Parallel
Algorithms
for Matrix

Computations

H'

|
|

K. A. Gallivan
Michael T. Heath
Esmond Ng
James M. Ortega
Barry W. Peyton
R. J. Plemmons
Charles H. Romine
A. H. Sameh
Robert G. Voigt

siam

Parallel
Algorithms for
Matrix
Computations

This page intentionally left blank

Parallel
Algorithms
for Matrix

Computations

h________ 4
i

K. A. Gallivan
Michael T. Heath
Esmond Ng
James M. Ortega
Barry W. Peyton
R. J. Plemmons
Charles H. Romine
A. H. Sameh
Robert G. Voigt

Sidim. Philadelphia
Society for Industrial and Applied Mathematics

Copyright ©1990 by the Society for Industrial and Applied Mathematics.
10987654

All rights reserved. Printed in the United States of America. No part of this book
may be reproduced, stored, or transmitted in any manner without the written per-
mission of the publisher. For information, write to the Society for Industrial and
Applied Mathematics, 3600 University City Science Center, Philadelphia, PA
19104-2688.

Library of Congress Cataloging-in-Publication Data

Parallel Algorithms for matrix computations / K. A. Gallivan ... [et al.].
p. cm.
Includes bibliographical references.
ISBN 0-89871-260-2
1. Matrices—Data processing. 2. Algorithms. 3. Parallel processing
(Electronic computers) 1. Gallivan, K. A. (Kyle A.)

QA188.P367 1990
512.9°434—dc20

90-22017

S.la-ITL is a registered trademark.

List of Authors

K. A. Gallivan, Center for Supercomputing Research and Development, University of
Illinois, Urbana, IL 61801.

Michael T. Heath, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

Esmond Ng, Mathematical Sciences Section, Qak Ridge National Laboratory, P.O. Box
2009, Oak Ridge, TN 37831-8083.

James M. Ortega, Applied Mathematics Department, University of Virginia,
Charlottesville, VA 22903.

Barry W. Peyton, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

R. J. Plemmons, Department of Mathematics and Computer Science, Wake Forest
University, Winston-Salem, NC 27109.

Charles H. Romine, Mathematical Sciences Section, Oak Ridge National Laboratory,
P.O. Box 2009, Oak Ridge, TN 37831-8083.

A. H. Sameh, Center for Supercomputing Research and Development, University of
Illinois, Urbana, IL 61801.

Robert G. Voigt, ICASE, NASA Langley Research Center, Hampton, VA 23665.

This page intentionally left blank

Preface

This book consists of three papers that collect, describe, or reference an extensive se-
lection of important parallel algorithms for matrix computations. Algorithms for matrix
computations are among the most widely used computational tools in science and engi-
neering. They are usually the first such tools to be implemented in any new computing
environment. Due to recent trends in the design of computer architectures, the scien-
tific and engineering research community is becoming increasingly dependent upon the
development and implementation of efficient parallel algorithms for matrix computa-
tions on modern high-performance computers. Architectures considered here include
both shared-memory systems and distributed-memory systems, as well as combinations
of the two. The volume contains two broad survey papers and an extensive bibliogra-
phy. The purpose is to provide an overall perspective on parallel algorithms for both
dense and sparse matrix computations in solving systems of linear equations, as well as
for dense or structured problems arising in least squares computations, eigenvalue and
singular-value computations, and rapid elliptic solvers. Major emphasis is given to com-
putational primitives whose efficient execution on parallel and vector computers is es-
sential to attaining high-performance algorithms. Short descriptions of the contents of
each of the three papers in this book are provided in the following paragraphs.

The first paper (by Gallivan, Plemmons, and Sameh) contains a general perspective
on modern parallel and vector architectures and the way in which they influence algo-
rithm design. The paper also surveys associated algorithms for dense matrix computa-
tions. The authors concentrate on approaches to computations that have been used on
shared-memory architectures with a modest number of (possibly vector) processors, as
well as distributed-memory architectures, such as hypercubes, having a relatively large
number of processors. The architectures considered include both commercially available
machines and experimental research prototypes. Algorithms for dense or structured
matrix computations in direct linear system solvers, direct least squares computations,
eigenvalue and singular-value computations, and rapid elliptic solvers are considered.
Since the amount of literature in these areas is quite large, an attempt has been made to
select representative work.

The second paper (by Heath, Ng, and Peyton) is primarily concerned with parallel al-
gorithms for solving symmetric positive definite sparse linear systems. The main driving
force for the development of vector and parallel computers has been scientific and engi-
neering computing, and perhaps the most common problem that arises is that of solving
sparse symmetric positive definite linear systems. The authors focus their attention on
direct methods of solution, specifically by Cholesky factorization. Parallel algorithms are
surveyed for all phases of the solution process for sparse systems, including ordering,
symbolic factorization, numeric factorization, and triangular solution.

vii

The final paper (by Ortega, Voigt, and Romine) consists of an extensive bibliography
on parallel and vector numerical algorithms. Over 2,000 references, collected by the au-
thors over a period of several years, are provided in this work. Although this is primar-
ily a bibliography on numerical methods, also included are a number of references on
machine architecture, programming languages, and other topics of interest to computa-
tional scientists and engineers.

The book may serve as a reference guide on modern computational tools for research-
ers in science and engineering. It should be useful to computer scientists, mathemati-
cians, and engineers who would like to learn more about parallel and vector computa-
tions on high-performance computers. The book may also be useful as a graduate text in
scientific computing. For instance, many of the algorithms discussed in the first two pa-
pers have been treated in courses on scientific computing that have been offered re-
cently at several universities.

R. J. Plemmons
Wake Forest University

Contents

1 Parallel Algorithms for Dense Linear Algebra Computations
KA. Gallivan, R.J.Plemmons, and A.H. Sameh
(Reprinted from SIAM Review, March 1990).

83 Parallel Algorithms for Sparse Linear Systems
Michael T. Heath, Esmond Ng, and Barry W. Peyton

125 A Bibliography on Parallel and Vector Numerical Algorithms
James M. Ortega, Robert G. Voigt, and Charles H. Romine

ix

This page intentionally left blank

PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA
COMPUTATIONS*

K. A. GALLIVAN', R. J. PLEMMONS?!, AND A. H. SAMEH!

Abstract. Scientific and engineering research is becoming increasingly dependent upon the
development and implementation of efficient parallel algorithms on modern high-performance com-
puters. Numerical linear algebra is an indispensable tool in such research and this paper attempts
to collect and describe a selection of some of its more important parallel algorithms. The purpose is
to review the current status and to provide an overall perspective of parallel algorithms for solving
dense, banded, or block-structured problems arising in the major areas of direct solution of linear
systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic
solvers. A major emphasis is given here to certain computational primitives whose efficient execution
on parallel and vector computers is essential in order to obtain high performance algorithms.

Key words. numerical linear algebra, parallel computation

AMS(MOS) subject classifications. 65-02, 65F05, 65F15, 65F20, 65N20

1. Introduction. Numerical linear algebra algorithms form the most widely-
used computational tools in science and engineering. Matrix computations, including
the solution of systems of linear equations, least squares problems, and algebraic
eigenvalue problems, govern the performance of many applications on vector and
parallel computers. With this in mind we have attempted in this paper to collect and
describe a selection of what we consider to be some of the more important parallel
algorithms in dense matrix computations.

Since the early surveys on parallel numerical algorithms by Miranker [133], Sameh
[153], and Heller [91] there has been an explosion of research activities on this topic.
Some of this work was surveyed in the 1985 article by Ortega and Voigt [138]. Their
main emphasis, however, was on the solution of partial differential equations on vector
and parallel computers. We also point to the textbook by Hockney and Jesshope [100]
which includes some material on programming linear algebra algorithms on parallel
machines. More recently, Ortega, Voigt, and Romine produced an extensive bibliog-
raphy of parallel and vector numerical algorithms [139]; and Ortega [137] published
a textbook containing a discussion of direct and iterative methods for solving linear
systems on vector and parallel computers.

Our purpose in the present paper is to provide an overall perspective of parallel
algorithms for dense matrix computations in linear system solvers, least squares prob-
lems, eigenvalue and singular-value problems, as well as rapid elliptic solvers. In this
paper, dense problems are taken to include block tridiagonal matrices in which each
block is dense, as well as algorithms for banded matrices which are dense within the
band. In particular, we concentrate on approaches to these problems that have been
used on available, research and commercial, shared memory multivector architectures

* Received by the editors March 6, 1989; accepted for publication (in revised form} October 31,
1989.

t Center for Supercomputing Research and Development, University of Illinois, Urbana, Illinois
61801. This research was supported by the Department of Energy under grant DE-FG02-85ER25001
and the National Science Foundation under grants NSF-MIP-8410110 and NSF-CCR-8717942.

t Departments of Computer Science and Mathematics, North Carolina State University, Raleigh,
North Carolina 27695-8206. The work of this author was supported by the Air Force Office of
Scientific Research under grant AFOSR-88-0285 and by the National Science Foundation under
grant DMS-85-21154.

2 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

with a modest number of processors and distributed memory architectures such as
the hypercube.

Since the amount of literature in these areas is very large we have attempted to
select representative work in each. As a result, the topics and the level of detail at
which each is treated can not help but be biased by the authors’ interest. For exam-
ple, considerable attention is given here to the discussion and performance analysis
of certain computational primitives and algorithms for high performance machines
with hierarchical memory systems. Given recent developments in numerical software
technology, we believe this is appropriate and timely.

Many important topics relevant to parallel algorithms in numerical linear algebra
are not discussed in this survey. Iterative methods for linear systems are not men-
tioned since the recent text by Ortega [137] contains a fairly comprehensive review of
that topic, especially as it relates to the numerical solution of partial differential equa-
tions. Parallel algorithms using special techniques for solving generally sparse prob-
lems in linear algebra will also not be considered in this particular survey. Although
significant results have recently been obtained, the topic is of sufficient complexity
and importance to require a separate survey for adequate treatment.

The organization of the rest of this paper is as follows. Section 2 briefly discusses
some of the important aspects of the architecture and the way in which they influence
algorithm design. Section 3 contains a discussion of the decomposition of algorithms
into computational primitives of varying degrees of complexity. Matrix multiplica-
tion, blocksize analysis, and triangular system solvers are emphasized. Algorithms
for LU and LU-like factorizations on both shared and distributed memory systems
are considered in §4. Parallel factorization schemes for block-tridiagonal systems,
which arise in numerous application areas, are discussed in detail. Section 5 concerns
parallel orthogonal factorization methods on shared and distributed memory systems
for solving least squares problems. Recursive least squares computfations, on local
memory hypercube architectures, are also discussed in terms of applications to com-
putations in control and signal processing. Eigenvalue and singular value problems
are considered in §6. Finally, §7 contains a review of parallel techniques for rapid
elliptic solvers of importance in the solution of separable elliptic partial differential
equations. In particular, recent domain decomposition, block cyclic reduction, and
boundary integral domain decomposition schemes are examined.

2. Architectures of interest. To satisfy the steadily increasing demand for
computational power by users in science and engineering, supercomputer architects
have responded with systems that achieve the required level of performance via pro-
gressively complex synergistic effects of the interaction of hardware, system software
(e.g., restructuring compilers and operating systems), and system architecture (e.g.,
multivector processors and multilevel hierarchical memories). Algorithm designers
are faced with a large variety of system configurations even within a fairly generic
architectural class such as shared memory multivector processors. Furthermore, for
any particular system in the architectural class, a CRAY-2 or Cedar [117], the algo-
rithm designer encounters a complex relationship between performance, architectural
parameters (cache size, number of processors), and algorithmic parameters (method
used, blocksizes). As a result, codes for scientific computing such as numerical linear
algebra take the form of a parameterized family of algorithms that can respond to
changes within a particular architecture, e.g., changing the size of cluster or global
memory on Cedar, or when moving from one member of an architectural family to
another, e.g., Cedar to CRAY-2. The latter adaptation may, of course, involve chang-

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 3

ing the method used completely, say from Gaussian elimination with partial pivoting
to a decomposition based on pairwise pivoting.

There are several consequences of such a situation. First, algorithm designers
must be sensitive to architecture/algorithm mapping issues and any discussion of
parallel numerical algorithms is incomplete if these issues are not addressed. Second,
one of the main thrusts of parallel computing research must be to change the situa-
tion. That is, if scientific computing is to reap the full benefits of parallel processing,
cooperative research involving expertise in the areas of parallel software development
(debugging, restructuring compilers, etc.), numerical algorithms, and parallel architec-
tures is required to develop parallel languages and programming environments along
with parallel computer systems that mitigate this architectural sensitivity. Such co-
operative work is underway at several institutions.

The architecture that first caused a widespread and substantial algorithm redesign
activity in numerical computing is the vector processor. Such processors exploit the
concept of pipelining computations. This technique decomposes operations of inter-
est, e.g., floating point multiplication, into multiple stages and implements a pipelined
functional unit that allows multiple instances of the computation to proceed simulta-
neously — one in each stage of the pipe.! Such parallelism is typically very fine-grain
and requires the identification in algorithms of large amounts of homogeneous work ap-
plied to vector objects. Fortunately, numerical linear algebra is rich in such operations
and the vector processor can be used with reasonable success. From the point of view
of the functional unit, the basic algorithmic parameter that influences performance is
the vector length, i.e., the number of elements on which the basic computation is to
be performed. Architectural parameters that determine the performance for a partic-
ular vector length include cycle time, the number of stages of the pipeline, as well as
any other startup costs involved in preparing the functional unit for performing the
computations, Various models have been proposed in the literature to characterize
the relationship between algorithmic and architectural parameters that determine the
performance of vector processors. Perhaps the best known is that of Hockney and
Jesshope [100].

The Cyber 205 is a memory-to-memory vector processor that has been success-
fully used for scientific computation. On every cycle of a vector operation multiple
operands are read from memory, each of the functional unit stages operate on a set
of vector elements that are moving through the pipe, and an element of the result of
the operation is written to memory. Obviously, the influence of the functional unit on
algorithmic parameter choices is not the only consideration required. Heavy demands
are placed on the memory system in that it must process two reads and a write (along
with any other control I/0O) in a single cycle. Typically, such demands are met by
using a highly interleaved or parallel memory system with M > 1 memory modules
whose aggregate bandwidth matches or exceeds that demanded by the pipeline. Ele-
ments of vectors are then assigned across the memory modules in a simple interleaved
form, e.g., v(¢) is in module ¢ mod M, or using more complex skewing schemes [193].
As a result, the reference pattern to the memory modules generated by accessing
elements of a vector is crucial in determining the rate at which the memory system
can supply data to the processor. The algorithmic parameter that encapsulates this
information is the stride of vector access. For example, accessing the column of an
array stored in column-major order results in a stride of 1 while accessing a row of

L The details of the architectural tradeoffs involved in a vector processor are somewhat surprisingly
subtle and complex. For an excellent discussion of some of them see [174].

4 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

the same array requires a stride of Ida where [da is the leading dimension of the array
data object.

Not all vector processors are implemented with the three computational memory
ports (2 reads/1 write) required by a memory-to-memory processor. The CRAY-
1, one CPU of a CRAY-2 and one computational element of an Alliant FX/8 are
examples of register-based vector processors that have a single port to memory and,
to compensate for the loss in data transfer bandwidth, provide a set of vector registers
internal to the processor to store operands and results.? Each of the registers can hold
a vector of sufficient length to effectively use the pipelined functional units available.
The major consequence of this, considered in detail below, is that such processors
require careful management of data transfer between memory and register in order to
achieve reasonable performance. In particular, care must be taken to reuse a register
operand several times before reloading the register or to accumulate as many partial
results of successive computations in the same register before storing the values to
memory, i.e., reducing the number of loads and stores, respectively.

Some register-based vector processors also use two other techniques to improve
performance. The first is the use of parallelism across functional units and ports.
Multiple instructions that have no internal resource conflict, e.g., adding two vector
registers with the result placed in a third and loading of a fourth register from memory,
are executed simultaneously, making as much use of the available resources as possible.
This influences kernel design in that careful ordering of assembler level instructions
can improve the exploitation of the processor.

The second technique is essentially functional unit parallelism with certain re-
source dependences managed by the hardware at runtime. The technique is called
chaining and it allows the result of one operation to be routed into another operation
as an operand while both operations are active. For example, on a machine without
chaining, loading a vector from memory into a register and adding it to another reg-
ister would require two distinct nonoverlapped vector operations and therefore two
startup periods, etc. Chaining allows the elements of the vector loaded into the first
register to be made available, after a small amount of time, for use by the adder before
the load is completed. Essentially, it appears as if the vector addition was taking one
of its operands directly from memory. For processors that handle chaining of instruc-
tions automatically at runtime, careful consideration of the order of instructions used
in implementing an algorithm or kernel is required. Some other vector processors,
however, make the chaining of functional units and the memory port an explicit part
of the vector instruction set. For example, the Alliant FX/8 allows one argument of a
vector instruction to be given as an address in memory, thereby chaining the memory
port and the appropriate functional units. The best example of this is the workhorse
of its instruction set, the triad, which computes v, «— vy + az, where vy and v, are
vector registers, « is a scalar, and « is a vector in memory. This instruction explicitly
chains the floating point multiplier and adder and the memory port. Such instruction
constructs greatly simplify the exploitation of the chaining capabilities of a vector
processor at the cost of the loss of a certain amount of flexibility.

While vector processors have been used and can deliver substantial performance
for many computations, the quest for even more speed led to the availability and
continuing development of MIMD multiprocessors and multivector processors. The
processors on such machines are capable of executing arbitrary code segments in

2 Some register-based vector processors also have multiple ports to memory in an attempt to have
the best of both worlds, e.g., one CPU of a CRAY X-MP.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS)

parallel and therefore subsume, assuming appropriate overhead levels, the fine-grain
parallelism of vector processors. Shared memory architectures have the generic struc-
ture shown in Fig. 1(a). They are characterized by the fact that the interconnection
network links all of the processors to all of the memory modules, i.e., a user-controlled
processor can access any element of memory without the aid of another user-controlled
processor. There is no concept of a direct connection between a processor and some
subset of the remaining processors, i.e., a connection that does not involve the shared
memory modules. Of course, in practice, few shared memory machines strictly adhere
to this simple characterization. Many have a small amount of local memory associated
with, and only accessible by, each processor. The aggregate size of these local memo-
ries is usually relatively insignificant compared to the large shared memory available.
As local memory sizes increase, the architecture moves toward the distributed end
of the architectural spectrum. Not surprisingly, the ability of the network/memory
system to supply data to the multiple processors at a sufficient rate is one of the key
components of performance of shared memory architectures. As a result, the orga-
nization and proper exploitation of this system must be carefully considered when
designing high-performance algorithms.

M1 ® 0o Mk

I

network

coe (w D@

(a) shared memory (b) ring connection

(c) mesh connection (d) 4-D hypercube

FIG. 1. Some memory/processor topologies.

The generic organization in Fig. 1 shows a highly interleaved or parallel mem-
ory system connected to the processors. This connection can take on several forms.

6 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

For a small number of processors and memory modules, p, a high-performance bus
or crossbar switch can provide complete connectivity and reasonable performance.
Unfortunately, such networks quickly become too costly as p increases. For larger
systems, it is necessary to build scalable networks out of several smaller completely
connected switches such as (s x s)-crossbars. The Q-network of Lawrie [119] can
connect p = s* processors and memory modules with k network stages. Each stage
comprises s¥~1 (s x s)-crossbars, for a total of O(plog, p) switches. As with vector
processors, data skewing schemes and access stride manipulation are important in
balancing the memory bandwidth achieved with the aggregate computational rate of
the processors. Ideally, the two should balance perfectly; in practice, keeping the two
within a small multiple is achievable for numerical linear algebra computations via the
skewing and stride manipulations or with the introduction of local memory (discussed
below). As p increases, however, the latency for each memory access grows as O(k).
Fortunately, the addition of architectural features such as data prefetch mechanisms
and local memory can provide some mitigation of this problem.

As mentioned above, one of the ways in which the performance of a large shared
memory system can be improved is the introduction of local memories or caches with
each processor. The idea is similar to the use of registers within vector processors
in that data can be kept for reuse in small fast memory private to each processor.
If sufficient data locality® is present in the computations the processor can proceed
at a rate consistent with the data transfer bandwidth of the cache rather than the
lower effective bandwidth of the large shared memory due to latency and conflicts.
One difference between local memories/caches and vector registers, however, is that
registers have a prescribed shape and must be used, for the most part, in vector
operations; they must contain and be operated on as a vector v € R™ where m is
the vector length. On the other hand, local memory or caches can contain, up to a
point, arbitrary data objects with no constraint on type or use. These differences can
strongly affect the way that these architectural features influence algorithm parameter
choices.

Another feature which can significantly influence the performance of an algo-
rithm on a shared memory machine is the architectural support for synchronization
of processors. These mechanisms are required for the assignment of parallel work
to a processor and enforcing data dependences to ensure correct operation once the
assignment is made. The support found on the various multiprocessors varies consid-
erably. Some provide special purpose hardware for controlling small grain tasks on a
moderate number of processors and simple TEST-AND-SET? synchronization in mem-
ory, e.g., the Alliant FX/8. Others provide more complex synchronization processors
at the memory module or network level with capabilities such as FETCH-AND-OP or
the Zhu-Yew primitives used on Cedar [196]. Finally, there are some which are ori-
ented toward large-grain task parallelism which rely more on system-software-based
synchronization mechanisms with relatively large cost to coordinate multiple tasks
within a user’s job, often at the same time with the tasks of other users.

The discussion above clearly shows that the optimization of algorithms for shared
memory multivector architectures involve the consideration of the tradeoffs concern-

3 A computation is said to have high data locality if the ratio of the data elements to the number
of operations is small.

4 The TEST-AND-SET operation allows for the indivisible action of accessing a memory location,
testing its value, and setting the location if the test succeeds. It can be used as the basic building
biock of most synchronization primitives.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 7

ing the influence of architectural features, such as parallelism, load balancing, vector
computation, synchronization and parallel or hierarchical memory systems, on the
choice of algorithm or kernel organization. Many of these are potentially contradic-
tory. For example, increasing data locality by reorganizing the order of computations
can directly conflict with the attempt to increase the vector length of other computa-
tions. The modeling and tradeoff analysis of these features will be discussed in detail
below for selected topics.

Many shared memory parallel and multivector processors are commercially avail-
able over a wide range of price and performance. These include the Encore, Sequent,
Alliant FX series, and supercomputers such as the CRAY X-MP and Y-MP, CRAY-2,
and NEC. The Alliant FX/8 possesses most of the interesting architectural features
that have influenced linear algebra algorithm design on shared memory processors re-
cently; see the cluster blowup in Fig. 2. It consists of up to eight register-based vector
processors or computational elements (CE’s), each capable of delivering a peak rate
of 11.75 Mflops for calculations using 64-bit data (two operations per cycle) implying
a total peak rate of approximately 94 Mflops. The startup times for the vector in-
structions can reduce this rate significantly. For example, the vector triad instruction
v — v+ az (the preferred instruction for achieving high performance in many codes)
has a maximum performance of 68 Mflops. Each CE has eight 32-element vector reg-
isters and eight floating point scalar registers as well as other integer registers. The
CE'’s are connected by a concurrency control bus (used as a synchronization facility).
This mechanism allows an iteration of a parallel loop to be assigned to a processor
within in time equivalent to a few floating point operations and provides synchroniza-
tion support from lower iterations to higher iterations with a cost of a few cycles. As
a result, the CE’s can cooperate efficiently on parallel loops with iterations with a
granularity of a small number of floating point operations.

There is only one memory port on each CE, like the CRAY-1 and a single CPU of
the CRAY-2, therefore management of the vector registers is crucial. The CE’s share
the physical memory as well as a write-back cache that allows up to eight simultaneous
accesses per cycle. The size of the cache can be configured from 64KB up to 512KB.
The cache and the four-way interleaved main memory are connected through the
main memory bus. Most of the detailed performance information for shared memory
machines given below was obtained on this machine.

Distributed memory architectures can be roughly characterized in a fashion sim-
ilar to that used above for shared memory. In particular, there are two major factors
that distinguish them from shared memory architectures. These are the mode of
memory access and the mode of synchronization.

On p-processor distributed memory machines with an aggregate memory size M
each user-controlled processor has direct access to its local memory only, typically of
size M/p. Accessing any other memory location requires the active participation of
another user-controlled processor. As a result of this idea of direct interaction between
processors to exchange data, distributed memory architectures are often identified by
the topology of the connections between processors. Figure 1 illustrates three popular
connection schemes. The ring topology (b) uses a linear nearest—neighbor bidirectional
connection, essentially a linear array with a wrap-around connection between the first
and last processor, while the mesh connection (c) provides two-dimensional nearest
neighbor counections {wrap-around meshes are also used extensively). Both of these
simple topologies work quite well for many numerical linear algebra algorithms. In
particular, several algorithms are presented below for ring architectures. The hyper-

8 K. A, GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

cube connection is perhaps the most discussed distributed memory topology recently.
A four-dimensional cube is illustrated in (d). The connection patterns are, as the
name implies, local connections in an arbitrarily dimensioned space. In general, a
k-dimensional cube has 2* processors (vertices) each of which is connected to k other
processors. It can be constructed from two (k — 1)-dimensional cubes by simply con-
necting corresponding vertices. As a result of this construction, the nodes have a
very natural binary numbering scheme based on a Gray code. This construction also
demonstrates one of the basic scalability problems of the hypercube in that the num-
ber of connections for a particular processor grows as the size of the cube increases
as opposed to the constant local connection complexity of the simpler mesh and ring
topologies. Many of the more common topologies, such as rings and meshes, can be
embedded into a hypercube of appropriate dimension. In fact, many of the hyper-
cube algorithms published use the cube as if it were one of the simpler topologies.
Commercially available hypercubes include those by Ametek, Intel, and NCUBE.

Gilobal Network

Cluster Cluster e o - Cluster Cluster

To Global | Network
Cluster Memory
Memory Bus]
IP Cache CE Cache
l — 1 [1 |
Interactive Interactive -
Processor Processor Cluster Switch]
MULTIBUS MULTIBUS
Computational | | Computational | _ [Computational
Element Element Element
o . T
Concurrency Control Bus

! CSRD Designed Alliant Designed

FIG. 2. The Cedar multiprocessor.

Synchronization on a distributed memory architecture, due to the memory access-
ing paradigm, is accomplished via a data flow mechanism rather than the indivisible
update used in a large shared memory system. Computations can proceed on a pro-

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 9

cessor when due to its position in its local code the processor decides a computation
is to be performed and all of the memory transactions involving operands for the
computation in remote memory modules are complete. (These transactions are the
interaction between the processors associated with the local memory and the remote
memory modules mentioned above.) Clearly, since the synchronization is so enmeshed
in the control and execution of interprocessor communication, the major algorithmic
reorganization that can alter the efficiency of the synchronization on distributed mem-
ory machines is the partitioning of the computations (or similarly the data) so as to
reduce the synchronization overhead required.

As we would expect, the algorithm/architecture mapping questions for a dis-
tributed memory machine change appreciably from those of shared memory. Since
the machines tend to have more, but less powerful, processors, a key aspect of al-
gorithm organization is the exposure of large amounts of parallelism. Once this is
accomplished the major task is the partitioning of the data and the computations
onto the processors. This partitioning must address several tradeoffs.

To reduce total execution time, a suitable balance must be achieved between the
amount of communication required and efficient spreading of the parallel computa-
tions across the machine. One indicator of the efficient partitioning of the computa-
tions and data is the relationship between the load balance across processors and the
amount of communication between processors. Typically, although not necessarily, a
more balanced load produces a more parallel execution of the computations, ignoring
for a moment delays due to communication. On the other hand, dispersing the com-
putations over many processors may increase the amount of communication required
and thereby negate the benefit of parallelism.

The property of data locality, which was very significant for shared memory ma-
chines in the management of registers and hierarchical memory systems, is also very
important for some distributed memory machines in achieving the desired balance.
Ideally, we would like to partition the data and computations across the processors
and memory modules in such a way that a small amount of data is exchanged be-
tween processors at each stage of an algorithm, followed by the use of the received
data in operations on many local data. As a result the cost of communication is com-
pletely amortized over the subsequent computations that make use of the data. If the
partitioning of the computations and data also results in a balanced computational
load the algorithm proceeds near the aggregate computational rate of the machine.
This is, of course, identical to the hierarchical memory problem of amortizing a fetch
of a data operand from the farthest level of memory by combining it with several
operands in the nearest. Therefore many of the discussions to follow concerning the
data-transfer-to-operations ratios that are motivated by shared hierarchical memory
considerations are often directly applicable to the distributed memory case, although,
as is shown below, there is often a tradeoff between data locality and the amount of
exploitable parallelism.

Of course, there is a spectrum of architectures and a particular machine tends to
have characteristics of both shared and distributed memory architectures. For these
hybrid architectures efficient algorithms often involve a combination of techniques used
to achieve high performance on the two extremes. An example of such an architecture
that is used in this paper to facilitate the discussion of these algorithms is the Cedar
system being built at the University of Illinois Center for Supercomputing Research
and Development (see Fig. 2). It consists of clusters of vector processors connected
to a large interleaved shared global memory — access to which can be accelerated

10 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

by data prefetching hardware. At this level it looks much like a conventional shared
memory processor. However, each cluster is, in turn, a shared memory multivector
processor, a slightly modified Alliant FX/8, whose cluster memory is accessible only
by its CE’s. The size of the cluster memory is fairly large and therefore the aggregate
makes up a considerable distributed memory system. Consequently, the Cedar ma-
chine is characterized by its hierarchical organization in both memory and processing
capabilities. The memory hierarchy consists of: vector registers private to each vector
processor; cache and cluster memory shared by the processors within a cluster; and
global memory shared by all processors in the system. Three levels of parallelism are
also available: vectorization at the individual processor level, concurrency within each
cluster, and global concurrency across clusters. Control and synchronization mecha-
nisms between clusters are supported at two levels of granularity. The larger consists
of large-grain tasks and multitasking synchronization primitives such as event waiting
and posting similar to CRAY large-grain primitives. These primitives are relatively
high cost in that they affect the state of the task from the point of view of the op-
erating system, e.g., a task waiting for a task-level event is marked as blocked from
execution and removed from the pool of tasks considered by the operating system
when allocating computational resources. The second and lower-cost control mech-
anism is the SDOALL loop (for spread DOALL) which provides a self-scheduling loop
structure whose iterations are grabbed and executed at the cluster level by helper
tasks created at the initiation of the user’s main task. Each iteration can then use the
smaller grain parallelism and vectorization available within the cluster upon which it
is executing. The medium grain SDOALL loop is ideal for moderately tight intercluster
communication such as that required at the highest level of control in multicluster
primitives with BLAS-like functionality that can be used in iterations such as the
hybrid factorization routine presented in §4. Hardware support for synchronization
between clusters on a much tighter level than the task events is supplied by synchro-
nization processors, one per global memory module, which implements the Zhu-Yew
synchronization primitives [196].

3. Computational primitives.

3.1. Motivation. The development of high-performance codes for a range of
architectures is greatly simplified if the algorithms under consideration can be de-
composed into computational primitives of varying degrees of complexity. As new
architectures emerge, primitives with the appropriate functionality which exploit the
novel architectural features are chosen and used to develop new forms of the algo-
rithms. Over the years, such a strategy has been applied successfully to the develop-
ment of dense linear algebra codes. These algorithms can be expressed in terms of
computational primitives ranging from operations on matrix elements to those involv-
ing submatrices. As the pursuit of high performance has increased the complexity of
computer architectures, the need to exploit this richness of decomposition has been
reflected in the evolution of the Basic Linear Algebra Subroutines (BLAS).

The investigation of dense matrix algorithms in terms of decomposition into lower-
level primitives such as the three levels of the BLAS has several advantages. First,
for many presently available machines the computational granularity represented by
single instances of the BLAS primitives from one of the levels or multiple instances
executing simultaneously is sufficient for investigating the relative strengths and weak-
nesses of the architecture with respect to dense matrix computations. Consequently,
since the primitive’s computational complexity is manageable, it is possible to probe
at an architecture/software level which is free of spurious software considerations

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 11

such as ways of tricking a restructuring compiler/code generator combination into
producing the code we want. Thus, allowing meaningful conclusions to be reached
about the most effective way to use a new machine.® Second, it aids in the identi-
fication of directions in language and restructuring technologies that would help in
the implementation of high-performance scientific computing software. For example,
matrix-manipulation constructs are already included in many proprietary extensions
to Fortran due to the need for higher-level constructs to achieve high performance on
some machines. Third, detailed knowledge of the efficient mapping of primitives to
different architectures provides a way of thinking about algorithm design that facili-
tates the rapid generation of new versions of an algorithm by the direct manipulation
of its algebraic formulation. (See the discussion of triangular system solvers below for
a simple example.) Fourth, exposing the weaknesses of an architecture for the execu-
tion of basic primitives provides direction for architectural development. Finally, it
simplifies the design of numerical software for nonexpert users. This typically occurs
through the use of total primitives, i.e., primitives which hide all of the architectural
details crucial to performance from the user. Code is designed in terms of a sequential
series of calls to primitives which use all of the resources of the machine in the best
way to achieve high performance. When such a strategy is possible a certain amount
of performance portability is achieved as well. Unfortunately, many important archi-
tectures do not lend themselves to total primitives. Even in this case, however, the
hiding of parts of the architecture via partial primitives is similarly beneficial. A user
need only deal with managing the interaction of the partial primitives which may or
may not execute simultaneously.

In this section, computational primitives from each level of the BLAS hierarchy are
discussed and analyses of their efficiency on the architectures of interest in this paper
are presented in various degrees of detail. Based on the discussion in §2 which indicates
that the investigation of data locality is of great importance for both shared and
distributed memory machines, special attention is given to identifying the strengths
and weaknesses of each primitive in this regard and its relationship to the amount of
exploitable parallelism.

3.2. Architecture/algorithm analysis methodology. The design of efficient
computational primitives and algorithms that exploit them requires an understanding
of the behavior of the algorithm/primitive performance as a function of certain system
parameters (cache size, number of processors, etc.). It is particularly crucial that
the analysis of this behavior identifies any contradictory trends that require tradeoff
consideration, and the limits of performance improvement possible via a particular
technique such as blocking. Additionally, preferences within a set of primitives can be
identified by such an analysis, e.g., on certain architectures a rank-1 BLAS2 primitive
does not perform as well as a matrix-vector multiplication. Ideally, the analysis should
also yield insight into techniques a compiler could use to automatically restructure
code to improve performance, e.g., on hierarchical memory systems [63], [75]. In this
paper we are mostly concerned with analyses that concern the effects of hierarchical
(registers, cache or local memory, global memory) or distributed memory systems.

As indicated earlier, the consideration of data locality and its relationship to
the exploitable parallelism in an algorithm is a key activity in developing high-
performance algorithms for both hierarchical shared memory and distributed memory

5 Very loosely speaking this is usually the assembler level, i.e., the level at which the user has
direct control over performance-critical algorithm/architecture tradeoffs.

12 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

architectures. In this section, we point out some performance modeling efforts con-
cerning these tradeoffs that have appeared in the literature and present a summary
of the techniques used on hierarchical shared memory architectures to produce some
of the results discussed in later sections.

Several papers have appeared recently which discuss modeling the influence of a
hierarchical memory on numerical algorithms, e.g., [3], [76], [99], [101]. Earlier work
on virtual memory systems also discusses similar issues, e.g., the work of McKellar and
Coffman [131], and Trivedi [185], [186]. In fact, the work of Trivedi performs many
of the analyses for virtual memory systems that were later needed for both BLAS2
and BLAS3 such as the effect of blocking, loop orderings in the LU factorization, and
prefetching. The details and assumptions for the hierarchical memory case, however,
differ enough to require the further investigation that has taken place. Of particular
interest here are studies by the groups at the University of Illinois on shared memory
multivector processors (the Cedar Project) [9], [66], [67], [L05] and at the California
Institute of Technology on hypercubes (the Caltech Concurrent Computation Pro-
gram) [59]-[61]. In these studies performance analyses were developed to express the
influence of the blocksizes, used in both the matrix multiplication primitives and the
block algorithms built from them, on performance in terms of architectural parame-
ters.

Gallivan, Jalby, Meier, and Sameh [67], [105] proposed the use of a decoupling
methodology to analyze in terms of certain architectural parameters the trends in
the relationship between the performance and the blocksizes used when implementing
BLAS3 primitives and block algorithms on a shared memory multivector processor.
In particular, they considered an architecture comprising a moderate number (p) of
vector processors that share a small fast cache or local memory and a larger slower
global memory. (The analysis is easily altered for the private cache or local memory
case.) An example of such an architecture is the Alliant FX/8. In their methodology,
two time components, whose sum is the total time for the algorithm, are analyzed
separately. A region in the parameter space, i.e., the space of possible blocksize
choices, that provides near-optimal behavior is produced for each time component.
The intersection of these two regions yields a set of blocksizes that should give near-
optimal performance for the time function as a whole.

The first component considered is called the arithmetic time and is denoted T,.
This time represents the raw computational speed of the algorithm and is derived
by ignoring the hierarchical nature of the memory system: it is the time required
by the algorithm given that the cache is infinitely large. The second component of
the time function considered is the degradation of the raw computational speed of
the algorithm due to the use of a cache of size CS and a slower main memory. This
component is called the data loading overhead and is denoted A;. The components
T, and A; are respectively proportional to the number of arithmetic operations and
data transfers, from memory to cache, required by the algorithm; therefore, the total
time for the algorithm is

(1) T=To+ 4 =n,7, + 7y,

where n, and n; are the number of operations and data transfers, and 7, and 7
are the associated proportionality constants or the “average” times for an operation
and data load. Note that no assumptions have been made concerning the overlap (or
lack thereof) of computation and the loading of data in order to write T as a sum
of these two terms. The effect of such overlapping is seen through a reduction in

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 13

7;. This overlap effect can cause 7; to vary from zero, for machines which have a
perfect prefetch capability from memory to cache, to ¢;, where ¢; is the amount of
time it takes to transfer a single data element, for machines which must fetch data on
demand sequentially from memory to cache.

The analysis of T, considers the performance of the algorithm with respect to
the architectural parameters of the multiple vector processors and the register-cache
hierarchy under the assumption of an infinite cache. For some machines, the register-
cache hierarchy is significant enough to require another application of the decoupling
methodology with the added constraint of the shape of the registers. Typically, how-
ever, the analysis involves questions similar to those discussed concerning the BLAS2
below.

Rather than considering 4, directly, the second portion of the analysis attempts
a more modest goal. The data loading overhead can be analyzed so as to produce
a region in the parameter space where the relative cost of the data loading &;/T, is
small. This analysis is accomplished by expressing A;/T, in terms of two ratios: a
cache-miss ratio and a cost ratio. Specifically,

4,
(2) T. = A

where p = ny/n, is the cache-miss ratio and A = 7/7, is the cost ratio. For the
purposes of qualitative analysis, A can be bounded under various assumptions (average
case, worst case, etc.) and trends in the behavior of the primitive or algorithm derived
in terms of architectural parameters via the consideration of the behavior of the cache-
miss ratio p as a function of the algorithm’s blocksizes.

The utility of the results of the decoupling form of analysis depends upon the fact
that the intersection of the near-optimal regions for each term is not empty or at least
that the arithmetic time does not become unacceptably large when using parameter
values in the region where small relative costs for data loading are achieved. For
some algorithms this is not true; reducing the arithmetic time may directly conflict
with reducing the relative cost of data loading. In some cases, a technique known
as multilevel blocking can mitigate these conflicts [67]. In other cases, more machine-
specific tradeoff studies must be performed. These studies typically involve probing
the interaction of data motion to and from the various levels of memory and the
underlying hardware to identify effective tradeoffs [64], [65].

On distributed memory machines, analyses in the spirit of the decoupling method-
ology can be performed. Fox, Otto, and Hey [59], [61] analyzed the efficiency of the
broadcast-multiply-roll matrix multiplication algorithm and other numerical linear al-
gebra algorithms on hypercubes in terms of similar parameters. In particular, they
expressed efficiency in terms of the number of matrix elements per node (blocksize),
the number of processors and a cost ratio tcomm/tfi0p Which gives the relative cost of
communication to computation. Johnsson and Ho [110] presented a detailed analysis
of matrix multiplication on a hypercube with special attention to the complexity of
the communication primitives required and the associated data partitioning.

3.3. First and second-level BLAS. The first level of the BLAS comprises
vector-vector operations such as dotproducts, a «— zTy, and vector triads (SAXPY),
y «— y = azx [121]. This level was used to implement the numerical linear algebra
package LINPACK [38]. These primitives possess a simple one-dimensional parallelism
especially suitable for vector processors with sufficient memory bandwidth to tolerate
the high ratio of memory references to operations; pu = % for the triad and y = 1

14 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

for the dotproduct. The superiority of the dotproduct is due to the fact that it is
a reduction operation that writes a scalar result after accumulating it in a register.
The triad, on the other hand, produces a vector result and must therefore write n
elements to memory in addition to reading the 2n elements of the operands. For vector
processors, performance tuning is limited to adjusting the vector length and stride of
access. On multivector processors, both primitives are easily decomposed into several
smaller versions of themselves for parallel execution. For the triad, p = % + £, note
that the fetch of a becomes more significant, and 4 =~ 1+ £ for the dotproduct, where
p is the number of processors. As the number of processors increases to a maximum
of n, the preference for the dotproduct over the triad is reversed. For p = n the triad
requires O(1) time with g & 2 while the dotproduct requires O(logn) with p = 2. Such
a reversal often occurs when considering large numbers of processors relative to the
dimension of the primitive. The dependences graph of the reduction operation and its
properties that produced a small u for a limited number of processors scale very poorly
as p increases and translate directly into a relative increase in the amount of memory
traffic required on a shared memory architecture and interprocessor communication
on a distributed memory machine. (For a distributed memory machine, whether or
not the reversal of preference occurs can depend strongly on the initial partitioning
of the data.)

The advent of architectures with more than a few processors and high-performance
register-based vector processors with limited processor-memory bandwidth such as the
CRAY-1 exposed the limitations of the first level of the BLAS. New implementations
of dense numerical linear algebra algorithms were developed which paid particular
attention to vector register management and an emphasis on matrix-vector primitives
resulted [24], [56]. This problem was later analyzed in a more systematic way in [42]
and resulted in the definition of the extended BLAS or BLAS2 [40]. Architectures
with a more substantial number of processors were also more efficiently used since
matrix-vector operations consist essentially of multiple BLASL primitives that can
be executed in parallel — roughly speaking they possess two-dimensional parallelism.
The second level of the BLAS includes computations involving O(n?) operations such
as a matrix-vector multiplication, y «— y + Az, and a rank-1 update, A — A + zy7T.
Note that these primitives subsume the triad and dotproduct BLAS1 primitives and
become those primitives in the limit as one of the dimensions of A tends to 1. These
primitives improve data locality in the sense that the number of memory references
per operation can be reduced by accumulating the results of several vector operations
in a vector register before writing to memory as in matrix-vector multiplication or by
keeping in registers operands common to successive vector operations as in a rank-1
update. The two techniques, however, do not result in similar improvements in data
locality. In general, it is preferable to write algorithms for register-based multivector
processors in terms of matrix-vector multiplications rather than rank-1 updates.

To see this, consider first the efficiency of implementing the two BLAS2 primitives
as a set of BLAS1 primitives each of the order of the matrix. (For the rank-1 it is
only possible to use the triad; the matrix-vector multiplication allows a choice of
primitives.) If the matrix dimensions n; and ny are larger than the register size® of
any of the processors there is no possibility of efficient register reuse and the value
of 4 remains at the disappointing BLAS1 level. For problems where either n, or

6 The term register size does not necessarily mean the vector length of a single vector register.
It can also refer to the aggregate size of all of the vector registers used.in a processor in a given
implementation of the primitive.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 15

ng is smaller than the register size, however, it is possible to reuse the registers
in such a way that both primitives achieve their theoretical minimum values of u;
p =1+ 1/2ny + 1/2n,y for the rank-1 update and g = 1/2 + 1/2n; + 1/n, for the
matrix-vector product. For the small rank-1, this local optimal is achieved by reading
the small vector into vector register once and reusing it to form a triad with each
row or column of the matrix in turn. As a result, each element of the matrix and the
two vectors are loaded into the processor exactly once and the elements of the matrix
are written exactly once — the optimal data transfer behavior for a rank-1 update.
For the matrix-vector product, the technique depends upon whether n, or ns is the
small dimension. If it is ns then a technique similar to the rank-1 update is used.
The vector z is loaded into a register once. Each row of A is read in turn and used
in an inner product calculation with z in the register, and the result is then added
to the appropriate element of y and written back to memory. Every data element is
read and written the minimum number of times. If the small dimension is n; then a
slightly different technique is used. The result of the operation, y, is accumulated in
a vector register, thereby suppressing the writes back to memory of partial sums.

As long as n; or ns do not get very small, which implies that the primitives are
degenerating into a first level primitive, the values are an improvement compared to
their limiting first level primitives. Of course, the rank-1 update still has a value
of p similar to the dotproduct BLAS1 primitive, but it has the advantage of more
exploitable parallelism. If these results could be maintained for arbitrary n; and
nay, the superiority of the BLAS2 on register-based multivector processors would be
established.

To show that this is indeed possible, we will exploit the richness of structure
present in linear algebra computations and partition the primitives into smaller ver-
stons of themselves. This is accomplished by partitioning A into kike submatrices
A;; € R™M>™2 where it is assumed for simplicity that n; = k;m; with k; and m;
integers, and partitioning z and y conformally. The blocksizes which determine the
partitioning are chosen so that the smaller instances of the primitives are locally
optimal with respect to their values of y.

The rank-1 update is thus reduced to ki ks independent small rank-1 updates.
The resulting global y value for the entire rank-1 update is g =14 1/2m; +1/2ma.
Now consider its behavior as p, the number of register-based vector processors used,
increases. For small and moderate p, one of the blocksizes, say m;, could be taken
equal to the corresponding dimension of the matrix, n; (the choice of m; or mq simply
depends upon the shape of the matrix and the exact number of processors). It follows
that u = 1+ 1/2r + 1/2ny where r is the register length. As p increases further, a
true two-dimensional partitioning must be used. So we set p = ki1ks which balances
the computational load and the amount of data required by each processor. Since the
register size determines the largest vector object we can work with and extra transfers
to and from registers translate directly into additional time, we make m; ! +my ! as
small as possible under the constraint that either m; < r or ms < r, depending on the
implementation chosen for the register-based smaller rank-1 update. Consequently,

p=1+

p
mp +m
2n1ng (m 2)
and the algorithm requires O(mim2) time. At the limit of available parallelism,
p = nyng and the rank-1 update requires O(1) time with g = 2. This is the same as
the best BLAS1 primitive. This is not surprising since in the limit each processor is
doing essentially the same scalar computation as the BLAS1 triad. The only difference

16 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

is that in the BLAS2 case there is much more exploitable parallelism. Note also that
at some point while increasing the number of processors the vector length used by
each processor will fall below the breakeven point for the use of the vector capability
of the processor, and the switch should be made to scalar mode.

A similar decomposition technique can be used for the matrix-vector product
primitive y < y £ Az. The matrix is partitioned into submatrices A;; € R™1*™2 and
partitioning = and y conformally. The resulting algorithm is

doi=1,k
yi — yi + A + - + Aig, T,
end do

All of the basic computations z < z + A;;z; can proceed in parallel with a fan-in
dependence graph required on the update of the y; if ko > 1. As before, for a small to
moderate number of processors one of the m; can be set to the register length and the
other to the remaining dimension of A. If ¢ = 1 then no synchronization is required
since ko = my and the loop can execute in parallel. The resulting global p is

_1,1 .0
h=5 79 ny’
where 7 is the vector length. If 1 = 2
_ l+ 1 + 1
k=35 2ny T

In the latter case, k; is equal to 1 and synchronization is required. However, since
the number of processors is assumed small the partial sums from local matrix-vector
products can be accumulated in a vector of length n; private to each processor (not
necessarily a register). After all processors are finished accumulating their partial
sums, a simple fan-in of the results can be done. The time required is O(m;ma2).
Note that on a moderate number of processors the matrix-vector primitive is twice
as efficient as the rank-1 primitive of the same size. Consequently, when implement-
ing algorithms with BLAS2 primitives on a register-based multivector architecture
with a moderate number of processors, a matrix-vector product-based algorithm will
significantly outperform the same algorithm based on a rank-1 update.

As with the rank-1 update it is possible to derive an estimate of the time and the
value of p for the case where a two-dimensional partitioning is used with p = kjk».
In this case, not only must the transfers be computed for the small matrix-vector
products performed by each of the processors, but also the transfers associated with
the k; independent fan-in trees which sum together the partial sums into the final
values of y; for 1 <i < k;. The time required is O(myma) + O(m log, ka) with

1 P my
H= §+ ning [m1+——2—] ’

As with all of the other primitives, when p is as large as possible, in this case p = nyn,,

the value of i increases to approximately 2. Due to the reduction nature of the matrix-
vector product, its time has a lower bound of O(lognz).

The results above demonstrate several important points about first- and second-

level BLAS primitives. The most important is that for register-based multivector

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 17

processors with a moderate number of processors, there can be a significant difference
between the performance of a given algorithm when implemented in terms of the four
primitives discussed above. This performance order is given from worse to best in
terms of decreasing values of u. The triad with u = % does far too many spurious data
transfers to be of use on a processor with a single port to memory. The dotproduct
improves the ratio to g = 1 but not all processors have high-performance capabilities.
The BLAS2 rank-1 update primitive also has g = 1 but it does not depend upon
efficient reduction operations on vector registers being available on a processor and
its extra dimension of parallelism makes it more flexible than the previous primitives.
By far, however, the preferred primitive for such an architecture is the matrix-vector
product due to its superior register management.

The second observation from the results above is how the preferences can reverse
when the architecture used is radically altered. In this case we considered increasing
the number of register-based vector processors available to the maximum needed.
It was shown that in the limit all have similar register-memory transfer behavior
and the nonreduction operations have a distinct advantage if it is assumed that the
data and computations have been partitioned ideally. This last point is crucial. Our
discussions implicitly assumed a shared memory architecture when increasing the
number of processors. While the results do hold for certain distributed memory
architectures, they can be very sensitive to the assumptions concerning initial data
partioning. If for some reason the data had been partitioned in a different way the
trends need not be the same.

3.4. Third-level BLAS.

3.4.1. Motivation. The highest level of the BLAS is motivated by the use of
memory hierarchies. On such systems, only the lowest level of the hierarchy (or in
some cases the two lowest, e.g., registers and cache) are able to supply data at the
computational bandwidth of the processors. Hence, data locality must be exploited
to allow computations to involve mostly data located in the lowest levels. This allows
the cost of the data transfer between levels to be amortized over several operations
performed at the computational bandwidth of the processors. This problem of data
reuse in the design of algorithms has been studied since the beginning of scientific
computing. Early machines, which had small physical memories, required the use
of secondary storage such as tape or disk to hold all of the data for a problem.
Similar considerations were also needed on later machines with paged virtual memory
systems. The block algorithms developed for such architectures relied on transferring
large submatrices between different levels of storage, with prepaging in some cases,
and localizing operations to achieve acceptable performance.

Of course, the resulting matrix-matrix primitives could have been used in algo-
rithms for the machines which motivated the BLAS2. Indeed, as Calahan points out
[23], the use of matrix-matrix modules was considered when developing algorithms for
the CRAY-1. The hierarchy, however, was not distinct enough to achieve a significant
advantage over BLAS2 primitives. The introduction of the CRAY X-MP and its ad-
ditional memory ports delayed even further the move to the next level of the BLAS.
It was finally caused by the availability of high-performance architectures which rely
on the use of a hierarchical memory system and with more profound performance
consequences when not used correctly. Agarwal and Gustavson designed matrix mul-
tiplication primitives and block algorithms for solving linear systems to exploit the
cache memory on the IBM 3090 in the latter part of 1984. These evolved into the
algorithms contained in ESSL, first released in the middle of 1985, for the IBM 3090

18 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

with vector processing capabilities [1], [84], [130], and more recently for the multi-
processor version of the architecture [2]. A numerical linear algebra library based on
block methods was developed and its performance analyzed in terms of architectural
parameters in 1985 and early 1986 for a single cluster of the Cedar machine, the
multivector processor Alliant FX/8 [9], [105], [156]. At approximately the same time,
Calahan developed block LU factorization algorithms for one CPU of the CRAY-2
[23]. In 1985, Bischof and Van Loan developed the use of block Householder reflectors
in computing the QR factorization and presented results on an FPS-164/MAX [16).

The development of these routines and numerical linear algebra libraries clearly
demonstrated that a third level of primitives, or BLAS3, based on matrix-matrix com-
putations was required to achieve high performance on the emerging architectures.
Such primitives achieve a significant improvement in data locality, i.e., the data local-
ity is no longer effectively independent of problem size as it is for the first two levels of
the BLAS. Third-level primitives perform O(n3) operations on O(n?) data, and they
increase the parallelism available by yet another dimension by essentially consisting
of multiple independent BLAS2 primitives.

Since the reawakening of interest in block methods for linear algebra, many pa-
pers have appeared in the literature considering the topic on various machines, e.g.,
(5], [44], [149]. The techniques have become so accepted that some manufacturers now
provide high-performance libraries which contain block methods and matrix-matrix
primitives. Some, such as Alliant, provide matrix multiplication intrinsics in their
concurrent/vector processing extensions to Fortran. In 1987, an effort began to stan-
dardize for Fortran 77 the BLAS3 primitives and block methods for numerical linear
algebra [35], [37], [39].

3.4.2. Some algorithms. The most basic BLAS3 primitive is a simple matrix
operation of the form

(3) C — C + AB,

where C, A, and B are n; Xnz, nj Xng, and ny X n3 matrices, respectively. Clearly, this
primitive subsumes the rank-1 update, (n; = 1), and matrix-vector multiplication,
(ns = 1), BLAS2 primitives. In block algorithms, it is most often used as a rank-w
update (n; = w <« n,n3) or a matrix multiplied by several vectors (ng = w € ny,n2).
The analysis of the parallel complexity of such a computation has been the subject
of much study. In this section we give a brief summary of some generic algorithms
and mention some implementations on various machines that have appeared recently
in the literature.
The basic scalar computation can be expressed as

dor=1,n3
do s = 1,711
dot= 1, 2
Cs,r = Csr + aa,tbt,r
end do
end do
end do

where ¢, r, a5, and by, denote the elements of C, A respectively B.
There are three basic generic approaches to performing these computations which
correspond to different choices of orderings of the loops. They are called the inner,

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 19

middle, and outer product methods due to the fundamental kernels used and corre-
spond to the following code segments:

inner_product;
dor=1,n3
dos=1m
Cs,r = Cs,r + inner _prod(as x, bur)
end do
end do

middle_product:
dor=1,n3
Cx,r = Cxyr + Ab*’r
end do

and

outer_product:
dot=1,n
C = C + a*,tbgj,‘
end do.

Each has its advantages and disadvantages for various problem shapes and architec-
tures. All have immediate generalizations involving submatrices. These issues are
discussed in the literature, e.g., [100], [137], in several places and will not be repeated
here. We do note, however, that for register-based vector and multivector processors
with one port to memory, the middle product algorithm facilitates the efficient use of
the vector registers and data bandwidth to cache of each processor, and exploits the
chaining of the multiplier, adder, and data fetch available on many systems. This is
accomplished by performing, possibly in parallel, multiple matrix-vector products —
the preferred BLAS2 primitive for vector register management. When the vector pro-
cessors are such that register-register operations are significantly faster than chained
operations from local memory or cache, a more sophisticated two-level generalization
of the blocking strategy discussed below can be used to achieve high performance.

Madsen, Rodrigue, and Karush considered, for use on the CDC STAR-100 vector
processor, a slightly more exotic matrix multiplication based on storing and manip-
ulating the diagonals of matrices [127]. Their motivation was mitigating the perfor-
mance degradation of the algorithms above for banded matrices and the difficulties
in accessing the transpose of a matrix on some machines.

The BLAS3 primitive implemented for a single cluster of the Cedar machine [66],
[67], [105] and applicable to machines with a moderate number of reasonably coupled
multivector processors with a shared cache implements a block version of the basic
matrix multiplication loops. It proceeds by partitioning the matrices C, A, and B
into submatrices Cj;, Ak, and By; whose dimensions are m; x m3, m; X mg, and
mg X mg, respectively. The basic loop is of the form

doi= 1, kl
dok = 1, kz
do _] = 1, k3

20 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

Cij = Cij + A * Bkj
end do
end do
end do
where ny = kym,, ns = kamo, and ng = kamg, and &, k2, and k3 are assumed to be
positive integers for simplicity.

The block operations C;; = Cj; + Ajx * By; possess a large amount of concur-
rent and vectorizable computations, so the algorithm proceeds by dedicating the full
resources of the p vector processors to each of the block operations in turn. The
kernel block multiplication can be computed by any of the basic concurrent/vector
algorithms. As noted above the middle product algorithm which performs several
multiplications of A;x and columns of By; in parallel is well suited for register-based
architectures like the Alliant FX/8, hence it is assumed in the analysis below.

There are, of course, several possible orderings of the block loops and several other
kernels that can be used for the block operations.” If, for example, the processors
are not tightly coupled enough parallelism can moved to the block level. This can
also be useful in the case of private caches or local memories for each processor. As
is shown below this particular ordering (or one trivially related to it) is appropriate
for use in the block algorithms discussed in later sections. However, when developing
a robust BLAS3 library, kernels for the block operations which differ from those
discussed below and alternate orderings must be analyzed so that selection of the
appropriate form of the routine can be done at runtime based on the shape of the
problem. This is especially important for cases with extreme shapes, e.g., guaranteeing
smooth performance characteristics as the shapes become BLAS2-like.

Clearly, if the number of processors are increased to p = nynyng the inner product
form of the algorithm can generate the result in O(log, ny) time. For a shared memory
machine, such an approach would place tremendous strain on a highly interleaved or
parallel memory systems. As mentioned earlier, one way that such strain is mitigated
is by assigning elements of structured variables to the memory banks in such a way
as to minimize the chance of conflicts when accessing certain subsections of the data.
For the inner product algorithm it is particularly important that the row and columns
of matrices be accessible in a conflict free manner. One of the easiest memory module
mapping strategies that achieves this goal dates back to the ILLIAC IV ([114], [115],
also see [116]). The technique is called the skewed storage scheme. In it the elements
of each row of a matrix are assigned in an interleaved fashion across the memory
modules. However, when assigning the first element of a row it is placed in the memory
module that is skewed by one from the module that contained the first element of
the previous row. Any row or column of a matrix can now be accessed in a conflict
free fashion. Matrix multiplication algorithms for the distributed memory ILLIAC
IV were developed based on this scheme which can be easily adapted to the shared
memory situation.

If we are willing to sacrifice some numerical stability, fast schemes which use less
than O(n®) operations can be used to multiply two matrices. In [95], Higham has
analyzed this loss of stability for Strassen’s method [175] and concluded that it does
not preclude the effective use of the method as a BLAS3 kernel. Recently, Bailey has

7 The i—j —k ordering of the block loops, for example, produces distinctly different blocksizes and
shapes [105]. Its use can be motivated by the desire to keep a block of C in cache while accumulating
its final value. This implies that a block of A must reside in the cache simultaneously thereby altering
the optimal shapes.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 21

considered the use of Strassen’s method to multiply matrices on the CRAY-2 [7]. The
increased performance compared to CRAY’s MXM library routine is achieved via the
reduced operation count implicit in the method and the careful use of local memory
via an algorithm due to Calahan. Speedups as high as 2.01 are reported compared
to CRAY’s library routine on a single CPU. Bailey also notes that the algorithm is
very amenable to use on multiple CPU’s of the CRAY-2 although no such results are
presented.

The broadcast-multiply-roll algorithm for matrix multiplication described and an-
alyzed by Fox et al. is representative of distributed memory algorithms [59]-[61].
(For other distributed memory algorithms see [78], [129], [135].) Consider the calcu-
lation of C — C + AB where A, B, C € R**". Assume the processors are connected
as a two-dimensional wrap-around mesh and the square subblock with index (z, j) of
each matrix starts out in the memory of the processor correspondingly indexed. The
algorithm consists of \/n steps each of which consists of broadcast, multiply, and roll
phases. In particular, on step i (i = 0,---,/n — 1) the processor in each row owning
A; (j+i)mod,/m broadcasts it to the rest of the processors in the row which store it in a
local work array T. Each processor then multiplies T by the subblock of B presently
in its memory and adds it to the subblock of C that it owns. The final phase of
each step consists of rolling the matrix B up one row in the mesh with appropriate
wrap-around at the ends of the mesh. In other words, each processor transmits the
subblock of B it has in its memory to the processor in the same column of the mesh
but one row up. The repetition of this three-phase step \/n times corresponds to the
number of steps required to let each subblock of B return to its original processor.

Finally, Johnsson and Ho have considered the implementation of matrix multi-
plication on a hypercube [110]. In this work they consider the implementation of the
computational primitive in terms of communication primitives some of which implic-
itly perform computations as the data move through the cube. As a result, users
can write their algorithms as a sequence of calls to these data motion primitives in a
fashion similar to the method advocated with respect to the computational primitives
discussed above.

3.4.3. Blocksize analysis. In this section we summarize the application of the
decoupling methodology to the matrix multiplication algorithm for the single cluster
of the Cedar machine described above. Recall that the block level loops were

doi= 1,k1
dok =1,k
do _] = 1, k‘3
Cij = Cij + Aik * By
end do
end do
end do

where n; = kymy, ny = kams, and n3 = kgmg, and ky, k2, and k3 are assumed to be
positive integers. Each block operation C;; = C;ij + Ak * Bg; uses the resources of
the p vector processors by performing matrix-vector products in parallel.

Values of my, ma, and mz which yield near-optimal values of the arithmetic time
for the kernel can be determined by an analysis similar to those presented above for the
BLAS2. The essential tradeoffs require balancing the parallel and vector processing
capabilities and the bandwidth restrictions due to the single port to memory on each
processor. For the Alliant FX/8, the values of m;, ms, and ms chosen according to
the preceding reasoning are: m; = 32k or is large; ms > 16 to 32 depending on the

22 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

overhead surrounding the accumulation; and ms = 8k or is large.

The reduction of the data loading overhead reduces to a simple constrained min-
imization problem. Since the submatrices A;; are associated with the inner loop, it
is assumed that each A;; is loaded once and kept in cache for the duration of the
J loop. Similarly, it is assumed that each of the C;; and By; are loaded into cache
repeatedly. Note that the conservative approach is taken in that no distinction is
made between reads and writes in that A is set under the pessimistic assumption that
anything loaded has to be written back whether or not it was updated. Some cases
where this distinction becomes important are discussed below.

It is easily seen by considering the number of transfers required that the cache-
miss ratio, u, is given by

1 1 1

4 R S NI
() H 2m1 +2m2+2n3

The theoretical minimum, given an infinite cache, is

1 1 1

p= ot —

21’11 277,2 2713 '

Constraints for the optimization of the terms involving m; and mg are generated
by determining what amount of data must fit into cache at any given time and requir-
ing that this quantity be bounded by the cache size C'S. The final set of constraints
come from the fact that the submatrices cannot be larger than the matrices being
multiplied. Therefore, the minimization of the number of loads performed by the
BLAS3 primitive is equivalent to the solution of the minimization problem

(5) min p(ml,mg) = ml‘l +m;1

subject to ma(my + p) < CS
1<mi<ny
1 < mg < ny,

where CS is the cache size and p is the number of processors. The constraints trace
a rectangle and an hyperbola in the (m1, m2)-plane.

The solution to the minimization problem separates the (n;,n2) plane into four
distinct regions; two of which are of interest for the rank-w update and matrix-times-w-
vectors primitives, and general large dense matrix multiplication (see [67] for details).
These can be summarized as:

1. The value of mg is arbitrary and taken to be ns.
2. If ny(ny +p) > CS and ny < CS(VCS +p)!

cSs
my=——p and my=no.
2

3. If ny(ny +p) > CS, ny > VCS, and ny > CS(VCS +p)~?
cs

m; = CS and my = —

VCS+p

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 23

Note that since the near-optimal region for the arithmetic time component was
unbounded in the positive direction, there is a nontrivial intersection between it and
the near-optimal region for the data loading component. This implies that, except for
some boundary cases where n;, ny, and/or nz become small, the decoupling method-
ology does yield a strategy which can be used to choose near-optimal blocksizes for
BLAS3 primitives. (The troublesome boundary cases can be handled by altering the
block-loop ordering or choosing a different form of the block multiplication kernel.)

For the rank-w primitive this results in a partitioning of the form

Cy i A,
(6) A IR R I N
Ck Ck Ag

where the blocksizes are given by the case above with ny = w and small. Note that
the block loops simplify to

doi=1,k
C,=C;+4;*B
end do

and parallelism at the block-loop level becomes trivially exploitable when necessary.
Also note that each block of the matrix C is read and written exactly once implying
that this blocking maintains the minimum number of writes back to main memory.

For large dense matrix multiplication and for the matrix-times-w-vectors primitive
the partitioning is

o i A - Ay By
(7) : - - : SR :
Ck Ck Akl te Akm Bm

and the block loops reduce to

doi=1,k
doj=1m
Ci=Ci+A,'j*Bj
end do
end do.

Once again block parallelism is obviously exploitable when needed. Note however that
the blocks of C are written to several times. In general, these writes are not signifi-
cant since the blocksizes have been chosen to reduce the significance of all transfers
(including these writes) to a negligible level. The i-j-k block loop ordering can be
used and analyzed in a similar fashion if it is desirable to accumulate a block of C in
local memory. The blocksizes that result are, of course, different from the one shown
above (see [105]).

The key observation with respect to the behavior of p for BLAS3 primitives is
that it decreases hyperbolically as a function of m; and mj. (This assumes this
particular block loop ordering but similar statements can be made about the others.)

24 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

It follows that the relative cost of transferring data decreases rapidly and reaches a
global minimum of the form
A pA A

8 =2 2
®) Au VCS + 2CS + 213

Therefore, assuming that n3 is much larger than v/CS (large dense matrix multi-
plication), data loading overhead can be reduced to O(1/v/CS). This limit on the
cache-miss ratio reduction due to blocking is consistent with the bound derived in
Hong and Kung [101]. For BLAS3 primitives where one of the dimensions is smaller
than the others, with value denoted w, the data loading overhead is a satisfactory
O(1/w).

The hyperbolic nature of the data loading overhead implies that reasonable per-
formance can be achieved without increasing the blocksizes to the near-optimal values
given above. Of course, exactly how large m; and m, must be in order to reduce the
data loading overhead to an acceptable amount depends on the cost ratio A of the
machine under consideration. The existence of a lower bound on the cache-miss ratio
achievable by blocking does, however, have implications with respect to the blocksizes
used in block versions of linear algebra algorithms.

The expression for the data loading overhead based on (2) and (4) is also of the
correct form for matrix multiplication primitives blocked for register usage in that
hyperbolic behavior is also seen. The actual optimization process must be altered.
The use of registers imposes shape constraints on blocksize choices and it is often
more convenient not to decouple the two components of time. For the most part,
however, the conclusions stated here still hold.

For hypercubes, the analysis of Fox, Otto, and Hey [61] derives a result in the
same spirit as (8). They show that the efficiency (speedup divided by the number of
processors) of the broadcast-multiply-roll matrix multiplication algorithms is

1
1- (c/\/ﬁ)tcomm/tﬂop

where tcomm, tfiop, and n are the cost for communication of data, cost of a floating
point operation, and the number of matrix elements stored locally in each proces-
sor (hence bounded by the local memory size). The constant ¢ is 1 for the square
subblock decomposition but is \/p/2 for the row decomposition, where p is the num-
ber of processors, indicating the superiority of square blocks for this type of matrix
multiplication algorithm.

€

3.4.4. Preferred BLAS3 primitives. The preceding analysis also allows the
issue of superiority of one BLAS3 primitive compared to the others to be addressed.
Consider the comparison of the rank-w primitive to the primitive which multiplies a
‘matrix by w vectors. If w = 1 this is the BLAS2 comparison discussed earlier and for
the shared memory multivector processor analyzed above the matrix-vector multipli-
cation primitive should be superior. On the other hand, if w = n, the two primitives
are identical and no preference should be predicted by the analysis. Hence, the anal-
ysis should result in a preference which is parameterized by w with end conditions
consistent with these two observations.

To make such a comparison we will restrict ourselves to the multivector shared
hierarchical memory case considered above and to four partitionings of the primitives
which exploit the knowledge that w is small compared to the other dimensions of the

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 25

matrices involved (denoted h and [below). Such a strategy was proposed in [105] and
has been demonstrated effective on the Alliant FX/8. We will also distinguish between
elements which are only read from memory into cache and those which require reading
and writing. This allows us to be more precise than the conservative bounding of the
cost of data transfer presented above. Also note that this affects the value of the cost
ratio A in that it need not be as large as required above.

The partitioning of the rank-w update used is of the form given above in (6)
but the values of the blocksizes are altered to reflect the more accurate analysis
obtained by differentiating between reads and writes. (The qualitative conclusions of
the previous analysis do not change.) Three different partitionings for the primitive
which multiplies a matrix by w vectors are analyzed. Each is appropriate under
various assumptions about the architecture and shape of the problem.

It is assumed that the primitives make use of code to perform the basic block
operations which has been optimized for register-cache transfer and is able to maintain
efficient use of the lowest levels of the hierarchy as the shape of the problem changes,
i.e., the arithmetic time 7, has been parameterized according to w and the code
adjusted accordingly. In this case, the source of differences in the performance of
the two primitives is the amount of data transfer required between cache and main
memory which is given by the ratio u. Below we derive and compare the value of u
for each of the four implementations of the primitives. .

The rank-w update computes C — C + AB where C € ®**!, A € ®P*¥ and
B € ®“*!. The partitioning used is shown in (6) where C; € R™*!, A; € R™*v,
km = h, and m is the blocksize which must be determined. Note that we have used
the knowledge of the analysis above to fix two blocksizes at w and I. The computations
requires 2hiw operations and the block loops are of the form

doi=1,k
Ci=C;+A;xB
end do.

The primitive requires hl+ hw +klw loads from memory and hl writes back to memory.
This partitioning/primitive combination is denoted Form-1.

The second primitive also computes C «— C + AB. In this case, however, C €
RAxw A e R and B € R1*“. As noted above, three partitionings are considered.
The first two are of the form shown in (7). Both have the block loop form

doi=1,k
doj=1m
C; :Ci+A,’j*Bj
end do
end do.

They differ in the constraints placed on the blocksizes.

The first version, denoted Form-2, results from applying the analysis of the pre-
vious section to the i-k-j loop ordering of the original triply nested loop form of the
matrix multiplication primitive. One of the blocksizes is fixed at w. Specifically, the
partitioning is such that 4; € R™>*™2 kimy = h, kamy = [, and C; and B, are
dimensioned conformally. The blocksizes m, and my are determined under the sim-
plified constraint of m;my < CS. Form-2 requires hl + hlw(m;' +m; ") loads and

26 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

kohw writes to memory.

The second version, denoted Form-3, results from analyzing the i-j-k loop ordering
of the original triply nested loop form of the matrix multiplication primitive as in
[105]. As before, one of the blocksizes is fixed at w. The partitioning is such that
A; € R™X™2 fymy = h, komg = [, and C; and B; are dimensioned conformally.
The blocksizes m; and my are determined under the constraint of mi(mg+w) < CS.
This constraint is generated by requiring the accumulation in cache of a block C;
which implies that a C; and the A;; contributing to the product must fit in cache
simultaneously. In [105] it is shown that this partitioning sets mg to the value 7
where T is determined via the analysis of register-cache transfer cost. This simplifies
the minimization problem and leaves only m; to be determined. Form-3 requires
hl + hw + hlwmT' loads hw writes to memory. Additionally, it requires (k2 — 1)hw
writes to cache due to the local accumulation of C;.

TABLE 1
Comparison of the four forms of the BLAS3 primitives.

Form) Hopt Popt (VCS) Blocksizes
1 1 1 1 1 3 1 —
1 smt o ta ;+'2%-+§ 2\/C’—S_+2_l m=CS/w
1 1 1 1 2 2v241 —_
2 30 T 3m; T Im, E+L’ﬁ ?% my =VCS/2

mzzx/m

1 1 1 1 w 1 T 1 1 T — Cs
3 wtTam T7T |wtcstitacs | 7Testitacs | ™ = o5
1 1 1 1 w 1 3 1 —
4 Wt tom Wwtdstm aves T2 m=CS/w

The third version, denoted Form-4, applies the i-k-j ordering to the transpose of
the matrix multiplication to determine blocksizes. This form is valuable for certain
architecture/shape combinations. The resulting partitioning is of the form

B
©) cCecx(4a - a)| : |,
By,

where 4, € ®**™, B; € ®™*“ and km = I. The constraint mw < CS is applied.
Form-4 requires hl + lw + 2khw loads and khw writes to memory. The block loops
simplify to

doi=1k
C1=C"+'14,*BZ
end do.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 27

Note that if parallelism across the blocks is used this form requires synchronization
(which is typically done on a subblock level).

55 1 11 1 [] 1 1 1]
50 - Ack--- AN
1 = 128, my :
451 -pA-+---- L A
miy = 64,m; L
Mﬁops 40 ----- A R -i ----- i ----- H .
S R RSy Yt b 7 g My T s
CY DRSS SN SRS RSOSSN S
2 1 L] 1 1 1] : 1

0 128 256 384 512 640 768 896 1024
n

F1G. 3. Performance of square matriz multiplication on an Alliant FX/8.

Table 1 lists the results of analyzing each of the four forms presented above.
The generic form of p is given in terms of the dimensions of the problem and the
blocksizes used as well as its optimal value. Since the results of the analysis of the
primitives given above and the analysis of the block methods which use them indicate
that w = v/CS represents a limit point on performance improvement the optimal
evaluated there is also given. Finally, the value of the blocksizes which give the optimal
data loading cost are also listed. The values show clearly the well-known inferiority of
the rank-w by a factor of 2 when w is near 1, i.e., in the near-BLAS2 regime. However,
as w increases, the fact that one is up to a factor of two more than the other (though
this multiple rapidly reduces as well) quickly becomes irrelevant since the relative
cost of data transfer to computational work has become an insignificant performance
consideration. As a result, given these partitionings and an architecture satisfying the
assumptions of the analysis, we would not expect significant performance differences
between the two primitives when w and the size of the matrices are large enough.
Such observations have been verified on an Alliant FX/8. Consequently, one would
not expect the performance of the block algorithms that use the two BLAS3 primitives,

28 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

e.g., a block LU algorithm, to be significantly different for sufficiently large problems8,
It would also be expected that the trend in preference for non-reduction types of
computations as the number of processors or the cost of processor synchronization
increases seen with BLAS2 primitives carry over to the BLAS3.

3.4.5. Experimental results. The performance benefits of using BLAS3 primi-
tives and carefully selecting blocksizes in their implementation has been demonstrated
in the literature. In this section, we report briefly on experimental results on the Al-
liant FX/8. The experiments were performed executing the particular kernel many
times and averaging to arrive at an estimate of the time spent in a single instance of
the kernel. This technique was used to minimize the experimental error present on
the Alliant when measuring a piece of code of short duration. As a consequence of
this technique, the curves have two distinct parts. The first is characterized by a peak
of high performance. This is the region where the kernel operates on a problem which
fits in cache. The performance rate in this region gives some idea of the arithmetic
component of the time function. It is interesting to compare this peak to the rest
of the curve which corresponds to the kernel operating on a problem whose data is
initially in main memory. When the asymptotic performance in the second region is
close to the peak in cache the number of loads is being managed effectively.

Figure 3 illustrates the effect of blocksize on the performance of the BLAS3 prim-
itive C « C — AB where all three matrices are square and of order n. The blocksizes
used for each curve are from low to high performance : m, = 32, mo = 32, and
mg = 32; m; = 64, my = 64, and m3 = 64; and m; = 128, my = 96, and m3 = n. It
is clear from the asymptotic performance of the top curve that a significant portion
of peak performance can be achieved by choosing the correct blocksizes. In this case
an asymptotic rate of just below 52 Mflops is achieved on a machine with a peak rate,
including vector startup, of 68 Mflops.

Figures 4 and 5 show the performance of various rank-k updates. The parameters
mqo and mj3 are taken as k and n as recommended by the analysis-of the BLAS3
primitive. The parameter m; is taken to be 96 and 128 in the two figures, respectively.
This parameter is kept constant for each figure to allow a fair comparison between
the performances of the various kernels. Further, the BLAS3 analysis recommends
my = (CS/k) — p. In fact, for the values of k considered here, if m; > 96 then the
term in the expression for the number of loads for the rank-k kernel which involves
my is not significant compared to the term involving ma.

These curves clearly show that increasing k yields increased performance and a
significant portion of the effective peak computational rate is achievable. Also note
that as k increases the difference in performance of two successive rank-k kernels
diminishes. Indeed, the k¥ = 96 curve was not included in Fig. 4 since it delivers
performance virtually identical to the k = 64 kernel.

It is instructive to compare the performance of the rank-k kernel to typical BLAS
and BLAS2 kernels. The BLAS kernels o «— zTy and y «— y + oz achieve 11 Mflops
and 7 Mflops, respectively, with their arguments in main memory. The BLAS2 matrix-
vector product kernel achieves 18 to 20 Mflops.

3.5. Triangular system solvers. Solving triangular systems of linear equa-
tions, whether dense or sparse, is encountered in numerous applications. Even though
the solution process consumes substantially less time than the associated factoriza-

8 As is discussed later, when the ratio of the blocksize to the problem, w/n, is small other tradeoffs
must be considered in the performance of block algorithms.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 29

55

T St ST CEDRET SERRE R

45 e m e

D L L S R T

Mflops 40 f-p--~

35 f-f-dmmdeeeee

PO | N

30 f-----

k=28

PRI 15U YA iy VPGP DRI YU, P (PP W QDD Ty g v
e . e N N T o

B et i e N T e i

25 n : Ao 't " ' L
0 128 256 384 512 640 768 896 1024
n

FI1G. 4. Performance of rank-k update with m1 = 96 on an Alliant FX/8.

tion stage, we often wish to solve these triangular systems repeatedly with different
right-hand sides but with the same triangular matrix. Hence, it is vital to solve them
as efficiently as possible on the architecture at hand.

There are two classical sequential algorithms for solving a lower triangular system
Lz = f, where L = [\;;], f = [¢s], ¢ = [&] and ¢,j = 1,2,---,n. They differ in the
fact that one is oriented towards rows, and the other columns. These algorithms are:

Row_oriented :

&= ¢1//\11
doi=2n
doj=1,1-1
i = ¢i — Ay
enddo
& = ¢if i
enddo

and

Column_oriented :

30 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

55

50 f---A-

S R
cesaMecehtcmrcccancaan

45 LAY - 3o oo

awdeneeccpecleclccnsacccccaa

Mflops 40 F-f--RA

[ers
[+

35 p-4--t----

reecsnmccnsqececcsndareqen=

P g S W . P ——

30 p--enciebe-

k=

cecceccpecchecccrcacanteaan
e L LT ey W

.-..-----’,.

)
1
]
1
)
)
)
'
4

P k. n e

5 A n
0 128 256 384 512 640 768 896 1024
n

FIG. 5. Performance of rank-k update with m; = 128 on an Alliant FX/8.

doj=1n-1
£ = &i/Ajj
doi=j+1,n
¢ = di — Aij€;
end do
end do

n = ¢n//\nn

As is shown below, these two algorithms are the basis for many adaptations suitable
for various vector and parallel architectures.

3.5.1. Shared-memory triangular system solvers. The inner loops of the
row- and column-oriented versions vectorize trivially to yield algorithms based re-
spectively on the BLAS operations of SAXPY and DOTPRODUCT. We refer to these
algorithms as the row-sweep or forward-sweep, and the column-sweep [116].

Each step of the row-sweep algorithm requires less data motion than the corre-
sponding step in the column-sweep algorithm; the DOTPRODUCT primitive reads two
vectors and produces a scalar while the sAXPY reads two vectors and writes a third
back to memory. If the vector processor has adequate bandwidth then, theoretically

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 31

at least, this should not be an important distinction. In practice, however, the reduced
data traffic of the DOTPRODUCT may be preferable. (This assumes, of course, that the
implementation of the DOTPRODUCT is not particularly expensive.?) The row-sweep
algorithm can suffer from the fact that it accesses rows of the matrix. This can be
remedied by storing the transpose of the lower triangular matrix, although in some
cases this may not be an option, e.g., when the data placement has been determined
by some other portion of the algorithm of which the triangular solve is a component.

For register-based vector processors with limited bandwidth to memory such as
the CRAY-1 or a single processor of the Alliant FX/8 each of which has a single port
to memory, the performance degradation due to excessive register transfers of the
vector algorithms described above can be severe. Block forms of the algorithms must
be considered. Let L(® = L, f(© = f_ and let each of LU}, z())_ and f¥) be of order
(n—jv),j=0,---,2 —1 where

) () (3)
L(n:(LlJ? 0)J(j):(xlj_),f(j):(flf)
19 1y 9 e

with L(ljl), zgj), and ffj) being each of order v (we assume that v divides n), and
LU+ = L(Z’Q). The block column-sweep algorithm may then be descfibed as:

B_Col_Sweep :
p=1=
doj=0,p—2
solve LYz = £ via Col Sweep or Row_Sweep
f(j+l) - f2(j) _ L(Zjl)‘r(lj)
end do
solve L~ Ug(=1) = §(P=1) yiz Col_Sweep or Row_Sweep.

Note that this blocking allows the registers to be used efficiently. The matrix-vector
product which updates the right-hand side vector is blocked in the fashion described
above to allow the accumulation in a vector register of the result of » vector operations
before writing the register to memory rather than the one write per two reads of the
triads in the nonblocked column-sweep. Similarly, the column-sweep algorithm can
accumulate the solution to the triangular system Lz = f9) in vector registers
resulting in a data flow between registers and memory identical to that of a v x v
block of the matrix-vector product with the exception that the vector length reduces
by one for each of the v operations.

A block row-sweep algorithm can also be derived which reduces the amount of
register-memory traffic even further. Using the notation above, partition L so that
each block row is of the form [C;, L;,0] where C; € R~V and L; € R, Let
g = (27, -, a0) gV = (zf,--,2])7, and f = (f{,---, f7)7, where z;, f; € R".
The block algorithm is:

B_Row_Sweep :

9 On some machines this is not necessarily a good assumption. The Alliant FX/8 has a con-
siderable increase in the startup cost of the dotproduct compared to that of the triad instruction.
Similarly, CRAY machines implement the dotproduct in a two-stage process. The first accumulates
64 partial sums in a vector register and the second reduces these sums to a scalar. The first phase
has the memory reference pattern mentioned above but the second is memory intensive and its cost
can be significant for smaller vectors.

32 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

Proe. 1 Proc. 2

solve L11.'121 = f1 -
f2 = fa— Loy -
f3 = f3— Laz, solve Lyzxa = fo
fo— fa—Lyx fa— f3— L3z

solve L33z = f3 fa — fa— Lgazs

NN

fa — fa — Lyzzs -
solve Lyaxg = f4 -

F1G. 6. Two processor DO-ACROSS synchronization pattern.

p=3
solve Liz; = b via Col.Sweep or Row_Sweep
doj=2,p

fi = fj = CjzU=Y

solve Ljz; = f; via Col.Sweep or Row_Sweep
end do.

This algorithm requires only one or two vector writes per block row computation
depending upon whether or not the result of the matrix-vector product is left in
registers for the triangular-solve primitive to use. This algorithm is characterized by
the use of short and wide matrix-vector operations rather than the tall and narrow
shapes of the block column-sweep. It is, of course, quite straightforward to combine
the two approaches to use a more consistent shape throughout the algorithm.

Another triangular solver, which is also suited for both shared and distributed
memory multiprocessors, is that based on the DO-ACROsS notion. For example, in
the above sequential form of the column-oriented algorithm, the main point of a DO-
ACROsS is that computing each §; need not wait for the completion of the whole
inner iteration ¢ = j + 1,---,n. In fact, one processor may compute £; soon after
another processor has computed ¢; := ¢; — A;j—1£;—1. To minimize the synchro-
nization overhead in a DO-ACROSS and efficiently use registers or local memory, the
computation is performed by blocks. For example, if L = [Lpg], z = {zp}, f = {fp},
and p,q = 1,---,4, where each block is of order n/4, then the DO-ACROSS on two
processors may be illustrated as shown in Fig. 6. Vectorization can be exploited in
each of the calculations shown if each processor has vector capabilities. The particular
parallel schedule used in the DO-ACROSS approach is, of course, highly dependent on
the efficiency of the synchronization mechanisms provided on the multiprocessor of
interest.

All of the methods presented thus far in this section can be viewed as reorgani-
zations of the task graph in Fig. 7. The row-oriented algorithm executes each row
in turn starting from the top and tasks within each row from left to right. The
column-oriented, on the other hand, executes each column in turn starting from the
left and tasks within a column from the top to bottom. The row and column sweeps

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 33

5%
0 Ko @ J«
51606 &
e o le lo Lo [«

F1G. 7. Triangular system solution dependence graph.

on a vector machine merely vectorize the tasks within a row or column, respectively.
Block versions of the algorithm interpret each node as corresponding to computations
involving a submatrix rather than a single element. Careful consideration of the task
graph, however, reveals certain limitations of all methods based upon it. Suppose
that each node represents the operation on a submatrix of order m and n = km. The
dependence graph implies that the maximum number of processors that can ever be
active at the same time is ¥ — 1. Further, the dependence graph has a critical path
with O(k) length which establishes a fundamental limit to the speed at which these
algorithms can solve a triangular system. To go faster we need a new dependence
graph which relates the solution z to the data L and f.

The new dependence graph can be generated from recognizing the algebraic char-
acterization of the column- and row-sweep algorithms. The algorithms can be easily
described algebraically in terms of elementary unit lower triangular matrices. For
example, assuming without loss of generality that A;; = 1, it follows that

n—1
L= H Ni—I = ﬁ Mj_l’
i=1 j=2

where NV; = I — l,-eiT, M; =1- ejvJT, I; is the vector corresponding to column ¢ in
L with the 1 on the diagonal removed and v; is similarly constructed from row j of
L. Tt is easy to see from the algebraic structure of N; and M; that multiplying them
by a vector corresponds to the computational primitives of a triad and dotproduct,
respectively. It follows immediately that the column-sweep and row-sweep algorithms
are specified algebraically by (here with n = 8):

(N7(Ne(Ns(Na(Ns(N2 (N1 f)))))))

and

(Mg(M7(Me(Ms(M4(M3(M2f)))))))-

34 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

The grouping of computations makes clear the source of the O(n) critical path in
the dependence graph. Also a simple application of associativity can generate two
algorithms that have a much shorter critical path. Specifically, the column-sweep
expression can be transformed into

(((N7Ne)(NsN4))((N3N2) (N1 f))).

Note the logarithmic nature of the critical path. The algorithm specified is called the
product form and is due to Sameh and Brent [159]. Instead of performing the product
(Np—1+--NaNy)f in (n—1) stages, we may form it in O(log, n) stages. It can be shown
by careful consideration of the structure of the matrices at each stage that the critical
path has a length of k?/2 + 3k/2 floating point operations where k& = log, n. Such
an improvement is not without cost, however. The algorithm requires approximately
n3/10 + O(n?) operations and n3/68 + O(n?) processors. It is therefore typically not
appropriate for an architecture with a limited number of processors such as those of
interest here. For a discussion of the numerical stability of this algorithm see [187].

Note that thus far we have assumed only one right-hand side vector. The BLAS3
primitive triangular solver assumes that multiple right-hand side vectors and solu-
tions are required. This, of course, provides the necessary data locality for high
performance on a hierarchical memory system. The generalization of the algorithms
above are straightforward and the blocksizes (the number and order of right-hand
sides solved in a stage of the algorithm) can be analyzed in a fashion similar to the
matrix multiplication primitives.

For banded lower triangular systems in which the bandwidth m (the number of
subdiagonals with nonzero entries) is small, column-sweep algorithms are ineffective
on vector or parallel computers. Consider such a system Lz = f, where L is par-
titioned as a block-bidiagonal matrix with diagonal submatrices L; and subdiagonal
submatrices R;_1,¢=1,---,n/m, where L; and R;_; are lower and upper triangular,
respectively. Premultiplying both sides of Lz = f by D = diag(Li_l) we obtain the
system L®gz = 0 where L(® is block bidiagonal with identities of order m on the
diagonal and matrices G;o) = Lj_lle on the subdiagonal, and f(® = Df. Note that

we do not invert the L;’s, but obtain f© and Ggo) by solving triangular systems using
one of the above parallel algorithms. We repeat the process by multiplying both sides
of LOz = £ by DO = diag((L{”)~!) where

I, 0
(Lz('o))_l = (0) .
—G(Zi)—l Im

Now L) = DOLO 3pd f) = DO fO) are obtained by simple multiplication.
Eventually, LUo8(m/m)) = I and flloen/m) = g The required number of arith-
metic operations is O(m?nlog(n/2m)) resulting in a redundancy of O(m log(n/2m)),
e.g., see [159]. Given m2n/2 + O(mn) processor, however, those operations can be
completed in O(logmlogn) time.

This algorithm offers opportunities for both vector and parallel computers. At
the first stage we have n/m triangular systems to solve, each of order m, for (m + 1)
right-hand sides except for the first system which has only one right-hand side. In the
subsequent stages we have several matrix-matrix and matrix-vector multiplications,
with the last stage consisting of only one matrix-vector multiplication, in which the
matrix is of order (n/2 x m).

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 35

An alternative scheme, introduced by Chen, Kuck, and Sameh [27], may be de-
scribed as follows. Let the banded lower triangular matrix L be partitioned as

L,
Ry L,

Ry Lj
Rp L,

~ 0 R.
Rj:(o 0])

and each L; is of order (n/p) >> m and each R; is upper triangular of order m. If the
right-hand side f and the solution z are partitioned accordingly, then after solving
the triangular systems

where

Lz, = f1

n=[(£).1

the original system is reduced to Lz = g in which L is of the form

and

Ip/p
U, Ip/p
Us Iy ’
Up Tnjp
where
Up=(0 U;).
Let

v | | hy
Ui—[Wi]v ml_[zi]7 gl_li,ri]a

in which W; is a matrix of order m and r;, 2; are vectors of m elements each. Thus,
solving the above system reduces to solving a smaller triangular system of order mp,

I, 21 T1
Wy I, 2z o
W, In Zp Tp

After solving this system by the previous parallel scheme, for example, we can retrieve
the rest of the elements of the solution vector 2 by obvious matrix-vector multiplica-
tions. The algorithm requires approximately 4m2n operations which, given p = mp
processors, can be completed in time 25" m?n + 35" Imn + O(m?). See [189] for a
discussion of the performance of this algorithm applied to lower bidiagonal systems
and the attendant numerical stability properties.

36 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

3.5.2. Distributed-memory triangular system solvers. A large number of
papers have appeared for handling triangular systems on distributed memory archi-
tectures (mainly rings and hypercubes), e.g., see Sameh [158], Romine and Ortega
[151], Heath and Romine [89], Li and Coleman [122] and Eisenstat et al. [53]. Most
are variations on the basic algorithms above adapted to exploit the distributed nature
of the architectures. For such architectures, it is necessary to distinguish whether a
given triangular matrix L is stored across the individual processor memories by rows
or by columns. For example, suppose that the matrix [L, f] is stored by rows, then
the above column-sweep algorithm becomes:

Row_Storage :

doj=1,n
if j is one of my row indices then
£ =i/ Asi
communicate(broadcast, fan-out) &; to each processor
doi=j+1,n
if i is one of my row indices then
i = ¢i — &
enddo
enddo.

Note first that the computations in the inner loop can be executed in parallel,
and that on a hypercube with p = 2" processors, the fan-out communication can be
accomplished in v stages. If the lower triangular matrix L is stored by columns then
the column-sweep algorithm will cause excessive interprocessor communication. A
less communication intensive column storage oriented algorithm has been suggested
in [150] and [151]. Such an algorithm is based upon the classical sequential Row_sweep
algorithm shown above.

In implementing the column storage algorithm on an Intel iPSC hypercube, for
example, information is gathered into one processor from all others via a fan-in op-
eration fan_in(7,i). Such an operation enables the processor whose memory contains
column 7 to receive the sum of all the 7’s over all processors. The parallel column
storage algorithm can be described as follows:

Col_Storage :

doi=1,n
T=0
doj=1,i-1
if j is one of my column indices then
T=74+E& A
enddo

n = fan_in(r,i)
if i is one of my column indices then
& = (di —m)/ i
enddo.

Here, during stage 4 of the algorithm, the pseudo-routine fan_in(7,) collects and
sums the partial inner products 7 from each processor, leaving the result 7 in the
processor containing column :. Further modifications to the basic row- and column-
oriented triangular solvers on distributed memory systems have been studied in [122],
there a communication scheme which allows for ring embedding into a hypercube

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 37

is emphasized. In addition, the study in [53] has improved upon the cyclic type
algorithms in [89].

4. LU factorization algorithms. The goal of the LU decomposition is to fac-
tor an n X n-matrix A into a lower triangular matrix L and an upper triangular matrix
U. This factorization is certainly one of the most used of all numerical linear com-
putations. The classical LU factorization [83] can be expressed in terms any of the
three levels of the BLAS, and techniques needed to achieve high performance for both
shared and distributed memory systems have been considered in great detail in the
literature. In this section we review some of these techniques for the LU and LU-like
factorizations for dense and block tridiagonal linear systems.

4.1. Shared-memory algorithms for dense systems. In this subsection we
consider some of the approaches used in the literature for implementing the LU fac-
torization of a matrix A € R"*" on shared-memory multivector processors such as the
CRAY-2, CRAY X-MP, and Alliant FX/8. To simplify the discussion of the effects
of hierarchical memory organization, we move directly to the block versions of the
algorithms. Throughout the discussion w denotes the blocksize used and the more fa-
miliar BLAS2-based versions of the algorithms can be derived by setting w = 1. Four
different organizations of the computation of the classical LU factorization without
pivoting are presented with emphasis on identifying the computational primitives
involved in each. The addition of partial pivoting is then considered and a block
generalization of the LU factorization (L and U being block triangular) is presented
for use with diagonally dominant matrices. Finally, the results of an analysis of the
architecture/algorithm mapping of this latter algorithm for a multivector processor
with a hierarchical memory are also examined along with performance results from
the literature.

4.1.1. The algorithms. The are several ways to organize the computations for
calculating the LU factorization of a matrix. These reorganizations are typically listed
in terms of the ordering of the nested loops that define the standard computation. The
essential differences between the various forms are: the set of computational primitives
required, the distribution of work among the primitives, and the size and shape of the
subproblems upon which the primitives operate. Since architectural characteristics
can favor one primitive over another, the choice of computational organization can
be crucial in achieving high performance. Of course, this choice in turn depends on a
careful analysis of the architecture/primitive mapping.

Systematic comparisons of the reorganizations have appeared in various contexts
in the literature. Trivedi considered them in the context of virtual memory systems in
combination with other performance enhancement techniques [185], [186]. Dongarra,
Gustavson, and Karp [42] and more recently Ortega [137] compare the orderings for
vector machines such as the CRAY-1 where the key problem is the efficient exploita-
tion of the register-based organization of the processor and the single port to memory.
Ortega has also considered the problem on highly parallel computers [137]. Papers
have also appeared that are concerned with comparing the reorderings given a par-
ticular machine/compiler/library combination, e.g., see [162]. In general, most of the
conclusions reached in these papers can be easily understood and parameterized by
analyses of the computational primitives and the algorithms in the spirit of those in
the previous section and below.

4.1.1.1. Version 1. Version 1 of the algorithm assumes that at step ¢ the
LU factorization of the leading principal submatrix of dimension (i —)w, Ai—1 =

38 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

L;_,U;_1, is available. The next w rows of L and w columns of U are computed
during step ¢ to produce the factorization of the leading principal submatrix of order
iw. Clearly, after k = n/w such steps the factorization LU = A results.

The basic step of the algorithm can be deduced by considering the following
partitioning of the factorization of the matrix 4; € Riwx:

A = Aiy C\N_ (L1 0 Ui-1 G
* BT H MT L, 0 U, J’

where H is a square matrix of order w and the rest of the blocks are dimensioned
conformally. The basic step of the algorithm consists of four phases:

(i) Solve for G: C «~ L;,_1G =C.
(ii) Solve for M: B — UL, M = B.
(ili) Update: H — H — MTG.
(iv) Factor H «— L U; = H.

(The arrow is used to represent the portion of the array which is overwritten by the
new information obtained in each phase.) Clearly, repeating this step on successively
larger submatrices will produce the factorization of 4 € R™*™.

In each step, solving the triangular system requires 2wh? operations, the update
of H requires 2hw? and the factorization requires O(w?), where h = (i — 1)w. Early
stages of the algorithm are dominated by the factorization primitive. The later stages,
where most of the work is done, is dominated by solving triangular systems with w
right-hand side vectors. This dominance is particularly pronounced when the BLAS2
(w = 1) version of the algorithm is used. Note also that when w = 1 the use of the
triangular solver allows efficient use of the vector registers on vector processors like
the CRAY-1 or a single CE of the Alliant FX/8 which have single ports to memory.

4.1.1.2. Version 2. Version 2 of the algorithm assumes that the first £ =
(z — L)w columns of L and £ rows of U are known at the start of step i, and that
the transformations necessary to compute this information have been applied to the
submatrix A* € R"~¢%"~¢ in the lower right-hand corner of A that has yet to be
reduced. The algorithm proceeds by producing the next w columns and rows of L and
U, respectively, and computing A*+1. This is a straightforward block generalization
of the standard rank-1-based Gaussian elimination algorithm,

Assume that the factorization of the matrix A* € R"~¢*"~¢ is partitioned as

follows:
pi=(A Az _(Ln 0 Un U
Ayy Ay Ly 1 0 AL
where A is square and of order w and the other submatrices are dimensioned confor-
mally. Ly3,Lo; and Upo are the desired w columns and rows of L and U and identity

defines A*+!,
The basic step of the algorithm consists of:

(l) Factor: A11 — L11U11 = All-

(ii) Solve for Loj: Agy « UF LL, = AT
(lll) Solve for U122 A12 — L11U12 = A12.
(IV) Update: A22 — A22 - L21 U12.

Clearly, the updated As; is A**! and the algorithm proceeds by repeating the above
four phases.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 39

This version of the algorithm is dominated by the rank-w update of the submatrix
Agy € Rn—w)x(n=iw) Note that the triangular systems that must be solved are of
order w with many right-hand sides as opposed to the large systems which are solved
in Version 1. As in Version 1 the factorization primitive operates on systems of order
w. As is well known and obvious from the analysis of the previous section, the BLAS2
version, based on the rank-1 update, is not the preferred form for register-based vector
or multivector processors with a single port to memory due to poor register usage.

4.1.1.3. Version 3. Version 3 of the algorithm can be viewed as a hybrid of the
first two versions. Like Version 2, it is assumed that the first (i — 1)w columns of L
and rows of U are known at the start of step ¢. It also assumes, like Version 1, that
the transformations that produced these known columns and rows must be applied
elements of A which are to be transformed into the next w columns and rows of L
and U. As a result, Version 3 does not update the remainder of the matrix at every
step.

Consider the factorization:

A:(An A12>=(L11 0)(Un U12)

Ay Az Loy La 0 Uy)

where A is a square matrix of order (i —1)w and the rest are partitioned conformally.
By our assumptions, Ly, Lay, U1y, and U;2 are known and the first w columns of Lgy
and the first w rows of Uss are to be computed. Since Version 3 assumes that none of
the update Ags « Asg — Lo1Uio has occurred in the first ¢ — 1 steps of the algorithm,
the first part of step 7 is to perform the update to the portion upon which the desired
columns of Lgs and rows of Uss depend. This is then followed by the calculation of
the columns and rows.

To derive the form of the computations, suppose the update of As; and its sub-
sequent factorization are partitioned

H CT H CT
A — -~ = ~ ~ — L
22 (B A,) (B Ay) nUi

(H C:T) (Ln 0)(011 UIZ)

B A L2y Lo 0 Uxa)’

where H and H are square matrices of order w and the other submatrices are dimen-
sioned conformally. Step ¢ then has two major phases: Calculate H, B, and C; and
calculate Ly, Loy, U11, and Ujp. As a result, at the end of stage 7, the first iw rows
and columns of the triangular factors of A are known.

Let Ly = [MT, MT]|T and U\, = [M3, M), where M, and Mj consist of the first
w rows and columns of the respective matrices. The first phase of step ¢ computes

i) [HT,BT|T — [HT,BT|T = [HT, BT|" — Ly M3.
(ii) C = CT =CT — M1 M,.

and

Tn the second phase, the first w rows and columns of the factorization of the updated
Ago are then given by:

(i) Factor: H — L11U11 =H.
(ii) Solve for Lyy: B — UL LT, = BT.

40 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

(lll) Solve for 012! C — i11012 = CT.

The work in this version of the algorithm is split between a matrix multiplication
primitive, a triangular solver, and a factorization primitive; the latter two of which
are applied to systems of order w. Note, however, that the matrix multiplication
primitive is applied to a problem which has the shape of a large matrix applied to
w vectors (or the transpose of such a problem). Hence, for w = 1 this version of the
algorithm becomes a form which uses the preferred BLAS2 primitive — matrix-vector
multiplication. Although, as noted above, when w is nontrivial the preference for this
block form over Version 2 does not necessarily follow.

4.1.1.4. Version 4. Version 4 of the algorithm assumes that at the beginning
of step ¢ the first (¢ — 1)w columns of L and U are known. Step i computes the next
w columns of the two triangular factors. Consider the factorization

A= An A Y _(Ln 0 Un U
Ay Ag Ly Lo 0 Uy)’
where Aj is a square matrix of order (i—1)w and the rest are partitioned conformally.
By our assumptions, Ly;, Lsy, and Uy, are known.
Let L., U,, and A, be the matrices of dimension n X w formed of the first

w columns of [0, LL)T, [UL,ULIT, and [AL,, AL]T, respectively. (These are also
columns (7 — 1)w + 1 through iw of L, U, and A.) Consider the partitioning

0 M i,
L,= L) Uw = [] , Aw = A2 y
G 0 As

where L, U, and A, are square matrices of order w with L and U lower and upper
triangular respectively.

Step ¢ calculates L., and U, by applying all of the transformations from steps 1
toi—1to A, and then factoring a rectangular matrix. Specifically, step i comprises
the computations:

(1 Solve for M: 1‘11 — L]lM =~1‘i1.

(i) Update: [AT, AT]T « [AT, A]" — LaM.
(ili) Factor: Ag « LU = A,. :

(iv) Solve for G: A3 — UTGT = AT.

This version of the algorithm requires the solution of a large triangular system
with w right-hand sides as well as a small triangular system of order w with many
right-hand sides. The factorization kernel operates on a system of order w. As with
Version 3 the matrix multiplication primitive operates on a problem with the shape
of a large matrix times w vectors and the factorization of a system of order w and the
same observations apply. This version also has the feature that it works exclusively
with columns of A which can be advantageous in some Fortran and virtual memory
environments.

4.1.1.5. Partial pivoting. Partial pivoting can be easily added to Versions 2, 3,
and 4 of the algorithm. Step 7 of each of the versions requires the LU factorization of
a rectangular matrix M € R, where h = n— (i — 1)w. Specifically, step i computes

M, L \y
M= = (D)oy,
(M,) (Ly) H

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 41

where L1, and Uy, are, respectively, lower and upper triangular matrices of order
w. In the versions above without pivoting, this calculation could be split into two
pieces: the factorization of a system of order w, LUy = Mji; and the solution of a
triangular system of order w with h — w right-hand sides. (These computatious are:
(i) and (ii) in Version 2; (i) and (ii) of the second phase of Version 3; and (iii) and (iv)
of Version 4.) When partial pivoting is added to the versions of the algorithm these
computations at each step cannot be separated and are replaced by a single primitive
which produces the factorization of a rectangular matrix with permuted rows, i.e.,

M, Ly \ g
() (12)0

where P is a permutation matrix. This primitive is usually cast as a BLAS2 version
of one of the versions above. Note, however, a fundamental difference compared to
the nonpivoting versions. The ability to split the factorization of the tall matrix
into smaller BLAS3-based components in the latter case has benefits with respect to
hierarchical memory usage, since w is usually taken so that such systems fit in cache
or local memory, see [23], [67]. In the case of pivoting, these operations are performed
via BLAS2 primitives repeatedly updating a matrix which can not be kept locally.
As a result, the arithmetic component of time and the data transfer overhead both
increase. In fact, a conflict between their reductions occurs. This situation is similar
to that seen in the block version of Modified Gram Schmidt and Version 5 of the
factorization algorithm, both discussed below along with a solution. (Although in the
latter case, the source of difficulties is slightly different.)

The information contained in the permutations associated with each step, F;, can
be applied in various ways. For example, the permutation can be applied immediately
to the transformations of the previous steps, which are stored in the elements of the
array A to the left of the active area for step 4, and to the elements of the array
A which have yet to reach their final form, which, of course, appear to the right of
the active area for step 7. The application to either portion of the matrix may also
be delayed. The update of the elements of the array which have yet to reach their
final form could be delayed by maintaining a global permutation matrix which is then
applied to only the elements required for the next step. Similarly, the application to
the transformations from steps 1 through 7 — 1 could be suppressed and the P; could
be kept separately and applied incrementally in a modified forward and backward
substitution routine.

4.1.1.6. Version 5. A block generalization. In some cases it is possible
to use a block generalization of the classical LU factorization in which L and U are
lower and upper block triangular matrices, respectively. The use of such a block
generalization is most appropriate when considering systems which do not require
pivoting for stability, e.g., diagonally dominant or symmetric positive definite. This
algorithm decomposes A into a lower block triangular matrix L, and an upper block
triangular matrix U, with blocks of the size w by w (it is assumed for simplicity
that n = kw, k¥ > 1). Assume that A is diagonally dominant and consider the

factorization:
A= Ay Ap _ (1 0 Ay A
Agr A) \ Ly 1[I 0 B ’

where Aj; is a square matrix of order w. The block LU algorithm is given by:

42 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

(i) A — A7)
(i) A21 < Loy = A1 An
(lll) A22 — B = A22 - L21A12
(iv) Proceed recursively on the matrix B.

Statements (i) and (ii) can be implemented in several ways. Since A is assumed to be
diagonally dominant, explicit inversion of the diagonal blocks can be done either via
the Gauss—Jordan algorithm [143] or an LU decomposition without pivoting. In the
latter case, the computations in step (i) above are replaced by solving two triangular
systems of order w with many right-hand sides. (Due to parallel processing, the Gauss—
Jordan scheme, historically frowned upon, has recently been the subject of renewed
interest. See [34] for a discussion of its application, with appropriate modifications,
to general nonsymmetric systems of equations.)

If the Gauss—Jordan kernel is used, as is assumed below, the block LU algorithm
is more expensive by a factor of approximately (1 + 2/k?) than the classical LU
factorization which requires about 2n3/3 operations. In this form, the above block
algorithm uses three primitives: a Gauss-Jordan inversion (or LU decomposition),
A — AB, and a rank-w update.

Note that when w = 1 this form of the algorithm becomes the BLAS2 version
based on rank-1 updates. As with Versions 1-4, which produce the classical LU
factorization, the computations of Version 5 can be reorganized so that different com-
binations of BLAS3 primitives and different shapes of submatrices are used. For
example, the main BLAS3 primitive can be changed from a rank-w update into a
matrix multiplying w row or column vectors. As noted above, the importance of such
a reorganization depends highly on the architecture in question.

4.1.2. Performance analysis. Gallivan et al. have applied the decoupling meth-
odology to Version 5 [67]. Their results demonstrate many of the performance trends
observed in the literature for the various forms of block methods. A summary of the
important points follows.

There are two general aspects of the block LU decomposition through which the
blocksize w = n/k influences the arithmetic time: the number of redundant operations
(applicable when the Gauss-Jordan approach is used); and the relationship, as a
function of w, between the performance of each of the primitives and the distribution
of work among the primitives. The redundancy factor of (1 + 2/k%) and the fact that
the number of operations performed in the Gauss-Jordan primitive is an increasing
function of w cause the arithmetic time component to prefer smaller blocksizes for
small and moderately sized systems. For those systems, increasing w and therefore
decreasing k clearly exacerbates the two problems noted above to such a degree that
the effect is dominant compared to the reduction in data transfer overhead gained by
increasing the blocksize. As the order of the system increases, however, these effects
become secondary to data transfer considerations.

The data transfer overhead of the algorithm is most conveniently analyzed by
writing the algorithm’s cache-miss ratio as the weighted average of the cache-miss
ratios of the various instances of each primitive. The weights are the ratio of the
number of operations in the particular instance of the primitive to the total number of
operations required. In practice, some of the local cache-miss ratios are zero due to the
interaction between the instances of the primitives; this occurs when the remaining

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 43

part of the matrix to be decomposed approaches the size of the cache and later
instances of primitives find an increasing proportion of their data left in cache by
earlier instances. In [67] the results are derived using the conservative assumption
of no interaction between instances of primitives. Note that without a model of
the data transfer properties of the primitives such an analysis at the algorithmic
level is impossible. This does not imply that blocksizes cannot be set effectively
based on observed performance data of the primitives for various shapes and sizes of
problems. Such a black box tuning approach is quite useful in practice, but it does
not provide any ezplanation as to why the performance is as observed. This can only
be done by considering the architecture/algorithm mapping of the primitives and the
implications of combining them in the manner specified by the particular version of
the factorization algorithm used.

The behavior on the interval 1 < w < v/CS, where C'S denotes cache size, roughly
separates into three regimes. For small values of w, 1.e., w < 16, the cache-miss ratio
is of the form:

b~ él— YR + T,
w
where 7; is proportional to 1/n and ~g is a function of w which is bounded by a small
constant. This result is expected since the computations are dominated by the rank-w
update which achieves a similar cache-miss ratio. In particular, it is clear that the
data locality of a BLAS2 version, w = 1, is very poor. In the middle of the interval
of interest the cache-miss ratio is of the form:

1
U= — YR+ N2
W

where 7 is proportional to 1/n. Finally, when w = +/CS, the cache-miss ratio is

1
X ——=7YRrR + 13,
u ,———CS’Y n.

where 73 is proportional to 1/n. The ratio x becomes a rapidly increasing function
once w exceeds vC'S until it reaches, at the point w = n, the cache-miss ratio of
the algorithm of a BLAS2-based version of the Gauss-Jordan algorithm which has a
value of approximately %. The exact point where this transition to rapidly increasing
occurs is dependent on the implementation of the Gauss-Jordan primitive, but, any
decrease in y between w = +/CS and the transition point is typically insignificant.

4.1.3. Experimental results. The various versions of the algorithms have ap-
peared in different contexts in the literature. Here we list some representative papers
and then consider in more detail the performance of Version 5 and its relationship to
the trends predicted via the blocksize analysis presented above.

The column-oriented BLAS2 form of Version 4 was used by Fong and Jordan on
the CRAY-1 [56]. The results of using a BLAS2 form of Version 3 on the CRAY-1 and
one CPU of a CRAY X-MP were given by Dongarra and Eisenstat in [41]. Dongarra
and Hewitt discuss the use of a rank-3-based approach on four CPU’s of a CRAY
X-MP [45]. Calahan demonstrated the power of the block form of Version 3 (with
and without pivoting) on the hierarchical memory system of one CPU of a CRAY-
2. Agarwal and Gustavson have extended their work which led to single CPU block
algorithms for the IBM 3090 by considering parallel forms of the BLAS3 primitives
and LU factorization on an IBM ES/3090 model 600S [2]. In particular, they discuss

44 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

the use of parallel block methods in a multitasking environment where the user is not
necessarily guaranteed control of all (or any fixed subset) of the six processors in the
system. Radicati, Robert, and Sguazzero have presented the results of a rank-k-based
code on an IBM 3090 multivector processor for one to six processors [149]. The block
form of Version 4 was also considered in a virtual memory setting by Du Croz et al. in
[50] and used as a model of a block LU factorization in the BLAS3 standard proposal
by Dongarra et al. [39]. Finally, Dayde and Duff have compared the performance of
the different organizations of the block computations on a CRAY-2, ETA-10P, and
IBM 3090-200/VF.

50 [}))] 1

45 f------ romee- 3emmeee- $emmmee- EELEE SRS

LN .

40 f------ m---ee- A Fme oo
: ! : 5

Mflops 35 -----:_-;"' Rl -edeee A % E, oeeooo
30 p--fe-nt-efoee feemmees fommanns S
: w=8 ! E
w =96 ; E ;

25 |---f--- femeenee domennes e beoemens beeened
20 : : : ; :

256 384 512 640 768 896 1024

n
FI1G. 8. Performance of block LU on an Alliant FX/8.

The performance trends for Version 5 predicted via the decoupling analysis sum-
marized above have been verified in [67]. Figure 8 illustrates the performance of the
block LU algorithm for diagonally dominant matrices for various blocksizes on an Al-
liant FX/8 [67]. The performance was computed using the nonblock version operation
count. The actual rate is, therefore, higher for the block methods.

The curves in Fig. 8 clearly show the trends predicted by the analysis above. The
significant improvement over BLAS2-based routines by a small amount of blocking can
be seen in the performance of the w = 8 curve and comparing it to the 7 to 10 Mflops
possible via a BLAS2-based Version 2 code or the 15 to 17 Mflops of a BLAS2-based

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 45

Version 3 code. As expected, for any fixed order of the system, performance improves
as w is increased until an optimal is reached. For small systems, increasing beyond
this value causes performance degradation due to the conflict between reducing u and
efficiently distributing work among the primitives. For larger systems, the conflict
reduces and performance is maintained until w exceeds v'CS.

S R R R
IEEREE
IRy 7
e A
HEE
AN
2(%56 384 552 6%0 74538 85)6 1024

F1G. 9. Performance of double-level block LU on an Alliant FX/8.

The conflict between arithmetic time and data loading overhead minimization
which produces the shifting of the preferred blocksize as a function of n can be mit-
igated somewhat by using a double-level blocking [67]. This conflict has been delib-
erately exacerbated in these experiments by using a Fortran implementation of the
Gauss—Jordan primitive and assembler coded BLAS3 routines.

There are two basic approaches to double-level blocking: inner-to-outerand outer-
to-inner. Both require a pair of blocksizes (#, w). The outer-to-inner approach replaces
the operation of the Gauss—Jordan primitive on a system of order w with a block LU
factorization using the smner blocksize §. The inner-to-outer approach begins with a
block LU factorization with blocksize § which is determined largely by the arithmetic
time analysis and which is typically smaller than the single-level load analysis would
recommend. Several rank-§ updates are then grouped together into a rank-w in order
to improve the data loading overhead. The decoupling methodology can be used to

46 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

show that these techniques do mitigate the conflict between reducing the arithmetic
time component and the data loading overhead (see [67] for details). Figure 9 demon-
strates that the use of inner-to-outer form of double-level blocking can indeed improve
performance. Note that that double-level version yields performance higher than all
of the single-level implementations of Fig. 8 over the entire interval.

4.2. Distributed-memory algorithms. Our objective here is to describe the
effects that the data-storage and pivoting schemes have on the efficiency of the LU
factorization of a dense matrix A = (o;;) on distributed memory systems. The related
parallel Cholesky schemes will not be discussed in this section; for an example, see
Heath [88]. We also describe some LU-like factorization schemes that are useful on
distributed memory and hybrid architectures.

4.2.1. LU factorization. A number of papers have appeared in recent years
describing various parallel LU factorization schemes on such architectures, e.g., see
Ipsen, Saad, and Schultz [104], Chu and George [28], Geist and Heath [77], [78], and
Geist and Romine [79]. We will concentrate here only on the work of Geist and
Romine.

Consider the two basic storage schemes: storage of A by rows and by columns.
The row storage case is considered first. Adopting the terminology of Geist and
Romine [79], we refer to the following scheme as RSRP, Row Storage with Row Piv-
oting.

RSRP:
each processor executes the following,
dok=0n-1

determine row pivot

update permutation vector

if (I own pivot row)
fan-out(broadcast) pivot row

else
receive pivot row

for (all rows ¢ > k that T own)
Aik = Qik [Okk
doj=k+1,n-1

Q5 = Q5 — Ak Q;
enddo
enddo.

In most of the early work, row storage for the coefficient matrix was chosen
principally because no efficient parallel algorithms were then known to exist for the
subsequent forward and backward sweeps if the coeflicient matrix were to be stored by
columns. But, as discussed earlier, recent triangular solvers for distributed memory
multiprocessors have removed the main reason for preferring row storage. Next, the
Column Storage with Row Pivoting (CSRP) scheme is given by:

CSRP:
each processor executes the following
dok=0,n-1

if (I own column k)

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 47

determine pivot row
interchange
doi=k+1n-1
Aik = 0k [Ok
broadcast the column just computed and pivot index

else

receive the column just computed and pivot index

interchange

for (all columns j > k that T own)
doi=k+1,n-1

Qij = O — Aik Qg
enddo
enddo.

A modification of RSRP, which we refer to as RSCP, Row Storage with Column
Pivoting, consists of searching the current pivot row for the element with maximum
modulus, and then exchanging columns to bring this element to the diagonal. The
RSCP algorithm can be readily seen as nothing more than the dual of algorithm CSRP.
Geist and Heath [78] indicate that both RSCP and CSRP yield essentially identical
speedup on an Intel iPSC hypercube. In fact, Geist and Heath conclude that, in the
absence of such techniques as loop unrolling, LU factorization with partial pivoting is
most efficient when pipelining is used to mask the cost of pivoting. In particular, the
two schemes that can most easily be pipelined are: pivoting by interchanging rows
when the matrix is distributed across the processors by columns (algorithm CSRP),
and pivoting by interchanging columns when the matrix is distributed across the
processors by rows (algorithm RSCP).

4.2.2. Pairwise pivoting. Gaussian elimination with pairwise pivoting is an
alternative to LU factorization which is attractive on a variety of distributed memory
architectures including systolic arrays since it introduces parallelism into the pivoting
strategy.!® Such a pivoting strategy dates back to Wilkinson’s work on Gaussian
elimination using the ACE computer with its limited amount of memory [62]. The
main idea is rather simple. If uT = [p1,- -, pn] and vT = [v4,---,vy,] are two row
vectors, then we can choose a stabilized elementary transformation

1 0
s=(41)r

so as to annihilate either y; or vq, whichever is smaller in magnitude. Here, P is
either the identity of order 2 or (ez,e;) so that

(N (M B2 o
vT 0 vy - by)

One of the many possible annihilation schemes for reducing a nonsingular matrix A
of order n to upper triangular form is illustrated in Fig. 10 for n = 8. (The elements
marked with ¢ can all be eliminated simultaneously on step .)

Such a triangularization scheme requires 2n —3 stages in which each stage consists
of a maximum of |n/2] independent stabilized transformations. It is ideally suited

10 Pairwise pivoting can also be useful on shared memory machines to break the bottleneck caused
by partial pivoting discussed earlier.

48 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

*

(1* \
2 3 =

3 45 «
45 6 7

5 6 7 8 9 «x

6 7 8 9 10 11 «
k78910111213)

FIG. 10. Annihilation scheme for n = 8.

for a ring of processors [157] or other systolic arrays [80]. Note, however, that it does
not produce an LU factorization of the matrix. L is replaced by a product of matrices
in which each one can be readily inverted. One possible drawback of this pivoting
strategy is that the upper bound on the growth factor is the square of that of partial
pivoting [168], [169]. Our extensive numerical experiments indicate that, as is the case
with partial pivoting, such growth is rarely encountered in practice. In that sense, our
experience contradicts some conclusions of Trefethan and Schreiber [184] indicating
that some further work is required to reconcile this seeming inconsistency.

The above annihilation scheme was originally motivated by a parallel Givens
reduction introduced in [161] and now used extensively in applications such as signal
processing for recursive least squares computations. This parallel Givens reduction
was later generalized for a ring of processors [158].

4.2.3. A hybrid scheme. In order to design factorization schemes for multi-
cluster machines, such as Cedar, in which each cluster is a parallel computer with
tightly coupled processors, we must combine the strategies outlined above for both
shared and distributed memory models. Breaking the problem among the clusters
so as to minimize intercluster communication while maintaining load balancing is an
issue faced by users of distributed memory architectures. Cedar’s advantage is the
existence of a shared global memory.

The shared memory block LU algorithm and the BLAS3 primitives, discussed
above, are concerned with achieving high performance on an architecture like a single
Cedar cluster. While these algorithms and kernels form an invaluable building block
for algorithms on the Cedar system and the conclusions of the analysis are applicable
over a fairly wide range of multivector architectures, care must be taken not to gen-
eralize these conclusions too far. For example, on a single Cedar cluster (and similar
architectures) routines for many of the basic linear algebra tasks encountered in prac-
tice can be designed as a series of calls to BLAS3 kernels and BLAS2-implemented
algorithms thereby masking all of the architectural considerations of parallelism, vec-
torization, and communication. This method of algorithm design, however, cannot
be generalized to all hierarchical shared memory machines. One of the main reasons
for this is the fact that an algorithm designed via this method may have problems
with an inappropriate choice of task granularity and the resulting excessive com-
munication requirements. The need to introduce double-level blocking forms of the
algorithm indicated the onset of such a problem on a Cedar cluster: the attempt to
spread the BLAS2-implemented kernel across the processors in a cluster introduced
serious limitations on the performance of the block algorithm. When this problem

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 49

becomes extreme, other forms of the algorithm must be used which typically involve
reorganizing the block computations to more efficiently map the algorithm to the
architecture via tasks of coarser granularity with more attention focused on minimiz-
ing the required communication. Typically this involves some notion of pipelining
(possibly multidimensional) at the block level, e.g., see [14], [157].

An example of such a situation is the solution of a dense linear system using more
than one cluster of Cedar (possibly a subset of the total number available). In this
case the algorithm design must take into account that intercluster communication is
rather costly. There are several possible designs for such an algorithm. One of the
most straightforward is based on the outer-to-inner double-level block form presented
above. The block computations can be pipelined across clusters using the necessary
Cedar synchronization primitives. A second possibility uses the control structure of
the pipelined Givens factorization on a ring of processors described in [158]. A block
of rows rather than a single row is communicated between processors and the row
rotation is replaced with a block Gaussian elimination procedure. The remainder of
this section discusses another algorithm, due to Sameh [157], for solving dense linear
systems on a multiple cluster architecture which requires a relatively small amount of
intercluster communication. For simplicity a four-cluster Cedar is assumed.

Let A, a nonsingular matrix of order n, be partitioned as

AT = (AT, 47, A5, A7)

where A; resides in the ith cluster memory. The algorithm consists of two major
stages. In the first stage, using a block-LU scheme with partial pivoting, each A; is
factored into the form

PiAi = LiUi

for i = 1,2,3,4 where F; is a permutation, L; is unit lower triangular, and U; is upper
trapezoidal.

Assuming, without loss of generality, that each U; has a nonsingular upper trian-
gular part, the factorization of A may be completed in the second stage which consists
of 3n/4 computational waves pipelined across the four clusters. These computational
waves comprise three groups of n/4 waves. During the kth group the latest values for
the rows of Uy are used by clusters £ + 1 to 4 in a pipelined fashion to further reduce
their segments of the decomposition. It should be noted that cluster k is idle during
the kth group of waves and the remainder of the algorithm since the other clusters
will update the rows of U, that it has produced and placed in global memory. (For
example, cluster 1 only performs the initial reduction of A; and is then released for
other tasks within the application code of which solving the system is a part or the
tasks of other users since Cedar is a multiuser system.) The first group of n/4 com-
putational waves which use the rows of U; produced by cluster 1 is described below.
The pattern of the remaining two groups follows trivially.

Wave 1. Let Uy = [ufj] The first row of U; is transmitted via the global
memory to cluster 2 where it is used, with pairwise pivoting, to annihilate the first
element of the (possibly new due to pairwise pivoting) first row of Us, uil. The
updated first row of U; is then transmitted to cluster 3 so as to annihilate ﬂ?,1 and
then to cluster 4 where u} | is eliminated with the final version of the first row of Uy
residing in global memory.

50 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

As soon as H’f,1 is annihilated in cluster &k, & = 2, 3,4, the nonzero portion of Uy
is a n/4 x (n — 1) upper Hessenberg matrix, e.g., for n = 24 it is of the form

T
T

8 8 8

8 8 8 8

8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8 8

The cluster then proceeds to reduce Uy to upper trapezoidal form through a pipelined
Gaussian elimination process using pairwise pivoting.

Waves 2 < j < n/4. Similar to the first wave, the jth row of U; is transmitted
to clusters 2, 3, and 4 to annihilate 3 ;, 4 ;, and 4 ;, respectively. After these
annihilations occur, each cluster reduces Uy, which at this point is upper Hessenberg,
to upper trapezoidal form.

Note that after this first group of computational waves U; is in its final form in
global memory. The matrix Uz is in its penultimate form since it will only change due
to the pairwise pivoting done by clusters 3 and 4 in the second group of computational
waves. This implies that cluster 2 is now available for other work. The second and
third computational groups proceed in the same way as the first did with each cluster
fetching the appropriate row from the source matrix, Us followed by Us, transforming
U, to upper Hessenberg form and then reducing it back to an upper trapezoidal
matrix. This basic form of the algorithm possesses many levels of communication and
computation granularity and can be modified to improve utilization of a multicluster
architecture. For example, if the whole Cedar machine were devoted to such a dense
solver, simple interleaving of block rows of A would enhance load balancing among
the clusters.

4.3. Block tridiagonal linear systems. Block tridiagonal systems arise in nu-
merous applications — one example being the numerical handling of elliptic partial
differential equations via finite element discretization. Often, solving such linear sys-
tems constitutes the major computational task. Hence, efficient algorithms for solving
these systems on vector and parallel computers are of importance. Using block ver-
sions of Gaussian elimination for block tridiagonal systems seems a natural extension
of the efficient dense solvers discussed above. Some of the early work may be found in
[191] and the survey by Heller [90]. A more recent study of block Gaussian elimination
on the Alliant FX/8 for solving such systems [11] indicates the importance of efficient
dense solvers and the underlying BLAS3 as components for block tridiagonal solvers.

If the size of the blocks is small, i.e., a narrow-banded system, such forms of
Gaussian elimination offer little potential vectorization and parallelization. Similar to
the above discussions for banded triangular systems, a partitioning scheme, referred
to as the spike algorithm below, for handling tridiagonal systems on vector or parallel
computers was introduced in [161), where Givens reductions were used to handle
the diagonal blocks. Later, Wang [192] considered the simpler problem of diagonally
dominant systems and gave essentially the same form of the algorithm modified to use
Gaussian elimination (made possible by the assumption of diagonal dominance) and
a different method for the elimination of the spikes. Several studies have generalized
this partitioning scheme to narrow-banded systems, e.g., see [46], [47], [120], [132] and
the recent book by Ortega [137].

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 51

The main idea of this partitioning scheme may be outlined as follows. Let the
linear system under consideration be denoted by Az = f, where A is a banded diag-
onally dominant matrix of order n. It is assumed that the number of superdiagonals
m < n is equal to the number of subdiagonals and that, for simplicity of presenta-
tion, n = pq. On a sequential machine such a system would be solved via Gaussian
elimination, see [38] for example. The algorithm described below assumes p CPU’s of
a CRAY X-MP or CRAY-2, or a Cedar system with p clusters. Here, for the sake of
illustration, p is taken to be 4.

Let the matrix A be partitioned into the block-tridiagonal form with block row
[Ci, A;, B;] and conformally = and f, e.g.,

A, B 0 0 Z1 f1
Cy Ay By 0 2 | _ | f2
0 C3 As Bj T3 f3]’
0 0 C; Ay T4 fa

where each 4;, 1 < i < p, is a banded matrix of order ¢ = n/p and bandwidth 2m + 1

(same as A),
0 0
B = (Bi 0)

Civ1 = (g'”l),

1 <4< p-1, in which B,- and C',-+1 are lower and upper triangular matrices,
respectively, each of order m.
The algorithm consists of three stages.

and

o O

Stage 1. If both sides of Az = f were premultiplied by diag(Al‘l, A7t A;l)
we obtain a system of the form

Iq E, 0 0 Z1)]
FE I, E 0 zZ2 | _ | 92
0 F Iy Ej3 T3 g3 |’
0 0 F4 Iq T4 94

where

E; = (E,0), F = (0,F),

in which E; and Fi are matrices of m columns given by

- 0
;= .71 o
b= A (B;)

and

and will, in general, be full.

52 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

In stage 1, Ei, ﬁ‘i, and g; are obtained by solving the associated linear systems.
In each cluster 2 < k < 4 we solve 2m + 1 linear systems of the form Ay = r,
while clusters 1 and 4 each solves m + 1 linear systems of the same form. Note that
no intercluster communication is needed.

The method of solution used on each cluster (Alliant FX/8) for these 4 systems
with multiple right-hand sides, varies with m. For m < 8 a variant of the spike
algorithm is used. For 8 < m < 16 (approximately), block cyclic reduction is the
most effective and for larger m a block Gaussian elimination is recommended [11}.

Stage 2. Let E; and F; be partitioned, in turn, as follows

A P A S,
FF=1M], E; =1 N |,
Qi T;
where P, Q;, S;, and T; € R™*™, Also, let g; and z; be conformally partitioned:
ha;—2 Y2i—2
9 = Wy) Ty = Zi
hai_1 Y2i—-1

The structure of the resulting partitioned system is such that the unknown vectors
y;, 1 £ j <6 (each of order m) are disjoint from the rest of the unknowns. In other
words, the m equations above and the m equations below each of the 3 partitioning
lines form an independent system of order 6m, which is referred to as the reduced
system Ky = h,

I, Th Y1 hy
Pz Im Sz Y2 hz
Q2 I, T, ys | _ | hs
Py I, S3 ya | | ha

Qs I, T3 Ys hs

Py I, Ys he

Since A is diagonally dominant, it can be shown that the reduced system is also
diagonally dominant and hence there are a number of options available for solving it.
Typically, it is small enough to be sent to a single Cedar cluster and solved with an
appropriate algorithm.

When it is large enough to warrant a multicluster approach the reduced-system
approach could be applied again. Note, however, that the bandwidth of the system
has doubled compared to the original system. Block-column permutations can reduce
the bandwidth back to its original value but this destroys diagonal dominance and
pivoting will usually be required to solve the permuted reduced system. It is also
possible to use all of the clusters to solve the reduced system via an iterative technique
such as Orthomin(k) [47].

Finally, if the original linear system is sufficiently diagonally dominant, we can
ignore the matrices Q; and S; as ||S;||c and ||Q;lloo are much smaller than ||T;||c and
| Pilloo, respectively. This results in a block-diagonal reduced system in which each

block is of the form
I, Ty)
Pk—H Im

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 53

for 1 <k<3.

Stage 3. Once the y;’s are obtained, the rest of the components of the solution
vector of the original system may be retrieved as follows:

2k = wrp — My yar—3 — Ni yax,

for 1 <k <4,

yo = ho — Sy,

and

yr = hy— Q4 ys.

Provided that the y;’s are stored in the global memory, this stage requires no inter-
cluster communication.

In addition to reporting on the performance results for this algorithm on the Al-
liant FX/8, [11] also reports on the performance achieved on four CPU’s of a CRAY
X-MP/416. Using four partitions on a system of order 16384 with blocksize 32, a
speedup relative to itself of 3.8 was achieved indicating an efficient use of the micro-
tasking capabilities and memory system of the machine. The speedup compared to a
block LU algorithm on one CPU was approximately 2.

There are several modifications and reorganizations possible of the spike algorithm
for solving banded systems discussed above. These can be used to alter the form of
the algorithm to more efficiently map to a variety of shared memory architectures.
For one such alternative see [155]. Also, if the system is symmetric positive definite,
Dongarra and Johnsson [46] have discussed how the algorithm can be modified to
obtain a reduced system that is symmetric positive definite as well.

An analysis of the parallel and numerical aspects of a two-sided Gaussian elimi-
nation for solving tridiagonal systems has been given recently by van der Vorst [188].

The work by Johnsson [108], [109] is representative of organization of concurrent
algorithms for solving tridiagonal and narrow banded systems on distributed memory
machines with various connection topologies, e.g., two-dimensional arrays, shuffie-
exchange networks and boolean cubes. Fox et al. have also considered the problem of
banded systems on hypercubes. In [60], they provide a detailed performance analysis
of the problem.

5. Least squares. In solving the linear least squares problem:
(10) min || f — Az|l2,

where A is an m x n matrix of rank n, (m > n), it is often necessary to obtain the
factorization,

(11) QA=(§),

in which @ is an orthogonal matrix and R is a nonsingular upper triangular ma-
trix of order n. Such a factorization may be realized on multiprocessors via plane
rotations, see [48], [158], and [161], elementary reflectors, see [16] and [158], or the
Modified Gram-Schmidt algorithm, see [9]. (Although the latter algorithm is more
commonly associated with the calculation of an orthogonal basis of the range of A.)

54 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

In the section concerning shared memory multiprocessors, block versions of House-
holder reduction and the modified Gram-Schmidt algorithm are presented, as well
as a pipelined Givens reduction for updating matrix factorization. For distributed
memory multiprocessors, organization of Givens and Householder reductions on a
ring of processors convey the main ideas needed for implementation on hypercubes
and locally connected distributed memory architectures.

5.1. Shared-memory algorithms.

5.1.1. A block Householder reduction. If A = 4, = [agl),ag y)]
then it is possible to generate elementary reflectors Pr = I — ajugul, k = 1 ,n,
such that forming Py A produces the kth row of R and the (m — k) x (n — k) matrix
Agy1 = [agfll), - S‘“’] by annihilating all but the first element in a(). The
two basic tasks in such a procedure are [170] i) generation of the reﬁector P, such
that PkafC = (prk, 0, -+, 007, k = 1,2,---,n; and (it) updating the remaining (n —
k) columns, Pka;k (p ks ;kH)T) j =k+1,---,n. On a parallel computer,
reflector P41 may be generated even before task (ii) for stage & is finished. While
an organization that allows such an overlap is well suited for some shared memory
machines and for a distributed memory multiprocessor such as a ring of processors,
e.g., see [158], it does not offer the data locality needed in a hierarchical shared
memory system such as that of an Alliant FX/8.

A block scheme proposed by Bischof and Van Loan [16], see also the related
papers [15], [19], [36], [146], [163], offers such data locality. This scheme depends
on the fact that the product of k elementary reflectors Qx = (Px,---, P2, P1), where
P; = I, — w;w], can be expressed as a rank-k update of the identity of order m, i.e.,

Qx = I, - ViUF,

where Vi = Uy = wy, V; = (P;Vj_1,w;) and U; = (Uj_1,u;), for j = 2,--- k.
The block algorithm may be described as follows. Let the m x n matrix (m > n)
whose orthogonal factorization is desired be given by

A == [Al, B],

where A is of rank n, and A; consists of the first £ columns of A. Next, proceed with
the usual Householder reduction scheme by generating the k elementary reflectors Py

through Py such that
R
(P PP)A, = (01),

where R; is upper triangular of order ¥ without modifying the matrix B. If we accu-
mulate the product Qx = Py« - P, =1— VkUE as each P; is generated, the matrix B
is updated via

B — (I-VUFB

which relies on the high efficiency of one of the most important kernels in BLASS,
that of a rank-k update. The process is then repeated on the modified B with another
well-chosen block size, and so on until the factorization is completed. It may also be
desirable to accumulate the various Qy’s, one per block, to obtain the orthogonal
matrix, }, that triangularizes A.

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 39

40

L s (TR S SR SO O S
L A 3-based
80 f--ompoe- R U 20 At S it shy
25 e e S S s R
R e
T R S T S o
1 S0 S P N S S S
ool
{4 ! ! BLAS2based
§f----- e il CRLDE! BECR SEREISIILE

0 " L L i e "
0 128 256 384 512 640 768 896 1024
n

FIG. 11. Performance of block Householder algorithm on an Alliant FX/8.

It was shown in [16] that this block algorithm is as numerically stable as the
classical Householder scheme. The block scheme, however, requires roughly (1 +
2/p) times the arithmetic operations needed by the classical sequential scheme, where
p = n/k is the number of blocks (assuming a uniform block size throughout the
factorization). Bischof and Van Loan report the performance of the block algorithm
at 18 Mflops for large square matrices (n = 1000) on an FPS-164/MAX with a
single MAX board and note that an optimized LINPACK QR running on an FPS-
164 without MAX boards would achieve approximately 6 Mflops. An example, of the
performance achieved by a BLAS3 implementation of the block Householder algorithm
(PQRDC) compared to a BLAS2 version (DQRDC) on an Alliant FX/8, [85], is
shown in Fig. 11. The performance shown is computed using the nonblock algorithm
operation count.

Most recently, Schreiber and Van Loan have considered a more efficient storage
scheme for the product of Householder matrices [164]. They describe the compact
WY representation of the orthogonal matrix which is of the form

Q=I+YTYT,

where Y € R™*" ig a lower trapezoidal matrix and T € R™*" is a upper triangular

56 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

matrix. The representation requires only mn storage locations and can be computed
in a stable fashion.

5.1.2. A block-modified Gram—Schmidt algorithm. The goal of this algo-
rithm is to factor an m x n matrix A of maximal rank into an orthonormal m X n
matrix @ and an upper triangular R of order n where m > n and A is of maximal
rank. Let A be partitioned into two blocks A; and B where A; consists of w columns
of order m, with @ and R partitioned accordingly:

am =@ (B B,

The algorithm is given by:

(i) A1 =Q1Rn,
(ii) Ri2 = QT B,
(iii) By = B — @1 R12.
(iv) Apply the algorithm recursively to produce B; = PRa2.

If n = kw, step (1) is performed k times and steps (ii) and (iii) are each performed
k — 1 times.

Three primitives are needed for the jth step of the algorithm: a QR decompo-
sition (assumed here to be a modified Gram-Schmidt routine — MGS); a matrix
multiplication AB; and a rank-w update of the form € «— C — AB. The primitives
allow for ideal decomposition for execution on a limited processor shared memory ar-
chitecture. The BLAS2 version of the modified Gram-Schmidt algorithm is obtained
when w =1 or w = n, and a double-level blocking version of the algorithm is derived
in a straightforward manner by recursively calling the single-level block algorithm to
perform the QR factorization of the m x w matrix A;.

Jalby and Philippe have considered the stability of this block algorithm [106] and
Gallivan et al. have analyzed the performance as a function of blocksize [67]. Below,
a summary of this blocksize analysis is presented along with experimental results on
an Alliant FX/8 of single and double-level versions of the algorithm.

The analysis is more complex than that of the block LU algorithm for diagonally
dominant matrices discussed above, but the conclusions are similar. This increase in
complexity is due to the need to apply a BLAS2-based MGS primitive to an m X w
matrix at every step of the algorithm. As with the block version of the LU factoriza-
tion with partial pivoting, this portion of each step makes poor use of the cache and
increases the amount of work done in less efficient BLAS2 primitives. The analysis of
the arithmetic time component clearly shows that the potential need for double-level
blocking is more acute for this algorithm than for the diagonally dominant block LU
factorization on problems of corresponding size.

The behavior of the algorithm with respect to the number of data loads can be
discussed most effectively by considering approximations of the cache-miss ratios. For
the interval 1 < w < 1= C'S/m the cache-miss ratio is

1
AR,

where 7; is proportional to 1/n, which achieves its minimum value m/(2CS) at w = L.
Under certain conditions the cache-miss ratio continues to decrease on the interval

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 87

I < w < n where it has the form

~ 10 7)+w LI
=90 n 2\n CS 2

where 73 is proportional to 1/n, which reaches its minimum at a point less than VCS
and increases thereafter, as expected. (See [67] for details.) When w = n the cache-
miss ratio for the second interval is 1/2 corresponding to the degeneration from a
BLAS3 method to a BLAS2 method. The composite cache-miss ratio function over
both intervals behaves like a hyperbola before reaching its minimum; therefore the
cache-miss ratio does not decline as rapidly in latter parts of the interval as it does
near the beginning.

50 1 1 1]]

45 [--oo LR Rt el S A
: : E w =32

40 f------ beneee demmnens tooes e

Mflops 35 Ao Ao ; -------------

30 f--mon oo e jozston- oeneees e

25 |- oo e deenenes s R o
: : : w :

20 .
256 384 512 640 768 896 1024
n

FIG. 12. Performance of one-level block MGS on an Alliant FX/8.

A load analysis of the double-level algorithm shows that double-level blocking
either reduces or preserves the cache-miss ratio of the single-level version while im-
proving the performance with respect to the arithmetic component of time.

Figures 12 and 13 illustrate, respectively, the results of experiments run on an
Alliant FX/8, using single-level and double-level versions of the algorithm applied to
square matrices. The cache size on this particular machine is 16 K double precision
words.

58 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

For the range of n, the order of the matrix, shown in Fig. 12, the single-level
optimal blocksize due to the data loading analysis starts at w = 64, decreases to w = 21
for n = 768, and then increases to w = 28 at n = 1024. Analysis of the arithmetic time
component recommends the use of a blocksize between w = 16 and w = 32. Therefore,
due to the hyperbolic nature of g and the arithmetic time component analysis it is
expected that the performance of the algorithm should increase until w =~ 32. The
degradation in performance as w increases beyond this point to, say w = 64 or 96,
should be fairly significant for small and moderately sized systems due to the rather
large portion of the operations performed by the BLAS2 MGS primitive.

50

45 f------

A

L L L L R TR T A

40 p------

B T N -

Mflops 35 b f e

3O b=z~

25 f--nn--

b ecmccccrcnrbhavcccerrrfdeccnccccvandacnccana

g U S g g s g
R L L b T TP TR AP L

20
256

® fomemreeean

(23

4 512 640 768 896 1024
n

FI1G. 13. Performance of two-level block MGS on an Alliant FX/8.

The results of the experiments confirm the trends predicted by the theory. The
version using w = 32 is clearly superior. The performance for w = 8 is uniformly
dismal across the entire interval since the blocksize is too small for both data loading
overhead and arithmetic time considerations. Note that as n increases the gap in
performance between the w = 32 version and the larger blocksize versions narrows.
This is due to both arithmetic time considerations as well as data loading. As noted
above, for small systems, the distribution of operations reduces the performance of
the larger blocksize version; but, as n increases, this effect decreases in importance.
{(Note that this narrowing trend is much slower than that observed for the block LU

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 59

algorithm. This is due to the fact that the fraction of the total operations performed
in the slow primitive is w/n for the block Gram-Schmidt algorithm and only w?/n?
for the block LU.) Further, for larger systems, the optimal blocksize for data loading
is an increasing function of n; therefore, the difference in performance between the
three larger blocksizes must decrease.

Figure 13 shows the increase in performance which results from double-level block-
ing. Since the blocksize indicated by arithmetic time component considerations is
between 16 and 32 these two values were used as the inner blocksize §. For § = 16
the predicted outer blocksize ranges from w = 64 up to w = 128; for § = 32 the
range is w = 90 to w = 181. (Recall that the double-level outer blocksize is influ-
enced by the cache size only by virtue of the fact that v/CS is used as a maximum
cutoff point.) For these experiments the outer blocksize of w = 96 was used for two
reasons. First, it is a reasonable compromise for the preferred outer blocksize given
the two values of §. Second, the corresponding single-level version of the algorithm,
ie., (0,w) = (96,96), did not yield high-performance and a large improvement due
to altering # would illustrate the power of double-level blocking. (To emphasize this
point the curve with (8,w) = (96,96) is included.) The curves clearly demonstrate
that double-level blocking can improve the performance of the algorithm significantly.
(See [67] for details.)

5.1.3. Pipelined Givens rotations. While the pipelined implementation of
Givens rotations is traditionally restricted to distributed memory and systolic type
architectures, e.g., [80], it has been successful on shared memory machines in some
settings. In [48] a version of the algorithm was implemented on the HEP and com-
pared to parallel methods based on Householder transformations. Rather than using
the standard row-oriented synchronization pattern, the triangular matrix R was parti-
tioned into a number of segments which could span row boundaries. Synchronization
of the update of the various segments was enforced via the HEP’s full-empty mech-
anism. The resulting pipelined Givens algorithm was shown to be superior to the
Householder based approaches.

Gallivan and Jalby have implemented a version of the traditional systolic algo-
rithm (see [80]) adapted to efficiently exploit the vector registers and cache of the
Alliant FX /8. The significant improvement in performance of a structural mechanics
code due to Berry and Plemmons, which uses weighted least squares methods to solve
stiffness equations, is detailed in [10] (see also [144], [145]).

The hybrid scheme for LU factorization discussed earlier for cluster-based shared
memory architectures converts easily to a rotation-based orthogonal factorization, see
[157]. Chu and George have considered a variation of this scheme for shared memory
architectures [31]. The difference is due to the fact that Sameh exploited the hybrid
nature of the clustered memory and kept most of the matrix stored in a distributed
fashion while pipelining between clusters the rows used to eliminate elements of the
matrix. Chu and George’s version keep these rows local to the processors and move
the rows with elements to be eliminated between processors.

5.2. Distributed memory multiprocessors.

5.2.1. Orthogonal factorization. Qur purpose in this section is to survey par-
allel algorithms for solving (10) on distributed memory systems. In particular, we
discuss some algorithms for the orthogonal factorization of A. Several schemes have
been proposed in the past for the orthogonal factorization of matrices on distributed
memory systems. Many of them deal with systolic arrays and require the use of O(n?)

60 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

Proc.1 Proc.2 Proc.3

1 — -
21 - -
31 2 -
41 32 -
51 42 3
61 52 43
71 62 53
4 72 63
54 - 73
64] -
74 65 —
- 75 6
- - 76

F1G. 14. Givens reduction on a three processor ring.

processors, where n is the number of columns of the matrix. For instance, Ahmed,
Delosme, and Morph [4], Bojanczyk, Brent, and Kung [17], and Gentleman and Kung
[80] all consider Givens reduction and require a triangular array of O(n?) processors,
while Luk [125] uses a mesh connected array of O(n?) processors. Sameh [158], on
the other hand, considers both Givens and Householder reduction on a ring of pro-
cessors in which the number of processors is independent of the problem size. Each
processor possesses a local memory with one processor only handling the input and
output. Figure 14 shows the organization of Givens reduction on three processors for
a rectangular matrix of seven rows and five columns on such a ring. Each column
depicts the operations taking place in each processor. An entry ij, j < 7, indicates
the rotation of rows ¢ and j so as to annihilate the ith element of row j.

Recall that the classical Householder reduction may be described as follows. Let
ag-k) denote the jth column of A, where A 1 = QrAx in which Q = diag(ly, Py).
Here, Ay is upper triangular in its first (k — 1) rows and columns with P being the
elementary reflector of order (m — k + 1) that annihilates all the elements below the
diagonal of the kth column of Agx. Then Householder reduction on the same matrix
and ring architecture as above may be organized as shown in Fig. 15. Here, a P
alone indicates generation of the kth elementary reflector.

Modi and Clarke [134] have suggested a greedy algorithm for Givens reduction
and the equivalent ordering of the rotations, but do not consider a specific architecture
or communication pattern. Cosnard, Muller, and Robert [32] have shown that the
greedy algorithm is optimal in the number of timesteps required. Theoretical studies
and comparisons of such algorithms for Givens reduction have been given by Pothen,
Somesh, and Vemulapati [148] and by Elden [54]. We now briefly survey some of these
algorithms that have been implemented on current commercially available distributed
memory multiprocessors.

In chronological order, we begin with the work of Chamberlain and Powell [25].
In this study the coefficient matrix A is stored by rows across the processors in the
usual wrap fashion and most of the rotations involve rows within one processor in a
type of divide-and-conquer scheme. However, it is necessary to carry out rotations

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 61

Proc.1 Proc.2 Proc. 3

Pal’ P
P ail) Pzagz)
Pal’ Pa® P
P2a§2) Pgais)
P, Psal?

F1G. 15. Householder reflectors on a three processor ring.

involving rows in different processors, which they call merges. They describe two
ways of implementing the merges and compare them in terms of load balance and
communication overhead. Numerical tests were made on an Intel iPSC hypercube with
32 processors based on 80287 floating point coprocessors to illustrate the practicality of
their algorithms. The schemes used here are very similar the basic approach suggested
originally by Golub, Plemmons, and Sameh [81] and developed further in [145]. We
note that Katholi and Suter [112] have also adopted this approach in developing an
orthogonal factorization algorithm for shared memory systems, and have performed
tests on a 30 processor Sequent Balance computer.

Chu and George [30] have also suggested and implemented algorithms for perform-
ing the orthogonal factorization of a dense rectangular matrix on a hypercube multi-
processor. Their recommended scheme involves the embedding of a two-dimensional
grid in the hypercube network, and their analysis of the algorithm determines how the
aspect ratio of the embedded processor grid should be chosen in order to minimize the
execution time or storage usage. Another feature of the algorithm is that redundant
computations are incorporated into a communication scheme which takes full advan-
tage of the hypercube connection topology; the data is always exchanged between
neighboring processors. Extensive computational experiments which are reported by
the authors on a 64-processor Intel hypercube support their theoretical performance
analysis results.

Finally in this section we mention two studies which directly compare the results
of implementations of Givens rotations with Householder transformations on local
memory systems. Pothen and Raghavan [147] have compared the earlier work of
Pothen, Somesh, and Vemulapati [148] on a modified version of a greedy Givens
scheme with a standard row-oriented version of Householder transformations. Their
tests seem to indicate that Givens reduction is superior on such an architecture. Kim,
Agrawal, and Plemmons [113], however, have developed and tested a row-block version
of the Householder transformation scheme which is based upon the divide-and-conquer
approach suggested by Golub, Plemmons, and Sameh [81] (see also [29]). The tests
by Kim, Agrawal, and Plemmons on a 64-processor Intel hypercube clearly favor their
modified Householder transformation scheme.

5.2.2. Recursive least squares. In recursive least squares (RLS) it is required
to recalculate the least squares solution vector when observations (i.e., equations)

62 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

are successively added to or deleted from (10) without resorting to complete refactor-
ization of the matrix A. For example, in many applications information continues to
arrive and must be incorporated into the solution z. This is called updating. Alter-
natively, it is sometimes important to delete old observations and have their effects
excised from z. This is called downdating. Applications of RLS updating and down-
dating include robust regression in statistics, modification of the Hessian matrix in
certain optimization schemes, and in estimation methods in adaptive signal processing
and control.

There are two main approaches to solving RLS problems; the information matriz
method based on modifying the triangular matrix R in (11), and the covariance matriz
method based instead on modifying the inverse R™1. In theory, the information matrix
method is based on modifying the normal equations matrix AT A, while the covariance
matrix method is based on modifying the covariance matriz

P=(ATA)™L

The covariance matrix P measures the expected errors in the least squares solution
z to (10). The Cholesky factor R~* for P is readily available in control and signal
processing applications.

Various algorithms for modifying R in the information matrix approach due to
updating or downdating have been implemented on a 64-node Intel hypercube by
Henkel, Heath, and Plemmons [92]. They make use of either plane rotations or hy-
perbolic type rotations.

The process of modifying least squares computations by updating the covariance
matrix P has been used in control and signal processing for some time in the context
of linear sequential filtering. We begin with estimates for P = R™'R™T and z,
and update R~! to R~ and z to Z at each recursive timestep. Recently Pan and
Plemmons {140] have described the following parallel scheme.

Algorithm (Covariance Updating). Given the current least squares estimate
vector z, the current factor L = R™T of P = (ATA)™! and the observation y"z = ¢
being added, the algorithm computes the updated factor L = R™! of P and the

updated least squares estimate vector Z as follows:
1. Form the matrix vector product

(12) a=Ly.

2. Choose plane rotations ¢;, to form

(13) | 7] =[8] e ViR

and update L
L L
(14) Qm"'Ql[OT]=[T]-
3. Form

(15) F=gz—

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 63

As the recursive least squares computation proceeds, L replaces L, Z replaces ,
a new equation is added, and the process returns to step 1. An efficient parallel im-
plementation of this algorithm on the hypercube distributed-memory system making
use of bidirectional data exchanges and some redundant computation is given in [93].
Steps 1 and 3 are highly parallelizable and effective implementation details of step 2
on a hypercube are given in [93].

Table 2 shows the speedup and efficiency on an iPSC/2 hypercube (4 MB of
memory for each processor) for a single phase of the algorithm on a test problem of
size n = 1024. One complete recursive update is performed. Here, the speedup is
given by,

time on 1 processor
speedup =

time on p processors’
with the corresponding efficiency,

speedup
P

efficiency =

An alternative hypercube implementation of the RLS scheme of Pan and Plem-
mons [140] has been given by Chu and George [31].

TABLE 2
Speedup and efficiency on the iPSC/2 for a problem of size n = 1024.

Number of Processors Speedup Efficiency

p

1 1 1
4 3.90 0.98
16 15.06 0.94
64 48.60 0.76

6. Eigenvalue and singular value problems.

6.1. Eigenvalue problems. Solving the algebraic eigenvalue problem, either
standard Az = Az, or generalized Az = ABz, is an important and potentially time-
consuming task in numerous applications. In this brief review, only the dense case is
considered for both the symmetric and nonsymmetric problems. Most of the parallel
algorithms developed for the dense eigenvalue problem have been aimed at the stan-
dard problem. Algorithms for handling the generalized eigenvalue problem on shared
or distributed memory multiprocessors are very similar to those used on sequential
machines. Reduction of the symmetric generalized eigenvalue problem to the stan-
dard form is achieved by a Cholesky factorization of the symmetric positive definite
matrix B which is well-conditioned in most applications. This reduction process can
be made efficient on shared memory multiprocessors, for example, by adopting a block
Cholesky scheme similar to the block LU decomposition discussed earlier to obtain
the Cholesky factor L of B and to explicitly form the matrix L~1AL™T using the
appropriate BLAS3. For the nonsymmetric generalized eigenvalue problems where
the matrix B is known to be often extremely ill-conditioned in many applications,
there is no adequate substitute to Moler and Stewart’s @ Z-scheme [136]. On a shared
memory multiprocessor, the most efficient stage is the initial one of reducing B to the
upper triangular form. Dispensing thus with the generalized eigenvalue problems, the

64 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

remainder of the section will be divided between procedures that depend on reduction
to a condensed form, and Jacobi or Jacobi-like schemes for both the symmetric and
nonsymmetric standard eigenvalue problems.

6.1.1. Reduction to a condensed form. We start with the nonsymmetric
case. For the standard problem the first step, after balancing, is the reduction to upper
Hessenberg form via orthogonal similarity transformations. These usually consist of
elementary reflectors which could yield high computational rates on vector machines
provided appropriate BLAS2 kernels are used. On parallel computers with hierarchical
memories, block versions of the classical scheme, e.g., see [16], [44], [86], yield higher
performance than BLAS2-based versions. Such block schemes are similar to those
discussed above for orthogonal factorization, and their use does not sacrifice numerical
stability. Block sizes can be as small as 2 for certain architectures. For the sake
of illustration we present a simplified scheme for this block reduction to the upper
Hessenberg form, where we assume that the matrix A is of order n where n = kv + 2.

doj=1,k
doi=(j-1)v+1,jv
Obtain an elementary reflector P; = I — w;w
such that P; annihilates the last n —1 -1
elements of the ith column of A
Construct:
U; = (Uic1, wi)
Vi = (PiVio1, w;)
Y'i = (Yi—ls Aw't)
2z =V%eiq
ifi = jv go to 10
ai41 = (I = ViUl)(aig1 — Yizi)
enddo
10 A(jv+1:n) =T =V UL)AGr +1:n) - Y3, Z;,)
enddo.

T

i

Here, Z,, consists of the last (n — m) rows of V,,,. This block scheme requires more
arithmetic operations than the classical algorithm using elementary reflectors by a
factor of roughly 1 4+ 1/k. Performance of the block scheme on the Alliant FX/8 is
shown in Fig. 16 [86]. The performance shown is based on the operation count of the
nonblock algorithm.

The next stage is that of obtaining the eigenvalues of the resulting upper Hessen-
berg matrix via the QR-algorithm with an implicit shifting strategy. This algorithm
consists mainly of chasing a bulge represented by a square matrix of order 3 whose
diagonal lies along the subdiagonal of the upper Hessenberg matrix. This in turn
affects only 3 rows and columns of the Hessenberg matrix, leaving little that can be
gained from vectorization, and to a lesser extent, parallelization. Stewart has consid-
ered the implementation of this basic iteration on a linear array of processors [172].
More recently, a block implementation with multiple QR shifts was proposed by Bai
and Demmel [6] which yields some advantage for vector machines such as the Convex
C-1 and Cyber 205.

If we are seeking all of the eigenvectors as well, the performance of the algorithm
is enhanced since the additional work required consists of computations that are

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 65

amenable to vector and/or parallel processing; that of updating the orthogonal matrix
used to reduce the original matrix to Hessenberg form.

Similarly, the most common method for handling the standard dense symmetric
eigenvalue problem consists of first reducing the symmetric matrix to the tridiagonal
form via elementary reflectors followed by handling the tridiagonal eigenvalue prob-
lem. Such reduction can be achieved by a minor modification of the above block
reduction to the Hessenberg form. On 1 CPU of a CRAY X-MP, with an 8.5 ns clock,
a BLAS?2 implementation of Householder tridiagonalization using rank-2 updates (see
[43]) yields a computational rate of roughly 200 Mflops for matrices of order 1000 (see
Fig. 17 [87]. The performance of Eispack’s TRED2 is also presented in the figure for
comparison. Figure 18 shows a comparison of the performance of this BLAS3-based
block reduction with a BLAS2-based reduction on the Alliant FX/8 [86]. As before,
the performance is computed based on the nonblock version operation count.

40

o
%
>
L7 S

e T Y . ST T

35 f-----

O

30 f--ooee

25 f---nckofo-

Mflops 20 f----deee-

15 |-+

10 f-----

....................................

o=
o
>
H
T
o
I+
@

USSR PN QU R U SOy PP S [P NP QY (I
[Y A

B b T ik el LT T B e ke

coememavefeccnorechenccceedeccecsceducccncncadannnnea=d

0 i n i n n A L
0 128 256 384 512 640 768 896 1024
n

F1G. 16. Reduction to Hessenberg form on Alliant FX/8.

Once the tridiagonal matrix is obtained two approaches have been used, on se-
quential machines, for obtaining its eigenvalues and eigenvectors. If all the eigenvalues
are required a @ R-based method is used. The classical procedure is inherently sequen-
tial, offering nothing in the form of vectorization or parallelism. Recently, Dongarra
and Sorensen [49], adapted an alternative due to Cuppen [33] for the use on multipro-

66 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

cessors. This algorithm obtains all the eigenvalues and eigenvectors of the symmetric
tridiagonal matrix.

200

180 [--enbnen-

cossccactercacaaa

160 f--nnbmmmmgfeae

140 f-=---rf--

[P P —

Mflops 120}----

- g g W

cmdecmeermedec e e mrdeccccccclaccceaRclcnnnnnaa

100 f----cfrmmmm e

1)) SN ERR VA

(111 A A NP

i i S gy

) T S S

[}
]
]
t
A

d i e

40 A I
0 128 256 384 512 640 768 896 1024
n

FIG. 17. Reduction to tridiagonal form on CRAY X-MP (1 CPU).

In its simplest form, the main idea of the algorithm may be outlined as follows.
Let T = (3, a;, Bi+1) be the symmetric tridiagonal matrix under consideration, where
we assume that none of its off-diagonal elements 3; vanishes. Assuming that it is of
order 2m, it can be written as,

T= T + Temel, BemeT
Beleg’n T: +7eiel J°

where each T; is tridiagonal of order m, 7 is a “carefully” chosen scalar, and e; is the
ith column of the identity of order m. This in turn can be written as,

T = diag(T}, Ts) + yvv7T

in which the scalar v and the column vector v can be readily derived. Now, we have two
tasks: namely obtaining the spectral decomposition of Ty and Ty, i.e., T; = Q:D;Q7,
i = 1,2, where Q; is an orthogonal matrix of order m and D; is diagonal. Thus, if
Q = diag(Q1,Q2) and D = diag(D1,D3), then T is orthogonally similar to a rank-1

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 67

perturbation of a diagonal matrix, i.e.,
QTQT = D + pz2T,

where p and z are trivially obtained from « and z. The eigenvalues of T are thus the
roots of

#(N) =14 p2T(D = A7z
and its eigenvectors are given by,
U; = T(D — /\iI)_lz,

where 7 = || D — A2

This module may be used recursively to produce a parallel counterpart to Cup-
pen’s algorithm [33] as demonstrated in [49]. For example, if the tridiagonal matrix
T is of order 2¥m, then the algorithm will consist of obtaining the spectral decompo-
sition of 2¥ tridiagonal matrices each of order m, followed by k stages in which stage
Jj consists of applying the above module simultaneously to 25=7 pairs of tridiagonal
matrices in which each is of order 29~ 'm.

If eigenvalues only (or all those lying in a given interval) or selected eigenpairs
are desired, then a bisection-inverse iteration combination is used, e.g., see Wilkinson
and Reinsch [195] or Parlett [141]. Such a combination has been adapted for the Illiac
IV parallel computer, e.g., see [118] and [102], and later for the Alliant FX/8, see
[123]. This modification depends on a multisectioning strategy in which the interval
containing the desired eigenvalues is divided into (p — 1) subintervals where p is the
number of processors. Using the Sturm sequence property we can simultaneously de-
termine the number of eigenvalues contained in each of the (p — 1) subintervals. This
is accomplished by having each processor evaluate the well-known linear recurrence
leading to the determinant of the tridiagonal matrix T' — ul or the corresponding
nonlinear recurrence so as to avoid over- or underflow, e.g., see [141]. This process is
repeated until all the eigenvalues, or clusters of computationally coincident eigenval-
ues, are separated. This “isolation” stage is followed by the “extraction” stage where
the separated eigenvalues are evaluated using a root finder which is a hybrid of pure
bisection and the combination of bisection and the secant methods, namely the ZE-
ROIN procedure due to Brent and Dekker, see [58]. If eigenvectors are desired, then
the final stage consists of a combination of inverse iteration and orthogonalization for
those vectors corresponding to poorly separated eigenvalues.

This scheme proved to be the most effective on the Alliant FX/8 for obtaining all
or few of the eigenvalues only. Compared to its execution time on one CE, it achieves
a speedup of 7.9 on eight CE’s, and is more than four times faster than Eispack’s
TQLL, e.g., see [167] or [195], for the tridiagonal matrix [-1,2,-1] of order 500 with
the same achievable accuracy for the eigenvalues. Even if all the eigenpairs of the
above tridiagonal matrix are required, this multisectioning scheme is more than 13
times faster than the best BLAS2-based version of Eispack’s TQL2, 27 times faster
than Eispack’s pair Bisect and Tinvit, and five times faster than its nearest com-
petitor, parallel Cuppen’s procedure [49], with the same accuracy in the computed
eigenpairs. For matrices with clusters of poorly separated eigenvalues, however, the
multisectioning algorithm may not be competitive if all the eigenpairs are required
with high accuracy. For example, for the well-known Wilkinson matrices Wi,,, e.g.,

68 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

40] 1)) L) 1}
L3S S NS NSRS S SO S
R
| i i BlAS3basd
oS DU NS SOV N OO S VO
Mfops o i
20 }-ceorte- R s oo
B e i
T s T SN S

5 A A A A " "
0 128 256 384 512 640 768 896 1024
n

FIG. 18. Reduction to tridiagonal form on Alliant FX/8.

see [194], which have pairs of very close eigenvalues, the multisectioning method re-
quires roughly twice the time required by the parallel Cuppen’s procedure in order to
achieve the same accuracy for all the eigenpairs.

Further studies by Simon [166] demonstrate the robustness of the above multisec-
tioning strategy compared to other bisection-inverse iteration combinations proposed
in [8]. Also, comparisons between the above multisectioning scheme and parallel Cup-
pen’s algorithm have been given by Ipsen and Jessup on hypercubes [103] indicating
the effectiveness of multisectioning on distributed memory multiprocessors for cases
in which the eigenvalues are not pathologically clustered.

6.1.2. Jacobi and Jacobi-like schemes. An alternative to reduction to a con-
densed form is that of using one of the Jacobi schemes for obtaining all the eigenvalues
or all the eigenvalues and eigenvectors. Work on such parallel procedures dates back to
the Illiac IV distributed memory parallel computer, e.g., see [152]. Algorithms for han-
dling the two-sided Jacobi scheme for the symmetric problem, which are presented in
that work, exploit the fact that independent rotations can be applied simultaneously.
Furthermore, several ordering schemes of these independent rotations are presented
that minimize the number of orthogonal transformations (i.e., direct sum of rotations)
within each sweep. Much more work has been done since on this parallel two-sided

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 69

Jacobi scheme for the symmetric eigenvalue problem. These have been motivated
primarily by the emergence of systolic arrays, e.g., see Brent and Luk [18]. A most
important byproduct of such investigation of parallel Jacobi schemes is a result due
to Luk and Park [126], where they show the equivalence of various parallel Jacobi
orderings to the classical sequential cyclic by row ordering for which Forsythe and
Henrici [57] proved convergence of the method.

Also, in [152] a Jacobi-like algorithm for solving the nonsymmetric eigenvalue
problem due to Eberlein [51], has been modified for parallel computations, primarily
for the Illiac IV. More recent related parallel schemes, aimed at distributed memory
multiprocessors as well, have been developed by Stewart [171] and Eberlein [52] for
the Schur decomposition of nonsymmetric matrices.

Unlike the two-sided Jacobi scheme, for the symmetric eigenvalue problem, the
one-sided Jacobi scheme due to Hestenes [94] requires only accessing of the columns
of the matrix under consideration. This feature makes it more suitable for shared
memory multiprocessors with hierarchical organization such as the Alliant FX /8. This
procedure may be described as follows. Given a symmetric nonsingular matrix A of
order n and columns a;, 1 £ ¢ < n, obtain through an iterative process an orthogonal
matrix V' such that

AV =8

where S has orthogonal columns within a given tolerance. The orthogonal matrix V is
constructed as the product of plane rotations in which each is chosen to orthogonalize
a pair of columns,

(ai,05) (g —cs) = (ds,d5)

where ¢ < j, so that d;7d; = 0 and ||d;]|2 > ||d;]|2. This is accomplished as follows, if

B>0
o= VETIE

s = af(2vc)

otherwise,

s = VAT

c = a/(2vs)

Here, @ = 2aTa;, B = ||a:||3 - ||a;||3, and v = \/a? + 2. Several schemes can be used
to select the order of the plane rotations. Shown below is the pattern for one sweep
for a matrix of order n = 8 an annihilation scheme related to those recommended in
[152],

* ot

* W o Ot

* =N WO

*¥ =3 OO0 = o W

*¥ OUTOY 3 0 = o
* W UTOY =} 00—

70 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

where each sweep consists of n orthogonal transformations each being the direct sum
of no more than |n/2] independent plane rotations. An integer k = 8, for example,
denotes that the column pairs (2,8), (3,7), (4,6) can be orthogonalized simultaneously
by 3 independent rotations. After convergence of this iterative process, usually in a
few sweeps, the matrix V yields a set of approximate eigenvectors from which the
eigenvalues may be obtained via Rayleigh quotients. If the matrix A is positive-
definite, however, then its eigenvalues are taken as the 2-norms of the columns of
S. Note that if A is not known to be nonsingular, we treat the eigenvalue problem
Az = (A+a)z , where A = A+al, with a being the smallest number chosen such that
A is positive definite. On an Alliant FX/8, this Jacobi scheme is faster than algorithms
that depend on tridiagonalization, with the same size residuals, for matrices of size
less than 150 or for matrices that have few clusters of almost coincident eigenvalues.

Finally, a block generalization of the two-sided Jacobi scheme has been considered
by Van Loan [190] and Bischof [13] for distributed memory multiprocessors. The
convergence of cyclic block Jacobi methods has been discussed by Shroff and Schreiber
(165].

6.2. Singular-value problems. Several algorithms have been developed for ob-
taining the singular-value decomposition on vector and parallel computers. The most
robust of these schemes are those that rely first on reducing the matrix to the bidiag-
onal form, i.e., by using the sequential algorithm due to Golub and Reinsch [82]. The
most obvious implementation of the reduction to the bidiagonal form on a parallel
or vector computer follows the strategy suggested by Chan [26]. The matrix is first
reduced to the upper triangular form via the block Householder reduction, suggested
in the previous section, leading to the achievement of high performance. This is then
followed by the chasing of zeros via rotation of rows and columns to yield a bidiagonal
matrix. The application of the subsequent plane rotations has to proceed sequentially
but some benefit due to vectorization can still be realized.

Once the bidiagonal matrix is obtained a generalization of Cuppen’s algorithm
(e.g., see [107]) may be used to obtain all the singular values and vectors. Similarly, a
generalization of the multisectioning algorithm may be used to obtain selected singular
values and vectors.

Luk has used the one-sided Jacobi scheme to obtain the singular-value decom-
position on the Illiac IV [124] and block variations of Jacobi’s method have been
attempted by Bischof on IBM’s LCAP system [13].

For tall and narrow matrices with certain distributions of clusters of singular
values and /or extreme rank deficiencies, Jacobi schemes may also be used to efficiently
obtain the singular-value decomposition of the upper triangular matrix resulting from
the orthogonal factorization via block Householder transformations. The same one-
sided Jacobi scheme discussed above has proved to be most effective on the hierarchical
memory system of the Alliant FX/8. Such a procedure results in a performance that
is superior to the best vectorized version of Eispack’s or LINPACK routines which
are based on the algorithm in [82]. Experiments showed that the block-Householder
reduction and the one-sided Jacobi scheme combination is up to five times faster, on
the Alliant FX/8, than the best BLAS2-version of LINPACK’s routine for matrices
of order 16000 x 128 [12].

7. Rapid elliptic solvers. In this section, we review parallel schemes for rapid
elliptic solvers. We start with the classical Matrix Decomposition (MD), and Block-
Cyclic Reduction (BCR) schemes for separable elliptic P.D.E.’s on regular domains.
This is followed by a Boundary Integral-based Domain Decomposition method for

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 71

handling the Laplace equation on irregular domains that consist of regular domains;
examples of such domains are the right-angle or T-shapes.

Efficient direct methods for solving the finite-difference approximation of the Pois-
son equation on the unit square have been developed by Buneman [20], Hockney [96],
[97], and Buzbee, Golub, and Nielson [22]. The most effective sequential algorithm
combines the block cyclic reduction and Fourier analysis schemes. This is Hockney’s
FACR(]) algorithm [97]. Excellent reviews of these methods on sequential machines
have been given by Swarztrauber [177] and Temperton [182], [183]. In [177] it is shown
that the asymptotic operation count for FACR(I) on an n x n grid is O(n2log,log,n),
and is achieved when the number [of the block cyclic reduction steps preceding Fourier
analysis is taken approximately as (log,logyn). Using only cyclic reduction, or Fourier
analysis, to solve the problem on a sequential machine would require O(n*log,n) arith-
metic operations.

Buzbee [21] observed that Fourier analysis, or the matrix decomposition Pois-
son solver (MD-Poisson solver), is ideally suited for parallel computation. It consists
of performing a set of independent sine transforms, and solving a set of indepen-
dent tridiagonal systems. On a parallel computer consisting of n? processors, with
an arbitrarily powerful interconnection network, the MD-Poisson solver for the two-
dimensional case requires O(log,n) parallel arithmetic steps [160]. It can be shown,
[142] and [173], that a perfect shuffle interconnection network is sufficient to keep the
communication cost to a minimum. Ericksen [55] considered the implementation of
FACR(l), [97], and CORF, [22], on the ILLIAC IV; and Hockney [98] compared the
performance of FACR(l) on the CRAY-1, Cyber-205, and the ICL-DAP.

7.1. A domain decomposition MD-scheme. We consider first the MD-algor-
ithm for solving the 5-point finite difference approximation of the Poisson equation
on the unit square with a uniform n x n grid, where for the sake of illustration we
consider only Dirichlet boundary conditions. The multiprocessor version algorithm
presented below can be readily modified to accommodate Neumann and periodic
boundary conditions.

Using natural ordering of the grid points, we obtain the well-known linear system
of order n?:

T -1 Uy fl

-1 T -I Us f2
~TI T -1 Up—1 Up—1

-1 T Un Un

where T = [—1,4, —1] is a tridiagonal matrix of order n.
This parallel MD-scheme consists of 3 stages [154]:

Stage 1. Each cluster j, 1 < j < 4 (a four cluster Cedar is assumed), forms
the subvectors fi;_1)q+1, f(j—1)q+2," ", fiq Of the right-hand side, where ¢ = n/4.
Next each cluster j obtains §] = (g(j—l)q+1""79}:;), where gr = Qfk, in which
Q = [(2/[n+ 1)) 2sin(Imx/[n+1])}, I,m = 1,2,-- -, n, is the eigenvector matrix of T.
This amounts to performing in each cluster ¢ sine transforms each of length n. Now

72 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

we have the system

M E Uy 91
ET M E U9 _ 92
ET M E ! | 4 |’
ET M N g4
where each cluster memory contains one block row. Here, 13f = (U(T;_l)q+1, e v;r)

with vy = Qug, M = [-I, A, —I,;] is a block tridiagonal matrix of order ¢gn, and

I F o ’}1
G I, F b2 | _ | he
G I, F o3 | | Ay |7
G Iy on by
where fzf = (h6-1)q+1v = -,hJTq), F and G are given by: Mfzj =§;,1<j<4, MF=

E, and MG = ET. Observing that M consists of n independent tridiagonal matrices
Ti = [-1, Ak, —1] each of order q, where A\y = 4 — 2cos(kn/[n +1]), k = 1,2,--+,n,
the right-hand side of the above system is obtained by solving in each cluster j the n
independent systems

Tyry = sk,

for k = 1,2,---,n, where éTs;, = efg(j_l),ﬁ_i, and éTry = efh(j_l)q“, for i =
1,2,---,q,and 1 £ j < 4. Here, é; and e; are the ith columns of I; and I,, respectively.

The matrices F' and G can be similarly obtained by solving, in each cluster j,
the independent systems Txcy = é;, and Tidy = éq, for k = 1,2,---,n. Since T} is
a Toeplitz matrix, however, we have ¢, = Jdi, where J = [ég,- -, é;], see [111] for
example. As a result, in order to obtain F' and G we need only solve in each cluster
the n systems Tidy = ég, k = 1,2,--,n. Hence, F and G are of the form,

r, o
F={: |
ry o
and
0 I,
G= ,
0 Ty
= _J; W . Sm)y ; (k) _ 4T o
where I'; = —diag(y; ’,---,%), in which ;' = élcy, for i = 1,2,---,¢, and
k=1,2,--- n.

Stage 2. From the structure of (7.1) it is seen that the three pairs of n equations
above and below each partition are completely decoupled from the rest of the n?

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 73

equations [161]. This reduced system, of order 6n, consists of interlocking blocks of
the form:

I, Ty 0 0

r I, 0 T,
r, 0 I, I 0 0
r, I, 0 T,
r, o I, T,
FlIn

This system, in turn, comprises n independent pentadiagonal systems each of order
6, which can be solved in a very short time.

Stage 3. Now, that the subvectors vkq, vkgy1, k = 1,2,3, are available, each
cluster j obtains

Vi-1yg+i = P—1)gts = (Tav-1)g + Tgmit1v5941)

for i = 2,3,---,9 — 1, where vg = vgqy1 = 0. Finally, each cluster j retrieves the
q subvectors ugj_1yg1i = QU(j—1)q4i, for ¢ = 1,2,---,¢, of the solution via ¢ sine
transforms, each of length n.

Note that one of the key computational kernels in this algorithm is the calculation
of multiple sine transformations. In order to design an efficient version of this kernel
it is necessary to perform an analysis of the influence of the memory hierarchy similar
to that presented above for the block LU algorithm. Such an analysis is contained in
[74].

7.2. A modified block cyclic reduction. The discretization of the separable

elliptic equation
0%u du 2y

(16) ofz) g +e) s +elahu+ G = @)
with Dirichlet boundary conditions and a five-point stencil on a naturally ordered
nxm grid defined on a rectangular region leads to a system of the form .Au = f. In this
case A is the n block tridiagonal matrix diag{—1I, A, —I], where A, I are respectively
tridiagonal and identity matrices of order m. Block cyclic reduction (BCR) dates
back to the work of Hockney and was presented in [22] in its stabilized form due to
Buneman. The work in [176], [178], [180] resulted in the development of FISHPAK,
a package based on BCR for the solution of (16) and extensions thereof. BCR is a
rapid elliptic solver (RES) having sequential computational complexity O(nm logn).
Assuming that n = 2¥ — 1, the idea of the method for reduction steps r = 1,--- , k-1
is to combine the current 2¥~"+1 — 1 vectors into 2577 — 1 ones, and then solve a
system of the form

Par-1 (A)X =Y

where Y € ®™*(2*”7"=1) and py.—1(A) is a Chebyshev polynomial of degree 27! in
A. Since its roots /\I(T—l) are known, it can be written in product form, where each
factor is tridiagonal. Hence the system to be solved becomes

or—1
(17) [TA=A""Dfal - [mymr o) = o]+ s 1)

i=1

74 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

12] 1 1 1 1 1
; i : : : ;
E : Standard BCR "‘E
: : : : v
: : : ! Lo
10f------ i A i bt phil SRl
: : : : Lo
SR
: ' ' : Y S
: ! : ! H :
Py SR LS KIS e e At
Y
: : : Y &1 :
A
! : ! oA :
Time (sec) 6f------ jee qmmees [y St A
: ; : A i
; i : ff : E
T S L T
: : O : !
: ; / { Parallel BCR
2f-mm-e- S Y A SR e L.
' ' I. ' ' |
:/:/- : ' ' :
0 ' H : I

0 50 100 150 200 250 300
Number of blocks n

FIG. 19. Parallel and standard BCR on n x n grid on Alliant FX/8.

Clearly as r increases, the effectiveness of a parallel or vector machine to handle (17)
decreases rapidly.

A parallel version of BCR was recently discovered [70], [181]. In summary, the
method is based in expressing the matrix rational function [pyr—1(A)]~! as a partial

fraction, i.e., as a linear combination of the 2"~ components (4 — /\1(7‘_1)1)“1

2r~l

(18) [za]-+Jzgr-ra] = Y ol TV A = ATTID T | - fygrera):
i=1

Coefficients a§r_l) are equal to 1/ (p’zr_,(AET_l))) and can be derived analytically.
Figure 19 shows the performance of the parallel and standard BCR on the Alliant

FX/8.

For a discussion of parallel BCR on distributed memory machines see [73], [179].
Partial fraction decomposition can also be applied to the parallel solution of parabolic
equations. See [71], [72] for details.

7.3. Boundary integral domain decomposition. A new method (BIDD)
was recently proposed for the solution of Laplace’s equation [68], [69]. The method is

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 75

characterized by the decoupling of the problem into independent subproblems on sub-
domains. An approximation 4 to the solution u is sought as a finite linear combination
of N fundamental solutions [128] ¢;(z) = —5= log |z — w;| of V?u =0:

N
(19) i(z) = Y 0365(2)

For a given set of N points w; lying outside the domain, o € RY is computed to
minimize ||g — Go||, for some norm p. G € >V is the influence matrix consisting
of fundamental solutions based at w; for each boundary point. g € R consists of
boundary values for u. Once ¢ has been computed, the solution at any g points
on the domain is & = Ho, with H € ®**N being the influence matrix for the p
points. Choosing these u points to be subdomain boundary points, we can compute
the solution by applying the elliptic solvers most suitable for each subdomain.

REFERENCES

[1] IBM Engineering and Scientific Subroutine Library Guide and Reference, IBM, 1986.

[2] R. AGARWAL AND F. GUSTAVSON, A parallel implementation of matriz multiplication and
LU factorization on the IBM 3090, in Aspects of Computation on Asynchronous Parallel
Processors, M. H. Wright, ed., North-Holland, Amsterdam, 1989, pp. 217-221.

[3] A.AGGARWAL, B. ALPERN, A. CHANDRA, AND M. SNIR, A model for hierarchical memory,
in Proc. 19th ACM Symp. Theory of Computing, 1987, pp. 305-314.

[4] H. AHMED, J. DELOSME, AND M. MORPH, Highly concurrent computing structures for
matriz arithmetic and signal processing, Computing, 15 (1982), pp. 65-82.

[5] J. ARMSTRONG, Algorithm and performance notes for block LU factorization, in Proc. Intl.
Conf. Par. Processing, D. Bailey, ed., IEEE Computer Society Press, 1988, pp. 161-164.

(6] Z. BAI AND J. DEMMEL, On a block implementation of Hessenberg multishift QR iterations,
Tech. Rep., Courant Institute of Mathematical Sciences, New York University, New York,
1988.

(7] D. BAILEY, Ezira high speed matriz multiplication on the CRAY-2, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 603-607.

{8] H. BERNSTEIN AND M. GOLDSTEIN, Optimizing Givens’ algorithm for multiprocessors,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 601-602.

[9] M. BERRY, K. GALLIVAN, W. HARROD, W. JALBY, S. LO, U. MEIER, B. PHILIPPE, AND
A. SAMEH, Parallel numerical algorithms on the Cedar system, in CONPAR 86, Lecture
Notes in Computer Science, W. Handler et al., eds., Springer-Verlag, Berlin, 1986.

{10] M. BERRY AND R. PLEMMONS, Algorithms and ezperiments for structural mechanics
on high performance architectures, Comput. Methods Appl. Mech. Engrg., 64 (1987),
pp. 487-507.

[11] M. BERRY AND A. SAMEH, Multiprocessor schemes for solving block tridiagonal linear
systems, Intl. J. Supercomputer Appl., 2 (1988), pp. 37-57.

, Parallel algorithms for the singular value and dense symmetric eigenvalue problems,
Tech. Rep. CSRD Rept. 761, Center for Supercomputing Research and Development,
University of Illinois, Urbana, IL, 1988.

[13] C. BISCHOF, Computing the singular value decomposition on a distributed system of vector
processors, Tech. Rep. TR86-798, Dept. of Computer Science, Cornell University, Ithaca,
NY, 1986.

, A pipelined block QR decomposition algorithm, in Proc. of Third SIAM Conf. on Par.
Processing for Scientific Computing, G. Rodrigue, ed., Society for Industrial and Applied
Mathmatics, Philadelphia, 1988.

[(15] ——, QR factorization algorithms for coarse-grained distributed systems, Tech. Rep. TR
88-939, Dept. of Computer Science, Cornell University, Ithaca, NY, 1988.

[16] C. BISCHOF AND C. VAN LOAN, The WY representation for products of Householder ma-
trices, SIAM J. Sci. Statist. Comput., 8 (1987), pp. s2-s13.

(12]

[14)

(20}
[21]
[22)

(23]

[24]
[25)
[26]
[27)
28]
[29]
[30]

(31]

132]
[33]
[34]

(35]

136]
137)
[38]

(39]

(40]

f41]
[42]

(43]

K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

A. BOJANGZYK, R. BRENT, AND H. KUNG, Numerically stable solution of dense systems
of linear equations using mesh-connected processors, SIAM J. Sci. Statist. Comput., 5
(1984), pp. 95-104.

R. BRENT AND F. LUK, The solution of singular-value and symmetric eigenvalue problems
on multiprocessor arrays, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 69-84.

O. BRONLUND AND T. L. JOHNSEN, QR-factorization of partitioned matrices, Comput.
Methods Appl. Mech. Engrg., 3 (1974), pp. 153-172.

O. BUNEMAN, A compact non-iterative Poisson solver, Tech. Rep. Report 294, Stanford
University Institute for Plasma Research, Stanford, CA, 1969.

B. BUZBEE, A fast Poisson solver amenable to parallel computation, IEEE Trans. Comput.,
C-22 (1973), pp. 793-796.

B. BUZBEE, G. GOLUB, AND C. NIELSON, On direct methods for solving Poisson’s equation,
SIAM J. Numer. Anal., 7 (1970), pp. 627-656.

D. CALAHAN, Block-oriented local-memory-based linear equation solution on the CRAY-2:
uniprocessor algorithms, in Proc. Intl. Conf. Par. Processing, IEEE Computer Society
Press, New York, 1986, pp. 375-378.

D. CALAHAN, W. AMES, AND E. SESEK, A collection of equation solving codes for the
CRAY-1, Tech. Rep. SEL 133, University of Michigan, Ann Arbor, MI, 1979.

R. CHAMBERLAIN AND M. POWELL, QR factorization for linear least squares on the hy-
percube, Tech. Rep. CCS 86/10, Chr. Michelsen Institute, Bergen, Norway, 1986.

T. CHAN, An improved algorithm for computing the singular value decomposition, ACM
Trans. Math. Software, 8 (1982}, pp. 72-83.

S. CHEN, D. KUGK, AND A. SAMEH, Practical parallel band triangular system solvers, ACM
Trans. Math. Software, 4 (1978), pp. 270-277.

E. CHU AND A. GEORGE, Gaussian elimination with partial pivoting end load balancing on
a multiprocessor, Parallel Comput., 5 (1987), pp. 65-74.

, A balanced submatriz merging algorithm for multiprocessor architectures, Tech.

Rep. CS-88-45, Faculty of Mathematics, University of Waterloo, Waterloo, Canada, 1988.

, QR factorization of a dense matriz on a hypercube multiprocessor, Tech.

Rep. ORNL/TM-10691, Oak Ridge National Lab., Oak Ridge, TN, 1988.

, Updating and downdating the inverse of a Cholesky factor on a hypercube multiproces-
sor, Tech. Rep. CS-88-46, Dept. of Computer Science, University of Waterloo, Waterloo,
Canada, 1988.

M. COSNARD, J. MULLER, AND Y. ROBERT, Parallel QR decomposition of a rectangular
niatriz, Numer. Math., 48 (1986), pp. 239-249.

J. CUPPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem, Nu-
mer. Math., 36 (1981), pp. 177-195.

T. DEKKER AND W. HOFFMAN, Rehabilitation of the Gauss-Jordan algorithm, Tech.
Rep. TR86-28, Dept. of Mathematics, University of Amsterdam, Amsterdam, 1986.

J. DEMMEL, J. DONGARRA, J. D. CROZ, A. GREENBAUM, S. HAMMARLING, AND
D. SORENSEN, Prospectus for the development of a linear algebra library for high-
performance computers, Tech. Rep. TM-97, Mathematics and Computer Science Div.,
Argonne National Laboratory, Argonne, IL, 1987.

G. DIETRICH, A new formulation of the hypermatriz Householder-QR decomposition, Com-
put. Methods Appl. Mech. Engrg., 9 (1976), pp. 273-280.

J. DONGARRA, Workshop on the Level 3 BLAS, Tech. Rep. TM-89, Mathematics and Com-
puter Science Div., Argonne National Laboratory, Argonne, IL, 1987.

J. DONGARRA, J. BUNCH, C. MOLER, AND G. W. STEWART, LINPACK User’s Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

J. DONGARRA, J. D. CrROZ, I. DUFF, AND S. HAMMARLING, A proposal for a set of Level 3
basic linear algebra subprograms, Tech. Rep. TM-88, Mathematics and Computer Science
Div., Argonne National Laboratory, Argonne, IL, 1987.

J. DONGARRA, J. D. CROZ, S. HAMMARLING, AND R. HANSON, A proposal for an extended
set of Fortran basic linear algebra subprograms, Tech. Rep. TM-41, Mathematics and
Computer Science Div., Argonne National Laboratory, Argonne, IL, 1984.

J. DONGARRA AND S. EISENSTAT, Squeezing the most out of an algorithm in CRAY For-
tran, ACM Trans. Math. Software, 10 (1984), pp. 219-230.

J. DONGARRA, F. GUSTAVSON, AND A. KARP, Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine, SIAM Rev., 26 (1984), pp. 91-112.

J. DONGARRA, S. HAMMARLING, AND L. KAUFMAN, Squeezing the most out of eigenvalue
solvers on high-performance computers, Tech. Rep. TM-46, Mathematics and Computer
Science Div., Argonne National Laboratory, Argonne, IL, 1985.

(44)

(50]

(53]

(54]

[55]

(56]
(57]
(58]

(59]

(65]

[66]

(67]

(68]

(69]

J.

J.

J.

I

P

L

@ o o =

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 77

DONGARRA, S. HAMMARLING, AND D. SORENSEN, Block reduction of matrices to con-
densed form for eigenvalue computations, Tech. Rep. TM-99, Mathematics and Computer
Science Div., Argonne National Laboratory, Argonne, IL, 1987.

DONGARRA AND T. HEWITT, Implementing dense linear algebra algorithms using mul-
titasking on the CRAY X-MP/4, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 347-350.

. DONGARRA AND L. JOHNSSON, Solving banded systems on a parallel processor, Parallel

Comput., 5 (1987), pp. 219-246.

DONGARRA AND A. SAMEH, On some parallel banded system solvers, Parallel Comput.,
1 (1984), pp. 223-235.

DONGARRA, A. SAMEH, AND D. SORENSEN, Implementation of some concurrent algo-
rithms for matriz factorization, Parallel Comput., 3 (1986), pp. 25-34.

. DONGARRA AND D. SORENSEN, A fully parallel algorithm for the symmetric eigenvalue

problem, SIAM J. Sci. Statist. Comput., 8 (1987}, pp. s139-s154.

. Du CRroZ, S. NUGENT, J. REID, AND D. TAYLOR, Solving large full sets of linear

equations in a paged virtual store, ACM Trans. Math. Software, 7 (1981), pp. 527-536.
. EBERLEIN, A Jacobi-like method for the automatic computation of eigenvalues and eigen-
vectors of an arbitrary matriz, J. Soc. Indust. Appl. Math., 10 (1962), pp. 74-88.
, On the Schur decomposition of a matriz for parallel computation, IEEE Trans. Com-
put., C-36 (1987), pp. 167-174.

. EISENSTAT, M. HEATH, C. HENKEL, AND C. ROMINE, Modified cyclic algorithms for

solving triangular systems on distributed memory multiprocessors, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 589-600.

. ELDEN, A parallel QR decomposition algorithm, Tech. Rep. Lith-MAT-R-1988-02, Linkop-
ing University, Linkoping, Sweden, 1987.

. ERICKSEN, lterative and direct methods for solving Poisson’s equation and their adaptabil-

ity to Illiac IV, Tech. Rep. CAC Doc. 60, Center for Advanced Computations, University
of llinois, Urbana, IL, 1972.

FONG AND T. JORDAN, Some linear algebra algorithms and their performance on CRAY-
1, Tech. Rep. LA-6774, Los Alamos National Laboratory, Los Alamos, NM, 1977.
FORSYTHE AND P. HENRICI, The cyclic Jacobi method for computing the principal
values of a complex matriz, Trans. Amer. Math. Soc., 94 (1960), pp. 1-23.

FORSYTHE, M. MALCOLM, AND C. MOLER, Computer Methods for Mathematical Com-
putations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

Fox, Domain decomposition in distributed and shared memory environments, in Lecture
Notes in Comput. Sci. 297: Proc. 1987 Intl. Conf. Supercomputing, Springer-Verlag,
Berlin, 1987, pp. 1042-1073.

. Fox, M. JOHNSON, G. LYZENGA, S. OTTO, J. SALMON, AND D. WALKER, Solving

Problems on Concurrent Processors, Vol. 1, Prentice-Hall, Englewood Cliffs, NJ, 1988.

G. FOX, S. OTTO, AND A. HEY, Matriz algorithms on a hypercube 1: matrix multiplication,

K.

K.

K.

K

Parallel Comput., 4 (1987), pp. 17-31.

. FOX, E. GOODWIN, J. MICHEL, F. OLVER, AND J. WILKINSON, Modern Computing

Methods, First edition, Philosophical Library, New York, 1961.

GALLIVAN, D. GANNON, AND W. JALBY, Strategies for cache and local memory manage-
ment by global program transformation, J. Parallel Dist. Computing, 5 (1988), pp. 587—
616.

GALLIVAN, D. GANNON, W. JALBY, A. MALONY, AND H. WIJSHOFF, Behavioral
characterization of multiprocessor memory systems, in Proc. 1989 ACM SIGMETRICS
Conf. on Measuring and Modeling Computer Systems, ACM Press, New York, 1989,
pp- 79-89.

GALLIVAN, W. JALBY, A. MALONY, AND H. WIJSHOFF, Performance prediction of
loop constructs on multiprocessor hierarchical memory systems, in Proc. 1989 Intl. Conf.
Supercomputing, ACM Press, New York, 1989, pp. 433-442.

. GALLIVAN, W. JALBY, AND U. MEIER, The use of BLAS3 in linear algebra on e parallel

processor with a hierarchical memory, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 1079-
1084.

K. GALLIVAN, W. JALBY, U. MEIER, AND A. SAMEH, Impact of hierarchical memory sys-

tems on linear algebra algorithm design, Intl. J. Supercomputer Appl., 2 (1988), pp. 12-48.
Presented at the Level 3 BLAS Workshop, Argonne National Laboratory, January 1987.
. GALLOPOULOS AND D. LEE, Boundary integral domain decomposition on hierarchical
memory multiprocessor, in Proc. 1988 Intl. Conf. Supercomputing, ACM Press, New
York, 1988, pp. 488-499.
, Fast Laplace solver by boundary integral-based domain decomposition, in Proc. of

78 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

Third SIAM Conf. on Par. Processing for Scientific Computing, G. Rodrigue, ed., Society
for Industrial and Applied Mathematics, Philadelphia, 1988.

[70] E. GALLOPOULOS AND Y. SAAD, Parallel block cyclic reduction algorithm for the fast
solution of elliptic equations, Parallel Comput., 10 (1989), pp. 143-160. Also presented
at 1987 Int’l. Conf. on Supercomputing, Athens, Greece.

, Efficient parallel solution of parabolic equations: explicit methods, Tech. Rep., Cen-

ter for Supercomputing Research and Development, University of Illinois, Urbana, IL,

June 1989. To be presented at the Fourth SIAM Conf. Parallel Processing for Scientific

Computing.

, Efficient parallel solution of parabolic equations: implicit methods, Tech. Rep., Cen-

ter for Supercomputing Research and Development, University of Illinois, Urbana, IL,

June 1989. To be presented at the Fourth SIAM Conf. Parallel Processing for Scientific

Computing.

, Some fast elliptic solvers for parallel architectures and their complezities, Int’l. J.
High Speed Comput., 1 (May 1989), pp. 113-141.

[74] D. GANNON AND W. JALBY, The influence of memory hierarchy on algorithm organization:
programming FFTs on a vector multiprocessor, in The Characteristics of Parallel Algo-
rithms, L. Jamieson, D. Gannon, and R. Douglass, eds., MIT Press, Cambridge, 1987,
pp. 277-301.

[75] D. GANNON, W. JALBY, AND K. GALLIVAN, On the problem of optimizing data transfers
for complex memory systems, in Proc. 1988 Intl. Conf. Supercomputing, ACM Press,
New York, 1988, pp. 238-253.

[76] D. GANNON AND J. VAN ROSENDALE, On the impact of communication complezity on the
design of parallel numerical algorithms, IEEE Trans. Comput., C-33 (1984), pp. 1180~
1195.

[77] A. GEIST AND M. HEATH, Parallel Cholesky factorization on a hypercube multiprocessor,
Tech. Rep. ORNL-6190, Oak Ridge National Laboratory, Oak Ridge, TN, 1985.

, Matriz factorization on a hypercube, in Hypercube Multiprocessors 1986, M. T. Heath,
ed., Society for Industrial and Applied Mathematics, Philadelphia, 1986, pp. 161-180.

[79] A. GEIST AND C. ROMINE, LU factorization algorithms on distributed memory multiproces-
sor architectures, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 639-649.

(80] W. GENTLEMAN AND H. T. KUNG, Mairiz triangularization by systolic arrays, in Proc.
SPIE 298, Real Time Signal Processing, San Diego, CA, 1981, pp. 19-26.

[81] G. GOLUB, R. PLEMMONS, AND A. SAMEH, Parallel block schemes for large-scale least
squares computations, in High Speed Computing, Scientific Applications and Algorithm
Design, R. Wilhelmson, ed., University of Illinois Press, Urbana, IL., 1988, pp. 180-195.

[82) G. GOLUB AND C. REINSCH, Singular velue decomposition and least squares solutions,
Numer. Math., 14 (1970), pp. 403-420.

[83] G. GOLUB AND C. VAN LOAN, Mairiz Computations, The Johns Hopkins University Press,
Baltimore, 1983.

[84] F. GUSTAVSON, private communication.

[85] W. HARROD, Programming with the BLAS, in The Characteristics of Parallel Algorithms,
L. Jamieson, D. Gannon, and R. Douglass, eds., MIT Press, Cambridge, 1987, pp. 253—
276.

, A block scheme for reduction to condensed form, Tech. Rep. CSRD Rept. 696, Center
for Supercomputing Research and Development, University of Illinois, Argonne, IL, 1988.

[87) P. HARTEN, private communication.

[88] M. HEATH, Paraliel Cholesky factorization in message passing multiprocessor environments,
Tech. Rep. ORNL-6150, Oak Ridge National Lab., Oak Ridge, TN, 1985.

[89] M. HEATH AND C. ROMINE, Parallel solution of triangular systems on distributed memory
multiprocessors, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 558-588.

[90] D. HELLER, Some aspects of the cyclic reduction algorithm for block tridiagonal linear sys-
tems, SIAM J. Numer. Anal., 13 (1976), pp. 484-496.

, A survey of parallel algorithms for numerical linear algebra, SIAM Rev., 20 (1978),
pp. 740-777.

[92] C. HENKEL, M. HEATH, AND R. PLEMMONS, Cholesky downdating on a hypercube, in
Hypercube Multiprocessors 1988, G. Fox, ed., ACM Press, New York, 1988, pp. 1592-
1598.

[93] C. HENKEL AND R. PLEMMONS, Recursive least squares on a hypercube multiprocessor
using the covariance factorization, Tech. Rep., Dept. Computer Science, North Carolina
State University, Raleigh, NC, 1988. SIAM J. Sci. Statist. Comput., 11 (1990), to appear.

[94] M. HESTENES, Inversion of matrices by biorthogonalization and related results, J. Soc. In-

(74

(72]

(73]

(78]

(86]

(91]

[100]
[101]

(102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

(111]
[112]

[113]

[114]

[115]

[116]
(17

[118]
[119]
[120]

[121]

PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 79

dust. Appl. Math., 6 (1958), pp. 51-90.

N. HIGHAM, Ezploiting fast matriz multiplication with the Level 3 BLAS, Tech. Rep. TR
89-984, Dept. of Computer Science, Cornell University, Ithaca, NY, 1989.

R. HOCKNEY, A fast direct solution of Poisson’s equation using Fourier analysis, JACM, 12
(1965), pp. 95-113.

, The potential calculation and some applications, Methods Comput. Phys., 9 (1970),

pp. 135-211.

, Optimizing the FACR(1) Poisson solver on parallel computers, in Proc. Intl. Conf.

Par. Processing, IEEE Computer Society Press, New York, 1982.

, Problem related performance parameters for supercomputers, in Performance Evalu-
ation of Supercomputers, J. Martin, ed., Elsevier Science Publishers B.V., Amsterdam,
1988, pp. 215-235.

R. HOCKNEY AND C. JESSHOPE, Parallel Computers, First edition, Adam Hilger, Bristol,
1981.

J. HONG AND H. T. KUNG, I/O complezity: the red-blue pebble game, in Proc. 13th ACM
Symp. Theory of Computing, 1981, pp. 326-333.

H. HUANG, A parallel algorithm for symmetric tridiagonal eigenvalue problems, Tech.
Rep. CAC Doc. 109, Center for Advanced Computation, University of Illinois, Urbana,
IL, 1974.

[. IPSEN AND E. JESSUP, Solving the symmelric tridiagonal eigenvalue problem on the
hypercube, Tech. Rep. RR-548, Dept. of Computer Science, Yale University, New Haven,
CT, 1987.

I. IPSEN, Y. SAAD, AND M. SCHULTZ, Complezity of dense linear system solution on a
maultiprocessor ring, Linear Algebra Appl., 77 (1986), pp. 205-239.

W. JALBY AND U. MEIER, Optimizing matriz operations on a parallel mulitprocessor with a
hierarchical memory system, in Proc. Intl. Conf. Par. Processing, IEEE Computer Society
Press, New York, 1986, pp. 429-432.

W. JALBY AND B. PHILIPPE, Loss of orthogonality in a Gram-Schmidt process, Tech. Rep.,
IRISA, Rennes, France, 1987.

E. JESSUP AND D. SORENSEN, A parallel algorithm for computing the singular value de-
composition of a matriz, Tech. Rep. TM-102, Mathematics and Computer Science Div.,
Argonne National Laboratory, Argonne, IL, 1987.

L. JOHNSSON, Solving narrow banded systems on ensemble architectures, ACM Trans. Math.
Software, 11 (1985), pp. 271-288.

, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Statist. Comput.,
8 (1987), pp- 354-392.

L. JOHNSSON AND C. T. Ho, Algorithms for multiplying matrices of arbitrary shapes using
shared memory primitives on Boolean cubes, Tech. Rep. YALEU/DCS/TR-569, Dept.
Computer Science, Yale University, New Haven, 1987.

T. KAILATH, A. VIEIRA, AND M. MORF, Inversion of Toeplitz operators, innovations and
orthogonal polynomials, SIAM Rev., 20 (1978), pp. 106-119.

C. KATHOLI AND B. SUTER, QR factorization of a rectangular matriz, Tech. Rep. TR88-07,
University of Alabama at Birmingham, Birmingham, AL, 1988.

S. KIM, D. AGRAWAL, AND R. PLEMMONS, Recursive least squares filtering for signal pro-
cessing on distributed memory multiprocessors, Tech. Rep., Dept. of Computer Science,
North Carolina State University, Raleigh, NC, 1988. Inter. J. Parallel Proc. (1990), to
appear.

M. KNOWLES, B. OKAWA, Y. MURAOKA, AND R. WILHELMSON, Matriz operations on
ILLIAC IV, Tech. Rep. ILLIAC IV Doc. 118, Dept. of Computer Science, University of
Illinois, Urbana, IL, 1967.

D. Kuck, ILLIAC IV software and application programming, IEEE Trans. Comput., C-17
(1968), pp. 758-770.

, The Structure of Computers and Computations, Vol. 1, John Wiley, New York, 1978.

D. Kuck, E. DAVIDSON, D. LAWRIE, AND A. SAMEH, Parallel supercomputing today and
the Cedar approach, Science, 231 (1986), pp. 967-974.

D. KUCK AND A. SAMEH, Parallel computations of eigenvalues of real matrices, in Proc.
IFIP Congress 1971, North-Holland, Amsterdam, 1972, pp. 1266- 1272.

D. LAWRIE, Access and alignment of data in an array processor, IEEE Trans. Comput., C-24
(1975), pp. 1145-1155.

D. LAWRIE AND A. SAMEH, The computations and communication complezity of a parallel
banded system solver, ACM Trans Math. Software, 10 (1984), pp. 185-195.

C. LAWSON, R. HANSON, D. KINCAID, AND F. KROGH, Basic linear algebra subprograms

80

[122]
(123]
(124]
(125]
[126]
(127]
128]
(129]
(130]
(131]
(132]
(133]
[134)

[135]

[136]
(137]
(138]
[139]
(140]
[141]
[142]
[143]
[144]

(145]

[146]

[147]

(148]

[149]

K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

for Fortran use, ACM Trans. Math. Software, 5 (1979}, pp. 308-323.

G.L1 ANDT. COLEMAN, A parallel triangular solver on a distributed memory multiprocessor,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 485-502.

S. Lo, B. PHILIPPE, AND A. SAMEH, A maultiprocessor algorithm for the symmetric tridi-
agonal eigenvalue problem, SIAM J. Sci. Statist. Comput., 8 (1987), pp. s155-s165.

F. LUK, Computing the singular value decomposition on the Illiac IV, ACM Trans. Math.
Software, 6 (1980), pp. 524-539.

, A rotation method for computing the QR decomposition, SIAM J. Sci. Statist. Com-
put., 7 (1987), pp. 452-549.

F. LUK AND H. PARK, A proof of convergence for two parallel Jacobi SVD algorithms, 1987.
IEEE Trans. Comput., to appear.

N. MADSEN, G. RODRIGUE, AND J. KARUSH, Mairiz multiplication by diagonals on e
vector/parallel processor, Inform. Process. Lett., 5 (1976), pp. 41-45.

R. MATHON AND R. JOHNSTON, The approzimate solution of elliptic boundary-value prob-
lems by fundamental solutions, SIAM J. Numer. Anal., 14 (1977), pp. 638-650.

O. MCBRYAN AND E. VAN DE VELDE, Hypercube algorithms and implementations, SIAM
J. Sci. Statist. Comput., 8 (1987), pp. s227-s287.

J. MCCOMB AND S. SCHMIDT, Engineering and scientific library for the IBM 3090 vector
facility, IBM Systems Journal, 27 (1988), pp. 404-415.

A. MCKELLAR AND E. COFFMAN JR., Organizing matrices and matriz operations for paged
memory systems, Comm. ACM, 12 (1969), pp. 153-165.

U. MEIER, A parallel partition method for solving banded systems of linear equations, Parallel
Comput., 2 (1985), pp. 33-43.

W. MIRANKER, A survey of parallelism in numerical analysis, SIAM Rev., 13 (1971),
pPp- 524-547.

J. MODI AND M. CLARKE, An alternative Givens ordering, Numer. Math., 43 (1984), pp. 83-
90.

C. MOLER, Matriz computations on distributed memory multiprocessors, in Hypercube Mul-
tiprocessors 1986, M. T. Heath, ed., Society for Industrial and Applied Mathematics,
Philadelphia, 1986, pp. 181-195.

C. MOLER AND G. W. STEWART, An algorithm for generalized matriz eigenvelue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241-256.

J. ORTEGA, Introduction to Parallel and Vector Solution of Linear Systems, Plenum, New
York, 1988.

J. ORTEGA AND R. VOIGT, Solution of partial differential equations on vector and parallel
computers, SIAM Rev., 27 (1985), pp. 149-240.

J. ORTEGA, R. VOIGT, AND C. ROMINE, A bibliography on parellel and vector numerical
algorithms, Tech. Rep. ORNL/TM-10998, Oak Ridge National Laboratory, Oak Ridge,
TN, 1989.

C. PAN AND R. PLEMMONS, Least squares modifications with inverse factorizations: parallel
implications, Tech. Rep., Dept. of Computer Science, North Carolina State University,
Raleigh, NC, 1987. Comput. Appl. Math., to appear.

B. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

M. PEASE, An adaption of the fast Fourier transform for parallel processing, JACM, 15
(1968), pp. 252-264.

G. PETERS AND J. WILKINSON, On the stability of Gauss-Jordan elimination with pivoting,
Comm. ACM, 18 (1975), pp. 20-24.

R. PLEMMONS, A parallel block scheme applied to computations in structural analysis, SIAM
J. Algebraic Discrete Methods, 7 (1986), pp. 337-347.

R. PLEMMONS AND R. WHITE, Substructuring methods for computing the nullspace of
equilibrium matrices, Tech. Rep., Center for Research in Sci. Comp., North Carolina
State University, Raleigh, NC, 1988.

R. PLEMMONS AND S. WRIGHT, An efficient parallel scheme for minimizing a sum of
Euclidean norms, Linear Algebra Appl., 121 (1989), pp. 71-85.

A. POTHEN AND P. RAGHAVAN, Orthogonal factorization on a distributed memory multi-
processor, Tech. Rep. CS-87-24, Pennsylvania State University, Computer Science Dept.,
University Park, PA, 1987.

A. POTHEN, J. SOMESH, AND U. VEMULAPATI, Orthogonal factorization on a distributed
memory multiprocessor, in Hypercube Multiprocessors 1987, M. T. Heath, ed., Society
for Industrial and Applied Mathematics, Philadelphia, 1987, pp. 587-596.

G. RADICATI, Y. ROBERT, AND P. SGUAZZERO, Dense linear systems Fortran solvers on
the IBM 3090 vector multiprocessor, Parallel Comput., 8 (198{3), pp- 377-384.

38 Introduction to Matrix Analysis
(recalling once again the orthogonality of the z,),
M

-

0
A2

B Ay |

The matrix on the right-hand side has as its main diagonal the charae-
teristic values Ay, A3, . . . , Av, and zeros every place else. A matrix of
this type is, as earlier noted, called a diagonal matrix.

Multiplying on the right by T” and on the left by T, and using the fact
that TT’ = I, we obtain the important result

r~. -

A\
0
A2

A=T - T)

An

This process is called reduction to diagonal form. As we shall see, this
representation plays & fundamenta! role in the theory of symmetric
matrices. Let us use the notation

. —

A

A2
A= g ®)

v

EXERCISES

1. Show that A* = (A\%3;;), and that A* = TAT", for k = 1, 2,

2. Show that if A has distinct characteristic roots, then 4 satlsﬁes 1ts own charac-
teristic equation. This is a particular case of a more general result we shall establish
later on.

3. If A has distinct characteristic roots, obtain the set of characteristic vectors
associated with the characteristic roots of A%, k = 2,3, .

82 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

[179) ———, Vector and parallel methods for the direct solution of Poisson’s equation, J. Comput.
Appl. Math., 27 (1989), pp. 241-263.

[180] R. SWEET, A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary
dimension, SIAM J. Numer. Anal., 14 (1977), pp. 707-720.

, A parallel and vector variant of the cyclic reduction algorithm, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 761-765.

[182] C. TEMPERTON, Direct methods for the solution of the discrete Poisson equation: some
comparisons, J. Comput. Phys., 31 (1979), pp. 1-20.

, On the FACR(1} algorithm for the discrete Poisson equation, J. Comput. Phys., 34
(1980), pp. 314-329.

[(184] L. TREFETHAN AND R. SCHREIBER, Average-case stability of Gaussian elimination, Tech.
Rep. RUU-CS-84-7, Dept. of Mathematics, MIT, Cambridge, MA, 1988.

(185] K. TRIVEDI, Prepaging and applications to structured array problems, Tech. Rep. UIUCDCS-
R-74-662, Dept. of Computer Science, University of Illinois, Urbana, IL, 1974.

, On the paging performance of array elgorithms, IEEE Traus. Comput., C-26 (1977),
pp. 938-947.

[187] N. TsSAO, On the accuracy of solving triangular systems in perallel, Tech. Rep. ICOMP-88-19,
NASA Lewis Research Center, Cleveland, OH, 1988.

(188] H. VAN DER VORST, Analysis of a parallel solution method for tridiagonel linear systems,
Parallel Comput., 5 (1987), pp. 303-311.

[189] H. VAN DER VORST AND K. DEKKER, Vectorization of linear recurrence relations, SIAM
J. Sci. Statist. Comput., 10 (1989), pp. 27-35.

[190] C. VAN LOAN, The block Jacobi method for computing the singular value decomposition,
Tech. Rep. TR85-680, Dept. of Computer Science, Cornell University, Ithaca, NY, 1985.

[191] R. VOIGT, The influence of vector computer architecture on numerical algorithms, in High
Speed Computer and Algorithm Organization, D. Kuck, D. Lawrie, and A. Sameh, eds.,
Academic Press, New York, 1977, pp. 229-244.

(192] H. WANG, A parallel method for tridiagonal equations, ACM Trans. Math. Software, 7 (1981),
pp. 170-183.

(193] H. A. G. WIISHOFF, Data Organization in Parallel Computers, Kluwer, Boston, 1989.

[194] J. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[195] J. WILKINSON AND C. REINSCH, Handbook for Automatic Computation: Linear Algebra,
Vol. 2, Springer-Verlag, Berlin, 1971.

[196] C. Q. ZHU AND P. C. YEW, A scheme to enforce data dependences on large multiprocessor
systems, IEEE Trans. Soft. Engrg., SE-13 (1987), pp. 726-739.

[181]

(183]

[186]

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS

MICHAEL T. HEATH*, ESMOND NG* AND BARRY W. PEYTON*

Abstract. In this paper we survey recent progress in the development of parallel algorithms for
solving sparse linear systems on computer architectures having multiple processors. We focus our
attention on direct methods for solving sparse symmetric positive definite systems, specifically by
Cholesky factorization. We survey recent progress on parallel algorithms for all phases of the solution
process, including ordering, symbolic factorization, numeric factorization, and triangular solution.

Key Words. parallel algorithms, sparse linear systems, Cholesky factorization

AMS(MOS) subject classifications. 65F,65W

1. Introduction. Dense matrix computations are of such central importance in
scientific computing that they are usually among the first algorithms implemented in
any new computing environment. The need for high performance on common opera-
tions such as matrix multiplication and solving systems of linear equations has had a
strong influence on the design of many architectures, compilers, etc., and such com-
putations have become standard benchmarks for evaluating the performance of new
computer systems. A survey of parallel algorithms for dense matrix computations
is given in [34]. Sparse matrix computations are equally as important and perva-
sive, but both their performance and their influence on computer system design have
tended to lag those of their dense matrix counterparts. In a sense this relative lack
of attention and success is not surprising: sparse matrix computations involve more
complex algorithms, sophisticated data structures, and irregular memory reference
patterns, making efficient implementations on novel architectures substantially more
difficult to achieve than for dense matrix computations. One could plausibly argue,
however, that the greater complexity and irregularity of sparse matrix computations
make them much more realistic representatives of typical scientific computations, and
therefore even more useful as design targets and benchmark criteria than the dense
matrix computations that have usually played this role.

Despite the difficulty and relative neglect of sparse matrix computations on ad-
vanced computer architectures, there have been some notable successes in attaining
very high performance (e.g., [14]), and the needs of sparse matrix computations have
had some effect on computer design (e.g., the inclusion of scatter/gather instruc-
tions on some vector supercomputers). Nevertheless, it is ironic that sparse matrix
computations contain more inherent parallelism than the corresponding dense ma-
trix computations (in a sense to be discussed below), yet typically show significantly
lower efficiency on today’s parallel architectures. In this paper we will examine the
reasons for this state of affairs, reviewing the major issues and progress to date in
sparse matrix computations on parallel computer architectures. In addition to sur-
veying the literature in this area, we will try to sketch the conceptual framework in
which this work has taken place. To keep the scope of the article within reasonable
bounds, we will focus our attention on the solution of sparse symmetric positive defi-
nite linear systems by Cholesky factorization. There has, of course, also been progress

* Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge,
Tennessee 37831-8083. This research was supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U.S. Department of Energy under contract DE-ACO5-
840R21400 with Martin Marietta Energy Systems Inc.

83

84 M.T. HEATH, E. NG AND B.W. PEYTON

on parallel algorithms for other matrix problems (e.g., nonsymmetric linear systems,
least squares, eigenvalues), other factorizations (e.g., LU and QR), and other basic
approaches (e.g., iterative methods), but a comprehensive treatment of all of these
topics would easily require an entire book. Our discussion of sparse Cholesky fac-
torization illustrates some of the major issues that also arise in other parallel sparse
matrix factorizations as well, but there are many additional issues associated with
parallel iterative algorithms or parallel sparse eigenvalue algorithms that we do not
specifically address.

An outline of the paper is as follows. First, we will sketch briefly some necessary
background material on serial algorithms for solving sparse symmetric positive definite
linear systems. For a much more complete treatment, the reader should consult [25]
or [47]. We then survey the progress to date in developing parallel implementations
for each of the major phases of the solution process. We will see that the same graph
theoretic tools originally developed for analyzing sequential sparse matrix algorithms
also play a critical role in understanding parallel algorithms as well. We conclude
with some observations on future research directions.

2. Background. Consider a system of linear equations
Az = b,

where A is an n X n symmetric positive definite matrix, b is a known vector, and z is
the unknown solution vector to be computed. One way to solve the linear system is
first to compute the Cholesky factorization

A=LLT,

where the Cholesky factor L is a lower triangular matrix with positive diagonal ele-.
ments. Then the solution vector z can be computed by successive forward and back
substitutions to solve the triangular systems

Ly=b LTz=y.

If A is a sparse matrix, meaning that most of its entries are zero, then during the
course of the factorization some entries that are initially zero in the lower triangle of
A may become nonzero entries in L. These entries of L are known as fill or fill-in.
Usually, however, many zero entries in the lower triangle of A remain zero in L. For
efficient use of computer memory and processing time, it is desirable for the amount
of fill to be small, and to store and operate on only the nonzero entries of A and L.

It is well known that row or column interchanges are not required to maintain
numerical stability in the factorization process when A is positive definite. Further-
more, when roundoff errors are ignored, a given linear system yields the same solution
regardless of the particular order in which the equations and unknowns are numbered.
This freedom in choosing the ordering can be exploited to enhance the preservation of
sparsity in the Cholesky factorization process. More precisely, let P be any permuta-
tion matrix. Since PAPT is also a symmetric positive definite matrix, we can choose
P based solely on sparsity considerations. That is, we can often choose P so that
the Cholesky factor L of PAPT has less fill than L. The permuted system is equally
useful for solving the original linear system, with the triangular solution phase simply
becoming

Ly = Pb, ITz= y, z=PT,.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 85

Unfortunately, finding a permutation P that minimizes fill is a very difficult combina-
torial problem (an NP-complete problem) [107]. Thus, a great deal of research effort
has been devoted to developing good heuristics for limiting fill in sparse Cholesky
factorization, including the nested dissection algorithm [39,45] and the minimum de-
gree algorithm [48,70,98]. Limiting fill is also the primary motivation for a number
of methods based on reducing the bandwidth or profile of A. These band-oriented
methods have been less successful, however, than the more general sparse ordering
techniques, and as we shall see, they are at an even greater disadvantage in a parallel
context.

Since pivoting is not required in the factorization process, once the ordering is
known, the precise locations of all fill entries in L can be predicted in advance!, so that
a data structure can be set up to accommodate L before any numeric computation
begins. This data structure need not be modified during subsequent computations,
which is a distinct advantage in terms of efficiency. The process by which the nonzero
structure of L is determined in advance is called “symbolic factorization.” Thus, the
direct solution of Az = b consists of the following sequence of four distinct steps:

1. Ordering: Find a good ordering P for A; that is, determine a permutation
matrix P so that the Cholesky factor L of PAPT suffers little fill.

2. Symbolic Factorization: Determine the structure of L and set up a data
structure in which to store A and compute the nonzero entries of L.

3. Numeric Factorization: Insert the nonzeros of A into the data structure and
compute the Cholesky factor L of PAPT.

4. Triangular Solution: Solve Ly = Pb and LTz = y, and then set z = PT 2,

Note that the first two steps are entirely symbolic, involving no floating-point
computation. Several software packages [17,27,29] for serial computers use this basic
approach to solve sparse symmetric positive definite linear systems. We now briefly
discuss algorithms and methods for performing each of these steps on sequential ma-
chines.

2.1. Ordering. As one might expect from the combinatorial nature of the or-
dering problem for sparse factorization, graph theory has proved to be an extremely
helpful tool in modeling the symbolic or structural aspects of sparse elimination algo-
rithms. The use of a graph theoretic model dates to the early work of Parter [91] and
Rose [97], and has now come to permeate the subject. The graph of an n x n sym-
metric matrix A, denoted by G(A), is a labelled undirected graph having n vertices
(or nodes), with an edge between two vertices i and j if the corresponding entry a;;
is nonzero in the matrix. The structural effect of Gaussian elimination on the matrix
is then easily described in terms of the corresponding graph. The fill introduced into
the matrix as a result of eliminating a variable adds fill edges to the corresponding
graph precisely so that the neighbors of the eliminated vertex become a clique. This
fact suggests that fill can be limited, or at least postponed, by eliminating first those
vertices having fewest neighbors (i.e., vertices of lowest degree). The elimination or
factorization process can thus be modeled by a sequence of graphs, each having one
less vertex than the previous graph but possibly gaining edges, until only one vertex
remains. We will also have occasion to refer to the filled graph, F(A), which is the
graph of A with all fill edges added (i.e., there is an edge between two vertices i and
j of F(A), with ¢ > j, if £; # 0 in the Cholesky factor matrix L).

1 We assume that exact cancellation never occurs, and thus fill refers to the structural nonzeros
of L, i.e., every location of the factor that is occupied by a nonzero entry at some point in the
factorization.

86 M.T. HEATH, E. NG AND B.W. PEYTON

The foregoing discussion provides the basis for the minimum degree algorithm,
which is the most successful and widely applicable heuristic developed to date for lim-
iting fill in sparse Cholesky factorization. At each step of the elimination process, this
simple heuristic selects as the next node to be eliminated a node of minimum degree in
the current elimination graph. Despite its simplicity, the minimum degree algorithm
produces reasonably good orderings over a remarkably broad range of problem classes.
Another strength is its efficiency: as a result of a number of refinements over several
years, current implementations are extremely efficient on most problems. George and
Liu [48] review a series of enhancements to implementations of the minimum degree
algorithm and demonstrate the consequent reductions in ordering time.

As might be expected from the “greedy” nature of the algorithm, however, several
weaknesses of the minimum degree ordering heuristic are well documented in the
literature. Experiments in both [24] and [48] illustrate the sensitivity of the quality
of minimum degree orderings to the way ties are broken when there is more than one
node of minimum degree from which to choose. Attempts to make the selection more
intelligent or less myopic, however, have proven to be computationally expensive.
No tie-breaking scheme proposed to date is both effective and efficient, though some
interesting results using deficiency (the number of fill edges created by the elimination
step) to break ties are reported in [15]. Berman and Schnitger [13] show that for a
model problem there exists a minimum degree tie-breaking scheme for which the time
and space complexity of the factorization is worse than that of known asymptotically
optimal orderings. To summarize, minimum degree is, on balance, an effective and
efficient ordering heuristic, but its success is not well understood, and no robust
and efficient way is known for dealing with the wide variability in the quality of the
orderings it produces.

Another effective algorithm for limiting fill in Cholesky factorization is nested
dissection, which is based on a divide-and-conquer paradigm. Let S be a set of
nodes (called a separator) whose removal, along with all edges incident on nodes in
S, divides the graph into at least two remaining pieces. If the matrix is reordered
so that the variables in each piece are numbered contiguously and the variables in
the separator are numbered last, then the matrix will have a bordered block diagonal
nonzero pattern. More importantly, elimination of a node within one of the pieces
cannot introduce fill into any of the other pieces; fill is restricted to the diagonal
blocks and the border [47,99]. This idea can be applied recursively, breaking the
pieces into smaller and smaller pieces with successive sets of separators, giving a
nested sequence of dissections of the graph. The effectiveness of nested dissection in
limiting fill is highly dependent on the size of the separators used to split the graph.
For highly regular, planar problems (e.g., two-dimensional finite difference or finite
element grids), suitably small separators can usually be found [68,69]. For problems
in dimensions higher than two, or for highly irregular problems with less localized
connectivity, nested dissection is much less effective. Nevertheless, nested dissection
is important not only for its practical usefulness on suitable problems, but also for its
asymptotically optimal fill properties for certain model problems, which serves as a
kind of theoretical benchmark for the quality of orderings [39,60].

2.2. Symbolic Factorization. A naive approach to symbolic factorization is
simply to carry out Cholesky factorization on the structure of A symbolically. How-
ever, such an algorithm would then have the same time complexity as the numeric
factorization itself (i.e., it would require the same number of symbolic operations as
the number of floating-point operations required by the numeric factorization). With

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 87

a little care, the complexity of symbolic factorization can be reduced to O(n(L)),
where (L) denotes the number of nonzeros in L, as follows.
For a given sparse matrix M, define

Struct(M;.) :== {k < i | mix # 0}
and
Struct(M.j) = {k >] ’ Myj # 0}

In other words, Struct(M;.) is the sparsity structure of row i of the strict lower
triangle of M, and Struct(M.,;) is the sparsity structure of column j of the strict
lower triangle of M. For a given lower triangular Cholesky factor matrix L, define
the function p as follows:

(j) = min {¢ € Struct(L.;)}, if Struct(L.;) #9,

)= 7 otherwise.

Thus, when there is at least one off-diagonal nonzero in column j of L, p(j) is the row
index of the first off-diagonal nonzero in that column. It is easy to show that

Struct(L,;) C Struct(L, p;y) U {p(j)}.

Moreover, it can be shown that the structure of column j of L can be characterized
as follows [47):

Struct(L.j) := Struct(A.;) U (U {Struct(L.:) | p(¢) = J}> - {5}

i<j

That is, the structure of column j of L is given by the structure of the lower triangular
portion of column j of A, together with the structure of each column of L whose first
off-diagonal nonzero is in row j. This characterization leads directly to an algorithm
for performing the symbolic factorization, shown in Figure 1, in which the sets R; are
used to record the columns of L whose structures will affect that of column j of L.

for j:=1tondo
Rj =0
for j:=1tondo
S := Struct(A.,;)
for i € R; do
S := SU Struct(L.) — {5}
Struct(L.;) =S
if Struct(L.;) # 0 then
p(7) == min {i € Struct(L.;)}
Ry(3) = Ry(i) U7}

F16. 1. Symbolic factorization algorithm.

This simple symbolic factorization algorithm is already very efficient, with time
and space complexity O(n(L)), but it is subject to further refinement. For example,

88 M.T. HEATH, E. NG AND B.W. PEYTON

if R; contains only one column, say {, and Struct(A.;) C Struct(L.;), then clearly
Struct(L.;) = Struct(L.i)— {j}. This shortcut can be used to speed up the symbolic
factorization algorithm and to reduce the storage requirements using a technique
known as “subscript compression” [104]. In fact, these conditions are often satisfied
when j is relatively large, as the columns tend to become more dense toward the end of
the factorization. An efficient implementation of the symbolic factorization algorithm
is presented in [47]. With its low complexity and an efficient implementation, the
symbolic factorization step usually requires less computation than any of the other
three steps in solving a symmetric positive definite system by Cholesky factorization.

Once the structure of L is known, a compact data structure is set up to accom-
modate all of its nonzero entries. Since only the nonzero entries of the matrix are
stored, additional indexing information must be stored to indicate the locations of the
nonzeros. Although this integer overhead potentially rivals the space requirements for
the nonzeros themselves, in practice the subscript compression technique mentioned
above greatly reduces this overhead storage [46).

2.3. Numeric Factorization. In its simplest form, Gaussian elimination on a
dense matrix A can be described as a triple nested loop around the single statement

ai; = aij — (aixax;)/axe.

The loop indices i, j, and k can be nested in any order, each with a different pattern of
memory access. This freedom can be exploited to take better advantage of particular
architectural features of a given machine (cache, virtual memory, vectorization, etc.)
[21]. Specializing to Cholesky factorization, where symmetry is exploited so that only
the lower triangle of the matrix is accessed, we see that there are three basic types of
algorithms, depending on which of the three indices is placed in the outer loop:

1. Row-Cholesky: Taking i in the outer loop, successive rows of L are computed
one by one, with the inner loops solving a triangular system for each new row
in terms of the previously computed rows.

2. Column-Cholesky: Taking j in the outer loop, successive columns of L are
computed one by one, with the inner loops computing a matrix-vector product
that gives the effect of previously computed columns on the column currently
being computed.

3. Submatriz-Cholesky: Taking k in the outer loop, successive columns of L are
computed one by one, with the inner loops applying the current column as a
rank-1 update to the remaining partially-reduced submatrix.

These three families of algorithms have markedly different memory reference pat-
terns in terms of which parts of the matrix are accessed and modified at each stage
of the factorization (see Figure 2), and each has its advantages and disadvantages in
a given context. For sparse Cholesky factorization, row-Cholesky is seldom used be-
cause of the difficulty in designing a compact row-oriented data structure for storing
the nonzeros of L that can also be accessed efficiently in the numerical factorization
phase [71]. Efficient implementation of sparse row-Cholesky is even more difficult on
vector and parallel architectures since it is difficult to vectorize or parallelize sparse
triangular solutions (see discussions in Sections 2.4 and 3.5). We will therefore con-
centrate our attention on the two column-oriented methods, column-Cholesky and
submatrix-Cholesky.

In column-oriented Cholesky factorization algorithms, there are two fundamental
types of subtasks:

1. emod(j, k) : modification of column j by column &, k < j,

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 89

I\

row-Cholesky column-Cholesky submatrix-Cholesky

used for modification

- modified

FIG. 2. Three forms of Cholesky factorization.

2. ediv(j) : division of column j by a scalar.
These sparse matrix operations correspond to saxpy and sscal in the terminology
of the BLAS [64] for dense linear algebra, but we use different notation to emphasize
that we are dealing with their sparse counterparts. In terms of these basic operations,
high-level descriptions of the column-Cholesky and submatrix-Cholesky algorithms
are given in Figures 3 and 4.

forj=1tondo
for k€ Struct(Lj.) do
emod(j, k)
ediv(j)

F1G. 3. Sparse column-Cholesky factorization algorithm.

fork=1tondo
cdiv(k)
for j € Struct(L.:) do
cmod(j, k)

FIG. 4. Sparse submatriz-Cholesky factorization algorithm.

In column-Cholesky, column j of A remains unchanged until the index of the outer
loop takes on that particular value. At that point the algorithm updates column j with
a nonzero multiple of each column k < j of L for which £z # 0. After all column
modifications have been applied to column j, the diagonal entry £;; is computed
and used to scale the completely updated column to obtain the remaining nonzero
entries of L,j. Column-Cholesky is sometimes said to be a “left-looking” algorithm,
since at each stage it accesses needed columns to the left of the current column in
the matrix. It can also be viewed as a “demand-driven” algorithm, since the inner
products that affect a given column are not accumulated until actually needed to
modify and complete that column. It is also sometimes referred to as a “fan-in”

90 M.T. HEATH, E. NG AND B.W. PEYTON

algorithm, since the basic operation is to combine the effects of multiple previous
columns on a single subsequent column. The column-Cholesky algorithm is the most
commonly used method in commercially available sparse matrix packages [17,27,29].

In submatrix-Cholesky, as soon as column k is completed, its effects on all sub-
sequent columns are computed immediately. Thus, submatrix-Cholesky is sometimes
said to be a “right-looking” algorithm, since at each stage columns to the right of
the current column are modified. It can also be viewed as a “data-driven” algorithm,
since each new column is used as soon as it is completed to make all modifications to
all the subsequent columns it affects. It is also sometimes referred to as a “fan-out”
algorithm, since the basic operation is for a single column to affect multiple subse-
quent columns. We will see that these characterizations of the column-Cholesky and
submatrix-Cholesky algorithms have important implications for parallel implementa-
tions.

Having stated the “pure” column- and submatrix-Cholesky algorithms, we note
that many variations and hybrid implementations of these schemes are possible, which
essentially amount to different ways of amalgamating partial results. For example,
frontal methods [61], and their generalizations to multifrontal methods [28], are es-
sentially variations on submatrix-Cholesky. But while the emod(j, k) updating oper-
ations are computed in the order shown in Figure 4, they are not applied directly to
the column j being updated. Instead they are accumulated and passed on through
a succession of update matrices until finally they are incorporated into the target
column. The reason for this approach is that in the frontal method most of the ma-
trix is kept out of core on auxiliary storage, with only a relatively small “frontal”
matrix representing currently “active” columns kept in main memory. Similarly, the
out-of-core version of the multifrontal method can be implemented so that only a few
small “frontal” matrices are kept in main memory. To minimize I/O traffic, access
to inactive portions of the matrix, both columns already completed and columns yet
unreduced, must be kept to a minimum. For further details on multifrontal methods,
see [28] or [78].

One of the main motivations for frontal and multifrontal methods is that the
frontal matrices can be treated as dense, and therefore one can take advantage of
vectorization more readily on hardware that supports it [3,5,11,19]. Moreover, the
localization of memory references in these methods is advantageous in exploiting cache
[100] or on machines with virtual memory and paging [76].

Before leaving the general topic of sparse factorization, we introduce two addi-
tional concepts that are useful in analyzing and efficiently implementing sparse fac-
torization algorithms. A supernode is a set of contiguous columns in the Cholesky
factor L that share essentially the same sparsity structure. More specifically, the set
of contiguous columns j,j +1,...,j +t constitutes a supernode if Struct(L,) =
Struct(Lyx41)U{k + 1} for j < k < j+1t—1. A set of supernodes for an example
matrix is shown in Figure 5. Columns in the same supernode can be treated as a unit
for both computation and storage. Supernodes have long played an important role in
enhancing the efficiency of both the minimum degree ordering [50] and the symbolic
factorization [104]. More recently, supernodes have been used to organize sparse fac-
torization algorithms around matrix-vector or matrix-matrix operations that reduce
memory traffic by making more efficient use of vector registers [5,11] or cache [3,100).
The cited reports document the substantial gains in performance obtained by using
these techniques.

OO0 ~ID D LN = OO 00 ~JD b L0 =

DD bt bt ot ot Gt et ot o ot ot

21

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS

X X X

X X X

XX

X X X

XX
XX X

%

XX
X
ese
ese
XXX

& X XX

X

XXX X =

X
& X XX

XX

X X X

o8 XXXX W

XXX o XX
seeXX

ceoeX

® XX

XXX ®
[XX
LA N X]
[XXX)

XX o>

[
[
.
2

XX

XXX X ©

XX
&

XXXX =

XX

& X XX

X X

X X

X
X X X

XXX XX
o0 ®e XXX

ORI
X X X

(X3 ﬁ

XXX &

XXX XX

» o6

eeeXX ©
[XX D4

eeosoceeXX OW
[XXXEXX D 4
eeee e XX
eeeeXX

seeXX

SOXX M

* XX

XX

X

[®

91

1 3
1234567890123456789012345678901234567890123456789

F1G. 5. Supernodes for 7 x 7 nine-posnt grid problem ordered by nested dissection. (X and e refer
to nonzeros in A and fill in L, respectively. Numbers over diagonal entries label supernodes.)

92 M.T. HEATH, E. NG AND B.W. PEYTON

The elimination tree T(A) [71,103] associated with the Cholesky factor L of a
given matrix A has {1,2,...,n} as its node set, and has an edge between two vertices
i and j, with ¢ > j, if § = p(j), where p is the function defined in Section 2.2. In
this case, node i is said to be the parent of node j, and node j is a child of node i.
Liu [79] discusses the many uses of elimination trees in sparse matrix computations.
Among these is their use in managing the frontal and update matrices in the multi-
frontal method. Another key role is in the analysis of data dependencies that must be
observed when factoring the matrix, which has obvious implications for implementing
the factorization in parallel. Figure 6 shows the elimination tree for the matrix shown
in Figure 5.

Let T[j] denote the subtree of T(A) rooted at node j. It is shown in [71] and
[103] that the set of columns/nodes that modify column/node j (namely, the set
Struct(L;.)) is a subset of T'[j] denoted by T [j]. Moreover, T,[j] is also a subtree of
T(A) rooted at node j. For this reason, T[] is called the row subtree of j. It follows
that column j can be completed only after every column in 7, [j] has been computed.
It also follows that the columns that receive updates from column j are ancestors of
j in T(A). In other words, the node set Struct(L.;) is a subset of the ancestors of j
in the tree.

2.4, Triangular Solution. There is relatively little to be said about the trian-
gular solution step. The structure of the forward and back substitution algorithms
is more or less dictated by the sparse data structure used to store the triangular
Cholesky factor L and by the structure of the elimination tree T(A). Because tri-
angular solution requires many fewer floating-point operations than the factorization
step that precedes it, the triangular solution step usually requires only a small fraction
of the total time to solve a sparse linear system on conventional sequential computers.
These proportions can change, however, with more advanced computer architectures,
since it is often more difficult to take full advantage of vector or parallel processors
in performing triangular solutions. We will discuss these issues in greater detail in
Section 3.5.

3. Parallel Algorithms. In this section we summarize the progress to date in
adapting direct methods for the solution of sparse symmetric positive definite lin-
ear systems to perform well on the various parallel architectures that have become
available in recent years. The most widely available and commercially successful
parallel architectures thus far fall into three rough categories: shared-memory MIMD
(multiple-instruction, multiple-data stream) architectures typically having 30 or fewer
processors, distributed-memory MIMD architectures typically having on the order of
32 to 1024 processors, and SIMD (single-instruction, multiple-data stream) archi-
tectures typically having tens of thousands of processors. Some machines have an
additional level of parallelism in the form of vector units within each individual pro-
cessor. Parallel architectures display an enormous variation in the number and power
of processors, organization of memory, control mechanisms, and synchronization and
communication overhead, so it is not surprising that they demand a comparable range
of algorithmic techniques to achieve good efficiency in the various settings. Never-
theless, we will try to concentrate on general principles that are widely applicable,
while focusing occasionally on implementation issues that may arise in a more specific
context.

In exploiting parallelism to solve any problem, the computational work must be
broken into a number of subtasks that can be assigned to separate processors. The
most appropriate number and size of these tasks (e.g., a small number of large tasks

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 93

17 19 20 23 24 26

Fi1G. 6. Elimination tree for the matrix shown in Figure 5. Ovals enclose supernodes that contain
more than one node. Nodes not enclosed by an oval are singleton supernodes. Bold-face numbers
label supernodes.

94 M.T. HEATH, E. NG AND B.W. PEYTON

or a large number of small tasks) depend on the target parallel architecture and the
levels at which parallelism naturally occurs in the problem. The term often used to
denote the size of computational tasks in a parallel implementation is granularity.
In sparse factorization, as in most problems, a number of levels of computational
granularity can potentially be exploited. Liu [72] uses the elimination tree to analyze
the following levels of parallelism in Cholesky factorization:
1. fine-grain parallelism, in which each task is a single floating-point operation
or flop, i.e., multiply-add pair,
2. medium-grain parallelism, in which each task is a single cmod or ediv column
operation,
3. large-grain parallelism, in which each task is the completion of all columas in
a subtree of the elimination tree.

Here, large-grain parallelism refers to the independent work done in computing
columns in disjoint subtrees. Consider two disjoint subtrees T[j] and T'fi], where
neither root node is a descendent of the other. All work required to compute the
columns of T[j] is completely independent of all work required to compute the columns
of T[i]. For example, in Figure 6 the columns of T[9] (columns 1-9) are completely
independent of the columns of T[18] (columns 10-18). This type of parallelism is
available only in sparse factorization; it is not available in the dense case. But of
course we are not limited to exploiting only parallelism of this nature. There is
much more parallelism to be found at the medium-grain level of the individual cmod
operations. Let j; and j; be two column indices whose subtrees T[j,] and T'[j3] are not
disjoint. Suppose that k; and k; are indices of columns that must be used to modify
columns j; and j,, respectively. Clearly, the updates emod(jy, k) and emod(jz, k2)
can be performed in parallel. This is the primary source of parallelism in the dense
case, and it is an extremely important source of parallelism in the sparse case as well.

While we will have a great deal to say about algorithms that employ the first two
sources of parallelism, we will have little to say about finer grain parallelism. Fine
grain parallelism can be exploited in two distinctly different ways:

1. vectorization of the column operations ¢cmod and cdiv on vector supercom-
puters,
2. parallelizing the rank-one update that constitutes a major step of submatrix-
Cholesky on an SIMD machine.
Exploiting vectorization requires some changes and refinement of the basic sequen-
tial algorithms [3,5,11,19], but it does not require changes as extensive and basic
as those required to exploit higher levels of parallelism. Developing parallel sparse
submatrix-Cholesky algorithms for SIMD machines presents a more difficult challenge,
and research on this topic is still in its infancy [54].

To date, implementation on parallel architectures has caused no fundamental
change in the overall high-level approach to solving sparse symmetric positive defi-
nite linear systems. On parallel machines the same sequence of four distinct steps
is performed: ordering, symbolic factorization, numeric factorization, and triangular
solution. However, both shared-memory and distributed-memory MIMD machines
require an additional step to be performed: the tasks into which the problem is
decomposed must be mapped onto the processors. Obviously, one of the goals in
mapping the problem onto the processors is to ensure that the work load is balanced
across all processors. Moreover, it is desirable to schedule the problem so that the
amount of synchronization and/or communication is low. On shared-memory ma-
chines the scheduling problem is relatively easy to deal with: a shared queue of tasks

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 95

Q
- A O
1 X
2 | xx ®
Natural order 3 X X
4 X X (D
5 X X
6 X X ©
7 X X
. . @
D
1 X
2 X (7)
3 X
Nested dissection 4 X (3) (6)
5 | x x X
6 XX X ONONONO.
7 XX ®®X 1

F1G. 7. Factor matrices and corresponding elimination trees for tridiagonal matriz using natural
ordering and nested dissection reordering (even-odd reduction). X and e refer to original nonzeros
and fill nonzeros, respectively.

can be used to achieve dynamic load balancing. Dynamic load balancing tends to be
inefficient on current distributed-memory machines, however, so a static assignment
of tasks to processors must be determined in advance.

We now proceed to discuss the progress made in developing parallel algorithms
for each of these five steps.

3.1. Ordering. There are two distinct issues associated with the ordering prob-
lem in a parallel environment:
1. Determining an ordering appropriate for performing the subsequent factor-
ization efficiently on the parallel architecture in question.
2. Computing the ordering itself in parallel.

3.1.1. Orderings for parallel factorization. On sequential or vector ma-
chines, while there are sometimes other secondary considerations, the primary goal of
reordering the matrix is simply to lower the work and space required for the factor-
ization step. Experience and intuition suggest that the two almost inevitably rise and
fall together, so that the goal can be further simplified to lowering fill only. Simply
lowering fill, however, may not provide an ordering appropriate for parallel factoriza-
tion.

Orderings for a tridiagonal system serve to illustrate the point. Let us call the
ordering that preserves the tridiagonal structure the natural ordering. Under the
natural ordering, the matrix incurs no fill during factorization. In fact, both the fill
and work are minimized. Nevertheless, the natural ordering is the poorest possible
ordering for parallel factorization. First, note that the natural ordering results in
an elimination tree that is a chain (see Figure 7). Indeed, there is no large-grain
(subtree-level parallelism) to exploit. Moreover each column j, 2 < j < n, requires a

96 M.T. HEATH, E. NG AND B.W. PEYTON

single column modification emod(j, j — 1) before it can be completed with the cdiv(j)
operation, then and only then becoming available for the subsequent column modi-
fication cmod(j + 1,j). Thus, there is no medium-grain (column-modification level)
parallelism to exploit. There is also no fine-grain parallelism to exploit. Thus, there
is no parallelism at all to exploit in the floating-point computation; the floating-point
work is strictly sequential. But it is well known that even-odd reduction schemes
for these systems, though they introduce more work, also greatly increase the paral-
lelism. These solution schemes are equivalent to reordering the system with a nested
dissection ordering (again, see Figure 7). Using the nested dissection ordering, the
height of the elimination tree is approximately log, n, which is much shorter than the
height n — 1 obtained using the natural ordering. While the total floating-point work
(ignoring square roots) increases by a factor between two and three, parallel comple-
tion time using the nested dissection ordering is ideally O(log n) compared with O(n)
using the standard ordering.

This example is an extreme illustration of how inappropriate the goal of fill-
reduction can be in the parallel setting. However, there have been no systematic
attempts to develop metrics for measuring the quality of parallel orderings. Thus
far, most work on the parallel ordering problem has used elimination tree height as
the criterion for comparing orderings, with short trees assumed to be superior to
taller trees [62,65,77,80], but with little more than intuition as a basis for this choice.
For massively parallel SIMD machines, it has been suggested that small elimination
tree height may indeed be a suitable goal [54,65]. This contention is based on the
assumption of a submatrix-Cholesky parallel factorization algorithm that requires
roughly uniform time for the elimination of each column. It remains to be shown that
this assumption is in fact realized for sparse problems on available SIMD machines.
The assumption is more doubtful on other parallel architectures. Moreover, it is worth
noting that the problem of ordering a matrix to minimize its elimination tree height,
like the problem of minimizing fill, is a very difficult combinatorial problem [93]. In
[77], Liu suggests some more realistic measures of parallel completion time, but there
is not yet an agreed upon objective function for the parallel ordering problem.

3.1.2. Computing the ordering in parallel. A separate problem is the need
to compute the ordering in paralle]l on the same machine on which the other steps
of the solution process are to be performed. The highly sophisticated ordering algo-
rithms discussed earlier, namely minimum degree and nested dissection, are extremely
efficient and normally constitute only a small fraction of the total execution time in
solving a sparse system on sequential computers. Despite the limited potential for
any gain in execution time, however, there is still motivation for adapting these al-
gorithms, or developing new ones, to run on parallel architectures, especially in the
case of distributed-memory machines. In particular, a distributed implementation of
the ordering step i8 necessary to take advantage of the large amount of local memory
available on such machines in solving very large problems. Otherwise, the ordering
step will remain a bottleneck limiting the size of problems that can be solved on
distributed-memory parallel architectures. We now consider some of the difficulties
in performing the ordering step efficiently in parallel.

The basic minimum degree algorithm has an inherently sequential outer loop,
with a single node eliminated at each stage. Multiple elimination of independent
nodes of minimum or near-minimum degree [70,92] could potentially be exploited to
permit parallel execution. Moreover, the search for nodes of minimum degree and
the necessary graph transformations and degree updates could conceivably be spread

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 97

across multiple processors. However, there are several problems with this approach.
First, it is not clear that minimum degree orderings would be particularly appropriate
for parallel factorization. For example, applying the basic minimum degree algorithm
to the tridiagonal system discussed above produces an elimination tree that is a chain,
and thus the resulting elimination tree height would be at least {n/2]. Duff et al.
[26] contains several suggestions for dealing with this problem, the most promising of
which increases the size of the independent sets by allowing all nodes whose degree
are within a constant factor a of the current minimum degree, where 1.1 < & < 1.5,
to be candidates for inclusion in the next independent set. A different approach
for computing independent sets for parallel elimination is described in [66]. Second,
the highly successful enhancements incorporated into current implementations of the
method [48] have resulted in an intricate and extremely efficient algorithm: there
is very little work to be partitioned among the processors, and that work is of a
highly irregular and somewhat sequential nature. Nevertheless, an algorithm based
on this approach has been developed for use on a massively parallel SIMD machine
[54]. It is possible that such an approach could also be reasonably effective on some
shared-memory MIMD machines, but we know of no such implementations. It is
doubtful, however, that this approach would have acceptable efficiency on distributed-
memotry MIMD machines, and we are not aware of any attempt to produce such an
implementation. It is ironic that much of the research on parallel algorithms for sparse
factorization has been performed on the latter class of machines, yet it is on this class
of machines that the ordering problem seems most difficult to address.

The standard nested dissection ordering heuristic [45] would appear to offer much
greater opportunity for an effective parallel implementation. The divide-and-conquer
paradigm introduces a natural source of parallelism, both in computing the ordering
and in subsequently using it for the factorization step, due to the independence of the
successive pieces into which the graph is split. Unfortunately, there are also difficulties
with this approach. First, the nested dissection heuristic (based on the generation
of level structures) is effective in reducing fill for a much more restricted class of
problems than minimum degree. Second, the divide-and-conquer approach provides
only a logarithmic potential speedup, with relatively little parallelism in the first few
levels of the dissection. Third, for a distributed-memory implementation there is
something of a bootstrapping problem: in order to utilize all of the local memory
and simultaneously minimize interprocessor communication costs, the original graph
should be distributed across the processors in some intelligent way before the dissection
process is begun. Finally, nested dissection is similar to minimum degree in that it
enjoys a very efficient sequential implementation, and its primary subtask (generating
a level structure via breadth-first search) is inherently serial.

To summarize this discussion, it is evident that the problem of computing effec-
tive parallel orderings in parallel is very difficult and remains largely untouched by
research efforts to date. We focus our attention in the remainder of this section on
the effectiveness of various ordering strategies in facilitating the subsequent paral-
lel factorization, with little regard for whether the ordering can itself be computed
effectively in parallel.

3.1.3. Parallel ordering algorithms. We now turn our attention to the prob-
lem of ordering for parallel factorization and/or executing the ordering algorithms
on the target parallel machine. As noted above, these problems are very difficult to
deal with, and much work remains to be done before mature, reliable algorithms and
software become available.

98 M.T. HEATH, E. NG AND B.W. PEYTON

Tree restructuring for parallel elimination. One approach to generating low-fill
orderings that are suitable for parallel sparse factorization is to decouple the reduction
of fill and enhancement of parallelism into separate phases. First a standard ordering
technique, such as minimum degree, is applied to produce a low-fill ordering for the
matrix, then based on this initial ordering an equivalent reordering is produced that
is more suitable for parallel factorization. By “equivalent” we mean an ordering that
generates the same fill edges but may substantially restructure the elimination tree.
Thus, an equivalent ordering is simply a different perfect elimination ordering for the
filled graph F(A) that models the sparsity structure of L determined by the initial
fill-reducing ordering. The effectiveness of this approach depends in part on whether
there is in fact a good parallel ordering within the class of orderings equivalent to
the initial low-fill ordering. The tridiagonal example cited earlier demonstrates that
there may be no such ordering. On the other hand, since some of the parallelism
in sparse factorization is due specifically to sparsity, low-fill would seem to enhance
potential parallelism rather than suppress it. Very little is known, however, about
the conditions under which good equivalent parallel orderings might exist for realistic
classes of problems.

Implementation of the equivalent ordering approach requires an initial fill-reducing
ordering, a mechanism for restructuring the elimination tree, and a computable crite-
rion for determining when a given reordering will in fact reduce the subsequent parallel
factorization time. In [77], Liu uses tree rotations [73] to find equivalent orderings
that reduce elimination tree height, where the initial ordering used is a minimum
degree ordering. He reports substantial reductions for a number of test problems.
In the same report, Liu proves that the Jess and Kees algorithm [62] produces an
equivalent ordering whose associated elimination tree height is minimum among all
equivalent orderings. In [80] Liu and Mirzaian present a practical O(n(L)) implemen-
tation of the Jess and Kees algorithm. Tests comparing Liu’s tree rotations heuristic
with their implementation of the Jess and Kees algorithm showed that the heuristic
almost always produces a minimum-height tree. This interesting phenomenon is not
fully understood. Their timings showed the tree rotations heuristic to be far more
efficient than their implementation of the Jess and Kees algorithm. In [67] a more
efficient implementation of the Jess and Kees algorithm is presented. Roughly speak-
ing, the latter implementation is linear in the number of compressed subscripts used
to represent the structure of L. Tests of this implementation indicate that a Jess
and Kees ordering can usually be obtained in roughly the same amount of time as an
ordering using the tree rotations heuristic.

Of course, the height of the elimination tree may not be a very accurate indicator
of the actual parallel factorization time. Moreover, elimination trees produced by
minimum degree orderings typically have height already close to the minimum, so
that the potential gain from restructuring may be quite small. Perhaps the primary
problem with this approach is that it fails to get at the heart of the problem. Our
intuition based on limited experience is that equivalent orderings have the capacity
to modify only relatively minor features of the parallelism possessed by the initial
fill-reducing ordering. Thus, this approach may be able to fine-tune an ordering for
use in paralle] factorization, but the key question of how much parallelism might be
available in the original underlying problem goes unanswered.

Nested dissection and graph partitioning heuristics. Given the natural divide-and-
conquer parallelism exhibited by nested dissection, several researchers have explored
various implementations of nested dissection in an effort to generate good orderings

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 99

for parallel factorization. The effectiveness of nested dissection in reducing fill and
enhancing parallelism depends on graph partitioning heuristics to find small node
separators for the graph. Some of the graph partitioning heuristics employed in fact
produce edge separators, which then must be converted into node separators.

The basic scheme in nested dissection is as follows:

1. Use a graph partitioning heuristic to obtain a small edge separator of the
graph, or more specifically, a small set of edges whose removal from the graph
separates the graph into two vertex sets of roughly equal size.

2. Transform the small edge separator into a small node separator, or more
specifically, a small set of nodes whose removal separates the graph into two
portions of roughly equal size,

3. Number the nodes of the separator last in the ordering, and recursively apply
steps 1 and 2 to the two subgraphs produced in step 2.

We now review some specific implementations of this approach.

Level structures. In [44)] the adaptation of an automatic nested dissection algo-
rithm [45] for execution on distributed-memory MIMD machines is discussed. The
algorithm first generates a level structure by means of a breadth-first search. The
choice of starting node in the search can be crucial; see [45] for details. Then one
of the middle levels is chosen as a node separator, subdividing the problem into two
or more independents subgraphs, to which the process is applied recursively. This
method generates a node separator directly, and therefore omits step 1 from the gen-
eral scheme given above. An advantage of this method is that it is simple and generally
inexpensive to compute. But the automatic nested dissection heuristic is generally not
as effective at reducing fill as the minimum degree heuristic, and thus the quality of
the ordering is poorer on many, but not all, problems. As with most nested dissection
algorithms, the algorithm for finding a separator appears to be inherently sequential.
Thus, there is little parallelism to exploit until the ordering algorithm is several levels
down into the recursion, where there are adequately many independent subproblems
to work on.

Kernighan-Lin. Gilbert and Zmijewski [55] use the Kernighan-Lin heuristic [63]
to generate a small edge separator. Associated with an edge separator are wide and
narrow node separators, defined as follows. Let P; and P, be the two sets of nodes
into which the edge separator partitions the graph. Let Vi contain the nodes in P,
incident on at least one edge in the separator set, and define V5 C P, in the same
way. The set V = 1] U V; is the associated wide separator and both V; and V; are
the associated narrow separators. Gilbert and Zmijewski ran tests using both kinds
of separators and report ordering times and factorization times on an Intel iPSC/1
hypercube.

Fiduccia-Mattheyses. Lewis and Leiserson [65] use a variant of the Kernighan-
Lin heuristic due to Fiduccia-Mattheyses [31] to generate edge separators. They use
a greedy heuristic to generate node separators from edge separators. Their heuristic
is guaranteed to find a minimal node separator among the nodes belonging to V =
Vi UV,. In their tests they use elimination tree height to compare the quality of their
orderings with those obtained by using tree rotations to reduce the elimination tree
height of minimum degree orderings. They report fairly substantial and consistent
reductions in tree height for their test problems. However, they did not implement
their algorithm on a parallel machine; all their tests were run on an unspecified
sequential machine and no timings results were reported.

100 M.T. HEATH, E. NG AND B.W. PEYTON

Spectral separators. Pothen, Simon and Liou [95] study the use of spectral par-
titions [32,33] in the framework described above. To generate an edge separator,
they first compute the eigenvector y associated with the smallest positive eigenvalue
of the Laplacian matrix associated with the G(A). They use an implementation of
the Lanczos algorithm to compute the required eigenvector for general sparse graphs.
Then the median entry ym, of y is found, and the vertices in P; are taken to be those
corresponding to entries y; of y for which y; < y,,, while the vertices in P, are those
corresponding to entries y; of y for which y; > ym. The authors use matching theory
for bipartite graphs, in particular the Dulmage-Mendelsohn decomposition, to gener-
ate from the edge separator a minimum-cardinality node separator [94]. Thus, their
bipartite-matching method for transforming an edge separator into a node separator
is optimal in the sense that it minimizes the size of the node separator over all possi-
ble node separators that can be obtained from the given edge separator (i.e., over all
separators contained in the set of nodes incident on the separator edges). The report
cited here does not include statistics for complete nested dissection orderings based
on this technique; it includes statistics for the top-level separator only. Since most of
the time is spent performing Lanczos iterations, which can be parallelized in a fairly
straightforward manner, their method should run efficiently in parallel even in the
top few levels of the nested dissection recursion.

A hybrid approach. In [74] and [75] Liu presents a hybrid approach that combines
elements of both the minimum degree and nested dissection algorithms. The primary
emphasis of the two papers is simply to produce improved fill-reducing orderings, but
the application of the method to parallel factorization is noted in both papers. The
method proceeds as follows. After a standard minimum degree ordering algorithm is
initially applied to the problem, a “middle” separator determined by the minimum
degree ordering is chosen. A technique based on matching theory for bipartite graphs
is then used to improve (i.e., shrink) this separator. The nodes of the new separator
are numbered last in the ordering, and then the process is applied recursively to the
subproblems remaining to be ordered.

This method generates a nested dissection ordering (a top-down ordering), but
uses a minimum degree ordering (a bottom-up ordering), along with some matching
theory, to obtain the separators. Thus, it is a hybrid of two very different ordering
techniques. Again, computing the ordering in parallel with this approach appears to
be very difficult. However, the timings and ordering statistics reported indicate that
it obtains good orderings in a reasonably efficient manner on a sequential machine.

3.2. Task Partitioning and Scheduling.

3.2.1. Shared-memory MIMD machines. In implementing sparse column-
Cholesky on a shared-memory MIMD machine, the problem of partitioning the fac-
torization into tasks for concurrent execution on multiple processors is fairly simple.
Each column j corresponds to a task Tcol(j) defined by

Teol(j) := {emod(j, k) | k € Struct(L;.)} U {cdiv(j)}.

That is, Tcol(j) consists of all column modifications, as well as the final scaling op-
eration, to be applied to column j. The tasks Tcol(j) are maintained in a queue
and doled out to processors as they complete previous tasks. Since all necessary data
are globally accessible by all processors, there need be no concern over which specific
processor picks up a given task. This approach achieves good load balancing dynam-
ically, an ideal arrangement for the highly irregular task profile usually generated by

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 101

sparse problems. In short, uniform access to main memory permits the use of dynamic
load balancing and a fairly simple restructuring of a sequential sparse Cholesky algo-
rithm to obtain a good parallel algorithm. See Section 3.4.1 and [41,88] for parallel
implementations of sparse Cholesky based on these ideas,

Efficient scheduling of the tasks Tcol(j) on shared-memory MIMD machines is
also easily accomplished. An ordering of the elimination tree is a topological ordering
if each node is numbered higher than all of its descendants. Performance usually is
not very sensitive to which topological ordering is used to schedule the column tasks,
and it is often adequate to use the fill-reducing ordering to schedule the tasks. In this
case, the task queue Q is given by:

Q = {Teol(1),Teol(2), ..., Tcol(n)}.

However, scheduling columns by their height in the elimination tree usually improves
performance by reducing synchronization delays, as shown in [88]. The ordering of
the elimination tree shown in Figure 8 is particularly appropriate. Scheduling the
column tasks in this manner is especially worthwhile, since the overhead required to
do so is trivial — a single n-vector computed in O(n) time. A more dynamic queue
management strategy is to initialize the queue to contain only the tasks corresponding
to the leaf nodes, with additional column tasks appended to the queue after their
descendants have been completed.

3.2.2. Distributed-memory MIMD machines. The situation is much more
difficult on distributed-memory MIMD machines, the target architecture for much of
the algorithm development for parallel sparse factorization reported in the literature.
On these machines, the lack of globally accessible memory means that issues concerned
with data locality are dominant considerations. Currently, there is no efficient means
of implementing dynamic load balancing on these machines for problems of this type.
Thus, a static assignment of tasks to processors is normally employed in this setting,
and such a mapping must be determined in advance of the factorization, based on the
trade-offs between load balancing and the cost of interprocessor communication.

Elimination trees. As we have seen, the elimination tree contains information on
data dependencies among tasks and the corresponding communication requirements.
Thus, the elimination tree is an extremely helpful guide in determining an effective
assignment of columns (and corresponding tasks) to processors in the distributed-
memory case. In attempting to compute the elimination tree, however, we appear to
be confronted by a bootstrapping problem: prior to symbolic factorization, we do not
yet know the structure of L on which the definition of T'(A) is based. Fortunately,
T(A) can be generated directly from the structure of A by an extremely efficient
algorithm [79]. It is desirable to compute the elimination tree in parallel, but again we
face the recurring problem of having very little work to distribute over the processors.
For large problems, if a single processor cannot store the adjacency structure of A,
then the structure of A must be distributed among the processors, which also requires
distributed computation of the elimination tree. In [110], Gilbert and Zmijewski
present an algorithm for computing the elimination tree in parallel on a distributed-
memory multiprocessor. Roughly speaking, their algorithm proceeds as follows. Each
processor uses its portion of the adjacency structure of A to compute a “local” version
of the elimination tree. In essence, this “local” tree contains in a compressed form
the contribution of each processor’s local adjacency list to the final elimination tree.
The final phase of the algorithm combines these “local” trees to obtain the final

102 M.T. HEATH, E. NG AND B.W. PEYTON

@)
(43
@)
49)
)
49
O,
47 (42
@) (49
) @)
@) @9 @) 39
@) 9 @) &)
(25) (26) () (29)

(D) 19) (19) (20 (21) (22) (23) (29
ONONONONONONONONONONDNONCOEONMOND

F1G. 8. A good ordering of column tasks in task gueue uwsed by parallel column-Cholesky algorithm
for shared-memory MIMD machines.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 103

OmOmOmOmOmOmO

@ W O O
® ® @)
(0) (3) (2) (1)
(o) (1) (2) (3) (o) (1) (2) (2)

O,

ONONONOBONONONONONONONONONONONO,

F1G. 9. A wrap-mapping of the factor columns onto four processors numbered 0, 1, 2, and 3. Nodes
belonging to the same separator in the elimination tree are assigned fo the processors in wrap fashion.

elimination tree. All communication associated with the algorithm is restricted to
this final “combining” operation. In the experiments reported in [110], the parallel
algorithm takes considerably more time than the sequential algorithm, though the
differences are not unreasonable.

Mapping the problem onto the processors. After the elimination tree has been
generated, the next step is to use it in mapping the columns onto the processors.
The primary goals of the mapping are good load balance and low interprocessor
communication. These goals can be in conflict, however, especially for highly irregular
problems.

In the early work on this problem, successive levels in the elimination tree were
wrap-mapped to the processors, as shown in Figure 9. This resulted in good load
balancing for the model problem, but it also often results in unnecessarily high message
volume. The “subtree-to-subcube” mapping, introduced in [49], does an excellent

104 M.T. HEATH, E. NG AND B.W. PEYTON

OmOmOmOmOmOm0

(—)
(> —(=)

© 0 @) (®)
O, ®
(0) (1) (2) (3)
O (o) (1) (1) (2) (2) (2) ()

O,
O

© ©© OO OOLOOOOOO 6O G

FiG. 10. Subtree-to-subcube mapping of the columns of the matriz to four processors numbdered 0, 1,
2 and 8.

job of reducing communication while maintaining good load balance for model grid
problems and other problems with similar regularity in their structure. Although the
use of subcubes is specific to hypercube architectures, a similar processor clustering
concept is applicable to most distributed-memory architectures.

The basic idea is quite simple. If P is the number of processors, one selects an
appropriate set of P subtrees of the elimination tree, say Ty, T%,...,Tp-1, and then
assigns the columns corresponding to 7; to processor i (0 < ¢ < P —1). Where
two subtrees merge together into a single subtree, their processor sets are merged
together and wrap-mapped onto the nodes/columns of the separator that begins at
that point. The root separator is wrap-mapped onto the set of all available processors.
Figure 10 shows this mapping for our model problem. George et al. [49] show that for
the fan-out distributed factorization algorithm (see Section 3.4.2) applied to model
problems defined on k x k grids, communication volume can be limited to O(Pk?),

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 105

which is asymptotically optimal. Gao and Parlett [35] prove the slightly stronger
result that the communication volume for each processor is O(k?), which indicates
that the overhead associated with communication is, in some sense, balanced among
the processors. Closely related results can be found in two papers by Naik and Patrick
[86,87].

It is quite easy and natural to obtain a good “subtree-to-subcube” mapping for
elimination trees obtained by applying standard nested dissection orderings to model
problems. It is difficult, however, to generalize the subtree-to-subcube mapping to
more irregular problems. Progress in that direction is reported in [38] and [101].
However, an adequate understanding of the trade-offs between communication and
load balance for more realistic problems will require further study.

3.3. Symbolic Factorization. On a distributed-memory MIMD multiproces-
sor, it is necessary to compute Struct(L.;) for every column j of L and to store
Struct(L.;) on the processor responsible for computing that column. Thus, a dis-
tributed algorithm for computing the symbolic factorization is required. The sequen-
tial algorithm for this step is remarkably efficient, and so once again we find ourselves
with little work to distribute among the processors, so that good efficiency is difficult
to achieve in a parallel implementation.

As we have seen, Struct(L.;) depends on Struct(A.;) and on Struct(L.e) for
every k such that p(k) = j (i.e., for every child k of j in the elimination tree). In [42]
a column-oriented parallel symbolic factorization algorithm is presented. At any point
during the execution of this algorithm, the number of tasks available for parallel exe-
cution is limited to the number of leaves in the subtree of the elimination tree induced
by nodes whose structures are not yet complete. Limited parallelism, small task sizes,
and communication overhead make it difficult to attain good speed-ups. Moreover,
the subscript compression technique so critical to the space and time efficiency of the
sequential symbolic factorization algorithm can be only partially realized on these ma-
chines. For example, let columns j and j+1 of L be two columns belonging to the same
supernode but assigned to two distinct processors, say py and p;, respectively. The
sequential algorithm exploits the fact that Struct(L. j41) = Struct(L.;) - {j + 1} to
save both time and storage, as discussed earlier in Section 2.2, The parallel algorithm,
however, must store Struct(L,;) on processor pg and Struct(L, j41) on processor p;.
Good mappings typically wrap-map columns belonging to the same supernode. Thus
the situation in our illustration is typical — even pervasive; hence parallel symbolic
factorization necessarily requires more total work and storage on distributed-memory
MIMD multiprocessors, although the paraliel completion time will usually still be
less. The test results reported in [42] confirm that currently only modest speed-ups
are attainable.

It is possible to improve parallel symbolic factorization on distributed-memory
MIMD multiprocessors if the supernodal structure is known in advance [81]. The key
observation is that it is necessary to compute only the structure of the first column
of each supernode. Processors holding other columns in that supernode do not have
to compute the structures of these columns; all they need to do is to retrieve the
structure from the processor that is responsible for computing the structure of the
first column.

In [110] Zmijewski and Gilbert present a row-oriented parallel symbolic factor-
ization algorithm that has more potential parallelism, but is more complicated and
requires rearrangement of the output into a column-oriented format. Timing results
for this algorithm are not presented, but the authors indicate that its cost is high.

106 M.T. HEATH, E. NG AND B.W. PEYTON

However, the problems they experimented with were quite small, so it remains unclear
how competitive the algorithm might be on larger problems. In a study [53] that may
be applicable on massively parallel machines, Gilbert and Hafsteinsson show that
using a shared-memory CRCW (concurrent-read, concurrent-write) PRAM (paral-
lel random access machine) model of computation, there is a parallel algorithm for
symbolic factorization that requires O(log® n) time using 5(L) processors.

3.4. Numeric Factorization. On sequential machines, numeric factorization
is typically much more expensive than the other steps in the solution process. As a
result, parallel numeric factorization has received considerably more attention than
the other steps in the parallel solution process. It is also more amenable to paralleliza-
tion than the other solution steps, though it is still much more difficult to deal with
than dense factorization. Development of reasonably good parallel sparse Cholesky
algorithms has taken longer than development of their dense counterparts. The book-
keeping and irregular structure dealt with in the sparse algorithms present a greater
challenge to the algorithm developer; consequently, many more issues and difficulties
remain to be addressed in future work.

Most of the work has been directed towards the development of parallel algorithms
that exploit medium- and large-grain parallelism on shared-memory or distributed-
memory MIMD machines. Some exceptions are work on vectorizing sparse Cholesky
factorization on powerful vector supercomputers [3,5,11,19], work on fine-grained al-
gorithms for massively parallel SIMD machines [54], and work on systolic-like algo-
rithms for multiprocessor grids [18,106). We will restrict our discussion to algorithms
designed for MIMD machines.

3.4.1. Parallel column-Cholesky for shared-memory machines. Of the
three formulations of sparse Cholesky, column-Cholesky is in many ways the simplest
to implement. As noted earlier, it has been more commonly used in sparse matrix
software packages [17,27,29] than other methods, such as the multifrontal method.
It is probably better known to a broader audience than the other methods. George
et al. [41] show that the algorithm can be adapted in a straightforward manner to
run efficiently in parallel on shared-memory MIMD machines. For all these reasons
this algorithm is an ideal place to begin our discussion of parallel sparse Cholesky
algorithms.

A parallel algorithm. To facilitate our discussion, we introduce a more detailed
version of the column-Cholesky algorithm shown earlier in Figure 3. In particular,
we need to indicate how the row structure sets Struct(L;.) are generated by the
algorithm. The more detailed version of the algorithm shown in Figure 11 requires
the following new notation. Let next(j, k), k& < j, be the lowest numbered column
greater than j that requires updating by column k. That is, nezt(j, k) is the row
index of the first nonzero in column k after row j. (Note that nezt(j, ;) is merely
the parent of j in the elimination tree.) The column index sets S; (1 < i < n) are
initially empty, but when column j is processed, S; = Struct(Lj.), as required. For
simplicity and brevity, the algorithm in Figure 11 does not detail how to handle the
case when there is no “next” column to be updated. The use of the index sets S; and
other implementation details of the serial algorithm are discussed in [47]. However,
we note one particular detail in the implementation. Since each completed column &
appears in no more than one set S; at any time during the algorithm’s execution, a
single n-vector link suffices to maintain each set S; (1 < i < n) as a singly-linked list

[47].

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 107

forj=1tondo
S;j =9
forj=1tondo
for k€ S; do
cmod(j, k)
i := next(j, k)
S; == S; U {k}
cdiv(y)
i := nezt(j, j)
Si = S u{j}

F1G. 11. Sparse column-Cholesky factorization algorithm, showing the computation of row structure
sets Struct(Lis) tn the sels S;, 1 <i < n.

This algorithm can be implemented in parallel on a shared-memory MIMD ma-
chine in a fairly straightforward manner [40]. Each column j corresponds to a task

Tcol(j) := {emod(j, k) | k € Struct(L;.)} U {cdiv(j)},

as discussed in Section 3.2. Initially, the task queue, denoted by @, contains all column
tasks T'col(j) ordered by some topological ordering of the elimination tree. For ease
of notation, we assume that the elimination ordering and the schedule-prescribed
ordering are the same, so we have

Q = {Tcol(1), Teol(2),...,Teol(n)}.

As the computation proceeds, a processor obtains (and removes) the column task
currently at the front of the queue and proceeds to compute that task. After com-
pleting the task, the processor obtains from @ another column task to compute, and
it continues in this manner, as do all the other processors, until the factorization is
complete. This simple “pool of tasks” approach does an excellent job of dynamically
balancing the load, even though the column task profile for typical sparse problems
is quite irregular. Obviously, access to this queue must be synchronized to ensure
that each column task T'col(j) is executed by one and only one processor. The par-
alle] algorithm also must synchronize access to the n-vector link in which the sets
S; (1 £ i € n) are maintained. Only one processor at a time can modify this array,
and thus the two sequences of instructions that manipulate link must be critical sec-
tions in the algorithm. A high-level description of the parallel algorithm is given in
Figure 12.

Recent improvements. The algorithm in Figure 12 has two significant drawbacks.
First, the number of synchronization operations (obtaining and relinquishing a lock)
is O(n + n(L)), which is quite high. Second, since the algorithm does not exploit
supernodes, it will not vectorize well on vector supercomputers with multiple proces-
sors, natural target machines for the algorithm. The introduction of supernodes into
the algorithm deals quite effectively with both problems [88].

The use of supernodes to improve computational rates on vector supercomputers
is well documented [3,5,11,19]. The duplicate sparsity structure found in columns
within the same supernode enables one to organize the computation around level-2
or level-3 BLAS-like computational kernels. Such block operations reduce memory

108 M.T. HEATH, E. NG AND B.W. PEYTON

Q := {Tcol(1),Tcol(2),...,Tcol(n)}
for j=1tondo
S; =0
while Q # 0 do
pop Teol(j) from Q
while column j requires further emod’s do
if S; =0do
wait until S; # @
obtain k from S;
i := next(j, k)
lock
S,' = S,' U {k}
unlock
cmod(j, k)
cdiv(j)
i 1= next(j, 1)
lock
Si == Siu{j}

unlock

F1G. 12. Parallel sparse column-Cholesky factorization algorithm for shared-memory MIMD ma-
chines.

traffic by retaining and reusing data in cache, vector registers, or whatever limited
rapid-access memory resource is provided on the particular machine in question.

In the following discussion, we will let bold-face integers 1, 2, ..., N stand for the
supernodes. Thus, N < n is the number of supernodes. We will also use bold-face
capital letters such as J and K to denote each supernode by its index, and use small
letters such as ¢, j, and k to denote each individual column by its number.

Let K be a supernode comprising the set of contiguous columns {k,k + 1,k +
2,...,k +t}. Because of the sparsity structure shared by each column of K, every
column of K modifies column j, j > k + ¢, if and only if at least one column of K
modifies column j. For example, column 40 in supernode 30 in Figure 5 is modified
by each column 37, 38, and 39 in the previous supernode, but it is modified by none of
the columns 19, 20, and 21 that compose supernode 15. The block operation used to
improve the algorithms in Figures 3 and 12 is a level-2 BLAS-like kernel, emod(j, K),
which modifies column j with a multiple of the appropriate entries of each column
k € K. In particular, the modifications from the columns in K can be accumulated
as dense saxpy operations and no indirect addressing is required until the result is
applied to column j. For a column k + ¢ € K, we let ecmod(k + i,K) denote the
operation of updating column k + ¢ with every column of K numbered earlier than
k + 1. That is, cmod(k + i, K) is given by

emod(k + i, K) := {emod(k + i,k),cmod(k + i,k +1),...,emod(k + i,k + i — 1)}.
For the matrix in Figure 5, cmod(30, 22) is given by
emod(30, 22) := {cmod(30, 28), cmod(30,29)}.

Since columns k, k+ 1, ..., k+ 7 — 1 in supernode K have the same structure below
row k+i—1, the modifications to column k+i can again be performed by dense saxpy

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 109

operations, with no indirect addressing required. The next column to be updated by
supernode K after it has updated column j is denoted by nezt(j, K), and similarly
the first column outside supernode K requiring modification by the columns of K is
denoted by nezt(K,K). Using this notation, Figures 13 and 14 display supernodal

versions of the sequential and parallel column-Cholesky algorithm shown in Figures 11
and 12, respectively.

for j=1tondo

S;j=40
forJ=1toNdo
for j€J do
for K€ S; do
cmod(j, K)
i := nezt(j,K)
S;:=5;U {K}
cmod(j,J)
cdiv(j)
i := next(J,J)
Si =5 U{J}

FIG. 13. Sequential sparse supernodal column-Cholesky factorization algorithm.

Q := {Tcol(1),Tcol(2),...,Tcol(n)}
forj=1tondo
S; =0
while @ # 0 do
pop Tcol(j) from Q
let J be the supernode containing column j
while column j requires further cmod’s do
if Sj = ﬂ do
wait until S; # @
obtain K from S;
i := next(j,K)
lock
Si == S; U{K}
unlock
cmod(j, K)
cmod(j,J)
cdiv(j)
if j is the last column of supernode J do
i := next(J,J)
lock
S =5;U {J}

unlock

Fi1G. 14. Parallel sparse supernodal column-Cholesky factorization algorithm for shared-memory
MIMD machines.

110 M.T. HEATH, E. NG AND B.W. PEYTON

Let o(L) denote the number of subscripts in the supernodal representation of the
sparsity structure of L. The use of supernodes reduces the number of synchronization
operations to a number proportional to o(L), which is often much less than n(L),
sometimes by as much as an order of magnitude [46].

3.4.2. Distributed fan-out algorithm. The algorithm introduced in [43], now
known as the fan-out algorithm, was the first sparse Cholesky factorization algorithm
developed for distributed-memory machines. It is a parallel version of the submatrix-
Cholesky factorization algorithm shown in Figure 4. We will denote the k-th task
performed by the outer loop of the algorithm by Tsub(k), which is defined by

Tsub(k) := {cdiv(k)} U {cmod(j, k) | j € Struct(L.z)}.

That is, T'sub(k) first obtains L,; by performing the cdiv(k) operation, and then
performs all column modifications that use the new column.

Algorithms for distributed-memory machines are usually structured around some
prior distribution of the data to the processors. In order to keep the cost of in-
terprocessor communication at acceptable levels, it is essential for the algorithm to
make local use of local data as much as possible. The distributed fan-out, fan-in,
and multifrontal algorithms are typical examples of this type of distributed algorithm
(the fan-in and multifrontal algorithms will be discussed in the following subsections).
These three distributed algorithms are all designed within the following framework.

o All three require assignment of the matrix columns to the processors.

e All three use the column assignment to distribute among the processors the
tasks found in the outer loop of one of the serial implementations of sparse
Cholesky factorization.

The differences among these algorithms stem from the various formulations of serial
sparse Cholesky upon which they are based. The fan-in algorithm is based on column-
Cholesky; it partitions each task T'col(j) among the processors. The distributed multi-
frontal algorithm partitions among the processors the tasks upon which the sequential
multifrontal method is based: partial dense submatrix-Cholesky factorization and the
assembly operations, both of which are introduced later in the subsection dealing with
this algorithm. The fan-out algorithm is based on submatrix-Cholesky; it partitions
each task Tsub(k) among the processors.

We now detail how the fan-out algorithm partitions the task Tsub(k) among the
processors. Each column [L,; is stored on one and only one of P available processors.
An n-vector map is required to record the distribution of columns to processors: if
column k is stored on processor p, then map[k] := p. We let mycols(p) denote the set
of columns owned by processor p. The fan-out algorithm is a data-driven algorithm,
where the data sent from one processor to another are the completed factor columns.
The outer loop of the fan-out algorithm constantly checks the message queue for
incoming columns. When it receives a column L,;, it uses it to modify every column
J € mycols(p) for which cmod(j, k) is required. In other words, it performs the
following set of cmods:

{emod(j, k) | j € Struct(L.x) N mycols(p)}.

Indeed, each task T'sub(k) is partitioned among the processors by the partition defined
by the column mapping. More precisely, the column partition

{mycols(1), mycols(2),...,mycols(P)}

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 111

induces the partition of Tsub(k) into subtasks of the form
{Tsub(k,1),Tsub(k,2),...,Tsub(k, P)}
where
T'sub(k, p) := {emod(j, k) | j € Struct(L.x) N mycols(p)},

with each non-empty task T'sub(k, p) assigned to processor p, the owner of the columns
updated by the task.
Of course, many of these tasks will be empty. Only the processors in the set

procs(L.y) := {map(j] | 7 € Struct(L.z)}

require column L,x. When processor p = map{j] has completed all column modifica-
tions required by column j, it then performs cdiv(j) and sends it to every processor
in procs(L,;), where it eventually is used to modify later columns in the matrix. The
algorithm is shown in Figure 15.

for j € mycols(p) do
if j is a leaf node in T(A) do
cdiv(j)
send L,; to the processors in procs(L.;)
mycols(p) := mycols(p) — {j}
while mycols(p) # 0 do
receive any column of L, say L.
for j € Struct(L.:) N mycols(p) do
cmod(j, k)
if column j required no more cmod’s do
cdivj
send L,; to the processors in procs(L,;)
mycols(p) := mycols(p) — {;}

F1G. 15. Fan-out Cholesky factorization algorithm for processor p of a distributed-memory MIMD
machine.

Historically, the fan-out algorithm was first to be implemented on a distributed-
memory machine, but due to several weaknesses it has since been superseded by fan-in
algorithms and distributed multifrontal algorithms. The distributed fan-out algorithm
incurs greater interprocessor communication costs than the other two methods, both
in terms of total number of messages and total message volume. It simply does
not exploit a good communication-reducing column mapping, such as the subtree-
to-subcube mapping, as effectively as the other methods do. Ashcraft et al. [9] and
Zmijewski [109] have independently improved the algorithm by having it send aggre-
gated update columns rather than individual factor columns for columns belonging
to a subtree that has been mapped to a single processor. Though the resulting im-
provement in performance is substantial, it still is insufficient to make the method
competitive.

Another problem with the method is the expense of mapping the entries of the
updating column k to the corresponding entries of the updated column j when per-
forming ecmod(j, k). The set Struct(L,;) must accompany the factor column L,; when

112 M.T. HEATH, E. NG AND B.W. PEYTON

it is sent to other processors to enable these processors to complete column modifi-
cations of the form c¢mod(j, k). This roughly doubles the communication volume and
creates a more complicated message that must be packed by the sending processor and
unpacked by the receiving processor. Moreover, each cmod(j, k) requires that both
index sets Struct(L.;) and Struct(L.i) be searched in order to match indices. This
results in poor serial efficiency. These weaknesses have provoked efforts to develop
better distributed factorization algorithms.

3.4.3. Distributed fan-in algorithm. One of the improved distributed factor-
ization algorithms is the fan-in algorithm, introduced by Ashcraft et al. in [10]. Based
on the sparse column-Cholesky algorithm, it distributes each column task T'col(j)
among the processors in a manner similar to the distribution of tasks T'sub(k) in the
fan-out algorithm. Viewed in a more general way, the fan-in method is analogous to
the standard paralle] algorithm for a dot product, in which each processor first locally
reduces the data assigned to it down to a single number, and then participates in a
global phase during which the processors cooperate in reducing down to a single num-
ber the P local reductions generated during the preceding “perfectly parallel” phase.
Indeed, the name “fan-in” is taken from the fan-in distributed algorithm for dense
triangular solution [58], which computes a series of inner product calculations in pre-
cisely this manner. Note that throughout this subsection we freely use the notation
introduced in the previous subsection.

As with the fan-out algorithm, each processor p is responsible for computing
cdiv(j) for every column j € mycols(p). Of course, cdiv(j) cannot be computed
until all modifications ¢cmod(j, k), k € Struct(L;.), have been performed. The fan-
in algorithm is a demand-driven algorithm, where the data required are aggregated
update columns computed by the sending processor using columns it owns, and needed
by the receiving processor to update a target column. Let u(j, k) denote the scaled
column accumulated into the factor column by the emod(j, k) operation. The outer
loop of the algorithm processes every column j of the matrix in ascending order by
column number. When processor p processes column j, it aggregates into a single
update vector u every update vector u(j, k) for which k € mycols(p) N Struct(L;.).
Indeed, each task T'col(j) is partitioned among the processors by the partition of the
columns induced by the column mapping. More precisely, the column partition

{mycols(1), mycols(2), ..., mycols(P)}
induces the partition of Tcol(j) into subtasks of the form
{Teol(j,1),Teol(j,2),...,Teol(j, P)}

where T'col(j, p) aggregates into a single update vector every update vector u(j, k) for
which k € Struct(L;j.) N mycols(p), with each non-null task Tcol(j,p) assigned to
processor p, the owner of the updating columns used by the task.

After performing Tcol(j, p), if processor p does not own column j, then it sends
the resulting aggregated update column to processor ¢ = map(j], which will eventually
incorporate it into column j. If, on the other hand, processor p does own column j, it
must receive and process any aggregated update columns required by column j from
other processors before it can complete the cdiv(j) operation. The fan-in algorithm
is given in Figure 16. '

It is interesting to note that any column j € mycols(p) will receive an aggregated
update column from every processor in the set

procs(L;,) := {map[k] | k € Struct(L;.)}.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 113

for j:=1tondo
if 7 € mycols(p) or Struct(L;.) Nmycols(p) # @ do
u:=0
for k € Struct(Lj.) N mycols(p) do
u = u+u(j k)
if map[j] # p do
send u to processor ¢ = maplj]
else
incorporate u into the factor column ;

while any aggregated update column for column j remains unreceived do

receive in u another aggregated update column for column j
incorporate u into the factor column j
cdiv(y)

F1G. 16. Fan-in sparse Cholesky factorization algorithm for processor p of a distributed-memory
MIMD machine.

In contrast, the fan-out algorithm sent the factor column L,; to every processor
in the processor set procs(L.;). Consider the communication costs incurred by the
two algorithms during the computation of columns that constitute a subtree of the
elimination tree that has been mapped to a single processor by a subcube-to-subtree
mapping. For the fan-in algorithm there will be no communication during this portion
of the computation, because for every column j in the subtree, Struct(L;.) also
belongs to the subtree. On the other hand, the fan-out algorithm must send L,; to
another processor if there is a column index k € Struct(L,;) for some column j in
the subtree, such that map[k] # map[j]. This observation is an informal indication
of why the fan-in algorithm is better than the fan-out algorithm at exploiting a good
mapping to reduce interprocessor communication.

A more visual comparison of the communication patterns of the fan-out and fan-
in algorithms is given in Figures 17 and 18. These figures illustrate snapshots of
the execution of the two algorithms on an Intel iPSC/2 hypercube, with time on
the horizontal axis. Processor activity is shown by horizontal lines and interprocessor
communication by slanted lines. The horizontal line corresponding to each processor is
either solid or blank, depending on whether the processor is busy or idle, respectively.
Each message sent between processors is shown by a line drawn from the sending
processor at the time of transmission to the receiving processor at the time of reception
of the message. The problem being solved is the factorization of a matrix of order
225 derived from a model finite element problem on a 15 x 15 grid, using a nested
dissection ordering and subtree-to-subcube mapping on eight processors. The divide-
and-conquer nature of the nested dissection ordering is clearly visible in Figure 18,
which also illustrates the ability of the fan-in algorithm, given an appropriate mapping,
to exploit this structure to reduce communication. By contrast, the fan-out algorithm
shown in Figure 17 exhibits much greater communication traffic as well as a less
regular communication pattern, even under the ideal conditions represented here.
These diagrams were produced using a package developed at Oak Ridge National
Laboratory for visualizing the behavior of parallel algorithms [57].

Compute-ahead fan-in algorithm. In Figure 16, observe that processor p will
fall idle if, while receiving aggregated update columns destined for a column j €

114 M.T. HEATH, E. NG AND B.W. PEYTON

W/ AV LT RNATN WY
WL AV

N
ShZ

e
<]
a

N RTY AN W

126 TIE

1IG. 17. Communication pattern of fan-out algorithm for a model problem.

[[T e
[T TN O T

L U HIT’ H\\T
;__/\!UU_%&H \ :

128 TIE 632

FiG. 18. Communication patiern of fan-in algorithm for a model problem.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 115

mycols(p), it has no such updates in its message queue. One straightforward en-
hancement to the method is to probe the queue for such messages, and when there
are none, proceed with useful work on later factor columns. When unable to complete
the current column j, the algorithm toggles between performing so-called compute-
ahead tasks on columns i > j, and detecting and processing incoming aggregated
updates for the current column j.

There are two types of compute-ahead tasks to be performed on later columns of
the factor:

1. For some column ¢ > j, aggregate into a work vector the update vector u(i, k)
for each completed column k € Struct(L;.) N mycols(p).
2. Receive an aggregated update column for some column ¢ > j, and incorporate
it into the factor column.
Compute-ahead tasks of the first type have priority over compute-ahead tasks of the
second type; that is, compute-ahead tasks of the second type are performed only when
the algorithm has exhausted its supply of tasks of the first type.

Compute-ahead aggregating of update columns is limited to target columns i > j
that belong to the same supernode as the current column j. This is due primarily to
the ease and “naturalness” with which successive aggregate update columns sharing
the same sparsity pattern can be computed. Since the aggregated update columns
are managed so that they share the same sparsity structure as the target column,
no indirect indexing is required to incorporate them into the factor column. Thus,
compute-ahead tasks of the second type require merely a receive, followed by a saxpy.
For details concerning these and other implementation issues, consult [8].

Though supernodes play an important role in organizing the compute-ahead fan-
in algorithm, current implementations of both the basic and compute-ahead fan-in
algorithms do not exploit supernodes to reduce memory traffic in the inner loops
of the computation — one of their key roles in the parallel shared-memory column-
Cholesky algorithm. There is no reason why supernodes cannot serve in this role in the
fan-in algorithm also. However, it is interesting to note that the potential exploitation
of supernodes in distributed-memory algorithms is somewhat limited because good
mappings typically distribute the columns of a supernode among several processors.

3.4.4. Parallel multifrontal algorithms. As noted earlier, multifrontal meth-
ods are generalizations of single-front methods. The original motivation for developing
frontal methods was for more effective use of auxiliary storage in the out-of-core so-
lution of sparse systems, and more efficient inner-loop computations by avoiding the
indirect addressing that is characteristic of general sparse data structures. The funda-
mental idea in frontal methods is to keep only a relatively small portion of the matrix
in main memory at any given time, and to use a full matrix representation for this
“active” portion of the matrix, so that computations involving it are more efficient on
scalar machines and more readily vectorized on vector machines. Although the data
structure for the active matrix is very simple, the overall data management required
in frontal methods is quite complicated, involving the assembly of matrix elements,
their insertion into the proper location in the full active matrix data structure, and
the writing of completed portions of the factor to disk, all of which must account for
the fact that the active matrix constitutes a moving “window” through the problem.

The success of frontal methods is dependent on keeping the size of the active
matrix small, which in turn depends on the structure of the problem and the ordering
used in solving it. In structural analysis, for example, a long thin truss is ideal for
a frontal solution technique in that, with an appropriate ordering, a single narrow

116 M.T. HEATH, E. NG AND B.W. PEYTON

“front” passes along the length of the truss. If a single front would become unaccept-
ably large, however, then multiple fronts can be employed, leading to multifrontal
methods. Of course, the various fronts must eventually merge before the problem can
be completed, but the hope is that with an appropriate ordering such mergers can be
postponed as late as possible in the computation. The use of multiple fronts seems
to suggest an obvious parallel implementation: simply assign a separate front to each
processor. As we shall see, however, the situation is not quite so straightforward.

A self-contained presentation of parallel multifrontal algorithms would occupy
more space than we can afford in an article of this scope. The difficulties in produc-
ing a brief but clear description stem primarily from the complexity of the method: a
sequential multifrontal code is considerably more complicated than a sequential sparse
column-Cholesky code. As might be expected, modifying the method to run on MIMD
machines is also more difficult and complicated, though it is by no means unmanage-
able; there have been implementations on both shared-memory [12,22,23,105] and
distributed-memory [9,36,82] machines. This section is limited to a brief overview of
the literature on the subject and a short discussion of some of the problems that arise
in parallel implementations. The reader should consult [28] or [78] for background
material on multifrontal methods.

We should also point out that some of the codes and algorithms cited in this sec-
tion are designed for nonsymmetric linear systems, and at least one includes pivoting
for stability. For instance, the work in [22] and [23] is based on the Harwell MA37
code, which solves nonsymmetric systems and pivots for stability. Nevertheless, such
codes can be discussed within the framework of this article because they perform a
symbolic factorization of the structurally symmetric matrix A + AT, and compute a
structurally symmetric numerical factorization of A within the resulting data struc-
ture. Therefore, much of the material in [22] and [23] is directly applicable to sparse
multifrontal Cholesky factorization.

Background. As noted in Section 2, the multifrontal method is a sophisticated
variant of the sparse submatrix-Cholesky factorization algorithm (Figure 4) for which
the emod(j, k) operations are not applied directly to column j of the factor matrix.
Instead, each is accumulated and passed on through a succession of update matrices
until it is finally incorporated into the target column. The outer loop of the serial
multifrontal algorithm processes the supernodes 1,2,...,N in order, completing the
columns of each supernode when the supernode is processed. The order in which the
supernodes are processed is critical. For reasons discussed below, they are processed in
the order in which they are visited by a postorder traversal of a supernodal elimination
tree. A supernodal elimination tree with 31 supernodes is displayed in Figure 6.

Every supernode K has associated with it a frontal matrix in which the factor
and update columns associated with the supernode are computed. The factor and
update columns computed within this matrix are stored in a dense matrix format,
essentially minimizing the use of indirect addressing — one of the major strengths of
the method. The algorithm performs two tasks within this frontal matrix:

1. The assembly step inserts the required data into the frontal matrix.
2. After the assembly step, dense partial submatriz-Cholesky factorization within
the frontal matrix generates the factor and update columns.
We discuss first the partial submatrix-Cholesky factorization step and then the as-
sembly step in more detail.

Suppose that K contains r columns of the matrix, and assume that the assem-

bly step for supernode K’s frontal matrix has been completed. The algorithm then

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 117

computes r major steps of dense submatriz-Cholesky factorization within the frontal
matrix, after which the first r columns of the frontal matrix contain the r factor
columns of K, and the trailing columns in the frontal matrix contain aggregated up-
date columns for later columns of the matrix. These trailing columns constitute the
update matrix generated by this block elimination step. Henceforth, we will denote
this task by Tsub(K). The update matrix is stored and assembled later into the
frontal matrix of its “parent supernode” in the elimination tree.
The assembly step consists of the following three steps:

1. Zero out the frontal matrix.

2. Insert the required entries of A into the appropriate locations of the matrix.

3. For each “child supernode,” obtain its associated update matrix and add each

entry to its corresponding entry in the frontal matrix.

Because the supernodes are ordered by a postorder traversal of the elimination tree,
the update matrices can be stored efficiently on a stack, limiting both the storage and
time required to store them. New update matrices are pushed onto the stack as soon
as they are generated, while update matrices for child supernodes are popped off the
stack as needed during each assembly step.

Shared-memory MIMD machines. One key problem associated with parallel mul-
tifrontal algorithms for shared-memory MIMD multiprocessors is the management
of auxiliary storage for the update matrices. The postordering of supernodes used
in the sequential algorithm severely limits the parallelism available; in particular, it
limits exploitation of the parallelism that exists among the many disjoint subtrees of
the elimination tree available in most realistic problems. To create more independent
processes, algorithm developers have abandoned the postordering and the stack of up-
date matrices. Instead, they process the supernodes in some order that allows greater
exploitation of the large-grained (subtree-level) parallelism, but which complicates
management of the working storage for update matrices, increasing both the storage
and time required by this part of the algorithm [23,83,105].

In [22] and [23], Duff considered several strategies for dealing with the resulting
fragmentation of working storage. Garbage collection to reclaim unused storage re-
quires a critical section that seriously inhibits parallelism. Subdividing the working
storage in an effort to localize the garbage collection operations and reduce their neg-
ative effect on parallelism proved to be too complicated and ineffective [22]. Breaking
up individual update matrices to make better use of free storage was not considered
because it would destroy the data locality vital for efficient use of cache — one of
the important strengths of the multifrontal method and a key consideration on the
Alliant FX/8 [23]. In [23], Duff used the buddy system to manage the storage for
update matrices. For any given update matrix, the buddy system obtains a free block
of storage of length 2%, where k is the smallest power of two that provides enough
contiguous storage locations to hold the matrix. The scheme is guaranteed to waste
no more than half the working storage.

We are aware of two other parallel multifrontal codes designed to run on par-
alle]l shared-memory MIMD machines. A parallel multifrontal code developed by
Lucas [83] for the CRAY 2 allocates subtrees to individual processors and has each
processor manage a local stack for its assigned subtree. During the course of the com-
putation, there are eventually more processors than independent subtrees. At that
point, the code abandons the use of subtree-level parallelism. Instead, it successively
processes the remaining tasks Tsub(K), using CRAY autotasking to partition each
task Tsub(K) among all the processors. A parallel multifrontal code developed by

118 M.T. HEATH, E. NG AND B.W. PEYTON

Vu [105] for the CRAY Y-MP uses a similar strategy.

A second issue discussed in [23] is partitioning the work among the processors
for execution in parallel. Here, we restrict our attention to issues associated with
distributing the tasks Tsub(1), Tsub(2), ..., Tsub(N) among the processors. The
situation is not as simple as it is for parallel column-Cholesky, where simply deal-
ing out the column tasks T'col(j), with some care in the scheduling, is very effective
in exploiting both subtree- and column-level parallelism (see section 3.4.1). If the
multifrontal method distributes indivisible tasks T'sub(K) among the processors in a
similar fashion, then, as noted in [22] and [26], parallelism decreases as the compu-
tation proceeds toward the root supernode and disappears altogether when the root
supernode is reached. Typically, most of the work is performed in the larger frontal
matrices associated with supernodes near the root, and thus smaller granularity is re-
quired for acceptable performance. That is, the tasks T'sub(K) for supernodes K near
the root supernode must be partitioned into smaller tasks and distributed among the
processors. In [23], Duff parameterizes his code so that it can spawn tasks of any gran-
ularity between two extremes, the largest being the tasks T'sub(K), and the smallest
being individual crods and cdivs. His results indicate that working with small blocks
of columns is most effective. Near the root of the supernodal elimination tree, the
algorithms of Lucas [83] and Vu [105] use the autotasking capabilities of their target
machines, the CRAY 2 and CRAY Y-MP, to partition the tasks Tsub(K) among the
processors.

Distributed-memory MIMD machines. Lucas [82,84] developed the first imple-
mentation of the multifrontal method for distributed-memory MIMD machines. Since
then, Ashcraft [9] has also developed parallel multifrontal codes for such machines.
Lucas’s code and the first code developed by Ashcraft implement essentially the same
distributed multifrontal algorithm [6,83]. This section contains a brief discussion of a
few features of this algorithm. Further enhancements to the algorithm, and a system-
atic comparison of all the distributed-memory factorization algorithms will appear
in [7].

As with other distributed factorization algorithms, each column k of the matrix
is assigned to and stored on one processor, map[k]. Consider a supernode K and
let map(K) denote the set of processors that own at least one column of K or a
descendant of a column K in the elimination tree. The key feature of the algorithm
is the distribution of all the columns of K'’s frontal matrix among the processors
in map(K); that is, both the factor columns and the aggregated update columns
generated by the task T'sub(K) are distributed among the processors in map(K).

The processors in map(K) work together to perform the task Tsub(K), i.e., dense
submatrix-Cholesky factorization on the first |K| columns of the distributed frontal
matrix. The algorithm used to perform this task can be viewed as a straightfor-
ward adaptation of the parallel dense submatrix-Cholesky algorithm presented in [37].
When processor p = map[k] € map(K) completes factor column k € K, it broadcasts
L. to the other processors in map(K). The other processors in map(K) at some
point receive L,i and use it to modify every column of the frontal matrix that they
own. Thus, this phase of the algorithm is very similar to the fan-out algorithm shown
in Figure 15.

Before the task Tsub(K) can be performed, supernode K’s distributed frontal
matrix must be assembled. Contributions from distributed update matrices for any
children of K must be sent to the appropriate processors and scatter-added into
the appropriate frontal matrix locations. More precisely, if an update column from

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 119

a “child” update matrix is located on a different processor than the corresponding
column of its “parent” frontal matrix, then the aggregated update column must be
sent to its “new owner,” where it is incorporated into the appropriate column of the
frontal matrix.

Both phases of the factorization require interprocessor communication. The fac-
torization phase performs a restricted broadcast of completed factor columns, while
the assembly phase moves aggregated update columns from one processor to another.
The two forms of communication result in somewhat higher communication cost for
the multifrontal algorithm than that incurred by the fan-in algorithm. However, its
extra communication overhead is far smaller than that incurred by the pure fan-out
algorithm, and preliminary results indicate similar performance for the fan-in and
distributed multifrontal algorithms [9].

3.5. Triangular Solution. Unfortunately, there is relatively little to say about
parallel algorithms for forward and backward triangular solutions. Data dependencies
and a paucity of work to distribute among the processors make it very difficult to
achieve high computational rates, even for dense problems. Heath®and Romine [58]
and Eisenstat et al. [30] have shown that intricate pipelining techniques are required
to achieve computational rates as high as 50% efficiency for large dense problems
on distributed-memory hypercube multiprocessors. Two factors make the situation
even more difficult in the sparse case. First, due to preservation of sparsity in the
factor matrix, there is usually far less work to distribute among the processors —
approximately 7(L) flops rather than the n(n — 1)/2 flops available in the dense
case. Second, the successful pipelining techniques used in [30,58] appear to require
the extremely regular structure of a dense matrix. Loss of this regularity in sparse
Cholesky factors increases the difficulty of using these complicated techniques to speed
up sparse triangular solution. Generalizing these techniques so that they can be
incorporated into a parallel sparse triangular solution algorithm is a possible avenue
for future improvement. A step in this direction has been made by Zmijewski [108],
who considered the use of cyclic algorithms for solving sparse triangular systems.

These difficulties are mitigated somewhat by the subtree-level parallelism that
is available only in the sparse case. Though the parallel algorithms for sparse for-
ward and back triangular solutions contained in [44] exploit this parallelism, they
nonetheless performed rather poorly. Other work on parallel sparse triangular solu-
tion algorithms [4,56,85,102] has been directed primarily toward use in the precondi-
tioned conjugate gradient algorithm. Some of the work in [4], however, is applicable
to complete, as well as incomplete, Cholesky factorizations.

4. Concluding remarks. In this paper, we have provided a summary of parallel
algorithms currently available for the four phases in the solution of sparse symmet-
ric positive definite systems. It is clear from the relative length of the discussions
that much of this research has been focused on the design and implementation of
parallel numerical factorization algorithms. Some of these algorithms have exhibited
reasonable speed-up ratios, particularly on shared-memory MIMD multiprocessors.
Although there have been attempts in developing parallel algorithms for the other
phases, namely ordering, symbolic factorization and triangular solutions, these algo-
rithms have generally been less successful and lacking in efficiency. Much research
is needed in those areas. The ordering problem seems particularly problematic in a
distributed-memory environment because of the difficulty of partitioning the graph
of the matrix among the processors in an intelligent way before the ordering is deter-
mined.

120 M.T. HEATH, E. NG AND B.W. PEYTON

It may be argued that current sequential algorithms for symbolic factorization and
triangular solution are so efficient that perhaps they can be used on one processor in a
multiprocessor environment instead of developing parallel versions. This may be true
for MIMD multiprocessors with globally shared memory. On MIMD multiprocessors
with local memory, there are at least two reasons why parallel algorithms are needed
for symbolic factorization and triangular solution, even if these algorithms may be
less efficient that their sequential counterparts. First, although symbolic factorization
and triangular solution are often the least expensive phases in the solution process
on serial machines, they may become the dominant phases as more efficient paral-
lel numerical factorization algorithms are developed. Thus, research on the design
of efficient parallel algorithms for symbolic factorization and triangular solution will
be necessary eventually. Second, even if they.are somewhat inefficient, parallel algo-
rithms are still needed to make use of the large (collectively) local memory available
on distributed-memory parallel machines for solving large problems; there may not
be enough memory on a single processor to carry out symbolic factorization and/or
triangular solution serially. Third, many algorithms require multiple triangular solu-
tions.

Our emphasis in this paper has been on parallel direct methods for solving
sparse symmetric positive definite systems. Work has also been done on parallel
algorithms for other matrix computations. In the case of direct methods for solv-
ing sparse nonsymmetric linear systems, much of the research has been carried out
on shared-memory MIMD multiprocessors. Some recent examples can be found in
[1,2,3,20,22,23,51,52]. Parallel algorithms for sparse least squares problems are dis-
cussed in [16,59,96]. There has been a great deal of research on parallel iterative
methods for solving large sparse linear systems as well. For a summary of such work
and references to this extensive literature, see the book by Ortega [89]. Many ad-
ditional references on all aspects of parallel matrix computations can be found in

[90].

Acknowledgment. The authors would like to thank Eduardo D’Azevedo, Alan
George and Joseph Liu for their suggestions and comments, which have improved the
presentation of the material.

REFERENCES

[1] G. ALAGHBAND, Parallel pivoting combined with parallel reduction and fill-in control, Parallel
Computing, 11 (1989), pp. 201-221.

[2] G. ALAGHBAND AND H. JORDAN, Multiprocessor sparse L/U decomposition with controlled
fill-tn, Tech. Report 85-48, ICASE, NASA Langley Research Center, Hampton, Virginia,
1985.

[3] P. AMEsTOY AND I. DUFF, Vectorization of a multiprocessor mullifrontal code, Internat. J.
Supercomp. Appl., 3 (1989), pp. 41-59.

[4] E. ANDERSON AND Y. SAAD, Solving sparse triangular linear systems on parallel computers,
Internat. J. High Speed Comput., 1 (1989), pp. 73-95.

[5] C. ASHCRAFT, A vector implementation of the multifrontal method for large sparse, symmet-
ric positive definile linear systems, Tech. Report ETA-TR-51, Engineering Technology
Applications Division, Boeing Computer Services, Seattle, Washington, 1987.

[6] . Personal communication, 1990.

7 » Ph.D. Thesis. Dept. of Computer Science, Yale University, 1990.

[8] C. AsHCRAFT, S. EiSENsTAT, J. Liu, B. PEYTON, AND A. SHERMAN, A compute-ahead
implementation of the fan-in sparse distributed factorization scheme, Tech. Report
ORNL/TM-11496, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 121

[9] C. ASHCRAFT, S. EISENSTAT, J. LIU, AND A. SHERMAN, A comparison of three column-based
distributed sparse factorization schemes, Tech. Report YALEU/DCS/RR-810, Depart-
ment of Computer Science,Yale University, New Haven, CT, 1990.

[10] C. ASHCRAFT, S. E1SENSTAT, AND J. W.-H. LI, A fan-in algorithm for distributed sparse
numerical factorization, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 593-599.

[11] C. AsHCRAFT, R. GRIMES, J. LEwWis, B. PEYTON, AND H. SIMON, Progress in sparse matriz
methods for large linear systeme on vector sspercompuiers, Internat. J. Supercomp. Appl,
1 (1987), pp. 10-30,

[12] R. BENNER, G. MONTRY, AND G. WEIGAND, Concurrent multifrontal methods: shared mem-
ory, cache, and frontwidth issucs, Internat. J. Supercomp. Appl, 1 (1987), pp. 26-44.

[13] P. BERMAN AND G. SCHNITGER, On the performance of the minimum degree ordering for
Gaussian elimination, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 83-88.

[14] J. BROWNE, J. DONGARRA, A. KARP, K. KENNEDY, AND D. KUCK, 1988 Gordon Bell prize,
IEEE Software, 6 (May 1989), pp. 78-85.

[15] 1. CAVERS, Ticbreaking the minimum degree algorithm for ordering sparse symmetric positive
definite matrices, Master's thesis, Department of Computer Science, University of British
Columbia, 1987.

[16] E. CHu AND A. GEORGE, Sparse orthogonal decomposition on a hypercube multiprocessor,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 453-465.

[17] E. CHu, A. GEORGE, J. W.-H. Liu, AND E. G.-Y. NG, User’s guide for SPARSPAK-A:
Waterloo sparse linear equations package, Tech. Report CS-84-36, University of Waterloo,
Waterloo, Ontario, 1984.

[18] J. CONROY, Parallel direct solution of sparse linear systems of equations, Tech. Report TR
1714, Department of Computer Science University of Maryland, College Park, Maryland
20742, 1986.

[19] A. DAVE AND 1. DUFF, Sparse matriz calculations on the Cray-2, Parallel Computing, 5
(1987), pp. 55-64.

[20] T.DAvis AND P. YEW, A nondeterministic parallel algorithm for general unsymmetric sparse
LU factorization, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 383-402.

[21] J. DONGARRA, F. GUSTAVSON, AND A. KARP, Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine, SIAM Review, 26 (1984), pp. 91-112.

(22] 1. DurF, Parallel implementation of multifrontal schemes, Parallel Computing, 3 (1986),
pp- 193-204.

, Multiprocessing a sparse matriz code on the Alliant FX/8, J. Comput. Appl. Math.,
27 (1989), pp. 229-239.

[24] 1. DurF, A. ERISMAN, AND J. REID, On George’s nested dissection method, SIAM J. Numer.
Anal., 13 (1976), pp. 686—695.

[25] 1. Durr, A. ERisMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford University
Press, Oxford, England, 1987.

[26] 1. Durr, N. GouLb, M. LESCRENIER, AND J. K. REID, The multifrontal method in a parallel
environment, in Advances in Numerical Computation, M. Cox and S. Hammarling, eds.,
Oxford University Press, 1990. (To appear).

[27] 1. DurF AND J. REID, MA27 - a set of Fortran subroutines for solving sparse symmetric sets
of linear equations, Tech. Report AERE R 10533, Harwell, 1982.

y The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans.
Math. Software, 9 (1983), pp. 302-325.

[29] S. EiSENSTAT, M. GURSKY, M. SCHULTZ, AND A. H. SHERMAN, The Yale sparse matriz package
L the symmetric codes, Internat. J. Numer. Meth. Engrg., 18 (1982), pp. 1145-1151.

[30] S. EiseEnstAaT, M. HEATH, C. HENKEL, AND C. ROMINE, Modified cyclic algorithms for solving
triangular systems on distributed-memory multiprocessors, SIAM J. Sci. Stat. Comput.,
9 (1988), pp. 589-600.

[31} C. Fipuccia AND R. MATTHEYSES, A linear-time heuristic for improving network partitions,
in Proceedings of the 19th Design Automation Conference, 1982, pp. 175-181.

[32] M. FIEDLER, Algebraic connectivity of graphs, Czech. Math. J., 23 (1973), pp. 298-305.

[33] » A property of eigenvectors of non-negative symmetric matrices and sts application to
graph theory, Czech. Math. J., 25 (1975), pp. 619-633.

[34] K. GALLIVAN, R. PLEMMONS, AND A. SAMEH, Parallel algorithms for dense linear algebra
computations, SIAM Review, 32 (1990), pp. 54-135.

[35] F. GAO AND B. PARLETT, Communication cost of sparse Cholesky factorization on a hyper-
cube, Tech. Report PAM-436, Center for Pure and Applied Mathematics, University of
California, Berkeley, California, 1988.

[36) G. GEIST, Solving finite element problems with parallel multifrontal schemes, in Hypercube

(23]

(28]

122 M.T. HEATH, E. NG AND B.W. PEYTON

Multiprocessors 1987, M. T. Heath, ed., Philadelphia, 1987, SIAM, pp. 656-661.

[37] G. GEsT AND M. HEATH, Parallel Cholesky factorization on a Aypercube multiprocessor, Tech.
Report ORNL-6211, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1985.

[38] G. GEIST AND E. G.-Y. NG, Task scheduling for parallel sparse Cholesky factorization, Inter-
nat. J. Parallel Programming, 18 (1989), pp. 291-314.

[39] A. GEORGE, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345-363.

[40] A. GEORGE, M. HEATH, AND J. W.-H. Lu, Parallel Cholesky factorization on a shared-
memory multiprocessor, Linear Alg. Appl., 77 (1986), pp. 165-187.

f41] A. GEorGE, M. HEATH, J. W.-H. Ly, aAND E. G..Y. NG, Solution of sparse positive defi-
nite systems on a shared memory multiprocessor, Internat. J. Parallel Programming, 15
(1986), pp. 309-325.

f42] , Symbolic Cholesky factorization on a local-memory mulliprocessor, Parallel Comput-
ing, 5 (1987), pp. 85-95.

[43] , Sparse Cholesky factorization on a local-memory multiprocessor, SIAM IJ. Sci. Stat.
Comput., 9 (1988), pp. 327-340.

[44) , Solution of sparse positive definite systems on a hypercube, J. Comp. Appl. Math., 27

(1989), pp. 129-156.
[45] A. GEORGE AND J. W.-H. L1U, An automatic nested dissection algorithm for irregular finste
element problems, SIAM J. Numer. Anal., 15 (1978), pp. 1053-1069.

[46} , An optimal algorithm for symbolic factorization of symmetric matrices, SIAM J.
Comput., 9 (1980), pp. 583-593.

[47). , Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1981.

[48] y The evolulion of the minimum degree ordering algorithm, SIAM Review, 31 (1989),

pp. 1-19.

[49] A. GeoRrGE, J. W.-H. L1u, AND E. G.-Y. NG, Communication results for parallel sparse
Cholesky factorization on a hypercube, Parallel Computing, 10 (1989), pp. 287-298.

[50] A. GEORGE AND D. MCINTYRE, On the application of the minimum degree algorithm to finite
element systems, SIAM J. Numer. Anal,, 15 (1978), pp. 90-111.

[51] A. GEORGE AND E. G.-Y. NG, Parallel sparse Gaussian elimination with partial pivoting,
Annals of Operations Research, 22 (1990), pp. 219-240.

[52] J. GLBERT, An efficient parallel sparse partial pivoting algorithm, Tech. Report CMI
No. 88/45052-1, Centre for Computer Science, Dept. of Science and Technology, Chr.
Michelsen Institute, Bergen, Norway, 1988.

[53] J. GILBERT AND H. HAFSTEINSSON, Parallel symbolic factorization of sparse linear systems,
Paralle]l Computing, 14 (1990), pp. 151-162.

[54] J. GiLBERT AND R. SCHREIBER, Highly parallel sparse Cholesky factorization, Tech. Report
CSL-90-7, Xerox Palo Also Research Center, 1990. (Submitted to STAM J. Sci. Stat.
Comput.).

[55] J. GILBERT AND E. ZMUIIEWSK1, A parallel graph partitioning algorithm for a message-passing
maultiprocessor, Intern. J. Parallel Programming, 16 (1987), pp. 427-449.

[56] A. GREENBAUM, Solving sparse triangular linear systems using fortran with extensions on the
NYU Ultracomputer prototype, Tech. Report Tech. Rept. 99, NYU Ultracomputer Note,
New York University, April 1986.

[57] M. HEATH, Visual animation of parallel algorithms for matriz computations, in Proc. Fifth
Distributed Memory Computng Conf., Charleston, SC, 1990. (To appear).

[58] M. HEATH AND C. ROMINE, Parallel solution of triangular systems on distributed-memory
multiprocessors, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 558-588.

[59] M. HEATH AND D. SORENSEN, A pipelined Givens method for computing the QR factorization
of & sparse matriz, Linear Alg. Appl., 77 (1986), pp. 189-203.

[60] A. HOFFMAN, M. MARTIN, AND D. ROSE, Complezity bounds for regular finite difference and
finite element grids, SIAM J. Numer. Anal., 10 (1973), pp. 364-369.

[61] B. IRONS, A frontal solution program for finite element analysis, Int. J. Num, Meth. Engng.,
2 (1970), pp. 5-32.

[62] J. Jess AND H. KEES, A data structure for parallel L/U decomposition, IEEE Trans. Comput.,
C-31 (1982), PP 231-239.

[63] B. KERNIGHAN AND S. LIN, An cfficient heuristic procedure for partitioning graphs, Bell
System Technical Journal, 49 (1970), pp. 291-307.

[64] C. Lawson, R. HaNsoN, D. KINCAID, AND F. KROGH, Basic linear algebra subprograms for
Fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308-371.

[65] C. LEISERSON AND J. LEW1S, Orderings for parallel sparse symmetric factorization, in Parallel

PARALLEL ALGORITHMS FOR SPARSE LINEAR SYSTEMS 123

Processing for Scientific Computing, G. Rodrigue, ed., Philadelphia, PA, 1989, SIAM,
pp- 27-32.

[66] M. LEUZE, Independent set orderings for parallel matriz factorization by Gaussian elimina-
tion, Parallel Computing, 10 (1989), pp. 177-191.

[67] . LEwis, B. PEYTON, AND A. POTHEN, A fast algorithm for reordering sparse matrices for
parallel factorization, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1156-1173.

[68] R. LiprTon, D. Rosg, AND R. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal.,
16 (1979), pp. 346-358.

{69] R. LrpToN AND R. TARJAN, A scparator theorem for planar graphs, SIAM J. Appl. Math,, 36
(1979), pp. 177-199.

[70] J. W.-H. Lu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141-153.

[71] , A compact row storage scheme for Cholesky factors using elimination trees, ACM
Trans. Math. Software, 12 (1986), pp. 127-148.

[72] , Computational models and task scheduling for parallel sparse Cholesky factorization,
Parallel Computing, 3 (1986), pp. 327-342.

[73] , Equivalent sparse mairiz reordering by climination tree rotations, SIAM J. Sci. Stat.
Comput., 9 (1988), pp. 424-444.

[74] , A graph partitioning algorithm by node separators, ACM Trans. Math. Software, 15
(1989), pp. 198-219.

[75] , The minimum degree ordering with constraints, SIAM J. Sci. Stat. Comput., 10 (1989),
pp. 1136-1145.

[76] , The multifrontal method and paging in sparse Cholesky factorization, ACM Trans.
Math. Software, 15 (1989), pp. 310-325.

[77] , Reordering sparse matrices for parallel elimination, Parallel Computing, 11 (1989),
pp. 73-91.

[78] y The multifrontal method for sparse matriz solution: theory and practice, Tech. Report

CS-90-04, Dept. of Computer Science, York University, North York, Ontario, 1990.

[79] ————, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl., 11
(1990), pp. 134-172.

[80] J. W.-H. L1u AND A. MIRZAIAN, A linear reordering algorithm for parallel pivoting of chordal
graphs, SIAM J. Disc. Math., 2 (1989), pp. 100-107.

[81] J. W.-H. Liv aND E. G.-Y. NG, A supernodal symbolic Cholesky factorization on a local-
memory multiprocessor. In preparation, 1990.

[82] R. Lucas, Solving planar systems of equations on distributed-memory multiprocessors, PhD
thesis, Department of electrical engineering, Stanford University, 1987.

[83] . Personal communication, 1990.

[84] R. Lucas, W. BLANK, AND J. TIEMAN, A parallel solution method for large sparse systems
of equations, IEEE Trans. Computer Aided Design, CAD-6 (1987), pp. 981-991.

[85] R. MELHEM, Parallel solution of linear systems with striped sparse matrices, Paralle]l Com-
puting, 6 (1988), pp. 165-184.

[86] V. NAIK AND M. PATRICK, Data traffic reduction schemes for sparse Cholesky factorization,
Tech. Report ICASE Report No. 88-14, ICASE, NASA Langley Research Center, Hamp-
ton, Virginia, 1988.

, Data traffic reduction schemes for Cholesky factorization on asynchronous multipro-
cessor systems, Tech. Report ICASE Report No. 89-40, ICASE, NASA Langley Research
Center, Hampton, Virginia, 1989.

[88] E. NG AND B. PEYTON, A supernodal Cholesky factorization algorithm for shared-memory
multiprocessors. In preparation, 1990.

[89] J. ORTEGA, Introduction to parallel and vector solution of linear systems, Plenum Press, New
York, 1988.

[90] J. ORTEGA, R. VoiGT, AND C. ROMINE, A bibliography on parallel and vector numerical
algorithms, Tech. Report ORNL/TM-10998, Oak Ridge National Laboratory, Oak Ridge,
TN, 1989.

[91] S. PARTER, The use of linear graphs in Gaussian elimination, SIAM Review, 3 (1961),
pP. 364-369.

[92] F. PETERS, Parallel pivoting algorithms for sparse symmetric matrices, Parallel Computing,
1 (1984), pp. 99-110.

[93] A.POTHEN, The complezity of optimal elimination trees, Tech. Report CS-88-16, Department
of Computer Science, The Pennsylvania State University, University Park, PA, 1988.

[94] A. POTHEN AND C.-J. FAN, Computing the block triangular form of a sparse matrir, Tech.
Report CS-88-51, Department of Computer Science, The Pennsylvania State University,

87]

124 M.T. HEATH, E. NG AND B.W. PEYTON

University Park, PA, 1988. (To appear in ACM Trans. Math. Software).

[95] A.POTHEN, H. SIMON, AND K. LiouU, Partitioning sparse matrices with eigenvectors of graphs,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430-452.

[96] P. RAGHAVAN AND A. POTHEN, Parallel orthogonal factorization. SIAM Symposium on Sparse
Matrices, Gleneden Beach, Oregon, 1989.

[97] D. RosE, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),
pp. 597-609.

, A graph-theoretic study of the numerical solution of sparsc positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press,
1972, pp. 183-217.

[99] D. Rosg, R. TARIAN, AND G. LUEKER, Algorithmic aspects of vertez elimination on graphs,
SIAM J. Comput., 5 (1976), pp. 266—283.

[100] E. ROTHBERG AND A. GUPTA, Fast sparse matriz factorization on modern workstations, Tech.
Report STAN-CS-89-1286, Stanford University, Stanford, California, 1989.

[101] P. SADAYAPPAN AND V. VISVANATHAN, Distributed sparse factorization of circuit matrices via
recursive E-tree partitioning. SIAM Symposium on Sparse Matrices, Gleneden Beach,
Oregon, 1989.

[102] J. SALTZ, Aggregation methods for solving sparse triangular systems on multiprocessors, SIAM
J. Sci. Stat. Comput., 11 (1990), pp. 123-144.

[103] R. SCHREIBER, A new implementation of sparse Gaussian elimination, ACM Trans. Math.
Software, 8 (1982), pp. 256-276.

[104] A. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations,
PhD thesis, Yale University, 1975.

[105] P. Vu. Personal communication, 1990.

[106] P. WoORLEY AND R. SCHREIBER, Nested dissection on a mesh-connected processor array, in
New Computing Environments: Parallel, Vector, and Systolic, A. Wouk, ed., Philadel-
phia, 1986, SIAM Publications, pp. 8-38.

[107] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth.,
2 (1981), pp. 77-79.

[108] E. ZMWEWSKI, Sparse Cholesky Factorization on a Multiprocessor, PhD thesis, Department
of Computer Science, Cornell University, Ithaca, New York 14853-7501, August 1987.

, Limiting communication sn parallel sparse Cholesky factorization, Tech. Report
TRCS89-18, Department of Computer Science, University of California, Santa Barbara,
California 93106, 1989.

[110] E. ZMIIEWSKI AND J. GILBERT, A parallel aigorithm for sparse symbolic Cholesky factorization
on a multiprocessor, Parallel Computing, 7 (1988), pp. 199-210.

(98]

(109]

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL
ALGORITHMS

JAMES M. ORTEGA®*, ROBERT G. VOIGT! AND CHARLES H. ROMINE?}

Since parallel and vector computation is expanding rapidly, we hope that the
references we have collected over the years will be of some value to researchers entering
the field. Naturally, any such collection will be incomplete. Our apologies in advance
to authors whose works we have missed. For further information about access to an
electronic copy of the bibliography, send email to either romine@msr.epm.ornl.gov
or rgv@icase.edu.

Although this is a bibliography on numerical methods, we have included a number
of other references on machine architecture, programming languages, and other topics
of interest to scientific computing.

Certain conference proceedings and anthologies that have been published in book
form we list under the name of the editor (or editors) and then list individual articles
with a pointer back to the whole volume; for example, the reference

[225] A. BRANDT [1981]. Multigrid solvers on parallel computers, in Schultz[1752],
pp. 39-83.

refers to the article by Brandt in the volume listed under [1752] M. ScHuLTZ. Note
that the cross-reference is by reference number, not by year.

This bibliography was also published in January of 1989 by Oak Ridge National
Laboratory as ORNL-TM/10998, and by the Institute for Computer Applications in
Science and Engineering as ICASE Interim Report 6.

REFERENCES

[1] H. ABDEL-WAHAB AND T. KAMEDA [1978). Scheduling to minimize mazimum cumulative
cost subject to series-parallel precedence constraints, Oper. Res., 26, pp. 141-158.

[2] I. ABsAR [1983). Vectorization of a penalty function algorithm for well scheduling, in Gary
[700], pp. 361-370.

[3] 1. ABU-SHOMAYS [1985]. Comparison of methods and algorithms for tridiagonal systems and
for vectorization of diffusion computation, in Numrich [1469], pp. 29-56.

[4] W. ABU-SUFAH AND A. MALONY [1986). Ezperimental results for vector processing on the
Alliant FX/8, Tech. Report 539, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, February.

[5] W. ABU-SUFAH AND A. MALONY [1986]. Vector processing on the Alliant FX/8 multiproces-
sor, Proc. 1986 Int. Conf. Par. Proc., pp. 559-566.

[6] T. ADAM, K. CHANDY, AND J. DICKSON [1974]. A comparison of list schedules for parallel
processing systems, Comm. ACM, 17, pp. 685-690.

[7] G. Apams, R. BROWN, AND P. DENNING [1985). On cvaluating parallel computing systems,
Tech. Report TR-85.3, RIACS, NASA Ames Research Center, May.

* The work of this author was supported in part by the National Aeronautics and Space Admin-
istration under NASA Contract No. NAS-1-46-6.

t The work of this author was supported by the National Aeronautics and Space Administration
under NASA Contract Nos. NAS1-18107 and NAS1-18605 at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1 The work of this author was supported by the Applied Mathematical Sciences Research Program,
Office of Energy Research, U.S. Department of Energy under contract DE-AC05-840R21400 with
Martin Marietta Energy Systems Inc.

125

126

8] G.

@] L.

(10]
(11]
[12]
[13]
(14]

(15

[17
18]
[19]

[20]

L
L
L
L
L
L

16] L.
L
L
N
T

[21] V

[22] A.

[23] D
[24] R
[25] H.
[26] G

G

(27]

(28] G.

[29] G.

[30] G.

[31] T.
[32] E.
[33] V.
[34] R.

[35] H.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

Apams, R. BROWN, AND P. DENNING [1985). Report on an evaluation study of date flow
computation, Tech. Report TR-85.2, RIACS, NASA Ames Research Center, April.

Apawms [1982]. Herative Algorithms for Large Sparse Linear Systems on Parallel Compxut-
ers, PhD dissertation, The University of Virginia, Department of Applied Mathematics
and Computer Science. Also published as NASA CR-166027, NASA Langley Research
Center.

. ADAMS [1983). An M-step preconditioned conjugate gradient method for parallel compu-

tation, Proc. 1983 Int. Conf. Par. Proc., pp. 36—43.

. ADAMS [1985]. M-astep preconditioned conjugate gradient methods, SIAM J. Sci. Statist.

Comput., 6, pp. 452-463.

. ADAMS [1986). Reordering computations for parallel erecution, Comm. Appl. Numer.

Meth., 2, pp. 263-271.

. ADAMS AND T. CROCKETT [1984). Modeling algorithm ezecution time on processor ar-

rays, Computer, 17(7), pp. 38—43.

. ADAMS AND H. JORDAN [1985]. Is SOR color-blindf, SIAM J. Sci. Statist. Comput., 7,

pp. 490-506.

. ADAMS AND E. ONG [1987). Additive polynomial preconditioners for parsllel computers,

Parallel Computing. To appear.
ADAMS AND J. ORTEGA [1982]. A multi-color SOR method for parallel computation, Proc.
1982 Int. Conf. Par. Proc., pp. 53-56.

. ADAMS AND R. VOIGT [1984). Design, development and use of the Finite Element Ma-

chine, in Parter [1529], pp. 301-321.

. ADAMS AND R. VOIGT [1984). A methodology for exploiting parallelism in the finite ele-

ment process, in Kowalik [1116], pp. 373-392.

. ApAMS AND O. JOHNsON [1985). A vector elastic model for the Cyber 205, in Numrich

[1469], pp. 101-114.

. AGERWALA AND ARVIND. [1982). Data flow systems, Computer, 15(2), pp. 10-13.
. AGGARNAL, S. DHALL, J. DiAZ, AND S. LAKSHMIRARAHUN [1985]. A parallel algorithm

for solving large scale sparse linear systemns using block pre-conditioned conjugate gra-
dient method on an MIMD machine, Tech. Report OU-PPI, TR-85-02, Schools of Elec-
trical Engineering and Computer Science, University of Oklahoma, January.
AGGARWAL, B. CHAZELLE, L. GuiBas, C. O'DUNLAING, AND C. YAP [1985]. Parallel
computational geomeiry, Proc. IEEE Conference on Fundamentals of Computer Science,
PP. 468-477.

. AGRAWAL, ed. [1986). Advanced Computer Architecture, North-Holland, Amsterdam.
. AHLBERG AND B. GUSTAFSSON [1984). A note on paraliel algorithms for partial differen-

tial equations, in Feilmeier et al. [623], pp. 93-98.
AHMED, J. DELOSME, AND M. MORF [1982]. Highly concurrent computing structures for
matriz arithmetic and signal processing, Computer, 15(1), pp. 65-82.

. ALAGHBAND [1987). Parallel pivoting combined with parallel reduction, Tech. Report 87-

75, ICASE, NASA Langley Research Center, Hampton, VA, December.

. ALAGHBAND [1988]. Multiprocessor Sparse LU Decomposition with Controlled Fill-in,

PhD dissertation, University of Colorado, Boulder, Department of Electrical and Com-
puter Engineering.

ALAGHBAND AND H. JORDAN [1983]. Parallelization of the MA28 sparse matriz package
for the HEP, Tech. Report CSDG-83-3, Department of Electrical and Computer Engi-
neering, University of Colorado, Boulder.

ALAGHBAND AND H. JORDAN [1985]. Multiprocessor sparse L/U decomposition with con-
trolled fill-in, Tech. Report 85-48, ICASE, NASA Langley Research Center, Hampton,
VA.

ALAGHBAND AND H. JORDAN [1986). Sparse Gaussian climination with controlled fill-in
on a shared memory multiprocessor, ECSE Tech. Report 86-1-5, Department of Electri-
cal and Computer Engineering, University of Colorado, Boulder.

ALLEN AND G. CYBENKO [1987). Recursive binary partitions, Tech. Report, Department
of Computer Science, Tufts University, October.

ALLROTH [1984). Minimization of the proccasing time of parallel computers, Physics Let-
ters, 106A(7), pp. 329-331.

ALMEIDA, L. DowDy, AND M. LEUZE [1988]. An analytic model for parallel Gaussian
elimination on a binary N-cube, in Fox et al. [651], pp. 1550-1553.

ALT [1985). Computing roots of polynomials on vector processing machines, Comm. Appl.
Numer. Meth., 1, pp. 299-308.

AMANO, T. Boku, T. KuDOH, AND H. A0 [1985]. A new version of the sparse ma-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 127

triz solving machine, Proc. 12th International Symposium on Computer Architecture,
pp. 100-107.

[36] G. AMDAHL [1967]. The validity of the single processor approach to achieving large scale
computing capabilities, AFIPS Conf. Proc., 30, pp. 483485,

[37] G. AMDAHL [1988). Limits of expectation, Int. J. Supercomputer Appl., 2(1), pp. 88-97.

[38] D. ANDERSON, A. FRy, R. GRUBER, AND A. RoY [1987). Gigaflop speed algorithm for the

direct solution of large block-tridiagonal systems in 3D physics applications, Tech. Re-
port UCRL-96034, Lawrence Livermore National Laboratory. Submitted to J. Parallel
Comput.

[39] D. ANDERsON, A. FRY, R. GRUBER, AND A. ROY [1887). Plasma physics at gigafiops on the
CRAY-2, Third Symposium on Science and Engineering on Cray Supercomputers, Min-
neapolis, MN.

[40] D. ANDERSON, R. GRUBER, A. FRY, AND A. ROY [1987]. Parallel cyclic reduction algorithm
Jor the direct solstion of large block-tridiagonal systems, First Intemational Conference
Industrial and Applied Math., Paris.

[41] D. ANDERSON, R. GRUBER, AND A. RoY [1987). Measurements and estimales of the PAMS
plasma eguilibrium solver on existing and near-term sxpercompuiers, Twelfth Conf. on
Numerical Simulation of Plasmas, San Francisco, CA. (Paper PM11).

[42] D. ANDERsON, E. HOROWITZ, A. KONIGES, AND M. McCoyY [1986)]. Parallel computing and
multitasking, Comput. Phys. Comm., 43, pp. 69-88.

[43] D. ANDERSON, A. KONIGES, M. McCoy, AND A. MIRIN [1987). A survey of lincar systems
solvers on the NMFECC system, American Physical Society Division of Plasma Physics
Meeting, San Diego, CA. Paper 6510.

[44] G. ANDERSON AND E. JENSEN [1975]. Computer interconnection stractures: Tazonomy,
characteristics, and ezamples, ACM Computing Surveys, 7, pp. 197-213,

[45] J. ANDERSON [1965). Program structures for parallel processing, Comm. ACM, 8, pp. 786—
788

oQ

[46] R. ANDERSON, R. GRIMES, R. RIEBMAN, AND H. SiMON [1987). Early erperience with the
8CS-40, Supercomputer, 22, pp. 26-36.

[47] R. ANDERsSON, R. GRIMES, AND H. SIMON [1987). Performance comparison of the CRAY X-
MP/24 and the CRAY-2, Tech. Report ETA-TR-57, Boeing Computer Services, July.

[48] F. ANDRE, D. HERMAN, AND J. VARJIUS [1985], Synchronization of Parallel Programs, MIT
Press, Cambridge.

[49] G. ANDREWS AND F. SCHNEIDER [1983]. Concepts and notations for concurrent program-
ming, ACM Computing Surveys, 15, pp. 3-43.

[50] M. ANNARATONE, E. ARNOULD, T. GRoss, H. KUNG, M. LaM, AND O. MENZILCIOGLU [1986].
WARP architecture and implementation, SPIE Real Time Signal Processing IX.

[51}] M. ANNARATONE, E. ARNOULD, T. Gross, H. Kung, M. Lam, O. MENZILCIOGLU, AND
J. WEeBB [1987). The Warp computer: Architecture, implementation, and performance,
IEEE Trans. Comput., C-36, pp. 1523-1538,

[52] M. ANWAR AND M. EL TARz [1985]. Asynchronous algorithms for Poisson’s equation with
nonlincar boundary conditions, Computing, 34, pp. 155-168.

[53] N. ARENSTORF AND H. JORDAN [1987]. Comparing barrier algorithms, Tech. Report 87-65,
ICASE, NASA Langley Research Center.

[54] J. ARMSTRONG [1987]. Optimization of Houscholder transformations part I. Linear least
squares, Proc. 1987 Int. Conf. Par. Proc., pp. 495—498.

[55] W. ARMSTRONG, T. MARSLAND, M. OLAFSSON, AND J. SCHAEFFER [1987). Solving egqua-
tions of motion on a virtual tree machine, SIAM J. Sci. Statist. Comput., 8, pp. 859-872.

[56] C. ARNOLD [1982). Performance evaluation of three automatic vectorizer packages, Proc.
1982 Int. Conf. Par. Proc., pp. 235-242.

[57] C. ARNOLD [1983]. Vector optimization on the CYBER 205, Proc. 1983 Int. Conf. Par. Proc.,
pP. 530-536.

[58] C. ARNOLD [1984]. Machine independent techniques for scientific supercomputing, Proc.
COMPCON 84, IEEE Comp. Sci. Conf., pp. 74-83.

[59] C. ARNOLD, M. PARR, AND M. DEWE [1983]. An efficient parallel algorithm for the solution
of large sparse linear matriz equations, IEEE Trans. Comput., C-32, pp. 265-273.

[60] D. ARrPast AND E. MILNER [1986]. Mathematical model partitioning and packing for parallel
computer calculation, Proc. 1986 Int. Conf. Par. Proc., pp. 67-74.

[61) ARVIND AND R. BRYANT [1979]. Parallel computers for partial differential equations simula-
tion, Proc. Scientific Computer Information Exchange Meeting, Livermore, CA, pp. 94~
102.

[62] ARVIND AND V. KATHAILL [1981). A multiple processor data flow machine that supports gen-

128

[63]

[64]
(65]
tes]

[67]

(e8]
(69]

[70]

[m]

[72]

[73]
[74]
[75]

[76]

(77
(78]

(79]

[80]
(81]

82]

(83]
(84]

[85]

(86]

(87]

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

eralized procedures, 8th Annual Sym. Comp. Arch., May, pp. 291-302.

S. ARYA AND D. CALARAN [1981). Optimal scheduling of assembly language kernels for vec-
tor processors, 19th Allerton Conf. on Comm. Control and Computers, University of
Illinois at Urbana-Champaign.

C. ASHCRAFT [1985). A moving computation front approach for vectorizing ICCG calcula-
tions, Tech. Report GMR-5174, General Motors Research Lab.

C. ASHCRAFT [1985). Paraliel reduction methods for the solution of banded systems of equa-
tions, Computer Science Tech. Report, General Motors, June.

C. ASHCRAFT [1987]. Domain decospled incomplete factorizations, Applied Mathematics
Tech. Report ETA-TR-49, Boeing Computer Services.

C. ASHCRAFT [1987]. A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems, Applied Mathematics Tech. Report ETA-
TR-51, Boeing Computer Services.

C. ASHCRAFT AND R. GRIMES [1987]. The influence of relazed supernode partitions on the
maultifrontal method, Tech. Report ETA-TR-60, Boeing Computer Services.

C. ASHCRAFT AND R. GRIMES [1988]). On vectorizing incomplete factorization and SSOR
preconditioners, SIAM J. Sci. Statist. Comput., 9, pp. 122-151.

C. AsHCRAFT, R. GRIMES, J. LEwis, B. PEYTON, AND H. SIMON [1987]. Recent progress
in sparse mairiz methods for large linear systems on vector supercomputers, Int. J.
Supercomputer Appl., 1, pp. 10-30.

C. ASHCRAFT, J. LEWIS, AND B. PEYTON [1987]. A supernodal implementation of general
sparse factorization for vector computers, Tech. Report ETA-TR-52, Boeing Computer
Services.

C. ASHCRAFT, G. SHOOK, AND J. JONES [1986]. A computational survey of the conmjugate
gradient preconditioners on the CRAY 1-8, Tech. Report GMR-5299, General Motors
Research Lab.

M. ASHWORTH AND A. LYNE [1988]. A segmented FFT algorithm for vector computers, Par-
allel Computing, 6, pp. 217-224.

S. ASKEW AND F. WALKDEN [1984). On the design and implementation of a package for solv-
ing a class of partial differential equations, in Paddon [1512], pp. 107-114,

V. ASRIELI [1985). Base language of the programming system of a vector processor, Compu-
tational Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 73-83.

V. ASRIELI AND P, BORISOV [1985]. Erperience with programming a vector processor for the
solution of the Navier-Stokes eguations in a three-dimensional region, Computational
Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 84-90.

W. ATHAS AND C. SEITZ [1988]). Multicomputers: Message-passing concurrent compulers,
Computer, 21(8), pp. 9-24.

J. AviLa AND J. TOMLIN [1979). Solution of very large least squares problems by nested dis-
section on a parallel processor, Proc. Computer Science and Statistics: Twelfth Annual
Symposium on the Interface, J. Gentleman, ed., Waterloo, Ontario, Canada, University
of Waterloo, pp. 9-14.

. Avizienss, M. EVCEGOVAC, T. LANG, P. SYLVAIN, AND A. THOMASIAN [1977]. An investi-
gation of fault-tolerant architectures for large scale numerical computing, in Kuck et al.
[1133], pp. 159-183.

T. AXELROD [1986). Effects of synchronization barriers on multiprocessor performance, Par-
allel Computing, 3, pp. 129-140.

. AXELSSON [1985]. A survey of vectorizable preconditioning methods for large scale finite
elernent matriz problems, BIT, 25, pp. 166-187.

O. AXELSSON [1986). Analysis of incomplete malriz factorizations as multigrid smoothers
for vector and parallel computers, Appl. Math. & Comp., 19(1-4). (Special Issue, Pro-
ceedings of the Second Copper Mountain Conference on Multigrid Methods, Copper
Mountain, CO, S. McCormick, ed.).

O. AXELSSON [1988]. Incomplete block matriz factorization preconditioning methods. The
ultimate answer?, J. Comput. Appl. Math., 12/13, pp. 3-18.

O. AXELSSON AND V. EUKHOUT [1986]. A nole on the vectorization of scalar recursions,
Paralle] Computing, 3, pp. 73-84.

C. AYKANAT, S. DORAIVELU, P. SADAYAPPAN, K. SCHWAN, AND B. WEIDE [1986]. Parallel
computers and finite element analysis, 1986 ASME Int. Conf. Computers in Engineering,
PP. 43-50.

C. AYKANAT AND F. OZGUNER [1987]. Large grain parallel conjugate gradient algorithms on
a hypercube multiprocessor, Proc. 1987 Int. Conf. Par. Proc., pp. 641-644.

C. AYKANAT, F. OZGUNER, S. MARTIN, AND S. DORAIVELU [1987). Parallelization of a finite

>

o}

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 129

element application program on a hypercube multiprocessor, in Heath [860), pp. 662-673.

[88] R. BaBB [1984)]. Parallel processing with large-grain data flow technigues, Computer, 17(7),
pp. 55-61.

[(89] R. BaBB [1986). Parallel processing on the CRAY X-MP with large-grain data flow tech-
nigues, in Fernbach {630], pp. 239-251.

[90] R. BapB, L. STORC, AND R. HIROMOTO [1986). Developing a parallel Monte Carlo transport
algorithm using large-grain data flow, Tech. Report LA-UR-86-2080, Los Alamos Na-
tional Laboratory.

[91] 1. BABUSKA AND H. ELMAN [1988]. Some aspects of parallel implementation of the finite ele-
ment method on message passing architectures, Tech. Report CS-TR-2030, Department
of Computer Science, University of Maryland.

[92] S. BADEN [1986). Dynamic load balancing of & vorter calculation running on multiprocessors,
Tech. Report LBL-22584, Lawrence Berkeley Laboratory, December.

[93] J.-L. BAER [1973]. A survey of some theoretical aspects of multiprocessing, ACM Computing
Surveys, 5, pp. 31-80,

[94] J.-L. BAER [1977). Muliiprocessing systems, IEEE Trans. Comput., C-25, pp. 1271-1277.

[95] J.-L. BAER [1980]. Supercomputers, Computer Systems Architecture, Computer Science
Press, Los Alamitos, CA.

[96] J.-L. BAER [1984). Computer architecture, Computer, 17(10), pp. 77-87.

[97] D. BAILEY [1987). A high performance fast Fourier transform algorithm for the CRAY-2, J.
Supercomputing, 1, pp. 43-60.

[98] D. BAILEY [1988]. Eztra high speed matriz multiplication on the Cray-2, SIAM J. Sci. Statist.
Comput., 8, pp. 603-607.

[99] D. BaALLEY, J. CuNY, AND B. MACLEOD [1987]. Reducing communication overhead: A par-
allel code optimization, J. Par. Dist. Comp., 4, pp. 505-520.

[100} E. BaJal, W. DykseN, C. HOFFMaN, E. HousTis, J. KORB, AND J. RICE [1987]. Computing
about physical objects, Tech. Report TR-696, Department of Computer Science, Purdue
University.

[101] K. BAKER AND L. SCHRAGE [1978]. Finding an optimal sequence by dynamic programming:
An extension to precedence-related tasks, Oper. Res., 26, pp. 111-120.

[102] W. BALLHAUS [1984]. Computational aerodynamics and supercomputers, Proc. COMPCON
84, IEEE Comp. Soc. Conf., pp. 3-14.

[103] 1. BAR-ON [1987). A practical parallel algorithm for solving band symmetric positive definite
systems of linear equations, ACM Trans. Math. Softw., 13, pp. 323-332.

[104] D. BARKAI AND A. BRANDT [1983). Vectorized multigrid Poisson solver for the CDC CY-
BER 205, Appl. Math. & Comp., 13(3-4), pp. 215-228. (Special Issue, Proceedings of
the First Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO,
S. McCormick and U. Trottenberg, eds.).

[105] D. BARKAI, M. CAMPOSTRINI, K. MORIARTY, AND L. RABBI [1987}. Applications develop-
ment of the ETA-10, Comput. Phys. Comm., 46, pp. 13-33.

[106] D. BARKAI AND K. MORIARTY [1986]. Application development on the CDC Cyber 205,
Comput. Phys. Comm., 40, pp. 159-172.

[107} D. BARKAT AND K. MORIARTY [1986]. Vectorization of the multigrid method: The two-
dimensional Poisson equation, Tech. Report UMSI 86145, University of Minnesota,
September.

[108] D. BARKAIL, K. MORIARTY, AND C. REBBI [1984]). A highly optimized vectorized code for
Monte Carlo simulation of SU(8) lattice gauge theories, Comput. Phys. Comm., 32,
pp.- 1-9.

[109] D. BARKAL, K. MORIARTY, AND C. REBBI [1984]. A highly optimized wectorized code for
Monte Carlo simulation of SU(3) lattice gauge theories, Proc. 1984 Int. Conf. Par.
Proc., pp. 101-108.

[1210] D. Barkal, K. MORIARTY, AND C. REBBI [1984]. A modified conjugate gradient solver for
very large systems, in Numrich [1469].

[111] D. BarkAl, K. MORIARTY, AND C. REBBI [1985}. A modified conjugate gradient solver for
very large systems, Comp. Phys. Comm., 36, pp. 1-8.

[112] D. Barkal, K. MORIARTY, AND C. REBBI [1985]. A modified conjugate gradient solver for
very large systems, Proc. 1985 Int. Conf. Par. Proc., pp. 284-290.

[113] J. BARLOW AND 1. IPSEN [1987). Scaled Givens rotations for the solution of hnear least
squares problems on systolic arrays, SIAM J. Sci. Statist. Comput., 8, pp. 716-733.

[114] R. BarLow aAND D. EvaNs [1982]. Synchronous and asynchronous sterative parallel algo-
rithms for linear systems, Comput. J., 25, pp. 56-60.

[115] R. BarLow, D. EVANS, AND J. SHANEHCHI [1982). Comparative study of the exploitation of

130

[116]
(117]
[118]
[119]

(120]

[121)
[122}
{123)
[124]
[125]

[126)

[127]
[128]

[129)
(130]

[131]
[132}
(133]

(134

[135]

[136}
(137)
(138]
[139}
{140)
[141)
[142)

(143}

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

different levels of parallelism on different parallel architectures, Proc. 1982 Int. Conf.
Par. Proc., pp. 34-40.

R. BARLOW, D. EVANS, AND J. SHANEHCHI [1983]. Parallel multiscction applied to the eigen-
valse problem, Comput. 1., 6, pp. 6-9.

R. BarLow, D. EVANS, AND J. SHANEHCHI [1984]. Sparse matriz vector multiplication on
the DAP, in Paddon {1512}, pp. 147-155.

G. BARNES, R. BROWN, M. KaTtz, D. Kuck, D. SLOTNICK, AND R. STOKER [1968]. The
Illiac IV compster, IEEE Trans. Comput., C-17, pp. 746-757.

K. BATCHER [1974). STARAN parallel processor system hardware, AFIPS Conf. Proc. 43,
NCC, pp. 405-410.

K. BATCHER [1976]. The Flip network in STARAN, Proc. 1976 Int. Conf. Par. Proc., P. H.
Enslow, ed., Silver Spring, MD, Institute of Elecirical and Electronics Engineers, Inc.,
pp. 65-71.

K. BATCHER [1979]. MPP — A Massively Parallel Processor, Proc. 1979 Int. Conf. Par.
Proc., p. 249.

K. BATCHER [1980). Design of a Massively Parallel Processor, IEEE Trans. Comput., C-29,
pp. 836-840.

K. BATCHER [1985]. The Massively Parallel Processor system overview, in Potter [1584],
pp. 142-149.

G. BAUDET [1977)]. Iterative methods for asynchronous multiprocessors, in Kuck et al. [1133],
pp. 309-310.

G. BAUDET [1978]. Asynchronous iterative methods for multiprocessors, J. ACM, 25,
PP. 226-244.

D. BAXTER, J. SALTZ, M. SCHULTZ, S. EiSENSTAT, AND K. CROWLEY [1988]. An ezperimental
study of methods for parallel preconditioned Krylov methods, Tech. Report RR-629,
Department of Computer Science, Yale University.

G. BEHIE AND P. FORSYTH [1984]. Incomplete factorization methods for fully implicit sim-
ulation of enhanced oil recovery, SIAM J. Sci. Statist. Comput., 5, pp. 543-561.

M. BEKAKOS AND D. EvANs [1987). A rotating and folding algorithm wusing a two-
dimensional “systolic” communication geometry, Parallel Computing, 4, pp. 221-228,

C. BELL [1985). Multis: A new class of multiprocessor computers, Science, 228, pp. 462—467.

J. BELL AND G. PATTERSON [1987]. Data organization in large numerical computations, J.
Supercomputing, 1, pp. 105-136.

M. BEN-ARI [1982], Principles of Concurrent Programming, Prentice-Hall, Inc., Englewood
Cliffs, NJ.

V. BENES [1962). Heuristic remarks and mathematical problems regarding the theory of con-
necting systems, Bell System Tech. J., 41, pp. 1201-1247,

V. BENES [1965], Mathematical Theory of Connecting Networks and Telephone Traffic, Aca-
demic Press, New York.

R. BENNER [1986). Shared memory, cache, and frontwidth considerations in multifrontal
algorithm development, Tech. Report SAND85-2752, Fluid and Thermal Sciences De-
partment, Sandia National Laboratories, Albuquerque, NM.

R. BENNER AND G. MONTRY [1986). Overview of preconditioned conjugate gradient (PCG)
methods in concurrent finite elemeni analysis, Tech. Report SAND-85-2727, Sandia
National Laboratory, Albuquerque, NM.

M. BENSON AND P. FREDERICKSON [1987). Fast parailel algorithms for the Moore-Penrose
pscudo-inverse, in Heath [860], pp. 597—604.

M. BENSON AND P. FREDERICKSON [1988]. Fast pscudo-inverse algorithms on hypercubes, in
McCormick [1312]. '

M. BENSON, J. KRETTMANN, AND M. WRIGHT [1984]. Paraliel algorithms for the solution of
certain large sparse lincar sustems, Int. J. Comput. Math., 16, pp. 245-260,

P. BENYON [1985]. Ezploiting vector computers for simulation, Math. Comp. Simul., 27,
pp. 121-127.

H. BERENDSEN, W. VAN GUNSTEREN, AND J. POSTMA [1984). Molecular dynamics on
CRAY, CYBER and DAP, in Kowalik [1116}, pp. 425-438.

M. BERGER AND S. BOKHARI [1985]. A partitioning strategy for PDE’s across multiproces-
sors, Proc. 1985 Int. Conf. Par. Proc., pp. 166-170.

M. BERGER AND S. BOKHARI [1987]. Partitioning strategy for non-uniform problems on
multiprocessors, IEEE Trans. Comput., C-36, pp. 570-580.

M. BERGER, J. OLIGER, AND G. RODRIGUE [1981]. Predictor-corrector methods for the so-
lution of time dependent parabolic problems on parallel processors, in Schultz [1752],
pp. 197-202.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 131

[144] P. BERGER, P. BROUAYE, AND J. SYRE [1982]. A mesh coloring method for efficient MIMD
processing in finite clement problems, Proc. 1982 Int. Conf. Par. Proc., pp. 41-46.

[145) P. BERGER, M. DAYDE, AND C. FRABOUL [1985). Experience in parallelizing numerical algo-
rithmas for MIMD architecture wsc of asynchronous methods, La Recherche Aerospatiale,
5, pp. 325-340.

[146] D. BERGMARK, J. FRANCIONI, B. HELMINEN, AND D. POPLAWSKI [1987]. On the perfor-
mance of the FPS T-series hypercube, in Heath [860], pp. 193-198.

[147] F. BERMAN AND L. SNYDER [1987). On mapping parsllel algorithmas into parallel architec-
tures, J. Par. Dist. Comp., 4, pp. 439—458.

[148] L. BERNARD AND F. HELTON [1982]. A vectorizable cigenvalue solver for sparse matrices,
Comput. Phys. Comm., 25, pp. 73-79.

[149] H. BERNSTEIN AND M. GOLDSTEIN [1986]. Parallel implemeniation of disection for the cal-
culation of eigenvalues of iridiagonal symmetric matrices, Computing, 37, pp. 85-91.

[150] H. BERNSTEIN AND M. GOLDSTEIN [1988]. Optimizing Givens® algorithm for multiproces-
sors, SIAM J. Sci. Statist. Comput., 8, pp. 601-602.

[151] M. BERRY, K. GALLIVAN, W. HARROD, W. JALBY, S. Lo, U. MEER, B. PHILLIPPE, AND
A. SAMEH [1986). Parallel algorithms on the Cedar system, Tech. Report 581, Cen-
ter for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, October.

[152] M. BERRY AND R. PLEMMONS [1985]. Computing a banded basis of the null space on the
Denelcor HEP multiprocessor, Contemporary Math., 47, pp. 7-23.

[153] M. BERRY AND R. PLEMMONS [1985). Parallel algorithms for finite element structural anal-
ysis on the HEP multiprocessor, Proc. Denelcor Workshop on the HEP, University of
Oklahoma, March.

[154] M. BERRY AND R. PLEMMONS [1987]. Algorithms and experiments for structural mechanics
on high performance architectures, Comput. Meth. Appl. Mech. Engrg., 64, pp. 487-508.

[155] M. BERRY AND A. SAMEH [1986). Multiprocessor Jacodi algorithms for dense symmetric
eigenvalue and singular value decompositions, Proc. 1986 Int. Conf. Par. Proc., pp. 433-
440.

[156] M. BERRY AND A. SAMEH [1987). A multiprocessor scheme for the singular value decom-
position, Tech. Report 690, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, August.

[157] D. BERTSEKAS [1982]. Distributed dynamic programming, IEEE Trans. Automat. Control,
AC-27, pp. 610-616.

[158] D. BERTSEKAS [1983). Distributed asynchronous computation of fired points, Math. Pro-
gramming, 27, pp. 107-120.

[159] M. Berzins, T. BucKLEY, AND P. DEW [1984). Path Pascal simulation of multiprocessor
lattice architectures for numerical computations, in Paddon [1512], pp. 25-33.

[160] M. BerziNs, T. BUCKLEY, AND P. DEW [1984]. Systolic matriz iterative algorithms, in
Feilmeier et al. [623], pp. 483-488.

[161] R. BEVILACQUA, B. CODENOTTI, AND F. ROMANI [1988]. Paralle! solution of block tridiago-
nal linear systems, Lin. Alg. & Appl., 104, pp. 39-58.

[162] V. BHAVSAR [1981]. Some parallel algorithms for Monte Carlo solutions of partial differential
equations, Advances in Computer Methods for Partial Differential Equations, vol. 4,
R. Vichnevetsky and R. Stepleman, eds., IMACS, New Brunswick, Canada, pp. 135-
141.

[163] V. BHAVSAR AND U. GUIAR [1984). VLSI algorithms for Monte Carlo solutions of partial
differential equations, in Vichnevetsky and Stepleman [1920], pp. 268-276.

[164] V. BHAVSAR AND I. ISAAC [1987). Design and analysis of parallel Monte Carlo algorithmas,
SIAM J. Sci. Statist. Comput., 8, pp. s73-895.

[165] V. BHAVSAR AND V. KANETKAR [1977]. A multiple microprocessor system (MMPS) for the
Monte Carlo solution of partial differential equations, Advances in Computer Methods
for Partial Differential Equations, vol. 2, R. Vichnevetsky, ed., IMACS, New Brunswick,
Canada, pp. 205-213.

[166] V. BHAVSAR AND A. PADGAONKAR [1979). Effectiveness of some parallel computer architec-
tures for Monte Carlo solution of partial differential equations, Advances in Computer
Methods for Partial Differential Equations, vol. 3, R. Vichnevetsky and R. Stepleman,
eds., IMACS, New Brunswick, Canada, pp. 259-264.

[167] V. BHAvsaR, T. Tassou, E. HusseIN, AND K. GALLIVAN [1987]. Monte Carlo neutron
transport on the Alliant FX/8, Proc. 1987 Int. Conf. Par. Proc., pp. 421-423.

[168] S. BHUTT AND 1. IPSEN [1985]. How to embed trees in hypercubes, Tech. Report
YALEU/DCS/RR-443, Department of Computer Science, Yale University.

132

[169] L.
[170] D.
fi71] s.

[172] S.

[173] G.
[174] L.
[175] C.
[176] C.

[177] C.

[178] C.

[179] P.

[180] P.
[181] P.
[182] P.

[183] E.

[184] M.
[185] A.
[186] J.
[187] A.
[188] A.
[189] A.
[190] S.
[191] S.
[192] S.
[193] S.

[194] S.

[195] S.
[196] D.

[197] D.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

BHUYAN AND D. AGRAWAL [1984}. Generalized hybercube and hyderdus siructures for a
computer neiwork, IEEE Trans. Comput., 33, pp. 323-333.

BINI [1984)]. Parallel solution of certain Toeplitz lincar systems, SIAM J. Comput., 13,
pp. 368-476.

BIRINGEN [1983). A numerical simulation of transition in plane channel flow, Paper 83-47,
AIAA, Reno, NV, January.

BIRINGEN [1983]. Simulation of late transition in plane channel flow, Proceedings of the
Third International Conference on Numerical Methods in Laminar and Turbulent Flow,
Seattle WA, August.

BIRKHOFP AND A. SCHOENSTADT, eds. [1984]. Elliptic Problem Solvers II, Academic
Press, Orlando.

BIRTA AND O. ABOU-RABIA {1987). Parallel block predictor-corrector methods for ODE’s,
1IEEE Trans. Comput., C-36, pp. 299-311.

BISCHOF [1986]. A parallel ordering for the block Jacobi method on a Aypercube architec-
ture, Tech. Report TR 96-740, Department of Computer Science, Cornell University.

BISCHOF [1987). The two-sided block Jacobi method on a hypercube, in Heath [860],
pp. 612-618.

BISCHOF AND C. VAN LOAN [1986). Computing the singslar value decomposition on a
ring of array processors, Large Scale Eigenvalue Problems, J. Cullum and R. Willoughby,
eds., North-Holland, Amsterdam.

BISCHOF AND C. VAN LOAN [1987]. The WY representation for products of Householder
matrices, SIAM J. Sci. Statist. Comput., 8, pp. s2-s13.

BIgRSTAD [1987). A large scale, sparse, secondary storage, direct linear equation solver
for structural analysis and its simplementation on vector and parallel architectures, Par-
allel Compating, 5, pp. 3-12.

BIgRSTAD AND A. HVIDSTEN [1988). Jterative methods for subsiructured elascticity prob-
lems in structural analysis, in Glowinski et al. [762], pp. 301-312.

BioRSTAD AND O. WIDLUND [1984). Solving elliptic problems on regions partitioned into
substructures, in Birkhoff and Schoenstadt [173], pp. 245-255.

BI@RSTAD AND O. WIDLUND [1986)]. Iterative methods for the solution of elliptic problems
on regions paristioned into substructures, SIAM J. Numer. Anal., 23, pp. 1097-1121,
BLuM [1982]. Programming parallel numerical algorithms in Ada, The Relationship be-
tween Numerical Computation and Programming Languages, J. K. Reid, ed., North-

Holland, Amsterdam, pp. 297-304.

BLUMEMFELD [1984). Preconditioning conjugate gradient methods on vector computers,
in Feilmeier et al. [623], pp. 107-113,

BODE, G. FrrrscH, W. HANDLER, W. HENNING, F. HOFMANN, AND J. VOLKERT [1985].
Multigrid oriented computer architecture, Proc. 1985 Int. Conf. Par. Proc., pp. 89-95.
Boisseau, M. ENSeLME, D. GUINRAUD, AND P. LEED [1982]. Polential assessment of a

parallel structure for the solution of partial differential equations, Rech. Aerosp.

BOJANCZYK [1984). Optimal asynchronous Newton method for the solution of nonlinear
equations, J. ACM, 31, pp. 792-803.

BOJANCZYK AND R. BRENT [1985). Tridiagonalization of a symmetric matriz on a square
array of mesh-connected processors, J. Par. Dist. Comp., 2, pp. 261-276.

BoJANCZYK, R. BRENT, AND H. KUNG [1984]). Numerically stable solution of dense sys-
tems of linear cquations using mesh-connected processors, SIAM J. Sci. Statist. Com-
put., 5, pp. 95-104.

BOKHARI [1979]. On the mapping prodlem, Proc. 1979 Int. Conf. Par. Proc., pp. 239-248.

BOKHARI [1981]. On the mapping problem, IEEE Trans. Comput., C-30, pp. 207-214.

BOKHARI [1984]. Finding mazimum on an array processor with a global dus, IEEE Trans.
Comput., C-33, pp. 133-139,

BOKHARI [1988]. Partitioning problems in parallel, pipelined and distributed computing,
IEEE Trans. Comput., C-37, pp. 48-57.

BOKHARI, M. HUsSAINI, J. LAMBIOTTE, AND S. ORszAG [1982]. Navier-Stokes solution
on the CYBER-208 by a pseudospectral technique, Second IMAC International Sympo-
sium on Parallel Computation, Newark, DE, November 9-11, pp. 305-307.

BOKHARI, M. HUSSAINI, AND S. ORSZAG [1982). Fast orthogonal derivatives on the STAR,
Comput. Math. Appl., 8, pp. 367-377.

BOLEY [1978). Vectorization of block relaration technigues: Some numerical experiments,
Proc. 1978 LASL Workshop on Vector and Parallel Processors, Los Alamos, NM.

BOLEY [1984). A parallel method for the generalized eigenvalue prodlem, Tech. Report
84-21, Department of Computer Science, University of Minnesota, September.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 133

[198] D. BOLEY [1986]. Solving the generalized cigenvalue problem on a synchronous linear pro-
cessor array, Parallel Computing, 3, pp. 153-1686.

[199] D. BoLEY, B. BUZBEE, AND S. PARTER [1978]. On block relazation technigues, Tech. Report
1860, Mathematics Research Center, University of Wisconsin.

[200] E. BONDARENKO [1985). Parallcling of methods for the modification of matriz factorizations,
Computational Processes and Systems, Ixdatel’stvo Nauka, Moscow, pp. 228-264.

[201] L. BONEY AND R. SMITH [1979]. A vectorization of the Hess-McDonnel-Douglas potential
flow program NUED for the STAR-100 computer, NASA Tech. Report TM-78816,
NASA Langley Research Center.

[202] J. BoNoMO AND W. DYKSEN [1987). Pipelined iterative methods for shared memory ma-
chines, Tech. Report CSD-TR-688, Department of Computer Science, Purdue Univer-
sity.

[203] D. BOOK, ed. [1981]. Finite Difference Technigues for Vectorized Fluid Dynamics Calcula-
tion, Springer-Verlag, New York, NY.

[204] C. BORGERS AND O. WIDLUND [1987]. A domain decomposition Laplace solver for internal
ecombustion engine modeling, Tech. Report 315, Department of Computer Science, New
York University.

[205) J. BoRis [1976). Fluz-corrected transport modules for solving genmeralized continuity equa-
tions, Tech. Report 3237, Naval Research Laboratory.

[206] J. Boris [1976). Vectorized tridiagonal solvers, Tech. Report 3048, Naval Research Labora-
tory.

[207] J. Borus [1986]. A vectorized “near meighbors” algorithm of order n using a monolonic
logical grid, J. Comp. Phys., 66, pp. 1-22.

[208] J. Boris AND N. WINSOR [1982). Vectorized computation of reactive flow, in Rodrigue
[1643), pp. 173-215.

[209] A. BORODIN AND 1. MUNRO [1975), Computational Complezity of Algebraic and Numeric
Processes, American Elsevier.

[210] A. BossSAvIT [1982). On the vectorization of algorithms in linear algebra, Proc. 10th IMACS
World Congress on Systems Simulation and Scientific Computation, vol. 1, IMACS,
pp. 95-97.

[211] S. BosTiC [1984). Solution of a tridiagonal system of equations on the Finite Element Ma-
chine, NASA Tech. Report TM-85710, NASA Langley Research Center.

[212] S. BosTiC AND R. FULTON [1985]. A concurrent processing approach to structural vibration
analysis, 26th AIAA Structures, Structural Dynamics and Materials Conf., Orlando,
FL.

[213] S. BosTic AND R. FULTON [1987). Implementation of the Lanczos method for structural vi-
bration analysis on a parallel computer, Computers and Structures, 25, pp. 395-404.

[214] A. Boubouvis AND L. SCRIVEN [1985]. Explicitly vectorized frontal routine for hydrody-
namic stability and bifurcation analysis by Galerkin/finite element methods, in Numrich
[1469], pp. 197-213.

[215] W. BOUKNIGHT, S. DENENBERG, D. MCINTYRE, J. RANDALL, A. SAMEH, AND D. SLOTNICK
[1972). The Illiac IV system, Proc. IEEE, 60, pp. 369-379.

[216] B. BoweN AND R. BUHR [1980], The Logical Design of Multiple-Microprocessor Systems,
Prentice-Hall, Inc., Englewood Cliffs, NJ.

[217) G. BOWGEN AND J. Monbi [1985]. Implementation of QR factorization on the DAP using
Householder transformations, Comput. Phys. Comm., 37, pp. 167-170.

[218] K. BOWLER AND G. PAWLEY [1984). Molecular dynamics and Monte Carlo simulations in
solid-state and elementary particle physics, Proc. IEEE, 72, pp. 42-55.

[219] P. BRADLEY, D. DWOYER, AND J. SOUTH [1984]. Vectorized schemes for conical flow using
the artificial density method, Paper 84-0162, ATAA, January.

[220] P. BRADLEY, P. SiEMERS, AND K. WEILMUENSTER [1982]. Comparizon of shuttle flight pres-
sure data to computational and wind-tunnel results, Journal of Spacecraft and Rockets,
19, pp. 419422,

[221] I. BRAILOVSKAYA [1965]. A difference scheme for numerical solution of the two-dimensional
non-stationary Navier-Stokes equations for a compressible gas, Soviet Physics Doklady,
10, pp. 107-110.

[222] J. BRAMBLE, J. PASCIAK, AND A. SCHATZ [1987). The construction of preconditioners for el-
liptic problems by substructuring, Math. Comp., 49(179), pp. 1-16.

[223] J. BRANDENBURG AND D. ScOTT [1986). Embeddings of communication trees and grids into
hypercubes, iPSC Tech. Report 1, Intel.

[224] A. BRANDT [1977). Multigrid adaptive solutions to boundary value problems, Math. Comp.,
31, pp. 333-390.

134 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[225] A. BRANDT [1981). Multigrid solvers on parallel computers, in Schultz [1752], pp. 39-83.

[226] A. BRANDT [1984). Local and multi-level parallel processing mill, Tech. Report, Department
of Applied Mathematics, Weizmann Institute, Rehovot, Israel.

[227] A. BRANDT [1988]. Multilevel computations: Review and recent developments, in McCormick
[1312}, pp. 35-63.

[228] W. BRANTLEY, K. MCAULIFFE, AND J. WEIss [1985]. RPS processor memory element,
Proc. 1985 Int. Conf. Par. Proc., pp. 782-789.

[229] A. Brass aND G. PARRLEY [1986). Two and three dimensional FFTs ox highly parallel com-
puters, Parallel Computing, 3, pp. 167-184.

[230] R. BRENT AND H. KUNG [1982). A systolic VLSI array for integer GCD computation, Tech.
Report TR-CS-82-11, Department of Computer Science, Australian National University,
December.

[231] R. BRENT, H. KUNG, AND F. LUK [1983). Some linear-time algorithms for systolic arrays,
Proc. IFIP 9th World Computer Congress, Amsterdam, North-Holland, pp. 865-876.

{232] R. BRENT AND F. Luk [1982]. Computing the Cholesky factorization wsing a systolic archi-
tecture, Tech. Report TR 82-521, Department of Computer Science, Cornell University,
Ithaca, NY, September.

[233] R. BRENT AND F. Luk [1982]. A systolic arehitecture for almost linear-time solution of the
symmelric cigenvalue problem, Tech. Report TR-CS-82-10, Department of Computer
Science, Australian National University.

. BRENT AND F. LUK [1982]. A systolic architecture for the singular value decomposition,
Tech. Report TR-82-522, Department of Computer Science, Cornell University.

. BRENT AND F. LUK [1983]. Computing the Cholesky factorization using a systolic archi-
tecture, Proc. 6th Australian Computer Science Conf., Australian Computer Science
Communications 5, pp. 295-302.

[236] R. BRENT AND F. LUK [1983]. A systolic array for the linear time solution of Toeplitz sys-

tems of equations, J. of VLSI and Computer Systems, 1, pp. 1-22.

[237] R. BRENT AND F. LUK [1985). The solution of singular-value and symmetric eigenvalue
problems on multiprocessors, SIAM J. Sci. Statist. Comput., 6, pp. 69-84.

[238] R. BRENT, F. LUK, AND C. VAN LOAN [1983]. Computation of the generalized singular value
decomposition using mesh-connected processors, Proc. SPIE vol. 431: Real Time Signal
Processing VI.

[238] R. BRENT, F. LUk, AND C. VAN LOAN [1985). Computation of the singular value decomposi-
tion vaing mesh connected processors, J. of VLSI and Computer Systems, 1, pp. 242-270.

[240} R. BrICKNER, R. HIROMOTO, AND B. WIENKE [1987). Parallel iterative transport algorithma
and comparative performance on distributed and common memory systems, Tech. Re-
port LA-UR-87-2163, Los Alamos National Laboratory.

[241] R. BRICKNER AND R. PATERNOSTER [1987]. Multitasking a two-dimensional (R,Z)-geometry
discrete ordinales meuiron transport algorithm, Tech. Report LA-UR-87-2164, Los
Alamos National Laboratory.

[242] W. Briggs, L. HART, S. MCCORMICK, AND D. QUINLAN [1987]. Multigrid methods on a hy-
percube, in McCormick [1312], pp. 63-83.

[243] W. BriGgs, L. HART, R. SWEET, AND A. O’GALLAGHER [1987]. Multiprocessor FFT meth-
ods, SIAM J. Sci. Statist. Comput., 8, pp. s27-842.

[244] W. BriGgs AND T. TURNBULL [1988). Fast Poisson solvers for MIMD computers, Parallel
Computing, 6, pp. 265-275.

[245] P. BriNcH HANSEN [1973]. Concurrent programming concepts, ACM Computing Surveys, 6,
PP- 223-245.

[246] P. BRINCH HANSEN [1977), The Architecture of Concurrent Programs, Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

[247] P. BRINCH HANSEN [1978). Distributed processes: A concurrent programming concepl,
Comm. ACM, 21.

[248] P. BRINCH HANSEN [1979]. A keynote address on concurrent programming, Computer, 12(5),
pp- 50-56.

[249] L. BROCHARD [1984]. Communication and control cosis of domain decomposition on loosely
coupled multiprocessors, Proc. 7Tth Int. Conf. Dist. Comp. Syst., Berlin, pp. 200-205.

[250] B. BRODE [1981]. Precompilation of Fortran pyograms to facilitate array processing, Com-
puter, 14(9), pp. 46-51.

[251] E. BROOKS [1984]. A multitasking kernel for the C and Fortran programming languages,
Tech. Report UCID-20167, Lawrence Livermore National Laboratory, Livermore, CA,
September.

[252] E. BROOKS [1985). Performance of the Butterfly processor-memory interconnection in a vec-

~

(234]

~

[235]

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 135

tor environment, Proc. 1985 Int. Conf. Par. Proc., pp. 21-24.
[253] E. BROOKs [1985). The shared memory hyperesbe, Tech. Report, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, March.
[254] E. BROOKs [1987). A butterfly processor-memory interconnection for a veclor processing en-
vironment, Parallel Computing, 4, pp. 103-110.
[255] E. BROOKS [1988]. The indirect k-ary n-cube for a vector processing environment, Parallel
Computing, 6, pp. 339-348.
[256] E. BROOKS [1988]. The shared memory hypercube, Parallel Computing, 6, pp. 235-246.
[257) G. BROOMELL AND J. HEATH [1983). Classification categories and historical development of
circuit switching topologies, ACM Computing Surveys, 15, pp. 95-134.
[258] J. BROWNE [1984). Parallel architecture for computer systems, Physics Today, 37(5), pp. 28—
35.
[259] J. BROWNE [1984). TRAC: An environment for parallel computing, Proc. COMPCON 84,
IEEE Comp. Soc. Conf., pp. 294-299,
[260] J. BROWNE [1985]. Formulation and programming of parallel computations: A unified ap-
proach, Proc. 1985 Int. Conf. Par. Proc., pp. 624-631.
[261] J. BROWNE [1986). Framework for formulation and analysis of parallel computation struc-
tures, Parallel Computing, 3, pp. 1-10.
[262] R. BRu, M. NEUMANN, AND L. ELSNER [1988]. Models of parallel chaotic iteration methods,
Lin. Alg. & Appl., 103, pp. 175-192.
[263] J. BRUNO [1984]. Final report on the feasidility of using the Massively Parallel Processor
for large eddy simulations and other computational fluid dynamics applications, Tech.
Report 84.2, RIACS, NASA Ames Research Center, June.
[264] J. BRUNO [1986). Report on the feasibility of hypercube concurrent processing systems in
compulational flusd dynamics, Tech. Report 86.7, RIACS, NASA Ames Research Center,
March.
[265] I. BucHER [1983]. The computational speed of supercomputers, Proc. ACM Sigmetrics Conf.
on Measurement and Modeling of Computer Systems, pp. 151-165.
[266] 1. BUCHER AND T. JORDAN [1984). Linear algebra programs for use on a wector computer
with a secondary solid state storage device, in Vichnevetsky and Stepleman [1920],
pp. 546-550.
[267] 1. BucHER AND T. JORDAN [1984]. Solving very large elliptic problems on a supercomputer
with solid state disk, J. Comp. Phys., 55, pp. 340-345.
[268] P. BuDNIK AND D. Kuck [1971]. The organization and use of parallel memories, IEEE
Trans. Comput., C-20, pp. 1566-1569.
[269] O. BUNEMAN [1969]. A compact non-iterative Poisson solver, Tech. Report 294, Institute for
Plasma Research, Stanford University.
[270] P. BUNING AND J. LEVY [1979]. Vectorization of implicit Navier-Stokes codes on the CRAY-
1 computer, Tech. Report, Department of Aeronautics and Astronautics, Stanford Uni-
versity.
[271] P. BurkE, B. Davigs, AND D. EDWARDS, eds. [1982). Some Research Applications on the
CRAY-1 Computer at the Daresbury Laboratory, 1979-81, Daresbury Laboratory, Eng-
land.
[272] P. BURKE AND L. DELNES, eds. [1982]. Proceedings of the International Conference on Vec-
tor and Parallel Processors in Computational Science, Chester, England, August, 1981.

. BURNS AND D. PRYOR [1987]. Vectorized Monte Carlo radiative heat transfer simulation
of the laser isotope separation process, Tech. Report 87002, Institute for Scientific Com-
puting, Fort Collins, CO.

[274] BurrouGHs CORP. [1979]. Final report. NAS facility feasibility study, Contractor Report
NAS2-9897, NASA.

[275] R. BUTLER, E. Lusk, W. McCuUNE, AND R. OVERBEEK [1985). Parallel logic programming
for numeric applications, MCS Tech. Report, Argonne National Laboratory, Argonne,
IL.

[276] T. BUTLER, J. CLOUTMAN, AND J. RAMSHAW [1981). Multidimensional numerical simula-
tion of reactive flow in internal combustion engines, Prog. Energy Combust. Sci., 7,
ppP. 293-315.

[277) B. Buzege [1973]. A fast Poisson solver amenable to parallel computation, IEEE Trans.
Comput., C-22, pp. 793-796.

[278] B. BuzBkk [1981]. Implementing technigues for elliptic problems on vector processors, in
Schultz [1752], pp. 85-98.

[279] B. Buzeeg [1983]. Remarks for the IFIP congress 88 panel on how to obtain high perfor-
mance for high-speed processors, Tech. Report LA-UR-83-1392, Los Alamos National

[273]

o

136 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

Laboratory.

[280] B. BuzBEE [1983]. Vectorization of algorithms for solving systems of elliptic difference eque-
tions, in Noor [1450], pp. 81-88.

[281] B. BuzBEE [1984]. Application of MIMD machines, Tech. Report LA-UR-84-2004, Los
Alamos National Laboratory.

(282] B. BUZBEE [1984]. Gaining insight from supereomputing, Proc. IEEE, 72, pp. 19-21.

[283] B. BuzBgk [1985). Two parsllel formulations of particle-in-cell models, in Snyder et al.
{1808}, pp. 223-232.

[284] B. BuzBEE [1986). A strategy for vectorization, Parallel Computing, 3, pp. 187-192.

[285] B. BuzBeE, D. BOLEY, AND S. PARTER [1979). Applications of block relazation, Proc. 1979
AIME Fifth Symposium on Reservoir Simulation.

[286] B. BuzBeg, R. EWALD, AND J. WORLTON [1982). Japanese sxpercomputer technology, Sci-
ence, 218(17), pp. 1189-93.

[287] B. BuzBEE, G. GOLUB, AND J. HOWELL [1977]. Vectorizations for the CRAY-1 of some
methods for solving elliptic difference eguations, in Kuck et al. [1133], pp. 255-271.

[288] B. BuzBeE, G. GOLUB, AND C. NIELSON [1970]. On direct methods for solving Poisson’s
eguation, SIAM J. Numer. Anal., 7, pp. 627-656.

[289] B. BuzBEE AND J. MORRISON, eds. [1978}. Proc. 1978 LASL Workshop on Vector and Par-

allel Processors, Los Alamos, NM.
[290) B. BuzBeE AND D. SHARP [1985). Perspectives on computing, Science, 227, pp. 591-597.
[291] B. BuzBEE, J. WORLTON, G. MICHAEL, AND G. RODRIGUE {1980). DOE research in utiliza-
tion of high performance systems, Tech. Report LA-8609-MS, Los Alamos National
Laboratory.

[292] J. CAHOUET [1988). On some difficulties occurring in the simulation of incompressible fluid
flows by domain decomposition methods, in Glowinski et al. [762], pp. 313-332.

[293] D. CALAHAN [1973). Parallel solution of sparse simultancous linear equations, Proceedings
of the 11th Allerton Conference on Circuit and System Theory, University of Illinois at
Urbana-Champaign, pp. 729-738.

. CALAHAN [1975]. Complerity of vectorized solution of two-dimensional finite element
grids, Tech. Report 91, Systems Engineering Laboratory, University of Michigan.

. CALAHAN [1977]. Algorithmic and architectural issucs related to vector processors, Proc.
Int. Symp. Large Eng. Sys., Pergammon Press.

. CALAHAN [1979]. A block-oriented sparse equation solver for the CRAY-1, Proc. 1979
Int. Conf. Par. Proc., pp. 116-123.

. CALAHAN [1979). Vectorized sparse elimination, Proc. Sci. Computer Information Ex-
change Meeting, Livermore, CA.

[204] D
D
D
D
[298] D. CALAHAN [1980]. Multi-level vectorized sparse solution of LSI circuits, Proc. IEEE Conf.
D
D
D
D

[295]
[296]

[297)

on Circuits and Computers, Rye, NY, October, pp. 976-979.

. CALAHAN [1981)]. Direct solution of linear equations on the CRAY-1, CRAY Channels,
3, pp. 1-5.

. CALABAN [1981)]. Performance of linear algebra codes on the CRAY-1, SPE Journal,
pp. 558-564.

. CALAHAN [1981]. Sparse vectorized direct solution of elliptic problems, in Schultz [1752],
PPD- 241-245.

. CALAHAN [1982]. High performance banded and profile equation-solvers for the CRAY-1:
The unsymmeiric case, Tech. Report 160, Systems Engineering Laboratory, University
of Michigan.

[303] D. CALAHAN [1982]. Vectorized direct solvers of 2-D grids, Proc. 6th Symp. Resevoir Simu-

lation, pp. 489-506.

[304] D. CALAHAN [1983]. Tasking studies in solving & linear algebra problem on a CRAY.class
multiprocessor, Tech. Report SARL-2, Supercomputer Algorithm Research Laboratory,
University of Michigan.

[305] D. CALAHAN [1984]. Influence of task granularity on vector multiprocessor performance,
Proc. 1984 Int. Conf. Par. Proc., pp. 278-284.

[306] D. CALAHAN [1985]. Task granularity studics on a many-processor CRAY X-MP, Parallel
Computing, 2, pp. 109-118.

[307] D. CALABAN [1986). Block-oriented, local-memory-based linear equation solution on the
CRAY-2: Uniprocessor algorithms, Proc. 1986 Int. Conf. Par. Proc., pp. 375-378.

[308] D. CALAHAN AND W. AMES [1979]. Vector processors: Models and applications, IEEE Trans.
Circuits and Syst., CAS-26, pp. 715-776.

[309] D. CALAHAN, W. AMES, AND E. SESEK [1979]. A collection of equation solving codes for the
CRAY-1, Tech. Report, Systems Engineering Laboratory, University of Michigan.

[299]
[300]
[s01]

(302]

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 137

[310] D.

[311] P
(312] P
[313] C.
(314] G

[315] G.

[316]
[317]

[318]

[320]

G
G
w
[319] A.
D
[321] C
D

[322)

[323] D.

[324] R
[325] R
[326] R.
[327] R
[328] R

[329]
(330]

[331]

(333]

T
T
T
[332] T.
T
[334] T
T

CALAEAN, W. JoY, AND P. ORBITS [1976]. Preliminary repori on resulls of malriz
benchmarks on vector processors, Tech. Report, Systems Engineering Laboratory, Uni-
vergity of Michigan.

. CAPPELLO [1985). A mesh automaton for solving dense linear systems, Proc. 1985 Int.

Conf. Par. Proc., pp. 418-425.

. CAPPELLO [1987). Gaussian elimination on a Aypercube automaton, J. Par. Dist. Comp.,

4, pp. 288-308.
CARDELMO AND P.-Y. CHEN [1985]. A new parallel algorithm for solving a complex func-
tion f(2) = 0, Proc. 1985 Int. Conf. Par. Proc., pp. 305-310.

. CAREY [1981]. High speed processors and implications for algorithms and methods, Non-

linear Fimite Element Analysis — Structural Mechanics, W. Wunderlich, E. Stein, and
K. Bathe, eds., Springer- Verlag, Berlin.
CAREY [1985). Inherent and induced parallelism in finite element computations, Tech.
Report CNA-198, Center for Numerical Analysis, University of Texas at Austin, Febru-

ary.
. CAREY [1986). Parallelism in finite element modeling, Comm. Appl. Numer. Meth., 2,

pp. 281-287,

. CAREY, E. BARRAGY, R. McLAY, AND M. SHARMA [1988]. Element by element vector

and parallel computations, Comm. Appl. Numer. Meth., 4, pp. 299-308.

. CARLSON AND K. HWANG [1985]. Algorithmic performance of dataflow multiprocessors,

Compater, 18(12), pp. 30—40.
CARROLL AND R. WETHERALD [1967). Application of parallel processing to numerical
weather prediction, J. ACM, 14, pp. 591-614.

. CASASENT [1984). Acoustooptic linear algebra processors — Architectures, algorithms and

applications, Proc. IEEE, 72, pp. 831-849.

. CATHERASOO [1987]. The vortez method on a hypercube concurrent processor, in Heath

[860], pp. 756-761.

. CAUGHEY [1983]. Multigrid calculation of three-dimensional transonic potential flows,

Appl. Math. & Comp., 13(3-4), pp. 241-260. (Special Issue, Proceedings of the First
Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, S. Mc-
Cormick and U. Trottenberg, eds.).
CAUGHEY, P. NEWMAN, AND A. JAMESON [1978]. Recent experiences with three dimen-
sional transonic potential flow calculations, NASA Tech. Report TM-78733, NASA
Langley Research Center.

. CHAMBERLAIN [1986]. Ezperiences with the Intel iPSC hypercube, Supercomputer, 16,

PP 24-29.

. CHAMBERLAIN [1987]. An alternative view of LU factorization with partial pivoting on a

hypercube multiprocessor, in Heath [860], pp. 569-575.
CHAMBERLAIN [1988]. Gray codes, fast Fourier transforms, and hypercubes, Parallel Com-
puting, 6, pp. 225-234.

. CHAMBERLAIN, P. FREDERICKSON, J. LINDHEIM, AND J. PETERSEN [1987]. 4 high level

library for hypercubes, in Heath [860], pp. 651-655.

. CHAMBERLAIN AND M. POWELL [1986]. QR factorization for linear least squares problems

on the hypercube, Tech. Report CCS 86/10, Department of Science and Technology, Chr.
Michelsen Institute, Bergen, Norway.

. CHAN [1987]. Analysis of preconditioners for domain decomposition, SIAM J. Numer.

Anal., 27, pp. 382-390.

. CHAN [1987). On the implementation of kernel numerical algorithms for computational

fluid dynamics on hypercubdes, in Heath [860], pp. 747-755.

. CHAN AND T. Hou [1988]. Domain decomposttion preconditioners for general second or-

der elliptic problems, CAM Report 88-16, Department of Mathematics, UCLA.
CHAN AND D. REsAsCO [1987). A domain-decomposed fast Poisson solver on a rectangle,
SIAM J. Sci. Statist. Comput., 8, pp. s14-526.

. CHAN AND D. REsAsco [1987). Hypercube implementation of domain decomposed fast

Poisson solvers, in Heath [860], pp. 738-746.

. CHAN AND D. REsAsco [1988]. A framework for the analysis and construction of domain

decomposition preconditioners, in Glowinski et al. [762], pp. 217-230.

. CHAN AND Y. SAAD [1985]). Multigrid algorithms on the hypercube multiprocessor, Tech.

Report YALEU/DCS/RR-368, Department of Computer Science, Yale University, New
Haven, CT, February.

. CHAN AND Y. SAAD [1986). Multigrid algorithms on the hypercube multiprocesor, IEEE

Trans, Comput., C-35, pp. 969-977.

138 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[337] T. CHAN, Y. SAAD, AND M. SCHULTZ [1985)}. Solving elliptic partial differential equations on
the hypercube multiprocessor, Tech. Report YALEU/DCS/RR-373, Department of Com-
puter Science, Yale University, March.

[338] T. CHAN, Y. SAAD, AND M. SCHULTZ [1987]. Solving clliptic partial differential equations on
the hypercube multiprocessor, Comm. Appl. Numer. Meth., 3, pp. 81-88.

[339] T. CHAN AND R. SCHREIBER [1985]). Muliigrid algorithms on the hypercube multiprocessor,
Tech. Report 368, Department of Computer Science, Yale University.

[340] T. CHAN AND R. SCHREIBER [1985). Parallel networks for multigrid algorithms: Architec-
ture and complerity, SIAM J. Sci. Statist. Comput., 6, pp. 698-711.

[341] T. CHAN AND R. TUMINARO [1987]. Implementation of multigrid algorithms on Aypercubes,
in Heath [860], pp. 730-737.

[342] T. CHAN AND R. TUMINARO [1988]. Design and implementation of parallel multigrid algo-
rithma, in McCormick [1312], pp. 101-115.

[343] T. CHAN AND R. TUMINARO [1988]. Implementation and evalsation of multigrid algorithms
on hybercubes, in McCormick [1312].

[344] T. CHAN AND R. TUMINARO [1988]). A survey of parallel multigrid algorithms, CAM Report
87-16, Department of Mathematics, UCLA.

[345] R. CHANDRA [1978). Conjugate Gradient Methods for Partial Differential Egquations, PhD
dissertation, Yale University, Department of Computer Science.

[346] H. CHANG, S. UTKU, M. SALAMA, AND D. RAPP [1988). A parallel Householder tridiagonal-
ization strategem using scattered square decomposition, Parallel Computing, 6, pp. 297—
312.

[347] H. CHANG, S. UTKU, M. SALAMA, AND D. RAPP [1988). A parallel Householder tridiagonal-
t1zatlion sirategem using scattered row decomposition, I. J. Num. Meth. Eng., 26, pp. 857-
874.

[348] S. CHANG [1982). Borehole acoustic simulation on vector computers, in Control Data Cor-
poration [411].

[349] D. CHAPMAN [1979]. Computational acrodynamics development and outlook, 17th Aerospace
Sciences Meeting. AIAA paper 79-0129.

[350] A. CHARLESWORTH AND J. GUSTAFSON [1986]. Introducing replicated VLSI to supercomput-
ing: The FPS-164/MAX scientific computer, Computer, 19(3), pp. 10-23.

[351] Y. CHAUVET [1984]). Multitasking a vectorized Monte Carlo algorithm on the CRAY X-
MP/2, CRAY Channels, 6(3), pp. 6-9.

[352] D. CHAZAN AND W. MIRANKER [1969]. Chaotic relaration, Lin. Alg. & Appl., 2, pp. 199-
222.

[353] D. CHAZAN AND W. MIRANKER [1970]. A non-gradient and parallel algorithm for uncon-
strained minimization, SIAM J. Control, 8, pp. 207-217.

[354] A. CHEN AND C. WU [1984]. Optimum solution to dense linear systems of equations, Proc.
1984 Int. Conf. Par. Proc., pp. 417-424.

[355] K. CHEN AND K. IRANI [1980]. A Jacobi algorithm and its implementation on parallel com-
puters, Proc. 18th Allerton Conf. on Comm., Cont. and Comp., pp. 564-573.

[356] M. CHEN [1983}. Space-time Algorithms: Semantics and Methodology, PhD dissertation,
California Institute of Technology.

[357] M. CHEN [1986). A design methodology for synthesizing parallel algorithms and architectures,
J. Par. Dist. Comp., 3, pp. 461-491.

[358] M.-Q. CHEN AND S.-P. HAN [1987]. A parallel quasi-Newton method for partially separable
large scale minimization, Tech. Report 689, Center for Supercomputing Research and
Development, University of Illinois at Urbana-Champaign.

[359] M.-S. CHEN AND K. SHIN [1987]. Processor allocation in an n-cube multiprocessor using
Gray codes, IEEE Trans. Comput., C-36, pp. 1396-1407.

[360] S. CHEN [1975]. Speedup of Iterative Programs in Multi-Processing Systems, PhD disserta-
tion, University of Illinois at Urbana-Champaign, Department of Computer Science.

[361] S. CHEN [1982]. Polynomial Scaling in the Conjugate Gradient Method and Related Top-
ics in Matriz Scaling, PhD dissertation, Pennsylvania State University, Department of
Computer Science.

[362] S. CHEN [1984]. Large-scale and high-speed multiprocessor system for scientific applications:
CRAY X-MP-2 series, in Kowalik [1116)], pp. 59-67.

[363] S. CHEN, J. DONGARRA, AND C. HSUING [1984]). Multiprocessing linear algebra algorithms
on the CRAY X-MP-2: Ezperiences with small granularity, J. Par. Dist. Comp., 1,
pp. 22-31.

[364] S. CHEN AND D. Kuck [1975). Time and parallel processor bounds for linear recurrence sys-
tems, IEEE Trans. Comput., C-24, pp. 101-117.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 139

[365)] S.
[366] S.
[367) K.
[368] T.

[369] H.

CHEN, D. Kuck, AND A. SAMEH [1978]. Practical parallel band triangular system solvers,
ACM Trans. Math. Softw., 4, pp. 270-77.

CHEN AND A. SAMEH {1975]). On parallel triangular solvers, Proc. 1975 Sagamore Conf.
Par. Proc., pp. 237-38.

CHENG AND S. SAHNI [1987]. VLSI systems for band matriz multiplication, Parallel Com-
puting, 4, pp. 239-258.

CHENG AND O. JOHNSON [1982]. $D vector forward modeling, Seismics Acous. Lab. 5th
year Prog. Rev., 10, pp. 210-228,

CHEONG AND A. VEIDENBAUM [1987). The performance of software managed multiproces-
sor cache on parallel numerical algorithme, Proc. Int. Conf. on Supercomputing, Athens,
Springer-Verlag, June.

[370] M. CHERN AND T. MURATA [1983]. Efficient matriz multiplication on a concurrent data-

loading array processor, Proc. 1983 Int. Conf. Par. Proc., pp. 90-94.

[371] M. CHERN AND T. MURATA [1983). A fast algorithm for concurrent LU decomposition and

[372] G.
[373] T.

[374] R.
[375] R.

[376] R.

[377] R.

[378] R.
[379] Y.
[380] N.
[381] C.

[382] C.

(383] A.

[384] E.
[385] E.

[386] E.

[387] E.
[388] M.
[389] H.
[390] 3.

[391] J.

[392] A.

mairiz inversion, Proc. 1983 Int. Conf. Par. Proc., pp. 79-86.

CHERRY [1984), Parallel programming in ANSI standard Ada. Reston.

CHEUNG AND J. SMITH [1986]. A simulation study of the CRAY X-MP memory system,
IEEE Trans. Comput., C-35, pp. 613-622.

CHIMA AND G. JOHNsON [1983]. Efficient solution of the Euler and Navier-Stokes equa-
tions with a vectorized multiple-grid algorithm, Paper 83-1893, AIAA.

CHIN, G. HEDSTROM, F. HOWES, AND J. MCGRAW [1986]. Parallel computation of
multiple-scale problems, in Wouk [1999], pp. 136-153.

CHIN, G. HEDSTROM, F. HOWES, AND J. MCGRAwW [1986]. Parallel com-
putation of multiple-scale problems, New Computing Environments: Parallel, Vector,
and Systolic, Philadelphia, pp. 136-153.

CHIN, G. HEDSTROM, J. SCROGGS, AND D. SORENSEN [1987]. Parallel computation of a
domain decomposition method, Tech. Report 657, Center for Supercomputing Research
and Development, University of lllinois at Urbana-Champaign, April.

CHIN, G. HEDSTROM, AND C. SIEWERT [1986). On the use of the FN method for radiative
transfer problems, Tech. Report UCRL-94464, Lawrence Livermore National Laboratory.

CHOW AND W. KOHLER [1979). Models for dynamic load balancing in a heterogemeous
multiple processor system, IEEE Trans. Comput., C-28, pp. 354—.

CHRIST AND A. TERRANO [1984). A very fast parallel processor, IEEE Trans. Comput.,
33, pp. 344-350.

CHRISTARA [1988). Parallel Algorithms/Architectures for the Solution of Elliptic Partial
Differential Equations, PhD dissertation, Purdue University.

CHRISTARA, E. HousTIs, AND J. RICE [1988]. A parallel spline collocation-capacitance
method for elliptic partial differential equations, Tech. Report CSD-TR-735, Depart-
ment of Computer Science, Purdue University.

CHRONOPOULOS AND C. GEAR [1987). Implementation of preconditioned S-step conjugate
gradient methods on a multi processor system with memory hierarchy, Tech. Report
1346, Department of Computer Science, University of Illinois at Urbana-Champaign.

CHU [1988). Orthogonal Decomposition of Dense and Sparse Matrices on Multiprocessors,
PhD dissertation, University of Waterloo.

CHU AND A. GEORGE [1987]. Gaussian elimination with partial pivoting and load balanc-
ing on a multiprocessor, Parallel Computing, 5, pp. 65-74.

CHU AND A. GEORGE [1987]. QR factorization of a dense matriz on o shared memory
maultiprocessor, Tech. Report ORNL/TM-10581, Oak Ridge National Laboratory, Octo-
ber.

CHU AND A. GEORGE [1988]. QR factorization of a dense matriz on a hypercube multi-
processor, Tech. Report ORNL/TM-10691, Oak Ridge National Laboratory.

CHU AND H. HAMILTON [1987). Parallel solution of ODE’s by multiblock methods, SIAM
J. Sci. Statist. Comput., 8, pp. 342-353.

CHUANG AND L. CHEN [1987]. A fized size systolic array for arbitrarily large eigenvalue
problems, Proc. 1987 Int. Conf. Par. Proc., pp. 550-556.

CHUN, T. KAILATH, AND H. LEV-ARI [1987). Fast parallel algorithms for QR and triangu-
lar factorization, SIAM J. Sci. Statist. Comput., 8, pp. 899-913.

CLAUSING, R. HAGSTROM, E. Lusk, AND R. OVERBEEK [1985). A technique for achieving
portadility among multiprocessors: Implementation on the Lemur, Parallel Computing,
2, pp. 137-162.

CLEARY, D. HARRAR, AND J. ORTEGA [1986]. Gaussian elimination and Choleski factor-
ization on the FLEX /382, Tech. Report RM-86-13, Department of Applied Mathematics,

140 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

The University of Virginia, December.

[393] A. CLEARY, E. POOLE, J. ORTEGA, O. STORAASLI, AND C. VAUGHAN [1988]. Solution of
structural analysis problems on & parallel computer, Proceedings of the 29th AIAA
Structures, Structural Dynamics and Materials Conference, pp. 596-605.

{394] T. CLEMANS-AUGUST AND U. TROTTENBERG [1988}. A short note on standard parallel multi-
grid algorithmas for 8D, Appl. Math. & Comp., 27, pp. 101-1186.

[395] E. CLEMENTI, J. DETRICH, S. CHIN, G. CORONGIU, D. FoLsoMm, D. LoGaAN, R. CALTABIANO,
A. CARNEVALL J. HELIN, M. Russo, A. GNUDI, AND P. PALAMIDESE [1987]. Large-scale
compulations on a scalar, vector and parallel “sxpercomputer”, Parallel Computing, 5,
pPpP. 13-44.

[396] J. CLINARD AND A. GEIST [1987), Implementing Jracture mechanics
analysis on a disiributed-memory parallel processor, Tech. Report ORNL/TM-10367,
Oak Ridge National Laboratory, March.

[397] M. CuinT, C. HOLT, R. PERROTT, AND A. STEWART [1984]. Algorithms for the parallel com-
putation of eigensysiems, in Feilmeier et al. [623], pp. 123-130.

[398] C. CLos [1953). A study of non-blocking switching neciworks, Bell System Tech. J., 32,
pp. 406424,

[399] D. COCHRANE AND D. TRUHLAR [1986]. Strategics and performance norms for efficient uti-
hization of vector pipeline computers as illustrated by the classical mechanical simulation
of rotationally inelastic collisions, Tech. Report 86-4, University of Minnesota Super-
computer Institute, January.

[400] J. CocKE AND D. SLOTNICK [1958]. The use of parallelism in numerical calculations, Re-
search Memorandum RC-55, IBM.

[401] B. CopeENOTTI [1988). Fast parallel algorithms for matriz inversion and linear systems so-
lution, Appl. Math. Letters, 1, pp. 33-36.

[402] B. CODENOTTI AND P. FAVATI [1987]. Iterative methods for the parallel solution of linear
systems, 1. J. Comp. & Math. Appl., 13, pp. 631-634.

[403] B. CopENOTTI AND P. FAVATI [1987]. Low rank modification of Jacobi and JOR iterative
methods, Comp. Math. Appl., 13, pp. 617-621.

[404] E. COFFMAN AND R. GRAHAM [1972). Optimal scheduling for two-processor systems, Acta
Informatica, 1, pp. 200-213.

[405] T. COLEMAN [1988]. A chordal preconditioner for large scale optimization, Math. Prog., 40,
Pp. 265-288.

[406] W. CoOLLIER, C. MCCALLIEN, AND J. ENDERBY [1984). Tough problems in reactor design, in
Paddon [1512), pp. 91-106.

[407] P. Concus, G. GOLUB, AND G. MEURANT [1985). Block preconditioning for the conjugate
gradient method, SIAM J. Sci. Statist. Comput., 6, pp. 220-252.

[408] V. CONRAD AND Y. WALLACH [1977). Iterative solution of linear equations on a parallel pro-
cessor system, IEEE Trans. Comput., C-26, pp. 838-847.

[409] J. Conroy [1986]. Parallel Direct Solution of Sparse Linear Systems of Eguations, PhD
dissertation, University of Maryland. Also available as Computer Science Tech. Report
No. 1714, October.

[410] CoNTROL DATA CORPORATION [1979]. Final report. Feasidility study for NASF, Contractor
Report NAS2-9896, NASA.

[411] CoNTROL DATA CORPORATION [1982]. Proceedings Symposium CYBER 205 Applications,
Ft. Collins, CO.

[412] M. CosNARD, M. MARRAKCHI, Y. ROBERT, AND D. TRYSTRAM [1988]. Parallel Gaussian
elimination on an MIMD computer, Parallel Computing, 6, pp. 275-296.

[413} M. CosNARD, J. MULLER, AND Y. ROBERT [1986]. Parallel QR-decomposition of a rectan-
gular matriz, Numer. Math., 48, pp. 239-249.

[414] M. CosNARD AND Y. ROBERT [1986]. Complerity of parallel QR factorization, J. ACM, 33,
pp. 712-723.

[415] M. CosNARD, Y. ROBERT, P. QUINTON, AND M. TCHUENTE, eds. [1986]. Parallel
Algorithms and Architectures, North-Holland, Amsterdam.

[416] M. CosNARD, Y. ROBERT, AND D. TRYSTRAM [1985]. Comparison des méthodes paraliéles
de diagonalisation pour la résolution de systémes lin éaires denses, C.R. Acad. Sci. Paris,
1.301(16), pp. 781-784.

[417] M. COSNARD, Y. ROBERT, AND D. TRYSTRAM [1986). Résolution paralléle de systémes
linéaires denses par diagonalisation, E.D.F. Bulletin de la Direction des Etudes et des
Recherches, C(2), pp. 67-87.

[418] G. CoTTi [1987). A parallel perturbed biharmonic solver, 1. J. Comp. & Math. Appl., 13,
Pp. 681-86.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 141

[419] W. CoweLL AND C. THOMPSON [1986]. Transforming Foriran DO loops to improve perfor-
mance on vector architectures, ACM Trans. Math. Softw., 12, pp. 324-353.

[420] C. Cox [1988). Implementation of a divide and conquer cyclic redsction algorithm on the
FPS T-20 hypercube, Tech. Report URI-037, Department of Mathematical Sciences,
Clemson University, January.

[421] M. Cox [1983]. Ocean modeling on the Cyber 205 at GFDL, im Gary [700], pp. 27-32.

[422] R. CraNE, M. MINKOFF, K. HILLSTROM, AND S. KING [1986]. Performance modeling of
large-grained parallelism, Tech. Report ANL/MLS-TM-63, Argonne National Labora-
tory, March.

[423] CrAY RESEARCH, INC. [1982]. Science, Engineering and the CRAY-1, Proceedings of a Cray
Rescarch Inc. Symposium.

[424] T. CROCKETT [1987]). Performance of Foriran floating-point operations on the Flez /32 mul-
ticomputer, ICASE Interim Report 4, ICASE, NASA Langley Research Center, Hamp-
ton, VA,

[425] W. CROWTHER, J. GOODHUE, E. STARR, R. THOMAS, W, MILLIKEN, AND T. BLACKADAR
[1985). Performance measurements on a 128-node Butterfly parallel processor, Proc.
1985 Int. Conf. Par. Proc., pp. 531-540.

[426] B. CRUTCHFIELD [1987]. A vectorizing C ecompiler, Supercomputer, 19, pp. 27-36.

[427] L. CsaNKY [1976]. Fast parallel matriz inversion algorithms, SIAM J. Comput., 5, pp. 618—
623.

[428] M. CULLEN [1983). Current progress and prospects in numerical techniques for weather pre-
diction models, J. Comp. Phys., 50, pp. 1-37.

[429] J. CuPPEN [1981]. A divide and conquer method for the symmetric tridiagonal eigenproblem,
Numer. Math., 36, pp. 177-195.

[430] Z. CVETANOVIC [1986]. Performance analysis of the FFT algorithm on a shared memory
parallel architecture, Tech. Report RC11719(52739), IBM T. J. Watson Research Center.

[431] Z. CvETANOVIC [1987]. The effects of problem partitioning allocation and granularity on the
performance of multiple-processor systems, IEEE Trans. Comput., C-36, pp. 421-432,

[432] G. CyBENKkO, D. KRUMME, AND K. VENKATARAMAN [1987]. Fired hypercube embedding,
Tech. Report, Department of Computer Science, Tufts University, August.

[433] W. CyYRre, C. Davis, A. FRANK, L. JEDYNAK, M. REDMOND, AND V. RIDEOUT [1977).
WISPAC: A paralilel array computer for large scale system simulation, Simulation, 11,
PP- 165-172.

[434] C. DALY AND J. DUCROZ [1988]. Performance of a subroutine library on vector processing

machines, Comput. Phys. Comm. To appear.

[435) K. DATTA [1985). Parallel complezities and computations of Cholesky's decomposition and

QR factorization, Int. J. Comput. Math., 15, pp. 67-82.
A. Dave anD 1. Durr (1987). Sparse matriz calculations on the CRAY-2, Parallel Comput-
ing, 5, pp. 55-64.

E. DavIDsON, D. Kuck, D. LAWRIE, AND A. SAMEH [1986]. Supercomputing trade-offs and
the Cedar system, Tech. Report 577, Center for Supercomputing Research and Devel-
opment, University of Illinois at Urbana-Champaign, May.

A. DAvis [1983). Computer architecture, IEEE Spectrum, 20(11), pp. 94-99.

G. Davis [1986]. Column LU factorization with pivoting on a hypercube multiprocessor,

SIAM J. Algebraic Discrete Methods, 7, pp. 538-550.

[440] G. Davis, R. FUNDERLIC, AND A. GEIST [1987]. A hypercube implementation of the implicit

T

(436]

[437)

[438]
[439]

double shift QR algorithm, in Heath [860], pp. 619-626.

. Davis [1986)]. PSolve: A concurrent algorithm for solving sparse systems of linear egqua-
tions, Tech. Report 612, Center for Supercomputing Research and Development, Uni-
versity of Illinois at Urbana-Champaign, December.

[442] T. Davis aAND E. DAvIDSON [1987]). PSolve: A concurrent algorithm for solving sparse sys-

tems of linear eguations, Proc. 1987 Int. Conf. Par. Proc., pp. 483-490.

[443] W. Davy AND W. REINHARDT [1975). Computation of shuttle non-equilibrium flow fields on
a parallel processor, Tech. Report NASA SP-347, NASA Ames Research Center.

[444] I. DAVYDOVA AND 1. DAVYDOV [1985). Features characterizing the solution of computational
problems on current and projected highly efficient computing systems, Computational
Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 162-172.

[445] S. DAY AND B. SHKOLLER [1982]. A $-D earthquake model, in Control Data Corporation
[411).

[446] M. DAYDE [1986]. Parallelisation d’algorithmes d’optimisation pour des problémes
dloptimum design, PhD dissertation, Institut National Polytechnique de Toulouse,
France.

[441]

142

[447) P.

[448] C.

[449) G.

(450} E.

[451] J.-

[452] J.-

(453] J.-

[454] I.-

[455] P.

[456] L.

[457] B.

[458) J.

[459)
[460]

v U

[461]

[462] 3.
[463] J.
[464]} J.

[465] J.

[466] 1.
[467] 1.

[468] J.

[469] J.
[470] J.

[471) J.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

DE RUK [1986). A one-sided Jacobi algorithm for computing the singular value decompo-
sition on a vector computer, Tech. Report 86-21, Math. Inst., Univ. Amsterdam.

DE VORE [1984). Vectorization and implementation of an efficient multigrid algorithm
Jor the solstion of clliptic partial differential eguations, Memorandum Report 5504,
Naval Research Laboratory.

DEIWERT AND H. ROTHMUND [1883]. Three dimensional flow over a conical afterbody
containing a centered propulsive jet: A numerical simulation, AIAA 16th Fluid and
Plasma Dynamics Conference. Also in Gary [700], pp. 187-200.

DEKEL, D. NAssiMI, AND S. SAHNI [1981]. Parallel matriz and graph algorithms, SIAM
J. Comput., 10, pp. 657-673.

M. DELOSME [1987]. A processor for two-dimensional symmeiric cigenvalue and singular
valse arrays, Tech. Report YALEU/DCS/RR-540, Department of Computer Science,
Yale University, May.

M. DELOSME AND 1. IPSEN [1986]. Parallel solstion of symmetric positive definite systems
with Ayperbolic rotations, Lin. Alg. & Appl., 77, pp. 75-111,

M. DeLOSME AND 1. IPSEN [1987). Efficient systolic arrays for the solution of Toeplitz sys-
tems: An illustration of a methodology for the construction of systolic architectures in
VLSI, Systolic Arrays, Adam Hilger, Ltd., Bristol, pp. 37—46.

M. DELOSME AND M. MORF [1981]. Scattering arrays for matriz computations, SPIE 25th
Tech. Symp., San Diego, CA.

DELSARTE, Y. GENIN, AND Y. KAMP [1980). A method of matriz inverse triangular de-
composition based on contiguous principal submatrices, Lin. Alg. & Appl., 31, pp. 194-
212.

DELVES, A. SAMBA, AND J. HENDRY [1984]. Band matrices on the DAP, in Paddon
[1512], pp. 167-183.

DEMBART AND K. NEVES [1977]. Sparse triangular factorization on vector computers, Ex-
ploring Applications of Parallel Processing to Power System Analysis, Report EE 566-
SR, Electric Power Research Institute.

DEMINET [1982). Ezperience with multiprocessor algorithms, IEEE Trans. Comput., C-31,
PP. 278-288.

. DENNING [1985]. Parallel computation, American Scientist, 73, pp. 322-323.
. DENNING [1987). Evaluating supercomputers, Tech. Report TR-87.2, RIACS, NASA Ames

Research Center, January.

. DENNING AND G. ADAMS [1987]. Research guestions for performance analysis of super-

computers, Proceedings of the International Symposium on Large Scale Scientific Com-
putation, Amsterdam, Netherlands, North-Holland.

DENNIs [1980). Data flow supercomputers, Computer, 13(11), pp. 48-56.

DENNIs [1982]. High speed data flow computer architecture for the solution of the Navier-
Stokes equations, Tech. Report, Massachusetts Institute of Technology Laboratory for
Computer Science.

DENNIS [1984). Data flow ideas for supercomputers, Proc. COMPCON 84, IEEE Comp.
Soc. Conf., pp. 15-20.

DENNIS [1984). High speed data flow computer architecture for the solution of the Navier-
Stokes cquations, Computation Structures Group Memo 225, Massachusetts Institute of
Technology Laboratory for Computer Science.

DENNIS, G. GAo, AND K. Topp [1984]. Modeling the weather with a dataflow supercom-
puter, IEEE Trans. Comput., C-33, pp. 592-603.

DENNIS AND K. WENG [1977). Application of data flow computation to the weather prob-
lem, in Kuck et al. [1133), pp. 143-157.

DEUTSCH [1985]. Algorithms and Architecture for Multiprocessor-Based Circuit Simula-
tion, PhD dissertation, University of California, Berkeley, Electronics Research Labora-
tory.

DEUTSCH AND A. NEWTON [1984]. MSLICE: A multiprocessor based circuil simulator,
Proc. 1984 Int. Conf. Par. Proc., pp. 207-214.

DEUTSCH AND A. NEWTON [1984]. A maultiprocessor implementation of relazation based
electrical circust simulation, Proc. 21st Design Automation Conference.

DEVREESE AND P. VAN CAMP, eds. [1985]. Supercomputers in Theoretical and Ezperi-
mental Science, Plenum Publishing Corp., New York, NY.

[472] D. DEWEY AND A. PATERA [1987). Geometry-defining processors for partial differential

[473] S.

equations, Architecture and Performance of Specialized Computer Systems, B. Alder,
ed., Academic Press.
DHALL AND C. L1v [1978]. On a real-time scheduling problem, Oper. Res., 26, pp. 127~

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 143

[474] M.

[475] 1.

[476} J.

[477] J.

[478] J.

[479] R.

[480] Q.

[481] Q.

[482] L.

[483] L.

[484] D.
[485] D.
[486] D.
[487) S.
[488] J.
[489] J.

[490] J.

[491] J.

[492] J.
[493] J.
[494] J.

[495] J.

[496] J.
[497] J.
(498] J.
[499] J.

[500] J.

140.

DIAMOND [1975). The stability of a parallel algorithm for the solution of tridiagonal linear
systems, Proc. 1975 Sagamore Conf. Par. Proc., p. 235.

Diaz [1986]. Calculating the block preconditioner on parallel multivector processors, Proc.
Workshop on Applied Computing in the Energy Field, Stillwater, OK.

DiAz, S. BETTE, W. JINES, AND T. STEIHANG [1985). Development and performance of a
block pre-conditioned iterative solver for hinear systems in thermal stmulation, Tech.
Report OU-PPI-TR-85-05, School of Electrical Engineering and Computer Science, Uni-
versity of Oklahoma, January.

Diaz, W, JINES, A. MCDONALD, AND T. STEIHANG [1986]. Block diagonal scaling for it-
erative methods — Thermal simulation, Comm. Applied Numer. Methods. To appear.

Diaz, W. JINES, AND T. STEIHANG [1985). On a convergence criterion for linear (inner)
sterative solvers for reservoir ssmulation, Proc. SPE 1985 Res. Simul. Symp., Dallas,
TX, February, pp. 41-47.

DIEKKAMPER [1984)]. Vectorized finite clement analysis of nonlinear problems in struc-
tural analysis, in Feilmeier et al. [623], pp. 203-298.

DInNH [1982). Simulation Numérigue en Eléments Finis d’écoulements de Fluides
Visquens Incompressibles par Une Méthode de Décomposition de Domaines Sur Pro-
cesseurs Vectoriels, PhD dissertation, Univ. P. et M. Curie, Paris.

DinH, R. GLOWINSKI, B. MANTEL, J. PERIAUX, AND P. PERRIER [1981]. Subdomain solu-
tions of nonlinear problems in fluid dynamics on parallel processors, 5th International
Symposium on Computational Methods in Applied Sciences and Engineering, Versailles,
France, North-Holland.

Dixon, P. DUCKSBURY, AND P. SINGH [1982]. A parallel version of the conjugate gradient
algorithm for finite element problems, Tech. Report 132, NOC, Hatfield, Herts.

DixoN AND K. PATEL [1982]. The place of parallel computing in numerical optimization:
Four parallel algorithms for nonlinear optimization, Tech. Report 125, NOC, Hatfield,
Herts.

DoDSON [1981)]. Preliminary timing study for the CRAYPACK library, Internal Memo-
randum G4550-CM-39, Boeing Computer Services.

DobsoN AND J. LEwIs [1982]. Improving the performance of a sparse matriz solver on
the CRAY-1, in Cray Research, Inc. [423], pp. 13-15.

DODSON AND J. LEWIS [1985]. Issues relating to eztension of the basic linear algebra sub-
programs, ACM SIGNUM Newsletter, 20(1), pp. 2-18.

Dor AND N. HARADA [1987]. A preconditioning algorithm for solving nonsymmetric linear
systems suitable for supercomputers, in Kartashev and Kartashev [1055], pp. 503-509.
DONGARRA [1978}. Some LINPACK timings on the CRAY-1, Proc. 1978 LASL Workshop

on Vector and Parallel Processors, pp. 58-75.

DONGARRA [1983). Redesigning linear algebra algorithms, E.D.F. Bulletin de la Direction
des Etudes et des Recherches, C(1), pp. 51-59.

DONGARRA [1984]. Increasing the performance of mathematical software through high-
level modularity, Proc. Sixth Int. Symp. Comp. Methods in Eng. & Applied Sciences,
Versailles, France, North-Holland, pp. 239-248.

DONGARRA [1985). Performance of various compuiers using standard linear equations
software in a Fortran environment, Tech. Report MCA-TM-23, Argonne National Lab-
oratory.

DONGARRA [1986]. How do the mini-supers stack up?, Computer, 19(3), p. 92.

DONGARRA, ed. [1987]. Ezperimental Parallel Computing Architectures, North-Holland.

DONGARRA, J. DUCROZ, I. DUFF, AND S. HAMMARLING [1987]. A proposal for a set of
level 8 basic linear algebra subprograms, ACM SIGNUM Newsletter, 22(3), pp. 2-14.

DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON [1984]. A proposal for an ez-
tended set of Fortran basic linear algebra subprograms, Technical Memo 41, Mathematics
and Computer Science Division, Argonne National Laboratory, December.

DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON [1986]. An update notice on
the extended BLAS, ACM SIGNUM Newsletter, 21(4), pp. 2-4.

DONGARRA, J. DUCROZ, S. HAMMARLING, AND R. HANSON [1988]. An eztended set of ba-
aic linear algebra subprograms, ACM Trans. Math. Softw., 14, pp. 1-17.

DONGARRA AND I. DUFF [1986). Performance of vector computers for direct and indirect
addressing in Fortran, Harwell Report, Harwell Laboratory.

DONGARRA AND I. DUFF [1987). Advanced architecture compulers, Tech. Report ANL-
MCS-TM-57 (Revision 1), Argonne National Laboratory.

DONGARRA AND S. EiSENSTAT [1984). Squeezing the most out of an algorithm in CRAY-

144 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

FORTRAN, ACM Trans. Math. Softw., 10, pp. 221-230.

[501] J. DONGARRA, F. GUSTAVSON, AND A. KARP [1984]. Implementing linear algebra algorithms
Jor dense matrices on a vector pipeline machine, SIAM Rev., 26, pp. 91-112.

[502] J. DONGARRA AND T. HEWITT [1986]). Implementing dense linear algebra algorithmas using
maultitasking on the CRAY X-MP-4 (or, Approaching the gigaflop), SIAM J. Sci. Statist.
Comput., 7, pp. 347-350.

[503] J. DONGARRA AND A. HINDS [1979]). Unrolling loops in FORTRAN, Softw. Pract. Exper., 9,
pp. 219-229.

[504] J. DONGARRA AND A. HINDs [1985). Comparison of the CRAY X-MP-4, Fujitsu VP-200
and Hitachi S-810/20. An Argonne perspective, Tech. Report ANL-8579, Argonne Na-
tional Laboratory, October.

[505] J. DONGARRA AND R. HIROMOTO [1983]. A collection of parallel linear equations routines
Jor the Denclcor HEP, Tech. Report ANL/MCS-TM-15, Argonne National Laboratory,
Argonne, IL, September.

[506] J. DONGARRA AND R. HIROMOTO [1984}. A collection of parallel lincar equation rostines for
the Denelcor HEP, Parallel Computing, 1, pp. 133-142.

[507] J. DONGARRA AND L. JORNSSON [1987]. Solving banded systems on a parallel processor, Par-
allel Computing, 5, pp. 219-246.

[508] J. DONGARRA, L. KAUFMAN, AND S. HAMMARLING [1986)]. Squeezing the most out of eigen-
value solvers on high performance computers, Lin. Alg. & Appl., 77, pp. 113-136.

[509] J. DONGARRA AND A. SAMEH [1984]. On some parallel banded system solvers, Tech. Report
ANL/MCS.-TM-27, Argonne National Laboratory.

[510] J. DONGARRA, A. SAMEH, AND D. SORENSEN [1986]. Implementation of some concurrent al-
gorithms for matriz factorization, Parallel Computing, 3, pp. 25-34.

[511] J. DONGARRA AND D. SORENSEN [1985). A fast algorithm for the symmetric eigenvalue prob-
lem, IEEE Proceedings of the 7th Symposium on Computer Arithmetic, Urbana,
pp. 338-342.

[512] J. DONGARRA AND D. SORENSEN [1986). Linear algebra on high performance computers,
Appl. Math. & Comp., 20, pp. 57-88.

[513] J. DONGARRA AND D. SORENSEN [1987). A fully parallel algorithm for the symmetric eigen-
value problem, SIAM J. Sci. Statist. Comput., 8, pp. 8139-s154.

[514] J. DONGARRA AND D. SORENSEN [1987]. A portable environment for developing parallel
FORTRAN programs, Parallel Computing, 5, pp. 175-186.

[515] J. DONGARRA AND D. SORENSON [1984]. A parallel linear algebra library for the Denelcor
HEP, Tech. Report ANL/MCS/TM-33, Argonne National Laboratory.

[516] C. DougLAs, M. HENDERSON, S. HOriGUCHI, W. MIRANKER, B. SMITH, AND A. WINKLER
[1988]. The interaction of numerics and machines, Research Report RC13429,IBM T.J.
Watson Research Center, Yorktown Heights, NY.

[517] C. DougGLAs, S. Ma, AND W. MIRANKER [1987). Generating parallel algorithms through
multigrid and aggregation/disaggregation technigues, Proc. First IMACS Symposium on
Computational Acoustics, D. Lee, R. Sternberg, and M. Schultz, eds., Amsterdam-New
York, North-Holland.

[518] C. DouGLAs AND W. MIRANKER [1988]. Constructive interference in parallel algorithms,
SIAM J. Numer. Anal., 25, pp. 376-398.

[519] C. DougLAs AND W. MIRANKER [1988]. Generating parallel algorithms through multigrid
and aggregation/disaggregation technigues, in McCormick [1312].

[520] C. DouGLAS AND W. MIRANKER [1988]. Some non-telescoping parallel algorithms based on
serial multigrid/aggregation/disaggregation technigues, in McCormick [1312], pp. 167-
176.

[521] C. DouGLAS AND B. SMITH [1988]. Using symmetrics and antisymmetrics to analyze a par-
allel multigrid method, SIAM J. Numer. Anal. To appear.

[522] K. DOWERS, S. LAKSHMIVARAHAN, AND S. DHALL [1987]. On the comparison of the perfor-
mance of Alliant FX/8, VAX 11/780, and IBM 3081 in solving linear tri-disgonal sys-
tems, Tech. Report, School of Electrical Engineering and Computer Science, University
of Oklahoma, January.

[523] B. DRAKE, F. LUK, J. SPEISER, AND J. SYMANSKI [1987). SLAPP: A systolic linear algebra
parallel processor, Computer, 20(7), pp. 45—47.

[524] J. DRAKE, B. LAWKINS, B. CARRERAS, H. HICcks, AND V. LYNCH [1987]. Implementation of
a 3-D nonlinear MHD calculation on the Intel hypercube, Tech. Report ORNL-6335,
Oak Ridge National Laboratory.

[525] R. DRESSLER, S. ROBERTSON, AND L. SPRADLEY [1982]. Effects of Rayleigh accelerations ap-
plied to an initially moving fluid, Materials Processing in the Reduced Gravity Envi-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 145

ronment of Space, G. Rindone, ed., Elsevier Science Publishing Co.
[526] J. DRUMMOND [1983]. Numerical study of & ramjet dump combustor flow field, Paper 83-
0421, ATAA.
[527] J. DRUMMOND AND E. WEDNER [1982]. Numerical study of a scramjet engine flow field,
AIAA Journal, 20, pp. 1182-1187.
[528] M. DuBoIS [1987]. Performance of S.0.R. algorithms in multiprocessors, in Kartashev and
Kartashev [1055], pp. 414-423.
[529] M. DuBois AND F. BRIGGs [1982]. Performance of synchronized iterative processes in mul-
tiprocessor systems, IEEE Trans. Softw. Eng., SE-8, pp. 419—431.
[530] P. DuBois [1982]). Swimming upsiream: Table lookups and the evaluation of piecewise de-
fined functions on vector compsuters, m Rodrigue [1643}, pp. 129-151.
[531] P. DuBois, A. GREENBAUM, AND G. RODRIGUE [1979). Approrimating the inverse of a ma-
triz for use in iterative algorithme on vector processors, Computing, 22, pp. 257-268.
[532] P. DuBois AND G. RODRIGUE [1977]. An analysis of the recursive doubling algorithm, in
Kuck et al. [1133), pp. 299-305.
[533] P. DuBois AND G. RODRIGUE [1977). Operator splitting on the STAR without transposing,
Tech. Report UCID-17515, Lawrence Livermore National Laboratory.
[534] P. DucksBURY [1986)], Parallel Array Processing, Wiley.
[535] J. DUCROZ AND J. WASNIEWSKI [1987). Basic linear algebra computations on the Sperry
ISP, Supercomputer, 20/21, pp. 45-54.
[536] I. DUFF [1982). The solution of sparse linear equations on the CRAY-1, CRAY Channels,
4(3).
[537]) 1. Durr [1982). The solution of sparse linear equations on the CRAY-1, in Cray Research,
Inc. [423], pp. 17-39.
[538] 1. DUFF [1984). The solution of sparse linear equations on the CRAY-1, in Kowalik [1116],
PP 293-309.
[539] 1. DUFF [1986]. The influence of vector and parallel processors on numerical analysis, Tech.
Report AERE-R 12329, Computer Science and Systems Division, Harwell Laboratory,
Oxon, England.
[540] 1. DUFF [1986). Parallel implementation of multifrontal schemes, Parallel Computing, 3,
PP- 193-204.
[541] 1. DUFF [1986}. The parallel solution of sparse linear equations. Handler, Haupt, Jeltsch,
Juling, and Lange.
[542] 1. DUFF [1986). Use of vector and parallel computers in the solution of large sparse linear
equations, Tech. Report ANL/MCS-TM-84, Argonne National Laboratory.
[543] 1. DUFF [1986). The use of vector and parallel computers in the solution of large sparse
linear equations, Tech. Report AERE-R 12393, Computer Science and Systems Division,
Harwell Laboratory, Oxon, England.
[544] 1. DUFF [1987]. Multiprocessing a sparse matriz code on the Alliant FX/8, Tech. Report
CS8-210, Computer Science and Systems Division, Harwell Laboratory, Oxon, England.
[545] 1. DuFF, N. GOULD, M. LESCRENIER, AND J. REID [1987]. The multifrontal method in a par-
allel environment, Tech. Report CSS-211, Computer Science and Systems Division, Har-
well Laboratory, Oxon, England.
[546] 1. DUFF AND L. JOHNSSON [1986]. The effect of orderings on the parallelization of sparse
code, Technical Memorandum, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL.
[547] I. DUFF AND L. JOHNsSON [1986]. Node orderings and concurrency in sparse problems: An
experimental investigation, Proc. Int. Conf. Vector and Parallel Computing, Loen, Nor-
way, June 2-6.
[548] 1. DuFF AND J. REID [1982]. Ezperience of sparse mairiz codes on the CRAY-1, Comput.
Phys. Comm., 76, pp. 293-302.
[549] 1. DurF AND J. REID, eds. [1985]. Vector and Parallel Processors in Computational Science,
Proc. 2nd Int. Conf., Ozford, August 1984, North-Holland.
[550] R. DuGaAN, I. DURHAM, AND S. TALUKDAR [1979]. An algorithm for power system simula-
tion by parallel processing, Proc. IEEE Power Eng. Soc. Summer Meeting.
[551} A. DULLER AND D. PADDON [1984]. Processor arrays and the finite element method, in
Feilmeier et al. [623], pp. 131-136.
[552] M. DUNGWORTH [1979]. The CRAY-1 computer system, in Jesshope and Hockney [976],
pp. 51-76.
[553] T. DUNIGAN [1987). Hypercube performance, in Heath [860], pp. 178-192.
[554] T. DUNIGAN [1987]. Performance of three hypercubes, Tech. Report ORNL/TM-10400, Oak
Ridge National Laboratory, May.

146 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[555] T. DUNIGAN [1988]. Performance of a second generation Aypercube, Tech. Report
ORNL/TM-10881, Oak Ridge National Laboratory, September.

[556] I. DUREAM, R. DUGAN, A. JONES, AND S. TALUKDAR [1979]. Power system simulation on a
multiprocessor, Proc. IEEE Power Eng. Soc. Summer Meeting.

[557] J. EASTWOOD AND C. JESSHOPE [1977]. The solstion of clliptic partial differential cquations
using nymber theoretical transforms with applications to narrow or compuler hardware,
Comput. Phys. Comm., 13, pp. 233-239.

[558] D. EBERHARDT, D. BAGANOFF, AND K. STEVENS [1984]. Study of the mapping of Navier-
Stokes algorithme onto multiple-instruction/multiple-data-siream computers, Tech. Re-
port TM-85945, NASA Ames Research Center.

[559] P. EBERLEIN [1987]. On one-sided Jacobi methods for parallel computation, SIAM J. Alge-

braic Discrete Methods, 8, pp. 790-796.
[560] P. EBERLEIN [1987]. On the Schur decomposition of & matriz for parallel computation, IEEE
Trans. Comput., C-36, pp. 167-174.

P. EBERLEIN [1987]. On using the Jacobi method on the Aypercube, in Heath [860].

J. ECKERT JR., J. MauCHLY, H. GOLDSTEIN, AND J. BRAINERD [1945). Description of the
ENJAC and comments on clectronic digital computing machines, Applied Mathematics
Panel Report 171.2R, University of Pennsylvania.

[563] O. EcEctoGLu, E. GALLOPOULOS, AND C. KOC [1987). Parallel Hermite interpolation: An
algebraic approach, Tech. Report 671, Départment of Computer Science, University of
Illinois at Urbana-Champaign.

[564] L. EHRLICH [1986]. The numerical Schwartz alternating procedure and SOR, SIAM . Sci.
Statist. Comput., 7, pp. 989-993.

[565) V. ELWKHOUT [1985]. Scalar recurrences on chainable pipeline architectures, Tech. Report
CNA-202, Center for Numerical Analysis, University of Texas at Austin, December.

[566] S. EISENSTAT, M. HEATH, C. HENKEL, AND C. ROMINE [1988]. Modified cyclic algorithms
for solving triangular systems on distributed-memory multiprocessors, SIAM J. Sci.
Statist. Comput., 9(3), pp. 589-600.

[567] S. EISENSTAT AND M. ScHULTZ [1981]. Trends in elliptic problem solvers, in Schultz [1752],
PpP. 99-114.

(s61)
[562]

[568] K. EKANADHAM AND ARVIND [1987]. SIMPLE: PART I — An ezercise in future scientific
programming, Tech. Report RC-12686, IBM, Yorktown Heights, NY, April.

[569] M. EL TARAzZI [1982]. Some convergence results for asynchronous algorithms, Numer. Math.,
39, pp. 325-340.

[570] M. EL TARAzI [1985]. Iterative methods for systems of first order differential equations,
IMAIJNA, 5, pp. 29-40.

[571] L. ELDEN [1987). A parallel QR decomposition algorithm, Tech. Report, Department of Sci-

entific Computing, Uppsala University, and Department of Mathematics, Linkoping Uni-
versity.

[572] G. ELLIS AND L. WATSON [1984). A parallel algorithm for simple roots of polynomials,
Comp. & Math., 10, pp. 107-122.

[573] H. ELMAN [1986}. Approrimate Schur complement preconditioners for serial and parallel
computers, Tech. Report 1704, Department of Computer Science, University of Mary-
land, College Park, MD, September.

[574] H. ELMAN AND E. AGRON [1988]. Ordering techniques for the preconditioned conjugate gra-
dient method on parallel computers, Tech. Report TR-88-53, Department of Computer
Science, University of Maryland.

[575] A. EMMEN, ed. [1985). Supercomputer Applications, North-Holland, Amsterdam.

[576] P. EMMEN [1987]. ETA-10: A “poor man’s” supercomputer for | million dollars, Supercom-

M

puter, 22, pp. 4-6.

[577] M. ENSELME, C. FRABOUL, AND P. LECA [1984). An MIMD architecture system for PDE
numerical simulation, in Vichnevetsky and Stepleman [1920], pp. 502-509.

[578] P. ENsLow [1977]. Multiprocessor organization: A survey, ACM Computing Surveys, 9,
pp. 103-129.

[579] M. EREEGOVAC AND T. LANG [1986]. Vector processing, in Fernbach [630}, pp. 29-57.

[580] J. ERHEL [1983]. Parallelisation d’an algorithme de gradient conjugue preconditionne, Tech.
Report 189, INRIA.

[581] J. ERHEL, W. JALBY, A. LICHNEWsKY, AND F. THOMASETT [1983]). Quelques progress en
calcul paraliéle et vectoriel, Coll. Inf. sur des Méthodes de Calcul Scientifique et Tech-
nique.

[582] J. ERHEL, A. LICHNEWSKY, AND F. THOMASETT [1982], Paralleliam in finite element com-
putations. Presented at the IBM Symposium on Vector Computers and Scientific Com-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 147

puting, Rome.

[583] J. ERICKSEN [1972}. Iterative and direct methods for solving Poisson’s equation and their

adaptability to ILLIAC IV, Tech. Report 60, Center for Advanced Computation, Uni-
versity of Iilinois at Urbana-Champaign.

[584] J. ERICKSEN AND R. WILHELMSON [1976]. Implementation of 4 convective problem requiring

auriliary storage, ACM Trans. Math. Softw., 2, pp. 187-195.

[585] G. ERLEBACHER, S. BOKHARI, AND M. HussAINI [1987). An efficient parallel algorithm for

[586] C.

(587) D.

[588] D.

[589] D.
[590] D.

[591] D.

[592]
[593]

[594]
[595)

(596]

[597]

[598]
(599]
(600]
[601]
[602]

[603]

[604]
(605]

(606]
[607]

[608]

[609]

[610]

U U U QU

o U U vy U ©

< << = U

the simulation of three-dimensional compressible transition on a 20 processor Flez/32
multicomputer, Tech. Report 87-41, ICASE, NASA Langley Research Center, Hampton,
VA.

ETHRIDGE, J. MOORE, AND V. TRUILLO [1983]. Erperimental parallel microprocessor
system, Tech. Report LA-UR-83-1676, Los Alamos National Laboratory.

EVANS [1979]. On the numerical solstion of sparse systems of finite element equations,
The Mathematics of Finite Elements & Applications III, Mafelap 1978 Conference Pro-
ceedings, J. Whiteman, ed., New York, Academic Press, pp. 448-58.

EVANS [1982]. Parallel numerical algorithma for linear systems, in Evans [589), pp. 357

EvANS, ed. [1982]. Parallel Processing Systems, Cambridge University Press.

EVANS [1983). New parallel algorithms in linear algebra, E.D.F. Bulletin de la Direction
des Etudes et des Recherches, C(1), pp. 61-69.

EVANS [1984]. New parallel algorithms for partial differential equations, in Feilmeier et al.
[623], pp. 3-56.

. EVANs [1984]. Parallel S.O.R. iterative methods, Parallel Computing, 1, pp. 3-18.
. EVANs AND M. BEKAKOS [1988). The solution of linear systems by the QIF algorithm on

a wavefront array processor, Parallel Computing, 7, pp. 111-130.

. EVANs AND R. DUNBAR [1983]. The parallel solution of triangular systems of equations,

IEEE Trans. Comput., C-32, pp. 201-204.

. EvaNs AND A. HapJiniMos [1980]. A modification of the Quadrant Interlocking Factori-

sation parallel method, Int. J. Comput. Math., 8, pp. 149-166.

. Evans AND A. HADJIDIMOS [1981]. Parallel solution to certain banded symmetric and

centro-symmelric systems by using the Quadrant Interlocking Factorization method,
Math. Comp. Simul., 23, pp. 180-187.

. Evans, A. HapJipiMos, AND D. Noutsos [1981). The parallel solution of banded linear

equations by the new Quadrant Interlocking Factorisation (Q.IF.) method, Int. J. Com-
put. Math., 9, pp. 151-62,

. EvaNs AND M. HaTzopPoLous [1979). A parallel linear systems solver, Int. J. Comput.

Math., 7, pp. 227-38.

. EVANs, S. JIANPING, AND K. LisHAN [1988]. The comvergence factor of the parallel

Schwartz overrelazation method for linear systems, Parallel Computing, 6, pp. 313-324.

. Evans AND K. MAGARITIS [1988). Optical processing of banded matriz algorithms using

outer product concepis, Parallel Computing, 6, pp. 119-126.

. EvaNs AND G. MEGSON [1987]. Construction of extrapolation tables by systolic arrays for

solving ordinary differential equations, Parallel Computing, 4, pp. 33—48.

. EvANs AND S. OKOLIE [1981). A recursive decoupling algorithm for solving banded linear

systems, Int. J. Comput. Math., 10, pp. 139-152.

. EVANS, J. SHANEHCHI, AND R. BARLOW [1984). Implementation of the conjugate gradient

and Lanczos algorithms for large sparse banded matrices on the ICL DAP, in Feilmeier
et al. [623], pp. 143-151.

. EvaNs AND R. S0300DI-HAGHIGHI [1982]. Parallel iterative methods for solving linear

equations, Int. J. Comput. Math., 11, pp. 247-284.

. EWERBRING, F. LUK, AND A. RUFTENBERT [1988). SVD computation on the Connection

Machine, 21st Annual Hawaii International Conf. on Sys. Sci.

. FABER [1981). Block relazation stralegies, in Schultz [1752], pp. 271-275.
. FABER [1987]. Global communication algorithms for hypercubes and other Cayley coset

graphs, Tech. Report LA-UR-87-3136, Los Alamos National Laboratory.

. FABER [1987). Latency and diameter in sparsely populated processor interconnection net-

works: A time and space analysis, Tech. Report LA-UR-87-3635, Los Alamos National
Laboratory.

. FADDEN [1980). The AD-10: A digital computer approach to time critical simulation,

Proc. 4th Power Plant Dynamics, Control, and Testing Symposium.

. FADEEVA AND D. FADEEV [1977). Parallel computations in linear algebra, Kibernetica, 6,

pp. 28-40.

148

[611)
[612]
[613]
[614]

[615}
[616]

(617]

[618]

[619)
[620]
[621)
[622]
[623)

[624]

[625]
[626]

[627]
[628]

[629]
[630]
[631]

[632]

[633]
[634)
[635]
[636]

[637]
638]

[639]
[640}

[641]

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

C. FARHAT [1986). Multiprocessors in Computational Mechanics, PhD dissertation, Univer-
sity of California at Berkeley, Department of Civil Engineering.

C. FARHAT AND E. WILSON [1987]. Concurrent sterative solution of large finite element ays-
tems, Comm. Appl. Numer. Meth., 3, pp. 319-326.

C. FARHAT AND E. WILSON [1987). Modal ssperposition dynamic analysis on concurrent
multiprocessors, Eng. Computations.

C. FARHAT AND E. WILSON [1987). Solstion of finite clement systems on concurrent process-
ing computers, Eng. Computers, 2, pp. 147-165.

P. FARMWALD [1984]. The S-1 Mark IIA sxpercomputer, in Kowalik [1116)], pp. 145-155.
R. FaTOOHI AND C. GROSCH [1987]. Implementation of a four color cell relazation scheme
on the MPP, Flez/32 and CRAY-2, Proc. 1987 Int. Conf. Par. Proc., pp. 424-426.

R. FaTOOHI AND C. GROSCH [1987). Implementation of an ADI method on parallel compui-
ers, J. Sci. Comp., 2, pp. 175-193.

R. FATOOHI AND C. GROSCH [1988]. Implementation and analysis of a Navier-Stokes algo-
rithm on parallel computers, Tech. Report 88-5, ICASE, NASA Langley Research Cen-
ter, Hampton, VA.

R. FATOOHI AND G. GROSCH [1987]. Solving the Cauchy-Riemann equations on parallel com-
puters, Tech. Report 87-34, ICASE, NASA Langley Research Center.

G. FEIERBACH AND D. STEVENSON [1979]. The ILLIAC IV, in Jesshope and Hockney [976],
pp. 77-92.

M. FEILMEIER, ed. [1977]. Parallel Computers — Parallel Mathematics, Proceedings of the
IMACS Symposium, Amsterdam, North-Holland.

M. FEILMEIER [1982). Parallel numerical algorithms, in Evans [589], pp. 285-338.

M. FEILMEIER, G. JOUBERT, AND U. SCHENDEL, eds. [1984}. Parallel Computing 83%: Pro-
ceedings of the International Conference on Parallel Computing, New York, North-
Holland.

M. FEILMEIER, G. JOUBERT, AND U. SCHENDEL, eds. [1986]. Parallel Computing 85: Pro-

ceedings of the International Conference on Parallel Computing, New York, North-
Holland.

M. FEILMEIER AND W. RONscH [1982]. Parallel monlinear algorithms, Comput. Phys.
Comm., 76, pp. 335-348.

C. FELIPPA [1981]. Architecture of a distributed analysis network for computational mechan-
ics, Computers and Structures, 13, pp. 405-413.

T. FENG [1981]. A survey of interconnection networks, Computer, 14(12), pp. 12-27.

J. FEO [1988). An analysis of the computational and parallel complezity of the Livermore
loops, Parallel Computing, 7, pp. 163-186.

E. FERNANDEZ AND B. BUSSEL [1973]. Bounds on the number of processors and time for
multiprocessor optimal schedules, IEEE Trans. Comput., C-22, pp. 745-751.

S. FERNBACH, ed. [1986]. Supercomputers, North-Holland.

W. FICHTNER, L. NAGEL, R. PENUMALLI, W. PETERSON, AND J. D'ARCY [1984]. The impact
of supercomputers on IC technology development and design, Proc. IEEE, 72, pp. 76—
112,

J. FIELD, A. KAPAUAN, AND L. SNYDER [1983). Pringle: A parallel processor to emulate chip
computers, Tech. Report CSD-TR-433, Department of Computer Science, Purdue Uni-
versity.

A. FInNN, F. Luk, AND C. POTTLE [1982). Systolic array computation of the singular value
decomposition, Proc. SPIE Symposium, Vol. 341 (Real Time Processing V), pp. 35-43.

D. FisHER [1985). Matriz computation on processors in one, two and three dimensions, Tech.
Report 1556, Department of Computer Science, University of Maryland, August.

D. FisHER [1988). Your favorite parallel algorithm may not be as fast as you think, IEEE
Trans. Comput., 37, pp. 211-214.

P. FLANDERS, D. HUNT, S. REDDAWAY, AND D. PARKINSON [1977). Efficient high speed
computing with the distributed array processor, in Kuck et al. [1133}, pp. 113-128.

M. FLYNN [1966]. Very high speed computing systems, Proc. IEEE, 54, pp. 1901-1909.

M. FLYNN [1972]. Some computer organizations and thesr effectiveness, IEEE Trans. Com-
put., C-21, pp. 948-960.

H. FOERSTER, K. STEUBEN, AND U, TROTTENBERG [1981]. Nonstandard multigrid tech-
nigues using checkered relazation and intermediate grids, in Schultz [1752), pp. 285-300.

S. FoLLIN AND M. Kascic [1986). A marching method for solving Poisson’s equation on the
ETA-10, Comm. Appl. Numer. Meth., 2, pp. 239-243.

K. FONG AND T. JORDAN [1977]. Some linear algebrasc algorithms and their performance on
the CRAY-1, Tech. Report LA-6774, Los Alamos National Laboratory.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 149

[642] R.
[643] B.

[644] B.
[645] C.

[646] D.

[647)
[648]

[649]
[650]

[651]

[652]
[653]
[654]

[655]

T 0 a0 0 Q0

[656]

657} J.
[658]

[659]

T g2 2

[660]

[661] P.

[662] A.

[663] S.
[664] S.

[665] S.

[666] R.
[667] R.
[668] P.
[669] D.
[670] D.

[671} D.

e e 0 o

FONTECILLA [1987). A parallel nonlinear Jacobi algorithm for solving nonlinear equations,
Tech. Report 1807, Department of Computer Science, University of Maryland, March.
FORNBERG [1981). A vector implementation of the fast Fourier transform algorithm,

Math. Comp., 36, pp. 189-191.
FORNBERG [1983). Steady viscous flow past a circular cylinder, in Gary [700], pp. 201-224.
FosTER [1976), Content Addressable Parallel Processors, van Nostrand Reinhold.
FOULSER AND R. SCHREIBER [1987]. The Sazpy Matriz-1: A general-purpose systolic
computer, Computer, 20(7), pp. 35-43.
Fox [1984]. Concurrent processing for scientific calculations, Proc. COMPCON 84, IEEE
Comp. Sci. Conf., pp. 70-73.

. FOX [1985). Square matriz decomposition — Symmetric, local, scattered, CalTech Publi-

cation Hm-97, California Institute of Technology, Pasadena, CA.

. Fox [1987]. The Calteck concurrent compuiation program, in Heath [860], pp. 353-381.
. Fox AND W. FURMANSKI [1987]. Communication algorithms for regular convolutions and

malriz problems on the hypercube, im Heath [860}, pp. 223-238.

. Fox, M. JOHNSON, G. LYZENGA, S. OTTO, AND J. SALMON, eds. [1988]. Solving Prob-

lerns on Concurrent Processors, Volume I: General Technigucs and Regular Problems,
Prentice-Hall, Inc. (To be published), Englewood Cliffs, NJ.

Fox, A. KOwALA, AND R. WiLLIAMS [1987]. The implementation of a dynamic load bal-
ancer, in Heath [860)], pp. 114-121.

Fox AND S. OTTO [1984). Algorithms for concurrent processors, Physics Today, 37(5),
pp. 50-59.

Fox AND S. OTTO [1986). Concurrent computation and the theory of compler systems,
in Heath [858], pp. 244-268.

Fox, S. OTTo, AND A. HEY [1987]. Matriz algorithms on a hypercube I. Mairiz multi.
plication, Parallel Computing, 4, pp. 17-32.

FRAILONG AND J. PAKLEZA [1979). Resolution of a general partial differential equation on
a fized size SIMD/MIMD large cellular processor, Proceedings of the IMACS Interna-
tional Congress, Sorente.

FRANCIONI AND J. JACKSON [1987). An implementation of a 2%-section root finding
method for the FPS T-series hypercube, in Heath [860], pp. 495-500.

. FRANKLIN [1978). Parallel solution of ordinary differential equations, IEEE Trans. Com-

put., C-25, pp. 413-470.

. FRANKLIN AND S. DHAR [1986}. Interconnection networks: Physical design and perfor-

mance analysis, J. Par. Dist. Comp., 3, pp. 352-372.

FREDERICKSON, R. HIROMOTO, AND J. LARSON [1987]. A parallel Monte Carlo transport
algorithm using a psuedo-random tree to guarantee reproducibility, Parallel Computing,
4, pp. 281-290.

FREDERICKSON AND O. MCBRYAN [1983). Parallel superconvergent multigrid, in Mc-
Cormick [1312], pp. 195-210.

FRIEDMAN AND D. KERSHAW [1982]. Vectorized incomplete Cholesky conjugate gradient
(ICCG) package for the CRAY-1 computer, Laser Program Annual Report UCRL-
500021-81, Lawrence Livermore National Laboratory.

FULLER, A. JONES, AND 1. DURHAM [1980}. CMU Cm* review, Tech. Report AD-
A050135, Department of Computer Science, Carnegie-Mellon University.

FULLER AND P. OLEINICK [1976]. Initial measurements of parallel programs on a multi-
miniprocessor, Proc. 13th IEEE Computer Soc. Int. Conf., pp. 358-363.

FULLER, J. OUsTERBOUT, L. RASKIN, P. RUBINFELD, P. SUNDHU, AND R. SWAN [1978].
Multi-microprocessors: An overview and working ezample, Proc. IEEE, 66(2), pp. 216—
228.

FuLToN [1986). The impact of parallel computing on finite element computations, Relia-
bility of Methods for Engineering Analysis, Pineridge Press, Swansea, pp. 179-196.

FUNDERLIC AND A. GEIST [1986). Torus data flow for parallel computation of missized
matiriz problems, Lin. Alg. & Appl., 77, pp. 149-163,

GADER [1988). Tridiagonal factorizations of Fourier matrices and application to parallel
computations of discrete Fourier transforms, Lin. Alg. & Appl., 102, pp. 169-210.

GAIsKI [1979). Solving banded triangular systems on pipelined machines, Proc. 1979 Int.
Conf. Par. Proc., pp. 308-319.

GAIskl [1981). An algorithm for solving linear recurrence systems on parallel and
pivelined machines, IEEE Trans. Comput., C-30, pp. 190-206.

Gaskl, D. Kuck, D. LAWRIE, AND A. SAMEH [1983]. Cedar — A large scale mulitipro-
cessor, Proc. 1983 Int. Conf. Par. Proc., pp. 524-529.

150

[672] D.
[673] D.
[674] D.
[675] Z.

[676] K.
[677] K.
[678] E.
[679] E.

[680] E.

[681] E.

[682] G.
[683] D.
[684] D.

[685] D.

[636] D.

{687} D.

[688] D.
[689) D.
[690) D.
[691] D.
[692] D.
[693] G.
[694] G.

[695] G.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

Galski, D. LAWRIE, D. Kuck, AND A. SAMEH {1984]. Cedar, Proc. COMPCON 84,
IEEE Comp. Soc. Conf., pp. 306-309.

GAISKI AND J.-K. PEIR [1985). Essential issnes in multiprocessor systems, Computer,
18(6), pp. 9-27.

GAJSKI, A. SAMEH, AND J. WISNIENSKI [1982]. Iterative algorithms for tridiagonal ma-
trices on ¢ WSL-multiprocessor, Proc. 1982 Int. Conf. Par. Proc., pp. 82-89.

GALIL AND W. PAULI [1983). An efficient general-purpose parallel computer, J. ACM, 30,
pPp. 286-299.

GALLIVAN, W, JALBY, AND U. MEIER [1987]. The use of BLASS in lincar algebra on
a parallel processor with a hierarchical memory, SIAM J. Sci. Statist. Comput., 8,
pp- 1079-1084,

GALLIVAN, W. JALBY, U. MEIER, AND A. SAMEHK [1987]. The impact of hierarchical
memory systems on linear algebra algorithm design, CSRD Report 625, Center for Su-
percomputing Research and Development, University of lllinois at Urbana-Champaign.

GALLOPOULOS [1984]. The Massively Parallel Processor for problems in fluid dynamics,
Proc. Vector and Parallel Processors in Computational Science II Conference, Oxford,
England.

GALLOPOULOS [1985). Fluid dynamics modeling, in Potter [1584], pp. 85-103.

GALLOPOULOS AND S. MCEWAN [1983). Numerical experiments with the Massively Par-
allel Processor, Proc. 1983 Int. Conf. Par. Proc., pp. 29-35.

GALLOPOULOS AND Y. SAAD [1987). A parallel block eyclic reduction algorithm for the
fast solution of elliptic equations, Tech. Report 659, Center for Supercomputing Re-
search and Development, University of Illinois at Urbana-Champaign, April. To appear
in Proc. Int. Conf. Supercomputing, Athens, Greece.

GAMBOLATI, G. PINI, AND G. ZILLI [1988]. Comparison of preconditionings for large
sparse finite element problems, Numer. Meth. PDE, 4, pp. 139-157.

GANNON [1980). A note on pipelining & mesh connected multiprocessor for finite element
problems by nested dissection, Proc. 1980 Int. Conf. Par. Proc., pp. 197-204.

GANNON [1981). On mapping non-uniform PDE structures and algorithms onto uniform
array architectures, Proc. 1981 Int. Conf. Par. Proc., pp. 100-105.

GANNON [1985]. On the structure of parallelism in a highly concurrent PDE solver, Pro-
ceedings of the Tth Symposium on Computer Arithmetic, H. Kai, ed., Urbana, IL,
pp. 252-259.

GANNON [1986). Restructuring nested loops on the Alliant Cedar cluster: A case study of
Gaussian elimination of banded matrices, Tech. Report 543, Center for Supercomputing
Research and Development, University of Illinois at Urbana-Champaign, February.

GANNON AND W. JALBY [1987]). The influence of memory hierarchy on algorithm organi-
zation: Programming FFTs on & vector multiprocessor, Tech. Report 663, Center for Su-
percomputing Research and Development, University of Illinois at Urbana-Champaign,
May.

GANNON AND J. PANETTA [1986). Restructuring SIMPLE for the CHiP architecture, Par-
allel Computing, 3, pp. 305-326.

GANNON, L. SNYDER, AND J. VAN ROSENDALE [1983}. Programming substructure compu-
tations for elliptic problems on the CHiP system, in Noor [1450], pp. 65-80.

GANNON AND J. VAN ROSENDALE [1984). On the impact of communication complezity in
the design of parallel numerical algorithms, IEEE Trans. Comput., C-33, pp. 1180-1194,

GANNON AND J. VAN ROSENDALE [1984). Parallel architectures for iterative methods on
adaptive, dlock structured grids, in Birkhoff and Schoenstadt [173], pp. 93-104.

GANNON AND J. VAN ROSENDALE [1986). On the structure of parallelism in a highly con-
current PDE solver, J. Par. Dist. Comp., 3, pp. 106-135.

GAO [1986). A mazimally pipelined tridiagonal linear equation solver, J. Par. Dist. Comp.,
3, pp. 215-235.

GAO [1986]. A pipelined solution method of tridiagonal linear equation systems, Proc.
1986 Int. Conf. Par. Proc., pp. 84-91.

GAO [1987). A stability classification method and its application to pipelined solution of
linear recurrences, Parallel Computing, 4, pp. 305-321.

[696] Q.-S. GAO AND R.-Q. WANG [1983]. Vector compuler for sparse matriz operations, Proc.

1983 Int. Conf. Par. Proc., pp. 87-89.

[697] J. GARDINER AND A. LAUB [1987]. Implementation of two control system design algorithms

[698] M.

on & message-passing hypercube, in Heath [860)], pp. 512-519.
GAREY, R. GRAHAM, AND D. JOHNSON [1978]. Performance guarantees for scheduling
algorithms, Oper. Res., 26, pp. 3-21.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 151

[699] J. GARY [1977). Analysis of applications programs and software requirements for high speed
eomputers, in Kuck et al. [1133], pp. 329-354.

[700] J. GARY, ed. [1984). CYBER 200 Applications Seminar, Proceedings of seminar held at
NASA Goddard Space Flight Center, October, 1983. NASA-CP-2295.

[701} J. GARy, S. MCCORMICK, AND R. SWEET [1983]. Successive overrelazation, multigrid, and
preconditioned conjugate gradients algorithms Jor solving a diffusion problem on a vector
eomputer, Appl. Math. & Comp., 13(3-4), pp. 285-310. (Special Issue, Proceedings of
the First Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO,
S. McCormick and U. Trottenberg, eds.).

[702] M. GaurzscH, G. WEILAND, AND D. MULLER-RICHARDS [1980]. Possibdilitics and problems
with the application of vector computers, Tech. Report, German Research and Testing
Establishment for Aerospace.

[703] T. GAYLORD AND E. VECRIEST [1987]. Matriz triangularization ssing arrays of integrated
optical Givens rotation devices, Computer, 20(12), pp. 59-66.

[704] W. GEAR [1986]. The potential for paralleham in ordinary differential equations, Tech. Re-
port R-86-1246, Department of Computer Science, University of Illinois at Urbana-
Champaign, February.

[705] N. GEHANI [1984}, Ada Concurrent Programming, Prentice-Hall, Inc., Englewood Cliffs, NJ.

[706] D. GEHRINGER, D. SIEWIOREK, AND Z. SEGALL [1987), Parallel Processing: The Cm* Ezpe-
rience, Digital Press, Digital Equipment Corp., Bedford, MA.

[707] E. GEBRINGER, A. JONES, AND Z. SEGALL [1982]. The Cm?* testbed, Computer, 15(10}),

pp. 40-53.

[708] A. GEsT [1985). Efficient parallel LU factorization with pivoting on a hypercube multipro-
cessor, Tech. Report ORNL-6211, Oak Ridge National Laboratory, October.

A. GEIST [1987). Solving finite element problems with parallel multifrontal schemes, in Heath

[860], pp. 656-661.

A. GEIST AND G. DAvIS [1988]. Finding eigenvalues and eigenvectors of unsymmetric ma-
trices using a hypercube multiprocessor, Tech. Report ORNL/TM-10938, Oak Ridge
National Laboratory, October.

[711] A. GEIST AND M. HEATH [1985]. Parallel Cholesky factorization on a hypercube multipro-
cessor, Tech. Report ORNIL-6190, Oak Ridge National Laboratory, August.

[712] A. GeisT AND M. HEATH [1986]. Matriz factorization on a hypercube multiprocessor, in

Heath [858], pp. 161-180.

. GEisT, M. HEATH, AND E. NG [1987]. Parallel algorithms for matriz computations, The
Characteristics of Parallel Algorithms, R. Douglass, D. Gannon, and L. Jamieson, eds.,
MIT Press, Cambridge, pp. 233-251.

[714) A. GeisT AND E. NG [1988]. A partitioning strategy for parallel sparse Cholesky factoriza-
tion, Tech. Report ORNL/TM-10937, Oak Ridge National Laboratory, September.

. GEIST AND C. ROMINE [1988). LU factorization algorithms on distributed-memory mul-
tiprocessor architectures, SIAM J. Sci. Statist. Comput., 9(4), pp. 639-649.

[716] A. GEisT AND C. ROMINE [1989]. LU factorization on distributed-memory multiprocessors,

Paralle] Processing for Scientific Computing, Society for Industrial and Applied Math-
ematics, Philadelphia, ch. 3, pp. 15-18.

[717] A. GEisT, R. WARD, G. DAvis, AND R. FUNDERLIC [1988]. Finding eigenvalues and eigen-
vectors of unsymmelric matrices using o hypercube multiprocessor, Proc. Third Conf.
Hypercube Concurrent Comput. Appl., G. Fox, ed., New York, Association for Com-
puting Machinery, pp. 1577-1582.

[718] E. GELENBE, A. LICHNEWSKY, AND A. STAPHYLOPATIS [1982]. Ezperience with the parallel
solution of partial differential equations on a distributed computing system, IEEE Trans.
Comput., C-31, pp. 1157-1165.

W. GENTLEMAN [1975). Error analysis of the QR decomposition by Givens transformations,
Lin. Alg. & Appl,, 10, pp. 189-197.

W. GENTLEMAN [1978]. Some complerity resulis for matriz computations on parallel proces-
sors, J. ACM, 25, pp. 112-115.

[721] W. GENTLEMAN [1981], Design of numerieal algorithms for parallel processing. Presented at

w

w

(709]

[710]

[713]

>

>

[715)

[719]

[720]

the Parallel Processing Conference at Bergams, Italy.

. GENTLEMAN AND H. KuNG [1981]. Matriz triangularization by systolic arrays, Proc.
SPIE 298, Real-time Signal Processing IV, pp. 19-26.

. GENTZSCH [1983). How to maintain the efficiency of highly serial algorithms involving
recursions on vector computers, Proc. Conf. Vector and Parallel Methods in Scientific
Computing, Paris.

[724] W. GENTZSCH [1984). Benchmark results on physical flow problems, in Kowalik [1116],

[722]

[723}

152

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

pp. 211-228.

[725] W. GENTZSCH [1984]. Numerical algorithms in computational fluid dynamics on vector com-

puters, Parallel Computing, 1, pp. 19-33,

[726] W. GENTZSCH [1984], Vectorization of Computer Programs with Applications to Computa-

tional Flusd Dynamics, Heyden & Son, Philadelphia, PA.

[727] W. GENTZSCH [1987]. A fully vectorizable SOR variani, Parallel Computing, 4, pp. 349-354.
[728] W. GENT2ZSCH AND G. SCHAFER [1984). Solstion of large linear systems on vector comput-

[729] A.
[730] A.
[731] A.

[732] A.

[733] A.
[734] A.

[735]) A.

[736] A.

[737] A.

[738] A.
[739] A.
[740] A.

[741] A.

ers, in Feilmeier et al. [623], pp. 159-1686.

GENZ AND D. SWAYNE (1984]. Parallel implementation of ALOD methods for partial dif-
Jerential equations, in Feilmeier et al. [623), pp. 167-172.

GEORGE, M. HEATH, AND J. L1v [1986). Parallel Cholesky factorization on a shared
memory multiprocessor, Lin. Alg. & Appl., 77, pp. 165-187.

GEORGE, M. HEATH, J. L1u, AND E. NG [1986]. Solution of sparse positive definite sys-
temns on a shared memory mulliprocessor, Int. J. Par. Prog., 15, pp. 309-325.

GEORGE, M. HEATH, J. L1u, AND E. NG [1988]. Solution of sparse positive definite sys-
tems on a hypercude, Tech. Report ORNL/TM-10865, Oak Ridge National Laboratory,
October. (Submitted to J. Comput. Appl. Math.).

GEORGE, M. HEATH, J. L1u, AND E. NG [1988)]. Sparsc Cholesky factorization on a local
memory multiprocessor, SIAM J. Sci. Statist. Comput., 9, pp. 327-340.

GEORGE, M. HEATH, E. NG, AND J. LU [1987). Symbolic Cholesky factorization on a
local-memory multsprocessor, Parallel Computing, 5, pp. 85-96.

GEORGE, J. L1u, AND E. Ng [1987]. Commu-
nication reduction in parallel sparse Cholesky factorization on a hypercude, in Heath
[860], pp. 576-586.

GEORGE, J. Liu, AND E. Ng [1988], Communication results for parallel sparse Cholesky
factorization on a hypercube. Submitted to Parallel Computing.

GEORGE AND E. NG [1988). Parallel sparse Gaussian elimination with partial pivoting,
Tech. Report ORNL/TM-10866, Oak Ridge National Laboratory. (To appear in Annals
of Operations Research).

GEORGE AND E. NG [1988). Some shared memory is desirable in parallel sparse matriz
computations, SIGNUM Newsletter, 23(2), pp. 9-13.

GEORGE, W. POOLE, AND R. VOIGT [1978]. Analysis of dissection algorithms for vector
computers, Comput. Math. Appl., 4, pp. 287-304.

GEORGE, W. POOLE, AND R. VOIGT [1978]. A variant of nested dissection for solving n
by n grid problems, SIAM J. Numer. Anal., 15, pp. 662-673.

GERAsouLIs, N. MissiriLIs, I. NELKEN, AND R. PESKIN [1988]. Implementing Gauss
Jordan on a hypercube multicomputer, Proc. 3rd Conf. on Hypercube Multiprocessors.

[742] 1. GERTNER AND M. SHAMASH [1987]. VLSI architectures for multidimensional Fourier

[743)
[744]
[745]

[746)

(747]

[748]

[749)

[750]

[751]
[752)
[753)

A.

J.

J.

D

S.

H
E.
E

transform processing, IEEE Trans. Comput., C-36, pp. 1265-1274.
GHOSH [1987). Realization of conjugate gradient algorithm on optical linear algebra pro-
cessors, Applied Optics, 26(2), pp. 611-613.

. GIETL [1987). The conjugate gradient method with wectorized preconditioning on the

Siemens XP-200 vector processor, Supercomputer, 19, pp. 43-51.
GILBERT [1958]. Gray codes and paths on the n-cube, Bell System Tech. J., 37, pp. 815~
826,

. GILBERT [1982]. Algorithm partitioning tools for a high-performance multiprocessor, Tech.

Report UCRL-53401, Lawrence Livermore National Laboratory, Livermore, CA, Decem-
ber.

. GILBERT [1988]. An efficient parallel sparse partial pivoting algorithm, Tech. Report CMI

88/45052-1, Dept. of Science and Technology, Chr-Michelson Institute, August.
GILBERT AND H. HAFSTEINSSON [1986]. A parallel algorithm for finding fill in a sparse
symmetric mairiz, Tech. Report TR 86-789, Department of Computer Science, Cornell
University.
GILBERT AND E. ZMUEWSKI [1987]. A parallel graph partitioning algorithm for a message-
passing multiprocessor, Tech. Report TR 87-803, Department of Computer Science,
Cornell University.

. GiLL AND E. TADMOR [1988]. An O(N2) method for computing the eigensystem of Nx N

symmetric tridiagonal matrices by the divide and conquer approach, Tech. Report 88-19,
ICASE, NASA Langley Research Center, Hampton, VA.
GILL [1968). Parallel programming, Comput. J., 1, pp. 2-10.

. GILMORE [1968]. Structuring of parallel algorithms, J. ACM, 15, pp. 176-192.
P.

GILMORE [1971). Numerical solution of partial differential equations by associative pro-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 153

cessing, Proc. 1971 FJCC, AFIPS Press, Montvale, NJ, pp. 411-418,

[754] P. GILMORE [1971). Parallel relocation, Tech. Report, Goodyear Aerospace Corporation,
Akron, OH.

[755] R. GINOsSAR AND D. HILL [1985]. Design and implementation of switching systems for par-
allel processors, Proc. 1985 Int. Conf. Par. Proc., pp. 674-680.

[756] M. GINSBURG [1982]. Some obsecrvations on supercomputer computational environments,
Proc. 10th IMACS World Congress on Systems Simulation and Scientific Computation,
vol. 1, IMACS, pp. 297-301.

[757] E. GIroux [1977). A large mathematical model implementation on the STAR-100 computer,
im Kuck et al. [1133}, pp. 287-298.

[758] B. GLICKFELD AND R. OVERBEEK [1985). Quasi-automatic parallelization: A simplied ap-
proach to multiprocessing, Tech. Report ANL-85-70, Argonne National Laboratory, Ar-
gonne, IL.

[759] 1. GLOUDEMAN [1984]. The anticipated impact of supercomputers on finite element analysis,
Proc. IEEE, 72, pp. 80-84.

[760] J. GLOUDEMAN, C. HENNRICH, AND J. HODGE [1984). The evolution of MSC/NASTRAN
and the supercomputer for enhanced performance, in Kowalik [1116], pp. 393-402.

[761] J. GLOUDEMAN AND J. HODGE [1982). The adaption of MSC/NASTRAN to a supercom-
puter, Proc. 10th IMACS World Congress on Systems Simulation and Scientific Com-
putation, vol. 1, IMACS, pp. 302-304.

[762] R. GLOWINSK1, G. GOLUB, G. MEURANT, AND J. PERIAUX, eds. [1988]. Proceedings of the
First International Symposium on Domain Decomposition Methods for Partial Differ-
ential Equations, Philadelphia, PA, Society for Industrial and Applied Mathematics.

[763] R. GLOWINSKI AND M. WHEELER [1988]. Domain decomposition and mized finite element
methods for elliptic problems, in Glowinski et al. [762], pp. 144-172.

[764) P. GNOFFO [1982]. A vectorized, finite-volume, adaptive-grid algorithm for Navier-Stokes
calculations, Numerical Grid Generation, J. Thompson, ed., Elsevier Science Publishing
Corp.

[765) I. GoHBERG, T. KAILATH, I. KOLTRACHT, AND P. LANCASTER [1987]. Linear complezity
parallel algorithms for linear systems of equations with recursive siructure, Lin. Alg.
& Appl., 88, pp. 271-316.

. GOKE AND G. LIPOVSKI [1973]. Banyan networks for partitioning on multiprocessor sys-
tems, Proc. 1st Ann. Symp. Computer Arch., pp. 21-30.

[767] M. GOLDMANN [1988]. Vectorization of the maultiple shooting method for the nonlinear

boundary value problem in ordinary differential equations, Parallel Computing, 7,
pp. 97-110.

[768] G. GoLuB AND D. MAYERS [1983]. The use of preconditioning over irregular regions, Proc.

6th Int. Conf. Computing Methods in Science and Engineering, Versailles, France.

~

[766]

[769] G. GoLus, R. PLEMMONS, AND A. SAMEN [1986]. Parallel block schemes for large scale least
sgquares computations, Tech. Report 574, Center for Supercomputing Research and De-
velopment, University of Illinois at Urbana-Champaign, April.

[770] G. GoLuB AND C. VAN LOAN [1989], Matriz Computations, The Johns Hopkins University

G
Press, Baltimore. (in press).

[771] M. GoNZALEZ [1977]. Deterministic processor scheduling, ACM Computing Surveys, 9,
pp- 173-204.

R. GONZALEZ [1986). Domain Decomposition for Two-Dimensional Elliptic Operators on
Vector and Parallel Machines, PhD dissertation, Rice University.

R. GONZALEZ AND M. WHEELER [1987]. Domain decomposition for elliptic partial differen-

tial equations with Neumann boundary conditions, Parallel Computing, 5, pp. 257-263.

[774] GOODYEAR AEROSPACE CORP. [1974). Application of STARAN to fast Fourier transforms,
Tech. Report GER-16109, Goodyear Aerospace Corp., May.

[775] K. GosTELOW AND R. THOMAS [1980). Performance of a simulated datsflow computer,
IEEE Trans. Comput., C-29, pp. 905-919.

[776] A. GOTTLIEB [1984). Avoiding serial bottlenecks in uliraparallel MIMD computers, Proc.
COMPCON 84, IEEE Comp. Soc. Conf., pp. 354-359.

[777} A. GorrLies, R. GRisHMAN, C. KRUSKAL, K. MCAULIFFE, L. RUDOLPH, AND M. SNIR [1983].
The NYU Ultracomputer — Designing an MIMD shared memory parallel computer,
IEEE Trans. Comput., C-32, pp. 175-189.

[778] A. GOTTLIEB, B. LUBACHEVSKY, AND L. RuDoLPH [1983]. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors, ACM Trans.
Program. Lang. Syst., 5, pp. 164-189.

[779] A. GOTTLIEB AND J. SCHWARTZ [1982]. Networks and clgorithms for very-large-scale parallel

[772}

[773]

154 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

computation, Computer, 15(1), pp. 27-36.

[780] D. GoTTLIEB AND R. HIRsH [1988). Parallel psexdospectral domain decomposition tech-
nigues, Tech. Report 88-15, ICASE, NASA Langley Research Center, Hampton, VA.

[781} D. GOTTLIEB, M. HUSSAINI, AND S. ORSZAG [1984]. Theory and applications of speciral
methods, in Voigt et al. [1925], pp. 1-54.

[782] G. GOUDREAU, R. BALLEY, J. HALLQUIST, R. MURRAY, AND S. SACKETT [1983], Efficient
large-scale finite clement computations in a Cray environment, in Noor [1450], pp. 141
154,

[783] W. GRAGG AND L. REICHEL [1987]. A divide and congquer algorithm for the unitary eigen-
problem, in Heath [860}, pp. 639-650.

[784] M. GRAHAM [1976]). An Array Computer for the Class of Problems Typified by the General
Circulation Model of the Atmosphere, PhD dissertation, University of Illinois at Urbana-
Champaign, Department of Computer Science.

[785] R. GRAHAM [1969]. Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17,
PP. 416429,

[786] R. GRAKAM, E. LAWLER, J. LENSTRA, AND A. RINNOOY KAN [1979). Optimization and ap-
prozimation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math.,
5, pp- 169—.

[787] R. GRAVES [1973]. Partial implicitization, J. Comp. Phys., 13, pp. 439-444.

[788] J. GRCAR AND A. SAMEH [1981). On certain parallel Toeplitz linear system solvers, SIAM J.
Sci. Statist. Comput., 2, pp. 238-256.

[789] A. GREENBAUM [1986]. A multigrid method for multiprocessors, Appl. Math. & Comp., 19(1-
4), pp. 75-88. (Special Issue, Proceedings of the Second Copper Mountain Conference
on Multigrid Methods, Copper Mountain, CO, S. McCormick, ed.).

[790] A. GREENBAUM [1986). Solving sparse triangular linear systems using Fortran with parallel
extensions on the NYU Ultracomputer prototype, Ultracomputer Note 99, New York
University, April.

[791] A. GREENBAUM [1986). Synchronization costs on multiprocessors, Ultracomputer Note 98,
New York University, April.

[792] A. GREENBAUM AND G. RODRIGUE [1977]. The incomplete Choleski conjugate gradient
method for the STAR (5 point operator), Tech. Report, Lawrence Livermore National
Laboratory.

[793] A. GREENBERG, R. LADNER, M. PATERSON, AND Z. GALIL [1982]. Efficient parallel algo-
rithms for linear recurrence computation, Info. Proc. Letters, 15, pp. 31-35.

[794] D. GREENSPAN [1988]. Particle modeling of cavity flow on a vector computer, Comput. Meth.
Appl. Mech. Engrg., 66, pp. 291-300.

[795] J. GRIFFIN AND H. WASSERMAN [1985). Parallel debugging: A preliminary proposal, Tech.
Report LA-UR-85-3967, Los Alamos National Laboratory.

[796] R. GRIMEs [1988). Solving systems of large dense linear equations, J. Supercomputing, 1,
pp. 291-300.

[797] R. GRIMES AND H. SIMON [1987]. Dynamic analysis with the Lanczos algorithm on the SCS-
40, Tech. Report ETA-TR-43, Boeing Computer Services, January.

[798] R. GRIMES AND H. SIMON [1987). Solution of large dense symmetric generalized eigenvalue
problems using secondary storage, Tech. Report ETA-TR-53, Boeing Computer Services,
May.

[799] D. GRrT AND J. MCGRAW [1983]). Programming divide and conguer on & multiprocessor,
Tech. Report UCRL-88710, Lawrence Livermore National Laboratory.

[800] W. GRrOPP [1986]. Dynamic grid manipulation for PDE’s on hypercube parallel processors,
Tech. Report YALEU/DCS/RR-458, Department of Computer Science, Yale University,
March.

[801] W. GROPP [1987]. Solving PDEs on loosely-coupled parallel processors, Parallel Computing,
5, pp. 165-174.

[802) W. GROPP [1988]. Local uniform mesh refinement on loosely-coupled parallel processors, 1.
J. Comp. Math. Appl., 15, pp. 375-389.

[803] W. GropPP AND 1. IPSEN [1988]. Recursive mesh refinement on hypercubes, Tech. Report RR-
616, Department of Computer Science, Yale University.

[804] W. GropP AND D. KEYES [1988]. Complezity of parallel implementation of domain decom-
poaition technigues for elliptic partial differential equations, SIAM J. Sci. Statist. Com-
put., 9, pp. 312-327.

[805] W. GROPP AND E. SMITH [1987]. Computational fluid dynamics on parallel processors, Tech.
Report YALEU/DCS/RR-570, Department of Computer Science, Yale University.

[806] C. GRoscH [1978). Poisson solvers on a large array compuler, Proc. 1978 LASL Workshop

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 155

on Vector and Parallel Processors, pp. 98-132.

[807] C. GroscH [1979)]. Performance analysis of Poisson solvers on array computers, in Jesshope
and Hockney [976], pp. 147-181.

[808] C. GRoscH [1979). Performance analysis of tridiagonal equation solvers on array comput-
ers, Tech. Report TR 79-4, Department of Mathematical and Computing Sciences, Old
Dominion University, Norfolk, VA.

[809] C. GroscH [1980), The effect of the data transfer pattern of an array computer on the
efficiency of some algorithms for the tridiagonal and Poisson problems. Presented at
the Conference on Array Architectures for Computing in the 80’s and 90's.

[810] C. Grosch [1987). Adapting a Navier-Stokes code to the ICL-DAP, SIAM J. Sci. Statist,
Comput., 8, pp. s96-s117.

[811} D. GRUNWALD AND D. REED [1987]. Benchmarking hypercude hardware and software, in
Heath [860], pp. 169-177.

[812] R. GUILILAND [1981)]. Solution of the shallow water equations on the sphere, J. Comp. Phys.,
43, pp. 79-94.

[813] A. GuPTA, B. MOSSBERG, G. POPE, AND K. SEPEHRNOORI [1985]. Application of vector
processors to chemical enhanced oil recovery simulation, Tech. Report 85-5, Center for
Enhanced Oil & Gas Recovery Research, University of Texas at Austin.

[814] D. GupTa, G. POPE, AND K. SEPEHRNOORI [1986]. Application of wvector processors to
chemical-enhanced oil recovery simulation, Comm. Appl. Numer. Meth., 2, pp. 297~
303.

[815] J. Gurp, C. KIRKHAM, AND I. WATSON [1985). The Manchester prototype dataflow com-
puter, Comm. ACM, 28, pp. 34-52.

[816] J. GURD AND I. WATSON [1982]. Preliminary evaluation of a prototype dataflow computer,
Proc. IFIP World Computer Congress, North-Holland, pp. 545-551.

[817} J. GusTArSON [1986]. Subdivision of PDE’s on FPS scientific computers, Comm. Appl. Nu-
mer. Meth., 2, pp. 305-310.

[818] J. GuSTAFSON [1988]. Reevaluating Amdahl’s law, Comm. ACM., 31, pp. 532-533.

[819] J. GusTAFsON, S. HAWKINSON, AND K. ScOTT [1986}. The architecture of a homogencous
vector supercomputer, Proc. 1986 Int. Conf. Par. Proc., pp. 649-652.

[820] J. GusTAFsON, G. MONTRY, AND R. BENNER [1988]. Development of parallel methods for a
1024-processor hypercube, SIAM J. Sci. Statist. Comput., 9, pp. 609—638.

[821] J. HACK [1986). Peak vs. sustained performance in highly concurrent vector machines, Com-
puter, 19(9), pp. 11-19.

[822] W. HACKBUSCH [1978)]. On the multigrid method applied to difference equations, Computing,
20, pp. 291-306.

[823] W. HackBuscH AND U. TROTTENBERG, eds. [1982]. Multigrid Methods, Springer-Verlag,
Berlin.

[824] M. Harez AND D. LovELL [1983). Improved relazation schemes for transonic potential cal-
culations, Paper 83-0372, AIAA.

[825] M. HAFEZ AND E. MURMAN [1978]. Artificial compressidility methods for numerical solution
of transonic full potential equation, AIAA 11th Fluid and Plasma Dynamics Conference,
Seattle, WA.

[826] M. HAFEZ AND J. SOUTH [1979]. Vectorization of relazation methods for solving transonic
full potential equations, Flow Research Report, Flow Research, Inc., Kent, WA.

[827] B. HAILPERN [1982]. Concurrent processing, Tech. Report RC 9582 (42314), IBM, San Jose,
CA, September.

[828] L. HALADA [1980]. A parallel algorithm for solving band systems of linear equations, Proc.
1980 Int. Conf. Par. Proc., pp. 159-160.

[829] L. HALADA [1981). A parallel algorithm for solving band systems and matriz inversion, CON-
PAR 81, Conf. Proc., Lecture Notes in Computer Science III, W. Handler, ed., Springer-
Verlag, pp. 433-440.

[830] L. HALcoMB AND D. DIESTLER [1986). Integration of a large set of coupled differential equa-
tions on the Cyber 205 vector processor, Comput. Phys. Comm., 39, pp. 27-36.

[831] H. HALIN, R. BUHRER, W. HaLG, H. Benz, B. BroN, H. BRUNDIERS, A. IsaccsoN, AND
M. TADIAN [1980]. The ETHM multiprocessor project: Parallel simulation of continvous
system, Simulation, 35, pp. 109-123.

[832] S.-P. HAN AND G. Lou [1988]. A paraliel algorithm for a class of conver programs, SIAM
J. Control Optim., 26, pp. 345-355.

[833] W. HANDLER, E. HOFMANN, AND H. SCHNEIDER [1976]. A general purpose array with a
broad spectrum of applications, Informatik-Fachbrichte, Springer-Verlag, Berlin-
Heidelberg.

156 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[834] W. HANDLER, E. MAEHLE, AND K. WIRL [1985). DIRMU multiprocessor configurations,
Proc. 1985 Int. Conf. Par. Proc., pp. 652-656.

[835] W. HANKEY AND J. SHANG [1982]. Vector processors and CFD, in Cray Research, Inc. [423)],
pp. 49-66.

[836] H. HapP, C. POTTE, AND K. WIRGAN [1978). Parallel processing for large scale transient
stability, Proc. IEEE Can. Conf. Comm. Power, pp. 204-207.

[837] A. HARDING AND J. CARLING [1984). The three-dimensional solution of the equations of flow
and heat transfer in glass-melling tank furnaces: Adapting to the DAP, in Paddon
[1512], pp. 115-133.

[838] U. HarMS AND H. LUTTERMAN [1988). Expericnces in benchmarking the three supercomput-
ers CRAY-IM, CRAY.X/MP, Fujitex VP-200 compared with the CYBER 76, Parallel
Computing, 6, pp. 373-382.

[839] D. HARPER AND J. JuMP [1987]. Vector access performance in parallel memories using a
skewed storage scheme, IEEE Trans. Comput., C-36, pp. 1440-1449.

[840) D. HARRAR AND J. ORTEGA [1988]. Solstion of three-dimensional gencralized Poisson equa-
tions on vector computers, Tech. Report RM-88-17, The University of Virginia, October.

[841]) L. HART [1988]. Asynchronous adaptive methods on parallel computers, in McCormick
[1312].

[842} L. HArT, S. MCCORMICK, A. O'GALLAGHER, AND J, THOMAS [1986). The Fast Adaptive
Composite-grid method (FAC): Algorithms for advanced computers, Appl. Math. &
Comp., 19(1-4), pp. 103-126. (Special Issue, Proceedings of the Second Copper Moun-
tain Conference on Multigrid Methods, Copper Mountain, CO, S. McCormick, ed.).

[843] M. HaTzoPoULOs [1982]. Parallel linear system solvers for tridiagonal matrices, in Evans
(589}, pp. 389-394.

[844] M. HaTzOPOULOs [1983]. A symmetric parallel linear system solver, Int. J. Comput. Math.,
13, pp. 133-141.

[845] M. HaTzoPouLos AND D. Evans [1988]. Comments on the paper “A short proof of the ex-
istence of the W-Z factorization”, Parallel Computing, 6, p. 259.

[846] M. HaTZoPOULOS AND N. MISSIRLIS [1985]. Advantages for solving linear systems in an
asynchronous environment, J. Comput. Appl. Math., 12/13, pp. 331-340.

[847) R. HAy AND 1. GLADWELL [1985). Solving almost block diagonal linear equations on the CDC
Cyber 205, Numerical Analysis Report 98, University of Manchester, January.

[848] J. Haves, T. MUDGE, Q. STOUT, S. COLLEY, AND J. PALMER [1986]. Architecture of a hy-
percube supercomputer, Proc. 1986 Int. Conf. Par. Proc., pp. 653-660.

[849] L. HAYEs [1974). Comparative analysis of iterative techniques for solving Laplace’s equation
on the unit square on a parallel processor, Master’s thesis, University of Texas at Austin,
Department of Mathematics.

[850] L. HAYEs [1984]. Alternating Direction method on vector processors, NASA /NSF Workshop
on Parallel Computation in Heat Transfer and Fluid Flow, University of Maryland,
November.

[851] L. HAYEs [1985]. A vectorized matriz vector multiply and overlapping block iterative method,
in Numrich [1469], pp. 91-100.

[852] L. HAYES AND P. DEVLOO [1984). An overlapping block iterative scheme for finite element
methods, Tech. Report, Department of Aerospace Engineering and Engineermg Mechan-
ics, University of Texas at Austin.

[853] L. HAves AND P. DEVLOO [1986]. A vectorized version of a sparse matriz-vector multiply,
Int. J. Num. Met. Eng., 23, pp. 1043-56.

[854] L. HavnEs, R. LAu, D. SIEWIOREK, AND D. MIZELL [1982). A survey of highly paraliel com-
puting, Computer, 15(1), pp. 9-24.

[855] M. HEAD-GORDON AND P. PIELA [1986}. Parallel algorithms for solving linear equations us-
ing Givens transformations, Int. J. Comput. Math., 12A, pp. 987-990.

[856] L. HEATH, A. ROSENBERG, AND B. SMITH [1988]. The physical mapping problem for paraliel
architectures, J. ACM, 35, pp. 603-634.

[857] M. HEATH [1985). Parallel Cholesky factorization in message-passing muliiprocessor envi-
ronments, Tech. Report ORNL-6150, Oak Ridge National Laboratory, May.

[858] M. HEATH, ed. [1986]. Hypercube Multiprocessors, 1986, Philadelphia, PA, Society for In-
dustrial and Applied Mathematics.

[859] M. HEATH [1987]. Hypercube applications at Oak Ridge National Laboratory, in Heath [860],
PpP. 395417.

[860] M. HEATH, ed. [1987). Hypercube Multiprocessors, 1987, Philadelphia, Society for Industrial
and Applied Mathematics.

[861] M. HEATH AND C. ROMINE [1988). Parallel solution of triangular systems on distributed-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 157

memory multiprocessors, SIAM J. Sci. Statist. Comput., 3(3), pp. 558-588.

[862] M. HEATH AND D. SORENSEN [1986]. A pipelined Givens method for computing the QR fac-

torization of & sparse mairiz, Lin. Alg. & Appl., 77, pp. 189-203.

[863] D. HELLER [1974). A determinant theorem with applications to parallel algorithms, SIAM J.

Numer. Anal., 11, pp. 559-568.

[864] D. HELLER [1976). Some aspects of the cyclic reduction algorithm for block tridiagonal linear

systems, SIAM J. Numer. Anal., 13, pp. 484-496.

[865] D. HELLER [1978). A survey of parallel algorithms in numerical linear algebra, SIAM Rev.,

20, pp. 740-777.

[866] D. HELLER AND 1. IPSEN [1982). Systolic network for orthogonal equivalence transformations

(867]

(868

[870}
[871}

and their application, Proc. Conference on Advanced Research in VLSI, Cambridge, MIT
Press, pp. 113-122.

D. HELLER AND I. IPSEN [1883]. Systolic networks for orthogonal decompositions, SIAM J.
Sci. Statiet. Comput., 4, pp. 261-269.

D. HELLER, D. STEVENSON, AND J. TRAUB [1976). Accelerated iterative methods for the so-
lution of tridiagonal linear systems on parallel computers, J. ACM, 23, pp. 636-654.
[869] R. HELLIER [1982]. DAP implemeniation of the WZ algorithm, Comput. Phys. Comm., 26,

Pp. 321-323.
P. HEMKER [1984)]. Performance of multigrid software on vector machines, Supercomputer.
P. HEMKER, R. KETTLER, P. WESSELING, AND P. DE ZEEUW [1983]. Multigrid methods:
Development of fast solvers, Appl. Math. & Comp., 13(3-4), pp. 311-326. (Special Issue,
Proceedings of the First Copper Mountain Conference on Multigrid Methods, Copper
Mountain, CO, S. McCormick and U. Trottenberg, eds.).

[872] P. HEMKER, P. WESSELING, AND P. DE ZEEUW [1984]. A portable vector code for au-

tonomous multigrid modules, PDE Software: Modules, Interfaces and Systems, B. En-
gquist and T. Smedsaas, eds., North-Holland, Amsterdam, pp. 29-40.

[873) R. HEMPEL [1988). Parallel multigrid algorithms for the biharmonic and the Stokes equa-

tions, implementation and performance, in McCormick [1312}.

[874] R. HEMPEL [1988]. The Suprenum communications subroutine library for grid-oriented prob-

lems, Tech. Report ANL-87-23, Argonne National Laboratory.

[875] J. HENDRY AND L. DELVES [1984]. GEM calculations on the DAP, in Paddon[1512], pp. 185-

194.

[876] C. HENKEL, M. HEATH, AND R. PLEMMONS [1988]. Cholesky downdating on a hypercube,

(877}

[878]

Proc. Third Conf. Hypercube Concurrent Comput. Appl., G. Fox, ed., New York, As-
sociation for Computing Machinery, pp. 1592-1598.

. HERTZBERGER, D. GosMAN, G. KI1ErT, G. POR, M. SCHOOREL, AND L. WIGGERS [1981].
FAMP system, Comput. Phys. Comm., 22, pp. 253-260.

. HIBBARD AND N. OSTLUND [1980). Numerical computation on Cm*, Proc. 1980 Int. Conf.
Par. Proc., pp. 135-136.

v

[879] L. HigBiE [1978]. Speeding up FORTRAN (CFT) programs on the CRAY-1, Pub. 2240207,

CRAY Research Inc.

[880] N. HigHAM [1989). Ezploiting fast matriz multiplication within the level $ BLAS, Computer

Science Tech. Report 89-934, Department of Computer Science, Cornell University.

[881] N. HIGHAM AND R. SGHREIBER [1988]. Fast polar decomposition of an arbitrary matriz,

Computer Science Tech. Report 88-942, Department of Computer Science, Cornell Uni-
versity. (To appearin SIAM J. Sci. Statist. Compaut.).

[882] W. HiLLIs [1985], The Connection Machine, MIT Press, New Haven, CT.
[883] R. HinTz AND D. TOTE [1972]. Control Data STAR-100 processor design, Proc. COMP-

CON 72, IEEE Comp. Soc. Conf., pp. 1-4.

[884] K. HIRAKI, T. SHIMADA, AND K. NISHIDA [1984]. A hardware design of the SIGMA-1, o

data flow computer for scientific computations, Proc. 1984 Int. Conf. Par. Proc.,
pp- 524-531.

[885] R. HIROMOTO [1984]. Ezperiences with the Denelcor HEP, Parallel Computing, 1, pp. 197

206.

[886] R. HIROMOTO [1985). Parallel processing a plasma simulation problem using the particle-in-

cell method, Tech. Report LA-UR-85-2393, Los Alamos National Laboratory.

[887] C.-T. Ho AND L. JOHNSSON [1986}. Distributed routing algorithm for broadcasting and per-

sonalized communication in hypercubes, Proc. 1986 Int. Conf. Par. Proc., pp. 640-648.

[888] C.-T. Ho AND L. JOHNSSON [1987). Algorithms for matriz transposition on Boolean n-cube

configured ensemble architectures, Proc. 1987 Int. Conf. Par. Proc., pp. 621-629.

[889] C.-T. Ho AND L. JORNSSON [1987). On the embedding of arbitrary meshes in Boolean cubes

with erpansion two dilation two, Proc. 1987 Int. Conf. Par. Proc., pp. 188-191.

158 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[890] L. Hoees, D. THES, J. TRiMBLE, H. Trrus, AND D. HIGHBERG [1970], Parallel Processor
Systemas: Technologies and Applications, Spartan Books.

[891] R. HOCKNEY [1965]. A fast direct solution of Poisson’s equation using Fourier analysis, J.
ACM, 12, pp. 95-113.

[892] R. HOCKNEY [1977]. Super-computer architecture, Proc. Infotech State of the Art Conf. on
Future Systems.

[893] R. HOCKNEY [1979]. The large parallel computes and university research, Cont. Phys., 20,
pp. 149-185.

[894] R. HOCKNEY [1982]. Characterization of parallel computers and algorithms, Comput. Phys.
Comm., 26, pp. 285-291.

[895] R. HoCKNEY [1982). Optimizing the FACR (l) Poisson solver on parallel computers, Proc.
1982 Int. Conf. Par. Proc., pp. 62-71.

[896] R. HOCKNEY [1982), Poisson solving on parallel computers. Presented at the IBM Sympo-
sium on Vector Computers and Scientific Computing, Rome.

[897] R. HOCKNEY [1983], Characterization of parallel computers, Proceedings of World Congress
on System Simulation and Scientific Computation, International Association for Math-
ematics and Computers in Simulation, vol. 1, pp. 269-271.

[898] R. HOCKNEY [1983]. Characterizing computers and optimizing the FACR (I) Poisson solver
on parallel unicomputers, IEEE Trans. Comput., C-32, pp. 933-941.

[899] R. HOCKNEY [1984]. The n,;2 method of algorithm analysis, PDE Software: Modules, In-
terfaces and Systems, B. Engquist and T. Smedsaas, eds., Elsevier, pp. 429-444.

[900] R. HOCKNEY [1984]. Optimizing the FACR (1) Poisson-solver on parallel computers, in Pad-
don [1512), pp. 45-65.

[901] R. HOCKNEY [1984). Performance of parallel computers, in Kowalik [1116], pp. 159-176.

[902] R. HOCKNEY [1985). MIMD computing in the USA — 1984, Parallel Computing, 2, pp. 119—
136.

[903] R. HOCKNEY [1985]. Performance characterization of the HEP, in Parallel MIMD Compu-
tation: HEP Supercomputer and Its Applications [1117], pp. 59-90.

[904] R. HOCKNEY [1985]. (oo, ny/2,81/2) measurements on the 2-CPU CRAY X-MP, Parallel
Computing, 2, pp. 1-14.

[905] R. HOCKNEY [1987). Parametrization of computer performance, Parallel Computing, 5,
pp. 97-104.

[906] R. HOCKNEY AND C. JESSHOPE [1981), Parallel Computers: Architecture, Programming and
Algorithms, Adam Hilger, Ltd., Bristol, United Kingdom.

[907] R. HOCKNEY AND D. SNELLING [1984). Characterizing MIMD computers, e.g., the Denelcor
HEP, in Feilmeier et al. [623], pp. 521-526.

[908] C. HOHEISEL, M. SCHOEN, AND R. VOGELSANG [1984). Vectorized compulation of correla-

tion functions from phase space trajectories generated by molecular dynamic calcula-
tions, Comput. Phys. Comm., 34, pp. 9-14.

[909] J. HOLLAND [1959]. A universal computer capable of executing an arbitrary number of sub-
programs simultaneously, Proc. European Joint Comp. Conf., pp. 108-113,

[910] R. HoLT, G. GRAHAM, E. LAZOWSKA, AND M. ScOTT [1978], Structured Concurrent Pro-
gramming, Addison-Wesley, Reading, MA.

[911] B. HOLTER [1988]. Vectorized multigrid solvers for the two-dimensional diffusion equation,
in McCormick [1312].

[912] W. HOLTER [1986]. A vectorized multigrid solver for the three-dimensional Poisson equa-
tion, Appl. Math. & Comp., 19(1-4), pp. 127-144. (Special Issue, Proceedings of the
Second Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, S.
McCormick, ed.).

[913] H.-C. HOPPE AND H. MUHLENBEIN [1986]. Parallel adaptive full-multigrid methods on
message-based multiprocessors, Parallel Computing, 3, pp. 269-288.

[914] R. HoRrD [1982], The Illiac IV: The First Supercomputer, Computer Science Press.

[915] S. HoriGUCHI, Y. KAWAZOE, AND H. NARA [1984). A parallel algorithm for the integration
of ordinary differential equations, Proc. 1984 Int. Conf. Par. Proc., pp. 465-469.

[916] E. HorROWITZ [1986). Particle codes and the Cray-2, Tech. Report UCRL-95055, Lawrence
Livermore National Laboratory.,

[917} E. HOROWITZ [1987]. Vectorizing the interpolation routines of particle-in-cell codes, J.
Comp. Phys. To appear.

[918] T. HosHiNO, R. HIROMOTO, S. SEKIGUCHI, AND S. MaAJIMA [1987). Mapping schemes of the
particle-in-cell method implemented on the PAX computer, Tech. Report LA-UR-87-
2879, Los Alamos National Laboratory.

[919] T. HosHINO, T. KAMIMURA, T. IIDA, AND T. SHIRAKAWA [1985]. Parallelized ADI scheme

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 159

using GECR (Gauss-Elimination-Cyclic Reduction) method and implementation of
Navier-Stokes equation on the PAX computer, Proc. 1985 Int. Conf. Par. Proc., pp. 426—
433

[920] T. HosHiNO, T. KAWAI, T. SHIRAKAWA, J. HIGASHINO, A. YAMAOKA, H. ITo, T. SATO, AND

K. SAWADA [1983]. PACS: A parallel microprocessor array for scientific calculations,
ACM Trans. on Comp. Sys., 1, pp. 195-221.

[921]) T. HosHiNo, S. MAJIMA, K. TAKENOUCHI, AND Y. OvANAGl [1984). Monte Carlo simula-

[922]

[923]
[924]

[925])

[926]

[927)

[928)]

[929]

[930]
[931]

[932]
(933]

(934]

[935)
[936]
[937]
[938]

[939]

[940)

[941]
[942)]

[943]

T.

E.

C.

C.

2]

D.

tion of a spin model on the parallel computer PAX, Comput. Phys. Comm., 34, pp. 31-

38.

HosHiNO, T. SHIRAKAWA, T. KAMmMURA, T. KaGcEYaMa, K. TaKkENouocH:, H. ABE,
S. SEKIGUCHI, Y. OYANAGI, AND K. TosHIO [1983). Highly parallel procesor array “PAX”
Jor wide scientific applications, Proc. 1983 Int. Conf. Par. Proc., pp. 95-105.

. HosHINO AND K. TAKENOUCHI [1984]. Processing of the molecular dynamic model by the
parallel computer PAX, Comput. Phys. Comm., 31, pp. 287-296.

. Horovy AND L. DICKSON [1979). Evaluation of a vectorizable 2-D transonic finite differ-

ence algorithm, Paper 79-0276, AIAA.

HousoRs AND O. WING [1984]. Pseudo-conjugate directions for the solution of the non-
linear unconsirained optimization problem on a parallel computer, J. Optimization The-
ory and Applications, 42, pp. 169-180.

Housris, E. HousTis, AND J. RICE [1984]. Partitioning and allocation of PDE computa-
tions in distributed systems, PDE Software: Modules, Interfaces and Systems, B. En-
gquist and T. Smedsaas, eds., North-Holland, Amsterdam, pp. 67-87.

. Housmis, E. HousTis, AND J. RICE [1986]. Performance evaluation models for dis-
tributed compiting, Tech. Report CSD-TR-576, Department of Computer Science, Pur-
due University, January.

. HousrTs, E. Hotfsm, AND J. RICE [1987]. Partitioning PDE computations: Methods

and performance evaluation, Parallel Computing, 5, pp. 141-164.

HousrTis, E. HousTis, J. RICE, AND M. SAMARTZIS [1987]. Benchmarking of bus multi-
processor hardware on large scale scientific computing, in Vichnevetsky and Stepleman
[1921).

. Houstis, J. RICE, AND E. VAvALIS [1987]. Parallelization of a new class of cubic spline

collocation methods, in Vichnevetsky and Stepleman [1921], pp. 167-174.

. HousTts, J. RICE, AND E. VAVALIS [1988). A Schwartz splitting variant of cubic spline
collocation methods for elliptic PDEs, Tech. Report CSD-TR-745, Department of Com-
puter Science, Purdue University.

. Hu [1961). Parallel sequencing and assembly line problem, Oper. Res., 9, pp. 841-848.

-M. HUANG [1974]. A parallel algorithm for symmetric tridiagonal eigenvalue problems,
Tech. Report 109, Center for Advanced Computation, University of Illinois at Urbana-
Champaign, February.

. Huang AND O. WING [1978]. On minimum completion time and optimal scheduling of

parallel triangulation of a sparse mairiz, IEEE Power Engineering Society Summer
Meeting, Los Angeles, Institute of Electricdl and Electronics Engineers, Inc. (IEEE Pes
Abstract No. A78-567-0).

. HUANG AND O. WING [1979]. Optimal parallel triangulation of a sparse matriz, IEEE

Trans. Circuits and Syst., CAS-26, pp. 726-732.

. HUANG AND J. ABRAHAM [1982). Efficient parallel algorithms for processor arrays, Proc.
1982 Int. Conf. Par. Proc., pp. 271-279.

. HUANG AND J. ABRAHAM [1984)]. Fault-tolerant algorithms and their application to solv-
ing Laplace equations, Proc. 1984 Int. Conf. Par. Proc., pp. 117-122.

. HurF, J. DAWsSON, AND G. CULLER [1982). Plasma physics on an array processor, in Ro-
drigue [1643), pp. 365-396.

. HugHes AND R. FERENCZ [1988]. Fully vectorized EBE preconditioners for nonlinear
solid mechanics: Applications to large-scale three-dimensional continuum, shell and
contact/impact problems, in Glowinski et al. [762], pp. 261-280.

. HuGHes, R. FERENCZ, AND J. HaLLQuIST [1987]. Large scale vectorized implicit calcula-
tions in solid mechanics on a CRAY-X-MP /48 utilizing EBE preconditioned conjugate
gradient, Comput. Meth. Appl. Mech. Engrg., 61, pp. 215-248.

HuNT [1979). Application technigues for parallel hardware, in Jesshope and Hockney [976],
pp. 205-219.

. HUNT, S. WEBB, AND A. WILSON [1981). Applications of a parallel processor to the solu-

tion of finite difference problems, in Schultz [1752}, pp. 339-344.
. HusoN, T. MACKE, J. DAvieEs, M. WOLFE, AND B. LEASURE [1986). The KAP/205: An

160 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

advanced source-to-source vectorizer for the Cyber 205 supercomputer, Proc. 1986 Int.
Conf. Par. Proc., pp. 827-835.

[944] K. HWANG [1982]. Partitioned matriz algorithms for VLSI arithmetic systems, IEEE Trans.
Comput., C-31, pp. 1215-1224.

[945] K. HWANG [1984], Computer Architecture and Parallel Computing, McGraw Hill, New York,
NY.

[946] K. HWANG [1985). Multiprocessor supercomputers for scientific/enginecring applications,
Computer, 18(6), pp. 57-73.

[947] K. HWANG AND F. BRIGGS [1984], Compsuter Architecture and Parallel Processing, McGraw
Hill, New York, NY.

[948] K. HWANG AND Y.-H. CHENG [1980}. VLSI computing structures for solving large scale lin-
ear sysiems of equations, Proc. 1980 Int. Conf. Par. Proc., pp. 217-227.

[949] K. HWANG AND J. GHOsH [1987). Hypernet: A communication-efficient architecture for con-
structing massively parallel computers, IEEE Trans. Comput., C-36, pp. 1450-1466.

[950] K. HWANG, S. JACOBS, AND E. SWARTZLANDER, eds. [1986]. Parallel Processing, North-
Holland.

[951] K. HWANG, S. Su, AND L. N1 [1981). Vector computer architecture and processing tech-
nigues, Advances m Computers, 20, pp. 115-197.

[952] K. HwANG AND Z. Xu [1985]. Remps: A reconfigurable multiprocessor for scientific super-
computing, Proc. 1985 Int. Conf. Par. Proc., pp. 102-111,

[953] L. HyariL aND H. KUNG [1974). Parallel algorithms for solving triangular linear systems
with small parallelism, Tech. Report, Department of Computer Science, Carnegie-Mellon
University.

[954] L. HyariL AND H. KUNG [1975). Bounds on the speed-ups of parallel evaluation of recur-
rences, Proc. Second USA — Japan Comp. Conf., pp. 178-182.

[955] L. HyariL aND H. Kung [1977). The complezity of parallel evaluation of linear recurrences,
J. ACM, 24, pp. 513-521.

[956] M. INOUYE, ed. [1977]. Future Computer Requirements for Computational Aerodynamics,
Workshop at NASA-Ames, Conf. Publ. No. 2032.

[957] 1. IpsEN [1984). A parallel QR method using fast Givens' rotations, Tech. Report
YALEU/DCS/RR-299, Department of Computer Science, Yale University.

[958] 1. IPSEN [1984). Singular value decomposition with systolic arrays, Proc. Soc. Photo-Optical
Eng., Bellingham, WA.

[959] I. IPSEN [1987). Systolic algorithms for the parallel solution of demse symmetric positive-
definite Toeplitz systems, Tech. Report YALEU/DCS/RR-539, Department of Computer
Science, Yale University, May.

[960] I. IPSEN AND E. JESSUP [1987]. Solving the symmetric tridiagonal eigenvalue problem on the
hypercube, Tech. Report YALEU/DCS/RR-548, Department of Computer Science, Yale
University.

[961] 1. IPsEN AND E. JEsSUP [1987). Two methods for solving the symmetric tridiagonal eigen-
value prodlem on the hypercube, in Heath [860], pp. 627-638.

[962] 1. IPSEN AND Y. SAAD [1985). The impact of parallel architectures on the solution of eigen-
value problems, Tech. Report YALEU/DCS/RR-444, Department of Computer Science,
Yale University, December.

[963] I. IPSEN, Y. SAAD, AND M. SCHULTZ [1986]. Complerity of dense linear system solution on
a multiprocessor ring, Lin. Alg. & Appl., 77, pp. 205-239.

[964) M. IQBAL, J. SALTZ, AND S. BOKHARI {1986). A comparative analysis of static and dynamic
load balancing strategics, Proc. 1986 Int. Conf. Par. Proc., pp. 1040-1047.

[965] M. IsHIGURO AND Y. KosHI [1982]. Vectorization for solving the neutron diffusion equations
— Some numerical ezperiments, Nuc. Sci. Eng., 80, pp. 322-328.

[966] W. JALBY AND U. MEIER [1986]). Optimizing matriz operations on a parallel multiprocessor
with a memory hierarchy, Tech. Report 555, Center for Supercomputing Research and
Development, University of Illinois at Urbana-Champaign, February.

[967] W. JaLBY, U. MEIER, AND A, SAMEH [1986}. The behaviour of conjugate gradient based al-
gorithms on a multi-vector processor with a memory hierarchy, Tech. Report 607, Cen-
ter for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, November.

(968] L. JAMIESON, D. GANNON, AND R. DOUGLAS, eds. [1987]. The Characteristics of Parallel
Algorithms, MIT Press.

[969] L. JamMiEsON, P. MUELLER, AND H. SIEGEL [1986]. FFT algorithms for SIMD parallel pro-
cessing systems, J. Par. Dist. Comp., 3, pp. 48-71.

[970] D. JAYASIMHA AND M. Loui {1987). The communication complerity of parallel algorithms,

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 161

[o71] J.
[972]

[973)

[975)
[976]
[977] S.

[978]

[980]

[981]

[982] J.

[983] O.

[984]

(985]
[987]
[988]
[989]

(990]

o
L
[991) L.
[992] L
[993] L
[o94] L
[995] L.

[996] L.

[997] L.

o)
o)
[974] C.
C
C

G
[979] G.
G
G

o
(0]
[986] O.
(0]
0]

Tech. Report 629, Center for Supercomputing Research and Development, University of
Illinois at Urbana-Champaign.

Jess AND H. KEEs [1982]. A data strscisre for parallel L/U decomposition, IEEE Trans.
Comput., C-31, pp. 231-239.

. JESSHOPE [1977). Evaluation of Illiac: Overlap, non-overlap, Institute for Advanced Com-

putation Newsletter, 1, pp. 4-5.

. JESSHOPE [1980}. The implementation of the fast radiz 2 transforms on array processors,

IEEE Trans. Comput., C-29, pp. 20-27.
JESSHOPE [1980). Some resulis concerning data routing in array processors, IEEE Trans.
Comput., C-29, pp. 659-662.

. JESSHOPE AND J. CRAIGIE [1979]). Some principles of parallelism in particle and mesh

modeling, in Jesshope and Hockney [976}, pp. 221-236.

. JESSHOPE AND R. HOCKNEY, eds. [1979]. Infotech State of the Art Report: Supercomput-

ers, vol. 1 & 2, Maidenhead: Infotech Int. Ltd.
JIANPING AND K. LISHAN [1987]. An asynchonows parallel mized algorithm for linear and
nonlinear equations, Parallel Computing, 5, pp. 313-321.

. JOHNSON [1987]. Parallel processing in fluid dynamics, Tech. Report 87003, Institute for

Scientific Computing, Fort Collins, CO.
JOHNSON AND J. SwissHELM [1988]. Multigrid for parallel-processing supercomputers, in
McCormick [1312].

. JOHNSON, J. SWISSHELM, AND 5. KUMAR [1985). Concurrent processing adaptation of a

multiple-grid algorithm, ATAA J.

. JOHNSON, J. SWISSHELM, D. PRYOR, AND J. ZIEBARTH [1986}.

Multitasked embedded multigrid for three-dimensional flow simulation, Lecture Notes
in Physics, vol. 264, Springer-Verlag, Berlin, pp. 350-356.

JORNSON [1983]. ETA leaves home, Datamation, 29(10), pp. 74-86.

JOHNSON [1981]. Vector function chainer software for banded preconditioned conjugate
gradient calculations, Advances in Computer Methods for Partial Differential Equations
- IX, Proc. 10th IMACS World Congress on Systems Simulation and Scientific Compu-
tation, vol. 1, IMACS, pp. 243-245.

. JOHNSON [1984]. Three-dimensional wave equation computations on vector computers,

Proc. IEEE, 72, pp. 90-95.

. JOHNSON AND M. EDWARDS [1981). Progress on the 3D wave equation program for the

CDC Cyber 205, Fourth year Semi-Annual Prog. Rep. vol. 7, Seismic Acoustics Lab.
JoHNSON AND M. LEwrrt [1982]. PPCG software for the CDC CYBER 205, in Control
Data Corporation [411].

. JoBNsoN, C. MICCHELLI, AND G. PAUL [1983). Polynomial preconditioners for conjugate

gradient calculations, SIAM J. Numer. Anal., 20, pp. 362-376.

. JOHNSON AND G. PAUL [1981}. Optimal parametrized incomplete inverse preconditioning

for conjugate gradient calculations, Tech. Report RC-8644, IBM, Yorktown Heights,
NY.

. JOHNSON AND G. PAUL [1981). Vector algorithms for elliptic partial differential equations

based on the Jacobi method, in Schultz [1752], pp. 345-351.

. JOHNSsON [1981]). Computational arrays for band matriz equations, Tech. Report

4287:TR:81, Department of Computer Science, California Institute of Technology, May.
JOHNSSON [1982]. A computational array for the QR-method, Proc. MIT Conf. on Ad-
vanced Res. in VLSI, P. Penfield, ed., Artech House, pp. 123-129.

. JOHNSSON [1982]. Pipelined linear equation solvers and VLSI, Proc. Microelectronics

1982, Australia, May, Institution of Electrical Engineers, pp. 42-46.

. JOHNSSON [1984). Highly concurrent algorithms for solving lincar systemas of equations,

in Birkhoff and Schoenstadt [173], pp. 105-126.

. JOHNSSON [1984). Odd-even cyclic reduction on ensemble architectures and the solution

of tridiagonal systems of equations, Tech. Report YALEU/DCS/RR-339, Department
of Computer Science, Yale University.

JoHNSsON [1985). Band matriz systems solvers on ensemble architectures, Algorithms,
Architectures and the Future of Scientific Computation, University of Texas Press,
Austin, TX.

JoHNssON [1985). Cyclic reduction on a binary tree, Comput. Phys. Comm., 37, pp. 195-
203.

JoHNssON [1985]. Data permutations and basic linecar algebra computations on ensemble
architectures, Tech. Report YALEU/DCS/RR-367, Department of Computer Science,
Yale University, February.

162

[998] L.
[999] L.
[1000] L.
[1001] L.
[1002] L.

[1003] L.
[1004] L.
[1005] L.

[1006] L.

[1007] A.
[1008] A.

[1009] A.
[1010] H.
[1011] H.
[1012} H.
[1013]
[1014)

[1015)

H
H
H
[1016] H.
[1017) H
(1018} H
[1019] H

H

[1020}
[1021] H.

[1022] H.
[1023] T.

[1024] T.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

JOHNSSON [1985}. Solving narrow banded systems on ensembdle architectures, ACM Trans.
Math. Softw., 11, pp. 271-288,

JoHNSSON [1986). Band matriz systems solvers on ensemble architecture, Supercomput-
ers, F. Matsen and T. Tajima, eds., University of Texas Press, pp. 195-216.

JoHNSSON [1987]. Communication efficient basic lincar algebra computations on hyper-
cube architectyres, J. Par. Diat. Comp., 4, pp. 133-172.

JOHNSSON [1987). ‘Solving tridiagonal systems on cnsemble architectures, SIAM J. Sci.
Statist. Comput., 8, pp. 354-392.

JouNsSSON [1988). Algorithms for matriz transposiiion on Boolean N-cube configured en-
semble architectures, SIAM J. Matrix Anal. Appl., 9, pp. 419—454.

JoHNSSON AND C.-T. Ho [1987]. Multiple tridiagonal systems, the Alternating Direction
methods and Boolean cube configured multiprocessors, Tech. Report YALEU/DCS/TR-
532, Department of Computer Science, Yale University, June.

JounssoN, C.-T. Ho, aND F. SatED [1986}. Solving multiple tridiagonal systems, the AL
ternating Direction method, and Boolean cube configured muliiprocessors, Tech. Report
YALEU/DCS/RR-552, Department of Computer Science, Yale University.

JonnssoN, C.-T. Ho, AND F. SAIED [1987). Fast linear algebra routines on hypercubes,
Parallel Processing and Medium Scale Multiprocessors, A. Wouk, ed., Society for Indus-
trial and Applied Mathematics. To appear.

JoHNsSsON, Y. SAAD, AND M. SCHULTZ [1987). Alternating Direction methods on multi-
processors, STAM J. Sci. Statist. Comput., 8, pp. 686-700.

JoNgs, R. CHANSLER, 1. DURHAM, P. FEILER, D. SCELZA, K. SCHWANS, AND S. VEG-
DAHL [1978]. Programming issues raised by a multi-microprocessor, Proc. IEEE, 66(2),
PP. 229-237.

JoNEs AND E. GEHRINGER, eds. [1980]. The Cm* multiprocessor project: A research re-
view, Tech. Report CMU-CS.80-131, Department of Computer Science, Carnegie-Mellon
University.

JONES AND P. SCHWARTZ [1980]. Ezperience using multiprocessor systems: A status re-
port, ACM Computing Surveys, 12, pp. 121-165. _

JORDAN [1978). The Finite Element Machine programmer’s reference manual, Tech. Re-
port CSDG 782, Department of Computer Science, University of Colorado, Boulder.

JORDAN [1978). A special purpose architecture for finite element analysis, Proc. 1978 Int.
Conf. Par. Proc., pp. 263-66.

JORDAN [1981). Parallelizing a sparse matriz package, Tech. Report CSDG 81-1, Com-
puter Systems Design Group, University of Colorado, Boulder.

. JORDAN [1983]. Performance measurements on HEP — A pipelined MIMD computer,

Proc. 10th Ann. Int. Symp. Comp. Arch.

. JORDAN [1984}. Ezperience with pipelined multiple snstruction streams, Proc. IEEE, 72,

Pp. 113-123.

. JORDAN [1985). Parallel computation with the Force, Tech. Report 85-45, ICASE, NASA

Langley Research Center, Hampton, VA, October.
JORDAN [1986]. The Force on the Flex: Global parallelism and portability, Tech. Report
86-54, ICASE, NASA Langley Research Center, Hampton, VA, August.

. JORDAN [1986]. Structuring parallel algorithms in an MIMD, shared memory environ-

ment, Parallel Computing, 3, pp. 93-110.

. JORDAN [1987]. The Force, Tech. Report 87-1-1, Department of Electrical and Computer

Engineering, University of Colorado, Boulder, January.

. JORDAN [1987)]. Interpreting parallel processor performance measurements, SIAM J. Sci.

Statist. Comput., 8, pp. 8220-8226.

. JORDAN AND D. PODSIADLO [1980]. A conjugate gradient program for the Finite Element

Machine, Tech. Report CSDG, Department of Computer Science, University of Col-
orado, Boulder.

JORDAN AND P. SAWYER [1979]. A multimicroprocessor system for finite element struc-
tural analysis, Trends in Computerized Structural Analysis and Synthesis, A. Noor and
H. McComb, eds., Pergammon Press, New York, NY, pp. 21-29.

JORDAN, M. SCALABRIN, AND W. CALVERT [1979]. A comparison of three types of multi-
processor algorithms, Proc. 1979 Int. Conf. Par. Proc., pp. 231-238.

JORDAN [1974]. A new parallel algorithm for diagonally dominant tri-diagonal matrices,
Tech. Report, Los Alamos National Laboratory.

JORDAN [1979). A performance evaluation of linear algebra software in parallel architee-
tures, Performance Evaluation of Numerical Software, L. Fosdick, ed., North-Holland,
PpP. 59-76.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 163

[1025] T.
[1026] T.
[1027] T.
[to28] T.
[1029] G.

[1030] A.

[1031] S.
(1032] L.

[1033] E.
[1034]} E.
[1035] C.

[1036] C.

[1037] C.

[1038] C.

[1039] E.
[1040]

[1041)

T
D
[1042] D.
[1043] F
Y

[1044]

[1045] R.

[1046] A.

[1047] H.

[1048] M.

[1049] R.

(1050] R.

JORDAN [1982). CALMATH: Some problems and applications, n Cray Research, Inc.
[423), pp. 5-8.

JORDAN [1982]). A guide to parallel computation and some CRAY-1 experiences, in Ro-
drigue [1643], pp. 1-50.

JORDAN [1984). Conjugate gradient preconditioners for vector and parallel processors, in
Birkhoff and Schoenstadt [173], pp. 127-139.

JORDAN AND K. FONG [1977]. Some linear algebraic algorithms and their performance on
the CRAY-1, in Kuck et al. [1133}, pp. 313-316.

JOUBERT AND E. CLOETH [1984]. The solstion of tridiagonal lincar systems with an
MIMD parallel computer, Proc. 1984 GAMM Conference, Z. Angew. Math. Mech.

KAnAEV [1985). Multiprocessor supersystems with programmable architecture based on
the data-stream principle, Computational Processes and Systems, Izdatel’stvo Nauka,
Moecow, pp. 140-153.

KAk [1988). A two-layered mesh array for matriz multiplication, Parallel Computing, 6,
pp. 383-385.

KALE [1985). Lattice Mesh: A multi-bus architecture, Proc. 1985 Int. Conf. Par. Proc.,
PP. 700-702.

KALNAY AND L. TAkOCS [1982]. A simple atmospheric model on the sphere with 100%
parallelism, Research Review [1980-81), NASA-Goddard Modeling and Simulation Fa-
cility.

KALNEY-RIVAS, A. BAYLISS, AND J. STORCH [1976]. Ezperiments with the fourth order
GISS model of the global atmosphere, Proc. Conf. on Simulation of Large-Scale At-
mospheric Processes, Hamsburg, Germany.

KAMATH [1986). Solution of nonsymmetric systems of equations on a multiprocessor,
Tech. Report 591, Center for Supercomputing Research and Development, University of
Illinois at Urbana-Champaign, August.

KAMATH AND A. SAMEH [1984]. The preconditioned comjugate gradient algorithm on a
multiprocessor, in Vichnevetsky and Stepleman [1920}, pp. 210-217.

KAMATH AND A. SAMEH [1986). A projection method for solving nonsymmetric linear sys-
tems on multiprocessors, Tech. Report 611, Center for Supercomputing Research and
Development, University of Illinois at Urbana-Champaign, October.

KAMATH, A. SAMEH, G. YANG, AND D. Kuck [1985]. Structural compulations on the
Cedar system, Computers and Structures, 20, pp. 47-54.

KAMGNIA AND A. SAMEH [1985). A numerical conformal mapping method for simply con-
nected domains, Tech. Report 507, Center for Supercomputing Research and Develop-
ment, University of Illinois at Urbana-Champaign, September.

. KAMIMURA AND T. HOSHINO [1985). Processing of Alternating Direction Implicit (ADI)

method by parallel computer PAX, Trans. Info. Proc. Soc. Japan, 26, pp. 19-24.

. KaMOWTTZ [1987). SOR and MGR[v] experiments on the Crystal multicomputers, Parallel

Computing, 4, pp. 117-142.
KAMOWTTZ [1988]. Experimental results for multigrid and transport problems, in Mc-
Cormick [1312).

. KAMPE AND T. NGUYEN [1988). Performance comparison of the CRAY-2 and CRAY X-

MP on a class of seismic data processing algorithms, Parallel Computing, 7, pp. 41-54.

. KANEDA AND M. KOHATA [1982]. Highly parallel computing of linear equations on the

matriz-broadcast memory connected array processor system, Proc. 10th IMACS World
Congress on Systems Simulation and Scientific Computation, vol. 1, IMACS, pp. 320-
322.

KANT AND T. KIMURA [1978). Decentralized parallel algorithms for matriz compulations,
Proc. 5th Annual Symp. Comp. Arch., pp. 96-100.

KAPAUAN, K. WANG, D. GANNON, J. CUNY, AND L. SNYDER [1984]. The Pringle: An
experimental system for parallel algorithm and software testing, Proc. 1984 Int. Conf.
Par. Proc., pp. 1-6.

KAPITZA AND D. EPPEL [1987). A 3-D Poisson solver based on conjugate gradients com-
pared to standard sterative methods and sts performance on vector computers, J. Comp.
Phys., 68, pp. 474-484,

KAPS AND M. SCHLEGL [1987). A short proof for the existence of the WZ-factorization,
Paralle]l Computing, 4, pp. 229-232.

KAPUR AND J. BROWNE [1981]. Block tridiagonal linear systems on a reconfigurable array
computer, Proc. 1981 Int. Conf. Par. Proc., pp. 92-99.

KAPUR AND J. BROWNE [1984). Technigues for solving block tridiagonal systems on re-
configurable array computers, SIAM J. Sai. Statist. Comput., 5, pp. 701-719.

164 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[1051) A. KARP [1987]. Programming for parallelism, Computer, 20(5), pp. 43-57.

[1052] A. KARP AND J. GREENSTADT [1987}. An improved parallel Jacobi method for diagonalizing
a symmetric mairiz, Parallel Computing, 5, pp. 281-294.

[1053] R. KARP AND R. MILLER [1966]. Propertics of a model for parallel computations: Determi-
nacy, termination, guexing, SIAM J. Appl. Math., 14, pp. 1390-1411.

[1054] R. KARP AND W. MIRANKER [1968). Parallel minimaz scarch for a marimum, J. Combin.
Theory, 4, pp. 19-35.

[1085] L. KARTASHEV AND S. KARTASHEV, eds. [1987). Supercomputing '87: Proceedings of the Sec-
ond International Conference on Supercomputing, St. Petersburg, International Super-
computing Institute, International Supercomputing Institute.

[1056] S. KARTASHEV AND S. KARTASHEV, eds. [1986]. Supercomputing Systems, North-Holland,
New York.

(1057] A. KASAHARA [1984]. Recent mathematical and computational developments in numerical
weather prediction, in Parter [1529], pp. 85-126.

[1058] H. KASAHARA AND S. NARITA [1984). Praetical multiprocessor scheduling algorithms for ef-
ficient parallel processing, IEEE Trans. Comput., C-33, pp. 1023-1029.

[1059]) M. Kascic [1978]. A direct Poisson solver on STAR, Proc. 1978 LASL Workshop on Vector
and Parallel Processors.

[1060] M. Kascic [1979). Vector processing on the CYBER 200, in Jesshope and Hockney [976],
pp. 237-270.

[1061} M. Kascic [1979]. Vector processing on the CYBER 200 and vector numerical linear algebra,
Proc. 3rd GAMM Conf. on Numeric Mathematics in Fluid Dynamics.

[1062] M. Kascic [1983]. Syntactic and semantic vectorization: Whence cometh intelligence in
supercomputing?, Proc. 1983 Summer Computer Simulation Conf., Vancouver.

[1063}] M. Kascic [1984). Anatomy of a Poisson solver, in Feilmeier et al. [623)], pp. 173-179.

[1064] M. Kascic [1984]). Interplay between computer methods and partial differential equations:
Iterative methods as eremplar, in Vichnevetsky and Stepleman [1920], pp. 379-382.

[1065] M. Kascic [1984]. A performance survey of the CYBER 205, in Kowalik [1116], pp. 191~210,

[1066] M. Kascic [1984]. Vorton dynamics: A case study of developing a fluid dynamics model for
a vector processor, Parallel Computing, 1, pp. 35-44.

[1067] M. Kascic [1986). Vectorization as intelligent processing, in Fernbach [630], pp. 59-67.

[1068] H. KASHIWAGI [1984). Japanese super-speed computer project, in Kowalik [1116], pp. 117-
125.

[1069] 1. KATZ AND M. FRANKLIN [1985]. Two strategies for root finding on multiprocessor systems,
SIAM J. Sci. Statist. Comput., 6, pp. 314-333.

[1070] I. KaTzZ, M. FRANKLIN, AND A. SEN [1977]. Optimally stable parallel predictors for Adams-
Moulton correctors, Comput. Math. Appl., 3, pp. 217-233.

{(1071] L. KAUFMAN [1984). Banded cigenvalue solvers on vector machines, ACM Trans. Math.
Softw., 10, pp. 73-86.

[1072] L. KAUFMAN AND N. SCHRYER [1989]. Solving two dimensional partial differential equations
on vector and scalar machines, Int. J. Supercomputer Appl., 3(1), pp. 10-33.

[1073] M. KAUFMAN [1974). An almost-optimal algorithm for the assembly line scheduling problem,
IEEE Trans. Comput., C-23, pp. 1169-1174.

[1074] S. KEELING [1987). On implicit Runge-Kutta methods for parallel computations, Tech. Re-
port 87-58, ICASE, NASA Langley Research Center, Hampton, VA.

[1075] J. KELLER AND A. JAMESON [1978). Preliminary study of the use of the STAR-100 computer
for transonic flow calculations, Paper 78-12, AIAA.

[t076} R. KENDALL, G. MORRELL, D. PEACEMAN, W. SILLIMAN, AND J. WATTs [1983]. Development
of a multiple application reservoir simulator for use on a vector computer, Paper 11483,
SPE. SPE Middle East Oil Tech. Conf., Bahrain.

[1077] R. KENDALL, J. NOLEN, AND P. STANAT [1984]. The impact of vector processors on
petrolewm resevoir simulation, Proc. IEEE, 72, pp. 85-89.

[1078} M. KENicHI [1981]. A vector-oriented finite-difference scheme for calculating three-
dimensional compressible laminar and turbulent boundary layers on practical wing con-
figurations, Paper 81-1020, ATAA.

[1079] E. KERCKECFFS [1986). Parallel algorithms for ordinary differential equations — An iniro-
ductory review, Proceedings of the 1986 Summer Simulation Conference, Society for
Computer Simulation, pp. 947-952.,

[1080] D. KERSHAW [1982). Solution of single tridiagonal linear systems and vectorization of the
ICCG algorithm on the CRAY-1, in Rodrigue [1643], pp. 85-89.

[1081} D. KEYES AND W. GROPP [1987]. A comparison of domain decomposition technigues for
elliptic partial differential equations and their parallel smplementation, SIAM J. Sci.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 165

Statist. Comput., 8, pp. s166-8202.

[1082] D. KEVES AND D. SMOOKE [1987). Analysis of a parallelized nonlinear clliptic doundary
value problem solver with application to reacting flows, Tech. Report 87-21, ICASE,
NASA Langley Research Center, Hampton, VA.

[1083] J. KiGHTLEY AND 1. JONES [1985]. A comparison of conjugate gradient preconditionings for
three-dimensional problems in a CRAY-1, Comput. Phys. Comm., 37, pp. 205-214.

[1084] J. KiGHTLEY AND C. THOMPSON [1987]. On the performance of some rapid elliptic solvers
on @ vector processor, SIAM J. Sci. Statist. Comput., 8, pp. 701-715.

[1085] J. KILLOUGH [1979). The use of vector processors in reservoir simulation, Proc. SPE Sym-
posium Resevoir Simulation, Denver.

(1086} J. KILLOUGH [1986). A multi-level domain decomposition algorithm suitable for the solu-
tion of three-dimensional elliptic partial differential equations, Tech. Report TR86-7,
Department of Mathematical Sciences, Rice University.

[1087] T. KmMuRra [1979]. Gauss-Jordan elimination by VLSI mesh-connected processors, in
Jesshope and Hockney [976], pp. 271-290.

[1088] D. KINCAID, G. CAREY, T. OPPE, K. SEPEHENOORI, AND D. YOUNG [1984). Combining finite
element and sterative methods for solving partial differential equations on advanced
computer architectures, in Vichnevetsky and Stepleman [1920}, pp. 375-378.

[1089} D. KiNcaip AND T. OPPE [1983). ITPACK on supercomputers, Numerical Methods, A. Dold
and B. Eckman, eds., Springer-Verlag, New York, pp. 151-161.

[1090] D. KINCAID AND T. OPPE [1988). A parallel algorithm for the gemeral LU factorization,
Comm. Appl. Numer. Meth., 4, pp. 349-360.

[1091] D. KiNcam, T. OPPE, AND D. YOUNG [1982]. Adapting ITPACK routines for use on a vec-
tor computer, in Control Data Corporation [411].

[1092] D. KiNcap, T. OPPE, AND D. YOUNG [1986). Vector computations for sparse linear sys-
tems, SIAM J. Algebraic Discrete Methods, 7, pp. 99-112.

[1093] D. KiNcamp, T. OPPE, AND D. YOUNG [1986). Vectorized iterative methods for partial dif-
ferential equations, Comm. Appl. Numer. Meth., 2, pp. 789-796.

[1094] D. KINCAID AND D. YOUNG [1984). Adapting iterative algorithms for solving large sparse
linear systems for efficient use of the CDC CYBER 205, in Gary [700], pp. 147-160.

[1095] D. KIRKPATRICK, M. KLAWE, AND N. PIPPENGER [1985). Some graph coloring theorems with

application to generalized connection networks, SIAM J. Algebraic Discrete Methods, 6,
ppP. 576-582.

[1096] D. KNiGHT [1983). A hybrid explicit-implicit numerical algorithm for the three-dimensional
compressible Navier-Stokes equations, Paper 83-0223, ATAA. AIAA 21st Aerospace Sci-
ences Meeting, January, Reno, Nevada.

[1097] J. KNiGHT AND D. DUNLOP [1983]. On the design of a special purpose scientific program-
ming language, Softw. Pract. Exp., 13, pp. 893-907.

[1098] J. KNigHT, W. POOLE, AND R. VOIGT [1975]. System balance analysis for vector computers,
Proc. 1975 ACM National Conference, pp. 163-168.

[1099] J. KNOTT [1983]. A performance analysis of the PASLIB version 2.1 SEND and RECV
routines on the Finite Element Machine, Contractor Report 172205, NASA Langley
Research Center.

. KoBer AND C. KuzNIA [1978]. SMS — A multiprocessor architecture for high speed nu-
merical computations, Proc. 1978 Int. Conf. Par. Proc., pp. 18-23.

. KODREsS [1984]. Processing efficiency of a class of multicomputer systems, Int. J. Mini
Microprocessors, 5(2), pp. 28-33.

[1100] R
U

[1102] P. KoGGE [1973]. Mazimal rate pipelined solutions to recurrence problems, Proc. First Ann.
P
P

[1101]

Symp. on Comp. Arch., pp. 71-76.

[1103] P. KoGGE [1974]. Parallel solution of recurrence problems, IBM J. Res. Dev., 18, pp. 138
148.

[1104] P. KoGGE [1981), The Architecture of Pipelined Computers, McGraw Hill Book Company,
New York, NY.

[1105} P. KoGGE AND H. STONE [1973}. A parallel algorithm for the efficient solution of a general
class of recurrence equations, IEEE Trans. Comput., C-22, pp. 786-793.

[1106] W. KOHLER [1975}. A preliminary evaluation of the critical path method for scheduling tasks
on multiprocessor systems, IEEE Trans. Comput., C-24, pp. 1235-1238.

[1107] O. KoLp AND H. MIERENDORFF [1986]. Efficient multigrid algorithms for locally constrained
parallel systems, Appl. Math. & Comp., 19(1-4), pp. 169-200. (Special Issue, Proceedings
of the Second Copper Mountain Conference on Multigrid Methods, Copper Mountain,
CO, S. McCormick, ed.).

[1108] A. KONiGES AND D. ANDERSON [1987). ILUBCG2: A preconditioned biconjugate gradient

166

[1109] A.

[1110] A.
[1111) H.
[1132]) D.
[1113] V.
[1114] V.
[1115] J.
[1116] 3.
[1117] J.
[1118] J.

(1119} J.

(1120} M.

[1121] M.

[1122] S.
[1123]
[1124]

[1125)

L
C
C
[1126] D.
[1127) D
(1128) D

D

[1129)

[1130] D.
[1131] D.
[1132] D.
[1133] D.
[1134] D.
[1135] D.

[1136) D.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

rostine for the solution of linear asymmetiric mairiz equaiions arising from 9-point
discretizations, Comput. Phys. Comm., 43, pp. 297-.

KONIGES AND D. ANDERSON [1987]. Optimized mairicr solution packages for use in
plasma physics codes, Annual Controlled Fusion Theory Conference, San Diego, CA.
Paper 2D12.

KONIGES AND D. ANDERSON [1987). Vectorized and multitasked software packages for
solving asymmeiric mairiz equations, in Vichnevetsky and Stepleman [1921], p. 118.

KoPP [1977]. Numerical weather forecast with the multi-microprocessor system SMS201,
in Feilmeier {621)], pp. 265-268.

KORN AND J. LAMBIOTTE [1979]. Computing the fast Fourier tranaform on a vector com-
puter, Math. Comp., 33, pp. 977-992.

Kotov [1984]. Formal models of parallel computations, in Miklosko and Kotov [1363],
pp. 109-141.

KoTov AND V. VALKOUSKII [1984]). Automatic construction of parallel programs, in Mik-
losko and Kotov [1363], pp. 65-107.

KowaLIK [1983). Preliminary ezperience with multiple-instruction multiple data compu-
tation, in Noor [1450], pp. 49-54.

KOWALIK, ed. [1984). Procecdings of the NATO Workshop on High Speed Computations,
West Germany, NATO ASI Series, vol. F-7, Berlin, Springer-Verlag.

KowaLIk [1985), Parallel MIMD Computation: HEP Supercomputer and Its Applications,
MIT Press, Cambridge, MA.

KOWALIK AND S. KUMAR [1982]. An efficient parallel block conjugate gradient method for
linear equations, Proc. 1982 Int. Conf. Par. Proc., pp. 47-52.

KowaLik, R. LORD, AND S. KUMAR [1984). Design and performance of algorithms for
MIMD parallel computers, in Kowalik [1116], pp. 257-276.

KRATZ [1984). Some aspects of using vector computers for finite element analyses, in
Feilmeier et al. [623], pp. 349-354.

KRATZ [1984]. Vectorised finite-element stiffness generation: Tuning the Noor-Lambiotte
algorithm, Parallel Computing, 1, pp. 121-132.

KrisT AND T. ZANG [1987]. Algorithm implementation on the Navier-Stokes computer,
Tech. Report NASA-TM-89119, NASA Langley Research Center, Hampton, VA,

. KRONsJO [1986], Computational Complezity of Sequential and Parallel Algorithms, Wiley,

New York, NY.

. KRUSKAL [1983). Searching, merging and sorting in parallel computations, IEEE Trans.

Comput., C-32(10), pp. 942-946.

. KRUSKAL AND M. SNIR [1983]. The performance of mulfistage interconnection networks

for multiprocessors, IEEE Trans. Comput., C-32(12), pp. 1091-1098.
Kuck [1976). Parallel processing of ordinary programs, Advances in Compaters, vol. 15,
Academic Press, NY, pp. 119-179.

. Kuck [1977). A survey of parallel machine organization and programming, ACM Com-

puting Surveys, 9, pp. 29-59.

. Kuck [1978), The Structure of Computers and Computation, John Wiley and Sons, New

York, NY.

. Kuck, P, BuDNIcK, S. CHEN, E. Davis, J. HAN, P. KRASKA, D. LAWRIE, Y. MURAOKA,

R. STREHENDT, AND R. TOWLE [1973}. Measurement of parallelism in ordinary Fortran
programs, Proc. Sagamore Conf. Parallel Processing, pp. 23-36.

Kuck, E. DAVIDSON, D. LAWRIE, AND A. SAMEH [1986]. Parallel supercomputing today
and the Cedar approach, Science, 231, pp. 967-974.

Kuck AND D. GAJsKI [1984]. Parallel processing of sparse structures, in Kowalik [1116],
PP. 229-244.

Kuck, D. LAWRIE, R. CYTRON, A. SAMEH, AND D. GAIsKi [1986). Cedar project, in Sharp
et al. [1782], pp. 97-123.

Kuck, D. LAWRIE, AND A. SAMEH, eds. [1977). High Speed Computer and Algorithm Or-
ganization, Academic Press, New York, NY.

Kuck, J. McGRAW, AND M. WOLFE [1984). A debate: Retire FORTRANY, Physics To-
day, 37(5), pp. 66-75.

Kuck AND A. SAMER [1972]. Parallel computation of eigenvalues of real matrices, Infor-
mation Processing '71, North-Holland, pp. 1266-1272.

Kuck, A. SAMEH, R. CYTRON, A. VEIDENBAUM, C. POLYCHRONOPOULOS, G. LEE, T. Mc-
DANEL, B. LEASURE, C. BECKMAN, J. DaviEs, AND C. KRUSKAL [1984]. The effects
of program restructuring algorithm change and architecture choice on program perfor-
mance, Proc. 1984 Int. Conf. Par. Proc., pp. 129-138,.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 167

[1137] D

[1138] R
[1139] A

[1140] A

. Kuck aAND R. STOKES [1982). The Burroughs Scientific Processor (BSP), IEEE Trans.
Comput., C-31, pp. 363-376.

. KUHN AND D. PADUA [1981), Parallel Processing, IEEE Computer Society Press.

. KuMaR, R. GRAVES, AND K. WEILMUENSTER [1980]. User’s guide for vectorized code
EQUIL for calculating cquilibrium chemisiry on Conirol Data STAR-100 compulter,
NASA Tech. Memo. 80192, NASA Langley Research Center.

. KuMaRr, D. Rupy, J. DRUMMOND, AND J. HARRIS [1982]. Experiences with ezplicit finite
difference schemes for compler fluid dynamics prodlems on STAR-100 and CYBER 208
computers, in Control Data Corporation [411].

[1141]) M. KUMAR [1988]. Measuring parallelism in computation-intensive scientific/engineering

[1142] S.
[1143] S.

[1144] S.

[1145]

[1146]

[1148]
[1149]
[1150]

[1151] H.

[1152] H.

[1153] H.

[1154] H.

[1155] S.

[1156] S.

[1157] S.

[1158] S.

[1159) S.

[1160] S.

[1161] S.

[1162] S.

H
H
[1147] H.
H
H
H

applications, IEEE Trans. Comput., 37(9), pp. 1088-1098.

KuMAR [1982). Parallel Algorithmas for Solving Linear Eguations on MIMD Computers,
PhD dissertation, Washington State University, Departient of Computer Science.
KuMaAR AND J. KOWALIK [1984]. Parallel factorization of a positive definite matriz on an

MIMD computer, Proc. 1984 Int. Conf. Par. Proc., pp. 410-416.
KUMAR AND J. KOWALIK [1986). Triangularization of a positive definite mairiz on a par-
allel computer, J. Par. Dist. Comp., 3, pp. 450—460.

. KunG [1976]. Synchronized and asynchronous parallel algorithms for multi-processors,

Algorithms and Complexity, J. Traub, ed., Academic Press, New York, pp. 153-200.

. KUNG [1979). Let’s design algorithms for VLSI systems, Proc. Conf. Very Large Scale
Integration, California Institute of Technology, pp. 65-90.

KunG [1980). The structure of parallel algorithms, Advances in Computers, M. Youvits,
ed., vol. 19, Academic Press, pp. 65-112.

. Kuna [1982). Why systolic architectures?, Computer, 15(1), pp. 37-46.

. KuNG [1984)}. Systolic algorithms, in Parter [1529], pp. 127-140.

. KuNG AND C. LEISERSON [1979]. Systolic arrays (for VLSI), Sparse Matrix Proceedings
(1978), 1. Duff and G. Stewart, eds., Society for Industrial and Applied Mathematics,
pD. 256-282.

KuNG, R. SPROULL, AND G. STEELE, eds. [1981]. VLSI Systems and Compulations,
Computer Science Press, Rockville, MD.

KUNG AND D. STEVENSON [1977]. A software technigue for reducing the routing time on
a parallel computer with a fized interconnection network, in Kuck et al. [1133}, pp. 423
433.

KUNG AND J. WEBB [1985). Global operations on the CMU Warp machine, Proceedings
of 1985 AIAA Computers in Aerospace V Conference, October, AIAA, pp. 209-218.

KunG AND S. Yu [1982), Integrating high-performance special-purpose devices into a sys-
tem. Presented at the IBM Symposium on Vector Computers and Scientific Computing,
Rome.

KuUNG [1984). On supercomputing with systolic/wavefront array processors, Proc. IEEE,
72, pp. 867-884.

KUNG AND R. GAL-EzAR [1982]. Linear or sparse array for eigenvalue and singular value
decompositions?, Proc. USC Workshop on VLSI and Modern Signal Processing, Los
Angeles, pp. 89-98.

KUNG AND R. GAL-EzAR [1985). Eigenvalue, singular value and least squares solvers via
the wavefront array processor, in Snyder et al. [1808], pp. 201-212.

Kung, R. GAL-EZAR, K. ARUN, AND D. BHASKARRAO [1982]. Wavefront array proces-
sor; Architecture, language and application, IEEE Trans. Comput., C-31, pp. 1054-
1066.

KunG AND Y. Hu [1981}. Fast and parallel algorithms for solving Toeplitz systems, Proc.
Internat. Symp. on Mini- and Micro-computers in Control and Measurement, San Fran-
cisco, may, pp. 163-168.

KunG AND Y. Hu [1983]. A highly concurrent algorithm and pipelined architecture for
solving Toeplitz systems, IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-
31, pp. 66-76.

Kung, S. Lo, S. JEAN, AND J. HWANG [1987). Wavefront array processors — Concept to
implementation, Computer, 20(7), pp. 18-33.

KUNKEL AND S. J. [1987}. Solving linear recurrences on pipelined computers, in Kartashev
and Kartashev [1055], pp. 384-391.

[1163} C.-C. Kuo AND T. CHAN [1988]. Two-color Fourier analysis of iterative algorithms for ellip-

[1164) H

tic problems with red/black ordering, CAM Report 88-15, Department of Mathematics,
UCLA.
~C. Kuo AND S. KUMAR [1986). Solving positive definite linear systems on vector comput-

168

[1165] J.

[1166] A.
[1167) A.

[1168] C.

[1169] S.

[1170] S.

[1171) J.

[1172) 1.
[(1173] J.

[1174] J.

[1175] J.

[1176] L
[1177] B.
A

[1178]
[1179] I.

[1180] K.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

ers, Proc. 1986 Int. Conf. Par. Proc., pp. 441-443.

Kvo, B. LEvY, AND B. Muskus [1987]. A local relazation method for solving elliptic
PDEs on mesh connected arrays, SIAM J. Sci. Statist. Comput., 8, pp. 550-573.

Kwok [1986). The multiprocessor modified Pease FFT algorithm, Tech. Report, Cen-
ter for Supercomputing Research and Development, University of Hlinois at Urbana-
Champaign.

Kwok [1987]. A performance analysis of architectural scalability, Tech. Report 679, Cen-
ter for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, August.

Lat AND H. LIDDELL [1987). A review of parallel finite element methods on the DAP,
Appl. Numer. Mod., 11, pp. 330-341.

LAKSHMIVARAHAN AND S. DHALL [1986]. A new hicrarchy of hypercube interconnection
schemes for parallel compuiers: Theory and applications, Tech. Report, University of
Oklahoma, August.

LAKSHMIVARAHAN AND S. DHALL [1987). A lower bound on the communication complexity
in solving linear tridiagonal systems on cube architectures, in Heath [860], pp. 560-568.

LAMBIOTTE [1975). The Solution of Linear Systems of Equations on a Vector Computer,
PhD dissertation, The University of Virginia, Department of Applied Mathematics and
Computer Science.

LAMBIOTTE [1979). The development of a STAR-100 code to perform a 2-D FFT, Proc.
Lawrence Livermore Lab. Conf. Sci. Compt.

LAMBIOTTE [1984). Efficient sparse matriz multiplication scheme for the CYBER 208, in
Gary [700], pp. 243-256.

LAMBIOTTE AND L. HOWSER [1974]. Vectorization on the STAR computer of several nu-
merical methods for a fluid flow problem, Tech. Report NASA TN D-7545, NASA Lan-
gley Research Center.

LAMBIOTTE AND R. VOIGT [1975). The solution of tridiagonal linear systems on the CDC
STAR-100 computer, ACM Trans. Math. Softw., 1, pp. 308-329.

. LAMPORT [1974). The parallel ezecution of DO loops, Comm. ACM, 17, pp. 83-93.

LANG, J. MIELLOU, AND P. SPITERIC [1986). Asynchronous relazation algorithms for op-
timal control problems, Math. Comp. Simul., 28, pp. 227-242.

. LARRABEE AND R. BABB [1987). Adaptation of a large-scale computational chemisiry

program for the Intel iPSC concurrent computer, in Heath [860}, pp. 464-472.

LARSON [1984). Multitasking on the CRAY X-MP-2 multiprocessor, Computer, 17(7),
Pp. 62-69.

Law [1982]. Systolic systems for finite element methods, Tech. Report R-82-139, Depart-
ment of Civil Engineering, Carnegie-Mellon University.

[1181] LAWRENCE LIVERMORE NATIONAL LABORATORY [1979]. The S-I project, Tech. Report

[1182]

[1183)]

[1185]
[1186]
[1187}
[1188] T.

[1189]

)

[1190] G.

[1191) J.

[1192] R.

D
D

[1184] D.
D

o

T

UCID-18619, Lawrence Livermore National Laboratory.

. LAWRIE [1975). Access and alignment of data in an array processor, IEEE Trans. Com-

put., C-24, pp. 1145-1155.

. LAWRIE, T. LAYMAN, D. BAER, AND J. RANDALL [1975]. Glypnir — A programming lan-

guage for Illiaec IV, Comm. ACM, 18, pp. 157-164.
LAWRIE AND A. SAMEH [1983]. Applications of structural mechanics on large-scale mul-
tiproeessor computers, in Noor [1450], pp. 55-64.

. LAWRIE AND A. SAMEH [1984]. The computation and communication complezity of a par-

allel banded system solver, ACM Trans. Math. Softw., 10, pp. 185-195.

. LAazou [1987], Supercomputers and Their Use, Oxford University Press.
. LEBLANC [1986). Shared memory versus message passing in a tightly coupled multipro-

cessor: A case study, Tech. Report, Department of Computer Science, University of
Rochester, January.

LEBLANC, M. ScOTT, AND C. BROWN [1988]. Large-scale parallel programming: Ezperi-
ence with the BBN Butterfly paraliel processor, SIGPLAN Notices, 23(9), pp. 161-172.

. LECca AND P. ROY [1983]. Simulation numerigue de la turbulence sur un systéme multi-

processor, First. Int. Coll. on Vector and Parallel Methods, Paris.

LeE, C. KRUSKAL, AND D. KuUck [1985]. An empirical study of automatic restructuring
of nonnymerical programs for parallel processors, IEEE Trans. Comput., C-34, pp. 927-
933.

LEE [1980). Three-dimensional finite element analysis of layered fiber-reinforced composite
materials, Computers and Structures, 12, p. 319.

LEE [1977). Performance bounds in parallel processor organizations, m Kuck et al. [1133],
pp. 453-455.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 169

(193] T.
[1194] M.

[1195] C.

[1196]

[1198)

[1199] M.

[1200] J.

[1201] M.

[1202]

[1204]
[1205] J.

[1206] |

[1208]
[1209] J.
(1210} J.

1211} G

[1212]
[1213]

[1214]

[1216]
[1217]

[1218]

[1219) A.
[1220] D.

[1221] D.

C
1197 C.
E

M
[1203] M.
M

E
[1207] R.
J

G
G
G
[1215] G.
K
A
A

LEGENDI, D. PARKINSON, R. VOLLMAN, AND G. WOLF, eds. [1986]. Parallel Processing
by Cellular Automata and Arrays, North-Holland.

LEHMAN [1966). A survey of problems and preliminary results concerning parallel pro-
cessing and parallel processors, Proc. IEEE, 54, pp. 1889-1901.

LEISERSON [1985). Fat-trees: Universal networks for hardware-efficient supercomputing,
Proc. 1985 Int. Conf. Par. Proc., pp. 393-402.

. LEISERSON [1985). Fat-trees: Universal networks for hardware-efficient supercomputing,

IEEE Trans. Comput., C-34, pp. 892-901.
LEISERSON AND J. LEWIS [1988]. Orderings for parallel sparse symmetric factorization,
Tech. Report ETA-TR-85, Boeing Computer Services, March.

. LELARASMEE, A. RUEHLI, AND A. SANGIOVANNI-VINCENTELLI [1982]. The wavefront re-

lazation method for time-domain analysis of large scale integrated circuits, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, CAD-1, pp. 131-145,
LEMKE [1985). Ezperiments with a vectorized multigrid Poisson solver on the CDC
CYBER 205, Cray X-MP and Fujitsx VP 200. Arbeitspapiere der GMD, Nr. 179.
Gesellschaft fur Mathematik und Datenverarbeitung, St. Augustin.

LENSTRA AND A. RINNOOY KN [1978]. Complexity of scheduling under precedence con-
straints, Oper. Res., 26, pp. 22-35.

LEUZE [1981]. Memory Access Patterns in Vector Computers with Application to Prob-
lems in Linear Algebra, PhD dissertation, Duke University, Department of Computer
Science.

. LEUZE [1986). Parallel triangularization of substructured finite element problems, Lin.

Alg. & Appl., 77, pp. 241-258.
LEUZE [1988). Independent set orderings for parallel Gaussian elimination, Parallel Com-
puting (to appear).

. LEUZE AND L. SAXTON [1983]. On minimum parallel computing times for Gaussian elim-

ination, Congressus Numerantium, 40, pp. 169-179.
LEVESQUE AND J. WILLIAMSON [1989), A Guidebook to Fortran on Supercomputers, Aca-
demic Press, San Diego, CA.

. LEVIN [1985). Suitabslity of a data flow architecture for problems involving simple opera-

tions on large arrays, Proc. 1985 Int. Conf. Par. Proc., pp. 518-520.
LEVINE [1982]. Supercomputers, Sci. Amer., 246, pp. 118-135.

. LEwis AND B. PEYTON [1988). A fast implementation of the Jess and Kees algorithm,

Tech. Report ETA-TR-90, Boeing Computer Services, May.

Lewis AND H. SIMON [1986). The impact of hardware gather/scatter on sparse Gaussian
elimination, Proc. 1986 Int. Conf. Par. Proc., pp. 366-368.

LEwis AND H. SIMON [1988]. The impact of hardware gather/scatier on sparse Gaussian
elimination, SIAM J. Sci. Statist. Comput., 9, pp. 304-311.

. Li AND T. COLEMAN [1987). A new method for solving triangular systems on distributed

memory message-passing multiprocessors, Tech. Report TR 87-812, Department of Com-
puter Science, Cornell University.

. L1 AND T. COLEMAN [1987). A parallel triangular solver for a hypercube multiprocessor,

in Heath [860], pp. 539-551.

. L1 AND T. COLEMAN [1988]. A parallel triangular solver for a distributed-memory multi-

processor, SIAM J. Sci. Statist. Comput., 9, pp. 485-502.

. Lt AND B. Wan [1985). The design of optimal systolic algorithms, IEEE Trans. Comput.,

C-34, pp. 66-77.
LI AND B. WaH [1985). Systolic processing for dynamic programming problems, Proc.
1985 Int. Conf. Par. Proc., pp. 434—441.

. LI-SHAN AND D. EvANs [1988]. The convergence rate of the Schwartz alternating proce-

dure (V) — for more than two subdomains, Int. J. Comput. Math., 23, pp. 295-314.

. LICHNEWSKY [1982). Sur la résolution de systéms linéaires issus de la méthode des

eléments finis par une machine mulliprocesseurs, Tech. Report 119, INRIA.

. LICHNEWSKY [1983)], Some vector and parallel implementations for linear systems arising

in PDE problems. Presented at the SIAM Conference on Parallel Processing for Scientific
Computing, Norfolk, VA, November.

LICHNEWSKY [1984). Some vector and parallel implementations for preconditioned conju-
gate gradient algorithms, in Kowalik [1116], pp. 343-359.

LILES, J. MAHAFFY, AND P. GIGUERE [1984). An approach to fluid mechanics calcula-
tions on serial and parallel computer architectures, in Parter [1529), pp. 141-160.

LiM AND R. THANAKLI [1987). A survey of ADI implementations on hypercubes, in Heath
[860], pp. 674-679.

170

[1222]
[1223]
[1224]
[1225]

[1226)

[1227]

[1228]

[1229]
[1230)
[1231]
[1232)
[1233]
[1234]
[1235)

[1236]

[1237]

[1238)

[1239)
[1240]
[1241)
[1242]
[1243)
[1244]
[1245]
[1246)
[1247)
[1248]

[1249]

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

A. LIN [1987]. Parallel and supercomputing of elliptic problems, in Kartashev and Kartashev
[1055], pp. 497-502.

T.-C. LIN AND D. MOLDORAN [1985}. Tradeoffs in mapping algorithms to array processors,
Proc. 1985 Int. Conf. Par. Proc., pp. 719-726.

N. LINCOLN [1982). Technology and design tradeoffs in the creation of a modern supercom-
puier, IEEE Trans. Comput., C-31, pp. 349-362.

N. LINCOLN [1983]. Supercomputers = colossal compuiations + enormous erpectations +
renowned risk, Computer, 16(5), pp. 3847.

B. LINT AND T. AGERWALA [1981). Commaunication issues in the design and analysis of par-
allel algorithms, IEEE Trans. Softw. Eng., SE-7, pp. 174-188.

E. LIPITAKIS [1984)]. Solving elliptic boundary value problems on parallel processors by ap-
prozimate inverse matriz semi-direct methods based on the multiple explicit Jacobi it-
eration, Comp. & Math. Appl., 10, pp. 171-184.

E. LIPITAKIS AND D. EvaANS [1987]. Explicit semi-direct methods based on approzrimate in-
verse malriz technigues for solving bowndary value problems on parallel processors,
Math. Comp. Simul,, 29, pp. 1-18.

G. Lirovski AND K. Doty [1978]. Developments and directions in computer architecture,
Computer, 11(8), pp. 54-67.

G. L1POVSKI AND A. TRIPATHI [1977}. A reconfigurable varistructure array processor, Proc.
1977 Int. Conf. Par. Proc., pp. 165-174.

J. LiPOvsKI AND M. MALEK [1987], Parallel Computing, John Wiley and Sons, New York,
NY.

C. Liu AND J. LAYLAND [1973). Scheduling algorithms for multiprogramming in a hard-real-
time environment, J. ACM, 20, pp. 46-61.

J. L1 [1978]. The solution of mesh equations on a parallel computer, Tech. Report CS-78-19,
Department of Computer Science, Waterloo University.

J. L [1986]}. Computational models and task scheduling for parallel sparse Cholesky fac-
torization, Parallel Computing, 3, pp. 327-342.

J. L1v [1987]. Reordering sparse matrices for parallel elimination, Tech. Report CS-87-01,
Department of Computer Science, York University, Ontario, Canada, January.

J. Liu AND A. MIRZAIAN [1987). A linear reordering algorithm for parallel pivoting of
chordal graphs, Tech. Report CS-87-02, Department of Computer Science, York Uni-
versity, Ontario, Canada, February.

R. LivesLey, J. Mopi, AND T. SMITHERS [1985]. The use of parallel computation for finite
element calculations, Tech. Report CUED /F-CAMS/TR.248, Cambridge University En-
gineering Department, Cambridge, UK.

S.-S. Lo AND B. PHILLIPPE [1986]. The symmetric eigenvalue problem on a multiprocessor,
Tech. Report 590, Center for Supercomputing Research and Development, University of
IMinois at Urbana-Champaign, April.

S.-S. Lo, B. PHILLIPPE, AND A. SAMEH [1987]. A multiprocessor algorithm for the symmet-
ric tridiagonal eigenvalue problem, SIAM J. Sci. Statist. Comput., 8, pp. s155-5165.

D. LOENDORF [1985]. Development and use of an asynchronous MIMD computer for finite
element analysis, in Snyder et al. [1808}, pp. 213-222.

D. LogaNn, C. MaPLES, D. WEAVER, AND W. RATHBUN [1984]. Adapting scientific pro-
grams to the MIDAS multiprocessor system, Proc. 1984 Int. Conf. Par. Proc., pp. 15-24.

H. LOMAX [1981). Some prospects for the future of computational fluid dynamics, AIAA
Comp. Fluid Dyn. Conference, June.

H. LoMax AND T. PULLIAM [1982]. A fully implicit factored code for computing three di-
mensional flows on the Illiac TV, in Rodrigue [1643], pp. 217-250.

F. LooTrsMA AND K. RAGSDELL [1988). State-of-the-art in parallel nonlinear optimization,
Parallel Computing, 6, pp. 133-156.

R. Lorp, J. KOWALIK, AND S. KUMAR [1980). Solving linear algebraic equations on a MIMD
compuier, Proc. 1980 Int. Conf. Par. Proc., pp. 205-210.

R. LorD, J. KOWALIK, AND S. KUMAR [1983]. Solving linear algebraic equations on an
MIMD computer, J. ACM, 30, pp. 103-117.

H. LoRiN [1972]}, Paralielism in Hardware and Software, Prentice-Hall, Inc., Englewood
Cliffs, NJ.

M. LouTER-NOOL [1987]. Basic linear algebra subprograms (BLAS) on the CDC CYBER
205, Parallel Computing, 4, pp. 143-166.

B. LUBACHEVSKY AND D. MITRA [1984). Chaotic parallel computations of fired points of
nonnegalive matrices of unit spectral radsus, Proc. 1984 Int. Conf. Par. Proc., pp. 109—
116.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 171

[1250] B.

[1251]

[1252]

[1253)

[1254]
[1255)
[1256]

[1257]

[1258]

[1259]

[1260]
[1261]
[1262]
[1263]

[1264]

[1265]

[1266]

[1267]
[1268)

[1269)

[1270]

[1271]

[1272]

[1273]

[1274]

0.

0.

0.

F.

2 B B

F.

M.

S.

E.

G.

G.

R.

M.

N.

LUBACHEVSKY AND D. MITRA [1986). A chaotic asynchronous algorithm for computing
the fired point of ¢ nonnegative mairiz of ynit spectral radius, J. ACM, 33, pp. 130-150.

LUBECK AND V. FABER [1987]. Modeling the performance of hybercubes: A case study us-
ing the particle-in-cell application, Tech. Report LA-UR-87-1522, Los Alamos National
Laboratory.

LuBeck, J. MOORE, AND R. MENDEZ [1985). A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi $S810/20 and CRAY X-MP/2, Computer, 18(12),
pp. 10-24.

LuBeck, J. MOORE, AND R. MENDEZ [1986). A performance cvaluation of three super-
computers, Fujiteu XP-200, Hitachi S810/20, CRAY X-MP/2{, Appl. Math. & Comp.,
20, pp. 143-144.

. Lucas [1987). Solving Planar Systems of Equations on Distributed-Memory Multiproces-

sors, PhD dissertation, Stanford University, Department of Electrical Engineering.

. LUCIER AND R. OVERBEEK [1987]. A parallel adaptive numerical scheme for hyberbolic

systems of conservation laws, SIAM J. Sci. Statist. Comput., 8, pp. s203-5219.

. Luk [1980). Compxting the singular value decomposition on the Illiac IV, ACM Trans.

Math. Softw., 6, pp. 524-539.

. LUk [1985). Algorithm-based fault tolerance for parallel matriz equation solvers, Tech.

Report EE-CEG-85-2, Department of Electrical and Computer Engineering, Cornell
University. To appear in Proc. SPIE, vol. 564; Real Time Signal Processing VIII.

. Luk [1985). A parallel method for computing the generalized singular value decomposition,

J. Par. Dist. Comp., 2, pp. 250-260.

. Luk [1986]. Architectures for computing eigenvalues and SVDs, Tech. Report EE-CEG-

86-1, Department of Electrical and Computer Engineering, Cornell University, February.

To appear in Proc. SPIE vol. 614: Highly Parallel Signal Processing Architectures.
LUK [1986]. Fault-tolerant matriz triangularization on systolic arrays, Tech. Report EE-

CEG-86-2, Department of Electrical and Computer Engineering, Cornell University.

. LUk [1986)]. A rotation method for computing the QR-decomposition, SIAM J. Sci. Statist.

Compat., 7, pp. 452-459.

. LUK [1986). A triangular processor array for computing singular values, Lin. Alg. & Appl.,

77, pp. 259-273.

. Luk AND H. PARK [1986). On paraliel Jacobi orderings, Tech. Report EE-CEG-86-5, De-

partment of Electrical and Computer Engineering, Cornell University.

. LUK AND S. QIAO [1986]. Analysis of a recursive least squares signal processing algorithm,

Tech. Report EE-CEG-86-7, Department of Electrical and Computer Engineering, Cor-
nell University. '

Luk AND S. QIAO [1986]. Computing the C-S decomposition on systolic arrays, SIAM J.
Sci. Statist. Comput., 7, pp. 1121-1125.

LUNDQUIST [1987). An implementation of the preconditioned conjugate gradient algo-
rithm on the FPS T-20 hypercube, Tech. Report URI-044, Department of Mathematical
Sciences, Clemson University, December.

LUNDSTROM [1987). Applications considerations in the system design of highly concurrent
multiprocessors, IEEE Trans. Comput., C-36, pp. 1292-1309.

. LUNDSTROM AND G. BARNES [1980]. A controllable MIMD architecture, Proc. 1980 Int.

Conf. Par. Proc., pp. 19-27,

Lusk AND R. OVERBEEK [1983). Implementation of monitors with macros: A program-
ming aid for the HEP and other paralilel processors, Tech. Report ANL-83-97, Argonne
National Laboratory, December.

LyzZENGA, A. RAEFSKY, AND B. HAGER [1988). Finite elements and the method of conju-
gate gradient on concurrent processors, Solving Problems on Concurrent Processors, Vol-
ume II: Scientific and Engineering Applications, G. Fox and G. Lyzenga, eds., Prentice-
Hall, Inc., Englewood Cliffs, NJ. To be published.

LYZENGA, A. RAEFSKY, AND G. HAGER [1985]. Finite elements and the method of conju-
gate gradients on a concurrent processor, Proc. ASME Int. Conf. Computers in Engi-
neering, pp. 401-406.

MAcCoRMACK AND K. STEVENS [1976). Fluid dynamics applications of the ILLIAC IV
computer, Computational Methods and Problems in Aeronautical Fluid Dynamics, Aca-
demic Press, New York, pp. 448—-465.

MACE AND R. WAGNER [1985). Globally optimum selection of memory storage patlerns,
Proc. 1985 Int. Conf. Par. Proc., pp. 264-271.

MADSEN AND G. RODRIGUE [1975]. Two notes on algorithm design for the CDC STAR-
100, Tech. Memo. 75-1, Lawrence Livermore National Laboratory.

172

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[1275] N. MADSEN AND G. RODRIGUE [1976]. A comparison of direct methods for tridiagonal sys-

tems on the CDC STAR-100, Preprint UCRL-76993, Rev. 1, Lawrence Livermore Na-
tional Laboratory.

{1276] N. MADSEN AND G. RODRIGUE [1977]. Odd-even reduction for pentadiagonal malrices, in

[1277)
[1278]
{1279]

(1280)

[1281)

f1282)
[1283]
[1284]

[1285]

[1286]

[1287]

[1288]

[1289)

[1290]

[1291]
[1292)
[1293]
[1294]
[1295)
[1296)
[1297)
[1298]
[1299]
(1300}

[1301]

N.

G
G.
G

C.
D.

D.

D.

D
A.
H

I

Feilmeier [621], pp. 103-106.

MADSEN, G. RODRIGUE, AND J. KARUSH {1976]. Matriz multiplication by diagonals on a
vector/parallel processor, Inf. Proc. Letts., 5, pp. 41-45.

. MAGO [1979]. A network of microprocessors to ezecute reduction languages, Int. J. Comp.
and Info. Sci., 8, pp. 349-385 and 435-471.

MaGo [1980]. A cellular computer architecture for functional programming, Proc. COM-
PCON Spring, IEEE Comp. Soc. Conf., pp. 179-187.

. MAGO AND R. PARGAS [1982). Solving partial differential equations on a cellular trec ma-
chine, Proc. 10th IMACS World Congress on Systems Simulation and Scientific Com-
putation, vol. 1, IMACS, pp. 368-373.

. MALONY [1986). Cedar performance messurements, Tech. Report 579, Center for Su-
percomputing Research and Development, University of Illinois at Urbana-Champaign,
June,

. MANDELL [1987]. Ezperiences and results multitasking a hydrodynamics code on global
and local memory machines, Proc. 1987 Int. Conf. Par. Proc., pp. 415-420.

. MANHARDT, R. LEwis, D. BOULDIN, AND A. BAKER [1982]. Array processing of the 3-

dimensional Navier-Stokes equations, Phase I Final Reports, NSF SBIR, March.

. MAPLES [1985). Pyramids, crossbars and thousands of processors, Proc. 1985 Int. Conf.
Par. Proc., pp. 681-688.

. MAPLES, D. WEAVER, D. LOGAN, AND W. RATHBUN [1983). Performance of a modular
interactive data analysis system (MIDAS), Proc. 1983 Int. Conf. Par. Proc., pp. 514~
519.

MaPLES, D. WEAVER, W. RATHBUN, AND D. LOGAN [1984]. The operstion and utiliza-
tion of the MIDAS multiprocessor architecture, Proc. 1984 Int. Conf. Par. Proc., pp. 197-
206.

MARINESCU AND C. LIN [1986], Prelimsnary results on multiprocessor modeling and anal-
y2is using stochastic, high level Petri neis. Presented at the Twenty-Fourth Allerton
Conference on Communication, Control and Computing.

MaRINEscU AND J. RICE [1987]. Domain oriented analysis of PDE splitting algorithms,
J. Information Sciences, 43, pp. 3-24.

MARINESCU AND J. RICE [1987]. Nonhomogeneous parallel computation I, Synchroniza-
tion analysis of parallel algorithms, Tech. Report TR-683, Department of Computer
Science, Purdue University.

. MARINESCU AND J. RICE [1987]. Synchronization of nonhomogeneous parallel computa-
tions, Proceedings of the SIAM Conference on Parallel Processing for Scientific Comput-
ing, December. Also Computer Science Tech. Report CSD-TR-683, Purdue University,
May, 1987.

. MARINESCU AND J. RICE [1988]. On the effects of synchronization tn parallel computing,

Tech. Report CS-TR-750, Department of Computer Science, Purdue University.

MARTIN [1980]. A distributed implementation method for parallel programming, Informa-
tion Processing 80, S. H. Lavington, ed., North-Holland, Amsterdam, pp. 309-314.

. MARTIN [1977). A discourse on a new supercomputer, PEPE, in Kuck et al. [1133)],

pp. 101-112.
MARTIN AND D. MUELLER-WICHARDS [1987]. Supercomputer performance evaluation:
Status and directions, J. Supercomputing, 1, pp. 87-104.

W. MARTIN, T.-C. WaN, D. PorLaNp, T. MUDGE, AND T. ABDEL-RAHMAN [1987]. Monte

Carlo photon transport on the NCUBE, in Heath [860], pp. 454—463.

F. MATSEN AND T. TAJIMA, eds. [1986). Supercomputers: Algorithms, Architectures and

(o]
o
o
o
o

Scientific Computation, University of Texas Press.

. McBRYAN [1985]. Computational methods for discontinustics in fluids, Lectures in Ap-
plied Mathematics, vol. 22, American Mathematical Society, pp. 63-79.

. MCBRYAN [1986]. Numerical computation on massively parallel hypercubes, Tech. Report
LA-UR-86-4218, Los Alamos National Laboratory.

. MCBRYAN [1986). Using supercomputers as attached processors, Tech. Report LA-UR-86-
3773, Los Alamos National Laboratory.

. MCBRYAN [1987]. The Connection Machine: PDE solution on 65,536 processors, Re-
search Report LA-UR-86-4219, Los Alamos National Laboratory.

. MCBRYAN [1987]. Numerical computation on massively parallel hypercubes, in Heath

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 173

[1302]

[1303]
[1304]
[1305)

(1306]

(1307]
(1308]
[1309]
[1310}
[1311]

[1312]

[1313)

[1314]

[1315]

[1316]
[1317]
[1318]
[1319]
[1320]
[1321]

[1322]

[1323]
[1324]
[1325]
[1326]

[1327]

[1328]

0.

J.

C.

S.

S.

L.

T.

O & w

J.

J.

C.

P.

R.

uU.

u.

uU.

R.

R.

[860], pp. 706-719.

. MCBRYAN AND E. VAN DE VELDE [1985]. Parallel algorithms for elliptic equation solu-

tion on the HEP computer, Proceedings of the Conference on Parallel Processing using
the Heterogeneous Element Processor, March 1985, University of Oklahoma.

. MCBRYAN AND E. VAN DE VELDE [1985]. Parallel algorithms for elliptic equations,

Comm. Pure. & Appl. Math., 38, pp. 769-795.

. MCBRYAN AND E. VAN DE VELDE [1986]. Elliptic equation algorithms on parallel comput-

ers, Comm. Appl. Numer. Meth., 2, pp. 311-316.

. MCBRYAN AND E. VAN DE VELDE {1986). Hyperexbe programs for computational fluid dy-

namics, in Heath [858], pp. 221-243.

. MCBRYAN AND E. VAN DE VELDE [1986}. The maultigrid method on parallel computers,

Multigrid Methods II, W. Hackbusch and U. Trottenberg, eds., vol. 1228 of Lecture
Notes in Mathemaitics, Springer-Verlag, Berlin.

. MCBRYAN AND E. VAN DE VELDE [1987). Hypercube algorithms and implementations,

SIAM J. Sci. Statist. Comput., 8, pp. a227-s287.

McBRYAN AND E. VAN DE VELDE [1987]). Matriz and vector operations on hypercube par-
allel processors, Parallel Computing, 5, pp. 117-126.

MCCLELLAN AND D. RUMELHART [1988], Ezplorations in Parallel Distributed Processing,
MIT Press.

McCoORMICK [1982]. Performance of MSC/NASTRAN on the CRAY computer, in Cray
Research, Inc. [423], pp. 88-98.

McCoRrMICK [1988]. Adaptive multilevel algorithms on advanced compulers, in Mc-
Cormick [1312).

MCCORMICK, ed. [1988]. Multigrid Methods, Proceedings of the Third Copper Mountain
Conference on Multigrid Methods, Copper Mountain, CO, April 6-10, 1987, Marcel
Dekker.

. McCorMIck AND G. RODRIGUE [1979]. Multigrid methods for multiprocessor computers,

Tech. Report, Lawrence Livermore Laboratory.

MCCULLEY AND G. ZAHER [1974), Heat shicld response to conditions of planetary eniry
computed on the ILLIAC IV. Unpublished manuscript under NASA Ames Research
Center Contract No. 6911.

MCDANIEL [1985). Non-linear recurrences and EISPACK, Tech. Report 511, Center
for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, October.

. McDONALD [1980). The Chebyshev method for solving non-self-adjoint elliptic equations

on a vecltor computer, J. Comp. Phys., 35, pp. 147-168.

. MCFADDIN AND J. RICE [1987]. Parallel and vector problems on the FLEX /32, Tech. Re-

port CSD-TR-661, Department of Computer Science, Purdue University.

MCGLYNN AND L. SCALES [1984). On making the NAG run faster, in Paddon [1512],
PpP. 73-89.

MCcGRAw AND T. AXELROD [1984]. Ezploiting multiprocessors: Issues and options, Tech.
Report UCRL-91734, Lawrence Livermore National Laboratory, October.

MCGREGOR AND M. SALANA [1983). Finite element computation with parsllel VLSI,
Proc. 8th ASCE Conf. Elec. Comp., University of Houston, pp. 540-553.

MEAD AND L. CONWAY [1979)], Introduction to VLSI Systems, Addison-Wesley, Reading,
PA.

MEHROTRA AND T. PRATT [1982). Language concepts for distributed processing of large
arrays, Proc. of Symp. on Principles of Distributed Computing, Ottawa, Canada, pp. 19—
28.

MEHROTRA AND E. GEHRINGER [1985}. Superlinear speed-up through randomized algo-
rithms, Proc. 1985 Int. Conf. Par. Proc., pp. 291-300.

MEIER [1985). A parallel partition method for solving banded systems of linear equations,
Paralle] Computing, 2, pp. 33-43.

MEIER [1988}. Two parallel SOR variants of the Schwartz alternating procedure, Parallel
Computing, 3, pp. 205-215.

MEIER AND A. SAMEH [1987]. Numerical lincar algebra on the CEDAR multiprocessor,
Proc. SPIE, Vol. 826, Advanced Alg. and Arch. for Signal Processing.

MELHEM [1983]. An abstract systolic model and its application to the design of finite
element systems, Tech. Report ICMA-83-66, Institute for Computational Mathematics
and Applications, University of Pittsburgh.

MELHEM [1985). Formal analysis of a systolic system for finite element matrices, J. Com-
put. System Sci., 31, pp. 1-27.

174

[1329] R.
[1330] R.
[1331] R.
[1332] R.
[1333] R.
[1334] R.
[1335] R.
[1336] R.
[1337] R.
[1338) R.
[1339] R.
[1340} R.
[1341] R.
[1342] L.

[1343] D.

[1344] N.

[1345] R.

[1346] M.

[1347] M.

[1348]

[1349)

[1351]

G
G
[1350] G.
G
[1352] G

G

[1353]

[1354] R.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

MELHEM [1985]. On the design of a pipelined/aystolic finite element system, Computers
and Structures, 20, pp. 67-76.

MELHEM [1986). Application of data driven networks to sparse mairiz multiplication,
Proc. 1986 Int. Conf. Par. Proc., pp. 758-761.

MELHEM [1986]). Toward efficient implementations of PCCG methods on vector super-
computers, Int. J. Supercomputer Appl., 1, pp. 70-98.

MELHEM [1987). Determination of stripe struciurcs for finite element matrices, SIAM J.
Numer. Anal., 24(6), pp. 1419-1433,

MELHEM [1987]. An efficient implementation of the SSOR/PCCG method on vector com-
puters, in Kartashev and Kartashev [1055], pp. 470-477.

MELHEM [1987]. Iterative solution of sparse linear systems on systolic arrays, Proc. 1987
Int. Conf. Par. Proc., pp. 560-563.

MELHEM [1987]. Parallel Gauss-Jordan elimination for the solution of dense linear sye-
tems, Parallel Computing, 4, pp. 339-344.

MELHEM [1987]. A study of data interlock in computational networks for sparse matriz
maultiplication., IEEE Trans. Comput., 36, pp. 1101-1107.

MELHEM [1988]. Iterative solutions of sparse linear systems on systolic arrays, Tech.
Report ICMA-87-105, University of Pittsburgh.

MELHEM [1988]. A modified frontal technique suitable for parallel systems, SIAM J. Sci.
Statist. Comput., 9, pp. 289-304.

MELHEM [1988]. Parallel solution of linear systems with striped sparse matrices, Parallel
Computing, 6, pp. 145-184.

MELHEM AND K. RAMARO [1988]. Multicolor reordering of sparse matrices resulting from
irregular grids, ACM Trans. Math. Softw., 14, pp. 117-138.

MELHEM AND W. RHEINBOLDT [1984]. A mathematical model for the verification of sys-
tolic networks, SIAM J. Comput., 13, pp. 341-365,

MELKEMI AND M. TCHUENTE [1987]. Complezity of matriz product on a class of orthog-
onally connected systolic arrays, IEEE Trans. Comput., C-36, pp. 615-619,

MELSON AND J. KELLER [1983]. Ezperiences sn using the CYBER 208 and CYBER 205
Jor three-dimensional transonic flow calculations, Paper 83-0500, AIAA. AJIAA 21st
Aerospace Sciences Meeting, January. Also in Control Data Corp. [411).

MELSON [1986]. Vectorizable multigrid algorithms for transonic-flow calculations, Appl.
Math. & Comp., 19(1-4), PD. 217-238. (Special Issue, Proceedings of the Second Copper
Mountain Conference on Multigrid Methods, Copper Mountain, CO, S. McCormick,
ed.).

MEN)DEZ [1984). Benchmark on Japanese-American supercomputers — Preliminary re-
sults, IEEE Trans. Comput., C-35, p. 374. An expanded version appeared in the SIAM
News 17, No. 2, March, 1984, p. 3.

MERRIAM [1985). On the factorization of block-tridiagonals without storage constraints,
SIAM J. Sci. Statist. Compat., 6, pp. 182-192.

MERRIAM [1986). Application of data flow concepts to a multigrid solver for the Euler
equations, Appl. Math. & Comp., 19(1-4), pp. 239-264. (Special Issue, Proceedings of
the Second Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO,
S. McCormick, ed.).

. MEURANT [1984). The block preconditioned conjugate gradient method on vector comput-

ers, BIT, 24, pp. 623-633.

. MEURANT [1987). Multitasking the conjugate gradient method on the CRAY X-MP/48,

Parallel Computing, 5, pp. 267~280.
MEURANT [1988). Domain decomposition versus block preconditioning, in Glowinski et al.
[762], pp. 231-249.

. MEYER [1977). Effectiveness of multiprocessor networks for solving the nonlinear Poisson

equation, in Kuck et al. [1133], pp. 323-326.

. MEYER AND L. PODRAZIK [1987]. A parallel first-order linear recurrence solver, J. Par.

Dist. Comp., 4, pp. 117-132.

. MEYER AND L. PODRAZIK [1987]. Parallel implementations of gradient based iterative al-

gorithmae for a class of discrete optimal control prodlems, Proc. 1987 Int. Conf. Par.
Proc., pp. 491494.

MEYER [1986). Numerical algorithms on the Crystal multicomputer, Comm. Appl. Numer.
Meth., 2, pp. 251-254.

[1355]) J. MEZO AND W, SYMES [1987]. Domain decomposition algorithms for linear hyperbolic

equations, Tech. Report 87-20, Department of Mathematical Sciences, Rice University,
August.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 175

[1356] P. MICHIELSE [1987]. Solstion methods for bidiagonal and tridiagonal linear systems for
parallel and vector computers, Tech. Report 87-04, Delft University of Technology, Delft.

[1357] P. MICHIELSE AND H. VAN DER VORST [1986]. Data transport in Wang’s partition method,
Tech. Report 86-32, Delft University of Technology, Delft.

[1358] P. MicHIELSE AND H. VAN DER VORST [1988). Data iransport in Wang’s partition method,
Parallel Computing, 7, pp. 87-88.

[1359] H. MIERENDORFF [1988). Parallelization of multigrid methods with local refinements for a
class of nonshared memory systems, in McCormick [1312}, pp. 449-465.

[1360] J. MIKLOSKO [1984]. Complerity of parallel algorithms, m Mikloeko and Kotov [1363], pp. 45—
63.

[1361] J. MIKLOSKO [1984)]. Correlation of algorithms, software and hardware of parallel computers,
in Miklosko and Kotov [1363], pp. 359-395.

[1362] J. MIKLOSKO [1984). Synthesis of parallel numerical algorithms, in Miklosko and Kotov
[1363], pp. 13-43.

[1363]) J. MIKLOSKO AND V. KOTOV, eds. [1984]. Algorithmse, Sofiware and Hardware of Parallel
Systems, Springer.Verlag, Berlin,

[1364] R. MILLER [1974]. A comparison of some theoretical models of parallel computation, IEEE
Trans. Comput., C-22, pp. 710-717.

[1365] R. MILLER AND Q. STOUT [1985]. Varying diameter and problem size in mesh-connected
computers, Proc. 1985 Int. Conf. Par. Proc., pp. 697-699.

[1366] R. MILLSTEIN [1973]). Control structures in Illiac IV Fortran, Comm, ACM, 16, pp. 622-627.

[1367} M. MiINSKY [1970]. Form and content in computer science, J. ACM, 17, pp. 197-215.

[1368] M. MINSKY AND S. PAPERT [1971]. On some associative, parallel and analog computations,
Associative Information Techniques, E. Jacks, ed., Elsevier, NY.

[1369] W. MIRANKER [1971}. A survey of parallelism in numerical analysis, SIAM Rev., 13,
pp. 524-547.

[1370] W. MIRANKER [1978). Parallel methods for solving equations, Math. Comp. Simul., 20,
pp. 93-101.

[1371] W. MIRANKER [1979). Hierarchical relazation, Computing, 23, pp. 267-285.

[1372] W. MIRANKER AND W. LINIGER [1967]. Parallel methods for the numerical integration of
ordinary differential equations, Math. Comp., 21, pp. 303-320.

[1373] W. MIRANKER AND A. WINKLER [1984]. Spacetime representations of computational struc-
tures, Computing, 32, pp. 93-114.

[1374] A. MiRIN [1987). Ezperiences parallelizing a 8-D MHD code, Annual Controlled Fusion The-
ory Conference, San Diego, CA.

[1375] A. MIRIN [1987]. Multiprocessing efficiency of 8-D MHD calculations on the NMFECC
Cray-2, American Physical Society Division of Plasma Physics Meeting, San Diego,
CA. Paper 6S8.

[1376] A. MIRIN [1987). Predicting multitasking overlap on the NMFECC Cray-2, Twelfth Conf.
on Numerical Simulation of Plasmas, San Francisco, CA. Paper CM3.

[1377] A. MIRIN [1988]. Predicting multiprocessing efficiency on the Cray multiprocessors in a time-
sharing environment/application to a 3-D magnetohydrodynamics code, Tech. Report
UCRL-97580, Lawrence Livermore National Laboratory. Submitted to Computers in
Phys.

[1378] N. MissirLis [1984). A parallel iterative method for solving a class of linear systems, in
Feilmeier et al. [623], pp. 181-189.

[1379] N. MissiRuis [1985). A parallel iterative system solver, Lin. Alg. & Appl., 65, pp. 25—44.

[1380] N. MissIRLIS [1987). Scheduling parallel iterative methods on multiprocessor systems, Parallel

N
N
N
Computing, 5, pp. 295-302.
[1381] N. MissiRLiS AND D. EVaNs [1984]). A second order iterative scheme suitable for parallel im-
plementation, in Vichnevetsky and Stepleman [1920], pp. 203-206.
N. MissirLis AND F. TIAFERIS [1988]. Parallel matriz factorizations on a shared memory
MIMD computer, Proc. Int. Conf. Supercomputing '87, Springer-Verlag.
D. MrITRA [1987). Asynchronous relazations for the numerical solution of differential equa-
tions by parallel processors, SIAM J. Sci. Statist. Comput., 8, pp. 843-858.
K. Miura [1971). The block iterative method for Illiac IV, Doc. 41, Center for Advanced
Computation, University of Illinois at Urbana-Champaign.
[1385] K. MIURA AND K. UCHIDA [1984). FACOM vector processor VP-100/VP-200, in Kowalik
(1116), pp. 127-138.
[1386] J. Mobz [1982]. Jacobi Methods for Eigenvalue and Related Problems in a Parallel Comput-
ing Environment, PhD dissertation, University of London.
[1387} J. Monpi 1988}, Parallel Algorithms and Matriz Computation, Oxford University Press, Ox-

[1382]
[1383]

[1384)

176 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

ford.

[1388] J. MoDi AND G. BOWGEN [1984]. Implementation of QR factorization on the DAP using
Householder transformations, Tech. Report CUED/F-CAMS/TR.241, Cambridge Uni-
versity Engineering Department, Cambridge, UK.

[1389] J. Mopi AND G. BOWGEN [1984]. QR factorization and singular valse decomposition on the
DAP, in Paddon [1512], pp. 209-228.

[1390] J. MoDI AND M. CLARKE [1984). An alternative Givens ordering, Numer. Math., 43, pp. 83—
90,

[1391] J. Mopi1, R. DAVIES, AND D. PARKINSON [1984). Ertension of the parallel Jacobi method to
the generalized eigenvalue problem, in Feilmeier et al. [623], pp. 191-197.

[1392] J. MoD1 AND D. PARKINSON [1982]. Stxdy of Jacobdi methods for eigenvalucs and singular
value decomposition on DAP, Comput. Phys. Comm., 26, pp. 317-320.

[1393] J. Mop1 AND I. PRYCE [1984). Mobile Jacobi schemes for parallcl computation, Tech. Report
CUED/F-CAMS/TR.242, Cambridge University Engineering Department, Cambridge,
UK

[1394] J. Mop1 anD L. PRYCE [1985}. Efficient implementation of Jacobi’s method on the DAP,
Numer. Math., 46, pp. 443-454.

[1395] D. MODIANO [1987]. Performance of a common CFD loop on two parallel architectures,
Tech. Report CFDL-TR-87-11, Massachusetts Institute of Technology.

[1396] J. MOHAN [1984). Performance of parallel programs: Model and analyses, Tech. Report
CMU-CS.84-141, Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA.

[1397] I. MOLCHANOV [1985}). Applications software of the ES multiprocessor computing compler,
Computational Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 99-108,

[1398}] D. MoLDOVAN, C. Wu, AND J. FORTES [1984]). Mapping an arbitrarily large QR algorithm
into a fired size VLSI array, Proc. 1984 Int. Conf. Par. Proc., pp. 365-373.

[1399] C. MOLER [1986]. Matriz computation on distributed memory multiprocessors, in Heath
[858], pp. 181-195.

[1400} R. MONTOYE AND D. LAWRIE [1982]. A practical algorithm for the solution of triangular
systems on a parallel processing system, IEEE Trans. Comput., C-31, pp. 1076-1082.

[1401] J. MOONEY [1986). Simulation of a reaction-diffusion system on large dimpled surfaces using
a vector computer, Math. Comp. Simul., 28, pp. 209-226.

[1402] M. MoORE, R. HIROMOTO, AND O. LUBECK [1984]. Ezperiences with the Denelcor HEP,
Parallel Computing, 1, pp. 197-206.

[1403] W. MOORE AND K. STEIGLITZ [1984]. Efficiency of parallel processing in the solution of
Laplace’s equation, in Vichnevetsky and Stepleman [1920)], pp. 252-257.

[1404] J.-M. MoORF AND J.-M. DELOSME [1981). Mairiz deeompositions and inversions via elemen-
tary signature-orthogonal transformations, ISSM Int. Symp. Mini & Microcomputers in
Control and Measurements, San Francisco.

[1405] A. MORGAN AND L. WATSON [1987]. Solving polynomial systems of equations on a hyper-
cube, in Heath [860], pp. 501-511.

[1406] K. MORIARTY, M. HARAGUCHI, AND C. PANGALI [1984]. Efficient implementation of the
SU(3) lattice gauge theory algorithm on the Fujitsu VP200 vector processor, Comput.
Phys. Comm., 34, pp. 1-8.

[1407] K. MORIARTY AND D. KUBA [1985). Efficient multi-tasking of the SU(8) lattice gauge theory
algorithm on the CRAY-X-MP, Comput. Phys. Comm., 36, pp. 351-362.

[1408} P. MoORICE [1972). Calcul paralléle et décomposition dans la resolution d’equations auz de-
rivées partialles de type elliptique. IRIA, Rocquencourt, France.

[1409] R. MORISON AND S. OTTO [1988). The scattered decomposition for finite elements, J. Sci.
Comput., 2, pp. 59-76.

[1410] M. MORJARIA AND G. MAKINSON [1984]. Unstructured sparse matriz vector multiplication
on the DAP, in Paddon [1512], pp. 157-166.

[1411] T. MOTO-OKA, ed. [1982]. Fifth Generation Computer Systems, North-Holland, New York.

[1412] T. MOTO-OKA [1984). Japanese project on fifth generation compuler systems, in Kowalik
[1116), pp. 99-116.

[1413] H. MUHLENBEIN AND S. WARHANT [1985]. Concurrent mulligrid methods in an object-
oriented environment, Proc. 1985 Int. Conf. Par. Proc., pp. 143-146.

[1414] H. MukaI [1981). Parallel algorithms for solving systems of nonlinear equations, Comp.
Math. Appl., 7, pp. 235-250.

[1415] H. MOLLER, W. SCHONAUER, AND E. SCHNEPF [1985). Design considerations for the linear
solver LINSOL on a CYBER 205, Supercomputer Applications, A. Emmen, ed., North-
Holland, Amsterdam, pp. 39—49.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 177

[1416] H. MOLLER, W. SCHONAUER, AND E. SCHNEPF [1985). Vergleich ver-

schiedener Losungsverfahren fir lineare Gleichungen mit Diagonalenspeicherung auf
der CYBER 205. Mitteilungen Nr. 3, Gesellachaft fiir Informatik, Parallel-algorithmen
und -Rechnerstrukturen (PARS).

[1417] D. MULLER- WICHANDS AND W. GENTZSCH [1982). Performance comparisons among several

parallel and vector computers on a sct of fluid flow prodlems, Tech. Report IB 262-82
RO1, DFVLR, Goettingen.

[1418] W. MYERS [1986). Getting the cycles out of a supercomputer, Computer, 19(3), pp. 89-92.
[1419] K. NAGEL [1979}. Weather simulation with the multi-microprocessor system SMS 701, Mil-

itary Electronics Defense EXPO 78, Proceedings of the Conference, Wiesbaden, West
Germany, Oct. 3-5, Interario, S.A. Geneva, pp. 60-67.

[1420] V. NaIK AND M. PATRICK [1987]. Analysis of communication requirements of sparse

Cholesky factorization with nested disscction ordering, Proc. of the Third SIAM Con-
ference of Parallel Processing for Scientific Computing, Los Angeles.

[1421} V. NaK AND M. PATRICK [1988]. Data traffic reduction schemes for sparse Cholesky fac-

torizations, Tech. Report 88-14, ICASE, NASA Langley Research Center, Hampton,
VA.

[1422] V. NAIK AND S. TA'ASAN [1987]. Implementation of multigrid methods for solving Navier-

Stokes equations on a multiprocessor system, Tech. Report 87-37, ICASE, NASA Lan-
gley Research Center, Hampton, VA.

[1423] V. NAIK AND S. TA’ASAN [1987). Performance studies of the multigrid algorithms imple-

mented on hypercube multiprocessor systems, in Heath [860)], pp. 720-729.

[1424] K. NAKAJIMA [1984). A graph theoretical approach to parallel triangulation of a sparse asym-

metric mairiz, Proceedings of 1984 Conf. on Information Science and Systems.

[1425] N. NANDAKUMAR [1986]. Polynomial preconditionsng of symmetric indefinite systems, Tech.

Report 580, Center for Supercomputing Research and Development, University of llinois
at Urbana-Champaign, June.

[1426] J. Nasr AND S. HANSEN [1988]. Modified Fadeeva algorithm for concurrent execution of lin-

ear algebraic operations, IEEE Trans. Comput., 37, pp. 129-137.

[1427] J. NAVARRO, J. LLABERIA, AND M. VALERO [1986}. Solving matriz problems with no size re-

striction on a systolic array processor, Proc. 1986 Int. Conf. Par. Proc., pp. 676-683.

[1428] J. NAVARRO, J. LLABERIA, AND M. VALERO [1987]. Partitioning: An essential step in map-

ping algorithms, Computer, 20(7), pp. 77-89.

[1429] 1. NAvON, P. PHUA, AND M. RAMAMURTHY [1987). Vectorization of conjugate-gradient

[1430)
[1431]
[1432]

[1433]
[1434]

[1436)
[1437)
[1438)
[1439)

[1440)

methods for large-scale minimization, Tech. Report FSU-SCRI-87-43, Supercomputer
Computations Research Institute, Florida State University, Tallahassee, FL, August.
B. NETA AND H.-M. Ta1[1985). LU factorization on parallel computers, Comput. Math.
Appl, 11, pp. 573-580.
M. NEUMANN AND R. PLEMMONS [1987]. Convergence of parallel multisplitting iterative
methods for M-matrices, Lin. Alg. & Appl., 88, pp. 559-575.
K. NEVEs [1982]. Mathematical libraries for vector computers, Comput. Phys. Comm., 26,
pp. 303-310.
K. NEVES [1984]. Vectorization of scientific software, in Kowalik [1116], pp. 277-291.
E. NG, S. THOMPSON, AND P. TUTTLE [1987). Ezperiments with method of lines solvers on
a shared-memory parallel computer, in Vichnevetsky and Stepleman [1921], pp. 161-166.
[1435] L. Nz AND K. HWANG [1983]. Pipelined evaluation of first-order recurrence systems, Proc.
1983 Int. Conf. Par. Proc., pp. 537-544.
D. NicoL [1987]. Mapping a battlefield simulation onto message-passing parallel architec-
tures, Tech. Report 87-51, ICASE, NASA Langley Research Center, Hampton, VA.
D. NicoL [1987]. Performance issues for domain-oriented time-driven distributed simula-
tions, Tech. Report 87-50, ICASE, NASA Langley Research Center, Hampton, VA,
D. NicoL [1988}. Parallel algorithms for mapping pipelined and parallel computations, Tech.
Report 88-2, ICASE, NASA Langley Research Center, Hampton, VA.
D. Nicor AND P. REYNOLDS [1987]. Optimal dynamic remapping of parallel computations,
Tech. Report 87-49, ICASE, NASA Langley Research Center, Hampton, VA.
D. NIcOL AND J. SALTZ [1987). Principles for problem aggregation and assignment in
medium scale multiprocessors, Tech. Report 87-39, ICASE, NASA Langley Research
Center, Hampton, VA.

[1441] D. NicoL AND J. SALTZ [1987). Schedules for mapping irregular parallel computations, Tech.

Report 87-52, ICASE, NASA Langley Research Center, Hampton, VA, September.

[1442] D. Nicou AND J. SALTZ [1988]. Dynamic remapping of parallel computations with varying

resource demands, IEEE Trans. Comput., 37(9), pp. 1073-1087.

178 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[1443] D. NicoL AND F. WILLARD [1987]. Problem size, parallel arehitecture and optimal speedup,
Proc. 1987 Int. Conf. Par. Proc., pp. 347-354.
[1444] J. NIEVERGELT [1964]). Parallel methods for integrating ordinary differential equations,
Comm. ACM, 7, pp. 731-733.
[1445] A. NoBILE AND V. ROBERTO [1986]. Efficient implementation of multidimensional and fast
Fourier transforms on a CRAY X-MP, Comput. Phys. Comm., 40, pp. 189-202.
[1446] J. NOCEPURENKO [1988]. A polynomially stable fast parallel algorithm for iridiagonal sys-
tems, USSR Comput. Math. & Math. Phys., 26.4, pp. 1-5.
[1447] T. NODERA [1984]. PCG method for four color ordered finite difference schemes, in Vichn-
evetsky and Stepleman [1920], pp. 222-228.
[1448] J. NoLEN, D. KuBA, AND M. Kascic [1979]. Application of vector processors to the solution
of finste difference equations, Fifth Symposium on Reservoir Simulation. Also in SPEJ].,
August 1981.
[1449] J. NOLEN AND P. STANAT {1981). Rescrvoir simulation on veetor processing computers, Pa-
per 9649, SPE. SPE Middle East Oil Tech. Conf, Manama, Bahrain.
[1450] A. NOOR, ed. [1983). Impact of New Computing Systems on Computational Mechanics, The
American Society of Mechanical Engineers.
[1451] A. NooRr AND R. FULTON [1975]. Impact of the CDC-STAR-100 computer on finite-clement
systems, J. Structural Div., ASCE, 101(ST4), pp. 287-296.
[1452] A. NOOR AND S. HARTLEY [1978]. Evaluation of element stiffness matrices on CDC STAR-
100 computer, Computers and Structures, 9, pp. 151-161.
. Noor, H. KAMEL, AND R. FULTON [1978). Substructuring technigues — Status and pro-
jections, Computers and Structures, 8, pp. 621-632.
. NOOR AND J. LAMBIOTTE [1978). Finite element dynamic analysis on the CDC STAR-
100 computer, Computers and Structures, 10, pp. 7-19.
. NOOR AND J. PETERS [1986]. Element stiffncss computation on CDC Cyber 205 com-
puter, Comm. Appl. Numer. Meth., 2, pp. 317-328.

[1453] A
A
A
[1456] A. NOOR, O. STORAASLI, AND R. FULTON [1983]. Impact of new computing systems én finite
A
C
D

[1454]

[1455)

element computations, in Noor [1450], pp. 1-32.
. Noor AND S. Voier [1975]. Hypermatriz scheme for the STAR-100 computer, Comput-
ers and Structures, 5, pp. 287-296.
. NORRIE [1984). Supercomputers for superproblems: An architectural introduction, Com-
puter, 17(3), pp. 62-74.
. NORRIE [1984). The finite element method and large scale computation, Proc. 4th Int.
Symp. on Finite Element Methods in Flow Problems, Tokyo, University of Tokyo Press,
North-Holland Publishing Co., pp. 947-954.
[1460] A. NORTON AND G. PFISTER [1985]. A methodology for predicting multiprocessor perfor-
mance, Proc. 1985 Int. Conf. Par. Proc., pp. 772-781.

[1461] A. NORTON AND A. SILBERGER [1987). Parallelization and performance analysis of the
Cooley-Tukey FFT algorithm for shared-memory architectures, IEEE Trans. Comput.,
C-36, pp. 581--591.

[1462] D. NosENCHUCK, D. KRisT, AND T. ZANG [1988]. On multigrid methods for the Navier-
Stokes computer, in McCormick [1312].

[1463] D. NoseNcHUCK AND M. LITTMAN [1986]. The coming of age of the parallel processing su-

percomputer, 23rd Annual Space Conf., Kennedy Space Center, Florida, April.
[1464] D. NOSENCHUCK AND M. LITTMAN [1986). The Navier-Stokes computer, Symp. on Future
Directions in Computational Mechanics, ASME Winter Meeting, December.

[1465] D. NOSENCHUCK, M. LITTMAN, AND W. FLANNERY [1986). Two-dimensional nonsteady vis-
cous flow simulation on the Navier-Stokes computer mini-node, J. Sci. Comput., 1,
pp. 53-73.

[1466] B. NOUuR-OMID AND K. PARK [1987]. Solving structural mechanics problems on the Caltech
hypercube, Comput. Meth. Appl. Mech. Engrg., 61, pp. 161-176.

[1467] B. NourR-OmID, B. PARLETT, AND A. RAEFsKY [1988]. Comparison of Lanczos with conju-
gate gradient using element preconditioning, in Glowinski et al. [762], pp. 250-260.

[1468] B. NOUR-OMID, A. RAEFSKY, AND G. LYZENGA [1987]. Solving finite element equations on
concurrent computers, Proceedings of the ASME Symposium on Parallel Computations
and their Impact on Mechanics, December13-18.
[1469}] R. NUMRICH, ed. [1985]. Supercomputer Applications Symposium, Proceedings of Sympo-
sium ot Purdue University, October 81 - November 1, 1984.

[1470] W. OAKEs AND R. BROWNING [1979}. Ezperience running ADINA on CRAY-1, Proc. AD-
INA Conf. Report 82448 9, Massachusetts Institute of Technology.

[1471} S. O’DONNELL, P. GEIGER, AND M. SCHULTZ [1983]. Solving the Poisson equation on the

[1457}
[1458]

[1459]

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 179

FPS-164, Tech. Report YALEU/DCS/RR-292, Department of Computer Science, Yale
University.

[1472]) S. O'DONNELL AND V. ROKHLIN [1987]). A fast algorithm for the numerical evaluation of

[1473)
[1474]

[1475]

[1477]

[1478]

[1479)
[1480]

[1481]

[1483]
[1484]

[1485]

[1486] D.

[1487) P.

[1488] P.
[1489] P.

ol

[1490]

[1491] K.

[1492) T.

[1493] T.

[1494] T.

[1495] T.

[1496] D.

[1497] D.

w
w
w
[1476] W.
w
M

D
D
D
[1482] D.
D
D
D

conformal mappings, Tech. Report YALEU/DCS/RR-554, Department of Computer
Science, Yale University, July.

. OED AND O. LANGE [1983). The solution of linear recurrence relations on pipelined pro-

cessors, Proc. 1983 Int. Conf. Par. Proc., pp. 545-547.

. OED AND O. LANGE [1984]. Transforming linear recurrence relations for vector proces-

sors, in Feilmeier et al. [623], pp. 211-2186.

. OED AND O. LANGE [1985). On the effective bandwidth of interleaved memories in vector

processor sysiems, Proc. 1985 Int. Conf. Par. Proc., pp. 33-40.
OED AND O. LANGE [1985). On the effective bandwidth of interleaved memories in vector
processor systems, IEEE Trans. Comput., C-34, pp. 949-957.

. OED AND O. LANGE [1986]. Modcling, measurement, and simulation of memory inter-

ference in the CRAY X-MP, Parallel Computing, 3, pp. 343-358.

. OGURA, M. SHER, AND J. ERICKSEN [1972). A study of the efficiency of ILLIAC IV in

hydrodynamic calculations, Tech, Report 59, Center for Advanced Computation, Uni-
versity of Illinois at Urbana-Champaign.

. O'LEARY [1984). Ordering schemes for parallel processing of certain mesh problems,

SIAM J. Sai. Statist. Comput., 5, pp. 620-632.

. O'LEARY [1987). Parallel implementation of the block conjugate gradiant algorithm, Par-

allel Computing, 5, pp. 127-140.

. O'LEARY [1987). Systolic arrays for matriz transpose and other reorderings, IEEE Trans.

Comput., C-36, pp. 117-122.
O'LEARY AND G. STEWART [1985). Data-flow algorithms for parallel matriz computa-
tsons, Comm. ACM, 28, pp. 840-853.

. O'LEARY AND G. STEWART [1986). Assignment and scheduling in parallel matriz factor-

ization, Lin. Alg. & Appl., 77, pp. 275-300.

. O'LEARY AND G. STEWART [1987]. From determinacy to systolic arrays, IEEE Trans.

Compnut., C-36, pp. 1355-1359.

. O’LEARY, G. STEWART, AND R. VAN DE GEWN [1986]. DOMINO: A message passing en-

vironment for parallel computations, Tech. Report TR-1648, Department of Computer
Science, University of Maryland, April.

O'LEARY AND R. WHITE [1985]. Multi-splittings of matrices and parallel solution of lin-
ear systems, SIAM J. Algebraic Discrete Methods, 6, pp. 630-640.

OLEINICK [1978]). The Implementation of Parallel Algorithms on an Asynchronous Mul-
tiprocessor, PhD dissertation, Carnegie-Mellon University, Department of Computer
Science.

OLEINICK [1982], Parallel Algorithms on a Multiprocessor, UMI Research Press.

OLEINICK AND S. FULLER [1978]. The implementation of a parallel algorithm on C.mmyp,
Tech. Report CMU-CS-78-125, Department of Computer Science, Carnegie-Mellon Uni-
versity.

. OLIGER [1986]. Parallelism and uncertainty in scientific computations, International

Congress on Computational and Applied Mathematics, University of Leuven, Belgium.

ONAGA AND T. TAKECHI [1986). A wavefront algorithm for LU decomposition of a parti-
tioned matriz on VLSI processor arrays, J. Par. Dist. Comp., 3, pp. 137-157.

OPPE AND D. KINCAID [1987]. Numerical experiments with a parallel conjugate gradient
method, Tech. Report CNA-208, Center for Numerical Analysis, University of Texas at
Austin.

OPPE AND D. KINCAID [1987]. The performance of ITPACK on vector computers for
solving large sparse linear systems arising in sample osl reservoir simulation problems,
Comm. Appl. Numer. Meth., 3, pp. 23-30.

OPsAHL [1984}. DAP-TRAC: A Practical Application of Parallel Processing to a Large
Engineering Code, PhD dissertation, University of London.

OPSAHL AND D. PARKINSON [1986}. An algorithm for solving sparse sets of linear equa-
tions with an almost tridiagonal structure on SIMD computers, Proc. 1986 Int. Conf.
Par. Proc., pp. 369-374.

ORBITS [1978). A Cray-1 timing simulator, Tech. Report 118, Systems Engineering Lab-
oratory, University of Michigan.

ORBITS AND D. CALAHAN [1976]. Data flow considerations in implementing a full ma-
triz solver with backing store on the CRAY-1, Tech. Report 98, Systems Engineering
Laboratory, University of Michigan.

180

[1498] D:

[1499] S.
[1500] S.
[1501] S.
[1502] J.
[1503] J.
[1504] J.
[1505) J.
[15086] J.
[1507] J.
[1508] N.

[1509] N.

[1510] G.

[1511] Y.
[1512] D.
[1513] Y.

[1514] Y.
[1515] J.

[1516}

(1517}

[1518] D
[1519] D
[1520] D
[1521] D
[1522] D.
[1523] D.
[1524] D.
[1525] D.
[1526] D.

[1527] D.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

ORBITS AND D. CALAHAN [1978]. A CRAY-1 simulator and its application to develop-
ment of high performance codes, Proc. LASL Workshop on Vector and Parallel Proces-
soTs.

ORSZAG AND A. PATERA [1981). Calexlation of Von Karman's constant for turbulent
channel flow, Phys. Rev. Lett., 47, pp. 832-835.

ORSZAG AND A. PATERA [1981). Subcritical transition to turbulence in planar shear flows,
Transition and Turbulence, R. Meyer, ed., Academic Press, New York, pp. 127-146.

ORSZAG AND A. PATERA [1983). Secondary instability of wall bounded shear flows, J. Fluid
Mech., 128, pp. 347-385.

ORTEGA [1987). The ijk forms of factorization methods I. Vector computers, Parallel
Computing, 7(2), pp. 135-148.

ORTEGA [1988], Introduction to Parallel and Vector Solution of Linear Systems, Plenum
Press.

ORTEGA AND C. ROMINE [1988). The ijk forms of factorization II. Parallel systems, Par-
allel Computing, 7(2), pp. 149-162.

ORTEGA AND R. VOIGT [1977). Solution of partial differential cquations on vector com-
puters, Proc. 1977 Army Numerical Analysis and Computers Conference, pp. 475-525.

ORTEGA AND R. VOIGT [1985]. Solution of partial differential cquations on vecior and
parallel computers, SIAM Rev., 27, pp. 149-240.

ORTEGA AND R. VoIGT [1987]. A bibliography on parallel and vector mumerical algo-
rithms, Tech. Report 1-3, ICASE, NASA Langley Research Center, Hampton, VA.

OSTLUND [1985). Waterloop V2/64: A highly parallel machine for numerical computa-
tion, Comput. Phys. Comm., 37, pp. 109-117.

OSTLUND, P. HIBBARD, AND R. WHITESIDE [1982). A case study in the application of a
tightly coupled multi-processor to scientific computations, in Rodrigue [1643], pp. 375~
364.

OSTROUCHOV [1987). Parallel computing on o hypercube: An overview of the architec-
ture and some applications, Proc. 19th Symp. on the Interface of Computer Science
and Statistics, M. Heiberger, ed., Washington, D.C., American Statistical Association,
pp. 27-32.

OYANGAI [1986]. An incomplete LDU decomposition of lattice fermions and its applica-
tion to conjugate residual methods, Comput. Phys. Comm., 42, pp. 333-344.

PADDON, ed. [1984). Supercomputers and Parallel Computation, Clarendon Press, Ox-
ford.

PAKER [1977]). Application of microprocessor networks for the solution of diffusion equa-
tions, Math. Comp. Simul., 19, pp. 23-27.

PAKER [1983), Multi-Microprocessor Systems, Academic Press, New York, NY.

PALMER [1974). Conjugate Direction Mecthods and Parallel Computing, PhD dissertation,
Stanford University, Department of Computer Science.

. PaN AND J. REIF [1985). Efficient parallel solution of linear systems, Proc. 17th Annual

ACM Symposium on Theory of Computing, pp. 143-152.

. PARGAS [1982]. Parallel Solution of Elliptic Partial Differential Equations on a Tree Ma-

chine, PhD dissertation, University of North Carolina, Chapel Hill, Department of Com-
puter Science.

. PARKER [1980]. Notes on shuffle/exchange type switching networks, IEEE Trans. Com-

put., C-29, pp. 213-222.

. PARKINSON [1976). The ICL Distributed Array Processor DAP, Computational Methods

in Classical and Quantum Physics, M. Hooper, ed., Adv. Pub. Ltd.

. PARKINSON [1982]. The Distributed Array Processor (DAP), Comput. Phys. Comm., 28,

pp- 325-336.

. PARKINSON [1982]. Using the ICL DAP, Comput. Phys. Comm., 26, pp. 227-232.

PARKINSON [1984]. Ezrperience in ezploiting large scale parallelism, in Kowalik [1116],
pp. 247-256.

PARKINSON [1984). The solution of N linear equations using P processors, in Feilmeier
et al. [623], pp. 81-87.

PARKINSON [1986). Parallel efficiency cen be greater than unity, Parallel Computing, 3,
PP, 261-262.

PARKINSON [1987). Organizational aspects of using parallel computers, Parallel Comput-
ing, 5, pp. 75-84.

PARKINSON AND H. LIDDELL [1982]. The measurement of performance on a highly parallel
system, IEEE Trans. Comput., C-31, pp. 32-37.

PARKINSON AND M. WUNDERLICH [1984). A compact algorithm for Gaussian elimination

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 181

over GF(2) implemented on highly parallel computcrs, Parallel Computing, 1, pp. 65-73.

[1528] B. PARLETT, B. NOUR-OMID, AND J. JATVIG [1985). Implementation of Lanczos algorithms
on vector computers, in Numrich [1469), pp. 1-18.

[1529] S. PARTER, ed. [1984). Large Scale Scientific Compstation, Academic Press, Orlando, FL.

[1530] S. PARTER AND M. STEUERWALT [1982]). Block iterative methods for elliptic and parabolic
difference eguations, SIAM J. Numer. Anal., 19, pp. 1173-1195,

[1531] S. PARTER AND M. STHUERWALT [1985]. Block iterative mecthods for elliptic finite element
equations, SIAM J. Numer. Anal., 22, pp. 146-179.

[1532} S. PARTER AND S. STEUERWALT [1980]. On k-line and k X k block iterative schemes for a
prodlem arising in 3-D elliptic difference eguations, SIAM J. Numer. Anal., 17, pp. 823—
839.

[1533]) H. PARTRIDGE AND C. BAUSCHLICHER [1986]. Algorithms vs. architectures for computational
chemistry, Tech. Report TR 86.3, RIACS, NASA Ames Research Center, January.

[1534) J. PaSCIAK [1988]. Domatn decomposition preconditioners for elliptic prodlems in two and
three dimensions: First approach, im Glowinski et al. [762], pp. 62-72.

[1535]) K. PATEL [1982). Paralle! computation and numerical optimization, Tech. Report 129, NOC,
Hatfield, Herts.

[1536] K. PATEL [1984). Implementation of a parallel (SIMD) modified Newton algorithm on the
ICL DAP, in Paddon [1512}, pp. 229-249.

[1537] N. PaTEL [1983]. A Fully Vectorized Numerical Solution of the Incompressible Navier-Stokes
Equations, PhD dissertation, Mississippi State University, December.

[1538] N. PATEL AND H. JORDAN [1984). A parallelized point rowwise successive over-relazation
method on a multiprocessor, Parallel Computing, 1, pp. 207-222.

[1539] A. PATERA [1986]. Fast direct Poisson solvers for high order finite element diseretization in
rectangularly decomposable domains, J. Comp. Phys., 65, pp. 474-480.

[1540] M. PATRICK AND T. PRATT [1986]. Communication oriented programming of parallel itera-
tive solutions of sparse linear systems, Comm. Appl. Numer. Meth., 2, pp. 255-261.

[1541] M. PATRICK, D. REED, AND R. VOIGT [1987). The impact of domain partitioning on the per-
formance of a shared memory multiprocessor, Parallel Computing, 5, pp. 211-218.

[1542] P. PATTON [1985]. Multiprocessors: Architecture and applications, Computer, 18(6),
PP. 929-940.

[1543] G. PAUL AND W. WILSON [1978]. An introduction to VECTRAN and its use in scientific
applications programming, Proc. of LASL Workshop on Vector and Parallel Processors.

[1544] G. PAwLEY AND G. THOMASs [1982]. The implementation of lattice calculations on the DAP,
J. Comp. Phys., 47, pp. 165-178.

[1545) M. PEASE [1967). Matriz inversion using parallel processing, J. ACM, 14, pp. 757-764.

[1546] M. PEASE [1968). An adaptation of the fast Fourier transform for parallel processing, J.
ACM, 15, pp. 252-264.

[1547] M. PEASE [1977]. The indirect binary n-cube microprocessor array, IEEE Trans. Comput.,
26(5), pp. 458-473.

[1548] W. PELKA AND A. PETERS [1986). Finite clement ground water models implemented on vec-
tor computers, I. J. Num. Meth. Fluids, 6, pp. 913-926.

[1549] R. PERROTT [1979). A standard for supercomputer languages, in Jesshope and Hockney [976],
PpP- 291-308.

[1550] R. PERROTT [1987]. Language developments for supercomputers, Supercomputer, 19, pp. 19-
26.

[1551] C. PESKIN [1981]. Ultracomputer implementation of odd-even cyclic reduction, Ultracom-
puter Note 19, Department of Computer Science, New York University, January.

[1552] F. PETERS [1981}. Tree machines and divide-and-congquer algorithms, CONPAR 81, Lecture
Notes in Computer Science 111, W. Handler, ed., Berlin, Springer-Verlag, pp. 25-36.

[1553] F. PETERS [1984). Parallel pivoting algorithms for sparse symmetric matrices, Parallel Com-
puting, 1, pp. 99-110.

[1554) F. PETERS [1985). Parallelism and sparse linear equations, Sparsity and Its Applications,
D. Evans, ed., Cambridge University Press, pp. 285-301.

[1555] J. PETERSON [1977]. Petri nets, ACM Computing Surveys, 9, pp. 223-252.

[1556} J. PETERSON, J. TuaZON, D. LIEBERMAN, AND M. DANIEL [1985]. The Mark III hypercube-
ensemble concurrent computer, Proc. 1985 Int. Conf. Par. Proc., pp. 71-73.

[1557] V. PETERSON [1978]. Computational acrodynamics and the NASF, Tech. Report CR-2032,
NASA Ames Research Center.

[1558] V. PETERSON [1984). Application of supercomputers to computational aerodynamics, Tech.
Report TM-85965, NASA Ames Research Center.

[1559] V. PETERSON [1984}. Impact of computers on aerodynamics research and development, Proc.

182 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

IEEE, 72, pp. 68-79,

[1560) W. PETERSON [1983]. Vector Foriran for nsymerical problems on CRAY-1, Comm. ACM,
26, pp. 1008-1021.

[1561] G. PrisTER, W. BRANTLEY, D. GEORGE, S. HARVEY, W. KLEINPELDER, K. MCAULIFFE,
E. MELTON, V. NORTON, AND J. WEIss [1985]. The IBM rescarch parallel processor pro-
totype (RP3): Introduction and architecture, Proc. 1985 Int. Conf. Par. Proc., pp. 764—
771.

[1562] G. PFISTER AND V. NORTON [1985). Hot spot contention and combining in multistage inter-
connection networks, Proc. 1985 Int. Conf. Par. Proc., pp. 790-797.

[1563] B. PHILLIPPE [1987). An algorithm to improve nearly orthonormal sets of vectors on o vector
processor, SIAM J. Algebraic Discrete Methods, 8, pp. 396-—403.

[1564] D. PIERCE [1987). Implementing domain decoupled incomplete factorizations and a parallel
conjugate gradient method on the Sequent Balance 21000, Tech. Report ETA-TR-61,
Boeing Computer Services, August.

[1565) D. PIERRE [1973]. A nongradient minimization algorithm having parailel structure, with im-
plementation for an array processor, Comput. Elect. Engrg., 1, pp. 3-21.

[1566] 1. PLANDER [1984). Parallel proccssors and mullicomputer systems, in Miklosko and Kotov
[1363], pp. 273-321.

[1567] G. PLATZMAN [1979). The ENIAC computations of 1950 — Gateway to numerical weather
prediction, Bull. Amer. Meteor. Soc., 60, pp. 302-312.

[1568] R. PLEMMONS [1986). A parallel block iterative scheme applied to computations in structural
analysis, SIAM J. Algebraic Discrete Methods, 7, pp. 337-347.

[1569] C. POLYCHRONOPOULOS [1986]. On program restructuring, scheduling, and communication
for parallel processor systems, Tech. Report 595, Center for Supercomputing Research
and Development, University of Illinois at Urbana-Champaign, August.

[1570] C. POLYCHRONOPOULOS AND U. BANERIEE [1986). Speedup bounds and processor allocation
Jor parallel programs on multiprocessors, Proc. 1986 Int. Conf. Par. Proc., pp. 961-968.

[1571] E. POOLE [1986]. Multi-color Incomplete Cholesky Conjugate Gradient Methods on Vector
Computers, PhD dissertation, The University of Virginia, Department of Applied Math-
ematics.

[1572] E. POOLE AND J. ORTEGA [1984). Incomplete Choleski conjugate gradient on the CYBER
£038/205, in Numrich [1469}, pp. 19-28.

[1573] E. POOLE AND J. ORTEGA [1987). Multicolor ICCG methods for vector computers, SIAM J.
Numer. Anal., 24, pp. 1394-1418,

[1574] W. POOLE AND R. VOIGT [1974). Numerical algorithms for parallel and vector computers:
An annotated bibliography, Comp. Rev., 15, pp. 379-388.

[1575] D. PoPLAWSKI [1988]. Mapping rings and grids onto the FPS T-series hypercube, Parallel
Computing, 7, pp. 1-10.

[1576] P. Porra [1987]. Implicit finite difference simulation of an internal flow in a nozzle: An
ezample of a physical application on a hypercube, Tech. Report YALEU/DCS/RR-553,
Department of Computer Science, Yale University.

[1577) P. Porra [1987). Implicit finite-difference simulation of an internal flow on a hypercube,
Tech. Report YALEU/DCS/RR-594, Department of Computer Science, Yale University.

[1578} T. PORTA [1987]. A programmable systolic array for factorial data analysis part I. Matriz
computations, Tech. Report YALEU/DCS/RR-542, Department of Computer Science,
Yale University.

[1579] T. PORTA [1987]. A programmable systolic array for factorial data analysis part II. The sym-
metric eigenvalue problem, Tech. Report YALEU/DCS/RR-543, Department of Com-
puter Science, Yale University.

[1580] A. POTHEN [1988]. Simplicial cligues, shortest climination trees and supernodes in sparse
Cholesky factorization, Tech. Report CS-88-13, Department of Computer Science, Penn-
sylvania State University.

[1581] A. POTHEN AND P. RAGHAVAN [1987). Distributed orthogonal factorization: Givens and
Householder algorithms, Tech. Report CS-87-24, Department of Computer Science,
Pennsylvania State University.

[1582] A. POTHEN, J. SOMESH, AND U. VEMULAPATI [1987). Orthogonal factorization on a dis-
tributed memory multiprocessor, in Heath [860], pp. 587-596.

[1583} J. PoTTER [1983]. I'mage processing on the Massively Parallel Processor, Computer, 16(1),
Pp. 62-67.

[1584] J. POTTER, ed. [1985)]. The Massively Parallel Processor, MIT Press, Boston, MA.

[1585] C. POTTLE [1979). Solution of sparse linear equations arising from power system simulation
on vector and parallel processors, ISA Trans., 18(3), pp. 81-88.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 183

[1586] F. PREPARATA AND D. SARWATE [1978). An improved parallel processor bound in fast matriz
inversion, Inf. Proc. Letts., 7, pp. 148-150,

[1587} F. PREPARATA AND J. VUILLEMIN [1980}. Optimal integrated-circuit implementation of iri-
angular matriz inversion, Proc. 1980 Int. Conf. Par., pp. 211-216.

[1588] F. PREPARATA AND J. VUILLEMIN [1981). The cube-connected cycles: A versatile network for
parallel computation, Comm. ACM, 24, pp. 300-309.

[1589} H. PRICE AND K. COATS [1974). Direct methods in reservoir simulation, J. Soc. Pet. Eng.,
14, pp. 295-308.

[1590] D. PRYOR AND P. BURNS [1987). A parsllel Monte Carlo model for radiative heat transfer,
Tech. Report 87001, Institute for Scientific Computing, Fort Collins, CO.

[1591] T. PurLiaM AND H. LOMAX [1979]. Simulation of three-dimensional compressible vizcous
flow on the Illiac IV computer, AIAA J., 18, pp. 159-167.

[1592] L. PYLE AND S. WHEAT [1984). A Koasloff/basal method 3D migration program smplemented
on the CYBER 205 supercomputer, in Gary [700], pp. 327-358.

[1593] G. QING-sHI AND W. RONG-QUAN [1983). Vector computer for sparsc malriz operations,
Proc. 1983 Int. Conlf. Par. Proc., pp. 87-89.

[1594] A. QUARTERONI AND G. SACCHI-LANDRIANI {1988). Domain decomposition preconditioners
Jor the spectral collocation method, Tech. Report 88-11, ICASE, NASA Langley Research
Center, Hampton, VA, January.

[1595} D. QUINLAN [1988). Multilevel load balancing for hyercubes, in McCormick [1312].

[1596] M. QUINN [1987], Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, New
York.

[1597] C. RapeHaus, M. WaLpowskl, K. KARDELL, J. BERKEMEIER, M. WIESEMAN, AND
H. PurviNs [1985]. Special purpose computer for non-linear differential equations, Com-
put. Phys. Comm., 36, pp. 345-350.

[1598] S. RAJAN [1972). A parallel algorithm for high-speed subsonic compressible flow over a cir-
cular cylinder, J. Comp. Phys., 12, pp. 534-552.

[1599] 1. RAJU AND J. CREWS [1982]. Three-dimensional analysis of [0/90], and [90/0], laminates
with a central circular hole, Composite Tech. Rev., 4(4), pp. 116-124,

[1600] I. RAMAKRISHNAN AND P. VARMAN [1984]. Modular matriz multiplication on a linear array,
IEEE Trans. Comput., C-33, pp. 952-958.

[1601] 1. RAMAKRISHNAN AND P. VARMAN [1985]. An optimal family of matriz multiplication algo-
rithms on linear arrays, Proc. 1985 Int. Conf. Par. Proc., pp. 376-383.

[1602] C. RAMAMOORTHY, K. CHANDY, AND M. GONZALEZ [1972]. Optimal scheduling strategies in
a multiprocessor system, IEEE Trans. Comput., C-21, pp. 137-146.

[1603] C. RAMAMOORTHY AND H. LI [1977]). Pipeline architecture, ACM Computing Surveys, 9,
pp. 61-102.

[1604] M. RAMAMURTHY [1987]. Performance improvement beyond vectorization on the Cyber 205,
Supercomputer, 22, pp. 41-51.

[1605] A. RANADE [1985]. Interconnection networks and parsllel memory organizations for array
processing, Proc. 1985 Int. Conf. Par. Proc., pp. 41-47.

[1606] J. RANSON, O. STORAASLI, AND R. FULTON [1984]. Application of concurrent processing to
structural dynamic response computations, Research in Structures and Dynamics —
1984, NASA, pp. 31-44. NASA CP 2335.

[1607] L. RASKIN [1978). Performance evaluation of multiple processor systems, Tech. Report
CMU-CS-78-141, Department of Computer Science, Carnegie-Mellon University.

[1608] J. RATTNER [1985). Concurrent processing: A new direction in scientific computing, Conf.
Proc. 1985 Nat. Comp. Conf., vol. 54, AFIPS, pp. 157-166.

[1609] W. Ray [1984], Cyberplus: A multiparallel operating system. Presented at the Los Alamos
Workshop on Operating Systems and Environments for Paralle] Processing, August 7-9,
Loe Alamos, NM.

[1610] G. REA [1983]. A software debugging aid for the Finite Element Machine, Tech. Report,
Department of Computer Science, University of Colorado.

[1611] S. REDDAWAY [1979). The DAP approach, in Jesshope and Hockney [976], pp. 309-329.

[1612] S. REDDAWAY [1984). Distributed array processor, architecture and performance, in Kowalik
[1116], pp. 89-98.

[1613] D. REDHED, A. CHEN, AND S. HoTOvY [1979]. New approach to the 3D transonic flow anal-
ysis using the STAR-100 computer, AIAA J., 17, pp. 98-99.

[1614] D. REED [1983). Performance Based Design and Analysis of Multimicrocomputer Networks,
PhD dissertation, Purdue University.

[1615] D. REED, L. ADAMS, AND M. PATRICK [1987]. Stencils and problem partitionings: Their in-
Aluence on the performance of multiple processor systems, IEEE Trans. Comput., C-36,

184

[1616]
(1617)
[1618)
[1619)
[1620]
[1621)
[1622]
[1623)

[1624]

[1625)
[1626]
[1627]
[1628]
[1629)

[1630]
[1631]

[1632]
[1633]

[1634]
[1635]

[1636]
[1637]
[1638]
[1639]
[1640]
[1641]
[1642]
[1643]
[1644)
[1645)

[1646]

J.

G.

B

E.

J.

J

J.

J.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

pp. 845-858.

. REED AND M. PATRICK [1984]. A model of asynchronous iterative algorithms for solving

large sparse linear sysiems, Proc. 1984 Int. Conf. Par. Proc., pp. 402—-409.

REED AND M. PATRICK [1985). Jterative solution of large sparse linear systems on a static
data flow architecture: Performance studies, Proc. 1985 Int. Conf. Par. Proc., pp. 25-32.

REED AND M. PATRICK [1985]. [terative solstion of large sparsc lincar systems on a static
daia flow architecture: Performance studies, IEEE Trans. Comput., C-34, pp. 874-881.

REED AND M. PATRICK [1985). Parallel iterative solution of sparse linear systems: Mod-
els and architectures, Parallel Computing, 2, pp. 45-67.

REHAK, W. KEIROUZ, C. HENDRICKSON, AND Z. CENDRES [1985). Evaluation of finite el-
ement system architectures, Computers and Structures, 20, pp. 17-30.

REICHEL [1987). Parallel iterative methods for the solution of Fredholm integral equations
of the second kind, in Heath [860], pp. 520-529.

REID [1987]. The exploitation of parallelism by using Foriran 8X features, Supercomputer,
19, pp. 8-18.

RELINS AND M. BARTON, eds. [1987]. Highly Parallel Computers, North-Holland, Ams-
terdam.

. REILLY [1970]. On implementing the Monte Carlo evaluation of the Boltzmann collision

integral on ILLIAC 1V, Tech. Report 1-140, Coordinated Science Laboratory, University
of Mlinois at Urbana-Champaign.

REITER AND G. RODRIGUE [1984). An incomplete Choleski factorization by a matrir par-
tition algorithm, in Birkhoff and Schoenstadt [173], pp. 161-173.

RICE [1985). Problems to test parallel and vector languages, Tech. Report CSD-TR 5186,
Department of Computer Science, Purdue University, May.

. RICE [1985). Using supercomputers today and tomorrow, Proc. Third US Army Conf. on

Applied Math and Computing, May.

RICE [1986). Multi-FLEX machines: Preliminary report, Tech. Report CSD-TR-612, De-
partment of Computer Science, Purdue University.

RICE [1986]. Parallelism in solving PDE’s, Proceedings of the Fall Joint Computer Con-
ference, Washington, DC, IEEE Computer Society Press, pp. 540-546.

. RICE [1987). Paraliel methods for PDE’s, Tech. Report.
. RICE [1987]. Supercomputing about physical objects, Tech. Report TR-708, Department of

Computer Science, Purdue University.

. RICE AND D. MARINESCU [1987). Analysis and modeling of Schwartz splitting algorithms

for elliptic PDE’s, in Vichnevetsky and Stepleman [1921].

. RIEGER [1981). ZMOB: Hardware from a user’s viewpoint, Proc. IEEE Comput. Soc.

Conf. Pattern Recognition and Image Processing, pp. 399-408.

. RIGANATI AND P. SCHNECK [1984]. Supercomputing, Computer, 17(10), pp. 97-113.
. R1zz1 [1985]. Vector coding the finite volume procedure for the Cyber 205, Parallel Com-

puting, 2, pp. 295-312.

. Rizz1 AND M. Hopous [1985). Large scale flowfield simulation using the Cyber 205, in

Numrich [1469)], pp. 159-177.

. ROBERT [1970). Méthodes iteratives serie-paraliél, C. R. Acad. Sci. Paris, 271, pp. 847-

850.

. ROBERT, M. CHARNAY, AND F. Musy [1975). lterations chaoliques serie-parallt] pour des

equalions non-linéares de point fire, Appl. Mate., 20, pp. 1-38.

. ROBERT [1985)]. Block LU decomposition of a band matriz on a systolic array, Int. J.

Comput. Math., 17, pp. 295-316.

. ROBERT AND M. TCHUENTE [1985]. Systolic resolution of dense linear systems, RAIRO-

MMNA, 19, pp. 179-194 and 315-326.

. ROBINSON [1979]. Some analysis technigues for asynchronous multiprocessor algorithms,

IEEE Trans. Softw. Eng., SE-5, pp. 24-31.

. RoBiNsoN, R. RILEY, AND R. HARTKA [1982]. Evaluation of the SPAR thermal analyzer

on the CYBER-208 computer, Computational Aspects of Heat Transfer and Structures,
H. Adelman, ed., NASA Langley Research Center, pp. 405-424. NASA-CP 2216.

. RODRIGUE, ed. [1982). Parallel Computations, Academic Press, New York.

RODRIGUE [1984). A parallel first-order method for parabolic partial differential equations,
in Kowalik [1116], pp. 329-342.

RODRIGUE [1985]. Inner/outer iterative methods and numerical Schwartz algorithms,
Parallel Computing, 2, pp. 205-218.

. RODRIGUE [1986). Parallel scientific computing: Philosophy and directions, Tech. Report

UCRL-93792, Lawrence Livermore National Laboratory.

[1647]
[1648]
[1649]

[1650]

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 185

G. RODRIGUE [1986). Some ideas for decomposing the domain of elliptic partial differential
equalions in the Schwartz process, Comm. Appl. Numer. Meth., 2, pp. 245-249.

G. RODRIGUE [1986). Some new parallel methods for solving the heat equation, Tech. Report
UCRL-95278, Lawrence Livermore National Laboratory.

G. RODRIGUE, E. GIROUX, AND M. PRATT [1980). Perspectives on large-scale scientific com-
pulation, Computer, 13(12), pp. 65-80.

G. RODRIGUE, C. HENDRICKSON, AND M. PRATT [1982]. An implicit numerical solution of
the two dimensional diffusion equation and vectorization erpersments, in Rodrigue
[1643], pp. 101-128.

[1651] G. RODRIGUE, N. MADSEN, AND J. KARUSH [1976]. Odd-even reduction for banded linear

eguations, Tech. Report UCRL-78652, Lawrence Livermore National Laboratory.

[1652] G. RODRIGUE AND P. SAYLOR [1986}. Domain decomposition and inner/outer iteration for

elliptic partial differential equations II, Tech. Report UCRL-92077-11, Lawrence Liver-
more National Laboratory.

[1653] G. RODRIGUE AND J. SIMON [1984]. Jacobi splittings and the method of overlapping domains

for elliptic PDEs, in Vichnevetsky and Stepleman [1920}, pp. 383-386.

[1654] G. RODRIGUE AND D. WOLITZER [1984). Incomplete block cyclic reduction, Proc. 10th

IMACS World Congress on Systems Simulation and Scientific Computation, vol. 1,
IMACS, pp. 101-103.

[1655] G. RODRIGUE AND D. WOLITZER [1984]. Preconditioning by incomplete block cyclic reduc-

[1656]

tion, Math. Comp., 42, pp. 549-565.

. RODRIGUE AND D. WOLITZER [1986). A new class of explicit methods for parabolic partial
differential equations, Tech. Report UCRL-95669, Lawrence Livermore National Labo-
ratory.

@

[1657] R. RoGALLO [1977). An Illiac program for the numerical simulation of homogeneous incom-

pressible turbulence, NASA Tech. Report TM-73203, NASA Ames Research Center.

[1658] C. ROMINE [1986). Factorization Methods for the Parallel Solution of Linear Systems, PhD

dissertation, The University of Virginia, Department of Applied Mathematics.

[1659] C. ROMINE [1987). Parallel solution of triangular systems on a hypercube, in Heath [860],

pPpP. 552-559.

[1660] C. ROMINE AND J. ORTEGA [1988]. Parallel solution of triangular systems of equations, Par-

allel Computing, 6, pp. 109-114.

[1661] W. RONsSCH [1984]. Stability aspects in using parallel algorithms, Parallel Computing, 1,

pPpP. 75-98.

[1662] W. RONScH [1984]. Timing and stability analysis of summation algorithms, in Feilmeier

et al. [623], pp. 225-231.

[1663] A. RoOzZE [1988]. An asynchronous steration method of solving nonlinear equations using

parallel approrimation of an inverse operator, USSR Comput. Math. & Math. Phys.,
26.4, pp. 188-191.

[1664] J. ROSENFELD [1969]. A case study in programming for parallel processors, Comm. ACM,

12, pp. 645-655.

[1665] L. RupInNskl AND G. PIEPER [1979]. Evaluating computer program performance on the

CRAY-1, Tech. Report 79-9, Argonne National Laboratory.

[1666] J. RupoLPH [1972]. A production implementation of an associative array processor -

STARAN, Proc. Fall Joint Comp. Conf., Montvale, NJ, AFIPS Press, pp. 229-241.

[1667] T. Rupy [1980]. Analysis of a 2-D code on the CRAY-1, Tech. Report UCID-18549,

Lawrence Livermore National Laboratory.

[1668] M. RUSCHITZKU, M. CHONTENSEN, M. AMES, AND R. VICHNEVETSKY, eds. [1984). Parallel

and Large Scale Computers: Performance, Architecture, Applications, North-Holland,
Amsterdam.

[1669] R. RussgLL [1978]. The CRAY-1 compuler system, Comm. ACM, 21, pp. 63-72.
[1670] Y. SaAD [1983]. Least squares polynomials in the compler plane with applications to solving

sparse non-symmetric matriz problems, Tech. Report YALEU/DCS/RR-276, Depart-
ment of Computer Science, Yale University.

[1671] Y. SAAD [1985]). Practical use of polynomial preconditionings for the conjugate gradient

method, SIAM J. Sci. Statist. Comput., 6, pp. 865-882.

[1672] Y. SAAD [1986]. Communication complezity of the Gaussian elimination algorithm on mul-

tiprocessors, Lin. Alg. & Appl., 77, pp. 315-340.

[1673] Y. SAAD [1986). Gaussian elimination on hypercubes, in Cosnard et al. [415].
[1674] Y. SAAD [1987). On the design of parallel numerical methods in message passing and shared

memory environments, Proceedings of International Seminar on Scientific Supercom-
puters, Paris, France, February 2-6.

186

[1675] Y.

[1676] Y.

[1677)
(1678}

[1679]
[1680]
[1681]

[1682)

[1683]
[1684]
[1685}
[1686]
[1687]
[1688]
[1689)
[1690}
[1691)

[1692]

[1693)
[1694]
[1695]
[1696]
(1697]
[1698}
[1699]
[1700]
[1701]
[1702]
[1703)

[1704)

Y.

Y.

Y.
Y.
Y.

Y.

Y.
P.
P.
F.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

SAAD AND A. SAMEH [1981}, Itcrative methods for the solution of elliptic difference equa-
tions on mulliprocessors, CONPAR 81, pp. 395-411.

SAAD AND A. SAMEH [1981). A parallel block Stiefel method for solving positive definite
aystems, in Schultz [1752], pp. 405-411.

SaAD, A. SAMEH, AND P. SAYLOR [1985). Solving elliptic difference equations on a linear
array of processors, SIAM J. Sci. Statist. Comput., 6, pp. 1049-1063.

SAAD AND M. SCHULTZ [1985). Aliernating Direction methods on multiprocessors: An ez-
tended abatract, Tech. Report YALEU/DCS/RR-381, Department of Computer Science,
Yale University, April.

SAAD AND M. ScHULTZ [1985]. Data commsnication in hypercubes, Tech. Report
YALEU/DCS/RR-428, Department of Computer Science, Yale University, October.

SAAD AND M. ScHULTZ [1985). Topological properties of hypercubes, Tech. Report
YALEU/DCS/RR-389, Department of Computer Science, Yale University, June.

SAAD AND M. ScHULTZ [1986). Data communications in parallel architectures, Tech. Re-
port YALEU/DCS/RR-461, Department of Computer Science, Yale University, March.

SAAD AND M. SCHULTZ [1986]. Parallel implementations of preconditioned conjugate gra-
dient methods, Mathematical and Computational Methods in Seismic Exploration and
Reservoir Modeling, W. Fitzgibbon, ed.

SAAD AND M. SCHULTZ [1987). Parallel direct methods for solving banded linear systems,
Lin. Alg. & Appl,, 88, pp. 623-650.

SADAYAPPAN AND F. ERCAL [1987]. Nearest-neighbor mapping of finite element graphs
onto processor meshes, IEEE Trans. Comput., C-36, pp. 1408-1424.

SADAYAPPAN, F. ERCAL, AND S. MARTIN [1987). Mapping finite element graphs onto pro-
cessor meshes, Proc. 1987 Int. Conf. Par. Proc., pp. 192-195.

Saep, C.-T. HO, L. JOHNSSON, AND M. SCHULTZ [1987]. Solving Schriodinger’s equation
on the Intel iPSC by the Alternating Direction method, in Heath [860], pp. 680-691.

M. SALAMA, S. UTKU, AND R. MELOSH [1983]. Paraliel solution of finste element equations,

J

J.

J.

J.

J.

1.

I - T I S T -

Proceedings of the 8th Conference on Electronic Computation, ASCE, pp. 526-539.

. SALTZ [1987]. Analysis of parameterized methods for problem partitioning, Tech. Report

YALEU/DCS/RR-537, Department of Computer Science, Yale University, May.

SALTZ [1987]. Automated problem scheduling and reduction of synchronization delay ef-
fects, Tech. Report 87-22, ICASE, NASA Langley Research Center, Hampton, VA,

SALTZ AND M. CHEN [1987). Automated problem mapping: The Crystal run-time system,
in Heath [860], pp. 130-140.

SALTZ AND V. NAIK [1988). Towards developing robust algorithms for solving partial dif-
ferential equations on MIMD machines, Parallel Computing, 6, pp. 19—44.

SALTZ, V. NAIK, AND D. NicoL [1987). Reduction of the effects of the communication de-
lays in scientific algorithms on message passing MIMD architectures, SIAM J. Sci.
Statist. Comput., 8, pp. 8118-5138.

SALTZ AND D. NicoL [1986). Statistical methodologies for the control of dynamic remap-
ping, ICASE Report 86-46, NASA Langley Research Center, Hampton, VA, July.

. SAMEH [1971). liliac IV applications, Proc. 9th Annual Allerton Conf. Circuit System

Theory, pp. 1030-1038.

. SAMEH [1971). On Jacobi and Jacobi-like algorithms for a parallel computer, Math.

Comp., 25, pp. 579-590.

. SAMEH [1977). Numerical parallel algorithms — A survey, in Kuck et al. [1133], pp. 207-

228.

. SAMEH [1981), Parallel algorithms in numerical linear algebra. Presented at the CREST

Conference.

. SAMEH [1983]. An overview of parallel algorithms in numerical linear algebra, E.D.F.

Bulletin de la Direction des Etudes et des Recherches, C(1), pp. 129-134.

. SAMEH [1984]. A fast Poisson solver for multiprocessors, in Birkhoff and Schoenstadt

[173], pp. 175-186.

. SAMEH [1984]. On two numerical algorithms for multiprocessors, in Kowalik [1116],

pp. 311-328,

. SAMEH [1985]. On some parallel algorithms on & ring of processors, Comm. Phys. Comm.,

37, pp. 159-166.

. SAMEH [1985). Solving the linear least squares problem on a linear array of processors, in

Snyder et al. [1808)], pp. 191-200.

. SAMEH AND R. BRENT [1977]. Solving triangular systems on a parallel computer, SIAM

J. Numer. Anal., 14, pp. 1101-1113.

. SAMEH, S. CHEN, AND D. Kuck [1976]. Parallel Poisson and biharmonic solvers, Com-

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 187

puting, 17, pp. 219-230.

[1705] A. SAMEH AND D. KUCK [1977). Parallel direct lincar system solvers — A survey, in
Feilmeier [621], pp. 25-30.

[L1706] A. SAMEH AND D. Kuck [1977). A parsllel QR algorithm for symmetric tridiagonal matri-
ces, IEEE Trans. Comput., C-26, pp. 147-153.

[1707] A. SAMEH AND D. KUCK [1978). On stable parallel lincar aystem solvers, J. ACM, 25, pp. 81—
91.

[1708} A.SAMEH AND C. TAFT [1982)], Preconditioning strategics for the comjugate gradient algo-
rithm on multiprocessors. Presented at the 1982 Sparse Matrix Symposium.

[1709] J. SANGUINETTI [1986). Performance of o message based multiprocessor, Computer, 19(9),
pp. 47-55.

[1710] N. SariGuL, M. JIN, R. KOLAR, AND H. KAMEL [1985]. Design of array processor software
Jor nonlinear structural analysis, Computers and Structures, 20, pp. 963-974.

[1711] V. SAUNDERS AND M. GUEST [1982]. Applications of the Cray—1 for guantum chemisiry cal-
culations, Comput. Phys. Comm., 26, pp. 389-395.

[1712] J. SAVAGE [1984)]. Space-time tradeoffs for banded matriz problems, J. ACM, 31, pp. 422-437.

[1713] A. SawcHUK AND T. STRAND [1984]. Digital optical computing, Proc. IEEE, 72, pp. 758-
779.

[1714] P. SAYLOR [1987]. Leapfrog variants of iterative methods for linear algebraic equations, Tech.
Report R-87-1373, Department of Computer Science, University of lllinois at Urbana-
Champaign.

[1715] M. SCHAEFER [1987). A polynomial based iterative method for linear parabolic equations,
Tech. Report 661, Center for Supercomputing Research and Development, University of
Illinois at Urbana-Champaign, May.

[1716] U. SCHENDEL [1984), Introduction to Numerical Methods for Parallel Computers, John Wiley
and Sons, New York. (Translator, B. W. Conolly).

[1717] U. SCHENDEL AND M. SCHYSKA [1984). Parallelle algorithmen in der nichtliinearen opti-
mierung, Preprint 161/84, Fachbereich Mathematik, Freie Universitat Berlin.

[1718} D. SCHIMMEL AND F. LUK [1985]. A new systolic array for the singular value decomposi-
tion, Tech. Report EE-CEG-85-7, Department of Electrical and Computer Engineering,
Cornell University, December.

. SCHNABEL [1985]. Parallel computing in optimization, Computational Mathematical Pro-
gramming, K. Schittkowski, ed., Springer-Verlag, Berlin, pp. 357-382.

. SCHNABEL [1987). Concurrent function evaluations sn local and global optimization, Com-
put. Meth. Appl. Mech. Engrg., 64, pp. 537-552.

[1719] R
R

[1721] E. SCHNEPF AND W. SCHONAUER [1983]. Parallelization of PDE software for vector comput-
E
E

[1720]

ers, in Feilmeier et al. [623].

. SCHNEPF, W. SCHONAUER, AND H. MULLER [1985]. Applications of the PDE solver
FIDISOL on different vector computers, Supercomputer, 10, pp. 21-28.

. SCHNEPF, W. SCHONAUER, AND H. MOULLER [1985]. Performance of the PDE black boz
solver FIDISOL on a CYBER 205, Supercomputer Applications, H. Emmen, ed., North-
Holland, Amsterdam, pp. 51-59.

[1724] W. SCHONAUER [1983]. The efficient solution of large linear systems resulting from the FDM
Jor 3-D PDE’s on vector computers, Proc. First Intern. Coll. on Vector and Parallel
Computing in Scientific Applications, A. Bassanut, ed., pp. 135-142. E.D.F. Bulletin de
la Direction des Etudes et des Recherches, Ser. C., no. 1.

[1725] W. SCHONAUER [1983]. Numerical experiments with instationary Jacobi-OR methods for the
iterative solution of linear equations, ZAMM, 63, pp. T380-T382.

[1726] W. SCHONAUER, ed. [1987]. Scientific Computing on Vector Computers, North-Holland.

[1727] W. SCHONAUER AND W. GENTZSCH, eds. [1986). The Efficient Use of Vector Computers with
Emphasis on Computational Flusd Dynamics, vol. 12 of Notes on Numerical Fluid Me-
chanics, John Wiley and Sons, New York, NY.

[1728] W. ScHONAUER, H. MULLER, AND E. SCHNEPF [1986)]. Pseudo-residual type methods for the
sterative solution of large linear systems on vector computers, Parallel Computing 85,
M. Feilmeier, J. Joubert, and U. Schendel, eds., North-Holland, Amsterdam, pp. 193
198.

[1729] W. ScCHONAUER AND K. RAITH [1982). A polyalgorithm with diagonal storing for the solution
of very large indefinite linear banded systems on a vector computer, Proc. 10th IMACS
World Congress on Systems Simulation and Scientific Computation, vol. 1, IMACS,
PP. 326-328,

[1730] W. SCHONAUER AND E. SCHNEPF [1986). Introduction to the workshop: Some bottlenecks
and deficiencies of existing vector computers and their consequences for the develop-

[1722]

(1723

188

[1731}
[1732]
[1733]

[1734]

£ £ £ 5 %

[1735)

[1736]
[1737]

[1738]

® P =

[1739]
[1740] R.

[1741]
[1742]

[1743]

R
R
R
[1744] R.
[1745] R
[1746] R

R

[1747)
[1748] R.

[1749] R
[1750] R.
[1751] R

[1752] M.
[1753] M.

[1754] M.
[1755] K.
[1756] H.

[1757] H.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

ment of general PDE sofitware, The Efficient Use of Vector Computers with Emphasis to
Computational Fluid Dynamics, W. Schdnauer and W. Gentzsch, eds., Vieweg, Braun-
schweig, pp. 1-34.

. SCHONAUER AND E. SCHNEPF [1987]. Sofiware considerations for the “black bor” solver

FIDISOL for partial diferential equations, ACM Trans. Math. Softw., 13, pp. 333-349.
SCHONAUER AND E. SCHNEPF [1988). FIDISOL: A black boz solver for partial differential
equations, Paralle] Computing, 6, pp. 185-194.

SCHONAUER, E. SCHNEPF, AND H. MULLER [1984). PDE software for vector computers,
in Vichnevetsky and Stepleman [1920], pp. 258-267.

. SCHONAUER, E. SCHNEPF, AND H. MULLER [1985). Designing PDE software for vector

computers as a data flow algorithm, Comp. Phy. Comm., 37, pp. 233-237.

. SCHONAUER, E. SCHNEPF, AND K. RAITH [1983). The redesign and vectorization of the

SLDGL-program package for the self-adaptive solution of nonlinear systems of elliptic
and parabolic PDE’s, Conference of the IFIP Working Group 2.5 on Numerical Soft ware,
Sweden,

. SCHONAUER, E. SCHNEPF, AND K. RAITH [1984]. Modularization of PDE software for

vector computers, ZAMM, 64, pp. T309-T312.

. SCHONAUER AND H. WIETSCHORKE [1987), The questions of accuracy, geometrical flexi-

bility and vectorability for the FDM. Submitted to 1987 Meeting of ASME,
SCHREIBER [1982]. Systolic arrays for eigenvalue computation, Proc. SPIE Symp. East
1982, 341, Real Time Signal Processing V.

. SCHREIBER [1983]. Computing generalized inverses and cigenvalues of symmetric matri-

ces using systolic arrays, Proceedings of the Sixth International Conference on Computer
Methods in Science and Engineering.

SCHREIBER [1983]. On the systolic arrays of Brent, Luk and Van Loan for the symmetric
eigenvalue and singular value problems, Tech. Report TRITA-NA-8311, Department of
Numerical Analysis and Computer Science, Royal Institute of Technology.

. SCHREIBER [1983]. A systolic architecture for singular value decomposition, Proc. First

Intern. College Vector and Parallel Computing in Scientific Appl., Paris, March.

. SCHREIBER [1984). Systolic arrays: High performance parallel machines for matriz com-

pulation, in Birkhoff and Schoenstadt [173], pp. 187-194.

. SCHREIBER [1986). On systolic array methods for band matriz factorizations, BIT, 26,

pPp. 303-316.
ScCHREIBER [1986]. Solving eigenvalue and singular value problems on an undersized sys-
tolic array, SIAM J. Sci. Statist. Comput., 7, pp. 441-451.

. SCHREIBER [1987]. Cholesky factorization by systolic array, Tech. Report 87-14, Depart-

ment of Computer Science, Rensselaer Polytechnic Institute, May.

. SCHREIBER [1987). Systolic linear algebra machines: A survey, Signal Processing,

S. Haykin, ed., Prentice-Hall, Inc., Englewood Cliffs, NJ.

. SCHREIBER [1988]. Block algorithms for parallel machines, Numerical Algorithms for

Modern Parallel Computer Architectures, M. Schultz, ed., vol. 13 of Volumes in Math-
ematics and its Applications, Springer-Verlag, Berlin, pp. 197-207.

SCHREIBER AND P. KUEKES [1982). Systolic linear algebra machines in digital signal pro-
cessing, Proc. USC Workshop on VLSI and Modern Signal Processing, Los Angeles,
Englewood Cliffs, NJ, Prentice-Hall, Inc.

. SCHREIBER AND B. PARLETT [1988). Block reflectors: Theory and computation, SIAM J.

Numer. Anal., 25, pp. 189-205.
SCHREIBER AND W. TANG [1982]. Vectorizing the conjugate gradient method, in Control
Data Corporation [411].

. SCHREIBER AND C. VAN LOAN [1989)]. A storage efficient WY representation for products

of Houscholder transformations, SIAM J. Sci. Statist. Comput., 10, pp. 53-57.
SCHULTZ, ed. [1981). Elliptic Problem Solvers, Academic Press, New York, NY.
ScHULTZ [1984]. Solving elliptic problems on an array processor system, in Birkhoff and
Schoenstadt [173], pp. 77-92.

SCHULTZ [1985]. Multiple array processors for ocean acoustic problems, Tech. Report
YALEU/DCS/RR-363, Department of Computer Science, Yale University, February.

ScHWAN, W. Bo, N. BAUMAN, P. SADAYAPPAN, AND F. ERCAL [1987]. Mapping parallel
applications fo a hypercube, in Heath [860], pp. 141-154.

SCHWANDT [1985). Newton-like interval methods for large nonlinear systems of equations
on veclor computers, Comput. Phys. Comm., 37, pp. 223-232.

SCHWANDT [1987). Interval arithmetic block cyclic reduction on vector computers, J. Par.
Dist. Comp., 4, pp. 459-487.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 189

[1758] H. SCHWANDT [1987]. An interval arithmetic method for the solution of nonlinear systems
of equations on a vector computer, Parallel Computing, 4, pp. 323-338.

[1759) J. ScHWARTZ [1980). Ultracomputers, ACM Trans. Program. Lang. Syst., 2, pp. 484-521.

[1760] J. ScHWARTZ [1983). A tazonomic table of parallel computers, based on 55 designs, Ultra-
computer Note 69, Courant Institute, New York University.

[1761] U. SCHWIEGELSHOHN AND L. THIELE [1987]. A systolic array for cyclic-by-rows Jacobi algo-
rithms, J. Par, Dist. Comp., 4, pp. 334-340.

[1762] D. ScoTT [1986]. Avoiding the square-root bottleneck in the Choleski factorization of a ma-
triz on & parallel compuier, Lin. Alg. & Appl., 77, pp. 341-344.

[1763} D. ScoTr, M. HEATH, AND R. WARD [1986]. Parallel block Jacobi eigenvalue algorithms us-
ing systolic arrays, Lin. Alg. & Appl., 77, pp. 345-355.

[1764] M. ScoTT AND G. MONTRY [1988]. Some ezperiments in multitasking on an ELXSI system
6400, Appl. Math. & Comp., 26, pp. 135-150.

[1765] N. ScoTT, P. MILLIGAN, AND H. RILEY [1987). The parallel computation of Racah cocffi-
cients using transputers, Comput. Phys. Comm., 46, pp. 83-98.

[1766] R. ScoTT [1981]. On the choice of discretization for solving PDE’s on a multi-processor, in
Schultz [1752], pp. 419-422.

[1767] R. ScoTT, J. BOYLE, AND B, BAGHERI [1987). Distributed data structures for scientific com-
putation, in Heath [860], pp. 55~66.

[1768] S. Scort, H. DEMUTH, AND J. HALEY [1988]. Comparison of parallel SOR algorithms for
solution of sparse matriz problems, in Kartashev and Kartashev [1055], pp. 424-432.

[1769] M. SEAGER [1986]. Overhead considerations for parallelizing conjugate gradient, Comm.
Appl. Numer. Meth., 2, pp. 273-279.

[1770] M. SEAGER [1986]. Parallelizing conjugate gradient for the CRAY X-MP, Parallel Comput-
ing, 3, pp. 35-48.

[1771] S. SEDUKEIN [1985]. The computing structures of algorithms and VLSI-based compuiter ar-
chitecture, Computational Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 129—
139.

[1772] C. Serrz [1982). Ensemble architectures for VLSI — A survey and taronomy, Proc. MIT
Conf. on Advanced Res. in VLSI, P. Penfield, ed., Artech House, pp. 130-135.

[1773] C. SErrz [1984]. Concurreat VLSI architectures, IEEE Trans. Comput., C-33, pp. 1247-.

[1774] C. Serrz [1984). Ezperiments with VLSI ensemble machines, J. VLSI and Comp. Sys., 1(3).

[1775] C. Serrz [1985). The cosmic cube, Comm. ACM, 28, pp. 22-33.

[1776] C. SEITZ AND J. MATISOO [1984]. Engineering limits on computer performance, Physics To-
day, 37(5), pp. 38-45.

[1777] M. SEsNowskI, E. UPCHURCH, R. KAPUR, D. CHARLU, AND G. LIPOVSKI [1980]. An overview
of the Tezas Reconfigurable Array Computer, AFIPS Conf. Proc., NCC, pp. 631-641.

[1778] A. SHAH [1980]. Group broadcast mode of interprocessor communications for the finite ele-
ment machine, Tech. Report CSDG-80-1, Department of Computer Science, University
of Colorado.

[1779] J. SHANEHCHI AND D. EvANs [1981]. New variants of the Quadrant Interlocking Factoriza-
tion (QIF) method, CONPAR 81 Conf. Proc. Lecture Notes in Computer Science I1I,
W. Handler, ed., Springer-Verlag, pp. 493-507.

[1780] J. SHANEHCHI AND D. EVANs [1982]. Further analysis of the QIF method, Int. J. Comput.
Math., 11, pp. 143-154.

[1781] J. SuANG, P. BUNING, W. HANKEY, AND M. WIRTH [1980). Performance of a vectorized
three-dimensional Navier-Stokes code on the CRAY-1 computer, ATAA J., 18, pp. 1073~
1079.

[1782] D. SHARP, N. METROPOLIS, AND J. WORLTON, eds. [1986). Froatiers of Supercomputing,
University of California Press, Berkeley, CA.

[1783] J. SHARP [1987), An Introduction to Distributed and Parallel Processing, Blackwell Scientific
Publications, London.

[1784] D. SHASHA AND M. SNIR [1986). Efficient and correct ezecution of parallel programs that
share memory, Tech. Report 206, Ultracomputer Laboratory, New York University,
March.

[1785] D. SHAW [1984]. SIMD and MSIMD variants of the NON-VON supercomputer, Proc. COM-
PCON 84, IEEE Comp. Soc. Conf., pp. 360-363.

[1786] G. SHEDLER [1967]. Parallel numerical methods for the solution of equations, Comm. ACM,
10, pp. 286-291.

[1787} G. SHEDLER AND M. LEHMAN [1967]. Evaluation of redundancy in a parallel algorithm, IBM
Systems J., 6, pp. 142-149.

[1788] M. SHELL, D. BOULDIN, AND P, MANHARDT [1985). Design and implementation of a VLSI

190

[1789] S.
(1790}
[1791]
[1792]
[1793]
[1794)

[1795}

[1797]
[1798)
[1799]
[1800]
[1801}
[1802]

[1803]

[1804] R.

[1805]) L
[1806] L
[1807) L.
[1808] L
[1809] J.
[1810]
[1811]

[1812]

v o 2 v

[1813}
(1814} J.

[1815] J.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

systolic array for solving nonlinear parallel differential equations, Proc. 1985 Int. Conf.
Par. Proc., pp. 96-98.

SHEU, W. LIN, AND C. DAs [1987). An cfficient parallel algorithm of conjugate gradient
method, in Kartashev and Kartashev [1055], pp. 488-496.

. SHIMADA, K. HIRAKI, AND K. NISHIDA [1984]. An architecture of ¢ data flow computer

and its evaluation, Proc. COMPCON 84, IEEE Comp. Soc. Conf., pp. 486-490,

. SIEGEL [1979]. Interconnection networks for SIMD machines, Computer, 12(6), pp. 57~
65

. SIEGEL [1985), Interconnection Networks for Large-Scale Parallel Processing: Theory and

Case Studies, Lexington Books.

. SIEGEL AND R. MCMILLEN [1981). The multistage cude: A versatile interconnection net-

work, Computer, 14, pp. 65-76.
SIEGEL, H. SIEGEL, AND P. SWAIN [1982]. Performance measurements for evaluating al-
gorithms for SIMD machines, IEEE Trans. Softw. Eng., SE-8, pp. 319-331.

T
H
H
H
L.
D. SIEWIOREK [1983). State-of-the-art in parallel computing, in Noor [1450], pp. 33-48.
[1796] D.
M
H
R
D
L.
B
R

SILVESTER [1988). Optimising finite element matriz calculations using the general tech-
nigue of element vectorization, Parallel Computing, 6, pp. 157-164.

. SIMMONS AND O. LUBECK [1986]. Benckmark of the Conver C-I mini supercomputer,

Tech. Report LA-UR-86-2890, Los Alamos National Laboratory, August.

. S1MON [1985]. Incomplete LU preconditioners for conjugate gradient type iterative meth-

ods, Proc. 8th SPE Symp. on Reservoir Simulation, Dallas, TX, February.

. SKEEL [1987). Waveform iteration and the shified Picard splitting, Tech. Report 700, De-

partment of Computer Science, University of Illinois at Urbana-Champaign, November.

. SLOTNICK, W. BORCK, AND R. MCREYNOLDs [1962]. The SOLOMON computer, Proc.

AFIPS, FJCC, 22, pp. 97-107.
SMARR [1985]. An approach to complezity: Numerical computations, Science, 228,
pp. 403-408.

. SMITH [1978]. A pipelined, shared resource MIMD computer, Proc. 1978 Int. Conf. Par.

Proc., pp. 6-8.

. SMITH AND J. PITTS [1979). The solution of the three-dimensional viscous compressible

Navier-Stokes equations on a wector compuier, Advances in Computer Methods for
Partial Differential Equations-111, IMACS, pp. 245-252.

SMITH, J. PITTS, AND J. LAMBIOTTE [1978). A vectorization of the Jameson-Caughey
NYU transonic swept-wing computer program FLO-22-VI for the STAR-100 computer,
NASA Tech. Rept. TM-78665, NASA Langley Research Center.

. SNYDER [1982]. Introduction to the configurable highly parallel computer, Computer,

15(1), pp. 47-56.

. SNYDER [1985]. An inguiry into the benefits of multigauge parallel computation, Proc.

1985 Int. Conf. Par. Proc., pp. 488—-497.
SNYDER [1986], Type architectures, shared memory and the corollary of modest potential.
Preprint.

. SNYDER, L. JAMIESON, D. GANNON, AND H. SIEGEL, eds. [1985]. Algorithmically Special-

ized Parallel Computers, Academic Press, Orlando, FL.
SoLEM [1984). MECA: A supercomputer for Monte Carlo, Tech. Report LA-10005, Los
Alamos National Laboratory.

. SoLL, N. HABRA, AND G. RUSSELL [1977]. Erperience with a vectorized general circula-

tion climate model on STAR-100, in Kuck et al. [1133)], pp. 311-312.

. SOoLOMON AND R. FINKEL [1979). The Roscoe operating system, Proc. Tth Symp. Op. Sys.

Princ., pp. 108-114.

. SORENSEN [1984). Buffering for vector performance on a pipelined MIMD machine, Par-

alle] Computing, 1, pp. 143-164.

. SORENSEN [1985]. Analysis of pairwise pivoting in Gaussian elimination, IEEE Trans.

Comput., C-34, pp. 274-278.

SouTH [1985). Recent advances in compulational aerodynamics, Paper 85-0366, AIAA.
23rd Aerospace Sciences Meeting, Reno, NV.

SoutH, J. KELLER, AND M. HAFEZ [1980]. Computational transonics on a vector com-
puter, ARO Report 80-3, U. S. Army Numerical Analysis and Computers Conference,

August.

[1816] J. SouTH, J. KELLER, AND M. HAFEZ [1980). Vector processor algorithms for transonic flow

[1817] M.

calculations, ATIAA 1., 18, pp. 786-792.
SRINIVAS [1983]). Optimal parallel scheduling of Gaussian elimination DAG’s, IEEE
Trans. Comput., C-32, pp. 1109-1117.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 191

[1818) P.

[1819)
[1820)
[1821)
[1822]
[1823]

[1824]

[1826]
[1827]
[1828]

[1829)
[1830]

[1831] O.

[1832]

[1833)]

5 =3 %

[1834]

[1835] J.

[1836] 1.
[1837] S.
[1838]
[1839]
[1840]

[1841]

[1843]
[1844]

[1845)
[1846)

[1847]

B
B
K
K
G
H
(1825] H.
H
H
H
H
o)

R
H
H
c
[1842] R.
P
P
P
P
P

STANAT AND J. NOLEN [1982]. Performance comparisons for reservoir simulation prob-
lemns on three supercomputers, 6th SPE Symposium Reservoir Simulation. Also in Con-
trol Data Corp. [411).

. STEFFEN [1988]. Implementation of o resonant cavity package on MIMD computers, Par-

allel Computing, 7, pp. 55-64.

. STEFFEN [1988]. Multigrid methods for calcnlation of electromagnets and their implemen-

tation on MIMD computers, in McCormick [1312].

. STEVENS [1975]. CFD — A Fortran-like language for the Illiac IV, Sigplan Notices,

pp- 72-80.

. STEVENS [1979). Numerical aerodynamics simulation facility project, in Jesshope and

Hockney [976], pp. 331-342.

. STEWART [1987]. A parallel implementation of the QR-algorithm, Parallel Computing, 5,

pp. 187-196.

. STONE [1971). Parallel processing with the perfeet shuffle, IEEE Trans. Comput., C-20,

pp. 153-161.
STONE [1973]. An cfficient parallel algorithm for the solution of a tridiagonal linear sys-
tem of equations, J. ACM, 20, pp. 27-38.

. STONE [1975). Parallel tridiagonal egquation solvers, ACM Trans. Math. Softw., 1,

Pp. 289-307.

. STONE [1977]. Multiprocessor scheduling with the aid of network flow algorithms, IEEE

Trans. Softw. Eng., SE-3, pp. 85-94.

. STONE [1980]. Parallel computation, Introduction to Computer Architecture, H. Stone,

ed., Science Research Associates, Inc., second ed., pp. 363-425.

. STONE [1987), High Performance Computer Architecture, Addison-Wesley, New York.
. STORAASLI, S. PEEBLES, T. CROCKETT, J. KNOTT, AND L. ADAMS [1982]. The Finite Ele-

ment Machine: An experiment in parallel processing, Proc. of Conf. on Res. in Structures
and Solid Mech., pp. 201-217. NASA Conf. Pub. 2245, NASA Langley Research Center,
Hampton, VA.

STORAASLI, J. RANSON, AND R. FULTON [1984]. Structural dynamic analysis on a paral-
lel computer: The Finite Element Machine, 25th ATAA Structures, Structural Dynamics
and Materials Conf., Palm Springs, CA. 84-0966-CP.

. STOTTS [1982]. A comparative survey of concurrent programming languages, SIGPLAN

Notices, 17(9), pp. 76-87.

. STRAETER [1973). A parallel variable metric optimization algorithm, NASA Technical

Note D-7329, NASA Langley Research Center, Hampton, VA.

. STRAETER AND A. MARKOS [1975). A parallel Jacobson-Oksman oplimization algorithm,

NASA Technical Note D-8020, NASA Langley Research Center, Hampton, VA.
STRIKWERDA [1982]. A time split difference scheme for the compressible Novier-Stokes
equations with applications to flows in slotted nozzles, in Rodrigue [1643], pp. 251-267.
STRINGER [1982). Efficiency of D4 Gaussian elimination on a veclor computer, in Cray
Research, Inc. [423], pp. 115-121.
Su AND A. THAKORE [1987]. Matriz operations on a multicomputer system with switch-
able masn memory modules and dynamic control, IEEE Trans. Comput., C-36, pp. 1467
1484.

. SUGARMAN [1980]. Superpower computers, IEEE Spectrum, pp. 28-34.
. SULLIVAN AND T. BASHKOW [1977). A large scale homogeneous fully distributed parallel

machine, Proc. 4th Annual Symp. Comp. Arch., pp. 105-117.

. SULLIVAN AND T. BASHKOW [1977). A large scale, homogeneous, fully distributed parallel

machine, Comput. Arch. News, 5, pp. 105-117.

. SuTTI [1983). Nongradient minimization methods for parallel processing computers, J.

Optim. Theory Appl., 39, pp. 465-488.
SWAN, S. FULLER, AND D. SIEWIOREK [1977]. Cm* — A modular multi-microprocessor,
Proc. AFIPS Nat. Computer Conf., Montvale, NJ, AFIPS Press, pp. 637-644.

. SWARZTRAUBER [1979). A parallel algorithm for solving general tridiagonal equations,

Math. Comp., 33, pp. 185-199,

. SWARZTRAUBER [1979). The solution of tridiagonal systems on the CRAY-1, in Jesshope

and Hockney [976), pp. 343-358.

. SWARZTRAUBER [1982]. Vectorizing the FFTs, in Rodrigue [1643], pp. 51-83.
. SWARZTRAUBER [1983]. Efficient algorithms for pipeline and parallel computers, in Noor

[1450], pp. 89-104.

. SWARZTRAUBER [1984]. FFT algorithms for vector computers, Parallel Computing, 1,

pp. 45-63.

192 J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

[1848] P. SWARZTRAUBER [1987]. Multiprocessor FFTs, Parallel Computing, 5, pp. 197-210.
[1849] R. SWEET [1987). A paralicl and vector variant of the cyclic reduction algorithm, Supercom-
puter, 22, pp. 18-25.
[1850] R. SWEET [1988). A parallel and vector variant of the cyclic reduction algorithm, SIAM 1J.
Sci. Statist. Comput., 9, pp. 761-765.
[1851] J. SwissHELM AND G. JOHNSON [1985]. Numerical simulation of three dimensional flowfields
using the Cyber 205, in Numrich [1469], pp. 179-195.
[1852] J. SwissHELM, G. JOHNSON, AND S. KUMAR [1986]. Parallel computation of Euler and
Navier-Stokes flows, Appl. Math. & Comp., 19(1-4), pp. 321-332. (Special Issue, Pro-
ceedings of the Second Copper Mountain Conference on Multigrid Methods, Copper
Mountain, CO, S. McCormick, ed.).
[1853] C. TAPT [1982). Preconditioning sirategies for solving clliptic equations on a multiproces-
sor, Tech. Report, Department of Computer Science, University of Illinois at Urbana-
[1854] H.-M. TA1 AND R. SAEKs [1984). Parallel system simulation, IEEE Trans. Syst. Man. Cy-
bern., SMC-14, pp. 177-183.
[1855] Y. TAKAHASHI [1982]). Partitioning and allocation in parallel computation of partial differen-
tial equations, Proc. 10th IMACS World Congress on Systems Simulation and Scientific
Computation, vol. 1, pp. 311-313.
[1856] W. TANG [1986). Schwartz Splitting, A Model for Parallel Computations, PhD dissertation,
Stanford University, Department of Computer Science.
[1857] O. TELEMAN AND B. JONSON [1986). Vectorizing a general-purpose molecular dynamics sim-
ulation program, J. Comp. Chem., 7, pp. 58-66.

. TEMPERTON [1979]. Direct methods for the solution of the discrete Poisson equation:
Some comparisons, J. Comp. Phys., 31, pp. 1-20.

. TEMPERTON [1979]. Fast Fourier transforms and Poisson solvers on CRAY-1, in
Jesshope and Hockney [976], pp. 359-379.

. TEMPERTON [1979]. Fast Fourier transforms on CRAY-I, Tech. Report 21, European
Center for Median Range Weather Forecasts.

. TEMPERTON [1980). On the FACR (I} algorithm for the discrete Poisson equatwn, 1.
Comp. Phys., 34, pp. 314-329.

o]
[1858] C
c
c
C
[1862] C. TEMPERTON [1984]. Fast Fourier transforms on the CYBER 205, in Kowalik [1116],
C
G
A
c

[1859]
(1860]

(1861}

Pp. 403-416.
. TEMPERTON [1988). Implementation of a prime factor FFT algorithm on CRAY-1, Par-
allel Computing, 6, pp. 99-108.
. TENNILLE [1982). Development of a one-dimensional stratospheric analysis program for
the CYBER 208, in Control Data Corporation [411].
. THAKORE AND S. SU [1987). Matriz inversion and LU decomposition on a multicomputer
system with dynamic conirol, in Kartashev and Kartashev [1055], pp. 291-301.
. THOLE [1988]. Parallel multigrid algorithms on a message-based MIMD system, in Mec-
Cormick [1312).
[1867) C. THOLE [1988). The SUPRENUM approach: MIMD architecture for multigrid algorithms,
in McCormick [1312].
[1868] W. THOMAS AND E. LEWIS [1983]. Two vectorized algorithms for the solution of three di-
mensional neuiron diffusion equations, Nuc. Sci. Eng., 84, pp. 67-71.
[1869] W. THOMPKINS AND R. HAIMES [1983]. A minicomputer/array processor/memory system
Jor large-scale fluid dynamic caleulations, in Noor [1450}, pp. 117-126.
[1870] K. THURBER (1976}, Large Scale Computer Architectures: Parallel and Associative Proces-
sors, Hayden Book Co.
[1871] K. THURBER AND L. WALD [1975]. Associative and parallel processors, ACM Computing
Surveys, 7, pp. 215-245.
[1872] G. THURSTON [1987). A parallel solution for the symmetric cigenproblem, Tech. Report
NASA-TM-89082, NASA Langley Research Center, Hampton, VA,
[1873] J. TIBERGHIEN, ed. [1984). New Computer Architectures, Academic Press, Orlando, FL.
[1874] D. ToLLE AND W. SIDDALL [1981). On the complerity of vector computations in dinary free
machines, Inform. Process. Lett., 13, pp. 120-124.
[1875] S. ToMBOULIAN, T. CROCKETT, AND D. MIDDLETON [1988]. A visual programming environ-
ment for the Navier-Stokes computer, ICASE Report 88-6, NASA Langley Research
Center, Hampton, VA.
[1876] J. TRAUB, ed. [1974]. Complezity of Sequential and Parallel Numerical Algorithms, Aca-
demic Press.
[1877] J. TrauB [1974]. Iterative solution of iridiagonal systems on parallel or vector computers,

[1863]
[1864]
[1865]

(1866]

AB

(1878] R.

[1879] P.
[1880] P.
[1881] S.
[1882] J.
[1883] L.
[1884] L.
[1885] J.
[1886] S.

[1887] S.

[1888] S.

[1889] M

[1890}

[1892]

[1893]

[1894] E
[1895] H
[1896] H.
[1897] H
[1898] H.
[1899] H.

M
[1891] M.

M

R

IBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 193

in Traub [1876}, pp. 49-82.

TRAVASSOS AND H. KAUFMAN [1980}. Parallel algorithms for solving nonlinear two-point
boundary-value problems whick arise in optimal control, J. Optim. Theory Appl., 30,
pp. 53-71.

TRELEAVEN [1979). Ezploiting program concsrrency in computing systems, Computer,
12(1), pp. 42-50.

TRELEAVEN [1984). Decentralised computer architectyre, in Tiberghien [1873).

TRIPATHI, S. KAISLER, S. CHANDRAN, AND A. AGRAWALA [1986]. Report of the workshop
on design and performance issues in parallel architectures, Tech. Report CS-TR-1705,
Department of Computer Science, University of Maryland, September.

TuazoN, J. PETERSON, M. PNIEL, AND D. LIEBERMAN [1985). Caltech/JPL Mark II hy-
percube concurrent processor, Proc. 1985 Int. Conf. Par. Proc., pp. 666—673.

TUCKER AND G. ROBINSON [1988]. Architecture and applications of the Connection Ma-
chine, Computer, 21(8), pp. 26--38.

UHR [1984)}, Algorithm Siructured Computer Arrays and Networks, Academic Press, Or-
lando, FL.

ULLMAN [1983]. Some thoughts aboxt supereomputer organization, Tech. Report STAN-
(CS-83.987, Department of Computer Science, Stanford University, October.

UNGER [1958]. A computer oriented towards spatial problems, Proc. IRE, 46, pp. 1744~
1750.

UTKU, Y. CHANG, M. SALAMA, AND D. RAPP [1986). Simultaneous iterations algorithm
for generalized eigenvalue problems on parallel processors, Proc. 1986 Int. Conf. Par.
Proc., pp. §9-66.

UTKU, M. SALAMA, AND R. MELOSH [1986]. Concurrent Cholesky factorization of posi-
tive, definite banded Hermitian matrices, Int. J. Num. Meth. Eng., 23, pp. 2137-2152.

. VAITERSIC [1979). A fast parallel method for solving the biharmonic boundary value prob-
lem on a rectangle, Proc, First European Conference on Parallel Distributed Processing,
Toulouse, pp. 136-141.

. VAITERSIC [1981]. Solving two modified discrete Poisson equations in Tlogn steps on n?

processors, CONPAR 81, pp. 473—432.

VAJTERSIC [1982). Parallel Poisson and biharmonic solvers implemented on the EGPA

multiprocessor, Proc. 1982 Int. Conf. Par. Proc., pp. 72-81.

. VAITERSIC [1984]. Parallel marching Poisson solvers, Parallel Computing, 1, pp. 325-

. VAN DE GEDN [1987). Implementing the QR-Algorithm on an Array of Processors, PhD

dissertation, University of Maryland, Department of Computer Science. Also Tech. Re-
port TR-1897, Department of Computer Science, University of Maryland, August.

. VAN DE VELDE AND H. KELLER [1987). The design of a parallel multigrid algorithm, in

Kartashev and Kartashev {1055)], pp. 76-83.

. VAN DER VORST [1982]. A vectorizable variant of some ICCG methods, SIAM J. Sci.

Statist. Comput., 3, pp. 350-356.
VAN DER VORST [1983]. On the vectorization of some simple ICCG methods, First Int.
Conf. Vector and Parallel Computation in Scientific Applications, Paris.

. VAN DER VORST [1985). Comparative performance tests of Foriran codes on the CRAY-1

and CYBER 205, Parallel Computers and Computations, J. van Leeuwen and J. Lenstra,
eds., CWI, Amsterdam. CWI Syllabus 9.

VAN DER VORST [1986]. Analysis of a parallel solution method for tridiagonal systems,
Tech. Report 86-06, Department of Mathematics and Information, Delft University of
Technology.

VAN DER VORST [1986]. (M)ICCG for 2D problems on vector computers, Tech. Report
86-55, Department of Mathematics and Information, Delft University of Technology.

[1900] H. vAN DER VORST [1986). The performance of Fortran implementations for preconditioned

conjugate gradienis on vector compuiers, Parallel Computing, 3, pp. 49-58.

[1901] H. vAN DER VORST [1987]. Analysis of a paraliel solution method for tridiagonal linear sys-

tems, Parallel Computing, 5, pp. 303-311.

[1902] H. vAN DER VORST [1987). ICCG and related methods for 3D problems on vectorcomputers,

Tech. Report A-18, Data Processing Center, Kyoto University, Japan.

[1903] H. vAN DER VORST [1987]. Large tridiagonal and block tridiagonal hinear systems on vector

and parallel computers, Parallel Computing, 5, pp. 45-54.

[1904] H. vaN DER VORST AND J. VAN KATs [1983}, Comparative performance tests on the CRAY-

[1905] P.

1 and Cyber 205. Preprint, May.
VAN LARHOVEN [1985). Parallel variable metric algorithms for unconstrained optimiza-

194

(1906} C.

[1907] C.

[1908] R.

[1909] J.

[1910] J.
[1o11] J.
(1912] F.
[1913] E.
[1914] S.
[1915) C.
[1916] S.

[1917] A.
[1918] V.

[1919] C.

[1920] R.

[1921] R.

[1922] V.
[1923) V.
[1924] R.
[1925] R.
[1926] R.
[1927] J.
[1928] J.
[1929] D.
[1930] D.
[1931] E.

[1932] R.

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

tion, Math. Programming, 33, pp. 68-81.

VAN LOAN [1986). The block Jacobi method for computing the singular value decom-
position, Computational and Combinatorial Methods in Systems Theory, C. Byrnes
and A. Lindquist, eds., Elsevier Science Publishers B.V. (North-Holland), Amsterdam,
Pp- 245-255.

VAN LOAN [1988}. A block QR factorization scheme for loosely coupled systems of ar-
ray processors, Numerical Algorithms for Modern Parallel Computer Architectures,
M. Schultz, ed., vol. 13 of IMA Volumes in Mathematics and its Applications, Springer-
Verlag, Berlin, pp. 217-232.

VAN LUCHENE, R. LEE, AND V. MEVERS [1986]. Large scale finite element analysis on a
veclor processor, Computers and Structures, 24, pp. 625-635.

VAN ROSENDALE [1983). Algorithms and data structures for adaptive multigrid elliptic
solvers, Appl. Math. & Comp., 13(3-4), pp. 453—470. (Special Issue, Proceedings of the
Firet Copper Mountain Conference on Multigrid Methods, Copper Mountain, CO, S.
McCormick and U. Trottenberg, eds.).

VAN ROSENDALE [1983]), Minimizing inner product data dependencies in conjugate gradi-
ent iteration, Proc. 1983 Int. Conf. Par. Proc., pp. 4446.

VAN ROSENDALE AND P. MEHROTRA [1985]. The BLAZE language: A parallel language
for scientific programming, ICASE Report 85-29, NASA Langley Research Center,
Hampton, VA.

VAN ScoY [1977). Some parallel cellular matriz algorithms, Proc. ACM Comp. Sci. Conf.

VAN WEZENBECK AND W. RAVENEK [1987]. Vectorization of the natural logarithm on the
Cyber 205, Supercomputer, 19, pp. 37-42.

VANKA [1987). Vectorized multigrid fluid flow calculations on a CRAY X-MP/48, 1. 1.
Num. Meth. Fluids, 7, pp. 635-648.

VAUGHAN AND J. ORTEGA [1987]. SSOR preconditioned conjugate gradient on a hyper-
cube, in Heath [860], pp. 692-705.

VAVASIS [1986). Parallel Gaussian elimination, Tech. Report CS 367A, Department of
Computer Science, Stanford University, Stanford, CA.

VEEN [1986]. Dataflow machine architecture, ACM Computing Surveys, 18, pp. 365-396.

VENKAYYA, D. CALAHRAN, P. SUMMERS, AND V. TISCHLER [1983}. Structural optimiza-
tion on vector processors, in Noor [1450}, pp. 155-190.

VERBER [1985). Integrated optical architecture for matriz multiplication, Optical Engi-
neering, 24, pp. 19-25.

VICHNEVETSKY AND R. STEPLEMAN, eds. [1984]. Advances in Computer Methods for Par-
tial Differential Eguations - V, Proceedings of the Fifth IMACS International Sympo-
sium, New Brunswick, Canada.

VICHNEVETSKY AND R. STEPLEMAN, eds. [1987]. Advances in Computational Methods for
Partial Differential Equations - VI, Proceedings of the Sizth IMACS International Sym-
posium, New Brunswick, Canada.

VOEVODIN [1985]. Mathematical problems in the development of supercomputers, Com-
putational Processes and Systems, Izdatel’stvo Nauka, Moscow, pp. 3-12.

VOEVODIN [1986], Mathematical Models and Methods for Parallel Processes, Izdatel’stvo
Nauka, Moscow.

VoIGT [1977). The influence of vector computer architecture on numerical algorithms, in
Kuck et al. [1133)], pp. 229-244.

VoIGT, D. GOTTUIEB, AND M. HussAINL, eds. [1984). Spectral Methods for Partial Differ-
ential Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Vorrus [1981]. A multiple process software package for the Finite Element Machine,
Tech. Report, Department of Computer Science, University of Colorado.

VOLKERT AND W. HENNING [1986]. Multigrid algorithms implemented on EGPA multi-
processor, Proc. 1986 Int. Conf. Par. Proc., pp. 799-805.

VON NEUMANN [1966]. A system of 29 stales with a general transition rule, Theory of
Self-Reproducing Automata, A. Burks, ed., University of Illinois Press, pp. 305-317.

VRSALOVIC, D. SIEWIOREK, A. SEGALL, AND E. GEHRINGER [1984]. Performance predic-
tion for mulliprocessor systems, Proc. 1984 Int. Conf. Par. Proc., pp. 139-146.

VU AND C. YANG [1988). Comparing tridiagonal solvers on the CRAY X-MP /416 sys-
tem, CRAY Channels, 9(4), pp. 22-25.

WACHSPRESS [1984). Navier-Stokes pressure equation iteration, in Birkhoff and Schoen-
stadt [173], pp. 315-322.

WAGNER [1983}. The Boolean vector machine, 1983 IEEE Conference Proc. 10th Annual
Int. Symp. Comp. Arch., pp. 53-66.

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 195

[1933] R. WAGNER [1984). Parallel solution of arbitrarily sparse linear systems, Tech. Report CS-
1984-13, Department of Computer Science, Duke University.

. WAGNER AND M. PATRICK [1988]. A sparse matriz algorithm on the Boolean vector ma-
chine, Parallel Computing, 6, pp. 359-372.

. WALKER, G. FOX, A. Ho, AND G. MONTRY [1987]. A comparison of the performance of
the Caltech Mark II hypercube and the Elrsi 6400, in Heath [860].

R
[1934]) R
D

[1936] Y. WALLACH [1982]. Alternating sequential-parallel calculation of eigenvalues for symmetric
Y
Y
Y

[1935]

matrices, Computing, 28, pp. 1-16.

. WALLACH [1984]. On two more eigenvalue methods for an alternating sequential parallel
system, Computing, 32, pp. 33-42.

. WALLACH AND V. CONRAD [1976}. Parallel solution of load flow problems, Arch. Elek-
trotechnik, 57, pp. 345-354.

. WALLACH AND V. CONRAD [1980]. On block parallel methods for solving linear equations,
IEEE Trans. Comput., C-29, pp. 354-359.

[1940] J. WALLIS AND J. GRISHAM [1982]. Petroleum reservoir simulation on the CRAY-{ and on
the FPS-164, Proc. 10th IMACS World Congress on Systems Simulation and Scientific
Computation, vol. 1, pp. 308-310.

[1941] J. WALLIS AND J. GRISHAM [1982]. Reservoir simulation on the CRAY-1, in Cray Research,
Inc. [423), pp. 122-139.

[1942] A. WaLLQVIST, B. BERNE, AND C. PANGALI [1987]. Ezploiting physical parallelism using su-
percomputers: Two ezamples from chemical physics, Computer, 20(5), pp. 9-21.

[1943] S. WALTON [1987]. Performance of the one-dimensional fast Fourier transform on the hy-

percube, in Heath [860], pp. 530-538.
H. WANG [1981). 4 parallel method for tridiagonal equations, ACM Trans. Math. Softw., 7,
pp. 170-183.

[1945] H. WANG [1982]. On vectorizing the fast Fourier iransform, BIT, 20, pp. 233-243.

[1946] H. WaANG [1982). Vectorization of a class of preconditioned conjugate gradient methods for
elliptic difference equations, Tech. Report, IBM Scientific Center, Palo Alto, CA.

[1947) W. WARE [1973]). The ultimate computer, IEEE Spectrum, 10(3), pp. 89-91.

[1948] H. WaAsSERMAN, M. SIMMONS, AND A. HAYES [1987]. A benchmark of the SCS-40 computer:
A mini-supercomputer compatible with the Cray X-MP/24, Tech. Report LA-UR-87-
659, Los Alamos National Laboratory, May.

[1949] P. WATANABE, J. FLOOD, AND S. YEN [1974). Implementation of finite difference schemes
for solving fluid dynamic problems on Illiac IV, Tech. Report T-11, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign.

[1950] T. WATANABE [1987). Architecture and performance of NEC supercomputer SC system, Par-
allel Computing, 5, pp. 247-256.

[1951] 1. WaTsoN AND J. GURD [1982]. A practical data flow computer, Computer, 15(2), pp. 51—
57.

[1952] W. WaTsoN [1972]. The TI-ASC, a highly modular and flezible super computer architecture,
Proc. AFIPS, 41, pt. 1, pp. 221-228.

[1953] J. WATTS [1979]. A conjugate gradient truncated direct method for the iterative solution
of the reservoir simulation pressure equation, Proc. SPE 54th Annual Fall Technical
Conference and Exhibition, Las Vegas.

[1954] S. WEBB [1980). Solution of partial differential equations on the ICL distributed array pro-
cessor, ICL Technical Journal, pp. 175-190.

[1955] S. WEBB, J. MCKEONN, AND D. HUNT [1982]. The solution of linear equations on a SIMD
computer using a parallel iterative algorithm, Comput. Phys. Comm., 26, pp. 325-329.

[1956] R. WEED, L. CARLSON, AND W. ANDERSON [1984]. A combined
direct/inverse three-dimensional transonic wing design method for vector computers,
Tech. Report 84-2156, AIAA, Seattle, WA, August.

[1957) E. WEIDNER AND J. DRUMMOND [1982]. Numerical study of staged fuel injection for super-
sonic combustion, AIAA Journal, 20, pp. 1426-1431.

[1958] J. WEILMUNSTER AND L. HOWSER [1976]. Solution of a large hydrodynamic problem using
the STAR-100 computer, Tech. Report TM X-73904, NASA Langley Research Center.

[1959] J. WELSH [1982]. Geophysical fluid simulation on a parallel computer, in Rodrigue [1643],
Pp. 269-277.

[1960] P. WHITE [1985). Vectorization of weather and climate models for the Cyber 205, in Numrich
[1469], pp. 135-144

[1961] R. WHITE [1985)]. Inversion of positive definite matrices on the MPP, in Potter [1584], pp. 7-
30

(1937]
[1938]

[1939)

[1944]

[1962] R. WHITE [1986]. A nonlinear parallel algorithm with application to the Stefan problem,

196

[1963] R.
[1964] R.
[1965] R.

[1966] O.

[1967] O.

[1968] B.
[1969] B.

[1970] R.

[1971] 3.

[1972] E.

[1973] S

[1974] D.
[1975]) D.
[1976] E.
[1977] E.
{1978] E.

[1979] K.
[1980] O.

[1981] O.

[1982] O.

[1983] A.

[t984] N.
(1985} D.

(1986} D.
[1987] L.
[1988] L.

[1989] Y.

[1990] Y.

[1991] Y.

[1992] P

J. M. ORTEGA, R. G. VOIGT AND C. H. ROMINE

SIAM J. Numer. Anal., 23, pp. 639-652.

WHITE [1986). Parallel algorithms for nonlinear prodlems, SIAM J. Algebraic Discrete
Methods, 7, pp. 137-149.

WHITE [1987]. Multisplittings of a symmetric positive definite mairir, Comput. Meth.
Appl. Mech. Engrg., 64, pp. 567-578.

WHITESIDE, N. OSTLUND, AND P. HIEBARD {1984]. A parallel Jacobi diagonalization al-
gorithm for a loop multiple processor system, IEEE Trans. Comput., C-33, pp. 409—413.

WIDLUND [1984). Iterative methods for elliptic problemas on regions partitioned into sub-
structures and the biharmonic dirichlet problem, Tech. Report 101, Department of Com-
puter Science, Courant Institute, New York.

WIDLUND {1988). Iterative substructuring methods: Algorithms and theory for elliptic
problems in the plane, Tech. Report 265, Department of Computer Science, New York
University.

WIENKE AND R. HIROMOTO [1985). Chaotic iteration and parallel divergence, Tech. Re-
port LA-UR-85-3597, Los Alamoe National Laboratory.

WIENKE AND R. HIROMOTO [1986]. Parallel S, iteration schemes, Supercomputers,
F. Matsen and T. Tajima, eds., University of Texas Press, pp. 399-414.

WILHELMSON [1974). Solving partial differential equations using ILLIAC IV, Construc-
tive and Computational Methods for Differential and Integral Equations, A. Dold and
B. Eckmann, eds., Springer-Verlag, New York, pp. 453-476.

WILKINSON [1954]. The calculation of the latent roots and vectors of matrices on the Pilot
model of the ACE, Proc. Camb. Phil. Soc., 50, Pt. 4, pp. 536-566.

WILLIAMS AND F. BOBROWICZ [1985]. Speedup predictions for large scientific parallel pro-
grams on CRAY-XM-P-kke architectures, Proc. 1985 Int. Conf. Par, Proc., pp. 541-543.

. WILLIAMS [1979). The portability of programs and languages for vector and array proces-

sors, in Jesshope and Hockney [976], pp. 381-94.

WILLIAMSON [1983]. Computational aspects of numerical weather prediction on the Cray
computer, in Noor [1450}, pp. 127-140.

WILLIAMSON AND P. SWARZTRAUBER [1984]. A numerical weather prediction model —
Computational aspects, Proc. IEEE, 72, pp. 56-67.

WILSON [1976). Special numerical and compuler techniques for finite element analysis,
Formulation and Computational Algorithms in Finite Element Analysis, MIT Press,
Cambridge, MA, pp. 2-25.

WILSON [1983]. Finite element analysis on microcomputers, in Noor [1450}, pp. 105-116.

WILSON AND C. FARHAT [1988]. Linear and nonlinear finite element analysis on multi-
processor compuicr systems, Comm. Appl. Numer. Meth., 4, pp. 425-434.

WiLsoN [1982]. Ezperience with an FPS array processor, in Rodrigue [1643), pp. 279-314.

WING [1985). A content addressable systolic array for sparse matriz computation, J. Par.
Dist. Comp., 2, pp. 170-181.

WING AND J. HUANG [1977). A parallel triangulation process of sparse matrices, Proc.
1977 Int. Conf. Par. Proc., pp. 207-214.

WING AND J. HUANG [1980). A computational model of parallel solutions of linear equa-
tions, IEEE Trans. Comput., C-29, pp. 632-638.

WINKLER [1987]. A parallel variational method for certain elliptic spectral problems, Re-
search Report RC12878, IBM.

WINSOR [1981]. Vectorization of fluid codes, in Book [203}, pp. 152-163.

WisE [1985). Representing matrices as quadirees for parallel processing, Inf. Proc. Lettrs.,
20, pp. 195-199.

WiSE [1986). Parallel decomposition of matriz inversion using quadirees, Proc. 1986 Int.
Conf. Par. Proc., pp. 92-99.

WrTTIE [1980). Architectures for large networks of microcomputers, Workshop in Inter-
connection Networks for Paralle] and Distributed Processing, April, pp. 31-40.

WTITTIE AND A. VAN TILBOUG [1980}. Micros, a distributed operating system for Mi-
cronet, a reconfigurable network computer, IEEE Trans. Comput., C-29, pp. 1133-44.
WONG [1987). Approzimate polynomial preconditioning applied to biharmonic equations
on vector supercomputers, Tech. Report NASA TM100217, NASA Lewis Research Cen-

ter.

WONG [1988). Solving large elliptic difference equations on Cyber 205, Parallel Comput-
ing, 6, pp. 195-208.

WONG AND J.-M. DELOSME [1987). Transformation of broadcasting into pipelining, Tech.
Report YALEU/DCS/RR-544, Department of Computer Science, Yale University.

. Woo AND J. LEVEQUE [1982). Benchmarking a sparse eliminalion routine on the Cyber

A BIBLIOGRAPHY ON PARALLEL AND VECTOR NUMERICAL ALGORITHMS 197

205 and the CRAY-1, Proc. 6th SPE Symposium on Reservoir Simulation.

[1993] P. WOODWARD [1982]. Trade-offs in designing explicit hydrodynamic schemes for vector
compulers, in Rodrigue [1643)], pp. 153-171.

[1994] P. WORLEY [1988)]. Information Reguirements and the Implications for Parallel Computa-
tion, PhD dissertation, Stanford University, Department of Computer Science. Also
published as STAN-CS-88-1212, Department of Computer Science, Stanford University.

[1995] P. WORLEY [1988). Limits on parallelism in the numerical solution of linear PDEs, Tech.
Report ORNL/TM-10945, Oak Ridge National Laboratory, October.

[1996] P. WORLEY AND R. SCHREIBER [1986). Nested dissection on a mesh-connected processor ar-
ray, New Computing Environments: Parallel, Vector and Systolic, A. Wouk, ed., Society
for Industrial and Applied Mathematics, Philadelphia, pp. 8-38.

[1997] J. WoORLTON [1981)]. A philosephy of supercomputing, Tech. Report LA-8849-MS, Los Alamos

National Laboratory.
[1998] J. WORLTON [1984). Understanding supercomputer benchmarks, Datamation, 30(14),
pp. 121-130.

[1999] A. WouK, ed. [1986). New Computing Environments: Parallel, Vector, and Systolic, Society
for Industrial and Applied Mathematics, Philadelphia, PA.

[2000] C. Wu, 1. FERZIGER, D. CHAPMAN, AND R. ROGALLO [1984]. Navier-Stokes simulation of
homogeneous turbulence on the CYBER 205, in Gary [700], pp. 227-239.

[2001] W. WuLF AND C. BELL [1972]. C.mmp — A multiminiprocessor, Proc. AFIPS Fall Joint
Comp. Conf., Reston, VA, AFIPS Press, pp. 765-777.

[2002] W. WULF AND S. HARBISON [1978]. Reflections in a pool of processors, Tech. Report, De-
partment of Computer Science, Carnegie-Mellon University.

[2003] M. WUNDERLICH [1985]. Implementing the continued fraction factoring algorithm on parallel
machines, Math. Comp., 44, pp. 251-260.

[2004] M. YASUMURA, Y. TANAKA, AND Y. KANADA [1984]. Compiling algorithms and technigues
for the S-810 vector processor, Proc. 1984 Int. Conf. Par. Proc., pp. 285-290.

[2005] P.-C. YEW [1986). Architecture of the Cedar parallel supercomputer, Tech. Report 609, Cen-
ter for Supercomputing Research and Development, University of Illinois at Urbana-
Champaign, August.

[2006] D. YounG [1971)], Iterative Solution of Large Linear Systems, Academic Press, New York.

[2007] D. Young, T. OPPE, D. KINCAID, AND L. HAYES [1985). On the use of vector computers for
solving large sparse linear systems, Tech. Report CNA-199, Center for Numerical Anal-
ysis, University of Texas at Austin.

[2008] N. Yousir [1983). Parallel Algorithms for Asynchronous Multiprocessors, PhD dissertation,
Loughborough University.

[2009] N. Yu AND P. RUBBERT [1982]). Transonic flow simulations for 3D complex configurations,
in Cray Research, Inc. [423], pp. 41-47.

[2010] C.-P. YuaN [1987). Implementation of capacitance calculation program CAP2D on iPSC, in
Heath [860], pp. 485-494.

[2011] V. ZAKHAROV [1984]. Parallelism and array processing, IEEE Trans. Comput., C-33, pp. 45~
78

[2012] P. ZAVE AND G. COLE [1983]. A quantitative evaluation of the feasibility of and suitable
hardware structures for an adaptive parallel finite element system, ACM Trans. Math.
Softw., 9, pp. 271-292.

[2013] P. ZAvE AND W. RHEINBOLDT [1979]. Design of an adaptive parallel finite element system,
ACM Trans. Math. Softw., 5, pp. 1-17.

[2014] E. ZMuIEWSKI [1987]. Sparse Cholesky Factorization on a Multiprocessor, PhD dissertation,
Commnell University, Department of Computer Science, August.

[2015} E. ZMUIEWSKI AND J. GILBERT [1987). A parallel algorithm for sparse symbolic Cholesky fac-
torization on & mulliprocessor, Parallel Computing, 7(2), pp. 199-210.

[2016] D. Zois [1988]. Parallel processing techniques for FE analysis I. Stiffness loads and stresses
evaluation. IT System solution, Computers and Structures, 28, pp. 247-274.

