Parallel
Algorithms
for Matrix

Computations

H'

|
|

K. A. Gallivan
Michael T. Heath
Esmond Ng
James M. Ortega
Barry W. Peyton
R. J. Plemmons
Charles H. Romine
A. H. Sameh
Robert G. Voigt

siam



Parallel
Algorithms for
Matrix
Computations



This page intentionally left blank



Parallel
Algorithms
for Matrix

Computations

h________ 4
i

K. A. Gallivan
Michael T. Heath
Esmond Ng
James M. Ortega
Barry W. Peyton
R. J. Plemmons
Charles H. Romine
A. H. Sameh
Robert G. Voigt

Sidim. Philadelphia
Society for Industrial and Applied Mathematics




Copyright ©1990 by the Society for Industrial and Applied Mathematics.
10987654

All rights reserved. Printed in the United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the written per-
mission of the publisher. For information, write to the Society for Industrial and
Applied Mathematics, 3600 University City Science Center, Philadelphia, PA
19104-2688.

Library of Congress Cataloging-in-Publication Data

Parallel Algorithms for matrix computations / K. A. Gallivan ... [et al.].
p. cm.
Includes bibliographical references.
ISBN 0-89871-260-2
1. Matrices—Data processing. 2. Algorithms. 3. Parallel processing
(Electronic computers) 1. Gallivan, K. A. (Kyle A.)

QA188.P367 1990
512.9°434—dc20

90-22017

S.la-ITL is a registered trademark.



List of Authors

K. A. Gallivan, Center for Supercomputing Research and Development, University of
Illinois, Urbana, IL 61801.

Michael T. Heath, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

Esmond Ng, Mathematical Sciences Section, Qak Ridge National Laboratory, P.O. Box
2009, Oak Ridge, TN 37831-8083.

James M. Ortega, Applied Mathematics Department, University of Virginia,
Charlottesville, VA 22903.

Barry W. Peyton, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

R. J. Plemmons, Department of Mathematics and Computer Science, Wake Forest
University, Winston-Salem, NC 27109.

Charles H. Romine, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

A. H. Sameh, Center for Supercomputing Research and Development, University of
Illinois, Urbana, IL 61801.

Robert G. Voigt, ICASE, NASA Langley Research Center, Hampton, VA 23665.



This page intentionally left blank



Preface

This book consists of three papers that collect, describe, or reference an extensive se-
lection of important parallel algorithms for matrix computations. Algorithms for matrix
computations are among the most widely used computational tools in science and engi-
neering. They are usually the first such tools to be implemented in any new computing
environment. Due to recent trends in the design of computer architectures, the scien-
tific and engineering research community is becoming increasingly dependent upon the
development and implementation of efficient parallel algorithms for matrix computa-
tions on modern high-performance computers. Architectures considered here include
both shared-memory systems and distributed-memory systems, as well as combinations
of the two. The volume contains two broad survey papers and an extensive bibliogra-
phy. The purpose is to provide an overall perspective on parallel algorithms for both
dense and sparse matrix computations in solving systems of linear equations, as well as
for dense or structured problems arising in least squares computations, eigenvalue and
singular-value computations, and rapid elliptic solvers. Major emphasis is given to com-
putational primitives whose efficient execution on parallel and vector computers is es-
sential to attaining high-performance algorithms. Short descriptions of the contents of
each of the three papers in this book are provided in the following paragraphs.

The first paper (by Gallivan, Plemmons, and Sameh) contains a general perspective
on modern parallel and vector architectures and the way in which they influence algo-
rithm design. The paper also surveys associated algorithms for dense matrix computa-
tions. The authors concentrate on approaches to computations that have been used on
shared-memory architectures with a modest number of (possibly vector) processors, as
well as distributed-memory architectures, such as hypercubes, having a relatively large
number of processors. The architectures considered include both commercially available
machines and experimental research prototypes. Algorithms for dense or structured
matrix computations in direct linear system solvers, direct least squares computations,
eigenvalue and singular-value computations, and rapid elliptic solvers are considered.
Since the amount of literature in these areas is quite large, an attempt has been made to
select representative work.

The second paper (by Heath, Ng, and Peyton) is primarily concerned with parallel al-
gorithms for solving symmetric positive definite sparse linear systems. The main driving
force for the development of vector and parallel computers has been scientific and engi-
neering computing, and perhaps the most common problem that arises is that of solving
sparse symmetric positive definite linear systems. The authors focus their attention on
direct methods of solution, specifically by Cholesky factorization. Parallel algorithms are
surveyed for all phases of the solution process for sparse systems, including ordering,
symbolic factorization, numeric factorization, and triangular solution.

vii



The final paper (by Ortega, Voigt, and Romine) consists of an extensive bibliography
on parallel and vector numerical algorithms. Over 2,000 references, collected by the au-
thors over a period of several years, are provided in this work. Although this is primar-
ily a bibliography on numerical methods, also included are a number of references on
machine architecture, programming languages, and other topics of interest to computa-
tional scientists and engineers.

The book may serve as a reference guide on modern computational tools for research-
ers in science and engineering. It should be useful to computer scientists, mathemati-
cians, and engineers who would like to learn more about parallel and vector computa-
tions on high-performance computers. The book may also be useful as a graduate text in
scientific computing. For instance, many of the algorithms discussed in the first two pa-
pers have been treated in courses on scientific computing that have been offered re-
cently at several universities.

R. J. Plemmons
Wake Forest University
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PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA
COMPUTATIONS*

K. A. GALLIVAN', R. J. PLEMMONS?!, AND A. H. SAMEH!

Abstract. Scientific and engineering research is becoming increasingly dependent upon the
development and implementation of efficient parallel algorithms on modern high-performance com-
puters. Numerical linear algebra is an indispensable tool in such research and this paper attempts
to collect and describe a selection of some of its more important parallel algorithms. The purpose is
to review the current status and to provide an overall perspective of parallel algorithms for solving
dense, banded, or block-structured problems arising in the major areas of direct solution of linear
systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic
solvers. A major emphasis is given here to certain computational primitives whose efficient execution
on parallel and vector computers is essential in order to obtain high performance algorithms.

Key words. numerical linear algebra, parallel computation

AMS(MOS) subject classifications. 65-02, 65F05, 65F15, 65F20, 65N20

1. Introduction. Numerical linear algebra algorithms form the most widely-
used computational tools in science and engineering. Matrix computations, including
the solution of systems of linear equations, least squares problems, and algebraic
eigenvalue problems, govern the performance of many applications on vector and
parallel computers. With this in mind we have attempted in this paper to collect and
describe a selection of what we consider to be some of the more important parallel
algorithms in dense matrix computations.

Since the early surveys on parallel numerical algorithms by Miranker [133], Sameh
[153], and Heller [91] there has been an explosion of research activities on this topic.
Some of this work was surveyed in the 1985 article by Ortega and Voigt [138]. Their
main emphasis, however, was on the solution of partial differential equations on vector
and parallel computers. We also point to the textbook by Hockney and Jesshope [100]
which includes some material on programming linear algebra algorithms on parallel
machines. More recently, Ortega, Voigt, and Romine produced an extensive bibliog-
raphy of parallel and vector numerical algorithms [139]; and Ortega [137] published
a textbook containing a discussion of direct and iterative methods for solving linear
systems on vector and parallel computers.

Our purpose in the present paper is to provide an overall perspective of parallel
algorithms for dense matrix computations in linear system solvers, least squares prob-
lems, eigenvalue and singular-value problems, as well as rapid elliptic solvers. In this
paper, dense problems are taken to include block tridiagonal matrices in which each
block is dense, as well as algorithms for banded matrices which are dense within the
band. In particular, we concentrate on approaches to these problems that have been
used on available, research and commercial, shared memory multivector architectures

* Received by the editors March 6, 1989; accepted for publication (in revised form} October 31,
1989.

t Center for Supercomputing Research and Development, University of Illinois, Urbana, Illinois
61801. This research was supported by the Department of Energy under grant DE-FG02-85ER25001
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t Departments of Computer Science and Mathematics, North Carolina State University, Raleigh,
North Carolina 27695-8206. The work of this author was supported by the Air Force Office of
Scientific Research under grant AFOSR-88-0285 and by the National Science Foundation under
grant DMS-85-21154.



2 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

with a modest number of processors and distributed memory architectures such as
the hypercube.

Since the amount of literature in these areas is very large we have attempted to
select representative work in each. As a result, the topics and the level of detail at
which each is treated can not help but be biased by the authors’ interest. For exam-
ple, considerable attention is given here to the discussion and performance analysis
of certain computational primitives and algorithms for high performance machines
with hierarchical memory systems. Given recent developments in numerical software
technology, we believe this is appropriate and timely.

Many important topics relevant to parallel algorithms in numerical linear algebra
are not discussed in this survey. Iterative methods for linear systems are not men-
tioned since the recent text by Ortega [137] contains a fairly comprehensive review of
that topic, especially as it relates to the numerical solution of partial differential equa-
tions. Parallel algorithms using special techniques for solving generally sparse prob-
lems in linear algebra will also not be considered in this particular survey. Although
significant results have recently been obtained, the topic is of sufficient complexity
and importance to require a separate survey for adequate treatment.

The organization of the rest of this paper is as follows. Section 2 briefly discusses
some of the important aspects of the architecture and the way in which they influence
algorithm design. Section 3 contains a discussion of the decomposition of algorithms
into computational primitives of varying degrees of complexity. Matrix multiplica-
tion, blocksize analysis, and triangular system solvers are emphasized. Algorithms
for LU and LU-like factorizations on both shared and distributed memory systems
are considered in §4. Parallel factorization schemes for block-tridiagonal systems,
which arise in numerous application areas, are discussed in detail. Section 5 concerns
parallel orthogonal factorization methods on shared and distributed memory systems
for solving least squares problems. Recursive least squares computfations, on local
memory hypercube architectures, are also discussed in terms of applications to com-
putations in control and signal processing. Eigenvalue and singular value problems
are considered in §6. Finally, §7 contains a review of parallel techniques for rapid
elliptic solvers of importance in the solution of separable elliptic partial differential
equations. In particular, recent domain decomposition, block cyclic reduction, and
boundary integral domain decomposition schemes are examined.

2. Architectures of interest. To satisfy the steadily increasing demand for
computational power by users in science and engineering, supercomputer architects
have responded with systems that achieve the required level of performance via pro-
gressively complex synergistic effects of the interaction of hardware, system software
(e.g., restructuring compilers and operating systems), and system architecture (e.g.,
multivector processors and multilevel hierarchical memories). Algorithm designers
are faced with a large variety of system configurations even within a fairly generic
architectural class such as shared memory multivector processors. Furthermore, for
any particular system in the architectural class, a CRAY-2 or Cedar [117], the algo-
rithm designer encounters a complex relationship between performance, architectural
parameters (cache size, number of processors), and algorithmic parameters (method
used, blocksizes). As a result, codes for scientific computing such as numerical linear
algebra take the form of a parameterized family of algorithms that can respond to
changes within a particular architecture, e.g., changing the size of cluster or global
memory on Cedar, or when moving from one member of an architectural family to
another, e.g., Cedar to CRAY-2. The latter adaptation may, of course, involve chang-
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ing the method used completely, say from Gaussian elimination with partial pivoting
to a decomposition based on pairwise pivoting.

There are several consequences of such a situation. First, algorithm designers
must be sensitive to architecture/algorithm mapping issues and any discussion of
parallel numerical algorithms is incomplete if these issues are not addressed. Second,
one of the main thrusts of parallel computing research must be to change the situa-
tion. That is, if scientific computing is to reap the full benefits of parallel processing,
cooperative research involving expertise in the areas of parallel software development
(debugging, restructuring compilers, etc.), numerical algorithms, and parallel architec-
tures is required to develop parallel languages and programming environments along
with parallel computer systems that mitigate this architectural sensitivity. Such co-
operative work is underway at several institutions.

The architecture that first caused a widespread and substantial algorithm redesign
activity in numerical computing is the vector processor. Such processors exploit the
concept of pipelining computations. This technique decomposes operations of inter-
est, e.g., floating point multiplication, into multiple stages and implements a pipelined
functional unit that allows multiple instances of the computation to proceed simulta-
neously — one in each stage of the pipe.! Such parallelism is typically very fine-grain
and requires the identification in algorithms of large amounts of homogeneous work ap-
plied to vector objects. Fortunately, numerical linear algebra is rich in such operations
and the vector processor can be used with reasonable success. From the point of view
of the functional unit, the basic algorithmic parameter that influences performance is
the vector length, i.e., the number of elements on which the basic computation is to
be performed. Architectural parameters that determine the performance for a partic-
ular vector length include cycle time, the number of stages of the pipeline, as well as
any other startup costs involved in preparing the functional unit for performing the
computations, Various models have been proposed in the literature to characterize
the relationship between algorithmic and architectural parameters that determine the
performance of vector processors. Perhaps the best known is that of Hockney and
Jesshope [100].

The Cyber 205 is a memory-to-memory vector processor that has been success-
fully used for scientific computation. On every cycle of a vector operation multiple
operands are read from memory, each of the functional unit stages operate on a set
of vector elements that are moving through the pipe, and an element of the result of
the operation is written to memory. Obviously, the influence of the functional unit on
algorithmic parameter choices is not the only consideration required. Heavy demands
are placed on the memory system in that it must process two reads and a write (along
with any other control I/0O) in a single cycle. Typically, such demands are met by
using a highly interleaved or parallel memory system with M > 1 memory modules
whose aggregate bandwidth matches or exceeds that demanded by the pipeline. Ele-
ments of vectors are then assigned across the memory modules in a simple interleaved
form, e.g., v(¢) is in module ¢ mod M, or using more complex skewing schemes [193].
As a result, the reference pattern to the memory modules generated by accessing
elements of a vector is crucial in determining the rate at which the memory system
can supply data to the processor. The algorithmic parameter that encapsulates this
information is the stride of vector access. For example, accessing the column of an
array stored in column-major order results in a stride of 1 while accessing a row of

L The details of the architectural tradeoffs involved in a vector processor are somewhat surprisingly
subtle and complex. For an excellent discussion of some of them see [174].
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the same array requires a stride of Ida where [da is the leading dimension of the array
data object.

Not all vector processors are implemented with the three computational memory
ports (2 reads/1 write) required by a memory-to-memory processor. The CRAY-
1, one CPU of a CRAY-2 and one computational element of an Alliant FX/8 are
examples of register-based vector processors that have a single port to memory and,
to compensate for the loss in data transfer bandwidth, provide a set of vector registers
internal to the processor to store operands and results.? Each of the registers can hold
a vector of sufficient length to effectively use the pipelined functional units available.
The major consequence of this, considered in detail below, is that such processors
require careful management of data transfer between memory and register in order to
achieve reasonable performance. In particular, care must be taken to reuse a register
operand several times before reloading the register or to accumulate as many partial
results of successive computations in the same register before storing the values to
memory, i.e., reducing the number of loads and stores, respectively.

Some register-based vector processors also use two other techniques to improve
performance. The first is the use of parallelism across functional units and ports.
Multiple instructions that have no internal resource conflict, e.g., adding two vector
registers with the result placed in a third and loading of a fourth register from memory,
are executed simultaneously, making as much use of the available resources as possible.
This influences kernel design in that careful ordering of assembler level instructions
can improve the exploitation of the processor.

The second technique is essentially functional unit parallelism with certain re-
source dependences managed by the hardware at runtime. The technique is called
chaining and it allows the result of one operation to be routed into another operation
as an operand while both operations are active. For example, on a machine without
chaining, loading a vector from memory into a register and adding it to another reg-
ister would require two distinct nonoverlapped vector operations and therefore two
startup periods, etc. Chaining allows the elements of the vector loaded into the first
register to be made available, after a small amount of time, for use by the adder before
the load is completed. Essentially, it appears as if the vector addition was taking one
of its operands directly from memory. For processors that handle chaining of instruc-
tions automatically at runtime, careful consideration of the order of instructions used
in implementing an algorithm or kernel is required. Some other vector processors,
however, make the chaining of functional units and the memory port an explicit part
of the vector instruction set. For example, the Alliant FX/8 allows one argument of a
vector instruction to be given as an address in memory, thereby chaining the memory
port and the appropriate functional units. The best example of this is the workhorse
of its instruction set, the triad, which computes v, «— vy + az, where vy and v, are
vector registers, « is a scalar, and « is a vector in memory. This instruction explicitly
chains the floating point multiplier and adder and the memory port. Such instruction
constructs greatly simplify the exploitation of the chaining capabilities of a vector
processor at the cost of the loss of a certain amount of flexibility.

While vector processors have been used and can deliver substantial performance
for many computations, the quest for even more speed led to the availability and
continuing development of MIMD multiprocessors and multivector processors. The
processors on such machines are capable of executing arbitrary code segments in

2 Some register-based vector processors also have multiple ports to memory in an attempt to have
the best of both worlds, e.g., one CPU of a CRAY X-MP.



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS )

parallel and therefore subsume, assuming appropriate overhead levels, the fine-grain
parallelism of vector processors. Shared memory architectures have the generic struc-
ture shown in Fig. 1(a). They are characterized by the fact that the interconnection
network links all of the processors to all of the memory modules, i.e., a user-controlled
processor can access any element of memory without the aid of another user-controlled
processor. There is no concept of a direct connection between a processor and some
subset of the remaining processors, i.e., a connection that does not involve the shared
memory modules. Of course, in practice, few shared memory machines strictly adhere
to this simple characterization. Many have a small amount of local memory associated
with, and only accessible by, each processor. The aggregate size of these local memo-
ries is usually relatively insignificant compared to the large shared memory available.
As local memory sizes increase, the architecture moves toward the distributed end
of the architectural spectrum. Not surprisingly, the ability of the network/memory
system to supply data to the multiple processors at a sufficient rate is one of the key
components of performance of shared memory architectures. As a result, the orga-
nization and proper exploitation of this system must be carefully considered when
designing high-performance algorithms.

M1 ® 0o Mk

I

network

coe (w D@

(a) shared memory (b) ring connection

(c) mesh connection (d) 4-D hypercube

FIG. 1. Some memory/processor topologies.

The generic organization in Fig. 1 shows a highly interleaved or parallel mem-
ory system connected to the processors. This connection can take on several forms.
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For a small number of processors and memory modules, p, a high-performance bus
or crossbar switch can provide complete connectivity and reasonable performance.
Unfortunately, such networks quickly become too costly as p increases. For larger
systems, it is necessary to build scalable networks out of several smaller completely
connected switches such as (s x s)-crossbars. The Q-network of Lawrie [119] can
connect p = s* processors and memory modules with k network stages. Each stage
comprises s¥~1 (s x s)-crossbars, for a total of O(plog, p) switches. As with vector
processors, data skewing schemes and access stride manipulation are important in
balancing the memory bandwidth achieved with the aggregate computational rate of
the processors. Ideally, the two should balance perfectly; in practice, keeping the two
within a small multiple is achievable for numerical linear algebra computations via the
skewing and stride manipulations or with the introduction of local memory (discussed
below). As p increases, however, the latency for each memory access grows as O(k).
Fortunately, the addition of architectural features such as data prefetch mechanisms
and local memory can provide some mitigation of this problem.

As mentioned above, one of the ways in which the performance of a large shared
memory system can be improved is the introduction of local memories or caches with
each processor. The idea is similar to the use of registers within vector processors
in that data can be kept for reuse in small fast memory private to each processor.
If sufficient data locality® is present in the computations the processor can proceed
at a rate consistent with the data transfer bandwidth of the cache rather than the
lower effective bandwidth of the large shared memory due to latency and conflicts.
One difference between local memories/caches and vector registers, however, is that
registers have a prescribed shape and must be used, for the most part, in vector
operations; they must contain and be operated on as a vector v € R™ where m is
the vector length. On the other hand, local memory or caches can contain, up to a
point, arbitrary data objects with no constraint on type or use. These differences can
strongly affect the way that these architectural features influence algorithm parameter
choices.

Another feature which can significantly influence the performance of an algo-
rithm on a shared memory machine is the architectural support for synchronization
of processors. These mechanisms are required for the assignment of parallel work
to a processor and enforcing data dependences to ensure correct operation once the
assignment is made. The support found on the various multiprocessors varies consid-
erably. Some provide special purpose hardware for controlling small grain tasks on a
moderate number of processors and simple TEST-AND-SET? synchronization in mem-
ory, e.g., the Alliant FX/8. Others provide more complex synchronization processors
at the memory module or network level with capabilities such as FETCH-AND-OP or
the Zhu-Yew primitives used on Cedar [196]. Finally, there are some which are ori-
ented toward large-grain task parallelism which rely more on system-software-based
synchronization mechanisms with relatively large cost to coordinate multiple tasks
within a user’s job, often at the same time with the tasks of other users.

The discussion above clearly shows that the optimization of algorithms for shared
memory multivector architectures involve the consideration of the tradeoffs concern-

3 A computation is said to have high data locality if the ratio of the data elements to the number
of operations is small.

4 The TEST-AND-SET operation allows for the indivisible action of accessing a memory location,
testing its value, and setting the location if the test succeeds. It can be used as the basic building
biock of most synchronization primitives.
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ing the influence of architectural features, such as parallelism, load balancing, vector
computation, synchronization and parallel or hierarchical memory systems, on the
choice of algorithm or kernel organization. Many of these are potentially contradic-
tory. For example, increasing data locality by reorganizing the order of computations
can directly conflict with the attempt to increase the vector length of other computa-
tions. The modeling and tradeoff analysis of these features will be discussed in detail
below for selected topics.

Many shared memory parallel and multivector processors are commercially avail-
able over a wide range of price and performance. These include the Encore, Sequent,
Alliant FX series, and supercomputers such as the CRAY X-MP and Y-MP, CRAY-2,
and NEC. The Alliant FX/8 possesses most of the interesting architectural features
that have influenced linear algebra algorithm design on shared memory processors re-
cently; see the cluster blowup in Fig. 2. It consists of up to eight register-based vector
processors or computational elements (CE’s), each capable of delivering a peak rate
of 11.75 Mflops for calculations using 64-bit data (two operations per cycle) implying
a total peak rate of approximately 94 Mflops. The startup times for the vector in-
structions can reduce this rate significantly. For example, the vector triad instruction
v — v+ az (the preferred instruction for achieving high performance in many codes)
has a maximum performance of 68 Mflops. Each CE has eight 32-element vector reg-
isters and eight floating point scalar registers as well as other integer registers. The
CE'’s are connected by a concurrency control bus (used as a synchronization facility).
This mechanism allows an iteration of a parallel loop to be assigned to a processor
within in time equivalent to a few floating point operations and provides synchroniza-
tion support from lower iterations to higher iterations with a cost of a few cycles. As
a result, the CE’s can cooperate efficiently on parallel loops with iterations with a
granularity of a small number of floating point operations.

There is only one memory port on each CE, like the CRAY-1 and a single CPU of
the CRAY-2, therefore management of the vector registers is crucial. The CE’s share
the physical memory as well as a write-back cache that allows up to eight simultaneous
accesses per cycle. The size of the cache can be configured from 64KB up to 512KB.
The cache and the four-way interleaved main memory are connected through the
main memory bus. Most of the detailed performance information for shared memory
machines given below was obtained on this machine.

Distributed memory architectures can be roughly characterized in a fashion sim-
ilar to that used above for shared memory. In particular, there are two major factors
that distinguish them from shared memory architectures. These are the mode of
memory access and the mode of synchronization.

On p-processor distributed memory machines with an aggregate memory size M
each user-controlled processor has direct access to its local memory only, typically of
size M/p. Accessing any other memory location requires the active participation of
another user-controlled processor. As a result of this idea of direct interaction between
processors to exchange data, distributed memory architectures are often identified by
the topology of the connections between processors. Figure 1 illustrates three popular
connection schemes. The ring topology (b) uses a linear nearest—neighbor bidirectional
connection, essentially a linear array with a wrap-around connection between the first
and last processor, while the mesh connection (c) provides two-dimensional nearest
neighbor counections {wrap-around meshes are also used extensively). Both of these
simple topologies work quite well for many numerical linear algebra algorithms. In
particular, several algorithms are presented below for ring architectures. The hyper-
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cube connection is perhaps the most discussed distributed memory topology recently.
A four-dimensional cube is illustrated in (d). The connection patterns are, as the
name implies, local connections in an arbitrarily dimensioned space. In general, a
k-dimensional cube has 2* processors (vertices) each of which is connected to k other
processors. It can be constructed from two (k — 1)-dimensional cubes by simply con-
necting corresponding vertices. As a result of this construction, the nodes have a
very natural binary numbering scheme based on a Gray code. This construction also
demonstrates one of the basic scalability problems of the hypercube in that the num-
ber of connections for a particular processor grows as the size of the cube increases
as opposed to the constant local connection complexity of the simpler mesh and ring
topologies. Many of the more common topologies, such as rings and meshes, can be
embedded into a hypercube of appropriate dimension. In fact, many of the hyper-
cube algorithms published use the cube as if it were one of the simpler topologies.
Commercially available hypercubes include those by Ametek, Intel, and NCUBE.

Gilobal Network

Cluster Cluster e o - Cluster Cluster

To Global | Network
Cluster Memory
Memory Bus ]
IP Cache CE Cache
l — 1 [ 1 |
Interactive Interactive -
Processor Processor Cluster Switch ]
MULTIBUS MULTIBUS
Computational | | Computational | _ [ Computational
Element Element Element
o . T
Concurrency Control Bus

! CSRD Designed Alliant Designed

FIG. 2. The Cedar multiprocessor.

Synchronization on a distributed memory architecture, due to the memory access-
ing paradigm, is accomplished via a data flow mechanism rather than the indivisible
update used in a large shared memory system. Computations can proceed on a pro-
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cessor when due to its position in its local code the processor decides a computation
is to be performed and all of the memory transactions involving operands for the
computation in remote memory modules are complete. (These transactions are the
interaction between the processors associated with the local memory and the remote
memory modules mentioned above.) Clearly, since the synchronization is so enmeshed
in the control and execution of interprocessor communication, the major algorithmic
reorganization that can alter the efficiency of the synchronization on distributed mem-
ory machines is the partitioning of the computations (or similarly the data) so as to
reduce the synchronization overhead required.

As we would expect, the algorithm/architecture mapping questions for a dis-
tributed memory machine change appreciably from those of shared memory. Since
the machines tend to have more, but less powerful, processors, a key aspect of al-
gorithm organization is the exposure of large amounts of parallelism. Once this is
accomplished the major task is the partitioning of the data and the computations
onto the processors. This partitioning must address several tradeoffs.

To reduce total execution time, a suitable balance must be achieved between the
amount of communication required and efficient spreading of the parallel computa-
tions across the machine. One indicator of the efficient partitioning of the computa-
tions and data is the relationship between the load balance across processors and the
amount of communication between processors. Typically, although not necessarily, a
more balanced load produces a more parallel execution of the computations, ignoring
for a moment delays due to communication. On the other hand, dispersing the com-
putations over many processors may increase the amount of communication required
and thereby negate the benefit of parallelism.

The property of data locality, which was very significant for shared memory ma-
chines in the management of registers and hierarchical memory systems, is also very
important for some distributed memory machines in achieving the desired balance.
Ideally, we would like to partition the data and computations across the processors
and memory modules in such a way that a small amount of data is exchanged be-
tween processors at each stage of an algorithm, followed by the use of the received
data in operations on many local data. As a result the cost of communication is com-
pletely amortized over the subsequent computations that make use of the data. If the
partitioning of the computations and data also results in a balanced computational
load the algorithm proceeds near the aggregate computational rate of the machine.
This is, of course, identical to the hierarchical memory problem of amortizing a fetch
of a data operand from the farthest level of memory by combining it with several
operands in the nearest. Therefore many of the discussions to follow concerning the
data-transfer-to-operations ratios that are motivated by shared hierarchical memory
considerations are often directly applicable to the distributed memory case, although,
as is shown below, there is often a tradeoff between data locality and the amount of
exploitable parallelism.

Of course, there is a spectrum of architectures and a particular machine tends to
have characteristics of both shared and distributed memory architectures. For these
hybrid architectures efficient algorithms often involve a combination of techniques used
to achieve high performance on the two extremes. An example of such an architecture
that is used in this paper to facilitate the discussion of these algorithms is the Cedar
system being built at the University of Illinois Center for Supercomputing Research
and Development (see Fig. 2). It consists of clusters of vector processors connected
to a large interleaved shared global memory — access to which can be accelerated
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by data prefetching hardware. At this level it looks much like a conventional shared
memory processor. However, each cluster is, in turn, a shared memory multivector
processor, a slightly modified Alliant FX/8, whose cluster memory is accessible only
by its CE’s. The size of the cluster memory is fairly large and therefore the aggregate
makes up a considerable distributed memory system. Consequently, the Cedar ma-
chine is characterized by its hierarchical organization in both memory and processing
capabilities. The memory hierarchy consists of: vector registers private to each vector
processor; cache and cluster memory shared by the processors within a cluster; and
global memory shared by all processors in the system. Three levels of parallelism are
also available: vectorization at the individual processor level, concurrency within each
cluster, and global concurrency across clusters. Control and synchronization mecha-
nisms between clusters are supported at two levels of granularity. The larger consists
of large-grain tasks and multitasking synchronization primitives such as event waiting
and posting similar to CRAY large-grain primitives. These primitives are relatively
high cost in that they affect the state of the task from the point of view of the op-
erating system, e.g., a task waiting for a task-level event is marked as blocked from
execution and removed from the pool of tasks considered by the operating system
when allocating computational resources. The second and lower-cost control mech-
anism is the SDOALL loop (for spread DOALL) which provides a self-scheduling loop
structure whose iterations are grabbed and executed at the cluster level by helper
tasks created at the initiation of the user’s main task. Each iteration can then use the
smaller grain parallelism and vectorization available within the cluster upon which it
is executing. The medium grain SDOALL loop is ideal for moderately tight intercluster
communication such as that required at the highest level of control in multicluster
primitives with BLAS-like functionality that can be used in iterations such as the
hybrid factorization routine presented in §4. Hardware support for synchronization
between clusters on a much tighter level than the task events is supplied by synchro-
nization processors, one per global memory module, which implements the Zhu-Yew
synchronization primitives [196].

3. Computational primitives.

3.1. Motivation. The development of high-performance codes for a range of
architectures is greatly simplified if the algorithms under consideration can be de-
composed into computational primitives of varying degrees of complexity. As new
architectures emerge, primitives with the appropriate functionality which exploit the
novel architectural features are chosen and used to develop new forms of the algo-
rithms. Over the years, such a strategy has been applied successfully to the develop-
ment of dense linear algebra codes. These algorithms can be expressed in terms of
computational primitives ranging from operations on matrix elements to those involv-
ing submatrices. As the pursuit of high performance has increased the complexity of
computer architectures, the need to exploit this richness of decomposition has been
reflected in the evolution of the Basic Linear Algebra Subroutines (BLAS).

The investigation of dense matrix algorithms in terms of decomposition into lower-
level primitives such as the three levels of the BLAS has several advantages. First,
for many presently available machines the computational granularity represented by
single instances of the BLAS primitives from one of the levels or multiple instances
executing simultaneously is sufficient for investigating the relative strengths and weak-
nesses of the architecture with respect to dense matrix computations. Consequently,
since the primitive’s computational complexity is manageable, it is possible to probe
at an architecture/software level which is free of spurious software considerations
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such as ways of tricking a restructuring compiler/code generator combination into
producing the code we want. Thus, allowing meaningful conclusions to be reached
about the most effective way to use a new machine.® Second, it aids in the identi-
fication of directions in language and restructuring technologies that would help in
the implementation of high-performance scientific computing software. For example,
matrix-manipulation constructs are already included in many proprietary extensions
to Fortran due to the need for higher-level constructs to achieve high performance on
some machines. Third, detailed knowledge of the efficient mapping of primitives to
different architectures provides a way of thinking about algorithm design that facili-
tates the rapid generation of new versions of an algorithm by the direct manipulation
of its algebraic formulation. (See the discussion of triangular system solvers below for
a simple example.) Fourth, exposing the weaknesses of an architecture for the execu-
tion of basic primitives provides direction for architectural development. Finally, it
simplifies the design of numerical software for nonexpert users. This typically occurs
through the use of total primitives, i.e., primitives which hide all of the architectural
details crucial to performance from the user. Code is designed in terms of a sequential
series of calls to primitives which use all of the resources of the machine in the best
way to achieve high performance. When such a strategy is possible a certain amount
of performance portability is achieved as well. Unfortunately, many important archi-
tectures do not lend themselves to total primitives. Even in this case, however, the
hiding of parts of the architecture via partial primitives is similarly beneficial. A user
need only deal with managing the interaction of the partial primitives which may or
may not execute simultaneously.

In this section, computational primitives from each level of the BLAS hierarchy are
discussed and analyses of their efficiency on the architectures of interest in this paper
are presented in various degrees of detail. Based on the discussion in §2 which indicates
that the investigation of data locality is of great importance for both shared and
distributed memory machines, special attention is given to identifying the strengths
and weaknesses of each primitive in this regard and its relationship to the amount of
exploitable parallelism.

3.2. Architecture/algorithm analysis methodology. The design of efficient
computational primitives and algorithms that exploit them requires an understanding
of the behavior of the algorithm/primitive performance as a function of certain system
parameters (cache size, number of processors, etc.). It is particularly crucial that
the analysis of this behavior identifies any contradictory trends that require tradeoff
consideration, and the limits of performance improvement possible via a particular
technique such as blocking. Additionally, preferences within a set of primitives can be
identified by such an analysis, e.g., on certain architectures a rank-1 BLAS2 primitive
does not perform as well as a matrix-vector multiplication. Ideally, the analysis should
also yield insight into techniques a compiler could use to automatically restructure
code to improve performance, e.g., on hierarchical memory systems [63], [75]. In this
paper we are mostly concerned with analyses that concern the effects of hierarchical
(registers, cache or local memory, global memory) or distributed memory systems.

As indicated earlier, the consideration of data locality and its relationship to
the exploitable parallelism in an algorithm is a key activity in developing high-
performance algorithms for both hierarchical shared memory and distributed memory

5 Very loosely speaking this is usually the assembler level, i.e., the level at which the user has
direct control over performance-critical algorithm/architecture tradeoffs.
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architectures. In this section, we point out some performance modeling efforts con-
cerning these tradeoffs that have appeared in the literature and present a summary
of the techniques used on hierarchical shared memory architectures to produce some
of the results discussed in later sections.

Several papers have appeared recently which discuss modeling the influence of a
hierarchical memory on numerical algorithms, e.g., [3], [76], [99], [101]. Earlier work
on virtual memory systems also discusses similar issues, e.g., the work of McKellar and
Coffman [131], and Trivedi [185], [186]. In fact, the work of Trivedi performs many
of the analyses for virtual memory systems that were later needed for both BLAS2
and BLAS3 such as the effect of blocking, loop orderings in the LU factorization, and
prefetching. The details and assumptions for the hierarchical memory case, however,
differ enough to require the further investigation that has taken place. Of particular
interest here are studies by the groups at the University of Illinois on shared memory
multivector processors (the Cedar Project) [9], [66], [67], [L05] and at the California
Institute of Technology on hypercubes (the Caltech Concurrent Computation Pro-
gram) [59]-[61]. In these studies performance analyses were developed to express the
influence of the blocksizes, used in both the matrix multiplication primitives and the
block algorithms built from them, on performance in terms of architectural parame-
ters.

Gallivan, Jalby, Meier, and Sameh [67], [105] proposed the use of a decoupling
methodology to analyze in terms of certain architectural parameters the trends in
the relationship between the performance and the blocksizes used when implementing
BLAS3 primitives and block algorithms on a shared memory multivector processor.
In particular, they considered an architecture comprising a moderate number (p) of
vector processors that share a small fast cache or local memory and a larger slower
global memory. (The analysis is easily altered for the private cache or local memory
case.) An example of such an architecture is the Alliant FX/8. In their methodology,
two time components, whose sum is the total time for the algorithm, are analyzed
separately. A region in the parameter space, i.e., the space of possible blocksize
choices, that provides near-optimal behavior is produced for each time component.
The intersection of these two regions yields a set of blocksizes that should give near-
optimal performance for the time function as a whole.

The first component considered is called the arithmetic time and is denoted T,.
This time represents the raw computational speed of the algorithm and is derived
by ignoring the hierarchical nature of the memory system: it is the time required
by the algorithm given that the cache is infinitely large. The second component of
the time function considered is the degradation of the raw computational speed of
the algorithm due to the use of a cache of size CS and a slower main memory. This
component is called the data loading overhead and is denoted A;. The components
T, and A; are respectively proportional to the number of arithmetic operations and
data transfers, from memory to cache, required by the algorithm; therefore, the total
time for the algorithm is

(1) T=To+ 4 =n,7, + 7y,

where n, and n; are the number of operations and data transfers, and 7, and 7
are the associated proportionality constants or the “average” times for an operation
and data load. Note that no assumptions have been made concerning the overlap (or
lack thereof) of computation and the loading of data in order to write T as a sum
of these two terms. The effect of such overlapping is seen through a reduction in
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7;. This overlap effect can cause 7; to vary from zero, for machines which have a
perfect prefetch capability from memory to cache, to ¢;, where ¢; is the amount of
time it takes to transfer a single data element, for machines which must fetch data on
demand sequentially from memory to cache.

The analysis of T, considers the performance of the algorithm with respect to
the architectural parameters of the multiple vector processors and the register-cache
hierarchy under the assumption of an infinite cache. For some machines, the register-
cache hierarchy is significant enough to require another application of the decoupling
methodology with the added constraint of the shape of the registers. Typically, how-
ever, the analysis involves questions similar to those discussed concerning the BLAS2
below.

Rather than considering 4, directly, the second portion of the analysis attempts
a more modest goal. The data loading overhead can be analyzed so as to produce
a region in the parameter space where the relative cost of the data loading &;/T, is
small. This analysis is accomplished by expressing A;/T, in terms of two ratios: a
cache-miss ratio and a cost ratio. Specifically,

4,
(2) T. = A

where p = ny/n, is the cache-miss ratio and A = 7/7, is the cost ratio. For the
purposes of qualitative analysis, A can be bounded under various assumptions (average
case, worst case, etc.) and trends in the behavior of the primitive or algorithm derived
in terms of architectural parameters via the consideration of the behavior of the cache-
miss ratio p as a function of the algorithm’s blocksizes.

The utility of the results of the decoupling form of analysis depends upon the fact
that the intersection of the near-optimal regions for each term is not empty or at least
that the arithmetic time does not become unacceptably large when using parameter
values in the region where small relative costs for data loading are achieved. For
some algorithms this is not true; reducing the arithmetic time may directly conflict
with reducing the relative cost of data loading. In some cases, a technique known
as multilevel blocking can mitigate these conflicts [67]. In other cases, more machine-
specific tradeoff studies must be performed. These studies typically involve probing
the interaction of data motion to and from the various levels of memory and the
underlying hardware to identify effective tradeoffs [64], [65].

On distributed memory machines, analyses in the spirit of the decoupling method-
ology can be performed. Fox, Otto, and Hey [59], [61] analyzed the efficiency of the
broadcast-multiply-roll matrix multiplication algorithm and other numerical linear al-
gebra algorithms on hypercubes in terms of similar parameters. In particular, they
expressed efficiency in terms of the number of matrix elements per node (blocksize),
the number of processors and a cost ratio tcomm/tfi0p Which gives the relative cost of
communication to computation. Johnsson and Ho [110] presented a detailed analysis
of matrix multiplication on a hypercube with special attention to the complexity of
the communication primitives required and the associated data partitioning.

3.3. First and second-level BLAS. The first level of the BLAS comprises
vector-vector operations such as dotproducts, a «— zTy, and vector triads (SAXPY),
y «— y = azx [121]. This level was used to implement the numerical linear algebra
package LINPACK [38]. These primitives possess a simple one-dimensional parallelism
especially suitable for vector processors with sufficient memory bandwidth to tolerate
the high ratio of memory references to operations; pu = % for the triad and y = 1
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for the dotproduct. The superiority of the dotproduct is due to the fact that it is
a reduction operation that writes a scalar result after accumulating it in a register.
The triad, on the other hand, produces a vector result and must therefore write n
elements to memory in addition to reading the 2n elements of the operands. For vector
processors, performance tuning is limited to adjusting the vector length and stride of
access. On multivector processors, both primitives are easily decomposed into several
smaller versions of themselves for parallel execution. For the triad, p = % + £, note
that the fetch of a becomes more significant, and 4 =~ 1+ £ for the dotproduct, where
p is the number of processors. As the number of processors increases to a maximum
of n, the preference for the dotproduct over the triad is reversed. For p = n the triad
requires O(1) time with g & 2 while the dotproduct requires O(logn) with p = 2. Such
a reversal often occurs when considering large numbers of processors relative to the
dimension of the primitive. The dependences graph of the reduction operation and its
properties that produced a small u for a limited number of processors scale very poorly
as p increases and translate directly into a relative increase in the amount of memory
traffic required on a shared memory architecture and interprocessor communication
on a distributed memory machine. (For a distributed memory machine, whether or
not the reversal of preference occurs can depend strongly on the initial partitioning
of the data.)

The advent of architectures with more than a few processors and high-performance
register-based vector processors with limited processor-memory bandwidth such as the
CRAY-1 exposed the limitations of the first level of the BLAS. New implementations
of dense numerical linear algebra algorithms were developed which paid particular
attention to vector register management and an emphasis on matrix-vector primitives
resulted [24], [56]. This problem was later analyzed in a more systematic way in [42]
and resulted in the definition of the extended BLAS or BLAS2 [40]. Architectures
with a more substantial number of processors were also more efficiently used since
matrix-vector operations consist essentially of multiple BLASL primitives that can
be executed in parallel — roughly speaking they possess two-dimensional parallelism.
The second level of the BLAS includes computations involving O(n?) operations such
as a matrix-vector multiplication, y «— y + Az, and a rank-1 update, A — A + zy7T.
Note that these primitives subsume the triad and dotproduct BLAS1 primitives and
become those primitives in the limit as one of the dimensions of A tends to 1. These
primitives improve data locality in the sense that the number of memory references
per operation can be reduced by accumulating the results of several vector operations
in a vector register before writing to memory as in matrix-vector multiplication or by
keeping in registers operands common to successive vector operations as in a rank-1
update. The two techniques, however, do not result in similar improvements in data
locality. In general, it is preferable to write algorithms for register-based multivector
processors in terms of matrix-vector multiplications rather than rank-1 updates.

To see this, consider first the efficiency of implementing the two BLAS2 primitives
as a set of BLAS1 primitives each of the order of the matrix. (For the rank-1 it is
only possible to use the triad; the matrix-vector multiplication allows a choice of
primitives.) If the matrix dimensions n; and ny are larger than the register size® of
any of the processors there is no possibility of efficient register reuse and the value
of 4 remains at the disappointing BLAS1 level. For problems where either n, or

6 The term register size does not necessarily mean the vector length of a single vector register.
It can also refer to the aggregate size of all of the vector registers used.in a processor in a given
implementation of the primitive.
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ng is smaller than the register size, however, it is possible to reuse the registers
in such a way that both primitives achieve their theoretical minimum values of u;
p =1+ 1/2ny + 1/2n,y for the rank-1 update and g = 1/2 + 1/2n; + 1/n, for the
matrix-vector product. For the small rank-1, this local optimal is achieved by reading
the small vector into vector register once and reusing it to form a triad with each
row or column of the matrix in turn. As a result, each element of the matrix and the
two vectors are loaded into the processor exactly once and the elements of the matrix
are written exactly once — the optimal data transfer behavior for a rank-1 update.
For the matrix-vector product, the technique depends upon whether n, or ns is the
small dimension. If it is ns then a technique similar to the rank-1 update is used.
The vector z is loaded into a register once. Each row of A is read in turn and used
in an inner product calculation with z in the register, and the result is then added
to the appropriate element of y and written back to memory. Every data element is
read and written the minimum number of times. If the small dimension is n; then a
slightly different technique is used. The result of the operation, y, is accumulated in
a vector register, thereby suppressing the writes back to memory of partial sums.

As long as n; or ns do not get very small, which implies that the primitives are
degenerating into a first level primitive, the values are an improvement compared to
their limiting first level primitives. Of course, the rank-1 update still has a value
of p similar to the dotproduct BLAS1 primitive, but it has the advantage of more
exploitable parallelism. If these results could be maintained for arbitrary n; and
nay, the superiority of the BLAS2 on register-based multivector processors would be
established.

To show that this is indeed possible, we will exploit the richness of structure
present in linear algebra computations and partition the primitives into smaller ver-
stons of themselves. This is accomplished by partitioning A into kike submatrices
A;; € R™M>™2 where it is assumed for simplicity that n; = k;m; with k; and m;
integers, and partitioning z and y conformally. The blocksizes which determine the
partitioning are chosen so that the smaller instances of the primitives are locally
optimal with respect to their values of y.

The rank-1 update is thus reduced to ki ks independent small rank-1 updates.
The resulting global y value for the entire rank-1 update is g =14 1/2m; +1/2ma.
Now consider its behavior as p, the number of register-based vector processors used,
increases. For small and moderate p, one of the blocksizes, say m;, could be taken
equal to the corresponding dimension of the matrix, n; (the choice of m; or mq simply
depends upon the shape of the matrix and the exact number of processors). It follows
that u = 1+ 1/2r + 1/2ny where r is the register length. As p increases further, a
true two-dimensional partitioning must be used. So we set p = ki1ks which balances
the computational load and the amount of data required by each processor. Since the
register size determines the largest vector object we can work with and extra transfers
to and from registers translate directly into additional time, we make m; ! +my ! as
small as possible under the constraint that either m; < r or ms < r, depending on the
implementation chosen for the register-based smaller rank-1 update. Consequently,

p=1+

p
mp +m
2n1ng (m 2)
and the algorithm requires O(mim2) time. At the limit of available parallelism,
p = nyng and the rank-1 update requires O(1) time with g = 2. This is the same as
the best BLAS1 primitive. This is not surprising since in the limit each processor is
doing essentially the same scalar computation as the BLAS1 triad. The only difference
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is that in the BLAS2 case there is much more exploitable parallelism. Note also that
at some point while increasing the number of processors the vector length used by
each processor will fall below the breakeven point for the use of the vector capability
of the processor, and the switch should be made to scalar mode.

A similar decomposition technique can be used for the matrix-vector product
primitive y < y £ Az. The matrix is partitioned into submatrices A;; € R™1*™2 and
partitioning = and y conformally. The resulting algorithm is

doi=1,k
yi — yi + A + - + Aig, T,
end do

All of the basic computations z < z + A;;z; can proceed in parallel with a fan-in
dependence graph required on the update of the y; if ko > 1. As before, for a small to
moderate number of processors one of the m; can be set to the register length and the
other to the remaining dimension of A. If ¢ = 1 then no synchronization is required
since ko = my and the loop can execute in parallel. The resulting global p is

_1,1 .0
h=5 79 ny’
where 7 is the vector length. If 1 = 2
_ l+ 1 + 1
k=35 2ny T

In the latter case, k; is equal to 1 and synchronization is required. However, since
the number of processors is assumed small the partial sums from local matrix-vector
products can be accumulated in a vector of length n; private to each processor (not
necessarily a register). After all processors are finished accumulating their partial
sums, a simple fan-in of the results can be done. The time required is O(m;ma2).
Note that on a moderate number of processors the matrix-vector primitive is twice
as efficient as the rank-1 primitive of the same size. Consequently, when implement-
ing algorithms with BLAS2 primitives on a register-based multivector architecture
with a moderate number of processors, a matrix-vector product-based algorithm will
significantly outperform the same algorithm based on a rank-1 update.

As with the rank-1 update it is possible to derive an estimate of the time and the
value of p for the case where a two-dimensional partitioning is used with p = kjk».
In this case, not only must the transfers be computed for the small matrix-vector
products performed by each of the processors, but also the transfers associated with
the k; independent fan-in trees which sum together the partial sums into the final
values of y; for 1 <i < k;. The time required is O(myma) + O(m log, ka) with

1 P my
H= §+ ning [m1+——2—] ’

As with all of the other primitives, when p is as large as possible, in this case p = nyn,,

the value of i increases to approximately 2. Due to the reduction nature of the matrix-
vector product, its time has a lower bound of O(lognz).

The results above demonstrate several important points about first- and second-

level BLAS primitives. The most important is that for register-based multivector
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processors with a moderate number of processors, there can be a significant difference
between the performance of a given algorithm when implemented in terms of the four
primitives discussed above. This performance order is given from worse to best in
terms of decreasing values of u. The triad with u = % does far too many spurious data
transfers to be of use on a processor with a single port to memory. The dotproduct
improves the ratio to g = 1 but not all processors have high-performance capabilities.
The BLAS2 rank-1 update primitive also has g = 1 but it does not depend upon
efficient reduction operations on vector registers being available on a processor and
its extra dimension of parallelism makes it more flexible than the previous primitives.
By far, however, the preferred primitive for such an architecture is the matrix-vector
product due to its superior register management.

The second observation from the results above is how the preferences can reverse
when the architecture used is radically altered. In this case we considered increasing
the number of register-based vector processors available to the maximum needed.
It was shown that in the limit all have similar register-memory transfer behavior
and the nonreduction operations have a distinct advantage if it is assumed that the
data and computations have been partitioned ideally. This last point is crucial. Our
discussions implicitly assumed a shared memory architecture when increasing the
number of processors. While the results do hold for certain distributed memory
architectures, they can be very sensitive to the assumptions concerning initial data
partioning. If for some reason the data had been partitioned in a different way the
trends need not be the same.

3.4. Third-level BLAS.

3.4.1. Motivation. The highest level of the BLAS is motivated by the use of
memory hierarchies. On such systems, only the lowest level of the hierarchy (or in
some cases the two lowest, e.g., registers and cache) are able to supply data at the
computational bandwidth of the processors. Hence, data locality must be exploited
to allow computations to involve mostly data located in the lowest levels. This allows
the cost of the data transfer between levels to be amortized over several operations
performed at the computational bandwidth of the processors. This problem of data
reuse in the design of algorithms has been studied since the beginning of scientific
computing. Early machines, which had small physical memories, required the use
of secondary storage such as tape or disk to hold all of the data for a problem.
Similar considerations were also needed on later machines with paged virtual memory
systems. The block algorithms developed for such architectures relied on transferring
large submatrices between different levels of storage, with prepaging in some cases,
and localizing operations to achieve acceptable performance.

Of course, the resulting matrix-matrix primitives could have been used in algo-
rithms for the machines which motivated the BLAS2. Indeed, as Calahan points out
[23], the use of matrix-matrix modules was considered when developing algorithms for
the CRAY-1. The hierarchy, however, was not distinct enough to achieve a significant
advantage over BLAS2 primitives. The introduction of the CRAY X-MP and its ad-
ditional memory ports delayed even further the move to the next level of the BLAS.
It was finally caused by the availability of high-performance architectures which rely
on the use of a hierarchical memory system and with more profound performance
consequences when not used correctly. Agarwal and Gustavson designed matrix mul-
tiplication primitives and block algorithms for solving linear systems to exploit the
cache memory on the IBM 3090 in the latter part of 1984. These evolved into the
algorithms contained in ESSL, first released in the middle of 1985, for the IBM 3090
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with vector processing capabilities [1], [84], [130], and more recently for the multi-
processor version of the architecture [2]. A numerical linear algebra library based on
block methods was developed and its performance analyzed in terms of architectural
parameters in 1985 and early 1986 for a single cluster of the Cedar machine, the
multivector processor Alliant FX/8 [9], [105], [156]. At approximately the same time,
Calahan developed block LU factorization algorithms for one CPU of the CRAY-2
[23]. In 1985, Bischof and Van Loan developed the use of block Householder reflectors
in computing the QR factorization and presented results on an FPS-164/MAX [16).

The development of these routines and numerical linear algebra libraries clearly
demonstrated that a third level of primitives, or BLAS3, based on matrix-matrix com-
putations was required to achieve high performance on the emerging architectures.
Such primitives achieve a significant improvement in data locality, i.e., the data local-
ity is no longer effectively independent of problem size as it is for the first two levels of
the BLAS. Third-level primitives perform O(n3) operations on O(n?) data, and they
increase the parallelism available by yet another dimension by essentially consisting
of multiple independent BLAS2 primitives.

Since the reawakening of interest in block methods for linear algebra, many pa-
pers have appeared in the literature considering the topic on various machines, e.g.,
(5], [44], [149]. The techniques have become so accepted that some manufacturers now
provide high-performance libraries which contain block methods and matrix-matrix
primitives. Some, such as Alliant, provide matrix multiplication intrinsics in their
concurrent/vector processing extensions to Fortran. In 1987, an effort began to stan-
dardize for Fortran 77 the BLAS3 primitives and block methods for numerical linear
algebra [35], [37], [39].

3.4.2. Some algorithms. The most basic BLAS3 primitive is a simple matrix
operation of the form

(3) C — C + AB,

where C, A, and B are n; Xnz, nj Xng, and ny X n3 matrices, respectively. Clearly, this
primitive subsumes the rank-1 update, (n; = 1), and matrix-vector multiplication,
(ns = 1), BLAS2 primitives. In block algorithms, it is most often used as a rank-w
update (n; = w <« n,n3) or a matrix multiplied by several vectors (ng = w € ny,n2).
The analysis of the parallel complexity of such a computation has been the subject
of much study. In this section we give a brief summary of some generic algorithms
and mention some implementations on various machines that have appeared recently
in the literature.
The basic scalar computation can be expressed as

dor=1,n3
do s = 1,711
dot= 1, 2
Cs,r = Csr + aa,tbt,r
end do
end do
end do

where ¢, r, a5, and by, denote the elements of C, A respectively B.
There are three basic generic approaches to performing these computations which
correspond to different choices of orderings of the loops. They are called the inner,
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middle, and outer product methods due to the fundamental kernels used and corre-
spond to the following code segments:

inner_product;
dor=1,n3
dos=1m
Cs,r = Cs,r + inner _prod(as x, bur)
end do
end do

middle_product:
dor=1,n3
Cx,r = Cxyr + Ab*’r
end do

and

outer_product:
dot=1,n
C = C + a*,tbgj,‘
end do.

Each has its advantages and disadvantages for various problem shapes and architec-
tures. All have immediate generalizations involving submatrices. These issues are
discussed in the literature, e.g., [100], [137], in several places and will not be repeated
here. We do note, however, that for register-based vector and multivector processors
with one port to memory, the middle product algorithm facilitates the efficient use of
the vector registers and data bandwidth to cache of each processor, and exploits the
chaining of the multiplier, adder, and data fetch available on many systems. This is
accomplished by performing, possibly in parallel, multiple matrix-vector products —
the preferred BLAS2 primitive for vector register management. When the vector pro-
cessors are such that register-register operations are significantly faster than chained
operations from local memory or cache, a more sophisticated two-level generalization
of the blocking strategy discussed below can be used to achieve high performance.

Madsen, Rodrigue, and Karush considered, for use on the CDC STAR-100 vector
processor, a slightly more exotic matrix multiplication based on storing and manip-
ulating the diagonals of matrices [127]. Their motivation was mitigating the perfor-
mance degradation of the algorithms above for banded matrices and the difficulties
in accessing the transpose of a matrix on some machines.

The BLAS3 primitive implemented for a single cluster of the Cedar machine [66],
[67], [105] and applicable to machines with a moderate number of reasonably coupled
multivector processors with a shared cache implements a block version of the basic
matrix multiplication loops. It proceeds by partitioning the matrices C, A, and B
into submatrices Cj;, Ak, and By; whose dimensions are m; x m3, m; X mg, and
mg X mg, respectively. The basic loop is of the form

doi= 1, kl
dok = 1, kz
do _] = 1, k3
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Cij = Cij + A * Bkj
end do
end do
end do
where ny = kym,, ns = kamo, and ng = kamg, and &, k2, and k3 are assumed to be
positive integers for simplicity.

The block operations C;; = Cj; + Ajx * By; possess a large amount of concur-
rent and vectorizable computations, so the algorithm proceeds by dedicating the full
resources of the p vector processors to each of the block operations in turn. The
kernel block multiplication can be computed by any of the basic concurrent/vector
algorithms. As noted above the middle product algorithm which performs several
multiplications of A;x and columns of By; in parallel is well suited for register-based
architectures like the Alliant FX/8, hence it is assumed in the analysis below.

There are, of course, several possible orderings of the block loops and several other
kernels that can be used for the block operations.” If, for example, the processors
are not tightly coupled enough parallelism can moved to the block level. This can
also be useful in the case of private caches or local memories for each processor. As
is shown below this particular ordering (or one trivially related to it) is appropriate
for use in the block algorithms discussed in later sections. However, when developing
a robust BLAS3 library, kernels for the block operations which differ from those
discussed below and alternate orderings must be analyzed so that selection of the
appropriate form of the routine can be done at runtime based on the shape of the
problem. This is especially important for cases with extreme shapes, e.g., guaranteeing
smooth performance characteristics as the shapes become BLAS2-like.

Clearly, if the number of processors are increased to p = nynyng the inner product
form of the algorithm can generate the result in O(log, ny) time. For a shared memory
machine, such an approach would place tremendous strain on a highly interleaved or
parallel memory systems. As mentioned earlier, one way that such strain is mitigated
is by assigning elements of structured variables to the memory banks in such a way
as to minimize the chance of conflicts when accessing certain subsections of the data.
For the inner product algorithm it is particularly important that the row and columns
of matrices be accessible in a conflict free manner. One of the easiest memory module
mapping strategies that achieves this goal dates back to the ILLIAC IV ([114], [115],
also see [116]). The technique is called the skewed storage scheme. In it the elements
of each row of a matrix are assigned in an interleaved fashion across the memory
modules. However, when assigning the first element of a row it is placed in the memory
module that is skewed by one from the module that contained the first element of
the previous row. Any row or column of a matrix can now be accessed in a conflict
free fashion. Matrix multiplication algorithms for the distributed memory ILLIAC
IV were developed based on this scheme which can be easily adapted to the shared
memory situation.

If we are willing to sacrifice some numerical stability, fast schemes which use less
than O(n®) operations can be used to multiply two matrices. In [95], Higham has
analyzed this loss of stability for Strassen’s method [175] and concluded that it does
not preclude the effective use of the method as a BLAS3 kernel. Recently, Bailey has

7 The i—j —k ordering of the block loops, for example, produces distinctly different blocksizes and
shapes [105]. Its use can be motivated by the desire to keep a block of C in cache while accumulating
its final value. This implies that a block of A must reside in the cache simultaneously thereby altering
the optimal shapes.
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considered the use of Strassen’s method to multiply matrices on the CRAY-2 [7]. The
increased performance compared to CRAY’s MXM library routine is achieved via the
reduced operation count implicit in the method and the careful use of local memory
via an algorithm due to Calahan. Speedups as high as 2.01 are reported compared
to CRAY’s library routine on a single CPU. Bailey also notes that the algorithm is
very amenable to use on multiple CPU’s of the CRAY-2 although no such results are
presented.

The broadcast-multiply-roll algorithm for matrix multiplication described and an-
alyzed by Fox et al. is representative of distributed memory algorithms [59]-[61].
(For other distributed memory algorithms see [78], [129], [135].) Consider the calcu-
lation of C — C + AB where A, B, C € R**". Assume the processors are connected
as a two-dimensional wrap-around mesh and the square subblock with index (z, j) of
each matrix starts out in the memory of the processor correspondingly indexed. The
algorithm consists of \/n steps each of which consists of broadcast, multiply, and roll
phases. In particular, on step i (i = 0,---,/n — 1) the processor in each row owning
A; (j+i)mod,/m broadcasts it to the rest of the processors in the row which store it in a
local work array T. Each processor then multiplies T by the subblock of B presently
in its memory and adds it to the subblock of C that it owns. The final phase of
each step consists of rolling the matrix B up one row in the mesh with appropriate
wrap-around at the ends of the mesh. In other words, each processor transmits the
subblock of B it has in its memory to the processor in the same column of the mesh
but one row up. The repetition of this three-phase step \/n times corresponds to the
number of steps required to let each subblock of B return to its original processor.

Finally, Johnsson and Ho have considered the implementation of matrix multi-
plication on a hypercube [110]. In this work they consider the implementation of the
computational primitive in terms of communication primitives some of which implic-
itly perform computations as the data move through the cube. As a result, users
can write their algorithms as a sequence of calls to these data motion primitives in a
fashion similar to the method advocated with respect to the computational primitives
discussed above.

3.4.3. Blocksize analysis. In this section we summarize the application of the
decoupling methodology to the matrix multiplication algorithm for the single cluster
of the Cedar machine described above. Recall that the block level loops were

doi= 1,k1
dok =1,k
do _] = 1, k‘3
Cij = Cij + Aik * By
end do
end do
end do

where n; = kymy, ny = kams, and n3 = kgmg, and ky, k2, and k3 are assumed to be
positive integers. Each block operation C;; = C;ij + Ak * Bg; uses the resources of
the p vector processors by performing matrix-vector products in parallel.

Values of my, ma, and mz which yield near-optimal values of the arithmetic time
for the kernel can be determined by an analysis similar to those presented above for the
BLAS2. The essential tradeoffs require balancing the parallel and vector processing
capabilities and the bandwidth restrictions due to the single port to memory on each
processor. For the Alliant FX/8, the values of m;, ms, and ms chosen according to
the preceding reasoning are: m; = 32k or is large; ms > 16 to 32 depending on the
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overhead surrounding the accumulation; and ms = 8k or is large.

The reduction of the data loading overhead reduces to a simple constrained min-
imization problem. Since the submatrices A;; are associated with the inner loop, it
is assumed that each A;; is loaded once and kept in cache for the duration of the
J loop. Similarly, it is assumed that each of the C;; and By; are loaded into cache
repeatedly. Note that the conservative approach is taken in that no distinction is
made between reads and writes in that A is set under the pessimistic assumption that
anything loaded has to be written back whether or not it was updated. Some cases
where this distinction becomes important are discussed below.

It is easily seen by considering the number of transfers required that the cache-
miss ratio, u, is given by

1 1 1

4 R S NI
() H 2m1 +2m2+2n3

The theoretical minimum, given an infinite cache, is

1 1 1

p= ot —

21’11 277,2 2713 '

Constraints for the optimization of the terms involving m; and mg are generated
by determining what amount of data must fit into cache at any given time and requir-
ing that this quantity be bounded by the cache size C'S. The final set of constraints
come from the fact that the submatrices cannot be larger than the matrices being
multiplied. Therefore, the minimization of the number of loads performed by the
BLAS3 primitive is equivalent to the solution of the minimization problem

(5) min p(ml,mg) = ml‘l +m;1

subject to ma(my + p) < CS
1<mi<ny
1 < mg < ny,

where CS is the cache size and p is the number of processors. The constraints trace
a rectangle and an hyperbola in the (m1, m2)-plane.

The solution to the minimization problem separates the (n;,n2) plane into four
distinct regions; two of which are of interest for the rank-w update and matrix-times-w-
vectors primitives, and general large dense matrix multiplication (see [67] for details).
These can be summarized as:

1. The value of mg is arbitrary and taken to be ns.
2. If ny(ny +p) > CS and ny < CS(VCS +p)!

cSs
my=——p and my=no.
2

3. If ny(ny +p) > CS, ny > VCS, and ny > CS(VCS +p)~?
cs

m; = CS and my = —

VCS+p
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Note that since the near-optimal region for the arithmetic time component was
unbounded in the positive direction, there is a nontrivial intersection between it and
the near-optimal region for the data loading component. This implies that, except for
some boundary cases where n;, ny, and/or nz become small, the decoupling method-
ology does yield a strategy which can be used to choose near-optimal blocksizes for
BLAS3 primitives. (The troublesome boundary cases can be handled by altering the
block-loop ordering or choosing a different form of the block multiplication kernel.)

For the rank-w primitive this results in a partitioning of the form

Cy i A,
(6) A IR R I N
Ck Ck Ag

where the blocksizes are given by the case above with ny = w and small. Note that
the block loops simplify to

doi=1,k
C,=C;+4;*B
end do

and parallelism at the block-loop level becomes trivially exploitable when necessary.
Also note that each block of the matrix C is read and written exactly once implying
that this blocking maintains the minimum number of writes back to main memory.

For large dense matrix multiplication and for the matrix-times-w-vectors primitive
the partitioning is

o i A - Ay By
(7) : - - : SR :
Ck Ck Akl te Akm Bm

and the block loops reduce to

doi=1,k
doj=1m
Ci=Ci+A,'j*Bj
end do
end do.

Once again block parallelism is obviously exploitable when needed. Note however that
the blocks of C are written to several times. In general, these writes are not signifi-
cant since the blocksizes have been chosen to reduce the significance of all transfers
(including these writes) to a negligible level. The i-j-k block loop ordering can be
used and analyzed in a similar fashion if it is desirable to accumulate a block of C in
local memory. The blocksizes that result are, of course, different from the one shown
above (see [105]).

The key observation with respect to the behavior of p for BLAS3 primitives is
that it decreases hyperbolically as a function of m; and mj. (This assumes this
particular block loop ordering but similar statements can be made about the others.)
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It follows that the relative cost of transferring data decreases rapidly and reaches a
global minimum of the form
A pA A

8 =2 2
®) Au VCS + 2CS + 213

Therefore, assuming that n3 is much larger than v/CS (large dense matrix multi-
plication), data loading overhead can be reduced to O(1/v/CS). This limit on the
cache-miss ratio reduction due to blocking is consistent with the bound derived in
Hong and Kung [101]. For BLAS3 primitives where one of the dimensions is smaller
than the others, with value denoted w, the data loading overhead is a satisfactory
O(1/w).

The hyperbolic nature of the data loading overhead implies that reasonable per-
formance can be achieved without increasing the blocksizes to the near-optimal values
given above. Of course, exactly how large m; and m, must be in order to reduce the
data loading overhead to an acceptable amount depends on the cost ratio A of the
machine under consideration. The existence of a lower bound on the cache-miss ratio
achievable by blocking does, however, have implications with respect to the blocksizes
used in block versions of linear algebra algorithms.

The expression for the data loading overhead based on (2) and (4) is also of the
correct form for matrix multiplication primitives blocked for register usage in that
hyperbolic behavior is also seen. The actual optimization process must be altered.
The use of registers imposes shape constraints on blocksize choices and it is often
more convenient not to decouple the two components of time. For the most part,
however, the conclusions stated here still hold.

For hypercubes, the analysis of Fox, Otto, and Hey [61] derives a result in the
same spirit as (8). They show that the efficiency (speedup divided by the number of
processors) of the broadcast-multiply-roll matrix multiplication algorithms is

1
1- (c/\/ﬁ)tcomm/tﬂop

where tcomm, tfiop, and n are the cost for communication of data, cost of a floating
point operation, and the number of matrix elements stored locally in each proces-
sor (hence bounded by the local memory size). The constant ¢ is 1 for the square
subblock decomposition but is \/p/2 for the row decomposition, where p is the num-
ber of processors, indicating the superiority of square blocks for this type of matrix
multiplication algorithm.

€

3.4.4. Preferred BLAS3 primitives. The preceding analysis also allows the
issue of superiority of one BLAS3 primitive compared to the others to be addressed.
Consider the comparison of the rank-w primitive to the primitive which multiplies a
‘matrix by w vectors. If w = 1 this is the BLAS2 comparison discussed earlier and for
the shared memory multivector processor analyzed above the matrix-vector multipli-
cation primitive should be superior. On the other hand, if w = n, the two primitives
are identical and no preference should be predicted by the analysis. Hence, the anal-
ysis should result in a preference which is parameterized by w with end conditions
consistent with these two observations.

To make such a comparison we will restrict ourselves to the multivector shared
hierarchical memory case considered above and to four partitionings of the primitives
which exploit the knowledge that w is small compared to the other dimensions of the
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matrices involved (denoted h and [ below). Such a strategy was proposed in [105] and
has been demonstrated effective on the Alliant FX/8. We will also distinguish between
elements which are only read from memory into cache and those which require reading
and writing. This allows us to be more precise than the conservative bounding of the
cost of data transfer presented above. Also note that this affects the value of the cost
ratio A in that it need not be as large as required above.

The partitioning of the rank-w update used is of the form given above in (6)
but the values of the blocksizes are altered to reflect the more accurate analysis
obtained by differentiating between reads and writes. (The qualitative conclusions of
the previous analysis do not change.) Three different partitionings for the primitive
which multiplies a matrix by w vectors are analyzed. Each is appropriate under
various assumptions about the architecture and shape of the problem.

It is assumed that the primitives make use of code to perform the basic block
operations which has been optimized for register-cache transfer and is able to maintain
efficient use of the lowest levels of the hierarchy as the shape of the problem changes,
i.e., the arithmetic time 7, has been parameterized according to w and the code
adjusted accordingly. In this case, the source of differences in the performance of
the two primitives is the amount of data transfer required between cache and main
memory which is given by the ratio u. Below we derive and compare the value of u
for each of the four implementations of the primitives. .

The rank-w update computes C — C + AB where C € ®**!, A € ®P*¥  and
B € ®“*!. The partitioning used is shown in (6) where C; € R™*!, A; € R™*v,
km = h, and m is the blocksize which must be determined. Note that we have used
the knowledge of the analysis above to fix two blocksizes at w and I. The computations
requires 2hiw operations and the block loops are of the form

doi=1,k
Ci=C;+A;xB
end do.

The primitive requires hl+ hw +klw loads from memory and hl writes back to memory.
This partitioning/primitive combination is denoted Form-1.

The second primitive also computes C «— C + AB. In this case, however, C €
RAxw A e R and B € R1*“. As noted above, three partitionings are considered.
The first two are of the form shown in (7). Both have the block loop form

doi=1,k
doj=1m
C; :Ci+A,’j*Bj
end do
end do.

They differ in the constraints placed on the blocksizes.

The first version, denoted Form-2, results from applying the analysis of the pre-
vious section to the i-k-j loop ordering of the original triply nested loop form of the
matrix multiplication primitive. One of the blocksizes is fixed at w. Specifically, the
partitioning is such that 4; € R™>*™2 kimy = h, kamy = [, and C; and B, are
dimensioned conformally. The blocksizes m, and my are determined under the sim-
plified constraint of m;my < CS. Form-2 requires hl + hlw(m;' +m; ") loads and
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kohw writes to memory.

The second version, denoted Form-3, results from analyzing the i-j-k loop ordering
of the original triply nested loop form of the matrix multiplication primitive as in
[105]. As before, one of the blocksizes is fixed at w. The partitioning is such that
A; € R™X™2 fymy = h, komg = [, and C; and B; are dimensioned conformally.
The blocksizes m; and my are determined under the constraint of mi(mg+w) < CS.
This constraint is generated by requiring the accumulation in cache of a block C;
which implies that a C; and the A;; contributing to the product must fit in cache
simultaneously. In [105] it is shown that this partitioning sets mg to the value 7
where T is determined via the analysis of register-cache transfer cost. This simplifies
the minimization problem and leaves only m; to be determined. Form-3 requires
hl + hw + hlwmT' loads hw writes to memory. Additionally, it requires (k2 — 1)hw
writes to cache due to the local accumulation of C;.

TABLE 1
Comparison of the four forms of the BLAS3 primitives.

Form ) Hopt Popt (VCS) Blocksizes
1 1 1 1 1 3 1 —
1 smt o ta ;+'2%-+§ 2\/C’—S_+2_l m=CS/w
1 1 1 1 2 2v241 —_
2 30 T 3m; T Im, E+L’ﬁ ?% my =VCS/2

mzzx/m

1 1 1 1 w 1 T 1 1 T — Cs
3 wtTam T7T |wtcstitacs | 7Testitacs | ™ = o5
1 1 1 1 w 1 3 1 —
4 Wt tom Wwtdstm aves T2 m=CS/w

The third version, denoted Form-4, applies the i-k-j ordering to the transpose of
the matrix multiplication to determine blocksizes. This form is valuable for certain
architecture/shape combinations. The resulting partitioning is of the form

B
©) cCecx(4a - a)| : |,
By,

where 4, € ®**™, B; € ®™*“ and km = I. The constraint mw < CS is applied.
Form-4 requires hl + lw + 2khw loads and khw writes to memory. The block loops
simplify to

doi=1k
C1=C"+'14,*BZ
end do.
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Note that if parallelism across the blocks is used this form requires synchronization
(which is typically done on a subblock level).
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F1G. 3. Performance of square matriz multiplication on an Alliant FX/8.

Table 1 lists the results of analyzing each of the four forms presented above.
The generic form of p is given in terms of the dimensions of the problem and the
blocksizes used as well as its optimal value. Since the results of the analysis of the
primitives given above and the analysis of the block methods which use them indicate
that w = v/CS represents a limit point on performance improvement the optimal
evaluated there is also given. Finally, the value of the blocksizes which give the optimal
data loading cost are also listed. The values show clearly the well-known inferiority of
the rank-w by a factor of 2 when w is near 1, i.e., in the near-BLAS2 regime. However,
as w increases, the fact that one is up to a factor of two more than the other (though
this multiple rapidly reduces as well) quickly becomes irrelevant since the relative
cost of data transfer to computational work has become an insignificant performance
consideration. As a result, given these partitionings and an architecture satisfying the
assumptions of the analysis, we would not expect significant performance differences
between the two primitives when w and the size of the matrices are large enough.
Such observations have been verified on an Alliant FX/8. Consequently, one would
not expect the performance of the block algorithms that use the two BLAS3 primitives,
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e.g., a block LU algorithm, to be significantly different for sufficiently large problems8,
It would also be expected that the trend in preference for non-reduction types of
computations as the number of processors or the cost of processor synchronization
increases seen with BLAS2 primitives carry over to the BLAS3.

3.4.5. Experimental results. The performance benefits of using BLAS3 primi-
tives and carefully selecting blocksizes in their implementation has been demonstrated
in the literature. In this section, we report briefly on experimental results on the Al-
liant FX/8. The experiments were performed executing the particular kernel many
times and averaging to arrive at an estimate of the time spent in a single instance of
the kernel. This technique was used to minimize the experimental error present on
the Alliant when measuring a piece of code of short duration. As a consequence of
this technique, the curves have two distinct parts. The first is characterized by a peak
of high performance. This is the region where the kernel operates on a problem which
fits in cache. The performance rate in this region gives some idea of the arithmetic
component of the time function. It is interesting to compare this peak to the rest
of the curve which corresponds to the kernel operating on a problem whose data is
initially in main memory. When the asymptotic performance in the second region is
close to the peak in cache the number of loads is being managed effectively.

Figure 3 illustrates the effect of blocksize on the performance of the BLAS3 prim-
itive C « C — AB where all three matrices are square and of order n. The blocksizes
used for each curve are from low to high performance : m, = 32, mo = 32, and
mg = 32; m; = 64, my = 64, and m3 = 64; and m; = 128, my = 96, and m3 = n. It
is clear from the asymptotic performance of the top curve that a significant portion
of peak performance can be achieved by choosing the correct blocksizes. In this case
an asymptotic rate of just below 52 Mflops is achieved on a machine with a peak rate,
including vector startup, of 68 Mflops.

Figures 4 and 5 show the performance of various rank-k updates. The parameters
mqo and mj3 are taken as k and n as recommended by the analysis-of the BLAS3
primitive. The parameter m; is taken to be 96 and 128 in the two figures, respectively.
This parameter is kept constant for each figure to allow a fair comparison between
the performances of the various kernels. Further, the BLAS3 analysis recommends
my = (CS/k) — p. In fact, for the values of k considered here, if m; > 96 then the
term in the expression for the number of loads for the rank-k kernel which involves
my is not significant compared to the term involving ma.

These curves clearly show that increasing k yields increased performance and a
significant portion of the effective peak computational rate is achievable. Also note
that as k increases the difference in performance of two successive rank-k kernels
diminishes. Indeed, the k¥ = 96 curve was not included in Fig. 4 since it delivers
performance virtually identical to the k = 64 kernel.

It is instructive to compare the performance of the rank-k kernel to typical BLAS
and BLAS2 kernels. The BLAS kernels o «— zTy and y «— y + oz achieve 11 Mflops
and 7 Mflops, respectively, with their arguments in main memory. The BLAS2 matrix-
vector product kernel achieves 18 to 20 Mflops.

3.5. Triangular system solvers. Solving triangular systems of linear equa-
tions, whether dense or sparse, is encountered in numerous applications. Even though
the solution process consumes substantially less time than the associated factoriza-

8 As is discussed later, when the ratio of the blocksize to the problem, w/n, is small other tradeoffs
must be considered in the performance of block algorithms.
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FI1G. 4. Performance of rank-k update with m1 = 96 on an Alliant FX/8.

tion stage, we often wish to solve these triangular systems repeatedly with different
right-hand sides but with the same triangular matrix. Hence, it is vital to solve them
as efficiently as possible on the architecture at hand.

There are two classical sequential algorithms for solving a lower triangular system
Lz = f, where L = [\;;], f = [¢s], ¢ = [&] and ¢,j = 1,2,---,n. They differ in the
fact that one is oriented towards rows, and the other columns. These algorithms are:

Row_oriented :

&= ¢1//\11
doi=2n
doj=1,1-1
i = ¢i — Ay
enddo
& = ¢if i
enddo

and

Column_oriented :
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FIG. 5. Performance of rank-k update with m; = 128 on an Alliant FX/8.

doj=1n-1
£ = &i/Ajj
doi=j+1,n
¢ = di — Aij€;
end do
end do

n = ¢n//\nn

As is shown below, these two algorithms are the basis for many adaptations suitable
for various vector and parallel architectures.

3.5.1. Shared-memory triangular system solvers. The inner loops of the
row- and column-oriented versions vectorize trivially to yield algorithms based re-
spectively on the BLAS operations of SAXPY and DOTPRODUCT. We refer to these
algorithms as the row-sweep or forward-sweep, and the column-sweep [116].

Each step of the row-sweep algorithm requires less data motion than the corre-
sponding step in the column-sweep algorithm; the DOTPRODUCT primitive reads two
vectors and produces a scalar while the sAXPY reads two vectors and writes a third
back to memory. If the vector processor has adequate bandwidth then, theoretically
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at least, this should not be an important distinction. In practice, however, the reduced
data traffic of the DOTPRODUCT may be preferable. (This assumes, of course, that the
implementation of the DOTPRODUCT is not particularly expensive.?) The row-sweep
algorithm can suffer from the fact that it accesses rows of the matrix. This can be
remedied by storing the transpose of the lower triangular matrix, although in some
cases this may not be an option, e.g., when the data placement has been determined
by some other portion of the algorithm of which the triangular solve is a component.

For register-based vector processors with limited bandwidth to memory such as
the CRAY-1 or a single processor of the Alliant FX/8 each of which has a single port
to memory, the performance degradation due to excessive register transfers of the
vector algorithms described above can be severe. Block forms of the algorithms must
be considered. Let L(® = L, f(© = f_ and let each of LU}, z())_ and f¥) be of order
(n—jv),j=0,---,2 —1 where

) () (3)
L(n:(LlJ? 0 )J(j):(xlj_ ),f(j):(flf )
19 1y 9 e

with L(ljl), zgj), and ffj) being each of order v (we assume that v divides n), and
LU+ = L(Z’Q). The block column-sweep algorithm may then be descfibed as:

B_Col_Sweep :
p=1=
doj=0,p—2
solve LYz = £ via Col Sweep or Row_Sweep
f(j+l) - f2(j) _ L(Zjl)‘r(lj)
end do
solve L~ Ug(=1) = §(P=1) yiz Col_Sweep or Row_Sweep.

Note that this blocking allows the registers to be used efficiently. The matrix-vector
product which updates the right-hand side vector is blocked in the fashion described
above to allow the accumulation in a vector register of the result of » vector operations
before writing the register to memory rather than the one write per two reads of the
triads in the nonblocked column-sweep. Similarly, the column-sweep algorithm can
accumulate the solution to the triangular system Lz = f9) in vector registers
resulting in a data flow between registers and memory identical to that of a v x v
block of the matrix-vector product with the exception that the vector length reduces
by one for each of the v operations.

A block row-sweep algorithm can also be derived which reduces the amount of
register-memory traffic even further. Using the notation above, partition L so that
each block row is of the form [C;, L;,0] where C; € R~V and L; € R, Let
g = (27, -, a0) gV = (zf,--,2])7, and f = (f{,---, f7)7, where z;, f; € R".
The block algorithm is:

B_Row_Sweep :

9 On some machines this is not necessarily a good assumption. The Alliant FX/8 has a con-
siderable increase in the startup cost of the dotproduct compared to that of the triad instruction.
Similarly, CRAY machines implement the dotproduct in a two-stage process. The first accumulates
64 partial sums in a vector register and the second reduces these sums to a scalar. The first phase
has the memory reference pattern mentioned above but the second is memory intensive and its cost
can be significant for smaller vectors.
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Proe. 1 Proc. 2

solve L11.'121 = f1 -
f2 = fa— Loy -
f3 = f3— Laz, solve Lyzxa = fo
fo— fa—Lyx fa— f3— L3z

solve L33z = f3 fa — fa— Lgazs

NN

fa — fa — Lyzzs -
solve Lyaxg = f4 -

F1G. 6. Two processor DO-ACROSS synchronization pattern.

p=3
solve Liz; = b via Col.Sweep or Row_Sweep
doj=2,p

fi = fj = CjzU=Y

solve Ljz; = f; via Col.Sweep or Row_Sweep
end do.

This algorithm requires only one or two vector writes per block row computation
depending upon whether or not the result of the matrix-vector product is left in
registers for the triangular-solve primitive to use. This algorithm is characterized by
the use of short and wide matrix-vector operations rather than the tall and narrow
shapes of the block column-sweep. It is, of course, quite straightforward to combine
the two approaches to use a more consistent shape throughout the algorithm.

Another triangular solver, which is also suited for both shared and distributed
memory multiprocessors, is that based on the DO-ACROsS notion. For example, in
the above sequential form of the column-oriented algorithm, the main point of a DO-
ACROsS is that computing each §; need not wait for the completion of the whole
inner iteration ¢ = j + 1,---,n. In fact, one processor may compute £; soon after
another processor has computed ¢; := ¢; — A;j—1£;—1. To minimize the synchro-
nization overhead in a DO-ACROSS and efficiently use registers or local memory, the
computation is performed by blocks. For example, if L = [Lpg], z = {zp}, f = {fp},
and p,q = 1,---,4, where each block is of order n/4, then the DO-ACROSS on two
processors may be illustrated as shown in Fig. 6. Vectorization can be exploited in
each of the calculations shown if each processor has vector capabilities. The particular
parallel schedule used in the DO-ACROSS approach is, of course, highly dependent on
the efficiency of the synchronization mechanisms provided on the multiprocessor of
interest.

All of the methods presented thus far in this section can be viewed as reorgani-
zations of the task graph in Fig. 7. The row-oriented algorithm executes each row
in turn starting from the top and tasks within each row from left to right. The
column-oriented, on the other hand, executes each column in turn starting from the
left and tasks within a column from the top to bottom. The row and column sweeps
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F1G. 7. Triangular system solution dependence graph.

on a vector machine merely vectorize the tasks within a row or column, respectively.
Block versions of the algorithm interpret each node as corresponding to computations
involving a submatrix rather than a single element. Careful consideration of the task
graph, however, reveals certain limitations of all methods based upon it. Suppose
that each node represents the operation on a submatrix of order m and n = km. The
dependence graph implies that the maximum number of processors that can ever be
active at the same time is ¥ — 1. Further, the dependence graph has a critical path
with O(k) length which establishes a fundamental limit to the speed at which these
algorithms can solve a triangular system. To go faster we need a new dependence
graph which relates the solution z to the data L and f.

The new dependence graph can be generated from recognizing the algebraic char-
acterization of the column- and row-sweep algorithms. The algorithms can be easily
described algebraically in terms of elementary unit lower triangular matrices. For
example, assuming without loss of generality that A;; = 1, it follows that

n—1
L= H Ni—I = ﬁ Mj_l’
i=1 j=2

where NV; = I — l,-eiT, M; =1- ejvJT, I; is the vector corresponding to column ¢ in
L with the 1 on the diagonal removed and v; is similarly constructed from row j of
L. Tt is easy to see from the algebraic structure of N; and M; that multiplying them
by a vector corresponds to the computational primitives of a triad and dotproduct,
respectively. It follows immediately that the column-sweep and row-sweep algorithms
are specified algebraically by (here with n = 8):

(N7(Ne(Ns(Na(Ns(N2 (N1 f)))))))

and

(Mg(M7(Me(Ms(M4(M3(M2f)))))))-
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The grouping of computations makes clear the source of the O(n) critical path in
the dependence graph. Also a simple application of associativity can generate two
algorithms that have a much shorter critical path. Specifically, the column-sweep
expression can be transformed into

(((N7Ne)(NsN4))((N3N2) (N1 f))).

Note the logarithmic nature of the critical path. The algorithm specified is called the
product form and is due to Sameh and Brent [159]. Instead of performing the product
(Np—1+--NaNy)f in (n—1) stages, we may form it in O(log, n) stages. It can be shown
by careful consideration of the structure of the matrices at each stage that the critical
path has a length of k?/2 + 3k/2 floating point operations where k& = log, n. Such
an improvement is not without cost, however. The algorithm requires approximately
n3/10 + O(n?) operations and n3/68 + O(n?) processors. It is therefore typically not
appropriate for an architecture with a limited number of processors such as those of
interest here. For a discussion of the numerical stability of this algorithm see [187].

Note that thus far we have assumed only one right-hand side vector. The BLAS3
primitive triangular solver assumes that multiple right-hand side vectors and solu-
tions are required. This, of course, provides the necessary data locality for high
performance on a hierarchical memory system. The generalization of the algorithms
above are straightforward and the blocksizes (the number and order of right-hand
sides solved in a stage of the algorithm) can be analyzed in a fashion similar to the
matrix multiplication primitives.

For banded lower triangular systems in which the bandwidth m (the number of
subdiagonals with nonzero entries) is small, column-sweep algorithms are ineffective
on vector or parallel computers. Consider such a system Lz = f, where L is par-
titioned as a block-bidiagonal matrix with diagonal submatrices L; and subdiagonal
submatrices R;_1,¢=1,---,n/m, where L; and R;_; are lower and upper triangular,
respectively. Premultiplying both sides of Lz = f by D = diag(Li_l) we obtain the
system L®gz = 0 where L(® is block bidiagonal with identities of order m on the
diagonal and matrices G;o) = Lj_lle on the subdiagonal, and f(® = Df. Note that

we do not invert the L;’s, but obtain f© and Ggo) by solving triangular systems using
one of the above parallel algorithms. We repeat the process by multiplying both sides
of LOz = £ by DO = diag((L{”)~!) where

I, 0
(Lz('o))_l = ( 0 ) .
—G(Zi)—l Im

Now L) = DOLO 3pd f) = DO fO) are obtained by simple multiplication.
Eventually, LUo8(m/m)) = I and flloen/m) = g The required number of arith-
metic operations is O(m?nlog(n/2m)) resulting in a redundancy of O(m log(n/2m)),
e.g., see [159]. Given m2n/2 + O(mn) processor, however, those operations can be
completed in O(logmlogn) time.

This algorithm offers opportunities for both vector and parallel computers. At
the first stage we have n/m triangular systems to solve, each of order m, for (m + 1)
right-hand sides except for the first system which has only one right-hand side. In the
subsequent stages we have several matrix-matrix and matrix-vector multiplications,
with the last stage consisting of only one matrix-vector multiplication, in which the
matrix is of order (n/2 x m).
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An alternative scheme, introduced by Chen, Kuck, and Sameh [27], may be de-
scribed as follows. Let the banded lower triangular matrix L be partitioned as

L,
Ry L,

Ry Lj
Rp L,

~ 0 R.
Rj:(o 0])

and each L; is of order (n/p) >> m and each R; is upper triangular of order m. If the
right-hand side f and the solution z are partitioned accordingly, then after solving
the triangular systems

where

Lz, = f1

n=[(£).1

the original system is reduced to Lz = g in which L is of the form

and

Ip/p
U, Ip/p
Us Iy ’
Up Tnjp
where
Up=(0 U;).
Let

v | | hy
Ui—[Wi]v ml_[zi]7 gl_li,ri]a

in which W; is a matrix of order m and r;, 2; are vectors of m elements each. Thus,
solving the above system reduces to solving a smaller triangular system of order mp,

I, 21 T1
Wy I, 2z o
W, In Zp Tp

After solving this system by the previous parallel scheme, for example, we can retrieve
the rest of the elements of the solution vector 2 by obvious matrix-vector multiplica-
tions. The algorithm requires approximately 4m2n operations which, given p = mp
processors, can be completed in time 25" m?n + 35" Imn + O(m?). See [189] for a
discussion of the performance of this algorithm applied to lower bidiagonal systems
and the attendant numerical stability properties.
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3.5.2. Distributed-memory triangular system solvers. A large number of
papers have appeared for handling triangular systems on distributed memory archi-
tectures (mainly rings and hypercubes), e.g., see Sameh [158], Romine and Ortega
[151], Heath and Romine [89], Li and Coleman [122] and Eisenstat et al. [53]. Most
are variations on the basic algorithms above adapted to exploit the distributed nature
of the architectures. For such architectures, it is necessary to distinguish whether a
given triangular matrix L is stored across the individual processor memories by rows
or by columns. For example, suppose that the matrix [L, f] is stored by rows, then
the above column-sweep algorithm becomes:

Row_Storage :

doj=1,n
if j is one of my row indices then
£ =i/ Asi
communicate(broadcast, fan-out) &; to each processor
doi=j+1,n
if i is one of my row indices then
i = ¢i — &
enddo
enddo.

Note first that the computations in the inner loop can be executed in parallel,
and that on a hypercube with p = 2" processors, the fan-out communication can be
accomplished in v stages. If the lower triangular matrix L is stored by columns then
the column-sweep algorithm will cause excessive interprocessor communication. A
less communication intensive column storage oriented algorithm has been suggested
in [150] and [151]. Such an algorithm is based upon the classical sequential Row_sweep
algorithm shown above.

In implementing the column storage algorithm on an Intel iPSC hypercube, for
example, information is gathered into one processor from all others via a fan-in op-
eration fan_in(7,i). Such an operation enables the processor whose memory contains
column 7 to receive the sum of all the 7’s over all processors. The parallel column
storage algorithm can be described as follows:

Col_Storage :

doi=1,n
T=0
doj=1,i-1
if j is one of my column indices then
T=74+E& A
enddo

n = fan_in(r,i)
if i is one of my column indices then
& = (di —m)/ i
enddo.

Here, during stage 4 of the algorithm, the pseudo-routine fan_in(7,) collects and
sums the partial inner products 7 from each processor, leaving the result 7 in the
processor containing column :. Further modifications to the basic row- and column-
oriented triangular solvers on distributed memory systems have been studied in [122],
there a communication scheme which allows for ring embedding into a hypercube
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is emphasized. In addition, the study in [53] has improved upon the cyclic type
algorithms in [89].

4. LU factorization algorithms. The goal of the LU decomposition is to fac-
tor an n X n-matrix A into a lower triangular matrix L and an upper triangular matrix
U. This factorization is certainly one of the most used of all numerical linear com-
putations. The classical LU factorization [83] can be expressed in terms any of the
three levels of the BLAS, and techniques needed to achieve high performance for both
shared and distributed memory systems have been considered in great detail in the
literature. In this section we review some of these techniques for the LU and LU-like
factorizations for dense and block tridiagonal linear systems.

4.1. Shared-memory algorithms for dense systems. In this subsection we
consider some of the approaches used in the literature for implementing the LU fac-
torization of a matrix A € R"*" on shared-memory multivector processors such as the
CRAY-2, CRAY X-MP, and Alliant FX/8. To simplify the discussion of the effects
of hierarchical memory organization, we move directly to the block versions of the
algorithms. Throughout the discussion w denotes the blocksize used and the more fa-
miliar BLAS2-based versions of the algorithms can be derived by setting w = 1. Four
different organizations of the computation of the classical LU factorization without
pivoting are presented with emphasis on identifying the computational primitives
involved in each. The addition of partial pivoting is then considered and a block
generalization of the LU factorization (L and U being block triangular) is presented
for use with diagonally dominant matrices. Finally, the results of an analysis of the
architecture/algorithm mapping of this latter algorithm for a multivector processor
with a hierarchical memory are also examined along with performance results from
the literature.

4.1.1. The algorithms. The are several ways to organize the computations for
calculating the LU factorization of a matrix. These reorganizations are typically listed
in terms of the ordering of the nested loops that define the standard computation. The
essential differences between the various forms are: the set of computational primitives
required, the distribution of work among the primitives, and the size and shape of the
subproblems upon which the primitives operate. Since architectural characteristics
can favor one primitive over another, the choice of computational organization can
be crucial in achieving high performance. Of course, this choice in turn depends on a
careful analysis of the architecture/primitive mapping.

Systematic comparisons of the reorganizations have appeared in various contexts
in the literature. Trivedi considered them in the context of virtual memory systems in
combination with other performance enhancement techniques [185], [186]. Dongarra,
Gustavson, and Karp [42] and more recently Ortega [137] compare the orderings for
vector machines such as the CRAY-1 where the key problem is the efficient exploita-
tion of the register-based organization of the processor and the single port to memory.
Ortega has also considered the problem on highly parallel computers [137]. Papers
have also appeared that are concerned with comparing the reorderings given a par-
ticular machine/compiler/library combination, e.g., see [162]. In general, most of the
conclusions reached in these papers can be easily understood and parameterized by
analyses of the computational primitives and the algorithms in the spirit of those in
the previous section and below.

4.1.1.1. Version 1. Version 1 of the algorithm assumes that at step ¢ the
LU factorization of the leading principal submatrix of dimension (i — )w, Ai—1 =
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L;_,U;_1, is available. The next w rows of L and w columns of U are computed
during step ¢ to produce the factorization of the leading principal submatrix of order
iw. Clearly, after k = n/w such steps the factorization LU = A results.

The basic step of the algorithm can be deduced by considering the following
partitioning of the factorization of the matrix 4; € Riwx:

A = Aiy C\N_ (L1 0 Ui-1 G
* BT H MT L, 0 U, J’

where H is a square matrix of order w and the rest of the blocks are dimensioned
conformally. The basic step of the algorithm consists of four phases:

(i) Solve for G: C «~ L;,_1G =C.
(ii) Solve for M: B — UL, M = B.
(ili) Update: H — H — MTG.
(iv) Factor H «— L U; = H.

(The arrow is used to represent the portion of the array which is overwritten by the
new information obtained in each phase.) Clearly, repeating this step on successively
larger submatrices will produce the factorization of 4 € R™*™.

In each step, solving the triangular system requires 2wh? operations, the update
of H requires 2hw? and the factorization requires O(w?), where h = (i — 1)w. Early
stages of the algorithm are dominated by the factorization primitive. The later stages,
where most of the work is done, is dominated by solving triangular systems with w
right-hand side vectors. This dominance is particularly pronounced when the BLAS2
(w = 1) version of the algorithm is used. Note also that when w = 1 the use of the
triangular solver allows efficient use of the vector registers on vector processors like
the CRAY-1 or a single CE of the Alliant FX/8 which have single ports to memory.

4.1.1.2. Version 2. Version 2 of the algorithm assumes that the first £ =
(z — L)w columns of L and £ rows of U are known at the start of step i, and that
the transformations necessary to compute this information have been applied to the
submatrix A* € R"~¢%"~¢ in the lower right-hand corner of A that has yet to be
reduced. The algorithm proceeds by producing the next w columns and rows of L and
U, respectively, and computing A*+1. This is a straightforward block generalization
of the standard rank-1-based Gaussian elimination algorithm,

Assume that the factorization of the matrix A* € R"~¢*"~¢ is partitioned as

follows:
pi=( A Az \_(Ln 0 Un U
Ayy Ay Ly 1 0 AL
where A is square and of order w and the other submatrices are dimensioned confor-
mally. Ly3,Lo; and Upo are the desired w columns and rows of L and U and identity

defines A*+!,
The basic step of the algorithm consists of:

(l) Factor: A11 — L11U11 = All-

(ii) Solve for Loj: Agy « UF LL, = AT
(lll) Solve for U122 A12 — L11U12 = A12.
(IV) Update: A22 — A22 - L21 U12.

Clearly, the updated As; is A**! and the algorithm proceeds by repeating the above
four phases.
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This version of the algorithm is dominated by the rank-w update of the submatrix
Agy € Rn—w)x(n=iw) Note that the triangular systems that must be solved are of
order w with many right-hand sides as opposed to the large systems which are solved
in Version 1. As in Version 1 the factorization primitive operates on systems of order
w. As is well known and obvious from the analysis of the previous section, the BLAS2
version, based on the rank-1 update, is not the preferred form for register-based vector
or multivector processors with a single port to memory due to poor register usage.

4.1.1.3. Version 3. Version 3 of the algorithm can be viewed as a hybrid of the
first two versions. Like Version 2, it is assumed that the first (i — 1)w columns of L
and rows of U are known at the start of step ¢. It also assumes, like Version 1, that
the transformations that produced these known columns and rows must be applied
elements of A which are to be transformed into the next w columns and rows of L
and U. As a result, Version 3 does not update the remainder of the matrix at every
step.

Consider the factorization:

A:(An A12>=(L11 0 )(Un U12)

Ay Az Loy La 0 Uy )

where A is a square matrix of order (i —1)w and the rest are partitioned conformally.
By our assumptions, Ly, Lay, U1y, and U;2 are known and the first w columns of Lgy
and the first w rows of Uss are to be computed. Since Version 3 assumes that none of
the update Ags « Asg — Lo1Uio has occurred in the first ¢ — 1 steps of the algorithm,
the first part of step 7 is to perform the update to the portion upon which the desired
columns of Lgs and rows of Uss depend. This is then followed by the calculation of
the columns and rows.

To derive the form of the computations, suppose the update of As; and its sub-
sequent factorization are partitioned

H CT H CT
A — -~ = ~ ~ — L
22 ( B A, ) ( B Ay ) nUi

(H C:T) (Ln 0 )(011 UIZ)

B A L2y Lo 0 Uxa )’

where H and H are square matrices of order w and the other submatrices are dimen-
sioned conformally. Step ¢ then has two major phases: Calculate H, B, and C; and
calculate Ly, Loy, U11, and Ujp. As a result, at the end of stage 7, the first iw rows
and columns of the triangular factors of A are known.

Let Ly = [MT, MT]|T and U\, = [M3, M), where M, and Mj consist of the first
w rows and columns of the respective matrices. The first phase of step ¢ computes

i) [HT,BT|T — [HT,BT|T = [HT, BT|" — Ly M3.
(ii) C = CT =CT — M1 M,.

and

Tn the second phase, the first w rows and columns of the factorization of the updated
Ago are then given by:

(i) Factor: H — L11U11 =H.
(ii) Solve for Lyy: B — UL LT, = BT.
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(lll) Solve for 012! C — i11012 = CT.

The work in this version of the algorithm is split between a matrix multiplication
primitive, a triangular solver, and a factorization primitive; the latter two of which
are applied to systems of order w. Note, however, that the matrix multiplication
primitive is applied to a problem which has the shape of a large matrix applied to
w vectors (or the transpose of such a problem). Hence, for w = 1 this version of the
algorithm becomes a form which uses the preferred BLAS2 primitive — matrix-vector
multiplication. Although, as noted above, when w is nontrivial the preference for this
block form over Version 2 does not necessarily follow.

4.1.1.4. Version 4. Version 4 of the algorithm assumes that at the beginning
of step ¢ the first (¢ — 1)w columns of L and U are known. Step i computes the next
w columns of the two triangular factors. Consider the factorization

A= An A Y _(Ln 0 Un U
Ay Ag Ly Lo 0 Uy )’
where Aj is a square matrix of order (i—1)w and the rest are partitioned conformally.
By our assumptions, Ly;, Lsy, and Uy, are known.
Let L., U,, and A, be the matrices of dimension n X w formed of the first

w columns of [0, LL)T, [UL,ULIT, and [AL,, AL]T, respectively. (These are also
columns (7 — 1)w + 1 through iw of L, U, and A.) Consider the partitioning

0 M i,
L,= L ) Uw = [] , Aw = A2 y
G 0 As

where L, U, and A, are square matrices of order w with L and U lower and upper
triangular respectively.

Step ¢ calculates L., and U, by applying all of the transformations from steps 1
toi—1to A, and then factoring a rectangular matrix. Specifically, step i comprises
the computations:

(1 Solve for M: 1‘11 — L]lM =~1‘i1.

(i) Update: [AT, AT]T « [AT, A]" — LaM.
(ili) Factor: Ag « LU = A,. :

(iv) Solve for G: A3 — UTGT = AT.

This version of the algorithm requires the solution of a large triangular system
with w right-hand sides as well as a small triangular system of order w with many
right-hand sides. The factorization kernel operates on a system of order w. As with
Version 3 the matrix multiplication primitive operates on a problem with the shape
of a large matrix times w vectors and the factorization of a system of order w and the
same observations apply. This version also has the feature that it works exclusively
with columns of A which can be advantageous in some Fortran and virtual memory
environments.

4.1.1.5. Partial pivoting. Partial pivoting can be easily added to Versions 2, 3,
and 4 of the algorithm. Step 7 of each of the versions requires the LU factorization of
a rectangular matrix M € R, where h = n— (i — 1)w. Specifically, step i computes

M, L \y
M= = ( D)oy,
( M, ) ( Ly ) H
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where L1, and Uy, are, respectively, lower and upper triangular matrices of order
w. In the versions above without pivoting, this calculation could be split into two
pieces: the factorization of a system of order w, LUy = Mji; and the solution of a
triangular system of order w with h — w right-hand sides. (These computatious are:
(i) and (ii) in Version 2; (i) and (ii) of the second phase of Version 3; and (iii) and (iv)
of Version 4.) When partial pivoting is added to the versions of the algorithm these
computations at each step cannot be separated and are replaced by a single primitive
which produces the factorization of a rectangular matrix with permuted rows, i.e.,

M, Ly \ g
() (12 )0

where P is a permutation matrix. This primitive is usually cast as a BLAS2 version
of one of the versions above. Note, however, a fundamental difference compared to
the nonpivoting versions. The ability to split the factorization of the tall matrix
into smaller BLAS3-based components in the latter case has benefits with respect to
hierarchical memory usage, since w is usually taken so that such systems fit in cache
or local memory, see [23], [67]. In the case of pivoting, these operations are performed
via BLAS2 primitives repeatedly updating a matrix which can not be kept locally.
As a result, the arithmetic component of time and the data transfer overhead both
increase. In fact, a conflict between their reductions occurs. This situation is similar
to that seen in the block version of Modified Gram Schmidt and Version 5 of the
factorization algorithm, both discussed below along with a solution. (Although in the
latter case, the source of difficulties is slightly different.)

The information contained in the permutations associated with each step, F;, can
be applied in various ways. For example, the permutation can be applied immediately
to the transformations of the previous steps, which are stored in the elements of the
array A to the left of the active area for step 4, and to the elements of the array
A which have yet to reach their final form, which, of course, appear to the right of
the active area for step 7. The application to either portion of the matrix may also
be delayed. The update of the elements of the array which have yet to reach their
final form could be delayed by maintaining a global permutation matrix which is then
applied to only the elements required for the next step. Similarly, the application to
the transformations from steps 1 through 7 — 1 could be suppressed and the P; could
be kept separately and applied incrementally in a modified forward and backward
substitution routine.

4.1.1.6. Version 5. A block generalization. In some cases it is possible
to use a block generalization of the classical LU factorization in which L and U are
lower and upper block triangular matrices, respectively. The use of such a block
generalization is most appropriate when considering systems which do not require
pivoting for stability, e.g., diagonally dominant or symmetric positive definite. This
algorithm decomposes A into a lower block triangular matrix L, and an upper block
triangular matrix U, with blocks of the size w by w (it is assumed for simplicity
that n = kw, k¥ > 1). Assume that A is diagonally dominant and consider the

factorization:
A= Ay Ap \_ (1 0 Ay A
Agr A ) \ Ly 1[I 0 B ’

where Aj; is a square matrix of order w. The block LU algorithm is given by:
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(i) A — A7)
(i) A21 < Loy = A1 An
(lll) A22 — B = A22 - L21A12
(iv) Proceed recursively on the matrix B.

Statements (i) and (ii) can be implemented in several ways. Since A is assumed to be
diagonally dominant, explicit inversion of the diagonal blocks can be done either via
the Gauss—Jordan algorithm [143] or an LU decomposition without pivoting. In the
latter case, the computations in step (i) above are replaced by solving two triangular
systems of order w with many right-hand sides. (Due to parallel processing, the Gauss—
Jordan scheme, historically frowned upon, has recently been the subject of renewed
interest. See [34] for a discussion of its application, with appropriate modifications,
to general nonsymmetric systems of equations.)

If the Gauss—Jordan kernel is used, as is assumed below, the block LU algorithm
is more expensive by a factor of approximately (1 + 2/k?) than the classical LU
factorization which requires about 2n3/3 operations. In this form, the above block
algorithm uses three primitives: a Gauss-Jordan inversion (or LU decomposition),
A — AB, and a rank-w update.

Note that when w = 1 this form of the algorithm becomes the BLAS2 version
based on rank-1 updates. As with Versions 1-4, which produce the classical LU
factorization, the computations of Version 5 can be reorganized so that different com-
binations of BLAS3 primitives and different shapes of submatrices are used. For
example, the main BLAS3 primitive can be changed from a rank-w update into a
matrix multiplying w row or column vectors. As noted above, the importance of such
a reorganization depends highly on the architecture in question.

4.1.2. Performance analysis. Gallivan et al. have applied the decoupling meth-
odology to Version 5 [67]. Their results demonstrate many of the performance trends
observed in the literature for the various forms of block methods. A summary of the
important points follows.

There are two general aspects of the block LU decomposition through which the
blocksize w = n/k influences the arithmetic time: the number of redundant operations
(applicable when the Gauss-Jordan approach is used); and the relationship, as a
function of w, between the performance of each of the primitives and the distribution
of work among the primitives. The redundancy factor of (1 + 2/k%) and the fact that
the number of operations performed in the Gauss-Jordan primitive is an increasing
function of w cause the arithmetic time component to prefer smaller blocksizes for
small and moderately sized systems. For those systems, increasing w and therefore
decreasing k clearly exacerbates the two problems noted above to such a degree that
the effect is dominant compared to the reduction in data transfer overhead gained by
increasing the blocksize. As the order of the system increases, however, these effects
become secondary to data transfer considerations.

The data transfer overhead of the algorithm is most conveniently analyzed by
writing the algorithm’s cache-miss ratio as the weighted average of the cache-miss
ratios of the various instances of each primitive. The weights are the ratio of the
number of operations in the particular instance of the primitive to the total number of
operations required. In practice, some of the local cache-miss ratios are zero due to the
interaction between the instances of the primitives; this occurs when the remaining
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part of the matrix to be decomposed approaches the size of the cache and later
instances of primitives find an increasing proportion of their data left in cache by
earlier instances. In [67] the results are derived using the conservative assumption
of no interaction between instances of primitives. Note that without a model of
the data transfer properties of the primitives such an analysis at the algorithmic
level is impossible. This does not imply that blocksizes cannot be set effectively
based on observed performance data of the primitives for various shapes and sizes of
problems. Such a black box tuning approach is quite useful in practice, but it does
not provide any ezplanation as to why the performance is as observed. This can only
be done by considering the architecture/algorithm mapping of the primitives and the
implications of combining them in the manner specified by the particular version of
the factorization algorithm used.

The behavior on the interval 1 < w < v/CS, where C'S denotes cache size, roughly
separates into three regimes. For small values of w, 1.e., w < 16, the cache-miss ratio
is of the form:

b~ él— YR + T,
w
where 7; is proportional to 1/n and ~g is a function of w which is bounded by a small
constant. This result is expected since the computations are dominated by the rank-w
update which achieves a similar cache-miss ratio. In particular, it is clear that the
data locality of a BLAS2 version, w = 1, is very poor. In the middle of the interval
of interest the cache-miss ratio is of the form:

1
U= — YR+ N2
W

where 7 is proportional to 1/n. Finally, when w = +/CS, the cache-miss ratio is

1
X ——=7YRrR + 13,
u ,———CS’Y n.

where 73 is proportional to 1/n. The ratio x becomes a rapidly increasing function
once w exceeds vC'S until it reaches, at the point w = n, the cache-miss ratio of
the algorithm of a BLAS2-based version of the Gauss-Jordan algorithm which has a
value of approximately %. The exact point where this transition to rapidly increasing
occurs is dependent on the implementation of the Gauss-Jordan primitive, but, any
decrease in y between w = +/CS and the transition point is typically insignificant.

4.1.3. Experimental results. The various versions of the algorithms have ap-
peared in different contexts in the literature. Here we list some representative papers
and then consider in more detail the performance of Version 5 and its relationship to
the trends predicted via the blocksize analysis presented above.

The column-oriented BLAS2 form of Version 4 was used by Fong and Jordan on
the CRAY-1 [56]. The results of using a BLAS2 form of Version 3 on the CRAY-1 and
one CPU of a CRAY X-MP were given by Dongarra and Eisenstat in [41]. Dongarra
and Hewitt discuss the use of a rank-3-based approach on four CPU’s of a CRAY
X-MP [45]. Calahan demonstrated the power of the block form of Version 3 (with
and without pivoting) on the hierarchical memory system of one CPU of a CRAY-
2. Agarwal and Gustavson have extended their work which led to single CPU block
algorithms for the IBM 3090 by considering parallel forms of the BLAS3 primitives
and LU factorization on an IBM ES/3090 model 600S [2]. In particular, they discuss
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the use of parallel block methods in a multitasking environment where the user is not
necessarily guaranteed control of all (or any fixed subset) of the six processors in the
system. Radicati, Robert, and Sguazzero have presented the results of a rank-k-based
code on an IBM 3090 multivector processor for one to six processors [149]. The block
form of Version 4 was also considered in a virtual memory setting by Du Croz et al. in
[50] and used as a model of a block LU factorization in the BLAS3 standard proposal
by Dongarra et al. [39]. Finally, Dayde and Duff have compared the performance of
the different organizations of the block computations on a CRAY-2, ETA-10P, and
IBM 3090-200/VF.
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FI1G. 8. Performance of block LU on an Alliant FX/8.

The performance trends for Version 5 predicted via the decoupling analysis sum-
marized above have been verified in [67]. Figure 8 illustrates the performance of the
block LU algorithm for diagonally dominant matrices for various blocksizes on an Al-
liant FX/8 [67]. The performance was computed using the nonblock version operation
count. The actual rate is, therefore, higher for the block methods.

The curves in Fig. 8 clearly show the trends predicted by the analysis above. The
significant improvement over BLAS2-based routines by a small amount of blocking can
be seen in the performance of the w = 8 curve and comparing it to the 7 to 10 Mflops
possible via a BLAS2-based Version 2 code or the 15 to 17 Mflops of a BLAS2-based
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Version 3 code. As expected, for any fixed order of the system, performance improves
as w is increased until an optimal is reached. For small systems, increasing beyond
this value causes performance degradation due to the conflict between reducing u and
efficiently distributing work among the primitives. For larger systems, the conflict
reduces and performance is maintained until w exceeds v'CS.
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F1G. 9. Performance of double-level block LU on an Alliant FX/8.

The conflict between arithmetic time and data loading overhead minimization
which produces the shifting of the preferred blocksize as a function of n can be mit-
igated somewhat by using a double-level blocking [67]. This conflict has been delib-
erately exacerbated in these experiments by using a Fortran implementation of the
Gauss—Jordan primitive and assembler coded BLAS3 routines.

There are two basic approaches to double-level blocking: inner-to-outerand outer-
to-inner. Both require a pair of blocksizes (#, w). The outer-to-inner approach replaces
the operation of the Gauss—Jordan primitive on a system of order w with a block LU
factorization using the smner blocksize §. The inner-to-outer approach begins with a
block LU factorization with blocksize § which is determined largely by the arithmetic
time analysis and which is typically smaller than the single-level load analysis would
recommend. Several rank-§ updates are then grouped together into a rank-w in order
to improve the data loading overhead. The decoupling methodology can be used to



46 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

show that these techniques do mitigate the conflict between reducing the arithmetic
time component and the data loading overhead (see [67] for details). Figure 9 demon-
strates that the use of inner-to-outer form of double-level blocking can indeed improve
performance. Note that that double-level version yields performance higher than all
of the single-level implementations of Fig. 8 over the entire interval.

4.2. Distributed-memory algorithms. Our objective here is to describe the
effects that the data-storage and pivoting schemes have on the efficiency of the LU
factorization of a dense matrix A = (o;;) on distributed memory systems. The related
parallel Cholesky schemes will not be discussed in this section; for an example, see
Heath [88]. We also describe some LU-like factorization schemes that are useful on
distributed memory and hybrid architectures.

4.2.1. LU factorization. A number of papers have appeared in recent years
describing various parallel LU factorization schemes on such architectures, e.g., see
Ipsen, Saad, and Schultz [104], Chu and George [28], Geist and Heath [77], [78], and
Geist and Romine [79]. We will concentrate here only on the work of Geist and
Romine.

Consider the two basic storage schemes: storage of A by rows and by columns.
The row storage case is considered first. Adopting the terminology of Geist and
Romine [79], we refer to the following scheme as RSRP, Row Storage with Row Piv-
oting.

RSRP:
each processor executes the following,
dok=0n-1

determine row pivot

update permutation vector

if (I own pivot row)
fan-out(broadcast) pivot row

else
receive pivot row

for (all rows ¢ > k that T own)
Aik = Qik [ Okk
doj=k+1,n-1

Q5 = Q5 — Ak Q;
enddo
enddo.

In most of the early work, row storage for the coefficient matrix was chosen
principally because no efficient parallel algorithms were then known to exist for the
subsequent forward and backward sweeps if the coeflicient matrix were to be stored by
columns. But, as discussed earlier, recent triangular solvers for distributed memory
multiprocessors have removed the main reason for preferring row storage. Next, the
Column Storage with Row Pivoting (CSRP) scheme is given by:

CSRP:
each processor executes the following
dok=0,n-1

if (I own column k)
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determine pivot row
interchange
doi=k+1n-1
Aik = 0k [ Ok
broadcast the column just computed and pivot index

else

receive the column just computed and pivot index

interchange

for (all columns j > k that T own)
doi=k+1,n-1

Qij = O — Aik Qg
enddo
enddo.

A modification of RSRP, which we refer to as RSCP, Row Storage with Column
Pivoting, consists of searching the current pivot row for the element with maximum
modulus, and then exchanging columns to bring this element to the diagonal. The
RSCP algorithm can be readily seen as nothing more than the dual of algorithm CSRP.
Geist and Heath [78] indicate that both RSCP and CSRP yield essentially identical
speedup on an Intel iPSC hypercube. In fact, Geist and Heath conclude that, in the
absence of such techniques as loop unrolling, LU factorization with partial pivoting is
most efficient when pipelining is used to mask the cost of pivoting. In particular, the
two schemes that can most easily be pipelined are: pivoting by interchanging rows
when the matrix is distributed across the processors by columns (algorithm CSRP),
and pivoting by interchanging columns when the matrix is distributed across the
processors by rows (algorithm RSCP).

4.2.2. Pairwise pivoting. Gaussian elimination with pairwise pivoting is an
alternative to LU factorization which is attractive on a variety of distributed memory
architectures including systolic arrays since it introduces parallelism into the pivoting
strategy.!® Such a pivoting strategy dates back to Wilkinson’s work on Gaussian
elimination using the ACE computer with its limited amount of memory [62]. The
main idea is rather simple. If uT = [p1,- -, pn] and vT = [v4,---,vy,] are two row
vectors, then we can choose a stabilized elementary transformation

1 0
s=(41)r

so as to annihilate either y; or vq, whichever is smaller in magnitude. Here, P is
either the identity of order 2 or (ez,e;) so that

(N (M B2 o
vT 0 vy - by )

One of the many possible annihilation schemes for reducing a nonsingular matrix A
of order n to upper triangular form is illustrated in Fig. 10 for n = 8. (The elements
marked with ¢ can all be eliminated simultaneously on step .)

Such a triangularization scheme requires 2n —3 stages in which each stage consists
of a maximum of |n/2] independent stabilized transformations. It is ideally suited

10 Pairwise pivoting can also be useful on shared memory machines to break the bottleneck caused
by partial pivoting discussed earlier.
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FIG. 10. Annihilation scheme for n = 8.

for a ring of processors [157] or other systolic arrays [80]. Note, however, that it does
not produce an LU factorization of the matrix. L is replaced by a product of matrices
in which each one can be readily inverted. One possible drawback of this pivoting
strategy is that the upper bound on the growth factor is the square of that of partial
pivoting [168], [169]. Our extensive numerical experiments indicate that, as is the case
with partial pivoting, such growth is rarely encountered in practice. In that sense, our
experience contradicts some conclusions of Trefethan and Schreiber [184] indicating
that some further work is required to reconcile this seeming inconsistency.

The above annihilation scheme was originally motivated by a parallel Givens
reduction introduced in [161] and now used extensively in applications such as signal
processing for recursive least squares computations. This parallel Givens reduction
was later generalized for a ring of processors [158].

4.2.3. A hybrid scheme. In order to design factorization schemes for multi-
cluster machines, such as Cedar, in which each cluster is a parallel computer with
tightly coupled processors, we must combine the strategies outlined above for both
shared and distributed memory models. Breaking the problem among the clusters
so as to minimize intercluster communication while maintaining load balancing is an
issue faced by users of distributed memory architectures. Cedar’s advantage is the
existence of a shared global memory.

The shared memory block LU algorithm and the BLAS3 primitives, discussed
above, are concerned with achieving high performance on an architecture like a single
Cedar cluster. While these algorithms and kernels form an invaluable building block
for algorithms on the Cedar system and the conclusions of the analysis are applicable
over a fairly wide range of multivector architectures, care must be taken not to gen-
eralize these conclusions too far. For example, on a single Cedar cluster (and similar
architectures) routines for many of the basic linear algebra tasks encountered in prac-
tice can be designed as a series of calls to BLAS3 kernels and BLAS2-implemented
algorithms thereby masking all of the architectural considerations of parallelism, vec-
torization, and communication. This method of algorithm design, however, cannot
be generalized to all hierarchical shared memory machines. One of the main reasons
for this is the fact that an algorithm designed via this method may have problems
with an inappropriate choice of task granularity and the resulting excessive com-
munication requirements. The need to introduce double-level blocking forms of the
algorithm indicated the onset of such a problem on a Cedar cluster: the attempt to
spread the BLAS2-implemented kernel across the processors in a cluster introduced
serious limitations on the performance of the block algorithm. When this problem
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becomes extreme, other forms of the algorithm must be used which typically involve
reorganizing the block computations to more efficiently map the algorithm to the
architecture via tasks of coarser granularity with more attention focused on minimiz-
ing the required communication. Typically this involves some notion of pipelining
(possibly multidimensional) at the block level, e.g., see [14], [157].

An example of such a situation is the solution of a dense linear system using more
than one cluster of Cedar (possibly a subset of the total number available). In this
case the algorithm design must take into account that intercluster communication is
rather costly. There are several possible designs for such an algorithm. One of the
most straightforward is based on the outer-to-inner double-level block form presented
above. The block computations can be pipelined across clusters using the necessary
Cedar synchronization primitives. A second possibility uses the control structure of
the pipelined Givens factorization on a ring of processors described in [158]. A block
of rows rather than a single row is communicated between processors and the row
rotation is replaced with a block Gaussian elimination procedure. The remainder of
this section discusses another algorithm, due to Sameh [157], for solving dense linear
systems on a multiple cluster architecture which requires a relatively small amount of
intercluster communication. For simplicity a four-cluster Cedar is assumed.

Let A, a nonsingular matrix of order n, be partitioned as

AT = (AT, 47, A5, A7)

where A; resides in the ith cluster memory. The algorithm consists of two major
stages. In the first stage, using a block-LU scheme with partial pivoting, each A; is
factored into the form

PiAi = LiUi

for i = 1,2,3,4 where F; is a permutation, L; is unit lower triangular, and U; is upper
trapezoidal.

Assuming, without loss of generality, that each U; has a nonsingular upper trian-
gular part, the factorization of A may be completed in the second stage which consists
of 3n/4 computational waves pipelined across the four clusters. These computational
waves comprise three groups of n/4 waves. During the kth group the latest values for
the rows of Uy are used by clusters £ + 1 to 4 in a pipelined fashion to further reduce
their segments of the decomposition. It should be noted that cluster k is idle during
the kth group of waves and the remainder of the algorithm since the other clusters
will update the rows of U, that it has produced and placed in global memory. (For
example, cluster 1 only performs the initial reduction of A; and is then released for
other tasks within the application code of which solving the system is a part or the
tasks of other users since Cedar is a multiuser system.) The first group of n/4 com-
putational waves which use the rows of U; produced by cluster 1 is described below.
The pattern of the remaining two groups follows trivially.

Wave 1. Let Uy = [ufj] The first row of U; is transmitted via the global
memory to cluster 2 where it is used, with pairwise pivoting, to annihilate the first
element of the (possibly new due to pairwise pivoting) first row of Us, uil. The
updated first row of U; is then transmitted to cluster 3 so as to annihilate ﬂ?,1 and
then to cluster 4 where u} | is eliminated with the final version of the first row of Uy
residing in global memory.
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As soon as H’f,1 is annihilated in cluster &k, & = 2, 3,4, the nonzero portion of Uy
is a n/4 x (n — 1) upper Hessenberg matrix, e.g., for n = 24 it is of the form

T
T

8 8 8

8 8 8 8

8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

The cluster then proceeds to reduce Uy to upper trapezoidal form through a pipelined
Gaussian elimination process using pairwise pivoting.

Waves 2 < j < n/4. Similar to the first wave, the jth row of U; is transmitted
to clusters 2, 3, and 4 to annihilate 3 ;, 4 ;, and 4 ;, respectively. After these
annihilations occur, each cluster reduces Uy, which at this point is upper Hessenberg,
to upper trapezoidal form.

Note that after this first group of computational waves U; is in its final form in
global memory. The matrix Uz is in its penultimate form since it will only change due
to the pairwise pivoting done by clusters 3 and 4 in the second group of computational
waves. This implies that cluster 2 is now available for other work. The second and
third computational groups proceed in the same way as the first did with each cluster
fetching the appropriate row from the source matrix, Us followed by Us, transforming
U, to upper Hessenberg form and then reducing it back to an upper trapezoidal
matrix. This basic form of the algorithm possesses many levels of communication and
computation granularity and can be modified to improve utilization of a multicluster
architecture. For example, if the whole Cedar machine were devoted to such a dense
solver, simple interleaving of block rows of A would enhance load balancing among
the clusters.

4.3. Block tridiagonal linear systems. Block tridiagonal systems arise in nu-
merous applications — one example being the numerical handling of elliptic partial
differential equations via finite element discretization. Often, solving such linear sys-
tems constitutes the major computational task. Hence, efficient algorithms for solving
these systems on vector and parallel computers are of importance. Using block ver-
sions of Gaussian elimination for block tridiagonal systems seems a natural extension
of the efficient dense solvers discussed above. Some of the early work may be found in
[191] and the survey by Heller [90]. A more recent study of block Gaussian elimination
on the Alliant FX/8 for solving such systems [11] indicates the importance of efficient
dense solvers and the underlying BLAS3 as components for block tridiagonal solvers.

If the size of the blocks is small, i.e., a narrow-banded system, such forms of
Gaussian elimination offer little potential vectorization and parallelization. Similar to
the above discussions for banded triangular systems, a partitioning scheme, referred
to as the spike algorithm below, for handling tridiagonal systems on vector or parallel
computers was introduced in [161), where Givens reductions were used to handle
the diagonal blocks. Later, Wang [192] considered the simpler problem of diagonally
dominant systems and gave essentially the same form of the algorithm modified to use
Gaussian elimination (made possible by the assumption of diagonal dominance) and
a different method for the elimination of the spikes. Several studies have generalized
this partitioning scheme to narrow-banded systems, e.g., see [46], [47], [120], [132] and
the recent book by Ortega [137].
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The main idea of this partitioning scheme may be outlined as follows. Let the
linear system under consideration be denoted by Az = f, where A is a banded diag-
onally dominant matrix of order n. It is assumed that the number of superdiagonals
m < n is equal to the number of subdiagonals and that, for simplicity of presenta-
tion, n = pq. On a sequential machine such a system would be solved via Gaussian
elimination, see [38] for example. The algorithm described below assumes p CPU’s of
a CRAY X-MP or CRAY-2, or a Cedar system with p clusters. Here, for the sake of
illustration, p is taken to be 4.

Let the matrix A be partitioned into the block-tridiagonal form with block row
[Ci, A;, B;] and conformally = and f, e.g.,

A, B 0 0 Z1 f1
Cy Ay By 0 2 | _ | f2
0 C3 As Bj T3 f3 ]’
0 0 C; Ay T4 fa

where each 4;, 1 < i < p, is a banded matrix of order ¢ = n/p and bandwidth 2m + 1

(same as A),
0 0
B = (Bi 0)

Civ1 = ( g'”l ),

1 <4< p-1, in which B,- and C',-+1 are lower and upper triangular matrices,
respectively, each of order m.
The algorithm consists of three stages.

and

o O

Stage 1. If both sides of Az = f were premultiplied by diag(Al‘l, A7t A;l)
we obtain a system of the form

Iq E, 0 0 Z1 )]
FE I, E 0 zZ2 | _ | 92
0 F Iy Ej3 T3 g3 |’
0 0 F4 Iq T4 94

where

E; = (E,0), F = (0,F),

in which E; and Fi are matrices of m columns given by

- 0
;= .71 o
b= A ( B; )

and

and will, in general, be full.
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In stage 1, Ei, ﬁ‘i, and g; are obtained by solving the associated linear systems.
In each cluster 2 < k < 4 we solve 2m + 1 linear systems of the form Ay = r,
while clusters 1 and 4 each solves m + 1 linear systems of the same form. Note that
no intercluster communication is needed.

The method of solution used on each cluster (Alliant FX/8) for these 4 systems
with multiple right-hand sides, varies with m. For m < 8 a variant of the spike
algorithm is used. For 8 < m < 16 (approximately), block cyclic reduction is the
most effective and for larger m a block Gaussian elimination is recommended [11}.

Stage 2. Let E; and F; be partitioned, in turn, as follows

A P A S,
FF=1M ], E; =1 N |,
Qi T;
where P, Q;, S;, and T; € R™*™, Also, let g; and z; be conformally partitioned:
ha;—2 Y2i—2
9 = Wy ) Ty = Zi
hai_1 Y2i—-1

The structure of the resulting partitioned system is such that the unknown vectors
y;, 1 £ j <6 (each of order m) are disjoint from the rest of the unknowns. In other
words, the m equations above and the m equations below each of the 3 partitioning
lines form an independent system of order 6m, which is referred to as the reduced
system Ky = h,

I, Th Y1 hy
Pz Im Sz Y2 hz
Q2 I, T, ys | _ | hs
Py I, S3 ya | | ha

Qs I, T3 Ys hs

Py I, Ys he

Since A is diagonally dominant, it can be shown that the reduced system is also
diagonally dominant and hence there are a number of options available for solving it.
Typically, it is small enough to be sent to a single Cedar cluster and solved with an
appropriate algorithm.

When it is large enough to warrant a multicluster approach the reduced-system
approach could be applied again. Note, however, that the bandwidth of the system
has doubled compared to the original system. Block-column permutations can reduce
the bandwidth back to its original value but this destroys diagonal dominance and
pivoting will usually be required to solve the permuted reduced system. It is also
possible to use all of the clusters to solve the reduced system via an iterative technique
such as Orthomin(k) [47].

Finally, if the original linear system is sufficiently diagonally dominant, we can
ignore the matrices Q; and S; as ||S;||c and ||Q;lloo are much smaller than ||T;||c and
| Pilloo, respectively. This results in a block-diagonal reduced system in which each

block is of the form
I, Ty )
Pk—H Im
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for 1 <k<3.

Stage 3. Once the y;’s are obtained, the rest of the components of the solution
vector of the original system may be retrieved as follows:

2k = wrp — My yar—3 — Ni yax,

for 1 <k <4,

yo = ho — Sy,

and

yr = hy— Q4 ys.

Provided that the y;’s are stored in the global memory, this stage requires no inter-
cluster communication.

In addition to reporting on the performance results for this algorithm on the Al-
liant FX/8, [11] also reports on the performance achieved on four CPU’s of a CRAY
X-MP/416. Using four partitions on a system of order 16384 with blocksize 32, a
speedup relative to itself of 3.8 was achieved indicating an efficient use of the micro-
tasking capabilities and memory system of the machine. The speedup compared to a
block LU algorithm on one CPU was approximately 2.

There are several modifications and reorganizations possible of the spike algorithm
for solving banded systems discussed above. These can be used to alter the form of
the algorithm to more efficiently map to a variety of shared memory architectures.
For one such alternative see [155]. Also, if the system is symmetric positive definite,
Dongarra and Johnsson [46] have discussed how the algorithm can be modified to
obtain a reduced system that is symmetric positive definite as well.

An analysis of the parallel and numerical aspects of a two-sided Gaussian elimi-
nation for solving tridiagonal systems has been given recently by van der Vorst [188].

The work by Johnsson [108], [109] is representative of organization of concurrent
algorithms for solving tridiagonal and narrow banded systems on distributed memory
machines with various connection topologies, e.g., two-dimensional arrays, shuffie-
exchange networks and boolean cubes. Fox et al. have also considered the problem of
banded systems on hypercubes. In [60], they provide a detailed performance analysis
of the problem.

5. Least squares. In solving the linear least squares problem:
(10) min || f — Az|l2,

where A is an m x n matrix of rank n, (m > n), it is often necessary to obtain the
factorization,

(11) QA=(§),

in which @ is an orthogonal matrix and R is a nonsingular upper triangular ma-
trix of order n. Such a factorization may be realized on multiprocessors via plane
rotations, see [48], [158], and [161], elementary reflectors, see [16] and [158], or the
Modified Gram-Schmidt algorithm, see [9]. (Although the latter algorithm is more
commonly associated with the calculation of an orthogonal basis of the range of A.)
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In the section concerning shared memory multiprocessors, block versions of House-
holder reduction and the modified Gram-Schmidt algorithm are presented, as well
as a pipelined Givens reduction for updating matrix factorization. For distributed
memory multiprocessors, organization of Givens and Householder reductions on a
ring of processors convey the main ideas needed for implementation on hypercubes
and locally connected distributed memory architectures.

5.1. Shared-memory algorithms.

5.1.1. A block Householder reduction. If A = 4, = [agl),ag y )]
then it is possible to generate elementary reflectors Pr = I — ajugul, k = 1 ,n,
such that forming Py A produces the kth row of R and the (m — k) x (n — k) matrix
Agy1 = [agfll), - S‘“’] by annihilating all but the first element in a( ). The
two basic tasks in such a procedure are [170] i) generation of the reﬁector P, such
that PkafC = (prk, 0, -+, 007, k = 1,2,---,n; and (it) updating the remaining (n —
k) columns, Pka;k (p ks ;kH)T) j =k+1,---,n. On a parallel computer,
reflector P41 may be generated even before task (ii) for stage & is finished. While
an organization that allows such an overlap is well suited for some shared memory
machines and for a distributed memory multiprocessor such as a ring of processors,
e.g., see [158], it does not offer the data locality needed in a hierarchical shared
memory system such as that of an Alliant FX/8.

A block scheme proposed by Bischof and Van Loan [16], see also the related
papers [15], [19], [36], [146], [163], offers such data locality. This scheme depends
on the fact that the product of k elementary reflectors Qx = (Px,---, P2, P1), where
P; = I, — w;w], can be expressed as a rank-k update of the identity of order m, i.e.,

Qx = I, - ViUF,

where Vi = Uy = wy, V; = (P;Vj_1,w;) and U; = (Uj_1,u;), for j = 2,--- k.
The block algorithm may be described as follows. Let the m x n matrix (m > n)
whose orthogonal factorization is desired be given by

A == [Al, B],

where A is of rank n, and A; consists of the first £ columns of A. Next, proceed with
the usual Householder reduction scheme by generating the k elementary reflectors Py

through Py such that
R
(P PP)A, = ( 01 ),

where R; is upper triangular of order ¥ without modifying the matrix B. If we accu-
mulate the product Qx = Py« - P, =1— VkUE as each P; is generated, the matrix B
is updated via

B — (I-VUFB

which relies on the high efficiency of one of the most important kernels in BLASS,
that of a rank-k update. The process is then repeated on the modified B with another
well-chosen block size, and so on until the factorization is completed. It may also be
desirable to accumulate the various Qy’s, one per block, to obtain the orthogonal
matrix, }, that triangularizes A.
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FIG. 11. Performance of block Householder algorithm on an Alliant FX/8.

It was shown in [16] that this block algorithm is as numerically stable as the
classical Householder scheme. The block scheme, however, requires roughly (1 +
2/p) times the arithmetic operations needed by the classical sequential scheme, where
p = n/k is the number of blocks (assuming a uniform block size throughout the
factorization). Bischof and Van Loan report the performance of the block algorithm
at 18 Mflops for large square matrices (n = 1000) on an FPS-164/MAX with a
single MAX board and note that an optimized LINPACK QR running on an FPS-
164 without MAX boards would achieve approximately 6 Mflops. An example, of the
performance achieved by a BLAS3 implementation of the block Householder algorithm
(PQRDC) compared to a BLAS2 version (DQRDC) on an Alliant FX/8, [85], is
shown in Fig. 11. The performance shown is computed using the nonblock algorithm
operation count.

Most recently, Schreiber and Van Loan have considered a more efficient storage
scheme for the product of Householder matrices [164]. They describe the compact
WY representation of the orthogonal matrix  which is of the form

Q=I+YTYT,

where Y € R™*" ig a lower trapezoidal matrix and T € R™*" is a upper triangular
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matrix. The representation requires only mn storage locations and can be computed
in a stable fashion.

5.1.2. A block-modified Gram—Schmidt algorithm. The goal of this algo-
rithm is to factor an m x n matrix A of maximal rank into an orthonormal m X n
matrix @ and an upper triangular R of order n where m > n and A is of maximal
rank. Let A be partitioned into two blocks A; and B where A; consists of w columns
of order m, with @ and R partitioned accordingly:

am =@ (B B,

The algorithm is given by:

(i) A1 =Q1Rn,
(ii) Ri2 = QT B,
(iii) By = B — @1 R12.
(iv) Apply the algorithm recursively to produce B; = PRa2.

If n = kw, step (1) is performed k times and steps (ii) and (iii) are each performed
k — 1 times.

Three primitives are needed for the jth step of the algorithm: a QR decompo-
sition (assumed here to be a modified Gram-Schmidt routine — MGS); a matrix
multiplication AB; and a rank-w update of the form € «— C — AB. The primitives
allow for ideal decomposition for execution on a limited processor shared memory ar-
chitecture. The BLAS2 version of the modified Gram-Schmidt algorithm is obtained
when w =1 or w = n, and a double-level blocking version of the algorithm is derived
in a straightforward manner by recursively calling the single-level block algorithm to
perform the QR factorization of the m x w matrix A;.

Jalby and Philippe have considered the stability of this block algorithm [106] and
Gallivan et al. have analyzed the performance as a function of blocksize [67]. Below,
a summary of this blocksize analysis is presented along with experimental results on
an Alliant FX/8 of single and double-level versions of the algorithm.

The analysis is more complex than that of the block LU algorithm for diagonally
dominant matrices discussed above, but the conclusions are similar. This increase in
complexity is due to the need to apply a BLAS2-based MGS primitive to an m X w
matrix at every step of the algorithm. As with the block version of the LU factoriza-
tion with partial pivoting, this portion of each step makes poor use of the cache and
increases the amount of work done in less efficient BLAS2 primitives. The analysis of
the arithmetic time component clearly shows that the potential need for double-level
blocking is more acute for this algorithm than for the diagonally dominant block LU
factorization on problems of corresponding size.

The behavior of the algorithm with respect to the number of data loads can be
discussed most effectively by considering approximations of the cache-miss ratios. For
the interval 1 < w < 1= C'S/m the cache-miss ratio is

1
AR,

where 7; is proportional to 1/n, which achieves its minimum value m/(2CS) at w = L.
Under certain conditions the cache-miss ratio continues to decrease on the interval



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 87

I < w < n where it has the form

~ 10 7)+w LI
=90 n 2\n CS 2

where 73 is proportional to 1/n, which reaches its minimum at a point less than VCS
and increases thereafter, as expected. (See [67] for details.) When w = n the cache-
miss ratio for the second interval is 1/2 corresponding to the degeneration from a
BLAS3 method to a BLAS2 method. The composite cache-miss ratio function over
both intervals behaves like a hyperbola before reaching its minimum; therefore the
cache-miss ratio does not decline as rapidly in latter parts of the interval as it does
near the beginning.
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FIG. 12. Performance of one-level block MGS on an Alliant FX/8.

A load analysis of the double-level algorithm shows that double-level blocking
either reduces or preserves the cache-miss ratio of the single-level version while im-
proving the performance with respect to the arithmetic component of time.

Figures 12 and 13 illustrate, respectively, the results of experiments run on an
Alliant FX/8, using single-level and double-level versions of the algorithm applied to
square matrices. The cache size on this particular machine is 16 K double precision
words.
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For the range of n, the order of the matrix, shown in Fig. 12, the single-level
optimal blocksize due to the data loading analysis starts at w = 64, decreases to w = 21
for n = 768, and then increases to w = 28 at n = 1024. Analysis of the arithmetic time
component recommends the use of a blocksize between w = 16 and w = 32. Therefore,
due to the hyperbolic nature of g and the arithmetic time component analysis it is
expected that the performance of the algorithm should increase until w =~ 32. The
degradation in performance as w increases beyond this point to, say w = 64 or 96,
should be fairly significant for small and moderately sized systems due to the rather
large portion of the operations performed by the BLAS2 MGS primitive.
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FI1G. 13. Performance of two-level block MGS on an Alliant FX/8.

The results of the experiments confirm the trends predicted by the theory. The
version using w = 32 is clearly superior. The performance for w = 8 is uniformly
dismal across the entire interval since the blocksize is too small for both data loading
overhead and arithmetic time considerations. Note that as n increases the gap in
performance between the w = 32 version and the larger blocksize versions narrows.
This is due to both arithmetic time considerations as well as data loading. As noted
above, for small systems, the distribution of operations reduces the performance of
the larger blocksize version; but, as n increases, this effect decreases in importance.
{(Note that this narrowing trend is much slower than that observed for the block LU
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algorithm. This is due to the fact that the fraction of the total operations performed
in the slow primitive is w/n for the block Gram-Schmidt algorithm and only w?/n?
for the block LU.) Further, for larger systems, the optimal blocksize for data loading
is an increasing function of n; therefore, the difference in performance between the
three larger blocksizes must decrease.

Figure 13 shows the increase in performance which results from double-level block-
ing. Since the blocksize indicated by arithmetic time component considerations is
between 16 and 32 these two values were used as the inner blocksize §. For § = 16
the predicted outer blocksize ranges from w = 64 up to w = 128; for § = 32 the
range is w = 90 to w = 181. (Recall that the double-level outer blocksize is influ-
enced by the cache size only by virtue of the fact that v/CS is used as a maximum
cutoff point.) For these experiments the outer blocksize of w = 96 was used for two
reasons. First, it is a reasonable compromise for the preferred outer blocksize given
the two values of §. Second, the corresponding single-level version of the algorithm,
ie., (0,w) = (96,96), did not yield high-performance and a large improvement due
to altering # would illustrate the power of double-level blocking. (To emphasize this
point the curve with (8,w) = (96,96) is included.) The curves clearly demonstrate
that double-level blocking can improve the performance of the algorithm significantly.
(See [67] for details.)

5.1.3. Pipelined Givens rotations. While the pipelined implementation of
Givens rotations is traditionally restricted to distributed memory and systolic type
architectures, e.g., [80], it has been successful on shared memory machines in some
settings. In [48] a version of the algorithm was implemented on the HEP and com-
pared to parallel methods based on Householder transformations. Rather than using
the standard row-oriented synchronization pattern, the triangular matrix R was parti-
tioned into a number of segments which could span row boundaries. Synchronization
of the update of the various segments was enforced via the HEP’s full-empty mech-
anism. The resulting pipelined Givens algorithm was shown to be superior to the
Householder based approaches.

Gallivan and Jalby have implemented a version of the traditional systolic algo-
rithm (see [80]) adapted to efficiently exploit the vector registers and cache of the
Alliant FX /8. The significant improvement in performance of a structural mechanics
code due to Berry and Plemmons, which uses weighted least squares methods to solve
stiffness equations, is detailed in [10] (see also [144], [145]).

The hybrid scheme for LU factorization discussed earlier for cluster-based shared
memory architectures converts easily to a rotation-based orthogonal factorization, see
[157]. Chu and George have considered a variation of this scheme for shared memory
architectures [31]. The difference is due to the fact that Sameh exploited the hybrid
nature of the clustered memory and kept most of the matrix stored in a distributed
fashion while pipelining between clusters the rows used to eliminate elements of the
matrix. Chu and George’s version keep these rows local to the processors and move
the rows with elements to be eliminated between processors.

5.2. Distributed memory multiprocessors.

5.2.1. Orthogonal factorization. Qur purpose in this section is to survey par-
allel algorithms for solving (10) on distributed memory systems. In particular, we
discuss some algorithms for the orthogonal factorization of A. Several schemes have
been proposed in the past for the orthogonal factorization of matrices on distributed
memory systems. Many of them deal with systolic arrays and require the use of O(n?)
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F1G. 14. Givens reduction on a three processor ring.

processors, where n is the number of columns of the matrix. For instance, Ahmed,
Delosme, and Morph [4], Bojanczyk, Brent, and Kung [17], and Gentleman and Kung
[80] all consider Givens reduction and require a triangular array of O(n?) processors,
while Luk [125] uses a mesh connected array of O(n?) processors. Sameh [158], on
the other hand, considers both Givens and Householder reduction on a ring of pro-
cessors in which the number of processors is independent of the problem size. Each
processor possesses a local memory with one processor only handling the input and
output. Figure 14 shows the organization of Givens reduction on three processors for
a rectangular matrix of seven rows and five columns on such a ring. Each column
depicts the operations taking place in each processor. An entry ij, j < 7, indicates
the rotation of rows ¢ and j so as to annihilate the ith element of row j.

Recall that the classical Householder reduction may be described as follows. Let
ag-k) denote the jth column of A, where A 1 = QrAx in which Q = diag(ly, Py).
Here, Ay is upper triangular in its first (k — 1) rows and columns with P being the
elementary reflector of order (m — k + 1) that annihilates all the elements below the
diagonal of the kth column of Agx. Then Householder reduction on the same matrix
and ring architecture as above may be organized as shown in Fig. 15. Here, a P
alone indicates generation of the kth elementary reflector.

Modi and Clarke [134] have suggested a greedy algorithm for Givens reduction
and the equivalent ordering of the rotations, but do not consider a specific architecture
or communication pattern. Cosnard, Muller, and Robert [32] have shown that the
greedy algorithm is optimal in the number of timesteps required. Theoretical studies
and comparisons of such algorithms for Givens reduction have been given by Pothen,
Somesh, and Vemulapati [148] and by Elden [54]. We now briefly survey some of these
algorithms that have been implemented on current commercially available distributed
memory multiprocessors.

In chronological order, we begin with the work of Chamberlain and Powell [25].
In this study the coefficient matrix A is stored by rows across the processors in the
usual wrap fashion and most of the rotations involve rows within one processor in a
type of divide-and-conquer scheme. However, it is necessary to carry out rotations
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F1G. 15. Householder reflectors on a three processor ring.

involving rows in different processors, which they call merges. They describe two
ways of implementing the merges and compare them in terms of load balance and
communication overhead. Numerical tests were made on an Intel iPSC hypercube with
32 processors based on 80287 floating point coprocessors to illustrate the practicality of
their algorithms. The schemes used here are very similar the basic approach suggested
originally by Golub, Plemmons, and Sameh [81] and developed further in [145]. We
note that Katholi and Suter [112] have also adopted this approach in developing an
orthogonal factorization algorithm for shared memory systems, and have performed
tests on a 30 processor Sequent Balance computer.

Chu and George [30] have also suggested and implemented algorithms for perform-
ing the orthogonal factorization of a dense rectangular matrix on a hypercube multi-
processor. Their recommended scheme involves the embedding of a two-dimensional
grid in the hypercube network, and their analysis of the algorithm determines how the
aspect ratio of the embedded processor grid should be chosen in order to minimize the
execution time or storage usage. Another feature of the algorithm is that redundant
computations are incorporated into a communication scheme which takes full advan-
tage of the hypercube connection topology; the data is always exchanged between
neighboring processors. Extensive computational experiments which are reported by
the authors on a 64-processor Intel hypercube support their theoretical performance
analysis results.

Finally in this section we mention two studies which directly compare the results
of implementations of Givens rotations with Householder transformations on local
memory systems. Pothen and Raghavan [147] have compared the earlier work of
Pothen, Somesh, and Vemulapati [148] on a modified version of a greedy Givens
scheme with a standard row-oriented version of Householder transformations. Their
tests seem to indicate that Givens reduction is superior on such an architecture. Kim,
Agrawal, and Plemmons [113], however, have developed and tested a row-block version
of the Householder transformation scheme which is based upon the divide-and-conquer
approach suggested by Golub, Plemmons, and Sameh [81] (see also [29]). The tests
by Kim, Agrawal, and Plemmons on a 64-processor Intel hypercube clearly favor their
modified Householder transformation scheme.

5.2.2. Recursive least squares. In recursive least squares (RLS) it is required
to recalculate the least squares solution vector  when observations (i.e., equations)
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are successively added to or deleted from (10) without resorting to complete refactor-
ization of the matrix A. For example, in many applications information continues to
arrive and must be incorporated into the solution z. This is called updating. Alter-
natively, it is sometimes important to delete old observations and have their effects
excised from z. This is called downdating. Applications of RLS updating and down-
dating include robust regression in statistics, modification of the Hessian matrix in
certain optimization schemes, and in estimation methods in adaptive signal processing
and control.

There are two main approaches to solving RLS problems; the information matriz
method based on modifying the triangular matrix R in (11), and the covariance matriz
method based instead on modifying the inverse R™1. In theory, the information matrix
method is based on modifying the normal equations matrix AT A, while the covariance
matrix method is based on modifying the covariance matriz

P=(ATA)™L

The covariance matrix P measures the expected errors in the least squares solution
z to (10). The Cholesky factor R~* for P is readily available in control and signal
processing applications.

Various algorithms for modifying R in the information matrix approach due to
updating or downdating have been implemented on a 64-node Intel hypercube by
Henkel, Heath, and Plemmons [92]. They make use of either plane rotations or hy-
perbolic type rotations.

The process of modifying least squares computations by updating the covariance
matrix P has been used in control and signal processing for some time in the context
of linear sequential filtering. We begin with estimates for P = R™'R™T and z,
and update R~! to R~ and z to Z at each recursive timestep. Recently Pan and
Plemmons {140] have described the following parallel scheme.

Algorithm (Covariance Updating). Given the current least squares estimate
vector z, the current factor L = R™T of P = (ATA)™! and the observation y"z = ¢
being added, the algorithm computes the updated factor L = R™! of P and the

updated least squares estimate vector Z as follows:
1. Form the matrix vector product

(12) a=Ly.

2. Choose plane rotations ¢;, to form

(13) | 7] =[8] e ViR

and update L
L L
(14) Qm"'Ql[OT]=[ T]-
3. Form

(15) F=gz—
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As the recursive least squares computation proceeds, L replaces L, Z replaces ,
a new equation is added, and the process returns to step 1. An efficient parallel im-
plementation of this algorithm on the hypercube distributed-memory system making
use of bidirectional data exchanges and some redundant computation is given in [93].
Steps 1 and 3 are highly parallelizable and effective implementation details of step 2
on a hypercube are given in [93].

Table 2 shows the speedup and efficiency on an iPSC/2 hypercube (4 MB of
memory for each processor) for a single phase of the algorithm on a test problem of
size n = 1024. One complete recursive update is performed. Here, the speedup is
given by,

time on 1 processor
speedup =

time on p processors’
with the corresponding efficiency,

speedup
P

efficiency =

An alternative hypercube implementation of the RLS scheme of Pan and Plem-
mons [140] has been given by Chu and George [31].

TABLE 2
Speedup and efficiency on the iPSC/2 for a problem of size n = 1024.

Number of Processors Speedup Efficiency

p

1 1 1
4 3.90 0.98
16 15.06 0.94
64 48.60 0.76

6. Eigenvalue and singular value problems.

6.1. Eigenvalue problems. Solving the algebraic eigenvalue problem, either
standard Az = Az, or generalized Az = ABz, is an important and potentially time-
consuming task in numerous applications. In this brief review, only the dense case is
considered for both the symmetric and nonsymmetric problems. Most of the parallel
algorithms developed for the dense eigenvalue problem have been aimed at the stan-
dard problem. Algorithms for handling the generalized eigenvalue problem on shared
or distributed memory multiprocessors are very similar to those used on sequential
machines. Reduction of the symmetric generalized eigenvalue problem to the stan-
dard form is achieved by a Cholesky factorization of the symmetric positive definite
matrix B which is well-conditioned in most applications. This reduction process can
be made efficient on shared memory multiprocessors, for example, by adopting a block
Cholesky scheme similar to the block LU decomposition discussed earlier to obtain
the Cholesky factor L of B and to explicitly form the matrix L~1AL™T using the
appropriate BLAS3. For the nonsymmetric generalized eigenvalue problems where
the matrix B is known to be often extremely ill-conditioned in many applications,
there is no adequate substitute to Moler and Stewart’s @ Z-scheme [136]. On a shared
memory multiprocessor, the most efficient stage is the initial one of reducing B to the
upper triangular form. Dispensing thus with the generalized eigenvalue problems, the
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remainder of the section will be divided between procedures that depend on reduction
to a condensed form, and Jacobi or Jacobi-like schemes for both the symmetric and
nonsymmetric standard eigenvalue problems.

6.1.1. Reduction to a condensed form. We start with the nonsymmetric
case. For the standard problem the first step, after balancing, is the reduction to upper
Hessenberg form via orthogonal similarity transformations. These usually consist of
elementary reflectors which could yield high computational rates on vector machines
provided appropriate BLAS2 kernels are used. On parallel computers with hierarchical
memories, block versions of the classical scheme, e.g., see [16], [44], [86], yield higher
performance than BLAS2-based versions. Such block schemes are similar to those
discussed above for orthogonal factorization, and their use does not sacrifice numerical
stability. Block sizes can be as small as 2 for certain architectures. For the sake
of illustration we present a simplified scheme for this block reduction to the upper
Hessenberg form, where we assume that the matrix A is of order n where n = kv + 2.

doj=1,k
doi=(j-1)v+1,jv
Obtain an elementary reflector P; = I — w;w
such that P; annihilates the last n —1 -1
elements of the ith column of A
Construct:
U; = (Uic1, wi)
Vi = (PiVio1, w;)
Y'i = (Yi—ls Aw't)
2z =V%eiq
ifi = jv go to 10
ai41 = (I = ViUl )(aig1 — Yizi)
enddo
10 A(jv+1:n) =T =V UL)AGr +1:n) - Y3, Z;,)
enddo.

T

i

Here, Z,, consists of the last (n — m) rows of V,,,. This block scheme requires more
arithmetic operations than the classical algorithm using elementary reflectors by a
factor of roughly 1 4+ 1/k. Performance of the block scheme on the Alliant FX/8 is
shown in Fig. 16 [86]. The performance shown is based on the operation count of the
nonblock algorithm.

The next stage is that of obtaining the eigenvalues of the resulting upper Hessen-
berg matrix via the QR-algorithm with an implicit shifting strategy. This algorithm
consists mainly of chasing a bulge represented by a square matrix of order 3 whose
diagonal lies along the subdiagonal of the upper Hessenberg matrix. This in turn
affects only 3 rows and columns of the Hessenberg matrix, leaving little that can be
gained from vectorization, and to a lesser extent, parallelization. Stewart has consid-
ered the implementation of this basic iteration on a linear array of processors [172].
More recently, a block implementation with multiple QR shifts was proposed by Bai
and Demmel [6] which yields some advantage for vector machines such as the Convex
C-1 and Cyber 205.

If we are seeking all of the eigenvectors as well, the performance of the algorithm
is enhanced since the additional work required consists of computations that are
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amenable to vector and/or parallel processing; that of updating the orthogonal matrix
used to reduce the original matrix to Hessenberg form.

Similarly, the most common method for handling the standard dense symmetric
eigenvalue problem consists of first reducing the symmetric matrix to the tridiagonal
form via elementary reflectors followed by handling the tridiagonal eigenvalue prob-
lem. Such reduction can be achieved by a minor modification of the above block
reduction to the Hessenberg form. On 1 CPU of a CRAY X-MP, with an 8.5 ns clock,
a BLAS?2 implementation of Householder tridiagonalization using rank-2 updates (see
[43]) yields a computational rate of roughly 200 Mflops for matrices of order 1000 (see
Fig. 17 [87]. The performance of Eispack’s TRED2 is also presented in the figure for
comparison. Figure 18 shows a comparison of the performance of this BLAS3-based
block reduction with a BLAS2-based reduction on the Alliant FX/8 [86]. As before,
the performance is computed based on the nonblock version operation count.
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F1G. 16. Reduction to Hessenberg form on Alliant FX/8.

Once the tridiagonal matrix is obtained two approaches have been used, on se-
quential machines, for obtaining its eigenvalues and eigenvectors. If all the eigenvalues
are required a @ R-based method is used. The classical procedure is inherently sequen-
tial, offering nothing in the form of vectorization or parallelism. Recently, Dongarra
and Sorensen [49], adapted an alternative due to Cuppen [33] for the use on multipro-
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cessors. This algorithm obtains all the eigenvalues and eigenvectors of the symmetric
tridiagonal matrix.
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FIG. 17. Reduction to tridiagonal form on CRAY X-MP (1 CPU).

In its simplest form, the main idea of the algorithm may be outlined as follows.
Let T = (3, a;, Bi+1) be the symmetric tridiagonal matrix under consideration, where
we assume that none of its off-diagonal elements 3; vanishes. Assuming that it is of
order 2m, it can be written as,

T= T + Temel, BemeT
Beleg’n T: +7eiel J°

where each T; is tridiagonal of order m, 7 is a “carefully” chosen scalar, and e; is the
ith column of the identity of order m. This in turn can be written as,

T = diag(T}, Ts) + yvv7T

in which the scalar v and the column vector v can be readily derived. Now, we have two
tasks: namely obtaining the spectral decomposition of Ty and Ty, i.e., T; = Q:D;Q7,
i = 1,2, where Q; is an orthogonal matrix of order m and D; is diagonal. Thus, if
Q = diag(Q1,Q2) and D = diag(D1,D3), then T is orthogonally similar to a rank-1
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perturbation of a diagonal matrix, i.e.,
QTQT = D + pz2T,

where p and z are trivially obtained from « and z. The eigenvalues of T are thus the
roots of

#(N) =14 p2T(D = A7z
and its eigenvectors are given by,
U; = T(D — /\iI)_lz,

where 7 = || D — A2

This module may be used recursively to produce a parallel counterpart to Cup-
pen’s algorithm [33] as demonstrated in [49]. For example, if the tridiagonal matrix
T is of order 2¥m, then the algorithm will consist of obtaining the spectral decompo-
sition of 2¥ tridiagonal matrices each of order m, followed by k stages in which stage
Jj consists of applying the above module simultaneously to 25=7 pairs of tridiagonal
matrices in which each is of order 29~ 'm.

If eigenvalues only (or all those lying in a given interval) or selected eigenpairs
are desired, then a bisection-inverse iteration combination is used, e.g., see Wilkinson
and Reinsch [195] or Parlett [141]. Such a combination has been adapted for the Illiac
IV parallel computer, e.g., see [118] and [102], and later for the Alliant FX/8, see
[123]. This modification depends on a multisectioning strategy in which the interval
containing the desired eigenvalues is divided into (p — 1) subintervals where p is the
number of processors. Using the Sturm sequence property we can simultaneously de-
termine the number of eigenvalues contained in each of the (p — 1) subintervals. This
is accomplished by having each processor evaluate the well-known linear recurrence
leading to the determinant of the tridiagonal matrix T' — ul or the corresponding
nonlinear recurrence so as to avoid over- or underflow, e.g., see [141]. This process is
repeated until all the eigenvalues, or clusters of computationally coincident eigenval-
ues, are separated. This “isolation” stage is followed by the “extraction” stage where
the separated eigenvalues are evaluated using a root finder which is a hybrid of pure
bisection and the combination of bisection and the secant methods, namely the ZE-
ROIN procedure due to Brent and Dekker, see [58]. If eigenvectors are desired, then
the final stage consists of a combination of inverse iteration and orthogonalization for
those vectors corresponding to poorly separated eigenvalues.

This scheme proved to be the most effective on the Alliant FX/8 for obtaining all
or few of the eigenvalues only. Compared to its execution time on one CE, it achieves
a speedup of 7.9 on eight CE’s, and is more than four times faster than Eispack’s
TQLL, e.g., see [167] or [195], for the tridiagonal matrix [-1,2,-1] of order 500 with
the same achievable accuracy for the eigenvalues. Even if all the eigenpairs of the
above tridiagonal matrix are required, this multisectioning scheme is more than 13
times faster than the best BLAS2-based version of Eispack’s TQL2, 27 times faster
than Eispack’s pair Bisect and Tinvit, and five times faster than its nearest com-
petitor, parallel Cuppen’s procedure [49], with the same accuracy in the computed
eigenpairs. For matrices with clusters of poorly separated eigenvalues, however, the
multisectioning algorithm may not be competitive if all the eigenpairs are required
with high accuracy. For example, for the well-known Wilkinson matrices Wi,,, e.g.,
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FIG. 18. Reduction to tridiagonal form on Alliant FX/8.

see [194], which have pairs of very close eigenvalues, the multisectioning method re-
quires roughly twice the time required by the parallel Cuppen’s procedure in order to
achieve the same accuracy for all the eigenpairs.

Further studies by Simon [166] demonstrate the robustness of the above multisec-
tioning strategy compared to other bisection-inverse iteration combinations proposed
in [8]. Also, comparisons between the above multisectioning scheme and parallel Cup-
pen’s algorithm have been given by Ipsen and Jessup on hypercubes [103] indicating
the effectiveness of multisectioning on distributed memory multiprocessors for cases
in which the eigenvalues are not pathologically clustered.

6.1.2. Jacobi and Jacobi-like schemes. An alternative to reduction to a con-
densed form is that of using one of the Jacobi schemes for obtaining all the eigenvalues
or all the eigenvalues and eigenvectors. Work on such parallel procedures dates back to
the Illiac IV distributed memory parallel computer, e.g., see [152]. Algorithms for han-
dling the two-sided Jacobi scheme for the symmetric problem, which are presented in
that work, exploit the fact that independent rotations can be applied simultaneously.
Furthermore, several ordering schemes of these independent rotations are presented
that minimize the number of orthogonal transformations (i.e., direct sum of rotations)
within each sweep. Much more work has been done since on this parallel two-sided
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Jacobi scheme for the symmetric eigenvalue problem. These have been motivated
primarily by the emergence of systolic arrays, e.g., see Brent and Luk [18]. A most
important byproduct of such investigation of parallel Jacobi schemes is a result due
to Luk and Park [126], where they show the equivalence of various parallel Jacobi
orderings to the classical sequential cyclic by row ordering for which Forsythe and
Henrici [57] proved convergence of the method.

Also, in [152] a Jacobi-like algorithm for solving the nonsymmetric eigenvalue
problem due to Eberlein [51], has been modified for parallel computations, primarily
for the Illiac IV. More recent related parallel schemes, aimed at distributed memory
multiprocessors as well, have been developed by Stewart [171] and Eberlein [52] for
the Schur decomposition of nonsymmetric matrices.

Unlike the two-sided Jacobi scheme, for the symmetric eigenvalue problem, the
one-sided Jacobi scheme due to Hestenes [94] requires only accessing of the columns
of the matrix under consideration. This feature makes it more suitable for shared
memory multiprocessors with hierarchical organization such as the Alliant FX /8. This
procedure may be described as follows. Given a symmetric nonsingular matrix A of
order n and columns a;, 1 £ ¢ < n, obtain through an iterative process an orthogonal
matrix V' such that

AV =8

where S has orthogonal columns within a given tolerance. The orthogonal matrix V is
constructed as the product of plane rotations in which each is chosen to orthogonalize
a pair of columns,

(ai,05) ( g —cs ) = (ds,d5)

where ¢ < j, so that d;7d; = 0 and ||d;]|2 > ||d;]|2. This is accomplished as follows, if

B>0
o= VETIE

s = af(2vc)

otherwise,

s = VAT

c = a/(2vs)

Here, @ = 2aTa;, B = ||a:||3 - ||a;||3, and v = \/a? + 2. Several schemes can be used
to select the order of the plane rotations. Shown below is the pattern for one sweep
for a matrix of order n = 8 an annihilation scheme related to those recommended in
[152],

* ot

* W o Ot

* =N WO

*¥ =3 OO0 = o W

*¥ OUTOY 3 0 = o
* W UTOY =} 00—
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where each sweep consists of n orthogonal transformations each being the direct sum
of no more than |n/2] independent plane rotations. An integer k = 8, for example,
denotes that the column pairs (2,8), (3,7), (4,6) can be orthogonalized simultaneously
by 3 independent rotations. After convergence of this iterative process, usually in a
few sweeps, the matrix V yields a set of approximate eigenvectors from which the
eigenvalues may be obtained via Rayleigh quotients. If the matrix A is positive-
definite, however, then its eigenvalues are taken as the 2-norms of the columns of
S. Note that if A is not known to be nonsingular, we treat the eigenvalue problem
Az = (A+a)z , where A = A+al, with a being the smallest number chosen such that
A is positive definite. On an Alliant FX/8, this Jacobi scheme is faster than algorithms
that depend on tridiagonalization, with the same size residuals, for matrices of size
less than 150 or for matrices that have few clusters of almost coincident eigenvalues.

Finally, a block generalization of the two-sided Jacobi scheme has been considered
by Van Loan [190] and Bischof [13] for distributed memory multiprocessors. The
convergence of cyclic block Jacobi methods has been discussed by Shroff and Schreiber
(165].

6.2. Singular-value problems. Several algorithms have been developed for ob-
taining the singular-value decomposition on vector and parallel computers. The most
robust of these schemes are those that rely first on reducing the matrix to the bidiag-
onal form, i.e., by using the sequential algorithm due to Golub and Reinsch [82]. The
most obvious implementation of the reduction to the bidiagonal form on a parallel
or vector computer follows the strategy suggested by Chan [26]. The matrix is first
reduced to the upper triangular form via the block Householder reduction, suggested
in the previous section, leading to the achievement of high performance. This is then
followed by the chasing of zeros via rotation of rows and columns to yield a bidiagonal
matrix. The application of the subsequent plane rotations has to proceed sequentially
but some benefit due to vectorization can still be realized.

Once the bidiagonal matrix is obtained a generalization of Cuppen’s algorithm
(e.g., see [107]) may be used to obtain all the singular values and vectors. Similarly, a
generalization of the multisectioning algorithm may be used to obtain selected singular
values and vectors.

Luk has used the one-sided Jacobi scheme to obtain the singular-value decom-
position on the Illiac IV [124] and block variations of Jacobi’s method have been
attempted by Bischof on IBM’s LCAP system [13].

For tall and narrow matrices with certain distributions of clusters of singular
values and /or extreme rank deficiencies, Jacobi schemes may also be used to efficiently
obtain the singular-value decomposition of the upper triangular matrix resulting from
the orthogonal factorization via block Householder transformations. The same one-
sided Jacobi scheme discussed above has proved to be most effective on the hierarchical
memory system of the Alliant FX/8. Such a procedure results in a performance that
is superior to the best vectorized version of Eispack’s or LINPACK routines which
are based on the algorithm in [82]. Experiments showed that the block-Householder
reduction and the one-sided Jacobi scheme combination is up to five times faster, on
the Alliant FX/8, than the best BLAS2-version of LINPACK’s routine for matrices
of order 16000 x 128 [12].

7. Rapid elliptic solvers. In this section, we review parallel schemes for rapid
elliptic solvers. We start with the classical Matrix Decomposition (MD), and Block-
Cyclic Reduction (BCR) schemes for separable elliptic P.D.E.’s on regular domains.
This is followed by a Boundary Integral-based Domain Decomposition method for
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handling the Laplace equation on irregular domains that consist of regular domains;
examples of such domains are the right-angle or T-shapes.

Efficient direct methods for solving the finite-difference approximation of the Pois-
son equation on the unit square have been developed by Buneman [20], Hockney [96],
[97], and Buzbee, Golub, and Nielson [22]. The most effective sequential algorithm
combines the block cyclic reduction and Fourier analysis schemes. This is Hockney’s
FACR(]) algorithm [97]. Excellent reviews of these methods on sequential machines
have been given by Swarztrauber [177] and Temperton [182], [183]. In [177] it is shown
that the asymptotic operation count for FACR(I) on an n x n grid is O(n2log,log,n),
and is achieved when the number [ of the block cyclic reduction steps preceding Fourier
analysis is taken approximately as (log,logyn). Using only cyclic reduction, or Fourier
analysis, to solve the problem on a sequential machine would require O(n*log,n) arith-
metic operations.

Buzbee [21] observed that Fourier analysis, or the matrix decomposition Pois-
son solver (MD-Poisson solver), is ideally suited for parallel computation. It consists
of performing a set of independent sine transforms, and solving a set of indepen-
dent tridiagonal systems. On a parallel computer consisting of n? processors, with
an arbitrarily powerful interconnection network, the MD-Poisson solver for the two-
dimensional case requires O(log,n) parallel arithmetic steps [160]. It can be shown,
[142] and [173], that a perfect shuffle interconnection network is sufficient to keep the
communication cost to a minimum. Ericksen [55] considered the implementation of
FACR(l), [97], and CORF, [22], on the ILLIAC IV; and Hockney [98] compared the
performance of FACR(l) on the CRAY-1, Cyber-205, and the ICL-DAP.

7.1. A domain decomposition MD-scheme. We consider first the MD-algor-
ithm for solving the 5-point finite difference approximation of the Poisson equation
on the unit square with a uniform n x n grid, where for the sake of illustration we
consider only Dirichlet boundary conditions. The multiprocessor version algorithm
presented below can be readily modified to accommodate Neumann and periodic
boundary conditions.

Using natural ordering of the grid points, we obtain the well-known linear system
of order n?:

T -1 Uy fl

-1 T -I Us f2
~TI T -1 Up—1 Up—1

-1 T Un Un

where T = [—1,4, —1] is a tridiagonal matrix of order n.
This parallel MD-scheme consists of 3 stages [154]:

Stage 1. Each cluster j, 1 < j < 4 (a four cluster Cedar is assumed), forms
the subvectors fi;_1)q+1, f(j—1)q+2," ", fiq Of the right-hand side, where ¢ = n/4.
Next each cluster j obtains §] = (g(j—l)q+1""79}:;), where gr = Qfk, in which
Q = [(2/[n+ 1)) 2sin(Imx/[n+1])}, I,m = 1,2,-- -, n, is the eigenvector matrix of T.
This amounts to performing in each cluster ¢ sine transforms each of length n. Now
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we have the system

M E Uy 91
ET M E U9 _ 92
ET M E ! | 4 |’
ET M N g4
where each cluster memory contains one block row. Here, 13f = (U(T;_l)q+1, e v;r)

with vy = Qug, M = [-I, A, —I,;] is a block tridiagonal matrix of order ¢gn, and

I F o ’}1
G I, F b2 | _ | he
G I, F o3 | | Ay |7
G Iy on by
where fzf = (h6-1)q+1v = -,hJTq), F and G are given by: Mfzj =§;,1<j<4, MF=

E, and MG = ET. Observing that M consists of n independent tridiagonal matrices
Ti = [-1, Ak, —1] each of order q, where A\y = 4 — 2cos(kn/[n +1]), k = 1,2,--+,n,
the right-hand side of the above system is obtained by solving in each cluster j the n
independent systems

Tyry = sk,

for k = 1,2,---,n, where éTs;, = efg(j_l),ﬁ_i, and éTry = efh(j_l)q“, for i =
1,2,---,q,and 1 £ j < 4. Here, é; and e; are the ith columns of I; and I,, respectively.

The matrices F' and G can be similarly obtained by solving, in each cluster j,
the independent systems Txcy = é;, and Tidy = éq, for k = 1,2,---,n. Since T} is
a Toeplitz matrix, however, we have ¢, = Jdi, where J = [ég,- -, é;], see [111] for
example. As a result, in order to obtain F' and G we need only solve in each cluster
the n systems Tidy = ég, k = 1,2,--,n. Hence, F and G are of the form,

r, o
F={: |
ry o
and
0 I,
G= ,
0 Ty
= _J; W . Sm)y ; (k) _ 4T o
where I'; = —diag(y; ’,---,% ), in which ;' = élcy, for i = 1,2,---,¢, and
k=1,2,--- n.

Stage 2. From the structure of (7.1) it is seen that the three pairs of n equations
above and below each partition are completely decoupled from the rest of the n?
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equations [161]. This reduced system, of order 6n, consists of interlocking blocks of
the form:

I, Ty 0 0

r I, 0 T,
r, 0 I, I 0 0
r, I, 0 T,
r, o I, T,
FlIn

This system, in turn, comprises n independent pentadiagonal systems each of order
6, which can be solved in a very short time.

Stage 3. Now, that the subvectors vkq, vkgy1, k = 1,2,3, are available, each
cluster j obtains

Vi-1yg+i = P—1)gts = (Tav-1)g + Tgmit1v5941)

for i = 2,3,---,9 — 1, where vg = vgqy1 = 0. Finally, each cluster j retrieves the
q subvectors ugj_1yg1i = QU(j—1)q4i, for ¢ = 1,2,---,¢, of the solution via ¢ sine
transforms, each of length n.

Note that one of the key computational kernels in this algorithm is the calculation
of multiple sine transformations. In order to design an efficient version of this kernel
it is necessary to perform an analysis of the influence of the memory hierarchy similar
to that presented above for the block LU algorithm. Such an analysis is contained in
[74].

7.2. A modified block cyclic reduction. The discretization of the separable

elliptic equation
0%u du 2y

(16) ofz) g +e) s +elahu+ G = @)
with Dirichlet boundary conditions and a five-point stencil on a naturally ordered
nxm grid defined on a rectangular region leads to a system of the form .Au = f. In this
case A is the n block tridiagonal matrix diag{—1I, A, —I], where A, I are respectively
tridiagonal and identity matrices of order m. Block cyclic reduction (BCR) dates
back to the work of Hockney and was presented in [22] in its stabilized form due to
Buneman. The work in [176], [178], [180] resulted in the development of FISHPAK,
a package based on BCR for the solution of (16) and extensions thereof. BCR is a
rapid elliptic solver (RES) having sequential computational complexity O(nm logn).
Assuming that n = 2¥ — 1, the idea of the method for reduction steps r = 1,--- , k-1
is to combine the current 2¥~"+1 — 1 vectors into 2577 — 1 ones, and then solve a
system of the form

Par-1 (A)X =Y

where Y € ®™*(2*”7"=1) and py.—1(A) is a Chebyshev polynomial of degree 27! in
A. Since its roots /\I(T—l) are known, it can be written in product form, where each
factor is tridiagonal. Hence the system to be solved becomes

or—1
(17) [TA=A""Dfal - [mymr o) = o]+ s 1)

i=1
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FIG. 19. Parallel and standard BCR on n x n grid on Alliant FX/8.

Clearly as r increases, the effectiveness of a parallel or vector machine to handle (17)
decreases rapidly.

A parallel version of BCR was recently discovered [70], [181]. In summary, the
method is based in expressing the matrix rational function [pyr—1(A)]~! as a partial

fraction, i.e., as a linear combination of the 2"~ components (4 — /\1(7‘_1)1)“1

2r~l

(18)  [za]-+Jzgr-ra] = Y ol TV A = ATTID T | - fygrera):
i=1

Coefficients a§r_l) are equal to 1/ (p’zr_,(AET_l))) and can be derived analytically.
Figure 19 shows the performance of the parallel and standard BCR on the Alliant

FX/8.

For a discussion of parallel BCR on distributed memory machines see [73], [179].
Partial fraction decomposition can also be applied to the parallel solution of parabolic
equations. See [71], [72] for details.

7.3. Boundary integral domain decomposition. A new method (BIDD)
was recently proposed for the solution of Laplace’s equation [68], [69]. The method is
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characterized by the decoupling of the problem into independent subproblems on sub-
domains. An approximation 4 to the solution u is sought as a finite linear combination
of N fundamental solutions [128] ¢;(z) = —5= log |z — w;| of V?u =0:

N
(19) i(z) = Y 0365(2)

For a given set of N points w; lying outside the domain, o € RY is computed to
minimize ||g — Go||, for some norm p. G € >V is the influence matrix consisting
of fundamental solutions based at w; for each boundary point. g € R consists of
boundary values for u. Once ¢ has been computed, the solution at any g points
on the domain is & = Ho, with H € ®**N being the influence matrix for the p
points. Choosing these u points to be subdomain boundary points, we can compute
the solution by applying the elliptic solvers most suitable for each subdomain.
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38 Introduction to Matrix Analysis
(recalling once again the orthogonality of the z,),
M
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The matrix on the right-hand side has as its main diagonal the charae-
teristic values Ay, A3, . . . , Av, and zeros every place else. A matrix of
this type is, as earlier noted, called a diagonal matrix.

Multiplying on the right by T” and on the left by T, and using the fact
that TT’ = I, we obtain the important result
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This process is called reduction to diagonal form. As we shall see, this
representation plays & fundamenta! role in the theory of symmetric
matrices. Let us use the notation

. —

A

A2
A= g ®)

v

EXERCISES

1. Show that A* = (A\%3;;), and that A* = TAT", for k = 1, 2,

2. Show that if A has distinct characteristic roots, then 4 satlsﬁes 1ts own charac-
teristic equation. This is a particular case of a more general result we shall establish
later on.

3. If A has distinct characteristic roots, obtain the set of characteristic vectors
associated with the characteristic roots of A%, k = 2,3, .
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PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS
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Abstract. In this paper we survey recent progress in the development of parallel algorithms for
solving sparse linear systems on computer architectures having multiple processors. We focus our
attention on direct methods for solving sparse symmetric positive definite systems, specifically by
Cholesky factorization. We survey recent progress on parallel algorithms for all phases of the solution
process, including ordering, symbolic factorization, numeric factorization, and triangular solution.

Key Words. parallel algorithms, sparse linear systems, Cholesky factorization
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1. Introduction. Dense matrix computations are of such central importance in
scientific computing that they are usually among the first algorithms implemented in
any new computing environment. The need for high performance on common opera-
tions such as matrix multiplication and solving systems of linear equations has had a
strong influence on the design of many architectures, compilers, etc., and such com-
putations have become standard benchmarks for evaluating the performance of new
computer systems. A survey of parallel algorithms for dense matrix computations
is given in [34]. Sparse matrix computations are equally as important and perva-
sive, but both their performance and their influence on computer system design have
tended to lag those of their dense matrix counterparts. In a sense this relative lack
of attention and success is not surprising: sparse matrix computations involve more
complex algorithms, sophisticated data structures, and irregular memory reference
patterns, making efficient implementations on novel architectures substantially more
difficult to achieve than for dense matrix computations. One could plausibly argue,
however, that the greater complexity and irregularity of sparse matrix computations
make them much more realistic representatives of typical scientific computations, and
therefore even more useful as design targets and benchmark criteria than the dense
matrix computations that have usually played this role.

Despite the difficulty and relative neglect of sparse matrix computations on ad-
vanced computer architectures, there have been some notable successes in attaining
very high performance (e.g., [14]), and the needs of sparse matrix computations have
had some effect on computer design (e.g., the inclusion of scatter/gather instruc-
tions on some vector supercomputers). Nevertheless, it is ironic that sparse matrix
computations contain more inherent parallelism than the corresponding dense ma-
trix computations (in a sense to be discussed below), yet typically show significantly
lower efficiency on today’s parallel architectures. In this paper we will examine the
reasons for this state of affairs, reviewing the major issues and progress to date in
sparse matrix computations on parallel computer architectures. In addition to sur-
veying the literature in this area, we will try to sketch the conceptual framework in
which this work has taken place. To keep the scope of the article within reasonable
bounds, we will focus our attention on the solution of sparse symmetric positive defi-
nite linear systems by Cholesky factorization. There has, of course, also been progress
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Tennessee 37831-8083. This research was supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U.S. Department of Energy under contract DE-ACO5-
840R21400 with Martin Marietta Energy Systems Inc.
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on parallel algorithms for other matrix problems (e.g., nonsymmetric linear systems,
least squares, eigenvalues), other factorizations (e.g., LU and QR), and other basic
approaches (e.g., iterative methods), but a comprehensive treatment of all of these
topics would easily require an entire book. Our discussion of sparse Cholesky fac-
torization illustrates some of the major issues that also arise in other parallel sparse
matrix factorizations as well, but there are many additional issues associated with
parallel iterative algorithms or parallel sparse eigenvalue algorithms that we do not
specifically address.

An outline of the paper is as follows. First, we will sketch briefly some necessary
background material on serial algorithms for solving sparse symmetric positive definite
linear systems. For a much more complete treatment, the reader should consult [25]
or [47]. We then survey the progress to date in developing parallel implementations
for each of the major phases of the solution process. We will see that the same graph
theoretic tools originally developed for analyzing sequential sparse matrix algorithms
also play a critical role in understanding parallel algorithms as well. We conclude
with some observations on future research directions.

2. Background. Consider a system of linear equations
Az = b,

where A is an n X n symmetric positive definite matrix, b is a known vector, and z is
the unknown solution vector to be computed. One way to solve the linear system is
first to compute the Cholesky factorization

A=LLT,

where the Cholesky factor L is a lower triangular matrix with positive diagonal ele-.
ments. Then the solution vector z can be computed by successive forward and back
substitutions to solve the triangular systems

Ly=b LTz=y.

If A is a sparse matrix, meaning that most of its entries are zero, then during the
course of the factorization some entries that are initially zero in the lower triangle of
A may become nonzero entries in L. These entries of L are known as fill or fill-in.
Usually, however, many zero entries in the lower triangle of A remain zero in L. For
efficient use of computer memory and processing time, it is desirable for the amount
of fill to be small, and to store and operate on only the nonzero entries of A and L.

It is well known that row or column interchanges are not required to maintain
numerical stability in the factorization process when A is positive definite. Further-
more, when roundoff errors are ignored, a given linear system yields the same solution
regardless of the particular order in which the equations and unknowns are numbered.
This freedom in choosing the ordering can be exploited to enhance the preservation of
sparsity in the Cholesky factorization process. More precisely, let P be any permuta-
tion matrix. Since PAPT is also a symmetric positive definite matrix, we can choose
P based solely on sparsity considerations. That is, we can often choose P so that
the Cholesky factor L of PAPT has less fill than L. The permuted system is equally
useful for solving the original linear system, with the triangular solution phase simply
becoming

Ly = Pb, ITz= y, z=PT,.
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Unfortunately, finding a permutation P that minimizes fill is a very difficult combina-
torial problem (an NP-complete problem) [107]. Thus, a great deal of research effort
has been devoted to developing good heuristics for limiting fill in sparse Cholesky
factorization, including the nested dissection algorithm [39,45] and the minimum de-
gree algorithm [48,70,98]. Limiting fill is also the primary motivation for a number
of methods based on reducing the bandwidth or profile of A. These band-oriented
methods have been less successful, however, than the more general sparse ordering
techniques, and as we shall see, they are at an even greater disadvantage in a parallel
context.

Since pivoting is not required in the factorization process, once the ordering is
known, the precise locations of all fill entries in L can be predicted in advance!, so that
a data structure can be set up to accommodate L before any numeric computation
begins. This data structure need not be modified during subsequent computations,
which is a distinct advantage in terms of efficiency. The process by which the nonzero
structure of L is determined in advance is called “symbolic factorization.” Thus, the
direct solution of Az = b consists of the following sequence of four distinct steps:

1. Ordering: Find a good ordering P for A; that is, determine a permutation
matrix P so that the Cholesky factor L of PAPT suffers little fill.

2. Symbolic Factorization: Determine the structure of L and set up a data
structure in which to store A and compute the nonzero entries of L.

3. Numeric Factorization: Insert the nonzeros of A into the data structure and
compute the Cholesky factor L of PAPT.

4. Triangular Solution: Solve Ly = Pb and LTz = y, and then set z = PT 2,

Note that the first two steps are entirely symbolic, involving no floating-point
computation. Several software packages [17,27,29] for serial computers use this basic
approach to solve sparse symmetric positive definite linear systems. We now briefly
discuss algorithms and methods for performing each of these steps on sequential ma-
chines.

2.1. Ordering. As one might expect from the combinatorial nature of the or-
dering problem for sparse factorization, graph theory has proved to be an extremely
helpful tool in modeling the symbolic or structural aspects of sparse elimination algo-
rithms. The use of a graph theoretic model dates to the early work of Parter [91] and
Rose [97], and has now come to permeate the subject. The graph of an n x n sym-
metric matrix A, denoted by G(A), is a labelled undirected graph having n vertices
(or nodes), with an edge between two vertices i and j if the corresponding entry a;;
is nonzero in the matrix. The structural effect of Gaussian elimination on the matrix
is then easily described in terms of the corresponding graph. The fill introduced into
the matrix as a result of eliminating a variable adds fill edges to the corresponding
graph precisely so that the neighbors of the eliminated vertex become a clique. This
fact suggests that fill can be limited, or at least postponed, by eliminating first those
vertices having fewest neighbors (i.e., vertices of lowest degree). The elimination or
factorization process can thus be modeled by a sequence of graphs, each having one
less vertex than the previous graph but possibly gaining edges, until only one vertex
remains. We will also have occasion to refer to the filled graph, F(A), which is the
graph of A with all fill edges added (i.e., there is an edge between two vertices i and
j of F(A), with ¢ > j, if £; # 0 in the Cholesky factor matrix L).

1 We assume that exact cancellation never occurs, and thus fill refers to the structural nonzeros
of L, i.e., every location of the factor that is occupied by a nonzero entry at some point in the
factorization.
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The foregoing discussion provides the basis for the minimum degree algorithm,
which is the most successful and widely applicable heuristic developed to date for lim-
iting fill in sparse Cholesky factorization. At each step of the elimination process, this
simple heuristic selects as the next node to be eliminated a node of minimum degree in
the current elimination graph. Despite its simplicity, the minimum degree algorithm
produces reasonably good orderings over a remarkably broad range of problem classes.
Another strength is its efficiency: as a result of a number of refinements over several
years, current implementations are extremely efficient on most problems. George and
Liu [48] review a series of enhancements to implementations of the minimum degree
algorithm and demonstrate the consequent reductions in ordering time.

As might be expected from the “greedy” nature of the algorithm, however, several
weaknesses of the minimum degree ordering heuristic are well documented in the
literature. Experiments in both [24] and [48] illustrate the sensitivity of the quality
of minimum degree orderings to the way ties are broken when there is more than one
node of minimum degree from which to choose. Attempts to make the selection more
intelligent or less myopic, however, have proven to be computationally expensive.
No tie-breaking scheme proposed to date is both effective and efficient, though some
interesting results using deficiency (the number of fill edges created by the elimination
step) to break ties are reported in [15]. Berman and Schnitger [13] show that for a
model problem there exists a minimum degree tie-breaking scheme for which the time
and space complexity of the factorization is worse than that of known asymptotically
optimal orderings. To summarize, minimum degree is, on balance, an effective and
efficient ordering heuristic, but its success is not well understood, and no robust
and efficient way is known for dealing with the wide variability in the quality of the
orderings it produces.

Another effective algorithm for limiting fill in Cholesky factorization is nested
dissection, which is based on a divide-and-conquer paradigm. Let S be a set of
nodes (called a separator) whose removal, along with all edges incident on nodes in
S, divides the graph into at least two remaining pieces. If the matrix is reordered
so that the variables in each piece are numbered contiguously and the variables in
the separator are numbered last, then the matrix will have a bordered block diagonal
nonzero pattern. More importantly, elimination of a node within one of the pieces
cannot introduce fill into any of the other pieces; fill is restricted to the diagonal
blocks and the border [47,99]. This idea can be applied recursively, breaking the
pieces into smaller and smaller pieces with successive sets of separators, giving a
nested sequence of dissections of the graph. The effectiveness of nested dissection in
limiting fill is highly dependent on the size of the separators used to split the graph.
For highly regular, planar problems (e.g., two-dimensional finite difference or finite
element grids), suitably small separators can usually be found [68,69]. For problems
in dimensions higher than two, or for highly irregular problems with less localized
connectivity, nested dissection is much less effective. Nevertheless, nested dissection
is important not only for its practical usefulness on suitable problems, but also for its
asymptotically optimal fill properties for certain model problems, which serves as a
kind of theoretical benchmark for the quality of orderings [39,60].

2.2. Symbolic Factorization. A naive approach to symbolic factorization is
simply to carry out Cholesky factorization on the structure of A symbolically. How-
ever, such an algorithm would then have the same time complexity as the numeric
factorization itself (i.e., it would require the same number of symbolic operations as
the number of floating-point operations required by the numeric factorization). With
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a little care, the complexity of symbolic factorization can be reduced to O(n(L)),
where (L) denotes the number of nonzeros in L, as follows.
For a given sparse matrix M, define

Struct(M;.) :== {k < i | mix # 0}
and
Struct(M.j) = {k > ] ’ Myj # 0}

In other words, Struct(M;.) is the sparsity structure of row i of the strict lower
triangle of M, and Struct(M.,;) is the sparsity structure of column j of the strict
lower triangle of M. For a given lower triangular Cholesky factor matrix L, define
the function p as follows:

(j) = min {¢ € Struct(L.;)}, if Struct(L.;) #9,

)= 7 otherwise.

Thus, when there is at least one off-diagonal nonzero in column j of L, p(j) is the row
index of the first off-diagonal nonzero in that column. It is easy to show that

Struct(L,;) C Struct(L, p;y) U {p(j)}.

Moreover, it can be shown that the structure of column j of L can be characterized
as follows [47):

Struct(L.j) := Struct(A.;) U (U {Struct(L.:) | p(¢) = J}> - {5}

i<j

That is, the structure of column j of L is given by the structure of the lower triangular
portion of column j of A, together with the structure of each column of L whose first
off-diagonal nonzero is in row j. This characterization leads directly to an algorithm
for performing the symbolic factorization, shown in Figure 1, in which the sets R; are
used to record the columns of L whose structures will affect that of column j of L.

for j:=1tondo
Rj =0
for j:=1tondo
S := Struct(A.,;)
for i € R; do
S := SU Struct(L.) — {5}
Struct(L.;) =S
if Struct(L.;) # 0 then
p(7) == min {i € Struct(L.;)}
Ry(3) = Ry(i) U7}

F16. 1. Symbolic factorization algorithm.

This simple symbolic factorization algorithm is already very efficient, with time
and space complexity O(n(L)), but it is subject to further refinement. For example,
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if R; contains only one column, say {, and Struct(A.;) C Struct(L.;), then clearly
Struct(L.;) = Struct(L.i)— {j}. This shortcut can be used to speed up the symbolic
factorization algorithm and to reduce the storage requirements using a technique
known as “subscript compression” [104]. In fact, these conditions are often satisfied
when j is relatively large, as the columns tend to become more dense toward the end of
the factorization. An efficient implementation of the symbolic factorization algorithm
is presented in [47]. With its low complexity and an efficient implementation, the
symbolic factorization step usually requires less computation than any of the other
three steps in solving a symmetric positive definite system by Cholesky factorization.

Once the structure of L is known, a compact data structure is set up to accom-
modate all of its nonzero entries. Since only the nonzero entries of the matrix are
stored, additional indexing information must be stored to indicate the locations of the
nonzeros. Although this integer overhead potentially rivals the space requirements for
the nonzeros themselves, in practice the subscript compression technique mentioned
above greatly reduces this overhead storage [46).

2.3. Numeric Factorization. In its simplest form, Gaussian elimination on a
dense matrix A can be described as a triple nested loop around the single statement

ai; = aij — (aixax;)/axe.

The loop indices i, j, and k can be nested in any order, each with a different pattern of
memory access. This freedom can be exploited to take better advantage of particular
architectural features of a given machine (cache, virtual memory, vectorization, etc.)
[21]. Specializing to Cholesky factorization, where symmetry is exploited so that only
the lower triangle of the matrix is accessed, we see that there are three basic types of
algorithms, depending on which of the three indices is placed in the outer loop:

1. Row-Cholesky: Taking i in the outer loop, successive rows of L are computed
one by one, with the inner loops solving a triangular system for each new row
in terms of the previously computed rows.

2. Column-Cholesky: Taking j in the outer loop, successive columns of L are
computed one by one, with the inner loops computing a matrix-vector product
that gives the effect of previously computed columns on the column currently
being computed.

3. Submatriz-Cholesky: Taking k in the outer loop, successive columns of L are
computed one by one, with the inner loops applying the current column as a
rank-1 update to the remaining partially-reduced submatrix.

These three families of algorithms have markedly different memory reference pat-
terns in terms of which parts of the matrix are accessed and modified at each stage
of the factorization (see Figure 2), and each has its advantages and disadvantages in
a given context. For sparse Cholesky factorization, row-Cholesky is seldom used be-
cause of the difficulty in designing a compact row-oriented data structure for storing
the nonzeros of L that can also be accessed efficiently in the numerical factorization
phase [71]. Efficient implementation of sparse row-Cholesky is even more difficult on
vector and parallel architectures since it is difficult to vectorize or parallelize sparse
triangular solutions (see discussions in Sections 2.4 and 3.5). We will therefore con-
centrate our attention on the two column-oriented methods, column-Cholesky and
submatrix-Cholesky.

In column-oriented Cholesky factorization algorithms, there are two fundamental
types of subtasks:

1. emod(j, k) : modification of column j by column &, k < j,
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I\

row-Cholesky column-Cholesky submatrix-Cholesky

used for modification

- modified

FIG. 2. Three forms of Cholesky factorization.

2. ediv(j) : division of column j by a scalar.
These sparse matrix operations correspond to saxpy and sscal in the terminology
of the BLAS [64] for dense linear algebra, but we use different notation to emphasize
that we are dealing with their sparse counterparts. In terms of these basic operations,
high-level descriptions of the column-Cholesky and submatrix-Cholesky algorithms
are given in Figures 3 and 4.

forj=1tondo
for k€ Struct(Lj.) do
emod(j, k)
ediv(j)

F1G. 3. Sparse column-Cholesky factorization algorithm.

fork=1tondo
cdiv(k)
for j € Struct(L.:) do
cmod(j, k)

FIG. 4. Sparse submatriz-Cholesky factorization algorithm.

In column-Cholesky, column j of A remains unchanged until the index of the outer
loop takes on that particular value. At that point the algorithm updates column j with
a nonzero multiple of each column k < j of L for which £z # 0. After all column
modifications have been applied to column j, the diagonal entry £;; is computed
and used to scale the completely updated column to obtain the remaining nonzero
entries of L,j. Column-Cholesky is sometimes said to be a “left-looking” algorithm,
since at each stage it accesses needed columns to the left of the current column in
the matrix. It can also be viewed as a “demand-driven” algorithm, since the inner
products that affect a given column are not accumulated until actually needed to
modify and complete that column. It is also sometimes referred to as a “fan-in”
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algorithm, since the basic operation is to combine the effects of multiple previous
columns on a single subsequent column. The column-Cholesky algorithm is the most
commonly used method in commercially available sparse matrix packages [17,27,29].

In submatrix-Cholesky, as soon as column k is completed, its effects on all sub-
sequent columns are computed immediately. Thus, submatrix-Cholesky is sometimes
said to be a “right-looking” algorithm, since at each stage columns to the right of
the current column are modified. It can also be viewed as a “data-driven” algorithm,
since each new column is used as soon as it is completed to make all modifications to
all the subsequent columns it affects. It is also sometimes referred to as a “fan-out”
algorithm, since the basic operation is for a single column to affect multiple subse-
quent columns. We will see that these characterizations of the column-Cholesky and
submatrix-Cholesky algorithms have important implications for parallel implementa-
tions.

Having stated the “pure” column- and submatrix-Cholesky algorithms, we note
that many variations and hybrid implementations of these schemes are possible, which
essentially amount to different ways of amalgamating partial results. For example,
frontal methods [61], and their generalizations to multifrontal methods [28], are es-
sentially variations on submatrix-Cholesky. But while the emod(j, k) updating oper-
ations are computed in the order shown in Figure 4, they are not applied directly to
the column j being updated. Instead they are accumulated and passed on through
a succession of update matrices until finally they are incorporated into the target
column. The reason for this approach is that in the frontal method most of the ma-
trix is kept out of core on auxiliary storage, with only a relatively small “frontal”
matrix representing currently “active” columns kept in main memory. Similarly, the
out-of-core version of the multifrontal method can be implemented so that only a few
small “frontal” matrices are kept in main memory. To minimize I/O traffic, access
to inactive portions of the matrix, both columns already completed and columns yet
unreduced, must be kept to a minimum. For further details on multifrontal methods,
see [28] or [78].

One of the main motivations for frontal and multifrontal methods is that the
frontal matrices can be treated as dense, and therefore one can take advantage of
vectorization more readily on hardware that supports it [3,5,11,19]. Moreover, the
localization of memory references in these methods is advantageous in exploiting cache
[100] or on machines with virtual memory and paging [76].

Before leaving the general topic of sparse factorization, we introduce two addi-
tional concepts that are useful in analyzing and efficiently implementing sparse fac-
torization algorithms. A supernode is a set of contiguous columns in the Cholesky
factor L that share essentially the same sparsity structure. More specifically, the set
of contiguous columns j,j +1,...,j +t constitutes a supernode if Struct(L,) =
Struct(Lyx41)U{k + 1} for j < k < j+1t—1. A set of supernodes for an example
matrix is shown in Figure 5. Columns in the same supernode can be treated as a unit
for both computation and storage. Supernodes have long played an important role in
enhancing the efficiency of both the minimum degree ordering [50] and the symbolic
factorization [104]. More recently, supernodes have been used to organize sparse fac-
torization algorithms around matrix-vector or matrix-matrix operations that reduce
memory traffic by making more efficient use of vector registers [5,11] or cache [3,100).
The cited reports document the substantial gains in performance obtained by using
these techniques.
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The elimination tree T(A) [71,103] associated with the Cholesky factor L of a
given matrix A has {1,2,...,n} as its node set, and has an edge between two vertices
i and j, with ¢ > j, if § = p(j), where p is the function defined in Section 2.2. In
this case, node i is said to be the parent of node j, and node j is a child of node i.
Liu [79] discusses the many uses of elimination trees in sparse matrix computations.
Among these is their use in managing the frontal and update matrices in the multi-
frontal method. Another key role is in the analysis of data dependencies that must be
observed when factoring the matrix, which has obvious implications for implementing
the factorization in parallel. Figure 6 shows the elimination tree for the matrix shown
in Figure 5.

Let T[j] denote the subtree of T(A) rooted at node j. It is shown in [71] and
[103] that the set of columns/nodes that modify column/node j (namely, the set
Struct(L;.)) is a subset of T'[j] denoted by T [j]. Moreover, T,[j] is also a subtree of
T(A) rooted at node j. For this reason, T[] is called the row subtree of j. It follows
that column j can be completed only after every column in 7, [j] has been computed.
It also follows that the columns that receive updates from column j are ancestors of
j in T(A). In other words, the node set Struct(L.;) is a subset of the ancestors of j
in the tree.

2.4, Triangular Solution. There is relatively little to be said about the trian-
gular solution step. The structure of the forward and back substitution algorithms
is more or less dictated by the sparse data structure used to store the triangular
Cholesky factor L and by the structure of the elimination tree T(A). Because tri-
angular solution requires many fewer floating-point operations than the factorization
step that precedes it, the triangular solution step usually requires only a small fraction
of the total time to solve a sparse linear system on conventional sequential computers.
These proportions can change, however, with more advanced computer architectures,
since it is often more difficult to take full advantage of vector or parallel processors
in performing triangular solutions. We will discuss these issues in greater detail in
Section 3.5.

3. Parallel Algorithms. In this section we summarize the progress to date in
adapting direct methods for the solution of sparse symmetric positive definite lin-
ear systems to perform well on the various parallel architectures that have become
available in recent years. The most widely available and commercially successful
parallel architectures thus far fall into three rough categories: shared-memory MIMD
(multiple-instruction, multiple-data stream) architectures typically having 30 or fewer
processors, distributed-memory MIMD architectures typically having on the order of
32 to 1024 processors, and SIMD (single-instruction, multiple-data stream) archi-
tectures typically having tens of thousands of processors. Some machines have an
additional level of parallelism in the form of vector units within each individual pro-
cessor. Parallel architectures display an enormous variation in the number and power
of processors, organization of memory, control mechanisms, and synchronization and
communication overhead, so it is not surprising that they demand a comparable range
of algorithmic techniques to achieve good efficiency in the various settings. Never-
theless, we will try to concentrate on general principles that are widely applicable,
while focusing occasionally on implementation issues that may arise in a more specific
context.

In exploiting parallelism to solve any problem, the computational work must be
broken into a number of subtasks that can be assigned to separate processors. The
most appropriate number and size of these tasks (e.g., a small number of large tasks
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17 19 20 23 24 26

Fi1G. 6. Elimination tree for the matrix shown in Figure 5. Ovals enclose supernodes that contain
more than one node. Nodes not enclosed by an oval are singleton supernodes. Bold-face numbers
label supernodes.
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or a large number of small tasks) depend on the target parallel architecture and the
levels at which parallelism naturally occurs in the problem. The term often used to
denote the size of computational tasks in a parallel implementation is granularity.
In sparse factorization, as in most problems, a number of levels of computational
granularity can potentially be exploited. Liu [72] uses the elimination tree to analyze
the following levels of parallelism in Cholesky factorization:
1. fine-grain parallelism, in which each task is a single floating-point operation
or flop, i.e., multiply-add pair,
2. medium-grain parallelism, in which each task is a single cmod or ediv column
operation,
3. large-grain parallelism, in which each task is the completion of all columas in
a subtree of the elimination tree.

Here, large-grain parallelism refers to the independent work done in computing
columns in disjoint subtrees. Consider two disjoint subtrees T[j] and T'fi], where
neither root node is a descendent of the other. All work required to compute the
columns of T[j] is completely independent of all work required to compute the columns
of T[i]. For example, in Figure 6 the columns of T[9] (columns 1-9) are completely
independent of the columns of T[18] (columns 10-18). This type of parallelism is
available only in sparse factorization; it is not available in the dense case. But of
course we are not limited to exploiting only parallelism of this nature. There is
much more parallelism to be found at the medium-grain level of the individual cmod
operations. Let j; and j; be two column indices whose subtrees T[j,] and T'[j3] are not
disjoint. Suppose that k; and k; are indices of columns that must be used to modify
columns j; and j,, respectively. Clearly, the updates emod(jy, k) and emod(jz, k2)
can be performed in parallel. This is the primary source of parallelism in the dense
case, and it is an extremely important source of parallelism in the sparse case as well.

While we will have a great deal to say about algorithms that employ the first two
sources of parallelism, we will have little to say about finer grain parallelism. Fine
grain parallelism can be exploited in two distinctly different ways:

1. vectorization of the column operations ¢cmod and cdiv on vector supercom-
puters,
2. parallelizing the rank-one update that constitutes a major step of submatrix-
Cholesky on an SIMD machine.
Exploiting vectorization requires some changes and refinement of the basic sequen-
tial algorithms [3,5,11,19], but it does not require changes as extensive and basic
as those required to exploit higher levels of parallelism. Developing parallel sparse
submatrix-Cholesky algorithms for SIMD machines presents a more difficult challenge,
and research on this topic is still in its infancy [54].

To date, implementation on parallel architectures has caused no fundamental
change in the overall high-level approach to solving sparse symmetric positive defi-
nite linear systems. On parallel machines the same sequence of four distinct steps
is performed: ordering, symbolic factorization, numeric factorization, and triangular
solution. However, both shared-memory and distributed-memory MIMD machines
require an additional step to be performed: the tasks into which the problem is
decomposed must be mapped onto the processors. Obviously, one of the goals in
mapping the problem onto the processors is to ensure that the work load is balanced
across all processors. Moreover, it is desirable to schedule the problem so that the
amount of synchronization and/or communication is low. On shared-memory ma-
chines the scheduling problem is relatively easy to deal with: a shared queue of tasks
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can be used to achieve dynamic load balancing. Dynamic load balancing tends to be
inefficient on current distributed-memory machines, however, so a static assignment
of tasks to processors must be determined in advance.

We now proceed to discuss the progress made in developing parallel algorithms
for each of these five steps.

3.1. Ordering. There are two distinct issues associated with the ordering prob-
lem in a parallel environment:
1. Determining an ordering appropriate for performing the subsequent factor-
ization efficiently on the parallel architecture in question.
2. Computing the ordering itself in parallel.

3.1.1. Orderings for parallel factorization. On sequential or vector ma-
chines, while there are sometimes other secondary considerations, the primary goal of
reordering the matrix is simply to lower the work and space required for the factor-
ization step. Experience and intuition suggest that the two almost inevitably rise and
fall together, so that the goal can be further simplified to lowering fill only. Simply
lowering fill, however, may not provide an ordering appropriate for parallel factoriza-
tion.

Orderings for a tridiagonal system serve to illustrate the point. Let us call the
ordering that preserves the tridiagonal structure the natural ordering. Under the
natural ordering, the matrix incurs no fill during factorization. In fact, both the fill
and work are minimized. Nevertheless, the natural ordering is the poorest possible
ordering for parallel factorization. First, note that the natural ordering results in
an elimination tree that is a chain (see Figure 7). Indeed, there is no large-grain
(subtree-level parallelism) to exploit. Moreover each column j, 2 < j < n, requires a
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single column modification emod(j, j — 1) before it can be completed with the cdiv(j)
operation, then and only then becoming available for the subsequent column modi-
fication cmod(j + 1,j). Thus, there is no medium-grain (column-modification level)
parallelism to exploit. There is also no fine-grain parallelism to exploit. Thus, there
is no parallelism at all to exploit in the floating-point computation; the floating-point
work is strictly sequential. But it is well known that even-odd reduction schemes
for these systems, though they introduce more work, also greatly increase the paral-
lelism. These solution schemes are equivalent to reordering the system with a nested
dissection ordering (again, see Figure 7). Using the nested dissection ordering, the
height of the elimination tree is approximately log, n, which is much shorter than the
height n — 1 obtained using the natural ordering. While the total floating-point work
(ignoring square roots) increases by a factor between two and three, parallel comple-
tion time using the nested dissection ordering is ideally O(log n) compared with O(n)
using the standard ordering.

This example is an extreme illustration of how inappropriate the goal of fill-
reduction can be in the parallel setting. However, there have been no systematic
attempts to develop metrics for measuring the quality of parallel orderings. Thus
far, most work on the parallel ordering problem has used elimination tree height as
the criterion for comparing orderings, with short trees assumed to be superior to
taller trees [62,65,77,80], but with little more than intuition as a basis for this choice.
For massively parallel SIMD machines, it has been suggested that small elimination
tree height may indeed be a suitable goal [54,65]. This contention is based on the
assumption of a submatrix-Cholesky parallel factorization algorithm that requires
roughly uniform time for the elimination of each column. It remains to be shown that
this assumption is in fact realized for sparse problems on available SIMD machines.
The assumption is more doubtful on other parallel architectures. Moreover, it is worth
noting that the problem of ordering a matrix to minimize its elimination tree height,
like the problem of minimizing fill, is a very difficult combinatorial problem [93]. In
[77], Liu suggests some more realistic measures of parallel completion time, but there
is not yet an agreed upon objective function for the parallel ordering problem.

3.1.2. Computing the ordering in parallel. A separate problem is the need
to compute the ordering in paralle]l on the same machine on which the other steps
of the solution process are to be performed. The highly sophisticated ordering algo-
rithms discussed earlier, namely minimum degree and nested dissection, are extremely
efficient and normally constitute only a small fraction of the total execution time in
solving a sparse system on sequential computers. Despite the limited potential for
any gain in execution time, however, there is still motivation for adapting these al-
gorithms, or developing new ones, to run on parallel architectures, especially in the
case of distributed-memory machines. In particular, a distributed implementation of
the ordering step i8 necessary to take advantage of the large amount of local memory
available on such machines in solving very large problems. Otherwise, the ordering
step will remain a bottleneck limiting the size of problems that can be solved on
distributed-memory parallel architectures. We now consider some of the difficulties
in performing the ordering step efficiently in parallel.

The basic minimum degree algorithm has an inherently sequential outer loop,
with a single node eliminated at each stage. Multiple elimination of independent
nodes of minimum or near-minimum degree [70,92] could potentially be exploited to
permit parallel execution. Moreover, the search for nodes of minimum degree and
the necessary graph transformations and degree updates could conceivably be spread



PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 97

across multiple processors. However, there are several problems with this approach.
First, it is not clear that minimum degree orderings would be particularly appropriate
for parallel factorization. For example, applying the basic minimum degree algorithm
to the tridiagonal system discussed above produces an elimination tree that is a chain,
and thus the resulting elimination tree height would be at least {n/2]. Duff et al.
[26] contains several suggestions for dealing with this problem, the most promising of
which increases the size of the independent sets by allowing all nodes whose degree
are within a constant factor a of the current minimum degree, where 1.1 < & < 1.5,
to be candidates for inclusion in the next independent set. A different approach
for computing independent sets for parallel elimination is described in [66]. Second,
the highly successful enhancements incorporated into current implementations of the
method [48] have resulted in an intricate and extremely efficient algorithm: there
is very little work to be partitioned among the processors, and that work is of a
highly irregular and somewhat sequential nature. Nevertheless, an algorithm based
on this approach has been developed for use on a massively parallel SIMD machine
[54]. It is possible that such an approach could also be reasonably effective on some
shared-memory MIMD machines, but we know of no such implementations. It is
doubtful, however, that this approach would have acceptable efficiency on distributed-
memotry MIMD machines, and we are not aware of any attempt to produce such an
implementation. It is ironic that much of the research on parallel algorithms for sparse
factorization has been performed on the latter class of machines, yet it is on this class
of machines that the ordering problem seems most difficult to address.

The standard nested dissection ordering heuristic [45] would appear to offer much
greater opportunity for an effective parallel implementation. The divide-and-conquer
paradigm introduces a natural source of parallelism, both in computing the ordering
and in subsequently using it for the factorization step, due to the independence of the
successive pieces into which the graph is split. Unfortunately, there are also difficulties
with this approach. First, the nested dissection heuristic (based on the generation
of level structures) is effective in reducing fill for a much more restricted class of
problems than minimum degree. Second, the divide-and-conquer approach provides
only a logarithmic potential speedup, with relatively little parallelism in the first few
levels of the dissection. Third, for a distributed-memory implementation there is
something of a bootstrapping problem: in order to utilize all of the local memory
and simultaneously minimize interprocessor communication costs, the original graph
should be distributed across the processors in some intelligent way before the dissection
process is begun. Finally, nested dissection is similar to minimum degree in that it
enjoys a very efficient sequential implementation, and its primary subtask (generating
a level structure via breadth-first search) is inherently serial.

To summarize this discussion, it is evident that the problem of computing effec-
tive parallel orderings in parallel is very difficult and remains largely untouched by
research efforts to date. We focus our attention in the remainder of this section on
the effectiveness of various ordering strategies in facilitating the subsequent paral-
lel factorization, with little regard for whether the ordering can itself be computed
effectively in parallel.

3.1.3. Parallel ordering algorithms. We now turn our attention to the prob-
lem of ordering for parallel factorization and/or executing the ordering algorithms
on the target parallel machine. As noted above, these problems are very difficult to
deal with, and much work remains to be done before mature, reliable algorithms and
software become available.
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Tree restructuring for parallel elimination. One approach to generating low-fill
orderings that are suitable for parallel sparse factorization is to decouple the reduction
of fill and enhancement of parallelism into separate phases. First a standard ordering
technique, such as minimum degree, is applied to produce a low-fill ordering for the
matrix, then based on this initial ordering an equivalent reordering is produced that
is more suitable for parallel factorization. By “equivalent” we mean an ordering that
generates the same fill edges but may substantially restructure the elimination tree.
Thus, an equivalent ordering is simply a different perfect elimination ordering for the
filled graph F(A) that models the sparsity structure of L determined by the initial
fill-reducing ordering. The effectiveness of this approach depends in part on whether
there is in fact a good parallel ordering within the class of orderings equivalent to
the initial low-fill ordering. The tridiagonal example cited earlier demonstrates that
there may be no such ordering. On the other hand, since some of the parallelism
in sparse factorization is due specifically to sparsity, low-fill would seem to enhance
potential parallelism rather than suppress it. Very little is known, however, about
the conditions under which good equivalent parallel orderings might exist for realistic
classes of problems.

Implementation of the equivalent ordering approach requires an initial fill-reducing
ordering, a mechanism for restructuring the elimination tree, and a computable crite-
rion for determining when a given reordering will in fact reduce the subsequent parallel
factorization time. In [77], Liu uses tree rotations [73] to find equivalent orderings
that reduce elimination tree height, where the initial ordering used is a minimum
degree ordering. He reports substantial reductions for a number of test problems.
In the same report, Liu proves that the Jess and Kees algorithm [62] produces an
equivalent ordering whose associated elimination tree height is minimum among all
equivalent orderings. In [80] Liu and Mirzaian present a practical O(n(L)) implemen-
tation of the Jess and Kees algorithm. Tests comparing Liu’s tree rotations heuristic
with their implementation of the Jess and Kees algorithm showed that the heuristic
almost always produces a minimum-height tree. This interesting phenomenon is not
fully understood. Their timings showed the tree rotations heuristic to be far more
efficient than their implementation of the Jess and Kees algorithm. In [67] a more
efficient implementation of the Jess and Kees algorithm is presented. Roughly speak-
ing, the latter implementation is linear in the number of compressed subscripts used
to represent the structure of L. Tests of this implementation indicate that a Jess
and Kees ordering can usually be obtained in roughly the same amount of time as an
ordering using the tree rotations heuristic.

Of course, the height of the elimination tree may not be a very accurate indicator
of the actual parallel factorization time. Moreover, elimination trees produced by
minimum degree orderings typically have height already close to the minimum, so
that the potential gain from restructuring may be quite small. Perhaps the primary
problem with this approach is that it fails to get at the heart of the problem. Our
intuition based on limited experience is that equivalent orderings have the capacity
to modify only relatively minor features of the parallelism possessed by the initial
fill-reducing ordering. Thus, this approach may be able to fine-tune an ordering for
use in paralle] factorization, but the key question of how much parallelism might be
available in the original underlying problem goes unanswered.

Nested dissection and graph partitioning heuristics. Given the natural divide-and-
conquer parallelism exhibited by nested dissection, several researchers have explored
various implementations of nested dissection in an effort to generate good orderings
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for parallel factorization. The effectiveness of nested dissection in reducing fill and
enhancing parallelism depends on graph partitioning heuristics to find small node
separators for the graph. Some of the graph partitioning heuristics employed in fact
produce edge separators, which then must be converted into node separators.

The basic scheme in nested dissection is as follows:

1. Use a graph partitioning heuristic to obtain a small edge separator of the
graph, or more specifically, a small set of edges whose removal from the graph
separates the graph into two vertex sets of roughly equal size.

2. Transform the small edge separator into a small node separator, or more
specifically, a small set of nodes whose removal separates the graph into two
portions of roughly equal size,

3. Number the nodes of the separator last in the ordering, and recursively apply
steps 1 and 2 to the two subgraphs produced in step 2.

We now review some specific implementations of this approach.

Level structures. In [44)] the adaptation of an automatic nested dissection algo-
rithm [45] for execution on distributed-memory MIMD machines is discussed. The
algorithm first generates a level structure by means of a breadth-first search. The
choice of starting node in the search can be crucial; see [45] for details. Then one
of the middle levels is chosen as a node separator, subdividing the problem into two
or more independents subgraphs, to which the process is applied recursively. This
method generates a node separator directly, and therefore omits step 1 from the gen-
eral scheme given above. An advantage of this method is that it is simple and generally
inexpensive to compute. But the automatic nested dissection heuristic is generally not
as effective at reducing fill as the minimum degree heuristic, and thus the quality of
the ordering is poorer on many, but not all, problems. As with most nested dissection
algorithms, the algorithm for finding a separator appears to be inherently sequential.
Thus, there is little parallelism to exploit until the ordering algorithm is several levels
down into the recursion, where there are adequately many independent subproblems
to work on.

Kernighan-Lin. Gilbert and Zmijewski [55] use the Kernighan-Lin heuristic [63]
to generate a small edge separator. Associated with an edge separator are wide and
narrow node separators, defined as follows. Let P; and P, be the two sets of nodes
into which the edge separator partitions the graph. Let Vi contain the nodes in P,
incident on at least one edge in the separator set, and define V5 C P, in the same
way. The set V = 1] U V; is the associated wide separator and both V; and V; are
the associated narrow separators. Gilbert and Zmijewski ran tests using both kinds
of separators and report ordering times and factorization times on an Intel iPSC/1
hypercube.

Fiduccia-Mattheyses. Lewis and Leiserson [65] use a variant of the Kernighan-
Lin heuristic due to Fiduccia-Mattheyses [31] to generate edge separators. They use
a greedy heuristic to generate node separators from edge separators. Their heuristic
is guaranteed to find a minimal node separator among the nodes belonging to V =
Vi UV,. In their tests they use elimination tree height to compare the quality of their
orderings with those obtained by using tree rotations to reduce the elimination tree
height of minimum degree orderings. They report fairly substantial and consistent
reductions in tree height for their test problems. However, they did not implement
their algorithm on a parallel machine; all their tests were run on an unspecified
sequential machine and no timings results were reported.
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Spectral separators. Pothen, Simon and Liou [95] study the use of spectral par-
titions [32,33] in the framework described above. To generate an edge separator,
they first compute the eigenvector y associated with the smallest positive eigenvalue
of the Laplacian matrix associated with the G(A). They use an implementation of
the Lanczos algorithm to compute the required eigenvector for general sparse graphs.
Then the median entry ym, of y is found, and the vertices in P; are taken to be those
corresponding to entries y; of y for which y; < y,,, while the vertices in P, are those
corresponding to entries y; of y for which y; > ym. The authors use matching theory
for bipartite graphs, in particular the Dulmage-Mendelsohn decomposition, to gener-
ate from the edge separator a minimum-cardinality node separator [94]. Thus, their
bipartite-matching method for transforming an edge separator into a node separator
is optimal in the sense that it minimizes the size of the node separator over all possi-
ble node separators that can be obtained from the given edge separator (i.e., over all
separators contained in the set of nodes incident on the separator edges). The report
cited here does not include statistics for complete nested dissection orderings based
on this technique; it includes statistics for the top-level separator only. Since most of
the time is spent performing Lanczos iterations, which can be parallelized in a fairly
straightforward manner, their method should run efficiently in parallel even in the
top few levels of the nested dissection recursion.

A hybrid approach. In [74] and [75] Liu presents a hybrid approach that combines
elements of both the minimum degree and nested dissection algorithms. The primary
emphasis of the two papers is simply to produce improved fill-reducing orderings, but
the application of the method to parallel factorization is noted in both papers. The
method proceeds as follows. After a standard minimum degree ordering algorithm is
initially applied to the problem, a “middle” separator determined by the minimum
degree ordering is chosen. A technique based on matching theory for bipartite graphs
is then used to improve (i.e., shrink) this separator. The nodes of the new separator
are numbered last in the ordering, and then the process is applied recursively to the
subproblems remaining to be ordered.

This method generates a nested dissection ordering (a top-down ordering), but
uses a minimum degree ordering (a bottom-up ordering), along with some matching
theory, to obtain the separators. Thus, it is a hybrid of two very different ordering
techniques. Again, computing the ordering in parallel with this approach appears to
be very difficult. However, the timings and ordering statistics reported indicate that
it obtains good orderings in a reasonably efficient manner on a sequential machine.

3.2. Task Partitioning and Scheduling.

3.2.1. Shared-memory MIMD machines. In implementing sparse column-
Cholesky on a shared-memory MIMD machine, the problem of partitioning the fac-
torization into tasks for concurrent execution on multiple processors is fairly simple.
Each column j corresponds to a task Tcol(j) defined by

Teol(j) := {emod(j, k) | k € Struct(L;.)} U {cdiv(j)}.

That is, Tcol(j) consists of all column modifications, as well as the final scaling op-
eration, to be applied to column j. The tasks Tcol(j) are maintained in a queue
and doled out to processors as they complete previous tasks. Since all necessary data
are globally accessible by all processors, there need be no concern over which specific
processor picks up a given task. This approach achieves good load balancing dynam-
ically, an ideal arrangement for the highly irregular task profile usually generated by
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sparse problems. In short, uniform access to main memory permits the use of dynamic
load balancing and a fairly simple restructuring of a sequential sparse Cholesky algo-
rithm to obtain a good parallel algorithm. See Section 3.4.1 and [41,88] for parallel
implementations of sparse Cholesky based on these ideas,

Efficient scheduling of the tasks Tcol(j) on shared-memory MIMD machines is
also easily accomplished. An ordering of the elimination tree is a topological ordering
if each node is numbered higher than all of its descendants. Performance usually is
not very sensitive to which topological ordering is used to schedule the column tasks,
and it is often adequate to use the fill-reducing ordering to schedule the tasks. In this
case, the task queue Q is given by:

Q = {Teol(1),Teol(2), ..., Tcol(n)}.

However, scheduling columns by their height in the elimination tree usually improves
performance by reducing synchronization delays, as shown in [88]. The ordering of
the elimination tree shown in Figure 8 is particularly appropriate. Scheduling the
column tasks in this manner is especially worthwhile, since the overhead required to
do so is trivial — a single n-vector computed in O(n) time. A more dynamic queue
management strategy is to initialize the queue to contain only the tasks corresponding
to the leaf nodes, with additional column tasks appended to the queue after their
descendants have been completed.

3.2.2. Distributed-memory MIMD machines. The situation is much more
difficult on distributed-memory MIMD machines, the target architecture for much of
the algorithm development for parallel sparse factorization reported in the literature.
On these machines, the lack of globally accessible memory means that issues concerned
with data locality are dominant considerations. Currently, there is no efficient means
of implementing dynamic load balancing on these machines for problems of this type.
Thus, a static assignment of tasks to processors is normally employed in this setting,
and such a mapping must be determined in advance of the factorization, based on the
trade-offs between load balancing and the cost of interprocessor communication.

Elimination trees. As we have seen, the elimination tree contains information on
data dependencies among tasks and the corresponding communication requirements.
Thus, the elimination tree is an extremely helpful guide in determining an effective
assignment of columns (and corresponding tasks) to processors in the distributed-
memory case. In attempting to compute the elimination tree, however, we appear to
be confronted by a bootstrapping problem: prior to symbolic factorization, we do not
yet know the structure of L on which the definition of T'(A) is based. Fortunately,
T(A) can be generated directly from the structure of A by an extremely efficient
algorithm [79]. It is desirable to compute the elimination tree in parallel, but again we
face the recurring problem of having very little work to distribute over the processors.
For large problems, if a single processor cannot store the adjacency structure of A,
then the structure of A must be distributed among the processors, which also requires
distributed computation of the elimination tree. In [110], Gilbert and Zmijewski
present an algorithm for computing the elimination tree in parallel on a distributed-
memory multiprocessor. Roughly speaking, their algorithm proceeds as follows. Each
processor uses its portion of the adjacency structure of A to compute a “local” version
of the elimination tree. In essence, this “local” tree contains in a compressed form
the contribution of each processor’s local adjacency list to the final elimination tree.
The final phase of the algorithm combines these “local” trees to obtain the final
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elimination tree. All communication associated with the algorithm is restricted to
this final “combining” operation. In the experiments reported in [110], the parallel
algorithm takes considerably more time than the sequential algorithm, though the
differences are not unreasonable.

Mapping the problem onto the processors. After the elimination tree has been
generated, the next step is to use it in mapping the columns onto the processors.
The primary goals of the mapping are good load balance and low interprocessor
communication. These goals can be in conflict, however, especially for highly irregular
problems.

In the early work on this problem, successive levels in the elimination tree were
wrap-mapped to the processors, as shown in Figure 9. This resulted in good load
balancing for the model problem, but it also often results in unnecessarily high message
volume. The “subtree-to-subcube” mapping, introduced in [49], does an excellent
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job of reducing communication while maintaining good load balance for model grid
problems and other problems with similar regularity in their structure. Although the
use of subcubes is specific to hypercube architectures, a similar processor clustering
concept is applicable to most distributed-memory architectures.

The basic idea is quite simple. If P is the number of processors, one selects an
appropriate set of P subtrees of the elimination tree, say Ty, T%,...,Tp-1, and then
assigns the columns corresponding to 7; to processor i (0 < ¢ < P —1). Where
two subtrees merge together into a single subtree, their processor sets are merged
together and wrap-mapped onto the nodes/columns of the separator that begins at
that point. The root separator is wrap-mapped onto the set of all available processors.
Figure 10 shows this mapping for our model problem. George et al. [49] show that for
the fan-out distributed factorization algorithm (see Section 3.4.2) applied to model
problems defined on k x k grids, communication volume can be limited to O(Pk?),
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which is asymptotically optimal. Gao and Parlett [35] prove the slightly stronger
result that the communication volume for each processor is O(k?), which indicates
that the overhead associated with communication is, in some sense, balanced among
the processors. Closely related results can be found in two papers by Naik and Patrick
[86,87].

It is quite easy and natural to obtain a good “subtree-to-subcube” mapping for
elimination trees obtained by applying standard nested dissection orderings to model
problems. It is difficult, however, to generalize the subtree-to-subcube mapping to
more irregular problems. Progress in that direction is reported in [38] and [101].
However, an adequate understanding of the trade-offs between communication and
load balance for more realistic problems will require further study.

3.3. Symbolic Factorization. On a distributed-memory MIMD multiproces-
sor, it is necessary to compute Struct(L.;) for every column j of L and to store
Struct(L.;) on the processor responsible for computing that column. Thus, a dis-
tributed algorithm for computing the symbolic factorization is required. The sequen-
tial algorithm for this step is remarkably efficient, and so once again we find ourselves
with little work to distribute among the processors, so that good efficiency is difficult
to achieve in a parallel implementation.

As we have seen, Struct(L.;) depends on Struct(A.;) and on Struct(L.e) for
every k such that p(k) = j (i.e., for every child k of j in the elimination tree). In [42]
a column-oriented parallel symbolic factorization algorithm is presented. At any point
during the execution of this algorithm, the number of tasks available for parallel exe-
cution is limited to the number of leaves in the subtree of the elimination tree induced
by nodes whose structures are not yet complete. Limited parallelism, small task sizes,
and communication overhead make it difficult to attain good speed-ups. Moreover,
the subscript compression technique so critical to the space and time efficiency of the
sequential symbolic factorization algorithm can be only partially realized on these ma-
chines. For example, let columns j and j+1 of L be two columns belonging to the same
supernode but assigned to two distinct processors, say py and p;, respectively. The
sequential algorithm exploits the fact that Struct(L. j41) = Struct(L.;) - {j + 1} to
save both time and storage, as discussed earlier in Section 2.2, The parallel algorithm,
however, must store Struct(L,;) on processor pg and Struct(L, j41) on processor p;.
Good mappings typically wrap-map columns belonging to the same supernode. Thus
the situation in our illustration is typical — even pervasive; hence parallel symbolic
factorization necessarily requires more total work and storage on distributed-memory
MIMD multiprocessors, although the paraliel completion time will usually still be
less. The test results reported in [42] confirm that currently only modest speed-ups
are attainable.

It is possible to improve parallel symbolic factorization on distributed-memory
MIMD multiprocessors if the supernodal structure is known in advance [81]. The key
observation is that it is necessary to compute only the structure of the first column
of each supernode. Processors holding other columns in that supernode do not have
to compute the structures of these columns; all they need to do is to retrieve the
structure from the processor that is responsible for computing the structure of the
first column.

In [110] Zmijewski and Gilbert present a row-oriented parallel symbolic factor-
ization algorithm that has more potential parallelism, but is more complicated and
requires rearrangement of the output into a column-oriented format. Timing results
for this algorithm are not presented, but the authors indicate that its cost is high.
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However, the problems they experimented with were quite small, so it remains unclear
how competitive the algorithm might be on larger problems. In a study [53] that may
be applicable on massively parallel machines, Gilbert and Hafsteinsson show that
using a shared-memory CRCW (concurrent-read, concurrent-write) PRAM (paral-
lel random access machine) model of computation, there is a parallel algorithm for
symbolic factorization that requires O(log® n) time using 5(L) processors.

3.4. Numeric Factorization. On sequential machines, numeric factorization
is typically much more expensive than the other steps in the solution process. As a
result, parallel numeric factorization has received considerably more attention than
the other steps in the parallel solution process. It is also more amenable to paralleliza-
tion than the other solution steps, though it is still much more difficult to deal with
than dense factorization. Development of reasonably good parallel sparse Cholesky
algorithms has taken longer than development of their dense counterparts. The book-
keeping and irregular structure dealt with in the sparse algorithms present a greater
challenge to the algorithm developer; consequently, many more issues and difficulties
remain to be addressed in future work.

Most of the work has been directed towards the development of parallel algorithms
that exploit medium- and large-grain parallelism on shared-memory or distributed-
memory MIMD machines. Some exceptions are work on vectorizing sparse Cholesky
factorization on powerful vector supercomputers [3,5,11,19], work on fine-grained al-
gorithms for massively parallel SIMD machines [54], and work on systolic-like algo-
rithms for multiprocessor grids [18,106). We will restrict our discussion to algorithms
designed for MIMD machines.

3.4.1. Parallel column-Cholesky for shared-memory machines. Of the
three formulations of sparse Cholesky, column-Cholesky is in many ways the simplest
to implement. As noted earlier, it has been more commonly used in sparse matrix
software packages [17,27,29] than other methods, such as the multifrontal method.
It is probably better known to a broader audience than the other methods. George
et al. [41] show that the algorithm can be adapted in a straightforward manner to
run efficiently in parallel on shared-memory MIMD machines. For all these reasons
this algorithm is an ideal place to begin our discussion of parallel sparse Cholesky
algorithms.

A parallel algorithm. To facilitate our discussion, we introduce a more detailed
version of the column-Cholesky algorithm shown earlier in Figure 3. In particular,
we need to indicate how the row structure sets Struct(L;.) are generated by the
algorithm. The more detailed version of the algorithm shown in Figure 11 requires
the following new notation. Let next(j, k), k& < j, be the lowest numbered column
greater than j that requires updating by column k. That is, nezt(j, k) is the row
index of the first nonzero in column k after row j. (Note that nezt(j, ;) is merely
the parent of j in the elimination tree.) The column index sets S; (1 < i < n) are
initially empty, but when column j is processed, S; = Struct(Lj.), as required. For
simplicity and brevity, the algorithm in Figure 11 does not detail how to handle the
case when there is no “next” column to be updated. The use of the index sets S; and
other implementation details of the serial algorithm are discussed in [47]. However,
we note one particular detail in the implementation. Since each completed column &
appears in no more than one set S; at any time during the algorithm’s execution, a
single n-vector link suffices to maintain each set S; (1 < i < n) as a singly-linked list

[47].
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forj=1tondo
S;j =9
forj=1tondo
for k€ S; do
cmod(j, k)
i := next(j, k)
S; == S; U {k}
cdiv(y)
i := nezt(j, j)
Si = S u{j}

F1G. 11. Sparse column-Cholesky factorization algorithm, showing the computation of row structure
sets Struct(Lis) tn the sels S;, 1 <i < n.

This algorithm can be implemented in parallel on a shared-memory MIMD ma-
chine in a fairly straightforward manner [40]. Each column j corresponds to a task

Tcol(j) := {emod(j, k) | k € Struct(L;.)} U {cdiv(j)},

as discussed in Section 3.2. Initially, the task queue, denoted by @, contains all column
tasks T'col(j) ordered by some topological ordering of the elimination tree. For ease
of notation, we assume that the elimination ordering and the schedule-prescribed
ordering are the same, so we have

Q = {Tcol(1), Teol(2),...,Teol(n)}.

As the computation proceeds, a processor obtains (and removes) the column task
currently at the front of the queue and proceeds to compute that task. After com-
pleting the task, the processor obtains from @ another column task to compute, and
it continues in this manner, as do all the other processors, until the factorization is
complete. This simple “pool of tasks” approach does an excellent job of dynamically
balancing the load, even though the column task profile for typical sparse problems
is quite irregular. Obviously, access to this queue must be synchronized to ensure
that each column task T'col(j) is executed by one and only one processor. The par-
alle] algorithm also must synchronize access to the n-vector link in which the sets
S; (1 £ i € n) are maintained. Only one processor at a time can modify this array,
and thus the two sequences of instructions that manipulate link must be critical sec-
tions in the algorithm. A high-level description of the parallel algorithm is given in
Figure 12.

Recent improvements. The algorithm in Figure 12 has two significant drawbacks.
First, the number of synchronization operations (obtaining and relinquishing a lock)
is O(n + n(L)), which is quite high. Second, since the algorithm does not exploit
supernodes, it will not vectorize well on vector supercomputers with multiple proces-
sors, natural target machines for the algorithm. The introduction of supernodes into
the algorithm deals quite effectively with both problems [88].

The use of supernodes to improve computational rates on vector supercomputers
is well documented [3,5,11,19]. The duplicate sparsity structure found in columns
within the same supernode enables one to organize the computation around level-2
or level-3 BLAS-like computational kernels. Such block operations reduce memory
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Q := {Tcol(1),Tcol(2),...,Tcol(n)}
for j=1tondo
S; =0
while Q # 0 do
pop Teol(j) from Q
while column j requires further emod’s do
if S; =0do
wait until S; # @
obtain k from S;
i := next(j, k)
lock
S,' = S,' U {k}
unlock
cmod(j, k)
cdiv(j)
i 1= next(j, 1)
lock
Si == Siu{j}

unlock

F1G. 12. Parallel sparse column-Cholesky factorization algorithm for shared-memory MIMD ma-
chines.

traffic by retaining and reusing data in cache, vector registers, or whatever limited
rapid-access memory resource is provided on the particular machine in question.

In the following discussion, we will let bold-face integers 1, 2, ..., N stand for the
supernodes. Thus, N < n is the number of supernodes. We will also use bold-face
capital letters such as J and K to denote each supernode by its index, and use small
letters such as ¢, j, and k to denote each individual column by its number.

Let K be a supernode comprising the set of contiguous columns {k,k + 1,k +
2,...,k +t}. Because of the sparsity structure shared by each column of K, every
column of K modifies column j, j > k + ¢, if and only if at least one column of K
modifies column j. For example, column 40 in supernode 30 in Figure 5 is modified
by each column 37, 38, and 39 in the previous supernode, but it is modified by none of
the columns 19, 20, and 21 that compose supernode 15. The block operation used to
improve the algorithms in Figures 3 and 12 is a level-2 BLAS-like kernel, emod(j, K),
which modifies column j with a multiple of the appropriate entries of each column
k € K. In particular, the modifications from the columns in K can be accumulated
as dense saxpy operations and no indirect addressing is required until the result is
applied to column j. For a column k + ¢ € K, we let ecmod(k + i,K) denote the
operation of updating column k + ¢ with every column of K numbered earlier than
k + 1. That is, cmod(k + i, K) is given by

emod(k + i, K) := {emod(k + i,k),cmod(k + i,k +1),...,emod(k + i,k + i — 1)}.
For the matrix in Figure 5, cmod(30, 22) is given by
emod(30, 22) := {cmod(30, 28), cmod(30,29)}.

Since columns k, k+ 1, ..., k+ 7 — 1 in supernode K have the same structure below
row k+i—1, the modifications to column k+i can again be performed by dense saxpy
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operations, with no indirect addressing required. The next column to be updated by
supernode K after it has updated column j is denoted by nezt(j, K), and similarly
the first column outside supernode K requiring modification by the columns of K is
denoted by nezt(K,K). Using this notation, Figures 13 and 14 display supernodal

versions of the sequential and parallel column-Cholesky algorithm shown in Figures 11
and 12, respectively.

for j=1tondo

S;j=40
forJ=1toNdo
for j€J do
for K€ S; do
cmod(j, K)
i := nezt(j,K)
S;:=5;U {K}
cmod(j,J)
cdiv(j)
i := next(J,J)
Si =5 U{J}

FIG. 13. Sequential sparse supernodal column-Cholesky factorization algorithm.

Q := {Tcol(1),Tcol(2),...,Tcol(n)}
forj=1tondo
S; =0
while @ # 0 do
pop Tcol(j) from Q
let J be the supernode containing column j
while column j requires further cmod’s do
if Sj = ﬂ do
wait until S; # @
obtain K from S;
i := next(j,K)
lock
Si == S; U{K}
unlock
cmod(j, K)
cmod(j,J)
cdiv(j)
if j is the last column of supernode J do
i := next(J,J)
lock
S =5;U {J}

unlock

Fi1G. 14. Parallel sparse supernodal column-Cholesky factorization algorithm for shared-memory
MIMD machines.
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Let o(L) denote the number of subscripts in the supernodal representation of the
sparsity structure of L. The use of supernodes reduces the number of synchronization
operations to a number proportional to o(L), which is often much less than n(L),
sometimes by as much as an order of magnitude [46].

3.4.2. Distributed fan-out algorithm. The algorithm introduced in [43], now
known as the fan-out algorithm, was the first sparse Cholesky factorization algorithm
developed for distributed-memory machines. It is a parallel version of the submatrix-
Cholesky factorization algorithm shown in Figure 4. We will denote the k-th task
performed by the outer loop of the algorithm by Tsub(k), which is defined by

Tsub(k) := {cdiv(k)} U {cmod(j, k) | j € Struct(L.z)}.

That is, T'sub(k) first obtains L,; by performing the cdiv(k) operation, and then
performs all column modifications that use the new column.

Algorithms for distributed-memory machines are usually structured around some
prior distribution of the data to the processors. In order to keep the cost of in-
terprocessor communication at acceptable levels, it is essential for the algorithm to
make local use of local data as much as possible. The distributed fan-out, fan-in,
and multifrontal algorithms are typical examples of this type of distributed algorithm
(the fan-in and multifrontal algorithms will be discussed in the following subsections).
These three distributed algorithms are all designed within the following framework.

o All three require assignment of the matrix columns to the processors.

e All three use the column assignment to distribute among the processors the
tasks found in the outer loop of one of the serial implementations of sparse
Cholesky factorization.

The differences among these algorithms stem from the various formulations of serial
sparse Cholesky upon which they are based. The fan-in algorithm is based on column-
Cholesky; it partitions each task T'col(j) among the processors. The distributed multi-
frontal algorithm partitions among the processors the tasks upon which the sequential
multifrontal method is based: partial dense submatrix-Cholesky factorization and the
assembly operations, both of which are introduced later in the subsection dealing with
this algorithm. The fan-out algorithm is based on submatrix-Cholesky; it partitions
each task Tsub(k) among the processors.

We now detail how the fan-out algorithm partitions the task Tsub(k) among the
processors. Each column [L,; is stored on one and only one of P available processors.
An n-vector map is required to record the distribution of columns to processors: if
column k is stored on processor p, then map[k] := p. We let mycols(p) denote the set
of columns owned by processor p. The fan-out algorithm is a data-driven algorithm,
where the data sent from one processor to another are the completed factor columns.
The outer loop of the fan-out algorithm constantly checks the message queue for
incoming columns. When it receives a column L,;, it uses it to modify every column
J € mycols(p) for which cmod(j, k) is required. In other words, it performs the
following set of cmods:

{emod(j, k) | j € Struct(L.x) N mycols(p)}.

Indeed, each task T'sub(k) is partitioned among the processors by the partition defined
by the column mapping. More precisely, the column partition

{mycols(1), mycols(2),...,mycols(P)}
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induces the partition of Tsub(k) into subtasks of the form
{Tsub(k,1),Tsub(k,2),...,Tsub(k, P)}
where
T'sub(k, p) := {emod(j, k) | j € Struct(L.x) N mycols(p)},

with each non-empty task T'sub(k, p) assigned to processor p, the owner of the columns
updated by the task.
Of course, many of these tasks will be empty. Only the processors in the set

procs(L.y) := {map(j] | 7 € Struct(L.z)}

require column L,x. When processor p = map{j] has completed all column modifica-
tions required by column j, it then performs cdiv(j) and sends it to every processor
in procs(L,;), where it eventually is used to modify later columns in the matrix. The
algorithm is shown in Figure 15.

for j € mycols(p) do
if j is a leaf node in T(A) do
cdiv(j)
send L,; to the processors in procs(L.;)
mycols(p) := mycols(p) — {j}
while mycols(p) # 0 do
receive any column of L, say L.
for j € Struct(L.:) N mycols(p) do
cmod(j, k)
if column j required no more cmod’s do
cdivj
send L,; to the processors in procs(L,;)
mycols(p) := mycols(p) — {;}

F1G. 15. Fan-out Cholesky factorization algorithm for processor p of a distributed-memory MIMD
machine.

Historically, the fan-out algorithm was first to be implemented on a distributed-
memory machine, but due to several weaknesses it has since been superseded by fan-in
algorithms and distributed multifrontal algorithms. The distributed fan-out algorithm
incurs greater interprocessor communication costs than the other two methods, both
in terms of total number of messages and total message volume. It simply does
not exploit a good communication-reducing column mapping, such as the subtree-
to-subcube mapping, as effectively as the other methods do. Ashcraft et al. [9] and
Zmijewski [109] have independently improved the algorithm by having it send aggre-
gated update columns rather than individual factor columns for columns belonging
to a subtree that has been mapped to a single processor. Though the resulting im-
provement in performance is substantial, it still is insufficient to make the method
competitive.

Another problem with the method is the expense of mapping the entries of the
updating column k to the corresponding entries of the updated column j when per-
forming ecmod(j, k). The set Struct(L,;) must accompany the factor column L,; when
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it is sent to other processors to enable these processors to complete column modifi-
cations of the form c¢mod(j, k). This roughly doubles the communication volume and
creates a more complicated message that must be packed by the sending processor and
unpacked by the receiving processor. Moreover, each cmod(j, k) requires that both
index sets Struct(L.;) and Struct(L.i) be searched in order to match indices. This
results in poor serial efficiency. These weaknesses have provoked efforts to develop
better distributed factorization algorithms.

3.4.3. Distributed fan-in algorithm. One of the improved distributed factor-
ization algorithms is the fan-in algorithm, introduced by Ashcraft et al. in [10]. Based
on the sparse column-Cholesky algorithm, it distributes each column task T'col(j)
among the processors in a manner similar to the distribution of tasks T'sub(k) in the
fan-out algorithm. Viewed in a more general way, the fan-in method is analogous to
the standard paralle] algorithm for a dot product, in which each processor first locally
reduces the data assigned to it down to a single number, and then participates in a
global phase during which the processors cooperate in reducing down to a single num-
ber the P local reductions generated during the preceding “perfectly parallel” phase.
Indeed, the name “fan-in” is taken from the fan-in distributed algorithm for dense
triangular solution [58], which computes a series of inner product calculations in pre-
cisely this manner. Note that throughout this subsection we freely use the notation
introduced in the previous subsection.

As with the fan-out algorithm, each processor p is responsible for computing
cdiv(j) for every column j € mycols(p). Of course, cdiv(j) cannot be computed
until all modifications ¢cmod(j, k), k € Struct(L;.), have been performed. The fan-
in algorithm is a demand-driven algorithm, where the data required are aggregated
update columns computed by the sending processor using columns it owns, and needed
by the receiving processor to update a target column. Let u(j, k) denote the scaled
column accumulated into the factor column by the emod(j, k) operation. The outer
loop of the algorithm processes every column j of the matrix in ascending order by
column number. When processor p processes column j, it aggregates into a single
update vector u every update vector u(j, k) for which k € mycols(p) N Struct(L;.).
Indeed, each task T'col(j) is partitioned among the processors by the partition of the
columns induced by the column mapping. More precisely, the column partition

{mycols(1), mycols(2), ..., mycols( P)}
induces the partition of Tcol(j) into subtasks of the form
{Teol(j,1),Teol(j,2),...,Teol(j, P)}

where T'col(j, p) aggregates into a single update vector every update vector u(j, k) for
which k € Struct(L;j.) N mycols(p), with each non-null task Tcol(j,p) assigned to
processor p, the owner of the updating columns used by the task.

After performing Tcol(j, p), if processor p does not own column j, then it sends
the resulting aggregated update column to processor ¢ = map(j], which will eventually
incorporate it into column j. If, on the other hand, processor p does own column j, it
must receive and process any aggregated update columns required by column j from
other processors before it can complete the cdiv(j) operation. The fan-in algorithm
is given in Figure 16. '

It is interesting to note that any column j € mycols(p) will receive an aggregated
update column from every processor in the set

procs(L;,) := {map[k] | k € Struct(L;.)}.
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for j:=1tondo
if 7 € mycols(p) or Struct(L;.) Nmycols(p) # @ do
u:=0
for k € Struct(Lj.) N mycols(p) do
u = u+u(j k)
if map[j] # p do
send u to processor ¢ = maplj]
else
incorporate u into the factor column ;

while any aggregated update column for column j remains unreceived do

receive in u another aggregated update column for column j
incorporate u into the factor column j
cdiv(y)

F1G. 16. Fan-in sparse Cholesky factorization algorithm for processor p of a distributed-memory
MIMD machine.

In contrast, the fan-out algorithm sent the factor column L,; to every processor
in the processor set procs(L.;). Consider the communication costs incurred by the
two algorithms during the computation of columns that constitute a subtree of the
elimination tree that has been mapped to a single processor by a subcube-to-subtree
mapping. For the fan-in algorithm there will be no communication during this portion
of the computation, because for every column j in the subtree, Struct(L;.) also
belongs to the subtree. On the other hand, the fan-out algorithm must send L,; to
another processor if there is a column index k € Struct(L,;) for some column j in
the subtree, such that map[k] # map[j]. This observation is an informal indication
of why the fan-in algorithm is better than the fan-out algorithm at exploiting a good
mapping to reduce interprocessor communication.

A more visual comparison of the communication patterns of the fan-out and fan-
in algorithms is given in Figures 17 and 18. These figures illustrate snapshots of
the execution of the two algorithms on an Intel iPSC/2 hypercube, with time on
the horizontal axis. Processor activity is shown by horizontal lines and interprocessor
communication by slanted lines. The horizontal line corresponding to each processor is
either solid or blank, depending on whether the processor is busy or idle, respectively.
Each message sent between processors is shown by a line drawn from the sending
processor at the time of transmission to the receiving processor at the time of reception
of the message. The problem being solved is the factorization of a matrix of order
225 derived from a model finite element problem on a 15 x 15 grid, using a nested
dissection ordering and subtree-to-subcube mapping on eight processors. The divide-
and-conquer nature of the nested dissection ordering is clearly visible in Figure 18,
which also illustrates the ability of the fan-in algorithm, given an appropriate mapping,
to exploit this structure to reduce communication. By contrast, the fan-out algorithm
shown in Figure 17 exhibits much greater communication traffic as well as a less
regular communication pattern, even under the ideal conditions represented here.
These diagrams were produced using a package developed at Oak Ridge National
Laboratory for visualizing the behavior of parallel algorithms [57].

Compute-ahead fan-in algorithm. In Figure 16, observe that processor p will
fall idle if, while receiving aggregated update columns destined for a column j €
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mycols(p), it has no such updates in its message queue. One straightforward en-
hancement to the method is to probe the queue for such messages, and when there
are none, proceed with useful work on later factor columns. When unable to complete
the current column j, the algorithm toggles between performing so-called compute-
ahead tasks on columns i > j, and detecting and processing incoming aggregated
updates for the current column j.

There are two types of compute-ahead tasks to be performed on later columns of
the factor:

1. For some column ¢ > j, aggregate into a work vector the update vector u(i, k)
for each completed column k € Struct(L;.) N mycols(p).
2. Receive an aggregated update column for some column ¢ > j, and incorporate
it into the factor column.
Compute-ahead tasks of the first type have priority over compute-ahead tasks of the
second type; that is, compute-ahead tasks of the second type are performed only when
the algorithm has exhausted its supply of tasks of the first type.

Compute-ahead aggregating of update columns is limited to target columns i > j
that belong to the same supernode as the current column j. This is due primarily to
the ease and “naturalness” with which successive aggregate update columns sharing
the same sparsity pattern can be computed. Since the aggregated update columns
are managed so that they share the same sparsity structure as the target column,
no indirect indexing is required to incorporate them into the factor column. Thus,
compute-ahead tasks of the second type require merely a receive, followed by a saxpy.
For details concerning these and other implementation issues, consult [8].

Though supernodes play an important role in organizing the compute-ahead fan-
in algorithm, current implementations of both the basic and compute-ahead fan-in
algorithms do not exploit supernodes to reduce memory traffic in the inner loops
of the computation — one of their key roles in the parallel shared-memory column-
Cholesky algorithm. There is no reason why supernodes cannot serve in this role in the
fan-in algorithm also. However, it is interesting to note that the potential exploitation
of supernodes in distributed-memory algorithms is somewhat limited because good
mappings typically distribute the columns of a supernode among several processors.

3.4.4. Parallel multifrontal algorithms. As noted earlier, multifrontal meth-
ods are generalizations of single-front methods. The original motivation for developing
frontal methods was for more effective use of auxiliary storage in the out-of-core so-
lution of sparse systems, and more efficient inner-loop computations by avoiding the
indirect addressing that is characteristic of general sparse data structures. The funda-
mental idea in frontal methods is to keep only a relatively small portion of the matrix
in main memory at any given time, and to use a full matrix representation for this
“active” portion of the matrix, so that computations involving it are more efficient on
scalar machines and more readily vectorized on vector machines. Although the data
structure for the active matrix is very simple, the overall data management required
in frontal methods is quite complicated, involving the assembly of matrix elements,
their insertion into the proper location in the full active matrix data structure, and
the writing of completed portions of the factor to disk, all of which must account for
the fact that the active matrix constitutes a moving “window” through the problem.

The success of frontal methods is dependent on keeping the size of the active
matrix small, which in turn depends on the structure of the problem and the ordering
used in solving it. In structural analysis, for example, a long thin truss is ideal for
a frontal solution technique in that, with an appropriate ordering, a single narrow
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“front” passes along the length of the truss. If a single front would become unaccept-
ably large, however, then multiple fronts can be employed, leading to multifrontal
methods. Of course, the various fronts must eventually merge before the problem can
be completed, but the hope is that with an appropriate ordering such mergers can be
postponed as late as possible in the computation. The use of multiple fronts seems
to suggest an obvious parallel implementation: simply assign a separate front to each
processor. As we shall see, however, the situation is not quite so straightforward.

A self-contained presentation of parallel multifrontal algorithms would occupy
more space than we can afford in an article of this scope. The difficulties in produc-
ing a brief but clear description stem primarily from the complexity of the method: a
sequential multifrontal code is considerably more complicated than a sequential sparse
column-Cholesky code. As might be expected, modifying the method to run on MIMD
machines is also more difficult and complicated, though it is by no means unmanage-
able; there have been implementations on both shared-memory [12,22,23,105] and
distributed-memory [9,36,82] machines. This section is limited to a brief overview of
the literature on the subject and a short discussion of some of the problems that arise
in parallel implementations. The reader should consult [28] or [78] for background
material on multifrontal methods.

We should also point out that some of the codes and algorithms cited in this sec-
tion are designed for nonsymmetric linear systems, and at least one includes pivoting
for stability. For instance, the work in [22] and [23] is based on the Harwell MA37
code, which solves nonsymmetric systems and pivots for stability. Nevertheless, such
codes can be discussed within the framework of this article because they perform a
symbolic factorization of the structurally symmetric matrix A + AT, and compute a
structurally symmetric numerical factorization of A within the resulting data struc-
ture. Therefore, much of the material in [22] and [23] is directly applicable to sparse
multifrontal Cholesky factorization.

Background. As noted in Section 2, the multifrontal method is a sophisticated
variant of the sparse submatrix-Cholesky factorization algorithm (Figure 4) for which
the emod(j, k) operations are not applied directly to column j of the factor matrix.
Instead, each is accumulated and passed on through a succession of update matrices
until it is finally incorporated into the target column. The outer loop of the serial
multifrontal algorithm processes the supernodes 1,2,...,N in order, completing the
columns of each supernode when the supernode is processed. The order in which the
supernodes are processed is critical. For reasons discussed below, they are processed in
the order in which they are visited by a postorder traversal of a supernodal elimination
tree. A supernodal elimination tree with 31 supernodes is displayed in Figure 6.

Every supernode K has associated with it a frontal matrix in which the factor
and update columns associated with the supernode are computed. The factor and
update columns computed within this matrix are stored in a dense matrix format,
essentially minimizing the use of indirect addressing — one of the major strengths of
the method. The algorithm performs two tasks within this frontal matrix:

1. The assembly step inserts the required data into the frontal matrix.
2. After the assembly step, dense partial submatriz-Cholesky factorization within
the frontal matrix generates the factor and update columns.
We discuss first the partial submatrix-Cholesky factorization step and then the as-
sembly step in more detail.

Suppose that K contains r columns of the matrix, and assume that the assem-

bly step for supernode K’s frontal matrix has been completed. The algorithm then
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computes r major steps of dense submatriz-Cholesky factorization within the frontal
matrix, after which the first r columns of the frontal matrix contain the r factor
columns of K, and the trailing columns in the frontal matrix contain aggregated up-
date columns for later columns of the matrix. These trailing columns constitute the
update matrix generated by this block elimination step. Henceforth, we will denote
this task by Tsub(K). The update matrix is stored and assembled later into the
frontal matrix of its “parent supernode” in the elimination tree.
The assembly step consists of the following three steps:

1. Zero out the frontal matrix.

2. Insert the required entries of A into the appropriate locations of the matrix.

3. For each “child supernode,” obtain its associated update matrix and add each

entry to its corresponding entry in the frontal matrix.

Because the supernodes are ordered by a postorder traversal of the elimination tree,
the update matrices can be stored efficiently on a stack, limiting both the storage and
time required to store them. New update matrices are pushed onto the stack as soon
as they are generated, while update matrices for child supernodes are popped off the
stack as needed during each assembly step.

Shared-memory MIMD machines. One key problem associated with parallel mul-
tifrontal algorithms for shared-memory MIMD multiprocessors is the management
of auxiliary storage for the update matrices. The postordering of supernodes used
in the sequential algorithm severely limits the parallelism available; in particular, it
limits exploitation of the parallelism that exists among the many disjoint subtrees of
the elimination tree available in most realistic problems. To create more independent
processes, algorithm developers have abandoned the postordering and the stack of up-
date matrices. Instead, they process the supernodes in some order that allows greater
exploitation of the large-grained (subtree-level) parallelism, but which complicates
management of the working storage for update matrices, increasing both the storage
and time required by this part of the algorithm [23,83,105].

In [22] and [23], Duff considered several strategies for dealing with the resulting
fragmentation of working storage. Garbage collection to reclaim unused storage re-
quires a critical section that seriously inhibits parallelism. Subdividing the working
storage in an effort to localize the garbage collection operations and reduce their neg-
ative effect on parallelism proved to be too complicated and ineffective [22]. Breaking
up individual update matrices to make better use of free storage was not considered
because it would destroy the data locality vital for efficient use of cache — one of
the important strengths of the multifrontal method and a key consideration on the
Alliant FX/8 [23]. In [23], Duff used the buddy system to manage the storage for
update matrices. For any given update matrix, the buddy system obtains a free block
of storage of length 2%, where k is the smallest power of two that provides enough
contiguous storage locations to hold the matrix. The scheme is guaranteed to waste
no more than half the working storage.

We are aware of two other parallel multifrontal codes designed to run on par-
alle]l shared-memory MIMD machines. A parallel multifrontal code developed by
Lucas [83] for the CRAY 2 allocates subtrees to individual processors and has each
processor manage a local stack for its assigned subtree. During the course of the com-
putation, there are eventually more processors than independent subtrees. At that
point, the code abandons the use of subtree-level parallelism. Instead, it successively
processes the remaining tasks Tsub(K), using CRAY autotasking to partition each
task Tsub(K) among all the processors. A parallel multifrontal code developed by
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Vu [105] for the CRAY Y-MP uses a similar strategy.

A second issue discussed in [23] is partitioning the work among the processors
for execution in parallel. Here, we restrict our attention to issues associated with
distributing the tasks Tsub(1), Tsub(2), ..., Tsub(N) among the processors. The
situation is not as simple as it is for parallel column-Cholesky, where simply deal-
ing out the column tasks T'col(j), with some care in the scheduling, is very effective
in exploiting both subtree- and column-level parallelism (see section 3.4.1). If the
multifrontal method distributes indivisible tasks T'sub(K) among the processors in a
similar fashion, then, as noted in [22] and [26], parallelism decreases as the compu-
tation proceeds toward the root supernode and disappears altogether when the root
supernode is reached. Typically, most of the work is performed in the larger frontal
matrices associated with supernodes near the root, and thus smaller granularity is re-
quired for acceptable performance. That is, the tasks T'sub(K) for supernodes K near
the root supernode must be partitioned into smaller tasks and distributed among the
processors. In [23], Duff parameterizes his code so that it can spawn tasks of any gran-
ularity between two extremes, the largest being the tasks T'sub(K), and the smallest
being individual crods and cdivs. His results indicate that working with small blocks
of columns is most effective. Near the root of the supernodal elimination tree, the
algorithms of Lucas [83] and Vu [105] use the autotasking capabilities of their target
machines, the CRAY 2 and CRAY Y-MP, to partition the tasks Tsub(K) among the
processors.

Distributed-memory MIMD machines. Lucas [82,84] developed the first imple-
mentation of the multifrontal method for distributed-memory MIMD machines. Since
then, Ashcraft [9] has also developed parallel multifrontal codes for such machines.
Lucas’s code and the first code developed by Ashcraft implement essentially the same
distributed multifrontal algorithm [6,83]. This section contains a brief discussion of a
few features of this algorithm. Further enhancements to the algorithm, and a system-
atic comparison of all the distributed-memory factorization algorithms will appear
in [7].

As with other distributed factorization algorithms, each column k of the matrix
is assigned to and stored on one processor, map[k]. Consider a supernode K and
let map(K) denote the set of processors that own at least one column of K or a
descendant of a column K in the elimination tree. The key feature of the algorithm
is the distribution of all the columns of K'’s frontal matrix among the processors
in map(K); that is, both the factor columns and the aggregated update columns
generated by the task T'sub(K) are distributed among the processors in map(K).

The processors in map(K) work together to perform the task Tsub(K), i.e., dense
submatrix-Cholesky factorization on the first |K| columns of the distributed frontal
matrix. The algorithm used to perform this task can be viewed as a straightfor-
ward adaptation of the parallel dense submatrix-Cholesky algorithm presented in [37].
When processor p = map[k] € map(K) completes factor column k € K, it broadcasts
L. to the other processors in map(K). The other processors in map(K) at some
point receive L,i and use it to modify every column of the frontal matrix that they
own. Thus, this phase of the algorithm is very similar to the fan-out algorithm shown
in Figure 15.

Before the task Tsub(K) can be performed, supernode K’s distributed frontal
matrix must be assembled. Contributions from distributed update matrices for any
children of K must be sent to the appropriate processors and scatter-added into
the appropriate frontal matrix locations. More precisely, if an update column from
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a “child” update matrix is located on a different processor than the corresponding
column of its “parent” frontal matrix, then the aggregated update column must be
sent to its “new owner,” where it is incorporated into the appropriate column of the
frontal matrix.

Both phases of the factorization require interprocessor communication. The fac-
torization phase performs a restricted broadcast of completed factor columns, while
the assembly phase moves aggregated update columns from one processor to another.
The two forms of communication result in somewhat higher communication cost for
the multifrontal algorithm than that incurred by the fan-in algorithm. However, its
extra communication overhead is far smaller than that incurred by the pure fan-out
algorithm, and preliminary results indicate similar performance for the fan-in and
distributed multifrontal algorithms [9].

3.5. Triangular Solution. Unfortunately, there is relatively little to say about
parallel algorithms for forward and backward triangular solutions. Data dependencies
and a paucity of work to distribute among the processors make it very difficult to
achieve high computational rates, even for dense problems. Heath®and Romine [58]
and Eisenstat et al. [30] have shown that intricate pipelining techniques are required
to achieve computational rates as high as 50% efficiency for large dense problems
on distributed-memory hypercube multiprocessors. Two factors make the situation
even more difficult in the sparse case. First, due to preservation of sparsity in the
factor matrix, there is usually far less work to distribute among the processors —
approximately 7(L) flops rather than the n(n — 1)/2 flops available in the dense
case. Second, the successful pipelining techniques used in [30,58] appear to require
the extremely regular structure of a dense matrix. Loss of this regularity in sparse
Cholesky factors increases the difficulty of using these complicated techniques to speed
up sparse triangular solution. Generalizing these techniques so that they can be
incorporated into a parallel sparse triangular solution algorithm is a possible avenue
for future improvement. A step in this direction has been made by Zmijewski [108],
who considered the use of cyclic algorithms for solving sparse triangular systems.

These difficulties are mitigated somewhat by the subtree-level parallelism that
is available only in the sparse case. Though the parallel algorithms for sparse for-
ward and back triangular solutions contained in [44] exploit this parallelism, they
nonetheless performed rather poorly. Other work on parallel sparse triangular solu-
tion algorithms [4,56,85,102] has been directed primarily toward use in the precondi-
tioned conjugate gradient algorithm. Some of the work in [4], however, is applicable
to complete, as well as incomplete, Cholesky factorizations.

4. Concluding remarks. In this paper, we have provided a summary of parallel
algorithms currently available for the four phases in the solution of sparse symmet-
ric positive definite systems. It is clear from the relative length of the discussions
that much of this research has been focused on the design and implementation of
parallel numerical factorization algorithms. Some of these algorithms have exhibited
reasonable speed-up ratios, particularly on shared-memory MIMD multiprocessors.
Although there have been attempts in developing parallel algorithms for the other
phases, namely ordering, symbolic factorization and triangular solutions, these algo-
rithms have generally been less successful and lacking in efficiency. Much research
is needed in those areas. The ordering problem seems particularly problematic in a
distributed-memory environment because of the difficulty of partitioning the graph
of the matrix among the processors in an intelligent way before the ordering is deter-
mined.
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It may be argued that current sequential algorithms for symbolic factorization and
triangular solution are so efficient that perhaps they can be used on one processor in a
multiprocessor environment instead of developing parallel versions. This may be true
for MIMD multiprocessors with globally shared memory. On MIMD multiprocessors
with local memory, there are at least two reasons why parallel algorithms are needed
for symbolic factorization and triangular solution, even if these algorithms may be
less efficient that their sequential counterparts. First, although symbolic factorization
and triangular solution are often the least expensive phases in the solution process
on serial machines, they may become the dominant phases as more efficient paral-
lel numerical factorization algorithms are developed. Thus, research on the design
of efficient parallel algorithms for symbolic factorization and triangular solution will
be necessary eventually. Second, even if they.are somewhat inefficient, parallel algo-
rithms are still needed to make use of the large (collectively) local memory available
on distributed-memory parallel machines for solving large problems; there may not
be enough memory on a single processor to carry out symbolic factorization and/or
triangular solution serially. Third, many algorithms require multiple triangular solu-
tions.

Our emphasis in this paper has been on parallel direct methods for solving
sparse symmetric positive definite systems. Work has also been done on parallel
algorithms for other matrix computations. In the case of direct methods for solv-
ing sparse nonsymmetric linear systems, much of the research has been carried out
on shared-memory MIMD multiprocessors. Some recent examples can be found in
[1,2,3,20,22,23,51,52]. Parallel algorithms for sparse least squares problems are dis-
cussed in [16,59,96]. There has been a great deal of research on parallel iterative
methods for solving large sparse linear systems as well. For a summary of such work
and references to this extensive literature, see the book by Ortega [89]. Many ad-
ditional references on all aspects of parallel matrix computations can be found in

[90].
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A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL
ALGORITHMS

JAMES M. ORTEGA®*, ROBERT G. VOIGT! AND CHARLES H. ROMINE?}

Since parallel and vector computation is expanding rapidly, we hope that the
references we have collected over the years will be of some value to researchers entering
the field. Naturally, any such collection will be incomplete. Our apologies in advance
to authors whose works we have missed. For further information about access to an
electronic copy of the bibliography, send email to either romine@msr.epm.ornl.gov
or rgv@icase.edu.

Although this is a bibliography on numerical methods, we have included a number
of other references on machine architecture, programming languages, and other topics
of interest to scientific computing.

Certain conference proceedings and anthologies that have been published in book
form we list under the name of the editor (or editors) and then list individual articles
with a pointer back to the whole volume; for example, the reference

[225] A. BRANDT [1981]. Multigrid solvers on parallel computers, in Schultz[1752],
pp. 39-83.

refers to the article by Brandt in the volume listed under [1752] M. ScHuLTZ. Note
that the cross-reference is by reference number, not by year.

This bibliography was also published in January of 1989 by Oak Ridge National
Laboratory as ORNL-TM/10998, and by the Institute for Computer Applications in
Science and Engineering as ICASE Interim Report 6.
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