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PREFACE 

This volume (F.A.N.) contains various parts of Functional Analysis, 
Approximation Theory and Numerical Analysis, namely: A conditional Cauchy 
equation on rhombuses, spectral properties of matrices with products of 
binomial coefficients as entries, optimization of functionals and application 
to differential equations, an alternative Cauchy equation, generalization of 
the Golab-Schinzel functional equation, and functional equations and exact 
discrete solutions of ordinary differential equations. Besides it contains part 
on: Shape from shading problem, approximations to analytic functions, 
error estimate in non-equi-mesh spline finite strip method for thin plate 
bending problem, the Hyers-Ulam stability of a functional equation containing 
partial difference operators, dynamical systems and processes on Banach 
infinite dimensional spaces, Banach spaces in Bergman operator theory, 
characterization problems in Hilbert space, fixed point procedure in Banach 
spaces, Banach algebras of pseudodifferential operators, and Banach spaces. 
Finally the reader of this volume can find parts on: Ostrowski constant, 
stability problem of Ulam, Gegenbauer polynomials, quasi-tridiagonal system 
of linear equations, characterization of Q-algebras, and Landau 's type 
inequalities. 

This collection of research works is dedicated to the mathematicians: Stefan 
BANACH, Alexander Markowii; OSTROWSKI, and Stanislaw Marein ULAM 
for their great contributions in Mathematics, Physics, Chemistry, Biology, and 
many other branches of Science. 

Deep gratitude is due to all those friends and scientists who have encouraged 
me to complete this book in less than four years of continuous work. My very 
special thanks and appreciation to my family: Katia, Matina, and Vassiliki. 
Finally 1 have to thank the consultant editor Professor J. G. Xu and the 
Scientific editor Dr. Anju Goel of WORLD SCIENTIFIC for their patience 
::i.nd overall cooperation to carry out this project. 

vii 

John Michael Rassias, Ph.D. 
Professor of Mathematics 
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STEFAN BANACH 
ALEXANDER MARKOWIQ OSTROWSKI 

STANISLAW MARCIN ULAM 

John Michael Rassias 

(Athen&, Greece) 

BANACH was born in Krakow on March 30, 1892 and died in Lw6w on 
August 31, 1945. He studied in Lw6w, Poland. Subsequently, he worked at 
the University of Lw6w and the Polish Academy of Sciences. Banach gave 
the general definition of normed spaces (1920-22). His motivation was the 
generalization of integral equations. The essential feature of bis work was 
to set up a space with a norm but one which is no longer defined in terms 
of an inner product. Whereas in L 2 , llxll = J(x,x) it is not possible to 
define the norm of a Banach space in this way because an inner product is 
no longer available. The axioms for Banach's space B are divided into three 
groups. The first group contains thirteen axioms which specify that space B 
is a commutative group under addition; closed under multiplication by a real 
scalar; and that the familiar associative and distributive relations hold. The 
second group characterizes a norm on the elements (vectors) of B. The third 
group contains just a completeness axiom. An important dass of operators 
introduced by Banach is the set of continuous additive ones. An operator f is 
additive if for all x and y, f(x + y) = /(x) + /(y). Banach (1929) introduced 
in Functional Analysis, the notion of the dual (or adjoint) space of Banach 
space. One of his many important theorems is the Hahn-Banach theorem 
on functionals. Banach's work on functionals leads to the concept of adjoint 
operator. Banach applied his theory of adjoint operators to R.iesz operators 
(introduced by R.iesz in 1918). Banach worked with Stanislaw Marein Ulam, 
Stanislaw Mazur, Kazimir Kuratowski, Hugo Steinhaus, W. Orlicz, and many 
other polish and foreign mathematicians. Besides the afore-mentioned theorem 
he obtained the following famous theorems: Banach-Alaoglu theorem, Banach 
fixed point theorem; Banach-Saks theorem. Finally he introduced the notions: 
Banach indicatrix, Banach limits, Banach algebra, and achieved many other 

l 
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fundamental results in mathematical analysis (for instance, Banach-Steinhaus 
theorem). 

OSTROWSKI died on November 20, 1986 at the age of 93. His collected 
works amount to some 4,000 pages in six volumes, published by Birkhäuser­
Verlag ( 1986). More than thirty of his students, who are now famous (for 
instance, Walter Gautschi), maintained close contact with Ostrowski until 
his final years. Ostrowski's career started in Kiev (1913). He worked with 
the great mathematicians: Felix Klein, Edmund Landau, and David Hilbert, 
and with the famous mathematicians: Peter Lancaster, Reich, Rita Jeltsch­
Fricker, and many others. Born in Kiev on September 25, 1893, Ostrowski re­
ceived bis initial mathematical education under Ukrainian teachers. When he 
was working as an assistant to Felix Klein at Göttingen, Ostrowski earned bis 
reputation as one of the world's leading mathematicians. In 1927 he accepted 
a call to work at Basel University where he remained until 1958. His papers 
are of interest to algebraists, geometers, analysts, topologists, and computer 
scientists. Numerical analysts are also indebted to him for the investigations 
he carried out on the iterative solution of equations. Of particular interest to 
computer scientists is complexity theory and foundations of symbolic integra­
tion due to Ostrowski's results. In the years after the second world war he 
began a sequence of visits to North America initiated by the U.S. National 
Bureau of Standards. He received honorary degrees from: University of Wa­
terloo (1967), University of Besanc;on, and from ETH Zurich. Ostrowski was 
Honorary Editor-in-Chief of "Aequationes Mathematicae'' from its foundation. 
Theorems: Ostrowski-Reich ("on the iterative techniques in matrix algebra"), 
and Ostrowski ("on analytic continuation"), are classical. His book "Solution 
of equations in Euclidean and Banach spaces" (Acad. Press, 1973) is excellent. 
The writer of this contribution made contact with Ostrowski on August 14, 
1983 (11:40 a.m.-4:20 p.m.) at Ostrowski's harne at Certenago di Montagnola, 
Via Sott'Ca 11, Switzerland. My wife and I were very happy to meet one of the 
last great mathematicians. Ostrowski said to us that bis favorite teachers were: 
A high school teacher and David Hilbert. According to Ostrowski, Hilbert was 
that time the best mathematician in the world. Quoting Landau's words, 
Ostrowski said that a mathematical problem must be treated rigorously as it 
is stated. Finally he quoted Landau's statement, that applied mathematicians 
duplicate results of pure ones. 
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ULAM was born in Lwow, Poland on April 3, 1909 and died in Santa 
Fe, U.S.A. on May 13, 1984. He graduated with a doctorate in pure mathe­
matics from the Polytechnic Institute at Lw6w in 1933. Ulam worked at: The 
Institute for Advanced Study, Princeton (1936), Harvard University (1939-40), 
University of Wisconsin (1941-43), Los Alamos Scientific Laboratory (1943-
65), University of Colorado (1965-76), and University of Florida (1974-). 
He was a member of the American Academy of Arts and Sciences and the 
National Academy of Sciences. He made fundamental cmitributions in mathe­
matics, physics, biology, computer science, and the design of nuclear weapons. 
His early mathematical work was in set theory, topology, group theory, and 
measure theory. While still a schoolboy in Lw6w, Ulam signed his notebook 
"S. Ulam, astronomer, physicist and mathematician". As Ulam notes, "the 
aesthetic appeal of pure mathematics lies not merely in the rigorous logic of 
the proofs and theorems, but also in the poetic elegance and economy in artic­
ulating each step in a mathematical presentation." Ulam worked with Stefan 
Banach, Kazimir Kuratowski, Karo! Borsuk, Stanislaw Mazur, Hugo Stein­
haus, John von Neumann, Garrett Birkhoff, Cornelius Everett, Dan Mauldin, 
D. H. Hyers, Mark Kac, P. R. Stein, Enrico Fermi, John Pasta, Richard Feyn­
man, Ernest Lawrence, J. Robert Oppenheimer, Teller, and many other people 
of applied and exact sciences. Ulam was invited to Los Alamos by his friend 
John von Neumann, one of the most inftuential mathematicians of the twen­
tieth century. Ulam's most remarkable achievement at Los Alamos was bis 
contribution to the postwar development of the thermonuclear or hydrogen 
(H-) bomb in which nuclear energy is released when two hydrogen or deu­
terium nuclei fuse together. One of Ulam's early insights was to use the fast 
computers at Los Alamos to solve a wide variety of problems in a statistical 
manner using random numbers. This method has become appropriately known 
as the Monte Carlo method. One example that may have biological relevance 
is the subfield of cellular automata founded by Ulam and von Neumann. Fi­
nally Ulam bad a unique ability to raise important unsolved problems. One of 
these problems was solved by the writer of this contribution (J. Approx. Th., 
Vol. 57, 268-273, 1989, New York, by Academy Press). 
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ON A CONDITIONAL CAUCHY EQUATION ON RHOMBUSES 

C. ALSINA and J-L. GARCIA-ROIG 
Secci6 Matematiques, ETSAB, Univ. Politecnica Catalunya 

Diagonal 649. 08028 Barcelona, Spain. 

ABSTRACT 
We solve the conditional Cauchy equation j (X + y) = j( X) + j(y) whenever 
llxll = llYll for continuous mappings J from a real inner product space into a 
topological real linear space. 

The aim of this paper is to study the conditional Cauchy equation on rhom­
buses, i.e., 

f(x + y) = f(x) + f(y) whenever llxll = llYll, 
where f E -+ F is a continuous mapping from an inner product space E into a 
topological real linear space F. 

THEOREM 1. Let f : E -+ F be a continuous mapping from a real inner product 
space ( E, ·) of dimension greater than 1 into a topological real linear space F. Then 
f satisfies the conditional Cauchy equation 

f(x + y) = f(x) + f(y) whenever [[x[[ = [[y[[, (1) 

if and only if f is a continuous linear transformation. 

Proof. Obviously any continuous linear mapping satisfies ( 1 ). Conversely, if f 
satisfies (1) then the substitution x = y = 0 into (1) yields f(O) = 0 and the 
substiiution y = -x yields f(-x) = - f(x ). Next we claim ihat for any real t and 
any x in Ewe have the homogeneity of f: 

f(tx) = tf(x). (2) 

Since f(-x) = - f(x) and f(O) = 0 we need to prove (2) just fort > 0 and x =fa 0. 
In effect, when we take in (1) x = y we get f(2x) = 2f(x) and from this we 
immediately obtain inductively that 

f(2nx) = 2nf(x), for all integers n. 

For our x, let x' and x" be elements in E satisfying the conditions 

llxll = [[x'll = lfx"ll, x · x' = x · x" = ~llxll 2 
2 

5 

and x = x' + x" 

(3) 

(4) 
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Such elements exist because dim E > 1 and in any plane containing x, by previ­
ously considering an orthonormal basis, the problem is easily solved (geometrically 
speaking) by taking x' and x" as x rotated 60° and -60° respectively. 

By virtue of (1) and (4) we have /lx + x'll = llx + x"ll and 

f(3x) = J((x + x') + (x + x")) = f(x + x') + f(x + x") 

= f(x) + f(x') + f(x) + f(x") = 2f(x) + f(x' + x") = 3J(x). 

Again by induction we have 

f(3mx) = 3m f(x)), for all integers m. (5) 

Combining (3) and (5) we deduce f(2n3mx) = 2n3mf(x), for all integers n, m, 
and since f is continuous and the set {2n3m In, m E Z} is dense in R+ we can 
conclude the validity of (2). Our next step is to show ( using the vectors introduced 
above) that 

f(ax + bx') = af(x) + bf(x'), for all a, bin R. (6) 

In effect, due to the fact that llxll = llx'll and x·x' = kllxll 2 and the derivability 
of the norm in E from an inner product, for all a, b in R we have: 

llax + bx'll = !lax'+ bxll = ll(a + b)x - bx'll = ll(a + b)x' - axll· (8) 

Therefore by virtue of ( 1 ), (2) and (8) we obtain the equalities: 

f(ax + bx') + f((a + b)x - bx') = f((2a + b)x) = (2a + b)f(x), (9) 

f(ax + bx') + J((a + b)x' - ax) = f((a + 2b)x') = (a + 2b)f(x'), (10) 

and 

f(ax + bx') + f(ax' + bx) = f((a + b)(x + x')) = (a + b)(f(x) + f(x')). (11) 

Bearing in mind (1), (4) and (8), if we add (9) and (10), and then subtract 
(11), we obtain the desired property (6). 

As the preceding procedure can clearly be carried out in any two-dimensional 
subspace F of E (i.e., we can take x and x' in F) we conclude by (2) and (6) that 
f is linear. 

Let us note that in the proof just given the argument used in order to deduce 
the full additivity of f from the conditional additivity assumed in (1) went throught 
the homogeneity of f expressed in (2) where the continuity of f was essential. We 
will supply now another alternative proof by using a quite strong result which can 
be found in 2 (problem 25, chapter 11 ). 

LEMMA. A mapping g from a real inner product space (E, ·) of dimension greater 
than 1 into R is orthogonally additive in the sense that 

g(x + y) = g(x) + g(y) whenever x · y = 0, (13) 
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if and only if there exist additive functions a: R --+ R and h : E--+ R such that 

g(x) = a(llxll 2 ) + h(x). (14) 

Now we can show the following 

THEOREM 2. A mapping f from a real inner product space (E,-) of dimension 
greater than 1 into R" satisfies the conditional Cauchy equation 

f(x + y) = f(x) + f(y) whenever llxll = llYll, (15) 

if and only if is additive, i.e., f(x + y) = f(x) + f(y), for all x, y in E. 

Proof. Assume that f: E--+ R" satisfies (15). Then, for any couple of orthogonal 
vectors x and y, we have that llx + Yll = llx - Yll = llY - xll and, consequently 

f(x + y) + f(x - y) = f(2x), 

f(x + y) + f(y - x) = f(2y), 

(16) 

(17) 

and since by (15) we know f(O) = 0, f(-x) = - f(x) and f(2z) = 2f(z ), adding (16) 
and (17) we obtain at once f(x +y) = f(x) + f(y), i.e., from the conditional Cauchy 
equation (1) we deduce the orthogonal additivity of f. If for any i = 1, 2, ... , n, 
f; denotes the ith component function of f, then f; E --+ R will be orthogonal 
additive and by the Lemma just quoted there will exist additive functions a, : R--+ R 
and h; . E --+ R such that 

f;(x) = a,(llxll 2 ) + h;(x). (18) 

When we move back from (18) to (15) we see that we would need to require 

condition which yields {by the additivity of a; and the derivability of the norm from 
an inner product) that a,(x · y) = 0 whenever llxll = llYll- Thus with x = y we 
would have a;(llxll 2 ) = 0 and therefore a; must be identically zero. Thus by (18) 
each f; is additive and so is f. 

COROLLARY 1. A mapping f from a real inner product space (E, ·) of dimension 
greater than 1 into R" which is continuous at one point, satisfies ( 15) if and only if 
f is a linear mapping. 

References. 
1. J. Aczel., Lectures on Functional Equations and Their Applications, (Aca­

demic Press, New Yor, 1966). 
2. J. Aczel and J. Dhombres, Functional Equations in several variables, 

(Cambridge Univ. Press, 1989). 
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SPECTRAL PROPERTIES OF MATRICES WITH PRODUCTS 

OF BINOMIAL COEFFICIENTS AS ENTRIES 

LOTHAR BERG 

Fachbereich Mathematik, Univer3ität Ro3tock, D-0-2500 Ro3tock, FR Germany 

and 

KONRAD ENGEL 

Fachbereich Mathematik, Univer3ität Ro3tock, D-0-2500 Ro3tock FR Germany 

ABSTRACT 

For a class of square matrices with two parameters and products of binomial 
coefficients as entries it is shown that the eigenvalues are also binomial coeffi­
cients and that the entries of the corresponding eigenvectors can be expressed 
as sums over products of binomial coefficients. In the proof the Cauchy integral 
formula for the coefficients of a Taylor series is used. 

1. Preliminaries 

We consider the square matrices A = ( ai;) of order n + 1 with 

.. = (i + j) (m - i - j) 
a~ . . 

J n -1 
(1) 

n;::: 1 and i,j = 0, 1, ... , n, where m is an additional real parameter. Our main result 

is that the binomial coefficients 

(m + 1) (m + 1) (m + 1) (m + 1) 
0 ' 1 ' 2 ,„„ n (2) 

are eigenvalues of A. For the proof of (2) we construct the corresponding eigenvec­

tors explicitly and obtain a series of identities for sums over products of binomial 

9 
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coefficients. Similar identities are weil known in the literature, cf. H. Schmidt6 , 

and in particular in the framework of combinatorics, cf. E. Bannai and T. lto1 and 

J. Riordan5 • For natural numbers m ~ 2n the matrices A can also be interpreted 

combinatorially, since the entries (1) are the numbers of monotone functions from 

Nm-n ~ Nn = {O, 1, 2, ... , n} which map i onto j. An example with n = 2 and 

m = 7 in lexicographical order of the functions in the columns is 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 2 2 

2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 1 2 2 2 2 2 

3000000 1121 122 12221 2222 

4 0 0 0 1 2 1 2 2 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 
5 0 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 

where 

a10 = 15 = G) G) , au = 10 = G) G) , a12 = 3 = G) G) 

a20 = 10 = G) G) , a21 = 12 = G) G) , a22 = 6 = G) G) 
The case m = 2n -1 can be treated analogously by means of monotone functions from 

Nn ~ Nn under the additional assumption that the functions have the number n as 

fixed point. Such functions appear in the framework of linear involutory semigroups, 

cf. L. Berg and W. Peters4 • The matrices A can also be used in numerical tests, cf. 

L. Berg2•3 and G. Zielke7 

2. The eigenvectors of A 

In order to prove our statement concerning the eigenvalues (2) of A we construct the 

corresponding eigenvectors. 
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Theorem 1. For j = 0, 1, ... , n the matrix A has the eigen values (mf) with the 

eigenvectors Yi = (y;J, where 

(3) 

Proof. First let us mention that the first component of Yi is Yoi (;), so that 

Yi cannot be the zero vector. We introduce the matrices Y = (y0 , y1 , ••• , Yn), B = 

(b;j), D = (d;i) and M = (m;j) with 

as weil as 

(5) 

Then we have Y = BD, and we shall show the equations 

AB= BM, MD= DS (6) 

which immediately imply our assertion in the form AY = Y S. 

In the following we often use the weil known identities 

(7) 

and 

t (p ~ k) (k ~ q) = (; ~ !) 
k=O 

(8) 

with integers p, q from the interval [O, n], real a, band (~) = 0 in case of k < 0. 
In order to prove the first equation of (6), we introduce the notations 

for the elements of the left-hand side AB and the right-hand side B M, respectively. 

In view of (i~k) (~) = (i~i) G~~) we have according to (7) and (8) 

~(m-i-k)(i+k.) = t(-lt-i(n-m+i-1)(-j.-i:-l) 
~ n -k k -J k--O n -k k -J 
k=O 

. (n -m - j - 2) (m + 1) (-It-J . = . 
n-J n-J 
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and therefore 

Hence the symmetry formula (!) = Ck) and (8) immediately imply l;j = Tij· 
In order to prove the second equation of (6) we use analogously the notations 

MD= (l;;), DS = (r;;) with 

l;; = ~(-l)kG)(:~;)(n~k)(m+k;n-j) 

r;; = (-l);(m;l)(n;i)(m+i~n-j) 

According to (';:~:) (njk) = (mj1) (';:~::::}), (7) and (7) (nfrkm-l) = 
(n+j-m-1) (n+j-m-i-1) h 

i k-i we ave 

l;; = (m :- 1) (n + j -: m -1) t (m + 1 -~) (n + j - m ~ i - 1) 
J i k=O n-k-J k-i 

The sum is equal to (n~i~;) = (nji), so that according to (7) we again obtain l;j = r;;, 

and (6) is proved. 

Remark. The matrix B with (4) is a regular triangular matrix, the inverse of 

which has the entries (-l)i-iC)- Hence Y = BD is equivalent with D = B-1Y, i.e. 

the lines of the matrix D are the differences of the lines of the matrix Y, and the 

representation (3) considered as a polynomial in m is nothing eise than the Newton 

interpolation representation. 

3. The eigenvectors of AT 

lt is also possible to construct the eigenvectors of AT belonging to the eigenvalues 

(2). 
Theorem 2. For j = 0, 1, ... , n the matrix AT has the eigenvectors Xj = (x;j) 

belonging to the eigenvalues (mj1), where 

(9) 
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Proof. First we introduce the notation N = (n;j) with 

n;; = ( -I)n-j ( i .) (m + 1 -:-- j) 
n-1 n-i 

(10) 

and show the validity of the equation 

(11) 

The elements on the left-hand side and right-hand side, respectively, are 

l;j = (-lr-i (m + ~) t (i) ( k .) (m + 1 -j) 
n-i k=O k n-1 n-k 

Tij = (-lr-i( i .)(m+l-:-j)(m-:-1) 
n-1 n-i 1 

(-ir-i(m+~)( i .)t(m+l-j)(i+j.-n) 
n-i n-1 k=O n-k k+1-n 

(-lr-i(m+~)( i .)(m+i~l-n) 
n-i n-1 1 

and it is easy to see that the equation l;i = T;j is satisfied, which proves (11 ). 
The first equation of (6) implies AT 3-T = 3-T MT with 3-T = (8- 1 f, so 

that according to (11) we have AT 3-T N = 3-T NS. Introducing the matrix X = 
(x0 , xi, ... , xn) with the entries (9) and using (5) the assertion of the theorem can be 

expressed as ATX = XS. Hence it is proved, ifwe show that 

(12) 

This representation implies Xnj = (-1r-i(j), so that Xj cannot be the zero vector. 

On the other hand, if we introduce the notation C = ( Cij) with 

.. _ _ ; (n + i - j) (m - n - i) c,, - ( 1) . . 
n-J J 

(13) 

the matrix X with the entries (9) has the representation X= 8C with (4). Conse-

quently we have to prove 

( 14) 



14 L. Berg a.nd K. Engel 

For the entries of the left-hand side of (14) we use the notation 

In view of the Cauchy integral formula for the coefficients of a Taylor series we obtain 

.. - __ 1 ff n 1(k)(k)(l+z)n+l-i(l+w)m-n-I 
f,i - 471"2 L (-1) i [ zn-i+lwi+I dzdw ' 

k,l=O 

if we integrate over small circles around the point zero in the positive direction. The 

sum over l can be calculated explicitly, so that 

.. - __ 1 ff n (k) (1 + z)n-j(l + wr-n-k k J,3 - 4 2 """"' . "+l "+I (w - z) dzdw . 
71" .l....J i zn-1 wi 

k=O 
(15) 

k 
According to (w-z)k = L: (7)wk-1(-z) 1 and the fact that either l > n-j or k-1 > j 

l=O 
for k > n, the integrals in (15) are zero for these k. Hence we can sum up to infinity 

and find in view of (7) = (k~;) = ( -1 )k-i (~;.=-/) that 

1 ff(l+zr-i(l+w)m-n-i ;( w-z)-i-1 
f;; = - - . . ( w - z) 1 - -- dzdw 

471" 2 zn-1+1w1+1 1 + w 

1 ff (1 + z)n-i-j-1(1 + w)m+l-n i 
- 4-2 +i "+l (w - z) dzdw . 

71" zn-i wJ 

Now, using 

and applying once more the Cauchy coefficient formula, we obtain 

.. = ~ _ i-I (i) (n - j - l - 1) (m + l + 1 -n) f.1 .l....J( 1) l . . 
l=O n - 1 1 

and in view of 

( n - j - ~ - 1) = (-1 r-j ( l .) 
n-1 n-1 

(i) ( l ) (i + j - n) ( i ) 
l n-j - i-1 n-j 

and the substitution k = i - l moreover 

f;; = ( _ 1 )n-j ( n ~ j) ~ ( -l )k ( i + ~ - n) ( m + i + ~ - k - n) 
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Because of j S n it suffices to sum up to i + j - n. Applying the symmetry formula 

to the last binomial coefficient, (8) and two times (7), the sum can be expressed by 

(m~~;i), so that according to (10) we have proved the desired result f;1 = nii· 

Remark. Analogously as before the consequence C = B- 1 X of X= BC shows 

that the lines of C are the differences of the lines of X, and (9) has the form of a 

Newton interpolation polynomial with respect to the variable m. 

4. Determinants 

The matrices B and N are triangular matrices, so that (4), (10) and (12) imply 

det B = 1 and 

det X = det N = IT (m + 1 - 1) 
j=l J 

( 16) 

This means that X is a regular matrix, if and only if 

m ~ {O, 1, ... , 2n - 2} (17) 

In this case the set of eigenvalues (2) is complete and 

detA = IJ m. n ( + 1) 
j=l J 

But according to continuity this formula is also valid for the exceptional values of m. 

The formulas 

AY=YS, ATX=XS 

and therefore AX-T = x-T S show that in case of (17) there must exist a diagonal 

matrix T with Y = x-rr, i. e. 
(18) 

In view of Y = BD and (12) this means NTD = T, and from (4) and (10) we find 

for the diagonal elements ti of T that 

. _Ln _ n+k-j ( k ) (m + 1 -j) (n - k) (m + k - n - j) 
t] - ( 1) . k . k 

n-J n- J 
k=O 

Since 
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where b;; is the Kronecker symbol, we obtain moreover 

t; = (m + ~ - j) (m - ~j) = (~) (m - j) m - j.+ 1 
J n - J J n m - 2J + 1 

(19) 

and as before the first equation is also valid for the exceptional values of m. Finally, 

(16), (18) and (19) imply 

det y = Il (m + 2~ - 2n) 
j=l J 

(20) 

so that Y is also regular for (17). 

5. Examples 

To illustrate the results we consider the case n = 2 in detail, where we have 

A = ( (m+2) 2: = : 6: ) 'B = ( ~l 02 :1 ) 's-1 = (-1: -2~ :1 ) 
(m-2) (m-3) 3m _ 9 

2 

2 

4-m 

6-2m 

D ' c ~ (-: 
,N 

m-2 

4-m 

-2 

m-2 

6-2m 

3m-12 

(m-2~m-3) ) 

m-3 

1 

(m-2~m-3) ) 

(m-3)(m-4) 
2 

(m-4)(m-5) 
2 

O (m-l~m-2) ) 

-m m-1 

-2 1 
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In the case m = 1 the first and the last of the three eigenvalues 1, m + 1 and (m~t )m 

coincide, and the matrix A is not similar to a diagonal matrix as it is seen from 

This representation shows additionally that there are no further eigenvalues and ei­

genvectors. In the cases m = -1 and m = -2 also two of the three eigenvalues 

(2) coincide, but in view of ( 17) nevertheless Y is regular and A diagonalizable by 

y-1 AY = S with (5). 
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1. h1troduction 

Let X be a real Banach space and J: X --+ R. The functional J is said 
tobe convex iffor u,v in X and for >.,µ > 0 with >.+µ = 1, J(>.u+µv) ~ 
>.J(u) + µJ(v). If for u, v (u "# v) in X and >., µ > 0 with >. + µ = 1, the strict 
inequality J(>.u + µv) < >.J(u) + µJ(v) holds, then .! is called strictly convex. 
J is said tobe coercive if J(v)--+ +oo as llvll--+ +oo. 

Let u E X. If there is a bounded linear functional P„: X --+ R such that 
for every v in X and a in R we can express 

J(u + av) - J(u) = a[P„(v) + tjJ(a, v)] , 

where ,P{0t, v)--+ 0 (uniformly in von every bounded subset of X) as 0t--+ 0, 
then we say that .! is differentiable at u and P„ is the Frechet derivative of J 
at u and write J'(u) for P„. 

In this lecture 1 have considered the minimization of the functional J: 
X --+ R over a closed convex subset of X when it is coercive and weakly lower 
semi-continuous. For the uniqueness of the minimum point strict convexity 
of .! is necessary. Then the results are applied to find the solution of some 
standard Boundary Value Problems. 

2. Minimization of Functionals 

Throughout this section we assume that X is a real reflexive Banach space, 
K is a closed convex subset of X and J : X --+ IJ,. In this direction we have 
the following important theorem. 

Theorem 2.1. If the functional J : X --+ R is coercive, weakly lower semi­
continuous and strictly convex, there exists a unique point u in K such that 

J(u) = inf{J(v): v E K} . (1) 

19 
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Furthennore if J is differentiable at u, then 

J'(u)(v - u) ~ 0 for all v E K . (2) 

Also if K is a closed subspace of X, then 

J'(u)(v) = 0 for all v E K . (3) 

Proof. The proof of the theorem may be found in [1] and [3]. But for com­
pleteness, 1 give the proof here. 

Let m = inf{J(v): v E K}. Clearly 

m< +oo. (4) 

There is a sequence { Vn} in K such that 

m = lim J(vn) . 
n-oo 

lt will be shown that { Vn} is bounded. On the contrary, let us assume that 
it is not bounded. Then {vn} has asubsequence {vnJ such that llvn;ll--+ +oo 
as i--+ oo. Since J is coercive J(vn;)--+ +oo as i--+ oo which contradicts (4). 
Hence { Vn} is bounded. 

Again, since X is reflexive, {vn} has a weakly convergent subsequence. 
Without loss of generality we may take { Vn} to be convergent. Let u be the 
weak limit of { Vn}. Since K is closed and convex, it is weakly closed. This 
gives that u E K. 

Furthermore since J is weakly lower semi-continuous we have 

J(u) ~ lim J(vn) = m ~ J(u) . 
n-oo 

So we obtain 
J(u) = m = inf{J(v) : v E K} . (5) 

Lastly assume that u1, u2 (u1 #: u2) are two points in K such that J(ui) = 
m = J(u2). Since ~u1 + ~u2 E K and J is strictly convex 

This contradicts the definition of m. Hence u is the unique point in K 
satisfying (5). 
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Now we deduce (2) and (3). 
Let v E K. Take any a in R with 0 < a < 1. Write w = av + (1- a)u. 

Then w E K. So by (1) 

J(u):::::; J(w) = J(av + (1- a)u) = J(u + a(v - u)) , 

or, 

J(u + a(v - u)) - J(u) ~ 0. (6) 

Since J is ditferentiable at u, we can express 

J(u + a(v - u)) - J(u) = a[J'(u)(v - u) + <P(a, v)] 

where <P(a, v) - 0 (uniformly in v on every bounded subset of X) as a - 0. 
Using (6) we get, J'(u)(v - u) + <P(a, v) ~ 0. Letting a - 0, 

.J'(u)(v - u) ~ 0 (7) 

for every v E /{. 
Next suppose that /{ is a closed subspace of X. Then I< is automatically 

convex. Take any v in /{, then v + u E /{. So from (7) 

J'(u)(v) ~ 0. 

Since -v E /{ we also get 

J'(u)(-v) ~ 0 or J'(u)(v):::::; 0 [·: J'(u) is linear] 

Hence we obtain J' ( u )( v) = 0 for every v E J(. 

Now we consider a special type of functional J: I< - R which is suitable 
for application to linear boundary value problems. We take J as follows. 

1 
J(v) = 211"(v, v) - L(v) for v EX, (8) 

where 11": X x X - R is bilinear and L: X - R is linear. 

Definition 2.1. The bilinear form 11" on X is said tobe continuous if there is 
a positive number M such that 

111"(u,v)I:::::; Mllull · llvll for all u,v EX. 
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The bilinear form 1T on X is said to be X -elliptic or simply elliptic if there 
is a positive number a such that 

1T(v,v) ~ allvll2 for all v EX. 

lf 1T is elliptic, from definition it follows that 7r( v, v) ~ 0 for every v E X 
and 1T(v,v) > 0 ifv =f; 0. 

Theorem 2.2. Let 1T be a continuous symmetric bilinear form on X and L be 
a bounded linear functional on X, and let J : X--+ R be defined by (8). 

(i) Then J is continuous, differentiable and convex. 
(ii) If 1T is elliptic, then J is strictly convex and coercive. 

Proof. (i) Continuity of J is obvious. 
Let u E X. Take any v E X and a E R. We have 

1 
J(u + av) = "21T(u + av, u + av) - L(u + av) 

{ 1 } 1 2 = "21T(u,u)- L(u) + a{?T(u,v)- L(v)} + 2a 7r(v,v) 

= J(u) + a[Pu(v) + ef>(a, v)] , 

where Pu(v) = 7r(u,v)- L(v) and ef>(a,v) = ~a1T(v,v). Clearly Pu is linear. 
Since 1T and L are continuous there are positive numbers M and ß such 

that 
11T(v,w)I::; Mllvll · llwll} 

IL(v)I::; ßllvll 
for v,w EX. (8a) 

We have 

IPu(v)I::; 17r(u, v)I + IL(v)I::; Ml!ull · llvll + ßllvll = (Mllull + ß)llvll 

This gives that Pu is bounded. 
Again, lef>(a, v)I = ~lal j7r( v, v)I ::; ~ lal · Mllvll2. So ef>(a, v) --+ 0 (uniformly 

on every bounded subset of X) as a --+ 0. Hence J is differentiable at u and 
J'(u) = 7r(u, ·) - L(-). 

Now let u, v be any two elements in X and ..\, µ > 0 with ..\ + µ = 1. Then 

1 
J(..\u + µv) = "21T(..\u + µv, ..\u + µv) - L(..\u + µv) 

1 
= 2{..\2 7r(u, u) + ..\µ1T(u, v) + ..\µ7r(v, u) + µ27r(v, v)} 

- ..\L(u) - µL(v) 
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1 
U(u) + µJ(v) = 2{.h(u, u) + µ-Tr(v, v)} - .U(u) - µL(v) . 

A](u) + µJ(v) - J(Au + µv) 
1 

= 2Aµ{?T(u, u) - 7r(u, v) - 7r(v, u) + ?T(v, v)} 

1 
= 2 Aµ?T(u-v,u-v)2:0 

which gives that J is convex. 

(ii) Next suppose that 7T is elliptic. There is a positive number a such that 

7r(v, v);::: aJJvJJ 2 for v EX . 

If u f:. v, then from the above, 

AJ(u) + µJ(v) > J(Au + µv). 

Hence J is strictly convex. 
Take any v E X. Then we have using (Sa) 

1 1 (1 ß ) J(v) = 27r(v, v) - L(v) 2: 2aJJvJl2 - ßllvll = llvlJ2 2a - rr;;iJ 

> ~allvJJ 2 if IJvJJ > 4: . 
This gives that J(v)---+ +oo as JlvJJ--+ +oo. Hence J is coercive. 

Theorem 2.3. Let 7T be a conlinuous symmetric and elliptic bilinear form 
on X and L be a bounded linear functional on X. Then there exists a unique 
element u in K such that 

(i) 7r( u, v - u) 2: L( v - u) for every v E K. lf K is a closed subspace of X, 
then 

(ii) 7r(u, v) = L(v) for every v E K. 

Note: The result (ii) is known as Lax-Milgram Theorem. 

Proof. Let us take J(v) = t?T(v,v) - L(v) for v E X. By Theorem 2.2, 
the functional J is continuous, differentiable, strictly convex and coercive. 
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Clearly J is weakly lower semi-continuous. This theorem now follows from 
Theorem 2 .1. 

3. Application to Differential Equations 

In this section we show that well-known boundary value problems can be 
transformed to a functional equation of the form 

1T(u,v) = L(v) (9) 

with suitable Banach space X and closed subspace ](. lt will be shown that 
every classical solution of the given BVP is a solution of the functional equa­
tion (9), but the converse, in general, is not true in ordinary sense. But it is 
true in distribution sense. So we require some knowledge of distribution and 
Sobolev spaces which we introduce first. 

Space of test functions and distributions 

Let n be an open subset of Rn and let /: n-+ R be continuous. We denote 
by Supp(/) the support of the function f and define 

Supp(/) = cl{x: XE n and /{x) 'I O} . 

If the set Supp{f) is compact we say that f is a function with compact 
support. We denote by V(O) the set of all infinitely differentiable functions 
f: n -+ R with compact support contained in n. lt is easy to see that V(O) 
is a linear space over R. Certain topology is introduced on V{O) to make it 
a linear topological space. A sequence {<Pm} in V(O) converges to zero iff the 
following two conditions hold. 

{i) There is a compact set ]( C n such that Supp(<Pm) C ]( for every 
positive integer m. 

(ii) The sequences {<Pm} and {D 0 <,6m} converge uniformly to zero on ]( for 
every multi-index a = { ai, a2, ... , an) where 

A bounded linear functional on V(O) is called a distribution on n. We 
denote by V'(O) the set of all distributions on 0. A distribution on n is also 
called a generalized function on n. 
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Partial derivative of a distribution 

Let T be a distribution on 0. The partial derivative %~ of T is defined by 

oT (</i) = -T( o<fi) for all </i E 'D(O) . 
OX; OX; 

lt is easy to see that %'{ is also a distribution on n. For any multi-index 
Cl'= (a1,a2, ... ,an) we define D 0 T by 

D 0 T is also a distribution on n. 

Locally integrable function 

A function f: n --. R is said to be locally integrable if for every compact 
subset J( of n l lfl < +oo · 

lt is easy to see that every continuous function is locally integrable; also 
every function f E L(O) is locally integrable. If 0 is bounded, then f E L 2(0) 
is locally integrable. 

Example. Let /: 0 --. R be locally integrable. Define the mapping Tr 
'D(O) _. R by 

T1(<P) = 1n N for every <PE 'D(O) . 

Clearly T1 is linear. Take any sequence {</im} in 'D(O) converging to zero. 
Then there is a compact set K c n such that 

(i) Supp(<fim) C K for every m. 
(ii) {</im} and {D0 <fim} converge uniformly to zero on K. We have 

T1(</im) = l Nm (m = 1, 2, 3„ .. ) . 

Since {<Pm} converges uniformly to zero on K limm-oo T1(<Pm) = 0. 
So T1 is continuous at zero and hence it is bounded. Therefore T1 is a 

distribution on n. 
Let .C(O) denote the set of all locally integrable functions on 0. If /i, h E 

.C(O) and A E R, we can verify that 

Th+h =Th+ Th 

T>.Ji = ATJi . 
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Let t: = { T1: f E .C( n)}. Then t: C V' ( n) and t: is a linear space over 
R. Also t is isomorphic to .C(O). So we can identify T1 with /. With this 
agreement we have t: = .C(O) c V'(O) and therefore a distribution on n is 
called a generalized function. 

Sobolev spaces 

Let m be a positive integer. We define the Sobolev space Hm(n) as follows. 

For u, V in Hm(n), the inner product is defined by (u, v) = {l::1a1::;m In D 0 u. 

D 0 v}t. lt can be verified that Hm(n) is a Hilbert space. Clearly V(O) C 

Hm(n). We denote by H[)(O) the closure of V(O) in the space Hm(n). 

Solution of a partial differential equation 

Let n be a bounded open subset of Rn and let m be a positive integer; and 
let 

L = L a 0 D 0 

lal::>m 

where a0 E cm(n). Now consider the partial differential equation 

L(u) = /, where f E cm(O) . (10) 

lf there is a distribution T on n such that L(T) = T1, then T is called 
a distribution solution of the partial differential equation (10). If there is a 
locally integrable function g on n such that L(T9 ) = T1, then g is called a 
weak solution of the partial differential equation (10). 

If there is a function w E cm(n) such that L(w) = f pointwise on n, then 
w is called a classical solution of the partial differential equation (10). 

Now we consider the important Boundary Value Problems such as Dirichlet 
Problem, Neumann Problem, etc. and transform them to the form (9). 

(A) Dirichlet Problem 

Let n be a bounded open subset of R3 . Consider the following Boundary 
Value Problem. 

-\12 u+qu = / in f2„·(a) 

u = 0 on r ... (b) 
(11) 

where r denotes the boundary of n and q, f E C(O) and q(x) 2: a > O for all 
x E n. 



Optimization of Functionala and Application to Differential Equations 27 

The boundary value problem ( 11) is known as Dirichlet Problem. 

Let u be a classical solution ofthe BVP (11). Then u E C 2(0) and satisfies 
ll(a) and ll(b ). 

Let v E HJ(ü). Multiplying ll(a) ~y v and integrating we get 

-l (\7 2 u)v + l quv = l f v . 

Using Green's Theorem we have 

l \i'u\i'v + l v ~: + l quv = l f v 

where V denotes the outward unit normal to r at the point X E r. Since 

v(x) = 0 on r, we obtain 

l (\i'u\i'v + quv) = l fv 

or, 

7r(u, v) = L(v) , (12) 

where 

7r(u, v) = l (\i'u · \i'v + quv), L(v) = l fv 

lt is easy to verify that 7r is a continuous, symmetric and HJ-elliptic bilinear 

form on HJ(O). From above we see that every classical solution of the BVP 

(11) is a solution of (12). 
Next suppose that u E HJ(O) is a solution of (12). For any </JE V(O) C 

HJ(O) we have 

-(\72u)(</J) + (qu)(<P) - f(<P) 

= (\i'u)(\7</J) + (qu)(<P) - f(<P) = 7r(u, <P) - L(<P) = 0, 

or, 

(-\72 u + qu - f)(<P) = 0. 

This gives that 

- \7 2u + qu - f = 0 [in distribution sense]. 
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Hence u is a weak solution of the BVP (11). Since HJ(n) is a closed 
subspace of H 1(S1) by Lax-Milgram Theorem the BVP (11) possesses unique 
weak solution. 

(B) Neumann Problem 

Let n be an open bounded subset of R:3. Consider the following Boundary 
Value Problem. 

-\72u + qu = f 

öu = 0 
811 

in n ... (a) 

on r ... (b) 
(13) 

where /, q E C(Ö) and q(x) ~ a > 0 for X E Ö; r being the boundary of n 
and 11 the outward unit normal at x Er. The BVP (13) is known as Neumann 
Problem. 

Let u be a classical solution of the BVP (13). Then u E C2 (Ö) and satisfies 
13(a) and 13(b). Let v E HJ(!l). Multiplying 13(a) by v and integrating we 
get 

Using Green's Theorem we obtain 

l \7u · \7v + l v ~: + l quv = l f v 

or 

l(V'u·V'v+quv)= fn1v [·:~:=0 on r) 
or 

11"( u, V) = L( V) (14) 

where 11" and L are same as in previous case. 

(C) The elasticity system 

Let S1 C R3 be a bounded open set representing the volume occupied by 
an elastic body and r be its boundary. Let r be partitioned into two parts f 0 

and r1 with surface measure of ro being strictly positive. 
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Fig. 1. 

Assume that a body force f = (/1 ,f2,f3 ) acts on the body and a surface 
force 9 = (91,92,93) acts on f1. Let u = (u1,u2,u3) be the displacement 
vector. Then the strain tensor (c;;) is defined by 

1 (Öu; Öu;) c;; ( u) = - - + -
2 öx; Öx; 

(i,j = 1,2,3). {15) 

Let u;; denote the stress tensor. The constitutive law relating strain and 
stress is given by 

3 

u;;(u) = A ( Eckk(u))h;; + 2µc;;(u) , 
k=l 

{16) 

A and µ are Lame's coefficients where A ;:::: 0 and µ > 0. The elastic system 
consists of the following Boundary Value Problem. 

3 ö 
E -(u;;(u)) = f; m n ... (a) 
i=l Öx; 

u = 0 on r 0 ••. ( b) 
3 

l:u;;(u)n;=9; on f1···(c) 
j=l 

where n = (n 1 ,n2 ,n3 ) is the outward unit normal to the point x on f 1 . 

{17) 

Let V= {v: v = (v1,v2,va), v; E H 1(!1) and v = 0 on fo}. Then Visa 
closed subspace of H 1(!1). 

Suppose that u is a classical solution of the BVP (17). Then u E C 2(0). 
Take any v E V. Multiplying 17(a) and 17(b) by v;, adding the two together 
and then integrating we get 

- f t o~- (u;;(u))v; + 1 .t u;;(u)v;n; = 1fv+1 gv 
ln i,j=l , r. ,,,=l n r. 
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or 

Using Green's Theorem we have 

a f a a -fr E O'i;(u)vinj + lr E u;;(u) a:i. 
r, ;,;=1 n ;,;=1 ' 

3 

+ l L O'i;(u)vin; = L(v) 
r, ;,;=1 

or 

3 ) 1 ov; ov; - f L u;;(u) (~ + ~ = L(v) 
2 Jn .. _1 ux1 ux, 

•,J-

[·: O'ij is symmetric] 

or fn u;;(u)c;;(v) = L(v). 
Now substituting the value of O'i;(u) obtained from (16) we get 

3 3 

A 1 div(u) L t5i;c;;(v) + 2µ 1 L ci;(u)ci;(v) = L(v) 
n i,j=l n ;,;=1 

or 
3 

A 1div(u)div(v)+2µ 1 L ci;(u)ci;(v) = L(v) 
n niJ=l 

or 
7r(u,v) = L(v), (18) 

where 
3 

7r(u,v) = A 1div(u)div(v)+2µ 1 L c;;(u)c;;(v). 
n n i,j=l 

Suppose that f E (L2(f2))3 and g E (L2(r))3 • Then 11' is continuous, 
symmetric and V-elliptic bilinear form on V. So the equation (18) has a 
unique solution in V which is the weak solution of the elastic system (17). 
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Note. The equation of the form 

7r(u,v) = L(v) 

may be regarded as the abstract formuJation of each of the above BVP's. 

Method of finding the solution of the equation 11"(u,v) = L(v) 

Let H be a real Hilbert space and let 7r: H x H --+ R be symmetric, 
continuous and H-elliptic biJinear form and Jet L: H --+ R be a bounded 
linear functional. Then by Lax-MiJgram Theorem there exists a unique element 
u E H such that 

7r( u, v) = L( v) for every v E H . (19) 

We assume that H is a separabJe space. Then H has a countabJe complete 
orthonormal basis { w;} ~ 1 ( say). 

Write 

Then 
llu - snll --+ 0 as n--+ oo . (20) 

Take any positive integer n and consider the subspace Vn spanned by 
w1, w2, ... , Wn. Then Vn is a closed subspace of H. So by Lax-Milgram The­
orem there exists a unique eJement Un E Vn such that 

or 

7r(un, v) = L(v) for v E Vn . (21) 

We show that Jim Un = u. Take any v E Vn. From (19) and (20) we get 

7r(u, v) = L(v) = 7r(un, v) 

7r( u - Un, V) = 0 for V E Vn . (22) 

Since 7r is continuous and H-elliptic there are positive numbers O' and M 
such that 

17r(w,v)I::::; Mllwll · llvll, 7r(v,v) ~ allvll2 , for w,v EH. 

We have 

allu - Unll2 ::::; 7r(u - Un, U - Un) = 7r(u - Un 1 U - Sn+ Sn - Un) 

= 7r(u - Un,U- sn) + 7r(u- Un,Sn - Un) 

=7r(U-Un,U-Sn) [ßy(22)j 

::::; Miiu - Unll · llu - snll · 
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or llu - unll ~ !llu - snll· 
Using (20) we obtain limn-oo Un = u. 

Method of finding u„. 
We have Un = At w1 + A2w2 + · · · + AnWn, where Ai, A2, ... , An are re 

numbers tobe determined. Substituting in (21} and taking v = w1, w2, ... , w„ 

respectively we obtain the following system of linear equations 
n 

LA;7r(w;,w;) = L(w;) (j = 1,2, ... ,n). 
i=l 

Write 
a;; = 7r( w1, w;) } 

b; = L(w;) 
i,j= 1,2, ... ,n. 

Then the system (23} can be written as 

auA1 + ai2A2 + a13A3 + · · · + a1nAn = bi 

a21A1 + a22A2 + a23A3 + · · · + a2nAn = b2 

lln1A1 + lln2A2 + an3A3 + · · · + llnnAn = bn 

(23} 

We now show that the coefficient matrix A = (a;;} of the system (24} is 
positive definite and hence non-singular. 

Let e = ({1,6, ... ,{n) E Rn and V = 6w1 + 6w2 + ... + {nWn· Then 
v E Vn. We have 

n n n n 

7r(v, v) = L L 7r(w;, w; ){;{; = L La;;{;{; = {A{' . 
i=j i=l 

By the ellipticity we have 

i=l i=l 

{A{' = 7r(v, v) ~ o:llvll2 > 0 for { -::j:. 0 . 

So Ais positive definite and hence non-singular. Therefore the system (24} 
has a unique solution for (A1, A2, ... , An) which determines Un and hence the 
solution u. 
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ABSTRACT 

In thls paper we study some propertles of a speclal 

cla1s of solutlons of an alternative Ca.uchy equatlon for 

functlons from a stable croup G in 
n 

R .In the case n=J 

the class of solutlons assumlng the value zero In the 

unlty of G ls completely descrlbed. 

1.- During the last years the alternative Cauchy equation 

f(xyl-f(x)-f(y) e V 

has been extensively studied in different situations concerning 

the domain of the function and the given set V. 

The problem was posed by the first time by R. Ger 7 in the case f 

real valued function defined on a group and V={O,lf and, in more 

general form, by M. Kuczma8 . 

Many results about the equation above have been published 

(see references) for different finite sets V and in most of them 

the main tool used to obtain the description of the solutions has 

been the stability in Hyers-Ulam sense. 

In a former paper5 the case where V is a set of independent 

vectors in a Banach space has been considered, so it is natural to 

ask for the solutions of the previous equation when the vectors in 

V are not independent. 

In the present paper we study the special case where V is 

given by all the vertices of the unit cube in IR" but one and the 

function f, defined on a stable group G, takes the value 0 on the 

unity of G. 
33 
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2.- In this short section we recall some definitions and 

results we use in the following. They can be found in 5 . 

DErINITION 1.- Let G be a group and B a Banach space. The 

group G is called stable (in the sense of Hyers-Ulam) if for every 

function f:G---+B such that llf(xy)-f(x)-f(y)ll:5o for all x,yeG and 

some o>O, there exists a (unique) 4>r e Hom (G,B) such that 

114>r(x)-f(x)ll:5o for all xeG. 

lt is weil known5 that every amenable group (and so every 

commutative group) is stable. 

THEOREM 1.- Let G be a stable group, B a Banach space and M a 

bounded subset of B.Assume the function f:G ---+B is such that 

f(xy)-f(x)-f(y)eM for all x,yeG.Then the range of the function 

h:=f-4> is contained in C(-Ml (the closure of the convex hull of 
f 

the set -M). 

Moreover if c is the identity of G and h(c l=-µe-M then 

hCxJe{-(µ+MJ+CTMl>liCC -Ml. 

3.- We consider the functional equation 

f(xy)-f(x)-f(yleV 
n 

(1 ) 
n 

where f:G ~n. G is a stable group, V is the subset of !Rn given 
n 

by V
11
=(0,e1, .. „e„,e1+e2 , ... ,en-I+en, ... ,e2+ ... +enf, where 

{e , ...• ~ f is the canonical bases of !Rn, that is V is the set of 
1 n n 

all vertices of the unit cube of !Rn but e +e + ... +e 
1 2 n 

Note that if n=l we have the equation 

f(xy)-f(x)-f(y)eV1=W,lf 0 1l 

which has been completely solved by G.L. Forti4 ; we shall describe 

a special class of solutions of Eq. in term of the solutions of 
n 

Eq. 11 

Since G is stable, by Theorem 1, in order to get all 

solutions of Eq. it is enough to determine all solutions f 
n 

of Eq. l n with the additional condition that their range is a 
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subset of C(-V l=C(-V l and then add to each of them an arbitrary 
n n 

homomorphism of G in Rn. 

each component f is a solution of 
J 

contained in C(-V n l then the range 

interval [-1,0). 

1 , then obviously 
n 

Eq. 11 and if the range of f is 

of every f is a subset of the 
J 

We denote with p :Rn~ the projection on the j-th 
J 

coordinate axis; for every j=l, ... ,11 and a=O,l we define 

S :={xeG: f (x)=-a>. 
J,a J 

We have the following. 

LEMMA 1.- Let f:~ C(-V l be a solution of Eq.I .Then 
n n 

i) the sets S are either empty or subsemigroups of G; 
J,a 

ii) H :=S uS is a non empty normal subgroup of G. 
J j,O J,I 

iii) if y e H and x e G\H, then f (xyl=f (x)=f (yx). 
J J J J J 

PRoor- We prove the lemma for j=l.Let x,yeS , that is 
1,0 

f 1(x)=f1(y)=O.By Eq. In, f(xy)=f(x)+f(y)+v, for some veVn; if 

p 1(v)=O, then f 1(xy)=f1(xl+f1(y)=O, so xyeS100. 

The case p 1(v)=l is impossible, otherwise we get 

f 1(xy)=f/xl+f1(y)+l=l, contrary to our assumption that the range 

of f 1 is in (-1,0]. 

Analogously we prove that S , if not empty, is a semigroup. 
1,1 

Let now xeS and yeS ( or vice-versa); then 
1,0 1,1 

f 1(xy)=f1(x)+f1(y)+p1(vl=-l+p1(v), since p 1(v) equals 0 or 1, we 

have xyeH . If c denote the identity of G, then by Eq.1 we have 
1 n 

f(c)e-Vn, so f 1(c)e<0,-I>, i.e. ceH1. 

Now take xeH; we have f(x-1)=-f(x)+f(cl-v, for some veV 
1 n 

lf f 1{c)=O, then 

f (x- 1 )=-f (x))-p (v)e{-1,0,J>l'\C(-V l=H,O>; 
1 1 1 n 

if f 1 (cl=-1, then 

f (x- 1)=-f (xl-1-p (v)e{-2,-1,0ff\C(-V )={-1,0f; 
1 1 1 n 

thus x- 1eH, i.e. H is a subgroup of G. 
1 1 

Let now xeH1 and yeG'\H1; we have 

f(y- 1xy)-f(y-1)-f(xy)=v1 f(xyl=f(x)+f(y)+v 2 • 
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-1 
f(c)-f(y l-f(y l=v 3 , 

for some v1,v2,v3eVn; hence 

f(y- 1xy)=f(y-1)+f(xy)+v =f(x)+f(c)-v +v +v , 
1 3 1 2 

and so f (y-1xy)=f (x)+f (c)-p (v )+p (v )+p (v ). 
1 1 1 1 3 1 1 1 2 

From f (x)+f (c)-p (v )+p (v )+p (v )e{-3,-2,-l,O,l,2f 
1 1 1 3 1 1 1 2 

and 

-lsf (y-1xy)sO, we get f (y-1xy)e{-J,0}, i.e. y-1xyeH; thus H is 
1 1 1 1 

normal. Let now yeH 1 and xeG\H 1: 

f 1(xy)=f1(x)+f1 (y l+p 1 (v )=f 1 (x)+{-l,0}+{0,l}e[-1,0] 

implies f 1(y)+p1(v}=O, i.e. iiil. 

and this 

• 

We now look for the solutions f of Eq. 1 such that f(c)=O. 
n 

From now on we intend that the function f is such a solution. 

By Theorem 1 we have the following sharper condition on the 

range of f: 

f(x)e{-V +C(V J>nC(-V ). 
n n n 

lf ue{-V +C(V J>nC(-V ), then u=-v+t=-z, for some veV , t,zeC(V l; 
n n n n n 

since p 1(v)=O for some i, from p 1(t),p1(z)e[O,l] we get p 1(u)=O, 

that is the point u belongs to the coordinate hyperplane 

'J> :={telR": p (t)=O f. 
1 1 

We can summarize as follows. 

LEMMA 2.- Let f:G----c. C(-V ) be a solution of Eq. 1 with 
n n 

f(c)=O. Then the range of f is contained in C(-Vn)r1( l:J1'1 )· 
1=1 

Among the solutions of Eq. 1 with f(c l=O there are those 
n 

with range contained in a single hyperplane 1'1.The description of 

this dass is very easy and is given by the following. 

THEOREM 2.- A function f:G----c. C(-V ) is a Solution of Eq.I 
n n 

with f(c)=O and f(G)c1'1 if and only if for every j~i the function 

f :G ~ [-1,0] is a solution of Eq.I with f (c)=O. 
J 1 J 

We now look for the solutions of Eq. whose range is 
n 

contaned in more than one coordinate hyperplane. 



On an Alternative Functional Equation in mn 37 

The first step is given by the following lemma. 

LEMMA 3.- Let f:G ~ C(-V ) be a solution of Eq. 1 with 
n n 

f(cl=O.Jf for some x e G we have f (x)=O and f (x)e(-1,0), then 
1 J 

for every yeH1 it is f 1(yl=O. 

PRoor- Assume, on the contrary, the existence of yeH1 with 

f (y)=-1.We have f{y)-f{x)-f(yx- 1)eV , i.e. -f(yx-1 )=f(x)-f(y)+v , 
1 n 

veV and so -f (yx-1)=1+p (v).This implies p 1(v)=O and 
n 1 1 

-f (yx- 1)=1.lf j~i. then 
1 

-f (yx-1)=[ (x)-f (y)+p (v)e[O,I), 
J J J J 

hence we get 

-f (yx- 1)=[ (x)- { 
J J 

• if 

if 

f {y)::5 f <xl 
J J 

f (y)~ f (xl. 
J J 

Again by Eq. 1 we have f{x)-f(xy- 1)-f(y)eV , i.e. 
n n 

-f(xy-1)=f(y)-f(x)+u, ueV and so -f (xy- 1 )=-l-f (x)+p (ul= 
n 1 1 1 

=-l+p {u)e[O,I); this implies p (ul=l and -f (xy- 1)=0. 
1 1 1 

lf J~i.then -f (xy-1)=[ (yl-f (xl+p {u)e[O,I), hence we get 
J J J J 

{ 
f (y)+I 

-f (xy- 1)=-f (x) + J 
J J f (y) 

J 

if f (y)::5f (x l 
J J 

, if l/Yl~ fJ ( x) 

Consider now the difference 

f(c )-f(xy-1 )-f(yx-1l=-f(xy-1)-f(yx-1l=weV 
n 

We have p (wl=-f (xy-1)-f (yx- 1)=0+1=1 and for j~i. 
1 1 1 

p (w)=-f (xy- 1)-f (yx-1)=-f (x)+f (x)+l=l, 
J J J J J 

thus w=e + . .. +e ~V ; a contradiction. • 1 n n 

Assume now there exist two elements x,yeG such that 

there is such that f (x)=O and fk(x)e!-J,O) for k~i 
} (2) 

1 

there is j~i such that f (y)=O and fk(y)e(-1,0) for k~j 
J 

that is we assume that the solution f takes values in at least two 

different coordinate hyperplanes. 
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We consider now the value f(yx- 1); by the equation we have 

f(y)-f(x)-f(yx- 1)=veV , i.e. f(yx- 1)=f(y)-f(x)-v, 
n 

and so 

f (yx- 1)=f (y)-f (x)-p (v)=f (y)-p (v);00 
1 1 1 1 1 1 

(3) 

f (yx- 1)=f (y)-f (x)-p (v)=-f (x)-p (v)„0. (4) 
J J J J J J 

Hence by Lemma 2 there exists k, different from i and j, such that 

f(yx- 1leP 
k 

Therefore we have the following 

THEOREM 3.- Doesn't exist any solution f of Eq. In such that 

f(cl=O, with range contained in two (but not one) coordinate 

hyperplanes. 

By still assuming Eq.2 we obtain the following properties. 

By Lemma 3 we can conclude that 

for every yeH rJI l"IH =:H we have f(y)eJ> l"IP l"IP . 
1 J k ljk 1 J k 

Eq.3 and 4 imply 

p (v)=O and f (yx- 1l=f (y) 
1 1 1 

p (v)=l and f (yx- 1)=-f (x)-1. 
J J J 

The condition f (yx- 1)=f (y)-f (x)-p (v)=O implies 
k k k k 

pk(v)=O and fk(y)=fk(x). 

Consider now the value of f in xy: f(xy)=f(x)+f(y)+w, for 

some weV . The relations 
n 

f 1(xy)=f1(y)+p1(w)e[-l,O), 

f (xy)=f (x)+p (w)e[-1,0) 
J J J 

imply p (w)=p (wl=O and 
1 J 

f 1(xy)=f1(y);00, fJ(xy)=f/x);00; 

moreover i t is 

(5) 

(6) 

(7) 



On an Alternative Functional Equation in ll!." 39 

We now look for the solutions of Eq. 1 with the range 
n 

contained in three hyperplanes 1'1, 'l'J and 'l'k. 

We prove the following. 

THEOREM 4.- Let f:G-c. C(-V ) be a solution of Eq. 1 such 
n n 

that f(cl=O and with range contained in 'P u'I' u'I' ( but not in a 
1 J k 

single hyperplane).Then for every xEH we have: 
l)k 

if f 1(x)=O then f}xl=fk(x)=-112; 

if f}xl=O then f 1(xl=fk(xl=-l/2; 

if f (xl=O then f (x)=f (x)=-112. 
k 1 J 

PRoor-Assume f!xle'I', f(x)E'I' u'P , f(yle'I', f(y)EP u'I' .rrom Eq.5, 
1 J k J 1 k 

Eq.6 and the hypothesis we get immediately f k (xy)=O; therefore 

Eq.7 yields p (w)=land f (x)=f (y)=-112.from f(x 2yl=f(xy)+f(x)+v, 
k k k 

veV n and Eq.6 we get 

f (x2yl=f (xy)+f (x)+p (v)=-112 +p (v)„0, 
k k k k k 

f (x2yl=f (xy)+f (x)+p (v)=f (y)+p (v)"O 
1 1 1 1 1 1 

(note that f (y)e(-1,0) ).Thus we must have f (x2yl=O: 
1 J 

O=f Cx2yl=f (xy)+f (x)+p (v)=2f (x)+p (v), 
J J J J J J 

and so, since f (x)„0, p (v)=l and f (x)=-112. 
J J J 

Proceeding in the same way we get the theorem. 

LEMMA 4.- Assume the hypotheses of Theorem 4.lf xEH then 
l)k 

f(x) belongs to only one of the three hyperplanes P , P and 'P . 
1 J k 

PRoor- Let f (x)=f (x)=O and take y E G such that f (y)=O and 
1 J k 

f (y)=f (y)=-1/2; then f(yx- 1 )=f(y)-f(x)-v and so 
l J 

f (yx-1l=f (y)-p (v)=-1/2-p (v) 
1 l 1 1 

f (yx-1)=f (y)-p (v)=-112-p (v) 
J J J J 

f (yx-1)=-f (x)-p (v). 
k k k 

• 

Thus we get p (v)=p (v)=O and f (yx-1)=f (yx-1)=-112; this implies 
1 J 1 J 

f (yx-1)=-f (x)-p (v)=O, i.e. xeH ; a contradiction. • 
k k k ljk 
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LEMMA 5.- Assume the hypotheses of Theorem 4.If xf!HIJk then 

x 2eH . 
ljk 

PRoor- Let f (x)=f (x)=-1/2 and f (x)=O; then 
1 j k 

f (x2 l=-l+p (v)e{-1,0}, f (x2 l=-l+p (v)e{-1,0} 
1 1 J J 

and f (x2 l=p (v)=O, that is x 2eH . 
k k ~k • 

We can now conclude with the following. 

THEOREM 5.- A function f:~ C(-Vn) is a solution of Eq. ln 

with f(c)=O and range contained in 'P v'P v'P ( but not in a single 
1 j k 

hyperplane) if and only if: 

i) for every t=l, ... ,n the function ft:G ~ (-1,0] is a 

solution of Eq. 11; 

iil H is a normal subgroup of G of index 4 such that 
ljk 

(G\H J2~H ; 
ljk ljk 

iii) if Hm, H(Jl and HCkl are the cosets of H IJk' then: 

V xeH f (x)=f (x)=f (x)=O, 
ljk 1 J k 

V xeH01 f (x)=f (x)=-112, 
J k 

V xeH111 f 1(x)=fk(xl=-l/2, 

V xeH1kl f (x)=f (x)=-1/2. 
1 j 

PRoor-lf f is a solution with the properties in the statement, 

then by iiil of Lemma l and by Theorem 4 it has the form given 

above.Conversely a simple check shows that any function of that 

form is solution of Eq. 
n • 

4.- In this section we confine ourselves to the case n=3.ln 

this case Theorems 2 and 5 give the complete description of the 

solutions of Eq. 13 such that f(c)=O. 

lt is natural to ask for the solutions of the equation 

analogous to Eq. 13 obtained by replacing the set V 3 with a subset 

U of it with the following properties: U spans IR3 , OeU, U'\{0} is 

not a set of independent vectors. We have to consider the following 

four cases: 
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u.={0,e •• e2,e3,el+e2,el+e3} 

u2 =<O,el,e2,el +e2,el +e3,e2 +e3} 

U 3 ={0,e1,e2,e1 +e2,e1 +e3> 

U 4 ={O,e1,e2,e1 +e3,e2 +e3>. 

By Theorem l, with µ=O, for each of the four cases above we 

have that the range of the solutions is a subset of 

[-U +C(U )]nC'(-U )= 
1 1 1 

=<\e1+;\2e 2: -l:s\:sO, i=l,2}v{\e1+;\3e 3: -l:S\:sO, i=l,3}, 

[-U +C(U )]nl'(-U )={;\ e +;\ e : -l:s;\ :so, i=l 2}v 
2 2 2 II 22 1 ' 

v{;\(e„e3 ): -l:s;\:sO}v{;\(e2 +e3): -l:s;\:sO}, 

[-U +C(U )]nC'(-U )={;\ e +;\ e: -l::s;\ so, i=l,2}v 
3 3 3 1122 1 

v{;\(e +e ): -l:s;\:sO}, 
1 3 

[-U +C(U )]nC'(-U )={;\(e +e ): -l:s;\:sO}v{;\(e +e ): -l:s;\:sO}v 
4 4 4 13 23 

v{;\e: -I::s;\:sO}v{;\e : -l:s;\:sO} 
1 2 

respectively. 

By Theorems 2 and 3 we have immediately the following 

THEOREM 6.- A function f:G ~(-U1 ) is a solution of the 

equation f(xy)-f(x)-f(y)eU1 with f(c)=O if and only if it has the 

form f=(f 1,f2 ,0) or the form f=(f 1,0.f) where f 1:G---) (-1,0] , 

i=l,2,3, are solutions of Eq. 11 with f 1(c)=O. 

Much more complicate is the situation for the sets U 2 and 

U 3. In these cases one can ask if there ex ist any solution whose 

range has point in both sets {;\(e1+e3 ):-l:S;\::sO} and {;\e1:-l:s;\:sO}. 

If such a solution f=(f 1,0,f 3) exists then define the sets 

A={xeG : f1 (x)=f3(x)=0}~0. 

B={xeG : f1 (x)~O. f 3 (x)=0}, 

C={xeG : f 1(x)=f3(x)=-l}, 

D={xeG : f 1(x)=f3(x)E<0,-l}}. 

By Lemma l C is " semigroup, AvB is a semigroup and AvBvC is a 

subgroup of G.Moreover it is easy to show that the following 
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additional properties hold: 

x,yeA ~ xy,yxeA ; xeA, yeB (or vice-versa) ~ xy,yxeA; 

x,yeD „ xy,yxeAvCuD ; xeA, yeC (or vice-versa) ~ xy,yxeAvC; 

xeA, yeD (or vice-versa) ~ xy,yxeD ; 

xeB, yeC (or vice-versa) ~ xy,yxeB ; 

xeB, yeD (or vice-versa) ~ xy,yxeD 

xeC, yeD (or vice-versa) ~ xy,yxeD 

A simple check proves that the conditions above are also 

sufficient for f=(f1,0,f3 ) to be a solution. 

We summarize the previous discussion in the following. 

THEOREM 7.- A function f:G-K:(-U2 ) is a solution of the 

equation f(xy)-f(x)-f(y)eU2 with f(c)=O if and only if it has one 

of the following forms: 

t) f=(fl,f 2,0); 

ii) f=(f1,0.f1); f=(O,f2.f2 ); 

Ut) f=(f1,0.f 3 ); f=(O,f 2,f 3 ), with the sets A, 8, C and D 

( and the analogous where the role of f 1 is assumed by f 2> 
satisfying the conditions listed above, 

where f 1:G--+[-l,0) , i=l,2,3, are solutions of Eq. 11 with 

f 1(c)=O. 

In the case of the set U 3 we have the same result without the 

functions of the forms f=(O,f 2,f 21 and f=(O,f 2.f / 

Whether solutions of the form iiil of Theorem 7 actually 

exist is not known and it may depend on the structure of the group 

G.lt is easy to show that for G=l (the integersl they do not 

exist. 

To finish this section it remains to consider the case of the 

set U4 By the former discussion and by Theorem 12 of the paper5 we 

obtain: 

THEOREM 8.- A function f:G-K:(-U 4 1 is a solution of the 

equation f(xy}-f(x}-f(y)eU4 with f(cl=O if and only if it has one 

of the following forms: 

i) /=(/1,0,0l; /=(O,f2,0l 
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U) f=lf1,0,f1 ); f=IO,f 2.f 2 l; 

iii) f=(f 1,0.f / f=(O,f 2,f 3 ), with the sets A, 8, C and D 

(and the analogous where the role of [ 1 is assumed by f 2) 

satisfying the conditions listed above, 

where f 1:G----.+ [-1,0) , i=l,2,3, are solutions of Eq. 11 with 

f 1(c)=O. 

5.- To finish the paper we present some open problems 

concerning Eq. 1 „ 
lf nz.:4 the results contained in Section 3 do not describe the 

whole dass of the solutions with the property f(c)=O, but only 

those with range in at most three coordinate hyperplanes. 

A simple check shows that if G has a normal subgroup H of index s, 

4~:sn. such that each element of G/H has order 2, then 

generalizing in an obvious way the construction of Theorem 5 we 

get a solution of Eq. 1 assuming values in s coordinate 
n 

hyperplanes. lt is open the question if these solutions are, as for 

s=3, the only possible. 

The condition f(c)=O is " very strong restriction; if we look 

for other classes of solutions, from Theorem 1 we get that the 

range of these solutions is no more contained in the coordinate 

hyperplanes: in the case n=3, for instance, it contains a "layer·· 

between two planes. In this case there are no results about the 

solutions of Eq. l . 
n 
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ABSTRACT 

Let E be a real Haus00rff topolog1cal vector 
spoce. We consider on RxE the followlng binary law : 
(a,x)*( b,y) = ( Mb,bkx+a1y) for (a,x),( b,y)E RxE 

where ).. is a fixed real number , k and I are fixed 
nonnegative integers . 

We find here all the subgroupoYds of (RxE,*) 
which depend faithfully and continuously on a set of 
parameters . The two related functional equations are 
solved when the funct1ons have some regularity property. 
The greatest part of thls paper conslsts in solving one of 

them whlch ls a generallzatlon of the <Jo.tiib-Schlnzel 
functional equation . 

1. INTRODUCTION 

Let E be a real Hausdorff topological vector space 

The following functional equation : 
f ( f(X) y + X ) = f(X) f(y) ( x,y E E ) (G5) 

where f is a mapping from E into R , is called functional equation of 
6ol§b-5chinzel lt has been first considered by J.Aczel in 1957, and 

then by S.Go.f9b and A.Schinzel in 1959. The general solution of (GS) has 
been characterized 1 and all the continuous solutions of (G5) have been 
explicitely obtained 3 
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We consider now the follow1ng binary law on RxE: 
(a,x) * (b,y) =CA.ab, blc.x + a1y) for (a,x),(b,y) E RxE (L) 

where A. is a fixed real number, k and I are fixed nonnegative integers. 

Let us recall the following def1nitlon glven by J.Dhombres3 : 

DEFINITION 1 A subset Hof nxE depends faithfully and 
continuously on a set F of parameters lt Fis a topo/ogical space and 
tf t/Jere exists a mapping g from F onto H . 

g(u) =(a(u),jJ(u)J for uEF 
suc/J t/Jat we /Jave eit/Jer: 

(!) jJ(FJ = E and jJ(u) = jJ(u') implies a(u) = a(u') , 
a iscontinuousandjJ admits /ocal/y acontinuous ltfting 

or 
(lt) a(FJ = n and a(u) = a(u'J imp/ies jJ(uJ = jJ(u'J , 
jJ is continuous and a adm1ts /oca//y a continuous ltfting 

We look for the subgroupo'ids of <RxE,*> which depend faithfully 
and contlnuously on a set F of parameters. 

In the case (i), the relation: f ( ß(u)) = a.(u) ( u E F) defines 
a cont1nuous functfon f from E 1nto R whlch satisf1es the following 
functional equation: 

f ( f(y)k X + f(x) I y ) = A f(X) f(y) ( x,y E E ) ( 1) 
In the case (ii). the relation: f ( a.(u)) = ß(u) ( u E F) defines 

a continuous function f from R into E which satisfies the following 
functional equation: 

f ( A.xy ) = ylc. f(x) + XI f(y) ( x,y E R ) (2) 

The main part of this paper will consist in solving the functional 
equation ( 1) This functional equation is a generalization of the 
Go~sib-Schinzel functional equation since (GS) corresponds to the 
particular case of ( 1) where k = 0 , I = 1, A. 1 lt has been studied by 
many authors in various cases . Among them , Jet us notice that the 
author4 found all the solutions of ( 1) having some regularity property in 
the case where A. is a nonnegative real number and W.Benz 2 

determined the cardinality of the set of discontinuous solutions f: R-->R 
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of < 1 l for 1nf1nitely many real numbers A. . In the case where A. 1s a 
nonzero real number, J.Brzd~k 7 obta1ned all the contlnuous solutions of 
( 1 l when k and I are d1st1nct positive 1ntegers , and the author 5 found 
all the solutions of < 1 l having some regular1ty property when k = / 

The present paper 1s a survey of th1s problem . lt g1ves all the 
solut1ons of ( 1 l hav1ng some regular1ty property when A. 1s an arbitrary 
real number and k,/ are arbitrary nonnegative 1ntegers. lt 1s mainly 
based on the papers wr1tten by the author 3·4·5 and J.Brzd~k 8 Some 
further references concern1ng th1s problem may be found 1n these papers . 

2. INVESTIGATION OF FUNCTIONAL EOUATION ( 1) 

Following A.M.Bruckner and J.C.Ceder 6 , we shall denote by 
DB1 the set of all functions from R into R which are in class I 

of Baire and have the Darboux property 
The need of the set DB1 is explained by the following 

result 

LEMMA 2 Let r be a runction In OB1 . Let us def/ne t//e tunet Ion 

ff R 2 -->R by 
fl(X,y) = f(y)k X~ f(X) ! y ( x,y E R) 

T//en, for every f/xed real numbers x and y, t//e 
funct/ons f!(„y) and f!(X,.) //ave t//e Darboux property. 

Proot of Lemma 2 
51nce f 1s in DB1 , the function x f(.)k belongs also to DB1 

1f x is any nonzero real number Therefore , the graph of the 
function x f(.)k is connected 6 The cont1nu1ty of the function : 

R2 --> R2 
(t,s) --> ( t, f(X)/ t + s) implies that the graph of the function 

cp(x,. ) 1s also connected Therefore , the funct1on cp(x„ ) has the 
Darboux property . 

The proof 1s the same for the function cp( „yl. 
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Let us first study some part1cular cases of the functional 
equat1on < 1) . 

2 /. Case A = O, k .J O, I .J O 

< 1) is just : f < f(y)k x + f(x) / y ) = o ( x,y E E) 

For k = o and / ~ o , it is obvious that the unique solution of 
< 1) is f = O. 

So we consider now the case where k and I are positive 
integers . Let us suppose that there exists an element x0 in E such 

that f(x0) „ 0 By taking x = y= 0 1n ( 1) , we get f(O) = 0. Therefore , 

x0 1s different from O. Let us suppose also that the runction 
g: R -->R def/ned by : g(tJ = ra x0 ) ( t ER J belongs to 
081 . By tak1ng x=x0 and y=tx0 (tE R) 1n (1),we obtain: 

fCHtx/x0 + f(x0>1 tx0 )= 0 for every t in R 
Let us define : tp(t) = g<t>k + t f(x0) / ( t E R ) 
We have : f ( tp(t) x0 ) = 0 for every t in R 
Since g is 1n 081 , we may prove as In Lemma 2 that tp has the 

Darboux property . Therefore , tp(R) is an interval of R which contains 
O , but does not conta1n 1 . So ljJ(R) is included in (-oo, 1) . 

Let us suppose that t is bounded below by b The relation : 
fCt x/ = tp(t) - t fCx0) ( t E R ) shows that : fCR x/ = R 
This 1mplies that k is an odd integer and so f(R x0) = R Let c be 

the unique po1nt of C0, 1) which satisfies : ck + c / = 1 Then , there 
exists a nonzero real number s such that f(s x0) = c . By taking 

x y s x0 in ( 1)) • we obtain : f(s Xa> = 0 , which brings a 

contradict1on . Therefore , tp(R) contains (-00,0J and we have 
fCt Xa) = 0 for every nonpositive real number t. Since tp is bounded 

above by 1 , we deduce first from : ljJ(t) t f(x0) / <t ~ 0) that 

f(x0) / is a positive real number, and then that g(t)k = ljJ(t)- t f(x0) / 

tends to - 00 when t goes to +oo. In view of the Darboux property 
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of g, we deduce that g ( [0,+oo) )k contafn5 (-oo,OJ . By takfng now 
x = t x0 , t < O , and y = r x0 , r > O , 1n ( 1) , we get : f ( g<rik t x0 ) = O 

and therefore : f(5 x0) = 0 for every po51tfve real number 5. Thf5 

contradfct5 f<x0l"' O . 

PROPOSITION 3 In tlle c/ass of functlons f. E--> R wt/fcll llave 
tlle property tllat for every x In E tlle functlon fx deflned oy : 

fx (t) = rrtx) rt E IV belongs to OB 1 , tlle unlque solut Ion or 

(!) In tlle case il. = o ls r = o 

22 case Ä'"' o, k=/=O . 

In th15 ca5e, C 1) 15 : f(x+y) = A. f(x) f(y) ( x,y E E ) . 
So, Af 15 a 50lut1on of Cauchy'5 exponent1al equat1on. Therefore, all 
the 5olut1on5 of ( 1) are g1ven by : 

(1) f=O 
(11) f(X) = 1 /A. • eg(x) <x e E) where g: E --> R 

15 an arbftrary add1t1ve funct1on . 

2 J. Case A.,. o , k = o, I > o . 

We g1ve f1r5t 5ome property of the funct1on q> deffned 1n 
Lemma 2 when f 15 a non fdent1cally zero 5olut1on fn 081 of 

funct i ona 1 equat 1 on ( 1 ) in the genera 1 ca5e where k and I are 
nonnegative integer5 and A. i5 a nonzero real number 

LEMMA 4 Let us suppose tllat il. ls a nonzero real numoer and 
k, I are nonnegatlve lntegers. 

/f r ls a non 1dentlcally zero solutlon of (!) In 081 , 

t/Je runctlon f/11 deflned oy . t/J ,rx) = f/J(X,X0 ) rx ER) and tlle 

runctlon f/12 deflned by : t/J/x) = f/J(X0 ,x) rx E R) are 

one-to-one and contlnuous wllen x0 ls any real numoer 

satlsfylng rrx0 J-o 



50 N. Brillouet-Belluot 

Proot of Lemma 4 
By Lemma 2 , the functions tjJ 1 and tjJ 2 have the Darboux 

property. 
Let us suppose now for examp le that tjJ 1 1s not one-to-one 

Then there ex1st x and y in R such that x"' y and 
<p(X,Xo) = cp(y ,Xo) (3) 

We deduce by < 1) : /.. f(x) f(x0) = /.. f(y) f(x0) 

S1nce /.. f(Xo)"' 0 , this implies : f(x) = f(y) W1th (3) • we obtain : 

f(x/ x = f<x/ y and therefore x = y . Th1s is a contradict1on. 
So , tjJ 1 and ljJ 2 are one-to-one and have the Darboux property . 

Theref ore , they are cont inuous 6 

COROLLARY 5 Under tlie same /iypotlieses as in Lemma 4, 1t r ls 
a so/utlon of (!) In OB1 , tlie tunet Ions /(} 1 and /(} k are 

cont inuous . 

Proof of Corollary 5 
lf f is a non identically zero solution of (1) in OB1 , there 

exists x0 in R-(OJ such that f(x0)"' 0 By Lemma 4 , the functions 
tjJ 1 (X)= cp(x,x0) (x E R) and tjJ 2<xl = cp<x0,x) <x E R) are continuous. 

We deduce immediately that the functions f(.) 1 and f(.) k are 
continuous . 

Let us consider now the functional equation ( 1) when k = o, 
I 1s a positive integer and t.. 1s a nonzero real number . 

lf f 1s a non 1dentically zero solution of ( 1) in OB1 , the 
function g(X) = f(x) / <x E R) 1s continuous by Corollary 5 
Moreover , g is a solution of : 

g (X+ g(X) y ) A / g(x) g(y) ( x,y E R) (4) 

wh1ch is similar to the Go-t9b-Schinzel functtonal equatton 
By taking x = y = 0 in (4) . we obtain either g<O) = O or g(O) = r.. - 1. 

When g(O) = 0 , we get g = 0 as we can see by taking 
y = O in (4) . 

So , we consider now the case where g(O) = /.. - / By taking 
x = 0 in (4) , we get : 
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g(y) = g( )..._ - I y ) (y E R) (5) 

and therefore 
g(y) g( )..._ -n I y ) (y E R) (6) 

for every posit1ve integer n 
When IAI is d1fferent from 1 , (6) 1mplies 

g = g(O) = )..._ -! and therefore f = 1 /A 
When )..._ / is equal to 1 , (4) is just the functional 

equation of Go~?b-Schinzel for which we know all the continuous 
solutions 3 

When )..._ / is equal to -1 ( 1.e A. = -1 and I odd ) , (5) 
imp11es by changing y 1nto -y 1n (4) : 

g ( X - g(X) y ) g(X) g(y) ( x,y E R) 

This means that -g is a continuous solution of the functional 
equat1on of Go~b-Schinzel 

So , we obtain the following result : 

PROPOSITION 6 W/Jen A ls a nonzero real number and I ls a 
positive Integer , all t/Je solutlons In t/Je class or runctlons DB1 

or t/Je followtng runctlonal equatton 
f(x+(()()lyJ = Ä f(X)f(y) (.X,yENJ (7) 

are gtven by: 
(!) f=O 

and (/i} ff IA 1 "'1 , r = l/A 

(lllJ tr A = 1 and ff I ls odd 
f()() = (1+axJ 1 // ()( E NJ and f()() = ( Sup(I + ax, OJJ 1 // (XE RJ 

(ivJ 1f A =1 and 1f I ls even 
f(X) = { Sup(I + ax, O)) 1 // (XE RJ 

(vJ ff A = -1 and ff I ls odd 
f(xJ=-(l+axJl/I (xERJ and f(xJ=-(Sup(l+ax,OJJ 1/ 1 (XE RJ 

(v1J 1f A =-1 and ff I ls even 
f(xJ = - ( Sup(I + ax,0))1 // 

w/Jere a /s an ar/Jltrary real num/Jer . 

(XE NJ 
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Wlth the same proof we obtaln also all the continuous 
solutlons f : E --> R of (7) when E is a real Hausdorff topologlcal 
vector space . Name ly : 

PROPOSITION 7 W/Jen A. is a nonzero real num/Jer and I is a 
positive integer, all tne continuous solutions f: E--> R of tne 
fol/owing functional equation . 

f( x+ f(xJ 1yJ = A. f(x)f{)I) fx,yED (7) 

are given by . 
(!) f=O 

and (ii) if IA. 1 ""1 f=l/Ä 

(iiO 1f A. = 1 and if I is odd 
f(x)=( I+ <x,x*>) l// (XE E) and f(x)=(Sup(I+ <x,x*>,0)) l// (XED 

(iv) 1f A. = 1 and if I is even 
f(x) = ( Sup(I + <x,x*>, 0)) 1 // 

(v) if A. = -1 and 1f I is odd 

(XE E) 

f(x) = -(1 + <x,x*>)1 // (X ED and f(X) =- (Sup(I + <x,x*> ,0))1 // (XE E) 

fvi) 1f A. = -1 and 11 I is even 
f(x) = - ( Sup(I + <x,x*> ,0) ) 1 // (XE E) 

wnere x* is an ar/Jitrary element of tne topological dual of E . 

Let us flnally mention that J.Brzd~k studied in detail the 
functional equation (7) ln the case A. 1 in his Doctor Thesis 7 

2 4. Case A ~ O, k > O, I > O . 

We start with a preliminary remark concerning the solutions 
of the functional equation < 1) in 081 
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LEMMA 8 Let r oe a so/ution of (!) in DB1 . 

lf .1 is positive and r is oounded aoove on n 
or 1f .1 is negative and r is oounded oe/ow on n 

tlien f is constant 

Proor or Lemma 8 
Let us suppose that A. 1s a positive real number . The 

proof is s1milar when A. ls negative 
For an ind1rect proof , we suppose that f is a solution of 

( 1) 1n DB1 bounded above on R and that f ls not constant . 

Let M be an upper bound of f(R) By taking x = y in ( 1) , 
we obtain A. f(xf ~ M for every x in R Since f is not 
identically zero , M is a positive real number 

By tak1ng x = y In ( 1) , we get success1vely 

lf(X)I ~ (M/A.) 112 for every x in R 

lf(X)I ~ ( M1/4); ( A.t112J + t114l ) for every x in R 

lf(x)I ~ ( Ml/2") I f...<112i +(1/4l + .... + t112ni ) for every 

x 1n R and every positive integer n 

As n goes to +00 , we obtain . 

lf(X)I ~ 11A for every x in R (8) 

Since f is bounded and non identically zero , we have , by 
the Darboux property of the function cp( ,t) (Lemma 2 ) , cp(R,t) = R 
for each t E R such that f(t)"" 0 Therefore , for every real number 
x , there exists a real number s such that cp(s,t) x In view of 
the Darboux property of f , we may choose x and t in R such that : 
0 < lf(t)I < lf(x)I By using ( 1) and (8) , we obtain : 

O < lf(t)J < lf(x)J = 1 f ( cp(s, t) ) 1 A. lf(s)J lf(t)J ~ lf(t)J 
which brings a contradiction Therefore , f is constant 
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In order to obta1n all the solut1ons of ( 1) in DB1 , we 

shall consider the two cases : k "' I and k I 

2 4. /. Solutions of (1 J In DB 1 in the case k ~ I 

We are going to prove that the only solutions of ( 1) in DB1 

in this case are the constant functions The following results are 
due to J.Brzd~k 8 

PROPOSITION 9 Let k and I be dlstlnct positive lntegers and 
/et f be a non 1dentlcally zero solutlon or (!) In DB1 We 

deflne F = f x E R / f(xJ ~ 0 J 
Tlien , f/F ls not one-to-one , wliere f/F · F --> R 

ls tlie functlon deflned by · f/F(x) ~ f(x) for all x In F 

Proof of Proposition 9 
For an indirect proof , Jet us suppose that f/F is 

one-to-one . 

Let us remark that , by ( 1) , if x and y belong to F , 
cp(x,y> belongs also to F . Therefore , the symmetry In x and y of 
the second member of ( 1) lmpl1es : 

f(y)k X + f(X) I y f(x)k y + f(y) IX for all x,y In F 
We deduce : 

(f(x) I - f(x)k) y ( f(y) 1 - f(y)k) x for all x,y in F 
Slnce f has the Darboux property and ls not constant , there exlsts 
y0 In F-(O} such that p ( f%>' - f(y/) I y0 "' O . Therefore , 

we obtain : 

f(x> 1 f(x)k 

Let us define 
We have by (9) : 

g(x) 

px for every x in F 

( XI xk) I p for every x in R 

g ( f(F) ) - F 

(9) 

( 10) 

Let us suppose that F = R Then , since f has the Darboux 
property , f(F) is an interval of R which does not contain o So , 
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we have either f(F) C (-.,.,, 0) or f(F) C (0, +oo) . lt 1s not 
difficult to see that we have g ( (-oo, 0))"' R and g ((0, +oo))"' R. 
This contradicts ( 1 Ol 

Therefore , we have F .,,. R . So , there exists x0 in R such 

that f(x0) = 0 By taking x = y = x0 in ( 1) , we obtain : 

f(O) = 0 ( 11) 

So , F does not contaln o Then , by (9) , f(Fl does not contaln 1 . 

Since f has the Darboux property , f(R) = f(F) U (0) is an interval 
of R whlch does not contaln 1 So , lt is included either in (-oo, 1 l 
or In (1, +oo) (11) 1mpl1es : 

f(R) C (-oo, 1) (12) 

lf A. 1s a positive real number , f ls constant by Lemma 8 But , 
lt ls not the case Therefore , A. is a negative real number Sfnce 
f ls not constant , we have by Lemma 8 

(-oo ,0) C f(R) ( 13) 

Let us suppose that there exlsts a in W, 1 l such that a be longs to 
f(R) . By ( 13) , there exlsts b in f(R) such that b < 1 /A.a By ( 1 l , 
A. ab belongs to f(R) and we have A. ab > 1 Thfs 
contrad1cts ( 12) . We deduce : f(R) (-00 • 0) and therefore 

f(F) (-oo , 0) (14) 

lf k and I are both odd or both even , (9) implies that 
f(F) does not contain -1 , which contradicts ( 14) . Therefore , 
either k is odd and I is even , or k ls even and I is odd. By ( 10) . 
we have efther F = (0. +00 ) or F = (-00 • Ol . We deduce 

R-F [O,+oo) or R-F - (-oo.O) ( 15) 

Let us suppose for example that k is odd (and I is even l. 
Let US define : Ak ( f(x)k ; X E F ) 

(14) implies: Ak = (-00 .0) 
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By ( 1 ) , we have 
f ( f(y)k X ) 

We deduce 
0 for all x in R - F and all y in F 

Ak. (R-F) C R-F 

where Ak ( R - F ) ( X y ; X E Ak , y E R - F ) 

This is impossible by ( 15) 
This completes the proof 

LEMMA 10 Let k and I be dist inct positive integers . 
lt r is a non 1dentical/y zero solution of (!} in 081 , 

tnere exist a, b in n , a < b , suc/J tnat r is constant and 
nonzero on t/Je interval / a, b J 

Proof of Lemma 10 
By Proposition 9 , f /F is not one-to-one Therefore , there 

exist a , b in R , a < b , such that f(a) = f(bl"' 0 . 

Let us suppose that r /s not constant on /a, b/ 
So . there exists c in (a , bl such that f<cl"' f(a) . Since f has 
the Darboux property , we may choose c in (a , b) such that 
f(d "' f(a)k . 

Without loss of generality , we may suppose I < k 
We consider the following function . 

V(x,y,z) ( f(x) 1! X) ( y - z) + f(y)k r<d (XE R-(0); y,z ER) 

We sha 11 prove f i rst that : 
for every r>O , there exists xr in F-(0) such that 1 f(xrl / I xrl < r ( 16) 

For an indirect proof of ( 16) , Jet us suppose that there 
exists a positive real number r such that : 

1 Hx>' I x 1 ~ r for every x in F (0) ( 17) 

Let us suppose that F is bounded . Since f is a non 
identically zero solution of ( 1 l in 081 , the function ru' is 

continuous and not identically zero by Corollary 5. Therefore, F is a 
non empty open subset of R . So , Sup F and lnf F are not both 
equal to O . Let a be an element of ( Sup F , lnf F ) (0) . There 
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ex1sts a sequence (xnlnEN In F-[OJ converging to a The def1nition 

of F and the cont1nuity of the funct1on fU 1 imply that the 
sequence ( f(xn> / I xn lnEN converges to O . Thls contradicts ( 17) . 

Therefore , F is unbounded and there ex1sts a sequence 
(xnlnEN In F-(0) such that ( lxnl lnEN tends to +oo By ( 1) and 
< 17) , we have for all x and y 1n F-(OJ : 

1Hcp<x,y>>'lcp(x,y>1 1<:>.. 1 f(x) 1 Hy> 1> / ( f(y)k x + Hx> 1y) 1 ~ r ( 18) 

We have also for every x in F-(0) and for every n In N : 

1 Hcp<x,xn»' /cp(x,xn> 1 = 1(:>,, 1 Hx> 1> I ( Hxi- / x + f<x> 1 f(xn>- 1 xn)1 

(17) implies that : 
( 1 Hxi- 11 )nEN tends to +oo 

We deduce that the sequence 
to 0 This contradicts ( 18) 

and 1 xn f(xn>- 11 ~ 1 /r for every n in N . 

( 1 f(cp(x,xn)) 1lcp(x,xn>1 lnEN converges 
Therefore , we have proved ( 16) 

By (16) , there exlsts x0 1n F-(OJ such that 
1 ( Hx0) / I x0 ) ( c - a ) 1 < 1 Hd - f(a)k 1 

and 1 ( f(x0) / I x0 ) ( b - c ) 1 < 1 f(b)k Hd 1 

We deduce s1gn V(x0,c,a) sign ( Hd f(a)k ) 
and sign V(x0,b,c) = sign ( f(b)k f(c)k ) 

where sign t ={ 1 1f t > 0 
-1 if t < 0 

Since sign ( f(d f(a)k ) „ sign ( f(b)k f(c)k ) 

we have either 

or 

sign V(x0,b,a) „ sign V(x0,c,a) 

sign V(x0,b,a) „ s1gn V(><o,b,c) 

( 19) 

(20) 

Let us suppose that ( 19) occurs The proof would be 
s1m11ar w1th (20) . By Corollary 5 , the function : y e: R --> V(x0,y,a> 

is continuous Therefore , ( 19) implies that there exists y0 in (c,b) 
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such that V(x0,y0,a) = 0 We deduce : qi(x0,y0) = qi(x0,a) . This 

is not possible since , by Lemma 4 , the funct1on qi(x0,. ) is 

one-to-one . Therefore , f is constant on the interval [a, b) 

THEOREM 11 lt k and I are distinct positive integers , t!Je only 
solutions of (/) in DB1 are f = O and f = l/J... . 

Proof of T!Jeorem 11 
Let f be a non 1dentically zero solution of (1) in DB1 . By 

Lemma 10 , there exist a, b in R , a < b , such that : 

f(x) = f(a)"' 0 for every x in [a,b] 

Let us suppose that there exists x0 in R such that f(x0)"' f(a) 

By the Darboux property of f , there exists a nontrivial interval I 

of R included in f(R) which contains f(a) , but does not contain O 

On the set r- 1 ( I l, we consider the following equivalence relation : 

X - y <==> f(X) = f(y) 

By the axiom of choice , there exists a bijection g from the 

quotient set ( r- 1u) / - ) onto a subset Y of r- 1(I). The function 

r- : ( r- 1u l / - l --> I defined by 

f<yl = r- ( g- 1 (yl ) for every y in Y 

1s a biject1on from ( r- 1u l I - ) onto I Therefore , we have : 

Card Y = Card I > Card N 
f(Y) = r- (f- 1 ( I ) I - ) = I 

f(x) "' f(y) 

By ( 1 ) , we have : 

f ( qi(x,y) ) 'A. f(a) f(y) 

for X' y E y ' X"' y 

for every x in [a,b] 
and every y in R 

(21) 

(22) 

(23) 

(24) 

By (22) and Lemma 4 , for each y in Y , qi ( [a,b) , y ) is a non 

trivial interval of R since I does not contain O Moreover , by (23) 
and (24) , if y and z are distinct elements of Y , the intervals 
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cp ( [a,bl , y l and cp ( [a,b) , z ) are dis joint Therefore . 
A ( cp ( [a,b). y l • y E Y l is a family of disjoint intervals By 
(21) . we have . Card A Card Y > Card N This is impossible 

Therefore . f is a nonzero constant function on R ( 1) 

implies . f - 1 n.. 
Th1s completes the proof of Theorem 11 

2 4.2 Solutions of ( 1) in DB 1 in the case k = I 

The following results are due to the author 3·4·5 

The proofs are based on the following known result 9 

PROPOSITION 12 A.// t!Je contmuous solut1ons IJ R --• R ot 
t!Je funct10nal equat10n 

II ( !J(,y)) = (y+ 1 ) IJ(,'<} }' J< (XE R) (25) 

w/Jere y 1s a given nonzero real number , 

are given b)I 

(it) 

aJ 1f y > 0 . y .: J 

/, y.x+(l-~)a rorx.sa 
!J(x.J = x for a s x s b 

yx+(I y)b forx2b 

/i(.X) = y X + 6 

oJ lt r = 1 

/}()!) - .X + 6 

C) Jf y < 0 , y ,... -1 

(XE R) 

(XE R) 

(!} //(X) = y X + 6 (XE R) 

(/!} !J(X) = X (XE R) 

wit/J -oo Ja ( b .{ +oc 

wit/J 6 ER 

wit/J 6 ER 

wit/J 6 ER 
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(II) 

d) ff y = -1 

/)(X) = X (XE R) 

!l(x) { tNxJ ror x E (-oo, c/ 
a;>-1 (X) for x E /c, +oo) 

w/Jere c /s an arbitrary real number and 4> is an 
arbitrary continuous and strictly decreasing runction 
mapping (-oo, c/ onto /c, +oo) 

lf k / and tf f ts a solutton of < 1) in OB1 , the 

function : g(x) = f(x)l ( x E R) is conttnuous by Corollary 5 
and satisfies the following functional equation : 

g ( g(y) X+ g(x) y ) = ';J g(X) g(y) ( x,y E R ) (26) 

Let us remark that the functional equation (26) corresponds to the 
particular case of ( 1) where k I = 1 and A. is replaced by A. / 

We shall solve (26) and we consider the two cases : A. / < O and A. / > 0. 

We start with the first case and we shal l prove the 
following result : 

PROPOSITION 13 All t/Je continuous so/utions g R --> R 01 
t/Je runcttonal equation · 
g ( g(y) X+ !J(X) y) = µ !J(X) !J{y) ( x,y ER) (27) 

w/Jere µ is a given negative real number 
are given by . 

(;) !l = 0 (/!) !l = 1 /µ 

Proor or Proposition /3 
By taking x = y = O in (27) , we have either g(O) = 1 /µ or 

g(O) = 0 

a) Let us first consider the case g(O) = //µ . 

By taking y = 0 in (27) , we get : 
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g<x> = g< x/µ ) for every x 1n R (28) 

Therefore, we have for every x 1n R and for every positive integer n: 

g(X) = Q ( X/µn ) = Q ( X µn ) 

lf µ ... -1 , we see , as n goes to +oo and by using the 
continuity of g at 0 , that : g(x) = g(O) - 1 /µ for every x in R . 

lf µ = -1 , (28) becomes: g(x) = g(-x) for every x in R. 
By taking y = -x in (27) , we get : 

g ( g<-x> x g(X) x ) = - g(x) g(-x) for every x 1n R 

or , with (28) : g(O) = -1 - g<x>2 for every x in R 

Us1ng the cont1nuity of g , we deduce : 

g(X) -1 for every x 1n R 

bJ Let us now conslder the case gfOJ = o 
Let g be a non identically zero continuous solution of (27) . 

By tak1ng y = x in (27) , we see that the set of all real numbers x 
such that g(X) < O is a non empty open subset of R The 
cont1nuity of g implies then that g(R) 1s an interval of R 
containing an interval of the form (o.,OJ By Lemma 8 , g is not 
bounded below and therefore g(HJ is an lnterval of n which 

contatns r--. O/ . 
So, there ex1sts a nonzero real number x0 such that 

g(x0 ) = 1 /µ . Let us denote : 

(XE R) 

h 1s cont1nuous and satisfies the following functional equation : 

h ( h(x) ) ( 1 /µ + 1 ) h(x) 1 /µ X ( X E R ) (29) 

Now , all the continuous solutions of (29) are given by 
Proposition 12 . 

The solution h(x) = x ( x E R ) of (29) gives : 

g(X) = ( 1 1 /µ) x/x0 ( x E R ) which does not satisfy (27) 
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The solutlon h(X) ~ 1 /µ x + 6 < x E R ) of (29) 
leads to a constant function g This ls not possible since we have 
supposed that g(O) = o and g is not identtcally zero 

So , we have necessari ly µ = -1 and 

h(x) for XE (-oo,c] 
for x E [c, +oo) (30) 

where <I> is a continuous and 
(-oo, c] onto [c, +oo) . 

strictly decreasing function mapping 

The functlon : x --> h(x) x is conttnuous and 
decreastng on R . Therefore , lt vanishes at most once 
h(c) = c and h<O) = O , we deduce : c = O 

By taklng y = x0 in (27) , we get : 

g < h(X) ) g(x) for every x in R 

strictly 
From 

(31) 

Therefore , we may suppose that x0 is a positive real number . 

By taklng y = h(x) ln (27) and using (31) , we get : 
g ( X g(x) + g(X) ( Xo g(x) - X ) ) g(x)2 ( X E R ) 

or g ( x0 g<x>2 ) = - g(x)2 ( x E R ) (32) 

Since g<Rl is an interval of R which contains (-oo, 0] , the set 

x0 g<x>2 ; x E R l ls the tnterval (0 , +oo ) . (32) impl tes 

g(x) ~ - x/x0 for every x in (0 , +oo ) (33) 

For x in (-00 , 0] , h(x) belongs to (0, +oo) by (30) Therefore, by 
using (31) and (33) , we obtain : 

g(x) g ( h(x) ) h(x) I x0 - g(x) + x/x0 for every x in (-oo , O] 

or g(X) x /2x0 for every x in (-eo , 0] 

lt is now easy to check that the function defined by : 

g(x) { x/x0 for x ~ O does not satisfy (27) 
x /2x0 for x { o 

Therefore , there does not exist a non identically zero 
continuous solution of (27) satisfying g(O) = 0 This ends the proof 
of Proposition 13 
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When µ 1s a pos1t1ve real number , we have the follow1ng 
result 3 : 

PROPOSITION 14 All t/Je continuous solutions g . n --> n ot 
t/Je functional equation . 

!J ( !J(Y) X+ !J(X) y) = µ !J(X) !J(Y) ( x,y E R) (27) 

w/Jere µ is a given positive real num/Jer 

are given /Jy . 

(/) !l = 0 (ff) !l = 1 /µ 

and, in t/Je case µ = 2 only 

(iil) !J(X) = a X (XE n) 

(iv) g(x) = Sup( a X ,0) (XE R) 

w/Jere a is an ar/Jitrary nonzero real num/Jer 

Proof of Proposition 14 
As 1n Propos1tion 13, we have either g(O) = 1/µ or g(O) = 0 

a) Let us first consider the case gfO) = //µ . 

As 1n Propos1tion 13 , we have the equa11ty (28) which 
implies g<x> = 1/µ for every x in R when µ is different from 1. 

So , we consider the case where µ - 1 = g(O) 1 f f is not 
identically equal to 1 , there exists x0 in R such that g(x0) = 1 + E 

where E is a nonzero real number 
By taking x = y = x0 in (27) , we get w1th x1 = 2 x0 g<x0 ) 

g(X l) = ( 1 + E)2 

By taking x = y = x1 in (27) , we get with x2 = 2 x1 g(x 1> : 

g( x2) = ( 1 + E)4 

By this way , we build a sequence of real numbers xn such 

that : for every positive 1nteger n 

lf g(x0) > 1 , E is a positive real number and the sequence 
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( g<xn> lnEN tends to +oo The continuity of g 1mplies : [ 1, +oo) C g(R) 

lf g<Xa) < 1 , E is a negative real number and we can assume 

-1 < E < 0 . Therefore , the sequence ( g<xn> lnEN converges to 0 

The cont1nu1ty of g 1mpl ies : (0 , 1] C g(R) 
We notice that g(R) does not contain 0 since , 1f there exists 

x0 in R such that g(x0) = 0 , we get , by taking x = y = x0 in ( 1) , 

g(O) = O , which is not the case . 
So , by Lemma 8 , g<R> satisfies one of the two following 

conditions: (i) g<R) [1,+00 ) 

(i1) g(R) - (0, +oo) 

In the case fiJ , let us choose 
such that : g< t> > 1 

Let us denote as in Lemma 2 : 

a nonzero real number t 

<p(X,y) g(y) X + g(X) y 

We have : cp(-t,t) t ( g(-t) 

( x,y E R) 

g(t)) 

lf gH) = g<t> , we have by (27) 
g(cp(-t,t)) 1 g(-t)g(t)i g(t)> , which is not possible 

lf gH) < g(t) , cpH,t> and cp(O ,t) do not have the same sign 
By the continuity of the function cp(. ,t) , there exists a nonzero 
real number u such that cp<u ,t> = O . Then , by (27) , we have : 

g ( cp(u,t>) = 1 g(u) g(t) i g(t) > 1 , which is impossible 

Therefore , we have : gH> > g(t) cp(-t, t) and cpH,0) do not 
have the same sign By the continuity of the function cp(-t,. ) , 
there exists a nonzero real number u such that cp(-t,u) = O Then , 
by (27) , we have : 

g ( cpH,u) ) 1 gH) g(u) i gH) > g(t) > 1 , which is also 
impossible 

Therefore , the case (i) cannot occur 
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Let us conslder now the case (llJ . There ex1sts a 
nonzero real number x0 satisfying g(x0) = 1 /2 By taking x = y = x0 

in (27) , we obtain : 1 /2 = g(x0 ) g(Xa)2 = 1/4 ,which is not 

possible . Therefore , the case (iil cannot occur either 

In conclusion , when g(O) = 1 /µ = 1 , g is ident1cally equal 
to 1 

Therefore , if µ 1s any positive given real number , the only 
cont1nuous solution of (27) satisfying g(O) = 1/µ is : g 1/µ 

bJ Let us now conslder the case g(OJ = O . 

Let g be a non identically zero continuous solution of (27) 
By tak1ng y = x in (27) , we see as in Proposition 13 that the set 
of all real numbers x such that g<xl > o is a non empty open 
subset of R The cont1nuity of g 1mplies then that g<R> is an 
1nterval of R containing an interval of the form [O,a.) By 

Lemma 8 , g is not bounded above on R and , therefore , g(RJ ls 
an interval of n which contains /0. #oo) 

So , there exists a nonzero real number x0 such that 
g(x0 ) = 1 /µ Let us denote 

x/µ + x0 g(x) (XE R) 

h 1s cont1nuous and sat1sf1es the following functional equation 

h ( h(x) ) = ( l /µ + 1) h(x) - l /µ X ( X E R ) (29) 

Now , all the cont1nuous solutions of (29) are given by 
Proposition 12 

The Solution h(X) = l/µ X + 6 (XE R) of (29) 

leads to a constant function g This is not possible since we have 
supposed that g(O) = 0 and g is not identically zero 

So , we have necessari ly µ ~ 1 and 

i X /µ + ( 1 1 /µ ) a 
h(X) = X 

X /µ + ( 1 - J /µ ) b 

for x ~ a 
for a ~ x ~ b 

for x ~ b 
with -oo ~ a < b ~ +oo 
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We deduce : 
{ 

( 1 - 1 /µ ) a/x0 

g(X) = ( 1 - 1 /µ ) X/X0 

( 1 1 /µ) b/x0 

g<O) = O 1mplles : a ~ O ~ b 

for x ~ a 

for a ~ x ~ b 

for x ~ b 

Since g 1s not constant , g is not bounded above on R by 
Lemma 8 . Therefore , we have : b = +eo if ( 1 - 1 /µ) /x0 is positive 

and a = -eo if ( 1 1 /µ) /x0 is negative 

Let us suppose ( 1 - l /µ) /x0 > 0 and b = +eo 

x = y > O in (27) , we get : 

g ( g(y) X + g(X) y ) g ( 2 ( 1 

µ ( 1 

1 /µ) x2/x0 ) = 2 ( 1 

1 /µ )2 x2/xo2 

By tal<.ing 

This implles µ = 2 and we have the following expression for g : 

g(X) = { a /2x0 

x /2x0 

for x ~ a 

for x ~ a 

with -eo ~ a ~ 0 and x0 > 0 

Let us suppose a > -oo By taking x < a and y > x0 in (27) , 

we obtaln : 

g ( g<y> x + g<x> y) = g ( yx/2x0 + ay/2x0 ) g ( y. (a+x)/2x0 ) a /2x0 

= ay I 2 x02 

Th1s implies a = O and g has the expression (iv) with o. > O . 

lf a =-eo , g has the expression (i1i) wlth o. > 0 . 

lf ( 1 - !/µ) /x0 < 0 and a =-eo , we obtain similarly 

µ = 2 and either b = 0 or b = +oo This gives the expressions 
(iii) and (iv) for g with o. < 0 . 

lt is easy to verify that the expressions (iii) and (iv) of g 
are solutions of (27) 

This ends the proof of Proposition 14 
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So , when f is a solution of ( 1) in DB1 in the case k l , 

we obtain first from the Proposit1ons 13 and 14 all the possible 
expressions of g<x> f(x) / ( x E R ) and we deduce then all the 
possible expressions of f 

24.J. Regular so/utions of (1 J 

Using Theorem 11 and Propositions 13 and 14 , we deduce 
first all the solutions of ( 1 > in DB1 . 

THEOREM 15 W/Jen II. is a nonzero real number and k, l are 
positive integers, all t/Je solutions f: R --> R in t/Je class of 

functions DB1 of t/Je tunctional equation 

f(f(yJKx+f(xJ 1 y) =il.f(X)f(y) (X,yER) (/) 

are given by . 
aJ 1f k"' l or 1f k = I and 11.1 "'2 

(1) f=O (/1) f = 11 Ä 

bJ 1f k = I is an odd integer and Ä = 21 11 

(1) f = 0 (/1) f = 1 / Ä (iil) f(X) = a X l / I (XE R) 

(IV) f(X) = Sup(a x 111 ,0J (XE RJ w/Jere a is an 

arbitrary nonzero real number . 

cJ 1f k = I is an even integer and Ä = 211 I 

(1) f=O ' (il) f= 11 Ä ' iil) f(x}=(Sup(ax. OJJ 111 (XER) 

w/Jere a is an arbitrary nonzero real number. 

d) 1f k = l is an even integer and A. = - 2 111 

(1) f = O , (i1) f = 1 /II. , (//1) f(x) = - (Sup(ax, OJJ111 (x ER) 

w/Jere a is an arbitrary nonzero real number 

We obtain now all the continuous solutions f: E --> R of ( 1 > 

when E is a real Hausdorff topological vector space . 
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THEOREM 16 Let E be a real Hausdorf! topologk:al vector space. 
Wlien il fs a nonzero real number and k, I are positive fntegers, 
all tlie contfnuous solutfons f. E --> n of tlie functfonal 
equatfon : 

( ( ((yJk X+ ((J<)I y) = il ((X) f(,vJ ( X,)IE EJ (!) 

are gfven by 
aJ ;f k .r I or 1r k = I and il 1 .r 2 

(;) f=O (/!) (=1/il 

bJ 1f k = I fs an odd Integer and il -211 I 

(!) (= 0 fjj) ((X)= ( <X,.J/)) l // (XE E) 

(IV) f(X) = Sup( (<x,x'*)J 1/ 1. 0) (XEEJ wliere x* fs 

a nonzero element of tlie topologfcal dual F" of E 

cJ if k = l is an even integer and .-1 = 2111 

(;) f = 0 ; (ff) f = 1 / il ; (ff;) f(x) = ($up( <,Y,X* >, 0)) 1 II (x E EJ 

wliere x"' fs a nonzero element ol F" 

dJ ff k = I fs an even Integer and il = - 2 111 

(!) ( = 0 ; (j;) ( = 1 / il , (ff!) ((X) = - (Sup( <x;x"' >. 0)) 1 / / (XE EJ 

wliere /' fs a nonzero element ot ["' 

Proof of Tlieorem 16 
Let f: E --> R be a continuous solution of < 1) . Then , f<O) 

is either 0 or 1 //... . For every x "' 0 in E , we consider the 
function fx : R --> R defined by fx(t) f(tx) (t E R) lt 

is easy to see that f x 1s a continuous solution of ( 1) 

By Theorem 15, if k"' l or if k I and 'A. 1"'2 , fx 

is a constant function for every x"' O in E Therefore , we have 

f x f /0) = f(O) f x< 1) f(x) for every x"' 0 in E 

So . f is identically equal either to O or to 1/A 

So , we consider now the case where k I and /... / = 2 
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The funct1on g: E --> R def1ned by g(x) = f(x/ ( x E E l is 
continuous and satisfies the following functional equation 

Q ( g(y) X + g(x) y ) 2 g(x) g(y) ( x,y E E) (34) 

Now , all the continuous solutions g: E --> R of (34) are known 3 

and are given by 

g = 0 ; g = 1 /2 ; g(x) = <X,X*> (X E E) ; g(x) = Sup( <X,X*>, 0 ) (X E E) 

where x* 1s a nonzero element of the topological dual E* of E . 
(Let us notice that this result is stated in the reference for a 
real Hausdorff locally convex topological vector space . But , K. Baron 
observed in a private communication that this result is also true 
for a general real Hausdorff topological vector space . ) 

We deduce then all the poss1ble expressions of f g1ven in 
Theorem 16 

J. SUBGROUPOIOS OF CRxE , *) 

In our problem , we consider the groupo1d mxE,*J where E 
is a real Hausdorff topological vector space and the binary operation 
* is defined by 

(a,x) * (b,y) =CA.ab, bkx + a1 y) for (a,xJ,(b,y) E RxE (L) 

When we look for the subgroupo1ds of (RxE,*l which depend 
faithfully and continuously on a topological space F of parameters , 

we have to find ( Definition 1 J : 

in the case (i) , all 
defined by f ( ß(u) ) = a(u) 
equation ( 1) 

in the case (ii), all 
defined by f ( a(u) ) = ß(u) 
equation (2) 

the continuous functions f : E --> R 
( u E F) which satisfy the functional 

the continuous functions f: R --> E 
( u E Fl which satisfy the functional 

The continuous solutions f : E --> R of ( 1) are given by 
Theorem 16 
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For the funct1ona1 equat1on (2) , we have the following 
result : 

PROPOSITION 17 All t/Je solutions f: n --> E of t/Je functional 
equation 

fO„xyJ=yk f(xJ+x 1 f(y) 

are given by: 

a) f=O 

( x,yE R) 

b) 1! k"' I and A.k = A.1 1 

(2) 

f(X) = (XI xk) V (XE n) w/Jere v is 
an arbitrary nonzero element of E 

c) 1! k = I and A.1 = 1 

(1) lf I = 0 , f(X) = NA.X) (XE R) 

w/Jere /J is a /Jomomorp/Jism from ( n, . ) into ( E, +). 

(il) 1! l>O, f(X) =1xl !J(X) lf X"'O 

0 1! x=O 

w/Jere /J is a /Jomomorp/Jism from ( n - (OJ, • J into ( E, + ). 

d) if k = I > O and A. 1 = 2 

f(xJ = x 1 v ( x E n J , w/Jere v is an 
arbitrary nonzero element of E 

Proof of Proposition 17 

Let f: R --> E be a non identically zero solution of (2) By 
inverting x and y in (2) , we get : 

f ( A.xy ) = xk f(y) + y / f(x) ( x,y E R ) (2 bis) 

(2) and (2 bis) imply : 

( X I X k ) f{y) ( y I y k ) f(X) ( x,y E R) 
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lf k „ I , there exists a nonzero real number y0 such that 

y/ „ y0 k. We deduce : 

f(x) ( X I X k.) V ( X E R ) • where V is a 
nonzero element of E lt is easy to check that this function 1s a 
solution of (2) if, and only if, A.k= A.'= 1 

Let us suppose now k I lf A. o , it is easy to see 
that f is identically zero , which is not the case Therefore , A. is 
a nonzero real number By taking x = y = 1 /A in (2) , we get : 
f(l/A.J(l 21A 1J=O, which implies either f(l/A.l=O or A. 1=2. 

Let us suppose that f( 1 /A.l = O By tak ing y = 1 /A in (2) , 
we obtain : f(x) ( 1 1/A 1J 0 for every x in R Since f 
ls not 1dent1cally zero , th1s impl1es : A. / 1 

lf I = O , (2) becomes : 
f < A.xy ) = f(x) + f(yJ ( x,y E R ) where A. 1s an 

arbitrary nonzero given real number 
Let US define h(X) f(x/A) ( XE R ) 

Then , by (2) , h is a homomorph1sm from ( R, • l into ( E , + l . This 
gives the solution cl (i) of (2) 

Let us suppose now I > O . We def1ne : 
h(x) = f(x) I XI ( X E R (0) ) (35) 

f is a solution of (2) if , and only if , h satisfies the following 
functional equation : 

h ( A.xy ) = h(x) + h(y) ( x,y E R - (0} ) with A. 1 (36) 

By taking y = 1 in (36) , we obtain : 
h ( A.x ) = h(X) + h( 1) ( X E R - (0} ) (37) 

Since A.2 = 1 , we get with x = A. in (37) : 
h(l) h(A.)+h(l) which implies h(A.)=0 

Also , by taking x = 1 in (37) , we obtain : 
h(A.)=0 = 2h(l) which implies h(l)=O 

Therefore , (37) becomes : h ( A.x ) = h(x) ( x E R - (O} ) , 
and we deduce from (36) that h is a homomorphism from ( R (0),. ) 
into < E, +) This g1ves the solution c) (ii) of (2) 
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Flnally , Jet us suppose "A. / 2 . Then , I must be a 
positive Integer . f ls a solution of <2> In thls case lf , and only 
if , the functlon h defined by (35) on R - (0) sat1sf1es the 
following functional equation : 

h ( "Axy > = 112 < h(X) + h<y> > < x,y E R - (0} > <38) 
Taking y = 1 /A in (38) , we see that h is a constant function . 
Therefore , we obtain : f<x) = x I v < x ER > where v 1s 
a nonzero element of E . 

In the sequel , we shall denote by n* the set of all 
nonzero rea 1 numbers . 

From Theorem 16 and Propos1t1on 17 and bj' us1ng the 
express1on of the cont1nuous homomorph1sms from < R , . > into 
< E, + > 1 , we deduce eas1Jy the follow1ng results : 

COROLLARY 18 Let A. be a nonzero real number 
We consfder t/Je groupold rn* x E, *J w/Jere t/Je 

bfnary /aw * ls deflned by (LJ wlt/J k = I = O . All t/Je 
subgroupoJ'ds of rn* x E, *J w/Jlc/J depend falt/Jfully and 
contfnuously on a set of parameters , are . 

t/Je sets 6x„ = ( ( 11 A. e < /J • x"'>, jJ J ,- jJ E E J w/Jere 

x* ls an element of t/Je topo/oglcal dual of E 

and t/Je sets 6v = ((a, Log(/A.a/J. vJ ,- a E tri w/Jere 

v ls an e/ement of E 

COROLLARY 19 Let k be a nonnegatlve Integer , /et I be a 
positive Integer and /et A. be a nonzero real number such 
t/Jat A.1 ls different from 1 and 2 . 

We cons1'der t/Je groupoi'd rn* x E, *J w/Jere t/Je 
blnary law * ls deffned by (LJ . All !/Je SllbgrolJf)oi'ds 
of rn* x E, *) w/Jlc/J depend falt/Jful/y and cont lnuously 
on a set of parameters , are : 

!/Je set ((II Ä ,/]) „ jJ E E} 
and t/Je set ( ( a , O J ,· a E n* J 
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COROLLARY 20 Let k /Je a nonnegative integer , /et I /Je a 
positive integer and /et II be a nonzero real number suc/J 
t/Jat 111=1 

We consider t/Je groupoid rn* x E, *) wnere t/Je 
binary law * is defined by ru. All t/Je subgroupoJds 
of (!( x E, *) w/Jic/J depend fait/Jfully and continuous/y 
on a set of parameters , are . 

tne set ! fl III , fJ J , fJ E E J 
and , 1t k ~ I and 11k = 1 , 

t/Je sets 6v - ! ( a , ( a 1 a k ) v) ,· a E n* J 
w/Jere v is an element of E 

lfk=/, 
t/Je sets 6v =(fa. a 1Logf/a/). vJ, a En*J 
w/Jere v is an element of E 

COROLLARY 21 Let k be a nonnegat ive integer , !et I be a 
positive integer and /et II be a nonzero real number suc/J 
tnat 111 = 2 . 

We cons1der t/Je groupold rn* x E, *) w/Jere t/Je 
binary /aw * is defined by fU All t/Je subgroupoids 
of rn* x E, *) w/Jic/J depend fait/Jfully and continuously 
on a set of parameters , are : 

tne set f fll II ,/J) ,· fJ E E J 
t/Je set ! ( a , 0) ,· a E n* J 

and , 1f k = I , t/Je sets 6v = ! ( a , a 1 v) , a E n* J 
w/Jere v is an e/ement of E 
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ABSTRACT 

The paper presents an application offunctional equations to the discrete solution 
of ordinary differential equations. First, we deal with linear differential equations 
with constant coeflicients, and from one special functional equation we design an 
algorithm to obtain the exact values of the solution at equally spaced points. Then, 
a method to obtain approximate and exact solutions and an equivalent functional 
equation of a linear differential equation is given. 

1. Introduction 

In this paper, two systems of differential and functional equations are said to be 
equivalent if they share the same set of solutions. The existence of equivalent systems 
of differential and functional equations, in the above sense, allows us not only to use 
differential equations for solving functional equations but also functional equations 
for solving differential equations. In the next two sections, we shall show how a 
functional equation, that it is equivalent to the whole family of linear differential 
equations with constant coefficients, can be used to obtain discrete exact solutions of 

a differential equation problem. In the last section, we shall explain how a sequence 
of approximate equations to a linear differential equation, in the sense of having 

approximate solutions on a grid, can be found. 
To clarify the abovementioned, as weil as the relations between functional and 

differential equations and their exact and approximate solutions, we include figure 1. 

75 
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Finite Elements 
Method 

(approximate) 

Difference 
Equation (exact) 

Difference 
Equation 
(approximate) 

Figure 1: Illustration of the relation between differential equations, functional equations 
and their associated numerical methods. 

The functional equation 

n 

h(xt..y) = L fk(x) 9k(Y) = gT(y) * f(x) 
k=I 

(1) 

where t.. is any commutative internal law of composition defined on R and h, fk 
and 9k (k = 1, 2, ... , n) are unknown real functions of real variable such that the 
set of functions {!1 ( x) ,f2 ( x), ... , f n ( x)}, on the one hand, and the set of functions 
{g1 (y),g 2(y), ... ,gn(y)}, on the other, are linearly independent has been used by 
many researches as Stephanos ((6], (7]), Levi-Civita ([4]), Stäkel([5]), Aczel ([1]), etc. 
We show, without loss of generality, that Eq. 1 can be considerably simplified and we 
give several equivalent functional equations. Then we demonstrate that when 6.=" +" 
it can be solved by its reduction to an homogeneous differential equation of order n 
with constant coefficients (see Aczel [l], pp. 197-199). Conversely, every solution 
h( x) of an homogeneous differential equation of order n with constant coefficients 
satisfies Eq. 1. Finally, we show how functional equations can be used to identify the 
differential equation associated with a practical problem and to obtain exact discrete 
solutions. We also give an algorithm to obtain discrete exact solutions when the 
value of function h(x) is known at 2n points and some method for identifying the 
coeffi.cients of the associated differential equation. 
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2. Simplifications 

The following theorem demonstrates that Eq. 1 can be simplified if we take into 
account the commuta.tive property of ti.. 

THEOREM 1 (Symmetry).- Functional Eq. 1 can be written as 

n 

h(xti.y) = L a,j f;(x) fj(y) = cT(x)Af(y) ; ll;j = llj; Vi,j (2) 
i,j=1 

where A is the symmetric matrix of coefficients a;1 ( i, j = 1, 2, ... , n). 

Proof: Because of the commutativity of ti. , we have 

n n 

h(xti.y) = L f;(x)g;(y) = L f;(y)g;(x) => 
i=l i=l 

n 

=> L [ f;(x)g;(y) - f,(y)g;(x)] = 0 
i=l 

which is an equation of the form 

m 

Lp,(x) q;(y) = 0 
i=l 

Thus, according to a result of Aczel [l) (see Castillo and Ruiz-Cobo [2]): 

( f(x)) = ( 1) f(x) ; ( g(y) ) = ( B) f(y) 
g(x) A -f(y) -1 

where A and B are constant matrices such that 

From Eq .. 5 and Eq. 6, we get 

g(x) = Af(x) = Bf(x) = ATf(x) => A =AT 

Finally, substitution of Eq. 7 into Eq. 1 leads to Eq. 2. • 

(3) 

(4) 

(5) 

(6) 

(7) 

We shall now study the uniqueness of representation of Eq. 2, i.e. we try 
to answer the following question: given h( x ), is there a unique set of functions 
{!1(x),f2 (x), ... ,fn(x)} and a unique matrix A, such that Eq. 2 is true?, and if 
the answer to this question is negative, what is the relation between different solution 
sets of functions and matrices? The answer to the above questions is given by the 
following theorem. 
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THEOREM 2 . lf there are two sets of linearly independent functions 
{/1(x),/2(x), ... ,fn(x)} and {J:(x),J;(x),„ „J~(x)} and two symmetric matrices 
A and A • such that 

n n 

h(xt..y) = L a;i f;(x) fi(Y) = L a:i f;'(x) Jj(y) (8) 
i,j=l i,3=1 

then there exists a regular constant matrix B of order n such that 

f*(x) = Bf(x); A = BT A*B (9) 

where A and A • are the matrices of coefficients a;i and aii, respectively. 

Proof: In effect, equation 

n n 

L a;i f;(x) fi(Y) = L a:i f;°(x) f 3*(y) (10) 
i,j=I i,j=1 

can be written as 

which is of the form Eq. 4. Thus, we have (see Acze! (1]) 

( f(x) ) ( 1 ) ( Af(y) ) (A) 
-f*(x) = -B f(x) ; A*f*(y) = C f(y) (12) 

where B and C are non-singular constant matrices satisfying the equation 

(13) 

From Eq. 12 and Eq. 13, we get 

A*Bf(x)=A*f*(x)=Cf(x)=Br-'Af(x) =? A=BTA*B (14) 

• 
COROLLARY 1 .- Functional Eq. 1 can be written as 

p n (1 Q ) 
h(xt..y) = ~ f;(x) f;(y) - i~l f;(x) f;(y) = fT(x) ~ -lq f(y) (15) 

where p + q = n. 
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Proof: Expression on the right of Eq. 14 shows that matrices A and A • are con­
gruent, but we know that any non-singular symmetric matrix A • of rank n can be 
transformed by congruence to a matrix of the form 

p+q=n (16) 

and then Eq. 15 holds. 1 

In the following we assume ~="+" and we demonstrate that equation 

h(x + y) = fT(y) Df(x) (17) 

is equivalent to an homogeneous differential equation. 
Taking separated derivatives with respect to x and y in Eq. 17 and equaling we 

get 
h'(x + y) = cT(y) Df'(x) = f'T(y) Df(x) (18) 

Due to the fact that the set of functions {!1 (y ), f 2(y ), ... , fn(Y)} is linearly indepen­
dent, there exist constants Ym (m = 1,2, ... ,n) such that det fk(Ym)-:/- 0. Conse­
quently, it can be written 

ni=l,2, ... ,n (19) 

which in matrix form becomes 

f'(x) = G- 1G'f(x) = Ff(x) (20) 

where G and G' are matrices with elements depending on D and fm(Yk) and J:,,(yk), 
respectively. 

Making now y = 0 in Eq. 17 we get 

h(x) = fT(O)Df(x) = Cf(x) (21) 

and taking derivatives and using Eq. 20 we get 

h'(x) = Cf'(x) = CFf(x) 

h"(x) = CFf'(x) = CFFf(x) = CF2f(x) 
(22) 

which, in matrix form, becomes 

(
CF l CF2 

. . . f(x) = Vf(x) 

CFn 

(23) 
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Finally, from Eqs. 21 and 23, taking into account that the above functions are linearly 
independent, we have 

d ( f:{~ J = 0 

h(nl(x) 

(24) 

where d is a constant nonzero vector. Thus Eq. 24 is a homogeneous differential 
equation of order n with constant coefficients. 

We now show that every solution h( x) of an homogeneous differential equation of 
order n with constant coefficients satisfies Eq. 17. In effect, every solution is of the 
form 

m 

h(x) = L Pk(x) exp{wkx} (25) 
k=I 

where wk, (k = 1, 2, ... , m) are complex constants (the roots of the characteristic 
m 

equation) and Pk(x) are polynornials of degree (nk - 1) where I: nk = n. 
k=I 

From Eq. 25, we get 

m 

h(x+y) = LPk(x+y)exp{wk(x+y)} = 
k=I 

(26) 
n n 

= L Akx'»yß• exp{ wkx} exp{ wky} = L fü x) 9k(Y) 
k=I k=I 

Thus, Eq. 17 gives a representation of every solution h(x) of an homogeneous differ­
ential equation of order n with constant coefficients. 

3. Exact Discrete and Numerical Solutions 

In the following we call hn = h(n~x) and we consider that functions h(x) and 
f;(x) (i = 1,2, ... ,n) are defined on a discrete subset of R {n~x,n E Z}. In order 
to have a unique solution for Eq. 15 we also assume that ho, ... , h2n-I are known. 
Note that we give 2n values because Eq. 15 is equivalent not to a single differential 
equation but to the familly of all differential equations and the constant coefficients 
should be deterrnined by data. 

From Eq. 15, we have 

(27) 
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where y = mt:i.x and .r = nt:i.x and 

where 

F(nt:i.x) = ( 
fi (0) 

fi (t:i.x) 

fi[(n - l)t:i.x] 

fi(O) 
fi(t:i.x) 

fi[(n - l)t:i.x] 

fn(O) ) 
fn(t:i.x) 

fn[(n - l)t:i.x] 

Due to the non-singularity of F, from Eq. 27 and Eq. 28, we can write 

(28) 

(29) 

hm+n = K(nt:i.x) ( h;: 1 ) ; K(nt:i.x) = fT(nt:i.x)F- 1 (nt:i.x) (30) 

hm+n-1 

and taking into account Eq. 28 for m = n, and Eq. 30 we have 

but making m = 0, 1, 2, ... , n - 1 in Eq. 28, we get 

(32) 

and then 

(33) 

for m ;::=: n, which is a difference equation of order n. 
Hence, exact discrete solutions of Eq. 17 can be obtained by difference Eq. 33. 

Consequently, given an homogeneous differential equation of ordern, there exists a 
dijference equation of the same order such that their solution coincide at the common 
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points. lt is remarkable that we can obtain the unknown differential equation govern­
ing a problem if we know experimental values on a large enough set of equally spaced 
points. Note that the difference Eq. 33 depends on !::!.x and the coeflicients of the 
differential equation. 

Eq. 33 can be written as 

h(x + ny) = { h(ny) h((n + l)y] ... h((2n - l)y) }• 

h(y) ( 

h(O) 

• h((n - l)y) 

h(y) 
h(2y) 

h(ny) 

h((n-l)y))-l( h(x) ) 
h(ny) h(x+y) 

h((2n - 2)y] h(x + (n - l)y] 

which is a functional equation equivalent to Eq. 1 with !::!. ="+". 

(34) 

For a differential and a difference equations to have the same solution at common 
points, their characteristic equations must be of the form 

n n 

II (x -a;) = 0 and II [x - exp(a,!::!.x)] = 0, (35) 
i=l i=l 

respectively. Thus, once one of both equations is known, the other can be immediately 
obtained from Eq. 3.5. 

EXAMPLE 1 (Castillo, Ruiz-Davila and Ruiz-Cobo {3}).- Let us consider the dif­
ferential equation of a string o_n an elastic foundation with no load on it: 

h"(x) - [{ h(x) = 0 
T 

(36) 

where h(x) is the vertical displacement of the string at the point x,I< is the Winkler 
constant and T is the horizontal tension in the string. In order to simplify we assume 
that I< /T = 1. 

The exact solution for the case h(O) = O; h(l) = 1 is 

h(x) = exp(x)-exp(-x) 
exp(l) - exp(-1) 

An approximation to Eq. 36, by means of the finite difference method is 

hn+l - [ 2 + (ßx)2) hn + hn-1 = 0; hn = h(n ßx) 

which has as characteristic equation and roots 

r 2 -(2+ß2x)r -fl=O 

(37) 

(38) 

(39) 
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Thus, its general differentiable solution is 

( 40) 

which for h(O) = O; h(l) = 1 becomes 

hn= 1 (2+th+D.xJ4+L~h)r-
D.xJ4 + D.2x 2 

(41) 

1 (2+ß2x-ßxJ4+ß2x)) 
ßJ·J4 + ß 2x 2 

AsS'lLme now that we do not know what the differential equation governing the problem 
of a string on an elastic foundation with no load on it is, but we run an experiment 
and we measure the displacements at equally spaced points, say h0 , h 1 , h2 , ... , hp. The 
recurrence formula Eq. 33 with n = 1, 2, 3, ... allows us to obtain the value of the 
first integer n compatible with the h0 , h1 , h2 , ... , hP values and the coefficients of the 
difference Eq. 33. Then, from Eq. 35, the differential equation governing our problem 
can be easily obtained. 

As one example, /et us assume that we know the exact values 

ei~x - e-ii:ix 
h; = 1 ;i = 0,1,„„5 

e - e-
(42) 

Then, Eq. 33 for n 

becomes 

1 is not satisfied for h2 , but the same equation for n = 2 

(43) 

which is satisfied Jor h4 and h5 and then we can conclude that n = 2 and that Eq. 43 
is the difference equation leading to exact value:s for all the discrete points. 

The characteristic roots of Eq. 43 are et.x and e-Lix and, according to Eq. 35, the 
characteristic roots of the associated differential equation are + 1 and -1. Thus, Eq. 
36 with k/T = 1 is implied. 

Note that Eq. 43 shows that Eq. 37 is one solution of the functional equation 

h(x + 2y) = (e" + e-Y)h(:r + y) - h(x) (44) 

Table 1 shows different exact and apprnximate solutions obtained by Eq. 37, Eq. 38 

and Eq. 43 Jor ßx = 0.4. 
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Exact solution Exact solution of Approximate solution 
X Eq. 37 difference Eq. 43 of difference Eq. 38 

0.0 0.00000 0.00000 0.00000 
0.4 0.34952 0.34952 0.34952 
0.8 0.75571 0. 75571 0. 75496 
1.2 1.28443 1.28443 1.28119 
1.6 2.02141 2.02141 2.01241 
2.0 3.08616 3.08616 3.06562 
2.4 4-65131 4.65131 4.60933 
2.8 6.97065 6.97065 6.89052 

Table 1: Three different solutions of the example equation 

The coincidence of the solutions of the differential and the difference equations at the 
common points is not casual. In fact, if we assume an infinitely differentiable solution 
of the functional equation 

n 

L:a,y<n-i)(x) = 0, (45) 
i=O 

using the Taylor expansion, we can write 

(46) 

and by derivation of Eq. 45 (m - n) times, we get 

n 

~ . (n-i+s)( ) - 0 . - Q 1 L....,a,y x - , s- , , .. „m-n (47) 
i=O 

The system (46)-(47), independently of the value of m, allows us to eliminate all m 
derivatives of y and to obtain a difference equation of order n. When m tends to 
infinity we get the coincidence of solutions. Note that the order of the difference 
equation remains constant when m increases. 

On the other hand, it is weil known that the general solution of the differential 
Eq. 45 can be written as 

m 

y(x) = LPk(x)exp{wkx} (48) 
k=I 

and the general solution of a difference equation as 

m 

y(x) = L Pk(x)w'k (49) 
k=1 
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where Wk (k = 1, 2, ... , n) are the solutions of their characteristic equations. Note 
that both equations are of exactly the same form. 

Until now, we have been working with linear differential equations of constant 
coefficients. But, could we do a similar thing if the coefficients of the equations are 
not constants? 

4. From Differential Equations to Functional Equations 

Westart from a differential equation and we look for an equivalent functional equa­
tion. We only study the case of the following linear ordinary differential equation 

n 

I:a;(x)f(n-il(x) =h(x) {50) 
i=O 

where f, h, a; (i = 0, ... , n) are infinitely differentiable functions in a certain domain 
D. Without loss of generality we can assume a0 (x) = l. 

We also assume that the value of J is known at n points of the domain 

D : {P1 = x + f).i ,j = 1, ... , n}. 

Using the Taylor expansion we have 

Vj=l, ... ,n {51) 

where we assume m > n. 
By differentiating {m - n - 1) times Eq. 50, we get 

n+k-1 L Ak;(x)f(n-i+k-I)(x) = h(k-l)(x); k = 1, 2, ... , m - n + 1 {52) 
i=O 

where the upper index denote the order of derivation and the functions Ak; (k = 
1,2, ... ,m -n + 1) are given by: 

Ali(x)= a;(x); i=O,l, ... ,n 

{ 
Ak;(x) ij i = 0 

A(k+I)i(x) = Ak;(x)+A~(i-l)(x) if i=l,2, ... ,n+k-1 
A~(n+k-l)(x) ij i = n + k 

lt is worthwhile mentioning that because a0 (x) = 1, the first coefficient of all equa­
tions in expression 52 is equal to 1. 
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Eq. 51, without the complementary term, and Eq. 52 can be written, in matrix 
form, as 

where N,D,C,B,F,H, and ßF are the following matrices: 

F= 

h(x) 
h'(x) 

J(nl(x) H= 
J(n-ll(x) 

N= 

J(x) 

=..o.. 
m! 

0 0 
0 0 

0 0 

0 
1 A(m-n+l)l 

Au 

D= 

A(m-n)(m-n) 

A(m-n+I)(m-n+l) 

11.(m-l) 
~ 

(m-1)! 

Ak1 

c· C= ii_ 11.(,;.:..1) ~) B= 
::L__ 

an 
::.L 

m! (m-1)! n! 

(
J(x ~ ßn)) 

ßF= : 

f(x + ßi) 

1 A21 

Ak(k-1) 

A(m-n)(m-n-1) 

A(m-n+l)(m-n) 

Aln 

Ak(k+n-1) 

A(m-n)(m-1) 

A(m-n+l)m 

( ,,._„ 
ßn : ) (n~~~)! 

ll.(n-1) 

ßl =i___ 

(n-1) ! 

(53) 

where the explicit dependence of matrices N and D on x has been omitted for the 
sake of clarity. From Eq. 53 we can eliminate all derivatives of the function f and 
get a functional equation. This is what we do in the following paragraphs. 

First, we row-manipulate the matrix (N D) in order to transform the matrix 
N into an inverse unit diagonal matrix P. These transformations produce some 
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modifications in matrices D and H, which become D* and H* : 

M= ( ~ ~) ~ ( ~ ~·) G = ( :F) ~ (:;) 
where 

P~ ( ; 

0 0 

; l 0 

1 0 
0 0 

Next, we transform matrix C into the null matrix by row-manipulations of matri­
ces M and G. lt is easy to check that this is equivalent to making the following 
transformation 

B* = B - CPD* and 6F* = 6F - CPH* 

With this, the system (53) becomes equivalent to the system 

( p D*) ( H* ) O B* . F = 6F' 

From Eq. 54, we get 

where K = -CPH*. 
Now, from Eq. 55, we get 

n n 

f(x) - L::>n-j+l f(x + 6j) = I>j · kj 
j=l j=l 

where (r1 ... r" ) is the last row of the matrix B·- 1 , that is, 

(-1in+1. tyn 
r 1 = , with b jn = Adjoint(J·,n) of B* 

det B• 

(54) 

(55) 

(56) 

In this way, we obtain a difference Eq. 56 of order n, which approximate Eq. 50. 
In addition, once the manipulations have been performed for a given value of m, 

if one wants to do the same process for m + p, one can start from the manipulated 
matrices N* and D* instead of starting from the initial N and D matrices, with the 
corresponding saving in computational time. 
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If we increase the value of m we sha.Jl get a better approximation. However, this 
can be clone without increasing the value of n. In other words, by increasing m we get 
a sequence of difference equations of ordern which approximate the initial differential 
equation. In the limit, we shall obtain a difference equation which is an exact replicate 
of the starting differential equation in the sense that it gives the same solutions at 
the grid points. 

But we can go even further, because Eq. 56 can be interpreted as one functional 
equation in the variables (x, ßl> ß 2 , „., ßn) and then we get a functional equation 
which is equivalent to Eq. 50. 

Below, we give some examples. 

EXAMPLE 2 .- We apply the above method to the following differential equation 

xf'(x) - kf(x) = 0 

where k is a given constant. 

In this case, because n = 1, we take a single point x + ß. 

With m = 3, the matrices in Eq. 53 are 

0 ( _!). (0) 
D= ~ H= ~ _!_ 

X 

C=(~3 ~2 ß);B=(l);ßF=(f(x+ß)) 

After manipulating matrix N for the first time we get 

-~ ) - k(k-1) 
„2 

k(k-l)(k-2) 
z3 

and after making the matrix C null, it results 

B* = (i + k ~ + k ( k - 1) ( ß )2 + k ( k - 1)( k - 2) ( ß )3) 

X 2! X 3! X 

Due to the fact that we have an homogeneous differential equation, the matrices on the 
right hand side do not suffer any transformation and we get the difference equation 

J(x) = B*-1 f(x + ß) 

lt is easy to check that when increasing the value of m the added terms in matrix B 
are of the form 

k(k-1)„.(k-m+1) (ßr 
m! X 
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Thus, in the limit, we haue 

B· = (1 + ~f 
:i: 

and then the functional equation equivalent to lhe initial differential equation is 

f(x) = (1 + '!L)-k f(x + y) 
X 

and the difference equation 

f(x) = (1 + ~)-k f(x + ll) 
X 

EXAMPLE 3 We now apply the above method to the equation 

k 
f'(x)- -J(x) = x 2 

X 

which is a complete equation associaled with the homogeneous equation in example 2. 

For m = 3, all matrices are of the same form as before with the exception of ma-

trix H, which now becomes 

Thus, after the first manipulation we get 

H• = ((k:22)x) 
k2 + 2 

and after making the matrix C null, we obtain 

( ll2 [l3 ) 
llF* = llF + K ; K = -ll x 2 - 2T ( k + 2) x - 3f (k2 + 2) 

where D* and B* are the matrices indicated in the previous example. 

Thus, the approximate difference equation becomes 

Finally, after some calculations, Jor m going to infinity we get the Junctional equation 

f(x) - (1 + ~tk f(x + y) = 3 ~3 k [ 1 - (1 + ~)3-k) 
and the difference equation 

J(x)-(1+~)-kf(x+!::;.)=3~k (1-(1+~)3-kJ 
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EXAMPLE 4 .- Now we deal with the constant coefficients linear equation 

J"(x) - f(x) = 0 

We consider n = 2, i. e. { x + .6.1 , x + .6.2}, and m=6. Thus, we have 

0 1 

0 
0 
1 
0 

N= (: : 

1 0 -1 

0 
1 
0 

-1 
0 

c-(-# ~ #) - M ~ g 
6! 5 ! 2 ! 

and H is the column null matrix of dimension 5. 

After all the manipulations, we get 

( 
Ll.3 Ll.5 

B • - .6.2 + ?i + rt 
- Ll.3 Ll.5 

.6.1 +Ti+ -n 
1+~+~+~) 2 ! 4 ! 6! 

1+.0..+~+M 2 ! 4 ! 6! 

and when m goes to infinity we obtain 

( 
e"2-e-"2 

B* = •"' -:·-"1 
Thus, we get the functional equation 

f(x) = -(eY - e-Y) J(x + z) + (e' - e-•) J(x + y) 
e!z-y) - e(y-z) 

and the difference equation 

-(eLl.1 - e-Ll. 1 ) f(x + .6.2) + (eLl.2 - e-Ll.2 ) f(x + .6.1) 
f(x) = e(Ll.,-Ll.1) _ e(Ll.1-Ll.2) 

EXAMPLE 5 .- Finally we deal with the equation 

f"(x) - J(x) = x3 

whose homogeneous equation is that given in example 4. 
We start by taking again m = 6 and we get the same N, D and C matrices and 

( 
x3 l ( x3 l 3x2 3x 2 

H = 6x ; H* = 6x + x3 

6 6 + 3x2 

0 6x + x 3 
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When m goes to infinity we observe the following : the manipulations on the matrix 

{ND) consist in adding to each row the row which is two places above it, that is, 

n-1 n 

h;k = L h2(k-i) h;k+I = L h2(k-i)+l 
i=O i=O 

and taking into account that hk = 0 if k > 4, we have 

1 
x3 

h* - 3x2 
1 - 6x + x 3 

6 + 3x2 

After making the matrix C null, we get 

if j = 1 
if j = 2 
if j = 2k + 1 , k > 0 
if j = 2k 'k > 1 

t::..F* = t::..F - CPH* = t::..F + ( P(.6.2 )) 
P(.6.1) 

where 

which can be written as 

Finally, we get the difference equation 

where 
-(eil.' - e-ll. 1 ) 

E1 = -e'"""'(ll.-2--ll...,..1-c)-_-e.,.,(ll.-1--ll...,-2...,.) 
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1. Introduction. 

The purpose of this note is to study the variational approch to the eikonal 

equation 

(1) 

in a bounded domain !1 C R2 This equation arises in many branches of applied 

sciences. In particular, the equation (1) appears in an area of computer vision in 

the so called shape - from - shading problem in which one tries to solve the problem 

of how object shape can be recovered from image shading. 

More precisely, one seeks <L function u(:z:i, :z:2) representing surface depth 

in the direction of z-axis, satisfying the image irradiance equation 

Here R denotes the reßectance map ( which is known ) containing information about 

illumination and surface reßecting conditions, E is an image formed by projection 

of light along the z-axis onto a plane parallel to the :z:1, :z:2 plane, and !1 is the 

image domain. 

The equation (1) can be obtained in the case where the reßectance map 

corresponds to the situation in which an overhead, distant point - source illuminates 

a Lambertian surface. For a detailed discussion of this case we refer to papers [4] 

93 
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and [5]. We only mention here that if a small surface portion with normal direction 

(-~, -~, 1) is illuminated by a distant, overhead point-source of unit power 

in direction (0, 0, 1 ), then, according to Lambert 's law, the emitted radiance and 

reflectance map are given by the cosine of the angle between the two directions, 
1 

namely ( ( :„u,) 2 + ( :„"2 ) 
2 +1 )-'. Therefore, if E( :i: 1 , :i:2) denotes the corresponding 

image, the image irradiance equa.tion in this situation takes the form 

equa.tion in the form (1). 

The fust un.iqueness result in class C 2 -functions was obtained by Deift 

'+ 2 Sylvester [8] in case c(:i: 1 ,:i: 2 ) = 1 :~,:~ 2 on a unit disc. This has been extended 
1 2 

by Bruss [6] to E(x 1 , :i: 2 ) = f ( y' x~ + x~ ), with f satisfying some regularity assump-

tions. Solutions obtained in these papers are spherically symmetric. In paper [4], 

Drooks Chojnacki - Kozera gave examples of solutions which are not spherically 

syrnmetric. The question of the existence of C 1-unbounded solutions is discussed 

in paper Brooks - Chojnacki - l{ozera [4]. A recent result by Kozera [9] solves the 

problem of recovering the shape of a smooth Lambertian surface from two images 

obtained by consecutive illmn.ination of the surface by distant point light source in 

different directions. 

Finally, we mention a pa.per by Horn aud Brooks [11] suggesting a vari­

ational approach to the shape-from-sha<liug problem. This paper contains some 

computational observation on variational aspect of this problem. However, this pa­

per does not say anything about the existence of a solution ( in some generalised 

sense ) through the va.riational approach. 1Ne point out that our paper has been 
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motivated by (11]. We show that, in general, the variational approach does not 

lead to an exact solution of the shape from - shading problem. In particular, 

Theorem 2 shows that any function u satisfying the inequality IDu( z) 12 ;;:;: t'( z) can 

be regarded as a "minimum" of the energy functional associated with (1) in the 

sense that there exists a suitable sequence {un}, with un IBn= u IBn, such that 

Jim r l 1Dun(z)l2 - t'(z) 1 dz = 0 and Un ~ u weak - * in w1 •00(n). 
n-oo Jn 

2. Observation on Young measures. 

Let n c R2 be bounded domain with a Lipschitz boundary an. Forz E n 
we setz= (z 1 ,z2 ). W 1 ·"(n), 1;;:;: p;;:;: oo, denotes the usual Sobolev space. Since 

an is Lipschitz, elements of H'1•P(n) admit traces on an. For basic information 

on Sobolev's spaces we refer to Adam's bouk (l]. Throughout this note we assume 

that t'(z) is a nonnegative function in C(fi). The weak convergence in W1•"(n) is 

denoted by ~ and the strong convergence by -->. We associate with (1) a functional 

givcn by 

I(u) = i l 1Du(z)l2 - t'(z) 1 dz. 

This functional is not convex and consequently it is not lower semicontinuous. To 

avoid this difficulty we consider the relaxed problem ( see (7] or (9]) to get some 

insight in I which will serve as a basis for the construction of a minimizing sequence. 

We need the following result on Young measur~s ( see ( 2], (3]). 

THEOREM 1. Let {z;} be bounded sequence in L 1(n; R'). Then there exist a 

subsequence {zv} of { z;} and a famiJy {v„:}, z E !1, of probability measures on R', 

depending measurably on z E !1, such tha.t for any measurable subset A C !1 

f(·,zv) ~ (vz,f{z, ·))in L 1(A) 



96 J. Chabrow•ki and K. Zhang 

for every Caratl1eodory function f : n X R' ---+ R such that f ( ·, z„) is sequentially 

weakly relatively compact in L 1 (A). 

We commence with a simple result on minimizing sequences of I. 

PROPOSITION 1. . Suppose that there exists a sequence {u;} in W 1 •2 (0) such that 

.lim f j 1Du;l2 - l'(:i:) j d:i: = 0. 
1~00 ln 

Then up to a subsequence u; - u in Hfl•2(0) and 1Du(:i:)j2 ~ l'(:i:) a.e. on 0. If 

{v„}, :i: E 0, is fa.mily ofYoung measures corresponding to {Du;}, then supp v„ C 

{P; IPl2 = l'(:i:)}. 

PROOF: lt is easy to see that {u;} is bounded W1 •2 (0) and we may assume that 

u; - u in HT1•2(n). We set F(:i:,P) =l !Pl2 -E(:i:) j. Let CF(:i:,P) denote alower 

convex envelope of F(:i:, P). Then a minimizing sequence for I is also a minimizing 

sequence for a functional Ic (see [7] or [9]) given by 

Ic = fo CF(x,Du)dx 

ancl we have 

0 = .lim f F(:i:,Du;)d:i: = .lim CF(:i:,Du;)d:i: = f CF(:i:,Du)d:i:. 
i- 00 ln J-+fXJ Jn 

On the other hand by Theorem 1 there exists a family .of Young measures {v„}, 

:i: E n, such that 

.lim f F(:i:,Du;) d:i: = f (v„(·),F(x, ·)) d:i: = 0, 
1~00 Jn Jo 

so 

i (v„(·),F(:i:, ·)) d:i: = i CF(:i:, Du(:i:)) d:i:, 
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and consequently 

supp v„ C {P; F(x,P) = O} = {P; IPl2 = E(:i:)}. 

Noting that 

CF(:i:,Du(x)) = { 1Du(x)l2 - E(x) if !Du(x)l2 - E(x) > 0 
0 elsew here , 

we see that !Du(:i:)l2 ~ E(:i:) a. e. on f!. 

This result will serve as a gui<le for the construction of a sequence men-

tioned at the end of the previous section. First of all, lel <Pn = Un - u, then <Pn ~ 0 

in W1 •2 (f!) and 

O = lim f l IDu(:i:) + D<Pn(x)l2 - E(:i:) [ d:i: = f (v„, [ IDu(:i:) + >-1 2 - E(:i:) [) dx, 
n- 00 Jn Jn 

where {v„}, :i: E f!, is a family of Young measures corresponding to the sequence 

{D<Pn}· The last i<lentily implies that supp il„ is contained in the boundary of 

a disc of radius E(:i:) with center at -Du(x). The idea is, given a function u 

satisfyiug 1Du(:i:)l2 ~ E(:i:) on !1, to construct a sequence <Pn with these properties. 

Obviously, there might exist many such sequences. Ilowever, our aim is to construct 

the simplest sequence of this nature. On a microscopic level to satisfy the condition 

J >.dv„=0, in case 0 < 1Du(:i:)l2 < E(x), we will construct our sequence in such a 

way that supp il„ will consist of two antipodal points. O.n the other hand we note 

that at points where IDu(:i:)l2 = E(:i:), we have 

o = (v„, [ IDu(:i:) + >-1 2 - E(x) i) ~ (v:c, IDu(x) + >-1 2 - E(x)) 

= (v„, IDu(:i:)l2 + 2>. · Du(x) + 1>-1 2 - E(:i:)) = (v:c, l>-1 2 ). 

This implies that il„ = Oo. Again on microscopic level, terms of our sequence should 

be equal to 0 around such a point. 
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The idea of using Young measures to examine structure of oscillations of 

weakly convergent sequeuces is not new. For detailed bibliographical comments on 

this subject we refer to [7] and [10]. A modern treatment of Young measures starts 

with paper by Tartar [13]. 

3. Main result. 

We are now in a position to establish the main result of this note. 

THEOREM 2. Let u E C 1(Ö) be a function such that /Du(x)l2 ;;:2 E(x) on n. Then 

tl1ere exists a sequence {uj} in TV 1 •00 (fl) with u; /8 11= u /811 and such that 

and uj ~ u weak-* in lV1 •00 (fl). 

PROOF: Let K > 0 be a constant such that 

max/Du(x)/::; K and maxE(x)::; K 2 • 
(1 - 0 -

We approximate n by a sequence of unions of squares H; = LJ~;=I Dt with Hj C !1 

and limj~oo /!1-Hi / = 0. We assume that edges of Dt are parallel to the coordinate 

axis with the length d(D~) = f,. Let M = max(l,K). For each integer n, by the 

uniform continuity of [ and Du, we can find an integer in > n such that 

(2) 
. 1 1 

/Du(x) - Du(x~n)/::;-;-- < ---
- Jn 16nMfH/ 

(3) 

for all X E ntn' where xt" is the centre of the square ntn and 

(4) 1 
1!1-Jl· 1 < -­

)n = 8.Mjn. 
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We now distinguish three cases: i) Du( :i:{•) = O, t'( :i:{") -:f. 0, ii) JDu( :i:{" )12 

t'(:i:{"), iii)O < JDu(:i:{")l2 < t'(:i:b. 

<P~" ( :i:) = 

lt is easy to see that <P~" E TtV1 •00 ( Dt") and 

Case ii). We set <P~"(z) = 0 on Dt" end extend this function by zero outside. 

Case iii). We set 
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and define a function ,-t· ( :i:) defined on the strip between lines ,p{• ( :i:) = 1 and 

1/Jh:i:) = -1 by 

We see that ,-r· ( :i:) = 0 on the lines iPr· ( :i:) = 1 and iPr· ( :i:) = -1. Moreover, 

we have ID,-r•(:i:)l 2 = c(:i:{•) -1Du(:i:bl2 and D,-h:i:{•) = 0 a.e. on the strip 

-1 ~ 1/J{• ( :i:) ~ 1. We DOW extend ,-t" periodically into R2 and denote this extension 

again by ,-r·. We now set w{7m(:i:) = ~7hm:i:). Then we have Jwtm(:i:)J--+ 0, as 

m --+ oo, uniformly in :i: E R2 • Let us denote the restriction of w{7m to D{• by g{','m. 

lt is clear that 

Let uL:'m denote a square contained in Dt" with edges parallel to coordinate axes 

and oflength 21. - 2JJg{7mllL~cv!•> and such that 

We DOW define a function h1k·„ on 8D1k·. u ukin by ,m ,m 

The function h{7m is Lipschitz continuous on its domain of definition and its Lips­

chitz constant does not exceed max(1,Jc(:i:{")- IDu(:i:{")l2). Let i1>{7m be a Lip­

schitz extension of h{:m· We now choose mn such that mn > n, mn >in and 

(6) IDj" - uin 1 < 1 
k k,m. = 4nl· (1+21112) · 

1" 
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We set </>n(x) = L~~l ßi:(x), where 

{ 
<Pi"( x) if xi• satisfies i) 

ß'k( x) = 0 . if x{" satisfies ii) 

<PtmJx) if xr· satisfies iii). 

lt then follows from the construction of </!{" am! <P{:m„ ( see ( 5) ) that 

Let Un = u + cPn and we write Hj = IIJ U HJ U Hj, where HJ, IIJ and Hj are 

unions of squares from cases i), ii) ancl iii), respectively. In the next step of the 

proof we show that 

!im { l 1Dun(x)l2-E(x) 1dx=0. 
n-oo Jn 

We have by ( 4) the following estirnate 

(7) 

where 

fn 11Dun(x)l2 - l'(x) 1 dx ~Li. l 1Dun(x)l2 - l'(x) 1 dx + M 2 lfl - HjJ 

~ 2._ + f J IDu(x) + D<Pn(x)l2 - l'(x) J dx 
4n lu;„ 
1 

:S - +an + bn + Cn, - 4n 

bn = ~ J. l IDu(x{") + D</>n(x)l2 - l'(x{") 1 dx, 
k=J D~n 

Cn=~ r IE(x)-l'(x{")ldx. 
k=llv~· 
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lt follows from the uniform continuity of Du and C ( see (2) and (3)) that 

To estimate b„ we write 

ll follows from the constructions in cases i) and ii) that 

Using (6) we estimate 13 as follows 

13 == :E [ r . . 2M2 d;c 
· jD'"-U'n D'n. EH~ II: k,mn 

• Jn 

+ f. l 1Du(:c{n)l2 + 2Du(:c{n)Dt/>tmJ:c{") + IDt/>k,mJ2 - E(:z:{n) 1) d:& 
U'R 

k,t1t,, 

~ 41 + L r \ 1Du(:c{R)l2 + (VE(:c{")- !Du(:c{")l2 ) 2 - E(:c{") 1 d;c 
n . Ju1n 

D~" eHjn. "=•'"n 

1 
== -4n 

The last inequality follows from the fact that 
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Consequently, combining (7), (8) and the last estimate for 13 we get 

f l 1Dun(x)l2 - E(x) 1 dx ;S .!.. Jn n 

Finally, we observe that since un = u+</>n with 11</>nllL~(n) ;S ~ and llD</>nllL~(n) ;S 

Al, we have <l>n ~ 0 weak-* in TlT1 •00 (!1). Ilence Un ~ u weak->1< in W 1 •00 (!1) and 

un lan= u lan· 

In Theorem 2 we have chosen an 1 1-norm to measure the difference be-

tween E(x) and Du(x). The same result continues to hold if we choose the LP norm 

(p > 1). The difference between E and Du can only be measured in an average 

sense which makes the so called "noise" appear. 

We close this paper with two examples illustrating Theorem 2. 

Example 1. lf u = 0 on !1, then given a nonnegative function E E C(fi), 
0 

there exists a sequence Un in lV 1•00 (!1) such that 

lirn r l 1Dun(x)l2 - E(x) 1 dx = 0 and Un ~ 0 weak - * m w 1 •00 (!1). n-oJn 

Here W1•""(!1) denotes a Sobolev space whose elements have zero trace on 8!1. 

Example 2. Suppose that !1 = {x; lxl 2 < R}. Let fand g be in C[O,R] 

with 0 ;S g(t) ;S f(t) on [ü,R] and g(O) = 0. Then the function u(lxl) = JJ"'1 g(t)dt 

satisfies the inequality 1Du(lxl)l2 ;S f(lxl) 2 on !1. By Theorem 2 there exists a 

sequence un in l'V 1 •00 (!1) such that un lan= u lan and 

Jim r l 1Dun(x)l2 - J(lxl) 2 
J dx = 0 aud Un ~ u weak - * in W 1•""(!1). 

n-co Jn 

Functions u E C 1 (fi) with Du(x)l2 ~ E(x) on !1, due to the aproximation 

property from Theorem 2, are called in the current literature "noisy" solutions to 

the equation ( 1). 
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Abstract 

In this paper we prove a theorem which shows that the uniqueness problem for 

entire functions of exponential type is equivalent to the approximation problem for 

analytic functions. This theorem is then combined with theorems on uniqueness to 

produce a number of results on the approximation of analytic functions. Using the 

concept of P6lya property and examples of functions which are known to have such 

property, we give additional results in approximation. We also extend our results 

to approximate functions in LP(B) where B is a Caratheodory domain. 

INTRODUCTION 

In this paper we prove a theorem which shows that the uniqueness problem for 

entire functions of exponential type [3, 4, 6, 7, 8] is equivalent to the approximation 

problem for analytic functions. Thus to each uniqueness theorem for entire func­

tions of exponential type there corresponds an approximation theorem for analytic 

functions and conversely. This result is then combined with the known uniqueness 

theorems of DeMar [6, 7, 8], Child [4], Strenk [13] and Chang [3] to yield many 

approximation theorems. Using examples of functions which are known to have 

the P6lya property [3], we are able to give more specific results in approximation. 

Among them Runge's theorem on approximation by polynomials, a strengthened 

version of approximation by rational functions, approximation by trigonometric 
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polynomials and approximation by exponential functions are simple examples. We 

also extend these results, using Farrell's method [9], to approximate functions in 

LP(B) where B is a Caratheodory domain and LP(B) is the space of all functions 

f analytic on Bsuch that J JB lf(z)IPdxdy < oo where z = x + iy. A by-product 

of this extention is an improvement of a theorem of Davis [5). 

MAIN RESULT 

Let n be a simply connected domain in the complex plane. Let I<[n) denote 

the dass of all entire functions f of exponential type such that the Bore! transform 

of f, denoted by F, is analytic On nc, the complement of n. Let H(n) denote 

the space of analytic functions on n with the topology of uniform convergence on 

compact subsets of n. Let {Ln} be a sequence of linear functionals defined on I<[n] 

by 

(1) Ln(!)= -2
1 . { gn(z)F(z)dz 
'lrl ), 

where gn is in H(n), n = 0, 1, 2, · · ·, and r ~ n is a simple dosed contour such 

that F is analytic outside and on r. A dass I<[n) is said to be a uniqueness dass 

for {Ln} if the zero function is the only function f in I<[n] with the property that 

Ln(!)= 0 for n = 0, 1,2, · · ·. 

THEOREM 1. A necessary and suflicient condition for I<[n) to be a uniqueness 

dass for {Ln} defined by (1) is that the linear span (gn) of {gn} be dense in H(n). 

Proof. (Sufficiency) Let {Ln} be defined on I<[n] by (1) and the linear span (gn) 

of the generating functions {gn} for {Ln} be dense in H(n). Let f E I<[n] besuch 

that Ln(!) = 0 for all n = 0, 1, 2, · · ·. We must show that f = 0. Let g be any 
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function in H(D.). Since (gn) is dense in H(D.), there exists a sequence {hn} of 
N(n) 

linear combinations of functions in fon}, hn = L ank9k, converging uniformly to 
k=O 

g on compact subsets of D.. lt follows from Köthe's duality theorem [10] that to the 

Bore! transform F o[ f there corresponds a unique continuous linear functional L 

defined on H ( D.) by 

L(g) = -2
1 . f g(z)F(z)dz 
7rZ lr 

where r ~ D. is a simple closed contour such that F is analytic outside and on 

r. Since Ln(f) = 2~i Ir 9n(z)F(z)dz = 0 for n = 0, 1, 2, ... and r is a com­

pact subset of D., L(g) = 2 ~; Irg(z)F(z)dz = 2 ~; Ir(limn-=hn(z))F(z)dz 
N(n) 

limn-= 2 ~; Ir hn(z)F(z)dz = limn-= 2 ~; Ir( L ank9k(z))F(z)dz = 
k=O 

N(n) 

limn-= 2 ~; L Ir ank9k( z )F( z )dz = 0. Since g is arbitrary, L is the null functional 
k=O 

on H(D.). Hence F = 0 which implies f = 0. 

(Necessity) Assume that (gn) is not dense in H(D.). We shall show that there 

exists an f in K[D.) such that Ln(f) = 0 for all n = 0, 1, 2, · · ·, but f =j 0, so 

K[D.) is not a uniqueness dass for {Ln}· By assumption, the closure (gn) of (gn) 

is a proper subset of H(D.). Hence there exists a g in H(D.) but g rf. (gn). Since 

the topology on H(D.) is defined by the countable collection of norms llf lln < c:, 

n = 1, 2, · · ·, this means there exist a Ö > 0 and a positive integer N such that 

llg - hlln > {) for all n 2: N and for all hin (gn)· Let G be the subspace generated 

by (gn) and g; that is, the subspace consisting of all elements of the form h + ag 

with a in C and h E (gn)· Define L on G by L(h + ag) = aö. We first show that 

L is well defined. Let h1 + ag and h2 + ßg be in G and h1 + ag = h2 + ßg. Then 

h1 - h2 = (ß - a)g. If ß - a were not zero, we would have g = hh=:' which is in 

(gn)· Since g rf. (gn), ß - a = 0. Hence we have h1 = hz and a = ß which implies 

that L is weil defined. lt is clear that L is linear. Thus L is a linear functional on 
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G. Since lal6 :5 lal llY - ( ~h )iln = llh + aglln for all n ~ N, we have IL( s )1 :5 llslJn 
0for all s in G and for all n ~ N. Since II lln is a norm, the hypothesis in the 

complex version of Hahn-Banach theorem is satisfied by L and we may extend L 

to all of H(fl.) such that jL(t)I :5 lltlln for all t in H(fl) and for all n ;::: N. Now 

we show that L is continuous at the zero function. Let e: > 0 be given. Let 

V= {x 1 x E C and lxl < e:}. Then U defined by U = {t 1 t E H(fl) and lltllN < e:} 

is a neighborhood of the zero function in H(fl) with the property that L(U) ~ V. 

Since L(O) = 0 and V is an arbitrary neighborhood of 0, L is continuous at the 

zero function. Let t 0 be in H(fl). Then L(t0 + U) = L(t0 ) + L(U) ~ L(t0 ) +V. 

Since L( t 0 ) +V is an arbitrary neighborhood of L( t0 ) and t0 + U is a neighborhood 

of t0 in H(fl), we conclude that L is a continuous linear functional on H(fl.) with 

L(g) = 6 and L(h) = 0 for all hin (gn)· By Köthe's duality theorem there exists a 

unique F locally analytic on nc with F(oo) = 0 such that L(t) = 2~i Ir t(z)F(z)dz 

for all t in H(fl) and r ~ n is a simple closed contour so chosen that Fis analytic 

outside and on r. Let f be the function in K[fl) such that its Borel transform is F. 

Then Ln(!)= 2 ~; frYn(z)F(z)dz = L(gn) = 0 for n = 0,1,2,··· But L(g) = 6, 

so F "t. 0. Therefore, f "t. 0 and so K[fl) is not a uniqueness dass for {Ln}· 

APPLICATIONS OF THEOREM 1 

We can combine Theorem 1 with each of the known uniqueness theorems to 

yield results on approximation. The following definition [3] is included for ready 

reference: 

DEFINITION 2. Let flw and fl., be simply connected domains in C. Let m( w, z) 

be holomorphic on nw X n •. Then m has the P6lya property with respect to z on 

n. if and only if for all simple closed contours r ~ n„ if f is analytic on r and 
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if frm(w,z)f(z)dz = 0, then f has an analytic continuation to th~ Jordan region 

enclosed by r. 

The combination of Theorem 1 and the uniqueness theorems of Chang [3] yields 

the following approximation results (Theorems 3, 4 and 5): 

THEOREM 3. Let nw be a domain and n, a simply connected domain in 

c and Jet Wo E nw. Let m(w, z) be holomorphic on nw X n,. Let gn(z) = 

nLn)[m(w,z)lw=wo, n = 0,1,2,„. where nLni[m(w,z)lw=wo is the n-th partial 

derivative of m(w, z) with repect to w evaluated at w0 • Then m(w, z) has the 

Polya property on n, if and only if the linear span (gn) of {gn} is dense in H(n, ). 

THEOREM 4. Let nw be a domain and n, a simply connected domain in C. 

Let m(w, z) be holomorphic on nw X n,. Let {wn} be a sequence of points in nw 

with a limit point in nw and m(wn, z) = gn(z) for n = 0, 1, 2, · · ·. Tl1e11 m(w, z) 

has the Polya property 011 n, if and only if (gn) is dense in H(n, ). 

THEOREM 5. Let nw be a domain and n, a simply connected domain in C. Let 

m(w, z) be holomorphic on nw X n,. Let { Wn} be a sequence of points in nw such 

oo (n) 
that L:: lwn -Wn+1 I converges and Wn-+ Oo E nw. Let Dw [m(w, z)]w=wn = gn(z) 

n=O 

Eor n = o, 1, 2, ... where nLni[m(w, z)lw=wn is the n-th partial derivative oEm(w, z) 

with respect to w evaluated at wn· Then m(w, z) has the Polya property on n, if 

and only if (gn) is dense in H(n, ). 

Combining Theorem 1 with a theorem of DeMar [6] yields the following: 

THEOREM 6. Let n be a simply connected domain in the complex plane. Let 

W be analytic on n. Then (Wn) is dense in H(n) if and only if W is univalent on 

n. 
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Combining Theorem 1 and a theorem of Child [4, p.61], which says that if K(f2] 

is a uniqueness dass for {Ln} defined by (1), then K[11] is also a uniqueness dass 

for {L~} defined as in (1) with g~ as generating functions, we have 

THEOREM 7. Let n be a simply connected domain in the complex plane. Let 

9n be analytic on 11, n = 0, 1, 2, · · ·. If (gn} is dense in H(11), then (g~} is dense in 

H(11). 

A consequence of Theorem 1 taken together with a theorem of DeMar [8] is 

the following: 

THEOREM 8. Let p be a positive integer and a a primitive p-th root of 1. Let 11 

be a simply connected domain and Jet W and hk : k = 0, 1, · · · , p-1, be analytic on 11 

with W(11) a p-symmetric domain. Let 111 s;; 11 be a simply connected domain such 

that W is univalent on 111 and W(111) = W(11). Let Z : W(111) -+ 111 be the inverse 

ofW. Let ~(z) bedet(hkq(z)) wherehk9(z) = hk(Z(a9W(z))): k,q = 0,1,-·-,p-

1. Then the linear span (WPnhk} of {[W(z)]Pnhk(z)}~=O> k = 0, 1, · · · ,p - 1, is 

dense in H(11) if and only if W is univalent on 11 and ~(z) -j. 0 for all z E 11 such 

that W(z) -j. 0. 

In the Special case where 11 = {z =X+ iy 1 IYI < 7r}, W(z) = ez - 1 and 

hk(z) = (e' - l)kea••; ak real, Strenk's main theorem [13, p.31] shows tliat the 

hypothesis that W(11) be p-symmetric in Theorem 8 is superfiuous. Hence we have 

the following 

THEOREM 9. Let p be a positive integer and a a primitive p-th root of 1. Let 

11 = {z =X+ iy l IYI < 7r}, W(z) = ez -1 and hk(z) = (e' - l)kea••; ak real, k = 
0, 1, · · · , p-1. Let ~(z) be det(hkq(z )) where hk9(z) = akq( ez -1 )k (1 +a9( e• -1))4", 
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k, q = 0, 1, · · · ,p - 1. Tl1en the linear span ((e' - l)P"+kea"') is dense in H(O.) if 

and only if ß( z) i- 0 for all z in n such that z i- 0. 

SPECIFIC RESULTS IN APPROXIMATION. 

We are now in the position to use above results and functions which are known 

to have the P6lya property to obtain more specific results in approximation. 

APPROXIMATION BY POLYNOMIALS. Since W(z) = z is univalent on 

any simply connected domain 0., (zn) is dense in H(O.) by Theorem 6. This is 

Runge's theorem for simply connected domains. We restate it in a theorem. 

THEOREM 10. Every function analytic on a sirnply connected domain 0, can be 

uniformly approximated on compact subsets of n by polynomials. 

APPROXIMATION BY RATIONAL FUNCTIONS. We shall only illus-

trate some interesting results as it will become obvious how to obtain similar ones. 

Our first theorem in the following is an improvement of a theorem of Rubel and 

Taylor [12], in the case of simply connected domain. 

THEOREM 11. Let 0., be a simply connected domain properly contained in C. 

Let { wn} be a convergent sequence in 0.~ with each Wn occurring at most finitely 

many times. Let k be a fixed positive integer. Then ((wn~z)•) is dense in H(O.,). 

Proof. Since (w~z)" has the P6lya property Oll n„ the assertion follows from 

Theorem 4. 

THEOREM 12. Let 0., be a simply connected domain properly contained in C. 

Let Wo be a point in n~. Then the linear span ( (wo~z)n) of the sequence { (wo~z)n} 

of rational functions is dense in H(O.,). 
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Proof. Since w~z has the P6lya property on nz and the n-th partial derivative 

of w~z with respect to w evaluated at w0 is (-lr (wo-:)"+', the conclusion then 

follows from Theorem 3. 

COROLLARY 13. Let nz be a simply connected domain properly contained in 

c. Let Wo be a point in n~. Let k be any fixed positive integer. Then the linear 

span ((wo-~)n+•} of the sequence { (wo-~)n+• }~=l is dense in H(!lz)· 

THEOREM 14. Let nz be a simply connected domain properly contained in C. 
00 

Let { wn} be a sequence of points in il~ such that 2:: lwn - Wn+1 I converges. Then 
n=O 

( (wn .'._z)"} is dense in H(!lz ). 

Proof. Theorem 5 and the fact that (w~z)" has the P6lya property on il,. 

Since (w~z)•, k a fixed positive integer, is not the only rational function which 

has the P6lya property, we can obtain many more similar results on rational approx-

imation of analytic functions by applying Theorems 3, 4 and 5 to rational functions 

which have the P6lya property. 

APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS. Again 

we shall only illustrate some interesting results as it will become evident that the key 

to more approximation results is to find more functions which have the P6lya prop-

erty. But first we shall apply Theorem 6 to some functions univalent on particular 

domains. 

DEFINITION 15. A complex trigonometric polynomial is a finite sum of the 
N 

form 2:: an cos nz + bn sin nz where an and bn are complex numbers and z in C. 
n=l 

THEOREM 16. The set of all trigonometric polynomials is dense in H(!l) where 

!l = {z =X+ iy l lxl < rr} 
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Proof. Since eiz is univalent on n, (ernz) is dense in H(D) by Theorem 6. lt 

follows from Euler's identity that (cos nz + i sin nz) is dense in H(f!). 

THEOREM 17. Let f!1 = { z = x + iy f fxf < I}, f!2 = { z = x + iy f 0 < x < rr}, 

~h = {z = x+iy f fyf < f} andf!4 = {z = x+iy f 0 < y < rr}. Then (sin''z) 

is dense in H(f!i), (cosn z) is dense in H(f!2), (sinhnz) is dense in H(f!3 ), and 

(coshnz) is densein H(D4 ). 

Proof. Theorem 6. 

THEOREM 18. Let {wn} be any sequence in C converging to a point in C. 

Let n be any simply connected domain in C. Then (sin WnZ + cos WnZ) is dense in 

H(D). 

Proof. Since sin wz + cos wz has the P6lya property with respect to z on f!, the 

assertion follows from Theorem 4. 

APPROXIMATION BY EXPONENTIAL POLYNOMIALS. We first use 

Theorem 6 to obtain the following result: 

THEOREM 19. Let f! = {z = x + iy f fyf < rr }. Then (enz) is dense in H(f!). 

This result can be improved by applying "' theorem of Rubel [11]. Let A be 

a set of positive integers. Let ~(A) denote the upper density of A, defined by 

~(A) = limsup ~, where A(t), the counting function of A, is defined as the 
1-00 

number of integers n in A for which n :::; t. Then we can state Rubel's theorem in 

the following form. 

THEOREM 20. Let f! = {z = x + iy f /yf < rr}. Let A be a set of positive 
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integers. Let {Ln}, n E A, be the sequence of linear Eunctionals dcfined 011 K[il] 

as in (1) with en•, n E A, as generating functions for {Ln}· Then a necessary and 

sufficient condition for K[il] tobe a uniqueness dass for {Ln} is that 6.(A) = 1. 

Then Theorem 1 and Theorem 20 jointly imply the following: 

THEOREM 21. Let n = {z = x + iy j jyj < 7r}. Let A be a set of positive 

integers. Then a necessary aand suflicient condition for (en•), n E A, to be dense 

in H(il) is that 6(A) = 1. 

THEOREM 22. Let n be any simply connected domain in C. Let {wn} be a 

convergent sequence in C with a limit point in C. T11en (ew"z} is dense in H(il). 

Proof. Theorem 4 and the fact that ew• has the P6lya property with respect to z 

on n. 

APPROXIMATION BY OTHER ANALYTIC FUNCTIONS. We shall 

only illustrate some result again as it is evident how to obtain similar ones. 

THEOREM 23. Let f E H(C). Then (r} is dense in H(C) if and onJy if f is 

of the form f(z) = az + b wliere a =/= 0. 

Proof. The functions az + b, a f=. 0, are the only entire functions univalent in the 

whole plane. 

APPROXIMATION IN LP(B). For any p > 0, we let LP(B) be the dass 

of functions f(z) which are analytic on a Caratheodory domain B [9] such tha.t 

J J 8 1 f ( z )IP dxdy < oo w here z = x + i y. Since the set of all polynomials is dense in 

H(B), the question as to whether it is also dense in LP(B) arises naturally. Here 

density in LP(B) is, of course, measured by surface integral. Farrell [9] proves tha.t 
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the answer to this question is affirmative. We point out here that Farrell's proof 

does not depend on the given sequence being a sequence of polynomials, but only 

on its span being dense in the space H(B) where B is a Caratheodory domain. 

Thus, he actually proved that any sequence whose span is dense in H(B) also has 

a dense span in LP(ß), p > 0. We list some consequences of this for the purpose of 

illustration. 

THEOREM 24. Let B be a Caratlieodory domain. Let p > 0. Let f E V'(B). 

Tlien tliere exists a sequence { qn} of rational functions witli poles in ß< sucli that 

lim„_oo J f8 lf(z) - q„(z)IPdxdy = 0. 

THEOREM 25. Let D = {z = x + iy l lxl < 7r}. Let B c D be a Caratlieodory 

domain. Let p > 0 and f E LP(ß). Tlien tliere exists a sequence {qn} oftrigono­

metric polynomials sucli tliat limn-oo J J8 lf(z) - qn(z)IPdxdy = 0. 

THEOREM 26. Let n = { z = X + iy 1 IYI < 7r}. Let B c n be a Caratlieodory 

domain. Let p > 0. Let A be a set of positive integers sucli tliat tlie upper density 

li.(A) of Ais equal to 1. Then (enz), n E A, is dense in LP(B). 

The case p = 2 is of great interest. We note that L 2(B) is a Hilbert space under 

the norm 11111 2 = J J8 lf(z)l2dxdy. We now compare Theorem 26 with a theorem 

of Davis [5]. By a theorem of Rubel [11], li.(A) = 1 if and only if li.M(A) = 1 where 

li.M(A), the upper mean density of A, is defined by li.M(A) = limsup f J; A~x)dx. 
t-oo 

Davis shows for sequences {An} of distinct complex numbers, An -+ oo, that if 

li.M(A) > ~ where c(B) is the circumference of the convex hull of B, then 

{e>-nz}, An E A, is complete in L2 (B). Hence for Pn} an increasing sequence of 

positive intcgcrs, if li.(A) = 1, thcn the linear span (e'") of {e'"}, n E A, is <lcnsc 

in L2(B) for all B with c(B) < 27r. But Theorem 26 says that if li.(A) = 1, then 
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(en•), n E A, is dense in L 2(B) for all Bsuch that B c n. This is an improvement 

of Davis result for {..\n} an increasing sequence of positive integers. 
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Error Estimate in Non-equi-mesh Spline Finite Strip Method 

for Thin Plate Bending Problem 

Wu Ciqian Wang Zhehui 
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Guang Zhou, PR China 

ABSTRACT 

Spline finite strip method based on equi-mesh for structure analysis has been studied by 

C.Q. Wu , Y.K. Cheung and S.C. Fan in 1981 [l]. In this paper we present spline finite 

strip method based on non-equi-mesh. For a model problem, we give error estimate analysis. 

As for non-equi-mesh processing generalized trapezoid element method and its error estimate 

analysis on abitrary area, we shall discussed in [2]. 

1. Assumptions 

As in (3), suppose that D„ ,Dy ,D1 ,D„ y are positive constants. D„ . Dy> D1 , W(x,y) is 

displacement function on the bounded area Q. Let T = a Q be boundary of Q and W E 

Definition 

J(W) = II <-t-[D„W~„+2D1W„„Wyy+Dy w;y+4D„yW~y]-Wf}dxdy 
Q 

a(u,v) ffg [D„u„„v„„+D 1u„„vyy+D 1uyyY„„+DyuyyYyy+4D„yuxyYxy]dxdy 

(f, v) ff Q fv dxdy 

V W,u,vEH 2 (Q), V fEH 0 (Q) 
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k 1/2 

II u II k, Q { ff Q [ L 
a u )2 l dxdy } 

O~a+ß~k ax a ay ß 
k 1/2 

lu 1 ff Q [ L 
a u )2 l dxdy } 

k. Q 
a+ ß=k ax a ay ß „ 

V u E H (Q), k = 0. 1, 2 .. .. 
By II u II k . 1 u 1 k denote II u II k. Q 1 u 1 k , Q respectively, jf there is no confusion. 

k 

{ u; uE H (Q). n llx uy = O, (x,y) E I' } 

k - k-

CE(Q) - { u; uEC (Q), u = Ux = Uy O, (x,y) E I' } 

Thin plate bending problern in structure analysis becomes the following problems 

min J(W) 
wrn 2 (Q) 

Lemma (1.1) 

For all u,vE H2 (Q), there exist constants B1 B2 such that 

Lemma (1.2) 

Let uEc 4 (Q) then u satisfies 

Lu = f 

ilT 11 E H~ (Q) and 

a(u,v) 

0 

(f. v) 

(x,y)EQ 

(x,y)EI' 

( 1. 1) 

( 1. 2) 

( 1. 3) 

( 1. 4) 

( 1. 5) 

( 1. 6) 
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bolds. 

... k 

Say I'Ec and QEc ir I' can be expressed as 

r = < cx.y)I x=x(t). y=y(t). as;ts;ß} 

k 

wbere x(t),y(t)EC ca,ß] are Single value functions or tE[a,ß]. 

Lemma (1.3) 

Let QEc4+k or Q be a convex polygonal domain and r Eu" (Q) tben solution uor(l.4) 

4+k 
and (1.S) belongs to HE ( Q). Furthermore, 

4+k 
(i) ir QEc tben 

II u II 4+ks;c0 ' II f II k 

(ii) ir Q be a convex polygonal domain tben 

II u II J+k s;c0 II f II k 

wbere Co' • Co just depend onQ. 

2. Numerical metbod and error estimate 

In tbe föllowing description, we assume tbat Q be regular domain:Q = [a,b]x[c,d]. 

Let ll'x; a = Xo ( X 1 ( ••• (Xn = b 

be divisions along x-direction and y-direction, respectively. 

Let lk xk+l - xk, k O(l)n-1 

h. yj - yj-1' j -2(1)m+3 
J 

h = max {lk}. h max { h. 
X y J 

Assume tbat tbere exists a constant T > 0 such tbat 

min { min{lk}. min{hj} } ~ Th 

lemma (2.1) 

} . h max{h ,h } 
X y 

(2.1) 
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-1 -1 -1 -1 
Th ~lk ~j~h. h ~lk hj ~h IT 

k 0( 1 )n-1, j=-2{ 1 )m+3 

Letil>.(y) 
J 

(2.2) 

be the well-known cubic spline, where j=·l(l)m +1. For an element ~= [xk. xk+ 1 ] x[ c. d] 

(x,y) EEk 

is a Hermite interpolation of the displacernent function W(x,y) along x-direction. 

Here µ lk (x) = 1-3t2 + 213 , µ 2k (x) = (1-212 +t3 )lk 

µ 3k (x) = 3t2 • 2t3 ' µ 4k (x) 

A 1 k ( y ) = w ( xk • y ) • 

A 3k (y)=W(xk+l ,y)' A 4k (y)=Wx (xk+l ,y) 

k=O{l)n-1 

Let w = { w_ 1 .w 0 .„„wm.wm+l 

wbere 

= { <r>_l • <r>o- a<r>_l · - ß<r>1 +<r>o- r<r>_1.<r>2 · · · · • <r>m-2 · 

-Y 'i[>m+l+<r>m-ß 'i[>m-l '<r>m-a 'i[>m+l '<r>m+l} 

a =il>o <Yo )/il> -1 <Yo ), a '=il> m<Ym>/il> m+l <Ym> 

ß ={h 2 +h 1 }lh0 . r ={h0 +h_ 1 

Theo non-equi-mesh splioe finite strip approximation of W(x,y) is 

4 m+l 
W(x,y)= r µik(x) r ciJk w J(y) 

i=l j=-1 
m+l 4 

r r ciJkµik(x))wJ(y) 
j=-1 i=l 

(2.3) 

{2.4) 
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where Ci , _ 1 , k , Ci , 0 , k . Ci , m , k . Ci , m+ 1 . k are suitable numbers depending on 

boundary conditions. 

In the following description, we just sludy the error analysis for a special -clamped boundary 

-case i.e. 

In this case 

w w 
X 

w 
y 

0 (x,y)EI' 

ci,-1,k = ci.m+l,k =0 

ciOk = cimk = 0 

i=l,2,3,4 

and we write 

m 
i(x,y)= L 

j=O 
where Cijk satislies 

c3jk=c1.j,k+l'c4jk=c2.j.k+1 

cljO = c2jO= cljn =C2jn ° 
clOk =C1mk = c30k c3mk 0 

m 4 

i=l,3 (2.5} 

(2.6) 

j=O(l}m,k=O(l}n-1 

j=O(l}m 

k=O(l}n (2.7) 

Denote V i(x,y)= L L Cijkµik(x)) W j(y). (x,y) EEk. 
j=O i=l 

k=O ( 1 )n-1 1 Cijk satisfy(2.7)} 

Lemma (2.2) 

By W(x,y) we denote the numerical solution of (1.1) in V. 

A 4 A 

w (x,y)= ( L C .. kµ .k(x)) W .(y) 
i=l lJ 1 J 

(x,y) EEk. 

which satislies 
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A 

J(W) = min J ( W') (2.9) 

WEV 
Theorem (2.1) 

2 
For all v EV CHE(Q) we bave 

A 

a(W,v) = (f,v) 

a(W*,v) (f 'v) 

and tben * a~ - W . v) = 0 (2. 10) 

Let EI s A ik (y) be the cnbic B-spline interpolation of type 1 (lixed-support boundary condition) 

of function A ik (y). For all wE C~ (Q) we deline tbe tensor product approximation of W as 

4 
EIHs w = L µ . k ( x) e 11 . k ( y) 

i=l 1 s 1 
(x,y} EEk , k=O(l)n-1 

Obviously 8usW E V 

Lemma(2.3) Let Ik= [xk, xk+l J, f(x)Eca(Ik}' a=2,3.4. 

By EI " f denote Hermite interporation of f(x) on Ik 

let R ( x ) = f ( x ) - EI" f ( x ) , Theo from [ 4] we have 

and 

max 1 R ( j ) ( x) 1 

xEik 

where j =0,1,2, a =2,3,4 

Lemma(2.4) Let g ( Y) E ca [ c . d] , a=2, 3, 4, By EI s g denote the 1-type cubic 

spline interpolation of g(y) on the division 7r Y let R ( y ) = g ( y ) - EI s g ( y ) from 
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[4] we have 

and 

c I 

max 
yE[c,d] 

IR(j) (y) 1 

where j = 0,1,2, a = 2,3,4 

Theorem (2.2) 

O{ha-j) 
y 

Let W(X,Y) EC~ (Q), then there exists a positive constant C1 (W) independing on h such 

that 

Proor: 

Suppose a+ß =2, a,ßLO For all W Ec~ (Q) 

( a. ß) 
(W-8HSW) 

(a.ß) 4 (a) (ß) 
W - L µ .k(x) ;l .k(y) 

i = 1 l l 

4 
Lemma (2.1) (2.3) (2.4) estirilate RHS or (2.11) as 0 ( h ) 

{2.11) 
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then there exists a positive constant C 1 (W) independing on h such that 

lw-euswl ~. Q ~c1 (W)2 h4 

lw-euswl 2 . Q ~c1 (W)h2 

Theorem (2.3) 

For all W(X,Y) EC~ (Q),there exists positive constants c2 • c3 independing on h and 

W such that 

Proof: 

As in Theorem (2.2), we estimate the RHS of (2.11) to proof this theorem. 

Theorem (2.4) 

A • Let w and W be solution of variational problem (1.1) and (2.9), respectively. Theo there 

exists a positive constant d2 independing on h such that 

* A 2 lw -w1 2 .Q ~d2 h 

Proof: By 1beorem (2.1) and the fact that 0HS w* -W EVCH~ ( Q) We know that 

a(w* -w. eusw* -W) = o 

Jf A * * = a(W -W,W -0HSW) 

By Lemma (1.1) and Theorem (2.2) we have 

2 .Q >2 ~ acw* -w.w* -w> 
~Bl lw* -W 1 

2. Q 1 2. Q 
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(2.12) 

Theorem (2.5) There exists positive constant do, d1 independing on h such that 

lw* -w 1 o. Q ~d0 b3 

lw* -w 1 <d b512 
t. Q - 1 

Proof: By z we bave denote the Solution or tbe boundary problem 

Lz = w* -W 
z = z 

X 
z = 0 y 

(x,y) EQ 

(x.y)EI' 

by Lemma (1.3) , embedding tbeorem and Lemma (1.2) we bave 

a(z,v) = (W* -W,v) 

From Theorem (2.1) we bave 

• A 

a(W .w. e 88 z) 0 

• A 

Replace v by W -W in (2.13) we have 

•" 2 •"' *"' *,... d W .W 1 ,.., ) = ( W .W, W -W) = a ( z, W -W) o. ~~ 
* A * A a(W .W,z -e88z) + a(W .W,E) 88z) 

• A 

a(W .w,z -e88z) 

~B 1 1w*.w1 2 .Q lz -e88zl 2 .Q 

By Theorem (2.3) and Lemma (1.3) we bave 

(2.13) 

(2.14) 

(2.15) 
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-IJ Q L\{w* .w)(w• .W)dxdy + o 

~ 1w·.w1 2.Q 1w*.w1 0 .Q 

21 * A 1 ~d2h w .w 0. Q • 

:.1 w* .w 1 1 • Q ~ d~/2h 1 w* .w 1 ~~~ 
By (2.12) (2.15) (2.16) (2.17) solve the inequition we have 

By (2.17) we have 

Theorem (2.6) There exists positive constant µ 0 independing on h such that 

max 1 aa+ß cw*-w> 1 ~ µoh (6-a-ß}/2 
Q axa ayß 

where a + ß =0,1,2, a,ß ~O 

Proof: 

We can write WEV as 

m 
W°(x,y)= L 

j=O 

(2.17} 

Orthogonaliu { µ i k ( x}} 1/1 j ( y }}i=l(l)4j=l(l)m 

ff Q 1/1 i 1/1 j dxdy= o ij ,M=4m then we rewrite W as 

to {~ j }j=l(l)m where 

W= 

we have 

M 
L e. 1/1. 
j=l J J 

(x.y }EEk 

_ ... 2 M M 2 - 2 
ff Q W dxdy=L ff Q e. e. 1/1. 1/1. dxdy=L e. = II W II 0 ,.... 

ij=l IJ I J i:l 1 ·~~ 
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.·.max 

Ek 
<~~~> 112 ~c· nwn 
i=l 1 o. Q 

1 • A 

Suppose that W -W 1 reaches its maximum in Ep then 

maxlw• -W 1 ~maxlw* -W 1 
Q E 

p 

~ maxlw*-e w*l+maxle w*-wl 
E HS E HS 

p p 

* A 
For 0HS W -WEV by (2.18) we bave 

i1axle"8w*-wl~c· ne"8 w*-wn 0 .Q 

p 

~c· nw*-e w*11 +c· 11w*-w11 0 .'"' 
HS O. Q ~• 

From Lemma (2.3) (2.4) we have 

1 * *1 4 * * ~ax w -eHSW =O(h ),llW -eHSW 110. Q 

p 

(2.18) 

(2.19) 

( 2. 20) 

* A 

II W -W II o. Q O(h3 ) by (2.19) and (2.20) we know that there exists a positive and 

constant µ 1 such that 

• A 3 
max 1 W -W 1 ~ µ 1 h 

n 
Similarly there exists positive constants µ 2 and µ 3 such that 

max 1 <w* .w)<a,ß> 1 < µ bS/2 
- 2 a + ß =l 

n 
max I <w* .w,<a .ß > 1 ~ µ3 h2 a + ß =2 

n 
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Set µ 0= max { µ 1 µ 2 µ 3 

max 
aa+ß cw*-w) 

ax a ay ß 

we conclude that 

< µ h (6-a-ß}/2 
- 0 
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Abstract 

We examine the stability of a functional equation containing difference op­
erators of higher orders. lt appears in a problem raised by J. Schwaiger in 
1984. We show that this equation is stable in the Hyers-Ulam sense, which 
means that any function satisfying the equation with a certain accuracy only 
is uniforrnly approximated by its exact solution. 

1. Introduction 

Let (G,+) and (H,+) be two Abelian Groups and let X be a linear space over 
the rationals. We consider the following functional equation 

ß;".aß~.b F(x,y) = 0, a,x EG, b,y EH (1) 

in which F : G x H -+ X is regarded as an unknown function, whereas ßJ:a and ß2,b 
stand for the m-th and n-th iterates of the partial difference operators defined by 

ß 1 ,aF(x, y) := F(x + a, y) - F(x, y) 

and 
ß 2,bF(x,y) := F(x,y + b)- F(x,y). 

To describe solutions of Eq. 1 we recall that a function p : G ~ X is said to be a 
polynomial function of order m - 1 if and only if it satisfies the following Frechet 
functional equation: 

a,x EG. (2) 

133 
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Here, ~;:' denotes the m-th iterate of the ordinary difference operator defined by 

~ap(x) := p(x + a) - p(x). 

More information about algebraic properties of polynomial functions can be found in 
3 and 6 . 

In 1984, during the 22nd International Symposium on Functional Equations in 
Oberwolfach, Prof. J. Schwaiger conjectured that any function F : G X H ___, X 
satisfying Eq. 1 can be represented in the form 

F= P+Q, 

where P ( ·, y) is a polynomial function of order m -1 for each fixed y E H and Q ( x, ·) is 
a polynomial function of order n -1 for each fixed x E G ( conversely, every function of 
this form fulfils Eq. 1). The same conjecture appears among open problems collected 
at the end of 7 The author of the present article proved it to be right in his previous 
paper 4 

Once we know the general form of solutions of Eq. 1 it is natural to ask if the 
equation is stable in the sense introduced by S. Ulam in 8 . Originally, Ulam was 
interested in the stability of the linear functional equation. What he had in mind was 
the question whether any function satisfying such an equation with some bounded 
error is uniformly closed to an exact solution of the equation. lt was D. H. Hyers 5 

who first answerd Ulam's question in affirmative. Since then the concept of stability 
has been studied thoroughly in relation to various functional .equations. At present 
it is usually referred to as the Hyers-Ulam stability. The aim of the present paper is 
to prove that, under the assumption that X is a Banach space, Eq. 1 is stable in the 
Hyers-Ulam sense. 

2. Auxiliary results 

Our further considerations are based on the following result of M. Albert and J. 
A. Baker 1 concerning the stability of Eq. 2: 

THEOREM A. Let (G,+) be an Abelian group and [et (X,ll · 11) be a Ranach 
space. With every positive integer m one can associate a non-negative constant km 
with the following property: if for some E > 0 a function f : G ---. X satisfies the 
inequality 

a,x EG, 

then there exists a polynomial Junction p : G --+ X of order m - 1 such that 

llJ(x) - p(x)ll :<::; kmE, XE G. 
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REMARK 1. In a less rigorous formulation the above theorem states that any 
function f : G -+ X for which the transformation 

G2 3 (a,x)-+ !:!..';: f(x) EX 

is bounded, can be decomposed into a sum f = p+r, where p : G -+ X is a polynomial 
function of order m - 1 and r : G ---. X is bounded. Moreover, one may show that 
this decomposition is unique up to a constant function. 

The next lemma is due to K. Baron (cf. 2 ) and its proof was enclosed in our 
paper 4 

LEMMA 1. Let ( G, +) be an Abelian group, /et Y be a linear space over the 
rational field and assume that L is a linear subspace of Y lf f: G-+ Y is a function 
such that 

6..;' f (x) E L, a,x EG, 

then f = p + l, where p : G -+ Y is a polynomial function of order m - 1 and 

l(x)EL, xEG. 

We shall also need the following 

LEMMA 2. Let ( G, +) be an Abelian group, let Y be a real or complex linear 
space and let V be a linear subspace of Y which splits into the direct sum of two 
subspaces W and Z. Suppose that Z is endowed with a norm II · II z such that ( Z, II · II z} 
becomes a Banach space and denote by projz the projection operator mapping V onto 
its direct component Z. Furthermore, assume that a function f : G -+ Y satisfies the 
following conditions: 

6..;' f(x) E V, a,x EG ( i) 

and for some c > 0, 

( ii) 

Then f can be expressed in the form 

f = p+q+r, 

where p : G -+ Y is a polynomial function of order m - 1, q : G -+ W, r : G -+ Z 
and 

llr(x}llz:::::: kmc, x EG, 

km being the constant from the assertion of Theorem A. 
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Proof. Condition (i) jointly with Lemma 1 imply that there exist a polynomial 
function p0 : G --+ Y of order m - 1 and a function g mapping G into V such that 

f =Po+ g. 

Since V is the direct sum of subspaces W and Z, the function g admits the unique 
decomposition 

g = q + ro 

with a function q assuming values in W and a function r0 assuming values in Z. 
Taking into account the linearity of difference operators we obtain 

t:.:;: f(x) = ll;;'g(x) = ll;;'q(x) + ll;;'r0(x), a,x EG. 

lt is also clear that ll;:'q( x) E W and ll;:'r0 ( x) E Z, which yields the identity 

projz(ll;;'f(x)) = ll:;'r0 (x), a,x EG. 

Consequently, by condition (ii), we have 

lill;;'ro(x)llz :5 c:, a,x EG. 

Applying Theorem A we may represent r0 in the form r0 = p• + r, where p• : G--+ Z 
is a polynomial function of order m - 1 and r : G --+ Z is such that 

llr(x)llz :5 kmc:, x EG. 

Putting p := p0 + p• we get a polynomial function of order m - 1 and moreover, 

f = Po + 9 = Po + q + ro = Po + q + p• + r = p + q + r. 

The functions p, q and r have all the desired properties and the proof is finished. 

3. Main results 

THEOREM 1. Let (G, +) and (H, +) be two Abelian groups, suppose (X, II· II) 
to be a Ranach space and /et us fix two positive integers m, n and a positive real 
constant c:. Assume that F : G x H -+ X is a function satisfying the inequality 

(3) 

Then Jor an arbitrarily small positive constant ö there exist functions P, Q : G x H --+ 

X with the following properties: 

/\ P(·,y) is a polynomial function of order m -1, 
yEH 

(a) 
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/\ Q(x,·) is a polynomial Junction of ordern - l (b) 
xEG 

and 

llF(x,y)-P(x,y)-Q(x,y)llSkmknc+6, (x,y)EGxH, (c) 

where km, kn are the constants occurring in the assertion of Theorem A. 

Proof. Let Y denote the space of all functions mapping H into X. We define the 
following linear subspaces of Y: 

V := { 'P E Y : the transformation H 2 3 ( b, y) ~ tlf,'tp(y) E X is bounded } , 

W :={'PE Y: ß/,'tp(y) = 0 for all b,y EH}, 

Z := { <p E Y : 'P is bounded } , 

L :={'PE Y: 'Pis constant}. 

In the space Z one may introduce the uniform convergence norm II · II= defined 
by 

ll'Pll= := sup ll'P(Y)ll, 'PE Z. 
yEH 

Together with this norm Z becomes a Banach space and L is its closed subspace. 
Factorizing Y, V, W and Z by the subspace L we obtain the quotient spaces 

Y:=Y/L, V:=V/L, W:=W/L, Z:=Z/L. 

In what follows the coset of L determined by a function 'P E Y will be designated 
by [ip]. lt is an immediate consequence of Remark 1 that V coincides with the direct 
sum of Wand Z. The space Z turns into a Banach space when we equip it with the 
quotient norm II · Ilz related to 11 · 11= as follows: 

llf'Plllz := inf{lliPll=: iP E (tp]}, [!f'] E Z. 

Now we define a function j : G ~ Y by the formula 

j(x) := (F(x,·)], x EG. 

Then we have 

Putting 
'Pa,x := tl;".aF(x,·), a,x EG 

and calling to mind inequality (3) we derive 
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for arbitrarily chosen a,x EG, b,y EH. Hence it follows, in particular, that for all 
a,x EG one has 

'Pa,x E V, i.e. Li;'](x) E V. 
Moreover, on account of Theorem A, for any fixed a, x E G the function 'Pa,x admits 
a representation 

where 7r a,x : H ---> X is a polynomial function of order n - 1 and Pa,x : H ---> X is 
bounded with an estimation of its supremum norm given by 

On the other hand, 

fi;'](x) = ['Pa,x] = [7ra,x] + [Pa,x], a,x EG. 

The first term of the above sum belongs to W, whereas the second is an element of 
Z, which implies that 

proj.z (t.;; }(x)) = [Pa,xJ, XE G. 

Hence, 

llproj.z (t.;; f(x)) 11.z = ll(Pa,x)ll.z :S llPa,xlloo :S kn€, a,x EG. 

Applying Lemma 2 to the function J we receive a decomposition 

j = i>+ q + r, 

where p : G ---> Y is a polynomial function of order m - 1, q : G ---> W, r : G ---> Z 
and 

(4) 

Let us represent the func;tions p, q and r in the form 

P(x) = [p(x)), q(x) = [q(x)], r(x) = [r(x)), XE G 

with some p : G ---> Y, q : G ---> W and r : G ---> Z . Then we have 

[t.:'p(x)] = Li;'ß(x) = [O), x EG, 

which means that 
t.;'p(x) E L, a,x EG. 

From Lemma 1 it follows that p = p0 + l, where p0 : G ---> Y is a polynomial function 
of order m - 1 and 

l(x) E L, x EG. 
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Consequently, for every x EG the cosets (p(x)] and [p0 (x)] coincide. From this place 
on, the constant 5 will be treated as fixed (possibly very small, nevertheless positive). 
In view of (4), to each x EG one can assign an element r0 (x) E [r(x)] such that 

Evidently, the cosets (r(x)] and [r0 (x)] are identical for every x EG. As a result, 

[F(x, ·)] = lPo(x)] + [q(x)] + [ro(x)], x EG 

or equivalently, 

F(x, ·) = po(x) + q(x) + ro(x) + lo(x), x EG 

with some l0 : G --> L. If we now put 

qo(x) := q(x) + l0(x), x EG, 

then the function q0 assumes values in W + L C TV. Next we define functions P, Q 
and R mapping G x H into X by the formulae 

) 

P(x,y) := Po(x)(y), Q(x,y) := qo(x)(y), R(x,y) := ro(x)(y) 

for all (x,y) EG x H. Then 

F(x,y) = P(x,y) + Q(x,y) + R(x,y), (x,y) EG x H 

and it is readily seen that P and Q have the properties (a) and (b) from the assertion 
of our theorem. Finally, notice that 

sup llR(x,y)ll = supsup llro(x)(y)ll = sup llro(x)lloo:::; kmknE + 5, 
(x,y)EGxH xEG yEH xEG 

which ensures property ( c) and completes the proof. 

By induction based on similar arguments one can prove the following generaliza­
tion of Theorem 1: 

THEOREM 2. Let (Gi,+), ... ,(Gm,+) be Abelian groups and suppose that 
(X, II· II) is a Banach space. Moreover, fix a system of positive integers n 1 , •.. ,nm and 
a positive real constant c. Assume that F : G1 x ... x Gm _, X is a function fulfilling 
the inequality 

for all a;,x; EG, i = l, ... ,m. Then for arbitrarily small positive 5 there exist 
functions P; : G1 X ... x Gm _, X ( i = 1, ... , m) such that P; is a polynomial function 
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of ordern; - 1 with respect to the i-th variable while the remaining variables are fixed 
and 

for all (xi, ... ,xm) E G1 x ... x Gm. As usual kn; (i = 1, ... ,m) are the constants 
appearing for the first time in Theorem A. 

REMARK 2. The paper 1 provides some estimations of the constants kn (n = 
1, 2, ... ), but it is not known whether they are sharp. Therefore, there is not much 
practical sense in trying to improve ·Theorems 1 and 2 by eliminating from them 
the constant 6 which only imperceptibly weakens their assertions. Nonetheless such 
improvement would be desirable from the aesthetic point of view. We do not know if it 
can be achieved without imposing additional assumptions on the space X. However, 
if X is finite-dimensional, the constant 6 can be avoided as is easily seen from the 
proof of Theorem 1 and from the following 

PROPOSITION. If dimX < oo, then keeping the meaning of symbols used in 
the proof of Theorem 1, we have 

V ll['f'Jllz = lliPlloo· 
[cp)EZ t/JE[cp) 

Proof. ldentifying elements of the space X with constant functions mapping H 
into X, we may write 

ll['f']llz = inf{ll'f' + clloo: c EX}. 

Fix a coset (cp] E Z and put T/ := 2ll'f'lloo· lf c E X is chosen from the complement of 
the closed ball B(O, 71) with the centre 0 and the radius 71, then 

Consequently, 

ll['f'Jllz = inf{ll'f' + clloo: c E B(O, 71)}. 

We may select a sequence {Cn}neN of elements of B(0,71) such that 

ll[cp]llz = lim ll'f' + clloo· n-+oo 

Since B(O, 71) is compact, the sequence {cn}neN contains a subsequence {enkheN 
convergent to a Co E B ( 0, 71). Hence 

which ends the proof, because iP := cp +Co E [cp]. 
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Abstract 

This paper proves a fixed point index theorem for non-compact maps and gives an 
application to prove the existence of positive solutions of evolutionary equations 
in infinite dimensional Banach sequence spaces. 

1. INTRODUCTION 

In [10] we presented a topological method that can be applied to study the 
asymptotic behavior of differential equations in Banach spaces. We prove here 
a fixed point index theorem for non-compact maps and give an application on 
the existence of positive solutions of evolutionary equations in infinite dimen­
sional Banach sequence spaces. The results generalize Theorem of Hartman 
and Wintner [7] and [8] to an infinite dimensional spaces and also the results 
proved in [11). The proof shows the generality and simplicity of the method 
developed in [10]. Infinite systems of ordinary differential equations arise in the 
theory of branching process, [2] semidiscretization of partial differential equa­
tions, [3], [5], degradation of polymers, [3] and perturbation theory of quantum 
mechanics [1]. 
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2. PRELIMINARlES 

We begin by recalling a few definitions and results from [10]. 
Suppose Xis a Banach space, iw.+ = [O,oo), u: IW. x X x iw.+---> Xis a 

given mapping and define U(u, t): X --->X for u E iw.+ by U(u, t)x = u(u, x, t). 
A process on X is a mapping u : IW. x X x iw.+ ---> X satisfying the following 
properties: 

i) u is continuous, 
ii) U(u, u) = I (identity), 

iii) U(u+s,t)U(u,s) = U(u,s+t). 

A process is said to be an autonomous process or a semidynamical system 
if U(u,t) is independent of u, i.e., U(u,t) = U(O,t) for each u E :IR and t ~ 0. 
When this is the case, define T(t) = U(O, t) and note T(t)x is continuous at 
each (t,x) E IW. x X. 

Definition. Suppose u is a process on X. The trajectory r+(u, x) through 
(u, x) E IW. x Xis the set on :IR x X defined by 

r+(u,x) = {(u + t, U(u, t)x)lt E iw.+} 

The orbit -y+(u, x) through (u, x) is the set in X defined by 

If there exists a backward continuation for the process u, we define for some 
r E [-oo,O] 

r-(u,x) = {(u+t,U(u,t)x)lt E (r,O)}. 

-y-(u,x) = {U(u,t)xlt E (r,O)} 

An integral of the process in :IR is a continuous functions y : IW. ---> X such 
that for any u E IW., r+(u, y(u)) = {(u + t, y(u + t))lt ~ O}. An integral y is an 
integral through (u, x) E :IR x X, if y(u) = x. 

We assume in the following that the integral through each ( u, x) E :IR x X is 
unique. We define r- 1 (x) = {(u, y) E IW. x XI, 3t > 0 such that U(u, t)y = x }. 
If P0 = (u, x) E :IR X X and z E -y+(u, x) we define 

tz = inf{t ~ OIU(u,t)x = z}, 

Q. = {(u+t.,U(u,t.)x)}, 

[P0 ,Q.] = {(u+t,U(u,t)x)IO ~ t ~ t,} 
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Let n be an Open set of im. X X' w an open set of n, w -1 0 and {)w = 
w n (ü - w) the boundary of w with respect to n. We put 

S 0 ={Po= (17,x) E 8wl3z E 7+(17,x) 

with (Po,Qz) "f; 0 and (P0 ,Qz) nw = 0}. 

S ={Po= (17,x) E 8wl3z E 7+(17 1 x) 

with (Po, Qz) f 0 a.nd if there exists r-(P0 ), 3Q E w 

such that (Q, P0 ] C w} 

s• = {Q E S0 j3P0 = (17,x) E w -S 

with Q E r+(171 x) and [P0 ,Q) C w - S} 

The points of S 0 are called demiegress points, the points of S are called 
egress points. The points of s• are called strict egress points. 

The above definition applies even if w has an empty interior. For example, 
if X = 12 and w is the positive cone in 12, w = {x E 12 lx ;::: 0}, S = {x = 
(xi, x2, ... )lx ;::: 0 and x; > 0 for at least one i}. w = ow and the trajectory 
through a point P0 = ( 17, x) E w either leaves the set w at some time t > 17 or 
t = u and then r+(P0 ) n w = 0 and P0 E S 0 A point P0 E S 0 is an egress 
point, that is, P0 ES, if there exists an backward continuation of the process 
and a small piece of the trajectory is contained in w. If P0 E S 0 and there is a 
small piece of the left trajectory through P0 contained in w - S then P0 E s•, 
that is, P0 is a strict egress point. If all points of S are strict egress points, 
that is, s = s·' s· is closed with respect to w. 

Given a point P0 = (17, x) E w - S, if the trajectory r+(17, x) of the process 
is contained in w - S for every t > 0 we say that the trajectory is asymptotic 
with respect to w - S. If the trajectory is not asymptotic with respect to w - S 
then there is a t > 0 such that (17+t,U(17,t)x) ES. Taking: 

we have 

tp0 = inf{t > 01(17 + t, U(17, t)x) ES} 

Q = (17 + tp0 , U(17, tp0 )x) = C(P0 ) 

[Po,Q] C w. 

The point C(P0 ) is called the consequent of Po. Define G tobe the set of 
all P0 = ( 17, x) E w - S such that there are C( P0 ) and C( Po) E s•. G is called 
the left shadow of w. Consider the mapping, the consequent operator: 

K: s· UG-+ s· 
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K(Po) = C(P0 ) if P0 E w and K(P0 ) = P0 if P0 ES*. 

Lemma 1. If s = s• 1 the consequent Operator]{ : s· UG-+ s· is continuous. 

Lemma 2. If s = s· and the solution Operator U(t, u) is a conditional con­

densing map fort > u then [{ : G-+ S is a conditional condensing map. 

Following Nussbaum [14] we say that a subset A of a Banach space X is 
admissible if A has a locally finite covering { Aj : j E J} by closed convex sets 

Ai EX. 
Let w be a non-empty subset of n, and with S and S* denoting respectively 

the set of egress and strict egress points of w. Assume that there exists a non­
empty closed set Z where Z C w US and the following conditions are satisfied: 

i) s = s· 
ii) Z is admissible 

iii) there exists a continuous map et> : S-+ S such that cI>(P) f. P for every 
PES. 

iv) et> [{ is a condensing map 

v) iw(cl>K,Z - S) f. 0. 

Then there exists at least one point P0 = (u, x) E Z - S such that the 
trajectory r+(u, x) through P0 = (u, x) is contained in w - S. 

Proof. Assume that the theorem is not true. Then C(P0 ) E S for every 
P0 E Z - S and then Z - S c G. Then Z = (Zn S) U ( Z - S) c S U G. From 
iv) cl>J{ is a condensing map and from iii) cI>(P) f. P for every P E S, that 
is cI>H(P0 ) f. P0 for every P E Z = S. Hence iw(cI>K, Z - S) = 0 which is a 
contradiction. Then there exists at least one point P0 E Z - S such that the 
trajectory r+(u, P0 ) is asymptotic with respect to w - S. 

Corollary 1. Let w be a non-empty, subset of n, and with S and S* denoting 

the set of egress and strict egress points of w respectively. Assume that there 

exists a closed set Z, <Pf. Z C w US and the following conditions are satisfied: 

i) s = s· 
ii) Z is admissible 

iii) there exists a continuous map et> : S-+ S such that cI>(P) f. P for every 

PES 

iv) et> J{ is a condensing map and et>]{ has a fixed point in Z. 
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Then there exists at least one point P0 = (u, x) E Z - S such that the 
trajectory r+(u, x) through P0 (u, x) is contained in w - S. 

We will need the following Lemma [4], [14]. 

Lemma 3. Let X be Banach space, [{ C X a cone and F : J{R ---+ [{ a 
condensing map, J{R = /{ n BR(O). Suppose that 

a) Fx # AX for llxll = R and A > 0. 
b) There exists a smaller radius r E (0, R) and an e E Kl{O} such that 

x - Fx # Ae for llxll = r and 0 < A ~ 1. 

Then F has a fixed point in {x E Kir~ llxll ~ R}. 

3. MAIN RESULTS 

Let X be a real Banach sequence space and consider the system of ordinary 
differential equations defined in X: 

00 

x; + 2:>ii(t)xi = 0, 
j=l 

i,1,2„ .. 
(1) 

x;(O) = xf 

where a;j(t) are continuous functions of the real variable t for 0 ~ t < oo, 

x 0 = (X~, X~' ... ) E X. 
System (1) can be written in the form 

x+A(t)x=O 

x(O) = x 0 
(2) 

We assume that for each t E [O, T], -A(t) is the infinitesimal generator of 
a C 0 semigroup Oll the space X, the domain D(A(t)) = Dis independent of 
t, is dense in X and that the initial value problem (1) has an unique classical 
solution defined in [O, oo). Assume also continuity with respect to initial con­
ditions for the solutions of (1). See [8] and [11]. Our purpose here is to apply 
Theorem 1 to prove the existence of a positive solution of system (1). 

Theorem 2. Assume the hypotheses 

i). The solution operator 

U(t, u)x 0 = x 0 - lt A(s)x(s)ds 
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is a conditional condensing map fort > u 

00 

ii) L>i;(t)x; > 0 for every i = 1, 2, ... , x; 2'.'. 0, j = 1, 2, .... 
j=l 

Then system (1) has a monotone decreasing solution x(t) = (x1(t), x2(t), ... ), 
x(t) ;/:. 0 such that Xi(t) > 0 and .i:;(t) < 0 for every i = 1, 2, ... , t 2'.'. 0, and 
consequently x;(t) are monotone decreasing fort 2'.'. 0. 

lf the solution operator I<(t, O)x0 = x 0 -1t A(s)x(s)ds is compact fort > u 

00 

and L:a;;(t)x; 2'.'. 0 for every i = 1,2, ... , x; 2'.'. 0, j = 1,2, .... Then (1) 
j=l 

has as monotone non-increasing solution x(t) = (x1 (t), x2(t), ... ), x(t) ;/:. 0, 
such that xi(t) ~ 0 for every i = 1, 2, ... , t 2'.'. 0 and consequently x;(t) are 
monotone non-increasing fort 2'.'. u. 

Proof. Let us assume first that 

00 

L a;;(t)x; > 0, 
j=l 

for every i, x; 2'.'. 0, j = 1, 2, ... 

or equivalently, that A(t) is a .>trongly positive operator. 
For u > 0 let 

w={x=(x1,x2 1 ••• )EXlx;>O, i=l,2, ... }. 

For 0 < r < R let 

Z = {x =(xi, x2, ... ) E Xlx; 2'.'. 0, r ~ llxll ~ R} 

S = {x = (x1, x2, ... ) E Xlx; 2'.'. 0, X; = 0 and x; f 0 

for at least one i and one j} 

The closure of w, w is a cone in the space X and Z is a conic sector. If 
x = c or x = 100 , w is a solid cone in X. 

From hypothese ii), x; < 0, then the derivatives along the solutions of (1) 
on the points of S are negative, then the points of S are strict egress points. 
At the origin x; = 0 for every i, whence the origin is not an egress point. The 
derivative along the solutions of (1) on the points of ZR= {x E ZI llxll = R} 
and Zr = { x E ZI llxll = r} are negative, x; < 0. Then the points of Zr are 
strict egress points and the points of ZR - S are strict ingress points. The 
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points of ZR n S are not egress points. The continuous function <I> : S --+ S 
defined by <I>(x1, x2, ... ) = (0, xi. x2, ... ) satisfies <I>(x) =F x for every x ES. 

Assume that for every x 0 E Z - S, the solution through x 0 does not remain 
in w for t > 0. Since the points of S are strict egress points Z - S C G. The 
consequent operator K : Z --+ S defined by 

i = 1, 2, ... 1 (4) 

is defined in Z C w. Since the points of S are strict egress, ]{ is defined in 
z n s then in Z, that is, z c G u s. For Lemma 2, the consequent Operator 
K : G--+ S is a conditional condensing map. 

Since <I> is continuous, <I> 0 K is continuous, and since :i:; < 0 for every i, ]{ 

takes Z into wn {x E wl llxll < R} and then K is a condensing map. Since <I> 
is an isometry <1> 0 K is a condensing map. 

Finally to prove the Theorem, we have to prove that <1> 0 ]{ has a fixed point 
in Z. If we prove that the conditions a) and b) of Lemma 3, are satisfied then 
<I> 0 K : Z--+ w has a fixed point in Z. 

a) If llx0 ll = R for .X > 1, llh0 11 > R. Since we are assuming that 
00 

L: a;;(t)x; > 0, x is decreasing, ll<I>K(x 0 )11 = llK(x0 )11 ~ llx0 ll < 
j=l 

ll.X(x0 )11 then llh0 - <I>K(x0 )11 ~ ll.Xx 0 ll - ll<I>K(x 0 )11 > 0 and .Xx0 =F 
<I> ]{ ( xo) 

b) Fixe= (0,1,0,0, ... ). If x! =F 0, x0 - <I> 0 K(x0 ) = (x1,x2,.„) -

(0,x!,x2 1 ••• ) + (o,J; i~l a1;(s)x;(s)ds,J; ;~i a2;(s)x;(s)ds, .. . ) =F 

.X(O, 1, 0, 0, ... ), since the first coordinate xi =F 0. 
If xi = 0, x 0 E S and K xc = x0 then 

x0 -</>0 K(x 0 ) = (0, x~, x~, ... )-(0, 0, x~, x~, ... ) = (0, x~, x~ -x~, x~ -x~, ... ) 

Let us assume by contradiction that 

x 0 - <i>0 K(x 0 ) =.Xe 

that is 
(0, x~, x~ - x~. x~ - x~, ... ) = (0, .Xe1, .Xe2, ... ) 

If x2 = 0 obviously x0 - </>ok(x0 ) =F .Xe since .Xe1 =F 0. 
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If x~ -:f 0 we have 

that is 

Then 

(0, x~, x~ - x~ - x~, ... ) = (0, Ae1, Ae2 + Ae3, ... ) 

x~ = Ae 1, x~ = x~ + Ae2 = Ae1 + Ae2 , 

x~ = x~ + Ae3 = Ae1 + Ae2 + Ae3 + ... 

and x 0 can not belong to [P for any p ~ 1 and x 0 can not belong also to c0 • If 
00 

x = c or 100 since L; e; < r and A < 1 
i=l 

00 

r = llx0 ll = A Lei< r 
i=l 

a contradiction. 

Therefore all conditions of Corollary 1 are satisfied and there exists at least 
one point x0 E Z - S such that the solution of (1) x(t) = (x 1 (t),x 2 (t), ... ) 
through x 0 stays in w - S for every t ~ 0 and since :i:; < 0, i = 1, 2, ... , each 
x; ( t) decreases monotonically to zero as t __, <X>. 

If the solution operator K(t, t 0 )x0 = x 0 - Ji'. A(s)x(s)ds, is compact for 
00 

t > t 0 and L; a;;(t)x; ~ 0, consider the system 
j=l 

00 

Y; + L(a;;(t) + €;j)Y; = 0 
j=l 

Y;(O} = Y;°, i =, 1, 2 ... 

(4) 

From the proof above, there exists for each Eij, a positive solution Yn(t) of 
(4) through some Y,:' = (Yi°n, Y2':,, ... ) and Yn(t) decreases monotonically as 
t __,<X>. When E;; __, 0, there is a sequence of positive solutions Yn(t) of (4) 
through Y,:'. Let E = {Y,:'}. 1f K(t,0) is compact fort> t0 , for l > 0, the set 
{K(l, O)Y;~} = {Yin(l)} is compact and there exists a convergent subsequence 
{Yink(l)}, Yink(l) __, Yo(l) and the solutions Y;nk(t) __, Y(t), Y(l) = Y0 (l) on 
every interval l ~ t ~ T < <X>. 
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The system 

x; + LUii(t) = -f;(t,x) 
j=l 

x;(O) = x 0 , i = 1, 2, ... , 

can be written in the form 

x + A(t)x = -f(t, x) 

x(O) = x 0 

(5) 

(6) 

We assume that for each t E [O, T], -A(t) is the infinitesimal generator of 
a C 0 -semigroup Oll the space X, the domain D(A(t)) = D is independent of 
t, is dense in X, f: (O,oo) x U-+ Xis continuous, U C X, open, f(t,O) = 0 
and we assume existence of a unique classical solution of ( 4) in (0, oo ), as weil 
as continuity with respect to initial conditions; see [9) and [12). 

Theorem 3. Assume the hypotheses 

i) The solution operator 

U(t, o-)x 0 = x 0 - 11 
A(s)x(s)ds - lt f(t, x) 

is a condztwnal condensing map fort > o-. 
00 

ii) L a;j ( t )x j + f; ( t, x) > 0 f or every i = 1, 2, ... , x j 2: 0, j = 1, 2, .... 
j=l 

Then system (5) has a solution x(t) = (x1(t), x2(t), ... ), x(t) -:j:. 0, such 
that x;(t) > 0, x; < 0 for every i = 1, 2, ... , t 2: 0, and consequently the x;(t) 
are monotone decreasing. 

If the solution operator K(t,O)x 0 = x 0 - J0
1 A(s)x(s) - J: f(s,x(s))ds is 

00 

conditionally compact for t > o- and L a;j(t)xj 2: 0 for every i = 1, 2, ... , 
j=l 

Xj 2: 0, j = 1, 2, „., then system (5) has solution x(t) = (x1(t), x2(t), „.) 
such that x(t) -:j:. 0, x;(t) 2: 0 and x;(t) ::::; 0 for every i = 1, 2, ... , t 2: 0 and 
consequently x;(t) are monotone non-increasing for t 2: 0. 

00 

The proof follows as in Theorem 2, assuming that L a;i ( t) xi + f; ( t, x) > 0 
j=l 

and the conclusion is that there exists a positive solution of (5) through some 
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point x0 = ( x~, x3, ... ) E w - S. If the solution operator 

U(t,t 0 )x0 = x0 -1' A(s)x(s)ds -1' f(s,x(s))ds 
t 0 to 

00 

is conditionally compact and L a;;x; + f;(t,x) ~ 0, from Lemma 2 and since 
i=l 

this implies that J( is compact, consider the system 

Y; + I)a;;(t) + e;;)x; + f;(t,x) = 0 

Yi(O) = Yi° (7) 

and a subsequence Yo,k;(t), Yo,k;(O) = Yi0 which converges, as e;; ---> 0, uni­
formly on every interval 0 $; t $; t < oo. 

For system (7) the solution x(t) can become zero after a finite time. The­
orem 3 generalizes a result of Hartman and Wintner [7]. 

Example 1. Let { a;} E c the space of convergent sequences with norm 
llall = sup la;I. Assume that _lim a; = a00 #:- 0 and define ai = (0, 0, ... , 

i 1-+<X> 

a;,O, ... ). DefineT(t)ai = {e>-•ai}, -oo <Re A; $; W < oo. T(t)isastrongly 
continuous semigroup with infinitesimal generator A given by Aai = {A;ai}. 
T(t) is compact if and only if lim Re A; = -oo. Consider the system (8) 

00 . 

:i:; = -A;x; - l: g;;(t)x;, x;(to) = x~ with A; > 0, l: llu;;ll < oo. This system 
j=l iJ 

can be written in the form :i: = Ax + G(t)x, x(t 0 ) = x0 Since T(t) is compact 
and G(t) is bounded, the consequent operator 

K(t, t 0 )x0 = x0 +1' (A + G(x))ds 
to 

is compact. From Theorem 2, there e.xists at least one monotone solution 
x(t) = (x1 (t),x2(t), ... ), of(8) such that tlim x(t) = 0, x(t) ~ 0 and -:i:(t) ~ 0. 

-+00 

Example 2. Let X be a Banach sequence space and consider the system (9) 
:i: = (A + B)x. Assume that B from X to Xis compact. Ais the infinitesimal 
generator of a C0 -semigroup eAt, t ~ 0 in X and there exist constants M, 'Y > 0 
such that leAtl $; e--yt, t ~ 0. If all solutions of system (9) are defined fort~ 0 
then the semigroup defined by (9) satisfies T(t) = eAt + U(t) where U(t) 
is conditionally compact ( conditionally completely continuous) and therefore 
T(t) is a conditional a- contraction. [6, pp. 123] and Webb [15]. If A + B < 0 
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there exist a solution x(t) of (7) such that x(t) > 0, Jim x(t) = C and x(t) < 0, 
t-oo 

t > 0. 
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BANACH SPACES IN BERGMAN OPERATOR THEORY 

Erwin Kreyszig 

Carleton University, Ottawa, Canada, KlS 5B6 

Abstract 

We show how Banach space theory can be used for certain aspects of 
integral operators of Bergman type, which serve as transformations for 
translating methods and results on analytic functions into analogs for 
solutions of linear partial differential equations. 

1. The Creation of Banach Space Theory: F. Riesz, S. Banach 

The introduction of normed spaces and, in particular, Banach spaces, was an impor­

tant landmark in the early development of functional analysis, which is usually considered 

to have begun in 1887 with five Notes on functionals by Volterra [Opere 1, 294-328]., fol­

lowed in 1906 by the appearance of three important papers, first, Frechet 's famous thesis 

containing the modern axiomatic definition of metric space, second, Hilbert 's most impor­

tant ( the fourth) of his six Mitteilungen on integral equations, the earliest truly functional­

analytic theory of those equations, and third, the paper by F. Riesz [Oeuvres I, 110-154] 

containing an axiomatic definition of topological space based on "Verdichtungsstelle" (we 

now say Häufungspunkt, accumulation point, not condensation point!), along with many 

modern ideas of general topology. This paper, obscurely published and included only in 

part in Riesz's 1908 paper given at the International Congress of Mathematicians, Rome 

[Atti 2, 18-24], was also influential on the basic work of 1921 by L. Vietoris, culminating 

with the introduction of the Vietoris separation axiom. Its German translation finally be­

came more widely known in 1960 by the publication of Riesz's Oeuvres. Riesz's axiorns, 

in modern formulation, were as follows. 

For each subset S and point p, it is defined whether p is an accumulation point. of S 

or not (is "isolated"), and this relation satisfies the axioms 1.-4.: 

1. If S is finite, it has no accumulation points. 

2. An accumulation point p of S is also an accumulation point of any set containing S. 

3. If S is partitioned into S1 and S2, then any accumulation point of S is also an accu­

mulation point of S1 or S2 (or both). 

4. For an accumulation point p of S and a point q =/. p there is a subset S of S such that 

p 1s an accumulation point of S, but q is not. 

Based on this, Riesz then defined neighborhood, interior point, boundary point, open set, 

connectedness, etc. Clea'riy, that was an early {not fully successful) attempt to define 

topological space, without using any distance concept. 

155 
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With Hilbert space theory well under way, one recognized soon, certainly around 

1909 when lliesz introduced his famous representation of bounded linear functionals on 

C[a, b), that for numerous applications, Hilbert spaces are not general enough. One was 

thus looking for suitable more general spaces, and it seems that the idea of combining 

vector space structure with metric (missed by Frechet at that early time) that led to 

the breakthrough in the form of normed spaces was somehow "in the air" And it was 

again lliesz who did the first step in 1915 or 1916 in his famous Acta mathematica paper 

(submitted 1916, publishing date of the volume 1918, delayed by the War) on compact 

operators (abstract Fredholm theory). There he phrased matters in terms of C[a, b], but 

his axioms were those of what we now call a Banach space, because once he had defined the 

norm on C[a, b), in that paper he never used anything eise but the axioms of a complete 

normed space. And he emphasized clearly that he had much more in mind than C[a, b): 

"The restriction to continuous functions made in this paper is not es­
sential ... [and] the ... case treated here may be regarded as a test case 
(Prüfstein) for the general applicability [of the method]." 

As Bourbaki [4), 268, phrased it, it seems that "only the scruples of a careful analyst to go 

away too far from classical mathematics" kept lliesz from a totally abstract formulation 

of his theory, as it is now common (see [10), Chap. 8). 

Fours years later, in 1922, the appearance of Banach's thesis marked the beginning of 

a systematic theory of normed spaces. lt is interesting that short before, papers by Helly 

and by Hahn also contained the axioms of normed space, and in 1922, N. Wiener published 

another independent paper in which he also stated equivalent axioms and advocated the 

use of complex scalars, which Banach had not used, for unknown reasons. lt took Banach, 

Hahn, Steinhaus and others only ten years to fully develop the "elementary" theory of 

normed and Frechet spaces, as it appeared in 1932 in Banach's classic [1], a book of great 

influence on the further development of functional analysis. 

2. HB Spaces in the Theory of Operators of Bergman Type 

H B(n) denotes the Banach space of holomorphic and bounded functions on a domain 

n c cn, taken with the maximum norm. We need the case n = 2 and choose n = 

n1 X n2 C C2, where 

n1 = {zl lzl < p}, n2 = {z*l lz*I < p}, 

where p > 0 is fixed. We shall be concerned with partial differential equations of the form 

(2.1) Lu= Uzz• + b(z, z*)u •• + c(z, z*)u = 0, (z, z*) E n. 
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Here, u, has been elirninated in the usual fashion, without restricting generality. 

We now take X= HB(f21,R) and Y = HB(OR)i here, 

(2.2) f21,R={zllzl:SR, R=~(p-17), 0<77<~}, 

the norrn being defined by 

(2.3) 11/llR = rnax l/(z)I, 
<Efl1,R 

and 

(2.4) nR = f21,R X n2,R, n2,R = {z*l lz*I :s R, Ras above}, 

the norrn being defined by 

(2.5) lluJJR = rnax lu(z, z*)I. 
(<,••)e!"ln 

Our ''retreat" frorn n to nR c n, necessitated by the convergence of the Bergrnan series 

for the kernel of the operator to be defined, is notationally slightly rnore practical than 

assurning holornorphy of band c on, say, lzl < 3p, lz*I < 3p, to avoid it. 

We then define a linear operator T : X -+ Y, f ,__.. u = T f by 

integrating frorn -1 to 1 along a C1-arc C in D = {tJ ltl :S 1} C C. 

Condition (A). The kernel is a holornorphic solution of 

(2.7) 

on 0 x D such that (1 - t2 )k,. -+ 0 as t -+ ±1 uniforrnly in a neighborhood N of 0 E f2 
and if C passes through the origin, then k,. / zt is continuous in N X D. 

Condition (B). b, c E cw(n). 

Theorem 2.1. (A), (B) imply Lu= LT/= 0 on n. ((3], 10) 

T is then called a Bergman Operator for (2.1) on n. lt is called of first kind and 

denoted by T1 if its kernel satisfies 

Condition (C). klz=O = klz•=O = l. 
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This condition holds if 

00 

(2.8) k(z,z*,t) = 1 + Lqn(z,z*)znt2n, qn(z,O) = 0. 
n=O 

Lemma 2.2. (A), (B) imply absolute and uniform convergence of (2.8) on tn x D. ([9], 

21). 

In addition to T1 we can also consider T1 • X -+ Y, g 1-+ u 

T1g(f) = Tif, where 

(2.9) 

the contribution of the term 1 in (2.8) to (2.6). 

T1 g, defined by 

Lemma 2.3. The Madaurin series of f( tz) and g(z) have the sameradius of convergence. 

PROOF. This follows from 

00 00 

n=O n=O 

Theorem 2.4. If b, c EH B(O) in (2.1), then the Bergman operator of the fi.rst kind, 

T1: HB(fl1,n)-+ HB(On), g ...... u = T1g 

is bounded. 

PROOF. u in (2.6) with T = T1 satisfying (A) and (C) can be represented (see (4b) i 

[3], 15) 

(2.10) u(z,z*) = T1g(z,z*) 

- oo Q(n)(z,z*) [' n-1 

- g(z) + ~ 22nß(n,n + 1) Jo (z -() g(() d(, 

where 

(2.11) Q(n)(z,z*) = 1" p<2nl(z,(*) d(*. 

If (z, z*) E On, then 
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Hence at any (z,z*) where the series (2.10) converges, 

Clearly, the integral does not exceed R"llYllR/n in absolute value. By the definition of 

dominants (see (14) in [3], 14), 

(2.12) 

where 
n-l . f(A + n) 

An= }1(A+1)= f(A+l)' A=8I<p(l+p). 

p is fixed and 4K is an upper bound for lb(z,z*)I and ic(z,z*)I in nR, resulting from 

lb(z,z*)I S ( )J( . ) < 4]{ when Jzl, lz*I SR< -9p 
1-1=.J. 1-1!..'.1 -

p p 

and similarly for c(z,z*). Now if lzl SR< p/2, then (1 - lzl/p)-n < 2", so that from 

(2.11) and (2.12), 
(n) 22"AnK 

llQ llR S pn-21. 3···(2n -1) 

Together, with 1 · 3 · · · (2n - 1) B(n, n + 1) = (n - l)!/2" we thus obtain 

(2.13) 

The series on the right converges by the ratio test. Denoting its sum by M and taking the 

supremum over all g of norm one, we have 

(2.14) 

and the theorem is proved. 

In applications, a more explicit form of (2.14) is often practical: 

Lemma 2.5. For the operator in Theorem 2.4, 

(2.14*) 
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PROOF. Using the previous notations, we have from (2.11) and (2.12), 

111\llR:::; 1 + Kp2(A + l)H(S), 

where 

with 

so that 

and the result follows. 

H(S) == ~ An sn 
L., n! 
n=2 

n-1 

A2 == 1, An == II (A + j), 
j=2 

As a basic application of Theorem 2.4 we note 

n == 3, 4, .... 

Theorem 2.6. Let G be a total subset of associated g E H B(\/,1,R)· Then for a given 

equation (2.1) the set i\ ( G) is total in the set of solutions S C H B (\/,R) of (2.1 ). 

The proof is standard. Note that S < 1 by (2.2), whereas for S == 1 the hypergeometric 

series diverges because a + ß -1==A+1 ~ 1 (see [7], 1, 57). 

3. Hardy Spaces in the Theory of Operators of Bergman Type 

In this section we choose X == HP(\/, 1 ), 1 :::; p < oo, the Banach space of holomorphic 

functions on n1 such that 

(3.1) ( r2" ) 1/p 
Mp(r,f) == 2

1
7[ Jo lf(re;9 )1P dB 

is bounded as r __, p, with norm defined by 

llJllP == supMp(r, !), 
rEJ 

J == (0, p ). 

We further choose Y ==HP(\/,), 1 :::; p < oo, the Banach space of holomorphic functions on 

\), == \),1 X \),2 such that 

(3.2) 
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llullp = sup Mp(R, u), 
REK 

K = J X J. 

X --> Y, g ,__. T1g = u, as defined by (2.6), (2.9), but now 

considered on the new space X into Y; for simplicity we use the same notation for the 

operator. 

Theorem 3.1. Conditions (A)-(C) in Sec. 2 imply that T1 is bounded. 

PROOF. We use Bergman's standard notation from [3] and ideas from [13]. From (2.6) 

and (2.8) we have u = g + F, where 

From this, the Minkowski inequality and Brintegration in the g-term, 

llullp $ supI1 + sup h 
rEJ REK 

IF(z,z")I $ A 11' g(s) dsl 

with a suitable constant A. By Brintegration, 

J2 $ (2~ 12
" AP 11' g(s) d{ d81) l/p 

By Zygmund's formula (9.12} in [14], 19, 

I2 $ l•I ( 2~ 12
" APlg(s)IP d81) l/p idsi $ Apll91ip· 

Now sup J1 = ll9llp, so that the completion of the proof, with a remarkably simple constant, 

is seen from 
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As an important consequence of this theorem, we show next that the space of solutions 

of (2.1) generated by Ti is complete. 

Theorem 3.2. Yi = Ti(HP(f1.i)) C Y = HP(f1.), 1 ~ p < oo, fixed, is a Banach space. 

PROOF. Since Y is a Banach space, it suffices to show that Yi is closed in Y, which follows 

by familiar arguments if one observes that u(z,O) = 9(z). 

We claim that Yi can be made into a Banach algebra by defining 

(3.3) 

ui * U2 = Ti(9i * 92), 

(9i * 92)(z) = f c~ Zn, 
n. 

n=O 
00 (j) 

( ) ~ 9n „ 
9i z = L.,, -;:;y-z , 

n=O 

n 

Cn L 9~)9~22m, 
m=O 

j = 1,2. 

Theorem 3.3. Let u; = Ti9; E HP(f!), 1 ~ p < oo, j = 1, 2, be solutions of (2.1) 

satisfying (B). Then u = ui * u2 E HP(f1.) and these solutions form a Banach algebra Yi 
with multiplication ·, the identity being Ti 1. 

PROOF. u; E HP(f!) implies that sup Mp(R, u;) < oo. Hence, letting r2 = 0, integrating 
REK 

over 82 and using u;(z,O) = 9;(z), we get 9; E HP(f!r). Now (3.3) converges on f1. 1 , 

absolutely and uniformly Oll closed subsets of ni' because it is majorized by the Cauchy 

product. By direct integration it follows that (3.3) is equivalent to 

(3.4) d r 
(91*92)(z) = dz fo 9i(z - t)92(t) dt, 

and Wigley [12] has shown that in this way one obtains a Banach algebra structure for 

HP(f1.i), with 9i = 1 being the identity. Thus 9i * 92 E HP(f!i ), and Theorem 3.1 implies 

that 

u = Ui * U2 = Ti(9i * 92) E HP(f!). 

Hence Yi in Theorem 3.2 is an algebra with multiplication defined by (3.3), and is a 

Banach space by that theorem. To conclude that Yi is a Banach algebra, we map Y1 into 

the Banach algebra B(Y1 ) of all bounded linear operators on Y1 • Denote this mapping by 

Sand define it by u t-t Su = Tiu, where 

The mapping S is an isomorphism of Yi onto its range, the subalgebra S(Yi) of B(Y1 ). 

From the closed graph theorem it follows that S is also a homeomorphism, as is proved in 
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[5], 861. Hence the algebra Y1 is algebraically and topologically equivalent to the Banach 

algebra S(Y1 ). This completes the proof. 

Our results formulated for g, as a technical convenience, can readily by refonnulated 

in terms of f by using 

Lemma 3.4. f E HP(f!i) implies g E HP(f!1 ) and 

(3.5) (p 2 1). 

PROOF. Forz E !!1 the inequality in the lemma in [6], 36, can be generalized to 

(r = /zi). 

By using this in lvfp(r,g), integrating over 81 , setting t = cosa and noting that 

p - tr sin2 a 2 tP we obtain the result. 

We prove next a multiplication theorem for associated functions. 

Theorem 3.5 If 

(3.6) j = 1,2, 

with n as before, tl1en 

PROOF. From (3.6) and the definition we have 

j = 1,2. 

Setting z• = 0, using Uj(z,O) = gj(z) and integrating over 82, we obtain 

Hence 9i E H 2 (r! 1 ), j = 1, 2. Now 

so that by integration over 81, 
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Taking the sup on the left, we see that 9192 E H 1 (!11) and the assertion of the theorem 

follows from Theorem 3.1. 

4. Transition to Bergman Spaces 

In conclusion we mention that the extension of the results in Sec. 3 to Bergman spaces 

is immediate. lt suffices to demonstrate this for the key theorem (Theorem 3.1). 

By definition, a Bergman space BP is the Banach space of all holomorphic LP-functions 

(p 2'. 1) on a domain n c cn. Thus the theory of these spaces extends the L2-theory of 

holomorphic functions in "' domain, as developed by Bergman in numerous papers and 

summarized in his book (2). 
In connection with Bergman operators we take {} = !11 x !12 with !11 and !12 as in 

Sec. 3. Then the norm on BP(!li) is defined by 

(4.1) 

here, Mp is given by (3.1) with r = r 1 and 8 = 81. Similarly, the norm on BP(!l) is defined 

by 

(4.2) 

with M, as in (3.2). 

Space HP(!l1) is a dosed subspace of BP(!l1) (see (8], 149), and this raises the question 

of whether the Bergman operator of the first kind can be continuously extended from 

HP(!l1) to BP(!l1 ). The answer is in the affirmative, as the following theorem shows. (See 

also Marzuq (11).) 

Theorem 4.1. The Bergman operator T1 of the flrst kind, when regarded as an operator 

on BP(!l1) into BP(!l), that is, 

i\ . BP(!l1) --+ BP(!l) 

(4.3) 9(z) >--+ u(z, z•) = T19(z, z*) 

is bounded. Here 9 is related to f in (2.6) as shown in (2.9). 

PROOF. The proof is practically the same as that of Theorem 3.1. We first have 

M,(R, u) -:::; I1 + I2 

(4.4) :::; (2~ 12„ l9(r1e;e,)IP d81) l/p + pA (2~ 12„ l9(r1e;e,)IP d81)) l/p 



Banach Spacea in Bergman Operator Theory 165 

Hence 
1 r2" M:(R, u) :::; (1 + pA)P 27!" Jo \g(r1 ei 91 )IP d(J1 . 

If we now integrate on both sides over r 1 and r 2 from 0 to p and raise the result to the 

power 1/p, we obtain the assertion, namely 

(4.5) 
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SOME CHARACTERIZATION PROBLEMS IN HILBERT SPACE 
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Bowling Green, Ohio 43403-0221 USA 

ABSTRACT 
In the present paper some charactetization problems in Probability Theory are 

discussed in the general framework of a real separable Hilbert space. 

Let J{ be a real separable Hilbert space with inner product ( ) and norm II II· Let 

(Q,5,P) be a probability space and !et 13 be the cr-field generated by the class of all open 
subsets of J{ Let X be a random variable taking values in Jl, that is, X is a measurable 
mapping of (Q,S) into (J{,13). Let µx be the probability distribution of the random 
variable X, that is µx is the probability measure on 13 induced by the measurable 
mapping X such that the relation 

µx(E) = P{w E Q: X(w) E EJ 

holds for all E E 13. Then the characteristic functional µX of the random variable X is 
the complex valued function on J{ given by the formula 

µx(y) = J ei(x,y) dµx(x), y E J{ 

J{ 

A random variable X taking values in J{ is said to follow Gaussian law, if the 

characteristic functional µX can be represented in the form 

167 
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where xo e :Ji is a fixed element of :J{ and S is an 5-operator in :Ji. In this connection we 
note that 5-operator is a bounded linear positive Hermitian operator in :Ji having a finite 
trace. 

A random variable X taking values in :J{ with characteristic functional µX is said 
tobe infinite}y divisible, if for any positive integer n ~ l, there exists a characteristic 
functional µn such that the relation 

µx(y) = cµn(y)] 

holds for all y e :Ji. lt is weil known3 that a random variable X taking values in :Ji is 

" infinitely divisible, if and only if its characteristic functional µx can be represented in the 
form 

ye :Ji. 

Here xo e :Ji is a fixed element in :;{, S is an 5-operator in :Ji and u is a cr-fini te 
measure on 'B with finite mass outside every neighborhood of the origin 0 e :Ji and 
satisfying the relation 

J llxll2 du(x) < ~. 
(xe 9tllxll:!>I) 

Here the kerne! K is given to the formula 

K(x y) = e1 x,y - 1 -"() ~·(x,) 
' 1 + X 2' 

(x,y E 1t). 

Moreover the element xo e :;{, 5-operator S and the measure u are determined 

uniquely by µx. 
Apparently it seems that the paper of Eaton and Pathakl is the first result on the 

characterization of an infinitely divisible law and Gaussian law in a real separable Hilbert 
space. The results of Eaton and Pathak can be summarized as follows: 

Let µX be the characteristic functional of a random variable X taking values in a 

real separable Hilbert space :Ji. Suppose that µX satisfies the functional equation 
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1\ n ,.. a-
µx(y) = II µx(BjY) 1, y e 1l 

j=l 
where IXj > 0 and Bj is a bounded linear operator in 1{ with a bounded inverse (1 S ,. Sn) 

and suppose that there exists a positive real number A.o > 0 (0 < A.o < 1) such that llBil S A.o 
for 1 S j S n. Then the following assertions hold: 

(i) The characteristic functional µX is infinitely divisible. 
n 

(ii) Moreover suppose that L IXjBjBJ <? 1 where Bj• is the adjoint of Bj and 1 is 

" j=l 
the identity operator in 1l. Then µx is the characteristic functional of a Gaussian law 
(possibly degenerate) in 1l. 

n 
" (iii) Suppose that L IXj s 1. Then µx is the characteristic functional of a 

j=l 
probability measure degenerate at the origin 0 e :Jl 

Then Rao4 obtained the following result: 
Let o/ be a real Hilbert space provided with an inner product ( ) and let f be a 

continuous complex valued function defined on o/ satisfying the functional equation 
f(x + y) = f(x) + f(y) for all x,y e o/ such that (x,y) = 0. Then f is a polynomial of degree 
not greater than 2. 

Recently the author of the present paper2 obtained the following characterization of 
a Gaussian law in a real separable Hilbert space: 

Let X and Y be two independently (but not necessarily identically) distributed 
random variables taking values in 1l. Then the random variables X + Y and X - Y are 
independently distributed if and only if each of X and Y follows Gaussian law with 
identical 5-operators. 

The proof of this result depends on the solution of a functional equation in the 
general framework of a real separable Hilbert space as follows: 

Let X be a random variable takin,p values in 1l. Then X follows Gaussian law if 
and only if its characteristic functional µx can be represented in the form 

µx(y) = exp[i(xo,y) - 0(y)], y e 1{ 

where xo e 1{ is a fixed element in 1{ and 0 is a continuous nonnegative function on 1l 
satisfying the functional equation 

0(x + y) + 0(x - y) = 2[0(x) + 0(y)] 

for all x,y E 1l. 
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Let fi and f2 be two continuous complex valued functions defined on :H satisfying 
the relation 

for all x, y e :H. Then 

f1(y) = exp[i{x1,y)- 0(y)]: fi(y) = exp[i{x:z,y)- 0(y)] 

for all y e :H where xpc2 e :J{ are fixed elements in :J{ and 0 is a continuous 
nonnegative function on :J{ satisfying the functional equation 

0(x + y) + 0(x - y) = 2[0(x) + 0(y)] 

for all x, y e :H. 
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1. Introduction 

The present study is devoted rneanly to the nonlinear differential equations 
of Duffing type; see for instance [1], [2], [7]: 

mx + CX + J\. X + ]{' x3 = f O sin fU (1.1) 
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with 

{ Fo 
fo = mhof!2 

in@ 

in® 

corresponding to the mechanical models indicated in Fig. 1. 

® @ 

1 F0 sin n1 m 

X 
m 

1 b ~b.sin nt 
x=x2 -b 

(1.2) 

X2 

b 

Fig. 1. Nonlinear systems with different kind of excitation: in allcases it is F(x) = Kx+K'x3 , 

K'~O. 

Same recent results obtained by the author and co-workers, see [3-11], are 
presented and discussed here. The general goal is the exact calculation of the 
periodical harmonical (i.e., with the same circular frequency f!) monoscillating 
solutions, for arbitrary values of the parameters, in particular of the forcing 
circular frequency f!. With the term "'monoscillating'' we indicate that the 
periodical solution exhibits only one oscillation in a period. In particular the 
response curves in amplitude and phase, as well as the wave forms, are to be 
calculated. The technique consists of reducing the calculation of the solution 
to a fixed-point problem in suitable Banach spaces andin solving that problem 
with iterative procedure. A general numerical procedure is indicated for both 
cases @ and ® , without and with damping, some analytical properties are 
demonstrated, in particular in the case @ without damping, i.e., with c = O; 
and several numerical results are reported. for case @ . The application of 
the procedure to similar nonlinear problems is also indicated at the end of the 
present study. 
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2. The Parametric Method of Solution 

The steady state harmonic monoscillating solution of Eq. (1.1) is searched 
in the parametric form, see [3]: 

{ 
x = x• sin T 

ni=r+t?+efi(r) 

efi(r) = J~" cp(s)ds 

x• > 0 

1'J E (0, 7r] 

r E Io = [-7r/2, 7r/2] 

. flx• COS T 
x=---

1 + cp(r)' 
.. fl 2 x* d ( COS T ) 

x = 1 + cp(r) dr 1 + cp(r) 

with the additional conditions: 

{ 
cp(r + 7r) = cp(r) 

J~~~ 2 cp(r)dr = 0 

Eq. (1.1) becomes: 

{ cp(r) > 1, 

cp' ( T) regular. 

fl 2 x• d ( COS T ) Cflx• COS T 

1 + cp(r) dr 1 + cp(r) + 1 + cp(r) 

(2.1) 

(2.2) 

(2.3) 

+ K 1 x* sin T + Kax*3 sin3 T = fo sin( T + 1'J + 4'( r)) {2.4) 

Multiplying by ( 1 + cp( T)) and integrating with respect to T between -71" /2 and 
T we have: 

= /0 [sin 1'J - cos( r + 1'J + 4'( r))] . (2.5) 

Dividing by K1x* and setting: 

(2.6) 

whence: 

(2.7) 
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also taking into account the identity: 

. 3 3 sin r sin3r 
sm .,. = -4- - -4- . (2.8) 

Eq. (2.5) becomes: 

/cos(r) + (1+ 371 ) lr sins(l+t.p(s))ds- -4
111lr sin3s(l+t.p(s))ds 

+ t.p .,. 4 -7r/2 -7r/2 

+ 2v0((1 + sin r) = /fi-[sin 1'J - cos( r + 1'J + <P( r))] . (2.9) 

As regards the constants (71,f 0), see Eq. (2.6), it is clear that in the hardening 
case I<3 > 0 they are positive. At the contrary in the softening case /{3 < 0 
they are negative. Then in the softening case we will modify Eqs. (2.6) and 
(2.7) setting 

- 2 /(3 
fo = -fo J<3 

1 
(2.10) 

instead of the corresponding positions in Eqs. (2.6) 2nd and (2.7) 3rd. There­
fore in the softening case all formulae must be modified setting: 

{ -71 

-fo 
instead of 71 

instead of f 0 

Clearly, the ratio f 0/71 remaius unchanged. 

3. Reduction to a Fixed-Point Problem with 
Additional Conditions 

For r = 7r/2, also taking into account Eq. (2.3) 2nd, Eq. (2.9) gives: 

( 371) 1"/2 711"1 2 j!i.t 4v0( + 1 + 4 t.p( r) sin rdr - - t.p( r) sin 3rdr = _Q_ sin 1'J 
-7r/2 4 -7r/2 71 

(3.1) 
which plays the role of a ''regularization condition" Replacing in Eq. (2.9) 
the value of ~ obtained by Eq. (3.1), dividing same Eq. (2.9) by cosr, also 
taking into account the identity: 

cos 3.,. -- = 2 cos 2r - 1 
cos.,. 
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we obtain: 

1 + <p(r) (i+ 52)+~cos2r+(1+ 3417 )z-~V=-ffi-(cosiJ+J) (3.2) 

where following operators have been introduced: 

Z(<p, r) 1 [Jr . 1 + sin T j1f/ 2 . l = -- <p(s)smsds - <p(s)smsds 
COS T -1f/ 2 2 -1f/2 

V(<p, r) 1 [Jr . l+sinrj"/ 2 . l = -- <p( s) sm 3sds - 'P( s) sm 3sds 
COS T -rr/2 2 -rr/2 

1 
J(<p, T, iJ) = --[cos(r + {) + efi(r)) - cos(r + iJ)] 

COS T 

= J o cos {) + J 1 si n {) 
(3.3) 

with 

1 

{ 
lo(<p, r) = J(<p, r;O) = --[cos(r + efi(r)) - cos r] 

COS T 
(3.4) 

Ji ( <p, r) = J(<p, r; 7r/2) = - 1-[- sin( T + efi( r)) + sin r] 
COS T 

Despite the divisor cos T the above operators Z, V, J are regular also for T = 
±7r/2. In fact applying the De !'Hospital rule we obtain (see also Sec. 9): 

{ 
Z(<po, To) = -<po 

V ('Po, To) = 'Po 

J( <po, ro; iJ) = cos {)<po 

. { To = ±7r/2 w1th: 
'PO = <p( To) 

Furthermore, operators Z, V, J are omogeneous in <p, i.e., 

Z(O, r) = V(O, r) = J(O, r; B):::: 0 

(3.5) 

(3.6) 

Next step consist in multiplying Eq. (3.2) by (1 + <p(r)) rearranging the con­

stants, i.e.,: 

17 ( 317) 17 ~ - a0 + 6 cos 2r - ao<p + 1 + 4 Z - 4 V 

17 ( 317) 1 {fi-ta +-cos2r<p+ l+- Z<p--V<p=- -(J+J<p) 
6 4 4 17 (3.7) 
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with 

577 ~fo ao = 1 + - - - cos rJ 
6 77 

(3.8) 

then imP_osing the zero mean value condition for t.p( r), see Eq. (2.3) 2nd: 

77 ( 377) ~-a0 +ß(t.pcos2r)+ 1+ 4 (Z+Zt.p) 

- ~(V+ Vrp) = - ffo(J + Jrp) 
4 v-;;- (3.9) 

where the bar - indicates in general the mean value: 

11""'2 "";f = - .,P(r)dr. 
11" -w/2 

(3.10) 

By subtraction of Eq. (3.9) from Eq. (3.7), also introducing the symbol of 
"oscillating part" for a generical function .,P( r): 

.J(r) = .,P(r) - "";f (3.11) 

we obtain finally: 
t.p(r) = T(t.p,r) (3.12) 

with 

T(t.p, r) = g2 cos 2r + g2(<p cos 2r) + a1(Z + Zt.p) 

- a2(V + V<p) - a3(Jo + Jot.p) - as(J1 + Jit.p) 
(3.13) 

where following new constants have been introduced: 

(1+ ~) a3 = 
-p;;;, f) 

a1 = cos 
ao ao 

a2 = 
(1 + ~) p;;;, (3.14) a4= ---ao ao 
!l. 

-p;;;, . f) Y2 = ...§.... 
ao a5 = Sill 

ao 
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To the integral equation (3.12) the regularization condition (3.1) and the zero 
mean value condition (3.9) must be associated. Said equation can be written: 

~ ( 377) - 77 ~ 4y7.:;+ 1+4 7r('f'sinr)-:i''"('f'sin3r)=2y/0 /77sint9 

577 77 ( 377) 77 l+--{--('f'cos2r)- l+- (Z+Z'f')+-(V+V'f') 
6 6 4 4 

(3.15) 

= p;;;,[cost? + (J + l'f')] 

lt is easy to verify that in the absence of damping ( 'Y = 0) it is suffi.cient to 
consider an even function 'f'( r) and sin t9 = 0 (i.e., t9 = 0 or t9 = 7r). In this way, 
Eq. (3.15) lst is automatically satisfied. The basic interval J0 can be reduced 
to the half interval [O, 7r /2]. On the contrary, in presence of damping ( 'Y -:f 0), 
function 'f'( r) has both the even and odd parts, and constant t9 assumes values 
no more restricted to the values 0 and 71". 

Thus the problem of calculating the exact solutions has been reduced to 
the determination of the form function 'f'( r) for r E Io, and of the constants 
(77, t?) satisfying the three coupled Eqs. (3.12) and (3.15). We have a fixed point 

problem, Eq. (3.12), with additional conditzons, Eqs. (3.15). 

4. The Case of Fixed Frame without Damping: 
Analytical Study 

Let us now consider the particular case @ of fixed frame, in absence of 
damping, i.e., 'Y = 0, in which we have sint? = 0, and 'f'(r) is an even function 
of r E J0 , as already said at the end of the previous section. In this case the 

constants a 0, a1, a2 and a3, considered as functions of 77 for t9 = ( ~, have the 

behavior indicated in the Fig. 2. 
lt is important to point out that: 

- for t9 = O the constants ai, a2, a3 become infinite for ao = 0, i.e., for 77 = 77a, 
where 77a is the unique positive root of the cubic equation: 

( condition a0 = 0) ( 4.1) 

- for t9 = 7r the constants a1 , a 2 , a3 are positive and bounded. 
Another important remark in the present case is that Eq. (3.12) is splitted, 

for the cases cos t9 = 1 and cos t9 = -1, into two different equations, each ofthen 
involving function 'f'( r) and parameter 77 as unknown magnitudes. Similarly 
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10 ao 4 a, 

f. :: 1 
f. = 1 8 3 

6 
2 

4 

0.9 
2 

0 1) 
0 3 4 

-2 -1 

-4 
-2 

-6 „:: 0 

-3 
-8 

-10 -4 

1.5 1.0 "• a, (0 :: 1 (0 = 1 

g, „ = 0 
3 

1.0 

0.5 2 „ = 0 
0.5 

0.3 0.2 „ = lf 1) 

0 
3 4 Tl 0 

3 4 

-1 
-0.5 „:: 0 

-0.5 -2 

-1.0 
-3 

-1.5 -1.0 -4 

Fig. 2. The constants ao, a1, a2, a3 given by Eqs. (3.8) ad (3.14), as functions of 1), for f 0 = 1, 
and for ,J = 0 and 7r. 
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the additional condition ( 3.15) 2nd ( the lst one is automatically satisfied) is 
splitted, for the cases cos t? ::::: 1 and cos t? ::::: -1, into two different conditions, 
each of then giving the explicit value of ~ as a function of T/ and of suitable 
mean values of c,o( T). This particular situation suggests a different and more 
simplified procedure for solving the general problem of calculating the solution 
for all values of ~ and TJ, both E lR+. Namely we can assign an arbitrary value 
for T/ E lR+ (both in the cases cost?::::: ±1), then calculate the even function 
r,o(r) for T E 10 , only considering the fixed point problem (3.12), without 
additional conditions because T/ becomes a given constant and finally calculate 
parameter ~, given by Eq. (3.15) 2nd. This way the complete relation between 
parameters T/ and ~ ( with possible exclusion of exceptional intervals, as we will 
discuss later) is obtained, that is the general amplitude response curve, giving 
T/ as a function of ~. 

This said, let us now study the fixed point problem (3.12) with assigned 
TJ, and cos t? ::::: ±1. For the purpose, we firstly carry out the decomposition 
of operator T( c,o, r) in a linear and in a nonlinear part as follows. Firstly, we 
observe that being sin t? ::::: 0 following identity yields: 

cos( T + t? + efJ) - cos( T + t?) ::::: cost?[cos r( cos ljJ - 1) - sin T sin !/J] 

(for sin t?::::: 0) (4.2) 

Therefore from Eq. (3.3) 3rd, operator J can be written: 

J(c,o, r) = cost?[(cosljJ- 1) - tan rsinefJ] 

= cos 19[-Q(u) + S(u)U(r,o, r) - U(rp, r)] 

where new operators U(c,o, r),Q(u) and S(u) have been introduced: 

U(c,o,r)::::: tanrljJ(r)::::: tanrjr c,o(s)ds 
-7r/2 

u::::ef/(r) 
00 h 

"'"""' h - 1 O" Q(u) = 1 - cosljJ = L.)-1) (2h)! 
h=l 

00 h 

S(u) = 1- sinljJ/</J = L(-l)h-l (2hu l)! 
h=l + 

Taking into account Eq. ( 4.3), Eq. (3.13) can be written: 

T(c,o, r) = g(r) + L(c,o, r) + N(c,o, r) 

( 4.3) 

( 4.4) 

( 4.5) 

(4.6) 
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with 

(4.7) 

The different operators are given by Eqs. (3.3), ( 4.4), ( 4.5). Concluding, in 
this case we have the fixed point problem: 

<p( T) = T( 'P' T)' T=T-T (4.8) 

with T(<p,r) given by Eq. (4.6), and where g,L,N are given by Eqs. (4.7), also 

depending on the assigned parameters t'J = ( ~ and T/ E IR+. The corresponding 

value of ~ is: 

(4.9) 

which, in zero approximation, reduces to (see Eq. (3.8)): 

(4.10) 

5. A Simplified Model of the Problem 

The study of the above fixed point problem is somewhat difficult. In a 
preliminary paper [6] we considered following simplified nonlinear model of 
operator T(<p,r) instead of (4.6): 

Tm('f', r) = g(r) + M(<p, r) (5.1) 

with 

M( <p, r) = .Ag( r)<p( r) + a(l + .A<p( r)) lr sin s<p(s)ds 
COS T -7r/ 2 

(5.2) 

where a and .Aare given constants. Operator M only involves operator Z(<p, r) 
from operators contained in T(<p, r). In fact we must take into account that 
being <p(r) an even function of T, from Eq. (3.3) Ist we have: 

1 1T Z(<p, r) = -- sin s<p(s)ds 
COS T -T/2 

(if <p( r) is even) . (5.3) 
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The fixed point Eq. ( 4.8) is then replaced by: 

cp(r) = g(r) + M(cp, r), M=M-M. (5.4) 

This is a nonlinear integral equation also containing the mean value M, having 
the singular nucleus sin s / cos r, infinite for r = ±7r /2. In the prob lern arising 
from the Duffing Equation (1.1) function g(r) has the value given by Eq. (4.7), 
and unknown function cp( r) must be even. We consider the more general 
situation where g(r) is given by the Fourier expansion: 

00 

g(r) = LY2ncos2nr 
n=l 

(Y2n given constants), 

and we assume for cp( T) a similar expansion: 
00 

(5.5) 

cp(r) = Lb2ncos2nr (b2n unknown constants). (5.6) 
n=l 

Firstly we must state the functional dass for g(r) and cp(r). Following norms 
have been tested: l [[cp[[a = f= [b2n 1 

11~11< = ~ nlb'" 1 , 

(5.7) 

i.e., the norm of the total convergence of cp( r) and cp'( r) respectively, besides 
to the norm: 

l l'Pllc = max[cp( T) 1 . 
rElo 

(5.7') 

lt results clearly: 
(5.711 ) 

We call Sa and Sd the Banach spaces of functions cp( r) with Fourier expansion 
(5.6) and with the norm II lla and 11 /ld respectively. We can demonstrate 
that: 

Preliminary Lemma. If cp(r) E Sa, or Sd, then also Z(cp,r) E Sa, or sd 
respectively. In fact we have: 

1 lT OO 
Z(cp,r) = -- Lb2ncos2nssinsds 

COS T -7r/2 n=l 

(5.8) 
= ~ ~ b2n [-l_cos(2n - l)r __ l_cos(2n + l)r] 

2 ~ 2n - 1 cos T 2n + 1 cos T 
n=l 
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where the term by term integration is correct in force of the considered norms 
for <,o( r). N ow we introduce the trigonometric polynomials 

(n=0,1,2, ... ) (5.9) 

with 
n 

C2n(r) = 2 2:)-1r+k cos2kr (5.9') 
k=l 

i.e., in explicit form: 

n=O C0(r)=l 

n = 1 C2(r) = -1+2cos2r 

n = 2 C4(r) = 1- 2cos2r+ 2cos4r ( 5.9") 

n = 3 C6 ( r) = -1 + 2 cos 2r - 2 cos 4r + 2 cos 6r 

for which it results: 

n 

IC2nl = 1; llC2nlla = 2n; llC2nlld = 2 L k = n(n + 1). (5.10) 
k=l 

Openi.tor Z(<,o, r) can be written as follows: 

Z( r) = ! ~ b [C2n-2(r) _ C2n(T)] = Z + Z( ) 
<p, 2 L.J 2n 2n - 1 2n + 1 'f', T ' 

n=l 
(5.11) 

with: 

Z( r) = ! ~b (C2n-2 _ C2n ) 
<p, 2 L.J 2n 2n - 1 2n + 1 

n=l 

= ! oo b [(-l)n-1 - (-l)n] - - oo (-l)n2n 
2 L 2n 2n - 1 2n + 1 - L b2n 4n2 - 1 

n=l n=l 
(5.12) 

Z( ) = ! ~ b [C2n-2(r) _ C2n(r) 1 
<p, T 2 L.J 2n 2n - 1 2n + 1 

n=l 

00 
[ 1 n-1 1 n ] 

= L: b2n 2n _ 1 L:(-1r+k- 1 cos2kr -~ L:c-1r+k cos 2kr . 
n=l k=l + k=l 

(5.13) 
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lt results: 
- ~ ( 2n ) 2 IZI S ~ 4n2 _ l lb2nl S 3ll'Plla 

(5.14) 

smce: 
2n 2 2 

max =max =-
nEN+ 4n2 - 1 nEN+ 4n2 - 1 3 

Furthermore assuming the norm 11 · lla we have: 

(5.15) 

On account that it is 

_2(~n_-_l_) + _2n_ = 2 (l _ 2n ) < 2 
2n - 1 2n + 1 4n2 - 1 

(5.16) 

we obtain: 
00 

llZIJa S L lb2nl = ll'Plla (5.17) 
n=l 

In a similar way, assuming the norm 11 · lld we have: 

- l~ (n-1 n+l) 
llZlld S 2 ~ lb2n In 2n _ 1 + 2n + 1 

1 00 
( 1 ) 1 = 2 ~ nlb2nl 1- 4n2 - l < 2llr,olld , 

on account of same inequality (5.16), and therefore 

(5.18) 

Eqs. (5.13), (5.17), and (5.18) show that if rp(r) has the Fourier expansion 
(5.6) and the bounded norm llr,olla or ll'Plld, then also Z(rp, r) has a similar 
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Fourier expansion, and a bounded norm llZlla or llZlld respectively. That is, 
if rp(T) E Sa, then Z(r,c, T) E Sa; and if rp(T) E sd, then Z(r,c, T) E sd· Then 
the Lemma is true. On account of this preliminary Lemma , and other similar 
properties, it is demonstrate in [6] that if g( T) E Sa, with a bounded norm 

llulla, and if the norm of the functions: 

00 00 

rp(T) = Lb2n cos2nT; r,c•(T) = L b2n cos 2nT (5.19) 

n=l n=l 

have both the same upper bound 6: 

(5.20) 

then in suitable conditions for a, ..\, llulla, (which are specified in the paper) 
there exists a constant ]{ < 1 such that: 

(5.21) 

In force of the basic fixed point theorems, see for instance [12] and [13], this 
means that in the above conditions for parameters a, ..\, llulla, the integral 
equation: 

(5.22) 

with Tm given by Eqs. (5.1), (5.2), has one and only one solution, which can 
be calculated by the convergent iterative procedure: 

(5.23) 

lt must be remarked that the obtained conditions for a, ..\, llulla (not specified 
here for brevity sake) for the existence and unicity of the solution basically 
depend on the considered Banach space, i.e., on the assumed norm. If we 
assume the norm 11 · lld instead of the norm 11 · lla the equality (5.17) is replaced 
by the similar inequality (5.18), with a coefficient ~ instead of 1, hence more 
useful. On the other hand, the regularity of r,c' ( T) too, beside to the regularity 
of rp(T), is required for having regularity also in x(T), beside x(T) as pointed 
out after Eqs. (2.3). Thus, for a correct application to our physical problem, we 
are forced to assume the norm 11 · lld, paying the price of much heavier analytical 
developments for demonstrating the existence and unicity of the solution. 

6. The Linearized Exact Problem 

Taking into account the conclusions of the previous section we will study the 

exact fixed point problem (4.8), in the Banach space Sd with given -a = ( ~ 
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and given T/ E Ill+. In a first step, we will develop in this section, we only 
consider the linear part of operator T(rp, r). In a second step, we will develop 
in Sec. 7, we will consider the complete operator T( <p, r). 

Thus, we consider now the fixed point problem: 

{ rp(r) = T1(rp, r), T, = 7l - T1 
7l(rp, r) = g(r) + L(rp, r) 

(6.1) 

where the linear operator L is given by Eq. ( 4. 7) 2nd, and where we assumed 
the expansion (5.5) for the given function g(r). In order to state an existence­
unicity theorem, suitable inequalities for operator Z, V, U are to be taken into 
account. As regards operator Z(<p, r) we recall inequalities (5.14) and (5.18) 
demonstrated in Sec. 5. Similar inequalities can be obtained for V( <p, r) and 
U(rp, r), so that we have: 

- 2 
IZI :::; 3ll<f'lldi 

- 1 
llZlld S 2 ll<f'lld 

- 3 
IV!:::; 5ll<f'lld; 

- 3 
llVlld:::; 5ll<f'lld (6.2) 

- 1 
JUi:::; 2ll'Plld; 

- 1 
l!Ulld :::; 2ll<f'lld 

As regards the product (rpcos2r) contained in the first term of L(rp,r), we 
apply the Lemma 1, which will be reported in the following Sec. 7. Taking 
into account that it is cos 2r = <j5 = 0, we have: 

Setting 

and furthermore: 

00 

<p* = L b;n cos 2nr 
n=l 

{ 
Z* = Z ( <p* , T) 

V* = V(rp*, r) 

U*=lf(rp*,r) 

T,* = 7l(rp*, r) 

we have following consequences of inequalities (6.2) and (6.3): 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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1.5 

1.0 4--------~'"':--=:-------

0.83 u;____.;... ________ __;f--------

0.5 

Fig. 3. The coefficient K 1 of the contra.ction, see Eqs. (3.6), (3.7), (3.7'), related to the 
linearized Eq. (6.1). 

and so on for operator V and U. In force of these inequalities we obtain finally: 

(6.6) 

with: 
1 3 1 

K1 = lg2I + 2la1I + 5la2I + 2la3I (6.7) 

i.e., in force of Eqs. (3.8) and (3.14): 

1 837] rr: 
1 + -6-0 + y-; 

K1 = 2---------
57] ~fo 1 + - - -cosi'J 
6 1J 

(6.7') 

The behavior of K1 as a function of 1J E .!PI.+, for the two values {) = 0 and 
{) = 7r, is show in Fig. 3 for fo = 1. We observe that: 

- K1 exhibits an horizontal asymptote ]{ = 0.83 for 1J -+ +oo. 
- for {) = 0, K1 exhibits a vertical asymptote for 1J = 1/a, see Eq. (4.1), and 

assumes the values 0.5 for 1J = 0. Furthermore K1 is increasing in ]O, 1Ja[ 
and decreasing in ]7Ja, oo[. Therefore, since K1 is a continuous function of 
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T/ for T/ -::j:. T/a, there exist two values T/~ and T/~ of ry, the first one at the left 
part of T/a, the second one at the right part, where it is K 1 = 1. We call 

Ia = [ry~, TJ~] the interval, containing T/a, where it is K1 2'. l. Therefore, it 
results K1 < 1 for T/ E Wl.+/Ia· 

- for iJ = 7r, it results always [{1 < 1. 

Thus the conclusion is that: 

- in the case iJ = 0, for T/ E Wl.+/Ia, being K 1 < 1, Eq. (6.1) has one and 
only one solution, whereas for T/ E Ia we cannot affirm whether or not the 
solution exists. 

- in the case iJ = 7r, for T/ E Wl.+, Eq. ( 6.1) has always one and only one 
solution. 

Therefore we have following: 

lst Existence and unicity Theorem. If g(r) E Sd, and: 

{ ryER+/Ia 

T/ ER+ 

for iJ = 0 

for iJ = 7r 
(6.8) 

there exist one and only one solution ip(r) E Sd of linearized problem (6.1). 
This solution, when it exists as indicated above, is calculated with following 
iterative procedure: 

(6.9) 

and reduces to the identically null solution when g(r) vanishes, since it results 

also: 

(6.10) 

7. The Exact Nonlinear Problem 

Let us now consider the exact nonlinear problem, we write again for 

convemence: 

{ ip(r) = T(ip,r), 

T(ip, r) = Tl(ip, r) + N(ip, r), 
(7 .1) 

Operator T1 and N are given by Eqs. (6.1) 2nd and (4.7). We suppose again 
that function g(r) is given by the Fourier expansion (5.5), with bounded norm 
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Jlglld, i.e., g E Sd. We assume again for tp(r) the similar expansion (5.6), and 
we consider again a second function tp•(r) with the expansion (6.3). Setting 

r• = T(tp•,r);Tt = T(tp',r);N• = N(tp•,r), (7.2) 

we have: 
(7.3) 

As regards the linear operator T1 the inequality (6.6) has been already obtained 
in Sec. 6. 

As regards the nonlinear operator N new inequalities must be taken into ac­

count. We summarize the procedure followed in (8]. Firstly, following Lemmas 
are demonstrated (for brevity sake, we do not report here the demonstrations, 
given in [8]). 

Lemma 1. Let US consider two functions X and ;j; E sd: 

lt results: 

00 

X = L a2n cos 2nr; 
n=l 

and more in particular: 

00 

-J; = L Czn cos 2nr . 
n=l 

(7.4) 

(7.5) 

(7.6) 

Lemma 2. Let us consider two functions x and 1jJ with mean value different 
from zero, such that: 

x = x+ x; (7.7) 

with X and ;j; E sd. lt results: 

(7 .8) 

Lemma 3. Let us consider two functions x and 1jJ of Lemma 2. lt result: 

lxl/JI :s lxl 11j;I + llxlld ll~lld . (7.9) 
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Le1DD1a 4. Let us consider two functions x. and 1/J. E Sd: 

l X.=~"'" •m2nT, 

1/J. = L C2n sm 2nr, 
n=l 

00 

with L nla2nl < oo 
n=l 

00 

with L nlc2nl < 00 

n=l 

(7 .10) 

tobe associated to the functions 'X_, .ef; E Sd given by Eqs. (7.4). lt results: 

(7.11) 

The second point is that in the present nonlinear problem, in order to apply 
the basic fixed point theorem, see [12], we must also introduce the upper bound 

for the norms lli,olld and lli,o*lld, we call 6: 

(7.12) 

If these inequalities are satisfied, then we can demonstrate, see [8], that fol­
lowing inequalities hold: 

(7.13) 
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-
00 1 ( 1 2) h 

ISI < S1(8) = ~ (2h + 1)! 48 

- 2 00 h (3 2) h 

llSll < S2(c5) = 3 ~ (2h + 1)! 88 

IS - s·1 < ~8jj<p - <p·11dsa(8), with: 
(7.14) 

00 h (1 )h-1 
Sa(8) = ~ (2h + 1)! 482 

- - 1 llS - S•jjd < 28jj<p - <p•jjdS4(8), with: 

s (8) = ~ q(h) (~82)h=1 
4 ~(2h+l)! 8 

with: 

(2) h-1 h-l { (2) k (2) h-1-k 2 } 
q(h)= 3 h+L: (h-1-k) 3 +k 3 + 3k(h-1-k) . 

k=O 
(7.14) 

In force of these four Lemmas, and of inequalities (7.13) and (7.14), we can 
state the inequalities related to operator N given by Eq. ( 4. 7) 3rd, N amely we 
have: 

(7.15) 

with: 

ex = la11 ll<pZ - ;.Z+ 11d + ia2 I ll<pV - ;.v;lld 

+ laal ll<pU - ;.u;lld (7.16) 

ß = laal{llQ - Q*lld + ll<pQ - ;.q;lld 

+ 11us - U:S:11d + 11;c:Ts- <p;u;s.lld} (7.17) 

As regards the term ex we start from the identity: 

<pZ - <p• z• = <p(Z - Z*) + Z*(<p - <p*) (7 .18) 

and we obtain also, on account that <p = v;• = 0: 

(7 .19) 
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In the similar way: 

- ---- 12 
llcpV - cp•V•iid < 58ll'P - cp*lld 

llcpV - cp*V•lld < 28jjcp - cp*lld 

and therefore: 

As regards the term ß we start from the identities: 

{ 
tpQ - ip*Q• = ip(Q - Q•) + Q•(cp - cp•) 

us - u- s· = u(s - s•) + s•(u - u·) 
cpU s - cp• u· s· = cp( u s - u· s·) + u· s· ( cp - ip•) 

and we obtain also, on account that cp = cp• = 0: 

with: 

D(8) = (Q1 + Q2) + ~Q + Q + (~ + 28) S1 
82 4 3 5 2 82 

(7.20) 

(7 .21) 

(7 .22) 

(7.23) 

(7.24) 

(7 .25) 

Functions Q1(8), Q2(8), etc, are given by Eqs. (7.13) and {7.14); function Q5(8) 
has the value: 

1 1 00 
( 1) q(h) (3 2)h-l 

Qs(8)=4+2{; l+b (2h+l)! 88 · (7.26) 

For function D( 8) different estimates can be obtained, as for instance: 

00 (8)h 
D( 8) < mo L 2 = 1 _:1~ /2 , 

h=O 

"h 11 wlt m 0 = B (7.27) 

In force of inequalities (6.6), (7.22) and (7.24) from Eqs. (7.3) and (7.13), we 
obtain finally: 

(7 .28) 
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Gf~) 

0 Öo 

Fig. 4. Qualitative behavior of function G(li) given by Eq. (7.33). 

with 
I< = I<1 + 6H + 62 ja3 jD(6) (7.29) 

where I<1 is given by Eq. (6.7) or (6.7'), D(6) by Eq. (7.25) and H by: 

7 12 g 
H = 3la1I + 5la2I + 4la3I (7.30) 

The basic difference from the present exact, nonlinear problem, and the lin­
earized one, studied in the previous Sec. 6, is that now the contraction coef­
ficient [( also depends on the upper bound 6 for <p and <p•, see inequalities 
(7.12). In force of the fixed point theorem, see [12], we know that setting: 

Y = llYlld (7.31) 

if the system formed by Eqs. (7.29) and: 

y=6(1-I<), (7.32) 

in the unknown constants (6, K) has real solutions with J( < 1, then there 
exists one and only one solution of Eq. (7.1). Thus we must show that for 
y > 0 and 6 > 0, from which it results automatically J{ < 1, the above system 
has a real solution in 6. For the purpose we eliminate [( from Eqs. (7.29) and 
(7.32), and we obtain: 

y = 6(1- K1) - 62 F(6) =: G(6) , (7.33) 

with: 

(7.34) 

The right side part of Eq. (7.33) is an analytical function Gof 6 equal to zero 
for 6 = 0, with positive slope for 6 = 0 if /(1 < 1, with the concavity always 
towards the down side, and going to -oo for 6 ---> +oo, as shown in Fig. 4. 



Fixed Point Procedure in Banach Spacea . . . 193 

Thus this function has positive maximum for a certain value 60 of 6. In 
order that Eq. (7.33) has real solutions in 6, it is then necessary and sufficient 
that it be: 

Y ~ Ymax, with Ymax = max[6(1 - K1) - 62 F(6)] . 
6Elll+ 

There we have following: 

(7.35) 

2nd Existence and unicity Theorem. If g(r) E Sd with norm y = llYlld 
satisfying to the condition (7.35), and if the conditions (6.8) are satisfied in 
force of which it is K1 < 1, then there exists, both for t'J = 0 and t'J = 7r, one 
and only one solution ip( r) E Sd of the exact problem (7.1). This solution, 
when it exists as indicated above, is calculated according following iterative 
procedure: 

(7.36) 

and reduce to the identically null solution when g(r) vanishes, since it results 
also: 

(7 .37) 

8. Some Comments on the Obtained Results 

As regards to the results obtained in the previous section, we remark: 
1. The conditions (6.8) in force of which it results I<1 < 1 are basic both in 

the linearized and in the exact nonlinear problem. The basic point is that 
according to the procedure here developed the interval Ia = [17~, 17~] for 17 
must be excluded in the case t'J = 0. The ground of this exclusion is in the 
fact, pointed out in Sec. 4 , that for t'J = 0, the constant ao vanishes for 
17 = 17a, see Eq. ( 4.1 ), and therefore constants ai, a2, 92, a3, a4, as become 
infinite for that value of 17. We express here the conjecture that such an 

exclusion for t'J = 0 is nut due to the present procedure, but is peculiar 

of the problem; that is for some values of 17 near to 17a the harmonical 
monoscillating solution does not exist. For these values of 17 maybe sub­
harmonical or chaotical solutions will arise. 

2. The norm y = llYlld reduces to y = IY2I in the specific case of Duffing 
Equation. In this case the condition (7.35) for IY2I is very severe. In fact 
some calculations here not reported, show that, in force of this condition, 
other intervals from 17 should be excluded both for t'J = 0 and t'J = 7r, 
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in addition to the interval Ia for 1J = 0, see remark l. But this second 
kind of exclusion can be eliminated if we start from a first approximation 
cp( 1)(r) E Sd better than g(r). lnfact, if we know a good approximated 
solution cp( 1)(r) E Sd, better than g(r), setting: 

{ 
e(r) = cp(r) - cp( 1)(r) 

R(ll(r) = T(cp(1l,r) - cp(ll(r) ' 

and eliminating cp(r) from Eq. (7.1) we have: 

e(r) = R(1l(r) + E(e, r) , 

with 
E(e, r) = T(cp(l) + e, r) -T(cp(l), r) 

lt results from Eqs. (8.1) that e and R(l) E Sd. 
Introducing, as usually, a new function e• E Sd, setting: 

E• = E(e•,r), 

and supposing: 

llelld < 8, lle·lld < {J , 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

in force of inequality (7 .28) with \0 = \0(1) + e, and c,o• = \0(1) + e•, we have 

We can apply the same conclusions of 2nd Theorem and affirm that 
Eq. (7.28) has one and only one solution if in addition to the conditions 
(6.8) in force which it is K1 < 1, it results also: 

(8.7) 

At the light of Eq. (8.1) 2nd, this inequality indicates that the lst approxi­
mation solution \0(1) ( r) must be sufficiently good, in the exact signification 
expressed by the inequality itself. If we know such a good first approxima­
tion, the difficulty discussed in this 2nd remark is removed. 
Another possibility for removing the said difficulty is to in adopt better 
techniques for ameliorating the extimates we have obtained here. In our 
opinion, this is not a easy job. 

3. We remember that, as pointed out in (5], we have following exact results, 
in the corresponding limit cases: 
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A. For n -+ 0, and therefore { -+ 0. Function <p( r) has the value: 

( ) - 1+377sin2 r 1 <pA T - -

J1+277(1 + sin2 r)+172 (1 + sin2 r + sin4 r) 
(8.8) 

where 17 = 17A is the positive solution of the cubic equation: 

2 -
17A(l + 1JA) = fo (8.9) 

B. For n -+ oo, x• -+ oo and therefore e -+ oo, 17 -+ oo. The amplitude 
response curve has two branches approaching from opposite sides to the 
following oblique asymptote, independent on fo: 

with TB= 0.71783; SB= 1.04576. 

Function <p( T) has the value: 

2rB --=-=- -1. 
1 + sin2 T 

(8.10) 

(8.11) 

lt is interesting to compare this exact value of said asymptote with 
the value corresponding to the zero approximation <p(t) = 0 given by 
Eq. (4.10), i.e., 

(8.12) 

C. For n -+ oo, x· --. 0, and therefore { -+ oo, 17 -+ 0. The amplitude 
response curve approaches t.he e-axis as follows; 

and function <p( r) has following limit value: 

1 17! 
<pc( r) ~ -/ia cos 2r 3 -

f o 

9. Numerical Treatment of the Problem 

(8.13) 

(8.14) 

The problem studied in Sec. 7, Eqs. (7.1) can be subjected to numerical 
treatment. The basic point is the numerical calculation of operators Z, V, U, 
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contained in T(<p, T), which are given explicitly by Eqs. (3.3) and {4.4), con­
taining cos T as a divisor. 

These operators have following basic properties. They are regular inside 
the interval I 0 , see Eq. (2.1), but in the extremes T = ±7r/2 they have an 
indetermination form 0/0. They can be obtained by the general operator 
W( v, T), for particular values of v( T): 

1 [1T 1 1Tr/2 l W(v,T)=-- v(s)ds--2(1+sinT) v(s)ds . 
COST -Tr/2 -Tr/2 

{9.1) 

Despite the divisor cosT, operator W(v,T) is regular or TE Io. In fact by the 
De-l'hospital rule we obtain: 

W(v,To) = =fv(To), To = ±7r/2 {9.2) 

In addition we have: 
W(O,T)::: 0 'T/T E Io. (9.3) 

lt is then clear that the numerical calculation of operators Z, V, U, is reduced 
to the calculation of operator W for different values of v(T). 

The calculation ofoperators Q(u) and S(u), also contained in T(<p, T), given 
by Eqs. ( 4.5), do not present particular difliculty. For the numerical calculation 
ofoperator W(v, T) see Eq. (9.1), the basic interval Io = [-7r/2, 7r/2] is divided 
in three intervals: 

{9.4) 

0 

where T1 and T2 are of the order of 10-17r/2. 
In 12 no singularities take place, therefore standard quadrature formulae 

are used. In I1 and Jg an indetermination form 0/0 takes place at one end of 
each interval. We are led to calculate integrals like: 

11Y I(y) = - f(x)dx, 
y 0 

(9.5) 

The numerical calculation is carried out introducing suitable interpolating poly­
nomials which assume the same values of f(x) in points Xi: 

Xi= ih; i = 0, 1, 2, ... , n; h = yif n (9.6) 



Fixed Point Procedure in Banach Spacea . . . 197 

We use La9ran9e polynomials of the 4th order, see for instance [14] Chap. 2 
and [15]. Carrying out the integration we obtain: 

with: 
4 k 

J4(y) = ta + 2::: dk) (}!_) 
k=l Y1 

Coefficients cik) are linear combinations of f; = f(x;), i = o, ... , 4: 

! ci1) = (-25fo + 48fi - 36h + 16f3 - 3f4)/6 

ci2) = (70fo - 208fi + 228h - 112fa + 22f4)/9 

d3) = (-20fo + 72fi - 96h + 56f3 - 12f4)/3 

ci4l = (32fo - 128fi + 192h - 128f3 + 32f4)/15 . 

The error E is neglected in the calculations. 

10. Numerical Results for Case @ , without Damping 

(9.7) 

(9.8) 

(9.9) 

As already pointed out in Sec. 4, the forcing frequency 0 is contained only in 
parameter ~ = 0 2/K1, and coefficients ao, a 1, a2, 92, a3, a4, as are independent 

on ~· 
Following procedure has been used for calculating the solution, for any 

prescribed value off0 : 

- assigning an arbitrary value to T/ E ~+ 

- assigning to 1'J alternative values: 

1'J = 0 or (10.1) 

- calculating parameters a0 , a 1 , a2, 92, a3, a4, as. 
- calculating the sequences rpm(r) by the iterative procedure (7.36) till a 

sufficiently good convergence is obtained. Finally the value of ~ is given by 

Eq. (4.9). 
Figure 5 shows the amplitude response curve (C TJ), in the hardening case, 

for / 0 = l. 
Figure 6 shows the same response curve (~,TJ), in the softening case, for 

fo = 1, with the specifications given at the end of Sec. 2. 
The exact amplitude response curves (~, TJ) are compared with the zero­

approximation ones given by Eq. (4.10) with 1'J = 0 or 7r. Some particular 
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--- Exacl aolullon 
- - - - Zero approxlmallon 

Fig. 5. Gase@ :fixed frame. Amplitude response curve for fo = 1. Hardening case. 
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SOfTEN!NG C::ASE 
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Fig. 6. As the Fig. 5. Softening case. 
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points of these response curves have been investigated more in detail till the 
calculation of the displacement x( t) and of the velocity x( t), see Figs, for them 
also the value of the circular frequency 11, see Eq. (2.6) lst, and the value of 
the amplitude x• given by Eq. (8) 2nd must be calculated, i.e., 

n - lj{"i. - vn1c::;, (10.2) 

In the numerical calculation reported here, we have assumed: 

K1 = 1, (10.3) 

The numerical values of the constants are reported in the Table. 

Table 
Numerical values of the constants in the tested points 

Hardening 

{ 
fo = 1 

K1 = 1 

/{3 = 10 

c=O 

!o = 1/VIO 

Case @ : fixed frame 

Hardening 

tested 
1 2 3 

points 

e 0.6273 2.7511 3.3420 

'1 1.0 1.0 4.0 

x· 0.3162 0.3162 0.6324 

1'J 0 .,.. 0 

Softening 

c=O 
ho = 1/v'IO 

Softening 

4 5 6 7 rernarks 

4.4130 15.0152 2.0260 0.1905 calculated 

4.0 20.0 0.5 1.7 
given 

0.6324 1.4142 0.2236 0.4123 

11" 0 11" 11" given 

As regards the Figs. 5 and 6 following remarks can be made. The con­
tinue line connects several tested points, for which the present procedure is 
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convergent. The curve is broken where our tests do not gave convergence. lt 
can be inferred that in these cases the solution does not exist. In the harden­

ing ease (K3 > 0) Fig. 5 we have solutions both for fJ = 0 and fJ = 7r, with 
some exclusions only for fJ = 0, in agreement with the discussion of point 1), 
of Sec. 8. In the softening ease (K3 < 0), Fig. 6, the present procedure is 
convergent, except for values of ~ near zero, but the corresponding calculated 
values of ~ are negative in the majority of the cases. From a mathematical 
point of view the present procedure for solving the softening case is the same 
as for the hardening one. On the contrary, from a physical point of view, the 
conclusion is that in the softening case the solution exists only for fJ = 7r, for 
almost every value of ~ (or fl); the amplitude T/ (or x*) of the oscillation has 
an upper bound, not too large. 

11. Further Developments; Concluding Remarks 

The analytical and numerical procedure here developed for the Duffing 
Equation (1.1), in the case @ with fixed frame, can be applied also to similar 
nonlinear problems. Firstly we recall the application to another problem, with 
hysteresis see (17] and (18], for which following mathematical model is assumed: 

X+]{ X+ sgn xb(x* 2 - x2 ) =So sinnt (11.1) 

where parameters (K, s 0 , n) are known constants, and x• is the unknown am­
plitude of the forced vibration. Parameter b can be either independent, or 
dependent on x*. Secondarily we recall the application to problems with two 
degrees of freedom, as the system, studied in (16]: 

{ x + I<1x + I<3x3 + a1y = 0 

ii + h1y + b1x = 0 
(11.2) 

and other systems corresponding to different kinds of dynamieal absorbers, see 
(19], as for instance: 

{ 
x + F(x) +ex+ K1 (x + y) = Fosinnt 

meq m1 

.. F(x) +ex ( ) , 3 y- =0, Fx =Kx+Kx. 
m2 

(11.3) 

Of course the study of such systems with two degrees of freedom, till the exact 
calculation of the steady state solutions, is a more complicated job, not yet 
carried out by us till today. At the contrary, further numerical calculations are 
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now in working, see for instance [20] and [21], as regards the damping effects in 
the Duffing Equation (1.1), both in the cases @of fixed, and ® of oscillating 
frame, and both in the hardening and in the softening cases. 

We conclude with following remark. The procedure here indicated, accord­
ing to which the calculation of the steady state periodical solution is reduced 
to the solution of a fixed-point problem in a suitable Banach space, can give 
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question arises of what kind of solution takes place really. This very important 
question, both from a mathematical and from a physical point of view, leads, 
as a rule, to the consideration of irregular, or chaotic solutions. This topic 
however is far from the objects of the present paper. 
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Method of potential functions is widely adopted in mathematical physics. 
This method is based on the representing of solution of the system of the par­
tial differential equations being under investigation through one, or more than 
one, auxiliary (potential) functions. These functions are a solution of some 
other potential system of the differential equations which is simpler or more 
convenient for research than the initial system. This method was used for the 
first time by G. Airy [1] and J. C. Maxwell [2) while researching the system 
of the main equations of elasticity theory. A classical example is: all compo­
nents of the tensor of tension in a plane elasticity theory, without taking into 
account the mass forces, can be expressed through the second derivatives of 
Airy's function satisfying the biharmonic equation. In electrodynamics, for ex­
ample, while finding an electromagnetic field harmonically dependent on time 
in homogeneous isotropic medium, all components of the field - ( the solu­
tion of Maxwell's system of equations) - are expressed through the potential 
functions - the solutions of Helmholtz's equation. 

Potential systems, through the solutions of which the solutions of the ini­
tial system of the partial differential equations are being expressed, can be 
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de:fined arbitrarily. In the present work a set of systerns being potential for the 
given system of the differential equations are being considered. Such approach 
makes easier the selection of the most suitable in one or another sense potential 
system. 

Since it is convenient to consider many problerns of the theory of the par­
tial differential equations using the theory of pseudodifferential operators all 
reasonings are given for pseudodifferential operators everywhere where it is 
possible. Besides, one can consider the vector-valued operators or distribu­
tions as usual operators or distributions but with the set of values in the 
corresponding vector space. So the term 'operator' will be used both in the 
case of the differential operators andin the case of pseudodifferential operator, 
and the term 'equation' (both differential and pseudodifferential) will be used, 
as usual, there where it would be possible to say 'systerns of equations' 

l. Let Q C Rn. In those cases when it is beyond any doubt we shall 
use common determination as for space of scalar functions so for the space of 
vector-functions or functional matrices every component of which belongs to 
the corresponding space of functions. 

Let us consider the pseudodifferential operator 

Su(x) = (27r)-n ./ s(x, Oü(Oei(x,{)~ 

Pcp(x) = (27r)-n ./ p(x,~)<P(Oei(x,{)~ 
(1) 

with the matrix symbols s( x, 0, p( x, ~) of dimensions l x m, p x p from the 
classes S;;' 1 (Q), S~ 1 (Q) correspondingly. We shall assume for simplicity that 
all operators being considered in the work appear to be the proper operators. 

We call operator P a potential for operator S if there exist operators 

Rcp(x) = (27r)-n ./ r(x,~)cp(~)ei(x,{)d~ , 

Qv(x) = (27r)-n ./ q(x, frü(~)ei(x,{)~ 
(2) 

with the matrix symbols r(x,O, q(x,0 of dimensions m x p, l x p from the 
classes S;;' 2 ( Q), S~ 2 ( Q) correspondingly such that 

SoR=QoP (3) 

(in the sense that (So R)cp(x) = (Q o P)cp(x) 'v' cp(x) E Cif(Q)). Obviously, 
the equality m1 + m2 = n1 + n2 must be ful:filled. 
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Theorem 1.1. Let P be a potential operator for operator S. Jf rp is a solution 
of the equation Prp = 0 then u = Rrp being a solution of the equation Su = 0. 

This Theorem follows directly from the above given definition. 
If P is a potential operator for operator S then we say that the correspond­

ing operator S defines the representation of solutions of the equation Su = 0. 
We shall say also that operator R defines a complete representation of solu­
tions of the equation S u = 0 ( or simply: R is a complete representation) if the 
formula u = Rrp, where rp is a solution of the corresponding potential equation 
Pu = 0, gives all solutions of the equation Su = 0. In this case we also call 
the potential operator P a complete potential operator. 

Theorem 1.2. Operator P will be a potential for operator S and operator R 
defines the representation of solutions of the equation Su = 0 if and only if 
when there exists operator Q with a symbol q(x,() such that 

J J s(x, ()r(y, (i)ei(x-y,{-{i)dyd( 

= J J q(x,()p(y, 6)ei(x-y,{-6)dyd( V x E Q, V 6 E Q 
(4) 

This statement follows from the fact that the symbol is uniquely defined 
by the pseudodifferential operator. Besides, if two pseudodifferential operators 
are equal then their symbols are equal also. 

Later on we shall limit ourselves to the case when operators Sand P appear 
to be the operators of the lst and 2nd orders correspondingly. Then the orders 
of operators R and Q will also be uniquely defined: the lst and the zero order 
respecti vely. 

Note that the equality (3) defines the right factorisation of operator R (to 
within the multiplier Q), i.e. the representation of operator of the 2nd order 
Q o P in the form of a composition of two operators S and R of lower order. The 
left factorisation R o S = Q o P rneans that the system of pseudodifferential 
equations Su = 0 of the lst order can be reduced by pseudodifferenting to a 
system of pseudodifferential equations of the 2nd order. 

Let us consider the particular case when S, R, P are differential operators 

with symbols 

s(x, () = L A 0 (x )( 0 , 

l<>l~l 

p(x,6) = L a-y(x)(i , 
l-rl$2 

r(x,6) = L hß(Y)(f, 
lßl9 

(5) 
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Aa(x), hµ(y), a7 (x) being functional matrices of dimension l x m, m x p and 
pxp correspondingly. In this case the operator Q ofthe zero order is equivalent 
to the multiplication operator by matrix q(x) of dimension IX p. 

Theorem 1.3. The system of partial differential equations Pep = 0 appears to 

be a potential one for the system Su = 0 and u = Rcp being a representation of 

solutions of the system Su = 0 if and only if when there exists a matrix q(x) 

such that the conditions 

are fulfilled. 

Sho = qao, Shµ+ Aµho = qaµ V ß, lßl = 1 

Aahß + Aµha = qaa+ß V o:, lo:I = 1, V ß, lßl = 1 
(6) 

The proof consists of the following: it is necessary to substitute the symbols 
(5) of the operators S, R, P into the condition ( 4). Then transform it by 
replacing the integration variable 11 = { - {! and applying the formulas ( 11 + 
{i)"' = 11"' + {f for lo:I = 1 and 11"'hµ(11) = (v;;-;;;)(11). 

2. Let us use {P}s to denote the set of all operators P being potential for 
operator S. As it follows from the condition (3), every operator S has infinitely 
many potential operators. In order to simplify the research of the set {P}s we 
introduce the separation of its elements into classes. 

We call operators P1, P2 E { P} s Q-equivalent if there exists invertible 
operators Qi,Q2 such that QiP1 = Q2P2. Let us denote by Q{Pi} a dass 
of operators from {P}s being Q-equivalent to the operator P1 E {P}s. Note 
that if P1, P2 are Q-equivalent then an operator Q can be found such that 
P2 = QPi, P1 = Q-1 P2. 

Theorem 2.1. Q{Pi} is a Banach algebra. 

The proof of Theorem is based on two auxiliary statements. 

Lemma 2.1. Pseudodifferential operators Q of the zero order with symbols 

from the class S8(Rn) generate the Banach algebra { Q}. 

Proof. Operators Q with symbols from S8(Rn) appear tobe the linear definite 
operators from H. into H. for any real s. They generate a Banach subalgebra 
in the Banach algebra L(H., H. ). Ordinary operations of addition and multi­
plication being used for the linear continuous operators are valid in {Q} and 
the norm of elements is defined in a usual sense. 
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Lemma 2.2. Algebra Q{Pi} is isometrically zsomorphic to the algebra {Q} 
for any P1 E {P},. 

Proof. Really, any element from the set Q{Pi} has the form QP1 where 
Q E {Q}. Therefore it is sufficient to introduce the addition, multiplication 
and the norm in Q{ Pi} in such a way that operations and norm (being accepted 
in { Q}) would be well defined. 

Note that the proper pseudodifferential operator generate a non­
commutative algebra with two involutions. 

Later on, as it is often accepted, one can identify the algebra Q{Pi} with 
one of its elements (but not necessary with P1 itself) which can be denoted as 
P1. 

In particular, let us consider a differential operator with constant coeffi­
cients. Let the initial system of the partial differential equations have the form 
Su = ux+Auy = 0, where Ais a constant matrix. As it follows from the above 
mentioned, if R is an arbitrary (matrix) differential operator with constant co­
efficients of the lst order then any operator of the form P = (Q)SR appears 
to be a differential operator of the 2nd order with constant coefficients, poten­
tial for the operator S. The operator Q of the zero order is written down in 
brackets as a sign that the question is not about a concrete potential operator 
but a dass of Q-equivalent potential operators. To be precise, the question is 
about one of the representatives of this dass. 

In the case being considered, the operator Q of the zero order represents 
in itself a matrix with constant coefficients of dimension m x m. lt is known 
that the set of quadratic matrices with constant complex coefficients appears 
to be a complex Banach algebra with a norm 

Example 2.1. Consider the system with constant coefficients Ux + Auy = 0, 

where 
S - ( ( )x + ( )y 

- -( )y 
2( )y ) 

( )x + 4( )y 

are a matrix of coefficients and a differential operator corresponding to the 
system being under consideration. Here and elsewhere we shall use some non­
standard determinations of the form ( )x for the operator of differentiating by 

variable x instead of commonly used :x . 
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Let 

( 1 -1) 
-1 2 . 

The complete potential operators 

p _ ( ( )xx + ( )xy + 2( )yy 
1 - 4( }yy 

( )xx + 4( )xy - ( )yy ) 
2( )xx + 7( )xy + ( )yy ' 

p _ ( ( )xx - 4( )yy 0 ) 
2 - 0 ( )xx - 9( )yy 

correspond to these representations. 
We call operators P 1 and P2 of 2nd order S-equivalent if they appear to 

be the complete potential operators for the same operator S of the lst order. 
S-equivalence of two operators P 1 and P 2 enables one to set a non-trivial 
correspondence between solutions of two equations P 1 tp = 0 and P2 tp = 0. 

As if follows from the above considered example the systems of partial 
differential equations 

and 

7/J!x - 47/J~y = 0, 7/J;x - 97/J;y = 0 

appear to be S-equivalent systems. 
lt is interesting to single out among all elements {P}, the canonical one, 

(i.e. the simplest element in some sense). For the differential operators this 
can be easily done in the case when n = 2 (there are two variables x and y). 

Let us consider the following differential operator with constant coefficients: 
S = E( )x + A( )y, E being a unit matrix and A being a constant matrix. Let 
A1, ... , An be the proper values of matrix A and h 1, ... , h n be the correspond­
ing proper vectors. Denote by H a matrix composed of proper vectors as of 
columns. Let Q = H- 1 and R = Hdiag(( )x-.X1( )y„„ ,( )x-An( )y). 
Then the operator P = QSR = diag(( )xx - -Xi( )yy, ... , ( )xx - .x;( )yy) will 
have the simplest structure in comparison with all other elements of algebra, 
and every equation corresponding to its potential system will represent in itself 
the partial differential equation written down in a canonical form. In the case 
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when matrix A has multiple proper values, it is also convenient to take as H 
a matrix which reduces the matrix A to anormal Jordan form. Such a matrix 
can be composed of proper and adjoined vectors of matrix A. In this case 
the matrix of the operator P will have different from, zero elements only in 
the stripe disposed along the main diagonal and the width of the stripe is 3 
elements. In the corresponding to such a potential operator potential system 
of partial differential equations it will be possible to single out chains of the 
connected potential equations. 

Now let us consider the set of classes ( Q)SR in the set of all operators which 
are potential for the operator S. We introduce the following operations for the 
operators R of the lst order: the addition which is understood in the usual 
sense and the multiplication (for the present, for differential operators only) 
which can be reduced to the multiplying of the coefficients attached to deriva­
tives of the same order, i.e. we define the product of the pseudodifferential 
operator with symbols 

s1 (x,ü = L s~(x)~", 
1<>1:9 

s2 (x,~) = L s!(x)~" 
l<>l~l 

as a pseudodifferential operator with symbol 

s(x,~) = L s~(x)s!(x)~" 
l<>l~l 

Such operations do not take us out from a dass of the differential operators of 
the lst order. 

Theorem 2.2. The set of { P} s classes of Q-equivalent operators appears to 
be a Banach algebra. 

In the general case we introduce a product of two pseudodifferential op­
erators of the lst order on the basis of the Taylor's series expansion of their 
symbols. Let 

s 1(x,{) = L (1/o:!)Dfs1(x,0){0 , 

oEZ+ 

s2(x,{) = L (1/o:!)Df s2(x, 0){0 

oEZ+ 

be the symbols. We define their product as a symbol 

s(x,{) = L (1/o:!)Dfs1(x,O)Dfs2(x,0){0 

oEZ+ 
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Let us call a product of two operators of the lst order such an operator which 
symbol represents in itself the product of their symbols in the above mentioned 
sense. The statement of Theorem 2.2 remains valid in this case also. 

3. Let us study a set { u} s of solutions of the equation Su = 0 by assumption 
l = p = m (i.e. all matrices being quadratic of dimension m X m). 

Theorem 3.1. lf the equation Ri.p = u is solvable Jor any u then formula 
u = Ri.p where t.p is a solution of the equation Pi.p = 0, P = (Q)SR gives all 
solutions of the equation Su = 0, i.e. {u}s = {ulu = Rt.p, (Q)SRi.p = O}. 

Proof. Obviously, {ulu = Ri.p, (Q)SRi.p = O} C {u},. Now let u be an 
arbitrary element of { u} • and i.p be a solution of the equation Ri.p = uo. Then 
u0 = Ri.po, t.po being a solution of the equation (Q)SRi.p = 0. Consequently, 
uo E {ulu = R<p, (Q)SRi.p = O}. 

Corollary. Any operator S has a complete potential operator p_ 

Really, let S be some operator of the lst order. lt is possible to pick out R 
in such a way that the equation R<p = u is solvable for any u. Then P = (Q)SR 
is a complete potential operator. 

Note that the assumption that all matrices under consideration are quad­
ratic is essential here. 

So it is possible to consider the equation Pi.p = 0 instead of the equation 
Su = 0 but that is more complicated problem in the general case (because the 
order of the operator Pis greater than the order of the initial operator S). But 
in many cases it is possible to write down the potential equation Pi.p = 0 as a 
system of independent equations, which some times coincide with each other. 
Then the application of the method of potential functions is quite advisable. 

We call potential operator P trivial if the set { u} s contains only trivial 
solution of the equation Su = 0. 

We shall say that potential operator P E {P}s is splittable if there exists 
nontrivial operators P1, P2 E { P} s such that { u} p = { u} p 1 EEl { u} p 2 ( the 
subspace of solutions of the equations Su = 0 associated with the operator P 
can be decomposed into the direct sum of the subspaces of solutions of the 
same equation associated with another potential operators). We call operators 
P1 and P2 the potential suboperators of the operator P. 

Let us consider differential operators with constant coefficients as the sim­
plest case. 
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Theorem 3.2. If the operator P E { P} s is splittable then there exist suboper­
ators Pi, P2 E { P} s such that P = Pi + P2 {in the sense of the multiplication 
operation acceptable in the algebra {P}s). 

Proof. If operator P is splittable then values of solutions of the equation 
Su = 0 from the classes {u}p11 {u}p2 and {u}p belong to linear subspaces 
Li, L2 and L of the space Rm correspondingly, by this the direct sum of the 
first two gives the third: Li Ef) L2 = L. Any solution of the equation Su = 0 
has the form u = Rcp, where R is some representation and cp being a solution 
(vector-valued) of the corresponding potential equation. Then, for example, 
u E { u} p 1 if and only if when columns of matrix coefficients of the operator R 
belong to the subspace Li of the space L. 

Let R be a representation of solutions of the equation Su = 0 generating a 
potential operator P. Let us decompose every column of coefficients of R into a 
sum of vectors from Li and L2 correspondingly arid construct representations 
Ri and R2 by the received addends as of columns. Then R = Ri + R2 and 
P = A +P2 where A = QSRi, P2 = QSR2 (the multiplier Q isjust the same 
for A and P2; if one assumes that Q = E then it is possible to decompose 
directly the columns of the operator P into a sum of vectors from Li and L2). 

Example 3.1. The complete operator 

p = ( ( )„„ + ( )„y 
-( )xy 

2( )yy ) 
( )„y + 4( }yy 

(7) 

is splittable for the operator S from the example 2.1 because { u} p = { u} p 1 Ef) 

{u}p2 where 

and P -:j:. Pi + P2, but P = Pi + P2 where 

A = (-(( ))u - 3{{ ))ry 
- "'"' - 3 ry 

P2 = ( 2(( ))„„ + 4(()„y 
"'"' + 2 )„y 

The inverse statement alsu holds true. 

2( )ry + 6( }yy ) 
2{ )xy + 6( }yy 

-2( )xy - 4( )yy) 
-( )xy - ( )yy 
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Theorem 3.3. If P = Pi + P2 where P, P1 , P2 E { P} s and at least one of op­
erators P1 and P2 being non-trivial, then the potential operator P is splittable. 

Emphasize that the statement of Theorem concerns the representation of 
potential operator in the form of a sum just of potential for the initial S 
operators, and not of simply differential operators of the 2nd order. 

Thus if a complete potential for the operator S operator is splittable then 
any solution of the equation Su = 0 can be represented as a sum of solutions 
of the same equation belonging to non-intersecting classes. We shall call this 
phenomenon a polarisation of solutions of the equation Su = 0. 

4. Let us return once more to the equation u„ + Auy = 0 as we considered 
before (the system of m equations with constant coefficients for two indepen­
dent variables). Let A1 , ... , Am be different proper values of matrix A and 
h1 , ... , hm be corresponding proper vectors. As it was shown, in this case a 
complete potential system consists of independent potential equations of the 
form 

'Pxx - AI'Pyy = 0, j = 1, m , (8) 

and a complete representation of solutions consists of the columns of the form 

(9) 

Consequently a complete potential equation is splittable into a sum of m 
potential operators, each of them is being generated by representation of so­
lutions Ri of the following form: the column with the number j in matrix Ri 
has the form (9) and other columns are all zeros. 

N ow let us consider the representation of solutions of the form Rj x Rk. In 
matrix Rj x Rk only the column with the number k is different from zero and 
has the form hk(( )„ + AjAk( )y)hi (here hj is a jth component of the proper 
vector hk). Then the potential operator S(Rj x Rk) has different from zero 
the kth column only 

Obviously, there exists diagonal operator with the single element different from 
zero with the number k among Q-equivalent to S(Rj x R1c) potential operators. 
This operator generates the potential equation 

(10) 
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Note that Eq. (10) can be reduced to the canonical form 'Pf.f. - >-.Jcp„„ = 0 
by substitution of variables~ = x, 1J = (->-.;x(l + )..k) + 2y)/(1- )..k)· By this 
the particular representation of solutions of system u = 'Px + >-.; )..k'Py turns 
into representation u ='Pf. - A;<p„ (to within the multiplier). 

Now let P; be the potential operators generated by representations of solu­
tions R;, j = 1, m. As the multiplication operation in algebra { P} 5 is induced 
by the multiplication operation in algebra, which is introduced into the set of 
representations, the above mentioned reasonings can be reduced to the follow­
ing fact: in the case being considered 

(11) 

The similar statement holds true in the general case. 

Lemma 4.1. There exist elements P 1 , ... , PN, 1 ~ N ~ m in algebra { P} s 
such that 

(12) 

Proof. By corollary of The.::>rem 3.1 there exists an element P in algebra 
{ P} s which appears to be a complete potential operator. If the operator P is 
non-splittable then the condition in (12) is fulfilled for N = 1 only. Really, the 
product of element P with any other element of algebra { P} either will be the 
complete potential operator or a trivial potential operator. 

If the operator P is splittable then by Theorem 3.2, it can be represented 
as a sum of non-splittable potential operators P = Pi + · · · + PN, by this, 
{ u} p = { u} p 1 EB · · · EB { u} pN. Since the values of the operators P; belong to 
the non-intersecting linear subspaces of Rm then the condition (12) is fulfilled. 

The fact is that the application of the method of potential operators appears 
to be the most effective just in the case when a complete potential operator 
is splittable into a possibly greater number of potential operators of simpler 
structure. So let us formulate some conditions of splittability of a complete 
potential operator in algebra { P}s. 

Lemma 4.2. If there exist a non-complete, nontrivial potential operator in 
algebra {P}s then the complete potential operator is splittable. 

Really, if P is a complete operator whereas Pi is a non-complete operator 
then { u} p 1 C { u} p. By this values of operator P form a linear subspace Li in 
the space L of values of P Let L = Li EB L2. Decomposing the matrix of the 
operator R into a sum of matrices Ri and R2, the columns of which accept their 
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values in L 1 and L 2 correspondingly, we receive that { u} p = { u} P 1 EEl { u} P2 

where P2 is a potential operator being generated by representation R2· 

Example 4.1. Let a complete potential operator for the system from the 
Example 2.1 be determined by formula (7), whereas a non-complete potential 
operator 

Then 

P1 = (-( )„„ - 3( )„11 
-( )„„ - 3( )„11 

p - (2( ).,,, + 4( )„11 
2 - ( ).,., + 2( )„11 

2( )„11 + 6( )1111 ) 
2( )„11 + 6( )1111 . 

-2( )„11 - 4( )1111) 
-( )„11 - 2( )1111 

appears to be a non-complete potential operator also but such that { u} p = 
{u}p1 EEl {u}p2 and even P = P1 + P2. 

Theorem 4.1. A complete potential for S operator is splittable if and only if 
when there exists at least one non-trivial right ideal in algebra { P} s. 

Proof. Necessity. Let a complete potential operator be splittable. By virtue 
of Lemma 4.1 we can set in correspondence to every operator P,, the existence 
which is stated in Lemma, a set of potential operators 

{P}; ={PIPE {P}s, {u}p = {u}p;} 

Let us prove that for any j, {P}; is a non-trivial right ideal in algebra {P}s. 
Really by Theorem 3.2 an arbitrary element PE {P}s can be represented 

in the form P = Pi + · · · + PN where, generally speaking, potential operators 
P; do not coincide with operators P; but {u}P; = {u}p .. Let us pass on from 

- - -t. -
potential operators P, P; , ... , PN to representations R, R1 , ... , RN generating 
them. Obviously, R = R1 + · · · + RN. Then 

R; X R = R; X (R1 + ... + RN) = R; X R1 + ... + R; X RN 

and R; x Rk generate the potential operators P; x A E {P};. Consequently, 
P; x PE {P};. 

Sufficiency. Let I be a non-trivial right ideal in algebra { P} 5 . We shall con­
sider the set {u}1 = U {u}p. If {u}1 = {u}s, the ideal I would coincide with 

PEl 
{P}s. Consequently, {u}I C {u}s. Let us single out the subset of elements 
in I 

{P}I ={PIPE J, {u}p = {u}I}. 
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Then any element in {P}1 will be a non-complete potential operator and by 
Lemma 4.2 and the complete potential operator is splittable. 
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Let Bt and Bt for any t e CO, TJ c R be normed linear 
1 

Banach spaces;B is separable; Btc Bt and embedding is continuous 
1 t t' t t 

for every t; for t < t B 1 c B 2 , B 1 c B 2 , and the last 
2 1 l l 

embedding is continuous in sense that t.here exist.s bounded on 

CO,Tl 2 funct.ion p1 C ·, ·J and a const.ant. P, that. for any t 1 , t 2 e 
t 

e CO, Tl t 2 $ t and any u e B 1 inequalit.y 
1 1 

(1) ßull t 
B 2 

1 

is held. Analogously t.here exist.s a const.ant. p2 such t.hat 

ßuU s P nullt' 
t 2 B B, 

Let 5t be nonlinear subset of Bt, with function Mt : st-+ 

-+ R , R = { y E R : y ~ 0}. Define st = {tl E st : Mt(tl) $ a}, 
+ + a 

and suppose t.hat st is relatively compact in Bt for any a < ro. 
a 

t t t 
Since B 1 c B 2 for t > t . uCt J e B 2 Therefore Mt(uCt J) 

1 2 1 1 
2 

is defined. We will assume, t.hat function Mt such that 

C2J Mt (uCt 1 )) $ pCt 1 ,t2 ) Mt (uCt 1 J), 
2 1 

where p is bounded function on co,r1 2 • 

Further, denote F some subset of elements uCt) such thal 
1 

219 
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for any t e CO,TJ uC D e Bt and 

T 

(3) vrai llldX ßuC DU t $ C • 
t E 1 o,Tl B 1 

J Mt (uC D )dt s c2 

0 

where C and C are comrnon conslanls for all u in F . 
1 2 1 

Moreover, we will assume equiconlinuily of norms in Bt by 

parameler t on subsel F1 : 

t ! lhere exisl ~C ·,·)such lhal for all elemenls u e B 1 

and all t $ t 
2 1 

(4) 

l •un t - nun t 1 $ ~et,. t2) - 0 as ta - t, - 0. 
B 2 B s 

Here ~ doesidepend on elemenl u in F1 • 

And, al last, lel eilher 

C5) F = {u e F1 : u(t) is B 1 - measurable and 

T p 
JI u'CtJH 1 dt s c . P > t } . 

t 3 1 
o B 

1 

or F be subsel of elemenls uCt) in F such lhal 
1 

C5') sup ßuCt + h) - uC t) ß t $ HC h) , 
tElo,TI B 
t+ll $ T 1 

where h > 0, HCh) - 0 as h - 0 and HCh) is comrnon for all u 

in F . 
1 

In C5) we mean lhal u' C t) 

T ( is lhe limil in norm BT of 
1 

is elemenl of Bt , 
1 

UCt + h) - U( t) 

h 
T s + h. See Additional parl for delails. 

which for all 

as h - 0, 

In [ 1 J, C. 4, & 5 compaclness of embedding of reflexive 

Banach spaces of abslracl funclions was eslablished in space like 
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LPCO,T; 8). After that Yu.A.Dubinski[ C2l proved this result in 

the case when function MCuJ didn't define the norm, but possesses 

property of homogeneity: MCX u) - IXI MCuJ. 

In case of Orlich spaces and half-normed set similar results 

were proved in C3l,C4l. 

By slightly modified assumptions in C5l,C6l these statements 

were proved for function MCuJ which has arbitrary structure. All 

these results are essentially used for proofs of existence of 

solutions for nonstationary problems for partial differential 

equations, accordingly for linear, nonlinear degenerating 

equations with homogeneous nonlinearity, and, at last, with 

arbitrary nonlinearity. For the latter see, for example, [7J,[8J. 

In this article we generalize results [5J,[6] and give up lhe 

condition: for any t e CO,Tl uCtJ e B, where B is a fixed Cfor 

all t) Banach space ~nd we consider functions uC ·) that belong to 

the scale C ''lllonotone" and continuous by parameterJ of Banach 

spaces. These resulls can be used for proving of existence of 

solution for malhematical physics of nonlinear equations in 

noncylindrical domains and also represent independenl inlerest. 

Theorem 1. Let embedding Bt ~ B~ be compact. For any p ~ 1 

set F is relatively compacl in space of functions uC ·) wilh norm 
T )' /p [! luCtJR;td t . For corresponding limit elements the first 

inequality in C3J is valid. 

Proof. Let pt = {un}~=• be a countable set of elements in F. 

Since the first inequality in CtJ is correcl there is a set E0 c 

c [0,Tl with meas E0 = T such thal for all t E E0 
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(6) aucoat~c <m. 
n B 1 

Similarly, since M (u Ct)) e L CO,T), there exist sets E c 
t n 1 n 

c CO, Tl , with meas E = T such that for all t e E 
n n 

(7) n = 1,2, ... 

Cln other words: functions from L are finite for almost all 
1 

t E CO,TD. 
m 

Consider E = n fn. Obviously, meas E = T. 
n:o 

Lemma 1 . For each c > 0 there exists a constant cC c) such 

that for all t e E and all u, u e F" 

C8) luCt) - uCOß ~ t: [Mt(uCO) + Mt(uCU) + 1] + 
Bt 

+ CCc) ftuCt) - uCt)U 
Bt 

1 

We do not assume compactness of embedding et c et in this Lemma. 
1 

Proof Of Lemma 1. First of all we note that by C6)-C7) and 

embedding Bt c Bt , the left-hand and right-hand sides of C8) are 
1 

finite for all t e f. Assume the contrary statement of the 

Lemma 1. Then there is an c0 > 0 such that for any constant C > 0 

there exist elements u . u e F" and number t e E such that c c c 

+ c nuc(tc) - uc(tc)ß t 
B c 

1 

Let c = ci ---+ m. lt follows from (6) that the left-hand is 

bounded by the constant 2c1 .Then from C9) we get for elements 

tc. 
= u Ct ) of B 1 that 

Ci Ci 
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(10) • t - :z ß tc < 2 0 
Cili Cili B i - c, /Ci -- . 

l 

Compactness of CO, Tl yields a subsequence such that t -- t e 
Ci(~) 0 

E CO, Tl. We will assume that tc
1 
-- t 0 . Differently takes 

subsequence. We define TN = mint , then TN $ TN+i; TN $ t , 
i2:N Ci Ci 

i 2: N. Therefore, from C10) and from continuity of embedding Bt we 
l 

have 

(11) Aw' -w:z U 
1 1 T 

8 N 
1 

$ ip CTN,t )llw~-w12 ß $ 2c ip / c. -- o, 
l c. 1 t l l 1 

1 B Ci 
1 

i 2: N, i -- m. 

From (9) we get 

Mt (w~) S 2c /c . M1 (w~) $ 2c /c. 
Ci l 0 Ci 1 l 0 

Since TN S tc. , i 2: N from C2) we get: 
1 

Let N = 1. Using the relative compactness of s; in Bt C for 

t = T , a = 2c ip/c) and the completeness of Bt, we conclude that 
l l 0 

there exists subsequence w' of sequence w'. converging to some 
nk 1 

T 
element ü in B 1 for k -- m. But, sequence w1 

l 1 
nk 

satisf ies C 12). Therefore, from i t we can select subsequence w' :z 
nk 

such that 

T 
in B 2 • 

- T 
w'~ -- u2 in B 2 • Notice, that since T1 s T2 , u1 = u2 

nk 

And further the same is done for all N. If we take 

sequence w1 k i!f. ~~ , it is obvious, that it converges in any BTN 

nk 

to element w 
1 

On analogy, for sequence uc C tc J. And we may 
i i 
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conclude that 
-

w2 = w2 ---+ w in Je Je 2 
"1c - -

T -
any B N. Therefore, w1 

Je 

-

-
- w2 

Je 
---+ w 

1 
- w 

2 

But 1 
Wie, w2 satisfy et f). That is w1 w2 ---+ 0 in 

TN 
B . We conclude 

Je Je Je 1 

that w 
1 

w2 and for any fixed N 
- - T 
w~ - w~ ---+ 0 in B N as k ---+ oo. (13) 

- t-
Notice that w~·2 E B ck • ck C 1c· Therefore from (9) we get for 

"1c 

sufficiently large N and k: 
- E: 

(14) w~ll T ~ _2o 
B N 

This contradicts the condition C4) of equicontinuity of norms in 

Bt on elements set F . Actually, the left-hand side C14) by 
1 

condition (4) is smaller nCTN' tele). Since tele ---+ ro and TN ---+ 

---+ ro' we have nCTN' tele) ---+ 0. Lemma 1 is proved. 

Notice that we can prove (8) if in right-hand side we replace 

[HCu) + HCu) + 1] by [HCu) + HCu) + 1]1 /P for any fixed p < oo. 

Using inequality Ca + b)P ~ 2PcaP + bP), later integrating by t 

we can conclude: 

T T 

(16) flluC D - uCt) HP dt ~ e JIHt (uC D) + Ht(uCt)) + 1]dt + 
0 at 0 

T 

+ c(e) JnuC D - uC t) ßP dt. 
0 at 

1 

Lemma 2. Let embedding st s; st be compact. Then F is 
1 

relatively compact in space of abstract functions uC ·) with norm 

vrajrirax HuC D ß 
t Elo,Tl ßt 

1 
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Proof of Lemma 2.We use only first inequality in (3) and (5) 
I 

or C5 ) in this Lemma. 

Let P = {t 0 , t 1 , ••• , tn •... } be dense countable system in 

E, t 1 e E. Now we will prove existence of p_ 

Let E =Uta, ta e E and let EJ = {t e CO, Tl: lt - tat < 1/j}. 
Cl Cl 

Then U E~ = [0,Tl. lt is consequence of density set E on [0,Tl. 
Cl 

There is a finite number 

Nj 
U rJ. = [0,Tl. Consider 

i :1 at 

of rJ 1 and t J , i = 1 , .•. , NJ , that 
ex;: ai 

00 N j 

countable system P = . U ( U t J ) . 
J =1 i =1 a1 

Then for all T e E and e > 0 there is tv<e,T)e P such that 

lt - tv1~ < e. Aclually, if it wasn't done, we would have 1 e E 

and r > 0, that for all t p 1 t - 11 ~ Uy. Let integer j > "' E J. 
N_ 

J 
rJ. belang to certain E: Because u = CO,Tl, then t = { T E 

i :1 at Cl 

E CO,Tl: IT - tcxl < Uj }, Oe= al ' 
t Ct E p This contradicls the 

1 
0 

last inequality. Existence of P is proved. 

Let {u} be sequence from F.By (6) we have that for all 
n 

t 1. e P c E Hu Ct1 )ß t ~ C . We may assume that t =Te E. 
n B 1 1 o 

Compactness of embedding yields that {unCti)} is relative compact 
t_ 

in B1
1 • Diagonal process yields a subsequence uµ such that for all 

t. 
i u Ct.) is Cauchy sequence in B 1 . µ 1 l 

Now we prove that the sequence uµ is convergent by norm 

vr ajftra.X AuC t) ß 
tero,Tl Bt 

1 

Consider case C5'). Let e > 0 be given. There exists oCe) > 0 



226 A. G. Podgaev 

such that HCh) < e/4 if h < 6Ce). Consider sets S. = { t e CO.Tl: 
1 

lt1 - tl < 6Ce), t1 >t},i=1,2, ... , t1 e P, S0 = ( t e CO,TJ: 

IT - tl < 6Ce), t ST}, which are opened by topology of CO,TJ. 

CXJ 

Moreover, U S. = CO,TJ. It follows from density of P in E, and 
i :0 1 

hence in CO,TJ. Select finite number S. , v = 1,2, ... , MCe). Then 
11) 

(18) 

=max ( s u p luµ+k(t) - uµCtJß8t). vSM(e) t eS. 1 
1 !) 

Further, 

C19) 

+s u p luµ k C t . ) - uµC t 1 ) U t 
teSi + 1 !) V B 

V 1 

+ st~d.' ßuµCt 1 vJ - uµCtJU 8t. 

i !) l 

Using C5') we can estimate the first and the third members in 
t1 

terms of e/4. Since uµCt. ) converge in B v, and since iv S MCe), 
1 !) 1 

using C1) we can make the second member not larger than e/2 for 

sufficiently large µ ~ NCe) : 

C20) ßuµ+k C t1 v) - uµC t1 v) 08! S ip1 C t1 ~ t) tuµ+k C t1 v) -

- uµC t. ) 1 tt S e/2. 
1 V B ~ 

1 

C18)-C20) yields that uµ converge in norm vraj rn> DuCtJU t' 
t Elo,TI 81 

Consider case C5). See Additional part for details. 
1 /p q 

Replace Si by ~1 = {t e CO, Tl: 1t-t1 1 < Ce/4 ip1 c3 
1 ) 1 , 

t1 > t}, i = 1,2, ... . Analogous ~0 • And we reason by analogous 
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C5'). The first and the third members in Cf9) in this case are 

estimated in the following way. Use CO. 4) and CO. 5) we have 
li V 

~~~. nu µCD -uµCtiu)ll 8t= ~EM p llfu'~T)dTll 8ts 

l V 1 1 V 1 

T 1 /p 

S s u p '(J J ßuµ' C T) 118T dT S '(J ( Jllu' C T-J 1t 1 dT) su~ l l 
t ES. 1 1 µ BT t ES l V 

11) 1 0 1 il) 

1 /q 
l I 1 $ 

1 /p 1 /q 
$ rp c 1 sup lt 1 - tl 1 Sc/•, 1/p1 + flq.1 

1 3 tE5. V 
t. 

11) 

And then by analogy with C5'). 

Passing to the proof of Theorem t, we consider {un} c F and 

take rN = {un}. By Lemma 2, there exists Cauchy subsequence with 

respect to norm vrajllJaJC ßuC D II t. By Cf) and by Cf6) we may 
t ECo,Tl 81 

conclude that uµ is Cauchy sequence with respect to norm 

( 
T )1/p 
flluC T) u;T dT for any p < 00 . 

0 

Proof the last part of Theorem 1. Due to completeness space 

T 
p 

of elements u(t) such that JUuCT)ß T dT < oo, there exists u = 
B 

0 

= lim uµCSee Add. p. , Th. 4). Consider ßui t) - uC t) U8t. Due to 

convergence in L CO,T) we may assume that it converges to zero for 
p 

al most all t E [Q, Tl . Therefore, Huµ C D U 8t--+ lluC t) II 8t . Us i ng C 6) 

we conclude for enough large µ : HuµC t) 11;t S c; + t. If we go over 
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to the limi t, we get that ßuC t) HP t 
B 

$ cP + 1. The Theorem 1 is 
l 

proved. 

Now let S be a compact in R",and consider further the case, 

when Bt = B and Bt = B Mt = M for each t e 5. And let 
l l • 

embedding B c B1 be compact. Definition F with condition C5') is 

similar as before. 

In this case conclusion about of compactness by norm 

(J1uct)l~dt) 1 /p CAnalogy of Lemma 2) may be obtained from 
l 

Theorem 14 in C9l. Our attention was drawn to this way by 

Proof. Yu.Batt. 

Actually, !et uCtJ = 0 for e S and l et G = R" • E = B1 • 

K = {u : ßuß $ c1 } in that Theorem. Then for any 
L <Rn;B > 

p l 

measurable Ac R" set { J uCt)dt,ueF }. will be relatively compact 
A 

in B. It is the result of inequality C5'), inequality 
l 

lf uCDdtU $ J ßuCOH dt $ c . 
A B A B 

and of compactness of embedding B c B1 • Therefore, 

Theorem 2. If embedding B c B1 is compact, S is compact in Rn 

and F is constructed as earlier and condition C5') is held, then F 

is relatively compact in L CS;B). 
p 

This Theorem we may use for investigation of ultra parabolic 

equations, that is equations with many time variables. 

Theorem 3. If for every u e F and every measurable set 

Ac Sc R", meas A < oo, exists constant cCA) < oo such that 
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M [ f uCt)dt] ~ cCA) 
A 

and C5') holds CuCO = e for all t e S), then Fis relatively 

compact in L CS;B) for any p : 1 .$. p < oo. 
p 

Actually, C21) yields relative compactness for every fixed A 

of the set f uc Odt in 8, and, so, in B . Further, proof is 
l 

A 
analogous of the Theorem 1. 

Additional part. On intesration of function.s by parameter of 

the scale. 

Here we consider scale of the normed spaces Bt. t e [0,Tl and 
l l 

assume that au is Banach space, B 1 c B 2 for t ~ t and Bt is 
1 2 

separable space. We write Bt instead of Bt for brevity. 
l 

Definition 1. Function uC ·), uCt) e Bt is called simple on 

[a,bl c CO, TJ if exists partition of [a,bl by finite quantity 

Lebesque-measurable nonintersection sets Si c [a,bl, i = 1, ...• n 
li and elements u1 e B Ct1 = sup {t: t e S1 }), such that u(t) = u1 

n 
for e S 1 and uCt) = e if t e [a,bl' U Si. 

i =1 

Definition 2. Integral on [a,bl from simple function uC ·) is 

element f of Banach space au defined by 
b n n 

f = f u(T)dT = ~ ui meas Si = ~ ucii) meas Si , 
a i =l i =1 

where Ii e Si , and ui are elements which correspond to this 

partition of [a,bl. 

Linear combination of simple function is simple function and 

therefore the operator of integration of simple functions is 

1 inear. 
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For simple functions we have easy inequality 
b n 

H J u(T)dTllB'1 = R ~ ucti) meas Si 18'1 :5 
a i~ 

eo. n 

n b b 

:5 ~ ßucti) UB'1 meas Si = J nu(T)dTftB'1 dT :5 fl_fUUCT)dTßBTdT Ii E Si. 
i~ a a 

Definition 3. Funclion uC ·) is called integrable 

Cp-integrable) on [a,bJ, if there exists sequence of simple 

functions u (·) which is Cauchy sequence with respect to the norm 
n 

(0.2) jßU(T)lß'l dT , [( jßu(T)ßdz dT)i/p]• 
a a 

and such that u C t) -- uC t) wilh respect to the norm in Bt for 
n 

almost all t e [a,bJ. 

Funclion uC ·) that is the limil in Bt almost everywhere of 

simple functions is called measurable Cor, more exactly, B -

measurable). 

Definition 4. Integral on [a,bJ from such function is element 

f E B'1 defined by 
b b 

f = J U(T)dT - lim J un(T)dT 
a n+m a 

Correctness of this definilion will be established if we prove 
b 

existence of the limil for J un C T) dT and independence of f from 
a 

the choice of sequence un of simple functions. 
b 

Consider f = J u CTJdT and prove that f is Cauchy sequence n n n 
a 

in 8'1. Let { ~'5} i = 1, . . . , ~Cn,s) be parlilion of [a,bJ, 
1 

such that elements ~,s c s; C iJ and ~~.s c s;'(~) for some j( O, 
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lCi). There {Si n). i = 1, ... , kn. corresponds to simple function 

u n and { ~:s), i = 1, ... , kn+s' corresponds to simple function 

u . Then since u is Cauchy sequence we have n+s n 

k<n,s> 
II -f 1 = U ~ Cu ctn,s) - u cl'n,s)J meas ~·sa 5 n+s n Ff'- ~ n+s i n i i Tf'-

1 :l 

b 

:$ JIU (T) - U (T) ß dT - 0 tn,s E ~,s 
n +s n Ff'- ' i i · 

a 
Therefore, if Ff'- is Banach space, then exists element f e Tf'-

being an integral from uC·). 
b 

Consider s = J u (T)dT where uC ·) is 
n n Cauchy sequence 

a b 

with respect to lhe norm ( JRuCT)ßdz dT)a/p 
a 

and u Ct) - uCt) n 

for almost all e Ca, bl. lt is obviously lhal for any n 

lun C 0 - un C 0 II Ff'- is integrable according lo Lebesque and limi l 

b 

is equal to zero as n - oo for almost all t. Moreover, Jßu CT) -
n 

a 
- unCT)lff'- dT is uniformly bounded by n because un and un are 

Cauchy sequence by lhis norm. Lebesque theorem yields that 
b 

lim Bf n - ßnl...a :$ lim Jaun(T) - Un(T)ß...a dT = 0. 
n+m 1::1- n+m a 1::1-

Therefore II - sllff'- 5 Hf - fnllff'- + lfn - snßff'- + lsn - sUT!'- < c 

for sufficiently !arge n.Correctness of Definition 3 is established. 

We easily conclude that if uC ·) is p - integrable, p ?!: 1, 

then uC ·) is integrable. 
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Let uC ·) be arbitrary integrable on Ca,bl function. From 

inequality Co.1) for simple functions and because of continuation 

of norm, we have 
b b b 

lf U(T)dTßdl = lim IJ un(T)dTßdl ~ lim Jßun(T)ßdl dT = 
a n a n a 

b 

= fluCTJßdl dT. 
a 

Last equality follows from Lebesque theorem. Therefore, 

inequality C0.1) is fulfilled for every integrable function. 

Definition 5. Function is called amplified p-integrable if 

Cauchy sequence from Definition 3 will be considered in the 

"norm", exactly: 

eo. 3J 
b '/p 

( JUuCTJIPT dT) . 
a B 

Obviously, if for the 

is fulfilled, then each 

p-integrable. 

scale of spaces Bt condition like CtJ 

amplified p-integrable function is 

Obviously, if u C ·) and u C ·) are integrable functions and 
l 2 b b 

u,CtJ = u2 CtJ for almost all t, then J u,CT)dT = J ull'CT)dT. 
a a 

Identification of such functions allows to introduce space LP. 

p-integrable Cand tP. amplified p-integrable) functions with norm 

CO. 2) (CO. 3) ). 

Theorem 4. If d2 is Banach space, then L is Banach space. If 
p 

Bt are Banach spaces for all t e Ca,bl, then t is complete. 
p 

Proof coincides with proof of completeness of space 

integrable according to Bochner functions L CS;X), see ClOl. CBy 
p 

analogy density of step functions in L and in t is proved). 
p p 
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Definition 6. Say, that function uC ·) is B -differentiable 
l 

at the point t E (O,T) if there exists element W E ßl SUCh that 
1 

for all T < t 

n uc t +h) - uc D _ '"'II o h o < t h 
~ -- , as -- ,T _ + . 

h BT 

Element w is called derivative of u at the point t and is 

marked by u'Ct). 

The following quality is proved like at the Bochner Theorem 

in [111, 

= xn C t) • 

but instead of yn i t is necessary to consider yn C t) 

if Bx; CD H t :S 21tJC: DU t and y C t) = 0 if conversely. 
n B B n 

l l 

This property we use for vCt) u'Ct) : 

Lemma 3. Measurable function v(t) is p1 -integrable Camplified 

p r p ) p1 - integrable) if and only if UvC D Utfi laccordingly llvC D n8~ is 
l 1 

Lebesque integrable. 

Let uC ·) be B -measurable and differentiable function at • 
every point t E (O,T), and u'Ct) satisfies condition C5). 

Let t < t; v is some fixed functional on Bt': (v . · ) : 
1 0 1 0 

: at 1 -- R. Because Bt c Bt c Bt', we can define function ;tCt) = 
l l • t. 

= (v0 • u(t)). As uC ·) is 81 -measurable and 81 is separable, 

Pettis's Theorem [ 111 yields that ;tCt) is Lebesque-measurable 

function. Moreover, 

lxCDIS ßv II 
o ßt'- R 

1 

Furt her 

"' 11uc t) II :S cCt ) 'P, 'P ßuC t) n l E L ( t • T). 
t 1 2 B p 1 

B ' 
l 

rCt+h) - rCt) = ( v uCt+h) - uCt) ). 
h o' h 

Therefore, if h is sufficiently small, we get +h>t and 
l 



234 A. G. Podgaev 

because of 81 -differentiable of uC ·) we conclude that 

rCt+h) - rCt) ......,. (v , u'Ct)). 
h h „ 0 ° 

Therefore for any t e (O,T) exists u'Ct). On the other hand x'Ct) 

is measurable like limit for every t measurable functions. And 

inequality 

Uu'COU :SlffCt, )llu'COH8t E L (t ,T) t P 1 1 
B 1 1 

1 

is held. 
t 

Then formula xCt) - xct,) I x'CT)dT yields <vo, u(t) -
t 

1 

t t 

- uct,)) = I <vo' u'(T) > dT = <vo, I u'(T)dT). 

C0.4) 

c t < 
1 

C0.5) 

t t 
1 1 

The last equality follows from continuity of the functional 

Bt 1 • In view of arbitrariness v e (Bt 1 )* we conclude that 
1 0 1 

t 

uCt) - uCt) = J u'CT)dT in Bt 1 • 
1 1 

t 
1 

From inequality co. n we get for any pair number t, t 
1 

t) inequality: 
t t 

ßuC 0 - uCt ) II :S J Hu' C T) II dT :S ip J ßu' C T) II T dT. 
' Bt' t Bt' i t B, 

1 1 1 1 

This inequality is used in Lemma 2 in the case (5), where instead 

of t we need take t. , and instead of t we take t. iv 1 
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ON THE EXTENDED OSTROWSKI CONSTANT 

JOHN M. RASSIAS 

The National University of Athens, Pedagogical Department, 
4, Agamemnonos Str., Aghia Paraskevi, A ttikis 15942, Greece 

Abstract 

A. Ostrowski (1979) established that if f(z) is a polynomial of degree m and g(z) G 

polynomial of degree n, then M1M9 ~ Mfg ~ -y·M1M9 , where M1 = max{IJ(z)I: 
lzl = l}, and the Ostrowski constant: 'Y = sinm(7r/8m)sinn(7r/8n). In this paper 
we improve 'Y and extend it to f;,i = 1,2, ... ,k, in Ur= {z: lzl = r} by applying 
Jensen's formula. 

Theorem. lf f;(z) = zn; + ... + /;(O), /;(O) = 1, i = 1, 2, ... , k, are poly­
nomials of degrees n; in D = {z : lzl ~ 1}, and if the zeros (roots) a~, 
j = 1, 2, ... , n;, of these polynomials are such that la; 1 ~ 1, then 

k k rr M1. ~ M. ~ /'2 rr M,, ' · , rr J; · i 
i= •=l i= 

where 12 = 2-N, and M1. = rna.x{lf;(z)I : lzl = 1}, i = 1, 2, ... , k, and 

k 

N=Ln; 
i=l 

k 

is the degree of F = Il /; 
i=l 

If k 2 then /'l = 1: then Ostrowski constant (1), and our constant 12 is 

237 
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greater than /'l, because 

sin ('~~) > ~~ < ~ 
k 8n; - k 8n; 2 ' 

where 

k ( ) 
. n; 2 1T 

11 = II sm k 8n · ' 
i=l • 

and i = 1, 2, ... , k, and k = 2, 3, .... Assume Mj, = ma.x{i/;(z)I : izl = r }, 
i = 1, 2, ... , k, and 

r (2 )-N -N /'2 = r = ')'2T 

If /;, i = 1, 2, ... , k, are polynomials of degrees n;, i = 1, 2, ... , k, in Ur, then 
( *) is extended to the following form 

i=l i=l 

Proof of Theorem. lt is clear that the left hand side relation of ( *) holds. 
To prove the right hand side relation of ( *) we assume 

f;(z) =Zn;+ ... + f;(O), f;(O) = 1 , 

are polynomials of degrees n; in D = {z: lzl ~ 1}, U = ßD = {z: izJ = l}. In 
fact, 

n; 

/;(z) =II {z - a;), i = 1, 2, ... 'k , 
j=l 

or 
ni 

lfi(z )1 ~ II (1+la;1) 
j=l 

in U, i = 1, 2, ... , k, where a;, j = 1, 2, ... , n;, are zeros of f; in D. Therefore 

Jaj 1 ~ 1, or 1 + ia; 1 ~ 2la; J . 

Hence 
n, 

MJ, ~ 2n, II la; I, i = 1, 2, ... , k , 
i=l 
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or 

k k n, 

II Mf; ~ 2N II II la}I 
i=l i=lj=l 

By Jensen's formula ([2], p. 128, and p. 139) we get 

Applying this formula we get 

k k 

II M1. ~ 2•~1n,e21.. 1:„1n III~=l J,(e'')ldt , 

i=l 

or 
k 

II M1. ~ 1'21 MF , 
i=l 

completing the proof of the Theorem. 
Similarly, we prove (**). In fact, we employ the extended Jensen's formula 

([2], p. 128, and p. 139) 

n, 1 {2" 
?:In la;Jrl = 211'" Jn ln l/;(reit)ldt , 
J=l 0 

and assume polynomials /;, i = 1, 2, ... , k, in Dr = {z: lzl ~ r}. Thus 

n, 

lf;(z )1 ~ rn• II (1 + la;Jrl) 
i=l 

in Ur= {)Dr = {z: lzl = r}, where a; are zeros of f; in Dr. The rest of the 
proof is omitted as analogous ~o the one of the above Theorem. 
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SOLUTION OF A STABILITY PROBLEM OF ULAM 

JOHN M. RASSIAS 

The National University of Athens, Pedagogical Department, 
4, Agamemnonos Str., Aghia Paraskevi, Attikis 15342, Greece 

In our paper [J. M. Rassias, "Solution of Problem of Ulam", J. Approx. 
Th. 57 (1989)] we solved the following Ulam Problem: "Give conditions in 
order for a linear mapping near an approximately linear mapping to exist" 
and established results involving a product of powers of norms. In this paper 
we state and prove a more general version of my above theorem involving a 
non-negative real-valued function [S. M. Ulam, "A Collection of Mathematical 
Problems'' Interscience, New York, 1961; "Problems in Modem Mathemat­
ics", Wiley, New York, 1964; "Sets, Numbers, and Universes", M.l.T. Press, 
Cambridge, MA, 1974]. There has been much activity on a similar "c:-isometry" 
problem of Ulam [J. Gervirtz, Proc. Amer. Math. Soc. 89 (1983); P. Gruber, 
Trans. Amer. Math. Soc„ 245 (1978); J. Lindenstrauss and A. Szankowski, 
"Nonlinear Perturbations of faometries", Colloquium in honor of L. Schwartz, 
Vol. 1, Palaiseau, 1985]. 

Theorem 1. Let X be a normed linear space and Y be a Banach space. Assume 

in addition conditions: 
(c1 ) : f : X - Y is a mapping such that f(t.x) is continuous in t for each 

fixed x, 

241 
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(c2) : J( : XP --> ~+ U {O} a non-negative real-valued function such that 

00 

R,, = R,,(x) = LP-iK(pix,pix, ... ,pix) < oo 
i=O 

is a non-negative function of x, 

(c3) : 
1. -n }"/( n n n ) Ü lffi p 'l. p X1,p X2, ... ,p Xp = , 

n-oo 

f (t. x; )-t. f(x;) ~ C,K(x„ x„ ... , x,) (!) 

for any Xj EX, C2 (: constant and independent of x1, ... , xp) ~ 0. 

Then there exists a unique linear mapping Lp : X --> Y such that 

(2) 

for any x E X, where C1 = C2f p. 

If one takes p = 2, x1 = x, x2 = y, and 

(3) 

such that 0 ~ a + b + c < 1, and a, b, c := constants, then there exists a unique 
linear mapping L : X --> Y such that L = L 2 and 

llf(x) - L(x)ll ~ Cllxll~+b+c (4) 

for any x E X, where 

In this case we have 

00 

R2 = R2(x) = L(2-i X 2 X 2i(a+b+c)llxll~+b+c) 
i=O 

= 2 JJxJla+b+c 1 _ 2a+b+c-l 1 · 

If one takes a = b = c = 0 in (3) one obtains an additive functional L such 
that 

llJ(x) - L(x)ll ~ 2C2 (5) 
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for all x EX. This is D. H. Hyers' result [4]. 
If c = 0, and 0 $ a + b < 1 in (3) we obtain our result [6], which is: Let X 

be a normed linear space with norm 11-lh and /et Y be a Ban ach space of norm 
11-112· Assume in addition that f : X -+ Y is a mapping such that f(t.x) is 
continuous in t for each fixed x. If there exist a, b, 0 $ a + b < 1, and C2 ~ 0 
such that 

11/(x + y) - [f(x) + /(y)Jlb $ 2C2llxllrnYll~ ( +) 

For all x,y,E X, then there exists a unique linear mapping L: X-+ Y such 

that 

(++) 

for all x E X, where 

Existence. Inequality (1) and x; = x, j = 1, 2, ... ,p, imply 

11/(px) - p/(x)ll $ C2I<(x, x, ... , x) , 

or 
(6) 

where C1 = C2/p. More generally, the following lemma holds: 

Lemma 1. In the space X, for some C2 ~ 0 and for any positive integer n 

n-1 

llf(pnx)p-n - /(x)ll $ C1 LP-i K(pix,pix, ... ,pix) . (7) 
i=O 

To prove Lemma 1, we work by induction on n. 

For n = 1, the result is obvious from (6). We assume then that (7) holds 
for n = k and prove that (7) is true for n = k + l. Indeed, from (7) and n = k 
and px = z, we find 

k-1 
11/(pk z)/pk - /(z)ll $ C1 LP-i K(p; z,piz, ... ,piz) , 

i=O 

or 

k-1 
llf(pk+lx)/pk - f(px)ll $ C1 'L:>-i J<(pi+lx,pi+lx, ... ,pi+lx) , 

i=O 
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or 

k-1 

llf(pk+1x)/pk+l - f(px)/Pll:::; C1 LP-(i+l) K(pi+1x, ... ,pi+1x) , 
i=O 

or 
k 

llf(pk+lx)/pk+1 - f(px)/Pll:::; C1 LP-iK(pix,pix, ... ,pix) (8) 
i=l 

Therefore from (6) and (7) we get 

llf(pk+1 x)/pk+l - f(x)ll 
:::; llf(pk+lx)/pk+I - f(px)/Pll + llf(px)/pk+I - f(x)ll 

k 

:::; C1 LP-i K(pix,pix, ... ,pix) + C1K(x, x, ... , x) 
i=l 

k 

= C1 LP-i K(pix,pix, ... ,pix) , 
i=O 

or (7) holds for n = k + 1, or 

k 

llf(pk+lx)/pk+1 - f(x)ll:::; C1 LP-iK(pix,pix, ... ,pix) (9) 
i=O 

But (Cs) yields 

n-1 oo 

LP-i K(pix,pix, ... ,pix) < LP-i l<(pix,pix, ... ,pix) = Rp(x) . (10) 
i=O i=O 

Then Lemma 1 and inequality (10) imply 

(11) 

for any x EX, any positive integer n and some C1 2: 0. 

Lemma 2. The sequence {f(pnx)/pn} converges. 

We first use ( 11) and the completeness of Y to prove that the sequence 
{f(pnx)/pn} is a Cauchy sequence. In fact, ifi > j 2: 0, then 
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and ifwe set plx = h (then pix = pi-ipix = pi-ih) in (12) and employ (11), 
we get 

or 

because 

llf(pix)p-i - f(pJ x )p-i II = P-j llf(pi-j h)p-(i-j) - f(h)ll 
~ p-ic1Rp(h), 

(13) 

lt is obvious from (13) and the completeness of Y that the sequence 
{f (p" x )p-n} converges and therefore the proof of Lemma 2 is complete. 

or 

or 

Set 

lt is clear form (1), (14), and (c3 ) that 

p p 

II lim P-n f(pn L Xj) - lim L P-n f(pn Xj )II 
n-+oo n-+oo 

i=l j=l 

~ lim C2p-n I<(pnxi, pn X2, ... , pnxp) = 0 , 
n-oo 

llL, (t, x; )- t,L,(zi )II = 0 fm ony •; E X,j = !, ... ,p, 

From (15) we get 

p 

= 'LLp(xj) for any (x1 ,x2 , ... xp) EXP 
i=l 

for any q E Q, where Q is the set of rationals. 

(14) 

(15) 

(Hi) 

Lemma 3. Let y• be the space of continuous linear functionals and consider 

the mapping 
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such that 
T(Pl(t) = g(Lp(tx)) , (17) 

where g E Y*, t E DR, and x EX, x := fixed. The T(P) is continuous. 

To prove Lemma 3 we proceed as follows: Let 

(18) 

such that 
T(t) = lim T~Pl(t) , 

n-oo 
(19) 

where x EX, x := fixed and t E DR, g E Y*. 
Then T~p)(t) are continuous and therefore T(P) is measurable as the point­

wise limit of continuous mappings T~P). Moreover, T(P) is a homomorphism 
with respect to addition "+", that is, 

(20) 

for any t, s E DR. lt is clear now that (20) and the measurability of T(P) imply 
that T(P) is a continuous mapping and thus the proof of Lemma 3 is complete 
([1], p. 110-111, 116-117). 

Then Lemma 3 and the fact that Y* separates points of Y and continuity 
condition ( c1 ) yield the linearity of Lp. 

If we take limits on both sides if (11) as n - oo we obtain (2). 

Uniqueness. lt remains to show the uniqueness part of our theorem. 
Let M : X - Y be a linear continuous mapping, such that 

11/(x) - M(x)ll $ C1R'(x) , (21) 

for any x E X, where Ci is any constant: ~ 0. If there exists a continuous 
linear mapping Lp : X - Y such that (2) holds, then 

Lp(x) = M(x) (22) 

for any x EX. 

To prove (22) we must prove tbe following 

Lemma 4. If (2) and (21) hold, then 

llLp(x)- M(x)ll $ C1Rp(x) + C~R'(x) (23) 
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for any x EX. 

The required result (23) follows immediately if we use inequalities (2) and 
(21) the linearity of Lp and M, as well as the triangle inequality. In fact, 

Lp(x)=p-iLp(,lx), M(x)=p-iM(pix), (24) 

llLp(,lx) - M(pix)ll ~ llLp(,lx)- f(pix)ll + llM(,lx)- J(,lx)ll · 

Then if we apply (2) and (21) we obtain inequality (24) and the proof of 
Lemma 4 is complete. 

lt is clear now that (23) implies ,lim llLp(x) - M(x)ll = 0 for any x EX, 
J-+00 

completing the proof of (22). Thus the uniqueness part of our theorem is 
complete, as well. 

Theorem 2. Let X be a normed linear space and /et Y be a Ranach space. 
Let N be a non-negative real-valued function on XP such that N(x, x, ... , x) 
is bounded on the unit ball of X, and N(tx 1 ,tx2 , ... ,txp) ~ k(t)N(x 1 ,x2 , .. . , 

00 

xp) for all t ::'.'.'. 0, where k(t) < oo and L p-"k(p") < oo. Let f: X--+ Y be 
n=O 

bounded on some ball of X. Assume, furthermore, that f(tx) is continuous in 
t for each x E X. If 

f (t, x;) - t, f (x;) ,; N(x„ x,, ... , x,) , (25) 

for all x1, x2, ... , Xp E X, then there exists a unique linear mapping Lp : X --+ 

Y such that 
llf(x) - Lp(x)ll ~ PN(x, x, „. , x) , (26) 

00 

for all x EX, where p = L p-(n+l)k(p"). 
n=O 

Proof. For i > j ::'.'.'. 0 there holds 

llP-i f(pix) - p-i f(pi x)ll ~ ( t P-mk(pm-l)) N(x, ... , x) (27) 
m=i+l 

This is easily proved by induction. Indeed, if h = pi x, then from (25) with 
x1 = ... = Xp = h we have that 

llP-(j+l) f(pi+ 1 x) - P-i J(pi x)ll = P-(i+l)llf(ph) - pf(h)il 
( ·+1) . 

~ p- 3 k(p3)N(x, „. , x) , 
(28) 



248 J. M. Raaaia11 

so that (27) holds when i = j + l. If (27) is true for a given j and i = s, then 
one sees immediately that it also holds for this j and i = s + 1 by applying 
(28) with j replaced by s, since 

llp-(•+l) /(p•+1 ) - P-i /(pi)ll '.S llP-(s+l) f(p'+ 1) - p-• f(p')ll 

+ llP-• f(p') - P-i /(pi)ll · 

From (27) and the assumption about k, it follows immediately that the 
sequence {f(pix)/pi} converges. From this it follows that if Lp exists, it must 
be unique, since 

llP-i f(pix) - Lp(x )II = P-illf(pix) - Lp(pix)ll 

::; p-i PN(pix, ... ,pix) 

::; p-ik(pi)PN(x, ... , x)--+ 0, 

so that Lp(x) must be the limit ofthe sequence {f(pnx)/pn}. 
Thus we define Lp(x) to be this limit and see at once that (20) holds by 

applying (27) with j = 0 and i = n. 
From (25) it follows that 

llf(pn(x + y)) - f(p"x) - f(pny) - (p - 2)/(0)11 :S k(pn)N(x, y, 0,. ·. , 0), 

so that upon dividing by p" and allowing n --+ oo we see that 

lt follows from the assumption about N(x, x, ... , x) that it is bounded 
on any bounded subset of X. Thus by (27), for each fixed x the sequence 
{p-n f(pnxt)} converges uniformly in t in any bounded subset of R, so that 
Lp(tx) is continuous in t. Since Lp is additive, it is therefore linear. Finally, 
since we have assumed that f is bounded in some open set of X, (26} implies 
that Lp has the same properties, so that it is continuous. 

References 

l. Ch. D. Aliprantis and 0. Budcinshaw, Principle of Real Analysis, Arnold (Publ.), 
1981, England. 

2. J. Gervirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 
(1983), 633-636. 

3. P. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277. 
4. D. H. Hyers, On the stability of the linear /unctional equation, Proc. Nat. Acad. 

Sei., USA, 27 (1941), 222-224. 



Solution of 11 Stdility Problem of Ulam 249 

5. J. Lindenstra.uss a.nd A. Szankowski, Nonlinear Perturbations of Isometries, Col­
loquium in honor of La.urent Schwartz, Vol. 1, Pala.iseau, 1985. 

6. J. M. Ra.ssia.s, Solution of a Problem of Ulam, J. Approx. Th., Vol. 57, No. 3 
(1989), 268-273. 

7. S. M. Ula.m, A Collection of Mathematical Problems, lntersci. Publ., N.Y. 1961; 
Problems in Modern Mathematics, Wiley, N.Y., 1964; Sets, Numbers, and Uni­
verses, M.LT. Press, Cambridge, 1974. 





F\mctional Analysis, Approximation Theory 
and Numerical Analysis 
Ed. John M. Rassias 
© 1994 World Scientific Publishing Co. 
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Let us consider an equation 

yttyy + Uxx + ll<Uy = Ü ( 1) 

on the half-plane y > 0 , where a is some constant. The solution of equation (1 ), 
satisfying the condition u(x,O) = f(:r) , where j(x) is the analytical function, is 
formally expressed in the form of the series 

oo (-l)kf(o) k<fkf 

u(x,y) = ~ k!f(k +a)y dx 2k 
(2) 

that is easy to verify by substituting the series into the equation. If we put 
f(x) = x2n, then from (2) we obtain 

( ) 2n 4(!-n)(-n) 2n-2+ 
Un X, y = X - y:r 

l·o 

42(-n)(l-n)(!-n)(l+!-n) 2 211-4 _ + y.r - ... -
1·2·o·(o+l) 

2n 1 4y 
=x F(-n,-2 -n;a;-2), 

X 

where F(o,ß;-y;t) is the Gaussian hypergeometric function [1]. If f(;r) = x2n+I , 

then analogously we find 

( ) 2n+I 4(-n)(-!-n) 2n-l+ 
Vn X, y =X - 1· Q yx 

42(-n)(l-n)(-l-n)(l- 1 -n) 2 2 _ 3 + 2 2 yxn - ... = 
1·2·a-(a+l) 

1 4y = x2n+l F(-n, -- - n; a; -2 ). 
2 X 

251 
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Making use of formula [1] 

F(Oi,ßi"Yi z) = (1 - z)-a F ( OI,")' - ßi"Yi l ~ J 
finally we obtain 

( 
1 4y ) 

un(x,y)=(x2 +4ytF -n,a:-2+n;o;4y+x2 ' 

2 n ( 1 4y ) vn(x,y)=x(x +4y) F -n,o+-+n;o;-4--2 · 
2 y+x 

These polynomials can be regarded as the analogues of homogeneous harmonic 
polynomials. 

In the matric, determined by the quadratic form corresponding to the principal 
part of equation (1), the equation of the unit circle S has the shape 4y + x2 = l. 
The equalities 

1 
1 2 

un(x,y) s = F(-n,o - 2+n;o;1- ;r ) = 

_ f(o-t+2n)r(o) .2n _ 

- r(o-t+n)f(n+o).I + ... -Q2n(x), 

un(x, y)ls = .l'F(-n, Oi + ~ + n; o; 1 - .1.· 2 ) = 

_ r(OI + t + 2n)r(o) 2 n+I 
-r( 1 ( ;r + ... =Q2n+1(x) 

01+ 2 +n)rn+o) 

hold. The equalities 

dQ2n = _23:F' 
d.r ' 

d2Qn = 4 2F" - ?F' 
d 2 X -

:r 

hold, whence it follows 

F' = _ __!_ dQ2n 
2x dx ' 

F" = _l_d2Q2n + _l_dQ2n 
4x2 dx2 4x3 dx · 

From the equation for the hypergeometric function 

t(l - t)F" + [Oi - (o + ! )t]F' + n(o - ! + n)F = 0, 
2 2 

assuming t = 1 - x 2 , we obtain 

2 ( 2 )F" [ 1 1 2 , 1 
l' 1 - x . + ? + (o + -).r ]F + n(Oi - - + n)F = 0. 

- 2 2 
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By substituting the expressions F", F' ancl F in tenns of Q2 n into this equality we 
find 

(l- 2)d2 Q2n _•) ,dQ2n +·) ("/ +·) -l)Q -0 .r d 2 -ü.1 d -n _11 -Cl 2 11 - • 
. r .r 

By analogy we obtain 

d'Q 
(l-.r 2 ) - 2 ;+ 1 -2a.rdQ2 n+I +(2n+l)(2n+2a)Q2n+1 =Ü. 

d:r d:r 

Consequently, the polynomials Qk(.r) of the k-th clegree satisfy the equation 

2 d2 u du 
(1 - .r )-d 2 - 2a:r-d + k(k + 2a - l)u = 0 . 

.r .r 

Equation (3) is the same as that which is satisfied by Gegenbauer polynomiaL 
[2], therefore 

where A( A·) is a constant. The constant A(k) can be defined by comparing th 
terms of the highest degree in both polynomials. Obviously, the highest clegre 
terms in Q k( :r) have the form 

Q ( ·) _ f(a - ~ + k)f(a) .k 
kX- 1 k k.z+.„ 

r(a - 2 + i )f(a + i) 
and since [2] 

by comparing these expresions we find 

f(a)f(a-~)k! r(2a-l)A·' 
4.(k)- - -----
" -2kf(a-t+~)r(o+~)-r(2a-l+k)' 

consequently, we have 

r(2a - l)k' a-1 

Q k( .r) = f( 2a - 1 + k { k ' ( .r)' 
1 

a > -. 
2 

The case a = t corresponds to the first genus Chebyshev polynomials sncl requires 
special consideration. In this case we have Qk(:r) = Tk(.r) , because with a = t 
for any solution u( y, :r) of equation ( 1) the function u( t 2 „r) is harmonic. 

The presented approach to the construction of orthogonal polynomials admits 
a generalization for the case with many variables. We consider an equation 
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zu„ + t!.u + ll'Uz = 0, x = (x 1 , •.. , Xn), (4) 

where ti. is the Laplace operator with respect to variables .r. Forz= 0 the bounded 
solution of equation (4), satisfying the condition u(O,.r) = f(x) , can be written 
in the form 

~ (-l)kf(G) k k 
u( Z, X) = L.J k!f( ~~ + Cl') Z t!. f. 

k=O 

(5) 

Put f = (:ri+ .. . +x!)1pm(x), where Pm(.r) is a homogeneous harmonic polynomial 
of degree m . By direct calculation in this case we find 

ti.k f = 4k(-l) ... (k - 1 -1)(1 - m - i- l) ... 

n · 2 2 1-k ) (k-m-2-l)(x1+ ... +xn) Pm(X 

and from ( 5) we obtain 

uj"(z,x) =(xi+ ... + x~) 1Pm(x)x 

( n 4z ) xF -l,l-l-m--;G;- 2 2 = 
2 x1 + ... +xn 

= (4z +xi+ ... + x!)1Pm(x)x 

xF(-l,G+ n- 2 +l+m;G; 2 
4z 2 ). 

2 4z + x1 + ... + Xn 

The unit sphere in the metric, corresponding to the principal part of equation 
( 4) is defined by the equation 4z + xi + ... + x! = 1. Let us consider the trace 
uj"(z,x) on the heinisphere S: {z ~ 0,4z +xi+ ... + x~ = 1}. We have 

Qi(x) = ui(z, .rJl 5 = Pm(.r)x 

n - 2 2 2 
xF(-l,G + - 2- + l + m;G; 1- x1 - ... - xn). 

let us construct a partial differential equation, satis:fied by the polynomials Qi ( .r ). 
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dpm F' ? F' 4 2 F" -4.rj-d . - ~Pm + ·'jPm ' 
X; 

Lm . dQi - F ?( 2 . 2 ) F' 
.l 1 -- - mpm - - X2 + · · · + .r n Pm , 

dx· 
J=l J 

t:.Q/ = -4mpmF' - 2npmF' + 4(:I·i + ... + .r~ )pmF" 

However, since Qi(x) = Pm(.r)F, 

2(.ri + ... + x~)Pm(x)F' = - txj dd~'!' + mQ/(.r), 
j=l ) 

t:.Qi = -4(m +:: )Pm(;r)F' + 4(.d + ... + :r~ )pm(.r)F" 
2 

whence we find 

4( xi + ... + X~ )Pnh )F" = ( .ri + ... + .r~ )t:.Qi-

n ~ dQi n m 
-2(m+ 2)~:r1 d:ri· +2(m+2)mQ1 

j=l 

From the equation for the hypergeometric function we get 

(1 - u)uF" + [-(m + ~) + (a + m + ~ )u]F'+ 

n-? 
+l(a+T+l+m)F=O, 

O' = xi + ... + X~. 
Substitutings expresions PmF", Pm F', Pm F into this equa.tion, multiplied by Pm, 
for Qi(.r) we obtain the equation 

+[2l(2l + 2m + 2a + n - 2) + 2mo]Q/ = 0. 
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lt follows from the expresion Qi ( ;r) that 

Qm ( x) = l!I'( a + ? + m + 2l )I'( a) ( _ 1 )1 x 
1 I'(a+ n;-2 +m+l)I'(l+a) 

x(x~ + ... + x!)1pm(x) + Ri(x), (6) 

where R/ ( x) is a polynomial of the degree not exceeding 2l + m - 2. 
Thus the polynomials Qi ( x) yeld the solution to the following problem: to find 

those values of A for which the equation 

( 2 2 ~ dQ 
1- x 1 - . „ -xn)ßQ- 2a ~x1h + AQ = 0 

j=l 

(7) 

has the solutions, bounded in the unit sphere, and to find these bounded solutions. 
lt is natural to regard the polynomials Q7' ( x) as a generalization for the case with 
many variables of the Gegenbauer polynomials. Ifwe represent Q/(x) in the form 
f1(xi + „. + x;)Pm(x) , then from the equation which is satisfied by Q/(x), for 
f1(u) we obtain the equation 

n n n -? 
u(l - u)J" + [m + - - (m + - + a)u]f' + l(l + m + a + ---)! = 0. (8) 

2 2 2 

As know [2] the Jacobian polynomials vla.bl(x) satisfy the equation 

(1- x2 )u11 + [b- a - (a + b + 2)x]u' + l(l + a + b + l)u = 0. 

We replace the independent variable 2y = 1 + :r and then for the function v(y) = 
u(2y -1) we get the equation 

y(y - l)v" + [b + 1 - (a. + b + 2)y]v' + l(l + a. + b + l)v = 0. 

This equation coincides with (8) for a = a - 1, b = m + "22 , consequently 

where A is a constant. Thus 

Qj"(x) = Apm(x)P/<>-l,m+ "22>(2(.z:i + ... +X~) - 1), 

where A is a constant. 
If we multiply by (1 - xi - ... - x;)"'-1 , we can bring equation (7) to the 

self-adjoint form 

t /. [(1 - xi - ... - x!)" ddQ. J + A(l - xi - ... - :r!)'"-1Q = 0. 
j=l XJ XJ 
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Hence it follows that 

j(l - .d - ... - J_·;r"'- 1 Q~(;r)Q/(x)dl· = o 
E 

if at least one of the inequalities either k =f. / or n =f. m is fulfilled, i.e. the 
polynomials Q/(.r) comprise an orthogonal weighted system. Here ~ is a unit 
sphere. 

For the Jacobian polynomia.ls the representation [2] 

p<o.ßl(.r) = (-l)lf(/ + l + ß) F(l + · + ß + 1 -/· /3 + l· l + .r) = 
1 l!f( 1 + ß) Q , , , 2 

_ f(21+a+ß+l)2-I(- )1 1 
- r(l+a+ß+l) 1 :r + ... 

holds, consequently we have 

P (o-l,m+n;- 2 )(?( 2+ + 2)-l)= 
1 ~X1 .„ .rn 

f( 21 + a + m + ~) 1 2 2 1 

( _ 2 )(-l)(x1 +„.+.rnJ+„„ 
rz+a+m+T 

By comparing this formula with the highest degree terms in Q/(x) we find 

m . ) f(a)I! <a-1,m+n;-2>("( 2 + 2) l) 
Q1 (x = Pm(x)P1 - .r1 + · · · .rn - · 

f(l+a) 
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SOLUTION OF' QUASI-TRIDIAGONAL SYSTEM OF' LINEAR EQUATIONS 

Liu Yunkang Wu Ciqian 

Computer Science Department, Lingnan (University) College, 

Zhongshan University, Guangzhou, P.R.China 

Abstract. 

Necessary and sufficient condi tions for the uniqueness, existence, and 

stabili ty of solutions of „ class of quasi -tridiagonal systems of linear 

equations, which appears in many applications, are obtained in this paper. 

Efficient methods for computing both exact and approximate solutions are 

presented. 

1. Introduction. 

Many problems, such as numerical solutions of differential equations[l, 2l 

and interpolation by spline functions[ 3 ,4l, especially when subject to 

periodic or more complicated boundary condi tions, are usually reduced to the 

solution of quasi-tridiagonal systems of linear equations of the general form 

(1.1) Ax=f, 

T T where x=(x1 ,x2, · · · xn) and f=(f1 ,f2, · · · fn) are unknown and known vectors 

respectively, A is a quasi-tridiagonal matrix, 

259 
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a b c 

A= 

a b c 

a..O, c.<O, lbl>lal+lcl · 

The traditional double sweep method is not suited for the solution of 

system (1.1), and those methods, such as Gaussian elimination and iteration, 

have not make full use of the special structure of the coefficient matrix A, 

thus, they are not considered as ideal methods for this kind of systems of 

linear equations. 

In this paper, we shall investigate the uniqueness, existence and 

stability of solutions of system (1.1). By analyse the inverse matrix A-l of 

A, we arrive at some efficient methods for computing both exact and 

approximate solution of system (1.1). When A is a tridiagonal ma.trix or a 

circulant tridiagonal matrix, modified algorithms which need about 5n 

operations are presented. Numerical experiments show that these algorithms 

work efficiently 

2. Uniqueness, existence and stabili ty. 

The uniqueness 1 existence and stabili ty of solutions of system ( 1.1) 

depend mainly on its coefficient matrix A. Therefore, most part of this 

section is devoted to the study of matrix A. 

Evidently, the two roots, say A. 1 and A. 2 , of equation 

(2.1) cA. 2+bA.+a=O 

are distinct real ones, and 1A. 1 j.< 1A. 2 1 • We can assume that 1A. 1 J<1A. 2 1 . 
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Lemma. P·1l<1 , P·2l>L 

Proof. Owing to the fact that 1b1 > 1a1 + 1c1 , we have 

2 2 2 
b -4ac> ( 1a1 + 1 c 1 ) -4aci!: ( 1a1-1 c 1 ) • 

Therefore 

1:1. 1 =llbl-/b2-4ac'I- 2lal < 2jaj =l 
1 2c ' 

lbl+/b2-4ac' lal+lcl+lal-lcl 

_jbl+/ b 2-4ac4 lal+lcl+lcl-lal _ 
1;\,2 1 - 21c1 > 21c1 -1. 

Theorem 2.1. Matrix A is invertible if and only if matrix 
n . n . 

[ 
2: a.:1.~ 

i=l 1. 
B= 

n . 
2: b.:1.~ 

i=l l. 

2: a.:1.~-] i=l l. 

n . 2: b.:1.i-n 
i=l l. 2 

is invertible, i.e., 
n . n . n . n . 
'\' l. '\' i-n '\' l.-n '\' l. 

fJ. (n)= /.; a.:1. 1 · /.; b.:1. 2 - /.; a.:1. 2 · /.; b.:1. 1 „o. 
i= 1 l. i= 1 l. i= 1 l. i= 1 l. 

Proof. Matrix Ais invertible if and only if the hornogeneous system 

(2.2) Ax=O 

T has trivial solution only. Suppose that x=(x1 ,x2 ,-··xn) is a solution of 

system (2.2), we have 

(2.3) 

(2.4) 

(2.5) 

n 
L ;,,.x.=O, 

i=l l. l. 

axi_1+bxi+cxi+l=O, l<i<n, 
n 
L b.x.=O. 

i=l l. l. 

Due to equation (2.4), there exist two constant a and ß, such that 

i i-n 
(2.6) xi=a:1. 1+ß:l. 2 , lsün. 

Thus, we know frorn (2.3), (2.5) and (2.6) that a and ß satisfy 
n . n . 

(2.7) 
l. i-n 

a L a. :\. 1 + ß L a. :\. 2 =O, 
i=l 1. i=l l. 

n . n . 
(2.8) '\' l. '\' l.-n a 1.; b. :1. 1 + ß 1.; b. :\. 2 =O. 

i=l 1. i=l 1. 

Consequently, from (2.6), (2.7) and (2.8), we know that if and only if the 
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coefficient matrix B is invertible, system (2.2) has trivial solution only. 

Since IBl=&(n), theorem 2.1 is thus proved. 

Corollary 2.1. System (1.1) is uniquely solvable if and only if A(n)„o, 

Denote by 

~= 

'lheorem 2.2. If matrices A and ~ are invertible, then 

A-l=(I+D)~l, 

where I is an n by n identity matrix, 

;\ 1 
1-n 

;\2 

;\ 2 2-n * * * 
;\2 

cl-al 
a2-a2 

a -aJ 1 n n 
D= 

-1 
B * * b*-b . 1-bl b2-b2 n 

;\n 
1 1 

Proof. For an arbitrarily given vector f=(f1 ,f2 ,· · ·fn)T, suppose that 

x=(x1 ,x2 ,· · ·xn)T is the solution of system (1.1), we have 

n n 
(2.9) La. (x.-y. )=fl- L i..y.' 

i=l 1 1 1 i=l 1 1 

(2.10) a(xi-1-yi-l)+b(xi-yi)+c(xi+l-yi+l)=O, l<i<n, 

n n 
(2.11) E b.(x.-y.J=f - E b.y. 

i=l 1 1 1 n i=l 1 1 

where y=(y1 ,y2 ,· · ·yn)T is the unique solution of system 

(2.12) ~y=f. 

Due to equation (2.10), there exist two constants a and /3, such that 

(2.13) ls isn. 
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'Thus, we know from (2.9), (2.11) and (2.13) that a and 13 satisfy 

(2.14) 

(2.15) 

Noticing that 

n . n . n 
'<;" i i-n a L. a.:1. 1 + ß L a.:1. 2 =f1- L a.y., 

i=l l i=l l i=l l l 

n . n . n 
i i-n 

a L b. :1. 1 + 13 L b. :1. 2 =f - L b. y .. 
i=l 1 i=l 1 n i=l 1 1 

n * ri- E a.y., 
i=l l l 

n * r =- E b.y., 
n i=l i i 

we get from (2.14) and (2.15) that 

(2.16) 

* -1 cca1 
=B * cb1 

'Therefore, we obtain from (2.13) that 

(2.17) 

'Theorem 2.2 follows from 

lsisn, 

* a -aJ n n 

* y. 
b -b 

n 

-1 -1 A f=x=y+Dy=(I+D)y=(I+D)~ f, 

'Theorem 2.3l 5l. Denote ~ by A0 in the case of (a~,a~,· · · ,a~)=(-c:1. 2 ,c,O, 
* * * · · · ,O), (b1 ,b2, · · · ,bn)=(O, · · · ,O,a,b), then A0 is invertible and has a LU 

factorization A0=LU, where 

µ 

a µ 

„ µ 
L= U= 

a µ 

µ=-c:l. 2=-a/:I. 1 , p=-c:l. 1/a=-1/:1. 2• 

From theorem 2.2 and 2.3, we have 

1 p 

1 p 

1 p 

1 

Corollary 2. 2. 'The solution of system ( 1.1) can be formulated by 

x=(I+D)U-lL-lf. 
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For the sake of numerical stability, we need to estimate the upper bound 

of the condition m.unber 11 (A)=llAll llA-1 11 • Without loss of generality, we 
00 00 00 

assume t.hat 
n n 

max{ L la· I • L lb· I }sKO' 
i=l 1 i=l 1 

where K0 is a positive constant independent of n. 

Theorem 2.4. If there exists a positive constant K1 , which is independent 

of n, such t.hat 

(2.18) 

then the condition number 1100 (A) is bounded with respect to n. 

Proof. It easy to know t.hat 

llAll 00s max{K0 , jal+lbl+lcj}, 

-1 
II B II oos 2Ko/Kl. 

From theorem 2. 2 and theorem 2. 3, we he.ve 

II A-111 00s II (I+D)Aij111 00s ( 1+11Dll 00 ) II L-111 0011u-1 11 00 , 

where 

llDlloos (l+jA.1 I HKo+I cj P·2I + lal + 1 bl +I c 1 )llBll..,, 

-1 -1 IA·1 I 
llU 11..,s(jµl-lall "lal{l-IA-ii)' 

-1 -1 IA-21 
llL 11 00s(l-IPll <IA. 21 _1. 

S1.11111111rizing the above inequalities, we lmow t.hat the condition number 1100 (A) is 

bounded with respect to n. 

Corollary 2.3. If inequality (2.18) holds, the solution of system (1.1) is 

stable. 

3.Algorithms and numerical examples 

To ensure the existence, uniqueness and stability of the solution of 
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system (1.1), we.assume that inequality (2.18) holds. 

According to theorem 2.2 and theorem 2.3, we have the following algorithm 

for the exact solution of system (1.1): 

Algorithm ES: 

-1 Step 1. Compute the solution y=A0 f of system A0y=f in the following 

way: 

i=2,3, · · · ,n, 

yn=wn' Y i =-py i+l +wi' i=n-1,n-2,- .. '1; 

Step 2. Compute the solution x=A-lf of system Ax=f in the following way: 

i i-n xi=yi+a;\ 1+ß;\ 2 , i=l,2, · · · ,n, 

where a and ß are computed by ( 2 .16) . 

To avoid redundant computations, ;\i and ;\i (i=l,2,- · · ,n) should be 1 2 

computed recurrently in the following f orms 

;\ i+l_;\ . ;\ i 
1 - 1 1' i=l,2,- · ,n-1. 

Algorithm ES needs about 21n arithmetic operations. lt should be noted 

that almost half operations are spent on the computation of the coefficients a 

and ß, and the number of such operations are directly proportional to the 

nwnber of non-zero elements in Ca1,a2, ... ,an) and Cb1,b2, ... ,bn). Thus, the 

algorithm ES doesn't need so much operations if some elements in (a1,a2, 

· · """n) and (b1 ,b2,- „ ,bn) are zero. If only a few elements are non-zero, 

algorithm ES needs only about 9n arithmetic operations. When (a1,a2, · · ·, 

an)=(b,c,O, · · · ,O,a), (b1 ,b2, · · · ,bn)=(c,O, · · ,O,a,b), Chen Mingkui C5 l claim 

that bis a!gorithm CI'S needs about 5n arithmetic Operations, that is because 

he didn't take into account of the left band side terms in his algorithm which 

need another 4n arithmetic operations. 

that 

If n, the number of equations in system (1.1), is large, due to the fact 

Lim ;\~= Lim ;\;n=O, 
l'l-1i«> Ir. -
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the second step of algorithm ES can be modified to 
i 

{ 

y i +al 1 ' 1s i <°i. 1 

* . xi= y i, . m1 s 1 s n-~, 
1-n . 

yi+ßl 2 , n-~<1sn, 

where m1+m2sn. Tile error of the approximate solution x* to the exact solution 

x satisfies 

(3.1) 

From (2.16), we lmow t.hat the coefficients a and ß are bounded with 

respect to n, Tilerefore, when m1 and ~ are compa.ratively !arge, the 

approximate solution x* could be very accurate, but need less operations to 

compute. 

In some applications, algorithm ES can be modified to approximate one 

which needs much less operations, Here, we consider two conmonly occurred 

examples. 

Example 1. When (a1 ,„2 ,· · · ,an)=(b,c,O,· · ,0), (b1 ,b2 ,· · · ,bn)=(O,· · · ,o,„, 

b), we have 

2 -1 1-n 2-n n-1 n A (n)=(bl 1+cl 1)(al 2 +b)-(bl 2 +cl 2 )(&l 1 +bl 1 ) 

=acl 2+0(l~n), 
-1 

where l 0=max( l li I • l l 2 1 )<1, and 

Substituting 

c:J= a!l2L~2 ~ c1~:y1-~~ J=[~J+o(lon) 
n yn-1 n 

for (a,ß)T, the second step of algorithm ES can be modified to 

(3.2) i=l,2,· · · ,n. 
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Example 2. When (a1 ,a2 , · · ,an)=(b,c,O, · · · ,O,a), (b1 ,b2 , · · · ,bn)=(c,O, · · · ,O, 

a,b), we have 

where 

Substituting 

* 
C*J =(B-1)* [ f cbyccy2-ayn J = [~] +0(:1.~) 
ß fn-ayl-byn-1-cyn 

for (a,ß)T, the second step of algorithm ES can also be modified to (3.2). 

'lhe modified approximate algorithm of ES in the above examples needs about 

7n ari thmetic operations. 'lhe error of the approximate solution x ** to the 

exact solution x satisfies the following estimate 

When n is 

(3.3) 

• * * n llx -xll 00~ la -al+lß -ßl=O(:l. 0 ). 

large, (3.2) can be remodified to 
* i 

{

Y i +a :1.1' l:S i <ml' 

*** 
xi = Y i' ml,; i:Sn-m2' 

* i-n yi+ß :1. 2 , n-m2<ün. 

The error of x*** to the exact solution x satisfies the following estimates 

*** *** * * II X -xi/ :S II X -x II +II X -xll 
00 00 00 

If n is large and ~· ~ are compa.ratively small, the remodified approximate 

algorithms of ES in the above examples need about 5n arithmetic operations. 
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We apply the algorithms described above to solve system (1.1) in the case 

ofa=l, b=4, c=l, and (a1 ,a2 , · · ,an)=(4,1,0,· · · ,0,1), (b1 ,b2 ,· · · ,bn)=(l,O,· · ·, 

0, 1, 4) , which appears in the problem of periodic spline interpolation [ 3 ] . When 

f=(6,6,· · · ,6)T, the exact solution is x=(l,1,· · · ,l)T, If we use algorithm ES, 

the maximum error of the computed solution to the exact solution are less than 

3.65xl0-12 . If we use the modified algorithm of ES, we have 

Table 1 

n 4 8 16 2'32 

** llx -xll 00 
l.86xl0-3 9.73xl0-6 2.60x10-lO 3.65xl0-12 

If we use the remodified algorithm of ES, let E(n,m)=llx***-x11 00 , where m=m1=m2 , 

we have 

Table 2 

n E(n,4) E(n,8) E(n,16) E(n,32) 

8 1.89x 10 -3 

16 1.89x10 -3 9. 76x 10 -6 

32 1.89x10 -3 9. 76x 10 -6 2.62x10-lO 

;,64 1.89x10 
-3 9. 76x 10 -6 2.62x10-lO 3.65x10-12 

From Table 1 and 2 we know that the errors are mainly come from the 

substi tution of ( 3 . 3) for (3.2), not from the substitution of (a*,ß*) for 

( a, ß ) • General speak, when 
ml -m2 

I A 1 1 and 1A 2 1 are small enough, the remodified 

algorithm will yield satisfactory result. 

The numerical experiments are made an IBM PC using Turbo Pascal version 

5.0 of Borland International, Inc. 
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Tbe Uniqueness and Existence of Solution and Normal Boundary Condition 

for Thin Plate Bending Problem 

Wang Zbebui Wu Ciqian 

Department of Computer Science 

Zbongshan University 

Guang Zbou, PR China 

ABSTRACT 

Spline finite strip metbod based on equi-mesh for structure analysis has been studied by 

C.Q. Wu , Y.K. Cbeung and S.C. Fan in 1981 [1]. We propose the generalized trapezoid element 

metbod of non-equi-mesb processing on abitrary area and its error analysis in [2]. The basic 

problem or structure analysis, tbe uniqueness and existence or SOiution or tbin plate bending 

problem is discussed in tbis paper in order to deal witb boundary condition on abitrary area 

uniformly . The normal boundary condition is also proposed. 

Let 

D {E} 

0 

where Dx, Dy, D1 . D,.y are positive constants satisfying Dx , Dy> D1 and W(X. Y) 

displacement runction on tbe bounded area Q. 

Let T iJ Q be boundary of Q and W E H2 (Q),f E H0 (Q). 

Definition (1) 

J(W) = II c+ { E} T D { E } - w f ]dxdy 
Q 

= II <+rnxw~x+2D1WxxWyy+Dy w:y+4DxyW~y]-Wf}dxdy 
Q 
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Thin plate bending problem of structure analysis becomes the following problem. 

lind w* E 8 2 (Q) such that 

J(W*) 

Definition (2) 

min J(W) 
WEH 2 (Q) 

For all u,v E 8 2 (Q) f E H0 (Q), deline 

( 1 ) 

a(u,v)=JJQ [DxuxxVxx+D 1 uxxVyy+D,uyyVxx+DyuyyVyy+4DxyuxyVxyJdxdy 

(f, v) =Jf Q fvdxdy 

Definition (3) 
... 

For all u E H (Q), k 

II u II k . Q = { J J Q 

lu 1 k. Q 

0,1,2, ... , deline 

[ ~ 
O~o:+ß~k 

[ ~ 

k 1/2 
a u ) 2 l dxdy } 

ax er: 8y ß 
k 1/2 

a u ß ) 2 l dxdy } 
ax er: 8y 

By llu llk 

Lemma (1) 

er:+ ß =k 
• 1 u 1 k denote II u II k , Q 1 u 1 k , Q respectively, if there is no confusion. 

Let w* E 8 2 (Q) be the Solution of (1) then 

a(w*.v) = (f.v) V vEH 2 (Q) (2) 

* Conversely, W EH2 (Q) satisfying (2) must be the solution of (1) 

Definition ( 4) 

Let I'=I'1UI'2UI'3 with r.n rj =</> i*j Deline 

G = { u;u 1 r 1 =0 . Ux 1 r 2 = Uy 1 r" = u 1 r 2 = 0 } 

We name I' 1 , I'" and I' 3 as simple supported boundary. clamped boundary and free boundary 

respectively. 
k 

Define He 
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especially, E = { u; u = Ox Uy = 0, (x,y) E r } 
k k 

HE = { Uj uEH (Q)nE} 

Lemma (2) 

Let w* EHg ( Q) be the Solution or the problem 

J(W*) = min J(W) 
wrng(Q) 

Theo 

acw*.v) = (f.v) 

Conversely, w* E ug (Q) satisrying (4) must be the solution or (3) 

Theorem (1) 

(3) 

(4) 

Let u 1 , u2 E Hg ( Q) be solution or (3) Theo there exist constants a o, ß o, Y o such that 

(x,y) E Q 

lemma (3) 

ForaJluEH 4 (Q), vEH 2 (Q). fEH 0 (Q) let 

Lu = Dx Uxxxx+(2D1+4Dxy)Uxxyy+DyUyyyy 

I'3(u)=[Dxuxxy+(D1+2Dxy)uxyy]cosa 

+(DyUyyy+(D1+2Dxy)UxxyJcosß 

I'2x(u) = [DxUxx+D1Uyy]cosa+2DxyUxyCOsß 

I' 2y(u) = (DyUyy+D1Uxx]cosß+2DxyUxyCOSCl 

where (cos a ,cos ß) is outer normal vector or r .Theo 

a(u,v)-(f ,v)=(Lu-f .v)-J I' [vI'3 (u)-vxI'2x(u)-vyI'2y(u)]ds 

Theorem (2) 

!lf -
Let u Ec• (Q) be the solution of boundary problem 
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Lu = f 

u=I' 2x (u)=I'2y (u)=O 

I'2x (u) =I'2y (u)=I'3 (u) =0 

(x,y) E Q 

(x,y) E I'1 

(x,y) E I'2 

(x,y) E I'3 

Theo ,/" is also the solution or the following variationaJ problem. 

* -Find 11 Ec'" (Q)nG such that 

min J(u) 
WEH~(Q) 

(5) 

(6) 

(7) 

* -Conversely let u Ec'" (Q) be the solutioa or (7), then it must be the solution of (5) and (6). 

1broerem (3) 

Let uEc'" (Q) then u satisfies (5) and (6) ilT u E ~ (!J)and 

a(u,v) = (f,v) V vE ~(Q) (8) 

holds. 

• * Definition (5) Let u E H~( Q) be solution or (7). Define •• to be the generalized 

solution or (5), (6). 

Theorem (4) 

Suppose that G (cf. Definition (4) ) satlsfies one of the following conditions: 

(i) I' 2 „ II> (ii)I' 1 „ II> and I' i COntaiDS three poiats which are not On the Same liae, 

lf probelm (3) has solution, then it must have unique solution. 

Definiioa (6) 

Suppose that G satisfies one of the following conditions 

(i) I' 2 •a> (ii)I'1•a> there exists Aic(Xk,Y..) EI'1,k=l,2,3 such that At A2 A3 arenot 

on the same line and ßA1 A2 A3 contains the center of gravity of Q, 

By "normal boundary condition" we name the boundary condition or G. 

Note : lf the boundary condition is normal, variational problem (3) possesses solution whlch 
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• • has physical background. By Theorem (4) tbis solution W is unique. In this case ir W E 

H6 (Q), we know by emhedding tbeorem that w* EC4 (Q) and determined by (5) and (6) . 

• We can study the property of W by (5) and (6). 
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A CHARACTERIZATION OF Q-ALGEBRAS 

YANNIS TSERTOS 
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We will prove in this work the following: 

(1) A t.a. (: topological algebra) (E, r) is "Q" iff there exists V E Wo such 

that rE ~ 9v· 

(II) A l.c. (: locally convex) algebra ( E, r) is "Q" iff there exist M > 0 and 
p E f such that rE ~ M · p. 

(III) A l.m.c. (: locally multiplicatively convex) t.a. (E, f) is "Q" iff there 
exists p E r such that rE ~ p. 

Applications. 

(IV) A "Q" locally convex *-algebra ( E, r) with the B* -property is normed 
(: there exists p E r such that q ~ p for all q E r). 

(V) (A. Mallios) A l.c. *-algcbra (E,r) with the B*-property whose comple­
tion is a "Q" -algebra is normed. 

Note 1. (III) is the generalization of the relation r(x) ~ llxlJ, x E E for the 
spectral radius r of a Banach algebra (E, 11 ·II). All the above are contained in 

[7]. 
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Definitions. 

a) A t.v.s. (topological vector space) (E, r) is in particular called a t.a. iff 
ai) Eis an algebra (over C) and 
a2) x 1-+ ax, x 1-+ xa are both continuous for all a E E (: separately 
continuous multiplication in ( E, T)). 

b) We put G~ := {x E E : 3y E E : x + y - xy = x + y - yx = O} for 
the set of quasi-invertible elements of E (which is in fact a group under the 
circle-operation: xoy := x + y- xy, x, y E E) and in case E is unital ( :E has 
a "unit" e: xe =ex= x, x E E) : GE:= {x E E: 3y E E: xy = yx = e} 
for the set of invertible elements of E (which is in fact a group under the 
multiplication of E). 

c) A t.a. (E, r) is "Q" in case G~ E T (: equivalently GE E T in the unital 
case or equivalently G~ E W0 (r) where W0(r) are the neighborhoods of 0 
in (E, r)). 

d) For each x E Ewe put Spe(x) := {A E C - {O} : X'$. G~} U <I>x where: 

<l>x := { ~O} 
{O} 

if Eis unital and x E GE 

if E is unital and x </.GE 

for a non unital E 

e) rE(x) := sup{IAI : A E SpE(x)}, x E Eis the spectral radius of x E E 
(in case SpE(x) :f 0) and the map x 1-+ rE(x) of E onto lR+ is called 
the spectral radius of E (which is defined for all x with SpE(x) :f 0). As a 
consequence ofthe Spectral Mapping Theorem we get re(xn) = rE(x)n and 
rE(Ax) = IAlrE(x), A E <C, x E E, n E N, (N,lR+,C above are respectively 
the sets of natural, positive real, complex numbers). Put 

S(E) := {x E E: rE(x) ~ 1} 

f) Given a balanced and absorbing V E W0 (r) we put Ax(V) := {p > 0: x E 

pV}, x E E. lt is easy to see that [p,+oo) ~ Ax ~ [0,+oo), p E Ax, x E E 
and we put 

9v(x) := inf Ax, x E E 

The map 9v : E---> lR+ : x ~ 9v(x) satisfies 9v(Ax) = IAl9v(x), A E C, 
X EE. 

g) In a l.c. algebra, (E, f) = (E, Tr) the topology Tr has a base of neighbor­
hoods of 0 spheres S(p,c) := {x E E: p(x) < c}, c > 0, p E f, where the 
family f of ( :vector space) seminorms on E is supposed to be saturated 
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( :max{p, q} E r for all p, q E r) and separating (: for 0 f:. x E E there 
exists p E r : p( x) f:. 0) (: saturability of r, it is not a loss of generality 
because S(p, €) n S( q, €) = S(max{p, q}, € )). 

h) A l.c. algebra (E, f) is in particular a l.m.c. algebra iff each p E f is 
an algebra-seminorm: p(xy) ~ p(x )p(y), x, y E E. (: submultiplicative 
seminorm p). 

i) A seminorm p of a *-algebra (E, *) (where the involution 1< : E --+ E is 
such that x•• := (x•)* = x, (.Xx + y)" = Xx• + y• and (xy)" = y•x• 
x, y E E, A E C) has the W-property iff p(x•x) = p(x) 2 , x E E. By [6] a 
ß• -seminorm is submultiplicative. 

j) For an algebra seminorm p on E, ker(p) := {x E E : p(x) = O} = p- 1 (0) 
is a (2-sided) ideal of E and the quotient space Ep := E / ker(p) equipped 
with the quotient-norm p( Xp) := inf {p( x + y) : p(y) = 0} = p( x) ( where 
Xp = x + ker(p)) it becomes a normed algebra and its completion Ep = 
("if;:P) is a Banach algebra which in particular is a c•-algebra in case p is 
a ß• -seminorm. 

Note 2. i) E. A. Michael [4] has the characterization "The l.c. algebra (E, r) 
is "Q" iff S(E) E W0 (rr)'' and A. Mallios [3, Lemma 11.4.2] "The t.a. (E,r) 
is "Q" iff S(E) E Wo(r)". 
ii) G. Lassner [2] proved that "a "Q", complete, unital, barrelled, lmc *-algebra 
with the ß•-property is a c•-algebra" and M. Fragoulopoulou [1, Theorem 3.3] 
using a much simpler technique, proved Lassner's result. At the same time, 
remove completeness and unit and replacing the property "Q" by a weaker 
condition. In the same paper (ibid., Lemma 2.1, Theorem 2.2) it was also 
proved that every complete "Q" l.m.c. algebra is, in fact, a c· -algebra. 

Proof. (I) (direct) Let (E,r) be a "Q"-algebra. By G1, ET there exists a 
balanced, absorbing U E Wo(r) in such a way that for V := tu we have 
0 E V ~ U ~ G1,. For arbitrary x E E, p E A„(V) and .X E C : l-XI 2: p 

we have the following: 1-XI E A„(V),x E 1-XIV, x E .XV, f E V~ U ~ G1,, 
.X </. SpE(x). Thus SpE(x) ~ {A E C : 1-XI ~ p}, rE(x) ~ p. Passing to the 
infimum we get: 

rE(x) ~ inf A„(V) = Yv(x), XE E 

(converse) Let rE ~ Yv for some V E Wo(r), and arbitrary x E tv. Thus 

t E A„(V), rE(x) ~ Yv(x) ~ t < 1, 1 </. SpE(x), x = f E G1,. Thus 
tv ~ G1, and so G1, E Wo(r). D 
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(II) For v E Wo(r) with rE ~ Yv there exists p E f, e > 0 : {x E E : 
p(x) < e}:::: S(p,e) ~V. But V~ U is equivalent to Yu ~ nv, S(M · p,e) = 
itS(p,e) = S(p,;, ), A„pV) = fA„(V) and Y>.v(x) = fuv(x), ,\ E C-{0}, 
x E E. Therefore rE ~ Yv ~ Ys(p,E) = gES(p,l) = :ns(p,l) = :v = Mp, with 
M:::l. D 

E 

(III) By (II) we have rE ~ M · p, for some M > 0, p Er, for some M > 0, 
p Er. Thus rE(x) = rE(xn)l/n 

(Mp(xn))l/n = Ml/np(xn)l/n ~ Mlfn(p(xt)l/n 

= Ml/np(x)--+ p(x) . 
n 

(IV) There exists p E r such that rE ~ p. By [3, p. 100] rE(x) 
supr r E (xp) ~ r E (xp), x E E, p E f, and by [5, Lemma 4.8.1] q(x9 ) 2 

p p 

rE
0
(x;x,), q E f, so that for arbitrary q E f we get q(x) 2 = q(x9)2 

ri;0 (x;x9) = ri;0 ((x•x) 9 ) ~ rE(x•x) ~ p(x•x) = p(x)2, x E E, for all x E E 
and the proof is complete. 

(V) Similarly. D 
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Abstract 

Let X be a complex Banach space, and let t-+ T(t) (llT(t)il :$; 1,t ~ 0) be a 
strongly continuous contraction semigroup (on X) with infinitesimal generator A. 
In this paper I prove that 

hold for every x E D(A4 ). lnequalities are established also for uniformly bounded 
strongly continuous semigroups, groups and cosine functions. 

1. Introduction. 

Edmund Landau (1913) [6] initiated the following extremum problem: The 
sharp inequality between the supremum-norms of derivatives of twice differen­
tiable functions f such that 

i!f'll 2 ~ 411/11 111"11 ( +) 

holds with norm referring to the space C[O, oo]. 
Then R. R. Kallman and G.-C. Rota (1970) [3] found the more general 

result that inequality 

(1) 
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holds for every x E D(A2 ), and A the infinitesimal generator (i.e., the strong 
right derivative of Tat zero) oft --+ T(t)(t ~ 0): a semigroup of linear con­
tractions on a complex Banach space X 

Besides Z. Ditzian (1975) [1] achieved the better inequality 

(2) 

for every x E D(A2 ), where Ais the infinitesimal generator of a group t --+ T(t) 

(llT(t)ll = 1, t E JR1.) of linear isometries on X. 
Moreover H. Kraljevic and S. Kurepa (1970) [4] established the even shaper 

inequality 

(3) 

for every x E D(A2 ), and A the infinitesimal generator (i.e., the strong right 
second derivative of T at zero) oft --+ T(t)(t ~ 0): a strongly continuous 
cosine function of linear contractions on X. Therefore the best Landau 's type 
constant is ~ (for cosine functions). 

The above-mentioned inequality (1)-(3) were extended by H. Kraljevic and 
J. Peearic (1990) [5] so that new Landau 's type inequalities hold. In particular, 
they proved that 

(1') 

hold for every x E D(A3 ), where Ais the infinitesimal generator of a strongly 
continuous contraction semigroup on X, Besides they obtained the analogous 
but better inequalities 

(2') 

hold for every x E D(A3 ), where A is the infinitesimal generator of a strongly 
continuous contraction group on X. Moreover they got the set of analogous 
inequalities 

(3') 

for every x E D(A3 ), where A is the infinitesimal generator of a strongly 
continuous cosine function on X. 

In this paper, I extended above inequalities (1')-(3') so that other Landau's 
inequalities hold for every x E D(A4 ), where Ais infinitesimal generator of a 
uniformly bounded continuom: semigroup (resp. group, or cosine function). 
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2. Semigroups 

Let t ---+ T(t) be uniformly bounded (llT(t)ll :S M < oo, t :'.'.: 0) strongly 
continuous semigroup of linear operators on X with infinitesimal generator A, 
such that T(O) = I (:= Identity) in B(X) := the Banach algebra of bounded 
linear operators on X, !im T( t )x = x, for every x, and 

· tJ,O 

1. T(t)-I 
Ax = 1m x 

tJ,O t 
(= T'(O)x) (4) 

for every x in a linear subspace D( A) ( := Domain of A), dense in X, [2]. 

For every x E D(A), I have the formula 

T(t)x = x + it T(u)Axdu (5) 

Using integration by parts, 1 get the formula 

(6) 

Employing (6) and iterating (5), 1 find for every x E D(A2 ) that 

T(t)x = x + tAx + it (t - u)TuA 2 xdu (5') 

Similarly iterating (5'), 1 obtain for every x E D(A4 ) that 

t2 t3 1 lt 
T(t)x = x + tAx + -A2x + -6 A 3 x + - (t - u)3TuA4 xdu 

2 6 0 
(5") 

Theorem 1. Let t---+ T(t) be a uniformly bounded (llT(t)ll :SM< oo, t :'.'.: 0) 
strongly continuous semigroup of linear operators on a complex Banach space 
X with infinitesimal generator A, such that A 4 x ~ 0. Then the following 

inequalities 
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llAxll ~ [M((ts) 2 +(sr)2 +(rt) 2 )+s2(rt-sr-st) + ts+sr+rt] llxll 
tsr(t - s)(s - r) tsr 

MtsrllA4 II + 24 X ' 
(7) 

llA2xll ~ 2 [M(tr2 + sr2 + t 2s + t2r) + s(rt - s2) + t + s + r] llxll 
tsr(t-s)(s-r) tsr 

Mts+sr+rtllA4 II + 12 X ' 
(7') 

llA3xll ~ 6 [M(ts + sr + rt) - s2 + _..!:.__) llxll +Mt+ s + r llA4xll ' 
tsr(t-s)(s-r) tsr 4 

(7") 

hold for every x E D(A4) and for every t,s,r E JR.+ = (O,oo), 0 < t < s < r. 

Theorem 2. Let t----> T(t) be a uniformly bounded (llT(t)ll ~ M < oo, t ~ 0) 
strongly continuous semigroup of linear operators on a complex Banach space 
X with infinitesimal generator A, such that A4x -:f 0. Then the following 

inequalities 

32 
llAxll4 ~ 81 Mg1(mi,m2)llxll3llA4xll, 

llA2xll4 ~ ~M2g2(m1, m2)llxll 2llA4xll 2 , 

8 
llA3xll4 ~ 9M3g3(m1,m2)1ixll llA4xll3 , 

(8) 

(8') 

(8") 

hold for every x E D( A 4), and for some m1, m2 E JR.+, m2 > m1 > 1, where 

Y1(m1, m2) = (m1m2)x 

[M(m~ + (m1m2)2 + m~) + m~(m2 - m1m2 - mi) m1 + m1m2 + m2] 3 

m1m2(m1 - l)(m2 - m1) + m1m2 ' 

Y2(m1,m2) = (m1 + m1m2 + m2) 2x 

[M(m~ + m1m~ + m1 + m2) + m1(m2 - mi) 1 + m1 + m2] 2 

m1m2(m1 - l)(m2 - m1) + m1m2 ' 
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Theorem 3. Let t -> T(t) be a strongly continuous contraction {llT{t)il ::; 
1, t ~ 0) semigroup of linear operators on a complex Ba nach space X with 
infinitesimal generator A, such that A 4x -::/:- 0. Then the fo/lowing inequalities 

11Axll4 :S 10
3
24 11xll3 llA4xll , 

JJA2xJJ4::; 1~4 JJxJJ2JJA4xJJ2 ' 

JIA3 xJJ4 :S 192JlxlJ IJA4xll 3 , 

hold for every x E D(A4 ). 

Proof of Theorem 1. In fact, formula {5") yield system 

6tAx + 3t2 A 2x + t3 A 3 x = 6T(t)x - 6x - lt (t - u)3T( u)A4 xdu 

(9) 

(9') 

(9") 

6sAx + 3s2 A 2 x + s3 A 3 x = 6T(s)x - 6x -1' (s - u)3T(u)A4 xdu (10) 

6rAx + 3r2 A 2 x + r 3 A 3 x = 6T(r)x - 6x - lr (r - u)3 T(u)A4 xdu 

The coefficient determinant D of system (10) is 

D = 18tsr(t - s)(s - r)(r - t) (11) 

lt is clear that D is positive because of the hypothesis: 0 < t < s < r. 
Therefore there is a unique solution of system (10) of the following form 

Ax = [(sr)2 (r - s)T(t)x - (tr)2(r - t)T(s)x + (ts) 2 (s - t)T(r)x 
tsr(t - s)(s - r)(r - t) 

- x - /i. 1(t, s, r; u)T(u)A xdu, ts + sr + rt ] lr , 4 

tsr 0 
(12) 

A X - 2 ~----'-'-------''---'-'---'---'--'---'--'--'----'---'--'----'---..:...__o_ 
2 [-(sr)(r2 - s2 )T(t)x + (tr)(r2 - t 2 )T(s)x - (ts)(s 2 - t 2 )T(r)x 

- tsr(t - s)(s - r)(r - t) 

+t+s+rx]+ ( K 2(t,s,r;u)T(u)A4 xdu, 
tsr Jo (12') 

A 3 x _ 6 [(sr){r - s)T(t)x ·- (tr)(r - t)T(s)x + (ts)(s - t)T(r)x __ 1 x] 
- tsr(t-·s)(s-r)(r-t) tsr 

-1r KJ(t, s, r; u)T(u)A4 xdu , (12") 
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where 

(sr)2 (r - s)(t - u)3 - (tr)2(r - t)(s - u)3 + (ts)2 (s - t)(r - u)3 

6tsr(t - s)(s - r)(r - t) ' 

K1 = -(tr)2(r - t)(s - u)3 + (ts)2(s - t)(r - u)3 

6tsr(t - s)(s - r)(r - t) 

(ts)2 (s - t)(r - u)3 

6tsr(t - s)(s - r)(r - t)' 

0 :'.5 u :'.5 t 

t :'.5 u :'.5 s, 

(sr)(r2 - s2)(t - u)3 - (tr)(r2 - t2)(s - u)3 + (ts)(s2 - t2)(r - u)3 

3tsr(t - s)(s - r)(r - t) 

I<2 = -(tr)(r2 - t 2)(s - u)3 + (ts)(s2 - t2)(r - u)3 

3tsr(t - s)(s - r)(r - t) 

(ts)(s2 - t 2)(r - u)3 

3tsr(t - s)(s - r)(r - t)' 

t :'.5 u :'.5 s, 

s<u<r 

(sr)(r -·s)(t - u)3 - (tr)(r - t)(s - u)3 + (ts)(s - t)(r - u) 3 

tsr(t - s)(s - r)(r - t) 

K3 = -(tr)(r - t)(s - u)3 + (ts)(s - t)(r - u)3 

tsr(t - s)(s - r)(r - t) 

(ts)(s - t)(r - u)3 

tsr(t - s)(s - r)(r - t)' 

t :'.5 u :'.5 s, 

s < u < r. 

lt is obvious that K; = K;(t, s, r; u) ~ 0, i = 1, 2, 3, for every u E [O, r] 
(0 < t < s < r), and that the following equalities 

l r tsr 
K1du = U' 

0 . 

r J( du = ts + sr + rt 
lo 2 12 ' 

l r t+s+r 
K3du = , 

0 4 
(13) 
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hold. Note that ( 12)-( 12") hold because the identities 

hold. 

(sr) 2 (r - s) - (tr) 2 (r - t) + (ts) 2(s - t) 

= (t - s)(s - r)(r - t)(ts + sr + rt) , 

- (sr)(r2 - s2) + (tr)(r2 - t 2) - (ts)(s 2 - t 2) 

= -(t - s)(s - r)(r - t)(t + s + r) , 

(sr)(r - s) - (tr)(r - t) + (ts)(s - t) 

=(t-s)(s-r)(r-t) 

Therefore from formulas (12)-(12"), (13), and triangle inequality, 1 get 
inequalities (7)-(7"). This completes the proof of Theorem 1. 

Proof of Theorem 2. Setting 

in (7)-(7"), 1 obtain the following inequalities 

where 

bi = Mm1m2 llA4xll' 
24 

(15) 

(16) 

_ [ (m~+m 1m~+m 1 +m2)+m1(m2-mi) l+m1+m2]ll II 
a2 - 2 M ) + x , 

m1m2(m1 - l)(m2 - m1 m1m2 

b2 = Mm1 + m1m2 + m2 jjA4xll' 
12 

[ (m1+m1m2+m2)-mi 1 ]II II a3 = 6 M +-- x , 
m1m2(m1 - l)(m2 - m1) m1m2 

b3 = M 1 + m1 + m2 llA4xll 
4 
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Minimizing the right-hand side functions of t of {16), 1 get the sharper 
inequalities. 

But 

and 

ll A3xll4 < 256 a ba 
- 27 3 3 

a 3Ma 1 4 113 a3b3 = 32Ya(m1, m2) lxll llA x 

(17) 

Therefore from (15)-(17), 1 obtain inequalities (8)-(8"). This completes 
the proof of Theorem 2. 

Proof of Theorem 3. Taking M = 1, 1 have 

where 

91(m1,m2) = 8gt(m1,m2), 

g3(m1,m2) = 2gj(m1,m2), 

Hence inequalities (8)-(811 ) are written, as follows: 

256 
11Axll4 ~ 8Tg{(m1, m2)llxll3llA4xll , 

llA2xll4 ~ 196 gl(m1' m2)llxll2llA4xll2 ' 

16 
llA3xll4 ~ 9Yf(m1,m2)llxll llA4xll3 , 

(18) 

(18') 

(18") 
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All functions gt = gt(m1 ,m2 ), i = 1,2,3, attain their minimum at the 
same m1, m2: m1 = 2 + -/2, m 2 = 3 + 2-/2, so that 

Therefore inequalities (18)-(18") and minima (19) yield the even sharper 
inequalities (9)-(9"). This completes the proof of Theorem 3. 

3. Groups 

Let t -> T(t) be a uniformly bounded ([[T(t)[[ ~ M < oo, t E lPI. = 
( -oo, oo)) strongly continuous group of linear operators on X with infinitesi­
mal generator A. lt is clear that analogous inequalities ( a.s those in the afore­
mentioned Theorems 1-3) hold for every t, s, r E JPI.- = (-oo, 0), t < s < r < 0. 

Gase !: s < 0 < t < r. 

Denote 

and 

a.s weil a.s 

m1 < 0, m2 > 1, t > 0 , 

X1 = 6tAx, 

a = 6T(t)x - 6x - lt (t - u) 3 T(u)A 4 xdu, 

b = 6T(m1t)x - 6x - lm,t (mit - u) 3T(u)A 4 xdu 

( = 6T(m 1t)x - 6x - m{ lt (t - u)3 T(m1 u)A4 xdu), 

c = 6T(m2t)x - 6x -1m2
t (m2t - u) 3T(u)A 4 xdu 

Then system ( 10) takes the following form: 

(15') 

(20) 

m2x1 + m~x2 + m~x3 = c 
(10') 
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Solving system ( 10'), 1 find the unique solution 

xi= {m1m2)2(m2 - mi)a - m~(m2 - l)b + mi{m1 - l)c {2l) 
m1m2{m1 - l){m2 - l)(m2 - m1) 

x2 _ -{m1m2){m~ - mDa + m2(m~ - l)b - m1{m~ - l)c {2l') 
- m1m2(m1 - l)(m2 - l){m2 - m1) 

x3 = {m1m2)(m2 - mi)a - m2{m2 - l)b + m1(m1 - l)c (2l") 
m1m2(m1 - l)(m2 - l){m2 - m1) 

Theorem 4. Let t - T(t) be a uniformly bounded {llT(t)ll :'.S: M < oo, t E llll.) 
strongly continuous group of linear operators on complex Banach space X with 
infinitesimal generator A, such that A 4 x ::j; 0. Then 

llAxll < [M(m1m2)2 + m~ + m~ -m1 + m1m2 - m2 + m1 + m1m2 + m 2] 
- m1m2{m1 - l){m2 - 1) m1m2 

X llxll! + M(m1m2)(l + m1 - m1m2 + m2) llA4xllt3 , (22) 
t 24(m1 - l)(m2 - 1) 

llA2xll :'.S: 2{M + 1) (- 1 + mi + m 2) llxll ~ 
m1m2 t 

+ ~ (-(m1 + m1m2 + m2))llA4 xllt2 , (22') 

llA3xll :'.S: 6 [M m1 + m1m2 + m2 - m~ - _1_] llxll.!_ 
m1m2{m2 - l){m2 - mi) m1m 2 t 3 

{22") 

hold for every x E D{A4 ), for every t E JPI.+, and for some m1 E llll.-, m2 E JPI.+, 

Theorem 5. Let t -+ T(t) be a contraction (llT(t)ll :'.S: 1, t E llll.) strongly con­
tinuous group of linear operators on complex Banach space x with infinitesimal 
generator A, such that A 4 x ::p 0. 'L'hen the following inequalities 
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256 
11Axll4 ~ 81 fi(m1, m2)llxll3llA4xll , 

II 2 114 16 2 4 2 A x ~ 9 h(m1, m2)llxll llA xll , 

16 
llA3xll4 ~ 9'3(mi, m2)llxll llA4xll3' 

hold for every x E D(A4 ), and for some m1 E JR-, m2 E JR+, 

where 

'3(m1, m2) = 
(1 + m1 - m2)(-mim2 - m1m2 + m1m~ + (m1m2)2 + m~ + m~)3 

(m1m~)((m2 - l)(m2 - m1))4 

(23) 

(23') 

(23") 

Theorem 6. Let t --+ T(t) be a strongly continuous contraction (llT(t)ll ~ 
1, t E IR) group of linear opr:rators on a complex Ranach space X with in­

finitesimal generator A, such that A 4 x f; 0. Then the fo//owing inequa/ities 

11Axll4 ~ 10 ( ~) 4 
llxll3llA4xll , 

llA2xll4 ~ ~q~llxll211A4xll2 ' 

llA3xll4 ~ 105;s133s3 llxll llA4xll3 ' 

hold for every x E D(A4 ). 

(24) 

(24') 

(24") 

Theorem 7. Let t --+ T(t) be a strongly continuous contraction (llT(t)IJ ~ 
1, t E IR) group of linear operators on a complex Ranach space X with in­

finitesimal generator A, such that A 4 x f. 0. Then the following inequalities 
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11Axll4 :5 ~~ (m2~~ l)411xll3 llA4xll, 

llA2xll4 :5 l96llxll2llA4xll2 ' 

llA3xll4 :5 1
9
6 m~~~0+_ ~~~)3 llxll llA4xll 3 , 

hold for every x E D(A4 ), where 

m20 = / 1+;7. 
Proof of Theorem 4. In fact, from (20) and (21)-(21"), 1 get 

Ax = x1 = 
6t 

(25) 

(25') 

(25") 

(
(m1m2)2(m2 - m1)T(t)x - m~(m2 - l)T(m1t)x + m~(m1 - l)T(m2t)x 

m1m2(m1 -· l)(m2 - l)(m2 - m1) 

_ (m1m2)2(m2 - mi) - m~(m2 - 1) + mi(m1 - 1) x) ! 
m1m2(m1 - l)(m2 - l)(m2 - mi) t 

(26) 
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A 2 x = ..:'.2_ = 
3t2 

2 (-m1m2(m~ - mi)T(t)x + m2(m~ - l)T(m1t)x - m 1(mi - l)T(m2t)x 
m1m2(m1 - l)(m2 - l)(m2 - mi) 

_ -m1 m2(m~ - mi} + m2(m~ - 1) - m1(mi - 1) x) _!__ 

m1m2(m1 - l)(m2 - l)(m2 - m1) t 2 

_ [ ((t _ u)3 (-m1m2(m~ - mi)T(u) + m2(m~ - l)mfT(m1u) 
Jo 3m1m2(m1 - l)(m2 - l)(m2 - m1) 

3 X3 
A x=-= t3 

(26') 

6 (m1m2(m2 - mi)T(t)x - m2(m2 - l)T(m1t)x + m1(m1 - l)T(m2t)x 
m1m2(m1 - l)(m2 - l)(m2 - m1) 

_ m 1m2(m2 - mi) - m2(m2 - 1) + m1(m1 - 1) x) _!__ 

m1m2(m1 - l)(m2 - l)(m2 - m1) t3 

(26") 

But it is clear that the followir.g identities: 

(m1m 2)2(m2 - mi) - m~(m2 - 1) + mi(m1 - 1) 

= (m1 - l)(m'.? - l)(m2 - mi)(m1 + m1m2 + m2), 
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- m1m2(m~ - mn + m2(m~ - l)mf - m1(mi - l)m~ 

= -m1m2(m1 - l)(m2 - l)(m2 - m1)(m1 + m1m2 + m2) 

hold. Applying these identities and formulas (26)-(26"), I obtain inequalities 
(22)-(22"). This completes the proof of Theorem 4. 

Proof of Theorem 5. In fact, from inequalities (22)-(22") 1 get 

3 + 1 + llA xll ~ a3 t3 + b3 t, (27) 

where 

+ - 2 m1m2 II II 
al - ( )( ) X , m1-l m2-l 

bi = (m1m2)(l + m1 - m1m2 + m2) llA4xll , 
24(m1 - l)(m2 - 1) 

at = ( -4) 1 + m1 + m2 llxll ' 
m1m2 

+ i II 4 b2 = - 12 (m1 + m1m2 + m2) A xll , 

aI = 12 1 + mi - 17'2 llxll , 
m1(m2 - l)(m2 - m1) 

2 + 2 + ( )2 + 2 4 bt=-m1m2-m1m2 m1m2 m1m2 m2+m2llA4xll 
4m2(m2 - l)(m2 - mi) ' 

and new identities: 

m1m2(m1 - m2) + m2(m2 - l) + m1(m1 - 1) 

= (m1 - l)(m1 + m1m2 + m2 - mD, 

m1m2(m1 - m2) + m2(m2 - l)m1 + m1(m1 - l)m~ 

= m1(m1 - l)(-mim2 - m1m2 + m1m~ + (m1m2)2 + m~ + m~) 

Minimizing the right-hand side of (27), 1 find 

11Axll4 ~ 22576 (ai)3(bi), 

llA3xll4 ~ 2:76 (aj)(bj)3, (28) 
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where 

+ 3 + 8 (a1 ) (b1 ) = 24 fi(m1, m2), 

(at)2(b!)2 = ~h(m1,m2), 

+)( + 3 3 (a3 b3 ) = 16 JJ(m1,m2). 

Therefore inequalities (28) yield inequalities (23)-(23"). This completes 
the proof of Theorem 5. 

Proof of Theorem 6. Setting m1 = -1, 1 get minfi(-1,m2) = 10(~)4 at 
m2 = 5. Hence h(-1,5) = 1, '3(-1,5) = 54 (13)3 /29 34 Therefore from 
formulas (23)-(23") and m 1 = -1, m 2 = 5, 1 get inequalities (24)-(24"). This 
completes the proof of Theorem 6. 

P f f Th 7 1 f ·t . f ( 1 ) - f ( 1 ) - m;g(l+m~g)' roo o eorern . n ac , mm 3 - , m2 - 3 - , m20 - (m~.-i)• , 

where m 20 = / 1+'{51 (= root (> 1) of equation: m~ - 7m~ - 2 = O). Besides 
1 have 

1 m~0 
fi ( -1, m20) = 8 ( m20 - 1 )4 

Therefore from formulas (24)-(24"), and m1 = -1, m2 = m20, 1 obtain in­
equalities (25)-(25"). This cornpletes the proof of Theorem 7. 

Gase II: r < s < 0 < t. 

Denote s = m 1t, r = m 2t, m2 = m < -1, m1 = -1, t > 0. From (21)-(21"), 1 

have 

m2(m + l)a - m2(m - l)b - 2c 
xi = 2m(m2 - 1) 

a+b 
X2 = - 2-, 

-m(m + l)a - m(m - l)b + 2c 
X - --· 

3 - 2m(m2 -l) 
(29) 
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Therefore from (29) and (20), 1 obtain 

Ax= 

( -m2(m + l)T(t)x + m2(m - l)T(-t)x + 2T(mt)x _ .!_x) ! (30) 
2m(l - m2) m t ' 

( (( _ )3 m2(m + l)T(u) - m2(m - l)T(-u) - 2m4T(mu) A 4xdu) ! 
+ }0 t u 12m(l - m2) t ' 

A 2x = 
2 (T(t)x +2T(-t)x - x) t~ - (lt(t- u)3T(u) +6T(-u) A4xdu) t~' 

(30') 

A3 x = 
6 (m(m + l)T(t)x + m(m - l)T(-t)x - 2T(mt)x + .!._x) _!_ (30") 

2m(l - m2) m t3 

( (( _ )3-m(m + l)T(u) - m(m - l)T(-u) + 2m4T(mu) A4 d ) _!._ 
+ Jot u 2m(l-m2) x u t3 

Thus from formulas (30)-(3011 ) 1 get 

llAxll $ m: 1 llxll~ + (- 24(:~ l)) llA4xjjt3 , 

1 1 
llA2xll $ 4llxllt2 + 12llA4xllt2' 

llA3xll $ 12~2 llxll 13 + ! m(l + n;2) llA4xllt 
1-m t 4 1-m 

Minimizing the right-hand side of inequalities (31)-(31"), 1 find 

where 

11Axll4 $ !~-h1(m)llxll 3 llA4 xll , 

llA2xll 4 $ 1
9
6 llxll 2 1iA4 xi12 , 

llA3xll4 $ 196 h3(m)llxll llA4xll3 ' 

(31) 

(31') 

(31 11 ) 

(32) 

(32') 

(3211 ) 
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First, minimizing h1 (m), m < -1, I get m = -5. Then inequalities (32)­
(32") (with m = -5) are the same as the inequalities (24)-(24"). Finally, 

minimizing h3(m), m < -1, 1 obtain m = m 0 = -J(7 + .,/57)/2. Then 
inequalities (32)-(32") (with m = m0 ) are the same as the inequalities (25)­
(25"). 

4. Cosine functions 

Let t --+ T(t) (t ~ 0) be a uniformly bounded (jjT(t)jj ::; M < oo, t ~ 0) 
strongly continuous cosine function with infinitesimal operator A, such that 
T(O) = I (:=identity) in B(X), limT(t)x = x, Vx, and A is defined as the 

t!O 
strong second derivatives of T at zero: 

Ax = T"(O)x (33) 

for every x in a linear subspace D(A), which is dense in X, [5). 
For every x E D(A), 1 have the formula 

T(t)x = x + 1t (t - u)T(u)Axdu . (34) 

Using integration by parts, 1 get from (34) the formula 

1t (t - u) (1u (u - v)f(v)dv) du= ~ 11 
(t - v)3 f(v)dv , (35) 

where f(v) = TvA2 x. Note the Leibniz formula: 

d~ (1u (u - vt f(v)dv) = n (1u (u - vr- 1 f(v)dv) (36) 

Employing (35)-(36) and iterating (34), 1 find for every x E D(A2 ) that 

t2 111 
T(t)x = x + 1 Ax + -31 (t - u)3T(u)A2 xdx 

2. . 0 
(34') 

Similarly iterating (34') 1 obtain for every x E D(A4 ) that 

t2 t4 t6 1 lt 
T(t)x = x + 1 Ax + 1 A 2 x + aiA3 x + 1 (t - u)7T(u)A4 xdu 

2. 4. \). 7. 0 
(34") 

Theorem 8. Let t --+ T(t) be a uniformly bounded (llT(t)ll ::S M < oo, t ~ 
O) strongly continuous cosinf fun.:tion on a complex Banach space X with 

infinitesimal generator A, such that A 4 x =f 0. Then the following inequalities 
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I Axll < 2 [M (ts)2 + (sr)2 + (rt)2 + s2(rt - sr - st) + ts + sr + rt] llxll 
1 - tsr(t - s)(s - r) tsr 

M tsr llA4 II + 20160 X ' 
(37) 

llA2xll < 24 [M(ts2 + sr2 + t2s + t2r) + s(rt - s2) + t + s + r] llxll 
- tsr(t-s)(s-r) tsr 

Mts + sr + rt llA.4xll 
+ 1680 ' 

(37') 

llA3xll :S 720 [M(ts ~ sr +)~t) -;2 + _tl J llxll 
tsr t - s s - r sr 

+Mt+;/ rllA4xll' (37") 

hold for every x E D(A4 ), and for every t, s, r E iw.+, 0 < t < s < r. 

Theorem 9. Let t --. T(t) be a uniformly bounded (llT(t)ll :S M < oo, t 2'.: 
0) strongly continuous cosine function on a complex Ranach space X with 

infinitesimal generator A, such that A 4 x # 0. Then the following inequalities 

32 
11Axll4 :S 8505 Mg1(m1, m2)11xll31IA4xll, (38) 

4 
llA2xll 4 :S 1225 M 2g2(m1, m2)llxll 2llA4xll 2 , (38') 

40 
llA3xll4 :S 1029 M3g3(m1, m2)\lxll llA4xll3 , (38") 

hold for every x E D(A4 ), and for some m1, m2 E iw.+, m2 > m1 > 1, where 

g; = g;(m1 ,m2 ) are the same as those g;, i = 1,2,3, in Theorem 2. 

Theorem 10. Let t---> T(t) be a strongly continuous contractions (l\T(t)ll :S 
1, t 2'.: 0) cosine function on a complex Ranach space X with infinitesimal 

generator A, such that A 4 x # 0. Then the following inequalities 
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11Axll4 S 1301254 llxll3llA4xll ' 

llA2xll4 S ~9°1ixll 2 llA4 xll 2 , 

llA3xi14 S 2
3
8
4
8
3° llxll llA4xll3 , 

hold for every x E D(A4 ). 

(39) 

(39') 

(39") 

Proof of Theorem 8. In fact, setting t(> 0) instead of t 2 in (34"), 1 get 

Formulas (34"') yields 

2520tAx + 210t2 A 2 x + 7t3 A 3 x 

= 5040T(.Ji)x - 5040x - lft(.Ji - u)7T(u)A 4 xdu 

2520sAx + 210s2 A 2 x + 7s3 A 3 x 

= 5040T( Js)x - 5040x - 1..,/i (vs - u)7T( u)A4 xdu 
(10') 

2520rAx + 210r2 A 2 x + 7r3 A3 x 

= 5040T(../T)x - 5040x -1,;r(Jr- u)7T(u)A4 xdu 

The coefficient determinant n+ of system (10') is 

n+ = 3704400tsr(t - s)(s - r)(r - t)(= D/205800) (11'} 

lt is clear that n+ > 0 because 0 < t < s < r. Therefore there is a unique 
solution of system ( 10') of the form 



300 J. M. Rtuaitu 

Ax = 2 ((sr)2 (r - s)T(v'i)x - (tr) 2(r - t)T(v'S}x + (ts) 2(s - t)T(Jr)x 
tsr(t - s)(s - r)(r - t) 

ts + sr + rt ) 1..rr - x - I<i(t,s,r;u)T(u)A4 xdu, 
tsr 0 

(40) 

A2x = 24 (-sr(r2 - s2)T( v'i)x + tr(r2 - t 2)T( v'S)x - ts(s2 - t2)T( Jr)x 
tsr(t - s)(s - r)(r - t) 

t + s + r ) r..rr + tsr x + Jo I<;t"(t,s,r;u)T(u)A4 xdu, (40') 

Aax = 720 (sr(r - s)T( v'i)x - tr(r - t)T( v'S)x + ts(s - t)T( Vr)x 
tsr(t - s)(s - r)(r - t) 

where 

K[= 

Kf = 

1 ) 1..rr - -x - Ki(t,s, r; u)T(u)A4 xdu, 
tsr 0 

( 40") 

(sr)2 (r - s)(../i - u)7 - (tr)2 (r - t)(v'S- u)7 + (ts) 2 (s - t)(y'T- u) 7 

2520tsr(t - s)(s - r)(r - t) 

-(tr)2{r - t)(vs - u)7 + (ts) 2 (s - t)(-/i='- u) 7 

2520tsr(t - s)(s - r)(r - t) 

(ts) 2 (s - t)(-/i=' - u)7 

2520tsr(t- s)(s -r)(r - t)' 

0 :::; u:::; ../i, 

sr(r2 - s2)(Vt- u)7 - (tr)(r2 - t2 )(v'S- u) 7 + ts(s2 - t2 )(y'T- u)7 
210tsr(t - s)(s - r)(r - t) 

-tr(r2 - t 2 )(v'S- u) 7 + ts(s2 - t 2 )(-/i=' - u) 7 

210tsr(t - s)(s - r)(r - t) 

ts(s2 - t 2 )(-/i=' - u)7 

210tsr(t - s)(s - r)(r - t)' 

0 :::; u :::; ../i, 
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sr(r - s)(../i - u) 7 - tr(r - t)(y'S- u) 7 + ts(s - t)(JT- u)7 

7tsr(t - s)(s - r)(r - t) 

0 $ u $ Vt, 

-tr(r - t)(y'S- u)7 + ts(s - t)(JT- u)7 

7tsr(t - s)(s - r)(r - t) 

ts(s - t)(JT- u) 7 

7tsr(t - s)(s - r)(r - t)' 

Note that Kt ~ 0, i = 1, 2, 3, for every u E [O, ylr] (0 < t < s < r). Besides 

f'.;r K+du - _!!!____ 
Jo 1 - 20160' 

f'.;r K+d _ ts+ sr + rt 
} 0 2 u - 1680 ' 

f'./FK+d - t+s+r 
Jo 3 u - 56 · (13') 

From ( 40)-( 40"), triangle inequality, (13'), (15) and similarly as in the previous 
section "on semigroups", 1 get inequalities (37)-(37"). This completes the 
proof of Theorem 8. 

Proof of Theorem 9. From (15) and (37)-(37") and similar calculations as 
in section "on semigroups", 1 find inequalities (38)-(38"). This completes the 
proof of Theorem 9. 

Proof of Tbeorem 10. Setting M = 1, using (38)-(38"), and minimizing 
g;(m1 ,m2), i = 1,2,3, as in section "on semigroups", 1 obtain inequalities 
(39)-(39"). This completes the proof of Theorem 10. 
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Abstract 

Let X be „ complex Banach space, and let t - T(t) (llT(t)ll ~ 1,t ~ 0) be a 
strongly continuous contraction semigroup (on X) with infinitesimal generator A. 
In this paper, 1 prove that 

11Axll5 ~ 3
5

: 7 llxll4llA5xll, llA2xll5 ~ 23~8 llxll3llA5xll2 , 

llA3xll5 ~ 32 ~: 75 llxl!211Asxll3, llA4xll5 ~ 3 5 27llxll llA5xll4 ' 

hold for every x E D(A5 ). lnequalities are established also for uniformly bounded 
strongly continuous semigroups, groups and cosine functions. 

1. Introduction 

Edmund Landau (1913) (6] initiated the following extremum problem: The 
sharp inequality between the supremum-norms of derivatives of twice differen­
tiable functions f such that 

11!'11 2 ~ 411/ll llt"ll (+) 

holds with norm referring to the space C(O, oo]. 

303 



304 J. M. RaHiaa 

Then R. R. Kallman and G. C. Rota (1970) [3) found the more general 
result that inequality 

(1) 

holds for every x E D(A2 ), and A the infinitesimal generator (i.e., the strong 
right derivative of Tat zero) oft -+ T(t)(t ~ 0): a semigroup of linear con­
tractions on a complex Banach space X. 

Besides Z. Ditzian (1975) [1) achieved the better inequality 

(2) 

for every x E D(A2 ), where Ais the infinitesimal generator of a group t -+ T(t) 
(llT(t)ll = 1, t E IR) of linear isometries on X. 

Moreover H. Kraljevic and S. Kurepa (1970) [4) established the even sharper 
inequality 

(3) 

for every x E D(A2 ), and A the infinitesimal generator (i.e., the strong right 
second derivative of T at zero) oft -+ T(t)(t ~ 0): a strongly continuous 
cosine function of linear contractions on X. Therefore the best Landau 's type 
constant is i (for cosine functions). 

The above-mentioned inequalities (1)-(3) were extended by H. Kraljevic 
and J. Peearic (1990) [5) so that new Landau 's type inequalities hold. In par­
ticular, they proved that 

(1') 

hold for every x E D(A3 ), where A is the infinitesimal generator of a strongly 
continuous contraction semigroup on X. Besides they obtained the analogous 
but better inequalities 

(2') 

hold for every x E D(A3 ), where A is the infinitesimal generator of a strongly 
continuous contraction group on X. Moreover they got the set of analogous 
inequalities 

(3') 
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for every x E D(A3 ), where A is the infinitesimal generator of a strongly 
continuous cosine function on X. 

The above Landau-Kmljevic-Peearic inequalities (1')-(3') have been ex­
tended further by the author of this paper [7], for every x E D(A4 ), where Ais 
the infinitesimal generator of a uniformly bounded continuous semigroup (resp. 
group, or cosine function). In this paper I extend even further my results [7], 
for every x E D(A5 ), where A is the infinitesimal generator of a uniformly 
bounded continuous semigroup (resp. group, or cosine function). 

2. Semigroups 

Let t --. T(t) be a uniformly bounded (JjT(t)ll ::; M < oo, t 2: 0) strongly 
continuous semigroup of linear operators on X with infinitesimal generator A, 
such that T(O) = I (:= Identity) in B(X) := the Banach algebra of bounded 
linear operators on X, lim T( t )x = x, for every x, and 

t!O 

A 1. T(t) - I 
X= lm X 

t!O t 
(= T'(O)x) 

for every x in a linear subspace D(A) (:=Domain of A), dense in X, [2]. 
For every x E D(A), 1 have the formula 

T(t)x = x +lt T(u)Axdu 

Using integration by parts, 1 get the formula 

lt (lau TvA2 xdv) du= lt (t - u)TuA2 xdu . 

Employing (6) and iterating (5), 1 find for every x E D(A2 ) that 

T(t)x = x + tAx +lt (t - u)TuA 2 xdu. 

Similarly iterating (5'); 1 obtain for every x E D(A5 ) that 

(4) 

(5) 

(6) 

(5') 

t2 t3 t4 1 lt 
T(t)x = x+tAx+-A2x+-A3 x+-A4 x+- (t-u) 4T(u)A5 xdu. (5") 

2 6 24 24 0 

Theorem 1. Let t--+ T(t) be a uniformly bounded (IJT(t)ll::; M < oo, t 2: 0) 
strongly continuous semigroup of linear opemtors on a complex Banach space 
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X with infinitesimal generator A, such that A 5 x # 0. Then the following 
inequalities 

llAxll :::; { M[(srp) 2 (s - r)(r - p)(p - s) + (trp) 2 (t - r)(r - p)(p - t) 

+ (tsp) 2(t - s)(s - p)(p- t) + (tsr) 2(t - s)(s - r)(r - t)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

} tsrp 5 + [(tsr + tsp + trp + srp)/tsrp] llxll + M 120 llA xi! , 

llA2xll:::; 2{ M[srp(s - r)(r - p)(p- s)(sr + rp + ps) 

+ trp(t - r)(r - p)(p - t)(tr + rp + pt) 

+ tsp(t - s)(s - p)(p - t)(ts + sp + pt) 

+ tsr(t - s)(s - r)(r - t)(ts + sr + rt)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

+ [(ts + tr + tp + sr + sp + rp)/tsrp] }llxll 

tsr + tsp + trp + srp llA 5 II 
+M 60 X , 

llA3 xll:::; 6{ M[srp(s - r)(r - p)(p - s)(s + r + p) 

+ trp(t - r)(r - p)(p - t)(t + r + p) 

+ tsp(t - s)(s - p)(p - t)(t + s + p) 

+ tsr(t - s)(s - r)(r - t)(t + s + r)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

(7) 

(7') 

+ t+s+r+p}llxll+Mts+tr+tp+sr+sp+rpllAsxll, 
tsrp 20 (7") 

llA4xll:::; 24{ M[srp(s - r)(r - p)(p - s) + trp(t - r)(r - p)(p - t) 

+ tsp(t - s)(s - p)(p - t) + tsr(t - s)(s - r)(r - t)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

+ _1_ }llxll +Mt+ s + r + PllAsxll 
tsrp 5 ' 

(71//) 

hold for every x E D(A5 ), and for every t, s, r,p E JW.+ = (0, 00) 1 0 < t < s < 
r < p. 
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Theorem 2. Let t-+ T(t) be a uniformly bounded (llT(t)JI :S M < oo, t;:::: 0) 
strongly continuous semigroup of linear operators on a complex Banach space 

X with infinitesimal generator A, such that A 5 x =/:- 0. Then the following 

inequalities 

llAxll 5 :S 6
6
1
2
4
5
4 M 91(mi, m2, m3)11xll4llA5xll , (8) 

2 115 125 2 3 5 2 
llA x :S 1944 M 92(m1, m2, m3)llxJI llA xll , (8') 

3 115 225 3 2 5 3 
llA x :S 1728 M g3(m1,m2,m3)llxll llA xll , (8") 

4 115 15 4 II 1 5 4 llAx :S 32 Mg4(m1,m2 1 m3)llx IAxll, (8'") 

hold for every x E D(A5), and for some m1, m2, m3 E JPI.+, m3 > m2 > m1 > 1, 
where 

91(m1, m2, m3) = m1m2m3 

{ M[(m1m2m3) 2(m1 - m2)(m2 - m3)(m3 - mi) 

+ (m2m3) 2 (1 - m2)(m2 - m3)(m3 - 1) 

+ (m1m3) 2(1- m1)(m1 - m3)(m3 - 1) 

+ (m1m2) 2(1 - m1)(m1 - m2)(m2 - l)]/ 

m1m2m3(l - m1)(l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - m3) 
4 

m1m2 + m1m3 + m2m3 + m1m2m3} + , 
m1m2m3 

92(m1, m2, m3) = (m1m2 + m1m3 -J;- m2m3 + m1m2m3) 2 

{ M[(m1m 2m3)(m1 - m2)(m2 - m3)(m3 - m1)(m1m2 + m2m3 + m3m1) 

+ m 2m3(l - m2)(m2 - m3)(m3 - l)(m2 + m2m3 + m3) 

+ m 1m3(1- m1)(m1 - m3)(m3 - l)(m1 + m1m3 + m3) 

+ m1m 2(1- mi)(m1 - m2)(m2 - l)(m1 + m1m2 + m2)]/ 

+ m 1m2m3(l - m1)(l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - m3) 

m1 + m2 + m3 + m1m2 + m1m3 + m2m3 } 3 
+ ' m 1m2m3 
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g3(m1,m2, ma) = (m1 + m2 + m3 + m1m2 + m1m3 + m2m3)3 

{ M[(m1m2m3)(m1 - m2)(m2 - ma)(ma - m1)(m1 + m2 + m3) 

+ m2m3(l - m2)(m2 - ma)(m3 -1)(1 + m2 + m3) 

+ m1ma(l - m1)(m1 - m3)(m3 -1)(1 + m1 + ma) 

+ m1m2(l - m1)(m1 - m2)(m2 - 1)(1 + m1 + m2)]/ 

m1m2m3(1- mi)(l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - ma) 

1 + m1 + m2 + m3 } 2 
+ , 

m1m2m3 

g4(m1,m2,ma) = (1 + m1 + m2 + ma)4 

{ M((m1m2ma)(m1 - m2)(m2 - ma)(ma - m1) 

+ m2m3(l - m2)(m2 - m3)(m3 -1) 

+ m1ma(l - m1)(m1 - ma)(ma - 1) 

+ m1m2(l - m1)(m1 - m2)(m2 - 1))/ 

m1m2ma(l - m1)(l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - m3) 

+ m1~2m3} 

Theorem 3. Let t ____, T(t) be a strongly continuous contraction (llT(t)ll :'.S 
1, t ~ 0) semigroup of linear operators on a complex Ranach space X with 
infinitesimal generator A, such that A 5 x -f. 0. Then the following inequalities 

11Axll5 :'.S 35;7 llxll411A5xll , 

llA2xll5 :'.S \~8 llxll3llA5xll2 , 

llA3xll5 :'.S 32 ~: 7s llxll2llA5xll3 , 

llA4xll5 :'.S 3 5 27llxll llA5xll4 , 

hold for every x E D(A5 ). 

(9) 

(9') 

(9") 

(9"') 
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Proof of Theorem 1. In fact, formula (5") yields system 

24tAx + 12t2 A 2 x + 4t3 A 3 x + t4 A 4 x 

= 24T(t)x - 24x - lt (t - u)4T(u)A5 xdu 

24sAx + 12s2 A 2x + 4s3 A 3x + s4A 4 x 

= 24T(s)x - 24x - 1• (s - u)4T(u)A5 xdu 

24rAx + 12r2 A 2x + 4r3 A 3 x + r4A 4 x 

= 24T(r)x - 24x -1r (r - u)4T(u)A5 xdu 

24pAx + 12p2 A 2 x + 4p3 A3 x + p4A 4 x 

= 24T(p)x - 24x - 1P (p - u) 4T(u)A5 xdu 

The coeflicient determinant D of system {10) is 

{10) 

D = 1152tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) . {11) 

lt is clear that D is positive because of the hypothesis: 0 < t < s < r < p. 

Therefore there is a unique solution of system (10) of the following form: 

Ax = [(srp) 2(s - r)(r - p)(p - s)T(t)x 

- (trp)2 (t - r)(r - p)(p- t)T(s)x 

+ (tsp) 2 (t - s)(s - p)(p- t)T(r)x 

- (tsr) 2(t - s)(s - r)(r - t)T(p)x]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

tsr + tsp + trp + srp 1P K ( . )T( )A5 d - x- 1 t,s,r,p,u u xu, 
tsrp o 

A 2 x = -2[srp(s - r)(r - p)(p - s)(sr + rp + ps)T(t)x 

- trp(t - r)(r - p)(p - t)(tr + rp + pt)T(s)x 

+ tsp(t - s)(s - p)(p - t)(ts + sp + pt)T(r)x 

- tsr(t - s)(s - r)(r - t)(ts + sr + rt)T(p)x]/ 

tsrp(t - s)(t - r)(t ·- p)(s - r)(s - p)(r - p) 

{12) 

(12') 

ts + tr + tp + sr + sp + rp lP 1,,,. ( )T( )As d +2 x+ -i. 2 t,s,r,p;u u x u, 
tsrp o 
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where 

and 

A3 x = 6[srp(s - r)(r - p)(p - s)(s + r + p)T(t)x 

- trp(t - r)(r - p)(p- t)(t + r + p)T(s)x 

+ tsp(t - s)(s - p)(p- t)(t + s + p)T(r)x 

- tsr(t - s)(s - r)(r - t)(t + s + r)T(p)x]/ (12") 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

t+s+r+p LP s -6 x- Ka(t,s,r,p;u)T(u)A xdu, 
tsrp 0 

A4 x = -24[srp(s - r)(r - p)(p- s)T(t)x 

- trp(t - r)(r - p)(p- t)T(s)x 

+ tsp(t - s)(s - p)(p- t)T(r)x 

- tsr(t - s)(s - r)(r - t)T(p)x]/ (12"') 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

+ 24-1-x + [P K4 (t, s, r,p; u)T(u)A5 xdu , 
tsrp }0 

K;(t,s,r,p;u) = ---k;(t,s,r,p;u)/D, i=l,2,3,4, 

48[-(srp) 2(s - r)(r - p)(p - s)(t - u)4 

+(trp) 2(t - r)(r - p)(p - t)(s - u)4 

-(tsp)2 (t - s)(s - p)(p- t)(r - u)4 
+(tsr)2(t - s)(s - r)(r - t)(p - u)4], 0:::; u:::; t 

48((trp)2(t - r)(r - p)(p- t)(s - u)4 

k1 = -(tsp)2(t - s)(s - p)(p- t)(r - u)4 

+(tsr) 2(t - s)(s - r)(r - t)(p- u)4], t:::; u:::; s 

48[-(tsp) 2(t - s)(s - p)(p- t)(r - u)4 

+(tsr)2(t ·- s)(s - r)(r - t)(p - u)4], s:::; u:::; r 

48[(tsr)2 (t - s)(s - r)(r - t)(p - u)4], r:::; u:::; p, 
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96[-srp(s - r)(r - p)(p- s)(sr + rp + ps)(t - u)4 

+trp(t - r)(r - p)(p - t)(tr + rp + pt)(s - u)4 

-tsp(t - s)(s - p)(p- t)(ts + sp + pt)(r - u)4 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(p - u)4], o::;us;t 

96[trp(t - r)(r - p)(p - t)(tr + rp + pt)(s - u)4 

K2= -tsp(t - s)(s - p)(p - t)(ts + sp + pt)(r - u)4 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(p - u)4], t::;u::;s 

96[-tsp(t - s)(s - p)(p- t)(ts + sp + pt)(r - u) 4 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(p- u)4 ], s::=;u::;r 

96[tsr(t - s)(s - r)(r - t)(ts + sr + rt)(p - u)4 ], r ::; u ::; p, 

288[-srp(s - r)(r - p)(p - s)(s + r + p)(t - u)4 

+trp(t - r)(r - p)(p- t)(t + r + p)(s - u)4 

-tsp(t - s)(s - p)(p- t)(t + s + p)(r - u)4 

+tsr(t - s)(s - r)(r - t)(t + s + r)(p - u)4], o::;u::;t 

288[trp(t - r)(r - p)(p- t)(t + r + p)(s - u)4 

K3= -tsp(t - s)(s - p)(p - t)(t + s + p)(r - u)4 

+tsr(t - s)(s - r)(r - t)(t + s + r)(p- u)4], t::=;u::;s 

288[-tsp(t - s)(s - p)(p- t)(t + s + p)(r - u)4 

+tsr(t - s)(s - r)(r - t)(t + s + r)(p - u)4], s::;u::;r 

288[tsr(t - s)(s - r)(r - t)(t + s + r)(p - u)4 ], r ::; u ::; p, 
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1152(-srp(s - r)(r - p)(p- s)(t - u)4 

+trp(t - r)(r - p)(p - t)(s - u)4 

-tsp(t - s)(s - p)(p- t)(r - u)4 

+tsr(t - s)(s - r)(r - t)(p - u)4], 0:::; u:::; t 

1152(trp(t - r)(r - p)(p- t)(s - u) 4 

-tsp(t - s)(s - p)(p- t)(r - u)4 

+tsr(t - s)(s - r)(r - t)(p - u)4], 

1152(-tsp(t - s)(s - p)(p- t)(r - u)4 

+tsr(t - s)(s - r)(r - t)(p - u)4], s:::; u:::; r 

1152[tsr(t - s)(s - r)(r - t)(p- u)4], r:::; u:::; p . 

lt is obvious that K; = K;(t,s,r,p;u) ~ 0, i = 1,2,3,4, for every u E [O,p] 
(0 < t < s < r < p), and that the following equalities 

[P tsrp [P K d = _ tsr + tsp + trp + rsp (l3) 
Jo K1du = - 120 ' Jo 2 u 60 ' 

lp d __ ts + tr + tp + sr + sp + rp lP K4du = _ t + s + r + p , 
K3 u - 20 ' 5 

0 0 (13') 

hold. Note that (13)-(13') hold because identities 

(r - p)[(s - r)(p- s)t3 - (t - r)(p- t)s3 ] 

+(t - s)[(s - p)(p- t)r3 - (s - r)(r -t)p3) 

= - D /1152tsrp , (14) 

(r - p)[(s - r)(p - s)(sr + rp + ps)t4 - (t - r)(p - t)(tr + rp + pt)s4] 

+(t - s)((s - p)(p - t)(ts + sp + pt)r4 - (s - r)(r - t)(ts + sr + rt)p4 ) 

= -D(tsr + tsp + trp + srp)/1152tsrp, (14') 

(r - p)[(s - r)(p- s)(s + r + p)t4 - (t - r)(p - t)(t + r + p)s4] 

+(t - s)((s - p)(p- t)(t + s + p)r4 - (s - r)(r - t)(t + s + r)p4] 

= -D(ts + tr + tp + sr + sp + rp)/1152tsrp , 

(r - p)[(s - r)(p - s)t4 - (t - r)(p - t)s4 ] 

+(t - s)[(s - p)(p- t)r4 - (s - r)(r - t)p4 ] 

= -D(t + s + r + p)/1152tsrp , 

(14") 

(14'") 
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hold. 

Therefore from formulas (12)-(12111 ), {13)-(13'), and triangle inequality, 1 
get inequalities (7)-(7111 ). This completes the proof of Theorem 1. 

Proof of Theorem 2. Setting 

in (7)-(7111 ), 1 obtain the following inequalities 

II 2 1 3 
A xll :<; a2 t2 + b2t , 

llA4xll :<; a4t: + b4t , 

where 

a1 = { M[(m1m2m3)2(m1 - m2)(m2 - m3)(m3 - m1) 

+ (m2m3) 2(1- m2)(m2 - m3)(m3 - 1) 

+ (m1m3) 2(1 - m1)(m1 - m3)(m3 - 1) 

+ (m1m2) 2(1- m1)(m1 - m2)(m2 - l)]/ 

{15) 

{16) 

{16') 

m1m2m3(l - m1){l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - m3) 

+ m1m2 + m1m3 + m2m3 + m1m2m3 }llxll, 
m1m2m3 

b = Mm1m2m3llAsxll 
1 120 , 

a2 = 2{ M[(m1m2m3)(m1 - m2)(m2 - m3)(m3 - m1) 

x (m1m2 + m2m3 + m3mi) 

+ m2m3(1 - m2)(m2 - m3)(m3 - l)(m2 + m2m3 + m3) 

+ m1m3(l - m1)(m1 - m3)(m3 - l)(m1 + m1m3 + m3) 

+ m 1m 2{1 - m1)(m1 - m2)(m2 - l)(m1 + m1m2 + m2)]/ 

m 1m2m3{1 - m1){l - m2){l - m3){m1 - m2){m1 - m3)(m2 - m3) 

+ m 1 + m 2 + m3 + m1m2 + m1m3 + m2m3 }llxll 
1 

m1m2m3 
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a3 = 6{ M[(m1m2m3)(m1 - m2)(m2 - m3)(m3 - m1)(m1 + m2 + m3) 

+ m2m3(l - m2)(m2 - m3)(m3 -1)(1 + m2 + m3) 

+ m1m3(l - m1)(m1 - m3)(m3 - 1)(1 + m1 + m3) 

+ m1m2(l - m1)(m1 - m2)(m2 - 1)(1 + m1 + m2)]/ 

m1m2m3(l - m1)(l - m2)(l - m3){m1 - m2)(m1 - m3)(m2 - m3) 

+ l+m1+m2+m3}llxll, 
m1m2m3 

b3 = Mm1 + m2 + m3 + m1m2 + m1m3 + m2m3llA5xll, 
20 

a4 = 24{ M[m1m2m3(m1 - m2)(m2 - ma)(ma - mi) 

+ m2ma(l - m~)(m2 - ma)(m3 - 1) 

+ m1m3(l - m1)(m1 - m3)(m3 - 1) 

+ m1m2(l - m1)(m1 - m2)(m2 - 1)]/ 

m1m2m3(l - m1)(l - m2)(l - m3)(m1 - m2)(m1 - m3)(m2 - m3) 

+ 1 }llxll, m1m2m3 

Minimizing the right-hand side functions oft of (16)-(16'), I get the sharper 
inequalities 

5 3125 4 
llAxll :::; 256 a1 b1, 

llA3 115 < 312~ 2b3 
X - 108 a3 3> llA4xlls < 3125 b4 

- 256 a4 4 

(17) 

(17') 
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But 

4 M ( 4 s 
al bi = 120 91 m1, m2, m3)llxll llA xi!, 

a~b~ = 7s~92(m1,m2,m3)11xll3 llA5 xll 2 , 
2 3 9M3 ( 2 5 3 a3b3 = 2000 93 mi, m2, m3)llxll llA xll , 

4 24M4 s 4 
a4b4 = 62594( m1, m2, m3)llxll llA xll . 

Therefore from (15), (16)-(16'), and (17)-(17'), 1 obtain inequalities (8)­
(8111). This completes the proof of Theorem 2. 

Proof of Theorem 3. Taking M = 1, 1 find that the functions 9; = 9; ( m1, m2, 
m3), i = 1, 2, 3, 4, m3 > m2 > m1 > 1, attain their minimum at 

so that 

5 + v'5 
m1 = --2-

7 + 3y'5 
m2= 

2 

m3 = 5 + 2v'5, 

( = 3 + ·'golden section number"), 

( . . f . 1 ) = positive root o equation: 7 - - = x , 
X 

(18) 

(18') 

(18") 

min91(m1,m2,m3) = 24 55 , 

min93(m1,m2,m3) = 33 75 , 

min92(m1,m2,m3) = 24 33 55 , (19) 

min94(m1,m2,m3) = 212 (19') 

Therefore, inequalities (8)-(8111 ) with M = 1, and minima (19)-(19') yield 
( 9 )-( 9'"). This completes the proof of Theorem 3. 

3. Groups 

Let t --> T(t) be a uniformly bounded (llT(t)ll ~ M < oo, t E IW. = 
(-oo, oo)) strongly continuous group of linear operators on X with infinites­
imal generator A. lt is clear that analogous inequalities (to those in the 
above-mentioned Theorem 1-3) hold for every t,s,r,p E iw.- = (-oo,O), 
t < s < r < p < 0. 
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Consider: s < p < 0 < r < t, such that 

1 
s = m 1t, r = m 2t, p = m3t, m1 = -1, m2 = 2' m3 = _!, (15') 

2 
t > 0, 

and 

as well as 

a = 24T(t)x - 24x - lt (t - u)4 T(u)A5 xdu, 

b = 24T(-t)x - 24x +lt (t - u)4 T(-u)A5 xdu , 

c = 24T (~x) - 24x - lt (~r (t - u)4 T (~u) A 5 xdu, 

d = 24T (-~x) -24x +lt (~) 5 
(t - u)4 T (-~u) A 5 xdu , 

because 

{nt {t 
Jo (nt - u)4T(u)A5 xdu = n5 Jo (t - u}4T(nu)A5 xdu , (20') 

n = ± ~, and n = -1. 
Then system (10) takes the following form: 

(10') 

1 1 1 1 
-X1 + -X2 + -X3 + -:L4 = C 2 4 8 16 , 

1 1 1 1 d ( ") - -X1 + -X2 - -X3 + -X4 = . 10 
2 4 8 16 

Solving system ( 10')-( 10"), 1 find the unique solution 

-a+b+ 8c-8d -a - b + 16c + 16d 
X1 = 

6 
X2 = 

6 

2a - 2b - 4c + 4d 2a + 2b - 8c - 8d 
X3 = 

3 
X4 = 

3 



Generalized Landau '11 Type Inequalitie11 317 

Theorem 4. Let t ---+ T(t) be a strongly continuous contraction (llT(t)ll ~ 
1, t E ~) group of linear operators on a complex Ban ach space X with in­
finitesimal generator A, such that A 5 x =f 0. Then the following inequalities 

llAxl15 ~ (~~t 1lxl14 llA5 xll , (21) 

llA2xlls ~ 53 ;;2)2 llxl13l1Asxll2 , (21') 

(21") llA3xll 5 ~ 5:~ 1;J3 llxll2llA5 xll3 , 

llA4 xll5 ~ 5 (~) 4 
llxll llA5 xll'1 , (21111 ) 

hold for every x E D(A5 ). 

Proof. From (15'), (20)-(20'), and the solution of system (10')-(10"), I find 
the following formulas 

Ax= (T(t)x-T(-t)x-:T(t)x+BT(-t)x) ~ 

- (t - u) 4 2 2 A 5 xdu -(l t T(u)-T(-u)-8T(!!)+8T(-!!) ) 1 

0 144 t , (22) 

A x = - 30x -2 (-T(t)x-T(-t)x+16Tn)x+16T(-t)x ) 1 
3 t 2 

(l t 4 -32T(u)+32T(-u)-T(~)+T(-~) 5 d) _.!:_ 
- (t - u) A x u 

0 2304 t2 , 

(22') 

A 3 x = 4 (r(t)x -T(-t)x - 2T (~)X+ 2T (-;)X) t~ 

(l t 16T(u)+16T(-u)-T(!!)-T(-!!) ) 1 
- (t - u)4 2 2 A 5 xdu 3 , 

0 96 t (22") 

A 4 x = 16 ( T(t)x + T(-t)x - 4T (;) x - 4T (- ~) x + 6x) t~ 

(l t 4 8T(u)-8T(-u)-T(~)+T(-~)A5 d) 1 
- (t - u) X U 4 . 

0 12 t (221//) 



Therefore from (22)-(2211'), the fact that llT(t)ll ~ 1, t E ~. and the tnangte 
inequality, 1 find the estimates 

1 1 64 1 11 
llAxll ~ 3llxllt + 40 11A5xllt4, llA2xll ~ 311xllt2 + 1920 llA5xllt3, (23) 

llA3xll ~ 24llxllt~ + 2~ollAsxllt2,llA4xll ~ 256llxllt: + 13011Asxllt. (23') 

From (23)-(23') and minimization techniques, 1 get inequalities (21)-(21"'). 
This completes the proof of Theorem 4. 

4. Cosine functions 

Let t ___.. T(t) (t 2: 0) be a uniformly bounded (JIT(t)IJ ~ M < oo, t 2: 0) 
strongly continuous cosine function with infinitesimal operator A, such that 
T(O) = I (:= Identity) in B(X), limT(t)x = x, for all x, and Ais defined as 

t!O 

the strong second derivative of T at zero: 

Ax = T 11 (0)x (24) 

for every x in a linear subspace D(A), which is dense in X, [5]. 
For every x E D(A), 1 have the formula 

T(t)x = x +lt (t - u)T(u)Axdu . (25) 

Using integration by parts, 1 get from (25) the formula 

1t(t-u) (1u(u-v)f(v)dv) du= ~11 (t-u)3f(v)dv, (26) 

where f(v) = TvA2 x. Note the Leibniz's formula: 

Employing (26)-(27) and iterating (25), 1 find for every x E D(A2 ) that 

(2 1 t 
T(t)x = x + 2!Ax + 3! Jo (t - u)3T(u)A 2 xdx (25') 

Similarly iterating (25'), 1 obtain for every x E D(A5 ) that 

t2 t4 t6 t8 1 lt 
T(t)x = x+-21 Ax+ 41 A2 x+·~1A3x+ 1A4x+ 1 (t-u) 9T(u)A5 xdu. 

. . ö. 8. 9. 0 
(25") 
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Theorem 5. Let t -+ T(t) be a uniformly bounded (llT(t)ll '.5 M < oo, t 2 
0) strongly continuous cosine function on a complex Banach space X with 
infinitesimal generator A, such that A 5 x -:f 0. Then the following inequalities 

llAxll '.5 (2!){ M[(srp)2 (s - r)(r - p)(p- s) + (trp) 2 (t - r)(r - p)(p - t) 

+ (tsp) 2 (t - s)(s - p)(p- t) + (tsr)2 (t - s)(s - r)(r - t)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

+ tsr + tsp + trp + srp }llxll + M ~,tsrpllA5xll , 
tsrp 10. 

llA2 xjj ~ (4!){ M[srp(s - r)(r - p)(p - s)(sr + rp + ps) 

+ trp(t - r)(r - p)(p - t)(tr + rp + pt) 

+ tsp(t - s)(s - p)(p - t)(ts + sp + pt) 

+ tsr(t - s)(s - r)(r - t)(ts + sr + rt)]/ 

tsrp(t - s)(t - r)(t - p)(s - r){s - p)(r - p) 

+ ts+tr+tp+sr+sp+rp}llxll 
tsrp 

41 
+ M-·, (tsr + tsp + trp + srp)llA5xll , 

10. 

jjA3 xll ~ (6!){ M[srp(s - r)(r - p)(p - s)(s + r + p) 

+ trp(t - r)(r - p)(p- t)(t + r + p) 

+ tsp(t - s)(s - p)(p - t)(t + s + p) 

+ tsr(t - s)(s - r)(r - t)(t + s + r)]/ 

(28) 

(28') 

t+s+r+p} tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) + llxll 
tsrp 

6' + M-·, (ts + tr + tp + sr + sp + rp)llA5 xll , (28") 
10. 

llA4 xll ~ (8!){ M[srp(s - r)(r - p)(p - s) + trp(t - r)(r - p)(p- t) 

+ tsp(t - s)(s - p)(p - t) + tsr(t - s)(s - r)(r - t)]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) + - 1-}llxll 
tsrp 

8' + M l~! (t + s + r + p)llA5xll , (28'") 



320 J. M. Raaaiaa 

hold for every x E D(A5 ), and for every t, s, r, p E iw.+, 0 < t < s < r < p. 

Theorem 6. Let t -+ T(t) be a uniformly bounded (IJT(t)ll S M < oo, t ;::: 
0) strongly continuous cosine function on a complex Banach space X with 
infinitesimal generator A, such that A 5 x # 0. Then the following inequalities 
hold 

i 5 ((2i)!)5 [5] i 5-i 5 i 
llA xll S (lO!)i i M g;(m1, m2, m3)IJxJJ llA xJJ , (29) 

with i = 1,2,3,4, [~] = i•( 5 ~:) 5_„ g; = g;(m1,m2,m3) as in Theorem 2, for 

every x E D(A5 ), and for some m1, m2, m3 E iw.+, m3 > m2 > m1 > l. 

Theorem 7. Let t -+ T(t) be a strongly continuous contraction (JJT(t)JJ < 
1, t ;::: 0) cosine function on a complex Ban ach space X with infinitesimal 

generator A, such that A 5 x # 0. Then the following inequalities hold for every 

x E D(A5 ): 

i = 1, 2, 3, 4, and 

R - (4')5~ 2 - . (9!)2 J 

(35(6!)) 5 

R3 = 4(10!)3 ' 
(5(8!)) 5 

~ = (10!/2)4 . 

(30) 

Proof of Theorem 5. In fact, setting t(> 0) instead of t 2 in (25"), 1 get 
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Formula (25111 ) yields 

91 91 91 91 
_:_tAx + _:_t 2 A 2 x + _:_t3 A3 x + _:_t4 A 4x 
2! 4! 6! 8! 

r1t = 9!T(v'i)x - 9!x - Jo (Vt - u) 9T(u)A 5 xdu 

91 91 91 91 
_:_sAx + _:_s 2 A 2x + _:_s3 A3x + _:_s4 A4 x 
2! 4! 6! 8! 

f./i = 9!T(vfs)x - 9!x - Jo (vfs- u)9T(u)A5 xdu 

91 91 91 91 
_:_rAx + _:_r2 A 2 x + _:_r3 A3 x + _:_r4 A4 x 
2! 4! 6! 8! 

= 9!T(Jr)x - 9!x -1.;r(Vr- u)9T(u)A5 xdu 

91 91 91 91 
_:_pAx + _:_p2 A 2 x +_:_Pa A3 x + _:_p4 A4 x 
2! 4! 6! 8! 

{'IP 
= 9!T(.JP)x - 9!x - Jo (ylp - u)9T(u)A5xdu 

The coefficient determinant D+ of system (10') is 

(91)4 
D+ = 1 1~ 181 tsrp(t - s)(t -- r)(t - p)(s - r)(s - p)(r - p) 

2-4 ... 

(10') 

(11') . 

lt is clear that D+ > 0 because 0 < t < s < r < p. Therefore there is a unique 
solution of system (10') of the form 
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Ax = (2!)[(srp) 2(s - r)(r - p)(p - s)T(Vt)x 

- (trp)2(t - r)(r - p)(p- t)T( vs)x 

+ (tsp) 2 (t - s)(s - p)(p - t)T( y'T)x 

- (tsr)2 (t - s)(s - r)(r - t)T(JP)x]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

_ (2')tsr + tsp + trp + srp -1./P T.(+(t . )T( )As d • X 1' l , s, r, p, U U X U, 
tsrp o 

A2 x = -(4!)[srp(s - r)(r - p)(p- s)(sr + rp + ps)T(Vt)x 

- trp(t - r)(r - p)(p - t)(tr + rp + pt)T( vs)x 

+ tsp(t - s)(s - p)(p - t)(ts + sp + pt)T( vr)x 

- tsr(t - s)(s - r)(r - t)(ts + sr + rt)T(JP)x]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

(31) 

(41)ts + tr + tp + sr + sp + rp 1./P K+( . )T( )As d + . x+ 2 t,s,r,p,u u x u, 
tsrp o (31') 

A3 x = (6!)[srp(s - r)(r - p)(p - s)(s + r + p)T(Vt)x 

- trp(t - r)(r - p)(p- t)(t + r + p)T( vs)x 

+ tsp(t - s)(s - p)(p - t)(t + s + p)T( vr)x 

- tsr(t - s)(s - r)(r - t)(t + s + r)T(JP)x]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

1 t + s + r + p 1./P „+ . 5 - (6.) x - A 3 (t,s,r,p,u)T(u)A xdu, 
tsrp 0 

A4 x = -(8!)[srp(s - r)(r - p)(p- s)T(vt)x 

- trp(t - r )( r - p )(p - t)T( vs)x 

+ tsp(t- s)(s- p)(p- t)T(vr)x 

- tsr(t - s)(s - r)(r - t)T(JP)x]/ 

tsrp(t - s)(t - r)(t - p)(s - r)(s - p)(r - p) 

+ (8!)-1-x + f'./P Kt(t, s, r,p; u)T(u)A5 xdu, 
tsrp }0 

(31") 

(31'") 



where 

I<( = 

J{+ -2 -
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1911 3 
~(-(srp) 2 (s - r)(r - p)(p- s)(Vt - u) 9 

+(trp) 2 (t - r)(r - p)(p - t)( y's - u) 9 

-(tsp) 2 (t - s)(s - p)(p- t)(Jr- u) 9 

+(tsr)2 (t - s)(s - r)(r - t)(JP- u) 9]/ 

(-D+), 0 < u < ./i 

~[( )2( )( )( )( r;: )9 4 ,6 ,8 , trp t - r r - p p - t y s - u 

-(tsp) 2 (t - s)(s - p)(p- t)(Jr- u) 9 

+(tsr) 2 (t - s)(s - r)(r - t)(JP- u) 9]/ 

(-D+), 

10113 
~[-(tsp) 2 (t - s)(s - p)(p- t)(Jr- u) 9 

+(tsr) 2(t - s)(s - r)(r - t)(JP- u) 9]/ 

(-D+), y's :S u :S yr 
(Qt)3 2 
~[(tsr) (t - s)(s - r)(r - t)(JP- u) 9]/ 

(-D+), Jr:Su:SJP, 

J;~/;, [-srp(s - r)(r - p)(p- s)(sr + rp + ps)(Vt - u) 9 

+trp(t - r)(r - p)(p - t)(tr + rp + pt)( ..fi - u) 9 

-tsp(t - s)(s - p)(p - t)(ts + sp + pt)( vr - u) 9 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(JP- u)9]/ 

(-D+), 0 < u < ./i 

J;~/;, [trp(t - r)(r - p)(p - t)(tr + rp + pt)( vs - u) 9 

-tsp(t - s)(s - p)(p-t)(ts + sp+ pt)(Jr- u) 9 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(JP - u) 9]/ 

(-D+), Vt :S u :S ..fi 

J;~1;. [-tsp(t - s )(s - p)(p - t)(ts + sp + pt)( vr - u) 9 

+tsr(t - s)(s - r)(r - t)(ts + sr + rt)(JP- u) 9]/ 

(-D+), VS :S u :S yr 

J;~(;, [tsr(t - s)(s - r)(r - t)(ts + sr + rt)(JP- u) 9]/ 

(-D+), yr5'u5'JP, 
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K+_ 
3 -

191\3 /; 9 
füfg;[-srp(s - r)(r - p)(p - s)(s + r + p)( vt - u) 

+trp(t - r)(r - p)(p - t)(t + r + p)( y's - u) 9 

-tsp(t - s)(s - p)(p - t)(t + s + p)( Jr - u) 9 

+tsr(t - s)(s - r)(r - t)(t + s + r)(..jP- u) 9]/ 

( - n+), o :'.S u :'.S .Jt 

J! 4?:! [trp(t - r)(r - p)(p - t)(t + r + p)( y's - u)9 

-tsp(t - s)(s - p)(p - t)(t + s + p)( Jr - u)9 

+tsr(t - s)(s - r)(r - t)(t + s + r)(../P- u) 9]/ 

( - n+), .Jt :'.S u :'.S v's 

J! 4?:! [-tsp(t - s)(s - p)(p - t)(t + s + p)( Jr - u) 9 

+tsr(t - s)(s - r)(r - t)(t + s + r)(../P- u) 9]/ 

( - n+), v's :'.S u :'.S Jr 

lol\3 9 
füfg;[tsr(t - s)(s - r)(r - t)(t + s + r)(..jP- u) ]/ 

(-D+), Jr :'.S u :'.S .JP, 

J~~?:. [-srp(s - r)(r - p)(p - s)( Vt - u) 9 

+trp(t - r)(r - p)(p - t)( y's - u) 9 

-tsp(t - s)(s - p)(p- t)(Jr - u) 9 

+tsr(t - s)(s - r)(r - t)(..;P- u) 9]/ 

( - n+), o :'.S u :'.S .Jt 

J~~?:! [trp(t - r)(r - p)(p - t)( y's - u) 9 

-tsp(t - s)(s - p)(p - t)( Jr - u)9 

Kt= +tsr(t - s)(s - r)(r - t)(../P- u) 9 ]/ 

(-D+), Vt :'.S u :'.S y's 

lol\3 
-f.Fsr[-tsp(t - s)(s - p)(p - t)(Jr- u) 9 

+tsr(t - s)(s - r)(r - t)(../P - u) 9]/ 

( - n+), v's :'.S u :'.S Jr 

J!9~?:, [tsr(t - s )( s - r )( r - t)( ..jP - u) 9 ]/ 

(-D+), Jr :'.S u :'.S .JP. 
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Note that K[ ~ 0, i = 1, 2, 3, 4, for every u E [O, y'P] (0 < t < s < r < p). 
Besides 

1..;p 21 } K+ du = --· tsrp 
0 1 10! 
..;p 41 , 

f Ki du= --·1 (tsr + tsp + trp + srp) lo 10. 

(32) 

1..;p 61 } Kj du = - -· 1 ( ts + tr + tp + sr + sp + rp) 
0 10. 

f..;p 81 
Jo Kt du= - 1 ~! (t + s + r + p) 

(32') 

From (31)-(31"'), triangle inequalities, (32)-(32'), and similarly as "on semi­
groups", 1 get (28)-(28111 ). This completes the proof of Theorem 5. 

Proof ofTheorem 6. From (15) and (28)-(28'") and similar calculations as in 
the previous section "on semigroups", 1 find inequalities (29). This completes 
the proof of Theorem 6. 

Proof of Theorem 7. Setting M = 1, usmg (29), and rmmrmzmg g; 

g;(m1,m2,m3), i = 1,2,3,4, as in section "on semigroups", 1 obtain inequali­
ties (30). This completes the proof of Theorem 7. 
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