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PREFACE

This book is a companion volume to the author’s Basic Language of Mathematics and
is inspired by the same concern to provide a clear, comprehensive, and formally sound pre-
sentation of its subject matter. The work is also intended to provide a reliable bridge to
broader areas of mathematics, such as are, for instance, addressed by the author’s long-
standing mentor and collaborator Walter Noll in his Finite-Dimensional Spaces, Algebra,
Geometry, and Analysis Volume I, a book developed in the same academic environment.

Notation, terminology, and basic results on sets, mappings, families, relations, ordered
sets, and natural and real numbers, as well as some elementary facts about commutative
monoids, groups, and rings (including fields) are taken directly from Basic Language of
Mathematics; explicit references to that work use the abbreviation Basic Language.

The author thanks Ms Nancy J. Watson for her excellent work on the preparation of
the manuscript.
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Chapter 1

LINEAR SPACES AND LINEAR
MAPPINGS

11. Linear spaces

Throughout this work we shall assume that a field is given. In order to make
plain that this field is fixed, we denote it by F. The reader may wish to imagine that
F := R; this may suggest a geometric view of some matters. It is, however, with
few exceptions (to be noted), quite immaterial what particular field F is. Tt is also
customary to denote the unity of the field F by 1. If F := R, this is of course right; in
general, we shall see that it will not lead to a notational clash, any more than using 0
for the zero of F will. We must, however, realize that it may then happen, e.g., that
141 =0 (cf. Basic Language, Example 133A,(c)).

We define a linear space (over F) to be a commutative group V, written addi-
tively, endowed with additional structure by the prescription of a family of mappings
((u s su) | s € F) € (Map(V,V))¥, called the scalar multiplication, subject to the
following conditions:

(LS1): Vs € F, Yu,v €V, s(u+v) = (su) + (sv) (space distributive law)

(LS2): Vs, t € F, Yu eV, (s+t)u=(su)+ (tu) (field distributive law)

(LS3): ¥s,t,e F, Yu eV, (st)u=s(tu) (composition law)

(LS4): Yu €V, lu=wu wherel is the unity of T (unity law).

One often finds the term vector space used instead of linear space. The members
of F are sometimes referred to as scalars and the members of a linear space V as
vectors; it is perhaps best to reserve that terminology for a specialized context. If
s € Fand u € V, we say that su is u multiplied by s, and read ‘s times u”; we call
su a scalar multiple of u.

The usual conventions about the use of parentheses are adopted; thus, scalar
multiplication has priority over addition, opposition, and subtraction, so that the
right-hand sides of (LS1), (LS2) may be written without parentheses. By virtue of
(LS3) we may also write stu, without parentheses, for s,t € F, u € V.
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To the notations used for commutative monoids and groups we add the following.
If K is a subset of F and A is a subset of V), we set

KA:={su| (s,u) € K x A} CV;

andift € F, v € V, we set tA:= {t}A and Kv := K{v}.

It is sometimes necessary to have names for the zero, addition, opposition, and
scalar multiplication in a specific linear space V. In that case we use 0V, add”, oppV,
mult, respectively. Thus, e.g.,

mult¥,(u) ;= su for all s € F and u € V.

With these notations, (LS1)—(LS4) become
(LS1): Vs € F, mult”, o add” = add” o (mult”, x mult",)
(LS2): Vs,t € F, mult”, ., = add” o (multvs7 multvt)
(LS3): Vs,t € F, mult’,, = mult¥, o mult”,
(LS4): mult’; = 1y.
We record some elementary facts about the operations in a linear space.
11A. ProprosiTiOoN. Let the linear space V be given. Then

(11.1) Vse€F, s0=0 where 0:=0"
(11.2) YueV Ou=0" where 0isthe zero of F

(11.3) VseF, VYueV, (—s)u=s(—u)=—su and (—s)(—u)= su

(11.4) VseF, VYuveV, s(u—v)=su—sv
(11.5) Vs,teF, YuelV, (s—tu=su—tu
(11.6) VueV, (-lu=—u.

Formulas (11.2) and (11.6) say

(11.7) mult¥y = (0¥)y_y mult¥_; = opp?.

Proof. The proof of (11.1)—(11.5) is quite similar in form to the proof of Basic
Language, Propositions 132B, and we omit it. By (11.5), (11.2), (LS4) we have

(-lu=0-1u=0u—-1lu=0—u=—u
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for all u € V, so that (11.6) holds. m

On comparing (11.2) and (LS4) with Basic Language, (115.2), we notice that there
is no clash between Ou and 1u, meaning u multiplied by the zero and the unity of F,
on the one hand, and Ou and lu, meaning the Oth and the 1st multiple of u, on the
other.

We also require generalized versions of the distributive laws.
11B. ProrositioN. Let the linear space V be given.

(a): Let the family = € VI and s € F be given. Then Supp{sz; | i € I} C Suppz.
For every finite subset J of I, and for every subset J of I if Suppz is finite, we have

SE zZ = E SZj.
J

jeJ

(b): Let u € V and the family a € FX be given. Then Supp{apu | k € K} C
C Suppa. For every finite subset L of K, and for every subset L of K if Suppa is

finite, we have
(Z a)u = Z au.
L leL
(c): Let the families = € V! and a € FE be given. Then Supp{arz; | (k,i) €
K x I} C Suppa X Suppz. For all finite subsets J of I and L of K, and for all subsets
J of I and L of K if Suppz and Suppa are finite, we have

o> = 3 as

L J (Lj)eLxJT

(d): Vs eF, YueV, Vm,n e N, (ms)(nu) = (mn)(su); in particular,

(11.8) YueV, YmeN, (ml)u=mu, wherel isthe unityof F.

Proof. The proof is quite similar in form to the proof of Basic Language, Propo-
sition 132D, and we therefore omit it. m

According to Proposition 11B,(d), we may omit parentheses in expressions such
as msu for m €N, s € F, u € V. It follows from (11.8) that if, for each m € N, the
mth multiple of the unity of F happens to be denoted by m, there is no clash between
mu, meaning v multiplied by m € F, and mu, meaning the mth multiple of w. This
is applicable, in particular, when F := R or F := Q, where the mth multiple of the
unity of F actually is the natural number m itself.

We next establish a converse to the conjunction of (11.1) and (11.2).

11C. ProrosiTiON. Let the linear space V be given. Then F*V* C V*, i.e.,

VseF, YueV, su=0=(s=0 or u=0).

Proof. Let s € F* and u € V* be given. By (LS3), (LS4) we have i(su) =
(1s)u = 1lu=u € V*. Tt follows from (11.1) that su # 0, i.e., su € V*. m

S
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11D. ExawmprEes. (a): Every singleton can be endowed with the structure of
a linear space over ' (in exactly one way) by the one unavoidable choice of zero,
addition, opposition, and scalar multiplication. Such a space has then the form {0},
and is called a zero-space. A linear space is said to be trivial if it is a zero-space.

(b): T itself, regarded as its additive group, becomes a linear space over the field
FF with the scalar multiplication defined by the rule

mult®(¢) := st for all 5,t € F,

where st is the product of s and ¢ in the field F. The validity of (LS1) and (LS2)
follows from the commutative law for multiplication and the distributive law in the
field F; the validity of (LS3) and (LS4) follows, respectively, from the associative law
and the neutrality law for multiplication in F. When we refer to F as a linear space
over the field I, we shall always mean this particular linear-space structure.

(c): Let the family (V; | i € I) of linear spaces be given. Then the set X Vi,

icl
endowed with structure by the prescription of zero, addition, opposition, and scalar
multiplication defined termuwise, i.e., by the rules

0:=(0]iel
Ya,b e XVi, a+b:=(a;+b; i€l
iel
vae XV, —a:=(—a;|i€el)
iel
VseF, Vae XV, sa:=(sa;|iel),
iel

is a linear space. We shall always regard X V; as endowed with this linear-space
structure. It is called the (Cartesian) prodﬁét of the family (V; | i € I). For every
a € X V; we define the set Suppa := {i € I'| a; # 0}, called the support of a. It

iel
is also useful to define the set

Supp(Vi | i € I):={i € I | Vi #{0}} = | J{Suppa | a € >§ Vit

and call it the support of the family (V; | i € I).
In particular, if I is a set and V is a linear space, we have the Cartesian product
VI = XV of the family (V | ¢ € I). For this family, the definitions of zero,

additionfezind support agree with the definitions for monoids of families given in
Basic Language, Section 117. We note that V! is a zero-space if and only if I is
empty or V is a zero-space. Using (b), we have in particular the linear spaces F! for
all sets 1.

As a kind of special case we also have the following. Let the linear spaces ¥V and
W be given. Then the operations on the product V x W of V and W are given by
the rules
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0:= (0,0)
V(v,w),( v, w') eV xW, (v,w)+ (v ,w):= @+, w+w)
Vv,w) e Vx W, —(v,w):=(—v,—w)
Vs e F,Y(v,w) € Vx W, s(v,w) = (sv, sw).

(d): Let the set D and the linear space V be given. Then the set Map(D, V),
endowed with structure by the prescription of zero, addition, opposition, and scalar
multiplication defined valuewise, i.e., by the rules

0:=0
Vf,g € Map(D,V), Vx € D, (f+g)(x):= f(z)+g(z)
Vf e Map(D,V), Ve € D, (—f)(z):=—f(z)
Vs € F, Vf € Map(D,V), Vz € D, (sf)(x) := sf(z),

is a linear space. We shall always regard Map(D, V) as endowed with this linear-space
structure. Actually, this space is a variant of the space VP defined according to (c).
]
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12. Linear mappings

Let the linear spaces V, W be given. A mapping L:V — W is said to be linear
if it satisfies the following conditions:

(12.1) Loadd” =add" o (L x L)
(12.2) L(0Y) = 0%

(12.3) LooppY =opp”olL

(12.4) Vs € F, Lomulty,=mult",o L.

Roughly speaking, a mapping is linear if it preserves the linear-space structure.

12A. RemMARK. (a): Using (11.7), we see that (12.2) and (12.3) are nothing but
the special cases of (12.4) for s := 0 and s := —1, respectively, and are therefore
redundant. In order to verify that a mapping L : V — W is linear, it is therefore
sufficient to establish that L satisfies (12.1) and (12.4), i.e.,

(12.5) Yu,v €V, L(u+v) = L(u) + L(v)

(12.6) VseF, YueV, L(su)=sL(u).

A mapping that satisfies (12.1) or, equivalently, (12.5) is said to be additive, and
one that satisfies (12.4) or, equivalently, (12.6) is said to be homogeneous. These
conditions are expressed, respectively, by the commutativity of the following diagrams
(the second one for each s € F):

add” mult¥,
o X . X L
add”? mult”
W x W )4% w w

(b): Let the linear space V be given. Then mult”; : V — V is a linear mapping
for every t € F: the additivity follows from (LS1), the homogeneity from (LS3)
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and the commutative law for multiplication in F. In particular, 1, = mult; and
opp? = mult”_; are linear.

(c): For given linear spaces V, W, (12.2) shows that the only constant mapping
from V to W that is linear is 0y_,)y, the zero-mapping. m

12B. ProposITION. Let the linear mapping L : V — W and the family z € V!
be given. Then Supp(L o z) C Suppz. For every finite subset J of I, and for every
subset J of I if Suppz is finite, we have

L(Zz)zZLoz.

Proof. The proof is again quite similar in form to the proof of Basic Language,
Proposition 132D, and we therefore omit it. m

For given linear spaces V, W, we set

Lin(V, W) := {L € Map(V, W) | L is linear}.

In particular, for every linear space V we set Lin}V := Lin(V, V)

12C. ProrosiTioN. Let the linear spaces V, W, X, and the linear mappings
L:V—=Wand M : W — X be given. Then M o L is linear.

Proof. Since L and M are linear, we have

MoLoadd” = Moadd” o (L x L) =add” o (M x M)o (L x L) =
=add o ((MoL)x (Mo L))

MoLomulty = Momult”,o L =mult*; o Mo L forallseF,
as was to be shown. m

The computations in the preceding proof are expressed by “diagram-chasing” as
follows:

add? mult”
VXV -~ v v _— v

N A N

(MoL)x (MoL) | X wxw w X |Mer mor P4 mult™, w X |Mor
X

,/MXM X z\x /MW X 1\\\

add”® mult™ ¢

X x X X

12D. ProposiTION. Let the linear spaces V, W, X, and the mappings L : V — W
and M : W — X be given.

(a): If L and M o L are linear and L is surjective, then M is linear.
(b): If M and M o L are linear and M 1is injective, then L is linear.
Proof. Proof of (a). Since L and M o L are linear, we have
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Moadd”o(Lx L) =MoLoadd” =add¥o((MoL)x (MolL))=
=add” o (M x M)o (L x L)
Momult”yoL =MoLomultYy =mult*;o Mo L forallsel.

Since L is surjective, sois L x L : ¥V x ¥V — W x W, and hence both L and L x L are
right-cancelable (Basic Language, Proposition 35A.R). It follows that

M oadd” = add”™ o (M x M)

M omult”y = multt, 0 M for all s € F,

so that M is linear.
Proof of (b). Since M and M o L are linear, we have

M o Loadd”

=add¥ o (MoL)x (MoL))=add¥o(Mx M)o(LxL)=
=Moadd" o (L x L)
MoLomultY,=mult*, o Mo L =M omult’”,o L forall s €F.

Since M is injective, M is left-cancelable (Basic Language, Proposition 35A.L). It
follows that L satisfies (12.1) and (12.4), and is therefore linear. m

12E. CoroLLARY. If a linear mapping is bijective, its inverse is linear.

Proof. Let the bijective linear mapping L be given. Then L is linear and injective,
and L o L© = lgear is linear (Remark 12A, (b)). By Proposition 12D,(b), L* is
linear. m

There are some notational conventions in common use for linear mappings. Let
the linear mapping L be given. We write Lu := L(u) for all w € DomL, Lf := Lo f
for all mappings f with Codf = DomlL, and Lz := L o z for all families z with
Rngz C DomL. These conventions yield such unambiguous expressions as M Lu,
where M and L are linear mappings with CodL = DomM, and v € DomZL. (Note
that ML is linear, by Proposition 12C.) If L is a linear mapping with DomZL = CodL,
we write L™ := L°" for all n € N. If L is a bijective linear mapping, so that its inverse
is also linear by Corollary 2E, we write L~! := L. Finally, if L is a bijective linear
mapping with DomZ = CodL, we write, more generally, L™" := (L))" for all n € N*.

12F. REMARKS. Let the linear mapping L with DomL = CodL be given. It
follows from Basic Language, Propositions 96B and 97C that L™ = L™L" and
L™ = (L™)™ for all m,n € N. Suppose now that L is also bijective. It follows
from Basic Language, Proposition 94D that L™ = (L))" = (L™)* for all n € N.
Combining these facts with some computation, it then follows that L™t = L™[L"
and L™ = (L™)" for all m,n € Z; we thus see that the notation L™" := (L))" for
all n € N* does not lead to a clash. m

12G. Exampies. (a): Let the family of linear spaces (V; | ¢ € I) be given, and

consider the Cartesian product X V; as defined in Example 11D,(c). For each j € T
i€l
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the projection 7; : X V; — V; is then a linear mapping, as follows at once from the
definitions. el

Similarly (or as a special case), for given linear spaces V, W the mappings
(v,w) = v): VXxW—=Vand ((v,w) — w): VYV x W — W are linear.

(b): Let the set D and the linear space V be given, and consider the linear space
Map(D,V) defined in Example 11D,(d). For each z € D the evaluation mapping
ev,: Map(D,V) — V, i.e., the mapping (f — f(z)) : Map(D,V) — V, is linear.
It follows from this and from Proposition 12B that for every x € D, every family
(fi | ¢ € I)in Map(D, V), and every finite subset J of I — indeed, every subset J of
I if Supp(f; | i € I) is finite, we have

DS =) filx).

jeJ jeJ

(c): Let the family of linear spaces (Vi | k € K), the set I, and the mapping
¢ : I — K be given. Then the Mapping

ar—aod: XV;C% XVW)

keK iel
is linear.

(d): Let the sets D and C, the linear space V, and the mapping ¢ : D — C be
given. Then the mapping

f fop : Map(C,V) — Map(D, V)

is linear.
(e): Let the non-empty set D, the linear spaces V and W, and the mapping
L :V — W be given. Then the mapping

f= Lo f : Map(D,V)— Map(D, W)

is linear if and only if L is linear.

(f): Let the set I and the linear space V be given. For every finite subset J of T
the mapping

a»—)Za:VI—H/
J

is linear. This follows from Basic Language, Theorem 117E for the additivity, and
from Proposition 11B,(a) for the homogeneity.

Similarly (or as a special case), the mapping add” : V x V — V is linear for every
linear space V.

(g): Let the linear space V be given. For each v € V, the mapping u® : F — V,
defined by the rule
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u®t:=tu foralltel,

is linear: it follows from (LS2) that this mapping is additive, and from (LS3) and the
commutative law for multiplication in F that it is homogeneous. Note that Rng(u®) =
Fu, and that by Proposition 11C u® is injective if and only if u #0. If L: V — W
is a linear mapping, then L(u®) = (Lu)® on account of the homogeneity of L, and
we may omit the parentheses.

(h)*: We set Cont(R,R) := {f € Map(R,R) | f is continuous} and Cont! (R, R) :=
{f € Cont(R,R) |f is differentiable, and its derivative f* is continuous}. These are
linear spaces over R, with the linear-space operations defined valuewise (i.e., they are
subspaces of Map(R,R), in a sense to be made precise in Section 13). The mapping

fr f: Cont'(R,R) — Cont(R, R)

(differentiation) is linear. For given a,b € R, the mapping

b
f»—)/ f: Cont(R,R) - R

is linear. The mapping J : Cont(R, R) — Map(R, R) defined by the rule

(JH() = /Otf for all £ € R and f € Cont(R,R)

is also linear. m

To conclude this section, we note a few formulas.

12H. LEmMA. Let the linear mapping L : V — W be given. Then

L. (A+B)=L.(A)+L.(B) forall A BePV)

L. (KA)=KL.(A) forall K € B(F) and A € B(V)

L<(C+7D)> L(C)+ L=<(D) forall C,DePW)

F(KC)= KL<(C) forall K € B(F*) and C € P(W).

Proof. Let A, B € P(V) and K € PB(F) be given. Then the inclusions L. (A+B) C
L.(A)+ L-(B) and L.(KA) C KL-(A) follow at once from (12.5) and (12.6). Let
w € L. (A)+ L.(B) be given. We may choose v € L.(A), v € L.(B) such that
w = u + v; we may further choose a € A, b € B such that w = La, v = Lb. Then
w =u+v = La+Lb= L(a+b) € L.(A+B). Sincew € L.(A)+ L. (B) was arbitrary,
the reverse inclusion L~ (A)+ L. (B) C L. (A+ B) follows. A similar argument yields
KL.(A) C L.(KA).

Let C,D € P(W) and K € P(F*) be given. For all u € L=<(C) and v € L=(D)
we have L(u 4+ v) = Lu+ Lv € C + D, and therefore u +v € L<(C + D). Thus
L<(C)+ L<(D) Cc L<(C+ D). For all s € K and u € L<(C) we have L(su) =
= sLu € KC. Thus KL<(C) C L<(KC). Let v € I*(KC) be given. We may choose
t € K and ¢ € C such that Lv = tc. Then L(fv) = $Lv = ftc = ¢ € C, so that

— 1

tv e L<(C) and v = t4+v € KL=<(C). Thus L<(KC) C KL<(C). m
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13. Subspaces

Let the linear spaces U and V be given. Then U is called a (linear) subspace of
VifUU CV and lycy is linear.

Before we examine more closely the meaning of this definition, we establish some
immediate consequences.

13A. ProrosriTioN. Let the linear spaces V and W, the subspace U of V, and the
subspaces X and Y of W be given. For every linear mapping L : V — X such that
L.(U) C Y the mapping LI} obtained by adjustment is linear.

Proof. Since 1y, L, and 1<y are linear, so is their composite 1ycyyoLolycy =
LY = 1ycw o (LI}), by Proposition 12C. Since 1ycyy is linear and injective, L[}, is
linear by Proposition 12D,(b). m

13B. CoroLLARY. Let the linear spaces U, V, W be given, and assume that VW
is a subspace of V. Then U is a subspace of W if and only if U C W and U is a
subspace of V.

Proof. We may stipulate that 4 C WW. We then have to prove that 1ycyy = lycyp|”
is linear if and only if 1cy = 1ycw|Y is linear, and this follows from Proposition 13A.
]

We return to the definition. It says that a subspace of the linear space V is a
subset U of V, endowed with the structure of a linear space in such a way that the
operations of that structure “agree with” the corresponding operations of V), in a
sense to be made precise presently.

13C. LEMMA. Let the linear space V and the subspace U of V be given. Then

(13.1) 0V eu, (add).U xU)cU, (mult",).(U)cU foralls€cTF,

(13.2) M =0", add’=add"|%.,, opp" = opp”|¥,
mult’, = multvsm for all s € F.
Proof. Since 1ycy is linear, we have 0¥ = 13-y (04) = 0Y; moreover,
add”[yxe = add” o Lyuycyxy = add” o (lycy X lycy) = lycy o add”.
This shows that (add”). (U x U) = Rng(add”|yxy) C U and that
addV % ., = (lycy"') o add” = 13 0 add” = add“.

The proof for the scalar multiplication is similar, but simpler. The proof for the
opposition follows by (11.7). m

Lemma 13C shows that a subset U of a linear space V can be endowed with at
most one linear-space structure so as to be a subspace of V, and the conditions in
(13.1) are necessary for such a structure to exist. We shall now show that they are
also sufficient.
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13D. THEOREM. Let the linear space V and the subset U of V be given. Then U
can be endowed with the structure of a linear subspace of V if and only if

(13.3) 0el, u+ucu, Fu cu.

When these conditions (restatements of (13.1)) are satisfied, there is exactly one such
structure, and it is defined by requiring (13.2).

Proof. The “only if” part follows from Lemma 13C, as does the fact that any
subspace structure of & must be given by (13.2).

To prove the “if” part, we assume that (13.3) holds. Then (13.1) holds, and
we may define 0¥, add”, opp”, mult by requiring that (13.2) hold. Tt remains to
verify that this prescription satisfies the defining laws for a linear space, and that
1ycy is linear. The validity of each of these laws (the associative, commutative, and
neutrality laws for addition, the law of opposites, and (LS1)-(LS4)) follows at once
from the validity of the corresponding law for V), since it expresses the holding of the
same equality when the objects to be tested are members of the subset U of V. The
fact that 1ycy is linear is verified as follows:

lycy o add” = lycy o (add”[ff,,) = add”|uxy = add” o Lyxucvxy =
= add” o (Iycy x lycy)
Lycy omult”y = 1ycy o (mult” ) =

= multvs|u = mult’, o lycy forallseF.m

13E. RemARks. (a): In view of the uniqueness of the subspace structure on U,
we claim the license to call the subset U of V a subspace of V when the conditions
(13.3) are satisfied, and to then regard U, without explicit mention, as endowed with
the structure of a linear space by prescribing the operations according to (13.2).

(b): The empty subset @ of V satisfies @ + @ C @ and FQ C O, but it is not a
subspace. The condition 0 € U in (13.1) is therefore not redundant. It may, however,
be replaced by the apparently weaker condition U # (J; indeed, after this replacement,
we may choose a € Y and find 0 = 0a € FU C U.

(c): If U is a subspace of V we have U = 0+U CU +U and U = s(2U) C sl for
every s € F*, so that (13.3) may be sharpened to

0elU, U+Uu=U, s =U for every s € F*.

(d): Let the linear space V and the subspace U of V be given. We have used
the same symbol + for addition in V and in U, and there is no clash between these
uses because of Lemma 13C. We generalize this remark. Let a family z € U’ be
given. For every finite subset J of I, and for every subset J of I if Suppz is finite
(this is unambiguous, since 0% = 0Y), there are two possible interpretations of Zz,

J
one in the commutative monoid I with addition add, the other in the commutative

monoid V with addition add. It follows by special induction from (13.2) that these
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interpretations of Zz agree if J is finite; and therefore, if Suppz is finite, both

J
interpretations of Z z = Z z agree for every subset J of I. We may therefore
J JNSuppz

write Zz without ambiguity, and moreover obtain the following generalization of

the forrimla U+UCUin (13.3).m

13F. CoroLLARY. Let the linear space V, the subspace U of V, and the index set
I be given. Then ZL{ cu.

iel

13G. ExampiEes. (a): Let the lincar space V be given. Then {0} and V are
subspaces of V. They are called the zero-subspace, or trivial subspace, of V, and
the improper subspace of V, respectively. All subspaces of V other than V itself
are proper subsets of V| and are therefore called proper subspaces of V.

(b): Let the linear space V be given. If Uy, Us are subspaces of V, then U NUs and
Uy + Us are also subspaces of V), as is readily verified by using Theorem 13D. These

are special cases of results involving an arbitrary family of subspaces (Propositions
13J and 13R).

(c): Let the linear spaces V and W be given. A mapping L : ¥V — W is linear
if and only if its graph Gr(L) is a subspace of the linear space ¥V x W (Example
11D,(c)).

(d): Let the families of linear spaces (U; | i € I) and (V; | i € I) be given, and
assume that U; is a subspace of V; for every i € I. Then X U; is a subspace of

i€l
X V;. In particular, if V is a linear space and U is a subspace of V, then U! is a
iel
subgpace of V! for every set I.
(e): Let the family of linear spaces (V; | i € I) be given. For all a,b € X V; and

s € F we have Supp(a + b) C Suppa U Suppb and Supp(sa) C Suppa. Therefore the
subset

@V ={a€ X, | Suppa is finite}

el

of X V; is a subspace of X V;. It is called the direct sum of the family
el i€l

(Vs |, i € I). We observe that@V = X V; if and eonly if Supp(V; | i € I) is finite;

this equality therefore holds 1f I is ﬁnlte
In particular, let the set I and the linear space V be given. Then (cf. Basic

Language, Section 117) V) := {z € V! | Suppz is finite} = @V is a subspace of
i€l
V!, For every subset J of I the mapping

aHZa:V(U—HJ
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is linear (the proof is as in Example 12G,(f)). We note that V) = V! if and only if
1 is finite or V is a zero-space.

More in particular, F) contains the Kronecker family 6! for each i € I (here we
take the terms 0 and 1 of the Kronecker families to be the zero and unity of the field
F). Let a € F be given. Then Supp(a;0! | i € I) = Suppa is finite, and hence, by
Proposition 12B and Example 12G,(a),

Zazél = w]Zazé = Zw] az Zal =a; foralljel.

el el i€l el

We thus see that

(13.4) a= Za,ﬁi] for all a € F)

iel

(f)*: Let the subset S of R be given. Then Cont(S,R) := {f € Map(S,R) | f is
continuous} is a subspace of Map(S, R). Moreover, Cont'(R,R) := {f € Cont(R,R | f
is differentiable, and its derivative f* is continuous} is a subspace of Cont(R,R).
(These are linear spaces over R.) m

Particularly important instances of subspaces are the sets Lin(V, W) of linear
mappings.

13H. PROPOSITION. Let the linear spaces V and W be given. Then Lin(V, W) is
a subspace of Map(V, W).

Proof. Oy_y € Lin(V, W) (Remark 12A,(c)). Let L, M € Lin(V,W) and t € F
be given. Then

Vu,v €V, (L+M)(u+v) =Lu+v)+Mu+v)=
= (Lu+ Lv) + (Mu+ Mv) =
= (Lu+ Mu) + (Lv + Mv) =
=(L+M)(u)+ (L+M)(v)

VseF,YueV, (L+M)(su) = L(su)+ M(su)=sLu+ sMu=
= s(Lu+ Mu) = s(L + M)(u);

hence L + M € Lin(V, W); and

Yu,v €V, (tL)(u+v) =tL(u+v)=1t(Lu+ Lv) =tLu+tLv =
= (tL)(u) + (tL)(v)

VseF, VueV, (tL)(su) =tL(su)=t(sLu)= (ts)Lu=
= (st)Lu = s(tLu) = s(tL)(u);

hence tL € Lin(V,W). Since L, M € Lin(V, W) and t € F were arbitrary, it follows
from Theorem 13D that Lin(V, W) is a subspace of Map(V, W). m
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13I. REMARK. Let the linear spaces V, W, X be given. Then Proposition 13H
and Examples 12G,(d),(e) show that for all K, L € Lin(V,W), M, N € Lin(W, X),
and s,t € F we have

M(K+L) = MK+ML, (M+N)K = MK+NK, (sM)(tK) = (st)(MK).

Therefore the mappings (L — ML) : Lin(V, W) — Lin(V, X) and
(N +— NK) :Lin(W, X) — Lin(V, X) are linear. m
For each linear space V we define

Subsp(V) := {U € P(V) | U is a subspace of V}.

13J. ProposiTioN. Let the linear space V be given. Then Subsp(V) is an intersection-
stable subcollection of P(V).

Proof. By Theorem 13D we have
Subsp(V) ={U e PV) |0elU, U+U CU, FU C U}.

Let T be a subcollection of Subsp(V). Then 0 € U for every U € T, and therefore
0e ﬂvF. We also have ﬂVF + mVF CU+UCU and F(ﬂvF) C FU C U for

alltf € T, and therefore ("I + ("I’ € [ |'I and F((")’T’) € ("I It follows that

mVF € Subsp(V). m

13K. CoroLLARY. Let the linear space V and the subspace W of V be given.
Then
Subsp(W) = Subsp(V) N PW) = {WnU |U € Subsp(V)}.

Proof. The first equality is a restatement of Corollary 13B. For every
U € Subsp(W) we have WNU = U, and U € Subsp(V) by Corollary 13B. Conversely,
it U € Subsp(V), then W NU € Subsp(V) N P(W) by Proposition 13J (or Example
13G,(b)). m

According to Basic Language, Theorem 73D, (b) and Remark 73E, the intersection-
stable subcollection Subsp(V) of P(V) is the range (and hence also the set of fixed
points) of exactly one closure mapping in (V) ordered by inclusion. We denote this
closure mapping by LspY; it is given by the rule

(13.5) LspY A := ﬂ{Z/l € Subsp(V) | A C U} for all A€ PB(V)

(the collection of which the intersection is taken contains V, and is therefore not
empty). We call Lsp” A the linear span (in V) of A; it is the smallest among the
subspaces of V that include A. The next proposition shows that in most contexts the
index V and the phrase “in V” may be omitted, so that we shall usually write Lsp.A.
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13L. ProposiTION. Let the linear space V and the subspace W of V be given.
Then (Lsp¥) .. (B(WV)) € POW), and

Lsp” = Lsp"[50).
and Lsp” A = Lsp” A for all A € BOWV).

Proof. Let A € P(W) be given. Then A C W € Subsp(V), and hence Lsp¥ A C
W. By Corollary 13B, A C LspY A € Subsp(W), and hence Lsp” A C Lsp”A. On
the other hand, A C Lsp”Y A € Subsp(W) C Subsp(V); therefore Lsp” A C Lsp”’ A.
[

13M. ProvposiTioN. Let the linear space V be given. The collection Subsp()V)
is completely ordered by inclusion. For every subcollection T' of Subsp(V) we have

infgupspy I = ﬂVF and supg,pe,on L = LSpUF.

Proof. This follows immediately from Proposition 13J and Basic Language, Propo-
sitions 71F and 731,(b). m

Later, in Corollary 13R, we shall give another formula for the supremum.

We observe that the union of a collection of subspaces is in general not a subspace:
indeed, if Uy, Us are subspaces of the linear space V, U; Ul is a subspace if and only
if either U; C Us or Uy C Uy, as follows easily from Theorem 13D. There is, however,
a special kind of collection of subspaces for which the union actually is a subspace.

13N. ProprosITION. Let the linear space V and the non-empty subcollection I' of
Subsp(V) be given. If T is directed by inclusion, and in particular if T is a nest, then
UF € Subsp(V).

Proof. Tt is obvious from Theorem 13D, without any assumption on the non-empty
subcollection I' of Subsp(V), that 0 € UF and IF(UF) C UF. Now suppose that T’

is directed by inclusion. Let u,w € UF be given. We may choose U, W € T such
that u € U, w € W. We may further choose X € I' such that Y C X, W C X. Then
utw eU+WCX+X CAXC UF. Since u,w € UF were arbitrary, it follows

that UF + UF C UF. By Theorem 13D, UF € Subsp(V). m
130. CoRrOLLARY. Let the linear space V be given. Then

LspA = U LspB  for all A € B(V).
Beg(A)

Proof. Since B C A, and hence LspB C LspA, for all B € F(A), we have

LepA> | LepB.
BeF(A)
If B,B € F(A), then BUB' € §(A) and LspBULspB’ C Lsp(BUB’). This shows

that the subcollection {LspB | B € §(A)} of Subsp(V) is directed by inclusion. by

Proposition 13N, U LspB is a subspace of V. Since A = U B C U LspB,
BeF(A) BeF(A) BeF(A)

we conclude that LspA C U LspB. m
BeF(A)
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We now turn to the interaction between subspaces and linear mappings.

13P. THEOREM. Let the linear spaces V and W and the linear mapping
L:V — W be given. Then

(13.6) (L) (Subsp(V)) C Subsp(W)

(13.7) (L=)-(Subsp(W)) C Subsp(V).

In particular,

RngL = L. (V) € Subsp(W)
L=({0}) € Subsp(V).

Proof. Let U € Subsp(V) be given. Then 0" = L(OV) L. (U). Moreover,
Lemma 12H and Theorem 13D yield L. (U) + L. (U) = L.(U +U) C L. (U) and
FL.(U) = L.(FU) C L.(U). By Theorem 13D again, it follows that
L. (U) € Subsp(W). This proves (13.6).

Let X € Subsp(W) be given. By Lemma 12H and Theorem 13D we have
L<(X) + L<(X) C L(X + X) C L<(X), FXL<(X) = L<(F*X) C L<(X), and
0¥ € 0OL<(X) = {0V} C L<(X). By Theorem 13D again, it follows that
L=<(X) € Subsp(V). This proves (13.7). m

If L is a linear mapping, Theorem 13P shows that L<({0}) is a subspace of DomL.
This subspace is called the null-space of L and is denoted by NullL. (Sometimes
the term kernel of L and the notation KerL are used instead.) We observe that, if L
and M are linear mappings with DomM = CodL, we have

(13.8) Null(ML) = L=(NullM) > NullL.

13Q. CoRroLLARY. Let the linear spaces V and W and the linear mapping
L:YV — W be given. Then L. oLsp” =Lsp” o L..

Proof. Let A € B(V) be given. By Theorem 13P, L. (Lsp”.A) € Subsp(W); but
since A C Lsp” A, we have L. (A) C L.(Lsp”.A). It follows that

(13.9) LspL.(A) C L.(Lsp¥A).

On the other hand, L<(Lsp"VL.(A)) € Subsp(V), by Theorem 13P; but L. (A) C
Lsp”L.(A), and therefore A C L<(L.(A)) € L<(Lsp"L.(A)). It follows that
Lsp¥ A € L<(Lsp"L.(A)), and therefore

(13.10) L.(LspYA) € L (L<(Lsp"L.(A))) C Lsp’L.(A).

Combination (13.9) and (13.10) yields L. (Lsp”.A) = Lsp'V(A). But A € B(V) was
arbitrary; the assertion follows. m



18 CHAPTER 1. LINEAR SPACES AND LINEAR MAPPINGS

13R. ProPOSITION. Let the linear space V be given. For every family (U; | i € I)
in Subsp(V) we have

2 Us = supsumpon U i € T} = Lsp U s € Subsp(v).
el

i€l

Proof. We recall that V) is a subspace of V! and that the mapping

(13.11) am Yoa: VD Sy
J

is linear (Example 13G,(e)). Moreover, X U, is a subspace of V! (Example 13G,(d)),
iel
and therefore VIO 0 X U; is a subspace of V) (Corollary 13K). Now Z U; (see
iel il
definition in Basic Language, Section 131) is precisely the image of this subspace
under the linear mapping given by (13.11). By Theorem 13P, Z U; is a subspace
el
of V. c
Set W := supgusp)ilhil @ € I} = Lsp U U; (cf. Proposition 13M). We have
il
X U; C X W and therefore, using Corollary 13F,ZL{Z- CZW cW.
iel iel il i€l
On the other hand, let ;7 € I be given, and define the family (7; | ¢ € I) in
Subsp(V) by the rule
U, ifi=yjy
Ti =
{0} ifie\{j}.

Then X T, C X U;, and therefore U; = Z'ﬁ C ZUZ-. Since j € I was arbitrary,

iel icl il i€l
we have U U; C Z U;. Since Z U; € Subsp(V), we have W = Lsp U u; C
iel icl icl icl
ZZ/L;. We conclude that W = Z U;. m
iel iel

13S. CoroLLARY. Let the linear space V be given. For every family (A; | i € I)
in P(V) we have

Lsp U.A,» = ZLspAi‘

iel icl
Proof. We apply Basic Language, Proposition 731,(a) to the closure mapping Lsp”
and find
Lsp uAi = SUpP subsp(v){LspA; | i € I} = ZLspAi,
1€

iel

where the second equality follows from Proposition 13R. m
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13T. ProprosITION. Let the linear space V be given. We have Lsp® = {0},

(13.12) Lsp{u} =Fu forallueV
(13.13) LspA = ZIFU for all A € BV).
ucA

Proof. The equality Lsp@ = {0} is trivial. Let v € V be given. By Theorem 13D,
Fu C FLsp{u} C Lsp{u}. But 0 = Ou € Fu,Fu + Fu = (F + F)u = Fu, F(Fu) =
(FF)u = Fu, so that Fu is a subspace of V, and contains u = 1u; and hence Lsp{u} =
Fu. This establishes (13.12). (13.13) then follows from (13.12) and Corollary 13S. m
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14. Linear partitions

14A. ProvposiTIiON. Let the linear space V and the subspace U of V be given.
Then

ViU :={v+U|veV}

is a partition of V, and its partition mapping Qyy 2V — V/U satisfies

D) =v+U forallveV.
Proof. We define the mapping Q: ¥V — V/U by the rule

Q):=v+U forallveV,

and claim that

(14.1) Q<{Qv)}) =v+U forallve).
Let v,w, € V be given. Then

w+U=v+U = wev+UU = (wev+U and vew—-U)=

= (w+UCv+U+UCV+U
and v+U Cw—-U+UCw+U) =

= wt+U=v+U,
we{2v)}) e QUuw)=Qv) < w+U=v+U.

Thus w € Q<({Q(v)}) if and only if w € v+ U, and (14.1) is established.
By (14.1) and Basic Language, Section 23 we have

PartQ = {Q<({Qv)}) |veV}={v+U v eV} =V/U.

Thus V/U is indeed a partition of V, and (14.1) and Basic Language, Section 24 yield

Du(v) = Qoo (v) = Q~({Qv)}) =v+U forallveV (ie, Qyy=Q). =

A partition IT of a linear space V is said to be linear if IT = V /U for some subspace
U of V. This choice of terminology will be justified presently (Corollary 14G).

14B. ProrosITION. Let the linear space V and the subspaces U and U' of V be
giwen. Then the linear partition V /U is finer than the linear partition V/U' if and
only ifU CU'.

14C. ProposITION. Let the linear mapping L be given.

(a): L<(L.(A)) = A+ NullL for every subset A of DomL
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(b): PartL = DomZL/NullL.
Proof. For all v,w € DomL we have
wel<{w}) & Lw=Lv & Lw—-v)=Lw—-Lv=0 &
& w-—veL<{0})=NullL < we v+ NullL.
Therefore

L<({Lv}) =v+ NullL for all v € DomL.

It follows that

L (A) = L<( U} = UL({zo}) = [ @+NullL) = A+NullL
vEA vEA vEA

and

PartL = {L<({Lv}) | v € DomL} = {v+ NullL | v € DomL} = DomL/NullL. m

14D. CoroLLARY. Let the linear mapping L be given. Then L is injective if and
only if NullL = {0}.

Proof. If L is injective, NullL = {0} + NullL = L<(L.({0})) is the singleton {0}.
Conversely, if NullL := {0}, then PartL = DomL/{0} = {v + {0} |[v € DomL} =
{{v} | v € DomL}, the discrete partition of DomL, and therefore L is injective. m

We have shown in Proposition 14C that the partitions of linear mappings are
linear partitions. Is every linear partition the partition of some linear mapping? We
shall now give an affirmative answer to this question.

14E. LEMmMA. Let the linear space V and the subspace U of V be given. Let
A BeV/U, ac Abe B, and s € F be given. Then

(143) U=04+UEVU A+B=(a+b)+UEVU —A=—a+UeVU

(14.4) sA+U=sa+UEV/U.
Proof. (14.2) follows at once from Proposition 14A. From (14.2) and Remark
13E,(c) we obtain (14.3) and

sA+U=s(a+U)+U=sa+sU+U=sa+U+U=sa+U if seF*

SA+U=0A4+U=04+U=sa+U if s=0,

so that (14.4) also holds. m
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14F. THEOREM. Let the linear space V and the subspace U of V be given. Then
the linear partition V /U can be endowed in exactly one way with the structure of a
linear space in such a way that y,y becomes linear; namely, by requiring

(14.5) oM = u

(14.6) add"™((A,B)) == A+ B forall A,BcV/U
(14.7) opp”M(A) := —A  for all Ac VU

(14.8) mult” Y (A) .= sA+U forall scF and AcV/U.

Moreover, we then have NullQdy,, = U and PartQdy,,, = V/U.

Proof. 1. Let a linear-space structure on V/U be given such that €, is linear.
Then 0V = Qy,,,(0) = 04U = U, by Proposition 14A, so that (14.5) holds. To prove
(14.6), (14.7), (14.8), let A, B € V/U and s € F be given, and choose a € A, b € B.
Using Lemma 14E and the linearity of €2y, we indeed have

add (A, B)) = add¥ (D (@), Dy u(1)) = Dyl +b) = (a+ 1) + U = A+ B

oppW”(A) = oppwu(QWu(a)) =Mul—a)=—a+UU=-A
mult”/¥ (A) = multv/uS(QV/u(a)) =Myu(sa) =sa+U=sA+U,

as was to be shown. We have proved that there is at most one linear-space structure
on V/U such that y, is linear, and that this structure, if it exists, must be given
by (14.5), (14.6), (14.7), (14.8).

2. We now define 0Y/4, add”/“, opp"/, mult¥/™ by (14.5), (14.6), (14.7), (14.8),
respectively, as we may by Lemma 14E. We have to show that this prescription
satisfies the defining laws for a linear space, and that €2y, is linear. The associative
and commutative laws for addition are obviously satisfied under (14.6). To prove the
neutrality law for addition, the law of opposites, and (LS1)—(LS4) for this prescription,
we let A, B € V/U and s,t € TF be given, and choose a € A,b € B. From Lemma 14E
we then have

add” (A, 0V") =A+U=(a+0)+U=a+U=A

add”M((A, opp”/“(A)) = A+ (=A) = (a+ (—a)) + U =0+ U =U = 0V/4
mult”/“, (add"/“((A,B))) =s(A+B)+U =s(a+b) +U = (sa+ sb) +U =

=(sa+U)+ (sb+U) = (sA+U)+ (sB+U) =

= add”/¥((mult”/“,(A), mult”/“,(B)))
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mult"’ Y (A) = (s+)A+U= (s +t)a+U = (sa+ta) +U =

s(sa+U)+ (ta+U) = (sA+U)+ (tA+U) =
= add"M((mult”/“,(A), mult¥/¥,(A))
mult"’ Y, (A) = (st)A+U = (st)a+U = s(ta) + U =

= s(tA+U) +U = (mult”’? (mult”/“,(A))
(since ta € tA+U € V/U), and

mult”’“ (A) = TA+U = A+ U = A

Thus, the defining laws for a linear space hold. By Lemma 14E we have, for all
v,w €V and s € F.

Qv+ 1) = (04 0)+U = (0+U) + (w+U) = Oy(v) + Qo) =
= add”M((Qyu(v), Qopu(w)))
Du(sv) =sv+U=sv+U)+U= s u(v)+U= multwus(QWu(v)),

so that €2y, is linear.

With this structure in place, NullQy ;= Qv ~({U}) = U, and PartQy,, = V/U
(Proposition 14C, or Basic Language, Section 24). m

14G. CoRoOLLARY. Let the linear space V be given. FEvery subspace of V is the
null-space of some surjective linear mapping with domain V. A partition of V is the
partition of a [surjective] linear mapping with domain V if and only if it is a linear
partition of V.

Proof. Theorem 14F and Proposition 14C. m

14H. ReMARKS. (a): It is clear that (14.8) implies that mult¥/¥,(A) = s.A for all
s e F* and A € V/U, but that mult*’%,(A) = U for all A € V/U. Thus 0A is not in
general A multiplied by 0 according to the scalar multiplication in the linear space
V /U, in exceptional derogation from the general rules of notation for linear spaces.

(b): Corollary 14G may be compared with the following valid assertion: Let the
linear space V be given. A subset of V is the range of afn injective] linear mapping
with codomain V if and only if it is a subspace of V. (Theorem 13P for the “only if”
part, inclusion mappings for the “if” part.)

(c): If V is a linear space and U is a subspace of V, the linear partition V/U
of V will always be regarded as endowed with the linear-space structure defined by
(14.5)—(14.8). (This linear space is usually called the quotient-space of V with respect
to the subspace U, but the term “linear partition” seems more suggestive.) m
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15. Supplements

Let the linear space V be given. The subspaces U and U’ of V are said to be
disjunct, and U/’ is said to be disjunct from U/, if Y NU’' = {0}. (The term usually
encountered is “disjoint”; however, both subspaces contain 0 and cannot therefore be
disjoint as sets, so that this usage produces a clash to be avoided.)

The subspaces U and U’ are said to be supplementary in V), and the pair (U,U’)
is also said to be supplementary in V, if U NU' = {0} and U + U’ = V. Given
the subspace U of V, a subspace U’ of V is said to be supplementary to U in V,
and is called a supplement of I/ in V, if i and U’ are supplementary in V. (Terms
often encountered are “complementary” and “complement”, but this usage clashes
with the meaning of “complement” for subsets.)

15A. ReEmARKs. (a): If V is a linear space, the subspaces U and U’ of V are
supplementary in V if and only if «’ and U are supplementary in V.

(b): If V is a linear space, the subspaces U and U’ of V are disjunct if and only if
they are supplementary in U +U’. =

Let the linear space V and the subspaces U and U’ of V be given. For every v € V
we examine the following equation

Nu, 'y eU xU', v=u+u.

Obviously, this equation has at least one solution for every v € V if and only if
U+ U =Y. Our next result determines when this equation has at most one, or
exactly one, solution for every v € V.

15B. ProrosITIiON. Let the linear space V and the subspaces U and U' of V be
given.

(a): U and U’ are disjunct if and only if the linear mapping
((u, )y mu+u) U xU =V is injective.

(b): U and U’ are supplementary in V if and only if the linear mapping
(u,vy > u+u) U XU =V is bijective.

Proof. The mapping S : U x U’ — V defined by the rule

(15.1) S((u,u)) ==u+u forall (u,u)eU xU'

is the restriction of the linear mapping add” : V x V — V to the subspace U x U’ of
V x V; it is therefore linear (Example 12G,(f)). For all (u,u') € U x U’ we have

S((u,u)=0 & u+d =0 <& u=—-veUnl.

Therefore U NU' = {0} if and only if NullS = {(0,0)}; by Corollary 14D, this is the
case if and only if S is injective. This proves (a). Since RngS = U + U’, (b) follows
at once from (a). m
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15C. ProrosiTioN. Let the linear space V and the subspaces U and U' of V be
given.

(a): The following statements are equivalent.

(i): U and U" are supplementary in V.

(ii): There exists P € Lin(V,U) such that Py = 1y and NullP =U’.

(iii): There exists E € LinV such that E is idempotent (i.e., EE = F), FixE =
RngE =U, and NullE =U'.

(b): Assume that 1+1 # 0 inF. Then (1), (ii), (iii) are equivalent to the following
statement.

(iv): There ezists L € LinV such that L is involutory (i.e., LL = 1y) and U =
{veV|Lv=v}, U ={veV| Lv=—v}.

Proof. Proof of (a). (i) implies (ii). We define the projection m € Lin(U xU',U) by
the rule 7((u, v’)) := u for all (u,u’) € U x U'. Since U and U’ are supplementary in
V, the linear mapping S € Lin(Ud x U’, V) defined by (15.1) is bijective (Proposition
15B,(b)) and its inverse S~' is linear (Corollary 12E). The linear mapping P :=
7wS™! € Lin(V,U) satisfies Pu = 7S~ (u+ 0) = 7((u,0)) = u for all u € U, so that
Ply = 1y; and NullP = (S71)<(Nullr) = S. ({0} xU') =U'".

(ii) émplies (iii). With P € Lin(V,U) as described in (ii), we set E = P|¥ =
IL{CVP € LinY. Then EFFE = 1MCVP1L{CVP = IZ/ICVIL{P = FE. Now P is I‘ight—
invertible (1ycy is a right-inverse), hence surjective, and therefore RngE = RngP =
U. By Basic Language, Proposition 26C, we have FixE = RngE = U. Finally,
NullE = NullP =U/".

(iii): émplies (i). Since E is idempotent, RngF is the set of fixed points of E. For
every v € U NU' = RngFE N NullE we have v = Ev = 0; therefore U NU' = {0}.
For every v € V we have F(v — Ev) = Ev — EEv = Ev — Ev = 0, and therefore
v — Ev € NullE; consequently v = Ev+ (v — Ev) € RngE + NullE = U + U'.
Therefore U +U' = V.

Proof of (b). Assume that 14+ 1 # 0, and set 2 :=1+ 1.

(iii) smplies (iv). With E' € LinV as described in (iii), we set L := 2E —1,, € LinV.
Then LL = 2°EE — 2°E + 1y, = 1. Let v € V be given. Then

Lv=v & 2E-1))v=0 & Ev=v & wveFxE=U
v=—v & 2Bb=0 & Ev=0 & wveNulE=U.

(iv) implies (iii). With L € LinV as described in (iv), we set E := (L + 1y) €
Liny. Then EE = (3)°LL + 3L + (3)*1y = 3(L +1y) = E. Let v € V be given.
Then

vel & Lv=wv

veld < Lv=-—v

Ev=~%4Lv+v)=v <& wveFixF

-~
& Fv=3Iv+v)=0 < veNulE =
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15D. ProrosiTiON. Let the linear space V and the subspaces U and U' of V be
giwen. Then U’ is a supplement of U in V if and only if U’ is mazimal among all
subspaces of V disjunct from U, i.e., a maximal member of

(15.2) S = {W € Subsp(V) | U NW = {0}}

ordered by inclusion.

Proof. Proof of the “only if” part. Since U’ is a supplement of U in V we have
U € 3. Let X € X be given, and assume that U’ C X; we are to show that X C U’
Let v € X be given. Since U + U’ =V, we may choose v’ € U’ such that v —u' € U.
But v,u’ € X, and hence v — v’ € U N X = {0}. Therefore v =u € U'. Since v € X
was arbitrary, we conclude that X C U’, as was to be shown.

Proof of the “if” part. Since U’ € 2, we have U NU' = {0}. Let v € V be given;
we are to show that v e Y +U'. f v e U’ = {0} + U’ C U + U, this is valid; we shall
therefore assume that v € V\U'. We set X := U' + Fv = U’ + Lsp{v} € Subsp(V)
(Proposition 13T). Then U’ G X; since U’ was a maximal member of ¥, we have
X ¢ 3, so that U N X # {0}. We may therefore choose u € (U N X)*. Since
u € X =U'+Fv, we may choose s € F such that u—sv € U’. Since u ¢ {0} =UNU/,
we cannot have s = 0. Therefore v = 2(u— (u—sv)) € 1U +U') CU+U', as was
to be shown. m

15E. ProprosiTiON. Let the linear space ¥V and the subspaces U and U of V be
given. A subspace W of U' is a supplement of U NU' in U if and only if W is a
supplement of U inU +U'.

Proof. We have U’ N W = W, and therefore U NU' N W = U N W, so that
UNUYNW = {0} if and only if Y N W = {0}.

If UNUN+W =U', then U+U' = U+ UNU)+W CUHU+W C U+W C U+U,
so that U + W = U + U'. Assume conversely, that U + W = U + U’, so that
U cU+W. Let v € U be given; we may choose w € W such that v — w € U; but
v—weld —W CU' Therefore v=(v—w)+we UNU)+W. Since v € U’ was
arbitrary, we find U’ C UNU)+W CU +U CU',andso UNU)+W=U".n

We now examine the question whether every subspace of a given linear space has
a supplement. We shall see later (Remark 52H) an important class of linear spaces for
which an affirmative answer can be given without appealing to the Axiom of Choice
or one of its equivalents.

e15F. THEOREM. Let the linear space V and the subspacesUU andU' of V be given.
There exists a supplement U"” of U in V withU' C U if (and only if) U' is disjunct
from U.

Proof. We assume that U NU" = {0} and consider the subcollection ¥ of Subsp(V)
defined by (15.2). We regard it as ordered by inclusion and consider the ordered
subcollection

Yie={wex|U cWw}
Y % (@ since U’ € X', Let a non-empty nest I' € PB(X') be given. Then
UF € Subsp(V) by Proposition 13N; we obviously have U’ C UF, and
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unJr=Junw|wer}={o},

so that UF € Y. By a eSet Maximality Principle ((IIT) in Basic Language, Section
172), we may choose a maximal member U” of ¥'. If W € 3 satisfies U” C W, then
U cU” C W, so that W e %/; and since U” is maximal in X', we have W = U".
Therefore U” is a maximal member of ¥; by Proposition 15D, U” is a supplement of
UinV. m

¢15G. CoroLLARY. Let the linear space V be given. Every subspace of V has a
supplement in V.

¢15H. REMARK. We shall show in eCorollary 210 that the only subspaces of V
with exactly one supplement in V are {0} and V. This could also be proved directly
from eTheorem 15F. m

We conclude this section with a counterpart to Proposition 15D.

e15I. ProprosiTiON. Let the linear space V and the subspaces U and U' of V be
given. Then U’ is a supplement of U in V eif and only if U' is a minimal member of

A:={W e Subsp(V) | U +W =V}

ordered by inclusion.

Proof. Proof of the “only if” part. Since U’ is a supplement of U in V we have
U € A. Let X € A be given, and assume that X C U’; we are to show that X =U’".
Now UNX C UNU' = {0}; it follows that X is a supplement of U in V. By Proposition
15E, X is a supplement of {0} =U NU’ in U'. Therefore U’ = {0} + X = X, as was
to be proved.

e Proof of the “if” part. Since U’ € A, we have U +U' = V. eChoose a supplement
Z of U NU'in U, as permitted by eCorollary 15G. By Proposition 15E, Z is a
supplement of U in U +U’' = V. Therefore Z € A, and Z C U’ by construction. Since
U’ is a minimal member of A, we have Z = U’, and hence U’ is a supplement of I in
V. m
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Chapter 2

PROPERTIES OF LINEAR
MAPPINGS

21. Linear invertibility

In this chapter we examine systematically properties of invertibility, cancellability,
and factorization that linear mappings may have. The ideas, and some of the proofs,
will be analogous to those discussed for mappings in general in Basic Language,
Sections 32, 33, 35, 36. Some of the results involve the partitions of the mappings in
question; in view of Section 14, these can be rephrased, for linear mappings, in terms
of null-spaces.

We have already noted that the only constant linear mappings are the zero-
mappings (Remark 12A,(c)).

21A. ProposITION. Let the linear mappings L and M with DomM = CodL be
gwen. If M is injective, then Null(M L) = NullL; if L is surjective, then Rng(ML) =
RngM.

Proof. From (13.7) and Corollary 14D, if M is injective then Null(ML) =
L<(Null) = L<({0}) = NullL. The assertion concerning ranges is a special case
of Basic Language, Proposition 32C.R. m

21B. ProprosITION. Let the linear mapping L : V — W be given. Then there are
linear mappings M :V — U and N : U — W such that L = NM and M is surjective
and N is injective.

Proof. Set U := RngL, M := L|®""¢ N = lpuercy.

21C. ProposITiON. Let the linear mapping L and the subspace U of DomL be
given. The linear mapping L|§HgL is injective if and only if UNNulIL = {0}, surjective
if and only if U + NullL = DomL, bijective if and only if U is a supplement of NullL
in DomL.

Proof. We have Null(L|;}"8") = Null(L|;;) = & N NullL. By Corollary 14D, L|;"¢"
is injective if and only if & N NullL = {0}.

If U + NullL = DomL, Lemma 12H yields

29
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RngL = L. (U +NullL) = L. (U) + L. (NullL) = L. (U) + {0} = Rng(L|;"8"), so
that Lg“gL is surjective. Conversely, if L|5ngL is surjective, Proposition 14C,(a) yields

DomL = L<(RngL) = L<(Rng(L[;;"8")) = L<(L.(U)) =U + NullL. m

21D. CoroLLARY. Let the linear space V and the subspaces U and U' of V be
given. Then Qyylw € Lin(U', V/U) is bijective if and only if U and U' are supple-
mentary in V.

Proof. The partition mapping Qv € Lin(V,V/U) is surjective, and NullQy,,, =
U (Theorem 14F). The conclusion follows from Proposition 21C. m

21E. CoroLLARY. Let the linear space W and the linear mappings L and M with
DomM =W = CodL be given.

(a): ML is injective if and only if L is injective and RngL N NullM = {0}.

(b): ML is surjective if and only if M is surjective and RngL + NullM = W.

(¢c): ML is bijective if and only if L is injective, M is surjective, and RngL and
NullM are supplementary in W.

Proof. We have

(21.1) ML = Iragarccoans (M gmer! ) (L")
If ML is injective, then L|R" is injective, hence bijective; consequently M \gggy is
injective; by Proposition 21C, RngL N NullM = {0}. Conversely, if L is injective and
RngL N NullM = {0}, then all three linear mappings in the right-hand side of (21.1)
are injective, and hence so is M L.

If ML is surjective, then M is surjective; thus lrngarccodnsr = lrngar, and conse-
quently M |§E§L\/1 is surjective. By Proposition 21C, RngL + NullM = W. Conversely,
if M is surjective and RngL+NullM = W), all three linear mappings in the right-hand
side of (21.1) are surjective, and hence so is M L. m

A linear mapping L is said to be linearly left-invertible if there is a linear
left-inverse of L, linearly right-invertible if there is a linear right-inverse of L, and
linearly invertible if there is a linear inverse of L.

21F. RemaARrk. By Corollary 12E, a linear mapping is linearly invertible if and
only if it is bijective; hence if and only if it is invertible. The term “linearly invertible”
is therefore always replaced, without ambiguity, by “invertible”.

A linear mapping is also called a linear isomorphism if it is invertible. If V
and W are linear spaces, V is said to be (linearly) isomorphic to W if there exists
a linear isomorphism from V to W. Since identity mappings of linear spaces and
composites of linear isomorphisms are all linear isomorphisms, “is isomorphic to”
becomes an equivalence relation in every collection of linear spaces.

If V and W are linear spaces, we set

Lis(V, W) := {L € Lin(V,W) | L is invertible},

the set of all linear isomorphisms from V to W. For each linear space V we set
LisV := Lis(V, V). The members of LisV are called linear automorphisms of V. m
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21G. LEMMA. Let the linear mapping L be given.

(a): If L is injective and U is a supplement of RngL in CodL, there is exactly one
linear left-inverse M of L such that NullM =U.

(b): If L is surjective and U is a supplement of NullL in DomL, there is exactly
one linear right-inverse M of L such that RngM =U.

Proof. Proof of (a). By Proposition 15C we may choose P € Lin(CodL,RngL)
such that P|gngr = lrngr and NullP = U.

If M is a linear left-inverse of L, we have 1pomz, = ML = (M |ragr)(L|?8), so that
(M|rngr) = (L|®"8)~1 If also NullM = U we have, for every v € CodL, P(v— Pv) =
Pv — (P|gugr)(Pv) = Pv — Pv = 0, and hence v — Pv € NullP = i = NullM; it
follows that

Muv = M(v — Pv) + MPv =0+ (M|gngr) Pv = (L")~ Po.
Therefore we must have
(21.2) M = (L|*&)~'p.

Thus there is at most one linear left-inverse of L with null-space U.
Now define M € Lin(CodL,DomL) by (21.2). Then

ML = (LI*™#)7 PL = (L") 7! (Plroge) (L") = (L")~ 1rage (L**) = Ipomr,

so that M is indeed a linear left-inverse of L. Since (L[R"8)~1 is invertible, we also
have, from (21.2) that NullM = NullP = U.

Proof of (b). By Proposition 21C, L|; is invertible. If M is a linear right-inverse
of L and RngM = U, then leoar, = LM = (L|gagar)(M[®"8) = (L) (M|?¢), and
therefore we must have M|®*8 = (L|;,)~!, whence

(21.3) M = (L|y) 7t PomL,

Thus there is at most one linear right-inverse of L with range U.
Now define M € Lin(CodL,DomL) by (21.3). Then

LM = L((L) "' [P*™") = (Llu) (L) ™" = Lcoar,

so that M is indeed a linear right-inverse of L. From (21.3) we also have RngM =
Rng(Lly)™ = Dom(L|y) =U. m

21H. THEOREM. Let the linear mapping L be given.

(a): A subspace of CodL is the null-space of one (indeed, of exactly one) linear
left-inverse of L if and only if it is a supplement of RngL in CodL and L is injective.

(b): A subspace of DomL is the range of one (indeed, of exactly one) linear right-
wnwerse of L if and only if it is a supplement of NullL in DomL and L is surjective.
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Proof. The “if” parts follow from Lemma 21G; the “only if” parts follow from
Corollary 21E,(c). m

211. CoroLLARY. Let the linear mapping L be given.

(a): L is linearly left-invertible if and only if L is injective and RngL has a
supplement in CodL.

(b): L is linearly right-invertible if and only if L is surjective and NullL has a
supplement in DomL.

21J. ExamprLe®. With Cont(R,R) and Cont!'(R,R) defined as in Examples
12G,(h) and 13G,(f), we define the linear mappings D : Cont'(R,R) — Cont(R, R)
and J: Cont(R,R) — Map(R,R) by the rules

Df :=f* forall f € Cont'(R,R)

(JNH(@) = /Otf for all t € R and f € Cont(R.R).

The Fundamental Theorem of the Calculus asserts that RngJ C Cont'(R,R) and
that (Jf)" = f for all f € Cont(R,R), i.e., that J|" ®R) is a linear right-inverse
of D. However, D is not linearly left-invertible, since it is not injective. NullD is the
subspace R(1g_g) of Cont'(R,R) consisting of all the constants. In illustration of
Corollary 21E,(c), this subspace is a supplement of Rng.J = {f € Cont*(R,R) | f(0) =
0} = Null evgoml(R’R) in Cont'(R,R). m

¢21K. CoRrROLLARY. Let the linear mapping L be given.

(a): L is linearly left-invertible oif and only if L is injective.

(b): L is linearly right-invertible oif and only if L is surjective.

Proof. Corollaries 211 and ¢15G. m

e21L. CoroLLARY. Let the linear spaces V and W, and the subspace U of V be
given. For every M € Lin(U, W) there exists L € Lin(V, W) such that Lly = M i.e.,
the linear mapping (L — L|y) : Lin(V, W) — Lin(U, W) is surjective.

Proof. 1ycy is injective. By eCorollary 21K,(a), we may choose a linear left-
inverse P € Lin(V,U) of 1yycy. Then L := M P verifies the assertion, since Ly, =
MPlZ/{CV =M. m

¢21M. ProrosIiTION. Let the linear spaces V and W be given. For every v € V*
and every w € W there exists L € Lin(V, W) such that Lv = w. Therefore Lin(V, W)
is a zero-space if and only if V or W is a zero-space.

Proof. Let v € V* and w € W be given. Then v® € Lin(F, V) (Example 12G,(g))
is injective. By eCorollary 21K,(a) we may choose a linear left-inverse K € Lin(V,TF)
of v®, and find Kv = K(v® 1) = 1. Then L := w® K € Lin(V, W) satisfies
Lv=w® Kv=w®1=w. The “only if” part of the second assertion follows; the
“if” part is trivial. m

21N. ProrposriTioN. Let the linear space V and the subspace U of V be given.
Then U has exactly one supplement in V if and only if U has some supplement in V
and Lin(V/U,U) is a zero-space.
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Proof. The linear mapping Qv : V — V/U is surjective and NullQdy,, = U
(Theorem 14F). By Theorem 21H,(b), the supplements of & in V are precisely the
ranges of linear right-inverses of €}y, and U has exactly one supplement in V if and
only if €y, has exactly one linear right-inverse. We may therefore stipulate that
Qv is linearly right-invertible, and choose a linear right-inverse K € Lin(V/U,V)
of Qyy. A linear mapping L € Lin(V/U,V) is a linear-right inverse of €2y, if and
only if Qy (L — K) = 0, hence if and only if Rng(L — K) C NullQy,;; = U, hence
if and only if L — K = M|Y for some M € Lin(V/U,U). We conclude that K is the
only linear right-inverse of Qy/, (equivalently, RngK is the only supplement of ¢/ in
V) if and only if Lin(V/U,U) is a zero-space. B

210. CoroLLARY. Let the linear space V and the subspace U be given. Then U
has ezxactly one supplement inV if and only if U = {0} orU =V .

Proof. It is trivial that V is the only supplement of {0} in V and that {0} is the
only supplement of V in V. Assume, conversely, that U has exactly one supplement in
V. By Proposition 21N, it follows that Lin(V/U,U) is a zero-space. By eProposition
21M, either V/U is a zero-space, and then U = V, or U is a zero-space, and then
U={0}. =

e21P. CoroLLARY. Let the linear mapping L be given. The following statements
are equivalent:

(1): L is (linearly) invertible.

(i)): L has exactly one linear left-inverse, and if DomL = {0} then CodL = {0}.

(iii): L has exactly one linear right-inverse, and if CodL = {0} then DomL = {0}.

Proof. (i) implies (ii) and (iii). If L is invertible, its inverse is linear, and is the
only left-inverse and the only right-inverse of L (Basic Language, Proposition 33B).
Since L is bijective, DomL = {0} if and only if CodL = {0}.

o(ii) implies (). By Theorem 21H,(a), L is injective and RngL has exactly one
supplement in CodL. By eCorollary 210, RngL = {0} or RngL = CodL. In the
former case, since K was injective we have DomL = {0} and hence, by assumption,
CodL = {0}. Then RngL = CodL in either case, and L is surjective. Thus L is
bijective, hence invertible.

o(iii) implies (i). By Theorem 21H,(b), L is surjective and NullL has exactly one
supplement in DomL. By eCorollary 210, NullL = {0} or NullL = DomZ. In the
latter case, L = 0; since L was surjective, this implies CodL = {0}, and hence, by
assumption, DomL = {0}. Thus NullL = {0} in either case. By Corollary 14D, L is
injective. Thus L is bijective, hence invertible. m

If the linear space V is not a zero-space, then 0o, has exactly one (linear)
left-inverse, namely Oy_ 0}, and Oy_ oy has exactly one linear right-inverse, namely
0{0}v, (although there are other, non-linear, right-inverses); but neither mapping is
invertible.
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22. Cancellability and factorization

A linear mapping L : V — W is called a linear monomorphism if it is left-
cancellable from composition with linear mappings; i.e., if for every linear space U
we have

(22.1) VYM,N € Lin(U,V), LM =LN = M = N;
equivalently, by Remark 131, if for every linear space U we have
(22.2) VM € LinUU,V), LM =0 = M =0.

A linear mapping L : V — W is called a linear epimorphism if it is right-
cancellable from composition with linear mappings; i.e., if for every linear space U
we have

(22.3) VYM,N € Lin(OW,U), ML=NL = M=N;
equivalently, by Remark 131, if for every linear space U we have
(22.4) VM € Lin(W,U), ML=0 = M=0.
We recall that for every linear mapping L : V — W and linear space U we have

(22.5) Rung(LM) C RugL for all M € Lin(U,V)

(22.6) Null(ML) D NullL for all M € Lin(W,U).

A linear mapping L : ¥V — W is called a linear-embedding if for every linear
mapping N : U — W with RngN C RngL there is exactly one linear mapping
M :U — V such that N = LM. A linear mapping L : V — W is called a linear-
quotient-mapping if for every linear mapping N : V — U with NullV D NullL
there is exactly one linear mapping M : W — U such that N = M L.

N
P y ———= U
// A
M
v | HOX
u W W//

22A.L. ProrositioN. If L -V — W and L' : V' — W are linear-embeddings
with RngL = RnglL/, then the unique linear mappings M : V' =V and M’ : V — V'
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that satisfy LM = L' and L'M' = L are invertible, and each is the inverse of the
other.

Proof. This is analogous to the proof of Basic Language, Proposition 36A.L. m

22A.R. ProposiTioN. If L : YV — W and L' : V — W’ are linear-quotient-
mappings with NullL, = Nulll/, then the unique linear mappings M : W — W' and
M W' — W that satisfy ML = L' and M'L' = L are invertible, and each is the
inverse of the other.

Proof. This is analogous to the proof of Proposition 22A.L. m

22B.L. ProrosiTiON. Let the linear mapping L : V — W be given. The following
statements are equivalent.

(i): L is a linear-embedding.

(i): L is a linear monomorphism.

(iii): L is ingective.

Proof. (i) implies (ii). Let the linear space U be given, and let M, N € Lin(i4,V)
satisfy LM = LN. Then Rng(LM) = Rng(LN) C RngL. Since L is a linear-
embedding, we must have M = N.

(11) z'mplies (111) We have LlNullLCV = L|Nu11L = ONullLﬁw. Since L iS a linear
monomorphism, Ixaizcy = Onunz—y. Therefore NullL = {0}; by Corollary 14D it
follows that L is injective.

(iil) émplies (i). Since L is injective, it is a set-embedding (Basic Language,
Proposition 36B.L.). Let a linear mapping N : & — W be given and assume that
RngN C RngL. Then there exists exactly one mapping M : U — V (we do not yet
know whether M is linear) such that N = LM. By Proposition 12D, (b), however, it
follows that M is in fact linear. m

22B.R. PROPOSITION. Let the linear mapping L : V — W be given. The
following statements are equivalent:

(i): L is a linear-quotient-mapping;

(i): L is a linear epimorphism;

(iil): L is surjective.

Proof. (i) implies (ii). Let the linear space U be given, and let M, N € Lin(W,U)
satisfy ML = NL. Then Null(ML) = Null(NL) D> NullL. Since L is a linear-
quotient-mapping, we must have M = N.

(ii) implies (iii). We consider the linear partition WW/RngL. We have
Rug(Qw/rngr.L) = (Qw/rngr) - (RugL) = {RngL} = {0"/Rnel} by Theorem 14F.
Therefore Qyy/rngr. L = Ov_sw/Rngr- Since L is a linear epimorphism, we have
Qw/Rug = Ow—w/Rngr, Which means that RngL = Nullyy /gy, = W. Therefore L
is surjective.

(iii) ¢mplies (i). Since L is surjective, it is a set-quotient-mapping (Basic Language,
Proposition 36B.R). Let a linear mapping N : V — U be given and assume that
NullN D NullL. By Proposition 14B we have Part N C PartL. Then there exists
exactly one mapping M : W — U (we do not yet know whether M is linear) such
that N = M o L. By Proposition 12D,(a), however, it follows that M is in fact
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linear. m

22C. RemaRks. (a): Propositions 22B.L and 22B.R in conjunction with Ba-
sic Language, Propositions 36B.L. and 36B.R, show that for given linear spaces V
and W the linear monomorphisms, linear epimorphisms, linear-embeddings, linear-
quotient-mappings from V to W are precisely the set-monomorphisms (left-cancellable
mappings), set-epimorphisms (right-cancellable mappings), (set-)embeddings, (set-)
quotient-mappings, respectively, from V to W that happen to be linear. We may,
in particular, omit the hyphen in “linear embedding” and “linear quotient-
mapping”, without ambiguity.

(b): The term “(linear) quotient-mapping” is often found attached exclusively to
the (linear) partition mappings of linear partitions (cf. Section 14). Inasmuch as these
are linear quotient-mappings — as defined here — obtained by a standard procedure
from prescribed domains and null spaces (cf. Corollary 14G), they may be called
standard linear quotient-mappings. By analogy, the (linear) inclusion mappings
of subspaces, which are linear embeddings obtained by a standard procedure from
prescribed codomains and ranges, may be called standard linear embeddings. m

22D. TueoREM. Let the linear mappings M : V — V' and N : W' — W be given,
and assume that M s surjective and N is injective.

(a): For a given L € Lin(V, W) there is at most one L' € Lin(V', W') such that
L=NL'M; such an L' ezists if and only if NullL D NullM and RngL C RngN.

(b): This linear mapping L' is injective if and only if NullL = NullM, and is
surjective if and only if RngL = RngN.

Proof. This is entirely analogous to the proof of Basic Language, Theorem 36C.
We use (22.5), (22.6), and Propositions 21A, 21B, 22B.L, and 22B.R. =

22E. CoroLLARY. Let the linear mapping L be given. Then there is exactly one
linear mapping L' : DomL/NullL, — RngL such that L = lpngrccodr L' Q2oomr/NulL;
this linear mapping L' is invertible. m

Inspired by the discussion in Basic Language, Section 35, we take a closer look at
the notion of cancellability from composition with linear mappings. A linear map-
ping L : V — W is said to be linearly left-cancellable with respect to the
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linear space U if (22.1) or, equivalently, (22.2) holds; L is said to be linearly right-
cancellable with respect to U if (22.3) or, equivalently, (22.4) holds. Thus L is
a linear monomorphism [linear epimorphism] if and only if L is linearly left-[right-]
cancellable with respect to every linear space U.

We note that every linear mapping L : V — W is both linearly left-cancellable and
linearly right-cancellable with respect to a zero-space {0}, since both Lin({0},V) =
{0f0y—v} and Lin(W,{0}) = {Ow_0} } are singletons.

¢22F.L. ProrosiTiON. Let the linear mapping L be given. The following state-
ments are equivalent:

(1): L is injective.

(ii): L is a linear monomorphism.

(iii): L is linearly left-cancellable with respect to F.

(iv): L is linearly left-cancellable with respect to some non-trivial linear space.

Proof. The implication (i) = (ii) is part of Proposition 17B.L. The implications
(ii) = (iil) = (iv) are trivial. We shall prove (iil) = (i) and e(iv) = (iii).

(iil) implies (i). Let v € NullL be given. Then v® € Lin(F,DomL) (Example
12G,(g)), and L(v®) = (Lv)® = Opcodar. Since (iii) holds, v® = Op_pomr, and
hence v = v ® 1 = 0. Since v € NullL was arbitrary, we have NullL = {0}. by
Corollary 14D, L is injective.

o(iv) implies (iii). Choose a linear space U such that U is not a zero-space and L
is linearly left-cancellable with respect to U. Choose u € U*. The u® € Lin(F,U)
is injective, by Proposition 11C; by eCorollary 21I,(a) we may choose a linear left-
inverse K € Lin(U,F) of u®. Now let M € Lin(F, DomL) be given, and assume that
LM = Op_coar- We have to show that M = Op_pomr. Now LMK = Oy_coar, and
by the assumption on & we have MK = Oy_pomr. Consequently M = MK (u®) =
OF_Domr, as was to be shown. m

¢22F.R. ProrosiTioN. Let the linear mapping L be given. The following state-
ments are equivalent.

(1): L is surjective.

(ii): L is a linear epimorphism.

(iii): L is linearly right-cancellable with respect to F.

(iv): L is linearly right-cancellable with respect to some non-trivial linear space.

Proof. The equivalence (i) < (ii) is part of Proposition 22B.R. The implications
(ii) = (iil) = (iv) are trivial. We shall prove e(iii) = (ii) and (iv) = (iii).

o(iii) #mplies (ii). Suppose that L is not a linear epimorphism. We may then
choose a linear space Y and M € Lin(CodL,U) such that ML = 0 but M # 0. We
choose w € CodL such that Mw # 0. The linear mapping Mw® € Lin(F,U) is
injective; by eCorollary 211,(a) we may choose a linear left-inverse H € Lin(U, F) of
Mw®. Now HM € Lin(CodL,F), and HMw = HMw ® 1 = 1, so that HM # 0.
However, HM L = 0. Therefore L is not linearly right-cancellable with respect to F.

(iv) @mplies (iii). Choose a linear space U such that ¢/ is not a zero-space and L is
linearly right-cancellable with respect to U«. Choose u € U*. Let M € Lin(CodL,F)
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be given, and assume that ML = 0. We have to show that M = 0. Now u®@ ML = 0,
and by the assumption on U we have u ® M = 0. But u® is injective and therefore
a linear monomorphism (Proposition 22B.L). Therefore M = 0. m

We now have available a linear analogue of Basic Language, @ Theorem 36E.

22G. TuEOREM. Let the linear mappings M :V — V' and N : W — W be
given. For every L € Lin(V, W) there is at least one L' € Lin(V', W') with L = NL'M
if and only if NullL, D NullM and RngL C RngN. There is at most one such L' for
every L € Lin(V, W) if and only if either M is surjective and N is injective, or V' is
a zero-space, or W' is a zero-space.

Proof. The proof is entirely analogous to the proof of Basic Language, @ Theorem
36E. It uses (22.5) and (22.6), eCorollary 21K, Theorem 22D, and — for the proof of
the last part of the statement — ePropositions 22F.I. and 22F.R. m



Chapter 3

LINEAR PRODUCTS AND
COPRODUCTS

31. Linear products

In this section and the next we examine the formal analogues for linear spaces and
linear mappings of the set-products and set-coproducts discussed in Basic Language,
Section 46.

We begin with some additional facts about Cartesian products of families of linear
spaces (Example 11D,(c); see also Examples 12G,(a),(c)). Let the family of linear
spaces (V; | ¢ € T) and the set D be given. In Basic Language, Proposition 44C we
exhibited a bijection from X Map(D, V;) to Map(D, X V;) that served to identify

i€l iel
these sets, as follows. For every family of mappings (f; | i € I) € X Map(D, V%),
iel

the mapping in Map(D, X V;) denoted by the same symbol (f; | ¢ € I) is defined
by the rule el

(31.1) (filteI)(z) = (fi(x) |i€I) forallz e D.

We now record that this bijection is linear, and that, if D is specialized to be a linear
space, this bijection matches linear mappings with linear mappings.

31A. ProprosITION. Let the family of linear spaces (V; | i € I) be given. For
every set D and family of mappings (f; |i € I) € X Map(D, V), the only mapping
iel

f € Map(D, X Vi) satisfying w;f = f; for all j € Iis f:= (f; | i € I) defined by
iel
the rule (31.1). This formula describes a linear isomorphism from X Map(D,V;)
i€l
to Map(D, X V;). IfU is a linear space, then the corresponding linear isomorphism
i€l

from X Map(U,V;) to Map(U, X V;) maps X Lin(U,V;) onto Lin(U, X Vi);

el i€l i€l i€l

39
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e, if (Ly|1€l)e X Map(U, V), then (L; | i € I) € Map(U, X V;) is linear if
. Lo _ iel
and only if L; is lznear%r every i € I.
Proof. By reference to Basic Language, Proposition 44C and direct verification
from the definitions of the linear-space structures involved. m
Let the family of linear spaces (V; | i € I) be given. As an application of Propo-
sition 31A we may define for each j € I the linear mapping 7, € Lin(V;, X V;) by

requiring

1y,

J

ifi=j
Oy, -y, if i€ I\{j}.

We note that in fact 6; = (0,;) (Basic Language, (44.1)).
31B. CoroLLARY. Let the families of linear spaces (V; | i € I) and (W; | i € 1)
and the family of mappings (M; | i € I) € X Map(V;, W;) be given. Then the
iel
mapping X M; - X Vi — X W; defined (according to Basic Language, Section

icl il il
44) by requz'GT'ing © ©

(31.3) Y ><IM =Mon? foralljel
ic
is linear if and only if M; is linear for everyi € I. ((x} | i € 1) and (7)Y | i € I) are
the respective families of projections.)
Proof. 1f M; is linear for every j € I, then so is M; o 7Y, and it follows from
Proposition 31A and (31.3) that X M; is linear. Assume, convelrsely7 that X M,
is linear. Then (31.2) and (31.3) yield !

M, = Mo (nV5; >€<IM . foralljel.
Since all the mappings in the right-hand side are linear, so is M; for every j € I. m
A (linear) product of a family of linear spaces (V; | ¢ € I) is defined to be a
linear space P together with a family of linear mappings (p; | ¢ € I) € X Lin(P,V;)
such that for every linear space U and every family of linear mappings el
(L |iel)e X Lin(U,V;) there is exactly one linear mapping L : U — P such

that L; = p;L for all i € I. The linear space P is called the product-space, and for
each j € I the linear mapping p; : P — V; is called the jth projection.
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The first part of the next proposition asserts that a given family of linear spaces
has “essentially” at most one product.

31C. ProposITION. (a): Let linear products of the family of linear spaces
(Vi | i € I) be given, with respective product-spaces P and P’ and respective families of
projections (p; | € I) and (p; | i € I). Then the unique linear mappings M : P — P’
and M' : P' — P that satisfy p; = piM and p}, = p; M’ for all i € I are invertible,
and each is the inverse of the other.

(b): Let a linear product of the family of linear spaces (V; | i € I) be given, with
product-space P and family of projections (p; | i € I). A given linear space Q and
family of linear mappings (¢; | i € I) € X Lin(Q,V;) are the product-space and
family of projections of a linear product of (]f[| i € I) if and only if the unique linear
mapping M : Q — P that satisfies q; = p; M for all i € I is invertible.

Proof. This is entirely analogous to the proof of Basic Language, Proposition 46A.
]

We now show that every family of linear spaces has a linear product.

31D. ProposiTiON. Let the family of linear spaces (V; | i € I) be given. Then
the Cartesian product XX V; with the family of projections (m; | i € 1) is a linear
product of (Vi | i € I). !

Proof. Examples 11D,(c) and 2G,(a), and Proposition 31A. m

The special linear product described by Proposition 31D may be called the stan-
dard (linear) product of the family of linear spaces (V; | i € I).

31E. ExampPLE. Let the set D and the linear space V be given. Then the linear
space Map(D,V) and the family of linear mappings evM*P(”V) (Examples 11D,(d)
and 12G, (b)) are the product-space and the family of projections of a linear product
of the family (V |z € D). n

We next demonstrate the intimate relationship between linear products and set-
products.

31F. ProprosiTiON. Let the family of linear spaces (V; |i € I) be given.

(a): If the linear space P with the family of linear mappings (p; | i € I) is a linear
product of (V; | i € I), then the set P with the family of mappings (p; | i € I) is a
set-product of the family of sets (V; | i € I).

(b): If the set P with the family of mappings (p; | i € I) is a set-product of the
family of sets (V; | i € I), there is exactly one linear-space structure on P such that
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p; 18 linear for every ¢ € I. Endowed with this linear-space structure, P with the
family of linear mappings (p; | i € I) is a linear product of the family of linear spaces
Proof. Proof of (a). By Proposition 31D and 31C,(a), there is a unique linear
isomorphism M : P — X V; such that
iel

(31.4) pj=mjoM foralljel.

Now the set ><1 V; with (m; | @ € I) is a set-product of the family of sets (V; | i € T)
(Basic La,ngua;e, Proposition 46B), and M : P — X V; is bijective and satisfies
(31.4). By Basic Language, Proposition 46A,(b), the set P with (p;|i€l)isa
set-product of the family of sets (V; | i € I).

Proof of (b). We set W := X V;. By Basic Language, Propositions 46B and
46A,(a), there is a unique bijectiorildg : P — W such that

(31.5) pj=mjog foralljel.

Suppose a linear-space structure is given on P by the prescription of 07, add”, opp”,

mult”. Regarding W = X V; as endowed with its linear-space structure (Example
11D,(c)), we claim that pjzelé linear for all j € I if and only if g is linear. Indeed, for

every j € I,
p;oadd” = m; 0 goadd”
add"o(p;xp;) = add"o((m;09) x (m;0g)) = add" o(m; xm;)o(gx g) = mcadd™o(gxg),

and hence p; is additive for all j € I if and only if

mjogoadd” =7joadd” o (g xg) foralljeI;

and this holds if and only if g o add” = add” o (g x ¢), i.e., g is additive. The proof
for the homogeneity is similar, but simpler.

To complete the proof of the first assertion, it now suffices to observe that, since
g is bijective, there is obviously exactly one linear-space structure on P that makes
g linear; it is given by

07:=¢(0") add”:=goadd” o (9" xg7) opp” :=goopp” og"
mult”, ;= gomult’, 0 g~  forall s € F.

When P is endowed with this linear-space structure, then g is linear, and p; is
linear for every j € J; it follows from Propositions 31D and 31C, (b) and (31.5) that
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the linear space P with (p; | ¢ € I) is a linear product of the family of linear spaces
(Vl | 1€ [) | |

31G. ProposrTiON. Let a linear product of the family of linear spaces (V; | i € 1)
be given, with product-space P and family of projections (p; | i € I).

(a): Vu,oeP, u=v <& (Viel, pu=ppw).

(b): p; is linearly right-invertible, hence surjective, for every j € I.

Proof. (a) follows from Proposition 31F,(a) and Basic Language, Proposition
46D, (a). To prove (b), we define, for every j € I, the linear mapping 5; € Lin(V;, P)
by requiring

ly,  ifi=j
OVjHVi ifie [\{]}

Then 5; is a linear right-inverse of p; for each j € /. m
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32. Linear coproducts

Before dealing with (abstract) linear coproducts, defined in analogy with set-
coproducts, we obtain additional information on direct sums of families of linear
spaces, as defined in Example 13G,(e).

Let the family of linear spaces (V; | i € I) be given, and consider, for each j € I, the
linear mapping ; € Lin(V;, X V;) defined by (31.2). Obviously, Supp(d;u) C {j}
for all w € V;, and so Rngo; C X V; for every j € I. We define o; € Lin(V;, @V

iel
to be the linear mapping obtained from &; by adjustment of the codomain to @Vi,
iel
for every j € I.
32A. LEMMA. Let the family of linear spaces (V; | ¢ € I) be given. Then

ifi=
(32.1) mi(oju) = forall 5 €1l and u € Vy;
0 ifieI\{j}

and

(32.2) Supp(oymv | i € I) is finite and Zoﬂrzu =v forallve @V

il

Proof. (32.1) is an immediate consequence of (31.2). Let v € @V be given. Then

Supp(oymv | i € I) C Supp(mv | ¢ € I) = Suppw, which is finite. By Proposition 12B
and (32.1) we have

71']'(2 o) = ij(aﬂriv) =muv foralljel,

iel iel
and therefore E 0TV =0. A

iel
32B. ProrosiTiON. Let the family of linear spaces (V; | i € I) and the linear

space U be given. For every family of linear mappings (L; | i € I) € X Lin(V;,U)
iel

there is exactly one linear mapping L € @V — U such that L; = Loj for all j € I;
it is defined by

(32.3) Ly = ZL U = Z Lyv; forallv e @V

el el
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Proof. Let the family of linear mappings (L; | i € I) € X Lin(V;,U) be given.
iel

If Le Lm@V“U satisfies L; = Loy for all j € I, then (32.2) and Proposition 12B
yield

Lv = LZUJQU = ZLaﬂrlv = ZL mv forall v e @V

iel iel iel il
Conversely, define the mapping L : @Vi — U by setting L(v) := >, Lymv for
icl

all v € @Vi. Then L is linear, as can be verified directly, and for every j € I we
i€l

have, by (32.1),

Loju = Z Limi(oju) = Liu  for all u € V;,
i€l
so that Lo; = L;. m
A (linear) coproduct of a family of linear spaces (V; | i € I) is defined to be a
linear space S together with a family of linear mappings (s; | i € I) € X Lin(V;, S)
such that for every linear space U and every family of linear mappings c
(L; |te€1) EX Lin(V;,U) there is exactly one linear mapping L : & — U such that

L; = Ls; for all i € I. The linear space S is called the coproduct-space, and for
each j € I, the linear mapping s; : V; = S is called the jth insertion.

Vi

32C. ProprosITION. (a): Let linear coproducts of the family of linear spaces
(Vi | i € I) be given, with respective coproduct-spaces S and S' and respective fam-
ilies of insertions (s; | i € I) and (s, | i € I). Then the unique linear mappings
M:S8 =S and M': S — S that satisfy s; = Ms; and s, = M's; for alli € I are
invertible, and each is the inverse of the other.

(b): Let a linear coproduct of the family of linear spaces (V; | © € I) be given,
with coproduct-spaces S and family of insertions (s; | i € I). A given linear space T
and family of linear mappings (t; | i € I) € X Lin(V;, T) are the coproduct-space

and family of insertions of a linear coproduct oj‘e(Vi | i € I) if and only if the unique
linear mapping M : S — T that satisfies t; = Ms; for all i € I is invertible.
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Proof. This is analogous to the proof of Proposition 31C, and hence to the proof
of Basic Language, Proposition 46A. m

32D. ProposITION. Let the family of linear spaces (V; | i € I) be given. Then
the direct sum @Vi with the family (o; | € I) is a linear coproduct of (V; |i € I).
iel

Proof. Proposition 32B. m

The special linear coproduct described by Proposition 32D may be called the
standard (linear) coproduct of the family of linear spaces (V; | i € I). In the
next section we shall discuss other important linear coproducts.

32E. ProrosiTioN. Let a linear coproduct of the family of linear spaces
(Vi | i € I) be given, with coproduct-space S and family of insertions (s; | i € I). For
each j € I define p; € Lin(S,V;) by requiring

ly, ifi=j

For each j € I, s; is linearly left-invertible, hence injective, and p; is linearly right-
wnwertible, hence surjective. Moreover,

(32.5) Supp(s;pv | i € I) is finite, and Z sipv=v forallveS.

iel

If, in particular, Supp(V; | @ € I) is finite, then Supp(s;p; | i € I) is finite and

(32.6) > sipi = 1s.

i€l

Proof. We could derive this from Lemma 32A by way of Propositions 32D and
32C, but it is instructive to give a direct proof. We set

W:={v eS| Supp(s;pv | i € I) is finite}
U={veWw|] Zsi@v = v}
icl

Now W is a subspace of S, since it is the pre-image under the linear mapping

(sips | i € I) : S — S of the subspace S0 of S/. But then U is a subspace
of W, since it is the null-space of AB — lyycs, where B := (s;p; | i € [)|5(I) and
A= (a— Za) : SO — S are linear. We are to show that U = S.

I

For every j € I and u € V; we have s;;s;u = 0 for all i € I'\{j}, and Zsiﬁisju =
i€l
= 5;p;8;u = s;u, by (32.4), and therefore s;u € Y. Thus Rngs; C U for all j € I.
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By the definition of linear coproduct, there is exactly one linear mapping L : § — U
such that s;| = Ls; for all j € I. But then

lss; = s; = (s;]")]° = (L|%)s; forall j el

Again by the definition of linear coproduct, this implies 1s = L|°; and therefore
S = Rngls = Rng(L|%) = RngL C U C S. We conclude that i = S, as was to be
shown. m

32F. CoroLLARY. Let a linear coproduct of the family of linear spaces
(Vi | i € 1) be given, with coproduct-spaces S and family of insertions (s; |i € I).
Then S = ZRngsi.

i€l

32G. REMARK. In contrast with the results described in Proposition 31F for
linear products, the coproduct-space and family of insertions of a linear coproduct of
a family of linear spaces (V; | i € I) are not the coproduct-set and family of insertions
of a set-coproduct of the family of sets (V; | ¢ € I), unless I is a singleton: in a
linear coproduct the coproduct-space is never empty, and 0 is in the range of every
insertion; in a set-coproduct, the coproduct-set is empty if the index set is empty,
and the family of ranges of the insertions is disjoint. m

32H. ProprosITION. Let both a linear product and a linear coproduct of a family
of linear spaces (V; | i € I) be given, with product-space P and family of projections
(p; | i € 1), and coproduct-space S and family to insertions (s; | i € I), respectively.
Let (p; |ieI) e XLin(S,V) and (5; | i € I) € X Lin(V;, P) be defined by (32.4)
and (31.6), respectz'fely. o

(a): There is exactly one linear mapping K : S — P that satisfies

Ly, ifi=j
piKs; = forall i,j eI,
Ovir, if i

it is the only linear mapping that satisfies p; K = p; for all j € I and also the only
linear mapping that satisfies Ks; = 5; for all j € I. Moreover, K is injective.

(b): Assume that Supp(V; | ¢ € I) is finite (this is the case, in particular, when
I is finite). Then K is invertible; S is the product-space and (p; | © € I) the family
of projections of a linear product of (V; | @ € I); and P is the coproduct-space and
(5; | i € I) the family of insertions of a linear coproduct of (V; | i € I).

Proof.  Proof of (a). Except for the injectivity of K, the assertion (a) is an
immediate consequence of the definitions of linear product and linear coproduct and
(32.4) and (31.6). By (32.5) we have

v = Z 8PV = Z sipilKv =0 for all v € NullK.

iel icl

Hence NullK = {0}. By Corollary 14D, K is injective.
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Proof of (b). We assume that Supp(V; | i € I) is finite. Let the linear space U and
the family of linear mappings (L; | i € I) € X Lin(U,V;) be given. If L € Lin(U, S)

satisfies p;L = L; for all j € I, then by (32. 6) and Proposition 12B and Remark 131
we have

= (Z sipi) L = Z sipiL = Z 8iL;.

i€l iel iel
Conversely, we have Supp(s;L; | ¢ € I) C Supp(V; | i € I), so that the former set is
finite, and we may define L := ZSiLi € Lin(U,S). Then by (32.4) and Proposition

el

12B and Remark 131,

i€l icl

Thus ZsiLi is the only L € Lin(i, S) such that p;L = L; for all j € I. This proves
il

that S is the product-space and (p; | @ € I) the family of projections of a linear

product of (V; |i € I).

By Proposition 31C,(b), applied to S, (p; | i € I), K instead of Q, (¢; | i € I), M,
it follows that K is invertible. Now K's; = K~'Ks; = s; for all j € I. We may
therefore apply Proposition 32C,(b) to P, (5; | i € I), K~! instead of T, (¢; | i € I),
M, and conclude that P is the coproduct-space and 3; | i € I) the family of insertions
of a linear coproduct of (V; | i€ ). m

32I. REMARKS. (a): An alternative proof of Proposition 32H can be obtained from
consideration of the standard linear product and coproduct, and the observation that

@V = X V; (and hence 0; = 5; and 7; = 7; for all j € I) if Supp(V; | i € I) is

icl
finite (Example 13G,(e)).

o(b): From (a) it can be seen that the condition “Supp(V | i € I) is finite” in
Proposition 32H,(b) is necessary for each of the conclusions, since it is enecessary for

V, = X Vi (Example 13G,(e)).

i€l iel

(c): IV, =V for all i € I, the condition “Supp(V; | @ € I) is finite” may be
replaced in Proposition 32H,(b) by the necessary and sufficient condition “I is finite
or V is a zero-space”. m
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33. Decompositions

Let the linear space V be given. A family (U; | i € I) of subspaces of V is called a
decomposition of V if for every linear space W and every family of linear mappings
(L; i€l e X Lin(U;, W) there is exactly one linear mapping L : ¥V — W such
that L|y, = L; for all 1 € I; in other words, if V is the coproduct space and the family
(1y,cv | @ € I) of inclusion mappings is the family of insertions of a linear coproduct

This definition stresses the most important use of decompositions; they can, how-
ever, be characterized in a more geometric fashion, which exhibits them as a gener-
alization of supplementary pairs of subspaces.

33A. THEOREM. Let the linear space V and the family (U; | i € I) of subspaces
of V be given. The following statements are equivalent.

(i): U | i € 1) is a decomposition of V.
(ii): The linear mapping S :@L{i — V defined by the rule
il

33.1 Su = Il v eOUY;
(33.1) u ZI:U for all u @

s invertible.
(iil): (U; | i € I) satisfies

(33.2) U=V

iel
(33.3) Uin > U={0} foralljel.
iel\{j}
(iv): If I =@, then V = {0}; if [ # O, then U; is a supplement of Z U; in'V

i€l\{j}
foralljel.

Proof. (i) is equivalent to (ii). Using (33.1) and (32.1) we have

Sojv = ZUJU = Zm ojv)=v forall j €I andvel],
el
and therefore So; = 15,y for all j € I. The asserted equivalence now follows from
Proposition 32C,(a),(b), applied to the standard coproduct of (U; | @ € I) on the one
hand, and to the space V and the family (1;,cy | ¢ € I) on the other.

(il) s equivalent to (iii). We observe that @L{ VO X U;, and therefore the

el
linear mapping S defined by (33.1) satisfies RngS = ZZ/IZ-. Therefore S is surjective
il

if and only if (33.2) holds.
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By Corollary 14D, S fails to be injective if and only if NullS # {0}. This is the
case if and only if we may choose j € I and w € U;* such that w + Z u; =0 for a

i€\ {5}
suitable u € @ U;; equivalently, such that w € Z U;. We conclude that S fails
e €N0)
to be injective if and only if ; N Z U; # {0} for some j € I; hence S is injective

ie\{j}

if and only if (33.3) holds.

(iii) is equivalent to (iv). This is obvious once we observe that Zui =U;+ Z U

el i€l\{5}

foreachjel. m

33B. CoroLLARY. Let the linear space V and the family (U; | © € I) of subspaces
of V be given. The following statements are equivalent:

(i): (U; | i € I) is a decomposition of ZZ/{L».

i€l

(ii): The linear mapping S :@L{i — V defined by (33.1) is injective.
il

(ili): (U; | ¢ € I) satisfies (33.3).

33C. CoroLLARY. Let the linear space V and the subspaces U and U' of V be
given. Then the list (U,U') is a decomposition of V if and only if U and U’ are
supplementary in V.

33D. RemaRrks. (a): In the mathematical literature, a decomposition is often
referred to as a direct decomposition. The fact that (U; | « € I) is a decomposition of
V is often expressed by saying that V is the internal direct sum of (U; | i € I). Tt is not
unusual to find this phrase without the adjective “internal”, and even the notation
Y = @L{i is used. This amounts to using the linear isomorphism S defined by

1€
(33.1) to identify V with the direct sum of (i4; | i € I) as defined in Example 13G,(e);
we do not regard this identification as advisable.

(b): Condition (33.3) is a generalization of disjunctness of a pair of subspaces. A
family (U; | @ € I) that satisfies (33.3), and hence the equivalent conditions recited
in Corollary 33B, is therefore said to be disjunct. Warning: In general it is not
sufficient for (U; | ¢ € I) to be disjunct that U; NU; = {0} for all 4,5 € [ with i # j. m

Let the linear space V and the decomposition (U; | i € T) be given. For each j € T
we define P; € Lin(V,U;) by the rule

L,  ifi=j
(33.4) Pily, = for all j € I.
Ouou, if 2 € I\{j}.

The family (P; | i € I) is just the special case, for the coproduct associated with the
decomposition, of the family (p; | @ € I) defined by (32.4). When Supp(lf; | i € 1)
is finite, Proposition 32H shows that this is the family of projections of a product
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of (U; | i € I) whose product space is V. By poetic license, P; is called the jth
projection of the decomposition (U; | i € I) for every j € I, even when
Supp(Y; | i € I) is not finite.

We also define the family (E; | i € I) € (LinV)! by the rule

(33.5) Ej:=Pj|Y = 1y,cyP; foralljel.

It follows easily from (33.5) and (33.4) that

(33.6) E,E; = for all i,j € I.
0 ifi#j.

Since E;E; = E;, E; is called the jth idempotent of the decomposition (U] i € I)
for every j € I.

33E. ProprosiTiON. Let the linear space V and the decomposition (U; | i € I) of V
be given, with families of projections and of idempotents (P; | i € I) and (E; | i € I),
respectively. Then RngFE; = RngP; = U; and NullE; = NullP; = Z U; for all

i€I\{j}
jel.

Proof. Let j € I be given. By (33.4) we have P;jly,cy = 1y,. By Corollary
21E,(c), P; is surjective (so that RngE; = RngP; = U;), and NullE; = NullP; is a
supplement of ¢; = Rngly,y in V. By Theorem 33A, Z U; is also a supplement

ie\{j
of U; in V. But Y; C NullP; for all i € I\{j}, by (33.4\){.J}It follows from this by
Proposition 13R that Z U; C NullP;. By Proposition 15D, these supplements of
i€\{j}
U; in V must be one and the same. m

33F. ProrosITION. Let the linear space V, the family (U; | i € I) of subspaces of
V, and the family of linear mappings (E; |i € I) in LinV be given. Then (U; | i € I)
is a decomposition of V and (E; | i € I) is its family of idempotents if and only if

(33.7) RngE; =U; foralliel,

(33.8) E;E; =06 ,E; forallijel,

(33.9) Supp(Ew | i € I) is finite and Z Ev=wv forallveV.
i€l

If Supp(U; | i € I) is finite, (33.9) may be replaced by
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(33.10) > B =1y.

Proof. Proof of the “only if” part. We assume that (U; |i € I) is a decomposition
of V and that (E; | i € I) is its family of idempotents. Then (33.7) follows from
Proposition 33E, and (33.8) from (33.6). On account of (33.5), we obtain (33.9) from
Proposition 32E, applied to (U; | i € I), V,(ly,cy | @ € I),(P; | i € I) instead of
Viliel),S, (s;li€l), (p; | i €I), respectively.

Proof of the “if” part. We assume that (33.7), (33.8), (33.9) hold. We consider

the linear mapping S :@Z/{i — V defined by (33.1). On account of (33.7) and (33.4)
iel

we may define the linear mapping F : V %@Ui by the rule
il

Fv:=(Ew|iel) forallveV;
this mapping is obtained by adjustment from the linear mapping (E; |i € I): V — V1.
Again by (33.9), we have SF = 1y.

On the other hand, for each j € I, E; is idempotent by (33.8), and therefore its
range U; is the set of its fixed points; thus

(33.11) Ejly, = 1y, forall j €I

By Proposition 12B and (33.8) and (33.11) we have
T i€l i€l

U e@ui. Therefore
iel

FSu=(ESuli€el)=u forallu E@I/{ia
icl

so that F.S =1
[52)

i€l
decomposition of V.

Set Pz = EZ_|Rng = Ez

4~ Thus S is invertible; by Theorem 33A, (U; |ie€l)isa

Ui for each i € I. By (33.11) and (33.8) we have

U e
Ny " Ej‘z/{j =1y, ifi=j
u = (Ejly,ev)[™ = (BBl = for all 7,7 € I.

Py

It follows that (P; | 7 € I) is the family of projections of the decomposition (I4; | i € I).
Since E; = (E;|®8)|Y = B|Y for every i € I, we conclude that (E; | i € I) is the
family of idempotents of the decomposition. m
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33G. CoROLLARY. Let the linear space V and the decomposition (U; | i € I) of V
be given, with the family of projections (P; | i € I). Then

(33.12) Supp(Po | i € I) is finite and ZPZ-’U =wv forall ve .
i€l
Moreover, for every linear space W and family of linear mappings
(L; |iel) e X Lin(U;, W), the unique linear mapping L : V — W satisfying
icl
Liy, = L; for alli 1 is given by the rule

(33.13) Ly := ZLz‘PiU forallveV.

i€l

If Supp(U; | @ € I) is finite, (33.13) may be replaced by

(33.14) L:=> LP.

icl

Proof. (33.12) follows at once from Proposition 33F (“only if” part) and (33.5).
Let W and (L; | ¢ € I) be given, and let L be the unique linear mapping from V to
W satisfying Ly, = L; for all i € I. Then Proposition 12B and (33.12) yield

Lv=>Y L(Pv)=> (Ll)Pv=>» LPv forallveV. m
iel il iel
33H. CoroLLARY. Let the family of linear spaces (V; | i € I) be given. Let S be
the set coproduct-space and (s; | i € I) the family of insertions of a linear coproduct
of Vi |i€I). Then (Rngs; | i € I) is a decomposition of S.
Proof. Consider the family of linear mappings (p; | i € I) € X Lin(S,V;) defined
by (32.4). For each i € I, p; is right-invertible, hence surjective,lealnd therefore

(33.15) Rngs;p; = Rngs; for all i € 1.

From (32.4) we have

sipj  ifi=7]
(33.16) $;PjSiDi = for all i,5 € I.
Osns if iy

It follows from (33.15), (33.16), (33.11) that (33.7), (33.8), (33.9) hold with S,
(Rngs; | i € 1), (sip; | i € I) instead of V, (U; | i € I), (E; | i € I). The assertion
then follows by Proposition 33F. m
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We illustrate the use of some of the preceding results.

33I. PrROPOSITION. Let the linear spaces V and V', the decomposition (U; | i € I)
of V, the family (U] | i € I) of subspaces of V', and the family of linear mappings
(L; | ieI)e X Lin(Uh,U) be given. Consider the unique linear mapping
M:V=V satﬁ}]‘ymg

(33.17) M|y, = Li|¥" foralliel.

Of the following statements, any two imply the third:

(1): (U] | i€ I)is a decomposition of V'.

(ii): L; is invertible for everyi € I.

(iil): M is invertible.

Proof. We denote by (P; | i € I) and (E; | i € I) the families of projections and
of idempotents, respectively, of the decomposition (U; | i € T) of V.

(1) and (ii) imply (iii): We consider the unique linear mapping M’ : V' — V
satisfying

(33.18) M|y =L7'Y forallie I

From (33.1) and (33.18) we have

(M'M)|y, = M'M1ypcy = M'lyperyr Ly = Lyyey Ly 'Ly = Lycp = 1y

u, foralliel

Since (U; | i € I) is a decomposition of V, we conclude that M'M = 1y,. The proof
that MM’ = 1y, is similar; it uses the assumption that (U] | ¢ € I) is a decomposition
of V'. Thus M is invertible.

(i) and (iii) imply (ii). We denote by (P/ | i € I) the family of projections of the
decomposition (U] | i € T).

Let j € I be given. From (33.17) and (33.4) we have

(33.19) (PjM—11uJ<Cv,)L]- = P;M " M1y,cy = Pily,cy = 1y,
On the other hand, from (33.17), (33.4), (33.5) we have
L;P; ifi=

PIME, = PJMuycyP, = Plligey LiP, — o
Ovsyy if i€ IN{j}-

By Propositions 33F and 12B we then have
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P]{M’U = P]'MZEZU = ZPJ{MEZ-U =L;Pjy forallveV,

i€l iel

so that P/M = L;P;. It follows that

(33.20) Li(PM ™ gy cy) = PIMM ™ gy = Pllypcy = Ly

From (33.19) and (33.20) it follows that L; is invertible. It remains to observe that
7 € I was arbitrary.

(i) and (iii) imply (i). We define the family (E! | i € I) € (Lin)’)! by the rule
El:= ME;M™" forallie I.

Since L; is invertible, and hence surjective, for every i € I, we have, by (33.17) and
Proposition 33F,

RngE! = M. (RngE;) = M. (U;) = Rng(M|y,,) = Rng (L;|"") = RngL; = U/ for alli € I,

EE; = ME;M'MEM ™" = ME;E;M ™" = 6] ME;M ™" =6/ ,E] foralli,jel.

1,771

Moreover, for every v' € V', Supp(Ev' | i € I) = Supp(E;M ' | i € I) is finite,
and, using Proposition 12B,

SEY =Y MEM W =MY EM v =MM"W =0y
icl icl icl
By Proposition 33F it follows that (U] | ¢ € I) is a decomposition of V.

We observe that we have not used explicitly the assumption that L, is injective
for each i € I; but this assumption is redundant, since it follows from (33.17) and the
assumed injectivity of M. m
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Chapter 4

FAMILIES IN LINEAR SPACES

41. Linear combination

Let the linear space V and the family z € V! be given. The mapping lcl} (FOD 5 p
defined by the rule

(41.1) IcVa = Zaizi for all a € FY
iel

is called the linear-combination mapping for z (in V). Its value lcfa at a € F)
is called the linear combination of z (in V) with the coefficient family a.
Evaluation of lcl; at the Kronecker families 5;- e FD for all j € I yields

(41.2) ICE(SJI» = Z(Sjllzl =1z, =2; forall jel.
iel

41A. PROPOSITION. Let the linear space V and the family z € V! be given. Then
lcl} 1s the only solution of the problem

(41.3) 7L € Lin (FD) V), (Vie I, Lo = z).

In particular, lc}; 18 linear.

Proof. Let L be a solution of (41.3). Let a € F) be given. By (13.4) and
Proposition 12B,

La=1L Z a;0! = Z L(a;0}) = Z a; L6} = Z a;z = 1c’a.

i€l iel el iel

Since a € F) was arbitrary, it follows that L = 1cY.
Conversely, Ic! is the composite of the mapping (a +— (a;z; | i € I)) : F4) — Y0,

which is obviously linear, and the linear mapping (v — Zv) YU — VY (Example

I
13G,(e)). Therefore Ic¥ € Lin(F, V). By (41.2) 1c! is then a solution of (41.3).

o7
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An alternative proof may be obtained from Proposition 32B. m

41B. ReEmaRKks. (a): Let the linear space V and the subspace U of V be given.
It follows from Remark 13E,(d) that for every family » € U’ we have

Vo Uy
le; =1c7]”.

We may therefore write le,a for every a € FU), omitting the indication of the space
without causing ambiguity.

(b): Let the linear space V and the subset A of V be given. In accordance with
the notational convention established in Basic Language, Section 42, lcz denotes the
linear-combination mapping for the set A self-indexed as a family. Thus

lc}f‘a = Z ayw forallae FA. m
veEA
Linear combinations can be used to describe the linear spans of sets: specifically,
we shall show that the linear span of a subset of a linear space is precisely the set of
all linear combinations of that subset (self-indexed).
41C. THEOREM. Let the linear space V and the family z € V! be given. Then

Lsp Rng z = Rng ICZ.

Proof. Set U := Lsp Rng z; this is a subspace of V, and we have z € U!. By
Remark 41B,(a), Rng Ic! = Rng 1Y € U = Lsp Rng z. On the other hand, (41.2)
shows that Rngz C Rng lc‘;. But Rng lc‘; is a subspace of V, since ICZ is linear.
Therefore Lsp Rng z C Rng lcf. ]

41D. CoroLLARY. Let the linear space V and the subset A of V be given. Then

LspA = Rng Ic}| = {Z ayv | a € F}
veEA
We can characterize the linearity of mappings by means of linear combinations:

a mapping from a linear space to a linear space is linear if and only if it “preserves
linear combinations”, as we now show.

41E. THEOREM. Let the linear spaces ¥V and VW and the mapping L -V — W be
given. Then L is linear if and only if

(41.4) Lol =1}, for all sets I and families z € V.

Proof. Assume that L is linear. For every family z € V! we have, by Proposition
12B

)

Lcha = Lzaizi = ZL(%Z@') = Zaiin = lcz‘ia for all @ € FD.

i€l el iel
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Therefore (41.4) holds. Assume, conversely, that (41.4) holds. For all u,v € V and
s € F, we apply (41.4) to the lists (u,v) and (u), of length 2 and 1, respectively, and
find

L(U + ’U) = L(lu + 1’()) L(IC(U U)(l 1)) IC(L(u) L(v))(l 1)
=1L(u) + 1L(v) = L(u) + L(v)
L(Su) = L(lC(u>(S)) = IC(L(U)>( ) L( )
we conclude that L is linear. m

41F. ProposITION. Let the linear space V and the mapping 2 : I — K be given.
For all families z € VX and a € FD we have

( Z alkeK)eFX and lc.na = lc.( Z alkeK).
Q<({k}) Q<({k})

Proof. Let z € VX and a € FY) be given. By Basic Language, Theorem 114A we
find that Supp( Z a | k € K) is indeed finite, and that

Q<({k})
le.ona = Zaizﬂ(i) = Z Z AiZQ(i) = Z Z Q2 =
iel keK ieQ<({k}) keK ieQ<({k})
“S( Y @uslel Y alkek)
kekK Q<({k}) Q<({k})

41G. CoroLLARY. Let the linear space V and the bijection Q2 : I — K be given.
Then

Ic.ona = lc. (a0 Q) for all a € FD and z € VE.
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42. Linear independence

Let the linear space V be given. A family z € V! is said to be linearly indepen-
dent (in V) if I¢Y is injective, and linearly dependent (in V) otherwise. A subset
A of V is said to be linearly independent (in V) if A self-indexed is linearly inde-
pendent (in V), i.e., if 10}2 is injective; otherwise, A is said to be linearly dependent
(in V).

42A. REMARKS. (a): Let the subspace U of V be given. By Remark 41B,(a), a
family z € U’ is linearly independent in ¢/ if and only if z is linearly independent
in V. The phrases “linearly independent” and “linearly dependent” are therefore
unambiguous without the indication of the space. The same comment applies to the
linear independence or dependence of subsets of U.

(b): By Corollary 14D, a family z € V! is linearly independent if and only if
Null Ie¥ = {0}, i.e.,

Va € F(I), Zaizi =0 = a=0.
i€l

(c): Let the linearly independent family z € V! be given. By (b) and (1.2),
2 = lc,0f # 0 for all i € I, so that 0 ¢ Rngz. In particular, no linearly independent
subset of V contains 0. m

42B. ExaMPLE. Let the linear space V be given. The empty family is linearly
independent in V. A single-index family in V is linearly independent if and only if the
single term is not 0. For all u,v € V, the list (u, v) is linearly independent if and only
if u# 0 and v ¢ Fu. A characterization of linearly independent lists of all lengths
will be given in Corollary 42L. m

The next result shows that some questions regarding the linear independence of
families may be reduced to questions regarding the linear independence of sets.

42C. PROPOSITION. Let the linear space V be given. A family z € V' is linearly
independent if and only if z is injective and Rngz is linearly independent.

Proof. Assume that z € V! is linearly independent. From (41.2) we obtain the
following chain of implications for all ¢, j € I:

=z = 1CZ(52»I=1CZ(5; = (5{2(5; = (51»%:5]{]«:1 = =]

This shows that z is injective.

Now assume that z is injective, and define the bijection 2 := z|R1&* (Q is actually
the family z itself, regarded as a surjective mapping.) Then z = (Rngz) o 2, where
Rngz is self-indexed. By Corollary 41G, Ic¥ = lchngz)oQ is the composite of the linear
isomorphism (a + a o Q) : F) — F(Rnez) and ICKng. Therefore 1c) is injective if
and only if chngz is injective; in other words, z is linearly independent if and only if
Rngz is linearly independent. m
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42D. ProPosSITION. Let the linear space V be given.

(a): Every restriction of a linearly independent family in'V is linearly independent.

(b): A family in V is linearly independent if (and only if) its restriction to each
finite subset of the index set is linearly independent.

Proof. Proof of (a). Let the linearly independent family 2z € V! and the subset K
of I be given. Let b € Null IC]:‘K be given, and define a € F) by requiring a|x := b
and a|p g := 0. Then

le,a = ICZ‘K(CL‘K) + 10z|1\K(a|I\K) = ICZ‘Kb =0,

and hence, by Remark 42A (b), a € Nulllc¥ = {0}. Therefore a = 0, and b = a|x = 0.
Since b € Null ICZ‘K was arbitrary, we have Null ICZ‘K = {0}, and z|x is linearly
independent.

Proof of (b). Let the linearly dependent family z € V! be given. We may choose
a € (Null 1c¥)* by Remark 42A,(b). Then K := Suppa is a finite non-empty subset
of I, and we have a|j\x =0, a|g # 0. Therefore

1CZ\K(a‘K) = 1CZ\K(a‘K) + 1C2|I\K(a|I\K) =lc.a =0,

and so a|g € (Null ICE‘K)X. Therefore z|x is linearly dependent, and K is a finite
subset of /. m

42E. CoRrROLLARY. Let the linear space V be given.
(a): Every subset of a linearly independent subset of V is linearly independent.

(b): A subset of V is linearly independent if (and only if) each of its finite subsets
is linearly independent. In other words, the collection {A € B(V) | A is linearly
independent} is of finitary character.

We present some characterizations of linear independence.

42F. LEMMA. Let the linear space V, the family z € V!, and the index j € I be
giwven. The following statements are equivalent.

(i): There exists a € Null 1c) with a; # 0.
i ): Zj € Lsp Rng(z\l\{j}).

iii): Lsp Rng(z|n (;3) = Lsp Rngz.

Proof. (i) implies (ii). Choose a € Null 1! with a; # 0. Then

(ii
(ii

0=lc,a= a;zj + 1CZ‘I\{].} (a|1\{j})

and therefore, by Theorem 41C,

1.y 1 v
%= g e ) € —gRng e, = Lep Rug(elng)).

(ii) 4mplies (i). By Theorem 41C, z; € Lsp Rng(z|p(;;) = Rng lc We may

"
zlngy

therefore choose b € FU\MJD such that zj = lcl}ll\mb. We define a € FU) by requiring

aj = —1 and a|p gy = b. Then a; # 0 and
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le,a = ajz; + ICZ‘I\{J}(Q‘I\{j}) =—z+ ICz|,\mb =0,

so that @ € Null 1c).
(ii) is equivalent to (iii). By Lemma 12H,

Lsp Rngz = Lsp(Rng(z|n\(;3) U {%;}) = Lsp Rng(z|ny) + Fz;.
Therefore

z; € Lsp Rng(z|\j3) € Fz; C Lsp Rng(z|ng;1) < Lsp Rng 2z C Lsp Rng(2]n(53)

but obviously Lsp Rng(z|n ;) C Lsp Rng z. m

42G. THEOREM. Let the linear space V, the family z € V', and the subset K of
I be given. The following statements are equivalent.

(i): z is linearly independent.

(ii): 2|k is linearly independent, and z; ¢ Lsp Rng(z|n ;) for all j € I\K.

(ii): 2| is linearly independent, and Lsp Rng(z|ng;y) G Lsp Rng z for all
jel\K.

Proof. (i) implies (ii). This follows at once from Proposition 42D,(a) and from
lemma 42F,((ii) = (i)) by contraposition.

(i) implies (i). Let a € Null Ic! be given. Since z; ¢ Lsp Rng(z|p ;) for all
J € I\K, it follows by contraposition from Lemma 42F,((i) = (ii)) that a|pnx = 0.
Then

0=lc.a = ICZ\K(G|K) + 1CZ|I\K(Q|I\K) = 1CZ|K(G‘|K)'

Then a|x € Null lcl}‘K

alpnx = 0; therefore a = 0. Since a € Null lc! was arbitrary, we have Null lc} = {0},
and z is linearly independent.

= {0}, since z|g is linearly independent. Thus a|x = 0 and

(ii) 4s equivalent to (iii). This is immediate, by contraposition, from Lemma
42F ((ii) < (iii)). m
It is useful to record two extreme cases of Theorem 42G.

42H. CoROLLARY. Let the linear space V and the family = € V! be given. The
following statements are equivalent:

(i): z is linearly independent.

(ii): z; ¢ Lsp Rng(z|ny5y) for all j € 1.

(iii): Lsp Rng(z|ngy) G Lsp Rng 2 for all j € 1.

(iv): 0 ¢ Rngz, and the family (Fz; | i € I) of subspaces of V is disjunct.

Proof. The equivalence of (i), (ii), (iii) follows from Theorem 42G with K := (.

(ii) is equivalent to (iv). For every j € I we have, by (13.13), Lsp Rng(z|p(j}) =
= Z Fz;; therefore

ie\{j}
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zj ¢ Lsp Rng(z|ngy) & 2 ¢ Z Fz; & Fzn Z Fz; =0 &
ieI\{j} ie\{j}
< (2 #0 and Fz;N Z Fz; = {0}).
iel\{j}
The validity for all j € I of the right-most assertion in this chain of equivalences is
precisely the content of (iv) (cf. Remark 33D,(b)). m

421. CorOLLARY. Let the linear space V, the family z € VT, and the index j € I
be given. The following statements are equivalent.

(i): z is linearly independent.

(ii): z|pgyy is linearly independent, and z; ¢ Lsp Rng(z|n ).

(iii): z[p(yy is linearly independent, and Lsp Rng(z|ng;y) & Lsp Rngz.
We next record a version of Theorem 42G for subsets of a linear space.

42J. CorOLLARY. Let the linear space V, the subset A of V, and the subset B of
A be given. The following statements are equivalent.

(i): A is linearly independent.

(ii): B is linearly independent, and v ¢ Lsp(A\{v}) for all v € A\B.

(iii): B is linearly independent, and Lsp(A\{v}) G LspA for allv € A\B.

(iv): B is linearly independent, and {S € P(A) | B C S, LspS = LspA} = {A}.

Proof. The equivalence of (i), (ii), (iii) follows from Theorem 42G. Set T" := {S €
PB(A) | BC S, LspS = LspA}. We certainly have A € T.

(i) implies (iv). Let S € T be given. For every v € A\S we should have v € A\B
and S C A\{v}; and therefore, by (iii),

LspS C Lsp(A\{v}) G LspA = LspS  for all v € A\S,

which cannot be unless A\V =0, i.e., S = A. Hence I' = {A}.
(iv) #mplies (iii). Let v € A\B be given. Since A\{v} # A, we have A\{v} ¢ T,
but B € A\{v}. Therefore Lsp(A\{v}) G LspA. m

In the following proposition we have an ordered set I. We recall the notation
Spr(j) := Lb({j})\{4j} for the set of all members of I that strictly precede j, for each
jel.

42K. ProPOSITION. Let the linear space V and the totally ordered set I be given.
A family z € V! is linearly independent if and only if

(42.1) z; ¢ Lsp Rng(z|sp(j)) for all j € 1.

Proof. Proof of the “only if” part. Assume that z is linearly independent. By
Corollary 42H we have

Lsp Rng(2[sp(j)) C Lsp Rng(z|ngj3) € V\{2;} forall j €1,
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so that (42.1) holds.

Proof of the “if” part. We assume that (42.1) holds. We shall prove by general
induction that

P(S) :& z|s is linearly independent

holds for all S € F(I). It will then follow by Proposition 42D,(b) that z itself is
linearly independent, and the proof will be complete.

Let then S € F(I) be given, such that P(T') holds for all proper subsets T of S. If
S =, then z|g is empty, and therefore linearly independent, so that P(S) holds in
this case. Suppose now that S # . By Basic Language, Corollary 105B, the totally
ordered non-empty finite ordered subset S of I has a maximum. By the induction
hypothesis, P(S\{maxS}) holds, i.e.,

(42.2) 2| $\fmaxs} is linearly independent.

By (42.1) we have

LSp R‘ng('zlS\{maxS}) C LSP Rng(z‘Spr(maxS)) C V\{Zmaxs}v

and therefore

(42.3) Zmaxs & Lsp Rng(2]s\ fmaxsy})-

By Corollary 421 it follows from (42.2) and (42.3) that z|g is linearly independent, so
that P(S) holds in this case too. This completes the induction step. m

42L. CorOLLARY. Let the linear space V be given. A list (2, | k € n™) [a sequence
(2 | k € N)]in V is linearly independent if and only if
Zm # Lsp{zi | K € m=}  for all m € n" [all m € NJ.

More results concerning linear independence of families and sets will be presented
in the next section.
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43. Linear independence, spanning, bases

Let the linear space V be given. A family z € V7 is said to span V, or to
be spanning in V if Lsp Rng z = V; it is called a basis of V if z is both linearly
independent and spanning in V. A subset A of V is said to span V or to be spanning
inV if LspA =V, i.e., if A self-indexed spans V; A is called a basis (-set) of V if A
is both linearly independent and spanning in V, i.e., if A self-indexed is a basis of V.

43A. ReEMaARK. A family z € V! spans V if (and only if) some restriction of z
spans V. A subset A of V spans V if (and only if) some subset of A spans V. m

43B. ProposITION. Let the linear space V and the family z € VT be given.

(a): z spans V if and only if ICZ is surjective; z is a basis of V if and only if ICZ
1s invertible.

(b): z spans V if and only if Rngz spans V; z is a basis of V if and only if z is
injective and Rngz is a basis-set of V.

(¢): z is linearly independent if and only if z is a basis of Lsp Rng z.

(d): z is a basis of V if and only if 0 ¢ Rngz and the family (Fz; | i € I) is a
decomposition of V.

Proof. (a) follows from Theorem 41C and the definitions. (b) follows from the def-
initions and Proposition 42C. (c) follows from the definitions. According to Corollary
42H,((i) < (iv)), 2 is a basis of V if and only if 0 ¢ Rngz, (Fz; | € I) is disjunct, and
Lsp Rng z = V; but Lsp Rng z = Zin, by (13.13); (d) then follows from Theorem

iel
33A, ((i) < (iii)). m

43C. ExampLEs. (a): The empty set is a basis-set of the linear space V if and
only if V is a zero-space; it is then the only basis-set of V. The basis-sets of the
linear space F are precisely the singletons {t} with ¢ € F*. The singleton {1} may
be regarded as the “natural” basis-set of F.

(b): Let the set I be given. We consider the family 67 : (6! | i € I) in FU). (This
is the family of rows of the Kronecker matrix 7~ with entries the zero and unity of
F — and we use the same symbol §' since there is no danger of confusion and the
two objects correspond in the obvious natural isomorphism from F/* to (F!)L.) By
Proposition 41A, 101([;;[) is the only solution of

7L € Lin(FY FD) L5l = 1.

But 1pm is of course a solution too. Therefore lch;” = 1pm), and therefore 47 is a
basis of F) (Proposition 43B,(a)); it is called the Kronecker basis, or natural
basis, of F(!). m

Let the linear spaces V and W, the family z € V', and the linear mapping
L:V — W be given. From Theorem 41E we have

(43.1) Iy, = LicY.
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From (43.1), from the definitions, and from Proposition 43B,(a) it is easy to derive
relationships between the properties of z (being linearly independent, spanning V,
being a basis of V), analogous properties of Lz with respect to W, and properties of
L (being injective, surjective, invertible). For instance, if Lz is linearly independent,
S0 is z; if z is linearly independent and L is injective, then Lz is linearly independent.
We shall not make a complete list of these relationships, but we record those that
hold when z is a basis of V.

43D. PROPOSITION. Let the linear mapping L : V — W and the basis z € V! of
V be given. Then the family Lz is linearly independent if and only if L is injective;
Lz spans W if and only if L is surjective; Lz is a basis of W if and only if L is
invertible.

43E. ProrosITION. Let the linear space V and the set I be given. The following
statements are equivalent.

(i): There exists a basis z € V! of V.

(ii): There exists a basis-set of V that is equinumerous with I.

(iil): V is linearly isomorphic to B,

Proof. (i) implies (ii). Choose a basis z € V! of V. Then Rngz is a basis-set of V
and z|®¢* : | — Rngz is a bijection (Proposition 43B,(b)).

(ii) émplies (i). Choose a basis-set A of V that is equinumerous with /. Then we
may choose a bijection from I to A, i.e., an injective family z € V! with Rngz = A.
By Proposition 43A,(b), z is a basis of V.

(i) 4mplies (iii): Choose a basis z € V! of V. Then I¢¥ : F() — V is a linear
isomorphism (Proposition 43B,(a)).

(iii) implies (i): Choose a linear isomorphism L : V — F). Then the family
L7161 € V! is a basis of V (Example 43C,(b) and Proposition 43D). m

Probably the most important property of bases is described by the characterization
in the following theorem.

43F. THEOREM. Let the linear space V and the family z € V! be given.

(a): z is linearly independent and Lsp Rung z has a supplement in V if and only if
for every linear space W and family y € W' there is at least one solution of

(43.2) ?L € Lin(V, W), Lz=y.

(b): z spans V if and only if for every linear space W and family y € W' there is
at most one solution of (43.2).

(¢): z is a basis of V if and only if for every linear space W and family y € W!
there is exactly one solution of (43.2).

Proof. Proof of (a). By Theorem 41C and Corollary 211,(a), z is linearly indepen-
dent and Lsp Rng z has a supplement in V if and only if lcr is linearly left-invertible.

Assume first that 1c! is linearly left-invertible, and choose a linear left-inverse
K € Lin(V,F") of 1cY. For a given linear space W and family y € W! we set
L= ICZVK € Lin(V, W) and find, using (41.2),
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Lz= ICZVchfél = lclj/vél =y,
as desired.

To prove the converse, we apply the condition in the assertion to W := F() and
y := &', We may then choose K € Lin(V,F?) such that Kz = §', and therefore
KlcYs" = 6" = 13w of I. By Proposition 41A (cf. Example 43C,(b)), this implies
KlcY = 1pm. Thus Ic! is linearly left-invertible.

Proof of (b). Assume first that z spans V. For given linear space W, family
y € W! and linear mappings L, M € Lin(V, W) we have the chain of implications

Lzr=y=Mz = (M—L)z=0 = RngzCNull(M-L) =
= V=LspRngzCNullM—-L) = M-L=0= L=M;

thus (43.2) has at most one solution for given W and y € W'.

To prove the converse, we apply the condition in the assertion to each linear space
W and to the family y := 0 € W!. Then we have, for every L € Lin(V, W), the chain
of implications

Y =0 = Lz=Ld'=0 = Lz=0: = L=0.

This shows that lcf is a linear epimorphism, and is therefore surjective (Proposition
22B.R). Consequently, z spans V (Proposition 43B,(a)).

Proof of (¢). This follows from (a) and (b) and the following remark: when z
spans V, then Lsp Rng z = V has the supplement {0} in V. m

43G. Remarks. (a): If z is a basis of V, the only solution of (43.2) is given by
the formula L :=1¢)"(IcY) .

(b): There is an interesting alternative proof of Theorem 43F,(c) that uses Propo-
sition 43B,(d) and the defining property of decompositions. m

e43H. CoroLLARY. Let the linear space V and the family z € V! be given. z is
linearly independent if and eonly if for every linear space W and family y € W' there
is at least one solution of (43.2).

Proof. This follows from Theorem 43F,(a) and eCorollary 15G. m

Of the special form of Theorem 43F for (self-indexed) subsets of V we record only
the part corresponding to (c).

43I. CorOLLARY. Let the linear space V and the subset A of V be given. A is a
basis-set of V if and only if for every linear space W and mapping f : A — W there
is exactly one linear mapping L : V — W such that L|4 = f.

Our next results demonstrate that basis-sets are both maximal linearly indepen-
dent sets and minimal spanning sets, and permit us to discuss the existence of basis
sets.

43J. TueOREM. Let the linear space V and the subsets A, B, C of V be given,
and assume that A C B C C. The following statements are equivalent.
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(i): B is a basis-set of V.

(ii): A is linearly independent, C spans V, and B is a mazimal member of
{SeP(V) | ACS CC, S is linearly independent}, ordered by inclusion.

(iii): A is linearly independent, C spans V, and B is a minimal member of
{SePV) | AcC S, S spansV}, ordered by inclusion.

Proof. (i) implies (ii) and (iii). We assume that B is a basis-set of V, and define

''={SeP(V)| Ac S, §Sislinearly independent}
(43.3)
A:={SePV)| AcCcSc(, Sspans V}.

Obviously, B € T and B € A. By Corollary 42E and Remark 43A, A is linearly
independent and C spans V.

Let B’ € T be given, with B C 5. Then B’ spans V (Remark 43A) and is linearly
independent. By Corollary 42J,((i) = (iv)) we find

Be{SePB)| ACS, LspS =V =1LspB'} ={B'}.

Therefore B’ = B. This shows that B is a maximal member of I'.
Let B” € A be given with B” C B. By Corollary 42J,((i) = (iv)) we find

B e{SeBB)|AcCS, LspS =V = LspB} = {B}.

Therefore B” = B. This shows that B is a minimal member of A.

(ii) ¢mplies (). We assume that (ii) holds. Then B is linearly independent. Let
v € C be given. If we had v ¢ LspB, we should have A C B C BU {v} C C, and by
Corollary 42J,((ii) = (1)) BU {v} would be linearly independent, contradicting the
assumed maximality of B in T' (defined by (43.3)). Therefore v € LspB. Since v € C
was arbitrary, we find C C LspB, and hence V = LspC C LspB C V, so that B spans
V. Since B was also linearly independent, B is a basis-set of V.

(iil) implies (i). We assume that (iii) holds. Then A is linearly independent and,
since B is a minimal member of A (defined by (43.3)), B is the only member of
{SeP(B) | AC S, LspS =V = LspB}. By Corollary 42J,((iv) = (i)), B is linearly
independent. Since B € A, B also spans V. Therefore B is a basis-set of V. m

43K. CoroLLARY. Let the linear space V and the subset B of V be given. The
following statements are equivalent.

(): B is a basis-set of V.

(ii): B is a mazimal member of the collection of all linearly independent subsets
of V, ordered by inclusion.

(ii): B is a minimal member of the collection of all subsets of V that span V,
ordered by inclusion.

Proof. We apply Theorem 43J with A:= @ and C:=)V. m
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e43L. THEOREM. Let the linear space V and the subsets A and C of V be given,
and assume that A C C. There exists a basis-set B of V with A C B C C eif and only
if A is linearly independent and C spans V.

Proof. The “only if” part follows at once form Theorem 43J,((i) = (ii)). To prove
the e“if” part, we recall that the collection A := {S € P(V) | S is linearly inde-
pendent} is of finitary character (Corollary 42E,(b)). We assume that A is linearly
independent, i.e., A € A, and that C spans V. Since A C C, it follows from eTukey’s
Lemma ((VI) in Basic Language, Section 173) and Basic Language, Proposition 173E
that we may choose a maximal member Bof {SeA | ACSCC}=
={SePWV)| AcC S S§islinearly independent}. Then A C B C C, and by
Theorem 43J,((ii) = (i)) B is a basis-set of V. m

e43M. CoroLLARY. Every linear space V includes a basis-set of V. Every linear
space V is isomorphic to FD for some set I.

Proof. Apply eTheorem 43L to A := @ and C := V. The last assertion follows by
Proposition 43E. m

eCorollary 43M answers the question regarding the existence of basis-sets by show-
ing that every linear space has at least one. By contrast, only the most degenerate
linear spaces have exactly one basis-set, as we now show.

43N. ProposiTioN. A linear space V has exactly one basis set if and only if either
V is a zero-space or else the set F is the doubleton {0,1} and V is linearly isomorphic
to the linear space F.

Proof. Since every linear space V with a basis-set is linearly isomorphic to F(D for
some set I (Proposition 43E), we may restrict our attention to the spaces FU), each
with its Kronecker basis 7 (Example 43C,(b)).

Consider first a set I that is neither empty nor a singleton, and choose distinct
4,k € I. Define the linear mappings K, L € Lin(FY), F(D) by requiring (as we may,
by Proposition 41A (cf. Theorem 43F,(c)),

o] + 04 §h—6l ifi=j
&f 8! if i € I\{j}

(3

Then K Lé' = 6" = LK§!, and, again by Proposition 41A, we infer that KL = 1zu) =
LK. Tt follows from Propositions 43D and 43B,(b) that Rng(K¢?) is a basis-set of
F(U); but it is different from the basis-set Rngd”, since the support of K&! = 6! + 6/
is not a singleton. Therefore F) has more bases than one.

The set I is empty if and only if F) is a zero-space; and then @ is the only
basis-set of F().

Assume, finally, that I is a singleton, and define i :€ I. Then §/® : F — F)
is a linear isomorphism. But the basis-sets of the linear space F are precisely the
singletons {t} with ¢ € F* (Example 43C,(a)). Therefore I, and also F()| has exactly
one basis-set if and only if F* = {1}, i.e., F={0,1}. m

430. REmMARK. Proposition 43N is one of the few exceptions to the rule that
the validity of statements in Linear Algebra proper does not depend on the specific
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nature of the field F (cf. Proposition 15C,(b)). Had we required, as is often done,
that 1 +1 # 0 in F, the proof of Proposition 43N could have been reduced to the
observation that if A is a non-empty basis-set of V, then —A is a different basis-set
of V. m

We next consider unions of subsets of a linear space.

43P. LemwMmA. Let the linear space V and the subsets A and A’ of V be given. If
ANA =0 and AU A’ is linearly independent, then Lsp.A N Lsp A’ = {0}.

Proof. Let u € LspA N ALspA’ be given. By Corollary 41D we may choose
a € FW and ¢’ € FM) such that leqa = v = leqa’. Since ANA’ = @, we may define
b € FAYY) by requiring b|4 := a and bl 4 := —a’. Then

lequard =lea(bla) +lea (blar) =lcaa —legad =u—u=0.

Since AU A’ is linearly independent, this requires b = 0, and hence v = le4(b]4) = 0.
since u € Lsp.A N LspA’ was arbitrary, we find Lsp.A N Lsp A’ = {0}. m

43Q. TueEOREM. Let the linear space V and the family (A; | i € I) of subsets of
V be given. The following statements are equivalent.

(i): The family (A; | ¢ € I) is disjoint and UAi is linearly independent [is a
il

basis-set of V].

(i)): The family (LspA; | i € I) is disjunct [is a decomposition of V] and A; is
linearly independent (equivalently, a basis-set of Lsp.A;) for each i € 1.

Proof. The equivalence in parentheses follows from Proposition 43B,(c). By Corol-
lary 13S, we have Lsp UAi = ZLsp.Ai. It follows that we may reduce the assertion

i€l ,
icl

to the assertion with the phrases in square brackets by replacing V by this subspace.
When this is done, we have the additional assumption

(43.4) V=Lsp [ J4 = LspA,.

el il

(i) implies (ii). Let j € I be given. Since UA, is linearly independent, so is
the subset A; (Corollary 42E,(a)). Since the farrfielgf (A; | i € I) is disjoint, we have
A; N Q A; = 0. By Lemma 43P and Corollary 13S we have

ien{s}

LspA; N Z LspA; = LspA; N Lsp Q A; = {0}.
€N} i
This holds for all j € I. It follows from this and (43.4) that (LspA; | i € I) is a
decomposition of V (Theorem 33A).
(ii) émplies (i). Since A; is linearly independent, we have 0 ¢ A; for each i € I.
Since the family (LspA; | @ € I) is a decomposition of V, hence is disjunct, it follows
that the family (A; | ¢ € I) is disjoint.
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We shall use the family of projections (P, | i € I) € X Lin(V,LspA;) defined
(cf. (33.4)) by requiring !

1LSij if ¢ :]
(43.5) Pi|Lspa; == for all 4,7 € I.
0 if i

Set B := UAi' Let b € Null Icj; and j € I be given. Then, by (43.5),

iel

0=P0=Plegb=PF; Y bo=> bPw=> bow=lcg(bla,).

veB veB vEA;

Since A; is linearly independent, it follows that b| 4, = 0. Since j € I was arbitrary, we
infer that b = 0. Since b € Null lc); was arbitrary, we conclude that Null I}, = {0},

and therefore B is linearly independent (Remark 42A,(b)). By (43.4), B = UAi
i€l
spans V, and hence is a basis-set of V. m ©
43R. CorOLLARY. Let the linear space V and the subsets A and A" of V be given.
Then ANA" =@ and AU A’ is linearly independent [a basis-set of V] if and only if
A and A’ are linearly independent and Lsp A and Lsp A’ are disjunct [supplementary
in V].
43S. CoroLLARY. Let the family of linear spaces (V; | i € I) be given. Let S be
the coproduct-space, and (s; | ¢ € I) the family of insertions, of a linear coproduct of
(Vi | i €I). For eachi € I, let a basis b; € V;”t be given. Set U := UJZ‘ Then the
il
family ¢ := (si(b;); | (i,7) € U) € SY is a basis of S. ©
Proof. We set A; := Rng(s;b;) for each i € I. Since b; is a basis, we have, by
Corollary 13Q),

LspA; = Lsp Rng(s;b;) = Lsp(s;) . (Rngb;) = (s;) - (Lsp Rng b;) = (s;) . (Vi) = Rngs;
for all i € I.

It follows from Corollary 33H that (LspA; | i € I) is a decomposition of S.
Since s;/%1¢ is invertible, it follows that s;b; is a basis of Rngs; = Lsp.A;; hence
A; = Rng(s;b;) is a basis-set of Lsp.A; for each ¢ € I. By Theorem 43Q, the family
(A; | i € I) is disjoint and U.Ai = Rngc is a basis-set of S. Since the families s;b;
il
are injective and have disjointE ranges, we conclude that c is injective. It follows from
Proposition 43B,(b) that ¢ is a basis of S. m
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Chapter 5

FINITE DIMENSION

51. Matrices

This section deals with linear mappings from F) to F(/) for given sets I and J.
The J x I-matrices with entries from F provide a useful bookkeeping system for these
mappings, especially when J is finite. To each L € Lin(F®) F)) one can associate
the J x I-matrix ((Ld]); | (j,i) € J x I). It is not hard to see that the mapping
from Lin(FY, FW) to F/*! thus defined is linear and injective, and that its range
consists of all members of F/*! whose columns have finite support. When J is finite,
this mapping is therefore actually a linear isomorphism. Our first result records this
state of affairs.

51A. ProposITION. Let the sets I and J be given, and assume that J is finite.
The mappings

(51.1) (L~ ((L6D); | (4,3) € J x I)) : Lin(FD By — F/*!
(51.2) (M (a— (> Mja; | j €J)):F* — Lin(FD,F/)

are linear, and each is the inverse of the other.

Proof. Let the mappings defined by (51.1) and (51.2) be denoted by ® and ¥,
respectively. These mappings are obviously linear. Moreover,

(TBL)S); = Z(@L)j,i,(s;i, = (®L);; = (L3!); forallic I, jeJ,
el

and L € Lin(FD,F7).

Thus, for every L € Lin(FY), F”) we have (V®L)§! = L6/ for all i € I; by Proposition
41A, this implies W®L = L. Therefore ¥® = 1;, zn) g7). On the other hand,

73
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(PWM);; = (WM)3]); = > M;u6l, = M;; forall (j,i) € J x I and
el

M e ]FJXI

and therefore @V = Igsxr. B

The natural linear isomorphism described in Proposition 51A allows us to iden-
tify Lin(FD F/) and F/*!, ie., to use the same symbol to denote a member of
Lin(FY),F/) and the corresponding JxI-matrix. We record some formulas express-
ing this identification, derived from (51.1), (51.2), and (13.4). For every M in
Lin(FD, F), or in F/*!, we have

(51.3) M;; = (M¢}); forall (j,i) € J x I,
(51.4) Mo} = M;;5] foralliel,
jeJ
(51.5) (Ma); = ZMj,iai for all j € J and a € Y.
el

The next result shows that, under this identification, the composition of linear
mappings corresponds to the familiar “row-by-column” multiplication of matrices; it
is indeed, this result that provides the reason for considering this multiplication at
all.

51B. ProrosiTiON. Let the sets I, J, K be given, and assume that J and K are
finite. Let M € Lin(F") F’) and N € Lin(F’/,FX) be given. Then the K x I-matriz
NM corresponding to their composite is given by

(NM)y,; = Z Ni;M;;  for all (ki) € K x I.

jeJ

Proof. By successive application of (51.3), (51.5), (51.3) we obtain
(NM)pi = (NM6))e = > Ny (M6]); = NejMj;  forall (ki) € K xI.m
JjeJ jeJ

For given sets I and J, with J finite, and given M € Lin(F!),F/) and b € F’, we
examine the equation

2ae FD, Ma=0,
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ie.,

Nai |i€I) €PN, (Vjed, Y Mja;=b);

el

in this form, the problem is usually called a system of linear equations (more precisely,
of #J linear equations in #I unknowns, if I is also finite). The following theorem
describes a procedure that enables one to “reduce” such a system to another of anal-
ogous form with one equation and one “unknown” fewer. This procedure typically
occurs as a step in a recursive process, or algorithm, known as linear elimination, for
solving a system of linear equations.

51C. THEOREM. Let the sets I and J be given, and assume that J is finite. Let
M € F/*1 and b € F’ be given. Let (jo,io) € J X I be such that My, # 0. Set
I' = I\{io} and J' := J\{jo}, and define M’ € /" and V' € T/ by the rules

(51.6) M}, == My, — My Mo i/ My s for all (j,i) € J' x I’

(51.7) V= bj — (Mjiy/Mjyiy)j,  forall j € J'
Then a € FO s a solution of

2aeFD, Ma=1b

if and only if alp is a solution of

2 eF) . Md =1V

and

= (1/Mjoi) (b, Z Jo,i@

iel’

Proof. For every a € F) we have, by (51.6) and (51.5),

(Ma);, = Z josi®i = Mjo i (@io + (1/Mjo i, Z jo,i11)

el el’
(Ma)j = ZMj,iai = ZMj’iai + Mj,ioaio =
iel iel’
= ZM;,iai Jlo/ Joio Z jo,iCi + Mj,ioaio =
iel’ el
= (M'(alp)); + Mjo(as, + (1/Mjy ) Mjya;) for all j € J.

el’
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The assertion follows from these formulas by direct verification, using (51.7). m

51D. CoroLrLARy. Let the sets I and J be given, and assume that J is finite. Let
M € F7*! be given, and let (jo,i0) € J x I be such that M;, ;o # 0. Set I' := I\{io}
and J' = J\{jo}, and define M' € F*!" by (51.6). Then M' € Lin(FU) F’") is
injective if and only if M € Lin(FY),F) is injective, and M' is surjective if and only
if M is surjective.

Proof. Assume first that M is injective. Let ¢’ € NullM’ be given, so that
M'a’ = 0. Define a € FY) by requiring a|y := o’ and a;, := _(1/Mj07i0)ZMjO,ia;'

i€l
By Theorem 51C with b := 0, we have Ma = 0, so that a = 0 since M iseinjective.
Therefore o' = a|p = 0. Since a’ € NullM’ was arbitrary, we have NullM’ = {0}, so
that M’ is injective. The reverse implication is an obvious consequence of Theorem
51C with b := 0.

Assume that M is surjective. Let ¥’ € F/ be given. Define b € F’ by requiring
bl ==V and bj, := 0. We may then choose a € FU) such that Ma = b. By Theorem
51C we have M'(a|p) = V. Since b € F’’ was arbitrary, M’ is surjective. The reverse
implication is an obvious consequence of Theorem 51C. m

51E. ProposiTiON. Let the sets Iy and Jy be given, and assume that Jy is finite.
If there exists an injective linear mapping from FI0) to % then I, is finite and
#1o < #Jo.

Proof. We shall prove by general induction that

P(J) ¢ (For every I € B(I,), if there is an injective M € Lin(F) F7),
then [ is finite and #1 < #J)

holds for all (finite) subsets J of Jy. Once this is accomplished, the assertion follows
from P(Jo) with I := I,.

Let the J € PB(Jy) be given, and assume that P(K) holds for every proper subset
K of J. Let I € P(Iy) be given, and assume that there exists an injective
M € Lin(FD F’); choose such an M. If M = 0, then F) = NullM = {0}, and
hence I = @, so that indeed I is finite #I = 0 < #J in this case. We may therefore
suppose that M # 0, and choose (jo,%9) € J x I such that M ;, # 0. We set
I' := N\{ip} and J := J\{jo}. It follows from Corollary 51D that there is an
injective M’ € Lin(FU"),F/"). By the induction hypothesis P(J') we conclude that
I' = I\{ip} is finite and that #I’ < #J'. Therefore I is finite and

#I=#I\{io}) +1=#I"+1 < #J +1=#(J\{jo}) + 1 = #J.

This completes the induction step. m
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52. Finite-dimensional spaces

A linear space V is said to be finite-dimensional if V is the linear span of some
finite subset of V. A linear space is said to be infinite-dimensional if it is not
finite-dimensional. If V is a finite-dimensional linear space, the natural number

(52.1) dimV := min{#S | S € F(V), LspS =V}

is called the dimension of V; for given n € N, a linear space V is said to be
n-dimensional if V is finite-dimensional and dimV = n.

(A linear space spanned by a finite subset might more aptly be termed finitely
spanned. The terms “finite-dimensional” and “infinite-dimensional” are, however,
in practically exclusive use, and suggest that “dimension” is defined for every linear
space in such a way that this “dimension” is “finite” if and only if the space is spanned
by a finite subset. Such a definition can be arranged, say by setting dimV := oo for
every infinite-dimensional linear space V (and cf. Remark 54F); but it has little to
do with the central and immediate import of the notion of finite-dimensionality.)

52A. THEOREM. Let the finite-dimensional linear space V be given.

(a): If A is a linearly independent subset of V, then A is finite and #A < dim).

(b): If A is a finite subset of V that spans V, then #A > dim) .

(c): Let the subset A of V be given. The following statements are equivalent.

(i): A is a basis-set of V; i.e., A is linearly independent and spans V.
(ii): A is finite and linearly independent, and #A = dim).
(iii): A is finite and spans V, and #A = dim).

(d): V includes a basis-set of V.

Proof. 1. The assertion (b) follows from (52.1), the definition of dimV.

Let A be a finite subset of V that spans V and satisfies #.A = dim). By (52.1),
A is a minimal member of the collection of all subsets of V that span V ordered by
inclusion. By Corollary 43K, A is a basis-set of V. This establishes the implication
(iii) = (i) in (c).

2. By (52.1) we may choose a finite subset B of V such that B spans V and
#B = dimV. By the implication that we have just proved, B is a basis-set of V; this
establishes (d).

Let A be a linearly independent subset of V. The linear mapping (lc%)_llc}i :
FA) — F5 is injective. By Proposition 51E, we conclude that A is finite and that
#A < #B = dimV. This establishes (a).

Suppose that A is linearly independent (and hence finite), with #.4 = dim)V. Then
(a) shows that A is a maximal member of the collection of all linearly independent
subsets of V, ordered by inclusion. By Corollary 43K, A is a basis-set of V. This
establishes the implication (i) = (i) in (c).

3. Let the basis-set A of V be given. Since A is linearly independent, (a) shows
that A is finite and that #.4 < dim). Since A is finite and spans V, (b) shows that
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#A > dimV. Therefore #.A = dimV. This establishes the implications (i) = (ii) and
(i) = (iii) in (c), and completes the proof. m

52B. CoroLLARY. Let the finite-dimensional linear space V be given.

(a): Every linearly independent subset of V is finite, and

(52.2) dimV = max{#S | S € B(V), S is linearly independent}.

(b): V includes a basis-set of V; every basis-set of V is finite and its cardinal is
dim).

(c): If A is a linearly independent subset of V, then LspA is finite-dimensional,
and dim Lsp A = #A.

From Theorem 52A we derive an analogous result for families in a finite-dimensional
linear space.

52C. CoROLLARY. Let the finite-dimensional linear space V and the family z € V!
be given.

(a): If z is linearly independent, then I is finite and #I < dimV.

(b): If z spans V and I is finite, then #I > dim)).

(c): The following statements are equivalent.

(i): z is a basis of V; i.e., z is linearly independent and spans V.
(ii): z is linearly independent, and (I is finite and) #I = dimV .
(iil): z spans V and I is finite and #I = dimV .

Proof. 1. Assume first that z is linearly independent. Then z is injective and
Rngz is linearly independent (Proposition 42C). The mapping z|®"8* : [ — Rngz
is bijective. Hence [ is finite if and only if Rngz is finite, and then #I = #Rngz.
Moreover, z spans V if and only if Rngz spans V. We may then apply Theorem 52A
to A := Rngz and find that (a) and the implications (ii) < (i) = (iii) in (c) hold.

2. Assume now that [ is finite and that z spans V), so that Rngz spans V. Now the
mapping z|R"8% : [ — Rngz is surjective. Therefore Rngz is finite and #/ > Rngz,
with equality holding (if and) only if z is injective (Basic Language, Proposition
101G). From Theorem 52A,(b),(c) we find that #Rngz > dimV, with equality holding
(if and) only if Rngz is a basis-set of V. Then #1 > #Rngz > dim)V, which establishes
(b). Finally, #I = dimV implies that z is injective and Rngz is a basis-set of V), so
that z is a basis of V (Proposition 43B,(b)). This establishes the implication
(iii) = (i) in (c), and completes the proof. m

52D. ExampirEs. (a): The finite-dimensional linear spaces with dimension 0 are
precisely the zero-spaces.

(b): The linear space F is finite-dimensional, with dimF = 1.

(c): Let the set I be given. Applying Corollary 52C to the Kronecker basis §! of
FO it follows that FU is finite-dimensional if and only if I is finite; and in that case
dimFD = #]. m

We combine a part of Corollary 52B with a converse into a characterization of
finite-dimensionality. To that end, we define
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(52.3) Dim(V) := {#S | S € F(V), S is linearly independent}

for every linear space V.

52E. ProprosITION. Let the linear space V be given.

(a): Dim(V) = {dimlf | U € Subsp(V), U is finite-dimensional}.

(b): IfV is finite-dimensional, Dim(V) = (1+dimWV)=; if V is infinite-dimensional,
Dim(V) = N.

Proof. Proof of (a). By Corollary 52B and Proposition 43B,(c), a subspace U
of V is finite-dimensional if and only if it is the linear span of some finite linearly
independent subset S of V; and in that case dimif = #S8, since S is a basis-set of U.

Proof of (b). We note that Dim()) is not empty, since it contains #@ = 0. Every
subset of a linearly independent subset of V is also linearly independent (Corollary
43E). It follows that Dim(V) = (1 4+ max Dim(V))~ if Dim(V) is bounded; and that
Dim(V) = N if Dim(V) is unbounded, and in particular if there exists an infinite
linearly independent subset of V (Basic Language, Proposition 101N).

Assume that Dim(V) is bounded; then all linearly independent subsets of V are
finite. We choose one, A, with #.4 = max Dim(V). Then A is obviously a maximal
member of the collection of all linearly independent subsets of V, and therefore spans
V (Corollary 43K). Hence V is finite-dimensional.

Assume, conversely, that V is finite-dimensional. By Corollary 52B,(a), Dim(V)
has a maximum, namely dim). m

52F. CoroLLARY. Let the finite-dimensional linear space V and the subspace
of U of V be given. Then U is finite-dimensional, and dimld < dim)V. Moreover,
dimif = dimV (if and) only if U = V.

Proof. From (52.3) it follows that Dim(&/) C Dim(V). From Proposition 52E it
then follows that U/ is finite-dimensional and that dim/ < dimV. If dimi/ = dimV,
choose a basis-set A of U; then #.A = dimYf = dimV (Corollary 52B,(b)). But A is
a linearly independent subset of V; by Theorem 52A (c), A is a basis-set of V, and
hence V =LspA=U. m

52G. CoroLLARY. Let the finite-dimensional linear space V be given. FEuvery
non-empty subcollection of Subsp(V) ordered by inclusion has both a minimal and a
mazximal member; i.e., Subsp(V) is well-founded both by inclusion and by the reverse
of inclusion.

Proof. By Corollary 52F we may define the mapping

U — diml : Subsp(V) — (1 + dimV)~

and infer that this mapping is strictly C — <-isotone. Since every non-empty or-
dered subset of (1 4+ dim)V)" has both a minimum and a maximum, Basic Language,
Proposition 62C,(d) yields the assertion. m

52H. REMARK. In two proofs in the preceding chapters, the existence of maxi-
mal members of ordered subcollections of Subsp(V) was established by appealing to
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some equivalent of the eAxiom of Choice. Corollary 52G shows that, if V is finite-
dimensional, such an appeal is not required. The proofs in question were those of
eTheorem 15F (existence of a supplement of a subspace), and eTheorem 43L (exis-
tence of a basis-set between a prescribed linearly independent subset and a prescribed
spanning subset). When dealing with finite-dimensional spaces, therefore, these theo-
rems, as well as the other results whose proofs relied on them, viz., eCorollaries 15G,
21K, 21L, 210, and 21P, ePropositions 22F.I. and 22F.R, and eTheorem 22G; and
eCorollaries 43H and 43M, may be cited without the “bullet” o. m

Proposition 52E shows that an infinite-dimensional linear space has finite linearly
independent subsets with arbitrarily great cardinal. We now show that, in fact, it
has an infinite linearly independent subset.

¢521. ProprosITION. A linear space V is finite-dimensional eif and only if every
linearly independent subset of V is finite.

Proof. The “only if/” part follows from Corollary 52B,(a). To prove the e“if”
part, we assume that every linearly independent subset of V is finite. By eCorollary
43M, we may choose a basis-set A of V. Since A is linearly independent, A is finite;
since A spans V, V is finite-dimensional.

We present an alternative proof of the e“if” part that relies only on the eAxiom
of Countable Choice. It proceeds by contraposition and is modelled on one proof of
Basic Language, e Theorem 121V. In view of Proposition 52E,(b) it suffices to assume
that Dim (V) = N and to infer that there exists an infinite linearly independent subset
of V.

Assume then that Dim(V) = N. By the eAxiom of Countable Choice we may
choose a sequence (A, | n € N) of finite linearly independent subsets of V with
#A, = 2" for every n € N. For each n € N we set W, := Lsp U Ay, and observe

kent
that W, is finite-dimensional, with

diman#kUAkg SHd < S m 2 12— HA,
Enl:

kent kent

by Theorem 52A,(a) we cannot have A, C W,, and therefore A,\W,, # O.
Again by the eAxiom of Countable Choice we may choose a sequence

ze X (A, \W,). For each n € N and all k € n~ we have 2z, € A, C W, and

thereforenfsz{zk | k € nt} C W,. Tt follows that z, ¢ Lsp{z, | k € n-} for all n € N.
We apply Corollary 421 and Proposition 42C, and find that the sequence z is linearly
independent and therefore Rngz is an infinite linearly independent subset of V. m
We next examine the relationship between decompositions and finite dimension.
52J. THEOREM. Let the linear space V and the decomposition (U; | i € I) of V be
given. Then V is finite-dimensional if and only if Supp(U; | i € I) is finite and U; is
finite-dimensional for every i € I. If these conditions are satisfied, then
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(52.4) dimV = " diml4;.

iel

Proof. Proof of the “if” part. We assume that S := Supp(l; | i € I) is finite and
that U; is finite-dimensional for every i € I. We may choose a (finite) basis-set A;
of U; for all i € S, and hence (with A; := O for all i € I\S) for all i € I. Then

#A; = diml; for all i € I (Corollary 52B,(b)) and UAi = UAL» is finite. By

i€l i€
Theorem 43Q), the family (A; | ¢ € I) is disjoint and the finite set U.Ai is a basis-set
icl

of V. Tt follows that V is finite-dimensional and, by Corollary 52B,(b),

dimy = # U4 = 57 #4, = S dimis,
el iel i€l
so that (52.4) holds.

Proof of the “only if” part. We assume that V is finite-dimensional. By Corollary
52F, U; is finite-dimensional for every i € I. Let J be a finite subset of Supp(l; | i €
I). Then the restriction (U; | ¢ € J) of the disjunct family (U; | ¢ € I) is also
disjunct (Remark 33D,(b)). Therefore (i; | i € J) is a decomposition of the subspace
W .= ZZ/IZ- of V. We observe that diml4; > 1 for all : € J. By Corollary 52F, W
is ﬁnitez—ectllimensional7 and dimW < dimV. Applying the already-established “if” part
to this decomposition, we find

(52.5) #J = 1<) dimi; = dimW < dimV.

icJ icJ

Since J was an arbitrary finite subset of Supp(Y4; | ¢ € I), we conclude from (52.5)
that this support is finite (cf. Basic Language, Proposition 101N). m

52K. ProposiTioN. Let the finite-dimensional linear space V and the family
(U; | i € T) of subspaces of V be given, and assume that this family has finite support.
The following statements are equivalent.

(1): (U |7 € 1) is a decomposition of V; i.e., U; | i € I) is disjunct and ZUi =V.

iel
(ii): (U; | i€ 1) is disjunct and Zdimb[i =dimV of V.
i€l
(iii): > U=V and Y diml; = dimV.
il il
Proof. The implications (i) = (ii) and (i) = (iii) follow from Theorem 52J.
(ii) implies (i). (U; | i € I) is a decomposition of the subspace W := ZUi
iel
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of V. By Theorem 52J we have dimW = Zdim]/{i = dim). By Corollary 52F we
iel
find V=W=> U
iel
(iii) implies (i). We choose a basis-set A; of U; for every j € Supp(lf; | i € I), and
hence (with A; := @ for all other j) for all j € I. By Corollary 13S we have

LSp U.AZ = ZLSpAi = ZUZ =V.

el iel icl

Therefore UAZ- spans V. By the assumption and Theorem 52A,(b) we have

i€l

S dimzg = dimy < # [ J4 <3744 = dimis.

i€l 1€l iel i€l
Therefore equality must hold at each of the inequality signs. The first of these equal-
ities requires that U.Ai be a basis-set of V (Theorem 52A,(c)). The second equality

i€l

requires that the family (A; | ¢ € I) be disjoint (Basic Language, Corollary 103E). Tt
then follows from Theorem 43Q that (I; | 7 € I) is a decomposition of V. m

52L. CoroLLARY. Let the finite-dimensional linear space ¥V and the subspaces U
and U’ of V be given. The following statements are equivalent.

(i): U and U" are supplementary in V; i.e., UNU = {0} andU +U' = V.

(i): U NnU' = {0} and dimi/ + dimi’ = dimV .

(iii): U +U' =V and dimif + dim¥’ = dimV.

52M. ProposITION. Let the linear space V and the finite-dimensional subspaces
U and U of V be given. ThenU +U'" and U NU' are finite-dimensional, and

(52.6) dimU +U") + dim(U NU') = dimU + dimlf’.

Proof. Choose finite spanning subsets A in &/ and A’ in U’. By Corollary 13S,
U+U = LspA+ LspA = Lsp(A U A'), so that U + U’ is finite-dimensional. The
subspace U NU' of U + U’ is finite-dimensional, by Corollary 52F.

By Corollary 15G (cf. Remark 52H), we may choose a (finite-dimensional) supple-
ment W of Y NU’' in U'. By Proposition 15E, W is a supplement of U in U +U'. We
apply Corollary 52L ((i) = (ii)) once with U +U’, U, W and again with &', UNU', W
instead of V, U, U’, respectively, and find

dimU +U") = dimif + dimW

dim’ = dim(U NU') + dimW.

From these formulas we at once obtain (52.6). m
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53. Finite dimension and linear mappings

53A. ProrosiTioN. Let the linear space V and the number n € N be given. Then
V is linearly isomorphic to F"" if and only if V is finite-dimensional and dimy = n.

Proof. V is finite-dimensional with dim) = n if and only if there is a finite basis-
set A of V with #A = n (definition of “finite-dimensional” and Corollary 52B,(b)).
Now a set is finite with cardinal n if and only if it is equinumerous to n=. The
assertion then follows from Proposition 43E ((ii) < (iii)). m

53B. THEOREM. Let the linear spaces V and W be given, and assume that one of
them is finite-dimensional. Then V is linearly isomorphic to W if and only if both V
and W are finite-dimensional and dimy = dimW.

Proof. This follows immediately from Proposition 53A. m

53C. CoroLLARY. Let the linear space V and the set I be given. The following
statements are equivalent.

(i): V is finite-dimensional, I is finite, and dimV = #I.

(ii): V is finite-dimensional and linearly isomorphic to FU).

(iii): V is finite-dimensional and there is a basis of V in V1.

(iv): I is finite and V is linearly isomorphic to FY) = !,

(v): I is finite and there is a basis of V in V'.

Proof. In Example 52D, (c) we noted that F) is finite-dimensional if and only if I
is finite, and that in that case dimF) = #1. By Theorem 53B it follows that (i), (ii),
(iv) are equivalent. The equivalence of “V is linearly isomorphic to F)” and “there
is a basis of V in V" was noted in Proposition 43E, ((i) < (iii)). m

53D. ProrosiTIiON. Let the linear spaces ¥V and W be given.

(a): Assume that W is finite-dimensional. Then there exists an injective linear
mapping from V to W if and only if V is finite-dimensional and dim) < dimW.

(b): Assume that V is finite-dimensional. Then there exists a surjective linear
mapping from V to W if and only if W is finite-dimensional and dimWW < dim).

Proof. Proof of (a). There exists an injective linear mapping from V to W if and
only if V is linearly isomorphic to some subspace of W. Since all subspaces of W are
finite-dimensional (Corollary 52F) and their dimensions are precisely the members of
(1+dimW)= (Proposition 52E), it follows from Theorem 53B that it is necessary and
sufficient that V be finite-dimensional with dimV < dimW.

Proof of (b). Since V is finite-dimensional, every subspace of V has a supplement
in V (Corollary 45G, with Remark 52H). If L € Lin(V, W) is surjective, we may
choose by Corollary 211,(b), a linear right-inverse of L, and this is injective. This
requires, by (a), that W be finite-dimensional with dimWV < dimV. Conversely, if W
is finite-dimensional with dimW < dimV, then we may choose, by (a), an injective
M € Lin(W, V). By Corollary 211,(a), we may choose a linear left-inverse of M, and
this is surjective. m
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53E. REMARKS. (a): An alternative proof of the “only if” parts of Proposition
53D can be obtained from Theorem 53F, which follows. An alternative proof of
the “if” parts of Proposition 53D follows from Proposition 53A and the following
observation. Let m,n € N be given, with m < n. Define the linear mappings
H :F" — F" and K : F*" — F™ by requiring

(Ha)|me =a and  (Ha)|c\me =0 forall a € Fm-

Kb = b|c for all b € F™".

Then KH = 1j,.c; therefore H is injective and K is surjective.

(b): Let the linear spaces V and W be given. If V is finite-dimensional and W
is infinite-dimensional, there is an injective linear mapping from ¥ to W. Indeed we
may choose a finite-dimensional subspace U of W with dimi/ = dim) (Proposition
52E), and further choose a linear isomorphism L : V — U (Theorem 53B). The linear
mapping L' : V — W is injective.

olf V is infinite-dimensional and W is finite-dimensional, there is a surjective linear
mapping from V to W. Indeed, the preceding paragraph shows us that we may choose
an injective linear mapping M : W — V. By eCorollary 21K,(a), we may choose a
linear left-inverse of M, and this is surjective. m

We address the question of the finite-dimensionality of product-spaces and co-
product spaces. The following result is essentially a Corollary of Theorem 52J.

53F. THEOREM. Let the family of linear spaces (V; | i € I) be given. Let S be
the coproduct-space of a linear coproduct of this family, and P the product-space of a
linear product of this family. The following statements are equivalent.

(1): Supp(V; | i € I) is finite and V; is finite-dimensional for alli € I.

(ii): S s finite-dimensional.

(iii): P s finite-dimensional.

If these equivalent statements hold, then

dimS = dimP =) _ dimV.
i€l

Proof. Let (s; | i € I) be the family of insertions of the linear coproduct in
question. For every i € I, s; is injective (Proposition 32E), hence V; and Rngs;
are linearly isomorphic, and each is finite-dimensional if and only if the other is,
with dim)V; = dim Rngs; (Theorem 54B). By Corollary 33H, (Rngs; | ¢ € I) is a
decomposition of . It therefore follows from Theorem 52J that (i) and (ii) are
equivalent and that, if these statements hold, dimS = Zdim Rngs; = ZdimVi.

iel il

Assume that (i) and (ii) hold. It follows from Proposition 32H that S and P
are linearly isomorphic, and (iii) follows by Theorem 54B, as does dimS = dimP.
Assume, conversely, that (iii) holds; by Proposition 32H there exists an injective
linear mapping from S to P; by Proposition 53D,(a) we conclude that (ii) holds. m
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53G. ExampLEs. (a): Let the linear spaces U and V be given. Then the linear
space U x V is finite-dimensional if and only if &/ and V are finite-dimensional; and
in that case dim(U x V) = dimif 4+ dim).

(b): Let the non-empty set I and the linear space V be given. Then the linear
space V! is finite-dimensional if and only if I is finite and V is finite dimensional; and
in that case dimV! = (#I)(dimV). m

53H. THEOREM. Let the linear mapping L be given. Then DomlL is finite-
dimensional if and only if both NullL and RngL are finite-dimensional. In that case,

(53.1) dim DomZ = dim NullL + dim RngL.

Proof. Proof of the “only if” part. We assume that DomLZ is finite-dimensional.
By Corollary 15G (cf. Remark 52H), we may choose a supplement U of NullL in
DomL. By Corollary 52F, NullLL and U/ are finite-dimensional. By Corollary 521 we
have

(53.2) dim DomZL = dim NullL + dimi{.

By Proposition 21C, the linear mapping L|§ngL is bijective, i.e., a linear isomorphism.
By Theorem 53B we infer that RnglL is finite-dimensional and that dimi/ =
= dim RngL. Combining this formula with (53.2) we obtain (53.1).

Proof of the “if” part. We assume that NullL and RngL are finite-dimensional.
Let the finite-dimensional subspace U of DomL be given. We have Null(L|,) =
=UNNullL € NullL and Rng(L|y) = L.(U) C RngL. We apply the “only if” part
of the present theorem to L[y instead of L and find, using Corollary 52F, that

dim# = dim Null(L|y) + dim Rng(L|y) < dim NullL + dim RngL.

Since U was an arbitrary finite-dimensional subspace of DomL, it follows from Propo-
sition 52E that Dim(DomZL) is bounded and that therefore DomZ is finite-dimensional.
]

53I. CoroLLARY. Let the linear space V and the subspace U of V be given. Then
V is finite-dimensional if and only if U and V /U are finite-dimensional. In that case,

dimV = dim¥/ + dim(V/U).
Proof. We apply Theorem 53H to L := Qy; € Lin(V,V/U), observing that
DomQy,y =V, Nulldy s = U, RngQy s = V/U (Section 14). m
The next result is reminiscent of the Pigeonhole Principle for mappings from a
finite set to a finite set with the same cardinal (Basic Language, Corollary 101H).

53J. CoROLLARY. Let the linear mapping L be given. Assume that DomL and
CodL are finite-dimensional. The following statements are equivalent.

(i): L is injective and dim DomL = dim CodL.
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(ii): L is surjective and dim DomL = dim CodL.

(iii): L is invertible.

Proof. By Theorem 53B, (iii) is equivalent to ((i) and (ii)). It remains to prove
that (i) is equivalent to (ii). We may stipulate that

(53.3) dim DomZL = dim CodL.

By Example 52D, (a), Theorem 53H, (53.3), and Corollary 52F we have the chain of
equivalences

L is injective < NullL={0} < dmNullL=0 <
< dim RngL = dim DomL <« dim Rngl = dim Codl <
<  RnglL =CodlL <« L issurjective. m

53K. CoroLLARY. Let the finite-dimensional linear space V be given. All injective
and all surjective members of Lin) are invertible.

The assertion of Corollary 53K actually characterizes finite-dimensional linear
spaces, as we now show.

¢53L. ProproSITION. Let the linear space V be given. The following statements
are equivalent.

(i): V is finite-dimensional.

(ii): Fvery injective member of LinV is invertible.

(iil): Every surjective member of Lin) is invertible.

Proof. (i) implies (ii). This follows from Corollary 53K.

o(ii) implies (iii). Let a surjective L € LinV be given. By eCorollary 21K, (b), we
may choose a linear right-inverse M € Lin) of L. Then M is injective; by (ii), M
is invertible. But L is a left-inverse of M therefore L is the inverse of M, and L is
invertible.

o(iii) implies (i). By eCorollary 43M we may choose a basis-set A of V. Let a
surjection f : A — A be given. By Corollary 431 there is exactly one L € Lin) such
that L|4 = f|¥. Then L.(A) = Rngf = A, and therefore

V = LspA = LspL.(A) C RngL C V,

so that L is surjective. By the assumption (iii), L is invertible, hence injective.
Therefore f = L|4 is injective.

We have shown that every surjection f : A — A is in fact injective. It follows from
Basic Language, eCorollary 123C that A is finite. Therefore V is finite-dimensional.m
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53M. ExampLes. (a): Define S, T € LinF®™ by the rules

(Sa), == anyy forallm € N and a € F®

0 ifn=0
(Ta), = for all a € F®™
ap_1 if n € N*

Then ST = 1zm), so that S is surjective and T is injective; but neither is invertible,
since T'S) = 0. The same formulas define a surjective and injective member of
LinFY, neither of which is invertible.

(b)*: With J € Lin(Cont(R, R), Map(R,R)) as defined in Example 21J, i.e., by
the rule

(JH() = /Otf for all t € R and f € Cont(R,R),

the linear mapping J|“"*(®®) ¢ Lin Cont(R, R) is injective, but not surjective. m

Let the finite-dimensional linear spaces V and W be given. Let b € V! and ¢ € W’
be (finite) bases of V and W, respectively. For every L € Lin(V, W), we have the linear
mapping (Ic¢!¥)~'Llc} € Lin(F!,F/) and — denoted by the same symbols — the J x I-
matrix corresponding to it under the identification of Lin(F!, F/) with F/*! described
in Section 51. This J x I-matrix is called the matrix of L with respect to the
bases b, ¢, and we shall denote it for brevity, by [L]**. (Several ingenious notational
schemes have been proposed for the recording of the bases and the location of the
matrix indices, in order to facilitate bookkeeping with these matrices.) We obtain
the following formulas from (51.4):

(534)  Lb =1(c)) " Lleys] =Y [LISeY 6] = > [L)5je; for all i € 1,
jeJ jeJ

(535) LZalbz = Z (lZLbZ = Z a; Z[L];:SC] = Z(Z[L];’fal)cj for all a € FI.

el el el jEJ jeJ i€l

53N. ProrosiTiON. Let the finite-dimensional linear spaces V and W and the
respective bases b € VI and ¢ € W’ be given. The mapping
(L~ [L]*b) : Lin(V, W) — F7*! s a linear isomorphism.

Proof. In view of the natural linear isomorphism that serves to identify Lin(F! F”)
with F/*! (Proposition 51A), it suffices to observe that the mapping
(L~ (1c™)"LIeY) : Lin(V,W) — Lin(F! | F’) is linear and that
(M = 1Y M (1c))~") : Lin(F!, F’) — Lin(V, W) is its inverse. m

530. ProprosiTION. Let the finite-dimensional linear spaces V and W be given.
Then Lin(V, W) is finite-dimensional, and
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dim Lin(V, W) = (dimV)(dimW).

Proof. By Corollary 53C,((i) = (v)) we may choose (finite) bases b € V! and
c € W’ of V and W, respectively, and find #I = dimV, #J = dimV. By Propo-
sition 53N, Lin(V, W) is linearly isomorphic to F/*!. By Corollary 53C,((iv) =
(1)), Lin(V, W) is finite-dimensional and dim Lin(V, W) = #(J x I) = (#I)(#J) =
(dimV)(dimW). m

53P. ProrosiTioN. Let the finite-dimensional linear spaces V, W, X, and re-
spective bases b € VI, ¢ € W/ d € XK be given. For all L € Lin(V,W) and
M e Lin(W, X) we have

(53.6) [ML}dvb — [M]d’C[L]C’b,

with the multiplication of matrices given by Proposition 51B.

Proof. (1) "MLy = (Ieg)" M1 (1) Llcy. =

53Q. CoROLLARY. Let the finite-dimensional linear spaces ¥V and W, the bases b
and b’ of V, and the bases ¢ and ¢’ of W be given. Then

ary I = DI = ([l
' for all L € Lin(V,W).
The matrices [1y[*" and [1,y]> are called change-of-basis matrices because of

their role in (53.7). They express the terms of the “new” basis as linear combinations
of the “old”: indeed, if b € VI, V' € V!, (53.4) yields

by =1y, = > (1|20 b; foralli' € I'.
iel
Let the finite-dimensional linear space V be given. For every basis b of V and
every L € LinV we abbreviate the notation by defining [L]® := [L]**, and call this
square matrix the matrix of L with respect to b. In particular, if b € V!, we have
[1y]> = 67, the Kronecker matrix. For L, M € Lin) and bases b and b’ of V, formulas
(53.6) and (53.7) become, respectively,

(53.8) ML = [MPIL

(53.9) (L) = ([1y]"") HLP [
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We combine part of Corollary 530 with a converse.

53R. ProrositioN. Let the linear spaces V and W be given. Then Lin(V, W)
1s finite-dimensional if and eonly if either both V and W are finite-dimensional, or V
1S a zero-space, or YV s a zero-space.

Proof. If V or W is a zero-space, Lin(V, W) is obviously a zero-space. The “if”
part therefore follows from Corollary 530.

To prove the “only if” part, we assume that Lin(V, W) is finite-dimensional. Let
finite-dimensional subspaces U of V and X of W be given. By eCorollary 211, the
linear mapping (L — L|y) : Lin(V,W) — Lin(U, W) is surjective. By Proposition
53D,(b), Lin(U, W) is finite-dimensional, and

(53.10) dim Lin(U, W) < dim Lin(V, W).

The mapping (L — L") : Lin(U, X) — Lin(U, W) is obviously linear and injective.
By Proposition 53D, (a), Lin(U, X) is finite-dimensional (cf. Corollary 530) and
(53.11) dim Lin(Y, X) < dim Lin(U, W).

Combining (53.10) and (53.11) with Corollary 530, we find

(53.12) (dimif)(dimX’) = dim Lin(#/, X) < dim Lin(V, W).

This holds for all finite-dimensional subspaces & of ¥V and X of W. If neither V nor
W is a zero-space, we may choose v € V* and w € W*; then

dim(Fv) = 1 = dim(Fw), and (53.12) yields

dim¥/ = (dimlf)(dim(Fw)) < dim Lin(V, W)
for all finite-dimensional U € Subsp(V)

dimX = (dim(Fv))(dimX) < dim Lin(V, W)
for all finite-dimensional X' € Subsp(W).

By Proposition 52E, V and W are finite-dimensional. m
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54. Finite- and infinite-dimensional spaces

We have seen that if V' is a finite-dimensional linear space all its basis-sets are
equinumerous (Corollary 52B,(b)) and that finite-dimensional linear spaces V' and
W are linearly isomorphic if and only if they have the same dimension (Theorem
53B), i.e., if every basis-set of V is equinumerous to every basis-set of W. We shall
now see that results like these are valid for all linear spaces. There is, however, a
sharp distinction in method of proof between the finite-dimensional and the infinite-
dimensional cases.

54A. LEMMA. Let the sets I and I' and the injection w : I' — I be given. For
every a € FD we have a o w € FU); the mappings (a +— aow) : FO — FU) and

(a/ — Zal w(z :FU) — FD are linear, and the latter is a linear right-inverse of
iel’

the former. If w is bijective, the latter mapping is (a' +— o’ o w*) : FU) = FD  and

1s the inverse of the former.

Proof. Tt suffices to observe that Supp(a o w) = w<(Suppa) for all a € F?), and
that 5:)(1.,) ow= 5{,’ foralli el m

54B. THEOREM. Let the sets I and I' be given. The following statements are
equivalent.

(i): I outnumbers I'.

(ii): There is a linearly right-invertible linear mapping from FU) to FU),

(iil): There is a linearly left-invertible linear mapping from FU) to T,

(iv): There is a surjective linear mapping from FU to F{.

(v): There is an injective linear mapping from FU") to T

Proof. (i) implies (iii). This follows from Lemma 54A.

(iii) 4mplies (ii). This is trivial.

(ii) implies (iv). This is trivial (cf. Corollary 21K,(b)).

o(iii) is equivalent to (v). This follows from eCorollary 21K,(a).

( )O(iv) implies (1). We assume that there is a surjective linear mapping from F() to
F&),

We first suppose that I is finite. Then F() is finite-dimensional, with dimF() = #7
(Example 52D,(c)). By Proposition 53D,(b), FU) must also be finite-dimensional,
with dimF!) < dimF®. Then I’ is finite, with #I’ = dimF""). Combining these
facts, we find that #1' < #1, and therefore I outnumbers I’ (Basic Language, Propo-
sition 101E).

We suppose from now on that I is infinite, and choose a surjective L € Lin(F), IF(I/)).
Let j/ € I’ be given, and choose a € FY) such that La = (5;’,'. By (13.4) we have

L= 05 = (La)y = (LD aid))y =D ai(Lo));,

iel el

and therefore there exists j € I such that (Ldf)j/ #£0, ie., j € Supp(L(SJI). Since
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j' € I' was arbitrary, we have shown that

I'= USupp(LéiI).
i€l
Since Supp(LdY) is finite, and hence countable, for every i € I, it follows from
eTukey’s Lemma ((VII) in Basic Language, Section 173) and Basic Language, Corol-
lary 175H,(b) that the infinite set I outnumbers I’. m

¢54C. COROLLARY. Let the sets I and I' be given. Then FU") is linearly isomor-
phic to FY) if and eonly if I is equinumerous to I'.

Proof. The “if” part follows from Lemma 54A. To prove the e“only if’ part,
assume that F() is linearly isomorphic to FU"). By eTheorem54B ((ii) = (i) and
(iii) = (i)) it follows that I outnumbers I’ and I’ outnumbers I. By the Schréder-
Bernstein Theorem (Basic Language, Theorem 75C; cf. Basic Language, Theorem
175A), I and I’ are equinumerous. m

e54D. CoroLLARY. Let the linear space V be given.

(a): If b € V! and b € V' are bases of V, then I and I' are equinumerous.

(b): If B and B' are basis-sets of V, then B and B' are equinumerous.

Proof. (Iey) ey € Lin(FD, FU") is a linear isomorphism. By eCorollary 54C, I
and I" are equinumerous. This establishes (a); and (b) is a special case of (a). m

o54E. CoROLLARY. Let the linear spaces V and W, and respective bases b € V!
and ¢ € W’ be given.

(a): The following statements are equivalent.

(i): I outnumbers J;

(ii): there is a linearly right-invertible linear mapping from V to W.

(iil): there is a linearly left-invertible linear mapping from W to V.

(iv): there is a surjective linear mapping from V to W.

(v): there is an injective linear mapping from W to V.
(b): V is linearly isomorphic to W if and only if I and J are equinumerous.
Proof. V is linearly isomorphic to F), and W is linearly isomorphic to F/). The

assertion now follows from eTheorem 54B and eCorollary 54C. m

54F. RemARK. In Basic Language, Remark 175D, (a), we mentioned the possibil-
ity of generalizing the notion of cardinal of a finite set by assigning a cardinal #S to
every set S in such a way that, for given sets S and T', we have #S = #7T if and only
if S and T are equinumerous. We also mentioned that one could define a “relation”
< among the cardinal numbers that occur as cardinals of sets, in such a way that
#S < #T if and only if T outnumbers S. By virtue of eCorollary 54C we may then
define dimV, the dimension of a linear space V), as the cardinal #B of every basis-set
B of V (the existence of a basis-set is assured by eCorollary 43M). Corollary 52B,(b)
shows that this definition does not clash with the definition (52.1) of the dimension
of a finite-dimensional linear space. It follows from eCorollary 54E,(b) that, for given
linear spaces V and W, V is linearly isomorphic to W if and only if dim)V = dimW;
and from eCorollary 54E,(a) that statements (ii)-(v) in that corollary are equivalent
to dimW < dimV. m
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Chapter 6

DUALITY

61. Dual spaces and transposes

We begin by recalling a definition, given in Examples 12G,(g). Let the linear
space V be given. For every u € V we define the linear mapping u® € Lin(F, V) by
the rule

u®t:=tu forallteF.
When it is necessary to specify the codomain V of this mapping, we write u®Y in
full. However, if U is a subspace of V we obviously have
u@Y=uxY" foralluecl,

and therefore the omission of this indication of codomain causes no clashes in so far
as the values of these mappings are concerned.
61A. ProposITION. Let the linear space V be given. The mappings

ur u®Y 1V — Lin(F, V)

L+~ L1:Lin(F, V)=V

are linear, and each is the inverse of the other.
Proof. The linearity of either mapping is obvious. (We note that the latter
mapping is ev™*(FV); ) We have

u®1l=1lu=u foralluel.
On the other hand,

(L1)®t =tL1 = L(t1) = Lt forall{ € F and L € Lin(F, V),
so that (L1)®Y = L for all L € Lin(F, V). m

93
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61B. REmARK. Proposition 61A shows that (v +— u®Y) : V — Lin(F,V) is a
linear isomorphism. It might be used to identify these linear spaces, i.e., to write u
instead of u®Y or u® for every u € V. We prefer not to do this, however, since it
would lead to notational clashes later. There is one exception: when V is the linear
space F (Examples 11D,(b)), we do identify F and LinFF in this way, and write s
instead of s®@" or s® for every s € F. In view of the commutativity of multiplication
in IF, this produces no clash: indeed,

st=ts=st forallstel.

We observe that, under this identification, s = multf, for all s € F. This identification
induces others: e.g., of Lin(F, V) with Lin(LinF, V) and of Lin(V, F) with Lin(V, Lin[F)
for every linear space V. m

For each given linear space V, we define the linear space V* := Lin(V,F), and
call V* the dual space of V. The members of V* are called linear forms on V or
linear functionals on V. We observe that F* = LinF is identified with F in the sense
of Remark 61B. We also note that the dual space of a zero-space is a zero-space.

Let the linear spaces V and W be given. For each linear mapping L € Lin(V, W),
the mapping

W ul W — V*

is linear (Remark 131); we denote this linear mapping by LT and call it the transpose
of L. (Some mathematicians denote it by L*, and call it the adjoint of L.) We thus
have

(61.1) L'yu=uL forall p € W*and L € Lin(V,W).

We summarize some elementary properties of the transposes of linear mappings.

61C. ProprosITION. (a): Let the linear spaces V and W be given. The mapping
L+ LT : Lin(V, W) — Lin(W*, V*) is linear.

(b): Let the linear spaces V, W, X be given. Then (ML) = LT M for all

L € Lin(V,W) and M € Lin(W, X).

(c): For every linear space V we have 1y, = 1y

(d): Let the linear spaces ¥V and W be given. For every L € Lis(V, W), we have
LT € LisW*,V*) and (L") = (L7H)T.

Proof. Proof of (d). Let L € Lis(V,W) be given. By (b) and (c) we have
LT =L D) =1y =1y and (L) LT = (LL)T =1y = 1py-. m

The linear mapping (L + L) : Lin(V, W) — Lin(W*,V*) is called the linear
transposition (for the pair of linear spaces (V, W)).

61D. ExampLEs. (a): Let the linear space V be given. For every A € V* we have
AT € Lin(F*, V*); under the identification of Lin(F*,V*) with Lin(F, V*) (Remark
61B) we have
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At =t(M) = (tA\v=(A@t)v foralltcFandwv e V;

thus

(62.2) A=A ® forall A eV

o(b): Let the linear space V and the subspace U of V be given. Then the linear
mapping lycy' : V¥ — U* is the operation of restricting a linear form on V to U: for
all A € V* we have, by (61.1), 1ycy "X = Mycy = Ay It follows from eCorollary
21L that 1ycy ! is surjective. m

61E. REMARK. In practice, the notation u® recalled at the beginning of this
section occurs most frequently in composition: for given linear spaces V and W we
have the composite w @ A € Lin(V, W) for every w € W and A € V*; and
(61.3) (w@Nv=(Av)w forallveVand A € V. m

We examine with some care the structure of the dual space of F(D for a given set
I. For every a € F! we consider the unique linear form a- € (F()* that satisfies
(61.4) a6} =a; foralliel
(Theorem 43F,(c)). These linear forms satisfy
(61.5) as = Zaisi for all @ € F/ and all s € FY),

i€l

as follows from (61.4) by (13.4). In particular, we have

(61.6) (5]1--3 =s; forallj€IandscFD.

61F. ProrosITION. Let the set I be given. Then F! is linearly isomorphic to
(FUY*. More precisely, the mappings
ars a-: FL— (FD)*
A (AL |ieT): (FD) - F!
are linear, and each is the inverse of the other.

Proof. The mappings are obviously linear. By (61.4) we have

(a6l |i€I)=(a;|i€l)=a forallacF.
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On the other hand, (61.4) yields

(A | i € I)-67 =A6! forall j€Iand e (FD),

and therefore

61G. REMark. We do not, strictly speaking, identify the linear spaces F! and
(F(D)* by means of the linear isomorphism (a + a-), since we maintain the notational
distinction between a and a-. However, we use such notations as K- for the image
under this isomorphism of a subset K of F!. m

o61H. CoroLLARY. For every linear space V there is an injective linear mapping
from V to V*.

Proof. Let the linear space V be given. By eCorollary 43M, we may choose a set I
and a linear isomorphism L € Lis(V,F®). Then LT € Lis((FY))*, V*), by Proposition
61C,(d). The composite of the linear isomorphism L, the (linear) inclusion of F) in
F’, the linear isomorphism (a ~ a-) : FI — (F())* and the linear isomorphism LT is
an injective linear mapping from V to V*. m
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62. Annihilators

Let the linear space V be given. For every subset A of V we define
At = eV | VWwed Ww=0}={AeV* | Ma=04r} =

={xeV | A (A c{0}}={) e V| ACNullA},

and call the subset of V* the annihilator of A (sometimes read “A-perp”). For
every subset of B of V* we define

Bl :={veV|VreB, l=0}=]"Nul
reB
and call this subset of B the pre-annihilator of B.

62A. REMARK. Let the linear space V, the proper subspace U of V, and the
subset A of U be given. Then the annihilator of the set A regarded as a subset
of U is not the same set as the annihilator of the set A regarded as a subset of V
(these annihilators are subsets of U*, and of V*, respectively). If necessary, they are
distinguished by calling the former the U-annihilator of A and the latter the
V-annihilator of A. A generic notational distinction is too cumbersome; appropriate
notations will be agreed on as needed in each case. m

62B. ProposiTIiON. Let the linear space V be given.

(a): AL is a subspace of V* for every subset A of V, and B, is a subspace of V
for every subset B of V*.

(b): O+ = {0} = V* and V* = {0} and O, = {0}, = V.

62C. ProposITIiON. Let the linear space V be given.

(a): The pair of mappings whose components are

(62.1) A AN D B(V) = BV

(62.2) B— B POV) = BV)

is the Galois correspondence from B(V) to P(V*) (both ordered by inclusion) associ-
ated as in Basic Language, Proposition 74C with the relation L from V to V* defined

by

Yo e VYA eV wvld & =0

In particular, the mappings (62.1) and (62.2) are antitone.
(b): The mappings

(62.3) A AL PBOV) = BOV)
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(62.4) B Bt PV = BV

are closure mappings i P(V) and in P(V*) (ordered by inclusion), respectively.

(c): At t = At for every subset A of V, and Byt = B, for every subset B of
V.

Proof. (a) follows immediately from the definitions; (b) and (c) follow from (a)
by Basic Language, Theorem 74E. m

62D. CoroLLARY. Let the linear space V be given.

(a): LspA C Aty and (LspA)* = At for every subset A of V, and LspB C B+
and (LspB), = B, for every subset B of V*.

(b): For every family (A; | i € I) of subsets of V we have

(62.5) AL = (JA)" = O LspA)*

i€l iel i€l

and for every family (B; | i € I) of subsets of V* we have

(62.6) (VB = (B =(>_LspBi)L

iel iel el

Proof. Proof of (a). Let the subset of A of V be given. By Propositions 62B,(a)
and 62C,(b), A' | is a subspace of V and includes A. Hence A C LspA C At .
From Proposition 62C,(a),(c) we then obtain A+ D (Lsp)t D A+, + = AL so that
equality holds. The proof of the second part of (a) is entirely similar.

Proof of (b). Let the family (A; | i € I) of subsets of V be given. It follows from
the definition of annihilator that

A=A
iel iel

We now apply the same argument to the family (LspA; | i € I), together with
(a) (twice) and Proposition 13R, and find

ﬂ VAR = ﬂ V' (LspA;)* U LspA;)* = (Lsp U LspA;)* Z LspA;)*

el el el el el

This completes the proof of (62.5). The proof of (62.6) is entirely similar. m
62E. CorOLLARY. Let the linear space V be given.
(a): The pair of mappings whose components are

(62.7) U — U™ : Subsp(V) — Subsp(V*)
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(62.8) W = W, : Subsp(V*) — Subsp(V)

is a Galois correspondence from Subsp(V) to Subsp(V*) (both ordered by inclusion,).
(b): For every family (U; | i € T) of subspaces of V we have

mV*uiL _ (Z Ui)L,

i€l icl

and for every family (W; | i € I) of subspaces of V* we have

VWi = W

i€l ,
icl
62F. ProprosIiTION. Let the linear spaces V and W and the linear mapping
L € Lin(V, W) be given.
(a): L (At = (LT)<(AL) for every subset A of V. In particular,

(RngL)* = NullL".

(b): If L is surjective, then L' is injective.
(¢): (LT).(B)L = L=<(By) for every subset B of W*. In particular,

(RngL "), = L=(W*L).

Proof. Proof of (a). Let the subset A of V be given. For each p € W* we have
the chain of equivalences

peELl (At & (WeA plv=0) < (WeA (LTuyv=0) <&
& LipeAt & pe(LT)<(Ah).

The special case is obtained by setting A := ) and recalling that V* = {0}.
Proof of (). Let the subset B of W* be given. For every v € V we have the chain
of equivalences

ve(LT).(B), & (WneB, (LTpu=0) o (peB ulv=0) <
& IveB & U€L<(BL).I

We next obtain an improvement on the result in Corollary 62D,(a) by showing
that AL, = LspA for all subsets A of a linear space (¢Theorem 62H,(b)) and that
B, = LspB for certain subsets B of the dual space (Theorem 62K).

62G. LemMA. Let the linear space V, the subspace U of V, and v € V\U be
given. Then there exists X € U such that v = 1.

Proof. The linear mapping v®@™ i.e., (t = tv) : F — Fo is injective, since v # 0,
and surjective. Let o € (Fv)* be its inverse; it satisfies ov = 1.
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Now Fo NU = {0}. by eTheorem 15F we may choose a supplement H of Fv in
V such that Y C H. By Proposition 15C we may choose P € Lin(V,Fv) such that
Plg, = 1, and NullP = H. Then X\ := 0P € V* satisfies \v = cPv = ov =1 and
U C H = NullP C Null), so that A € Y+. =

¢62H. THEOREM. Let the linear space V be given.

(a): Ut =U for every subspace U of V; in particular, V*| = {0}.

(b): A+, = LspA for every subset A of V.

(c): The mapping (62.7) is a right-inverse of the mapping (62.8); in particular,
the former mapping is injective and the latter mapping is surjective.

Proof. Proof of (a). Let the subspace U of V be given. Let v € UL be given.
Then A = 0 for all A\ € U*. Tt follows by eLemma 62G that v ¢ V\U, i.e., that
veU. ThusUt, CU. But U C Ut by Proposition 62C,(b), so that equality holds.
From Proposition 62B,(b) we then have V*;, = {0}*, = {0}.

(b). By (a) and Corollary 62D,(a) we have A+, = (LspA)*, = LspA for every
subset A of V.

(c). This is a reformulation of (a). m

621. CorOLLARY. Let the linear spaces V and W and the linear mapping L €
Lin(V, W) be given. Then

(RngL"), = NullL and (NullL"), = RngL.

If LT is surjective then L is injective; if L is injective then L is surjective.
Proof. By Proposition 62F and eTheorem 62H,(a) we have

(RngL"), = L<(W*,) = L=<({0}) = NullL

(NullL"); = (RngL)*, = RngL.

If LT is surjective, we have NullL = V*, = {0}, so that L is injective. If LT is
injective, we have RngL = {0}, = W, so that L is surjective. m

©62J. CoroLLARY. For every pair (V, W) of linear spaces, the linear transposition
18 1njective.

Proof. For every L € Lin(V, W) we have, by eCorollary 621, the chain of implica-
tions

L"=0 = RngLl'={0} = NulL=(Rngl'),={0},=V = L=0.

Hence the linear mapping (L — L) : Lin(V, W) — Lin(W*, V*) is injective. m
62K. THEOREM. Let the linear space V be given.
(a): Wit =W for every finite-dimensional subspace W of V*.
(b): B.t = LspB for every subset B of V* such that LspB is finite-dimensional;
in particular, for every finite subset B of V*.
Proof. 1. We first show that



62. Annihilators 101

(62.9) B, =1LspB for every finite subset B of V*.

Let a finite subset B of V* be given. We consider the linear mapping
B € Lin(V,F?) defined by the rule

(Bv)y:=Av forall A€ BandveV.

(This B is the linear mapping identified with B self-indexed, by Proposition 31A; but
we prefer not to burden the symbol B with an overload of meanings.) We find that

Null(B|f"8) = NullB={v €V |VA € B, =0} =B,.

Now let u € B+ be given. Then Nully D B, = Null(B|f"8). Since B|®" is
surjective, there is by Proposition 22B.R, (or Theorem 22D) exactly one £ € (RngB)*
such that p = £(B|R#8). By Corollary 21L (cf. Remark 52H), £ is the restriction to
RngB of a suitable linear form on FZ. Since B is finite, we have F®®) = F5 and by
Proposition 61F this linear form is a- for a suitable a € F®. We conclude that

p=&(B[*8) = (a+|Rngp)(B|*") = a-B = Za,\)\ € LspB.
AeB

Since p € B, * was arbitrary, we conclude that B, + C LspB. By Corollary
62D,(a), we have LspB C By, and therefore equality holds. This completes the
proof of (62.9).

2. Let the finite-dimensional subspace W of V* be given. Choose a finite subset
B of W that spans W. By (62.9) and Corollary 62D,(a) we then have W, + =
(LspB),* = B+ = LspB = W. This completes the proof of (a).

Finally, let B be a subset of V* such that LspB is finite-dimensional. By (a) and
Corollary 62D,(a) we have B, + = (LspB),+ = LspB. This completes the proof of
(b). m

62L. REMARK. The finiteness assumptions in Theorem 62K may not be omitted.
Indeed, let the set I be given, and consider the subset B := {6+ | i € I} of (F)*.
It follows at once from (61.6) that B, = {0}, and therefore B, + = (F())* = FI. (cf.
Remark 61G). However, LspB = F(. and so B+ = LspB if and only if F) = F/,
hence if and only if I is finite and thus LspB is finite-dimensional. m

¢62M. CoROLLARY. Let the linear spaces V and W and the linear mapping
L € Lin(V, W) be given. If RngL" is finite-dimensional, then

RngL" = (NullL)*.

Proof. By eCorollary 621 and Theorem 62K we have

RngL" = (RngL");* = (NullL)". m
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The next two propositions deal with the relationships between annihilators and
linear partitions.

62N. ProrosrTiON. Let the linear space V and the subspace U of V be given. Then
there exists exactly one linear mapping H € Lin((V/U)*,U~*) such that 1y cy-H =
QV/MT,' moreover, H is a linear isomorphism.

Proof. Qy s is surjective, hence Qy ;" is injective (Proposition 62F,(b)). We claim
that RngQy " = U™; the conclusion then follows at once, with H := (€, ")|R".

Let A € V* be given. Then A\ € RngQy, " if and only if A\ = uQy,y for a
suitable p € (V/U)*; since Qyy is surjective, this will be the case if and only if
NullX D NullQyy = U (Theorem 22D), i.e., if and only if A € U*. This establishes
our claim and completes the proof. m

620. ProPOSITION. Let the linear space V and the subspace U of V be given.
Then there exists exactly one linear mapping K € Lin(V* U+, U*) such that 1ycy ' =
KQy- i ; moreover, K is a linear isomorphism.

Proof. By Proposition 62F,(a),

Null(1yey™) = (Rnglyey)t = U" = NullQy. 1.

Moreover, 1y’ € Lin(V*,U*) is surjective (eExamples 61D,(b)). The conclusion
follows by Corollary 22E. m

We turn to an examination of the relationships between annihilators and decom-
positions. In the remainder of this section, m always stands for m ¥ where X is the
obviously appropriate linear space — e.g., X := V* in the next proposition.

62P. ProposITION. Let the linear space V and the finite decomposition (U; | i € T)
of V be given, with family of idempotents (F; | i € I). Then ( ﬂ Ut ljel)isa

iel\{j}

decomposition of V*, with family of idempotents (E;" | j € I).

Proof. By Propositions 33E and 33F we have

(62.10) E;E; =6.,E; forallijel,
(62.11) NullE; = Y~ U forall j€I,
ien\{j}

(62.12) > Ei=1y.

For each j € I, 1y — Ej; is also idempotent, so that its range is the set of its fixed
points; thus

(62.13) NullE; = Null(1y — (1y — E;)) = Rng(1y, — E;) for all j € I.
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Now (E;" | j € I) is a family in LinV*. By (62.10), (62.12), and Proposition 61C
we have

(62.14) E;"E;" = (EE;)" =6/ ,E;" =6/ ,E;" forallijel,
(62.15) ZET ZE =17 = 1y-.
jerI Jjel

For each j € I, E;" is idempotent, by (62.14), and hence its range is the set of its
fixed points. Using Propositions 61C and 62F and Corollary 62E,(b), we find, from
(62.11) and (62.13),

RngE; " = Null(lv* —E;") = Null(lv — E;)" = (Rng(ly — Ej)* =
= (NullE))* = Z Uyt = () Ut foralljel
ieI\{j} ieI\{j}

From (12.14), (12.15), (12.16) it follows by Proposition 33F that ( (] U |j € I)
iel\{j}
is a decomposition of V* and that (E;* | j € I) is the family of idempotents of this
decomposition. m
62Q. CorOLLARY. Let the linear space V and the subspaces U, U' of V be given.
IfU and U' are supplementary in V, then UL and U'* are supplementary in V*.

62R. REMARK. The assumption that [ is finite may not be omitted in Proposition
62P. (It may, however, be replaced by the assumption that the support of (U; | 7 € T)
is finite; we leave this adjustment to the reader.) Let the infinite set I be given, and
consider the decomposition (F5! | i € I) of the linear space F!). By Corollary 62D
we have

(62.17) () @)= () 6y ={o lie \{j}}" foralljel.
iel\{j} iel\{j}
It follows that, for every j € I and a € F/,
a-e {o] [i e NJH}" & (Viel\{j}, a6 =0) &
& (Viel\{j}, a;,=0) < acFs < a cFo-

Using Proposition 61F and combining the preceding equivalence with (62.17), we
conclude that

() ()" =F5] foralljel
ien\{j}
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If the family of these subspaces of (F))* were a decomposition of (F())*, then
(F6! | j € I) would be a decomposition of F/, and then F/ = Z]F(Sj =FWD: but I
was infinite, so this equality does not hold. m !

¢62S. ProprosITION. Let the linear space V and the subspacesU, U' of V be given.
ThenU and U' are supplementary in V if and only if U+ and U'* are supplementary
n V*.

Proof. The “only if” part follows from Corollary 62Q. To prove the “eif” part, as-
sume that U+ and U"* are supplementary in V*. By eTheorem 62H,(a) and Corollary
62E, (b) we have

UNU =U*+ NnU* = U +U*t) =V = {0}
UtU' =U+U) L= U NU) L ={0} =V =
We conclude this section by obtaining, in eProposition 62U, a converse of Propo-

sition 62P, without any finiteness assumption. (The “if” part of eProposition 62S is
a special case of this converse.)

62T. LemMa. Let the linear space X and the family (Y; | i € 1) of subspaces
of X be given. Assume that I is neither empty nor a singleton, and that the family
( ﬂ Vi |i€l) is a decomposition of X. Then
i€\{j}

(62.18) Vo= Y. () ¥ forallkel,

Jel\{k} ie\{j}

and therefore Yy is a supplement of ﬂ Vi in X for every k € 1.
eI\{k}
Proof. Set Z; := ﬂ Y, for every j € I. Thus (Z; | j € I) is a decomposition of

i€\{j}
X. Since [ is neither empty nor a singleton, we may choose p, ¢ € I such that p # q,
and find

(62.19) Y.=2,nZz,={0}.
i€l
Let k € I be given. For every j € I\{k} we have k € I\{j}, and therefore

Z; C Yy forall jeI\{k}.

It follows at once that

(62.20) Yid Y 2

Jen\{k}
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Let (E; | j € I) be the family of idempotents of the decomposition (Z; | j € I)
of X. Let x € ) be given. Then (E;z | j € I) has finite support, and Zij ==z
jeI

(Proposition 33F). It follows by (62.20) that

Er=x— Z Ej(L'Eyk.
Jen{k}

But Eyx € Zg; therefore, by (62.19),

Eyw € Ve N Zp =V = {0},
iel
and consequently x = Z Eix € Z Z;. Since x € ), was arbitrary, we conclude

JeI\{k} JeIN{k}
that

YV C Z Z]-.
jer\{x}
Combination of this with (62.20) yields (62.18), since k € I was arbitrary.

The final clause of the conclusion then follows by Theorem 33A. m

¢62U. ProposITION. Let the linear space V and the family (U; | i € I) of sub-
spaces of V be given, and assume that I is not a singleton. If the family ( ﬂ Ut je

ie\{j
I) is a decomposition of V*, then (U; | i € I) is a decomposition of V. )
Proof. We set W; := ﬂ U for every j € I, and assume that (W, | j€ 1) is a
iel\{5}
decomposition of V*.

If I is empty, so is this decomposition, and hence V* = {0}. But then we have, by
Proposition 62B,(b) and eTheorem 62H,(a), V = {0}, = V*, = {0}; and the empty
family (U; | ¢ € T) is indeed a decomposition of V.

We may therefore assume from now on that I is neither empty nor a singleton.
It follows by Lemma 62T that U, is a supplement of W; in V* for every j € I. For
every j € I,( Z U;)* = W;, by Corollary 62E,(b); hence by eProposition 62R, U;

ieI\(j}
is a supplement of Z U; in VY for every j € I. We conclude, by Theorem 33A, that
iel\{j}
(U; | i € I)is a decomposition of V. m

62V. REMmARK. The assertion of eProposition 62U does not remain valid in gen-
eral if the assumption that [ is not a singleton is omitted. Indeed, suppose that
I :={k}, that V # {0} (e.g., V :=F), and that Uy, := {0}. Then (U; | i € I) is not
a decomposition of V; but W, := ﬂ Ut = ﬂZ/lﬂ- =V* sothat W; |jel)isa

ien\{k} €0
decomposition of V*. m
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63. Higher-order dual spaces
and transposes

Given a linear space V, we have not only its dual space V*, but also the dual space
V** of V*, called the second dual space of V and so on. (We shall not need the
easily supplied formal recursive definition of the “nth dual space of V”.) We describe,
for each linear space V, an important linear mapping from V to V**.

Let the linear space V be given. For each u € V, the evaluation mapping
evMap(VE) o Map(V,F) — F is linear (Examples 12G,(b)), and hence so is its re-
striction ev”",, : V* — F to the subspace V* of Map(V, F); this restriction is thus a
member of V*. We may therefore define the adjustment Evy, := evV [V : V — V™
of the evaluation family ev¥"; this mapping satisfies the following formula, and is
indeed characterized by it:

(63.1) (Evy(u))A = Au for all w € V and A € V".

63A. ProprosiTION. For every linear space V, the mapping Evy : V — V** is
linear.

63B. REMARK. There is another approach to the linear mapping Evy. Let the
linear space V be given. Let u € V be given; then (u®)" € Lin(V*,F*). Under the
identification of Lin(V*,F*) with Lin(V*,F) = V** (Remark 61B), we have

(u®)"A = M@ = du = (Evyu)\  for all u € V.
Thus

(63.2) (u®)" = Evyu for all u € V.

With this observation, the linearity of Evy becomes evident. m

Let the linear spaces ¥V and W be given. For every linear mapping L € Lin(V, W)
we have LT = (LT)T € Lin(V**, W**), and this linear mapping may be called the
second transpose of L.

63C. ProprosiTION. Let the linear spaces V and W be given. Then

L""Evy = EviL for all L € Lin(V, W).
Proof. Let L € Lin(V, W) be given. Using (63.1) we have
(LTTEvyu)pu = (Evyu)(L™p) = (LT p)u = pLu = (EvyyLu)u
for all p € W* and u € V.

Therefore LT TEvyu = EvyyLu for all u € V, and the assertion follows. m

The conclusion of Proposition 63C may be expressed by the commutativity of the
following diagram:
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L

y - W

EVV X EVW

63D. ProPosITION. For every linear space V we have Evy 'Evy. = 1y.. In
particular, Evy- is injective and Evy | is surjective.
Proof. Let the linear space V be given. We have

(Evy EvypA)v = (Evp-\)(Evpv) = (Evypu)d = Ao for all v € V and A € V*.

Therefore Evy, TEvy-A = X for all A € V*, and the assertion follows. m

We just saw that Evy-« is injective. Actually, Evy is injective for every linear space
V, as we now show. In view of this fact, Evy is often called the canonical injection
of V.

¢63E. CorOLLARY. For every linear space V, Evy is injective.

Proof. By Proposition 63D, Evy," is surjective; by eCorollary 621, Evy is injective.

63F. CoroOLLARY. Let the linear spaces V and W be given. Then

Evw L' "Evy = L for all L € Lin(V, W*).
Proof. By Propositions 63C and 63D we have

Evy LT Evy = Evyy Evpp L = 1yy-L = L for every L € Lin(V, W*). m

The next results describe the relationship between Evy, and annihilators and pre-
annihilators.

63G. ProposITION. Let the linear space V be given. Then

Evy <(BY) =B, for every subset B of V*.

Proof. Let the subset B of V* be given. For every v € V we have the chain of
equivalences

veEEvW<(BY) & EvwweBt & (VAeB, (Evw)A=0) <

& (Y eB, lw=0) <veB,. n
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e63H. CoroLLARY. Let the linear space V be given. Then

Evy <(A*) = LspA  for every subset A of V.

Proof. Apply Proposition 63G to B := A* and use eTheorem 62H,(b) to find
Evy(Att) = AL, = LspA for all subsets A of V. m

We derive some interesting consequences from Propositions 63C and 63D and
Corollary 63F.

631. PROPOSITION. Let the linear space V be given. Then Evy-Evy ' € LinV*™* is
idempotent; the null-space and the range of this linear mapping are (Rng Evy,)* and
Rng Evy,., respectively, and these subspaces of V*** are supplementary in V***.

Proof. It follows at once from Proposition 63D that Evy-Evy " is idempotent.
Since Evy- is injective, we have, by Proposition 62F,(a), Null(Evy«Evy ") =
= Null Evy," = (Rng Evy,)*. Since Evy," is surjective, we have Rng (Evy-Evy ") =
= Rng Ev,.. These subspaces are supplementary in V*** by Proposition 15C. m

63J. THEOREM. Let the family of linear spaces (V; | i € I) be given. Let S be
the coproduct space and (s; | i € I) the family of insertions of a linear coproduct of
(Vi | i € I). Then 8* is the product space and (s;" | i € I) the family of projections
of a linear product of the family of linear spaces (V;* | i € I).

Proof. Let the linear space W and the family of linear mappings
(L; |iel) e X Lin(W,V;*) be given. By the coproduct assumptions, there is
exactly one K € ﬁ%(é‘ , W*) such that

(63.3) Ks; = L; Evy, forallicl.
We are to show that there is exactly one L € Lin(W, §*) such that
(63.4) s;' L=1L; forallicl.

Let L € Lin(W, S*) be given, and assume that L satisfies (63.4). We then have, as
indicated in the commutative diagram (for each i € I)

EVVL

EVS

the following consequences of (63.4) and Proposition 63C:
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L'Evss; = L's;' "Evy, = (s;' L) 'Evy, = L;' Evy, forallic I.

Comparison with (63.3) shows that we must have L' Evs = K. By Corollary 63F we
must then have

L=FEvs L' Evy, = (L"Evs) 'Evyy = K Evyp.

This shows that there is at most one L € Lin(W, §*) satisfying (63.4).

It remains to show that L := KTEv)y does indeed satisfy (63.4). This is done
using (63.3) and Corollary 63F once more:

SiTL = S,L‘TKTEVW = (KSi)TEVW = (LiTEVVi)TEVW = EVVZTLZTTEVW = LL
for all ¢ € I,

as desired. m
Theorem 63J contains special cases closely related to Propositions 61F and 62P.
The detection of these relationships is left to the reader.
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64. Biorthogonal families

Let the linear space V be given. The families a € V! and o € V*! (with the same
index set) are said to be biorthogonal if

;a5 :51{]- forall 4,5 € I

in that case we also say that the pair (a, ) is biorthogonal, and that « is biorthog-
onal to a.

64A. PROPOSITION. Let the linear space V and families a € V' and o € V*! be
gwen. If a and a are biorthogonal, then each of these families is linearly independent.

Proof. Assume that a and « are biorthogonal. Let s € Null IC); be given.
Then

0= 0,0 = oylc,s = Z S0 = Z siéj{i =s; foralljel,
iel iel
so that s = 0. Thus Null ICZ = {0}, and hence a is linearly independent. The proof
of the linear independence of « is entirely similar. m

64B. THEOREM. Let the linear space V and a basis b € VI of V be given. There
exists exactly one family b* € V*! such that b* is biorthogonal to b.

Proof. This is an immediate consequence of Theorem 43F,(c). m

Whenever b € V! is known to be a basis of the linear space V, b* shall denote the
unique family in V* that is biorthogonal to b.

64C. COROLLARY. Let the linear space V and a basis b € V! be given. Then
Suppb*v is finite for every v € V, and

(64.1) v= Z(bfv)bi = Z<bl ® b )v  for every v € V.
i€l i€l

Proof. Let v € V be given and set s := (Ic})"'v € FD, so that

(64.2) v =lcys = Z 8;b;.
i€l
Then
(64.3) bjv = Z sibb = Z sldjll =s; foralljel.
i€l iel

Thus b*v = s € F and (64.1) follows upon substitution of (64.3) into (64.2). m
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64D. RemaRKks. (a): Corollary 64C shows that, for a given linear space V and
basis b € V! of V, the linear mapping b* : V — FU) (cf. Proposition 31A) is precisely
(Iey)

(b): For every set I, the unique family in (F))* that is biorthogonal to the basis
6" = (0] | i € I) of FU) is the family (6/- | i € I). m

64E. CoroLLARY. Let the linear spaces V and W, the basis b € VI of V, the
family y € W!, and the linear mapping L € Lin(V, W) be given. Then Lb =y if and
only if

(64.4) Ly = E(yl ®@b)v  forallveV.

icl

Proof. 1f (64.4) holds, then

Lb; = Z(bjbj)yi = Z 5l yi=vy; foralljel,

el el

so that Lb = y. If, conversely, Lb = y, we have, by Corollary 64C,

Ly = Z(Lbi ®bj)v = Z(yZ @b v forallve)V. m

iel il

64F. PROPOSITION. Let the linear space V and the basis b € VI of V be given.
Then b* is a basis of V* if and only if I is finite, i.e., if and only if V is finite-
dimensional.

Proof. By Remark 64D,(a) we have b* = (Ic})~" € Lis(V, F). Therefore
(b*)T € Lis((FD)*, V*), by Proposition 61C,(d). We find that

((0) T (6] )b = 6/ -(b*b;) = 6/-61 =6/, foralli,jel,

and therefore (b*) T (61+) = b for all i € I (Theorem 64B). We conclude, by Proposition
43D, that b* is a basis of V* if and only if (6! | i € I) is a basis of (F))*, and hence
if and only if 67 = (87 | ¢ € I) is a basis of F/ (Proposition 61F). But ¢ is a basis of
the subspace F() of F/: therefore b* is a basis of V* if and only if F) = F/ i.e., if
and only if I is finite. By Corollary 53C, (i)=-(v), this condition is equivalent to V
being finite-dimensional. m

Given a linear space V and a family a € V! [a family a € V*!], when does there
exist a family a € V*! [a family a € V'] such that a and « are biorthogonal? By
Proposition 64A, a necessary condition is that a [that «] be linearly independent.
The next results show that this condition is [sometimes] also sufficient.

¢64G. ProposITION. Let the linear space V and the family a € V! be given.
Then a family o € V*I that is biorthogonal to a exists oif and only if a is linearly
independent.

Proof. The “only if” part follows by Proposition 64A. The “eif” part follows by
eCorollary 43H. m
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64H. ProposITION. Let the linear space V and the finite family o € V*L be given.
Then a family a € VT such that « is biorthogonal to a exists if and only if o is linearly
independent.

Proof. The “only if” part follows by Proposition 64A. To prove the “if” part,
assume that « is linearly independent. We shall prove by special induction that P(.J)
holds for all J € §(I) =PB(I), where

P(J) ¢ (There exists a family a € V/ such that a|; is biorthogonal to «).

In particular, this will establish P(I), which is the desired conclusion.

P(®) holds trivially. Let J € P*(I) and j € J be given, and assume that
P(J\{j}) holds. We may therefore choose a’ € V/\\9} such that a| s (; is biorthogonal
to a'.

Since « is linearly independent, so is «|;. By Corollary 421, and by Theorem
62K, (b), we have

a; & Lsp Rng(alngy) = Rng(alngy)) o™

We may therefore choose u € (Rng(a|sgjy)). such that oju # 0; replacing v by
(1/(evju))u if necessary, we may assume without loss that a;u = 1.

We now define a € V'’ by

U ifi=jy
a; ‘=
a, — (jai)u if i € J\{j}.

Direct verification — using the fact that a;u = 0 for all ¢ € J\{j} — then shows that
ay is biorthogonal to a. This completes the induction step. m
641. REMARK. The assumption that the family « is finite may not be omitted in

Proposition 64H. Indeed, let the infinite set I be given, and choose an object w such
that w ¢ I. Consider the family o € ((F{)*)!U{«} defined by

ol ifiel
Q; =
1. ifi=w

(where 1- is the constant family with only term 1). Since [ is infinite, « is linearly
independent. However, it follows from (61.6) that if a € (F))/Y{} is such that « is
biorthogonal to a we must have a; = 6! for all i € I; but then aya; = 16/ =1 # 0
for all i € I, and « is not biorthogonal to a after all. Thus there is no a € (FU))/{«}
to which « is biorthogonal. m



Chapter 7

DUALITY AND FINITE
DIMENSION

71. Duality for finite-dimensional spaces

The fundamental result concerning duality for finite-dimensional linear spaces is
the fact that the dual space of such a space is also finite-dimensional and has the
same dimension.

71A. THEOREM. Let the finite-dimensional linear space V be given. Then V* is
finite-dimensional, and dimV* = dimV.

Proof. Tt follows from Corollary 530 that V* is finite-dimensional, with dimV* =
(dimV)(dimF) = dim). m

We combine part of Theorem 71A with a converse.

o71B. ProposITiON. Let the linear space V be given. Then V* is finite-dimensional
if and eonly if V s finite-dimensional.

Proof. The “if” part follows from Theorem 71A. The “eonly if” part is a special
case of eProposition 53R. For a more appealing proof of the “only if” part, we recall
that there exists an injective linear mapping from V to V* (eCorollary 61H). If V*
is finite-dimensional, it then follows by Proposition 53D,(a) that V is also finite-
dimensional. m

From this point on we shall, in this chapter, deal almost exclusively with finite-
dimensional linear spaces. A technical remark is in order here.

71C. REMARK. In the preceding sections of this chapter, some proofs depended
on the eAxiom of Choice via appeals to eTheorem 15F and eCorollaries 211, 43H,
and 43M. It was noted in Remark 52H, that when restricted to finite-dimensional
spaces these four results, among others, do not depend on the eAxiom of Choice;
therefore they, together with the results in Chapter 6 whose proof relied on them,
viz., eExamples 61D, (b), eLemma 62G, eTheorem 62H, ePropositions 620, 62S, 62U,
and 64G, and e Corollaries 61H, 621, 62J, 62M, 63E, and 63H, may, in that restricted
context, be cited without the “bullet” o. m

113
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For finite-dimensional spaces, many results in Chapter 6 take a simpler form.

71D. ProrosiTioN. Let the finite-dimensional linear space V be given.

(a): Ut = U for every subspace U of V and W+ = W for every subspace
Wof V.

(b): AL, = LspA for every subset A of V, and B+ = LspB for every subset B
of V*.

(¢): The mappings

U Ut Subsp(V) — Subsp(V*)
W — W, Subsp(V*) — Subsp(V)

are order-antimorphisms (with respect to inclusion), and each 1is the inverse of the
other.

Proof. (a) and (b) follow by Theorems 62H and 62K. The mappings in (c) are
antitone (Corollary 62E,(a)). By (a) each is the inverse of the other; therefore they
are order-antimorphisms. m

T1E. ProprosiTioN. Let the finite-dimensional linear space V be given. Then

(71.1) dimf + dimU* = dimV  for all subspaces U of V

(71.2) dimW + dimW, = dimV  for all subspaces W of V*

Proof. Let the subspace U of V be given. By Proposition 62N, U* is linearly
isomorphic to (V/U)*, and hence, by Theorem 71A and Theorem 53B, dimi* =
dim(V/U). By Corollary 531, dimU + dim(V/U) = dimV, so that (71.1) holds.

Let the subspace W of V* be given. We apply (71.1) to U := W, and find, using
Proposition 71D, (a),

dimW + dimW, = dimW,* + dimW, = dimV. =

71F. ProrosiTiON. Let the finite-dimensional linear spaces ¥V and W be given.
For every L € Lin(V, W), we have

NullL = (RngL"), RngL = (NullL"); NullL" = (RngL)" RngL' = (NullL)*.

Proof. The first and second inequalities follow from Corollary 621, the third from
Proposition 62F,(a), and the fourth from Corollary 62M. The latter two also follow
from the former two by Proposition 71D,(a). m

Theorem 71A implies that every finite-dimensional linear space V is linearly iso-
morphic to its dual space, but does not provide a unique “natural” isomorphism. We
shall later associate one such isomorphism with each basis of V (Proposition 72A,(c)).
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The situation is quite different when it comes to a finite-dimensional linear space and
its second dual space, as we now show.

71G. THEOREM. Let the finite-dimensional linear space V be given. Then
Evy € Lin(V, V**) is invertible, i.e., a linear isomorphism.

Proof. By Theorem 71A, V** is finite-dimensional and dimV** = dimV* = dimV.
By Corollary 63E, Evy, is injective. It follows by Corollary 53J, (i) = (iii) that Evy,
is invertible. m

71H. REmARKs. (a): We shall provide another type of proof of Theorem 71G
later (Remark 72D).

(b): Theorem 71G encourages us to use the linear isomorphism Evy to identify
VY and V**. We shall ultimately discuss this identification in Section 74, though with
somewhat less than the alacrity usually displayed in this matter; we defer doing so
at this point, however, since we fear the possibility of hidden notational clashes. m

711. ProposITION. Let the linear spaces V and W be given, and assume that W
18 finite-dimensional. Then each of the linear mappings

L~ L7 :Lin(V,W) — Lin(W*, V")
M — Evy, "M TEvy, : Lin(W*, V*) — Lin(V, W)

is the inverse of the other. In particular, the linear transposition for (V, W) is in-
vertible.

Proof. Using Proposition 63C, we have

Evyy 'L "Evy = Evyy 'EvyL = L for all L € Lin(V, W).

On the other hand, using Propositions 61C,(d) and 63D, and Corollary 63F, we have

(EV)/\)_1]\4TEV1})T = EVVTMTT(EVWT>_1 = EVVTMTT(EVWT)_IEVWTEVW* =
=Evy "M TEvyy- = M for all M € Lin(W*,V*). m

71J. REMARK. Let the finite-dimensional linear spaces ¥V and W be given. By
Theorem 71A and Corollary 530 we have dim Lin(V, W) = (dimV)(dimW) =
= (dimW*)(dimV*) = dim Lin(W*, V*). By Corollary 62J the linear mapping
(L+ LT): Lin(V,W) — Lin(W*, V*) is injective; it follows by Corollary 53J,(i)=-(iii)
that it is invertible. This proof does not use Evy, or Evyy, but the result is both weaker
than Proposition 711 (since V is also assumed to be finite-dimensional) and less ex-
plicit (since the inverse mapping is not exhibited). m

We may ask whether Theorem 71G and Proposition 711 are “best possible”, in
that the conclusion would fail to hold if the space V or the space W, respectively,
were not finite-dimensional. We now show that this is indeed so.

¢71K. ProprosITION. Let the linear space V be given. Then Evy, is invertible if
and eonly if V is finite- dimensional.
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Proof. The “if” part is Theorem 71G. To prove the “eonly if” part, assume that
Evy is invertible, and choose a basis b € V! of V (eCorollary 53M). Let v € V be given.
If bfv = 0 for all i € I, it follows by Corollary 64C that v = 0. Thus (Rngdb*), = {0}.

Since Evy, is surjective, use of Proposition 63G yields
(Rngb*)* = Evy> (Evy~((Rngb*) 1)) = Evy> ((Rngb*) 1) = Evy» ({0}) = {0},
and therefore, by eTheorem 62H,(b),

Lsp Rngb* = (Rngb*)* . = {0}, = V*.

The linearly independent family b* (Proposition 64A) thus spans V*, and is therefore
a basis of V*. By Proposition 64F, V is finite- dimensional. m

o71L. ProprosiTIiON. Let the linear spaces V and W be given. The linear trans-
position for (V, W) is invertible if and eonly if W is finite-dimensional or V is a
zero-space.

Proof. If V is a zero-space, then V*, Lin(V, W), Lin(W*, V*) are also zero-spaces
and the linear transposition is trivially invertible. If W is finite-dimensional, the
linear transposition is invertible by Proposition 71I. This completes the proof of the
“if” part.

To prove the “eonly if” part, assume that V # {0} and that the linear transpo-
sition is invertible. Choose u € V*. By eLemma 62G applied to U := {0} we may
choose A € V* such that Au = 1.

Now let IT € W** be given. Then A®II € Lin(W*, V*), and therefore A\@ Il = LT
for a suitable L € Lin(V, W). We then have

(Ev(Lu))p = plu = (LT p)u = (A @ M)p)u = (Hp)(Au) = Hp for all u € W
Therefore IT = Evyy(Lu). Since IT € W** was arbitrary, it follows that Evyy is surjec-

tive, hence invertible (eCorollary 63E). By eProposition 71K, W is finite-dimensional.
[
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72. Dual bases and matrices

Let the finite-dimensional linear space V and the basis b € V! of V be given. Then
b* is a basis of V* (Proposition 64F), the basis (of V*) biorthogonal to b; when b is
understood, b* is called the dual basis of V* for short.

72A. PROPOSITION. Let the finite-dimensional linear space V and the basis b € V!
of V be given.

(a): For every linear space W, family y € W', and linear mapping L € Lin(V, W)
we have Lb =y if and only if L = Zyi ® bf.

iel
b): > b @b =1y,
i€l
(c): L:= ij‘ ® b} is the only solution to the problem
i€l

?L € Lin(V,V*), Lb=1b"

and it is a linear isomorphism.

Proof. (a) follows from Corollary 64E, using the fact that I is finite. (b) and (c)
are special cases of (a); in (¢), L is invertible because b* is a basis of V* (Proposition
43D). m

72B. CoRrOLLARY. Let the linear spaces V and W be given. If either V or W is
finite-dimensional, then the set {w @ X | w € W, X € V*} spans Lin(V, W).

Proof. 1f V is finite-dimensional, choose a basis b € V! of V (Corollary 53C).
By Proposition 72A,(a) we have L = Y (Lb;) ® b for all L € Lin(V,W). If W

i€l
is finite- dimensional choose a basis ¢ € W/ of W. By Proposition 72A,(b), L =
ch ® c;) Zc] ) for all L € Lin(V, W). In either case,

Jj€J

L e Lsp{w® | wEW AeV*}forall L €Lin(V,W). m
Is Corollary 72B the best possible result? The following proposition shows that
it is.
72C. ProposITION. Let the linear spaces V and W be given. Then
Lsp{w @A | we W, e V*} ={L € Lin(V,W) | RngL is finite-dimensional}.
Proof. 1. Let L € Lsp{w ® X\ | w € W, X € V*} be given. By Corollary 130, we
may choose a finite subset F of W x V* such that L € Lsp{w ® A | (w,\) € F}. By
Theorem 41C we may then choose a € F7 such that L = Z AW A. But then
(w,\)eF

Z A )W @ AV = Z (anAv)w  for all v eV,
(wA)eF (wA)EF

and therefore RnglL is a subspace of the finite-dimensional subspace

Lsp{w € W | (w,\) € F} of W, so that RngL is itself finite-dimensional.
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2. Let L € Lin(V, W) be given, and assume that X := RngL is finite-dimensional.
By Corollary 72B, L' := L|* € Lsp{fw @Y X | w € X, X\ € V*}. Then

L= 1XCWL, S LSp{lXCw(’LU@X))\ ‘ we X, AE V*} =
=Lsp{lw@V A |weX, XeV'}CLsp{fw@A|weW, eV} n

72D. CoRrROLLARY. Let the linear space V) be given. The set {v@\ |v € V, X € V*}
spans LinV if and only if V is finite-dimensional.
Proof. Apply Proposition 72C to L :=1y. =

o72E. CoroLLARY. Let the linear spaces V and W be given. Then the set
{w @A | weW, X eV} spans Lin(V, W) if and eonly if either V or W is finite-
dimensional.

Proof. The “if” part is Corollary 72B. We prove the “eonly if” part by contra-
position. We assume that V and W are infinite-dimensional, and choose basis-sets
B of V and C of W, respectively (eCorollary 530). Since B and C are both infinite,
we may choose injective sequences b € BN and ¢ € CN (Basic Language, #Theorem
121V). There exists exactly one L € Lin(V, W) such that Lb = ¢ and Lv = 0 for all
v € B\Rngb (Theorem 43F,(c)). But then Rngc is infinite and linearly independent,
and Rnge C RngL; therefore RnglL is not finite-dimensional (Theorem 52A,(a)). By
Proposition 72C we have L ¢ Lsp{w @ A |w € W, A € V*} . n

We next consider dual bases of dual bases.

72F. PrROPOSITION. Let the finite-dimensional linear space V and the basis b € V!
be giwven. Then

(72.1) Evyb = b**

(72.2) Evy = ()b @) b @b).

i€l i€l

Proof. We have

(Evyb)bj = b3b; = 6;1 for alli,j € I.

Thus Evyb is biorthogonal to the basis b* of V*. By Theorem 64B, Evy,b = b**.
By Proposition 72A,(c) we have, using (72.1),

Ot @b ) b @b)b = (O b @b")b; = b;* = Evyb; forall j € I.

i€l i€l iel

Since b is a basis of V, (72.2) follows by Theorem 43F,(c). A direct computation,
with application of the distributive law to the right-hand side of (72.2), can also be
carried out to prove the equality. m
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72G. REMARK. Given a finite-dimensional linear space V, we may choose a basis
b € V! of V. Formula (72.2) then exhibits Evy as the composite of two linear iso-
morphisms, and hence Evy, is itself a linear isomorphism. Alternatively, (72.1) shows
that Evy is invertible, since 0** is a basis of V**. We thus have two other proofs of
Theorem 71G. m

We next examine the relationship between bases and their dual bases on the one
hand, and the matrices of linear mappings and of their transposes on the other. We
recall from Basic Language, Section 42 that the transpose of a J x [-matrix M is
the 1 x J-matrix M " that satisfies M, := M;; for all (4,7) € I x J.

72H. ProrosiTION. Let the finite-dimensional linear spaces V and W and the
bases b € V! of V and c € W’ of W be given. For every L € Lin(V, W) we have

cb % . .
(72.3) [L]53 = c¢;Lbi  for all (j,i) € J x 1
(72.4) L= Y [Ljc; @b
Ga)yeIxI
(72.5) (LT = (L))"

Proof. From (53.4) we obtain

cLb =Y [LIcier = > [LIFhe7, = [L]57 for all (j,i) € J x I
keJ keJ

combining the same formula with Proposition 72A,(a) we obtain

L= 1hebi =3 3 [Lfjigebi= > (Lot
iel il jeJ (Gd)eTxI
Thus (72.3) and (72.4) hold. Finally, we apply (72.3) twice, once in the given form
and once with L, b, ¢ replaced by LT, ¢*, b*, respectively, and find using (72.1),
(LT = b LTet = (Bvpb)LTct = (LT¢h)b; = ¢ Lb; = [L]57

for all (i,5) € I x J.

Therefore (72.5) also holds. m

The validity of (72.5) first suggested the term “transpose of L” and the notation
LT for the object defined in Section 61 for a linear mapping L, even when the domain
or the codomain of L is not finite-dimensional.

72I. CorOLLARY. Let the finite-dimensional linear spaces V and W and the bases
be V! of V and c € W of W be given. Then (¢; @ b} | (j,i) € J x I) is a basis of
Lin(V, W).
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Proof. By Proposition 72H (formula (72.4)) we have, for every pair (j,4) € J x I,

VL € Lin(V,W), [L]* =6 & L=c¢ o]

It follows that (¢; ® b | (j,i) € J x I) is the family of images of the terms of
the basis (5(ij2)1 | (j,4) € J x I) of F/*! under the inverse of the linear isomorphism
(L~ [L]?) : Lin(V, W) — F7*! (Proposition 53N). Therefore (c; @b} | (j,i) € JxI)
is a basis of Lin(V, W) (Proposition 43D). m

72J. REmMARK. It is not hard to show, with the help of Corollary 72B, that the
conclusion of Corollary 721 remains valid if it is merely assumed that V or W is
finite-dimensional. m
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73. The trace form

In this section we intend to examine the structure of the dual space of Lin(V, W)
for given finite-dimensional linear spaces V and W. In particular, we shall introduce,
for every given finite-dimensional linear space V, a distinguished linear form on LinV,
called the trace form of V.

We record a recurring proof pattern in the form of a lemma.

73A. LEMMA. Let the linear spaces V, W, X be given, and assume that either V
or W is finite-dimensional. Let L, M € Lin(Lin(V, W), X) be given, and assume that

Llw®A)=Mw®A) foral weWand X € V.

Then L = M.

Proof. By Corollary 72B, the set {w @ A | w € W, X € V*} spans Lin(V,W). The
conclusion then follows by Theorem 43F,(b). m

73B. ProprosiTION. Let the linear spaces V and W be given. There exists exactly
one mapping v : (Lin(V, W))* — Lin(V*, W*) such that

(73.1) (y(A)MNw=Aw ) forallweW and A € V* and A € (Lin(V,W))".

This mapping is linear. If V or W is finite-dimensional, v is injective; if both V and
W are finite-dimensional, 7 is invertible.
Proof. For every A € (Lin(V,W))* and every A € V* the composite

w—Awe )W —=F

of the linear mappings (w — w ® A) : W — Lin(V,W) and A is linear, hence a
member of W*. This defines a mapping

A= (W= Alw@N) V' — W

for each A € (Lin(V, W))*; this mapping is itself obviously linear, hence a member of
Lin(V*, W*). This establishes the existence and uniqueness of the mapping
v (Lin(V, W))* — Lin(V*, W*) satisfying (73.1). The linearity of «y is obvious.

2. Assume that V or W is finite-dimensional. Let A € Nully be given. From
(73.1) we have Afw ® A) = 0 for all w € W and A € V*. By Lemma 73A, A = 0.
Thus Nully = {0}, and  is injective.

3. Assume that both V and W are finite-dimensional. Then (Lin(V,W))* and
Lin(V*, W*) are also finite-dimensional, and, by Theorem 71A and Corollary 530,

dim(Lin(V, W))* = dim Lin(V, W) = (dimV)(dimW) = (dimV*)(dim(W*) =
= dim Lin(V*, W*).

Since ~y is injective, it follows by Corollary 53J that - is invertible. m
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We shall use the temporary notation I'y )y for the unique mapping ~y satisfying
(73.1). Thus I'yyy € Lin((Lin(V, W))*, Lin(V*, W*)), and
(73.2) (TywAMNw=A(w®A) forallw e W and A € V* and A € (Lin(V, W))".

Let the finite-dimensional linear space V be given. Then I'y ) is invertible, and we
define

(73.3) try 1= Lyy e € (LinV)*;

this linear form on LinV is called the trace form of V. Its significance stems from
the following characterization.

73C. THEOREM. Let the finite-dimensional linear space V be given. Then the
problem

(73.4) T e (LinV)*, (MveV, VAeV", T\ =)

has exactly one solution, namely try.
Proof. Using (73.2) and (73.3), we find

try(v @ A) = ((Cyptry)A)v = (Ip=A)v = Av for all v € V and A € V*.

This shows that tr) is a solution of (73.4); Lemma 73A shows that it is the only
solution. m
We record the formula, valid for every finite-dimensional space V),

(73.5) try(v @A) =X v forallv eV and A € V"

For every L € LinV, we may write trL for try,L without danger of confusion; trL is
called the trace of L.
We examine other properties of the trace forms.

73D. ProrosiTiON. Let the finite-dimensional linear spaces V and W be given.
Then

(73.6) try(ML) = tryw(LM)  for all L € Lin(V, W) and M € Lin(W, V).

Proof. Let M € Lin(W, V) be given. Then

try(M(w @ X)) = try(Mw) @ A) = AMw = try(w @ (AM)) = try((w @ A) M)
for all w € W and A € V*.
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We consider the linear forms (L + try(ML)), (L — trw(LM)) € (Lin(V, W))*; the
preceeding computation and Lemma 73A show that these linear forms are equal. m

73E. CoroLLARY. Let the finite-dimensional linear spaces V and W and the
linear isomorphism A € Lis(V, W) be given. Then
trw(ALA™Y) = tryL  for all L € LinV.

The following result shows that (73.6) is a sort of characterization (up to “scalar
multiples”) of the trace forms.

73F. ProprosITION. Let the finite-dimensional linear spaces V and W be given,
and assume that neither is a zero-space. Let ¥ € (LinV)* and ¥’ € (LinW)* be given.
Then

(73.7) S(ML) =Y (LM) forall L€ Lin(V,W) and M € Lin(W, V)

if and only if ¥ = stry and ¥’ = stryy for some s € F.

Proof. The “if” part follows by Proposition 73D. To prove the “only if” part, we
assume that (73.7) holds. We choose u € V* and & € W*. We may then choose
£ € V* and v € W* such that fu =1 = v, by Lemma 62G (cf. Remark 71C).

Using (73.7) and (73.5), we have

L@ ) =X((v) (@) =X(v@7y)(@ @A) =X ((z©A)(ver)) =
=Y (W) (z®7y) =) (z®y) = (zy)try(ve ) forallveVand A € V*.

By Lemma 73A we then conclude that

(73.8) S = (3(x @ 7))try.

Similarly, we find that

Y(wep) = (Eue p))trw(w @ p) forallwe W and p e W*,

so that

(73.9) Y= (S(u® B))try.
Finally, (73.8) yields

(e f) = (E(@ey)ty(ue f) = (fu)X(z@y) =X (z©7).

Combination of this with (73.8) and (73.9) shows that ¥ = stry, and ¥’ = stryy, with
s =%u®pf). n
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73G. CoroLLARY. Let the finite-dimensional linear space V and the linear form
T € (LinV)* be given. Then

(73.10) T(ML) =T(LM) for all L, M € LinV

if and only if T = stry for some s € F.
73H. ProprosriTiON. Let the finite-dimensional linear space V be given. Then

try- (L") = try L for all L € LinV.
Proof. By (61.2) and (63.2) together with (73.5) we have

try- (V@A) 1) = tryp- (AT (v®)T) = tryp« (A ® (Evyv)) = (Evpu)d =l =
=try(v® ) for all v € V and all A € V*

We may then apply Lemma 73A to the linear forms try and
(L~ try«(LT)) € (LinV)*, and conclude that they are equal. m

ProrositioN. Let the finite-dimensional linear space V be given. Then trly, =
(dimV)1 (the (dimV)th natural multiple of the unity 1 of F).

Proof. Choose a basis b € V! of V. Then #I = dimV (Corollary 53C). By
Proposition 72A,(b) and (73.5) we have

trly=tr) b@b = tr(h®b) =Y bibi=» 1=(#)1=(dimV)l. =
i€l i€l ici il

73J. CoROLLARY. Let the finite-dimensional linear space V be given, and assume
that either dimV = 0 or (dimV)1 # 0. Then a linear form T € (LinV)* is the trace
form try if and only if (73.10) holds and T'1y, = (dimV)1.

Proof. Corollary 73G and Proposition 731. m

73K. REMARK. The assumption that either dimV = 0 or (dimV)1 # 0 is certainly
satisfied if the field F is R or Q, regardless of what the dimension of V is. m

73L. CoroLLARY. Let the finite-dimensional linear space ¥V and the idempotent
linear mapping E € LinV be given. Then trE = (dim RngFE)1.

Proof. Set U := RngE. Since E is idempotent, U is the set of fixed points of F.
Thus E[¥ = 1. By Propositions 73D and 73I,
try = try(lucy (E[1)) = tru (E[*)lucy) = tr(E[)) = tryly = (dimif)1. m

We now show how to compute the trace of a member of Lin)V when its (square)
matrix with respect to a basis of V is known.

73M. PROPOSITION. Let the finite-dimensional linear space V and the basis b € V!
of V be given. Then

(73.11) trL =Y [L]’; for all L € LinV.

el
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Proof. By Proposition 72H (formula (72.4)) and (73.5) we have, for every
L € LinV,

trL=tr Y [Lhbebi= Y [Lteb)= Y [L}bb=

(Gp)elxI (Gi)eIxT (ji)eIxT
- Z Z[L]?;idz{j = Z[L]?,r u
iel jeJ iel

73N. REMARK. Let the finite set 7 and the I x I-matrix M € F'*! be given.
Under the identification described in Section 51, M is also a member of LinF’. In

this capacity, its matrix with respect to the Kronecker basis is precisely the matriz
M. Thus (73.11) yields

(73.12) trM = Z M.

iel

It is customary to use (73.12) as a definition of the trace of the matriz M, and then
the identification just referred to produces no notational clash. With this definition,
formula (73.11) for every given finite-dimensional linear space V and given basis b € V!
of ¥V may be restated as follows:

(73.13) trL = tr[L]® for all L € Lin). m

We finally return to the matter of the structure of (Lin(V, W))* for given finite-
dimensional linear spaces ¥V and W. We observe that for every M € Lin(W, V) the
mapping

L try(ML) : Lin(Y,W) - F

is linear, hence a member of (Lin(V,W))*. We shall show that, conversely, every
linear form on Lin(V, W) is obtained in this way from precisely one M € Lin(W, V).
We shall make the invertible mappings involved as explicit as possible. The preced-
ing observation establishes the existence of precisely one (obviously linear) mapping
Dy 4y - Lin(W, V) — (Lin(V, W))* such that

(73.14) (PywM)L =try(ML) for all L € Lin(V, W) and M € Lin(W, V).

730. THEOREM. Let the finite-dimensional linear spacesV and VW be given. Then
for every A € (Lin(V, W))* there exists exactly one M € Lin(OW, V) such that AL =
try(ML) for all L € Lin(V, W). More precisely, the linear mapping @y yy is invertible.
Even more precisely, the composite I'yyy®yyy @ Lin(W, V) — Lin(V*, W*) is the
linear transposition for (W, V).
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Proof. Let M € Lin(W, V) be given. By (73.2), (73.14), and (73.5) we have

((ijwq:‘ijM))\)w = (@ijM)(U) X A) = tI‘v(Mw X )\) = )\MU)
for all w € W and A € V*;

hence (FV,Wq)V,WM))‘ = )\M = ]\/[T)\ fOI' all A S V*, i.e., FV,Wq)V.,WM = MT, as
claimed.

Since both Iy, and the linear transposition are invertible (Propositions 73B and
711), it follows that @y is invertible. m
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74. The canonical identifications

Let the finite-dimensional linear space V be given. As noted in Remark 71H,(b),
the fact that Evy, is invertible encourages us to identify V with V**  so that we write
v instead of Evywv for all v € V.

We note that, under the identification of F* with F according to Remark 61B, we
have

(Evps)t = (Evps)(tQ) =t Q@ s=st=ts=s®t forall s,t €T,

this shows that the earlier identification and the one proposed here (of F and F**) do
not clash.

Returning to an arbitrary given finite-dimensional linear space V, we find that,
under the proposed identification, (63.1) becomes

(74.1) vA=X forallveVand A€ V"
(this is the reason for not writing v instead of v® for every v € V). Formula (61.2)
applied to V* instead of V, and formula (63.2) becomes

(74.2) v =v® and (v®)' =wv forallve V.

Proposition 72C yields

(74.3) b*™* =0 for every basis b of V.

If we carry out this identification for each finite-dimensional linear space, we obtain
some induced identifications. In particular, if ¥ and W are finite-dimensional linear
spaces, Lin(V, W) is identified with Lin(V**, W**); Proposition 63C shows that, under
this induced identification,

(74.4) L'T =L forall L€ Lin(V,W).
Thus each of the mappings (L +— L) : Lin(V, W) — Lin(OW*,V*) and (M + MT):
Lin(OWV*, V*) — Lin(V, W) is the inverse of the other. From (74.2) we obtain
(74.5) (wa N =2 (we) = @w forallwe W and A € V*.
Again for a given finite-dimensional linear space V there is an induced identifica-

tion of P(V) with P(V**) by means of the bijection Evy,> (its inverse is Ev,). From
Proposition 63G and Corollary 63H it follows that, under this induced identification,
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(74.6) B, =B+ for all subsets B of V*

(74.7) At =LspA for all subsetsA of V.

The notation B, and the concept of pre-annihilator thus become redundant under
this identification.
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Index of Terms

additive 6 embedding, standard linear 35
adjoint 94 epimorphism, linear 34
annihilator 97 equations, system of linear 75

[ U-] annihilator 97

automorphism, linear 30
field distributive law 1

finite-dimensional 77

basis 65 finitely spanned 77
basis, dual 117 form, linear 94
basis, Kronecker 65 form, trace 122
basis, natural 65 functional, linear 94
basis biorthogonal [to] 117 homogeneous 6

basis-set 65
biorthogonal 110

biorthogonal [to], basis 117 idempotent = 51
improper 13
canonical injection 107 independent, linearly 60
Cartesian produce 4 infinite-dimensional 77
change-of-basis matrix 88 injection, canonical 108
coefficient family 57 insertion 45
combination, linear 57 internal direct sum 50
composition law 1 invertible, linearly 30
coproduct 45 isomorphic, linearly 30
coproduct, linear 45 isomorphism, linear 30

coproduct, standard (linear) 46

coproduct-space 45
kernel 17

Kronecker basis 65
decomposition 49
decomposition, direct 50

dependent, linearly 60 left-cancellable, linearly 36
dimension 77, 91 left-invertible, linearly 30
[n-]dimensional 77 linear 6, 20

direct decomposition 50 linear automorphism 30

direct sum 13 linear combination 57

direct sum, internal 50 linear-combination mapping 57
disjunct é47 50 linear coproduct 45
distributive law, field 1 linear coproduct, standard 46
distributive law, space 1 linear elimination 75

dual basis 117 linear(-)embedding 34, 35
dual space 94 linear embedding, standard 35
dual space, second 106 linear epimorphism 34

linear equations, system of 75
linear form 94
elimination, linear 75 linear functional 94
embedding, linear 35 linear isomorphism 30
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linearly dependent 60

linearly independent 60

linearly invertible 30

linearly isomorphic 30

linearly left-cancellable 36
linearly left-invertible 30
linearly right-cancellable 36
linearly right-invertible 30
linear monomorphism 34
linear(-)quotient-mapping 34, 35
linear quotient mapping, standard 35
linear product 40

linear product, standard 41
linear space 1

linear span 15

linear subspace 11

linear transposition 94

matrix [of L] 87, 88
matrix, change-of-basis 88
monomorphism, linear 34
multiple, scalar 1
multiplication, scalar 1
multiplied by 1

natural basis 65
null-space 17

[A-]perp 97

pre-annihilator 97

product 4, 40

product, Cartesian 4
product, linear 40

product, standard (linear) 41
product-space 40
projection 40, 51

quotient-mapping, linear 35
quotient-mapping, standard linear 35
quotient-space 23

right-cancellable, linearly 36
right-invertible, linearly 30

scalar 1

scalar multiple 1
scalar multiplication 1
second dual space 106
second transpose 106
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space, dual 94

space, linear 1

space, second dual 106

space, vector 1

space distribution law 1

span 65

span, linear 15

spanned, finitely 77

spanning 65

standard (linear) coproduct 46
standard linear embedding 35
standard (linear) product 41
standard linear quotient-mapping 35
subspace 11, 12

subspace, improper 13
subspace, linear 11

subspace, proper 13
subspace, trivial 13

sum, direct 13

sum, internal direct 50
supplement 24
supplementary 24

support 4

system of linear equations 75

termwise 4

times 1

trace 122, 125

trace form 122
transpose 94, 119
transpose, second 106
transposition, linear 94
trivial 4, 13

unity law 1

valuewise 5
vector 1
vector space 1

zero-mapping 7
zero-space 4
zero-subspace 13
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Index of symbols

Symbols standing for generic sets, mappings, relations, numbers, etc., are omitted when consistent
with intelligibility, and do not affect alphabetic order when present.

add” 2 6T 14, 65
Cont(,) 10 o; 44
Cont!*( , ) 10 a; 40
dim 77, 91 Dyyy 125
Dim( ) 79 oY 2
Ev 106 11

F 1 ! 3
Ker 17 [] 87,88
le 58 @ 13
eV 57 e95, 96
Lin 7 4
Lin(, ) 7 4
Lis 30 ?97 03
Lis (,) 30 -
Lsp 15 I+ 94
Map(, ) 5 IT o
multy 2 AL o7
Null 17 8, o7
opp?” 2 o 1
Subsp 15 msu 3
Supp 4 Iu 8

tr 122 Lf 8

Ty 122
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