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PREFACE

This volume (F.A.N.) contains various parts of Functional Analysis,
Approzimation Theory and Numerical Analysis, namely: A conditional Cauchy
equation on rhombuses, spectral properties of matrices with products of
binomial coefficients as entries, optimization of functionals and application
to differential equations, an alternative Cauchy equation, generalization of
the Golab-Schinzel functional equation, and functional equations and exact
discrete solutions of ordinary differential equations. Besides it contains part
on: Shape from shading problem, approximations to analytic functions,
error estimate in non-equi-mesh spline finite strip method for thin plate
bending problem, the Hyers-Ulam stability of a functional equation containing
partial difference operators, dynamical systems and processes on Banach
infinite dimensional spaces, Banach spaces in Bergman operator theory,
characterization problems in Hilbert space, fixed point procedure in Banach
spaces, Banach algebras of pseudodifferential operators, and Banach spaces.
Finally the reader of this volume can find parts on: Ostrowski constant,
stability problem of Ulam, Gegenbauer polynomials, quasi-tridiagonal system
of linear equations, characterization of Q-algebras, and Landau’s type
inequalities.

This collection of research works is dedicated to the mathematicians: Stefan
BANACH, Alexander Markowig OSTROWSKI, and Stanislaw Marcin ULAM
for their great contributions in Mathematics, Physics, Chemistry, Biology, and
many other branches of Science.

Deep gratitude is due to all those friends and scientists who have encouraged
me to complete this book in less than four years of continuous work. My very
special thanks and appreciation to my family: Katia, Matina, and Vassiliki.
Finally I have to thank the consultant editor Professor J. G. Xu and the
Scientific editor Dr. Anju Goel of WORLD SCIENTIFIC for their patience
and overall cooperation to carry out this project.

John Michael Rassias, Ph.D.
Professor of Mathematics
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STEFAN BANACH
ALEXANDER MARKOWIC OSTROWSKI
STANISLAW MARCIN ULAM

John Michael Rassias
(Athens, Greece)

BANACH was born in Krakow on March 30, 1892 and died in Lwéw on
August 31, 1945. He studied in Lwéw, Poland. Subsequently, he worked at
the University of Lwéw and the Polish Academy of Sciences. Banach gave
the general definition of normed spaces (1920-22). His motivation was the
generalization of integral equations. The essential feature of his work was
to set up a space with a norm but one which is no longer defined in terms
of an inner product. Whereas in L2, ||z|| = y/(z,z) it is not possible to
define the norm of a Banach space in this way because an inner product is
no longer available. The axioms for Banach’s space B are divided into three
groups. The first group contains thirteen axioms which specify that space B
is a commutative group under addition; closed under multiplication by a real
scalar; and that the familiar associative and distributive relations hold. The
second group characterizes a norm on the elements (vectors) of B. The third
group contains just a completeness axiom. An important class of operators
introduced by Banach is the set of continuous additive ones. An operator f is
additive if for all z and y, f(z + y) = f(z) + f(y). Banach (1929) introduced
in Functional Analysis, the notion of the dual (or adjoint) space of Banach
space. One of his many important theorems is the Hahn-Banach theorem
on functionals. Banach’s work on functionals leads to the concept of adjoint
operator. Banach applied his theory of adjoint operators to Riesz operators
(introduced by Riesz in 1918). Banach worked with Stanislaw Marcin Ulam,
Stanislaw Mazur, Kazimir Kuratowski, Hugo Steinhaus, W. Orlicz, and many
other polish and foreign mathematicians. Besides the afore-mentioned theorem
he obtained the following famous theorems: Banach-Alaoglu theorem, Banach
fixed point theorem; Banach-Saks theorem. Finally he introduced the notions:
Banach indicatrix, Banach limits, Banach algebra, and achieved many other
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fundamental results in mathematical analysis (for instance, Banach-Steinhaus
theorem).

OSTROWSKI died on November 20, 1986 at the age of 93. His collected
works amount to some 4,000 pages in six volumes, published by Birkhauser-
Verlag (1986). More than thirty of his students, who are now famous (for
instance, Walter Gautschi), maintained close contact with Ostrowski until
his final years. Ostrowski’s career started in Kiev (1913). He worked with
the great mathematicians: Felix Klein, Edmund Landau, and David Hilbert,
and with the famous mathematicians: Peter Lancaster, Reich, Rita Jeltsch-
Fricker, and many others. Born in Kiev on September 25, 1893, Ostrowski re-
ceived his initial mathematical education under Ukrainian teachers. When he
was working as an assistant to Felix Klein at Gottingen, Ostrowski earned his
reputation as one of the world’s leading mathematicians. In 1927 he accepted
a call to work at Basel University where he remained until 1958. His papers
are of interest to algebraists, geometers, analysts, topologists, and computer
scientists. Numerical analysts are also indebted to him for the investigations
he carried out on the iterative solution of equations. Of particular interest to
computer scientists is complexity theory and foundations of symbolic integra-
tion due to Ostrowski’s results. In the years after the second world war he
began a sequence of visits to North America initiated by the U.S. National
Bureau of Standards. He received honorary degrees from: University of Wa-
terloo (1967), University of Besangon, and from ETH Zurich. Ostrowski was
Honorary Editor-in-Chief of “Aequationes Mathematicae” from its foundation.
Theorems: Ostrowski-Reich (“on the iterative techniques in matrix algebra”),
and Ostrowski (“on analytic continuation”), are classical. His book “Solution
of equations in Euclidean and Banach spaces” (Acad. Press, 1973) is excellent.
The writer of this contribution made contact with Ostrowski on August 14,
1983 (11:40 a.m.~4:20 p.m.) at Ostrowski’s home at Certenago di Montagnola,
Via Sott’Ca 11, Switzerland. My wife and I were very happy to meet one of the
last great mathematicians. Ostrowski said to us that his favorite teachers were:
A high school teacher and David Hilbert. According to Ostrowski, Hilbert was
that time the best mathematician in the world. Quoting Landau’s words,
Ostrowski said that a mathematical problem must be treated rigorously as it
is stated. Finally he quoted Landau’s statement, that applied mathematicians
duplicate results of pure ones.
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ULAM was born in Lwéw, Poland on April 3, 1909 and died in Santa
Fe, U.S.A. on May 13, 1984. He graduated with a doctorate in pure mathe-
matics from the Polytechnic Institute at Lwéw in 1933. Ulam worked at: The
Institute for Advanced Study, Princeton (1936), Harvard University (1939-40),
University of Wisconsin (1941-43), Los Alamos Scientific Laboratory (1943-
65), University of Colorado (1965-76), and University of Florida (1974-).
He was a member of the American Academy of Arts and Sciences and the
National Academy of Sciences. He made fundamental contributions in mathe-
matics, physics, biology, computer science, and the design of nuclear weapons.
His early mathematical work was in set theory, topology, group theory, and
measure theory. While still a schoolboy in Lwéw, Ulam signed his notebook
“S. Ulam, astronomer, physicist and mathematician”. As Ulam notes, “the
aesthetic appeal of pure mathematics lies not merely in the rigorous logic of
the proofs and theorems, but also in the poetic elegance and economy in artic-
ulating each step in a mathematical presentation.” Ulam worked with Stefan
Banach, Kazimir Kuratowski, Karol Borsuk, Stanislaw Mazur, Hugo Stein-
haus, John von Neumann, Garrett Birkhoff, Cornelius Everett, Dan Mauldin,
D. H. Hyers, Mark Kac, P. R. Stein, Enrico Fermi, John Pasta, Richard Feyn-
man, Ernest Lawrence, J. Robert Oppenheimer, Teller, and many other people
of applied and exact sciences. Ulam was invited to Los Alamos by his friend
John von Neumann, one of the most influential mathematicians of the twen-
tieth century. Ulam’s most remarkable achievement at Los Alamos was his
contribution to the postwar development of the thermonuclear or hydrogen
(H-) bomb in which nuclear energy is released when two hydrogen or deu-
terium nuclei fuse together. One of Ulam’s early insights was to use the fast
computers at Los Alamos to solve a wide variety of problems in a statistical
manner using random numbers. This method has become appropriately known
as the Monte Carlo method. One example that may have biological relevance
is the subfield of cellular automata founded by Ulam and von Neumann. Fi-
nally Ulam had a unique ability to raise important unsolved problems. One of
these problems was solved by the writer of this contribution (J. Approx. Th.,
Vol. 57, 268-273, 1989, New York, by Academy Press).
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ON A CONDITIONAL CAUCHY EQUATION ON RHOMBUSES

C. ALSINA and J-L. GARCIA-ROIG
Seccié Matematiques, ETSAB, Univ. Politécnica Catalunya
Diagonal 649. 08028 Barcelona, Spain.

ABSTRACT
We solve the conditional Cauchy equation f(z + y) = f(z) + f(y) whenever
”:l:” = ||y|| for continuous mappings f from a real inner product space into a

topological real linear space.

The aim of this paper is to study the conditional Cauchy equation on rhom-
buses, i.e.,

fz+y)=f(e) + fly) whenever |lz|| =iy,

where f FE — F is a continuous mapping from an inner product space E into a
topological real linear space F.

THEOREM 1. Let f : E — F be a continuous mapping from a real inner product
space (E, -) of dimension greater than 1 into a topological real linear space F'. Then
f satisfies the conditional Cauchy equation

flz+y)=flz) + f(y) whenever [z|| = |lyll, (1)

if and only if f is a continuous linear transformation.

Proof. Obviously any continuous linear mapping satisfies (1). Conversely, if f
satisfies (1) then the substitution £ = y = 0 into (1) yields f(0) = 0 and the

substitution y = —z yields f(—z) = —f(z). Next we claim that for any real ¢ and
any = in E we have the homogeneity of f:
ftz) = tf(z). (2)

Since f(—z) = —f(z) and f(0) = 0 we need to prove (2) just for ¢t > 0 and z # 0.
In effect, when we take in (1) 2 = y we get f(2r) = 2f(z) and from this we
immediately obtain inductively that

f(2"z) = 2" f(z), for all integers n. (3)
For our z, let z' and =" be elements in E satisfying the conditions

1
lell = llz'll = la"]l, =2’ =z-2"=S[elf and z=2'+2"  (4)
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Such elements exist because dim F > 1 and in any plane containing z, by previ-
ously considering an orthonormal basis, the problem is easily solved (geometrically
speaking) by taking z' and z"’ as z rotated 60° and —60° respectively.

By virtue of (1) and (4) we have ||z + z'|| = ||z + z"|| and

fBe) = f((z+2") +(z +2") = fz + &) + f(z + ")
= f(z) + f(&') + f(z) + f(a") = 2f(2) + f(z' + 2") = 3f(a).

Again by induction we have
f(8™z)=3"f(x)), for all integers m. (5)

Combining (3) and (5) we deduce f(2"3™z) = 2"3™ f(z), for all integers n,m,
and since f is continuous and the set {2"3™ |n,m € Z} is dense in R* we can
conclude the validity of (2). Our next step is to show (using the vectors introduced
above) that

flaz +bz') = af(z) + bf(z'), foralla,binR. (6)

In effect, due to the fact that ||z|| = ||z’|| and z-2' = }||z||? and the derivability
of the norm in E from an inner product, for all a, b in R we have:

laz + b2'|| = ||az’ + bz|| = [I(a + b)z — bz'|| = [|(a + b)z’ — az]. (8)
Therefore by virtue of (1), (2) and (8) we obtain the equalities:
flaz +b2') + f((a + b)z — bz') = f((2a + b)z) = (2a + b)f(z), (9)

flaz +bz") + f((a + b)a’ — az) = f((a +2b)z") = (a + 2b)f(z"),  (10)

and
flaz + bz') + f(az' + bz) = f((a+ b)(z +2)) = (a + b)(f(z) + f(z")). (11)

Bearing in mind (1), (4) and (8), if we add (9) and (10), and then subtract
(11), we obtain the desired property (6).

As the preceding procedure can clearly be carried out in any two-dimensional
subspace F of E (i.e., we can take z and z' in F') we conclude by (2) and (6) that
f is linear.

Let us note that in the proof just given the argument used in order to deduce
the full additivity of f from the conditional additivity assumed in (1) went throught
the homogeneity of f expressed in (2) where the continuity of f was essential. We
will supply now another alternative proof by using a quite strong result which can
be found in 2 (problem 25, chapter 11).

LEMMA. A mapping ¢ from a real inner product space (E,-) of dimension greater
than 1 into R is orthogonally additive in the sense that

9(z +y) = g(z) + g(y) whenever z -y =0, (13)
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if and only if there exist additive functions a : R — R and kh : E — R such that
9(z) = a(l|z|*) + h(z). (14)

Now we can show the following

THEOREM 2. A mapping f from a real inner product space (E,-) of dimension
greater than 1 into R™ satisfies the conditional Cauchy equation

f(z +y) = f(z) + f(y) whenever ||z|| = [ly], (15)

if and only if is additive, i.e., f(z +y) = f(z) + f(y), for all z,y in E.

Proof. Assume that f : E — R™ satisfies (15). Then, for any couple of orthogonal

vectors  and y, we have that ||z + y|| = ||z — y|| = ||y — z|| and, consequently
flz+y)+ f(z —y) = f(22), (16)
fle+y)+ fly—z) = f(2y), 17

and since by (15) we know f(0) = 0, f(—z) = —f(z) and f(2z) = 2f(z), adding (16)
and (17) we obtain at once f(z+y) = f(z)+ f(y), i.e., from the conditional Cauchy
equation (1) we deduce the orthogonal additivity of f. If for any i = 1,2,...,n,
fi denotes the ith component function of f, then fi E — R will be orthogonal
additive and by the Lemma just quoted there will exist additive functionsa, : R — R
and h; . E — R such that

fi(z) = a(llzl|?) + hi(2). (18)
When we move back from (18) to (15) we see that we would need to require
ai(llz + ylI*) = ax(llzlI*) + ai(llyl|*) whenever ||z|| = |||, (19)

condition which yields (by the additivity of a; and the derivability of the norm from
an inner product) that a,(z - y) = 0 whenever |z|| = |ly||. Thus with z = y we
would have a;(]|z||*) = 0 and therefore a; must be identically zero. Thus by (18)
each f; is additive and so is f.

COROLLARY 1. A mapping f from a real inner product space (E, -) of dimension
greater than 1 into R™ which is continuous at one point, satisfies (15) if and only if
f is a linear mapping.

References.
1. J. Aczél., Lectures on Functional Equations and Their Applications, (Aca-

demic Press, New Yor, 1966).
2. J. Aczél and J. Dhombres, Functional Equations in several variables,
(Cambridge Univ. Press, 1989).
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SPECTRAL PROPERTIES OF MATRICES WITH PRODUCTS
OF BINOMIAL COEFFICIENTS AS ENTRIES

LOTHAR BERG
Fachbereich Mathematik, Universitit Rostock, D-0-2500 Rostock, FR Germany

and

KONRAD ENGEL
Fachbereich Mathematik, Universitat Rostock, D-0-2500 Rostock FR Germany

ABSTRACT

For a class of square matrices with two parameters and products of binomial
coefficients as entries it is shown that the eigenvalues are also binomial coeffi-
cients and that the entries of the corresponding eigenvectors can be expressed
as sums over products of binomial coefficients. In the proof the Cauchy integral
formula for the coefficients of a Taylor series is used.

1. Preliminaries
We consider the square matrices A = (a;;) of order n 4+ 1 with

= ()0 »

n>1land¢,j =0,1,...,n, where m is an additional real parameter. Our main result

is that the binomial coefficients

(")) ) @

are eigenvalues of A. For the proof of (2) we construct the corresponding eigenvec-
tors explicitly and obtain a series of identities for sums over products of binomial
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coefficients. Similar identities are well known in the literature, cf. H.Schmidt®,
and in particular in the framework of combinatorics, cf. E.Bannai and T.Ito' and
J.Riordan®. For natural numbers m > 2n the matrices A can also be interpreted
combinatorially, since the entries (1) are the numbers of monotone functions from
Npm—n — N, = {0,1,2,...,n} which map i onto j. An example with n = 2 and

m = 7 in lexicographical order of the functions in the columns is

0)j0000000000000000000001111112

1/10000000000000001111121111122

200000000000111121111221111222

310000001112111221112221112222

4/0001121122112221122221122222

5/0121221222122221222221222222
where

o= () e o)) =)
= () - 0= ) == ()
o= () ere2= Q)=o)

The case m = 2n—1 can be treated analogously by means of monotone functions from

N, — N, under the additional assumption that the functions have the number n as
fixed point. Such functions appear in the framework of linear involutory semigroups,

cf. L.Berg and W. Peters®. The matrices A can also be used in numerical tests, cf.
L. Berg?® and G. Zielke’

2. The eigenvectors of A

In order to prove our statement concerning the eigenvalues (2) of A we construct the

corresponding eigenvectors.
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Theorem 1. For j =0,1,...,n the matriz A has the eigenvalues (™1") with the

eigenvectors y; = (yi;), where

v B @) e

Proof. First let us mention that the first component of y; is yo; = (;‘), so that
y; cannot be the zero vector. We introduce the matrices Y = (yo,¥1,...,%s), B =

(b,’j), D= (d,‘J) and M = (m;j) with

R 8 [ SO0 [ B
as well as . 1 _— ]
an(V () () e

Then we have Y = BD, and we shall show the equations
AB=BM, MD = DS (6)

which immediately imply our assertion in the form AY = Y'S.

In the following we often use the well known identities

(1) =0 (e )
(o)) =Gr) ®

with integers p, ¢ from the interval [0, n], real a, b and (Z) =0 in case of k < 0.
In order to prove the first equation of (6), we introduce the notations

=2 (00 w=C)E00)

k=0

and

for the elements of the left~hand side AB and the right-hand side BM, respectively.

In view of (*t*) (']‘) = ('jJ) (,‘:’;) we have according to (7) and (8)

S0 - ST

k=0 k=0

T
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and therefore

= (7)GL)

Hence the symmetry formula (,:) = ('._'.k) and (8) immediately imply l;; = ri;.
In order to prove the second equation of (6) we use analogously the notations

MD = (I,'j), DS = (T,’j) with

= SO
)

According to (71)("7*) = ("}") (75.20), (7) and () ("H3"7) =

n—k j n—k—j

(TR we bave

_(m+1 n+j—-m—-1\=/m+1—7j n+j—m-—i—l)
""( j )( i );(n—k—j)( ki

The sum is equal to (n'_':]) = (";"), so that according to (7) we again obtain l;; = i,

Ti;

and (6) is proved.

Remark. The matrix B with (4) is a regular triangular matrix, the inverse of
which has the entries (—1)"~7 (;) Hence Y = BD is equivalent with D = B~'Y, i.e.
the lines of the matrix D are the differences of the lines of the matrix Y, and the
representation (3) considered as a polynomial in m is nothing else than the Newton

interpolation representation.

3. The eigenvectors of AT

It is also possible to construct the eigenvectors of AT belonging to the eigenvalues

(2)-

Theorem 2. For j =0,1,...,n the matriz AT has the eigenvectors z; = (z;;)

m+1
J

wEQEENTY e

belonging to the eigenvalues ( ), where
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Proof. First we introduce the notation N = (n;;) with

v |-
mo= (2T (10)
n—j n—1
and show the validity of the equation
MTN =NS . (11)

The elements on the left-hand side and right-hand side, respectively, are

D (E OG0
()

In view of (,'c) (nfj) = ( ! )("':i;") and (8) we obtain

n—j

(NS G
()G

and it is easy to see that the equation l;; = r;; is satisfied, which proves (11).

The first equation of (6) implies ATB~T = B~TMT with BT = (B~!)T, so
that according to (11) we have ATB-TN = B-TNS. Introducing the matrix X =
(zo, 1, - - .,Z,) with the entries (9) and using (5) the assertion of the theorem can be

T,'j

s

expressed as ATX = XS. Hence it is proved, if we show that
X =BTN (12)

This representation implies z,; = (—1)"~ (;‘), so that z; cannot be the zero vector.
On the other hand, if we introduce the notation C = (¢;;) with

; n+i—j> (m—n—i)
= (=1 . . s 13
w= (") (") 1)
the matrix X with the entries (9) has the representation X = BC with (4). Conse-

quently we have to prove

BTBC=N . (14)
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For the entries of the left~hand side of (14) we use the notation

fij= HZ::O(—I)' (I:) (f) (n:i; j) (m —; ) l)

In view of the Cauchy integral formula for the coefficients of a Taylor series we obtain

] S (e,

k=0

if we integrate over small circles around the point zero in the positive direction. The
sum over / can be calculated explicitly, so that

e () 0

According to (w—2z)* = 120 (5)w*~!(—z)' and the fact that either [ > n—j or k—I > j

for k£ > n, the integrals in (15) are zero for these k. Hence we can sum up to infinity
and find in view of (} ) = (k_() ""(_' ') that

- 1+ 2)*9(1 4+ w)™ "t ; w—z\"1
b = e // Zn—it+1 i+l (w—2z) (1 1y w) dzdw

1+z n—i—j— 1(1+w)m+1—n ;
4”2// gy (w — z)'dzdw

Now, using

1

(w=2)'=3 (;)(l +w) (=1 (1 + 2)"

1=0

and applying once more the Cauchy coeflicient formula, we obtain

‘ (N (n=j—=1-1\/m+I+1—-n
S (L)
and in view of

(557 )=eGh) O65)-(50)6)

and the substitution k = i — | moreover

fij=(_1)n_j(nij> i(-])k(i+]l'c—n) (m+i+;—k—n>

k=0
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Because of j < n it suffices to sum up to ¢ + j — n. Applying the symmetry formula

to the last binomial coefficient, (8) and two times (7), the sum can be expressed by
m+1—j
n—t

), so that according to (10) we have proved the desired result f;; = n;;.

Remark. Analogously as before the consequence C = B~!X of X = BC shows
that the lines of C are the differences of the lines of X, and (9) has the form of a
Newton interpolation polynomial with respect to the variable m.

4. Determinants

The matrices B and N are triangular matrices, so that (4), (10) and (12) imply
det B=1 and

detX:detN:H(m+.l_]) (16)

. J
=1
This means that X is a regular matrix, if and only if
m¢ {0,1,...,2n —2} . (17)
In this case the set of eigenvalues (2) is complete and
. 1
det A = H (m + )
=y

But according to continuity this formula is also valid for the exceptional values of m.

The formulas
AY=YS, ATX=XS

and therefore AX~7 = X~TS show that in case of (17) there must exist a diagonal
matrix T with Y = X~ TT i.e.
Xy=T . (18)

In view of Y = BD and (12) this means NTD = T, and from (4) and (10) we find
for the diagonal elements ¢; of T' that

tj_—_g(—l)"*"'j(nfj) <m:_1;j><n;k>(m+k;n—j>
(L))o

Since
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where §6;; is the Kronecker symbol, we obtain moreover

O G R A G ES

and as before the first equation is also valid for the exceptional values of m. Finally,
(16), (18) and (19) imply

dery = [[ ("‘ +2 - 2") , (20)

=1 J

so that Y is also regular for (17).

5. Examples

To illustrate the results we consider the case n = 2 in detail, where we have

mmol) o 100 L 00
A=| e0md) oy g3 [ B=| 110 |,B =1 1O,
(m=A)(m=3) 3, _9 6 121 1 =21
1 2 1 1 m—2 (=2lm=9)
Y = 2—m 4-m 1|, X = -2 4-m m-3
220m=9) g _om 1 1 -2 1
1 2 1 1 m-2 (=)
D = | 1-m 2-m 0 , C = | -3 6-—2m —{z=8m=1)
=l g g 6 3m—12 (m=im=s)
2tlm 111 0 0 (mlemoy
M = 0 m+1 2 , N = 0 -m m-1

0 0 1 1 -2 1



Spectral Properties of Matrices with Products ... 17

In the case m = 1 the first and the last of the three eigenvalues 1, m+1 and ﬁﬂ'l_')ﬂ

coincide, and the matrix A is not similar to a diagonal matrix as it is seen from

1 =30 1 02 -1 6 —4
P'AP=]10 10| .,P=|1 23] ,P'= 1 =2 1
0 02 1 -3 4 1 -3 2

This representation shows additionally that there are no further eigenvalues and ei-
genvectors. In the cases m = —1 and m = —2 also two of the three eigenvalues

(2) coincide, but in view of (17) nevertheless Y is regular and A diagonalizable by
Y-1AY = S with (5).
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1. Introduction

Let X be a real Banach space and J: X — R. The functional J is said
to be convex if for u,v in X and for A\, > 0 with A+ p =1, J(Au + pv) <
AJ(u) + pJ(v). If for v,v (u # v) in X and A, g > 0 with A+ = 1, the strict
inequality J(Au + pv) < AJ(u) + pJ(v) holds, then .J is called strictly convex.
J is said to be coercive if J(v) — 400 as ||v|| — +oo.

Let u € X. If there is a bounded linear functional P,: X — R such that
for every v in X and « in R we can express

J(u+ av) = J(u) = a[Pu(v) + ¢(a,v)] ,
where ¢(a,v) — 0 (uniformly in v on every bounded subset of X) as @ — 0,
then we say that .J is differentiable at u and P, is the Frechet derivative of J
at u and write J'(u) for P,.

In this lecture I have considered the minimization of the functional J:
X — R over a closed convex subset of X when it is coercive and weakly lower
semi-continuous. For the uniqueness of the minimum point strict convexity
of .J is necessary. Then the results are applied to find the solution of some
standard Boundary Value Problems.

2. Minimization of Functionals

Throughout this section we assume that X is a real reflexive Banach space,
K is a closed convex subset of X and J : X — R. In this direction we have
the following important theorem.

Theorem 2.1. If the funclional J : X — R is coercive, weakly lower semi-
conlinuous and strictly convez, there exists a unique poinl u in K such that

J(u) = inf{J(v): veEK}. (1)

19
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Furthermore if J is differentiable al u, then

J'(w)(v—u)>0 forall vEK. (2)
Also if K is a closed subspace of X, then

J'(w)(v) =0 forall vEK. (3)

Proof. The proof of the theorem may be found in [1] and [3]. But for com-

pleteness, I give the proof here.
Let m = inf{J(v): v € K}. Clearly

m< 400 . (4)
There is a sequence {v,} in K such that

m= lim J(va) .
n— 00

It will be shown that {v,} is bounded. On the contrary, let us assume that
it is not bounded. Then {v,} has a subsequence {vy,,} such that ||v,,|| — +o0
as ¢ — oo. Since J is coercive J(vn;) — +00 as ¢ — oo which contradicts (4).
Hence {v,} is bounded.

Again, since X is reflexive, {v,} has a weakly convergent subsequence.
Without loss of generality we may take {v,} to be convergent. Let u be the
weak limit of {v,}. Since K is closed and convex, it is weakly closed. This
gives that u € K.

Furthermore since J is weakly lower semi-continuous we have

J(u) < nllngoJ(v,,) =m< J(u) .

So we obtain
Ju)=m=inf{J(v): veE K} . (9)

Lastly assume that u;,u; (u; # uz) are two points in K such that J(u;) =
m = J(uz). Since %ul + %uz € K and J is strictly convex

1 1 1 1
J<§U1 + 5“2) < '2-J(Ul) + 5](“2) =m.

This contradicts the definition of m. Hence u is the unique point in K
satisfying (5).
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Now we deduce (2) and (3).

Let v € K. Take any a in R with 0 < o < 1. Write w = av + (1 — a)u.
Then w € K. So by (1)

J(u) < J(w) = J(av + (1 - a)u) = J(u +a(v — w))

or,

J(u+a(v—u))—J(u)>0. (6)
Since J is differentiable at u, we can express
J(u+ a(v—u)) = J(u) = alJ'(u)(v — u) + é(e, v)]

where ¢(a,v) — 0 (uniformly in v on every bounded subset of X) as a — 0.
Using (6) we get, J'(u)(v — u) + ¢(a,v) > 0. Letting a — 0,

J'(w)(v—) >0 )
for every v € K.
Next suppose that K is a closed subspace of X. Then K is automatically
convex. Take any v in K, then v + u € K. So from (7)
J'(u)(v) 2 0.
Since —v € K we also get
J'(u)(=v) >0 or J'(u)(v) <0 [.J'(u) is linear]
Hence we obtain J'(u)(v) = 0 for every v € K.

Now we consider a special type of functional J: K — R which is suitable
for application to linear boundary value problems. We take J as follows.

J(v) = %w(v,v) — L(v) for ve X, (8)
where m: X x X — R is bilinear and L: X — R is linear.

Definition 2.1. The bilinear form 7 on X is said to be continuous if there is
a positive number M such that

|7w(u,v)| < M||ul|-||v|| forall u,ve X .
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The bilinear form 7 on X is said to be X-elliptic or simply elliptic if there
is a positive number « such that

7(v,v) > a||v]||> forall ve X .

If 7 is elliptic, from definition it follows that 7(v,v) > 0 for every v € X
and 7(v,v) > 0if v # 0.

Theorem 2.2. Lel 7 be a conlinuous symmetric bilinear form on X and L be
a bounded linear functional on X, and let J : X — R be defined by (8).

(1) Then J is continuous, differentiable and convez.

(ii) If 7 is elliptic, then J is strictly convezr and coercive.

Proof. (i) Continuity of J is obvious.
Let u € X. Take any v € X and a € R. We have

J(u+ av) = %w(u+ av,u+ av) — L(u + av)

= {%w(u, u) — L(u)} + a{n(u,v) — L(v)} + %a27r(v, v)
= J(u) + a[Pﬂ(v) + ¢(a) v)] ’
where P,(v) = 7(u,v) — L(v) and é(a,v) = 1an(v,v). Clearly P, is linear.

Since 7 and L are continuous there are positive numbers M and 8 such

that (v, w)] < Mllol - [l
m\v,w Vi W
= forv,we X . 8a
IL(v)ISﬂIIvII} (82)
We have

IPu(0)] < [m(u, )| + |L(0)] < Mlull - [Joll + Bllvll = (M][u]] + B)||vII

This gives that P, is bounded.

Again, |¢(a,v)| = 3|a]|7(v,v)] < 3|a] - M||v||2. So ¢(a,v) — 0 (uniformly
on every bounded subset of X) as @« — 0. Hence J is differentiable at u and
J'(u) = n(u, ) — L(-).

Now let u,v be any two elements in X and A, > 0 with A+ u = 1. Then

1
J(Au+ pv) = §7r(/\u + pv, Au + pv) — L(Au + pv)

= -;—{/\ZW(U, u) + Aum(u,v) + Apn(v, u) + g7 (v, v)}
— AL(u) — pL(v)
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and
AJ(u) + pJ(v) = %{/\w(u,u) + p7w(v,v)} — AL(u) — pL(v) .

So
AJ(u) + pJ(v) — J(Au + pv)
= %/\p{n(u,u) — w(u,v) — 7(v,u) + 7(v,v)}

= %/\;nr(u—v,u—v)zo

which gives that J is convex.
(i1) Next suppose that = is elliptic. There is a positive number « such that

7(v,v) > a|lv||? for vE X .
If u # v, then from the above,
AJ(u) + pJ(v) > J(Au+ pv) .

Hence J is strictly convex.
Take any v € X. Then we have using (8a)

1 1 1
J) = 3r(0,0) = L) 2 ol = Bl = ol (G- 20)
48

> zallll? i foll > 2
This gives that J(v) — 400 as ||v|| — +0o. Hence J is coercive.

Theorem 2.3. Let m be a conlinuous symmetric and elliptic bilinear form
on X and L be a bounded linear functional on X. Then there ezrists a unique
element u in K such that

(i) m(u,v—u) > L(v—u) for every v € K. If K is a closed subspace of X,
then

(i1) m(u,v) = L(v) for every v € K.

Note: The result (ii) is known as Lax-Milgram Theorem.

Proof. Let us take J(v) = im(v,v) — L(v) for v € X. By Theorem 2.2,
the functional J is continuous, differentiable, strictly convex and coercive.
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Clearly J is weakly lower semi-continuous. This theorem now follows from
Theorem 2.1.

3. Application to Differential Equations

In this section we show that well-known boundary value problems can be
transformed to a functional equation of the form

w(u,v) = L(v) 9)

with suitable Banach space X and closed subspace K. It will be shown that
every classical solution of the given BVP is a solution of the functional equa-
tion (9), but the converse, in general, is not true in ordinary sense. But it is
true in distribution sense. So we require some knowledge of distribution and
Sobolev spaces which we introduce first.

Space of test functions and distributions

Let Q be an open subset of R” and let f: € — R be continuous. We denote
by Supp(f) the support of the function f and define

Supp(f)=cl{z: z€Q and f(z)#0}.

If the set Supp(f) is compact we say that f is a function with compact
support. We denote by D(R2) the set of all infinitely differentiable functions
f: © — R with compact support contained in . It is easy to see that D(Q)
is a linear space over R. Certain topology is introduced on D(2) to make it
a linear topological space. A sequence {¢,,} in D(§2) converges to zero iff the
following two conditions hold.

(i) There is a compact set K C § such that Supp(é¢m) C K for every
positive integer m.

(ii) The sequences {¢m} and {D*¢,,} converge uniformly to zero on K for
every multi-index o = (a1, a2, ... ,a,) where

alal¢m

)
Oz 0y - . §zln

Da¢m= |a|=01+a2+°"+an«

A bounded linear functional on D(Q) is called a distribution on Q. We
denote by D’(Q2) the set of all distributions on Q. A distribution on Q is also
called a generalized function on Q.
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Partial derivative of a distribution

Let T be a distribution on 2. The partial derivative 'gTTi of T is defined by

or 0
8—1:,(¢) = —T(az) for all ¢ € D(Q) .

It i1s easy to see that g—z: is also a distribution on Q. For any multi-index
a = (ay,as,... ,a,) we define D*T by
D°T(¢) = (-1)I*!T(D*¢) for all ¢ € D(Q) .

DT is also a distribution on Q.

Locally integrable function

A function f: Q — R is said to be locally integrable if for every compact

subset K of Q
[ i< +oo.
K

It is easy to see that every continuous function is locally integrable; also
every function f € L(Q) is locally integrable. If Q2 is bounded, then f € L%(Q)
is locally integrable.

Example. Let f: Q@ — R be locally integrable. Define the mapping T}:
D(QY) — R by

Ty (¢) = /nqu for every ¢ € D(R) .

Clearly Ty is linear. Take any sequence {¢,,} in D(2) converging to zero.
Then there is a compact set K C € such that

(i) Supp(¢m) C K for every m.

(i1) {¢m} and {D*¢,, } converge uniformly to zero on K. We have

Tf(¢m)=/Kf¢m (m=1,2,3,...).

Since {¢m} converges uniformly to zero on K limpm_.co Ty (ém) = 0.

So Ty is continuous at zero and hence it is bounded. Therefore T} is a
distribution on .

Let £(52) denote the set of all locally integrable functions on Q. If fi, f2 €
L() and X € R, we can verify that

Th+s, =15 + Ty,
Trp, = /\le .
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Let £ = {Ty: f € L£(R)}. Then £ C D'() and £ is a linear space over
R. Also £ is isomorphic to £(R2). So we can identify Ty with f. With this
agreement we have £ = £(Q) C D'(R2) and therefore a distribution on 2 is
called a generalized function.

Sobolev spaces

Let m be a positive integer. We define the Sobolev space H™((2) as follows.
H™Q) ={u: ve L*Q), D*ue€ L*() for |a|] <m}.

For u,v in H™(Q), the inner product is defined by (u,v) = {}¥|41<m Jo D%u-
D®v}3. It can be verified that H™(Q) is a Hilbert space. Clearly D(Q) C
H™(Q). We denote by H*(f2) the closure of D(2) in the space H™ ().

Solution of a partial differential equation

Let  be a bounded open subset of R" and let m be a positive integer; and

let
L= Z aqD*

lal<m

where a, € C™(Q2). Now consider the partial differential equation
L(u) = f, where f€C™(Q). (10)

If there is a distribution T on Q such that L(T) = Ty, then T is called
a distribution solution of the partial differential equation (10). If there is a
locally integrable function g on Q such that L(T,) = Ty, then g is called a
weak solution of the partial differential equation (10).

If there is a function w € C™(Q) such that L(w) = f pointwise on €, then
w is called a classical solution of the partial differential equation (10).

Now we consider the important Boundary Value Problems such as Dirichlet
Problem, Neumann Problem, etc. and transform them to the form (9).

(A) Dirichlet Problem

Let © be a bounded open subset of R3. Consider the following Boundary

Value Problem.
~Viu+qu=f in Q---(a)

u=0 on I'---(d) (11)

where T denotes the boundary of Q and ¢, f € C(?) and ¢(z) > a > 0 for all
T € Q.
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The boundary value problem (11) is known as Dirichlet Problem.

Let u be a classical solution of the BVP (11). Then u € C?({) and satisfies
11(a) and 11(b).

Let v € H}(Q2). Multiplying 11(a) by v and integrating we get

—L(V%)v+/ﬂquv:/ﬂfv.

Using Green’s Theorem we have

ou
Vqu+/v—-+/ uv:/ v
/s; r ov nq nf

where v denotes the outward unit normal to I' at the point ¢ € I'. Since
v(z) = 0 on I, we obtain

/ﬂ (VuVv + quv) = /n fo

7(u,v) = L(v) , (12)

or,

where

w(u,v):/‘;(Vu-Vv+quv), L(v):/r;fv

It is easy to verify that 7 is a continuous, symmetric and H¢-elliptic bilinear
form on H} (). From above we see that every classical solution of the BVP
(11) is a solution of (12).

Next suppose that u € H} () is a solution of (12). For any ¢ € D(Q) C
H} () we have

—(V*u)(8) + (qu)(#) - f(¢)
= (Vu)(V¢) + (qu)(¢) — f(¢) = n(u,¢) — L(¢) =0,

or,

(~Viu+qu—f)(¢)=0.

This gives that

—V2u+qu—f=0 [in distribution sense].
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Hence u is a weak solution of the BVP (11). Since H{(Q) is a closed
subspace of H!(2) by Lax-Milgram Theorem the BVP (11) possesses unique
weak solution.

(B) Neumann Problem

Let Q be an open bounded subset of R3. Consider the following Boundary
Value Problem.
—Viu+gqu=f in Q---(a)
Ou (13)

6_1/=0 on I'---(b)

where f,q € C(Q) and ¢(z) > a > 0 for z € Q; T being the boundary of Q
and v the outward unit normal at z € I'. The BVP (13) is known as Neumann
Problem.

Let u be a classical solution of the BVP (13). Then u € C?(f) and satisfies
13(a) and 13(b). Let v € H}(). Multiplying 13(a) by v and integrating we

get
—/Vzuv+/quv=/fv.
Q aQ Q

Using Green’s Theorem we obtain

/Vu-Vv+/v6—u+/quv=/fv
y) r Ov Q Q

/n(Vu-Vv+quv)=/afv ['.‘3—3:0 on F]

or

or

7(u,v) = L(v) (14)
where 7 and L are same as in previous case.

(C) The elasticity system

Let © C R3 be a bounded open set representing the volume occupied by
an elastic body and T be its boundary. Let ' be partitioned into two parts Iy
and I'y with surface measure of Iy being strictly positive.
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Fig. 1.

Assume that a body force f = (fi, f2, f3) acts on the body and a surface
force g = (91,92,93) acts on I';. Let u = (u;,up,u3) be the displacement
vector. Then the strain tensor (;;) is defined by

Ou;  Ou;j ..
E‘.1(“) (6:1 + 6_::]:) (1)] = 1)2>3) . (15)

Let o;; denote the stress tensor. The constitutive law relating strain and
stress is given by

oij(u) = (Zekk(u) )8i; + 2ueij (u) (16)

A and p are Lame’s coefficients where A > 0 and g > 0. The elastic system
consists of the following Boundary Value Problem.

iaizj("ij(“)):fi in Q---(a)
u=0 on [‘O(b) (17)
3

.Zl oij(u)nj=gi on Ty---(c)
j=
where n = (nj,n2,n3) is the outward unit normal to the point z on T';.

Let V = {v: v = (v1,v2,v3), v € H'(Q) and v = 0 on [y}. Then V is a
closed subspace of H!(Q2).

Suppose that u is a classical solution of the BVP (17). Then u € C?%().
Take any v € V. Multiplying 17(a) and 17(b) by v;, adding the two together
and then integrating we get

/Ea (035 (u))vi + / ZJ.,(u)v,nJ /f,,+/

l]l 't]l
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or
3 3
9 / 6v,~
- —(oij(u)vs) + o;i(u)=—
/ﬂ.-;::l 62-‘1'( 3 (u)us) ni’jz=1 i )sz
3
+ Z a'.j(u)vl'nj = L('U) (say).
I i,j=1
Using Green’s Theorem we have
3 3
6v,—
—_ Cf.'~uv,~n~+/ 0ii(u)
~/Fl ",J.Z=l J( ) ] ﬂi'jz=l J( )613]
3
o[22 = 1)
I §,j=1
or \
1 avi 6vj ] ‘
2 ij . -— ] = Ry t
2 /0”2::1 "”(“)(azj + 6:1:;) L(v) [ i is symmetric]

or fﬂ U,‘j(u)E,'j (v) = L(v).
Now substituting the value of o;;(u) obtained from (16) we get

3 3
A /n div(w) 3 bijei5(v) + 20 /ﬂ 3 (e ) = L)

i,j=1 i,j=1

or
3
A /n div(u)div(v) + 2u /n i; £33 (w)ei; (v) = L(v)
or
m(u,v) = L(v) (18)
where

3
m(u,v) = /\/ndiv(u)div(v) +2p/ﬂ Z gij(u)ei; (v) .

6,j=1

Suppose that f € (L?(R))® and g € (L*T))3. Then 7 is continuous,
symmetric and V-elliptic bilinear form on V. So the equation (18) has a
unique solution in V' which is the weak solution of the elastic system (17).
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Note. The equation of the form
7(u,v) = L(v)

may be regarded as the abstract formulation of each of the above BVP’s.

Method of finding the solution of the equation w(u,v) = L(v)

Let H be a real Hilbert space and let m: H x H — R be symmetric,
continuous and H-elliptic bilinear form and let L: H — R be a bounded
linear functional. Then by Lax-Milgram Theorem there exists a unique element
u € H such that

n(u,v) = L(v) for every ve H . (19)

We assume that H is a separable space. Then H has a countable complete
orthonormal basis {w;}2, (say).

Write ( )
cn= (u,w,
=1,2,3,...
s,.=c1w1+czwz+~~+cnwn} D

Then
[lu—sn]l =0 as n—oo0. (20)

Take any positive integer n and consider the subspace V,, spanned by
wy,ws, ... ,w,. Then V, is a closed subspace of H. So by Lax-Milgram The-
orem there exists a unique element u,, € V;, such that

m(un,v) = L(v) for veEV, . (21)
We show that lim u, = u. Take any v € V,. From (19) and (20) we get
7(u,v) = L(v) = 7(un,v)

or
m(u—un,v)=0 for veEV,. (22)
Since 7 is continuous and H-elliptic there are positive numbers o and M
such that

r(w,0)] < Ml - [oll, 7(,0) > aloll?, for w,v € H .
We have
allu — u,.||2 <7(u—tn,u—Un) = T(U — Upn,u— 8 + 5, — Up)
=7(u — Un,u — Sn) + T(U — Upn,Sn — Up)
=7(u—tn,u—sp) [By (22)]
< MlJu = nll -l = sl -
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or JJu— ]| < M = sl
Using (20) we obtain lim, o u, = u.

Method of finding u,.

We have u, = Mwi + Adqwa + -+ + A,wy,, where A1, Az, ..., A, are re
numbers to be determined. Substituting in (21) and taking v = wy,w2,... , Wy
respectively we obtain the following system of linear equations
n
Z/\,-‘Ir(wg,wj)zL(wj) (]: 1,2,... ,n) . (23)
i=1

Write

M= "(w""’")} ij=12...,n.
bj = L(wj)
Then the system (23) can be written as

anA +a2dz +aisAz+ -+ apda = by
a21A1 + @222 + azzAz + -+ azAn = b2

an1A1 + @n2d2 + an3dz + -+ appAn = bn
We now show that the coefficient matrix A = (a;;) of the system (24) is
positive definite and hence non-singular.

Let £ = (£1,€2,..-,€n) € R® and v = §uwy + &awa + - + awn. Then
v € V,,. We have

m(v,v) = zzﬂ(u}i)wj V&€ = ZZ‘%J&EJ = (AL .

i=j j=1 i=1j=1
By the ellipticity we have

EAE' =m(v,v) 2 afju]|* >0 for £#0.

So A is positive definite and hence non-singular. Therefore the system (24)

has a unique solution for (A1, Ag,...,\,;) which determines u,, and hence the
solution u.
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ABSTRACT

In this paper we study some properties of a speclal
class of solutions of an alternative Cauchy equation for
functions from a stable group G Iin R .In the case n=3
the class of solutlons assuming the value zero In  the
unity of G Is completely described.

1.- During the last years the alternative Cauchy equation
flxy)-flx)-fly) e V
has been extensively studied in different situations concerning
the domain of the function and the given set V.
The problem was posed by the first time by R. Ger’ in the case f
real valued function defined on a group and V={0,1} and, in more
general form, by M. Kuczma®.

Many results about the equation above have been published
(see references) for different finite sets V and in most of them
the main tool used to obtain the description of the solutions has
been the stability in Hyers-Ulam sense.

In a former papers the case where V is a set of independent
vectors in a Banach space has been considered, so it is natural to
ask for the solutions of the previous equation when the vectors in
V are not independent.

In the present paper we study the special case where V is
given by all the vertices of the unit cube in R" but one and the
function f, defined on a stable group G, takes the value O on the

unity of G.
33
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2.- In this short section we recall some definitions and

. 5
results we use in the following.They can be found in".

DefFINITION 1.- Let G be a group and B a Banach space.The
group G is called stable (in the sense of Hyers-Ulam) if for every
function f:G —B such that llf(xy)-f(x)-f(y)li=é for all x,yeG and
some &>0, there exists a (unique) ¢f € Hom (G,B) such that
Il¢f(x)-f(x)llsé for all xeG.

It is well known® that every amenable group (and so every

commutative group) is stable.

THEOREM 1.- Let G be a stable group, B a Banach space and M a
bounded subset of B.Assume the function f:G —B is such that
flxy)-f(x)-fly)eM for all x,yeG.Then the range of the function
h:=f-¢_is contained in C(-M) (the closure of the convex hull of
the set -M).

Moreover if € is the identity of G and h(e)=-pe-M then
hix)e{-(u+M)+C(M)INC(-M).

3.- We consider the functional equation
f(xy)-f(x)—f(y)evn (ln)
where f:G—R", G is a stable group, Vn is the subset of R" given

by v =(0,el,...,e ,el+e yeeny€ e ,...,e_+...te }, where
n n

+
2 n-1 n 2 n
. . n . .
(el....,e> is the canonical bases of R ,that is V is the set of
n n

all vertices of the unit cube of R" but el+e2+...+e
n

Note that if n=1 we have the equation
f(xy)-f(x)-f(Y)€Vl=(O,1) (ll)
which has been completely solved by G.L. Forti4; we shall describe
a special class of solutions of Eq. 1n in term of the solutions of
Eq. ll
Since G is stable, by Theorem 1, in order to get all
solutions of Eq. ln it is enough to determine all solutions f

of Eq.ln with the additional condition that their range is a
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subset of C(-Vn)=5(_-7:) and then add to each of them an arbitrary
homomorphism of G in R".

If f=(fx’f2""’fn) is a solution of Eq. ln, then obviously
each component fJ is a solution of Egq. ll and if the range of f is
contained in C(—Vn) then the range of every fJ is a subset of the
interval [-1,0].

We denote with pJ:IR"—)R the projection on the j-th
coordinate axis; for every j=1,...,n and «=0,1 we define
S 'a:=(xeG: fj(x)=-a).

J
We have the following.

LemMa 1.- Let f:G—> C(-Vn) be a solution of Eq.ln.Then
i) the sets Sja are either empty or subsemigroups of G;

it) HJ:=SJ ouSJl is a non empty normal subgroup of G.

lii) if y € HJ‘ and x € G\Hj, then fJ(xy)=fJ(x)=fJ(yx).
ProoF- We prove the lemma for j=l.Let x.yeSl’o, that is
fl(x)=fl(y)=0.By Eq. ln. flxy)=f(x)+f(y)+v, for some veVn; if
pl(v)=0, then fl(xy)=fl(x)+f](y)=0. 50 xyeSl'o.
The case pl(v)=l is impossible, otherwise we get
fl(xy)=fl(x)+fl(y)*l=l, contrary to our assumption that the range
of f, is in [-1,0].

Analogously we prove that Sl‘l, if not empty, is a semigroup.

Let now xeSl’o and yeSl.l ( or vice-versa); then
f|(xy)=fl(x)+fl(y)¢pl(v)=-1+pl(v). since pl(v) equals O or 1, we
have xyeHl.lf € denote the identity of G, then by l-:q.ln we have
f(c)e—Vn, so fl(c)e(o.—l), i.e. ceHl.
Now take erl; we have f(x_l)=—f(x)+f(c)—v, for some veVn
If fllc)=0, then

fl(x")=-fl(x))—pl(v)e(—l,0.l)nC(—Vn)=(—1.0);

if f1(€)=-1' then

f](x-l)=—f1(x)-l-pl(v)e(-2,-l,O)nC(—Vn)=(-l.0);

thus x-leHl, i.e. H is a subgroup of G.

Let now erl and yeG\Hl; we have

f(y'lxy)-f(y_l)-f(xy)=vl L Fey)=fL+f(y)Hy,,
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fler-fiy)-fly H=v,,

for some v ,v_,v €V ; hence
1 2 3 n

f(y'lxy)=f(y'l)+f(xy)+vl=f(x)+f(c)-v3+vl+v2.
-l _ _
and so fl(y xy)-f,(x)+fl(c) pl(vs)*pl(vlhpl(vz).
From fl(x)+fl(c)-pl(v3)*pl(vl)+pl(vz)e(—3,-2.-1.0.1.2) and

-1sf (y'xy)s0, we get f(y'xyle(-1,0), ie. y'xyeH; thus H is
normal.Let now yeHl and xeG\Hl:
fl(xy)=f‘(x)+fl(y)+pl(v)=fl(x)4(-l.0>¢(0,l)e[-l,Ol and this
implies fl(y)#pl(v)=0, i.e. iii). L]

We now look for the solutions f of Eq. ln such that f(e)=0.
From now on we intend that the function f is such a solution.
By Theorem 1 we have the following sharper condition on the

range of f:

f(x)e(-Vn#C(Vn))r\C(-Vn).
If ue(-Vn4C(Vn))r\C(-Vn), then u=-v+t=-z, for some vevn. t,zeC(Vn);
since pl(v)=0 for some i, from pl(t).pl(z)elo,l] we get p|(u)=0.
that is the point u belongs to the coordinate hyperplane
?‘:=(teR": p(t)=0 ).

We can summarize as follows.

LEMMA 2.- Let f:G— C(-Vn) be a solution of Eq. ln with

n
f(e)=0. Then the range of f is contained in C(-Vn)n U ?I ]
1=1

Among the solutions of Eq. ln with f(€)=0 there are those
with range contained in a single hyperplane ?l.The description of

this class is very easy and is given by the following.

THEOREM 2.- A function f:G— C(-Vn) is a solution of Eq.ln
with f(e)=0 and f(G)t:fP| if and only if for every j#i the function
f’:G — [-1,0] is a solution of Eq.ll with fj(e)=0.

We now look for the solutions of Eq. ln whose range is

contaned in more than one coordinate hyperplane.
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The first step is given by the following lemma.

LemMa 3.- Let f:G — C(-Vn) be a solution of Eq. ln with
fle)=0.1f for some x € G we have fl(x)=0 and fj(x)e(-l,O). then
for every yeHl it is fl(y)=0.

PROOF- Assume, on the contrary, the existence of yEHI with
f(y)=-1.We have f(y)-flx)-flyx eV , e -flyx)=flx)-f(y)sv ,
veVn and so -fl(yx_l)=l+pl(v).This implies p|(v)=0 and
-fl(yx")=l.lr j#i, then

-1 _
fJ(yx )-fj(x) fj(y)*pj(v)e[O,ll.

hence we get

o f (y) ,if fly)= f(x)
~f (yx h=f o) ) . )
fj(y)ﬂ , if f,(y)z fj(x).
Again by Eq. 1 we have f(x)—f(xy")—f(y)evn, i.e.
-fley =Fy)-flx)+u, ueV_and so -f (xy )=-1-f (x)+p (u)=
=-1+p (w)elO,1]; this implies p (u)=1 and -f‘(xy_’)=0.

If j=i,then -fj(xy_')=fj(y)-fj(x)+pj(u)€[0,l]. hence we get

. f (y)+l , if fly)=sf (x)
~fxy )=-f (x) + ! ) _ J
) ! £ i f )

Consider now the difference

f(c)-f(xy")—f(yx_')=-f(xy'l)-f(yx'l)=wevn
We have pl(w)=—f‘(xy—l)-f|(yx")=0*1=l and for j=i,

=- e - = =
pj(w)— fj(xy )fj(yx ) fj(x)*fj(x)ﬂ 1,

thus w=e‘t..4e ¢V ; a contradiction. L]
n n

Assume now there exist two elements x,ye€G such that
there is i such that fl(x)=0 and fk(x)e(-l,O) for k=i
(2)
there is j#i such that fj(y)=0 and fk(y)e(-l.O) for k#j

that is we assume that the solution f takes values in at least two

different coordinate hyperplanes.
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We consider now the value f(yx'l); by the equation we have

f(y)-f(x)-f(yx“)=vevn, ie. flyx D=Fly)-flx)-v,
and so

f‘(yx'l)=f‘(y)—f‘(x)-pl(v)=f|(y)-p|(V)*0 (3)
N=f (y)- -p (v)=- - . 4
fJ(yx )—fj(y) fj(x) pJ(v) fj(x) pJ(v):O (4)

Hence by Lemma 2 there exists k, different from i and j, such that
f(yx'l)e?k

Therefore we have the following

THEOREM 3.- Doesn’t exist any solution f of Eq. ln such that
f(€)=0, with range contained in two (but not one) coordinate

hyperplanes.

By still assuming Eq.2 we obtain the following properties.
By Lemma 3 we can conclude that

for every yeHlnHJnHk=:HUk we have f(y)e?-"‘r\?)r\?k.
Eq.3 and 4 imply
pl(v)=0 and fl(yx'l)=fl(y)
pJ(v)=I and fj(yx_l)'—'-fj(x)—l.
The condition fk(yx-')=fk(y)-fk(x)-pk(v)=0 implies
pk(v)=0 and fk(y)=fk(x).
Consider now. the value of f in xy: flxy)=f(x)+f(y)+w, for

some weV .The relations
n

£ (xy)=f (y)+p (w)el-1,0], ()

fj(xy)=fj(x)+pj(w)e[-l,0]

(6)
imply pl(w)=pJ(w)=0 and

fl(xy)=f|(y):0. fj(xy):fj(x):to;
moreover it is

fk(xy))=2fk(x)+pk(w). (%))
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We now look for the solutions of Eq. lh with the range
contained in three hyperplanes ?l, 5PJ and ;‘Pk.

We prove the following.

THEOREM 4.- Let f:G—> C(-Vn) be a solution of Eq. 1 such
n
that f(e)=0 and with range contained in ?lu;‘PJ\J?k ( but not in a

single hyperplane).Then for every x(HUk we have:
if f‘(x)=0 then fj(x)=fk(x)=-l/2;
if fj(x)=0 then fl(x)=fk(x)=-V2;
if fk(x)=0 then fl(x)=fj(x)=-l/2.

PRrooF-Assume f(x)e?|. f(X)‘E?,U?k , f(y)e?l, f(y)e;’Plu?k.From Eq.5,
Eq.6 and the hypothesis we get immediately fk(xy)=0; therefore
Eq.7 yields pk(w)=land fk(x)=fk(y)=-1/2‘From f(xzy)=f(xy)+f(x)w.
veVn and Eq.6 we get
2
fk(x y)=fk(xy)+fk(x)+pk(v)=-l/2 4pk(v)30.

fl(xzy)=fl(xy)+f‘(x)+pl(v)=fl(y)+p|(v):0
(note that fl(y)e(-l.O) ).Thus we must have fj(xzy)=0:

— 2 -— -

O—fj(x y)-fj(xy)+fj(x)+p)(v) 2fJ(x)+pJ(v).

and so, since fj(x):o. pJ(v):l and fj(x)=-l/2.

Proceeding in the same way we get the theorem. [ ]

LemMMA 4.- Assume the hypotheses of Theorem 4.If xc!HUk then
f(x) belongs to only one of the three hyperplanes Pl, ;‘PJ and ?k.
ProoF- Let fl(x)=fJ(x)=0 and take y € G such that fk(y)=0 and
fl(y)=fj(y)=—l/2; then f(yx_')=f(y)-f(x)-v and so
£,lyx=f (y)-p (V)=-1/2-p (v)

-1 _ _ - _
fJ(yx )—fj(y) pJ(v) 172 pJ(v)

£ lyx==f, (0-p, ().
Thus we get pl(v)=pj(v)=0 and fl(yx'l)=fj(yx'l)=-1/2; this implies

-1 S . e
fk(yx )--fk(x)-pk(v)-o. i.e. erUk ; a contradiction. [
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LEmMA S.- Assume the hypotheses of Theorem 4.1f erUk then
2
x'eH .
1k

ProoF- Let fl(x)=fj(x)=-l/2 and fk(x)=0; then
fl(x2)=-l+pl(v)e(-l.0). fj(x2)=—l+pj(v)e(-l.0)

and fk(xz)=pk(v)=0, that is xzeHUk. L]

We can now conclude with the following.

THEOREM 5.- A function f:G—> C(-Vn) is a solution of Eq. ln
with f(€)=0 and range contained in ?lu‘PJuka ( but not in a single
hyperplane) if and only if:

i) for every t=l,...,n the function f‘:G —> [-1,0] is a

solution of Eq. l‘;

ii) H is a normal subgroup of G of index 4 such that

1)k 2
(G\Hljk ) gHUk:

i) if H", H? and H"™ are the cosets of H,,. then:
v erUk fl(x)=f](x)=fk(x)=0,
v xen" £ (0=f, (0=-1/2,
v xeH" £ 0=f, (x)=-172,

v xeH"™ £ )=f La)=-1/2.
ProoF-If f is a solution with the properties in the statement,
then by iii) of Lemma | and by Theorem 4 it has the form given
above.Conversely a simple check shows that any function of that

form is solution of Eq. ln ]

4.- In this section we confine ourselves to the case n=3.In
this case Theorems 2 and S5 give the complete description of the
solutions of Eq. 13 such that f(g)=0.

It is natural to ask for the solutions of the equation
analogous to Eq. 13 obtained by replacing the set Va with a subset
U of it with the following properties: U spans IR3, 0eU, U\{O} is

not a set of independent vectors.We have to consider the following

four cases:
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Ul=(0,e‘,ez,ea,el+ez.el+e3)
U2=(0,el,ez,e,+e2,el*e3.e2+ea)
U3=(O.el,ez.el+e2,el+e3)
U =(0,e ,e_,e +e_,e +e ).
4 1""2"1 372 3
By Theorem 1, with u=0, for each of the four cases above we

have that the range of the solutions is a subset of
{-U1+C(Ul)lr\C(—Ul)=

=(7tlel+)«2e2: -ISAlso. i=1,2>u(7\lel+7\3e3: —15)\‘50, i=1,3},
[-U2+C(Uz)lr\C(-Uz)=<Alel*Azez: -15Also, i=1,2)u
Uii(e +e_): -1=A=0}u{A(e_+e_): -1=A=0),
1 3 2 3

[-U_+C(U_)InC(-U_)=(A e +A_e_: -1sSA <O, i=l,2)u

3 3 3 1122 1

U(A(el+e3): ~1=A=0},

[-U +C(U )InC(-U )={A(e +e_): -1sA=<O}s{A(e_+e ): -1=A=Olu

4 4 4 1 3 2 3

U(Aelz —lsAsO)u(Aezz -1=A=0}
respectively.

By Theorems 2 and 3 we have immediately the following

THEOREM 6.- A function f:G —)C(-Ul) is a solution of the
equation f(xy)—f(x)-f(y)eUl with f(e)=0 if and only if it has the
form f=(f‘.f2,0) or the form f=(f|,0,f3) where f|:G——) [-1,0] ,
i=1,2,3, are solutions of Eq. ll with fl(c)=0.

Much more complicate is the situation for the sets U2 and
Ua.ln these cases one can ask if there exist any solution whose
range has point in both sets (A(el+e3):-ls>\50) and (AeI:-ISASO).

If such a solution f=(fl.0,f3) exists then define the sets
A={xeG : fl(x)=f3(x)=0)==e,
B={xeG : fl(x)*O. f3(x)=0).
C={xeG : fl(x)=,f3(x)=-l).
D={xeG : fl(x)=f3(x)¢(0,—l)).
By Lemma 1 C is a semigroup, AUB is a semigroup and AUBUC is a

subgroup of G.Moreover it is easy to show that the following
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additional properties hold:
x,y€A = xy,yx€A ; xe€A, yeB (or vice-versa) s xy,yxe€A;
x,y€D » xy,yx€AuCuD ; x€A, yeC (or vice-versa) » xy,yx€AuC;
x€A, yeD (or vice-versa) = xy,yxe€D ;
x€B, yeC (or vice-versa) » xy,yx€B ;
x€B, yeD (or vice-versa) = xy,yxe€D ;
x€C, yeD (or vice-versa) » xy,yxeD .
A simple check proves that the conditions above are also
sufficient for f=(fl.0.f3) to be a solution.

We summarize the previous discussion in the following.

THEOREM 7.- A function f:G —;C(-Uz) is a solution of the
equation f(.vcy)-f()c)-f(y)oEU2 with f(e)=0 if and only if it has one
of the following forms:

i) f=(fl,fz.0):
ii) f=(fl.0.fl): f=(0.fz.f2);
tii) f=(fl.0.f3); f=(0.f2.f3), with the sets A, B, C and D

(and the analogous where the role of f . is assumed by f 2)

satisfying the conditions listed above,
where fl:G——>[-l.O] , i=1,2,3, are solutions of Eq. ll with
f|(c)=0.

In the case of the set U:, we have the same result without the

functions of the forms f=(0,f2,fz) and f=(0,f2.f3).

Whether solutions of the form iii) of Theorem 7 actually
exist is not known and it may depend on the structure of the group
G.It is easy to show that for G=Z (the integers) they do not
exist.

To finish this section it remains to consider the case of the
set U‘.By the former discussion and by Theorem 12 of the papers we

obtain:

THeorem 8.- A function f:G —)C(—UQ) is a solution of the
equation f(xy)-f(x)-f(y)eU‘ with f(e)=0 if and only if it has one
of the following forms:

) f=(£,0,0); f=(0.f,.0) ;
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i) f=(f|.0.fl): f=(0.f2.f2);

iii) f=(fl.0.f3); f=(0.f2.f3). with the sets A, B, C and D
(and the analogous where the role of )“l is assumed by fz)
satisfying the conditions listed above,

where fi6— [-1,0] , i=1,2,3, are solutions of Egq. 1, with

£ (e)=0.

S.- To finish the paper we present some open problems
concerning Eq. l"

If nz4 the results contained in Section 3 do not describe the
whole class of the solutions with the property f(e)=0, but only
those with range in at most three coordinate hyperplanes.

A sirhple check shows that if G has a normal subgroup H of index s,
4sssn, such that each element of G/H has order 2, then
generalizing in an obvious way the construction of Theorem S we
get a solution of Eq. l'l assuming values in s coordinate
hyperplanes.It is open the question if these solutions are, as for
s=3, the only possible.

The condition f(€)=0 is a very strong restriction; if we look
for other classes of solutions, from Theorem | we get that the
range of these solutions is no more contained in the coordinate
hyperplanes: in the case n=3, for instance, it contains a "layer”
between two planes.In this case there are no results about the

solutions of Eq. 1 .
n
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ABSTRACT

Let E be & real Hausdorff topological vector
space . We consider on RxE the following binary law :
(a.x)*(b,y) = (nab,bkx+a’y)  for (8,x).(b.y)e RXE
where A is a fixed real number , k and / are fixed
nonnegative integers .

We find here all the subgroupoids of (RxE,*)
which depend faithfully and continuously on a set of
parameters . The two related functional equations are
solved when the functions have some regularity property.
The greatest part of this paper consists in solving one of
them which fs a generalization of the Gotgb-Schinzel
functional equation .

1. INTRODUCTION
Let E be a real Hausdorff topological vector space

The following functional equation :

OO0y + %) =1(x)f(y) (X,yet) (GS)
where f is a mapping from E into R , is called functional equation of
Gotgb-5chinzel |t has been first considered by JAczel in 1957, and
then by S.Gofab and A.Schinzel in 1959 . The general solution of (GS) has
been characterized'and all the continuous solutions of (GS) have been

explicitely obtained ?
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46 N. Brillovet-Belluot

We consider now the following binary Jaw on RxE :
(a,x) * (b,y) = (Aab , b¥x + a’y ) for (a,x),(b,y) € RXE L
where A is afixed real number , k and / are fixed nonnegative integers .

Let us recall the following definition given by J.Dhombres®

DEFINITION 1 A subset H or RxE depends raithfully and
continuously on a set F of parameters If F Is a topological space and
I there exists a mapping g from F onto H .
g =g for veF
such that we have either :
(DEF)=E and [ =p) implies al) =a) ,
Qa /s continuous and [ aamits locally a continuous lirting
or
ar) aF)=R and aw)= alu) implies pu) =p5u),
£ 15 continuous and a aamits locally a continuous 1irting

We look for the subgroupoids of (RxE,*) which depend faithfully
and continuously on a set F of parameters .
In the case (i), the relation: f (B )=alu) (ueF) defines
a continuous function f from E into R which satisfies the following
functional equation :
FOrykx+ f007y) =X F00) fly) (xye€E) (1
In the case (ii), the relation: f(o(u))=p) (u e F) defines
a continuous function f from R into E which satisfies the following
functional equation :
f(Axy ) = yK () + x7 f(y) (xy€eR) (2)

The main part of this paper will consist in solving the functional
equation (1) This functional equation is a generalization of the
Go¥ab-Schinzel functional equation since (GS) corresponds to the
particular case of (1) where k=0, /=1,A 1 [t has been studied by
many authors in various cases . Among them , let us notice that the
author? found all the solutions of (1) having some regularity property in
the case where A  is a nonnegative real number and W.Benz 2
determined the cardinality of the set of discontinuous solutions f: R-->R
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of (1) for infinitely many real numbers X . In the case where A is a
nonzero real number , J.Brzdek 7 obtained all the continuous solutions of
(1) whenk and / are distinct positive integers , and the author 5 found
all the solutions of (1) having some regularity property whenk = /

The present paper is a survey of this problem . It gives all the
solutions of (1) having some regularity property when X is an arbitrary
real number and k,/ are arbitrary nonnegative integers. It is mainly
based on the papers written by the author >4 and JBrzdek 8 Some
further references concerning this problem may be found in these papers .

2. INVESTIGATION OF FUNCTIONAL EQUATION (1)

Following AMBruckner and J.C.Ceder ©, we shall denote by
0B, the set of all functions from R into R which are in class I

of Baire and have the Darboux property
The need of the set 0B, is explained by the following

resuit :

LEMMA 2 Let 1 be a function in DB, . Let us aeline the function
v RZ-DR Ly
pixy) =k x+ )y (KyeR)
Then, for every fixed real numbers x and y, the
functions @(.,y) and p(x.) have the Darboux property .

Proor of Lemma 2
Since f is in 0B, , the function x fK belongs also to 25,

if x is any nonzero real number Therefore , the graph of the
function x f(.)¥ is connected & The continuity of the function :
R2 - R2
(t,s)-->(t, fx)/ t+s) implies that the graph of the function
@(x,. ) is also connected Therefore , the function @(x, ) has the
Darboux property .
The proof is the same for the function o(.y).
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48 N. Brillouet-Belluot

Let us first study some particular cases of the functional
equation (1) .

21 Case A=0,k20,120
(1) is just : f(fykx+fo0’y) =0 (x,yet)

For k=0 and /720, it is obvious that the unigue solution of
(1) is f=0.

So we consider now the case where k and / are positive
integers . Let us suppose that there exists an element x, in E such

that f(x)= 0 By taking x=y=0 in (1) ,we get f(0)=0. Therefore,
x, is different from O.Let us suppose also that Zthe function
g:R->R defined by : g(t)=r(tx,) (lteR) belongs to
DB, . By taking x=x, and y=tx, (te R) in (1), we obtain :

fOREx K xg+ Fx) tx,)= 0 for every t in R
Let us define : (t) =gt + tf(x)/ (teR)
We have : fOPt)x,)=0  for every t in R

Since g is In 0B, ,we may prove as in Lemma2 that ¢ has the

Darboux property . Therefore , y(R) is an interval of R which contains
0 , but does not contain 1.So ((R) is included in (-e,1).
Let us suppose that /‘l’ is bounded below by b The relation :
fltx ¥ =gt -t f(x)”  (te R) shows that : f(Rx)k=R

This implies that k is an odd integer and so f(R x) =R Let ¢ be

the unique point of (0,1) which satisfies : ¢k+¢/=1  Then , there
exists a nonzero real number s such that f(sx)=c. By taking

X y s¥ in (1)) , we obtain : f(s %) =0 , which brings a

contradiction . Therefore , {(R) contains (-=<,0] and we have
f(t x,) =0 for every nonpositive real number t. Since { is bounded

above by 1, we deduce first from : (t) tf(xo)/ (t<0) that
f(xo)/ isa positive real number,and then that g(t)X =(t)-t f(xo)/
tends to - when t goes to +eo. In view of the Darboux property
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of g, we deduce that ¢ ([0,+=))X contains (-ee,0] . By taking now
X=tx, ,t<0 ,and y=rx;,r>0,in (1), we get : f( gr¥tx;)=0
and therefore : f(sx))=0 for every positive real number s. This
contradicts  f(x))=0 .

PROPOSITION 3 /n the class of functions . £-->R which have
the property that for every x in £ the function I, defined by -

Ie(t) =rtx) (te R) belongs to DB, , the unigue solution of
(1) inthe case A=0 Is [=0

22 Case A=0, k=1=0 .

In this case, (1) is :  f(x+y) = X\ f(x) f(y) (xyek)
S0, Af Is a solution of Cauchy's exponential equation. Therefore , all
the solutions of (1) are given by :
(i =0
4 0 =1/x . %) (xep) where g:E--R
is an arbitrary additive function .

23 case A=0 ,k=0,1> 0 .

We give first some property of the function ¢ defined in
Lemma 2 when f is a non lIdentically zero solution in 08, of

functional equation (1) in the general case where k and / are
nonnegative integers and A is a nonzero real number

LEMMA 4 Let us suyppose that A Is a nonzero real number and
k, /] are nonnégative integers.
If 15 a non lgentically zero solution of (1) in 08, ,

the function ¢, cefined by . ¢ ,x)=pxx,) (xeR) and the

Tunction Y, defined by = Yix)= pix, %) xeR  are
one-to-one and continuous when x, /s any real number
satistying fix,) =0
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Proor of Lemma 4

By Lemma 2, the functions ¢, and ¢, have the Darboux
property .

Let us suppose now for example that ¢, is not one-to-one
Then there exist x and y in R such that x=y  and

Q%,xg) = @ly X)) (3

We deduce by (1) : A T(x) f(x)) = A fy) f(x,)
Since A f(x) =0 , this implies : f(x)=f(y) With (3), we obtain :
f(xo)kx=f(x0)ky and therefore x =y .This is a contradiction.

S0, ¢, and Y, are one-to-one and have the Darboux property .
Therefore , they are continuous 6

COROLLARY S Unaer the same hypotheses as in Lemma 4, If I 71s
a solution of (1) In 0B, , the functions )’ anad r)¥ are

continuous .

Proor of Corollary 5
If f is a non identically zero solution of (1) in 05, , there

exists x; in R-(0) such that f(x,)=0 . By Lemma 4 , the functions
P () =@lx,x)) (xe R) and ,(x) = @(x,,x) (x€ R) are continuous .

We deduce immediately that the functions fO)7 and fOK  are
continuous .

Let us consider now the functional equation (1) when k=0,
/ 1s a positive integer and A i5 a nonzero real number .

If f is a non lidentically zero solution of (1) in 0B, , the
function  gx) = fx)/ (xe R) is continuous by Corollary S5 .
Moreover , g is a solution of :

gix+ gx)y) X g gy (xy€R) (4)
which is similar to the Gotab-Schinzel functional equation
By taking x=y=0 in (4) ,we obtain either g(0)=0 or g(0)=A"’

When ¢(0)=0 ,we get g=0 as we can see by taking
y=0in (4) .

So, we consider now the case where g(0)= A~ / By taking
x=0 in (4) , we get :
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ay) = g(a’y) (e R) (5)
and therefore :
gy) oA "y) (ye R) (6)
for every positive integer n
When |Al is different from 1 , (6) implies :
g=g(0) = »~/ and therefore f=1/x
When A’ is equal to 1 , (4) is just the functional
equation of Go¥ab-Schinzel for which we know all the continuous
solutions 3

When A’/ is equal to -1 (fe A= -1 and / odd) , (5)
implies by changing y into -y in (4) :
gl x - gx)y) g(x) gly) (x,yeR)

This means that -g is a continuous solution of the functional
equation of Go¥ab-Schinzel
So, we obtain the following result :

PROPOSITION 6 when A Is a nonzero real number and | s 4
positive integer , all the solutions in the class of functions DB,

or the rollowing runctional equation

Fexr) y) = A ro ) (KyeR) (7)
are given by :
1) f=0
and ) ir 1Al =1, F=1/4

i) ir A=\ and if 1 is odd
o) =1 a)' e R and i) =cSwilrax, W) (xe R

av) if A=1 and irl is even
1) =¢ Syl ax, 0N XER

w) A= and irl is odd
o) =-01+ax”! eR) and rfix)=-Sw1+ax, o (xe R

wr) Ir A=-1 and Irl s even
1) =-(Sw+ax,00 )N XER)

where a is an arbitrary real number .
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with the same proof we obtain also all the continuous
solutions f:E-->R of (7) when E is a real Hausdorff topological

vector space . Namely :

PROPOSITION 7 when A is a nonzero real number and ! Is a
positive integer, all the continuous solutions r.E-->R of the

rollowing runctional equation .
f(x+ f(x)’y) =2 1mx)ny) (xy &£ (7)

are given by .
) r=0

and arn ir 1Al =1, =1/

i) i A =V and Iir 1 Js odd .
o) =1+ oxxX )V (ve £) and 1ix) = (Supl1+ x0T (e f)

(v) Iif A =1 and ir ] is even

100 = ( Su1+ x>, N7 XE E)
(V)’ r A==\ and irl is odd .
100) = (V¢ x X N (xef) and fix) =- (Sup1+ x x>, 0N (veE)

i) i A=-1 and ir ] Is even

1) =-(Sul\+ x>, o7 XE E)

where X is an arbitrary element of the topological aval of £ .

Let us finally mention that JBrzdek studied in detail the
functional equation (7) in the case A 1 in his Doctor Thesis 7 .

24 Case A=0,k»0,1>0

We start with a preliminary remark concerning the solutions
of the functional equation (1) in 08,
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LEMMA 8 Let 1 be a solution or (1) in 05’, .

I A 1S positive and [ Is bounded above on R
or If A Is negative and [ Is bounaged below on R ,
then r is constant

Proor of Lemma 8

Let us suppose that A is a positive real number . The
proof is similar when X\ Is negative

For an indirect proof , we suppose that f is a solution of
(1) in DB, bounded above on R and that f fs not constant .

Let M be an upper bound of f(R) By taking x=y in (1),
we obtain : A f(x)2 < M for every x in R Since f is not
identically zero , M is a positive real number

By taking x=y in (1) , we get successively :

IFOO < (M/A)V2 for every x in R
IFOOl < (MVY4) 7 (AV72+ (174 for every x in R
IFOOl ¢ (M1727) 7 ( A2 #174) 2.2 (1727) for every

x In R and every positive integer n
As n goes to +eo , we obtain :
IfO < 1/N for every x in R (8)

Since f is bounded and non identically zero , we have , by
the Darboux property of the function @(.,t) (Lemma2) , @(R,t)=R
for each te R such that f(t)=0 Therefore, for every real number
X , there exists a real number s such that @(s,t) x In view of
the Darboux property of f , we may choose x and t in R such that :
0 < If(t) <If(x)l . By using (1) and (8) , we obtain :

O <R <IfC =1f Cols, ) A IS IFCE < If (L
which brings a contradiction . Therefore , f is constant
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In order to obtain all the solutions of (1) in 0B, , we
shall consider the two cases k = / and k =7/

2.4.1. Solutions of (1) in DB, in the case k=1

We are going to prove that the only solutions of (1) in 08,

in this case are the constant functions The following results are
due to J.Brzdek ®

PROPOSITION 9 Let k and | be daistinct positive integers and
let 1 be a non igentically zero solution of (1) in OB, We

define F =(xeR 7 fix)=0)
Tren , I, IS not one-to-one , where [, F-=> R

15 the function defined by -« I r(x) = fx) for all x in F

Proor or Proposition 9
For an indirect proof , let us suppose that f/F is

one-to-one .

Let us remark that , by (1) , if x and y belong to F ,
@(x,y) belongs also to F . Therefore , the symmetry In x and y of
the second member of (1) implies :

fykx+ f007y oKy + fiy)/ x for all xy in F
We deduce
o0/ -tk y (7 - (k) x for all xy in F

Since f has the Darboux property and is not constant , there exists
Yo In F-(0) such that p  (f(y)’ - f(y*) / y, = O . Therefore

we obtain :
fox)) ok px for every x in F (9

Let us define : gx) (x/ xX)/p for every x in R
We have by (9) :
g(f(F))-F (10)

Let us suppose that F=R Then , since f has the Darboux
property , f(F) is an interval of R which does not contain 0 So

)
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we have either f(F) C (-, 0) or f(F) C (0, +e) . It 15 not
difficult to see that we have g((-e,0))=R and g((0,+e=))=R.
This contradicts (10)

Therefore , we have F<=R . So , there exists Xq in R such
that f(x))=0 By taking x=y=x, in (1), we obtain :

f(0)=0 an

So , F does not contatn O Then, by (9), f(F) does not contain 1
Since f has the Darboux property , f(R) = f(F) U {0] is an interval

of R which does not contain 1 So , it is included either in (-oo,1)
or in (1, +e) (1) 1implies :
f(R) C (oo, 1) (12)

If X 1s a positive real number , f fs constant by Lemma8 But ,
it s not the case Therefore , A IS a negative real number Since
f is not constant , we have by Lemma8 :

(-0 ,0] C f(R) (13)

Let us suppose that there exists a in (0,1) such that a belongs to
f(R) . By (13) , there exists b in f(R) such that b<1/Aa By (1),
Aab belongs to f(R) and we have : Aab > | This
contradicts (12) . We deduce : f(R) (-= 0] and therefore :

f(F)  (-=.,0) (14)

If kK and / are both odd or both even , (9) implies that
f(F) does not contain -1 , which contradicts (14) . Therefore ,
either k is odd and / is even , or k is even and / is odd.By (10),
we have either F = (0,+0) or F = (-0 0) . We deduce :

R-F [0, +) or R-F - (- 0] (15)

Let us suppose for example that k is odd (and / is even).
Let us define : A = (fx)k ; xeF)

(14) implies : A = (-0, 0)
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By (1), we have
fCRykx) 0 for all x in R-F and all y in F
We deduce A, . (R-F) C R-F
where A, (R-F) [xy ; xe A, yeR-F]

This is impossible by (15)
This completes the proof

LEMMA 10 Let k and ] be distinct positive integers .
/F T 0s a non igentically zero solution of (1) in DB, ,
there exist a, b mm R, acb , such that r is constant and
nonzero on the interval [a, ]

Proor of Lemma 10
By Proposition 9 f/F is not one-to-one  Therefore , there

exist a,b in R, a<b , such that f(a)=f(b)=0 .

Let us suppose that r Is not constant on [a, b/
So . there exists ¢ in (a,b) such that f(c)=f(a) . Since f has
the Darboux property , we may choose ¢ in (a,b) such that
fok = fak

without loss of generality , we may suppose [/ ¢k
We consider the following function

Vixy,2)  (f07/x)(y-2) + fipk 12k (x € R-(0);y,2€R)

We shall prove first that
for every r0, there exists x. in F-(0) such that If(xr)’/ Xl <r (16)

For an indirect proof of (16) , let us suppose that there
exists a positive real number r such that :

1107/ %] 2 r for every x in F (0) (17)
Let us suppose that F is bounded . Since f is a non
identically zero solution of (1) in 0B, , the function f0) s

continuous and not identically zero by Corollary S. Therefore ,F is a
non empty open subset of R. So , SupF and InfF are not both
equal to O . Let a be an element of (SupF,InfF} (0} . There
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exists a sequence (X ),y In F-(0) converging to a The definition

of F and the continuity of the function £/ imply that the
sequence [f(xn)’/ XnJnen  CONverges to O . This contradicts (17) .

Therefore , F is unbounded and there exists a sequence
Xneny 10 F-(0) such that [Ix )}, tends to +e By (1) and

(17) , we have for all x and y in F-(0) :

QOGN 7o T TN 1007ty 7 CRyk x + t00/y) 2 ¢ (18)
We have also for every x in F-{0} and for every n in N :

L EQxx N/ /906X ) | = 100N 7 (R R %+ 1007 1x)™7 %) |

(17) implies that :
Hf(xn)“"l Jpen tendsto +eo and |x f(xn)"l < 1/r forevery ninN.

We deduce that the sequence (| f(gp(x,x )’ /90X | Jeny  CONVErges
to 0 This contradicts (18) Therefore , we have proved (16)

By (16) , there exists x; In F-(0) such that :
[ (f(x)7/ %) (c-a)l < [k - f@k]
and  1Cf&x) /%) (b-c)l < LRk f(ek]

We deduce : sign V(x,c,a)  sign( feok  fak)
and sign V(x,,b,0) = sign (f(¥  f(OK)

where signt={l it t>0

-1 if t<0
Since  sign (f(ok  f@*) = sign(fd¥  f(c)k)
we have either sign V(x,,b,a) = sign V(x,,c,a) (19)
or sign V(x,,b,a) = sign V(x,,b,¢) (20)

Let us suppose that (19) occurs The proof would be
similar with (20) . By Corollary S , the function : y € R -=> V(x,y,a)

is continuous Therefore , (19) implies that there exists y, in (c,b)
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such that  V(x,y,a) =0 We deduce : Pxy) = 9(xp,a) . This
is not possible since , by Lemma 4 , the function @(x,. ) s
one-to-one . Therefore , f is constant on the interval [a,b]

THEOREM 11 If k and ] are aistinct positive integers , the only
solutions of (1) in 0B, are r=0 and =1/

FProor or Theorem 11
Let f be a non identically zero solution of (1) in 0OF, . By

Lemma 10 , there exist a,b in R, a<b, such that :
fx) =f(@=0 for every x in [a,b]
Let us suppose that there exists x, in R such that f(xy) = f(a)
By the Darboux property of f , there exists a nontrivial interval I
of R included in f(R) which contains f(a) , but does not contain O
On the set (1), we consider the following equivalence relation :
X~y (== f(x) = f(y)
By the axiom of choice , there exists a bijection g from the
quotient set (f '(1)/~) onto a subset Y of f71(I). The function
f~: (N 1)/~) -1  defined by :

fy) =1~ (g 'y for every y in Y
is a bijection from (f"%1)/~) onto 1 Therefore , we have :
CardY =Cardl > CardN 2n
fo) = ()7 ~) =1 (22)
f(x) = f(y) for x,yeyY b6 x=y (23)
By (1) , we have :
fCpix,y)) X f()fly) for every x in [a,b) (24)

and every y in R

By (22) and Lemma4 , for each y in Y , @ ([abl,y) is a non
trivial interval of R since I does not contain O Moreover , by (23)
and (24) , if y and z are distinct elements of Y , the intervals
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p(labl,y) and @([abl,z) are disjoint . Therefore ,

A (@ (labl,y) ,yeY) is a family of disjoint intervals By

(21) , we have . Card A CardY > CardN  This is impossible
Therefore , f is a nonzero constant function on R (1)

implies . f-1/A
This completes the proof of Theorem |1

242 Solutions or (1) in DB, in the case k=17

The following results are due to the author 4%
The proofs are based on the following known result 2 :

PROPOSITION 12 All the continuous solutions h R --» R o
the runctional equation
Nenx)) = (y+ 1) mx)  y x (xR 25/

where y 1§ g given nenzero real number ,

are gen by

a woyr0., y =1
(r) yx+(1-y)a for x s a
b/x)=/ X for asxsb WIth -eo 3 <b g #ex
yx+(l y)o for x 2 b

(1) nx) =y x+d& (xeR) with & R
o) iy =)
hx) - x+6 (XER) with & € R

o) i oy<e0, y =-1
(7 hx) =y x+6 (xeR) with & € R

arn hx) = x (xER)
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a roy-=-1
) hx) = x (XER)
arn o hx) {Wx) for x& (e, ¢/
Y, for x€ [c, +e)

where ¢ Is an arbitrary real number and @ /s an
arbitrary continuous and strictly aecreasing runction
mapoing (-ee, ¢/ onto [c, +eo)

it k /7 and if f is a solution of (1) in DB, , the

function : g(x) = f(x)/ (xe R) is continuous by Corollary S
and satisfies the following functional equation :

glgy) x+gixy) = A g gy (xy€eR) (26)

Let us remark that the functional equation (26) corresponds to the
particular case of (1) where k /=1 and A is replaced by A/

We shall solve (26) and we consider the two cases : A/ <0 and A/>0.

We start with the first case and we shall prove the
following result :

PROPOSITION 13 All the continvous solutions g R --> R o
the runctional equation -

gegyIx+gxly) = u gx) gy) (xyeR) 27)
where 1S a given negative real number

are given by .
7 g=0 ) g =\/u
Proor of Proposition 13
By taking x=y=0 in (27) , we have either g(0)=1/u or
g®=0
a) Let us [irst consider the case g(0)=1/u
By taking y=0 in (27), we get :
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g(x) = g(x/u) for every x in R (28)
Therefore , we have for every x in R and for every positive integer n:
gix) = g(x/u") = g(xpM)

If p=-1, we see , as n goes to +e and by using the
continuity of g at O , that : g(x)= g(0) - 1/p  for every x in R.

If w=-1,(28) becomes: g(x) = g(-x) for every x in R.
By taking y=-x in (27) , we get :

glg-x)x  gx)x) = -g(x)g(-x) for every x in R
or , with (28) :  g0) = -1 - g(x)? for every x in R

Using the continuity of g , we deduce :
gix) -1 for every x in R

b) Let us now consider the case g(0)=20

Let g be a non identically zero continuous solution of (27) .
By taking y=x in (27) , we see that the set of all real numbers x
such that g(x) <O is a non empty open subset of R  The
continuity of g implies then that g¢(R) is an interval of R
containing an interval of the form (&,0] By Lemma 8 , g is not
bounded below and therefore g(R) 7is an interval of R which

contains (-e ., 0] .
S0, there exists a nonzero real number X, such that

gx,) = 1/ . Let us denote :
h(x)  gix) X + X3 g(x) = X/ + X, 9(x) (xeR)
h is continuous and satisfies the following functional equation :

h(h(x)) (1/p +1) h(x) 1/u x (xe R) (29)

Now , all the continuous solutions of (29) are given by
Proposition 12 .

The solution : h(x)=x (xe R) of (29) gives :
gy =C1 1/ x/x, (x€ R) which does not satisfy (27)
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The solution : hO) = 1/p x + & (xe R) of (29)
leads to a constant function g This is not possible since we have
supposed that g(0)=0 and g is not identically zero

So, we have necessarily M=-1 and
h(x) {(D(x) for x€ (-e0, C]
o) for X € [c, *o0) (30)

where @ is a continuous and strictly decreasing function mapping
(-0, Cc] onto [c, +eo) .

The function . x -=> h(x) x is continuous and strictly
decreasing on R . Therefore, it vanishes at most once From
h(c)=c and h(0)=0 , we deduce : ¢c=0

By taking y=x, in (27) , we get :

g(htd)  gx) for every x in R (31

Therefore , we may suppose that X, 15 @ positive real number .
By taking y=nh(x) in (27) and using (31) , we get :
gix g + g (%, g0x)-x) ) g(x)? (XxeR)

or g(x,9x)?2) = - g(x)? (xeR) (32)
Since g(R) is an interval of R which contains (-e=, 0] , the set

[ X,900?; xe R} fs the interval [0,+e) . (32) implies :
gx) = - x/%, for every x in [0, +eo) (33)

For x in (==, 0] , h(x) belongs to [0, +e) by (30) Therefore, by
using (31) and (33) , we obtain :

g(x)  g(h(x)) h(X) /%, = gx) + x/%, for every x in (e , 0]
or ax) X /2%, for every x in (-e, 0]

It is now easy to check that the function defined by :

g(x) { X/ X, for x20 does not satisfy (27)

x/2x0 for x<O0

Therefore , there does not exist a non identically zero
continuous solution of (27) satisfying g¢(0)=0 This ends the proof
of Proposition 13
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When | is a positive real number , we have the following
result 3

PROPOSITION 14 All the continuous solutions g . R --» R of
the runctional equation .
gigy)x+gix)y) = u gix) giy) (xyeR) 27)

where L Is a given positive real number
are given by .

() g=0 an g =\ /u
and , n the case =2 only

(1rr) gx) = ax (xeR)

(1) gx) = Sulax ,0) (XER)

where a Is an arbitrary nonzero real number

Proof of Proposition 14
As in Proposition 13, we have either g(0)=1/p or ¢(0)=0

a) Let us [rirst consider the case g(0)=1/u

As in Proposition 13, we have the equality (28) which
implies g(x)= 1/p forevery x in R when p is different from 1.
So , we consider the case where - 1=g(0) If f is not
identically equal to 1, there exists x, in R such that g{x))=1+¢

where € iS a nonzero real number
By taking x=y=x, in (27) , we get with x,=2x, g(x))

gix) = (1 +€)?
By taking x=y=x, in (27) , we get with x,=2x,g(x;)
glxp) = (1 + €)*
By this way , we build a sequence of real numbers X, such
that glxp) =1+ )2 for every positive integer n

If g(x0)> | , € is a positive real number and the sequence
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(9(x)) )y tends to +eo  The continuity of g implies : [1, +ee) C g(R)

If g(x) <1, € is a negative real number and we can assume
-1 <€ <0 . Therefore , the sequence {g(x,) ]}y converges to O

The continuity of g implies : (0, 1] C g(R)
We notice that g(R) does not contain O since , If there exists
X, in R such that g(x))=0 , we get , by taking x=y=x, in (1),
g(0)=0 , which is not the case .
So , by Lemma 8 , g(R) satisfies one of the two following
conditions : (i) gR) [1, +ee)
(i) g(R) = (0, *o0)

/n the case (i) , let us choose a nonzero real number t
such that . g(t)> 1
Let us denote as in Lemma?2 :
ox,y)  gly) x+ gix)y (x,yeR)

We have : e-t,t) t (gt-t) gt))

T g(-t)=g(t) , we have by (27) :
gle-t,t)) 1 gl-tygtt) > gt) » 1 , which is not possible

It g(-t) < gt) , @(-t,t) and @(0,t) do not have the same sign .
By the continuity of the function @( ,t) , there exists a nonzero
real number u such that ¢(u,t) = 0 . Then , by (27) , we have :

glolut)) = | gl glt) 2 gt) > 1 , which is impossible

Therefore , we have : g(-t) > g(t)  @(-t,t) and ¢@(-t,0) do not
have the same sign By the continuity of the function ¢(-t,.) ,
there exists a nonzero real number u such that @(-t,u) = O Then ,
by (27) , we have :

g (e-tu)) 1 g-t) glw) > g(-t) » gty > 1, which is also
impossible

Therefore , the case (i) cannot occur
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Let us consider now the case (il) . There exists a
nonzero real number X, satisfying g(x))=1/2 By taking x=y=x;
in (27) , we obtain : 1/2 = g(x)  g(x)? = 1/4 ,which is not
possible . Therefore , the case (ii) cannot occur either

In conclusion , when ¢(0)=1/p =1 , g is identically equal
to 1

Therefore , if | is any positive given real number , the only
continuous solution of (27) satisfying g(O)=1/p is: g 1/u

D) Let us now consider the case g(0)=0 .

Let g be a non identically zero continuous solution of (27)
By taking y=x in (27) , we see as in Proposition 13 that the set
of all real numbers x such that g(x)>0 is a non empty open
subset of R The continuity of g implies then that ¢(R) is an
interval of R containing an interval of the form [0,&) By
Lemma 8 , g is not bounded above on R and , therefore , g(R) Is
an interval or R which contains (0, te)

S0, there exists a nonzero real number x, such that

g(x,) = 1/1  Let us denote :
h(x) QX)) x/H + X, gx) (xeR)
h is continuous and satisfies the following functional equation :
h(h(x)) = (1/p +1) h(x) - 1/p x (xeR) (29)

Now , all the continuous solutions of (29) are given by
Proposition 12

The solution @ h(x)= 1/u x + & (xe R) of (29)
leads to a constant function g This is not possible since we have
supposed that g(0)=0 and g is not identically zero .

So, we have necessarily n=1 and
x/n +(1 1/p) a for x ¢ a
h(x) =9 x for a<x<b With —eo (2 (b ¢ +eo

x/W +(1-1/p)b for x 2 b
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We deduce : (1-1/1) arx, for x < a
gix) =4 C1=1/p) x/x, for a<x<b
(1 1/p) brx, for x 2 b

g(0)=0 1implies : a< 0<b
Since g is not constant , g is not bounded above on R by
Lemma 8. Therefore, we have : b=+eo if (1-1/W)/x, is positive
and a=-e« if (1 1/W)/x, is negative
Let us suppose (1 - l/u)/x'J >0 and b=+ By taking

x=y>0 in (27) , we get :
glgyx+gxy)  g(2C1 1/p) x¥/xy) = 201 1/p)? x/x2
= POl 1/p)? x2/x2

This implies w=2 and we have the following expression for g :

gx) = (a/2x, for x<a with - <a<0 and x>0
{x/2x0 for x2a

Let us suppose a>-e= By taking x<a and y>x;, in (27),
we obtain :

glgly)x+gx)y)

gl yx/2xy+ ay/2x;)  g(y.(@*x)/2x, )  a/2x,
ay / 2 x,?

This implies a=0 and g has the expression (iv) with o> 0 .
If a=-o , g has the expression (iii) with a>0 .

If C1-1/u) /%, <0 and a=-e , we obtain similarly

B=2 and either b=0 or b=+e This gives the expressions
(ii1) and (iv) for g with a <0 .

It is easy to verify that the expressions (iii) and (iv) of g
are solutions of (27)
This ends the proof of Proposition 14
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S0 , when f is a solution of (1) in OB, in the case k /,

we obtain first from the Propositions 13 and 14 all the possible

expressions of  g(x) fx)/  (xe R) and we deduce then all the
possible expressions of f

243 Regular solutions or (1)

Using Theorem 11 and Propositions 13 and 14 , we deduce
first all the solutions of (1) in 08, .

THEOREM 15 when A Is a nonzero real number and k, ] are
positive integers, all the solutions r-R-->R in the class of
runctions 05’, of the runctional equation

rerp)X x+ 0 y) =2 i fy) (XyER) 1)
are given by .
a) if k=] or if k=] and A =2
a)  r=o0 arn r=1/a

b) if k=1 is an oad integer and A =2'7
) r=0 (i) r=1/2 i) o =a xM eRr)
v) o) =Sl xM 1,00 (xeR) where a s an
arbitrary nonzero real number .

¢) if k=1 is an even integer and A =27
) r=0 , (i) =114 , i) fx)=(Suplax, OV (xeR)
where a Is an arbitrary nonzero real number .

@) ir k=1 is an even integer and A =-217

() F=0 , () F=11A , (7)) Fx)= - (Suplax, OV (xeR)
where a Is an arbitrary nonzero real number

We obtain now all the continuous solutions f:E-->R of (1)
when E is a real Hausdorff topological vector space .
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THEOREM 16 Let F be a real Hausaorrf topological vector space.
when A s anonzero real number and k, ! are positive integers,
all the continvous solutions r:F-->R of the functional
equation .

FOrX x+ o0 v) =2 rx) 1) (xyEE) )
are given by
a) if k=] or ir k=1 and A =2

) r=o ar) r=1/2

b) i k=1 Is an oad integer and A -2V
(1) r=0 (1) F=1/2 i) )= X )V (e
(v) 1fox)=Supl (xx 2V 0)  (veF) where ¥ is

a nonzero element of the topological aual £ or F

¢) Iir k=1 Js an even integer and A =2V1
() F=0 ;1) F=112 () fix) = (Sl xx2 0I N (xe £
where ¥ is a nonzero element of E

@) if k=1 Is an even integer and A =-2V7
() F=0 ;1) F=\1A (7)) fx) =-S5l i, 0N (xveE)
x N
where ¥ is @ nonzero element of E

FProor of Theorem 16

Let f:E-->R be a continuous solution of (1) . Then , f(0)
is either 0 or I/X . For every x=0 in E , we consider the
function f, : R --> R defined by : f(t) f(tx) (teR) It
is easy to see that f, 1S a continuous solution of (1)

By Theorem 15 , if k=/ or if k / and A'=2
is a constant function for every x=0 in E Therefore , we have

fy  f,0) = f0) f(1) f(x) for every x=0 in E

So , f is identically equal either to O or to 1/A

T

So , we consider now the case where k / and A’=2
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The function g:E-->R defined by : g(x) = f(x)/ (xeE) s
continuous and satisfies the following functional equation :

glgy)x+gxdy) 2 gx) gly) (xyecE) (34)

Now , all the continuous solutions g:E-->R of (34) are known 3
and are given by

g=0,;g=1/2; gx)=<xx*> (xe E); g(x)=Sup( <x,x*>,0) (XEE)

where x* is a nonzero element of the topological dual E* of E .
(Let us notice that this result is stated in the reference for a
real Hausdorff locally convex topological vector space .But ,K.Baron
observed in a private communication that this result is also true
for a general real Hausdorff topological vector space .)

We deduce then all the possible expressions of f given in
Theorem 16

3. SUBGROUPOIDS OF (RxE , *)

In our problem , we consider the groupoid (RxE,*) where E
is a real Hausdorff topological vector space and the binary operation
* is defined by :

(a,x) * (by) = (Aab , bx +a’y) for (a,x),(b,y) € RXE (B

When we look for the subgroupoids of (RxE,*) which depend
faithfully and continuously on a topological space F of parameters ,
we have to find ( Definition 1) :

in the case (i), all the continuous functions f:E -—>R
defined by : f(p(W)=alw (ueF) which satisfy the functional
equation (1)

in the case (ii), all the continuous functions f: R -->E
defined by : f (alu))=pWU) (u € F) which satisfy the functional
equation (2)

The continuous solutions f:E-->R of (1) are given by
Theorem 16
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For the functional equation (2) , we have the following
result .

PROPOSITION 17 All the solutions F.R -->E of the runctional
equation

reaxy)=yX e+ x! 1) (XyeR) )
are given by .

a/ r=0

o) ir k=1 and A*=ia 1

) = (x! xK) v (XER) , where v is
an arbitrary nonzero élement or £

¢ ir k=1 and A =1

) ir /=0, ) = hdx) (xeER)
where h 1s a homomorphism from (R, .) Into (£, +).

ar oir 120, ) ={x’ hix) i x=0
0 rox=0
where h 1s a homomorphism from (R -00/,.) into (E, +).
@ Jr k=150 and A=2

fix) = x' v (XER) , where v s an
arbitrary nonzero element of £

Proor of Proposition 17
Let f:R-->E be a non identically zero solution of (2) By
inverting x and y in (2) , we get :
fOaxy)= sk fiy) + y/ f(x) (xyeR) (2 bis)
(2) and (2 bis) imply :
(x” x5ty (v vk (xy€eR)
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If k=/, there exists a nonzero real number y, such that
Yo/ = ¥,  We deduce :
fx)  (x/ xK v (XeER) , where v is a

nonzero element of E It is easy to check that this function is a
solution of (2) if , and only if , Ak= A7/= |

Let us suppose now k / If A 0 , it is easy to see
that f is identically zero , which is not the case Therefore , X is
a nonzero real number By taking x=y=1/X in (2) , we get :
f/A) (1 2/x7)=0 , which implies either f(1/A)=0 or A/=2.

Let us suppose that f(1/X)=0 By taking y=1/x in (2),
we obtain : f00 (1 1A 0 for every x in R Since f
is not identically zero , this implies : A

If /=0, (2) becomes :

fOAXy )= f(x) + f(y) (xyeR) where A 1S an
arbitrary nonzero given real number
Let us define h(x)  f(x/X) (xe€R)

Then , by (2) , h is a homomorphism from (R,.) into (E,+). This
gives the solution ¢) (i) of (2)
Let us suppose now />0 . We define :
h(x) = f(x)/ x’ (xe R (0)) (35)
f is a solution of (2) if , and only if , h satisfies the following
functional equation :

h(Axy) = h(x) + h(y) (xye R-(0}) with A/ 1 (36)

By taking y=1 in (36) , we obtain :

h(Ax)= h(x) + h(1) (xe R-(0}) (37)
Since A2 =1 , we get with x=X in (37) :

h(1)  h(A)+h(1) which implies @ h(A)=0
Also , by taking x=1 1in (37) , we obtain :

h(A)=0 = 2h(1) which implies :  h(1)=0
Therefore , (37) becomes : h(Ax)= hx) (xe R-(0)) ,

and we deduce from (36) that h is ahomomorphism from (R (0),.)
into (E, +) This gives the solution c¢) (i) of (2)



72 N. Brillouet-Belluot

Finally , let us suppose A 2 . Then , / must be a
positive integer . f is a solution of (2) In this case if , and only
if , the function h defined by (35) on R - (0) satisfies the
following functional equation :

h(CAxy )= 1/2 (h(x) + h(y)) (xye R-(0)) (38)
Taking y=1/X 1in (38) , we see that h is a constant function .
Therefore , we obtain : f(x) = x’v (xeR) , where v Is

a nonzero element of E .

In the sequel , we shall denote by R* the set of all
nonzero real numbers .

From Theorem 16 and Proposition 17  and by using the
expression of the continuous homomorphisms from (R, .) into
(E,+) ', we deduce easily the following results :

COROLLARY 18 Let A be a nonzero real number
we consider the groupold RxE ¥ where [he
binary law * is aefined by (1) with k=1=0. A/l the
subgroupolds or (R'x £,%) which aepend raithfully and
continously on a set of parameters , are .

the sets G =((11A eP X, 5) peE) wrere
X" is an element of the topological dual of £

and the sets 6, =/((a,log(/Aal).v), a ¢ K] where
v Is an élement of £

COROLLARY 19 Let k be a nonnegative integer , let | be a

positive integer and Jet A be a nonzero real number such
that 2! is different from |\ and 2 .

we consider the groupoid (RXE,*) where the
binary law * Is aefined by (L) . Al the subgroupoids
of (R'xE,*) which cepend rarthrully ana  continuously
on a set of parameters , are .

the set ((\/A,p) ,PEF)

and  the set [((a,0) ,; aeR)
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COROLLARY 20 Let k be a nonnegative integer , let 1 be a

positive integer and let A be a nonzero real number such
that A =1

we consiger the grouypoid RxE LX) where the
binary law * [s caefined by (L) . All the subgroupoids
of (RxE,® which aepena  1aithfully and  continuously
on a set of parameters , are .

the set ((\/A ,B) , FEF)]
and, If k=1 and Af =1,
the sets G,-((a,(a’ aX)v), acR")
where v Is an element of £
k=17,
the sets 6, =((a,a’log(la/). v), a R
where v Is an element of £

COROLLARY 21 Let k be a nonnegative integer , let | be a
positive integer and let A be a nonzero real number such
that A= 2.

we consider the groupold RxE, %) where the
vinary law * Is defined by () All the subgrouypoids
of (RxE , ) which depend rarthrully anad  continuously
on a set of parameters , are .

the set [(\/A,B) ,BEF]
the set ((a,0) , acR )
and , if k=1, the sets G,=((a, a’ v), acR)
where v 1s an element of F
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ABSTRACT

The paper presents an application of functional equations to the discrete solution
of ordinary differential equations. First, we deal with linear differential equations
with constant coefficients, and from one special functional equation we design an
algorithm to obtain the exact values of the solution at equally spaced points. Then,
a method to obtain approximate and exact solutions and an equivalent functional
equation of a linear differential equation is given.

1. Introduction

In this paper, two systems of differential and functional equations are said to be
equivalent if they share the same set of solutions. The existence of equivalent systems
of differential and functional equations, in the above sense, allows us not only to use
differential equations for solving functional equations but also functional equations
for solving differential equations. In the next two sections, we shall show how a
functional equation, that it is equivalent to the whole family of linear differential
equations with constant coefficients, can be used to obtain discrete exact solutions of
a differential equation problem. In the last section, we shall explain how a sequence
of approximate equations to a linear differential equation, in the sense of having
approximate solutions on a grid, can be found.

To clarify the abovementioned, as well as the relations between functional and
differential equations and their exact and approximate solutions, we include figure 1.

75
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Physical Functional
Problems Equation

Differential
Equation

Difference
Equation (exact)

Finite Elements Difference
Method Equation
(approximate) (approximate)

Figure 1: Illustration of the relation between differential equations, functional equations
and their associated numerical methods.

The functional equation

n

h(zAy) = 2 fe(z) gi(y) = g7 (y) * £(2)

k=1

h(z) 91(y) (1)
t@=| | g = | %W

ful) 9n(y)

where A is any commutative internal law of composition defined on R and &, fi
and gx (kK = 1,2,...,n) are unknown real functions of real variable such that the
set of functions {fi(z), f2(z),..., fa(z)}, on the one hand, and the set of functions
{91(9),92(¥),-..,9.(y)}, on the other, are linearly independent has been used by
many researches as Stephanos ([6], [7]), Levi-Civita ([4]), Stakel([5]), Aczél ([1]), etc.
We show, without loss of generality, that Eq. 1 can be considerably simplified and we
give several equivalent functional equations. Then we demonstrate that when A="+"
it can be solved by its reduction to an homogeneous differential equation of order n
with constant coefficients (see Aczél [1], pp. 197-199). Conversely, every solution
h(z) of an homogeneous differential equation of order n with constant coeflicients
satisfies Eq. 1. Finally, we show how functional equations can be used to identify the
differential equation associated with a practical problem and to obtain exact discrete
solutions. We also give an algorithm to obtain discrete exact solutions when the
value of function A(z) is known at 2n points and some method for identifying the
coeflicients of the associated differential equation.
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2. Simplifications

The following theorem demonstrates that Eq. 1 can be simplified if we take into
account the commutative property of A.

THEOREM 1 (Symmetry).- Functional Eq. 1 can be written as

n

h(zDy) = 3 a; fiz) fi(y) = fT(x)Af(y) 5 aij = aj;i Vi,j (2)
1,7=1
where A is the symmetric matriz of coefficients a; (1,7 =1,2,...,n).

Proof: Because of the commutativity of A , we have

h(zAy) = Z fi2)aily) = 2 fWgz) =

(3)
=>Z[f - f)gi(x)) =0

which is an equation of the form

> pl@) aly) =0 (4)

Thus, according to a result of Aczél 1] (see Castillo and Ruiz-Cobo {2}):

£€2)) _ (1) g0y, (8 ) _ (B
() = (&) s (50) = (5) o ®)
where A and B are constant matrices such that

(I AU(E):O = B=AT (6)

From Eq. 5 and Eq. 6, we get
g(z) = Af(z) = Bf(z) = ATf(z) = A = AT (7

Finally, substitution of Eq. 7 into Eq. 1 leads to Eq. 2. B

We shall now study the uniqueness of representation of Eq. 2, i.e. we try
to answer the following question: given h(z), is there a unique set of functions
{fi(z), fa(z),..., fa(z)} and a unique matrix A, such that Eq. 2 is true?, and if
the answer to this question is negative, what is the relation between different solution
sets of functions and matrices? The answer to the above questions is given by the

following theorem.
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THEOREM 2 . [f there are two sets of linearly independent functions

{fi(z), fo(T), ..., fu(2)} and {f}(2), f3(2),..., fi(z)} and two symmetric matrices

A and A* such that

h(zAy) = Y a; filz) fi(y) = Y a; f7(2) i (y)
1,5=1 i,7=1
then there exists a regular constant matriz B of order n such that
f*(z) = Bf(z) ; A=BTA’B
where A and A* are the matrices of coefficients a;; and aj;, respectively.
Proof: In effect, equation

Y ai filw) fi(y) = Y af £7(2) £ (y)
ig=1 ij=1
can be written as

> [f,-m > fj(y)’ -y [f.-‘(r) >, f;(y)} -0

i=1 =1

which is of the form Eq. 4. Thus, we have (see Aczél [1])

()= () - (200)-(2) o

where B and C are non-singular constant matrices satisfying the equation

(1 —BT)<‘é>=o = A-B'C=o0

From Eq. 12 and Eq. 13, we get

A"Bf(z) = A*f*(z) = Cf(z) =BT 'Af(z) = A =BTA'B
]
COROLLARY 1 .- Functional Eq. 1 can be written as

P

Hetw) = X ) 50~ & 4 50 =) (55 )10

i=1 i=p+1

where p+ q =n.

(8)

(9)

(11)

(13)
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Proof: Expression on the right of Eq. 14 shows that matrices A and A" are con-
gruent, but we know that any non-singular symmetric matrix A* of rank n can be
transformed by congruence to a matrix of the form

(L 0 . -
D ( 0 Iq> i ptg=n (16)
and then Eq. 15 holds. B

In the following we assume A="+" and we demonstrate that equation
h(z +y) = f7(y) Df(z) (17)

is equivalent to an homogeneous differential equation.
Taking separated derivatives with respect to z and y in Eq. 17 and equaling we
get
K(z +y) = £7(y) Df (z) = £ (y) Di(z) (18)

Due to the fact that the set of functions {fi(y), f2(y),. .., fa(y)} is linearly indepen-
dent, there exist constants y,, (m = 1,2,...,n) such that det fi(ym) # 0. Conse-
quently, it can be written

B(2 4 ym) = fT(ym)DFf (z) = 7 (ym) Df(z) ; m=1,2,...,n (19)

which in matrix form becomes

f'(z) = G'G'f(z) =Ff(z) ; F=G'G (20)
where G and G’ are matrices with elements depending on D and f,,(y«) and f7 (yx),
respectively.
Making now y = 0 in Eq. 17 we get

h(z) = fT(0)Df(z) = Cf(z) ; C=f£7(0)D (21)
and taking derivatives and using Eq. 20 we get

k'(z) = Cf'(z) = CFf(z)
h"(z) = CFf'(z) = CFFf(z) = CF*{(z)

(22)
™ (z) = CF™f(z)
which, in matrix form, becomes
h'(z) CF
U CFZ
Hz)=| " | = f(2) = Uf(z) (23)

h™)(z) CF"
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Finally, from Eqs. 21 and 23, taking into account that the above functions are linearly
independent, we have
h(z)
h'(z)
d| r'(z) | =0 (24)
A (z)

where d is a constant nonzero vector. Thus Eq. 24 is a homogeneous differential

equation of order n with constant coefficients.
We now show that every solution k(z) of an homogeneous differential equation of

order n with constant coefficients satisfies Eq. 17. In effect, every solution is of the
form

h(z) = Z P (z) exp{wiz} (25)
k=1
where wy, (kK = 1,2,...,m) are complex constants (the roots of the characteristic

equation) and Pi(z) are polynomials of degree (ny — 1) where f ng = n.
k=1

From Eq. 25, we get

Wz +y) = 3 Pl +y) explwe(z +4)} =
k=1
(26)

= Xn: Aez®* yP* exp{wiz} exp{wiy} = Zn: fe(z) gx(y)
k=1 k=1

Thus, Eq. 17 gives a representation of every solution h(z) of an homogeneous differ-
ential equation of order n with constant coefficients.

3. Exact Discrete and Numerical Solutions

In the following we call h, = h(nAz) and we consider that functions h(z) and
fi(z) (1 = 1,2,...,n) are defined on a discrete subset of R {nAz,n € Z}. In order
to have a unique solution for Eq. 15 we also assume that hg,..., k2,1 are known.
Note that we give 2n values because Eq. 15 is equivalent not to a single differential
equation but to the familly of all differential equations and the constant coefficients
should be determined by data.

From Eq. 15, we have

hoin = £7(nAZ) (I(;’ _OI )f(mA:c) (27)

q
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where y = mAz and r = nAz and

hm
"ffl =F(nAz)(IOP _Olq)f(mA:c)
Rt
where
f1(0) f2(0) fx(0)
Poan< | AGD pan L gian
Alln=1)Aa] flin-1DAc] . filn - 1)A)

Due to the non-singularity of F, from Eq. 27 and Eq. 28, we can write
R
hmin = K(nAxz) im 1 ; K(nAz) = fT(nAz)F Y (nAz)
hmtn-1

and taking into account Eq. 28 for m = n, and Eq. 30 we have

-1
K(nAz) = (hy hugt ... hgn_,)(F(nA:c)({;’ OI>FT(nA:c))
]
but making m =0,1,2,...,n— 1 in Eq. 28, we get
ho  hy ... hny
Fnaz) (¥ © ) Flnagy=| M he o b
0 -I,
hn—l hn. e th—Z
and then
hm+n=
hoe hi oo R\ 7! b
hi hy ... hy B
= (Anhns1.h2no1) ”‘. ? i
hn—l hn .o h2n—2 hm+n—l

for m > n, which is a difference equation of order n. )

81

(28)

(31)

(33)

Hence, exact discrete solutions of Eq. 17 can be obtained by difference Eq. 33.
Consequently, given an homogeneous differential equation of order n, there exists a
difference equation of the same order such that their solution coincide at the common
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points. It is remarkable that we can obtain the unknown differential equation govern-
ing a problem if we know experimental values on a large enough set of equally spaced
points. Note that the difference Eq. 33 depends on Az and the coefficients of the
differential equation.

Eq. 33 can be written as

h(z +ny) = { h(ny) Al(n + 1)y] ... hl(2n — L)y] o

R(O)  h(y) ... Al(n—1)y\7 h(z) (34)
o R A2y ... h(ny) h(z +y)
M -1y h(ng) .. K@a—23))  \hz+(n—1))

which is a functional equation equivalent to Eq. 1 with A ="+".
For a differential and a difference equations to have the same solution at common
points, their characteristic equations must be of the form

(z—e;)=0 and ﬁ [z — exp(a,Az)] =0, (35)

1 i=1

—.

T

respectively. Thus, once one of both equations is known, the other can be immediately
obtained from Eq. 35.

EXAMPLE 1 (Castillo, Ruiz-Ddvila and Ruiz-Cobo [3]).- Let us consider the dif-
ferential equation of a string on an elastic foundation with no load on it:

R (2) — 1% h(z) =0 (36)

where h(z) is the vertical displacement of the string at the point z, K is the Winkler
constant and T is the horizontal tension in the string. In order to simplify we assume

that K/T =1.

The ezact solution for the case h(0) = 0;h(1) =1 is
exp(z) — exp(—2)
h(z) = ————7——~
(=)= xp(1) —exp(-1) 37
An approzimation to Fq. 36, by means of the finite difference method is
hony1 —[2+ (Aa:)z] ho+hnoy =05 by, = h(n Az) (38)
which has as characteristic equation and roots

rP—(24+A%N)r £1=0

_2+A2I+A(L‘\/4+A21‘) - _2+A2z—Az\/4+A2z)
- 2 P 2

™1
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Thus, its general differentiable solution is

2+ A%+ AzVid + Aza'))" iC (2 + A’z — Az V4 + Az)
2 : 2

which for h(0) = 0; h(1) = 1 becomes

b = 1 (‘2+A2z+Art\/4 + Az)
" Az + A%z 2

hn=:cl(

" (40)

)=
(41)

3 1 (2+A21:—A:v\/4+A2x))
Azvi+ Az 2

Assume now that we do not know what the differential equation governing the problem
of a string on an elastic foundation with no load on it is, but we run an experiment
and we measure the displacements at equally spaced points, say ho, hy, ko, ..., h,. The
recurrence formula Fq. 38 with n = 1,2,3,... allows us to obtain the value of the
first integer n compatible with the ho, hy, hy, ..., h, values and the coefficients of the
difference Eq. 33. Then, from Eq. 35, the differential equation governing our problem
can be easily obtained.
As one example, let us assume that we know the ezact values
idz _ -ilz

h,~=% i=0,1,...,5 (42)
Then, Eq. 33 for n = 1 is not satisfied for hy, but the same equation for n = 2
becomes

By = (€% + € 2% hpyy — b (43)

which is satisfied for hy and hs and then we can conclude that n = 2 and that Eq. 43
is the difference equation leading to ezact values for all the discrete points.

Az —-Ar

The characteristic roots of Eq. 43 are €% and e and, according to Eq. 35, the
characteristic roots of the associated differential equation are +1 and —1. Thus, Fq.
36 with k/T =1 is implied.

Note that Eq. 43 shows that Eq. 37 is one solution of the functional equation
h(z +2y) = (¢ + e7")h(z +y) — h(z) (44)

Table 1 shows different ezact and approzimate solutions obtained by Eq. 37, Eq. 38
and Fq. 43 for Az = 0.4.
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Ezact solution | Fxact solution of | Approzimate solution

z Eq. 37 difference Eq. 43| of difference Eq. 38
0.0 0.00000 0.00000 0.00000
0.4 0.34952 0.34952 0.34952
0.8 0.75571 0.75571 0.75496
1.2 1.28443 1.28443 1.28119
1.6 2.02141 2.02141 2.01241
2.0 3.08616 3.08616 3.06562
2.4 4.65131 4.65131 4.60933
2.8 6.97065 6.97065 6.89052

Table 1: Three different solutions of the example equation

The coincidence of the solutions of the differential and the difference equations at the
common points is not casual. In fact, if we assume an infinitely differentiable solution
of the functional equation

n
Za,y("_')(:t) =0, (45)
~

using the Taylor expansion, we can write

= ATy ()

yle+48,) = i1=1,..,n (46)
k=0 k
and by derivation of Eq. 45 (m — n) times, we get
Zagy(""+’)(x) =0;s=0,1,....m—n (47)

1=0

The system (46)-(47), independently of the value of m, allows us to eliminate all m
derivatives of y and to obtain a difference equation of order n. When m tends to
infinity we get the coincidence of solutions. Note that the order of the difference
equation remains constant when m increases.

On the other hand, it is well known that the general solution of the differential
Eq. 45 can be written as

y(z) = Y Pu(a) exp{wiz} (48)
k=1
and the general solution of a difference equation as

y() = 3" Pule)ul (49)
k=1
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where wi (k = 1,2,...,n) are the solutions of their characteristic equations. Note
that both equations are of exactly the same form.

Until now, we have been working with linear differential equations of constant
coeflicients. But, could we do a similar thing if the coefficients of the equations are
not constants?

4. From Differential Equations to Functional Equations

We start from a differential equation and we look for an equivalent functional equa-
tion. We only study the case of the following linear ordinary differential equation

n

> ai(@)f"(z) =h(z) (50)
=0
where f,h,a; (i =0,...,n) are infinitely differentiable functions in a certain domain

D. Without loss of generality we can assume ago(z) = 1.

We also assume that the value of f is known at n points of the domain
D:{pj=z+4;,7=1,...,n}.

Using the Taylor expansion we have

m Ak ®)()

flz+8) =3 ]—k,'—

k=0

+o0(a™ V@) ; Vi=1,...,n (51)

where we assume m > n.
By differentiating (m —n — 1) times Eq. 50, we get
n+k—1 )
> Api(z) frFEN(z) = RV (2); k=1,2,..,m—n+1 (52)
=0
where the upper index denote the order of derivation and the functions Ai; (k =
1,2,...,m —n+1) are given by :

Ai(z)= «fz); 1=0,1,...,n

Agi() if i=0
Agsni(z) =1 Au(e) + Ayyy(z) of =12, ,ntk-1
A;t(n+k—l)(x) lf i=n+k

It is worthwhile mentioning that because ag(z) = 1, the first coefficient of all equa-
tions in expression 52 is equal to 1.
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Eq. 51, without the complementary term, and Eq. 52 can be written, in matrix

form, as
N D H
= 53
(€ 3) == () 5
where N, D, C,B,F,H, and AF are the following matrices:
()
, h(z)
: h'(z) flz+4,)
F=| f®() . H= . AF = :
(n-1) z : M
e : fla+Ay)
: htm=m)(z)
f(z)
0 0 1
0 0 1 Ax
N=1| o 0 o 1 A e Ak(k-1)
0 1 A(m—n)(m—n—l)
1 A(m-n+1)1 A(m—n+1)(m-n)
A]] N Aln
D- Agk coo Ak(k4n-1)
Am-n)im-n) -+ Afm-n)im-1)
A(m—n+1)(m—n+1) cee A(m—n+1)1n
ar almen an Aln—1)
m!  (m-1)! " n! (n-1)! " An 1
C=]... oy o ; B= TN
AT A" AT At
CRC S T {(n-1)" Ar 1

where the explicit dependence of matrices N and D on z has been omitted for the
sake of clarity. From Eq. 53 we can eliminate all derivatives of the function f and
get a functional equation. This is what we do in the following paragraphs.

First, we row-manipulate the matrix (N D) in order to transform the matrix
N into an inverse unit diagonal matrix P. These transformations produce some
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modifications in matrices D and H, which become D* and H* :

ve(op)~(en) o ()= (35)

where
o 0 .- 0 1
0o 0 --- 1 0
P=]... ...
0 1 0 0
1 0 0 0

Next, we transform matrix C into the null matrix by row-manipulations of matri-
ces M and G. It is easy to check that this is equivalent to making the following
transformation

B*=B-CPD" and AF"=AF - CPH"

With this, the system (53) becomes equivalent to the system

P D H*
(o B')'F‘(AF*> (54)
From Eq. 54, we get
fe () flz+A4y)
B* ( : ) = ( : ) +K (55)
f(z) flz+A)
where K = —CPH".
Now, from Eq. 55, we get
Zr it fz+ Q) Zr’ k; (56)
J=1 J=1
where (r1... ") is the last row of the matrix B*™', that is,
(1) -y

rl = , with b7" = Adjoint; ,,) of B”

det B*
In this way, we obtain a difference Eq. 56 of order n, which approximate Eq. 50.

In addition, once the manipulations have been performed for a given value of m,
if one wants to do the same process for m + p, one can start from the manipulated
matrices N* and D* instead of starting from the initial N and D matrices, with the
corresponding saving in computational time.
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If we increase the value of m we shall get a better approximation. However, this
can be done without increasing the value of n. In other words, by increasing m we get
a sequence of difference equations of order n which approximate the initial differential
equation. In the limit, we shall obtain a difference equation which is an exact replicate
of the starting differential equation in the sense that it gives the same solutions at
the grid points. '

But we can go even further, because Eq. 56 can be interpreted as one functional
equation in the variables (z,A;,A,,...,A,) and then we get a functional equation
which is equivalent to Eq. 50.

Below, we give some examples.

EXAMPLE 2 .- We apply the above method to the following differential equation
2f'(x) — kf(2) = 0

where k is a given constant.
In this case, because n = 1, we take a single point T + A.

With m = 3, the matrices in Eq. 53 are

0 0 1 : 0
N=(fo 1 -], D=| &£ |;H=]|0
1 -k 2 s 0

C=(4& & A);B=(1); AF=(f(z+4))

l [
Al SR

After manipulating matriz N for the first time we get
K

Du- _ _k_k;—I
= ‘i_lﬁ
_ Hk=1)(k-2)
and after making the matriz C null, it results
. A k(k=1) A, k(k=1)(k-2) A,
B_<I+k:c+ 21 (:c)+ 3! (:c)

Due to the fact that we have an homogeneous differential equation, the matrices on the
right hand side do not suffer any transformation and we get the difference equation

f2) =B f(z +4)

It is easy to check that when increasing the value of m the added terms in matriz B
are of the form

Kk=1)..(k=m+1) A,

m ! T
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Thus, in the limit, we have
B =(1+ %)“
and then the functional equation equivalent to the initial differential equation is
f@) =+ fe +y)
and the difference equation
f@) =+ 2)* f( 4 )
EXAMPLE 3 .- We now apply the above method to the equation
f) = & fla) = 2
which is a complete equation associated with the homogeneous equation in example 2.

For m = 3, all matrices are of the same form as before with the exception of ma-

triz H, which now becomes
22
H= (‘21
2

Thus, after the first manipulation we get

22
H =| (k+2)z
k*+2
and after making the matriz C null, we obtain
2

A A3
AF*=AF+K ; K= (—Azz—?(k+2)z—?(k2+2)>

where D* and B* are the matrices indicated in the previous example.

Thus, the approzimate difference equation becomes
f(z)-B ' f(z+A)=B""'K

Finally, after some calculations, for m going to infinity we get the functional equation

3
f@ -0+t ety = 7 [1-a+ 2
and the difference equation
f@) -4 25 pe s a) = 50 [1- 04 27]
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EXAMPLE 4 .- Now we deal with the constant coefficients linear equation
f'(z) = f(z)=0
We consider n =2, i.e. {z+ Ay ,z+ Ay}, and m=6. Thus, we have

0 0 1 0 -1
0 1 0 -1
1 o -1|; D=
0 -1
-1 0

S

Z
Il
—-oc o oo

B2l o - o oo
1

LAl

°-(4 &

and H s the column null matriz of dimension 5.

5]

After all the manipulations, we get
3 A5 A2 A‘ AS
B (Det S 143+ 5
- IS a: At A®
M+5+5 1+54+T7+5
and when m goes to infinity we obtain
eB2_eB2 824082
B = (eA,_2e-A, Ay _'Z,e—Al )

2 2

Thus, we get the functional equation

fo) = (@) S ta) e =) flaty)

elz=y) — ely-2)

and the difference equation

f(z) = —(e® —e™®) fla+ Da) + (B2 —e7®?) f(z + A)
elB2=81) _ o(81-42)

EXAMPLE 5 .- Finally we deal with the equation
f"(z) = f(z) = 2°

whose homogeneous equation is that given in ezample 4.
We start by taking again m = 6 and we get the same N, D and C matrices and

z3 z3

3z? 32
H=]| 6z ; H = | 6z + 28
6 6+ 322

0 6z + 3
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When m goes to infinity we observe the following : the manipulations on the matric
(ND) consist in adding to each row the row which is two places above it, that is,

n—-1 n
Ry = 3 hakoiy  Pieyr = 2 hagroiyh
1=0 1=0
and taking into account that hy =0 if k > 4, we have
z3 if 7=1
3z? if =2
6z+z% if j=2k+1,k>0
6+3z2 if j=2k,k>1

After making the matriz C null, we get

AF* = AF - CPH" = AF + (P(AZ))

P(A)
where
A2 A3 oo A?n oo 2n+1
_ 387 g 28 2B 2y 87
P(8) = —ai5p —3afar = 3 2B+ 205y - 2 (6438 5y,
which can be written as
AL -0 A_ _-a
P(A) = _13(% —) -3 -
ed e 2 A? et —e2 A3
_ c T oy A=
be(—5 =36 37)

Finally, we get the difference equation

f(2) = Ei f(z +82) = B2 f(z + Ay ) = Ey P(A2) + E2 P(Ay)

where (et — ) b1 b
B = o(B1-B1) _ edi-b2) E, = e(82-41) _ ¢(81-47)
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1. Introduction.
The purpose of this note is to study the variational approch to the eikonal

equation

) (3 + ()’ = Elar,2)
in a bounded domain  C R? This equation arises in many branches of applied
sciences. In particular, the equation (1) appears in an area of computer vision in
the so called shape - from - shading problem in which one tries to solve the problem
of how object shape can be recovered from image shading.

More precisely, one seeks o function u(z;, ;) representing surface depth

in the direction of z-axis, satisfying the image irradiance equation

Ou Ou

(6_z1’6—xz) = E(z1,22).

Here R denotes the reflectance map ( which is known ) containing information about
illumination and surface reflecting conditions, E is an image formed by projection
of light along the z-axis onto a plane parallel to the z;,2, plane, and § is the
image domain.

The equation (1) can be obtained in the case where the reflectance map
corresponds to the situation in which an overhead, distant point - source illuminates
a Lambertian surface. For a detailed discussion of this case we refer to papers [4]

93
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and [5]. We only mention here that if a small surface portion with normal direction
(—7;‘2:"—,—3%,1) is illuminated by a distant, overhead point-source of unit power
in direction (0,0,1), then, according to Lambert’s law, the emitted radiance and
reflectance map are given by the cosine of the angle between the two directions,

namely (( bu )2+ ( bu )2 +l) . Therefore, if E(z1,z;) denotes the corresponding

CEN bz,
image, the image irradiance equation in this situation takes the form

[( Ouye (5‘2:‘—2)2 + 1] i E(e1,23)-

[z

Since 0 < E(zy,z3) £ 1, we set £(z1,z2) = E(zy,22)7% — 1 and write the above
equation in the form (1).

The first uniqueness result in class C?-functions was obtained by Deift
Sylvester [8] in case &(z;,z;) = i—i—’,:'—i—; on a unit disc. This has been extended
by Bruss [6] to £(z1,2,) = f(1/z2 + «2), with f satisfying some regularity assump-
tions. Solutions obtained in these papers are spherically symmetric. In paper [4],
Brooks Chojnacki - Kozera gave examples of solutions which are not spherically

symmetric. The question of the exisience of C!-unbounded solutions is discussed

in paper Brooks - Chojnacki - Kozera [4]. A recent result by Kozera [9] solves the
problem of recovering the shape of a smooth Lambertian surface from two images
obtained by consecutive illuinination of the surface by distant point light source in
different directions.

Finally, we mention a paper by Horn and Brooks [11] suggesting a vari-
alional approach to the shape-from-shading problem. This paper contains some
computational observation on variational aspect of this problem. However, this pa-

per does not say anything about the existence of a solution ( in some generalised

sense ) through the variational approach. We point out that our paper has been
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motivated by [11]. We show that, in general, the variational approach does not
lead to an exact solution of the shape from - shading problem. In particular,
Theorem 2 shows that any funclion u satisfying the inequality |Du(z)|? £ &(z) can
be regarded as a “minimum” of the energy functional associated with (1) in the
sense that there exists a suitable sequence {u,}, with u, |sg= u |sn, such that

limn / l |Dun(z)|? - £(z) | dz =0 and u, — u weak — * in WH®(Q).
o

n— 00

2. Observation on Young measures.

Let © C R? be bounded domain with a Lipschitz boundary 8§. Forz €
we set ¢ = (z1,z5). WIP(02), 1 £ p £ oo, denotes the usual Sobolev space. Since
09 is Lipschitz, elements of W!?(§1) admit traces on Q. For basic information
on Sobolev’s spaces we refer to Adam’s book [1]. Throughout this note we assume
that £(z) is a nonnegative function in C(}). The weak convergence in W!7(Q) is
denoted by — and the strong convergence by —. We associate with (1) a functional
given by

I(u) = /n | |Du(z)® — £(z) l dz.

This functional is not convex and consequently it is not lower semicontinuous. To
avoid this difficulty we consider the relaxed problem ( see (7] or [9]) to get some
insight in I which will serve as a basis for the construction of a minimizing sequence.

We need the following result on Young measures ( see [ 2], [3]).

THEOREM 1. Let {z;} be bounded sequence in L'(Q;R’). Then there exist a
subsequence {z,} of {z;} and a family {v.}, = € Q, of probability measures on R®,

depending measurably on « € §, such that for any measurable subset 4 C

f(‘azv) - (‘/I,f(‘r")) in LI(A)
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for every Carathéodory function f : @ x R* — R such that f(-,z,) is sequentially
weakly relatively compact in L1(A).

We commence with a simple result on minitnizing sequences of I.

PROPOSITION 1. . Suppose that there exists a sequence {u;} in W'?(§) such that

lim / | |IDu;|* — E(x) | dz = 0.

j—eo Jg
Then up to a subsequence u; — u in W(Q) and |Du(z)? < £(z) a-e. on Q. If
{v.}, ¢ € 9, is family of Young mmeasures corresponding to {Du;}, then supp vz C
{P; |P|* = £(z)}.
PROOF: It is easy to see that {u;} is bounded W!?(§1) and we may assume that
uj — win W1%(Q). We set F(z, P) =| |P|> — &(z) |. Let CF(z, P) denote a lower
convex envelope of F(z, P). Then a minimizing sequence for I is also a minimizing

sequence for a functional I (see [7] or [9]) given by
Ic = / CF(z,Du)dz
n
and we have

0= lim | F(z,Duj)dz = lim CF(z,Du;)dz _/CF z,Du)d

j—oo Jo j—oo

On the other hand by Theorem 1 there exists a family of Young measures {v,},

z € N, such that

lim [ F(z,Du;)dz = /n(u,(-),F(:c,-)) dz =

= Jn

SO

/(u,(-),F(z,«))dm:/CF(:c,Du(z))d:c,
Q o
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and consequently
supp v C {P; F(z,P) =0} = {P; |P|? = £(z)}.

Noting that

|Du(z)|® — £(z) if |Du(z)|®* — E(z) >0

0 elsewhere ,

CF(z,Du(z)) = {

we see that |Du(z){? £ £(z) a. e. on Q.
This result will serve as a guide for the construction of a sequence men-

tioned at the end of the previous section. First of all, let ¢, = u,, —u, then ¢, — 0

in W1%(Q) and
= limn u(z () = E(z T = Dy, u(z 2 _ €&z z,
0= i [ |1Du(a) + Dén(e) = £(6) | do = [ (5u,] 1Dule) + AP - (2) | &

where {0}, z € ©, is a family of Young measures corresponding to the sequence
{D¢,}. The last identity implies that supp U, is contained in the boundary of
a disc of radius £(z) with center at —Du(z). The idea is, given a function u
salislying |Du(z)|? £ () on 1, Lo construct a sequence ¢, with these properties.
Obviously, there might exist many such sequences. However, our aim is to construct
the simplest sequence of this nature. On a microscopic level to satisfy the condition
J Adi,=0, in case 0 < |Du(z)|* < £(z), we will construct our sequence in such a
way that supp ¥, will consist of two antipodal points. On the other hand we note
that at points where |Du(z)? = £(z), we have
0 = (72, ] |Du(z) + A* = &(2) |) 2 (72, | Du(z) + AI* - £(=))
= (52, IDu(2)* + 23 - Du(z) + M* = £(2)) = (7, AP).

This implies that o, = §p. Again on microscopic level, terms of our sequence should

be equal to 0 around such a point.
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The idea of using Young measures to examine structure of oscillations of
weakly convergent sequences is not new. For detailed bibliographical comments on
this subject we refer to [7] and [10]. A modern treatment of Young measures starts
with paper by Tartar [13].
3. Main result.

We are now in a position to establish the main result of this note.

THEOREM 2. Let u € C'(f) be a function such that |Du(z)|* < £(z) on Q. Then

there exists a sequence {u;} in TW1*°(Q) with u; |opn= u |sn and such that

Jim /n | |Du;(=) - £(=) | dz = 0

j—roo
and u; — u weak-x in Wh ().

PROOF: Let K > 0 be a constant such that
max |Du(z)| £ K and m‘;lxg(:c) < K2,
1

We approximate {2 by a sequence of unions of squares H; = Ui"___l Di with H; c 0
and lim;_, o |2 — H;| = 0. We assume that edges of D;’; are paralle] to the coordinate
axis with the length d(Di) = 2. Let M = max(1,K). For each integer n, by the

uniform continuity of £ and Du, we can find an integer j, > n such that

1 1

) [Du(e) = Dulei)l £ 5 < 153y
i 1 1

(3) |E(z) — E(z)| £ FReTeY

forall z € Di", where :v‘,’;" is the centre of the square Di" and

1

4 Q-0H; | < .
@) 9 - ;.| S g
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We now distinguish three cases: i)Du(:c{") = 0, g(z{;) £ 0, %) |Du,(:,;1;“)|2 =
E(z3"), 1i3) 0 < |Du(zi™)|? < E(zi).

Case i). Let z)" = (z{_k, z;"k) We define the function ¢i* on DJ* by

[ _ ju > —- jn
T3 mZ,k =2 :cl’k
; 1 ; _opdn < Jn
(z1 = 27 + grawr)E(zy") for { 27 T2k S ~T1F 2T
; 1
> Jow =
T1=Tk T o541
: 1
< in
TS ot i+l
Jn 1 in ;
(zl'k + a7t — 21)€(zy") for zy — m;v\k <z — 2l
v - )
Jj
in —z1 2 S T2 - 2
¢k (z) = 1
> Jn
T2 = z“ 2t 1
in 1 j i ;
(22 — 23" + zrugr)E(2}”) for 2 — 2 < 2y — 2",
_ in > o
T + ’31,k 2 T2 zz'k
; 1
< in
T2 S 2t Pint1
J 1 in . .
(237 + grarr — 22)E(z}") for Ty -2y, 23 — "
2 2,k = %1 1,k
_ Jn > _pd
Ty + T 2 T2~ T

. o .
It is easy to see that ¢i* € W1*°(Di") and

) 1 1 ) ) .
In . — In — In n
(5) Il ”L°°(Di") = o < __Snﬂflﬂl and |D¢}*(z)|.= E(z}*) a.e. on D}".

Case i1). We set ¢i(z) =0on D,’;" end extend this function by zero outside.

Case 111). We set

v (o) = <0u(zi“)x au(zi")m2> \/5(a:7;")— |Du(zy)|?

0z, | o |Du(zi")|
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and define a function 7,;" (z) defined on the strip between lines 1&{" (z) = 1 and
¥i*(z) = ~1 by
. 1—4i(z) 0 S Y"(z) S 1

)= { 1+9{(a) il ~1S ¥l (@) S0
We see that 7,;"(1:) = 0 on the lines 1/)j“(:n) =1 and dzj"(:c) = —1. Moreover,
we have [Dyi"(z)]> = £(zi") — [Du(zi")[* and Dvi*(zi") = 0 a.e. on the strip
-1= 1/){"(:3) < 1. We now extend 'y,C periodically into R? and denote this extension
again by y{". We now set wi" "a(2) = -l—'yk (mz). Then we have Iw L (x)] — 0, as
m — oo, uniformly in z € R?. Let us denote the restriction of w}"  to D"‘ by g"‘

It is clear that

< = and [ Dgfnll e e, = VE(ER) - Dul )P

; 1
Jn il
”gk'm”L“’(D{") m

Let U, k:‘m denote a square contained in D,‘Z" with edges parallel to coordinate axes
1 in
and of length 57— — zllgi.anm(D{") and such that
diSt (8Di”’ UZ:‘ ) = ”yk m"L"’(D’")

We now define a function hi"‘m on BD"‘ U" = by

0 for z € 3Dj"
hm(2) = { ghim(z) for z € U,
0 forz € QO — D;"".

The function hj" is Lipschitz continuous on its domain of definition and its Lips-

chitz constant does not exceed max( \/8 "‘) |Du(z "‘)|2). Let ¢i’:m be a Lip-

schitz extension of hk'm. We now choose m,, such that m, > n, m, > j, and

i 1
6 DJu UJn
(6) Dk = U | S ooy
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We set ¢n(z) = fz"l Bi(z), where

qﬁ;"(z) if ;c',’;" salisfies )
Be(z)=< 0 if a:i" satisfies 17)
in (z) if zi" satisfies 7i1).

k,my

It then follows from the construction of ¢‘,7;" and ¢i’l‘m" (see (5) ) that
Idall ey < = and [Dénllye ) < M
mlliee S 5 mlle(a) = M.

Let up = u + ¢, and we write H; = H} UHJ? UH;-’, where H}, HJ? and H;’ are
unions of squares from cases i), 71) and 7ii), respectively. In the next step of the

proof we show that

n—oo

lim / | IDun(2)|* — E(z) | dz = 0.

We have by (4) the following estimate

A | IDun(z)|? = E(z) | dz £ / | |IDun(z)]* — E(z) | dz + M?|Q — Hj,|

in

(7 <=

S +/I;j' | IDu(z) + Dén(z)|* —&(z) | do

1
< —+an+by+eca,
4n

where

I .
¢ =3 [ 11Du() + Doalo) ~ 1Dule) + Doole) | do
=1 k

n—Z/ | |Du(zi) + Déa(e)? - E(") | da,

cn_z/ (2]")] da.
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It follows from the uniform continuity of Du and £ ( see (2) and (3)) that

<

n

a.,._—-—|Q| and ¢, £ —
To estimate b, we write
- / | IDu(eir) + Dén(a)I? - E(ai") | da
Dn EH'

+ ¥ / | IDu(zi*) + Do(a)? - E(=) | da

D)n EH‘J k

+ Y / | IDu(z}") + Dga(z)* - £(2i") | da

D’"EHJ k
= Il +Iz + I3.

It follows from the constructions in cases i) and iz) that
I, =0 and I,=0.

Using (6) we estimate I3 as follows

L= ) [ / 2M? dz
DJ"

. UJn.
in 3
Di"eH?,

kg

+/4 | IDu(el®)[? + 2Du(z})Dgi,,_(23") + |Déym. ! — E(zi") || d
Uln

kg,

S+ X[ NDuEP + (Veed) - IDei)E) - el | o

Din EH,*”. kyng

1

4n

The last inequality follows from the fact that

|Déu;. ()] = E(zi") — |Du(z]")I?.
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Consequently, combining (7), (8) and the last estimate for Iy we get

[ 10w~ 62) | de < 2
1] n

Finally, we observe that since un = u+ ¢n With ||¢nlpe(q) = 1 and [Dénllpe(ay S

M, we have ¢, — 0 weak-* in ‘Z”"”(Q). Hence u, — u weak-x in W1*°(Q) and
un |on=1u |on-

In Theorem 2 we have chosen an L!-norm to measure the difference be-
tween £(z) and Du(z). The same result continues to hold if we choose the L? norm

(p > 1). The diflerence between £ and Du can only be measured in an average

sense which makes the so called ”noise” appear.

We close this paper with two examples illustrating Theorem 2.

Example 1. If u = 0 on 2, then given a nonnegative function £ € C({1),
there exists a sequence u, in W1°(£) such that

lin})/ | IDun(z)]® — E(z) | dz =0 and up, — 0 weak —* in whe(Q).
n—0 /g

o
Here W1'°(1) denotes a Sobolev space whose elements have zero trace on 9f1.

Example 2. Suppose that 1 = {z; |z|> < R}. Let f and g be in C[0, R]
with 0 < g(t) < () on [0, R] and g(0) = 0. Then the function u(|z|) = fi™' g(¢) dt

satisfies the inequality |Du(]z|)|?> £ f(|z|)?> on . By Theorem 2 there exists a

sequence u, in W1°°(f1) such that u, |sga=u |sn and

lim
n-—00

| [Dun(z)® = F(]z])? | dz =0 and u, — u weak —x in WH(02)
0

Functions u € C(}) with Du(z)|? £ &(z) on £, due to the aproximation

property fromn Theorem 2, are called in the current literature ”noisy” solutions to
the equation (1).
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Abstract

In this paper we prove a theorem which shows that the uniqueness problem for
entire functions of exponential type is equivalent to the approximation problem for
analytic functions. This theorem is then combined with theorems on uniqueness to
produce a number of results on the approximation of analytic functions. Using the
concept of Pdlya property and examples of functions which are known to have such
property, we give additional results in approximation. We also extend our results

to approximate functions in LP(B) where B is a Carathéodory domain.

INTRODUCTION

In this paper we prove a theorem which shows that the uniqueness problem for
entire functions of exponential type [3, 4, 6, 7, 8] is equivalent to the approximation
problem for analytic functions. Thus to each uniqueness theorem for entire func-
tions of exponential type there corresponds an approximation theorem for analytic
functions and conversely. This result is then combined with the known uniqueness
theorems of DeMar [6, 7, 8], Child [4], Strenk [13] and Chang [3] to yield many
approximation theorems. Using examples of functions which are known to have
the Pélya property [3], we are able to give more specific results in approximation.
Among them Runge’s theorem on approximation by polynomials, a strengthened

version of approximation by rational functions, approximation by trigonometric

107
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polynomials and approximation by exponential functions are simple examples. We
also extend these results, using Farrell’s method [9], to approximate functions in
LP(B) where B is a Carathéodory domain and L?(B) is the space of all functions
f analytic on B such that [ [ |f(2)|Pdzdy < co where z = z +iy. A by-product

of this extention is an improvement of a theorem of Davis [5].

MAIN RESULT

Let Q be a sin'{ply connected domain in the complex plane. Let K[?] denote
the class of all entire functions f of exponential type such that the Borel transform
of f, denoted by F, is analytic on Q°, the complement of 2. Let H(§) denote
the space of analytic functions on 2 with the topology of uniform convergence on

compact subsets of 2. Let {L,} be a sequence of linear functionals defined on K[}

by
W Ln(f) = 57 [ 9n(2)E (21
T o pg" /0
where ¢, is in H(f2), n = 0,1,2,---, and ' C Q is a simple closed contour such

that F is analytic outside and on I'. A class K[(2] is said to be a uniqueness class
for {L.} if the zero function is the only function f in K[] with the property that

L,(f)=0forn=0,1,2,---.

THEOREM 1. A necessary and sufficient condition for K[Q] to be a uniqueness
class for {L,} defined by (1) is that the linear span (g.) of {gn} be dense in H(RQ).

Proof. (Sufficiency) Let {L,} be defined on K[ by (1) and the linear span (g,)
of the generating functions {gn} for {L,} be dense in H(2). Let f € K[Q] be such
that L,(f) = 0 for all n = 0,1,2,---. We must show that f = 0. Let g be any
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function in H(Q). Since (gn) is dense in H(Q), there exists a sequence {hn} of
N(n)

linear combinations of functions in {gn}, hn = 3 ankgs, converging uniformly to
k=0

g on compact subsets of 2. It follows from Kéthe’s duality theorem [10] that to the

Borel transform F of f there corresponds a unique continuous linear functional L

defined on H(f) by
L(g) = / o(2)F(2)dz

where I' € Q is a simple closed contour such that F' is analytic outside and on
. Since L,(f) = mer‘g" z =0forn =0,1,2,--- and T is a com-

pact subset of Q, L(g) = 7= fl‘ g(z)F = g [r(limp oo hn(2))F(z)dz =
N(n)
im0 557 Jp ha(2)F(2)dz = limpco 5 Jr( Z ankgk(z))F(2)dz =

N(n)
limn—oo 5 Z Jr ankgi(z)F(z)dz = 0. Since g is arbitrary, L is the null functional

on H(). Hence F = 0 which implies f = 0.

(Necessity) Assume that (g,) is not dense in H(Q2). We shall show that there
exists an f in R[] such that L,(f) = 0 for all n = 0,1,2,---, but f # 0, so
K9] is not a uniqueness class for {L,}. By assumption, the closure {g,) of (g,)
is a proper subset of H(f2). Hence there exists a g in H(f2) but ¢ ¢ m Since
the topology on H() is defined by the countable collection of norms ||f]|. < ¢,
n = 1,2,---, this means there exist a 6 > 0 and a positive integer N such that
llg — hlln > 6 for all n > N and for all h in {gn). Let G be the subspace generated
by (g—n) and g; that is, the subspace consisting of all elements of the form h + ag
with o in C and h € _(g—n) Define L on G by L(h + ag) = ab. We first show that
L is well defined. Let Ay + ag and hz + B¢ be in G and h; + ag = hy + fg. Then
hy — hy = (B — a)g. If B — o were not zero, we would have g = %:—Zl which is in
(gn). Since g & {gn), B—a =0. Hence we have h; = hy and & = B which implies

that L is well defined. It is clear that L is linear. Thus L is a linear functional on
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G. Since |a|é < |af |lg — (Z2)]ln = ||k + agl|n for all n > N, we have |L(s)| < [|s]l
for all s in G and for all n > N. Since | || is a norm, the hypothesis in the
complex version of Hahn-Banach theorem is satisfied by L and we may extend L
to all of H(§2) such that |L(t)| < ||t||. for all ¢t in H(§2) and for all n > N. Now
we show that L is continuous at the zero function. Let ¢ > 0 be given. Let
V={z|z€Cand|z|] <e}. ThenU definedby U = {t|t € H(Q) and ||t|ny < ¢}
is a neighborhood of the zero function in H(§2) with the property that L(U) C V.
Since L(0) = 0 and V is an arbitrary neighborhood of 0,L is continuous at the
zero function. Let £y be in H(§2). Then L(ty + U) = L(to) + L(U) C L(to) + V.
Since L(tp) + V is an arbitrary neighborhood of L(%y) and to + U is a neighborhood
of ty in H(Q2), we conclude that L is a continuous linear functional on H(Q2) with
L(g) = 6 and L(h) =0 for all A in m By Kothe’s duality theorem there exists a
unique F locally analytic on Q¢ with F(co) = 0 such that L(t) = 73 [. t(2)F(z)dz
for all t in H(2) and I' € § is a simple closed contour so chosen that F is analytic
outside and on I". Let f be the function in K] such that its Borel transform is F.
Then Ln(f) = 7% Jp 9n(2)F(2)dz = L(gn) = 0 for n = 0,1,2,--- But L(g) = 6,

2m

so ' # 0. Therefore, f # 0 and so K[f] is not a uniqueness class for {L,}.

APPLICATIONS OF THEOREM 1

We can combine Theorem 1 with each of the known uniqueness theorems to
yield results on approximation. The following definition [3] is included for ready

reference:

DEFINITION 2. Let Q, and 2, be simply connected domains in C. Let m(w, )
be holomorphic on £, X .. Then m has the Pdlya property with respect to z on

Q, if and only if for all simple closed contours I’ C Q,, if f is analytic on I’ and
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if fr m(w, z)f(z)dz = 0, then f has an analytic continuation to the Jordan region

enclosed by T

The combination of Theorem 1 and the uniqueness theorems of Chang 3] yields

the following approximation results (Theorems 3, 4 and 5):

THEOREM 3. Let Q, be a domain and Q, a simply connected domain in
C and let wg € . Let m(w,z) be holomorphic on §, x Q.. Let gn(z) =
D&")[m(w,z)]w=w°, n = 0,1,2,--- where Dgun)[m(w,z)]w=wo is the n-th partial
derivative of m(w, z) with repect to w evaluated at wg. Then m(w, z) has the

Pélya property on Q, if and only if the linear span (g,) of {g.} is dense in H(Q2,).

THEOREM 4. Let Q, be a domain and ), a simply connected domain in C.
Let m(w, z) be holomorphic on £, x .. Let {w,} be a sequence of points in Qy
with a limit point in §,, and m(wy,z) = ga(2) forn = 0,1,2,---. Then m(w, z)

has the Pélya property on , if and only if (g4,) is dense in H(Q,).

THEOREM 5. Let Q,, be a domain and ), a simply connected domain in C. Let
m(w, z) be holomorphic on Q,, x Q,. Let {w,} be a sequence of points in Q,, such
that i_o: |wn —wny1| converges and w, — & € 4. Let Dl(u")[m(w,z)]wz.wn = ga(2)
for nn==00, 1,2, .- where Dgun)[m(w, 2))w=w, IS the n-th partial derivative of m(w, z)
with respect to w evaluated at w,. Then m(w, z) has the Pélya property on Q, if

and only if {g,) is dense in H($2.).

Combining Theorem 1 with a theorem of DeMar (6] yields the following:

THEOREM 6. Let Q be a simply connected domain in the complex plane. Let
W be analytic on . Then (W") is dense in H(?) if and only if W is univalent on

Q.
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Combining Theorem 1 and a theorem of Child [4, p.61], which says that if K[]
is a uniqueness class for {L,} defined by (1), then K[Q)] is also a uniqueness class

for {L}} defined as in (1) with g/, as generating functions, we have

THEOREM 7. Let § be a simply connected domain in the complex plane. Let
gn be analytic on Q,n =0,1,2,---. If (g,,) is dense in H(Q), then (g,) is dense in
H(Q).

A consequence of Theorem 1 taken together with a theorem of DeMar (8] is

the following:

THEOREM 8. Let p be a positive integer and a a primitive p-th root of 1. Let §
be a simply connected domain and let W and hy : k =0,1,---,p—1, be analyticon §2
with W () a p-symmetric domain. Let Q; C Q be a simply connected domain such
that W is univalent on ; and W(Q;) = W(Q2). Let Z : W(Q;) — §2; be the inverse
of W. Let A(z) be det(hiy(2)) where hio(2) = hi(Z(a'W(2))) : k,¢g=0,1,---,p—
1. Then the linear span (WP™hy) of {(W(2)]P"hi(2)}32y, k = 0,1,---,p— 1, is
dense in H(Q) if and only if W is univalent on Q and A(z) # 0 for all z € Q such
that W(z) # 0.

In the special case where @ = {z = ¢ +14y | |y| < 7}, W(2) = ¢* — 1 and
hi(z) = (e* — 1)*e®**; a; real, Strenk’s main theorem [13, p.31] shows that the
hypothesis that W () be p-symmetric in Theorem 8 is superfluous. Hence we have

the following

THEOREM 9. Let p be a positive integer and a a primitive p-th root of 1. Let
Q={e=z+iy|lyl <7}, W(z) = e* — 1 and hi(z) = (7 — 1)*e®**; ay real, k =
0,1,---,p—1. Let A(z) be det(hrq(2)) where hig(2) = a*9(e*—1) (1 +at(e*—1))2*,
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k,q =0,1,---,p— 1. Then the linear span ((e* — 1)?"*¥¢%*) is dense in H(R) if
and only if A(z) # 0 for all z in Q such that z # 0.

SPECIFIC RESULTS IN APPROXIMATION.
We are now in the position to use above results and functions which are known

to have the Pélya property to obtain more specific results in approximation.

APPROXIMATION BY POLYNOMIALS. Since W(z) = z is univalent on
any simply connected domain §, (z") is dense in H(§2) by Theorem 6. This is

Runge’s theorem for simply connected domains. We restate it in a theorem.

THEOREM 10. Every function analytic on a simply connected domain §2 can be

uniformly approximated on compact subsets of 2 by polynomials.

APPROXIMATION BY RATIONAL FUNCTIONS. We shall only illus-
trate some interesting results as it will become obvious how to obtain similar ones.
Our first theorem in the following is an improvement of a theorem of Rubel and

Taylor [12], in the case of simply connected domain.

THEOREM 11. Let 2, be a simply connected domain properly contained in C.
Let {w,} be a convergent sequence in §2; with each w, occurring at most finitely

many times. Let k be a fixed positive integer. Then (m) is dense in H(Q,).

Proof. Since W—IzT has the Pdélya property on 2., the assertion follows from

Theorem 4.

THEOREM 12. Let Q, be a simply connected domain properly contained in C.
Let wy be a point in 5. Then the linear span (m) of the sequence {m}

of rational functions is dense in H(§,).
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Proof. Since ﬁ has the Pélya property on §2, and the n-th partial derivative
of —i— with respect to w evaluated at wy is (—1)"W, the conclusion then

follows from Theorem 3.

COROLLARY 13. Let Q, be a simply connected domain properly contained in
C. Let wy be a point in S. Let k be any fixed positive integer. Then the linear

span { 1),‘”) of the sequence {W};";l is dense in H(S2,).

(wo—2z

THEOREM 14. Let 2, be a simply connected domain properly contained in C.
o0
Let {w,} be a sequence of points in ¢ such that Y, |wn — wn41]| converges. Then

n=0

(ﬁ) is dense in H(Q,).

Proof. Theorem 5 and the fact that —2=5 has the Pélya property on £2,.

(w=2)"
Since (_J—IT)?’ k a fixed positive integer, is not the only rational function which
has the Pdlya property, we can obtain many more similar results on rational approx-
imation of analytic functions by applying Theorems 3, 4 and 5 to rational functions

which have the Pélya property.

APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS. Again
we shall only illustrate some interesting results as it will become evident that the key
to more approximation results is to find more functions which have the Pélya prop-
erty. But first we shall apply Theorem 6 to some functions univalent on particular

domains.

DEFINITION 15. A complex trigonometric polynomial is a finite sum of the
N
form ) a,cosnz + b,sinnz where a,, and b, are complex numbers and z in C.

n=1

THEOREM 16. The set of all trigonometric polynomials is dense in H(f) where
Q={z=z+1iy]||z| < 7}
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Proof. Since e'* is univalent on Q, (e'™*) is dense in H(Q) by Theorem 6. It

follows from Euler’s identity that (cosnz + isin nz) is dense in H(§).

THEOREM 17. Let Q) = {z =z +uwy||z] <}, Qo ={z=z+iy |0 <z <7},
W={z=z+iy|lyl<3}tandQy={z2=z+1y|0<y<m}. Then (sin"z)
is dense in H(,), (cos™ z) is dense in H(Q2), (sinkh"z) is dense in H(Q3), and
(cos hz) is dense in H(S,).

Proof. Theorem 6.

THEOREM 18. Let {w,} be any sequence in C converging to a point in C.
Let Q be any simply connected domain in C. Then (sinw,z + coswnz) Is dense In

H(Q).

Proof. Since sinwz + cos wz has the Pdlya property with respect to z on §2, the

assertion follows from Theorem 4.

APPROXIMATION BY EXPONENTIAL POLYNOMIALS. We first use

Theorem 6 to obtain the following result:

THEOREM 19. Let Q ={z =2z +1y||y| < 7}. Then (e™*) is dense in H(Q).
This result can be improved by applying « theorem of Rubel [11]. Let A be
a set of positive integers. Let A(A) denote the upper density of A, defined by
A(A) = liinsup ’—4-511, where A(t), the counting function of A, is defined as the
—o0

number of integers n in A for which n <t. Then we can state Rubel’s theorem in

the following form.

THEOREM 20. Let @ = {z =z + iy | |[y| < v}. Let A be a set of positive
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integers. Let {L,}, n € A, be the sequence of linear functionals defined on K|[{]
as in (1) with e™*, n € A, as generating functions for {L,}. Then a necessary and
sufficient condition for K[ to be a uniqueness class for {L,} is that A(A) = 1.

Then Theorem 1 and Theorem 20 jointly imply the following:

THEOREM 21. Let @ = {z =z +1y | |y| < 7}. Let A be a set of positive
integers. Then a necessary aand sufficient condition for (¢™*), n € A, to be dense

in H(§2) is that A(A) = 1.

THEOREM 22. Let 2 be any simply connected domain in C. Let {w,} be a

convergent sequence in C with a limit point in C. Then (e*~*) is dense in H(§).

Proof. Theorem 4 and the fact that e”* has the Pélya property with respect to =z

on §.

APPROXIMATION BY OTHER ANALYTIC FUNCTIONS. We shall

only illustrate some result again as it is evident how to obtain similar ones.

THEOREM 23. Let f € H(C). Then (f") is dense in H(C) if and only if f is
of the form f(z) = az + b where a # 0.

Proof. The functions az + b, a # 0, are the only entire functions univalent in the

whole plane.

APPROXIMATION IN L?(B). For any p > 0, we let LP(B) be the class
of functions f(z) which are analytic on a Carathéodory domain B [9] such that
J Jg |f(2)|Pdzdy < oo where z = z +1iy. Since the set of all polynomials is dense in
H(B), the question as to whether it is also dense in LP(B) arises naturally. Here

density in LP(B) is, of course, measured by surface integral. Farrell [9] proves that
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the answer to this question is affirmative. We point out here that Farrell’s proof
does not depend on the given sequence being a sequence of polynomials, but only
on its span being dense in the space H(B) where B is a Carathéodory domain.
Thus, he actually proved that any sequence whose span is dense in H(B) also has
a dense span in LP(B), p > 0. We list some consequences of this for the purpose of

illustration.

THEOREM 24. Let B be a Carathéodory domain. Let p > 0. Let f € LP(B).

Then there exists a sequence {¢n} of rational functions with poles in B¢ such that

limu—oo [ [51f(2) = qu(2)|Pdzdy = 0.

THEOREM 25. Let Q ={z =z +1y||z|] <7}. Let B C Q be a Carathéodory
domain. Let p > 0 and f € LP(B). Then there exists a sequence {g,} of trigono-

metric polynomials such that lim,_.co [ [5|f(2) — gn(2)|Pdzdy = 0.

THEOREM 26. Let Q={z=z+1iy||y| <n}. Let B C Q be a Carathéodory
domain. Let p > 0. Let A be a set of positive integers such that the upper density
A(A) of A is equal to 1. Then (e"*), n € A, is dense in LP(B).

The case p = 2 is of great interest. We note that L?(B) is a Hilbert space under
the norm ||f||? = [ [ |f(z)[?dzdy. We now compare Theorem 26 with a theorem
of Davis [5]. By a theorem of Rubel [11], A(A) = 1 if and only if Ap(4) = 1 where
Ap(A), the upper mean density of 4, is defined by Ap(A) = min sup b [1 A4y,
Davis shows for sequences {A.} of distinct complex numbers, /\_:o—> oo, that if
Ap(4) > Cg—él where ¢(B) is the circumference of the convex hull of B, then
{e***}, A, € A, is complete in L?(B). Hence for {),} an increasing sequence of
positive integers, if A(A) = 1, then the lincar span (e"*) of {e"*}, n € A, is dense

in L%(B) for all B with c(E’) < 2m. But Theorem 26 says that if A(A) = 1, then
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{(e™*), n € A, is dense in L?(B) for all B such that B C Q. This is an improvement

of Davis result for {\,} an increasing sequence of positive integers.
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ABSTRACT

Spline finite strip method based on equi-mesh for structure analysis has been studied by
C.Q. Wu , YK. Cheung and S.C. Fan in 1981 [1]. In this paper we present spline finite
strip method based on non-equi-mesh. For a model problem, we give error estimate analysis.

As for non-equi-mesh processing generalized trapezoid t method and its error estimate

analysis on abitrary area, we shall discussed in [2].

1. Assumptions

As in [3], suppose that Dy ,D, ,D;,Dx, are positive constants. Dx . Dy > Dy, W(xy) is
displacement function on the bounded area Q. Let T = 8 be boundary of Q and W€
H?(Q),f € H°(Q).
Definition
Jw = ” {—; [D, W2, +2D, W, Wy, +D, W2 +4D, W2 ]-Wf}dxdy

Q

a(u.v) = JI o [DxtnVax *DiUaacVyy #D1y y Vi #Dy Uy 3 vy +4D5y Uy Vi Jdxdy

(f'v) = IIQ fv dxdy

V W,u,vEH2(Q), V f€EH°(Q)
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aku 1/2
Hall ={ Jf [ b ( )2 ] dxdy }
k. Q Q " oca+Bek ax® ay P
o] aku 172
u ={Ir;y I b (=7 —=73 )2 1 dxdy }
k. Q Q a+fB=k ax“ c'iy[3
LS
Vu€HQ),Lk=0,1,2,. .,
By llull Kk ° lu Ik denote Il u i kK.Q " |u |k. 0 respectively, if there is no confusion.
Lu = Dy Usaesnet (2D 44Dy JUsneyy +Dyuyyyy V u€C*(Q)
.3 k
He(Q) {wu€H (). » ux uy =0, (xy) €1}
kK — e —
Ce(Q) - {u;u€C (). u=ux =u, 0, (xy) € I}
Thin plate bending problem in structure analysis becomes the following problems
* 12
find u €H®(Q) such that
J(W*) = min J(W) (1.1)
WEHZ(Q)
Lemma (1.1)
For all u,v€ HZ(Q), there exist constants By B> such that
a(u.v) < Bylulzlvls (1.2)
a(u.u) 2 By(|ulz)? (1.3)
Lemma (1.2)
Let u€c* (Q_) then u satisfies
Lu = f (x.y)eQ (1.4)
u=mu, =u, =0 (x.y)eEr (1.5)
iff w € HZ(Q) and
a(u,v) = (f,v) V vé HZ(Q) (1.6)
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holds -

1N k
Say '€C  and Q€C if I" can be expressed as

I = { (x.y)| x=x(t). y=y(t). a<t<B}

"
where x(t),y()€C [ ,P ] are single value functions of t€ [ (1.

Lemma (1.3)
4+k »
Let Q€C or Q be a convex polygonal domain and f €H (Q) then solution u of (1.4)

4+k
and (L5) belongs to Hp (Q). Furthermore,

@) if Q€c4+k then

lall Co‘llfllk

4+k$
(ii) if  be a convex polygonal domain then
la ||3+kgc., 3 IIk

where Co ' . Co just depend on(2.
2. Numerical method and error estimate

In the following description, we assume that Q be regular domain:Q =[a,blx[c,d].

Let Ty: a = Xg € x4 <...<{x, = b

T

vy ¥-a<...<{yo =c<y,<.. <ym=b(...<ym+3

be divisions along x-direction and y-direction, respectively.

Let lk = Xpep T X k = 0(1)n-1
h. =y. -y._,. i = -2(1)m+3
PRI SRR S J (1)m
hX = max {lk}. hy = max { hj }. h = max{hx.hy)

Assume that there exists a constant 7 >0 such that
min { min{lk}. min(hj} } 2 th (2.1)

lemma (2.1)
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-1,.-1
) hj<he BT KL

k = 0(1)n-1, j=-2(1)m+3 (2.2)

1

th <1 . b /e

3
Let 8, (¥) = (V07 9) ¥ 0¥ 1 ¥y ¥ju1 Y500l 0y= )y

be the well-known cubic spline, where j=-1(1)m +1. For an element Ek=[xk Xpal Ix[c.d]
4
Oy¥ = 2 #5025 () (x.y) €E, (2.3)

i=1
is a Hermite interpolation of the displacement function W(x,y) along x-direction.

Here 4, () = 13¢ + 20, Hy ) = a2t +2)1
.2 3 2.3 - -
#Jk(n = 3" - 20, #4k(n G+ t = (x xk) /1y
Ak V) = Wixp.y). A, (¥)=V¥, (% .¥)

A 3k (Y)=w(xk+1 'Y)v A 4k (Y)=wx (xk+1 -Y)
k=0(1)n-1

Let ¥ = { ¥_y ¥g -V Vpp )

= { 0_.2,-0d_| . -B2 42~V .8, ..., 2

1’72

-a'Qm+1,<I’m+l)

1’70
- ’¢m+1+@m_ B ‘Qm-l 'Qm
where a =§0 (}’0 )/Q-l (yo )9‘! ’=Qm(ym)/§m+l(yn)

B =(hy +h; )/hy . ¥ =(hy +h )/h

-1
B'=(h +h__ )/h .7 '=(h_, +h_ o)/h_ (2.4)

Then non-equi-mesh spline finite strip approximation of W(x,y) is

4 m+1

Way= 2 £, . (x) =2 C.. ¢.(y)
i=1 ik j=-1 ijk”j
m+1

4
= T (O E ik () )
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where Ci.—l.k 'Ci.O.k 'Ci.m.k‘ci,m+1,k are suitable numbers depending on

boundary conditions.

In the following description, we just study the error analysis for a special -clamped boundary

-case i.e.
W = Wx = Wy =0 (x.y)er
In this case
i1k = Cimerx O 1=1,2.3.4
Ciok = Cimk = © i=1,3 (2.5)
and we write
m 4
Vo= = Z C ooy ())¥(y) (2.6)
j=0 i=1
where C.. satisfies
ijk
C35%=C1.5.k+1'%45k=C2. j k+1 J=0(1)m.k=0(1)n-1
Ci1j0 = €250° C1jn =C2jn = © J=0(1)m
Clox =C1mk = 30k = Camk = © k=0(1)n (2.7)
m 4
Denote V = { w(x’Y)= JE:O ( iE:l Cijkﬂik(x))¢j(Y)' (x.y) GEk-
k=0(1)n-1 ICijk satisfy(2.7)}
Lemma (22)
2
VCHZ(Q)

By GV(x,y) we denote the numerical solution of (1.1) in V.

W)= (2 #y () ¥ () (x.y) €E.

1

TR
o

4
3 =1
which satisfies
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J(W) = min  J(W) (2.9)

wev
Theorem (2.1)

For all v €V CH%(Q) we have
a(W.v) = (f.,v)

a(W.v) = (f.v)

-~

and then aW - W . v) =0 (2.10)

Let Gs ’]ik (y) be the cubic B-spline interpolation of type I (fixed-support boundary condition)

of function A ik (y). For all w€ C‘:;(.Q) we define the tensor product approximation of W as

4
@HSW =i§l#ik(x)@s,]ik(y) (x.y) EEk ., k=0(1)n-1

Obviously O W € V
a
Lemma(23)  Let Ik= [Xk. Xpel ], f(x)€c (Ik). a=2,3,4,
By © u f denote Hermite interporation of f(x) on L -
let R(x)=f(x)-Ouf(x). Then from [4] we have
*k+1 (3),. .2 1/2 a-j
[ I N RY(x)%ax ] =0(1, ")
k
and
max [R0) (x) | = 0(1%79)
k
x€I,

where j=0,12, a=234

a
Lemma(24) Let g(y)€c [c.d], @=2,3,4, By Osg denote the I-type cubic

spline interpolation of g(y) on the division 7y let R(y)=g(y)-Osg(y) from
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[4] we have
d . .
(] 2@ %y 12 omg™)
and
max |RU) ()] = o(mg™Y)

y€[c.d
where j=0,12, a=234

Theorem (22)

Let W(X,Y) €C;‘E (), then there exists a positive constant C; (W) independing on h such

that

Iw-eﬂswl2 o £¢ W)h?

Proof:

Suppose @ +B =2, @,B20 For all W €C§ (Q)

(a.B) (e.B) 4 («a) (B)
(w‘@HSw) L) - 21 k(x)/l k(Y)
1:
4 (a) (B) (B)
+ 2 a0 )0, 44, (v)) ]
1:
n-1 (Cl B) 2
zo f f k+l (Ww@HS“g } dxdy
k=
n 1 0 .B) (0 .B) (a2.0) ,
2z f Ix k+1((w -0y ) }¥dx
k=0 k
n-1 4 9 (0.8) 2,
+8 3 = max|ﬂ k(x)I r k+1f {[A;,(¥)-0© Alk(Y)] }7d
k=0i=1

(2.11)

Lemma (2.1) (23) (2.4) estimate RHS of (2.11) as 0(h4)
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then there exists a positive constant C; (W) independing on h such that

2 2.4
W0, Wl 2.0 $C,Wh

. 2
- Iw-eHSwl 2. $C W

Theorem (23)

For all W(X,Y) GC4E (Q),there exists positive constants C2. CB independing on h and

W such that

2
A <
IW-BuWl 5 g <CuIwWl 5 o +cin™lwl 4 o
Proof:
As in Theorem (2.2), we estimate the RHS of (2.11) to proof this theorem.

Theorem (2.4)

. ~
Let W  and W be solution of variational problem (1.1) and (2.9), respectively. Then there
exists a positive constant d2 independing on h such that

* _" 2
I wlz.Q S"z"

% A~
Proof: By Theorem (2.1) and the fact that @HSW -v EVCH%( Q) We know that

A~

* -~ *
a(W" -W.@ " -W) =0
* ~ * o »* > 3 E 3 % ~ *
a(W -W.W -W) = a(W -W,w —GHSW) + a(W -W.@HSW -¥)

»* o 3 3%
= a(W -¥W.w _GHSW )

By Lemma (1.1) and Theorem (22) we have
x o 2 x o~ ox o
BZ(IW W 2.0 ) SalW —W.W W)

*x - * 3
gBllw _WI 2,0 Iw ‘OHSW I 2.0

3% -~ * 2
By [W" -w| 2.9 C1(¥)n
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df 9

<(B,/B)C(W9RZ = dp (2.12)

x
jw" -w] 2.0

Theorem (2.5) There exists positive constant do, d; independing on h such that

. A
lw™ -w| 0. Sdy

-w
| 1.Q "1
Proof: By z we have denote the solution of the boundary problem

W

Lz = W' -W (x.y) €Q
z =2z, =2z =0 (x.y)er
by Lemma (1.3) , embedding theorem and Lemma (12) we have

a(z.v) = (W -W.v) v venZ(Q) (2.13)

From Theorem (2.1) we have

a(W' ¥, 0L 0 (2.14)

. A
Replace v by ¥ -W in (2.13) we have
dw' 9 = (WH.W-W)= a(z. W -W)

a(wt-&.z _@HSZ) + a(w"W-@HSz)

a(W W,z -0,47)

. n
gBllw .wlz'Q |z -(:)HszlLQ (2.15)

By Theorem (23) and Lemma (1.3) we have
2
|2-0521,, g €Calzly g +euwlzly o
<C., hC. |W* W| +Cy B2 C, W W)
$Cy by o, 0 3 0 Y10

& A 2 * A2 * 2
e F = ([t Zer 2 1axay
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= ”Q AW W) (W H)dxdy + 0

*x N * A
IV g I

2 1 ,% 0
<dyh |w .wlo'Q .
Clw* o 1/2 *~0 1/2
sw W 1.8 4 " [w W] 0.9 (2.17)
By (2.12) (2.15) (2.16) (2.17) solve the inequition we have
* A 3
[w W 0.0 Sdgh
By (2.17) we have
L 5/2
W W 1. Q S"1h
Theorem (2.6) There exists positive constant / 0 independing on h such that
a+f *x = o
max a (W -¥) { 4.h (6-a-B)/2
- ax @ ayB 0
Q
where @+ =012, a,8>0
Proof:
We can write WEV as
m 4
Top= = (= C s, (x0)) ¥ (¥). (x.y) €E.
j=0 i=1
Orthogonalize (llik(x)) ¢j(Y))i=1(l)4J=l(l)m to (wj )j=1(1)m where

fo Wi Wj dxdy= aij ,M=4m then we rewrite W as

M
W = > SV .
w i eJWJ (x.y )EEk

we have

M
T =Wl

M
IIQ wzd"dyzz i 0.Q

Jlnee V. ¥, dxdy=
ii=1 QG577 ey i=1e
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- max |w|<(2 2)“2 (z ¢2)”2 W (2.18)
E 1 0.Q
k
. A
Suppose that |W -Wl reaches its maximum in Ep then
malef—WlSmax'W‘—Wl
E
e P
* % * A
W - - .
< Eaxl A |+;3nax|G)HSW W (2.19)
P P
% A
For OHSW -WEV by (2.18) we have
* A s * A
E’“"leusw -wil<c 0 4s¥ Wil o
P
% % * 2
' - | ' - .
C* IIW @HSW Io.Q+C R WIIO'Q (2.20)

From Lemma (23) (2.4) we have

* 2 4 »* 2
Eaxlw IR |=om*), 1w Ous¥ !
P

o3
0.Q 00

x A
and I'W W1 0.0 O(h3 ) by (2.19) and (220) we know that there exists a positive

constant X 1 such that

max W' W] Cp 0

19
Similarly there exists positive constants ﬂz and # 3 such that
max I(W'-W)(a'ﬂ) |£#2h5/2 a+B=1

Q
max I(W‘-W“a‘B) |£ﬂ3h2 a+B=2

Q
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Set #0= max { ﬂl #2 ll3 } we conclude that

a+p * 2 o
max a3 (W -W) < #.h (6-a-B)/2
- ax“ ayB 0
Q
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Abstract

We examine the stability of a functional equation containing difference op-
erators of higher orders. It appears in a problem raised by J. Schwaiger in
1984. We show that this equation is stable in the Hyers-Ulam sense, which
means that any function satisfying the equation with a certain accuracy only
is uniformly approximated by its exact solution.

1. Introduction

Let (G, +) and (H,+) be two Abelian Groups and let X be a linear space over
the rationals. We consider the following functional equation

AT AL, F(z,y) =0, a,z€G, byeH 1)

in which F': G x H — X is regarded as an unknown function, whereas A", and A3,
stand for the m-th and n-th iterates of the partial difference operators defined by

Al.aF(z7y) = F(m+a1y)_F(z1y)
and
AZ,bF(zyy) = F(I,y + b) - F(z7y)‘

To describe solutions of Eq. 1 we recall that a function p : G = X is said to be a
polynomial function of order m — 1 if and only if it satisfies the following Fréchet

functional equation:
A7p(z) =0, a,z€G. )
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Here, AT denotes the m-th iterate of the ordinary difference operator defined by

Aqp(z) := p(z + a) — p(z).

More information about algebraic properties of polynomial functions can be found in
3 and 8.

In 1984, during the 22nd International Symposium on Functional Equations in
Oberwolfach, Prof. J. Schwaiger conjectured that any function F' : G x H — X
satisfying Eq. 1 can be represented in the form

F=P+Q,

where P(-,y) is a polynomial function of order m—1 for each fixed y € H and Q(z,-) is
a polynomial function of order n—1 for each fixed z € G (conversely, every function of
this form fulfils Eq. 1). The same conjecture appears among open problems collected
at the end of 7 The author of the present article proved it to be right in his previous
paper 1

Once we know the general form of solutions of Eq. 1 it is natural to ask if the
equation is stable in the sense introduced by S. Ulam in 8. Originally, Ulam was
interested in the stability of the linear functional equation. What he had in mind was
the question whether any function satisfying such an equation with some bounded
error is uniformly closed to an exact solution of the equation. It was D. H. Hyers °
who first answerd Ulam’s question in affirmative. Since then the concept of stability
has been studied thoroughly in relation to various functional equations. At present
it is usually referred to as the Hyers-Ulam stability. The aim of the present paper is
to prove that, under the assumption that X is a Banach space, Eq. 1 is stable in the
Hyers-Ulam sense.

2. Auxiliary results

Our further considerations are based on the following result of M. Albert and J.
A. Baker ! concerning the stability of Eq. 2:

THEOREM A. Let (G,+) be an Abelian group and let (X, || -||) be a Banach
space. With every positive integer m one can associate a non-negative constant k,,
with the following property: if for some € > 0 a function f : G — X satisfies the
inequality

A7 f(@)l <€, a2 €G,

then there exists a polynomial function p: G — X of order m — 1 such that

If(z) —p(2)]| < kme, z€G.
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REMARK 1. In a less rigorous formulation the above theorem states that any
function f : G — X for which the transformation

G*3 (a,2) » AT f(z) e X

1s bounded, can be decomposed into a sum f = p+r, where p : G — X is a polynomial
function of order m — 1 and r : G — X is bounded. Moreover, one may show that
this decomposition is unique up to a constant function.

The next lemma is due to K. Baron (cf. ? ) and its proof was enclosed in our
4
paper

LEMMA 1. Let (G,+) be an Abelian group, let Y be a linear space over the
rational field and assume that L is a linear subspace of Y If f: G — Y is a function
such that

AT f(z)e L, a,z€QG,

then f =p+1, where p: G - Y is a polynomial function of order m — 1 and

lz)e L, zecG.

We shall also need the following

LEMMA 2. Let (G,+) be an Abelian group, let Y be a real or complez linear
space and let V be a linear subspace of Y which splits into the direct sum of two
subspaces W and Z. Suppose that Z is endowed with a norm ||-||z such that (Z,||-||z)
becomes a Banach space and denote by proj; the projection operator mapping V onto
its direct component Z. Furthermore, assume that a function f: G — Y satisfies the
following conditions:

AT f(z) eV, az€G (2)
and for some € > 0,
lprojz (A7 f(z)) ||z <&, a,z€G. (17)
Then f can be expressed in the form
f=p+q+r,

where p: G = Y is a polynomial function of orderm—1, ¢:G—-W, r:G— Z

and
Ir(z)llz < kne, z€G,

k,. being the constant from the assertion of Theorem A.
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Proof. Condition (i) jointly with Lemma 1 imply that there exist a polynomial
function py : G — Y of order m — 1 and a function g mapping G into V such that

f=po+g

Since V is the direct sum of subspaces W and Z, the function g admits the unique
decomposition

g=4q+rmo

with a function ¢ assuming values in W and a function ro assuming values in Z.
Taking into account the linearity of difference operators we obtain

Al f(z) = AT g(z) = Alg(z) + Al'ro(z), a,z €G.
It is also clear that AT'q(x) € W and ATro(z) € Z, which yields the identity
projz (A7 f(z)) = ATro(z), a,z€G.
Consequently, by condition (ii), we have
AT ro(z)||lz <&, a,z€QG.

Applying Theorem A we may represent ry in the form ro = p* +r, where p* : G — Z
is a polynomial function of order m — 1 and r : G — Z is such that

Ir(2)lz < kme, z € G.
Putting p := pp + p* we get a polynomial function of order m — 1 and moreover,
f=potg=po+q+tro=potq+p tr=p+q+r
The functions p, ¢ and r have all the desired properties and the proof is finished.
3. Main results

THEOREM 1. Let (G, +) and (H,+) be two Abelian groups, suppose (X, ||-||)
to be a Banach space and let us fir two positive integers m,n and a positive real
constant €. Assume that F': G x H — X is a function satisfying the inequality

AT A F(z,y)|| <e, a,z€G, byeH. (3)

Then for an arbitrariy small positive constant § there exist functions P,Q : Gx H —
X with the following properties:

/\ P(-,y) is a polynomial function of order m — 1, (a)
veH
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A\ Q(z,-) is a polynomial function of order n —1 (b)
r€G
and
"F(x’y)_P(Ivy)"Q(z»y)”Skmkn5+6v (z,y) € G x H, (c)

where k., kn are the constants occurring in the assertion of Theorem A.

Proof. Let Y denote the space of all functions mapping H into X. We define the
following linear subspaces of Y:

V :={p €Y : the transformation H? 3 (b,y) — Afp(y) € X is bounded } ,
W:={peVY: Atp(y)=0forallbyec H},

Z:={p€Y: pisbounded },

L:={p €Y : pisconstant } .

In the space Z one may introduce the uniform convergence norm || - || defined
by
lolleo :=sup lle()ll, € 2.
veH

Together with this norm Z becomes a Banach space and L is its closed subspace.
Factorizing Y, V, W and Z by the subspace L we obtain the quotient spaces

Y:=Y/L, V:=V/L, W:=W/L, Z:=2Z/L.

In what follows the coset of L determined by a function ¢ € Y will be designated
by [¢]. It is an immediate consequence of Remark 1 that V coincides with the direct
sum of W and Z. The space Z turns into a Banach space when we equip it with the
quotient norm || - || ; related to || - || as follows:

Ilelllz = inf{ll¥lle = ¥ € ]}, [0l € 2.

Now we define a function f : G — Y by the formula
f(z):=[F(z,")], z€G.

Then we have

ATf(z) = [A7F(z,)], a,z€G.

Putting
Yoo := AT F(z,7), a,z€G

and calling to mind inequality (3) we derive

1A @az (W = [A34AT F(z,y)ll = |AT. A%, F(z,9)| < e
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for arbitrarily chosen a,z € G, b,y € H. Hence it follows, in particular, that for all
a,z € G one has N )
Yoz €V, Le. ATf(z)EV.

Moreover, on account of Theorem A, for any fixed a,z € G the function ¢, . admits
a representation

Pa,x = Ta,z + Pa,xy

where 7, : H — X is a polynomial function of order n — 1 and p,. : H — X is
bounded with an estimation of its supremum norm given by

”Pa,z”oo < kne.

On the other hand,

AZ'f(:):) = [az) = [Ta] + [Paz], a,z€QG.

The first term of the above sum belongs to W, whereas the second is an element of

Z, which implies that

projz (A7 f(2)) = [pasl, = €G.

Hence, :
[proiz (A7 7(@)]; = lleaslllz < lpasclleo < Ene, @,z € G.

Applying Lemma 2 to the function f we receive a decomposition

f=p+i+7

where 5 : G — Y is a polynomial function of order m — 1, §:G— W, 7:G— 2
and
I7(2)llz < kmkne, z€G. (4)

Let us represent the functions p, ¢ and 7 in the form

withsomep: G—Y, ¢:G— W andr:G — Z . Then we have
(A7p(z)] = ATB(z) = [0], zE€G,
which means that
Arp(z) €L, a,z€G.

From Lemma 1 it follows that p = po + I, where py : G — Y is a polynomial function
of order m — 1 and

(z)€ L, z€G.
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Consequently, for every z € G the cosets [p(z)] and [po(z)] coincide. From this place
on, the constant é will be treated as fixed (possibly very small, nevertheless positive).
In view of (4), to each z € G one can assign an element ro(z) € [r(z)] such that

Iro(e)lleo < kmkne + 6.

Evidently, the cosets [r(z)] and [ro(z)] are identical for every z € G. As a result,

[F(z,-)] = [po(2)] + [g(2)] + [ro(2)], z€C

or equivalently,

F(z,-) = po(z) + g(z) + ro(z) + lo(z), z€GC

with some ly : G — L. If we now put
qo(z) :=gq(z) + lo(z), z€G,

then the function go assumes values in W + L C W. Next we define functions P, Q
and R mapping G x H into X by the formulae
)

P(x,y) = pO(‘Z)(y)7 Q(Ivy) = qo(z)(y), R(‘Tvy) = TO(I)(y)
for all (z,y) € G x H. Then
F(z,y) = P(z,y) + Q(z,y) + R(z,y), (z,y) EGxH

and it is readily seen that P and @ have the properties (a) and (b) from the assertion
of our theorem. Finally, notice that

sup [|R(z,y)|| = supsup [[ro(z)(y)ll = sup |Iro(z)llcoc < kmkne + 8,
(z,y)€EGxH z€G yeH z€G

which ensures property (c) and completes the proof.

By induction based on similar arguments one can prove the following generaliza-
tion of Theorem 1:

THEOREM 2. Let (Gi,+),...,(Gm,+) be Abelian groups and suppose that
(X, |-11) is @ Banach space. Moreover, fir a system of positive integers ny,...,n, and
a positive real constant €. Assume that F': Gy X ... x Gy — X is a function fulfilling
the inequality

||A’;“,,l A (zl,...,zm)" <e

m,am

for all a;,z; € G, 1 = 1,...,m. Then for arbitrarily small positive § there exist
functions P, : G1 X ... x G, = X (i =1,...,m) such that P, is a polynomial function
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of order n; — 1 with respect to the i-th variable while the remaining variables are fized

and ~
< (Hkn,)e+6

i=1

m

”F((tl, ...,.’Em) — Z P,'(l'l, ...,$m)

=1

for all (z1,...,2,) € Gy X ... X Gp,. As usual k,, (1 = 1,...,m) are the constants
appearing for the first time in Theorem A.

REMARK 2. The paper ! provides some estimations of the constants k, (n =
1,2,...), but it is not known whether they are sharp. Therefore, there is not much
practical sense in trying to improve Theorems 1 and 2 by eliminating from them
the constant § which only imperceptibly weakens their assertions. Nonetheless such
improvement would be desirable from the aesthetic point of view. We do not know if it
can be achieved without imposing additional assumptions on the space X. However,
if X is finite-dimensional, the constant § can be avoided as is easily seen from the
proof of Theorem 1 and from the following

PROPOSITION. If dimX < oo, then keeping the meaning of symbols used in
the proof of Theorem 1, we have

AV ez =l

[wlez vele]

Proof. Identifying elements of the space X with constant functions mapping H
into X, we may write

llelllz = inf{lly + clloo = c€ X}

Fix a coset [¢] € Z and put 7 := 2|¢|leo- If ¢ € X is chosen from the complement of
the closed ball B(0,7) with the centre 0 and the radius 7, then

e+ clloo 2 llell = llelloo > lllloo 2 [lee]llz-

Consequently,
iz = inf{lle + ¢l : ¢ € B(0,7)}.

We may select a sequence {c, },eN of elements of B(0,7) such that
lelllz = lm fle + clloo-

n—0oo

Since B(0,7) is compact, the sequence {c,},en contains a subsequence {c,, }xeN
convergent to a ¢ € B(0,7). Hence

lelllz = lim lle + enlloo = [l + €loo,
— 00

which ends the proof, because ¢ := v + ¢ € [i)].
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Abstract

This paper proves a fixed point index theorem for non-compact maps and gives an
application to prove the existence of positive solutions of evolutionary equations
in infinite dimensional Banach sequence spaces.

1. INTRODUCTION

In [10] we presented a topological method that can be applied to study the
asymptotic behavior of differential equations in Banach spaces. We prove here
a fixed point index theorem for non-compact maps and give an application on
the existence of positive solutions of evolutionary equations in infinite dimen-
sional Banach sequence spaces. The results generalize Theorem of Hartman
and Wintner [7] and [8] to an infinite dimensional spaces and also the results
proved in [11]. The proof shows the generality and simplicity of the method
developed in [10]. Infinite systems of ordinary differential equations arise in the
theory of branching process, [2] semidiscretization of partial differential equa-
tions, (3], [5], degradation of polymers, (3] and perturbation theory of quantum
mechanics [1].
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2. PRELIMINARIES

We begin by recalling a few definitions and results from [10].

Suppose X is a Banach space, Rt = [0,00), u : Rx X x Rt — X is a
given mapping and define U(o,t) : X — X for 0 € R* by U(o,t)z = u(o,z,t).
A process on X is a mapping u : R x X x Rt — X satisfying the following
properties:

1) u is continuous,
i) U(eo, o) = I (identity),
i) U(e +s,8)U(c,s) = U(o,s +1t).

A process is said to be an autonomous process or a semidynamical system
if U(o,t) is independent of o, i.e., U(o,t) = U(0,t) for each o € R and t > 0.
When this is the case, define T'(t) = U(0,t) and note T'(t)z is continuous at
each (t,z) e R x X.

Definition. Suppose u is a process on X. The trajectory 7+ (0o, z) through
(o,z) € R x X is the set on R x X defined by

+(o,z) = {(¢ +t,U(0,t)z)|t € R}
The orbit v+ (e, z) through (o, z) is the set in X defined by
7*(0,2) = {U(0,t)zlt € R*} .

If there exists a backward continuation for the process u, we define for some
t” € [-00,0]

77 (0,z) = {(0c +t,U(o,t)z)|t € (t7,0)} .
7 (0,2) = {U(o, t)slt € (¢-,0))

An integral of the process in R is a continuous functions y : R — X such
that for any o € R, 7¥(0,y(o)) = {(¢ +t,y(c +t))|t > 0}. An integral y is an
integral through (o, z) € R x X, if y(o) = .

We assume in the following that the integral through each (s,z) € Rx X is

unique. We define 771(z) = {(o,y) € R x X|, 3t > 0 such that U(o,t)y = z}.
If P, =(0,z) € Rx X and z € y*(0,z) we define

t, =inf{t > 0|U(o,t)z = 2} ,
Q. ={(c +1t,,U(0,t,)z)},
[Po,Q:] ={(c +t,U(0,t)2)[0 <t < t,}
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Let © be an open set of R x X, w an open set of Q, w # @ and dw =

@ N (2 —w) the boundary of w with respect to Q. We put

S° ={P, = (0,z) € Ow|3z € y¥ (0, z)

with (P, Q) # 0 and (P,,Q.) N@ = 0}.
S ={P, =(0,z) € 0w|3z € v (0, 2)

with (P,, Q) # 0 and if there exists 77(F,),3Q € w
such that (Q, P,] C @}

S*={Q €SI =(0,z)€Ew—-S§
with Q € ¥ (o, z) and [P,,Q) Cw — S}

The points of S° are called demiegress points, the points of S are called
egress points. The points of S* are called strict egress points.

The above definition applies even if w has an empty interior. For example,
if X = 1% and w is the positive cone in I, w = {z € ®’|lz > 0}, S = {z =
(z1,22,...)|lz > 0 and z; > 0 for at least one i}. w = 0w and the trajectory
through a point P, = (o,z) € w either leaves the set w at some time > o or
t = o and then 7 (P,)N@w = 0 and P, € S° A point P, € S° is an egress
point, that is, P, € S, if there exists an backward continuation of the process
and a small piece of the trajectory is contained in w. If P, € S° and there is a
small piece of the left trajectory through P, contained in w — S then P, € S*,
that is, P, is a strict egress point. If all points of S are strict egress points,
that is, § = S*, S* is closed with respect to .

Given a point P, = (0,z) € w ~ S, if the trajectory 7+(a, z) of the process
is contained in w — S for every t > 0 we say that the trajectory is asymptotic
with respect to w — S. If the trajectory is not asymptotic with respect to w -5
then there is a t > 0 such that (¢ +¢,U(o,t)z) € S. Taking:

tp, = inf{t > 0|(c +t,U(o,t)z) € S}
Q= (o+tp,,U(o,tp,)z) = C(F)
we have
[Pe, Q] CW .

The point C(P,) is called the consequent of P,. Define G to be the set of
all P, = (0,z) € w— S such that there are C(P,) and C(P,) € S*. G is called
the left shadow of w. Consider the mapping, the consequent operator:

K:S"uG—-S"
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K(Py))=C(P,)if P, €w and K(P,) = P, if P, € S*.
Lemma 1. If S = S*, the consequent operator K : S*UG — S™ is continuous.

Lemma 2. If S = S* and the solution operator U(t, o) is a conditional con-
densing map fort > o then K : G — S is a conditional condensing map.

Following Nussbaum [14] we say that a subset A of a Banach space X is
admissible if A has a locally finite covering {A; : j € J} by closed convex sets
AjeX.

Let w be a non-empty subset of 2, and with S and S* denoting respectively
the set of egress and strict egress points of w. Assume that there exists a non-
empty closed set Z where Z C wU S and the following conditions are satisfied:

) §=5*
1) Z is admissible
ii1) there exists a continuous map ® : S — S such that ®(P) # P for every
Pes.
iv) ®K is a condensing map
v) ia(®K,Z — S) # 0.

Then there exists at least one point P, = (o,z) € Z — S such that the
trajectory 7t(eo, z) through P, = (o, z) is contained in w — S.

Proof. Assume that the theorem is not true. Then C(P,) € S for every
P,eZ—-SandthenZ—-SCG. ThenZ=(ZNnS)U(Z-S)C SUG. From
iv) ®K is a condensing map and from iii) ®(P) # P for every P € S, that
is ®K(P,) # P, for every P € Z = S. Hence i3(®K,Z — S) = 0 which is a
contradiction. Then there exists at least one point P, € Z — S such that the
trajectory 7(o, P,) is asymptotic with respect tow — S.

Corollary 1. Let w be a non-emply, subset of Q, and with S and S* denoting
the sel of egress and sirict egress points of w respectively. Assume that there
exists a closed set Z, ¢ # Z CwUS and the following conditions are satisfied:

1) S=5"
i) Z is admissible
1) there exists a continuous map ® : S — S such that ®(P) # P for every
PeS
iv) ®K is a condensing map and ®K has a fized point in Z.
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Then there erists at least one point P, = (0,2) € Z — S such that the
trajectory 7+(o, z) through P,(o,z) is contained inw — S.

We will need the following Lemma [4],[14].

Lemma 3. Let X be Banach space, K C X a cone and F : Kr — K a
condensing map, Kr = K N Br(0). Suppose that

a) Fr # Az for||z]|= R and A > 0.
b) There ezists a smaller radius r € (0,R) and an e € K|{0} such that
Tz — Fz # Xe for||z|| =7 and 0 < A < 1.

Then F has a fized point in {z € K|r <||z|| < R}.

3. MAIN RESULTS

Let X be areal Banach sequence space and consider the system of ordinary
differential equations defined in X:

==}
ii+ Clij(t)lij :0, i,l,?,...
5 0

z;(0) = z7

where a;;(t) are continuous functions of the real variable t for 0 < t < oo,
z° = (29,%5,...) € X.
System (1) can be written in the form

i+ A(t)z =0

2
z(0) = z° @

We assume that for each ¢t € [0,T], —A(t) is the infinitesimal generator of
a C° semigroup on the space X, the domain D(A(t)) = D is independent of
t, is dense in X and that the initial value problem (1) has an unique classical
solution defined in [0, c0). Assume also continuity with respect to initial con-
ditions for the solutions of (1). See [8] and [11]. Our purpose here is to apply
Theorem 1 to prove the existence of a positive solution of system (1).

Theorem 2. Assume the hypotheses
1). The solution operator
t

Ut,o)z® = z° —/ A(s)z(s)ds

(4
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is a conditional condensing map fort > o

00
i) Za;j(t)zj >0 foreveryi=12,...,2; >0,j=12,....
=1
Then system (1) has a monotone decreasing solution z(t) = (z1(t), z2(t),...),
z(t) # 0 such that z;(t) > 0 and z;(t) < 0 for everyt =1,2,...,t > 0, and

consequently z;(t) are monotone decreasing fort > 0.
1

If the solution operator K(t,0)z° = 1:°—/ A(s)z(s)ds is compact fort > o
oo o
and Zaij(t)zj >0 foreveryi=1,2,...,2; >0,5=12,.... Then (1)
j=1
has (st monotone non-increasing solution z(t) = (z1(t),z2(t),...),z(t) # 0,
such that z;(t) < 0 for every i = 1,2,..., t > 0 and consequently z;(t) are
monolone non-increasing fort > o.

Proof. Let us assume first that
o0
Zaij(t)zj >0, forevery i, z; >0, j=1,2,...
i=1

or equivalently, that A(t) is a strongly positive operator.
For o > 0 let

w={z=(x1,22,...) €EX|z; >0, i=12,...}.
For 0 < r < R let

Z:{z:(zl,xg,...)EXlxiZO»TS“"«'HSR}
S={z=(21,22,...) € X|&; > 0,2, = 0 and z; £ 0

for at least one 7 and one j}

The closure of w,w is a cone in the space X and Z is a conic sector. If
z=corz=1" wis asolid cone in X.

From hypothese ii), £; < 0, then the derivatives along the solutions of (1)
on the points of S are negative, then the points of S are strict egress points.
At the origin z; = 0 for every ¢, whence the origin is not an egress point. The
derivative along the solutions of (1) on the points of Zg = {z € Z| ||z|| = R}
and Z, = {z € Z| ||z|| = r} are negative, ; < 0. Then the points of Z, are
strict egress points and the points of Zgr — S are strict ingress points. The
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points of Zg N S are not egress points. The continuous function ® : § — S
defined by ®(z1,z3,...) = (0,21, 22,...) satisfies ®(z) # = for every z € S.

Assume that for every z° € Z— S, the solution through z° does not remain
in w for t > 0. Since the points of S are strict egress points Z — S C G. The
consequent operator K : Z — S defined by

K(t, 0)(z°); = =] —/ Zaij(s):cj(s)ds, 1=1,2,..., (4)

=1

is defined in Z C w. Since the points of S are strict egress, K is defined in
ZN S then in Z, that is, Z C GU S. For Lemma 2, the consequent operator
K : G — S is a conditional condensing map.

Since ® is continuous, ®, K is continuous, and since z; < 0 for every 7, K
takes Z into @ N {z € W] ||z|| < R} and then K is a condensing map. Since ®
1s an 1sometry ®,K is a condensing map.

Finally to prove the Theorem, we have to prove that ®, R has a fixed point
in Z. If we prove that the conditions a) and b) of Lemma 3, are satisfied then
®,K : Z — w has a fixed point in Z.

a) If ||z°|| = R for A > 1, ||Az°|| > R. Since we are assuming that
o0
> a;i(t)z; > 0, z is decreasing, ||®K(z°)|| = ||[K(z°)|| < [|z°]] <
j=1
@)l then [Az° — BK(2*)]| > A2%]| - [|BK ()] > 0 and Az® #
PK(z°)

b) Fix e = (0,1,0,0,...). If 20 # 0, 2° — ®,K(z°) = (23,23,...)
(0,23,z5,...) + (O,f: 21 ay;(s)zj(s)ds, [} El asj(s)z;(s)ds, .. ) #
j= j=

2(0,1,0,0,...), since the first coordinate z§ # 0.
If 2 =0, z° € S and Kz° = z° then

Io'—d)ol{(zo) = (O,Ig,lg,. ..)—(0,0,x%,.’l}g,. ) = (0»1‘;)1103_1%‘:82_1'%) )
Let us assume by contradiction that
° — ¢ K(z°) = Xe

that is
(0,25,23 — 25,24 — z3,...) = (0, hey, Aeg,...)

If 23 = 0 obviously z° — ¢ok(z°) # Ae since de; # 0.
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If 25 # 0 we have
(0,235,253 — 25 —z3,...) = (0, Xep, Aea + Aes,...)
that 1s

x5 = Aep,z§ = 25 + ez = dey + Aea
Iz:£g+A63:A€1+/\62+/\63+...

Then

n
=) <0,el,el +eg,e1+eax+e3, ... E ei,...)
i=1

and z° can not belong to I¥ for any p > 1 and z° can not belong also to c,. If

00
z=corl®since ) e;<rand A<1

i=1

(o]
r=llefl=A) ei<r
i=1

a contradiction.

Therefore all conditions of Corollary 1 are satisfied and there exists at least
one point z° € Z — S such that the solution of (1) z(t) = (z1(t),z2(¢),...)
through z° stays in w — S for every ¢t > 0 and since z; < 0, ¢ =1,2,..., each
z;(t) decreases monotonically to zero as t — oo.

If the solution operator K (t,t,)z° = z° — f:o A(s)z(s)ds, is compact for

o0
t >t, and ) a;;(t)z; >0, consider the system
j=1

Y; + Z(%‘(t) +6;5)Yi=0
j:l (4)
Y;(0) =Y°, i=,1,2...

From the proof above, there exists for each ¢;;, a positive solution Y,(¢t) of
(4) through some Y? = (Y,,Ys,,...) and Y,(t) decreases monotonically as
t — oo. When E;; — 0, there is a sequence of positive solutions Y, (t) of (4)
through Y,?. Let E = {Y,°}. If K(¢,0) is compact for t > t,, for £ > 0, the set
{K(%,0)Y2} = {Yin(?)} is compact and there exists a convergent subsequence
{Yink (D)}, Yink(f) — Y,(?) and the solutions Yiuk(t) — Y(¢), Y () = Yo(%) on
every interval t <t < T < 0.
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The system

z; + Zai]‘(t) = —fi(t,z)
j=1
z;(0)==2° i=1,2,..., (5)
can be written in the form

T+ A(t)z = —f(t,z)
z(0) = z° (6)

We assume that for each t € [0,T], —A(t) is the infinitesimal generator of
a C°-semigroup on the space X, the domain D(A(t)) = D is independent of
t,1s dense in X, f : [0,00) x U — X is continuous, U C X, open, f(¢,0) =0
and we assume existence of a unique classical solution of (4) in [0, 00), as well
as continuity with respect to initial conditions; see [9] and [12].

Theorem 3. Assume the hypotheses
1) The solution operator

t

Ut,o)z® = z° — / A(s)z(s)ds — /ot fit,z)

o

1s a conditional condensing map fort > o.

i) D aij(t)e; + filt,z) > 0 for everyi=1,2,...,2; >0,j=12,....
j=1

Then system (5) has a solution z(t) = (z1(t),z2(t),...), z(t) £ 0, such
that z;(t) > 0, #; < 0 for every i = 1,2,...,t > 0, and consequently the z;(t)
are monotone decreasing.

If the solution operator K (t,0)z° = z° — [} A(s)z(s) — [ f(s,2(s))ds is
conditionally compact for ¢t > ¢ and ) a;;(t)z; > 0 for every 1 = 1,2,...,

o~

j
zj >0, 7 =1,2,..., then system (5) has solution z(t) = (z1(t),z2(t),...)
such that z(¢) £ 0, z;(t) > 0 and z;(t) < 0 for every ¢ = 1,2,...,¢t > 0 and
consequently z;(t) are monotone non-increasing for ¢t > 0.
o0
The proof follows as in Theorem 2, assuming that ) a;;(t)z; + fi(t,z) > 0
=1

j
and the conclusion is that there exists a positive solution of (5) through some
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point z, = (z9,z%,...) € w — S. If the solution operator
1 :
U(t,t,)z® = z° —/ A(s)z(s)ds —/ f(s,z(s))ds
to to

(o]
is conditionally compact and Y a;jz; + fi(t,z) > 0, from Lemma 2 and since

j=1
this implies that K is compact, consider the system

Y+ (ai(t) + €i5)z; + filt,z) =0
vi(0) = ¥ ™)
and a subsequence Yo 1,(t), Y, x;(0) = Y;° which converges, as ¢;; — 0, uni-
formly on every interval 0 < ¢ <1 < oo.
For system (7) the solution z(t) can become zero after a finite time. The-
orem 3 generalizes a result of Hartman and Wintner [7].

Example 1. Let {a;} € c the space of convergent sequences with norm

lla|| = sup|a;|. Assume that lim a; = as, # 0 and define of = (0,0,...,
i i—o0

a;,0,...). Define T(t)a’ = {e*a'}, —0co < Re \; < W < co. T(t) is a strongly

continuous semigroup with infinitesimal generator A given by Ao’ = {);a'}.

T(t) is compact if and only if limRe); = —oo. Consider the system (8)
(e}

z; = =Nz — Yy gij(t)zj, zi(to) = z? with A; > 0, Y ||gij|| < co. This system
i=1 1)

can be written in the form ¢ = Az + G(t)z, z(t,) = z° Since T'(t) is compact
and G(t) is bounded, the consequent operator

K(t, to)z® =z° + /‘(A + G(z))ds

is compact. From Theorem 2, there exists at least one monotone solution
z(t) = (z1(t), z2(t), .. .), of (8) such that tlim z(t) =0, z(t) > 0and —2z(t) > 0.
—+ 00

Example 2. Let X be a Banach sequence space and consider the system (9)
z = (A+ B)z. Assume that B from X to X is compact. A is the infinitesimal
generator of a C°—semigroup e“*, ¢ > 0 in X and there exist constants M,y > 0
such that [e4?| < e~ ¢t > 0. If all solutions of system (9) are defined for t > 0
then the semigroup defined by (9) satisfies T(t) = eA! + U(t) where U(t)
is conditionally compact (conditionally completely continuous) and therefore
T(t) is a conditional a- contraction. [6, pp. 123] and Webb [15]. f A+ B < 0
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there exist a solution z(t) of (7) such that z(¢) > 0, tlim z(t) = C and (1) < 0,
t>0.
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BANACH SPACES IN BERGMAN OPERATOR THEORY
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Abstract

We show how Banach space theory can be used for certain aspects of
integral operators of Bergman type, which serve as transformations for
translating methods and results on analytic functions into analogs for
solutions of linear partial differential equations.

1. The Creation of Banach Space Theory: F. Riesz, S. Banach

The introduction of normed spaces and, in particular, Banach spaces, was an impor-
tant landmark in the early development of functional analysis, which is usually considered
to have begun in 1887 with five Notes on functionals by Volterra [Opere 1, 294-328]., fol-
lowed in 1906 by the appearance of three important papers, first, Fréchet’s famous thesis
containing the modern axiomatic definition of metric space, second, Hilbert’s most impor-
tant (the fourth) of his six Mitteilungen on integral equations, the earliest truly functional-
analytic theory of those equations, and third, the paper by F. Riesz [Oeuvres I, 110-154]
containing an axiomatic definition of topological space based on “Verdichtungsstelle” (we
now say Haufungspunkt, accumulation point, not condensation point!), along with many
modern ideas of general topology. This paper, obscurely published and included only in
part in Riesz’s 1908 paper given at the International Congress of Mathematicians, Rome
[Atti 2, 18-24], was also influential on the basic work of 1921 by L. Vietoris, culminating
with the introduction of the Vietoris separation axiom. Its German translation finally be-
came more widely known in 1960 by the publication of Riesz’s Oeuvres. Riesz’s axioms,
in modern formulation, were as follows.

For each subset S and point p, it is defined whether p is an accumulation point of S

or not (is “isolated”), and this relation satisfies the axioms 1.-4.:

1. If S is finite, it has no accumulation points.
2. An accumulation point p of S is also an accumulation point of any set containing S.
3. If S is partitioned into S; and S2, then any accumulation point of S is also an accu-
mulation point of Sy or Sz (or both).
4. For an accumulation point p of § and a point g # p there is a subset § of § such that
pis an accumulation point of S, but g is not.
Based on this, Riesz then defined neighborhood, interior point, boundary point, open set,
connectedness, etc. Cleary, that was an early (not fully successful) attempt to define

topological space, without using any distance concept.
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With Hilbert space theory well under way, one recognized soon, certainly around
1909 when Riesz introduced his famous representation of bounded linear functionals on
Cla, b], that for numerous applications, Hilbert spaces are not general enough. One was
thus looking for suitable more general spaces, and it seems that the idea of combining
vector space structure with metric (missed by Fréchet at that early time) that led to
the breakthrough in the form of normed spaces was somehow “in the air” And it was
again Riesz who did the first step in 1915 or 1916 in his famous Acta mathematica paper
(submitted 1916, publishing date of the volume 1918, delayed by the War) on compact
operators (abstract Fredholm theory). There he phrased matters in terms of C[a, b], but
his axioms were those of what we now call a Banach space, because once he had defined the
norm on Cla, b], in that paper he never used anything else but the axioms of a complete
normed space. And he emphasized clearly that he had much more in mind than Cla, b):

“The restriction to continuous functions made in this paper is not es-
sential... Sand] the...case treated here may be regarded as a test case
(Priifstein) for the general applicability [of the method].”
As Bourbaki [4], 268, phrased it, it seems that “only the scruples of a careful analyst to go
away too far from classical mathematics” kept Riesz from a totally abstract formulation
of his theory, as it is now common (see [10], Chap. 8).

Fours years later, in 1922, the appearance of Banach’s thesis marked the beginning of
a systematic theory of normed spaces. It is interesting that short before, papers by Helly
and by Hahn also contained the axioms of normed space, and in 1922, N. Wiener published
another independent paper in which he also stated equivalent axioms and advocated the
use of complex scalars, which Banach had not used, for unknown reasons. It took Banach,
Hahn, Steinhaus and others only ten years to fully develop the “elementary” theory of
normed and Fréchet spaces, as it appeared in 1932 in Banach’s classic [1], a book of great

influence on the further development of functional analysis.

2. HB Spaces in the Theory of Operators of Bergman Type

HB(Q) denotes the Banach space of holomorphic and bounded functions on a domain
Q C C", taken with the maximum norm. We need the case n = 2 and choose =
Q, x Qs C C?, where

Y ={z] lz| <p}, Q={2"||2"]| <p},
where p > 0 is fixed. We shall be concerned with partial differential equations of the form

(2.1) Lu=uzse +b(z,2")use +¢(2,2%)u=0, (z2z*)€e.
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Here, u, has been eliminated in the usual fashion, without restricting generality.
We now take X = HB(Q,r) and Y = HB(Q2r); here,

1
(22) Qp={z |zl <R R=3(p-n), 0<n<?h),

the norm being defined by

(23) I/l = ma 15
and
(2.4) Qr =R X Q,r, $b2,r={z"||2*| <R, R asabove},

the norm being defined by

2.5 = ol
(2.5) lulle = max fu(z,z")

Our “retreat” from Q to Qr C Q, necessitated by the convergence of the Bergman series
for the kernel of the operator to be defined, is notationally slightly more practical than
assuming holomorphy of b and c on, say, |z| < 3p, |z*| < 3p, to avoid it.

We then define a linear operator T: X —» Y, f—u=Tf by

1
(2.6) u(z,2*) =Tf(z,2%) = /_1 k(z,z*,t)f (%(1 - t2)) (1—+#%)"% dt,

integrating from —1 to 1 along a C*-arc C'in D = {t| |t| < 1} C C.

Condition (A). The kernel is a holomorphic solution of

(2.7) (1 =tk,er —t ke +22tLk =0

on 2 x D such that (1 —t?)k,» — 0 as t — +1 uniformly in a neighborhood N of 0 € Q
and if C passes through the origin, then k.. /2t is continuous in N x D.

Condition (B). b, c € C¥(R).

Theorem 2.1. (A), (B) imply Lu = LTf = 0 on Q. ([3], 10)

T is then called a Bergman operator for (2.1) on . It is called of first kind and
denoted by Ty if its kernel satisfies

Condition (C). k|,=o =k

z2*=0 = 1.
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This condition holds if
s <]
(28) k(z,2%8) =14 ) ga(2,2%)2"", ga(2,0) = 0.
n=0

Lemma 2.2. (A), (B) imply absolute and uniform convergence of (2.8) on %Q x D. ([9],
21).

In addition to T} we can also consider T} . X — Y, g — u = Tig, defined by
Tlg(f) =Tif, where

(29) 9(2) = /_llf(g(l —t2)) (1-¢%)"% dt,

the contribution of the term 1 in (2.8) to (2.6).
Lemma 2.3. The Maclaurin series of f(12) and g(z) have the same radius of convergence.

PROOF. This follows from

> > 1 1 1
f(z) = nz:oa,,z", g(z) = gbnz", bo =B (E,n + 5) an.

Theorem 2.4. If b, ¢ € HB(R) in (2.1), then the Bergman operator of the first kind,
Ty: HB(Q4.r) — HB(QRr), g—u="Tyg

is bounded.

PROOF. v in (2.6) with T = T} satisfying (A) and (C) can be represented (see (4b) 1
3], 15)

(2.10) u(z,2*) = T‘;g(z,z*)
_ = Q"(z,z*) i e
=g(2) + '; m/o (z =" 1g(¢) d¢,
where
1) QWG = [ PG d
0

If (z,2*) € QR, then

o) < llgllr,  1Q™(z,2)] < Q™.
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Hence at any (z, z*) where the series (2.10) converges,

z

o (n)
e S ol + Y- gy i | [ - om0 &

22nB(n,n +1)

Clearly, the integral does not exceed R"||g||r/n in absolute value. By the definition of
dominants (see (14) in (3], 14),

n+1 -
(2.12) 1Pz, 2% < AR ,
(1—1;4) pn=11-3..-(2n - 1)
where .
e
r(A
= H A+5)= Tt DA+ 4~ sRp(1 4 ),

T(A+1)

p is fixed and 41\ is an upper bound for |b(z, z*)| and |c(z, 2*)| in Qg, resulting from

.
b(z,z*)| < (1_%[)‘(1_1%1) < 4K when |z}, |z |gR<-§

and similarly for ¢(z,z*). Now if |z] < R < p/2, then (1 — |z|/p)™™ < 2", so that from

(2.11) and (2.12),
22A LK
pn=21.3---(2n - 1)

Together, with 1-3---(2n — 1) B(n,n + 1) = (n — 1)!/2" we thus obtain

1™l <

ca=An R\
(2.13) lulln < lglla |1+ K6* 3 T8 (7
n=2

The series on the right converges by the ratio test. Denoting its sum by M and taking the

supremum over all g of norm one, we have
(2.14) Tyl <1+ Kp*M

and the theorem is proved.
In applications, a more explicit form of (2.14) is often practical:
Lemma 2.5. For the operator in Theorem 2.4,

. - 12 2 R
(2.14%) ITilla <1+ 557K (A+1) sR(A+LLLS), §= 5o
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PROOF. Using the previous notations, we have from (2.11) and (2.12),

ITille < 1+EKp*(A+1H(S),

where
o
An on
HS)=)" s
n=2
with
. . n—1
Ay=1, A.=JJ(A+)), n=34,...
i=2
so that

[H($)] € 55 2Fi(4+1,1,1,5)
and the result follows.
As a basic application of Theorem 2.4 we note

Theorem 2.6. Let G be a total subset of associated ¢ € HB(Q,r). Then for a given
equation (2.1) the set Ti(G) is total in the set of solutions S C HB (Qg) of (2.1).

The proof is standard. Note that S < 1 by (2.2), whereas for S = 1 the hypergeometric
series diverges because a + 8 —y = A+ 1 > 1 (see (7], I, 57).

3. Hardy Spaces in the Theory of Operators of Bergman Type

In this section we choose X = HP(Q;), 1 < p < 0o, the Banach space of holomorphic

functions on ©; such that

(31) A oy do)”p (= = re®)

is bounded as r — p, with norm defined by
Ifllp = sup My(r, £), T =(0,p)-

We further choose Y = HP(f2), 1 < p < 00, the Banach space of holomorphic functions on
Q = Q; x Q2 such that

~ 1 27 2 . ) 1/p
(32) MR = (7 [ [ lutreracp a s
0 0
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is bounded as R = (v, r2) — (p,p), z = r1€%1, 2* =ryei®2, with
lullp = sup My(R,u), K =1Jx1J.
ReEK
We then introduce Ty : X — Y, g — Tig = u, as defined by (2.6), (2.9), but now

considered on the new space X into Y; for simplicity we use the same notation for the
operator.

Theorem 3.1. Conditions (A)-(C) in Sec. 2 imply that Ty is bounded.

PROOF. We use Bergman'’s standard notation from (3] and ideas from [13]. From (2.6)
and (2.8) we have u = g + F, where

F(z,2") = 3 27" [B(n,n + 1)] a2, %) / (2= 9)"gls) ds.

n=1

From this, the Minkowski inequality and 6;-integration in the g-term,

[[ull, £ sup Iy + sup Iy,
reJ REK

1 [ ) 1/p
I = (2—”/(; lg(rie'®)|P d01) )

1 2n 2n . . 1/p
I, = (m/; /(; |F(Tle'oly"25'oz)|p a6, de?) .

From |z — s| < p and Lemma 2.2,
/ g(s) ds
)

P 1/p
del)

where

|F(z,2*)| < A

with a suitable constant A. By 6;-integration,

27 z
Izs(i/ a| [ o) ds
27 Jo o

By Zygmund’s formula (9.12) in [14], 19,

|z| 1 2w 1/p
ns [ (5 [ A an) i< vl
0 T Jo

Now sup I; = ||g||p, so that the completion of the proof, with a remarkably simple constant,

is seen from
flully < (1 + 2A) ligllp.
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As an important consequence of this theorem, we show next that the space of solutions

of (2.1) generated by T} is complete.
Theorem 3.2. Y; = TI(HP(QI)) CY = HP(Q), 1 < p < oo, fixed, is a Banach space.

PROOF. Since Y is a Banach space, it suffices to show that Y} is closed in Y, which follows

by familiar arguments if one observes that u(z,0) = g(z).

We claim that ¥; can be made into a Banach algebra by defining

uy *ug = Ti(g1 * g2),

0o n
C 2
(33) (1 xg2)(2) =) n—';Z", ey aMe? .,
n=0 m=0
% (j)
gn 3 .
gi(z) = e CI 1,2.
n=0

Theorem 3.3. Let u; = Tyg; € H?(Q), 1 < p < 00, j = 1,2, be solutions of (2.1)
satisfying (B). Then u = u; * us € HP(Q) and these solutions form a Banach algebra )
with multiplication ~, the identity being 1.

PROOF. u; € H?(§) implies that sup M,(R,u;) < co. Hence, letting r; = 0, integrating

ReEK
over 8, and using u;(z,0) = g;(z), we get g; € HP(Q;). Now (3.3) converges on {,

absolutely and uniformly on closed subsets of §;, because it is majorized by the Cauchy
product. By direct integration it follows that (3.3) is equivalent to

(34) (109 = 3 [ one = taate)

and Wigley [12] has shown that in this way one obtains a Banach algebra structure for
H?(£;), with g1 = 1 being the identity. Thus ¢; * g2 € HP(§;), and Theorem 3.1 implies
that

u=uy*uy = Ty(g1 * g2) € HP(Q).

Hence Y; in Theorem 3.2 is an algebra with multiplication defined by (3.3), and is a
Banach space by that theorem. To conclude that Y; is a Banach algebra, we map Y7 into
the Banach algebra B(Y7) of all bounded linear operators on Y;. Denote this mapping by
S and define it by u — Su = T},, where

Ti,v=uxv.

The mapping S is an isomorphism of Y] onto its range, the subalgebra S(Y;) of B(})).

From the closed graph theorem it follows that S is also a homeomorphism, as is proved in
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[5], 861. Hence the algebra 7 is algebraically and topologically equivalent to the Banach
algebra S(}7). This completes the proof.

Our results formulated for ¢, as a technical convenience, can readily by reformulated

in terms of f by using

Lemma 3.4. f € HP(Q,) implies g € H?(Q;) and

(3.5) loll, < 47l fll,  (p21).

PROOF. For z € Q; the inequality in the lemma in [6], 36, can be generalized to
FE< @) 7o =) 2Nfl, (r = 2]

By using this in My(r,g), integrating over 6, setting t = cosa and noting that

p— %r sin? o > %p we obtain the result.
We prove next a multiplication theorem for associated functions.

Theorem 3.5 If
(3.6) u;=Tg, € HX(Q), j=12,

with Q as before, then
u=u X up :=Ti(g192) € H' ().

PROOF. From (3.6) and the definition we have

2 2m
sup / / luj(z,2*)|* dby dfy < 00, 7 =1,2.
o Jo

0<ry,m2<p

Setting z* = 0, using u;(z,0) = g;(z) and integrating over 62, we obtain

2
sup / lg;(2)|* db: < oo.
0

o< <p

Hence g; € H%(f), j = 1,2. Now
20g1(2)g2(2)] < g1 (2)]* + lg2(2)%,

so that by integration over 61,

27
2/ lg1(r1® )ga(r1€9)] dBy < llgu 2 + [lg2Z < 0.
0
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Taking the sup on the left, we see that g;g. € H'(£1) and the assertion of the theorem

follows from Theorem 3.1.

4. Transition to Bergman Spaces

In conclusion we mention that the extension of the results in Sec. 3 to Bergman spaces
is immediate. It suffices to demonstrate this for the key theorem (Theorem 3.1).

By definition, a Bergman space B is the Banach space of all holomorphic L?-functions
(p > 1) on a domain  C C". Thus the theory of these spaces extends the L2?-theory of
holomorphic functions in a domain, as developed by Bergman in numerous papers and
summarized in his book [2].

In connection with Bergman operators we take = ; x 2 with €; and Q; as in
Sec. 3. Then the norm on BP(;) is defined by

P 1/p
(a1) lelly = [ [ mpiesom dr,] :
0

here, M, is given by (3.1) with 7 = r; and 6 = ;. Similarly, the norm on B?(2) is defined
by

P rp . 1/p
(4.2) llull, = [/ / MP(R,u)ry dry e d"z]
o Jo

with M), as in (3.2).

Space H?(2;) is a closed subspace of BP(2;) (see [8], 149), and this raises the question
of whether the Bergman operator of the first kind can be continuously extended from
H?(Q;) to BP(£;). The answer is in the affirmative, as the following theorem shows. (See
also Marzuq [11].)

Theorem 4.1. The Bergman operator Ty of the first kind, when regarded as an operator
on BP(§,) into BP(Q), that is,

T\ . B?(Q4) — B?(Q)
(4.3) 9(2) = u(z,2%) = Tig(z,2%)
is bounded. Here g is related to f in (2.6) as shown in (2.9).

PROOF. The proof is practically the same as that of Theorem 3.1. We first have

My(Ru)<L+1,
1 2 " 1/p 1 2r 0 1/p
. < | = t0y|p - i P
(14 < (5 [ st an) e pa (L [Tigmenr an)



Banach Spaces in Bergman Operator Theory 165

Hence

2n
MR < (14 pAP o= [ lgtrie® )P dor.
0

If we now integrate on both sides over r; and r; from 0 to p and raise the result to the

power 1/p, we obtain the assertion, namely
(4.5) lelle < (1 + pA)llgll,-
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ABSTRACT
In the present paper some characterization problems in Probability Theory are
discussed in the general framework of a real separable Hilbert space.

Let # be a real separable Hilbert space with inner product ) and norm || || Let

(Q,S,P) be a probability space and let B be the o-field generated by the class of all open
subsets of #{ Let X be a random variable taking values in #, thatis, X is a measurable
mapping of (Q,5) into (#,B). Let ux be the probability distribution of the random
variable X, thatis px is the probability measure on B induced by the measurable
mapping X such that the relation

ux(E) = Plw e Q: X(w) e E}

holds for all E € B. Then the characteristic functional ﬁx of the random variable X is
the complex valued function on H given by the formula

uxy = [ €Y duxt, ye o
H

A random variable X taking values in # is said to follow Gaussian law, if the
A
characteristic functional px can be represented in the form

A . 1
fx(y) = exp [1<xo,y) - §<Sy,y>] ,oyedH

167
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where xge # is a fixed element of # and S is an S-operator in # In this connection we

note that S-operator is a bounded linear positive Hermitian operator in # having a finite
trace.

A random variable X taking values in # with characteristic functional ﬁx is said
to be infinitely divisible, if for any positive integer n 2 1, there exists a characteristic

functional ﬁn such that the relation

x(y) = [n(y))

holds for all y € £ It is well known3 that a random variable X taking values in # is

infinitely divisible, if and only if its characteristic functional ﬁx can be represented in the
form

A 1
Ex(y) =exp|itxoy) -5 (Syy) + [ Kxy)doly)| — ye
H

Here xge H is a fixed element in % S is an S-operatorin # and v is a o-finite

measure on ‘B with finite mass outside every neighborhood of the origin 0 e # and
satisfying the relation

J "x"2 du(x) < ee.
{xe .'}{"x" <1)

Here the kermel K is given to the formula

i i<X, )
K(xy) = ely) _q. 1—+"§u§ , (x,ye H.

Moreover the element xge %, S-operator S and the measure v are determined
uniquely by ﬁx.

Apparently it seems that the paper of Eaton and Pathak! is the first result on the
characterization of an infinitely divisible law and Gaussian law in a real separable Hilbert
space. The results of Eaton and Pathak can be summarized as follows:

Let ﬁx be the characteristic functional of a random variable X taking values in a
real separable Hilbert space #. Suppose that ﬁx satisfies the functional equation
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n .
axy) = [T ix@y®,  ye s
j=1

where 0>0 and Bj is a bounded linear operator in # with a bounded inverse (1 <j<n)
and suppose that there exists a positive real number Ag>0 (0 < Ag < 1) such that || Bj| L)
for 1<j<n. Then the following assertions hold:
(i)  The characteristic functional ﬁx is infinitely divisible.
n
(i)  Moreover suppose that Y «;BjBj 21 where Bj is the adjoint of Bj and I is
=1

the identity operator in #{ Then ﬁx is the characteristic functional of a Gaussian law
(possibly degenerate) in H

n A

(iii) Suppose that E 0j<1. Then px is the characteristic functional of a

j=1
probability measure degenerate at the origin 0 e #

Then Rao* obtained the following result:

Let ¥ be a real Hilbert space provided with an inner product ( ) andlet f bea
continuous complex valued function defined on ¥ satisfying the functional equation
f(x +y) =f(x) + f(y) forall x,y € V such that (x,y) =0. Then f is a polynomial of degree
not greater than 2.

Recently the author of the present paper? obtained the following characterization of
a Gaussian law in a real separable Hilbert space:

Let X and Y be two independently (but not necessarily identically) distributed
random variables taking values in #{ Then the random variables X +Y and X-Y are
independently distributed if and only if each of X and Y follows Gaussian law with
identical S-operators.

The proof of this result depends on the solution of a functional equation in the
general framework of a real separable Hilbert space as follows:

Let X be a random variable taking values in 4 Then X follows Gaussian law if

A
and only if its characteristic functional px can be represented in the form

ﬁx(y) =explixoy)-0(y)], ye H

where xpe H is a fixed element in # and 6 is a continuous nonnegative function on #
satisfying the functional equation

0(x +y) + 8(x - y) = 2[0(x) + 6(y)]

forall x,ye
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Let f; and f2 be two continuous complex valued functions defined on # satisfying
the relation

f1(x +y) folx - y) = f1(x) £2(x) f1(y) f2(-y)
for all x,y € 4 Then
f1(y) = expli(x1,y) - 8(y)]: f2(y) = explixy) - ()]

for all y e H where x1,x2 € H are fixed elements in # and 6 is a continuous
nonnegative function on # satisfying the functional equation

8(x +y) +8(x - y) = 2[6(x) + 8(y)]

forall x,ye #
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1. Introduction

The present study is devoted meanly to the nonlinear differential equations

of Duffing type; see for instance [1], [2], [7]:

mi + cz + Kz + K'z® = fosinQt (1.1)

171
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with

fo= { fo " ® (1.2)

Tl mheQ? in®

corresponding to the mechanical models indicated in Fig. 1.

FosinQt m _]xz
iE
m

| F(x)

F(x) l Cx b=b, sin

77T T TIT 7] x=x,—b

Fig. 1. Nonlinear systems with different kind of excitation: in all cases it is F(z) = Kz+K'z3,
K'2o0.
<

Same recent results obtained by the author and co-workers, see [3-11], are
presented and discussed here. The general goal is the exact calculation of the
periodical harmonical (i.e., with the same circular frequency ) monoscillating
solutions, for arbitrary values of the parameters, in particular of the forcing
circular frequency Q. With the term “monoscillating” we indicate that the
periodical solution exhibits only one oscillation in a period. In particular the
response curves in amplitude and phase, as well as the wave forms, are to be
calculated. The technique consists of reducing the calculation of the solution
to a fixed-point problem in suitable Banach spaces and in solving that problem
with iterative procedure. A general numerical procedure is indicated for both
cases @ and @, without and with damping, some analytical properties are
demonstrated, in particular in the case @) without damping, i.e., with ¢ = 0;
and several numerical results are reported. for case @ . The application of
the procedure to similar nonlinear problems is also indicated at the end of the
present study.
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2. The Parametric Method of Solution

The steady state harmonic monoscillating solution of Eq. (1.1) is searched
in the parametric form, see [3]:

z=2z"sinTt z* >0
U=r+d+¢(r) 9€[0,n7) (2.1)
o(r) =7 _p(s)ds 1€y =[-7/2,7/2
C_ Qz- cosr, P 0%z i( cos T ) (2.2)
1+ (1) 1+ p(r)dr \ 1+ ¢(7)
with the additional conditions:
p(r+m) = p(7) { o(r) > 1, 23)
f—"er p(r)dr =0 ¢'(7) regular. :
Eq. (1.1) becomes:
Q% d ( cosT ) Q™ cosT
L+ o(r)dr \ 14 (1) 1+ (1)
+ Kyz*sinT + Kaz*?sin® 7 = fosin(7 + 9 + ¢(7)) (2.4)

Multiplying by (1+ (7)) and integrating with respect to 7 between —m/2 and
T we have:

2..= T
a7 cosT + / [cQz" cos s + (K1z" sins + K3z"3sin® 5)](1 + ¢(s))ds
1+ <)0(7-) -n/2

= fo[sin ¥ — cos(t + I + ¢(7))] (2.5)
Dividing by K,z* and setting:
£= /K,
n= 1&’313'3/1{1 (26)
v = c?/(4K,)

whence:

cQ/Kl = 2\/‘)’_E

fol (E1X*) =/ fo/n (2.7)
with: f, = feK3/ K3
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also taking into account the identity:

. 3 3sinT  sin3T
sin® T =

4 4

(2.8)

Eq. (2.5) becomes:

EcosT 3n T 1 /T .
- — - = 1 d
T+o(n + (l +3 ) '/_”/2 sins(1 + ¢(s))ds i e sin 3s(1 + ¢(s))ds

+ 2\/%(1 +sinT) = %[sin Y —cos(t+ 9+ ¢(7))] . (2.9)

As regards the constants (7, f;), see Eq. (2.6), it is clear that in the hardening
case K3 > 0 they are positive. At the contrary in the softening case K3 < 0
they are negative. Then in the softening case we will modify Eqgs. (2.6) and
(2.7) setting
_ —1{31)*2.
Ky

, K3

?0="0ﬁ

(2.10)

instead of the corresponding positions in Eqgs. (2.6) 2nd and (2.7) 3rd. There-
fore in the softening case all formulae must be modified setting:

{ -7 instead of
—f, instead of f,

Clearly, the ratio f,/7n remaius unchanged.

3. Reduction to a Fixed-Point Problem with
Additional Conditions

For 7 = /2, also taking into account Eq. (2.3) 2nd, Eq. (2.9) gives:

/2 /2 3

p(r)sinTdr — 2/ @(7)sin37dr = /L sin¥
4 —-r/2 n
(3.1)
which plays the role of a “regularization condition” Replacing in Eq. (2.9)

the value of /7€ obtained by Eq. (3.1), dividing same Eq. (2.9) by cos 7, also
taking into account the identity:

4/7€ + (1+374’7>/

-m/2

cos 3t
cos T

=2cos2r -1
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we obtain:

L— 5—” U 3_77 Ny _ 70
T+ o(7) (1+ 6)+6c052r+<1+ 4> —'ZV——\/;(COSﬂ"’J) (3.2)

where following operators have been introduced:

1 7 . l4sinrt [™/? )
Z(p,T) = osr [/_”/2 @(s)sin sds — —2—/_”/2 ©(s)sin sds]
1 7 . 1+sinr [™/? .
= _-renT 3sd
Vie,7) p [/_ﬂ/z ©(s)sin 3sds 5 /_n/z ®(s)sin 3s s]
1
J(p,7,9) = p— 7_[cos(r + 9+ ¢(7)) — cos(r + V)]
= Jocosd + Jysind
(3.3)
with
1
Jo(p, ) = J(p,7;0) = [cos(T + ¢(7)) — cos 7]
cos T
) (3.4)
Ji(e,7)=J(p,7;7/2) = ;;7—_[— sin(7 + ¢(7)) + sin 7]

Despite the divisor cos T the above operators Z,V,J are regular also for 7 =
+7/2. In fact applying the De I’'Hospital rule we obtain (see also Sec. 9):

Z(po0,T0) = —po

. To = x£7/2
V(po, 7o) = ®o with :{ 0 _ / . (3.5)
%o = (7o)
J (o, T0;9) = cos Vo

Furthermore, operators Z, V,J are omogencous in ¢, i.e.,
Z0,7y=V(0,7)=J(0,7;6) =0 (3.6)

Next step consist in multiplying Eq. (3.2) by (1 + ¢(7)) rearranging the con-
stants, 1.e.,:

3
n n n
- = - — - =V
13 a0+6c0527' aocp+(l+4>Z 1
3 1 f
+Qc052‘r<p+(1+—n)Z<p——V<p:— iQ(J+J<,o)
6 4 4 n (3.7)
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with

00:1+§g—”%cosﬂ (3.8)

then imposing the zero mean value condition for p(7), see Eq. (2.3) 2nd:

E—ap+ %((pcos2ﬂ+ (1+ 34_’7) (Z+ Zy)

_ z(m) = _\/f;o(J +Jp) (3.9)

where the bar 7 indicates in general the mean value:
_ 1 /2
7=1 / W(r)dr . (3.10)
T J-x/2

By subtraction of Eq. (3.9) from Eq. (3.7), also introducing the symbol of
“oscillating part” for a generical function ¥(7):

By =w(r)-F (3.11)

we obtain finally:

o(7) = T(p,7) (3.12)
with

T(p,T) = g2cos 27T + g2(pcos2t) + a1(Z + Zyp)
— a3(V + Vo) — as(Jo + Jop) — as(J1 + J19p)

(3.13)
where following new constants have been introduced:
3 —\/Fo/n
a :(1+71rL) a;;:—o/cosﬁ
1 ao ag
1+1 N
ay = ( 4) a4 = fo/n (3.14)
ag ag
1 =
92= - =\ fo/n
ap as = o/ sin 9
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To the integral equation (3.12) the regularization condition (3.1) and the zero
mean value condition (3.9) must be associated. Said equation can be written:

3 —_ e
44/~ + (1 + Tn) m(psinT) — gn(cpsin 3r) =2y/fo/nsin¥

1+5€"—£-%(m)— (1+%—?) (Z+Z¢)+%(V+V<p) (3.15)

= \[To/nlcos 9 + (T T9)]

It is easy to verify that in the absence of damping (v = 0) it is sufficient to
consider an even function ¢(7) and sinY = 0 (i.e., ¥ = 0 or ¥ = 7). In this way,
Eq. (3.15) 1st is automatically satisfied. The basic interval Iycan be reduced
to the half interval [0,7/2]. On the contrary, in presence of damping (y # 0),
function ¢(7) has both the even and odd parts, and constant ¥ assumes values
no more restricted to the values 0 and 7.

Thus the problem of calculating the exact solutions has been reduced to
the determination of the form function ¢(r) for 7 € Iy, and of the constants
(m, ¥) satisfying the three coupled Egs. (3.12) and (3.15). We have a fized point
problem, Eq. (3.12), with additional conditions, Eqs. (3.15).

4. The Case of Fixed Frame without Damping:
Analytical Study

Let us now consider the particular case @ of fixed frame, in absence of
damping, i.e., ¥ = 0, in which we have sind = 0, and ¢(7) is an even function
of T € I, as already said at the end of the previous section. In this case the

. . 0
constants ag,a;, as and ag, considered as functions of 7 for ¥ = <7r’ have the

behavior indicated in the Fig. 2.

It is important to point out that:
— for ¥ = 0 the constants a1, a2, a3 become infinite for ag = 0, i.e., for 5 = n,,
where 7, is the unique positive root of the cubic equation:

2
Na (1 + 5%) =¥ (condition ag = 0) (4.1)
— for ¥ = 7 the constants a;,as, a3 are positive and bounded.

Another important remark in the present case is that Eq. (3.12) is splitted,
for the cases cos ¥ = 1 and cos ¥ = —1, into two different equations, each of then
involving function ¢(r) and parameter 7 as unknown magnitudes. Similarly
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° 2 0 n
n3 1 2 3 a4 nal 2 3 4
-4
-2
-6 /\9=0
-3
-8
-10 -4
1.5 - 1.0 dy _
a, fo=1 fo=1
9 9=0
3
10 L
0.5 2
9=0
0.5
1
0.3 0.2
d=n
NI 2 3 4" °
-1
-0.5
/G—O
1 -05 -2
-1.0
-3
-15 -1.0 -4

Fig. 2. The constants ag,a1,a2, a3 given by Eqs. (3.8) ad (3.14), as functions of 7, for fy = 1,
and for ¥ = 0 and .
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the additional condition (3.15) 2nd (the lst one is automatically satisfied) is
splitted, for the cases cos? = 1 and cos¥ = —1, into two different conditions,
each of then giving the explicit value of £ as a function of 1 and of suitable
mean values of ¢(7). This particular situation suggests a different and more
simplified procedure for solving the general problem of calculating the solution
for all values of £ and 7, both € R,. Namely we can assign an arbitrary value
for n € R4 (both in the cases cosd = 1), then calculate the even function
(1) for 7 € Iy, only considering the fixed point problem (3.12), without
additional conditions because 7 becomes a given constant and finally calculate
parameter £, given by Eq. (3.15) 2nd. This way the complete relation between
parameters 7 and £ (with possible exclusion of exceptional intervals, as we will
discuss later) is obtained, that is the general amplitude response curve, giving
7 as a function of €.

This said, let us now study the fixed point problem (3.12) with assigned
n, and cos? = £1. For the purpose, we firstly carry out the decomposition
of operator T'(¢,7) in a linear and in a nonlinear part as follows. Firstly, we
observe that being sin 9 = 0 following identity yields:

cos(T + U + @) — cos(T + ) = cosV[cos T(cosd — 1) — sin T sin ¢]
(for sind = 0) (4.2)

Therefore from Eq. (3.3) 3rd, operator J can be written:

J(p,T)

I

cosY[(cos ¢ — 1) — tan 7 sin @]
cos I[—Q{c) + S(o)U(p,7) = U(p,7)] (4.3)

where new operators U(p, 7),Q(c) and S(o) have been introduced:
U(p,T) = tant¢(1) = tanr/ p(s)ds (4.4)
-m/2
o= ¢*(7)
oh

Qo) =1-cos¢ = hzzjl(—l)"'1 an

(4.5)

O'h

S(0) = 1=sing/6 = 3 -0 Gy

Taking into account Eq. (4.3), Eq. (3.13) can be written:

T(p,7) =g(r)+ L(p,7) + N(p, 7) (4.6)
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with
g(1) = g2 cos 27
L(p, 1) = ga(pcos27) + a1Z — a3V + a3zU (4.7)
N(p,7T) = a1Zp —a:Vp +azUp + az(1 + o)(Q — SU) .

The different operators are given by Egs. (3.3), (4.4), (4.5). Concluding, in
this case we have the fixed point problem:

o(r)=T(p,7), T=T-T (4.8)

with T'(¢, 7) given by Eq. (4.6), and where g, L, N are given by Egs. (4.7), also
depending on the assigned parameters J = <?r and 7 € Ry. The corresponding
value of £ is:

N 3 — — — — —
E=ap— g(<p00321') - (1 + Tn) 7z + %V + 1/ fo/na0U + agN (4.9)
which, in zero approximation, reduces to (see Eq. (3.8)):

§=1+5Fn—\/70/ncosz9 e(t)=0. (4.10)

5. A Simplified Model of the Problem

The study of the above fixed point problem is somewhat difficult. In a
preliminary paper [6] we considered following simplified nonlinear model of
operator T'(p, 7) instead of (4.6):

Tm(p,7) = g(7) + M(p,7) (5.1)
with
a(l+ Ap(r) [7

COST -n/2

M(p,7) = Ag(T)p(T) + sin sp(s)ds (5.2)
where a and ) are given constants. Operator M only involves operator Z(y, 7)
from operators contained in T(p, 7). In fact we must take into account that
being ¢(7) an even function of 7, from Eq. (3.3) 1st we have:

Z(p,T) = /T ) sin se(s)ds (if o(7) is even) . (5.3)

-T

CosST
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The fixed point Eq. (4.8) is then replaced by:
o(r)y =g(r)+ M(p,7), M=M-M. (5.4)

This is a nonlinear integral equation also containing the mean value M, having
the singular nucleus sin s/ cos 7, infinite for 7 = +7/2. In the problem arising
from the Duffing Equation (1.1) function g(7) has the value given by Eq. (4.7),
and unknown function ¢(7) must be even. We consider the more general
situation where ¢g(7) is given by the Fourier expansion:

[ e]
g(r) = Z gon cos 2nT (g92n given constants), (5.5)
n=1

and we assume for (7) a similar expansion:

[e o]

p(r) = z ban cos 2nt  (by, unknown constants). (5.6)

n=1

Firstly we must state the functional class for g(7) and ¢(7). Following norms
have been tested:

llella = Z |b2n |

= : (5.7)
llella = nlbanl

n=1

i.e., the norm of the total convergence of ¢(7) and ¢'(7) respectively, besides
to the norm:

llelle = maxie(r)] - (5.7

It results clearly:
llelle < llella < llella (5.7
We call S, and S the Banach spaces of functions ¢(7) with Fourier expansion
(5.6) and with the norm || |lo and || [la respectively. We can demonstrate

that:

Preliminary Lemma. If o(7) € S,, or Sy, then also Z~'(<p,7') € S,, or Sy
respectively. In fact we have:

1 7S
Z(p,T) = / Z ban cos 2nssin sds

cosT J_n/2 i)

(5.8)

> b 1 cos(2n— 1)1 1 cos(2n+ )7
24: nlon—1 cos T 2n +1 coS T
n=
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where the term by term integration is correct in force of the considered norms
for ¢(7). Now we introduce the trigonometric polynomials

cos(2n+ 1)1 —

Con(T) = — Con+Con(t)  (n=0,1,2,...) (5.9)
with "
Con = (=1)%  Can(r) =2 (=1)"**cos2kr (5.9)
k=1

1.e., in explicit form:
n=0 Cy(r)=1
n=1 Cy(r)=—1+2cos2r
=2 C4(1t)=1—2cos2r + 2cos4r (5.9")
=3 Cg(r)=—-1+2cos2T —2cos47 + 2cos 6T

for which it results:

|C2n| = 1; ||C'2n||a = 2n; ”é2n”d = QZk =n(n+1). (5.10)
k=1

Operator Z(y, T) can be written as follows:

1 = C2n—2(T) CZn(‘r) - 5
z == _ -
(e7) 2;bzn[ noall) 0O _7 4 20, 6D
with:
= _1lg Can-2
Z(“”T)‘2Z=: (2n—1 2n+1>
s -1 1" o, (=1)"2n
—§Z=: [ 2m—1 2n+1] _;b2n4n2_1 ) (512)
1 had Czn 2(T) an(T)
27 5; [ n—1 2n+1

1 n
— ntk-1 _ +k
E bZn[ — g ( 1) cos 2kt m—) ’;:1(——1)" cos 2k].

(5.13)
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It results: o
2153 () ol <
I )
2153 () el < el
since:
max _In max ——— = 2
neNy4n2 —1  neNy4n2 -1 3
Furthermore assuming the norm || - ||, we have:
. 1
120 < 5 3 ool {57 1Gomlle + ol
1 & 2(n — ) 2n
= ~ b .
3 2 bl { =1 ot

On account that it is

2(n—1 2
(n )+ n :2<1_42—n)<2 ¥n € Ny,

2n—-1  2n+1 n? -1
we obtain:
. [e o]
1Zlla <Y lb2nl = lI¢lla
n=1
In a similar way, assuming the norm || - |4 we have:
1 - n+1
¥4 =) |b
1 S (32 555)
1 1 1
= 3 3l (1- 2—_1> < 2llelle.

on account of same inequality (5.16), and therefore

= 1
120 < 5liela

183

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Egs. (5.13), (5.17), and (5.18) show that if ¢(r) has the Fourier expansion
(5.6) and the bounded norm ||p|la or ||¢||a, then also Z(p,7) has a similar
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Fourier expansion, and a bounded norm ||Z~'||,1 or ||Z||d regpectively. That is,
if (1) € S,, then Z(p,7) € S,; and if (1) € Sg4, then Z(p,7) € Sg. Then
the Lemma is true. On account of this preliminary Lemma , and other similar
properties, it is demonstrate in [6] that if g(7) € S,, with a bounded norm
ll9lla, and if the norm of the functions:

o(r) = Z: ban cos 2nT; e (1) = Z b3, cos 2nT (5.19)
n=1 n=1

have both the same upper bound ¢:

llella <6 lle™lla <6, (5.20)

then in suitable conditions for a, ),||g|la, (which are specified in the paper)
there exists a constant K < 1 such that:

1T (e7) = T (2", Dlla < Kllp = #°lla (5.21)

In force of the basic fixed point theorems, see for instance [12] and [13], this
means that in the above conditions for parameters a, A, ||g||ls, the integral
equation:

o(r) =Tm(p,7),  Tm=Tm—=Tm, (5.22)

with 7T}, given by Egs. (5.1), (5.2), has one and only one solution, which can
be calculated by the convergent iterative procedure:

P0(r) = Tu(e™,7); W =g (5.23)

It must be remarked that the obtained conditions for a, A, [|g{[a (not specified
here for brevity sake) for the existence and unicity of the solution basically
depend on the considered Banach space, i.e., on the assumed norm. If we
assume the norm || -||4 instead of the norm || - ||a the equality (5.17) is replaced
by the similar inequality (5.18), with a coefficient % instead of 1, hence more
useful. On the other hand, the regularity of ¢’(7) too, beside to the regularity
of ¢(7), is required for having regularity also in £(7), beside z(7) as pointed
out after Egs. (2.3). Thus, for a correct application to our physical problem, we
are forced to assume the norm ||-||4, paying the price of much heavier analytical
developments for demonstrating the existence and unicity of the solution.

6. The Linearized Exact Problem

Taking into account the conclusions of the previous section we will study the

exact fixed point problem (4.8), in the Banach space Sg with given ¥ = <?r
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and given n € Ry. In a first step, we will develop in this section, we only
consider the linear part of operator T(p, 7). In a second step, we will develop
in Sec. 7, we will consider the complete operator T(p, 7).

Thus, we consider now the fixed point problem:

{SO(T)=T1(<P,T), Ti=T-T,

Ti(p,7) = o(r) + Lig, 7) (6-1)

where the linear operator L is given by Eq. (4.7) 2nd, and where we assumed
the expansion (5.5) for the given function g(7). In order to state an existence-
unicity theorem, suitable inequalities for operator Z,V,U are to be taken into
account. As regards operator Z(yp, ) we recall inequalities (5.14) and (5.18)
demonstrated in Sec. 5. Similar inequalities can be obtained for V (g, 7) and
U(p, T), so that we have:

—_ 9 . 1

1Z] < gHsOHd; 1Zlla < Sllella

_ 3 . 3

VI < gliella; Vlla < s liella (6.2)

— 1 - 1
U1 < 5llellas UMla < 5llella

As regards the product (¢ cos27) contained in the first term of L(yp, 7), we
apply the Lemma 1, which will be reported in the following Sec. 7. Taking
into account that it is cos 27 = p = 0, we have:

|l cos 27]|a < || cos 27||d||lla = [|¢lla (6.2)
Setting
00
o = Z b, cos2nr (6.3)
n=1
and furthermore:
Zr =2Z(p", 1)
Vv =V(e", 1) TT =Ti(e", 1) (6.4)
U*=U(p". 1)

we have following consequences of inequalities (6.2) and (6.3):

— —* 2 - > > % 1 *
Z-Z1<3llp-» la; 112 =2Z"la < sl = #"la (6.5)
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0.83 f— :

L ;

[

K7}

Fig. 3. The coefficient K of the contraction, see Egs. (3.6), (3.7), (3.7’), related to the
linearized Eq. (6.1).

and so on for operator V and U. In force of these inequalities we obtain finally:
T = Tt lla < Kille — #*|la (6-6)

with: ] 3 1
K = |ga| + §|01| + g|az| + §|03| (6.7)

i.e., in force of Egs. (3.8) and (3.14):

148 o
_1_ 60V :
K = (6.7')
2 5 ?
1+_77_ 20 cosd
6 n

The behavior of K; as a function of n € R4, for the two values ¥ = 0 and
¥ = =, is show in Fig. 3 for f, = 1. We observe that:

- K exhibits an horizontal asymptote K = 0.83 for n — +oo.

- for ¥ = 0, K; exhibits a vertical asymptote for = 7,4, see Eq. (4.1), and
assumes the values 0.5 for n = 0. Furthermore K; is increasing in )0, 7,(
and decreasing in |7, 00[. Therefore, since K; is a continuous function of
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n for 1 # 74, there exist two values 1, and 5/ of n, the first one at the left
part of 74, the second one at the right part, where it is K; = 1. We call
I, = [7%,n!!] the interval, containing 7., where it is &; > 1. Therefore, it
results K; < 1for ne Ry /I,.

— for 9 = =, it results always K; < 1.

Thus the conclusion is that:

- in the case ¥ = 0, for n € R, /I,, being K; < 1, Eq. (6.1) has one and
only one solution, whereas for € I, we cannot affirm whether or not the
solution exists.

— in the case ¥ = =, for n € Ry, Eq. (6.1) has always one and only one
solution.

Therefore we have following:

1st Existence and unicity Theorem. If g(7) € Sy, and:

{T)EH’,Jr/I,1 for 9 =0

. 6.8
nE R4 fordv=m (68)

there exist one and only one solution ¢(7) € Sy of linearized problem (6.1).
This solution, when it exists as indicated above, is calculated with following
iterative procedure:

P () = Tyt ™, 1), p(7) = 9(r) (69)
and reduces to the identically null solution when g¢(7) vanishes, since it results
also: ol

glla
< . 1
lleella < - (6.10)

7. The Exact Nonlinear Problem

Let us now consider the exact nonlinear problem, we write again for
convenience:

{w(r) =T(p,7), T=T-T (7.1)

T(p,7)=Ti(p,T)+ N(p,7), Ti=g+1L

Operator T; and N are given by Egs. (6.1) 2nd and (4.7). We suppose again
that function g(7) is given by the Fourier expansion (5.5), with bounded norm
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llg|la, 1-e., g € Si. We assume again for ¢(7) the similar expansion (5.6), and
we consider again a second function ¢*(7) with the expansion (6.3). Setting

T" =T(p",7); T} =T(p",7); N” = N(¢",7) , (72)

we have: i
IT-T"a <NT =T lla +IN = N*|la - (7.3)

As regards the linear operator T; the inequality (6.6) has been already obtained
in Sec. 6.

As regards the nonlinear operator N new inequalities must be taken into ac-
count. We summarize the procedure followed in [8]. Firstly, following Lemmas
are demonstrated (for brevity sake, we do not report here the demonstrations,
given in [8]).

Lemma 1. Let us consider two functions x and ¥ e Sy

o0 [e9]
X = Z asy cos 2nT; ¥ = Z Con COS2NT . (7.4)
n=1 n=1
It results:
~ . 1<, ,
c¥lla < lIxllall¥lla = 5 D (0% = Dlaznllezn] , (7.5)
n=1
and more in particular: .
x¥lla < [IXNlall¥lla (7.6)

Lemma 2. Let us consider two functions x and ¥ with mean value different
from zero, such that:

X=X+%G  v=9+9, (1.7)
with X and 9 € Sy. It results:

lIx@lla < 1% 119lla + 191 1%lle + 1711 1$]a (7.8)

Lemma 3. Let us consider two functions x and ¥ of Lemma 2. It result:

Ix¥l < 1% 9]+ Ixlla 19 la - (7.9)
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Lemma 4. Let us consider two functions x, and v, € Sy:

[e e} o0
Xs = Z as,sin2n7, with Z nlagn| < 00
n=1

(7.10)
Vs

oo (e o]
E Consin22nr, with E njeon| < 00
n=1

n=1

to be associated to the functions x,% € Sa given by Egs. (7.4). It results:

Xos € S, and: [[xs%ulla < IIKllallPlla (7.11)

The second point is that in the present nonlinear problem, in order to apply
the basic fixed point theorem, see [12], we must also introduce the upper bound
for the norms ||¢||a and ||¢*||a, we call §:

llolla <85 lle*lla <6 . (7.12)

If these inequalities are satisfied, then we can demonstrate, see [8], that fol-
lowing inequalities hold:

o h
Q| < Q1(6 Z=: ( (162)
5 _25a ko (35)
1911 < @) = 53 7z ()
I@—Tl < Z‘S”‘P— ©*|laQs(8),  with:

Qs(6) = i (—{,‘,—), (iéz)h_l

, (7.13)

- ~ 1 . )
1Q - @lla < Séllp — ¢"llaQa(é),  with:

cao= £ (30)"
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,

<) 1 h
52
151 < 5:(6 hz=1( h+1 < )

131 < Sa(6) = gi (3 2)h
2Ty 2h+1

1 .
IS = 51 < Z6llp = ¢ llaSa(6),  with:

- N , (7.14)
18~ $lla < golle = o7 llaSa(8),  with:
o _a(h) _ (35\"
‘5“(6 Zl (2h + 1) <_ 2)
with:
2 h—-1 h-1 2 k 9 h—-1-k 2
q(h) = (g) h+kZ=0{(h—1—k)<§) +k(§> +§k(h—1—k)}.
(7.14)

In force of these four Lemmas, and of inequalities (7.13) and (7.14), we can
state the inequalities related to operator N given by Eq. (4.7) 3rd, Namely we
have:

IN-N*[la<a+p8 (7.15)
with:

a = la1| [|pZ = ¢*Z*||a + laz| ||¢V — ¢*V*||a

+as| lpU — ¢*U*|la (7.16)
B =lasl{|Q — Q@ lla + [l¢Q — ¥* Q"4
+||US = U*S*||a + |pUS — o U*S*||a} (7.17)

As regards the term a we start from the identity:
$Z — 9" Z" =p(Z-Z")+Z (¢~ ¢") (7.18)

and we obtain also, on account that p = g* = 0:

_ e~ 7 .
lpZ — p*Z*||a < 55llso —¢"|la (7.19)
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In the similar way:

[PV = @*V*lla < 6lle = ¢°la (7.20)
lleV =" V7lla < 28]l¢ — ¢*|la (7.21)
and therefore:
7 12
o < (Glaal+ iaal + las]) sl — ¢l (7.22)

As regards the term [ we start from the identities:

PQ—0*'Q" =p(Q - Q")+ Q* (¢ — ¢*)
US-U*S*=U(S-S8")+S"(U-U") (7.23)
QUS — o*U*S* = p(US — U*S*) + U*S* (¢ — ")

and we obtain also, on account that g = ¢* = 0:

/3<[ 548D ()] jas! llg - ¢"lla (7.24)
with:
D(6) = —_(QI;QZ) + Qs+ Qs+ (; +26> i;

Sy 1(1 1 3
+(1+36)5_22+Z(§+6>S3+§<1+§6)S“

Functions Q1 (8), @2(9), etc, are given by Eqgs. (7.13) and (7.14); function Q5(é)
has the value:

(7.25)

Qs(6) =;11- (1+ ) (zh(i)l)' <§52)H . (7.26)

For function D(§) different estimates can be obtained, as for instance:

. 11
) < mg Z ( ) T 6/2 with my = 5 (7.27)

In force of inequalities (6.6), (7.22) and (7.24) from Egs. (7.3) and (7.13), we
obtain finally: o
I = Tlla < Kllp - ¢"lla (7.28)
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0 5 NS

Fig. 4. Qualitative behavior of function G() given by Eq. (7.33).

with
K = K; + 6H + 62|a3|D(5) (7.29)
where K; is given by Eq. (6.7) or (6.7), D(6) by Eq. (7.25) and H by:

7 12
H = §|a1| + ?|a2| + %|a3| (7.30)

The basic difference from the present exact, nonlinear problem, and the lin-
earized one, studied in the previous Sec. 6, is that now the contraction coef-
ficient K also depends on the upper bound é for ¢ and ¢*, see inequalities
(7.12). In force of the fixed point theorem, see [12], we know that setting:

y = |lglla (7.31)

if the system formed by Egs. (7.29) and:
y=61-K), (7.32)
in the unknown constants (6, K') has real solutions with X < 1, then there
exists one and only one solution of Eq. (7.1). Thus we must show that for
y > 0 and 6 > 0, from which it results automatically K < 1, the above system

has a real solution in §. For the purpose we eliminate K from Egs. (7.29) and
(7.32), and we obtain:

y=6(1 — K;)—62F(8) = G(6) , (7.33)

with:
F(6) = H + |ag|6D(é) . (7.34)
The right side part of Eq. (7.33) is an analytical function G of § equal to zero

for 6 = 0, with positive slope for § = 0 if K; < 1, with the concavity always
towards the down side, and going to —oo for § — +o0, as shown in Fig. 4.
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Thus this function has positive maximum for a certain value &y of 6. In
order that Eq. (7.33) has real solutions in §, it is then necessary and sufficient
that 1t be:

Y < Ymax, with Ymax = 6rr€1%x[6(1 — K;) — §2F(8)] . (7.35)
+
There we have following;:

2nd Existence and unicity Theorem. If g(7) € S with norm y = ||g||4
satisfying to the condition (7.35), and if the conditions (6.8) are satisfied in
force of which i1t 1s K; < 1, then there exists, both for ¥ = 0 and ¥ = =, one
and only one solution ¢(71) € Sg of the exact problem (7.1). This solution,
when i1t exists as indicated above, is calculated according following iterative
procedure:

#m(r) = T(p™, 1), D7) = 9(7) (7.36)
and reduce to the identically null solution when g(7) vanishes, since it results
also: ll

glld
< e 7.37
lelle < 72 (737)

8. Some Comments on the Obtained Results

As regards to the results obtained in the previous section, we remark:

1. The conditions (6.8) in force of which it results K; < 1 are basic both in
the linearized and in the cxact nonlinear problem. The basic point is that
according to the procedure here developed the interval I, = [n},7}] for 7
must be excluded in the case ¥ = 0. The ground of this exclusion is in the
fact, pointed out in Sec. 4 , that for ¥ = 0, the constant ap vanishes for
n = 74, see Eq. (4.1), and therefore constants ai,as, g2, as, a4, as become
infinite for that value of . We express here the conjecture that such an
exclusion for ¥ = 0 is not due to the present procedure, but is peculiar
of the problem; that is for some values of 7 near to 7, the harmonical
monoscillating solution does not exist. For these values of n maybe sub-
harmonical or chaotical solutions will arise.

2. The norm y = ||g||ls reduces to y = |g2| in the specific case of Duffing
Equation. In this case the condition (7.35) for |g2]| is very severe. In fact
some calculations here not reported, show that, in force of this condition,
other intervals from 7 should be excluded both for 4 = 0 and 9 = =,
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in addition to the interval I, for ¥ = 0, see remark 1. But this second
kind of exclusion can be eliminated if we start from a first approximation
¢ (1) € S4 better than g(7). Infact, if we know a good approximated
solution ¢(1)(7) € Sy, better than g(7), setting:

(=g .
RO(r) = T(pM, 1) — (1)
and eliminating ¢(7) from Eq. (7.1) we have:
e(r) = RO(r) + E(e, 7) , (8:2)
with
E(e,7) =T(pV +¢,7) = T(M, 1) (8.3)

It results from Egs. (8.1) that ¢ and R() € Sq.
Introducing, as usually, a new function £* € Sy, setting:

E* = E(¢*,7), (8.4)

and supposing:
llella <8, lle™lla <6, (85)

in force of inequality (7.28) with ¢ = oM 4 ¢, and p* = 1) 4 ¢*, we have
IE - E*lla = [IT(¢™)) +€,7) = TV + ela < Klle —"lla - (86)

We can apply the same conclusions of 2nd Theorem and affirm that
Eq. (7.28) has one and only oae solution if in addition to the conditions
(6.8) in force which it is K; < 1, it results also:

IRD|la < ymax (8.7)

At the light of Eq. (8.1) 2nd, this inequality indicates that the 1st approxi-
mation solution ¢(!)(7) must be sufficiently good, in the exact signification
expressed by the inequality itself. If we know such a good first approxima-
tion, the difficulty discussed in this 2nd remark is removed.

Another possibility for removing the said difficulty is to in adopt better
techniques for ameliorating the extimates we have obtained here. In our
opinion, this is not a easy job.

3. We remember that, as pointed out in [5], we have following exact results,
in the corresponding limit cases:
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A. For Q — 0, and therefore £ — 0. Function ¢(7) has the value:

1+ 3psin® 7
pa(r) = i -1 (88)
\[1 + 279(1 4 sin? ) 4+ 72(1 4 sin? 7 + sin? )
where 7 = 14 is the positive solution of the cubic equation:
na(l+14)* = fo (8.9)

B. For Q — 00, 2" — oo and therefore { — co, n — oo. The amplitude
response curve has two branches approaching from opposite sides to the
following oblique asymptote, independent on f:

§ =rpn+sg, with rg = 0.71783; sp = 1.04576 . (8.10)
Function ¢(7) has the value:

27’3
T)=4/—————1. 8.11
#5(7) 1+sin’7 ( )
It is interesting to compare this exact value of said asymptote with
the value corresponding to the zero approximation ¢(t) = 0 given by
Eq. (4.10), ie,,

E=1+ gn (8.12)

C. For Q@ — oo, = — 0, and therefore £ — 00, n — 0. The amplitude
response curve approaches the £-axis as follows;

i
and function ¢(7) has following limit value:
1 n%
o) = - cos 2T (8.14)
3 —
fo

9. Numerical Treatment of the Problem

The problem studied in Sec. 7, Egs. (7.1) can be subjected to numerical
treatment. The basic point is the numerical calculation of operators Z,V, U,
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contained in T'(p,7), which are given explicitly by Egs. (3.3) and (4.4), con-
taining cos 7 as a divisor.

These operators have following basic properties. They are regular inside
the interval Iy, see Eq. (2.1), but in the extremes 7 = =+ /2 they have an
indetermination form 0/0. They can be obtained by the general operator
W (v, 1), for particular values of v(7):

1 T 1 1I'/2
— - = i ds| . 9.1
W(v, 1) Py [/_”/2 v(s)ds 2(1 +sin ) V/_”/2 v(s) s] (9.1)
Despite the divisor cos 7, operator W (v, 1) is regular or 7 € Io. In fact by the
De-I’hospital rule we obtain:

W (v, 1) = Fu(m), o = xm/2 (9.2)

In addition we have:
w(,7)=0 Vrel. (9.3)

It is then clear that the numerical calculation of operators Z,V, U, is reduced
to the calculation of operator W for different values of v(7).

The calculation of operators Q(o) and S(o), also contained in T'(¢, 7), given
by Egs. (4.5), do not present particular difficulty. For the numerical calculation
of operator W (v, 7) see Eq. (9.1), the basic interval Iy = [-7/2, 7/2] is divided
in three intervals:

L=[-7/2,n];, L=[n,mn); Iz=[n1/2] (9.4)
~T2 T 0 T, /) T

where 7; and 7, are of the order of 10~ 17/2.

In I, no singularities take place, therefore standard quadrature formulae
are used. In I; and I3 an indetermination form 0/0 takes place at one end of
each interval. We are led to calculate integrals like:

=1 /0 i@z, yeo ) (9.5)

The numerical calculation is carried out introducing suitable interpolating poly-
nomials which assume the same values of f(z) in points z;:

z; = ih; i=0,1,2,...,n; h=y/n (9.6)
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We use Lagrange polynomials of the 4th order, see for instance [14] Chap. 2
and [15]. Carrying out the integration we obtain:

I(y) = Ii(y) + Ea(y) , (9.7)
with:
4 s\
1 =+ o (L) (9.8)
k=1 u
Coefflicients C‘(;k) are linear combinations of f; = f(z;), i =0,... ,4:

C5M = (~25f0 + 4811 — 36f2+ 16f5 — 3£4)/6

C® = (70fo — 20811 + 228> — 112f3 + 22£4)/9
C® = (=20fo + 72f1 — 96f2 + 56f3 — 12£4)/3
O = (32f0 — 12811 + 192/, — 128f3 + 32£4)/15 .

(9.9)

The error E is neglected in the calculations.

10. Numerical Results for Case @ , without Damping

As already pointed out in Sec. 4, the forcing frequency Q is contained only in
parameter £ = Q2/K,, and coefficients ao, a1, az, g2, a3, as, as are independent
on €.

Following procedure has been used for calculating the solution, for any
prescribed value of 70:

— assigning an arbitrary value to n € R4
— assigning to U alternative values:

9=0 or d= (10.1)

calculating parameters ao, a1, a2, 92, a3, a4, as.
calculating the sequences ¢™(7) by the iterative procedure (7.36) till a
sufficiently good convergence is obtained. Finally the value of { is given by
Eq. (4.9).
Figure 5 shows the amplitude response curve (£, 7), in the hardening case,
for fo = 1.

Figure 6 shows the same response curve (£,7), in the softening case, for
fo = 1, with the specifications given at the end of Sec. 2.

The exact amplitude response curves (£,7) are compared with the zero-
approximation ones given by Eq. (4.10) with ¥ = 0 or 7. Some particular
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HAROENING CASE

Exact solution
—— — = Zero approximation

Fig. 5. Case ® :fixed frame. Amplitude response curve for Fo = 1. Hardening case.

SOFTENING CASE

Exact solutlon
----- Zero approximation

Fig. 6. As the Fig. 5. Softening case.
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points of these response curves have been investigated more in detail till the
calculation of the displacement z(t) and of the velocity #(t), see Figs, for them
also the value of the circular frequency Q, see Eq. (2.6) 1st, and the value of
the amplitude z* given by Eq. (8) 2nd must be calculated, i.e.,

Q=K = ,/I}}" . (10.2)
13

In the numerical calculation reported here, we have assumed:

K, =1, K3z =10 (10.3)

The numerical values of the constants are reported in the Table.

Table
Numerical values of the constants in the tested points
Hardening Softening
fo=1 ¢=0 ho=1 ¢=0
Ki=1 fo=1/V10 Ki=1 ho=1//10
K3 =10 K3 =10

Case @ : fixed frame

Hardening Softening

tested 1 2 3 4 5 6 7 remarks

points

13 0.6273 2.7511 3.3420 4.4130 |15.0152 2.0260 | 0.1905 |calculated

n 1.0 1.0 4.0 4.0 20.0 0.5 1.7 .
given
x" 0.3162 0.3162 0.6324 0.6324 1.4142 0.2236 0.4123
9 0 ™ 0 ™ 0 m T given

As regards the Figs. 5 and 6 following remarks can be made. The con-
tinue line connects several tested points, for which the present procedure is
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convergent. The curve is broken where our tests do not gave convergence. It
can be inferred that in these cases the solution does not exist. In the harden-
ing case (K3 > 0) Fig. 5 we have solutions both for ¥ = 0 and ¥ = =, with
some exclusions only for ¥ = 0, in agreement with the discussion of point 1),
of Sec. 8. In the softening case (K3 < 0), Fig. 6, the present procedure is
convergent, except for values of £ near zero, but the corresponding calculated
values of ¢ are negative in the majority of the cases. From a mathematical
point of view the present procedure for solving the softening case is the same
as for the hardening one. On the contrary, from a physical point of view, the
conclusion is that in the softening case the solution exists only for ¥ = , for
almost every value of £ (or Q2); the amplitude 7 (or z*) of the oscillation has
an upper bound, not too large.

11. Further Developments; Concluding Remarks

The analytical and numerical procedure here developed for the Duffing
Equation (1.1), in the case @ with fixed frame, can be applied also to similar
nonlinear problems. Firstly we recall the application to another problem, with
hysteresis see [17] and [18], for which following mathematical model is assumed:

i+ Kz 4+ sgn zb(z*? — 2%) = sosin (11.1)

where parameters (K, sg,2) are known constants, and z™ is the unknown am-
plitude of the forced vibration. Parameter b can be either independent, or
dependent on z*. Secondarily we recall the application to problems with two
degrees of freedom, as the system, studied in [16]:

i+ Kiz+ K23 +a1y=0
{ 1 3 1y (11.2)

y+hiy+bz=0

and other systems corresponding to different kinds of dynamical absorbers, see
(19], as for instance:

F(z)+cz K,

z+ + —(z+y) = FosinQt
meq my
. . (11.3)
i — % =0, F(z)=Kz+K'z®.
2

Of course the study of such systems with two degrees of freedom, till the exact
calculation of the steady state solutions, is a more complicated job, not yet
carried out by us till today. At the contrary, further numerical calculations are
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0 @) ©) @

SN P oA N
X &%"1 q"? %‘x %
1\ x i\ A x
. N N

Fig. 7. Case @ : fixed frame. Some exact results for the form-function ¢(7) and its integral
#(7), and for z(t) and z(t) against Qt. Point @, @, ®, @, of the Fig. 5.

- EE v H . - 3
x T :
[oll i
-8 ! 3
-~y I -ah L - $ .
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AN
" l
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Fig. 8. As the Fig. 7. Point ® of the Fig. 5 and points ® and @ of the Fig. 6.

now in working, see for instance [20] and [21], as regards the damping effects in
the Duffing Equation (1.1), both in the cases @) of fixed, and @) of oscillating
frame, and both in the hardening and in the softening cases.

We conclude with following remark. The procedure here indicated, accord-
ing to which the calculation of the steady state periodical solution is reduced
to the solution of a fixed-point problem in a suitable Banach space, can give
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question arises of what kind of solution takes place really. This very important
question, both from a mathematical and from a physical point of view, leads,

as

a rule, to the consideration of irregular, or chaotic solutions. This topic

however is far from the objects of the present paper.
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Method of potential functions is widely adopted in mathematical physics.
This method is based on the representing of solution of the system of the par-
tial differential equations being under investigation through one, or more than
one, auxiliary (potential) functions. These functions are a solution of some
other potential system of the differential equations which is simpler or more
convenient for research than the initial system. This method was used for the
first time by G. Airy (1] and J. C. Maxwell [2] while researching the system
of the main equations of elasticity theory. A classical example is: all compo-
nents of the tensor of tension in a plane elasticity theory, without taking into
account the mass forces, can be expressed through the second derivatives of
Airy’s function satisfying the biharmonic equation. In electrodynamics, for ex-
ample, while finding an electromagnetic field harmonically dependent on time
in homogeneous isotropic medium, all components of the field — (the solu-
tion of Maxwell’s system of equations) — are expressed through the potential
functions — the solutions of Helmholtz’s equation.

Potential systems, through the solutions of which the solutions of the ini-
tial system of the partial differential equations are being expressed, can be
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defined arbitrarily. In the present work a set of systems being potential for the
given system of the differential equations are being considered. Such approach
makes easier the selection of the most suitable in one or another sense potential
system.

Since it is convenient to consider many problems of the theory of the par-
tial differential equations using the theory of pseudodifferential operators all
reasonings are given for pseudodifferential operators everywhere where it is
possible. Besides, one can consider the vector-valued operators or distribu-
tions as usual operators or distributions but with the set of values in the
corresponding vector space. So the term ‘operator’ will be used both in the
case of the differential operators and in the case of pseudodifferential operator,
and the term ‘equation’ (both differential and pseudodifferential) will be used,
as usual, there where it would be possible to say ‘systems of equations’

1. Let @ C R". In those cases when it is beyond any doubt we shall
use common determination as for space of scalar functions so for the space of
vector-functions or functional matrices every component of which belongs to
the corresponding space of functions.

Let us consider the pseudodifferential operator

Su(e) = (21" [ stz ey = O
' | (1)
Py(z) = (2m)"" / Pz, €)3(E)e ) de

with the matrix symbols s(z,§), p(z,€) of dimensions ! x m, p x p from the
classes Sg"*(Q), Sg*(Q) correspondingly. We shall assume for simplicity that
all operators being considered in the work appear to be the proper operators.
We call operator P a potential for operator S if there exist operators
Re(z) = (2m)™ [ (2, €)p(e)e=Ode
' 4 (2)
Qute) = 20 [ ala,€)o(e)e = Odg

with the matrix symbols r(z,£), q(z,£) of dimensions m x p, | x p from the
classes S7"2(Q), Sg?(Q) correspondingly such that

SoR=QoP (3)

(in the sense that (So R)p(z) = (Qo P)p(z) Ve(z) € CP(Q)). Obviously,
the equality m; + mo = n; + ny must be fulfilled.
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Theorem 1.1. Let P be a potential operator for operator S. If ¢ is a solution
of the equation Pp = 0 then u = Ry being a solution of the equation Su = 0.

This Theorem follows directly from the above given definition.

If P 1s a potential operator for operator S then we say that the correspond-
ing operator S defines the representation of solutions of the equation Su = 0.
We shall say also that operator R defines a complete representation of solu-
tions of the equation Su = 0 (or simply: R is a complete representation) if the
formula u = Ry, where ¢ 1s a solution of the corresponding potential equation
Pu = 0, gives all solutions of the equation Su = 0. In this case we also call
the potential operator P a complete potential operator.

Theorem 1.2. Operator P will be a potential for operator S and operator R
defines the representation of solutions of the equation Su = 0 if and only if
when there ezists operator Q with a symbol q(z,€) such that

/ / s(z, E)r(y, &)V E-E) dydg

(4)
= [[a@ et ade vaeq veeQ

This statement follows from the fact that the symbol is uniquely defined
by the pseudodifferential operator. Besides, if two pseudodifferential operators
are equal then their symbols are equal also.

Later on we shall limit ourselves to the case when operators S and P appear
to be the operators of the 1st and 2nd orders correspondingly. Then the orders
of operators R and @ will also be uniquely defined: the 1st and the zero order
respectively.

Note that the equality (3) defines the right factorisation of operator R (to
within the multiplier @), i.e. the representation of operator of the 2nd order
Q o P in the form of a composition of two operators S and R of lower order. The
left factorisation RoS = Qo P means that the system of pseudodifferential
equations Su = 0 of the 1st order can be reduced by pseudodifferenting to a
system of pseudodifferential equations of the 2nd order.

Let us consider the particular case when S, R, P are differential operators
with symbols

s(2,6) = > Aa(2)e%, r(z,6)= Y ha(y)é}

lal<1 181<1

p(z,61) = Y ay(a)E]

bviL2

()
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Aq(z), hs(y), a,(z) being functional matrices of dimension [ x m, m X p and
px p correspondingly. In this case the operator Q of the zero order is equivalent
to the multiplication operator by matrix g(z) of dimension I x p.

Theorem 1.3. The system of partial differential equations Pp = 0 appears to
be a potential one for the system Su = 0 and u = Ry being a representation of
solutions of the system Su = 0 if and only if when there exists a matriz ¢(x)
such that the conditions

Shy = qaop, Shﬁ +Aph0 =gqag Vg, lﬂl =1

(6)
Aahp + Apha = qaayp Vo, lo|=1, VB, |f] =1

are fulfilled.

The proof consists of the following: it is necessary to substitute the symbols
(5) of the operators S, R, P into the condition (4). Then transform it by
replacing the integration variable n = £ — £; and applying the formulas (7 +

€)% = 1% +€2 for |a| = 1 and nohg(n) = (Dhp)(n).

2. Let us use {P}s to denote the set of all operators P being potential for
operator S. As it follows from the condition (3), every operator S has infinitely
many potential operators. In order to simplify the research of the set {P}s we
introduce the separation of its elements into classes.

We call operators Py, P, € {P}s Q-equivalent if there exists invertible
operators @1, Q> such that Q; P, = Q2P;. Let us denote by Q{P;} a class
of operators from {P}s being Q-equivalent to the operator P; € {P}s. Note
that if Py, P, are Q-equivalent then an operator ) can be found such that
P,=QP, P, =Q'P,.

Theorem 2.1. Q{P,} is a Banach algebra.

The proof of Theorem is based on two auxiliary statements.

Lemma 2.1. Pseudodifferential operators Q of the zero order with symbols
from the class SJ(R™) generate the Banach algebra {Q}.

Proof. Operators Q with symbols from SJ(R") appear to be the linear definite
operators from H, into H, for any real s. They generate a Banach subalgebra
in the Banach algebra L(H,, H,). Ordinary operations of addition and multi-
plication being used for the linear continuous operators are valid in {Q} and
the norm of elements is defined in a usual sense.
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Lemma 2.2. Algebra Q{P,} is isometrically isomorphic to the algebra {Q}
for any P, € {P},.

Proof. Really, any element from the set @{P;} has the form QP; where
Q € {Q}. Therefore it is sufficient to introduce the addition, multiplication
and the normin Q{P, } in such a way that operations and norm (being accepted
in {Q}) would be well defined.

Note that the proper pseudodifferential operator generate a non-
commutative algebra with two involutions.

Later on, as it is often accepted, one can identify the algebra Q{P;} with
one of its elements (but not necessary with P; itself) which can be denoted as
Pl.

In particular, let us consider a differential operator with constant coeffi-
cients. Let the initial system of the partial differential equations have the form
Su = uz+ Auy = 0, where A is a constant matrix. As it follows from the above
mentioned, if R is an arbitrary (matrix) differential operator with constant co-
efficients of the 1st order then any operator of the form P = (Q)SR appears
to be a differential operator of the 2nd order with constant coefficients, poten-
tial for the operator S. The operator @ of the zero order is written down in
brackets as a sign that the question is not about a concrete potential operator
but a class of Q-equivalent potential operators. To be precise, the question is
about one of the representatives of this class.

In the case being considered, the operator @ of the zero order represents
in itself a matrix with constant coefficients of dimension m x m. It is known
that the set of quadratic matrices with constant complex coefficients appears
to be a complex Banach algebra with a norm

el = (iilajuZ)l“

j=1lk=1

Example 2.1. Consider the system with constant coefficients u; + Auy = 0,

where
a=(0 1) 5= (00 o)

are a matrix of coefficients and a differential operator corresponding to the
system being under consideration. Here and elsewhere we shall use some non-
standard determinations of the form ( ) for the operator of differentiating by
variable z instead of commonly used 5"’;.
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Let

n=( Vi) @se

= (e G3) e=(4 )

The complete potential operators

— ()xz+()zy+2()yy ()1‘1:+4()$y_()y
= (O, i )

= (Dt t,)

correspond to these representations.

We call operators P, and P, of 2nd order S-equivalent if they appear to
be the complete potential operators for the same operator S of the 1st order.
S-equivalence of two operators P; and P, enables one to set a non-trivial
correspondence between solutions of two equations Py = 0 and Py = 0.

As if follows from the above considered example the systems of partial
differential equations

{ Prz T Pry + 20y, + 02 + 402, — 0y, =0,
dpyy + 202, + 790, + ¢}, =0,

and
Yo =A%y, =0, %2 =99y, =0
appear to be S-equivalent systems.

It is interesting to single out among all elements { P}, the canonical one,
(i.. the simplest element in some sense). For the differential operators this
can be easily done in the case when n = 2 (there are two variables z and y).

Let us consider the following differential operator with constant coefficients:
S = E( )z + A( )y, E being a unit matrix and A being a constant matrix. Let
AL, .-+ ,An be the proper values of matrix A and h!,... , A" be the correspond-
ing proper vectors. Denote by H a matrix composed of proper vectors as of
columns. Let @ = H™! and R = Hdiag(( )e — M( )y,---»( )z — Al )y)-
Then the operator P = QSR = diag(( )oz — M ( )yys -+ ( oz — A2( )yy) will
have the simplest structure in comparison with all other elements of algebra,
and every equation corresponding to its potential system will represent in itself
the partial differential equation written down in a canonical form. In the case
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when matrix A has multiple proper values, it is also convenient to take as H
a matrix which reduces the matrix A to a normal Jordan form. Such a matrix
can be composed of proper and adjoined vectors of matrix A. In this case
the matrix of the operator P will have different from, zero elements only in
the stripe disposed along the main diagonal and the width of the stripe is 3
elements. In the corresponding to such a potential operator potential system
of partial differential equations it will be possible to single out chains of the
connected potential equations.

Now let us consider the set of classes (Q)SR in the set of all operators which
are potential for the operator S. We introduce the following operations for the
operators R of the 1lst order: the addition which is understood in the usual
sense and the multiplication (for the present, for differential operators only)
which can be reduced to the multiplying of the coefficients attached to deriva-
tives of the same order, i.e. we define the product of the pseudodifferential
operator with symbols

sfz ) = ) su@)?, S =) sh@)”

lal<1 lo|<1
as a pseudodifferential operator with symbol

s(z,6) = ) su()si(a)E

lal<1

Such operations do not take us out from a class of the differential operators of
the 1st order.
Theorem 2.2. The set of {P}s classes of Q-equivalent operators appears to
be a Banach algebra.

In the general case we introduce a product of two pseudodifferential op-
erators of the 1st order on the basis of the Taylor’s series expansion of their
symbols. Let

s'(z,6) = ) _ (1/a")Dgs'(z,0)6*

aEZ";

s’(2,6)= ) (1/a!)Dgs*(z, 006>

a€Z}
be the symbols. We define their product as a symbol

s(z,€) = Z (l/a!)Dgsl(:c,O)Dg’sz(:c,0){“

aGZ_';
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Let us call a product of two operators of the 1st order such an operator which
symbol represents in itself the product of their symbols in the above mentioned
sense. The statement of Theorem 2.2 remains valid in this case also.

3. Let us study aset {u}s of solutions of the equation Su = 0 by assumption
I =p=m (ie. all matrices being quadratic of dimension m x m).

Theorem 3.1. If the equation Rp = u is solvable for any u then formula
u = Ry where @ is a solution of the equation Py = 0, P = (Q)SR gives all
solutions of the equation Su =0, i.e. {u}s = {u|lu = Ry, (Q)SRyp = 0}.

Proof. Obviously, {u|lu = Ry, (Q)SRy = 0} C {u},. Now let u be an
arbitrary element of {u}, and ¢ be a solution of the equation Ry = ug. Then
uo = Ryo, @o being a solution of the equation (Q)SRy = 0. Consequently,
uo € {ulu = Ry, (Q)SRp = 0}.

Corollary. Any operator S has a complete potential operator P.

Really, let S be some operator of the 1st order. It is possible to pick out R
in such a way that the equation Ry = u is solvable for any u. Then P = (Q)SR
is a complete potential operator.

Note that the assumption that all matrices under consideration are quad-
ratic is essential here.

So it is possible to consider the equation Py = 0 instead of the equation
Su = 0 but that is more complicated problem in the general case (because the
order of the operator P is greater than the order of the initial operator S). But
in many cases it is possible to write down the potential equation Py = 0 as a
system of independent equations, which some times coincide with each other.
Then the application of the method of potential functions is quite advisable.

We call potential operator P trivial if the set {u}s contains only trivial
solution of the equation Su = 0.

We shall say that potential operator P € {P}s is splittable if there exists
nontrivial operators Py, P, € {P}s such that {u}p = {u}p, ® {u}p, (the
subspace of solutions of the equations Su = 0 associated with the operator P
can be decomposed into the direct sum of the subspaces of solutions of the
same equation associated with another potential operators). We call operators
Py, and P, the potential suboperators of the operator P.

Let us consider differential operators with constant coefficients as the sim-
plest case.
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Theorem 3.2. If the operator P € {P}g is splittable then there exist suboper-
ators Py, P, € {P}s such that P = P, + P, (in the sense of the multiplication
operation acceptable in the algebra {P}s).

Proof. If operator P is splittable then values of solutions of the equation
Su = 0 from the classes {u}p,, {u}p, and {u}p belong to linear subspaces
Ly, L, and L of the space R™ correspondingly, by this the direct sum of the
first two gives the third: L; @ L, = L. Any solution of the equation Su = 0
has the form u = Ry, where R is some representation and ¢ being a solution
(vector-valued) of the corresponding potential equation. Then, for example,
u € {u}p, if and only if when columns of matrix coefficients of the operator R
belong to the subspace L; of the space L.

Let R be a representation of solutions of the equation Su = 0 generating a
potential operator P. Let us decompose every column of coefficients of R into a
sum of vectors from L, and Ly correspondingly arid construct representations
R; and R2 by the received addends as of columns. Then R = R; + Ry and
P= Pl + P, where P} = QSRl, P, = QSR, (the multiplier @ is just the same
for P; and P; if one assumes that Q = E then it is possible to decompose
directly the columns of the operator P into a sum of vectors from L; and Lj).

Example 3.1. The complete operator

_(Oez+ (ay 2( )yy
F= < —( ey ()xy‘*'fl( )w) ™

is splittable for the operator S from the example 2.1 because {u}p = {u}p, ®
{u}p, where

p=(O= 10 ) m= (5 %)

and P £ P| + P,, but P = P; + P, where

= (=er = 30)sy 2 )ay +6( )yy
P = (_( er — 3( )I: 2( )zz+6( )yy)’

D _ 2( ):z + 4( )a:y _2( )ry - 4( )w
5‘(<m+%»y —ow—ow)‘

The inverse statement also holds true.
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Theorem 3.3. If P = P, + P, where P, Py, P, € {P}s and at least one of op-
erators P, and P, being non-trivial, then the potential operator P is splitiable.

Emphasize that the statement of Theorem concerns the representation of
potential operator in the form of a sum just of potential for the initial S
operators, and not of simply differential operators of the 2nd order.

Thus if a complete potential for the operator S operator is splittable then
any solution of the equation Su = 0 can be represented as a sum of solutions
of the same equation belonging to non-intersecting classes. We shall call this
phenomenon a polarisation of solutions of the equation Su = 0.

4. Let us return once more to the equation u; + Au, = 0 as we considered
before (the system of m equations with constant coefficients for two indepen-
dent variables). Let Aq,...,\, be different proper values of matrix A and
hl,...,h™ be corresponding proper vectors. As it was shown, in this case a
complete potential system consists of independent potential equations of the
form

Prr — ’\?‘Pyy = 0) J 1) m, (8)

and a complete representation of solutions consists of the columns of the form

R (()e = 2i()y) 7=1,

3

(9)

Consequently a complete potential equation is splittable into a sum of m
potential operators, each of them is being generated by representation of so-
lutions R; of the following form: the column with the number j in matrix R;
has the form (9) and other columns are all zeros.

Now let us consider the representation of solutions of the form R; x Rx. In
matrix R; X Ri only the column with the number k is different from zero and
has the form A*(( )z + A;Ak( )y)h? (here h¥ is a jth component of the proper
vector h*). Then the potential operator S (R; x Rg) has different from zero
the kth column only

h;(( )u + ’\j’\k( )Iy + ’\J'( )zy + ’\32”\k( )yy) :
Obviously, there exists diagonal operator with the single element different from

zero with the number ¥ among Q-equivalent to S (R; x Ri) potential operators.
This operator generates the potential equation

Pes + (14 M)pay + Mhepyy = 0. (10)
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Note that Eq. (10) can be reduced to the canonical form ¢¢ — )\?w,,,, =0
by substitution of variables £ =z, n = (=A;z(1+ A¢) + 2y)/(1 — Ax). By this
the particular representation of solutions of system u = ¢, + AjArp, turns
into representation u = ¢ — A;jp, (to within the multiplier).

Now let P; be the potential operators generated by representations of solu-
tions R;, j = I,m. As the multiplication operation in algebra {P}s is induced
by the multiplication operation in algebra, which is introduced into the set of
representations, the above mentioned reasonings can be reduced to the follow-
ing fact: in the case being considered

{u}ijPk = {U}PJ-, ] = l)m) k= l’m . (11)
The similar statement holds true in the general case.

Lemma 4.1. There ezist elements Pi,... ,Py, 1 < N < m in algebra {P}s
such that

{u}p;xp, = {u}p;, 7=1,N, k=1N. (12)

Proof. By corollary of Theorem 3.1 there exists an element P in algebra
{P}s which appears to be a complete potential operator. If the operator P is
non-splittable then the condition in (12) is fulfilled for N = 1 only. Really, the
product of element P with any other element of algebra { P} either will be the
complete potential operator or a trivial potential operator.

If the operator P is splittable then by Theorem 3.2, it can be represented
as a sum of non-splittable potential operators P = P, + --- + Py, by this,
{u}p = {u}p, ®--- ® {u}p,. Since the values of the operators P; belong to
the non-intersecting linear subspaces of R™ then the condition (12) is fulfilled.

The fact is that the application of the method of potential operators appears
to be the most effective just in the case when a complete potential operator
is splittable into a possibly greater number of potential operators of simpler
structure. So let us formulate some conditions of splittability of a complete
potential operator in algebra {P}s.

Lemma 4.2. If there ezist a non-complete, nontrivial potential operator in
algebra {P}s then the complete potential operator is splittable.

Really, if P i1s a complete operator whereas P; is a non-complete operator
then {u}p, C {u}p. By this values of operator P form a linear subspace L; in
the space L of values of P Let L = L; @ Ly. Decomposing the matrix of the
operator R into a sum of matrices R; and Ry, the columns of which accept their
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values in L; and L, correspondingly, we receive that {u}p = {u}p, @ {u}p,
where P, is a potential operator being generated by representation R;.

Example 4.1. Let a complete potential operator for the system from the
Example 2.1 be determined by formula (7), whereas a non-complete potential

operator
P, =<"( )n_?’( )ry 2( )zy+6( )yy> .
' ~()zz =3()ay  2()zy +6( )yy
Then
P, = (2( Jor +4()zy  —2()oy — 4( )yy)
2 (Joe +2( )zy —( oy —2( )yy

appears to be a non-complete potential operator also but such that {u}p =
{u}p, ® {u}p, and even P = P, + P5.

Theorem 4.1. A complete potential for S operator is splittable if and only if
when there ezists at least one non-trivial right ideal in algebra {P}s.

Proof. Necessity. Let a complete potential operator be splittable. By virtue
of Lemma 4.1 we can set in correspondence to every operator Pj, the existence
which is stated in Lemma, a set of potential operators

{P}; = {P|P € {P}s, {u}p = {u}p;}

Let us prove that for any j, {P}; is a non-trivial right ideal in algebra {P}s.

Really by Theorem 3.2 an arbitrary element P € {P}s can be represented
in the form P= P, + ---+ Py where, generally speaking, potential operators
P; do not coincide with operators P but {u}p;, = {u}P Let us pass on from
potential operators P, P], .., Py to representations R, Rl, ... Rn generating
them. Obviously, R=R; + --- + Ry. Then

ijR=RjX(R1+~~~+RN)=R]'XR1+-~~+RJ'XRN

and R; x Ry generate the potential operators P x P, € {P};. Consequently,
Pj x P e {P}]

Sufficiency. Let I be a non-trivial right ideal in algebra { P} 5. We shall con-
sider the set {u}; = P[gl{u} p. If {u}; = {u}s, the ideal I would coincide with

{P}s. Consequently, {u}; C {u}s. Let us single out the subset of elements
in I

{Plhi={PIP eI, {u}p ={u}1}.
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Then any element in {P}; will be a non-complete potential operator and by
Lemma 4.2 and the complete potential operator is splittable.
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ON RELATIVE COMPACTNESS SET OF ABSTRACT
FUNCTIONS FROM SCALE OF THE BANACH SPACES

A. G. Podgaev

Institute for Applied Mathematics, USSR Academy of Sciences,

Far Eastern Branch, Khabarovsk.

Let B' and B' for any t e [0,T1 c R be normed linear
Banach spaces;B, is separabl:e; B"ctB’; anc{ embedd{ng is continuous
for every t; for t <t B'c B?* B' c B?, and the last
embedding is continuous in sense that there exists bounded on

{0,T1? function pi(-, ) and a constant p that for any t , t 6 €

2

t
e {0,T] t,st and any u e B“ inequality

€0 hull , < Ct,t) ful, <pful,
B 2 B! B!

1 1 1

is held. Analogously there exists a constant ¢, such that
flull < o Hull ,.
B?. 2 Bt

1
Let S*' be nonlinear subset of B‘, with function Mo. : St -

—R ,R =(yeR: y20 Define St = (wesS : M < a,
+ + a t
and suppose that S! is relatively compact in B' for any a < w.
t t t
Since B* ¢ B® fort >t u(t) eB?* Therefore M (u(t))
2
is defined. We will assume, that function Mt such that
&) ’ﬂz(““") S oCt, ) M (ut)),
where p is bounded function on (0,T]2.
Further, denote F‘ some subset of elements u(t) such that

219
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for any t € [0,T]  u(t) € B* and

T

N vrai mix fuCtd ), £ ¢, Mt(uCt))dt sC, .

t € to,M B ! X

where C’ and Cz are common constants for all u in Fl.
Moreover, we will assume equicontinuity of norms in B' by
parameter t on subset F:
t
there exist n(-,-) such that for all elements u € B!
and all t, < t,

€))
B, - Bull, | St ,t)—0 ast -t —0
B*Z B!

Here n doestdepend on element u in Fl.
And, at last, let either

5) F = {u € F‘ : u(t) is B . measurable and

T P
Mweor! dausc, po>t } ,

' ° Bl

or F be subset of elements u(t) in F‘ such that

5" sup fluCt + h) - uCt| N < H(R),
t€o,T) B
t+n< T t

where h > 0, HC(h) — 0 as h — 0 and H(h) is common for all u
in F‘.
In (5) we mean that u’(t) is element of B:, which for all

of uCt + h) - uCt)
h
T St + h See Additional part for details.

Tt < t is the limit in norm B;r as h — 0,

In [1], C.4, § 5 compactness of embedding of reflexive

Banach spaces of abstract functions was established in space like
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LP(O,T; B). After that Yu.A.Dubinskif (2] proved this result in
the case when function M(v) didn’t define the norm, but possesses
property of homogeneity: M(X v) - |\| MC(W).

In case of Orlich spaces and half-normed set similar results
were proved in [3],(4].

By slightly modified assumptions in [51,[6] these statements
were proved for function M(v) which has arbitrary structure. All
these results are essentially used for proofs of existence of
solutions for nonstationary problems for partial differential
equations, accordingly for linear, nonlinear degenerating
equations with homogeneous nonlinearity, and, at last, with
arbitrary nonlinearity. For the latter see, for example, (7],(8].

In this article we generalize results [5],[6] and give up the
condition: for any t € [0,T] u(t) € B, where B is a fixed (for
all t) Banach space and we consider functions u(-) that belong to
the scale ('monotone” and continuous by parameter) of Banach
spaces. These results can be used for proving of existence of
solution for mathematical physics of nonlinear equations in
noncylindrical domains and also represent independent interest.

Theorem {. Let embedding B' ¢ B: be compact. For any p 2 1
set F is relativsly compact in space of functions u(-) with norm
[} IUCl)ﬂpld t], P. For corresponding limit elements the first

o

B
inequality in (3) is valid.

1]
Proof. Let FN = {#n} be a countable set of elements in F.
n=1

Since the first inequality in (1) is correct there is a set Eo c
c [0,T] with meas E° = T such that for all t e Eo
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6 uun(t)ﬂBt < Cl {o.

Similarly, since M (u (t)) e L, (0,1, there exist sets £ ¢
c [0,T]1, with meas E. =T such that for all t e £

t t -
N Mu )<k, K <o, n=12...

(In other words: functions from L‘ are finite for almost all

t € (0,TD.

[44]
Consider £ = n E . Obviously, meas E =T.

n=o
Lemma 1. For each € > O there exists a constant c(e) such

that for all ¢t € £ and all u, v € N

8 fuCt) - v <e [Mt(u(t)) + Mt(v(t)) + 1] +
B'.
+ CCe) fulCt) - vCIY
B'.
1

We do not assume compactness of embedding B* ¢ B! in this Lemma.

Proof Of Lemma {. First of all we note that by (6)-(7) and
embedding B' ¢ B' , the left-hand and right-hand sides of (8) are
finite for all t e E. Assume the contrary statement of the
Lemma f. Then there is an £ > 0 such that for any constant C > 0

there exist elements u,., v, € FY and number tc € E such that

) huCt) - uc(tc)llBt: e M, (u, (L)) + M, (v (t)) + 1] +

+C fluCt ) - v Ct Il t
1

Let ¢ = Cj — o It follows from (6) that the left-hand is

bounded by the constant 2c‘.Then from (9) we get for elements
lc,
o =u (t ), ¥ =v (t )of B * that
[+ c c. c

L i i i i i
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(10) bo - o uB“% < 2c /e, — 0.

Compactness of (0,T] yields a subsequence such that t,—t €
- 1g)
e [0,T]. We will assume that t, — t . Differently takes
i

subsequence. We define T, = mint , then 7

<
N T, St

NSTNH; N c,'
i2N i i

L 2 N. Therefore, from (10) and from continuity of embedding B,‘ we
have

(1 o -l S (ryt, o) -of |l Sécp /¢, —0,

B™~ 1 Bte;

1 1

{2N, | —
From (9) we get
1
Mt‘:i (w)) s 2c e . Mtci (of) s 2c e .
Since TN < Lc , L2 N from (2) we get:
i

(12 Mrgw: )<p Mtci(w; )s2c pr/e, ;Mrgwf)Sp Mtci(wf )s2c pse 12N

Let N = 1. Using the relative compactness of S; in B' (for
t=1,as= cc,pse ) and the completeness of B', we conclude that

there exists subsequence w; of sequence w;, converging to some
k

T
element % in B' for k — m But, sequence o' =
1 n! nk
k
satisfies (12). Therefore, from it we can select subsequence w‘z
n
k

T - -

such that oft — u, in B 2. Notice, that since T, ST, u =y,
n
k

T
in B 2. And further the same is done for all N. If we take

T
sequence «', 2L ! , it is obvious, that it converges in any B ™
n

k

to element ® . On analogy, for sequence Ve (tc ). And we may
i i
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conclude that

- T -

2 _ 2 ; N 1 2 i
= - L - n

(A)nk (Ok b 4 wa in any B ". Ther efore. (o)k (t)k w‘ 0)2 1 B

K
- - - - T
But o . of satisfy (11). That is w, - w — 0in B;N' We conclude

N

that w, and for any fixed N

(3 @ -w—0inBYask—m

Notice that ;,’(2 € Btak , Ek C . Therefore from (9) we get for
n

sufficiently large N and k: '

0 b - 2W - s ;:“BTN > % .

This contradicts the condition (4) of equicontinuity of norms in
B' on elements set F,. Actually, the left-hand side (14) by

condition (4) is smaller n(r, tak). Since tak —_— To and 7, —

— 'fo, we have n(ty, tz ) — 0. Lemma { is proved.
K
Notice that we can prove (8) if in right-hand side we replace
[MCw) + MCw) + 1] by [MCw) + MCvw) + 1]*“P for any fixed p< o .
Using inequality (a + b)P < 2P(aP + bP), later integrating by t

we can conclude:

T T
(16) JICt) - (I dt < e fIM (u(t)) + M (u(D)) + 1]dt +
o B o
T
+c(e) [uCt) - vCP dt.
o Bt

1

Lemma 2. Let embedding B' ¢ B’; be compact. Then F is
relatively compact in space of abstract functions u(-) with norm

vraimax  jJluCt)
t €lo,T) gt
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Proof of Lemma 2.We use only first inequality in (3) and (5)
or (5 in this Lemma.

Let P = ot o, t,. ...} be dense countable system in

1
E, t e E. Now we will prove existence of P.

Let E=Ut% t%eEandlet E\ =t € [0,T): |t - t%] < 1/)D,
[»
Then U EJ = [0,T]. It is consequence of density set E on (0,T).
o }

There is a finite number of £9 and t . , 1 =1,..., N;. that
[0 }
i i

N, N
J o 0 J
U EY =1[0,T]. Consider countable system P = U [ VA ]
121 o j=1t v i= ol

Then for all t e Eand & > 0 there is the 1€ P such that

-

It =ty <& Actually, if it wasn’t done, we would have TeE

and ¥ > 0, that for all t € P |t - T| 2 1/7. Let integer j > J.
N,
J
Because U
i=

E;J = [0,T], then t belong to certain E{ ={1€
a

i

~

€ [0,T): |t - t% C1/j ), &=a , t¥eP This contradicts the
]

last inequality. Existence of P is proved.
Let {un} be sequence from F.By (6) we have that for all
t, € PcE uun(tl)llBtiS C,. We may assume that t =T ¢ E.

Compactness of embedding yields that {(u (t )} is relative compact
t,
in Bl‘. Diagonal process yields a subsequence u, such that for all

L
U u“Cti) is Cauchy sequence in B *.

Now we prove that the sequence u, is convergent by norm

o

vraimax JuCtdf
t €0, T Bt
1

Consider case (5°). Let € > 0 be given. There exists 6(&) > 0



226 A. G. Podgaev

such that HCh) < e/4 if h < 6(&). Consider sets Si ={t el0TI]
It, —tl<éted, t,>tr t=12...,t €P, S ={te (0,TI:

IT - t] < 6Ce), t < T2, which are opened by topology of [0,T].

[+1]
Moreover, Si= (0,T]. It follows from density of P in E, and

ico
hence in [0,T). Select finite number Si ,v=1,2,..., M. Then
v
(18> uap Ju -u (t) =
tetoPI‘)“ ek H !B’;
=max [s up M, (1) - u“(t)lat].
'l)
Further,
(19 s u p nuu+k t) - u“(t)uBl < seg p "U“+k t) - u#+k(tiv)“3t +
x i 1
v v
Izsu p Iu“*k t, ) - u“(t‘v)“B +s usp uu (t ) -u (t)u t
v 1y
Using (5°) we can estimate the first and the third members in
¢
terms of £/4. Since u“(ti ) converge in Bllv, and since i, < Mg,
v

using (1) we can make the second member not larger than &/2 for
sufficiently large u 2 N(&) :

- < -
20 Bty Cty ) = 0L Dlige S o, (L SR, L)

- Ut ) ”3“» < ese.

(18-(20) yields that uu converge in norm vrai m llu(t)llBt

t €o,T) A

Consider case (5). See Additional part for details.

1/p, q
Replace S; by 3 = (t ¢ (0, T1: ft-t | < Cerd pc )",

t, > t}, 1 =1,2,... . Analogous 30. And we reason by analogous
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(5'). The first and the third members in (f9) in this case are
estimated in the following way. Use (0.4) and (0.5) we have

t:v
?gg.:u “(t) 'u“(tiv)" B:= fegiz n{h'&r)dru B:S
ti, o . T x 1/p, A,
< Stgsfvp’ { uuu T “Bf [ fuu (r)“ F dT] sug lt t] <

1/
1

< Py d < =
Se c, fgg’|t1v t] Sess, 1/p + 17 =1

And then by analogy with (5%).
Passing to the proof of Theorem {, we consider )Y c F and
take F¥ = {v ). By Lemma 2, there exists Cauchy subsequence with

respect to norm vraJmaxnu(t)" By (1) and by (16) we may

t €00,T) 1

conclude that u“ is Cauchy sequence with respect to norm

T 1/p
[ fﬂu(r)ugT dr] for any p ¢ o .

Proof the last part of Theorem 1. Due to completeness space

T
P
of elements u(t) such that fllu(-r)llBT dr < @ , there exists u =

o

= lim uu(See Add. p.,Th.4). Consider uu“(t) - u(t)“Bz' Due to

convergence in LP(O,T) we may assume that it converges to zero for

almost all t € [0,T]. Therefore, uu (t)u |u(t)“ . Using (6}

we conclude for enough large u :uuu(t)ll;t < cP + 1. If we go over
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to the limit, we get that ﬂu(t)ﬂ‘;t < cf + 1. The Theorem ! is

proved.

Now let S be a compact in R",and consider further the case,
when B' =B and B! =B, M =M for each t eS. And let
embedding B c¢ B be compact. Definition F with condition (5) is
similar as before.

In this case conclusion about of compactness by norm

1/p
[flu(t)lgdt] (Analogy of Lemma &) may be obtained from
1

Theorem 14 in [9). Our attention was drawn to this way by
Proof. Yu. Batt.
Actually, let u(t) =0 for t €S and let 6=R", E=B8B,
K = {u o full < c } in that Theorem. Then for any
L(an‘) '

measurable 4 c R® set { J uCtddt,ueF }. will be relatively compact
A

in B . It is the result of inequality (5‘), inequality

B wCddty < f fluCdf_dt <c,
B B
A A
and of compactness of embedding B c¢ B . Therefore,
Theorem 2. If embedding B ¢ B‘ is compact, S is compact in R?
and F is constructed as earlier and condition (5’) is held, then F
is relatively compact in LPCS;B).
This Theorem we may use for investigation of ultra parabolic
equations, that is equations with many time variables.
Theorem 3. If for every u € F and every measurable set

AcScR', meas 4 < w, exists constant c(4) < o such that
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&) W[ wdt] < c(a)
A
and (5’) holds (u(t) = @ for all t € S), then F is relatively

compact in LPCS;B) for any p :1 { p< .

Actually, (21) yields relative compactness for every fixed 4

of the set [ wu(tddt in B, and, so, in B, . Further, proof is
A
analogous of the Theorem f1.

Additional part. On integration of functions by parameter of
the scale.

Here we consider scale of the normed spaces B', t € [0,T] and

assume that B? is Banach space, Bt‘ c Btz for t 2t and B' is
separable space. We write B' instead of Bf for brevity.

Definition 1. Function u(-), u(t) € B' is called simple on
[a,b] < [0,T) if exists partition of [a,b]l by finite quantity

Lebesque-measurable nonintersection sets 5i cflabl, 1 =1,..., n

t
and elements u, € B' (t =sup {t : t €S}, such that u(t) =g

for t e Si and u(t) =6 if t € [a,bl\ ﬁ Si.

i=1

Definition 2. Integral on [a,b] from simple function u(-) is

element f of Banach space B® defined by

b n n
f = Jultdr = z u meas S = z u(t ) meas S
a i=s i=s

where fi € Si, and u, are elements which correspond to this
partition of [a,bl.
Linear combination of simple function is simple function and

therefore the operator of integration of simple functions is

linear.
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For simple functions we have easy inequality

b n
.0 WS wnddrll , = ) uC) meas S | 5 <
a Ba iz ' Ba
n b b
<3y uucfi)uBa meas S = [ fuoar] , dr < gfiucedrl dr fes.
i=1 a a

Definition 3. Function u(:) is called integrable
(p-integrable) on [a,b), if there exists sequence of simple

functions wu () which is Cauchy sequence with respect to the norm

b b ' /p
0.2 fhuCop , dr , [[ fleCo P, dr) ]
a Ba a Ba

and such that u (t) — u(t) with respect to the norm in B' for
almost all t € [a,bl.

Function u(-) that is the limit in B' almost everywhere of
simple functions is called measurable (or, more exactly, B -
measurable).

Definition 4. Integral on [a,b] from such function is element
f e B% defined by

b b
f=fuwdr - lim [ u (t)dr
a n® g
Correctness of this definition will be established if we prove
b
existence of the limit for [ u (7)dr and independence of f from
a
the choice of sequence u of simple functions.
b
Consider fn = u (1)dr and prove that fn is Cauchy sequence
a
in B% Let (%) i =1, ..., Kn,s) be partition of [a,bl,

such that elements 3™ ¢ S" . , and 3™ c 3"fS, for some j(i),
i J(l) i 1G)
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1C1). There Si"} ,L=1,..., k . corresponds to simple function
u and (3%), i =1,..., R ... corresponds to simple function
UL Then since u is Cauchy sequence we have
K(n,s
Vs fl g =0y (v, (A - u (17)) meas 3P| , <
Ba i=1 Ba
b
S My, () - w (Df , dr — 0, 175 e 35,

2 B®
Therefore, if B% is Banach space, then exists element f ¢ B¢

being an integral from u(-).

b
Consider 8, = J v (tddr where u(-) is Cauchy sequence
a b
1/p
with respect to the norm [ INU(r)ﬂ;a dr] and v (t) — u(t)
a

for almost all t € [a,bl. It is obviously that for any n

fu (L) - vn(t)n is integrable according to Lebesque and limit

B
b

is equal to zero as n — o for almost all t. Moreover, fﬂun(f) -
a

- vn(r)u dr is uniformly bounded by n because u and v are

ot
Cauchy sequence by this norm. Lebesque theorem yields that
b

lim - < lim flju () - v (1) dr = 0.
HE V.~ S € IO - v
Therefore Nf = gl < If = follg * W, = 8, + s, ~ 6l g < €
for sufficiently large n.Correctness of Definition 3 is established.
We easily conclude that if u(-) is p - integrable, p 2 1,

then u(-) is integrable.
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Let u(-) be arbitrary integrable on ([a,b] function. From
inequality (o.1) for simple functions and because of continuation

of norm, we have

b b
u(t)dr llm u (1)dr llm ||u (€2
H£ lIBa II llBa f Ba
b
= [fult) dt
i'll IIBa
Last equality follows from Lebesque theorem. Therefore,

inequality (0.1) is fulfilled for every integrable function.
Definition 5. Function is called amplified p-integrable if
Cauchy sequence from Definition 3 will be considered in the

“norm"”, exactly:
b

1/p
(0.3 u(t)YP_ dr
[ fll IlB., ]

Obviously, if for the scale of spaces B' condition like (1)
is fulfilled, then each amplified p-integrable function is
p-integrable.

Obviously, if wu () and uz(') are integrable functions and

b b
u () = u (t) for almost all t, then [ u (1)dr = [ u (t)dr.
1 2 1 2
a a

Identification of such functions allows to introduce space Lp,
p-integrable (and tp, amplified p-integrable) functions with norm
0.2) (€0.3).
Theorem 4. 1f B% is Banach space, then Lp is Banach space. If
B' are Banach spaces for all t € [a,b], then tp is complete.
Proof coincides with proof of completeness of space
integrable according to Bochner functions Lp(S;X), see [(10). (By

analogy density of step functions in LP and in tp is proved).
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Definition 6. Say, that function wu(-) is Bl—differentiable

at the point t € (0,T) if there exists element w € B: such that
for all 7 < t

" u___.(“h)h' ut) . o r — 0. ash—07<t+h
1

Element w is called derivative of u at the point t and 1s
marked by u’(t).
The following quality is proved like at the Bochner Theorem
in [11), but instead of y_ it is necessary to consider y ()
=x (1), if u‘%(t)“Bt < ZItIIt)llBt and y (t) = 0 if conversely.
1 1

This property we use for v(t) u’(t) :
Lemma 3. Measurable function u(t) is p, -integrable (amplified
pl

Ba

1

P
p, - integrable) if and only if H{u(t)| [accordingly nu(t)nB: ] is
1

Lebesque integrable.

Let u(-) be B -measurable and differentiable function at
every point t € (0,T), and u’(t) satisfies condition (5).

Let t < t; v, 1is some fixed functional on Bf‘: (v,. " ):
: Bf‘ — R. Because B! ¢ Bf c Bf‘, we can definetfunctlon (L) =
= (v, ut)). As u(-) is B -measurable and B is separable,
Pettis's Theorem [11] yields that x(t) is Lebesque-measurable

function. Moreover,

~

JxCt) < ﬂuon . fluC e}l 0 < c(t‘) P, pzﬂu(t)nBt € Lp(tl,T).
B‘l—bR B‘
Further
yCt+h) - (L) _ (v u(t+h) - u(t) ).

h o h

Therefore, if h 1is sufficiently small, we get t + h> tl and
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because of Bt-differentiable of u(-) we conclude that

(t"'h) - (t) —_ (U , ul(t))‘
h h 20 °

Therefore for any t € (0,T) exists u’(t). On the other hand x'(t)

is measurable like limit for every t measurable functions. And

inequality
I’ Ceys o il <l e . 5‘4"c(t‘)||u’(t)||E‘t € Lp‘(t,.T)
Ba‘—’R 31l 1
is held.

t
Then formula x(t) - x(t‘) J 1/ (1)dr yields (vo, u(t) -
tl
t t
Sult)d) = [y, wn) > dr =y, [uxdr).
t

t
1 1

The last equality follows from continuity of the functional

v, on Bf‘. In view of arbitrariness v € (Bf’)' we conclude that
t
0.4 uCt) - uCt) = f u'(tddr in BY.

t
1

From inequality (0.1 we get for any pair number t, t

, < t) inequality:
t t
0.5 HuCt) - uCt )| ST dr e [ fucni e
' Bt! t Btl t t B‘
1 1 1 1
This inequality is used in Lemma 2 in the case (5), where instead

of t we need take ti , and instead of t1 we take t.
v
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ON THE EXTENDED OSTROWSKI CONSTANT
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The National University of Athens, Pedagogical Department,
4, Agamemnonos Str., Aghia Paraskevi, Attikis 15842, Greece

Abstract
A. Ostrowski (1979) established that if f(z) is a polynomial of degree m and g(z) a
polynomial of degree n, then My My > M;, > v-Ms Mg, where My = max{|f(z)|:
|z| = 1}, and the Ostrowski constant: v = sin™(w/8m)sin™(n/8n). In this paper
we improve v and extend it to fi,1 =1,2,... ,k, in Ur = {2z : |z| = v} by applying
Jensen's formula.

Theorem. If f;(z) = z™ + ...+ fi(0), fi(0) = 1,i = 1,2,... |k, are poly-
nomials of degrees n; in D = {z : |z| > 1}, and if the zeros (roots) a;,

j=1,2,...,n;, of these polynomials are such that |aj~| > 1, then
k k
MM 2M, zv]]M,., (*)
i=1 I £ i=1

=1

where 7, = 27N, and My, = max{|f(2)] : |s| = 1}, i = 1,2,... &, and

k k
N = Zni is the degree of F = Hf"
i=1

i=1

If k = 2 then 7; = 7: then Ostrowski constant (1], and our constant v, is

237
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greater than 7,, because

where

and i = 1,2,... .k, and k = 2,3,.... Assume M} = max{|f;(z)| : |z| = r},
1=1,2,...,k,and

73 = (2r)N =yl
If fi,i=1,2,... ,k, are polynomials of degrees n;, i = 1,2,... ,k, in U, then
(*) is extended to the following form

k k
[ M5 > My > 5 T M3, (+%)

=1 i=1

Proof of Theorem. It is clear that the left hand side relation of (*) holds.
To prove the right hand side relation of () we assume

filz)=2""+...+ £:(0), fi(0)=1,

are polynomials of degrees n; in D= {z:|z| > 1}, U =0D={z:|2|=1}. In
fact,

ny

fi(z)zl—[(z—a;), 1=1,2,... ,k,

j=1

or .

n: )

Ifi(2)l < ]+ 1))

j=1

inU,i=1,2,... ,k, where a}, J=1,2,...,n,, are zeros of f; in D. Therefore
laj > 1, or 1+ [aj| < 2|a}] .
Hence

My <2 [[ledl,  i=1,2,...,k,
i=1
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or

k k n,
[1M. <2V [T ]] 151
i=1 i=1j=1
kony ;
2Ne.§1 =1 In |d,~|

By Jensen’s formula ([2], p. 128, and p. 139) we get

n, ) 1 2 .
) it
> tnlei] = ﬁ/o In |f:(e™)|dt
j=1
Applying this formula we get

k k
1My < 95" oA 2T I T, f(elat
=1

or
k

HMf. <7 'Mr,

i=1
completing the proof of the Theorem.
Similarly, we prove (#*). In fact, we employ the extended Jensen’s formula,
([2], p- 128, and p. 139)

n, ; 1 27 i
Eln |aj /7| = %/0 In |fi(re'")|dt ,
j=1
and assume polynomials f;, 1=1,2,... ,k,in D, = {2 : |z| > r}. Thus

@< LA + et /e
j=1

in U, = D, = {z : |z| = r}, where a; are zeros of f; in D,. The rest of the

proof is omitted as analogous to the one of the above Theorem.
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SOLUTION OF A STABILITY PROBLEM OF ULAM

JOHN M. RASSIAS

The National University of Athens, Pedagogical Department,
4, Agamemnonos Str., Aghia Paraskevi, Attikis 15342, Greece

In our paper [J. M. Rassias, “Solution of Problem of Ulam”, J. Approx.
Th. 57 (1989)] we solved the following Ulam Problem: “Give conditions in
order for a linear mapping near an approximately linear mapping to exist”
and established results involving a product of powers of norms. In this paper
we state and prove a more general version of my above theorem involving a
non-negative real-valued function [S. M. Ulam, “A Collection of Mathematical
Problems” Interscience, New York, 1961; “Problems in Modern Mathemat-
ics”, Wiley, New York, 1964; “Sets, Numbers, and Universes”, M.I.T. Press,
Cambridge, MA, 1974]. There has been much activity on a similar “e-isometry”
problem of Ulam [J. Gervirtz, Proc. Amer. Math. Soc. 89 (1983); P. Gruber,
Trans. Amer. Math. Soc.. 245 (1978); J. Lindenstrauss and A. Szankowski,
“Nonlinear Perturbations of Isometries”, Colloquium in honor of L. Schwartz,
Vol. I, Palaiseau, 1985].

Theorem 1. Let X be a normed linear space andY be a Banach space. Assume

in addition conditions:

(c1): f: X — Y is a mapping such that f(t.z) is continuous in t for each
fized z,

241
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(c2) : K : X? - RY U {0} a non-negative real-valued function such that
had . 3 . .
R, = Ry(z) = Zp"K(p’x,p’:c, ...,p'r) < oo
i=0

1S a non-negative function of z,
(c3) :

lim p~"K(p"z1,p"z2,...,p"2,) =0,
n— o0

(ca) :

f (Z:Ej) —Zf(.‘l:j) S Cz[((l‘l,l'g,... ,Ip) (1)

i=1
for any z; € X, C, (: constant and independent of x1,... ,z,) > 0.

Then there ezists a unique linear mapping L, : X — Y such that

(=) = Lp(2)l| < C1Rp(2) , (2)

for any z € X, where C; = Co/p.
If one takes p =2, z; = z, 25 = y, and
K = K(z,y) = lell*°llylly + 1=l llyll* )

such that 0 < a+b+c < 1, and a,b, ¢ := constants, then there exists a unique
linear mapping L : X — Y such that L = L, and

1£(z) = L(2)I| < Cll=l|l3***¢ (4)

for any = € X, where
C = Cy/(1—20%0He Ty

In this case we have

Ry = Ry(x) = ) (27" x 2 x 2i(atbto)||g||a+bte)
i=0
2 a
= Tgerret el

If one takes a = b = ¢ = 0 in (3) one obtains an additive functional L such
that

1f(2) - L(2)]| < 2C, (5)
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for all z € X. This is D. H. Hyers’ result [4].

Ifc=0,and 0 <a+b < 1lin (3) we obtain our result [6], which is: Let X
be a normed linear space with norm ||.||; and let Y be a Banach space of norm
|lll2- Assume in addition that f : X — Y is a mapping such that f(t.z) is
continuous n t for each fired z. If there ezist a,b,0 < a+b< 1, and C; >0
such that

If(z +y) = [f(2) + FW))ll2 < 2C:||z|13]ly]l} (+)

For all z,y,€ X, then there ezists a unique linear mapping L : X — Y such
that

1£(z) = L(z)ll2 < Cll=||$** (++)
for all z € X, where
C
C = 1-— 2a+b—1

Ezistence. Inequality (1) and z; =z, j =1,2,... ,p, imply

|f(pz) — pf(2)|| £ C2K(z,z,...,2),

or
lp™" f(pz) - f(2)ll < C1K(2,2,... ,2), (6)
where C; = C2/p. More generally, the following lemma holds:

Lemma 1. In the space X, for some Cy > 0 and for any positive integer n

n-—1

If(@"z)p™" - f(@)l| < C1 Y _p ' K(P'z,p'z,... ,P'z) . (7)

1=0

To prove Lemma 1, we work by induction on n.

For n = 1, the result is obvious from (6). We assume then that (7) holds
for n = k and prove that (7) is true for n = k + 1. Indeed, from (7) and n = k
and pz = z, we find

k-1
If(p*2)/p* — f(2)|| < Cu Zp'il{(P’z,Piz, ,P'2),
i=0
or
-1 ‘ ‘
If(P** 2)/p* ~ f(p2)ll < Gy ZP_'K(pH'l:c,p"Hx, )

i=0
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or
k-1 . ) )
If*+iz) fp* ! = flpz)/pll < C1 Y p VK (p* e, ... p )
i=0
or k
(" +12) /p*+ — f(pz)/pll < C1 Y_p T K (P, Pz, ... ,p'2) (8)
i=1

Therefore from (6) and (7) we get

If(p* 1) /ot — ()|l
< f @iz /p* = f(px)/pll + || f(pz) /0" = f(2)]

k
< C Zp’il{(piz,pix, .., p')+CK(z,z,... ,x)

i=1

k
= Cl Zp_i‘[((piz)piz) e )ptz) )

i=0

or (7) holds for n = k+ 1, or

k
F*+ ) /" = f(@ < Ci ) _p ' K(p'z,p'e,... ,p'2) 9)

i=0

But (C3) yields

n-1 (o]
Zp—if{(piz,pix, ., p'E) < Ep_iff(pi:c,pi:c, ...,P'z) = Ry(z) . (10)
i=0 =0

Then Lemma 1 and inequality (10) imply
If (p"2)/p" — f(2)|| < C1Ry(2) (11)
for any z € X, any positive integer n and some C; > 0.
Lemma 2. The sequence {f(p"z)/p"} converges.

We first use (11) and the completeness of Y to prove that the sequence
{f(p"z)/p"} is a Cauchy sequence. In fact, if i > j > 0, then

If(p'z)/p' — f(P2)/P || = p~IIfF (P'2) /o'~ - F(P o), (12)
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and if we set p’z = h (then p'z = p"Jp/z = p'~7h) in (12) and employ (11),
we get

If(p'z)p™" = f(PP2)p~I|| = p~I || (P~ h)p~ 0= — f(h)]|
<pICiR,(R),

or

Jim, If (' 2)p™" — F(P2)p~ || = 0, (13)

because
lim p'jRp(pjz) =0
j—oo

It is obvious from (13) and the completeness of ¥ that the sequence
{f(p™z)p~"} converges and therefore the proof of Lemma 2 is complete.
Set

Ly(x) - lim [p~" f(s"2)] (14)
It is clear form (1), (14), and (c3) that

P P
: —n n N — N —-n 7o
| lim p™" f(p ‘Elrj) nlggo;lp f@ )l
j= =
< lim Cop™"K(p"zy,p"z2,...,p"2,) =0,
n—oo

or
4 P

Ly (in) —ZLP(-"’J')” =0foranyz; € X,5=1,...,p,

i=1

or

Ly

<.

P p
Z:rj) =ELP(2j)for any (z1,22,...2,) € X? (15)
j=1

j=1

From (15) we get
Ly(gz) = qLp(z) (16)

for any q € @, where Q is the set of rationals.
Lemma 3. Let Y* be the space of continuous linear functionals and consider

the mapping
T®) R - R
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such that
T®)(t) = g(Ly(tz)) , (17)

where g €Y*, t €R, and z € X, z := fized. The T?) is continuous.

To prove Lemma 3 we proceed as follows: Let

T#(t) = g(p~" F(p" t)) (18)
such that
T(t) = lim (1), (19)

where z € X, z .= fixedandt € R, g€ Y*.

Then T )(t) are continuous and therefore T(P) is measurable as the point-
wise limit of continuous mappings TP, Moreover, T®) is a homomorphism
with respect to addition “+”, that is,

T@)(t 4 5) = T®)(t) + TP)(s) (20)

for any t,s € R. It is clear now that (20) and the measurability of T®) imply
that T() is a continuous mapping and thus the proof of Lemma 3 is complete
((1], p. 110-111, 116-117).

Then Lemma 3 and the fact that Y* separates points of Y and continuity
condition (c;) yield the linearity of L,.

If we take limits on both sides if (11) as n — oo we obtain (2).

Uniqueness. It remains to show the uniqueness part of our theorem.
Let M : X — Y be a linear continuous mapping, such that

If(z) - M(2)l| < C1R/(=) , (21)

for any z € X, where C] is any constant: > 0. If there ezisls a continuous
linear mapping L, : X — 'Y such that (2) holds, then

Ly(z) = M(z) (22)
foranyz e X.
To prove (22) we must prove the following
Lemma 4. If (2) and (21) hold, then

ILp(z) — M(2)|| < C1R,(z) + C1R'(z) (23)
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foranyz € X.

The required result (23) follows immediately if we use inequalities (2) and
(21) the linearity of L, and M, as well as the triangle inequality. In fact,

- L= P Ly(Pe),  M(z) =pTM(pz), (24)
ILp (' 2) = MP )| < IILp (P 2) = f(P 2)l| + |M (PP ) - F(P )| -

Then if we apply (2) and (21) we obtain inequality (24) and the proof of
Lemma 4 is complete.

It is clear now that (23) implies lim ||L,(z) — M(z)|| = 0 for any z € X,
j—oo

completing the proof of (22). Thus the uniqueness part of our theorem is
complete, as well.

Theorem 2. Let X be a normed linear space and let Y be a Banach space.
Let N be a non-negative real-valued function on XP such that N(z,z,... ,z)
is bounded on the unit ball of X, and N(t:cl,t:cz, oo tzy) < k(t)N(zy, 2o, .. .,

z,) for allt > 0, where k(t) < oo and E p"k(p") < oo. Let f: X —Y be

bounded on some ball of X. Assume, furthermore that f(tz) is continuous in
t for eachzc € X. If

P P
f Z:cj —Zf(:cj) < N(zy,z2,...,2p) , (25)
j=1 j=1
forallzy,za,... ,zp € X, then there exists a unique linear mapping L, : X —
Y such that
If(z) — Lp(2)ll < PN(z,2,... ,2), (26)

for allz € X, where p= Y p~(®+Vk(p™).
n=0

Proof. For ¢ > j > 0 there holds

o™ f(5'z) — p7 (P )| < ( > P‘"‘k@"“‘)) Ne...,2) @)

m=j+1
This is easily proved by induction. Indeed, if h = p'z, then from (25) with
zy=...=2zp, = h we have that
=G+ f(pP+a) — p~7 (P o)l = p~ O+ £ (ph) — pF(B)I|

< p_(j+1)k(p7)N(r, e, Z) (28)
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so that (27) holds when i = j + 1. If (27) is true for a given j and i = s, then
one sees immediately that it also holds for this j and ¢ = s + 1 by applying
(28) with j replaced by s, since

lp=CHF(p*+Y) — pd F(@)|| < P~ OV f(**h) — p~* £(2°)
+pf@°) = F @) -

From (27) and the assumption about k, it follows immediately that the
sequence {f(p'z)/p'} converges. From this it follows that if L, exists, it must
be unique, since

o~ f(p'z) — Lp(2)l| = p~* || f(P'z) — Ly(p' )|
<p'PN(p'z,... ,pia:)
<p~'k(p')PN(z,... ,z) =0,

so that L,(z) must be the limit of the sequence {f(p"z)/p"}.

Thus we define L,(z) to be this limit and see at once that (20) holds by
applying (27) with j = 0 and ¢ = n.

From (25) it follows that

IF(P"(z +v)) — f(p"z) — f(P"y) — (p — 2)f(0)|| < k(p")N(2,y,0,...,0),

so that upon dividing by p™ and allowing n — oo we see that

Lp(z +y) = Lp(z) + Lp(y)

It follows from the assumption about N(z,z,...,z) that it is bounded
on any bounded subset of X. Thus by (27), for each fixed £ the sequence
{p~"f(p"zt)} converges uniformly in ¢ in any bounded subset of R, so that
Ly(tz) is continuous in t. Since L, is additive, it is therefore linear. Finally,
since we have assumed that f is bounded in some open set of X, (26) implies
that L, has the same properties, so that it is continuous.
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FOR THE CASE WITH MANY VARIABLES
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Let us consider an equation

YUyy + urz +auy, =0 (1)

on the half-plane y > 0 , where « is some constant. The solution of equation (1),
satisfying the condition u(z,0) = f(r) , where f(x) is the analytical function, is
formally expressed in the form of the series

X (—1)*T(a) ,d**f
u(e,v) = gﬁ Tk +a)? dot* @

that is easy to verify by substituting the series into the equation. If we put
f(z) = z?™, then from (2) we obtain

an_ ME=n)=n) o,

1« +

Up(z,y) ==z

42(-n)(1 - n)(r} -n)(1+ % —n) 2,.2n—4 _
1 2a(at1) ' '

1 4
= z?"F(—n, 3" n;a; —:17—(‘24),

where F(a, 3;7;t) is the Gaussian hypergeometric function [1]. If f(z) = z>"*!,
then analogously we find

2n+1 _ 4(_77')(_% - n)y$2n—l+

vn(za y) =z 1. a

42(-n)1-n)-2-n)1-1-n) 2,203 _
12a (a+1) '

1 4y
2n+1 PP
=z F(-n,—§—11,01,—-‘72 ).

251
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Making use of formula [1]
z
F(a,Bi7;2)=(1—2)"°F (‘"’7 —BiTiT :)

finally we obtain

1 Yy
un(z,y) = (22 +4y)"F (‘"’“‘ Ty TmE L2 )

1 4y
va(z,y) = 2(z? + 4y)"F(—n,a + 3 +n;a; m)

These polynomials can be regarded as the analogues of homogeneous harmonic
polynomials.

In the matric, determined by the quadratic form corresponding to the principal
part of equation (1), the equation of the unit circle S has the shape 4y + 22 =1
The equalities

1
u,,(:v,y)|s = F(—n,a — 5 +nia;1 —2?) =

MNa — % + 2n)[(«) 2n _
- Ia — % +n)I'(n + a)l oo = Qanl2),

1
u,,(x,y)ls =cF(-n,a+ 3 +nya;1—22) =

_ Mo+ % + 2n)(«) L2041
T De+i+n)(n+a)
hold. The equalities

+...= QZn-{—l(I)

dQZn ] szn 2 on !
=2 —— =42*F" - 2F
dr F dzx? Ny

hold, whence it follows

FI — __1_ dQZn Fn — LdZQZn LdQ'Z" )
2z dz ’ 472 dr? 4 dz
From the equation for the hypergeometric function

1
H1—)F" +[a - (a+ S H)F' +n(a — 3 +n)F =0,

assuming t = 1 — 2 | we obtain

1
(1 - 2)F" + [é +(a+ %)«172]17" +n(a — 5+ n)F = 0.
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By substituting the expressions F”, F* and F in terms of Q5 into this equality we

find

5. d?
(1 "Iz)% - 2ax dQZn + 777(777 +2a -1 QQn =0.

By analogy we obtain

d2 n d n
3?2“ — 2ar Q;IH +(2n 4+ 1)(2n + 2a)Q2,41 = 0.

Consequently, the polynomials Q(x) of the k-th degree satisfy the equation

(1-1?)

d%u du
— 9 - (] 9n = 0. \
1r? _ard‘r + k(A 4+2a —1u=0 (3

Equation (3) is the same as that which is satisfied by Gegenbauer polynomial:
[2], therefore

(1-2z%)

Qu(r) = A(K)CS ™% (),

where A(k) is a constant. The constant A4(%) can be defined by comparing th
terms of the highest degree in both polynomials. Obviously, the highest degre
terms in Q4 () have the form

Qr(x) —%+k)1“(a+§)l
and since (2]
2nT A
CMa) = %

by comparing these expresions we find

Ak) = F(a)r‘(o—-)l\' _ T'(2a — 1)&!
) 2T(a— 1+ 5T(a+ %) " T(2a -1+4k)

consequently, we have

Qr(r) =

The case a = % corresponds to the first genus Chebyshev polynomials snd requires
special consideration. In this case we have Qi(x) = Ti(r) , because with a = %
for any solution u(y, ) of equation (1) the function u(¢?,z) is harmonic.

The presented approach to the construction of orthogonal polynomials admits

a generalization for the case with many variables. We consider an equation
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Uy, Autou, =0, = =(21,..-,Zn), (4)

where A is the Laplace operator with respect to variables x. For z = 0 the bounded
solution of equation (4), satisfying the condition u(0,z) = f(x) , can be written
in the form

—1)*IY(
T T

Put f = (z3+...+22 )Ipm(z) , where pm () is a homogeneous harmonic polynomial
of degree m . By direct calculation in this case we find

Af=4(—1)(1_m_g—1)(;r§+...+1§)’-lpm(a=),
AFf =4*(-1). (L—1—z(1-m—§—1)

(k—m— g (22 4. 4 22 R (a)
and from (5) we obtain

ulz,z) = (22 +... + J:?,)'pm(m)x

n 4z
XF(—I,].—l—m—a,a,—'m) =

=Mz+2i+.. 4+ 22) pm(z)x

)
dz+224+... 422/

The unit sphere in the metric, corresponding to the principal part of equation
(4) is defined by the equation 4z 4+ 22 + ... + 22 = 1. Let us consider the trace
u]*(z,z) on the hemisphere S: {z > 0,4z + 22 + ... + 22 = 1}. We have

2
la+T+l+ma

QP (2) = ] (2,2)| g = Pmlz)x

, — 2
xF(—l,a+n7+l+m;a;l—xf—...—zf,)‘

let us construct a partial differential equation, satisfied by the polynomials Q*(r).
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We have

m d-z m d2
Q_l — P_mF _ Zl'jme' Ql _ " Pm

= F—
dx; T; ’ da? dm?

dpm ’
—4r; dp F'—"me'+4r]me'

m
- = mp, F — 2(1&% 4+ ...+ ;r,z,, )pm ',

i IJ’ dQI
= dr;

AQP = —4mpn F' — 2pn F' + 4(23 + ... + 22 )pm F”

However, since Q" (1) = pm(t)F,

2Ax 4. 4 22)pm(a Zf,d +sz ),

AQI" = —4(m + )pm( ) F' + 42} + .+ 2 )pm () F

whence we find
Ml 422 )pa(0)F = (22 4.+ 22)AQN -
— —)Z J m+-—)mQ,

From the equation for the hypergeometrlc function we get

(1=0)oF" +[-(m+ g) +(a+m+ g)a]F'+

2
o=a3+... +22.

255

Substitutings expresions p, F"', pm F',pm F into this equation, multiplied by pm,

for Q7*(x) we obtain the equation

(IQ,

(1-af—...—2h)AQT ~2a ) 2~

=1

+[2U(20 + 2m + 2a + n — 2) + 2ma]Q]" = 0.



256 A. Yanushauskas

It follows from the expresion Q' (x) that

IT(a + 252 + m + 2)(a)

—1)'x
(o + 252 + m + )T + a)

Q' (z) =

x(z1 4. +23) ' pm(2) + R (2), (6)

where R["(z) is a polynomial of the degree not exceeding 2/ + m — 2.
Thus the polynomials QJ" () yeld the solution to the following problem: to find
those values of ) for which the equation

(1—z§-..._1;-;)AQ—2azzjjTQ+AQ=0 (7
j=1 ’

has the solutions, bounded in the unit sphere, and to find these bounded solutions.
It is natural to regard the polynomials QJ"(z) as a generalization for the case with
many variables of the Gegenbauer polynonnals If we represent Q*(z) in the form
filed + ... 4+ 22)pn(z) , then from the equation which is satisfied by Q' (z), for
fi(o) we obtam the equation

a(l—a)f”+[m+g—(m+g+a)a]f'+l(l+m+a+n_ )f=0.  (8)

2

As know [2] the Jacobian polynomials p(a e satisfy the equation

(1-2®)"+b—a—(a+b+2)zu' +1l+a+b+1)u=0.

We replace the indepenclent variable 2y = 1 4+ r and then for the function v(y) =
u(2y — 1) we get the equation

y(y—l)v"+[b+1—(a+b+2)y]v'+l(l+a+b+1)v=0.

This equation coincides with (8) fora=a -1, b=m+ “T”Z , consequently

n-2
flo)= APV T ) (95 — 1,

where A is a constant. Thus

QP'(2) = Apm() P 200t 44 22) — 1),
where A is a constant.
If we multiply by (1 — z2 — ... — 22)*~!, we can bring equation (7) to the

self-adjoint form

dqQ -
_2yalw 2 ”_.201 =0
E dJ:, co—x) dmj]+)\(1 Ty —. )T Q
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Hence it follows that

/(1 —al— =22 QR (2)Q (x)dr = 0

o

&

if at least one of the inequalities either k # I or n # m is fulfilled, i.e. the

polynomials Q["(xr) comprise an orthogonal weighted system. Here T is a unit
sphere.

For the Jacobian polynomials the representation [2)

{
pled - EDTU+1+8) _ I PR
r o (x) (11 9) Fl+ao+p+1,-L3+1; 5

):

CTRI+a+p+127
= TTltatdrn P

holds, consequently we have

a— n-2
POV (92 4 4 a2) 1) =

P(21+a+m+";2) .
= -1 .2 . ] i o
F(l+a+m+"-T—2)( e+ +,) +

By comparing this formula with the highest degree terms in Q" (z) we find

NGO (a=1,m+252) o o 2
_— 2 (2. R S —1).
F(l+a)Pm(T)P1 ( (Tl+ +Tn) )

() =
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SOLUTION OF QUASI-TRIDIAGONAL SYSTEM OF LINEAR EQUATIONS
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Abstract.

Necessary and sufficient conditions for the uniqueness, existence, and
stability of solutions of a class of quasi-tridiagonal systems of linear
equations, which appears in many applications, are obtained in this paper.
Efficient methods for computing both exact and approximate solutions are

presented.

1. Introduction.

Many problems, such as numerical solutions of differential equations[l’zl

[3’4], especially when subject to

and interpolation by spline functions
periodic or more complicated boundary conditions, are usually reduced to the
solution of quasi-tridiagonal systems of linear equations of the general form
(1.1) Ax=f,

where x=(x1,x2,~-xn)T and f=(f1,f2,-'~f’n)T are unknown and known vectors

respectively, A is a quasi-tridiagonal matrix,

259
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~ &1 &2 33 an_z an_l an\
a (&7
C
A= )
a b c
by by by b-1 Pp-1 Pp )

ax0, cx0, |b|>|a|+|c]|.

The traditional double sweep method is not suited for the solution of
system (1.1), and those methods, such as Gaussian elimination and iteration,
have not make full use of the special structure of the coefficient matrix A,
thus, they are not considered as ideal methods for this kind of systems of
linear equations.

In this paper, we shall investigate the uniqueness, existence and
stability of solutions of system (1.1). By analyse the inverse matrix A-1 of
A, we arrive at some efficient methods for computing both exact and
approximate solution of system (1.1). When A is a tridiagonal matrix or a
circulant tridiagonal matrix, modified algorithms which need about 5n
operations are presented. Numerical experiments show that these algorithms

work efficiently

2.Uniqueness, existence and stability.

The uniqueness, existence and stability of solutions of system (1.1)
depend mainly on its coefficient matrix A. Therefore, most part of this
section is devoted to the study of matrix A.

Evidently, the two roots, say ll and 12, of equation
(2.1) cA 2-O-bl +a=0

are distinct real ones, and |2, | |25} . We can assume that EINERR
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Lemma . |7tl|<1, |)<2|>1.
Proof. Owing to the fact that |b|>|a|+|c|, we have
b2-tac>(|a|+|c|)2-dacz (]a|-|c|)?.
Therefore
2|a] < 2]a]

b1+ /02 aae laltlcl+lal-lc]|
1 =lbley Foaag, I2ltleltlellel

zle] z]e]

Theorem 2.1. Matrix A is invertible if and only if matrix

n i n i
» a;dy iglail 5

=1,

| =| [b|-/2bz-4ac
C

B=
S, S, . in
Lbidy  Lbyp
i=1
is invertible, i.e.,
n
A(n)‘zal ZbA Zaik be =0.

i=1

Proof. Matrix A is invertible if and only if the homogeneous system

(2.2) Ax=0

T

has trivial solution only. Suppose that x=(x1,x2,- . -xn) is a solution of

system (2.2), we have

n

(2.3) i=1a.ixi=0,
(2.4) a.xi_1+bxi+cxi+1=0, 1<i<n,
(2.5) iz:lbixi=0.
Due to equation (2.4), there exist two constant a and 8, such that

_a 1 i-n .
(2.6) x].h-o.7t1+/3‘k2 , 1sis<n.
Thus, we know from (2.3), (2.5) and (2.6) that a and 8 satisfy

n . n .

i i-n_

(2.7) aiglaikl + Biglaixz =0,
(2.8) a):bl +BZb N2,

i=1

Consequently, from (2.6), (2.7) and (2.8), we know that if and only if the
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coefficient matrix B is invertible, system (2.2) has trivial solution only.
Since |B|=A(n), theorem 2.1 is thus proved.

Corollary 2.1. System (1.1) is uniquely solvable if and only if A(n)=O0.

Denote by
x x ok * ¥
r2 22 23 2n-2 2n-1 2n)
b ¢
a b c
A :
a b c
* % * * * *
A N S

Theorem 2.2. If matrices A and A* are invertible, then
A—1=(I+D)A;1,

where I is an n by n identity matrix,

1-n
APRILP
12 lz"n *.. *- ... *_
1 %2 | 1™ %22 %%
D= . . |B * * * .
C by=by byby ¢ by”
P
11 1
Proof. For an arbitrarily given vector f=(f1,f2,- . -fn)T, suppose that
x=(x1,x2,- . -xn)T is the solution of system (1.1), we have
n n
(2.9) iglai(xi-yi)=f1~i§luiyi,
(2.10) a(xi_l-y.l_l)+b(xi—yi)+c(xi+1—yi+1)=0, 1<i<n,
n n
(2.11) iglbi(xi—yi)=fn-i§1biyi

where y=(y1,y2,- . -yn)T is the unique solution of system
(2.12) Ay=f.
Due to equation (2.10), there exist two constants a and 3, such that

(2.13) xi—yimliﬂn;_n, 1sisn.
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Thus, we know from (2.9), (2.11) and (2.13) that a and 3 satisfy

n n
1
(2.14) a._ ar] +8 Z a; l fl-.z a;y;,
i=1 i=1
n 5 n i-n n
(2.15) a T Ay +8 T byt~ by
i=1 i=1 i=1
Noticing that
n n
* *
f1-1§1aiyi' fn-i§lbiyi'
we get from (2.14) and (2.15) that
n
(1 izlaiyi’
(2.16) []=B ) - J
3 n
o I byyy
n-1
*_ * . . *_
_l[al 81 82782 *n a:}
=B y.
* * *
bl_bl bz-b2 - bn—b
Therefore, we obtain from (2.13) that
(2.17) x;=y,+(1 A3 [g], 1sisn,

Theorem 2.2 follows from

A" f=x=y+Dy=(I1+D)y=(I1+D)A .
¥
Theorem 2.3[5] Denote A, by A0 in the case of (al,az, .. ,an)=(—clz,c,0,
-,0), (b:,b;,' .- ,bn)=(0,' --,0,a,b), then A, is invertible and has a LU
factorization A0=LU, where
H 1 p
a 1 »p
u
L= ’ U= ’
. 1 p
a u 1

u:—clz=-a/k1, p=—cll/a=-1/7tz.
From theorem 2.2 and 2.3, we have
Corollary 2.2. The solution of system (1.1) can be formulated by

x=(I+D)U'1L'1f.
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For the sake of numerical stability, we need to estimate the upper bound
of the condition number xQ(A)=IIAl|®IIA-1II e Without loss of generality, we

assume that
n n
max{ ), |ai|, % |bi|}sK ,
i=1 i=1
where KO is a positive constant independent of n.
Theorem 2.4. If there exists a positive constant Kl, which is independent
of n, such that
(2.18) |A(n)|zK1.
then the condition number x@(A) is bounded with respect to n.
Proof. It easy to know that
Al < max{Ko, lal+|b|+|c]|},
-1
B Ilms 2K0/K1.
From theorem 2.2 and theorem 2.3, we have

lll 1

- _]_ _1 -
A mslI(I+D)A0 llws(l-rllDllm)IIL llmllU Ilm,
where
IIDII@s(1+|AI|)(K0+|c||7Lz|+|a|+|b|+|c|)llBll&,
2,1

-1 -1
1 s (|l -lal) T

Aol
-1 -1 I 2
IL "Il _<(1-|p|) "= .
o (le D) S
Summarizing the above inequalities, we know that the condition number xm(A) is
bounded with respect to n.
Corollary 2.3. If inequality (2.18) holds, the solution of system (1.1) is

stable.

3.Algorithms and numerical examples

To ensure the existence, uniqueness and stability of the solution of
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system (1.1), we. assume that inequality (2.18) holds.
According to theorem 2.2 and theorem 2.3, we have the following algorithm
for the exact solution of system (1.1):

Algorithm ES:

Step 1. Compute the solution y=A01f of system A0y=f in the following
way:

-1 -1 .
w1=[.l fl’ wi=/-‘ (-awi—1+fi) ’ i=2,3, -+ ,n,
P Yi=-pyi+1+wi, i=n-1,n-2,---,1;
Step 2. Compute the solution x:A_lf of system Ax=f in the following way:

xi=yi+ali+l31;_n, i=1,2,- -+ ,n,

where a and 3 are computed by (2.16).

To avoid redundant computations, Al and l; (i=1,2,* - - ,n) should be

1
computed recurrently in the following forms

i+l_ i+l_ i

Ata i, A T E A I N

Algorithm ES needs about 21n arithmetic operations. It should be noted
that almost half operations are spent on the computation of the coefficients a
and 3, and the number of such operations are directly proportional to the
number of non-zero elements in (al,az,. .. .an) and (bl,bz,. .. ,bn). Thus, the
algorithm ES doesn’t need so much operations if some elements in (al,az,

-,an) and (bl,bz,' .- ’bn) are zero. If only a few elements are non-zero,
algorithm ES needs only about 9n arithmetic operations. When (al,az,- cey
8 )=(b,c,0,- - ,0,8), (by,by, ;b )=(c,0, ,0,a,b), Chen Mingkuil®l claim
that his algorithm CTS needs about 5n arithmetic operations, that is because
he didn’t take into account of the left hand side terms in his algorithm which

need another 4n arithmetic operations.

If n, the number of equations in system (1.1), is large, due to the fact

that

Lim x'l‘= Lim 15“:0,
n— +® n—> +o
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the second step of algorithm ES can be modified to

i .
yi+a11, 1< 1<|n1,
* .
X35 ¥ m s isn-my,
i-n .
yi+l37t2 ’ n m2<1sn,

* :
where m, +m,sn. The error of the approximate solution x to the exact solution

x satisfies
(3.1) ||x*—xllms|a|]ll|m1+|[3||12|_m2.

From (2.16), we know that the coefficients a and B are bounded with
respect to n, Therefore, when n, and m, are comparatively large, the
approximate solution x* could be very accurate, but need less operations to
corhpute.

In some applications, algorithm ES can be modified to approximate one

which needs much less operations. Here, we consider two commonly occurred

examples.
Example 1. When (alyazt' . M’n):(b,cvo,' - ,0), (bl’bz’. . ibn)=(oy' © 30y,
b), we have
_ 2 -1,y 1,1-n,_.2-n n-1,.n
A(n)-(bll-l-ckl)(alz +b) (b7L2 +cl2 )(aa.k1 +bkl)

- 2n
-ac7kz+0(ko )y
-1
where A y=max( |1, ], |1, |)<1, and
-1 1-n__, 2-n
ar,"+b blz —ch, ]

1 [
3(n] -al'l"l-ban bA, +cA 2

1 1 1
A
__ 1 2 n
'-_'aclz[co :]+0(|10| ).

*
1 (P2 T2 ) ey, ny
g*) acral 0 afly oy gy JBITTO
n *¥p-1"q

for (a,B)T, the second step of algorithm ES can be modified to

B—l

Substituting

Kk * i % i-
(3.2) x; =yiha ATHE ALY, is1,2,- - ,n.
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Example 2. When (51'32’ o ,&n)=(b,c,0,' ++,0,a), (bl:bzr' o tbn)=(cv0| - ,0,

a,b), we have

2 2-n -1
A(n)=(bl1+cll+alrll)(cl +al2 Lip)- (bl +ch +a)(cl1+alr1) +bx'1‘)

- _ n

-—ac:()t1 l2)+0(lo )
-1

where A p=max( |1, [, |2, |)<1, and

rarylb by e
B
“2 [ n; [c n- 1 2 na]
-CcA -akl -ba 1 bkl+cl1+all

=87} +o<|xo|“>.

where
CcA
™ ey L 2 ,,]
1 72 A, &

1

* f. -by,-cy,-ay
R I
B f n8vq -byn_l--cyn

for (a,B)T. the second step of algorithm ES can also be modified to (3.2).

Substituting

The modified approximate algorithm of ES in the above examples needs about
Xk
7n arithmetic operations. The error of the approximate solution x to the
exact solution x satisfies the following estimate
*% * * _ n
IIx -xllws|a -a|+|B -B[-O(Ao ).

When n is large, (3.2) can be remodified to

i lei<
Yt AL, si<my,
*k% .
(3.3) X, =Yg m,sisn-m,,
* i- n .
y +3 12 n m2<1sn.

ES 20
The error of x * to the exact solution x satisfies the following estimates

i )%k i I *kk *“ I * I
C - < - + -
X X <X X X =X

* * m My
sla -al+[s =B +|a||r ] “#[B][2g] °.
If n is large and m m, are comparatively small, the remodified approximate

algorithms of ES in the above examples need about 5n arithmetic operations.
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We apply the algorithms described above to solve system (1.1) in the case

ofa=1,b=4,c=1,and(a1,a -,an)=(4,1,0,'--,0,1), (bl’b ',bn)=(1,0,"',

- o
0,1,4), which appears in the problem of periodic spline interpolationls]. When
£=(6,6,- - - ,6)T, the exact solution is x=(1,1,- - ,l)T. If we use algorithm ES,
the maximum error of the computed solution to the exact solution are less than

3.65x10 12, If we use the modified algorithm of ES, we have

Table 1

n 4 8 16 232

6 10 12

i xi 1.86x107°  9.73x107°  2.60x1071%  3.65x10”

If we use the remodified algorithm of ES, let E(n,m)=l x***—xllm, where m=m, =,

we have
Table 2
n E(n,4) E(n,8) E(n,16) E(n,32)
8  1.89x1075
16 1.89x107°  9.76x107°
32 1.89x107°  9.76x107°  2.62x1071°
264  1.89x107°  9.76x10"%  2.62x10710  3.65x10712

From Table 1 and 2 we know that the errors are mainly come from the

substitution of (3.3) for (3.2), not from the substitution of (a*,B*) for
m, -m,
1l

2| 2 are small enough, the remodified

(a,8). General speak, when |a and 'l
algorithm will yield satisfactory result.
The numerical experiments are made on IBM PC using Turbo Pascal version

5.0 of Borland International, Inc.
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The Uniqueness and Existence of Solution and Normal Boundary Condition

for Thin Plate Bending Problem

Wang Zhehui Wu Cigian
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ABSTRACT

Spline finite strip method based on equi-mesh for structure analysis has been studied by
C.Q. Wu , YK Cheung and S.C. Fan in 1981 [1]. We propose the generalized trapezoid element
method of non-equi-mesh processing on abitrary area and its error analysis in [2]. The basic
problem of structure analysis, the uniqueness and existence of solution of thin plate bending
problem is ciiscussed in this paper in order to deal with boundary condition on abitrary area

uniformly . The normal boundary condition is also proposed.

Let
D, D, 0 “Waex
D = D, D, 0 {e} = -Wyy
0 0 D,y 2W,.,

where D, Dy, D;. Dy, are positive constants satisfying Dx , Dy> D; and W(X.Y)

displacement function on the bounded area Q.

Let T 9Q be boundary of Q and W € HZ(Q),f € H°(Q).
Definition (1)

T
JW) = JIQ [% {€}y D (€} - Wf jdxdy

= ” (5 IDLWZ.+2D, Won Wy 4D, W2, +4D,, W2, 1-Wf ) dxdy
Q
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Thin plate bending problem of structure analysis becomes the following problem.
»* 2
find W € H®(Q) such that

J(W) = min  J(W) (1)
WEH?(Q)
Definition (2)
For all uy € H?(Q) f € H°(Q), define
a(u,v):fJ'Q [Dxuxxvxx+D1uxxVyy+D1“yyvxx+Dyuyyvyy+4nyuxyvxy]dXdy
(f.v)=fo fvdxdy
Definition (3)

N
For allu € H (Q), k = 0,1,2,..., define
aku 1/72
Tally o = {0 I b (—a_B)z ] dxdy }
’ o<a+pB<k dx ~ 9y
aku 1/2
lul ={ 5 [ = (575 )2 1 dxdy }
k.Q Q a+pB=k ax“ ayB
By llu ||k . |u|k denote Il u "k,Q . |u|k,Q respectively, if there is no confusion.
Lemma (1)

Let W € HZ?(Q) be the solution of (1) then
a(Wv) = (£f.v) vV vEHZ(Q) @

% ., .
Conversely, W €HZ(Q) satisfying (2) must be the solution of (1)
Definition (4)
Let '=sI'yUTl'2Ul> with I'yN I'y=¢ i#j Define
= 3 =0, = = =0
G ('-ly“II'v1 “xl[vz uyll'vz “IF?_ }
We name "1, 'z and I3 as simple supported boundary. clamped boundary and free boundary
respectively.

x k
Define Hc = { u; w€H (Q)NG})
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especiall, E = (v =0 =uy, =0, xy) €T}

k k
He = ( u; u€H (Q)NE}
Lemma (2)

2
Let W €H2(Q) be the solution of the problem

J(¥) = min J(W) (3)
WEHE (Q)
Then
a(W'.v) = (£.v) V vEH2(Q) (4)

3
Conversely, W €H2(Q) satisfying (4) must be the solution of (3)
Theorem (1)

Let uy, uz € H2( Q) be solution of (3) Then there exist constants @ o, 0,7 o such that

u; = upx + Uox + Boy + Yo {(x.y) € Q_
lemma (3)
For all u€H*(Q), vEHZ2(Q). fEH(Q) let
Lu = Dy Uyppnxt(2D3+4D,y )uy sy, +Dyuy yy
5 () =[Dytisny*(D; +2Dsy Juny y JcoS @
+[Dytyyy + (D1 +2Dsy Jusny Jeos B
2.(u) = [Dyu,,+Dju,, Jcos @+2D, u, cosf
I'z2y(u) = [Dyuy,,+D,u,, Jcos+2D, u, cosa
where (cos®,cos) is outer normal vector of I".Then
a(u.v)-(f.v)=(Lu-f.v)-S o [vI5(u)-Vul2x(u)-vy 2y (u)]ds
Theorem (2)

» —
Let u €c” () be the solution of boundary problem
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Lu = f (x.y) € Q (5)
“=F2x(u)=['2y(u)=0 (x.y) € I'y
u=mu, =u, =0 (x.y) € I'>
F2x(u)=l2y(u)=3(u)=0 (x.y) € I's (6)

%
Then u is also the solution of the following variational problem.

. | —
Find v €c¢* (Q)NG such that

J(u') = min J(u) (7)
WEHZ(Q)

* -
Conversely let u €c* (Q) be the solution of (7), then it must be the solution of (5) and (6).
Throerem (3)

Let u€c” (5 then u satisfies (5) and (6) iff u € HZ(Q)and

a(u,v) = (f.v) V v€ HZ(Q) (8)
holds.

Definition (5) Let u' € HZ(Q) be solution of (7). Define n* to be the generalized
solution of (5), (6).
Theorem (4)
Suppose that G (cf. Definition (4) ) satisfies ome of the following conditions:
@) F2%¥® (i) 1+ @ and 'y contains three points which are not on the same line.
If probelm (3) has solution, then it must have unique solution.
Definiion (6)
Suppose that G satisfies one of the following conditions
G) 2@ (i) 1+ D there exists Ax (xic,yx) €I 1,k=123 such that A; Az Aj are not
on the same line and AA; A2 As contains the center of gravity of Q.
By "normal boundary condition" we name the boundary condition of G.

Note : If the boundary condition is mormal, variational problem (3) possesses solution which
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L *
has physical background. By Theorem (4) this solution W is unique. In this case if W €

H® (Q), we know by embedding theorem that W“EC4 (Q) and determined by (5) and (6).

We can study the property of W- by (5) and (6).

Reference
[1] C.Q.Wu , Y. K. Cheung and S. C. Fan,"Spline finite stripe in structure analysis", Guangdong
Scienc e Publishing House, 1986
[2] C.Q. Wu and Wang Chehui, " Generalized trapezoid element method and its error analysis
for structure analysis”, to be published
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We will prove in this work the following:

(I) A t.a. (: topological algebra) (E, 1) is “Q” iff there exists V € Wy such
that rp < gy

(II) A lc. (: locally convex) algebra (F,T') is “Q” iff there exist M > 0 and
p € I’ such that rp, < M - p.

(I1I) A lm.c. (: locally multiplicatively convex) t.a. (E,I') is “Q” iff there
exists p € I' such that rg < p.

Applications.
(IV) A “Q” locally convex *-algebra (E,T') with the B*-property is normed
(: there exists p € I such that ¢ < p for all ¢ € T).

(V) (A. Mallios) A l.c. *-algebra (E,I') with the B*-property whose comple-
tion is a “Q”-algebra is normed.

Note 1. (III) is the generalization of the relation r(z) < ||z||, = € E for the
spectral radius 7 of a Banach algebra (E, || -||). All the above are contained in

7).
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Definitions.

a) A tu.s. (topological vector space) (E, ) is in particular called a t.a. iff
a1) E is an algebra (over C) and
a;) ¢ — az, ¢ — za are both continuous for all a € E (: separately
continuous multiplication in (£, 7)).

b) Weput G, = {zr € E: Iye E: z+y—zy=2z+y—yz = 0} for
the set of quasi-invertible elements of E (which is in fact a group under the
circle-operation: zoy := z+y—zy, z,y € E) and in case E is unital (:E has
a“unit” e: ze=ex=z,z€E): Gp:={z€E:JyeE:zy=yz=e}
for the set of invertible elements of E (which is in fact a group under the
multiplication of E).

c) Ata. (E,7)is “Q” in case G € 7 (: equivalently Gg € 7 in the unital
case or equivalently G4, € Wy(7) where Wy(7) are the neighborhoods of 0
in (E,1)).

d) For each z € E we put Spg(z) :={A € C— {0} : £ ¢ GL} U@, where:

0 if £ is unital and =z € Gg
&, := ¢ {0} if Fis unital and z ¢ G,
{0} for a non unital E

e) rg(z) := sup{|A| : A € Spg(z)}, ¢ € E is the spectral radius of z € E
(in case Spg(z) # 0) and the map z — rg(z) of E onto Ry is called
the spectral radius of E (which is defined for all z with Spg(z) #0). As a
consequence of the Spectral Mapping Theorem we get rg(2") = rg(z)™ and
rg(Az) = [Arg(z), A€ C, z € E, n € N, (N,R;,C above are respectively
the sets of natural, positive real, complex numbers). Put

S(E) ={z € E:rg(z) <1}

f) Given a balanced and absorbing V' € Wy(r) we put A;(V):={p>0:z¢€
pV}, x € E. It is easy to see that [p,+00) C A; C[0,+0), pE A;, 2 € E
and we put

gy(z):=infA;, z€FE

The map gy, : E — Ry : z v gy (z) satisfies gy, (Az) = |A|gy(z), A € C,
zckE.

g) In alc. algebra, (E,T) = (E, ) the topology 7 has a base of neighbor-
hoods of 0 spheres S(p,e) := {z € E : p(z) < €}, e > 0, p € T, where the
family I’ of (:vector space) seminorms on E is supposed to be saturated



A Characterization of Q-algebras 279

(:max{p,q} € T for all p,q € T) and separating (: for 0 # z € E there
exists p € T' : p(z) # 0) (: saturability of T, it is not a loss of generality
because S(p,e) N S(q,¢) = S(max{p, q},¢)).

h) A lc. algebra (E,T) is in particular a L. m.c. algebra iff each p € T is
an algebra-seminorm: p(zy) < p(z)p(y), z,y € E. (: submultiplicative
seminorm p).

1) A seminorm p of a *-algebra (E,*) (where the involution « : £ — FE is
such that z** = (z*)" = z, Az + y)* = Az* + y* and (zy)* = y"z*
z,y € E, X € C) has the B*-property iff p(z~z) = p(z)?, z € E. By [6] a
B*-seminorm is submultiplicative.

j) For an algebra seminorm p on E, ker(p) := {z € E : p(z) = 0} = p~1(0)
is a (2-sided) ideal of E and the quotient space E, := E/ker(p) equipped
with the quotient-norm p(z,) := inf{p(z + y) : p(y) = 0} = p(z) (where
z, = z + ker(p)) it becomes a normed algebra and its completion E, =
(Ep,p) is a Banach algebra which in particular is a C*-algebra in case p is
a B"-seminorm.

Note 2. i) E. A. Michael [4] has the characterization “The l.c. algebra (E,T")
is “Q” iff S(E) € Wy(r)” and A. Mallios [3, Lemma 11.4.2] “The t.a. (E,7)
1s “Q” iff S(E) € Wo(r)”.

i) G. Lassner [2] proved that “a “Q”, complete, unital, barrelled, Imc *-algebra
with the B*-property is a C*-algebra” and M. Fragoulopoulou [1, Theorem 3.3]
using a much simpler technique, proved Lassner’s result. At the same time,
remove completeness and unit and replacing the property “Q” by a weaker
condition. In the same paper (ibid., Lemma 2.1, Theorem 2.2) it was also
proved that every complete “Q” l.m.c. algebra is, in fact, a C*-algebra.

Proof. (I) (direct) Let (E,7) be a “Q”-algebra. By G% € 7 there exists a
balanced, absorbing U € W;y(7) in such a way that for V := %U we have
0 €V CUC GY. For arbitrary z € E, p € A;(V)and A € C: [A| > p
we have the following: |A\| € A-(V),z € AV, z € AV, £ eV CU CGE,
A ¢ Spp(z). Thus Spg(z) C {X € C: |A] < p}, rg(z) < p. Passing to the
infimum we get:

rp(z) <inf Az (V) = gy (z), z€E
(converse) Let 75 < gy for some V € Wy(r), and arbitrary z € %V. Thus

€ AI(V)) rE(x) < gv(‘”) < % <IL1 ¢ SPE(I), T = % € G%. Thus
V C G% and so G§, € Wy(7). 0O

[T NI
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(IT) For v € Wy(r) with rg < gy there exists p€ ', e > 0: {z € E:
p(z) < e} = S(p,e) C V. But V C U is equivalent to g, < gy, S(M -p,e) =
2 S(0,6) = S, 7). A:(\V) = $A4:(V) and g, () = Sgy (2), X € C-{0},
z € E. Therefore rp < gy, < I5(pe) = Ies(p1) = %gS(p,l) = 1p = Mp, with
M=1 O
£

(III) By (1I) we have ry < M - p, for some M > 0, p € T, for some M > 0,
p € T. Thus rg(z) = rg(z™)'/"

(Mp(:l:n))l/n - Ml/"p(z")lln < Ml/n(p(z)n)l/n
= M'/"p(z) — p(z) .

(IV) There exists p € T such that rz < p. By [3, p. 100] rg(z)
supr rE’(xp) < rE'(a:p), z € E, p €T, and by [5, Lemma 4.8.1] ¢(z,)?
rEq(a:;:cq), q¢ € T, so that for arbitrary ¢ € T we get ¢(z)? = ¢(z,)% =
5, (23%g) = 15 ((z°2)y) < rp(z*z) < p(z*z) = p(z)?, z € E,forall z € E
and the proof is complete.

(V) Similarly. ]
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Abstract

Let X be a complex Banach space, and let t — T(t) (||T(¢t)]| < 1,¢ > 0) be a
strongly continuous contraction semigroup (on X) with infinitesimal generator A.
In this paper I prove that

1024

10*
|l A=|* < TIIrII3IIA‘zII, lA%e||* < TIIIIIQIIA‘III’, l4%||* < 192||e|| ||A%<|]®

hold for every z € D(A*?). Inequalities are established also for uniformly bounded
strongly continuous semigroups, groups and cosine functions.

1. Introduction.

Edmund Landau (1913) [6] initiated the following eztremum problem: The
sharp inequality between the supremum-norms of derivatives of twice differen-
tiable functions f such that

s < 4l (+)

holds with norm referring to the space C[0, co].
Then R. R. Kallman and G.-C. Rota (1970) [3] found the more general
result that inequality
Azl < 4|zl || A%=]] (1)
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holds for every z € D(A?), and A the infinitesimal generator (i.e., the strong
right derivative of T at zero) of t — T'(t)(t > 0): a semigroup of linear con-
tractions on a complex Banach space X

Besides Z. Ditzian (1975) [1] achieved the better inequality

l|Az||? < 2|l 1A% (2)

for every £ € D(A?), where A is the infinitesimal generator of a group ¢t — T'(t)
(IT@®)|| = 1,t € R) of linear isometries on X.

Moreover H. Kraljevi¢ and S. Kurepa (1970) [4] established the even shaper
inequality

4
ll4=]* < 3llell [|4%] 3)

for every z € D(A?), and A the infinitesimal generator (i.e., the strong right
second derivative of T at zero) of t — T(t)(t > 0): a strongly continuous
cosine function of linear contractions on X. Therefore the best Landau’s type
constant is § (for cosine functions).

The above-mentioned inequality (1)—(3) were extended by H. Kraljevi¢ and
J. Pecarié¢ (1990) [5] so that new Landau’s type inequalities hold. In particular,
they proved that

243
4z < ==l 4%, [14%] < 24]j=]| ||4%2]? (1)

hold for every z € D(A3), where A is the infinitesimal generator of a strongly
continuous contraction semigroup on X, Besides they obtained the analogous
but better inequalities

9
14z < 2llelPl 4%l [|4%]° < 3)j=]| ||4%=]? 2)

hold for every z € D(A3), where A is the infinitesimal generator of a strongly
continuous contraction group on X. Moreover they got the set of analogous
inequalities

81 72
142l® < =PI, lA%]® < 2llal] [|4%)° (")

for every ¢ € D(A®), where A is the infinitesimal generator of a strongly
continuous cosine function on X.

In this paper, I extended above inequalities (1')-(3') so that other Landau’s
inequalities hold for every z € D(A*), where A is infinitesimal generator of a
uniformly bounded continuous semigroup (resp. group, or cosine function).
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2. Semigroups

Let t — T(t) be uniformly bounded (||T(¢)|] £ M < oo,t > 0) strongly
continuous semigroup of linear operators on X with infinitesimal generator A,
such that T°(0) = I (:= Identity) in B(X) := the Banach algebra of bounded
linear operators on X, ltilr(rle(t)r =z, for every z, and

L T)y-1 -
Az = ltlﬁ)l — (=T'(0)x) (4)

for every z in a linear subspace D(A) (:= Domain of A), dense in X, [2].
For every z € D(A), I have the formula

Ttz =z + /Ot T(u)Azdu (5)

Using integration by parts, I get the formula

/Ot (/Ou TvA%dv) du = /Ot(t — u)TuA’zdu (6)

Employing (6) and iterating (5), I find for every z € D(A?) that
t
T(t)z =z +tAz + / (t — u)TuA’zdu (5")
0

Similarly iterating (5'), I obtain for every z € D(A*?) that

t3

12
T(t)z =z + tAz + 5A2:E + 5

t
Adr + % / (t — u)®Tudzdu (5")
0

Theorem 1. Let t — T(t) be a uniformly bounded (||T(t)|| < M < oo,t > 0)
strongly continuous semigroup of knear operators on a complez Banach space
X with infinitesimal generator A, such that A%z # 0. Then the following
inequalities
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((ts)? + (sr)? + (rt)?) + s2(rt — s7 — st) + ts + sr+ rt] 2]

tsr(t —s)(s—r)

sl < |

tsr

+ Mo rllA%] (7

IIA%HSQ[M(tT + 1% + ts + tr) + s(rt — 5°) +t+s+"]

tsr(t —s)(s—r)

ts + sr +rt
+ M1—||A4 z|| , (M)

(ts+sr+rt)—s t+s+r, 4
M—— Atz||, 7
tsr(t — s)(s — ,.) ” I+ [|A%z]] (™)

hold for every z € D(A?®) and for every t,s,r € Rt = (0,00), 0 <t <s <.

14%2]| < 6 [M

Theorem 2. Let t — T(t) be a uniformly bounded (||T(t)|| < M < oo,t > 0)
strongly continuous semigroup of linear operators on a complez Banach space
X with infinitesimal generator A, such that A*z # 0. Then the following
inequalities

32

142" < 23 M1 (ma, ma)l|z|°l|A%]] (8)
4

14%2]|* < 5 M?g>(m, mo)la|*l|A%]* (&)
8

ll4%|* < M3 gs(m1, mo)la]| || A%l , (8")

hold for every z € D(A*?), and for some my,my € RY, my > my > 1, where

g1(my, ma) = (myma)x

M(m'f + (mim3)? + m2) + m3(my — mimy —my) My + mymy + m2]3
| mima(my — 1)(m2 — my) mimg ’

g2(m1,ma) = (my + mymy + my)°x

'M(m%+m1m§+m1 + my) + my(my — m}) Lt my 2
| myma(m; — 1)(mg — my) mims ’

ga(my,m2) = (1 +my +my)® |M

(m1 + mymy + m2) — m? 1 ]
mima(my — 1)(me —m1)  mum,
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Theorem 3. Let t — T(t) be a strongly continuous contraction (||T(t)|| <
1,t > 0) semigroup of linear operators on a complex Banach space X with
infinitestmal generator A, such that A*z #£ 0. Then the following inequalities

1024
lAall* < == lal*fA%=]] ©)
A2 4< E 2 A4 2 9
J422)* < -zl el (9
14%|* < 192]j]] |A*=|® , (9”)

hold for every z € D(A*%).
Proof of Theorem 1. In fact, formula (5") yield system
t
6tAz + 3t? A%z + 343z = 6T (t)z — 6z — / (t — u)T(u)A%zdu
0

6sAz + 352 A%z + s3 A3z = 6T(s)z — 6z — / (s — u)®*T(u)A*zdu (10)
0

6rAz + 3r?A%z + r3 A%z = 6T(r)z — 6z — / (r —u)3T(u)A%zdu
0

/

The coefficient determinant D of system (10) is
D = 18tsr(t — s)(s — r)(r — 1) (11)

It is clear that D is positive because of the hypothesis: 0 < t < s < r.
Therefore there is a unique solution of system (10) of the following form

Ap = [(sr)2(r — )T (t)z — (tr)*(r — )T(s)z + (ts)*(s — )T (r)z
- tsr(t —s)(s —r)(r —t)

- ﬁzj‘”] - /0’ K\ (t,s,m;u)T(u)A'edu (12)
o = o 2 = T Gl ~ T — ole” — YT )
tsr(t —s)(s—r)(r—1)
+ Ug—rx] +/0 Ko(t,s,r;u)T(u)A*zdu , (12"
APr =6 (s7)(r — 8)T(t)x — (tr)(r — )T(s)x + (ts)(s — )T (r)x L:c
= tsr(t —s)(s—r)(r —t) tsr

_/ Ks(t, s, r;u)T(u)Azdu | (12")
0
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where

K1:
Ky =«
K3 =«

(sm)2(r —s)(t — u)® = (tr)2(r — t)(s — u)® + (t5)%(s — t)(r — u)3
6tsr(t —s)(s —r)(r —1t)

0<u<t

—(tr)2(r — t)(s — u)® + (ts)2(s — t)(r — u)? t<u<s
btsr(t — s)(s—r)(r—1) ' -

(ts)*(s — t)(r —u)® s<u<r

| 6tsr(t —s)(s—r)(r—1t)’

(s7)(r? = sH)(t — u)3 — (tr)(r? — t2)(s — u)3 + (ts)(s% — t2)(r — u)3
3tsr(t —s)(s —r)(r —1t)

0<u<t

—(tr)(r? = 2)(s = w)® + (t8)(s% = )(r = w)® t<ugs
Stsr(t —s)(s—r)(r—1) ) Suss,

(ts)(32 - tz)(r - U)3 s<u<r

3tsr(t —s)(s—r)(r—1t)’

(sr)(r—s)(t —u)® — (tr)(r —t)(s — u)® + (ts)(s — t)(r — u)3
tsr(t —s)(s—r)(r —1t)

0<u<t

—(tr)(r —t)(s — u)3 + (ts)(s —t)(r — u)3
tsr(t —s)(s —r)(r —1t) ) t<u<s,
(ts)(s = t)(r —u)® s<u<r.

tsr(t —s)(s —r)(r—t¢)’

It is obvious that K; = K(t,s,r;u) > 0, 1 = 1,2,3, for every u € [0, 7]
(0 <t < s <r), and that the following equalities

r ¢ r ¢ r
/ I{Id‘u:ﬁ / I{gdu:—s+sr+rt, / I{adu:t+i+r ,
0 0 0

247 12

(13)
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hold. Note that (12)-(12") hold because the identities
(sm)i(r —s) — (tr)2(r —t) + (ts)*(s — t) )
=(t—-s)(s—r)(r—t)(ts+sr+rt),
— (sr)(r? = %) + (tr)(r? = t2) — (ts)(s® — t?)
=—(t—-s)s~r)(r—t)(t+s+r),

(s7)(r —s) = (tr)(r — t) + (ts)(s — 1)
=({t-s)(s=r)(r—1)

hold.

287

Therefore from formulas (12)-(12"), (13), and triangle inequality, I get

inequalities (7)—(7"). This completes the proof of Theorem 1.
Proof of Theorem 2. Setting
s=myt, r=myt, my>m;>1, t>0

in (7)=(7"), I obtain the following inequalities

1 1 1
”AI“ < a1? + blta, ||A21,'” < agt—2 + bztz, ||A3:L‘|| < a3t—3 + bst,

where
py (i + (mimg)® + m3) + mi(mg — mamg — m,y)
ay =
mimy(m; — 1)(m2 — my)
m; +mymo + mo ”x”
m;my
m1m2
b= M——||A%|,
(m2+m1m2+m1+m2)+m1(m2—m¥) 14+ my +mo
as = 2 M
| myma(my — 1)(my — my) mymsy
m;+mimo+m
by = M2 2|4
12
(m1 + mima +ma) — m2
az =6 ll=ll ,
mima(my — 1)(m, — ml) myms
1+mi+m
by = M- LT T2 44y

4

(15)

(16)

ll=Il
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Minimizing the right-hand side functions of t of (16), I get the sharper
inequalities.

256 5 256

||Az||* < 570 3by, |A%z]|* < 16a3b3, || A3z|* < a3b3 (17)
But
M M?
alh; = ﬁgl(ml,m2)||z||3||A“z||,a%b% = %-gz(ml,m2)||z||2||A4f||2:
and
M3
agh3 = 3—293(7"1,’"2)”’3“ ||A%z|]®

Therefore from (15)—(17), I obtain inequalities (8)~(8"”). This completes
the proof of Theorem 2.

Proof of Theorem 3. Taking M =1, I have

g1(m1,m2) = 8¢} (m1, my), g2(m1,m2) = 495 (mq, my),

g93(m1, mz2) = 2¢3 (m1,my),
where

m1(1 + mog + m% —m; — mlmg) 3
mg(ml — 1)(1712 - ml)

gf (ma, m2) = (mymy) [

2
1+ mg +mj—m?

ma(my — 1)(my — m;)

97 (m1,mz2) = (my + mymy + my)?

14mg—m ]

+ mo) = m m 3
g5 (m1,m3) = (1+my +my) [mQ(ml"’l)(m2_m1)

Hence inequalities (8)—(8") are written, as follows:

256

l4all* < 220

(my, ma)l|z|*l|A%]| (18)

16
[4%=]1* < 593 (my, ma)l2|?|| A%2]|* (18)

16
4%2(|* < < gf (my, ma) ]| (| 4% , (18")

for some my, my € RY: my > my; > 1.
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All functions ¢} = gt (my,ms), i = 1,2,3, attain their minimum at the
same myp, mqg: My = 2 + \/5, my = 3+ 2v/2, so that

min g§ (my,m;) = 108 = ming§ (m1,mz),  mingd (my,my) = 625 (19)

Therefore inequalities (18)-(18") and minima (19) yield the even sharper
inequalities (9)-(9"). This completes the proof of Theorem 3.

3. Groups

Let t — T(t) be a uniformly bounded (|T(t)]] < M < oo, t € R =
(—o00,00)) strongly continuous group of linear operators on X with infinitesi-
mal generator A. It is clear that analogous inequalities (as those in the afore-
mentioned Theorems 1-3) hold for every t,s, 7 € R~ = (—00,0),t < s <7 < 0.

Case I: s<0<t<r.

Denote
s = mit, T = mot, m <0, my>1 t>0, (15")
and
z; = 6tAz, z, = 3t A%z, 3 =t34%z | (20)
as well as

t
a=6T(t)r — 6z — / (t — u)®*T(u)A*zdu,
0
m,t
b =6T(myt)z — 6z — / (myt — u)3T(u)A*zdu
0
t
( = 6T (m;t)z — 6z — m‘}/ (t- u)3T(m1u)A4zdu),
0
mot
¢ = 6T (myt)z — 6 — / (mat — u)3T(u)A*zdu
0

Then system (10) takes the following form:

2 3, _ 2 3. _
1+ 22413 = a, myz1 +miza+mizz = b, mar;+mizy+myz3z =c

(10°)
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Solving system (10’), I find the unique solution

_ (mimp)*(my — my)a — m3(my — 1)b+ mi(m; — 1)c

o mymy(my — 1)(my — 1)(mg — m;) @)

_ —(mimy)(m3 — m%)a + ma(m% — 1)b — my(mf — 1)c ,
2= mymy(m; — 1)(my — 1)(my — my) @1
s = (mlmg)(mz - ml)a - mz(mz - 1)b+ ml(ml - 1)6 (21”)

mlmz(ml - 1)(m2 — 1)(77'12 - ml)

Theorem 4. Let t — T(t) be a uniformly bounded (||T(t)|| < M < oo,t € R)
strongly continuous group of linear operators on compler Banach space X with
infinitesimal generator A, such that A*z # 0. Then

|l Az|| < [M(m1m2)2 +mi4+mi—mi+mmy—my  my+mimy+my
- myma(m; — 1)(my — 1) mymy
1 (umy)(14+my —mumy +ma), oy g
M Azl 22
x ll=ll 3 + Y TE Y — ||A%z|| (22)

1+ my +mo 1
R

mimy
M
+ ﬁ(—(ml +mym, + my))||A%z||t? (22')
sl s [ mtmame tme o L0 (22")
- mlmg(mg — 1)(m2 — ml) mimy t3

—m%mg —mymqg + mlmg + (m1m2)2 + m% + mg I|A4l'“t
s

+ M
4may(my — 1)(me — my)

hold for every z € D(A*), for everyt € R, and for some m; € R~, m, € R,

my

_ 1 _
(mz +1) <m < my+ 1’

my > 1.

Theorem 5. Let t — T(t) be a contraction (||T(t)|| < 1,t € R) strongly con-
tinuous group of linear operators on complez Banach space x with infinitesimal
generator A, such that A*z #0. Then the following inequalities
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256

l|Az||* < —Sl—fl(mlme)“IlIa”A‘ll'” , (23)
16

lA%z||* < gfz(mh"1:’)||15||2||/143”||2 : (23")
16

llA3z))* < 5 fa(m1, m2)l|zll lA%z|® (23")

hold for every z € D(A*), and for some m; € R™, my € R¥,
my

m2+l

—(ma+1)<m < — , mo>1,

where

mymg 4
ptmsme) = () 4=t ma)

1+m1+m2

2
) (my 4+ myimy + my)? |
mimo

fa(mi,mp) = (

fa(my,m2) =
(1 4+ my — ma)(—=m?my — mymy + mym3 + (mym2)? + m% + m?)3
(mim3)((mz — 1)(mz — my))*

Theorem 6. Let t — T(t) be a strongly continuous contraction (||T(t)|| <
1,t € R) group of linear operators on a complez Banach space X with in-
finitesimal generator A, such that A%z # 0. Then the following inequalities

5 4
el < 10 (3) elifatel (21)
16
a7t < pepEate) (24
54132
4% < 1050 e 1% (247)

hold for every z € D(A?).

Theorem 7. Let t — T(t) be a strongly continuous contraction (||T(t)|| <
1,t € R) group of linear operators on a complez Banach space X with in-
finitesimal generator A, such that A*c # 0. Then the following inequalities
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32 m}
llAz||* < ﬁ@?—l)‘,”f”e’”A%” : (25)
16 /
|A%2|* < §||1”||2||/‘143'3||2 » (25')

16 m3y(1 + m2,)3
It < Py ate (25")

hold for every z € D(A*), where

7+V57
5

Mmao =

Proof of Theorem 4. In fact, from (20) and (21)—(21"), I get

o1 _

6t

((mlmg)z(mg —m)T(t)z — mi(my — )T (myt)z + m?(m; — 1)T(mat)z

Az =

myma(my - 1)(ma — 1)(mq — my)

_ (mimg)?(mg —my) — mi(my — 1) + mi(my — 1) Y1
myma(m; — 1)(my — 1)(my — my) t

6myms(my — 1)(me — 1)(mg — my)

_ [/t(t _ u)p ((m1m2)2(m2 —m)T(u) — m3(my — 1)miT(myu)
0

2 4
mi(my — 1)m5T (mau) 4 1
Azdu| -
6myma(my — 1)(mg — 1)(m2 — my) rau t’
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2., _ T2 _
A r = 3? =
2(—m1m2(m% —m}T(t)z + ma(mi — )T (mit)z — my(m} — D)T(mat)z

mlmg(ml — l)(m2 — 1)(1’1’12 — ml)

B —myma(m3 — m?) + ma(m3 — 1) — my(m? ~ 1) 1
mlmg(ml — l)(m2 — 1)(m2 - ml) t_2

) [/t(t —u)® —mams(mi — mi)T(u) + ma(m3 — 1)miT(m1u)
0 3mimz(my — 1)(my — 1)(my — my)

_ my(m? — 1)miT(mau) 4 /
Imimg(my — 1)(mg — 1)(ma - my) Alzdu 12 (26")
3. _ T3 _
A r = t_3 =

6 myma(my — my)T(t)z — ma(mg — 1)T(mit)z + my(m; — 1)T (mat)z
mlmg(ml - 1)(777,2 — 1)(7Tl2 - ml)

_ m1m2(m2 — ml) — mg(mz - 1) + ml(ml - 1)1: l
mlmg(ml - 1)(m2 - 1)(m2 - ml) 3

_ [/t(t —u)? <m1m2(m2 — m1)T(u) — ma(my — HmiT(myu)
0

mima(my — 1)(me — 1)(me — my)

my(m; — 1)miT(mu) 4 1 .
mlmg(ml - 1)(7’7’12 - 1)(7712 - ml))A Idu] t_3 (26 )

But it is clear that the following identities:

(m1m2)2(m2 —-my) — m%(m2 -1+ mf(ml -1
= (m; — 1)(mq — 1)(my — my)(my + mym, + my),
— myma(m} — mi) + ma(m3 — 1) — my(m} — 1)

= —(m1 - 1)(7712 - 1)(7712 — ml)(l + m; + mg),
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— mymy(m3 — m?) + ma(m2 — 1)m} - my(m? — 1)m;
= —mlmg(ml — 1)(1712 — 1)(m2 —_ ml)(ml =+ mimy —+ m2)

hold. Applying these identities and formulas (26)—(26"), I obtain inequalities
(22)-(22"). This completes the proof of Theorem 4.

Proof of Theorem 5. In fact, from inequalities (22)-(22") I get
1 1 1
Azl < at +bf0, (A%l <ab s 46307, (142 < af 5+ 51, (20)
where
+ mymp

1 = 2(m1 _ 1)(m2 _ 1)“1:” ’

_ (mimy)(1 + my — mymy + my)
! 24(my, — 1)(mz = 1)

NIl ,

A%z,

+ l+m1+m2

=(—4
a3 =(-4) myms

1
b'{ = —ﬁ(ml +mimg + m2)|lA4z|| ,

1+m; —mo

a;- = ml(m2 — 1)(m2 — ml)”x” )

—m'fmz —mymg + mlmg + (m1m2)2 + mg + mg “qu”
b

4m2(m2 — 1)(m2 - ml)

b;’ =
and new identities:

mima(my — my) + ma(mg — 1) + my(my — 1)
= (my — 1)(my + mym, + my — m%),
mima(my — mzg) + ma(mg — V)m} + my(m — 1)m?

=my(my — 1)(=mim; — mimy + mymZ + (mymy)? + m2 4+ m)

Minimizing the right-hand side of (27), I find

256
27
256
A3 4 < 2=
jaselpt < 2

Azl < -(ah)(bY),  |4%=|* < 16(aF)?(53)?,

(a3)(03)%, (28)
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where
(@ (1) = g2 il ma),
(@) (83)” = § folmr,ma),
(@)D = 1 fa(mr, ma).

Therefore inequalities (28) yield inequalities (23)-(23”). This completes
the proof of Theorem 5.

Proof of Theorem 6. Setting m; = —1, I get min f(—1,m;) = 10(2)* at

my = 5. Hence fo(—1,5) = 1, f3(—1,5) = 5%(13)3/2%3% Therefore from

formulas (23)-(23") and m; = —1, mq = 5, [ get inequalities (24)-(24"). This

completes the proof of Theorem 6.

mi (14m2,)?
(m20_1)‘ 1

where mag = 4/ 1“32@ (= root (> 1) of equation: mj — 7m% — 2 = 0). Besides
I have

Proof of Theorem 7. In fact, min f3(—1,ms) = fa(—1,my) =

1 m3
1 1 mi
fl( ’ mZO) 8 (m20 - 1)4
Therefore from formulas (24)-(24"), and m; = —1, my = my, I obtain in-

equalities (25)—(25"). This completes the proof of Theorem 7.

Case II' r<s<0<t.

Denote s = myt, r = myt, my = m < —1, m; = =1, ¢t > 0. From (21)-(21"), I
have

m?(m + 1)a — m%(m — 1)b — 2c

= 2m(m? — 1) '
_atb
Iy = 2 )
_ a - -1)b+2
24 = m(m+ 1)a — m(m - 1)b + ¢ (29)

2m(m? — 1)
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Therefore from (29) and (20), I obtain

Az =
(—m2(m + DT ()z + m*(m — )T (-t)z + 2T (mt)z Lx) 1
2m(1 — m?) m )t
i m?(m+ 1)T(u) — m*(m — 1)T(~u) — 2m4T(mu)
+ (/0 (8w 12m(1 — m2)
A’z =
T(t)z + T(-t)zx 1 ¢ T(u)+ T(—u) 1
2 (# - I) t—2— — (‘/0 (t - U)S——6—A4l‘du> vy
Adz =
(m(m + 1)T(t)z + m(m — 1)T(—t)z — 2T (mt)z + —x) 1
2m(1 — m?) m- ) t3

¢ —m(m+ 1)T(u) — m(m — 1)T(—u) + 2m4T(mu)
" (/o (t=w’ Im(1 = m?)

Thus from formulas (30)-(30") I get
Il < =2clell + (= gy gy ) A%l
- 24(m +1) '
l|A%2|| < 4||I||—2 + —llA‘iﬂﬂllt2 :

1m(1+m

2
4% < 127"l + 3 ) g

Minimizing the right-hand side of inequalities (31)-(31”), I find

.52
81

l|A%|* < gllﬂvllzllx‘l“ﬂvll2 ;

lAzl|* < = h(m)llz|P[|A%]]

16
[|4%|* < gha(m)llfﬂ l|A%||®
where

m _ m4(1+m2)3
manr MW= T

hl(m)=— m< —1

(30)

du)l,
t

(30

(307)
1

(31)
(31)

(31")

(32)
(32)

(32")
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First, minimizing hy(m), m < —1, 1 get m = —5. Then inequalities (32)-
(32") (with m = —5) are the same as the inequalities (24)-(24"). Finally,

minimizing hz(m), m < —1, I obtain m = mg = —/(7+ V57)/2. Then
inequalities (32)—(32") (with m = my) are the same as the inequalities (25)-
(25").

4. Cosine functions

Let t — T(t) (t > 0) be a uniformly bounded (||T(t)]| < M < oo,t > 0)
strongly continuous cosine function with infinitesimal operator A, such that
T(0) = I (:=identity) in B(X), l}lrng(t):c = z, Vz, and A is defined as the

strong second derivatives of T at zero:
Az =T"(0)z (33)
for every z in a linear subspace D(A), which is dense in X, [5].
For every z € D(A), I have the formula

T(t)z=z+ /0 (t — u)T(u)Azdu . (34)

Using integration by parts, I get from (34) the formula

/Ol(t — u) (/OU(U _ v)f(v)dv> du = %/Ol(t i), (35)

where f(v) = TvA%z. Note the Leibniz formula:

(/ (u— v)" f(v)d >_n</u(u—v)"‘1f(v)dv) . (36)

Employing (35)-(36) and iterating (34), I find for every z € D(A?) that

Ttz =z +1 51 A:c +1 / (t —u)®T(u)A’zdz (34")

Similarly iterating (34') I obtain for every z € D(A*) that

Ttz ==« + Ax + Azr + A3z + —/ (t —u)"T(u)A%zdu (34")

2!

Theorem 8. Let t — T(t) be a uniformly bounded (||T(t)]] < M < oo,t >
0) strongly continuous cosine function on a complez Banach space X with
infinitesimal generator A, such that A%z #£ 0. Then the following inequalities
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ts)? + (s7)2 + (rt)? + s%(rt — sr — st ts+sr+rt
s < 2 [ar et (o) + () + o7 ) e
tsr(t —s)(s—r)
37
20160 =l (37)
ts2 + sr2 4+ t2s5 + t2r) + s(rt — s2 t+s+r
4% < 24 [ LT LS |
sr(t—s)(s—r)
ts+sr+rt, 4,
M ——-I|A , 37
+ Tes0 A=l (37)
3 (ts+sr+rt)—s® 1
] < 720 [ SISy L
t
+ Mt (37")

hold for every x € D(A*), and for everyt,s,re RY, 0<t<s<r.

Theorem 9. Let t — T(t) be a uniformly bounded (||T(t)|| < M < oco,t >
0) strongly continuous cosine function on a complez Banach space X with
infinitesimal generator A, such that A%z # 0. Then the following inequalities

32

1Agll* < gome Mgy (m, mo)z]| A% (38)
4

1422|* < oo M2ga(ma, mo)a]? A% (3%)
40

3 4 3 4,13 "

14321 < S MPgs(ms, m)lz] f1A%]® (38")

hold for every z € D(A*), and for some m;, my € RY, my > m; > 1, where
gi = gi(my, my) are the same as those g;, 1 = 1,2,3, in Theorem 2.

Theorem 10. Let t — T(t) be a strongly continuous contractions (||T(t)|| <
1,t > 0) cosine function on a complez Banach space X with infinitesimal
generator A, such that A*z #0. Then the following inequalities
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1024

Mall* < S llal 4%l (39)
400

a2 < el At (39)
2880

1A% < Sl llAtalf (39")

hold for every z € D(A*).

Proof of Theorem 8. In fact, setting t(> 0) instead of ¢? in (34"”), I get

T(V)z =z + EA:l: + 4A2:c + —Aa:c + —-/ (Vt —u)"T(u)Azdu

2 2 720 5040
(34///)
Formulas (34"") yields
2520t Az + 210t2 A%z 4+ 713 A3z
Vi
= 5040T(V/t)z — 5040z — / (Vt —u)"T(u)Atzdu
0
2520s Az + 210s2 A%z + Ts3 A3z
Vs (10"
= 50407 (\/5)z — 5040z — / (Vs — u)'T(u)A*zdu
0
25207 Az + 21072 A%z + 73 A%
\/;
= 5040T(\/7)z — 5040z — / (V7 = u)'T(u)A*zdu
0
The coefficient determinant D+ of system (10’) is
Dt = 3704400ts7(t — s)(s — 7)(r — t)(= D/205800) (11')

It is clear that Dt > 0 because 0 < t < s < r. Therefore there is a unique
solution of system (10’) of the form
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((sr)2(r = )Tz — (tr)’(r = )T(V5)z + (ts)*(s — )T(Vr)z
tsr(t — s)(s —r)(r—1)

o
- .thss—:'-*-ﬂz) _/ Ki"(txs,r;u)T(u)A“zdu , (40)
0

2 o, —sr(r? = sD)T(VY)z + tr(r? — 2)T(Vs)z — ts(s* — t*)T(\/7)z
Ar= 24( tsr(t — 8)(s — r)(r — 1)

JF
+ : +tzr+ rx) + / K;(tvs; rs U)T(U)A4zdu , (40/)
0

3, = 790 (sr(r — $)T(Vi)z — tr(r — )T(/5)z + ts(s — t)T(v/r)z
tsr(t—s)(s=r)(r—1t)

- Ez) / K3 (t,s,r;u)T(u)A'zdu , (40")
where
[ ()’ = (V= w)" = ()*(r = )(v/5 = )" + (2 (s = (V7 = w)T
2520tsr(t — s)(s —r)(r — 1)
0<us<WVA
K=~ = 05— u)" 4+ (150 = (S5 )y
—(tr)“(r =t —u7+t323—t r—u
2520tsr(t— s)(s —r)(r — 1) Visus<is,
(ts)*(s —)(vr —w)’
[ 2520tsr(t — s)(s —r)(r —t)’ Vs<ugm,
(sr(r® = ) (VT = u)" — (tr)(r* = £2)(\/5 — u)" + ts(s* = ) (/7 — )"
210tsr(t — s)(s —r)(r — 1) ’
0<u<WV,
K; =

—tr(r? — 2)(v/5s — u)” + ts(s® — 2)(\/7 — u)’
210ts7(t — 8)(s — r)(r — 1) , Vi<u< Vs,

ta(s® = )7 — )’
[ 210tsr(t — s8)(s —r)(r — 1)’ Vs<u<r,
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(srlr =)W= w) —tr(r = )(/5 =)' + ta(s = (VT = w)"
Ttsr(t = s)(s —r)(r — t)
0<u< VA,
K = —tr(r —1)(\/s — u)" + ts(s — t)(/7 — )7
Ttsr(t— s)(s — r)(r — 1) Vi<u<s,
ts(s — t)(\/7 — u)’
[ Ttsr(t—s)(s —r)(r = 1)’ Vs<u<r

Note that K} > 0,i=1,2,3, for every u € [0,/7] (0 <t < s < r). Besides

v N
/ Kidu= 27 / Kiduz S+t
A 20160 ; 1680
\/;7
/ Kidu=‘F54T (13)
A 56

From (40)-(40"), triangle inequality, (13’), (15) and similarly as in the previous
section “on semigroups”, I get inequalities (37)-(37"”). This completes the
proof of Theorem 8.

Proof of Theorem 9. From (15) and (37)-(37") and similar calculations as
in section “on semigroups”, I find inequalities (38)—(38"). This completes the
proof of Theorem 9.

Proof of Theorem 10. Setting M = 1, using (38)—(38"), and minimizing
gi(m1,mz), i = 1,2,3, as in section “on semigroups”, I obtain inequalities
(39)-(39"). This completes the proof of Theorem 10.
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Abstract

Let X be a complex Banach space, and let t — T(t) (J|T(t)|| < 1,t > 0) be a
strongly continuous contraction semigroup (on X ) with infinitesimal generator A.
In this paper, I prove that

9 8
A2l < S flalf A=l [[4%]® < el A% )2
- 32 ' = 32 ’
32 52 7% .
%l® < T T alPA%®, At < 35 2Tall 1%l

hold for every z € D(A®). Inequalities are established also for uniformly bounded
strongly continuous semigroups, groups and cosine functions.

1. Introduction

Edmund Landau (1913) [6] initiated the following eztremum problem: The
sharp inequality between the supremum-norms of derivatives of twice differen-
tiable functions f such that

711 < 4l (+)

holds with norm referring to the space C[0, o0].
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Then R. R. Kallman and G. C. Rota (1970) [3] found the more general
result that inequality
llAz||? < 4ljz|| |4%2] (1)

holds for every z € D(A?), and A the infinitesimal generator (i.e., the strong
right derivative of T at zero) of t — T'(t)(t > 0): a semigroup of linear con-
tractions on a complex Banach space X.

Besides Z. Ditzian (1975) [1] achieved the better inequality

l|Az|]® < 2ljz|| |4 (2)

for every z € D(A?), where A is the infinitesimal generator of a group t — T'(t)
(IT®)|| = 1,t € R) of linear isometries on X.

Moreover H. Kraljevi¢ and S. Kurepa (1970) [4] established the even sharper
inequality

4
ll4z]* < sllell 1A% (3)

for every z € D(A?), and A the infinitesimal generator (i.e., the strong right
second derivative of T at zero) of t — T'(¢)(t > 0): a strongly continuous
cosine function of linear contractions on X. Therefore the best Landau’s type
constant is § (for cosine functions).

The above-mentioned inequalities (1)-(3) were extended by H. Kraljevié
and J. Pecari¢ (1990) [5] so that new Landau’s type inequalities hold. In par-

ticular, they proved that
AzlP < 22 2|7 43 Az|® < 24|z|| ||A%=||? !
Azl < —=ll=l"llA%=ll, 47| < 24]|e|| || 4% (1)

hold for every = € D(A?), where A is the infinitesimal generator of a strongly
continuous contraction semigroup on X . Besides they obtained the analogous
but better inequalities

9
I4l” < gllelPll4%ll, 1A% < 3je]| || A=) (2)

hold for every z € D(A3), where A is the infinitesimal generator of a strongly
continuous contraction group on X. Moreover they got the set of analogous
inequalities

81 72
4=l® < llel*l 4%l [14%=|® < 55 llell [14%=(* (3"
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for every ¢ € D(A®), where A is the infinitesimal generator of a strongly
continuous cosine function on X .

The above Landau-Kraljevié-Peéarié inequalities (1')-(3') have been ex-
tended further by the author of this paper (7], for every z € D(A*), where A is
the infinitesimal generator of a uniformly bounded continuous semigroup (resp.
group, or cosine function). In this paper I extend even further my results [7],
for every z € D(A®), where A is the infinitesimal generator of a uniformly
bounded continuous semigroup (resp. group, or cosine function).

2. Semigroups

Let t — T(t) be a uniformly bounded (||T()|| < M < oo,t > 0) strongly
continuous semigroup of linear operators on X with infinitesimal generator A,
such that T(0) = I (:= Identity) in B(X) := the Banach algebra of bounded
linear operators on X, ltilrng(t)a: = z, for every z, and

Az = ltilrgl Wx (= T'(0)z) (4)

for every z in a linear subspace D(A) (:= Domain of A), dense in X, [2].
For every z € D(A), I have the formula

t
Tt)x ==z +/ T(u)Azdu (5)
0
Using integration by parts, I get the formula
4 u t
/ </ TvA%dv) du = / (t —u)TuA’zdu . (6)
0 0 0
Employing (6) and iterating (5), I find for every ¢ € D(A?) that
t
T(t)z =z +tAz + / (t — u)TuA’zdu . (5")
0
Similarly iterating (5'); I obtain for every z € D(A®) that

t? t3 tt I
T(t)z = z+tAz+ —2"A212+ ‘aAaiL'-i- ﬁfﬁl‘*‘ ‘2—4/0 (t—u)4T(u)A5zdu . (5")

Theorem 1. Let t — T(t) be a uniformly bounded (||T(t)|| < M < oo,t > 0)
strongly continuous semigroup of linear operators on a compler Banach space
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X with infinitesimal generator A, such that Az # 0. Then the following
inequalities
l|Az|| < {M[(srp)z(s —r)(r = p)(p — 5) + (trp)*(t — r)(r — p)(p — 1)
+ (tsp)’(t — 5)(s — p)(p — 1) + (ts7)?(t — s)(s — r)(r — 1)}/

tsrp(t — s)(t —r)(t — p)(s — r)(s — p)(r — p)
+ ((ar +tsp+ trp-+ orp)fara] el + MZNAS] (D)

1A% < 2{M[srp<s —)(r— p)(p - )(s7 + B+ p5)

+trp(t —r)(r — p)(p — t)(tr + rp + pt)
+tsp(t — s)(s — p)(p — t)(ts + sp+ pt)
+tsr(t — s)(s — r)(r —t)(ts + sr + rt)]/
tsrp(t — s)(t —r)(t —p)(s —7)(s — p)(r — P)

+[(ts +tr +tp+ 57+ sp+ rp) /tsrp] }lell

t 4 t
sr+1isp+ rp+srp”A5z” ' (7,)

+M 60

14%]| < G{M[srp<s R —p)p—s)s 4 +D)

+trp(t —r)(r —p)(p—t)(t + r +p)
+tsp(t —s)(s —p)(p—t)(t+s+p)
+itsr(t—s)(s —r)(r—t)(t+s+r)]/
tsrp(t — s)(t —r)(t —p)(s—r)(s—p)(r—p)
t+s+r+p . ts+itr+ip+sr+sp+rp Sy
tsrp }” II+M 20 Il ”(:7//)

1A%a]| < 24{M[srp(s )= p)(p— 5) + trp(t = r)(r — p)(p — )

+tsp(t —s)(s —p)(p—t) +tsr(t — s)(s — r)(r — 1))/
tsrp(t — s)(t —r)(t — p)(s — r)(s — p)(r — p)
L t+s+r+ p 5 "
+ o Ml + LT g ()
hold for every z € D(A®), and for every t,s,r,p € Rt = (0,00), 0 <t <s<
r < p.
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Theorem 2. Lett — T'(t) be a uniformly bounded (||T(¢)|| < M < oo,t > 0)
strongly continuous semigroup of linear operators on a complez Banach space

X with infinitesimal generator A, such that Az # 0. Then the following
inequalities

625

llAz||° < mMgl(ml,mz»m3)||x||4||A5$|| ) (8)
125

|14%2|° < ——= M?gs(my1, ma, m3)||z|P||A%z||? , (8"
1944

A3 5 < 225 M3 2 A5 3 "

[|4%2|]° < —== M g3(my, my, m3)||z||*||A%=||° , (8")
1728
15

|A%z||° < 3—2M494(m1»m2»m3)“1|| [|ASz||* (8")

hold for every z € D(A3), and for some my, my, m3z € RY, mg > my > my > 1,
where

g1(m1, ma, m3) = mymamgs
{M[(mlm2m3)2(ml - mz)(m:z - ma)(ma - ml)

+ (mam3)*(1 — my)(my — m3)(ma — 1)
+ (m1m3)*(1 — my)(my — m3)(ma — 1)
+ (m1m2)*(1 — my1)(my — ma)(my — 1))/

m1m2m3(l — ml)(l et mz)(l - mg)(ml - mg)(ml - 7R3)(m2 - m3)

+

4
mymg + mymsa + momy + mymamsa
mimyms ’

g2(my, ma, m3) = (mymg + myma 4 mama + mimyms)?
{M[(m1m2m3)(m1 — my)(my — mz)(ms — my)(mymy + mamsz + mam,)

+ mam3(1 — m2)(m2 — mg)(m3 — 1)(m2 + mams + m3)
+ m1m3(1 - ml)(ml - mg)(ﬂlg - 1)(m1 + mims + m3)
+ myma(1 — my)(my — ma)(me — 1)(my + mymy + my)]/

+ mymamz(1 — m1)(1 — m2)(1 — m3)(mq — ma)(my — m3)(my — mg)

3
my + mo + m3 + mima + myma + mamga
mimoing '
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ga(my,mg, mg) = (my + ma + maz + myma + myma + m2m3)3
{M[(m1m2m3)(m1 — mz)(ma — m3)(ms ~ my)(my + mz + m3)

+ mam3(1 — my)(ma — m3)(mz — 1)(1 + ma + m3)

+ myms(1 — m;)(m1 — m3z)(ms — 1)(1 + my + m3)

+ mima(1l — my)(m1 — mz)(ma — 1)(1 + my + m2)}/

mymama(l — my)(1 — my)(1 — m3)(my — my)(my — m3)(my — m3)

14+my+my+m3 :
mimoms '

+

ga(my, ma, m3) = (1 4+ my + my + ma)*
{M[(m1m2m3)(m1 — my)(my — m3)(ma — my)

+ mgmg(l - mg)(mg - 7713)(7713 - l)
+ mims(1l — my)(m; — m3)(mz — 1)
+ mimy(l — my)(my — ma)(my — 1)}/

m1m2m3(1 — ml)(l bt mg)(l — m3)(m1 bt mz)(ml - m3)(m2 — m3)
1
mimomsa
Theorem 3. Let t — T(t) be a strongly continuous contraction (||[T(¢)|| <

1,t > 0) semigroup of linear operators on a complexr Banach space X with
infinitesimal generator A, such that A%z # 0. Then the following inequalities

5 59
l4sll® < - llelll 4%z o)
2,115 2 58 3 5..12 1
4%l < - llall 4%z @)
32 52 7%
42l < S A% (9")
e <3 5 27l 145" (9")

hold for every z € D(A®).
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Proof of Theorem 1. In fact, formula (5”) yields system
24t Az + 12t° A%z 4+ 43 A%z + t1 A%
t
— 24T(t)z — 24z — / (t = w)'T(u) A®zdu
0
24sAz + 1252 A%z + 45° A%z + s* A%z
= 24T (s)x — 24z — / (s — u)*T(u)A%zdu
0 ) (10)
24rAz + 12r2 A%z 4 4r3A3z 4+ rt A%z

= 24T(r)z — 24z — /r(r — u)*T(u)ASzdu
0

24pAz + 12p2 A%z + 4p3 A%z + p*A%:

= 24T (p)x — 24z — /P(p — u)*T(u)A%zdu
0

The coefficient determinant D of system (10) is

D = 1152tsrp(t — s)(t — r)(t —p)(s — r)(s — p)(r — p) - (11)

It is clear that D is positive because of the hypothesis: 0 < t < s < 7 < p.
Therefore there is a unique solution of system (10) of the following form:

Az = [(srp)*(s — ) (r — p)(p — 5)T(t)z
— (trp)*(t = 7)(r — P)(p — )T ()=
+ (tsp)*(t = 5)(s — p)(p — )T(r)
— (tsr)*(t — s)(s — 7)(r — )T(p)z]/ (12)
tsrp(t —s)(t —r)(t —p)(s—r)(s —p)(r —p)

t t t P
_lsrispAirptsrp, —/ Ki(t,s,r,p;u)T(u)A’zdu
tsrp 0

A%z = —=2[srp(s — r)(r — p)(p — s)(sT + rp+ ps)T(t)z
—trp(t —7r)(r — p)(p — )(tr +rp+ pt)T(s)z
+tsp(t —s)(s—p)(p—t)(ts +sp+ pt)T(r)z
—tsr(t—s)(s —r)(r —t)(ts + sr + rt)T(p)z]/ (12)
tsrp(t — s)(t — r)(t - p)(s — r)(s — p)(r — p)

t P
tstird pt:r;r tept P, + / Ka(t,s,r,p;u)T(u)Adzdu |
0

+2
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Az = 6[srp(s —r)(r —p)(p — s)(s + 7+ p)T(t)x
—trp(t = r)(r —p)(p — t)(t + 7 +p)T(s)z
+tsp(t —s)(s —p)(p — t)(t+ 5+ p)T(r)z
—tsr(t —s)(s —r)(r —t)(t + s+ r)T(p)x]/ (12")
tsrp(t — s)(t — r)(t — p)(s —)(s — p)(r — P)

P
_ 6t ts+ rﬂ_p - / Ks(t, s, r,p; u)T(u)A’zdu
tsrp 0

Atz = —24[srp(s — r)(r — p)(p — s)T(t)z
—trp(t —r)(r —p)(p — t)T(s)z
+tsp(t — s)(s — p)(p — t)T(r)z
—tsr(t — s)(s — r)(r — t)T(p)z]/ (12"
tsrp(t — s)(t — r)(t —p)(s — r)(s —p)(r — p)

P
+ 24L:c +/ Ky(t,s,r,p;u)T(u)A’zdu ,
tsrp 0

where
Ki(t,s,r,p;u) = - Ki(t,s,r,p;u)/D, i=1,234,
and
48[—(srp)*(s — r)(r — p)(p — 5)(t — v)*
+(trp)2(t —r)(r — p)(p — t)(s — v)*
—(tsp)?(t — s)(s — p)(p — t)(r — u)*
+(tsr)?(t = s)(s = r)(r—t)(p—u)¥], 0<u<t

| 4816 - ) = )P - t)(s — w)
Ri=1{  —(tsp)*(t - s)(s - p)(p - )(r — w)*
H(tsr)X(t - s)(s = )(r = D)(p-w?], t<u<s

48[~ (tsp)(t — s)(s — p)(p — t)(r — w)*
H(tsr)’(t = o) (s —r)(r=t)(p-w)*], s<u<r

48[(tsr)?(t ~ s)(s —r)(r=t)(p—w)*], r<u<p,
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96[—srp(s — r)(r — p)(p — s)(sT + rp+ ps)(t — u)*
+trp(t —r)(r — p)(p — t)(tr + rp + pt)(s — u)*
—tsp(t — s)(s — p)(p — t)(ts + sp + pt)(r — u)*
+tsr(t —s)(s —r)(r—t)(ts+sr+rt)(p—u)?t], 0<u<t

96[trp(t — r)(r — p)(p — t)(tr + rp+ pt)(s — u)*
—tsp(t — s)(s — p)(p — t)(ts + sp+ pt)(r — u)*
+tsr(t —s)(s—r)(r—t)(ts+sr+rt)(p—u)?t], t<u<s

96[~tsp(t — s)(s — p)(p — t)(ts + sp+ pt)(r — u)*
+tsr(t —s)(s—r)(r—t)(ts+sr+rt)(p—u)?], s<u<lr

96[tsr(t —s)(s —r)(r—=t)(ts+sr+rt)(p—u)t, r<u<lp,

288[—srp(s — 7)(r — p)(p — s)(s + r + p)(t — u)*
+trp(t —r)(r — p)(p = )(t + 1 + p)(s — u)*
—tsp(t — s)(s = p)(p — t)(t + s + p)(r — w)*
+tsr(t—s)(s—r)(r=t)t+s+r)p—u)], 0<u<t

288[trp(t —r)(r — p)(p — )(t + 7 +p)(s — u)*
—tsp(t — s)(s —p)(p— )t + s+ p)(r — w)*
+tsr(t—s)(s—r)(r—t)(t+s+r)p—u)], t<u<s

288(—tsp(t — s)(s — p)(p — t)(t + s + p)(r — u)*
+tsr(t—s)(s—r)(r—t)t+s+r)(p—u)?, s<u<r

288[tsr(t —s)(s—r)(r—t)t+s+r)(p—u)!, r<u<p,
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( 1152[-srp(s — r)(r — p)(p — s)(t — u)*
+trp(t —r)(r — p)(p — t)(s — u)*
—tsp(t — s)(s — p)(p — t)(r — u)*
+tsr(t—s)(s—r)(r—t)(p—-uw)?, O0<u<t
1152[trp(t — r)(r — p)(p — t)(s — v)*
—tsp(t — s)(s — p)(p — t)(r — u)*
+tsr(t—s)(s—r)(r—t)(p—u)?), t<u<s

1152(~tsp(t — )(s — p)(p — £)(r — u)*
+tsr(t —s)(s —r)(r —t)(p — u)?, s<u<lr

K‘lz{

( 1152[tsr(t —s)(s —r)(r—t)(p—uw)?, r<u<p.
It is obvious that K; = K;(¢,s,r,p;u) > 0,7 =1,2,3,4, for every u € [0, p|
(0 <t < s <r<p), and that the following equalities

P P
/ Kydu = fﬂ’ / Kodu = _tsr+tsp+trp+ TSp , (13)
0 0

S 120° 60
P t P
/ Kadu= 2147 p;OS"J’s”Hp, / mw:-W,
0 0 (13"
hold. Note that (13)-(13') hold because identities
(r=p)(s = r)(p—9)t* — (t = r)(p— 1)s°]
+(t = 9)(s = p)(p — 1)r® — (s = r)(r — )P’
= —D/1152tsrp , (14)

(r=p)[(s = r)(p = s)(s7 + rp+ ps)t* — (t — r)(p — t)(tr + rp + pt)s*]
+(t = 5)[(s — P)(p — t)(ts + sp + pt)r® — (5 — r)(r — t)(ts + 57 + rt)p?)
= —D(tsr + tsp+ trp + srp)/1152tsrp , (14"

(r=p)s =)= s)(s4r+p)t* = (t = r)(p~ )t + 7 +p)s’]
Ht=9)l(s—p)p—t)(t+s+p)r* — (s —r)(r —t)(t + 5 +r)p]
= —D(ts+tr+tp+sr+sp+rp)/1152tsrp (14")

(r=p)[(s = r)(p— s)t* = (t = r)(p — t)s*]

+(t = 5)[(s = )P~ t)r* = (s = r)(r — t)p"]
=-D(t+s+r+p)/1152tsrp , (14)
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hold.

Therefore from formulas (12)-(12""), (13)~(13'), and triangle inequality, I
get inequalities (7)—(7'"). This completes the proof of Theorem 1.

Proof of Theorem 2. Setting

s=mt, r=mot, p=mat, my>my>my>1, t>0 (15)

in (7)-(7""), I obtain the following inequalities

1 1
||.A12|| S 111? + b1t4, ||A213” S agt—2 + b2t3 s (16)

1 1
||A3z|| < o335 + bat?,  ||A%z|| < aq73 +bat (16")

where
a; = {M[(m1m2m3)2(m1 — mz)(m2 — m3)(mz — m,)

+ (mam3)%(1 — mz)(my — ma)(ma — 1)
+ (mim3)*(1 — my)(m, — m3)(ma — 1)
+ (mimg)?(1 — my)(my — ma)(m3 — 1))/
mymamg(1 — my)(1 — my)(1 — m3)(my — mz)(my — m3)(my — my3)
mimso + myma + moms + mymams }||z|| ’
myimamg

mypmams

bi=M—%

[

a, = 2{M[(m1m2m3)(m1 — my)(my — m3)(mz — my)

x (mimg + mam3 + mamy)

+ mamg(1 — my)(mg — m3)(mz — 1)(my + mama + m3)

+ myma(1 — m)(m1 — m3)(m3 — 1)(m1 + mim3 + m3)

+ myma(1 — my)(my — mz)(m2 — 1)(my + mymz + mz)]/
mymama(1l — m1)(1 — my)(1 — m3)(my — ma)(my — m3z)(ma — m3)

mj + my + m3 + mymy + mymsa + moms llzll
+ m1m2m3 ’

mimsy + mymsa + momz + Mymams

b 60

M

A% ,
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az = G{M[(mlmgma)(ml — my)(ma — ma)(ma — my)(my + my 4+ m3)

+ mama(1 — my)(mz — m3)(m3 — 1)(1 + mz + ma)

+ mym3(1 — my)(my — m3)(ms — 1)(1 + m; + m3)

+ mymy(1 — my)(m; — ma)(ma2 — 1)(1 + my + ma)]/

mimamz(l — m1)(1 — ma)(1 — m3)(my — ma)(my — m3)(ma — m3)

L+ m + ms +’"3}||ac||
mypmaoms ’

+

my + mg + mg + myms + mymg + mamgs
20

by =M |4z ,

aqg = 24{M[m1m2m3(m1 - mg)(mz - M3)(77I3 - m1)
+ mams(1 — my)(mz — m3)(ms — 1)
+ m1m3(1 - ml)(ml - mg)(m3 - 1)
+ mima(1 — my)(my — ma)(mz — 1)}/

m1m2m3(1 - ml)(l — mz)(l - ms)(ml - mg)(ml b m3)(m2 - m3)

sl

1+mi +ma+m3
5

by =M ||ASz]|

Minimizing the right-hand side functions of t of (16)—(16'), I get the sharper
inequalities

3125 3125

sl < Sreathy, A%l < S2atnd, an
3125 3125

A%l < Totadss, A < S e ar)
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But

M
ajb = mgl(mhmz,m3)||£|l4||4453|l)

2
312 3 5 112
b —_ my. Mo. m 4
a2 2 45092( 1 2, 3)”1:” ” 17” )

9 3

a3t = Zgog9e(me, ma, ma)l|=|*|A% %,
24M*

asb} = <555 9a(ma, ma, mo)Ja]| [|4°2|* .

Therefore from (15), (16)—(16'), and (17)—(17’), I obtain inequalities (8)-
(8""). This completes the proof of Theorem 2.

Proof of Theorem 3. Taking M = 1,Ifind that the functions g; = g;(m;,mo,
ma), i = 1,2,3,4, mg > my > my > 1, attain their minimum at

_5+V5

m; 5 (= 3+ “golden section number”), (18)

1

9 = ﬂ (= positive root of equation: 7 — — = z),
! (18)
ms=5+2V5, (18")
so that

min g;(my, my, m3) = 2% 5%, min go(my1, my,m3) = 2* 33 5% (19)
min g3(m1, mz,m3) = 33 7°, min g4(my, ma, m3) = 22 (19")

Therefore, inequalities (8)-(8") with M = 1, and minima (19)-(19’) yield
(9)-(9""). This completes the proof of Theorem 3.

3. Groups

Let ¢t — T(t) be a uniformly bounded (||T(¢)]] < M < oo,t € R =
(—00,0)) strongly continuous group of linear operators on X with infinites-
imal generator A. It is clear that analogous inequalities (to those in the
above-mentioned Theorem 1-3) hold for every ¢,s,7,p € R™ = (-00,0),
t<s<r<p<O.
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Consider: s < p < 0 < r < t, such that

1 1
s=myt, r=myt, p=mgt, m =-—1, m2=§, m3=—§, (15’)
t>0,
and
T, = 24tAz, z,=12t2A%z, z3=4t34%, z,=t'A%, (20)
as well as
t
a = 24T (t)x — 24z — / (t —u)* T(u)A®zdu ,
0
1
b=24T(—t)r — 24z + / (t —u)* T(—u)A’zdu ,
0
—or (L 24 /t 1 5(t-u)“T 1u) ASzdu
c= 5% T 2 3 ,
1 tr1\° . 1\
d=24T | —zz ) — 24z + =) t=-uw*T|{-zu|Azdu,
2 o \2 2
because
nt t
/ (nt — u)*T(v)A’zdu = n5/ (t — u)*T(nu)A’zdu , (201
0 0
n= :I:%, and n = —1.

Then system (10) takes the following form:

z1+z2+z3+ 24 = a, —z14+ 22— 23+ 124 =, (109
11 1 1 111 1 .,
§:cl+Z:c2+ gz3+1614_c, —§xl+zxz— ng+ 1—6x4_d. (10")

Solving system (10')—(10"), I find the unique solution

—a+b+8c—8d —a — b+ 16¢c+ 16d
) Iy = )
6 6
2a —2b—4c+4d 2a + 2b — 8¢ — 8d
I3 = 3 y Ty = 3

I, =
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Theorem 4. Let t — T(t) be a strongly continuous contraction (||T(¢)|| <
1,t € R) group of linear operators on a complez Banach space X with in-
finitesimal generator A, such that A%z # 0. Then the following inequalities

el < Gl el 4o (1)
a7 < 2L oo g (21')
4% < 52513? =P lA%IP (217)
el <5 (3) el it (21)

hold for every z € D(AS).

Proof. From (15"), (20)—(20’), and the solution of system (10’)-(10"), I find
the following formulas

g (T(t):c —T(~t)z — 8T(4)z + 8T(— %)z ) 1

6 t
([ e T = T(-w) - 8T(5) +8T(-%) 5 |1
(/o(t ) T4 Ad)t,(22)
A2p — (—T(t)z—T(—t)x+;6T(%)x+ 16T(— %)z —30x) tlz
t 2 —32T(u) + 32T (—u) — T(%) + T(-%) 1
‘(/O(t_“) 2304 2 2A:cdu)t—z,
(22')

Az =4 (T(t)x — T(=t)z — 2T (%) c 49T (_%) z) t%

96 t (22")

A%z =16 (T(t)z 4 T(~t)z — 4T (%) z— 4T (_%) + 638) tl4

48 - 8T(~u) - T(3)+T(=%) 5 1
(/ (t—u) 12 A’zdu )t“ .(221”)




Therefore from (22)-(22"'), the fact that ||T(t)|| < 1,t € R, and the triangle
inequality, I find the estimates

11 64, 1
Azl < 3l=ll + —IlAsxllt“. l|A%2]| < —Ilwll—z |4%z||¢%, (23)

1920I

1
[[4%]| < 24|l 5 + 55 ll4%=lle% | 4%]| < 256llﬂvll OIIAE'wIlt - (23)

240 “

From (23)-(23’) and minimization techniques, I get inequalities (21)-(21").
This completes the proof of Theorem 4.

4. Cosine functions

Let ¢ — T(t) (t > 0) be a uniformly bounded (||T()|| < M < oo,t > 0)
strongly continuous cosine function with infinitesimal operator A, such that
T(0) = I (:= Identity) in B(X), lti{(r)iT(t)x =z, for all z, and A is defined as

the strong second derivative of T at zero:
Az =T"(0)z (24)

for every z in a linear subspace D(A), which is dense in X, [5].
For every ¢ € D(A), I have the formula

1
Tt)z =z + / (t — u)T(u)Azdu . (25)
0
Using integration by parts, I get from (25) the formula

t u :
/ (t—u) (/ (u— v)f(v)dv) du = %/ (t—u)?f(v)dv , (26)
0 0 0
where f(v) = TvA?z. Note the Leibniz’s formula:
d u u
Tu (/ (u—- v)"f(v)dv> =n (/ (u— v)"_lf(v)dv) . (27)
U \Jo 0
Employing (26)—(27) and iterating (25), I find for every ¢ € D(A?) that
:
Tt)z == + A:c + = 3 / (t — u)*T(u)A2zdz (25")
*Jo
Similarly iterating (25' ), I obtain for every ¢ € D(A®) that

(t):c_:c+ Az-l— A2x+-—-A3L'+ A41:+—/(t u)°T(u)A%zdu . (25")
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Theorem 5. Lett — T(t) be a uniformly bounded (||T(t)|| < M < oo,t >
0) strongly continuous cosine function on a complex Banach space X with
infinitesimal generator A, such that A%z # 0. Then the following inequalities

l4z] < (2!){M[<srp>2<s (= p)p— 8) + (trp)(t = r)(r — ) — 1)

+ (tsp)*(t — 5)(s — P)(p — 1) + (ts7)°(t — )(s — r)(r — 1)}/
tstp(t — s)(t — r)(t — p)(s —)(s = p)(r — P)

tsr +tsp+trp+ srp
+ tsrp }

|
el + Mtsrpll A%zl (28)

A% < (4!){M[srp<s ) (r = p)(p = 8)(s7+ b+ p5)

+irp(t —r)(r —p)(p - t)(tr + rp + pt)
+tsp(t — s)(s — p)(p — t)(ts + sp + pt)
+tsr(t — s)(s — r)(r — t)(ts + sr + rt)}/
tsrp(t — s)(t — r)(t — p)(s — r)(s — p)(r — p)
4 ts +tr + tpt:;;r +sp+ rp}”z”

4!
+ Ml_()_'(tsr + tsp+ trp + srp)||A%z|| , (28"

14%]] < <6!){M[srp<s L) —p)p—s)(s 47 +7)

+trp(t —r)(r —p)(p—t)(t+ T+ p)
+tsp(t — s)(s—p)(p—t)(t+s+p)
+tsr(t—s)(s—r)(r—t)(t+s+7)]/

tsrp(t — 8)(t = r)(t = p)(s — )(s — )(r — B) + t—“—J’ﬂ}uzn

tsrp

1
+ M%(ts +itr+tp+ sr+sp+rp)||diz]|, (28")

||A4:c|| < (8!){M[srp(s —7r)r—p)p—-s)+trpt —=7r)(r—p)(p—1)
+tsp(t — s)(s — p)(p — t) + tsr(t — s)(s — r)(r — )]/

tsrp(t — 5)(t = 1)(t = p)(s — r)(s — P)(r — ) + %}nxn

|
F M s+l (28")
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hold for every z € D(A®), and for every t,s,r,pE RY, 0<t<s<r<p.

Theorem 6. Let t — T(t) be a uniformly bounded (||T(t)]| < M < oo,t >
0) strongly continuous cosine function on a compler Banach space X with
infinitesimal generator A, such that A%z # 0. Then the following inequalities
hold

. NS ) . )
el < GO 2|ttt malf 4%l (29)

5

with i = 1,2, 3,4, [z = T‘#» gi = gi(m1,m3, m3) as in Theorem 2, for

every x € D(A®), and for some m;, my,m3 € RY, m3g > my >m; > 1.

Theorem 7. Let t — T(t) be a strongly continuous contraction (||T(t)|| <
1,¢ > 0) cosine function on a complez Banach space X with infinitesimal
generator A, such that ASz # 0. Then the following inequalities hold for every
z € D(A®%):

Ail® < RellallS 1A%l (30)
1=1,2,3,4, and
59 5% (35(6Y)° (5(8H)°
= — - 1 5 = —— =
Ri=gp R=05r Re=Tamme R= (qoyg)r

Proof of Theorem 5. In fact, setting t(> 0) instead of ¢? in (25”), I get

Vi
(\/E - u)gT(u)Asrdu .

(25/”)

T(\/Z):r:—z-!-iAzﬁ—ﬁAz +ﬁA3 +ﬁA4 1
D TR TR TR TR T A
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Formula (25"") yields

9! Oy Mg 9,

Vi
=9 T(Vt)z — 9'z — / (Vt — u)°T(u)A®zdu
0

9! 9!, 9 4 4 9 4 4
ﬁsAz+zs A? z+as A x+8 stAtz
v
=9T(Vs)z — 9z — / (Vs — v)°T(u) A% zdu
0
9! 9! 1o
—rA:c + —7‘2A2:B + 3A31: + 2 ‘At
= 9T (\/r)z — 9z — / (V7 = u)°T(u)A%zdu
0
9! 9, 5 9 4 4 9!
§!-pA:c+ 7P Az + aiP Az + 8!p4A4x
VP
=9'T(\/p)z — 9z — / (VP — u)°T(v) APzdu
0
The coefficient determinant D% of system (10') is
Dt = (')4t t—s)(t-r)(t- - - - NON
sratergi TPt = $)(t = 7)(t = p)(s —7)(s —p)(r = p) (117)

It is clear that D* > 0 because 0 < t < s < r < p. Therefore there is a unique
solution of system (10’) of the form
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Az = (2)[(s7p)*(s = )(r — p)(p — )T (V)=
= (trp)*(t = r)(r — p)(p — )T (V5)z
+ (tsp)*(t — 5)(s — p)(p — 1)T(V7)z
— (tsr)*(t — s)(s — r)(r — OT(V/P)z)/
tsrp(t — s)(t —r)(t = p)(s —r)(s —p)(r — )

tsp+1t VP
- (2!)ts1‘ + s;;:;prp + TP, /0 K¢, s, rp;u)T(u)A’zdu,

(31)

A’z = —(4)[srp(s = 7)(r — P)(p — 5)(s57 + rp + ps)T(V1)z
—trp(t — r)(r — p)(p — t)(tr + rp + pt)T(Vs)z
+ tsp(t — s)(s — p)(p — t)(ts + sp + pt)T(V/7r)z
—tsr(t — s)(s — v)(r — t)(ts + s + rt)T(y/D)z]/
tsrp(t — s)(t —r)(t —p)(s —r)(s - p)(r — p)

ts+tr+tp+sr+sp+rp
+(4) tsrp ‘

VP
+ / K¥(t,s,r,p,w)T(u)APzdu,
0 (31
APz = (68!)[srp(s — r)(r —p)(p — s)(s + T + P)T (Vi)
—trp(t — r)(r = p)(p ~ t)(t + 7 + P)T(V5)z
+tsp(t — s)(s — p)(p ~ O)(t + s+ p)T(Vr)z
—tsr(t —s)(s —r)(r —t)(t + s+ r)T(/P)z]/
tsrp(t — s)(t — r)(t = p)(s —r)(s — p)(r — p)
_eyitetrte +St:;;+pz
Atz = ~(8!)[srp(s — r)(r — P)(p — )T(V2)z
—trp(t — r)(r — p)(p — )T (V5)z
+tsp(t — s)(s — p)(p - )T(Vr)z
—tsr(t — s)(s — r)(r — )T(\/p)z]/
tsrp(t — s)(t — r)(t — p)(s — 7)(s — p)(r — p)

(8')@:64-/ K}t s,r,p;u)T(u)A%zdu, (317)

VP
—/ K3 (t,s,7r,p;u)T(u) APz du, (317)
0



where

Ki" =

K;’:
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( (91

s (= (s57p)(s — 7)(r — p)(p — 5) (VT — u)°
+(trp)*(t — r)(r — p)(p — t)(v/5 — u)°
—(tsp)*(t — s)(s — p)(p - t)(/7 — w)°
+(tsr)2(t — s)(s — r)(r — t) (VP — u)°)/
(=D%), 0<us<vi

C(trp)2(t = r)(r = p)(p — )(/5 — v)°
—(tsp)?(t — 5)(s — P)(p — ) (/7 — v)°
+(tsr)2(t — 5)(s — r)(r — t)(/F — u)°)/
(_D+)) \/i Su< \/g

OO [—(tsp)2(t — 5)(s — P)(p — D)(V/F — u)®
+(tsr)2(t — s)(s — r)(r — O)(/p — w)°]/
(-D*), Ji<u< JF

LA ((tsr)2(t = s)(s — v)(r = (/P — w)°)/

(—D*), Vr<u< B,
S (=srp(s = r)(r — p)(p = 8)(57 + rp + ps)(VE — u)®

+trp(t — r)(r — p)(p — t)(tr + rp + pt) (/5 — u)°

—tsp(t — s)(s —p)(p — t)(ts + sp + pt) (V7 — u)®

+tsr(t —s)(s —r)(r —t)(ts + sr + rt)(\/P — u)®)/

(=D%), 0<u<+t
E [trp(t — 7)(r — P)(p — t)(tr + rp + p)(v/5 — u)°

—tsp(t — s)(s — p)(p — t)(ts + sp + pt)(v/7 — u)®

+tsr(t — s)(s — r)(r —t)(ts + st + rt)(\/P — u)®]/

(=D%), Vi<u< Vs
O [—tsp(t — 5)(s — p)(p — t)(ts + 5p + pt)(/F — u)°
+tsr(t —s)(s —)(r —t)(ts + sr 4+ rt)(\/p — u)’)/
(-D*), VsSu<yr

8 (t5r(t = 9)(5 = r)(r = )(ts + 7+ )5~ )}

(=D%), Vr <u<.\/p,
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\

(

Blil=srp(s — r)(r — )@ — 5)(s + 7 + P)(VE - w)°
+trp(t = r)(r — p)(p = t)(t + r + p)(Vs — v)°
—tsp(t — s)(s — p)(p — )t + s + p)(VT — u)°
Hsr(t = s)(s — r)(r = t)(t + s+ r)(yP — u)°)/
(=D%), 0<u<+t

EO lerp(t — r)(r = p)(p — 1)(¢ + 7+ P)(V5 — v)°
—tsp(t — s)(s — p)(p — t)(t + s + P)(VT — u)°
+sr(t — s)(s = r)(r = t)(t + s+ r)(vP — v)°)/
(_D+)) Vit <u< \/;

Bl ltsp(t — 5)(s — p)(p — )(t + 5 + ) (V7 — w)°
+tsr(t —s)(s—r)(r—t)(t+s+7)(\/P— )%}/

(=D%), Vs<u<Jr
L [tsr(t — s)(s — r)(r — t)(t + 5 + 7)(/B — u)°)/
(=D%), Vr<u< B,

G2 [—srp(s — 1)(r — P)(p — )(VE — 0)°
+trp(t — r)(r — p)(p - t)(V5s — v)°
—tsp(t — s)(s — p)(p — t)(V7 — v)°
+tsr(t — s)(s —r)(r —t)(\P— u)?)/
(=D"), 0<u<vi

G ltrp(t — r)(r = p)(p — 1)(/5 — w)°
—tsp(t — s)(s — p)(p — t)(V/T — u)°
Htor(t — 8)(s — r)(r - O(yF - w)°)/
(_D+)! \/f <u< \/E

Skil=tsp(t — 5)(s - p)(p — O)(VF — u)°
+tsr(t — s)(s — r)(r — t)(/p — v)°)/
(=D), Vs<u</r

O [tsr(t — s)(s — r)(r = t)(/F — v)°]/
(-D+), VF<u< b
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Note that K;¥ > 0,1 =1,2,3,4, for every u € [0,\/p] (0 < t < s <r < p).
Besides

ﬁ]"'*d 2
/0 (] du = —E!-t.srp

. N , (32)
/ Kfdu= —1—0|(tsr +tsp+trp + srp)
0 .

VP 6!
/ K;du:—1—0'(t3+tr+tp+sr+sp+rp)

0 ! ,
4 8! (32
/ Kidu=——(t+s+r+p)

0 10!

From (31)-(31"), triangle inequalities, (32)-(32'), and similarly as “on semi-
groups”, I get (28)—(28"’). This completes the proof of Theorem 5.

Proof of Theorem 6. From (15) and (28)—(28"’) and similar calculations as in
the previous section “on semigroups”, I find inequalities (29). This completes
the proof of Theorem 6.

Proof of Theorem 7. Setting M = 1, using (29), and minimizing g; =
gi(m1,ma, m3), i = 1,2,3,4, as in section “on semigroups”, I obtain inequali-
ties (30). This completes the proof of Theorem 7.
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