An =
(

xn xn−1

xn−1 xn−2

)
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with x−1 := 0, x0 := 1, and xn := xn−1 +xn−2 (n ≥ 1). (This is the Fibonacci sequence:
1, 2, 3, 5, 8, 13, . . . .)

Solution
Since A is symmetric, we know from Exercise 2.33 that An is symmetric. Let

An :=
(

xn bn

bn cn

)
.

Then,

An+1 =
(

1 1
1 0

)(
xn bn

bn cn

)
=
(

xn + bn bn + cn

xn bn

)
=
(

xn+1 bn+1

bn+1 cn+1

)
.

Hence, bn+1 = xn, cn+1 = bn = xn−1, and xn+1 = xn + bn = xn + xn−1. The condition
bn+1 = bn + cn is then automatically fulfilled. Thus,

An+1 =
(

xn + xn−1 xn

xn xn−1

)
.

Exercise 2.36 (Difference equations) Consider the 2× 2 matrices

A =
(

1 −1
1 0

)
and B =

(
0 −1
1 −1

)
.

(a) Show that B = A2 and B2 = −A.
(b) Compute A2, A3, . . . ,A6.
(c) Conclude that A6 = I and B3 = I .
(d) What is the relationship between the matrix A and the second-order difference equation
xn = xn−1 − xn−2?

Solution
(a)–(c) We find

A2 =
(

1 −1
1 0

)(
1 −1
1 0

)
=
(

0 −1
1 −1

)
= B,

and further A3 = −I , A4 = −A, A5 = −B, and A6 = I . Hence, B2 = A4 = −A and
B3 = A6 = I .
(d) Let zn := (xn, xn−1)′ for n = 0, 1, . . . . Then,

zn = Azn−1 ⇐⇒
(

xn

xn−1

)
=
(

1 −1
1 0

)(
xn−1

xn−2

)
=
(

xn−1 − xn−2

xn−1

)
,

so that the first-order vector equation zn = Azn−1 is equivalent to the second-order differ-
ence equation xn = xn−1 − xn−2. Hence, the solution zn = Anz0 of the vector equation
also solves the difference equation.
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Exercise 2.37 (Idempotent) A square matrix A is idempotent if A2 = A.
(a) Show that the only idempotent symmetric 2× 2 matrices are

A =
(

1 0
0 1

)
, A =

(
0 0
0 0

)
, A = aa′ (a′a = 1).

(b) Recall that ı := (1, 1, . . . , 1)′, denotes the n × 1 vector of ones. Show that the matrix
In − (1/n)ıı′ is idempotent and symmetric. What is the intuition behind this fact?
(c) Give an example of an n× n idempotent matrix that is not symmetric.

Solution
(a) The 2× 2 matrix A is symmetric idempotent if and only if(

a b

b d

)(
a b

b d

)
=
(

a b

b d

)
,

that is, if and only if,

a2 + b2 = a, b(a + d) = b, d2 + b2 = d.

We distinguish between a + d �= 1 and a + d = 1. If a + d �= 1, then b = 0 and a = d = 1
or a = d = 0. If a + d = 1, then b2 = a(1 − a), so that 0 ≤ a ≤ 1, 0 ≤ d ≤ 1, and
b = ±

√
a(1− a). Then,(

a b

b d

)
=
(

a ±
√

a(1− a)
±
√

a(1− a) 1− a

)
=
( √

a

±
√

1− a

)( √
a

±
√

1− a

)′
,

which is of the form aa′ (a′a = 1). Conversely, (aa′)(aa′) = a(a′a)a′ = aa′ if
a′a = 1.
(b) Let M := In − (1/n)ıı′. Then,

M2 = (In −
1
n

ıı′)(In −
1
n

ıı′) = In −
1
n

ıı′ − 1
n

ıı′ +
1
n2

ıı′ıı′

= In −
2
n

ıı′ +
1
n2

ı(ı′ı)ı′ = In −
2
n

ıı′ +
1
n

ıı′ = M .

To understand the intuition, consider the vector equation y = Mx. We have

y = Mx = (In −
1
n

ıı′)x = x− 1
n

ı(ı′x) = x− xı,

where x := (1/n)ı′x (the average). Hence, yi = xi − x, and the transformation M thus
puts x in deviations from its mean. Now consider z = My and note that y = 0. Hence,
z = y, that is, M2x = Mx for every x. This gives M2 = M . Associated with an
idempotent matrix is an idempotent operation (in this case: “put the elements of a vector in
deviation form”). Once the operation has been performed, repeating it has no further effect.
(c) In econometrics most idempotent matrices will be symmetric. But the matrix A = ab′

with b′a = 1 is idempotent but not symmetric (unless a = b or one of the vectors is the
null vector).
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Exercise 2.38 (Inner product, matrix) For two real matrices A and B of the same
order, the inner product is defined as 〈A, B〉 :=

∑
i

∑
j aijbij = trA′B. Prove that:

(a) 〈A, B〉 = 〈B, A〉;
(b) 〈A, B + C〉 = 〈A, B〉+ 〈A, C〉;
(c) 〈λA, B〉 = λ〈A, B〉;
(d) 〈A, A〉 ≥ 0, with 〈A, A〉 = 0 ⇐⇒ A = O.

Solution
We need to show that tr A′B = trB′A, tr A′(B +C) = trA′B +trA′C, tr(λA)′B =
λ tr A′B, tr A′A ≥ 0, and tr A′A = 0 ⇐⇒ A = O. All these properties have been
proved before.

*Exercise 2.39 (Norm, matrix) For a real matrix A, we define the norm as

‖A‖ := 〈A, A〉1/2 =
√∑

i

∑
j

a2
ij =

√
tr A′A.

Show that:
(a) ‖λA‖ = |λ| · ‖A‖;
(b) ‖A‖ ≥ 0, with ‖A‖ = 0 if and only if A = O;
(c) ‖A + B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality).

Solution
(a) We have

‖λA‖ =
√

tr(λA)′(λA) =
√

λ2 tr A′A = |λ|
√

tr A′A = |λ| · ‖A‖.
(b) Further, ‖A‖ =

√
tr A′A ≥ 0, with ‖A‖ = 0 if and only if A = O, according to

Exercise 2.25.
(c) Finally, let A := (aij) and B := (bij) be m×n matrices, and define mn× 1 vectors a

and b such that a contains the elements of A in a specific order and b contains the elements
of B in the same order. For example,

a := (a11, a21, . . . , am1, a12, . . . , am2, . . . , amn)′,

which we shall later write as vec A; see Chapter 10. Then,

tr A′B =
∑
ij

aijbij = a′b

and similarly, tr A′A = a′a and tr B′B = b′b. Hence,

‖A + B‖ =
√

tr(A + B)′(A + B) =
√

(a + b)′(a + b) = ‖a + b‖

≤ ‖a‖+ ‖b‖ =
√

a′a +
√

b′b =
√

tr A′A +
√

tr B′B = ‖A‖+ ‖B‖,
using the triangle equality for vectors (Exercise 1.10(c)).



2.2 Complex matrices 39

2.2 Complex matrices

Exercise 2.40 (Conjugate transpose) Recall that a complex matrix U can be written
as U := A + iB, where A and B are real matrices, and that the matrix U∗ := A′ − iB′

is the conjugate transpose of U .
(a) If A is real, show that A∗ = A′.
(b) Let

Z =
(

1 + 2i 3− 5i 7
8 + i 6i 2− i

)
.

Compute Z ′, Z∗, and (Z∗)∗.
(c) For any matrix U , show that (U∗)∗ = U , and verify with the matrix in (b).
(d) Show that (UV )∗ = V ∗U∗.
(e) Show that tr U∗ �= trU , unless tr U is a real number.

Solution
(a) This follows from the definition.
(b) We have

Z ′ =

1 + 2i 8 + i
3− 5i 6i

7 2− i

 , Z∗ =

1− 2i 8− i
3 + 5i −6i

7 2 + i

 ,

and

(Z∗)∗ =
(

1 + 2i 3− 5i 7
8 + i 6i 2− i

)
= Z.

(c) Let U := A+iB. Then U∗ = A′− iB′ and (U∗)∗ = (A′)′ +i(B′)′ = A+iB = U .
The verification is straightforward.
(d) Let U := A + iB and V := C + iD. Then UV = (AC −BD) + i(AD + BC),
so that

(UV )∗ = (AC −BD)′ − i(AD + BC)′ = (C ′A′ −D′B′)− i(D′A′ + C ′B′)

= (C ′ − iD′)(A′ − iB′) = (C + iD)∗(A + iB)∗ = V ∗U∗.

(e) Let U := A + iB. Then, tr U∗ = trA − i trB while tr U = trA + i trB. Hence,
they are equal if and only if tr B = 0, that is, if and only if tr U is real.

Exercise 2.41 (Hermitian matrix) A square matrix U is Hermitian if U∗ = U . Show
that:
(a) a real Hermitian matrix is symmetric;
(b) if U := A + iB is Hermitian (A, B real), then A′ = A and B′ = −B;
(c) if U := A + iB is Hermitian, then U∗U is real if and only if AB = −BA;
(d) UU∗ and U∗U are both Hermitian;
(e) the diagonal elements of a Hermitian matrix are real;
(f) if U = U∗, then the Hermitian form x∗Ux is real for every vector x.
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Solution
(a) If U is real, then U∗ = U ′. If U is Hermitian, then U∗ = U . Hence, U = U ′ and U

is symmetric.
(b) Let U = A + iB. If U is Hermitian, then A′ − iB′ = A + iB. Hence, A′ = A and
B′ = −B.
(c) In general we have

U∗U = (A′ − iB′)(A + iB) = (A′A + B′B) + i(A′B −B′A).

If U is Hermitian, then (b) implies that A′ = A and B′ = −B, so that A′B = B′A ⇐⇒
AB = −BA.
(d) This follows because

(UU∗)∗ = (U∗)∗U∗ = UU∗, (U∗U)∗ = U∗(U∗)∗ = U∗U .

(e) Write U := A + iB. If U is Hermitian then we know from (b) that A is symmetric
and B skew-symmetric. The diagonal elements of B are therefore zero (Exercise 2.23(c)),
so that the diagonal elements of U are those of A.
(f) Let z := x∗Ux. Then,

z∗ = (x∗Ux)∗ = x∗U∗x = x∗Ux = z.

Now, z is a scalar, equal to its complex conjugate. Hence, z is real.

Exercise 2.42 (Skew-Hermitian matrix) A square matrix U is skew-Hermitian if
U∗ = −U . If U is skew-Hermitian, show that:
(a) if U is real, then U is skew-symmetric;
(b) the matrix iU is Hermitian;
(c) the diagonal elements of Re(U) are zero, but the diagonal elements of Im(U) are not
necessarily zero.

Solution
(a) If U is real, then U ′ = U∗ = −U .
(b) Write U := A + iB. Then U∗ = A′ − iB′ and hence (iU)∗ = i∗U∗ = −iU∗ =
−iA′ − B′. Since U is skew-Hermitian, we have A′ = −A and B′ = B, so that
(iU)∗ = iA−B = i(A + iB) = iU .
(c) Write again U := A + iB. The equation U∗ = −U gives A′ = −A and B′ = B.
Hence, the diagonal elements of A = Re(U) are zero, but the diagonal elements of
B = Im(U) need not be.

Exercise 2.43 (Unitary matrix) A square matrix U is unitary if U∗U = UU∗ = I .
Show that:
(a) a real unitary matrix is orthogonal;
(b) U∗ is unitary if and only if U is;
(c) UV is unitary if U and V are unitary;
(d) the converse of (c) does not necessarily hold.
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Solution
(a) If U is real then U∗ = U ′ and hence U ′U = UU ′ = I .
(b) Let V := U∗. If U is unitary we have U∗U = UU∗ = I , and hence

V ∗V = UU∗ = I and V V ∗ = U∗U = I.

This also proves the “only if” part.
(c) We have

(UV )∗(UV ) = V ∗U∗UV = V ∗IV = V ∗V = I

and, similarly, (UV )(UV )∗ = I .
(d) The converse of (c) does not hold in general. The matrix UV is unitary if and only if
V ∗U∗UV = I . One counterexample is a matrix U such that U∗U = σ2I and a matrix
V such that V ∗V = σ−2I .

*Exercise 2.44 (Counting) How many matrices are there that are simultaneously
Hermitian, unitary, and diagonal?

Solution
Let U := A+iB. Since U is diagonal, both A and B are diagonal, A := diag(a1, . . . , an)
and B := diag(b1, . . . , bn). Since U is Hermitian, aj + ibj = aj − ibj for j = 1, . . . , n.
Hence, B = O, and U = diag(a1, . . . , an) is real. Since U is real unitary (that is, orthog-
onal), we have a2

j = 1. Hence, U is a diagonal matrix and its diagonal elements are ±1.
There are 2n different matrices.

Exercise 2.45 (Normal matrix, complex) A square matrix U is called normal if U∗U =
UU∗. Consider the matrices

A =
1
2

(
i −

√
3√

3 −i

)
, B =

1
2

(
1 + i 1− i
1− i 1 + i

)
, C =

(
1 0

1− i i

)
.

Which of the matrices A, B, C are normal? Which are unitary?

Solution
We find

A∗A =
1
4

(
−i

√
3

−
√

3 i

)(
i −

√
3√

3 −i

)
=
(

1 0
0 1

)
=

1
4

(
i −

√
3√

3 −i

)(
−i

√
3

−
√

3 i

)
= AA∗

and

B∗B =
1
4

(
1− i 1 + i
1 + i 1− i

)(
1 + i 1− i
1− i 1 + i

)
=
(

1 0
0 1

)
=

1
4

(
1 + i 1− i
1− i 1 + i

)(
1− i 1 + i
1 + i 1− i

)
= BB∗.
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Hence, A and B are both unitary (and hence normal). In contrast,

C∗C =
(

1 1 + i
0 −i

)(
1 0

1− i i

)
=
(

3 −1 + i
−1− i 1

)
,

while

CC∗ =
(

1 0
1− i i

)(
1 1 + i
0 −i

)
=
(

1 1 + i
1− i 3

)
.

Hence, C is not normal (and hence not unitary).

Notes

Some excellent introductory texts are Hadley (1961), Bellman (1970), and Bretscher (1997).
More advanced are Mirsky (1955), old but still very readable, and Horn and Johnson (1985,
1991).

If we take the Fibonacci numbers 1, 2, 3, 5, 8, 13, . . . in Exercise 2.35, and consider the
successive ratios g1 = 1/2, g2 = 2/3, g3 = 3/5, and so on, then the sequence {gi}
converges to G := (

√
5 − 1)/2 ≈ 0.62. Its reciprocal is the famous golden ratio. The

number G divides a line such that the proportion of the smaller part to the larger part equals
the proportion of the larger part to the whole.
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Vector spaces

This chapter is the most abstract of the book. You may skip it at first reading, and jump
directly to Chapter 4. But make sure you return to it later. Matrix theory can be viewed
from an algebraic viewpoint or from a geometric viewpoint — both are equally important.
The theory of vector spaces is essential in understanding the geometric viewpoint.

Associated with every vector space is a set of scalars, used to define scalar multiplication
on the space. In the most abstract setting these scalars are required only to be elements of
an algebraic field. We shall, however, always take the scalars to be the set of complex
numbers (complex vector space) or, as an important special case, the set of real numbers
(real vector space).

A vector space (or linear space) V is a nonempty set of elements (called vectors) together
with two operations and a set of axioms. The first operation is addition, which associates
with any two vectors x, y ∈ V a vector x + y ∈ V (the sum of x and y). The second
operation is scalar multiplication, which associates with any vector x ∈ V and any real (or
complex) scalar α, a vector αx ∈ V . It is the scalar (rather than the vectors) that determines
whether the space is real or complex.

The space V is called a real (complex) vector space if the following axioms hold for any
vectors x, y, z ∈ V and any real (complex) scalars α, β.

Axioms A: Addition
A1. x + y = y + x (commutative law).
A2. x + (y + z) = (x + y) + z (associative law).
A3. There exists a vector in V (denoted by 0) such that x + 0 = x for all x (null vector).
A4. For any x ∈ V there exists a vector in V (denoted by −x) such that x + (−x) = 0
(negative of x).

43
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Axioms B: Scalar multiplication
B1. α(βx) = (αβ)x (associative law).
B2. 1x = x.

Axioms C: Distributive laws
C1. α(x + y) = αx + αy (distributive law for vectors).
C2. (α + β)x = αx + βx (distributive law for scalars).

Three types of vector spaces are discussed in this chapter, each being a special case of
its predecessor. First, the complex vector space defined above. Concepts like subspace,
linear independence, basis, and dimension can be discussed in this space. If we add one
ingredient (the inner product) to this space, we obtain a subclass called the inner-product
space. This allows us to discuss the important concept of orthogonality. If we add one more
ingredient (completeness) then the inner-product space becomes a Hilbert space. This al-
lows us to prove the famous projection theorem.

A nonempty subset A of a vector space V is called a subspace of V if, for all x, y ∈ A,
we have x+y ∈ A and αx ∈ A for any scalar α. The intersection of two subspacesA and
B in a vector space V , denoted by A ∩ B, consists of all vectors that belong to both A and
B. The union of A and B, denoted by A ∪ B, consists of all vectors that belong to at least
one of the sets A and B. The sum of A and B, denoted by A+ B, consists of all vectors of
the form a + b where a ∈ A and b ∈ B.

A linear combination of the vectors x1, x2, . . . , xn in a vector space is a sum of the form
α1x1 +α2x2 + · · ·+αnxn. A finite set of vectors x1, . . . , xn (n ≥ 1) is said to be linearly
dependent if there exist scalars α1, . . . , αn, not all zero, such that α1x1 + · · · + αnxn =
0; otherwise it is linearly independent. An arbitrary set of elements A of V (containing
possibly an infinite number of vectors) is linearly independent if every nonempty finite
subset of A is linearly independent; otherwise it is linearly dependent. In Figure 1.1 of
Chapter 1, suppose you wish to travel from the origin to the point x + y. If you are only
allowed to travel along the line on which x and the origin lie, then it is not possible to reach
x + y, unless y too is on the line αx. Hence, x and y are linearly independent.

Let A be a nonempty set of vectors from a vector space V . The set A consisting of all
linear combinations of vectors in A is called the subspace spanned (or generated) by A.
Figure 3.1 shows two nonzero vectors x and y in R2, not proportional to each other. The
horizontally shaded area is the span of x and y when only positive scalar multiples α and
β are allowed in αx + βy. For negative α and β we obtain the vertically shaded area.
Any other point in R2 (such as x − y) can also be written as a linear combination of x

and y. Thus, all of R2 is spanned. Any pair of linearly independent vectors x and y spans
R2, and, more generally, any set of linearly independent vectors x1, . . . ,xn spans Rn. For
example, in Figure 3.2, if we do the same as in Figure 3.1 with the points x and y, they
will span the whole plane linking them to the origin, but not all of R3. If a vector space
V contains a finite set of n linearly independent vectors x1, . . . , xn, and moreover any
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O

x

y

−y

x− y

Figure 3.1 — x and y span R2.

set of n + 1 vectors is linearly dependent, we will say that the dimension of V is n, and
write dim(V) = n. In this case V is said to be finite dimensional. (If V = {0} we define
dim(V) = 0.) If no such n exists, we say that V is infinite dimensional.

If V is a vector space, not necessarily finite dimensional, and A is a linearly independent
set of vectors from V , then A is a basis of V if V is spanned by A.

In accordance with the definitions in Chapters 1 and 2, the inner product of two vectors x

and y, denoted by 〈x, y〉, is defined as a complex-valued function, satisfying the following
conditions:

(i) 〈x, y〉 = 〈y, x〉∗, the complex conjugate of 〈y, x〉;
(ii) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉;

(iii) 〈αx, y〉 = α〈x, y〉;
(iv) 〈x, x〉 ≥ 0, with 〈x, x〉 = 0 if and only if x = 0.

A complex vector space V together with an inner product is then said to be an inner-product
space. A real vector space V is an inner-product space if for each x, y ∈ V there exists
a real number 〈x, y〉 satisfying conditions (i)–(iv). Of course condition (i) reduces in this
case to 〈x, y〉 = 〈y, x〉.
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O
x

y

Figure 3.2 — The plane spanned by x and y is a subspace of R3.

The norm of a vector x in an inner-product space is defined to be the real number ‖x‖ :=√
〈x, x〉. The concept of an inner product not only induces the concept of “length” (the

norm), but also of “distance”. In an inner-product space the distance d(x, y) between two
vectors x and y is defined as d(x, y) := ‖x− y‖.

For two vectors x, y in an inner-product space, we say that x and y are orthogonal if
〈x, y〉 = 0, and we write x ⊥ y. Consider a set A := {x1, . . . ,xr} of nonzero vectors in
an inner-product space V . A is called an orthogonal set if each pair of vectors in A is or-
thogonal. If, in addition, each vector in A has unit length, then A is called an orthonormal
set. For example, the unit m × 1 vectors e1, . . . ,er (r ≤ m) form an orthonormal set in
Rm. Two subspacesA and B of an inner-product space V are said to be orthogonal if every
vector a in A is orthogonal to every vector b in B. If A is a subspace of an inner-product
space V , then the space of all vectors orthogonal to A is called the orthogonal complement
of A and is denoted by A⊥.

In finite-dimensional spaces (such as Rm) an inner-product space is of sufficient gen-
erality. This is because all finite-dimensional inner-product spaces are “complete”. But
infinite-dimensional inner-product spaces are not necessarily complete. Hence, in order to
develop the concept of orthogonality further and to prove the “projection theorem” we need
a little more than the inner-product space. We need a complete inner-product space, that is,
a Hilbert space. Now, what is completeness? Consider a sequence {xn} := {x1, x2, . . . }
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in an inner-product space V . If the sequence converges, say to x, then its terms must ulti-
mately become close to x and hence close to each other, more precisely: for every ε > 0
there exists an nε > 0 such that

‖xn − xm‖ < ε for all m, n > nε. (3.1)

In some spaces (such as Rm), the converse is also true; in other spaces it is not. A sequence
{xn} in an inner-product space V is called a Cauchy sequence if (3.1) holds. If every
Cauchy sequence in V converges to a member of V , then V is said to be complete, and we
call V a Hilbert space. See Appendix A for more details on the notion of completeness.

3.1 Complex and real vector spaces

Exercise 3.1 (The null vector)
(a) Show that every vector space contains at least one vector, namely 0.
(b) Show that the set {0}, containing only 0, is a vector space.

Solution
(a) This follows from axiom A3.
(b) This follows by verifying that all axioms are satisfied. For example, 0 + 0 = 0 + 0, so
A1 holds.

*Exercise 3.2 (Elementary properties of the sum) Show that in any vector space:
(a) the sum x1 + x2 + · · ·+ xn is unambiguously defined;
(b) the null vector is unique;
(c) the negative −x of the vector x is unique;
(d) x + y = x + z implies y = z.

Solution
(a) For n = 3 we have, using Axiom A2, (x1 + x2) + x3 = x1 + (x2 + x3). The proof
then follows by induction.
(b) Suppose two vectors a and b exist satisfying x + a = x for all x and x + b = x for
all x. Then, for x = b and x = a, respectively, we find b + a = b and a + b = a. Since
b + a = a + b (by A1), we conclude that a = b.
(c) Suppose two vectors a and b exist such that, for given x, x + a = 0 and x + b = 0.
Then, a = 0 + a = (x + b) + a = (x + a) + b = 0 + b = b.
(d) If x+y = x+z, then y = 0+y = (−x+x)+y = −x+(x+y) = −x+(x+z) =
(−x + x) + z = 0 + z = z.

Exercise 3.3 (Elementary properties of scalar multiplication) Show that in any vector
space:
(a) α0 = 0;
(b) 0x = 0;
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(c) αx = 0 implies α = 0 or x = 0 (or both);
(d) (−α)x = α(−x) = −αx;
(e) αx = αy and α �= 0 implies x = y;
(f) αx = βx and x �= 0 implies α = β;
(g) (α− β)x = αx− βx;
(h) α(x− y) = αx− αy.

Solution
(a) By Axiom A3, we have 0 + 0 = 0. Hence, by Axiom C1,

α0 = α(0 + 0) = α0 + α0.

Now add −α0 to both sides.
(b) Axiom C2 gives 0x = (0 + 0)x = 0x + 0x. Now add −0x to both sides.
(c) Suppose αx = 0 and α �= 0. Then there exists a scalar α−1 such that α−1α = 1. Thus,

x = 1x = (α−1α)x = α−1(αx) = α−10 = 0.

(This is not as trivial as it may seem. There are objects that have the property that ab = 0
without either a or b being zero. For example, the two matrices

A =
(

0 α

0 0

)
and B =

(
0 β

0 0

)
satisfy AB = O without either being zero.)
(d) Using x + (−x) = 0 and α + (−α) = 0 gives

0 = α0 = α(x + (−x)) = αx + α(−x), 0 = 0x = (α + (−α))x = αx + (−α)x.

Then, adding −αx to both sides of both equations, we find −αx = α(−x) and −αx =
(−α)x.
(e) Since α �= 0, α−1 exists. Hence,

x = 1x = (α−1α)x = α−1(αx) = α−1(αy)

= (α−1α)y = 1y = y.

(f) Subtracting αx from both sides of αx = βx gives 0 = βx − αx = (β − α)x. The
result then follows from (c).
(g) We have (α− β)x = (α + (−β))x = αx + (−β)x = αx− βx.
(h) Property (d) gives α(−x) = −αx. Hence,

α(x− y) = α(x + (−y)) = αx + α(−y) = αx + (−αy) = αx− αy.

Exercise 3.4 (Examples of real vector spaces) Show that the following sets are real
vector spaces and indicate in each case what the “vectors” are and what the “null vector”
is:
(a) R, the set of real numbers;
(b) Rm, the set of real m× 1 vectors;
(c) Rm×n, the set of real m× n matrices.
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Solution
(a) If we interpret x + y and αx as the usual addition and multiplication of real numbers,
then all parts of axioms A, B, and C hold. “Vectors” are simply real numbers, and the “null
vector” is the number zero.
(b) If x := (x1, . . . , xm)′ and y := (y1, . . . , ym)′ are vectors in Rm, we have, for α ∈ R,

x + y = (x1 + y1, . . . , xm + ym)′ and αx = (αx1, . . . , αxm)′.

It is easy to verify that axioms A, B, and C are satisfied. For example the relation xi+0 = xi

implies x + 0 = x. A “vector” in Rm is an m-tuple of real numbers, and the “null” vector
is 0 = (0, . . . , 0)′.
(c) Defining the sum of two m × n matrices A = (aij) and B = (bij) as A + B =
(aij + bij), and scalar multiplication as αA = (αaij) (where α ∈ R), the three axioms are
again satisfied. A “vector” is now a matrix and the “null vector” is the null matrix O.

Exercise 3.5 (Space l2) The set of real (or complex) sequences (x1, x2, . . . ) satisfy-
ing
∑∞

i=1 |xi|2 < ∞ is called the real (or complex) l2-space. Show that l2 is a vector space.

Solution
Addition and scalar multiplication are defined as usual:

(x1, x2, . . . ) + (y1, y2, . . . ) = (x1 + y1, x2 + y2, . . . )

and

α(x1, x2, . . . ) = (αx1, αx2, . . . ).

If x = (xi) ∈ l2 and y = (yi) ∈ l2, then x + y ∈ l2, because
∞∑
i=1

|xi + yi|2 ≤ 2
∞∑
i=1

|xi|2 + 2
∞∑
i=1

|yi|2 <∞.

Also, αx ∈ l2, because
∑

i |αxi|2 = |α|2
∑

i |xi|2 <∞. The other required properties are
easily checked. The “null vector” is the sequence (0, 0, . . . ). (There is one very important
difference between the spaces Rm and Cm on the one hand and the space l2 on the other:
the spaces Rm and Cm are finite dimensional, whereas the space l2 is infinite dimensional.
We don’t know yet what this means, but this will become clear shortly.)

*Exercise 3.6 (Space L†
2 of random variables, sample) Let {x1, . . . , xn} be a finite

collection of random variables with E(x2
i ) < ∞ (i = 1, . . . , n). Show that the set of all

linear combinations
∑n

i=1 αixi constitutes a vector space, which we denote by L†
2. (This

is idiosyncratic notation, but is justified by the fact that L†
2 is a subspace of L2, to be intro-

duced in Exercise 3.7.)

Solution
If y :=

∑
i αixi ∈ L†

2 and z :=
∑

i βixi ∈ L†
2, then y + z =

∑
i(αi + βi)xi ∈ L†

2, and
λy =

∑
i(λαi)xi ∈ L†

2. All properties of vector space are easily verified, except for one
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difficulty. The difficulty is that a random variable y =
∑

i αixi might also be expressible
as y =

∑
i βixi, where (α1, . . . , αn) �= (β1, . . . , βn). We resolve this difficulty by defining

equivalence classes, as follows. The equality Pr (y = z) = 1 defines an equivalence class
for the coefficients of the representation. If y and z are in the same equivalence class, then
they are equal with probability one; we say almost surely equal. Thus, instead of the random
variables, we consider the induced equivalence classes. The “null vector” in L†

2 is then the
equivalence class for which Pr (y = 0) = 1, of which the vector (α1, . . . , αn) = (0, . . . , 0)
is obviously a member.

Exercise 3.7 (Space L2 of random variables, population) Consider a collection V
of all real random variables x satisfying the condition E(x2) < ∞. With the usual defini-
tion of multiplication by a real nonrandom scalar and addition of random variables, show
that V is a real vector space.

Solution
We have, for all x, y ∈ V and α ∈ R,

E
(
(αx)2

)
= α2 E(x2) <∞

and

E
(
(x + y)2

)
≤ 2 E(x2) + 2 E(y2) <∞.

The other required properties are easy to check. Notice that the “null vector” in L2 is the
class of random variables that are zero with probability 1 (almost surely).

Exercise 3.8 (Subspace) A nonempty subset A of a vector space V is a subspace of
V if, for all x, y ∈ A, we have x + y ∈ A and αx ∈ A for any scalar α.
(a) Show that A is a vector space.
(b) Show that every subspace contains the null vector.
(c) What is the smallest subspace of V? What is the largest?

Solution
(a) By definition, a subspace is a subset that is “closed” under addition and scalar multipli-
cation. These two operations follow the rules of the larger space V , without taking us out
of the subspace. Since the axioms of a vector space hold in V , they will automatically hold
in A as well.
(b) Choose α = 0. Then αx = 0x = 0 lies in A.
(c) The smallest subspace is {0}. The largest is V .

Exercise 3.9 (Subspaces of R2)
(a) Show that the set of real 2 × 1 vectors whose first component is zero is a subspace of
R2.
(b) Is the set of real 2× 1 vectors whose first component is one also a subspace of R2?
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(c) Is the set {(x, y), x ≥ 0, y ≥ 0} a subspace of R2?
(d) Show that the only subspaces of R2 are R2 itself, the set {0}, and any line through the
origin.

Solution
(a) We take a linear combination of two arbitrary vectors in the subset,

α

(
0
x

)
+ β

(
0
y

)
=
(

0
αx + βy

)
,

and see that the resulting vector also lies in the subset.
(b) No, because

2
(

1
x

)
=
(

2
2x

)
�= λ

(
1
2x

)
.

(c) No, because (1, 1)′ lies in the set, but −(1, 1)′ does not.
(d) Let A be a subspace of R2, and assume that A is neither the set {0} nor a line through
the origin. We need to show that A = R2. Since A �= {0}, A contains at least two (dif-
ferent) points (vectors), say a and b. Since a and b are not on the same line through the
origin, there are at least two lines in A, intersecting at the origin. Any point in R2 can now
be written as αa + βb for some α and β, and hence lies in A.

Exercise 3.10 (Subspaces of R3) Which of the following subsets of R3 are subspaces?
(a) The plane of vectors (x, y, z)′ with x = 0 (the y-z plane).
(b) The plane of vectors (x, y, z)′ satisfying xy = 0 (the union of the y-z plane and the x-z
plane).
(c) The null vector (x, y, z)′ = (0, 0, 0)′.
(d) All linear combinations of two given vectors in R3.
(e) The vectors (x, y, z)′ satisfying αx + βy + γz = 0 (a plane through the origin).

Solution
Only the set in (b) is not a subspace, because the two vectors (0, 1, 0)′ and (1, 0, 0)′ are in
the subset but their sum is not.

Exercise 3.11 (Subspaces of R3×3) In the vector space R3×3 (the set of real matri-
ces of order 3 × 3), show that the set of lower triangular matrices is a subspace. Is the set
of symmetric matrices also a subspace?

Solution
The set of lower triangular matrices is a subspace of R3×3, because if A and B are both
lower triangular, then A + B and αA are also lower triangular. Similarly, if A and B are
symmetric, then A+B and αA are also symmetric, implying that symmetric matrices also
define a subspace.
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Exercise 3.12 (Intersection, union, sum) The intersection A ∩ B of two subspaces A
and B in a vector space V consists of all vectors that belong to both A and B; the union
A ∪ B consists of all vectors that belong to at least one of the sets A and B; and the sum
A+ B consists of all vectors of the form a + b where a ∈ A and b ∈ B.
(a) Show that the intersection of two subspaces of V is a subspace of V .
(b) Show that the union of two subspaces of V is not necessarily a subspace of V .
(c) Show that the sum of two subspaces of V is a subspace of V .

Solution
(a) The intersection A∩B is not empty since the null vector lies in both A and B. If x and
y are inA∩B, they are in bothA and B. Therefore αx+βy is in bothA and B and hence
in the intersection.
(b) Exercise 3.10(b) provides a counterexample.
(c) It is clear that A + B contains the null vector. Let x and y be two vectors in A + B.
Consider the vectors a1, a2 ∈ A, and b1, b2 ∈ B such that x = a1 + b1, y = a2 + b2.
We have x + y = (a1 + a2) + (b1 + b2), and αx = (αa1) + (αb1) for any scalar α. The
result then follows, since (a1 + a2) and αa1 are in A and (b1 + b2) and αb1 are in B.

Exercise 3.13 (Uniqueness of sum) If A and B are two subspaces of a vector space
V , then show that:
(a) if A ∩ B = {0}, then every vector in A + B can be written uniquely as a + b, where
a ∈ A and b ∈ B;
(b) if A ∩ B �= {0}, then there exist vectors in A + B that cannot be written uniquely as
a + b, a ∈ A, b ∈ B.

Solution
(a) Let A∩ B = {0}, and assume that x ∈ A+ B can be written as x = a1 + b1 and also
as x = a2 +b2. This gives a1−a2 = b2−b1. But a1−a2 ∈ A and b2−b1 ∈ B. Hence,
a1 − a2 = b2 − b1 = 0, or a1 = a2, b1 = b2.
(b) Let x �= 0 and assume that x ∈ A ∩ B. Then x can be written as x + 0 (with x ∈ A,
0 ∈ B), but also as 0 + x (0 ∈ A, x ∈ B).

Exercise 3.14 (Linear combination) A linear combination of the vectors x1, x2, . . . ,
xn in a vector space is a sum of the form α1x1 + α2x2 + · · ·+ αnxn. Show that a linear
combination of vectors from a subspace is also in the subspace.

Solution
Consider two linear combinations of x1, x2, . . . , xn,

y := α1x1 + α2x2 + · · ·+ αnxn and z := β1x1 + β2x2 + · · ·+ βnxn.

Then,

x + y = (α1 + β1)x1 + · · ·+ (αn + βn)xn and λy = (λα1)x1 + · · ·+ (λαn)xn

are also linear combinations of x1, . . . , xn.
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Exercise 3.15 (Linear dependence, theory) A finite set of vectors x1, . . . , xn (n ≥ 1)
is linearly dependent if there exist scalars α1, . . . , αn, not all zero, such that α1x1 + · · ·+
αnxn = 0; otherwise it is linearly independent. An arbitrary subset A of V (containing
possibly an infinite number of vectors) is linearly independent if every nonempty finite sub-
set of A is linearly independent; otherwise it is linearly dependent. Show that:
(a) the null vector by itself is a linearly dependent set;
(b) any set of vectors containing the null vector is a linearly dependent set;
(c) a set of nonzero vectors x1, . . . , xn is linearly dependent if and only if a member in the
set is a linear combination of the others;
(d) a set of nonzero vectors x1, . . . , xn is linearly dependent if and only if some xj

(2 ≤ j ≤ n) is a linear combination of its predecessors.

Solution
(a) This is trivially true, because there exists a scalar α �= 0 such that α0 = 0.
(b) Suppose x1 = 0. Then the set (α1, α2, . . . , αn) = (1, 0, . . . , 0) is a nontrivial set that
produces α1x1 + · · ·+ αnxn = 0.
(c) Let a member be a linear combination of the others, say xj =

∑
i�=j αixi. Choosing

αj = −1, gives
∑n

i=1 αixi = 0. Conversely, linear dependence implies that
∑n

i=1 αixi =
0 for some choice of α1, . . . , αn, not all zero. Let αj �= 0. Then xj can be written as
xj =

∑
i�=j(−αi/αj)xi.

(d) If xj is a linear combination of x1, . . . , xj−1, say xj =
∑j−1

i=1 αixi, then also
xj =

∑
i�=j αixi (by choosing αi = 0 for i > j). Hence, x1, . . . , xn are linearly depen-

dent, by (c). Conversely, if
∑n

i=1 αixi = 0, then xn depends linearly on its predecessors
or αn = 0. If αn = 0, then xn−1 depends on its predecessors or αn−1 = 0. Continuing in
this way, and using the fact that at least one of the αi must be nonzero, we find that one of
the xi (i ≥ 2) must depend on its predecessors (since x1 �= 0).

Exercise 3.16 (Linear dependence and triangularity)
(a) Show that the columns of the n× n identity matrix In are linearly independent.
(b) Show that the columns of the matrix

A =

1 3 2 0
1 −5 −3 1
5 −1 0 2


are linearly dependent. How about the rows?
(c) Show that the columns of a triangular matrix are linearly independent if and only if all
diagonal elements are nonzero.

Solution
(a) Let ei (i = 1, . . . , n) denote the columns of In, and suppose

∑n
i=1 αiei = 0. This

implies α1 = α2 = · · · = αn = 0.
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(b) The columns a.1, . . . , a.4 satisfy, for example, 3a.1 − a.2 − 8a.4 = 0. The rows a′
1.,

a′
2., a′

3. satisfy 3a1. + 2a2. − a3. = 0. So, both the columns and the rows are linearly
dependent.
(c) Suppose the matrix X = (xij) is lower triangular. The linear combination α1x.1 +
· · ·+ αnx.n is equal to zero if and only if

α1x11 = 0
α1x21 + α2x22 = 0

...
α1xn1 + α2xn2 + · · ·+ αnxnn = 0.

If xii �= 0 for all i, then these equations imply successively that α1 = 0, α2 = 0, . . . ,
αn = 0.

We prove the converse by contrapositive. Let xii = 0 for some i. If xii = 0 for
more than one i, choose i := max{j : xjj = 0}, so that xjj �= 0 for j > i. Choose
α1 = · · · = αi−1 = 0 and αi = 1. Then the first i equations are satisfied, and the last n− i

equations take the form

xi+1,i + αi+1xi+1,i+1 = 0,
...

xni + αi+1xn,i+1 + · · ·+ αnxnn = 0.

From these equations we successively solve αi+1, . . . , αn. Hence, there exists a nontrivial
set of α’s (since αi = 1) such that

∑
j αjxj = 0.

Exercise 3.17 (Linear dependence, some examples)
(a) If x, y, and z are linearly independent vectors, are x+y, x+z, and y+z also linearly
independent?
(b) For which values of λ are the vectors (λ, 1, 0)′, (1, λ, 1)′, and (0, 1, λ)′ linearly depen-
dent?

Solution
(a) Yes. We have

α(x + y) + β(x + z) + γ(y + z) = (α + β)x + (α + γ)y + (β + γ)z.

Since x, y, and z are linearly independent, the above expression vanishes if and only if
α + β = 0, α + γ = 0, and β + γ = 0, that is, if and only if α = β = γ = 0.
(b) We need to find (α, β, γ) �= (0, 0, 0) such that

αλ + β = 0, α + βλ + γ = 0, β + γλ = 0.

The solutions are λ = 0 associated with (α, β, γ) = κ(1, 0,−1) and λ = ±
√

2 associated
with (α, β, γ) = κ(1,∓

√
2, 1).

Exercise 3.18 (Spanned subspace) Let A be a nonempty set of elements of a vector
space V . The set A consisting of all linear combinations of vectors in A is called the sub-
space spanned (or generated) by A.
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(a) Show that A is in fact a subspace of V .
(b) Show that A is the smallest subspace containing A.

Solution
(a) This follows from the fact that a linear combination of linear combinations is also a
linear combination.
(b) Let B be a subspace of V , such that A is contained in B. Then B contains all linear
combinations from A, and hence A ⊆ B.

Exercise 3.19 (Spanned subspace in R3)
(a) Let A be a circle in R3 centered at the origin. What is the space A spanned by A?
(b) Let A be a plane in R3 not passing through the origin. What is A?
(c) Consider the vectors e1 = (1, 0, 0)′, e2 = (0, 1, 0)′, and v = (0,−2, 0)′ in R3. Show
that the three vectors span a plane (the x-y plane), that e1 and e2 alone span the same plane,
and that e2 and v span only a line.

Solution
(a) The plane containing the circle.
(b) The whole of R3. Contrast this with the plane in Figure 3.2.
(c) Letting λ := α2−2α3, we have α1e1 +α2e2 +α3v = α1e1 +λe2, and α2e2 +α3v =
λe2. Hence, {e1, e2, v} and {e1, e2} alone span the x-y plane (the plane z = 0), and
{e2, v} spans the y-axis (the line x = z = 0).

Exercise 3.20 (Dimension) If a vector space V contains a finite set of n linearly indepen-
dent vectors x1, x2, . . . , xn, and moreover any set of n + 1 vectors is linearly dependent,
then the dimension of V is n, and we write dim(V) = n. In this case V is said to be finite
dimensional. If no such n exists, we say that V is infinite dimensional. Show that in a
finite-dimensional vector space V of dimension n:
(a) no set of more than n vectors can be linearly independent;
(b) no set of fewer than n vectors can span the space.

Solution
(a) If dim(V) = n, then any set of n + 1 vectors is linearly dependent, by definition.
(b) Since dim(V) = n, V contains n linearly independent vectors x1, x2, . . . ,xn. Sup-
pose n − 1 vectors, say v1, . . . ,vn−1, span V . Consider the set {x1, v1, . . . ,vn−1}. The
vector x1 is a linear combination of {vi}, since {vi} spans V . Accordingly, the set
{x1, v1, . . . ,vn−1} is linearly dependent and also spans V . By Exercise 3.15(d), one of
the vectors is a linear combination of its predecessors, say vi. Thus, {x1, v1, . . . , vi−1,
vi+1, . . . , vn−1} spans V . We next add x2 and consider the dependent set {x1, x2, v1, . . . ,
vi−1, vi+1, . . . , vn−1}. Another v is omitted. Continuing in this way, and observing that
none of the xi are to be omitted, we conclude that {x1, x2, . . . , xn−1} spans V . Hence,
xn must be a linear combination of x1, . . . , xn−1, which contradicts the fact that x1, . . . ,
xn are linearly independent.
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*Exercise 3.21 (Finite dimension of L†
2) Show that the space L†

2 is finite dimensional.

Solution
The space L†

2 was introduced in Exercise 3.6. It consists of all random variables of the
form a′x, where x := (x1, . . . , xn)′ is a random vector whose components xi have finite
second moments, E(x2

i ) < ∞, and the components ai of a are finite constants. Since we
can find at most n linearly independent vectors aj of order n × 1, the dimension of L†

2 is
at most n, hence finite. Notice that, if the variance matrix var(x) is positive definite, then
dim(L†

2) = n. If, however, var(x) is singular and has rank r < n, then there will be n− r

nontrivial linear combinations a′x such that Pr (a′x = 0) = 1. Then, dim(L†
2) = r. (We

don’t know yet what the words “positive definite”, “singular”, and “rank” mean, but we
will get to this in later chapters.)

Not all spaces are finite dimensional. For example, L2-space, introduced in Exercise 3.7,
is infinite dimensional. As a second example, consider real l2-space, introduced in Ex-
ercise 3.5. This is the real vector space of all infinite sequences (x1, x2, . . . ) satisfying∑∞

i=1 x2
i < ∞. Define an inner product 〈x, y〉 :=

∑∞
i=1 xiyi. Then l2 is an infinite-

dimensional inner-product space; see Exercise 3.35(d). A third example is provided in
Exercise 6.31: In the space of all polynomials p(x) := a0 + a1x + · · · + anxn (of degree
≤ n), the functions 1, x, . . . , xn are linearly independent for every n = 1, 2, . . . . This
space has finite dimension n + 1. But the space of all polynomials p(x) (of all degrees) is
infinite dimensional.

Exercise 3.22 (Basis) If V is a vector space, not necessarily finite dimensional, and
A is a set of linearly independent vectors from V , such that V is spanned by A, then A is a
basis of V .
(a) Find a basis of R3.
(b) Find another basis of R3.
(c) Show that there are infinitely many bases of R3.

Solution
(a) The unit vectors e1, e2, e3 are the simplest choice of basis. They are, in fact, a basis,
because every x := (x1, x2, x3)′ in R3 can be written as x = x1e1 + x2e2 + x3e3.
(b) The columns of 1 0 0

0 2 0
2 0 α


are also a basis for R3, provided α �= 0, because every x can be written as

x1

1
0
2

+
(

1
2
x2

)0
2
0

+
(

x3 − 2x1

α

)0
0
α

 .

(c) The matrix in (b) is a basis for every α �= 0.
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Exercise 3.23 (Basis, numbers) Consider the matrix

A =

1 1 1 1 1 1 2 2 5
0 1 1 2 2 3 −1 3 3
1 1 2 3 5 5 1 0 4


and denote the nine columns by a1, . . . , a9. Which of the following form a basis of R3?
(a) a1 and a2;
(b) a1, a4, a6, a8;
(c) a2, a4, a7;
(d) a3, a5, a9.

Solution
(a)–(b) No, because a basis of R3 must contain three vectors.
(c) Yes. The three vectors are a basis if and only if they are linearly independent. This is
the case, because the three linear equations

x1 + x2 + 2x3 = 0, x1 + 2x2 − x3 = 0, x1 + 3x2 + x3 = 0

have only x1 = x2 = x3 = 0 as solution.
(d) No, because the three vectors are linearly dependent: 7a3 − 2a5 − a9 = 0.

Exercise 3.24 (Basis for matrices)
(a) In the space of 2× 2 matrices find a basis for the subspace of matrices whose row sums
and column sums are all equal.
(b) Also find a basis for the 3× 3 matrices with this property.

Solution
(a) The 2× 2 matrices all have the form(

a b

b a

)
= a

(
1 0
0 1

)
+ b

(
0 1
1 0

)
.

Notice that the two matrices on the right-hand side satisfy the restriction that row sums and
column sums are equal, as of course they must.
(b) The 3× 3 matrices have the form a b c + d + e

c d a + b + e

b + d + e a + c + e −e

 = a

1 0 0
0 0 1
0 1 0

+ b

0 1 0
0 0 1
1 0 0



+ c

0 0 1
1 0 0
0 1 0

+ d

0 0 1
0 1 0
1 0 0

+ e

0 0 1
0 0 1
1 1 −1

 .

The last of the five matrices on the right-hand side contains two identical rows (and two
identical columns); it is a “singular” matrix (a concept to be introduced later). Thus, ele-
ments of a basis for a space of square matrices, may be singular.
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Exercise 3.25 (Existence of basis) Every vector space V �= {0} has a basis. Prove this
in the finite-dimensional case.

Solution
Choose sequentially nonzero vectors x1, x2, . . . in V , such that none of the xi is linearly
dependent on its predecessors. If there is no limit to this process, then V is infinite dimen-
sional. Since V is finite dimensional, there is a number n, such that x1, . . . , xn are linearly
independent and no linearly independent vector is left in V . Thus, {x1, . . . , xn} constitute
a basis in V .

Exercise 3.26 (Unique representation in terms of a basis) Show that every nonzero
vector in a finite-dimensional vector space V has a unique representation in terms of a
given basis.

Solution
Let A be the given basis and let x ∈ V , x �= 0. Then there exists a set of linearly
independent {x1, . . . ,xn} ⊂ A such that x =

∑n
i=1 αixi. Suppose that there also exists a

set of linearly independent {y1, . . . ,ym} ⊂ A such that x =
∑m

j=1 βjyj . Then,

n∑
i=1

αixi −
m∑

j=1

βjyj = 0.

If the two sets {x1, . . . ,xn} and {y1, . . . ,ym} do not overlap, then all m + n vectors are
linearly independent, and we find αi = 0 and βj = 0 for all i and j. This gives x = 0,
a contradiction. Hence, the two sets overlap. Let {x1, . . . ,xp} be the overlap, such that
yj = xj for j = 1, . . . , p. Then,

p∑
i=1

(αi − βi)xi +
n∑

i=p+1

αixi −
m∑

j=p+1

βjyj = 0,

implying that αi = βi (i = 1, . . . , p), αi = 0 (i = p + 1, . . . , n), and βj = 0 (j =
p + 1, . . . , m), and hence that x has the unique representation x =

∑p
i=1 αixi.

Exercise 3.27 (Reduction and extension to basis) Show that in any finite-dimensional
vector space V:
(a) any spanning set can be reduced to a basis, by discarding vectors if necessary;
(b) any linearly independent set can be extended to a basis, by adding more vectors if nec-
essary.

Solution
(a) Consider the set A := {x1, . . . ,xm}, which spans V . We now construct a basis as
follows. First, delete all null vectors from A. Next, for i = 2, . . . , m, if xi is linearly
dependent on its predecessors, delete xi from A. The resulting set B contains only linearly
independent vectors and still spans V . Hence, it is a basis.
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(b) Let {x1, . . . ,xn} be a basis of V , and let {y1, . . . ,ym} be a linearly independent set in
V . Now consider the set

A := {y1, . . . ,ym, x1, . . . ,xn}.
This set spans V . Applying the reduction algorithm from (a), we obtain a set B containing
y1, . . . ,ym and a selection of n−m vectors from {x1, . . . ,xn}. The set B is a basis of V .

Exercise 3.28 (Span and linear independence) Let V be a finite-dimensional vector
space. Assume that {x1, . . . ,xn} spans V (but that the vectors are not necessarily linearly
independent), and that {y1, . . . ,ym} are linearly independent (but that the set does not nec-
essarily span V). Show that n ≥ m.

Solution
Suppose that n < m. Consider the set A1 := {ym, x1, . . . ,xn} containing n + 1 vectors.
The set A1 spans V (because the {xi} span V) and A1 is linearly dependent (because it con-
tains more than n vectors). Remove from A1 the first xi that is a linear combination of its
predecessors. This produces a set B1 containing n vectors. The set B1 also spans V . Now
define the set A2 as the set B1 with ym−1 added as the first vector. Then A2 spans V and is
linearly dependent. Continuing in this way we obtain, after n steps, a set Bn containing the
vectors ym−n+1, . . . ,ym. By construction, Bn spans V . Hence, the vectors y1, . . . ,ym−n

are linear combinations of the vectors in Bn. This is a contradiction, because the {yi} are
linearly independent. Hence, n ≥ m.

Exercise 3.29 (Dimension of basis) Let V be a finite-dimensional vector space. Use
Exercise 3.28 to show that every basis contains the same number of vectors.

Solution
Let {x1, . . . ,xn} and {y1, . . . ,ym} be two bases of V . Then, {x1, . . . ,xn} spans V
and {y1, . . . ,ym} is linearly independent. Hence, by Exercise 3.28, n ≥ m. Similarly,
{y1, . . . ,ym} spans V and {x1, . . . ,xn} is linearly independent. Hence, m ≥ n. The
result follows.

Exercise 3.30 (Basis and dimension) Let V be a finite-dimensional vector space with
dim(V) = n.
(a) Show that every set of n linearly independent vectors in V constitutes a basis of V .
(b) Show that every basis of V contains n (linearly independent) vectors.

Solution
(a) Let x1, . . . ,xn be a set of linearly independent vectors in V , and let x ∈ V be arbitrary.
Since the set {x, x1, . . . ,xn} is linearly dependent (it contains n + 1 vectors), there exist
scalars, not all zero, such that

αx + α1x1 + · · ·+ αnxn = 0.
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If α were zero, this would imply that the {xi} are linearly dependent, which they are not.
Hence, α �= 0 and we can write x as a linear combination of x1, . . . ,xn. Since x is an ar-
bitrary vector in V , this shows that the xi span V . Since they are also linearly independent,
they constitute a basis.
(b) By (a) there exists a basis containing n vectors. By Exercise 3.29 every basis has the
same number of vectors. Hence, every basis has n vectors.

Exercise 3.31 (Basis and dimension, numbers) Let A be the subspace of R4 spanned
by the columns of the matrix

A =


1 2 3
−2 3 8
5 1 −3
−3 −4 −5

 .

(a) Find a basis of A.
(b) What is the dimension of A?
(c) Extend the basis of A to a basis of R4.

Solution
(a) Let a1, a2, a3 denote the columns of A. It is clear that a1 and a2 are linearly indepen-
dent (otherwise they would be proportional). But a1 − 2a2 + a3 = 0, so that {a1, a2, a3}
are linearly dependent. Hence, {a1, a2} is a basis of A.
(b) dim(A) = 2.
(c) There are infinitely many solutions. We need to find two vectors, say v1 and v2

such that {a1, a2, v1, v2} is a basis of R4. A simple solution is v1 = (0, 0, 1, 0)′ and
v2 = (0, 0, 0, 1)′.

Exercise 3.32 (Dimension of subspace) Let A be a subspace of a finite-dimensional
vector space V . Show that:
(a) dim(A) ≤ dim(V);
(b) dim(A) = dim(V) if and only if A = V .

Solution
(a) Let dim(V) = n. Then any n+1 (or more) vectors in V are linearly dependent. Hence,
any n + 1 (or more) vectors in A are linearly dependent. In particular, therefore, any basis
of A cannot contain more than n vectors. Thus, dim(A) ≤ n.
(b) If A := {x1, . . . ,xn} is a basis of A, then A contains n linearly independent vectors
in V and hence spans V . Thus, V ⊆ A. Since obviously A ⊆ V , it follows that A = V .

Exercise 3.33 (Dimension of Cn)
(a) What is the dimension of Cn when the field of scalars is C?
(b) What is the dimension of Cn when the field of scalars is R?
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Solution
(a) A basis is {e1, . . . ,en} and hence the dimension is n.
(b) A basis is {e1, . . . ,en, ie1, . . . , ien} and hence the dimension is 2n.

Exercise 3.34 (Dimension of a sum) Let A and B be finite-dimensional subspaces of a
vector space V . Suppose that A := {ai} spans A and that B := {bj} spans B.
(a) Show that A ∪B spans A+ B.
(b) If A ∩ B = {0}, show that A ∪B is a basis of A+ B.
(c) Hence, show that A ∩ B = {0} implies that dim(A+ B) = dim(A) + dim(B).

Solution
(a) Let dim(A) = m, dim(B) = n, and let

C := {a1, . . . ,am, b1, . . . , bn}.
Then C spansA+B, because every vector inA+B can be written as a linear combination
of the {ai} plus a linear combination of the {bj}, that is, as a linear combination of C. For
example, two distinct planes through the origin span the whole of R3.
(b) Suppose that a + b = 0, where

a :=
m∑

i=1

αiai and b :=
n∑

j=1

βjbj

for some scalars α1, . . . , αm and β1, . . . , βn. Then, a = −b ∈ B. Since obviously a ∈ A,
this gives a ∈ A∩B = {0}, and hence a = 0. Similarly, b = 0. Since A and B are bases,
we obtain αi = 0 for all i and βj = 0 for all j. This shows that the m + n vectors in C are
linearly independent and, together with (a), that C is a basis of A+ B.
(c) The dimension of A + B is equal to the number of vectors in C (since C is a basis).
Hence, dim(A+ B) = m + n = dim(A) + dim(B).

3.2 Inner-product space

Exercise 3.35 (Examples of inner-product spaces)
(a) Show that the space Rm with the usual inner product 〈x, y〉 :=

∑m
i=1 xiyi is an inner-

product space.
(b) Show that the space Cm with the inner product 〈x, y〉 :=

∑m
i=1 xiy

∗
i is an inner-product

space.
(c) Show that the space Rm×n of real m × n matrices is an inner-product space when
〈A, B〉 := trA′B.
(d) Let V be the real vector space of all infinite sequences (x1, x2, . . . ) satisfying

∑∞
i=1 x2

i <

∞. Define an inner product 〈x, y〉 :=
∑∞

i=1 xiyi. Show that V is an inner-product space
(real l2-space).

Solution
(a)–(c) This has been proved earlier, namely in Exercises 1.7, 1.20, and 2.38, respectively.
(d) In l2-space, we know that 〈x, x〉 is finite. Hence, by the Cauchy-Schwarz inequality,
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〈x, y〉2 ≤ 〈x, x〉〈y, y〉 < ∞, so that 〈x, y〉 is finite. The four defining properties of the
inner product are now easily verified. For example, 〈x, y〉 =

∑
i xiyi =

∑
i yixi = 〈y, x〉.

Exercise 3.36 (Norm and length) Recall that the norm of a vector x in an inner-product
space is given by ‖x‖ :=

√
〈x, x〉.

(a) Show that 〈x, x〉 is always a real number.
(b) What is the geometric interpretation of the norm in Rn?

Solution
(a) Since 〈x, y〉 = 〈y, x〉∗, we see that 〈x, x〉 = 〈x, x〉∗.
(b) The norm is the idealization of “length” in Euclidean geometry, and its properties have
been worked out in Exercises 1.10, 1.20(d), and 1.21(c).

Exercise 3.37 (Cauchy-Schwarz inequality, again) Show that in any inner-product
space,

|〈x, y〉| ≤ ‖x‖ · ‖y‖
with equality if and only if x and y are collinear.

Solution
This follows in the same way as in the proof of Exercise 1.21(b).

*Exercise 3.38 (The parallelogram equality)
(a) Show that in any inner-product space,

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
(b) Why is this equality called the “parallelogram equality”?

Solution
(a) We have

‖x + y‖2 + ‖x− y‖2 = 〈x + y, x + y〉+ 〈x− y, x− y〉

= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉

= 2〈x, x〉+ 2〈y, y〉 = 2‖x‖2 + 2‖y‖2.
(b) Figure 3.3 explains the term in R2. If we think of A as the origin, B as the point x, and
D as the point y, then we need to prove that AC2 + BD2 = 2(AB2 + AD2), in other words
that the sum of the squares of the two diagonals of the parallelogram is equal to the sum of
the squares of the four sides. Now,

AC2 + BD2 = (a + b + a)2 + h2 + b2 + h2

= 2
(
(a + b)2 + (a2 + h2)

)
= 2(AB2 + AD2).
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Figure 3.3 — The parallelogram equality.

Exercise 3.39 (Norm, general definition) Consider a real-valued function ν(x) defined
on an inner-product space. Suppose ν(x) satisfies:

(i) ν(αx) = |α|ν(x);
(ii) ν(x) ≥ 0, with ν(x) = 0 if and only if x = 0;

(iii) ν(x + y) ≤ ν(x) + ν(y) (triangle inequality).

Show that the function ν(x) := ‖x‖ satisfies (i)–(iii). (Many authors call any real-valued
function ν satisfying (i)–(iii) a norm. Our definition is more specialized; it is the norm
induced by the inner product 〈x, y〉.)

Solution
This follows in exactly the same way as the solution to Exercise 1.10; see also Exer-
cise 1.21(c).

Exercise 3.40 (Induced inner product) We know that an inner product induces a norm.
But the converse is also true!
(a) In any real inner-product space, show that

〈x, y〉 =
1
4
(
‖x + y‖2 − ‖x− y‖2

)
.

(b) In any complex inner-product space, show that

Re〈x, y〉 =
1
4
(
‖x + y‖2 − ‖x− y‖2

)
and

Im〈x, y〉 =
1
4
(
‖x + iy‖2 − ‖x− iy‖2

)
.
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Solution
(a) In a real vector space,

‖x + y‖2 − ‖x− y‖2

= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 − 〈x, x〉+ 2〈x, y〉 − 〈y, y〉

= 4〈x, y〉.
(b) Similarly, in a complex vector space,

‖x + y‖2 − ‖x− y‖2 = 2 (〈y, x〉+ 〈x, y〉) = 2 (〈x, y〉∗ + 〈x, y〉) = 4 Re〈x, y〉,
and

‖x + iy‖2 − ‖x− iy‖2 = 2i (〈y, x〉 − 〈x, y〉) = 4 Im〈x, y〉.

*Exercise 3.41 (Norm does not imply inner product) Exercise 3.40 shows that the unique
inner product can be induced from the norm, if we know that an inner product exists. It
does not imply (and it is not true) that the existence of a norm implies the existence of an
inner product. For example, in Rm, consider the real-valued function ν(x) :=

∑m
i=1 |xi|.

(a) Show that ν is a norm, according to the definition of Exercise 3.39.
(b) Show that there is no inner-product space that induces this norm.

Solution
(a) We need to show that

∑
i |xi| ≥ 0, that

∑
i |xi| = 0 if and only if x = 0, that∑

i |αxi| = |α|
∑

i |xi|, and that
∑

i |xi + yi| ≤
∑

i |xi| +
∑

i |yi|, all of which follow
from Chapter 1.
(b) If an inner product existed, then the parallelogram equality would hold. Let x = (1, 1)′

and y = (1,−1)′ in R2. Then, ν(x + y) = ν(x− y) = ν(x) = ν(y) = 2, and hence

(ν(x + y))2 + (ν(x− y))2 = 8 �= 16 = 2(ν(x))2 + 2(ν(y))2.

This shows that the parallelogram equality does not hold, and hence that no inner product
exists for this norm.

Exercise 3.42 (Distance) In an inner-product space, the distance d(x, y) between two
vectors x and y is defined as d(x, y) := ‖x− y‖. Show that:
(a) d(x, x) = 0;
(b) d(x, y) > 0 if x �= y;
(c) d(x, y) = d(y, x);
(d) d(x, y) ≤ d(x, z) + d(z, y).
Discuss the geometric interpretation in R2.

Solution
Parts (a) and (b) follow from Exercise 3.39(ii), while part (c) follows from Exercise 3.39(i).
To prove (d) we use the triangle inequality and obtain

‖x− y‖ = ‖(x− z) + (z − y)‖ ≤ ‖x− z‖+ ‖z − y‖.
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The geometric interpretation in R2 is: (a), (b) the distance between two points is positive,
unless the points coincide, in which case the distance is zero; (c) the distance between two
points A and B is the same as the distance between B and A; (d) a straight line is the short-
est distance between two points.

Exercise 3.43 (Continuity of the inner product) If {xn} and {yn} are sequences of
vectors in an inner-product space, such that ‖xn − x‖ → 0 and ‖yn − y‖ → 0, then show
that:
(a) ‖xn‖ → ‖x‖, ‖yn‖ → ‖y‖;
(b) 〈xn, yn〉 → 〈x, y〉, if ‖x‖ <∞ and ‖y‖ < ∞.

Solution
(a) The triangle inequality states that ‖x + y‖ ≤ ‖x‖+ ‖y‖ for any x, y. It follows that

‖xn‖ ≤ ‖xn − x‖+ ‖x‖, ‖x‖ ≤ ‖x− xn‖+ ‖xn‖,
and hence |‖xn‖ − ‖x‖| ≤ ‖xn − x‖, from which (a) follows.
(b) Next,

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn − y〉+ 〈xn − x, y〉|

≤ |〈xn, yn − y〉|+ |〈xn − x, y〉|

≤ ‖xn‖ · ‖yn − y‖+ ‖xn − x‖ · ‖y‖,
where the last inequality follows from Cauchy-Schwarz. Since, from (a), ‖xn‖ → ‖x‖,
the result follows.

Exercise 3.44 (Orthogonal vectors in space) Recall that two vectors x, y in an inner-
product space are orthogonal if 〈x, y〉 = 0, in which case we write x ⊥ y.
(a) Show that the null vector 0 is orthogonal to every vector in V .
(b) Obtain all vectors in R3 orthogonal to x = (2, 2,−1)′.

Solution
(a) For every y ∈ V we have 〈0, y〉 = 0.
(b) Any vector y orthogonal to x must satisfy the equation 〈x, y〉 = 0, that is, 2y1 +
2y2 − y3 = 0. Hence,

y =

 y1

y2

2y1 + 2y2

 = y1

1
0
2

+ y2

0
1
2

 .

This is the equation of a plane through the origin; see also Exercise 3.10(e). All vectors in
the plane are orthogonal to x. We say that the vector x is normal to the plane.

Exercise 3.45 (Pythagoras)
(a) If x ⊥ y in an inner-product space, show that ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(b) Does the converse hold?
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Solution
We have

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉.
(a) If x ⊥ y, then 〈x, y〉 = 〈y, x〉 = 0 and hence ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(b) Conversely, if ‖x+y‖2 = ‖x‖2+‖y‖2, then 〈x, y〉+〈y, x〉 = 0, that is, Re〈x, y〉 = 0.
So, the converse holds in Rn, but not in Cn. For example, in C2, if x = (1, i)′ and
y = (i, 0)′, then 〈x, y〉 = −i and 〈y, x〉 = i, so that 〈x, y〉 �= 0 despite the fact that
‖x + y‖2 = ‖x‖2 + ‖y‖2.

Exercise 3.46 (Orthogonality and linear independence) Let A := {x1, . . . ,xr} be
a set of nonzero vectors in an inner-product space. A is an orthogonal set if each pair of
vectors in A is orthogonal. If, in addition, each vector in A has unit length, then A is an
orthonormal set.
(a) Show that the n columns of In are orthonormal and linearly independent.
(b) Prove that any orthonormal set is linearly independent.

Solution
(a) The columns of In are e1, . . . ,en. It is easy to see that e′

iej = δij , where δij denotes
the so-called Kronecker delta, taking the value one if i = j and zero otherwise. Hence, the
columns of In are orthonormal. They are also linearly independent, because α1e1 + · · ·+
αnen = (α1, . . . , αn)′ and this equals the null vector if and only if all αi are zero.
(b) Let B := {b1, . . . , bn} be an orthonormal set, and suppose that α1b1+ · · ·+αnbn = 0.
For i = 1, . . . , n we have

0 = 〈bi, α1b1 + · · ·+ αnbn〉 =
n∑

j=1

αj〈bi, bj〉 = αi,

and hence αi = 0 for all i.

Exercise 3.47 (Orthogonal subspace) Recall that two subspaces A and B of an inner-
product space are orthogonal if every vector a in A is orthogonal to every vector b in B.
(a) Show the front wall and side wall of a room are not orthogonal.
(b) Show that the subspace {0} is orthogonal to all subspaces.

Solution
(a) This is somewhat counterintuitive, but only some of the lines in the two walls meet at
right angles. Moreover, the line along the corner is in both walls, and it is not orthogonal
to itself. In R3 no plane is orthogonal to another plane.
(b) This is true because 〈0, x〉 = 0 for all x.

Exercise 3.48 (Orthogonal complement) LetA be a subspace of an inner-product space
V . The space A⊥ of all vectors orthogonal to A is the orthogonal complement of A.
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(a) What is the orthogonal complement of {0}?
(b) Show that A⊥ is a subspace of V .
(c) Show that A ∩A⊥ = {0}.

Solution
(a) Every vector x in V satisfies 〈x,0〉 = 0. Hence, the orthogonal complement of {0} is
the whole space V .
(b) Let x ∈ A⊥, y ∈ A⊥. Then, for any z ∈ A, we have 〈x, z〉 = 〈y, z〉 = 0 and hence
also 〈x + y, z〉 = 0 and 〈αx, z〉 = 0. This shows that x + y ∈ A⊥ and αx ∈ A⊥, and
hence that A⊥ is a subspace of V .
(c) Let x ∈ A ∩ A⊥. Since x ∈ A⊥, we have that 〈x, y〉 = 0 for all y ∈ A. But, since x

is also in A, this gives 〈x, x〉 = 0, and hence x = 0.

Exercise 3.49 (Gram-Schmidt orthogonalization) We already know that any vector
space V has a basis. Now show that if V is a finite-dimensional inner-product space, V
always has an orthonormal basis.

Solution
Let x1, x2, . . . be a basis of V . We define

y1 := x1

y2 := x2 − a21y1
...

yn := xn − an,n−1yn−1 − · · · − an1y1.

The coefficients in the i-th equation are chosen in such a way that yi is orthogonal to each
of y1, . . . ,yi−1. Thus, y2 ⊥ y1 yields 〈x2, y1〉 = a21〈y1, y1〉 and y3 ⊥ y1, y3 ⊥ y2

yields 〈x3, y1〉 = a31〈y1, y1〉 and 〈x3, y2〉 = a32〈y2, y2〉. Continuing in this way we find
all the coefficients from 〈xi, yj〉 = aij〈yj , yj〉, j = 1, . . . , i− 1. (Note that 〈yj , yj〉 �= 0,
because otherwise yj = 0 would imply linear dependence of the x1, . . . ,xj .) The vec-
tors y1, y2, . . . constitute an orthogonal basis. The normalized set y◦1, y◦2, . . . , with
y◦i := yi/‖yi‖ constitutes an orthonormal basis.

3.3 Hilbert space

Exercise 3.50 (Rm is a Hilbert space) Show that Rm is a Hilbert space and hence, by
the same argument, that Cm, Rm×n, and Cm×n are also Hilbert spaces. (You may use the
fact that the set R of real numbers is complete.)

Solution
Suppose {x(1), x(2), . . . } is a Cauchy sequence, where x(p) := (x(p)

1 , x
(p)
2 , . . . , x

(p)
m )′ de-

notes a real m× 1 vector. Then,
m∑

i=1

(
x

(p)
i − x

(q)
i

)2
→ 0 as p, q →∞.
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This implies that for each i = 1, . . . , m,(
x

(p)
i − x

(q)
i

)2
→ 0 as p, q →∞,

and hence, by the completeness of R, that each sequence x
(p)
i converges to, say, xi. Let-

ting x′ := (x1, . . . , xm), it then follows that x(p) converges to x. Hence, every Cauchy
sequence converges in Rm, proving its completeness. We already know that Rm is an inner-
product space. Hence, Rm is a complete inner-product space, that is, a Hilbert space. The
complex case follows by applying the same argument to Re(x(p)

i ) and Im(x(p)
i ) separately.

Exercise 3.51 (L†
2 is a Hilbert space) Show that the space L†

2 of random variables,
introduced in Exercises 3.6 and 3.21, is a Hilbert space.

Solution
This proceeds in essentially the same way as in Exercise 3.50. Both Rm and L†

2 are finite
dimensional, and any finite-dimensional inner-product space is complete and therefore a
Hilbert space.

Exercise 3.52 (Closed subspace) A subspaceA of a vector space V is said to be a closed
subspace of V if A contains all of its limit points, that is, if xn ∈ A and ‖xn − x‖ → 0
imply x ∈ A. If V is a Hilbert space and A is a closed subspace of V , then show that:
(a) A is also a Hilbert space;
(b) A⊥ is a closed subspace of V , and hence also a Hilbert space.

Solution
(a) Let {xn} be a Cauchy sequence in A. Since V is complete, xn → x ∈ V . But, since
A is closed, x ∈ A. Hence, the arbitrary Cauchy sequence {xn} converges in A, proving
that A is complete.
(b) A⊥ is a subspace because a linear combination of vectors orthogonal to a set is also
orthogonal to the set. A⊥ is closed because if {xn} is a convergent sequence fromA⊥, say
xn → x, continuity of the inner product (Exercise 3.43) implies that 0 = 〈xn, y〉 → 〈x, y〉
for all y ∈ A. Hence, x ∈ A⊥. Completeness then follows from (a).

*Exercise 3.53 (Projection theorem) Let V be a Hilbert space and A a closed subspace
of V .
(a) Show that for any y ∈ V there exists a vector ŷ ∈ A such that ‖y − ŷ‖ ≤ ‖y − x‖ for
all x ∈ A, that is,

‖y − ŷ‖ = inf
x∈A

‖y − x‖.

[Hint: Consider a sequence {xn} achieving this infimum, then show that it is a Cauchy
sequence.]
(b) Show that ŷ, thus obtained, is unique. (The vector ŷ is called the orthogonal projection
of y onto A.)
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Solution
(a) (existence). If y ∈ A, then the choice ŷ := y solves the problem. Assume y /∈ A, and
let d := infx∈A ‖y−x‖2. We will show that there exists a ŷ ∈ A such that ‖y− ŷ‖2 = d,
that is, that the infimum is in fact a minimum. Let {xn} be a sequence of vectors inA such
that ‖xn − x‖2 → d. Then, applying the parallelogram equality, we can write

‖(xn − x)+(x− xm)‖2 + ‖(xn − x)− (x− xm)‖2

= 2‖xn − x‖2 + 2‖xm − x‖2.
Rearranging yields

‖xn − xm‖2 = 2‖xn − x‖2 + 2‖xm − x‖2 − 4‖xn + xm

2
− x‖2.

Now, (xn +xm)/2 is inA because xn and xm are inA. Hence, ‖(xn +xm)/2−x‖2 ≥ d

and we obtain

0 ≤ ‖xn − xm‖2 ≤ 2‖xn − x‖2 + 2‖xm − x‖2 − 4d.

Since ‖xn −x‖2 → d as n →∞, we find ‖xn −xm‖ → 0 as n, m→∞, so that {xn} is
a Cauchy sequence. Since V is a Hilbert space, there now exists a vector ŷ ∈ V such that
‖xn − ŷ‖ → 0. Furthermore, since A is closed, ŷ ∈ A. Finally, by the continuity of the
inner product (Exercise 3.43),

‖y − ŷ‖2 = lim
n→∞

‖y − xn‖2 = d.

(b) (uniqueness). Suppose ỹ ∈ A exists such that ‖y − ŷ‖2 = ‖y − ỹ‖2 = d. Then, again
using the parallelogram equality,

0 ≤ ‖ŷ − ỹ‖2 = 2‖ŷ − y‖2 + 2‖ỹ − y‖2 − 4‖ ŷ + ỹ

2
− y‖2

≤ 2d + 2d− 4d = 0,

and hence ỹ = ŷ.

*Exercise 3.54 (Projection theorem, complement) Let V be a Hilbert space, A a closed
subspace of V , and y ∈ V .
(a) If y − ŷ ∈ A⊥ for some ŷ ∈ A, show that ‖y − ŷ‖ = infx∈A ‖y − x‖.
(b) Conversely, if ‖y − ŷ‖ = infx∈A ‖y − x‖ for some ŷ ∈ A, show that y − ŷ ∈ A⊥.
[Hint: Use proof by contrapositive and the method in Exercise 1.9 (Cauchy-Schwarz).]

Solution
(a) If ŷ ∈ A and y − ŷ ∈ A⊥, then, for any x ∈ A, we have ŷ − x ∈ A and hence
(ŷ − x) ⊥ (y − ŷ). Application of Pythagoras’s theorem (Exercise 3.45) gives

‖y − x‖2 = ‖(y − ŷ) + (ŷ − x)‖2

= ‖y − ŷ‖2 + ‖ŷ − x‖2 ≥ ‖y − ŷ‖2,
with equality if and only if x = ŷ.
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(b) Suppose y − ŷ /∈ A⊥. If ŷ ∈ A, then β := 〈y − ŷ, x〉 �= 0 for some x ∈ A. Clearly,
x �= 0 since otherwise β = 0. For any scalar α,

‖y − ŷ − αx‖2 = ‖y − ŷ‖2 − α∗β − αβ∗ + αα∗‖x‖2.
Choose α∗ := β∗/‖x‖2. This gives

‖y − ŷ − βx

‖x‖2 ‖ = ‖y − ŷ‖2 − |β|2
‖x‖2 < ‖y − ŷ‖2.

Hence, a vector ỹ := ŷ +βx/‖x‖2 exists inA such that ‖y− ỹ‖ < ‖y− ŷ‖. This implies
that ŷ is not the minimizing vector. Since, in fact, ŷ is the minimizing vector, it follows
that y − ŷ ∈ A⊥.

Exercise 3.55 (Unique representation, direct sum) Let V be a Hilbert space and let
A be a closed subspace of V . Show that each vector y ∈ V has a unique representation
y = ŷ + e where ŷ ∈ A and e ∈ A⊥. (This is sometimes written as V = A⊕A⊥ where
⊕ denotes the direct sum operator.)

Solution
Let y ∈ V . By the projection theorem (Exercise 3.53), there is a unique vector ŷ ∈ A such
that ‖y − ŷ‖ ≤ ‖y − x‖ for all x ∈ A. Moreover, e := y − ŷ ∈ A⊥ (Exercise 3.54(b)).
Hence, y = ŷ + e with ŷ ∈ A and e ∈ A⊥.

To prove that the representation is unique, suppose that y can also be represented as
y = a + b, with a ∈ A, b ∈ A⊥. Then, (a− ŷ) + (b− e) = 0 and (a− ŷ) ⊥ (b− e),
since a− ŷ ∈ A and b− e ∈ A⊥. Pythagoras’s theorem then gives

0 = ‖(a− ŷ) + (b + e)‖2 = ‖a− ŷ‖2 + ‖b− e‖2,
implying that a = ŷ and b = e.

Exercise 3.56 (Orthogonal complement, dimensions) Let V be a finite-dimensional
inner-product space, and let A be a subspace of V . Show that dim(A) + dim(A⊥) =
dim(V).

Solution
Exercises 3.34(c) and 3.48(c) together show that dim(A) + dim(A⊥) = dim(A + A⊥).
Exercise 3.55 shows that V = A ⊕ A⊥ and hence that dim(V) = dim(A +A⊥). Hence,
dim(A) + dim(A⊥) = dim(V).

Exercise 3.57 (Orthogonal complement, iterated) Let A be a closed subspace of a
Hilbert space V . Show that A⊥⊥ = A.

Solution
Let x ∈ A. Then x ⊥ y for all y ∈ A⊥. Therefore, x ∈ A⊥⊥. Conversely, let x ∈ A⊥⊥.
By Exercise 3.55 we can express x (uniquely) as x = x̂ + e with x̂ ∈ A, e ∈ A⊥.
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Since x̂ ∈ A, it is also true that x̂ ∈ A⊥⊥. Hence, both x and x̂ are in A⊥⊥. Therefore,
e = x− x̂ ∈ A⊥⊥. But also e ∈ A⊥. Hence, e = 0 and x = x̂ ∈ A.

Notes

Good intermediate texts on vector spaces are Shilov (1974) and Kreyszig (1978). More
geared towards econometrics is Pollock (1979). In Exercise 3.25 we proved that every
vector space V �= {0} has a basis in the finite-dimensional case. The result holds also in
the infinite-dimensional case, but the proof is more difficult and requires Zorn’s lemma;
see Kreyszig (1978, Section 4.1). In Exercise 3.51 we showed that the space L†

2 of ran-
dom variables is a Hilbert space. This is easy because any finite-dimensional inner-product
space is complete (Kreyszig (1978, Theorem 2.4-2, pp. 73–74)) and therefore a Hilbert
space. The difficulty only arises in infinite-dimensional spaces such as l2. This space is, in
fact, complete; for a proof see Kreyszig (1978, pp. 35–36).
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Rank, inverse, and determinant

A real m × n matrix can be viewed as a collection of n columns in Rm, but also as a
collection of m rows in Rn. Thus, associated with a matrix are two vector spaces: the
collection of columns and the collection of rows. In each of the two spaces there are two
subspaces of special importance. The column space of A, denoted by col A, consists of all
linear combinations of the columns of A,

col A := {x ∈ Rm : x = Ay for some y ∈ Rn}.
The kernel (or null space) of A, denoted by ker A, is the set of all solutions to the equation
Ay = 0,

kerA := {y ∈ Rn : Ay = 0}.
Notice that col A is a subspace of the collection of columns, while ker A is a subspace of
the collection of rows. In the same way we can define the column space of A′,

col A′ := {y ∈ Rn : y = A′x for some x ∈ Rm},
and the kernel of A′,

kerA′ := {x ∈ Rm : A′x = 0}.
The kernels are more commonly known as orthogonal complements,

col⊥(A) := {x ∈ Rm : x ⊥ A} = ker A′

and

col⊥(A′) := {y ∈ Rn : y ⊥ A′} = ker A,

where col⊥(A) denotes the orthogonal complement of A and col⊥(A′) the orthogonal
complement of A′. The two subspaces col A and col⊥(A) ≡ kerA′ are orthogonal sub-
spaces of Rm, and their dimensions add up to m. Similarly, col A′ and col⊥(A′) ≡ ker A

are orthogonal subspaces of Rn, and their dimensions add up to n. The two spaces are

73
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linked by the nontrivial fact that col A and col A′ have the same dimension (proved in
Exercise 4.5).

The column rank of A is the maximum number of linearly independent columns it con-
tains. The row rank of A is the maximum number of linearly independent rows. The fact
that col A and col A′ have the same dimension implies that the column rank of A is equal
to its row rank. Hence, the concept of rank is unambiguous. We denote the rank of A by
rk(A). If an m × n matrix A has rank m we say that it has full row rank, if it has rank n

we say it has full column rank. From the definitions of dimension and rank, it follows that

rk(A) = dim(col A)

for any matrix A.
A square n× n matrix is said to be nonsingular (or invertible) if rk(A) = n; otherwise

the matrix is singular. If there exists an n× n matrix B such that

AB = BA = In,

then B is called the inverse of A, denoted by A−1. For example, letting

A =
(

2 1
1 1

)
and B =

(
1 −1
−1 2

)
,

we see that AB = I2 and BA = I2. Hence, B is the inverse of A and vice versa.

In order to define the determinant, consider first the set (1, 2, . . . , n). Any rearrangement
of the “natural order” (1, 2, . . . , n) of n integers is called a permutation of these integers.
The interchange of two integers (not necessarily adjacent) is called a transposition. For
example, (3, 2, 1) is a transposition of (1, 2, 3). To obtain the permutation (2, 3, 1) from
(1, 2, 3) requires two transpositions. But it can also be done in four (or any even number
of) transpositions, for example,

(1, 2, 3) �→ (1, 3, 2) �→ (3, 1, 2) �→ (3, 2, 1) �→ (2, 3, 1).

The number of transpositions required to transform (1, 2, . . . , n) to (j1, j2, . . . , jn) is al-
ways even or always odd (we shall not prove this). We define the function ϕ(j1, . . . , jn)
to equal 0 if the number of transpositions required to change (1, . . . , n) into (j1, . . . , jn) is
even; it equals 1 otherwise.

Associated with any square matrix A of order n is the determinant |A| (or det A),
defined by the Laplace expansion

|A| :=
∑

(−1)ϕ(j1,...,jn)
n∏

i=1

aiji
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where the summation is taken over all permutations (j1, . . . , jn) of the set of integers
(1, . . . , n). For example, the determinant of a 2× 2 matrix A is

|A| =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = (−1)ϕ(1,2)a11a22 + (−1)ϕ(2,1)a12a21

= a11a22 − a12a21,

which is precisely the area of the parallelogram formed by the vectors a1 := (a11, a21)′ and
a2 := (a12, a22)′. More generally, the determinant of an n× n matrix A := (a1, . . . ,an)
is the volume of the parallelotope of dimension n formed by the vectors a1, . . . ,an.

Let A be a square matrix of order n and let A(ij) be the (n−1)×(n−1) matrix obtained
by deleting from A its i-th row and j-th column. The quantity

cij := (−1)i+j |A(ij)|
is said to be the cofactor of the element aij of A, and the matrix C = (cij) is said to be the
cofactor matrix of A. The transpose of C is the adjoint of A and will be denoted by A#.

All matrices in this chapter are real, unless specified otherwise.

4.1 Rank

Exercise 4.1 (Column space) Consider the 3× 2 matrix

A =

1 2
3 4
5 6

 .

(a) Show that

col A = λ1

 1
0
−1

+ λ2

0
1
2

 , kerA′ = col⊥ A = λ3

 1
−2
1

 .

(b) Show that

col A′ = µ1

(
1
0

)
+ µ2

(
0
1

)
, ker A = col⊥ A′ = {0}.

(c) Show that col A = col(AA′).

Solution
(a) The column space of A is given by

col A = y1

1
3
5

+ y2

2
4
6

 .

Let λ1 := y1 + 2y2 and λ2 := 3y1 + 4y2. Then y1 = −2λ1 + λ2 and 2y2 = 3λ1 − λ2.
Hence, 5y1 + 6y2 = −λ1 + 2λ2. The orthogonal complement col⊥(A) is given by the
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general solution to (
1 3 5
2 4 6

)x1

x2

x3

 =
(

0
0

)
,

which yields x2 + 2x3 = 0 and x1 = x3.
(b) Similarly, the column space of A′ is given by

col A′ = x1

(
1
2

)
+ x2

(
3
4

)
+ x3

(
5
6

)
= µ1

(
1
0

)
+ µ2

(
0
1

)
,

letting µ1 := x1 + 3x2 + 5x3 and µ2 := 2x1 + 4x2 + 6x3. The orthogonal complement
col⊥(A′) is the general solution to1 2

3 4
5 6

(y1

y2

)
=

0
0
0

 ,

yielding y1 = y2 = 0.
(c) We need to show that for each α, β, γ we can find λ1, λ2 such that

α

 5
11
17

+ β

11
25
39

+ γ

17
39
61

 = λ1

 1
0
−1

+ λ2

0
1
2

 .

Choosing λ1 := 5α+11β+17γ, λ2 := 11α+25β+39γ, shows that this is indeed possible.

Exercise 4.2 (Dimension of column space) Recall that the dimension of a vector space
V (such as col A) is the minimum number of vectors required to span the space. For the
matrix A of Exercise 4.1 show that:
(a) dim(col A) = dim(col A′) = 2;
(b) dim(col A) + dim(col⊥ A) = 3;
(c) dim(col A′) + dim(col⊥ A′) = 2.

Solution
We see that dim(col A) = 2, dim(colA′) = 2, dim(col⊥ A) = 1, and dim(col⊥ A′) = 0.
In the following three exercises we shall generalize these results to arbitrary A.

Exercise 4.3 (Orthogonal complement) Let A be a real m× n matrix.
(a) Show that col A ⊥ kerA′.
(b) Show that ker A′ = col⊥ A.
(c) Show that dim(colA) + dim(kerA′) = m.

Solution
(a) Let x be an arbitrary vector in col A. Then x = Av for some vector v. Let y be an
arbitrary vector in ker A′. Then A′y = 0. Hence, x′y = (Av)′y = v′A′y = v′0 = 0.
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(b) This is almost trivial. The space ker A′ contains all vectors orthogonal to the matrix
A, whereas the space col⊥ A contains all vectors orthogonal to the space col A, that is,
to the space spanned by the columns of A. If x ∈ col⊥ A, then x is orthogonal to every
vector in col A and, in particular, to the columns of A. Hence, x ∈ ker A′. Conversely, if
x ∈ ker A′, then x ∈ col⊥ A, using (a). Hence, the two spaces are the same.
(c) The result now is an immediate consequence of Exercise 3.56.

*Exercise 4.4 (Fundamental link between rows and columns) Let A be a real m × n

matrix. Show that dim(col A) + dim(kerA) = n.

Solution
Recall that

col A := {x ∈ Rm : x = Ay for some y} and ker A := {y ∈ Rn : Ay = 0}.
Consider a basis (x1, . . . ,xr) of col A and a basis (y1, . . . ,ys) of kerA. For each xj

(j = 1, . . . , r) there exists a zj �= 0 such that xj = Azj . Now consider the matrix

B := (y1, . . . ,ys, z1, . . . ,zr).

The proof consists of two parts. In the first part we show that the columns of B span Rn;
in the second part we show that the columns in B are linearly independent. The two parts
together imply that B is a basis of Rn, and hence that s + r = n.

To prove that B spans Rn, let v ∈ Rn be arbitrary. Then Av ∈ col A, and hence
Av =

∑
j αjxj for some choice of α1, . . . , αr. Define ỹ :=

∑
j αjzj − v. Then,

Aỹ =
∑

j

αjAzj −Av =
∑

j

αjxj −Av = 0,

and hence ỹ ∈ ker A. We can therefore write ỹ =
∑

i βiyi for some choice of β1, . . . , βs,
so that v = −

∑
i βiyi +

∑
j αjzj . Hence, every vector v ∈ Rn can be written as a linear

combination of the columns of B.
To prove the second part, assume that

∑
j αjzj +

∑
i βiyi = 0. Then,

0 =
∑

j

αjAzj +
∑

i

βiAyi =
∑

j

αjxj ,

because Ayi = 0 and Azj = xj . This shows that
∑

j αjxj = 0 and, since (x1, . . . ,xr) is
a basis, that αj = 0 for all j. This in turn implies that

∑
i βiyi = 0 and, since (y1, . . . ,ys)

is a basis, that βi = 0 for all i. Hence, the columns of B are linearly independent, and the
proof is complete.

Exercise 4.5 (The rank theorem)
(a) Show that, for any real matrix A, dim(col A′) = dim(col A), using Exercises 4.3 and
4.4.
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(b) Conclude that the column rank of A is equal to its row rank, so that the concept of rank
is unambiguous.
(c) Show that rk(A) = rk(A′).

Solution
(a) Applying Exercise 4.4 to A′ instead of A, gives dim(col A′) + dim(kerA′) = m.
Combining this with the result of Exercise 4.3 immediately gives the required result.
(b) Since the column space of A′ is the row space of A, we conclude that the column space
and the row space of A have the same dimension, and hence that the column rank and the
row rank of A are the same.
(c) Since the column rank of A is the row rank of A′, and, as we now know, column rank
and row rank are the same, the result follows. (The rank theorem, although misleadingly
simple in appearance, is in fact one of the most important theorems in matrix algebra.)

Exercise 4.6 (Rank, example) Consider the matrices

A =

1 5 6
2 6 8
7 1 8

 and B =

1 5 6 3
2 1 4 1
3 5 5 4

 .

(a) Find the rank of A and B.
(b) Show that rk(A) = rk(A′) = rk(AA′) = rk(A′A).
(c) Is it possible to construct a 3× 4 matrix of rank 4?

Solution
(a) The first two rows of both A and B are linearly independent. Hence, rk(A) ≥ 2 and
rk(B) ≥ 2. Also, rk(A) < 3, because if we let u = (20,−17, 2)′, then A′u = 0. Hence,
rk(A) = 2. (Notice that the vector v = (1, 1,−1)′ gives Av = 0. If the row rank of A is
2, then the column rank is 2 as well.) However, rk(B) = 3, since B′z = 0 implies z = 0.
(b) We already know that rk(A′) = rk(A) = 2. Writing out both AA′ and A′A it be-
comes clear that their ranks must be 2 or 3. (If the rank is 0, then the matrix is the null
matrix; if the rank is 1, then all columns are proportional to each other, and all rows are
proportional to each other.) In fact, rk(AA′) = rk(A′A) = 2, because AA′u = 0 and
A′Av = 0, where u and v are given under (a).
(c) No, this is not possible. There are only three rows and these cannot generate a four-
dimensional space.

Exercise 4.7 (Simple properties of rank) Let A be an m× n matrix.
(a) Show that 0 ≤ rk(A) ≤ min(m, n).
(b) Show that rk(A) = 0⇐⇒ A = O.
(c) Show that rk(In) = n.
(d) Show that rk(λA) = rk(A) if λ �= 0.
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Solution
(a) It is clear that rk(A) ≥ 0. The rank of A is equal to the number of linearly independent
columns. Since there are only n columns, rk(A) ≤ n. Also, rk(A) is equal to the number
of linearly independent rows. Hence, rk(A) ≤ m.
(b) If rk(A) = 0, then there are no linearly independent columns. Hence, A = O. Con-
versely, if A = O, then there are no linearly independent columns. Hence, rk(A) = 0.
(c) The identity matrix of order n has n linearly independent columns, since Inx = 0
implies x = 0.
(d) We have

rk(A) = dim (col(A)) = dim (col(λA)) = rk(λA)

for any λ �= 0.

Exercise 4.8 (Homogeneous vector equation) Let A be an m×n matrix and let Ax = 0
for some x �= 0. Show that rk(A) ≤ n − 1. Does the converse hold as well? (A general-
ization of this result is provided in Exercise 5.47(c).)

Solution
Let Ax = 0 for some x := (x1, . . . , xn)′ �= 0. If a1, . . . ,an denote the columns of A,
then x1a1 +x2a2 + · · ·+xnan = 0. Hence, the columns of A are linearly dependent, and
rk(A) ≤ n− 1. The converse holds as well. If Ax �= 0 for all x �= 0, then the columns of
A are linearly independent, and rk(A) = n.

Exercise 4.9 (Rank of diagonal matrix)
(a) Show that the rank of a diagonal matrix equals the number of nonzero diagonal elements
it possesses.
(b) Is the same true for a triangular matrix?

Solution
(a) Let A be a diagonal matrix of order n. Suppose r of its diagonal elements are nonzero,
say the first r. Then the diagonal matrix takes the form A = (a11e1, . . . , arrer,0, . . . ,0).
The first r columns are then linearly independent, but the last n− r columns depend (triv-
ially) on the first r. Hence, rk(A) = r.
(b) The two examples

A =
(

0 0
1 0

)
and B =

1 0 0
0 0 0
0 1 0


demonstrate that the same is not true for triangular matrices. The matrix A has rank 1,
but no nonzero diagonal elements; the matrix B has rank 2 and has 1 nonzero diago-
nal element. However, the statement is true in the special case that A has full rank; see
Exercise 3.16(c).
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Exercise 4.10 (Matrix of rank one) Show that rk(A) = 1 if and only if there exist
nonzero vectors a and b such that A = ab′.

Solution
Let A := (a1, . . . ,an) be an m × n matrix. If A = ab′ (a �= 0, b �= 0), then A =
(b1a, . . . , bna) and hence all columns of A are linearly dependent on one m× 1 vector a,
so that rk(A) = 1.

Conversely, let rk(A) = 1 and assume, without loss of generality, that a1 �= 0. Then,
for 2 ≤ j ≤ n, b1a1 + bjaj = 0 for some b1 and bj , not both zero. If bj = 0, then
b1a1 = 0 and hence b1 = 0 (since a1 �= 0). Since b1 and bj cannot both be zero, it follows
that bj �= 0 and hence that aj = −(b1/bj)a1. Thus, each column of A is a multiple of a1,
and we obtain A = (b1a, . . . , bna) = ab′.

Exercise 4.11 (Rank factorization theorem)
(a) Show that every m × n matrix A of rank r can be written as A = BC ′, where B

(m× r) and C (n× r) both have rank r.
(b) Hence, show that A can be written as a sum of r matrices, each of rank one.

Solution
(a) Since A has rank r, it has r linearly independent columns, say b1, . . . , br. Each
column ai of A is a linear combination of b1, . . . , br. Hence there exist numbers cij

(i = 1, . . . , n; j = 1, . . . , r) such that

ai =
r∑

j=1

cijbj .

Now let B := (b1, . . . , br) and C := (cij). Then, Aei = ai = B(C ′ei) = (BC ′)ei

for all i, and hence A = BC ′. (Of course, we could also have started with r linearly
independent rows of A, say c′1, . . . , c

′
r.)

(b) Letting B := (b1, . . . , br) and C := (c1, . . . , cr), we obtain A = BC ′ =
∑r

j=1 bjc
′
j ,

a sum of r matrices, each of rank one.

Exercise 4.12 (Column rank and row rank) Given is an m × n matrix A. You know
that there exists an m × 1 vector a, such that, if a is added as an additional column to A,
the rank of A increases by 1. In other words, rk(A : a) = rk(A) + 1. Show that this
implies that the rows of A are linearly dependent.

Solution
This exercise is another example of the tight connection between row rank and column
rank. Suppose that the m rows of A are linearly independent, so that rk(A) = m. After
adding one column to A, the matrix (A : a) still has m rows, and hence rk(A : a) ≤ m,
by Exercise 4.7(a). We thus arrive at a contradiction. Hence, rk(A) < m and the rows of
A are linearly dependent.
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Exercise 4.13 (A and AA′ span same space) Show that:
(a) ker(A′) = ker(AA′);
(b) col⊥(A) = col⊥(AA′);
(c) col(A) = col(AA′);
(d) rk(A) = rk(AA′) = rk(A′A).

Solution
(a) If x ∈ ker A′, then A′x = 0. This gives AA′x = 0, so that x ∈ ker(AA′). Con-
versely, if x ∈ ker(AA′), then AA′x = 0, and hence (A′x)′(A′x) = x′AA′x = 0.
This gives A′x = 0, so that x ∈ kerA′.
(b) Since kerA′ = col⊥(A) and ker(AA′) = col⊥(AA′), using Exercise 4.3(b), the re-
sult follows immediately.
(c) Using Exercise 3.57, we find

col A = (col⊥ A)⊥ = (col⊥(AA′))⊥ = col(AA′).

(d) Clearly (c) implies that rk(A) = rk(AA′). By the same argument we also find
rk(A′) = rk(A′A). Then, since rk(A) = rk(A′), the result follows.

Exercise 4.14 (Rank inequalities: sum)
(a) Show that rk(A + B) ≤ rk(A) + rk(B).
(b) Show that rk(A−B) ≥ | rk(A)− rk(B)|.
(The same result will be proved in Exercise 5.51 using partitioned matrices.)

Solution
(a) Let r := rk(A) and s := rk(B). Denote by x1, . . . ,xr a set of r linearly independent
columns of A, and by y1, . . . ,ys a set of s linearly independent columns of B. Then every
column of A + B can be expressed as a linear combination of the r + s vectors of

C := (x1, . . . ,xr, y1, . . . ,ys).

The vector space C spanned by the columns of A + B is also spanned by the r + s vectors
in C, and hence

rk(A + B) = dim(C) ≤ r + s = rk(A) + rk(B).

(b) Replace A by A−B in (a), and use the fact that rk(A−B) = rk(B −A).

Exercise 4.15 (Rank inequalities: product)
(a) Show that col(AB) ⊆ col A.
(b) Show that rk(AB) ≤ min(rk(A), rk(B)).

Solution
(a) Let x ∈ col(AB). Then x = ABz for some z. Hence, x = Ay for y := Bz, so that
x ∈ col A.
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(b) As a result,

rk(AB) = dim(col(AB)) ≤ dim(col A) = rk(A).

Since rk(AB) ≤ rk(A) for any two matrices A and B, it is also true that

rk(AB) = rk(B′A′) ≤ rk(B′) = rk(B).

This completes the proof.
Let us provide a second proof, based on the kernel. Let A be an m×n matrix and let B

an n× p matrix. Then, Bz = 0 implies ABz = 0 for any z, so that kerB ⊆ ker(AB).
Hence, using Exercise 4.4,

p− dim(col B) = dim(kerB) ≤ dim(kerAB) = p− dim(col AB),

from which it follows that dim(col AB) ≤ dim(col B). From here the proof proceeds as
before.

Exercise 4.16 (Rank of a product) Show that it is not true, in general, that rk(AB) =
rk(BA) for two conformable matrices A and B.

Solution
It suffices to consider

A =
(

1 0
1 0

)
and B =

(
0 0
1 1

)
.

Then, rk(AB) = rk(O) = 0 and rk(BA) = 1.

Exercise 4.17 (Rank of submatrix) Let A1 be a submatrix of A. Show that rk(A1) ≤
rk(A).

Solution
We can write A1 = EAF for appropriate choices of selection matrices E and F . Exer-
cise 4.15(b) then shows that rk(A1) = rk(EAF ) ≤ rk(AF ) ≤ rk(A).

*Exercise 4.18 (Rank equalities, 1) Show that rk(A′AB) = rk(AB) = rk(ABB′)
for any conformable matrices A and B.

Solution
Using Exercises 4.13(d) and 4.15(b) repeatedly, we obtain

rk(AB) = rk(B′A′AB) ≤ rk(A′AB) ≤ rk(AB)

and

rk(AB) = rk(ABB′A′) ≤ rk(ABB′) ≤ rk(AB).

The results follow.
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4.2 Inverse

Exercise 4.19 (Inverse of 2-by-2 matrix) Consider the matrices

A =
(

1 2
2 4

)
and B =

(
1 3
2 4

)
.

(a) Does A have an inverse? What is rk(A)?
(b) Does B have an inverse? What is rk(B)?

Solution
(a) Since the rows (and columns) of A are proportional, A has rank 1. If there exists a
matrix C such that AC = I then we must have(

1 2
2 4

)(
a b

c d

)
=
(

1 0
0 1

)
,

which leads to

a + 2c = 1, b + 2d = 0, 2a + 4c = 0, 2b + 4d = 1.

Clearly there is no solution and hence there is no inverse.
(b) Now, rk(B) = 2 because the rows are not proportional. We must solve(

1 3
2 4

)(
a b

c d

)
=
(

1 0
0 1

)
,

(
a b

c d

)(
1 3
2 4

)
=
(

1 0
0 1

)
.

The first equation gives

a + 3c = 1, b + 3d = 0, 2a + 4c = 0, 2b + 4d = 1,

and the second gives

a + 2b = 1, 3a + 4b = 0, c + 2d = 0, 3c + 4d = 1.

Both sets of equations give the same solution (this is no coincidence), namely (a, b, c, d) =
(−2, 3/2, 1,−1/2).

Exercise 4.20 (Uniqueness of inverse)
(a) Show that an inverse, if it exists, is unique.
(b) If A has a left inverse (BA = I) and a right inverse (AC = I), then B = C.

Solution
(a) Suppose there are two matrices B and C such that AB = BA = I and AC = CA =
I . Then,

B = B(AC) = (BA)C = C.

(b) Noting that in (a) we have only used BA = I and AC = I , the same argument applies.

Exercise 4.21 (Existence of inverse) Let A be a square matrix of order n. Show that the
inverse exists if and only if A is nonsingular.
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Solution
If A has an inverse, then a square matrix B of order n can be found such that AB =
BA = In. Then, using Exercise 4.15,

n = rk(AB) ≤ min(rk(A), rk(B)) ≤ rk(A) ≤ n,

implying that rk(A) = n. Conversely, suppose that rk(A) = n. Then the columns of
A span Rn, and hence every vector in Rn can be expressed as a linear combination of the
columns of A. In particular, the i-th unit vector can be expressed as ei = Abi for some bi

(i = 1, . . . , n). The matrix B := (b1, . . . , bn) now satisfies AB = In. By an analogous
argument, there exists a matrix C such that CA = In. Finally, by Exercise 4.20, B = C.

Exercise 4.22 (Properties of inverse) For any nonsingular matrix A, show that:
(a) (λA)−1 = (1/λ)A−1 (λ �= 0);
(b) (A−1)−1 = A;
(c) (A−1)′ = (A′)−1;
(d) (AB)−1 = B−1A−1 if B is nonsingular and of the same order as A;
(e) if A and B commute and B is nonsingular, then A and B−1 commute.

Solution
The results follow because:
(a) λA(1/λ)A−1 = AA−1 = I and (1/λ)A−1λA = A−1A = I;
(b) AA−1 = A−1A = I;
(c) A′(A−1)′ = (A−1A)′ = I and (A−1)′A′ = (AA−1)′ = I;
(d) ABB−1A−1 = AA−1 = I and B−1A−1AB = B−1B = I;
(e) pre- and postmultiplying AB = BA by B−1 gives B−1A = AB−1.

Exercise 4.23 (Semi-orthogonality)
(a) Let A and B be square matrices of the same order. Show that AB = I if and only if
BA = I .
(b) Now let A be a matrix of order m× n. If m < n, show that no m× n matrix B exists
such that B′A = In.
(c) Give an example of an m × n matrix A (m �= n) such that AA′ = Im or A′A = In.
(A real m × n matrix A for which AA′ = Im or A′A = In, but not necessarily both, is
called semi-orthogonal.)

Solution
(a) Let A and B be matrices of order n. Since AB = In, we have

n = rk(AB) ≤ min(rk(A), rk(B)) ≤ rk(A) ≤ n.

Hence, A (and B) has full rank n, and is therefore nonsingular (Exercise 4.21). Since the
inverse is unique, BA = I holds also.
(b) If B′A = In, then n = rk(In) = rk(B′A) ≤ rk(A) ≤ m, a contradiction.
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(c) Let x be an n × 1 vector (n > 1) such that x′x = 1, for example x := ei. Let-
ting A := x′ (and hence m = 1), we see that AA′ = x′x = 1 (a scalar), but that
A′A = xx′ �= In.

Exercise 4.24 (Rank equalities, 2) Let A be an m × n matrix, and let B (m × m)
and C (n× n) be nonsingular. Show that:
(a) rk(BA) = rk(A);
(b) rk(AC) = rk(A);
(c) rk(BAC) = rk(A).

Solution
We know from Exercise 4.15 that the rank of a matrix product can never exceed the ranks
of the constituent matrices. Hence,

rk(A) = rk(B−1BACC−1) ≤ rk(BAC) ≤ rk(A),

proving (c). Letting C := In and B := Im, respectively, yields (a) and (b) as special cases.

Exercise 4.25 (Rank equalities, 3) For conformable matrices A, B, C show that:
(a) rk(BA) = rk(B′BA);
(b) rk(AC) = rk(ACC ′);
(c) rk(BA) = rk(A) if B has full column rank;
(d) rk(AC) = rk(A) if C has full row rank.

Solution
(a)–(b) Since the matrices A, A′, AA′, and A′A all have the same rank (Exercise 4.13),
we obtain

rk(BA) = rk(A′B′BA) ≤ rk(B′BA) ≤ rk(BA)

and

rk(AC) = rk(ACC ′A′) ≤ rk(ACC ′) ≤ rk(AC).

(c) If B has full column rank, then B′B is square and nonsingular. Hence, rk(BA) =
rk(B′BA) = rk(A), using Exercise 4.24.
(d) If C has full row rank, then CC ′ is square and nonsingular, and the proof follows as in
(c).

Exercise 4.26 (Orthogonal matrix: real versus complex) Recall that a real square
matrix A is orthogonal if A′A = AA′ = I .
(a) Show that the matrix

A =
1√
2

 1 0 1
−1 0 1
0

√
2 0


is orthogonal.
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(b) Now consider the complex matrix

B =
(

β i
−i β

)
,

where β is a real number. For which value of β is B unitary?
(c) For which value of β is B complex-orthogonal, in the sense that B′B = I2?
(d) For this value of β, are the two columns of B orthogonal to each other?

Solution
We have

A′A =
1
2

1 −1 0
0 0

√
2

1 1 0

 1 0 1
−1 0 1
0

√
2 0

 =

1 0 0
0 1 0
0 0 1


and similarly AA′ = I .
(b) Here we have

B∗B =
(

β i
−i β

)(
β i
−i β

)
=
(

1 + β2 2iβ
−2iβ 1 + β2

)
,

and this equals I2 if and only if β = 0.
(c) Similarly,

B′B =
(

β −i
i β

)(
β i
−i β

)
=
(

β2 − 1 0
0 β2 − 1

)
,

so that we must choose β = ±
√

2.
(d) No. The two columns are orthogonal to each other if and only if

0 =
(

β

−i

)∗( i
β

)
= (β, i)

(
i
β

)
= 2iβ,

that is, if and only if β = 0. Hence, for β = ±
√

2, the two columns are not orthogonal
to each other. This is one of the reasons why we do not call a square complex matrix B

satisfying B′B = I orthogonal; Exercise 7.23 provides another reason. In our definition,
an orthogonal matrix is always real.

Exercise 4.27 (Properties of orthogonal matrix) Let A be an orthogonal matrix of
order n. Show that:
(a) A is nonsingular;
(b) A′ = A−1;
(c) A′ is orthogonal;
(d) AB is orthogonal when B is orthogonal.

Solution
(a) The matrix A is nonsingular because n = rk(A′A) ≤ rk(A) ≤ n.
(b) Postmultiplying A′A = I by A−1 (or premultiplying AA′ = I by A−1) gives
A′ = A−1.
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(c) Let B := A′. Then B′B = AA′ = I and BB′ = A′A = I .
(d) We have (AB)′AB = B′A′AB = B′B = I and AB(AB)′ = ABB′A′ =
AA′ = I .

Exercise 4.28 (Inverse of A + ab′) Let A be a nonsingular n × n matrix, and let a

and b be n× 1 vectors.
(a) If a′A−1a �= −1, show that

(A + aa′)−1 = A−1 − 1
1 + a′A−1a

A−1aa′A−1.

(b) If a′A−1a �= 1, show that

(A− aa′)−1 = A−1 +
1

1− a′A−1a
A−1aa′A−1.

(c) If b′A−1a �= −1, show that

(A + ab′)−1 = A−1 − 1
1 + b′A−1a

A−1ab′A−1.

Solution
We prove only (c), since (a) and (b) are special cases. Let λ := (1 + b′A−1a)−1. Then,

(A + ab′)(A−1 − λA−1ab′A−1)

= AA−1 − λAA−1ab′A−1 + ab′A−1 − λa(b′A−1a)b′A−1

= I − (λ− 1 + λb′A−1a)ab′A−1 = I,

because λ(1 + b′A−1a) = 1.

4.3 Determinant

Exercise 4.29 (Determinant of order 3) Show that the determinant of a 3 × 3 matrix
A = (aij) is

|A| =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a23a32

− a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Solution
There are six permutations (in general, for an n × n matrix, there are n! permutations):
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(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). Hence,

|A| = (−1)ϕ(1,2,3)a11a22a33 + (−1)ϕ(1,3,2)a11a23a32

+ (−1)ϕ(2,1,3)a12a21a33 + (−1)ϕ(2,3,1)a12a23a31

+ (−1)ϕ(3,1,2)a13a21a32 + (−1)ϕ(3,2,1)a13a22a31

= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31.

Exercise 4.30 (Determinant of the transpose) For any square matrix A, show that
|A′| = |A|.

Solution
Let the same permutation that changes (j1, . . . , jn) into (1, . . . , n), change (1, . . . , n) into
(i1, . . . , in). Then, noting that ϕ(1, . . . , n) = 0, we obtain

|A| =
∑

(j1,...,jn)

(−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn

=
∑

(j1,...,jn)

(−1)ϕ(1,...,n)(−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn

=
∑

(i1,...,in)

(−1)ϕ(i1,...,in)(−1)ϕ(1,...,n)ai11ai22 . . . ainn = |A′|.

We remark that, if A is complex, the determinant of its conjugate transpose is given by
|A∗| = |A|∗, and that it is therefore not true that |A∗| = |A|, unless |A| is real.

Exercise 4.31 (Find the determinant) Let

A =

1 α 0
4 5 3
1 0 2

 .

(a) For which α is |A| = 0? Show that the columns of A are linearly dependent in that
case.
(b) If we interchange the second and third row, show that |A| changes sign.
(c) If we multiply the first column by 2, show that |A| is also multiplied by 2.
(d) If we subtract 4 times the first row from the second row, show that |A| does not change.

Solution
In addition to the matrix A we define the matrices

B =

1 α 0
1 0 2
4 5 3

 , C =

2 α 0
8 5 3
2 0 2

 , D =

1 α 0
0 5− 4α 3
1 0 2

 .
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(a) We find |A| = 10− 5α and hence |A| = 0 when α = 2. The vector x = (2,−1,−1)′

satisfies Ax = 0, showing that the columns of A are linearly dependent in that case.
(b)–(d) The matrices B, C, and D correspond to the operations described in (b)–(d), re-
spectively. We find |B| = −10 + 5α, |C| = 20− 10α, and |D| = 10− 5α.

Exercise 4.32 (Elementary operations of determinant, 1) Show that, if we interchange
rows (columns) i and j of the matrix A, then |A| changes sign. (This is called an elemen-
tary operation on the matrix A.)

Solution
We first show that a single transposition of two elements in a permutation will change an
odd permutation to an even one, and vice versa. Let (k1, . . . , kn) be a permutation of
(1, . . . , n). Suppose that ki and kj are interchanged (j > i). It involves j− i transpositions
to move kj to pass ki, and another j − i − 1 transpositions to move ki to pass kj−1. So,
2(j − i) − 1 transpositions are required, which is always an odd number. Hence, if the
original permutation was even, the new permutation is odd, and vice versa.

Now suppose that rows i and j are interchanged. This involves interchanging two first
subscripts in each term of

|A| :=
∑

(j1,...,jn)

(−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn .

Hence, each term changes sign, and hence the determinant changes sign.

Exercise 4.33 (Zero determinant) Let A be a square matrix of order n. Show that:
(a) if A has two identical rows (columns), then |A| = 0;
(b) if A has a row (column) of zeros, then |A| = 0.

Solution
(a) Let d1 := |A| and let d2 be the determinant obtained after interchanging the two iden-
tical rows. Then obviously d1 = d2. But, by Exercise 4.32, d2 = −d1. Hence, d1 = 0.
(b) By definition, the determinant of A is the sum of n! terms, each of which is a product
of n elements of the matrix A. In each product there will be exactly one element from the
i-th row. If the i-th row is zero then all products vanish, and |A| = 0.

Exercise 4.34 (Elementary operations of determinant, 2) Prove the remaining two
so-called elementary operations on a square matrix A:
(a) if we multiply row (column) i by a scalar λ, then |A| is multiplied by λ;
(b) if we add a scalar multiple of one row (column) to another row (column), |A| does not
change.

Solution
(a) This follows from the fact that an element from each row and column appears precisely
once in each of the n! terms of the definition of the determinant. Multiplying each element
in row i by λ will multiply each term by λ, and hence will multiply the whole determinant
by λ.
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(b) Let B denote the matrix obtained from A by adding c times the k-th row to the i-th
row. Then a typical term in |B| takes the form

a1j1a2j2 . . .(aiji + cakjk
) . . . anjn

= (a1j1a2j2 . . . aiji . . . anjn) + c(a1j1a2j2 . . . akjk
. . . anjn).

Summing over all permutations gives |B| = |A| + c|Ã|, where Ã is obtained from A

by replacing the i-th row by the k-th row. Thus, Ã has two identical rows and hence, by
Exercise 4.33(a), determinant zero. This gives |B| = |A|, which we wanted to prove.

Exercise 4.35 (Some simple properties of the determinant) Show that:
(a) |λA| = λn|A| where n is the order of A;
(b) |In| = 1;
(c) the determinant of a diagonal matrix is the product of its diagonal elements.

Solution
(a) This is a direct consequence of Exercise 4.34(a).
(b) Consider a term t of the determinant of A,

t := (−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn .

If A = In, then this term is always zero, unless (j1, . . . , jn) = (1, . . . , n), in which case it
equals 1.
(c) As in (b), the term t is always zero, unless (j1, . . . , jn) = (1, . . . , n), in which case

|A| = (−1)ϕ(1,...,n)a11a22 . . . ann,

which is the product of the diagonal elements.

*Exercise 4.36 (Expansions by rows or columns) Let A = (aij) be a square matrix
of order n, and let cij be the cofactor of aij . Show that:
(a) |A| =

∑n
j=1 aijcij (i = 1, . . . , n);

(b) |A| =
∑n

i=1 aijcij (j = 1, . . . , n).

Solution
Consider first a 3× 3 matrix A = (aij). Then, by Exercise 4.29,

|A| = a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31

= a11(a22a33 − a23a32) + a12(−a21a33 + a23a31)

+ a13(a21a32 − a22a31)

= a11c11 + a12c12 + a13c13.
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Let us now prove result (a) for i = 1. The other results then follow in the same way.
Since each term in A contains precisely one element from the first row, we can write the
determinant as

|A| =
∑

(j1,...,jn)

(−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn

= a11d11 + a12d12 + · · ·+ a1nd1n.

Notice that d1j is a sum of terms involving no element of the first row of A. We must show
that d1j = c1j for all j.

For j = 1 we have

a11d11 =
∑

(−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn ,

where the summation is over all permutations (j1, . . . , jn) for which j1 = 1. This implies
that

d11 =
∑

(−1)ϕ(j2,...,jn)a2j2 . . . anjn ,

where the summation is now over all permutations (j2, . . . , jn). This is precisely |A(11)|,
where A(1j) denotes the (n − 1) × (n − 1) matrix obtained from A by deleting the first
row and the j-th column. Thus,

d11 = |A(11)| = (−1)1+1|A(11)| = c11.

Next we consider an arbitrary j > 1. Interchange the j-th column with each preceding col-
umn until it becomes the first column. This involves j − 1 transpositions. The determinant
|A(1j)| is not affected by these transpositions. Hence,

d1j = (−1)j−1|A(1j)| = (−1)j+1|A(1j)| = c1j .

Exercise 4.37 (Cofactors) Show that:
(a)
∑n

j=1 aijckj = 0 if i �= k;
(b)
∑n

i=1 aijcik = 0 if j �= k;
(c) AC ′ = C ′A = |A|In.

Solution
(a)–(b) Again we only prove (a) for the case k = 1. Thus we wish to show that, for all
i �= 1,

ai1c11 + ai2c12 + · · ·+ ainc1n = 0.

Let B be the matrix obtained from A by replacing the first row of A by the i-th row. Then,
|B| = 0, because B has two identical rows. Also, expanding |B| by the first row,

|B| = ai1c11 + ai2c12 + · · ·+ ainc1n.

The result follows.



92 4 Rank, inverse, and determinant

(c) From (a) and (b) and Exercise 4.36, we obtain
n∑

j=1

aijckj = δik|A| and
n∑

i=1

cikaij = δkj |A|,

where δik denotes the Kronecker delta. Hence, AC ′ = C ′A = |A|In.

Exercise 4.38 (Determinant of triangular matrix)
Show that the determinant of a triangular matrix is the product of its diagonal elements.

Solution
Suppose A is lower triangular, so that aij = 0 for i < j. Now consider a term t of the
determinant of A,

t := (−1)ϕ(j1,...,jn)a1j1a2j2 . . . anjn .

If j1 �= 1 then j1 > 1 so that a1j1 = 0. Hence, t = 0 whenever j1 �= 1. Next suppose
j1 = 1 but j2 �= 2. Then j2 > 2 so that a2j2 = 0, and hence t = 0. Continuing in this way,
we find that the only nonzero term is the one where j1 = 1, j2 = 2, . . . , jn = n. Thus,
|A| = a11a22 . . . ann, the product of the diagonal elements.

Exercise 4.39 (Weierstrass’s axiomatic definition) Let A be a square matrix of order
n, and define a scalar function p that assigns to A a number p(A) such that:

(i) p(A) is a linear function of each of the columns of A, if the others are held fixed;
(ii) if B is obtained from A by interchanging two columns, then p(B) = −p(A);

(iii) p(In) = 1.

Show that the determinant |A| satisfies properties (i)–(iii). (In fact, the determinant is the
only function that satisfies (i)–(iii). The determinant can thus be defined in terms of these
properties.)

Solution
To prove that |A| is a linear function of its columns, it suffices to note that each of the n!
products in the definition of the determinant contains exactly one factor from each column.
This proves (i). Part (ii) follows from Exercise 4.32, and part (iii) from Exercise 4.35(b).

Exercise 4.40 (A tridiagonal matrix) Consider the n× n “tridiagonal” matrix

An =


2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

...
...

...
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2

 .

Show that |An| = n + 1.
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Solution
Expand the determinant of An by the first row. This gives

|An| = 2|An−1| − (−1)

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 0 . . . 0
0 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...
0 0 0 . . . 2

∣∣∣∣∣∣∣∣∣∣∣
= 2|An−1| − |An−2|,

where the second equality follows by expanding the displayed reduced determinant by its
first row. Hence, |An| − |An−1| = |An−1| − |An−2|. Since |A1| = 2 and |A2| = 3, we
thus find that |An| − |An−1| = 1, so that |An| = 2 + 1 + · · ·+ 1 = n + 1.

*Exercise 4.41 (Vandermonde determinant) Consider the (n + 1)× (n + 1) matrix

V :=


1 1 . . . 1
a0 a1 . . . an

a2
0 a2

1 . . . a2
n

...
...

...
an

0 an
1 . . . an

n

 ,

where a0, a1, . . . , an are all distinct. This matrix is called a Vandermonde matrix. Show
that

|V | =
∏
j<i

(ai − aj),

Solution
We proceed by induction. For n = 1 (that is, for a 2× 2 matrix) we find |V | = a1− a0, so
that the result holds for n = 1. Now consider

ϕ(t) :=

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a0 a1 . . . t

a2
0 a2

1 . . . t2

...
...

...
an

0 an
1 . . . tn

∣∣∣∣∣∣∣∣∣∣∣
.

The determinant is linear in the last column (Exercise 4.39), and hence ϕ(t) is a polynomial
of the n-th degree. Suppose now that Vandermonde’s formula holds for n − 1 (that is, for
an n × n matrix). The coefficient, say k, of tn in the polynomial is the determinant of
the n × n submatrix obtained by deleting the last row and the last column. Thus, by the
induction hypothesis,

k =
∏

0≤j<i≤n−1

(ai − aj).
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Clearly, ϕ(a0) = ϕ(a1) = · · · = ϕ(an−1) = 0, because two identical columns yield a zero
determinant. Hence,

ϕ(t) = k(t− a0)(t− a1) . . . (t− an−1)

Substituting t = an completes the proof.

*Exercise 4.42 (Determinant of a product) Show that for any two square matrices of
the same order, |AB| = |A||B|.

Solution
Let B = (bij) have columns b1, . . . , bn. The columns of AB are then Ab1, . . . ,Abn.
Expressing b1 as

∑n
i=1 bi1ei, where the ei are unit vectors, we obtain

|AB| =
∣∣∣∣∣

n∑
i=1

bi1Aei, Ab2, . . . ,Abn

∣∣∣∣∣ =
n∑

i=1

[
bi1 |Aei, Ab2, . . . ,Abn|

]
,

using the fact that the determinant is a linear function of the first column, if the others are
held fixed (Exercise 4.39(i)). Repeating this process with b2, . . . , bn gives

|AB| =
n∑

i1=1

· · ·
n∑

in=1

[
bi1,1bi2,2 . . . bin,n |Aei1 , Aei2 , . . . ,Aein |

]
.

Now consider the matrix C := (Aei1 , . . . ,Aein). If ij = ik for some pair (j, k), then
|C| = 0 (two equal columns, Exercise 4.33(a)). We may therefore assume that (i1, . . . , in)
is a permutation of (1, . . . , n), so that C contains all n columns of A, be it in a different
order. By Exercise 4.39(ii) we then have |C| = t(i1, . . . , in)|A|, where t(i1, . . . , in) is
either +1 or −1. Hence,

|AB| =
[∑

t(i1, . . . , in)bi1,1 . . . bin,n

]
|A| ,

where the sum is taken over all ordered n-tuples (i1, . . . , in) with 1 ≤ ij ≤ n. Taking
A = In, and using Exercise 4.39(iii), we see that the sum in square brackets is in fact |B|.
This completes the proof. (An alternative proof, requiring partitioned matrices, is provided
in Exercise 5.27.)

Exercise 4.43 (Rank and zero determinant) Let A be a square matrix of order n.
Show that |A| = 0 if and only if rk(A) < n.

Solution
Suppose that rk(A) < n. Then the columns of A are linearly dependent. If A has a
zero column, then its determinant is zero (Exercise 4.33(b)). If A has no zero column, we
can transform A into a matrix having a zero column by performing elementary column-
operations. Hence, |A| = 0. Next, suppose that rk(A) = n. Then A has an inverse
(Exercise 4.21), and hence 1 = |A−1A| = |A−1| · |A|, implying that |A| �= 0.
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Exercise 4.44 (Determinant of the inverse)
(a) If A is nonsingular, show that |A−1| = |A|−1.
(b) If A is orthogonal, show that |A| = ±1.

Solution
(a) Taking determinants of AA−1 = I gives |AA−1| = |A||A−1| = 1.
(b) Taking determinants of A′A = I gives |A|2 = 1.

Exercise 4.45 (Orthogonal matrix: rotation and reflection) Consider the matrices
introduced in Exercise 2.28,

A1 :=
(

cos θ − sin θ

sin θ cos θ

)
and A2 :=

(
cos θ − sin θ

− sin θ − cos θ

)
.

Show that |A1| = 1 while |A2| = −1, and comment on this result.

Solution
We find |A1| = (cos θ)2 + (sin θ)2 = 1 and |A2| = −(cos θ)2 − (sin θ)2 = −1. An
orthogonal matrix A with |A| = 1 (like A1) is called a rotation matrix. Writing A2 =
diag(1,−1)A1, we see that the additional operation of reflecting one of the axes changes
the sign of the determinant. Two reflections, if applied to different axes, are equivalent to
a rotation by π. If applied to the same axis, they are equivalent to a rotation by 2π, that is,
back to the original position. This follows from(

1 0
0 −1

)(
−1 0
0 1

)
= −I2 and

(
1 0
0 −1

)2

= I2,

both rotations having positive determinant (as rotations should have).

*Exercise 4.46 (Adjoint)
(a) Show that AA# = A#A = |A|I .
(b) Hence, show that A−1 = (1/|A|)A#, if A is nonsingular.
(c) Show that |A#| = |A|n−1.
(d) Show that (AB)# = B#A#.

Solution
(a) Since A# = C ′, the first result follows from Exercise 4.37(c).
(b) If A is nonsingular, then premultiply both sides of AA# = |A|I by A−1. This gives
A# = |A|A−1 and the result follows.
(c) Taking determinants on both sides of AA# = |A|I gives |A||A#| = |A|n. If A is
nonsingular the result follows. If A is singular then A# is also singular, and the result
follows too.
(d) We write

|A||B|B#A# = |AB|IB#A# = (AB)#(AB)B#A#

= (AB)#A|B|IA# = |A||B|(AB)#.
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If |A| �= 0 and |B| �= 0, the result follows. If either A or B (or both) is singular, then the
proof requires an additional step. All three expressions ϕ := |A||B|, F := B#A#, and
G := (AB)# are polynomials in the 2n2 elements of A and B. Since ϕF = ϕG and ϕ

does not vanish identically, it follows that F = G.
A different proof of the case where either A or B (or both) is singular, is based on

a continuity argument that is often useful. Consider the matrices A(ε) := A + εI and
B(ε) := B + εI . We can always choose δ > 0 such that A(ε) and B(ε) are nonsingular
for every 0 < ε < δ. Hence, (A(ε)B(ε))# = (B(ε))#(A(ε))# for every 0 < ε < δ.
Letting ε→ 0 gives the result.

Exercise 4.47 (Find the inverse) Obtain the inverse of the matrix A in Exercise 4.31
for α = 1, using the formula in Exercise 4.46(b).

Solution
We need the determinant and the cofactor matrix C. We have

A =

1 1 0
4 5 3
1 0 2

 and hence C =

10 −5 −5
−2 2 1
3 −3 1

 .

The determinant of A is 5, and hence

A# = C ′ =

10 −2 3
−5 2 −3
−5 1 1

 , A−1 =
1
|A|A

# =

 2 −0.4 0.6
−1 0.4 −0.6
−1 0.2 0.2

 .

After finding an inverse it is usually a good idea to check that it satisfies AA−1 = I .

Notes

In defining the determinant we needed the concept of a transposition, and in particular the
fact that the number of transpositions required to transform (1, 2, . . . , n) to (j1, j2, . . . , jn)
is always even or always odd; see Mirsky (1955, p. 3). The fact that the determinant can be
characterized by the three properties in Exercise 4.39 was first recognized by Weierstrass
in the 1880s. In advanced courses it is often taken as the definition, because it allows for
a more elegant presentation. A proof that these three properties indeed define the deter-
minant can be found, for example, in Mirsky (1955, Section 6.6). For a long time, the
theory of determinants was considered to be the cornerstone of linear algebra, and it owes
a great debt to Vandermonde (1735–1796). The matrix named after him (Exercise 4.41)
has many applications, see, for example, Exercises 6.30 and 6.31. There are two proofs
of the important fact that |AB| = |A||B|. The one in Exercise 4.42 is based on Rudin
(1976, Chapter 9). An alternative proof, using results of partitioned matrices, is provided
in Exercise 5.27. The adjoint matrix also has a long history. Exercise 4.46(c) was already
known to Cauchy in 1812.
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Partitioned matrices

A partitioned matrix is a matrix of the form

Z :=
(

A B

C D

)
.

None of the matrices needs to be square, but A and B must have the same number of rows
(say m), A and C must have the same number of columns (say p), and so on. Throughout
the chapter, unless specified otherwise, we shall adopt the following convention as to the
orders of the submatrices: A (m× p), B (m× q), C (n× p), and D (n× q). If the matrix
A is square, it is of order m×m. If the matrix D is square, it is of order n× n.

The chapter is almost entirely concerned with partitioned matrices with two row blocks
and two column blocks, like the matrix Z above. Extensions to m row blocks and n column
blocks, such as 

Z11 Z12 . . . Z1n

Z21 Z22 . . . Z2n
...

...
...

Zm1 Zm2 . . . Zmn

 ,

are conceptually and mathematically straightforward, but notationally cumbersome. As a
special case, we say that a square matrix is block-diagonal if it takes the form

Z11 O . . . O
O Z22 . . . O
...

...
...

O O . . . Zrr

 ,

where all diagonal blocks are square, not necessarily of the same order. A block-diagonal
matrix is thus the direct sum (in the sense of Exercise 3.55) of its blocks Z11, . . . ,Zrr. If a
square matrix is diagonal, then it is block-diagonal, but not vice versa.

97
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The main tool in obtaining the inverse, determinant, and rank of a partitioned matrix
is to write the matrix as a product of simpler matrices, that is, matrices of which one (or
two) of the four blocks is the null matrix. Many examples of this general principle will be
provided.

We first provide some basic results, and then apply and extend these to find inverses
(Section 5.2), determinants (Section 5.3), and ranks (Section 5.3) of partitioned matrices.
A final section is devoted to the sweep operator, closely related to the Gram-Schmidt or-
thogonalization (see Exercise 3.49). The sweep operator has become popular in computer
packages as a matrix inversion routine. If A := (aij) is an n × n matrix, then we define
the n× n matrix B := (bij) as

bkk := −1/akk, bik := aik/akk, bkj := akj/akk, bij := aij − aikakj/akk,

where k �= i, k �= j, and it is assumed that akk (the pivot) is not zero. We write B :=
SWP(A, k) to indicate that the k-th row and column of A are being swept.

5.1 Basic results and multiplication relations

Exercise 5.1 (Partitioned sum) Let

Z1 :=
(

A1 B1

C1 D1

)
and Z2 :=

(
A2 B2

C2 D2

)
.

Show that

Z := Z1 + Z2 =
(

A1 + A2 B1 + B2

C1 + C2 D1 + D2

)
.

Which are the order conditions that need to be satisfied?

Solution
The rule for addition of partitioned matrices is the same as the rule for addition or ordinary
matrices: we just add the corresponding elements in the two matrices. Hence, Z1 and Z2

can be added “by blocks” if they are partitioned in the same way, that is to say, if the corre-
sponding submatrices are of the same order.

Exercise 5.2 (Partitioned product) Let

Z1 :=
(

A1 B1

C1 D1

)
and Z2 :=

(
A2 B2

C2 D2

)
.

Show that

Z := Z1Z2 =
(

A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

)
.

What are the conditions on the orders of the submatrices?

Solution
Let Z1 be an (m + n) × (p + q) matrix and Z2 a (p + q) × (r + s) matrix, such that A1

is of order m× p and A2 is of order p× r. Then all submatrices are well-defined. By the
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rules of ordinary matrix multiplication we have

Zij = (Z1Z2)ij =
p+q∑
k=1

(Z1)ik(Z2)kj

=
p∑

k=1

(
A1

C1

)
ik

(A2 : B2)kj +
q∑

k=1

(
B1

D1

)
ik

(C2 : D2)kj

=

(
p∑

k=1

(
A1

C1

)
.k

(A2 : B2)k.

)
ij

+

(
q∑

k=1

(
B1

D1

)
.k

(C2 : D2)k.

)
ij

=
(

A1A2 A1B2

C1A2 C1B2

)
ij

+
(

B1C2 B1D2

D1C2 D1D2

)
ij

=
(

A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

)
ij

.

Exercise 5.3 (Partitioned transpose) Show that(
A B

C D

)′
=
(

A′ C ′

B′ D′

)
,

with A (m× p), B (m× q), C (n× p), and D (n× q).

Solution
This is almost trivial. A formal proof proceeds as follows. Let

Z :=
(

A B

C D

)
and X :=

(
A′ C ′

B′ D′

)
.

Then,

Zij =


Aij (1 ≤ i ≤ m, 1 ≤ j ≤ p),

Bi,j−p (1 ≤ i ≤ m, p + 1 ≤ j ≤ p + q),

Ci−m,j (m + 1 ≤ i ≤ m + n, 1 ≤ j ≤ p),

Di−m,j−p (m + 1 ≤ i ≤ m + n, p + 1 ≤ j ≤ p + q)

=


(A′)ji (1 ≤ j ≤ p, 1 ≤ i ≤ m),

(C ′)j,i−m (1 ≤ j ≤ p, m + 1 ≤ i ≤ m + n),

(B′)j−p,i (p + 1 ≤ j ≤ p + q, 1 ≤ i ≤ m),

(D′)j−p,i−m (p + 1 ≤ j ≤ p + q, m + 1 ≤ i ≤ m + n)

= Xji.



100 5 Partitioned matrices

Exercise 5.4 (Trace of partitioned matrix) If A and D are square, not necessarily of
the same order, show that

tr
(

A B

C D

)
= trA + trD.

Solution
Since A and D are both square, the diagonal elements of Z are precisely those of A and
D. The result follows.

Exercise 5.5 (Preservation of form) Let

Z :=
(

A B

C D

)
,

where A and D are square matrices, not necessarily of the same order.
(a) If Z is symmetric, show that A and D are symmetric.
(b) If Z is diagonal, show that A and D are diagonal.
(c) If Z is upper triangular, show that A and D are upper triangular.
(d) What additional requirements are needed for the reverse implications?

Solution
(a) It follows from Exercise 5.3 that Z = Z ′ if and only if A = A′, B = C ′, and D = D′.
Hence the symmetry of A and D is necessary but not sufficient for the symmetry of Z.
(b) We see by direct inspection that Z is diagonal if and only if A and D are diagonal and
B = O, C = O. Diagonality of A and D is therefore a necessary but not a sufficient
condition for the diagonality of Z.
(c) Z is upper triangular if and only if A and D are upper triangular and C = O.
(d) All three statements are necessary but not sufficient. The additional requirements are:
(a) B = C ′, (b) B = O and C = O, and (c) C = O.

Exercise 5.6 (Elementary row-block operations) Prove the following elementary row-
block operations:(

O In

Im O

)(
A B

C D

)
=
(

C D

A B

)
,(

E O
O In

)(
A B

C D

)
=
(

EA EB

C D

)
,

and (
Im E

O In

)(
A B

C D

)
=
(

A + EC B + ED

C D

)
.
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Solution
The results follow directly from the rules of partitioned matrix multiplication (Exercise 5.2).

Exercise 5.7 (Elementary column-block operations) Prove the following elementary
column-block operations:(

A B

C D

)(
O Ip

Iq O

)
=
(

B A

D C

)
,(

A B

C D

)(
F O
O Iq

)
=
(

AF B

CF D

)
,

and (
A B

C D

)(
Ip F

O Iq

)
=
(

A B + AF

C D + CF

)
.

Solution
These results also follow directly from the rules of partitioned matrix multiplication
(Exercise 5.2).

Exercise 5.8 (Unipotence) Show that the matrix

Z :=
(
−Im B

C In

)
satisfies Z2 = Im+n, if B = O or C = O. Is this condition necessary?

Solution
We have

Z2 =
(
−Im B

C In

)(
−Im B

C In

)
=
(

Im + BC O
O In + CB

)
,

and hence Z2 = Im+n if and only if BC = O and CB = O. This shows the result, and
also shows that the condition, while sufficient, is not necessary.

Exercise 5.9 (Commuting partitioned matrices) Show that the matrices

Z1 :=
(

Im B1

O In

)
and Z2 :=

(
Im B2

O In

)
commute, that is, Z1Z2 = Z2Z1.

Solution
We write Z1 = Im+n + X1 and Z2 = Im+n + X2 with

X1 :=
(
O B1

O O

)
and X2 :=

(
O B2

O O

)
.



102 5 Partitioned matrices

Then, X1X2 = X2X1 = O, and hence

Z1Z2 = (Im+n + X1)(Im+n + X2) = Im+n + X1 + X2

= Im+n + X2 + X1 = (Im+n + X2)(Im+n + X1) = Z2Z1.

Exercise 5.10 (Schur complement of diagonal block, 1) If A is nonsingular, show
that (

Im O
−CA−1 In

)(
A B

C D

)
=
(

A B

O D −CA−1B

)
,(

A B

C D

)(
Im −A−1B

O Iq

)
=
(

A O
C D −CA−1B

)
,

and hence(
Im O

−CA−1 In

)(
A B

C D

)(
Im −A−1B

O Iq

)
=
(

A O
O D −CA−1B

)
.

The matrix D − CA−1B is called the Schur complement of A. The result is somewhat
easier to remember if we write

Z :=
(

Z11 Z12

Z21 Z22

)
.

The Schur complement of Z11 is then Z22|1 := Z22 −Z21Z
−1
11 Z12.

Solution
Consider the equation(

Im O
R In

)(
A B

C D

)
=
(

A B

C + RA D + RB

)
.

We can create a zero in the off-diagonal block if C + RA = O. Hence, we choose
R := −CA−1, in which case D + RB = D −CA−1B. Next consider the equation(

A B

C D

)(
Im Q

O Iq

)
=
(

A B + AQ

C D + CQ

)
.

Here we choose Q such that B + AQ = O, that is, Q := −A−1B, in which case
D + CQ = D −CA−1B. The final result is an immediate consequence of the first two.

Exercise 5.11 (Schur complement of diagonal block, 2) If D is nonsingular, show
that (

Im −BD−1

O In

)(
A B

C D

)
=
(

A−BD−1C O
C D

)
,(

A B

C D

)(
Ip O

−D−1C In

)
=
(

A−BD−1C B

O D

)
,
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and hence(
Im −BD−1

O In

)(
A B

C D

)(
Ip O

−D−1C In

)
=
(

A−BD−1C O
O D

)
.

The matrix A−BD−1C is the Schur complement of D.

Solution
The proof is analogous to the proof in Exercise 5.10, or can be obtained directly by per-
forming the required block multiplications.

5.2 Inverses

Exercise 5.12 (Two zero blocks, inverse)
(a) If A and D are nonsingular, show that(

A O
O D

)−1

=
(

A−1 O
O D−1

)
.

(b) If B and C are nonsingular, show that(
O B

C O

)−1

=
(

O C−1

B−1 O

)
and

(
O B

B−1 O

)−1

=
(

O B

B−1 O

)
.

(c) When are the matrices in (b) orthogonal?

Solution
(a) In general, if we know (or suspect), for a given matrix A, that A−1 = B, then all we
need to do in order to prove this result is check that AB = I (or that BA = I , one of the
two suffices). This method is not “constructive”, so it does not help us if we do not know
the inverse. Result (a) is immediate by direct verification. In a constructive proof we would
solve (

A O
O D

)(
P Q

R S

)
=
(

Im O
O In

)
,

which gives the four equations

AP = Im, AQ = O, DR = O, DS = In.

Since A and D are nonsingular, we find P = A−1, Q = O, R = O, and S = D−1.
(b) Of course, direct verification works here too. But suppose we conjecture that the inverse
is of the same type. Then we may try and solve(

O B

C O

)(
O Q

R O

)
=
(

Im O
O In

)
.

This gives BR = Im and CQ = In, and hence R = B−1, Q = C−1. The second result
of (b) is obtained by setting C = B−1.
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(c) Given (b), the first matrix, (
O B

C O

)
,

is orthogonal if and only if both B and C are orthogonal. Replacing C by B−1 shows that
the second matrix is orthogonal if and only B is orthogonal.

Exercise 5.13 (One off-diagonal zero block, inverse)
(a) Show that(

Im B

O In

)−1

=
(

Im −B

O In

)
and

(
Im O
C In

)−1

=
(

Im O
−C In

)
.

(b) More generally, if A and D are nonsingular, show that(
A B

O D

)−1

=
(

A−1 −A−1BD−1

O D−1

)
and (

A O
C D

)−1

=
(

A−1 O
−D−1CA−1 D−1

)
.

Solution
(a) We verify that (

Im B

O In

)(
Im −B

O In

)
=
(

Im O
O In

)
and similarly for the second result.
(b) Direct verification works of course. Instead, let us conjecture that(

A B

O D

)(
A−1 Q

O D−1

)
=
(

Im O
O In

)
.

for some matrix Q. The equation is satisfied if and only if AQ + BD−1 = O, that is, if
and only if Q = −A−1BD−1. The second result follows in the same way, or by direct
verification, or by considering the transpose and using the first result.

Exercise 5.14 (One diagonal zero block, inverse)
(a) Show that(

A Im

In O

)−1

=
(

O In

Im −A

)
and

(
O Im

In D

)−1

=
(
−D In

Im O

)
.

(b) More generally, if B and C are nonsingular, show that(
A B

C O

)−1

=
(

O C−1

B−1 −B−1AC−1

)
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and (
O B

C D

)−1

=
(
−C−1DB−1 C−1

B−1 O

)
.

Solution
All four results follow by direct verification. Let us prove one of them constructively. From
the equation (

A B

C O

)(
P Q

R S

)
=
(

Im O
O In

)
,

we find

AP + BR = Im, AQ + BS = O, CP = O, CQ = In.

The last two equations give P = O and Q = C−1. Inserting these in the first two equa-
tions gives BR = Im and AC−1+BS = O, implying R = B−1 and S = −B−1AC−1.

Exercise 5.15 (Scalar diagonal block, inverse)
(a) If A is nonsingular and ε := δ − c′A−1b �= 0, show that(

A b

c′ δ

)−1

=
(

A−1 0
0′ 0

)
+

1
ε

(
A−1b

−1

)
(c′A−1 : −1).

(b) Similarly, if D is nonsingular and φ := α− b′D−1c �= 0, show that(
α b′

c D

)−1

=
(

0 0′

0 D−1

)
+

1
φ

(
−1

D−1c

)
(−1 : b′D−1).

Solution
We only prove (a), since (b) is proved in the same way. Thus, we try and find the solution
to (

A b

c′ δ

)(
P q

r′ σ

)
=
(

Im 0
0′ 1

)
.

This gives four equations:

AP + br′ = Im, Aq + σb = 0, c′P + δr′ = 0′, c′q + δσ = 1.

We “solve” P (in terms of r) from the first equation as P = A−1 −A−1br′, and insert
this in the third equation, c′A−1 − (c′A−1b)r′ + δr′ = 0′, giving εr′ = −c′A−1, and
hence r′ = −(1/ε)c′A−1 and P = A−1 + (1/ε)A−1bc′A−1. Similarly, “solving” q

from the second equation as q = −σA−1b, and inserting in the fourth equation, gives
(δ − c′A−1b)σ = 1, and hence σ = 1/ε and q = −(1/ε)A−1b.
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Exercise 5.16 (Inverse of a partitioned matrix: main result)
(a) If A and E := D −CA−1B are nonsingular, show that(

A B

C D

)−1

=
(

A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
.

(b) If D and F := A−BD−1C are nonsingular, show that(
A B

C D

)−1

=
(

F−1 −F−1BD−1

−D−1CF−1 D−1 + D−1CF−1BD−1

)
.

Solution
(a) We use the Schur complement of Exercise 5.10,(

Im O
−CA−1 In

)(
A B

C D

)
=
(

A B

O E

)
,

where E := D −CA−1B. Then, using Exercise 5.13(b), we obtain(
A B

C D

)−1

=
(

A B

O E

)−1(
Im O

−CA−1 In

)
=
(

A−1 −A−1BE−1

O E−1

)(
Im O

−CA−1 In

)
=
(

A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
.

(b) This result may be proved analogously. So, let us provide a different, more direct, proof.
We consider the equation(

A B

C D

)(
P Q

R S

)
=
(

Im O
O In

)
,

leading to two equations in P and R:

AP + BR = Im, CP + DR = O,

and two equations in Q and S:

AQ + BS = O, CQ + DS = In.

The first set of equations gives R = −D−1CP and hence

Im = AP + BR = AP −BD−1CP = (A−BD−1C)P = FP ,

so that P = F−1 and R = −D−1CF−1. The second set of equations gives S = D−1 −
D−1CQ and hence

O = AQ + BS = AQ + BD−1 −BD−1CQ = FQ + BD−1,

so that Q = −F−1BD−1 and S = D−1 + D−1CF−1BD−1.
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Exercise 5.17 (Inverse of A−BD−1C) If the inverses exist, show that

(A−BD−1C)−1 = A−1 + A−1B(D −CA−1B)−1CA−1

and

(D −CA−1B)−1 = D−1 + D−1C(A−BD−1C)−1BD−1.

(These results provide a generalization of Exercise 4.28.)

Solution
In Exercise 5.16 we obtained two expressions for the inverse of a partitioned matrix. Since
the inverse is unique, they must be equal to each other.

Exercise 5.18 (Positive definite counterpart of the main inversion result) Let (A : B)
be an n× (k + m) matrix of full column rank, and define

Z := (A : B)′(A : B) =
(

A′A A′B
B′A B′B

)
.

Let

MA := In −A(A′A)−1A′, MB := In −B(B′B)−1B′,

and

E := B′MAB, F := A′MBA.

(a) Show that Z−1 can be expressed as

Z−1 =
(

(A′A)−1 + (A′A)−1A′BE−1B′A(A′A)−1 −(A′A)−1A′BE−1

−E−1B′A(A′A)−1 E−1

)
.

(b) Alternatively, show that Z−1 can also be expressed as

Z−1 =
(

F−1 −F−1A′B(B′B)−1

−(B′B)−1B′AF−1 (B′B)−1 + (B′B)−1B′AF−1A′B(B′B)−1

)
.

Solution
This is a direct consequence of Exercise 5.16.

Exercise 5.19 (A 3-by-3 block matrix inverse) Consider the symmetric matrix

Z :=

A B C

B′ D O
C ′ O E

 .
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If D, E, and Q := A−BD−1B′−CE−1C ′ are nonsingular, show that Z is nonsingular
with inverse Q−1 −Q−1BD−1 −Q−1CE−1

−D−1B′Q−1 D−1 + D−1B′Q−1BD−1 D−1B′Q−1CE−1

−E−1C ′Q−1 E−1C ′Q−1BD−1 E−1 + E−1C ′Q−1CE−1

 .

Solution
By postmultiplying Z by the supposed matrix Z−1, we obtain nine (matrix) equations in
the five unknown matrices, which all have to be satisfied. For example,

AQ−1 −BD−1B′Q−1 −CE−1C ′Q−1 = QQ−1 = I

and

−AQ−1BD−1 + BD−1 + BD−1B′Q−1BD−1 + CE−1C ′Q−1BD−1

= (−A + Q + BD−1B′ + CE−1C ′)Q−1BD−1 = O.

Continuing in this way, one verifies that all nine equations hold. Having thus established
the existence of a square matrix X satisfying ZX = I , the nonsingularity of Z is estab-
lished as well.

Exercise 5.20 (Inverse of a bordered matrix) Let A be a nonsingular m × m ma-
trix, and let α �= 0. Show that(

0 A

α a′

)−1

=
1
α

(
−a′A−1 1
αA−1 0

)
.

Solution
If we know the answer, it is easy. We just check that multiplication results in the identity
matrix. If we do not know the answer, we write(

0 A

α a′

)(
p′ q

R s

)
=
(

Im 0
0′ 1

)
,

which leads to the equations

AR = Im, As = 0, αp′ + a′R = 0′, αq + a′s = 1,

from which we obtain R = A−1, s = 0, p′ = −(1/α)a′A−1, and q = 1/α.

Exercise 5.21 (Powers of partitioned matrix )
(a) If A and D are square, show that(

A B

O D

)k

=
(

Ak Qk

O Dk

)
(k = 1, 2, . . . ),

where Qk :=
∑k

j=1 Ak−jBDj−1.
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(b) What is Qk if D = In and Im −A is nonsingular?
(c) Does the result in (a) also hold for negative integers?

Solution
(a) This follows by induction, because(

A B

O D

)(
Ak Qk

O Dk

)
=
(

Ak+1 AQk + BDk

O Dk+1

)
=
(

Ak+1 Qk+1

O Dk+1

)
,

using the fact that

Qk+1 =
k+1∑
j=1

Ak+1−jBDj−1

= A
k∑

j=1

Ak−jBDj−1 + BDk = AQk + BDk.

(b) If D = In, then Qk = (Im + A + · · ·+ Ak−1)B. Since

(Im −A)(Im + A + · · ·+ Ak−1) = Im −Ak,

this gives Qk = (Im −A)−1(Im −Ak)B.
(c) If A and D are nonsingular, then(

A B

O D

)(
A−1 −A−1BD−1

O D−1

)
= Im+n

(by Exercise 5.13(b)), and hence(
A B

O D

)−k

=
(

A−1 −A−1BD−1

O D−1

)k

=
(

A−k Rk

O D−k

)
with

Rk :=
k∑

j=1

(A−1)k−j(−A−1BD−1)(D−1)j−1 = −
k∑

j=1

A−(k−j+1)BD−j .

5.3 Determinants
Exercise 5.22 (Two off-diagonal zero blocks, determinant) If A and D are square
matrices, show that ∣∣∣∣A O

O D

∣∣∣∣ = |A||D|.

Solution
Let A be an m×m matrix and D an n× n matrix. Consider the matrices

∆m :=
(

Im O
O D

)
and Λn :=

(
A O
O In

)
.
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Since

∆m =
(

1 0′

0 ∆m−1

)
and Λn =

(
Λn−1 0
0′ 1

)
,

we obtain |∆m| = |∆m−1| (expansion by the first row, Exercise 4.36) and |Λn| = |Λn−1|
(expansion by the last row). A simple recursion then gives |∆m| = |D| and |Λn| = |A|.
Hence, ∣∣∣∣A O

O D

∣∣∣∣ = ∣∣∣∣(A O
O In

)(
Im O
O D

)∣∣∣∣ = ∣∣∣∣A O
O In

∣∣∣∣ ∣∣∣∣Im O
O D

∣∣∣∣ = |A||D|.

*Exercise 5.23 (Two diagonal zero blocks, determinant)
(a) Show that ∣∣∣∣O Im

In O

∣∣∣∣ = (−1)mn.

(b) Use (a) to show that ∣∣∣∣O B

C O

∣∣∣∣ = (−1)mn|B||C|

when B and C are square matrices of orders m and n, respectively.
(c) If m = n, the result in (b) specializes to (−1)m|B||C|. Why?
(d) What happens when B and C are not square?

Solution
(a) This is an exercise in counting. Move column n + 1 back repeatedly by one position
until it becomes the first column (n permutations), then move column n + 2 back until it
becomes the second column (again n permutations), and so on until column n+m. In total
we require nm permutations to transform the matrix of part (a) to the identity matrix Imn.
We now invoke Exercise 4.32 and the fact that |I| = 1 (Exercise 4.35).
(b) Observe that (

O B

C O

)
=
(

B O
O C

)(
O Im

In O

)
.

Taking determinants, the result follows from Exercise 5.22 and part (a).
(c) This is true because m2 is even if and only if m is even.
(d) We will show that Z is singular. Let B be a matrix of order m1 × n2 and let C be of
order m2 × n1, such that m1 + m2 = n1 + n2. Denote the partitioned matrix by Z. Then,

Z ′Z =
(
O B

C O

)′(
O B

C O

)
=
(

C ′C O
O B′B

)
,

so that |Z|2 = |Z ′Z| = |B′B||C ′C|. Suppose Z is nonsingular. Then, |B′B| �= 0 and
|C ′C| �= 0. Hence, rk(B) = n2 ≤ m1 and rk(C) = n1 ≤ m2. But n1 + n2 = m1 + m2,
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implying that m1 = n2 and m2 = n1. This contradicts the fact that B and C are not
square. We conclude that Z must be singular if B and C are not square.

Exercise 5.24 (Two diagonal zero blocks, special case) Find the determinant of(
O B

B′ O

)
and

(
O B

B−1 O

)
.

Solution
Exercise 5.23 immediately implies∣∣∣∣O B

B′ O

∣∣∣∣ =
{

(−1)m|B|2 (B square),

0 (B not square),

and ∣∣∣∣ O B

B−1 O

∣∣∣∣ = (−1)m|B||B−1| = (−1)m.

Exercise 5.25 (One off-diagonal zero block, determinant)
(a) Show that ∣∣∣∣Im B

O In

∣∣∣∣ = 1.

(b) Hence, show for square matrices A and D that∣∣∣∣A B

O D

∣∣∣∣ = ∣∣∣∣A O
C D

∣∣∣∣ = |A||D|.

Solution
(a) Denoting the matrix by ∆m, expansion by the first column gives |∆m| = |∆m−1|, and
hence

|∆m| = |∆m−1| = · · · = |∆0| = |In| = 1.

(b) This follows from the equalities(
Im O
O D

)(
Im B

O In

)(
A O
O In

)
=
(

A B

O D

)
and (

A O
O In

)(
Im O
C In

)(
Im O
O D

)
=
(

A O
C D

)
.
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Exercise 5.26 (More column-block operations) Show that∣∣∣∣Im B

B′ B′B + D

∣∣∣∣ = |D|.

Solution
This follows from the elementary column-block operation(

Im B

B′ B′B + D

)(
Im −B

O In

)
=
(

Im O
B′ D

)
.

Exercise 5.27 (Determinant of a product, alternative proof) Use Exercise 5.25 to pro-
vide an alternative proof of the fundamental fact that |AB| = |A||B| for any two square
matrices of the same order. (Compare Exercise 4.42.)

Solution
Consider the 2n× 2n matrices

P :=
(

In A

O In

)
, Q :=

(
A O
−In B

)
, R :=

(
O AB

−In B

)
.

One verifies easily that PQ = R. We shall show that |PQ| = |A||B| and that |R| =
|AB|. The multiplication PQ amounts to premultiplying the last n rows of Q by A (that
is, taking n linear combinations of such rows) and adding them to the first n rows. By Exer-
cise 4.34(b) this leaves the determinant unchanged: |PQ| = |Q|. But, by Exercise 5.25(b),
|Q| = |A||B|. Hence, |PQ| = |A||B|. Further,

|R| =
∣∣∣∣ O AB

−In B

∣∣∣∣ = (−1)n

∣∣∣∣AB O
B −In

∣∣∣∣
= (−1)n|AB|| − In| = (−1)2n|AB| = |AB|,

where the second equality follows from Exercise 4.32, the third from Exercise 5.25(b), and
the fourth from the fact that | − In| = (−1)n. We now know that |PQ| = |A||B| and that
|R| = |AB|. We also know that PQ = R. The result follows.

Exercise 5.28 (One diagonal zero block, determinant)
(a) For nonsingular A, show that∣∣∣∣A b

c′ 0

∣∣∣∣ = −|A|(c′A−1b).

(b) Generalize (a) by showing that∣∣∣∣A B

C O

∣∣∣∣ = (−1)n|A||CA−1B|,
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when A is nonsingular and n denotes the order of the square null matrix.
(c) Similarly, show that ∣∣∣∣O B

C D

∣∣∣∣ = (−1)m|D||BD−1C|,

when D is nonsingular and m denotes the order of the square null matrix.

Solution
All three determinants follow from matrix equalities in Exercise 5.10. We have, respec-
tively, (

Im 0
−c′A−1 1

)(
A b

c′ 0

)
=
(

A b

0′ −c′A−1b

)
,(

Im O
−CA−1 In

)(
A B

C O

)
=
(

A B

O −CA−1B

)
,

and (
Im −BD−1

O In

)(
O B

C D

)
=
(
−BD−1C O

C D

)
.

Exercise 5.29 (Scalar diagonal block, determinant) Consider the matrices

Z1 :=
(

A b

c′ δ

)
and Z2 :=

(
α b′

c D

)
.

Show that:
(a) if A is nonsingular, then |Z1| = |A|(δ − c′A−1b);
(b) if δ �= 0, then |Z1| = δ|A− δ−1bc′|;
(c) if D is nonsingular, then |Z2| = |D|(α− b′D−1c);
(d) if α �= 0, then |Z2| = α|D − α−1cb′|.

Solution
The results follow by taking determinants in the following four equalities:(

Im 0
−c′A−1 1

)(
A b

c′ δ

)
=
(

A b

0′ (δ − c′A−1b)

)
,(

Im −δ−1b

0′ 1

)(
A b

c′ δ

)
=
(

A− δ−1bc′ 0
c′ δ

)
,(

1 −b′D−1

0 In

)(
α b′

c D

)
=
(

(α− b′D−1c) 0′

c D

)
,
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and (
1 0′

−α−1c In

)(
α b′

c D

)
=
(

α b′

0 D − α−1cb′

)
.

Exercise 5.30 (Determinant of a partitioned matrix: main result) Consider the matrix

Z :=
(

A B

C D

)
.

(a) If A is nonsingular, show that

|Z| = |A||D −CA−1B|,
and notice how this generalizes the familiar formula for the determinant of a 2-by-2 matrix.
(b) If D is nonsingular, show that

|Z| = |D||A−BD−1C|.
(c) Is it possible that A and D are both singular, but Z is nonsingular?

Solution
(a)–(b) This is a very important result, so let us give a constructive proof. Consider the
equalities (

Im Q

O In

)(
A B

C D

)
=
(

A + QC B + QD

C D

)
and (

Im O
R In

)(
A B

C D

)
=
(

A B

RA + C RB + D

)
.

We wish to choose Q and R such that B + QD = O and RA + C = O. If |A| �= 0, we
can choose R := −CA−1 and (a) follows. If |D| �= 0, we can choose Q := −BD−1 and
(b) follows.
(c) This is certainly possible. For example, see the matrix of Exercise 5.23(a).

Exercise 5.31 (Positive definite counterpart of the main determinantal result) Let
(A : B) be an n× (k + m) matrix.
(a) If A has full column rank, show that∣∣∣∣A′A A′B

B′A B′B

∣∣∣∣ = |A′A||B′(In −A(A′A)−1A′)B|.

(b) If B has full column rank, show that∣∣∣∣A′A A′B
B′A B′B

∣∣∣∣ = |B′B||A′(In −B(B′B)−1B′)A|.
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Solution
This follows directly from Exercise 5.30.

Exercise 5.32 (Row-block operations and determinants) Let A and D be square
matrices, of orders m and n, respectively.
(a) For any m×m matrix E, show that∣∣∣∣EA EB

C D

∣∣∣∣ = |E|
∣∣∣∣A B

C D

∣∣∣∣ .
(b) For any n×m matrix E, show that∣∣∣∣ A B

C + EA D + EB

∣∣∣∣ = ∣∣∣∣A B

C D

∣∣∣∣ .
Solution
(a) This follows from (

E O
O In

)(
A B

C D

)
=
(

EA EB

C D

)
.

(b) And this follows from(
Im O
E In

)(
A B

C D

)
=
(

A B

C + EA D + EB

)
.

Exercise 5.33 (Determinant of one block in the inverse) Let

Z :=
(

A B

C D

)
and Z−1 :=

(
P Q

R S

)
,

where A and D are square matrices and Z is nonsingular (although A and D may be
singular). Show that

|S| = |A|
|Z| and |P | = |D|

|Z| .

Solution
Multiplying out ZZ−1 = Im+n, we obtain

AP + BR = Im, AQ + BS = O, CP + DR = O, CQ + DS = In.

Hence,(
A B

C D

)(
Im Q

O S

)
=
(

A O
C In

)
,

(
A B

C D

)(
P O
R In

)
=
(

Im B

O D

)
,

and the results follow.
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Exercise 5.34 (Relationship between |Im −BB′| and |In −B′B|) Show that∣∣∣∣Im B

B′ In

∣∣∣∣ = |In −B′B| = |Im −BB′|.

Solution
Consider the equation(

Im O
R In

)(
Im B

B′ In

)
=
(

Im B

R + B′ RB + In

)
.

Choosing R := −B′, the first result follows. The second result follows from(
Im B

B′ In

)(
Im O
−B′ In

)
=
(

Im −BB′ B

O In

)
.

*Exercise 5.35 (Determinant when two blocks commute) If A and C commute (AC =
CA), show that ∣∣∣∣A B

C D

∣∣∣∣ = |AD −CB|.

Solution
We use a continuity argument. Assume first that |A| �= 0. Then, by Exercise 5.30,∣∣∣∣A B

C D

∣∣∣∣ = |A||D −CA−1B| = |AD −ACA−1B|

= |AD −CAA−1B| = |AD −CB|.
Now assume that |A| = 0. Then there exists a δ > 0 such that |A + εIm| �= 0 for all ε

satisfying 0 < ε < δ. Then,∣∣∣∣A + εIm B

C D

∣∣∣∣ = |(A + εIm)D −CB| = |AD −CB + εD| (0 < ε < δ).

Since both sides are continuous in ε, we let ε → 0 and find the required result.

Exercise 5.36 (One identity block, determinant) Show that∣∣∣∣Im B

C D

∣∣∣∣ = |D −CB|.

Solution
If C is a square matrix, then Im and C commute, and the result follows from Exercise 5.35.
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In general, if C is not square, then Exercise 5.30(a) implies that∣∣∣∣Im B

C D

∣∣∣∣ = |Im||D −CB| = |D −CB|.

Exercise 5.37 (Relationship between |Im −BC| and |In −CB|)
(a) Show that ∣∣∣∣Im B

C In

∣∣∣∣ = ∣∣∣∣In C

B Im

∣∣∣∣ .
(b) Hence, show that

|Im −BC| = |In −CB|.
(c) Let A and D be nonsingular matrices of orders m and n, respectively. Use (b) to show
that

|A + BDC| = |A||D||D−1 + CA−1B|.

Solution
(a)–(b) The result follows directly from Exercises 5.30(a) and (b). Here we provide a
different solution. Denote the two matrices in (a) by Z1 and Z2. Then(

Im O
C In

)(
Im B

O In −CB

)
= Z1 =

(
Im B

O In

)(
Im −BC O

C In

)
and (

In −CB C

O Im

)(
In O
B Im

)
= Z2 =

(
In O
B Im −BC

)(
In C

O Im

)
.

Taking determinants we find

|Z1| = |In −CB| = |Im −BC|, |Z2| = |In −CB| = |Im −BC|
implying both (a) and (b).
(c) It follows from (b) that

|Im + (A−1B)(DC)| = |In + (DC)(A−1B)|.
A little manipulation then yields

|A(Im + A−1BDC)| = |A||D||D−1(In + DCA−1B)|,
and the result follows.

Exercise 5.38 (Matrix generalization of a2 − b2 = (a + b)(a − b)) If A and B

are square matrices of the same order, show that∣∣∣∣A B

B A

∣∣∣∣ = |A + B||A−B|.



118 5 Partitioned matrices

Solution
We write(

Im Im

O Im

)(
A B

B A

)
=
(

A + B B + A

B A

)
=
(

A + B O
O Im

)(
Im Im

B A

)
=
(

A + B O
O Im

)(
Im O
B Im

)(
Im Im

O A−B

)
.

Taking determinants, the result follows.

Exercise 5.39 (A 3-by-3 block matrix determinant) Consider the symmetric matrix of
Exercise 5.19,

Z :=

A B C

B′ D O
C ′ O E

 .

Show that

|Z| = |D||E||A−BD−1B′ −CE−1C ′|
if the matrices D and E are nonsingular.

Solution
Let

Ã := A, B̃ := (B : C), C̃ := (B : C)′, D̃ :=
(

D O
O E

)
.

Then,

|Z| =
∣∣∣∣∣Ã B̃

C̃ D̃

∣∣∣∣∣ = |D̃||Ã− B̃D̃−1C̃|

= |D||E||A−BD−1B′ −CE−1C ′| = |D||E||Q|,
using Exercise 5.30(b).

Exercise 5.40 (Determinant of a bordered matrix) Let A be a nonsingular m × m

matrix, and let α �= 0. Show that∣∣∣∣0 A

α a′

∣∣∣∣ = (−1)mα|A|.

Solution
We expand the determinant by the first column. This gives∣∣∣∣0 A

α a′

∣∣∣∣ = (−1)m+1(−α)|A| = (−1)mα|A|.
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5.4 Rank (in)equalities

Exercise 5.41 (Two zero blocks, rank)
(a) For any two matrices A and D (not necessarily square), show that

rk
(

A O
O D

)
= rk(A) + rk(D).

(b) For any two matrices B and C (not necessarily square), show that

rk
(
O B

C O

)
= rk(B) + rk(C).

Solution
(a) The rank of a matrix is equal to the number of its linearly independent columns. Let

Z :=
(

A O
O D

)
, Ã :=

(
A

O

)
, D̃ :=

(
O
D

)
.

Let ã := (a′,0′)′ and d̃ := (0′, d′)′ be two nonzero columns of Ã and D̃, respectively.
Then ã and d̃ are linearly independent, because if

λ1ã + λ2d̃ = λ1

(
a

0

)
+ λ2

(
0
d

)
=
(

λ1a

λ2d

)
= 0,

then λ1 = λ2 = 0 (since ã and d̃ are nonzero). This implies that rk(Ã : D̃) = rk(Ã) +
rk(D̃) and hence that rk(Z) = rk(A) + rk(D).
(b) The rank does not change if we interchange columns. Hence,

rk
(
O B

C O

)
= rk

(
B O
O C

)
= rk(B) + rk(C),

using (a).

Exercise 5.42 (One off-diagonal zero block, rank) Consider the matrices

Z1 :=
(

A B

O D

)
and Z2 :=

(
A O
C D

)
.

Show that it is not true, in general, that rk(Z1) = rk(A) + rk(D) or that rk(Z2) =
rk(A) + rk(D).

Solution
Take A = O and D = O. Then rk(A) = rk(D) = 0, but rk(Z1) = rk(B) and
rk(Z2) = rk(C), which are not zero, unless B = O and C = O.

Exercise 5.43 (Nonsingular diagonal block, rank) Consider the matrices Z1 and Z2

of Exercise 5.42. If either A or D (or both) is nonsingular, show that

rk(Z1) = rk(Z2) = rk(A) + rk(D).

Is this condition necessary?
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Solution
First, if A = Im and D = In, then both Z1 and Z2 are nonsingular (their determinant is 1
by Exercise 5.25). Now assume that |A| �= 0. Then,(

A B

O D

)(
Im −A−1B

O Iq

)
=
(

A O
O D

)
=
(

Im O
−CA−1 In

)(
A O
C D

)
and the result follows from Exercise 4.24. Similarly, if |D| �= 0, we have(

Im −BD−1

O In

)(
A B

O D

)
=
(

A O
O D

)
=
(

A O
C D

)(
Ip O

−D−1C In

)
.

The condition is not necessary. For example, if B = O and C = O, then rk(Z1) and
rk(Z2) are both equal to rk(A) + rk(D) whatever the ranks of A and D.

Exercise 5.44 (Nonsingular off-diagonal block, rank) Consider again the matrices
Z1 and Z2 of Exercise 5.42. Show that

rk(Z1) = rk(B) + rk(DB−1A)

if B is square and nonsingular, and

rk(Z2) = rk(C) + rk(AC−1D)

if C is square and nonsingular.

Solution
The results follow from the equalities(

Im O
−DB−1 In

)(
A B

O D

)(
O Ip

Im −B−1A

)
=
(

B O
O −DB−1A

)
and (

O In

Im −AC−1

)(
A O
C D

)(
In −C−1D

O Iq

)
=
(

C O
O −AC−1D

)
.

Exercise 5.45 (Rank inequalities, 1)
(a) Prove that

rk
(

A B

O D

)
≥ rk(A) + rk(D), rk

(
A O
C D

)
≥ rk(A) + rk(D).

(b) Show that it is not true, in general, that

rk
(

A B

C D

)
≥ rk(A) + rk(D).
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Solution
(a) Let

Z :=
(

A B

O D

)
,

where the orders of the matrices are: A (m× p), B (m× q), and D (n× q). Suppose that
r := rk(A) ≤ p and that s := rk(D) ≤ q. Then A has r linearly independent columns,
say a1, . . . ,ar, and D has s linearly independent columns, say d1, . . . ,ds. Let bj denote
the column of B directly above dj in the matrix Z. Now consider the set of r + s columns
of Z, (

a1

0

)
,

(
a2

0

)
,

(
ar

0

)
, . . . ,

(
b1

d1

)
,

(
b2

d2

)
,

(
bs

ds

)
.

We shall show that these r + s columns are linearly independent. Suppose they are linearly
dependent. Then there exist numbers α1, . . . , αr and β1, . . . , βs, not all zero, such that

r∑
i=1

αi

(
ai

0

)
+

s∑
j=1

βj

(
bj

dj

)
= 0.

This gives the two equations
r∑

i=1

αiai +
s∑

j=1

βjbj = 0,
s∑

j=1

βjdj = 0.

Since the {dj} are linearly independent, the second equation implies that βj = 0 for all j.
The first equation then reduces to

∑r
i=1 αiai = 0. Since the {ai} are linearly independent

as well, all αi are zero. We now have a contradiction. The matrix Z thus possesses (at
least) r + s linearly independent columns, so that rk(Z) ≥ r + s = rk(A) + rk(D).

The second result can be proved analogously. Alternatively, it can be proved from the
first result by considering the transpose:

rk
(

A O
C D

)
= rk

(
A O
C D

)′
= rk

(
A′ C ′

O D′

)
≥ rk(A′) + rk(D′) = rk(A) + rk(D).

(b) Consider

Z :=
(

A B

C D

)
=
(

Im Im

Im Im

)
.

Then rk(A) = rk(D) = rk(Z) = m, so that the inequality does not hold.

Exercise 5.46 (Rank inequalities, 2) Consider the matrices

Z1 :=
(

A B

C O

)
and Z2 :=

(
O B

C D

)
.
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(a) If either B or C (or both) is nonsingular, then show that

rk(Z1) = rk(Z2) = rk(B) + rk(C).

(b) Show that

rk(Z1) = rk(A) + rk(CA−1B)

if A is square and nonsingular, and

rk(Z2) = rk(D) + rk(BD−1C)

if D is square and nonsingular.
(c) Show that

rk(Z1) ≥ rk(B) + rk(C), rk(Z2) ≥ rk(B) + rk(C).

Solution
Since the rank does not change if we interchange columns, we have

rk(Z1) = rk
(

B A

O C

)
, rk(Z2) = rk

(
B O
D C

)
.

Results (a)–(c) now follow from Exercises 5.43–5.45.

Exercise 5.47 (The inequalities of Frobenius and Sylvester)
(a) Use Exercise 5.46 to obtain the following famous inequality:

rk(AB) + rk(BC) ≤ rk(B) + rk(ABC),

if the product ABC exists (Frobenius).
(b) From (a) obtain another famous inequality:

rk(AB) ≥ rk(A) + rk(B)− p

for any m× p matrix A and p× n matrix B (Sylvester’s law of nullity).
(c) Show that AB = O implies that rk(A) ≤ p − rk(B) for any m × p matrix A and
p× n matrix B. (This generalizes Exercise 4.8.)

Solution
(a) Consider the identity(

Im −A

O In

)(
O AB

BC B

)(
Iq O
−C Ip

)
=
(
−ABC O

O B

)
.

Of the four matrices, the first and third are nonsingular. Hence,

rk
(

O AB

BC B

)
= rk(ABC) + rk(B).
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Also, by Exercise 5.46(c),

rk
(

O AB

BC B

)
≥ rk(AB) + rk(BC),

and the result follows.
(b) From Frobenius’s inequality we obtain

rk(AX) + rk(XB) ≤ rk(X) + rk(AXB)

for any square matrix X of order p. Setting X = Ip gives the result.
(c) Since AB = O, Sylvester’s inequality gives 0 = rk(AB) ≥ rk(A) + rk(B)− p.

Exercise 5.48 (Rank of a partitioned matrix: main result) Let

Z :=
(

A B

C D

)
.

Show that

rk(Z) = rk(A) + rk(D −CA−1B) (if |A| �= 0)

and

rk(Z) = rk(D) + rk(A−BD−1C) (if |D| �= 0).

Solution
If A is nonsingular we can write(

Im O
−CA−1 In

)(
A B

C D

)(
Im −A−1B

O Iq

)
=
(

A O
O D −CA−1B

)
.

Similarly, if D is nonsingular, we can write(
Im −BD−1

O In

)(
A B

C D

)(
Ip O

−D−1C In

)
=
(

A−BD−1C O
O D

)
.

Since for any matrix Z, rk(Z) = rk(EZF ) whenever E and F are nonsingular, the re-
sults follow.

Exercise 5.49 (Relationship between the ranks of Im −BB′ and In −B′B) Show
that

rk
(

Im B

B′ In

)
= m + rk(In −B′B) = n + rk(Im −BB′).

Solution
From Exercise 5.48 we obtain

rk
(

Im B

B′ In

)
= rk(Im) + rk(In −B′B) = m + rk(In −B′B)
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and also

rk
(

Im B

B′ In

)
= rk(In) + rk(Im −BB′) = n + rk(Im −BB′).

Exercise 5.50 (Relationship between the ranks of Im −BC and In −CB)
(a) Let B and C be square n× n matrices. Show that

rk(In −BC) = rk(In −CB).

(b) Now let B be an m× n matrix and C an n×m matrix. Extend the result under (a) by
showing that

rk(Im −BC) = rk(In −CB) + m− n.

Solution
(a) We have (

In −B

O In

)(
In B

C In

)(
In O
−C In

)
=
(

In −BC O
O In

)
and (

In O
−C In

)(
In B

C In

)(
In −B

O In

)
=
(

In O
O In −CB

)
.

This proves (a) and shows in addition that

rk(In −BC) = rk(In −CB) = rk
(

In B

C In

)
.

(b) The argument is identical to the argument under (a), except for the order of the identity
matrices. Thus, we conclude that

rk
(

Im −BC O
O In

)
= rk

(
Im O
O In −CB

)
and the result follows.

Exercise 5.51 (Upper bound for the rank of a sum) Let A and B be matrices of
the same order. We know from Exercise 4.14 that

rk(A + B) ≤ rk(A) + rk(B).

Provide an alternative proof, using partitioned matrices.

Solution
The argument builds on the two matrices

Z1 :=
(

A O
O B

)
and Z2 :=

(
A + B B

B B

)
.
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The matrices Z1 and Z2 have the same rank, because(
Im Im

O Im

)(
A O
O B

)(
In O
In In

)
=
(

A + B B

B B

)
.

Clearly, rk(Z1) = rk(A) + rk(B). Also, since A + B is a submatrix of Z2 we must have
rk(Z2) ≥ rk(A + B) (Exercise 4.17). Hence,

rk(A + B) ≤ rk(Z2) = rk(Z1) = rk(A) + rk(B).

Exercise 5.52 (Rank of a 3-by-3 block matrix) Consider the symmetric matrix Z

of Exercise 5.19. Show that

rk(Z) = rk(D) + rk(E) + rk(A−BD−1B′ −CE−1C ′)

if D and E are nonsingular.

Solution
Let

Ã := A, B̃ := (B : C), C̃ := (B : C)′, D̃ :=
(

D O
O E

)
.

Then, using Exercise 5.48,

rk(Z) = rk(D̃) + rk(Ã− B̃D̃−1C̃)

= rk(D) + rk(E) + rk(A−BD−1B′ −CE−1C ′).

Exercise 5.53 (Rank of a bordered matrix) Let

Z :=
(

0 A

α a′

)
.

Show that

rk(Z) =

{
rk(A) (α = 0 and a ∈ col(A′)),

rk(A) + 1 (otherwise).

Solution
If α �= 0 then rk(Z) = rk(A) + 1 by Exercise 5.46(a). If α = 0 then rk(Z) = rk(A′ : a).
If a ∈ col(A′) then

rk(A′ : a) = rk(A′) = rk(A).

If a /∈ col(A′) then

rk(A′ : a) = rk(A′) + 1 = rk(A) + 1.
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5.5 The sweep operator

Exercise 5.54 (Simple sweep) Consider the 2× 2 matrix

A :=
(

a b

c d

)
.

(a) Compute A(1) := SWP(A, 1) and state the condition(s) under which it is defined.
(b) Compute A(2) := SWP(A(1), 2) and state the condition(s) under which it is defined.
(c) Show that A(2) = −A−1.

Solution
(a) By definition, we have

A(1) = SWP(A, 1) =
(
−1/a b/a

c/a d− bc/a

)
,

provided a �= 0.
(b) Applying the definition to A(1) gives

A(2) = SWP(A(1), 2) =
a

ad− bc

(
−ad−bc

a2 − cb
a2

b
a

c
a −1

)
=

−1
ad− bc

(
d −b

−c a

)
,

provided a �= 0 and ad− bc �= 0.
(c) We recognize −A(2) as the inverse of A or, if we don’t, we can verify that AA(2) =
−I2.

Exercise 5.55 (General sweep)
(a) Let A be a 3 × 3 matrix. Compute SWP(A, 2) and state the condition(s) under which
it is defined.
(b) Let A be an n × n matrix. For 1 ≤ p ≤ n, compute SWP(A, p) and state the condi-
tion(s) under which it is defined.

Solution
(a) Let

A :=

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Then, applying the definition,

SWP(A, 2) =

a11 − a12a21/a22 a12/a22 a13 − a12a23/a22

a21/a22 −1/a22 a23/a22

a31 − a32a21/a22 a32/a22 a33 − a32a23/a22

 ,

provided a22 �= 0.
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(b) More generally, if

A :=

A11 a12 A13

a′
21 a22 a′

23

A31 a32 A33

 ,

where A11 has order p− 1, a22 is a scalar, and A33 has order n− p, then we obtain in the
same way

SWP(A, p) =

A11 − a12a
′
21/a22 a12/a22 A13 − a12a

′
23/a22

a′
21/a22 −1/a22 a′

23/a22

A31 − a32a
′
21/a22 a32/a22 A33 − a32a

′
23/a22

 ,

provided a22 is nonzero.

*Exercise 5.56 (The sweeping theorem) Let A be an n × n matrix and let 1 ≤ p ≤ n.
Define A(k) recursively by A(k) := SWP(A(k−1), k) for k = 1, . . . , p with starting value
A(0) := A.
(a) If A is partitioned as

A :=
(

P Q

R S

)
,

where P is a p× p matrix, show that

A(p) =
(
−P−1 P−1Q

RP−1 S −RP−1Q

)
.

(b) Hence show that A(n) = −A−1.

Solution
(a) We prove this by induction on p. The result is true for p = 1, because A(1) =
SWP(A, 1) and the definition of the sweep operator or Exercise 5.54(a). Next, assume
that the result holds for p− 1, and let A be partitioned as

A =

A11 a12 A13

a′
21 a22 a′

23

A31 a32 A33

 ,

where A11 has order p−1, a22 is a scalar, and A33 has order n−p. Then, by the induction
hypothesis, we have

A(p−1) =

 −A−1
11 A−1

11 a12 A−1
11 A13

a′
21A

−1
11 a22 − a′

21A
−1
11 a12 a′

23 − a′
21A

−1
11 A13

A31A
−1
11 a32 −A31A

−1
11 a12 A33 −A31A

−1
11 A13

 .

We now use Exercise 5.55(b); this shows that SWP(A(p−1), p) is equal to −B11 −b12 B11A13 + b12a
′
23

−b′21 −b22 b′21A13 + b22a
′
23

A31B11 + a32b
′
21 A31b12 + a32b22 A33 −D

 ,
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where

B11 := A−1
11 + A−1

11 a12a
′
21A

−1
11 /β,

b12 := −A−1
11 a12/β, b′21 := −a′

21A
−1
11 /β,

b22 := 1/β, β := a22 − a′
21A

−1
11 a12,

D := A31A
−1
11 A13 + (a32 −A31A

−1
11 a12)(a′

23 − a′
21A

−1
11 A13)/β.

Noticing that (
A11 a12

a′
21 a22

)−1

=
(

B11 b12

b′21 b22

)
,

using Exercise 5.16(a), and that

D = (A31 : a32)
(

B11 b12

b′21 b22

)(
A13

a′
23

)
,

the result follows.
(b) This follows directly from (a). The inverse of A can thus be computed by n sequential
sweep operations, a very useful fact in numerical inversion routines.

Exercise 5.57 (Sweeping and linear equations)
(a) Show how the sweep operator can be used to solve the linear system PX = Q for
nonsingular P .
(b) In particular, solve the system 2x1 + 3x2 = 8 and 4x1 + 5x2 = 14 using the sweep
operator.

Solution
(a) We know from Exercise 5.56 that

A :=
(

P Q

R S

)
=⇒ A(p) =

(
−P−1 P−1Q

RP−1 S −RP−1Q

)
.

Hence, the solution P−1Q appears as the (1, 2)-block of A(p), where p denotes the order
of the square matrix P .
(b) Denoting irrelevant elements by ∗s, we define

A(0) :=

2 3 8
4 5 14
∗ ∗ ∗

 .

This gives

A(1) := SWP(A(0), 1) =

−1/2 3/2 4
2 −1 −2
∗ ∗ ∗


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and

A(2) := SWP(A(1), 2) =

5/2 −3/2 1
−2 1 2
∗ ∗ ∗

 ,

so that the solution is x1 = 1, x2 = 2.

Notes

A good survey of results with partitioned matrices can be found in Chapter 2 of Zhang
(1999). The inequalities in Exercise 5.47 were first obtained by Sylvester in 1884 and
Frobenius in 1911. Sylvester’s inequality is called the “law of nullity”, because it implies
that

dim(ker(AB)) ≤ dim(ker(A)) + dim(ker(B)),

and the dimension of the kernel of a matrix is known as its “nullity”. The sweep opera-
tor (Exercises 5.54–5.57) plays a role in inversion routines. It was introduced by Beaton
(1964); see also Dempster (1969).
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Systems of equations

Sets of simultaneous linear equations appear frequently in linear econometric models and
elsewhere. We shall be concerned with deriving criteria for the existence and uniqueness
of solutions, and with the properties of solutions. We begin by considering some simple
operations on the rows (columns) of a matrix without changing its rank. Three types of
operations on the rows of a matrix (called elementary row operations) are of importance;
they are:

(i) interchange of two rows;
(ii) multiplication of a row by any scalar λ �= 0;

(iii) addition to the i-th row of λ times the j-th row (i �= j).

Let us perform these three row operations, one at a time, on the identity matrix Im. We
denote by Eij the identity matrix with rows i and j interchanged, by Ei(λ) the identity
matrix whose i-th row is multiplied by λ �= 0, and by Ei(λ|j) the identity matrix where λ

times row j is added to a row i (i �= j). For example, when m = 3,

E13 =

0 0 1
0 1 0
1 0 0

 , E2(7) =

1 0 0
0 7 0
0 0 1

 , E3(5|2) =

1 0 0
0 1 0
0 5 1

 .

Elementary column operations are defined in the same way; they are:

(i) interchange of two columns;
(ii) multiplication of a column by any scalar λ �= 0;

(iii) addition to the i-th column of λ times the j-th column (i �= j).

We now perform these three column operations on the identity matrix In. Let Fij denote
In with columns i and j interchanged, Fi(λ) when the i-th column is multiplied by λ �= 0,

131
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and Fi(λ|j) when λ times column j is added to column i (i �= j). When n = 3, we have

F13 =

0 0 1
0 1 0
1 0 0

 , F2(7) =

1 0 0
0 7 0
0 0 1

 , F3(5|2) =

1 0 0
0 1 5
0 0 1

 .

Notice that, when m = n, we have Fij = Eij , Fi(λ) = Ei(λ), but Fi(λ|j) = Ej(λ|i) =
E′

i(λ|j).
We shall see (Exercise 6.13) that by means of a series of elementary row operations, any

m × n matrix A can be reduced to a so-called echelon matrix, which has the following
structure:

(i) if a row has nonzero elements, then the first nonzero element (called the leading ele-
ment or pivot) is 1;

(ii) if a column contains a leading 1, then all elements in that column below the leading 1
are zero;

(iii) if a row has a leading 1, then each row above contains a leading 1 further to the left.

A typical example of an echelon matrix is

H =


0 ©1 h13 h14 h15 h16

0 0 0 ©1 h25 h26

0 0 0 0 ©1 h36

0 0 0 0 0 0

 ,

where the three leading ones have been circled. One of the useful properties of H is that
its rank is very easy to determine. It is simply the number of nonzero rows (here 3), see
Exercise 6.12.

If A is a nonsingular matrix, then not only can we reduce A to echelon form by a
sequence of elementary operations, say E1A = H (forward elimination), but we can
further reduce H to the identity matrix, E2H = In (backward elimination). Hence,
E2E1A = In and A−1 = E2E1. This is the idea behind Gaussian elimination, discussed
in Section 6.3.

In Sections 6.4 and 6.5 we discuss the homogeneous equation Ax = 0 and the nonho-
mogeneous equation Ax = b, respectively.

6.1 Elementary matrices

Exercise 6.1 (Elementary example) Consider the matrix

A =

1 2
3 4
5 6

 .

Show that B = EA for some elementary matrix E, when:
(a) B is obtained from A by interchanging the first and third rows in A;
(b) B is obtained from A by multiplying the second row by 7;
(c) B is obtained from A by adding five times the second row to the third row.
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Solution
Denote the solutions to (a)–(c) by E13, E2(7), and E3(5|2), respectively. Then,

E13 =

0 0 1
0 1 0
1 0 0

 , E2(7) =

1 0 0
0 7 0
0 0 1

 , E3(5|2) =

1 0 0
0 1 0
0 5 1


satisfy the requirements. Apparently, if B is obtained from A by an elementary row opera-
tion, then B = EA for some elementary matrix E. We next prove that this holds generally.

Exercise 6.2 (Elementary row operations) Let B be obtained from A by an ele-
mentary row operation. Show that B = EA for some elementary matrix E.

Solution
Let A be a matrix of order m × n. Then so is B and hence E must be square of order
m × m. There are three elementary row operations. Without loss of generality we set
m = 3 and n = 1, so that A is a 3×1 matrix, that is, a vector a := (a1, a2, a3)′. It suffices
to show that

E12a =

a2

a1

a3

 , E1(λ)a =

λa1

a2

a3

 , E1(λ|2)a =

a1 + λa2

a2

a3

 .

But this follows from the fact that

E12 =

0 1 0
1 0 0
0 0 1

 , E1(λ) =

λ 0 0
0 1 0
0 0 1

 , E1(λ|2) =

1 λ 0
0 1 0
0 0 1

 .

*Exercise 6.3 (Explicit expression of elementary matrices) Show that the elementary
matrices can be expressed in terms of the unit vectors ei and ej . In particular,

Eij = Im − (ei − ej)(ei − ej)′,

Ei(λ) = Im + (λ− 1)eie
′
i, Ei(λ|j) = Im + λeie

′
j .

Solution
We have

Eij =

 ∑
k/∈{i,j}

eke
′
k

+ eie
′
j + eje

′
i

=

(
m∑

k=1

eke
′
k

)
− (eie

′
i + eje

′
j − eie

′
j − eje

′
i)

= Im − (ei − ej)(ei − ej)′.
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Also,

Ei(λ) =

∑
k �=i

eke
′
k

+ λeie
′
i =

(
m∑

k=1

eke
′
k

)
− eie

′
i + λeie

′
i = Im + (λ− 1)eie

′
i.

Finally,

Ei(λ|j) =

∑
k �=i

eke
′
k

+ ei(ei + λej)′

=

(
m∑

k=1

eke
′
k

)
− eie

′
i + eie

′
i + λeie

′
j = Im + λeie

′
j .

Exercise 6.4 (Transpose of an elementary matrix)
(a) Show that

E′
ij = Eij , E′

i(λ) = Ei(λ), E′
i(λ|j) = Ej(λ|i).

(b) Conclude that the transpose of an elementary matrix is itself elementary.

Solution
(a) Using Exercise 6.3 (or by direct inspection) we see that Eij and Ei(λ) are symmetric
and that

E′
i(λ|j) = (Im + λeie

′
j)

′ = Im + λeje
′
i = Ej(λ|i).

(b) The conclusion is evident from (a).

Exercise 6.5 (Inverse of an elementary matrix)
(a) Show that

E−1
ij = Eij , E−1

i (λ) = Ei(λ−1), E−1
i (λ|j) = Ei(−λ|j).

(b) Conclude that the inverse of an elementary matrix is itself elementary.

Solution
(a) First, letting d := ei − ej , we find, using Exercise 6.3,

EijEij = (Im − dd′)2 = Im − dd′ − dd′ + (d′d)dd′

= Im + (d′d− 2)dd′ = Im,

because if i �= j then d′d = (ei − ej)′(ei − ej) = 2, and if i = j then d = 0. Second,

Ei(λ)Ei(λ−1) =
(
Im + (λ− 1)eie

′
i

) (
Im + (λ−1 − 1)eie

′
i

)
= Im +

(
λ−1 − 1 + λ− 1 + (λ− 1)(λ−1 − 1)

)
eie

′
i = Im.
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Third,

Ei(λ|j)Ei(−λ|j) = (Im + λeie
′
j)(Im − λeie

′
j)

= Im − λeie
′
j + λeie

′
j − λ2eie

′
jeie

′
j = Im,

because e′
jei = 0, since i �= j.

(b) The conclusion follows.

Exercise 6.6 (Product of elementary matrices) Show that the product of two ele-
mentary matrices is, in general, not elementary.

Solution
For example,

E13E2(7) =

0 0 1
0 1 0
1 0 0

1 0 0
0 7 0
0 0 1

 =

0 0 1
0 7 0
1 0 0

 ,

which is not elementary.

Exercise 6.7 (Elementary checks) Check the theoretical results of Exercises 6.4 and 6.5
by considering the 3× 3 identity matrix and the elementary matrices E23, E1(5), E2(4|1),
E1(4|2), and E2(0|1).

Solution
First we consider

E23 =

1 0 0
0 0 1
0 1 0

 and E1(5) =

5 0 0
0 1 0
0 0 1

 .

Both matrices are symmetric. It is easy to show that E2
23 = I3. The matrix E1(5) is

diagonal and hence its inverse is E1(1/5). Now consider

E2(4|1) =

1 0 0
4 1 0
0 0 1

 , E1(4|2) =

1 4 0
0 1 0
0 0 1

 ,

and

E2(0|1) =

1 0 0
0 1 0
0 0 1

 .

We see that E′
2(4|1) = E1(4|2) and E′

2(0|1) = E1(0|2) = I3. The inverses follow by
direct computation.
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Exercise 6.8 (Do elementary matrices commute?)
(a) Find the matrix E which, when postmultiplied by

A =
(

1 2 3
4 5 6

)
,

interchanges rows 1 and 2, then multiplies row 2 by 5. Does the order of the two operations
matter?
(b) Find the matrix E which, when postmultiplied by A, interchanges rows 1 and 2, then
adds 3 times row 1 to row 2. Does the order of the operations matter?
(c) Do elementary matrices commute?

Solution
(a) We have

E2(5)E12A =
(

1 0
0 5

)(
0 1
1 0

)(
1 2 3
4 5 6

)
=
(

4 5 6
5 10 15

)
�=
(

20 25 30
1 2 3

)
= E12E2(5)A.

This is because

E2(5)E12 =
(

0 1
5 0

)
and E12E2(5) =

(
0 5
1 0

)
.

(b) Here,

E = E2(3|1)E12 =
(

0 1
1 3

)
and E12E2(3|1) =

(
3 1
1 0

)
.

(c) No, they do not commute.

Exercise 6.9 (Determinant of an elementary matrix) Show that

|Eij | = −1, |Ei(λ)| = λ, |Ei(λ|j)| = 1,

and hence that the determinant is nonzero and does not depend on the order of the matrix.

Solution
This follows from Exercises 4.32 and 4.34.

Exercise 6.10 (Elementary column operations) Let B be obtained from A by an
elementary column operation. Show that B = AF for some elementary matrix F .

Solution
If B is obtained from A by an elementary column operation, then B′ is obtained from A′

by an elementary row operation. Then, by Exercise 6.2, B′ = EA′ for some elementary
matrix E. Hence, B = AE′. Letting F := E′ and noting that F is an elementary matrix
(Exercise 6.4), the result follows.
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Exercise 6.11 (More elementary checks) For the 3× 2 matrix of Exercise 6.1 find the
2 × 2 elementary column matrices F12, F1(3), and F2(5|1), and check that they perform
the operations they are supposed to perform.

Solution
We have

AF12 =

1 2
3 4
5 6

(0 1
1 0

)
=

2 1
4 3
6 5

 ,

AF1(3) =

1 2
3 4
5 6

(3 0
0 1

)
=

 3 2
9 4
15 6

 ,

and

AF2(5|1) =

1 2
3 4
5 6

(1 5
0 1

)
=

1 7
3 19
5 31

 .

6.2 Echelon matrices

Exercise 6.12 (Rank of an echelon matrix) Let H be an echelon matrix. Show that
rk(H) is equal to the number of nonzero rows in H .

Solution
Let H be an m×n matrix and suppose there are r nonzero rows (a nonzero row is one that
contains at least one nonzero element). We want to show that precisely r of the m rows of
H are linearly independent. Now, rk(H) cannot be greater than r, because there are m−r

zero rows. Let h′
1, . . . ,h

′
r denote the first r rows of H (the nonzero rows). We need to

show that the equation
∑

i λihi = 0 implies that λ1 = λ2 = · · · = λr = 0. If row h′
1 has

its leading 1 in column c1, then all other rows have zeros in this column. Hence, λ1 = 0.
In the same way, λ2 = · · · = λr = 0. Therefore, the first r rows are linearly independent
and rk(H) = r.

*Exercise 6.13 (Reduction to echelon form) Show that every m × n matrix A can be
reduced to echelon form by elementary row operations. In other words, show that for every
m × n matrix A, there exist a finite number of elementary m × m matrices E1, . . . ,Ek

such that

EkEk−1 . . .E1A = H

where the m× n matrix H is in echelon form.
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Solution
The following solution is “constructive”, that is, we do not only show that it is possible
to find elementary matrices E1, . . . ,Ek, but we also show how. The algorithm entails an
iteration consisting of three steps.

For i = 1, 2, . . . , m do:
Step 1: Define ji to be the first column that has at least one nonzero element below row
i− 1 (ji > ji−1, j0 := 0). If there is no such column, then STOP.
Step 2: If ai,ji = 0, interchange row i with any row (with row index > i) having a nonzero
element in column ji.
Step 3: Reduce any other nonzero elements in column ji (with row index > i) to zero by
subtracting suitable multiples of row i from the other rows.

The resulting matrix is in echelon form except that the leading element (that is, the first
nonzero element) in each row is not yet 1. So, for i = 1, 2, . . . , m, we divide each nonzero
row by its leading element. The matrix is now in echelon form.

Exercise 6.14 (Echelon example, 1) Reduce the 3× 5 matrix

A =

0 0 1 2 3
2 4 −2 0 4
2 4 −1 2 7


to echelon forms through a series of elementary row operations.

Solution
We follow precisely the algorithm described in the solution of Exercise 6.13.

i = 1, step 1: j1 = 1
i = 1, step 2: Since a11 = 0, we interchange rows 1 and 2:

A2 := E12A =

©2 4 −2 0 4
0 0 1 2 3
2 4 −1 2 7

 .

i = 1, step 3: Subtract row 1 from row 3:

A3 := E3(−1|1)A2 =

©2 4 −2 0 4
0 0 ©1 2 3
0 0 1 2 3

 .

i = 2, step 1: j2 = 3.
i = 2, step 2: a23 �= 0, so no action required.
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i = 2, step 3: Subtract row 2 from row 3:

A4 := E3(−1|2)A3 =

©2 4 −2 0 4
0 0 ©1 2 3
0 0 0 0 0

 .

i = 3, step 1: STOP.

Finally, divide row 1 by 2:

A5 := E1(1/2)A4 =

©1 2 −1 0 2
0 0 ©1 2 3
0 0 0 0 0

 .

Hence,

H := A5 := E1(1/2)E3(−1|2)E3(−1|1)E12A.

Exercise 6.15 (Echelon example, 2) Let H be the 3×5 echelon matrix of Exercise 6.14.
Show, through a series of elementary column operations, that we can reduce H to the form1 0 0 0 0

0 1 0 0 0
0 0 0 0 0

 .

Solution
First interchange columns 2 and 3:

H2 := HF23 =

1 −1 2 0 2
0 1 0 2 3
0 0 0 0 0

 .

Then, use column 1 to produce zeros in the first row of columns 2, 3, and 5:

H3 := H2F2(1|1)F3(−2|1)F5(−2|1) =

1 0 0 0 0
0 1 0 2 3
0 0 0 0 0

 .

Finally, use column 2 to produce zeros in the second row of columns 4 and 5:

H4 := H3F4(−2|2)F5(−3|2) =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 .

Exercise 6.16 (Reduction from echelon to diagonal form) Show that every m × n

echelon matrix H of rank r can be reduced to the m× n matrix(
Ir O
O O

)
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by elementary column operations. That is, show that elementary n×n matrices F1, . . . ,Fl

exist such that

HF1F2 . . .Fl =
(

Ir O
O O

)
.

Solution
The solution follows exactly the example of Exercise 6.15. First use elementary matrices
Fi to transform H to the form

H2 :=
(

Ir + U Q

O O

)
,

where U is an upper triangular r × r matrix, and Q is an r × (m − r) matrix. Then, use
column j (j = 1, 2, . . . , r) to produce zeros in the j-th row of H2.

Exercise 6.17 (Factorization using echelon matrices) Use Exercises 6.13 and 6.16
to show that every m× n matrix A of rank r can be represented as

EAF =
(

Ir O
O O

)
where E and F are nonsingular matrices.

Solution
We know from Exercises 6.13 and 6.16, that

EA = H and HF =
(

Ir O
O O

)
,

where E (m×m) and F (n× n) are products of elementary matrices, and H is an m× n

echelon matrix. Hence,

EAF = HF =
(

Ir O
O O

)
.

The matrices E and F are nonsingular, because every elementary matrix is nonsingular
and hence products of elementary matrices are nonsingular too.

Exercise 6.18 (A property of nonsingular matrices)
(a) If A is a nonsingular n× n matrix, show that nonsingular matrices E and F exist such
that EAF = In.
(b) Hence, show that every nonsingular matrix can be written as the product of elementary
matrices.

Solution
Part (a) is an immediate consequence of Exercise 6.17, since r = n in the nonsingular case.
Further, since EAF = In, we obtain

A = E−1F−1 = (EkEk−1 . . .E1)
−1 (F1F2 . . .Fl)

−1 = E−1
1 . . .E−1

k F−1
l . . .F−1

1 ,
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which is a product of elementary matrices. (Remember from Exercise 6.5 that the inverse
of an elementary matrix is elementary as well.)

Exercise 6.19 (Equivalence) Let A and B be matrices of order m × n. Show that
nonsingular matrices E and F exist such that B = EAF if and only if rk(A) = rk(B).
(Two matrices of the same order and the same rank are said to be equivalent.)

Solution
If E and F are nonsingular, then rk(EAF ) = rk(A). Conversely, if rk(A) = rk(B) = r,
then

E1AF1 =
(

Ir O
O O

)
= E2BF2

for some nonsingular matrices E1, E2, F1, F2 (Exercise 6.17). Hence, B = E−1
2 E1AF1F

−1
2 .

Letting E := E−1
2 E1, F := F1F

−1
2 , it follows that B = EAF and that E and F are

nonsingular.

Exercise 6.20 (Rank through echelon) Find the rank of the matrix

A =


2 1 4 0 6 7 10
3 5 9 1 0 4 3
7 7 3 2 8 1 1
−9 −8 7 −3 −10 9 11
4 2 −20 2 4 −20 −24


by reducing it to echelon form.

Solution
By successive reduction we first obtain

A2 =


��
��
2 1 4 0 6 7 10
0 ��

��
3.5 3 1 −9 −6.5 −12

0 3.5 −11 2 −13 −23.5 −34
0 −3.5 25 −3 17 40.5 56
0 0 −28 2 −8 −34 −44


and then, annihilating the second column,

A3 =


��
��
2 1 4 0 6 7 10
0 ��

��
3.5 3 1 −9 −6.5 −12

0 0 ��
��
−14 1 −4 −17 −22

0 0 28 −2 8 34 44
0 0 −28 2 −8 −34 −44

 .

We can reduce this further (the last two rows can be made zero), but it is already apparent
that rk(A3) = 3, and hence rk(A) = 3.
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Exercise 6.21 (Extending the echelon) Suppose we wish to reduce A to echelon form
and, at the same time, find the matrix E which carries out the reduction. How can this be
achieved?

Solution
Suppose that EA = H . Then, E(A : I) = (H : E). So, instead of reducing the m × n

matrix A to echelon form, we reduce the m× (n + m) matrix (A : Im) to echelon form.

Exercise 6.22 (Inverse by echelon: theory)
(a) If A is a nonsingular n×n matrix, show that there exists a matrix E such that EA = In,
where E is the product of elementary matrices.
(b) Use (a) and Exercise 6.21 to develop a procedure for finding the inverse of a nonsingular
matrix.

Solution
(a) From Exercise 6.18 we can write EAF = In. Now premultiply by F and postmultiply
by F−1. This gives FEA = In. The matrix FE is a product of elementary matrices.
(b) It follows from (a) that we can reduce A to In, say through EA = In (where this E is
not the same as the one in (a)). Hence,

E(A : In) = (EA : E) = (I : A−1).

So, if we reduce (A : In) to echelon form, such that the first block is the identity matrix,
then the second block will be the inverse.

Exercise 6.23 (Inverse by echelon: practice) Use the method of Exercise 6.22 to
find the inverse of

A =

0 1 1
1 1 1
3 4 3

 .

Solution
We form the extended matrix

Ã1 =

0 1 1 1 0 0
1 1 1 0 1 0
3 4 3 0 0 1

 .

Interchange rows 1 and 2:

Ã2 =

©1 1 1 0 1 0
0 1 1 1 0 0
3 4 3 0 0 1

 .

Subtract 3 times row 1 from row 3:

Ã3 =

©1 1 1 0 1 0
0 ©1 1 1 0 0
0 1 0 0 −3 1

 .
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Subtract row 2 from row 3, and multiply row 3 by −1:

Ã4 =

©1 1 1 0 1 0
0 ©1 1 1 0 0
0 0 ©1 1 3 −1

 .

The matrix A is now in echelon form. To reduce further we subtract row 3 from rows 1
and 2:

Ã5 =

1 1 0 −1 −2 1
0 1 0 0 −3 1
0 0 1 1 3 −1

 .

And, finally, we subtract row 2 from row 1:

Ã6 =

1 0 0 −1 1 0
0 1 0 0 −3 1
0 0 1 1 3 −1

 .

Hence,

A−1 =

−1 1 0
0 −3 1
1 3 −1

 .

6.3 Gaussian elimination

Exercise 6.24 (A problem posed by Euler) A Swiss farmer buys sheep, goats, and
hogs, totalling 100 in number, for 100 crowns. The sheep cost him 1

2 a crown apiece; the
goats 11

3 crowns; and the hogs 31
2 crowns. How many had he of each?

Solution
Denote the number of sheep, goats, and hogs by x1, x2, and x3. We need to solve the
equation (

1 1 1
1/2 4/3 7/2

)x1

x2

x3

 =
(

100
100

)
.

We have three unknowns and only two equations. By subtracting 1/2 times the first equa-
tion from the second equation, and then multiplying the second equation by 6/5, we obtain(

1 1 1
0 1 3.6

)x1

x2

x3

 =
(

100
60

)
.

The matrix is now in echelon form. We cannot solve x1, x2, and x3, but if we think of x3

as a “free” parameter, say x3 = λ, then we can express x2 and x1 in terms of λ:

x2 = 60− 3.6λ, x1 = 100− λ− x2 = 40 + 2.6λ.
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Hence,

(x1, x2, x3) = (40, 60, 0) + λ(2.6,−3.6, 1).

However, since we are dealing with animals, we do in fact have additional information on
x1, x2, and x3. First, we know that x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. This implies 0 ≤ λ ≤ 162

3 .
Second, all three xi must be integers. This gives four solutions, for λ = 0, 5, 10, and 15,
namely: (40, 60, 0), (53, 42, 5), (66, 24, 10), and (79, 6, 15).

Exercise 6.25 (Euler’s problem, continued) Suppose Euler had forgotten to provide the
information: “He had eleven more sheep than goats.” Now solve this problem again.

Solution
Of the previous four solutions, only the second qualifies. Hence, the solution is (53, 42, 5).
Let us now proceed to solve the problem without this previous knowledge. We write the
three equations as  1 1 1

1/2 4/3 7/2
1 −1 0

x1

x2

x3

 =

100
100
11

 .

Subtract (a multiple of) row 1 from rows 2 and 3, thus putting zeros below the first leading
element: 1 1 1

0 5/6 3
0 −2 −1

x1

x2

x3

 =

100
50
−89

 .

Next add 12/5 times row 2 to row 3:1 1 1
0 5/6 3
0 0 31/5

x1

x2

x3

 =

100
50
31

 .

Multiply row 2 by 6/5 and row 3 by 5/31. This produces the echelon form:1 1 1
0 1 3.6
0 0 1

x1

x2

x3

 =

100
60
5

 .

This is the end of stage A, called forward elimination. Now comes stage B, backward
elimination. Subtract appropriate multiples of row 3 from rows 1 and 2:1 1 0

0 1 0
0 0 1

x1

x2

x3

 =

95
42
5

 .
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Finally, subtract row 2 from row 1:1 0 0
0 1 0
0 0 1

x1

x2

x3

 =

53
42
5

 .

The procedure spelled out above is called Gaussian elimination.

Exercise 6.26 (The Gaussian elimination algorithm) Use the example of Exercise 6.25
and the theoretical result of Exercise 6.22 to describe a formal solution algorithm, the so-
called Gaussian elimination method.

Solution
Let A be a nonsingular matrix and consider the equation Ax = b. We want to solve x.
We use the fact, established in Exercise 6.22, that there exists a nonsingular matrix E (a
product of elementary matrices) such that EA = I . In fact, we think of E as the product
of two matrices, E = E2E1, such that E1A = H (echelon form) and E2H = I .

Consider the augmented matrix (A : b). In stage A (forward elimination) we perform a
series of elementary row operations such that E1(A : b) = (H : E1b). This is achieved
by putting zeros below each pivot, working from the top row down. In stage B (backward
elimination) we perform further elementary row operations such that E2(H : E1b) = (I :
E2E1b). This is achieved by putting zeros above each pivot, working from the bottom row
up. The vector x = E2E1b is the required solution. This follows immediately from the
fact that E2E1A = E2H = I , so that A−1 = E2E1 and hence A−1b = E2E1b.

Exercise 6.27 (Examples of Gauss’s algorithm) Solve the equations2 1 −3
5 2 −6
3 −1 −4

x1

x2

x3

 =

1
5
7

 and

2 1 −2
3 2 2
5 4 3

x1

x2

x3

 =

10
1
4


by Gaussian elimination.

Solution
We perform row operations on the augmented matrices2 1 −3 1

5 2 −6 5
3 −1 −4 7

 and

2 1 −2 10
3 2 2 1
5 4 3 4

 .

This produces, by forward elimination, the matrix A in echelon form:1 0.5 −1.5 0.5
0 1 −3 −5
0 0 1 1

 and

1 0.5 −1 5
0 1 10 −28
0 0 1 −3

 .
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Then, by backward elimination,1 0 0 3
0 1 0 −2
0 0 1 1

 and

1 0 0 1
0 1 0 2
0 0 1 −3

 .

Hence, the solutions are (x1, x2, x3) = (3,−2, 1) and (1, 2,−3), respectively.

Exercise 6.28 (Cramer’s rule) Let A = (aij) be a square matrix of order n, and
let A(ij) be the (n − 1) × (n − 1) matrix obtained from A by deleting row i and column
j. Recall from Chapter 4 that the cofactor of aij is given by cij := (−1)i+j |A(ij)|. Let
C = (cij) be the n×n matrix of cofactors. If A is nonsingular, then Exercise 4.37(c) tells
us that A−1 = |A|−1C ′. Now consider the equation Ax = b.
(a) If A is nonsingular, show that

xj =
∑n

i=1 bicij

|A| (j = 1, . . . , n).

(b) Let A(j) denote the matrix obtained from A when the j-th column is replaced by b.
Show that xj = |A(j)|/|A| for j = 1, . . . , n (Cramer).

Solution
(a) Since x = A−1b = |A|−1C ′b, we obtain

xj =
e′

jC
′b

|A| =
∑n

i=1 bicij

|A| .

(b) Since C ′A = |A|In, all diagonal elements of C ′A are equal to |A|, that is, |A| =∑
i aijcij (j = 1, . . . , n). This is called the expansion of |A| by the j-th column (Ex-

ercise 4.36). Now consider the expansion of |A(j)| by the j-th column (that is, b). The
cofactor of the ij-th element of A(j) is obtained by deleting the j-th column of A(j) and
the i-th row. Hence, it is equal to cij , the cofactor of the ij-th element of A. As a con-
sequence, |A(j)| =

∑
i bicij , and the result follows from (a). (Cramer’s rule is of great

theoretical importance; it is not, however, an efficient way to solve linear equations.)

Exercise 6.29 (Cramer’s rule in practice) Solve the two equations of Exercise 6.27
by Cramer’s rule.

Solution
For the first equation we have

|A(1)| =

∣∣∣∣∣∣
1 1 −3
5 2 −6
7 −1 −4

∣∣∣∣∣∣ = 21, |A(2)| =

∣∣∣∣∣∣
2 1 −3
5 5 −6
3 7 −4

∣∣∣∣∣∣ = −14,

|A(3)| =

∣∣∣∣∣∣
2 1 1
5 2 5
3 −1 7

∣∣∣∣∣∣ = 7, |A| =

∣∣∣∣∣∣
2 1 −3
5 2 −6
3 −1 −4

∣∣∣∣∣∣ = 7.
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Hence, x1 = 3, x2 = −2, x3 = 1. Similarly, for the second equation, |A(1)| = −7,
|A(2)| = −14, |A(3)| = 21, and |A| = −7, implying that x1 = 1, x2 = 2, x3 =
−3.

*Exercise 6.30 (Fitting a polynomial) Suppose we wish to fit an n-th degree polynomial
p(x) :=

∑n
j=0 ajx

j to n + 1 (possibly unevenly spaced) data points. Our data consist of
x1, . . . , xn+1 and y1, . . . , yn+1, where yi := p(xi) for i = 1, . . . , n + 1, and the xi are all
distinct. Determine the coefficients a0, a1, . . . , an.

Solution
We write

a0 + a1x1 + · · ·+ anxn
1 = y1

a0 + a1x2 + · · ·+ anxn
2 = y2

...

a0 + a1xn+1 + · · ·+ anxn
n+1 = yn+1.

Now consider

V :=


1 1 . . . 1
x1 x2 . . . xn+1

x2
1 x2

2 . . . x2
n+1

...
...

...
xn

1 xn
2 . . . xn

n+1

 , y :=


y1

y2
...

yn+1

 , a :=


a0

a1
...

an

 ,

where V is the (n + 1) × (n + 1) Vandermonde matrix. We know from Exercise 4.41
that V is nonsingular, because x1, x2, . . . , xn+1 are all distinct, and that its determinant is
given by |V | =

∏
j<i(xi − xj). Hence, the system of n + 1 equations can be written as

V ′a = y with solution a = V ′−1y.
Now let ηj be the determinant of the (n + 1) × (n + 1) matrix obtained from V by

replacing the (j + 1)-th row of V by y′. Then Cramer’s rule gives aj = ηj/|V | for
j = 0, 1, . . . , n (Exercise 6.28).

Exercise 6.31 (Linear independence of powers) Consider the Hilbert space of all
polynomials p(x) := a0 + a1x + · · ·+ anxn (of all degrees).
(a) Show that the functions 1, x, . . . , xn are linearly independent for every n = 1, 2, . . .

(b) Show that this space is infinite dimensional.
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Solution
(a) Suppose a relation a0 + a1x + · · · + anxn = 0 holds. Successively setting x equal to
distinct values x1, x2, . . . , xn+1, we obtain the system

a0 + a1x1 + · · ·+ anxn
1 = 0

a0 + a1x2 + · · ·+ anxn
2 = 0

...

a0 + a1xn+1 + · · ·+ anxn
n+1 = 0,

that is, V ′a = 0, using the notation of Exercise 6.30. Since V is nonsingular, this im-
plies that a = 0. Hence, the only numbers that solve a0 + a1x + · · · + anxn = 0 are
a0 = a1 = · · · = an = 0, thus establishing the linear independence.
(b) There is no finite n for which the Vandermonde determinant is zero. Hence, the space
is infinite dimensional.

6.4 Homogeneous equations

Exercise 6.32 (One or infinitely many solutions) Consider the homogeneous equation
Ax = 0.
(a) Show that there always exists a solution for x.
(b) If there exist two solutions, then show there are infinitely many.

Solution
(a) Clearly x = 0 is always a solution, called the trivial solution.
(b) Suppose x1 and x2 are two solutions. Then Ax1 = Ax2 = 0, and, for any λ and µ,
the vector x := λx1 + µx2 is also a solution.

Exercise 6.33 (Existence of nontrivial solutions) Naturally the question arises un-
der what conditions the homogeneous equation Ax = 0 possesses nontrivial solutions.
(a) Show that nontrivial solutions exist if and only if rk(A) < n, where n denotes the
number of columns of A.
(b) Hence, show that, if rk(A) < n, infinitely many solutions exist.

Solution
(a) If rk(A) = n, then Ax = 0 implies that A′Ax = 0, and hence that x = 0, since
A′A is nonsingular. Thus, if a nontrivial solution exists, then rk(A) < n. Conversely,
if rk(A) < n, then the n columns a1, a2, . . . ,an of A are linearly dependent, and hence
there exist numbers x1, x2, . . . , xn (not all zero) such that x1a1 +x2a2 + · · ·+xnan = 0,
that is, such that Ax = 0. Hence, a nontrivial solution exists.
(b) If x �= 0 is a solution, then λx is also a solution for any scalar λ.
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Exercise 6.34 (As many equations as unknowns) In the homogeneous equation Ax =
0, suppose A is a square matrix. Show that nontrivial solutions exist if and only if A is
singular.

Solution
This follows directly from Exercise 6.33.

Exercise 6.35 (Few equations, many unknowns) If there are fewer equations than
unknowns in a homogeneous equation, show that a nontrivial solution always exists.

Solution
Let Ax = 0, where A is an m × n matrix. If m < n, then rk(A) ≤ m < n. Hence, by
Exercise 6.33, nontrivial solutions exist.

Exercise 6.36 (Kernel dimension) Let A be an m× n matrix.
(a) Show that there exists n − rk(A) linearly independent vectors y satisfying Ay = 0.
[Hint: Use the concepts of column space and kernel.]
(b) In particular, when rk(A) = n, show that the equation Ay = 0 only has the trivial
solution y = 0. (Compare Exercise 6.33.)

Solution
(a) Exercise 4.4 proves that dim(kerA) = n − dim(col A). Since dim(col A) = rk(A),
this means that the dimension of ker(A) is equal to n − rk(A) and hence that there are
n− rk(A) linearly independent vectors y satisfying Ay = 0.
(b) If rk(A) = n then (a) implies that there are no linearly independent vectors y satisfying
Ay = 0. In other words, that y = 0 is the only solution.

Exercise 6.37 (Homogeneous example, 1) Find the solution(s) of the equations

x1 + 3x2 + 2x3 = 0, 2x1 + 7x2 + 3x3 = 0.

Solution
Since there are fewer equations than unknowns, there exists a nontrivial solution. Trans-
forming the matrix A to echelon form, we obtain(

1 3 2
2 7 3

)
�→
(

1 3 2
0 1 −1

)
.

Hence, the general solution is given by (x1, x2, x3) = λ(−5, 1, 1).

Exercise 6.38 (Homogeneous example, 2) Find the solution(s) of the equations

x1 + 3x2 = 0, 2x1 + kx2 = 0.
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Solution
Since m = n, there may only be the trivial solution x = 0 (if |A| �= 0) or there may be
nontrivial solutions (if |A| = 0). Transform A to echelon form:(

1 3
2 k

)
�→
(

1 3
0 k − 6

)
.

If k �= 6, then |A| = k − 6 �= 0, and the only solution is (x1, x2) = (0, 0). If k = 6, then
the solution is given by x1 + 3x2 = 0, that is, (x1, x2) = λ(−3, 1).

Exercise 6.39 (Homogeneous example, 3) Find the solution(s) of the equations

x1 + 2x2 = 0, 3x1 + 6x2 = 0, 2x1 + kx2 = 0.

Solution
Again, we transform A to echelon form:1 2

3 6
2 k

 �→
1 2

0 0
0 k − 4

 .

If k �= 4, then rk(A) = 2, and the only solution is (x1, x2) = (0, 0). If k = 4, then
rk(A) = 1, and the solution is given by x1 + 2x2 = 0, that is, (x1, x2) = λ(−2, 1).

Exercise 6.40 (Homogeneous example, 4) Solve the homogeneous system of linear
equations

x1 − x2 + 5x3 − x4 = 0,

x1 + x2 − 2x3 + 3x4 = 0,

3x1 − x2 + 8x3 + x4 = 0,

x1 + 3x2 − 9x3 + 7x4 = 0.

Solution
We transform the system to echelon form:

1 −1 5 −1
1 1 −2 3
3 −1 8 1
1 3 −9 7

 �→


1 −1 5 −1
0 1 −7/2 2
0 0 0 0
0 0 0 0

 .

Hence, rk(A) = 2. Let x3 := 2λ and x4 := µ. Then,

x2 = 7λ− 2µ, x1 = x2 − 10λ + µ = −3λ− µ.

Hence, we obtain (x1, x2, x3, x4) = λ(−3, 7, 2, 0) + µ(−1,−2, 0, 1).
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6.5 Nonhomogeneous equations

Exercise 6.41 (A simple nonhomogeneous example) Consider the two equations

x1 + x2 = 1, 2x1 + 2x2 = k.

For which values of k does a solution exist? If a solution exists, is it unique? (If the equa-
tion has at least one solution, we say that it is a consistent equation.)

Solution
If k = 2, then every (x1, x2) satisfying x1 + x2 = 1 is a solution, but if k �= 2, then there
is no solution. Hence, a nonhomogeneous equation Ax = b does not necessarily have a
solution. Let us consider the matrix A and the augmented matrix (A : b),

A =
(

1 1
2 2

)
and (A : b) =

(
1 1 1
2 2 k

)
.

We see that rk(A) = 1, and that rk(A : b) equals 1 for k = 2 and equals 2 for k �= 2.
Hence, rk(A : b) = rk(A) if and only if k = 2, that is, if and only if the system is consis-
tent. The next exercise shows that this is a general result.

Exercise 6.42 (Necessary and sufficient condition for consistency) Consider a sys-
tem of equations Ax = b to be solved for x. Show that the system is consistent (has a
solution) if and only if rk(A : b) = rk(A).

Solution
We notice first that the rank of (A : b) is either equal to the rank of A or exceeds it by one.
Let a1, . . . ,an be the columns of A. We write the system as

x1a1 + x2a2 + · · ·+ xnan = b.

The system thus has a solution if and only if we can write b as a linear combination of the
columns of A. This is possible if and only if b lies in col(A). This, in turn, happens if and
only if rk(A : b) = rk(A). (Notice that rk(A : 0) = rk(A), so that Ax = 0 is always
consistent; see Exercise 6.32.)

Exercise 6.43 (Solution with full row rank)
(a) Is it possible to construct a matrix A such that Ax = b is inconsistent for every b?
(b) Is it possible to construct a matrix A such that Ax = b is consistent for every b?

Solution
(a) No, this is not possible. Whatever the rank of A, we can always find a b, such that
rk(A : b) = rk(A), for example the first column of A.
(b) Yes, if A has full row rank. Suppose A is an m× n matrix with rk(A) = m. Then the
augmented matrix (A : b) has m rows and n + 1 columns. Hence, rk(A : b) ≤ m. But
also, for any matrix A and vector b, rk(A : b) ≥ rk(A). It follows that rk(A : b) = m

and hence that rk(A : b) = rk(A).
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Exercise 6.44 (Solution with full column rank)
(a) Is Ax = b always consistent if A has full column rank?
(b) Assume that Ax = b is consistent. Show that the solution is unique if and only if A

has full column rank.
(c) In that case, what is the unique solution?

Solution
(a) The equation can be consistent (when A is square), but in general it is not. For example,
for m = 2 and n = 1, let A := (1, 0)′ and b := (0, 1)′. Then no vector (in this case, scalar)
x exists such that Ax = b.
(b) We prove the “if” part by contradiction and the “only if” part by contrapositive. Let A

be a matrix of order m×n. Suppose rk(A) = n and let x1 and x2 be two distinct solutions.
Then Ax1 = b and Ax2 = b, and hence A(x1 − x2) = 0. We know from Exercise 6.33
that the homogeneous equation Ax = 0 has a unique solution (namely x = 0) if (and only
if) rk(A) = n. This implies that x1 − x2 = 0, a contradiction.

Now suppose that rk(A) < n. Then the equation Ax = 0 has infinitely many solutions
(Exercise 6.33). Let x1 and x2 be two solutions. If x0 is a solution of Ax = b, then both
x0 − x1 and x0 − x2 are also solutions, so that the solution is not unique.
(c) Premultiply both sides of Ax = b by A′. This gives A′Ax = A′b. Since rk(A) = n,
the matrix A′A is nonsingular. Hence, x = (A′A)−1A′b is the unique solution.

Exercise 6.45 (Complete characterization of solution) Give a complete characteri-
zation of the existence and uniqueness of solutions of a system Ax = b.

Solution
This is the characterization, assuming that A is an m× n matrix:

rk(A : b) = rk(A) = n =⇒ unique solution;

rk(A : b) = rk(A) < n =⇒ multiple solution;

rk(A : b) = rk(A) + 1 =⇒ no solution.

Exercise 6.42 shows that the system is consistent if and only if rk(A : b) = rk(A). Now
assume that the system is consistent, so that there exists an x̃ such that Ax̃ = b. Then
Ax = b has a unique solution if and only if A(x − x̃) = 0 has a unique (namely the
trivial) solution. By Exercise 6.33 this is the case if and only if rk(A) = n.

Exercise 6.46 (Is this consistent?) Is there a solution to

2x1 + 3x2 + x3 = 7,

x1 + 2x2 − 2x3 = 8,

3x1 + 4x2 + 4x3 = 20?
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Solution
We have

(A : b) =

2 3 1 7
1 2 −2 8
3 4 4 20

 .

After reduction to echelon form, this becomes1 1.5 0.5 3.5
0 1 −5 9
0 0 0 14


from which we see that rk(A : b) = 3 and rk(A) = 2. Hence, the system is inconsistent.

Exercise 6.47 (A more difficult nonhomogeneous example) Consider the three-equation
system

αx1 + βx2 + 2x3 = 1,

αx1 + (2β − 1)x2 + 3x3 = 1,

αx1 + βx2 + (β + 3)x3 = 2β − 1.

When is there a solution? When is the solution unique?

Solution
The augmented matrix is

(A : b) =

α β 2 1
α 2β − 1 3 1
α β β + 3 2β − 1

 .

In echelon form:

Ã =

α 1 1 1
0 β − 1 1 0
0 0 β + 1 2(β − 1)

 .

Let Ã(j) denote the 3 × 3 submatrix of Ã obtained by deleting column j. Then, |Ã(1)| =
−(β−1)(β−5), |Ã(2)| = 2α(β−1), |Ã(3)| = 2α(β−1)2, and |Ã(4)| = |A| = α(β2−1).
Hence, we need to distinguish six cases:

β /∈ {−1, 1, 5}, α �= 0 : rk(A) = 3, rk(A : b) = 3 =⇒ unique solution

β /∈ {−1, 1, 5}, α = 0 : rk(A) = 2, rk(A : b) = 3 =⇒ no solution

β = 5, α �= 0 : rk(A) = 3, rk(A : b) = 3 =⇒ unique solution

β = 5, α = 0 : rk(A) = 2, rk(A : b) = 2 =⇒ multiple solutions

β = 1 : rk(A) = 2, rk(A : b) = 2 =⇒ multiple solutions

β = −1 : rk(A) = 2, rk(A : b) = 3 =⇒ no solution.
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Notes

The problem in Exercise 6.24 was posed by Euler in 1770; see Bretscher (1997). The al-
gorithm in Exercise 6.26 is the so-called Gaussian elimination method, published by Gauss
in 1809, but already used by him in 1801 in order to solve 17 linear equations. Cramer’s
rule in Exercise 6.28 was obtained by Cramer in 1750, although Leibniz knew essentially
the same result around 1700.
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Eigenvalues, eigenvectors, and factorizations

Although we considered complex numbers and complex matrices in the previous chapters,
it is only in this chapter that we really start to need them. This is because eigenvalues (to
be defined shortly) are, in general, complex numbers.

We recall briefly that if A and B are real matrices of the same order, a complex matrix
U can be written as U := A + iB, where i denotes the imaginary unit with the property
i2 = −1. The conjugate transpose of U , denoted by U∗, is defined as U∗ := A′ − iB′.
If U is real, then U∗ = U ′. If U is a scalar, say u, then the conjugate transpose u∗ is
also a scalar, called the complex conjugate. A square matrix U is said to be Hermitian if
U∗ = U (the complex equivalent to a symmetric matrix) and unitary if U∗U = I (the
complex equivalent to an orthogonal matrix).

Let A be a square matrix, real or complex, say of order n. The eigenvalues (or charac-
teristic roots) of A are defined as the roots of the characteristic equation

pA(λ) := |λIn −A| = 0.

The function pA(λ) is called the characteristic polynomial of A. From the “fundamental
theorem of algebra” we know that the n-th degree equation pA(λ) = 0 has n roots. Not
all these roots need to be different, but if a root is counted a number of times equal to its
multiplicity, there are n roots, which may be either real or complex.

The characteristic polynomial can be represented as

pA(λ) = p0 + p1λ + · · ·+ pn−1λ
n−1 + λn = (λ− λ1)(λ− λ2) . . . (λ− λn).

If A is a real matrix, then p0, . . . , pn−1 are also real, and therefore complex eigenvalues of
a real matrix can only occur in conjugate pairs (Exercise 7.17).

The numbers λ1, . . . , λn thus denote the eigenvalues of the matrix A. We sometimes
write λi(A) to emphasize this. If λi appears ni > 1 times then it is called a multiple
eigenvalue and the number ni is the multiplicity of λi; if λi appears only once it is called a
simple eigenvalue.

155
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Given a set of numbers λ1, . . . , λn, we now define the elementary symmetric functions
of {λ1, . . . , λn} as

s1 :=
n∑

i=1

λi = λ1 + λ2 + · · ·+ λn,

s2 :=
∑
i<j

λiλj = λ1λ2 + · · ·+ λ1λn + λ2λ3 + · · ·+ λ2λn + · · ·+ λn−1λn,

...

sr :=
∑

i1<i2<···<ir

λi1λi2 . . . λir ,

...

sn := λ1λ2 . . . λn.

One can show that the coefficients in the characteristic polynomial are related to the ele-
mentary symmetric functions by

pn−1 = −s1, pn−2 = (−1)2s2, . . . , p1 = (−1)n−1sn−1, p0 = (−1)nsn.

Moreover, if we define the power sums,

σk :=
n∑

i=1

λk
i (k = 1, 2, . . . , n),

then there is a one-to-one relationship between the two sets {si} and {σi}.
Recall that a k × k submatrix of an n× n matrix A is obtained by deleting n− k rows

and n− k columns of A. If the deleted row indices and the deleted column indices are the
same we obtain a principal submatrix of A. For example, the 3 × 3 matrix consisting of
the first, third, and seventh row, and the first, third, and seventh column of A is a principal
submatrix. If the selected principal submatrix is in fact a north-west corner of the matrix
A, then it is a leading principal submatrix. So, the above 3 × 3 principal submatrix is not
leading; the leading principal 3×3 submatrix consists of the first, second, and third row, and
the first, second, and third column of A. The determinant of a (leading) principal submatrix
is called a (leading) principal minor. There are

(
n
k

)
different k × k principal minors of A,

and we denote the sum of these by Ek or by Ek(A). In particular, E1(A) = tr(A) and
En(A) = |A|. One can show that the coefficients in the characteristic polynomial are
related to the functions Ek by

pn−1 = −E1, pn−2 = (−1)2E2, . . . , p1 = (−1)n−1En−1, p0 = (−1)nEn.

Hence, if λ1, . . . , λn are the eigenvalues of A, then

sk(λ1, . . . , λn) = Ek(A) (k = 1, . . . , n).
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If λ is an eigenvalue of A, then there is at least one x �= 0 that satisfies Ax = λx. Any
such x is called a (right) eigenvector of A associated with the eigenvalue λ. Eigenvectors
are usually normalized in some way to make them unique (apart from sign), typically by
x∗x = 1 (x′x = 1 when x is real). It is remarkable that we can find a vector x such
that Ax becomes just a multiple of x (see Figure 1.1). We know from Chapter 6 that, if
(λIn −A)x = 0 for some x �= 0, then λIn −A is singular. This corresponds with the
characteristic equation |λIn −A| = 0 defining the eigenvalues above.

Let i be some positive integer. If a vector xi satisfies

(A− λIn)i xi = 0 but (A− λIn)i−1 xi �= 0,

then it is called a generalized eigenvector of degree i associated with λ. When i = 1, using
the convention C0 = I for any square matrix C, the definition of x1 boils down to that
of the usual eigenvector; hence the term generalized. Suppose that there exists a vector xp

satisfying this definition, but no xp+1. The sequence {xp, xp−1, . . . ,x1} generated by xp

through

xp−i = (A− λIn)i xp (i = 1, . . . , p− 1) ,

or recursively by

xi = (A− λIn) xi+1 (i = p− 1, . . . , 1) ,

is called a Jordan chain of length p associated with λ. Clearly, x1 = (A− λIn)p−1 xp.
When two matrices A and B, of the same order, also have the same rank, they are said

to be equivalent, a concept first encountered in Exercise 6.19. When, in addition, A and B

are square and there exists a nonsingular matrix T such that T−1AT = B, then they are
said to be similar. Similar matrices will play an important role in this chapter.

The chapter is divided into six sections. The first section gives some general results on
eigenvalues and eigenvectors and presents the diagonalization theorem when the eigenval-
ues are all distinct (Exercise 7.32). The QR decomposition is also presented. In Section 7.2
we consider the special case of symmetric matrices. These matrices have five important
properties that are not shared, in general, by other matrices, real or complex:

(i) the eigenvalues are all real;
(ii) eigenvectors associated with distinct eigenvalues are orthogonal;

(iii) the eigenvectors span Rn;
(iv) the rank is equal to the number of nonzero eigenvalues;
(v) the matrix can be diagonalized (by means of an orthogonal transformation).

Each of these properties is proved and examples are provided. Section 7.3 is an interlude
on triangular matrices and presents some results that are used later. Section 7.4 presents
Schur’s triangularization theorem (Exercise 7.62) and some of its consequences. Sec-
tions 7.5 and 7.6 are devoted to the Jordan decomposition. The Jordan theorem states
that, for any square matrix A, there exists a nonsingular T and a “Jordan matrix” J such
that T−1AT = J . The theorem itself is presented in Exercise 7.79. The question on how
to construct the matrix T is discussed in Section 7.6.
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A major question in this chapter is when a matrix can be diagonalized (is similar to a di-
agonal matrix). A full characterization of such matrices is provided. When a matrix cannot
be diagonalized, we ask how close to a diagonal representation we can get. The answer is
given by Jordan’s theorem, a full proof of which is provided.

Because of the central role of factorization theorems, let us list the ones we prove in this
chapter, together with two results obtained before.

If A is an m× n matrix of rank r, then:

• A = BC ′ with B (m× r) and C (n× r) both of rank r (Exercise 4.11).
• EAF = diag(Ir,O) with E and F nonsingular (Exercise 6.17).
• A = QR (when r = n) with Q∗Q = In and R upper triangular matrix with positive

diagonal elements; if A is real, then Q and R are real as well (Exercises 7.34 and
7.35).

If A is a square matrix of order n, then:

• S∗AS = M with S unitary and M upper triangular (Schur, Exercise 7.62).
• S∗AS = Λ (diagonal) with S unitary, if and only if A is normal (Exercise 7.71).
• S′AS = Λ (diagonal) with S orthogonal, if A is symmetric (Exercise 7.46).
• S′AS = Λ (diagonal) and S′BS = M (diagonal) with A and B symmetric and S

orthogonal, if and only if A and B commute (Exercise 7.51).

If A is a square matrix of order n, then also:

• T−1AT = J (Jordan matrix) with T nonsingular (Jordan, Exercise 7.79).
• T−1AT = Λ (diagonal) with T nonsingular, if A has distinct eigenvalues (Exer-

cise 7.32).
• T−1AT = dg(A) with T unit upper triangular, if A upper triangular with distinct

diagonal elements (Exercise 7.59).
• T−1AT = Λ (diagonal) and T−1BT = M (diagonal) with T nonsingular, if A has

only simple eigenvalues and commutes with B (Exercise 7.39).

7.1 Eigenvalues and eigenvectors

Exercise 7.1 (Find two eigenvalues) Find the eigenvalues of the 2× 2 matrices

A =
(

3 5
−2 −4

)
, B =

(
3 4
−5 −5

)
, C =

(
3 5
5 7

)
.

Solution
We have

|λI2 −A| =
∣∣∣∣λ− 3 −5

2 λ + 4

∣∣∣∣ = (λ− 3)(λ + 4) + 10 = (λ− 1)(λ + 2)
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and hence the eigenvalues are 1 and −2. Similarly,

|λI2 −B| =
∣∣∣∣λ− 3 −4

5 λ + 5

∣∣∣∣ = (λ− 3)(λ + 5) + 20 = (λ + 1)2 + 4.

Hence, the (complex) eigenvalues of B are given by the equation (λ + 1)2 = −4, so that
λ1,2 = −1± 2i. Finally,

|λI2 −C| =
∣∣∣∣λ− 3 −5
−5 λ− 7

∣∣∣∣ = (λ− 3)(λ− 7)− 25 = (λ− 5)2 − 29.

The eigenvalues of C are therefore λ1,2 = 5 ±
√

29. We see from this exercise that a
nonsymmetric matrix (like A and B) may or may not have real eigenvalues. We shall see
later (Exercise 7.40) that a symmetric matrix (like C) always has real eigenvalues.

Exercise 7.2 (Find three eigenvalues) Find the eigenvalues of the 3× 3 matrices

A =

7 0 0
0 3 0
0 0 3

 , B =

7 0 0
0 3 5
0 5 4

 , C =

7 0 0
0 3 1
0 0 3

 .

Solution
Since

|λI3 −A| =

∣∣∣∣∣∣
λ− 7 0 0

0 λ− 3 0
0 0 λ− 3

∣∣∣∣∣∣ = (λ− 7)(λ− 3)2,

the eigenvalues of A are 7 and 3 (twice). To find the eigenvalues of B we write

|λI3 −B| = (λ− 7)
∣∣∣∣λ− 3 −5
−5 λ− 4

∣∣∣∣ = (λ− 7)
(
(λ− 7/2)2 − 101/4

)
,

and the eigenvalues are 7 and 1
2(7±

√
101). To find the eigenvalues of C we write

|λI3 −C| =

∣∣∣∣∣∣
λ− 7 0 0

0 λ− 3 −1
0 0 λ− 3

∣∣∣∣∣∣ = (λ− 7)(λ− 3)2,

and the eigenvalues are therefore 7 and 3 (twice).

Exercise 7.3 (Characteristic equation)
(a) Find the characteristic equation and the eigenvalues of

A =

1 3 0
0 1 0
2 1 5

 .

(b) What is the rank of A?
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Solution
(a) The characteristic polynomial is

pA(λ) = |λI3 −A| =

∣∣∣∣∣∣
λ− 1 −3 0

0 λ− 1 0
−2 −1 λ− 5

∣∣∣∣∣∣ = (λ− 1)2(λ− 5).

Hence, the characteristic equation is (λ− 1)2(λ− 5) = 0, and the eigenvalues are 5 and 1
(twice).
(b) Setting λ = 0 in pA(λ) we find

pA(0) = | −A| = (−1)3|A| = (−1)2(−5) = −5,

so that |A| = 5. Hence, A is nonsingular and rk(A) = 3.

Exercise 7.4 (Characteristic polynomial)
(a) Find the characteristic polynomial and the eigenvalues λ1 and λ2 of the 2× 2 matrix

A :=
(

a b

c d

)
.

(b) Show that

λ1λ2 = |A| and λ1 + λ2 = trA.

Solution
(a) The characteristic polynomial is given by

pA(λ) =
∣∣∣∣λ− a −b

−c λ− d

∣∣∣∣ = (λ− a)(λ− d)− bc = λ2 − (a + d)λ + (ad− bc).

The eigenvalues follow from the equation pA(λ) = 0. We find

λ1,2 =
a + d

2
± 1

2

√
(a− d)2 + 4bc.

(b) Since tr A = a + d and |A| = ad− bc, we find

(λ− λ1)(λ− λ2) = λ2 − (tr A)λ + |A|,
and the result follows.

Exercise 7.5 (Complex eigenvalues of a real matrix, 1) Consider the same 2 × 2
matrix A of Exercise 7.4, now assuming that A is real.
(a) Show that, if one eigenvalue is complex, both are.
(b) If the eigenvalues are complex, show that one is the complex conjugate of the other.
(c) If A = A′ (that is, if b = c), show that the eigenvalues must be real.

Solution
(a) Let µ := (a − d)2 + 4bc. If µ ≥ 0, then both eigenvalues are real, but if µ < 0, then
both are complex.
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(b) If µ < 0, the eigenvalues are

λ1,2 =
a + d

2
± 1

2
i
√
|µ|.

(c) If b = c, then µ = (a− d)2 + 4b2 ≥ 0.

Exercise 7.6 (A �= B may have the same eigenvalues) Suppose that two matrices
A and B (of the same order) have the same characteristic polynomial. Is it necessarily true
that A = B?

Solution
No. Take

A =
(

1 α

0 2

)
.

Then pA(λ) = (λ − 1)(λ − 2) for every α. So, although the eigenvalues are an excellent
way to characterize a matrix, they do not characterize a matrix completely.

Exercise 7.7 (The eigenvector) If λ is an eigenvalue of A, show that Ax = λx for
some x �= 0.

Solution
Let A be a matrix of order n× n. If λ is an eigenvalue of A, then |λIn −A| = 0. The n

columns of λIn−A must therefore be linearly dependent, and hence (λIn−A)x = 0 for
some x �= 0. This gives Ax = λx.

Exercise 7.8 (Eigenvectors are not unique)
(a) Show that an eigenvector cannot be associated with two distinct eigenvalues.
(b) But can two distinct vectors be associated with the same eigenvalue?

Solution
(a) Suppose λ1 �= λ2 are eigenvalues of a matrix A and that x �= 0 satisfies Ax = λ1x

and Ax = λ2x. Then λ1x = λ2x, and, since λ1 �= λ2, x = 0. But x = 0 is not permitted
as an eigenvector, so we arrive at a contradiction.
(b) Yes. The identity matrix In, for example, possesses only eigenvalues one and every
n× 1 vector x �= 0 is an eigenvector.

Exercise 7.9 (Linear combination of eigenvectors with same eigenvalue) If x1, . . . ,xm

are all eigenvectors of A associated with the same λ, show that
∑m

i=1 µixi is also an eigen-
vector of A.

Solution
If Axi = λxi (i = 1, . . . , m), then

A
m∑

i=1

µixi =
m∑

i=1

µi(Axi) =
m∑

i=1

µi(λxi) = λ
m∑

i=1

µixi.
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Exercise 7.10 (Find the eigenvectors, 1) Consider the matrices

A =
(

1 1
0 1

)
and B =

(
2 0
0 2

)
.

(a) What are the eigenvalues and eigenvectors of A?
(b) What are the eigenvalues and eigenvectors of B?

Solution
(a) The eigenvalues of A are 1 (twice). The eigenvectors are found from the equation(

1 1
0 1

)(
x1

x2

)
=
(

x1

x2

)
which gives

x1 + x2 = x1, x2 = x2,

and hence x2 = 0. The normalized eigenvector is thus (x1, x2) := (1, 0). Notice that
there is only one eigenvector. Hence, the number of linearly independent eigenvectors
associated with a multiple eigenvalue is not necessarily equal to the multiplicity. See also
the next exercise.
(b) The eigenvalues of B are 2 (twice). Every vector x �= 0 satisfies(

2 0
0 2

)(
x1

x2

)
=
(

2x1

2x2

)
,

and the complete set of eigenvectors can be written as

x := µ1

(
1
0

)
+ µ2

(
0
1

)
with (µ1, µ2) �= (0, 0). In contrast to (a), here there are two eigenvectors associated with
the multiple eigenvalue.

Exercise 7.11 (Geometric multiplicity, 1) What are the eigenvectors of the matrix
A in Exercise 7.3? Are they linearly independent? Are they orthogonal?

Solution
The eigenvalues are 1 (twice) and 5. The eigenvectors associated with λ = 1 are determined
by Ax = λx, that is, 1 3 0

0 1 0
2 1 5

x1

x2

x3

 =

x1

x2

x3

 .

This gives

x1 + 3x2 = x1, x2 = x2, 2x1 + x2 + 5x3 = x3,
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and hence x2 = 0 and x1 +2x3 = 0, so that (x1, x2, x3) = (2, 0,−1) or a multiple thereof.
Notice that in this example (and also the previous exercise) there is only one eigenvector
(rather than two) associated with the multiple eigenvalue 1. We say that the (algebraic)
multiplicity of this eigenvalue is 2, and that its geometric multiplicity is 1. The geometric
multiplicity of an eigenvalue is thus the dimension of the space spanned by the associated
eigenvectors. This dimension cannot exceed the (algebraic) multiplicity. Hence,

geometric multiplicity ≤ (algebraic) multiplicity.

The eigenvector associated with λ = 5 is found analogously; it is (x1, x2, x3) = (0, 0, 1)
or a multiple thereof. The two eigenvectors are linearly independent, but they are not or-
thogonal.

Exercise 7.12 (Multiples of eigenvalues and eigenvectors)
(a) If λ is an eigenvalue of A, show that tλ is an eigenvalue of tA, with the same eigen-
vector(s).
(b) If x is an eigenvector of A, show that tx (t �= 0) is also an eigenvector of A, associated
with the same eigenvalue.

Solution
(a) If Ax = λx, then (tA)x = t(Ax) = t(λx) = (tλ)x.
(b) If Ax = λx, then A(tx) = t(Ax) = t(λx) = λ(tx).

Exercise 7.13 (Do A and A′ have the same eigenvalues?)
(a) Show that A and A′ have the same eigenvalues.
(b) Do they also have the same eigenvectors?
(c) Do A and A∗ have the same eigenvalues?

Solution
(a) Since |B′| = |B| for every square matrix B, we have |λI − A′| = |(λI − A)′| =
|λI −A|. The characteristic polynomials of A and A′ are therefore the same and hence
their eigenvalues too.
(b) No, they do not, in general. If

A :=
(

2 1
0 1

)
,

then the eigenvalues of A (and A′) are 2 and 1. The eigenvectors of A are (1, 0)′ and
(1,−1)′, but the eigenvectors of A′ are (1, 1)′ and (0, 1)′.
(c) No, unless all eigenvalues of A are real. The eigenvalues of A∗ are λ∗, because

|λ∗I −A∗| = |(λI −A)∗| = |λI −A|∗ = 0.

Exercise 7.14 (Eigenvalues of a power) Let λ be an eigenvalue of A associated with an
eigenvector x. Show that:
(a) x is an eigenvector of sI − tA, for any scalars s and t, associated with the eigenvalue
s− tλ;
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(b) x is an eigenvector of Ak (k = 2, 3, . . . ), associated with the eigenvalue λk;
(c) x is an eigenvector of A−1 (if A is nonsingular), associated with the eigenvalue λ−1.

Solution
(a) This follows from

(sI − tA)x = sx− tλx = (s− tλ)x.

(b) And this follows from

Akx = Ak−1(Ax) = λAk−1x = · · · = λkx.

(c) If Ax = λx, then A−1Ax = λA−1x and hence, λA−1x = x. If λ = 0, then this
implies x = 0, a contradiction. Hence, λ �= 0 and A−1x = λ−1x.

Exercise 7.15 (Eigenvalues of a triangular matrix)
(a) What are the eigenvalues of a diagonal matrix?
(b) What are the eigenvalues of a triangular matrix?

Solution
(a) The eigenvalues are the diagonal elements. This follows directly from the fact that the
determinant of a diagonal matrix is equal to the product of the diagonal elements.
(b) Here too, the eigenvalues are the diagonal elements, because the determinant of a trian-
gular matrix is equal to the product of its diagonal elements.

Exercise 7.16 (Singularity and zero eigenvalue) Show that A is nonsingular if and
only if all its eigenvalues are nonzero. (Equivalently, show that a matrix is singular if and
only if at least one of its eigenvalues is zero.)

Solution
If λ = 0 is an eigenvalue of the n×n matrix A, then |λIn−A| = |−A| = (−1)n|A| = 0
and hence, |A| = 0. Conversely, if |A| = 0 then |λIn −A| = 0 for λ = 0.

Exercise 7.17 (Complex eigenvalues of a real matrix, 2)
(a) Show that complex eigenvalues of a real matrix can only occur in conjugate pairs.
(b) Hence, show that a real matrix of odd order has at least one real eigenvalue.

Solution
(a) If Ax = λx, then x∗A∗ = (Ax)∗ = (λx)∗ = λ∗x∗. If A is real, then (A∗)′ = A and
hence, for y := (x∗)′, we obtain Ay = λ∗y.
(b) This is a consequence of (a).

*Exercise 7.18 (Eigenvalues of a skew-symmetric matrix)
(a) Let A be a skew-symmetric matrix, so that A is real and A′ = −A. Show that the
eigenvalues are either zero or pure imaginary.
(b) What if n is odd?
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Solution
(a) Since Ax = λx, we have A2x = λAx = λ2x. Now,

(Ax)∗Ax = x∗A∗Ax = x∗A′Ax = −x∗A2x = −λ2x∗x,

and hence λ2 ≤ 0.
(b) Since A is real, its complex roots (if any) occur in conjugate pairs (Exercise 7.17).
Since n is odd, there exists at least one real eigenvalue, and this eigenvalue is zero by (a).
Hence, by Exercise 7.16, the matrix A is singular.

Exercise 7.19 (Rank and number of nonzero eigenvalues, 1) Find the eigenvalues
and the rank of the matrix

J =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 .

Solution
If J (J for “Jordan”) is an n×n matrix, then all its n eigenvalues are zero, but it possesses
n− 1 linearly independent columns, so that rk(J) = n− 1.

Exercise 7.20 (Nonsingularity of A − µI) If µ is not an eigenvalue of A, show that
A− µI is nonsingular.

Solution
Let λ1, . . . , λn be the eigenvalues of A. Then the eigenvalues of B := A− µI are λi − µ

(i = 1, . . . , n). Since λi �= µ, all eigenvalues of B are nonzero. Hence, by Exercise 7.16,
B is nonsingular.

Exercise 7.21 (A continuity argument) If A is singular, show that we can always
find a scalar ε �= 0 such that A + εI is nonsingular.

Solution
Let λ1, . . . , λn be the eigenvalues of A. Then the eigenvalues of A + εI are λi + ε

(i = 1, . . . , n). Hence, any ε �= −λi will make A + εI nonsingular. In particular, if
we let δ := mini{|λi|, λi �= 0}, then A + εI is nonsingular for any ε in the interval (0, δ).

*Exercise 7.22 (Eigenvalues of an orthogonal or a unitary matrix)
(a) Show, through a 2×2 example, that an orthogonal matrix will, in general, have complex
eigenvalues.



166 7 Eigenvalues, eigenvectors, and factorizations

(b) Show that the complex eigenvalues, if any, of an orthogonal matrix occur in conjugate
pairs.
(c) Show that all eigenvalues of a unitary (and hence, in particular, of an orthogonal) matrix
have unit modulus.

Solution
(a) Consider the example of Exercise 2.28:

A :=
(

cos θ − sin θ

sin θ cos θ

)
.

The eigenvalues of A are found by solving 0 = |A− λI2| = (cos θ − λ)2 + (sin θ)2 = 0,
giving eigenvalues λ = cos θ + i sin θ = eiθ and λ∗ = cos θ − i sin θ = e−iθ. Notice that
the modulus of λ (and of λ∗) is one.
(b) Since an orthogonal matrix is real (by definition), its complex roots (if any) occur in
conjugate pairs (Exercise 7.17).
(c) If A is unitary, then A∗A = I . Thus, if Ax = λx, then x∗A∗ = λ∗x∗. Hence

x∗x = x∗A∗Ax = λ∗λx∗x.

Since x∗x �= 0, we obtain λ∗λ = 1 and hence |λ| = 1.

Exercise 7.23 (Eigenvalues of a complex-orthogonal matrix) Let us reconsider the
matrix introduced in Exercise 4.26(b). In particular, let

B1 =
(√

2 i
−i

√
2

)
and B2 =

(
0 i
−i 0

)
.

(a) Show that |B1| = 1 and |B2| = −1.
(b) Find the eigenvalues of B1 and B2.

Solution
The matrix B1 satisfies B′

1B1 = I2, but it is a complex matrix. Hence, B1 is not orthog-
onal; we call it complex-orthogonal. The matrix B2 satisfies B∗

2B2 = I2 and is therefore
unitary. Both matrices are Hermitian.
(a) We have |B1| = (

√
2)2 + i2 = 2− 1 = 1 and |B2| = i2 = −1. This suggests (and this

is indeed the case) that the determinant of a complex-orthogonal matrix equals ±1.
(b) The eigenvalues of B1 are

√
2± 1, and the eigenvalues of B2 (in agreement with Exer-

cise 7.22) are±1. Hence, the eigenvalues of a complex-orthogonal matrix do not in general
have modulus one. This is one important reason for restricting the word “orthogonal” to
real matrices.

Exercise 7.24 (Similarity) If there exists a nonsingular matrix T such that B = T−1AT ,
the square matrices A and B are said to be similar.
(a) Show that similar matrices have the same set of eigenvalues (with the same multiplici-
ties).
(b) Do they have the same set of eigenvectors as well?
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Solution
(a) From

λIn − T−1AT = T−1(λIn −A)T ,

we obtain

|λIn − T−1AT | = |T−1||λIn −A||T | = |λIn −A|.
(b) No. If Ax = λx, then B(T−1x) = λ(T−1x).

Exercise 7.25 (Eigenvalues of AB and BA compared) Let A be an m × n ma-
trix and B an n×m matrix.
(a) Show that |Im −AB| = |In −BA|.
(b) Hence, show that the nonzero eigenvalues of BA and AB are identical.
(c) If n > m, show that the n × n matrix BA contains at least n −m zero eigenvalues.
Why at least?

Solution
(a) Taking determinants on both sides of the equality(

Im −AB A

O In

)(
Im O
B In

)
=
(

Im O
B In

)(
Im A

O In −BA

)
,

we obtain |Im −AB| = |In −BA|.
(b) Let λ �= 0. Then,

|λIn −BA| = λn|In −B(λ−1A)|

= λn|Im − (λ−1A)B| = λn−m|λIm −AB|.
Hence, the nonzero eigenvalues of BA are the same as the nonzero eigenvalues of AB.
(c) By the proof of (b), |λIn −BA| = 0 if and only if λn−m|λIm −AB| = 0. The latter
equation has (at least) n−m zero roots. If the equation |λIm−AB| = 0 has no zero roots,
then there are precisely n−m zero eigenvalues; if the equation does have one or more zero
roots, then there are more than n−m zero eigenvalues.

Exercise 7.26 (Determinant and eigenvalues) Show that the determinant of a square
matrix equals the product of its eigenvalues, |A| =

∏n
i=1 λi.

Solution
If the eigenvalues of A are denoted by λ1, λ2, . . . , λn, then

|λIn −A| = (λ− λ1)(λ− λ2) . . . (λ− λn).

Now, set λ = 0. This gives | −A| = (−1)n
∏

i λi and hence |A| =
∏

i λi.
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Exercise 7.27 (Trace and eigenvalues)
(a) If A is a square matrix of order n, show that

|λIn −A| = λn − (tr A)λn−1 + Pn−2(λ),

where Pn−2(λ) denotes a polynomial in λ of degree n− 2 or less.
(b) If the eigenvalues of A are λ1, . . . , λn, show that

|λIn −A| = λn −
(

n∑
i=1

λi

)
λn−1 + Pn−2(λ).

(c) Conclude that

tr A =
n∑

i=1

λi.

Solution
(a) Let A(k) (k = 1, . . . , n) denote the k × k leading principal submatrix of A, so that
A(1) = a11 and A(n) = A. Denoting irrelevant elements by a ∗, we may write

|λIn −A| =
∣∣∣∣λIn−1 −A(n−1) ∗

∗ λ− ann

∣∣∣∣ = (λ− ann)|λIn−1 −A(n−1)|+ Pn−2(λ),

because in each term of the remainder two of the diagonal elements are missing. Hence,

|λIn −A| = (λ− ann)(λ− an−1,n−1)|λIn−2 −A(n−2)|+ Pn−2(λ)

= (λ− ann)(λ− an−1,n−1) . . . (λ− a11) + Pn−2(λ)

= λn − (ann + an−1,n−1 + · · ·+ a11)λn−1 + Pn−2(λ)

= λn − (tr A)λn−1 + Pn−2(λ).

(b) We also have

|λIn −A| = (λ− λ1)(λ− λ2) . . . (λ− λn)

= λn − (λ1 + λ2 + · · ·+ λn)λn−1 + Pn−2(λ).

(c) Equating the coefficients of λn−1 in the two expressions gives tr A =
∑

i λi.

Exercise 7.28 (Trace, powers, and eigenvalues, 1) For any n × n matrix A with
eigenvalues λ1, . . . , λn, show that

tr Ak =
n∑

i=1

λk
i (k = 1, 2, . . . ).

Solution
This is an immediate consequence of Exercise 7.27(c) because the eigenvalues of Ak are
λk

1, λ
k
2, . . . , λ

k
n by Exercise 7.14(b).
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Exercise 7.29 (Elementary symmetric functions) Consider the polynomial

p(λ) := (λ− λ1)(λ− λ2)(λ− λ3) = p0 + p1λ + p2λ
2 + λ3.

Define the elementary symmetric functions

s1 := λ1 + λ2 + λ3, s2 := λ1λ2 + λ1λ3 + λ2λ3, s3 := λ1λ2λ3,

and the power sums

σ1 := λ1 + λ2 + λ3, σ2 := λ2
1 + λ2

2 + λ2
3, σ3 := λ3

1 + λ3
2 + λ3

3.

(a) Show that

p0 = −s3, p1 = s2, p2 = −s1.

(b) Show that between the sets {s1, s2, s3} and {σ1, σ2, σ3} there exists a one-to-one rela-
tionship. (This result generalizes to polynomials of arbitrary degree.)

Solution
(a) We have

p(λ) = (λ− λ1)(λ− λ2)(λ− λ3)

= (λ− λ1)(λ2 − (λ2 + λ3)λ + λ2λ3)

= λ3 − (λ1 + λ2 + λ3)λ2 + (λ1λ2 + λ1λ3 + λ2λ3)λ− λ1λ2λ3

= −s3 + s2λ− s1λ
2 + λ3.

(b) One verifies that

σ1 = s1

σ2 = s2
1 − 2s2

σ3 = s3
1 − 3s1s2 + 3s3

and

s1 = σ1

s2 =
1
2
(σ2

1 − σ2)

s3 =
1
6
(σ3

1 − 3σ1σ2 + 2σ3).

Exercise 7.30 (When do A and B have the same eigenvalues?) Use the one-to-
one correspondence between the sets {si} and {σi} to show that two n×n matrices A and
B have the same set of eigenvalues if and only if tr Ak = trBk (k = 1, 2, . . . , n).
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Solution
If A and B have the same set of eigenvalues, say λ1, . . . , λn, then, by Exercise 7.28,

tr Ak =
n∑

i=1

λk
i = trBk.

To prove the converse, it is sufficient to show that A and B have the same characteristic
polynomial or, equivalently, that the elementary symmetric functions sk(A) and sk(B) of
the eigenvalues of A and B, respectively, are identical for k = 1, 2, . . . , n. Let

σk(A) :=
n∑

i=1

λk
i (A), σk(B) :=

n∑
i=1

λk
i (B) (k = 1, . . . , n).

We need to demonstrate that if σk(A) = σk(B) for k = 1, . . . , n, then also sk(A) =
sk(B) for k = 1, . . . , n. But this follows from the fact that the sets {sk} and {σk} are in
one-to-one correspondence, a fact stated (without proof) in the introduction and proved for
n = 3 in Exercise 7.29.

Exercise 7.31 (Linear independence of eigenvectors)
(a) Show that eigenvectors associated with distinct eigenvalues are linearly independent.
(b) Are these eigenvectors orthogonal to each other?

Solution
(a) Our proof is by contradiction. Consider a set x1, . . . ,xs of eigenvectors of A such
that xj is associated with the eigenvalue λj and no two λj are equal. Suppose this set is
linearly dependent. Rearrange the eigenvectors (if necessary) such that x1, . . . ,xr (r ≤ s)
are linearly independent. Then, for j = r + 1, . . . , s, xj =

∑r
i=1 αijxi. Hence,

λjxj = λj

r∑
i=1

αijxi,

and also

λjxj = Axj =
r∑

i=1

αijAxi =
r∑

i=1

αijλixi.

Thus we obtain
∑r

i=1 αij(λi − λj)xi = 0. Since x1, . . . ,xr are linearly independent, this
implies that αij(λi − λj) = 0 for all i = 1, . . . , r and j = r + 1, . . . , s. But λi �= λj

by assumption. Hence, αij = 0 for all i = 1, . . . , r and j = r + 1, . . . , s, and hence
xr+1 = · · · = xs = 0. This contradicts the fact that xr+1, . . . ,xs are eigenvectors and
therefore nonzero.
(b) If the matrix A is symmetric, then these eigenvectors are indeed orthogonal to each
other (Exercise 7.44), but if A is not symmetric then they may or may not be orthogonal.
For example, let

A =
(

4 1
1 2

)
and B =

(
4 1
2 2

)
.
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The eigenvalues of A are λ1 = 3 +
√

2 and λ2 = 3−
√

2. The associated eigenvectors are

x1 =
(

1
−1 +

√
2

)
and x2 =

(
1

−1−
√

2

)
,

and we see that x′
1x2 = 1−1 = 0. On the other hand, the eigenvalues of B are λ1 = 3+

√
3

and λ2 = 3−
√

3, and the associated eigenvectors are

x1 =
(

1
−1 +

√
3

)
and x2 =

(
1

−1−
√

3

)
,

so that x′
1x2 = −1 �= 0.

In this example, the eigenvectors are orthogonal to each other when the matrix is sym-
metric, but not orthogonal when the matrix is not symmetric. One may wonder whether
symmetry is necessary and sufficient for the eigenvectors to be orthogonal. This is not the
case. Symmetry, though sufficient, is not necessary. Necessity is provided by the class of
normal matrices (Exercise 7.73).

Exercise 7.32 (Diagonalization of matrices with distinct eigenvalues) Let A be an
n× n matrix with distinct eigenvalues. Then there exist a nonsingular n× n matrix T and
a diagonal n × n matrix Λ whose diagonal elements are the eigenvalues of A, such that
T−1AT = Λ.

Solution
Let λ1, . . . , λn be the eigenvalues of A, and let Axi = λixi for i = 1, . . . , n. Let T :=
(x1, x2, . . . ,xn). Then,

AT = (Ax1, . . . ,Axn) = (λ1x1, . . . , λnxn) = TΛ,

where Λ := diag(λ1, . . . , λn). The eigenvectors x1, . . . ,xn are linearly independent, be-
cause the eigenvalues are distinct (Exercise 7.31). Hence, the matrix T is nonsingular, and
we obtain T−1AT = Λ.

Exercise 7.33 (Can all matrices be diagonalized?) Show that the matrix

A =

1 1 0
0 1 1
0 0 1


cannot be diagonalized. That is, no matrix T exists such that T−1AT = Λ, where Λ is a
diagonal matrix containing the eigenvalues of A.

Solution
The eigenvalues of A are 1 (3 times). Consider the equation Ax = x. The only solution
is x = (1, 0, 0)′ (or multiples thereof), and hence there exists no nonsingular T such that
AT = T . The problem lies in the fact that the eigenvectors do not span R3; in fact, they
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only span R. This is sometimes expressed by saying that the (algebraic) multiplicity of the
eigenvalue is three and the geometric multiplicity is one.

Exercise 7.34 (QR factorization) Let A be an m× n matrix of rank n (so that m ≥ n).
Use the Gram-Schmidt process of Exercise 3.49 to show that there exist an m × n matrix
Q satisfying Q∗Q = In and an n × n upper triangular matrix R with positive diagonal
elements, such that A = QR.

Solution
This proceeds in the same way as the Gram-Schmidt process described in Exercise 3.49.
Let a1, a2, . . . ,an be the columns of A, and define

q1 := a1

q2 := a2 − r12q1

...

qn := an − rn−1,nqn−1 − · · · − r1nq1.

The coefficients in the i-th equation are chosen in such a way that qi is orthogonal to each
of q1, . . . , qi−1. Thus, q2 ⊥ q1 yields a∗

2q1 = r12q
∗
1q1 and q3 ⊥ q1, q3 ⊥ q2 yields

a∗
3q1 = r13q

∗
1q1 and a∗

3q2 = r23q
∗
2q2. Continuing in this way we find all the coefficients

from a∗
jqi = rijq

∗
i qi, i = 1, . . . , j − 1. Now let Q1 := (q1, . . . , qn) and

R1 :=


1 r12 . . . r1n

0 1 . . . r2n
...

... . . .
...

0 0 . . . 1

 .

Then A = Q1R1. By construction, the columns of Q1 are orthogonal, but not yet or-
thonormal. Let λi := q∗

i qi and Λ := diag(λ1, . . . , λn). Define Q := Q1Λ
−1/2 and

R := Λ1/2R1. Then Q and R satisfy the required properties.

Exercise 7.35 (QR factorization, real) If A is a real m × n matrix of rank n, then
show that there exist an m × n semi-orthogonal matrix Q (that is, a real matrix satisfying
Q′Q = In) and an n × n real upper triangular matrix R with positive diagonal elements,
such that A = QR.

Solution
If we assume that A is real in the solution to Exercise 7.34, then it follows that q1 is real,
hence that r12 is real, hence that q2 is real, and so on.

Exercise 7.36 (A matrix of rank one) Let x and y be n× 1 vectors.
(a) Prove that xy′ has n− 1 zero eigenvalues and one eigenvalue y′x.
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(b) Show that |In + xy′| = 1 + y′x.
(c) Let µ := 1 + y′x. If µ �= 0, show that (In + xy′)−1 = In − µ−1xy′.

Solution
(a) Since there are n− 1 linearly independent vectors ui satisfying y′ui = 0, each of these
satisfy the equation xy′ui = 0. Hence, the ui form a set of linearly independent eigenvec-
tors associated with the eigenvalue 0, which has multiplicity n − 1. Since tr(xy′) = y′x
equals the sum of the n eigenvalues, the only possibly nonzero eigenvalue is y′x.
(b) The eigenvalues of In + xy′ are 1 (n − 1 times) and 1 + y′x. Since the determinant
is the product of the eigenvalues, we have |In + xy′| = 1 + y′x. (The result also follows
directly from Exercise 7.25.)
(c) We just check that

(In + xy′)(In − µ−1xy′) = In − µ−1xy′ + xy′ − µ−1xy′xy′

= In − µ−1
(
1− µ + y′x

)
xy′ = In,

or we apply the result of Exercise 4.28(c).

Exercise 7.37 (Left eigenvector) A left eigenvector of A associated with the eigen-
value λ is a nonzero vector y such that y∗A = λy∗.
(a) Show that a left eigenvector y associated with an eigenvalue λ of A is a right eigenvec-
tor of A∗ associated with λ∗.
(b) If λ �= µ are two eigenvalues of A, show that any left eigenvector associated with µ is
orthogonal to any right eigenvector associated with λ.

Solution
(a) We have

A∗y = (y∗A)∗ = (λy∗)∗ = λ∗y.

(b) Let Ax = λx and y∗A = µy∗. Then,

y∗Ax = y∗(λx) = λ(y∗x)

and also

y∗Ax = (µy∗)x = µ(y∗x).

Since λ �= µ, we must have y∗x = 0. Hence, x and y are orthogonal to each other.

Exercise 7.38 (Companion matrix) Show that the matrix

C :=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1


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has as its characteristic equation

pC (λ) = |λIn −C| = λn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a1λ + a0.

The matrix C is called the companion matrix for this characteristic equation.

Solution
Define the j × j matrix

A(j)[x] :=



λ −1 0 . . . 0 0
0 λ −1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

...
...

0 0 0 . . . λ −1
a0 a1 a2 . . . aj−2 x


.

Then,

|λIn −C| = |A(n)[λ + an−1]| = (λ + an−1)λn−1 + |A(n−1)[an−2]|

= λn + an−1λ
n−1 + an−2λ

n−2 + |A(n−2)[an−3]| = . . .

= λn + an−1λ
n−1 + an−2λ

n−2 + · · ·+ a2λ
2 +
∣∣∣∣ λ −1
a0 a1

∣∣∣∣
= λn + an−1λ

n−1 + an−2λ
n−2 + · · ·+ a2λ

2 + a1λ + a0.

Exercise 7.39 (Simultaneous reduction to diagonal form, 1)
(a) Let λ be a simple eigenvalue of a square matrix A, so that Ax = λx for some eigen-
vector x. If A and B commute, show that x is an eigenvector of B too.
(b) Hence, show that, if A has only simple eigenvalues and commutes with B, then a non-
singular matrix T exists such that T−1AT = Λ (diagonal) and T−1BT = M (diagonal).
(Compare Exercise 7.51 for the case where A and B are symmetric.)

Solution
(a) We have Ax = λx and also

A(Bx) = ABx = BAx = B(λx) = λ(Bx).

Hence, both Bx and x are eigenvectors associated with λ. Now, since λ is a simple eigen-
value, it follows that Bx and x are collinear, that is, Bx = µx for some scalar µ, so that
x is an eigenvector of B too.
(b) We know from Exercise 7.32 that there exist a nonsingular n × n matrix T and a
diagonal n × n matrix Λ whose diagonal elements are the eigenvalues of A, such that
T−1AT = Λ. In addition, we know from (a) that A and B have the same set of eigenvec-
tors. Hence, BT = TM for some diagonal matrix M and the result follows.
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7.2 Symmetric matrices

Exercise 7.40 (Real eigenvalues) Show that the eigenvalues of a symmetric matrix are
real. How about the eigenvalues of a Hermitian matrix?

Solution
Let Ax = λx. Then, x∗Ax = λx∗x. Taking conjugate transposes gives x∗A∗x =
λ∗x∗x. But A∗ = A, implying that λ∗x∗x = λx∗x, and hence that λ∗ = λ. We conclude
that λ is real. Since this holds for Hermitian matrices, it holds for real Hermitian (that is,
symmetric) matrices in particular.

Exercise 7.41 (Eigenvalues of a complex-symmetric matrix) Show that the eigen-
values of a complex matrix A satisfying A′ = A are not necessarily real.

Solution
Consider the matrix

A =
(

1 i
i 1

)
.

Its eigenvalues are found from the equation (1− λ)2 = −1 and hence they are 1± i.

Exercise 7.42 (A symmetric orthogonal matrix) Show that a symmetric orthogonal
matrix has only eigenvalues 1 and −1.

Solution
We know from Exercise 7.22 that all eigenvalues of an orthogonal matrix have unit modu-
lus, that is, if λ = a + ib is an eigenvalue, then a2 + b2 = 1. However, if A is symmetric,
then all eigenvalues must be real, so that b = 0 and λ = ±1.

Exercise 7.43 (Real eigenvectors) Show that the eigenvectors of a symmetric matrix
can always be chosen to be real.

Solution
Let λ (real) be an eigenvalue of the symmetric matrix A, and let x be an associated eigen-
vector. Write x = Re(x) + i Im(x). Then, A(Re(x) + i Im(x)) = λ(Re(x) + i Im(x)),
giving A Re(x) = λ Re(x) and also A Im(x) = λ Im(x). If Re(x) �= 0, then Re(x) is a
real eigenvector of A. If Re(x) = 0, then Im(x) is a real eigenvector.

Exercise 7.44 (Orthogonal eigenvectors with distinct eigenvalues) When A is a sym-
metric matrix, show that eigenvectors associated with distinct eigenvalues are orthogonal
to each other (not just linearly independent as in Exercise 7.31).
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Solution
Let λi and λj be two eigenvalues of A and assume that λi �= λj . Then eigenvectors xi and
xj exist such that

Axi = λixi and Axj = λjxj .

As a result,

λix
′
jxi = x′

jAxi = x′
iA

′xj = x′
iAxj = λjx

′
ixj ,

because of the symmetry of A. Since λi �= λj , we obtain x′
ixj = 0.

Exercise 7.45 (Eigenvectors: independence and orthogonality) Consider the 2 × 2
matrix

A =
(

a 1
ab b

)
(a �= 0, b �= 0).

(a) Obtain the eigenvalues and normalized eigenvectors of A.
(b) Show that the two eigenvectors are linearly independent, unless a + b = 0. Why?
(c) Show that the two eigenvectors are not orthogonal, unless ab = 1. Why?

Solution
(a) The eigenvalues can be found from the characteristic equation

|λI2 −A| =
∣∣∣∣λ− a −1
−ab λ− b

∣∣∣∣ = λ2 − (a + b)λ = 0,

so that the eigenvalues are λ1 = 0 and λ2 = a + b. Alternatively, they can be found from
the equations

λ1 + λ2 = trA = a + b, λ1λ2 = |A| = 0.

To find the eigenvectors we must solve the equations (λiI2−A)xi = 0. Let us take λ1 = 0
first. The set of equations becomes(

−a −1
−ab −b

)(
x1

x2

)
=
(

0
0

)
and hence ax1 + x2 = 0. The first eigenvector is therefore x1 := µ1(1,−a)′. Similarly,
the second eigenvector (associated with λ2) is x2 := µ2(1, b)′. After normalization, the
eigenvectors become

x1 =
1√

1 + a2

(
1
−a

)
and x2 =

1√
1 + b2

(
1
b

)
.

Even then, the eigenvectors are not unique; the vector −x1 is also an eigenvector of length
1. To achieve uniqueness one sometimes requires that the first nonzero component of the
eigenvector is positive, like here.
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(b) The two eigenvectors are linearly dependent if and only if∣∣∣∣ 1 1
−a b

∣∣∣∣ = a + b = 0,

in which case λ1 = λ2. So, in accordance with Exercise 7.31, the eigenvectors are linearly
independent if the associated eigenvalues are distinct.
(c) The vectors x1 and x2 are orthogonal if and only if x′

1x2 = 0, which occurs if and only
if ab = 1. In that case, A is symmetric, thus agreeing with Exercise 7.44.

*Exercise 7.46 (Diagonalization of symmetric matrices, 1) Let A be a symmetric n×n

matrix. Then there exist an orthogonal n× n matrix S (satisfying S′S = In) and a diago-
nal matrix Λ whose diagonal elements are the eigenvalues of A, such that S′AS = Λ.
(a) Prove this result for n = 2.
(b) Use induction to prove the general result.

Solution
(a) Let λ1 and λ2 be the eigenvalues of A, and let x1 be an eigenvector, normalized by
x′

1x1 = 1, associated with λ1. Now choose x2 such that x′
2x1 = 0, and normalize so that

x′
2x2 = 1. Let X := (x1 : x2). Then, X ′X = I2 and

X ′AX =
(

x′
1Ax1 x′

1Ax2

x′
2Ax1 x′

2Ax2

)
=
(

λ1x
′
1x1 λ1x

′
1x2

λ1x
′
2x1 x′

2Ax2

)
=
(

λ1 0
0 x′

2Ax2

)
,

where we have used the symmetry of A to show that

x′
1A = x′

1A
′ = (Ax1)′ = λx′

1.

The eigenvalues of X ′AX are therefore λ1 and x′
2Ax2. But, since X is orthogonal, we

have |X|2 = |X ′X| = |I| = 1 and hence

|λI −X ′AX| = |X ′(λI −A)X| = |X||λI −A||X| = |λI −A|.
The eigenvalues of X ′AX are therefore the eigenvalues of A, and hence x′

2Ax2 = λ2.
(b) Let λ1, λ2, . . . , λn be the eigenvalues of A, and let x1 be a normalized eigenvector
associated with λ1. Choose x2, . . . ,xn such that the matrix

Xn := (x1, x2, . . . ,xn) = (x1 : Xn−1)

satisfies X ′
nXn = In. Then,

X ′
nAXn =

(
x′

1Ax1 x′
1AXn−1

X ′
n−1Ax1 X ′

n−1AXn−1

)
=
(

λ1 0′

0 X ′
n−1AXn−1

)
.

Since X ′
nAXn and A have the same eigenvalues, it follows that X ′

n−1AXn−1 has eigen-
values λ2, λ3, . . . , λn. Now assume (induction hypothesis) that symmetric matrices of or-
der n − 1 can be diagonalized by means of an orthogonal matrix. Then there exists an
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orthogonal matrix Tn−1 of order n− 1 such that

T ′
n−1X

′
n−1AXn−1Tn−1 =


λ2 0 . . . 0
0 λ3 . . . 0
...

...
...

0 0 . . . λn

 .

Defining the n× n matrix

Sn := (x1 : Xn−1Tn−1),

we then have

S′
nSn =

(
x′

1x1 x′
1Xn−1Tn−1

T ′
n−1X

′
n−1x1 T ′

n−1X
′
n−1Xn−1Tn−1

)
=
(

1 0′

0 In−1

)
= In,

and also

S′
nASn =

(
x′

1Ax1 x′
1AXn−1Tn−1

T ′
n−1X

′
n−1Ax1 T ′

n−1X
′
n−1AXn−1Tn−1

)
=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 .

Hence, if the result holds for matrices of order n− 1, it holds for matrices of order n. This,
combined with the fact, proved in (a), that the result holds for n = 2, concludes the proof.

Exercise 7.47 (Multiple eigenvalues) Let λ be an eigenvalue of a symmetric n × n

matrix A, and assume that λ has multiplicity k ≥ 2.
(a) Show that there exist k orthonormal (and linearly independent) eigenvectors associated
with λ.
(b) Show that, in fact, there exist not one but an infinite number of sets of k orthonormal
eigenvectors associated with λ.
(c) Show that there cannot be more than k linearly independent eigenvectors associated
with λ.
(d) Conclude that the eigenvectors associated with λ span a subspace of Rn of dimension k.

Solution
From the diagonalization theorem for symmetric matrices (Exercise 7.46), we know that
an orthogonal matrix S exists such that AS = SΛ. Let λ1 be the multiple eigenvalue
of multiplicity k ≥ 2, and partition Λ := diag(λ1Ik, Λ2), where the diagonal matrix Λ2

contains the n−k eigenvalues of A, distinct from λ1. Partition S = (S1 : S2) accordingly.
Then,

AS1 = λ1S1 and AS2 = S2Λ2,

with

S′
1S1 = Ik, S′

2S2 = In−k, S′
1S2 = O.
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(a) The matrix S1 has k columns. Since S′
1S1 = Ik, we see that the k columns of S1 are

linearly independent and orthonormal. Since AS1 = λ1S1, each column is an eigenvector
associated with λ1.
(b) Let Q be an arbitrary orthogonal k × k matrix. Then the matrix T1 := S1Q also satis-
fies T ′

1T1 = Ik and AT1 = λ1T1.
(c) Each eigenvector associated with λ1 is orthogonal to every other eigenvector associated
with an eigenvalue distinct from λ1. Let x1 be an eigenvector associated with λ1 and write
x1 = S1p1 +S2p2. (There is no loss of generality here, because (S1 : S2) is nonsingular.)
Now, S′

2x1 = 0. Hence, S′
2S1p1 + S′

2S2p2 = 0, implying that p2 = 0 and x1 = S1p1.
So every eigenvector associated with λ1 must be a linear combination of the k columns of
S1.
(d) The foregoing implies that any set of n orthonormal eigenvectors of A will contain
exactly k eigenvectors associated with λ1.

Exercise 7.48 (Eigenvectors span) Show that the eigenvectors of an n × n symmet-
ric matrix A span Rn.

Solution
Since S′AS = Λ for some orthogonal n×n matrix S, the n columns of S are linearly in-
dependent eigenvectors of A. Hence, the orthonormal set of eigenvectors contains at least
n vectors. However, there cannot be more than n orthonormal vectors in Rn, and hence the
eigenvectors span Rn.

Exercise 7.49 (Rank and number of nonzero eigenvalues, 2) If A is a symmetric
matrix with r nonzero eigenvalues, show that rk(A) = r.

Solution
Using Exercise 7.46, we have S′AS = Λ. Since S is nonsingular, we see that rk(A) =
rk(Λ). But Λ is a diagonal matrix, and hence its rank is equal to the number (in this case
r) of its nonzero diagonal elements. Hence, rk(A) = rk(Λ) = r.

Exercise 7.50 (Sylvester’s law of nullity, again) Let A be an m× n matrix of rank r.
(a) Use Exercise 7.47 to show that there exists an n× (n− r) matrix S such that AS = O
and S′S = In−r.
(b) Let S be a matrix such that AS = O. Show that rk(S) ≤ n− r.

Solution
In essence, both results follow from the fact that AS = O if and only if A′AS = O.
(a) The matrix A′A is a symmetric n× n matrix and has rank r. Hence, there exists a set
of n − r orthonormal eigenvectors associated with the eigenvalue 0 (multiplicity n − r).
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Let S be the n× (n− r) matrix containing these eigenvectors. Then,

A′AS = O and S′S = In−r.

Since A′AS = O, we have S′A′AS = O and hence AS = O by Exercise 2.13(a).
(b) If AS = O, then A′AS = O, so that the columns of S can be taken as the eigenvec-
tors associated with the eigenvalue λ = 0 of A′A. Since there are precisely n− r linearly
independent eigenvectors associated with λ = 0, there cannot be more than n− r linearly
independent columns in S. Hence rk(S) ≤ n− r. In fact, this is Sylvester’s law of nullity
again, because Exercise 5.47(b) implies directly that 0 = rk(AS) ≥ rk(A) + rk(S)− n.
Also compare Exercise 6.36(a).

*Exercise 7.51 (Simultaneous reduction to diagonal form, 2) Let A and B be symmet-
ric matrices. Show that an orthogonal matrix S exists such that S′AS = Λ (diagonal) and
S′BS = M (diagonal) if and only if A and B commute.

Solution
If S′AS = Λ and S′BS = M , then

AB = SΛS′SMS′ = SΛMS′ = SMΛS′ = SMS′SΛS′ = BA,

since Λ and M are diagonal and diagonal matrices commute.
The converse is more difficult. Suppose λ is an eigenvalue of A with multiplicity k.

Let X := (x1, . . . ,xk) be a set of orthonormal eigenvectors associated with λ, so that
X ′X = Ik and AX = λX . Now consider

A(BX) = BAX = BλX = λ(BX),

from which we see that each column of BX is an eigenvector of A associated with λ.
Since X contains a full set of eigenvectors associated with λ, each column of BX must
be a linear combination of the columns of X . There exists therefore a k×k matrix C such
that BX = XC. Premultiplying by X ′ we see that C = X ′BX , hence symmetric. Let
S be an orthogonal matrix such that S′CS = R (diagonal), S′S = Ik. Then,

S′X ′AXS = λIk and S′X ′BXS = R,

so that the semi-orthogonal n × k matrix XS (with S′X ′XS = Ik) simultaneously
diagonalizes A and B.

But the process is not yet complete. Let λ1, . . . , λs be the distinct eigenvalues of A with
multiplicities n1, . . . , ns (n1 + n2 + · · · + ns = n), and let X := (X1 : X2 : · · · : Xs)
be the orthogonal n× n matrix of eigenvectors of A, such that AXj = λjXj . (Note that
Xj is an n× nj matrix.) For j = 1, . . . , s, define Sj as the orthogonal nj × nj matrix that
diagonalizes X ′

jBXj , so that S′
jX

′
jBXjSj = Rj (diagonal). Then the n× n matrix

T := (X1S1 : X2S2 : · · · : XsSs)
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is orthogonal, because S′
jX

′
jXjSj = Inj and X ′

iXj = O (i �= j), and

T ′AT =


λ1In1 O . . . O

O λ2In2 . . . O
...

...
...

O O . . . λsIns

 , T ′BT =


R1 O . . . O
O R2 . . . O
...

...
...

O O . . . Rs

 .

*Exercise 7.52 (Craig-Sakamoto lemma) Let A and B be symmetric matrices of the
same order. Show that

AB = O ⇐⇒ |I − sA||I − tB| = |I − sA− tB|
for all real scalars s and t.

Solution
Clearly, if AB = O, then

|I − sA||I − tB| = |I − sA− tB + stAB| = |I − sA− tB|.
The converse is more difficult. Assume that |I − sA||I − tB| = |I − sA− tB| for all s

and t. Then this holds in particular for all s satisfying s−1 > |λmax(A)|. For such s, two
things happen, both of which will be used. First, the eigenvalues of sA are all smaller than
one in absolute value; second, the eigenvalues of I − sA are all nonzero.

Now define C := (I − sA)−1. Then

|I − tB| = |C||C−1 − tB| = |I − tCB|
for all t. This implies that the matrices B and CB have the same characteristic polynomial
and hence the same eigenvalues. In particular,

tr B2 = tr(CB)2 = tr((I − sA)−1B)2 = tr((I + sA + s2A2 + . . . )B)2

= tr B2 + s tr(BAB + AB2) + s2 tr(BA2B + ABAB + A2B2) + O(s3)

for all s sufficiently small. Hence,

tr AB2 = 0 and tr(AB)2 + 2 trA2B2 = 0.

Now,

tr(AB)2 + 2 tr A2B2 ≥ 2 tr A2B2

= 2 tr(AB)(AB)′ ≥ 0

with equality if and only if AB = O.

Exercise 7.53 (Bounds of Rayleigh quotient) Let A be a symmetric n × n matrix
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
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(a) Show that

λn ≤
x′Ax

x′x
≤ λ1.

(b) Hence, show that, for any m× n matrix A,

‖Ax‖ ≤ √µ‖x‖,
where µ denotes the largest eigenvalue of A′A.

Solution
(a) Let S′AS = Λ, S′S = In, and define y := S′x. Then,

x′Ax = x′SΛS′x = y′Λy =
n∑

i=1

λiy
2
i ≤ λ1

n∑
i=1

y2
i

= λ1y
′y = λ1x

′SS′x = λ1x
′x.

The other inequality is proved in analogous fashion. The ratio x′Ax/x′x is called the
Rayleigh quotient.
(b) Recall that the norm ‖x‖ of a vector x is given by

√
x′x. We need to show that

x′A′Ax ≤ µx′x, and this follows from (a).

7.3 Some results for triangular matrices

Exercise 7.54 (Normal matrices and triangularity) A square matrix A is normal if
and only if A∗A = AA∗ (A′A = AA′ in the real case). Show that a triangular matrix is
normal if and only if it is diagonal.

Solution
Assume that A is a real upper triangular matrix. If A is diagonal, then clearly A′A = AA′.
To prove the converse, assume that A′A = AA′. Equating (AA′)ii and (A′A)ii for
i = 1, . . . , n gives the n equations:

a2
11 + a2

12 + a2
13 + · · ·+ a2

1n = a2
11

a2
22 + a2

23 + · · ·+ a2
2n = a2

12 + a2
22

a2
33 + · · ·+ a2

3n = a2
13 + a2

23 + a2
33

...

a2
nn = a2

1n + a2
2n + · · ·+ a2

nn.

The first equation yields a1j = 0 for j = 2, . . . , n. The second equation then yields a2j = 0
for j = 3, . . . , n. Continuing in this way yields aij = 0 for all j > i. Hence, A is diagonal.
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If A is complex, the proof is similar. If A is lower triangular, we work back from the last
equation to the first.

*Exercise 7.55 (A strictly triangular matrix is nilpotent) Let A be a strictly upper
triangular n× n matrix.
(a) Show that A is nilpotent of index ≤ n (that is, An = O).
(b) If rj := rk(Aj), show that rj+1 < rj if rj > 0.

Solution
(a) The statement is trivially true for n = 1. Assume that it is true for all strictly upper
triangular matrices of order n− 1. Let

A :=
(

B b

0′ 0

)
be a strictly upper triangular matrix of order n×n, where B is of order (n− 1)× (n− 1).
By successive multiplication we see that

A2 =
(

B2 Bb

0′ 0

)
, . . . , An =

(
Bn Bn−1b

0′ 0

)
.

By the induction hypothesis, Bn−1 = O. Hence, An = O. By the definition of nilpotency
(Exercise 2.8(b)), A is nilpotent of index m if Am−1 �= O and Am = O. We have proved
that An = O, but we don’t know whether An−1 �= O. Hence, the index could be smaller
than n.
(b) The statement is true for n = 1 and n = 2. Assume that it is true for all strictly upper
triangular matrices of order n− 1. Let A be defined as under (a). Then,

Aj =
(

Bj Bj−1b

0′ 0

)
,

and hence

rj = rk(Aj) = rk(Bj : Bj−1b),

so that

rk(Bj) ≤ rj ≤ rk(Bj) + 1.

We distinguish between three cases.
(i) If Bj = O, then rj = 1 if Bj−1b �= 0, and rj = 0 if Bj−1b = 0. Also, rj+1 = 0.
Hence, rj+1 < rj if rj > 0.
(ii) If Bj �= O and rj = rk(Bj)+1, then rj > 0 and rj+1 ≤ rk(Bj+1)+1. Hence, using
the fact that rk(Bj+1) < rk(Bj) (induction hypothesis), it follows that

rj+1 ≤ rk(Bj+1) + 1 < rk(Bj) + 1 = rj .

(iii) If Bj �= O and rj = rk(Bj), then rj > 0 and there exists an x such that Bjx =
Bj−1b. Then, premultiplying by B, we obtain Bj+1x = Bjb, implying that rj+1 =
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rk(Bj+1). Then, using the fact that rk(Bj+1) < rk(Bj) (induction hypothesis), it follows
that

rj+1 = rk(Bj+1) < rk(Bj) = rj .

We conclude that rj+1 < rj when rj > 0 in all three cases. Notice that (a) is an immediate
consequence of (b).

Exercise 7.56 (Product of triangular matrices) Let A := (aij) and B := (bij) be
two upper triangular n × n matrices such that aij = 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ k,
and bk+1,k+1 = 0. Show that the matrix C := AB is upper triangular with cij = 0 for
1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1.

Solution
Let us partition

A =
(
O A12

O A22

)
, B =

(
B11 B12

O B22

)
, C = AB =

(
O A12B22

O A22B22

)
,

where the first block in the partition is of order k×k and the other blocks are conformable.
All we need to prove is that the first column of A12B22 is zero, and that the first diagonal
element of the upper triangular matrix A22B22 is zero too. Since, by assumption, the first
diagonal element of B22 is zero, and B22 is upper triangular, it follows that the first column
of B22 is zero. Hence, for any matrix E, the first column of EB22 is zero, in particular the
first column of A12B22 and the first column of A22B22.

Exercise 7.57 (Perturbed identity) Let ei and ej be unit vectors of order n × 1, and
define the n× n matrix T (θ) := In − θeie

′
j where θ is some real scalar.

(a) Show that T (θ) is nonsingular for every i �= j and for every θ, and that T−1(θ) =
T (−θ).
(b) Let A be an upper triangular n× n matrix. For i < j, show that

T−1(θ)AT (θ) = A + θ(eie
′
jA−Aeie

′
j) = A + θP

where

P :=
(
O Q

O O

)
, Q :=


−a1i 0 . . . 0
−a2i 0 . . . 0

...
...

...
−ai−1,i 0 . . . 0
ajj − aii aj,j+1 . . . ajn

 ,

and the submatrices in P have i and n− i rows, and j − 1 and n− j + 1 columns, respec-
tively.
(c) If aii �= ajj , choose θ := aij/(aii− ajj). With this choice of θ, what is the effect of the
transformation T−1(θ)AT (θ) on the elements of A?
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Solution
(a) We verify that

(In + θeie
′
j)(In − θeie

′
j) = In − θeie

′
j + θeie

′
j − θ2ei(e′

jei)e′
j = In,

because e′
jei = 0 for i �= j. (For i = j, T (θ) is singular when θ = 1.)

(b) We have

(In + θeie
′
j)A(In − θeie

′
j) = A− θAeie

′
j + θeie

′
jA− θ2ei(e′

jAei)e′
j

= A + θP ,

because e′
jAei = aji = 0 if i < j. Since A is upper triangular, we find

Aei = (a1i, a2i, . . . , aii, 0, . . . , 0)′, e′
jA = (0, . . . , 0, ajj , aj,j+1, . . . , ajn).

Hence, P = eie
′
jA−Aeie

′
j has zeros everywhere, except that it has e′

jA as its i-th row,
and −Aei as its j-th column (so that ajj − aii appears at the intersection).
(c) The effect of the transformation T−1AT is that it makes the ij-th element of A zero,
and disturbs only the elements of A in row i to the right of aij and in column j above
aij .

Exercise 7.58 (Ingredient for Jordan’s proof) Let A be an n × n upper triangular
matrix, and assume that A has k distinct diagonal elements λ1, . . . , λk, arranged contigu-
ously so that the diagonal elements are λ1 (n1 times), λ2 (n2 times), . . . , λk (nk times),
with n1 + n2 + · · ·+ nk = n. Let

A :=


A1 ∗ . . . ∗
O A2 . . . ∗
...

...
...

O O . . . Ak

 and B :=


A1 O . . . O
O A2 . . . O
...

...
...

O O . . . Ak

 ,

where each Aj is an upper triangular nj×nj matrix, all whose diagonal elements are equal
to λj , and the blocks indicated by a ∗ are unspecified. Use Exercise 7.57 to show that there
exists a nonsingular n× n matrix T such that T−1AT = B; in other words, show that A

and B are similar. (We need this result in the proof of Jordan’s theorem, Exercise 7.79.)

Solution
For i < j, let Tij := In − θijeie

′
j , so that T−1

ij = In + θijeie
′
j . Inspired by Exercise 7.57

we choose

θij :=

{
aij

λi−λj
(if λi �= λj),

0 (if λi = λj).

If λi = λj , the transformation T−1
ij ATij leaves A unchanged. But if λi �= λj then the

matrix T−1
ij ATij differs from A in that it makes the ij-th element 0 and disturbs only the

elements of A in row i to the right of aij and in column j above aij .
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We now perform a sequence of transformations T−1
ij ATij for all values of i < j, but in a

carefully chosen order, namely: (i, j) = (n−1, n), (n−2, n−1), (n−2, n), (n−3, n−2),
(n − 3, n − 1), (n − 3, n), . . . , (1, 2), . . . , (1, n). Each transformation will create a 0 in
the ij-th position if λi �= λj , and no previously created 0 will be disturbed. Thus, A is
transformed into B.

Exercise 7.59 (Diagonalization of triangular matrices) Let A be an upper triangu-
lar matrix with distinct diagonal elements. Show that there exists a unit upper triangular
matrix T (that is, an upper triangular matrix with ones on the diagonal) such that

T−1AT = dg(A).

Solution
Consider the 1

2n(n − 1) equations in 1
2n(n − 1) unknowns tij (i < j) given by AT =

T dg(A). Equating the ij-th element of AT with the ij-th element of T dg(A) gives

aiitij + · · ·+ aijtjj = ajjtij (i < j)

where tjj = 1. We write these equations for j = i + 1, i + 2, . . . , n as

aiiti,i+1 + ai,i+1 = ai+1,i+1ti,i+1

aiiti,i+2 + ai,i+1ti+1,i+2 + ai,i+2 = ai+2,i+2ti,i+2

...

aiitin + ai,i+1ti+1,n + · · ·+ ain = anntin.

Now solve ti,i+1 from the first equation, then ti,i+2 from the second equation, and so on.

Exercise 7.60 (Inverse of triangular matrix)
(a) Let A be an upper triangular matrix with nonzero diagonal elements. Show that A−1 is
of the same type.
(b) Let A be a unit upper triangular matrix with integers above the diagonal. Show that
A−1 is of the same type.

Solution
(a) If A and B are two upper triangular matrices of the same order, then (AB)ij = 0 for
j < i, and, for j ≥ i,

(AB)ij =
j∑

k=i

aikbkj .
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(Compare Exercise 2.21.) Hence, the equation AB = I generates the equations bii =
1/aii for all i, and, for j > i,

j∑
k=i

aikbkj = 0,

which we can solve sequentially as in Exercise 7.59.
(b) Since all diagonal elements of A are one, we have |A| = 1. Hence, by Exercise 4.37(c),
A−1 = C ′, where C denotes the matrix of cofactors. But each cofactor is an integer and
the result follows.

7.4 Schur’s decomposition theorem and its consequences

Exercise 7.61 (A necessary and sufficient condition for diagonal reduction)
(a) Show that a nonsingular matrix T exists such that T−1AT = Λ (diagonal) if and only
if there is a set of n linearly independent vectors, each of which is an eigenvector of A.
(b) Show that a unitary matrix S exists such that S∗AS = Λ (diagonal) if and only if there
is a set of orthonormal vectors, each of which is an eigenvector of A.

Solution
(a) If A has n linearly independent eigenvectors x1, . . . ,xn, then T := (x1, . . . ,xn) is
nonsingular and satisfies

AT = A(x1, . . . ,xn) = (Ax1, . . . ,Axn) = (λ1x1, . . . , λnxn)

= (x1, . . . ,xn)Λ = TΛ,

where Λ := diag(λ1, . . . , λn) and λ1, . . . , λn are eigenvalues of A. Hence, T−1AT = Λ.
Conversely, if AT = TΛ for some diagonal matrix Λ, then

A(Tei) = (AT )ei = (TΛ)ei = T (Λei) = T (λiei) = λi(Tei),

where ei denotes the i-th unit vector. Hence, each column of T is an eigenvector of A,
and, since T is nonsingular, these eigenvectors are linearly independent.
(b) The proof is identical except that the columns of S are now not only independent but
also orthonormal, so that S is unitary and S−1 = S∗.

Exercise 7.62 (Schur’s decomposition theorem) Let A be an n × n matrix. Then
there exist a unitary n×n matrix S (that is, S∗S = In) and an upper triangular matrix M

whose diagonal elements are the eigenvalues of A, such that S∗AS = M .
(a) Follow the steps of the solution to Exercise 7.46 to prove this result for n = 2.
(b) Then use induction to prove the general result.

Solution
(a) Let λ1 and λ2 be the eigenvalues of A, and let x1 be an eigenvector, normalized by
x∗

1x1 = 1, associated with λ1. Choose x2 such that x∗
2x1 = 0, and normalize so that
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x∗
2x2 = 1. Let X := (x1 : x2). Then, X∗X = I2 and

X∗AX =
(

x∗
1Ax1 x∗

1Ax2

x∗
2Ax1 x∗

2Ax2

)
=
(

λ1x
∗
1x1 x∗

1Ax2

λ1x
∗
2x1 x∗

2Ax2

)
=
(

λ1 x∗
1Ax2

0 x∗
2Ax2

)
.

The eigenvalues of X∗AX are therefore λ1 and x∗
2Ax2. But, since X is unitary, we have

|λI2 −X∗AX| = |X∗(λI2 −A)X| = |λI2 −A|.
The eigenvalues of X∗AX are therefore the eigenvalues of A, and hence x∗

2Ax2 = λ2.
(b) Let λ1, λ2, . . . , λn be the eigenvalues of A, and let x1 be a normalized eigenvector
associated with λ1. Choose x2, . . . ,xn such that the matrix

Xn := (x1, x2, . . . ,xn) = (x1 : Xn−1)

satisfies X∗
nXn = In. Then

X∗
nAXn =

(
x∗

1Ax1 x∗
1AXn−1

X∗
n−1Ax1 X∗

n−1AXn−1

)
=
(

λ1 x∗
1AXn−1

0 X∗
n−1AXn−1

)
.

Since X∗
nAXn and A have the same eigenvalues, it follows that X∗

n−1AXn−1 has eigen-
values λ2, λ3, . . . , λn. Now assume (induction hypothesis) that all matrices of order n− 1
can be triangularized by means of a unitary matrix. Then there exists a unitary matrix Tn−1

of order n− 1 such that

T ∗
n−1X

∗
n−1AXn−1Tn−1 =


λ2 ∗ . . . ∗
0 λ3 . . . ∗
...

...
...

0 0 . . . λn

 ,

where a ∗ denotes a possibly nonzero element. Now define the n× n matrix

Sn := (x1 : Xn−1Tn−1).

We have

S∗
nSn =

(
x∗

1x1 x∗
1Xn−1Tn−1

T ∗
n−1X

∗
n−1x1 T ∗

n−1X
∗
n−1Xn−1Tn−1

)
=
(

1 0′

0 In−1

)
= In

and also

S∗
nASn =

(
x∗

1Ax1 x∗
1AXn−1Tn−1

T ∗
n−1X

∗
n−1Ax1 T ∗

n−1X
∗
n−1AXn−1Tn−1

)

=


λ1 ∗ ∗ . . . ∗
0 λ2 ∗ . . . ∗
0 0 λ3 . . . ∗
...

...
...

...
0 0 0 . . . λn

 .

Hence, if the result holds for matrices of order n− 1, it holds for matrices of order n. This,
combined with the fact, proved in (a), that the result holds for n = 2, concludes the proof.
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Exercise 7.63 (Diagonalization of symmetric matrices, 2) Use Schur’s theorem to pro-
vide a shorter proof of the diagonalization theorem for symmetric matrices (Exercise 7.46).

Solution
Using Exercise 7.62, there exists a unitary matrix S and an upper triangular matrix M such
that S∗AS = M . Then,

M∗ = (S∗AS)∗ = S∗A∗S = S∗AS = M .

Hence, M is Hermitian. But, since M is also triangular, M must be diagonal. By Schur’s
theorem, its diagonal elements are its eigenvalues. By Exercise 7.40 its eigenvalues are
real. Finally, by Exercise 7.43, the eigenvector matrix S can be chosen real as well.

Exercise 7.64 (Determinant, trace, and eigenvalues) Use Schur’s theorem to provide
a short proof of

tr A =
n∑

i=1

λi, |A| =
n∏

i=1

λi,

where λ1, . . . , λn are the eigenvalues of the n×n matrix A. (See Exercises 7.26 and 7.27.)

Solution
Writing S∗AS = M (upper triangular), where S is unitary, we obtain

tr A = trSMS∗ = tr MS∗S = trM =
n∑

i=1

λi

and

|A| = |SMS∗| = |M ||S∗S| = |M | =
n∏

i=1

λi.

Exercise 7.65 (Trace, powers, and eigenvalues, 2) Use Schur’s theorem to provide
an alternative proof of the fact that

tr Ak =
n∑

i=1

λk
i (k = 1, 2, . . . )

where λ1, . . . , λn are the eigenvalues of the n× n matrix A (Exercise 7.28.)

Solution
Writing again S∗AS = M (upper triangular), we have A = SMS∗ and hence Ak =
SMkS∗. This gives

tr Ak = trSMkS∗ = trMk =
n∑

i=1

λk
i ,

because Mk is an upper triangular matrix with λk
1, . . . , λ

k
n on the diagonal.
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Exercise 7.66 (Number of nonzero eigenvalues does not exceed rank) If A has r

nonzero eigenvalues, then show that rk(A) ≥ r.

Solution
We write again, using Schur’s decomposition theorem, S∗AS = M . Partition

M =
(

M1 M2

O M3

)
,

where M1 is a nonsingular upper triangular r × r matrix and M3 is strictly upper triangu-
lar. Since rk(A) = rk(M) ≥ rk(M1) = r, the result follows.

Exercise 7.67 (A simple eigenvalue) Let A be an n × n matrix. If λ is a simple
eigenvalue of A, show that rk(λIn −A) = n − 1. Conversely, if rk(λIn −A) = n − 1,
show that λ is an eigenvalue of A, but not necessarily a simple eigenvalue.

Solution
Let λ1, . . . , λn be the eigenvalues of A. Then B := λIn − A has eigenvalues λ − λi

(i = 1, . . . , n). Since λ is an eigenvalue of A, B has at least one eigenvalue zero and
hence rk(B) ≤ n− 1. In fact, λ is a simple eigenvalue of A, so that B has one eigenvalue
0 and n− 1 nonzero eigenvalues. Hence, rk(B) ≥ n− 1 (Exercise 7.66), and we conclude
that rk(B) = n− 1.

Conversely, if rk(B) = n−1, then B has at least one zero eigenvalue and hence λ = λi

for at least one i. The eigenvalue need not be simple as Exercise 7.19 shows.

Exercise 7.68 (A simple zero eigenvalue)
(a) If an n× n matrix A has a simple eigenvalue 0, show that rk(A) = n− 1.
(b) If A has k ≥ 2 eigenvalues 0, show that rk(A) is not necessarily equal to n− k.

Solution
(a) Setting λ = 0 in Exercise 7.67, shows that if 0 is a simple eigenvalue of A, then
rk(A) = n− 1, and conversely that if rk(A) = n− 1, there is at least one 0 eigenvalue.
(b) Consider the matrix

A =
(

1 −1
1 −1

)
.

Then rk(A) = 1 and both eigenvalues of A are zero. In general, if A has p zero eigen-
values then its rank can be larger than or equal to n − p, but not smaller (Exercise 7.66).
However, if A is symmetric then rk(A) = n− p (Exercise 7.49).

*Exercise 7.69 (Cayley-Hamilton, 1) Let A be an n × n matrix with eigenvalues
λ1, . . . , λn. Show that A satisfies its own characteristic equation. That is,

(λ1In −A)(λ2In −A) . . . (λnIn −A) = O.
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Solution
By Schur’s theorem there exists a unitary matrix S such that S∗AS = M (upper triangu-
lar). Let Bi := λiIn −M . Then,

n∏
i=1

(λiIn −A) = SB1S
∗SB2S

∗ . . .SBnS∗ = S

(
n∏

i=1

Bi

)
S∗.

We wish to show that
∏

i Bi = O. This follows by repeated application of Exercise 7.56,
using the fact that Bi is upper triangular and has 0 in the i-th diagonal position. The upper
left 1-by-1 block of B1 is 0 and the second diagonal element of B2 is 0. Hence, the upper
left 2-by-2 block of B1B2 is O. The third diagonal element of B3 is 0. Hence, the upper
left 3-by-3 block of B1B2B3 is O. Continuing in this way we find that B1B2 . . .Bn = O.

Exercise 7.70 (Normal matrices)
(a) Show that unitary (A∗A = I), Hermitian (A∗ = A), and skew-Hermitian (A∗ = −A)
matrices are all normal.
(b) Give an example of a normal 2 × 2 matrix that is neither unitary, Hermitian, or skew-
Hermitian.

Solution
(a) If A is unitary then AA∗ = I = A∗A; if A is Hermitian then AA∗ = A2 = A∗A;
and if A is skew-Hermitian then AA∗ = −A2 = A∗A.
(b) Any matrix of the form

A =
(

a b

−b a

)
,

with a �= 0, b �= 0, and a2 + b2 �= 1 provides an example. In fact, it is the only example.

Exercise 7.71 (Spectral theorem for normal matrices) Given an n × n matrix A,
show that there exists a unitary n × n matrix S such that S∗AS = Λ (diagonal) if and
only if A is normal.

Solution
If S∗AS = Λ, then A = SΛS∗ and A∗ = SΛ∗S∗, so that AA∗ = SΛΛ∗S∗ and
A∗A = SΛ∗ΛS∗. Since ΛΛ∗ = Λ∗Λ, it follows that AA∗ = A∗A.

Conversely, let S∗AS = M (upper triangular). Then A = SMS∗ and A∗ =
SM∗S∗, so that AA∗ = SMM∗S∗ and A∗A = SM∗MS∗. Since A is normal,
we have AA∗ = A∗A and hence MM∗ = M∗M . This shows that M is normal. But
then, by Exercise 7.54, M must be diagonal.

Exercise 7.72 (Further properties of a complex-symmetric matrix) We have seen in
Exercise 7.41 that the eigenvalues of a complex matrix A satisfying A′ = A (a
complex-symmetric matrix) are not necessarily real. Now consider the complex-symmetric



192 7 Eigenvalues, eigenvectors, and factorizations

matrix

A =
(

1 i
i −1

)
.

(a) Show that its eigenvalues are both 0 and that rk(A) = 1. Conclude that the rank of A

is not equal to the number of nonzero eigenvalues.
(b) Use Exercise 7.71 to show that A cannot be diagonalized.

Solution
(a) The eigenvalues of A are found from the equation λ2 = 0 and hence they are both zero.
Hence, the matrix is singular and rk(A) ≤ 1. Also, rk(A) ≥ 1 because A is not the null
matrix. Hence, rk(A) = 1.
(b) We write

A∗A =
(

1 −i
−i −1

)(
1 i
i −1

)
= 2
(

1 i
−i 1

)
and

AA∗ =
(

1 i
i −1

)(
1 −i
−i −1

)
= 2
(

1 −i
i 1

)
.

We see that A is not normal and hence, by Exercise 7.71, it cannot be diagonalized.

Exercise 7.73 (Normal matrix and orthonormal eigenvectors) Show that an orthonor-
mal set of n eigenvectors of an n× n matrix A exists if and only if A is normal.

Solution
Exercise 7.71 says that A can be diagonalized through a unitary matrix if and only if A is
normal. Exercise 7.61(b) says that A has n orthonormal eigenvectors if and only if A can
be diagonalized through a unitary matrix. The statement in the exercise is a combination of
these two statements.

7.5 Jordan’s decomposition theorem

Exercise 7.74 (The basic Jordan block) Consider the k × k upper triangular matrix

Jk :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 .

(a) Show that Jk cannot be diagonalized.
(b) Show that

J ′
kJk =

(
0 0′

0 Ik−1

)
, JkJ

′
k =
(

Ik−1 0
0′ 0

)
.

(c) Also show that Jk is nilpotent of index k, that is, Jk
k = O and Jk−1

k �= O.
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Solution
(a) According to Exercise 7.61(a), an n× n matrix can be diagonalized if and only if there
are n linearly independent eigenvectors. The matrix J has only one eigenvector, because
Jkx = 0 implies that x2 = x3 = · · · = xn = 0, so that x = (1, 0, . . . , 0)′ or a multiple
thereof.
(b) One verifies easily that

J ′
kJk =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
0 0 . . . 1 0




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 =


0 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1


and similarly the second result.
(c) Let ei be the i-th unit vector of order k. Then,

Jkei =

{
0 (if i = 1),

ei−1 (if 2 ≤ i ≤ k).

Hence, by successive multiplication,

J2
kei =

{
0 (if i = 1, 2),

ei−2 (if 3 ≤ i ≤ k),
. . . , Jk−1

k ei =

{
0 (if 1 ≤ i ≤ k − 1),

e1 (if i = k),

and finally, Jk
k ei = 0 for all i. Hence, Jk

k = O and Jk−1
k �= O. (The result also follows

from Exercise 7.55(a).)

Exercise 7.75 (Forward and backward shift) Consider a basic Jordan block Jk of
order k × k and an arbitrary vector x := (x1, . . . , xk)′. Obtain the transformations:
(a) Jkx (forward shift);
(b) J ′

kx (backward shift);
(c) (I − J ′

k)x (difference);
(d) (I − J ′

k)
−1x (partial sum).

Solution
(a)–(b) We have

Jk


x1

x2
...

xk−1

xk

 =


x2

x3
...

xk

0

 and J ′
k


x1

x2
...

xk−1

xk

 =


0
x1
...

xk−2

xk−1

 ,

thus defining a forward shift and a backward shift (or lag) operator, respectively.
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(c) Here,

(Ik − J ′
k)x =


1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1




x1

x2

x3
...

xk

 =


x1

x2 − x1

x3 − x2
...

xk − xk−1

 .

(d) And finally,

(Ik − J ′
k)

−1x =


1 0 0 . . . 0 0
1 1 0 . . . 0 0
1 1 1 . . . 0 0
...

...
...

...
...

1 1 1 . . . 1 1




x1

x2

x3
...

xk

 =


x1

x1 + x2

x1 + x2 + x3
...

x1 + · · ·+ xk

 .

Exercise 7.76 (Symmetric version of Jordan’s block) Let A := Jk + J ′
k, so that

A is a symmetric k × k matrix given by

A =



0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0


.

(a) Show that

|A| =
{

0 (if k is odd),

(−1)k/2 (if k is even).

(b) Show that

tr A = 0, tr A2 = 2(k − 1), tr A3 = 0, tr A4 = 2(3k − 5).

Solution
(a) If we denote the k×k matrix by Ak to emphasize the order, we expand the determinant
by the first row and obtain |Ak| = −|Ak−2|. Since |A1| = 0 and |A2| = −1, the result
follows.
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(b) Since A = Jk + J ′
k we obtain:

tr A = 2 trJk,

tr A2 = 2 trJ2
k + 2 trJkJ

′
k,

tr A3 = 2 trJ3
k + 6 trJk(JkJ

′
k),

tr A4 = 2 trJ4
k + 8 trJ2

k (JkJ
′
k) + 4 tr(JkJ

′
k)(J

′
kJk) + 2 tr(JkJ

′
k)

2.

From the structure of Jk we see that tr Jp
k = 0 and also tr Jp

k (JkJ
′
k) = 0 for p = 1, 2, . . . .

The nonzero components are

tr JkJ
′
k = k − 1, tr(JkJ

′
k)(J

′
kJk) = k − 2, tr(JkJ

′
k)

2 = k − 1.

The result follows.

Exercise 7.77 (A lemma for Jordan, 1) Consider the following lemma: Let A be a
strictly upper triangular n × n matrix, that is, an upper triangular matrix with zeros on
the diagonal. Then, a nonsingular n × n matrix T exists and integers n1, . . . , nk with
n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 and n1 + n2 + · · ·+ nk = n, such that

T−1AT =


Jn1 O . . . O
O Jn2 . . . O
...

...
...

O O . . . Jnk

 , Jni =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 ,

where Jni is of order ni × ni.

(a) Show that the lemma holds for n = 2.
(b) Show that the lemma holds for n = 3.

Solution
(a) For n = 2, we write

A :=
(

0 a

0 0

)
, T1 :=

(
1 0
0 1

)
, T2 :=

(
a 0
0 1

)
.

If a = 0, then A = O and we choose T := T1 giving T−1
1 AT1 = O. This is the case

n1 = n2 = 1. If a �= 0, we choose T := T2 giving

AT2 =
(

0 a

0 0

)
= T2

(
0 1
0 0

)
.

This is the case n1 = 2. Hence, for every value of a there exists a nonsingular matrix T

such that T−1AT has the required form.
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(b) For n = 3, we write

A :=

0 a b

0 0 c

0 0 0

 .

Five cases need to be distinguished: (1) a = b = c = 0, (2) a = 0, c = 0, b �= 0, (3) a = 0,
c �= 0, (4) a �= 0, c = 0, and (5) a �= 0, c �= 0.

Case (1) corresponds to n1 = n2 = n3 = 1. Then A = O and we chose T := T1 := I3.
Cases (2)–(4) correspond to n1 = 2, n2 = 1, and case (5) corresponds to n1 = 3. For cases
(2)–(4) we define

T2 :=

b 0 0
0 0 1
0 1 0

 , T3 :=

b 0 1
c 0 0
0 1 0

 , T4 :=

a 0 0
0 1 −b

0 0 a

 ,

and one verifies that

ATi = Ti

0 1 0
0 0 0
0 0 0

 (i = 2, 3, 4)

in each of these three cases. Finally, in case (5),

AT5 = T5

0 1 0
0 0 1
0 0 0

 , T5 :=

ac b 0
0 c 0
0 0 1

 .

Hence, for every value of (a, b, c) there exists a nonsingular matrix T such that T−1AT

has the required form.

*Exercise 7.78 (A lemma for Jordan, 2) Let A be a strictly upper triangular n × n

matrix. We wish to prove the lemma of Exercise 7.77 by induction. The result holds for
n = 1 (trivially), and, by Exercise 7.77, also for n = 2 and n = 3. Now assume it holds
for n− 1. Partition A as

A :=
(

0 a′

0 A1

)
,

where a is an (n−1)×1 vector and A1 is a strictly upper triangular matrix of order n−1.
By the induction hypothesis there exists a nonsingular matrix S1 of order n − 1 such that
S−1

1 A1S1 = J(1), where

J(1) :=


Jk1 O . . . O
O Jk2 . . . O
...

...
...

O O . . . Jks


with k1 ≥ k2 ≥ · · · ≥ ks ≥ 1 and k1 + k2 + · · ·+ ks = n− 1.
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(a) Show that A is similar to the matrix

A(1) :=
(

0 a′S1 − q′J(1)

0 J(1)

)
for any (n− 1)× 1 vector q.
(b) Choose q such that A(1) (and hence A itself) is similar to

A(2) :=

0 βe′
1 b′

0 Jk1 O
0 O J(2)

 ,

where β := e′
1S

′
11a, b := S′

12a (of order (n − k1 − 1) × 1), S1 := (S11 : S12),
e1 := (1, 0, . . . , 0)′ (of order k1 × 1), and

J(2) :=


Jk2 O . . . O
O Jk3 . . . O
...

...
...

O O . . . Jks

 .

(c) Assume that β �= 0. Then show that A(2) is similar to

A(3) :=
(

Jk1+1 ẽ1b
′

O J(2)

)
,

where ẽi denotes a unit vector of order (k1 + 1)× 1, which in turn is similar to(
Jk1+1 O

O J(2)

)
,

a Jordan matrix of the required form.
(d) Finally, assume that β = 0. Then show that

A(2) :=

0 0′ b′

0 Jk1 O
0 O J(2)

 and A(4) :=

Jk1 0 O
0′ 0 b′

O 0 J(2)


are similar, and that A(4), in turn, is similar to a Jordan matrix of the required form.
(e) Conclude that the validity of the lemma is thus established.

Solution
(a) Define the n× n matrix

T :=
(

1 q′

0 S1

)
with T−1 =

(
1 −q′S−1

1

0 S−1
1

)
.

Then we verify that T−1AT = A(1).
(b) Choose

q :=
(

Jk1S
′
11a

0

)
.
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Then,

q′J(1) = (a′S11J
′
k1

: 0′)
(

Jk1 O
O J(2)

)
= (a′S11J

′
k1

Jk1 : 0′),

and hence

a′S1 − q′J(1) =
(
a′S11(Ik1 − J ′

k1
Jk1) : a′S12

)
= (βe′

1 : b′),

because J ′
k1

Jk1 = Ik1 − e1e
′
1 by Exercise 7.74(b).

(c) If β �= 0, then1/β 0′ 0′

0 Ik1 O
0 O (1/β)In−k1−1

0 βe′
1 b′

0 Jk1 O
0 O J(2)

β 0′ 0′

0 Ik1 O
0 O βIn−k1−1



=

0 e′
1 b′

0 Jk1 O
0 O J(2)

 =
(

Jk1+1 ẽ1b
′

O J(2)

)
= A(3),

as required. Now, observe that for any vector c of order (n− k1 − 1)× 1,(
Ik1+1 ẽi+1c

′

O In−k1−1

)(
Jk1+1 ẽic

′

O J(2)

)(
Ik1+1 −ẽi+1c

′

O In−k1−1

)
=
(

Jk1+1 ẽi+1c
′J(2)

O J(2)

)
,

because Jk1+1ẽi+1 = ẽi for i = 1, . . . , k1 by Exercise 7.74(c). Hence, choosing c′ :=

b′J i−1
(2) for i = 1, . . . , k1, and noting that Jk1

(2) = O, we arrive at the requested Jordan form.
(d) If β = 0, then the matrices

A(2) :=

0 0′ b′

0 Jk1 O
0 O J(2)

 and

Jk1 0 O
0′ 0 b′

O 0 J(2)

 ,

are similar, because the second matrix, A(4), is obtained from the first by row- and column-
block permutations. Now consider A(4), and, in particular, its (n−k1)×(n−k1) submatrix(

0 b′

0 J(2)

)
.

By the induction hypothesis, this submatrix is similar to a Jordan matrix with zero diagonal
elements, say J(3). Then diag(Jk1 , J(3)) is similar to A(4) and hence to A. This is a Jor-
dan matrix with zero diagonal elements. Finally we put its Jordan blocks in nonincreasing
order by applying block permutations.
(e) We have thus proved that if the lemma holds for matrices of order n − 1, it also holds
for matrices of order n. This, together with the fact that the result holds for n = 1 (and
n = 2 and 3), completes the proof.



7.5 Jordan’s decomposition theorem 199

Exercise 7.79 (Jordan’s decomposition theorem) Let A be an n×n matrix and denote
by Jk(λ) a Jordan block, that is, a k × k matrix of the form

Jk(λ) :=


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λ

 .

For k = 1 we let J1(λ) := λ. Show that there exists a nonsingular n × n matrix T such
that T−1AT = J , where

J :=


Jn1(λ1) O . . . O

O Jn2(λ2) . . . O
...

...
...

O O . . . Jnk
(λk)


with n1 + n2 + · · ·+ nk = n. The λi are the eigenvalues of A, not necessarily distinct.

Solution
The proof consists of three steps, each of which has already been demonstrated. Schur’s
decomposition theorem (Exercise 7.62) guarantees the existence of a nonsingular (in fact,
unitary) matrix S1 such that S−1

1 AS1 = M , where M is upper triangular and has the
eigenvalues of A on its diagonal. If necessary, we re-order the columns of S1 in such a
way that multiple eigenvalues take contiguous positions on the diagonal of M . Assume
that A has s distinct eigenvalues λ1, . . . , λs with multiplicities n1, . . . , ns. Then,

S−1
1 AS1 =


M1 ∗ . . . ∗
O M2 . . . ∗
...

...
...

O O . . . Ms


where each Mi is an upper triangular ni×ni matrix, all whose diagonal elements are equal
to λi and a ∗ indicates an unspecified matrix, not necessarily the null matrix.

In the second step, we use Exercise 7.58. This guarantees the existence of a nonsingular
(but not necessarily unitary) matrix S2 such that

S−1
2 S−1

1 AS1S2 =


M1 O . . . O
O M2 . . . O
...

...
...

O O . . . Ms

 .

We write Mi := λiIni + Ui, where Ui is a strictly upper triangular ni × ni matrix.
In the third and final step we use Exercise 7.77. This guarantees the existence, for each
i = 1, . . . , s of a nonsingular matrix Ti such that T−1

i UiTi has a block-diagonal “Jordan
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structure” (with all diagonal elements equal to 0), say J (i)(0). Then,

T−1
i MiTi = T−1

i (λiIni + Ui)Ti = λiIni + J (i)(0) = J (i)(λi),

and hence, letting S3 := diag(T1, T2, . . . ,Ts),

S−1
3 S−1

2 S−1
1 AS1S2S3 =


J (1)(λ1) O . . . O

O J (2)(λ2) . . . O
...

...
...

O O . . . J (s)(λs)

 .

If we now define T := S1S2S3, then T is nonsingular and T−1AT transforms A to
Jordan form. Notice that λ1, . . . , λs are all distinct, but that within each block J (i)(λi) sev-
eral Jordan blocks may occur with the same λi. The total number of Jordan blocks is k ≥ s.

Exercise 7.80 (Example of a Jordan matrix) Let A be a 5 × 5 matrix with eigen-
values λ1 (3 times) and λ2 (twice) such that λ1 �= λ2. Write down the general form of the
Jordan matrix J .

Solution
The general form is

J :=


λ1 β1 0 0 0
0 λ1 β2 0 0
0 0 λ1 0 0
0 0 0 λ2 β3

0 0 0 0 λ2

 ,

where the value of β1, β2, β3 is either 0 or 1. There are therefore eight possible forms in
this case.

Exercise 7.81 (How many Jordan blocks?) Show that:
(a) The number k of Jordan blocks is the number of linearly independent eigenvectors of
J ;
(b) The matrix J can be diagonalized if and only if k = n.

Solution
(a) It is easy to see that a k × k Jordan block Jk(λ) has rank k − 1 and possesses only
one eigenvector associated with the eigenvalue λ, namely (1, 0, . . . , 0)′. Because of the
block-diagonal structure of J , eigenvectors associated with different blocks are linearly in-
dependent. Hence, each block contributes precisely one eigenvector.
(b) According to Exercise 7.61(a), the n × n matrix J can be diagonalized if and only
if there exist n linearly independent vectors, each of which is an eigenvector of A. This
occurs if and only if k = n.
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Exercise 7.82 (Cayley-Hamilton, 2) Use Exercise 7.74(c) to provide an alternative proof
of the Cayley-Hamilton theorem (Exercise 7.69).

Solution
Because of the Jordan decomposition theorem, it suffices to prove that

(λ1In − J)n1(λ2In − J)n2 . . . (λkIn − J)nk = O.

Since J is block-diagonal, this happens if and only if, for i = 1, . . . , k,

(λ1Ini − Jni(λi))
n1 (λ2Ini − Jni(λi))

n2 . . . (λkIni − Jni(λi))
nk = O.

But this is true because, for each i, the i-th term in the product vanishes:

(λiIni − Jni(λi))
ni = (−Jni(0))ni = O,

by Exercise 7.74(c).

7.6 Jordan chains and generalized eigenvectors

Exercise 7.83 (Recursion within a Jordan chain) Let λ be a multiple eigenvalue of
the n × n matrix A, and let {xp, xp−1, . . . ,x1} be a Jordan chain associated with λ and
generated recursively from the generalized eigenvector xp by

xi = (A− λIn) xi+1 (i = p− 1, . . . , 1) .

Show that xp−1, . . . ,x1 obtained in this way are generalized eigenvectors of degrees p −
1, . . . , 1.

Solution
Let C := A− λIn. The definition of the generalized eigenvector xp is

Cpxp = 0 but Cp−1xp �= 0.

We need to show that the next vector in the Jordan chain, generated by xp−1 = Cxp, is a
generalized eigenvector of degree p− 1. This follows from

Cp−1xp−1 = Cp−1 (Cxp) = 0 but Cp−2xp−1 = Cp−2 (Cxp) �= 0,

by the definition of xp. Repeating this procedure for xi = Cxi+1, where i = p− 2, . . . , 1,
completes the solution.

Exercise 7.84 (One Jordan chain and one Jordan block) Let A be an n × n matrix,
and suppose there exists a nonsingular matrix T such that T−1AT = J , where

J :=


λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

 .

What can you say about the columns of the matrix T ?
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Solution
Let us write T := (x1, x2, . . . ,xn). The equation AT = TJ gives

Ax1 = λx1 and Axi+1 = xi + λxi+1 (i = 1, . . . , n− 1),

which can be rewritten as

(A− λIn)x1 = 0 and (A− λIn)xi+1 = xi (i = 1, . . . , n− 1).

Hence, the n columns of T are generalized eigenvectors associated with the eigenvalue λ,
and form a Jordan chain of length n associated with λ.

Exercise 7.85 (Independence within a Jordan chain) Let λ be a multiple eigenvalue of
the n× n matrix A. Show that the vectors in a Jordan chain {xp, . . . ,x1} associated with
λ are linearly independent.

Solution
Suppose that y :=

∑p
j=1 αjxj = 0. We will show that this implies that αj = 0 for all j.

Since xj is a generalized eigenvector, we have

(A− λIn)j xj = 0, but (A− λIn)j−1 xj �= 0.

Hence, (A− λIn)j+i xj = 0 for i = 0, 1, . . . . Premultiplying y by (A− λIn)p−1 gives

0 = (A− λIn)p−1
p∑

j=1

αjxj = αp(A− λIn)p−1xp,

which holds if and only if αp = 0. If we premultiply y by (A − λIn)p−2, then it follows
that αp−1 = 0. Continuing this procedure, we obtain αj = 0 for all j.

Exercise 7.86 (Independence of Jordan chains belonging to different eigenvalues) Let
λ1 �= λ2 be two eigenvalues of the n × n matrix A. Let {xp, . . . ,x1} be a Jordan chain
associated with λ1, and {yq, . . . ,y1} be a Jordan chain associated with λ2. Show that the
vectors xp, . . . ,x1 are linearly independent of the vectors yq, . . . ,y1.

Solution
We need to show that the two vectors

∑p
i=1 αixi and

∑q
j=1 βjyj are linearly independent

for any choice of the coefficients αi (not all zero) and βj (not all zero). Suppose that∑p
i=1 αixi =

∑q
j=1 βjyj . If we can show that this implies that αi = 0 (i = 1, . . . , p) and

βj = 0 (j = 1, . . . , q), then we have demonstrated the required linear independence.
By definition, (A− λ1In)pxi = 0 for all i ≤ p, so that

0 = (A− λ1In)p
p∑

i=1

αixi = (A− λ1In)p
q∑

j=1

βjyj .
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Now premultiply by (A − λ2In)q−1. Since (A− λ1In)p and (A− λ2In)q−1 commute
(because A commutes with scalar matrices; see Exercise 2.11), we obtain

0 = (A− λ1In)p
q∑

j=1

βj (A− λ2In)q−1 yj .

Since (A− λ2In)q−1yj = 0 for all j ≤ q− 1, the only nonzero term in the sum is the one
where j = q, and we get

0 = βq (A− λ1In)p (A− λ2In)q−1 yq = βq (A− λ1In)p y1.

Recall that y1 is an eigenvector of A associated with λ2. Hence, (A − λ1In)y1 = (λ2 −
λ1)y1, and we obtain 0 = βq(λ2 − λ1)py1. Since λ2 �= λ1, we find that βq = 0.

Repeating the process by premultiplying both sides of 0 = (A− λ1In)p∑q
j=1 βjyj by

(A − λ2In)q−2, we find that βq−1 = 0, and continuing in this way shows that βj = 0 for
all j. Finally,

∑p
i=1 αixi = 0 implies that αi = 0 for all i by Exercise 7.85.

Exercise 7.87 (Independence of Jordan chains starting with independent eigenvec-
tors) Let λ1 and λ2 be two eigenvalues (not necessarily distinct) of the n× n matrix A.
Let {xp, . . . ,x1} be a Jordan chain associated with λ1, and let {yq, . . . ,y1} be a Jordan
chain associated with λ2, where x1 and y1 are linearly independent eigenvectors of A.
(a) Show that the vectors xp, . . . ,x1 are linearly independent of the vectors yq, . . . ,y1.
(b) Does this result apply to more than two Jordan chains?

Solution
(a) When λ1 �= λ2, the result follows from Exercise 7.86. When λ1 = λ2 = λ, say, let
q ≥ p without loss of generality. Suppose that

∑p
i=1 αixi =

∑q
j=1 βjyj . Premultiplying

both sides by (A− λIn)q−1 gives

αp(A− λIn)q−1xp =
p∑

i=1

αi(A− λIn)q−1xi =
q∑

j=1

βj(A− λIn)q−1yj

= βq(A− λIn)q−1yq = βqy1.

If q = p, then the above equality implies that αpx1 = βqy1, and hence — since x1 and y1

are linearly independent — that βq = 0 (and also that αp = 0). If q > p, then the above
equality implies that 0 = βqy1, and hence also that βq = 0.

Premultiplying both sides by (A− λIn)q−2 gives βq−1 = 0, and continuing in this way
shows that βj = 0 for all j. Finally,

∑p
i=1 αixi = 0 implies that αi = 0 for all i by

Exercise 7.85.
(b) The same proof applies to any number of Jordan chains, by writing

p∑
i=1

αixi +
q∑

j=1

βjyj +
r∑

k=1

γkzk + · · · = 0,

and showing that αi, βj , γk, . . . are all zero.
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*Exercise 7.88 (As many independent generalized eigenvectors as the multiplicity) Let
λ be an eigenvalue of multiplicity m of the n × n matrix A. Show that the Jordan chains
associated with λ have lengths adding up to m exactly:
(a) when m = n;
(b) when m < n.

Solution
(a) By Schur’s decomposition, A − λIm = SMS∗ where SS∗ = Im and M is strictly
upper triangular. The definition of generalized eigenvectors can be rewritten as

M jyj = 0 but M j−1yj �= 0,

where yj := S∗xj . Let r1 := rk(M) < m. Then, Exercise 6.36(a) shows that there are
dim(kerM) = m− r1 linearly independent solutions to My1 = 0. If r1 = 0, we have m

linearly independent solutions to y1, hence m linearly independent eigenvectors x1 since S

is unitary. If r1 > 0, then r2 := rk(M2) < r1 by Exercise 7.55(b). The rewritten definition
of generalized eigenvectors then yields r1 − r2 > 0 additional generalized eigenvectors.
Each one of these goes to a different Jordan chain for λ, because, whenever yi+1 exists,
there is a corresponding yi obtained by the definition of the Jordan chain Myi+1 = yi.
This also implies that m− r1 ≥ r1 − r2.

Now, since M is strictly upper triangular, there exists an integer p such that Mp = O
while Mp−1 �= O. Hence, rp := rk(Mp) = 0, and the total number of generalized
eigenvectors is

(m− r1) + (r1 − r2) + · · ·+ (rp−2 − rp−1) + (rp−1 − 0) = m,

as required. Note that this generalizes the earlier inequality to

m− r1 ≥ r1 − r2 ≥ · · · ≥ rp−2 − rp−1 ≥ rp−1 > 0,

by the definition of the Jordan chain. The number p ≤ m is the length of the longest Jordan
chain, and the geometric multiplicity m − r1 is equal to the number of Jordan chains for
any particular eigenvalue.
(b) When m < n, Schur’s decomposition gives A− λIn = SUS∗, where SS∗ = In and

U =
(

M ∗
O P

)
,

where the m×m submatrix M is strictly upper triangular as in (a), but P is upper triangular
with nonzero diagonal elements since the multiplicity of λ is m < n. We have

U i =
(

M i ∗
O P i

)
(i = 1, 2, . . . ).

The diagonal elements of P i being nonzero, Exercise 5.43 yields

ri := rk(U i) = rk(M i) + rk(P i) = rk(M i) + n−m.
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Therefore, as in (a), there exists an integer p such that Mp = O while Mp−1 �= O. Then
solving

U jyj = 0 but U j−1yj �= 0,

where yj := S∗xj and j = 1, . . . , p, gives rise to the total number of generalized eigen-
vectors

(n− r1) + · · ·+ (rp−1 − rp)

= (n− (rk(M) + n−m)) + · · ·+
(
(rk(Mp−1) + n−m)− (n−m)

)
= m.

There can be no further generalized eigenvectors for λ obtainable from Up+1,Up+2,. . . ,
since these are all of the same rank n−m as P i for all i.

Exercise 7.89 (Jordan in chains) By using generalized eigenvectors, prove that any
n× n matrix A possesses a Jordan decomposition.

Solution
Recall, from Exercise 5.7, that

(T1, . . . ,Tk) diag (Jn1(λ1), . . . ,Jnk
(λk)) = (T1Jn1(λ1), . . . ,TkJnk

(λk)) ,

for Ti and Jni(λi) conformable for multiplication, i = 1, . . . , k. Exercise 7.88 demon-
strates that there are as many generalized eigenvectors as the order n of the matrix A,
so that

∑k
i=1 ni = n. This, together with the linear independence established in Exercises

7.87 and 7.88, implies that the generalized eigenvectors are linearly independent, and hence
that T := (T1, . . . ,Tk) is a nonsingular n×n matrix. Within each of the n×ni blocks Ti,
the columns are generalized eigenvectors satisfying the same recursion as in Exercise 7.84,
so that

(T1Jn1(λ1), . . . ,TkJnk
(λk)) = (AT1, . . . ,ATk) .

Hence, AT = TJ , where J := diag(Jn1(λ1), . . . ,Jnk
(λk)).

Exercise 7.90 (Find the eigenvectors, 2) Consider

A =
(

1 1
0 1

)
.

Find the generalized eigenvectors of A and hence its Jordan decomposition A = TJT−1.
Compare the result to Exercise 7.10(a).

Solution
We notice that the matrix is already in its Jordan form, with one multiple eigenvalue of 1
and a single Jordan chain of length 2. Define

C := A− λI2 =
(

0 1
0 0

)
.
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We need to solve C2x2 = 0 such that Cx2 �= 0. The first equation places no restriction
on x2 since C2 = O. Letting x2 := (x, y)′, the inequality Cx2 �= 0 implies y �= 0, so
that x1 = Cx2 = (y, 0)′. Hence,

T := (x1, x2) =
(

y x

0 y

)
,

giving (
y x

0 y

)(
1 1
0 1

)(
1/y −x/y2

0 1/y

)
=
(

1 1
0 1

)
,

as expected.
Since A was already in its Jordan form, one possible choice of T is a scalar multiple

of I2, which is obtained by setting x = 0. In Exercise 7.10(a) we obtained the eigen-
vector (1, 0)′, and we have now shown that (0, 1)′ is a suitable corresponding generalized
eigenvector.

Note carefully the order of obtaining generalized eigenvectors in a Jordan chain. We
started with x2 and then obtained x1. Had we selected x1 = (1, 0)′ first and x2 = (x, y)′

next, then the solution would have been incorrect:(
1 x

0 y

)(
1 1
0 1

)(
1 x

0 y

)−1

=
(

1 1/y

0 1

)
�= A if y �= 1.

This is why we prefer to keep the subscript of the eigenvector x1, to stress that it is in a
Jordan chain, rather than drop it as we usually write x for an eigenvector.

Exercise 7.91 (Geometric multiplicity, 2) The matrix

A =

1 3 0
0 1 0
2 1 5

 .

was already considered in Exercises 7.3 and 7.11. Now derive the generalized eigenvectors
of A and its Jordan decomposition A = TJT−1.

Solution
We know from Exercise 7.11 that the eigenvalues of A are 1 (twice) and 5, and that the
multiple eigenvalue 1 has geometric multiplicity 1, so that we cannot find two linearly
independent eigenvectors associated with the eigenvalue 1. Associated with the eigenvalue
1 is an eigenvector (2, 0,−1)′ (or a multiple thereof) and associated with the eigenvalue 5
is an eigenvector (0, 0, 1)′ (or a multiple thereof).

To find the Jordan chain associated with the eigenvalue 1, we define C := A − I3 and
try to solve x2 := (x, y, z)′ from C2x2 = 0, while Cx2 �= 0. This gives0 3 0

0 0 0
2 1 4

2x

y

z

 =

0 0 0
0 0 0
8 10 16

x

y

z

 =

 0
0

8x + 10y + 16z

 =

0
0
0


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and 0 3 0
0 0 0
2 1 4

x

y

z

 =

 3y

0
2x + y + 4z

 �=
0

0
0

 .

The solution (x, y, z)′ must satisfy y �= 0 and 4x + 5y + 8z = 0, and we may take, for
example, x2 = (−1/2, 1,−3/8)′. This implies

x1 =

0 3 0
0 0 0
2 1 4

−1/2
1

−3/8

 =

 3
0

−3/2

 ,

which is 1.5 times the eigenvector found in Exercise 7.11. As in Exercise 7.90, the scale
is crucial for the construction of a correct Jordan chain in T . Note that, as expected from
Exercise 7.88, there is no generalized eigenvector of order 3 (that is, satisfying C3x3 = 0
and C2x3 �= 0) associated with λ = 1, since C3 = 4C2.

Putting the generalized eigenvectors together and recalling that (0, 0, t)′ is an eigenvector
associated with λ = 5 for any t �= 0, for example t = 3/8, we obtain the decomposition 0 3 −1/2

0 0 1
3/8 −3/2 −3/8

−11 3 0
0 1 0
2 1 5

 0 3 −1/2
0 0 1

3/8 −3/2 −3/8



=

 0 3 −1/2
0 0 1

3/8 −3/2 −3/8

−1 0 3 5/2
0 0 1

15/8 −3/2 −15/8



=

4/3 5/3 8/3
1/3 1/6 0
0 1 0

 0 3 5/2
0 0 1

15/8 −3/2 −15/8



=

5 0 0
0 1 1
0 0 1


as expected. Again, careful that an incorrect scale for x1 could lead to 0 2 −1/2

0 0 1
3/8 −1 −3/8

5 0 0
0 1 1
0 0 1

 0 2 −1/2
0 0 1

3/8 −1 −3/8

−1

=

1 2 0
0 1 0
2 3/2 5

 ,

which is not equal to A.

Notes

The fact that there is a one-to-one relationship between the elementary symmetric functions
and the power sums, and between the power sums and the functions Ek of the introduction,
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can be found in Hadley (1961, p. 273) or Horn and Johnson (1985, p. 42). The Craig-
Sakamoto lemma (Exercise 7.52) is closely associated with the problem of the indepen-
dence of quadratic forms in normal variables; see the Econometric Exercises volume by
Abadir, Heijmans, and Magnus (2006, Chapter 8). The history of this problem is discussed
in Driscoll and Gundberg (1986). If the algebraic multiplicities are known, but the geo-
metric ones are not, then see Bronson (1989, pp. 82–83) for a numerical algorithm implied
by Exercise 7.88. Jordan chains and generalized eigenvectors are discussed in Gantmacher
(1959, Volume 1, Chapters 6 and 7), both from the analytic and the geometric point of view.
See also Kostrikin and Manin (1981, Chapter 1, Section 9), Halmos (1974, Chapter II,
Section 58), and Ortega (1987, Chapter 3, Section 3.2).
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Positive (semi)definite and idempotent matrices

In this chapter we generalize the notion of a positive (nonnegative) number to a positive
(semi)definite matrix, and the notion of zero and one to an idempotent matrix.

A symmetric (hence real) n × n matrix A is said to be positive definite (and we write
A > O) if x′Ax > 0 for all real x �= 0; it is positive semidefinite (written A ≥ O) if
x′Ax ≥ 0 for all x. Similarly, A is negative definite (A < O) if x′Ax < 0 for all x �= 0
and negative semidefinite (A ≤ O) if x′Ax ≤ 0 for all x. Most symmetric matrices
are neither ≥ O nor ≤ O; these are called indefinite. We write A > B to indicate that
A−B > O, and similarly for A < B, A ≥ B, and A ≤ B.

We notice the following points:

(a) Symmetry is implicit in the definition. Of course, the quadratic form

x′Ax = (x1, x2)
(

4 4
0 4

)(
x1

x2

)
= (x1 + 2x2)2 + 3x2

1

is positive for all (x1, x2) �= (0, 0), but we do not call A positive definite. There is no need
to do so, because

(x1, x2)
(

4 4
0 4

)(
x1

x2

)
= (x1, x2)

(
4 2
2 4

)(
x1

x2

)
.

In general, the transformation B := (A + A′)/2 makes A symmetric and leaves the
quadratic form unchanged.
(b) All properties of negative (semi)definite matrices follow immediately from those of
positive (semi)definite matrices, because A is positive (semi)definite if and only if −A

is negative (semi)definite. The results for negative (semi)definite matrices are often more
cumbersome, however. For example, if an n×n matrix A is positive definite, then |A| > 0,
but if it is negative definite then (−1)n|A| > 0 and hence the sign of |A| depends on the

209
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order of the matrix. For these reasons we confine our attention to positive (semi)definite
matrices.
(c) Most properties of positive semidefinite matrices follow from those of positive definite
matrices by replacing > by ≥. Thus, the statement “A > O implies |A| > 0” suggests
that it is also true that “A ≥ O implies |A| ≥ 0”, and this is indeed the case. But this does
not always work! For example, if the n leading principal minors of A are positive then A

is positive definite. But if the leading principal minors of A are nonnegative then A is not
necessarily positive semidefinite; for this, all principal minors must be nonnegative.
(d) We restrict our attention to real matrices. If A is complex and Hermitian (A∗ = A),
then A > O if the Hermitian form x∗Ax > 0 for all x �= 0, and A ≥ O, A < O, and
A ≤ O are defined analogously. The properties of complex (semi)definite matrices are
similar to the properties of real (semi)definite matrices.

While a positive definite matrix generalizes the notion of positivity to matrices, an idem-
potent matrix generalizes the notion of both zero and one. As defined in Chapter 2, a square
matrix A is idempotent if A2 = A. Although most idempotent matrices used in statistics
and econometrics are symmetric, symmetry is not part of the definition. We only consider
real idempotent matrices. An idempotent matrix corresponds to an idempotent operation.
As an example consider the matrix

A := In −
1
n

ıı′.

This is an idempotent matrix. The transformation y := Ax puts the variables x1, . . . , xn in
deviation from their mean. The operation is idempotent because, once in deviation form, re-
peating the process does not lead to further changes. An idempotent matrix A(A′A)−1A′

is a projection (because its eigenvalues are 0 and 1 only) onto a space spanned by the
columns of A, namely the space col A introduced in Chapter 3. This particular idempotent
matrix is symmetric, so the projection is orthogonal; for a nonsymmetric idempotent matrix
the projection is oblique.

Results for positive (semi)definite and idempotent matrices can be checked quite easily
by proving or disproving the result for a diagonal matrix, one with positive (nonnegative)
elements in the case of a positive (semi)definite matrix and one with only zeros and ones in
the case of an idempotent matrix. If a statement does not hold for the diagonal matrix, it is
false; if it does hold it is very likely (but not guaranteed) true.

When A is a positive semidefinite n×n matrix of rank r, we obtain in this chapter some
additional decomposition theorems, among which:

• A = TT ′, T ′T = Λ (diagonal) with T of order n × r and Λ containing the positive
eigenvalues of A (Exercise 8.21).

• A = LL′ with L lower triangular matrix with r positive and n − r zero diagonal
elements (Cholesky, Exercise 8.23).
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• A = TT ′, B = TΛT ′ with T nonsingular and Λ diagonal, if A is positive definite
and B symmetric (Exercise 8.37).

Also, if A is a real m× n matrix of rank r > 0, then:

• A = SΛ1/2T ′ with S′S = T ′T = Ir and Λ (r × r) diagonal with positive diagonal
elements (singular-value decomposition, Exercise 8.38).

• A = PV , if rk(A) = n, with P semi-orthogonal and V positive definite (polar
decomposition, Exercise 8.40).

8.1 Positive (semi)definite matrices

Exercise 8.1 (Symmetry and quadratic forms)
(a) For every square matrix A, show that

x′Ax = x′
(

A + A′

2

)
x.

(b) Conclude that there is no loss in generality in confining the study of quadratic forms to
symmetric matrices.

Solution
(a) We have

x′
(

A + A′

2

)
x =

1
2
(x′Ax + x′A′x) =

1
2
(x′Ax + x′Ax) = x′Ax

because x′Ax is a scalar and hence equal to its transpose:

x′A′x = (x′Ax)′ = x′Ax.

(b) We see from (a) that the matrix in a quadratic form can always be made symmetric.

Exercise 8.2 (Matrix representation of quadratic forms) Write the following quadratic
forms in matrix notation with a symmetric matrix: (a) x2 + y2 − xy, (b) 4x2 + 5y2 + z2 +
2xy + 2yz, (c) −x2 + 2y2 + xy. Verify whether these forms are positive (or negative)
definite, semidefinite, or indefinite.

Solution
(a)

(x, y)
(

1 −1
2

−1
2 1

)(
x

y

)
= x2 + y2 − xy =

(
x− 1

2
y

)2

+
3
4
y2 > 0

for all (x, y) �= (0, 0). Hence, the quadratic form is positive and the matrix is positive
definite.
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(b)

(x, y, z)

4 1 0
1 5 1
0 1 1

x

y

z

 = 4x2 + 5y2 + z2 + 2xy + 2yz

= (x + y)2 + (y + z)2 + 3x2 + 3y2 > 0

for all (x, y, z) �= (0, 0, 0). Hence, the matrix is positive definite.
(c)

(x, y)
(
−1 1

2
1
2 2

)(
x

y

)
= −x2 + 2y2 + xy =

(
3
2
y

)2

−
(

x− 1
2
y

)2

.

This can take positive values (x = 1, y = 2) or negative ones (x = 1, y = 0). Hence, the
matrix is indefinite.

Exercise 8.3 (Symmetry and skew-symmetry)
(a) For any real matrix A, show that x′Ax = 0 for all real x if and only if A is skew-
symmetric.
(b) For any symmetric matrix A, show that x′Ax = 0 for all real x if and only if A = O.
(c) Hence, show, if A and B are symmetric, that x′Ax = x′Bx for all real x if and only
if A = B.

Solution
(a) If x′Ax = 0 for all x, then choose x := ei and x := ei + ej , respectively. This gives

e′
iAei = aii = 0, (ei + ej)′A(ei + ej) = aii + aij + aji + ajj = 0.

This implies aii = 0 for all i and aij = −aji for all i, j. Since A is real, it follows that A

is skew-symmetric. Conversely, if A′ = −A, then x′Ax = x′A′x = −x′Ax, and hence
x′Ax = 0.
(b) The only matrix that is both symmetric and skew-symmetric is the null matrix.
(c) Replace A by A−B in (b) and the result follows.

Exercise 8.4 (Orthogonal transformation preserves length)
(a) Prove that a linear transformation Qx of x preserves length, if Q is orthogonal.
(b) Does the converse hold?
(c) If ‖Qx‖ = ‖x‖ for every x, and Q is a square matrix whose elements do not depend
on x, then show that Q is orthogonal.

Solution
(a) If Q is orthogonal, then Q′Q = I and hence

‖Qx‖ =
√

x′Q′Qx =
√

x′x = ‖x‖.
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(b) No. Let x be an arbitrary nonzero vector, and define Q to be any matrix such that
Qx = x, for example the idempotent matrix Q := (1/x′x)xx′. This Q is not orthogonal,
but x′Q′Qx = x′x, so that ‖Qx‖ = ‖x‖.
(c) From ‖Qx‖ = ‖x‖, we see that x′ (I −Q′Q) x = 0 for every x. Since the matrix
I−Q′Q is symmetric, and Q is constant (does not depend on x), it must be the null matrix,
by Exercise 8.3(b). Hence, Q′Q = I .

Exercise 8.5 (Positive versus negative)
(a) Show that A > O if and only if −A < O.
(b) Show that A ≥ O if and only if −A ≤ O.
(c) Can a matrix be both positive definite and negative definite?
(d) Can a matrix be both positive semidefinite and negative semidefinite?

Solution
(a) A is positive definite if and only if x′Ax > 0 for all x �= 0, that is, if and only if
x′(−A)x < 0 for all x �= 0, which occurs, by definition, if and only if −A is negative
definite.
(b) Similarly, x′Ax ≥ 0 for all x if and only if x′(−A)x ≤ 0 for all x.
(c) No. It is not possible that, for all x �= 0, x′Ax is both positive and negative.
(d) Yes. This is only possible if x′Ax = 0 for every x. We know from Exercise 8.3 that
the only symmetric solution is the null matrix.

Exercise 8.6 (Positivity of diagonal matrix) If A := diag(a11, . . . , ann) is a diag-
onal matrix, show that A > O (A ≥ O) if and only if aii > 0 (aii ≥ 0) for all i = 1, . . . , n.

Solution
In this case, x′Ax = a11x

2
1 + · · · + annx2

n. If aii > 0 for all i, then x′Ax > 0 unless
x = 0. If aii ≥ 0, then x′Ax ≥ 0 for all x. Conversely, if x′Ax > 0 for all x �= 0, then
in particular aii = e′

iAei > 0 for all i. And, if x′Ax ≥ 0 for all x, then aii = e′
iAei ≥ 0

for all i.

*Exercise 8.7 (Positive diagonal elements) Let A = (aij) be a positive definite n × n

matrix.
(a) Show that the diagonal elements of A are positive.
(b) Show that a2

ij < aiiajj for all i �= j.
(c) Use (b) to show that maxi,j |aij | must be one of the diagonal elements of A.
(d) How do these results change for a positive semidefinite matrix A?

Solution
(a) If A > O, then x′Ax > 0 for all x �= 0. Take x := ei, the i-th unit vector. Then
aii = e′

iAei > 0.



214 8 Positive (semi)definite and idempotent matrices

(b) Take x := αei + βej (i �= j). Then,

(αei + βej)′A(αei + βej) = α2aii + β2ajj + 2αβaij > 0

for all α and β, not both zero. For α := aij and β := −aii we find in particular that
aii(aiiajj − a2

ij) > 0, and hence aiiajj − a2
ij > 0.

(c) Suppose that the largest element of A (in absolute value) does not lie on the diago-
nal. Let aij (i �= j) be the largest element. Then, |aij | ≥ aii and |aij | ≥ ajj and hence
a2

ij ≥ aiiajj . This is in contradiction with (b).
(d) If A is positive semidefinite rather than positive definite, then aii ≥ 0 for all i and
a2

ij ≤ aiiajj for all i �= j. The largest element of A (in absolute value) is still on the
diagonal of A, but now there may be off-diagonal elements that are equal (but not larger)
to this diagonal element. The matrix A := ıı′ provides an example.

Exercise 8.8 (Positivity of A + B) Let A be a positive semidefinite n × n matrix.
Show that:
(a) A = O⇐⇒ tr A = 0;
(b) if B is positive (semi)definite, then A + B is positive (semi)definite.

Solution
(a) If A ≥ O then Exercise 8.7 tells us that aii ≥ 0 for all i and a2

ij ≤ aiiajj for all i �= j.
If tr A = 0 then all diagonal elements must be zero, and a2

ij ≤ 0. Hence, A = O. The
converse is trivial.
(b) If A ≥ O then

x′(A + B)x = x′Ax + x′Bx ≥ x′Bx.

If B > O, then x′Bx > 0 for all x �= 0 and hence x′(A + B)x > 0. If B ≥ O, then
x′Bx ≥ 0 for all x and hence x′(A + B)x ≥ 0.

Exercise 8.9 (Positivity of AA′) For any m× n matrix A, show that:
(a) A′A and AA′ are positive semidefinite;
(b) A = O⇐⇒ A′A = O⇐⇒ tr A′A = 0.

Solution
(a) We have x′A′Ax = (Ax)′(Ax) ≥ 0 and y′AA′y = (A′y)′(A′y) ≥ 0.
(b) This follows from

A = O =⇒ A′A = O =⇒ tr A′A =
∑
ij

a2
ij = 0

=⇒ aij = 0 for all i, j =⇒ A = O.

(Part (b) was earlier proved in Exercise 2.25.)
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Exercise 8.10 (Diagonalization of positive definite matrices) If A is positive definite
(positive semidefinite), show that there exists an orthogonal matrix S and a diagonal matrix
Λ with positive (nonnegative) diagonal elements such that S′AS = Λ.

Solution
This follows directly from the diagonalization theorem for symmetric matrices (Exercise 7.46).

Exercise 8.11 (Positive eigenvalues)
(a) Show that a symmetric matrix A is positive definite if and only if all its eigenvalues are
positive.
(b) Show that a symmetric matrix A is positive semidefinite if and only if all its eigenvalues
are nonnegative.

Solution
(a) If λ is an eigenvalue of A with associated eigenvector x, then x′Ax = x′(λx) = λx′x.
Since A > O we have x′Ax > 0. Notice that x �= 0, because x is an eigenvector. Hence,
x′x is positive and we obtain λ > 0. Conversely, assume that all eigenvalues λ1, . . . , λn

are positive. We diagonalize the symmetric matrix A by means of an orthogonal matrix S,
such that

S′AS = Λ := diag(λ1, . . . , λn), S′S = In.

Let x �= 0 and define y := S′x. Then y �= 0 and

x′Ax = x′SS′ASS′x = y′Λy =
n∑

i=1

λiy
2
i > 0

because λi > 0 and y �= 0. Hence, A > O.
(b) This works the same way. We just replace every > sign with a ≥ sign.

Exercise 8.12 (Positive determinant and trace) Suppose that A > O.
(a) Show that |A| > 0.
(b) Show that tr A > 0.
(c) Show that |A| > 0 and tr A > 0 together do not guarantee that A > O.

Solution
(a) The determinant is equal to the product of the eigenvalues. If all eigenvalues are > 0,
then their product is also > 0.
(b) The trace is equal to the sum of the eigenvalues. If all eigenvalues are > 0, then their
sum is also > 0.
(c) The example A = diag(3,−1,−1) shows that the converse is not true, in general. We
have tr A > 0 and |A| > 0, but A is not positive definite.
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Exercise 8.13 (Nonnegative determinant and trace) Suppose that A ≥ O.
(a) Show that |A| ≥ 0, with equality if and only if A is singular.
(b) Show that tr A ≥ 0, with equality if and only if A = O.

Solution
(a) The determinant is equal to the product of the eigenvalues. If all eigenvalues are ≥ 0,
then their product is also ≥ 0. One of the eigenvalues is zero if and only if A is singular.
(b) The trace is equal to the sum of the eigenvalues. If all eigenvalues are ≥ 0, then their
sum is also ≥ 0. Equality was demonstrated in Exercise 8.8(a).

Exercise 8.14 (Nonsingularity and positive definiteness)
(a) Show that a positive definite matrix is nonsingular.
(b) Show that a positive semidefinite matrix is positive definite if and only if it is nonsingu-
lar.
(c) Show that A > O if and only if A−1 > O.

Solution
(a) Since |A| > 0, the determinant is nonzero and hence A is nonsingular.
(b) If A ≥ O and nonsingular, then all eigenvalues must be nonzero, hence positive. Hence,
A > O. The converse was proved under (a).
(c) Let A > O and x �= 0. Then,

xA−1x = x′A−1AA−1x = (A−1x)′A(A−1x) > 0,

since A−1x �= 0 if x �= 0. So, if A > O then A−1 > O. The converse is then trivial.

Exercise 8.15 (Completion of square) Let A and B be positive definite n × n ma-
trices, and define

C−1 := A−1 + B−1 and D := A + B.

(a) Show that

D−1 = A−1 −A−1CA−1 = B−1 −B−1CB−1 = A−1CB−1 = B−1CA−1.

(b) Let x, a, and b be n× 1 vectors. Show that a vector µ exists such that

(x− a)′A−1(x− a) + (x− b)′B−1(x− b) = (x− µ)′C−1(x− µ) + Q(a, b),

where Q(a, b) does not depend on x.
(c) Show that

Q(a, b) = (a− b)′D−1(a− b).
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Solution
(a) We need to prove four equalities. First,

(A + B)
(
A−1 −A−1CA−1

)
= I −CA−1 + BA−1 −BA−1CA−1

= I −B
(
B−1 −C−1 + A−1

)
CA−1 = I.

Interchanging A and B then gives (A + B)(B−1 −B−1CB−1) = I . Next,

A−1CB−1 = A−1(A−1 + B−1)−1B−1

=
(
B(A−1 + B−1)A

)−1 = (B + A)−1 = D−1.

The previous reasoning shows that A−1CB−1 is symmetric. Hence, also B−1CA−1 =
D−1.
(b) We write

(x− a)′A−1(x− a) + (x− b)′B−1(x− b)

= x′A−1x− 2a′A−1x + a′A−1a + x′B−1x− 2b′B−1x + b′B−1b

= x′(A−1 + B−1)x− 2(a′A−1 + b′B−1)x + (a′A−1a + b′B−1b).

Note that x′A−1a = a′A−1x, because A−1 is symmetric and a scalar is equal to its
transpose. Also,

(x− µ)′C−1(x− µ) + Q(a, b)

= x′C−1x− 2µ′C−1x + µ′C−1µ + Q(a, b).

Hence, equality occurs if we choose

C−1 = A−1 + B−1 and µ = C(A−1a + B−1b).

(c) We note from (a) and (b) that

Q(a, b) = a′A−1a + b′B−1b− µ′C−1µ

= a′A−1a + b′B−1b− (A−1a + B−1b)′C(A−1a + B−1b)

= a′(A−1 −A−1CA−1)a + b′(B−1 −B−1CB−1)b− 2a′A−1CB−1b

= a′D−1a + b′D−1b− 2a′D−1b = (a− b)′D−1(a− b).

Exercise 8.16 (Powers are positive too) If A > O (A ≥ O), show that Ak > O
(Ak ≥ O) for k = 1, 2 . . . .

Solution
If the eigenvalues of A are λ1, . . . , λn, then the eigenvalues of Ak are λk

1, . . . , λ
k
n (Exer-

cise 7.14). If λi > 0 (≥ 0) then λk
i > 0 (≥ 0). Hence, all eigenvalues of Ak are positive

(nonnegative), so that A > O (A ≥ O).
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Exercise 8.17 (From symmetry to positivity) For every symmetric n × n matrix A,
show that a real number k exists such that kIn + A is positive definite.

Solution
If λ1, . . . , λn are the eigenvalues of A, then k + λ1, . . . , k + λn are the eigenvalues of
kIn + A. Hence, any k > −mini λi makes k + λi > 0 for all i.

*Exercise 8.18 (Kato’s lemma) If A is a symmetric matrix with no eigenvalue in the
interval [a, b], show that (A− aI)(A− bI) is positive definite.

Solution
Let B := (A− aIn)(A− bIn). Then

B = A2 − (a + b)A + abIn.

If S′AS = Λ, where S is orthogonal and Λ diagonal, then A = SΛS′, A2 = SΛ2S′,
and In = SS′, so that B = S(Λ2 − (a + b)Λ + abIn)S′. Hence, if λ is an eigenvalue
of A, then λ2 − (a + b)λ + ab is an eigenvalue of B. So, all we need to show is that the
quadratic form λ2− (a+ b)λ+ab is positive outside the interval [a, b]. This in turn follows
from the fact that λ2 − (a + b)λ + ab = (λ− a)(λ− b).

Exercise 8.19 (The matrix aa′ + bb′) Let a and b be two linearly independent n × 1
vectors, and consider the n× n matrix A := aa′ + bb′.
(a) Show that A ≥ O with rk(A) = 2.
(b) Show that the two nonzero (positive) eigenvalues of A are obtained from the equation(

λ− a′a −a′b
−a′b λ− b′b

)(
θ1

θ2

)
=
(

0
0

)
.

(c) Show that the corresponding eigenvectors are given by x = θ1a + θ2b.

Solution
(a) We see that x′Ax = x′aa′x + x′bb′x = (a′x)2 + (b′x)2 ≥ 0. Let B := (a, b),
so that A = BB′. Since a and b are linearly independent, rk(B) = 2. Hence, rk(A) =
rk(BB′) = rk(B) = 2.
(b) The nonzero eigenvalues of the n × n matrix A = BB′ are the same as those of the
2× 2 matrix B′B (Exercise 7.25).
(c) Since (λI2 −B′B)θ = 0, where θ := (θ1, θ2)′, we obtain

A(Bθ) = BB′(Bθ) = B(B′Bθ) = B(λθ) = λ(Bθ).

Hence, Bθ = θ1a + θ2b is an eigenvector of A associated with λ.

Exercise 8.20 (The matrix aa′ − bb′) Let a and b be two linearly independent n × 1
vectors, and consider A := aa′ − bb′.
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(a) Show that rk(A) = 2.
(b) Show that the two eigenvalues of A have opposite signs, so that A is indefinite.
(c) Show that the two nonzero eigenvalues of A are obtained from the equation(

λ− a′a a′b
−a′b λ + b′b

)(
θ1

θ2

)
=
(

0
0

)
.

(d) Show that the corresponding eigenvectors are given by x = θ1a− θ2b.

Solution
(a) Let B := (a,−b) and C := (a, b). Then A = BC ′. The rank of BC ′ is equal
to the rank of C ′B. Since |C ′B| = −(a′a)(b′b) + (a′b)2 < 0 by the Cauchy-Schwarz
inequality (remember that a and b are linearly independent, so that (a′a)(b′b) �= (a′b)2),
it follows that rk(BC ′) = rk(C ′B) = 2.
(b) We see from (a) that |C ′B| < 0. Hence, the product of the two nonzero eigenvalues is
negative, say λ1 > 0 and λ2 < 0. The matrix A is therefore neither positive semidefinite
nor negative semidefinite, hence indefinite.
(c) The eigenvalues are found from the equation (λI2 −C ′B)θ = 0.
(d) Since C ′Bθ = λθ, we have A(Bθ) = BC ′Bθ = λ(Bθ).

Exercise 8.21 (Decomposition of a positive semidefinite matrix, 1) If A is a posi-
tive semidefinite n× n matrix of rank r, show that an n× r matrix T and a diagonal r× r

matrix Λ exist such that

A = TT ′ and T ′T = Λ,

where Λ contains the nonzero (that is, positive) eigenvalues of A. If A is positive definite,
then T is square and nonsingular.

Solution
We write S′AS = Λ0 (diagonal) with S′S = In. Since rk(A) = r, there are n − r zero
eigenvalues. Let Λ be the diagonal r × r submatrix of Λ0 containing the nonzero (hence
positive) eigenvalues of A. Partitioning S = (S1 : S2) we obtain from AS = SΛ0,

AS1 = S1Λ and AS2 = O,

with

S′
1S1 = Ir, S′

2S2 = In−r, S′
1S2 = O.

Notice that A = SΛ0S
′ = S1ΛS′

1. Now let T := S1Λ
1/2, where Λ1/2 is the diagonal

r × r matrix containing the positive square roots of the positive eigenvalues of A. Then,
TT ′ = S1ΛS′

1 = A and T ′T = Λ1/2S′
1S1Λ

1/2 = Λ.

Exercise 8.22 (Decomposition of a positive semidefinite matrix, 2) If A is a posi-
tive semidefinite n × n matrix of rank r, show that there exists an n ×m matrix B with
r ≤ m ≤ n such that A = BB′.
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Solution
Let T be an n × r matrix, such that A = TT ′ and T ′T = Λ (diagonal). Such a matrix
exists by Exercise 8.21. Now define B := (T : O), where the null matrix is of order
n× (m− r). Then BB′ = (T : O)(T : O)′ = TT ′ = A. This exercise shows that there
are many matrices B such that A = BB′.

Exercise 8.23 (Cholesky decomposition) If an n×n matrix A is positive semidefinite of
rank r ≤ n, then it can be written as A = LL′, where L is a lower triangular matrix with
r positive and n−r zero diagonal elements. Prove this statement for the special case r = n.

Solution
For any nonsingular n × n matrix A, the QR decomposition (Exercise 7.35) implies that
there exist an orthogonal n× n matrix Q and a lower triangular n× n matrix L with posi-
tive diagonal elements, such that A = LQ. Hence, AA′ = LQQ′L′ = LL′.

*Exercise 8.24 (Square root) Let A be a positive semidefinite n× n matrix.
(a) Show that there exists a positive semidefinite matrix B such that B2 = A. This matrix
is called the square root of A and is denoted by A1/2.
(b) There are many matrices B satisfying B2 = A. Show that there is only one positive
semidefinite B, so that the square root A1/2 is unique.
(c) How can A1/2 be calculated?

Solution
(a) Decompose A = SΛS′, where S′S = In and Λ := diag(λ1, . . . , λn) contains the

eigenvalues of A on its diagonal. Let Λ1/2 := diag(λ1/2
1 , . . . , λ

1/2
n ), where the unique

positive (nonnegative) square root is taken in each case, and define B := SΛ1/2S′. Then
B is a symmetric matrix satisfying B2 = A and B is positive (semi)definite.
(b) Suppose the opposite, and let C be another positive (semi)definite matrix satisfying
C2 = A. The eigenvalues µ1, . . . , µn of C satisfy µ2

i = λi. Since C is positive semidefi-

nite, µi = λ
1/2
i (and not −λ

1/2
i ).

We now show that B and C commute. Write B = SΛ1/2S′ and C = TΛ1/2T ′ where
S and T are both orthogonal. Since B2 = C2 we obtain SΛS′ = TΛT ′. Now let
P := S′T . This is an orthogonal matrix satisfying ΛP = PΛ. Let pj be the j-th column

of P . Then Λpj = λjpj (j = 1, . . . , n) and hence Λ1/2pj = λ
1/2
j pj (because λi = λj if

and only if λ
1/2
i = λ

1/2
j ). Hence, Λ1/2P = PΛ1/2. Now,

BC = SΛ1/2S′TΛ1/2T ′ = TP ′Λ1/2PΛ1/2P ′S′ = TΛ1/2P ′Λ1/2S′ = CB.

Since B and C commute, they can be simultaneously diagonalized (Exercise 7.51). Thus,
there exists an orthogonal matrix Q such that Q′BQ = M1 (diagonal) and Q′CQ = M2

(diagonal). Since B2 = C2 we obtain M2
1 = M2

2 and hence, since the nonnegative square
root of a nonnegative number is unique, M1 = M2 and so B = C.
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(c) Find S (orthogonal) and Λ := diag(λ1, . . . , λn) such that A = SΛS′. Then con-

struct Λ1/2 := diag(λ1/2
1 , . . . , λ

1/2
n ), where the unique positive (nonnegative) square root

is taken in each case. Finally set A1/2 := SΛ1/2S′.

Exercise 8.25 (Inverse of square root) Let A > O. Show that (A−1)1/2 = (A1/2)−1.
This matrix is denoted by A−1/2.

Solution
Let A = SΛS′, S′S = In. Then A−1 = SΛ−1S′ and hence, by Exercise 8.24,

(A−1)1/2 = SΛ−1/2S′,

where Λ−1/2 denotes the diagonal matrix with elements λ
−1/2
i on the diagonal. Also,

(A1/2)−1 = (SΛ1/2S′)−1 = S(Λ1/2)−1S′ = SΛ−1/2S′.

Exercise 8.26 (The matrix B′AB when A > O) Let A be a positive definite n × n

matrix and let B be an n ×m matrix. Consider the “matrix quadratic form” B′AB and
show that:
(a) rk(B′AB) = rk(B);
(b) B′AB > O⇐⇒ rk(B) = m;
(c) B′AB = O⇐⇒ B = O.

Solution
(a) We use the fact that rk(C ′C) = rk(C) for any matrix C. To this end we write
A = TT ′, where T is a nonsingular n × n matrix (Exercise 8.21). Then, B′AB =
B′TT ′B = (T ′B)′(T ′B) and hence rk(B′AB) = rk(T ′B) = rk(B), since T is non-
singular.
(b) We have B′AB > O if and only if B′AB is nonsingular (Exercise 8.14(b)), which is
the case if and only if rk(B′AB) = m, that is, if and only if rk(B) = m.
(c) If B′AB = O, then rk(B′AB) = 0. Hence, rk(B) = 0, and so B = O. The
converse is trivial.

Exercise 8.27 (The matrix B′AB when A ≥ O) Let A be a positive semidefinite
n× n matrix and let B be an n×m matrix. Show that:
(a) rk(B′AB) = rk(AB);
(b) B′AB ≥ O;
(c) B′AB = O⇐⇒ AB = O;
(d) if rk(B) = m < n, then B′AB > O does not necessarily imply that A > O.

Solution
(a) If rk(A) = r, we have A = TT ′ for some n × r matrix T . Then, B′AB =
B′TT ′B = (T ′B)′(T ′B), and

rk(T ′B) = rk((T ′B)′(T ′B)) = rk(B′TT ′B) ≤ rk(TT ′B) ≤ rk(T ′B),

so that rk(B′AB) = rk(AB).
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(b) For any m × 1 vector x we have x′B′ABx = (Bx)′A(Bx) ≥ 0 since A ≥ O.
Hence, B′AB ≥ O.
(c) We have

B′AB = O ⇐⇒ B′TT ′B = O ⇐⇒ T ′B = O

⇐⇒ TT ′B = O ⇐⇒ AB = O.

(d) For example, let

A =
(

1 1
1 1

)
and b =

(
1
0

)
.

Then, b′Ab = 1 > 0, but A is positive semidefinite and not positive definite.

Exercise 8.28 (Positivity of B′AB) If A is symmetric and B nonsingular, both of
the same order, then show:
(a) B′AB > O⇐⇒ A > O;
(b) B′AB ≥ O⇐⇒ A ≥ O.

Solution
(a) If A > O then B′AB > O by Exercise 8.26(b). Conversely, if B′AB > O, then
A = B−1′(B′AB)B−1 > O.
(b) This works the same, now using Exercise 8.27(b).

Exercise 8.29 (Eigenvalue bounds for (A + B)−1A) Prove that the eigenvalues λi of
(A+B)−1A, where A is positive semidefinite and B positive definite, satisfy 0 ≤ λi < 1.

Solution
Let C := B−1/2AB−1/2 with eigenvalues µ1, . . . , µn. These are nonnegative by Exer-
cises 8.27 and 8.11(b). Then,

A = B1/2CB1/2 and A + B = B1/2(I + C)B1/2,

so that

(A + B)−1A = B−1/2(I + C)−1B−1/2B1/2CB1/2 = B−1/2(I + C)−1CB1/2,

and the eigenvalues of (A + B)−1A are the eigenvalues of (I + C)−1C, where C is
a positive semidefinite matrix. Let S′CS = M (diagonal). Then, (I + C)−1C =
S(I + M)−1S′SMS′, and the eigenvalues of (I + C)−1C are therefore the diagonal
elements of (I + M)−1M . Since µi ≥ 0, we obtain 0 ≤ µi/(1 + µi) < 1.

Exercise 8.30 (Positivity of principal submatrices)
(a) If A is positive semidefinite, show that every principal submatrix of A is positive
semidefinite as well.
(b) If A is positive definite, show that every principal submatrix of A is positive definite as
well.
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Solution
Let Sk := (Ik : O)′ or a row permutation thereof. Then every principal submatrix of A

(of order k) can be represented as S′
kASk. Both (a) and (b) then follow from Exercise 8.28.

*Exercise 8.31 (The principal minors criterion for A > O) Show that A is posi-
tive definite if and only if all leading principal minors are positive. That is, if we denote by
A(k) the k × k north-west submatrix of A defined by

A(k) :=

a11 . . . a1k
...

...
ak1 . . . akk

 (k = 1, . . . , n),

then A > O if and only if |A(k)| > 0 for k = 1, . . . , n.

Solution
By Exercise 8.30, A(k) > O for all k, and hence, in particular, |A(k)| > 0. The converse
is proved by induction. Assume that |A(k)| > 0 for k = 1, . . . , n, and partition A(k+1) as

A(k+1) =
(

A(k) ak+1

a′
k+1 ak+1,k+1

)
.

Now assume (induction hypothesis) that A(k) > O and consider the equality(
Ik 0

−a′
k+1A

−1
(k) 1

)(
A(k) ak+1

a′
k+1 ak+1,k+1

)(
Ik −A−1

(k)ak+1

0′ 1

)
=
(

A(k) 0
0′ βk+1

)
,

where βk+1 := ak+1,k+1 − a′
k+1A

−1
(k)ak+1 The equality shows that A(k+1) > O if and

only if A(k) > O and βk+1 > 0; and also that |A(k+1)| = βk+1|A(k)|. Since |A(k)| > 0
and |A(k+1)| > 0, it follows that βk+1 > 0. Also, A(k) > O by the induction hypothesis.
Hence, A(k+1) > O.

*Exercise 8.32 (The principal minors criterion for A ≥ O) Show that A is positive
semidefinite if and only if all principal minors (not only the leading ones) are nonnegative.

Solution
By Exercise 8.30, A(k) ≥ O for all k, and hence, in particular, |A(k)| ≥ 0. Suppose,
conversely, that all principal minors of A are nonnegative. Recall that there are

(
n
k

)
different

k × k principal minors of A, and that the sum of these is denoted by Ek or Ek(A). We
know from the introduction to Chapter 7 that we can write the characteristic polynomial in
terms of the functions Ek:

|λIn −A| = λn − E1λ
n−1 + E2λ

n−2 + · · ·+ (−1)n−1En−1λ + (−1)nEn.

In particular, we obtain for ε > 0,

|A(k) + εIk| = εk + E1(A(k))ε
k−1 + E2(A(k))ε

k−2 + · · ·+ Ek−1(A(k))ε + Ek(A(k)).
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If all principal minors of A are nonnegative, then all Ej ≥ 0 and hence |A(k) + εIk| ≥
εk > 0. This implies that all leading principal minors of A + εIn are positive. Then, by
Exercise 8.31, A + εIn > O and hence x′Ax + εx′x > 0 for all x �= 0. Letting ε → 0
gives x′Ax ≥ 0 for all x.

Exercise 8.33 (Small minors) Consider the matrices

A =
(

0 0
0 p

)
and B =

1 a b

a a2 ab

b ab p

 .

(a) For which values of p are A and B positive (semi)definite?
(b) Obtain the principal minors of A and B.
(c) For both A and B, confirm that the leading principal minors are ≥ 0 for all values of p,
but that A and B are only positive semidefinite when all principal minors are ≥ 0.

Solution
(a) Both A and B are singular, so they cannot be positive definite. We have, writing
B = (1, a, b)′(1, a, b) + diag(0, 0, p− b2),

x′Ax = px2
2 and x′Bx = (x1 + ax2 + bx3)2 + (p− b2)x2

3.

Hence, A ≥ O when p ≥ 0 and B ≥ 0 when p ≥ b2.
(b) For A, the principal minors of order 1 are 0 (leading) and p; and of order 2, 0 (leading).
For B, the principal minors of order 1 are 1 (leading), a2 and p; of order 2, 0 (leading),
p− b2 and a2(p− b2); and of order 3, 0 (leading).
(c) This follows immediately from the calculations in (b).

Exercise 8.34 (Bigger minors) The examples in Exercise 8.33 show that it is not true
that A ≥ O if and only if the leading principal minors |A(k)| ≥ 0 for k = 1, . . . , n. How-
ever, if |A(k)| > 0 for k = 1, . . . , n− 1 and |A| = 0, then A ≥ O. Prove this.

Solution
Assume that |A(1)| > 0, . . . , |A(n−1)| > 0, and that |A| = 0. Suppose that A is not posi-
tive semidefinite. Then an x := (x1, . . . , xn)′ exists such that x′Ax = −c for some c > 0.
We note that xn �= 0, because if xn = 0, then (x1, . . . , xn−1, 0)′A(x1, . . . , xn−1, 0) =
(x1, . . . , xn−1)′A(n−1)(x1, . . . , xn−1) > 0 since A(n−1) > O (Exercise 8.31). Let t :=
c/x2

n > 0, and define B := A + tene′
n. Then,

x′Bx = x′Ax + tx2
n = −c + tx2

n = 0

and

|B| = |A + tene′
n| = |A|+ t|A(n−1)| = t|A(n−1)| > 0.

All leading principal minors of B are positive and hence B > O. The equality x′Bx = 0
then implies x = 0, which contradicts the fact that xn �= 0. It follows that x′Ax ≥ 0.
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Exercise 8.35 (Determinantal inequality) Let A > O and B ≥ O. Show that
|A + B| ≥ |A| with equality if and only if B = O. (This is a special case of a more
general result to be proved in Exercise 12.7.)

Solution
Since A > O, the matrix C := A−1/2BA−1/2 exists. We write

A + B = A1/2(I + C)A1/2,

so that

|A + B| = |A||I + C|.
The matrix C is positive semidefinite. Hence, |I +C| ≥ 1 and |A+B| ≥ |A|. If B = O
then C = O and |A+B| = |A|. If B �= O, then the eigenvalues of C will be nonnegative
and at least one eigenvalue will be positive. Hence, |I + C| > 1 and |A + B| > |A|.

Exercise 8.36 (Real eigenvalues for AB) If A and B are symmetric and A ≥ O
(or B ≥ O), show that the eigenvalues of AB are real.

Solution
Assume that A ≥ O and write A = TT ′. The nonzero eigenvalues of TT ′B are those of
T ′BT (Exercise 7.25). But T ′BT is symmetric and therefore has only real eigenvalues
(Exercise 7.40).

Exercise 8.37 (Simultaneous reduction to diagonal form, again) Let A > O and
let B be symmetric of the same order. Show that there exist a nonsingular matrix T and a
diagonal matrix Λ such that

A = TT ′ and B = TΛT ′,

where Λ contains the eigenvalues of A−1B.

Solution
Let C := A−1/2BA−1/2. Since C is symmetric, there exist an orthogonal matrix S and a
diagonal matrix Λ such that S′CS = Λ, S′S = I . Now define T := A1/2S. Then,

TT ′ = A1/2SS′A1/2 = A1/2A1/2 = A

and

TΛT ′ = A1/2SΛS′A1/2 = A1/2CA1/2 = A1/2A−1/2BA−1/2A1/2 = B.

Exercise 8.38 (Singular-value decomposition) Let A be a real m × n matrix with
rk(A) = r > 0. Show that there exist an m × r matrix S such that S′S = Ir, an n × r

matrix T such that T ′T = Ir, and an r × r diagonal matrix Λ with positive diagonal
elements, such that A = SΛ1/2T ′.
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Solution
Since AA′ is an m × m symmetric (in fact, positive semidefinite) matrix of rank r, its
nonzero eigenvalues are all positive. From the diagonalization theorem for symmetric ma-
trices we know that there exists an orthogonal m×m matrix (S1 : S2) such that

AA′S1 = S1Λ, AA′S2 = O, S1S
′
1 + S2S

′
2 = Im,

where Λ is an r × r diagonal matrix having these r positive eigenvalues as diagonal ele-
ments. Define T := A′S1Λ

−1/2. Then we see that

A′AT = TΛ, T ′T = Ir.

Since A′S2 = O, we obtain

A = (S1S
′
1 + S2S

′
2)A = S1S

′
1A = S1Λ

1/2Λ−1/2S′
1A = S1Λ

1/2T ′.

The r diagonal elements of Λ1/2 are the singular values of the matrix A. Their squares (the
diagonal elements of Λ) are the nonzero (hence positive) eigenvalues of A′A or, equiva-
lently, the r nonzero (hence positive) eigenvalues of AA′. These are not the same as the
eigenvalues of A2.

Exercise 8.39 (SVD warning) In the singular-value decomposition, the semi-orthogonal
matrices S and T satisfy AA′S = SΛ and A′AT = TΛ. Hence, Λ contains the r

nonzero eigenvalues of AA′ (which are equal to the nonzero eigenvalues of A′A), and
S (by construction) and T contain corresponding eigenvectors. A common mistake in
applying the singular-value decomposition is to find S, T , and Λ from the equations
AA′S = SΛ, A′AT = TΛ.
(a) What is wrong with this?
(b) What would be right?

Solution
(a) This is incorrect because, given S, T obtained in that way would not be unique.
(b) The correct procedure is to find S and Λ from AA′S = SΛ and then define T :=
A′SΛ−1/2. Alternatively, we can find T and Λ from A′AT = TΛ and define S :=
ATΛ−1/2.

Exercise 8.40 (Polar decomposition) Let A be a real m× n matrix.
(a) If A has full column rank n, show that A can be written as A = PV , where P is a
semi-orthogonal m× n matrix (P ′P = In) and V is a positive definite n× n matrix.
(b) If A has full row rank m, show that A can be written as A = V P ′, where P is a
semi-orthogonal n×m matrix (P ′P = Im) and V is a positive definite m×m matrix.

Solution
(a) From the singular-value decomposition (Exercise 8.38) there exist an m × n semi-
orthogonal matrix S such that S′S = In, an n × n orthogonal matrix T , and an n × n
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diagonal matrix Λ with positive diagonal elements, such that A = SΛ1/2T ′. Hence,

A = SΛ1/2T ′ = S(T ′T )Λ1/2T ′ = (ST ′)(TΛ1/2T ′) = PV ,

where P := ST ′ is semi-orthogonal and V := TΛ1/2T ′ is positive definite.
(b) If A has full row rank m, then B := A′ is a real n ×m matrix with full column rank
m. Hence, by (a), we can write B = PV . This gives A = B′ = (PV )′ = V P ′.

Exercise 8.41 (Singular relatives) If A ≥ B ≥ O and |A| = 0, show that |B| = 0 and
|A−B| = 0.

Solution
Since A ≥ O but not A > O, there is an x �= 0 such that x′Ax = 0. Now, B and A−B

are both positive semidefinite. For this x,

0 ≤ x′(A−B)x = −x′Bx ≤ 0,

implying that both x′Bx = 0 and x′(A−B)x = 0. Hence, both matrices are singular.

Exercise 8.42 (Linear independence) For all A ≥ O, show that two vectors A1/2x and
A1/2y are linearly dependent if and only if Ax and Ay are linearly dependent.

Solution
The essence of the proof is the simple observation that for any diagonal matrix Λ with
nonnegative diagonal elements, we have Λq = 0 if and only if Λ1/2q = 0 for any vector
q. Let S′AS = Λ with S′S = In. Then,

Aq = 0 ⇐⇒ SΛS′q = 0 ⇐⇒ ΛS′q = 0 ⇐⇒ Λ1/2S′q = 0

⇐⇒ SΛ1/2S′q = 0 ⇐⇒ A1/2q = 0.

Now let q := α1x+α2y. Then, α1Ax+α2Ay = 0 if and only if α1A
1/2x+α2A

1/2y =
0.

Exercise 8.43 (The matrix A − aa′) If A > O, show that A − aa′ > O if and
only if a′A−1a < 1.

Solution
Let A > O and write A = SΛS′, S′S = I . Then A1/2 = SΛ1/2S′, A−1 = SΛ−1S′,
and A−1/2 = SΛ−1/2S′. Hence,

A− aa′ = A1/2(In −A−1/2aa′A−1/2)A1/2.

Since A1/2 is symmetric and nonsingular, it follows that A − aa′ > O if and only if
In −A−1/2aa′A−1/2 > O. The eigenvalues of A−1/2aa′A−1/2 are 0 (n− 1 times) and
a′A−1a (once). Hence, the eigenvalues of In −A−1/2aa′A−1/2 are 1 (n− 1 times) and
1− a′A−1a. Positivity thus requires aA−1a < 1.
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8.2 Partitioning and positive (semi)definite matrices

Exercise 8.44 (Block diagonality) Show that

Z :=
(

A O
O D

)
is positive (semi)definite if and only if A and D are both positive (semi)definite.

Solution
The matrix Z is positive definite if and only if x′Ax + y′Dy > 0 for all x and y, not
both zero. This occurs if and only if x′Ax > 0 for all nonzero x, and y′Dy > 0 for all
nonzero y, that is, if and only if A and D are positive definite. The same argument proves
the positive semidefinite case. Notice that A ≥ O and D > O implies Z ≥ O but not
Z > O.

Exercise 8.45 (Jumbled blocks) Show that(
A B

B′ D

)
> O ⇐⇒

(
D B′

B A

)
> O.

Solution
Let x and y be arbitrary conformable vectors. Then,

(x′, y′)
(

A B

B′ D

)(
x

y

)
= (y′, x′)

(
D B′

B A

)(
y

x

)
.

Hence, one quadratic form is positive for all x and y, not both zero, if and only if the other
is.

Exercise 8.46 (Fischer’s inequality) Show that

Z :=
(

A B

B′ D

)
≥ O =⇒ |Z| ≤ |A||D|.

Solution
Since Z ≥ O, it follows that A ≥ O and D ≥ O. Suppose that |A| = 0. Then |Z| = 0
(Exercise 8.31) and the result holds. Thus, suppose A > O. Then it follows from Exer-
cise 5.30 that |Z| = |A||D −B′A−1B|. Also, |D −B′A−1B| ≤ |D| by Exercise 8.35.
Hence, |Z| ≤ |A||D|. (See also Exercise 12.34.)

Exercise 8.47 (Positivity of Schur complement) Show that

Z :=
(

A B

B′ D

)
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is positive definite if and only if A and D−B′A−1B are both positive definite (or, equiv-
alently, if and only if D and A−BD−1B′ are both positive definite).

Solution
If Z > O, then all its principal submatrices are positive definite, in particular A. Hence,
we may write(

Im O
−B′A−1 In

)(
A B

B′ D

)(
Im −A−1B

O In

)
=
(

A O
O D −B′A−1B

)
.

This shows that the block-diagonal matrix on the right is positive definite and hence that
D −B′A−1B > O. Conversely, if A and D −B′A−1B are both positive definite, then
the above equality shows that Z is positive definite. (If P ′ZP > 0 and |P | �= 0, then
Z > O by Exercise 8.26(b).)

*Exercise 8.48 (Contractions) Show that the matrix Z of Exercise 8.47 is positive
semidefinite if and only if A and D are positive semidefinite and there exists a matrix C

such that A1/2CD1/2 = B, C ′C ≤ In. A matrix C satisfying C ′C ≤ In is called a
contraction.

Solution
If A ≥ O, D ≥ O, and a contraction C exists such that B = A1/2CD1/2, then we may
write

Z =
(

A1/2A1/2 A1/2CD1/2

D1/2C ′A1/2 D1/2D1/2

)
≥
(

A1/2A1/2 A1/2CD1/2

D1/2C ′A1/2 D1/2C ′CD1/2

)

=
(

A1/2

D1/2C ′

)
(A1/2 : CD1/2) ≥ O.

Conversely, suppose that Z ≥ O. First consider the case when A > O and D > O.
Letting C := A−1/2BD−1/2, we decompose(

A B

B′ D

)
=
(

A1/2 O
D1/2C ′ D1/2

)(
Im O
O In −C ′C

)(
A1/2 CD1/2

O D1/2

)
.

Hence, if Z ≥ O and A > O, D > O, then C is a contraction and B = A1/2CD1/2.
Next consider the general case when A ≥ O and D ≥ O. Then, for any positive integer

k, the matrices A + k−1Im and D + k−1In are both positive definite. Hence, replacing A

by A + k−1Im, D by D + k−1In, and hence Z by Z + k−1Im+n, the previous argument
shows that there exists a contraction Ck such that B = (A+k−1Im)1/2Ck(D+k−1In)1/2.
Now, C ′

kCk ≤ In. Hence, for finite n, the sequence {Ck}∞k=1 is bounded. We know
from the theory of sequences and subsequences that every bounded sequence in Rmn con-
tains a convergent subsequence (Bolzano-Weierstrass theorem, Appendix A, Section A.3).
Let C be the limit of this subsequence. Then C is a contraction and, letting k → ∞,
B = A1/2CD1/2.
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*Exercise 8.49 (Nonsingularity of the bordered Gramian) Let A be a positive semi-
definite m×m matrix and B an m×n matrix. The symmetric (m + n)× (m + n) matrix

Z :=
(

A B

B′ O

)
,

is called the bordered Gramian matrix.
(a) Give an example where A is singular, but where nevertheless Z is nonsingular. In that
case, is the matrix A + BB′ also singular?
(b) Show that Z is nonsingular if and only if rk(B) = n and A + BB′ > O. (In fact, it is
even true that rk(Z) = rk(A + BB′) + rk(B).)

Solution
(a) Taking an example similar to the one in the solution to Exercise 8.27, let

A =
(

1 1
1 1

)
and b =

(
1
β

)
.

The determinant of Z is then |Z| = −(β − 1)2, which is nonzero unless β = 1. The
determinant of A + bb′ is (β− 1)2. We conclude (in this example) that Z is nonsingular if
and only A + bb′ is nonsingular. This is not a coincidence.
(b) We prove this is three steps. First, if rk(B) < n, then Z must be singular, because
the last n columns of Z are linearly dependent. Second, if rk(B) = n and A + BB′ is
singular, then there exists an x �= 0 such that

0 = x′(A + BB′)x = x′Ax + x′BB′x,

implying that both x′Ax = 0 and x′BB′x = 0, and hence that Ax = 0 and B′x = 0.
This gives (

A B

B′ O

)(
x

0

)
=
(
0
0

)
,

implying that Z is singular. Finally, if rk(B) = n and A + BB′ > O, we show that Z is
nonsingular. Suppose Z is singular. Then there exist vectors x and y, not both zero, such
that (

A B

B′ O

)(
x

y

)
=
(
0
0

)
.

This gives Ax+By = 0 and B′x = 0, and hence (A+BB′)x+By = 0 and B′x = 0.
Solving produces x = −(A + BB′)−1By and hence B′(A + BB′)−1By = 0. Given
our assumptions, the matrix B′(A + BB′)−1B is nonsingular; hence y = 0. But then
(A + BB′)x = 0 too, so that both x and y are zero, and we arrive at a contradiction.

Exercise 8.50 (Inverse of the bordered Gramian) Suppose that Z is nonsingular and
let G := A + BB′ and H := B′G−1B. Show that the inverse of Z is given by

Z−1 =
(

G−1 −G−1BH−1B′G−1 G−1BH−1

H−1B′G−1 In −H−1

)
.
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Solution
We simply check that ZZ−1 = Im+n. We need to show that

AG−1 −AG−1BH−1B′G−1 + BH−1B′G−1 = Im,

AG−1BH−1 −BH−1 + BHH−1 = O,

B′G−1 −B′G−1BH−1B′G−1 = O,

B′G−1BH−1 = In.

We obtain this by replacing A by G−BB′ and using the definition of H .

Exercise 8.51 (Determinant of the bordered Gramian)
(a) If A + BB′ is nonsingular, show that |Z| = (−1)n|A + BB′||B′(A + BB′)−1B|.
(b) If we impose the stronger condition that A is nonsingular, then show that |Z| =
(−1)n|A||B′A−1B|.
(c) Conclude that for positive definite A we have

|A + BB′||B′(A + BB′)−1B| = |A||B′A−1B|.

Solution
We notice that (

Im B

O In

)(
A B

B′ O

)
=
(

A + BB′ B

B′ O

)
.

The results then follow from Exercise 5.28.

8.3 Idempotent matrices

Exercise 8.52 (A diagonal idempotent) If A is idempotent and diagonal, what are its
diagonal elements?

Solution
The equation λ2 = λ has roots 0 and 1 only. Consequently, for Λ := diag(λ1, . . . λn), the
equation Λ2 = Λ implies λ2

i = λi for all i. Hence, an idempotent diagonal matrix has
diagonal elements 0 and 1 only.

Exercise 8.53 (Transpose, powers, and complements) If A is idempotent, show that
A′, Ak (k = 1, 2, . . . ), and I −A are also idempotent. Is −A idempotent?

Solution
We have

(A′)2 = A′A′ = (AA)′ = A′,

(Ak)2 = (A2)k = Ak,
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and

(I −A)2 = I −A−A + A2 = I −A−A + A = I −A.

However, (−A)2 = A �= −A, so that −A is not idempotent.

Exercise 8.54 (Block diagonality) Show that A and B are idempotent if and only
if

Z :=
(

A O
O B

)
is idempotent.

Solution
We have

Z2 =
(

A O
O B

)(
A O
O B

)
=
(

A2 O
O B2

)
.

Hence, Z2 = Z if and only if A2 = A and B2 = B.

Exercise 8.55 (A nonsymmetric idempotent) Give an example of an idempotent matrix
of rank > 1 that is not symmetric.

Solution
There are many nonsymmetric idempotent matrices, see Exercise 2.37(c) for an exam-
ple with rk(A) = 1. A more general example is provided by the matrix A(B′A)−1B′,
because

A(B′A)−1B′A(B′A)−1B′ = A(B′A)−1B′,

if A and B are matrices of the same order, and B′A has full rank.

Exercise 8.56 (Eigenvalues of idempotent)
(a) Show that the eigenvalues of an idempotent matrix are 0 and 1.
(b) Does the converse hold?

Solution
(a) Let A be idempotent. Then A2 = A. Thus, if Ax = λx, we have

λx = Ax = A2x = λAx = λ2x

and hence λ = λ2. This implies that λ = 0 or λ = 1.
(b) No. For example1 1 1

0 1 1
0 0 0

1 1 1
0 1 1
0 0 0

 =

1 2 2
0 1 1
0 0 0

 ,

despite the fact that the eigenvalues are 0 and 1.
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Exercise 8.57 (A symmetric matrix with 0, 1 eigenvalues is idempotent) We know
from Exercise 8.56 that a matrix may have only eigenvalues 0 and 1 and not be idempotent.
Now show that if A is symmetric and has only eigenvalues 0 and 1, it is idempotent.

Solution
If A is symmetric, it can be diagonalized: S′AS = Λ (diagonal), S′S = I . If the
eigenvalues are only 0 and 1, then Λ2 = Λ, so that

A2 = SΛS′SΛS′ = SΛ2S′ = SΛS′ = A.

Exercise 8.58 (Ordering of idempotent matrices) Let A and B be symmetric idempo-
tent matrices of the same order. Show that A ≥ B if and only if AB = B.

Solution
If AB = B, then

(A−B)2 = A2 −AB −BA + B2 = A−B,

because AB = B = B′ = BA. Since A−B is symmetric, it is symmetric idempotent,
hence positive semidefinite (because its eigenvalues are nonnegative, namely 0 and 1).

To prove the converse, let A ≥ B and define C := (I −A)B. Clearly, C ′C ≥ O. But
also

C ′C = B(I −A)B = −B(A−B)B ≤ O.

This implies that C ′C = O, and hence that C = O, that is, AB = B.

Exercise 8.59 (Extreme cases: A = O and A = I) Let A be an idempotent n × n

matrix.
(a) Show that rk(A) = n if and only if A = In.
(b) Show that all eigenvalues of A are zero if and only if A = O.

Solution
(a) If A is the identity matrix, then obviously rk(A) = n. Conversely, if A is nonsingular,
then

A = A−1AA = A−1A = In.

(b) If A is the null matrix, then all its eigenvalues are 0. Conversely, assume that all
eigenvalues of A are 0. By Schur’s decomposition theorem (Exercise 7.62) there exists a
unitary matrix S and a strictly upper triangular matrix M such that S∗AS = M . Since
M is strictly upper triangular, we know from Exercise 7.55(a) that Mn = O. Hence,
An = SMnS∗ = O. But A is idempotent. So, An = AA . . .A = A. We conclude that
A = O.
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Exercise 8.60 (Similarity of idempotent) If A is an idempotent n × n matrix with r

eigenvalues equal to 1 (and n − r eigenvalues equal to 0), show that there exists a nonsin-
gular matrix T and a unitary matrix S such that

T−1AT =
(

Ir O
O O

)
and S∗AS =

(
Ir Q

O O

)
for some matrix Q.

Solution
To prove the first result, we use Jordan’s theorem (Exercise 7.79) by which there exists a
nonsingular matrix T such that T−1AT = J (Jordan form). Since the eigenvalues of A

are 1 and 0 only, we partition

J :=
(

J1 O
O J0

)
with

J1 :=


1 β1 0 . . . 0
0 1 β2 . . . 0
...

...
...

...
0 0 0 . . . βr−1

0 0 0 . . . 1

 , J0 :=


0 γ1 0 . . . 0
0 0 γ2 . . . 0
...

...
...

...
0 0 0 . . . γn−r−1

0 0 0 . . . 0

 ,

where the βi and γj are either 0 or 1. Since A is idempotent, so is J and so are J1 and J0.
But J2

1 = J1 implies that J1 is diagonal and J2
0 = J0 implies that J0 is diagonal; see also

Exercise 9.17. Hence, all βi and γj are zero and the first result follows.
To prove the second result, we use Schur’s theorem (Exercise 7.62) by which there exists

a unitary matrix S such that S∗AS = M (upper triangular). Since the eigenvalues of A

are 1 and 0 only, we partition

M :=
(

P Q

O R

)
,

where P is a unit upper triangular r × r matrix (that is, it has only ones on the diagonal),
and R a strictly upper triangular matrix. Since A is idempotent, so is M and hence(

P 2 PQ + QR

O R2

)
=
(

P Q

O R

)
.

This implies that P is idempotent; it is nonsingular, hence, P = Ir (Exercise 8.59(a)).
Also, R is idempotent and all its eigenvalues are zero; hence, R = O (Exercise 8.59(b)).
Thus,

M =
(

Ir Q

O O

)
.
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Exercise 8.61 (Rank equals trace) For any idempotent matrix A, show that rk(A) =
tr(A).

Solution
We know from Exercise 8.60 that S∗AS = M , where S is unitary and

M :=
(

Ir Q

O O

)
.

Hence, rk(A) = rk(M) = r and tr(A) = tr(M) = r.

Exercise 8.62 (A necessary and sufficient condition for idempotency, 1) Show that a
symmetric n× n matrix A is idempotent if and only if

rk(A) + rk(In −A) = n.
Solution
Let n0 denote the number of zero eigenvalues of A, and n1 the number of unit eigenvalues.
Then, rk(A) = n− n0 and rk(In −A) = n− n1. Hence,

rk(A) + rk(In −A) = n + (n− n0 − n1),

and this equals n if and only if n0 + n1 = n, that is, if and only if A only has eigenvalues
0 and 1. By Exercise 8.57, this happens (because of the symmetry) if and only if A is
idempotent.

Exercise 8.63 (A necessary and sufficient condition for idempotency, 2) In fact, the
result of Exercise 8.62 holds generally. Thus, show that an n × n matrix A is idempotent
if and only if

rk(A) + rk(In −A) = n.

Solution
If A is idempotent, then In −A is also idempotent. Hence,

rk(A) + rk(In −A) = tr(A) + tr(In −A) = tr(A + In −A) = tr(In) = n.

To prove the converse, let A possess r nonzero eigenvalues. We establish first that rk(A) =
r. By Exercise 7.66, rk(A) ≥ r. The matrix In −A has n − r eigenvalues 1 and r other
eigenvalues. Hence, In −A has at least n− r nonzero eigenvalues, so that rk(In −A) ≥
n− r. But rk(A) + rk(In −A) = n. Hence, rk(A) = r and rk(In −A) = n− r.

Now consider the Jordan decomposition of A,

T−1AT =
(

J1 O
O J0

)
,

where J1 has the r nonzero eigenvalues of A on the diagonal and J0 the n− r zero eigen-
values. Since rk(J1) = r and rk(J1) + rk(J0) = rk(A) = r, it follows that rk(J0) = 0;
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hence, J0 = O. Similarly we write the Jordan decomposition of In −A as

T−1(In −A)T =
(

Ir − J1 O
O In−r − J0

)
=
(

Ir − J1 O
O In−r

)
.

Since rk(In −A) = n− r, it follows that rk(Ir − J1) = 0; hence, J1 = Ir. We conclude
that

A(In −A) = T

(
Ir O
O O

)
T−1T

(
O O
O In−r

)
T−1 = O,

and hence A2 = A.

Exercise 8.64 (Idempotency of A + B) Let A and B be idempotent matrices of
the same order.
(a) Show that A + B is idempotent if and only if AB = BA = O.
(b) If A + B is idempotent, show that rk(A + B) = rk(A) + rk(B).

Solution
(a) If AB = BA = O, then

(A + B)(A + B) = A2 + AB + BA + B2 = A2 + B2 = A + B.

Conversely, if A + B is idempotent, then AB + BA = O. Premultiplying by A gives
AB + ABA = O. Postmultiplying by A gives ABA + BA = O. Hence, AB =
BA = O.
(b) If A + B is idempotent, then

rk(A + B) = tr(A + B) = tr(A) + tr(B) = rk(A) + rk(B).

Exercise 8.65 (Condition for A and B to both be idempotent) If AB = A and
BA = B, show that both A and B are idempotent.

Solution
We have

A2 = (AB)2 = ABAB = ABA = AB = A

and

B2 = (BA)2 = BABA = BAB = BA = B.

Exercise 8.66 (Decomposition of symmetric idempotent matrices) Let A be a sym-
metric idempotent n× n matrix of rank r.
(a) Show that A is positivesemidefinite.
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(b) Show that a semi-orthogonal n× r matrix S exists such that

A = SS′, S′S = Ir.

Solution
(a) If A is idempotent and symmetric, then it is positive semidefinite, because all its eigen-
values are nonnegative.
(b) This follows directly from Exercise 8.21, using the fact the eigenvalues are only 0 and
1. Let us present a more direct proof. It follows from the diagonalization theorem for
symmetric matrices (Exercise 7.46) that an orthogonal matrix S̃ exists such that

S̃′AS̃ = Λ =
(

Ir O
O O

)
.

Let us partition S̃ := (S : T ). Then, S′S = Ir and

A = S̃ΛS̃′ = SIrS
′ + TOT ′ = SS′.

Exercise 8.67 (Orthogonal complements and idempotency) Let A := (A1 : A2)
be a square matrix of order n. If rk(A1) + rk(A2) = n and A′

1A2 = O, show that

A1(A′
1A1)−1A′

1 + A2(A′
2A2)−1A′

2 = In.

Solution
Consider the matrix

A′A =
(

A′
1A1 A′

1A2

A′
2A1 A′

2A2

)
=
(

A′
1A1 O
O A′

2A2

)
.

Since A is nonsingular, A′A is nonsingular too (because A is square), and so are A′
1A1

and A′
2A2. Let A1 have n1 columns and let A2 have n2 = n − n1 columns. Then

rk(A1) = n1 and rk(A2) = n2. We now present two proofs. The first proof is based on
the fact that A(A′A)−1A′ = In. This gives

In = A(A′A)−1A′ = (A1 : A2)
(

A′
1A1 O
O A′

2A2

)−1(
A′

1

A′
2

)
= A1(A′

1A1)−1A′
1 + A2(A′

2A2)−1A′
2.

In the second proof we define C1 := A1(A′
1A1)−1A′

1 and C2 := A2(A′
2A2)−1A′

2. Then
C1 and C2 are idempotent, and C1C2 = C2C1 = O. Hence, by Exercise 8.64, C1 + C2

is idempotent, and

rk(C1 + C2) = rk(C1) + rk(C2) = rk(A1) + rk(A2) = n,

because rk(A1(A′
1A1)−1A′

1) = rk((A′
1A1)−1A′

1A1) = rk(In1) = rk(A1), and simi-
larly with A2. It follows that C1+C2 is idempotent and nonsingular; hence, C1+C2 = In

(Exercise 8.59(a)).
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Exercise 8.68 (A fundamental matrix in econometrics, 1) Let X be a matrix of order
n × k and rank k. The matrix M := In − X(X ′X)−1X ′ is a very important one in
econometrics.
(a) Show that M is symmetric idempotent.
(b) Show that MX = O.
(c) Show that rk(M) = n− k.

Solution
(a) This follows from

(In−X(X ′X)−1X ′)(In −X(X ′X)−1X ′)

= In −X(X ′X)−1X ′ −X(X ′X)−1X ′ + X(X ′X)−1X ′X(X ′X)−1X ′

= In −X(X ′X)−1X ′ −X(X ′X)−1X ′ + X(X ′X)−1X ′

= In −X(X ′X)−1X ′.

(b) We verify that

MX = (In −X(X ′X)−1X ′)X = X −X(X ′X)−1X ′X = X −X = O.

(c) Finally,

rk(M) = tr(M) = tr(In −X(X ′X)−1X ′) = tr(In)− tr(X(X ′X)−1X ′)

= n− tr(X ′X(X ′X)−1) = n− tr(Ik) = n− k.

*Exercise 8.69 (A fundamental matrix in econometrics, 2) Let X be a matrix of or-
der n × k and rank k, let M := In −X(X ′X)−1X ′, and let V be positive definite of
order n. Show that the following three statements are equivalent:
(a) X ′V −1M = O;
(b)
(
X ′V −1X

)−1
X ′V −1 = (X ′X)−1 X ′;

(c)
(
X ′V −1X

)−1 = (X ′X)−1 X ′V X (X ′X)−1.

Solution
We show this in three steps.
(a) ⇐⇒ (b): This follows from

X ′V −1M = O ⇐⇒ X ′V −1 = X ′V −1X(X ′X)−1X ′

⇐⇒
(
X ′V −1X

)−1
X ′V −1 = (X ′X)−1X ′.

(b) =⇒ (c): It suffices to postmultiply both sides of the equality(
X ′V −1X

)−1
X ′V −1 = (X ′X)−1X ′

by V X (X ′X)−1.
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(c) =⇒ (b): This is a little trickier. We have(
X ′V −1X

)−1 =
(
X ′X

)−1
X ′V X

(
X ′X

)−1

=⇒ X ′X
(
X ′V −1X

)−1
X ′X = X ′V X

=⇒ X ′V 1/2V −1/2X
(
X ′V −1X

)−1
X ′V −1/2V 1/2X = X ′V 1/2V 1/2X

=⇒ X ′V 1/2
(
I − V −1/2X

(
X ′V −1X

)−1
X ′V −1/2

)
V 1/2X = O.

Now we observe that the matrix Q := I−V −1/2X
(
X ′V −1X

)−1
X ′V −1/2 is symmetric

idempotent. Therefore, the fact that

O = X ′V 1/2QV 1/2X = X ′V 1/2Q′QV 1/2X

implies that QV 1/2X = O, that is,(
I − V −1/2X

(
X ′V −1X

)−1
X ′V −1/2

)
V 1/2X = O.

Now premultiply both sides by (X ′X)−1X ′V 1/2 and postmultiply both sides by (X ′X)−1,
and we obtain the required equality. (Compare Exercise 12.29.)

Exercise 8.70 (Two projection results) Let A be a symmetric idempotent n× n matrix
and let B be an n×m matrix of rank m.
(a) If AB = B and rk(A) = rk(B), show that A = B(B′B)−1B′.
(b) If AB = O and rk(A) + rk(B) = n, show that A = In −B(B′B)−1B′.

Solution
(a) Let C := A−B(B′B)−1B′. Then,

C2 = (A−B(B′B)−1B′)(A−B(B′B)−1B′)

= A2 −AB(B′B)−1B′ −B(B′B)−1B′A + B(B′B)−1B′B(B′B)−1B′

= A−B(B′B)−1B′ −B(B′B)−1B′ + B(B′B)−1B′ = C.

Hence, C is idempotent and

rk(C) = trC = trA− tr B(B′B)−1B′ = rk(A)− rk(B) = 0,

so that C = O and A = B(B′B)−1B′.
(b) Let C := In −A. Then C is symmetric idempotent and CB = B. Also, rk(C) =
n − rk(A) = rk(B). Hence, by (a), C = B(B′B)−1B′ and hence A = In − C =
In −B(B′B)−1B′.

Exercise 8.71 (Deviations from the mean, 1)
(a) Show that the matrix M := In − (1/n)ıı′ is symmetric idempotent.
(b) Show that the j-th component of the vector Mx is xj− x̄, where x̄ := (1/n)

∑n
k=1 xk.

(c) Show that Mı = 0.
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(d) Prove that, for any A ≥ O,

tr A2 − 1
n

(tr A)2 ≥ 0.

Solution
(a) This can be verified directly. Alternatively, it follows from Exercise 8.68(a) by taking
X := ı, and noting that ı′ı = n.
(b) Since x̄ = ı′x/n, we have Mx = x − (1/n)ıı′x = x − x̄ı, and the j-th component
of this vector is xj − x̄.
(c) If x := ı in (b), then xj − x̄ = 0 for all j.
(d) Let S′AS = Λ (diagonal) with S′S = In, and let λ be the n× 1 vector containing the
eigenvalues, λ := (λ1, . . . , λn)′. Then,

tr A2 − 1
n

(tr A)2 = tr(SΛS′)2 − 1
n

(tr SΛS′)2

= trΛ2 − 1
n

(tr Λ)2 = λ′λ− 1
n

(ı′λ)2

= λ′
(

In −
1
n

ıı′
)

λ ≥ 0,

because the matrix In − (1/n)ıı′ is symmetric idempotent, hence positive semidefinite.

Exercise 8.72 (Many idempotent matrices) Let A1, A2, . . . ,Am be symmetric idem-
potent n× n matrices with rk(Ai) = ri, such that A1 + A2 + · · ·+ Am = In.
(a) Show that r1 + r2 + · · ·+ rm = n.
(b) Show that Ai + Aj is symmetric idempotent (i �= j).
(c) Show that AiAj = O (i �= j).

Solution
(a) This follows from

m∑
i=1

ri =
m∑

i=1

tr(Ai) = tr
m∑

i=1

Ai = tr(In) = n.

(b) Let B := Ai + Aj and C := In −B. For any two matrices P and Q (of the same
order) we have rk(P + Q) ≤ rk(P ) + rk(Q); see Exercise 4.14 or Exercise 5.51. Thus,

n = rk(In) = rk(B + C) ≤ rk(B) + rk(C)

= rk(Ai + Aj) + rk

 ∑
k/∈{i,j}

Ak

 ≤ m∑
i=1

rk(Ai) = n.

Hence, rk(B) + rk(I −B) = n. Exercise 8.63(b) then implies that B is idempotent.
(c) Since Ai, Aj , and Ai+Aj are all idempotent, Exercise 8.64(a) implies that AiAj = O.



8.3 Idempotent matrices 241

Exercise 8.73 (A weighted sum of idempotent matrices) Let A1, A2, . . . ,Am be
symmetric idempotent n×n matrices with rk(Ai) = ri such that A1+A2+· · ·+Am = In.
Define

A := α1A1 + α2A2 + · · ·+ αmAm.

(a) Show that the eigenvalues of A are given by αi (with multiplicity ri), i = 1, . . . , m.
(b) Hence, show that |A| = αr1

1 αr2
2 . . . αrm

m .
(c) If αi �= 0 for all i, show that A−1 = α−1

1 A1 + α−1
2 A2 + · · ·+ α−1

m Am.

Solution
(a) Since AiAj = O (i �= j) by Exercise 8.72, we obtain A(Aix) = αi(Aix) for any x.
Hence, αi is an eigenvalue with multiplicity ri, because we can choose ri linearly indepen-
dent combinations of the columns of Ai.
(b) The determinant is the product of the eigenvalues.
(c) We verify by direct multiplication, using the fact that AiAj = O for all i �= j.

Exercise 8.74 (Equicorrelation matrix)
(a) Obtain the eigenvalues of the n× n equicorrelation matrix

A :=


1 t . . . t

t 1 . . . t
...

...
...

t t . . . 1

 .

(b) What is the determinant? And the inverse?
(c) For which values of t is A positive definite?
(d) Obtain the eigenvectors of A.

Solution
(a) Let B := ıı′/n. Notice that B is symmetric idempotent with rk(B) = 1. Now,

A = In + t(ıı′ − In) = (1− t)In + (nt)B

= ((n− 1)t + 1)B + (1− t)(In −B) = α1B + α2(In −B),

with α1 := (n− 1)t + 1 and α2 := 1− t. Since B and In −B are idempotent and sum to
In, the eigenvalues of A are α1 (once) and α2 (n− 1 times).
(b) The determinant is

|A| = α1α
n−1
2 = ((n− 1)t + 1) (1− t)n−1 .

For t �= 1 and t �= −1/(n− 1), the matrix A is nonsingular, and

A−1 = α−1
1 B + α−1

2 (In −B).

(c) A is positive definite if (and only if) α1 > 0 and α2 > 0. This happens for−1/(n−1) <

t < 1.
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(d) Since A = α1B + α2(In −B), the eigenvectors of A are those of B, namely ı/
√

n,
together with any set of n− 1 linearly independent vectors orthogonal to ı.

Exercise 8.75 (Deviations from the mean, 2) Find the eigenvalues and eigenvectors
associated with the quadratic form

∑n
i,j=1(xi − xj)2.

Solution
We write, letting x := (x1, . . . , xn)′,∑

ij

(xi − xj)2 =
∑
ij

(x2
i + x2

j − 2xixj)

= 2n
∑

i

x2
i − 2

(∑
i

xi

)2

= (2n)x′x− 2(ı′x)2

= (2n) x′
(

In −
1
n

ıı′
)

x = (2n)x′Mx,

where the matrix M := In − (1/n)ıı′ is symmetric idempotent of rank n− 1. Hence, M

has eigenvalues 1 (n− 1 times) and 0 (once). As a result, 2nM has eigenvalues 2n (n− 1
times) and 0 (once). The eigenvectors are ı (associated with the zero eigenvalue) and any
linearly independent set of n − 1 vectors orthogonal to ı (associated with the eigenvalue
2n).

Notes

The important Cholesky decomposition (Exercise 8.23) was only proved for the case where
A is positive definite (hence nonsingular). In fact, it holds also for positive semidefinite ma-
trices; see Horn and Johnson (1985). The concept of contractions, needed in Exercise 8.48,
is discussed in Zhan (2002). The bordered Gramian matrix (Exercise 8.49) is treated more
fully in Magnus (1990). Exercise 8.58 comes from Liu and Polasek (1995). More results of
the kind discussed in Exercise 8.72 can be found in Graybill and Marsaglia (1957). Ayres
(1962, pp. 170–171) extends Exercise 8.73 to the representation of any diagonalizable ma-
trix A, the so-called spectral decomposition of a matrix. The idempotents form a matrix
basis and the coefficients of the representation are the distinct eigenvalues of A.
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Matrix functions

This chapter is concerned with using powers of an n×n matrix A to represent an n×n ma-
trix function F (A). Simple examples of matrix functions are the powers Ap themselves,
first encountered in Chapter 2, and the inverse A−1, defined in Chapter 4. In order to un-
derstand how matrix functions should be defined, let us reconsider the notion of a positive
definite matrix. This is a matrix that is supposed to generalize the idea of a positive number
to matrices. We did not define a positive definite matrix to be a matrix all of whose ele-
ments are positive. (Such matrices play a role in some areas of statistics and mathematical
economics; they are called positive matrices.) Our definition was equivalent to requiring
that all eigenvalues of A are positive. In the same way, we shall see that a matrix function
is closely related to the same function defined on the eigenvalues of A.

The eigenvalues of A are denoted by λ1, . . . , λn, and we define the spectral radius of A

as

�(A) := max
i
|λi|.

Suppose that there exists a series expansion (or series representation)

F (A) =
∞∑

j=0

cjA
j ,

where, by convention, we take A0 = In. Series expansions are not unique, as we shall see
in (a) below. The matrix series converges absolutely (or is absolutely convergent) if and
only if each of the n2 elements of the matrix

∑
j cjA

j converges absolutely. This occurs if∑∞
j=0 |cj(�(A))j | < ∞ (see Exercise 9.19). The special case where the series terminates

after m terms (that is, cj = 0 or Aj = O for j ≥ m) is called a matrix polynomial of order
m−1 or a finite series. The three functions most commonly encountered are the following:

243
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(a) Let ν ∈ R and j = 0, 1, . . . , and denote the binomial coefficients by(
ν

j

)
:=

(ν)(ν − 1) · · · (ν − j + 1)
j!

,

sometimes also written by means of the combinations symbol Cν
j (a generalization of this

symbol will be introduced in Exercise 9.9). The binomial expansion of the power function,
represented by

(In + A)ν =
∞∑

j=0

(
ν

j

)
Aj ,

converges absolutely for �(A) < 1 (Exercise 9.19(c)). There are alternative expansions for
values of �(A) other than �(A) < 1; see Exercises 9.1 and 9.20. Absolute convergence
occurs here when all eigenvalues of A lie within the unit circle. (In general, if a series con-
verges absolutely for �(A) < r, then the largest such r is called the radius of convergence
of the series.) Note the terminology: a unit circle is a circle in the complex plane of radius
1 with center at some point b, that is, the collection of points λ satisfying |λ − b| < 1.
However, the unit circle refers to the unit circle with center 0.

(b) The exponential function

exp(A) :=
∞∑

j=0

1
j!

Aj ,

also written as eA , converges absolutely for �(A) < ∞ (Exercise 9.19(b)). The resulting
matrix B := exp(A) is nonsingular, whatever the argument A (Exercise 9.21).

(c) The logarithmic function is defined implicitly as the inverse of the exponential func-
tion by log(exp(A)) := A, or by exp(log(B)) := B, where B is nonsingular. The
function has the explicit representation

log(In + A) =
∞∑

j=0

(−1)j

j + 1
Aj+1 = −

∞∑
i=1

(−1)i

i
Ai,

which converges absolutely for �(A) < 1, as implied by (a) and (b); see Exercises 9.8 and
9.19(c).

A series may or may not converge when the condition on �(A) is violated. For example,
the expansion of (In +A)2 is In +2A+A2, which terminates after the third term (j = 2)
and is therefore convergent for any A. Another example is given by the fact that the series
expansion of log(1 + λ) converges to log 2 for λ = 1, but not absolutely so:

lim
λ→1−

∞∑
j=0

| − 1|j
j + 1

|λj+1| = lim
λ→1−

λ
∞∑

j=0

λj

j + 1
= lim

λ→1−
− log(1− λ) =∞,
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where the notation λ → 1− indicates that the limit is taken from below. A series that
converges, but not absolutely, is called conditionally convergent. For more on these issues,
see Appendix A, where we also discuss the concept of principal value when a function is
multiple-valued. Such is the case for the square root, the binomial, and the logarithmic
functions.

We shall use Jordan’s decomposition theorem to represent F (A) :=
∑∞

j=0 cjA
j in

terms of the scalar function f(λ) :=
∑∞

j=0 cjλ
j . We recall from Chapter 7 that the Jordan

decomposition of A is given by A = TJT−1, where J := diag (Jn1(λ1), . . . ,Jnk
(λk)),

with n1 + · · ·+ nk = n and the λ’s need not be distinct. This implies (Exercise 9.18) that

F (A) = TF (J)T−1,

where F (J) := diag (F (Jn1(λ1)), . . . ,F (Jnk
(λk))) and

F (Jni(λi)) :=


f(λi) f ′(λi) . . . f (ni−1)(λi)

(ni−1)!

0 f(λi) . . . f (ni−2)(λi)
(ni−2)!

...
...

...
0 0 . . . f(λi)


for i = 1, . . . , k.

The Jordan representation of F (A) shows that of the scalar function f(λ) only the
derivatives up to order ni − 1, evaluated at λi, are needed. So, any polynomial fitting these
values will suffice. Let there be l ≤ k distinct eigenvalues denoted by λs (s = 1, . . . , l) and
let the maximal dimension of Jni(λs) for any given λs be denoted by ms. For example,
the matrix 

3 0 0 0
0 3 1 0
0 0 3 0
0 0 0 7


has J = diag(J1(3), J2(3), J1(7)) and the maximal dimension associated with λ = 3 is
2. Then, defining m :=

∑l
s=1 ms and p(λ) :=

∑m−1
j=0 pjλ

j , we get (Exercise 9.29) the
representation

F (A) :=
∞∑

j=0

cjA
j = p0In + p1A + · · ·+ pm−1A

m−1,

where the polynomial’s coefficients p0, . . . , pm−1 are obtained from equating

f (t)(λ)
∣∣∣
λs

= p(t)(λ)
∣∣∣
λs

for s = 1, . . . , l and t = 0, 1, . . . , ms − 1. This representation has the advantage that we
need not work out T ; it only requires us to solve a system of equations. Note that the scalar
coefficients in the polynomial are in general not polynomial functions of theeigenvalues.
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In fitting the polynomial of order m − 1, we did not require T but we assumed J was
known. Suppose instead that we only know dg(J), that is, the l distinct eigenvalues and
their multiplicities. We can still use the approach of fitting a polynomial, albeit of order
n − 1 (hence larger than before), that reproduces the required derivatives of f(λs). We
obtain q(λ) :=

∑n−1
j=0 qjλ

j from equating

f (t)(λ)
∣∣∣
λs

= q(t)(λ)
∣∣∣
λs

for s = 1, . . . , l and t = 0, 1, . . . , rs−1, where rs denotes the multiplicity of λs. The coef-
ficients of the polynomials p(λ) and q(λ) are not the same, in general; see Exercise 9.30.

9.1 Simple functions

Exercise 9.1 (Functions of diagonal matrices, numbers) Let

A =
(

a 0
0 b

)
.

(a) Obtain exp(A) in terms of a and b.
(b) For |a| < 1 and |b| < 1, obtain (In + A)ν and log(In + A).
(c) For |a| > 1 and |b| > 1, obtain (In + A)ν assuming ν is an integer.

Solution
(a) By definition,

exp(A) =
∞∑

j=0

1
j!

(
a 0
0 b

)j

=
∞∑

j=0

1
j!

(
aj 0
0 bj

)
=

(∑∞
j=0

aj

j! 0
0

∑∞
j=0

bj

j!

)

=
(

exp(a) 0
0 exp(b)

)
.

(b) Since the eigenvalues of A, namely a and b, have moduli smaller than 1, we have
�(A) < 1 and hence

(In + A)ν =
∞∑

j=0

(
ν

j

)(
aj 0
0 bj

)
=
(

(1 + a)ν 0
0 (1 + b)ν

)
and

log(In + A) =
∞∑

j=0

(−1)j

j + 1

(
aj+1 0

0 bj+1

)
=
(

log(1 + a) 0
0 log(1 + b)

)
.

(c) If |a| > 1, |b| > 1, and ν is an integer (possibly negative), then we write

(In + A)ν = Aν(In + A−1)ν ,

which can be proved by induction, using the fact that a matrix commutes with its own pow-
ers. The matrix (In + A−1)ν has a convergent binomial expansion, because �(A−1) < 1.
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Thus,

(In + A)ν = Aν
(
In + A−1

)ν =
(

aν 0
0 bν

) ∞∑
j=0

(
ν

j

)(
a−j 0
0 b−j

)

=
(

aν 0
0 bν

)((
1 + a−1

)ν 0
0

(
1 + b−1

)ν) =
(

(1 + a)ν 0
0 (1 + b)ν

)
.

This shows that if the condition �(A) < 1 is not satisfied, it is sometimes still possible to
express the function in terms of another series expansion.

Exercise 9.2 (Functions of diagonal matrices)
(a) Let A := diag(a1, . . . , an). If the series

F (A) :=
∞∑

j=0

cjA
j

is convergent, show that

F (A) = diag(f(a1), . . . , f(an)),

where f(x) :=
∑∞

j=0 cjx
j .

(b) In particular, show that exp(In) = (e)In.

Solution
(a) We have

F (A) =
∞∑

j=0

cjA
j =

∞∑
j=0

cj(diag(a1, . . . , an))j

= diag

 ∞∑
j=0

cja
j
1, . . . ,

∞∑
j=0

cja
j
n

 = diag (f(a1), . . . , f(an)) .

(b) This follows by setting cj = 1/j!, A = In, and f(x) = ex in (a).

Exercise 9.3 (Nilpotent terminator) Let A be an n × n nilpotent matrix of index
k. Show that

F (A) :=
∞∑

j=0

cjA
j

is a polynomial of finite order.

Solution
By definition, Ak = O, so that Aj = O for all j ≥ k. This implies that the series termi-
nates after k terms.
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Exercise 9.4 (Idempotent replicator) Let A be an n × n idempotent matrix. Show
that:
(a) (In + A)−1 = In − 1

2A;
(b) exp(A) = In + (e− 1)A;
(c) log(In + A) = (log 2)A.

Solution
(a) Direct verification gives

(In + A)
(

In −
1
2
A

)
= In + A− 1

2
A− 1

2
A2 = In.

For a constructive proof, we use Aj = A for j ≥ 1, and the fact that �(A) = 1 but none
of the eigenvalues is −1. Then,

(In + A)−1 =
∞∑

j=0

(
−1
j

)
Aj = In +

∞∑
j=1

(
−1
j

)
A.

Using
∑∞

j=1

(−1
j

)
= (1 + 1)−1 − 1 = −1

2 gives the required result. Notice that this series
is summable (see Appendix A), but not convergent.
(b) Similarly,

exp(A) = In +
∞∑

j=1

1
j!

A = In + (e− 1)A.

(c) Finally,

log(In + A) =
∞∑

j=0

(−1)j

j + 1
Aj+1 =

∞∑
j=0

(−1)j

j + 1
A = (log 2)A.

Exercise 9.5 (Inverse of A + ab′, revisited) Let A be a nonsingular n × n matrix,
and let a and b be n× 1 vectors.
(a) If b′A−1a is real and lies in the interval (−1, 1], show that(

A + ab′
)−1 = A−1 − 1

1 + b′A−1a
A−1ab′A−1.

(b) What if b′A−1a �= −1, but is unrestricted otherwise, and is possibly complex?

Solution
(a) We have (A + ab′)−1 = A−1

(
In + ab′A−1

)−1
. The matrix ab′A−1 has only one

nonzero eigenvalue given by b′A−1a. Since −1 < b′A−1a ≤ 1, we may expand the
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binomial as (
In + ab′A−1

)−1 = In +
∞∑

j=1

(
−1
j

)(
ab′A−1

)j
= In + a

∞∑
j=1

(
−1
j

)(
b′A−1a

)j−1
b′A−1

= In − a
1

1 + b′A−1a
b′A−1,

because
∑∞

j=1

(−1
j

)
xj−1 = −1/(1+x). Premultiplying both sides of the equation by A−1

gives (
A + ab′

)−1 = A−1 − 1
1 + b′A−1a

A−1ab′A−1.

(b) Since the inverse of A + ab′ is unique and the right-hand side does not contain a series
expansion, it is also the inverse for any b′A−1a �= −1. This can be verified by multiplying
both sides by A + ab′; see Exercise 4.28.

Exercise 9.6 (Geometric progression) Let In −A be nonsingular.
(a) Show that

(In −A)−1 = (In −A)−1 Ak +
k−1∑
j=0

Aj

for any finite integer k ≥ 0.
(b) Also show that

(In −A)−1 =
∞∑

j=0

Aj

for any matrix A satisfying �(A) < 1.

Solution
(a) This follows by multiplying both sides by In −A and then collecting terms. Alterna-
tively, a constructive proof follows along the lines of Exercise 9.5 by taking the first k terms
(instead of just one term) from the binomial expansion, then collecting the remainder.
(b) Since �(A) < 1 we may write

(In −A)−1 =
∞∑

j=0

(
−1
j

)
(−A)j =

∞∑
j=0

(−1)(−2) . . . (−j)
j!

(−1)jAj =
∞∑

j=0

Aj .

Exercise 9.7 (Exponential as limit of the binomial) Let A be an n × n matrix with
finite elements.
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(a) Show that

lim
ν→0

(In + νA)µ/ν = exp(µA)

for any finite µ ∈ R.
(b) Hence, show that (exp(A))µ = exp(µA).

Solution
(a) Because �(νA) → 0 as ν → 0, we have

(In + νA)µ/ν =
∞∑

j=0

(
µ/ν

j

)
νjAj =

∞∑
j=0

∏j−1
i=0

(µ
ν − i

)
j!

νjAj =
∞∑

j=0

∏j−1
i=0 (µ− iν)

j!
Aj .

Letting ν → 0 gives the required limit.
(b) This follows from

(
(In + νA)1/ν

)µ → (exp(A))µ.

Exercise 9.8 (Logarithmic expansion) Let A be an n × n matrix whose eigenval-
ues are all different from −1. Using the definition exp(log(In + A)) := In + A,
(a) show that log(In + A)ν = ν log(In + A); and
(b) derive the explicit representation

log(In + A) = −
∞∑

j=1

(−1)j

j
Aj

for �(A) < 1. What does this representation imply for the definition of the function?

Solution
(a) Raising both sides of the definition to the power ν gives

(In + A)ν = (exp(log(In + A)))ν = exp(ν log(In + A)),

by Exercise 9.7. The result follows because the definition can also be written as

(In + A)ν = exp (log(In + A)ν) .

(b) Expanding both sides of

1
ν

(exp (ν log(In + A))− In) =
1
ν

((In + A)ν − In)

by the exponential and binomial series, respectively, gives

log(In + A) + O(ν) =
1
ν

∞∑
j=1

∏j−1
i=0 (ν − i)

j!
Aj =

∞∑
j=1

∏j−1
i=1 (ν − i)

j!
Aj .

Letting ν → 0 and noting that
∏j−1

i=1 (−i) = (−1)j−1(j − 1)! gives the required result.
This explicit representation shows that the inverse of the exponential function does indeed
exist, at least for some values of �(A), and that the definition of logarithms is not vacu-
ous. This is not yet a proof of absolute convergence. What we have done here is to work
out a representation of the logarithmic function, assuming the binomial expansion stated in
the introduction. Exercise 9.19(c) will establish that the binomial expansion is absolutely
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convergent when �(A) < 1. This then implies that the series expansion of log(In + A) is
also absolutely convergent when �(A) < 1.

*Exercise 9.9 (Binomial with two matrices) Let A and B be two n × n matrices,
and let p be a positive integer.
(a) Show that, in general, (A + B)p �= Ap

(
In + A−1B

)p
.

(b) Introduce the new symbol C{Ap−j , Bj} to denote the sum of the
(
p
j

)
combinations of

p− j matrices A with j matrices B, for example,

C{A2, B} = A2B + ABA + BA2

and

C{A2, B2} = A2B2 + ABAB + AB2A + BA2B + BABA + B2A2.

Show that

(A + B)p =
p∑

j=0

C{Ap−j , Bj}.

(c) For p ∈ N show that (A + B)p =
∑p

j=0

(
p
j

)
Ap−jBj if A and B commute.

(d) Show that the reverse implication holds for p = 2, but not generally.

Solution
(a) The inverse of A may not even exist. Even if it did exist, then

(A + B)2 = A2 + AB + BA + B2,

whereas

A2
(
In + A−1B

)2 = A2
(
In + 2A−1B + A−1BA−1B

)
= A2 + 2AB + ABA−1B.

The two expressions are equal if A and B commute, but they will differ in general.
(b) We proceed by induction. For p = 1 the result holds trivially. As seen in (a) for
p = 2, the

(
2
1

)
combinations C{A, B} are AB and BA, and there is only one combination

C{A2, In} = A2. Now suppose that the formula holds for some p. Then it will also hold
for p + 1, because

(A + B)p+1 = (A + B)
p∑

j=0

C{Ap−j , Bj}

=
p∑

j=0

(
AC{Ap−j , Bj}+ BC{Ap−j , Bj}

)

=
p+1∑
j=0

C{Ap+1−j , Bj},

using the fact that
(
p+1
j+1

)
=
(
p
j

)
+
(

p
j+1

)
from Pascal’s triangle.
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(c) If A and B commute, then C{Ap−j , Bj} =
(
p
j

)
Ap−jBj and the result follows.

(d) For p = 2, suppose that the formula

(A + B)2 = A2 + 2AB + B2

holds. Then, since also

(A + B)2 = A2 + AB + BA + B2,

we find AB = BA. However, for p = 3,

(A + B)3 = A3 + ABA + A2B + BA2

+ BAB + B2A + AB2 + B3

may equal
3∑

j=0

(
3
j

)
A3−jBj = A3 + 3A2B + 3AB2 + B3

even if A and B do not commute. To show this, we need two matrices A and B satisfying

ABA + BA2 + BAB + B2A = 2A2B + 2AB2.

For example, the matrices

A =

0 0 1
0 0 1
0 0 0

 and B =

0 1 0
0 0 1
0 0 0

 ,

which are nilpotent of indices 2 and 3, respectively, satisfy this relationship, but AB = O
while BA = B2 �= O, so that they do not commute.

*Exercise 9.10 (Multiplicative exponential?) Let A and B be two n × n matri-
ces. Show that exp(xA + xB) = exp(xA) exp(xB) for all finite x ∈ R if and only if A

and B commute. [Hint: Appendix A gives a formula to rewrite an infinite double series as
an infinite sum of a finite series:

∑∞
j=0

∑∞
k=0 gj,k(x) =

∑∞
j=0

∑j
k=0 gj−k,k(x).]

Solution
Compare the powers of x in

exp(xA + xB) =
∞∑

j=0

xj

j!
(A + B)j

and

exp(xA) exp(xB) =
∞∑

j=0

∞∑
k=0

xj+k

j!k!
AjBk =

∞∑
j=0

xj
j∑

k=0

1
(j − k)!k!

Aj−kBk

=
∞∑

j=0

xj

j!

j∑
k=0

(
j

k

)
Aj−kBk,
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the rearrangement of the sum in k being allowed because the double series is absolutely
convergent. Since the two formulas hold for all x (and, in particular, for x → 0), we
see that exp(xA + xB) = exp(xA) exp(xB) for all x if and only if (A + B)j =∑j

k=0

(
j
k

)
Aj−kBk for all j. If A and B commute, then Exercise 9.9(c) implies that

(A + B)j =
∑j

k=0

(
j
k

)
Aj−kBk for all j. Conversely, if (A + B)j =

∑j
k=0

(
j
k

)
Aj−kBk

for all j, then it holds in particular for j = 2, and hence A and B commute, using Exer-
cise 9.9(d). The result follows.

To understand the subtle role of x (and j) in this proof, take x → 0 in
2
x2

(exp(xA + xB)− exp(xA) exp(xB))

= (A + B)2 −
2∑

k=0

(
2
k

)
A2−kBk + O(x)

= BA−AB + O(x).

Notice that we may have A and B not commuting while, for x = 1, the equalities exp(A+
B) = exp(A) exp(B) or exp(A) exp(B) = exp(B) exp(A) hold. This can happen if

exp(xA + xB) �= exp(xA) exp(xB)

for some x in the neighborhood of zero; see Exercise 9.15 below.

Exercise 9.11 (Additive logarithmic?) Let C and D be two n × n matrices, and
define A := exp(C) and B := exp(D).
(a) Show that log(A) and log(B) commute if and only if log(AxBx) = log(Ax) +
log(Bx) for all finite x ∈ R.
(b) Show that, when A is nonsingular,

log(In + A) = log(In + A−1)− log(A−1).

(c) Obtain log(In + A) for

A =
(

a 0
0 b

)
in terms of a and b, when a > 1 and b > 1.

Solution
(a) From Exercise 9.10, log(A) = C and log(B) = D commute if and only if

exp(xC) exp(xD) = exp(xC + xD)

for all x. Taking logarithms on both sides, then using the definitions of A and B, gives the
required result.
(b) Any A commutes with its own powers, hence also with power series in A. (But be
careful: A commutes with A′ if and only if A is normal.) Hence,

log(I + A−1) = log
(
(I + A)A−1

)
= log(I + A) + log(A−1),

using (a).
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(c) Since the two eigenvalues of A−1 lie in the interval (0, 1), using (b) and the expansion
derived in Exercise 9.8(b) gives

log(In + A) = log(In + A−1)− log
(
In −

(
In −A−1

))
=
(

a−1 0
0 b−1

) ∞∑
j=0

(−1)j

j + 1

(
a−j 0
0 b−j

)

+
(

1− a−1 0
0 1− b−1

) ∞∑
j=0

1
j + 1

((
1− a−1

)j 0
0

(
1− b−1

)j
)

=
(

log(1 + a−1) 0
0 log(1 + b−1)

)
−
(

log(a−1) 0
0 log(b−1)

)
=
(

log(1 + a) 0
0 log(1 + b)

)
,

as in Exercise 9.1(b), where a and b were inside the unit circle.

Exercise 9.12 (Orthogonal representation, 1)
(a) Generalize Exercise 2.28 in the following way. Let Λ := diag(Λ1, . . . ,Λn) be an
2n× 2n block-diagonal matrix, where

Λi :=
(

cos θi − sin θi

sin θi cos θi

)
(i = 1, . . . , n).

Show that A := SΛS′ is orthogonal when S is orthogonal, and that |A| = 1.
(b) Now let Λ := diag(Λ1, . . . ,Λn, 1). Show that A := SΛS′ is orthogonal when S is
orthogonal, and that |A| = 1.
(c) Why do (a)–(b) provide a representation for all orthogonal matrices A having |A| = 1
(that is, rotation matrices) when all θi are real?

Solution
(a) We have A′A = SΛ′S′SΛS′ = SΛ′ΛS′. The matrix Λ′Λ is block-diagonal, and its
i-th diagonal block is given by(

cos θi sin θi

− sin θi cos θi

)(
cos θi − sin θi

sin θi cos θi

)
= I2

because (cos θi)
2 + (sin θi)

2 = 1, so that A′A = In. The determinant of A is

|A| =
n∏

i=1

∣∣∣∣cos θi − sin θi

sin θi cos θi

∣∣∣∣ = 1.

(b) This follows as in (a).
(c) By the definition of the cosine and sine functions in terms of the exponential, the
eigenvalues implied by each Λi are the conjugate pairs e±iθi having unit modulus, as ex-
pected from Exercise 7.22. Orthogonal matrices are normal, because they commute with



9.2 Jordan representation 255

their transposes, that is, A′A = AA′ = In. The spectral theorem for normal matrices
(Exercise 7.71) proves that orthogonal matrices are diagonalizable by a unitary matrix,
hence block-diagonalizable into Λ by a unitary matrix T (alternatively, the product of two
unitary matrices is unitary). Since AT = TΛ,

Re(AT ) = Re(TΛ) ⇐⇒ A Re(T ) = Re(T )Λ,

so that T can be taken to be real, that is, Re(T ) = S is orthogonal; see Exercise 7.43.

Exercise 9.13 (Skew-symmetric representation) Let A be an n × n skew-Hermitian
matrix.
(a) If A is real (hence skew-symmetric), show that its eigenvalues take one of two forms:
they come in pairs −λ, λ or they are zero.
(b) In general, show that the eigenvalues of A are pure imaginary, so that −λ, λ are a con-
jugate pair.
(c) Show that |A| = 0 for n odd, and |A| ≥ 0 for n even.
(d) If A is real, show that A = SΛS′ for some orthogonal S and Λ := diag(Λ1, . . . ,Λm,O)
for some integer m ≤ n/2, where

Λi :=
(

0 −θi

θi 0

)
(i = 1, . . . , m),

and the θi are real.

Solution
(a) Since the eigenvalues of A and A′ are the same, we have

|λIn −A| =
∣∣λIn −A′∣∣ = |λIn + A| = (−1)n |−λIn −A| .

Equating the first and the last determinant to zero gives the result.
(b) Let B be Hermitian. Then A := iB is skew-Hermitian since A∗ = −iB∗ = −iB =
−A. The eigenvalues of B are all real (Exercise 7.40), and the eigenvalues of A are i
times these. The result follows, and is a generalization of Exercise 7.18. We have here an
example where a more general result can be proved more easily than the special case.
(c) For n odd, one of the eigenvalues of A must be zero, so that A is singular. For n even,
the product of the conjugate pairs −λ, λ is |λ|2 ≥ 0.
(d) The eigenvalues of Λ are obtained from λ2

i = −θ2
i and possibly zeros. The representa-

tion follows as in Exercise 9.12(c) since skew-symmetric matrices are normal.

9.2 Jordan representation

Exercise 9.14 (Jordan representation, diagonalizable) Let A be an n× n symmetric
matrix, and write A = SΛS′, where Λ is the diagonal matrix of eigenvalues of A, and S

is an orthogonal matrix of eigenvectors. Define the matrix function

F (A) :=
∞∑

j=0

cjA
j
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and the corresponding scalar function f(λ) :=
∑∞

j=0 cjλ
j . Show that

F (A) = S diag(f(λ1), . . . , f(λn))S′.

Solution
Substituting A = SΛS′ in the matrix function F (A), we obtain

F (A) =
∞∑

j=0

cj

(
SΛS′)j = S

∞∑
j=0

cjΛ
jS′ = SF (Λ)S′

since S′S = In. The result then follows from Exercise 9.2.

Exercise 9.15 (Multiplicative exponential, by Jordan) Let

A =
(

0 π

−π 0

)
and B =

(
0 −π

0 0

)
.

(a) Show that A and B do not commute, but that exp(A) and exp(B) do commute.
(b) Also show that

exp(A) exp(B) �= exp(A + B).

Solution
(a) Direct multiplication shows that

AB =
(

0 π

−π 0

)(
0 −π

0 0

)
=
(

0 0
0 π2

)
and

BA =
(

0 −π

0 0

)(
0 π

−π 0

)
=
(

π2 0
0 0

)
�= AB.

The matrix A is skew-symmetric and its eigenvalues are ±iπ. Hence, there exists a non-
singular matrix T such that A = TΛT−1, with Λ := diag(iπ,−iπ). Then,

exp(A) = T exp(Λ)T−1 = T (−I2)T−1 = −I2,

since exp(±iπ) = −1. Hence, exp(B) commutes with exp(A).
We notice three things. First, it was not necessary to work out the eigenvectors explicitly

in this case. One may verify, however, that

T =
1√
2

(
1 1
i −i

)
and T−1 =

1√
2

(
1 −i
1 i

)
.

Second, T is unitary, as expected from the spectral theorem for normal matrices (Exer-
cise 7.71). Third, A is skew-symmetric and exp(A) is orthogonal, a relation that is no
coincidence and will be studied further in Exercise 9.22. The eigenvalues of Exercises 9.12
and 9.13 already suggested the relation.
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(b) The matrix B is nilpotent, hence its series expansion terminates and exp(B) = I2+B.
Therefore,

exp(A) exp(B) = exp(B) exp(A) = −I2 −B,

but

exp(A + B) = exp
(

0 0
−π 0

)
= I2 + B′ �= −I2 −B.

Exercise 9.16 (Exponential, by Jordan) Let

A =

1 3 0
0 1 0
2 1 5

 .

We have seen in Exercise 7.91 that

A =

 0 3 −1/2
0 0 1

3/8 −3/2 −3/8

5 0 0
0 1 1
0 0 1

4/3 5/3 8/3
1/3 1/6 0
0 1 0

 .

Use this decomposition to work out exp(A) explicitly.

Solution
We have

exp(A) =

 0 3 −1/2
0 0 1

3/8 −3/2 −3/8

(exp(5) 0′

0 exp(J2(1))

)4/3 5/3 8/3
1/3 1/6 0
0 1 0

 .

Since J2(1) = I2 + J2(0), where J2(0) is nilpotent of index 2, we can expand its powers
by the binomial, yielding

exp(J2(1)) =
∞∑

j=0

1
j!

(I2 + J2(0))j =
∞∑

j=0

1
j!

(I2 + jJ2(0) + O)

=

 ∞∑
j=0

1
j!

 I2 +

 ∞∑
j=0

1
j!

j

J2(0) =
(

e e
0 e

)
.

Hence, exp(J2(1)) can be written as eI2 +eJ2(0), a linear polynomial in J2(0), where the
first coefficient is e and the second coefficient, also e, equals deλ/ dλ evaluated at λ = 1.
Direct multiplication gives

exp(A) =

 0 3 −1/2
0 0 1

3/8 −3/2 −3/8

e5 0 0
0 e e
0 0 e

4/3 5/3 8/3
1/3 1/6 0
0 1 0



=

 e 3e 0
0 e 0

1
2e5 − 1

2e 5
8e5 − 17

8 e e5

 .
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Exercise 9.17 (Powers of Jordan) Let Jn := Jn(λ) be a Jordan block of size n corre-
sponding to an eigenvalue λ.
(a) Obtain J2

2 , J3
2 and deduce J j

2 when j is a natural number. Then use this result to cal-
culate exp(J2), thus generalizing the expression obtained in Exercise 9.16 for λ = 1, to
arbitrary λ.
(b) Obtain J2

3 , J3
3 , J4

3 and deduce J j
3 .

(c) Now obtain J j
n.

Solution
(a) We find (

λ 1
0 λ

)2

=
(

λ2 2λ

0 λ2

)
and

(
λ 1
0 λ

)3

=
(

λ3 3λ2

0 λ3

)
.

This suggests that

J j
2 =
(

λj jλj−1

0 λj

)
.

Assume that this is in fact correct for j. Then,(
λ 1
0 λ

)j+1

=
(

λ 1
0 λ

)(
λj jλj−1

0 λj

)
=
(

λj+1 (j + 1)λj

0 λj+1

)
,

which shows that the formula holds, by induction. Hence,

exp(J2) =
∞∑

j=0

1
j!

J j
2 =

∞∑
j=0

1
j!

(
λj jλj−1

0 λj

)
=

∞∑
j=0

1
j!

(
λj d

dλλj

0 λj

)

=

(
exp(λ) dexp(λ)

dλ

0 exp(λ)

)
= eλ

(
1 1
0 1

)
= eλ (I2 + J2(0)) ,

a linear polynomial in J2(0).
(b) For n = 3, we have λ 1 0

0 λ 1
0 0 λ

2

=

λ2 2λ 1
0 λ2 2λ

0 0 λ2

 ,

λ 1 0
0 λ 1
0 0 λ

3

=

λ3 3λ2 3λ

0 λ3 3λ2

0 0 λ3

 ,

and λ 1 0
0 λ 1
0 0 λ

4

=

λ4 4λ3 6λ2

0 λ4 4λ3

0 0 λ4

 .
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This suggests that

J j
3 =

λj jλj−1 j(j−1)
2 λj−2

0 λj jλj−1

0 0 λj


for j ≥ 2 or, more generally for any j,

J j
3 =

f(λ) f ′(λ) 1
2f ′′(λ)

0 f(λ) f ′(λ)
0 0 f(λ)

 ,

where f(λ) := λj . If the formula holds for j, then

J j+1
3 =

λ 1 0
0 λ 1
0 0 λ


λj jλj−1 j(j−1)λj−2

2

0 λj jλj−1

0 0 λj



=

λj+1 (j + 1)λj (j+1)j
2 λj−1

0 λj+1 (j + 1)λj

0 0 λj+1

 ,

so that the formula holds also for j + 1, hence for all j, by induction.
(c) We now repeat the induction argument for general n. Assume that

J j
n =


f(λ) f ′(λ) . . . f (n−1)(λ)

(n−1)!

0 f(λ) . . . f (n−2)(λ)
(n−2)!

...
...

...
0 0 . . . f(λ)

 ,

where f(λ) := λj . Then,

J j+1
n =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . λ




f(λ) f ′(λ) . . . f (n−1)(λ)
(n−1)!

0 f(λ) . . . f (n−2)(λ)
(n−2)!

...
...

...
0 0 . . . f(λ)



=


λf(λ) λf ′(λ) + f(λ) . . . λf (n−1)(λ)

(n−1)! + f (n−2)(λ)
(n−2)!

0 λf(λ) . . . λf (n−2)(λ)
(n−2)! + f (n−3)(λ)

(n−3)!
...

...
...

0 0 . . . λf(λ)



=


g(λ) g′(λ) . . . g(n−1)(λ)

(n−1)!

0 g(λ) . . . g(n−2)(λ)
(n−2)!

...
...

...
0 0 . . . g(λ)

 ,
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where g(λ) := λf(λ) = λj+1. This confirms that the formula holds for j + 1 and hence,
by induction, generally.

Exercise 9.18 (Jordan representation, general) Let A be an n × n matrix having
the Jordan decomposition A = TJT−1, where J := diag (Jn1(λ1), . . . ,Jnk

(λk)), with
n1 + · · ·+ nk = n and the λ’s need not be distinct. Show that

F (A) :=
∞∑

j=0

cjA
j = TF (J)T−1,

where F (J) := diag (F (Jn1(λ1)), . . . ,F (Jnk
(λk))), f(λ) :=

∑∞
j=0 cjλ

j , and

F (Jni(λi)) :=


f(λi) f ′(λi) . . . f (ni−1)(λi)

(ni−1)!

0 f(λi) . . . f (ni−2)(λi)
(ni−2)!

...
...

...
0 0 . . . f(λi)


for i = 1, . . . , k. What does this imply for the eigenvalues and eigenvectors of F (A)?

Solution
Substituting A = TJT−1 in F (A), we obtain

F (A) =
∞∑

j=0

cj

(
TJT−1

)j = T

 ∞∑
j=0

cjJ
j

T−1 = TF (J)T−1.

The representation then follows from Exercise 9.17(c) and the property that powers of
block-diagonal matrices are block-diagonal. Since F (J) is upper triangular, its eigenval-
ues are on the diagonal and are given by f(λi). The eigenvectors (but not the other gener-
alized eigenvectors) of A and F (A) are the same. These eigenvectors are the columns of
T corresponding to the very first element of each F (Jni(λi)) for i = 1, . . . , k, namely the
vector x1 of any given Jordan chain of generalized eigenvectors. Notice that F (Jni(λi))
is not in general a matrix in Jordan form.

Exercise 9.19 (Absolute convergence of series)
(a) Let A be an n× n matrix. Show that the series F (A) :=

∑∞
j=0 cjA

j converges abso-
lutely if

∑∞
j=0 |cj(�(A))j | < ∞. [Hint: Use the property that if a power series converges

absolutely, then its term-by-term derivative converges absolutely as well; see Appendix A.]
(b) Hence, show that the series expansion of exp(A) converges absolutely for all finite A,
and thus defines the function.
(c) Also show that the binomial expansion

(In + A)ν =
∞∑

j=0

(
ν

j

)
Aj ,

converges absolutely for �(A) < 1.
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Solution
(a) Let ρ := �(A). Exercise 9.18 implies that we only need to show that F (J) converges
absolutely when

∑∞
j=0 |cjρ

j | < ∞; that is, that, for f(λ) :=
∑∞

j=0 cjλ
j , the series

F (Jni(λi)) =


f(λi) f ′(λi) . . . f (ni−1)(λi)

(ni−1)!

0 f(λi) . . . f (ni−2)(λi)
(ni−2)!

...
...

...
0 0 . . . f(λi)


all converge absolutely. The condition

∑∞
j=0 |cjρ

j | <∞ implies that ρ is within the radius
of convergence of the power series, and hence that

f(ρ) =
∞∑

j=0

cjρ
j , f ′(ρ) =

∞∑
j=0

jcjρ
j−1, . . .

all converge absolutely. The result follows.
(b) We have

∞∑
j=0

∣∣∣∣ 1j!ρj

∣∣∣∣ = exp(ρ) < ∞,

and the absolute convergence follows from (a).
(c) Since the scalar binomial series

f(ρ) =
∞∑

j=0

(
ν

j

)
ρj

converges absolutely for ρ < 1 (recall that ρ is nonnegative), the result follows. The same
is also valid for f(ρ) = −

∑∞
j=1(−ρ)j/j, so the series expansion of the logarithmic func-

tion derived in Exercise 9.8(b) converges absolutely when ρ < 1.

*Exercise 9.20 (Noninteger powers) Let A and B be n×n matrices related by B = Aν ,
and let λi (i = 1, . . . , n) be the eigenvalues of A. Rewrite this relationship:
(a) in terms of the Jordan decompositions

A = T1J1T
−1
1 and B = T2J2T

−1
2

for ν ∈ N and ν ∈ Q;
(b) for ν ∈ R and |λi − 1| < 1 for all i;
(c) for ν ∈ R and

∣∣λ−1
i − 1

∣∣ < 1 for all i;
(d) for ν ∈ R and |λi/µ− 1| < 1 for all i (µ �= 0).

Solution
(a) We already know that if ν a natural number, then

B = Aν =
ν∏

i=1

(
T1J1T

−1
1

)
= T1

(
ν∏

i=1

J1

)
T−1

1 = T1J
ν
1 T−1

1 .
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If ν is a rational number, then we can write ν = p/q for some integers p and q such that
q > 0, and

Bq = Ap ⇐⇒ T2J
q
2T−1

2 = T1J
p
1 T−1

1 .

The powers of all the matrices are integers, which we know how to compute, but note that
the last equality is generally not one-to-one. Also note that the rationals are dense in the
reals (that is, any real number is the limit of a rational sequence), so that one can take ν ∈ R

as a limiting case of ν ∈ Q.
(b) The eigenvalues of A lie within a unit circle centered at 1, so that �(A − In) < 1.
Therefore, we can use the binomial expansion

Aν = (In + (A− In))ν =
∞∑

j=0

(
ν

j

)
(A− In)j .

(c) Similarly,

Aν =
(
A−1
)−ν =

(
In +

(
A−1 − In

))−ν =
∞∑

j=0

(
−ν

j

)(
A−1 − In

)j
.

(d) Finally,

Aν = µν

(
1
µ

A

)ν

= µν

(
In +

(
1
µ

A− In

))ν

= µν
∞∑

j=0

(
ν

j

)(
1
µ

A− In

)j

.

This latter solution may be multiple-valued depending on µν ; see Appendix A for some
examples.

Exercise 9.21 (Determinant and trace of matrix functions) Let A be an n× n matrix
with eigenvalues λ1, . . . , λn. Define F (A) :=

∑∞
j=0 cjA

j and f(λ) :=
∑∞

j=0 cjλ
j . Show

that:
(a) |F (A)| =

∏n
i=1 f(λi) and tr F (A) =

∑n
i=1 f(λi);

(b) |exp(A)| = etr(A), where etr(A) := exp(tr A);
(c) exp(A) is nonsingular for any finite A;
(d) log |In −A| = −

∑∞
j=1

1
j tr(Aj) for �(A) < 1.

Solution
(a) This follows from the Jordan representation F (A) = TF (J)T−1 in Exercise 9.18,
because

|F (A)| = |TF (J)T−1| = |F (J)| and tr(F (A)) = tr(TF (J)T−1) = tr(F (J)).

(b) As a special case, we obtain from (a),

|exp(A)| =
n∏

i=1

exp(λi) = exp

(
n∑

i=1

λi

)
= exp(tr A).

(c) We show that exp(A) is nonsingular by demonstrating that its determinant is nonzero.
From (b), | exp(A)| = 0 if and only if exp(trA) = 0, that is, if and only if tr A = −∞.
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Since A is finite, its trace is also finite. Hence exp(trA) �= 0 and exp(A) is nonsingular.
(d) Also from (b),

exp

− ∞∑
j=1

1
j

tr(Aj)

 = etr

− ∞∑
j=1

1
j
Aj

 =

∣∣∣∣∣∣exp

− ∞∑
j=1

1
j
Aj

∣∣∣∣∣∣
= |exp (log(In −A))| = |In −A| .

The result follows by taking logarithms.

Exercise 9.22 (Orthogonal representation, 2) The representation of Exercise 9.12
is not constructive (because one needs to have an orthogonal S to begin with). Let B be a
real nonsingular matrix and C a skew-symmetric matrix, both of order n× n. Show that:
(a) A := B(B′B)−1/2 is orthogonal, with |A| = ±1;
(b) A := (In −C)(In + C)−1 is orthogonal, with |A| = 1;
(c) A := exp(C) is orthogonal, with |A| = 1.

Solution
(a) We have

A′A = (B′B)−1/2B′B(B′B)−1/2 = In

and

AA′ = B(B′B)−1B′ = In

by the nonsingularity of B. Since B′B is positive definite, A is real and

|A| = |B|√
|B2|

= sgn(|B|).

This proves (a) and also shows that we can always choose B such that either |A| = 1 or
|A| = −1.
(b) The eigenvalues of In + C have positive moduli (by Exercise 9.13), so that In + C is
nonsingular. Then,

AA′ = (In −C)(In + C)−1(In + C ′)−1(In −C ′)

= (In −C)(In + C)−1(In −C)−1(In + C)

= (In −C)(In −C)−1(In + C)−1(In + C) = In

and, similarly, A′A = In. Alternatively, one may prove this by inverting A directly, as

A−1 = (In + C) (In −C)−1 =
(
In −C ′) (In + C ′)−1

=
(
In + C ′)−1 (

In −C ′) = A′.
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The determinant follows from

|A| = |In −C|
|In + C| =

|In −C|
|In + C ′| =

|In −C|
|In −C| = 1.

(c) We have

A−1 = exp(−C) = exp(C ′) =
∞∑

j=0

1
j!

(C ′)j =

 ∞∑
j=0

1
j!

Cj

′

= A′

and

|A| = | exp(C)| = exp(tr C) = exp(0) = 1.

Exercise 9.23 (Unitary representation) Let C be an n × n skew-Hermitian matrix.
Show that:
(a) A := (In −C)(In + C)−1 is unitary, with |det A| = 1 (Cayley’s transform);
(b) A := exp(C) is unitary, with |det A| = 1. (We use the notation det A rather than |A|
for determinant in this exercise, so that we can write |det A| to denote the modulus of the
determinant.)

Solution
(a) The proof of A∗A = AA∗ = In is analogous to the solution of Exercise 9.22(b), using
conjugate transposes. For the determinant, denoting by λi (i = 1, . . . , n) the eigenvalues
of C, we obtain

det A =
det(In −C)
det(In + C)

=
det(In + C∗)
det(In + C)

=
n∏

i=1

1 + λ∗
i

1 + λi
.

Taking the modulus gives the required result. Notice that, by the same steps used in the
solution of Exercise 9.13(a), the paired eigenvalues of C are −λ∗, λ. Exercise 9.13(b)
implies that λ∗ = −λ, so that the pairs in C are multiple eigenvalues λ, λ, hence not
conjugates. This explains why, unlike in Exercise 9.22(b), det A is not restricted to +1
only.
(b) Here we have

A−1 = exp(−C) = exp(C∗) = (exp(C))∗ = A∗

and

det A = det(exp(C)) = exp(tr C).

Exercise 9.13(b) shows that the eigenvalues of C are pure imaginary, so that tr C is pure
imaginary and exp(tr C) is on the unit circle (has unit modulus).
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9.3 Matrix-polynomial representation

Exercise 9.24 (Exponential of Jordan) Let J2(µ) be a Jordan block of size 2. Obtain
the polynomial representation of exp(aJ2(µ)).

Solution
Let

A =
(

aµ a

0 aµ

)
,

where there is only one Jordan block (of size 2), corresponding to the multiple eigenvalue
λ = aµ. We need to find

exp(A) = p0I2 + p1A,

where the coefficients in p(x) := p0 + p1x are obtained by equating

exp(λ) = p(λ) and
dexp(λ)

dλ
=

dp(λ)
dλ

,

that is, by solving

exp(λ) = p0 + p1λ and exp(λ) = p1.

We find

p1 = eλ = eaµ and p0 = (1− λ)eλ = (1− aµ)eaµ,

so that

exp(A) = (1− aµ)eaµI2 + eaµA = eaµ

(
1 a

0 1

)
.

When a = 1, this reduces to the exponential obtained in Exercise 9.17(a).

Exercise 9.25 (Skew’s exponential, by polynomial) Let

A =
(

0 −θ

θ 0

)
,

where θ �= 0 and possibly complex. Obtain the corresponding Jordan matrix and the poly-
nomial representation of exp(A). What happens when θ → 0?

Solution
This is a generalization of the 2×2 matrix encountered in Exercise 9.15, where we consid-
ered the special case θ = −π. The eigenvalues of A are ±iθ, which are obviously distinct,
so the Jordan matrix is diag(−iθ, iθ). The coefficients of p(λ) := p0 + p1λ are obtained
by solving (

exp(−iθ)
exp(iθ)

)
=
(

p0 − iθp1

p0 + iθp1

)
=
(

1 −iθ
1 iθ

)(
p0

p1

)
,



266 9 Matrix functions

which yields (
p0

p1

)
=
(

1 −iθ
1 iθ

)−1(exp(−iθ)
exp(iθ)

)
=

1
2

(
1 1

iθ−1 −iθ−1

)(
exp(−iθ)
exp(iθ)

)
=
(

cos θ

θ−1 sin θ

)
,

using the definitions of the cosine and sine functions. Hence,

exp(A) =
(

cos θ 0
0 cos θ

)
+
(

0 − sin θ

sin θ 0

)
=
(

cos θ − sin θ

sin θ cos θ

)
as expected from Exercises 9.12, 9.13, and 9.22. When θ → 0, using l’Hôpital’s rule,

lim
θ→0

(
p0

p1

)
= lim

θ→0

(
cos θ

θ−1 sin θ

)
=
(

cos(0)
(dsin θ/ dθ)|θ=0

)
=
(

1
1

)
,

which should be compared to Exercise 9.24 where there was one equation from p(λ) and
one from p′(λ). Therefore, when θ = 0, exp(A) = I2 + A = I2, and the formula for
exp(A) in terms of cos θ and sin θ is valid for all θ.

Exercise 9.26 (Exponential for two blocks with distinct eigenvalues) Obtain the poly-
nomial representation of exp(A) for

A =

1 3 0
0 1 0
2 1 5

 ,

which has the Jordan matrix

J =

5 0 0
0 1 1
0 0 1

 .

Solution
The matrix J = diag(J1(5), J2(1)) indicates that λ1 = 5 and λ2 = 1, with m1 = 1 and
m2 = 2. Then, defining p(λ) :=

∑2
j=0 pjλ

j , we solve

e5 = p0 + 5p1 + 25p2, e = p0 + p1 + p2, e = p1 + 2p2,

by writingp0

p1

p2

 =

1 5 25
1 1 1
0 1 2

−1e5

e
e

 =

 1
16

15
16 −5

4

−1
8

1
8

3
2

1
16 − 1

16 −1
4

e5

e
e

 =
e
16

 e4 − 5
−2e4 + 26

e4 − 5

 ,
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where we note that p0 = p2. Therefore,

exp(A) =
e
16
(
e4 − 5

) (
I3 + A2

)
− e

16
(
2e4 − 26

)
A

=
e
16
(
e4 − 5

)1 0 0
0 1 0
0 0 1

+

 1 6 0
0 1 0
12 12 25



− e
16
(
2e4 − 26

)1 3 0
0 1 0
2 1 5



=

 e 3e 0
0 e 0

1
2e5 − 1

2e 5
8e5 − 17

8 e e5

 ,

which is not surprising in view of Exercise 9.16.

Exercise 9.27 (Matrix of order three, linear polynomial, 1) Obtain the polynomial
representation of exp(A) for

A =

3 0 0
0 3 1
0 0 3

 .

Solution
The matrix A = J = diag(J1(3), J2(3)) indicates that there is a single eigenvalue λ = 3,
with maximal Jordan-block size of m = 2. Thus, defining p(λ) := p0 + p1λ, we solve

e3 = p0 + 3p1 and e3 = p1

as (
p0

p1

)
=
(

1 3
0 1

)−1(e3

e3

)
=
(

1 −3
0 1

)(
e3

e3

)
=
(
−2e3

e3

)
,

so that

exp(A) = −2e3I3 + e3A = e3

1 0 0
0 1 1
0 0 1

 .

In this instance, since A = J and T = I3, it would have been equally easy to use the
method of the previous section and calculate exp(A) directly, rather than indirectly through
its polynomial representation. It is nonetheless useful to see how the polynomial can be of
order one, despite the fact that the matrix is of order three and is not nilpotent. Another
advantage follows in Exercise 9.28.
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Exercise 9.28 (Matrix of order three, linear polynomial, 2) Let

B =

6 −9 −3
1 0 −1
0 0 3

 ,

which has the same Jordan matrix as A of Exercise 9.27. Calculate exp(B).

Solution
Since the Jordan matrix is the same as before, we obtain

exp(B) = −2e3I3 + e3B = e3

4 −9 −3
1 −2 −1
0 0 1

 .

Note that we did not need to work out the matrix T in B = TAT−1, and that the poly-
nomial representation is valid for any matrix B similar to A, that is, for B = CAC−1,
where C is any nonsingular matrix.

Exercise 9.29 (Matrix-polynomial representation) Write a typical Jordan block as
Jm(λ) = λIm + E, where

E := Jm(0) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 .

Define F (Jm(λ)) :=
∑∞

j=0 cjJ
j
m(λ) and f(λ) :=

∑∞
j=0 cjλ

j .

(a) Show that J j
m(λ) =

∑j
t=0

(
j
t

)
λj−tEt.

(b) Show that F (Jm(λ)) =
∑m−1

t=0
1
t!f

(t)(λ)Et.

(c) Deduce that exp(xJm(λ)) = exp(xλ)
∑m−1

t=0
xt

t! E
t.

(d) Now let A := TJm(λ)T−1, where T is nonsingular, and define P (A) :=
∑m−1

t=0 ptA
t

and p(λ) :=
∑m−1

t=0 ptλ
t. Show that F (A) and P (A) have the same polynomial represen-

tation in terms of E if and only if f (t)(λ) = p(t)(λ) for t = 0, 1, . . . , m − 1. Would this
result be valid if p(λ) were a polynomial of order m or larger?

Solution
(a) This follows from Exercise 9.9(c), since λIm is a scalar matrix and thus commutes with
any conformable matrix. Note that if j > m, the series terminates after t = m− 1 because
E is nilpotentof index m.
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(b) We will require the same manipulation of double series employed in Exercise 9.10,
namely

∞∑
j=0

j∑
t=0

gj−t,t(x) =
∞∑

j=0

∞∑
t=0

gj,t(x)

for any function g(·). Substituting from (a),

F (Jm(λ)) =
∞∑

j=0

cj

j∑
t=0

(
j

t

)
λj−tEt =

∞∑
j=0

∞∑
t=0

cj+t

(
j + t

t

)
λjEt

=
∞∑

t=0

Et
∞∑

j=0

cj+t

(
j + t

t

)
λj =

m−1∑
t=0

Et
∞∑

j=0

(
j + t

t

)
cj+tλ

j ,

because Em = O. The result then follows from

f (t)(λ) =
∞∑
j=t

j!
(j − t)!

cjλ
j−t =

∞∑
j=0

(j + t)!
j!

cj+tλ
j .

This is effectively an alternative proof to Exercise 9.17, without the detailed analysis of the
elements of the matrices.
(c) This follows directly from (b) by writing f(λ) = exp(xλ), and generalizes Exer-
cise 9.24.
(d) The polynomial representation of F (A) in terms of E follows from (b), and

T−1F (A)T =
m−1∑
t=0

1
t!

f (t)(λ)Et.

The same procedure leads to

T−1P (A)T =
m−1∑
t=0

1
t!

p(t)(λ)Et.

The result now follows by comparing the two equations, and using the fact that the nonzero
elements of the nilpotents Et1 and Et2 are in different positions when t1 �= t2. This im-
plies that one can use the polynomial P (Jm(λ)) instead of the infinite series F (Jm(λ))
when calculating the function F of any matrix similar to Jm(λ). The result is valid even if
the polynomial p(λ) were of order m or larger.

Exercise 9.30 (Matrix of order three, overfitting) Suppose you are given the ma-
trix B of Exercise 9.28, but you are only told that B has an eigenvalue 3 with multiplicity
3. Calculate exp(B).

Solution
Defining q(λ) :=

∑2
j=0 qjλ

j , we solve

e3 = q0 + 3q1 + 9q2, e3 = q1 + 6q2, e3 = 2q2
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as q0

q1

q2

 =

1 3 9
0 1 6
0 0 2

−1e3

e3

e3

 =

1 −3 9
2

0 1 −3
0 0 1

2

e3

e3

e3

 = e3

 5
2

−2
1
2

 .

Hence,

exp(B) =
5
2
e3I3 − 2e3B +

1
2
e3B2

=
5
2
e3

1 0 0
0 1 0
0 0 1

− 2e3

6 −9 −3
1 0 −1
0 0 3

+
1
2
e3

27 −54 −18
6 −9 −6
0 0 9



= e3

4 −9 −3
1 −2 −1
0 0 1

 ,

in accordance with Exercise 9.28.

Notes

The implicit definition of logarithms, exp(log(B)) := B, hides some complications when
one requires log(B) to be real-valued. For example, the function log x is defined for x neg-
ative, by using the polar form x = |x| exp(−iπ), in which case log x = log |x| − iπ. This
has been avoided in Exercise 9.11(c). Also, noninteger powers of complex numbers intro-
duce complications, such as having to deal with multiple-valued functions (see Appendix
A) and having to define the principal values. We have avoided this as much as possible
here. Details are in Horn and Johnson (1991).

The process of extending a given series expansion of a function beyond the original
radius of convergence, is called analytic continuation, which is quite common in the anal-
ysis of complex variables. For example, in Exercise 9.5, if b′A−1a is within a unit circle
centered at 1, a binomial expansion of the denominator of

1/2
1 + (b′A−1a− 1) /2

gives again the same result. This reasoning holds for all points in C except b′A−1a =
−1, so that the whole of C (except the point −1) can be covered by the formula we have
obtained for the inverse. More details can be found in Whittaker and Watson (1996).

For the representation of some types of orthogonal matrices useful in statistics, see
Hedayat and Wallis (1978).

In the development of this chapter, we have shown how to represent the infinite series
F (A) in terms of a polynomial by using the Jordan decomposition theorem. See, for
example, Horn and Johnson (1991) who also study the Lagrange-Hermite interpolation
formula for fitting polynomials.
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There is, however, a second approach. Recall the Cayley-Hamilton theorem, which
states that every matrix satisfies its own characteristic equation. The matrix function B :=
F (A) is itself a matrix of order n, hence satisfying its own characteristic equation. This
is a matrix polynomial of order n that is equivalent to the null matrix. Thus there exists a
representation of F (A) as a matrix polynomial of maximal order n− 1.
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Kronecker product, vec-operator, and
Moore-Penrose inverse

The Kronecker product transforms two matrices A := (aij) and B := (bst) into a matrix
containing all products aijbst. More precisely, let A be a matrix of order m × n and B a
matrix of order p× q. Then the mp× nq matrix defined bya11B . . . a1nB

...
...

am1B . . . amnB


is called the Kronecker product of A and B and is written A ⊗ B. We notice that the
Kronecker product A⊗B is defined for any pair of matrices A and B, irrespective of their
orders.

The vec-operator transforms a matrix into a vector by stacking its columns one under-
neath the other. Let A be an m×n matrix and ai its i-th column. Then vec A is the mn×1
vector

vec A :=


a1

a2
...

an

 .

Notice that vec A is defined for any matrix A, not just for square matrices. We shall see
that the Kronecker product and the vec-operator are intimately connected. Also notice the
notation. The expression vec A′ denotes vec(A′) and not (vec A)′. Occasionally we shall
use parentheses and write, for example, vec(AB) instead of vec AB, but only if there is a
possibility of confusion.

The inverse of a matrix is defined when the matrix is square and nonsingular. For many
purposes it is useful to generalize the concept of invertibility to singular matrices and,
indeed, to nonsquare matrices. One such generalization that is particularly useful because

273



274 10 Kronecker product, vec-operator, and Moore-Penrose inverse

of its uniqueness is the Moore-Penrose (MP) inverse. Let A be a given real matrix of order
m × n. Then an n ×m matrix X is said to be the MP-inverse of A if the following four
conditions are satisfied:

AXA = A, XAX = X, (AX)′ = AX, (XA)′ = XA.

We shall denote the MP-inverse of A by A+. Occasionally a more general inverse, the so-
called generalized inverse A−, suffices. This matrix only satisfies one of the four equations,
AXA = A, and it is not unique.

All matrices in this chapter are real, unless specified otherwise. However, most state-
ments, for example the definition of the Moore-Penrose inverse above, generalize straight-
forwardly to complex matrices by replacing the transpose (′) by the conjugate transpose
(∗).

10.1 The Kronecker product

Exercise 10.1 (Kronecker examples) Let

A =
(

2 5 2
0 6 3

)
, B =

(
2 4 1
3 5 0

)
, e′ = (0, 0, 1) .

(a) Compute I2 ⊗A and A⊗ I2.
(b) Compute A′ ⊗B.
(c) Compute A⊗ e and A⊗ e′.

Solution
(a) We have

I2 ⊗A =
(

A O
O A

)
=


2 5 2 0 0 0
0 6 3 0 0 0
0 0 0 2 5 2
0 0 0 0 6 3


and

A⊗ I2 =
(

2I2 5I2 2I2

O 6I2 3I2

)
=


2 0 5 0 2 0
0 2 0 5 0 2
0 0 6 0 3 0
0 0 0 6 0 3

 .

(b) Similarly,

A′ ⊗B =

2B O
5B 6B

2B 3B

 =



4 8 2 0 0 0
6 10 0 0 0 0
10 20 5 12 24 6
15 25 0 18 30 0
4 8 2 6 12 3
6 10 0 9 15 0


.
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(c) Finally,

A⊗ e =



0 0 0
0 0 0
2 5 2
0 0 0
0 0 0
0 6 3


, A⊗ e′ =

(
0 0 2 0 0 5 0 0 2
0 0 0 0 0 6 0 0 3

)
.

Exercise 10.2 (Noncommutativity of Kronecker product) Show that:
(a) O⊗A = A⊗O = O;
(b) dg(A⊗B) = dg(A)⊗ dg(B) (A and B square);
(c) A⊗B �= B ⊗A, in general.

Solution
(a) The matrix A ⊗B contains elements aijbst. If either aij = 0 for all i, j or if bst = 0
for all s, t, then A⊗B = O.
(b) Let A be a matrix of order n× n. Then,

dg(A⊗B) = dg


a11B O . . . O
O a22B . . . O
...

...
...

O O . . . annB



=


a11 dg(B) O . . . O

O a22 dg(B) . . . O
...

...
...

O O . . . ann dg(B)

 = dg(A)⊗ dg(B).

(c) If A is of order m×n and B of order p×q, then A⊗B and B⊗A have the same order
mp× nq (in contrast to AB and BA, which may be of different orders). Exercise 10.1(a)
contains an example of noncommutativity. Another example is(

1 0
)
⊗
(
0 1

)
=
(
0 1 0 0

)
and (

0 1
)
⊗
(
1 0

)
=
(
0 0 1 0

)
.

Exercise 10.3 (Kronecker rules) Show that the Kronecker product satisfies the fol-
lowing rules:
(a) (A1 + A2)⊗B = A1 ⊗B + A2 ⊗B (A1 and A2 of the same order);
(b) A⊗ (B1 + B2) = A⊗B1 + A⊗B2 (B1 and B2 of the same order);
(c) αA⊗ βB = αβ(A⊗B);
(d) (A⊗B)(C ⊗D) = AC ⊗BD.
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Solution
(a) The typical block in the matrix A⊗B is the submatrix aijB. Hence, the typical block
in (A1 + A2)⊗B is

(A1 + A2)ijB = ((A1)ij + (A2)ij)B = (A1)ijB + (A2)ijB.

(b) Let B := B1 + B2. Then for each submatrix aijB of A ⊗ B, we have aijB =
aijB1 + aijB2.
(c) In each typical submatrix we have (αA)ij(βB) = (αβ)aijB.
(d) Let A (m × n), B (q × r), C (n × p), and D (r × s) be given matrices. Then both
products AC and BD are defined. Since A⊗B has nr columns and C⊗D has nr rows,
the product (A⊗B)(C ⊗D) is defined as well. Let A = (aij) and C = (cst). Then,

(A⊗B)(C ⊗D) =

a11B . . . a1nB
...

...
am1B . . . amnB


c11D . . . c1pD

...
...

cn1D . . . cnpD



=

 (
∑

i a1ici1)BD . . . (
∑

i a1icip)BD
...

...
(
∑

i amici1)BD . . . (
∑

i amicip)BD



=

 (AC)11BD . . . (AC)1pBD
...

...
(AC)m1BD . . . (AC)mpBD

 = AC ⊗BD.

Exercise 10.4 (Kronecker twice) Show that

A⊗ (B ⊗C) = (A⊗B)⊗C,

and hence that A⊗B ⊗C is unambiguous.

Solution
Let A be a matrix of order m× n. Then,

(A⊗B)⊗C =

a11B . . . a1nB
...

...
am1B . . . amnB

⊗C

=

 (a11B)⊗C . . . (a1nB)⊗C
...

...
(am1B)⊗C . . . (amnB)⊗C



=

a11(B ⊗C) . . . a1n(B ⊗C)
...

...
am1(B ⊗C) . . . amn(B ⊗C)

 = A⊗ (B ⊗C).
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Exercise 10.5 (Kroneckered by a scalar)
(a) Show, for any scalar α, that α⊗A = αA = Aα = A⊗ α.
(b) Hence, show that (A⊗ b)B = (AB)⊗ b for any vector b (if AB is defined).

Solution
(a) This follows directly from the definition.
(b) In proofs, if at all possible, we wish to work with matrices and vectors, and not with the
individual elements. So, we write

(A⊗ b)B = (A⊗ b)(B ⊗ 1) = (AB)⊗ b.

(Check that all multiplications are allowed!)

Exercise 10.6 (Kronecker product of vectors) For any two vectors a and b, not neces-
sarily of the same order, show that a⊗ b′ = ab′ = b′ ⊗ a.

Solution
Let a := (a1, . . . , am)′ and b := (b1, . . . , bn)′. Then,

a⊗ b′ =

a1b
′

...
amb′

 = ab′ = (b1a, . . . , bna) = b′ ⊗ a.

Exercise 10.7 (Transpose and trace of a Kronecker product) Show that:
(a) (A⊗B)′ = A′ ⊗B′;
(b) tr(A⊗B) = (tr A)(tr B);
(c) A⊗B is idempotent if A and B are idempotent;
and specify the order conditions where appropriate.

Solution
(a) We have

(A⊗B)′ =

a11B . . . a1nB
...

...
am1B . . . amnB


′

=

a11B
′ . . . am1B

′

...
...

a1nB′ . . . amnB′

 = A′ ⊗B′.

This holds for matrices A and B of any order.
(b) Here, A and B must be square, but not necessarily of the same order. Then,

tr(A⊗B) = tr

a11B . . . a1mB
...

...
am1B . . . ammB

 = tr(a11B) + · · ·+ tr(ammB)

= (a11 + · · ·+ amm) tr B = (trA)(tr B).
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(c) Again, A and B must be square, but not necessarily of the same order. Then,

(A⊗B)(A⊗B) = (AA)⊗ (BB) = A⊗B.

Exercise 10.8 (Inverse of a Kronecker product) Show that

(A⊗B)−1 = A−1 ⊗B−1

when A and B are both nonsingular, not necessarily of the same order.

Solution
Let A and B be nonsingular matrices of orders m and n, respectively. Then,

(A⊗B)(A−1 ⊗B−1) = (AA−1)⊗ (BB−1) = Im ⊗ In = Imn,

and hence one is the inverse of the other.

Exercise 10.9 (Kronecker product of a partitioned matrix) If A is a partitioned matrix,

A =
(

A11 A12

A21 A22

)
,

then show that

A⊗B =
(

A11 ⊗B A12 ⊗B

A21 ⊗B A22 ⊗B

)
.

Solution
Suppose Aij has order mi × nj , with m1 + m2 = m, n1 + n2 = n, so that the order of A

is m× n. Then,

A⊗B =



a1,1B . . . a1,n1B a1,n1+1B . . . a1,nB
...

...
...

...
am1,1B . . . am1,n1B am1,n1+1B . . . am1,nB

am1+1,1B . . . am1+1,n1 am1+1,n1+1B . . . am1+1,nB
...

...
...

...
am,1B . . . am,n1B am,n1+1B . . . am,nB


=
(

A11 ⊗B A12 ⊗B

A21 ⊗B A22 ⊗B

)
.

Exercise 10.10 (Eigenvalues of a Kronecker product) Let A be an m × m matrix
with eigenvalues λ1, . . . , λm, and let B be an n × n matrix with eigenvalues µ1, . . . , µn.
Show that the mn eigenvalues of A⊗B are λiµj(i = 1, . . . , m; j = 1, . . . , n).

Solution
By Schur’s theorem (Exercise 7.62) there exist unitary matrices S and T such that

S∗AS = L, T ∗BT = M ,
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where L and M are upper triangular matrices whose diagonal elements are the eigenvalues
of A and B, respectively. This gives

(S∗ ⊗ T ∗)(A⊗B)(S ⊗ T ) = L⊗M .

Since S−1 = S∗ and T−1 = T ∗, it follows that (S ⊗ T )−1 = S∗ ⊗ T ∗, and hence,
using Exercise 7.24, that (S∗ ⊗ T ∗)(A ⊗ B)(S ⊗ T ) and A ⊗ B have the same set of
eigenvalues. This implies that A ⊗B and L ⊗M have the same set of eigenvalues. But
L⊗M is an upper triangular matrix and hence (Exercise 7.15(b)) its eigenvalues are equal
to its diagonal elements λiµj .

Exercise 10.11 (Eigenvectors of a Kronecker product)
(a) Show that, if x is an eigenvector of A and y is an eigenvector of B, then x ⊗ y is an
eigenvector of A⊗B.
(b) Is it true that each eigenvector of A⊗B is of the form x⊗y, where x is an eigenvector
of A and y is an eigenvector of B?

Solution
(a) If Ax = λx and By = µy, then

(A⊗B)(x⊗ y) = Ax⊗By = λx⊗ µy = λµ(x⊗ y).

(b) No. For example, let

A = B =
(

0 1
0 0

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
.

Both eigenvalues of A (and both eigenvalues of B) are zero. The only eigenvector is e1.
The four eigenvalues of A ⊗B are all zero, but A ⊗B has three eigenvectors: e1 ⊗ e1,
e1 ⊗ e2, and e2 ⊗ e1.

Exercise 10.12 (Determinant and rank of a Kronecker product)
(a) If A and B are positive (semi)definite, show that A⊗B is positive (semi)definite.
(b) Show that

|A⊗B| = |A|n|B|m,

when A and B are square matrices of orders m and n, respectively.
(c) Show that

rk(A⊗B) = rk(A) rk(B).

Solution
(a) If A and B are positive (semi)definite, then the eigenvalues λi of A and the eigenvalues
µj of B are all positive (nonnegative), and hence all eigenvalues λiµj of A ⊗B are also
positive (nonnegative), so that A⊗B is positive (semi)definite (Exercise 8.11).
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(b) The determinant is the product of the eigenvalues, so

|A⊗B| =
m∏

i=1

n∏
j=1

(λiµj) =
m∏

i=1

(λn
i |B|) = |B|m

(
m∏

i=1

λi

)n

= |A|n|B|m.

(c) Our starting point is

rk(A⊗B) = rk(A⊗B)(A⊗B)′ = rk(AA′ ⊗BB′).

The matrix AA′ ⊗ BB′ is symmetric (in fact, positive semidefinite) and hence its rank
equals the number of nonzero eigenvalues (Exercise 7.49). Now, the eigenvalues of AA′⊗
BB′ are {λiµj}, where {λi} are the eigenvalues of AA′ and {µj} are the eigenvalues of
BB′. The eigenvalue λiµj is nonzero if and only if both λi and µj are nonzero. Hence,
the number of nonzero eigenvalues of AA′ ⊗ BB′ equals the product of the number of
nonzero eigenvalues of AA′ and the number of nonzero eigenvalues of BB′. This implies
rk(A⊗B) = rk(A) rk(B).

Exercise 10.13 (Nonsingularity of a Kronecker product)
If A and B are not square, then it is still possible that A⊗B is a square matrix. Show that
A⊗B is singular, unless both A and B are square and nonsingular.

Solution
If the order of A is m× p and the order of B is n× q, then A⊗B is square if and only if
mn = pq. Now, by Exercises 10.12 and 4.7(a),

rk(A⊗B) = rk(A) rk(B) ≤ min(m, p) min(n, q).

If A ⊗ B is nonsingular, we conclude from rk(A ⊗ B) = mn that m ≤ p, n ≤ q, and
from rk(A⊗B) = pq that p ≤ m and q ≤ n. Hence, p = m and q = n, and A and B are
both square. Since rk(A) rk(B) = mn, it follows that rk(A) = m and rk(B) = n.

Exercise 10.14 (When is A ⊗ A ≥ B ⊗ B?) If A and B are positive semidefi-
nite, show that A⊗A ≥ B ⊗B if and only if A ≥ B.

Solution
If A ≥ B, then

A⊗A−B ⊗B = A⊗A−A⊗B + A⊗B −B ⊗B

= A⊗ (A−B) + (A−B)⊗B ≥ O,

since A, B, and A − B are all positive semidefinite. Conversely, if A ⊗ A ≥ B ⊗ B,
then for any conformable x,

0 ≤ (x⊗ x)′(A⊗A−B ⊗B)(x⊗ x) = (x′Ax)2 − (x′Bx)2

= x′(A + B)x · x′(A−B)x.
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Since A ≥ O and B ≥ O, we have x′(A+B)x ≥ 0. If x′(A+B)x > 0, then the above
inequality implies that x′(A−B)x ≥ 0. If x′(A + B)x = 0, then x′Ax = x′Bx = 0,
so that x′(A−B)x = 0. It follows that x′(A−B)x ≥ 0 for all x. Hence, A ≥ B.

10.2 The vec-operator

Exercise 10.15 (Examples of vec) Compute vec A, vec A′, vec B, vec B′, vec e, vec e′

of the matrices A and B, and the vector e in Exercise 10.1.

Solution
We have

vec A =



2
0
5
6
2
3


, vec A′ =



2
5
2
0
6
3


, vec B =



2
3
4
5
1
0


, vec B′ =



2
4
1
3
5
0


,

and vec e = vec e′ = e = (0, 0, 1)′.

Exercise 10.16 (Linearity of vec) If A and B have the same order, show that:
(a) vec(A + B) = vec(A) + vec(B);
(b) vec(αA) = α vec A.

Solution
(a) Let A := (a1, . . . ,an), B := (b1, . . . , bn), and C := A + B. Denoting the columns
of C by c1, . . . , cn, we obtain

vec C =

c1
...

cn

 =

a1 + b1
...

an + bn

 =

a1
...

an

+

b1
...

bn

 = vec A + vec B.

(b) Here,

vec(αA) =

αa1
...

αan

 = α

a1
...

an

 = α vec A.

Exercise 10.17 (Equality?)
(a) Does vec A = vec B imply that A = B?
(b) Show that vec a′ = vec a = a for any vector a.
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Solution
(a) If and only if A and B have the same order.
(b) Let a := (a1, . . . , an)′. Then,

vec a′ = vec(a1, . . . , an) = a = vec a.

This provides a counterexample for (a), because vec a′ = vec a does not imply that a′ = a,
unless a is a scalar.

*Exercise 10.18 (Relationship of vec-operator and Kronecker product)
(a) Show that, for any two vectors a and b, vec ab′ = b⊗ a.
(b) Use this fact to establish

vec ABC = (C ′ ⊗A) vec B,

whenever the product ABC is defined (Roth).

Solution
(a) Let b := (b1, . . . , bn)′. Then,

vec ab′ = vec(b1a, . . . , bna) =

b1a
...

bna

 = b⊗ a.

(b) Let B := (b1, . . . , bn) be an m× n matrix and let the n columns of In be denoted by
e1, . . . ,en. Then B can be written as B =

∑n
i=1 bie

′
i. Hence, using (a),

vec ABC = vec
n∑

i=1

Abie
′
iC =

n∑
i=1

vec
(
(Abi)(C ′ei)′

)
=

n∑
i=1

(C ′ei)⊗ (Abi) = (C ′ ⊗A)
n∑

i=1

(ei ⊗ bi)

= (C ′ ⊗A)
n∑

i=1

vec bie
′
i = (C ′ ⊗A) vec B.

Exercise 10.19 (Special relationships) Let A be an m × n matrix, B an n × p ma-
trix, and d a p× 1 vector. Show that:
(a) vec AB = (B′ ⊗ Im) vec A = (B′ ⊗A) vec In = (Ip ⊗A) vec B;
(b) ABd = (d′ ⊗A) vec B = (A⊗ d′) vec B′;
(c) vec A = (In ⊗A) vec In = (A′ ⊗ Im) vec Im.

Solution
(a) We have vec AB = vec ImAB = (B′ ⊗ Im) vec A, and similarly, vec AB =
vec AInB = (B′ ⊗A) vec In, and vec AB = vec ABIp = (Ip ⊗A) vec B.
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(b) This follows because

ABd = vec ABd = (d′ ⊗A) vec B,

and also

ABd = vec(ABd)′ = vec d′B′A′ = (A⊗ d′) vec B′.

(c) Finally,

vec A = vec AInIn = (In ⊗A) vec In, vec A = vec ImImA = (A′ ⊗ Im) vec Im.

Exercise 10.20 (Relationship of vec-operator and trace)
(a) For any two matrices of the same order, show that

(vec A)′ vec B = trA′B.

(b) Use this fact to show that

tr ABCD = (vec D′)′(C ′ ⊗A) vec B = (vec D)′(A⊗C ′) vec B′,

when the product ABCD is defined and square.
(c) In particular, show that

(vec V )′(A⊗B) vec V = (vec V )′(B ⊗A) vec V ,

= (vec V )′(A′ ⊗B′) vec V = (vec V )′(B′ ⊗A′) vec V ,

when A, B, and V are square of the same order, and V is symmetric.

Solution
(a) Let A = (aij) and B = (bij). Then,

(vec A)′ vec B =
∑
ij

aijbij =
∑

j

(A′B)jj = trA′B.

(b) This follows because

tr ABCD = tr D(ABC) = (vec D′)′ vec ABC = (vec D′)′(C ′ ⊗A) vec B

and also

tr ABCD = tr(ABCD)′ = trD′(C ′B′A′)

= (vec D)′ vec C ′B′A′ = (vec D)′(A⊗C ′) vec B′.

We note that other equalities can be obtained by rearranging the order in tr ABCD cycli-
cally. There are four ways to do this. In addition we can take the transpose. Hence, there
are eight equivalent expressions for tr ABCD of the type (vec P )′(Q⊗R) vec S.
(c) Putting B := D := V in (b) proves the first equality. Taking transposes then proves
the remaining equalities, because a quadratic form is a scalar and thus equals its transpose.
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Exercise 10.21 (The matrix A ⊗ A − α(vec A)(vec A)′) Consider the n2 × n2 ma-
trices

B := In ⊗ In − α(vec In)(vec In)′ and C := A⊗A− α(vec A)(vec A)′,

with A > O of order n× n. Show that:
(a) the eigenvalues of B are 1− nα (once) and 1 (n2 − 1 times);
(b) |B| = 1− nα;
(c) B > O⇐⇒ α < 1/n, and B ≥ O⇐⇒ α ≤ 1/n;
(d) C > O⇐⇒ α < 1/n, and C ≥ O⇐⇒ α ≤ 1/n.

Solution
(a) The matrix (vec In)(vec In)′ is symmetric of rank one, and hence all its eigenvalues are
zero except one, which equals (vec In)′(vec In) = n. Hence, the matrix α(vec In)(vec In)′

has eigenvalues nα (once) and zero (n2 − 1 times), and B has eigenvalues 1 − nα (once)
and 1 (n2 − 1 times).
(b)–(c) This follows directly from (a).
(d) Since (A1/2⊗A1/2)(A1/2⊗A1/2) = A⊗A and (A1/2⊗A1/2) vec In = vec A, we
obtain C = (A1/2 ⊗A1/2)B(A1/2 ⊗A1/2) and the result follows.

10.3 The Moore-Penrose inverse

Exercise 10.22 (MP examples)
(a) What is the MP-inverse of a nonsingular matrix?
(b) What is the MP-inverse of a scalar?
(c) What is the MP-inverse of a diagonal matrix?
(d) What is the MP-inverse of a null matrix?

Solution
All four statements are proved by verifying that the four defining conditions hold.
(a) If A is nonsingular, then A+ = A−1.
(b) Let λ be a scalar. Then λ+ = 1/λ if λ �= 0, and λ+ = 0 if λ = 0.
(c) Let Λ := diag(λ1, . . . , λn) be a diagonal matrix. Then, Λ+ = diag(λ+

1 , . . . , λ+
n ).

(d) If A = O, then A+ = O (but if A has order m× n, then A+ has order n×m, so the
two null matrices are not equal).

*Exercise 10.23 (Existence of MP) Show the existence of the MP-inverse.

Solution
Let A be an m× n matrix with rk(A) = r. If r = 0, then A = O. In that case A+ = O
satisfies the four definition equations. Assume next that r > 0. By the singular-value
decomposition (Exercise 8.38), there exist an m × r matrix S satisfying S′S = Ir, an
n×r matrix T satisfying T ′T = Ir, and an r×r diagonal matrix Λ with positive diagonal
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elements, such that A = SΛ1/2T ′. Now let B = TΛ−1/2S′. Then,

ABA = SΛ1/2T ′TΛ−1/2S′SΛ1/2T ′ = SΛ1/2T ′ = A,

BAB = TΛ−1/2S′SΛ1/2T ′TΛ−1/2S′ = TΛ−1/2S′ = B,

(AB)′ = SΛ1/2T ′TΛ−1/2S′ = SS′,

(BA)′ = TΛ−1/2S′SΛ1/2T ′ = TT ′,

and hence B is an MP-inverse of A.

*Exercise 10.24 (Uniqueness of MP) Show that the MP-inverse is unique.

Solution
We provide two solutions. Suppose that B and C both satisfy the four defining conditions:
(i) AXA = A, (ii) XAX = X , (iii) (AX)′ = AX , and (iv) (XA)′ = XA. We shall
show that B = C.

In the first solution we note that

AB = (AB)′ = B′A′ = B′(ACA)′ = B′A′C ′A′ = (AB)′(AC)′ = ABAC = AC,

using conditions (i) and (iii) only. Similarly, using (i) and (iv),

BA = (BA)′ = A′B′ = (ACA)′B′ = A′C ′A′B′ = (CA)′(BA)′ = CABA = CA.

Finally, using (ii),

B = BAB = BAC = CAC = C.

This proves uniqueness.
In the second solution we let Z = B − C and show that Z = O. From the defining

conditions we obtain (i) AZA = O, (ii) Z = ZAZ+ZAC+CAZ, (iii) (AZ)′ = AZ,
(iv) (ZA)′ = ZA. From (i) and (iii) we see that (AZ)′(AZ) = AZAZ = O, and hence
AZ = O. Similarly, from (i) and (iv) we find ZA = O. Then, from (ii), Z = O.

Exercise 10.25 (MP-inverse of transpose) Show that:
(a) (A+)+ = A;
(b) (A′)+ = (A+)′;
(c) (A⊗B)+ = A+ ⊗B+.

Solution
(a) To check the four defining equations, we need to show that if (i) A+XA+ = A+, (ii)
XA+X = X , (iii) (A+X)′ = A+X , and (iv) (XA+)′ = XA+, then X = A. We can
easily verify that X = A satisfies these four equations. Since the solution is known to be
unique, X = A is the only solution.
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(b) Here we need to prove that X = (A+)′ satisfies the equations (i) A′XA′ = A′,
(ii) XA′X = X , (iii) (A′X)′ = A′X , (iv) (XA′)′ = XA′. This follows immediately
from the defining equations of A+.
(c) Again, this follows from checking the four defining equations.

Exercise 10.26 (Idempotent matrices involving the MP-inverse) Let A be an m × n

matrix of rank r. Show that the following matrices are symmetric idempotent:
(a) AA+ and A+A;
(b) Im −AA+ and In −A+A;
(c) A(A′A)+A′ and A′(AA′)+A.

Solution
(a) Symmetry holds by definition. Also, we have AA+AA+ = (AA+A)A+ = AA+

and A+AA+A = A+(AA+A) = A+A.
(b) This follows directly from (a).
(c) Symmetry is obvious. Idempotency follows by direct multiplication.

Exercise 10.27 (Condition for A+ = A)
(a) If A is symmetric and idempotent, show that A+ = A.
(b) Does the converse hold?
(c) For any A, show that (AA+)+ = AA+ and (A+A)+ = A+A.

Solution
(a) If A = A′ = A2, then A3 = A and (A2)′ = A2. Hence the four defining equations
are satisfied, and since the MP-inverse is unique, it follows that A+ = A.
(b) No. For example, if A = −I , then A+ = A, but A is not idempotent.
(c) This follows from (a), because AA+ and A+A are symmetric idempotent (Exer-
cise 10.26(a)).

Exercise 10.28 (Rank of MP) Show that the matrices A, A+, AA+, and A+A all
have the same rank.

Solution
The results follow by pre- and postmultiplication:

rk(A) = rk(AA+A) ≤ rk(A+) = rk(A+AA+) ≤ rk(A),

rk(A) = rk(AA+A) ≤ rk(AA+) ≤ rk(A),

and

rk(A) = rk(AA+A) ≤ rk(A+A) ≤ rk(A).



10.3 The Moore-Penrose inverse 287

Exercise 10.29 (MP equalities, 1) Show that:
(a) A′AA+ = A′ = A+AA′;
(b) A′A+′

A+ = A+ = A+A+′
A′;

(c) (A′A)+ = A+A+′;
(d) (AA′)+ = A+′

A+;
(e) A+ = (A′A)+A′ = A′(AA′)+.

Solution
(a) Since A+A and AA+ are both symmetric (by definition), we find

A′AA+ = A′(AA+)′ = A′A+′
A′ = (A+A)′A′ = A+AA′.

This, together with the fact that A′A+′
A′ = (AA+A)′ = A′ proves (a).

(b) Similarly,

A′A+′
A+ = (A+A)′A+ = A+AA+ = A+

and

A+A+′
A′ = A+(AA+)′ = A+AA+ = A+.

(c) We check the four defining equations, using (a) and (b):

A′AA+A+′
A′A = A′A+′

A′A = (AA+A)′A = A′A,

A+A+′
A′AA+A+′ = A+A+′

A
′
A+′ = A+(A+AA+)′ = A+A+′

,

A′AA+A+′ = A′A+′ = A+A is symmetric,

A+A+′
A′A = A+A is symmetric.

(d) This is proved exactly as (c).
(e) Using (b) and (c) we find A+ = A+A+′

A′ = (A′A)+A′. Similarly, using (b) and (c),
A+ = A′A+′

A+ = A′(AA′)+.

Exercise 10.30 (MP equalities, 2)
(a) Show that A(A′A)+A′A = A = AA′(AA′)+A.
(b) Hence, show that for positive definite V ,

(X ′V −1X)(X ′V −1X)+X ′ = X ′.

(c) Also show, using (a), that

AB(B′B)+B′A′(AB(B′B)+B′A′)+AB = AB.

Solution
(a) We use Exercise 10.29(e). Then, A(A′A)+A′A = AA+A = A, and, similarly,
AA′(AA′)+A = AA+A = A.
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(b) Let A := V −1/2X . Then, inserting in (a), we obtain

V −1/2X(X ′V −1X)+X ′V −1X = V −1/2X.

Premultiplying with V 1/2 and transposing gives the result.
(c) Let C := (B′B)+ and Q := ABC1/2. Then, since QQ′(QQ′)+Q = Q, we have

ABCB′A′(ABCB′A′)+ABC1/2 = ABC1/2.

Now postmultiply by C1/2B′B and use (a).

Exercise 10.31 (Explicit expressions for A+)
(a) Show that A+ = (A′A)−1A′ if A has full column rank.
(b) Show also that A+ = A′(AA′)−1 if A has full row rank.
(c) Show that AA+ = I if A has full row rank and A+A = I if A has full column rank.

Solution
(a) If A has full column rank, then A′A is nonsingular, and hence, using Exercise 10.29(e),

A+ = (A′A)+A′ = (A′A)−1A′.

(b) Similarly, if A has full row rank, then AA′ is nonsingular, and, again using Exer-
cise 10.29(e),

A+ = A′(AA′)+ = A′(AA′)−1.

(c) This follows directly from (a) and (b).

Exercise 10.32 (Condition for AB = O) Show that:
(a) A = O⇐⇒ A+ = O;
(b) AB = O⇐⇒ B+A+ = O;
(c) A+B = O⇐⇒ A′B = O.

Solution
(a) We already know (Exercise 10.22(d)) that if A = O, then A+ = O. The converse
follows since (A+)+ = A (Exercise 10.25(a)).
(b) If AB = O, then B+A+ = (B′B)+B′A′(AA′)+ = O. To prove the converse,
let C := A+ and D := B+. We just established that DC = O implies C+D+ = O.
Hence, B+A+ = O implies AB = O.
(c ) If A′B = O, then A+B = (A′A)+A′B = O. Conversely, if A+B = O, then, by
Exercise 10.30(a),

A′B = A′A(A′A)+A′B = A′AA+B = O.

Exercise 10.33 (MP-inverse of a vector)
(a) If rk(A) = 1, then show that A+ = (tr AA′)−1A′.
(b) In particular, what is the MP-inverse of a vector a?
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Solution
(a) If rk(A) = 1, then A = ab′ for some a �= 0, b �= 0. Then, letting λ := (a′a)(b′b),
we obtain from the defining equations, A+ = λ−1ba′ = (tr AA′)−1A′.
(b) In the special case where b = 1, we have a+ = (1/a′a)a′ if a �= 0. If a = 0, then
a+ = 0′.

Exercise 10.34 (MP-inverse of a block-diagonal matrix) Consider the partitioned ma-
trices

A :=
(

A1 O
O A2

)
and B :=

(
A+

1 O
O A+

2

)
.

Show that B = A+.

Solution
This follows from the properties of A+ and B+ and the four defining equations.

Exercise 10.35 (MP-inverse of a symmetric matrix) Let A = SΛS′ be a symmet-
ric n × n matrix of rank r, where Λ is a diagonal r × r matrix with nonzero diagonal
elements, and S is a semi-orthogonal n×r matrix (S′S = Ir). Show that A+ = SΛ−1S′.

Solution
This, again, follows from the four defining equations. For example,

AA+A = SΛS′SΛ−1S′SΛS′ = SΛS′ = A.

Exercise 10.36 (Condition for (AB)+ = B+A+)
(a) Show that (AB)+ = B′A+ if BB′ = I .
(b) Show that (AB)+ = B+A+ if A has full column rank and B has full row rank.
(c) We know from the rank factorization theorem (Exercise 4.11) that every m× n matrix
A of rank r can be written as A = BC ′, where B (m × r) and C (n × r) both have full
column rank r. Use this result to show that A+ = C(B′BC ′C)−1B′.

Solution
(a) We check the four defining equations:

ABB′A+AB = AA+AB = AB,

B′A+ABB′A+ = B′A+AA+ = B′A+,

ABB′A+ = AA+ is symmetric,

B′A+AB is symmetric.
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(b) Again we check the defining equations, using BB+ = I and A+A = I:

ABB+A+AB = AB,

B+A+ABB+A+ = B+A+,

ABB+A+ = AA+ is symmetric,

B+A+AB = B+B is symmetric.

(c) This follows from (b), because

A+ = (BC ′)+ = (C ′)+B+ = C(C ′C)−1(B′B)−1B′ = C(B′BC ′C)−1B′.

*Exercise 10.37 (When is AA+ = A+A?) Let A be a square matrix of order n

and rank r.
(a) If A = A′, show that AA+ = A+A.
(b) Does the converse hold?
(c) Show that AA+ = A+A if and only if col(A) = col(A′).

Solution
(a) This follows from AA+ = (AA+)′ = A+′

A′ = (A′)+A′ = A+A.
(b) No. Any nonsingular matrix A satisfies AA+ = A+A = I , whether symmetric or
not. Less trivially, any matrix A of the form A = SQS′ with S′S = Ir (r ≥ 2) and
nonsingular Q has MP-inverse A+ = SQ−1S′ and hence AA+ = A+A = SS′. But A

is not symmetric unless Q is symmetric.
(c) Write A = BC ′, where B and C are n × r matrices of full column rank r (see
Exercise 4.11(a)). Then, by Exercise 10.36,

A+ = (BC ′)+ = C ′+B+ = C(C ′C)−1(B′B)−1B′,

and hence AA+ = B(B′B)−1B′ and A+A = C(C ′C)−1C ′. If AA+ = A+A, then
B(B′B)−1B′ = C(C ′C)−1C ′. Postmultiplying by B and C, respectively, shows that
B = CQ and C = BQ−1 for some nonsingular matrix Q. Hence, col(B) = col(C).
Since A and B have the same rank and A = BC ′, we have col(B) = col(A). Similarly,
since A′ and C have the same rank and A′ = CB′, we have col(A′) = col(C). Hence,
col(A) = col(A′).

Conversely, if col(A) = col(A′), then col(B) = col(C) and hence B = CQ for some
nonsingular matrix Q. Then, by Exercise 10.36(b), B+ = Q−1C+ and hence

AA+ = BB+ = CQQ−1C+ = CC+ = A+A.

Exercise 10.38 (MP-inverse of a positive semidefinite matrix) Let A be a positive
semidefinite n × n matrix of rank r. Recall from Exercise 8.22 that there exists an n × r

matrix B of rank r such that A = BB′. Show that A+ = B(B′B)−2B′.
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Solution
We can check the four defining equations. Alternatively, we know from Exercise 10.36(c)
that A+ = B(B′BB′B)−1B′ and the result follows immediately.

Exercise 10.39 (An important MP equivalence) Show that

A′AB = A′C ⇐⇒ AB = AA+C.

Solution
We provide two proofs of the equivalence. If A′AB = A′C, then, using Exercises
10.30(a) and 10.29(e),

AB = A(A′A)+A′AB = A(A′A)+A′C = AA+C.

Conversely, if AB = AA+C, then, using Exercise 10.29(a),

A′AB = A′AA+C = A′C.

The second proof uses the singular-value decomposition. We write A = SΛ1/2T ′ and
A+ = TΛ−1/2S′, where S′S = T ′T = Ir and r is the rank of A. Then,

A′AB = A′C ⇐⇒ TΛ1/2S′SΛ1/2T ′B = TΛ1/2S′C ⇐⇒ Λ1/2T ′B = S′C

⇐⇒ SΛ1/2T ′B = SS′C ⇐⇒ AB = AA+C.

Exercise 10.40 (When is (AB)(AB)+ = AA+?)
(a) If B has full row rank, show that AB(AB)+ = AA+.
(b) Is the converse true?

Solution
(a) Since A′ = A′AA+ (Exercise 10.29(a)) and BB+ = I (Exercise 10.31(c)), we find

AB(AB)+ = (AB)+′(AB)′ = (AB)+′
B′A′ = (AB)+′

B′A′AA+

= (AB)+′(AB)′AA+ = AB(AB)+AA+

= AB(AB)+ABB+A+ = ABB+A+ = AA+.

(b) No. If B = A+, then AB(AB)+ = AA+(AA+)+ = AA+AA+ = AA+, irre-
spective of the rank.

Exercise 10.41 (Is the difference of two idempotent matrices idempotent?) Let
A be a symmetric idempotent matrix.
(a) If AB = B, show that A−BB+ is symmetric idempotent with rank rk(A)− rk(B).
(b) Does the converse hold?
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Solution
(a) Let C := A−BB+. Then C = C ′, CB = O, and

C2 = (A−BB+)(A−BB+) = A2 −ABB+ −BB+A + BB+BB+

= A−BB+A = A−BB+,

because

BB+A = (BB+)′A′ = (ABB+)′ = (BB+)′ = BB+.

Hence, C is idempotent. Its rank is

rk(C) = tr(C) = trA− tr BB+ = rk(A)− rk(B).

(b) Yes. If C is idempotent, then (A − BB+)(A − BB+) = A − BB+, and hence
ABB+ + BB+A = 2BB+. Premultiplying with A gives ABB+A = ABB+ and
thus shows that ABB+ is symmetric. Hence, ABB+ = BB+A = BB+, implying
that AB = B.

Exercise 10.42 (A necessary and sufficient condition for A = BB+) Let A be a
symmetric idempotent n× n matrix. Use Exercise 10.41 to show:
(a) if AB = B and rk(A) = rk(B), then A = BB+;
(b) if AB = O and rk(A) + rk(B) = n, then A = In −BB+.

Solution
(a) Exercise 10.41(a) shows that A−BB+ has rank 0. Hence, A = BB+.
(b) Let C := In −A. Then C is symmetric idempotent and CB = B. Also, rk(C) =
n − rk(A) = rk(B). Hence, by (a), C = BB+, that is, A = In − BB+. (Compare
Exercise 8.64(b).)

10.4 Linear vector and matrix equations

Exercise 10.43 (The homogeneous equation Ax = 0) Consider the homogeneous
vector equation Ax = 0.
(a) Show that the general solution of Ax = 0 is given by x = (I −A+A)q, where q is
an arbitrary (conformable) vector.
(b) Show that the solution of Ax = 0 is unique if and only if A has full column rank.
What is the unique solution in that case?
(c) If the solution of Ax = 0 is not unique, show that there are infinitely many solutions.

Solution
(a) Premultiplying x = (I −A+A)q by A shows that x is a solution of Ax = 0 for any
q. Conversely, if x is a solution of Ax = 0, then x = (I −A+A)x. Hence, there exists
a vector q (namely x) such that x = (I −A+A)q. (Experience shows that many students
are not convinced by this simple proof, so look carefully at what happens.)
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(b) A has full column rank if and only if A+A = I , in which case the general solution is
x = 0.
(c) If the solution is not unique, then A+A �= I and there are infinitely many solutions
given by x = (I −A+A)q.

Exercise 10.44 (Ax = b may not have a solution) Show that the nonhomogeneous
vector equation Ax = b does not necessarily have a solution when b �= 0. In other words,
show that a nonhomogeneous vector equation is not necessarily consistent.

Solution
For example, let

A =
(

1 2
1 2

)
and b =

(
1
2

)
.

Then Ax = b has no solution.

Exercise 10.45 (Consistency of Ax = b) Let A be a given m × n matrix and b a
given m× 1 vector. Show that the following four statements are equivalent:
(a) the vector equation Ax = b has a solution for x,
(b) b ∈ col(A),
(c) rk(A : b) = rk(A),
(d) AA+b = b.

Solution
It is easy to show that (a), (b), and (c) are equivalent. Let us show that (a) and (d) are equiv-
alent. Suppose Ax = b is consistent. Then there exists an x̃ such that Ax̃ = b. Hence,
b = Ax̃ = AA+Ax̃ = AA+b. Conversely, suppose that AA+b = b and let x̃ = A+b.
Then Ax̃ = AA+b = b.

Exercise 10.46 (Solution of Ax = b) If the vector equation Ax = b is consistent,
show that the general solution is given by x = A+b + (I −A+A)q, where q is an arbi-
trary (conformable) vector.

Solution
Consistency implies that AA+b = b. Define x̃ := x−A+b. Then, using Exercise 10.43,

Ax = b ⇐⇒ Ax = AA+b ⇐⇒ Ax̃ = 0

⇐⇒ x̃ = (I −A+A)q ⇐⇒ x = A+b + (I −A+A)q.

Exercise 10.47 (Least squares)
(a) Whether the equation Ax = b is consistent or not, show that

(Ax− b)′(Ax− b) = (x−A+b)′A′A(x−A+b) + b′(I −AA+)b.

(b) Conclude that x̂ := A+b minimizes ‖Ax− b‖ (least squares).
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Solution
(a) Let x̂ := A+b. Then,

Ax− b = A(x− x̂)− (I −AA+)b.

Since A and I − AA+ are orthogonal to each other, we obtain (a) by taking the inner
product on both sides.
(b) Since (x−A+b)′A′A(x−A+b) ≥ 0, the minimum of (Ax−b)′(Ax−b) is obtained
when Ax = AA+b, in particular for x = x̂.

Exercise 10.48 (Uniqueness of solution, 1)
(a) Show that the equation Ax = b is consistent for every b if and only if A has full row
rank.
(b) If Ax = b is consistent, show that its solution is unique if and only if A has full column
rank.

Solution
(a) This follows from Exercise 10.46, because AA+ = I in that case.
(b) This follows because A+A = I in that case. Note in particular that a unique solution
may exist without A being square or nonsingular.

Exercise 10.49 (The matrix equation AXB = C) Consider the matrix equation
AXB = C.
(a) Show that the equation is consistent if and only if AA+CB+B = C.
(b) If the equation is consistent, show that the general solution is given by

X = A+CB+ + Q−A+AQBB+,

where Q is an arbitrary (conformable) matrix.

Solution
We write the matrix equation AXB = C as a vector equation (B′ ⊗A) vec X = vec C.
(a) Using Exercise 10.45(d) consistency requires that

(B′ ⊗A)(B′ ⊗A)+ vec C = vec C.

Noticing that (B′ ⊗A)(B′ ⊗A)+ = B+B ⊗AA+, we obtain (a).
(b) Using Exercise 10.46, the general solution is

vec X = (B′ ⊗A)+ vec C + (I − (B′ ⊗A)+(B′ ⊗A)) vec Q

= vec A+CB+ + vec Q− (BB+ ⊗A+A) vec Q

= vec(A+CB+ + Q−A+AQBB+)

and the result follows.

Exercise 10.50 (Uniqueness of solution, 2)
(a) Show that the matrix equation AXB = C is consistent for every C if and only if A

has full row rank and B has full column rank.
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(b) Show that the matrix equation AXB = C, if consistent, has a unique solution if and
only if A has full column rank and B has full row rank.

Solution
(a) The equation AXB = C is consistent for every C if and only if (B′⊗A)(B′⊗A)+ =
I . This is the case if and only if B+B = I and AA+ = I , that is, if and only if A has
full row rank and B has full column rank.
(b) The solution is unique if and only if A+A = I and BB+ = I , that is, if and only if A

has full column rank and B has full row rank.

Exercise 10.51 (Solution of AX = O and XA = O)
(a) Show that the general solution of AX = O is given by X = (I −A+A)Q.
(b) Show that the general solution of XA = O is given by X = Q(I −AA+).

Solution
(a) Set B := I and C := O in the equation AXB = C. Since C = O, the equation is
homogeneous and thus always has a solution given by Exercise 10.49(b).
(b) Similarly, we see that the general solution of the homogeneous equation IXA = O is
given by X = O + Q− IQAA+ = Q(I −AA+).

10.5 The generalized inverse

Exercise 10.52 (Generalized inverse) Any matrix X satisfying AXA = A is called a
generalized inverse of A and is denoted by A−.
(a) Show that A− exists.
(b) Show that A− = A+ + Q−A+AQAA+ (Q arbitrary).

Solution
(a) Clearly, X := A+ satisfies AXA = A, so that there exists at least one solution.
(b) From Exercise 10.49(b) we have

X = A+AA+ + Q−A+AQAA+

and the result follows.

Exercise 10.53 (Idempotency of A−A)
(a) Show that A−A is idempotent.
(b) Show that A−A is, in general, not symmetric.
(c) If A−A is symmetric, then show that A−A = A+A and hence that A−A is unique.
(Similar results hold, of course, for AA−.)

Solution
(a) We have

(A−A)(A−A) = A−(AA−A) = A−A.
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(b) Using the explicit expression for A− (Exercise 10.52(b)), we obtain

A−A = (A+ + Q−A+AQAA+)A = A+A + (I −A+A)QA

which is, in general, not symmetric.
(c) If A−A is symmetric, then (I−A+A)QA = A′Q′(I−A+A). Postmultiplying both
sides by A′Q′(I −A+A) yields

(I −A+A)QAA′Q′(I −A+A) = O,

and hence (I −A+A)QA = O. The result then follows from (b).

Exercise 10.54 (Uniqueness of A(A′A)−A′) Show that A(A′A)−A′ = A(A′A)+A′

and hence that this matrix is symmetric, idempotent, and unique.

Solution
From the general expression for a generalized inverse (Exercise 10.52(b)) we obtain

(A′A)− = (A′A)+ + Q− (A′A)+A′AQA′A(A′A)+.

Premultiplying by A and postmultiplying by A′ then gives the result, by Exercise 10.30(a).

Exercise 10.55 (Rank of A−) Let A be a symmetric idempotent matrix.
(a) Show that the general solution of A− is given by

A− = A + Q−AQA (Q arbitrary).

(b) Show that B := A + α(I −A) is a generalized inverse of A for any α.
(c) Show that B is nonsingular for every α �= 0.
(d) Conclude that, in general, rk(A−) �= rk(A).

Solution
(a) This follows from Exercise 10.52(b).
(b) Choose Q = αI .
(c) Since the eigenvalues of A are 0 and 1, and writing B = αI + (1 − α)A, we see that
the eigenvalues of B are α and 1. If α �= 0, then all eigenvalues of B are nonzero, so that
B is nonsingular.
(d) The matrix B is a generalized inverse of A and has full rank when α �= 0, whatever the
rank of A. Hence, rk(A−) �= rk(A), in general.

Exercise 10.56 (The vector equation again)
(a) Show that a necessary and sufficient condition for the vector equation Ax = b to be
consistent is that AA−b = b.
(b) Show that the vector equation Ax = b, if consistent, has the general solution x =
A−b + (I −A−A)q, where q is an arbitrary (conformable) vector.
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Solution
This is easiest proved by repeating the steps in the proofs of Exercises 10.45, 10.43(a), and
10.46, respectively, replacing A+ by A− throughout.

Notes

The Kronecker product has a long history, especially the determinant result, |A ⊗ B| =
|A|n|B|m, for any two square matrices A and B of orders m and n, respectively (Exer-
cise 10.12); see MacDuffee (1946, pp. 81–84) for references. For the use of tensors as an
alternative to Kronecker products, see Kay (1988) and, for applications in statistics, see
McCullagh (1987). The vec-operator was introduced by Koopmans, Rubin, and Leipnik
(1950). The fundamental result vec ABC = (C ′ ⊗ A) vec B (Exercise 10.18) is due
to Roth (1934). The Moore-Penrose inverse was introduced by Moore (1920, 1935) and
rediscovered by Penrose (1955). There is a great volume of literature on the MP-inverse.
The reader may wish to consult Rao and Mitra (1971) or Magnus and Neudecker (1999).
The consistency and solution of the matrix equation AXB = C (Exercise 10.49) is taken
from Penrose (1956).
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Patterned matrices: commutation- and
duplication matrix

Let A be a real m × n matrix. The two vectors vec A and vec A′ contain the same mn

components, but in a different order. Hence, there exists a unique permutation matrix that
transforms vec A into vec A′. This mn × mn matrix is called the commutation matrix,
denoted by Kmn, and defined implicitly by the operation

Kmn vec A = vec A′.

The order of the indices matters: Kmn and Knm are two different matrices when m �= n,
except when either m = 1 or n = 1. The reason for the name “commutation” matrix will
become apparent in Exercise 11.3. If m = n we write Kn instead of Knn.

Closely related to the commutation matrix is the n2 × n2 matrix Nn with the property

Nn vec A = vec
1
2
(A + A′),

for every square n × n matrix A. Thus, Nn transforms an arbitrary square matrix A into
the symmetric matrix 1

2(A + A′). For this reason we call Nn the symmetrizer (matrix). It
is easy to see that Nn = 1

2(In2 + Kn).
Next we introduce the half-vec operator vech(·). Again, let A be a square n×n matrix.

Then vech(A) denotes the 1
2n(n+1)×1 vector that is obtained from vec A by eliminating

all supradiagonal elements of A. For example, for n = 2,

vec A = (a11, a21, a12, a22)′ and vech(A) = (a11, a21, a22)′,

where the supradiagonal element a12 has been removed. Thus, for symmetric A, vech(A)
only contains the distinct elements of A. Now, if A is symmetric, the elements of vec A

are those of vech(A) with some repetitions. Hence, there exists a unique n2 × 1
2n(n + 1)

matrix Dn, called the duplication matrix, that transforms, for symmetric A, vech(A) into
vec A, that is,

Dn vech(A) = vec A (A = A′).

299
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We will see in Exercise 11.28 that Dn and Nn are connected through DnD+
n = Nn.

Particular attention will be given to the matrices D+(A ⊗A)D and D′(A ⊗A)D, and
their inverse and determinant, which play an important role in many statistical applications,
for example in determining the variance of the Wishart distribution (Exercise 11.35) and
evaluating Jacobians in Chapter 13 (Exercises 13.37 and 13.38).

Finally, we consider a generalization of the duplication matrix, called a linear structure.
Let X = (xij) be an m×n matrix and suppose that there exist mn− s linear relationships
among the mn elements of X . If these restrictions are linearly independent, then X has
only s “free” variables. A linear structure is then the collection of all real m × n matrices
that satisfy a given set of linear restrictions. One example of a linear structure is the class
of symmetric n × n matrices, where there are 1

2n(n − 1) restrictions xij = xji, so that
s = 1

2n(n + 1).
More formally, letD be an s-dimensional (s ≥ 1) subspace of the real vector space Rmn

and let {d1, d2, . . . ,ds} be a basis of D. Let ∆ := (d1, d2, . . . ,ds). Then the collection
of real m× n matrices

L(∆) = {X : X ∈ Rm×n, vec X ∈ D}
is called a linear structure, s is called the dimension, and m × n the order of the linear
structure. Of course, a basis matrix ∆ is not unique. For example, interchanging two
columns of ∆ produces another basis matrix. However, as we shall see, the matrix ∆∆+

is unique.

11.1 The commutation matrix

Exercise 11.1 (Orthogonality of Kmn)
(a) Show that Kmn is a permutation matrix.
(b) Hence, show that Kmn is orthogonal.
(c) Show that KnmKmn = Imn.
(d) Conclude that K ′

mn = K−1
mn = Knm.

Solution
(a) Let A be a matrix of order m × n. Since vec A and vec A′ contain the same mn

elements, but in a different order, the matrix Kmn, defined by the relation Kmn vec A =
vec A′, is a column permutation of the identity matrix Imn, and hence a permutation matrix.
(b) Every permutation matrix is orthogonal (Exercise 2.29(d)).
(c) Premultiply Kmn vec A = vec A′ by Knm. This yields

KnmKmn vec A = Knm vec A′ = vec A.

Since this holds for every vector vec A, we obtain KnmKmn = Imn.
(d) This follows from (b) and (c). Notice that Kmn is symmetric when m = n, but not
when m �= n, unless m = 1 or n = 1; see Exercise 11.2.

Exercise 11.2 (What is Kn1?) Show that Kn1 = K1n = In.
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Solution
Let a be an n× 1 vector. Then, by the definition of the commutation matrix, Kn1 vec a =
vec a′ and K1n vec a′ = vec a. But, vec a = vec a′. Hence, Kn1 = K1n = In.

Exercise 11.3 (The commutation property, 1) Let A be an m × n matrix and B a
p× q matrix. Show that

(A⊗B)Knq = Kmp(B ⊗A).

Solution
Let X be an arbitrary n× q matrix. Then,

(A⊗B)Knq vec X = (A⊗B) vec X ′ = vec BX ′A′

= Kmp vec AXB′ = Kmp(B ⊗A) vec X.

Since X is arbitrary, the result follows. Note carefully the order of the indices of the vari-
ous commutation matrices.

Exercise 11.4 (The commutation property, 2) For any matrix A (m×n) and B (p×q),
show that

Kpm(A⊗B)Knq = B ⊗A.

Solution
This follows from Exercise 11.3 by premultiplying both sides by Kpm, using the fact that
KpmKmp = Imp.

Exercise 11.5 (Commuting with vectors) For any m × 1 vector a and p × 1 vector
b, show that

Kpm(a⊗ b) = b⊗ a.

Solution
Using the fact that a ⊗ b = vec ba′, we have Kpm(a ⊗ b) = Kpm vec ba′ = vec ab′ =
b⊗ a.

Exercise 11.6 (Commuting back and forth) For any m× n matrix A and p× 1 vector
b, show that:
(a) Kpm(A⊗ b) = b⊗A;
(b) Kmp(b⊗A) = A⊗ b;
(c) (A⊗ b′)Knp = b′ ⊗A;
(d) (b′ ⊗A)Kpn = A⊗ b′.

Solution
(a) We have Kpm(A⊗ b) = (b⊗A)K1n = b⊗A.
(b) Similarly, Kmp(b⊗A) = (A⊗ b)Kn1 = A⊗ b.
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(c) Also, (A⊗ b′)Knp = Km1(b′ ⊗A) = b′ ⊗A.
(d) And finally, (b′ ⊗A)Kpn = K1m(A⊗ b′) = A⊗ b′.

Exercise 11.7 (The commutation property: a generalization) For A (m × n), B

(p× q), C (q × s), and D (n× t), show that

Kmp(BC ⊗AD) = (A⊗B)Knq(C ⊗D) = (AD ⊗BC)Kts

= (Im ⊗BC)Kms(Is ⊗AD) = (AD ⊗ Ip)Ktp(BC ⊗ It).

Solution
We have

Kmp(BC ⊗AD) = Kmp(B ⊗A)(C ⊗D) = (A⊗B)Knq(C ⊗D)

= (A⊗B)(D ⊗C)Kts = (AD ⊗BC)Kts

= (Im ⊗BC)(AD ⊗ Is)Kts = (Im ⊗BC)Kms(Is ⊗AD),

and also

(AD ⊗BC)Kts = (AD ⊗ Ip)(It ⊗BC)Kts

= (AD ⊗ Ip)Ktp(BC ⊗ It).

Exercise 11.8 (Explicit form of Kmn) Let Eij denote the m × n matrix with 1 in
its ij-th position and zeros elsewhere. Show that

Kmn =
m∑

i=1

n∑
j=1

(Eij ⊗E′
ij).

Solution
We show again that the two matrices are equal by showing that their effect on an arbitrary
vector is the same. Thus, let X be an arbitrary m×n matrix. Let ei denote the i-th column
of Im and uj the j-th column of In, so that Eij = eiu

′
j . Then,

X ′ = InX ′Im =

 n∑
j=1

uju
′
j

X ′
(

m∑
i=1

eie
′
i

)

=
∑
ij

uj(u′
jX

′ei)e′
i =
∑
ij

uj(e′
iXuj)e′

i

=
∑
ij

(uje
′
i)X(uje

′
i) =

∑
ij

E′
ijXE′

ij .

Taking vecs we obtain

vec X ′ =
∑
ij

vec E′
ijXE′

ij =
∑
ij

(Eij ⊗E′
ij) vec X.
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Exercise 11.9 (Two examples of Kmn)
(a) Display the matrix K23 and verify that K23 vec A = vec A′ for any 2× 3 matrix A.
(b) And also for K42.

Solution
(a) Let A = (aij) be a 2× 3 matrix. Then,

K23 vec A =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1





a11

a21

a12

a22

a13

a23


=



a11

a12

a13

a21

a22

a23


= vec A′.

(b) Similarly, let A = (aij) be a 4× 2 matrix. Then,

K42 vec A =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1





a11

a21

a31

a41

a12

a22

a32

a42


=



a11

a12

a21

a22

a31

a32

a41

a42


= vec A′.

Exercise 11.10 (Alternative expressions for Kmn)
(a) Let uj denote the j-th column of In. Show that

Kmn =
n∑

j=1

(u′
j ⊗ Im ⊗ uj).

(b) Let ei denote the i-th column of Im. Show that

Kmn =
m∑

i=1

(ei ⊗ In ⊗ e′
i).

Solution
(a) We use the explicit expression obtained in Exercise 11.8 and the fact that a ⊗ b′ =
ab′ = b′ ⊗ a for any two vectors a and b. Then,

Kmn =
m∑

i=1

n∑
j=1

(eiu
′
j ⊗ uje

′
i) =

∑
ij

(u′
j ⊗ ei ⊗ e′

i ⊗ uj)

=
∑

j

(
u′

j ⊗ (
∑

i

ei ⊗ e′
i)⊗ uj

)
=
∑

j

(u′
j ⊗
∑

i

eie
′
i ⊗ uj)

=
∑

j

(u′
j ⊗ Im ⊗ uj).
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(b) Similarly,

Kmn =
∑
ij

(ei ⊗ u′
j ⊗ uj ⊗ e′

i) =
∑

i

ei ⊗ (
∑

j

u′
j ⊗ uj)⊗ e′

i


=
∑

i

(ei ⊗
∑

j

uju
′
j ⊗ ei) =

∑
i

(ei ⊗ In ⊗ e′
i).

Exercise 11.11 (Application of Kmn to outer product) Hence, show that, for any
A (m× p), b (n× 1), and c (q × 1):
(a) Knm(A⊗ bc′) = b⊗A⊗ c′;
(b) Kmn(bc′ ⊗A) = c′ ⊗A⊗ b.

Solution
(a) Using Exercise 11.10, and letting b := (b1, . . . , bn)′, we have

Kmn(b⊗A⊗ c′) =
n∑

j=1

(u′
j ⊗ Im ⊗ uj)(b⊗A⊗ c′)

=
∑

j

(u′
jb)⊗A⊗ (ujc

′) = A⊗ (
∑

j

bjuj)c′ = A⊗ bc′.

Premultiplying by Knm gives the result.
(b) Similarly,

Knm(c′ ⊗A⊗ b) =
n∑

j=1

(uj ⊗ Im ⊗ u′
j)(c

′ ⊗A⊗ b)

=
∑

j

(ujc
′)⊗A⊗ (u′

jb) = (
∑

j

bjuj)c′ ⊗A = bc′ ⊗A.

Exercise 11.12 (Trace and commutation) Let A and B be m × n matrices. Show
that

tr(Kmn(A′ ⊗B)) = tr(A′B).

Solution
Employing the explicit expression (Exercise 11.8), we find

tr Kmn(A′ ⊗B) = tr
∑
ij

(Eij ⊗E′
ij)(A

′ ⊗B)

=
∑
ij

tr(Eij ⊗E′
ij)(A

′ ⊗B) =
∑
ij

tr(EijA
′ ⊗E′

ijB)

=
∑
ij

(tr EijA
′)(tr E′

ijB) =
∑
ij

(tr eiu
′
jA

′)(tr uje
′
iB)

=
∑
ij

(u′
jA

′ei)(e′
iBuj) =

∑
ij

aijbij = tr(A′B).
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Exercise 11.13 (Trace and determinant of Kn)
(a) Show that tr Kn = n.
(b) Show that the eigenvalues of Kn are +1 and −1 with multiplicities 1

2n(n + 1) and
1
2n(n− 1), respectively.

(c) Show that |Kn| = (−1)
1
2
n(n−1).

Solution
(a) This follows from Exercise 11.12 by letting A = B = In. Alternatively, let uj be the
j-th column of In. Then,

tr Kn = tr
n∑

i=1

n∑
j=1

(uiu
′
j ⊗ uju

′
i) =

∑
ij

tr(uiu
′
j ⊗ uju

′
i)

=
∑
ij

(tr uiu
′
j)(truju

′
i) =

∑
ij

δ2
ij = n,

where δij denotes the Kronecker delta.
(b) Since Kn is symmetric and orthogonal, it has eigenvalues +1 and −1 only (Exer-
cise 7.42). Let p be the multiplicity of the eigenvalue −1. Then the multiplicity +1 is
(n2 − p), and

n = trKn = sum of eigenvalues of Kn = n2 − 2p.

This gives p = 1
2n(n− 1).

(c) Finally,

|Kn| = (−1)p = (−1)
1
2
n(n−1).

(The trace and determinant of Kmn (m �= n) are more difficult to find, because Kmn is
not symmetric when m �= n unless m = 1 or n = 1.)

Exercise 11.14 (The matrix 1
2(In2 −Kn))

(a) Show that the matrix 1
2(In2 −Kn) is symmetric idempotent.

(b) Show that, for any square matrix A, tr A2 ≤ tr A′A, with equality if and only if A is
symmetric (Schur’s inequality). (A different proof, not relying on the commutation matrix,
will be provided in Exercise 12.6.)

Solution
(a) Symmetry follows from the fact that Kn is symmetric, and idempotency follows from(

1
2
(In2 −Kn)

)2

=
1
4
(
In2 −Kn −Kn + K2

n

)
=

1
2

(In2 −Kn) ,

since K2
n = In2 . The role of this matrix is to transform vec A into its skew-symmetric

counterpart 1
2 vec(A−A′). It is thus called the skew-symmetrizer.
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(b) We have, using the relationship between the trace- and vec-operator obtained in Exer-
cise 10.20,

tr A′A− tr A2 = (vec A)′(vec A)− (vec A′)′(vec A)

= (vec A)′(vec A)− (vec A)′Kn(vec A)

= (vec A)′(In2 −Kn)(vec A) ≥ 0,

because 1
2(In2 −Kn) is symmetric idempotent, hence positive semidefinite.

*Exercise 11.15 (Three indices in the commutation matrix)
(a) Show that Ks,tnKt,ns = Kt,nsKs,tn = Kst,n.
(b) Show that Kts,nKsn,tKnt,s = Itsn.
(c) Show that each pair of the matrices Kn,st, Ks,tn, and Kt,ns commutes.

Solution
(a) Let a (n× 1), b (s× 1), and c (t× 1) be arbitrary vectors. Then,

Kst,n(a⊗ b⊗ c) = b⊗ c⊗ a = Ks,tnKt,ns(a⊗ b⊗ c).

Hence,

Kst,n = Ks,tnKt,ns.

Since Kst,n = Kts,n, we may interchange s and t. This gives

Kst,n = Kts,n = Kt,snKs,nt = Kt,nsKs,tn.

(b) Postmultiply both sides of Kst,n = Ks,tnKt,ns by Kn,st and transpose.
(c) Let A := Kn,st, B := Ks,tn, and C := Kt,ns. Given vectors a, b, and c, we obtain

A(b⊗ c⊗ a) = a⊗ b⊗ c, A(c⊗ b⊗ a) = a⊗ c⊗ b,

B(a⊗ c⊗ b) = b⊗ a⊗ c, B(c⊗ a⊗ b) = b⊗ c⊗ a,

C(a⊗ b⊗ c) = c⊗ a⊗ b, C(b⊗ a⊗ c) = c⊗ b⊗ a.

This implies

BA(c⊗ b⊗ a) = b⊗ a⊗ c = C ′(c⊗ b⊗ a),

CA(b⊗ c⊗ a) = c⊗ a⊗ b = B′(b⊗ c⊗ a),

BC(a⊗ b⊗ c) = b⊗ c⊗ a = A′(a⊗ b⊗ c),

and hence,

BA = C ′, CA = B′, BC = A′.

Since A, B, and C are orthogonal, this gives

ABC = ACB = BAC = BCA = CAB = CBA = I,
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and shows that BC = CB, BA = AB, CA = AC, and also, by suitable pre- and
postmultiplication, that BC ′ = C ′B, BA′ = A′B, and CA′ = A′C. The remaining six
identities are found by transposition.

11.2 The symmetrizer matrix

Exercise 11.16 (Idempotency of Nn) Show that the symmetrizer satisfies:
(a) Nn = 1

2(In2 + Kn);
(b) Nn = N ′

n = N2
n;

(c) rk(Nn) = tr(Nn) = 1
2n(n + 1).

Solution
(a) From the definition of Nn we know that Nn vec A = vec 1

2(A + A′) for every n × n

matrix A. Hence, Nn vec A = 1
2(In2 + Kn) vec A for every n × n matrix A, and hence

Nn = 1
2(In2 + Kn).

(b) Since Kn is symmetric, so is Nn. Further,

N2
n =

1
4
(In2 + Kn)(In2 + Kn) =

1
4
(In2 + Kn + Kn + K2

n) =
1
2
(In2 + Kn),

since K2
n = In2 .

(c) Since Nn is idempotent, its rank equals its trace. Further,

tr(Nn) =
1
2
(n2 + trKn) =

1
2
(n2 + n) =

1
2
n(n + 1),

using the fact that tr Kn = n (Exercise 11.13).

Exercise 11.17 (Symmetrizer and skew-symmetrizer are orthogonal to each other)
(a) Show that NnKn = Nn = KnNn.
(b) Hence, show that symmetrizer matrix and the skew-symmetrizer matrix are orthogonal
to each other.

Solution
(a) Since Nn = 1

2(In2 + Kn) and K2
n = In2 , we obtain

NnKn =
1
2
(In2 + Kn)Kn =

1
2
(Kn + K2

n) =
1
2
(Kn + In2) = Nn.

The second equality is proved similarly or by noting that NnKn = KnNn because both
Nn and Kn are symmetric.
(b) The symmetrizer is Nn, and the skew-symmetrizer is 1

2(In2 −Kn). We have

(Nn)′
(

1
2
(In2 −Kn)

)
=

1
2

(Nn −NnKn) = O,

because of (a).

Exercise 11.18 (Kronecker properties of Nn) For any two n × n matrices A and
B, show that:



308 11 Patterned matrices: commutation- and duplication matrix

(a) Nn(A⊗B)Nn = Nn(B ⊗A)Nn;
(b)

Nn(A⊗B + B ⊗A)Nn = Nn(A⊗B + B ⊗A)

= (A⊗B + B ⊗A)Nn = 2Nn(A⊗B)Nn;

(c) Nn(A⊗A)Nn = Nn(A⊗A) = (A⊗A)Nn.

Solution
(a) We have Nn(A⊗B)Nn = NnKn(B ⊗A)KnNn = Nn(B ⊗A)Nn.
(b) Here we have

Nn(A⊗B + B ⊗A)Nn =
1
2
Nn(A⊗B + B ⊗A)(In2 + Kn)

=
1
2
Nn (A⊗B + B ⊗A + Kn(B ⊗A + A⊗B))

= N2
n(A⊗B + B ⊗A) = Nn(A⊗B + B ⊗A).

The second relationship is proved similarly. The third relationship follows from (a).
(c) This follows from (b) by letting B = A.

Exercise 11.19 (Symmetrizing with a vector) For any n × n matrix A and n × 1
vector b, show that

Nn(A⊗ b) = Nn(b⊗A) =
1
2
(A⊗ b + b⊗A).

Solution
Since Kn(A⊗ b) = b⊗A and Kn(b⊗A) = A⊗ b (Exercise 11.6), we obtain

Nn(A⊗ b) =
1
2
(In2 + Kn)(A⊗ b) =

1
2
(A⊗ b + b⊗A)

=
1
2
(b⊗A + A⊗ b) =

1
2
(In2 + Kn)(b⊗A) = Nn(b⊗A).

Exercise 11.20 (Two examples of Nn) Display the matrix Nn for n = 2 and n = 3 and
verify that the defining property holds.

Solution
Let A := (aij) be a 2× 2 matrix. Then,

Nn vec A =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1




a11

a21

a12

a22

 =


a11

1
2(a21 + a12)
1
2(a21 + a12)

a22

 =
1
2

vec(A + A′).
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Similarly, let A = (aij) be a 3× 3 matrix. Then

Nn vec A =



1 0 0 0 0 0 0 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0
0 1

2 0 1
2 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 1
2 0 0 0 1

2 0 0
0 0 0 0 0 1

2 0 1
2 0

0 0 0 0 0 0 0 0 1





a11

a21

a31

a12

a22

a32

a13

a23

a33


=

1
2

vec(A+A′).

*Exercise 11.21 (Nn and the normal distribution, 1) Let x ∼ N(0, In). Show that
var(x⊗ x) = 2Nn, and verify the result for n = 1.

Solution
In the scalar case (n = 1), x ⊗ x = x2, where x ∼ N(0, 1), so that x ⊗ x ∼ χ2(1) and
hence var(x⊗ x) = 2. We seek a generalization of this result.

Let A be an arbitrary real n× n matrix. The strategy of the proof is to find two expres-
sions for var(x′Ax), both of which are quadratic forms in vec A. If the matrices in the
quadratic forms are symmetric, the matrices must be equal. Notice that the matrix A is not
assumed to be symmetric.

First let B := (A+A′)/2 and let S be an orthogonal n×n matrix such that S′BS = Λ,
where Λ is the diagonal matrix whose diagonal elements λ1, . . . , λn are the eigenvalues of
B. Let y := S′x with components y1, . . . , yn. Then,

x′Ax = x′Bx = x′SΛS′x = y′Λy =
n∑

i=1

λiy
2
i .

Since y ∼ N(0, In), it follows that y2
1, . . . , y

2
n are independently distributed with var(y2

i ) =
2, so that

var(x′Ax) = var

(
n∑

i=1

λiy
2
i

)
=

n∑
i=1

λ2
i var(y2

i ) = 2 trΛ2 = 2 trB2

= trA′A + trA2 = (vec A)′(In2 + Kn) vec A,

by Exercise 10.20.
Second, since x′Ax = vec x′Ax = (x⊗ x)′ vec A, we find

var(x′Ax) = var
(
(x⊗ x)′ vec A

)
= (vec A)′ (var(x⊗ x)) vec A.

We now have two expressions for var(x′Ax). Hence,

(vec A)′ (var(x⊗ x)) vec A = (vec A)′(In2 + Kn) vec A
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for every n×n matrix A. Since the two matrices in the quadratic forms are symmetric, the
result follows from Exercise 8.3(c).

*Exercise 11.22 (Nn and the normal distribution, 2) Let x ∼ N(µ, V ), where V

is a positive semidefinite n× n matrix. Show that

var(x⊗ x) = 2Nn(V ⊗ V + V ⊗ µµ′ + µµ′ ⊗ V ).

Solution
We write x = V 1/2y + µ with y ∼ N(0, In), so that

x⊗ x = V 1/2y ⊗ V 1/2y + V 1/2y ⊗ µ + µ⊗ V 1/2y + µ⊗ µ

= (V 1/2 ⊗ V 1/2)(y ⊗ y) + (In2 + Kn)(V 1/2y ⊗ µ) + µ⊗ µ

= (V 1/2 ⊗ V 1/2)(y ⊗ y) + 2Nn(V 1/2 ⊗ µ)y + µ⊗ µ,

because y⊗ 1 = y. Since the two vectors y⊗y and y are uncorrelated with var(y⊗y) =
2Nn and var(y) = In, we obtain

var(x⊗ x) = var
(
(V 1/2 ⊗ V 1/2)(y ⊗ y)

)
+ var

(
2Nn(V 1/2 ⊗ µ)y

)
= 2(V 1/2 ⊗ V 1/2)Nn(V 1/2 ⊗ V 1/2) + 4Nn(V 1/2 ⊗ µ)(V 1/2 ⊗ µ)′Nn

= 2Nn(V ⊗ V ) + 4Nn(V ⊗ µµ′)Nn

= 2Nn(V ⊗ V + V ⊗ µµ′ + µµ′ ⊗ V ),

since (V 1/2⊗V 1/2)Nn = Nn(V 1/2⊗V 1/2) and 2Nn(V ⊗µµ′)Nn = Nn(V ⊗µµ′+
µµ′ ⊗ V ); see Exercise 11.18.

*Exercise 11.23 (Nn and the Wishart distribution) Let Z follow a Wishart distribu-
tion, Wm(n, V , M ′M), where V is a positive semidefinite m×m matrix.
(a) Show that E(Z) = nV + M ′M .
(b) Show that

var(vec Z) = 2Nm(n(V ⊗ V ) + V ⊗M ′M + M ′M ⊗ V ).

(c) Show that var(vecZ) is symmetric and that its rank is ≤ 1
2m(m + 1).

Solution
Recall that if we have n random m × 1 vectors x1, . . . ,xn, distributed independently as
xi ∼ N(µi, V ) (i = 1, . . . , n), then the joint distribution of the elements of the matrix
Z =

∑n
i=1 xix

′
i is said to be Wishart with n degrees of freedom. This is often written as

Z ∼ Wm(n, V , M ′M), where M denotes the n ×m matrix M := (µ1, . . . ,µn)′. The
matrix M ′M is the m×m unscaled noncentrality matrix. If M = O then the distribution
is said to be central, and we write Z ∼Wm(n, V ).
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(a) Noting that
∑n

i=1 µiµ
′
i = M ′M , we obtain

E(Z) = E

(∑
i

xix
′
i

)
=
∑

i

E(xix
′
i) =

∑
i

(V + µiµ
′
i) = nV + M ′M .

(b) Also, using Exercise 11.22,

var(vec Z) = var

(
vec
∑

i

xix
′
i

)
= var

(∑
i

xi ⊗ xi

)
=
∑

i

var(xi ⊗ xi)

=
∑

i

2Nm(V ⊗ V + V ⊗ µiµ
′
i + µiµ

′
i ⊗ V )

= 2Nm

(
n(V ⊗ V ) + V ⊗M ′M + M ′M ⊗ V

)
.

(c) Using Exercise 11.18(b) and (c), we see that

var(vec Z) = 2Nm

(
n(V ⊗ V ) + V ⊗M ′M + M ′M ⊗ V

)
= 2Nm

(
n(V ⊗ V ) + V ⊗M ′M + M ′M ⊗ V

)
Nm,

implying symmetry. The rank of the m2 ×m2 matrix is ≤ 1
2m(m + 1), because this is the

rank of Nm, by Exercise 11.16(c).

11.3 The vech-operator and the duplication matrix

Exercise 11.24 (Examples of vech) Let

A =

1 2 3
0 4 5
0 0 6

 .

Show that

vech(A) = vech(dg A) =



1
0
0
4
0
6


and vech(A′) =



1
2
3
4
5
6


.

Solution
The vech-operator eliminates all supradiagonal elements of A from vec A. Thus,

vech(A) =



1
0
0
4
0
6


and vech(A′) =



1
2
3
4
5
6


.
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The matrix dg A is obtained from A by setting the nonzero off-diagonal elements (2,3,5)
equal to zero. But since all these elements are above the diagonal of A, this does not affect
vech(A).

Exercise 11.25 (Basic properties of vech) Let Eij be the n × n matrix with 1 in its
ij-th position and zeros elsewhere, and let uij := vech(Eij) for i ≥ j.
(a) Show that

(u11, u21, . . . ,un1, u22, . . . ,un2, u33, . . . ,unn) = I 1
2
n(n+1).

(b) Show that
∑

i≥j uiju
′
ij = I 1

2
n(n+1).

Solution
(a) We note that u′

ij vech(A) = aij for i ≥ j. Hence,
u′

11

u′
21
...

u′
nn

 vech(A) =


a11

a21
...

ann

 = vech(A).

Since this holds for every vector vech(A), the result follows.
(b) The matrix uiju

′
ij (i ≥ j) is of order 1

2n(n + 1) and has 1 in one of the diagonal
positions and zeros everywhere else. Summing over all 1

2n(n + 1) different matrices thus
produces the identity matrix.

Exercise 11.26 (Basic properties of Dn) Show that:
(a) Dn has full column rank 1

2n(n + 1);
(b) D+

n = (D′
nDn)−1D′

n;
(c) D+

n Dn = I 1
2
n(n+1).

Solution
(a) Since symmetry implies 1

2n(n − 1) restrictions, namely aij = aji (i < j), there are
1
2n(n + 1) “free” elements. These are contained in the “half-vector” vech(A). Given sym-
metry of A, the vectors vech(A) and vec A contain precisely the same information. Hence,
the equation Dn vech(A) = vec A has a unique solution, that is, Dn has full column rank
(Exercise 6.44(b)).
(b) If Dn has full column rank, then D′

nDn is nonsingular. Hence D+
n = (D′

nDn)+D′
n =

(D′
nDn)−1D′

n.
(c) This follows from (b).

Exercise 11.27 (From vec to vech) Let A be a symmetric n× n matrix.
(a) We already know that Dn vech(A) = vec A. Now show the inverse relationship
D+

n vec A = vech(A),
(b) Show that DnD+

n vec A = vec A.
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Solution
(a) Since A is symmetric, we have Dn vech(A) = vec A, and hence

D+
n vec A = D+

n Dn vech(A) = vech(A),

since D+
n Dn = I .

(b) Also, DnD+
n vec A = Dn vech(A) = vec A, despite the fact that DnD+

n �= In2

(unless n = 1).

Exercise 11.28 (Relationship between Dn and Kn) Show that:
(a) KnDn = Dn = NnDn;
(b) D+

n Kn = D+
n = D+

n Nn;
(c) DnD+

n = Nn. [Hint: Use Exercise 10.42.]

Solution
(a) For symmetric X we have

KnDn vech(X) = Kn vec X = vec X = Dn vech(X)

and

NnDn vech(X) = Nn vec X = vec X = Dn vech(X).

Since the symmetry of X does not restrict vech(X) (although it obviously does restrict
vec X), we obtain (a).
(b) Since D+

n = (D′
nDn)−1D′

n, the result follows from (a) by postmultiplying with
(D′

nDn)−1 and then transposing.
(c) We know from (a) that NnDn = Dn. We know from Exercise 11.16 that Nn is sym-
metric idempotent and that rk(Nn) = rk(Dn) = 1

2n(n + 1). The result now follows from
Exercise 10.42.

Exercise 11.29 (Examples of the duplication matrix) Display the matrix Dn for n = 2
and n = 3 and verify that the defining property holds.

Solution
Let A = (aij) be a square matrix of order 2. Then,

D2 vech(A) =


1 0 0
0 1 0
0 1 0
0 0 1


a11

a21

a22

 =


a11

a21

a21

a22

 = vec A,
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if A is symmetric. Also, for n = 3,

D3 vech(A) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1





a11

a21

a31

a22

a32

a33


=



a11

a21

a31

a21

a22

a32

a31

a32

a33


= vec A,

if A is symmetric.

Exercise 11.30 (Properties of D′
nDn)

(a) Show that the matrix D′
nDn is a diagonal 1

2n(n+1)× 1
2n(n+1) matrix with diagonal

elements 1 (n times) and 2 (1
2n(n− 1) times).

(b) Hence, show that

tr D′
nDn = n2, |D′

nDn| = 2
1
2
n(n−1).

Solution
(a) Let X = (xij) be a symmetric, but otherwise arbitrary, n× n matrix. Then,

vech(X)′D′
nDn vech(X) = (vec X)′ vec X =

∑
ij

x2
ij

= 2
∑
i≥j

x2
ij −
∑

i

x2
ii

= 2 vech(X)′ vech(X)−
∑

i

vech(X)′uiiu
′
ii vech(X)

= vech(X)′(2I 1
2
n(n+1) −

n∑
i=1

uiiu
′
ii) vech(X),

where uii is defined in Exercise 11.25. Since the matrices in both quadratic forms are
symmetric (this is essential, why?), and vech(X) is unrestricted, it follows that

D′
nDn = 2I 1

2
n(n+1) −

n∑
i=1

uiiu
′
ii.

This is a diagonal matrix with diagonal elements 1 (n times) and 2 (1
2n(n− 1) times).

(b) The trace of D′
nDn equals n + n(n − 1) = n2 and the determinant is |D′

nDn| =
1n2

1
2
n(n−1) = 2

1
2
n(n−1).
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Exercise 11.31 (Kronecker property of the duplication matrix) Let A be an arbi-
trary n× n matrix. Show that:
(a) DnD+

n (A⊗A)Dn = (A⊗A)Dn;
(b) (D+

n (A⊗A)Dn)−1 = D+
n (A−1 ⊗A−1)Dn (A nonsingular).

Solution
(a) We have

DnD+
n (A⊗A)Dn = Nn(A⊗A)Dn

= (A⊗A)NnDn = (A⊗A)Dn,

using the facts DnD+
n = Nn, Nn(A ⊗A) = (A ⊗A)Nn, and NnDn = Dn. Alter-

natively, we can prove (a) from the fact that DnD+
n vec X = vec X for symmetric X , so

that

DnD+
n (A⊗A)Dn vech(X) = DnD+

n (A⊗A) vec X = DnD+
n vec AXA′

= vec AXA′ = (A⊗A) vec X = (A⊗A)Dn vech(X).

The essence of this proof is that AXA′ is symmetric for every A, whenever X is sym-
metric. We call property (a) the “Kronecker” property of the duplication matrix.
(b) Letting A be nonsingular and using (a), we see that

D+
n (A⊗A)DnD+

n (A−1 ⊗A−1)Dn = D+
n (A⊗A)(A−1 ⊗A−1)Dn

= D+
n (In ⊗ In)Dn = D+

n Dn = I 1
2
n(n+1).

*Exercise 11.32 (The matrix D+
n (A ⊗ A)Dn, triangular case) If A := (aij) is an

upper triangular n× n matrix, show that D+
n (A⊗A)Dn is also upper triangular, and that

its diagonal elements are aiiajj (1 ≤ j ≤ i ≤ n).

Solution
Let Eij be the n× n matrix with one in the ij-th position and zeros elsewhere, and define
the symmetric matrix Tij := Eij + Eji − δijEii, where δij is the Kronecker delta. Then,
for i ≥ j,

D+
n (A⊗A)Dn vech(Eij) = D+

n (A⊗A)Dn vech(Tij) = D+
n (A⊗A) vec Tij

= D+
n vec ATijA

′ = vech(ATijA
′),

and therefore, for i ≥ j and s ≥ t,

(vech(Est))′D+
n (A⊗A)Dn vech(Eij) = (vech(Est))′ vech(ATijA

′)

= (ATijA
′)st = asiatj + asjati − δijasiati.
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Since i ≥ j and s ≥ t, there are six cases to consider:

t ≤ s ≤ j ≤ i, t ≤ j ≤ s ≤ i, t ≤ j ≤ i ≤ s,

j ≤ t ≤ s ≤ i, j ≤ t ≤ i ≤ s, j ≤ i ≤ t ≤ s.

Now, A is upper triangular, so the last four of these yield zero or become special cases of the
first two. The only cases not yielding zero are therefore t ≤ s ≤ j ≤ i and t ≤ j ≤ s ≤ i,
or equivalently

t ≤ s ≤ j = i, t ≤ s ≤ j < i, t ≤ j < s ≤ i.

Hence,

(vech(Est))′D+
n (A⊗A)Dn vech(Eij)

=


asiatj (t ≤ s ≤ j = i or t ≤ j < s ≤ i),

asiatj + asjati (t ≤ s ≤ j < i),

0 (otherwise).

so that D+
n (A⊗A)Dn is upper triangular if A is, and

(vech(Eij))′D+
n (A⊗A)Dn vech(Eij) = aiiajj (j ≤ i)

are its diagonal elements.

Exercise 11.33 (The matrix D+
n (A ⊗ A)Dn, eigenvalues) Let A be an n × n ma-

trix with eigenvalues λ1, λ2, . . . , λn. Show that:
(a) the eigenvalues of D+

n (A⊗A)Dn are λiλj (1 ≤ j ≤ i ≤ n);
(b) tr(D+

n (A⊗A)Dn) = 1
2(tr A)2 + 1

2 tr(A2);
(c) |D+

n (A⊗A)Dn| = |A|n+1.

Solution
By Schur’s Theorem (Exercise 7.62) there exists a nonsingular matrix S such that S−1AS =
M , where M is an upper triangular matrix with the eigenvalues λ1, . . . , λn of A on its di-
agonal. Thus, by Exercise 11.31,

D+
n (S−1 ⊗ S−1)DnD+

n (A⊗A)DnD+
n (S ⊗ S)Dn = D+

n (M ⊗M)Dn.

Since D+
n (S−1⊗S−1)Dn is the inverse of D+

n (S⊗S)Dn, it follows that D+
n (A⊗A)Dn

and D+
n (M⊗M)Dn have the same set of eigenvalues. Exercise 11.32 shows that the latter

matrix is upper triangular with eigenvalues (diagonal elements) λiλj (1 ≤ j ≤ i ≤ n).
These are therefore the eigenvalues of D+

n (A⊗A)Dn too.
The trace and determinant, being the sum and the product of the eigenvalues, respec-

tively, are

tr D+
n (A⊗A)Dn =

∑
i≥j

λiλj =
1
2

∑
i

λ2
i +

1
2

∑
ij

λiλj

=
1
2

tr A2 +
1
2
(tr A)2,
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and

|D+
n (A⊗A)Dn| =

∏
i≥j

λiλj =
∏

i

λn+1
i = |A|n+1.

Exercise 11.34 (The matrix D′
n(A⊗A)Dn) Let A be an n× n matrix. Show that:

(a) |D′
n(A⊗A)Dn| = 2

1
2
n(n−1)|A|n+1;

(b) (D′
n(A⊗A)Dn)−1 = D+

n (A−1 ⊗A−1)D+
n
′ (A nonsingular).

Solution
(a) Since D+

n = (D′
nDn)−1D′

n, we have

D′
n(A⊗A)Dn = (D′

nDn)D+
n (A⊗A)Dn

and hence

|D′
n(A⊗A)Dn| = |D′

nDn||D+
n (A⊗A)Dn| = 2

1
2
n(n−1)|A|n+1,

using Exercises 11.30 and 11.33.
(b) Similarly,

(D′
n(A⊗A)Dn)−1 = (D+

n (A⊗A)Dn)−1(D′
nDn)−1

= D+
n (A−1 ⊗A−1)Dn(D′

nDn)−1 = D+
n (A−1 ⊗A−1)D+

n
′
,

using Exercise 11.31.

Exercise 11.35 (Variance of the Wishart distribution) Let Z follow a central Wishart
distribution, Wm(n, V ), where V is a positive definite m × m matrix. We have seen in
Exercise 11.23 that the variance of vec Z is given by var(vec Z) = 2nNm(V ⊗ V ).
(a) Obtain var(vech(Z)) and show that it is nonsingular.
(b) Find its inverse.
(c) Find its determinant.

Solution
(a) Since vech(Z) = D+

m vec Z, we find

var(vech(Z)) = var(D+
m vec Z) = D+

m var(vec Z)D+
m

′

= 2nD+
mNm(V ⊗ V )D+

m
′ = 2nD+

m(V ⊗ V )D+
m

′
,

using Exercise 11.28(b). Its nonsingularity follows from Exercise 11.34.
(b) Again by Exercise 11.34(b), the inverse is given by(

var(vech(Z))
)−1

=
1
2n

(
D+

m(V ⊗ V )D+
m

′
)−1

=
1
2n

D′
m(V −1 ⊗ V −1)Dm.

(c) By Exercise 11.34(a), the determinant is given by∣∣var(vech(Z))
∣∣ = (2n)

1
2
m(m+1)

∣∣D′
m(V −1 ⊗ V −1)Dm

∣∣−1

= (2n)
1
2
m(m+1)2

1
2
m(m−1)|V −1|m+1 = n

1
2
m(m+1)2m2 |V |−(m+1).
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11.4 Linear structures

Exercise 11.36 (Examples of linear structures) Show that the collection of n×n lower
triangular matrices, strictly lower triangular matrices, and diagonal matrices are all linear
structures.

Solution
All these classes have in common that a typical matrix X obeys linear restrictions (of the
form xij = xkl or xij = 0). Hence for each class, there exists a vector function ψ(X)
(like vech(X) for symmetry) containing the s “free” elements of X , and a matrix ∆ (like
D for symmetry), such that

∆ψ(X) = vec X for all X ∈ L(∆).

The dimension s of the linear structure is 1
2n(n + 1) in the case of symmetry. For the other

linear structures we have 1
2n(n+1) (lower triangular), 1

2n(n−1) (strictly lower triangular),
and n (diagonal).

Exercise 11.37 (Basic properties of a linear structure) Let L(∆) be a linear struc-
ture of dimension s. Show that the following three statements are equivalent:
(i) A ∈ L(∆);
(ii) (I −∆∆+) vec A = 0;
(iii) vec A = ∆ψ(A) for some s× 1 vector ψ(A).

Solution
(i)⇐⇒ (iii): A ∈ L(∆) ⇐⇒ vec A lies in the space generated by the columns of ∆ ⇐⇒
a vector ψ(A) exists such that vec A = ∆ψ(A).
(ii) =⇒ (iii): vec A = ∆∆+ vec A implies that there exists a vector ψ(A), namely
ψ(A) = ∆+ vec A, such that vec A = ∆ψ(A).
(iii) =⇒ (ii): vec A = ∆ψ(A) implies that ∆∆+ vec A = ∆∆+∆ψ(A) = ∆ψ(A) =
vec A.

Exercise 11.38 (Invariance of N∆) Let L(∆) be a linear structure of dimension s,
and define N∆ := ∆∆+. Show that:
(a) N∆ is symmetric idempotent of rank s;
(b) N∆ vec A = vec A for every A ∈ L(∆);
(c) N∆ is invariant to the choice of ∆.

Solution
(a) From the properties of the Moore-Penrose inverse we know that ∆∆+ is symmetric
idempotent and that rk(∆∆+) = rk(∆) = s.
(b) This follows from Exercise 11.37((i) =⇒ (ii)).
(c) Let ∆1 and ∆2 be two basis matrices of an s-dimensional subspace D of Rmn. Then
∆1 = ∆2E for some nonsingular matrix E. Now, since ∆′

2 = (∆2∆
+
2 ∆2)′ = ∆′

2∆2∆
+
2 ,
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we have ∆′
1 = E′∆′

2 = E′∆′
2∆2∆

+
2 = ∆′

1∆2∆
+
2 . Hence,

∆2∆
+
2 = ∆2EE−1∆+

2 = ∆1E
−1∆+

2 = ∆1∆
+
1 ∆1E

−1∆+
2

= ∆1∆
+
1 ∆2∆

+
2 = ∆+

1
′
∆′

1∆2∆
+
2 = ∆+

1
′
∆′

1 = ∆1∆
+
1 .

Exercise 11.39 (From vec to ψ) Let L(∆) be a linear structure of dimension s. We
already know (Exercise 11.37) that A ∈ L(∆) if and only if there exists an s × 1 vec-
tor, say ψ(A), such that ∆ψ(A) = vec A. Show that ψ(A) can be solved uniquely, the
unique solution being

ψ(A) = ∆+ vec A (A ∈ L(∆)).

Solution
This follows directly from the fact that ∆ has full column rank.

Exercise 11.40 (Kronecker property of a linear structure) Let L(∆1) and L(∆2)
be two given linear structures, let A and B be given matrices, and assume that BXA′ ∈
L(∆2) for all X ∈ L(∆1). Show that:
(a) ∆2∆

+
2 (A⊗B)∆1 = (A⊗B)∆1;

(b) (∆+
2 (A⊗B)∆1)−1 = ∆+

1 (A−1 ⊗B−1)∆2 (A and B nonsingular);
(c) (∆′

2(A⊗B)∆1)−1 = ∆+
1 (A−1 ⊗B−1)∆+

2
′ (A and B nonsingular).

Solution
(a) Let ψ1(X) be such that ∆1ψ1(X) = vec X for all X ∈ L(∆1). Then,

∆2∆
+
2 (A⊗B)∆1ψ1(X) = ∆2∆

+
2 (A⊗B) vec X

= ∆2∆
+
2 vec BXA′ = vec BXA′

= (A⊗B) vec X = (A⊗B)∆1ψ1(X).

Since the restriction X ∈ L(∆1) does not restrict ψ1(X) the result follows.
(b) We use (a) and write

∆+
1 (A−1 ⊗B−1)∆2∆

+
2 (A⊗B)∆1 = ∆+

1 (A−1 ⊗B−1)(A⊗B)∆1

= ∆+
1 ∆1 = Is.

(c) Since ∆+
2
′
∆′

2 = ∆2∆
+
2 , the result follows from

∆+
1 (A−1 ⊗B−1)∆+

2
′
∆′

2(A⊗B)∆1 = Is.

Exercise 11.41 (Same linear structure for X and BXA′?) Give some examples
of a linear structure such that X ∈ L(∆) implies BXA′ ∈ L(∆) for a suitable choice of
A and B.
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Solution
We give four examples. If X is symmetric then AXA′ is also symmetric, if X is skew-
symmetric than so is AXA′. If A′ and B are both lower triangular, then BXA′ is lower
triangular if X is lower triangular, and BXA′ is strictly lower triangular if X is strictly
lower triangular.

Notes

The commutation matrix Kmn was rigorously studied by Magnus and Neudecker (1979),
the symmetrizer matrix Nn was introduced by Browne (1974), and the duplication matrix
Dn by Browne (1974) and Magnus and Neudecker (1980). In Exercise 11.13 we present
the trace and determinant of Kn. The trace and determinant of Kmn (m �= n) was obtained
by Magnus and Neudecker (1979). An overview of results on linear structures (including
further results on the commutation matrix, symmetrizer matrix, and duplication matrix) can
be found in Magnus (1988).
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Matrix inequalities

Matrix inequalities play an important role in matrix algebra and its applications. This
chapter has two purposes. First, we will provide a number of important matrix inequalities,
centered around four themes: (a) matrix generalizations of the Cauchy-Schwarz type, (b)
inequalities for positive (semi)definite matrices, (c) inequalities based on the Schur com-
plement, and (d) eigenvalue-related inequalities, especially the theorems of Fischer and
Poincaré.

The second purpose is to demonstrate some of the most important principles by which
inequalities can be derived. The principles discussed in this chapter can be listed as follows:

(a) Squares are nonnegative. For example, tr A′A ≥ 0 for any A. Letting A := ab′−ba′,
Cauchy-Schwarz follows directly (Exercise 12.1(a)).

(b) Sums of nonnegative quantities are nonnegative. See Exercise 12.1(c) for an
example.

(c) The product of nonnegative quantities is nonnegative. This is obviously true for a prod-
uct of scalars, but for the matrix product we have to be careful. The Hadamard product
(Exercise 12.32) is a more natural tool in this respect than the usual matrix product. Nev-
ertheless, if A ≥ O then B′AB ≥ O for every B. As an example, let A be idempotent
symmetric. Then, A ≥ O and hence B′(I −A)B ≥ O, so that we obtain the inequality
B′AB ≤ B′B; see Exercise 12.15.

(d) Calculus. If we wish to demonstrate that φ1(X) ≥ φ2(X) for all matrices X , then
we can also try and minimize the function φ(X) := φ1(X) − φ2(X) with respect to X .
If X̃ minimizes φ and φ(X̃) = 0 then the inequality has been established. Chapter 13
contains a number of examples of this type.

321
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(e) Quasilinearization. Consider a symmetric matrix A and let λ1 denote its largest eigen-
value. We shall see that we can express λ1 as maxx x′Ax/x′x (Exercise 12.39). Thus we
can express a nonlinear function λ1(A) as an envelope of linear functions of A. Because
of the (quasi)linearity it is now easy to prove that λ1(A + B) ≤ λ1(A) + λ1(B) (Exer-
cise 12.40).

(f) Continuity arguments. Suppose we have proved an inequality for a positive definite
matrix A. Does the same result also hold for positive semidefinite A? We can introduce
the matrix B := A + εI for ε > 0. If A ≥ O then B > O for every ε > 0. We now apply
the result to B and let ε → 0. Some care needs to be taken with this technique, because the
functions need to be continuous in order for the limit to be valid. See Exercise 12.19 for an
example of this technique.

(g) Schur complements. This technique — to which we devote a whole section — is based
on partitioned matrices. Sometimes a problem becomes easier when we embed it into a
higher-dimensional problem. The Schur-complement technique is an example of this idea.

All matrices in this chapter are real. When we investigate eigenvalues of symmetric matri-
ces, we adopt the convention to arrange the eigenvalues λ1, λ2, . . . , λn in decreasing order,
so that

λ1 ≥ λ2 ≥ · · · ≥ λn.

12.1 Cauchy-Schwarz type inequalities

Exercise 12.1 (Cauchy-Schwarz inequality, once more) Let a and b be two n × 1
vectors. Then,

(a′b)2 ≤ (a′a)(b′b),

with equality if and only if a and b are linearly dependent. Prove this result by considering:
(a) the matrix A = ab′ − ba′;
(b) the matrix A = In − (1/b′b)bb′ for b �= 0;
(c) the 2×2 matrices Ai := cic

′
i, where c′i := (ai : bi) denotes the i-th row of C := (a : b).

Solution
(a) We know from Exercise 2.25 that for any real matrix A, tr A′A ≥ 0 with equality if
and only if A = O. Now define A := ab′ − ba′. Then,

tr A′A = 2(a′a)(b′b)− 2(a′b)2 ≥ 0

with equality if and only if ab′ = ba′, that is, if and only if a and b are collinear.
(b) If b = 0 the result is trivial. Assume that b �= 0, and consider the matrix A = In −
(1/bb′)bb′. The matrix A is symmetric idempotent, and therefore positive semidefinite
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(Exercise 8.66(a)). Hence,

(a′a)(b′b)− (a′b)2 = (b′b)
(

a′a− a′bb′a

b′b

)
= (b′b)a′Aa ≥ 0.

Equality implies that a′Aa = 0, and hence Aa = 0, that is, a = αb with α := a′b/b′b.
(c) Since the matrices Ai are positive semidefinite (Exercise 8.9(a)), their sum A :=

∑
i Ai

is also positive semidefinite (Exercise 8.8(b)). Now,

A =
n∑

i=1

Ai =
( ∑

i a
2
i

∑
i aibi∑

i biai
∑

i b
2
i

)
=
(

a′a a′b
b′a b′b

)
,

and since |A| ≥ 0 (Exercise 8.13(a)), the result follows. Equality occurs if and only A is
singular. Since A = C ′C, this occurs if and only if C = O or rk(C) = 1, that is, if and
only if a and b are collinear.

Exercise 12.2 (Bound for aij) Let A := (aij) be a positive semidefinite n × n ma-
trix.
(a) Show that (x′Ay)2 ≤ (x′Ax)(y′Ay), with equality if and only if Ax and Ay are
collinear.
(b) Hence, show that |aij | ≤ max{a11, . . . , ann} for all i and j. (Compare Exercise 8.7.)

Solution
(a) Let a := A1/2x and b := A1/2y. Application of Exercise 12.1 then gives the inequal-
ity. Equality occurs if and only if A1/2x and A1/2y are collinear, that is, if and only if Ax

and Ay are collinear.
(b) Let x := ei and y := ej , where ei and ej denote unit vectors. Then (a) shows that
a2

ij ≤ aiiajj ≤ max{a2
ii, a

2
jj}, and the result follows.

Exercise 12.3 (Bergstrom’s inequality) Let A be positive definite.
(a) Show that (x′y)2 ≤ (x′A−1x)(y′Ay), with equality if and only if A−1x and y are
collinear.
(b) For given x �= 0, define ψ(A) := (x′A−1x)−1. Show that

ψ(A) = min
y

y′Ay

(y′x)2
.

(c) Use (b) to prove that

x′(A + B)−1x ≤ (x′A−1x)(x′B−1x)
x′(A−1 + B−1)x

for any two positive definite matrices A and B and x �= 0 (Bergstrom).

Solution
(a) Let a := A−1/2x and b := A1/2y. Application of Exercise 12.1 then gives the
inequality. Equality occurs if and only if A−1/2x and A1/2y are collinear, that is, if and
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only if x and Ay are collinear. (Or, equivalently, if A−1x and y are collinear.)
(b) We rewrite the inequality in (a) as

y′Ay

(y′x)2
≥ 1

x′A−1x
= ψ(A).

Since this holds for all y, (b) follows. Equality holds if and only if y is a multiple of
A−1x.
(c) The expression under (b) is a so-called quasilinear representation. It expresses the
nonlinear function φ(x) := (x′A−1x)−1 as an envelope of linear functions of A. We will
have a number of occasions to demonstrate the usefulness of this technique. Here we have

ψ(A + B) = min
y

y′(A + B)y
(y′x)2

≥ min
y

y′Ay

(y′x)2
+ min

y

y′By

(y′x)2
= ψ(A) + ψ(B),

and hence,

1
ψ(A + B)

≤ 1
ψ(A) + ψ(B)

=
(ψ(A))−1(ψ(B))−1

(ψ(A))−1 + (ψ(B))−1
.

Exercise 12.4 (Cauchy’s inequality)
(a) Show that (

n∑
i=1

xi

)2

≤ n

n∑
i=1

x2
i

with equality if and only if x1 = x2 = · · · = xn (Cauchy).

(b) If all eigenvalues of A are real, show that |(1/n) tr A| ≤
(
(1/n) tr A2

)1/2
, with equal-

ity if and only if the eigenvalues of the n× n matrix A are all equal.
(c) If A is symmetric and A �= O, show that

rk(A) ≥ (tr A)2

tr A2
.

Solution
(a) Let ı denote the vector of ones. Then

∑
i xi = ı′x and

∑
i x

2
i = x′x. We wish to

prove that (ı′x)2 ≤ nx′x, which we rewrite as x′ıı′x ≤ nx′x, or as x′Ax ≥ 0, where
A := In− (1/n)ıı′. The result now follows from the fact that A is symmetric idempotent,
hence positive semidefinite. Equality occurs if and only if Ax = 0, that is, if and only
xi = ı′x/n for all i.
(b) Let {λi} denote the eigenvalues of A. Then, tr A =

∑
i λi and tr A2 =

∑
i λ

2
i .

Application of Cauchy’s inequality (a) gives the result.
(c) Let r := rk(A), and let µ1, . . . , µr denote the nonzero eigenvalues of A. Then, by
Cauchy’s inequality, (

∑r
i=1 µi)2 ≤ r

∑r
i=1 µ2

i , and hence

r ≥ (
∑r

i=1 µi)2∑r
i=1 µ2

i

=
(tr A)2

tr A2
.

Equality occurs if and only if A is proportional to a symmetric idempotent matrix.



12.2 Positive (semi)definite matrix inequalities 325

Exercise 12.5 (Cauchy-Schwarz, trace version) Let A and B be two matrices of the
same order. Show that:
(a) (tr A′B)2 ≤ (tr A′A)(tr B′B) with equality if and only if one of the matrices A and
B is a multiple of the other;
(b) tr(A′B)2 ≤ tr(A′AB′B) with equality if and only if AB′ is symmetric;
(c) tr(A′B)2 ≤ tr(AA′BB′) with equality if and only if A′B is symmetric.

Solution
(a) Let a := vec A and b := vec B and apply Cauchy-Schwarz.
(b) Let Ã := AB′ and B̃ := BA′ and apply (a) to the matrices Ã and B̃. This gives

(tr BA′BA′)2 ≤ (tr BA′AB′)(trAB′BA′),

implying (b).
(c) This follows from (b) and the fact that tr(A′B)2 = tr(AB′)2:

tr(A′B)2 = tr(A′BA′B) = tr(B′AB′A)

= tr(AB′)2 ≤ tr(AA′BB′).

Exercise 12.6 (Schur’s inequality) Let A be a square real matrix. Prove Schur’s in-
equality, tr A2 ≤ tr A′A with equality if and only if A is symmetric.

Solution
We use (again) the fact that tr B′B ≥ 0 with equality if and only if B = O. Let B :=
A−A′. This is a skew-symmetric matrix, because B′ = −B. Then,

tr B′B = tr(A−A′)′(A−A′) = trA′A− tr A′A′ − tr AA + tr AA′

= 2 trA′A− 2 tr A2 ≥ 0,

with equality if and only if A − A′ = O. (An alternative proof, using the commutation
matrix, was provided in Exercise 11.14(b).)

12.2 Positive (semi)definite matrix inequalities

Exercise 12.7 (The fundamental determinantal inequality)
(a) Let A and B be positive semidefinite matrices. Show that |A + B| ≥ |A|+ |B|.
(b) When does equality occur?

Solution
If both A and B are singular, then the result is trivially true. Suppose that one (or both) of
the two matrices is nonsingular, say A, and let C := A−1/2BA−1/2. Then,

|A + B| − |A| − |B| = |A1/2(I + C)A1/2| − |A| − |A1/2CA1/2|

= |A| (|I + C| − 1− |C|) .
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It thus suffices to show, for any positive semidefinite matrix C, that |I +C|−1−|C| ≥ 0.
Let λ1, . . . , λn be the eigenvalues of C. Then we must show that, for λi ≥ 0,

n∏
i=1

(1 + λi)− 1−
n∏

i=1

λi ≥ 0.

This can be proved by expanding the product
∏

i(1 + λi). Alternatively, it can be proved
by induction, as follows. For n = 1 we have equality. For n = 2, we have

(1 + λ1)(1 + λ2)− 1− λ1λ2 = λ1 + λ2 ≥ 0.

Now suppose the result is true for n− 1. Then,
n∏

i=1

(1 + λi)− 1−
n∏

i=1

λi = (1 + λn)
n−1∏
i=1

(1 + λi)− 1− λn

n−1∏
i=1

λi

≥ (1 + λn)(1 +
n−1∏
i=1

λi)− 1− λn

n−1∏
i=1

λi = λn +
n−1∏
i=1

λi ≥ 0.

(b) Equality occurs if and only if either n = 1 or |A + B| = 0 or A = O or B = O. If
n = 1, equality is obvious. If n ≥ 2, we distinguish three cases:
(i) |A| = |B| = 0. Equality then occurs if and only if |A + B| = 0.
(ii) |A| > 0 and |B| ≥ 0. There is equality if and only if

∏n
i=1(1 + λi) = 1 +

∏n
i=1 λi,

where the λi ≥ 0 are defined under (a). We wish to show that this equality holds true if and
only if all λi are zero. If all λi are zero, then (trivially) equality holds. If at least one of the
λi is positive, then

n∏
i=1

(1 + λi) ≥ 1 +
n∑

i=1

λi +
n∏

i=1

λi > 1 +
n∏

i=1

λi,

and equality does not hold. We conclude that equality holds true if and only if all λi are
zero, that is, if and only B = O.
(iii) |A| ≥ 0 and |B| > 0. By a similar argument we find that equality occurs if and only
if A = O.

Exercise 12.8 (Determinantal inequality, special case)
(a) Let A and B be positive semidefinite matrices and let A ≥ B. Show that |A| ≥ |B|.
(b) Show that equality occurs if and only if A and B are nonsingular and A = B, or
(trivially) if A and B are both singular.

Solution
(a) Let C := A−B, and apply Exercise 12.7. Then, |A| = |B + C| ≥ |B|.
(b) Equality occurs if and only if |A −B| = 0 and, in addition, one of the following four
conditions holds: n = 1 or |A| = 0 or A = B or B = O. Hence, equality occurs if and
only if A = B or |A| = |A−B| = 0. In fact, by Exercise 8.41, |A| = 0 implies that both
|B| and |A−B| vanish.
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Exercise 12.9 (Condition for A = I) Let O ≤ A ≤ I . (This means that both A and
I −A are positive semidefinite.) Show that A = I if and only if |A| = 1.

Solution
We apply Exercise 12.8. Since I > O, A ≥ O, and I ≥ A, we have |I| ≥ |A| with
equality if and only if A = I .

*Exercise 12.10 (Lines in the plane) Let A be a set of n ≥ 3 elements, and let A1, . . . , Am

be proper subsets of A, such that every pair of elements of A is contained in precisely one
set Aj .
(a) Give two examples for n = 4, and represent these examples graphically.
(b) Show that m ≥ n.
(c) Prove that it is not possible to arrange n points in the plane in such a way that every
line through two points also passes through a third, unless they all lie on the same line
(Sylvester).

Solution
(a) We can have: A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4}, A4 = {4, 1}, A5 = {1, 3},
A6 = {2, 4}. Another possibility is: A1 = {1, 2, 3}, A2 = {3, 4}, A3 = {4, 1}, A4 =
{2, 4}. This is illustrated in Figure 12.1, where subsets are represented by alignments.

11
2

2 3

3 44

Figure 12.1 — Two examples for n = 4.

(b) For xi ∈ A, let ri denote the number of sets Aj containing xi. Define the n×m matrix
B := (bij) with

bij :=

{
1 if xi ∈ Aj ,

0 if xi /∈ Aj .

for i = 1, . . . , n, j = 1, . . . , m. Now consider the n × n matrix BB′. For k �= i we have∑
j bijbkj = 1, because every pair of elements of A is contained in precisely one set Aj .

For k = i we have
∑

j b2
ij = ri by the definition of ri. Hence,

BB′ =


r1 1 . . . 1
1 r2 . . . 1
...

...
...

1 1 . . . rn

 = R− In + ıı′,
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where R := diag(r1, r2, . . . , rn) and ı denotes the n × 1 vector of ones. (Compare the
matrix BB′ with the equicorrelation matrix of Exercise 8.74.) Now, since 2 ≤ ri < m, the
matrix R − In is positive definite. Also, the matrix ıı′ is positive semidefinite. Hence, by
Exercise 8.8(b), BB′ is positive definite. This implies that rk(B) = rk(BB′) = n, and
hence that n ≤ m.
(c) Sylvester’s statement is just another way of formulating result (b).

Exercise 12.11 (Arithmetic-geometric mean inequality)
(a) Show that (

∏
i λi)1/n ≤ (1/n)

∑
i λi for any set of nonnegative numbers λ1, . . . , λn,

with equality if and only if all λi are the same (Euclid).
(b) Use (a) to show that |A|1/n ≤ (1/n) tr A for any positive semidefinite n×n matrix A.
(c) Show that equality in (b) occurs if and only if A = αIn for some α ≥ 0.

Solution
(a) There are many proofs of this fundamental inequality. We establish the result via cal-
culus. If one of the λi is zero, then the result is trivially true. Thus assume that all λi are
positive. Define the function

ϕ(λ1, . . . , λn) :=
1
n

n∑
i=1

λi −
(

n∏
i=1

λi

)1/n

.

Differentiating ϕ gives

∂ϕ

∂λj
=

1
n
− 1

nλj

(
n∏

i=1

λi

)1/n

(j = 1, . . . , n).

Setting the partial derivatives equal to zero, we obtain λj = (
∏

i λi)
1/n for all j, and

hence λ1 = λ2 = · · · = λn. At such points, ϕ(λ1, . . . , λn) = 0. Since (
∏

i λi)
1/n is

concave, ϕ(λ1, . . . , λn) is convex. Hence, ϕ has a global minimum at every point where
λ1 = λ2 = · · · = λn.
(b) Consider λ1, . . . , λn as eigenvalues of A, and the result follows from (a) and the fact
that |A| =

∏
i λi and tr A =

∑
i λi.

(c) Equality occurs if and only if λ1 = λ2 = · · · = λn. If A = αIn, then all eigenvalues
of A are clearly equal. Conversely, if all eigenvalues are equal, then S′AS = αI for some
orthogonal matrix S, implying that A = αSS′ = αIn. (We provide a different solution to
this fundamental inequality in Exercise 13.67.)

Exercise 12.12 (Quasilinear representation of |A|1/n) Let A be a positive semidef-
inite n× n matrix.
(a) Show that (1/n) tr AX ≥ |A|1/n for every n× n matrix X > O satisfying |X| = 1.
(b) Show that equality occurs if and only if X = |A|1/nA−1 or A = O.

Solution
(a) If A = O, the result is trivial. Assume A �= O, and define B := X1/2AX1/2. Then
B ≥ O, and hence, by Exercise 12.11, |B|1/n ≤ (1/n) tr B, that is, |X1/2AX1/2|1/n ≤
(1/n) tr X1/2AX1/2. Since |X| = 1, this becomes |A|1/n ≤ (1/n) tr AX .
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(b) Equality occurs if and only if B = αIn for some α ≥ 0, that is, if and only if
X1/2AX1/2 = αIn. If α = 0, then A = O. If α �= 0, then A = αX−1, so that X

is a multiple of A−1. The requirement |X| = 1 then gives X = |A|1/nA−1. (A solution
along different lines is provided in Exercise 13.68.)

Exercise 12.13 (Minkowski’s inequality)
(a) Use the quasilinear representation of Exercise 12.12 to show that

|A + B|1/n ≥ |A|1/n + |B|1/n

for every two positive semidefinite n× n matrices A �= O and B �= O.
(b) When does equality occur?

Solution
(a) If |A| = 0, |B| > 0, it follows immediately that |A + B| > |B|. Similarly, if |A| > 0,
|B| = 0, it follows that |A + B| > |A|. And, if |A| = |B| = 0, we have |A + B| ≥ 0.
Hence, if A or B is singular, the inequality holds. Assume next that both A and B are
positive definite. Using the quasilinear representation of Exercise 12.12 gives

|A + B|1/n = min
X

(1/n) tr(A + B)X

≥ min
X

(1/n) tr AX + min
X

(1/n) tr BX

= |A|1/n + |B|1/n,

where the minimum is taken over all positive definite X satisfying |X| = 1.
(b) If A and B are both singular, equality occurs if and only if |A+B| = 0. If only one of
the two matrices A and B is singular, then equality can only occur when n = 1, since we
have assumed that A �= O and B �= O; see Exercise 12.12. If both A and B are nonsin-
gular, then equality occurs only if the same X minimizes (1/n) tr AX , (1/n) tr BX and
(1/n) tr(A + B)X , which implies that A−1, B−1 and (A + B)−1 must be proportional,
and hence that A and B must be proportional.

*Exercise 12.14 (Trace inequality, 1) Let A and B be positive semidefinite n× n matri-
ces.
(a) Show that 0 ≤ tr AB ≤ (tr A)(tr B).
(b) Show that

√
tr AB ≤ (tr A + trB)/2.

(c) When does equality in (b) occur?

Solution
Let S be an orthogonal matrix such that S′AS = Λ (diagonal), and let C := S′BS. Note
that Λ is diagonal with nonnegative diagonal elements, and that C is positive semidefinite.
Then,

tr A =
n∑

i=1

λi, tr B = trC =
n∑

i=1

cii, tr AB = tr ΛC =
n∑

i=1

λicii.
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(a) It is clear that tr AB =
∑

i λicii ≥ 0. Also,

(tr A)(trB)− tr AB = (
n∑

i=1

λi)(
n∑

i=1

cii)−
n∑

i=1

λicii =
∑
i�=j

λicjj ≥ 0.

(b) Here we have

(tr A + trB)2 − 4 tr AB = (trA− tr B)2 + 4((tr A)(tr B)− tr AB) ≥ 0.

(c) This occurs (trivially) if A = O and tr B = 0, or if B = O and tr A = 0, but also
if A = B = aa′ for some vector a �= 0. To prove this, let A �= O and B �= O. Then
equality occurs if and only if(

n∑
i=1

λi −
n∑

i=1

cii

)2

+ 4

((
n∑

i=1

λi

)(
n∑

i=1

cii

)
−

n∑
i=1

λicii

)
= 0,

that is, if and only if
∑

i λi =
∑

i cii and λicjj = 0 for all i �= j. Consider the latter
condition. Since rk(A) ≥ 1, at least one of the λ’s, say λi, is nonzero. This implies that
cjj = 0 for all j �= i, so that rk(C) ≤ 1. Since C �= O, this gives rk(C) = 1. Similarly
we obtain rk(Λ) = 1. Hence, A = aa′ and B = bb′ for some a �= 0, b �= 0. Equality in
(b) then implies that (a′b)2 = (a′a)(b′b) and a′a = b′b, and hence that aa′ = bb′.

Exercise 12.15 (Cauchy-Schwarz, determinantal version) Let A and B be two matri-
ces of the same order. Show that |A′B|2 ≤ |A′A||B′B| with equality if and only if A′A
or B′B is singular, or if B = AQ for some nonsingular matrix Q.

Solution
If |A′B| = 0, the result is trivial. Assume that |A′B| �= 0. Then both A and B have full
column rank, so that A′A and B′B are nonsingular. Now define

C := B′A(A′A)−1A′B and D := B′(I −A(A′A)−1A′)B,

and notice that C is positive definite and D positive semidefinite (because I−A(A′A)−1A′

is idempotent). Since, by Exercise 12.7, |C+D| ≥ |C|with equality if and only if D = O,
we obtain

|B′B| ≥ |B′A(A′A)−1A′B| = |A′B|2|A′A|−1

with equality if and only if B′(I − A(A′A)−1A′)B = O, that is, if and only if (I −
A(A′A)−1A′)B = O.

Exercise 12.16 (Inequality for the inverse) Let A and B be positive definite. Show
that A > B if and only if B−1 > A−1.

Solution
Let A and B be of order n × n. We use the simultaneous reduction to diagonal form,
provided by Exercise 8.37. Thus, there exist a nonsingular matrix T and a positive definite
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diagonal matrix Λ = diag(λ1, . . . , λn) such that A = TT ′ and B = TΛT ′. Then,

A−B = T (In −Λ)T ′, B−1 −A−1 = T ′−1(Λ−1 − In)T−1.

If A−B is positive definite, then In−Λ is positive definite as well and hence 0 < λi < 1
(i = 1, . . . , n). This implies that Λ−1 − In is positive definite and hence that B−1 −A−1

is positive definite.

*Exercise 12.17 (Kantorovich’s inequality)
(a) Show that λ2 − (a + b)λ + ab ≤ 0 for all λ ∈ [a, b].
(b) Let A be a positive definite n × n matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0.
Use (a) to show that the matrix

(λ1 + λn)In −A− (λ1λn)A−1

is positive semidefinite of rank ≤ n− 2.
(c) Use Schur’s inequality (Exercise 12.6) and (b) to show that

1 ≤ (x′Ax)(x′A−1x) ≤ (λ1 + λn)2

4λ1λn

for every positive definite n × n matrix A and every n × 1 vector x satisfying x′x = 1
(Kantorovich).

Solution
(a) This follows from the fact that the function ϕ(λ) := λ2 − (a + b)λ + ab satisfies
ϕ(a) = ϕ(b) = 0 and has a minimum at λ = (a + b)/2. (Compare Kato’s lemma in
Exercise 8.18.)
(b) Since λi ∈ [λn, λ1] for all i, we obtain from (a), λ2

i − (λ1 + λn)λi + λ1λn ≤ 0 and
hence, dividing by λi,

(λ1 + λn)− λi − (λ1λn)λ−1
i ≥ 0 (i = 1, . . . , n)

with equality if and only if λi = λ1 or λi = λn. Let Λ := diag(λ1, . . . , λn), and write
A = SΛS′ where S is orthogonal. Then,

(λ1 + λn)In −A− (λ1λn)A−1 = S
(
(λ1 + λn)In −Λ− (λ1λn)Λ−1

)
S′ ≥ O.

Since (at least) two of the eigenvalues of the matrix (λ1 + λn)In −A − (λ1λn)A−1 are
zero, its rank is ≤ n− 2.
(c) We first prove the inequality 1 ≤ (x′Ax)(x′A−1x). Let B := A1/2xx′A−1/2. Then,

tr B2 = tr
(
A1/2xx′A−1/2A1/2xx′A−1/2

)
= (x′x)2 = 1

and

tr B′B = tr
(
A−1/2xx′A1/2A1/2xx′A−1/2

)
= (x′Ax)(x′A−1x).

Since tr B2 ≤ tr B′B (Schur’s inequality), we obtain the first inequality. (Notice that
equality occurs if and only if B is symmetric, that is, if and only if x is an eigenvector of
A.)
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The second equality is proved using (b). Since (λ1+λn)In−A−(λ1λn)A−1 is positive
semidefinite, we have

(λ1 + λn)− x′Ax− (λ1λn)x′A−1x ≥ 0

for every x satisfying x′x = 1. Multiplying by x′Ax yields

(λ1λn)(x′Ax)(x′A−1x) ≤ (λ1 + λn)x′Ax− (x′Ax)2

= −
(

x′Ax− λ1 + λn

2

)2

+
(

λ1 + λn

2

)2

≤ (λ1 + λn)2

4
,

and the second inequality follows as well. (Equality occurs here if and only if A = αIn

for some α > 0.)

Exercise 12.18 (Inequality when A′B = I) For any two matrices A and B satisfy-
ing A′B = I , show that

A′A ≥ (B′B)−1 and B′B ≥ (A′A)−1.

Solution
The trick is to consider the idempotent symmetric matrix M := I −B(B′B)−1B′. This
matrix is positive semidefinite, and hence

O ≤ A′MA = A′A−A′B(B′B)−1B′A = A′A− (B′B)−1,

since A′B = B′A = I . The second result is proved analogously.

*Exercise 12.19 (Unequal powers) Let A and B be positive semidefinite matrices and let
A ≥ B.
(a) Show that A1/2 ≥ B1/2.
(b) Show that it is not true, in general, that A2 ≥ B2.
(c) However, if A and B commute (that is, AB = BA), then show that Ak ≥ Bk for
k = 2, 3, . . . .

Solution
(a) Let C := A1/2 −B1/2. We will show that all eigenvalues of C are nonnegative. We
have

O ≤ A−B = A− (A1/2 −C)2 = A− (A−A1/2C −CA1/2 + C2)

= A1/2C + CA1/2 −C2 ≤ A1/2C + CA1/2,

because C is symmetric and hence C2 = C ′C ≥ O. Now, let λ be an eigenvalue of C,
such that Cx = λx. Then,

0 ≤ x′(A1/2C + CA1/2)x = 2x′A1/2Cx = 2λ(x′A1/2x).
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If |A| > 0, then A and A1/2 are positive definite, and hence x′A1/2x > 0. In that case,
λ ≥ 0, which is what we wish to demonstrate.

If |A| = 0, then a continuity argument applies. Since A + εI > O for all ε > 0, the
previous argument shows that (A + εI)1/2 ≥ B1/2 for all ε > 0. Let S be an orthogonal
matrix such that S′AS = Λ (diagonal). Then, (A + εI)1/2 = S(Λ + εI)1/2S′. Since
Λ + εI → Λ as ε → 0, it follows that (A + εI)1/2 → A1/2. Hence, A1/2 ≥ B1/2.
(b) We take

A =
(

2 1
1 1

)
and B =

(
1 0
0 0

)
.

Then A ≥ B ≥ O, but |A2 −B2| = −1.
(c) If A and B commute, then there is a single orthogonal matrix S that diagonalizes both
A and B (Exercise 7.51):

S′AS = diag(λ1, . . . , λn), S′BS = diag(µ1, . . . , µn).

Since A ≥ B, it follows that λi ≥ µi for all i. Hence, λk
i ≥ µk

i ≥ 0, and

S′(Ak −Bk)S = S′AkS − S′BkS = (S′AS)k − (S′BS)k

= diag(λk
1 − µk

1, . . . , λ
k
n − µk

n) ≥ O.

Exercise 12.20 (Bound for log |A|) Let A be a positive definite n×n matrix. Show that

log |A| ≤ tr A− n,

with equality if and only if A = In.

Solution
Consider the function φ(λ) := λ− 1− log λ for λ > 0. Differentiating, we obtain φ′(λ) =
1 − 1/λ and φ′′(λ) = 1/λ2 > 0. Hence, a minimum occurs at λ = 1, and hence log λ ≤
λ − 1 for every λ > 0, with equality if and only if λ = 1. Now, let λ1, . . . , λn be the
eigenvalues of A. Then,

log λi ≤ λi − 1 (i = 1, . . . , n),

which gives

log |A| = log
n∏

i=1

λi =
n∑

i=1

log λi ≤
n∑

i=1

(λi − 1)

=
n∑

i=1

λi − n = trA− n.

Equality occurs if and only if all λi are equal to 1, that is, when A = In.
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Alternatively, we can write

exp(tr A− n) = etr(A− In) = | exp(A− In)| ≥ |A|,
since exp(λi − 1) ≥ λi for λi > 0 (with equality if and only if λi = 1 for all i), using the
fact that the exponential function is convex.

Exercise 12.21 (Concavity of log |A|)
(a) For every λ > 0 and 0 < α < 1, show that λα ≤ αλ + 1− α, with equality if and only
if λ = 1.
(b) For any A ≥ O and B ≥ O of the same order, show that

|A|α|B|1−α ≤ |αA + (1− α)B|
for every 0 < α < 1.
(c) When does equality occur?

Solution
(a) Define φ(λ) := αλ + 1 − α − λα. Then, φ′(λ) = α(1 − λ−(1−α)) and φ′′(λ) =
α(1−α)λ−(2−α) > 0. Hence, a minimum occurs at λ = 1, implying that φ(λ) ≥ φ(1) = 0.
(Alternatively we may take the arithmetic mean of λ and 1, then the geometric mean, and
use the arithmetic-geometric mean inequality of Exercise 12.11(a).)
(b) If |A| = 0 or |B| = 0 the result is trivial. Assume that |A| > 0 and |B| > 0. Let
C := B−1/2AB−1/2 with eigenvalues λ1, . . . , λn. Then C > O and hence λi > 0 for all
i. Thus, using (a),

λα
i ≤ αλi + (1− α) (i = 1, . . . , n).

Multiplying both sides over all i now yields

|C|α =
n∏

i=1

λα
i ≤

n∏
i=1

(αλi + (1− α)) = |αC + (1− α)In|.

Hence,

|A|α|B|1−α = |B||C|α ≤ |B||αC + (1− α)In|

= |αB1/2CB1/2 + (1− α)B| = |αA + (1− α)B|.
(c) We distinguish between two cases. First, let |αA+(1−α)B| = 0. Then either |A| = 0
or |B| = 0 (or both), and equality occurs. Next, let |αA + (1 − α)B| > 0. For equality
we must have |A| > 0 and |B| > 0. Equality then holds if λα

i = αλi + 1− α for every i,
that is, if and only if λi = 1 (i = 1, . . . , n). This in turn is the case if and only if C = In,
that is, if and only if A = B. Hence, equality holds if and only if |αA + (1 − α)B| = 0
or A = B. (A solution using matrix calculus is provided in Exercise 13.66.)

Exercise 12.22 (Implication of concavity)
(a) Let αi > 0,

∑
i αi = 1 and Ai > O for i = 1, . . . , k. Show that

|A1|α1 |A2|α2 . . . |Ak|αk ≤ |α1A1 + α2A2 + · · ·+ αkAk|.
(b) When does equality occur?



12.2 Positive (semi)definite matrix inequalities 335

Solution
(a) We have already proved the result for k = 2 (Exercise 12.21). Now proceed by induc-
tion on k. Let k ≥ 3. We write

α1A1 + · · ·+ αkAk = (1− αk)B + αkAk

with

B := β1A1 + · · ·+ βk−1Ak−1 and βj :=
αj

1− αk
(j = 1, . . . , k − 1).

Since B is positive definite, it follows that

|α1A1 + · · ·+ αkAk| = |(1− αk)B + αkAk| ≥ |B|1−αk |Ak|αk .

We note that the weights βj in B sum to one. Applying the induction hypothesis, we have

|B| ≥ |A1|β1 . . . |Ak−1|βk−1 ,

and hence

|α1A1 + · · ·+ αkAk| ≥ |A1|β1(1−αk) . . . |Ak−1|βk−1(1−αk)|Ak|αk

= |A1|α1 . . . |Ak|αk .

(b) Equality occurs if and only if A1 = · · · = Ak.

Exercise 12.23 (Positive definiteness of bordered matrix) Let A be a positive defi-
nite n× n matrix, and let B be the (n + 1)× (n + 1) bordered matrix

B :=
(

A b

b′ α

)
.

Show that:
(a) |B| ≤ α|A| with equality if and only if b = 0;
(b) B is positive definite if and only if |B| > 0.

Solution
(a) We already know from Exercise 5.30(a) that |B| = |A|(α−b′A−1b). This implies (a).
(b) To prove (b), we need elements of the proof of this determinantal equality. Thus, define

P :=
(

In −A−1b

0′ 1

)
, implying P ′BP =

(
A 0
0′ α− b′A−1b

)
.

Then, |B| = |P ′BP | = |A|(α − b′A−1b). Now notice that |B| > 0 if and only if
α − b′A−1b > 0, which is the case if and only if P ′BP is positive definite. This in turn
is true if and only if B is positive definite. (Compare the proof of Exercise 8.31.)

Exercise 12.24 (Positive semidefiniteness of bordered matrix) Let A be a positive
semidefinite n× n matrix, and let B be the (n + 1)× (n + 1) bordered matrix

B :=
(

A b

b′ α

)
.
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(a) Show that B is positive semidefinite if and only if α ≥ 0 and αA − bb′ is positive
semidefinite.
(b) Obtain the result of Exercise 12.23 as a special case.

Solution
(a) Consider the quadratic form x′Bx and partition x = (x′

1, x2)′ where x2 is a scalar.
Then,

φ(x2) := x′Bx = x′
1Ax1 + 2x2b

′x1 + αx2
2.

If α > 0 we minimize φ with respect x2 and find

x′Bx ≥ x′
1Ax1 −

(b′x1)2

α
=

1
α

x′
1

(
αA− bb′

)
x1.

Hence, if α > 0, then B ≥ O if and only if αA − bb′ ≥ O. If α < 0, then B cannot be
positive semidefinite, because a positive semidefinite matrix must have nonnegative diago-
nal elements. If α = 0, then B ≥ O if and only if b = 0.
(b) If A > O, then B > O if and only if α > 0 and αA− bb′ > O. We write

αA− bb′ = A1/2
(
αIn −A−1/2bb′A−1/2

)
A1/2,

which is positive definite if and only if all eigenvalues of αIn −A−1/2bb′A−1/2 are posi-
tive. The eigenvalues are α (n − 1 times) and α − b′A−1b (once). Hence, B > O if and
only if α − b′A−1b > 0. Since |A| > 0 and |B| = |A|(α − b′A−1b) > 0, the result
follows.

Exercise 12.25 (Bordered matrix, special case) Consider the matrix

B :=
(

A b

b′ b′A−1b

)
,

where A is positive definite.
(a) Show that B is positive semidefinite and singular.
(b) Find the eigenvector associated with the zero eigenvalue.

Solution
In the proof of Exercise 12.23, let α := b′A−1b. Then,

P ′BP =
(

A 0
0′ 0

)
,

implying that B is positive semidefinite and singular.
(b) Let (x′ : ξ)′ be the required eigenvector (unique up to a scalar). Then we need to solve

Ax + ξb = 0, b′x + ξ(b′A−1b) = 0.

This gives x = −A−1b and ξ = 1. Notice that this is the last column of P .
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Exercise 12.26 (Hadamard’s inequality)
(a) Let A := (aij) be a positive definite n × n matrix. Show that |A| ≤

∏n
i=1 aii with

equality if and only if A is diagonal.
(b) Use (a) to show that

|A|2 ≤
n∏

i=1

 n∑
j=1

a2
ij

 .

for any n× n matrix A (Hadamard).
(c) When does Hadamard’s inequality become an equality?

Solution
(a) Let A(k) denote the k-th leading principal submatrix of A, that is, the k × k matrix,
containing only the elements aij for i, j = 1, . . . , k. Note that A(1) = a11 and A(n) = A.
Now, using Exercise 12.23(a), we obtain

|A(n)| ≤ ann|A(n−1)| ≤ annan−1,n−1|A(n−2)| ≤ . . .

≤ annan−1,n−1 . . . a22|A(1)| = annan−1,n−1 . . . a22a11.

Equality at the first step of this sequence of inequalities occurs if and only if all nondiagonal
elements in the n-th row and the n-th column vanish. Equality at the first and second steps
occurs if and only if, in addition, all nondiagonal elements in the (n − 1)-th row and the
(n − 1)-th column vanish. Continuing in this way, we see that equality occurs if and only
if all nondiagonal elements vanish.
(b) If |A| = 0, the inequality is trivial. If |A| �= 0, then AA′ is positive definite. Then,
using (a),

|A|2 = |AA′| ≤
n∏

i=1

(AA′)ii =
n∏

i=1

 n∑
j=1

a2
ij

 .

(c) If |A| = 0, then equality occurs if and only if
∑n

j=1 a2
ij = 0 for some i, that is, if and

only if A contains a row of zeros. If |A| �= 0, equality occurs if and only if AA′ is diagonal.

Exercise 12.27 (When is a symmetric matrix diagonal?)
(a) We know from Exercise 12.26(a) that, if A is a positive definite n × n matrix, then,
|A| =

∏n
i=1 aii if and only if A is diagonal. If A is merely symmetric, show that this

result is still true for n = 2, but not in general for n ≥ 3.
(b) Now show that a symmetric matrix is diagonal if and only if its eigenvalues and its
diagonal elements coincide.
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Solution
(a) If n = 2, then |A| = a11a22 − a2

12, and this is equal to a11a22 if and only a12 = 0. If
n = 3, then the matrix

A =

2 3 3
3 2 3
3 3 2


has eigenvalues are −1, −1, and 8. Hence, |A| = 8. The product of its diagonal elements
is also 8. But A is not diagonal. (An important practical lesson can be learned from this
example. If a matrix result holds for n = 2, then it does not necessarily hold generally.
However, if it holds for n = 3, then there is a good chance that it holds generally. This is
not a theorem, but is true nonetheless.)
(b) Let A := (aij) be a symmetric n× n matrix. The “only if” part is trivial. To prove the
“if” part, we assume that λi(A) = aii (i = 1, . . . , n), and consider the matrix B = A+αI ,
where α > 0 is such that B is positive definite. Then,

λi(B) = λi(A) + α = aii + α = bii (i = 1, . . . , n),

and hence

|B| =
n∏

i=1

λi(B) =
n∏

i=1

bii.

It then follows from Exercise 12.26(a) that B is diagonal, and hence that A is diagonal.

Exercise 12.28 (Trace inequality, 2)
(a) If A is positive definite, show that A + A−1 − 2I is positive semidefinite.
(b) When is the matrix positive definite?
(c) Let A > O and B > O, both of order n. Use (a) to show that

tr
(
(A−1 −B−1)(A−B)

)
≤ 0.

Solution
For a scalar λ > 0, we have λ + λ−1 − 2 = (λ − 1)2/λ ≥ 0 with equality if and
only if λ = 1. Let S be an orthogonal matrix such that S′AS = Λ (diagonal). Then,
A+A−1−2I = S

(
Λ + Λ−1 − 2I

)
S′ is positive semidefinite if and only if Λ+Λ−1−2I

is positive semidefinite. The latter matrix is diagonal with nonnegative diagonal elements.
This proves (a).
(b) The matrix is positive definite if and only if it is nonsingular, that is, if and only if none
of the eigenvalues of A are equal to one.
(c) We write

tr
(
(A−1 −B−1)(A−B)

)
= tr

(
I −A−1B −B−1A + I

)
= − tr

(
C + C−1 − 2I

)
≤ 0,

where C = A−1/2BA−1/2.
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Exercise 12.29 (OLS and GLS) Let V be a positive definite n× n matrix, and let X be
an n× k matrix with rk(X) = k. Show that

(X ′X)−1X ′V X(X ′X)−1 ≥ (X ′V −1X)−1,

(a) using Exercise 12.18;
(b) by considering the matrix M := V −1/2X(X ′V −1X)−1X ′V −1/2.
(c) Can you explain the title “OLS and GLS” of this exercise? (Conditions for equality are
provided in Exercise 8.69.)

Solution
(a) Let A := V 1/2X(X ′X)−1 and B := V −1/2X . Then A′B = I and hence Exer-
cise 12.18 yields

(X ′X)−1X ′V X(X ′X)−1 = A′A ≥ (B′B)−1 = (X ′V −1X)−1.

(b) The matrix M is symmetric idempotent, and hence I −M is also symmetric idempo-
tent. Thus,

O ≤ V 1/2(I −M)V 1/2 = V −X(X ′V −1X)−1X ′.

Now premultiply by (X ′X)−1X ′ and postmultiply by X(X ′X)−1.
(c) In the linear regression model y = Xβ+u with u ∼ N(0, V ), the best linear unbiased
estimator of β is given by β̃ := (X ′V −1X)−1X ′V −1y with variance (X ′V −1X)−1.
This is the generalized least-squares (GLS) estimator. The ordinary least-squares (OLS)
estimator β̂ := (X ′X)−1X ′y is also linear and unbiased, but not best, that is, var(β̃) ≤
var(β̂). Hence,

(X ′V −1X)−1 ≤ (X ′X)−1X ′ var(y)X(X ′X)−1 = (X ′X)−1X ′V X(X ′X)−1.

Exercise 12.30 (Bound for log |A|, revisited) Show that

|A + B|
|A| ≤ exp(tr(A−1B)),

where A and A + B are positive definite, with equality if and only if B = O.

Solution
Assume that A and B are of order n. It follows from Exercise 12.20 that

log |In + B| ≤ tr(In + B)− n = tr B,

when In + B > O, with equality if and only if B = O. Hence,

|In + B| = exp (log |In + B|) ≤ exp(tr B).

This shows that the result holds for A = In. To prove the general result, let C :=
A−1/2BA−1/2. Then,

|A + B|
|A| = |A−1/2(A + B)A−1/2| = |In + C| ≤ exp(tr C) = exp(tr(A−1B)),

with equality if and only if C = O, that is, if and only if B = O.
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Exercise 12.31 (Olkin’s inequality)
(a) Let A be positive definite and B symmetric such that |A + B| �= 0. Show that

(A + B)−1B(A + B)−1 ≤ A−1 − (A + B)−1.

(b) Show that the inequality is strict if and only if B is nonsingular.

Solution
(a) The trick is to try and rephrase this problem so that we are left with an inequality in
one matrix rather than two. This is achieved by defining C := A−1/2BA−1/2. This
is a symmetric matrix and well-defined, since A is positive definite. Also, the matrix
I + C = A−1/2(A + B)A−1/2 is nonsingular, since A + B is nonsingular. Now,

A−1 − (A + B)−1 − (A + B)−1B(A + B)−1

= A−1 −A−1/2(I + C)−1A−1/2 −A−1/2(I + C)−1C(I + C)−1A−1/2

= A−1/2(I + C)−1
(
(I + C)2 − (I + C)−C

)
(I + C)−1A−1/2

= A−1/2(I + C)−1C2(I + C)−1A−1/2 ≥ O,

because C2 is positive semidefinite.
(b) The inequality is strict if and only if C is nonsingular, that is, if and only if B is non-
singular.

Exercise 12.32 (Positive definiteness of Hadamard product) Let A and B be square
n× n matrices. The Hadamard product A�B is defined as the n× n matrix whose ij-th
element is aijbij . This is the element-by-element matrix product.
(a) Let λ := (λ1, . . . , λn)′ and Λ := diag(λ1, . . . , λn). Show that

λ′(A�B)λ = trAΛB′Λ.

(b) If A > O and B > O, show that A�B > O.

Solution
(a) We write

tr AΛB′Λ =
∑

i

(AΛB′Λ)ii =
∑

i

e′
iAΛB′Λei =

∑
i

λie
′
iAΛB′ei

=
∑
ij

λiλjaijbij = λ′(A�B)λ.

(b) Let x := (x1, . . . , xn)′ be an arbitrary n × 1 vector, and let X := diag(x1, . . . , xn).
Then, using (a),

x′(A�B)x = trAXBX = tr(A1/2XB1/2)(B1/2XA1/2) = trCC ′ ≥ 0,

where C = A1/2XB1/2. Equality implies that C = O, and hence that X = O, that is,
x = 0. We conclude that x′(A � B)x > 0 for every x �= 0, and hence that A � B is
positive definite.
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12.3 Inequalities derived from the Schur complement

Exercise 12.33 (Schur complement: basic inequality) Let A be a positive definite
n× n matrix and let B be an n×m matrix. Show that, for any symmetric m×m matrix
X ,

Z :=
(

A B

B′ X

)
≥ O ⇐⇒ X ≥ B′A−1B,

and that, if one inequality is strict, the other is strict as well.

Solution
We write the equality(

I O
−B′A−1 I

)(
A B

B′ X

)(
I −A−1B

O I

)
=
(

A O
O X −B′A−1B

)
,

or, for short, P ′ZP = ∆. Since |P | �= 0, Z ≥ O if and only if ∆ ≥ O (Exercise 8.28).
Further, since A > O, ∆ ≥ O if and only if X − B′A−1B ≥ O (Exercise 8.44). To
prove the strict inequality, the same argument applies, all inequalities now being strict.

Exercise 12.34 (Fischer’s inequality, again) As in Exercise 8.46, consider

Z :=
(

A B

B′ D

)
> O.

(a) Show that |Z| ≤ |A||D| with equality if and only if B = O.
(b) If B is a square matrix, show that |B|2 < |A||D|.

Solution
(a) Since Z > O, it follows that A > O and D > O (Exercise 8.30), and D−B′A−1B >

O (Exercise 12.33). Hence, using the decomposition of Exercise 12.33,

|Z| = |A||D −B′A−1B| ≤ |A||D|,
since

|D| = |(D −B′A−1B) + B′A−1B| ≥ |D −B′A−1B|,
using Exercise 12.7. Equality occurs if and only if the last inequality is an equality, that is,
if and only if B′A−1B = O. This, in turn, happens if and only if B = O.
(b) Since D −B′A−1B > O, we have, using Exercise 12.7,

|D| = |(D −B′A−1B) + B′A−1B| ≥ |D −B′A−1B|+ |B′A−1B|

> |B′A−1B| = |B|2|A|−1.

Multiplying both sides by |A| gives |A||D| > |B|2.
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Exercise 12.35 (A positive semidefinite matrix) Show that(
I A

A′ A′A

)
≥ O

for any matrix A.

Solution
The easiest solution is to notice that(

I A

A′ A′A

)
= (I : A)′(I : A) ≥ O.

Alternatively, we may invoke Exercise 12.33. The partitioned matrix is positive semidefi-
nite if and only if A′A ≥ A′I−1A, and this is obviously the case.

Exercise 12.36 (OLS and GLS, continued) Let V be a positive definite n × n ma-
trix, and let X be an n× k matrix with rk(X) = k.
(a) Show that X(X ′V −1X)−1X ′ ≤ V .
(b) Conclude that (X ′V −1X)−1 ≤X ′V X for any X satisfying X ′X = Ik.

Solution
(a) It follows from Exercise 12.33 that(

V X

X ′ X ′V −1X

)
≥ O.

An immediate consequence is that(
X ′V −1X X ′

X V

)
≥ O.

Now take the Schur complement in this matrix. This shows that

V ≥ X(X ′V −1X)−1X ′.

(b) This follows from (a) by premultiplying both sides by X ′ and postmultiplying by X .
(Notice that (a) implies, but is not implied by, the inequality in Exercise 12.29. Also com-
pare (b) with Kantorovich’s inequality in Exercise 12.17.)

Exercise 12.37 (Another positive semidefinite matrix) Let A and B be matrices of
order m× n.
(a) Show that (

Im + AA′ A + B

(A + B)′ In + B′B

)
≥ O.

(b) Use the Schur complement to show that

In + B′B ≥ (A + B)′(Im + AA′)−1(A + B).
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(c) If A and B are square matrices, show that

|A + B|2 ≤ |In + B′B||Im + AA′|.

Solution
(a) This follows from the relationship(

Im A

B′ In

)(
Im B

A′ In

)
=
(

Im + AA′ A + B

(A + B)′ In + B′B

)
.

(b) This follows directly from Exercise 12.33.
(c) This follows from (b).

Exercise 12.38 (An inequality equivalence) Let A > O and B > O. Show that(
A + B A

A A + X

)
≥ O ⇐⇒ X ≥ −(A−1 + B−1)−1.

Solution
By Exercise 12.33 the partitioned matrix is positive semidefinite if and only if A + X ≥
A(A + B)−1A. To prove the result we must therefore demonstrate that

A(A + B)−1A−A = −(A−1 + B−1)−1,

or, equivalently, that

(A−1 + B−1)(A−A(A + B)−1A) = I.

Multiplying out the left-hand side shows that we need to prove that

(A + B)−1A−B−1A + B−1A(A + B)−1A = O.

(Almost always, when you need to prove A = B, try proving A−B = O instead!) Now
postmultiply both sides of the equation by A−1(A + B), and the result follows.

12.4 Inequalities concerning eigenvalues

Exercise 12.39 (Bounds of Rayleigh quotient, continued) Let A be a symmetric n×n

matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
(a) Show that the Rayleigh quotient x′Ax/x′x is bounded by

λn ≤
x′Ax

x′x
≤ λ1.

(b) Can the bounds of x′Ax/x′x be achieved?

(c) (Quasilinear representation) Show that we may express λ1 and λn as

λ1 = max
x

x′Ax

x′x
and λn = min

x

x′Ax

x′x
.

What potential use is this quasilinear representation?
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Solution
(a) Let S be an orthogonal n × n matrix such that S′AS = Λ = diag(λ1, λ2, . . . , λn),
and let y = S′x. Since λ1y

′y ≥ y′Λy ≥ λny′y, we obtain λ1x
′x ≥ x′Ax ≥ λnx′x,

because x′Ax = y′Λy and x′x = y′y.
(b) Yes, by choosing x to be an eigenvector associated with λ1 or λn.
(c) This follows from (a) and (b). Thus, as in Exercise 12.3, we may represent λ1 and λn

(two nonlinear functions of A) as an envelope of linear functions of A. An immediate
application follows in the next exercise.

Exercise 12.40 (Applications of the quasilinear representation) Let A and B be sym-
metric n× n matrices.
(a) Use the quasilinear representations in Exercise 12.39 to show that

λ1(A + B) ≤ λ1(A) + λ1(B) and λn(A + B) ≥ λn(A) + λn(B).

(b) If, in addition, B is positive semidefinite, show that

λ1(A + B) ≥ λ1(A) and λn(A + B) ≥ λn(A).

Solution
(a) We have

λ1(A + B) = max
x

(
x′Ax

x′x
+

x′Bx

x′x

)
≤ max

x

x′Ax

x′x
+ max

x

x′Bx

x′x
= λ1(A) + λ1(B).

The proof that λn(A + B) ≥ λn(A) + λn(B) proceeds similarly.
(b) To prove the result for λ1, we write

λ1(A + B) = max
x

(
x′Ax

x′x
+

x′Bx

x′x

)
≥ max

x

x′Ax

x′x
+ min

x

x′Bx

x′x
= λ1(A) + λn(B).

Since λn(B) ≥ 0, we see that λ1(A + B) ≥ λ1(A) if B is positive semidefinite. The
result for λn follows directly from (a), because λn(B) ≥ 0.

Exercise 12.41 (Convexity of λ1, concavity of λn) For any two symmetric matrices
A and B of order n× n and 0 ≤ α ≤ 1, show that

λ1(αA + (1− α)B) ≤ αλ1(A) + (1− α)λ1(B),

λn(αA + (1− α)B) ≥ αλn(A) + (1− α)λn(B).

Hence, λ1 is convex and λn is concave on the space of symmetric matrices.
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Solution
Using the quasilinear representation (Exercise 12.39), we obtain

λ1(αA + (1− α)B) = max
x

x′(αA + (1− α)B)x
x′x

≤ α max
x

x′Ax

x′x
+ (1− α) max

x

x′Bx

x′x

= αλ1(A) + (1− α)λ1(B).

The analogue for λn is proved similarly.

Exercise 12.42 (Variational description of eigenvalues) Let A be a symmetric n × n

matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let S := (s1, s2, . . . , sn) be an orthogonal
n× n matrix that diagonalizes A, so that S′AS = diag(λ1, λ2, . . . , λn). Show that

λk = max
R′

k−1x=0

x′Ax

x′x
= min

T ′
k+1x=0

x′Ax

x′x
(k = 1, . . . , n),

where

Rk := (s1, s2, . . . , sk) and Tk := (sk, sk+1, . . . , sn),

and we agree to interpret R0 and Tn+1 as “empty” in the sense that the restrictions R′
0x =

0 and T ′
n+1x = 0 do not impose a restriction on x.

Solution
We only prove the first representation of λk. Let y := S′x. Partition S and y as

S = (Rk−1 : Tk) and y =
(

y1

y2

)
.

Then, we may express x as x = Sy = Rk−1y1 + Tky2. Hence, using R′
k−1Tk = O,

R′
k−1x = 0 ⇐⇒ y1 = 0 ⇐⇒ x = Tky2.

It follows that

max
R′

k−1x=0

x′Ax

x′x
= max

x=Tky2

x′Ax

x′x
= max

y2

y′
2(T

′
kATk)y2

y′
2y2

= λk,

since T ′
kATk = diag(λk, λk+1, . . . , λn).

Exercise 12.43 (Variational description, generalized) Let A be a symmetric n × n

matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Show that, for every n× (k − 1) matrix B

and n× (n− k) matrix C,

min
C ′x=0

x′Ax

x′x
≤ λk ≤ max

B ′x=0

x′Ax

x′x
.
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Solution
Let B be an arbitrary n× (k− 1) matrix, and denote (normalized) eigenvectors associated
with the eigenvalues λ1, . . . , λn of A by s1, s2, . . . , sn. Let R := (s1, s2, . . . , sk), so that

R′AR = diag(λ1, λ2, . . . , λk), R′R = Ik.

Now consider the (k− 1)×k matrix B′R. Since the rank of B′R cannot exceed k− 1, its
k columns are linearly dependent. Thus B′Rp = 0 for some k × 1 vector p �= 0. Then,
choosing x = Rp, we obtain

max
B ′x=0

x′Ax

x′x
≥ p′(R′AR)p

p′p
≥ λk.

The proof of the second inequality is similar.

Exercise 12.44 (Fischer’s min-max theorem) Let A be a symmetric n× n matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Obtain a quasilinear representation of the eigenvalues,
that is, show that λk can be expressed as

λk = min
B ′B=Ik−1

max
B ′x=0

x′Ax

x′x
,

and equivalently as

λk = max
C ′C=In−k

min
C ′x=0

x′Ax

x′x
,

where, as the notation indicates, B is an n× (k−1) matrix and C is an n× (n−k) matrix.

Solution
The solution is now simple, because we have the preliminary Exercises 12.42 and 12.43
at our disposal. Let Λk−1 := diag(λ1, λ2, . . . , λk−1), and let Rk−1 be a semi-orthogonal
n× (k − 1) matrix satisfying

ARk−1 = Rk−1Λk−1, R′
k−1Rk−1 = Ik−1.

Now define

φ(B) := max
B ′x=0

x′Ax

x′x
.

Then we obtain, using Exercise 12.42, λk = φ(Rk−1) ≥ minB ′B=Ik−1
φ(B), because

Rk−1 obviously satisfies the constraint R′
k−1Rk−1 = Ik−1. Also, Exercise 12.43 shows

that λk ≤ φ(B) for every B, and hence in particular for every semi-orthogonal B. We
have thus demonstrated that λk is both larger and smaller than minB ′B=Ik−1

φ(B); hence
equality follows. The second result is proved in a similar fashion.

Exercise 12.45 (Monotonicity of eigenvalue function) Generalize Exercise 12.40(b)
by showing that, for any symmetric matrix A and positive semidefinite matrix B,

λk(A + B) ≥ λk(A) (k = 1, 2, . . . , n).

If B is positive definite, show that the inequality is strict.
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Solution
For any n× (n− k) matrix C we have

min
C ′x=0

x′(A + B)x
x′x

= min
C ′x=0

(
x′Ax

x′x
+

x′Bx

x′x

)
≥ min

C ′x=0

x′Ax

x′x
+ min

C ′x=0

x′Bx

x′x

≥ min
C ′x=0

x′Ax

x′x
+ λn(B),

because minC ′x=0(x′Bx/x′x) ≥ minx(x′Bx/x′x) = λn(B). Hence, by Fischer’s
min-max theorem,

λk(A + B) = max
C ′C=In−k

min
C ′x=0

x′(A + B)x
x′x

≥ max
C ′C=In−k

min
C ′x=0

x′Ax

x′x
+ λn(B) = λk(A) + λn(B) ≥ λk(A),

since B is positive semidefinite. If B is positive definite, then λn(B) > 0 and the last
inequality is strict.

*Exercise 12.46 (Poincaré’s separation theorem) Let A be a symmetric n × n ma-
trix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let G be a semi-orthogonal n × r matrix
(1 ≤ r ≤ n), so that G′G = Ir. Show that the eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µr of G′AG

satisfy

λn−r+k ≤ µk ≤ λk (k = 1, 2, . . . , r).

Solution
We do not need the full force of Fischer’s theorem. The two preliminary results in Exercises
12.42 and 12.43 suffice. Let 1 ≤ k ≤ r and let R be a semi-orthogonal n× (k− 1) matrix
whose columns are eigenvectors of A associated with λ1, λ2, . . . , λk−1. (Again, we agree
to interpret R as “empty” when k = 1, in the sense that the restriction R′x = 0 does not
impose a restriction on x.) Then,

λk = max
R′x=0

x′Ax

x′x
≥ max

R′x=0
x=Gy

x′Ax

x′x
= max

R′Gy=0

y′G′AGy

y′y
≥ µk,

where the first equality follows from Exercise 12.42, and the last inequality from Exer-
cise 12.43.

Next, let n − r + 1 ≤ k ≤ n, and let T be a semi-orthogonal n × (n − k) matrix
whose columns are eigenvectors of A associated with λk+1, . . . , λn. (Of course, T will
be interpreted as “empty” when k = n, in the sense that the restriction T ′x = 0 does not
impose a restriction on x.) Then we obtain in the same way

λk = min
T ′x=0

x′Ax

x′x
≤ min

T ′x=0
x=Gy

x′Ax

x′x
= min

T ′Gy=0

y′G′AGy

y′y
≤ µr−n+k.
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The last inequality is tricky. We know from Exercise 12.43 that y′G′AGy/y′y ≤ µk for
every vector y satisfying C ′y = 0, where C is an r× (r− k) matrix. The matrix G′T has
(n− k) columns, not (r − k); hence there are (n− r) additional restrictions on y and the
upper bound changes from µk to µr−n+k. We now rewrite the inequality λk ≤ µr−n+k as
λn−r+k ≤ µk, and this completes the second half of the proof.

Exercise 12.47 (Poincaré applied, 1) Let A be a symmetric n×n matrix with eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λn, and let M be an idempotent symmetric n × n matrix of rank r

(1 ≤ r ≤ n). Denote the eigenvalues of the n× n matrix MAM , apart from n− r zeros,
by µ1 ≥ µ2 ≥ · · · ≥ µr. Use Poincaré’s separation theorem to show that

λn−r+k ≤ µk ≤ λk (k = 1, 2, . . . , r).

Solution
This is an immediate consequence (in fact a reformulation) of Poincaré’s theorem. Write
M = GG′ with G′G = Ir (see Exercise 8.66), and note that GG′AGG′ and G′AG

have the same eigenvalues, apart from n− r zeros (Exercise 7.25(b)).

Exercise 12.48 (Poincaré applied, 2) Let A be a symmetric n×n matrix with eigenval-
ues λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), and let A(r) be an r × r principal submatrix of A

(not necessarily a leading principal submatrix) with eigenvalues λ1(A(r)) ≥ λ2(A(r)) ≥
· · · ≥ λr(A(r)).
(a) Use Poincaré’s separation theorem to show that

λn−r+k(A) ≤ λk(A(r)) ≤ λk(A) (k = 1, 2, . . . , r).

(b) In particular, show that

λn(A(n)) ≤ λn−1(A(n−1)) ≤ λn−1(A(n)) ≤ λn−2(A(n−1))

≤ · · · ≤ λ1(A(n−1)) ≤ λ1(A(n)).

Solution
(a) Let G be the n×r matrix G := (Ir : O)′ or a row permutation thereof. Then G′G = Ir

and G′AG is an r × r principal submatrix of A. The result then follows from Poincaré’s
theorem.
(b) Letting r = n − 1 in (a), we see that λk+1(A(n)) ≤ λk(A(n−1)) ≤ λk(A(n)) for
1 ≤ k ≤ n− 1.

Exercise 12.49 (Bounds for tr A(r)) Let A be a symmetric n×n matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn.
(a) Show that

max
X ′X=Ir

tr X ′AX =
r∑

k=1

λk and min
X ′X=Ir

tr X ′AX =
r∑

k=1

λn−r+k.
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(b) In particular, defining for r = 1, 2, . . . , n,

A(r) :=

a11 . . . a1r
...

...
ar1 . . . arr

 ,

show that
r∑

k=1

λn−r+k ≤ tr A(r) ≤
r∑

k=1

λk.

Solution
(a) Denote the r eigenvalues of X ′AX by µ1 ≥ µ2 ≥ · · · ≥ µr. Then, Poincaré’s theorem
gives

r∑
k=1

λn−r+k ≤
r∑

k=1

µk ≤
r∑

k=1

λk.

Noting that
∑r

k=1 µk = tr X ′AX , and that the bounds can be attained by suitable choices
of X , (a) follows.
(b) Take X := (Ir : O)′ in (a).

Exercise 12.50 (Bounds for |A(r)|) Let A be a positive definite n × n matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
(a) Show that

max
X ′X=Ir

|X ′AX| =
r∏

k=1

λk and min
X ′X=Ir

|X ′AX| =
r∏

k=1

λn−r+k.

(b) In particular, letting A(r) be as defined in Exercise 12.49, show that
r∏

k=1

λn−r+k ≤ |A(r)| ≤
r∏

k=1

λk.

Solution
(a) Let µ1 ≥ µ2 ≥ · · · ≥ µr be the eigenvalues of X ′AX . Poincaré’s theorem implies

r∏
k=1

λn−r+k ≤
r∏

k=1

µk ≤
r∏

k=1

λk.

Then, since
∏r

k=1 µk = |X ′AX|, and the bounds can be attained by suitable choices of
X , the result follows.
(b) Take X := (Ir : O)′ in (a).

Exercise 12.51 (A consequence of Hadamard’s inequality) Let A = (aij) be a positive
definite n× n matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Show that

r∏
k=1

λn−r+k ≤
r∏

k=1

akk (r = 1, . . . , n).
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Solution
Let A(r) be as defined in Exercise 12.49. We know from Exercise 12.26(a) that |A(r)| ≤∏r

k=1 akk. We also know from Exercise 12.50 that
∏r

k=1 λn−r+k ≤ |A(r)|. The result
follows from these two inequalities.

Notes

The classic treatise on inequalities is Hardy, Littlewood, and Pólya’s (1952) monumen-
tal monograph. Useful references are also Beckenbach and Bellman (1961), Magnus and
Neudecker (1999, Chapter 11), and Zhan (2002). The idea of expressing a nonlinear func-
tion as an envelope of linear functions (quasilinearization) is due to Minkowski. Exer-
cise 12.10 was first discussed by Sylvester in 1893; the presented proof comes from Aigner
and Ziegler (1999, p. 46).
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Matrix calculus

Let us first establish the notation. This is important, because bad notation is a serious
obstacle to elegant mathematics and coherent exposition, and it can be misleading. If f is
an m× 1 vector function of an n× 1 vector x, then the derivative (or Jacobian matrix) of
f is the m× n matrix

Df(x) :=
∂f(x)
∂x′ , (13.1)

the elements of which are the partial derivatives ∂fi(x)/∂xj , i = 1, . . . , m, j = 1, . . . , n.
There is no controversy about this definition. It implies, inter alia, that when y = Ax, then
∂y/∂x′ = A (when A is a matrix of constants). It also implies that for a scalar function
ϕ(x), the derivative ∂ϕ(x)/∂x′ is a row vector, not a column vector.

Now consider an m × p matrix function F of an n × q matrix of variables X . Clearly,
the derivative is a matrix containing all mpnq partial derivatives. Also, (13.1) should be a
special case of the more general definition. The most obvious and elegant definition is

DF (X) :=
∂ vec F (X)
∂(vec X)′

, (13.2)

which is an mp× nq matrix. As a result, if F is a function of a scalar x (n = q = 1), then
DF (x) = ∂ vec F (x)/∂x, an mp × 1 column vector. If ϕ is a scalar function of a matrix
X (m = p = 1), then Dϕ(X) = ∂ϕ(X)/∂(vec X)′, a 1 × nq row vector. The choice
of ordering in (13.2) is not arbitrary. For example, the derivative of the scalar function
ϕ(X) = tr(X) is not Dϕ(X) = In, but Dϕ(X) = (vec In)′.

For practical rather than theoretical reasons, the treatment of matrix calculus is based on
differentials rather than derivatives. An important advantage is the following. Let f(x) be
an m × 1 vector function of an n × 1 vector x. Then the derivative Df(x) is an m × n

matrix, but the differential df(x) remains an m × 1 vector. The advantage is even larger
for matrices: dF (X) has the same dimension as F , irrespective of the dimension of X .

351
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Unless specified otherwise, ϕ denotes a scalar function, f a vector function, and F a
matrix function. Also, x denotes a scalar argument, x a vector argument, and X a matrix
argument. For example, we write

ϕ(x) = x2, ϕ(x) = a′x, ϕ(X) = trX ′X,

f(x) = (x, x2)′, f(x) = Ax, f(X) = Xa,

F (x) = x2Im, F (x) = xx′, F (X) = X ′.

There is a possibility of confusion between the ′ sign for derivative and transpose. Thus,
the vector f(x)′ will denote the transpose of f(x), while f ′(x) will denote its derivative,
and the same for scalar and matrix functions. However, we try and avoid the use of the ′

sign for derivatives of vector or matrix functions.
Note carefully that all functions and variables in this chapter are real; that is, we only

consider real-valued functions ϕ, f , and F defined on a subset of R, Rn, or Rn×q. Special
care needs to be taken when differentiating complex functions or real functions of complex
variables, and we will not deal with these problems in this chapter.

In the one-dimensional case, the equation

lim
u→0

ϕ(x + u)− ϕ(x)
u

= ϕ′(x)

defines the derivative of ϕ at x. Rewriting the equation gives

ϕ(x + u) = ϕ(x) + ϕ′(x)u + rx(u),

where the remainder term rx(u) satisfies rx(u)/u → 0 as u → 0. We now define the
(first) differential of ϕ at x (with increment u) as dϕ(x; u) = ϕ′(x)u. For example, for
ϕ(x) = x2, we obtain dϕ(x; u) = 2xu. In practice we write dx instead of u, so that
dϕ(x) = ϕ′(x) dx and, in the case ϕ(x) = x2, dϕ(x) = 2x dx. The double use of the
symbol “d” requires careful justification, which is not provided in this chapter.

In the vector case we have

f(x + u) = f(x) + (Df(x))u + rx(u)

and the (first) differential is defined as df(x; u) = (Df(x))u. The matrix case is obtained
from the vector case by writing f := vec F and x := vec X .

We need three crucial results: two identification results and one invariance result. The
first identification result shows that the first derivative can be obtained (identified) from the
first differential. We have

df(x) = A(x) dx ⇐⇒ Df(x) = A(x),

where A(x), as the notation indicates, will in general depend on x. More generally,

dvec F (X) = A(X) dvec X ⇐⇒ DF (X) = A(X). (13.3)

For example, when ϕ(x) = x′Ax (A = A′), then dϕ = 2x′A dx. Hence, Dϕ(x) =
2x′A.
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The second identification result shows that the second derivative can be obtained (iden-
tified) from the second differential. We have

d2ϕ(x) = (dx)′B(x) dx ⇐⇒ Hϕ(x) =
1
2
(B(x) + B(x)′), (13.4)

where Hϕ(x) denotes the Hessian matrix with typical element ∂2ϕ/∂xi∂xj . Notice that
we present (13.4) only for scalar functions. It is possible to extend the result to vector
functions and matrix functions, but this is seldom required. For example, when ϕ(x) =
x′Ax (A = A′), then dϕ = 2x′A dx and

d2ϕ = 2 d
(
x′A dx

)
= 2(dx)′A dx + 2x′A d2x = 2(dx)′A dx,

because d2x = 0, since x (trivially) is a linear function of x. Hence, Hϕ(x) = 2A. In this
case the matrix B = 2A is symmetric but this need not be the case in general. The Hessian
matrix, however, must be symmetric, so we have to make it symmetric, as in (13.4).

The invariance result is essentially the chain rule. The chain rule tells us that the deriva-
tive of a composite function h(x) = g(f(x)) is given by

Dh(x) = Dg(f(x)) Df(x).

The equivalent result for differentials is called Cauchy’s rule of invariance, and states that

dh(x; u) = dg(f(x); df(x; u)).

This looks more complicated than it is. For example, when ϕ(x) = sinx2, we can take
g(y) = sin y and f(x) = x2, so that Dϕ(x) = (cos x2)(2x). The differential is

dϕ = (cos x2) dx2 = (cos x2)(2x dx).

Cauchy’s rule thus allows sequential determination of the differential.
Special care needs to be taken when dealing with the second differential and the

Hessian matrix of composite functions. Cauchy’s invariance result is not applicable here.
For example, if ϕ(y) = sin y, then dϕ = (cos y) dy and

d2ϕ = d((cos y) dy) = (dcos y) dy + (cos y) d2y = −(sin y)(dy)2,

because d2y = 0. However, if we are now told that y = x2, then it is still true, by Cauchy’s
invariance rule, that dϕ = (cos y) dx2 = 2x(cos x2) dx, but for the second differential we
have d2ϕ �= −(sin y)(dx2)2 = −4x2(sinx2)(dx)2. The reason is that d2y is no longer
zero. There exists a chain rule for Hessian matrices, but in practice the simplest and safest
procedure is to go back to the first differential. Then,

d2ϕ = d((cos y) dy) = −(sin y)(dy)2 + (cos y) d2y

= −(sin x2)(dx2)2 + (cos x2) d2x2 = −4(sin x2)(x dx)2 + 2(cos x2)(dx)2

=
(
−4x2 sinx2 + 2 cos x2

)
(dx)2.

This works in precisely the same way for vector and matrix functions.
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A major use of matrix calculus is in problems of optimization. Suppose we wish to
minimize a scalar function ϕ(X). We compute

dϕ =
∑
ij

∂ϕ

∂xij
dxij = tr A′ dX,

where A will in general depend on X , unless the function is linear. The first-order condi-
tion is thus A(X) = O. In order to verify that the solution is a (local or global) minimum,
various conditions are available. We only mention that if d2ϕ ≥ 0, then ϕ is convex,
and hence ϕ has a global minimum at the point where dϕ = 0; and, if d2ϕ > 0 for all
dX �= O, then ϕ is strictly convex, so that ϕ has a strict global minimum at dϕ = 0.

More difficult is constrained optimization. This usually takes the form of minimizing
ϕ(X) subject to a matrix constraint G(X) = O. We then define the Lagrangian function

ψ(X) = ϕ(X)− tr L′G(X),

where L is a matrix of Lagrange multipliers. (If G(X) happens to be symmetric, we may
take L symmetric too.) If ψ is (strictly) convex, then ϕ has a (strict) global minimum at the
point where dψ = 0 under the constraint G(X) = O. The simplest case where this occurs
is when ϕ is (strictly) convex and all constraints are linear.

In the first seven sections of this chapter we practice the use of the first differential and
the first derivative. First we practice with the use of differentials (Section 13.1), then we
discuss simple scalar, vector, and matrix functions (Sections 13.2–13.4), and then some
more interesting functions: the inverse (Section 13.5), the exponential and logarithmic
function (Section 13.6), and the determinant (Section 13.7).

The next two sections contain two important applications of matrix calculus. First, the
evaluation of Jacobians. If Y is a one-to-one function of X , then J := ∂ vec Y /∂(vec X)′

is the Jacobian matrix of the transformation and the absolute value of det(J) is the
Jacobian. In Section 13.8 we show how matrix calculus can be used to obtain Jacobians,
also (and in particular) when the matrix argument is symmetric. A second application is
sensitivity analysis. Here we typically ask how an estimator or predictor changes with
respect to small changes in some of its components, for example, how the OLS estima-
tor β̂ := (X ′X)−1X ′y changes with (“is sensitive to”) small perturbations in X . In
Section 13.9 several examples demonstrate this approach.

Up to this point we did not need the second differential and the Hessian matrix. These
are developed in Section 13.10.

Two further applications of matrix calculus are presented in the final three sections. Our
third application is (constrained) optimization, which we demonstrate with least-squares
problems, best linear (and quadratic) unbiased estimation (Section 13.11), and some sim-
ple maximum likelihood cases (Section 13.12). Finally, we consider inequalities. Every
inequality can be considered as an optimization problem, because showing that ϕ(x) ≥ 0
for all x in S is equivalent to showing that the minimum of ϕ(x) over all x in S is equal
to zero. Thus, matrix calculus can often be fruitfully applied in proving inequalities (and
even equalities, see Exercise 13.69).
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13.1 Basic properties of differentials

Exercise 13.1 (Sum rules of differential) Let α be a constant, A a matrix of constants,
and let F and G be two matrix functions of the same order. Show that:
(a) dA = O;
(b) d(αF ) = α dF ;
(c) d(F + G) = dF + dG;
(d) d(F −G) = dF − dG;
(e) dtrF = tr(dF ) (F square).

Solution
(a) Let ϕ(x) := α be a constant scalar function. Then its derivative ϕ′(x) is zero, and hence
dϕ = ϕ′(x) dx = 0. The same holds for the matrix function, because the differential of a
matrix is a matrix of differentials.
(b) This follows from the scalar result that d(αϕ(x)) = α dϕ(x).
(c) Let us formally prove the case of a scalar function of a vector. Let ϕ(x) := f(x)+g(x).
Then,

dϕ(x; u) =
∑

j

ujDjϕ(x) =
∑

j

uj (Djf(x) + Djg(x))

=
∑

j

ujDjf(x) +
∑

j

ujDjg(x) = df(x; u) + dg(x; u).

The matrix case then follows immediately.
(d)–(e) These are proved similarly. Since the derivative of a sum is the sum of the deriva-
tives (linearity), the same holds for differentials.

Exercise 13.2 (Permutations of linear operators) For any matrix function F , show
that:
(a) d(F ′) = (dF )′;
(b) d(vec F ) = vec(dF ).

Solution
Both results follow from the fact that the differential of a vector (matrix) is the vector (ma-
trix) of differentials.

Exercise 13.3 (Product rules of differential) For any two conformable matrix func-
tions F and G, show that:
(a) d(FG) = (dF )G + F (dG);
(b) d(F ⊗G) = (dF )⊗G + F ⊗ (dG).
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Solution
(a) We have

(d(FG))ij = d(FG)ij = d
∑

k

fikgkj =
∑

k

d(fikgkj)

=
∑

k

((dfik)gkj + fik dgkj) =
∑

k

(dfik)gkj +
∑

k

fik dgkj

= ((dF )G)ij + (F dG)ij .

(b) For a typical element of F ⊗G, say fijgst, we have

d(fijgst) = (dfij)gst + fij dgst,

and the result follows.

13.2 Scalar functions

Exercise 13.4 (Linear, quadratic, and bilinear forms, vectors) Let a be a vector of
constants and A a matrix of constants. Obtain the differential dϕ and the derivative Dϕ of
the following scalar functions:
(a) ϕ(x) := a′x;
(b) ϕ(x) := x′Ax;
(c) ϕ(x1, x2) := x′

1Ax2, a bilinear form in x1 and x2.

Solution
(a) From dϕ = a′ dx, it follows that Dϕ = a′.
(b) We have dϕ = (dx)′Ax + x′A dx = x′(A + A′) dx, and hence Dϕ = x′(A + A′).
In quadratic forms there is no loss in generality if we take the matrix to be symmetric. If
A is symmetric, the derivative reduces to Dϕ = 2x′A, which agrees with the scalar case
ϕ(x) := ax2 with derivative Dϕ = 2ax. (In general, it is a good idea to check vector
and matrix derivatives with the scalar case.) The reason why we present also the derivative
for the general, nonsymmetric case is that it is sometimes unpractical to first rewrite the
quadratic form in its symmetric version.
(c) Let x := (x′

1, x
′
2)

′. Then,

dϕ = (dx1)′Ax2 + x′
1A dx2 = x′

2A
′ dx1 + x′

1A dx2

= (x′
1, x

′
2)
(

O A

A′ O

)(
dx1

dx2

)
= x′C dx, where C :=

(
O A

A′ O

)
,

implying that

Dϕ = ∂ϕ/∂x′ = x′C = (x′
2A

′ : x′
1A).

Exercise 13.5 (On the unit sphere) If x′x = 1 on an open subset S in Rn, show
that x′ dx = 0 on S.
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Solution
If x′x = 1 at x and in a neighborhood of x, then

0 = d(x′x) = (dx)′x + x′ dx = 2x′ dx,

and the result follows.

Exercise 13.6 (Bilinear and quadratic forms, matrices) Let a and b be two vectors
of constants. Find the differential and derivative of the following scalar functions:
(a) ϕ(X) = a′Xb, a bilinear form in a and b;
(b) ϕ(X) = a′XX ′a;
(c) ϕ(X) = a′X ′Xa.

Solution
(a) The differential is simply dϕ = a′(dX)b. To obtain the derivative we have to write
dϕ = (vec A)′ dvec X for some matrix A. Hence, we rewrite dϕ as

dϕ = a′(dX)b = (b′ ⊗ a′) dvec X

with derivative

Dϕ(X) =
∂ϕ

∂(vec X)′
= (b⊗ a)′.

(b) We have

dϕ = a′(dX)X ′a + a′X(dX)′a = 2a′(dX)X ′a

= 2(a′X ⊗ a′) dvecX,

so that

Dϕ(X) =
∂ϕ(X)

∂(vec X)′
= 2(X ′a⊗ a)′.

(c) Similarly,

dϕ = a′(dX)′Xa + a′X ′(dX)a = 2a′X ′(dX)a = 2(a′ ⊗ a′X ′) dvec X,

yielding Dϕ(X) = 2(a⊗Xa)′.

Exercise 13.7 (Differential and trace) For a scalar function ϕ with differential dϕ =
tr(A′ dX), show that Dϕ(X) = (vec A)′.

Solution
This is a very useful property, and simple to prove:

dϕ = trA′ dX = (vec A)′ dvecX ⇐⇒ Dϕ(X) = (vec A)′.

Exercise 13.8 (Trace of powers, 1) Use Exercise 13.7 to obtain the differential and
derivative of:
(a) ϕ(X) := trX;
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(b) ϕ(X) := trX2;
(c) ϕ(X) := trXp.

Solution
(a) First,

dϕ = d(tr X) = tr(dX) = tr(I dX) =⇒ Dϕ = (vec I)′.

(b) Next,

dϕ = dtrX2 = tr(dX)X + trX dX = 2 trX dX =⇒ Dϕ = 2(vec X ′)′.

(Notice the transpose of X . This corresponds to the rule in Exercise 13.7 and also to the
fact that ∂ tr X2/∂xij = 2xji.)
(c) Finally,

dϕ = trXp = tr(dX)Xp−1 + tr X(dX)Xp−2 + · · ·+ trXp−1(dX)

= p tr Xp−1 dX,

implying that

Dϕ = p(vec(X ′)p−1)′.

Exercise 13.9 (Trace of powers, 2) Find the differential and derivative of:
(a) ϕ(X) := trX ′X;
(b) ϕ(X) := tr(X ′X)p;
(c) ϕ(X) := tr(XX ′)p.
(d) What is the difference between the derivatives in (c) and (b)?

Solution
(a) From

dϕ = tr(dX)′X + trX ′ dX = 2 trX ′ dX

it follows that Dϕ(X) = 2(vec X)′.
(b) More generally,

dϕ = tr(d(X ′X))(X ′X)p−1 + · · ·+ tr(X ′X)p−1 d(X ′X)

= p tr(X ′X)p−1 d(X ′X) = p tr(X ′X)p−1(dX)′X + p tr(X ′X)p−1X ′ dX

= 2p tr(X ′X)p−1X ′ dX,

with derivative

Dϕ(X) = 2p(vec X(X ′X)p−1)′.

(c) Similarly,

dϕ = p tr(XX ′)p−1(dXX ′) = 2p tr X ′(XX ′)p−1 dX
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implies

Dϕ(X) = 2p(vec(XX ′)p−1X)′.

(d) There is no difference between the two derivatives, because

tr(X ′X)p = tr(X ′X) · · · (X ′X) = trX ′(XX ′) · · · (XX ′)X = tr(XX ′)p

and

X(X ′X)p−1 = X(X ′X) · · · (X ′X) = (XX ′) · · · (XX ′)X = (XX ′)p−1X.

Exercise 13.10 (Linear and quadratic matrix forms) Let A and B be two matrices
of constants. Find the differential and derivative of:
(a) ϕ(X) := trAX;
(b) ϕ(X) := trXAX ′B;
(c) ϕ(X) := trXAXB.

Solution
(a) From dϕ = trA dX , we find Dϕ(X) = (vec A′)′, in accordance with Exercise 13.7.
(b) From

dϕ = tr(dX)AX ′B + trXA(dX)′B = tr AX ′B dX + trA′X ′B′(dX)

= tr(AX ′B + A′X ′B′) dX,

we obtain

Dϕ(X) = (vec(B′XA′ + BXA))′.

(c) And,

dϕ = tr(dX)AXB + trXA(dX)B = tr(AXB + BXA) dX

yields

Dϕ(X) =
(
vec(AXB + BXA)′

)′
.

Exercise 13.11 (Sum of squares) Let ϕ(X) be defined as the sum of the squares of
all elements in X . Obtain dϕ and Dϕ.

Solution
The trick here is to work with the matrix X rather than with the individual elements of X .
Thus we write

ϕ(X) =
∑

i

∑
j

x2
ij = trX ′X

and hence dϕ = 2 trX ′ dX , and Dϕ(X) = 2(vec X)′.
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Exercise 13.12 (A selector function) Let ϕ(X) be defined as the ij-th element of X2.
Obtain dϕ and Dϕ.

Solution
As in Exercise 13.11, we want to work with the matrix X , rather than with its elements.
Let ei denote the i-th unit vector, having 1 in its i-th position and zeros elsewhere. Then,
ϕ(X) = e′

iX
2ej and

dϕ = e′
i(dX)Xej + e′

iX(dX)ej = tr(Xeje
′
i + eje

′
iX) dX,

so that the derivative takes the form

Dϕ(X) = (vec(ei(Xej)′ + (X ′ei)e′
j))

′ = (vec(eix
′.j + xi.e′

j))
′.

13.3 Vector functions

Exercise 13.13 (Vector functions of a vector, 1) Obtain the differential and derivative
of the vector functions:
(a) f(x) := Ax (A constant);
(b) f(x) := Ag(x) (A constant).
(c) What happens in (a) if the elements of A also depend on x?

Solution
(a) Since df = A dx, we have Df(x) = A.
(b) Now we have

df = A dg(x) = A(Dg(x)) dx,

so that

Df(x) = ADg(x).

(c) If f(x) = A(x)x, then

df = (dA)x + A dx = (x′ ⊗ I) dvecA + A dx

=
(

(x′ ⊗ I)
∂ vec A

∂x′ + A

)
dx,

implying that

Df(x) =
∂f(x)
∂x′ = (x′ ⊗ I)

∂ vec A

∂x′ + A.

Exercise 13.14 (Vector functions of a vector, 2)
(a) Let f(x) := (x′x)a, where a is a vector of constants. Find the differential and deriva-
tive.
(b) What happens if a also depends on x?
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Solution
(a) From df = (2x′ dx)a = 2ax′ dx, we obtain Df(x) = 2ax′.
(b) If a = a(x), then

df = (dx′x)a + (x′x) da = (2x′ dx)a + x′x(Da(x)) dx

= (2ax′ + x′xDa(x)) dx

so that

Df(x) = 2ax′ + x′xDa(x).

Exercise 13.15 (Vector functions of a matrix) Let a be a vector of constants. Find
the differential and derivative of the vector functions:
(a) f(X) := Xa;
(b) f(X) := X ′a.

Solution
(a) We have

df = (dX)a = (a′ ⊗ I) dvecX,

and hence

Df(x) =
∂f(x)

∂(vec X)′
= a′ ⊗ I.

(b) Similarly,

df = (dX)′a = vec
(
(dX)′a

)
= vec

(
a′ dX

)
= (I ⊗ a′) dvec X,

so that

Df(X) = I ⊗ a′.

13.4 Matrix functions

Exercise 13.16 (Matrix function of a vector) Obtain the differential and derivative of
F (x) := xx′.

Solution
Since dF = (dx)x′ + x(dx)′, we find

dvec F = (x⊗ I) dvec x + (I ⊗ x) dvecx′ = (x⊗ I + I ⊗ x) dx,

so that

DF =
∂ vec F (x)

∂x′ = x⊗ I + I ⊗ x.



362 13 Matrix calculus

Exercise 13.17 (Linear matrix function of a matrix) What is the differential of the
matrix function F (X) := AXB, where A and B are two matrices of constants? What is
the derivative?

Solution
From dF = A(dX)B we find, after vectorizing,

dvec F = (B′ ⊗A) dvecX,

and hence

DF (X) =
∂ vec F (X)
∂(vec X)′

= B′ ⊗A.

Exercise 13.18 (Powers) Find the differential and derivative of the powers:
(a) F (X) := X;
(b) F (X) := X2;
(c) F (X) := Xp.

Solution
(a) Let X be an m× n matrix. Since dF = dX , we find dvec F = dvec X and hence

DF (X) =
∂ vec F

∂(vec X)′
= Imn,

as of course we should.
(b) Let X be a square matrix of order n. Then,

dF = (dX)X + X dX,

and hence

dvec F = (X ′ ⊗ In + In ⊗X) dvec X,

so that

DF (X) =
∂ vec F

∂(vec X)′
= X ′ ⊗ In + In ⊗X.

(c) Generalizing (b) gives

dF = (dX)Xp−1 + · · ·+ Xp−1(dX) =
p∑

j=1

Xj−1(dX)Xp−j .

Taking vecs,

dvec F =

 p∑
j=1

(X ′)p−j ⊗Xj−1

 dvecX,
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which leads to

DF (X) =
p∑

j=1

(X ′)p−j ⊗Xj−1.

Notice that dF is equal to C{Xp−1, dX} in the notation of Exercise 9.9, which is the
term linear in dX in the expansion of (X + dX)p −Xp.

Exercise 13.19 (Involving the transpose) If X is an m × n matrix, obtain the dif-
ferential and derivative of:
(a) F (X) := X ′;
(b) F (X) := X ′X;
(c) F (X) := XX ′.

Solution
(a) Since dF = (dX)′, we have

dvecF = dvecX ′ = Kmn dvec X

and hence DF (X) = Kmn, the commutation matrix.
(b) The differential is dF = (dX)′X + X ′(dX), so that

dvecF = (X ′ ⊗ In) dvecX ′ + (In ⊗X ′) dvec X

= (X ′ ⊗ In)Kmn dvec X + (In ⊗X ′) dvec X

= (In2 + Kn)(In ⊗X ′) dvec X

and

DF (X) = (In2 + Kn)(In ⊗X ′).

(c) Similarly, dF = (dX)X ′ + X(dX)′, so that

dvecF = (X ⊗ Im) dvecX + (Im ⊗X) dvecX ′

= (X ⊗ Im) dvecX + (Im ⊗X)Kmn dvec X

= (Im2 + Km)(X ⊗ Im) dvec X

and

DF (X) = (Im2 + Km)(X ⊗ Im).

Exercise 13.20 (Matrix quadratic forms) Let A be a matrix of constants. Find the
differential and derivative of:
(a) F (X) := XAX ′ (A = A′);
(b) F (X) := X ′AX (A = A′);
(c) F (X) := XAX;
(d) F (X) := X ′AX ′.
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Solution
Let X be an m× n matrix.
(a) From dF = (dX)AX ′ + XA(dX)′, we find

dvec F = (XA⊗ Im + (Im ⊗XA)Kmn) dvecX

= (Im2 + Km)(XA⊗ Im) dvec X

and

DF (X) = (Im2 + Km)(XA⊗ Im).

(b) Similarly, dvecF = (In2 + Kn)(In ⊗X ′A) dvec X , so that

DF (X) = (In2 + Kn)(In ⊗X ′A).

(c) From dF = (dX)AX + XA(dX), we obtain

dvec F = (X ′A′ ⊗ Im + In ⊗XA) dvec X,

and hence

DF (X) = X ′A′ ⊗ Im + In ⊗XA.

(d) Finally, dF = (dX)′AX ′ + X ′A(dX)′ gives

dvec F = (XA′ ⊗ In + Im ⊗X ′A) dvec X ′

= (XA′ ⊗ In + Im ⊗X ′A)Kmn dvecX,

so that

DF (X) = (XA′ ⊗ In + Im ⊗X ′A)Kmn.

13.5 The inverse

Exercise 13.21 (Differential of the inverse)
(a) Show that the differential of F (X) := X−1 is given by

dX−1 = −X−1(dX)X−1.

(b) When is dX−1 nonsingular?

Solution
(a) This is a “once seen, never forgotten” solution. Since X−1X = I , we have

d(X−1X) = (dX−1)X + X−1 dX = O.

Postmultiplying by X−1 then gives the result immediately. (This important result occurs
so often that it will be used without reference. Notice how the scalar result ϕ(x) := 1/x

with ϕ′(x) = −1/x2 generalizes to the matrix case.)
(b) When |dX| �= 0.

Exercise 13.22 (Scalar functions involving the inverse) Let a be a vector of constants
and A a matrix of constants. Let X be a nonsingular n × n matrix. Find the differential
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and the derivative of the following scalar functions:
(a) ϕ(X) := trAX−1;
(b) ϕ(X) := a′X−1a.

Solution
(a) Since

dϕ = trA(dX−1) = − tr AX−1(dX)X−1 = − tr X−1AX−1 dX,

we find

Dϕ = −(vec(X−1AX−1)′)′.

(b) Here we have

dϕ = a′(dX−1)a = −a′X−1(dX)X−1a

= −(a′X ′−1 ⊗ a′X−1) dvec X = −(X−1a⊗X ′−1
a)′ dvecX,

and hence

Dϕ = −(X−1a⊗X ′−1
a)′.

Exercise 13.23 (Relationship between dX−1 and dX , trace) Show that tr X−1 dX =
− tr X dX−1.

Solution
Since dX−1 = −X−1(dX)X−1, it follows that

tr X dX−1 = − tr XX−1(dX)X−1 = − tr X−1 dX.

Exercise 13.24 (Differential of an idempotent matrix) Let X := (x1, . . . ,xk) be
an n× k matrix of rank k, and define M := In −X(X ′X)−1X ′.
(a) Obtain the differential and derivative of M .
(b) Obtain the differential and derivative of M with respect to xj .

Solution
(a) We have

dM = −
(
(dX)(X ′X)−1X ′ + X(d(X ′X)−1)X ′ + X(X ′X)−1(dX)′

)
= −(dX)(X ′X)−1X ′ + X(X ′X)−1(d(X ′X))(X ′X)−1X ′

−X(X ′X)−1(dX)′

= −(dX)(X ′X)−1X ′ + X(X ′X)−1(dX)′X(X ′X)−1X ′

+ X(X ′X)−1X ′(dX)(X ′X)−1X ′ −X(X ′X)−1(dX)′

= −M(dX)(X ′X)−1X ′ −X(X ′X)−1(dX)′M .
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Hence,

dvec M = −(X(X ′X)−1 ⊗M) dvecX − (M ⊗X(X ′X)−1) dvecX ′

= −
(
X(X ′X)−1 ⊗M + (M ⊗X(X ′X)−1)Knk

)
dvecX

= −(In2 + Kn)(X(X ′X)−1 ⊗M) dvec X,

so that the derivative is given by

∂ vec M

∂(vec X)′
= −(In2 + Kn)(X(X ′X)−1 ⊗M).

(b) The crucial step here is to realize that we can write dX = (dxj)e′
j , when only xj

varies. (Recall that ej is the vector with 1 in the j-th position and zeros elsewhere.) Thus,

dM = −M(dxj)e′
j(X

′X)−1X ′ −X(X ′X)−1ej(dxj)′M

and

dvec M = −(In2 + Kn)(X(X ′X)−1 ⊗M)(ej ⊗ dxj)

= −(In2 + Kn)(X(X ′X)−1ej ⊗M) dxj .

The derivative is therefore
∂ vec M

∂x′
j

= −(In2 + Kn)(X(X ′X)−1ej ⊗M).

Exercise 13.25 (Matrix functions involving a (symmetric) inverse) Let A and B be
two matrices of constants. Find the differential and derivative of the following nonlinear
matrix functions:
(a) F (X) := AX−1B;
(b) F (X) := AX−1A′ when X is known to be symmetric.

Solution
(a) The differential is given by dF = A(dX−1)B = −AX−1(dX)X−1B. Hence,

dvec F = −(B′X ′−1 ⊗AX−1) dvec X

and

DF (X) = −(B′X ′−1 ⊗AX−1) dvec X.

(b) From dF = A(dX−1)A′ = −AX−1(dX)X−1A′, we obtain

dvecF = −(AX−1 ⊗AX−1) dvecX = −(AX−1 ⊗AX−1)Dn dvech(X),

where Dn denotes the duplication matrix. This then yields

DF (X) :=
∂ vec F (X)
∂(vech(X))′

= −(AX−1 ⊗AX−1)Dn.
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This is the first exercise where we obtain the derivative with respect to a symmetric matrix
X . Since X is symmetric, say of order n, its n2 elements cannot move independently.
The symmetry imposes n(n − 1)/2 restrictions. The “free” elements are precisely the
n(n + 1)/2 elements in vech(X), and the derivative is therefore defined by considering F

as a function of vech(X) and not as a function of vec X .

Exercise 13.26 (Sum of all elements)
(a) Let ϕ(X) be the sum of the n2 elements of X−1. Obtain dϕ and Dϕ.
(b) How do the results change when X is known to be symmetric?

Solution
(a) Let ı denote the vector of ones. Then ϕ(X) = ı′X−1ı, and dϕ = ı′(dX−1)ı =
−ı′X−1(dX)X−1ı. Hence,

dϕ = −(X−1ı⊗X ′−1
ı)′ dvecX, Dϕ(X) = −

(
X−1ı⊗X ′−1

ı
)′

.

(b) If X is symmetric, then vec X = Dn vech(X), and

dϕ = −
(
X−1ı⊗X ′−1

ı
)′

Dn dvech(X), Dϕ(X) = −
(
X−1ı⊗X ′−1

ı
)′

Dn.

Exercise 13.27 (Selector from the inverse) Let X be an m × n matrix of rank n,
and let F (X) be the n× (n−1) matrix function defined as (X ′X)−1 with the last column
deleted. Obtain dF and DF .

Solution
Let S be the n× (n− 1) selection matrix defined as S := (In−1 : 0)′, so that F (X) can
be expressed as F (X) = (X ′X)−1S. Then,

dF = −(X ′X)−1(d(X ′X))(X ′X)−1S

= −(X ′X)−1(dX)′XF − (X ′X)−1X ′(dX)F .

Taking vecs we obtain

dvecF = −(F ′X ′ ⊗ (X ′X)−1) dvecX ′ − (F ′ ⊗ (X ′X)−1X ′) dvec X

= −((F ′X ′ ⊗ (X ′X)−1)Kmn + F ′ ⊗ (X ′X)−1X ′) dvecX

= −(F ′ ⊗ (X ′X)−1)(In2 + Kn)(In ⊗X ′) dvec X,

and hence

DF = −(F ′ ⊗ (X ′X)−1)(In2 + Kn)(In ⊗X ′).
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13.6 Exponential and logarithm

Exercise 13.28 (The exponential, special case) By analogy to the power series ex =∑∞
k=0 xk/k!, which converges for all x, we have written the exponential of a square matrix

X as

exp(X) :=
∞∑

k=0

1
k!

Xk,

and shown that it is well-defined for every X , real or complex; see Exercise 9.19(b).
Now show that, for any square matrix A of constants and for every x,

dexA = AexA dx.

Solution
We have

dexA =
∞∑

k=0

1
k!

(dxk)Ak =
∞∑

k=0

1
k!

kxk−1Ak dx

=
∞∑

k=1

1
(k − 1)!

xk−1Ak dx = A
∞∑

k=0

1
k!

(xA)k dx = AexA dx.

Exercise 13.29 (The exponential, general case) More generally, show that

d(eX ) =
∞∑

k=0

1
(k + 1)!

k∑
j=0

Xj(dX)Xk−j and tr d(eX ) = tr(eX dX).

Solution
Using the definition of eX ,

d(eX ) =
∞∑

k=0

1
k!

dXk =
∞∑

k=1

1
k!

k−1∑
j=0

Xj(dX)Xk−j−1

=
∞∑

k=0

1
(k + 1)!

k∑
j=0

Xj(dX)Xk−j ,

and hence

tr d(eX ) =
∞∑

k=0

1
(k + 1)!

(k + 1) tr(Xk dX)

= tr

( ∞∑
k=0

1
k!

Xk dX

)
= tr(eX dX).

Exercise 13.30 (The logarithm, special case) Similarly, by analogy to the power se-
ries log(1− x) = −

∑∞
k=1 xk/k, we have

log(In −X) = −
∞∑

k=1

1
k
Xk,
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which converges absolutely for every n × n matrix X satisfying �(X) < 1, where �(·)
denotes the spectral radius; see Exercises 9.8(b) and 9.19(c). Show that, for any square
matrix A of constants and every x satisfying |x|�(A) < 1,

dlog(In − xA) = −A(In − xA)−1 dx.

Solution
This follows from

dlog(In − xA) = −
∞∑

k=1

1
k
(dxk)Ak = −

∞∑
k=1

1
k
kxk−1Ak dx

= −A
∞∑

k=1

(xA)k−1 dx = −A
∞∑

k=0

(xA)k dx = −A(In − xA)−1 dx.

Exercise 13.31 (The logarithm, general case) More generally, if �(X) < 1, show
that

dlog(In −X) = −
∞∑

k=0

1
k + 1

k∑
j=0

Xj(dX)Xk−j

and

tr(dlog(In −X)) = − tr((In −X)−1 dX).

Solution
(a) In general,

dlog(In −X) = −
∞∑

k=1

1
k

dXk = −
∞∑

k=1

1
k

k−1∑
j=0

Xj(dX)Xk−j−1

= −
∞∑

k=0

1
k + 1

k∑
j=0

Xj(dX)Xk−j ,

and, taking the trace,

tr(dlog(In −X)) = −
∞∑

k=0

1
k + 1

(k + 1) tr Xk dX

= − tr

( ∞∑
k=0

Xk dX

)
= − tr(In −X)−1 dX.

13.7 The determinant

*Exercise 13.32 (Differential of the determinant) At points where X is nonsingular,
show that the scalar function ϕ(X) := |X| has differential

d|X| = |X| tr X−1 dX,

and obtain the derivative.
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Solution
We have emphasized several times that, when evaluating differentials, one should always
try to work with matrices rather than with elements of matrices. This, however, is not
always possible. Here is an example where, regrettably, we have to rely on the elements of
X .

Recall that the minor of xij is the determinant of the (n− 1)× (n− 1) submatrix of X

obtained by deleting the i-th row and the j-th column, and the cofactor cij of xij is (−1)i+j

times the minor. The cofactors can be put into an n×n matrix C := (cij). We have proved
in Exercise 4.37(c) that C ′X = |X|In. In particular,

|X| =
n∑

i=1

cijxij (j = 1, . . . , n).

The crucial step is to realize that, for given j, c1j , . . . , cnj do not depend on xij . This gives

∂|X|
∂xij

=
∂

∂xij
(c1jx1j + c2jx2j + · · ·+ cnjxnj) = cij ,

and hence

d|X| =
n∑

i=1

n∑
j=1

cij dxij = trC ′ dX = |X| tr X−1 dX,

because C ′ = |X|X−1. The derivative follows immediately. It is

∂|X|
∂(vec X)′

= |X|(vec X ′−1)′.

Exercise 13.33 (The vanishing d|X|) Show that d|X| = 0 at points where the n × n

matrix X has rank ≤ n− 2.

Solution
Suppose that rk(X) = r ≤ n− 2. Let us think (for a moment) of the matrix X as a matrix
of constants, except for the element xij . Suppose we perturb xij by an amount ε. The rank
of the perturbed matrix X̃ can only be r + 1, r, or r − 1, and hence rk(X̃) ≤ n − 1, so
that |X̃| = 0. This shows that

∂|X|
∂xij

= 0.

Since this holds for all i and all j, it follows that the differential vanishes. (The determinant
|X| is “locally constant” in this case, namely zero.)

Exercise 13.34 (Determinant of a matrix function, 1) Let A and B be two matri-
ces of constants. Find the differential and derivative of:
(a) ϕ(X) := |AXB| (if AXB is nonsingular);
(b) ϕ(X) := |AX−1B| (if X and AX−1B are nonsingular).



13.7 The determinant 371

Solution
(a) The differential is

d|AXB| = |AXB| tr(AXB)−1 d(AXB)

= |AXB| tr(AXB)−1A(dX)B

= |AXB| tr B(AXB)−1A dX.

Hence,

∂|AXB|
∂(vec X)′

= |AXB|(vec(A′(AXB)′−1
B′))′.

(b) Similarly,

d|AX−1B| = |AX−1B| tr(AX−1B)−1A(dX−1)B

= −|AX−1B| tr(AX−1B)−1AX−1(dX)X−1B

= −|AX−1B| tr X−1B(AX−1B)−1AX−1 dX,

so that

∂|AX−1B|
∂(vec X)′

= −|AX−1B|(vec(X−1B(AX−1B)−1AX−1)′)′.

Exercise 13.35 (Determinant of a matrix function, 2) Find the differential and deriva-
tive of:
(a) ϕ(X) := |XX ′| (XX ′ nonsingular);
(b) ϕ(X) := |X ′X| (X ′X nonsingular);
(c) ϕ(X) := |X2| (X nonsingular);
(d) ϕ(X) := |Xp| (X nonsingular).

Solution
(a) The differential is

d|XX ′| = |XX ′| tr(XX ′)−1 d(XX ′)

= |XX ′| tr(XX ′)−1((dX)X ′ + X(dX)′)

= |XX ′|(tr(XX ′)−1(dX)X ′ + tr(XX ′)−1X(dX)′)

= |XX ′|(tr(XX ′)−1(dX)X ′ + tr(dX)X ′(XX ′)−1)

= 2|XX ′| tr X ′(XX ′)−1 dX.

Hence,

∂|XX ′|
∂(vec X)′

= 2|XX ′|(vec(XX ′)−1X)′.
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(b) Similarly,

d|X ′X| = |X ′X| tr(X ′X)−1 d(X ′X)

= 2|X ′X| tr(X ′X)−1X ′ dX,

implying

∂|X ′X|
∂(vec X)′

= 2|X ′X|(vec X(X ′X)−1)′.

(c) Further,

d|X2| = d|X|2 = 2|X|d|X| = 2|X|2 tr X−1 dX,

giving

∂|X2|
∂(vec X)′

= 2|X|2(vec X ′−1)′.

(d) And, similarly,

d|Xp| = d|X|p = p|X|p−1 d|X| = p|X|p tr X−1 dX,

with
∂|Xp|

∂(vec X)′
= p|X|p(vec X ′−1)′.

Exercise 13.36 (Differential of log |X|)
(a) For |X| > 0, show that

dlog |X| = trX−1 dX

and obtain the derivative.
(b) Find the differential and derivative of ϕ(X) := log |X ′AX| for |X ′AX| > 0.

Solution
(a) We have

dlog |X| = 1
|X| d|X| =

1
|X| |X| tr X−1 dX = trX−1 dX,

with derivative
∂ log |X|
∂(vec X)′

= (vec X ′−1)′.

(b) Using (a), we then find

dlog |X ′AX| = tr(X ′AX)−1 d(X ′AX)

= tr(X ′AX)−1(dX)′AX + tr(X ′AX)−1X ′A dX

= tr((X ′A′X)−1X ′A′ + (X ′AX)−1X ′A) dX,
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with derivative
∂ log |X ′AX|

∂(vec X)′
= (vec((X ′A′X)−1X ′A′ + (X ′AX)−1X ′A)′)′.

13.8 Jacobians

Exercise 13.37 (Jacobians and linear transformations) Let A and B be two matrices
of constants.
(a) Find the Jacobian of the transformation Y := AXB, where A and B are square n×n

matrices.
(b) Now suppose X is symmetric. Find the Jacobian of the transformation Y := AXA′

(|A| �= 0).

Solution
(a) We take the differential and obtain dY = A(dX)B, so that

dvec Y = (B′ ⊗A) dvec X.

The Jacobian matrix (the derivative) J(Y , X) of the transformation from X to Y is there-
fore B′ ⊗A, and its determinant is det(J) = |A|n|B|n. The absolute value |det(J)| is
the Jacobian of the transformation.
(b) Now, dY = A(dX)A′, so that dvecY = (A ⊗ A) dvec X . Both X and Y are
symmetric, say of order n. Hence, vec X = Dn vech(X) and, using Exercise 11.27(a),
vech(Y ) = D+

n vec Y . This gives

dvech(Y ) = D+
n dvec Y = D+

n (A⊗A) dvecX = D+
n (A⊗A)Dn dvech(X).

The Jacobian matrix of the transformation between the 1
2n(n + 1) variables yij and the

1
2n(n + 1) variables xij is then given by J = D+

n (A ⊗ A)Dn, and the determinant is
det(J) = |D+

n (A ⊗ A)Dn| = |A|n+1, using Exercise 11.33(c). The absolute value
|det(J)| is the Jacobian of the transformation.

Exercise 13.38 (Jacobian of inverse transformation, 1)
(a) Obtain the Jacobian of the transformation Y := X−1.
(b) How is the result affected when X is known to be symmetric?

Solution
(a) From dY = dX−1 = −X−1(dX)X−1, we find

dvec Y = −(X ′−1 ⊗X−1) dvecX

and, using Exercise 10.12(b), the determinant is

det(J) = | − (X ′−1 ⊗X−1)| = (−1)n|X|−2n,

where n denotes the order of X . The Jacobian is |det(J)| = |X|−2n.
(b) If X is symmetric, then so is Y . As in Exercise 13.37, we write

dvec(Y ) = D+
n dvecY = −D+

n (X−1 ⊗X−1)Dn dvech(X)
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with determinant

det(J) = | −D+
n (X−1 ⊗X−1)Dn| = (−1)

1
2
n(n+1)|X−1|n+1.

Hence, the Jacobian is |det(J)| = |det(X)|−(n+1).

Exercise 13.39 (Jacobian of inverse transformation, 2) Find the Jacobian of the trans-
formation Y := |X|X−1.

Solution
We first find the differential,

dY = (d|X|)X−1 + |X|dX−1 = |X|(tr X−1 dX)X−1 − |X|X−1(dX)X−1.

Taking vecs,

dvec Y = |X|((vec X−1)(vec X ′−1)′ −X ′−1 ⊗X−1) dvec X

= −|X|(In ⊗X−1)(In2 − (vec In)(vec In)′)(X ′−1 ⊗ In) dvec X.

Since |In2 − (vec In)(vec In)′| = −(n− 1) (Exercise 7.36), we find

J =
∂ vec Y

∂(vec X)′
= (−1)n2 |X|n2 |X|−n(−(n− 1))|X|−n = (−1)n2+1(n− 1)|X|n(n−2)

so that the Jacobian equals |J | = (n− 1)|det(X)|n(n−2).

Exercise 13.40 (Jacobians and linear structures) Consider the relation between s vari-
ables yij and s variables xij given by Y := F (X), where X ∈ L(∆1) and

Y ∈ L(∆2) for every X ∈ L(∆1).

Assume that the dimensions of L(∆1) and L(∆2) are both equal to s. Show that the
Jacobian matrix of the transformation from X to Y is given by

∆+
2

∂ vec Y

∂(vec X)′
∆1,

so that the Jacobian is given by the absolute value of its determinant.

Solution
Using the notation of Section 11.4, we write ∆1ψ1(X) = vec X and ∆2ψ2(Y ) = vec Y .
Then, ψ2(Y ) = ∆+

2 vec Y , and, upon taking the differential,

dψ2(Y ) = ∆+
2 dvec Y = ∆+

2

∂ vec Y

∂(vec X)′
dvecX

= ∆+
2

∂ vec Y

∂(vec X)′
∆1 dψ1(X).
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Hence,

J =
∂ψ2(Y )

∂(ψ1(X))′
= ∆+

2

∂ vec Y

∂(vec X)′
∆1,

and the Jacobian is given by |det(J)|.

13.9 Sensitivity analysis in regression models

Exercise 13.41 (Sensitivity of OLS) Consider the linear regression model y = Xβ+ε,
where X := (x1, . . . ,xk) is an n× k matrix of regressors, y is an n× 1 vector of random
observations, and β is a k × 1 vector of unknown coefficients.
(a) Obtain the differential and derivative of β̂ := (X ′X)−1X ′y with respect to X . The
estimator is called the (ordinary) least-squares (OLS) estimator, and the derivative with re-
spect to X is called the sensitivity of β̂ with respect to X .
(b) Obtain also the sensitivity of β̂ with respect to xj .

Solution
(a) Taking the differential of β̂ gives

dβ̂ = (d(X ′X)−1)X ′y + (X ′X)−1(dX)′y

= −(X ′X)−1(dX ′X)(X ′X)−1X ′y + (X ′X)−1(dX)′y

= −(X ′X)−1(dX)′Xβ̂ − (X ′X)−1X ′(dX)β̂ + (X ′X)−1(dX)′y

= (X ′X)−1(dX)′ε̂− (X ′X)−1X ′(dX)β̂,

where ε̂ := y−Xβ̂ denotes the vector of residuals. Hence, using the commutation matrix,

dβ̂ = dvec β̂ = (ε̂′ ⊗ (X ′X)−1) dvecX ′ − (β̂′ ⊗ (X ′X)−1X ′) dvec X

= ((ε̂′ ⊗ (X ′X)−1)Knk − β̂′ ⊗ (X ′X)−1X ′) dvec X

= ((X ′X)−1 ⊗ ε̂′ − β̂′ ⊗ (X ′X)−1X ′) dvecX,

so that

∂β̂

∂(vec X)′
= (X ′X)−1 ⊗ ε̂′ − β̂′ ⊗ (X ′X)−1X ′.

(b) If only xj is perturbed, we can write dX = (dxj)e′
j , and hence

dβ̂ = ((X ′X)−1 ⊗ ε̂′ − β̂′ ⊗ (X ′X)−1X ′)(ej ⊗ dxj)

= ((X ′X)−1ej ⊗ ε̂′ − β̂j ⊗ (X ′X)−1X ′) dxj

= −(X ′X)−1(β̂jX
′ − ej ε̂

′) dxj ,
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so that the derivative simplifies to

∂β̂

∂x′
j

= −(X ′X)−1(β̂jX
′ − ej ε̂

′).

Exercise 13.42 (Sensitivity of residuals)
(a) Now obtain the sensitivity of the residual vector ε̂ with respect to X .
(b) Also obtain the sensitivity of ε̂ with respect to xj .

Solution
We have

ε̂ = y −Xβ̂ = y −X(X ′X)−1X ′y = (In −X(X ′X)−1X ′)y = My,

where M = In −X(X ′X)−1X ′. We know from Exercise 13.24 that

dM = −M(dX)(X ′X)−1X ′ −X(X ′X)−1(dX)′M .

Hence,

dε̂ = (dM)y = −M(dX)β̂ −X(X ′X)−1(dX)′ε̂

= −(β̂′ ⊗M) dvec X − vec
(
ε̂′(dX)(X ′X)−1X ′)

=
(
−β̂′ ⊗M −X(X ′X)−1 ⊗ ε̂′

)
dvec X,

so that
∂ε̂

∂(vec X)′
= −β̂′ ⊗M −X(X ′X)−1 ⊗ ε̂′.

(b) If dX = (dxj)e′
j , then

dε̂ = −(β̂′ ⊗M + X(X ′X)−1 ⊗ ε̂′)(ej ⊗ dxj)

= −(β̂jM + X(X ′X)−1ej ε̂
′) dxj

and
∂ε̂

∂x′
j

= −(β̂jM + X(X ′X)−1ej ε̂
′).

Exercise 13.43 (Sensitivity of GLS) Next consider the model y = Xβ + u with
E(u) = 0 and var(u) = Ω, where Ω is positive definite and depends on a single pa-
rameter α. The GLS (generalized least-squares) estimator of β is

β̂ := (X ′Ω−1X)−1X ′Ω−1y.

Obtain the sensitivity of β̂ with respect to α.
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Solution
Taking the differential yields

dβ̂ =
(
d(X ′Ω−1X)−1

)
X ′Ω−1y + (X ′Ω−1X)−1X ′(dΩ−1)y

= −(X ′Ω−1X)−1X ′(dΩ−1)X(X ′Ω−1X)−1X ′Ω−1y

− (X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1y

= (X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1Xβ̂ − (X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1y

= −(X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1û,

where û := y −Xβ̂. Hence,

dβ̂ = −(û′Ω−1 ⊗ (X ′Ω−1X)−1X ′Ω−1) dvecΩ

= −(û′Ω−1 ⊗ (X ′Ω−1X)−1X ′Ω−1)
∂ vec Ω

∂α
dα,

and

∂β̂

∂α
= −(û′Ω−1 ⊗ (X ′Ω−1X)−1X ′Ω−1)

∂ vec Ω

∂α
.

*Exercise 13.44 (Bayesian sensitivity) Let y = Xβ + u, where u ∼ N (0, Ω) and
Ω is positive definite. Suppose there is prior information on β, say β ∼ N(β, H−1),

where H is positive definite. Then the posterior distribution of β is β ∼ N(β, H
−1),

where

β := H
−1(H β + X ′Ω−1y), H := H + X ′Ω−1X.

Determine the sensitivity of the posterior expectation β with respect to the prior moments
β and H−1.

Solution
We have

dβ = (dH
−1)(H β + X ′Ω−1y) + H

−1 d(H β)

= −H
−1(dH)H−1(H β + X ′Ω−1y) + H

−1(dH)β + H
−1

H dβ

= −H
−1(dH)β + H

−1(dH)β + H
−1

H dβ

= H
−1(dH)(β − β) + H

−1
H dβ

= −H
−1

H(dH−1)H(β − β) + H
−1

H dβ

= ((β − β)′H ⊗H
−1

H) dvec H−1 + H
−1

H dβ

= ((β − β)′H ⊗H
−1

H)Dk dvech(H−1) + H
−1

H dβ,
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where Dk denotes the duplication matrix. Hence,

∂β

∂(vech (H−1))′
= ((β − β)′H ⊗H

−1
H)Dk

and

∂β

∂β′ = H
−1

H = (I + H−1X ′Ω−1X)−1.

13.10 The Hessian matrix

Exercise 13.45 (Hessian of linear form) Let a be a vector of constants, and A and B

two matrices of constants. Find the second differential and the Hessian matrix of the linear
functions:
(a) ϕ(X) := a′x;
(b) ϕ(X) := trAXB.

Solution
(a) We have dϕ = a′ dx and hence d2ϕ = 0. As a result, the Hessian matrix is the n× n

null matrix (if x is an n× 1 vector).
(b) Similarly, dϕ = trA(dX)B and d2ϕ = 0. The Hessian is the mn ×mn null matrix
(if X is an m× n matrix).

Exercise 13.46 (Hessian of quadratic form, 1) Find the second differential and the
Hessian matrix of ϕ(x) := x′Ax, where A is a matrix of constants, not necessarily sym-
metric.

Solution
Now we have

dϕ = (dx)′Ax + x′A dx = x′(A + A′) dx

and

d2ϕ = (dx)′(A + A′) dx.

Since the matrix A + A′ is already symmetric, the Hessian is Hϕ(x) = A + A′.

Exercise 13.47 (Identification of the Hessian, 1) Let A and B be two matrices of
constants. Let X be an m× n matrix. Find the Hessian matrix of:
(a) ϕ(X) := trX ′X;
(b) ϕ(X) := trAX ′BX .
(c) (Identification) Show that

d2ϕ(X) = trA(dX)′B(dX) ⇐⇒ Hϕ(X) =
1
2
(A′ ⊗B + A⊗B′),

where A and B may depend on X .
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Solution
(a) From dϕ = tr(dX)′X + trX ′ dX = 2 trX ′ dX , we obtain

d2ϕ = 2 tr(dX)′(dX) = 2(dvec X)′(dvec X),

implying that

Hϕ(X) =
∂2ϕ(X)

∂(vec X)∂(vec X)′
= 2Imn.

(b) Similarly, dϕ = trA(dX)′BX + trAX ′B(dX) and d2ϕ = 2 trA(dX)′B(dX).
Now, since tr ABCD = (vec B′)′(A′ ⊗C) vec D (Exercise 10.20(b)), we obtain

d2ϕ = 2(dvec X)′(A′ ⊗B)(dvecX).

Since the Hessian matrix must be symmetric, we find

Hϕ(X) = A′ ⊗B + A⊗B′.

Notice that A and B must be square matrices, of orders n× n and m×m, respectively.
(c) More generally,

d2ϕ = trA(dX)′B(dX) = (dvec X)′(A′ ⊗B) dvecX

implies, and is implied by,

Hϕ(X) =
1
2
(A′ ⊗B + A⊗B′).

This result is useful in many applications.

Exercise 13.48 (Identification of the Hessian, 2) Let A and B be two matrices of
constants. Find the Hessian matrix of:
(a) ϕ(X) := trX2 (X of order n× n);
(b) ϕ(X) := trAXBX (X of order m× n).
(c) (Identification) Show that

d2ϕ(X) = trA(dX)B(dX) ⇐⇒ Hϕ(X) =
1
2
Knm(A′ ⊗B + B′ ⊗A),

where A and B may depend on the m× n matrix X .

Solution
(a) From dϕ = tr(dX)X + trX(dX) = 2 tr X dX , we find

d2ϕ = 2 tr(dX)(dX) = 2(dvec X ′)′(dvec X) = 2(dvecX)′Kn dvecX.

Since Kn is symmetric, Hϕ(X) = 2Kn.
(b) Now we have

d2ϕ(X) = 2 tr A(dX)B(dX) = 2(dvecX ′)′(A′ ⊗B) dvec X

= 2(dvecX)′Knm(A′ ⊗B) dvecX
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with Hessian matrix (symmetric!)

Hϕ(X) = Knm(A′ ⊗B) + (A⊗B′)Kmn = Knm(A′ ⊗B + B′ ⊗A).

(c) In general,

d2ϕ(X) = trA(dX)B(dX) = (dvecX)′Knm(A′ ⊗B) dvecX

implies, and is implied by,

Hϕ(X) =
1
2
(Knm(A′ ⊗B) + (A⊗B′)Kmn) =

1
2
Knm(A′ ⊗B + B′ ⊗A).

Exercise 13.49 (Hessian of a′XX ′a) Find the Hessian matrix of ϕ(X) := a′XX ′a,
where a is a vector of constants.

Solution
The first differential is

dϕ = a′(dX)X ′a + a′X(dX)′a = 2a′(dX)X ′a,

and the second differential

d2ϕ = 2a′(dX)(dX)′a = 2 tr(dX)′aa′(dX).

This is of the form d2ϕ = trA(dX)′B(dX), where A := 2I and B := aa′, and the
Hessian thus follows from Exercise 13.47; it is Hϕ(X) = 2(I ⊗ aa′).

Exercise 13.50 (Hessian of tr X−1) Find the Hessian matrix of ϕ(X) := trX−1,
where X is a nonsingular matrix of order n× n.

Solution
We take differentials twice and obtain from dX−1 = −X−1(dX)X−1,

d2X−1 = −(dX−1)(dX)X−1 −X−1(dX) dX−1

= X−1(dX)X−1(dX)X−1 + X−1(dX)X−1(dX)X−1.

Hence,

d2tr X−1 = tr d2X−1 = 2 trX−2(dX)X−1(dX)

and the Hessian follows from Exercise 13.48 as

Hϕ(X) = Kn(X ′−2 ⊗X−1 + X ′−1 ⊗X−2).

Exercise 13.51 (Hessian of |X|) Obtain the Hessian matrix of ϕ(X) := |X|.
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Solution
From d|X| = |X| tr X−1 dX , we obtain

d2|X| = (d|X|) tr X−1 dX + |X| tr(dX−1) dX

= |X|(tr X−1 dX)2 − |X| tr X−1(dX)X−1 dX

= |X|(dvec X)′(vec X ′−1)(vec X ′−1)′ dvec X

− |X|(dvecX ′)′(X ′−1 ⊗X−1) dvecX

= −|X|(dvecX)′
(
Kn(X ′−1 ⊗X−1)− (vec X ′−1)(vec X ′−1)′

)
dvecX,

and, since Kn(X ′−1 ⊗X−1) is symmetric, we find

Hϕ(X) = −|X|
(
Kn(X ′−1 ⊗X−1)− (vec X ′−1)(vec X ′−1)′

)
.

Exercise 13.52 (Hessian of log |X|) Let X be an n × n matrix with |X| > 0. Find
the Hessian of ϕ(X) := log |X|.

Solution
Since dϕ = trX−1 dX , we find

d2ϕ = − tr X−1(dX)X−1 dX,

and the Hessian follows from Exercise 13.48 as

Hϕ(X) = −Kn(X ′−1 ⊗X−1).

Exercise 13.53 (Hessian of quadratic form, 2) Let f(x) be an m × 1 vector func-
tion of a n× 1 vector x, and let A be a symmetric m×m matrix of constants. Obtain the
Hessian matrix of ϕ(x) := f(x)′Af(x).

Solution
We have

dϕ = (df)′Af + f ′A(df) = 2f ′A df

and

d2ϕ = 2(df)′A df + 2f ′A d2f .

One of the good things about matrix calculus using differentials is that you can do it se-
quentially, like here. So, we first evaluate df and d2f :

df = C(dx), C :=
∂f(x)
∂x′ .
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Note that C is an m× n matrix. The tricky part is d2f . We define

Bi := Hfi(x) =
∂2fi(x)
∂x∂x′ (i = 1, . . . , m).

Notice that Bi must be symmetric, because it is the Hessian matrix of fi(x). Then, d2f is
an m× 1 vector whose i-th component equals (dx)′Bi(dx).

Now, let g(x) := Af(x). Then,

d2ϕ = 2(df)′A df + 2f ′A d2f

= 2(dx)′C ′AC(dx) + 2g(x)′

 (dx)′B1(dx)
...

(dx)′Bm(dx)


= 2(dx)′C ′AC(dx) + 2(dx)′

(∑
i

gi(x)Bi(x)

)
(dx)

= 2(dx)′
(

C ′AC +
∑

i

gi(x)Bi(x)

)
(dx)

This gives the Hessian matrix

Hϕ(x) = 2

(
C ′AC +

∑
i

gi(x)Bi(x)

)
.

Notice that in matrix calculus, we always try as much as possible to work with whole ma-
trices and not with elements, but sometimes one has to go back to the elements. Here there
is no alternative.

13.11 Least squares and best linear unbiased estimation

Exercise 13.54 (Least squares) Given an n×k matrix X of rank k and an n× 1 vector
y, find the unique k × 1 vector β that minimizes (y −Xβ)′(y −Xβ).

Solution
Let ϕ(β) := (y −Xβ)′(y −Xβ). Then,

dϕ = 2(y −Xβ)′ d(y −Xβ) = −2(y −Xβ)′X dβ,

so that dϕ = 0 implies that X ′(y −Xβ) = 0, that is, X ′Xβ = X ′y. Since rk(X) = k,
this equation has a unique solution, β̂ = (X ′X)−1X ′y.

To prove that this solution is a minimum, it suffices to note that ϕ(β) is convex. Equiv-
alently, we can compute d2ϕ = 2(dβ)′X ′X dβ, and notice that the Hessian matrix
Hϕ = 2X ′X is positive definite. This implies that ϕ is strictly convex.
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Exercise 13.55 (Generalized least-squares) Under the same conditions, find the vector
β that minimizes (y −Xβ)′Ω−1(y −Xβ), where Ω is a positive definite n× n matrix.

Solution
Let ỹ := Ω−1/2y and X̃ := Ω−1/2X . Then, minimizing (y −Xβ)′Ω−1(y −Xβ) is
equivalent to minimizing (ỹ − X̃β)′(ỹ − X̃β). The solution is given in Exercise 13.54:

β̂ = (X̃ ′X̃)−1X̃ ′ỹ = (X ′Ω−1X)−1X ′Ω−1y.

Exercise 13.56 (Constrained least-squares) Next, under the same conditions, mini-
mize (y −Xβ)′Ω−1(y −Xβ) under the constraint R′β = c, where R is a k × r matrix
of rank r.

Solution
Define the Lagrangian function

ψ(β) :=
1
2
(y −Xβ)′Ω−1(y −Xβ)− l′(R′β − c),

where l is an r × 1 vector of Lagrange multipliers. Taking the differential of ψ gives

dψ = (y −Xβ)′Ω−1 d(y −Xβ)− l′R′ dβ

= −((y −Xβ)′Ω−1X + l′R′) dβ.

The first-order conditions are therefore

X ′Ω−1Xβ −Rl = X ′Ω−1y, R′β = c.

We can write these two equations as(
X ′Ω−1X R

R′ O

)(
β

−l

)
=
(

X ′Ω−1y

c

)
,

and solve by inverting the partitioned matrix; see Exercise 8.50. Let us try and solve the
first-order conditions without inverting a partitioned matrix. We are interested in solving
for β, but in constrained problems of this type we (almost) always have to solve first for l

and then for β. We could premultiply the first condition by R′ (since R′R is nonsingular).
This would solve l in terms of β,

l = (R′R)−1R′X ′Ω−1Xβ − (R′R)−1R′X ′Ω−1y,

but, since we do not know R′X ′Ω−1Xβ, we do not obtain a full solution for l in this way.
We must use the fact that, although β is not known, R′β is known. This is achieved by
premultiplying the first condition by R′(X ′Ω−1X)−1, giving

R′β −R′(X ′Ω−1X)−1Rl = R′(X ′Ω−1X)−1X ′Ω−1y.

The matrix R′(X ′Ω−1X)−1R is nonsingular. (For any positive definite matrix A, we
have rk(B′AB) = rk(B), see Exercise 8.26(a).) Denote the unconstrained solution by
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β̂ = (X ′Ω−1X)−1X ′Ω−1y. Then, since R′β = c, we find the solution for l as

l̃ = (R′(X ′Ω−1X)−1R)−1(c−R′β̂)

and hence the constrained solution for β as

β̃ = (XΩ−1X)−1Rl̃ + β̂

= β̂ + (X ′Ω−1X)−1R(R′(X ′Ω−1X)−1R)−1(c−R′β̂).

Since ψ is strictly convex, the solution β̃ provides a strict constrained global minimum.

Exercise 13.57 (Gauss-Markov theorem) Let X be a given n × k matrix of rank k.
Find the k × n matrix G that minimizes tr GG′ subject to the constraint GX = Ik.

Solution
We consider the Lagrangian function

ψ(G) :=
1
2

tr GG′ − tr L′(GX − Ik),

where L is a k×k matrix of Lagrange multipliers. Taking the differential of ψ with respect
to G yields

dψ =
1
2

tr(dG)G′ +
1
2

tr G(dG)′ − tr L′(dG)X

= trG′ dG− tr XL′ dG = tr(G′ −XL′) dG.

The first-order conditions are

G′ = XL′, GX = Ik.

To solve the two conditions for G and L, we (again) solve first for L. From Ik = GX =
LX ′X , we find

L̂ = (X ′X)−1, Ĝ = L̂X ′ = (X ′X)−1X ′.

Since ψ is strictly convex, 1
2 tr GG′ has a strict global minimum at Ĝ = (X ′X)−1X ′

under the constraint GX = Ik. (Notice that Ĝ = X+. In fact we could have defined the
MP-inverse through its least-squares property.)

Exercise 13.58 (Aitken’s theorem) Let X be a given n × k matrix of rank k, let Ω

be a positive definite n × n matrix, and let W be a given m × k matrix. Find the m × n

matrix G that minimizes tr GΩG′ subject to the constraint GX = W .

Solution
We define the Lagrangian function

ψ(G) :=
1
2

tr GΩG′ − tr L′(GX −W )
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where L is an m × k matrix of Lagrange multipliers. Taking the differential of ψ with
respect to G yields

dψ =
1
2

tr(dG)ΩG′ +
1
2

tr GΩ(dG)′ − tr L′(dG)X

= trΩG′ dG− tr XL′ dG = tr(ΩG′ −XL′) dG.

Hence, the first-order conditions are

ΩG′ = XL′, GX = W .

We now write

W = GX = (LX ′Ω−1)X = L(X ′Ω−1X).

Solving L gives L̂ = W (X ′Ω−1X)−1 and hence

Ĝ = L̂X ′Ω−1 = W (X ′Ω−1X)−1X ′Ω−1.

Since ψ is strictly convex, Ĝ provides the constrained minimum.

*Exercise 13.59 (Multicollinearity) Let X be a given n×k matrix, and let Ω be a positive
definite n× n matrix. Without the assumption that rk(X) = k, minimize tr GΩG′ under
the constraint GX = X .

Solution
We define the Lagrangian function

ψ(G) :=
1
2

tr GΩG′ − tr L′(GX −X),

where L is an n× k matrix of Lagrange multipliers. Taking the differential gives

dψ =
1
2

tr(dG)ΩG′ +
1
2

tr GΩ(dG)′ − tr L′(dG)X

= tr(ΩG′ −XL′) dG,

from which we obtain the first-order conditions as

ΩG′ = XL′, GX = X.

Since G = LX ′Ω−1, we can write

X = GX = LX ′Ω−1X.

Since X ′Ω−1X can be singular, it is not immediately obvious that this equation has any
solution for L. So, let us show that it does. By Exercise 10.49(a), a necessary and sufficient
condition for the equation LB = C to have a solution is that CB+B = C. In the above
case, we need to demonstrate that

X(X ′Ω−1X)+X ′Ω−1X = X,
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or, letting X̃ := Ω−1/2X , that

X̃(X̃ ′X̃)+X̃ ′X̃ = X̃.

But this is a well-known result (Exercise 10.30(a)). Hence, the equation LX ′Ω−1X = X

does have a solution. This solution, however, is not unique, unless X has full column rank.
The general solution is given by

L̂ = X(X ′Ω−1X)+ + Q(Ik − (X ′Ω−1X)(X ′Ω−1X)+),

where Q is an arbitrary n × k matrix. Even though L̂ is not unique, the matrix L̂X ′ is
unique, namely L̂X ′ = X(X ′Ω−1X)+X ′, and hence

Ĝ = L̂X ′Ω−1 = X(X ′Ω−1X)+X ′Ω−1.

Again, we see that ψ is convex, so that the first-order conditions define a minimum.

*Exercise 13.60 (Quadratic estimation of σ2) Let X be an n× k matrix of rank r ≤ k,
and let V be a positive semidefinite matrix of order n. Solve the constrained problem

minimize
1
n

tr V 2

subject to V X = O, tr V = 1.

(This problem relates to the best positive, quadratic, and unbiased estimation of σ2 in the
linear model y = Xβ + ε with ε ∼ N(0, σ2In).)

Solution
Since we require that V be positive semidefinite, we write V = T ′T , where T is a square
matrix of order n. The constrained problem then becomes:

minimize
1
n

tr(T ′T )2

subject to TX = O, tr T ′T = 1.

Form the Lagrangian function

ψ(T ) :=
1
4

tr(T ′T )2 − 1
2
λ(tr T ′T − 1)− tr L′TX,

where λ is a Lagrange multiplier and L is a matrix of Lagrange multipliers. Taking the
differential of ψ gives

dψ =
1
2

tr TT ′T (dT )′ +
1
2

tr T ′TT ′(dT )

− 1
2
λ
(
tr(dT )′T + trT ′ dT

)
− tr L′(dT )X

= tr T ′TT ′ dT − λ tr T ′ dT − tr XL′ dT ,
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from which we obtain the first-order conditions

T ′TT ′ = λT ′ + XL′, tr T ′T = 1, TX = O.

Premultiplying the first condition byX ′ and using TX = O, we obtain X ′XL′ = O, so
that XL′ = O, and hence

T ′TT ′ = λT ′.

This implies that (T ′T )2 = λT ′T and hence that λ > 0. Now, define B := (1/λ)T ′T .
Then we can rewrite the conditions as

B2 = B, tr B = 1/λ, BX = O.

The matrix B is thus an idempotent symmetric matrix. Now, since tr(T ′T )2 = λ, it
appears that we must choose λ as small as possible; that is, we must choose the rank of B

as large as possible. The only constraint on the rank of B is BX = O, which implies that
rk(B) ≤ n− r, where r is the rank of X . Since we wish to maximize rk(B) we take

1/λ = rk(B) = n− r.

Then, using Exercise 10.42(b), we find B̂ = In −XX+, and hence

V̂ = T̂ ′T̂ = λB̂ =
1

n− r
(In −XX+).

13.12 Maximum likelihood estimation

*Exercise 13.61 (Symmetry ignored) Let the random m × 1 vectors y1, y2, . . . ,yn be
independently and identically distributed such that

yi ∼ Nm(µ, Ω) (i = 1, . . . , n),

where Ω is positive definite, and let n ≥ m + 1. The maximum likelihood estimators of µ

and Ω are

µ̂ =
1
n

n∑
i=1

yi = ȳ and Ω̂ =
1
n

n∑
i=1

(yi − ȳ)(yi − ȳ)′.

Prove this well-known result, ignoring the fact that Ω is symmetric.

Solution
The log-likelihood function is

�(µ, Ω) = −1
2
mn log(2π)− 1

2
n log |Ω| − 1

2
tr Ω−1Z,

where

Z =
n∑

i=1

(yi − µ)(yi − µ)′.
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The first differential of � is

d� = −1
2
n dlog |Ω| − 1

2
tr(dΩ−1)Z − 1

2
tr Ω−1 dZ

= −1
2
n trΩ−1 dΩ +

1
2

tr Ω−1(dΩ)Ω−1Z

+
1
2

tr Ω−1

(∑
i

(yi − µ)(dµ)′ + (dµ)
∑

i

(yi − µ)′
)

=
1
2

tr(dΩ)Ω−1(Z − nΩ)Ω−1 + (dµ)′Ω−1
∑

i

(yi − µ)

=
1
2

tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ).

Ignoring the symmetry constraint on Ω gives the first-order conditions,

Ω−1(Z − nΩ)Ω−1 = O, Ω−1(ȳ − µ) = 0,

from which the maximum likelihood estimators follow. To prove that we have in fact found
the maximum of �, we take the differential again:

d2� =
1
2

tr(dΩ)(dΩ−1)(Z − nΩ)Ω−1 +
1
2

tr(dΩ)Ω−1(Z − nΩ) dΩ−1

+
1
2

tr(dΩ)Ω−1(dZ − n dΩ)Ω−1 + n(dµ)′(dΩ−1)(ȳ − µ)

− n(dµ)′Ω−1 dµ.

At the point (µ̂, Ω̂) we have µ̂ = ȳ, Ẑ − nΩ̂ = O, and

dẐ = −
∑

i

(
(dµ)(yi − µ̂)′ + (yi − µ̂)(dµ)′

)
= O,

since
∑

i yi = nµ̂. Hence,

d2�(µ̂, Ω̂) = −n

2
tr(dΩ)Ω̂−1(dΩ)Ω̂−1 − n(dµ)′Ω̂−1 dµ < 0

unless dµ = 0 and dΩ = O. It follows that � has a strict local maximum at (µ̂, Ω̂).

Exercise 13.62 (Symmetry: implicit treatment) Exercise 13.61 shows that, even if
we do not impose symmetry (or positive definiteness) on Ω, the solution Ω̂ is symmetric
and positive semidefinite (in fact, positive definite with probability 1). Hence, there is no
need to impose symmetry at this stage. (But to derive the information matrix, we do need
a proper treatment of symmetry, see Exercise 13.65.) Prove the results of Exercise 13.61
again, but now taking symmetry implicitly into account, that is, by taking the differential
with respect to vech(Ω).
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Solution
Using the expression for d� obtained in Exercise 13.61, we have

d� =
1
2

tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1
2
(vec dΩ)′(Ω−1 ⊗Ω−1) vec(Z − nΩ) + n(dµ)′Ω−1(ȳ − µ)

=
1
2
(dvech(Ω))′D′

m(Ω−1 ⊗Ω−1) vec(Z − nΩ) + n(dµ)′Ω−1(ȳ − µ),

where Dm is the duplication matrix. The first-order conditions are

Ω−1(ȳ − µ) = 0, D′
m(Ω−1 ⊗Ω−1) vec(Z − nΩ) = 0.

The first condition implies that µ̂ = ȳ; the second condition can be written as

D′
m(Ω−1 ⊗Ω−1)Dm vech(Z − nΩ) = 0,

because Z − nΩ is symmetric. Now, D′
m(Ω−1 ⊗ Ω−1)Dm is nonsingular

(Exercise 11.34(a)), and so is D′
m(Ω̂−1 ⊗ Ω̂−1)Dm with probability 1 when n ≥ m + 1.

Hence, vech(Ẑ − nΩ̂) = 0. Using again the symmetry of Ẑ and Ω̂, we obtain

Ω̂ =
1
n

Ẑ =
1
n

n∑
i=1

(yi − ȳ)(yi − ȳ)′.

Exercise 13.63 (Symmetry: explicit treatment) Now prove the same result again using
an explicit treatment of symmetry, that is, by including the restriction Ω = Ω′.

Solution
Our starting point now is the Lagrangian function

ψ(µ, Ω) := −1
2
mn log(2π)− 1

2
n log |Ω| − 1

2
tr Ω−1Z − tr L′(Ω −Ω′),

where L is an m×m matrix of Lagrange multipliers. Taking the differential yields

dψ =
1
2

tr(dΩ)Ω−1(Z − nΩ)Ω−1 + tr(L−L′) dΩ + n(dµ)′Ω−1(ȳ − µ),

so that the first-order conditions are
1
2
Ω−1(Z − nΩ)Ω−1 + L−L′ = O, Ω−1(ȳ − µ) = 0, Ω = Ω′.

These three equations imply that µ̂ = ȳ, and, since Ω and Z are symmetric, that L − L′

is symmetric, that is, that L = O. Hence, Ω−1(Z − nΩ)Ω−1 = O, giving the required
results.

Exercise 13.64 (Treatment of positive definiteness) Finally we may impose both sym-
metry and positive definiteness on Ω by writing Ω = T ′T , T square. Show that this
approach leads to the same results again.
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Solution
We have

d� =
1
2

tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1
2

tr(dT ′T )Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1
2

tr
(
(dT )′T + T ′ dT )Ω−1(Z − nΩ)Ω−1

)
+ n(dµ)′Ω−1(ȳ − µ)

= tr
(
Ω−1(Z − nΩ)Ω−1T ′ dT

)
+ n(dµ)′Ω−1(ȳ − µ).

The first-order conditions are

Ω−1(Z − nΩ)Ω−1T ′ = O, Ω−1(ȳ − µ) = 0,

from which it follows that µ̂ = ȳ and Ω̂ = T̂ ′T̂ = (1/n)Ẑ.

*Exercise 13.65 (Information matrix) Consider again the log-likelihood function �(θ),
where θ := (µ′, (vech(Ω))′)′. Then

H(θ) :=
∂2�(θ)
∂θ∂θ′ and I := −E (H(θ))

denote the Hessian matrix of the log-likelihood function and the information matrix, re-
spectively.
(a) Obtain the information matrix I of µ and vech(Ω), taking the symmetry of Ω implic-
itly into account, using the duplication matrix. In particular, show that

I = n

(
Ω−1 O
O 1

2D′
m(Ω−1 ⊗Ω−1)Dm

)
.

(b) From (a), obtain

nI−1 =
(

Ω O
O 2D+

m(Ω ⊗Ω)D+
m

′

)
.

Solution
(a) Since Ω is a linear function of vech(Ω), we have d2Ω = O and hence the second
differential of �(µ, vech(Ω)) is given by

d2�(µ, vech(Ω)) =
1
2

tr(dΩ)(dΩ−1)(Z − nΩ)Ω−1

+
1
2

tr(dΩ)Ω−1(Z − nΩ) dΩ−1 +
1
2

tr(dΩ)Ω−1(dZ − n dΩ)Ω−1

+ n(dµ)′(dΩ−1)(ȳ − µ)− n(dµ)′Ω−1 dµ.
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Notice that we do not at this stage evaluate d2� completely in terms of dµ and dvech(Ω);
this is unnecessary because, upon taking expectations, we find immediately

−E
(
d2�(µ, vech(Ω))

)
=

n

2
tr(dΩ)Ω−1(dΩ)Ω−1 + n(dµ)′Ω−1 dµ,

from the following three facts. First, since yi ∼ Nm(µ, Ω) (i = 1, . . . , n), we obtain
E(ȳ) = µ. Second,

E(Z) = E

(
n∑

i=1

(yi − µ)(yi − µ)′
)

= nΩ.

And, third,

E(dZ) = −
n∑

i=1

E
(
(dµ)(yi − µ)′ + (yi − µ)(dµ)′

)
= O.

We now use the duplication matrix and obtain

− E
(
d2�(µ, vech(Ω))

)
=

n

2
(vec dΩ)′(Ω−1 ⊗Ω−1) vec dΩ + n(dµ)′Ω−1 dµ

=
n

2
(dvech(Ω))′D′

m(Ω−1 ⊗Ω−1)Dm dvech(Ω) + n(dµ)′Ω−1 dµ.

Hence, the information matrix for µ and vech(Ω) is

I = n

(
Ω−1 O
O 1

2D′
m(Ω−1 ⊗Ω−1)Dm

)
.

(b) Its inverse is obtained from Exercise 11.34(b). We have

nI−1 =
(

Ω O
O 2D+

m(Ω ⊗Ω)D+
m

′

)
.

13.13 Inequalities and equalities

Exercise 13.66 (Concavity?) Let X be a positive definite n× n matrix. Show that:
(a) log |X| is concave;
(b) |X| is neither convex nor concave;
(c) |X|1/n is concave for n ≥ 2.

Solution
(a) Since dlog |X| = trX−1 dX , we see that

d2log |X| = − tr X−1(dX)X−1 dX = −(dvec X)′(X−1 ⊗X−1) dvec X < 0

for all dX �= 0. Hence, log |X| is concave.
(b) If |X| were convex or concave on the set of positive definite matrices, then the function

ϕ(A, B) := α|A|+ (1− α)|B| − |αA + (1− α)B|
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would be nonnegative (convex) or nonpositive (concave) for every A and B, and every
α ∈ (0, 1). To show that |X| is neither convex nor concave, let α = 1/2, β > 0, and

A =
(

1 0
0 1

)
and B =

(
β 0
0 5

)
.

Then,

α|A|+ (1− α)|B| − |αA + (1− α)B| = β − 1,

which is positive for β > 1 and negative for 0 < β < 1.
(c) From

d|X|1/n =
1
n
|X|(1/n)−1|X| tr X−1 dX =

1
n
|X|1/n tr X−1 dX,

we obtain

d2|X|1/n =
1
n

(d|X|1/n) tr X−1 dX +
1
n
|X|1/n tr(dX−1) dX

=
1
n2
|X|1/n(tr X−1 dX)2 − 1

n
|X|1/n tr(X−1 dX)2

= − 1
n
|X|1/n

(
tr(X−1 dX)2 − 1

n
(tr X−1 dX)2

)
= − 1

n
|X|1/n(dvec X)′

(
X−1 ⊗X−1 − 1

n
(vec X−1)(vec X−1)′

)
dvec X ≤ 0

for all dX �= O; see Exercise 10.21.

Exercise 13.67 (Arithmetic-geometric mean inequality, revisited)
(a) Show that |X|1/n ≤ (1/n) tr X for every n×n positive semidefinite matrix X . (Com-
pare Exercise 12.11.)
(b) When does equality occur?

Solution
(a) Assume first that |X| �= 0, so that X is positive definite. Write X = T ′T , where T

is a square n × n matrix. This forces the solution matrix X to be positive definite. Now
define

ϕ(T ) :=
1
n

tr T ′T − |T |2/n.

We wish to minimize ϕ, and show that the minimum is zero. Taking the differential of ϕ

gives

dϕ =
2
n

tr T ′ dT − 2
n
|T | 2n−1 d|T |,

=
2
n

tr T ′ dT − 2
n
|T |(2/n)−1|T | trT−1 dT

=
2
n

tr(T ′ − |T |2/nT−1) dT ,
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so that the first-order condition is T ′ = |T |2/nT−1. This implies T ′T = |T |2/nIn, that is,
X̃ = αIn for some α > 0. The value of ϕ is then

ϕ̃ = ϕ(T̃ ) =
1
n

tr X̃ − |X̃|1/n = α− α = 0.

If |X| = 0, then tr X ≥ 0 for every positive semidefinite X with equality if and only if
X = O (Exercise 8.8(a)).

From Exercise 13.66, we know that |X|1/n is concave. Hence, the function (1/n) tr X−
|X|1/n is convex, and thus has a minimum at points where the derivative vanishes.
(b) Equality occurs if and only if X = αIn for some α ≥ 0.

*Exercise 13.68 (Lower bound of (1/n) tr AX) Let A be a positive semidefinite n× n

matrix.
(a) Show that (1/n) tr AX ≥ |A|1/n for every positive definite n×n matrix X satisfying
|X| = 1.
(b) When does equality occur? (Compare the solution to the same problem in Exer-
cise 12.12.)

Solution
(a) This can be proved as an extension of Exercise 13.67 by letting B := X1/2AX1/2,
thus producing the inequality (1/n) tr AX ≥ |A|1/n|X|1/n with equality if and only if
A = O or X = αA−1 for some α > 0.

A direct proof will be instructive. We view the inequality as the solution of the following
constrained minimization problem in X:

minimize
1
n

tr AX

subject to log |X| = 0, X positive definite,

where A is a given positive semidefinite n × n matrix. If A = O, then both sides of the
inequality are zero, so that the inequality is trivially satisfied. Hence, we assume A �= O.

To take the positive definiteness of X explicitly into account we write X = T ′T , where
T is a square matrix of order n. The minimization problem then becomes

minimize
1
n

tr TAT ′

subject to log |T |2 = 0.

As usual, we define the Lagrangian function

ψ(T ) :=
1
n

tr TAT ′ − λ log |T |2

and take differentials. This yields

dψ(T ) =
2
n

tr(dT )AT ′ − 2λ tr T−1 dT

= 2 tr((1/n)AT ′ − λT−1) dT .
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The first-order conditions are
1
n

AT ′ = λT−1, |T |2 = 1.

We postmultiply both sides of the first condition by nT ′−1. This gives

A = nλ(T ′T )−1,

which shows that λ > 0 and that A is nonsingular. (If λ = 0, then A is the null matrix,
which we have excluded.) Taking determinants on both sides of this equation, we obtain
|A| = (nλ)n|T |−2 = (nλ)n, because |T |2 = 1. Hence,

T ′T = (nλ)A−1 = |A|1/nA−1.

Since tr TAT ′ is convex, log |T |2 = log |T ′T | is concave (Exercise 13.66), and λ > 0,
it follows that ψ(T ) is convex. Hence, (1/n) tr TAT ′ has a global minimum under the
constraint at every point where T ′T = |A|1/nA−1. The constrained minimum is

1
n

tr TAT ′ =
1
n

tr |A|1/nA−1A = |A|1/n.

(b) Equality occurs when A = O or X = |A|1/nA−1.

Exercise 13.69 (An equality obtained from calculus) The previous exercises show
that matrix calculus can be used — at least in principle — to prove inequalities. We now
show that it can also be of use in proving equalities. The idea is simple. If we want to
prove the equality F (X) = O for all X , then it suffices to show that dF = O and that
F (X) = O for one suitably chosen X . Here is an example.

Let X be an n × k matrix with rk(X) = k, A an n × (n − k) matrix with rank
rk(A) = n− k, and Ω a positive definite n× n matrix. If A′X = O, then show that

|A′ΩA||X ′X| = |A′A||X ′Ω−1X||Ω|.

Solution
Consider the function

ϕ(Ω) :=
|X ′Ω−1X||Ω|
|A′ΩA| .

Then,

log ϕ(Ω) = log |X ′Ω−1X|+ log |Ω| − log |A′ΩA|.
Taking the differential with respect to Ω gives

dlog ϕ = tr
(
Ω−1 −Ω−1X(X ′Ω−1X)−1X ′Ω−1 −A(A′ΩA)−1A′) dΩ.

Now suppose that we can demonstrate that A′X = O implies that

F (Ω) := Ω−1 −Ω−1X(X ′Ω−1X)−1X ′Ω−1 −A(A′ΩA)−1A′ = O.

Then dlog ϕ = 0 and hence ϕ does not depend on Ω. This in turn implies that ϕ(Ω) =
ϕ(I) for all Ω, and the result follows.
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Thus, let us show that F (Ω) = O whenever A′X = O. Let Ã := Ω1/2A and
X̃ := Ω−1/2X . It suffices to show that

X̃(X̃ ′X̃)−1X̃ ′ + Ã(Ã′Ã)−1Ã′ = In

whenever Ã′X̃ = O. But this follows from Exercise 8.67, using the fact that rk(Ã) +
rk(X̃) = rk(A) + rk(X) = n.

Notes

A thorough exposition of the theory of matrix differential calculus is provided in Mag-
nus and Neudecker (1999). The present chapter emphasizes the practical aspects of the
theory.

Some of the results on maximum likelihood estimation (Section 13.12) will return in the
Econometric Exercises volume by Abadir, Heijmans, and Magnus (2006, Chapters 11 and
12), where we demonstrate the use of some statistical shortcuts, like sufficiency.

Jacobians can also be derived using differential forms, a tool regularly employed in
differential geometry. For example, see Rudin (1976, Chapter 10) or Muirhead (1982,
Chapter 2) for an introduction, or Lang (1995) for a more advanced treatment. Muirhead
(1982) also provides applications to statistics.





Appendix A: Some mathematical tools

This appendix collects mathematical tools that are needed in the main text. In addition,
it gives a brief description of some essential background topics. It is assumed that the
reader knows elementary calculus. The topics are grouped in four sections. First, we
consider some useful methods of indirect proofs. Second, we introduce elementary results
for complex numbers and polynomials. The third topic concerns series expansions. Finally,
some further calculus is presented.

A.1 Some methods of indirect proof

Perhaps the most fundamental of all mathematical tools is the construction of a proof.
When a direct proof is hard to obtain, there are indirect methods that can often help. In
this section, we will denote a statement by p (such as “I like this book”), and another by
q (such as “matrix algebra is interesting”). The negation of p will be denoted by ¬p. The
statement “p and q” is denoted by p ∧ q, and the statement “p or q (or both)” is denoted
by p ∨ q. The statements ¬(p ∨ q) and ¬p ∧ ¬q are equivalent: the negation transforms
p, q into ¬p,¬q and ∨ into ∧. This is the equivalent of De Morgan’s law for sets, where p

and q would be sets, ¬p the complement of p, p ∨ q the union of the sets, and p ∧ q their
intersection. Clearly, ¬(¬p) is the same as p, and the operation ∨ is commutative (hence ∧
is too) so that p ∨ q is equivalent to q ∨ p.

We will explore equivalent ways of formulating that p implies q, denoted by p =⇒ q,
meaning that if statement p holds then q will hold too: p is therefore sufficient for q (“if p

then q”). The truth of p =⇒ q is equivalent to the truth of ¬p ∨ q: the claim p =⇒ q is
violated if and only if we have p ∧ ¬q.

The first alternative formulation of p =⇒ q is ¬q =⇒ ¬p, meaning that if statement q

does not hold then p will not hold either: q is therefore necessary for p (“p only if q”). A
proof that starts by presuming ¬q and then shows that it leads to ¬p, is called a proof by
contrapositive.

397
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The second way of establishing that p =⇒ q is through a proof by contradiction. It
proceeds by showing that if one were to assume ¬q and p simultaneously, a contradiction
would occur; for example, s∧¬s where s is some statement. Therefore, ¬q∧p is false, and
its negation q ∨ ¬p holds, which is precisely the required p =⇒ q. Notice the difference
with the previous method of proof, where no contradictory statements ever arose.

The third method of indirect proof is of a different nature, and can sometimes lead to
errors if not treated carefully. The previous two methods are examples of proofs by deduc-
tion. A proof by induction is one that takes the following structure. Suppose that n ∈ N,
and that we wish to prove a statement sn (such as p =⇒ q) for all n ∈ N. If s1 is true and
if we can show that sn =⇒ sn+1, then sn holds for all n ∈ N. Caution should be exercised
in defining what n stands for, so that s1 is not a trivial or empty statement.

Finally, we have used the terms “p is equivalent to q” and “p if and only if q”. These can
be abbreviated by p ⇐⇒ q, which happens when q =⇒ p and p =⇒ q simultaneously: p

is necessary and sufficient for q.

A.2 Primer on complex numbers and polynomials

A number u is said to be complex if it can be expressed in the rectangular (Cartesian) form

u = a + ib,

where i is the imaginary unit satisfying i2 = −1, Re(u) := a ∈ R is the real part of u,
and Im(u) := b ∈ R is the imaginary part of u. An alternative expression for this complex
number u ∈ C is the polar form

u = |u| (cos(θ) + i sin(θ)) ,

where the modulus (or absolute value) of u, denoted by |u|, is defined as the nonnegative
square root of a2 + b2, and arg(u) := θ = tan−1(b/a) is the argument of u.

Euler’s formula, exp(iθ) = cos(θ) + i sin(θ), allows us to rewrite the polar form as

u = |u| eiθ,

where ex is understood to refer to be the exponential function exp(x) :=
∑∞

j=0 xj/j!, and

j! :=
j∏

k=1

k = 1× 2× · · · × j

is the factorial function. Empty products like
∏0

k=1 k are equal to 1 by convention; hence
0! = 1. A similar formulation applies to matrices, and is known as the polar decomposition.

Any complex number u = a+ib = |u| eiθ can be represented graphically on the complex
plane, depicted in Figure A.1. The Cartesian coordinates of a point representing u are
(a, b), with the horizontal and vertical axes measuring the real and imaginary parts of u,
respectively. A complex number can therefore be thought of as a two-dimensional vector of
real numbers. The polar coordinates representing u are (|u| , θ), respectively the length and
the angle of a ray joining the point u to the origin. Positive values of θ are conventionally
measured anticlockwise from the positive horizontal axis, and negative values clockwise.
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O

u

u∗

Re(u)

Im(u)

θ

−θ

b

−b

a

|u|

|u∗|

Figure A.1 — Rectangular and polar coordinates
of a complex number and its conjugate.

We also see that tan(θ) = b/a. The complex conjugate of the number u is u∗ = a− ib =
|u| e−iθ, the reflection of point u across the horizontal axis. The product of the conjugate
pair,

u · u∗ = |u| eiθ |u| e−iθ = |u|2 = a2 + b2,

is always nonnegative.
Euler’s formula clarifies and provides a simple proof of de Moivre’s theorem, which

states that

uν =
(
|u| (cos(θ) + i sin(θ))

)ν = |u|ν (cos(νθ) + i sin(νθ))
for any complex ν. A direct consequence of this theorem and Euler’s formula is that the
equation x2 = u (where u = |u| eiθ is a complex number and x is a complex variable) has
the two solutions

x1 =
√
|u|eiθ/2 and x2 = −

√
|u|eiθ/2 =

√
|u|ei(π+θ/2),

using the fact that eiπ = −1. These are shown in Figure A.2. The square-root func-
tion is multiple-valued. In fact, there are infinitely-many solutions of the form xj+1 =√
|u|ei(πj+θ/2), j = 0, 1, . . . , but they have the same rectangular coordinates as either x1

or x2. Therefore, we restrict our attention to the solutions having 0 ≤ arg(x) < 2π. The
solution x1 is called the principal value of this multiple-valued function. Note that when
θ = 0, we have u = u∗ = |u| and x = ±

√
|u|, with the positive square root x1 as the

principal value. Similarly, when θ = π, we have u = u∗ = − |u| and x = ±i
√
|u|. If, in

addition, |u| = 1, the principal valueof
√
−1 is i.
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O

x1

x2

Re(x)

Im(x)

θ/2

Figure A.2 — The two solutions to x2 = u.

O 1−1 Re(x)

Im(x)

Figure A.3 — The six solutions to x6 = 1.

Similarly, the n roots of unity, which solve the equation xn = 1, are given by xj+1 =
e2ijπ/n, where n ∈ N and j = 0, 1, ..., n − 1. For n = 6, these roots are depicted by
the points on the unit circle of Figure A.3. These points are the vertices of the symmetric
hexagon in the figure. The displayed circle of radius one, which is centered around the
origin, is called the unit circle. More generally, a circle of unit radius centered around
some point (not necessarily the origin) is called a unit circle.
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The two equations in x that we have just considered are examples of a polynomial equa-
tion. A function of the form

Pn(x) :=
n∑

j=0

pjx
j = p0 + p1x + · · ·+ pnxn

is called a polynomial of degree (or order) n in the variable x, when pn �= 0 and the pj

are all finite constants. When pn = 1, we have a monic polynomial, an example of this
being the characteristic polynomial of a matrix. Polynomials of degrees n1 and n2 can be
multiplied with one another, yielding a polynomial of degree n1 + n2. For example,

(1 + x)
(
1− x2

)
= 1 + x− x2 − x3.

If a polynomial does not vanish identically (that is, if Pn(x) �= 0 for at least one x), then it
can divide another polynomial, such as

2 + x− x2 − x3

1− x2
=

1
1− x2

+
1 + x− x2 − x3

1− x2
=

1
1− x2

+ 1 + x.

The fraction 1/(1 − x2) is called the remainder of the division. The fundamental theorem
of algebra states that Pn(x) :=

∑n
j=0 pjx

j can always be factored as a product of linear
polynomials,

Pn(x) = pn

n∏
i=1

(x− λi) = pn (x− λ1) . . . (x− λn) ,

where the λi ∈ C are the constants that solve the equation Pn(x) = 0, and are known as the
roots of this equation. Notice two features. First, there are no remainders from the division
of Pn(x) by any of its factors. Second, the equation has exactly n roots, when the λi are
allowed to be complex; see the example of xn−1 = 0 in the previous paragraph. Repeated
(or multiple) roots occur when two or more of the roots λi are equal; these are included in
the count of the n roots. If λi is not repeated, then it is a simple root. For example,

1 + x− x2 − x3 = −(x− 1)(x + 1)2

has the repeated root−1 (twice), and the simple root 1. Finally, let f(x) be a continuous but
otherwise unspecified function. The only functional solution to f(x) + f(y) = f(x + y),
called Hamel’s equation, is f(x) = px where p is a constant.

A.3 Series expansions

Polynomials were defined in the previous section. Not all functions are, however, express-
ible as polynomials of a finite order n. If, by allowing n → ∞, we are able to express a
function f(x) as

f(x) =
∞∑

j=0

aj(x− b)j ,
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then we obtain what is known as a power series representation of f(x) about the point
x = b. More generally, an infinite series representation of f(x) is a sum of the type

f(x) =
∞∑

j=0

gj(x),

where gj(x) is a sequence of functions for j = 0, 1, . . . , and Sn(x) :=
∑n−1

j=0 gj(x) is
known as the partial sum of the first n terms of the series.

Before we consider n → ∞, we briefly discuss sequences and limits. Then, we con-
sider infinite series and their properties: types of convergence, special series, expansions of
functions, and multiple series.

A.3.1 Sequences and limits

The maximum of a set of real numbers {x1, . . . , xn} is denoted by maxi {xi} and is the
largest element in this set. If the sequence is infinitely long, the maximum may not exist.
For example, the set of values of xi in the interval [0, 1) have a smallest element, the
minimum mini {xi} = 0, but no maximum. The supremum supi {xi} is the smallest upper
bound on {x1, . . . , xn}, and may not be a member of this set. In the previous example,
the supremum is supi {xi} = 1 while the infimum is infi {xi} = 0 = mini {xi}. Note
that supi {xi} = − infi {−xi}, but that it is not necessarily the case that maxi {xi} =
−mini {−xi}. Also,

sup
i
{a + bxi} =

{
a + b infi {xi} (b ≤ 0),
a + b supi {xi} (b ≥ 0),

for a, b ∈ R.
We briefly consider sets. A collection A of sets is said to cover a set B when B ⊂

∪A∈AA. When this collection contains only a finite number of sets, we denote it by Aϕ.
Let B be a set made up of some real numbers, and suppose that each collection A of open
sets covering B has a finite subcollectionAϕ able to cover B. Then B is said to be compact.

A sequence of real numbers is bounded if infi {xi} > −∞ and supi {xi} < ∞. These
finite bounds are members of the sequence if and only if it is compact. This is a variant of
the Heine-Borel theorem. An implication is the Bolzano-Weierstrass theorem, which states
that every bounded sequence in R contains a convergent subsequence.

A possibly surprising result is that there always exists a rational number q between any
two real numbers x and y. The rationals are therefore said to be dense in the reals. This
implies that one can represent any real number as the limit of a sequence of rationals.

Let {xi}∞i=1 be an infinite sequence of numbers. If for every ε > 0 there exists a constant
nε > 0 such that

|xn − xm| < ε for all m, n > nε,

then {xi}∞i=1 is called a Cauchy sequence. If xi ∈ R, then a sequence {xi}∞i=1 converges if
and only if it is a Cauchy sequence, and the condition for convergence is known as Cauchy’s
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criterion. The set R is then said to be complete. If xi ∈ Q, the equivalence breaks down:
a Cauchy sequence of rationals may not be converging to a rational number, as seen in the
previous paragraph. The set Q is incomplete.

A.3.2 Convergence of series

We can now analyze the convergence of series of complex numbers. It suffices to consider
series of real numbers, since

∑∞
j=0 (aj + ibj) converges if and only if both real series∑∞

j=0 aj and
∑∞

j=0 bj converge.
An infinite series converges if the limit of its partial sums exists and is finite, that is, if

limn→∞ Sn(x) = S∞(x) where |S∞(x)| < ∞. Otherwise, the series is nonconvergent. If
convergence occurs only for some values of x, then this set of values is called the conver-
gence region of the series. A series

∑∞
j=0 gj(x) is absolutely convergent if

∑∞
j=0 |gj(x)|

converges. If
∑∞

j=0 gj(x) converges but
∑∞

j=0 |gj(x)| does not, then the series is condi-
tionally convergent. For example, the logarithmic series

log(1 + x) = x
∞∑

j=0

(−x)j

j + 1

converges to log 2 for x = 1, but not absolutely so:

lim
x→1−

∞∑
j=0

|−1|j

j + 1

∣∣xj+1
∣∣ = lim

x→1−
x

∞∑
j=0

xj

j + 1
= lim

x→1−
− log(1− x) = ∞.

This example illustrates some key properties. A necessary (but not always sufficient) con-
dition for the convergence of

∑∞
j=0 gj(x) is that limj→∞ gj(x) = 0. It is also a sufficient

condition for the convergence of alternating series defined by
∞∑

j=0

(−1)jgj(x),

where gj(x) ≥ 0. When gj(x) ≥ gj+1(x) ≥ 0 and limj→∞ gj(x) = 0, the convergence of
alternating series can be seen from calculating the partial sums of (−1)jgj(x). In general,
a sufficient condition for the absolute convergence of

∑∞
j=0 gj(x) is that there is a δ > 0

such that j1+δgj(x) has a finite limit as j → ∞, meaning that the terms gj(x) decline at
least as fast as 1/j1+δ.

If the power series f(x) :=
∑∞

j=0 aj(x−b)j converges for all |x−b| < r (that is, within
a circle of radius r centered around the point x = b in the complex plane), and r is the
largest value for which this convergence holds, then r is called the radius of convergence.
Power series have the pleasant property that they converge absolutely within (but not on)
their radius of convergence. The same convergence also holds for their term-by-term or
termwise derivative, and

∑∞
j=1 jaj(x − b)j−1 is the derivative of the function represented

by the original series. The same is true for their termwise integrals.
An infinite series may be nonconvergent but nonetheless summable, meaning that it rep-

resents a finite function. Such series are often encountered in econometrics and statistics,
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for example in the form of Edgeworth expansions of distribution functions or, more gen-
erally, asymptotic expansions to be considered in Section A.3.4 below. One method for
working out the sum of a nonconvergent series is as follows. If the average of the partial
sums,

Sn,1 :=
1
n

n∑
i=1

Si, n = 1, 2, . . . ,

converges to S∞,1 then the original series S∞ :=
∑∞

j=0 gj(x) is Cesàro-summable-1 (C-1)
to S∞,1. (The reason for using C-1, rather than just C, is that the process can be repeated
by defining Sn,m := 1

n

∑n
i=1 Si,m−1 for m = 2, 3, . . . if limn→∞ Sn,m−1 does not exist.)

A simple example is
1
2 = 1

1+1 = 1− 1 + 1− 1 + . . . ,

where

Sn =
{

1 (n odd)
0 (n even)

=⇒ Sn,1 =
{

n+1
2n (n odd)

1
2 (n even),

hence converging to 1/2 as expected. To be applicable, Cesàro-summability requires a
consistency condition, namely that the method of summation leads to the same result as
limn→∞

∑n
j=0 gj(x) when this series is convergent. In our example, this condition is satis-

fied because the geometric progression
∑∞

j=0(−x)j converges to (1 + x)−1 when |x| < 1.
Knowing that a series is summable can lead to a relaxation of the sufficient condition for

convergence seen earlier. Hardy’s convergence theorem states that a sufficient condition for
the convergence of a C-1 summable series

∑∞
j=0 gj(x) is that limj→∞ jgj(x) = c (a finite

constant), that is, the terms need only decline as fast as 1/j. Notice that the convergence
may not be absolute, as the example of log 2 has illustrated.

A.3.3 Special series

We next discuss some prominent functions whose series expansions are commonly en-
countered. The stated radii of convergence for these power series follow from the previous
section. All the series considered here can be regarded as a generalization of the exponen-
tial series introduced in Section A.2, ex =

∑∞
j=0 xj/j!, which converges absolutely for all

|x| < ∞. In this appendix, we adopt the alternative approach of defining new series by
taking the exponential as the first building block then adding in some gamma-type function
of the index j. Before we tackle these other series, we define the gamma (or generalized
factorial) function

Γ (ν) :=
∫ ∞

0
tν−1e−t dt, ν ∈ R+.

Integrating by parts leads to the recursion Γ (ν) = (ν − 1)Γ (ν − 1), with Γ (1) = 1.
This recursion is used to extend the definition to any real ν except 0,−1, . . . . When the
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argument of the function is a natural number, this is just the factorial function seen earlier,

Γ (n) = (n− 1)(n− 2) . . . 1 = (n− 1)!

with 0! = 1. The binomial coefficients can be written as(
ν

j

)
:=

(ν)(ν − 1) . . . (ν − j + 1)
j!

=
Γ (ν + 1)

Γ (ν − j + 1)j!
,

for j = 0, 1, . . . and ν ∈ R. When ν takes the values −1,−2, . . . , that is, when −ν ∈
N, the ratio of gamma functions is understood to denote the limit obtained by using the
recursion Γ (ν + 1) = νΓ (ν) repeatedly j times. The binomial coefficient is sometimes
also written as the combination symbol Cν

j , which is related to the permutation symbol Pν
j

by (
ν

j

)
≡ Cν

j ≡
Pν

j

j!
.

We now introduce various generalizations of the exponential series.
First, for ν ∈ R, the binomial series

(1 + x)ν =
∞∑

j=0

(
ν

j

)
xj =

∞∑
j=0

Γ (ν + 1)
Γ (ν − j + 1)

· x
j

j!

converges absolutely for |x| < 1. It also converges absolutely when |x| = 1 and ν ∈ R+.
The series is summable for all x ∈ C\ {−1}when ν ∈ R− (an illustration is in the previous
section), and for all x ∈ C when ν ∈ R+. Note that in the excluded case of x = −1 when
ν ∈ R−, the signs of the terms in the binomial series do not alternate as j →∞.

The second generalization is the logarithmic series introduced in Section A.3.2,

log(1 + x) = x
∞∑

j=0

(−x)j

j + 1
= x

∞∑
j=0

j!j!
(j + 1)!

· (−x)j

j!
,

which converges absolutely for |x| < 1. It also converges conditionally for x = 1, but not
for x = −1. The logarithmic function is defined more generally by log(ex) := x, such
that it is the inverse of the exponential function, and is multiple-valued. This is because
x = xe2iπj for j = 0, 1, . . ., implying that

log(x) = log
(
|x|ei(θ+2πj)

)
= log |x|+ i(θ + 2πj),

which is the rectangular (Cartesian) form of the complex function. We restrict our attention
to the principal value of the function, which is conventionally taken to be log |x|+ iθ.

Now define the hyperbolic functions

cosh(x) :=
ex + e−x

2
, sinh(x) :=

ex − e−x

2
, tanh(x) :=

sinh(x)
cosh(x)

= 1− 2e−2x

1 + e−2x
,

and the corresponding trigonometric functions

cos(x) := cosh(ix), sin(x) :=
sinh(ix)

i
, tan(x) :=

sin(x)
cos(x)

.
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Important properties follow from these definitions. First, it is easy to see that dsinh(x)/ dx =
cosh(x). Also, simple addition yields

cos(x) + i sin(x) = eix,

which is Euler’s formula, stated earlier in Section A.2. From the definition in terms of ex,
we also see that the cosine is an even function (that is, it satisfies f(−x) = f(x) for all x)
whereas the sine is an odd function (that is, it satisfies f(−x) = −f(x) for all x). These
functions also have series expansions that are inherited from ex. For example,

cosh(x) =
∞∑

j=0

(
xj + (−x)j

)
/2

j!

=
∞∑

k=0

(
x2k + (−x)2k

)
/2

(2k)!
+

∞∑
k=0

(
x2k+1 + (−x)2k+1

)
/2

(2k + 1)!

=
∞∑

k=0

x2k

(2k)!

by splitting the series into two: one where the power of x is even (2k) and another where it
is odd (2k + 1). Similarly,

sinh(x) =
∞∑

j=0

(
xj − (−x)j

)
/2

j!
=

∞∑
k=0

x2k+1

(2k + 1)!
,

where both the sinh(x) series and the cosh(x) series converge absolutely for all |x| < ∞.
Merging and/or splitting series is allowed for series that are absolutely convergent, but not
for series that are conditionally convergent.

Finally, inverse hyperbolic functions can be defined in terms of the inverse of the expo-
nential, namely the logarithmic function. We have

cosh−1(x) := log(x +
√

x2 − 1), sinh−1(x) := log(x +
√

x2 + 1),

and

tanh−1(x) :=
1
2

log
(

1 + x

1− x

)
=

1
2

log
(

1 +
2x

1− x

)
.

One may check this by verifying that cosh(log(x +
√

x2 − 1)) = x, using the definition of
hyperbolic functions. Because of the logarithmic series, the convergence of the expansions
of these inverse hyperbolic functions will depend on the magnitude of x. For example, the
equality after the definition of tanh−1(x) suggests two different expansions, the first one
being

tanh−1(x) =
log(1 + x)− log(1− x)

2
=

∞∑
k=0

x2k+1

2k + 1
,

which converges absolutely for |x| < 1. Similar relations apply to inverse trigonometric
functions.
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A.3.4 Expansions of functions

An important question has been hinted at in the previous section: does each function have a
single series representation? We saw that in general the answer is no, the exponential (and
hence hyperbolic) being a rare exception. Not only can one expand functions in different
power series f(x) =

∑∞
j=0 aj(x− b)j centered around a variety of values of b (see Taylor

series later), but there are also asymptotic expansions that are valid for, say, real x → ∞
(different expansions usually apply for x → −∞, and some more if we allow x to be com-
plex). These take the form f(x) =

∑∞
j=0 gj(x) where, for k ∈ N, the ratio gj+k(x)/gj(x)

is decreasing in x as x→∞. For example,

(1 + x)ν = xν
∞∑

j=0

(
ν

j

)
1
xj

is the asymptotic expansion of the left-hand side function. Before we can tackle the
specifics of the different expansions of functions, we need to introduce some tools.

We say that a function f(x) is of order smaller than xα, written as f(x) = o (xα), if
limx→∞ f(x)/xα = 0, where α is a constant. This definition gives a strict upper bound; a
weaker upper bound is given by the following definition. We say that a function f(x) is at
most of order xα, written as f(x) = O (xα), if f(x)/xα is bounded as x → ∞; that is, if
for all x > b (a constant) there exists a finite constant c such that∣∣∣∣f(x)

xα

∣∣∣∣ ≤ c.

It should be borne in mind that orders of magnitude are inequality (not equivalence) rela-
tions. For example, if f(x) = o (xα), then it is also o

(
xα+δ

)
for any δ > 0. The following

relations hold:

• f(x) = o (xα) implies (but is not implied by) f(x) = O (xα);
• if f(x) = O (xα) and g(x) = O

(
xβ
)
, then f(x)g(x) = O

(
xα+β

)
and f(x)+ g(x) =

O(xmax{α,β}), and similarly when O is replaced by o throughout;
• if f(x) = o (xα) and g(x) = O

(
xβ
)
, then f(x)g(x) = o

(
xα+β

)
;

• if f(x) = o (xα) and g(x) = O (xα), then f(x) + g(x) = O (xα).

These relations can be illustrated with simple functions like f(x) = 3x2 + x.
Sometimes, the expression f(x) = O (xα) is not sufficiently precise for the required

purpose, since it is an inequality relation. The mathematical (not statistical) symbol ∼
denotes the asymptotic equivalence of the two sides of f(x) ∼ g(x), that is, f(x)/g(x) →
1 as x → ∞. The first term of a series expansion, arranged by orders of magnitude, is
called its leading term. In the previous example, we have f(x) = 3x2 + x ∼ 3x2, so
that 3x2 is the leading term as x → ∞. This could have been written as f(x) = O(x2)
without reference to the constant 3, which is less informative, though often adequate. As
an example of a useful asymptotic expansion, we have Stirling’s series,

Γ (x) =
√

2πe−x+(x−1/2) log(x)

(
1 +

1
12x

+
1

288x2
+ O

(
1
x3

))
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for x →∞, implying

Γ (x + a)
Γ (x + b)

= xa−b

(
1 +

(a− b)(a + b− 1)
2x

+ O

(
1
x2

))
∼ xa−b.

These formulae facilitate the derivation of the convergence radii stated in the previous sec-
tion.

All these concepts can be generalized to expansions around any point other than∞. For
example, the leading term of f(x) = 3x2 + x as x → 0 becomes the latter term, since
f(x)/x → 1 as x → 0, and therefore f(x) = O(x) as x→ 0.

If a function f(x) is differentiable an infinite number of times in an open neighborhood
of a point b, then it has the Taylor series representation

f(x) =
∞∑

j=0

f (j)(b)
(x− b)j

j!
,

where f (j)(b) is the j-th derivative of f(x) evaluated at x = b. Maclaurin’s expansion is
the special case obtained by choosing the point x = 0. Taylor’s series implies that we can
write

f(x) =
n−1∑
j=0

f (j)(b)
(x− b)j

j!
+ O ((x− b)n) .

Taylor’s theorem states that for a real-valued function to have this latter representation,
it need only be differentiable n times in the closed interval between x and b, and the
O ((x− b)n) remainder term is of the form f (n)(c)(x−c)n/n! for some point c in between
x and b. The expansion is said to be up to order n− 1, and the remainder follows from the
mean-value theorem: a real-valued function f(x), continuous over [a, b] and differentiable
over (a, b), will have at least one point c ∈ (a, b) such that f ′(c) = (f(b)− f(a)) /(b−a),
meaning that f ′(c) equals the slope of the chord joining f(b) to f(a).

One important implication is a method of calculating limx→b g(x)/h(x) when g(b) =
h(b) = 0, known as l’Hôpital’s rule. It states that if g(x) and h(x) are differentiable in an
open neighborhood of x = b, then

lim
x→b

g(x)
h(x)

= lim
x→b

g′(x)
h′(x)

.

If g′(b) = h′(b) = 0, then the process can be repeated with further derivatives. It is
assumed that the first nonzero derivative g(j)(b) �= 0 corresponds to h(j)(b) �= 0. The rule
also applies if we had limx→b |g(x)| = limx→b |h(x)| =∞, by working with the reciprocal
of these functions (since limx→b 1/g(x) = limx→b 1/h(x) = 0). This also shows that it is
not necessary for g(x) and h(x) to be differentiable at the point x = b, so long as they are
differentiable around it.

A.3.5 Multiple series, products, and their relation

Suppose we have a sum over more than one index, called a multiple series. If this sum
is absolutely convergent, then any two sums in this series may be exchanged. This is a
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manifestation of a more general result due to Fubini (for integrals) and Tonelli (for mea-
sures). Convergent multiple series are a recursive generalization of double series, so that the
latter provide a convenient standard form. Rearrange the summand terms of the absolutely
convergent

∑∞
j=0

∑∞
k=0 gj,k(x) into the array

g0,0(x) g0,1(x) . . .

g1,0(x) g1,1(x) . . .
...

...

These infinite double sums may be transformed into the infinite sum of a finite series. The
former representation consists of summing over the successive rows of the array, whereas
the latter calculates the sum diagonally. For example, using a south-west to north-east
diagonal, we have

∞∑
j=0

∞∑
k=0

gj,k(x) =
∞∑

j=0

j∑
k=0

gj−k,k(x),

which is one way of rewriting the double sum.
Infinite products are related to infinite series. The infinite product

∏∞
j=0(1 + gj(x))

converges absolutely if and only if
∑∞

j=0 gj(x) converges absolutely. However, further
care is needed in handling multiple products. For example,

∑
i

∑
j figj =

∑
i fi
∑

j gj ,
but

m∏
i=1

n∏
j=1

(figj) =

(
m∏

i=1

fn
i

)
n∏

j=1

gj �=
(

m∏
i=1

fi

)
n∏

j=1

gj

for n �= 1. In the case of products, parentheses are needed to avoid ambiguity.

A.4 Further calculus

This section contains some further results on calculus: linear difference equations, convex-
ity, and constrained optimization.

A.4.1 Linear difference equations

Let {x1, . . . , xn} be a sequence of variables. Suppose they are related by the linear differ-
ence equation

xi = c + a1xi−1 + · · ·+ apxi−p (i = p + 1, . . . , n),

where p < n and p is the order of this equation. We assume that the coefficients a and
c do not depend on x. The values {x1, . . . , xp} are called the initial values (or bound-
ary conditions), because they initialize the sequence and allow the recursive calculation of
xp+1, followed by xp+2, and so on. Given the initial values, one can solve explicitly for the
complete sequence. We now show this by means of matrix algebra.
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Define

yi :=

xi−p+1
...
xi

 , A :=



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 1
ap ap−1 ap−2 . . . a2 a1


, c :=


0
...
0
c

 ,

so that the p-th order difference equation can be written as yi = c + Ayi−1, which is a
first-order difference equation in the vector yi. Repeated substitution gives the solution

yi = c + A (c + Ayi−2) = · · · =

i−p−1∑
j=0

Aj

 c + Ai−pyp

in terms of the vector of initial values yp. The square matrix A is known as the companion
matrix for the characteristic equation

λp − a1λ
p−1 − · · · − ap = 0,

whose coefficients arise from the left-hand side of the reformulated difference equation

xi − a1xi−1 − · · · − apxi−p = c.

The eigenvalues of A and the roots of the characteristic equation coincide, and they can be
used to decompose powers of A explicitly, for example by a Jordan decomposition.

A.4.2 Convexity

A linear combination of the elements of {x1, . . . , xn} is written as
∑n

i=1 aixi, where the
ai are constants. If

∑n
i=1 ai = 1, we call this linear combination a weighted average. If,

furthermore, ai ≥ 0 for all i, hence ai ∈ [0, 1], we have a convex combination. Similar
definitions apply to integrals like

∫ c
b a(t)x(t) dt.

A real-valued function f(x) defined on an interval is said to be convex if

f(ax1 + (1− a)x2) ≤ af(x1) + (1− a)f(x2)

for every a ∈ (0, 1) and every pair of distinct points x1 and x2 in that interval. The function
is strictly convex if the inequality holds strictly. If f(x) is twice differentiable on an open
interval I , then f(x) is convex if and only if f ′′(x) ≥ 0 for every x ∈ I . A function f(x)
is (strictly) concave if and only if −f(x) is (strictly) convex.

A.4.3 Constrained optimization

Suppose that a real-valued function f(x) is being minimized over a compact space S. Then
we write argminx∈S f(x) = x̂ (or occasionally x̃) for the points at which the minimum
of the function occurs, and minx∈S f(x) = f(x̂) for the global minimum of the function.
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This global minimum is strict if there is only one such point x̂. If the space is not compact,
then one should use inf instead of min.

We now consider the problem of optimizing a function subject to restrictions, both dif-
ferentiable. Let f be a real-valued function defined on a set S in Rn. We consider the
minimization of f(x) subject to m constraints, say g1(x) = 0, . . . , gm(x) = 0, and we
write:

minimize f(x)

subject to g(x) = 0,

where g := (g1, g2, . . . , gm)′ and x := (x1, x2, . . . , xn)′. This is known as a constrained
minimization problem, and the most convenient way of solving it is, in general, to use the
Lagrange multiplier theory. Let Γ denote the subset of S on which g vanishes, that is,
Γ = {x : x ∈ S, g(x) = 0}, and let c be a point of Γ . We say that:

• f has a local minimum at c under the constraint g(x) = 0, if there exists a neighbor-
hood B(c) of the point c such that f(x) ≥ f(c) for all x ∈ Γ ∩B(c);

• f has a strict local minimum at c under the constraint g(x) = 0, if we can choose B(c)
such that f(x) > f(c) for all x ∈ Γ ∩B(c), x �= c;

• f has a global minimum at c under the constraint g(x) = 0, if f(x) ≥ f(c) for all
x ∈ Γ ;

• f has a strict global minimum at c under the constraint g(x) = 0, if f(x) > f(c) for
all x ∈ Γ , x �= c.

Lagrange’s theorem gives a necessary condition for a constrained minimum to occur at
a given point, and establishes the validity of the following formal method (“Lagrange’s
multiplier method”) for obtaining necessary conditions for an extremum subject to equality
constraints. We first define the Lagrangian function ψ by

ψ(x) := f(x)− l′g(x),

where l is an m × 1 vector of constants λ1, . . . , λm, called the Lagrange multipliers; one
multiplier is introduced for each constraint. Next we differentiate ψ with respect to x and
set the result equal to zero. Together with the m constraints we thus obtain the following
system of n + m equations (the first-order conditions):

dψ(x) = 0 for every dx

g(x) = 0.

We then try to solve this system of n + m equations in n + m unknowns, and we write
the solutions as λ̂1, . . . , λ̂m and x̂1, . . . , x̂n. The points x̂ = (x̂1, . . . , x̂n)′ obtained in this
way are called critical points, and among them are any points of S at which constrained
minima or maxima occur.
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As a simple example, consider the case where n = 2 and m = 1:

minimize f(x, y)

subject to g(x, y) = 0.

We form the Lagrangian function

ψ(x, y) := f(x, y)− λg(x, y),

and differentiate ψ with respect to x and y. This gives

dψ =
(

∂f

∂x
dx +

∂f

∂y
dy

)
− λ

(
∂g

∂x
dx +

∂g

∂y
dy

)
=
(

∂f

∂x
− λ

∂g

∂x

)
dx +

(
∂f

∂y
− λ

∂g

∂y

)
dy,

leading to the first-order conditions

∂f

∂x
= λ

∂g

∂x
,

∂f

∂y
= λ

∂g

∂y
, g(x, y) = 0,

which can be conveniently rewritten as

∂f/∂x

∂g/∂x
=

∂f/∂y

∂g/∂y
= λ̂, g(x̂, ŷ) = 0.

The Lagrange multiplier λ̂ measures the rate at which the optimal value of the objective
function f changes with respect to a small change in the value of the constraint g.

Of course, the question remains whether a given critical point actually yields a mini-
mum, maximum, or neither. To investigate whether a given critical point actually yields
a minimum, maximum, or neither, it is often practical to proceed on an ad hoc basis. If
this fails, the following criterion provides sufficient conditions to ensure the existence of a
constrained minimum or maximum at a critical point.

Bordered determinantal criterion: Let c be an interior point of S, such that f and g are
twice differentiable at c, and the m×n Jacobian matrix Dg(c) has full row rank m. Assume
that the first-order conditions,

dψ(c) = 0 for every dx

g(c) = 0,

hold, and let ∆r be the symmetric (m + r)× (m + r) matrix

∆r :=
(

O Br

B′
r Arr

)
(r = 1, . . . , n),

where Arr is the r × r matrix in the north-west corner of

A := Hf(c)−
m∑

i=1

λiHgi(c),
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the matrices Hf(c) and Hgi(c) denote Hessian matrices (second derivatives), and Br is
the m × r matrix whose columns are the first r columns of B := Dg(c). Assume that
|Bm| �= 0. (This can always be achieved by renumbering the variables, if necessary.) If

(−1)m|∆r| > 0 (r = m + 1, . . . , n),

then f has a strict local minimum at c under the constraint g(x) = 0; if

(−1)r|∆r| > 0 (r = m + 1, . . . , n),

then f has a strict local maximum at c under the constraint g(x) = 0.

Lagrange’s theorem gives necessary conditions for a local (and hence also for a global)
constrained extremum to occur at a given point. The bordered determinantal criterion gives
sufficient conditions for a local constrained extremum. To find sufficient conditions for a
global constrained extremum, it is often convenient to impose appropriate convexity (con-
cavity) conditions.

Criterion under convexity: If the first-order conditions are satisfied, that is,

dψ(c) = 0 for every dx

g(c) = 0,

and ψ is (strictly) convex on S, then f has a (strict) global minimum at c under the con-
straint g(x) = 0. (Of course, if ψ is (strictly) concave on S, then f has a (strict) global
maximum at c under the constraint.)

To prove that the Lagrangian function ψ is (strictly) convex or (strictly) concave, sev-
eral criteria exist. In particular, if the constraints g1(x), . . . , gm(x) are all linear, and
f(x) is (strictly) convex, then ψ(x) is (strictly) convex. More generally, if the functions
λ̂1g1(x), . . . , λ̂mgm(x) are all concave (that is, for i = 1, 2, . . . , m, either gi(x) is concave
and λ̂i ≥ 0, or gi(x) is convex and λ̂i ≤ 0), and if f(x) is convex, then ψ(x) is convex;
furthermore, if at least one of these m + 1 conditions is strict, then ψ(x) is strictly convex.

Finally, we consider the case where there is a matrix (rather than a vector) of constraints.
Let f(X) be the function to be minimized subject to G(X) = O, where X is an n × q

matrix and G is an m× p matrix function. To solve the problem

minimize f(X)

subject to G(X) = O,

we introduce mp multipliers λij (one for each constraint gij(X) = 0, and define the m×p

matrix of Lagrange multipliers L := (λij). The Lagrangian function then takes the conve-
nient form ψ(X) := f(X)− tr L′G(X).
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Notes

In Section A.1, we have not introduced truth tables, which can be used to establish the
validity of the rules of indirect proof. Further material on this section can be found in
Binmore (1980).

Analysis (typically complex analysis) is a branch of mathematics that has evolved out
of calculus. Most of the material covered in Sections A.2–A.3 can be found in more depth
in Whittaker and Watson (1996). Section A.3.1 requires some extra results, which are in
Binmore (1981). All the series considered as generalizations of ex in Section A.3.3 are a
special case of the generalized hypergeometric series; see Whittaker and Watson (1996) or
Abadir (1999) for a brief introduction.

In Section A.3.4, we have not dwelled on differentiability in the case of complex-valued
functions. A complex function that is differentiable is called analytic. It will satisfy the
Cauchy-Riemann equations, which ensure that differentiating f(x) with respect to Re(x),
then with respect to Im(x), will yield the same result as when the derivatives are performed
in the reverse order. As a result of these equations, a complex function that is differentiable
once will be differentiable an infinite number of times. This is why we have defined Taylor’s
infinite series for complex functions, but switched to real functions when we considered a
function that is differentiable only up to order n.

A function defined by a series, which is convergent and analytic in some domain, may
have its definition extended to some further domain by a process called analytic continua-
tion. This can provide an alternative proof to the result we stated in Section A.3.3, about
the binomial series being summable for all x ∈ C\{−1}.

For Section A.4, details on difference equations can be found in Spiegel (1971), and
convexity and optimization in Magnus and Neudecker (1999).
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In Abadir and Magnus (2002) we proposed a standard for notation in econometrics. The
consistent use of the proposed notation in our volumes shows that it is in fact practical. The
only adaptation we have made is to use A(k) rather than Ak for a k × k leading principal
submatrix of the matrix A. The notational conventions described below only apply to the
material actually covered in this volume. Further notation will be introduced, as needed,
as the series develops. Authors of articles and books who wish to adopt our notation may
consult the Econometric Exercises website,

http://us.cambridge.org/economics/ee/econometricexercises.htm

where we explain in detail how to implement all notational conventions in a LATEX or Sci-
entific Workplace environment.

B.1 Vectors and matrices

Vectors are lowercase and matrices are uppercase symbols. Moreover, both vectors and
matrices are written in bold-italic. Thus, a, b,. . . , z denote (column) vectors and A, B,. . . ,
Z denote matrices. Vectors can also be denoted by Greek lowercase letters: α,. . . , ω, and
matrices by Greek uppercase letters, such as Γ , Θ, or Ω. We write

a =


a1

a2
...

an

 and A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


for an n× 1 vector a and an m× n matrix A. When we have a choice, we define a matrix
in such a way that the number of rows (m) exceeds or equals the number of columns (n).
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We write A = (aij) or A = (A)ij to denote a typical element of the matrix A. The
n columns of A are denoted by a.1, a.2, . . . , a.n, and the m rows by a′

1., a′
2., . . . , a′

m.,
where transpose is denoted by a prime. Hence,

A = (a.1, a.2, . . . ,a.n) and A′ = (a1., a2., . . . ,am.) .

However, we write A = (a1, a2, . . . ,an), and occasionally A′ = (a1, a2, . . . ,am), when
there is no possibility of confusion. A vector a denotes a column and a′ denotes a row.

Special vectors and matrices. Some special vectors are:

0, 0n null vector (0, 0, . . . , 0)′ of order n× 1
ı, ın sum vector (1, 1, . . . , 1)′ or order n× 1
ei unit vector, i-th column of identity matrix I .

Special matrices are:

O, Omn, Om,n null matrix of order m× n

I , In identity matrix of order n× n

Kmn commutation matrix
Kn Knn

Nn symmetrizer matrix 1
2(In2 + Kn)

Dn duplication matrix
Jk(λ) Jordan block of order k × k.

Note that the null vector 0 is smaller than the null matrix O.

Ordering of eigenvalues. If an n× n matrix A is symmetric, then its eigenvalues are real
and can be ordered. We shall order the eigenvalues as

λ1 ≥ λ2 ≥ · · · ≥ λn,

since there are many cases where it is desirable that λ1 denotes the largest eigenvalue. If
A is not symmetric, its eigenvalues are in general complex. The moduli |λ1|, . . . , |λn| are,
however, real. The largest of these is called the spectral radius of A, denoted �(A).

Operations on matrix A and vector a. Let A be a real m × n matrix of rank r. Then,
A can be viewed as a collection of n columns in Rm, but also as a collection of m rows
in Rn. Thus, associated with A are two vector spaces, the collection of columns and the
collection of rows. In each of the two spaces there are two subspaces of special importance.
The column space of A, denoted col A or col(A), consists of all linear combinations of the
columns,

col A = {x ∈ Rm : x = Ay for some y ∈ Rn}.
The dimension of col A is dim(col A) = r. The kernel (or null space) of A, denoted ker A

or ker(A), is the set kerA = {y ∈ Rn : Ay = 0} with dimension dim(kerA) = n− r.
The column space and kernel of A′ are defined in the same way. The two kernels are more
commonly known as orthogonal complements: col⊥(A) = kerA′ and col⊥(A′) = ker A.
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Two vectors x and a for which x′a = 0 are orthogonal, and we write x⊥a. If x is
orthogonal to all columns of A, we write x⊥A. Thus, col⊥(A) = {x : x⊥A} with
dimension dim(col⊥ A) = m−r. A basis of col⊥(A) is denoted A⊥. Hence, A⊥ denotes
any m × (m − r) matrix with full column rank, satisfying A′A⊥ = O. The following
standard operations are used:
A′ transpose
A−1 inverse
A+ Moore-Penrose inverse
A− generalized inverse (satisfying only AA−A = A)
dg A, dg(A) diagonal matrix containing the diagonal elements of A

diag(a1, . . . , an) diagonal matrix with a1, . . . , an on the diagonal
diag(A1, . . . ,An) block-diagonal matrix with A1, . . . ,An on the diagonal
A2 AA

Ap p-th power
A1/2 (unique) positive semidefinite square root of A ≥ O
A# adjoint (matrix)
A∗ conjugate transpose
Aij submatrix
A(k) leading principal submatrix of order k × k

(A, B), (A : B) partitioned matrix
vec A, vec(A) vec-operator
vech A, vech(A) half-vec containing aij (i ≥ j)
rk(A) rank
λi, λi(A) i-th eigenvalue (of A)
tr A, tr(A) trace
etr A, etr(A) exp(trA)
|A|, det A, det(A) determinant
‖A‖ norm of matrix (

√
(tr A∗A))

‖a‖ norm of vector (
√

(a∗a))
a◦ normalization of a (such that ‖a◦‖ = 1)
x̄ average of components of x

a ≥ b, b ≤ a ai ≥ bi for all i

a > b, b < a ai > bi for all i

A ≥ B, B ≤ A A−B positive semidefinite
A > B, B < A A−B positive definite
A⊗B Kronecker product
A�B Hadamard product.

A few words of explanation on some of the symbols is required. First, the square root of
a positive semidefinite matrix A = SΛS′ (S orthogonal, Λ diagonal) is defined here as
the unique matrix A1/2 = SΛ1/2S′. Next, the conjugate transpose of a complex-valued
matrix A := A1+iA2 (A1 and A2 real) is thus given by A∗ = A′

1−iA′
2. Then, ambiguity
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can arise between the symbol | · | for determinant and the same symbol for absolute value,
for example in the calculation of Jacobians or in the multivariate transformation theorem.
This ambiguity can be avoided by writing |det A| for the absolute value of a determinant.
Finally, possible confusion could arise between the notation a > 0 and A > O. The first
means that each element of a is positive, while the second does not mean that each element
of A is positive, but rather than A is positive definite.

Occasional notation. As we have seen above, we denote a leading principal submatrix
of A by A(k), and a general submatrix by Aij , so that we can write

A :=
(

A11 A12

A21 A22

)
.

If A11 is square and nonsingular, we denote the Schur complement of A11 by A22|1 :=
A22 − A21A

−1
11 A12. This notation, however, does not suffice. Occasionally, we shall

use A(ij), A(j), or similar expressions to denote special matrix functions of A, defined
as needed in the special context. Thus, A(ij) might denote the (n − 1) × (n − 1) matrix
obtained from the n × n matrix A by deleting row i and column j, and A(j) might mean
the matrix obtained from A when the j-th column is replaced by some vector b.

Parentheses and brackets. We try to minimize on the use of parentheses and brackets,
unless this leads to ambiguities. Thus, we write tr AB instead of tr(AB), and dXY

instead of d(XY ). In particular, tr AB (a scalar) does not equal (tr A)B (a matrix), and
dXY does not equal (dX)Y . For expectation and variance we shall, however, always
write E(x) and var(x).

B.2 Mathematical symbols, functions, and operators

Definitions and implications. We denote definitions, implications, convergence, and trans-
formations by

≡ identity, equivalence
a := b defines a in terms of b

=⇒ implies
⇐⇒ if and only if
→, −→ converges to
x→ c+, x ↓ c x converges to c from above
x→ c−, x ↑ c x converges to c from below
x �→ y transformation from x to y.

We write f(x) ≈ g(x) if the two functions are approximately equal in some sense de-
pending on the context. If f(x) is proportional to g(x) we write f(x) ∝ g(x). We say
that “f(x) is at most of order g(x)” and write f(x) = O(g(x)), if |f(x)/g(x)| is bounded
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above in some neighborhood of x = c (possibly c = ±∞), and we say that “f(x) is of
order less than g(x)” and write f(x) = o(g(x)), if f(x)/g(x) → 0 when x → c. Finally,
we write f(x) ∼ g(x) if f(x)/g(x) → 1 when x → c. The two functions are then said
to be asymptotically equal. Notice that when f(x) and g(x) are asymptotically equal, then
f(x) ≈ g(x) and also f(x) = O(g(x)), but not vice versa.

Sets. The usual sets are denoted as follows:

N natural numbers 1, 2, . . .

Z integers . . . ,−2,−1, 0, 1, 2, . . .

Q rational numbers
R real numbers
C complex numbers.

Superscripts denote the dimension and subscripts the relevant subset. For example, R2 =
R × R denotes the real plane, Rn the set of real n × 1 vectors, and Rm×n the set of real
m × n matrices. The set Rn

+ denotes the positive orthant of Rn, while Z+ denotes the set
of positive integers (hence, Z+ = N) and Z0,+ denotes the nonnegative integers. The set
Cn×n denotes the complex n× n matrices.

Set differences are denoted by a backslash. For example, N = Z0,+\{0}. Real-line
intervals defined by x in a ≤ x < b are denoted by [a, b). Occasionally it might be
unclear whether (a, b) indicates a real-line interval or a point in R2. In that case the interval
a < x < b can alternatively be written as ]a, b[.

Sequences are special ordered sets. They are delimited, as usual, by braces (curly brack-
ets). It is often convenient to write {Zj}n

m (or simply {Zj}) for the sequence of matrices
Zm, Zm+1,. . . ,Zn.

The space l2 consists of real (or complex) sequences (x1, x2, . . . ) satisfying
∑∞

i=1 |xi|2 <

∞, while the space L2 contains all real (or complex) variables x satisfying
∫
|x(t)|2 dt <

∞.
Other set-related symbols are:

∈ belongs to
/∈ does not belong to
{x : x ∈ S, x satisfies P} set of all elements of S with property P
⊆ is a subset of
⊂ is a proper subset of
∪ union
∩ intersection
∅ empty set
Ac complement of A

B\A B ∩Ac.



420 Appendix B: Notation

Functions. We denote functions by:

f : S → T function defined on S with values in T

f , g, ϕ, ψ, ϑ scalar-valued function
f , g vector-valued function
F , G matrix-valued function
g ◦ f , G ◦ F composite function
g ∗ f convolution (g ∗ f)(x) =

∫∞
−∞ g(y)f(x− y) dy.

Two special functions are the gamma (generalized factorial) function, Γ (x), satisfying
Γ (x + 1) = xΓ (x), and the beta function B(x, y) := Γ (x)Γ (y)/Γ (x + y) .

Derivatives and differentials. The treatment of lowercase single-letter constants is some-
what controversial. For example, the base of natural logarithms e and the imaginary unit i
are often written as e and i. The same applies to operators (such as the derivative operator
d — often written as d). We recommend the use of i, e, and d, in order to avoid potential
confusion with variables (such as the index i in i = 1, . . . , n or the distance d(·, ·)). Thus,
for differentials and derivatives, we write:

d differential
dn n-th order differential
Djϕ(x) partial derivative, ∂ϕ(x)/∂xj

Djfi(x) partial derivative, ∂fi(x)/∂xj

D2
kjϕ(x) second-order partial derivative, ∂Djϕ(x)/∂xk

D2
kjfi(x) second-order partial derivative, ∂Djfi(x)/∂xk

ϕ(n)(x) n-th order derivative of ϕ(x)
Dϕ(x), ∂ϕ(x)/∂x′ derivative of ϕ(x)
Df(x), ∂f(x)/∂x′ derivative (Jacobian matrix) of f(x)
DF (X) derivative (Jacobian matrix) of F (X)
∂ vec F (X)/∂(vec X)′ derivative of F (X), alternative notation
∇ϕ, ∇f ,∇F gradient (transpose of derivative)
Hϕ(x), ∂2ϕ(x)/∂x∂x′ second derivative (Hessian matrix) of ϕ(x)
[f(x)]ba, f(x)|ba f(b)− f(a).

Instead of ϕ(1)(x) and ϕ(2)(x), we may write the more common ϕ′(x) and ϕ′′(x), but
otherwise we prefer to reserve the prime for matrix transposes rather than derivatives. To
emphasize the difference between transpose and derivative, we write f ′(x) for the deriva-
tive of f and f(x)′ for the transpose.

Other mathematical symbols. Various other symbols in common use are:

i imaginary unit
e, exp exponential
log natural logarithm
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loga logarithm to the base a

! factorial(
ν
j

)
binomial coefficient

δij Kronecker delta:
equals 1 if i = j, 0 otherwise

sgn(x) sign of x

$x%, int(x) integer part of x, that is, largest integer ≤ x

1K indicator function (1, not I):
equals 1 if condition K is satisfied, 0 otherwise

|x| absolute value (modulus) of scalar x ∈ C

x∗ complex conjugate of scalar x ∈ C

Re(x) real part of x

Im(x) imaginary part of x

arg(x) argument of x.

Statistical symbols. We do not use many statistical symbols in this volume. The ones we
use are:

∼ is distributed as
Pr probability
E(·) expectation
var(·) variance
�(θ) log-likelihood function
H(θ) Hessian matrix
I(θ) (Fisher) Information matrix
N(µ, Ω), Nm(µ, Ω) m-dimensional normal distribution
Wm(n, V , M ′M) Wishart distribution
Wm(n, V ) central Wishart distribution (M = O).
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Index

Addition
matrix, 16, 20
vector, 2, 5

Adjoint, 75, 95, 96
Aitken’s theorem, 384
Almost sure, 50
Analytic continuation, 270
Angle, 3, 10, 23
Asymptotic equivalence, 407

Basis, 45, 56, 57
dimension, 59, 60
existence, 58
extension to, 58
reduction to, 58

Bayesian sensitivity, 377
Bilinear form, 356, 357
Binomial coefficient, 405
Block

block-diagonal, 97
column, 97
row, 97

Bolzano-Weierstrass theorem, 229, 402

Cauchy, 13, 96
Cauchy-Schwarz, see Inequality, Cauchy-Schwarz
criterion, 403
inequality, 324
rule of invariance, 353

not valid for second differential, 353
sequence, 47, 67, 402

Cayley’s transform, 264
Cayley-Hamilton theorem, 190, 201, 271
Characteristic

equation, 155, 159, 174, 190
polynomial, 155, 156, 160, 161, 163, 170,

181
root, see Eigenvalue

Cofactor, 75, 90, 91, 370
Column

block, 97
rank, 74, 77, 80
space, 73, 75–77

Commutation matrix, 300–307
as derivative of X ′, 363
commutation property, 301, 302
definition, 299
determinant, 305
eigenvalues, 305
explicit expression, 302, 303
is orthogonal, 300
trace, 304, 305

Completeness, 46, 47, 67, 68, 403
Completion of square, 216
Complex numbers, 4, 11–13, 18–19, 39–42, 155,

398–400
argument, 398
complex conjugate, 4, 11, 399
modulus, 4, 12, 398
polar form, 270, 398

Concavity
of λn, 344
of log |A|, 334, 391
of |A|1/n, 391

Conformable, 17
Continuity argument, 96, 116, 165, 223, 229, 322,

333
Contraction, 229, 242
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Convexity, 410
of λ1, 344
of Lagrangian, 354, 413
sufficient condition, 354

Craig-Sakamoto lemma, 181, 208
Cramer’s rule, 146, 147, 154

Derivative, 351
identification, 352
notation, 351
with respect to symmetric matrix, 366, 367,

373
Determinant, 74, 87–96, 173

axiomatic definition, 92
definition, 74
differential, 369–373
elementary operation, 89
equality, 116, 117, 167
expansion by row (column), 90
Hessian matrix, 380, 381
inequality, 225, 325, 326, 333, 339, 349
of 2 × 2 matrix, 75
of 3 × 3 matrix, 87
of commutation matrix, 305
of conjugate transpose, 88
of diagonal matrix, 90
of elementary matrix, 136
of inverse, 95
of orthogonal matrix, 95
of partitioned matrix, 109–118
of positive (semi)definite matrix, 215, 216
of product, 94, 112
of skew-Hermitian matrix, 255
of transpose, 88
of triangular matrix, 92
of tridiagonal matrix, 92
product of eigenvalues, 167, 189
Vandermonde, 93, 148
zero, 89, 94

Deviations from the mean, 239, 242
dg-function, 17
diag-function, 17
Differential, 351–395

first, 352, 355–373
second, 353
with respect to symmetric matrix, 366, 367, 373

Dimension, 45
finite, 45, 55, 56, 59, 60
infinite, 45, 56, 147
of Cn, 60
of column space, 76, 77
of kernel, 73, 82, 149
of orthogonal complement, 70, 73, 76, 77

Direct sum, 70, 97
Distance, 46, 64
Duplication matrix, 311–317

and commutation matrix, 313
and Kronecker product, 315
definition, 299
properties of D′

n(A ⊗ A)Dn, 317
properties of D′

nDn, 314
properties of D+

n (A ⊗ A)Dn, 315–317

Eigenvalue
algebraic multiplicity, 163
complex, 160
concavity of λn, 344
convexity of λ1, 344
definition, 155
distinct, 157, 170, 171, 175
geometric multiplicity, 163
inequality, 343–350
monotonicity, 346
multiple, 155, 178
multiplicity, 155
of 2 × 2 matrix, 158
of 3 × 3 matrix, 159
of AB and BA, 167
of commutation matrix, 305
of diagonal matrix, 164
of Hermitian matrix, 175
of idempotent matrix, 232
of inverse, 163
of orthogonal matrix, 165, 175
of positive (semi)definite matrix, 215
of power, 163
of rank-one matrix, 172
of skew-Hermitian matrix, 255
of skew-symmetric matrix, 164, 255
of symmetric matrix, 175, 181
of transpose, 163
of triangular matrix, 164
of unitary matrix, 165
ordering, 322
product of, 167, 189
quasilinear representation, 343, 346
real, 175, 225
simple, 155, 174, 190
sum of, 168, 189
variational description, 345
zero, 164, 190

Eigenvector
definition, 157
example, 162
existence, 161
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Eigenvector (Cont.)
generalized, 157, 201–208

degree, 157
left, 173
linear combination, 161
linearly independent, 170, 171, 176
normalized, 157
of symmetric matrix, 175, 176, 178,

179
orthogonal, 170, 171, 173, 175, 176
orthonormal, 187, 192
right, 157
uniqueness, 157, 161, 176

Elementary
matrix, 132–137

determinant, 136
does not commute, 136
explicit expression, 133
inverse, 134
product, 135, 140
transpose, 134

operation, 89, 100, 101, 131, 133, 136
symmetric function, 156, 169

Elimination
backward, 132, 145
forward, 132, 145
Gaussian, 132, 143–148

Equation, linear, 131–153
characterization, 152
consistency, 151, 152, 293, 294, 296
general solution, 294, 296
homogeneous, 79, 132, 148–150, 292
matrix, 294–295
nonhomogeneous, 132, 151–153
nontrivial solution, 148, 149
number of solutions, 148, 151
trivial solution, 148, 149
unique solution, 294, 295
vector, 79, 292–294

Equivalence, 141, 157
class, 50

Euclid, 328
Euclidean space, 1

m-dimensional, 1
Euler, 143, 144, 154, 398
Exponential of a matrix

differential, 368
series expansion, 244, 249, 252, 256, 257, 260,

262, 265–269

Factorization
as product of elementary matrices, 140
Cholesky, 210, 220, 242

diagonalization
conditions, 171, 187, 200
of idempotent matrix, 234, 236
of normal matrix, 158, 191
of positive (semi)definite matrix, 210, 215,

219
of symmetric matrix, 158, 177, 189
of triangular matrix, 158, 186
simultaneous, 158, 174, 180, 211, 225
with distinct eigenvalues, 158, 171

Jordan’s theorem, 157, 158, 199, 245
polar decomposition, 211, 226, 398
QR, 158, 172
rank, 80, 158
Schur’s triangularization theorem, 157, 158,

187
singular-value decomposition, 211, 225, 226
using echelon matrices, 140, 158

Fibonacci sequence, 35, 42
Fischer

inequality, 228, 341
min-max theorem, 346

Frobenius’s inequality, 122, 129
Fundamental theorem of algebra, 155, 401

Gauss, 154
Gauss-Markov theorem, 384
Generalized inverse, 295

and the solution of linear equations, 296
definition, 274
existence, 295
explicit expression, 295
rank, 296

Gram-Schmidt orthogonalization, 67, 98, 172

Hadamard product, 321, 340
definition, 340
positive definite, 340

Heine-Borel theorem, 402
Hermitian form, 19, 39, 210

Idempotent matrix, 18, 231–242
checks, 210
definition, 18, 210
differential, 365
eigenvalues, 232, 233
idempotent operation, 37, 210
in econometrics, 238
necessary and sufficient condition, 235
nonsymmetric, 37, 210, 232
of order two, 37
rank equals trace, 235
sum of, 236, 240–242
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Inequality
arithmetic-geometric mean, 328, 392, 393
Bergstrom, 323
Bunyakovskii, 13
Cauchy, 324
Cauchy-Schwarz, 7, 8, 13, 62, 322, 325, 330
concerning eigenvalues, 343–350
derived from Schur complement, 341–343
determinantal, 225, 325, 326, 333, 339, 349
Fischer, 228, 341
Frobenius, 122, 129
Hadamard, 337, 349
Kantorovich, 331
Minkowski, 329
Olkin, 340
rank, 78, 81, 120–122, 124, 179, 324
Schur, 305, 325, 331
Sylvester, 122, 129, 179, 180
trace, 329, 338, 348
triangle, 7, 12, 13, 38, 63

geometric interpretation, 8
Inner product

continuity, 65
in vector space, 45
induced by norm, 63, 64
of two complex vectors, 4, 12
of two real matrices, 18, 38
of two real vectors, 2, 6, 20

Inverse, 74, 83–87, 95
and rank, 83
differential, 364–367
existence, 83
Jacobian of transformation, 373, 374
of A + ab′, 87, 173, 248
of A − BD−1C , 107
of partitioned matrix, 103–109
of product, 84
of triangular matrix, 186
series expansion, 249
uniqueness, 83

Jacobian
matrix, 351
of transformation, 354, 373–375

Jordan, 192–200
block, 192–194

power, 258
symmetrized, 194

chain, 157, 201–208
lemma, 195, 196
matrix, 157, 158, 197, 198, 200
number of blocks, 200
representation, 260
theorem, 199

Kato’s lemma, 218, 331
Kernel, 73, 149
Kronecker delta, 66
Kronecker product, 274–281

and vec-operator, 282
definition, 273
determinant, 279
differential, 355
eigenvalues, 278
eigenvectors, 279
inverse, 278
multiplication rules, 275–277
noncommutativity, 275
rank, 279
trace, 277
tranpose, 277

Lagrange
function, 411
multiplier method, 411–413
multipliers, 411

matrix of, 354, 413
symmetric matrix of, 354

Laplace expansion, 74
Leading element, 132, 138
Least squares

and best linear unbiased estimation, 382–387
constrained (CLS), 383
estimation of σ2, 386
generalized (GLS), 339, 342, 383
multicollinearity, 385
ordinary (OLS), 339, 342, 382
residuals, 376
sensitivity analysis, 375–377

Leibniz, 154
Length, 46, 62, 212
l’Hôpital’s rule, 408
Line, 6

in the plane, 327
line segment, 6

Linear
combination, 44, 52
dependence, 44, 53, 54

conditions for, 53
in triangular matrix, 53

difference equation, 36, 409–410
equation, see Equation, linear
form, 18, 19
independence, 44

and span, 59
of powers, 147

space, see Vector space
structure, 300, 318–320, 374
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Logarithm of a matrix
differential, 368–369
series expansion, 244, 250, 253

Matrix
augmented, 145, 151
block-diagonal, 97
cofactor, 75, 91, 187
commutation, see Commutation matrix
commuting, 17, 23, 24, 29, 34, 101, 174
companion, 173
complex, 16, 18–19, 39–42
conformable, 17
conjugate transpose, 18, 39
definition, 15
diagonal, 17, 28, 29, 337
duplication, see Duplication matrix
echelon, 132, 137–143

definition, 132
factorization, 140
finding inverse, 142
rank, 132, 137, 141
reduction of, 139
reduction to, 137

element, 15
elementary, see Elementary, matrix
equality, 16, 19
equicorrelation, 241
function, 243–271

determinant, 262
of diagonal matrix, 246, 247
of idempotent matrix, 248
of nilpotent matrix, 247
of symmetric matrix, 255
trace, 262

generalized inverse, see Generalized inverse
Gramian, bordered, 230–231, 242
Hermitian, 18, 39, 175

diagonal elements, 39
Hessian, 378–382

identification, 353, 378, 379
in maximum likelihood estimation, 390
of composite function, 353
symmetry, 353

idempotent, see Idempotent matrix
identity, 17, 21, 28
indefinite, 209, 219
inverse, see Inverse
invertible, see Matrix, nonsingular
Jacobian, 351

see also Derivative
Jordan, 157, 158, 197, 198, 200
Moore-Penrose inverse, see Moore-Penrose in-

verse

negative (semi)definite, 209
see also Positive (semi)definite matrix

nilpotent, 23, 183, 192
index, 23

nonsingular, 74, 83, 140
normal, 18, 19, 33, 41, 171, 182, 191, 192
notation, 15
null, 16, 20
order, 15, 17, 19
orthogonal

2 × 2 example, 31, 95, 254
definition, 18
determinant, 95
eigenvalues, 175
preserves length, 212
properties, 86
real versus complex, 19, 85, 166
representation, 31, 254, 263

partitioned, see Partitioned matrix
permutation, 18, 32

is orthogonal, 33
positive, 243
positive (semi)definite,

see Positive (semi)definite matrix
power, 18, 34, 35, 217

and difference equations, 36
Fibonacci sequence, 35
noninteger, 261

product, 16, 21, 22, 25
different from scalar multiplication, 22

real, 16
scalar, 17
scalar multiplication, 16
semi-orthogonal, 84
singular, 74, 149, 227
skew-Hermitian, 18, 40

determinant, 255
diagonal elements, 40
eigenvalues, 255

skew-symmetric, 30
definition, 18
diagonal elements, 30
eigenvalues, 164, 255
representation, 255

skew-symmetrizer, see Skew-symmetrizer ma-
trix

square, 17
square root, see Positive (semi)definite matrix,

square root
submatrix

definition, 15
in partitioned matrix, 26
leading principal, 156, 168, 337
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Matrix (Cont.)
principal, 156, 222
rank, 82

sum of matrices, 16, 20
symmetric, 17, 29, 51, 157, 171, 175–182

definition, 17
power, 35
real eigenvalues, 175
real eigenvectors, 175
real versus complex, 19, 175, 191
special properties, 157

symmetrizer, see Symmetrizer matrix
transpose, 15, 20, 26
triangular, 17, 51, 157, 182–187

inverse, 186
linearly independent columns, 53
lower, 17
power, 35
product, 29, 184
strictly, 17, 183, 195
unit, 17, 186
upper, 17

tridiagonal, 92
unipotent, 101
unitary, 18, 40

representation, 264
Vandermonde, 93, 96, 147, 148

Maximum likelihood estimation, 387–391
Hessian matrix, 390
information matrix, 390
log-likelihood, 387
treatment of positive definiteness, 389
treatment of symmetry, 388, 389

Minimum
global, 354
local, 354
under constraints, 354, 410–413

Minor, 370
leading principal, 156, 223
principal, 156, 223

sum of, 156
Modulus, see Complex numbers, modulus
Moore-Penrose inverse, 284–292

and least squares, 384
and the solution of linear equations, 292–295
definition, 274
existence, 284
of positive semidefinite matrix, 290
of symmetric matrix, 289
rank, 286
uniqueness, 285

Multiplication
scalar, 2, 5, 16

in vector space, 43

Norm
general definition, 63
in vector space, 46, 62
induced by inner product, 63
of complex vector, 4, 12
of real matrix, 18, 38
of real vector, 2, 7, 8

Normal distribution, 377, 386–391
and symmetrizer matrix, 309–311

Notation, 415–421
Null space, see Kernel

O, o, oh notation, 407, 419
Orthogonal

complement, 46, 66, 70, 73, 76, 237
matrix, see Matrix, orthogonal
projection, 68
set, 46
subspace, 46, 66, 73
vectors, 3, 8–10, 46

Orthonormal
basis, 67
set, 46, 66
vectors, 3, 66

Parallelogram equality, 62
Partitioned matrix, 26, 97–129

3-by-3 block matrix, 107, 118, 125
bordered, 108, 118, 125
commuting, 101
determinant, 109–118
diagonal, 100
inverse, 103–109
positive (semi)definite, 228–231

determinant, 114, 335–336
inverse, 107
necessary and sufficient conditions, 228, 229

power, 108
product, 98
rank, 119–125
sum, 98
symmetric, 100
trace, 100
transpose, 99
triangular, 100

Permutation
matrix, see Matrix, permutation
of integers, 74, 89

Pivot, 98, 132, 145
Poincaré’s separation theorem, 347–348
Polynomial, 56, 93, 96, 147, 168, 169, 400–401

characteristic, 155, 156, 160, 161, 163, 170,
181
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Polynomial (Cont.)
matrix, 243–271

order of, 243
representation, 265–270

monic, 401
Positive (semi)definite matrix, 211–231

checks, 210
definite versus semidefinite, 210
definition, 209
determinant, 215, 216
diagonal elements, 213
eigenvalues, 215, 222
inequality, 325–340
inverse, 216
matrix quadratic form, 221–222
of rank two, 218
partitioned, 228–231
power, 217, 332
principal minors criterion, 223, 224
principal submatrices, 222
quadratic form, 209, 211
square root, 220, 221, 227

uniqueness, 220
trace, 215, 216
transforming symmetric matrix into, 218
upper bound for elements, 213, 323
variance matrix, 56
versus negative (semi)definite, 209, 213

Positivity, treatment of (in optimization problems),
386, 389

Postmultiplication, 17
Power sum, 156, 169
Premultiplication, 17
Projection, 239

oblique, 210
orthogonal, 68, 210
theorem, 68, 69

Proof
by contradiction, 398
by contrapositive, 397
by deduction, 398
by induction, 398

Pythagoras, 9, 65, 69, 70

Quadratic form, 18, 211, 212
differential, 356, 357, 359, 363
Hessian matrix, 378, 381

Quasilinearization, 322, 324, 328, 329, 343, 344

Rank, 74, 75
and zero determinant, 94
equality, 81, 82, 85, 123, 124
full column rank, 74

full row rank, 74
inequality, 78, 81, 120–122, 124, 179, 324
matrix of rank one, 80, 172
matrix of rank two, 218
number of nonzero eigenvalues, 165, 179, 190
of diagonal matrix, 79
of partitioned matrix, 119–125
of product, 82
of submatrix, 82
of triangular matrix, 79
theorem, 77

Rayleigh quotient, 181, 343
Reflection, 32, 95
Rotation, 23, 32, 95, 254
Row

block, 97
rank, 74, 77, 80

Scalar, 1
Scalar product, see Inner product
Scaling, 24
Schur

complement, 102, 106, 228, 322
inequality derived from, 341–343
notation for, 102

decomposition theorem, 157, 158, 187
inequality, 305, 325, 331

Schwarz, 13
inequality, see Inequality, Cauchy-Schwarz

Sensitivity analysis, 375–378
Bayesian, 377
least squares, 375–377

Series expansion, 401–409
absolutely convergent, 243, 260, 403
binomial

alternative expansion, 246
definition, 244, 405
radius of convergence, 244, 260, 405
with two matrices, 251

conditionally convergent, 245, 403
definition, 243
exponential function

as limit of binomial, 249
definition, 244, 398
Jordan representation, 257
multiplicative property, 252, 256
nonsingularity, 262
polynomial representation, 265–269
radius of convergence, 244, 260, 404

inverse, 249
Jordan representation, 255–264
logarithmic function

additive property, 253
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Series expansion (Cont.)
explicit expression, 250
explicit representation, 244, 403, 405
implicit definition, 244, 405
radius of convergence, 244, 403

matrix-polynomial representation, 265–270
nonconvergent, 403
not unique, 243, 246, 261
power, 261
radius of convergence, 244, 403
summable, 248, 403–405, 414

Series representation, see Series expansion
Set

compact, 402
of real numbers, 1

Shift
backward, 193
forward, 193

Similarity, 157, 185
and eigenvalues, 166

Singular value, 226
Skew-symmetrizer matrix, 305

definition, 305
idempotent, 305
orthogonal to symmetrizer, 307

Space
complex space, 4
Euclidean space, 1
vector space, see Vector space

Span, 44, 54, 55, 81
and linear independence, 59

Spectral radius, 243, 369
Spectral theorem, see Factorization, diagonalization
Stirling’s series, 407
Subspace, 44, 50, 51

closed, 68
dimension, 60, 61
intersection, 44, 52
of R2, 50
of R3, 51
sum, 44, 52, 61
union, 44, 52

Sweep operator, 98, 126–129
calculates inverse, 127
pivot, 98
solves linear equation, 128

Sylvester, 327, 350
law of nullity, 122, 129, 179, 180

Symmetrizer matrix, 307–311
and Kronecker product, 307
and normal distribution, 309–311
and Wishart distribution, 310
definition, 299

idempotent, 307
orthogonal to skew-symmetrizer, 307
rank, 307

Trace, 18, 30
and vec-operator, 283
differential, 357, 358
Hessian matrix, 380
inequality, 329, 338, 348
linear operator, 18, 30
of A′A, 31, 38, 214, 322
of commutation matrix, 304, 305
of conjugate transpose, 39
of matrix product, 18, 31
of positive (semi)definite matrix, 215, 216
of power, 168, 169, 189
of transpose, 18, 30
sum of eigenvalues, 168, 189

Transposition, 74, 89, 96

Unit circle, 244, 400

Vec-operator, 281–284
and Kronecker product, 282
and trace, 283
definition, 273
differential, 355
linearity, 281
notation, 273

Vech-operator, 311, 312
definition, 299

Vector, 1–13
as a point in Rm, 1
as an arrow, 1
collinear, 2, 7, 13, 20

norm of, 8
column vector, 1
component of, 1
elementary, see Vector, unit
equality, 1, 4
inequality, 1
length, 3
normal to plane, 65
normalized, 3, 8, 32
notation, 1
null vector, 1, 5, 47

uniqueness, 5, 47
order, 1, 4
orthogonal, 3, 8–10, 46, 65
orthonormal, 3, 9, 32
row vector, 16
scalar multiplication, 2, 5
sum of vectors, 2, 5
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Vector (Cont.)
sum vector, 1, 10, 31
unit, 3

Vector analysis
algebraic, 1
geometric, 1, 2

Vector space, 43–71
addition, 43, 47
axioms, 43–44
complex, 43
Hilbert space, 44, 46, 47, 67–71

completeness, 47
inner-product space, 44, 45, 61–67
l2-space, 49, 56, 61, 71
L2-space, 50, 56

L†
2-space, 49, 56, 68, 71

real, 43, 48
representation in terms of basis, 58
scalar multiplication, 43, 47
vector in, 43

Weierstrass, 92, 96
Wishart distribution

central, 310
definition, 310
noncentrality matrix, 310
variance, 310, 317

Zorn’s lemma, 71
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